La cara

G++ Buillder

kuera
La cara oculta de
C++ Builder

kuera

Un gato camina sobre el borde del tejado;

Tras él, el Sol se pone.

Gira su cara hacia i, y creo que me sonrie.

Linego, de un salto, pasa sobre la linea del horizonte.

Dedicado a Vivian, dondequiera gue esté.
Lan

INDICE

PROLOGO DEL AUTOR 17
CONTENIDO DEL LIBRO 17
AGRADECIMIENTOS 19
EL LENGUAJE SQL 21
1. SISTEMAS DE BASES DE DATOS 23
ACERCA DEL ACCESO TRANSPARENTE A BASES DE DATOS 23
BASES DE DATOS RELACIONALES 24
INFORMACION SEMANTICA = RESTRICCIONES 26
RESTRICCIONES DE UNICIDAD Y CLAVES PRIMARIAS 27
INTEGRIDAD REFERENCIAL 28
¢QUE TIENE DE MALO EL MODELO RELACIONAL? 29
BASES DE DATOS LOCALES Y SERVIDORES SQL 31
CARACTERISTICAS GENERALES DE LOS SISTEMAS SQL 33
EL FORMATO PARADOX 34
EL FORMATO DBF7 37
CRITERIOS PARA EVALUAR UN SERVIDOR SQL 39
INTERBASE 41
MICROSOFT SQL SERVER 43
ORACLE 45
OTROS SISTEMAS DE USO FRECUENTE 46
2. BREVE INTRODUCCION A SQL 49
LA ESTRUCTURA DE SQL 49
PARA SEGUIR LOS EJEMPLOS DE ESTE LIBRO... 50
LA CREACION Y CONEXION A LA BASE DE DATOS 52
TIPOS DE DATOS EN SQL 53
REPRESENTACION DE DATOS EN INTERBASE 54
CREACION DE TABLAS 55
COLUMNAS CALCULADAS 56
VALORES POR OMISION 57
RESTRICCIONES DE INTEGRIDAD 57
CLAVES PRIMARIAS Y ALTERNATIVAS 58
INTEGRIDAD REFERENCIAL 60
ACCIONES REFERENCIALES 61

NOMBRES PARA LAS RESTRICCIONES

62

4 La Cara Oculta de C++ Builder

DEFINICION Y USO DE DOMINIOS 63
CREACION DE INDICES 64
MODIFICACION DE TABLAS E INDICES 65
CREACION DE VISTAS 66
CREACION DE USUARIOS 66
ASIGNACION DE PRIVILEGIOS 68
ROLES 69
UN EJEMPLO COMPLETO DE SCRIPT SQL 70
3. CONSULTAS Y MODIFICACIONES 73
LA INSTRUCCION SELECT: EL LENGUAJE DE CONSULTAS 73
LA CONDICION DE SELECCION 75
OPERADORES DE CADENAS 75
YO SOLO QUIERO LOS DIEZ PRIMEROS... 76
EL VALOR NULO: ENFRENTANDONOS A LO DESCONOCIDO 77
FELIMINACION DE DUPLICADOS 78
PRODUCTOS CARTESIANOS Y ENCUENTROS 79
ORDENANDO LOS RESULTADOS 81
EL USO DE GRUPOS 82
FUNCIONES DE CONJUNTOS 83
LA CLAUSULA HAVING 84
EL USO DE SINONIMOS PARA TABLAS 85
SUBCONSULTAS: SELECCION UNICA 86
SUBCONSULTAS: LOS OPERADORES IN'Y EXISTS 87
SUBCONSULTAS CORRELACIONADAS 88
EQUIVALENCIAS DE SUBCONSULTAS 89
ENCUENTROS EXTERNOS 91
LA CURIOSA SINTAXIS DEL ENCUENTRO INTERNO 93
1LAS INSTRUCCIONES DE ACTUALIZACION 94
LA SEMANTICA DE LA INSTRUCCION UPDATE 95
VISTAS 96
4. PROCEDIMIENTOS ALMACENADOS Y TRIGGERS 99
¢PARA QUE USAR PROCEDIMIENTOS ALMACENADOS? 99
COMO SE UTILIZA UN PROCEDIMIENTO ALMACENADO 101
EL CARACTER DE TERMINACION 102
PROCEDIMIENTOS ALMACENADOS EN INTERBASE 103
PROCEDIMIENTOS QUE DEVUELVEN UN CONJUNTO DE DATOS 106
RECORRIENDO UN CONJUNTO DE DATOS 108
TRIGGERS, O DISPARADORES 109
LLAS VARIABLES NEW'Y OLD 111
MAS EJEMPLOS DE TRIGGERS 111

GENERADORES 113

SIMULANDO LA INTEGRIDAD REFERENCIAL
EXCEPCIONES

ALERTADORES DE EVENTOS

FUNCIONES DE USUARIO EN INTERBASE

5. TRANSACCIONES

¢POR QUE NECESITAMOS TRANSACCIONES?

EL ACIDO SABOR DE LAS TRANSACCIONES
TRANSACCIONES SQL Y EN BASES DE DATOS LOCALES
TRANSACCIONES IMPLICITAS Y EXPLICITAS

NIVELES DE AISLAMIENTO DE TRANSACCIONES
REGISTROS DE TRANSACCIONES Y BLOQUEOS
LECTURAS REPETIBLES MEDIANTE BLOQUEOS
VARIACIONES SOBRE EL TEMA DE BLOQUEOS
ELJARDIN DE LOS SENDEROS QUE SE BIFURCAN
¢BLOQUEOS O VERSIONES?

NIVELES DE AISLAMIENTO Y TRANSACCIONES IMPLICITAS

6. MICROSOFT SQL SERVER

HERRAMIENTAS DE DESARROLLO EN EL CLIENTE
CREACION DE BASES DE DATOS CON MS SQL. SERVER
BASES DE DATOS EN LA VERSION 7

TIPOS DE DATOS PREDEFINIDOS

TIPOS DE DATOS DEFINIDOS POR EL. PROGRAMADOR
CREACION DE TABLAS Y ATRIBUTOS DE COLUMNAS
INTEGRIDAD REFERENCIAL

INDICES

SEGURIDAD EN MS SQL SERVER

PROCEDIMIENTOS ALMACENADOS

CURSORES

TRIGGERS EN TRANSACT-SQL

INTEGRIDAD REFERENCIAL MEDIANTE TRIGGERS
TRIGGERS ANIDADOS Y TRIGGERS RECURSIVOS

7. ORACLE

SOBREVIVIENDO A SQL*PLUS

INSTANCIAS, BASES DE DATOS, USUARIOS
TIPOS DE DATOS

CREACION DE TABLAS

INDICES EN ORACLE

ORGANIZACION FiISICA DE LAS TABLAS
PROCEDIMIENTOS ALMACENADOS EN PL/SQL
CONSULTAS RECURSIVAS

Indice 5

116
117
119
121

125

125
127
128
128
131
133
136
138
139
141
143

145

145
146
148
149
150
151
152
153
153
154
155
157
159
161

163

163
165
166
167
168
169
171
172

6 La Cara Oculta de C++ Builder

PLANES DE OPTIMIZACION EN ORACLE 173
CURSORES 174
TRIGGERS EN PL/SQL 176
LA INVASION DE LAS TABLAS MUTANTES 177
PAQUETES 179
ACTUALIZACION DE VISTAS MEDIANTE TRIGGERS 181
SECUENCIAS 182
TIPOS DE OBJETOS 184
8. DB2 UNIVERSAL DATABASE 189
ARQUITECTURA Y PLATAFORMAS 189
AISLAMIENTO DE TRANSACCIONES 190
TIPOS DE DATOS 191
CREACION DE TABLAS Y RESTRICCIONES 193
INDICES 194
TRIGGERS 195
CONSULTAS RECURSIVAS 196
PROCEDIMIENTOS ALMACENADOS 198
9. EL MOTOR DE DATOS DE BORLAND 199
QUE ES, Y COMO FUNCIONA 200
CONTROLADORES LOCALES Y SQL LINKS 201
ACCESO A FUENTES DE DATOS ODBC 202
¢DONDE SE INSTALA EL BDE? 202
EL ADMINISTRADOR DEL MOTOR DE DATOS 204
CONFIGURACION DEL REGISTRO E INFORMACION DE VERSION 204
EL CONCEPTO DE ALIAS 206
PARAMETROS DEL SISTEMA 206
PARAMETROS DE LOS CONTROLADORES PARA BD LOCALES 208
BLOQUEOS OPORTUNISTAS 210
PARAMETROS COMUNES A LOS CONTROLADORES SQL 211
CONFIGURACION DE INTERBASE 214
CONFIGURACION DE MS SQL SERVER 216
CONFIGURACION DE ORACLE 217
CONFIGURACION DE OTROS SISTEMAS 219
CREACION DE ALIAS PARA BASES DE DATOS LOCALES Y SQL 219
ALTERNATIVAS AL MOTOR DE DATOS 220
C++ BUILDER: NAVEGACION Y BUSQUEDAS 221
10. CONJUNTOS DE DATOS: TABLAS 223

LA JERARQUIA DE LOS CONJUNTOS DE DATOS 223

LA ARQUITECTURA DE OBJETOS DEL. MOTOR DE DATOS
¢TABLA O CONSULTA?

TABLAS (POR EL. MOMENTO)

EXCLUSIVIDAD Y BLOQUEOS

CONEXION CON COMPONENTES VISUALES
NAVEGANDO POR LAS FILAS

MARCAS DE POSICION

ENCAPSULAMIENTO DE LA ITERACION

LA RELACION MASTER/DETAIL

NAVEGACION Y RELACIONES MASTER/ DETAIL
EL ESTADO DE UN CONJUNTO DE DATOS

11. ACCESO A CAMPOS

CREACION DE COMPONENTES DE CAMPOS

CLASES DE CAMPOS

NOMBRE DEL CAMPO Y ETIQUETA DE VISUALIZACION
ACCESO A LOS CAMPOS POR MEDIO DE LA TABLA
EXTRAYENDO INFORMACION DE LOS CAMPOS

TL.AS MASCARAS DE FORMATO Y EDICION

L.OS EVENTOS DE FORMATO DE CAMPOS

CAMPOS CALCULADOS

CAMPOS DE BUSQUEDA

LA CACHE DE BUSQUEDA

EL ORDEN DE EVALUACION DE LOS CAMPOS
EXTENSIONES PARA LOS TIPOS DE OBJETOS DE ORACLE 8
INFORMACION SOBRE CAMPOS

CREACION DE TABLAS

12. VALIDACIONES Y EL DICCIONARIO DE DATOS

VALIDACION A NIVEL DE CAMPOS
PROPIEDADES DE VALIDACION

EL DICCIONARIO DE DATOS

CONJUNTOS DE ATRIBUTOS

IMPORTANDO BASES DE DATOS

EVALUANDO RESTRICCIONES EN EL CLIENTE

13. CONTROLES DE DATOS Y FUENTES DE DATOS

CONTROLES DATA-AWARE

L.OS ENLACES DE DATOS

CREACION DE CONTROLES DE DATOS
LOS CUADROS DE EDICION
EDITORES DE TEXTO

TEXTOS NO EDITABLES

Indice 7

225
227
229
231
232
234
235
236
239
242
247

249

249
251
253
254
255
256
258
259
201
263
264
265
268
269

273

273
274
275
276
277
278

281

281
283
284
285
286
287

8 La Cara Oculta de C++ Builder

COMBOS Y LISTAS CON CONTENIDO FIJO 287
COMBOS Y LISTAS DE BUSQUEDA 290
ESENCIA Y APARIENCIA 292
CASILLAS DE VERIFICACION Y GRUPOS DE BOTONES 292
IMAGENES EXTRAIDAS DE BASES DE DATOS 293
LA TECNICA DEL COMPONENTE DEL POBRE 293
PERMITIENDO LAS MODIFICACIONES 295
BLOB, BLOB, BLOB... 297
LLA CLASE TBIL.OBSTREAM 298
14. REJILLAS Y BARRAS DE NAVEGACION 301
EL USO Y ABUSO DE LAS REJILLAS 301
EL FUNCIONAMIENTO BASICO DE UNA REJILLA DE DATOS 302
OPCIONES DE REJILLAS 304
COLUMNAS A LA MEDIDA 304
GUARDAR Y RESTAURAR LOS ANCHOS DE COLUMNAS 307
LISTAS DESPLEGABLES Y BOTONES DE EDICION 308
NUMEROS VERDES Y NUMEROS ROJOS 309
MAS EVENTOS DE REJILLAS 312
LA BARRA DE DESPLAZAMIENTO DE LA REJILLA 313
REJILLAS DE SELECCION MULTIPLE 313
BARRAS DE NAVEGACION 314
HABIA UNA VEZ UN USUARIO TORPE, MUY TORPE... 315
AYUDAS PARA NAVEGAR 316
EL COMPORTAMIENTO DE LA BARRA DE NAVEGACION 316
REJILLAS DE CONTROLES 318
15. INDICES 321
CON QUE INDICES PODEMOS CONTAR 321
ESPECIFICANDO EL INDICE ACTIVO 323
INDICES EN DBASE 325
ESPECIFICANDO UN ORDEN EN TABLAS SQL 326
BUSQUEDA BASADA EN INDICES 327
IMPLEMENTACION DE REFERENCIAS MEDIANTE FINDKEY 329
BUSQUEDAS UTILIZANDO SETKEY 330
EXPERIMENTANDO CON SETKEY 330
¢POR QUE EXISTE SETKEY? 332
RANGOS: DESDE EL ALFA A LA OMEGA 333
EL EJEMPLO DE RANGOS DE CASI TODOS LOS LIBROS 335
MAS PROBLEMAS CON LOS INDICES DE DBASE 336

COMO CREAR UN INDICE TEMPORAL 337

16. METODOS DE BUSQUEDA

FILTROS

ESTO NO LO DICE LA DOCUMENTACION. ..
UN EJEMPLO CON FILTROS RAPIDOS

EL EVENTO ONFILTERRECORD
LOCALIZACION Y BUSQUEDA

UN DIALOGO GENERICO DE LOCALIZACION
FILTROS LATENTES

FILTER BY EXAMPLE

BUSQUEDA EN UNA TABLA DE DETALLES

17. NAVEGACION MEDIANTE CONSULTAS

EL COMPONENTE TQUERY COMO CONJUNTO DE DATOS
¢QUIEN EJECUTA LAS INSTRUCCIONES?

CONSULTAS ACTUALIZABLES

STEMPRE HACIA ADELANTE

CONSULTAS PARAMETRICAS

CONSULTAS DEPENDIENTES

LA PREPARACION DE LA CONSULTA

VISUAL QUERY BUILDER

18. COMUNICACION CLIENTE/SERVIDOR

NUESTRA ARMA LETAL: SQL. MONITOR

APERTURA DE TABLAS Y CONSULTAS

LA CACHE DE ESQUEMAS

OPERACIONES DE NAVEGACION SIMPLE

BUSQUEDAS EXACTAS CON LLOCATE

BUSQUEDAS PARCIALES

UNA SOLUCION PARA BUSQUEDAS PARCIALES RAPIDAS
BUSQUEDAS CON FILTROS LATENTES

C++ BUILDER: ACTUALIZACIONES Y CONCURRENCIA

19. ACTUALIZACIONES

LOS ESTADOS DE EDICION Y LOS METODOS DE TRANSICION

ASIGNACIONES A CAMPOS
CONFIRMANDO LAS ACTUALIZACIONES
DIFERENCIAS ENTRE INSERTY .APPEND
COMO POR AZAR...

METODOS ABREVIADOS DE INSERCION
EL GRAN EXPERIMENTO

Indice 9

341

341
342
343
346
347
350
352
354
358

361

361
362
363
365
368
370
371
373

377

377
378
380
380
381
382
383
384

387

389

389
390
392
393
394
395
396

10 La Cara Oculta de C++ Builder

EL GRAN EXPERIMENTO: TABLAS LOCALES 397
EL GRAN EXPERIMENTO: TABLAS SQL 398
PESIMISTAS Y OPTIMISTAS 399
EL MODO DE ACTUALIZACION 400
LA RELECTURA DEL REGISTRO ACTUAL 402
ELIMINANDO REGISTROS 404
ACTUALIZACION DIRECTA VS VARIABLES EN MEMORIA 404
AUTOMATIZANDO LA ENTRADA DE DATOS 406
ENTRADA DE DATOS CONTINUA 408
20. ACTUALIZACIONES MEDIANTE CONSULTAS 411
INSTRUCCIONES DEL DML 411
ALMACENAR EL RESULTADO DE UNA CONSULTA 412
¢EJECUTAR O ACTIVAR? 413
NUEVAMENTE COMO POR AZAR.... 416
ACTUALIZACION SOBRE CURSORES DE CONSULTAS 417
UTILIZANDO PROCEDIMIENTOS ALMACENADOS 418
21. EVENTOS DE TRANSICION DE ESTADOS 421
CUANDO EL ESTADO CAMBIA. .. 421
REGLAS DE EMPRESA: ¢EN EL SERVIDOR O EN EL CLIENTE? 422
INICIALIZACION DE REGISTROS: EL EVENTO ONNEIWRECORD 423
VALIDACIONES A NIVEL DE REGISTROS 424
ANTES Y DESPUES DE UNA MODIFICACION 425
PROPAGACION DE CAMBIOS EN CASCADA 427
ACTUALIZACIONES COORDINADAS MASTER/DETAIL 428
ANTES Y DESPUES DE LA APERTURA DE UNA TABLA 429
TIRANDO DE LA CADENA 430
LOS EVENTOS DE DETECCION DE ERRORES 431
LA ESTRUCTURA DE LA EXCEPCION EDBENGINEERROR 432
APLICACIONES DE LOS EVENTOS DE ERRORES 436
UNA VEZ MAS, LA ORIENTACION A OBJETOS... 438
22. BASES DE DATOS Y TRANSACCIONES 439
EL COMPONENTE TDATABASE 439
OBJETOS DE BASES DE DATOS PERSISTENTES 440
CAMBIANDO UN ALIAS DINAMICAMENTE 441
BASES DE DATOS Y CONJUNTOS DE DATOS 443
PARAMETROS DE CONEXION 444
LA PETICION DE CONTRASENAS 445
EL DIRECTORIO TEMPORAL DE WINDOWS 447
COMPARTIENDO LA CONEXION 448

CONTROL EXPLICITO DE TRANSACCIONES 449

Indice 11

ENTRADA DE DATOS Y TRANSACCIONES 450
23. SESIONES 453
¢PARA QUE SIRVEN LAS SESIONES? 453
ESPECIFICANDO LA SESION 454
CADA SESION ES UN USUARIO 454
EL INICIO DE SESION Y LA INICIALIZACION DEL BDE 455
SESIONES E HILOS PARALELOS 457
INFORMACION SOBRE ESQUEMAS 460
EL MINIEXPLORADOR DE BASES DE DATOS 461
GESTION DE ALIAS A TRAVES DE TSESSION 463
DIRECTORIOS PRIVADOS, DE RED Y CONTRASENAS 464
24. ACTUALIZACIONES EN CACHE 467
¢CACHE PARA QUE? 467
ACTIVACION DE LAS ACTUALIZACIONES EN CACHE 468
CONFIRMACION DE LAS ACTUALIZACIONES 469
MARCHA ATRAS 471
EL ESTADO DE ACTUALIZACION 472
EL FILTRO DE TIPOS DE REGISTROS 473
UN EJEMPLO INTEGRAL 474
EL GRAN FINAL: EDICION Y ENTRADA DE DATOS 476
COMBINANDO LA CACHE CON GRABACIONES DIRECTAS 478
PROTOTIPOS Y METODOS VIRTUALES 482
COMO ACTUALIZAR CONSULTAS “NO” ACTUALIZABLES 483
EL EVENTO ONUPDATERECORD 486
DETECCION DE ERRORES DURANTE LA GRABACION 487
¢TABLAS ... O CONSULTAS EN CACHE? 489
PROGRAMACION DISTRIBUIDA 491
25. CONJUNTOS DE DATOS CLIENTES 493
CREACION DE CONJUNTOS DE DATOS 493
COMO EL TCLIENTDATASET OBTIENE SUS DATOS 495
NAVEGACION, BUSQUEDA Y SELECCION 496
FILTROS 497
EDICION DE DATOS 498
CONJUNTOS DE DATOS ANIDADOS 499
CAMPOS CALCULADOS INTERNOS 502
INDICES, GRUPOS Y VALORES AGREGADOS 503

12 La Cara Oculta de C++ Builder

26. EL MODELO DE OBJETOS COMPONENTES 507
UN MODELO BINARIO DE OBJETOS 507
YO QUIERO VER CODIGO! 508
CLASES, OBJETOS E INTERFACES 509
EL LENGUAJE DE DESCRIPCION DE INTERFACES 511
IDENTIFICADORES GLOBALES UNICOS 513
INTERFACES 514
LA INTERFAZ IUNKNOWN 516
TIEMPO DE VIDA 517
INTROSPECCION 518
COMO OBTENER UN OBJETO COM 520
PUNTEROS INTELIGENTES A INTERFACES 521
27. SERVIDORES COM 525
INTERCEPTANDO OPERACIONES EN DIRECTORIOS 525
DENTRO DEL PROCESO, EN LA MISMA MAQUINA, REMOTO... 526
CARGA Y DESCARGA DE LA DLL 529
OLE Y EL REGISTRO DE WINDOWS 530
REGISTRANDO EL SERVIDOR 532
IMPLEMENTACION DE INTERFACES 534
EL HUEVO, LA GALLINA Y LAS FABRICAS DE CLASES 536
IMPLEMENTANDO LA FABRICA DE CLASES 538
28. AUTOMATIZACION OLE: CONTROLADORES 541
¢POR QUE EXISTE LA AUTOMATIZACION OLE? 541
CONTROLADORES DE AUTOMATIZACION CON VARIANTES 543
PROPIEDADES OLE Y PARAMETROS POR NOMBRE 544
INTERFACES DUALES 545
BIBLIOTECAS DE TIPOS 546
IMPORTACION DE BIBLIOTECAS DE TIPOS 547
EVENTOS 549
ESCUCHANDO A WORD 552
29. AUTOMATIZACION OLE: SERVIDORES 557
INFORMES AUTOMATIZADOS 557
EL OBJETO DE AUTOMATIZACION 559
LA PARTE CLIENTE 563
DECLARANDO UNA INTERFAZ COMUN 564
MODELOS DE INSTANCIACION 566
MODELOS DE CONCURRENCIA 568
UN SERVIDOR DE BLOQUEOS 570

LA IMPLEMENTACION DE LA LISTA DE BLOQUEOS 572

Indice 13

CONTROL DE CONCURRENCIA 574
PONIENDO A PRUEBA EL SERVIDOR 577
30. MIDAS 579
¢QUE ES MIDAS? 579
CUANDO UTILIZAR Y CUANDO NO UTILIZAR MIDAS 581
MIDAS Y LAS BASES DE DATOS DE ESCRITORIO 583
MODULOS DE DATOS REMOTOS 584
PROVEEDORES 587
SERVIDORES REMOTOS Y CONJUNTOS DE DATOS CLIENTES 589
GRABACION DE DATOS 591
RESOLUCION 594
CONTROL DE ERRORES DURANTE LA RESOLUCION 596
RECONCILIACION 599
RELACIONES MASTER/ DETAILY TABLAS ANIDADAS 601
ENVIO DE PARAMETROS 601
EXTENDIENDO LA INTERFAZ DEL SERVIDOR 602
ALGUIEN LLAMA A MI PUERTA 604
LA METAFORA DEL MALETIN 606
TIPOS DE CONEXION 606
BALANCE DE CARGA SIMPLE 609
INTERFACES DUALES EN MIDAS 610
COGE EL DINERO Y CORRE: TRABAJO SIN CONEXION 611
31. SERVIDORES DE INTERNET 617
FIL MODELO DE INTERACCION EN LA WEB 617
APRENDA HTML EN 14 MINUTOS 618
EXTENSIONES DEL SERVIDOR Y PAGINAS DINAMICAS 620
¢QUE NECESITO PARA ESTE SEGUIR LOS EJEMPLOS? 622
MODULOS WEB 623
ACCIONES 626
RECUPERACION DE PARAMETROS 628
GENERADORES DE CONTENIDO 629
GENERADORES DE TABLAS 631
MANTENIMIENTO DE LA INFORMACION DE ESTADO 632
¢LE APETECE UNA GALLETA? 634
UN SIMPLE NAVEGADOR 635
AL OTRO LADO DE LA LINEA... 639

ACTIVEFORMS: FORMULARIOS EN LA WEB 640

14 La Cara Oculta de C++ Builder

LEFTOVERTURE 645
32. IMPRESION DE INFORMES CON QUICKREPORT 647
LA HISTORIA DEL PRODUCTO 647
LA FILOSOFIA DEL PRODUCTO 648
PLANTILLAS Y EXPERTOS PARA QUICKREPORT 649
EL CORAZON DE UN INFORME 650
L.AS BANDAS 652
EL EVENTO BEFOREPRINT 654
COMPONENTES DE IMPRESION 655
FL EVALUADOR DE EXPRESIONES 656
UTILIZANDO GRUPOS 657
FELIMINANDO DUPLICADOS 659
INFORMES MASTER/DETAIL 661
INFORMES COMPUESTOS 662
PREVISUALIZACION A LA MEDIDA 663
LISTADOS AL VUELO 665
ENVIANDO CODIGOS BINARIOS A UNA IMPRESORA 667
33. ANALISIS GRAFICO 671
GRAFICOS Y BIORRITMOS 671
EL COMPONENTE TDBCHART 675
COMPONENTES NO VISUALES DE DECISION CUBE 677
REJILLAS Y GRAFICOS DE DECISION 679
USO Y ABUSO DE DECISION CUBE 681
MODIFICANDO EL MAPA DE DIMENSIONES 682
34. DESCENSO A LOS ABISMOS 685
INICIALIZACION Y FINALIZACION DEL BDE 685
EL CONTROL DE ERRORES 687
SESIONES Y CONEXIONES A BASES DE DATOS 688
CREACION DE TABLAS 690
REESTRUCTURACION 693
ELIMINACION FiISICA DE REGISTROS BORRADOS 695
CURSORES 696
UN EJEMPLO DE ITERACION 698
PROPIEDADES 700
LAS FUNCIONES DE RESPUESTA DEL BDE 702
35. CREACION DE INSTALACIONES 705
L.OS PROYECTOS DE INSTALLSHIELD EXPRESS 705

LA PRESENTACION DE LA INSTALACION 707

L.AS MACROS DE DIRECTORIOS

GRUPOS Y COMPONENTES

INSTALANDO EL BDE Y LOS SQL LINKS
CONFIGURACION ADICIONAL DEL BDE
INSTALACION DE PAQUETES

INTERACCION CON EL USUARIO

LLAS CLAVES DEL REGISTRO DE WINDOWS

COMO SE REGISTRAN LOS COMPONENTES ACTIVEX
ICONOS Y CARPETAS

GENERANDO Y PROBANDO LA INSTALACION

LA VERSION COMPLETA DE INSTALLSHIELD EXPRESS
LAS EXTENSIONES DE INSTALLSHIELD EXPRESS

36. EJEMPLOS: LIBRETAS DE AHORRO

DESCRIPCION DEL MODELO DE DATOS
LIBRETAS DE AHORRO EN MS SQL SERVER
AHORA, EN ORACLE

EL MODULO DE DATOS

TRANSACCIONES EXPLICITAS

GESTION DE LIBRETAS Y OPERACIONES
ENTRADA DE APUNTES

LA VENTANA PRINCIPAL

CORRIGIENDO EL IMPORTE DE UN APUNTE

37. EJEMPLOS: UN SERVIDOR DE INTERNET

BUSQUEDA DE PRODUCTOS

EL MOTOR DE BUSQUEDAS

CREANDO LA EXTENSION WEB

GENERANDO LA TABLA DE RESULTADOS
DOCUMENTOS HTML Y SUSTITUCION DE ETIQUETAS
RESPONDIENDO A LAS ACCIONES

APENDICE: EXCEPCIONES

SISTEMAS DE CONTROL DE ERRORES

CONTRATOS INCUMPLIDOS

COMO SE INDICA UN ERROR

LA EJECUCION DEL PROGRAMA FLUYE EN DOS DIMENSIONES
PAGAMOS NUESTRAS DEUDAS

LA DESTRUCCION DE OBJETOS DINAMICOS

FEL BLOQUE DE PROTECCION DE RECURSOS

COMO TRANQUILIZAR A UN PROGRAMA ASUSTADO
EJEMPLOS DE CAPTURA DE EXCEPCIONES

CAPTURANDO EL OBJETO DE EXCEPCION

Indice 15

708
709
711
713
713
714
716
717
718
719
720
721

723

723
729
733
736
739
740
742
744
746

749

749
751
754
756
757
759

761

761
762
763
764
765
766
768
770
771
772

16 La Cara Oculta de C++ Builder

CAPTURA Y PROPAGACION DE EXCEPCIONES DE LA VCL
DISTINGUIR EL TIPO DE EXCEPCION

LAS TRES REGLAS DE MARTEENS

CICLO DE MENSAJES Y MANEJO DE EXCEPCIONES
EXCEPCIONES A LA TERCERA REGLA DE MARTEENS

EL EVENTO ONEXCEPTION

LA EXCEPCION SILENCIOSA

CONSTRUCTORES Y EXCEPCIONES

INDICE ALFABETICO

773
773
774
775
777
778
781
782

787

Prologo del Autor

“The day must come - if the world last long enough -” said Arthur,

“when every possible tune will have been composed - every possible pun perpetrated ...

and, worse than that, every possible book written! For the number of words is finite.”

‘Il matke very little difference to the anthors,” I suggested. “Instead of saying ‘what book shall I
write?’ an anthor will ask bimself ‘which book shall I write?” A mere verbal distinction!”

Lady Muriel gave me an approving smile. “But lunatics would always write new books, surely?”
she went on. “They couldn’t write the sane books over again!”

Lewis Carroll - Sylvie and Bruno Concluded

O CREO EN LAS ENCICLOPEDIAS; de hecho, nunca he podido terminar de

leer alguna. Sin embargo, cada vez que hojeo un nuevo libro sobre C++

Builder o Delphi me da la impresion de que el autor ha intentado preci-
samente escribir una enciclopedia; lastima que, en la mayoria de los casos, el volumen
del libro se limita a lo sumo a un tomo de no mas de 1000 paginas.

Este libro no pretende ni puede abarcar todos los temas relacionados con la pro-
gramacion en C++ Builder; su objetivo concreto son LAS TECNICAS DE PROGRAMA-
CION DE BASES DE DATOS UTILIZANDO C++ BUILDER, con énfasis especial en el
desatrollo de aplicaciones cliente/servidor y de multiples capas, tarea para la que los
entornos de programacion de Borland estan particularmente bien preparados.

Por lo tanto, asumiré cierta familiaridad del lector con C++, bastante comun entre
los programadores de hoy dia; serfa impensable intentar suplantar a clasicos de tal
envergadura como “E/ Lenguaje de Programacion C++ del creador del lenguaje, Bjarne
Stroustrup.

Contenido del libro

El libro se divide en cinco partes, que son las siguientes:

La Parte 1 — “El lenguaje SQL” — ofrece una extensa presentacion de los
elementos de SQL, tanto en lo referente a las instrucciones basicas del estandar
ANSI 92, como en todo lo relacionado con la programacién del lado del
servidor: el lenguaje de #riggers y procedimientos almacenados. En este dltimo
aspecto, los conceptos se presentan utilizando la sintaxis de InterBase, el
servidor SQL de Borland. Posteriormente, presentamos por separado las
caractetisticas distintivas de los tres sistemas cliente/servidor mas utilizados hoy:
Microsoft SQL Server, IBM DB2 Universal Database y Oracle.

18 La Cara Oculta de C++ Builder

La Parte 2 — “Navegacion y busqueda” — describe las facilidades basicas que
ofrecen los componentes VCL incluidos en C++ Builder para que
representemos los conjuntos de datos con los que vamos a trabajar y nos
desplacemos por los registros que los componen. Esta parte se encarga también
de presentar la filosofia de utilizaciéon de controles visuales con conexioén a datos
(data-aware controls) y de mostrar ejemplos de como obtener interfaces de usuario
atractivas para mostrar la informacion. Para concluir esta parte, “Comunicacion
cliente/ servidor” describe las técnicas generales que deben tenerse en cuenta al
interactuar con bases de datos remotas; en este capitulo mostramos la
inconsistencia de varios mitos de amplia difusion entre la comunidad de
programadores.

En la Parte 3 — “Actualizaciones y concurrencia” — se describen en detalle las
posibilidades que ofrece C++ Builder a la hora de actualizar el contenido de
nuestras bases de datos. En estos capitulos se hace especial énfasis en todo lo
relacionado con la optimizacién del acceso concurrente a las bases de datos, de
forma que sea posible minimizar la contencion entre aplicaciones que se ejecuten
simultaneamente desde diferentes clientes, y se describen las posibilidades que
ofrece el Motor de Datos de Borland (Borland Database Engine - BDE) para la
implementacién de transacciones y las ventajas y limitaciones en este sentido de
los diferentes sistemas SQL con los que el BDE puede comunicarse.

La Parte 4 — “Programacién Distribuida” — es, técnicamente hablando, la mas
compleja del libro. En esta parte describiré inicialmente en detalle las posibili-
dades del componente TClientDataSet, 1a clase sobre la que se basa la programa-
cion de clientes delgados para el desarrollo de aplicaciones de multiples capas en
C++ Builder. Luego introduciré los conceptos fundamentales del Modelo de
Objetos Componentes (COM) de Microsoft, la base sobre la que se apoya la
programacion de servidores de capa intermedia; inmediatamente después, un
amplio capitulo describe en detalle las posibilidades de la tecnologia que Borland
ha llamado MIDAS y se presentan ejemplos de aplicaciones de tres capas. Pero
todavia le quedara mucho mds por ver en esta parte: el siguiente capitulo muestra
como utilizar los asistentes y componentes que incluye C++ Builder para crear
extensiones de servidores de Internet que construyan dinimicamente paginas
HTML a partir del contenido de bases de datos.

En la Parte 5, que he denominado “Leftoverture”!, se aglutina toda una serie de
capitulos que en principio no tienen una conexion directa entre si. Aqui
encontrara todo lo relacionado con cémo utilizar QuickReport, la herramienta de
generacion de informes que se incluye en C++ Builder, como incluir en sus apli-
caciones tablas de analisis multidimensional de datos a partir de los componentes
Decision Cube, o cobmo generar instalaciones con InstallShield Express for C++

I “Leftoverture” es el nombre de un album producido en 1976 por Kansas. El nombre es
una combinacién de las palabras “leftover” (remanente, residuo) y “overture” (obertura). La
pieza clave del album fue compuesta mezclando trozos de otras canciones que habfan sido
descartadas por el grupo.

Prélogo del Autor 19

Builder. Los dos tltimos capitulos presentan dos ejemplos completos de
aplicaciones, cuyo cédigo fuente podra utilizar como material de estudio.

Mi propdsito es que éste sea un libro vivo, que crezca a la vista de todos. Asi intento
evitar la incémoda sensacién que queda al entregar los ficheros a la imprenta de que
te has olvidado de mencionar algo importante. (Cémo crece este libro? Visite mi
pagina Web, en www.marteens.com, donde podra encontrar trucos y articulos
técnicos que sirven de extension a estas paginas.

Agradecimientos

Como siempre, los protagonistas de todos mis libros son todos los programadores
que tengo el gusto de conocer y trabajar en alguna medida con ellos. Lo poco de
original que hay en estas paginas casi siempre ha surgido de problemas reales que nos
hemos vistos obligados a enfrentar en conjunto. A veces la solucién ha sido nuestra,
pero muchas otras nos han salvado la vida tantas personas que nos serfa imposible
intentar mencionatrlas a todas. Y estan los cientos de programadores que, a través del
correo electrénico, nos han animado a seguir adelante. Pero la principal fuerza que ha
movido este proyecto ha sido Dave. Sin €l este libro no estarfa ahora en sus manos.

Como no me gusta ponerme solemne, quiero concluir agradeciendo a Dios, al Dia-
blo o a la Seleccién Natural (no estoy seguro), por haberme colocado en el craneo
esa neurona sarcastica que impide que tome en setio a algo o a alguien, incluyén-
dome a mi mismo. El dfa que me falle ... quizas me dedique a escribir sobre la capa
de ozono.

Tan Marteens
Madrid, Junio de 1999

El Lenguaje SQL

Sistemas de bases de datos

Breve introducciéon a SQL

Consultas y modificaciones
Procedimientos almacenados y triggers
Transacciones

Microsoft SQL Server

Oracle

DB2 Universal Database

El Motor de Datos de Borland

Parte

Capitulo

Sistemas de bases de datos

STE ES EL MOMENTO APROPIADO para presentar a los protagonistas de este

drama: los sistemas de gestion de bases de datos con los que intentaremos

trabajar. En mi trabajo de consultor, la primera pregunta que escucho, y la
mas frecuente, es en qué lenguaje debe realizarse determinado proyecto. Enfoque
equivocado. La mayoria de los proyectos que llegan a mis manos son aplicaciones
para redes de area local, y os garantizo que la eleccion del lenguaje es asunto relati-
vamente secundario para el éxito de las mismas; por supuesto, siempre recomiendo
algin lenguaje “decente”, sin limitaciones intrinsecas, como C++ Builder o Delphi.
La primera pregunta deberfa ser: squé sistema de bases de datos es el mas apropiado
a mis necesidades?

En este capitulo recordaremos los principios basicos de los sistemas de bases de
datos relacionales, y haremos una rapida introduccién a algunos sistemas concretos
con los que C++ Builder puede trabajar de modo directo. La explicacién relativa a
los sistemas de bases de datos locales serd mas detallada que la de los sistemas
cliente/servidor, pues las caracteristicas de estos ultimos (implementacion de indices,
integridad referencial, seguridad) iran siendo desveladas a lo largo del libro.

Acerca del acceso transparente a bases de datos

¢Pero acaso C++ Builder no ofrece cierta transparencia con respecto al formato de
los datos con los que estamos trabajando? Pues si, sobre todo para los formatos
soportados por el Motor de Bases de Datos de Borland (BDE), que estudiaremos en
el capitulo correspondiente. Sin embargo, esta transparencia no es total, incluso den-
tro de las bases de datos accesibles mediante el BDE. Hay una primera gran divisiéon
entre las bases de datos locales y los denominados sistemas SQL. Luego vienen las
distintas posibilidades expresivas de los formatos; incluso las bases de datos SQL,
que son las mas parecidas entre si, se diferencian en las operaciones que permiten o
no. Si usted estd dispuesto a utilizar el minimo comin denominador entre todas ellas,
su aplicacién puede que funcione sin incidentes sobre determinado rango de posibles
sistemas ... pero le aseguro que del mismo modo desperdiciara recursos de progra-

24 La Cara Oculta de C++ Builder

macién y disefio que le habrian permitido terminar mucho antes la aplicacién, y que
ésta se ejecutara mas eficientemente.

Bases de datos relacionales

Por supuesto, estimado amigo, todos los sistemas de bases de datos con los que va-
mos a trabajar en C++ Builder seran sistemas relacionales. Por desgracia. ¢;Cémo que
por desgracia, hereje insensato? Para saber qué nos estamos perdiendo con los siste-
mas relacionales tendrfamos que conocer las alternativas. Necesitaremos, lo lamento,
un poco de vieja Historia.

En el principio no habia ordenadores, claro estd. Pero cuando los hubo, y después de
largos afios de almacenar informacién “plana” en grandes cintas magnéticas o perfo-
radas, los informaticos comenzaron a organizar sus datos en dos tipos de modelos: el
modelo jerarquico y el modelo de redes. El modelo jerarquico era un invento digno
de un oficial prusiano. Los diferentes tipos de informacion se clasificaban en forma
de arbol. En determinada base de datos, por ejemplo, la raiz de este arbol eran los
registros de empresas. Cada empresa almacenaria los datos de un conjunto de de-
partamentos, estos ultimos serfan responsables de guardar los datos de sus emplea-
dos, y asi sucesivamente. Ademas del conjunto de departamentos, una empresa po-
dria ser propietaria de otro conjunto de registros, como bienes inmuebles o algo asi.
El problema, como es facil de imaginar, es que el mundo real no se adapta facilmente
a este tipo de organizacién. Por lo tanto, a este modelo de datos se le afiaden chapu-
zas tales como “registros virtuales” que son, en el fondo, una forma primitiva de
punteros entre registros.

El modelo de redes era mas flexible. Un registro podfa contener un conjunto de
otros registros. Y cada uno de estos registros podia pertenecer a mas de un conjunto.
La implementacién mas frecuente de esta caracteristica se realizaba mediante punte-
ros. El sistema mas famoso que seguia este modelo, curiosamente, fue comprado por
cierta compafifa tristemente conocida por hacerse con sistemas de bases de datos
para convertitlos en historia... No, no es esa Compafifa en la que estais pensando... si,
esa Otra...

Vale, el modelo jerarquico no era muy completo, pero el modelo de redes era razo-
nablemente bueno. ¢Qué pasé con ellos, entonces? ¢Por qué se extinguieron en el
Jurasico? Basicamente, porque eran sistemas zavegacionales. Para obtener cualquier
informacién habia que tener una idea muy clara de cémo estaban organizados los
datos. Pero lo mas molesto era que no existian herramientas sencillas que permitieran
realizar consultas arbitrarias en una base de datos. Si el presidente de la compafiia
quetia saber cuantos clientes del area del Pacifico bebian Coca-Cola a las cinco de la
tarde en vez de té, tenfa que llamar al programador para que le desarrollara una pe-
quefia aplicacion.

Sistemas de bases de datos 25

Entonces aparecié Mr. Codd, un matematico de IBM. No invento el concepto de
registro, que ya existia hacfa tiempo. Pero se dio cuenta que si obligaba a que todos
los campos de los registros fueran campos simples (es decir, que no fueran punteros,
vectores o subregistros) podia disefiarse un gracil sistema matematico que permitia
descomponer informacion acerca de objetos complejos en estos registros planos, con
la seguridad de poder restaurar la informacién original mas adelante, con la ayuda de
operaciones algebraicas. Lo mas importante: casi cualquier tipo de informacién podia
descomponerse de este modo, asi que el modelo era lo suficientemente general. A la
teoria matematica que desarrollé se le conoce con el nombre de dlgebra relacional, y es
la base de nuestro conocido lenguaje SQL y del quizas menos popular Qwery By Ex-
ample, o QBE. De este modo, el directivo del parrafo anterior podia sentarse frente a
una consola, teclear un par de instrucciones en SQL y ahorrarse el pago de las horas
extras del programador?.

Tomemos como ejemplo una base de datos que almacene datos acerca de Departa-
mentos y sus Empleados. Los modelos jerarquicos y de redes la representarian con
un diagrama similar al siguiente:

Investigacion &
Departamentos Desarrollo

Ventas

$10.000 $1.000.000

Empleados A. Einstein P. Dirac Nelson R. H. Ford Alfred C.

Como puede verse, los punteros son parte ineludible del modelo. ;Hay algin mate-
matico que sepa como comportarse frente a un puntero? Al parecer, no los habfa en
los 60 y 70. Sin embargo, los datos anteriores pueden expresarse, en el modelo rela-
cional, mediante dos conjuntos uniformes de registros y sin utilizar punteros, al me-
nos de forma explicita. De esta manera, es factible analizar matematicamente los
datos, y efectuar operaciones algebraicas sobre los mismos:

DEPARTAMENTOS EMPLEADOS
Codigo | Nombre Presupuesto Dpto | Nombre

I+D | Investigacion y Desarrollo $10.000 1+D | A. Einstein
V | Ventas $1.000.000 I+D | P. Dirac

V| Nelson R.
V| Henri E
V | Alfred C.

iMira, mama, sin punteros! Departamentos y Empleados son tablas, aunque matematica-
mente se les denomina relaciones. A los registros de estas tablas se les llama filas, para

2 Aunque personalmente no conozco a ningin individuo con alfiler de corbata y BMW que
sepa SQL, no cabe duda de que debe existir alguno por ahi.

26 La Cara Oculta de C++ Builder

hacer rabiar a los matematicos que les llaman #plas. Y para no desentonar, Codigo,
Nowmbre y Presupuesto son columnas para unos, mientras que para los otros son cazzpos.
iQué mias dal Ah, la coleccion de tablas o relaciones es lo que se conoce como base de
datos.

Las personas inteligentes (como usted y como yo) se dan cuenta enseguida de que en
realidad no hemos eliminado los punteros, sino que los hemos disfrazado. Existe un
vinculo? entre los campos Cddigo y Dpto que es el sustituto de los punteros. Pero
cuando se representan los datos de esta manera, es mas facil operar con ellos mate-
maticamente. Note, por ejemplo, que para ilustrar los modelos anteriores necesité un
dibujo, mientras que una vulgar tabla de mi procesador de texto me ha bastado en el
segundo caso. Bueno, en realidad han sido dos tablas.

¢Me deja el lector que resuma en un par de frases lo que lograba Codd con su mo-
delo relacional? Codd apuntaba su pistola de rayos desintegradores a cualquier objeto
que se ponia a tiro, incluyendo a su perro, y lo reducia a cenizas atémicas. Después,
con un elegante par de operaciones matematicas, podia resucitar al animalito, si antes
el viento no barria sus restos de la alfombra.

Informacidon semantica = restricciones

Todo lo que he escrito antes le puede sonar al lector como un disco rayado de tanto
escucharlo. Sin embargo, gran parte de los programadores que se inician en C++
Builder solamente han llegado a asimilar esta parte basica del modelo relacional, y
presentan lagunas aterradoras en el resto de las caracteristicas del modelo, como
veremos dentro de poco. ¢Qué le falta a las ideas anteriores para que sean completa-
mente practicas y funcionales? Esencialmente, informaciéon semantica: algo que nos
impida o haga improbable colocar la cabeza del perro donde va la cola, o viceversa
(el perro de una vecina mia da esa impresién).

Casi siempre, esta informacion semantica se expresa mediante restricciones a los
valores que pueden tomar los datos de una tabla. Las restricciones mas sencillas tie-
nen que ver con el tipo de valores que puede albergar una columna. Por ejemplo, la
columna Presupuesto solamente admite valores enteros. Pero no cualquier valor entero:
tienen que ser valores positivos. A este tipo de verificaciones se les conoce como
restricciones de dominio.

El nivel siguiente lo conforman las restricciones que pueden verificarse analizando
los valores de cada fila de forma independiente. Estas no tienen un nombre especial.

3 Observe con qué exquisito cuidado he evitado aquf la palabra relacidn. En inglés existen dos
palabras diferentes: relation y relationship. Pero el equivalente mas cercano a esta dltima serfa
algo asi como relacionalidad, y eso suena peor que un parrafo del BOE.

Sistemas de bases de datos 27

En el ejemplo de los departamentos y los empleados, tal como lo hemos presentado,
no hay restricciones de este tipo. Pero nos podemos inventar una, que deben satisfa-
cer los registros de empleados:

Dpto <> "I +D" or Especialidad <> "Psiquiatria"

Es decir, que no pueden trabajar psiquiatras en Investigacién y Desarrollo (termina-
rfan igual de locos). Lo mas importante de todo lo que he explicado en esta seccién

es que las restricciones mas sencillas pueden expresarse mediante elegantes formulas
matematicas que utilizan los nombres de las columnas, o campos, como variables.

Restricciones de unicidad y claves primarias

Los tipos de restricciones siguen complicandose. Ahora se trata de realizar verifica-
ciones que afectan los valores almacenados en varias filas. Las mas importantes de
estas validaciones son las denominadas restricciones de unicidad. Son muy faciles de ex-
plicar en la teorfa. Por ejemplo, no pueden haber dos filas en la tabla de departa-
mentos con el mismo valor en la columna Codigo. Abusando del lenguaje, se dice que
“la columna Codigo es Gnica”.

En el caso de la tabla de departamentos, resulta que también existe una restricciéon de
unicidad sobre la columna Nombre. Y no pasa nada. Sin embargo, quiero que el lector
pueda distinguir sin problemas entre estas dos diferentes situaciones:

1. (Situacién real) Hay una restriccion de unicidad sobre Codigo y otra restriccion de
unicidad sobre Nowzbre.

2. (Situacion ficticia) Hay una restriccién de unicidad sobre la combinacién de co-
lumnas Codigo y Nombre.

Esta segunda restriccion posible es mas relajada que la combinacion real de dos res-
tricciones (compruébelo). La unicidad de una combinacién de columnas puede vi-
sualizarse de manera sencilla: si se “recortan” de la tabla las columnas que no partici-
pan en la restriccién, no deben quedar registros duplicados después de esta opera-
ci6én. Por ejemplo, en la tabla de empleados, la combinacion Dpfo y Nowzbre es unica.

La mayoria de los sistemas de bases de datos se apoyan en indices para hacer cumplir
las restricciones de unicidad. Estos indices se crean automaticamente tomando como
base a la columna o combinacién de columnas que deben satisfacer estas condicio-
nes. Antes de insertar un nuevo registro, y antes de modificar una columna de este
tipo, se busca dentro del indice correspondiente para ver si se va a generar un valor
duplicado. En tal caso se aborta la operacion.

28 La Cara Oculta de C++ Builder

As{ que una tabla puede tener una o varias restricciones de unicidad (o ninguna).
Escoja una de ellas y designela como clave primaria. :Cémo, de forma arbitraria? Casi:
se supone que la clave primaria identifica univocamente y de forma algo misteriosa la
mas recondita esencia de los registros de una tabla. Pero para esto vale lo mismo
cualquier otra restriccion de unicidad, y en programacion no vale recurrir al misti-
cismo. Hay quienes justifican la eleccién de la clave primaria entre todas las restric-
ciones de unicidad en relacién con la integridad referencial, que estudiaremos en la
proxima seccion. Esto tampoco es una justificaciéon, como veremos en breve. En
definitiva, que todas las restricciones de unicidad son iguales, aunque algunas son
mas iguales que otras.

¢Quiere saber la verdad? He jugado con trampa en el parrafo anterior. Esa esencia
misteriosa del registro no es mas que un mecanismo utilizado por el modelo relacio-
nal para sustituir a los desterrados punteros. Podréis llamarlo identidad del registro, o
cualquier otro nombre rimbombante, pero no es mas que una forma de disfrazar un
puntero, y muy poco eficiente, por cierto. Observe la tabla de departamentos: entre
el cédigo y el nombre, ¢cual columna elegiria como clave primaria? Por supuesto que
el cédigo, pues es el tipo de datos que menos espacio ocupa, y cuando tengamos el
cédigo en la mano podremos localizar el registro de forma mds rapida que cuando
tengamos el nombre.

De todos modos, hay alguien que aprovecha inteligentemente la existencia de claves
primarias: el Motor de Datos de Borland. De hecho, estas claves primarias son la
forma en que el Motor de Datos puede simular el concepto de registro activo en una
tabla SQL. Pero tendremos que esperar un poco para desentrafar este ingenioso
mecanismo.

Integridad referencial

Este tipo de restriccién es ain mas complicada, y se presenta en la columna Dp#o de
la tabla de empleados. Es evidente que todos los valores de esta columna deben co-
rresponder a valores almacenados en la columna Codigo de la tabla de departamentos.
Siguiendo mi teorfa de la conspiracién de los punteros encubiertos, esto equivale a
que cada registro de empleado tenga un puntero a un registro de departamento.

Un poco de terminologfa: a estas restricciones se les denomina znzegridad referencial, o
referential integrity. También se dice que la columna Dp#o de Empleados es una clave ex-
terna de esta tabla, o foreign /ey, en el idioma de Henry Morgan. Podemos llamar tabla
dependiente, o tabla de detalles, a la tabla que contiene la clave externa, y tabla
maestra a la otra. En el ejemplo que consideramos, la clave externa consiste en una
sola columna, pero en el caso general podemos tener claves externas compuestas.

Sistemas de bases de datos 29

Como es facil de ver, las columnas de la tabla maestra a las que se hace referencia en
una integridad referencial deben satisfacer una restricciéon de unicidad. En la teoria
original, estas columnas deberfan ser la clave primaria, pero la mayorfa de los siste-
mas relacionales actuales admiten cualquiera de las combinaciones de columnas uni-
cas definidas.

Cuando se establece una relacion de integridad referencial, la tabla dependiente
asume responsabilidades:

No se puede insertar una nueva fila con un valor en las columnas de la clave
externa que no se encuentre en la tabla maestra.

No se puede modificar la clave externa en una fila existente con un valor que no
exista en la tabla maestra.

Pero también la tabla maestra tiene su parte de responsabilidad en el contrato, que se
manifiesta cuando alguien intenta eliminar una de sus filas, o modificar el valor de su
clave primaria. En las modificaciones, en general, pueden desearse dos tipos diferen-
tes de comportamiento:

Se prohibe la modificacién de la clave primaria de un registro que tenga filas de
detalles asociadas.

Alternativamente, la modificacién de la clave se propaga a las tablas depen-
dientes.

Si se trata de un borrado, son tres los comportamientos posibles:

Prohibir el borrado, si existen filas dependientes del registro.

Borrar también las filas dependientes.

Permitir el borrado y, en vez de borrar las filas dependientes, romper el vinculo
asociando a la clave externa un valor por omision, que en SQL casi siempre es el
valor nulo (ver el siguiente capitulo).

La forma mas directa de implementar las verificaciones de integridad referencial es
utilizar indices. Las responsabilidades de la tabla dependiente se resuelven compro-
bando la existencia del valor a insertar o a modificar en el indice asociado a la restric-
ci6n de unicidad definida en la tabla maestra. Las responsabilidades de la tabla maes-
tra se resuelven generalmente mediante indices definidos sobre la tabla de detalles.

¢Qué tiene de malo el modelo relacional?

El modelo relacional funciona. Ademas, funciona razonablemente bien. Pero como
he tratado de explicar a lo largo de las secciones anteriores, en determinados aspectos

30 La Cara Oculta de C++ Builder

significa un retroceso en comparacion con modelos de datos anteriores. Me refiero a
lo artificioso del proceso de eliminar los punteros implicitos de forma natural en el
modelo semantico a representar. Esto se refleja también en la eficiencia de las opera-
ciones. Supongamos que tenemos un registro de empleado en nuestras manos y que-
remos saber el nombre del departamento al que pertenece. Bien, pues tenemos que
buscar el codigo de departamento dentro de un indice para después localizar fisica-
mente el registro del departamento correspondiente y leer su nombre. Al menos, un
par de accesos al disco duro. Compare con la sencillez de buscar directamente el
registro de departamento dado su puntero (existen implementaciones eficientes del
concepto de puntero cuando se trabaja con datos persistentes).

En este momento, las investigaciones de vanguardia se centran en las bases de datos
orientadas a objetos, que retoman algunos conceptos del modelo de redes y del pro-
pio modelo relacional. Desde la década de los 70, la investigaciéon matematica ha
avanzado lo suficiente como para disponer de potentes lenguajes de interrogacién
sobre bases de datos arbitrarias. No quiero entrar a analizar el porqué no se ha aca-
bado de imponer el modelo orientado a objetos sobre el relacional, pues en esto
influyen tanto factores técnicos como comerciales. Pero es bueno que el lector sepa
qué puede pasar en un futuro cercano.

Es sumamente significativo que la principal ventaja del modelo relacional, la posibili-
dad de realizar consultas ad hoc estuviera fuera del alcance del modelo “relacional”
mas popular a lo largo de los ochenta: dBase, y sus secuelas Clipper y FoxPro.
Cuando escucho elogios sobre Clipper por parte de programadores que hicieron
carrera con este lenguaje, pienso con tristeza que los elogios los merecen los propios
programadores que pudieron realizar software funcional con herramientas tan primi-
tivas. Mi aplauso para ellos; en ningun caso para el lenguaje. Y mi consejo de que
abandonen el viejo buque (y las malas costumbres aprendidas durante la travesia)
antes de que termine de hundirse.

Ilustracion 1 El perro de Codd

Sistemas de bases de datos 31

Y a todas estas, ¢qué pasé con la mascota de Mr. Codd? Lo inevitable: murié como
consecuencia de un experimento fallido. Sin embargo, Brahma se apiadé de él, y
reencarnoé al afio en un chico que, con el tiempo, se ha convertido en un exitoso pro-
gramador afincado en el sur de la Florida. Al verlo, nadie pensarfa que fue un perro
en su vida anterior, de no ser por la mania que tiene de rascarse periédicamente la
oreja. No obstante, por haber destrozado la tapicerfa del sofd de su duefio y orinarse
un par de veces en la alfombra del salén, fue condenado a programar dos largos afios
en Visual Basic, hasta que C++ Builder (¢o fue Delphi?) llegd a su vida y se convirtié
en un hombre feliz.

Bases de datos locales y servidores SQL

Basta ya de teorfa, y veamos los ingredientes con que contamos para cocinar apli-
caciones de bases de datos. La primera gran division entre los sistemas de bases de
datos existentes se produce entre los sistemas locales, o de escritorio, y las bases de
datos SQL, o cliente/servidor.

A los sistemas de bases de datos locales se les llama de este modo porque comenza-
ron su existencia como soluciones baratas para un solo usuario, ejecutindose en un
solo ordenador. Sin embargo, no es un nombre muy apropiado, porque mas adelante
estos sistemas crecieron para permitir su explotacion en red. Tampoco es adecuado
clasificarlas como “lo que queda después de quitar las bases de datos SQL”. Es cierto
que en sus inicios ninguna de estas bases de datos soportaba un lenguaje de consultas
decente, pero esta situaciéon también ha cambiado.

En definitiva, ¢cual es la esencia de las bases de datos de escritorio? Pues el hecho de
que la programacion usual con las mismas se realiza en una sola capa. Todos estos
sistemas utilizan como interfaz de aplicaciones un motor de datos que, en la era de la
supremacia de Windows, se implementa como una DLL. En la época de MS-DOS,
en cambio, eran funciones que se enlazaban estaticamente dentro del ejecutable.
Observe el siguiente diagrama, que representa el uso en red de una base de datos “de
escritorio”:

Aplicacion Aplicacion

Base de
Datos

32 La Cara Oculta de C++ Builder

Aunque la segunda burbuja dice “BDE”, el Motor de Datos de Borland, sustituya
estas siglas por DAQO, y podra aplicar el diagrama a Access. He representado la apli-
cacion y el motor de datos en dos burbujas separadas, pero en realidad, constituyen
un mismo ejecutable. Lo mds importante, sin embargo, es que no existe un software
central que sirva de arbitro para el acceso a la base de datos “fisica”. Es como si las
dos aplicaciones deambularan a ciegas en un cuarto oscuro, tratando de sentarse en
algtin sitio libre. Por supuesto, la tnica forma que tienen de saberlo es intentar ha-
cerlo y confiar en que no haya nadie debajo.

Debido a esta forma primitiva de resolver las inevitables colisiones, la implementa-
ci6én de la concurrencia, las transacciones y, en ultimo término, la recuperacién des-
pués de fallos, ha sido tradicionalmente el punto débil de las bases de datos de escri-
torio. Si estd pensando en decenas o cientos de usuarios atacando simultineamente a
sus datos, y en ejércitos de extremidades inferiores listas para tropezar con cables,
olvidese de Paradox, dBase y Access, pues necesitard una base de datos
cliente/servidor.

Las bases de datos cliente/servidor, o bases de datos SQL, se caractetizan por utili-
zar al menos dos capas de software, como se aprecia en el siguiente diagrama:

Aplicacién Aplicacién

= 4

Servidor SQL

El par aplicacién + motor local de datos ya no tiene acceso directo a los ficheros de
la base de datos, pues hay un nuevo actor en el drama: el servidor SQL. He cambiado
el rétulo de la burbuja del motor de datos, y ahora dice “cliente SQL”. Esta es una
denominacién genérica. Para las aplicaciones desarrolladas con C++ Builder y el
Motor de Datos de Borland, este cliente consiste en la combinacién del BDE pro-
piamente dicho s alguna biblioteca dindmica o DLL suministrada por el fabricante
de la base de datos. En cualquier caso, todas estas bibliotecas se funden junto a la
aplicaciéon dentro de una misma capa de software, compartiendo el mismo espacio de
memoria y procesamiento.

La division entre bases de datos de escritorio y las bases de datos SQL no es una
clasificacion tajante, pues se basa en la combinacion de una serie de caracteristicas.

Sistemas de bases de datos 33

Puede que uno de estos dias aparezca un sistema que mezcle de otra forma estos ras-
gos definitorios.

Caracteristicas generales de los sistemas SQL

El hecho de que exista un arbitro en las aplicaciones cliente/setvidor hace posible
implementar una gran variedad de técnicas y recursos que estan ausentes en la mayo-
rfa de los sistemas de bases de datos de escritorio. Por ejemplo, el control de concu-
rrencia se hace mas sencillo y fiable, pues el servidor puede llevar la cuenta de qué
clientes estan accediendo a qué registros durante todo el tiempo. También es mas
facil implementar transacciones atémicas, esto es, agrupar operaciones de modifi-
cacion de forma tal que, o se efectien todas, o ninguna llegue a tener efecto.

Pero una de las principales caracteristicas de las bases de datos con las que vamos a
trabajar es la forma peculiar en que “conversan” los clientes con el servidor. Resulta
que estas conversaciones tienen lugar en forma de peticion de ejecuciéon de coman-
dos del lenguaje SQL. De aqui el nombre comun que reciben estos sistemas. Supon-
gamos que un ordenador necesita leer la tabla de inventario. Recuerde que ahora no
podemos abrir directamente un fichero situado en el servidor. Lo que realmente hace
la estacion de trabajo es pedirle al servidor que ejecute la siguiente instrucciéon SQL:

select * fromlnventario order by Codi goProducto asc

El servidor calcula qué registros pertenecen al resultado de la consulta, y todo este
calculo tiene lugar en la maquina que alberga al propio servidor. Entonces, cada vez
que el usuario de la estacion de trabajo se mueve de registro a registro, el cliente SQL
pide a su servidor el siguiente registro mediante la siguiente instruccion:

fetch

Mis adelante necesitaremos estudiar como se realizan las modificaciones, inserciones,
borrados y busquedas, pero con esto basta por el momento. Hay una conclusion
importante a la que ya podemos llegar: squé es mas rapido, pulsar un botén en la
maquina de bebidas o mandar a un acdlito a que vaya por una Coca-Cola? A no ser
que usted sea mas vago que yo, preferird la primera opcion. Bien, pues un sistema
SQL es inherentemente més lento que una base de datos local. Antes manipulaba-
mos directamente un fichero. Ahora tenemos que pedirselo a alguien, con un proto-
colo y con reglas de cortesia. Ese alguien tiene que entender nuestra peticion, es
decir, compilar la instruccion. Luego debe ejecutatla y solamente entonces procedera
a enviarnos el primer registro a través de la red. ¢Esta de acuerdo conmigo?

No pasa una semana sin que conozca a alguien que ha desarrollado una aplicacion
para bases de datos locales, haya decidido pasatla a un entorno SQL, y haya pensado

34 La Cara Oculta de C++ Builder

que con un par de modificaciones en su aplicacién era suficiente. Entonces descubre
que la aplicacién se ejecuta con mayor lentitud que antes, cae de rodillas, mira al cielo
y clama: ¢dénde esta entonces la ventaja de trabajar con sistemas cliente/servidor?
Esta, amigo mio, en la posibilidad de meter codigo en el servidor, y si fallamos en
hacerlo estaremos desaprovechando las mejores dotes de nuestra base de datos.

Hay dos formas principales de hacerlo: mediante procedimientos almacenados y
mediante #r7ggers. Los primeros son conjuntos de instrucciones que se almacenan
dentro de la propia base de datos. Se activan mediante una peticién explicita de un
cliente, pero se ejecutan en el espacio de aplicacién del servidor. Por descontado,
estos procedimientos no deben incluir instrucciones de entrada y salida. Cualquier
proceso en lote que no contenga este tipo de instrucciones es candidato a codificarse
como un procedimiento almacenado. ¢La ventaja?, que evitamos que los registros
procesados por el procedimiento tengan que atravesar la barrera del espacio de me-
moria del servidor y viajar a través de la red hasta el cliente.

Los #riggers son también secuencias de instrucciones, pero en vez de ser activados
explicitamente, se ejecutan como preludio y coda de las tres operaciones basicas de
actualizacion de SQL: update, insert y delete. No importa la forma en que estas
tres operaciones se ejecuten, si es a instancias de una aplicaciéon o mediante alguna
herramienta incluida en el propio sistema; los #riggers que se hayan programado se
activaran en cualquier caso.

Estos recursos se estudiaran mas adelante, cuando exploremos el lenguaje SQL.

El formato Paradox

Comenzaremos nuestra aventura explicando algunas caracteristicas de los sistemas de
bases de datos de escritorio que pueden utilizarse directamente con C++ Builder. De
estos, mi actual favorito es Paradox. Pongo el adjetivo “actual” porque el nuevo for-
mato de Visual dBase VII comienza a aproximarse a la riqueza expresiva soportada
desde hace mucho por Paradox. Dedicaremos a dBase la siguiente seccion.

Paradox no reconoce directamente el concepto de base de datos, sino que administra
tablas en ficheros independientes. Cada tabla se almacena en un conjunto de ficheros,
todos con el mismo nombre, pero con las extensiones que explicamos a continua-
cién:

Extension Explicacion
.db Definicion de la tabla y campos de longitud maxima fija
nb Campos de longitud variable, como los memos y graficos

px El indice de la clave primaria

Sistemas de bases de datos 35

Extensién Explicacion
Xnn, Ynn Indices secundarios
val Validaciones e integridad referencial

En el fichero .db se almacena una cabecera con la descripcion de la tabla, ademas de
los datos de los registros que corresponden a campos de longitud fija. Este fichero
estd estructurado en bloques de idéntico tamafio; se pueden definir bloques de 1, 2,
4, 8,16 y 32KB. El tamafio de bloque se determina durante la creacion de la tabla
mediante el parametro BLOCK SIZE del controlador de Paradox del BDE (por omi-
sion, 2048 bytes); en el capitulo 16 aprenderemos a gestionar éste y muchos otros
parametros. El tamafio de bloque influye en la extensién maxima de la tabla, pues
Paradox solamente permite 2!¢ bloques por fichero. Si se utiliza el tamafio de bloque
por omision tendrfamos el siguiente tamafio maximo por fichero de datos:

2048 ~ 65536 = 2™ © 2% = 227 = 27 © 220 = 128MB

Un registro debe caber completamente dentro de un bloque, y si la tabla tiene una
clave primaria (jrecomendablel) deben existir al menos tres registros por bloque; esto
se refiere a los datos de longitud fija del registro, excluyendo campos de texto largos,
de imdgenes y binarios. Dentro de cada bloque, los registros se ordenan segin su
clave primaria, para agilizar la busqueda una vez que el bloque ha sido leido en la
caché. Un registro, ademds, siempre ocupa el mismo espacio dentro del fichero .db,
incluso si contiene campos alfanuméricos que, a diferencia de lo que sucede en
dBase, no se rellenan con blancos hasta ocupar el ancho total del campo.

Paradox permite trabajar con un indice primario por cada tabla y con varios indices
secundarios. Todos estos indices pueden ser mantenidos automaticamente por el
sistema, aunque existe la posibilidad de crear indices secundarios no mantenidos. El
indice primario de la tabla se almacena en el fichero de extensioén .px. No es necesa-
rio que una tabla tenga indice primario, pero es altamente ventajoso. Al estar ordena-
dos los registros dentro los bloques de datos, s6lo se necesita almacenar en el indice
la clave del primer registro de cada bloque. Esto disminuye considerablemente los
requerimientos de espacio del indice, y acelera las busquedas.

Es interesante conocer como Paradox implementa los indices secundarios. En reali-
dad, cada indice secundario es internamente una tabla, con su propio fichero de da-
tos, de extension .Xnz, y su indice asociado . Yun. La numeracién de los indices sigue
un esquema sencillo: los dos dltimos caracteres de la extensién indican el nimero del
campo en hexadecimal, si es un indice sobre un solo campo. Si es un indice com-
puesto, se utiliza una pseudo numeracién hexadecimal, pero comenzando desde el
“valor” GOy progresando en forma secuencial. Desde el punto de vista del usuario,
los indices secundarios tienen un nombre asociado. El indice primario, en cambio, no
tiene nombre.

36 La Cara Oculta de C++ Builder

Se permite el uso directo de indices con claves compuestas, formadas por varios
campos. Otras opciones posibles de un indice Paradox son ignorar las mayudsculas y
minusculas en los campos de cadenas (la opcidén por omision), la restriccion de claves
unicas y la posibilidad de ordenacién en sentido descendente.

Paradox permite la definicion de relaciones de integridad referencial. La siguiente
imagen muestra el didlogo de Database Desktop que lo hace posible:

Referential Integrity [%]
Fields: Child fields Parent's key Table:
e) | £
Partho 1] e B CUSTOLY.DE

Gty (1]
Dizcount [M]

| | FVENIIES DR LI

Update rule
" Cascade (= Prohibit ¥ Shict referential integrity oK I el | Help |

El motor de datos crea automaticamente un indice secundario sobre las columnas de
la tabla dependiente que patticipan en una restriccién de integridad. Si la restriccion
esta basada en una sola columna, el indice recibe el nombre de la misma. La tabla que
incluyo a continuacién describe la implementacion en Paradox del comportamiento
de la integridad referencial respecto a actualizaciones en la tabla maestra:

Borrados | Modificaciones
Prohibir la operacion S Si
Propagar en cascada No Si
Asignar valor por omision No -

No se permiten los borrados en cascada. No obstante, este no es un impedimento
significativo, pues dichos borrados pueden implementarse facilmente en las aplica-
ciones clientes. En cambio, trate el lector de implementar una propagacion en cas-
cada de un cambio de clave cuando existe una integridad referencial...

No fue hasta la aparicion de la version 3.0 del BDE, que acompafi6 a Delphi 2, que
Paradox y dBase contaron con algin tipo de soporte para transacciones. No obs-
tante, este soporte es actualmente muy elemental. Utiliza un #ndo log, es decir, un
fichero en el que se van grabando las operaciones que deben deshacerse. Si se desco-
necta la maquina durante una de estas transacciones, los cambios aplicados a medias
quedan grabados, y actualmente no hay forma de deshacerlos. La independencia
entre transacciones lanzadas por diferentes procesos es la minima posible, pues un

Sistemas de bases de datos 37

proceso puede ver los cambios efectuados por otro proceso aunque éste no haya
confirmado aun toda la transaccion.

Finalmente, las transacciones locales tienen una limitacion importante. La contencion
entre procesos esta implementada mediante bloqueos. Actualmente Paradox permite
hasta 255 bloqueos por tabla, y dBase solamente 100. De modo que una transaccién
en Paradox puede modificar directamente un maximo de 255 registros por tabla.

El formato DBF7

¢Quién no ha tenido que trabajar, en algin momento y de una forma u otra, con los
conocidos ficheros DBF? La popularidad de este formato se desarrollé en paralelo
con la aparicién de los PCs y la propagacion de MS-DOS. En el principio, era pro-
piedad de una compainia llamada Ashton-Tate. Ashton fue el empresario que comprd
el software a su desarrollador, y tenfa un loro llamado Tate, ¢o era al revés? Después
a esta empresa le fueron mal las cosas y Borland adquiri6 sus productos. Aunque
muchos interpretaron esta accidn como un reconocimiento a los “méritos” técnicos
de dBase, se trataba en realidad de adquirir otro producto de bases de datos, que en
aquel momento era un perfecto desconocido: InterBase. Hay que advertir que Inter-
Base habfa sido a su vez comprado por Ashton-Tate a sus desarrolladores originales,
una efimera compania de nombre Groton Database Systems, cuyas siglas aun perdu-
ran en la extensién por omisién de los ficheros de InterBase: gdb.

El formato DBF es muy sencillo ... y muy malo. Fue disefiado como “la base de da-
tos de los pobres”. Cada tabla, al igual que sucede en Paradox, se representa en un
conjunto de ficheros. El fichero de extension dbf contiene a la vez la descripcion de
los campos y los registros, estos ultimos de longitud fija. Los registros se almacenan
de forma secuencial, sin importar las fronteras de bloques y la pérdida de eficiencia
que esto causa. Los tipos de datos originales se representaban en formato ASCII
legible, en vez de utilizar su codificacién binaria, mas compacta. De este modo, las
fechas se representaban en ocho caracteres, con el formato AAAAMMDD, y un
valor entero de 16 bits ocupaba 40 bits, o 48 si se representaba el signo. Por otra
parte, hasta fechas recientes el tnico tipo de cadena implementado tenia longitud fija,
obligando a los programadores a usar exhaustivamente la funcién T7i.

Se pueden utilizar campos de longitud variable, que en principio estuvieron limitados
al tipo texto, o memo. Los valores de estos campos se almacenan en un fichero para-
lelo de extension dbt. En este fichero los datos si respetan la frontera de bloque. Por
omision, el tamafno de estos bloques es de 1024 bytes, pero este parametro es confi-
gurable. Los indices, por su parte, se almacenan todos en un fichero de extension
mdx. Aunque, en principio, una tabla puede tener varios ficheros dx asociados, so-
lamente los indices que se encuentran en el fichero que tiene el mismo nombre que la

38 La Cara Oculta de C++ Builder

tabla se actualizan automaticamente, por lo que en la prictica solamente cuenta este
tichero, denominado Zudice de produccion.

Una de las peculiaridades de dBase es la forma en que se implementan los {ndices
sobre varias columnas. dBase no tiene indices compuestos, al estilo de Paradox y de
los sistemas SQL. Como alternativa ofrece los indices basados en expresiones: si
queremos un indice compuesto por las columnas Nombre y Apellidos, tenemos que
definir un indice por la expresion Nombre+.Apellidos. Puede parecer que ésta es una
opcién muy potente, pero en la practica el uso de los indices sobre expresiones se
reduce a sustituir los {indices compuestos de otros sistemas. Ademas, veremos que
trabajar con estos indices en C++ Builder es bastante penoso. ¢Claves primarias,
integridad referencial? Nada de eso tenfa originalmente el formato DBE Cuesta mas
trabajo redisefiar una aplicacion escrita en C++ Builder con dBase para que se eje-
cute en un sistema cliente/servidor que si hubiera sido desarrollada para Paradox.

¢Algo a favor de este formato? Las dos cualidades que mencionaré son consecuencia
de la simplicidad de sus ficheros. En primer lugar, las operaciones de actualizacion
son un poco mas rapidas en dBase que en Paradox. Y, lo mas importante, al existir
“menos cosas para romperse”’, hay mas estabilidad en este formato y mas tolerancia
respecto a fallos en el sistema operativo.

Con la aparicién de Visual dBase 7 junto a la version 4.50 del BDE, el formato DBF
fue renovado en gran medida. Una de las novedades mas importantes es la incorpo-
racion de relaciones de integridad referencial, que incluyen los borrados en cascada,
como se muestra en el siguiente cuadro de didlogo del Administrador de Bases de
Datos de Visual dBase 7:

Define Referential Integrity Rule
Rule name:
Icuslnmelinvnice
Parent table: LChild table:
e invoice. dbf VI
— Reference:
Primnary key fields: Related child fields: Avwailable child fields:
ne Order Date
Irwoice 1D
¢ | |Ordes Date
Pay Type
r— Update behavior Delete behawior Relationship
" Restrict " Restrict " Onetoone
' Caccade ' Cagcade = One to many

ag I Cancel | Help |

También se han afladido tipos de datos representados en forma binaria, condiciones
de verificacion, que consisten en expresiones logicas que deben satisfacer siempre las
filas de una tabla, valores por omision, etc. Lamentablemente, seguimos con los indi-

Sistemas de bases de datos 39

ces de expresiones como sustitutos de los indices compuestos, y el limite de registros
modificados por transaccion sigue siendo 100.

Criterios para evaluar un servidor SQL

¢Cémo saber cudl es el sistema de bases de datos cliente/servidor mas adecuado para
nuestros objetivos? En esta seccion trato de establecer criterios de comparacion para
estos sistemas. No hay dos aplicaciones con las mismas necesidades, asi que el hecho
de que un sistema no ofrezca determinada opcién no lo invalida como la soluciéon
que usted necesita. Recuerde que no siempre mas es mejor.

Plataformas soportadas

¢En qué sistema operativo debe ejecutarse el servidor? La respuesta es impor-
tante por dos razones. La primera: nos da una medida de la flexibilidad que te-
nemos a la hora de seleccionar una configuracion de la red. Si vamos a instalar
una aplicacién en una empresa que tiene toda su red basada en determinado ser-
vidor con determinado protocolo, no es recomendable que abandonen todo lo
que tienen hecho para que el recién llegado pueda ejecutarse.

En segundo lugar, no todos los sistemas operativos se comportan igual de efi-
cientes actuando como servidores de bases de datos. Esto tiene que ver sobre
todo con la implementacion que realiza el SO de la concurrencia. Mi favorito en
este sentido es UNIX: un InterBase, un Oracle, un Informix, ejecutandose sobre
cualquier “sabor” de UNIX (HP-UX, AIX, Solaris).

Puede suceder, por supuesto, que el mantenimiento de la red no esté en manos
de un profesional dedicado a esta area. En tal caso, hay que reconocer que es
mucho mas sencillo administrar un Windows N'T.

Soporte de tipos de datos y restricciones

En realidad, casi todos los sistemas SQL actuales tienen tipos de datos que in-
cluyen a los especificados en el estandar de SQL, excepto determinados casos
patolégicos. De lo que se trata sobre todo es la implementacion de los mismos.
Por ejemplo, no todas los formatos de bases de datos implementan con la misma
eficiencia el tipo I”ZARCHAR, que almacena cadenas de longitud variable. La
longitud maxima es uno de los pardmetros que varfan, y el formato de represen-
tacion: si siempre se asigna un tamano fijo (el maximo) para estos campos, o si la
longitud total del registro puede variar.

Mas importante es el soporte para validaciones declarativas, esto es, verificacio-
nes para las cuales no hay que desarrollar codigo especial. Dentro de este apar-
tado entran las claves primarias, claves alternativas, relaciones de integridad refe-
rencial, dominios, chequeos a nivel de fila, etc. Un elemento a tener en cuenta,
por ejemplo, es si se permite o no la propagacion en cascada de modificaciones
en la tabla maestra de una relacion de integridad referencial. En caso positivo,

40 La Cara Oculta de C++ Builder

esto puede ahorrarnos bastante c6digo en #rggers y permitira mejores modelos de
bases de datos.

Lenguaje de triggers y procedimientos almacenados

Este es uno de los critetios a los que concedo mayor importancia. El éxito de
una aplicacién, o un conjunto de aplicaciones, en un entorno C/S depende en
gran medida de la forma en que dividamos la carga de la aplicacién entre el ser-
vidor de datos y los clientes. En este punto es donde podemos encontrar mayo-
res diferencias entre los sistemas SQL, pues no hay dos dialectos de este lenguaje
que sean exactamente iguales.

Debemos fijarnos en si el lenguaje permite #zggers a nivel de fila o de operacion,
o de ambos niveles. Un #rigger a nivel de fila se dispara antes o después de modi-
ficar una fila individual. Por el contrario, un #rigger a nivel de operacién se dispara
después de que se ejecute una operacion completa que puede afectar a varias fi-
las. Recuerde que SQL permite instrucciones como la siguiente:

delete fromdientes
where Ciudad in ("Ponpeya", "Herculano")

Si la base de datos en cuestion solo ejecuta sus #riggers al terminar las operaciones,
serd mucho mas complicada la programacion de los mismos, pues mas trabajo
costara restablecer los valores anteriores y posteriores de cada fila particular.
También debe tenerse en cuenta las posibilidades de extension del lenguaje, por
ejemplo, incorporando funciones definidas en otros lenguajes, o el poder utilizar
servidores de automatizacion COM o CORBA, si se permiten o no llamadas re-
cursivas, etc.

Implementacion de transacciones: recuperacion y aislamiento

Este es mi otro criterio de analisis preferido. Las transacciones ofrecen a las ba-
ses de datos la consistencia necesatia para que operaciones parciales no priven de
sentido semantico a los datos almacenados. Al constituir las unidades basicas de
procesamiento del servidor, el mecanismo que las soporta debe encargarse tam-
bién de aislar a los usuarios entre si, de modo que la secuencia exacta de pasos
concurrentes que realicen no influya en el resultado final de sus acciones. Por lo
tanto, hay dos puntos en los que centrar la atencion: como se implementa la
atomicidad (la forma en que el sistema deshace operaciones inconclusas), y el
método empleado para aislar entre si las transacciones concurrentes.

Segmentacion

Es conveniente poder distribuir los datos de un servidor en distintos dispositivos
fisicos. Al situar tablas en distintos discos, o segmentos de las propias tablas, po-
demos aprovechar la concurrencia inherente a la existencia de varios controlado-
res fisicos de estos medios de almacenamiento. Esta opcién permite, ademas,

Sistemas de bases de datos 41

superar las restricciones impuestas por el tamafio de los discos en el tamafio de la
base de datos.

Replicaciéon

Uno de los usos principales de la replicacién consiste en aislar las aplicaciones
que realizan mantenimientos (transacciones OLTP) de las aplicaciones para toma
de decisiones (transacciones DSS). Las aplicaciones con fuerte base OLTP tien-
den a modificar en cada transacciéon un pequefio numero de registros. Las aplica-
ciones DSS se caracterizan por leer grandes cantidades de informacion, siendo
poco probable que escriban en la base de datos. En sistemas de bases de datos
que implementan el aislamiento de transacciones mediante bloqueos, ambos ti-
pos de transacciones tienen una coexistencia dificil. Por lo tanto, es conveniente
disponer de réplicas de la base de datos s6lo para lectura, y que sea a estos clones
a quienes se refieran las aplicaciones DSS.

Me da un poco de vergiienza afiadir el Gltimo factor a la lista anterior: el precio. To-
dos queremos lo mejor, pero no siempre estamos dispuestos a pagar por eso. Asi que
muchas veces una decisiéon de compra representa un balance entre la calidad y el
precio ... como en todo.

InterBase

Los antiguos griegos representaban a la Fama y a la Fortuna como caprichosas diosas
que otorgaban sus favores muchas veces a quienes menos lo merecfan; estos griegos
de antes, la verdad, eran bastante mis6ginos, entre otras cosas. En cualquier caso,
InterBase debe haber tenido algun altercado con la sefiorita Fama, porque no tiene la
popularidad que merecerfa por sus muchas virtudes.

Una de estas virtudes es que se puede instalar el servidor en muchos sistemas opera-
tivos: Windows NT' y 9x, NetWare, Solaris, HP-UX, SCO, Linux... Otra es que en
cualquiera de estos sistemas ocupa muy poco espacio, del orden de los 10 6 20 MB.
El mantenimiento de un servidor, una vez instalado, es también minimo. Cada base
de datos se sitda en uno o mas ficheros, casi siempre de extension gdb. Estos ficheros
crecen automaticamente cuando hace falta mas espacio, y no hay que preocuparse
por reservar espacio adicional para registrar los cambios efectuados por las transac-
ciones, como en otros sistemas. Se pueden realizar copias de seguridad de una base
de datos “en caliente”, mientras que otros sistemas requieren que no existan usuarios
activos para efectuar esta operacion. Y la recuperacion después de un fallo de hard-
ware es sencilla e inmediata: vuelva a encender el servidor.

42 La Cara Oculta de C++ Builder

— Backup Source — Optio
Server. Local Server Eemate.. [¥ Transportable Format
Database Path: ™ Backup Mestadata Only

C:Archivos de pmgrama\Banand\DelphiSj I Disable Garbage Callecti
izable Garbage Collection

— Backup Destination I™ Ignore Transactions In Limbo

Server: Local Server I lanore Checksums

Backup File or Device:
[E:\Hackup.gbk

™ “erbose Dutput

QK. I Cancel | Help |

Tal sencillez tiene un precio, y es que actualmente InterBase no implementa directa-
mente ciertas opciones avanzadas de administracion, como la segmentacion y la re-
plicacion. Esta tltima debe ser implementada manualmente, por medio de #7iggers
definidos por el disefiador de la base de datos, y con la ayuda de un proceso en se-
gundo plano que vaya grabando los datos del original a la réplica. No obstante, In-
terBase permite definir directamente copias en espejo (wzrrors) de una base de datos,
de forma tal que existan dos copias sincronizadas de una misma base de datos en
discos duros diferentes del mismo servidor. De este modo, si se produce un fallo de
hardware en uno de los discos o controladores, la explotacién de la base de datos
puede continuar con la segunda copia.

En lo que atafie a los tipos de datos, InterBase implementa todos los tipos del estan-
dar SQL con una excepcién. Este lenguaje define tres tipos de campos para la fecha y
la hora: DATE, para fechas, TIME, para horas, y TIMESTAMP para almacenar
conjuntamente fechas y horas. InterBase solamente tiene DATE, pero como equiva-
lente al TIMESTAMP del estandar. Esto en si no conlleva problemas, a no ser que
haya que escribir una aplicacion que acceda indistintamente a bases de datos de In-
terBase y de cualquier otro sistema SQL. Pero cuando estudiemos el uso del Diccio-
nario de Datos de C++ Builder, veremos cémo resolver esta nimiedad.

InterBase tiene, hoy por hoy, una de las implementaciones mas completas de las
restricciones de integridad referencial, pues permite especificar declarativamente la
propagacion en cascada de borrados y modificaciones:

Borrados | Modificaciones
Prohibir la operacion N Si
Propagar en cascada Si Si
Asignar valor por omision S -

Por supuesto, tenemos todas las restricciones de unicidad, claves primarias, valida-
ciones a nivel de registro (clausulas check). Estas ultimas son mas potentes que en el
resto de los sistemas, pues permiten realizar comprobaciones que involucren a regis-
tros de otras tablas.

Sistemas de bases de datos 43

Los #riggers de InterBase se ejecutan antes o después de cada operacion de actualiza-
cioén, fila por fila, que es como Dios manda. Por otra parte, tiene un lenguaje de pro-
cedimientos almacenados muy completo, que permite llamadas recursivas, y la defini-
ci6n de procedimientos de seleccion, que devuelven mas de un registro de datos por
demanda. Todo ello se integra con un mecanismo de excepciones muy elegante, que
compagina muy bien con las técnicas transaccionales. Es posible, ademas, extender el
conjunto de funciones del lenguaje mediante médulos dinamicos, DLLs en el caso de
las versiones para Windows y Windows NT.

Pero la caracteristica mas destacada de InterBase es la forma en la que logra imple-
mentar el acceso concurrente a sus bases de datos garantizando que, en lo posible,
cada usuatio no se vea afectado por las acciones del resto. Casi todos los sistemas
existentes utilizan, de una forma u otra, bloqueos para este fin. InterBase utiliza la
denominada arguitectura multigeneracional, en la cual cada vez que una transaccion mo-
difica un registro se genera una nueva versiéon del mismo. Tedricamente, esta técnica
permite la mayor cantidad de acciones concurrentes sobre las bases de datos. En la
practica, la implementacion de InterBase es muy eficiente y confiable. Todo esto lo
estudiaremos en el capitulo 12, que trata acerca de las transacciones.

La tltima versién de InterBase, en el momento en que escribo estas lineas, es la 5.5, y
acompafia a C++ Builder 4: en la version Profesional con licencias para InterBase
Local, y en la Cliente/Setrvidor, con licencias para un servidor sobre Windows 9x y

NT.

Microsoft SQL Server

Toda semejanza en la explicacion de las caracteristicas de Microsoft SQL Server con
las de Sybase sera algo mas que una simple coincidencia. Realmente MS SQL Server
comenz6 como un derivado del servidor de Sybase, por lo que la arquitectura de
ambos es muy parecida. De modo que gran parte de lo que se diga en esta seccion
sobre un sistema, vale para el otro.

Es muy facil tropezarse por ahi con MS SQL Server. Hay incluso quienes lo tienen
instalado y atin no se han dado cuenta. Microsoft tiene una politica de distribucién
bastante agresiva para este producto, pues lo incluye en el paquete BackOffice, junto
a su sistema operativo Windows NT y unos cuantos programas mas. Como puede
imaginar el lector, SQL Server 6.5 puede ejecutarse en Windows NT y en Windows
NT. Por fortuna, la version 7.0 ofrece un servidor para Windows 9x ... aunque obliga
al usuario a instalar primeramente Internet Explorer 4.

Lo primero que llama la atencién es la cantidad de recursos del sistema que consume
una instalacion de SQL Server. La version 6.5 ocupa de 70 a 90MB, mientras que la

44 La Cara Oculta de C++ Builder

version 7 llega a los 180MB de espacio en disco. ¢La explicacion? Asistentes, y mas
asistentes: en esto contrasta con la austeridad espartana de InterBase.

A pesar de que la instalacion del servidor es relativamente sencilla, su mantenimiento
es bastante complicado, sobre todo en la versiéon 6.5. Cada base de datos reside en
uno o mas dispositivos fisicos, que el fondo no son mas que vulgares ficheros. Estos
dispositivos ayudan a implementar la segmentacion, pero no crecen automatica-
mente, por lo que el administrador del sistema debera estar pendiente del momento
en que los datos estan a punto de producir un desbordamiento. A diferencia de In-
terBase, para cada base de datos hay que definir explicitamente un /g, o registro de
transacciones, que compite en espacio con los datos verdaderos, aunque este registro
puede residir en otro dispositivo (lo cual se recomienda).

Aunque los mecanismos de /gging, en combinacion con los bloqueos, son los mas
frecuentes en las bases de datos relacionales como forma de implementar transaccio-
nes atémicas, presentan claras desventajas en comparacioén con la arquitectura multi-
generacional. En primer lugar, no se pueden realizar copias de seguridad con usua-
rios conectados a una base de datos. Los procesos que escriben bloquean a los pro-
cesos que se limitan a leer informacion, y viceversa. Si se desconecta fisicamente el
servidor, es muy probable que haya que examinar el registro de transacciones antes
de volver a echar a andar las bases de datos. Por ultimo, hay que estar pendientes del
crecimiento de estos ficheros. Hay un experimento muy sencillo que realizo con
frecuencia en InterBase, poblar una tabla con medio millén de registros, que nunca
he logrado repetir en SQL Server, por mucho que he modificado parametros de
configuracion.

Hay que reconocer que esta situacion mejora un poco con la version 7, pues desapa-
rece el concepto de dispositivo, siendo sustituido por el de fichero del propio sistema
operativo: las bases de datos se situan en ficheros de extension mdfy ndf, los registros
de transacciones, en ficheros /. Este nuevo formato permite que los ficheros de
datos y de transacciones crezcan dindmicamente, por demanda.

Otro grave problema de versiones anteriores que soluciona la nueva version es la
granularidad de los bloqueos. Antes, cada modificaciéon de un registro imponia un
bloqueo a toda la pagina en que éste se encontraba. Ademas, las paginas tenfan un ta-
mafio fijo de 2048 bytes, lo que limitaba a su vez el tamafio maximo de un registro.
En la version 6.5 se introdujo el bloqueo a nivel de registro ... pero tnicamente para
las inserciones, que es cuando menos hacen falta. Finalmente, la versiéon 7 permite
siempre bloqueos de registros, que pueden escalarse por demanda a bloqueos de
pagina o a nivel de tablas, y aumenta el tamafio de pagina a 8192 bytes. No obstante,
este tamaflo sigue sin poder ajustarse.

Microsoft SQL Server ofrece extrafias extensiones a SQL que solamente sirven para
complicarnos la vida a usted y mi. Por ejemplo, aunque el SQL estandar dice que por

Sistemas de bases de datos 45

omisién una columna admite valores nulos, esto depende en SQL Server del estado
de un parametro, jque por omisién produce el efecto contrario! La implementacién
de la integridad referencial en este sistema es bastante pobre, pues solamente permite
restringir las actualizaciones y borrados en la tabla maestra; nada de propagacion en
cascada y otras alegrias. También es curioso que SQL Server no crea automatica-
mente indices secundarios sobre las tablas que contienen claves externas.

Borrados | Modificaciones
Prohibir la operacion St Si
Propagar en cascada No No
Asignar valor por omision No -

Otro de los aspectos negativos de SQL Server es su lenguaje de #iggers y procedi-
mientos almacenados, llamado Transact-SQL, que es bastante excéntrico respecto al
resto de los lenguajes existentes y a la propuesta de estandar. Uno puede acostum-
brarse a soberanas tonterfas tales como obligar a que todas las variables locales y
parametros comiencen con el caracter @. Pero es bastante dificil programar determi-
nadas reglas de empresa cuando los #zggers se disparan solamente después de instruc-
ciones completas.

En versiones anteriores del BDE, el nivel superior de aislamiento de transacciones
solamente se alcanzaba en bases de datos abiertas en modo sélo lectura. Actualmente
es posible activar este nivel desde C++ Builder sin problemas, aunque en el capitulo
dedicado a este sistema de bases de datos estudiaremos trucos para garantizar lectu-
ras repetibles sin necesidad de afectar demasiado a otros usuatios.

Oracle

Oracle es uno de los abuelos en el negocio de las bases de datos relacionales; el otro
es DB2, de IBM*. Este sistema es otra de las apuestas seguras en el caso de tener que
elegir un servidor de bases de datos. ¢Su principal desventaja? Resulta que no es de
caracter técnico, sino que tiene que ver con una politica de precios altos, alto coste de
la formacién y del mantenimiento posterior del sistema. Pero st usted puede permi-
tirse el lujo...

Piense en una plataforma de hardware ... ¢ya?, pues Oracle funciona en la misma. Los
ejemplos para Oracle de este libro han sido desarrollados, concretamente, con Pet-
sonal Oracle, versiones 7.3 y 8.0, para Windows 95. Este es un servidor muy estable,
quizas algo lento en establecer la conexién a la base de datos, que a veces cuesta un
poco instalar adecuadamente (sobre todo por las complicaciones tipicas de TCP/IP),

4 Debe haber una explicacion (nunca me la han contado) a esta pulsioén freudiana del gigante
azul para que sus productos siempre sean “segundos”: DB2, OS/2, PS/2 ...

46 La Cara Oculta de C++ Builder

pero una vez en funcionamiento va de maravillas. Asi que con Oracle no tiene pre-
textos para no llevarse trabajo a casa.

Oracle permite todas las funciones avanzadas de un servidor SQL serio: segmenta-
cién, replicacion, etc. Incluso puede pensarse que tiene demasiados parametros de
configuracion. La parte principal del control de transacciones se implementa me-
diante bloqueos y registros de transacciones, aunque el nivel de aislamiento superior
se logra mediante copias s6lo lectura de los datos. Por supuesto, el nivel minimo de
granularidad de estos bloqueos es a nivel de registro.

¢Tipos de datos? Todos los que usted desee. ¢Restricciones check? No tan generales
como las de InterBase, pero quedan compensadas por la mayor abundancia de fun-
ciones predefinidas. Hasta la versién 7.3, Oracle implementaba solamente la propa-
gacion en cascada de borrados para la integridad referencial, como muestra la si-
guiente tabla:

Borrados | Modificaciones
Prohibir la operacion S Si
Propagar en cascada N No
Asignar valor por omision Si -

Las extensiones procedimentales a SQL, denominadas PL/SQL, conforman un len-
guaje potente, que permite programar paquetes (packages) para la implementacion de
tipos de datos abstractos. Con la version 8, incluso, se pueden definir tipos de clases,
u objetos. Esta tltima extension no es, sin embargo, lo suficientemente general como
para clasificar a este sistema como una base de datos orientada a objetos, en el sen-
tido moderno de esta denominacién. Uno de los puntos fuertes de la version 4.0 de
C++ Builder es la posibilidad de trabajar con las extensiones de objetos de Oracle 8.

Como pudiera esperarse, el lenguaje de #iggers es muy completo, y permite especifi-
carlos tanto a nivel de fila como de operaciéon. Hay montones de funciones utiliza-
bles desde SQL, y curiosas extensiones al lenguaje consulta, como la posibilidad de
realizar determinados tipos de clausuras transitivas.

Otros sistemas de uso frecuente

Evidentemente, es imposible hablar con autoridad acerca de todos los formatos de
bases de datos existentes en el mercado, y en las secciones anteriores me he limitado
a presentar aquellos sistemas con los que he trabajado con mayor frecuencia. Sin
embargo, gracias a las particularidades de mi actual ocupacion, he podido ver en
funcionamiento a muchos de los restantes sistemas SQL con los que C++ Builder
nos permite trabajar directamente.

Sistemas de bases de datos 47

Por ejemplo, DB2, de IBM. Antes mencioné que este sistema y Oracle eran los dos
sistemas que mas tiempo llevaban en este negocio, y los frutos de esta experiencia se
dejan notar también en DB2. Existen actualmente versiones de DB2 para una amplia
gama de sistemas operativos. El autor lo ha visto funcionar sobre OS /2, Windows
NT y Windows 95, teniendo una version de evaluacién sobre este dltimo sistema.
Por supuesto, estas no son las tnicas plataformas sobre las que puede ejecutarse.

La arquitectura de DB2 es similar a la de Oracle, a la que se parece la de MS SQL
Server, que es similar a la de Sybase SQL Server.. En realidad, la concepcién de estos
sistemas estd basada en un proyecto experimental de IBM, denominado System-R,
que fue la primera implementacién de un sistema relacional. En este proyecto se
desarrollaron o perfeccionaron técnicas como los identificadores de registros, los
mecanismos de bloqueos actuales, registros de transacciones, indices basados en
arboles balanceados, los algoritmos de optimizacion de consultas, etc. Asf que tam-
bién podra usted esperar de DB2 la posibilidad de dividir en segmentos sus bases de
datos, de poder realizar réplicas y de disponer de transacciones atémicas y coheren-
tes. El mantenimiento de las bases de datos de DB2 puede ser todo lo simple que
usted desee (sacrificando algo el rendimiento), o todo lo complicado que le parezca
(a costa de su cuero cabelludo). El lenguaje de #riggers y procedimientos almacenados
es muy completo, y similar al de Oracle e InterBase, como era de esperar. La tinica
pega que le puedo poner a DB2 es que la instalacion de clientes es bastante pesada, y
para poder conectar una estacion de trabajo hay que realizar manualmente un pro-
ceso conocido como catalogacion. Pero esto mismo le sucede a Oracle con su SQL
Net.

Otro sistema importante es Informix, que estd bastante ligado al mundo de UNIX,
aunque en estos momentos existen versiones del servidor para Windows NT. Su
arquitectura es similar a la de los sistemas antes mencionados.

Finalmente, quiero referirme aunque sea de pasada a otras bases de datos “no BDE”.
Tenemos, por ejemplo, la posibilidad de trabajar con bases de datos de AS/400.
Aunque el motor de datos que viene con C++ Builder no permite el acceso directo a
las mismas, podemos programar para estas bases de datos colocando una pasarela
DB2 como interfaz. No obstante, el producto C++ Builder/400 si que nos deja
saltarnos las capas intermedias, logrando mayor eficiencia a expensas de la pérdida de
portabilidad. También estd muy difundido Btrieve, una base de datos que inicio su
vida como un sistema navegacional, pero que en sus tltimas versiones ha desarro-
llado el producto Pervasive SQL, que es un motor de datos cliente/servidor relacio-
nal. Lamentablemente, tampoco esta soportado directamente por el motor de datos
de C++ Builder, por el momento.

Capitulo

Breve introduccion a SQL

UANDO IBM DESARROLLO EL PRIMER PROTOTIPO DE base de datos relacio-

nal, el famoso System R, cre6 en paralelo un lenguaje de definicién y mani-

pulacién de datos, lamado QUEL. La versién mejorada de este lenguaje que
apareci6 un poco mas tarde se denomind, un poco en broma, SEQUEL. Finalmente,
las siglas se quedaron en SQL: Structured Query Langnage, o Lenguaje de Consultas
Estructurado. Hay quien sigue pronunciando estas siglas en inglés como seguel, es
decir, secuela.

La estructura de SQL

Las instrucciones de SQL se pueden agrupar en dos grandes categorias: las instruc-
ciones que trabajan con la estructura de los datos y las instrucciones que trabajan con
los datos en si. Al primer grupo de instrucciones se le denomina también el Lenguaje
de Definicion de Datos, en inglés Data Definition Langnage, con las siglas DDL. Al se-
gundo grupo se le denomina el Lengnaje de Manipnlacion de Datos, en inglés Data Ma-
nipulation Langnage, o DML. A veces las instrucciones que modifican el acceso de los
usuatios a los objetos de la base de datos, y que en este libro se incluyen en el DDL,
se consideran pertenecientes a un tercer conjunto: el Lenguaje de Control de Datos, Data
Control Langnage, 6 DCL.

En estos momentos existen estindares aceptables para estos tres componentes del
lenguaje. El primer estandar, realizado por la institucién norteamericana ANSI y
luego adoptada por la internacional ISO, se terminé de elaborar en 1987. El segundo,
que es el que esta actualmente en vigor, es del afio 1992. En estos momentos esta a
punto de ser aprobado un tercer estandar, que ya es conocido como SQL-3.

Las condiciones en que se elabor6 el estandar de 1987 fueron especiales, pues el
mercado de las bases de datos relacionales estaba dominado por unas cuantas com-
pafifas, que trataban de imponer sus respectivos dialectos del lenguaje. El acuerdo
tinal dej6 solamente las construcciones que eran comunes a todas las implementa-
ciones; de este modo, nadie estaba obligado a reescribir su sistema para no quedarse
sin la certificacion. También se definieron diferentes niveles de conformidad para

50 La Cara Oculta de C++ Builder

facilitarles las cosas a los fabricantes; si en algin momento alguien le intenta vender
un sistema SQL alabando su conformidad con el estandar, y descubre en letra pe-
quefia la aclaracién “compatible con el nivel de entrada (entry-level)”, tenga por seguro
que lo estan camelando. Este estandar dejoé fuera cosas tan necesarias como las defi-
niciones de integridad referencial. Sin embargo, introdujo el denominado znguage de
mddnlos, una especie de interfaz para desarrollar funciones en SQL que pudieran utili-
zarse en programas escritos en otros lenguajes.

El estandar del 92 se ocup6 de la mayoria de las areas que quedaron por cubrir en el
87. Sin embargo, no se hizo nada respecto a recursos tales como los procedimientos
almacenados, los #riggers o disparadores, y las excepciones, que permiten la especifica-
ci6n de reglas para mantener la integridad y consistencia desde un enfoque inperativo,
en contraste con el enfoque declarativo utilizado por el DDL, el DCL y el DML. De-
dicaremos un capitulo al estudio de estas construcciones del lenguaje. En este preciso
momento, cada fabricante tiene su propio dialecto para definir procedimientos alma-
cenados y disparadores. El estindar conocido como SQL-3 se encarga precisamente
de unificar el uso de estas construcciones del lenguaje.

En este capitulo solamente nos ocuparemos de los lenguajes de definicion y control
de datos. El lenguaje de manipulacion de datos se trata en el capitulo siguiente. Mas
adelante nos ocuparemos del lenguaje de #r7ggers y procedimientos almacenados.

Para seguir los ejemplos de este libro...

Para poder mostrar todas las posibilidades del lenguaje SQL necesitamos un sistema
de bases de datos potente, que admita la mayor parte posible de las construcciones
sintacticas definidas por el lenguaje. Aunque Paradox y dBase pueden ser abordados
mediante SQL, el intérprete ofrecido por el BDE tiene limitaciones, sobre todo en el
lenguaje de definicién de datos. Por lo tanto, necesitamos algun sistema cliente/set-
vidor para seguir los ejemplos. ¢Cudl de los muchos disponibles? Para este capitulo y
para el siguiente, casi da lo mismo el sistema elegido, pues las implementaciones de
los sublenguajes DDL y DML son bastante similares en casi todos los dialectos
existentes de SQL. Donde realmente necesitaremos aclarar con qué dialecto estare-
mos tratando en cada momento, sera en el capitulo sobre #ggers y procedimientos
almacenados.

Asf que si usted tiene un Oracle a mano, utilice Oracle; si tiene Informix, utilicelo.
¢Pero qué pasa si nunca ha trabajado con uno de esos sistemas? Pues que siempre
tendremos a mano a InterBase, el sistema de bases de datos SQL de Borland. Si el
lector tiene instalada una de las versiones cliente/servidor o profesional de C++
Builder 1 (la version Desktop no vale), tendra también instalado el servidor local de
InterBase. Si esta utilizando C++ Builder 3 6 4, debe realizar la instalacion por sepa-
rado. En cualquier caso, tomaré como punto de partida a InterBase para los primeros

Breve introducciéon a SQL 51

tres capitulos. En estos capitulos iniciales, presentaré las caracteristicas fundamenta-
les del lenguaje SQL: el lenguaje de definicion de datos en el primer capitulo, en el
siguiente, el lenguaje de consultas y manipulacién de datos, y para finalizar, las exten-
siones procedimentales para #iggers y procedimientos almacenados. Luego dedicaré
un par de capitulos a las particularidades de Oracle, MS SQL Server y DB2.

InterBase viene acompafiado por la aplicaciéon Windows ISQL. Con esta utilidad
podemos crear y borrar bases de datos de InterBase, conectarnos a bases de datos
existentes y ejecutar todo tipo de instrucciones SQL sobre ellas. Las instrucciones del
lenguaje de manipulacion de datos, y algunas del lenguaje de definicion, pueden eje-
cutarse directamente tecleando en un cuadro de edicién multilineas y pulsando un
botén. El resultado de la ejecucion aparece en un control de visualizacion situado en
la parte inferior de la ventana.

S B InterBase Interactive SAL

(SN Edit Session View Eutract Help

Connect to Database...

Create Database. ﬁ Bun
Uiop Databiase —
[iscantest fiom Database Erevinus)

E LI TdERt
Save Result to a File...
Save Session ko a File. Save Result
[Sammit Tk ﬂ

Hiollbact ok

Exit Alt+Fd

: o

|Nﬂ active database connection |

Para las instrucciones DDL mads complejas y la gestién de procedimientos, dispara-
dores, dominios y excepciones es preferible utilizar seripts SQL. Un seript es un fichero
de texto, por lo general de extension sg/, que contiene una lista de instrucciones ar-
bitrarias de este lenguaje separadas entre si por puntos y comas. Este fichero debe
ejecutarse mediante el comando de menu File| Run an ISQL Seript. Las instrucciones
SQL se van ejecutando secuencialmente, segin el orden en que se han escrito. Por
omision, los resultados de la ejecucion del serjp? también aparecen en el control de
visualizacion de la ventana de Windows ISQL.

Por supuesto, también puede utilizarse la utilidad SQL Explorer del propio C++
Builder para ejecutar instrucciones individuales sobre cualquier base de datos a la que
deseemos conectarnos. También podemos utilizar Database Desktop si queremos
realizar pruebas con Paradox y dBase.

52 La Cara Oculta de C++ Builder

La creacion y conexion a la base de datos

Estamos en InterBase, utilizando Windows ISQL. ;Cémo nos conectamos a una
base de datos de InterBase para comenzar a trabajar? Basta con activar el comando
de menu File | Connect to database. Si ha instalado InterBase en un servidor remoto y
tiene los SQL Links que vienen con C++ Builder cliente/servidor, puede elegir la
posibilidad de conectarse a ese servidor remoto. En cualquier caso, puede elegir el
servidor local. Cuando especificamos un servidor remoto, tenemos que teclear el
nombre completo del fichero de base de datos en el servidor; no necesitamos tener
acceso al fichero desde el sistema operativo, pues es el servidor de InterBase el que
nos garantiza el acceso al mismo. Si estamos utilizando el servidor local, las cosas son
mas faciles, pues contamos con un botén Browse para explorar el disco. Las bases de
datos de InterBase se situan por lo general en un tnico fichero de extension gdb;
existe, no obstante, la posibilidad de distribuir informacion en ficheros secundarios,
lo cual puede ser util en servidores con varios discos duros. Los otros datos que
tenemos que suministrar a la conexion son el nombre de usuario y la contrasefa. El
nombre de usuario inicial en InterBase es, por omision, SYSDBA, y su contrasefia es
masterkey. Respete las mayusculas y minasculas, por favor. Una vez que acepte el cua-
dro de didlogo, se intentard la conexién. En cualquier momento de la sesiéon pode-
mos saber a qué base de datos estamos conectados mirando la barra de estado de la
ventana.

El mismo mecanismo puede utilizarse para crear una base de datos interactivamente.
La diferencia esta en que debemos utilizar el comando Fike| Create database. Sin em-
bargo, necesitamos saber también cémo podemos crear una base de datos y estable-
cer una conexion utilizando instrucciones SQL. La razoén es que todo seript SQL debe
comenzatr con una instruccion de creacién de bases de datos o de conexién. La mas
sencilla de estas instrucciones es la de conexion:

connect "C:\Marteens\I|ntrBase\ Exanpl es\ Prueba. GDB"
user "SYSDBA' password "nasterkey";

Por supuesto, el fichero mencionado en la instruccién debe existir, y el nombre de
usuario y contrasefia deben ser validos. Observe el punto y coma al final, para sepa-
rar esta instruccion de la proxima en el serpt.

La instruccién necesaria para crear una base de datos tiene una sintaxis similar. El
siguiente ejemplo muestra el ejemplo mas comun de creacion:

create database "C: \ Marteens\|ntrBase\ Exanpl es\ Prueba. GDB"
user "SYSDBA' password "nasterkey"
page_si ze 2048;

InterBase, y casi todos los sistemas SQL, almacenan los registros de las tablas en
bloques de longitud fija, conocidos como pdginas. En la instruccién anterior estamos

Breve introduccion a SQL 53

redefiniendo el tamafio de las paginas de la base de datos. Por omisién, InterBase
utiliza paginas de 1024 bytes. En la mayoria de los casos, es conveniente utilizar un
tamafio mayor de pagina; de este modo, el acceso a disco es mas eficiente, entran mas
claves en las paginas de un indice con lo cual disminuye la profundidad de estos, y
mejora también el almacenamiento de campos de longitud variable. Sin embargo, si
sus aplicaciones trabajan con pocas filas de la base de datos, como la tipica aplicacion
del cajero automatico, puede ser mas conveniente mantener un tamafio pequefio de
pagina, pues la lectura de éstas tarda entonces menos tiempo, y el buffer puede realizar
las operaciones de reemplazo de paginas en memoria mas eficientemente.

También podemos indicar el tamafio inicial de la base de datos en paginas. Normal-
mente esto no hace falta, pues InterBase hace crecer automaticamente el fichero gdb
cuando es necesario. Pero si tiene en mente insertar grandes cantidades de datos
sobre la base recién creada, puede ahorrar el tiempo de crecimiento utilizando la
opcion length. La siguiente instruccién crea una base de datos reservando un ta-
mafio inicial de 1 MB:

create database "C: \ Marteens\|ntrBase\ Exanpl es\ Prueba. GDB"
user "SYSDBA' password "nasterkey"

page_si ze 2048 |l ength 512

default character set "I1SC8859_1";

Esta instrucciéon muestra también cémo especificar el conjunto de caracteres utilizado
por omision en la base de datos. Mas adelante, se pueden definir conjuntos especiales
para cada tabla, de ser necesario. El conjunto de caracteres determina, fundamental-
mente, de qué forma se ordenan alfabéticamente los valores alfanuméricos. Los pri-
meros 127 caracteres de todos los conjuntos de datos coinciden; es en los restantes
valores donde puede haber diferencias.

Tipos de datos en SQL

Antes de poder crear tablas, tenemos que saber qué tipos de datos podemos emplear.
SQL estandar define un conjunto de tipos de datos que todo sistema debe imple-
mentar. Ahora bien, la interpretacion exacta de estos tipos no esta completamente
especificada. Cada sistema de bases de datos ofrece, ademas, sus propios tipos nati-
vos. Estos son los tipos de datos aceptados por InterBase:

Tipo de dato Tamafio Observaciones

char(), varchar(n) n bytes Longitud fija; longitud variable
integer, int 32 bits

smallint 16 bits

float 4 bytes Equivale al tipo homénimo de C
double precision 8 bytes Equivale al double de C

numeric(prec, esc) prec=1-15, esc <= prec Variante “exacta” de decimal

54 La Cara Oculta de C++ Builder

Tipo de dato Tamafio Observaciones
decimal(prec, esc) prec=1-15, esc <= prec

date 64 bits Almacena la fecha y la hora
blob No hay limite

La diferencia fundamental respecto al estindar SQL tiene que ver con el tipo date.
SQL estandar ofrece los tipos date, time y timestamp, para representar fecha, hora
y la combinacién de fecha y hora. El tipo date de InterBase corresponde al tipo
timestamp del SQL estandar.

El tipo de dato blob (Binary Large OBject = Objeto Binario Grande) se utiliza para
almacenar informacion de longitud variable, generalmente de gran tamafio. En prin-
cipio, a InterBase no le preocupa qué formato tiene la informacién almacenada. Pero
para cada tipo blob se define un s#btipo, un valor entero que ofrece una pista acerca
del formato del campo. InterBase interpreta el subtipo 0 como el formato por omi-
sién: ningdin formato. El subtipo 1 representa texto, como el tipo memo de otros
sistemas. Se pueden especificar subtipos definidos por el programador; en este caso,
los valores empleados deben ser negativos. La especificacién de subtipos se realiza
mediante la clausula sub_type:

Conent ari os bl ob sub_type 1

Una de las peculiaridades de InterBase como gestor de bases de datos es el soporte
de matrices multidimensionales. Se pueden crear columnas que contengan matrices de
tipos simples, con excepcién del tipo blob, de hasta 16 dimensiones. Sin embargo,
C++ Builder no reconoce directamente este tipo de campos, y debemos trabajar con
ellos como si fueran campos BLOB.

Representacion de datos en InterBase

¢Qué diferencias hay entre los tipos char y varchar? Cuando una aplicacion graba
una cadena en una columna de tipo varchar, InterBase almacena exactamente la
misma cantidad de caracteres que ha especificado la aplicacién, independientemente
del ancho maximo de la columna. Cuando se recupera el valor mas adelante, la ca-
dena obtenida tiene la misma longitud que la original. Ahora bien, si la columna de
que hablamos ha sido definida como char, en el proceso de grabacién se le afiaden
automaticamente espacios en blanco al final del valor para completar la longitud de la
cadena. Cuando se vuelve a leer la columna, la aplicacion recibe estos espacios adi-
cionales.

¢Quiere esto decir que ahorraremos espacio en la base de datos utilizando siempre el
tipo varchar? {Conclusion prematural InterBase utiliza registros de longitud variable
para representar las filas de una tabla, con el fin de empaquetar la mayor cantidad

Breve introducciéon a SQL 55

posible de registros en cada pagina de la base de datos. Como parte de la estrategia
de disminucién del tamafio, cuando se almacena una columna de tipo char se elimi-
nan automaticamente los espacios en blanco que puede contener al final, y estos
espacios se restauran cuando alguien recupera el valor de dicha columna. Mas atn:
para almacenar un varchar es necesario afiadir a la propia representacion de la ca-
dena un valor entero con la longitud de la misma. Como resultado final, juna co-
lumna de tipo varchar consume mas espacio que una de tipo char!

¢Para qué, entonces, quiero el tipo varchar?, se preguntara el lector. Conviene
que recuerde que si utiliza el tipo char recibird valores con espacios en blanco
adicionales al final de los mismos, y que tendra que utilizat frecuentemente la

funcién TrimRight para eliminarlos. El tipo varchar le ahorra este incordio.

También le sera util conocer como InterBase representa los tipos numeric y deci-
mal. El factor decisivo de la representacion es el nimero de digitos de la precision.
Si es menor que 5, numeric y decimal pueden almacenarse dentro de un tipo entero
de 16 bits, o smallint; si es menor que 10, en un integer de 32 bits; en caso contra-
rio, se almacenan en columnas de tipo double precision.

Creacion de tablas

Como fuente de ejemplos para este capitulo, utilizaremos el tipico esquema de un
sistema de pedidos. Las tablas que utilizaremos seran las siguientes:

Tabla Propdésito

Clientes Los clientes de nuestra empresa
Empleados Los empleados que reciben los pedidos
Articnlos Las cosas que intentamos vender
Pedidos Pedidos realizados

Detalles Una fila por cada articulo vendido

Un ejemplo similar lo encontramos en la base de datos de demostracién que trae
C++ Builder, pero en formato Paradox.

La instruccién de creacion de tablas tiene la siguiente sintaxis en InterBase:

create tabl e NonbreDeTabla [external file NonmbreFichero] (
Def Col uma [, DefColumma | Restriccion ...]
)

La opcion external file es propia de InterBase e indica que los datos de la tabla de-
ben residir en un fichero externo al principal de la base de datos. Aunque el formato
de este fichero no es ASCII, es relativamente sencillo de comprender y puede utili-

56 La Cara Oculta de C++ Builder

zarse para importar y exportar datos de un modo facil entre InterBase y otras aplica-
ciones. En lo sucesivo no haremos uso de esta clausula.

Para crear una tabla tenemos que definir columnas y restricciones sobre los valores
que pueden tomar estas columnas. La forma mas sencilla de definicién de columna
es la que sigue:

Nonbr eCol umma Ti poDeDat o

Por ejemplo:

create tabl e Enpl eados (

Codi go i nt eger,
Nonbr e var char (30),
Contrato dat e,

Sal ari o i nt eger

Columnas calculadas

Con InterBase tenemos la posibilidad de crear columnas calenladas, cuyos valores se
derivan a partir de columnas existentes, sin necesidad de ser almacenados fisica-
mente, para lo cual se utiliza la clausula computed by. Aunque para este tipo de co-
lumnas podemos especificar explicitamente un tipo de datos, es innecesario, porque
se puede deducir de la expresion que define la columna:

create tabl e Enpl eados(

Codi go i nt eger,
Nonbr e var char,
Apel | i dos var char,
Sal ari o i nt eger,
Nonbr eConpl et o conputed by (Nonmbre || " " || Apellidos),

I* %]
)

El operador | | sirve para concatenar cadenas de caracteres en InterBase.

En general, no es buena idea definir columnas calculadas en el servidor, sino que
es preferible el uso de campos calculados en el cliente. Si utilizamos computed

by hacemos que los valores de estas columnas viajen por la red con cada registro,
aumentando el trafico en la misma.

Breve introducciéon a SQL 57

Valores por omision

Otra posibilidad es la de definir valores por omision para las columnas. Durante la
insercién de filas, es posible no mencionar una determinada columna, en cuyo caso
se le asigna a esta columna el valor por omision. Si no se especifica algo diferente, el
valor por omision de SQL es null, el valor desconocido. Con la clausula default
cambiamos este valot:

Sal ari o integer default O,
FechaContrato date default "Now',

Observe en el ejemplo anterior el uso del literal “Now”, para inicializar la columna
con la fecha y hora actual en InterBase. En Oracle se utilizarfa la funcion sysdate:

FechaContrato date default sysdate

Si se mezclan las clausulas default y not null en Oracle o InterBase, la primera debe
ir antes de la segunda. En MS SQL Setrver, por el contrario, la clausula default debe
ir después de las especificaciones null 6 not null:

FechaContrato datetine not null default (getdate())

Restricciones de integridad

Durante la definicién de una tabla podemos especificar condiciones que deben cum-
plirse para los valores almacenados en la misma. Por ejemplo, no nos basta saber que
el salario de un empleado es un entero; hay que aclarar también que en circunstancias
normales es también un entero positivo, y que no podemos dejar de especificar un
salario a un trabajador. También nos puede interesar imponer condiciones mas com-
plejas, como que el salario de un empleado que lleva menos de un afio con nosotros
no puede sobrepasar cierta cantidad fija. En este epigrafe veremos como expresar
estas restricciones de integridad.

La restricciéon mas frecuente es pedir que el valor almacenado en una columna no
pueda ser nulo. En el capitulo sobre manipulacién de datos estudiaremos en profun-
didad este peculiar valor. El que una columna no pueda tener un valor nulo quiere
decir que hay que suministrar un valor para esta columna durante la inserciéon de un
nuevo registro, pero también que no se puede modificar posteriormente esta co-
lumna de modo que tenga un valor nulo. Esta restriccién, como veremos dentro de
poco, es indispensable para poder declarar claves primarias y claves alternativas. Por
ejemplo:

58 La Cara Oculta de C++ Builder

create tabl e Enpl eados(
Codi go integer not null,
Nonbre varchar(30) not null,
[* *]

)

Cuando la condicién que se quiere verificar es mas compleja, se puede utilizar la
clausula check. Por ejemplo, la siguiente restriccién verifica que los cédigos de pro-
vincias se escriban en mayusculas:

Provi nci a varchar (2) check (Provincia = upper(Provincia))

Existen dos posibilidades con respecto a la ubicacion de la mayorfa de las restric-
ciones: colocar la restriccion a nivel de columna o a nivel de tabla. A nivel del co-
lumna, si la restricciéon afecta solamente a la columna en cuestién; a nivel de tabla si
hay varias columnas involucradas. En mi humilde opinién, es mas claro y legible
expresar todas las restricciones a nivel de tabla, pero esto en definitiva es materia de

gustos.

La clausula check de InterBase permite incluso expresiones que involucran a otras
tablas. Mas adelante, al tratar la integridad referencial, veremos un ejemplo sencillo

de esta técnica. Por el momento, analice la siguiente restriccion, expresada a nivel de
tabla:

create table Detalles (

Ref Pedi do int not null,
Nunli nea int not null,
Ref Articul o int not null,
Cant i dad int default 1 not null,
Descuent o int default 0 not null,

check (Descuento between 0 and 50 or "Marteens Corporation"=
(sel ect Nonbre fromdientes
where Codigo =
(select Refdiente from Pedi dos
where Nunmero = Detall es. Ref Pedi do))),
[* x
)

Esta clausula dice, en pocas palabras, que solamente el autor de este libro puede
beneficiarse de descuentos superiores al 50%. jAlgun privilegio tenfa que correspon-
dermel!

Claves primarias y alternativas

Las restricciones check nos permiten con relativa facilidad imponer condiciones
sobre las filas de una tabla que pueden verificarse examinando solamente el registro
activo. Cuando las reglas de consistencia involucran a varias filas a la vez, la expresion

Breve introduccion a SQL 59

de estas reglas puede complicarse bastante. En ultimo caso, una combinacién de
clausulas check y el uso de #riggers o disparadores nos sirve para expresar iperativa-
mente las reglas necesarias. Ahora bien, hay casos tipicos de restricciones que afectan a
varias filas a la vez que se pueden expresar declarativamente; estos casos incluyen a las
restricciones de claves primarias y las de integridad referencial.

Mediante una clave primaria indicamos que una columna, o una combinacién de
columnas, debe tener valores Gnicos para cada fila. Por ejemplo, en una tabla de
clientes, el codigo de cliente no debe repetirse en dos filas diferentes. Esto se expresa
de la siguiente forma:

create table dientes(
Codi go integer not null primry key,
Nonbr e varchar (30) not null,
[*]

)

Si una columna pertenece a la clave primaria, debe estar especificada como no nula.
Observe que en este caso hemos utilizado la restriccion a nivel de columna. También
es posible tener claves primarias compuestas, en cuyo caso la restriccién hay que
expresarla a nivel de tabla. Por ejemplo, en la tabla de detalles de pedidos, la clave
primaria puede ser la combinacién del numero de pedido y el nimero de linea dentro

de ese pedido:

create table Detall es(

NunPedi do integer not null,
Nunii nea i nteger not null,
[* x

pri mary key (NunmPedi do, Nunli nea)
)

Solamente puede haber una clave primaria por cada tabla. De este modo, la clave

primaria representa la identidad de los registros almacenados en una tabla: la informa-
cién necesaria para localizar univocamente un objeto. No es imprescindible especifi-
car una clave primaria al crear tablas, pero es recomendable como método de trabajo.

Sin embargo, es posible especificar que otros grupos de columnas también poseen
valores unicos dentro de las filas de una tabla. Estas restricciones son similares en
sintaxis y semantica a las claves primarias, y utilizan la palabra reservada unique. En
la jerga relacional, a estas columnas se le denominan claves alternativas. Una buena
razon para tener claves alternativas puede ser que la columna designada como clave
primaria sea en realidad una clave artificial. Se dice que una clave es artificial cuando no
tiene un equivalente semantico en el sistema que se modela. Por ejemplo, el cédigo
de cliente no tiene una existencia real, nadie va por la calle con un 666 grabado en la
frente. La verdadera clave de un cliente puede ser, ademas de su alma inmortal, su
DNI. Pero el DNI debe almacenarse en una cadena de caracteres, y esto ocupa mu-
cho mas espacio que un coédigo numérico. En este caso, el cédigo numérico se utiliza

60 La Cara Oculta de C++ Builder

en las referencias a clientes, pues al tener menor tamafio la clave, pueden existir mas
entradas en un bloque de indice, y el acceso por indices es mas eficiente. Entonces, la
tabla de clientes puede definirse del siguiente modo:

create table Qientes (

Codi go integer not null,
DNI varchar(9) not null,
[* *]

primary key (Codigo),
uni que (DNI)
)

Por cada clave primaria o alternativa definida, InterBase crea un indice tnico para
mantener la restriccion. Este indice se bautiza segin el patron rdb§primaryN, donde
N es un nimero unico asignado por el sistema.

Integridad referencial

Un caso especial y frecuente de restriccion de integridad es la conocida como restric-
cion de zntegridad referencial. También se le denomina restriccion por clave externa o
fordnea (foreign key). Esta restriccion especifica que el valor almacenado en un grupo de
columnas de una tabla debe encontrarse en los valores de las columnas en alguna fila
de otra tabla, o de si misma. Por ejemplo, en una tabla de pedidos se almacena el
codigo del cliente que realiza el pedido. Este c6digo debe corresponder al cédigo de
algun cliente almacenado en la tabla de clientes. La restriccion puede expresarse de la

siguiente manera:

create tabl e Pedi dos(

Codi go i nteger not
Ciente i nteger not
[* *]

)i
O, utilizando restricciones a nivel de tabla:

create tabl e Pedidos(

Codi go i nt eger not
Ciente i nt eger not
[* *]

primary key (Codi go),
foreign key (diente)
)i

nul |
nul |

primary key,
references dientes(Codigo),

nul |,
nul |,

references Cientes(Codi go)

La columna o grupo de columnas a la que se hace referencia en la tabla maestra, la
columna Codigo de Clientes en este caso, debe ser la clave primaria de esta tabla o ser
una clave alternativa, esto es, debe haber sido definida una restriccién unique sobre

la misma.

Breve introduccion a SQL 61

Si todo lo que pretendemos es que no se pueda introducir una referencia a cliente
invalida, se puede sustituir la restriccién declarativa de integridad referencial por esta
clausula:

create tabl e Pedidos(
[* x
check (Cliente in (select Codigo fromCientes))

)

La sintaxis de las expresiones sera explicada en profundidad en el préximo capitulo,
pero esta restricciéon check sencillamente comprueba que la referencia al cliente
exista en la columna Codigo de la tabla Clientes.

Acciones referenciales

Sin embargo, las restricciones de integridad referencial ofrecen mas que esta simple
comprobacién. Cuando tenemos una de estas restricciones, el sistema toma las rien-
das cuando tratamos de eliminar una fila maestra que tiene filas dependientes asocia-
das, y cuando tratamos de modificar la clave primaria de una fila maestra con las
mismas condiciones. El estandar SQL-3 dicta una serie de posibilidades y reglas, de-
nominadas acciones referenciales, que pueden aplicarse.

Lo mas sencillo es prohibir estas operaciones, y es la soluciéon que adoptan MS SQL
Server (incluyendo la versioén 7) y las versiones de InterBase anteriores ala 5. En la

sintaxis mas completa de SQL-3, esta politica puede expresarse mediante la siguiente
clausula:

create tabl e Pedi dos(

Codi go integer not null primary key,
Ciente integer not null,
[* *]

foreign key (diente) references dientes(Codigo)
on del ete no action
on update no action

)

Otra posibilidad es permitir que la accion sobre la tabla maestra se propague a las
filas dependientes asociadas: eliminar un cliente puede provocar la desaparicién de

todos sus pedidos, y el cambio del c6digo de un cliente modifica todas las referencias
a este cliente. Por ejemplo:

create tabl e Pedidos(
Codi go integer not null primary key,
Ciente i nteger not null
references Cientes(Codi go)

on del ete no action on update cascade
[* x]

62 La Cara Oculta de C++ Builder

Observe que puede indicarse un comportamiento diferente para los borrados y para
las actualizaciones.

n el caso de los borrados, puede indicarse que la eliminacion de una fila maestra
En el de los borrados, de indicar la eliminacion d fil tr
provoque que en la columna de referencia en las filas de detalles se asigne el valor
nulo, o el valor por omisiéon de la columna de referencia:

insert into Enpl eados(Codi go, Nonbre, Apellidos)
val ues(-1, "D Arche", "Jeanne");

create tabl e Pedidos(
Codi go integer not null primary key,
Cliente i nteger not null
references dientes(Codigo)
on del ete no action on update cascade,
Enpl eado integer default -1 not null
ref erences Enpl eados(Codi go)
on del ete set default on update cascade
[* *]
)

InterBase 5 implementa todas estas estrategias, para lo cual necesita crear indices que
le ayuden a verificar las restricciones de integridad referencial. La comprobacion de la
existencia de la referencia en la tabla maestra se realiza con facilidad, pues se trata en
definitiva de una busqueda en el indice unico que ya ha sido creado para la gestion de
la clave. Para prohibir o propagar los borrados y actualizaciones que afectarfan a filas
dependientes, la tabla que contiene la cldusula foreign key crea automaticamente un
indice sobre las columnas que realizan la referencia. De este modo, cuando sucede
una actualizacién en la tabla maestra, se pueden localizar con rapidez las posibles
filas afectadas por la operacién. Este indice nos ayuda en C++ Builder en la especifi-
cacioén de relaciones master/ detail entre tablas. Los indices creados automaticamente
para las relaciones de integridad referencial reciben nombres con el formato
rdb§foreignIN, donde IN es un numero generado automaticamente.

Nombres para las restricciones

Cuando se define una restriccion sobre una tabla, sea una verificaciéon por condicién
o una clave primaria, alternativa o externa, es posible asignarle un nombre a la res-
triccién. Este nombre es utilizado por InterBase en el mensaje de error que se pro-
duce al violarse la restriccion, pero su uso fundamental es la manipulacién posterior
por parte de instrucciones como alter table, que estudiaremos en breve. Por ejem-

plo:

Breve introduccion a SQL 63

create tabl e Enpl eados(

[* x

Sal ari o integer default O,

constraint Sal ari oPositivo check(Salario >= 0)
[* x]

constraint Nonbr eUni co

uni que(Apel | i dos, Nonbre)
)

También es posible utilizar nombres para las restricciones cuando éstas se expresan a
nivel de columna. Las restricciones a las cuales no asignamos nombre reciben uno
automaticamente por parte del sistema.

Definicion y uso de dominios

SQL permite definir algo similar a los tipos de datos de los lenguajes tradicionales. Si
estamos utilizando cierto tipo de datos con frecuencia, podemos definir un dominio
para ese tipo de columna y utilizarlo consistentemente durante la definicién del es-
quema de la base de datos. Un dominio, sin embargo, va mas alla de la simple defini-
cién del tipo, pues permite expresar restricciones sobre la columna y valores por
omision. La sintaxis de una definicién de dominio en InterBase es la siguiente:

create domai n Normbr eDom ni o [as]
Ti poDeDat o
[Val or Por Oni si 6n]
[not null]
[check(Condi ci 6n)]
[collate Criterio];

Cuando sobre un dominio se define una restriccién de chequeo, no contamos con el
nombre de la columna. Si antes expresabamos la restriccion de que los codigos de
provincia estuvieran en mayusculas de esta forma:

Provi nci a var char (2) check(Provincia = upper(Provincia))

ahora necesitamos la palabra reservada value para referirnos al nombre de la co-
lumna:

create domain CodProv as
var char (2)
check(val ue = upper(val ue));

El dominio definido, CodProv, puede utilizarse ahora para definir columnas:

Provinci a CodPr ov

Las clausulas check de las definiciones de dominio no pueden hacer referencia a
columnas de otras tablas.

64 La Cara Oculta de C++ Builder

Es aconsejable definir dominios en InterBase por una razén adicional: el Diccio-
nario de Datos de C++ Builder los reconoce y asocia automaticamente a con-
juntos de atributos (a#tribute sets). De esta forma, se ahorra mucho tiempo en la
configuracién de los objetos de acceso a campos.

Creacion de indices

Como ya he explicado, InterBase crea indices de forma automatica para mantener las
restricciones de clave primaria, unicidad y de integridad referencial. En la mayoria de
los casos, estos indices bastan para que el sistema funcione eficientemente. No obs-
tante, es necesario en ocasiones definir indices sobre otras columnas. Esta decision
depende de la frecuencia con que se realicen consultas segin valores almacenados en
estas columnas, o de la posibilidad de pedir que una tabla se ordene de acuerdo al
valor de las mismas. Por ejemplo, en la tabla de empleados es sensato pensar que el
usuario de la base de datos deseara ver a los empleados listados por orden alfabético,
o que querra realizar busquedas segun un nombre y unos apellidos.

La sintaxis para crear un indice es la siguiente:

create [unique] [asc[ending] | desc[ending]] index |ndice
on Tabla (Columa [, Columa .])

Por ejemplo, para crear un indice sobre los apellidos y el nombre de los empleados
necesitamos la siguiente instruccion:

create index NonbreEnpl eado on Enpl eados(Apel | i dos, Nonbre)

Los indices creados por InterBase son todos sensibles a mayusculas y minusculas, y
todos son mantenidos por omision. El concepto de indice definido por expresiones y
con condicién de filtro es ajeno a la filosofia de SQL; este tipo de {ndices no se
adapta facilmente a la optimizacién automatica de consultas. InterBase no permite
tampoco crear indices sobre columnas definidas con la clausula computed by.

Aunque definamos indices descendentes sobre una tabla en una base de datos
SQL, el Motor de Datos de Botland no lo utilizara para ordenar tablas. Exacta-
mente lo que sucede es que el BDE no permite que una tabla (no una consulta)
pueda estar ordenada descendentemente por alguna de sus columnas, aunque la
tabla mencione un indice descendente en su propiedad IndexName. En tal caso, el
orden que se establece utiliza las mismas columnas del indice, pero ascendente-
mente.

Breve introduccion a SQL 65

Hay otro problema relacionado con los indices de InterBase. Al parecer, estos indices
solamente pueden recorrerse en un sentido. St definimos un indice ascendente sobre
determinada columna de una tabla, y realizamos una consulta sobre la tabla con los
resultados ordenados descendentemente por el valor de esa columna, InterBase no
podra aprovechar el indice creado.

Modificacion de tablas e indices

SQL nos permite ser sabios y humanos a la vez: podemos equivocarnos en el disefio
de una tabla o de un indice, y corregir posteriormente nuestro disparate. Sin caer en
el sentimentalismo filosofico, es bastante comun que una vez terminado el disefio de
una base de datos sutja la necesidad de afiadir nuevas columnas a las tablas para al-
macenar informaciéon imprevista, o que tengamos que modificar el tipo o las restric-
ciones activas sobre una columna determinada.

La forma mas simple de la instruccién de modificacién de tablas es la que elimina
una columna de la misma:

alter table Tabla drop Columa [, Columa .]

También se puede eliminar una restriccién si conocemos su nombre. Por ejemplo,
esta instruccion puede originar graves disturbios sociales:

alter table Enpl eados drop constraint Sal arioPositivo;

Se pueden anadir nuevas columnas o nuevas restricciones sobre una tabla existente:

alter table Enpl eados add EstadoCi vil varchar(8);
alter table Enpl eados
add check (EstadoCivil in ("Soltero","Casado", "Poliganm"));

Para los indices existen también instrucciones de modificacion. En este caso, el unico
parametro que se puede configurar es si el indice esta activo o no:

alter index Indice (active | inactive);

Si un indice esta inactivo, las modificaciones realizadas sobre la tabla no se propagan
al indice, por lo cual necesitan menos tiempo para su ejecucion. Si va a efectuar una
entrada masiva de datos, quizas sea conveniente desactivar algunos de los indices se-
cundarios, para mejorar el rendimiento de la operacién. Luego, al activar el indice,
éste se reconstruye dando como resultado una estructura de datos perfectamente
balanceada. Estas instrucciones pueden ejecutarse periddicamente, para garantizar
indices con tiempo de acceso Optimo:

66 La Cara Oculta de C++ Builder

al ter index NonbreEnpl eado inactive;
alter index NonbreEnpl eado active;

Otra instruccién que puede mejorar el rendimiento del sistema y que esta relacionada
con los indices es set statistics. Este comando calcula las estadisticas de uso de las
claves dentro de un indice. El valor obtenido, conocido como selectividad del indice, es
utilizado por InterBase para elaborar el plan de implementacién de consultas. Nor-
malmente no hay que invocar a esta funcion explicitamente, pero si las estadisticas de
uso del indice han variado mucho es quizas apropiado utilizar la instruccion:

set statistics index NonbreEnpl eado;

Por ultimo, las instrucciones drop nos permiten borrar objetos definidos en la base
de datos, tanto tablas como indices:

drop tabl e Tabl a;
drop index I|ndice;

Creacion de vistas

Uno de los recursos mas potentes de SQL, y de las bases de datos relacionales en
general, es la posibilidad de definir tablas “virtuales” a partir de los datos almacena-
dos en tablas “fisicas”. Para definir una de estas tablas virtuales hay que definir qué
operaciones relacionales se aplican a qué tablas bases. Este tipo de tabla recibe el
nombre de vista.

Como todavia no conocemos el lenguaje de consultas, que nos permite especificar
las operaciones sobre tablas, postergaremos el estudio de las vistas para mas adelante.

Creacion de usuarios

InterBase soporta el concepto de usuarios a nivel del servidor, no de las bases de
datos. Inicialmente, todos los servidores definen un tnico usuario especial: SYSDBA.
Este usuario tiene los derechos necesarios para crear otros usuarios y asignatles con-
trasefias. Toda esa informacion se almacena en la base de datos #s¢4.gdb, que se instala
automaticamente con InterBase. La gestion de los nombres de usuarios y sus contra-
sefias se realiza mediante la utilidad Server Manager.

Breve introduccion a SQL 67

- Manager

File Tasks Maintenance ‘window Help
ElﬁlEl-lll {IK:II m mﬁ illll:ll E‘ﬂ

Server Summary

Server Type:
InterBasefxB86/Windows NT
Yersion:

WI-vh.1.1.680

| |Server: Local Server |Login: SYSDBA

Dentro de esta aplicacion, hay que ejecutar el comando de ment Tasks | User security,
para llegar al didlogo con el que podemos afiadir, modificar o eliminar usuarios. La
siguiente imagen muestra el didlogo de creacién de nuevos usuarios:

User Configuration

~Fi d Information
equired [nformatio =
User Name: |MARTEENS ;I

r~ Optional Information

First Mame: [lan
Middle Mame: [5-
Last Name: |Martzend

El nombre del usuario SYSDBA no puede cambiarse, pero es casi una obligacion
cambiar su contrasefia en cuanto termina la instalacién de InterBase. Sin embargo,
podemos eliminar al administrador de la lista de usuarios del sistema. Si esto sucede,
ya no sera posible afiadir o modificar nuevos usuarios en ese servidor. Asi que tenga
cuidado con lo que hace.

El sistema de seguridad explicado tiene un par de aparentes "fallos". En primer
lugar, cualquier usuario con acceso al disco duro puede sustituir el fichero zse4.gdb
con uno suyo. Mas grave ain: si copiamos el fichero gdb de la base de datos en un
servidor en el cual conozcamos la contrasefia del administrador, tendremos ac-
ceso total a los datos, aunque este acceso nos hubiera estado vedado en el servi-
dor original.

En realidad, el fallo consiste en permitir que cualquier mequetrefe pueda acceder
a nuestras apreciadas bases de datos. Asi que, antes de planear la proteccién del
sistema de gestion de base de datos (ya sea InterBase o cualquier otro), octipese
de controlar el acceso al servidor de la gente indeseable.

68 La Cara Oculta de C++ Builder

Asignacion de privilegios

Una vez creados los objetos de la base de datos, es necesario asignar derechos sobre
los mismos a los demas usuarios. Inicialmente, el duefio de una tabla es el usuario
que la crea, y tiene todos los derechos de acceso sobre la tabla. Los derechos de ac-
ceso indican qué operaciones pueden realizarse con la tabla. Naturalmente, los nom-
bres de estos derechos o privilegios coinciden con los nombres de las operaciones

correspondientes:
Privilegio Operacion
select Lectura de datos
update Modificacion de datos existentes
insert Creacién de nuevos registros
delete Eliminacién de registros
all Los cuatro privilegios anteriores
execute Ejecucién (para procedimientos almacenados)

La instruccién que otorga derechos sobre una tabla es la siguiente:

grant Privilegios on Tabla to Usuarios [with grant option]

Por ejemplo:

/* Derecho de sdélo-lectura al publico en general */

grant select on Articulos to public;

/* Todos | os derechos a un par de usuarios */

grant all privileges on Clientes to Spade, Marlowe;

/* Monsieur Poirot sélo puede nodificar salarios (jqué peligro!) */
grant update(Sal ario) on Enpl eados to Poirot;

/* Privilegio de inserci6n y borrado, con opci 6n de concesi 6n */
grant insert, delete on Enpleados to Vance with grant option;

He mostrado unas cuantas posibilidades de la instruccion. En primer lugar, podemos
utilizar la palabra clave public cuando queremos conceder ciertos derechos a todos
los usuarios. En caso contrario, podemos especificar uno o mas usuarios como desti-
natarios del privilegio. Luego, podemos ver que el privilegio update puede llevar
entre paréntesis la lista de columnas que pueden ser modificadas. Por ultimo, vemos
que a Mr. Philo Vance no solamente le permiten contratar y despedir empleados,
sino que también, gracias a la clausula with grant option, puede conceder estos
derechos a otros usuarios, ain no siendo el creador de la tabla. Esta opcién debe
utilizarse con cuidado, pues puede provocar una propagacioén descontrolada de pri-
vilegios entre usuarios indeseables.

¢Y qué pasa si otorgamos privilegios y luego nos arrepentimos? No hay problema,
pues para esto tenemos la instruccién revoke:

Breve introduccion a SQL 69

revoke [grant option for] Privilegios on Tabla from Usuari os

Hay que tener cuidado con los privilegios asignados al publico. La siguiente instruc-
ci6én no afecta a los privilegios de Sam Spade sobre la tabla de articulos, porque antes
se le ha concedido al publico en general el derecho de lectura sobre la misma:

/* Spade se rie de este ridiculo intento */
revoke all on Articul os from Spade;

Existen variantes de las instrucciones grant y revoke pensadas para asignar y retirar
privilegios sobre tablas a procedimientos almacenados, y para asignar y retirar dere-
chos de ejecucion de procedimientos a usuatios.

Roles

Los roles son una especificacion del SQL-3 que InterBase 5 ha implementado. Si los
usuarios se almacenan y administran a nivel de servidor, los roles, en cambio, se defi-
nen a nivel de cada base de datos. De este modo, podemos trasladar con mas facili-
dad una base de datos desarrollada en determinado servidor, con sus usuarios parti-
culares, a otro servidor, en el cual existe histéricamente otro conjunto de usuarios.

El sujeto de la validacién por contrasefia sigue siendo el usuario. La relacion entre
usuarios y roles es la siguiente: un usuario puede asuzéirun rol al conectarse a la base
de datos; actualmente, InterBase no permite asumir roles después de este momento.
A un rol se le pueden otorgar privilegios exactamente igual que a un usuario, utili-
zando grant y revoke. Cuando un usuario asume un rol, los privilegios del rol se
suman a los privilegios que se le han concedido como usuario. Por supuesto, un
usuario debe contar con la autorizacion para asumir un rol, lo cual se hace también
mediante grant y revoke.

¢Un ejemplo? Primero necesitamos crear los roles adecuados en la base de datos:

create rol e Domador;
create rol e Payaso;
create role Mago;

Ahora debemos asignar los permisos sobre tablas y otros objetos a los roles. Esto no
impide que, en general, se puedan también asignar permisos especificos a usuatios
puntuales:

grant all privileges on Aninmales to Domador, Mago;
grant select on Animales to Payaso;

Hasta aqui no hemos mencionado a los usuarios, por lo que los resultados de estas
instrucciones son validos de servidor a servidor. Finalmente, debemos asignar los

70 La Cara Oculta de C++ Builder

usuarios en sus respectivos roles, y esta operacion si depende del conjunto de usua-
rios de un servidor:

grant Payaso to Bill, Steve, Ronal dMcDonal d;
grant Domador to lan with adm n option;

La opcién with admin option me permite asignar el rol de domador a otros usua-
rios. De este modo, siempre habra quien se ocupe de los animales cuando me au-
sente del circo por vacaciones.

La pregunta importante es: ;como puede el usuario indicar a InterBase que desea
asumir determinado rol en una conexion? Si nos conectamos con las herramientas
del propio InterBase, comprobaremos que existe un cuadro de edicién que nos pre-
gunta por el rol a asumir. Por supuesto, podemos dejatlo vacio, si nos queremos
atener exclusivamente a nuestros privilegios como usuarios:

Database Connect E
~ Location [nfo

& Local Engine " Remote Server

SETHET, etk Bratosdl;

= [~

 Database Info

Databaze: IEI: ‘M arteens\ACEProgshScriptsh j

User Mame: |BILL
Browse...
Pazsward: Ixmﬁ ;I

Bole: CLOWMN

ak. | Canicel | Help |

Pero si la conexién la realizamos desde C++ Builder tendremos que programar un
poco. Los roles se afiaden al soporte de InterBase del BDE en la version 5.0.1.23. El
BDE que acompafiaba a Delphi 4, por ejemplo, no contaba con esta posibilidad. El
nuevo SQL Link de InterBase introduce el parametro ROLE NAME, y es aqui
donde debemos indicar el rol del usuario. Lamentablemente, el didlogo de conexiéon
del componente TDatabase tampoco considera a los roles, por lo que si necesitamos
que el usuario dicte dinamicamente los parametros de conexion tendremos que inter-
ceptar el evento Onlogin del componente TDatabase.

Un ejemplo completo de script SQL

Incluyo a continuaciéon un ejemplo completo de serzpt SQL con la definicién de tablas
e indices para una sencilla aplicaciéon de entrada de pedidos. En un capitulo posterior,

Breve introduccién a SQL 71

ampliaremos este serjpt para incluir #riggers, generadores y procedimientos almacena-
dos que ayuden a expresar las reglas de empresa de la base de datos.

72 La Cara Oculta de C++ Builder

Capitulo

3

Consultas y modificaciones

clufa la necesidad de un lenguaje para realizar consultas ad-hoc. Debido a la

forma particular de representaciéon de datos utilizada por este modelo, el
tener relaciones o tablas y no contar con un lenguaje de alto nivel para reintegrar los
datos almacenados es mas bien una maldicién que una bendicién. Es asombroso, por
lo tanto, cuanto tiempo vivié el mundo de la programacioén sobre PCs sin poder
contar con SQL o algiin mecanismo similar. Atn hoy, cuando un programador de
Clipper o de COBOL comienza a trabajar en C++ Builder, se sorprende de las posi-
bilidades que le abre el uso de un lenguaje de consultas integrado dentro de sus apli-
caciones.

D ESDE SU MISMO ORIGEN, la definiciéon del modelo relacional de Codd in-

La instruccién select, del Lenguaje de Manipulacién de Datos de SQL, nos permite
consultar la informacién almacenada en una base de datos relacional. La sintaxis y
posibilidades de esta sola instruccién son tan amplias y complicadas como para me-
recer un capitulo para ella solamente. En este mismo capitulo estudiaremos las posi-
bilidades de las instrucciones update, insert y delete, que permiten la modificaciéon
del contenido de las tablas de una base de datos.

Para los ejemplos de este capitulo utilizaré la base de datos mastsql.gdb que viene con
los ejemplos de C++ Builder, en el siguiente directotio:

C:\Archivos de programa\ Archivos comunes\Borland Shared\ Data

Estas tablas también se encuentran en formato Paradox, en el mismo subditectotio.
Puede utilizar el programa Database Desktgp para probar el uso de SQL sobre tablas
Paradox y dBase. Sin embargo, trataré de no tocar las peculiaridades del Motor de
SQL Local ahora, dejando esto para los capitulos 24 y 27, que explican como utilizar
SQL desde C++ Builder.

La instruccion select: el lenguaje de consultas

A grandes rasgos, la estructura de la instruccion select es la siguiente:

74 La Cara Oculta de C++ Builder

sel ect [distinct] |ista-de-expresiones
fromlista-de-tabl as

[where condi ci 6n-de-sel ecci 6n]

[group by lista-de-col umas]

[havi ng condi ci 6n-de- sel ecci 6n- de- gr upos]
[order by lista-de-col umas]

[uni on instrucci 6n-de-sel ecci 6n]

¢Qué se supone que “hace” una instruccion select? Esta es la pregunta del millén:
una instruccion select, en principio, no “hace” sino que “define”. La instruccion
define un conjunto virtual de filas y columnas, o mas claramente, define una tabla
virtual. Qué se hace con esta “tabla virtual” es ya otra cosa, y depende de la aplica-
cién que le estemos dando. Si estamos en un intérprete que funciona en modo texto,
puede ser que la ejecucion de un select se materialice mostrando en pantalla los re-
sultados, pagina a pagina, o quizas en salvar el resultado en un fichero de texto. En
C++ Builder, las instrucciones select se utilizan para “alimentar” un componente
denominado TQuery, al cual se le puede dar casi el mismo uso que a una tabla “real”,
almacenada fisicamente.

A pesar de la multitud de secciones de una seleccién completa, el formato basico de
la misma es muy sencillo, y se reduce a las tres primeras secciones:

sel ect |ista-de-expresiones
fromlista-de-tablas
[where condi ci 6n- de-sel ecci 6n]

La clausula from indica de dénde se extrae la informacion de la consulta, en la clau-
sula where opcional se dice qué filas deseamos en el resultado, y con select especifi-
camos los campos o expresiones de estas filas que queremos obtener. Muchas veces
se dice que la clausula where limita la tabla “a lo largo”, pues elimina filas de la
misma, mientras que la clausula select es una seleccién “horizontal”.

& B InterBase Interactive SQL M= 3
File Edit Session Wiew Egtract Help

SOL Statement

select company, minjsaledate), max(saledate], sumlitemstotal] - Bun

fiom customer, orders

\where customer. custno=orders. custng Brevious
roup by company e
oréder by 4 desc | Hew

1501 Ouiput Save Result
COMPANY MIN HAX =
Sight Diver 1o-2PR-1988 22-DEC-1394
VIP Divers Club 1-MAY-1988 10-JAN-1995
Anerican SCUBA Supply 18-0CT-1994 5-FEB-1995
Elus Sports 19-MAY-1988 30-DEC-1994
Gold Coast Supply 13-Ha&R-1989 13-JUL-1992
Kirk Enterprises 5-JUN-1989 11-FEE-199E
The Depth Charge 16-MA¥-1988 20-DEC-1994
Divers of Corfu, Inc 12-NO¥-1988 9-JAN-1995
Adventure Undersea 12-JUH-1988 1-FEB-1945
Fantastique Aquatica 11-HA¥-1988 12-HOV-1994
Ocean idventures B-OCT-1988 9-JAN-1994

1l | _>ILI

[Database: cimarteenstoursos\datos\mastsal.gdh [Local Server

Consultas y modificaciones 75

La condicion de seleccion

La forma mas simple de instruccion select es la que extrae el conjunto de filas de
una sola tabla que satisfacen cierta condicion. Por ejemplo:

select *
from Custoner
where State = "H"

Esta consulta simple debe devolver todos los datos de los clientes ubicados en Ha-
wali. El asterisco que sigue a la clausula select es una alternativa a listar todos los
nombres de columna de la tabla que se encuentra en la clausula from.

En este caso hemos utilizado una simple igualdad. La condiciéon de biasqueda de la
clausula where admite los seis operadores de comparacion (=, <>, <, >, <=,>=)y
la creacion de condiciones compuestas mediante el uso de los operadores logicos
and, or y not. La prioridad entre estos tres es la misma que en C. No hace falta ence-
rrar las comparaciones entre paréntesis, porque incluso not se evalia después de
cualquier comparacién:

select *
from Customer
where State = "H"
and LastlnvoiceDate > "1/1/1993"

Observe cémo la constante de fecha puede escribirse como si fuera una cadena de
caracteres.

Operadores de cadenas

Ademas de las comparaciones usuales, necesitamos operaciones mas sofisticadas para
trabajar con las cadenas de caracteres. Uno de los operadores admitidos por SQL
estandar es el operador like, que nos permite averiguar si una cadena satisface o no
cierto patron de caracteres. El segundo operando de este operador es el patrén, una
cadena de caracteres, dentro de la cual podemos incluir los siguientes comodines:

Carécter Significado
% Cero o mas caracteres atrbitratios.
_ (subrayado) Un caricter cualquiera.

No vaya a pensar que el comodin % funciona como el asterisco en los nombres de

ticheros de MS-DOS; SQL es malo, pero no tanto. Después de colocar un asterisco
en un nombre de fichero, MS-DOS ignora cualquier otro caricter que escribamos a
continuacion, mientras que like si los tiene en cuenta. También es diferente el com-

76 La Cara Oculta de C++ Builder

portamiento del subrayado con respecto al signo de interrogacion de DOS: en el
intérprete de comandos de este sistema operativo significa cero o un caracteres,
mientras que en SQL significa exactamente un caracter.

Expresion Cadena aceptada Cadena no aceptada
Customer like '% Ocean' 'Pacific Ocean' 'Ocean Paradise'
Fruta like 'Manzana_' 'Manzanas' 'Manzana'

También es posible aplicar funciones para extraer o modificar informacién de una
cadena de caracteres; el repertorio de funciones disponibles depende del sistema de
bases de datos con el que se trabaje. Por ejemplo, el intérprete SQL para tablas loca-
les de C++ Builder acepta las funciones upper, lower, trim y substring de SQL
estandar. Esta ultima funcién tiene una sintaxis curiosa. Por ejemplo, para extraer las
tres primeras letras de una cadena se utiliza la siguiente expresion:

sel ect substring(Nonbre from1 for 3)
from Enpl eados

Si estamos trabajando con InterBase, podemos aumentar el repertorio de funciones
utilizando funciones definidas por el usnario. En el capitulo 11 mostraremos coémo.

Yo solo quiero los diez primeros...

El resultado de una sentencia select puede contener un nimero impredecible de
registros, pero en muchos casos a usted solamente le interesa un puniado de filas
representativas del resultado. Por ejemplo: queremos veinte clientes cualesquiera de
Hawnai. O, si calculamos las ventas por cada cliente y ordenamos el resultado de
acuerdo a este valor, puede que necesitemos sélo los cinco clientes que mas han
comprado.

Lamentablemente, no existe un estandar en SQL para expresar la condicién anterior,
y cada sistema que implementa algo parecido lo hace a su aire. InterBase, en particu-
lar, no ofrece operadores para limitar el tamafio de un conjunto resultado. Mas ade-
lante, al estudiar los procedimientos almacenados, veremos como superar esta limita-
cién.

Microsoft SQL Server ofrece una clausula en la sentencia select para elegir un grupo
inicial de filas:

select top 20 *
from dientes
where Estado = "H'

Incluso nos deja recuperar un porcentaje del conjunto resultado:

Consultas y modificaciones 77

sel ect top 20 percent *
from dientes
where Estado = "H'

En el caso anterior, no se trata de los veinte primeros clientes, sino de la quinta parte
de la cantidad total de clientes.

DB2 pone a nuestra disposicién un mecanismo similar:

select *

from dientes

where Estado = "H'
fetch first 20 rows only

Por mucho que busquemos en los lenguajes de programacién modernos, nunca ve-
remos aparecer dos palabras reservadas consecutivamente. Aqui estamos viendo dos
palabras claves juntas antes y después del nimero entero, como si estuvieran escol-
tandolo. Para colmo de la verbosidad, sepa usted que también podiamos haber es-
crito row en singular si quisiéramos unicamente la primera fila.

Oracle, por su parte, dispone de una pseudo columna, rownum, que puede utilizarse
del siguiente modo:

select *

from dientes

where Estado = 'H' and
rownum <= 20

El valor nulo: enfrentandonos a lo desconocido

La edad de una persona es un valor no negativo, casi siempre menor de 969 afios,
que es la edad a la que dicen que llegd Matusalén. Puede ser un entero igual a 1, 20,
40 ... o no conocerse. Se puede “resolver” este problema utilizando algin valor espe-
cial para indicar el valor desconocido, digamos -1. Claro, el valor especial escogido no
debe formar parte del dominio posible de valores. Por ejemplo, en el archivo de Ur-
gencias de un hospital americano, John Doe es un posible valor para los pacientes no
identificados.

¢Y qué pasa si no podemos prescindir de valor alguno dentro del rango? Porque John
Doe es un nombre raro, pero posible. ¢Y qué pasaria si se intentan operaciones con
valores desconocidos? Por ejemplo, para representar un envio cuyo peso se desco-
noce se utiliza el valor -1, un peso claramente imposible excepto para entes como
Kate Moss. Luego alguien pregunta a la base de datos cudl es el peso total de los
envios de un perfodo dado. Si en ese periodo se realizaron dos envios, uno de 25
kilogramos y otro de peso desconocido, la respuesta erronea serd un peso total de 24

78 La Cara Oculta de C++ Builder

kilogramos. Es evidente que la respuesta deberia ser, simplemente, “peso total des-
conocido”.

La solucion de SQL es introducir un nuevo valor, null, que pertenece a cualquier
dominio de datos, para representar la informacién desconocida. La regla principal
que hay que conocer cuando se trata con valores nulos es que cualquier expresion,
aparte de las expresiones logicas, en la que uno de sus operandos tenga el valor nulo
se evalia automaticamente a nulo. Esto es: nulo mas veinticinco vale nulo, ¢de
acuerdo?

Cuando se trata de evaluar expresiones logicas en las cuales uno de los operandos
puede ser nulo las cosas se complican un poco, pues hay que utilizar una logica de
tres valores. De todos modos, las reglas son intuitivas. Una proposicion falsa en con-
juncién con cualquier otra da lugar a una proposicion falsa; una proposicion verda-
dera en disyuncién con cualquier otra da lugar a una proposicién verdadera. La si-
guiente tabla resume las reglas del uso del valor nulo en expresiones logicas:

AND |false null true OR (false null true
false false false false false |[false null true
null false null null null [null null true
true false null true true |true true true

Por ultimo, si lo que desea es saber si el valor de un campo es nulo o no, debe utilizar
el operador is null:

sel ect *
from Events
where Event_Description is null

La negacién de este operador es el operador is not null, con la negacién en medio.
Esta sintaxis no es la usual en lenguajes de programacion, pero se suponia que SQL
debia parecerse lo mas posible al idioma inglés.

Eliminacion de duplicados

Normalmente, no solemos guardar filas duplicadas en una tabla, por razones obvias.
Pero es bastante frecuente que el resultado de una consulta contenga filas duplicadas.
El operador distinct se puede utilizar, en la clausula select, para corregir esta situa-
cion. Por ejemplo, si queremos conocer en qué ciudades residen nuestros clientes
podemos preguntar lo siguiente:

select Gty
from Custoner

Consultas y modificaciones 79

Pero en este caso obtenemos 55 ciudades, algunas de ellas duplicadas. Para obtener
las 47 diferentes ciudades de la base de datos tecleamos:

select distinct Gty
from Custoner

Productos cartesianos y encuentros

Como para casi todas las cosas, la gran virtud del modelo relacional es, a la vez, su
mayor debilidad. Me refiero a que cualquier modelo del “mundo real” puede repre-
sentarse atomizandolo en relaciones: objetos matematicos simples y predecibles, de
tacil implementacion en un ordenador (jaquellos ficheros dbfs...!). Para reconstruir el
modelo original, en cambio, necesitamos una operaciéon conocida como “encuentro
natural” (natural join).

Comencemos con algo mas sencillo: con los productos cartesianos. Un producto
cartesiano es una operacion matematica entre conjuntos, la cual produce todas las
parejas posibles de elementos, perteneciendo el primer elemento de la pareja al pri-
mer conjunto, y el segundo elemento de la pareja al segundo conjunto. Esta es la
operacion habitual que efectuamos mentalmente cuando nos ofrecen el mend en un
restaurante. Los dos conjuntos son el de los primeros platos y el de los segundos
platos. Desde la ventana de la habitacién donde escribo puedo ver el ment del me-
s6n de la esquina:

Primer plato Segundo plato
Macarrones a la bolofiesa Escalope a la milanesa
Judias verdes con jamén Pollo a la parrilla
Crema de champifiones Chuletas de cordero

St PrimerPlato y SegundoPlato fuesen tablas de una base de datos, la instruccién

sel ect *
from PrinmerPlato, SegundoPl ato

devolveria el siguiente conjunto de filas:

Primer plato Segundo plato
Macarrones a la bolofiesa Hscalope a la milanesa
Macarrones a la bolofiesa Pollo a la parrilla
Macarrones a la bolofiesa Chuletas de cordero
Judias verdes con jamén Hscalope a la milanesa
Judias verdes con jamén Pollo a la parrilla

Judias verdes con jamén Chuletas de cordero

80 La Cara Oculta de C++ Builder

Primer plato Segundo plato
Crema de champifones Escalope a la milanesa
Crema de champifiones Pollo a la parrilla
Crema de champifiones Chuletas de cordero

Es facil ver que, incluso con tablas pequefas, el tamafio del resultado de un producto
cartesiano es enorme. Si a este ejemplo “real” le afiadimos el hecho también “real”
de que el mismo meso6n ofrece al menos tres tipos diferentes de postres, elegir nues-
tro menu significa seleccionar entre 27 posibilidades distintas. Por eso siempre pido
un café solo al terminar con el segundo plato.

Claro esta, no todas las combinaciones de platos hacen una buena comida. Pero para
eso tenemos la clausula where: para eliminar aquellas combinaciones que no satisfa-
cen ciertos criterios. ¢ Volvemos al mundo de las facturas y 6rdenes de compra? En la
base de datos dbdemos, 1a informacién sobre pedidos estd en la tabla orders, mientras
que la informacién sobre clientes se encuentra en customer. Queremos obtener la lista
de clientes y sus totales por pedidos. Estupendo, pero los totales de pedidos estan en
la tabla orders, en el campo ItemsTotal, y en esta tabla sélo tenemos el cédigo del
cliente, en el campo CustNo. Los nombres de clientes se encuentran en el campo
Company de la tabla customer, donde ademas volvemos a encontrar el codigo de cliente,
CustNo. Asi que partimos de un producto cartesiano entre las dos tablas, en el cual
mostramos los nombres de clientes y los totales de pedidos:

sel ect Conpany, ItensTotal
from Custonmer, Oders

Como tenemos unos 55 clientes y 205 pedidos, esta inocente consulta genera unas
11275 filas. La dltima vez que hice algo asi fue siendo estudiante, en el centro de
calculos de mi universidad, para demostrarle a una profesora de Filosoffa lo ocupado
que estaba en ese momento.

En realidad, de esas 11275 filas nos sobran unas 11070, pues solamente son validas
las combinaciones en las que coinciden los codigos de cliente. La instruccion que
necesitamos es:

sel ect Conpany, ItensTotal
from Custonmer, Oders
where Customer. Cust No = Orders. Cust No

Esto es un encuentro natural, un producto cartesiano restringido mediante la igualdad
de los valores de dos columnas de las tablas basicas.

El ejemplo anterior ilustra también un punto importante: cuando queremos utilizar
en la instruccién el nombre de los campos IzemzsTotal y Company los escribimos tal y

Consultas y modificaciones 81

como son. Sin embargo, cuando utilizamos CustNo hay que aclarar a qué tabla origi-
nal nos estamos refiriendo. Esta técnica se conoce como calificacion de canpos.

¢Un ejemplo mas complejo? Suponga que desea afiadir el nombre del empleado que
recibi6 el pedido. La tabla orders tiene un campo EzpNo para el cédigo del empleado,
mientras que la informacién sobre empleados se encuentra en la tabla enzployee. La
instruccién necesaria es una simple ampliacion de la anterior:

sel ect Conpany, ltensTotal, FirstNane || " " || LastNane
from Custonmer, Orders, Enployee
where Custoner.CustNo = Orders. Cust No

and O ders. EmpNo = Enpl oyee. EnpNo

Con 42 empleados en la base de datos de ejemplo y sin las restricciones de la clausula
where, hubiéramos obtenido un resultado de 473550 filas.

Ordenando los resultados

Una de las garantfas de SQL es que podemos contar con que el compilador SQL
genere automaticamente, o casi, el mejor cédigo posible para evaluar las instruccio-
nes. Esto también significa que, en el caso general, no podemos predecir con com-
pleta seguridad cual sera la estrategia utilizada para esta evaluacién. Por ejemplo, en la
instruccién anterior no sabemos si el compilador va a recorrer cada fila de la tabla de
clientes para encontrar las filas correspondientes de pedidos o empleados, o si resul-
tard mas ventajoso recorrer las filas de pedidos para recuperar los nombres de clien-
tes y empleados. Esto quiere decir, en particular, que no sabemos en qué orden se
nos van a presentar las filas. En mi ordenador, utilizando Database Desktop sobre las
tablas originales en formato Paradox, parece ser que se recorren primeramente las
filas de la tabla de empleados.

¢Qué hacemos si el resultado debe ordenarse por el nombre de compaiifa? Para esto
contamos con la clausula order by, que se sitia siempre al final de la consulta. En
este caso, ordenamos por nombre de compafiia el resultado con la instruccion:

sel ect Conpany, ItenmsTotal, FirstName || " " || LastNane
from Custonmer, Oders, Enployee
where Custoner. CustNo = Orders. Cust No
and O ders. EnpNo = Enpl oyee. EnpNo
order by Conpany

No se puede ordenar por una fila que no existe en el resultado de la instruccién. Si
quisiéramos que los pedidos de cada compafifa se ordenaran, a su vez, por la fecha de
venta, habria que afiadir el campo SalkDate al resultado y modificar la clausula de
ordenacién del siguiente modo:

82 La Cara Oculta de C++ Builder

sel ect Conpany, |tensTotal, SaleDate, FirstName || " " || LastNane
from Custonmer, Orders, Enployee
where Custoner.CustNo = Orders. Cust No
and O ders. EnpNo = Enpl oyee. EnpNo
order by Conpany, Sal esDate desc

Con la opcién desc obtenemos los registros por orden descendente de fechas: pri-
mero los mas recientes. Existe una opcion asc, para cuando queremos enfatizar el
sentido ascendente de una ordenacion. Generalmente no se usa, pues es lo que
asume el compilador.

Otra posibilidad de la clausula order by es utilizar numeros en vez de nombres de
columnas. Esto es necesario si se utilizan expresiones en la cldusula select y se quiere
ordenar por dicha expresion. Por ejemplo:

sel ect OrderNo, Sal esDate, ItensTotal - AnpuntPaid
from Orders
order by 3 desc

No se debe abusar de los numeros de columnas, pues esta técnica puede desaparecer
en SQL-3 y hace menos legible la consulta. Una forma alternativa de ordenar por
columnas calculadas es utilizar sinénimos para las columnas:

sel ect OrderNo, Sal esDate, ItensTotal — AnpuntPaid as Diferencia
from Orders
order by Diferencia desc

El uso de grupos

Ahora queremos sumar todos los totales de los pedidos para cada compaiia, y orde-
nar el resultado por este total de forma descendente, para obtener una especie de
ranking de las companias segiin su volumen de compras. Esto es, hay que agrupar
todas las filas de cada compafia y mostrar la suma de cierta columna dentro de cada
uno de esos grupos.

Para producir grupos de filas en SQL se utiliza la cldusula group by. Cuando esta
clausula esta presente en una consulta, va situada inmediatamente después de la clau-
sula where, o de la clausula from si no se han efectuado restricciones. En nuestro
caso, la instruccién con la clausula de agrupamiento debe ser la siguiente:

sel ect Conpany, sun(ltensTotal)

from Custoner, Orders

where Custoner.CustNo = Orders. Order No
group by Conpany

order by 2 desc

Consultas y modificaciones 83

Observe la forma en la cual se le ha aplicado la funcién sum a la columna [zemsTotal.
Aunque pueda parecer engorroso el diseflo de una consulta con grupos, hay una
regla muy facil que simplifica los razonamientos: en la clausula select solamente
pueden aparecer columnas especificadas en la clausula group by, o funciones esta-
disticas aplicadas a cualquier otra expresion. Company, en este ejemplo, puede apare-
cer directamente porque es la columna por la cual se esta agrupando. Si quisiéramos
obtener ademas el nombre de la persona de contacto en la empresa, el campo Contact
de la tabla customer, habria que agregar esta columna a la clausula de agrupacion:

sel ect Conpany, Contact, sun(ltensTotal)
from Custoner, Oders

where Customer. CustNo = Orders. Order No
group by Conpany, Contact

order by 2 desc

En realidad, la adicion de Contact es redundante, pues Company es Gnica dentro de la
tabla customer, pero eso lo sabemos nosotros, no el compilador de SQL. Sin embargo,
InterBase puede optimizar mejor la consulta anterior si la planteamos del siguiente
modo:

sel ect Conpany, nmax(Contact), sun(ltensTotal)
from Custoner, Oders

where Customer. CustNo = Orders. Order No
group by Conpany

order by 2 desc

Si agrupamos por el nombre de compania, dentro de cada grupo todas las personas

de contacto seran iguales. Por lo tanto, nos da lo mismo mostrar el maximo o el mi-
nimo de todos esos nombres, y asi eliminamos una columna de la cldusula group by.

Funciones de conjuntos

Existen cinco funciones de conjuntos en SQL, conocidas en inglés como aggregate
functions. Estas funciones son:

Funcion Significado

count Cantidad de valores no nulos en el grupo

min El valor minimo de la columna dentro del grupo

max El valor maximo de la columna dentro del grupo

sum La suma de los valores de la columna dentro del grupo
avg El promedio de la columna dentro del grupo

Por supuesto, no toda funcién es aplicable a cualquier tipo de columna. Las sumas,
por ejemplo, solamente valen para columnas de tipo numérico. Hay otros detalles
curiosos relacionados con estas funciones, como que los valores nulos son ignorados

84 La Cara Oculta de C++ Builder

por todas, o que se puede utilizar un asterisco como parametro de la funcién count.
En este ultimo caso, se calcula el nimero de filas del grupo. Asi que no apueste a que
la siguiente consulta dé siempre dos valores idénticos, si es posible que la columna
involucrada contenga valores nulos:

sel ect avg(Col uma), sum(Col uma)/count (*)
from Tabla

En el ejemplo se muestra la posibilidad de utilizar funciones de conjuntos sin utilizar
grupos. En esta situacion se considera que toda la tabla constituye un tnico grupo.
Es también posible utilizar el operador distinct como prefijo del argumento de una
de estas funciones:

sel ect Conpany, count(distinct EnpNo)
from Customer, Oders
where Customer. CustNo = Orders. Cust No

La consulta anterior muestra el numero de empleados que han atendido los pedidos
de cada compaiiia.

Oracle afiade un par de funciones a las que ya hemos mencionado: variance y
stddev, para la varianza y la desviacion estandar. En realidad, estas funciones pueden
calcularse a partir de las anteriores. Por ejemplo, la varianza de la columna x de la
tabla Tabla puede obtenerse mediante la siguiente instruccion:

sel ect (sum(x*x) - sum(x) * sum(x) / count(*)) / (count(*) - 1)
from Tabla

En cuanto a la desviacion estandar, basta con extraer la raiz cuadrada de la varianza.
Es cierto que InterBase no tiene una funciéon predefinida para las raices cuadradas,
pero es facil implementarla mediante una funcién de usuario.

La clausula having

Segtin lo que hemos explicado hasta el momento, en una instruccion select se evaltia
primeramente la clausula from, que indica qué tablas participan en la consulta, luego
se eliminan las filas que no satisfacen la clausula where y, si hay un group by por
medio, se agrupan las filas resultantes. Hay una posibilidad adicional: después de
agrupar se pueden descartar filas consolidadas de acuerdo a otra condicion, esta vez
expresada en una cldusula having. En la parte having de la consulta solamente pue-
den aparecer columnas agrupadas o funciones estadisticas aplicadas al resto de las
columnas. Por ejemplo:

Consultas y modificaciones 85

sel ect Conpany

from Custoner, Oders

where Customer. CustNo = Orders. Cust No
group by Conpany

having count(*) > 1

La consulta anterior muestra las compafifas que han realizado mas de un pedido. Es
importante darse cuenta de que no podemos modificar esta consulta para que nos
muestre las compafifas que #o han realizado todavia pedidos.

Una regla importante de optimizacion: si en la clausula having existen condicio-
nes que implican solamente a las columnas mencionadas en la clausula group by,
estas condiciones deben moverse a la clausula where. Por ejemplo, si queremos
eliminar de la consulta utilizada como ejemplo a las compafifas cuyo nombre
termina con las siglas 'S.L." debemos hacetlo en where, no en group by. ;Para
qué esperar a agrupar para eliminar filas que podian haberse descartado antes?
Aunque muchos compiladores realizan esta optimizacién automaticamente, es
mejor no fiarse.

El uso de sinbnimos para tablas

Es posible utilizar dos o mas veces una misma tabla en una misma consulta. St ha-
cemos esto tendremos que utilizar sindnimos para distinguir entre los distintos usos de
la tabla en cuestion. Esto serd necesario al calificar los campos que utilicemos. Un
sinénimo es simplemente un nombre que colocamos a continuacion del nombre de
una tabla en la clausula from, y que en adelante se usa como sustituto del nombre de
la tabla.

Por ejemplo, si quisiéramos averiguar si hemos introducido por error dos veces a la
misma compafifa en la tabla de clientes, pudiéramos utilizar la instruccién:

sel ect distinct Cl.Conpany

from Custonmer Cl, Custoner C2

where Cl.CustNo < C2. CustNo
and Cl. Conpany = C2. Conpany

En esta consulta C7 y C2 se utilizan como sinénimos de la primera y segunda apari-
cion, respectivamente, de la tabla customer. La logica de la consulta es sencilla. Busca-
mos todos los pares que comparten el mismo nombre de compafifa y eliminamos
aquellos que tienen el mismo cédigo de compaiia. Pero en vez de utilizar una desi-
gualdad en la comparacién de codigos, utilizamos el operador “menor que”, para
eliminar la aparicién de pares dobles en el resultado previo a la aplicacién del opera-
dor distinct. Estamos aprovechando, por supuesto, la unicidad del campo CuszINo.

86 La Cara Oculta de C++ Builder

La siguiente consulta muestra otro caso en que una tabla aparece dos veces en una
clausula from. En esta ocasion, la base de datos es iblocal, el ejemplo InterBase que

viene con C++ Builder. Queremos mostrar los empleados junto con los jefes de sus
departamentos:

sel ect e2.full_name, el.full_nane
from enployee el, departnent d, enployee e2
where d.dept_no = el.dept_no
and d.mgr_no = e2.enp_no
and el.enp_no <> e2.enp_no
order by 1, 2

Aquellos lectores que hayan trabajado en algin momento con lenguajes xBase reco-
noceran en los sinénimos SQL un mecanismo similar al de los “alias” de xBase. C++
Builder utiliza, ademas, los sinénimos de tablas en el intérprete de SQL local cuando
el nombre de la tabla contiene espacios en blanco o el nombre de un directorio.

Subconsultas: seleccidn Unica

Si nos piden el total vendido a una compafifa determinada, digamos a Ocean Para-
dise, podemos resolverlo ejecutando dos instrucciones diferentes. En la primera
obtenemos el cdédigo de Ocean Paradise:

sel ect Customer. Cust No
from Customer
where Customner. Conmpany = "Ccean Paradi se"

El cédigo buscado es, supongamos, 1510. Con este valor en la mano, ejecutamos la
siguiente instruccion:

sel ect sum(Orders.|tenmsTotal)
from Orders
where Orders.CustNo = 1510

Incémodo, ¢no es ciertor La alternativa es utilizar la primera instruccién como una
expresion dentro de la segunda, del siguiente modo:

sel ect sun{Orders.|ltensTotal)
from Orders
where O ders.CustNo = (
sel ect Customer. Cust No
from Custoner
where Custoner. Conpany = "Ccean Paradi se")

Para que la subconsulta anterior pueda funcionar correctamente, estamos asumiendo
que el conjunto de datos retornado por la subconsulta produce una sola fila. Esta es,
realmente, una apuesta arriesgada. Puede fallar por dos motivos diferentes: puede

que la subconsulta no devuelva ningin valor o puede que devuelva mas de uno. Si no

Consultas y modificaciones 87

se devuelve ningin valor, se considera que la subconsulta devuelve el valor null. Si
devuelve dos o mas valores, el intérprete produce un error.

A este tipo de subconsulta que debe retornar un solo valor se le denomina seleccion
tnica, en inglés, singleton select. Las selecciones unicas también pueden utilizarse con
otros operadores de comparacién, ademas de la igualdad. Asi por ejemplo, la si-

guiente consulta retorna informacién sobre los empleados contratados después de
Pedro Pérez:

sel ect *
from Enployee El1
where El.Hi reDate > (
sel ect E2. HreDate
from Enpl oyee E2
where E2.FirstNane = "Pedro"
and E2.LastNanme = "Pérez")

Si esta preguntandose acerca de la posibilidad de cambiar el orden de los operandos,
ni lo suefie. La sintaxis de SQL es muy rigida, y no permite este tipo de virtuosismos.

Subconsultas: los operadores in y exists

En el ejemplo anterior garantizabamos la singularidad de la subconsulta gracias a la
clausula where, que especificaba una busqueda sobre una clave tnica. Sin embargo,
también se pueden aprovechar las situaciones en que una subconsulta devuelve un
conjunto de valores. En este caso, el operador a utilizar cambia. Por ejemplo, si que-
remos los pedidos correspondientes a las compafifas en cuyo nombre figura la pala-
bra Ocean, podemos utilizar la instruccion:

sel ect *

from Orders

where Orders.CustNo in (
sel ect Custoner. Cust No
from Custoner

where upper (Custoner. Conpany) |ike "%CEANY%)

El nuevo operador es el operador in, y la expresion es verdadera si el operando iz-
quierdo se encuentra en la lista de valores retornada por la subconsulta. Esta consulta

puede descomponerse en dos fases. Durante la primera fase se evalia el segundo
select:

sel ect Custoner. Cust No
from Custoner
where upper (Custoner. Conpany) |ike " %OCEANY%

El resultado de esta consulta consiste en una serie de codigos: aquellos que corres-
ponden a las compafifas con Ocean en su nombre. Supongamos que estos c6digos

88 La Cara Oculta de C++ Builder

sean 1510 (Ocean Paradise) y 5515 (Ocean Adventures). Entonces puede ejecutarse
la segunda fase de la consulta, con la siguiente instruccion, equivalente a la original:

sel ect *
from Oders
where Orders.OrderNo in (1510, 5515)

Este otro ejemplo utiliza la negacion del operador in. Si queremos las companias que
no nos han comprado nada, hay que utilizar la siguiente consulta:

select *

from Customer

where Customer.CustNo not in (
sel ect Orders. Cust No
from Oders)

Otra forma de plantearse las consultas anteriores es utilizando el operador exists.
Este operador se aplica a una subconsulta y devuelve verdadero en cuanto localiza
una fila que satisface las condiciones de la instruccion select. El primer ejemplo de
este epigrafe puede escribirse de este modo:

select *
from Orders
where exists (
sel ect *
from Custoner

where upper (Custoner. Conpany) |ike " %OCEANY%
and Orders. CustNo = Custoner. Cust No)

Observe el asterisco en la clausula select de la subconsulta. Como lo que nos inte-
resa es saber si existen filas que satisfacen la expresion, nos da lo mismo qué valor se

esta retornando. El segundo ejemplo del operador in se convierte en lo siguiente al
utilizar exists:

sel ect *
from Customer
where not exists (
sel ect *
from Orders
where Orders. CustNo = Custoner. Cust No)

Subconsultas correlacionadas

Preste atencion al siguiente detalle: la dltima subconsulta del epigrafe anterior tiene
una referencia a una columna perteneciente a la tabla definida en la clausula from
mas externa. Esto quiere decir que no podemos explicar el funcionamiento de la
instruccién dividiéndola en dos fases, como con las selecciones tnicas: la ejecucion
de la subconsulta y la simplificacién de la instruccién externa. En este caso, para cada

Consultas y modificaciones 89

fila retornada por la clausula from externa, la tabla customer, hay que volver a evaluar
la subconsulta teniendo en cuenta los valores actuales: los de la columna Cus#No de 1a
tabla de clientes. A este tipo de subconsultas se les denomina, en el mundo de la
programacion SQL, subconsultas correlacionadas.

Si hay que mostrar los clientes que han pagado algun pedido contra reembolso (en
inglés, COD, o cash on delivery), podemos realizar la siguiente consulta con una subse-
leccion correlacionada:

sel ect *
from Customer
where 'COD in (
sel ect distinct Paynment Met hod
from Orders
where Orders. CustNo = Custoner. Cust No)

En esta instruccién, para cada cliente se evaluan los pedidos realizados por el mismo,
y se muestra el cliente solamente si dentro del conjunto de métodos de pago esta la
cadena 'COD". El operador distinct de la subconsulta es redundante, pero nos ayuda
a entenderla mejor.

Otra subconsulta correlacionada: queremos los clientes que no han comprado nada
aun. Ya vimos como hacerlo utilizando el operador not in 6 el operador not exists.
Una alternativa es la siguiente:

select *
from Customer
where 0 = (

sel ect count (*)
from Orders
where Orders. CustNo = Custoner. Cust No)

Sin embargo, utilizando SQL Local esta consulta es mas lenta que las otras dos solu-
ciones. La mayor importancia del concepto de subconsulta correlacionada tiene que
ver con el hecho de que algunos sistemas de bases de datos limitan las actualizacio-
nes a vistas definidas con instrucciones que contienen subconsultas de este tipo.

Equivalencias de subconsultas

En realidad, las subconsultas son un método para aumentar la expresividad del len-
guaje SQL, pero no son imprescindibles. Con esto quiero decir que muchas consultas
se formulan de modo mas natural si se utilizan subconsultas, pero que existen otras
consultas equivalentes que no hacen uso de este recurso. La importancia de esta equi-
valencia reside en que el intérprete de SQL Local de Delphi 1 no permitfa subconsul-
tas. También sucede que la version 4 de InterBase no optimizaba correctamente
ciertas subconsultas.

90 La Cara Oculta de C++ Builder

Un problema relacionado es que, aunque un buen compilador de SQL debe poder
identificar las equivalencias y evaluar la consulta de la forma mas eficiente, en la
practica el utilizar ciertas construcciones sintacticas puede dar mejor resultado que
utilizar otras equivalentes, de acuerdo al compilador que empleemos.

Veamos algunas equivalencias. Tenfamos una consulta, en el epigrafe sobre selec-
ciones unicas, que mostraba el total de compras de Ocean Paradise:

sel ect sun{Orders.|ltensTotal)
from Orders
where O ders.CustNo = (
sel ect Custoner. Cust No
from Custoner
where Custoner. Conpany = "Ccean Paradi se")

Esta consulta es equivalente a la siguiente:

sel ect sun(ltensTotal)

from Custonmer, Oders

where Custoner. Conmpany = "Ccean Paradi se"
and Custoner.CustNo = Orders. Order No

Aquella otra consulta que mostraba los pedidos de las compaiias en cuyo nombre
tiguraba la palabra “Ocean’:

sel ect *
from Orders
where Oders.CustNo in (
sel ect Customer. Cust No
from Custoner
where upper (Custoner. Conpany) |ike " %OCEANY)

es equivalente a esta otra:

select *

from Custonmer, Oders

where upper (Customer. Conpany) |ike " %CEAN%
and Custoner. CustNo = Orders. Cust No

Para esta consulta en particular, ya habfamos visto una consulta equivalente que hacfa
uso del operador exists; en este caso, es realmente mas dificil de entender la consulta
con exists que su equivalente sin subconsultas.

La consulta correlacionada que buscaba los clientes que en algun pedido habian pa-
gado contra reembolso:

sel ect *
from Customer
where 'COD in (

Consultas y modificaciones 91

sel ect distinct Payment Met hod
from Oders
where Orders. CustNo = Custoner. Cust No)

puede escribirse, en primer lugar, mediante una subconsulta no correlacionada:

select *
from Customer
where Customer.CustNo in (
sel ect Orders. Cust No
from Oders
where Paynent Method = ' COD)

pero también se puede expresar en forma “plana’:

sel ect distinct Custoner.CustNo, Custoner. Conpany
from Custoner, Oders
where Customer. Cust No = Orders. Cust No

and O ders. Paynent Met hod = ' COD

Por el contrario, las consultas que utilizan el operador not in y, por lo tanto sus equi-
valentes con not exists, no tienen equivalente plano, con lo que sabemos hasta el
momento. Para poder aplanarlas hay que utilizar encuentros externos.

Encuentros externos

El problema de los encuentros naturales es que cuando relacionamos dos tablas,
digamos customery orders, solamente mostramos las filas que tienen una columna en
comun. No hay forma de mostrar los clientes que 7o tienen un pedido con su cédigo
... y solamente esos. En realidad, se puede utilizar la operacion de diferencia entre
conjuntos para lograr este objetivo, como veremos en breve. Se pueden evaluar todos
los clientes, y a ese conjunto restatle el de los clientes que sf tienen pedidos. Pero esta
operacion, por lo general, se implementa de forma menos eficiente que la alternativa
que mostraremos a continuacion.

¢Como funciona un encuentro natural? Una posible implementacion consistiria en
recorrer mediante un bucle la primera tabla, supongamos que sea customer. Para cada
fila de esa tabla tomarfamos su columna CuszNo y buscarfamos, posiblemente con un
indice, las filas correspondientes de orders que contengan ese mismo valor en la co-
lumna del mismo nombre. ¢Qué pasa si no hay ninguna fila en orders que satisfaga
esta condicién? Si se trata de un encuentro natural, comun y corriente, no se mues-
tran los datos de ese cliente. Pero si se trata de la extension de esta operacion, cono-
cida como encuentro externo (outer join), se muestra aunque sea una vez la fila corres-
pondiente al cliente. Un encuentro muestra, sin embargo, pates de filas, ¢qué valores
podemos esperar en la fila de pedidos? En ese caso, se considera que todas las co-
lumnas de la tabla de pedidos tienen valores nulos. Si tuviéramos estas dos tablas:

92 La Cara Oculta de C++ Builder

Customers Orders
CustNo Company OrderNo | CustNo
1510 Ocean Paradise 1025 1510
1666 Marteens’ Diving Academy 1139 1510

el resultado de un encuentro externo como el que hemos descrito, de acuerdo a la
columna CustINo, serfa el siguiente:

Customer.CustNo | Company OrderNo | Orders.CustNo
1510 Ocean Paradise 1025 1510
1510 Ocean Paradise 1139 1510
1666 Marteens’ Diving Academy | null null

Con este resultado en la mano, es facil descubrir quién es el tacafio que no nos ha
pedido nada todavia, dejando solamente las filas que tengan valores nulos para al-
guna de las columnas de la segunda tabla.

Este encuentro externo que hemos explicado es, en realidad, un encuentro externo
por la izquierda, pues la primera tabla tendra todas sus filas en el resultado final, aun-
que no exista fila correspondiente en la segunda. Naturalmente, también existe un
encuentro externo por la derecha y un encuentro externo sizétrico.

El problema de este tipo de operaciones es que su inclusién en SQL fue bastante
tardfa. Esto trajo como consecuencia que distintos fabricantes utilizaran sintaxis
propias para la operacion. En el estandar ANSI para SQL del afio 87 no hay referen-
cias a esta instruccion, pero si la hay en el estandar del 92. Utilizando esta sintaxis,
que es la permitida por el SQL local, la consulta que queremos se escribe del si-
guiente modo:

sel ect *

from Custoner left outer join Oders
on Custoner. Cust No = Orders. Cust No

where Orders.OderNo is null

Observe que se ha extendido la sintaxis de la clausula from.

El encuentro externo por la izquierda puede escribirse en Oracle de esta forma
alternativa:

sel ect *

from Custoner, Oders

where Custoner.CustNo (+) = Orders. Cust No
and Oders.OderNo is null

Consultas y modificaciones 93

La mayoria de las aplicaciones de los encuentros externos estan relacionadas con la
generacion de informes. Pongamos por caso que tenemos una tabla de clientes y una
tabla relacionada de teléfonos, asumiendo que un cliente puede tener asociado un
numero de teléfono, varios o ninguno. Si queremos listar los clientes y sus nimeros
de teléfono y utilizamos un encuentro natural, aquellos clientes de los que descono-
cemos el teléfono no apareceran en el listado. Es necesario entonces recurrir a un
encuentro externo por la izquierda.

La curiosa sintaxis del encuentro interno

De]a misma manera en que hay una sintaxis especial para los encuentros externos,
existe una forma equivalente de expresar el encuentro “normal”, o interno:

sel ect Conpany, OrderNo
from Customer inner join Oders
on Customer. Cust No = Orders. Cust No

Facilmente se comprende que la consulta anterior es equivalente a:

sel ect Conpany, OrderNo
from Custonmer, Oders
where Customer. Cust No = Orders. Cust No

¢Por qué nos complican la vida con la sintaxis especial los sefiores del comité ANSI?
El proposito de las clausulas inner y outer join es la definicién de “expresiones de
tablas” limitadas. Hasta el momento, nuestra sintaxis solamente permitia nombres de
tabla en la cldusula from, pero gracias a las nuevas clausulas se pueden escribir con-
sultas mas complejas.

sel ect Conpany, OrderNo, max(Di scount)
from Custormer C
left outer join
(Orders Oinner join Itens |
on O OrderNo = |. O der No)
on C CustNo = O CustNo
group by Conpany, O derNo

St hubiéramos omitido los paréntesis en la clausula from de la consulta anterior hu-
biéramos perdido las filas de clientes que no han realizado pedidos. También pueden
combinarse entre si varios encuentros externos.

Aunque no soy partidario de utilizar la complicada sintaxis del inner join, le
conviene familiarizarse con la misma, pues varias herramientas de C++ Builder
(SQL Builder, el editor de consultas de Decision Cube) insistirin tozudamente en
modificar sus encuentros “naturales” para que usen esta notacion.

94 La Cara Oculta de C++ Builder

Las instrucciones de actualizacion

Son tres las instrucciones de actualizacién de datos reconocidas en SQL: delete,
update e insert. Estas instrucciones tienen una sintaxis relativamente simple y estan
limitadas, en el sentido de que solamente cambian datos en una tabla a la vez. La mas
sencilla de las tres es delete, la instrucciéon de borrado:

del ete from Tabl a
wher e Condi ci 6n

La instruccion elimina de la tabla indicada todas las filas que se ajustan a cierta con-
dicién. En dependencia del sistema de bases de datos de que se trate, la condicién de
la clausula where debe cumplir ciertas restricciones. Por ejemplo, aunque InterBase
admite la presencia de subconsultas en la condicion de seleccion, otros sistemas no lo
permiten.

La segunda instruccion, update, nos sirve para modificar las filas de una tabla que
satisfacen cierta condicion:

updat e Tabl a
set Columa = Valor [, Columa = Valor ...]
where Condici 6n

Al igual que sucede con la instruccion delete, las posibilidades de esta instruccion
dependen del sistema que la implementa. InterBase, en particular, permite actualizar
columnas con valores extraidos de otras tablas; para esto utilizamos subconsultas en
la clausula set:

updat e Custoner
set Last | nvoi ceDate =
(sel ect max(Sal eDate) from Orders
where Orders. Cust No = Custoner. Cust No)

Por ultimo, tenemos la instruccion insert, de la cual tenemos dos variantes. La pri-
mera permite insertar un solo registro, con valores constantes:

insert into Tabla [(Col umas)]
val ues (Val ores)

La lista de columnas es opcional; si se omite, se asume que la instruccion utiliza todas
las columnas en orden de definicién. En cualquier caso, el nimero de columnas em-
pleado debe coincidir con el nimero de valores. El objetivo de todo esto es que si no
se indica un valor para alguna columna, el valor de la columna en el nuevo registro se
inicializa con el valor definido por omisién; recuerde que si en la definicién de la
tabla no se ha indicado nada, el valor por omisién es null:

Consultas y modificaciones 95

insert into Enpl oyee(EnpNo, LastNane, FirstNane)
val ues (666, "Bonaparte", "Napol eén")
/* El resto de las columas, incluida |la del salario, son nulas */

La segunda variante de insert permite utilizar como fuente de valores una expresion
select:

insert into Tabla [(Columas)]
I nstrucci 6nSel ect

Esta segunda variante no estuvo disponible en el intérprete de SQL local hasta la
version 4 del BDE. Se utiliza con frecuencia para copiar datos de una tabla a otra:

insert into Resumen(Enpresa, Total Ventas)
sel ect Conpany, sun(ltensTotal)
from Custoner, Oders
where Custoner. Cust No = Orders. Cust No
group by Conpany

La semantica de la instruccion update

Segun el estandar ANSI para SQL, durante la ejecucion de la clausula set de una
instruccién update en la que se modifican varias columnas, se evaltan primero todos
los valores a asignar y se guardan en variables temporales, y luego se realizan todas
las asignaciones. De este modo, el orden de las asignaciones no afecta el resultado
final.

Supongamos que tenemos una tabla llamada Tabla, con dos columnas del mismo
tipo: A y B. Para intercambiar los valores de ambas columnas puede utilizarse la si-
guiente instruccion:

updat e Tabl a
set A=B B=A

Y realmente, as{ suceden las cosas en Oracle y MS SQL Server. ... pero no en Inter-
Base. Si la instruccion anterior se ejecuta en InterBase, al final de la misma los valores
de la columna B se han copiado en la columna A4, pero no al contrario. Al menos en
la versién 5.5 del producto.

Este es un detalle a tener en cuenta por los programadores que intentan transportar
una aplicacién de una plataforma a otra. Imagino que en algun nivel del estandar se
deje a la decision del fabricante qué semantica implementar en la clausula set. Y es
que el ANSI SQL es demasiado permisivo para mi gusto.

96 La Cara Oculta de C++ Builder

Vistas

Se puede aprovechar una instruccion select de forma tal que el conjunto de datos
que define se pueda utilizar “casi” como una tabla real. Para esto, debemos definir
una vista. La instruccion necesaria tiene la siguiente sintaxis:

create vi ew NonbreVi st a[Col utmas]
as | nstrucci 6nSel ect
[with check option]

Por ejemplo, podemos crear una vista para trabajar con los clientes que viven en
Hawaii:

create view Hawai anos as
select *
from Custoner
where State = "H"

A partir del momento en que se ejecuta esta instruccion, el usuario de la base de
datos se encuentra con una nueva tabla, Hawaianos, con la cual puede realizar las
mismas operaciones que realizaba con las tablas “fisicas”. Puede utilizar la nueva
tabla en una instruccién select:

sel ect *
from Hawai anos
where LastlnvoiceDate >=
(sel ect avg(Lastlnvoi ceDate) from Custoner)

En esta vista en particular, puede también eliminar insertar o actualizar registros:

del ete from Hawai anos
where LastlnvoiceDate is null;

insert into Hawai anos(Cust No, Conpany, State)
val ues (8888, "lan Marteens' Diving Academy", "H ")

No todas las vistas permiten operaciones de actualizacién. Las condiciones que de-
ben cumplir para ser actualizables, ademas, dependen del sistema de bases de datos
en que se definan. Los sistemas mads restrictivos exigen que la instruccién select
tenga una sola tabla en la clausula from, que no contenga consultas anidadas y que
no haga uso de operadores tales como group by, distinct, etc.

Cuando una vista permite actualizaciones se nos plantea el problema de qué hacer si
se inserta un registro que no pertenece logicamente a la vista. Por ejemplo, ¢pudié-
ramos insertar dentro de la vista Hawazanos una empresa con sede social en la ciudad

Consultas y modificaciones 97

costera de Cantalapiedra’? Si permitiésemos esto, después de la insercion el registro
recién insertado “desaparecerfa” inmediatamente de la vista (aunque no de la tabla
base, Customer). E1 mismo conflicto se produciria al actualizar la columna Szaze de un
hawaiano.

Para controlar este comportamiento, SQL define la clausula with check option. Si
se especifica esta opcidn, no se permiten inserciones ni modificaciones que violen la
condicién de seleccion impuesta a la vista; si intentamos una operacion tal, se pro-
duce un error de ejecucion. Por el contrario, si no se incluye la opcién en la defini-
ci6on de la vista, estas operaciones se permiten, pero nos encontraremos con situa-
ciones como las descritas, en que un registro recién insertado o modificado desapa-
rece misteriosamente por no pertenecer a la vista.

5 Cuando escribf la primera version de este libro, no sabfa que habfa un Cantalapiedra en
Espafia; pensé que nombre tan improbable era invento mio. Mis disculpas a los cantala-
pedrenses, pues me parece que viven en ciudad sin costas.

Capitulo

A

Procedimientos almacenados y
triggers

SQL, mostrando el lenguaje de definicién de procedimientos de InterBase.

Desgraciadamente, los lenguajes de procedimientos de los distintos sistemas
de bases de datos difieren entre ellos, al no existir todavia un estandar al respecto. De
los dialectos existentes, he elegido nuevamente InterBase por dos razones. La pri-
mera, y fundamental, es que es el sistema SQL que usted tiene a mano (asumiendo
que tiene C++ Builder). La segunda es que el dialecto de InterBase para procedi-
mientos es el que més se asemeja al propuesto en el borrador del estandar SQL-3.
De cualquier manera, las diferencias entre dialectos no son demasiadas, y no le cos-
tard mucho trabajo entender el lenguaje de procedimientos de cualquier otro sistema
de bases de datos.

(: ON ESTE CAPITULO COMPLETAMOS la presentacién de los sublenguajes de

¢Para qué usar procedimientos almacenados?

Un procedimiento almacenado (stored procedure) es, sencillamente, un algoritmo cuya defi-
nicién reside en la base de datos, y que es ejecutado por el servidor del sistema. Aun-
que SQL-3 define formalmente un lenguaje de programacién para procedimientos
almacenados, cada uno de los sistemas de bases de datos importantes a nivel comer-
cial implementa su propio lenguaje para estos recursos. InterBase ofrece un dialecto
patrecido a la propuesta de SQL-3; Oracle tiene un lenguaje lamado PL-SQL; Micro-
soft SQL Server oftrece el denominado Transact-SQL. No obstante, las diferencias
entre estos lenguajes son minimas, principalmente sintdcticas, siendo casi idénticas las
capacidades expresivas.

El uso de procedimientos almacenados ofrece las siguientes ventajas:

Los procedimientos almacenados ayudan a mantener la consistencia de la base de
datos.

100 La Cara Oculta de C++ Builder

Las instrucciones basicas de actualizacion, update, insert y delete, pueden
combinarse arbitrariamente si dejamos que el usuario tenga acceso ilimitado
a las mismas. No toda combinacién de actualizaciones cumplird con las re-
glas de consistencia de la base de datos. Hemos visto que algunas de estas
reglas se pueden expresar declarativamente durante la definicion del esquema
relacional. El mejor ejemplo son las restricciones de integridad referencial.
Pero, ¢como expresar declarativamente que para cada articulo presente en un
pedido, debe existir un registro correspondiente en la tabla de movimientos
de un almacén? Una posible soluciéon es prohibir el uso directo de las ins-
trucciones de actualizacion, revocando permisos de acceso al puiblico, y
permitir la modificacién de datos solamente a partir de procedimientos al-
macenados.

Los procedimientos almacenados permiten superar las limitaciones del lenguaje
de consultas.

Los

SQL no es un lenguaje completo. Un problema tipico en que falla es en la
definicion de clausuras relacionales. Tomemos como ejemplo una tabla con dos
columnas: Obyeto y Parte. Esta tabla contiene pares como los siguientes:

Obijeto Parte
Cuerpo humano Cabeza
Cuerpo humano Tronco
Cabeza Ojos
Cabeza Boca
Boca Dientes

¢Puede el lector indicar una consulta que liste todas las partes incluidas en la
cabeza? Lo que falla es la posibilidad de expresar algoritmos recursivos. Para
resolver esta situacion, los procedimientos almacenados pueden implemen-
tarse de forma tal que devuelvan conjuntos de datos, en vez de valores esca-
lares. En el cuerpo de estos procedimientos se pueden realizar, entonces, lla-
madas recutsivas.

procedimientos almacenados pueden reducir el trafico en la red.

Un procedimiento almacenado se ejecuta en el servidor, que es precisamente
donde se encuentran los datos. Por lo tanto, no tenemos que explorar una
tabla de arriba a abajo desde un ordenador cliente para extraer el promedio
de ventas por empleado durante el mes pasado. Ademas, por regla general el
servidor es una maquina mas potente que las estaciones de trabajo, por lo
que puede que ahorremos tiempo de ejecucion para una peticion de infor-

Procedimientos almacenados y triggers 101

macién. No conviene, sin embargo, abusar de esta ultima posibilidad, porque
una de las ventajas de una red consiste en distribuir el tiempo de procesador.

Con los procedimientos almacenados se puede ahorrar tiempo de desarrollo.

Siempre que existe una informacion, a alguien se le puede ocurrir un nuevo
modo de aprovechatla. En un entorno cliente/servidor es tipico que vatias
aplicaciones diferentes trabajen con las mismas bases de datos. Si centraliza-
mos en la propia base de datos la imposicion de las reglas de consistencia, no
tendremos que volverlas a programar de una aplicacién a otra. Ademas, evi-
tamos los riesgos de una mala codificacién de estas reglas, con la consi-
guiente pérdida de consistencia.

Como todas las cosas de esta vida, los procedimientos almacenados también tienen
sus inconvenientes. Ya he mencionado uno de ellos: si se centraliza todo el trata-
miento de las reglas de consistencia en el servidor, corremos el riesgo de saturar los
procesadores del mismo. El otro inconveniente es la poca portabilidad de las defini-
ciones de procedimientos almacenados entre distintos sistemas de bases de datos. Si
hemos desarrollado procedimientos almacenados en InterBase y queremos migrar
nuestra base de datos a Oracle (o viceversa), estaremos obligados a partir “casi” de
cero; algo se puede aprovechar, de todos modos.

Como se utiliza un procedimiento almacenado

Un procedimiento almacenado puede utilizarse desde una aplicacion cliente, desarro-
llada en cualquier lenguaje de programaciéon que pueda acceder a la interfaz de pro-
gramacion de la base de datos, o desde las propias utilidades interactivas del sistema.
En la VCL tenemos el componente TS7%oredProc, disefiado para la ejecucion de estos
procedimientos. En un capitulo posterior veremos cémo suministrar parametros,
ejecutar procedimientos y recibir informacién utilizando este componente.

En el caso de InterBase, también es posible ejecutar un procedimiento almacenado
directamente desde la aplicacion Windows ISQL., mediante la siguiente instruccion:

execut e procedure NonbreProcedi m ento [ListaParanetros];

La misma instruccién puede utilizarse en el lenguaje de definicién de procedimientos
y triggers para llamar a un procedimiento dentro de la definiciéon de otro. Es posible
también definir procedimientos recursivos. InterBase permite hasta un maximo de
1000 llamadas recursivas por procedimiento.

102 La Cara Oculta de C++ Builder

El caracter de terminacion

Los procedimientos almacenados de InterBase deben necesariamente escribirse en
un fichero seripr de SQL. Mis tarde, este fichero debe ser ejecutado desde la utilidad
Windows 1SQL para que los procedimientos sean incorporados a la base de datos.
Hemos visto las reglas generales del uso de serjpss en InterBase en el capitulo de in-
troduccion a SQL. Ahora tenemos que estudiar una caracteristica de estos seripts que
anteriormente hemos tratado superficialmente: el caracter de terminacion.

Por regla general, cada instruccioén presente en un seript es leida y ejecutada de forma
individual y secuencial. Esto quiere decir que el intérprete de seripts lee del fichero
hasta que detecta el fin de instruccion, ejecuta la instruccién recuperada, y sigue asi
hasta llegar al final del mismo. El problema es que este proceso de extraccion de
instrucciones independientes se basa en la deteccion de un caracter especial de ter-
minacion. Por omision, este caracter es el punto y coma; el lector habra observado
que todos los ejemplos de instrucciones SQL que deben colocarse en seripts han sido,
hasta el momento, terminados con este caracter.

Ahora bien, al tratar con el lenguaje de procedimientos y #ggers encontraremos ins-
trucciones y clausulas que deben terminar con puntos y comas. Si el intérprete de
scripts tropieza con uno de estos puntos y comas pensard que se encuentra frente al
fin de la instruccion, e intentara ejecutar lo que ha lefdo hasta el momento; casi
siempre, una instruccién incompleta. Por lo tanto, debemos cambiar el caracter de
terminacion de Windows ISQL cuando estamos definiendo #riggers o procedimientos
almacenados. La instruccion que nos ayuda para esto es la siguiente:

set term Ter m nador

Como caracter de terminaciéon podemos escoger cualquier caracter o combinacion
de los mismos lo suficientemente rara como para que no aparezca dentro de una
instruccion del lenguaje de procedimientos. Por ejemplo, podemos utilizar el acento
circunflejo:

set term?”;

Observe cémo la instruccién que cambia el caracter de terminacién debe terminar
ella misma con el caracter antiguo. Al finalizar la creacién de todos los procedimien-
tos que necesitamos, debemos restaurar el antiguo caricter de terminacion:

set term ;"

En lo sucesivo asumiremos que el caracter de terminacioén ha sido cambiado al
acento circunflejo.

Procedimientos almacenados y triggers 103

Procedimientos almacenados en InterBase

La sintaxis para la creaciéon de un procedimiento almacenado en InterBase es la si-
guiente:

create procedure Nonbre
[(ParametrosDeEntrada)]
[returns (ParanetrosDeSalida)]
as Cuer poDeProcedi m ento

Las clausulas PardmetrosDeEntrada y PardmetrosDeSalida representan listas de decla-
raciones de parametros. Los parametros de salida pueden ser mas de uno; esto signi-
fica que el procedimiento almacenado que retorna valores no se utiliza como si fuese
una funcién de un lenguaje de programacion tradicional. El siguiente es un ejemplo
de cabecera de procedimiento:

create procedure Total Pi ezas(Pi ezaPrinci pal char(15))
returns (Total integer)

as

/* ... Aqui va el cuerpo ... */

El cuerpo del procedimiento, a su vez, se divide en dos secciones, siendo opcional la
primera de ellas: la seccién de declaracion de variables locales, y una instruccion
compuesta, begin...end, que agrupa las instrucciones del procedimiento. Las varia-
bles se declaran en este verboso estilo, 4 /a 1970:

decl are variable V1 integer;
decl are variable V2 char(50);

Estas son las instrucciones permitidas por los procedimientos almacenados de In-
terBase:

Asignaciones:
Vari abl e = Expresién

Las variables pueden ser las declaradas en el propio procedimiento, parame-
tros de entrada o parametros de salida.

Llamadas a procedimientos:

execut e procedure NonbreProc [ParsEntrada]
[returni ng_val ues ParsSalida]

No se admiten expresiones en los parametros de entrada; mucho menos en
los de salida.

104 La Cara Oculta de C++ Builder

Condicionales:

if (Condicion) then Instruccion [el se Instruccion]

Bucles controlados por condiciones:

whi | e (Condici én) do Instruccién
Instrucciones SQL:

Cualquier instruccién de manipulacién, insert, update 6 delete, puede in-
cluirse en un procedimiento almacenado. Estas instrucciones pueden utilizar
variables locales y parametros, siempre que estas variables estén precedidas
de dos puntos, para distinguirlas de los nombres de columnas. Por ejemplo,
si Minimo y Aumento son variables o parametros, puede ejecutarse la siguiente
instruccion:

updat e Enpl eados
set Salario = Salario * :Aunento
where Salario < :Mnino;

Se permite el uso directo de instrucciones select si devuelven una sola fila;
para consultas mas generales se utiliza la instruccién for que veremos dentro
de poco. Estas selecciones Gnicas van acompafiadas por una clausula into
para transferir valores a variables o parametros:

sel ect Enpresa

from dientes

where Codigo = 1984
into : Nonbr eEnpr esa;

Iteracion sobre consultas:

for Instrucci 6nSel ect into Variables do Instruccién

Esta instruccion recorre el conjunto de filas definido por la instruccion se-
lect. Para cada fila, transfiere los valores a las variables de 1a clausula into, de
forma similar a lo que sucede con las selecciones unicas, y ejecuta entonces
la instruccion de la secciéon do.

Lanzamiento de excepciones:

exception NonbreDeExcepci 6n

Similar a la instruccién throw de C++.

Procedimientos almacenados y triggers 105

Captura de excepciones:

when Li staDeErrores do | nstrucci 6n

Similar a la clausula catch de la instruccién try...catch de C++. Los errores
capturados pueden ser excepciones propiamente dichas o errores reportados
con la variable SQLCODE. Estos dltimos errores se producen al ejecutarse
instrucciones SQL. Las instrucciones when deben colocarse al final de los
procedimientos.

Instrucciones de control:

exit;
suspend;

La instruccion exit termina la ejecucion del procedimiento actual, y es simi-
lar a la instruccién return de C++. Por su parte, suspend se utiliza en pro-
cedimientos que devuelven un conjunto de filas para retornar valores a la
rutina que llama a este procedimiento. Con esta dltima instruccién, se inte-
rrumpe temporalmente el procedimiento, hasta que la rutina que lo llama
haya procesado los valores retornados.

Instrucciones compuestas:

begi n Li staDel nstrucci ones end

La sintaxis de los procedimientos de InterBase es similar a la de Pascal. A di-
ferencia de este ultimo lenguaje, la palabra end no puede tener un punto y
coma a continuacion.

Mostraré ahora un par de procedimientos sencillos, que ejemplifiquen el uso de estas
instrucciones. El siguiente procedimiento, basado en las tablas definidas en el capi-
tulo sobre DDL, sirve para recalcular la suma total de un pedido, si se suministra el
numero de pedido correspondiente:

create procedure Recal cul arTotal (NunPed int) as
decl are variable Total integer;
begi n
sel ect sun(Cantidad * PVP * (100 - Descuento) / 100)
from Detalles, Articulos
where Detalles.RefArticulo = Articul os. Codi go
and Detalles. Ref Pedido = : NunPed
into :Total ;
if (Total is null) then
Total = O;

106 La Cara Oculta de C++ Builder

updat e Pedi dos

set Total = :Total

where Nurmero = : NunPed;
end »

El procedimiento consiste basicamente en una instruccién select que calcula la suma
de los totales de todas las lineas de detalles asociadas al pedido; esta instruccién ne-
cesita mezclar datos provenientes de las lineas de detalles y de la tabla de articulos. Si
el valor total es nulo, se cambia a cero. Esto puede suceder si el pedido no tiene li-
neas de detalles; en este caso, la instruccion select retorna el valor nulo. Finalmente,
se localiza el pedido indicado y se le actualiza el valor a la columna Toza/, utilizando el
valor depositado en la variable local del mismo nombre.

El procedimiento que definimos a continuacion se basa en el anterior, y permite
recalcular los totales de todas las filas almacenadas en la tabla de pedidos; de este
modo ilustramos el uso de las instrucciones for select do y execute procedure:

create procedure Recal cul ar Pedi dos as
decl are variabl e Pedi do integer;
begi n
for select Nunmero from Pedidos into :Pedido do
execut e procedure Recal cul ar Total : Pedi do;
end ~

Procedimientos que devuelven un conjunto de datos

Antes he mencionado la posibilidad de superar las restricciones de las expresiones
select del modelo relacional mediante el uso de procedimientos almacenados. Un
procedimiento puede disefiarse de modo que devuelva un conjunto de filas; para esto
hay que utilizar la instruccién suspend, que transfiere el control temporalmente a la
rutina que llama al procedimiento, para que ésta pueda hacer algo con los valores
asignados a los parametros de salida. Esta técnica es poco habitual en los lenguajes
de programacioén mas extendidos; si quiere encontrar algo parecido, puede desente-
rrar los iteradores del lenguaje CLU, disefiado por Barbara Liskov a mediados de los
setenta.

Supongamos que necesitamos obtener la lista de los primeros veinte, treinta o mil
cuatrocientos nimeros primos. Comencemos por algo facil, con la funcién que ana-
liza un nimero y dice si es primo o no:

create procedure EsPrinmo(Numero integer)
returns (Respuesta integer) as

declare variable | integer;
begi n
I =2
while (I < Nunero) do
begin

if (cast((Nunero / 1) as integer) * | = Nunero) then

Procedimientos almacenados y triggers 107

begi n
Respuesta = O;
exit;

end

I =1 + 1;

end
Respuesta = 1,
end "

Ya sé que hay implementaciones mas eficientes, pero no querfa complicar mucho el
ejemplo. Observe, de paso, la pirueta que he tenido que realizar para ver si el nimero
es divisible por el candidato a divisor. He utilizado el criterio del lenguaje C para las
expresiones logicas: devuelvo 1 si el nimero es primo, y 0 si no lo es. Recuerde que
InterBase no tiene un tipo Boolean.

Ahora, en base al procedimiento anterior, implementamos el nuevo procedimiento
Primos:

create procedure Prinps(Total integer)
returns (Prino Integer) as

decl are variable | integer;
decl are variabl e Respuesta integer;
begi n

I =0;

Prino = 2;

while (I < Total) do

begi n

execute procedure EsPrinmo Prinp
returni ng_val ues Respuest a;

if (Respuesta = 1) then

begi n
I =1 + 1;
suspend; /* jii Nuevo !'ll */

end

Prinmb = Prinp + 1;

end
end *

Este procedimiento puede ejecutarse en dos contextos diferentes: como un procedi-
miento normal, o como procedimiento de seleccion. Como procedimiento normal,
utilizamos la instruccién execute procedure, como hasta ahora:

execute procedure Prinps(100);

No obstante, no van a resultar tan sencillas las cosas. Esta llamada, si se realiza desde
Windows 1SQOL., solamente devuelve el primer numero primo (era el 2, ¢o no?). El
problema es que, en ese contexto, la primera llamada a suspend termina completa-
mente el algoritmo.

108 La Cara Oculta de C++ Builder

La segunda posibilidad es utilizar el procedimiento comzo si fuera una tabla o vista. Desde
Windows 1SQL podemos lanzar la siguiente instruccidén, que nos mostrara los prime-
ros cien numeros primos:

select * from Prinps(100);

Por supuesto, el ejemplo anterior se refiere a una secuencia aritmética. En la practica,
un procedimiento de seleccion se implementa casi siempre llamando a suspend
dentro de una instruccion for...do, que recorre las filas de una consulta.

Recorriendo un conjunto de datos

En esta secciéon mostraré un par de ejemplos mas complicados de procedimientos
que utilizan la instruccion for...select de InterBase. El primero tiene que ver con un
sistema de entrada de pedidos. Supongamos que queremos actualizar las existencias
en el inventario después de haber grabado un pedido. Tenemos dos posibilidades, en
realidad: realizar esta actualizacion mediante un #7gger que se dispare cada vez que se
guarda una linea de detalles, o ejecutar un procedimiento almacenado al finalizar la
grabacién de todas las lineas del pedido.

La primera técnica sera explicada en breve, pero adelanto en estos momentos que
tiene un defecto. Pongamos como ejemplo que dos usuatios diferentes estan pasando
por el cajero, simultaneamente. El primero saca un pack de Coca-Colas de la cesta de
la compra, mientras el segundo pone Pepsis sobre el mostrador. Si, como es de espe-
rar, la grabacion del pedido tiene lugar mediante una transaccion, al dispararse el
trigger se han modificado las filas de estas dos marcas de bebidas, y se han bloqueado
hasta el final de la transaccién. Ahora, inesperadamente, el primer usuario saca Pepsis
mientras el segundo nos sorprende con Coca-Colas; son unos fanaticos de las bebi-
das americanas estos individuos. El problema es que el primero tiene que esperar a
que el segundo termine para poder modificar la fila de las Pepsis, mientras que el
segundo se halla en una situacion similar.

Esta situacién se denomina abrazo mortal (deadlock) y realmente no es problema al-
guno para InterBase, en el cual los procesos fallan inmediatamente cuando se les
niega un bloqueo. Pero puede ser un peligro en otros sistemas con distinta estrategia
de espera. La solucién mas comuin consiste en que cuando un proceso necesita blo-
quear ciertos recursos, lo haga siempre en el mismo orden. Si nuestros dos consumi-
dores de liquidos oscuros con burbujas hubieran facturado sus compras en orden
alfabético, no se hubiera producido este conflicto. Por supuesto, esto descarta el uso
de un #rigger para actualizar el inventario, pues hay que esperar a que estén todos los

¢ Realmente, es el BDE quien configura a InterBase de este modo. En la version 5.0.1.24 se
introduce el nuevo parametro WAIT ON LOCKS, para modificar este comportamiento.

Procedimientos almacenados y triggers 109

productos antes de ordenar y realizar entonces la actualizacién. El siguiente proce-
dimiento se encarga de implementar el algoritmo explicado:

create procedure Actualizarlnventario(Pedido integer) as
decl are variable CodArt integer;
decl are variable Cant integer;

begi n
for select RefArticulo, Cantidad
from Detalles
where RefPedido = : Pedi do
order by RefArticulo
into :CodArt, :Cant do
update Articul os
set Pedi dos = Pedi dos + : Cant
where Codigo = : CodArt;
end 7

Otro ejemplo: necesitamos conocer los diez mejores clientes de nuestra tienda. Pero
s6lo los diez primeros, y no vale mirar hacia otro lado cuando aparezca el undécimo.
Algunos sistemas SQL tienen extensiones con este proposito (top en SQL Server;
fetch first en DB2), pero no InterBase. Este procedimiento, que devuelve un con-
junto de datos, nos servira de ayuda:

create procedure MejoresCientes(Rango integer)
returns (Codigo int, Nonbre varchar(30), Total int) as

begi n
for select Codigo, Nonbre, sun(Total)
from dientes, Pedidos
where dientes. Codigo = Pedidos.diente
order by 3 desc
into : Codi go, :Nonbre, :Total do
begi n
suspend;
Rango = Rango - 1;
if (Rango = 0) then
exit;
end
end 7

Entonces podremos realizar consultas como la siguiente:

select *
from Mejoresdientes(10)

Triggers, o disparadores

Una de las posibilidades mas interesantes de los sistemas de bases de datos relacio-
nales son los #riggers, o disparadores; en adelante, utilizaré preferentemente la palabra
inglesa original. Se trata de un tipo de procedimiento almacenado que se activa au-
tomaticamente al efectuar operaciones de modificacion sobre ciertas tablas de la base
de datos.

110 La Cara Oculta de C++ Builder
La sintaxis de la declaracion de un #rigger es la siguiente:

create trigger NonbreTrigger for Tabla [active | inactive]
{before | after} {delete | insert | update}
[position Posici6n]
as Cuer poDeProcedi m ent o

El cuerpo de procedimiento tiene la misma sintaxis que los cuerpos de los procedi-
mientos almacenados. Las restantes clausulas del encabezamiento de esta instruccion
tienen el siguiente significado:

Clausula Significado

NowmbreTrigger El nombre que se le va a asignar al #rgger
Tabla El nombre de la tabla a la cual estd asociado
active | inactive Puede crearse inactivo, y activarse después
before | after Se activa antes o después de la operacién
delete | insert | update Qué operacion provoca el disparo del #rigger
position Orden de disparo para la misma operacion

A diferencia de otros sistemas de bases de datos, los #iggers de InterBase se definen
para una sola operacioén sobre una sola tabla. Si queremos compartir cédigo para
eventos de actualizacién de una o varias tablas, podemos situar este codigo en un
procedimiento almacenado y llamarlo desde los diferentes #riggers definidos.

Un parametro interesante es el especificado por position. Para una operacién sobre
una tabla pueden definirse varios #ggers. El nimero indicado en position determina
el orden en que se disparan los diferentes sucesos; mientras mas bajo sea el numero,
mayor serd la prioridad. Si dos #iggers han sido definidos con la misma prioridad, el
orden de disparo entre ellos sera aleatorio.

Hay una instrucciéon similar que permite modificar algunos parametros de la defini-
cién de un f#rigger, como su orden de disparo, si esta activo o no, o incluso su propio
cuerpo:

alter trigger NonbreTrigger [active | inactive]
[{before | after} {delete | insert | update}]
[position Posici6n]
[as Cuer poProcedi ni ent o]

Podemos eliminar completamente la definicion de un #7gger de la base de datos me-
diante la instruccion:

drop trigger NonbreTrigger

Procedimientos almacenados y triggers 111

Las variables new y old

Dentro del cuerpo de un #rigger pueden utilizarse las variables predefinidas new y o/d.
Estas variables hacen referencia a los valores nuevos y anteriores de las filas involu-
cradas en la operacion que dispara el #rigger. Por ejemplo, en una operaciéon de modi-
ficacién update, o/d se refiere a los valores de la fila antes de la modificacion y new a
los valores después de modificados. Para una insercion, solamente tiene sentido la
variable zew, mientras que para un borrado, solamente tiene sentido /.

El siguiente #r7gger hace uso de la variable zew, para acceder a los valores del nuevo
registro después de una insercion:

create trigger UtimFactura for Pedi dos
active after insert position 0 as
decl are variable U timFecha date;

begi n
sel ect Ul tinoPedido
from Clientes
where Codigo = new. RefCliente
into ;U ti naFecha;
if (UtimFecha < new FechaVenta) then
update Cdientes
set U ti noPedi do = new. FechaVent a
where Codigo = new. Refdiente;
end ~

Este #rigger sirve de contraejemplo a un error muy frecuente en la programacion
SQL. La primera instruccién busca una fila particular de la tabla de clientes y, una vez
encontrada, extrae el valor de la columna UltimoPedido para asignarlo a la variable
local UltimakFecha. El error consiste en pensar que esta instruccion, a la vez, deja a la
fila encontrada como “fila activa”. El lenguaje de #riggers y procedimientos almacena-
dos de InterBase, y la mayor parte de los restantes sistemas, no utiliza “filas activas”.
Es por eso que en la instrucciéon update hay que incluir una clausula where para
volver a localizar el registro del cliente. De no incluirse esta clausula, cambiarfamos la
fecha para fodos los clientes.

Es posible cambiar el valor de una columna correspondiente a la variable #new, pero
solamente si el #gger se define “antes” de la operacién de modificaciéon. En cualquier
caso, el nuevo valor de la columna se hace efectivo después de que la operacién tenga
lugar.

Mas ejemplos de triggers

Para mostrar el uso de #iggers, las variables new y old y los procedimientos almace-
nados, mostraré cémo se puede actualizar automaticamente el inventario de articulos

112 La Cara Oculta de C++ Builder

y el total almacenado en la tabla de pedidos en la medida en que se realizan actualiza-
ciones en la tabla que contiene las lineas de detalles.

Necesitaremos un par de procedimientos auxiliares para lograr una implementacién
mas modular. Uno de estos procedimientos, RecaleularTotal, debe actualizar el total de
venta de un pedido determinado, y ya lo hemos programado antes. Repito aqui su
cddigo, para mayor comodidad:

create procedure Recal cul arTotal (NunPed int) as
decl are variable Total integer;

begi n
sel ect sun{Cantidad * PVP * (100 - Descuento) / 100)
from Detal l es, Articul os
where Detalles.RefArticulo = Articul os. Codi go
and Detalles. Ref Pedido = : NunPed
into : Tot al ;
if (Total is null) then
Total = O;
updat e Pedi dos
set Total = :Total
where Numero = : NunPed;
end »

El otro procedimiento debe modificar el inventario de articulos. Su implementacién
es muy simple:

create procedure Actlnventario(CodArt integer, Cant |Integer) as

begi n
update Articul os
set Pedi dos = Pedi dos + : Cant
where Codigo = : CodArt;

end »

Ahora le toca el turno a los #rjggers. Los mas sencillos son los relacionados con la
insercién y borrado; en el primero utilizaremos la variable 7ew, y en el segundo, o/d:

create trigger NuevoDetalle for Detalles
active after insert position 1 as

begi n
execut e procedure Recal cul ar Total new. Ref Pedi do;
execute procedure Actlnventario
new. Ref Arti cul o, new. Canti dad;
end 7

create trigger ElimnarDetalle for Detalles
active after delete position 1 as
decl are variabl e Decrenento integer;
begi n
Decrenento = - ol d. Canti dad;
execut e procedure Recal cul ar Total ol d. Ref Pedi do;
execut e procedure Actlnventario
ol d. Ref Articul o, :Decrenento;
end ~

Procedimientos almacenados y triggers 113

Es curiosa la forma en que se pasan los parametros a los procedimientos almacena-
dos. Tome nota, en particular, de que hemos utilizado una variable local, Decremento,
en el #rigger de eliminacion. Esto es asi porque no se puede pasar expresiones como
parametros a los procedimientos almacenados, ni siquiera para los parametros de
entrada.

Finalmente, nos queda el #7gger de modificacion:

create trigger MdificarDetalle for Detalles
active after update position 1 as
decl are variabl e Decrenento integer;

begi n
execut e procedure Recal cul ar Total new. Ref Pedi do;
if (new RefArticulo <> old.RefArticulo) then
begi n
Decrenento = -ol d. Canti dad;
execute procedure Actlnventario
ol d. Ref Articul o, :Decrenento;
execute procedure Actlnventario
new. Ref Arti cul o, new. Canti dad;
end
el se
begi n
Decrenento = new. Cantidad - ol d. Canti dad;
execute procedure Actlnventario
new. Ref Arti cul o, :Decrenento;
end
end "

Observe cémo comparamos el valor del cédigo del articulo antes y después de la
operacion. Si solamente se ha producido un cambio en la cantidad vendida, tenemos
que actualizar un solo registro de inventario; en caso contrario, tenemos que actuali-
zar dos registros. No hemos tenido en cuenta la posibilidad de modificar el pedido al
cual pertenece la linea de detalles. Suponemos que esta operacién no va a permitirse,
por carecer de sentido, en las aplicaciones clientes.

Generadores

Los generadores (generators) son un recurso de InterBase para poder disponer de valores
secuenciales, que pueden utilizarse, entre otras cosas, para garantizar la unicidad de
las claves artificiales. Un generador se crea, del mismo modo que los procedimientos
almacenados y #riggers, en un fichero seript de SQL. El siguiente ejemplo muestra
cémo crear un generador:

create generator Codi goEnpl eado;

114 La Cara Oculta de C++ Builder

Un generador define una variable interna persistente, cuyo tipo es un entero de 32
bits. Aunque esta variable se inicializa automaticamente a 0, tenemos una instruccion
para cambiar el valor de un generador:

set generator Codi goEnpl eado to 1000;

Por el contrario, no existe una instruccion especifica que nos permita eliminar un
generador. Esta operacién debemos realizarla directamente en la tabla del sistema
que contiene las definiciones y valores de todos los generadores:

del ete from rdb$generators
wher e rdb$generator _nanme = ' CODI GOEMPLEADO

Para utilizar un generador necesitamos la funcion gen_id. Esta funcién utiliza dos
parametros. El primero es el nombre del generador, y el segundo debe ser la cantidad
en la que se incrementa o decrementa la memoria del generador. La funcién retorna
entonces el valor ya actualizado. Utilizaremos el generador anterior para suministrar
automaticamente un cédigo de empleado si la instruccién insert no lo hace:

create trigger NuevoEnpl eado for Enpl eados
active before insert

as
begi n
if (new Codigo is null) then
new. Codi go = gen_i d(Codi goEnpl eado, 1);
end 7

Al preguntar primeramente si el cédigo del nuevo empleado es nulo, estamos permi-
tiendo la posibilidad de asignar manualmente un cédigo de empleado durante la in-
sercion.

Los programas escritos en C++ Builder tienen problemas cuando se asigna la clave
primaria de una fila dentro de un #zgger utilizando un generador, pues el registro re-
cién insertado “desaparece” segun el punto de vista de la tabla. Este problema se
presenta sélo cuando estamos navegando simultineamente sobre la tabla.

Para no tener que abandonar los generadores, una de las soluciones consiste en crear
un procedimiento almacenado que obtenga el proximo valor del generador, y utilizar
este valor para asignarlo a la clave primaria en el evento BeforePost de la tabla. En el
lado del servidor se programatia algo parecido a lo siguiente:

create procedure Proxi nbCodigo returns (Cod integer) as
begi n

Cod = gen_i d(Codi goEnpl eado) ;
end ~

Procedimientos almacenados y triggers 115

En la aplicacién crearfamos un componente spProximoCodigo, de la clase TStoredProc, y
lo aprovecharfamos de esta forma en uno de los eventos BeforePost o OnNewRecord de
la tabla de clientes:

void _ fastcall TnodDatos::tbd ientesBeforePost(TDataSet *DataSet)

{
spPr oxi moCodi go- >ExecProc();
t bd i ent esCodi go- >Val ue =
spPr oxi noCodi go- >Par anByNane(" COD") - >Asl nt eger ;
}

De todos modos, si la tabla cumple determinados requisitos, podemos ahorrarnos
trabajo en la aplicacion y seguir asignando la clave primaria en el #7gger. Las condicio-
nes necesarias son las siguientes:

La tabla no debe tener columnas con valores default. Asi evitamos que el BDE
tenga que releer la fila después de su creacion.

Debe existir un indice unico, o casi unico, sobre alguna columna alternativa a la
clave primaria. La columna de este indice se utilizara entonces como criterio de
ordenacién para la navegacion.

El valor de la clave primatia no nos importa realmente, como sucede con las
claves artificiales.

Las tablas de referencia que abundan en toda base de datos son un buen ejemplo de
la clase de tablas anterior. Por ejemplo, si necesitamos una tabla para los diversos
valores del estado civil, probablemente la definamos de este modo:

create table EstadoCivil (
Codi go integer not null primary key,
Descri pci on var char (15) not null uni que,
EsperanzaVida integer not null

)
create generator EstadoC vil Gen;
set term?*”,

create trigger BlEstadoCvil for EstadoCi vil
active before insert as
begi n
Codi go = gen_i d(EstadoCivil Gen, 1);
end 7

En C++ Builder asociaremos una tabla o consulta a la tabla anterior, pero ordenare-
mos las filas por su descripcién, y ocultaremos el campo Codigo, que sera asignado
automaticamente en el servidor. Recuerde, en cualquier caso, que los problemas con
la asignacion de claves primarias en el servidor son realmente problemas de la nave-
gacion con el BDE, y nada tienen que ver con InterBase, en si.

116 La Cara Oculta de C++ Builder

NOTA IMPORTANTE

En cualquier caso, si necesita valores Gnicos y consecutivos en alguna columna de
una tabla, no utilice generadores (ni secuencias de Oracle, o identidades de MS
SQL Setver). El motivo es que los generadores no se bloquean durante las tran-
sacciones. Usted pide un valor dentro de una transaccién, y le es concedido; to-
davia no ha terminado su transaccién. A continuacion, otro usuario pide el si-
guiente valor, y sus deseos se cumplen. Pero entonces usted aborta la transac-
cion, por el motivo que sea. La consecuencia: se pierde el valor que recibid, y se
produce un "hueco" en la secuencia.

Simulando la integridad referencial

Como hemos explicado, mediante los #riggers y los procedimientos almacenados po-
demos expresar reglas de consistencia en forma smperativa, en contraste con las reglas
declarativas que se enuncian al crear tablas: claves primarias, alternativas y externas,
condiciones de verificacion, etc. En general, es preferible utilizar una regla declarativa
antes que su equivalente imperativo. Pero sucede que las posibilidades de las reglas
declarativas son mas limitadas que las posibilidades de las reglas imperativas.

En InterBase 4, por ejemplo, las restricciones de integridad referencial no admiten
modificaciones ni borrados en las tablas maestras de una clave externa. Sin embargo,
a veces es deseable permitir estas operaciones y propagar los cambios en cascada a
las tablas dependientes.

Tlustraré la forma de lograr restricciones de integridad referencial con propagacion

de cambios mediante el ejemplo de la tabla de pedidos y lineas de detalles. Recorde-
mos la definicién de la tabla de pedidos, en el capitulo sobre el Lenguaje de Defini-
cion de Datos:

create table Pedidos (

Nuner o int not null,
Refdiente int not null,

Ref Enpl eado int,

FechaVent a date default "Now',
Tot al int default O,

pri mary key (Numero),
foreign key (Refdiente) references dientes (Codigo)
)

La definicion de la tabla de detalles cambia ahora, sustituyéndose la clausula foreign
key que hacfa referencia a la tabla de pedidos:

Procedimientos almacenados y triggers 117

create table Detalles (

Ref Pedi do int not null,

Nunli nea int not null,

Ref Articul o int not null,

Cant i dad int default 1 not null,
Descuent o int default 0 not null

check (Descuento between 0 and 100),

primary key (RefPedido, Nunlinea),
foreign key (RefArticulo) references Articul os (Codigo),
/*

Antes: foreign key(RefPedi do) references Pedi dos(Nuner o)
*/
check (RefPedido in (select Nunmero from Pedi dos))

)

La nueva clausula check verifica en cada insercién y modificacion que no se intro-
duzca un nimero de pedido inexistente. El borrado en cascada se puede lograr de la
siguiente manera:

create trigger BorrarDetall esEnCascada for Pedi dos
active after delete
position O

as
begi n

del ete from Detall es

where Ref Pedi do = ol d. Nuner o;
end °

Un poco mis larga es la implementacion de actualizaciones en cascada.

create trigger MdificarDetall esEnCascada for Pedi dos
active after update

position O
as
begi n
if (old.Numero <> new. Nunero) then
update Detalles
set Ref Pedi do = new. Nuner o
where RefPedido = ol d. Nunero;
end "

Por supuesto, los #riggers hubieran sido mucho mas complicados si hubiéramos man-
tenido la restriccion foreign key en la declaracion de la tabla de detalles, en particu-
lar, la propagacion de modificaciones.

Excepciones

Sin embargo, todavia no contamos con medios para detener una operaciéon SQL; esta
operacion serfa necesaria para simular imperativamente las restricciones a la propaga-
ci6n de cambios en cascada, en la integridad referencial. Lo que nos falta es poder

118 La Cara Oculta de C++ Builder

lanzar excepciones desde un #rigger o procedimiento almacenado. Las excepciones de
InterBase se crean asociando una cadena de mensaje a un identificador:

create exception CLI ENTE_CON_PEDI DOS
"No se puede nodificar este cliente"

Es necesario confirmar la transaccion actual para poder utilizar una excepcion recién
creada. Existen también instrucciones para modificar el mensaje asociado a una ex-
cepcién (alter exception), y para eliminar la definicién de una excepcion de la base
de datos (drop exception).

Una excepcion se lanza desde un procedimiento almacenado o #rjgger mediante la
instruccién exception:

create trigger CheckDetails for Clientes
active before delete
position O

as
decl are variable Nunmero int;
begi n

sel ect count (*)

from Pedidos

where Refdiente = ol d. Codigo

into > Nunrer o;

if (:Numero > 0) then

exception CLI ENTE_CON PEDI DCS;

end ~

Las excepciones de InterBase determinan que cualquier cambio realizado dentro del
cuerpo del #rgger o procedimiento almacenado, sea directa o indirectamente, se anule
automaticamente. De esta forma puede programarse algo parecido a las transaccio-
nes anidadas de otros sistemas de bases de datos.

Si la instruccion exception es similar a la instruccion throw de C++, el equivalente
mds cercano a try...catch es la instruccion when de InterBase. Esta instruccion tiene
tres formas diferentes. La primera intercepta las excepciones lanzadas con excep-
tion:

when exception NonbreExcepci 6n do
Bl oquel nstrucci ones;

Con la segunda variante, se detectan los errores producidos por las instrucciones

SQL:

when sql code Nunero do
Bl oquel nstrucci ones;

Los nimeros de error de SQL aparecen documentados en la ayuda en linea y en el
manual [angnage Reference de InterBase. A grandes rasgos, la ejecucion correcta de una

Procedimientos almacenados y triggers 119

instruccién devuelve un codigo igual a 0, cualquier valor negativo es un error pro-
piamente dicho (-803, por ejemplo, es un intento de violacion de una clave primaria),
y los valores positivos son advertencias. En particular, 100 es el valor que se devuelve
cuando una seleccion Gnica no encuentra el registro buscado. Este convenio es parte
del estandar de SQL, aunque los c6digos de error concreto varien de un sistema a
otro.

La tercera forma de la instruccion when es la siguiente:

when gdscode Nunero do
Bl oquel nstrucci ones;

En este caso, se estan interceptando los mismos errores que con sqlcode, pero se
utilizan los cédigos internos de InterBase, que ofrecen mas detalles sobre la causa.
Por ejemplo, los valores 335544349 y 35544665 corresponden a —803, la violacion de
unicidad, pero el primero se produce cuando se inserta un valor duplicado en cual-
quier indice unico, mientras que el segundo se reserva para las violaciones especificas
de clave primaria o alternativa.

En cualquier caso, las instrucciones when deben ser las dltimas del bloque en que se
incluyen, y pueden colocarse varias simultineamente, para atender varios casos:

begi n
/* Instrucci ones */
/[* x]
when sql code -803 do
Resul tado = "Viol aci 6n de uni ci dad";
when exception CLI ENTE_CON_PEDI DOS do
Resultado = "Elimne prinero | os pedidos realizados";
end

La Tercera Regla de Marteens sigue siendo aplicable a estas instrucciones: no detenga
la propagacion de una excepcion, a no ser que tenga una solucion a su causa.

Alertadores de eventos

Los alertadores de eventos (event alerters) son un recurso unico, por el momento, de
InterBase. Los procedimientos almacenados y #ggers de InterBase pueden utilizar la
instruccién siguiente:

post _event Nonbr eDeEvent o

El nombre de evento puede ser una constante de cadena o una variable del mismo
tipo. Cuando se produce un evento, InterBase avisa a todos los clientes interesados
de la ocurrencia del mismo.

120 La Cara Oculta de C++ Builder

Los alertadores de eventos son un recurso muy potente. Sitlese en un entorno
cliente/servidor donde se producen con frecuencia cambios en una base de datos.
Las estaciones de trabajo normalmente no reciben aviso de estos cambios, y los
usuarios deben actualizar periédica y frecuentemente sus pantallas para reflejar los
cambios realizados por otros usuarios, pues en caso contrario puede suceder que
alguien tome una decisién equivocada en base a lo que esta viendo en pantalla. Sin
embargo, refrescar la pantalla toma tiempo, pues hay que traer cierta cantidad de
informacién desde el servidor de bases de datos, y las estaciones de trabajo realizan
esta operacion periédicamente, colapsando la red. El personal de la empresa se abu-
rre en los tiempos de espera, la moral se resquebraja y la empresa se sitta al borde
del caos...

Entonces aparece Usted, un experto programador de C++ Builder e InterBase, y
afiade #riggers a discrecion a la base de datos, en este estilo:

create trigger AlertarCanbi oBolsa for Cotizaciones
active after update position 10

as

begi n
post _event "Canbi oCoti zaci on";

end ~

Observe que se ha definido una prioridad baja para el orden de disparo del #gger.
Hay que aplicar la misma técnica para cada una de las operaciones de actualizacion
de la tabla de cotizaciones.

Luego, en el médulo de datos de la aplicacion que se ejecuta en las estaciones de
trabajo, hay que afiadir el componente TIBEventAlerter, que se encuentra en la pagina
Samples de la Paleta de Componentes. Este componente tiene las siguientes propie-
dades, métodos y eventos:

Nombre Tipo Propésito
Events Propiedad Los nombres de eventos que nos interesan.
Registered Propiedad Debe ser True para notificar, en tiempo de disefio,

nuestro interés en los eventos almacenados en la
propiedad anterior.

Database Propiedad La base de datos a la cual nos conectaremos.

RegisterEvents Método Notifica a la base de datos nuestro interés por los
eventos de la propiedad Events.

UnRegisterEvents Método El inverso del método anterior.

OnEventAlert Evento Se dispara cada vez que se produce el evento.

En nuestro caso, podemos editar la propiedad Ewvents y teclear la cadena CambioCotiza-
cion, que es el nombre del evento que necesitamos. Conectamos la propiedad Database
del componente a nuestro componente de bases de datos y activamos la propiedad
Registered. Luego creamos un manejador para el evento OnEventAlert similar a éste:

Procedimientos almacenados y triggers 121

void __fastcall TForml::|BEventAl erterlEvent Al ert(TCbj ect *Sender,
Ansi String Event Narme, | ong Event Count, bool &Cancel Al erts)

t bCot i zaci ones- >Refresh();

Cada vez que se modifique el contenido de la tabla Co#zaciones, el servidor de Inter-
Base lanzara el evento identificado por la cadena CambioCotizacion, y este evento sera
recibido por todas las aplicaciones interesadas. Cada aplicacion realizara consecuen-
temente la actualizacion visual de la tabla en cuestion.

Esta historia termina previsiblemente. La legion de usuarios del sistema lo aclama
con fervor, su jefe le duplica el salatio, usted se casa ... 0 se compra un petto ... o ...
Bueno, se me ha complicado un poco el guién; péngale usted su final preferido.

Funciones de usuario en InterBase

Para finalizar el capitulo, mostraré un ejemplo de como utilizar las DLL para exten-
der la funcionalidad de un servidor de InterBase. Como forma de ampliar el con-
junto de funciones disponibles en SQL, los servidores de InterBase basados en
Windows 95 y Windows N'T admiten la creacion de funciones definidas por el nsnario
(User Defined Functions, 6 UDF). Estas funciones se definen en DLLs que se deben
registrar en el servidor, para poder ser ejecutadas desde consultas SQL, #riggers y pro-
cedimientos almacenados.

Los pasos para crear una funcién de usuatio son los siguientes:

Programe la DLL, exportando las funciones deseadas.

Copie la DLL resultante al directorio b7z del servidor de InterBase. Si se trata de
un servidor local, o si tenemos acceso al disco duro del servidor remoto, esto
puede realizarse cambiando el directorio de salida en las opciones del proyecto.
Utilice la instrucciéon declare external function de InterBase para registrar la
funcién en la base de datos correspondiente. Para facilitar el uso de la extension
programada, puede acompafiar a la DLL con las declaraciones correspondientes
almacenadas en un serjpr SQL.

Para ilustrar la técnica, crearemos una funciéon que devuelva el nombre del dia de la
semana de una fecha determinada. La declaracion de la funcion, en la sintaxis de
InterBase, sera la siguiente:

decl are external function D aSemana(DATE)
returns cstring(15)
entry_point "D aSemana"
nmodul e_narme "M sUdfs.dl I ";

122 La Cara Oculta de C++ Builder

Aunque podemos comenzar declarando la funcién, pues InterBase cargara la DLL
solo cuando sea necesario, es preferible comenzar creando la DLL, asi que cree un
nuevo proyecto DLL, con el nombre MzsUdfs.

Las funciones de usuario de InterBase deben implementarse con el atributo __cdecl.
Hay que tener en cuenta que todos los parametros se pasan por referencia; incluso
los valores de retorno de las funciones se pasan por referencia (se devuelve un pun-
tero), si no se especifica la opcién by value en la declaracion de la funcién. La co-
rrespondencia entre tipos de datos de InterBase y de C++ Builder es sencilla: int
equivale a int, smallint a short int, las cadenas de caracteres se pasan como punte-
ros a caracteres, y asi sucesivamente. En particular, las fechas se pasan en un tipo de
registro con la siguiente declaracion:

typedef struct {
int Days;
int Frac;

} TI BDate;

Days es 1a cantidad de dias transcurridos a partir de una fecha determinada por Inter-
Base, el 17 de noviembre de 1858. Frac es la cantidad de diezmilésimas de segundos
transcurridas desde las doce de la noche. Con esta informacion en nuestras manos, es
tacil programar la funcion DiaSemana:

__decl spec(dl | export) char const * _ cdecl Di aSemana(TI BDate &f echa)

static char *dias[] = {
"M ércol es", "Jueves", "Viernes", "Sabado",
"Dom ngo", "Lunes", "Martes" };

return dias[fecha. Days % 7];

Para saber qué dia de la semana corresponde al “dia de la creacién” de InterBase,
tuvimos que realizar un proceso sencillo de prueba y error; parece que para alguien
en este mundo los miércoles son importantes.

Una vez compilado el proyecto, asegtrese que la DLL generada estd presente en el
directorio bin del servidor de InterBase. Active entonces la utilidad WISQIL., conéc-
tese a una base de datos que contenga tablas con fechas, teclee la instrucciéon declare
external function que hemos mostrado anteriormente y ejecutela. A continuacion,
pruebe el resultado, con una consulta como la siguiente:

sel ect D aSemana(Sal eDate), Sal eDate,
cast ("Now' as date), Di aSemana(" Now')
from Orders

Tenga en cuenta que, una vez que el servidor cargue la DLL, ésta quedara en memo-
ria hasta que el servidor se desconecte. De este modo, para sustituir la DLL (para

Procedimientos almacenados y triggers 123

afladir funciones o corregir errores) debe primero detener al servidor y volver a ini-
ciarlo posteriormente.

Hay que tener cuidado, especialmente en InterBase 5, con las funciones que devuel-
ven cadenas de caracteres generadas por la DLL. El problema es que estas funciones
necesitan un buffer para devolver la cadena, que debe ser suministrado por la DLL.
No se puede utilizar una variable global con este propésito, como en versiones ante-
riores de InterBase, debido a la nueva arquitectura multihilos. Ahora todas las cone-
xiones de clientes comparten un mismo proceso en el servidor, y si varias de ellas
utilizan una misma UDE, estan accediendo a la funcién desde distintos hilos. Si utili-
zaramos una variable global, podriamos sobrescribir su contenido con mucha facili-

dad.

Por ejemplo, ésta es la implementacion en C++ Builder de una funcién de usuario
para convertir cadenas a minusculas:

__decl spec(dl I export) char * __cdecl Lower(char *s)

int len = strlen(s);
char *res = (char *) SysGetMen{len + 1);
/] SysGet Mem asigna nenoria en el formato adecuado
strcpy(res, s);
Char Lower Buf f (res, |en);
return res;

Si queremos utilizar esta funcion desde InterBase, debemos declararla mediante la
siguiente instruccion:

decl are external function |ower cstring(256)
returns cstring (256) free_it
entry_point "Lower" nodul e_name "M sUdfs.dl|"

Observe el uso de la nueva palabra reservada free_it, para indicar que la funcién
reserva memoria que debe ser liberada por el servidor.

Capitulo

Transacciones

ODO O NADA, Y QUE NO ME ENTERE YO que andas cerca. Parece una ame-

naza, pero no lo es. La frase anterior puede resumir el comportamiento

egoista deseable para las fransacciones: el mecanismo que ofrecen las bases de
datos para garantizar la coherencia de su contenido, especialmente cuando varias
aplicaciones acceden simultineamente al mismo.

En este capitulo explicamos la teorfa general de las transacciones, desde el punto de
vista de las bases de datos de escritorio y SQL, y cémo son implementadas por los
diferentes sistemas. El programador tipico de bases de datos locales asocia la solu-
cién de los problemas de concurrencia con la palabra magica “bloqueos”. Como
veremos, esto es solo parte de la verdad, y en ocasiones, ni siquiera es verdad. Los
sistemas profesionales de bases de datos utilizan los bloqueos como un posible me-
canismo de implementacién del control de concurrencia a bajo nivel. Y el programa-
dor debe trabajar y pensar en #ransacciones, como forma de asegurar la consistencia de
sus operaciones en la base de datos.

¢Por qué necesitamos transacciones?

Por omisién, cuando realizamos modificaciones en tablas mediante C++ Builder y el
BDE, cada operacién individual es independiente de las operaciones que le preceden
y de las que siguen a continuacién. El fallo de una de ellas no afecta a las demas. Sin
embargo, existen ocasiones en que nos interesa ligar la suerte de varias operaciones
consecutivas sobre una base de datos.

El ejemplo clasico es la transferencia bancaria: hay que restar del saldo de un registro
y aumentar en la misma cantidad el saldo de otro. No podemos permitir que, una vez
actualizado el primer registro nos encontremos que alguien esta trabajando con el
segundo registro, y se nos quede el dinero de la transferencia en el limbo. Y no es
solucién regresar al primer registro y reingresar la cantidad extraida, pues puede que
otro usuario haya comenzado a editar este primer registro después de habetlo aban-
donado nosotros. En este caso nos verfamos como un jugador de béisbol atrapado
entre dos bases.

126 La Cara Oculta de C++ Builder

- $10.000

—
N . G
__ 4

+ $10.000

O considere una subida salarial a cierto grupo de empleados de una empresa. En este
caso, es mucho mas dificil dar marcha atras a la operacion si se produce un error a
mediados de la misma. Normalmente, los programadores que vienen del mundo de
las bases de datos locales atacan estos problemas blandiendo bloqueos a diestra y
siniestra. En el caso de la transferencia, un bloqueo sobre la cuenta destino y la
cuenta origen y jvenga transferencial En el caso de la subida masiva, un bloqueo
sobre la tabla completa, y jpobre del que intente acceder a la tabla mientras tanto! Es
cierto que los bloqueos son una de las muchas maneras de resolver los problemas de
acceso concurrente (aunque no la mejor). Pero una actualizacion puede fallar por
muchos mas motivos que por un bloqueo denegado; una violacién de alguna restric-
ci6én de validez puede dejarnos a mitad de una operacion larga de actualizacion sin
saber cémo retroceder.

La forma de salir de éste y de otros atolladeros similares es utilizar el concepto de
transaccion. Una transaccion es una secuencia de operaciones de lectura y escritura
durante las cuales se puede ver la base de datos como un todo consistente y, si se
realizan actualizaciones, dejatla en un estado consistente. Estoy consciente de que la
oracién anterior parece extraida de un libro de filosoffa, por lo cual dedicaré los pro-
ximos parrafos a despejar la niebla.

En primer lugar: “ver la base de datos como un todo consistente”. Nada que ver con
la ecologia ni con la Tabla Esmeralda. Con esto quiero decir que, durante todo el
intervalo que esta activa la transaccion, los valores leidos y no modificados por la
misma permanecen estables, y si al principio de la misma satisfacian las reglas de
integridad, siguen cumpliéndolas durante todo el tiempo de vida de la transaccion.

¢Elemental? No tanto. Suponga que una transacciéon quiere sumar los saldos de las
cuentas depositadas en nuestro banco, y comienza a recorrer la tabla pertinente. Su-
ponga también que las filas estin almacenadas por orden alfabético de acuerdo al
apellido, y que la transaccion se encuentra ahora mismo analizando la cuenta de
cierto sujeto de apellido Marteens. En ese preciso momento, llega un tal Albert
Einstein y quiere transferir diez mil d6lares a la cuenta de un tal Isaac Newton (gente
importante los clientes de este banco). La fila de Mr. Einstein se actualiza, decre-
mentando su saldo; esta fila ya ha sido leida por la transaccién que suma. Luego, la
fila de Mr. Newton incrementa su saldo en la cantidad correspondiente. Y esta fila no
ha sido leida aun por la transaccién sumadora. Por lo tanto, esta transaccion al final
reportara diez mil ddlares de mas en el saldo total almacenado; diez mil ddlares ine-
xistentes, que es lo mds triste del asunto.

Transacciones 127

- $10.000 +$10.000

v I
[Newton 1 I l . I IEinstein]

Sumando...

En segundo lugar: “si se realizan actualizaciones, dejar la base de datos en un estado
consistente”. La condicién anterior es necesaria, desde un punto de vista estricto,
para el cumplimiento de esta condicién, pues no se puede pretender realizar una
actualizacion que satisfaga las reglas de consistencia si la transaccion puede partir de
un estado no consistente. Pero implica mas que esto. En particular, se necesita ga-
rantizar que toda la secuencia de operaciones consideradas dentro de una transaccion
se ejecute; si la transaccién aborta a mitad de camino, los cambios efectuados deben
poder deshacerse automaticamente. Y esto vale también para el caso especial en que
el gato de la chica del piso de abajo entre por la puerta y se electrocute con el cable
de alimentacién del servidor. Después de retirar a la victima y reiniciar el servidor, la
base de datos no debe acusar recibo de las transacciones inconclusas: el espectaculo
debe continuat’.

El acido sabor de las transacciones

A veces, en la literatura anglosajona, se dice que las transacciones tienen propiedades
“acidas”, por las siglas ACID: Atomicity, Consistency, Isolation y Durability. O, forzando
un poco la traduccién para conservar las iniciales: atomicidad, consistencia, indepen-
dencia y durabilidad. La atomicidad no se refiere al caracter explosivo de las tran-
sacciones, sino al hecho de que deben ser indivisibles; se realizan todas las operaciones,
o no se realiza ninguna. Consistencia quiere decit, precisamente, que una transaccion
debe llevar la base de datos de un estado consistente a otro. Independencia, porque
para ser consistentes debemos imaginar que somos los Gnicos que tenemos acceso a
la base de datos en un instante dado; las demas transacciones deben ser invisibles
para nosotros. Y la durabilidad se refiere a que cuando una transaccion se confirma,
los cambios solamente pueden deshacerse mediante otra transaccion.

7 Nota del censor: Me estoy dando cuenta de que en este libro se maltrata y abusa de los
animales. Antes fue el perro de Codd; ahora, el gato de la vecina... Aunque os parezca men-
tira, una vez tuve un gato llamado Pink Floyd (aunque sélo respondia por Pinky), y un buen
dia se le ocurrié morder el cable de alimentacién de la tele. Lo curioso es que, a pesar de que
se quedd tieso, un oportuno masaje cardiaco lo devolvié a este mundo. Claro, era un gato
nuevo y ain no habfa consumido sus siete vidas.

128 La Cara Oculta de C++ Builder

Transacciones SQL y en bases de datos locales

Para que el sistema de gestiéon de base de datos reconozca una transaccién tenemos
que marcar sus limites: cuaindo comienza y cuando termina, ademas de como tet-
mina. Todos los sistemas SQL ofrecen las siguientes instrucciones para marcar el
principio y el fin de una transaccion:

start transaction
commt work
rol | back work

La primera instruccion sefiala el principio de una transaccion, mientras que las dos
ultimas marcan el fin de la transaccion. La instruccion commit work sefala un final
exitoso: los cambios se graban definitivamente; rollback work indica la intencion del
usuario de deshacer todos los cambios realizados desde la llamada a start transac-
tion. Solamente puede activarse una transaccién por base de datos en cada sesion.
Dos usuarios diferentes, sin embargo, pueden tener concurrentemente transacciones
activas.

La implementacién de transacciones para tablas locales (dBase y Paradox) es respon-
sabilidad del BDE. Las versiones de 16 bits del BDE no ofrecen esta posibilidad. A
partir de la versién 3.0 del BDE que aparecié con Delphi 2, se soportan las llamadas
transacciones locales. Esta implementacion es bastante limitada, pues no permite desha-
cer operaciones del lenguaje DDL (create table, o drop table, por ejemplo), y la
independencia entre transacciones es bastante pobre, como veremos mas adelante al
estudiar los niveles de aislamiento. Tampoco pueden activarse transacciones sobre
tablas de Paradox que no tengan definida una clave primaria. Y hay que tener en
cuenta la posibilidad de que al cerrar una tabla no se puedan deshacer posterior-
mente los cambios realizados en la misma, aunque ain no se haya confirmado la
transaccion.

Otra limitacién importante tiene que ver con el hecho de que las transacciones sobre
bases de datos de escritorio utilizan bloqueos. Paradox solamente admite hasta 255
bloqueos simultaneos sobre una tabla, y dBase es aun mas restrictivo, pues sélo per-
mite 100. Por lo tanto, estos son respectivamente los nimeros maximos de registros
que pueden ser modificados en una transacciéon de Paradox y dBase.

Transacciones implicitas y explicitas

Existen dos formas diferentes en las que una aplicacién puede utilizar las transaccio-
nes. En la seccién anterior he mencionado las instrucciones necesarias para marcar el
principio y fin de una transaccion, en lenguaje SQL. C++ Builder ofrece métodos en
el componente TDatabase para ejecutar dichas acciones, que serin estudiados en el

Transacciones 129

momento adecuado. Sin embargo, lo més frecuente es que el programador no inicie
explicitamente transacciones, y que aproveche las transacciones implicitas que puede
ofrecer el gestor de bases de datos. En Paradox y dBase esto implica no utilizar tran-
sacciones en absoluto.

Los sistemas SQL, en cambio, si ofrecen transacciones implicitas, que son aprove-
chadas por el BDE. Si el programador no ha iniciado una transaccién desde su pro-
grama, cada modificacién que la aplicacion intente realizar desde la estaciéon de tra-
bajo sera englobada en una transaccion para esta Unica operacion. ¢La razén? Lo que
la aplicacion cliente considera una simple actualizacién, puede significar varias actua-
lizaciones en realidad, si existen #iggers asociados a la accién de modificacion, como
vimos en el capitulo anterior. Ademas, la aplicacion puede ejecutar procedimientos
almacenados que modifiquen varias filas de la base de datos, y es légico desear que
este conjunto de modificaciones se aplique de forma atémica: todo o nada.

Si esta trabajando con InterBase a través del BDE, quizas le interese modificar el
parametro DRIVVER FIL.AGS en el controlador SQL Link. Si asigna 4096 a este
parametro, al confirmar y reiniciar una transaccion, se aprovecha el "contexto de
transaccion" existente, con lo cual se acelera la operacién. Estos parimetros se-
ran estudiados en el capitulo sobre el Motor de Datos de Borland.

Ahora bien, cada servidor implementa estas transacciones implicitas de forma dife-
rente, y es aconsejable que probemos cada tipo de servidor antes de confiar la inte-
gridad de nuestros datos a este comportamiento por omision.

La prueba que realizaremos es muy sencilla. Yo utilizaré una base de datos de Inter-
Base que viene con los ejemplos de C++ Builder y Delphi; usted puede usar cual-
quier otra base de datos SQL equivalente. Mi base de datos estd almacenada en el
siguiente fichero:

C:\Archivos de programa\ Archivos comunes\ Borland Shared\ Data\MastSql.GDB

Primero nos conectamos a la base de datos con el programa con el programa Inter-
Base Windows 1SQL., del grupo de programas de InterBase, y creamos el siguiente
procedimiento almacenado:

create procedure Transferencia(Odenante int, Beneficiario int,
Canti dad doubl e precision) as
begi n
updat e Enpl oyee
set Sal ary = Salary + :Cantidad
where EnpNo = :Beneficiario;
updat e Enpl oyee
set Sal ary = Salary - :Cantidad
where EnpNo = : Ordenante;
end "

130 La Cara Oculta de C++ Builder

Evidentemente, no se trata de una transferencia bancaria “real” (le estamos bajando
el salario a un empleado para subirselo a otro) pero nos bastara para lo que preten-
demos demostrar. Ahora modifiquemos las reglas sobre la tabla de empleados, de
modo que un empleado no pueda tener un salario negativo (jya quisieran algunos
jefes!):

alter table Enployee
add constraint Sal ari oPositivo
check (Salary > 0);

Intente ahora una “transferencia de salario” que deje con salario negativo al primer
empleado. Por ejemplo, puede ejecutar la siguiente instruccién desde el propio
Windows 1SQL, si la base de datos de ejemplos no ha sido ain modificada:

execute procedure Transferencia(2, 4, 100000)

Naturalmente, como el empleado nimero 2 no tiene ese salario, la segunda instruc-
ci6n update del procedimiento falla, al no cumplirse la restriccién sobre el salario
positivo. Pero lo importante es que si listamos los empleados, jnos encontraremos
que el registro del empleado nimero 4 no ha sido modificado, a pesar de que apa-
rentemente la primera instruccién se pudo ejecutar exitosamente!

Tome nota de la siguiente caracteristica de InterBase: cada ejecucion de un procedi-
miento o de un trigger inicia una mini-transaccién. Si ya hay alguna transaccién ex-
plicita se trata del unico caso en que InterBase permite alguna forma de transaccion
anidada. Si durante la ejecucion del procedimiento o trigger se produce una excep-
cién, todas las acciones realizadas en la mini-transaccion se anulan. Observe, sin
embargo que si ya hay una transaccion iniciada, no se deshacen automaticamente las
acciones previas a la ejecucion del procedimiento. El siguiente diagrama puede ayu-
darnos a aclarar la idea:

Iniciodela Procedimiento o Findela

transaccion tri %ger transaccion
[| | l .
L ! ! i g

Eje del tiempo

¢Y el resto de los servidores? He realizado la prueba con Oracle 8 y con Microsoft
SQL Server 7. En el CD-ROM que acompana al libro se incluyen seripzs sencillos para
que el lector repita el experimento, si lo desea. Resulta que Oracle se comporta de
forma similar a InterBase, jpero SQL Server no! En este sistema, la primera instruc-
cion se ejecuta sin problemas, pero cuando la segunda falla, las modificaciones reali-
zadas por la primera permanecen en la base de datos.

Transacciones 131

Hechos de tal calibre merecen que extraigamos una moraleja. Aunque en teorfa
C++ Builder trata de forma similar a todos los setvidores de datos, en la practica
encontramos diferencias como la que acabamos de presentar, que no hace impo-
sible la programacion independiente del formato de datos, pero que nos obliga a
prestar suma atencion a estos detalles.

Niveles de aislamiento de transacciones

Las propiedades atémicas de las transacciones valen tanto para sistemas multipuesto
como para sistemas con un solo usuario. Cuando es posible el acceso simultaneo a
una base de datos por varios usuarios o aplicaciones (que pueden residir en la misma
maquina), hay que tener en cuenta la forma en que estas transacciones se comportan
colectivamente. Para poder garantizar la consistencia de la base de datos cuando
varias transacciones se ejecutan concurrentemente sobre la misma, deben cumplirse
las siguientes condiciones:

Una transaccién no debe poder leer datos grabados por otra transacciéon mientras
ésta no haya finalizado.

Los datos leidos por una transacciéon deben mantenerse constantes hasta que la
transaccion que los ha leido finalice.

La primera condicién es evidente: no podemos tomar una decision en base a un dato
que ha sido colocado tentativamente, que no sabemos ain si viola o no las reglas de
consistencia de la base de datos. Solamente las transacciones transforman la base de
datos de un estado consistente a otro; pero sélo aquellas transacciones que terminan
exitosamente. ¢Elemental, no? Pues ni Paradox ni dBase afslan a una transaccién de
cambios no confirmados efectuados desde otros puestos. Comprendera que esto deja
mucho margen para el desastre...

En cuanto al segundo requerimiento, ya hemos hablado acerca de él cuando conta-
bamos la historia de la transferencia bancaria de Albert Einstein. La condicién que
estamos imponiendo se denomina frecuentemente lecturas repetibles, y esta motivada
por la necesidad de partir de un estado consistente para poder llegar sensatamente a
otro estado similar. La violacién de esta condicioén da lugar a situaciones en que la
ejecucion consecutiva de dos transacciones da un resultado diferente a la ejecucion
concurrente de las mismas. A esto se le llama, en la jerga académica, el criterio de
serializabilidad (mi procesador de textos protesta por la palabra, pero yo sé Informa-
tica y él no).

En realidad, el criterio de serializabilidad implica también que se prohiba la apari-
cion de filas fantasmas: un registro insertado por otra transacciéon no puede apare-

132 La Cara Oculta de C++ Builder

cer en el campo de visiéon de una transaccion ya iniciada. Pero la mayoria de los
sistemas con los que trataremos logran la serializabilidad a la par que las lecturas
repetibles.

Considere una aplicaciéon que lee un registro de una tabla para reservar asientos en
un vuelo. Esta aplicacién se ejecuta concurrentemente en dos puestos diferentes.
Llego a uno de los puestos y facturo mi equipaje; frente al otro terminal se sitda (joh,
sorpresal) Pamela Anderson. Antes de comenzar nuestras respectivas transacciones,
el registro que almacena la dltima plaza disponible del vuelo a Tahiti contiene el valor
1 (hemos madrugado). Mi transaccién lee este valor en la memoria de mi ordenador.
Pam hace lo mismo en el suyo. Me quedo atontado mirando a la chica, por lo cual
ella graba un 2 en el registro, termina la transaccién y se marcha. Regreso a la triste
realidad y pulso la tecla para terminar mi transaccion. Como habia lefdo un 1 de la
base de datos y no hay transacciones en este momento que estén bloqueando el re-
gistro, grabo un dos, suspiro y me voy. Al montar en el avién descubro que Pam y yo
viajamos en el mismo asiento, y uno de los dos tiene que ir sobre las piernas del otro.
Esta es una situaciéon embarazosa; para Pamela, claro esta.

¢Demasiada verbosa la explicacién? Intentémoslo otra vez, pero con menos poesia.
Hay una aplicacién que ejecuta el siguiente algoritmo:

Leer Val or
Valor := Valor + 1
Escri bir Val or

Esta claro que si ejecutamos este algoritmo dos veces, una a continuacioén de la otra,
como resultado, la vatiable I"a/r debe incrementarse en dos. Pero cuando la ejecu-
cién no es secuencial, sino concurrente, las instrucciones elementales que componen
el algoritmo pueden entremezclarse. Una de las muchas formas en que puede ocurrir
esta mezcla es la siguiente:

Leer Valor (1) ---

(..espera.)) Leer Valor (1)

Valor := Valor + 1 (2) (..espera.))

(..espera..) Valor := Valor + 1 (2)
(..espera..) Escribir Valor (2)
Escribir Valor (2)

El resultado final almacenado en Iakrseria 2, en vez del correcto 3. El problema se
presenta cuando la segunda transaccion escribe el valor. La primera sigue asumiendo
que este valor es 7, pues fue lo que ley6 al principio. Si en este momento, el algorit-
mo releyera la variable, se encontraria con que su contenido ha cambiado. Piense en
la vida real: usted saca su billetera, cuenta sus riquezas y se entera de que tiene dos
billetes de 100 euros. Un minuto mas tarde va a pagar en una tienda, saca la billetera
y descubre que uno de los billetes se ha evaporado en la zona crepuscular.

Transacciones 133

En conclusién, todo sistema de bases de datos deberfa implementar las transacciones
de forma tal que se cumplan las dos condiciones antes expuestas. Pero una imple-
mentacién tal es algo costosa, y en algunas situaciones se puede prescindir de alguna
de las dos condiciones, sobre todo la segunda (y no lo digo por la sefiorita Ander-
son). En el estandar del 92 de SQL se definen tres niveles de aislamiento de transac-
ciones, en dependencia de si se cumplen las dos condiciones, si no se cumplen las
lecturas repetibles, o si no se cumple ninguna de las condiciones.

C++ Builder tiene previstos estos tres niveles de aislamiento de transacciones, que se
configuran en la propiedad Translsolation de los objetos de tipo TDatabase. Los valores
posibles para esta propiedad son:

Constante Nivel de aislamiento
tDirtyRead Lee cambios sin confirmar
1iReadCommited Lee solamente cambios confirmados

tiRepeatableRead Los valores leldos no cambian durante la transaccion

El valor por omision de Translsolation es tiReadCommited. Aunque el valor almacenado
en esta propiedad indique determinado nivel de aislamiento, es prerrogativa del sis-
tema de bases de datos subyacente el aceptar ese nivel o forzar un nivel de aisla-
miento superior. Por ejemplo, no es posible (ni necesario o conveniente) utilizar el
nivel #DirtyRead sobre bases de datos de InterBase. Si una de estas bases de datos se
configura para el nivel #DirtyRead, InterBase establece la conexién mediante el nivel
tiReadCommited. Por otra parte, como ya hemos mencionado, la implementacién ac-
tual de las transacciones locales sobre tablas Paradox y dBase solamente admite el
nivel de aislamiento #DirtyRead, cualquier otro nivel es aceptado, pero si intentamos
iniciar una transaccion sobre la base de datos, se nos comunicara el problema.

Registros de transacciones y bloqueos

¢Como logran los sistemas de gestion de bases de datos que dos transacciones con-
currentes no se estorben entre si? La mayor parte de los sistemas, cuya arquitectura
esta basada en el arquetipico System R, utilizan técnicas basadas en bloqueos. Mas
adelante, al estudiar como se actualizan registros con C++ Builder, descubriremos
que Paradox y dBase utilizan también bloqueos para garantizar el acceso exclusivo a
registros, implementando un control de concurrencia pesimista. Sin embargo, aunque
también se trata de “bloqueos”, el significado de los mismos es bastante diferente al
que tienen en los sistemas SQL. Ahora veremos solamente c6mo se adapta este me-
canismo de sincronizacion a la implementacion de transacciones.

En primer lugar, scémo evitar las “lecturas sucias”? Existen dos técnicas basicas. La
mas sencilla consiste en “marcar” el registro que modifica una transacciéon como
“sucio”, hasta que la transaccién confirme o anule sus grabaciones. A esta marca es a

134 La Cara Oculta de C++ Builder

lo que se le llama “bloqueo”. Si otra transaccion intenta leer el valor del registro, se le
hace esperar hasta que desaparezca la marca sobre el registro. Por supuesto, esta
politica se basa en un comportamiento “decente” por parte de las transacciones que
modifican registros: no deben dejarse cambios sin confirmar o anular por periodos
de tiempo prolongados.

Ahora bien, sc6mo es que la transaccién que realiza el cambio restaura el valor origi-
nal del registro si se decide su anulaciéon? Lo mas frecuente, en los sistemas inspira-
dos por System R, es encontrar implementaciones basadas en registros de transacciones
(transaction logs®). Estos registros de transacciones son ficheros en los cuales se graban
secuencialmente las operaciones necesarias para deshacer las transacciones no termi-
nadas. Algunos guardan en el /yg el valor original; otros, por el contrario, guardan el
nuevo valor no confirmado, y lo transfieren a la base de datos solamente al confir-
marse la transaccion. En la teorfa de bases de datos, hablarfamos de #ndo y redo logs
(registros para deshacer o rebacer). Cada técnica tiene sus ventajas y desventajas: por
ejemplo, si se utiliza un registro de rehacer y alguien corta la corriente, la base de
datos no queda afectada, y al volver a encender el sistema podemos seguir trabajando
sobre un estado consistente. Sin embargo, la aplicacién de los cambios durante la
confirmacién es sumamente peligrosa, y el implementador debe tomar precauciones
extraordinarias.

Esto nos da una idea para otra politica de acceso: si una aplicacién, al intentar leer un
registro, encuentra que ha sido modificado, puede ir a buscar el valor original. Si utili-
zamos un redo log, el valor es el que se encuentra dentro del propio registro. En caso
contrario, hay que buscarlo en el registro de transacciones. Por supuesto, esta técnica
es superior a la anterior, pues ofrece mejores tiempos de acceso incluso en caso de
modificaciones frecuentes.

Paradox y dBase implementan un ##do log, pero cuando una aplicacion lee un re-
gistro modificado por otra transaccion, no se toma la molestia de buscar el valor
original en el /g file. Por este motivo es que aparecen lecturas sucias.

Todos los bloqueos impuestos por una transaccion, por supuesto, son liberados al
terminar ésta, ya sea confirmando o anulando.

El fichero con el registro de transacciones es una estructura dificil de mantener. Mu-
chos sistemas lo utilizan para la recuperacion de bases de datos estropeadas por fallos

8 La palabra inglesa /g quiere decir literalmente “lefio”, pero en este contexto se refiere al
“cuaderno de biticora”, en que los capitanes de navio anotaban las incidencias del viaje. En la
gloriosa época de la piraterfa, una de las principales anotaciones era la velocidad de la nave.
Para medirla, se arrojaba un /7o al agua por la proa, y se calculaba el tiempo que tardaba en
llegar a la popa. De no haber un madero a mano, se arrojaba al cocinero, con el inconveniente
de que el pataleo de éste podia distorsionar los resultados.

Transacciones 135

fisicos. Suponga que la ultima copia de seguridad de su base de datos se realiz6 el
domingo, a medianoche. El lunes por la tarde ocurre lo impensable: encima de su
oficina van a montar un bingo, inician las obras de remodelado y las vibraciones de la
maquinaria estropean fisicamente su disco duro. ¢No se lo cree? Pues a mi me pasé.
Supongamos que hemos tenido suerte, y solamente se ha perdido el fichero que con-
tiene la base de datos, pero que el fichero con el /g esta intacto. Entonces, a partir de
la Gltima copia y de las transacciones registradas en el fichero, pueden restablecerse
los cambios ocurridos durante la jornada del lunes.

Para no tentar a la suerte, los cursos para administradores de bases de datos reco-
miendan que los fichero de datos y de transacciones estén situados en discos fisicos
diferentes. No s6lo aumenta la seguridad del sistema, sino que ademds mejora su
eficiencia. Medite en que cada modificacion tiene que escribir en ambas estructuras, y
que si hay dos controladores fisicos para atender a las operaciones de grabacion,
mejor que mejor.

Por supuesto, el tamafio del registro de transacciones es variable, y dificil de predecir.
¢Y sabe qué? Pues que en SQL Server 6.5 el tamafio del /g file es estatico, por lo que
necesita la intervencion de un administrador de sistemas para hacerlo crecer cuando
esta llegando al maximo de su capacidad. La figura siguiente muestra el diadlogo que
aumenta el tamafio maximo reservado para el registro de transacciones de MS SQL
Server 6.5:

Expand Database - JULIA\pubs []
Data Device: |master | sizeaEy

+| sizemey [is

Log Device:

- Ayailable Space On Database Devices

SWsLog —

ShiSData —

MSDBData —|

master —|

0 15,00 30,00 45,00 60,00
Megabytes
‘ MSDBLog | 20,00 | | |

gxpanumnwl Schedule | Cancsl | Help |

N

Este es un motivo importante para, si ya tiene un SQL Server, se actualice a la ver-
sion 7, en la que han resuelto este problema.

136 La Cara Oculta de C++ Builder

Lecturas repetibles mediante bloqueos

Las técnicas expuestas en la secciéon anterior no garantizan la repetibilidad de las
lecturas dentro de una transaccion. ¢(Recuerda el ejemplo en que dos transacciones
incrementaban una misma vatiable? Estas eran las instrucciones finales de la secuen-
cia conflictiva:

(..espera.) Escribir Valor (2)
Escribir Valor (2)

El problema es que la segunda transaccion (la primera en escribir) libera el bloqueo
en cuanto termina, lo que sucede antes de que la primera transaccion intente su gra-
bacién. Eso ... o que ambas transacciones intentan bloquear demasiado tarde. En
realidad, hay una solucién draconiana a nuestro alcance: todas las transacciones de-
ben anticipar qué registros van a necesitar, para bloqueatlos directamente al iniciarse.
Claro esta, los bloqueos también se liberan en masa al terminar la transaccién. A esta
estrategia se le denomina blogueo en dos fases (two-phase locking) en los libros de texto,
pero no es recomendable en la practica. En primer lugar, la previsiéon de las modifi-
caciones no es siempre posible mediante algoritmos. Y en segundo lugar, aun en los
casos en que es posible, limita demasiado las posibilidades de concurrencia de las
transacciones.

Para una solucion intermedia necesitaremos, al menos, dos tipos de bloqueos dife-
rentes: de lectura y de escritura (read locks/ write locks). La siguiente tabla aparece en casi
todos los libros de teoria de bases de datos, y muestra la compatibilidad entre estos
tipos de bloqueos:

Lectura Escritura
Lectura Concedido Denegado
Escritura | Denegado Denegado

En la nueva estrategia, cuando una transaccion va a leer un registro, coloca primera-
mente un bloqueo de lectura sobre el mismo. De acuerdo a la tabla anterior, la tnica
posibilidad de que este bloqueo le sea denegado es que el registro esté bloqueado en
modo de escritura por otra transaccion. Y esto es necesario que sea asi para evitar las
lecturas sucias. Una vez concedido el bloqueo, las restantes transacciones activas pue-
den leer los valores de este registro, pues se les pueden conceder otros bloqueos de
lectura sobre el mismo. Pero no pueden modificar el valor leido, pues lo impide el
bloqueo impuesto por la primera transaccion. De este modo se garantizan las lectu-
ras repetibles.

Quizas sea necesatia una aclaracion: la contenciéon por bloqueos se aplica entre tran-
sacciones diferentes. Una transaccién puede colocar un bloqueo de lectura sobre un
registro y, si necesita posteriormente escribir sobre el mismo, promover el bloqueo a

Transacciones 137

uno de escritura sin problema alguno. Del mismo modo, un bloqueo de escritura im-
puesto por una transaccion no le impide a la misma realizar otra escritura sobre el re-
gistro mas adelante.

Por supuesto, todo este mecanismo se complica en la practica, pues hay que tener en
cuenta la existencia de distintos niveles de bloqueos: a nivel de registro, a nivel de pa-
gina y a nivel de tabla. Estos niveles de bloqueos estan motivados por la necesidad de
mantener dentro de un tamafio razonable la tabla de bloqueos concedidos por el sis-
tema. Si tenemos un nimero elevado de bloqueos, el tiempo de concesion o nega-
ci6n de un nuevo bloqueo estara determinado por el tiempo de bisqueda dentro de
esta tabla. ¢Recuerda el ejemplo de la transferencia bancaria de Albert Einstein versus
la suma de los saldos? La aplicacién que suma los saldos de las cuentas debe imponer
bloqueos de lectura a cada uno de los registros que va leyendo. Cuando la transaccién
termine habra pedido tantos bloqueos como registros tiene la tabla, y esta cantidad
puede ser respetable. En la practica, cuando el sistema detecta que una transaccion
posee cierta cantidad de bloqueos sobre una misma tabla, trata de promover de nivel
a los bloqueos, transformando la multitud de bloqueos de registros en un tnico blo-
queo a nivel de tabla.

Sin embargo, esto puede afectar la capacidad del sistema para hacer frente a multiples
transacciones concurrentes. Tal como hemos explicado en el ejemplo anterior, la
transaccion del fisico aleman debe fallar, pues el registro de su cuenta bancaria ya ha
sido bloqueado por la transacciéon que suma. No obstante, una transferencia entre
Isaac Newton y Erwin Schrédinger debe realizarse sin problemas, pues cuando la
transacciéon sumadora va por el registro de Mr. Marteens, los otros dos registros es-
tan libres de restricciones. Si, por el contrario, hubiéramos comenzado pidiendo un
bloqueo de lectura a nivel de tabla, esta ultima transaccion habrfa sido rechazada por
el sistema.

Se pueden implementar también otros tipos de bloqueo ademas de los clasicos de
lectura y escritura. En particular, las politicas de bloqueo sobre indices representados
mediante arboles balanceados son bastante complejas, si se intenta maximizar el
acceso concurrente a los datos.

El esquema presentado coincide a grandes rasgos con la forma en que trabaja
SQL Server. La implementacion de las lecturas repetibles por el SQL Link de
Oracle es algo diferente. Oracle genera una version solo lectura de los datos lef-
dos en la transaccion, y no permite actualizaciones a la aplicacion que solicita
este nivel de aislamiento.

138 La Cara Oculta de C++ Builder

Variaciones sobre el tema de bloqueos

¢Qué sucede cuando una transaccién pide un bloqueo sobre un registro y encuentra
que esta ocupado temporalmente? Si consultamos los libros clasicos sobre teorfa de
bases de datos, veremos que casi todos asumen que la aplicacion debe esperar a que
el sistema pueda concederle el bloqueo. El hecho es, sin embargo, que la mayoria de
estos autores se formaron y medraron en el oscuro periodo en que los ordenadores
se programaban mediante tarjetas perforadas, preferiblemente a mano. Para ejecutar
una aplicacién, habfa que rellenar montones de formularios para el Administrador
del Centro de Calculo, y lo mas probable es que el dichoso programa se ejecutara
mientras nosotros no estabamos presentes. Por lo tanto, no se podia contar con la
intervencion del usuario para resolver el conflicto de intereses entre aplicaciones que
luchaban por un mismo registro.

La otra solucién extrema al problema del conflicto al bloquear es devolver inmedia-
tamente un error a la aplicacion cliente. Aunque parezca mentira a primera vista, ésta
es la solucién mas flexible, pues el programador puede decidir si la aplicacién debe
esperar y reintentar, o si debe anular inmediatamente la transaccién y dedicarse a otra
cosa. Y lo mas sensato que puede hacer, en esta época de la Informatica Interactiva,
es pasatle la patata caliente al usuario para que decida.

¢Coémo se comporta cada sistema especifico de los que vamos a tratar? Depende, en
muchos casos, de cémo esta configurado el Motor de Datos de Botrland, cuando éste
actia como capa intermedia. Oracle espera indefinidamente a que el bloqueo con-
flictivo se libere. SQL Server e Informix permiten configurar en el BDE el tiempo
que debe esperar una transaccion antes de dar por fallido el intento de bloqueo. En
cuanto a InterBase, si la version del SQL Link es anterior a la 5.0.1.23, se genera una
excepcion inmediatamente al encontrar un registro bloqueado (no se alarme, espere a
leer el resto del capitulo). En realidad, el API de bajo nivel de InterBase puede tam-
bién soportar directamente el modo de espera, y esto se ha implementado en las
versiones mas recientes del SQL Link.

El parametro WAIT ON LLOCKS del controlador de InterBase es el que deter-
mina el comportamiento de InterBase frente a un bloqueo. El tiempo de espera
por bloqueos de MS SQL Setver se ajusta en el parametro TIMEOUT de su
controlador.

Otro problema que se presenta en relacion con los bloqueos es conocido como
abrazo mortal, o deadlock. Hay dos nifios en una guarderfa, y una moto y una escopeta
de juguete. El primero balbucea: “yo quiero la moto”; y el segundo: “yo quiero la
escopeta”. Pero si el objetivo de estos precoces chavales es ir de easy riders, 1o van a
tener complicado, pues no van a obtener la otra mitad del atuendo. Uno de ellos
tendra que renunciar, por lo que serd necesaria la actuaciéon de la domadora de la

Transacciones 139

guarderfa. Eso, por supuesto, si nuestros nifios son de los que esperan indefinida-
mente a que se libere el “bloqueo” sobre el juguete deseado. Si son de los que se
rinden a la primera (jes lo preferible en este casol), en cuanto el primero solicita la
escopeta y ve que esta en uso, cambia de juego y deja al segundo en libertad para ir
por las carreteras violando la ley.

Existe una sencilla receta para minimizar la aparicion de abrazos mortales, y que es
de particular importancia en aquellos sistemas que hacen esperar a las aplicaciones
por los bloqueos que solicitan:

“Obligne a las transacciones a bloquear siempre en el mismo orden”

Por ejemplo, “moto” y “escopeta”. Enséiieles el alfabeto a los nifios, para que
cuando pidan varios juguetes, lo hagan en orden alfabético (sno es mucho pedir para
un easy rider?). Otro ejemplo, extraido del asi llamado mundo real: en un sistema de
entrada de pedidos hay que actualizar las existencias en almacén de los articulos
contenidos en un pedido. Entonces, lo mas sensato es ordenar las actualizaciones de
acuerdo al c6digo o al nombre del articulo. Asi se evitan abrazos mortales entre pe-
didos que venden C++ Builder/Delphi, y Delphi/C++ Builder.

El jardin de los senderos que se bifurcan

InterBase resuelve los problemas de concurrencia con una técnica diferente a las
utilizadas por los demas sistemas de bases de datos. Si le atrae la ciencia ficcion, los
viajes en el tiempo y la teoria de los mundos paralelos, le gustara también la siguiente
explicacion.

Volvamos al ejemplo de las maniobras financieras de la comunidad internacional de
fisicos, suponiendo esta vez que el sistema de base de datos empleado es InterBase.
Este dia, Mr. Marteens, que no es fisico ni matematico, sino banquero (por lo tanto,
un hombre feliz), llega a su banco temprano en la mafiana. Para Marteens levantarse
a las nueve de la mafiana es madrugar, y es a esa hora que inicia una transaccién para
conocer cuan rico es. Recuerde esta hora: las nueve de la mafiana.

A las nueve y diez minutos se presenta Albert Einstein en una de las ventanas de la
entidad a mover los famosos diez mil délares de su cuenta a la cuenta de Newton. Si
Ian Marteens no hubiese sido programador en una vida anterior y hubiera escogido
para el sistema informatico de su banco un sistema de gestién implementado con
bloqueos, Einstein no podtia efectuar su operacion hasta las 9:30, la hora en que
profetizamos que terminara la aplicacién del banquero. Sin embargo, esta vez Albert
logra efectuar su primera operacion: extraer el dinero de su cuenta personal. Nos lo
imaginamos pasandose la mano por la melena, en gesto de asombro: ¢qué ha suce-

dido?

140 La Cara Oculta de C++ Builder

Bueno, mi querido fisico, ha sucedido que el Universo de datos almacenados se ha
dividido en dos mundos diferentes: el mundo de Marteens, que corresponde a los
datos existentes a las nueve de la mafiana, y el mundo de Einstein, que acusa todavia
un faltante de $10.000, pues la transaccién no ha terminado. Para que esto pueda
ocurrir, deben existir dos versiones diferentes de la cuenta bancaria de Einstein, una
en cada Universo. La version del fisico es todavia una version tentativa; si la sefiora
Einstein introduce la tarjeta en un cajero automatico para averiguar el saldo de la
cuenta de su marido, no tendra acceso a la nueva version, y no se enterara de las
locuras inversionistas de su conyuge. En este punto insistiremos mas adelante.

El Universo, segin Marteens

N\ N\

1 Y 1 Y

&/)

N Dos versiones del mismo registro

El Universo, segln Einstein

Algo parecido sucedera cuando Einstein modifique la cuenta de Newton, incremen-
tandola en la cantidad extraida. Esta vez también se creara una nueva versiéon que no
sera visible para la transaccion de las 9:00. N7 siquiera cuando Einstein confirme la transac-
cion. La idea es que cada transaccién solamente ve el mundo tal como era en el mo-
mento en que se inicia. Es como si cada transaccion sacara una copia local de los
datos que va a utilizar. De hecho, hay algunos sistemas que utilizan técnicas parecidas
de replicacion, para garantizar las lecturas repetibles. InterBase 70 hace esto. InterBase
saca copias de la parte de la base de datos afectada por actualizaciones concurrentes;
de esta manera, se mantiene la base de datos dentro de un tamafo razonable.

Los problemas de este enfoque se producen cuando los Universos deben volver a
sincronizarse. Por ejemplo, ¢qué sucede cuando Einstein confirma su transaccion?
Nada: siguen existiendo dos versiones de su cuenta. La mas reciente es la modificada,
y si alguna transaccion comienza después de que esta confirmacion ocurra, la version
que vera es la grabada por Einstein. La version de las 9:00 existe solamente porque
hay una transaccién que la necesita hasta las 9:30; a partir de ese momento, pierde su
razo6n de ser y desaparece.

Pero no siempre las cosas son tan faciles. Mientras Einstein realizaba su transferen-
cia, Newton, que hacfa las compras en el supermercado (hay algunos que abren muy
temprano), intentaba pagar con su tarjeta. Iniciaba una transaccién, durante la cual
extrafa dinero de su cuenta; Newton no puede ver, por supuesto, los cambios realiza-
dos por Einstein, al no estar confirmada la transaccién. En este caso, Newton no
puede modificar el registro de su cuenta, pues InterBase solamente permite una ver-
sién sin confirmar por cada registro.

Transacciones 141

Es util, por lo tanto, distinguir entre versiones “tentativas”, que pertenecen a transac-
ciones sin confirmar, y versiones “definitivas”, que pertenecen a transacciones ya
confirmadas:

Version tentativa
Version confirmada
mas reciente

Wl

Versiones confirmadas

Solamente puede haber una versién tentativa por registro. Esta restriccion actda,
desde el punto de vista de las aplicaciones clientes, exactamente igual que un bloqueo
de escritura a nivel de registro. Cuando InterBase detecta que alguien intenta crear
una version de un registro que ya tiene una version tentativa, lanza el siguiente men-
saje de error; extrafio y confuso, segiin mi humilde opinion:

“A deadlock was detected”

Sin embargo, si se permiten varias versiones confirmadas de un mismo registro. Si
una aplicacién modifica un registro, y hay otra transaccién activa que ha lefdo el
mismo registro, la versién antigua se conserva hasta que la transaccion desfasada
culmina su ciclo de vida. Evidentemente, se pueden acumular versiones obsoletas,
pero en cualquier caso, cuando se conecta una nueva transaccion, siempre recibe la
version confirmada mas reciente.

Con las versiones de registros de InterBase sucede igual que con las creencias
humanas: no importa si se ha demostrado que tal o mas cual creencia es falsa.
Siempre que alguna pobre alma tenga fe, el objeto en que se cree “existe”. Y si
duda de mi palabra, preguntele al Sr. Berkeley.

¢Blogueos o versiones?

En comparacién con las técnicas de aislamiento basadas en la contencién (bloqueos),
la técnica empleada por InterBase, conocida como Arguitectura Multigeneracional, se
puede calificar de optimista. Cuando se trata de optimismo y pesimismo en relacion
con la implementacién del aislamiento entre transacciones, las ventajas de una estra-
tegia optimista son realmente abrumadoras. Los sistemas basados en bloqueos han
sido disefiados y optimizados con la mente puesta en un tipo de transacciones cono-
cidas como OLTP, de las siglas inglesas Online Transaction Processing (procesamiento

142 La Cara Oculta de C++ Builder

de transacciones en linea). Estas transacciones se caracterizan por su breve duracién,
y por realizar preferentemente escrituras. Como las transacciones proceden por rafa-
gas, y cada una involucra a unos pocos registros, la posibilidad de un conflicto entre
un par de ellas es pequefia. Como ejemplo practico, piense en cémo funciona una
base de datos que alimenta a una red de cajeros automaticos. Evidentemente, la téc-
nica de bloqueos a nivel de registro funciona estupendamente bajo estas suposicio-
nes. Y lo que también es de notar, la técnica optimista también da la talla en este
€aso.

Sin embargo, existen otros tipos de transacciones que estropean la fiesta. Son las
utilizadas por los sistemas denominados DSS: Decision Support Systems, o sistemas de
ayuda para las decisiones. El ejemplo de la transaccién que suma los saldos, y que he-
mos utilizado a lo largo del capitulo, es un claro ejemplar de esta especie. También las
aplicaciones que presentan graficos, estadisticas, que imprimen largos informes...
Hstas transacciones se caracterizan por un tiempo de vida relativamente prolongado,
y por preferir las operaciones de lectura.

<Otro ejemplo importante?, el proceso que realiza la copia de seguridad de la
base de datos. jLa transaccién iniciada por este proceso debe tener garantizadas
i 8
b
las lecturas repetibles, o podemos quedarnos con una copia inconsistente de la
base de datos!

En un sistema basado en bloqueos las transacciones OLTP y DSS tienen una dificil
coexistencia. En la practica, un sistema de este tipo debe “desconectar” la base de
datos para poder efectuar la copia de seguridad (“Su operaciéon no puede efectuarse
en estos momentos”, me dice la verde pantalla de mi cajero). De hecho, uno de los
objetivos de técnicas como la replicacion es el poder aislar fisicamente a las aplica-
ciones de estos dos tipos entre si. Sin embargo, InterBase no tiene ninguna dificultad
para permitir el uso consistente y simultineo de ambos tipos de transacciones. Esta
clase de consideraciones condiciona muchas veces el rendimiento de un sistema de
bases de datos.

En contraste con los sistemas basados en bloqueos, que necesitan un /g file para el
control de atomicidad, en una arquitectura como la de InterBase, las propias versio-
nes de las filas modificadas son la Gnica estructura necesaria para garantizar la atomi-
cidad. En realidad, hasta que una transaccién finaliza, las versiones modificadas re-
presentan datos “tentativos”, no incorporados a la estructura principal de la base de
datos. Si la base de datos falla durante una transaccion, basta con reiniciar el sistema
para tener la base de datos en un estado estable, el estado del que nunca sali6. Las
versiones tentativas se convierten en “basura”, que se puede recoger y reciclar.

Transacciones 143

Database Properties

Summary |nformation

Database: C:ADATAMastsgl gdb
Owner: SYSDBA

Secondary Files Start Page

Allocated DB pages: 458 Page Size: 1024

"Ennhgurahnn

Sweep Interval: IZUUUU I Enable Forced Wiites
ak. I Cancel Help |

Y este es el inconveniente, un inconveniente menor en mi opinién, de la arquitectura
multigeneracional: la necesidad de efectuar de vez en cuando una operacién de reco-
gida de basura (garbage collection). Esta operacion se activa periddicamente en Inter-
Base cada cierto nimero elevado de transacciones, y puede coexistir con otras tran-
sacciones que estén ejecutandose simultineamente. También se puede programar la
operacion para efectuarla en momentos de poco trafico en el sistema; la recogida de
basura consume, naturalmente, tiempo de procesamiento en el servidor.

Niveles de aislamiento y transacciones implicitas

Antes en este capitulo, hemos mencionado la existencia de transacciones implicitas
para los sistemas de bases de datos SQL, que tienen lugar al no iniciarse transaccio-
nes explicitas. Es necesario tomar conciencia de este hecho por una pregunta para la
que ya podemos dar respuesta: scudl es el nivel de aislamiento de estas transacciones
implicitas?

Resulta que el BDE utiliza por omisién el nivel #ReadCommitted, que no nos protege
de la aparicion de lecturas no repetibles. La eleccion es sensata, pues muchos siste-
mas no permiten transacciones con lecturas repetibles en las que simultineamente se
pueda escribir en la base de datos (Oracle, por ejemplo).

Pero existe una razén de mas peso, aunque menos evidente, para dejar las cosas
como estan. Como cualquier desarrollador sabe, la mayor parte de una aplicacién de
bases de datos tipica se ocupa de mantenimientos de tablas simples: altas, bajas y
modificaciones de registros individuales. Para este modo de trabajo es preferible que
aparezcan lecturas no repetibles. Si nos aislaramos en el nivel #RepeatableRead y al-
guien modificase un registro desde otro puesto, tendriamos que entrar y salir del
programa (o iniciar una transaccion explicitamente) para poder ver ese cambio.

De hecho, el controlador de InterBase del BDE puede configurarse para que las
transacciones implicitas garanticen lecturas repetibles; basta con sumar 512 al valor

144 La Cara Oculta de C++ Builder

del parametro DRIVVER FI.AGS. Sin embargo, por las razones que acabo de expo-
ner, esta técnica no es recomendable en situaciones generales.

De modo que si estamos realizando operaciones de mantenimiento sobre una tabla
simple, sencillamente utilizamos un nivel de aislamiento intermedio. En definitiva se
trata de operaciones que son atomicas de por si, ¢o no? {Cuidado, pues podemos
equivocarnos! Pueden existir #iggers asociados a las instrucciones de actualizacion
sobre la tabla, que modifiquen otros registros paralelamente. En tales casos, hay que
analizar detenidamente si el uso de una transaccion read committed puede ocasionar
incoherencias en la base de datos. De ser positiva la respuesta, estaremos obligados a
resolver el problema de algin modo: trabajando con transacciones explicitas (Inter-
Base) o utilizando mecanismos de bajo nivel en SQL para garantizar la imposiciéon de
bloqueos (Oracle, MS SQL Server). Estos mecanismos de bajo nivel seran estudiados
en los capitulos que vienen a continuacion.

Capitulo

Microsoft SQL Server

N ESTE CAPITULO ANALIZAREMOS LAS CARACTERISTICAS generales de la

implementacién de SQL por parte de Microsoft SQL Server. Este sistema es

uno de los mas extendidos en el mundo de las redes basadas en Windows
NT. No est4, sin embargo, dentro de la lista de mis sistemas favoritos, por dos razo-
nes. La primera: una arquitectura bastante pobre, con tamafio fijo de pagina, blo-
queos a nivel de pagina que disminuyen la capacidad de modificacién concurrente,
ficheros de datos y de transacciones de tamafio fijo... La segunda razén: MS SQL
Server tiene uno de los dialectos de SQL mas retorcidos y hottibles del mundo de los
servidores de datos relacionales, dudoso privilegio que comparte con Sybase.

La primera razon pierde algo de peso con la aparicion de la version 7 de este sistema
de bases de datos, que mejora bastante la arquitectura fisica utilizada. En el presente
capitulo describiremos esta version y la 6.5, debido a su amplia implantacién.

Herramientas de desarrollo en el cliente

La herramienta adecuada para diseflar y administrar bases de datos de MS SQL Set-
ver se llama SQI. Enterprise Manager. Normalmente, esta aplicacion se instala en el
servidor de datos, pero podemos también instalarla en el cliente. Con el Enterprise
Manager podemos crear dispositivos (mas adelante veremos qué son), bases de datos,
crear usuarios y administrar sus contrasefias, ¢ incluso gestionar otros servidores de
forma remota.

Silo que necesitamos es ejecutar consultas individuales o todo un serip? con instruc-
ciones, el arma adecuada es el SOL Query Tool, que puede ejecutarse como aplicacién
independiente, o desde un comando de ment de SOL Enterprise Manager, como se
muestra en la siguiente imagen. Dentro del menu Fie de esta aplicacién encontrare-
mos un comando para que ejecutemos nuestros serzpts SQL.

146 La Cara Oculta de C++ Builder

&1 Microsoft SOL Enterprise Manager =
File Edt Wiew Queny Server Tools Manage Object Window Help
) A e | = e &
‘Gl Server Manager ol
CHE| er\sa
21| (= 2] oe[mester = cnseries #1 rew caery eI
Query | Besuts | Statistics U0 |
/%% Creacién de dispositivos y bases de datos xxx/ =
disk init
name = 'mastsgldev' .
physnans = 'c: data‘mastsql.dat'.
wdevna = 33
size = 8192
o
create database HastSgl
on nastsgldev = 12
log on mastsgldev = 4
o
use HastSgl
Ll »
@[~ Facts sq Connections : 1 13,1184
41 |

[WMICHELLE

Hay que reconocer que las herramientas de administraciéon de MS SQL Server clasi-
fican entre las amigables con el usuario. Esto se acentia en la versién 7, en la cual

pegas una patada al servidor y saltan cinco o seis asistentes (wizards) para adivinar qué
es lo que quieres realmente hacer.

Creacion de bases de datos con MS SQL Server

Uno de los cambios que introduce la versiéon 7 de SQL Server es precisamente en la
forma de crear bases de datos. En esta seccion, sin embargo, describiré fundamen-
talmente la técnica empleada hasta la version 6.5, para todos aquellos que prefieran
seguir sufriendo. Ademids, las bases de datos de Sybase se crean con mecanismos si-
milares.

Para trabajar con SQL Server 6.5 hay que comprender qué es un dispositivo (device).
Muy facil: es un fichero del sistema operativo. ;Entonces por qué inventar un nom-
bre diferente? La razén esta en la prehistoria de este producto, a cargo de Sybase. A
diferencia de SQL Server, el servidor de Sybase puede ejecutarse en distintos siste-
mas operativos, y puede que, en determinado sistema, un fichero fisico no sea el
soporte mas adecuado para el almacenamiento de una base de datos.

SQL Server

[]
IDispositivol IDispositivol IDispositivol |Disp05itivo| |Disp05itivo| |Disp05itivo| |Disp05itivo|

Microsoft SQL Server 147

Los dispositivos pertenecen al servidor en que se crean. Para crear un dispositivo hay
que indicar el nombre del fichero, el tamafio inicial, un nombre logico y un nimero
entero unico, entre 0 y 255, que servira internamente como identificaciéon. Pueden
crearse dispositivos en cualquiera de los discos locales del servidor. La sintaxis com-
pleta de la instruccién de creacion de dispositivos en SQL Server es la siguiente:
disk init

name=' nonbre_| 6gi co',

physnane=' nonbre_de_fichero',

vdevno=nuner o_de_di sposi tivo_virtual,

si ze=nuner o_de_bl oques
[, vstart=direcci 6n_virtual]

Por ejemplo, la siguiente instruccién crea un dispositivo basado en el fichero -
disp.dat, con 20 Mb de espacio:

disk init name='M Disp',
physnanme=' c: \ dat os\ m di sp. dat ',
vdevno=33,
si ze=10000

Hay que tener en cuenta que el tamafio de bloque es siempre el mismo: 2048 bytes.
En SQL Server 7 este tamano aumenta a 8192 bytes, pero siempre es constante. Otro
problema relacionado con los dispositivos consiste en que no aumentan su tamaflo
por demanda. Si una base de datos situada en uno de estos dispositivos necesita mas
memoria, hay que ampliar la capacidad del dispositivo de forma manual. Por su-
puesto, siempre podemos contratar a un “administrador de bases de datos” que se
ocupe del asunto, y de esa forma ayudamos a reducir las cifras del paro.

Ahora podemos crear las bases de datos, mediante la siguiente instruccion:

creat e database nonbre_base_de_dat os
[on {default]dispositivo} [=tanafio]
[, dispositivo [=tamafio]]...]
[l og on dispositivo [=tamafio]
[, dispositivo [=tamafio]]...]
[for Ioad]

En este caso, el tamafio siempre se especifica en megabytes, como en la siguiente
instruccion:

create database Facturas on M Disp=20, |og on M Log=5

La base de datos Facturas tendra sus datos en el dispositivo MzDisp, mientras que la
informacién sobre transacciones pendientes se almacenara en el segmento Ml og.

¢Qué informacion es ésta? La mayoria de los sistemas de gestién de bases de datos,
con la excepcién de InterBase, implementan la atomicidad de las transacciones lle-
vando cuenta de los cambios efectuados durante una transaccion en un /og file, o re-

148 La Cara Oculta de C++ Builder

istro de transacciones. Si cancelamos una transaccion, la informacién almacenada en
este fichero se utiliza para anular las inserciones, borrados y modificaciones realiza-
das desde el inicio de la transaccion. Es conveniente que el registro de transacciones
y los datos residan en dispositivos diferentes, y de ser posible, que estén situados en
discos diferentes. De este modo, se puede aprovechar la concurrencia ofrecida por el
uso de distintos controladores fisicos de discos, a nivel de hardware.

SQL Server 6.5 permite incluso definir varios dispositivos para almacenar datos y
para el registro de transacciones. Utilizando instrucciones como sp_addsegment y
Sp_placeobject, podemos almacenar distintas tablas en diferentes discos, como se
muestra en el siguiente esquema:

C: D: E:
Clientes, Inventario, Cabeceras de pedidos, Registro de
Formas de Pago, etc. lineas de detalles transacciones

Recuerde que el objetivo principal de la segmentacion es el aumentar la eficiencia de
la base de datos.

Bases de datos en la version 7

En SQL Server 7 desaparece el concepto de dispositivo, y las bases de datos se deben
definir directamente sobre ficheros fisicos. El fichero de datos principal tiene la ex-
tension #df, el fichero /fog tiene la extension /df, y los ficheros de datos secundarios,
ndf. Los nuevos ficheros pueden crecer por demanda, como sucede en los sistemas
de bases de datos "setios". Ya he mencionado, ademas, que el tamafio de pagina se
aumenta a 8192, aunque este valor no puede modificarse.

He aqui un ejemplo de creacién de bases de datos con la nueva version:

create database Ventas on primary
(nane = Datosl, filenane = 'c:\ventas\datosl. ndf',
size = 100MB, nmxsize = 200, filegrowh = 20),
filegroup Secundario

(nane = Datos2, filenane = 'd:\ventas\datos2. ndf',
size = 100MB, nmxsize = 200, filegrowh = 20),

| og on

(nane = Logl, filenane = '"e:\ventas\logl.|df',
size = 100MB, mmxsize = 200, filegrowth = 20)

Microsoft SQL Server 149

El creador de la base de datos anterior tenfa a su disposicion tres discos duros dife-
rentes (no tienen sentido aquf las particiones légicas). Su fichero de datos por omi-
si6n, indicado mediante la palabra reservada primary, se sitta en el disco C, tiene
100MB inicialmente, puede crecer hasta 200MB, y cada vez que crece aflade 20MB al
tamafio del fichero.

En el segundo disco crea otro fichero de datos, pero esta vez utiliza la clausula file-
group para darle un nombre légico. Realmente, Dafos2 es un nombre légico que se
refiere al fichero, pero los grupos de ficheros permiten agrupar légicamente varios
ficheros fisicos. ¢Con qué objetivo? Normalmente, si se utilizan varios ficheros para
una base de datos, el segundo fichero no se utiliza hasta que se acabe la memoria del
primer fichero. Sin embargo, si agrupamos los ficheros mediante filegroup el creci-
miento ocurre de forma proporcional al tamafio relativo de los ficheros. Ademis, el
nombre de los grupos de ficheros se utiliza en las instrucciones de creacién de indi-
ces y tablas para indicar donde se ubicaran estos objetos. Ya no se pueden utilizar los
antiguos procedimientos sp_addsegment y sp_placeobject.

Por ultimo, el fichero /yg se ha creado en el tercer disco disponible.

Tipos de datos predefinidos

Los tipos de datos soportados por SQL Server son los siguientes:

Tipo de datos Implementacién de SQL Server
Binario binary[(n)], varbinary/(n)]

Caracteres char((n)], varchar/(n)]

Fecha y hora datetime, smalldatetime

Numérico exacto decimall(p], s])], numeric/(p/, 5])]
Numérico aproximado float/(n)], real

Enteros int, smallint, tinyint

Moneda money, smallmoney

Especiales bit, timestamp

Texto e imagenes text, image

Nos encontramos aqui con el mismo problema que en InterBase: el tipo datetine
representa simultaneamente fechas y horas. Curiosamente, el tipo #mestamp no se
refiere a fechas, sino que es un entero de 8 bytes que se actualiza automaticamente
cuando se crea o se modifica una fila. El tipo swalldatetime tiene menos precisiéon que
datetime. Almacena la fecha como el numero de dias a partir del 1 de enero del 1900,
utilizando dos bytes, y la hora como el nimero de minutos a partir de media noche.
Por lo tanto, solamente le sera util si su programa debe quedar fuera de circulacion
antes del 6 de junio del 2079. Si es usted uno de los Inmortales, o le preocupa el
futuro del Planeta, no lo utilice. Del mismo modo, szallmoney tiene un rango que va

150 La Cara Oculta de C++ Builder

desde -214.748,3648 hasta aproximadamente el mismo numero positivo. Ya sean
euros o dolares, no alcanza para representar la facturaciéon mensual de The Coca-
Cola Company.

Aunque el tipo varchar de SQL Server permite almacenar cadenas de caracteres
de longitud variable, los registros que contienen estos campos siguen ocupando
un tamafio fijo, al menos hasta la versién 6.5. Al parecer, la version 7 corrige este
derrochador comportamiento.

SQL Server 7 afiade varios tipos a la coleccion presentada. El mas interesante es el
tipo uniqueidentifier, que contiene valores enteros de 128 bits generados por el
sistema. A este tipo de nimeros se les denomina GUID, por Global Unigue Identifier, y
nos tropezaremos con ellos al estudiar el modelo COM. Lamentablemente, la inter-
taz DBL.ibrary, que es la que utiliza el BDE para acceder a SQL Server, no ofrece
soporte para los nuevos tipos de datos, transmitiendo este problema a C++ Builder.

Habra que esperar a que Borland desarrolle un acceso a SQL Server mediante OLE
DB.

Tipos de datos definidos por el programador

Para no variar, MS SQL Server complica y distorsiona la creacién de tipos de datos
por el programador. En vez de utilizar dominios, o algiin mecanismo elegante de
definicion, se utiliza un procedimiento almacenado, sp_addtype, para crear nuevos
tipos de datos:

sp_addt ype tel efono, 'char(9)', null

Estas son todas las posibilidades de sp_addtype: especificar el nombre del nuevo tipo,
indicar a qué tipo predefinido es equivalente, y decir si el tipo admite valores nulos o
no. ¢Existe alguna forma de asociar una restriccion a estos tipos de datos? Si, pero la
técnica empleada es digna de Forrest Gump. Primero hay que crear una regla:

create rule sol o_nuneros as
@al or not like '%"0-9]%

Luego, hay que asociar la regla al tipo de datos:
sp_bindrul e sol o_nuneros, telefono

Existen también instrucciones create default y sp_binddefanlt para asociar valores por
omision a tipos de datos creados por el programador.

Microsoft SQL Server 151

Al igual que sucede con los dominios de InterBase, el Diccionatio de Datos del
BDE utiliza los tipos de datos definidos por el usuario de SQL Server 7 para sa-
car factor comun en la creacién de conjuntos de atributos. El Diccionatio de
Datos se estudiara en el capitulo 19.

Creacion de tablas y atributos de columnas

La sintaxis para la creacién de tablas, a grandes rasgos, es similar a la de InterBase,
con la légica adicion de una clausula opcional para indicar un segmento donde colo-
car la tabla:

create table Clientes (

Codi go int not null primary key,
Nonbr e var char (30) not null unique,
Di recci on var char (35) null,

on Segnent oMaestro

En MS SQL Setver 7, la clausula on se refiere a un grupo de ficheros definido
durante la creacion de la base de datos o postetiormente. Recuerde que en la
nueva version ya no existen los segmentos.

Sin embargo, hay diferencias notables en los atributos que se especifican en la defini-
ci6n de columnas. Por ejemplo, en la instruccion anterior he indicado explicitamente
que la columna Direccion admite valores nulos. ¢Por qué? ¢Acaso no es éste el com-
portamiento asumido por omision en SQL estandar? Si, pero Microsoft no esta de
acuerdo con esta filosoffa, y asume por omision que una columna no puede recibir
nulos. Peor aun: la opcion “ANST null defantt', del procedimiento predefinido de con-
figuracion sp_dboption, puede influir en qué tipo de comportamiento se asume. ¢Le
cuesta tanto a esta compafiia respetar un estandar?

Uno de los recursos especificos de MS SQL Server es la definiciéon de columnas con
el atributo identity. Por ejemplo:

create table Colores (
Codi go integer identity(0,1) primary key,
Descri pci on var char (30) not null unique

En la tabla anterior, el valor del c6digo del color es generado por el sistema, pat-
tiendo de cero, y con incrementos de uno en uno. Sin embargo, no es una opcion
recomendable, a2 mi entender, si realizamos inserciones desde C++ Builder en esa
tabla y estamos mostrando sus datos en pantalla. E1l BDE tiene problemas para releer
registros cuando su clave primaria se asigna o se modifica en el servidor, como en

152 La Cara Oculta de C++ Builder

este caso. Sucede lo mismo que con los generadores de InterBase y las secuencias de
Oracle.

Las clausulas check de SQL Server permiten solamente expresiones que involucran
a las columnas de la fila actual de la tabla, que es lo que manda el estandar (jpor una
vez!). Esta vez podemos decir algo a favor: las expresiones escalares de SQL Server
son mas potentes que las de InterBase, y permiten disefiar validaciones consecuen-

temente mas complejas:

create table Qientes (
[* .x/
Tel ef ono char(11),
check (Tel efono Iike
"[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]" or
Tel efono |i ke
"[0-9]1[0-9]-[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]")

Una opcion interesante de SQL Server es la posibilidad de crear tablas tempora-
les. Para esto, basta con afiadir uno de los prefijos # 6 ## al nombre de la tabla.
En el primer caso, la tabla temporal solamente sera visible para el usuario que la
crea, y sera eliminada en cuanto el usuario cierre su conexion activa. En el se-
gundo caso, se trata de una tabla temporal global, que desaparecera en cuanto el
ultimo usuatio que la esté usando se desconecte.

Integridad referencial

Las versiones de este producto anteriores a la 7 realizan una pobre implementacion
de las restricciones de integridad referencial. En contraste, la versioén 7 realiza una
pobre implementacion de las restricciones de integridad referencial. Es decir, que al
parecer todo cambia para seguir igual.

¢De qué me estoy quejando? Principalmente, de que SQL Server no define ningin
tipo de accién referencial, aparte de la prohibicién de borrados y de actualizaciones
en la clave de la fila maestra. Y, para agravar el problema, tenemos la complicacién
adicional del tipo tnico de #ggers permitido por el sistema, que se dispara después de
la operacion. De este modo, la simple adicién de una propagacion de borrados en
cascada requiere que la restriccion de integridad referencial se anule y se implemente
totalmente “a mano”. M4s adelante veremos como.

MS SQL Setver no define automaticamente los indices secundarios necesatios en
la tabla dependiente. El programador debe creatlos explicitamente. Ademas, la
unica accion referencial permitida es la prohibicién de borrados y actualizacio-
nes.

Microsoft SQL Server 153

Indices

La sintaxis para la creaciéon de indices en MS SQL Server es basicamente la siguiente:

create [unique] [clustered | nonclustered] index Indice
on Tabla (Columa [, Columa .])
[on G upoFi cheros]

Tenemos la posibilidad de definir undices agrupados (clustered indexes). Cuando una tabla
tiene un indice agrupado, sus registros se almacenan ordenados fisicamente en las
paginas de datos de la base de datos. Esto implica que solamente puede haber un
indice agrupado por tabla. Es muy eficiente recorrer una tabla utilizando uno de
estos indices. En cambio, puede ser relativamente costoso mantener el {indice agru-
pado cuando se producen actualizaciones.

Como sabemos, la definicion de una clave primaria o Ginica genera automaticamente
un indice. Si queremos que éste sea el indice agrupado de la tabla, podemos indicarlo
de la siguiente manera:

create table Clientes (
Codi go int not null,
Nonbre varchar(30) not null,
/* .0 0%
pri mary key (Codi go),
uni que cl ustered (Nonbre)

Los indices de MS SQL Setrver, a diferencia de los de InterBase y Oracle, pueden
ignorar la distincioén entre mayusculas y minasculas. Sin embargo, este comporta-
miento debe establecerse durante la instalacion del servidor, y no puede modificarse
mas adelante.

Seguridad en MS SQL Server

SQL Server implementa un sistema de seguridad en dos niveles bastante complicado.
En el primer nivel, se definen los /ogins, que se utilizan para conectar con determi-
nado servidor. Hasta cierto punto, estos /gins son similares a los “usuarios” de Inter-
Base, pues se asocian con el servidor, no con la base de datos. La validacion de las
contraseflas puede estar a cargo del propio SQL Server, o de Windows NT, y en este
ultimo caso se habla de seguridad integrada. Con la seguridad integrada, los /ogins co-
rresponden a usuarios del sistema operativo. Inicialmente, una instalacién de SQL
Server define el /ogin del administrador como sa, sin contrasefia.

En una segunda fase, al nivel ya de las bases de datos, se definen usuarios, hablando
con propiedad. Los /ogins definidos en la fase anterior se asocian entonces con usua-

154 La Cara Oculta de C++ Builder

rios de una base de datos, y es a estos usuarios a los que se otorgan privilegios, me-
diante nuestras viejas y conocidas instrucciones grant y revoke. Al crearse una base
de datos se define automaticamente un usuario especial como propietario de la
misma, que se identifica como dbo: (database owner), y que tendra acceso total a todos
los objetos creados dentro de esa base de datos, ya sea por él mismo o por otro usua-
rio. Por supuesto, el administrador del sistema también tiene acceso sin restricciones
a esos objetos.

Al desplegar la lista de posibles valores de la propiedad TabkName de un compo-
nente de tablas en C++ Builder, las tablas existentes aparecen cualificadas con el
nombre del usuario que las ha creado, que en MS SQL Setver es generalmente el
dbo. Lo mismo sucede en Oracle, aunque no en InterBase. Este comportamiento
compromete la portabilidad de la aplicacién entre distintos servidores, pero no es
aconsejable eliminar el prefijo de usuario del nombre de la tabla. En tal caso, al
BDE le resultara dificil consultar el catilogo de la base de datos para encontrar
informacién sobre indices. Los errores que se producen como consecuencia son
bastante perversos e insidiosos: cierta aplicacion escrita en Delphi 3, que tuve
que corregir, funcionaba perfectamente, hasta que alguien cambiaba dinamica-
mente el indice activo. Al concluir la ejecucién, se producia un misterioso fallo de
proteccion general. Por supuesto, todo se arreglo al introducir los prefijos de
usuarios en los nombres de tablas.

Procedimientos almacenados

He aqui la sintaxis de la creaciéon de procedimientos almacenados en Transact-SQL:

create procedure Nonbre[; Nurmero] [Paranetros]
[for replication|with reconpile [with encryption]]
as | nstrucci ones

Por ejemplo:

create procedure Proxi nbCodi go @od int output as

begi n
sel ect @od = ProxCod
from Nurrer os hol dl ock
updat e Nuneros
set ProxCod = ProxCod + 1
end

ProxinmoCodigo es el tipico procedimiento almacenado que extrae un valor numérico
de una tabla de contadores y lo devuelve al cliente que lo ha solicitado. En primer
lugar, vemos que los parametros y variables de Transact-SQL deben ir precedidos
obligatotiamente por un signo @. Esto ya es una molestia, porque el convenio de
nombres de parametros es diferente al de Oracle e InterBase. Si desarrollamos una

Microsoft SQL Server 155

aplicacion que deba trabajar indistintamente con cualquiera de estos servidores, ha-
bra que considerar el caso especial en que el servidor sea MS SQL, pues los nombres
de parametros se almacenan estaticamente en el fichero df.

Ademas de ciertas curiosidades sintacticas, como que las instrucciones no necesitan
ir separadas por puntos y comas, lo que mas llama la atencién en el procedimiento
anterior es el uso de la opcién holdlock en la clausula from de la primera instruc-
cion. Esta opcidn fuerza a SQL Server a mantener un bloqueo de lectura sobre la fila
seleccionada, al menos hasta que finalice la transaccién actual, y permite evitar tener
que configurar las transacciones para el nivel de lecturas repetibles.

Vemos también que Transact-SQL no utiliza la clausula into de InterBase y Oracle
para asignar los resultados de un select a variables o parametros, sino que incorpora
asignaciones en la propia clausula select. De hecho, el que no exista un separador de
instrucciones nos obliga a anteponer la palabra reservada select delante de una sim-
ple asignacién de variables:

declare @ integer /* Decl aranmps una variable | ocal */
select @ = @@ owcount /* Le asignanps una gl obal */
if (@ > 255) /* Preguntanps por su valor */

[* x

Es caractetistico de MS SQL Server y Sybase la posibilidad de programar proce-
dimientos que devuelvan un conjunto de datos. En tal caso, el cuerpo del proce-
dimiento debe consistir en una sentencia select, que puede contener parametros.
Sin embargo, la misma funcionalidad se logra desde C++ Builder con consultas
paramétricas, que no comprometen ademas la portabilidad de la aplicacion.

Cursores

MS SQL Server no implementa la sentencia for...do de InterBase. En realidad, esa
instruccién es Gnica para InterBase, y casi todos los demads servidores ofrecen cursores
como mecanismo de recorrido sobre tablas. Un cursor se define asociando un nom-
bre a una instruccién SQL, como en este ejemplo:

decl are QueHaHechoEst eTi o cursor for
sel ect Fecha, Total from Pedi dos
wher e Ref Enpl eado = (sel ect Codi go from Enpl eados
where Nonbre = @\onbre)

Obsetve que estamos utilizando una variable, @Nozbre, en la definicién del cursor.
Se supone que esa variable esta disponible en el lugar donde se declara el cursor.
Cuando se realiza la declaracién no suenan trompetas en el cielo ni tiembla el disco

156 La Cara Oculta de C++ Builder

duro; es solamente eso, una declaracién. Cuando si ocurre algo es al ejecutarse la
siguiente instruccion:

open QueHaHechoEst eTi o

Ahora se abre el cursor y queda preparado para su recorrido, que se realiza de
acuerdo al siguiente esquema:

decl are @echa datetime, @otal integer
fetch from QueHaHechoEsteTi o into @echa, @otal
while (@etch_status = 0)
begi n
/* Hacer algo con |as variabl es recuperadas */
fetch from QueHaHechoEsteTi o into @echa, @otal
end

La variable global @(@jetch_status es de vital importancia para el algoritmo, pues deja
de valer cero en cuanto el cursor llega a su fin. Tome nota también de que hay que
ejecutar un fetch también antes de entrar en el bucle while.

Una vez que se ha terminado el trabajo con el cursor, es necesario cerrarlo por me-
dio de la instruccion close y, en ocasiones, liberar las estructuras asociadas, mediante
la instruccién deallocate:

cl ose QueHaHechoEst eTi o
deal | ocat e QueHaHechoEst eTi o

La diferencia entre close y deallocate es que después de ejecutar la primera, atn
podemos reabrir el cursor. En cambio, después de ejecutar la segunda, tendrfamos
que volver a declarar el cursor con declare, antes de poder utilizarlo.

El siguiente ejemplo, un poco mas complicado, cumple la misma funcién que un
procedimiento almacenado de mismo nombre que hemos desarrollado en el capitulo
sobre InterBase, y que estaba basado en la instruccién for...do. Su objetivo es reco-
rrer ordenadamente todas las lineas de detalles de un pedido, y actualizar conse-
cuentemente las existencias en el inventario:

create procedure Actualizarlnventario @edi do integer as
begi n
decl are dets cursor for
select RefArticulo, Cantidad
from Detall es
where RefPedi do = @edi do
order by RefArticulo
decl are @odArt integer, @ant integer

open dets

fetch next fromdets into @odArt, @ant
while (@ etch_status = 0)

begi n

Microsoft SQL Server 157

update Articul os
set Pedi dos = Pedi dos + @ant
where Codi go = @odArt
fetch next fromdets into @odArt, @ant
end
close dets
deal | ocate dets
end

Microsoft ofrece cursores bidireccionales en el servidor, y estan muy orgullosos
de ellos. Vale, los cursores bidireccionales estan muy bien. Felicidades. Lastima
que el BDE no los pueda aprovechar (es culpa del BDE). Y que C++ Builder sea
tan bueno que no merezca la pena cambiar de herramienta de desarrollo.

Triggers en Transact-SQL

Los #riggers que implementa Transact-SQL, el lenguaje de programacién de MS SQL
Server, son muy diferentes a los de InterBase y a los de la mayoria de los servidores
existentes. Hsta es la sintaxis general de la operacion de creacion de #riggers:

create trigger NonmbreTrigger on Tabl a
[with encryption]
for {insert,update,del ete}
[with append] [not for replication]
as | nstrucci onSQL

En primer lugar, cada tabla solamente admite hasta tres #7ggers: uno para cada una de
las operaciones insert, update y delete. Sin embargo, un mismo #zgger puede dispa-
rarse para dos operaciones diferentes sobre la misma tabla. Esto es util, por ejemplo,
en #riggers que validan datos en inserciones y modificaciones.

SQL Server 7 ha corregido esta situacion, y permite definir mas de un #rgger pot
evento. Incluso si hemos activado la compatibilidad con la versién 6.5 por medio
del procedimiento sp_dbemptlevel, la clausula with append indica que el nuevo
trigger se debe afiadir a la lista de #riggers existentes para el evento, en vez de susti-
tuir a2 uno ya creado. De no estar activa la compatibilidad, dicha clausula no tiene
efecto alguno.

Pero la principal diferencia consiste en el momento en que se disparan. Un #rigger
decente debe dispararse antes o después de una operacion sobre cada fila. Los de
Transact-SQL, en contraste, se disparan solamente después de una instruccién, que
puede afectar a #na o mads filas. Por ejemplo, si ejecutamos la siguiente instruccion, el
posible #rigger asociado se disparard unicamente cuando se hayan borrado todos los
registros correspondientes:

158 La Cara Oculta de C++ Builder

delete fromdientes
where Planeta <> "Tierra"

El siguiente ejemplo muestra como mover los registros borrados a una tabla de copia
de respaldo:

create trigger QuardarBorrados
on Cientes
for delete as
insert into Copi aRespal do select * fromdel eted

Como se puede ver, para este tipo de #7gger no valen las variables o/d y new. Se utilizan
en cambio las tablas inserted y deleted:

insert |delete |update
inserted| Si No Si
deleted| No Si Si

Estas tablas se almacenan en la memoria del servidor. Si durante el procesamiento

del #rigger se realizan modificaciones secundarias en la tabla base, no vuelve a activarse
el #rigger, por razones logicas.

Como es facil de comprender, es mas dificil trabajar con inserted y deleted que con las
variables new y old. El siguiente #rigger modifica las existencias de una tabla de inventa-
rios cada vez que se crea una linea de pedido:

create trigger NuevoDetalle on Detalles for insert as

begi n
if @RowCount = 1
update Articul os
set Pedi dos = Pedi dos + Canti dad
from Inserted
where Articulos.Codigo = Inserted. RefArticulo
el se
update Articul os
set Pedi dos = Pedi dos +
(sel ect sun{Canti dad)
from Inserted
where Inserted. Ref Articul o=Arti cul os. Codi go)
where Codigo in
(select RefArticulo
from Inserted)
end

La variable global predefinida @@RowCount indica cuantas filas han sido afectadas
por la dltima operacién. Al preguntar por el valor de la misma en la primera instruc-
cion del #rigger estamos asegurandonos de que el valor obtenido corresponde a la
instruccién que desencadend su ejecucion. Observe también la sintaxis peculiar de la

primera de las instrucciones update. La instruccion en cuestion es equivalente a la
siguiente:

Microsoft SQL Server 159

update Articul os
set Pedi dos = Pedi dos + Canti dad
from Inserted
where Articul os. Codigo =
(select RefArticulo
from Inserted) /* Singleton select! */

¢Hasta qué punto nos afecta la mala conducta de los #riggers de Transact-SQL? La
verdad es que muy poco, si utilizamos principalmente los métodos de tablas del BDE
para actualizar datos. El hecho es que los métodos de actualizaciéon del BDE siempre
modifican una sola fila por instruccion, por lo que @@RowConnt siempte serd uno
para estas operaciones. En este #rigger, un poco mas complejo, se asume implicita-
mente que las inserciones de pedidos tienen lugar de una en una:

create trigger NuevoPedi do on Pedidos for insert as

begi n

declare @Jti maFecha datetinme, @wechaVenta datetine,
@lumint, @odPed int, @oddi int

sel ect @odPed = Codigo, @odCi = Refdiente,
@echaVenta = FechaVent a

from i nserted

sel ect @Num = Pr oxi noNurrer o

from Nurrer os hol dl ock

updat e Numer os

set Pr oxi moNunero = Proxi noNunero + 1

updat e Pedi dos

set Nunmero = @lum

where Codi go = @odPed

select @JtimFecha = U tinoPedi do

from Cientes

where Codigo = @odd i

if (@Iti mmFecha < @echaVent a)
update Clientes
set U tinmoPedi do = @echaVenta
where Codigo = @odd i

end

Observe cémo hemos vuelto a utilizar holdlock para garantizar que no hayan hue-
cos en la secuencia de valores asignados al nimero de pedido.

Integridad referencial mediante triggers

Es bastante complicado intentar afiadir borrados o actualizaciones en cascada a las
restricciones de integridad referencial de MS SQL Server. Como los #ggers se efec-
tuan al final de la operacidn, antes de su ejecucion se verifican las restricciones de
integridad en general. Por lo tanto, si queremos implementar un borrado en cascada
tenemos que eliminar la restricciéon que hemos puesto antes, y asumir también la
verificacién de la misma.

160 La Cara Oculta de C++ Builder

Partamos de la relacién existente entre cabeceras de pedidos y lineas de detalles, y
supongamos que no hemos declarado la clausula foreign key en la declaracion de
esta ultima tabla. El siguiente #rigger se encargarfa de comprobar que no se inserte un
detalle que no corresponda a un pedido existente, y que tampoco se pueda modificar
posteriormente esta referencia a un valor incorrecto:

create trigger VerificarPedido on Detalles for update, insert as
if exists(select * fromlnserted
where Inserted. Ref Pedido not in
(sel ect Codigo from Pedi dos))

begi n

rai serror (' Codi go de pedido incorrecto', 16, 1)

rol I back tran
end

Aqui estamos introduciendo el procedimiento raiserror (si, con una sola '¢'), que sus-
tituye a las excepciones de InterBase. El primer argumento es el mensaje de error. El
segundo es la severidad; si es 10 o menor, no se produce realmente un error. En
cuanto al tercero (un cédigo de estado), no tiene importancia para SQL Server en
estos momentos. A continuacion de la llamada a esta instruccion, se deshacen los
cambios efectuados hasta el momento y se interrumpe el flujo de ejecucion. Re-
cuerde que esto en InterBase ocurrfa automaticamente.

La documentacién de SQL Setrver recomienda como posible alternativa que el
trigger solamente deshaga los cambios incorrectos, en vez de anular todas las mo-
dificaciones. Pero, en mi humilde opinién, esta técnica puede ser peligrosa. Pre-
fiero considerar atomicas a todas las operaciones lanzadas desde el cliente: que se
ejecute todo o nada.

El trigger que propaga los borrados es sencillo:

create trigger BorrarPedi do on Pedidos for delete as
delete fromDetal |l es
where RefPedido in (select Codigo from Del eted)

Sin embargo, el que detecta la modificacion de la clave primaria de los pedidos es
sumamente complicado. Cuando se produce esta modificacién, nos encontramos de
repente con dos tablas, iuserted y deleted. St solamente se ha modificado un registro,
podemos establecer facilmente la conexion entre las filas de ambas tablas, para saber
qué nuevo valor corresponde a qué viejo valor. Pero si se han modificado varias filas,
esto es imposible en general. Asi que vamos a prohibir las modificaciones en la tabla
maestra:

create trigger MdificarPedi do on Pedi dos for update as
i f updat e(Codi go)
begi n
raiserror('No se puede nodificar la clave primaria',
16, 1)

Microsoft SQL Server 161

rol | back tran
end

Le dejo al lector que implemente la propagacion de la modificacion en el caso es-
pecial en que ésta afecta solamente a una fila de la tabla maestra.

Triggers anidados y triggers recursivos

¢Qué sucede si durante la ejecucién de un #rigger se modifica alguna otra tabla, y esa
otra tabla tiene también un #rjgger asociado? Todo depende de como esté configurado
el servidor. Ejecute el siguiente comando en el programa Query Analyzer:

sp_configure 'nested triggers'
go

El procedimiento devolvera el valor actual de dicha opcién, que puede ser 0 6 7. Si
esta activa, el #rjgger de la tabla afectada secundariamente también se dispara. El nu-
mero de niveles de anidamiento puede llegar a un maximo de 16. Para cambiar el
valor de la opcidn, teclee lo siguiente:

-- Activar los triggers ani dados
sp_dbconfigure 'nested triggers', '1'

go

Recuerde que la opcién nested triggers afecta a todas las bases de datos de un mismo
servidor, asi que tenga mucho cuidado con lo que hace.

Sin embargo, es muy diferente lo que sucede cuando la tabla modificada por el #rigger
es la propia tabla para la cual se define éste. Una de las consecuencias de que los
triggers de SQL Server se disparen después de terminada la operacion, es que si que-
remos modificar automaticamente el valor de alguna columna estamos obligados a
ejecutar una instruccion adicional sobre la tabla: ya no tenemos una conveniente
variable de correlacion zew, que nos permite realizar este cambio antes de la opera-
cion:
create trigger MantenerVersionMayusculas on Cientes
for insert, update as
i f updat e(Nonbr e)
update dientes

set Nonbr eMay = upper (Nonbr e)
where Codigo in (select Codigo frominserted)

Si modificamos el nombre de uno o mas clientes, la versiéon en mayuisculas del nom-
bre de cliente debe actualizarse mediante una segunda instrucciéon update. ¢Y ahora
qué, se vuelve a disparar el #rgger? No si la version de SQL Server es la 6.5. Pero si

162 La Cara Oculta de C++ Builder

estamos trabajando con la 7, volvemos a depender del estado de una opcién de la
base de datos que, esta vez, se modifica mediante sp_dboption:

-- Activar los triggers recursivos
sp_dboption 'facturacion', 'recursive triggers', 'true'

En cualquier caso, si el #rigger vuelve a ejecutarse de forma recursiva no pasa nada
malo en el ejemplo anterior, pues en la segunda ejecucion la columna modificada es
NowmbreMay, en vez de Nombre. Pero hay que tener mucho cuidado con otros casos,
en que puede producirse una recursion potencialmente infinita. SQL Server 7 tam-
bién limita a 16 los niveles de anidamiento de un #gger recursivo.

Capitulo

Oracle

AS REGLAS DEL JUEGO ESTAN CAMBIANDO poco a poco, mientras el mundo

gira (y mi guitarra solloza). Oracle ha sido el primero de los grandes sistemas

relacionales en incluir extensiones orientadas a objetos significativas. Real-
mente, Oracle siempre ha destacado por su labor innovadora en relacién con su mo-
delo de datos y el lenguaje de programacién en el servidor. De hecho, PL/SQL
puede tomarse perfectamente como referencia para el estudio de #7ggers, procedi-
mientos almacenados, tipos de datos, etc.

Por supuesto, no puedo cubrir todo Oracle en un solo capitulo. Por ejemplo, evitaré
en lo posible los temas de configuracién y administracién. Tampoco entraremos en
la programacion de packages y otras técnicas particulares de este sistema, por entender
que hacen dificil la posterior migracién a otras bases de datos. Sin embargo, si vere-
mos algo acerca de las extensiones de objetos, debido al soporte que C++ Builder 4
ofrece para las mismas.

Sobreviviendo a SQL*Plus

Oracle ofrece varias utilidades mediante las cuales pueden crearse tablas, procedi-
mientos y tipos en sus bases de datos. La mas utilizada se llama SQL*P/us, y permite
la ejecucion de comandos aislados y de serzpts. La siguiente imagen muestra a
SQL*Plus en funcionamiento:

Oracle SQL*Plus [_[o] =]

Fichero Editar Buscar Dpciones Apuda

SQL=xPlus: Release 8.8.4.8.8 - Production on Uie Jul 31 14:3:58 1998 j
(c) Copyright 1997 Oracle Corporation. All rights reserved.

Conectado a:

Oracle8 Enterprise Edition Release 8.8.4.8.8 - Production

With the Partitioning and Objects options

PL/SOL Release 8.8.4.8.8 - Production

sqL>

] a7

164 La Cara Oculta de C++ Builder

Como podemos apreciar, es una utilidad basada en el modo texto, como en los viejos
tiempos de UNIX, MSDOS y similares. En l6gica consecuencia, SQL*Plus tiene
fama de incomoda e insoportable, por lo que tenemos que aprovechar al maximo las
pocas facilidades que nos ofrece.

Para comenzar, pongamos por caso que nos hemos conectado a la base de datos de
ejemplos que trae Oracle como el usuario Sco#Z con su contrasefia #ger. Esta conexion
se realiza mediante el cuadro de didlogo que presenta inicialmente SQL*Plus:

User Name: Scott
Password:
Host String:
oK | Cancel |

Al tratarse, en mi caso, de Personal Oracle, puedo dejar vacio el campo Host String. Si
desea conectarse a un servidor remoto, aqui debe indicar un nombre de “servicio”
creado con SQL*Net Easy Configuration. Mas adelante podemos utilizar estas ins-
trucciones para conectarnos como otro usuario, o para desconectarnos:

connect systenl nanager;
di sconnect;

System es el nombre del administrador de bases de datos, y manager es su contrasefia
inicial.

En principio, podemos teclear cualquier sentencia SQL en respuesta a la peticion
(prompi) de SQL*Plus, terminandola con un punto y coma. La instruccién puede
ocupar varias lineas; en tal caso, en el editor aparecen los nimeros de lineas en la
medida en que vamos creandolas. Al final, SQL*Plus detecta el punto y coma, para
ejecutar entonces la sentencia:

SQL> create table prueba (

1 Id i nt eger,
2 Nonbr e varchar (30)
3);

¢Y qué pasa si hemos metido garrafalmente la extremidad inferior al teclear? Nada,
que siempre hay una segunda oportunidad. Teclee ediz, y aparecera el Bloc de Notas
con el texto de la dltima sentencia introducida, para que pueda ser corregida. En
realidad, el texto se guarda en un fichero temporal, de nombre afieds. buf, y hay que
utilizar el siguiente comando para ejecutar el contenido de este fichero, una vez co-
rregido y salvado:

Oracle 165

SQL> @fi edt. buf

El signo @ sirve para ejecutar seripts con sentencias PL/SQL. En el ejemplo antetior,
no hemos tenido que indicar el directorio donde se encuentra el fichero, pues éste se
ha creado en el directorio raiz de Oracle, c:\ orawin95\ bin en mi instalacién.

Un comportamiento curioso de SQL*Plus, y que me ha ocasionado no pocos que-
braderos de cabeza, es que no permite lineas en blanco dentro de una instruccién. A
mi me gusta, por ejemplo, dejar una linea en blanco dentro de la sentencia create
table para separar la definicién de columnas de la definicién de restricciones a nivel
de tabla. SQL*Plus me obliga a utilizar al menos un comentario en esa posicion:

create table prueba (
Id i nt eger,
Nonbre varchar (30),

primary key (1d),
uni que (Nonbre)
)

Hablemos acerca de los errores. Cuando cometemos alguno gordo, de los de verdad,
SQL*Plus lo indica inmediatamente. Pero a veces se comporta solapadamente, casi
siempre cuando creamos #riggers, procedimientos almacenados y objetos similares.
Obtenemos de repente este mensaje:

Procedure created with conpilation errors.

No hay misterio: Oracle ha detectado un error, pero es tan listo que ha podido co-
rregirlo él mismo (o al menos eso pretende). En cualquier caso, teclee el comando
show errors para averiguar cudles han sido los errores detectados en la tltima instruc-
cion.

Cuando estamos creando tipos, procedimientos, triggers y otros objetos complejos
en una base de datos, debemos utilizar instrucciones que terminan en punto y coma.
En este caso, SQL*Plus requiere que terminemos toda la instruccién con una linea
que contenga una barra inclinada. Este caracter actia entonces de forma similar al
caracter de terminacién de los serpzs de InterBase.

Instancias, bases de datos, usuarios

En dependencia del sistema operativo donde se ejecuta un servidor de Oracle, éste
puede trabajar simultineamente con una o mas bases de datos. En el caso de Perso-
nal Oracle para Windows 95, s6lo puede estar activa una base de datos a la vez. Pero
las versiones completas del producto si admiten varias bases de datos activas simul-
taneamente.

166 La Cara Oculta de C++ Builder

A cada base de datos activa, junto a los procesos que Oracle lanza para su manteni-
miento y los datos de las conexiones de usuarios, se le denomina zustancia de Oracle.
Cada instancia se identifica con un nombre; en el caso de Oracle Enterprise Edition,
la instancia que se asocia a la base de datos instalada por omisién se llama ORCL. Si
tenemos que mantener simultineamente varias bases de datos en un mismo servidor,
necesitaremos una instancia debidamente identificada para cada una de ellas.

Los administradores de bases de datos tienen el privilegio de poder crear nuevas
bases de datos. La instruccién necesaria esta cargada de parametros, como corres-
ponde a una arquitectura compleja y con una larga historia. Este es un ejemplo sen-
cillo de creacion de bases de datos, con la mayorfa de los parametros asumidos por
omision:

create database Prueba
datafile 'p_datos' size 10M
logfile group 1 ('p_logla', 'p_loglbh') size 500K
group 2 ('p_log2a', 'p_log2b') size 500K

Por supuesto, Oracle ofrece herramientas graficas para crear y modificar bases de
datos. En el ejemplo anterior se ha creado una base de datos con un solo fichero de
datos, de 10MB, y con dos grupos de ficheros para el registro de transacciones, cada
grupo con 500KB.

Cada base de datos de Oracle tiene una lista independiente de usuatios autorizados a
trabajar con ella. La siguiente instruccion sirve para crear un nuevo usuario:

create user Nonbre
identified [by Contrasefia | externally]
[Opci onesDeUsuari 0]

Al igual que sucede en InterBase 5, se pueden definir roles, y asignarlos a usuarios

existentes para simplificar la posterior administracién de privilegios con las dos co-
nocidas instrucciones grant y revoke.

Tipos de datos

Los tipos de datos basicos de Oracle son los siguientes:

Tipo de dato Significado

varchar2(n), nvarchar2(n) ~ Cadenas de caracteres de longitud variable
char(n), nchar(n) Cadenas de caracteres de longitud fija
number(p,s) Nuameros, con escala y precision

date Fecha y hora, simultaneamente

long Cadenas de caracteres de hasta 2GB

raw(n), long raw Datos binarios

Oracle 167

Tipo de dato Significado

clob, nelob Objetos de caracteres grandes

rowid Posicion de un registro

blob Objetos binarios grandes

bfile Puntero a un fichero binario externo a la base de datos
wilslabel Utilizado por compatibilidad con el pasado

Notemos, en primer lugar, que los tipos de caracteres tienen dos versiones, y el nom-
bre de una de ellas comienza con #. La # significa national, y los tipos que la indican
deben ofrecer soporte para los conjuntos de caracteres nacionales de multiples bytes:
léase japonés, chino y todos esos idiomas que nos suenan a idem. Ademas, los tipos
long y clob/ nelob se parecen mucho, lo mismo que long raw'y blob ...y es cierto, efecti-
vamente. La diferencia consiste en que los tipos &b (de /large objects) se almacenan mas
eficientemente y sufren menos restricciones que /ong y long raw.

¢Y dénde estan nuestros viejos conocidos, los tipos znteger, numeric, decimal y varchar
Oracle los admite, pero los asocia con alguno de sus tipos nativos. Por ejemplo, 7nteger
es equivalente a number(38), mientras que varchar es lo mismo, hasta la versién 8, que
varchar2. Sin embargo, Oracle recomienda utilizar siempre varchar2, pues en futuras
versiones puede variar la semantica de las comparaciones de cadenas de caracteres,
para satisfacer el estandar SQL-3.

Estos tipos de datos son los predefinidos por Oracle, y son ademas los que pue-
den utilizarse en las definiciones de tablas. Existen los tipos de datos definidos
por el usuario, que estudiaremos mas adelante, y estan los tipos de datos de
PL/SQL, que pueden emplearse para definir variables en memoria. Por ejemplo,
el tipo pls_integer permite definir enteros binarios de 4 bytes, con las operaciones
nativas de la CPU de la maquina.

Creacion de tablas

Como es de suponer, la sentencia de creacién de tablas de Oracle tiene montones de
parametros para configurar el almacenamiento fisico de las mismas. Para tener una
idea, he aquf una sintaxis abreviada de esta instruccién en Oracle 7 (la version 8 ha
afladido més clausulas atun):

create table [Usuario.] NonbreDeTabl a (
Def i ni ci onesDeCol umas&Restri cci ones

)

[cluster NonbreCd uster (Columa [, Columa .])]
[initrans entero] [maxtrans entero]

[pctfree entero] [pctused entero]

168 La Cara Oculta de C++ Builder

[storage al macenam ent o]
[t abl espace Espaci oDeTabl a]
[O ausul aEnabl e] ;

Gracias a Dios, ocurre lo tipico: que podemos olvidarnos de la mayoria de las clau-
sulas y utilizar valores por omision. De todos modos, hay un par de opciones de
configuracioén que pueden interesarnos: la especificacion de un espacio de tablas (table
space) y el uso de grupos o clusters. E1 uso de espacios de tablas es una de las maneras de
aprovechar las particiones fisicas de una base de datos de Oracle. Los c/usters de Ora-
cle, por otra parte, permiten ordenar y agrupar fisicamente los registros que tienen
una misma clave, al estilo de los ¢usters de MS SQL Server. Pero también permiten
colocar en una posicién cercana los registros de otra tabla relacionados por esa clave.
Mas adelante dedicaremos una seccion a las modalidades de almacenamiento fisico
de tablas.

La creacién de tablas en Oracle, obviando el problema de los pardametros fisicos de
configuracion, no presenta mayores dificultades. Solamente tenga en cuenta los si-
guientes puntos:

Recuerde que Oracle traduce los tipos de datos SQL a sus propios tipos nativos.
Asf que cuando creamos una columna de tipo znteger, Oracle la interpreta como
number(38). C++ Builder entonces se ve obligado a tratarla mediante un compo-
nente TFatField. En estos casos, es mejor definir la columna de tipo number(10)
y activar la opcion ENABLE INTEGERS en el BDE.

Las clausulas check no permiten expresiones que hagan referencia a otras tablas.
Si, amigo mio, solamente el humilde InterBase nos ofrece tal potencia.

A pesar de todo, Oracle 8 no permite la modificaciéon de campos de una restric-
ci6én de integridad referencial en cascada, aunque si permite la propagacion de
borrados mediante la clausula on delete cascade.

Indices en Oracle

Oracle ofrece varias opciones interesantes para la creacion de indices. Por ejemplo,
permite definir indices con clave invertida. Piense en una tabla en la que se insertan
registros, y una de sus columnas es la fecha de insercion. Para el mantenimiento de
dicha tabla, los registros se ordenan precisamente por esa columna, y existe la ten-
dencia natural a trabajar mas con los altimos registros insertados. Ahora asumamos
que en nuestro sistema trabajan concurrentemente un alto nimeros de usuarios. Casi
todos estaran manipulando registros dentro del mismo rango de fechas, lo cual
quiere decir que en el indice de fechas existiran un par de bloques que estaran siendo
constantemente modificados. {Tanto disco duro para que al final los usuatios se en-
caprichen con un par de sectores! Pero como los programadores somos muy listos

Oracle 169

(.. si, ese que tiene usted a su lado también ...), hemos creado el indice sobre las fe-
chas del siguiente modo:

create index FechaApunte on Apuntes(Fecha) reverse;

Cuando usamos la opcion reverse, las claves se invierten fisicamente, al nivel de bytes.
Como resultado, fechas que antes eran consecutivas se distribuyen ahora de forma
aleatoria, y se equilibra la presién sobre el disco duro. Alguna desventaja debe tener
este sistema, y es que ahora no se puede aprovechar el indice para recuperar rapida-
mente los apuntes situados entre tal dia y tal otro dfa.

Oracle permite utilizar las opciones asc y desc en la creacion de indices, por
compatibilidad con DB2, pero estas especificaciones son ignoradas. Pruebe, por
ejemplo, a crear un indice ascendente y otro descendente para la misma columna
o combinacién de columnas, y vera como Oracle lo rechaza. Sin embatgo, y a di-
ferencia de lo que sucede con InterBase, el motor de Oracle puede utilizar el
mismo indice para optimizar la ordenacién ascendente y descendente en una
consulta.

Otra opcién curiosa es el uso de indices por mapas de bits (bitmap indexes). Tenemos
una tabla de clientes, y para cada cliente se almacena la provincia o el estado. Hay 50
provincias en Espafia? y el mismo nimero de estados en los Estados Unidos. Pero
hay un millén de clientes. Con un indice normal, cada clave de este indice debe tener
un promedio de 20.000 filas asociadas, listadas de forma secuencial. jDemasiado
gasto de espacio y tiempo de busquedal Un indice por mapas de bits almacena en
cada clave una estructura en la que a cada fila corresponde un bit: si estd en 0, la fila
no pertenece a la clave, si esta en 1, si pertenece.

Hasta la version 8, las comparaciones entre cadenas de caracteres en Oracle son sen-
sibles a mayusculas y minusculas. Lo mismo sucede con los indices.

Organizacion fisica de las tablas

Existen varias formas para organizar fisicamente los registros de una tabla dentro de
una base de datos. ¢Recuerda los clusters de MS SQL Server? El recurso de Oracle que
mas se le parece son las tablas organizadas por indices (index-organized tables), que se con-
trapone a la organizacion tradicional “en montén” (beap):

create table Detalles (
Pedi do nunber (10) not nul I,
Li nea nunber (5) not null,

% Si me he equivocado, perdonadme: yo no estudié Geografia Espafiola en la escuela.

170 La Cara Oculta de C++ Builder

-- ...mas columas ...
pri mary key (Pedido, Linea)
)

organi zati on i ndex;

Como se puede ver en el ejemplo, la clausula organization index se sitda al finalizar
la declaracién de la tabla, que debe contener una definicién de clave primaria. En tal
caso, los registros de la tabla se almacenan en los nodos terminales del indice b-zree,
ordenados fisicamente. Como resultado, la lectura de filas con claves adyacentes es
muy eficiente. En la tabla de detalles anterior, por ejemplo, todas las filas de detalles
de un pedido estaran situadas una a continuacion de la otra.

La organizacién por indices es una caracteristica de la versién 8 de Oracle. Puede
combinarse ademas con el uso de tablas anidadas, que estudiaremos al final del
capitulo. La organizacién tradicional puede indicarse ahora explicitamente con la
clausula organization heap.

Otra alternativa de almacenamiento es el uso de ¢usters, que Oracle interpreta de
modo diferente a MS SQL Server. Cabeceras de pedidos y lineas de detalles com-
parten una misma columna: el nimero de pedido. Entonces podemos arreglar las
cosas para que cada cabecera y sus lineas asociadas se almacenen en la misma pagina
de la base de datos, manteniendo un solo indice sobre el nimero de pedido para
ambas tablas. Este indice puede incluso utilizar la técnica conocida como bash, que
permite tiempos de acceso muy pequefios. ¢La desventaja? Aunque las busquedas
son muy rapidas, cuesta entonces mas trabajo el realizar una insercién, o modificar
un nimero de pedido.

Para definir un c/uster se utiliza la siguiente instruccion:

create cluster cpedidos (
Numer o nunber (10)
)

Note que no se especifican restricciones sobre la columna del c/uster; esa responsabi-
lidad correspondera a las tablas que se afiadiran mas adelante. El siguiente paso es
crear un indice para el cluster.

create index idx_cpedidos on cluster cpedidos;

Ya podemos crear tablas para que se almacenen en esta estructura:

create tabl e Pedidos(
Nunmero nunber (10) not null primary key,
-- ...mas definiciones ..

)

cl uster cpedi dos(Nunero);

Oracle 171

create table Detal |l es(
Pedi do nunber (10) not null,
Li nea nunber(5) not null,
-- ...mas definiciones ..

)
cl uster cpedi dos(Pedi do);

Como podemos ver, no hace falta que coincidan los nombres de columnas en el
cluster y en las tablas asociadas.

Desafortunadamente, existen limitaciones en el uso de custers. Por ejemplo, no
puede dividirse su contenido en particiones y las tablas asociadas no pueden
contener columnas de tipo /ob.

Procedimientos almacenados en PL/SQL

Para crear procedimientos almacenados en Oracle debe utilizar la siguiente instruc-
cién (menciono solamente las opciones basicas):

create [or replace] procedure Nonbre [(Paranmetros)] as
[Decl ar aci ones]

begi n
I nstrucci ones

end;

/

Los parametros del procedimiento pueden declararse con los modificadores in (se
asume por omision), out e inout, para indicar el modo de traspaso:

create or replace procedure Proxi noCodi go(Cod out integer) as
begi n

end;
/

Si ya conoce InterBase le sera facil iniciarse en PL/SQL, pues la sintaxis en ambos
lenguajes es muy parecida, con las siguientes excepciones:

Las variables locales y parametros no van precedidas por dos puntos como en
InterBase, ni siquiera cuando forman parte de una instruccién SQL.

La clausula into de una seleccion se coloca a continuacioén de la clausula select,
no al final de toda la instruccién como en InterBase.

El operador de asignacién en PL/SQL es el mismo de Pascal (:=).

Las instrucciones de control tienen una sintaxis basada en terminadores. Por
¢jemplo, la instruccién if debe terminar con end if, loop, con end loop, y asi
sucesivamente.

172 La Cara Oculta de C++ Builder

Resulta interesante el uso de procedimientos anénimos en SQL*Plus. Con esta he-
rramienta podemos ejecutar conjuntos de instrucciones arbitrarios, siempre que ten-
gamos la precaucion de introducir las declaraciones de variables con la palabra reser-
vada declare. Si no necesitamos variables locales, podemos comenzar directamente
con la palabra begin. Por ejemplo:

decl are
Cod i nt eger;
Cant i nteger;
begi n
sel ect Codigo into Cod
from dientes
where Nonbre = 'lan Marteens';
sel ect count(*) into Cant
from Pedidos
where Refdiente = Cod;
if Cant = 0 then
dbnms_out put. put _line('lan Marteens es un tacafio');
end if;
end;

/

Este cédigo asume que hemos instalado el “paquete” dbms_output, que nos permite
escribir en la salida de SQL*Plus al estilo consola. Hay que ejecutar el siguiente co-
mando de configuracion antes de utilizar puz_/ine, para que la salida de caracteres se
pueda visualizar:

set serveroutput on

Consultas recursivas

Cuando expliqué los procedimientos almacenados de InterBase, mencioné que una
de las justificaciones de este recurso era la posibilidad de poder realizar clausuras tran-
sitivas, o dicho de forma mas practica, permitir consultas recursivas. En Oracle no
hay que llegar a estos extremos, pues ofrece una extension del comando select para
plantear directamente este tipo de consultas.

En la base de datos de ejemplo que instala Oracle, hay una tabla que representa los
trabajadores de una empresa. La tabla se llama EMP, y pertenece al usuario SCOTT.
Los campos que nos interesan ahora son:

Campo Significado

EMPNO Cédigo de este empleado
ENAME Nombre del empleado

MGR Codigo del jefe de este empleado

Oracle 173

La parte interesante de esta tabla es que el campo MGR hace referencia a los valores
almacenados en el campo EMPNO de la propia tabla: una situacién a todas luces
recursiva. ¢Qué tal si listamos todos empleados de la compafifa, acompafiados por su
nivel en la jerarquia? Digamos que el jefe supremo tiene nivel 1, que los que estan
subordinados directamente al Maharaja tienen nivel 2, y as{ sucesivamente. En tal
caso, la consulta que necesitamos es la siguiente:

select |level, enane

from scott. enp

start with mgr is null
connect by ngr = prior enpno

Hay dos clausulas nuevas en la instruccién anterior. Con start with, que actta apro-
ximadamente como una clausula where, indicamos una consulta inicial. En nuestro
ejemplo, la consulta inicial contiene una sola fila, la del privilegiado empleado que no
tiene jefe. Ahora Oracle realizara repetitivamente la siguiente operacion: para cada
fila de la ultima hornada, buscara las nuevas filas que satisfacen la condicién expre-
sada en connect by. Quiere decir que en este paso se comparan en realidad dos filas,
aunque sean de la misma tabla: la fila de la operacién anterior y una nueva fila. Es
por eso que existe el operador prior, para indicar que se trata de una columna de la
fila que ya se selecciond en la dltima pasada. Es decir, se afiaden los empleados cuyos
jefes estan en el nivel anteriormente explorado. La pseudo columna level indica el
nivel en el cual se encuentra la fila activa.

El algoritmo antetior ha sido simplificado conscientemente para podetlo explicar
mas facilmente. Pero toda simplificacioén es una traicion a la verdad. En este caso,
puede parecer que Oracle utiliza una basqueda primero en anchura para localizar las
filas, cuando en realidad la basqueda se realiza primero en profundidad.

Planes de optimizacion en Oracle

La visualizacién de los planes de optimizacién de Oracle es un buen ejemplo de apli-
cacion de las consultas recursivas. Ademas, le interesara conocer la técnica para po-
der decidir si Oracle esta ejecutando eficientemente sus instrucciones SQL o no.

Para poder averiguar los planes de optimizacion de Oracle, es necesario que exista
una tabla, no importa su nombre, con el siguiente esquema:

create table plan_table (

statenment _id var char 2(30),
ti mestanp dat e,

remar ks var char 2(80),
operation var char 2(30),
options var char 2(30),

obj ect _node var char 2(30),

174 La Cara Oculta de C++ Builder

obj ect _owner var char 2(30),
obj ect _nane var char 2(30),
obj ect _i nstance nunber,

obj ect _type var char 2(30),
sear ch_col ums nunber,

id nunber,
parent _id nunber,

posi tion nunber,

ot her | ong

)

Ahora se puede utilizar la instruccién explain plan para afadir filas a esta tabla.
Después necesitaremos visualizar las filas afladidas:

explain plan set statenment_id = ' Consul taTonta'
into plan_table for
select * fromenp order by enpno desc;

Observe que se le asocia un identificador literal al plan de ejecucion que se va a ex-
plicar. Este identificador literal se utiliza en la siguiente consulta, que devuelve el plan
generado:

select Ilpad(' ', 2*(level-1)) ||
operation || ' ' ||
options || " '
object_nane || ' '
decode(id, 0, 'Coste=' || position) 'Plan'
from pl an_t abl e
start with id = 0 and statenent_id = ' Consul taTont a'
connect by parent_id = prior id and statement_id = ' ConsultaTonta';

LPad es una funcién predefinida de Oracle que sirve para rellenar con espacios en

blanco a la izquierda. Decode sirve para seleccionar un valor de acuerdo a una expre-
sion.

Cursores

Oracle utiliza cursores para recorrer conjuntos de datos en procedimientos almace-
nados. Aunque la idea es similar, en general, a los cursores de SQL Server que hemos
visto en el capitulo anterior, existen diferencias sinticticas menores. En el capitulo
anterior habfamos definido un procedimiento almacenado Actualizarlnventario, para
recorrer todas las filas de un pedido y actualizar las existencias en la tabla Articulos. La
siguiente es la versién correspondiente en Oracle:

create or replace procedure Actualizarlnventario(Pedido integer) as
cursor Dets(Ped integer) is
sel ect RefArticulo, Cantidad
from Detalles
where Ref Pedi do = Ped
order by RefArticul o;

Oracle 175

CodArt integer;
Cant i nteger;

begi n
open Det s(Pedi do);
fetch Dets into CodArt, Cant;
whi | e Det s% ound | oop
update Articul os
set Pedi dos = Pedi dos + Cant
where Codigo = CodArt;
fetch Dets into CodArt, Cant;
end | oop;
end;

/

Esta vez hemos utilizado un cursor con parametros explicitos. Aunque también se
admite que el cursor haga referencia a variables que se encuentran definidas a su
alcance, el uso de parametros hace que los algoritmos queden mas claros. Si se defi-
nen parametros, hay que pasar los mismos en el momento de la apertura del cursor
con la instruccién open. Otra diferencia importante es la forma de detectar el final
del cursor. En SQL Server habfamos recurtido a la vatiable global @@fetch_status,
mientras que aqui utilizamos el atributo %found del cursor. Existen mas atributos para
los cursores, entre ellos Yonotfound y Yorowconnt; este tltimo devuelve el nimero de filas
recuperadas hasta el momento.

También se puede realizar el recorrido del siguiente modo, aprovechando las instruc-
ciones loop y exit, para ahorrarnos una llamada a fetch:

open Det s(Pedi do);

| oop
fetch Dets into CodArt, Cant;
exit when Det s%ot f ound;
update Articul os
set Pedi dos = Pedi dos + Cant
where Codigo = CodArt;

end | oop;

Sin embargo, la forma mas clara de plantear el procedimiento aprovecha una variante
de la instruccién for que es muy similar a la de InterBase:

create or replace procedure Actualizarlnventario(Pedido integer) as
begi n
for din (

sel ect RefArticulo, Cantidad

from Detalles

where Ref Pedido = Ped

order by RefArticulo) |oop

update Articul os

set Pedi dos = Pedi dos + d. Canti dad
where Codigo = d.RefArticul o;
end | oop;

end;
/

176 La Cara Oculta de C++ Builder

Triggers en PL/SQL

Los #riggers de Oracle combinan el comportamiento de los #ggers de InterBase y de
MS SQL Server, pues pueden dispararse antes y después de la modificacion sobre
cada fila, o antes y después del procesamiento de un lote completo de modificacio-
nes'. He aqui una sintaxis abreviada de la instruccién de creacion de #riggers:

create [or replace] trigger NonbreTrigger
(before| after) QOperaci ones on Tabl a
[[referencing Variables] for each row [when (Condicion)]]
decl are
Decl ar aci ones
begi n
I nstrucci ones
end;

Vayamos por partes, comenzando por las gperaciones. Sucede que un #rigger puede
dispararse para varias operaciones de actualizacion diferentes:

create or replace trigger VerificarReferencia
before insert or update of Refdiente on Pedidos
for each row
decl are
i pls_integer;
begi n
sel ect count(*)
into i
from dientes
where Codigo = :new Refdiente;
if i =0 then
rai se_application_error(-20000,
"No existe tal cliente');
end if;
end;
/

VerificarReferencia se dispara cuando se inserta un nuevo pedido y cuando se actualiza
el campo RefCliente de un pedido existente (¢por donde van los tiros?). Ademas, la
clausula for each row indica que es un #igger como Dios manda, que se ejecuta fila
por fila. He utilizado también la instruccion raise_application_error, para provocar una
excepcion cuando no exista el cliente referido por el pedido. Observe dos diferencias
respecto a InterBase: la variable de correlacion #ew necesita ir precedida por dos
puntos, y la clausula into se coloca inmediatamente después de la cliusula select.

La clausula referencing permite renombrar las variables de correlacion, zew y old, en
el caso en que haya conflictos con el nombre de alguna tabla:

referencing old as viejo new as nuevo

10 Informix es similar en este sentido.

Oracle 177

En cuanto a la clausula when, sirve para que el trigger solamente se dispare si se
cumple determinada condicion. La verificacion de la clausula when puede también
efectuarse dentro del cuerpo del #igger, pero es mas eficiente cuando se verifica antes
del disparo:

create or replace trigger Controlarlnflacion
bef ore update on Enpl eados
for each row when (new. Salario > ol d. Sal ari o)
begi n
-- Esto es un conentario
end;
/

A semejanza de lo que sucede en InterBase, y a diferencia de lo que hay que hacer en

MS SQL, Oracle no permite anular explicitamente transacciones dentro del cuerpo
de un #rigger.

La invasion de las tablas mutantes

¢Pondrfa usted informacién redundante en una base de datos relacional? Muchos
analistas se horrorizarfan ante esta posibilidad. Sin embargo, veremos que a veces
Oracle no nos deja otra opcion. La “culpa” la tiene una regla fundamental que deben
cumplir los #7ggers de PL/SQL: no pueden acceder a otras filas de la tabla que se estd
modificando, excepto a la fila que se modifica, mediante las variables de correlacion
new'y old. Debo aclarar que esta regla se refiere a #riggers a nivel de fila.

Supongamos que tenemos un par de tablas para almacenar departamentos y emplea-

dos:

create tabl e Departanentos (
I D integer not null primry key,
Nonbre varchar (30) not null unique

)
create table Enpl eados (

1D integer not null primry key,

Nonbre varchar(35) not null,

Dpt o integer not null references Departanentos(| D)
)

Ahora queremos limitar el numero de empleados por departamento, digamos que
hasta 30. Nuestra primera reaccion es crear un trigger en el siguiente estilo:

create or replace trigger LimtarEnpleados
before insert on Enpl eados
for each row

decl are
Nuner oAct ual i nt eger;

178 La Cara Oculta de C++ Builder

begi n
sel ect count (*)
into Nuner oAct ual
from Enpl eados
where Dpto = :new. Dpto;
if NumeroActual = 30 then
rai se_application_error(-20001,
"Denmasi ados enpl eados") ;
end if;
end;

/

Lamentablemente, Oracle no permite este tipo de #7gger, y lanza un error al intentar
ejecutarlo. La dificultad esta en la seleccion de la cantidad, que se realiza accediendo a
la misma tabla sobre la cual se dispara el #igger. Oracle denomina Zabla mutante a la
tabla que va a ser modificada.

Hay varias soluciones a este problema, pero la mas sencilla consiste en mantener en
la tabla de departamentos la cantidad de empleados que trabajan en él. Esto implica,
por supuesto, introducir una columna redundante:

create tabl e Departanentos (

ID integer not null primry key,
Nonbre varchar (30) not null unique,
Enps integer default 0 not null

)

Debemos actualizar la columna Emps cada vez que insertemos un empleado, lo eli-
minemos o lo cambiemos de departamento. Este, por ejemplo, setia el #rigger que se
dispararia cada vez que insertamos un empleado:

create or replace trigger LimtarEnpleados
before insert on Enpl eados
for each row

decl are
Nuner oAct ual i nteger;

begi n
sel ect Enps
into Nuner oAct ual
from Departanentos
where | D = :new. Dpto;
if NumeroActual = 30 then
rai se_application_error(-20001,
"Demasi ados enpl eados") ;
end if;
updat e Departanent os
set Enps = Enps + 1
where |D = :new. Dpto;
end;

/

Esta vez no hay problemas con la tabla mutante, pues la seleccion se realiza sobre la
tabla de departamentos, no sobre los empleados. Aqui también tenemos que tener en

Oracle 179

cuenta otra regla de Oracle: en un #rigger no se puede modificar la clave primaria de
una tabla a la cual haga referencia la tabla mutante. Empleados hace referencia a De-
partamentos mediante su restriccion de integridad referencial. Pero la dltima instruc-
ci6on del #rigger anterior solamente modifica Emps, que no es la clave primaria.

Paquetes

En realidad, Oracle siempre ha tratado de adaptarse a las modas. En sus inicios, co-
pi6 mucho de DB2. En estos momentos, toma prestado del mundo de Java (Ora-
cle8i). Pero a mediados de los 80, el patron a imitar era el lenguaje Ada. Este lenguaje
surgi6 antes del reciente boo de la Programacién Orientada a Objetos, pero intro-
dujo algunas construcciones que iban en esa direccion. Una de ellas fueron los pague-
tes O packages, que rapidamente fueron asimilados por Oracle.

Un paquete en Oracle contiene una serie de declaraciones de tipos, variables y pro-
cedimientos, ofreciendo una forma primitiva de encapsulamiento. Una de las caracte-
risticas mas importantes de los paquetes es que sus variables publicas conservan sus
valores durante todo el tiempo de existencia del paquete. Lo que es mas importante
ahora para nosotros: cada sesiéon de Oracle que utiliza un paquete recibe un espacio
de memoria separado para estas variables. Por lo tanto, no podemos comunicar in-
formacién desde una sesion a otra utilizando variables de paquetes. Pero podemos
utilizarlas para mantener informacioén de estado durante varias operaciones dentro de
una misma sesion.

¢De qué nos sirven los paquetes a nosotros, programadores de C++ Builder? Un
paquete no puede utilizarse directamente desde un programa desarrollado con la
VCL. Eso si, puede utilizarse internamente por los #ggers y procedimientos almace-
nados de nuestra base de datos. Precisamente, utilizaré un paquete para mostrar
cémo se pueden resolver algunas restricciones relacionadas con las tablas mutantes
en Oracle.

Vamos a plantearnos la siguiente regla de empresa: un recién llegado a la compafifa
no puede tener un salario superior a la media. Si intentamos programar la restricciéon
en un #rigger a nivel de fila fracasarfamos, pues no podriamos consultar la media sala-
rial de la tabla de empleados al ser ésta una tabla mutante durante la insercion. Claro,
se nos puede ocurrir almacenar la media salarial en algin registro de otra tabla, pero
esto serfa demasiado engorroso.

Ya he mencionado que las restricciones correspondientes a tablas mutantes sola-
mente se aplican a los #iggers a nivel de fila. Un #igger a nivel de instruccién si permite
leer valores de la tabla que se va a modificar. El problema es que seguimos necesi-
tando el #rigger por filas para comprobar la restriccion. Si calculamos la media en un

180 La Cara Oculta de C++ Builder

trigger por instrucciones, ¢coémo pasamos el valor calculado al segundo #igger? Muy
facil, pues utilizaremos una variable dentro de un paquete.

Primero necesitamos definir la interfaz publica del paquete:

create or replace package Datosd obal es as
Medi aSal ari al nunber(15,2) := 0;
procedure Cal cul ar Medi a;

end Dat osd obal es;

/

Mediante el siguiente serzp# suministramos un cuerpo al paquete, en el cual imple-
mentaremos el procedimiento CalenlarMedia:

create or replace package body Dat osd obal es as
procedure CalcularMedia is

begin
sel ect avg(sal)
into Medi aSal ari al
from enp;

end;

end Dat osd obal es;
/

Ahora creamos el #rigger a nivel de instruccion:

create or replace trigger BlEnmp
before insert on Enp
begi n
Dat osd obal es. Cal cul ar Medi a;
end;
/

En este caso tan sencillo, hubiéramos podido ahorrarnos el procedimiento, pero he
preferido mostrar cémo se pueden crear. El valor almacenado en la variable del pa-
quete se utiliza en el #igger a nivel de fila:

create or replace trigger Bl EmpRow
before insert on Enp
for each row

begi n
if :new Sal > Datosd obal es. Medi aSal ari al then
rai se_application_error(-20000,
'jEste es un enchufado!');
end if;
end;

Oracle 181

Actualizacion de vistas mediante triggers

Preste atencion a la técnica que describiré en esta seccion; cuando estudiemos las
actualizaciones en caché del BDE, nos encontraremos con un mecanismo similar,
pero que sera implementado en el lado cliente de la aplicacion. Se trata de permitir
actualizaciones sobre vistas que no son actualizables debido a su definiciéon. Conside-
remos la siguiente vista, que condensa informacion a partir de la tabla de clientes:

create view C udades as

select City, count(CustNo) Cantidad
from Custoner
group by Gty;

La vista anterior muestra cada ciudad en la cual tenemos al menos un cliente, y la
cantidad de clientes existentes en la misma. Evidentemente, la vista no es actualiza-
ble, por culpa de la clausula group by. Sin embargo, puede que nos interese permitir
ciertas operaciones de modificacion sobre la misma. ¢Le doy un motivor Bien, es
muy frecuente que alguien escriba el nombre de una ciudad con faltas de ortografia, y
que lo descubramos al navegar por la vista de Cindades. Claro que podemos utilizar
una instruccién SQL para corregir todos aquellos nombres de ciudad mal deletrea-

dos, pero ¢por qué no simular que actualizamos directamente la vista? Para ello, de-
fina el siguiente #r7gger:

create trigger CorregirC udad
i nstead of update on Ci udades
for each row

begi n
updat e Custoner
set Cty = :new.City
where City = :old.Gty;

end CorregirC udad,;

Observe la clausula instead of, que es propia de Oracle. Ahora, la vista permite ope-
raciones de modificacion, ya sea desde una aplicacion cliente o directamente me-
diante instrucciones update:

updat e G udades
set Gty ' Muni ch’
where Gty ' Minchen' ;

No he podido resistirme a la tentacion de escribir un chiste muy malo de mi cosecha.
Supongamos que también definimos el siguiente #rigger:

create trigger ElimnarC udad
instead of del ete on C udades
for each row

begi n
del ete from Cust oner
where Gty =:0ld. Gty;

end Eli m nar G udad;

182 La Cara Oculta de C++ Builder

Ahora usted puede montar en cdlera divina y lanzar instrucciones como la siguiente:

del ete from C udades
where City in ('Sodoma', 'CGonorra');

Secuencias

Las secuencias son un recurso de programacién de PL/SQL similar a los generado-
res de InterBase. Ofrecen un sustituto a las tradicionales tablas de contadores, con la
ventaja principal de que la lectura de un valor de la secuencia no impide el acceso
concurrente a la misma desde otro proceso. Cuando se utilizan registros con conta-
dores, el acceso al contador impone un bloqueo sobre el mismo que no se libera
hasta el fin de la transaccion actual. Por lo tanto, el uso de secuencias acelera las ope-
raciones en la base de datos.

Este es un ejemplo basico de definicién de secuencias:

create sequence CodigoCliente increment by 1 starting with 1;

La secuencia anteriormente definida puede utilizarse ahora en un trigger del siguiente
modo:

create or replace trigger Bl dient
before insert on dientes for each row

begi n
if :new Codigo is null then
sel ect Codi goCd i ente. Next Val
into : new. Codi go
from Dual;
end if;
end;

/

Aqui hemos utilizado Next17a/, como si fuera un método aplicado a la secuencia, para
obtener un valor y avanzar el contador interno. Si queremos conocer cual es el valor
actual solamente, podemos utilizar el “método” Currl/al. Es muy probable que le
llame la atencién la forma enrevesada que han escogido los disefiadores del lenguaje
para obtener el valor de la secuencia. Me explico: Dual es una tabla predefinida por
Oracle que siempre contiene solamente una fila. Uno pensatia que la siguiente ins-
truccion funcionarfa de modo mas natural:

:new. Codi go : = Codigodiente.NextVal; -- jjil NCORRECTO!!
Pero no funciona. Sin embargo, si funcionan instrucciones como la siguiente:

insert into UnaTabl a(Codi go, Nonbre)
val ues (Codi godiente.NextVal, 'Your name here')

Oracle 183

Los mismos problemas que presentan los generadores de InterBase se presentan con
las secuencias de Oracle:

No garantizan la secuencialidad de sus valores, al no bloquearse la secuencia
durante una transacciéon.

La asignacién de la clave primaria en el servidor puede confundir al BDE,
cuando se intenta releer un registro recién insertado. La forma correcta de utili-
zar una secuencia en una aplicacion para C++ Builder es escribir un procedi-
miento almacenado que devuelva el proximo valor de la secuencia, y ejecutar éste
desde el evento OnNewRecord 6 BeforePost de la tabla

Tenga en cuenta que el segundo problema que acabamos de explicar se presenta
unicamente cuando estamos creando registros y explorando la tabla al mismo
tiempo desde un cliente. Si las inserciones transcurren durante un proceso en
lote, quizas en el propio servidor, el problema de la actualizacién de un registro
recién insertado no existe.

Como técnica alternativa a las secuencias, cuando deseamos nimeros consecutivos
sin saltos entre ellos, podemos utilizar tablas con contadores, al igual que en cual-
quier otro sistema de bases de datos. Sin embargo, Oracle padece un grave problema:
aunque permite transacciones con lecturas repetibles, éstas tienen que ser sélo lec-
tura. ¢Qué consecuencia trae esto? Supongamos que el valor secuencial se determina
mediante las dos siguientes instrucciones:

sel ect Proxi noCodi go

into : new. Codi go

from Contadores;

updat e Cont ador es

set Pr oxi nrbCodi go = Proxi noCodi go + 1;

Estamos asumiendo que Confadores es una tabla con una sola fila, y que el campo
ProxinmoCodigo de esa fila contiene el siguiente c6digo a asignar. Por supuesto, este
algoritmo no puede efectuarse dentro de una transaccién con lecturas repetibles de
Oracle. El problema se presenta cuando dos procesos ejecutan este algoritmo simul-
taneamente. Ambos ejecutan la primera sentencia, y asignan el mismo valor a sus
codigos. A continuacion, el primer proceso actualiza la tabla y cierra la transaccion.
Entonces el segundo proceso puede también actualizar y terminar exitosamente,
aunque ambos se llevan el mismo valor.

En el capitulo anterior vimos cémo Microsoft SQL Server utilizaba la clausula
holdlock en la sentencia de selecciéon para mantener un bloqueo sobre la fila leida
hasta el final de la transaccién. Oracle ofrece un truco similar, pero necesitamos utili-
zar un cursor explicito:

184 La Cara Oculta de C++ Builder

decl are
cursor Cod is
sel ect Proxi noCodi go
from Contadores

for update;
begi n
open Cod;
fetch Cod into :new Codigo;
updat e Cont adores
set Pr oxi noCodi go = Proxi noCodigo + 1
where current of Cod;
cl ose Cod;
end;

/

Observe la variante de la sentencia update que se ejecuta solamente para la fila activa

de un cursor.

Tipos de objetos

Ha llegado el esperado momento de ver como Oracle mezcla objetos con el modelo
relacional. La aventura comienza con la creacion de tipos de objetos:

create type TCientes as object (

Nonbr e var char 2(35),
Di reccion var char 2(35),
Tel ef ono nunber (9)

)
/

En realidad, he creado un objeto demasiado sencillo, pues solamente posee atributos.
Un objeto tipico de Oracle puede tener también métodos. Por ejemplo:

create type TCientes as object (

Nonbr e var char 2(35),
Di reccion var char 2(35),
Tel ef ono nunber (9),

menber function Prefijo return varchar2

)
/

Como es de suponer, la implementacién de la funcion se realiza mas adelante:

create or replace type body TCientes as
menber function Prefijo return varchar2 is
C varchar2(9);
begi n
C : = to_char(Tel ef ono);
if substr(C, 1, 2) in ('91', '93") then
return substr(C, 1, 2);

Oracle 185

el se
return substr(C, 1, 3);
end if;
end;
end;
/

Como C++ Builder 4 no permite ejecutar, al menos de forma directa, métodos per-
tenecientes a objetos de Oracle, no voy a insistir mucho sobre el tema. Tenga en
cuenta que estos “objetos” tienen una serie de limitaciones:

No pueden heredar de otras clases.

No existe forma de esconder los atributos. Aunque definamos métodos de ac-
ceso y transformacién, de todos modos podremos modificar directamente el va-
lor de los campos del objeto. No obstante, Oracle promete mejoras en proximas
versiones.

No se pueden definir constructores o destructores personalizados.

¢Dénde se pueden utilizar estos objetos? En primer lugar, podemos incrustar co-
lumnas de tipo objeto dentro de registros “normales”, o dentro de otros objetos.
Suponiendo que existe una clase TDireccion, con dos lineas de direccion, cédigo pos-
tal y poblacién, podriamos mejorar nuestra definicién de clientes de esta forma:

create type TCientes as object (

Nonbr e var char 2(35),
Di reccion TDi r ecci on,
Tel ef ono nunber (9)

)
/

Sin embargo, no se me ocurre “incrustar’” a un cliente dentro de otro objeto o regis-
ro (aunque algunos merecen eso y algo mas). Los clientes son objetos con “vida

t que alg r y alg Los client bjet “vid
propia”, mientras que la vida de un objeto incrustado esta acotada por la del objeto
que lo contiene. En compensacion, puedo crear una tabla de clientes:

create table ientes of Tdientes;

En esta tabla de clientes se afaden todas aquellas restricciones que no pudimos esta-
blecer durante la definicién del tipo:

alter table Cientes
add constraint NormbreUni co uni que(Nonbre);
alter table Clientes
add constraint Val oresNoNul os check(Nonbre <> '");

Es posible también especificar las restricciones anteriores durante la creacién de la
tabla:

186 La Cara Oculta de C++ Builder

create table Cientes of TAientes
Nonbre not null,
check (Nonmbre <> ''),
uni que (Nonbre)

)

Muy bien, pero usted estara echando de menos una columna con el cédigo de
cliente. Si no, ¢;como podria un pedido indicar qué cliente lo realizé? (Ah, eso es se-
guir pensando a la antigual Mire ahora mi definicién de la tabla de pedidos:

create tabl e Pedidos (

Nuner o nunber (10) not null primary key,
Ciente ref Tdientes,

Fecha date not null,

-- ..etcétera ...

)

Mis pedidos tienen un campo que es una referencia a un objeto de tipo TClientes.
Este objeto puede residir en cualquier sitio de la base de datos, pero lo mas sensato
es que la referencia apunte a una de las filas de la tabla de clientes. La siguiente fun-
ci6én obtiene la referencia a un cliente a partir de su nombre:

create or replace function RefCiente(N varchar?2)
return ref TCientes as
ai ref Tdientes;

begi n
select ref(C) into di
from dientes C
where Nonbre = N;
return di;

end;

/

Ahora podemos insertar registros en la tabla de pedidos:

insert into Pedidos(Nunero, Fecha, Ciente)
val ues (1, sysdate, RefCiente('lan Marteens'));

La relacién que existe entre los pedidos y los clientes es que a cada pedido corres-
ponde a lo maximo un cliente (la referencia puede ser nula, en general). Sin embargo,
también es posible representar relaciones uno/muchos: un pedido debe contener
varias lineas de detalles. Comenzamos definiendo un tipo para las lineas de detalles:

create type TDetal l e as object (
Ref Articul o nunber (10),

Cant i dad nunber (3),
Precio nunber (7, 2),
Descuent o nunber (3, 1),

menber function Subtotal return nunber

Oracle 187

Esta vez no creamos una tabla de objetos, pero en compensacion definimos un tipo
de tabla anidada:

create type TDetalles as table of TDetalle;

El nuevo tipo puede utilizarse en la definiciéon de otras tablas:

create table Pedidos (

Nuner o nunber (10) not null primary key,
Cliente ref Td i entes,

Fecha date not null,

Det al | es TDet al | es

nested table Detalles store on Tabl aDetall es;

El siguiente diagrama puede ayudarnos a visualizar las relaciones entre los registros
de clientes, pedidos y detalles:

CLIENTES

PEDIDOS

L R L il
DETALLESI \

]
o 1 e

Dos pedidos diferentes pueden hacer referencia al mismo cliente. Si eliminamos un
cliente al que estd apuntando un pedido, Oracle deja una referencia incorrecta, por
omision. Para evitarlo tendrfamos que programar #riggers. Por el contrario, un registro
que contiene tablas anidadas es el propietatio de estos objetos. Cuando borramos un
pedido estamos borrando también todas las lineas de detalles asociadas. En conse-
cuencia, a cada fila de detalles puede apuntar solamente un pedido.

Por ultimo, Oracle 8 permite declarar columnas que sean vectores. Estas columnas se
parecen a las tablas anidadas, pero su tamafio maximo estd limitado de antemano:

create type VDetalles as varray(50) of TDetalle;

Aunque he utilizado un tipo de objeto como elemento del vector, también pueden
utilizarse tipos simples, como los enteros, las cadenas de caracteres, etc.

Capitulo

DB2 Universal Database

UBIERA SIDO SUFICIENTE TITULAR ESTE CAPITULO con un simple “DB2”.

Pero mirandolo bien, eso de Universal Database tiene la bastante resonancia

acustica como para llamar la atencién del lector mas despistado. En reali-
dad, DB2 es un sistema que me ha dejado buen sabor de boca, después de las prue-
bas que he realizado con ¢€l, asi que no hay nada irénico en el titulo. Se trata de un
sistema con pedigree: recuerde que los origenes de SQL se remontan al Syszerz R, un
prototipo de IBM que nunca llegb a comercializarse. Aunque para ser exactos, UDB
(las siglas carifiosas que utilizan los de IBM al referirse a la Base de Datos Universal)
esta basada en un prototipo mas adelantado, que se denominé Syszenz R*.

Una advertencia: el lector notara enseguida las semejanzas entre DB2 y Oracle. No se
trata de una coincidencia, pues Oracle ha utilizado como patrén muchos de los avan-
ces del System R original y del propio DB2, posteriormente. Pero como se trata, en la

mayoria de los casos, de aportaciones positivas, no tengo nada que objetar.

Arquitectura y plataformas

Uno de los principales motivos para la denominacion de Universal Database es que
DB2 puede ejecutarse desde numerosas plataformas, tanto la parte cliente como la
servidor. Existen versiones del servidor para Windows N'T, OS/2, para vatios sabo-
res y colores de UNIX, e incluso para Windows 95. La parte cliente, conocida como
Client Application Enabler, o CAE, puede instalarse también en distintos sistemas ope-
rativos. También se soporta un amplio rango de protocolos de comunicacion. Es

destacable la existencia de una versién “personal” de DB2, que puede ejecutarse en
Windows 95.

Un servidor tipico permite ejecutar simultineamente una o mas zstancias, COncepto
que equivale mas o menos al de un espacio de ejecucion con nombre. Cada instancia,
sin embargo, permite gestionar una o mas bases de datos simultineamente. Cada
base de datos tiene su catdlogo independiente:

190 La Cara Oculta de C++ Builder

Servidor DB2

Instancia #1 Instancia #2

| Base de datosI | Base de datosl | Base de datos I

‘ Catélogol ‘ Catalogo | ‘ Catalogo |

La siguiente imagen muestra en accion a la utilidad Control Center, que se puede utili-
zar como punto de partida para la mayoria de las tareas de administracion:

Contiol Center Selected Edit Yiew Help

B EEEEEEEE)

B Systems || [TO0E-DBZ- MASTSOL - Tables
= =] JuLia
E@ Imstances BLES Seagl=li] SYSCATSPACE
=- 5 DBz EEH 5YSCOLUMNS SYSIBM SYSCATSPACE
= @ Databases EEH 5YSINDEXES SYEIBM SYSCATSPACE
= [J MasTsaL BR SYSVIEWS SYSIEM SYSCATSPACE

Tables BEH SYSVIEWDEP SYSIBM SYSCATSPACE

il viens B SYSPLAN SYSIBM SYSCATSPACE
""" Aliases B SYSPLANDEP SYSIBM SYSCATSPACE
& Tiiggers B SYSSECTION SYSIBM SYSCATSPACE

Schemas BHSYSSTMT SYSIEM SYSCATSPACE

B SYSDBAUTH - SYSIBM SYSCATSPACE
B SYSPLANAL.. SYSIBM SYSCATSPACE
B SYSTABAUTH SYSIBM SYSCATSPACE
B SYSINDEXA.. SYSIBM SYSCATSPACE

. e LILI

Indexes
Table Spaces

------ (%] Connections
g Replication Sources
i Freplication Subsciic

...... (57 Bufter Pooks -
i | _'I_I

No voy a extenderme sobre las posibilidades de configuracién de DB2, pues son
muchas. Como cabe esperar de un sistema de gama alta, también se soporta la divi-
sion de una base de datos en particiones fisicas, y se implementan técnicas de repli-
cacion. Quiero destacar ademds que DB2 Enterprise Extended Edition permite el
uso de bases de datos distribuidas, y que todas las versiones, excepto la version pet-
sonal, vienen preparadas para aprovechar equipos con varios procesadores. Un pro-
ducto adicional, conocido como DataJoiner, permite extraer datos de otros tipos de
servidores, como Oracle, SQL Server, Sybase e Informix, y utilizarlos como si se
tratase de informacion en el formato nativo de DB2.

Aislamiento de transacciones

DB2 implementa todos los niveles de aislamiento de transacciones, y el SQL Link
correspondiente del BDE permite trabajar en los modos de lectura confirmada y
lecturas repetibles. La implementacion de las lecturas repetibles es muy similar a la de
MS SQL Server: se colocan bloqueos de lectura sobre los registros leidos durante la

DB2 Universal Database 191

transaccion. Una transaccion de lectura demasiado larga, en consecuencia, puede
bloquear a muchas transacciones de escritura.

Estos son los nombres que DB2 da a los niveles de aislamiento estandar:

Segun DB2 Segun el estandar
Uncommitted read Uncommitted read (tiDirtyRead)
Cursor stability Read Committed

Read stability Repeatable Read

Repeatable read Serializable

Recuerde que serializable se diferencia de lecturas repetibles en que en el ultimo
modo pueden todavia aparecer registros fantasmas por culpa de las inserciones.

Una peculiaridad de DB2 consiste en que existe una instruccion para bloquear expli-
citamente una tabla. Naturalmente, el bloqueo se libera al terminar la transaccion
actual:

| ock tabl e NonbreTabla in (share|exclusive) node

Tipos de datos

Los tipos de datos basicos de UDB son los siguientes:

Tipo de dato Significado

smallint Enteros de 16 bits

integer Enteros de 32 bits

decimal(p,s) Equivalente a numeric; incluye precision y escala
real, float Valor flotante de 32 bits

double Valor flotante de 64 bits

char(n) Cadenas de longitud fija; # <= 254

varchar(n) Cadenas de longitud variable; #» <= 4000

date Afio, mes y dia

time Hora, minuto y segundo

timestanmp Fecha y hora; precision en microsegundos
graphic(n) Bloque binario de longitud fija (<=727)
vargraphic(n) Bloque binario de longitud variable (<=2000)

Si no se indica la escala y precision de un decimal, se asume decimal(5,0). Una impor-
tante limitacion es que los tipos sarchar con tamafio mayor de 254 bytes no pueden
participar en las clausulas order by, group by y distinct.

192 La Cara Oculta de C++ Builder

A estos tipos hay que sumarles los tipos /b (large objects) que se muestran a continua-
cion:

Tipo de dato Significado

blob Contiene datos binarios
clob Contiene caracteres de un solo byte
dbelob Contiene caracteres Unicode de dos bytes

Los tipos /b deben indicar un tamafio maximo de hasta 2GB, utilizando la siguiente
sintaxis:

Fot o bl ob(5M not |ogged conpact,
Docunent o cl ob(500K) | ogged not conpact,

Las opcién not compact, que es la que se asume por omision, deja espacio libre al
final de la zona reservada para el valor, previendo el crecimiento del objeto. Por
ejemplo, es poco probable que la foto se sustituya, pero el documento puede ser
editado. La otra opcién, not logged, evita que las operaciones con este campo se
guarden en el registro de rehacer transacciones. Asi se gana en velocidad, pero si
ocurre un fallo, no se pueden recuperar las transacciones ejecutadas sobre la columna
desde la dltima copia de seguridad. Por omisién, se asume logged.

En cualquier caso, las modificaciones realizadas a campos /b pueden deshacerse
sin problemas al anularse una transaccién. La opcién anterior solamente afecta al
registro de rehacer.

Por ultimo, el programador puede crear sus propios tipos de datos:

create distinct type Money as decinal (15,2) with conparisons;

Cuando creamos un tipo de datos en DB2, los operadores aplicables sobre el tipo
base no estan automaticamente a disposicién del nuevo tipo. Para indicar los opera-
dores que son validos hay que hacer declaraciones en el siguiente estilo:

create function "+"(Mney, Money) returns Money
source "+"(Decimal (), Decimal ());

create function "-"(Mney, Mney) returns Mney
source "-"(Decimal (), Decimal());

create function sum(Mney) returns Money
source sun{Decinmal ());

Aunque hemos utilizado la notacién prefijo en la definicién de las sumas y restas,
podemos sumar dinero en la forma habitual:

Sal ari oBase + PagaExtraordinaria

DB2 Universal Database 193

Pero, a no ser que definamos explicitamente la funcién de multiplicacién, no pode-
mos multiplicar dinero por dinero, operacion que carece de sentido.

Se pueden afiadir funciones adicionales a DB2 programadas externamente. Incluso
es posible implementar estas funciones utilizando automatizacién OLE.

Creacion de tablas y restricciones

Todos los objetos que se crean en DB2 se agrupan en esquemas, que se crean implicita
o explicitamente. Si al crear un objeto no indicamos su esquema, se verifica la exis-
tencia de un esquema con el nombre del usuario activo; si no existe, se crea automa-
ticamente dicho esquema. El propietario de todos los esquemas implicitos es el usua-
rio SYSIBM. Para crear un esquema explicitamente, y asignatle un propietario que no
sea SYSIBM, se utiliza la siguiente instruccion:

create schena PERSONAL aut horization Marteens;

A continuacién muestro una serie de instrucciones para crear una tabla y colocar sus
datos, indices y columnas de gran tamafio en particiones diferentes:

create tabl espace Dat os managed by system
using ('c:\db2data');
create tabl espace | ndices managed by system
usi ng ('d:\db2idxs');
create |l ong tabl espace Bl obs nanaged by dat abase
using (file 'e:\db2bl ob\ bl obs.dat' 10000);
create tabl e PERSONAL. Enpl eados (
Codi go int not null primry key,
Apel | i dos varchar (30) not null,
Nonbr e var char (25) not null,
Fot o bl ob(100K) not | ogged conpact)
in Datos index in Indices |long in Blobs;

En DB2 podemos utilizar las restricciones habituales en sistemas SQL: claves prima-
rias, claves Unicas, integridad referencial y clausulas check. Estas ultimas estan limi-
tadas a expresiones sobre las columnas de la fila activa, como en Oracle y SQL Ser-
ver.

Las restricciones de integridad referencial en DB2 admiten las siguientes acciones
referenciales:

on delete on update
cascade 70 action

set null restrict

70 action

restrict

194 La Cara Oculta de C++ Builder

Es interesante ver como DB2 distingue entre no action y restrict. Por ejemplo, si
especificamos restrict en la clausula on update, se prohibe cualquier cambio en la
clave primaria de una fila maestra que tenga detalles asociados. Pero si indicamos no
action, lo tnico que se exige es que no queden filas de detalles huérfanas. Esta con-
dicién puede ser satisfecha si implementamos #iggers de modificacion convenientes
sobre la tabla de detalles.

Indices

La sintaxis del comando de creacién de indices es:

create [unique] index Nonbrelndice
on NonbreTabl a(Col uma [asc| desc], ...)
[include (Columa [asc|desc], ...)]
[cluster] [pctfree pct]

Como podemos ver, se pueden especificar sentidos de ordenacién diferente, ascen-
dente o descendente, para cada columna que forma parte del indice. También vemos

que se pueden crear indices agrupados (clustered indexes), como los que ya estudiamos
en MS SQL Server.

La clausula include es interesante, pues se utiliza durante la optimizacién de colum-
nas, y solamente se puede especificar junto a la opcién unique. Las columnas que se
indiquen en include se almacenan también en el indice. Por supuesto, la unicidad
solamente se verifica con la clave verdadera, pero si el evaluador de consultas nece-
sita también alguna de las columnas de include no tiene necesidad de ir a leer su
valor al bloque donde esta almacenado el registro. Analice la consulta siguiente:

sel ect *

from customer, orders

where customer.custno = orders.custno and
customer.vip = 1

Si existe un indice unico sobre el campo CustNo de 1a tabla customer, hemos incluido la
columna 2 en ese indice y el evaluador de consultas decide utilizarlo, nos ahorramos
una segunda lectura en la cual, después de seleccionar la clave en el indice, tendrfa-
mos que leer el registro para saber si el cliente es una persona muy importante o no.

La longitud total de una clave de indice en DB2 no puede superar los 255 bytes.
Aunque no lo mencioné antes, la longitud maxima de un registro es de 4005
bytes, sin contar el espacio ocupado por sus campos de tipo /ob.

DB2 Universal Database 195
Triggers

DB?2 ofrece #riggers muy potentes. Esta es la sintaxis de creacion:

create trigger NonbreTrigger
(no cascade before | after)

(insert | delete | update [of Columas]) on NonbreTabl a
[referencing (ol d| new ol d_table|new table) as ldent .]
[for each (statenment | row)] npde db2sql
[when (Condi ci 6n)]
(I'nstrucci 6nSi npl e |

begi n atomi c Listal nstrucci ones end)

La sintaxis y semantica corresponde aproximadamente a la de Oracle, pero existen
algunas peculiaridades:

1. Los triggers que se disparan antes deben ser siempre a nivel de fila, no de instruc-
cion.

2. Un trigger de disparo previo nunca activa a otro trigger de este mismo tipo. Esta
caracteristica se indica en la clausula obligatoria no cascade before.

3. Enlos triggers de disparo previo no se pueden ejecutar instrucciones insert, up-
date o delete, aunque se permiten asignaciones a las variables de correlacion.
Esta es la explicacion de la segunda regla.

4. DB2 no permite instrucciones condicionales generales, bucles y otros tipos de
extensiones que podemos encontrar en InterBase, PL/SQL y TransactSQL.

Veamos un ejemplo sencillo:

create trigger ConprobarAunentoSal ari al
no cascade before update of Salario on Enpl eados
referencing old as anterior new as nuevo
for each row node db2sql
when (nuevo. Salario >= 2 * anterior.salario)
signal sqglstate 70001 (' Aurmento desproporci onado');

La instruccion signal lanza una excepcion con dos parametros. El primero debe ser
un codigo de cinco caracteres, el denominado sqlstate, cuyos valores estan definidos
en el estandar SQL. Para evitar conflictos con valores predefinidos, utilice para el
primer caricter un digito del 7 al 9, o una letra igual o posterior a la 'T'. El mensaje no

esta limitado a una constante, sino que puede ser cualquier expresion que devuelva
una cadena de caracteres.

Al igual que sucede en InterBase y Oracle, una excepcion dentro de un #igger anula
cualquier cambio dentro de la operacion activa. Este es el significado de la clausula

begin atomic, obligatoria cuando el cuerpo del #gger contiene mas de una instruc-
cion.

196 La Cara Oculta de C++ Builder

La actual carencia de instrucciones de control tradicionales en DB2 nos obliga a
forzar la imaginacion para realizar tareas bastante comunes. Es cierto que DB2 sumi-
nistra extensiones al propio SQL que nos ayudan a superar estas dificultades. Por
ejemplo, supongamos que cuando grabamos una cabecera de pedido queremos du-
plicar en la misma el nombre y la direccion del cliente. Este serfa el #gger necesario:

create trigger DuplicarDatosCientes
no cascade before insert Pedidos
ref erenci ng new as nuevo
for each row node db2sqgl
when (nuevo.Ciente is not null)
set (nuevo. NonbreCiente, nuevo.DirCiente) =
sel ect Nombre, Direccion
from dientes
where Codigo = nuevo.diente;

Al no existir una instruccion if, estamos obligados a utilizar when para ejecutar con-
dicionalmente el #rigger. DB2 permite definir varios #riggers para la misma operacion
sobre la misma tabla, asi que tampoco se trata de una limitacién radical. Por otra
parte, DB2 no reconoce la vatiante select/into de la instruccién de seleccion, pero
vea cOmo se sustituye elegantemente con la equivalente instruccion set. Dicho sea de
paso, tenemos también que recurrir a set para cualquier asignacion en general:

set nuevo. Fecha = current tinestanp

Consultas recursivas

En el capitulo anterior mostré como Oracle permite expresar consultas recursivas. A
modo de comparacién, veamos como DB2 ofrece un recurso equivalente. Pero co-
mencemos por algo aparentemente mas sencillo. Tenemos una tabla con empleados,
que almacena también el c6digo del departamento en que estos trabajan. ¢Cual de-
partamento es el que tiene mas empleados? Si existe una tabla de departamentos por
separado, en la cual se almacene redundantemente el numero de empleados, la res-
puesta es trivial:

sel ect *
from Dept
where NunEnps = (sel ect max(NunEnps) from Dept)

Para fastidiar un poco al lector, y obligarlo a acordarse de su SQL, mostraré una
consulta equivalente a la anterior:

sel ect *
from Dept
where NunEnmps >= all (sel ect NunmEnps from Dept)

DB2 Universal Database 197

Pero, ¢qué pasatia si no existiera el campo redundante NumEmp en la tabla de de-
partamentos? Para saber cuantos empleados hay por departamento tendriamos que
agrupar las filas de empleados y utilizar funciones de conjunto. Si solamente nos
interesa el codigo de departamento, la consulta serfa la siguiente:

sel ect Dept No, count(*)
from Enp
group by Dept No

Y la respuesta a nuestra pregunta serfa:

sel ect Dept No, count(*)

from Enp

group by Dept No

havi ng count(*) >= all (select count(*) from Enp group by Dept No)

Si no se le ha puesto la cara larga después de todo esto, es que usted es un monstruo
del SQL. Las cosas se han complicado al tener que evitar calcular el maximo de un
total, pues SQL no permite anidar funciones de conjunto. ¢No habra una forma mas
sencilla de expresar la preguntar Si, si utilizamos una vistz definida como sigue:

create view Plantilla(DeptNo, Total) as
sel ect DeptNo, count(*)
from Enp
group by DeptNo

Dada la anterior definicién, podemos preguntar ahora:

sel ect Dept No
from Plantilla
where Total = (select max(Total) fromPlantilla)

Sin embargo, no deja de ser un incordio tener que crear una vista temporal para eli-
minarla posteriormente. Y esta es precisamente la técnica que nos propone DB2:

with Plantill a(DeptNo, Total) as
(sel ect DeptNo, count(*) from Enp group by Dept No)
sel ect Dept No
from Plantilla
where Total = (select max(Total) fromPlantilla)

La instruccién de seleccion que va entre paréntesis al principio de la consulta, sirve
para definir una vista temporal, que utilizamos dos veces dentro de la instrucciéon que
le sigue.

Lo interesante es que with puede utilizarse en definiciones recursivas. Supongamos
que la tabla de empleados Emp contiene el cédigo de empleado (E#pNo), el nombre
del empleado (EName) y el codigo del jete (Mgr). Si queremos conocer a todos los

198 La Cara Oculta de C++ Builder

empleados que dependen directa o indirectamente de un tal Mr. King, necesitamos la
siguiente sentencia:

wi th Enpl eados(EnpNo, Mgr, ENane) as
((sel ect EnpNo, Mgr, ENane

from Enp
where ENane = 'KING)
uni on al |

(sel ect E1.EnpNo, E1.Myr, E1.ENane
from Enp El, Enpl eados E2
where E2.EnpNo = E1.Mr))

sel ect *
from Enpl eados

El truco consiste ahora en utilizar el operador de conjuntos union all. El primer
operando define la consulta inicial, en la cual obtenemos una sola fila que corres-
ponde al jefe o raiz del arbol de mando. En el segundo operador de la unién realiza-
mos un encuentro entre la tabla de empleados Emp y la vista temporal Enmpleados.
DB?2 interpreta la referencia a la vista temporal como una referencia a los registros
generados inductivamente en el ultimo paso. Es decir, en cada nuevo paso se afiaden
los empleados cuyos jefes se encontraban en el conjunto generado en el paso ante-
rior. El algoritmo se detiene cuando ya no se pueden afladir mas empleados al con-
junto.

Procedimientos almacenados

Una de las facetas que no me gustan de DB2 es que, aunque podemos crear proce-
dimientos almacenados en el servidor, la implementacién de los mismos debe reali-
zarse en algun lenguaje externo: C/C++, Java, etc. En estos procedimientos pode-
mos realizar llamadas directas a la interfaz CLI de DB2, o utilizar sentencias SQL
incrustadas que son traducidas por un preprocesador.

Evidentemente, se produce una ganancia de velocidad en la ejecucién de estos pro-
cedimientos. ¢Pero a qué precio? En primer lugar, aumenta la complejidad de la pro-
gramacion, pues hay que tener en cuenta, por ejemplo, los convenios de traspaso de
parametros de cada lenguaje. Una modificacién en un procedimiento nos obliga a
pasat por todo el ciclo de editar/compilar con herramientas externas/instalar, algo
que nos evitamos cuando el procedimiento se programa en alguna extension proce-
dimental de SQL. Ademas, lo tipico es que el sistema operativo del servidor sea dife-
rente que el de las estaciones de trabajo. Si el servidor reside en un UNIX o en
OS/2, no podemos utilizar Delphi para esta tarea, lo cual nos obliga a utilizar otro
lenguaje de programacién adicional. En mi humilde opinién, estamos ante una mala
decision de disefio.

Capitulo

El Motor de Datos de Borland

++ BUILDER ES UN LENGUAJE DE PROPOSITO GENERAL; nunca me cansaré

de repetirlo. Hubo un tiempo en que se puso de moda clasificar los lenguajes

por “generaciones”, y mientras mas alto el nimero asignado, supuestamente
mejor era el lenguaje. Pascal y C desfilaban en el pelotén de la tercera generacién: los
lenguajes de “propédsito general”, que venian a ser algo asi como el lenguaje ensam-
blador de los de “cuarta generacién”. Y a esta categoria “superior” pertenecian los
lenguajes de programacién para bases de datos que comenzaban a proliferar en aquel
entonces.

Algo de razén habia, no obstante, para evitar la programacién de bases de datos con
estos lenguajes de proposito general. Y era la pobre integracion de la mayor parte de
las bibliotecas de acceso a bases de datos que existian en el mercado. Sin embargo, a
partir de entonces los lenguajes tradicionales han experimentado cambios revolucio-
narios. En la primera parte de este libro hemos mencionado la introduccién de la
orientacién a objetos, el uso de componentes para la comunicacién bidireccional y el
tratamiento de errores por medio de excepciones. Estos avances han mejorado nota-
blemente la integracién y facilidad de uso de bibliotecas creadas por terceros.

C++ Builder y Delphi, en particular, utilizan una arquitectura estructurada en dos ni-
veles. En el nivel inferior se encuentra el Motor de Datos de Borland, 6 Borland Database
Engine, mas conocido por las siglas BDE, que es un conjunto de funciones agrupadas
en bibliotecas dinamicas (DLLs). Esta biblioteca no es orientada a objetos, no pet-
mite eventos, y los errores se notifican del modo tradicional: un valor de retorno de
la funcién que falla. Pero el segundo nivel de la arquitectura se encarga de corregir
estos “fallos”™: el programador de C++ no utiliza directamente las funciones del
BDE, sino por mediacién de objetos definidos en la VCL, que es la biblioteca de
componentes de C++ Builder.

200 La Cara Oculta de C++ Builder

e | Aplicacion
P+
+ |
- | VCL + VCLDB
[
A 4

En este capitulo estudiaremos la estructura y filosoffa del Motor de Datos, su instala-
cién y configuracion. Para terminar, mencionaremos alternativas al uso del BDE.

Qué es, y como funciona

Explicabamos en el capitulo anterior las diferencias entre las bases de datos de es-
critorios y los sistemas SQL. Debido al modelo de comunicacién entre las aplicacio-
nes y los datos, una de las implicaciones de estas diferencias es la forma en que se
implementa la navegacion sobre los datos y, en consecuencia, el estilo de programa-
cién que queda determinado. Para las bases de datos de escritorio, por ejemplo, esta
muy claro el concepto de posicion de registro. Ademas, al abrirse una tabla, cuesta prac-
ticamente el mismo tiempo ir al registro 10 que al 10.000. Sin embargo, para las bases
de datos SQL la posicién de un registro no es una invariante: el orden de inserciéon es
un concepto ajeno a este tipo de formato. Y, posiblemente, buscar el registro numero
10.000 de una tabla tarde mil veces mas que buscar el décimo registro.

Las operaciones de navegacion se implementan muy naturalmente en bases de datos
de escritorio. Cuando abrimos una tabla podemos trabajar con sus registros igual que
si estuvieran situados en un vector o array; es facil retroceder y avanzar, buscar el pri-
mero y el dltimo. En cambio, en una base de datos SQL esta operacion puede com-
plicarse. Cuando abrimos una tabla o consulta en estos sistemas normalmente obte-
nemos un cxrsor, que puede imaginarse un tanto aproximadamente como un fichero
de punteros a registros; la implementacién verdadera de los cursores depende del
sistema SQL concreto y de la peticiéon de apertura realizada. Algunos sistemas, por
ejemplo, solamente ofrecen cursores unidireccionales, en los cuales no se permite el
retroceso.

En compensacion, las bases de datos SQL permiten tratar como tablas fisicas al
resultado de consultas SQL. Podemos pedir el conjunto de clientes que han com-
prado los mismos productos que las empresas situadas en Kamchatka, y recibir un
cursor del mismo modo que si hubiéramos solicitado directamente la tabla de clien-
tes. Los sistemas basados en registros no han ofrecido, tradicionalmente y hasta fe-
chas recientes, estas facilidades.

El Motor de Datos de Borland 201

Uno de los objetivos fundamentales del disefio del BDE es el de eliminar en lo posi-
ble la diferencia entre ambos estilos de programacion. Si estamos trabajando con un
servidor que no soporta cursores bidireccionales, el Motor de Datos se encarga de
implementarlos en el ordenador cliente. De este modo, podemos navegar por cual-
quier tabla o consulta SQL de forma similar a como lo harfamos sobre una tabla de
dBase. Para acercar las bases de datos orientadas a registros a las orientadas a con-
juntos, BDE ofrece un intérprete local para el lenguaje SQL.

El Motor de Datos ofrece una arquitectura abierta y modular, en la cual existe un
nucleo de funciones implementadas en ficheros DLLs, al cual se le afladen otras
bibliotecas dindmicas para acceder a los distintos formatos de bases de datos sopor-
tados. El BDE trae ya unos cuantos controladores especificos, aunque recientemente
Borland ha puesto a disposicion del publico el lamado Driver Development Kit (DDK)
para el desarrollo de nuevos controladores.

Controladores locales y SQL Links

Para trabajar con bases de datos locales, BDE implementa controladores para los si-
guientes formatos:

dBase

Paradox

Texto ASCII

FoxPro (a partir de C++ Builder 3)
Access (a pattir de C++ Builder 3)

Los formatos anteriores estan disponibles tanto para las versiones Standard, Profes-
sional o Client/Server de C++ Builder. Ademis, se pueden abrir bases de datos de
InterBase Local. El servidor local de InterBase viene con las versiones Professional y
Client/Setver, pero las versiones de 32 bits de este servidor requieren el pago de un
pequefo royalty para su distribucion.

El acceso a bases de datos SQL se logra mediante DLLs adicionales, conocidas como
SOL Links (enlaces SQL). Actualmente existen SQL Links para los siguientes forma-
tos:

InterBase
Oracle
Informix
DB2

202 La Cara Oculta de C++ Builder

Sybase
MS SQL Server

Aunque la publicidad es algo confusa al respecto, sin embargo, no basta con instalar
los SQL Links sobre un C++ Builder Professional para convertirlo en un C++ Buil-
der Enterprise. Por lo tanto, si atn no ha comprado el producto y tiene en mente
trabajar con servidotes remotos SQL, vaya directamente a la version cliente/servidor
y no cometa el error de adquirir una versiéon con menos prestaciones.

Acceso a fuentes de datos ODBC

ODBC (Open Database Connectivity) es un estandar desarrollado por Microsoft que
ofrece, al igual que el BDE, una interfaz comun a los mas diversos sistemas de bases
de datos. Desde un punto de vista técnico, los controladores ODBC tienen una inter-
faz de tipo SQL, por lo cual son intrinsecamente inadecuados para trabajar eficien-
temente con bases de datos orientadas a registros. La especificacién también tiene
otros defectos, como no garantizar los cursores bidireccionales si el mismo servidor
no los proporciona. Sin embargo, por ser una interfaz propuesta por el fabricante del
sistema operativo, la mayoria de las compafias que desarrollan productos de bases de
datos se han adherido a este estindar.

BDE permite conexiones a controladores ODBC, cuando algun formato no es so-
portado directamente en el Motor. No obstante, debido a las numerosas capas de
software que se interponen entre la aplicacion y la base de datos, solamente debemos
recurrir a esta opcion en casos desesperados. Por suerte, a partir de la version 4.0 del
BDE, se han mejorado un poco los tiempos de acceso via ODBC.

¢Donde se instala el BDE?

Para distribuir una aplicacion de bases de datos escrita en C++ Builder necesitamos
distribuir también el Motor de Datos. En la primera version de Delphi se incluian los
discos de instalacién de este producto en un subdirectorio del CD-ROM; solamente
habifa que copiar estos discos y redistribuirlos. A partir de Delphi 2 y del primer C++
Builder no se incluye una instalacién prefabricada del BDE, pues siempre podremos
generarla mediante InstallShield, que acompafia al producto a partir de la version
profesional.

En dependencia del modelo de aplicacion que desarrollemos, la instalacion del Motor
de Datos tendra sus caracteristicas especificas. Los distintos modelos de aplicacion
son los siguientes:

El Motor de Datos de Borland 203

Aplicacion monopuesto: La base de datos y la aplicacion residen en el mismo orde-
nador. En este caso, por supuesto, también debe haber una copia del BDE en la
maquina.

Aplicacion para bases de datos locales en red punto a punto: Las tablas, normalmente de
Paradox 6 dBase, residen en un servidor de ficheros. La aplicacién se instala en
cada punto de la red, o en un directorio comun de la red, pero se ejecuta desde
cada uno de los puestos. Opcionalmente, la aplicacién puede ejecutarse también
desde el ordenador que almacena las tablas. En este caso, cada maquina debe eje-
cutar una copia diferente del BDE. Lo recomendable es instalar el BDE en cada
puesto de la red, para evitar problemas con la configuracién del Motor de Datos.
Aplicaciones cliente/ servidor en dos capas': Hay un servidor (UNIX, NetWare,
WinNT, etcétera) que ejecuta un servidor de bases de datos SQL (InterBase,
Oracle, Informix...). Las aplicaciones se ejecutan desde cada puesto de la red y
acceden al servidor SQL a través del cliente SQL instalado en el puesto. Nueva-
mente, el BDE debe ejecutarse desde cada estacion de trabajo.

Aplicaciones multicapas: En su variante mas sencilla (tres capas), es idéntica a la
configuracion anterior, pero las estaciones de trabajo no tienen acceso directo al
servidor SQL, sino por medio de un servidor de aplicaciones. Este es un orde-
nador con Windows NT 6 Windows 95 instalado, y que ejecuta una aplicacion
que lee datos del servidor SQL y los ofrece, por medio de comunicacion
OLEnterprise, TCP/IP, DCOM o CORBA, a las aplicaciones clientes. En este
caso, hace falta una sola copia del BDE, en el servidor de aplicaciones.

El lector se dara cuenta que estas son configuraciones simplificadas, pues una aplica-
ci6én puede trabajar simultineamente con mas de una base de datos, incluso en dife-
rentes formatos. De este modo, ciertos datos pueden almacenarse en tablas locales
para mayor eficiencia, y otros ser extraidos de vatios servidores SQL especializados.
También, como veremos al estudiar la tecnologia Midas, se pueden desarrollar aplica-
ciones “mixtas”, que combinen accesos en una, dos, tres 0 mas capas simultinea-
mente.

Una de las preguntas mas frecuentes acerca del BDE es la posibilidad de instalarlo en
un solo puesto de la red, con la doble finalidad de evitar la instalaciéon en cada una de
las estaciones de trabajo y las necesarias actualizaciones cada vez que cambie la ver-
sion del motor, o alguno de los parimetros de instalacién. Bien, esto es técnicamente
posible, pero no lo recomiendo. El problema consiste en que es necesatio dejar una
instalacion minima en los clientes, de todos modos, ademas que de esta forma se
aumenta el trafico en la red.

11 “Capa” es mi traduccion de la palabra inglesa de moda #er (no confundir con #re). Asi,
traduciré multi-tier como multicapas.

204 La Cara Oculta de C++ Builder

El Administrador del Motor de Datos

La configuracion del BDE se realiza mediante el programa BDE Administrator, que se
puede ejecutar por medio del acceso directo existente en el grupo de programas de
C++ Builder. Incluso cuando se instala el runtime del BDE en una maquina “limpia”,
se copia este programa para poder ajustar los parametros de funcionamiento del
Motor.

Existen diferencias entre las implementaciones de este programa para las versiones
de 16 y 32 bits. Pero se trata fundamentalmente de diferencias visuales, de la interfaz
de usuario, pues los parametros a configurar y la forma en que estan organizados son
los mismos. Para simplificar, describiré la interfaz visual del Administrador que viene
con las versiones de 32 bits. La siguiente figura muestra el aspecto de este programa:

Object Edit “iew Options Help
e X oo
| Dirivers and System Diefitition of INTRBASE
Databases Configuration | Definition |
E% Canfiguration YERSION a0 |
EI% Drivers TYPE SERVER
=15 Mative DLL SQOLD_IB.DLL
€7y PARADOY DLL32 SOLINT32.DLL
) DBASE DRIVER FLAGS
€0 INTRBASE TRACE MODE
€D ORALCLE BATCH COUMT
-g) SYBASE ELOE SIZE
€5 MS5OL BLOBS T0O CACHE
€9 MSACCESS EMABLE BCD
) DB2 EMABLE SCHEMA CACHE ;I
D) INFORMIX LANGDRIVER —
-8 ODBC b ROMWS -1
El--- Syztem OPEN MODE READAWRITE
B NIT SCHEMA CACHE DIR
A3l Frmats SCHEMA CACHE SIZE a ﬂ
|Enable persistent schema cache. 4

La ventana principal del Administrador esta dividida en dos paginas, Databases y Con-
fignration; comenzaremos por esta ultima, que permite ajustar los parametros de los
controladores instalados y los parametros globales de la biblioteca.

Configuracion del registro e informacion de version

¢Dénde se almacena la informacién de configuraciéon del BDE? Resulta que se alma-
cena en dos lugares diferentes: la parte principal se guarda en el registro de Windows,
mientras que la informacion de los alias y un par de parametros especiales va en el

El Motor de Datos de Borland 205

tichero zdapi32.¢fg, cuya ubicacion se define en el propio registro. La clave a partir de
la cual se encuentran los datos de configuracién del BDE es la siguiente:

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ Bor | and\ Dat abase Engi ne]

Begisto Edicidn Yer Apuda
=& MiFC | [Mombie | Datos
& ([HKEY_CLASSES_ROOT (3B} {Fredeteminads) : [valor no establecido)
{10 HKEY_CURRENT_USER COMFIGFILEDT "C:Mrchives de programaBorland\Commen Filles\BDENIDA,.
{0 HKEY_LOCAL_MACHINE (2B] DLLPATH “Cidrchivis de programatBorlandiCommon Fles\BDE"
B+ Corfig [2b) RESOURCE “000g"
8 [E)esklanar\agemenl (35 S aveConfia NI
um o
23 e (28] UseCiount 3
{21 Netwark
3 Secuity
220 SOFTWARE
{1 Adabe
-1 Borland
3 BLwa
3 Bws
23 Database Engine
|| 23 e L=l s | bl
Mi PCYHKEY_LOCAL_MACHINESS OF TWARE \Baland\Databare Engine 4

Por ejemplo, la cadena UseCount indica cuantos productos instalados estan utilizando
el BDE, mientras que Confighile07 especifica el fichero de configuracién a utilizar, y
DI I Path, el directorio donde estan los demas ficheros del BDE.

Para saber la version del BDE que estamos utilizando, se utiliza el comando de menu
Object | Version information, que aparece en el Administrador cuando nos encontramos
en la pagina Databases:

BDE Version Information
DLL Name IVarsinn Number IDate |Time ISize [bytes] ;I
IDBE32DLL |5.0.027 (0] 30/04/38 5:00:00 422400
IDSOL32DLL |5.0.027 (0] 30/04/98 5:00:00 461824
SOLORA32DLL |5.0.027 (0] 30/04/98 5:00:00 414208
SOLORABDLL |5.0.027(1) 30/04/98 5:00:00 4401832
SOLINT32DLL |5.0.027 (0] 30/04/98 5:00:00 378880
SOLINF32DLL |5.0.027 (0] 30/04/98 5:00:00 334240
SOLDE232.DLL |5.0.027 (0] 30/04/98 5:00:00 424960
SOLMSS32.0LL |5.0.027 (0] 30/04/98 5:00:00 409088
SOLSYBIZOLL (50027 (0) 30404438 5:00:00 408576
SOLSSCI20LL |5.0.027(0) 30404438 5:00:00 408064
IDPROV32DLL |5.0.0.27 (0] 30404438 5:00:00 110020 |
BLw32.0LL 3001100 30/04/38 5:00:00 65536
ﬁEIIENT.DLL 5.0.0.27 [2) 30/04/98 5:00.00 214104 _blll

La siguiente tabla resume la historia de las ultimas versiones del BDE:

BDE 4/4.01
BDE 4.5/4.51

BDE 5/5.01

Versién original distribuida con Delphi 3/3.01, que incluye por
primera vez el acceso directo a Access 95 y a FoxPro.

Acompafia a Visual dBase 7, e introduce el nuevo formato DBF7 y
el acceso directo a Access 97.

Acompafia a C++ Builder 4, e introduce el soporte para Oracle 8.

206 La Cara Oculta de C++ Builder

El concepto de alias

Para “aplanar” las diferencias entre tantos formatos diferentes de bases de datos y
métodos de acceso, BDE introduce los a/as. Un alias es, sencillamente, un nombre
simbolico para referirnos a un base de datos. Cuando un programa que utiliza el
BDE quiere, por ejemplo, abrir una tabla, sélo tiene que especificar un alias y la tabla
que quiere abrir. Entonces el Motor de Datos examina su lista de alias y puede saber
en qué formato se encuentra la base de datos, y cual es su ubicacion.

Existen dos tipos diferentes de alias: los alias persistentes y los alias locales, o de sesion.
Los alias persistentes se crean por lo general con el Administrador del BDE, y pue-
den utilizarse por cualquier aplicacion que se ejecute en la misma maquina. Los alias
locales son creados mediante llamadas al BDE realizadas desde una aplicacion, y son
visibles solamente dentro de la misma. La VCL facilita esta tarea mediante compo-
nentes de alto nivel, en concreto mediante la clase TDatabase.

Los alias ofrecen a la aplicaciéon que los utiliza independencia con respecto al for-
mato de los datos y su ubicacién. Esto vale sobre todo para los alias persistentes,
creados con el BDE. Puedo estar desarrollando una aplicacion en casa, que trabaje
con tablas del alias dafos. En mi ordenador, este alias estd basado en el controlador de
Paradox, y las tablas encontrarse en un determinado directorio de mi disco local. El
destino final de la aplicacion, en cambio, puede ser un ordenador en que el alias datos
haya sido definido como una base de datos de Oracle, situada en tal servidor y con
tal protocolo de conexion. A nivel de aplicaciéon no necesitaremos cambio alguno
para que se ejecute en las nuevas condiciones.

A partir de la version 4.0 del BDE, se introducen los alias virfuales, que corresponden
a los nombres de fuentes de datos de ODBC, conocidos como DSN (data source
names). Una aplicacién puede utilizar entonces directamente el nombre de un DSN
como si fuera un alias nativo del BDE.

Parametros del sistema

Los parametros globales del Motor de Datos se cambian en la pagina Configuration, en
el nodo System. BEste nodo tiene a su vez dos subnodos, INIT'y Formats, para los para-
metros de funcionamiento y los formatos de visualizaciéon por omisiéon. Aunque
estos ultimos pueden cambiarse para controlar el formato visual de fechas, horas y
valores numéricos, es preferible especificar los formatos desde nuestras aplicaciones,
para evitar dependencias con respecto a instalaciones y actualizaciones del BDE. La
forma de hacerlo sera estudiada en el capitulo 18.

La mayor parte de los parametros de sistema tienen que ver con el uso de memoria y
otros recursos del ordenador. Estos parametros son:

El Motor de Datos de Borland 207

Parametro Explicaciéon

MAXFII. EHANDIES Miximo de handles de ficheros admitidos.

MINBUFSIZE Tamafio minimo del buffer de datos, en KB.

MAXBUFSIZE Tamafio maximo del buffer de datos, en KB
(multiplo de 128).

MEMSIZE Tamafio maximo, en MB, de la memotia con-
sumida por BDE.

LOW MEMORY USAGE LIMIT ~ Memoria por debajo del primer MB consu-
mida por BDE.

SHAREDMEMSIZE Tamafio maximo de la memoria para recursos
compartidos.

SHAREDMEMI.OCATION Posicion en memortia de 1a zona de recursos
compartidos

El area de recursos compartidos se utiliza para que distintas instancias del BDE,
dentro de un mismo ordenador, pueden compartir datos entre si. Las bibliotecas de
enlace dinamico de 32 bits tienen un segmento de datos propio para cada instancia,
por lo cual tienen que recurrir a ficheros asignados en memoria (memory mapped files),
un recurso de Windows 95 y NT, para lograr la comunicacién entre procesos.

Cuando se va a trabajar con dBase y Paradox es importante configurar correctamente
el parametro LOCAL SHARE. Para acelerar las operaciones de bloqueo, BDE
normalmente utiliza una estructura en memoria para mantener la lista de bloqueos
impuestos en las tablas pertenecientes a los discos locales; esta técnica es mas efi-
ciente que depender de los servicios de bloqueo del sistema operativo. Pero sola-
mente vale para aplicaciones que se ejecutan desde un solo puesto. La suposicion
necesaria para que este esquema funcione es que las tablas sean modificadas siempre
por la misma copia del BDE. Si tenemos cinco aplicaciones ejecutindose en un
mismo ordenador, todas utilizan la misma imagen en memoria del BDE, y todas
utilizan la misma tabla de bloqueos.

Si, por el contrario, las tablas se encuentran en un disco remoto, BDE utiliza los
servicios de bloqueo del sistema operativo para garantizar la integridad de los datos.
En este caso, el Motor de Datos no tiene acceso a las estructuras internas de otras
copias del Motor que se ejecutan en otros nodos de la red. El problema surge cuando
dos maquinas, llamémoslas .4 y B, acceden a las mismas tablas, que supondremos
situadas en B. EIl BDE que se ejecuta en A4 utilizara el sistema operativo para los
bloqueos, pero B utilizara su propia tabla interna de bloqueos, pues las tablas se en-
cuentran en su disco local. En consecuencia, las actualizaciones concurrentes sobre
las tablas destruiran la integridad de las mismas. La solucién es cambiar LOCAL
SHARE a TRUE en el ordenador B. De cualquier manera, es preferible que en una
red punto a punto que ejecute aplicaciones para Paradox y dBase concurrentemente,
el servidor de ficheros esté dedicado exclusivamente a este servicio, y no ejecute

208 La Cara Oculta de C++ Builder

aplicaciones en su espacio de memoria; la Gnica razén de peso contra esta politica es
un presupuesto bajo, que nos obligue a aprovechar también este ordenador.

LOCAL SHARE=FALSE LOCAL SHARE=TRUE LOCAL SHARE=FALSE

Aplicacion
’

&

(o]

Aplicacion

El otro parametro importante de la seccion INIT es AUTO ODBC. En versiones
anteriores del BDE, este parametro se utilizaba para crear automaticamente alias en
el Motor de Datos que correspondieran a las fuentes de datos ODBC registradas en
el ordenador; la operacion anterior se efectuaba cada vez que se inicializaba el Motor
de Datos. En la version actual, no se recomienda utilizar esta opcion, pues el nuevo
modo de configuracion virtual de fuentes ODBC la hace innecesaria. Para activar la
visualizacion de alias virtuales, seleccione el comando de mena Object | Options, y mar-
que la opcién correspondiente en el cuadro de didlogo que aparece a continuacion:

—Save for uze with
= Windaws 3.1 and Windows 35/MT

i windows 35/MNT anly

—Select configuration modes toview——————————————

¥ Session [V Pemsistent [V

QK. I Cancel Help

Parametros de los controladores para BD locales

Para configurar controladores de bases de datos locales y SQL, debemos buscar estos
controladores en la pagina Configuration, bajo el nodo Configuration/ Drivers/ Native.
Los parametros para los formatos de bases de datos locales son muy sencillos; co-
mencemos por Paradox.

Quizas el parametro mas importante de Paradox es el directorio del fichero de red:
NET DIR. Esta variable es indispensable cuando se van a ejecutar aplicaciones con
tablas Paradox en una red punto a punto, y debe contener el nombre de un directorio
de la red compartido para acceso total. El nombre de este directorio debe escribirse
en formato UNC, y debe ser idéntico en todos los ordenadores de la red; por ejemplo:

El Motor de Datos de Borland 209

\\ SERVI DOR\ Di r Red

He recalcado el adjetivo “idéntico” porque si el servidor de ficheros contiene una
copia del BDE, podemos vernos tentados a configurar NET DIK en esa maquina
utilizando como raiz de la ruta el nombre del disco local: ¢\ Di7Red. Incluso en este
ordenador debemos utilizar el nombre UNC. En las versiones de 16 bits del BDE,
que no pueden hacer uso de esta notacion, se admiten diferencias en la letra de uni-
dad asociada a la conexion de red.

En el directorio de red de Paradox se crea dinamicamente el fichero pdoxusrs.net, que
contiene los datos de los usuarios conectados a las tablas. Como hay que realizar
escrituras en este fichero, se explica la necesidad de dar acceso total al directorio
compartido. Algunos administradores inexpertos, en redes Windows 95, utilizan el
directorio rafz del servidor de ficheros para este proposito; es un error, porque asi
estamos permitiendo acceso total al resto del disco.

Cuando se cambia la ubicacién del fichero de red de Paradox en una red en la que ya
se ha estado ejecutando aplicaciones de bases de datos, pueden producirse problemas
por referencias a este fichero almacenadas en ficheros de bloqueos, de extension Zk.

Mi consejo es borrar todos los ficheros net y /ek de la red antes de modificar el para-
metro NET DIR.

Los otros dos parametros importantes de Paradox son FII.I. FACTOR y BLOCK
SIZE. El primero indica qué porcentaje de un bloque debe estar lleno antes de pro-
ceder a utilizar uno nuevo. BLOCK SIZE especifica el tamafio de cada bloque en
bytes. Paradox permite hasta 65.536 bloques por tabla, por lo que con este parametro
estamos indicando también el tamafio maximo de las tablas. Si utilizamos el valor por
omision, 2.048 bytes, podremos tener tablas de hasta 128MB. Hay que notar que
estos parametros se aplican durante la creacién de nuevas tablas; si una tabla exis-
tente tiene un tamafo de bloque diferente, el controlador puede utilizarla sin pro-
blema alguno.

La configuraciéon de dBase es atin menos problematica. Los tnicos parametros dig-
nos de mencién son MDX BLLOCK SIZE (tamafio de los bloques del indice) y
MEMO FILE BLOCK SIZE (tamano de los bloques de los memos). Recuerde que
mientras mayor sea el tamafio de bloque de un indice, menor serd su profundidad y
mejores los tiempos de acceso. Hay que tener cuidado, sin embargo, pues también es
mas facil desbordar el buffer en memoria, produciéndose mas intercambios de pagi-
nas.

A partir de la versién 4 del BDE (C++ Builder 3) se ha incluido un controlador para
Access. Este controlador actia como interfaz con el Microsoft Jet Engine, que tiene

que estar presente durante el diseflo y ejecucion de la aplicacion. La versién del BDE
que acompafiaba a C++ Builder 3 solamente permitfa utilizar el motor que venfa con

210 La Cara Oculta de C++ Builder

Office 95: el DAO 3.0. Si se habia instalado Access 97 sobre una instalacion previa
del 95 no habria problemas, pues la version anterior se conservaba. No obstante,

desde la aparicién de la version 4.5 del BDE, que acompafiaba a Visual dBase 7, se
ha incluido también el acceso mediante el motor DAO 3.5, que es el que viene con

Office 97.

Bloqueos oportunistas

Windows NT permite mejorar la concurrencia en los accesos directos a ficheros de
red introduciendo los bloqueos oportunistas. Cuando un cliente de red intenta abrir
un fichero situado en el servidor, Windows NT le asigna un bloqueo exclusivo sobre
el fichero completo. De esta manera, el cliente puede trabajar eficientemente con
copias locales en su caché, realizar escrituras diferidas, etc. La unica dificultad con-
siste en que cuando otro usuario intenta acceder a este mismo fichero, hay que ba-
jarle los humos al oportunista primer usuario, forzandolo a vaciar sus buffers.

Bien, resulta que esta maravilla de sistema funciona mal con casi todos los sistemas
de bases de datos de escritorio, incluyendo a Paradox. El error se manifiesta cuando
las tablas se encuentran en un Windows NT Server, y un usuario encuentra que una
tabla completa esta bloqueada, cuando en realidad solamente hay un registro blo-
queado por otro usuario. Este error es bastante aleatorio: el servidor NT con el que
trabajo habitualmente contiene tablas de Paradox para pruebas con miles de regis-
tros, y hasta el momento no he tenido problemas. Pero ciertas personas que conozco
han pillado este resfriado a la primera.

Para curarnos en salud, lo més sensato es desactivar los bloqueos oportunistas afia-
diendo una clave al registro de Windows NT Server. El camino a la clave es el si-
guiente:

[HKEY_LOCAL_MACHI NE\ Syst eml Cur r ent Cont r ol Set\ Ser vi ces\
LanManSer ver\ Par anet er s]

La clave a afiadir es la siguiente:
Enabl eOpl ocks: (DWORD) 00000000

También es conveniente modificar las opciones por omision de la caché de disco en
los clientes de Paradox. Por ejemplo, Windows activa por omision una caché de es-
critura en segundo plano. Por supuesto, un fallo de la alimentacién o un programa
colgado pueden afectar a la correcta grabacion de las actualizaciones sobre una tabla.

Esta opcién puede desactivarse directamente desde la interfaz grafica de Windows:

El Motor de Datos de Borland 211

Propiedades de Sistema de archivos EHE

Disco durol CO-ROM Solucionar problemas |

Se recomienda que sdlo las usuanos con experiencia y laz administiadores del
gistema cambien esta configuracion.

Configuracidn

™ Desaclivar la seméntica de bloquen y uso compartido de nuevos archivos
™ Desaclivar la conservacion de nombre largo para los programas antiguos.

™ Desactivar el controladaor de intermupciones de disco duro en moda protegido.
™ Desaclivar pourrencias sinconizadas de bifer.

™ Desaclivar los controladores de disco de 32 bits en modo protegido.

¥ Desachivar el caché de escriura en sequndo plano para todas |as unidades ;

Aceptar I Cancelar | Aplicar |

Pero si desea que su programa compruebe el estado de la opcién e incluso lo modifi-
que, puede mirar la siguiente clave del registro:

[HKEY_LOCAL_MACHI NE\ Syst eml Curr ent Cont r ol Set\ Control \ Fi | eSyst enj
DriveWiteBehind = 00 (DWORD)

Por dltimo, muchos programadores recomiendan afiadir la siguiente entrada en el
registro de Windows 95/98:

HKEY_LOCAL_MACHI NE\ Syst eml Cur r ent Cont r ol Set\ Ser vi ces\ VXD\ VREDI R]
Di scardCacheOnOpen = 01

De esta forma, cada vez que se abre una tabla de Paradox se elimina cualquier ver-
si6n obsoleta de la misma que haya podido quedar en la memoria caché del cliente de

red.

Parametros comunes a los controladores SQL

A pesar de las diferencias entre los servidores SQL disponibles, en la configuracién
de los controladores correspondientes existen muchos parametros comunes. La ma-
yor parte de estos parametros se repiten en la configuracién del controlador y en la
de los alias correspondientes. El objetivo de esta aparente redundancia es permitir
especificar valores por omision para los alias que se creen posteriormente. Existen,
no obstante, parametros que solamente aparecen en la configuraciéon del controlador,
y otros que valen sélo para los alias.

Todos los controladores SQL tienen los siguientes parametros no modificables:

212 La Cara Oculta de C++ Builder

Parametro Significado

IVERSION Numero interno de version del controlador
TYPE Siempre debe ser SERIVER

DIL DLL de acceso para 16 bits

DI.I.32 DLL de acceso para 32 bits

En realidad, DLL y DII.32 se suministran para los casos especiales de Informix,
Sybase y Oracle, que admiten dos interfaces diferentes con el servidor. Solamente en
estos casos deben modificarse los parametros mencionados.

La siguiente lista muestra los parametros relacionados con la apertura de bases de
datos:

Parametro Significado
SERVER NAME Nombre del servidor
DATABASE NAME Nombre de la base de datos

USER NAME Nombrte del usuario inicial

OPEN MODE Modo de apertura: READ/WRITE 6 READ ONLY
DRIVER FILLAGS Modifiquelo sélo segin instrucciones de Borland
TRACE MODE Indica a qué operaciones se les sigue la pista

No es necesario, ni frecuente, modificar los cuatro primeros parametros a nivel del
controlador, porque también estan disponibles a nivel de conexién a una base de
datos especifica. En particular, la interpretaciéon del nombre del servidor y del nom-
bre de la base de datos varfa de acuerdo al formato de bases de datos al que estemos
accediendo. Por ejemplo, el controlador de InterBase utiliza SERIVER NAME, pero
no DATABASE NAME.

En los sistemas SQL, la informacion sobre las columnas de una tabla, sus tipos y los
indices definidos sobre la misma se almacena también en tablas de catdlogo, dentro
de la propia base de datos. Si no hacemos nada para evitarlo, cada vez que nuestra
aplicacion abra una tabla por primera vez durante su ejecucion, estos datos deberan
viajar desde el servidor al cliente, haciéndole perder tiempo al usuario y ocupando el
ancho de banda de la red. Afortunadamente, es posible mantener una caché en el
cliente con estos datos, activando el parametro l6gico ENABLE SCHEMA
CACHE. St esta activo, se utilizan los valores de los siguientes parametros relaciona-
dos:

Parametro Significado

SCHEMA CACHE DIR El directorio donde se copian los esquemas
SCHEMA CACHE SIZE Cantidad de tablas cuyos esquemas se almacenan
SCHEMA CACHE TIME Tiempo en segundos que se mantiene la caché

El Motor de Datos de Borland 213

En el directorio especificado mediante SCHEM.A CACHE DIK se crea un fichero
de nombre scache.ini, que apunta a varios ficheros de extension s, que son los que
contienen la informacién de esquema. Si no se ha indicado un directorio en el para-
metro del BDE, se utiliza el directorio de la aplicacién. Tenga en cuenta que si la
opcion estd activa, y realizamos cambios en el tipo de datos de una columna de una
tabla, tendremos que borrar estos ficheros para que el BDE “note” la diferencia.

Un par de parametros comunes esta relacionado con la gestién de los campos BLOB,
es decir, los campos que pueden contener informacién binaria, como textos grandes
e imagenes:

Parametro Significado
BI.OB SIZE Tamano maximo de un BLOB a recibir
BIL.LOBS TO CACHE Numero maximo de BLOBs en caché

Ambos parametros son aplicables solamente a los BLOBs obtenidos de consultas no
actualizables. Incluso en ese caso, parece ser que InterBase es inmune a estas restric-
ciones, por utilizar un mecanismo de traspaso de BLOBs diferente al del resto de las
bases de datos.

Por ultimo, tenemos los siguientes parametros, que rara vez se modifican:

Parametro Significado

BATCH COUNT Registros que se transfieren de una vez con BatchMove
ENABLE BCD Activa el uso de TBCDField por la VCL

MAX ROWS Numero maximo de filas por consulta
SOLPASSTHRU MODE Interacciéon entre SQL explicito e implicito
SOLORYMODE Donde se evalua una consulta

El BDE, como veremos mas adelante, genera implicitamente sentencias SQL cuando
se realizan determinadas operaciones sobre tablas. Pero el programador también
puede lanzar instrucciones SQL de forma explicita. ;Pertenecen estas operaciones a
la misma transaccién, o no? El valor por omisién de SOLPASSTHRU MODE, que
es SHARED AUTOCOMMIT, indica que si, y que cada operacion individual de
actualizacion se sitda automaticamente dentro de su propia transaccion, a no ser que
el programador inicie explicitamente una.

MAX ROWS, por su parte, se puede utilizar para limitar el numero de filas que de-

vuelve una tabla o consulta. Sin embargo, los resultados que he obtenido cuando se
alcanza la ultima fila del cursor no han sido del todo coherentes, por lo que prefiero
siempre utilizar mecanismos semanticos para limitar los conjuntos de datos.

214 La Cara Oculta de C++ Builder

Configuracion de InterBase

InterBase es el sistema que se configura para el BDE con mayor facilidad. En primer
lugar, la instalacién del software propio de InterBase en el cliente es elemental: basta
con instalar el propio BDE que necesitamos para las aplicaciones en C++ Builder.
Sélo necesitamos un pequefio cambio si queremos utilizar TCP/IP como protocolo
de comunicacién con el servidor: hay que afiadir una entrada en el ficheros services,
situado en el directorio de Windows, para asociar un nimero de puerto al nombre
del servicio de InterBase:

gds_db 3050/ tcp

Por supuesto, también podemos tomarnos el trabajo de instalar el software cliente y
las utilidades de administracion en cada una de las estaciones de trabajo, pero si usted
tiene que realizar una instalacién para 50 6 100 puestos no creo que le resulte una
opcién muy atractiva.

El Gnico parametro de configuraciéon obligatoria para un alias de InterBase es
SERVER NAME. A pesar de que el nombre del parametro se presta a equivocos, 1o
que realmente debemos indicar en el mismo es la base de datos con la que vamos a
trabajar, junto con el nombre del servidor en que se encuentra. InterBase utiliza una
sintaxis especial mediante la cual se indica incluso el protocolo de conexién. Por
ejemplo, si el protocolo que deseamos utilizar es NetBEUI, un posible nombre de
servidor serfa:

/W LMY C:/ MasterDir/ Vi pl nfo. gdb

En InterBase, generalmente las bases de datos se almacenan en un tnico fichero,
aunque existe la posibilidad de designar ficheros secundarios para el almacenamiento;
es éste fichero el que estamos indicando en el paraimetro SERI'ER NAME; observe
que, curiosamente, las barras que se emplean para separar las diversas partes de la
ruta son las de UNIX. Sin embargo, si en el mismo sistema instalamos el protocolo
TCP/IP y lo utilizamos para la comunicacion con el servidor, la cadena de conexién
se transforma en la siguiente:

W LMA: / Mast er Di r/ Vi pl nf 0. gdb

Como puede comprender el lector, es mejor dejar vacia esta propiedad para el con-
trolador de InterBase, y configurarla solamente a nivel de alias.

Hay algo importante para comprender: los clientes no deben (aunque pueden) tener
acceso al directorio donde se encuentre el fichero de la base de datos. Esto es, en el

ejemplo anterior MasterDir no representa un nombre de recurso compartido, sino un
directorio, y preferiblemente un directorio no compartido, por razones de seguridad.
La cadena tecleada en SERIER NAME es pasada por el software cliente al servicio

El Motor de Datos de Borland 215

instalado en el servidor, y es este programa el que debe tener derecho a trabajar con
ese fichero.

Podemos, y debemos, jugar un poco con DRIVVER FI.AGS. Si colocamos el valor
4096 en este parametro, las grabaciones de registros individuales se producirin mas
rapidamente, porque el BDE utilizard la funcion isc_commit_retaining para confirmar
las transacciones implicitas. Este modo de confirmacién graba definitivamente los
cambios, pero no crea un nuevo contexto de transaccion, sino que vuelve a aprove-
char el contexto existente. Esto acelera las operaciones de actualizacion. Pero lo mas
importante es que evita que el BDE tenga que releer los cursores activos sobre las
tablas afectadas por la transaccion. También se puede probar con el valor 512 en
DRIVER FLLAGS, que induce el nivel de aislamiento superior para las transacciones
implicitas, el nivel de lecturas repetibles. Si quiere combinar esta constante con la que
hemos explicado antes, puede sumarlas:

512 + 4096 = 4608
El nivel de lecturas repetibles no es el apropiado para todo tipo de aplicaciones.

En concreto, las aplicaciones que tienen que estar pendientes de las actualizacio-
nes realizadas en otros puestos no son buenas candidatas a este nivel.

La version 5.0.1.24 del SQL Link de InterBase afiade los siguientes parametros de
configuracién:

Parametro Significado

COMMIT RETAIN Evita releer los cursores en transacciones explicitas
WAIT ON LLOCKS Activa el modo de espera por bloqueos en transacciones
ROLE NAME Permite al usuario asumir un rol inicialmente

El primero de ellos, COMMIT RETAIN, surte el mismo que asignar 4096 en el pa-
rametro DRITVVER FILAGS, pero su accidén se centra en las transacciones explicitas.
Recuerde que activar esta opcién mejorara la eficiencia del BDE al trabajar con tran-
sacciones. WAIT ON LOCKS fuerza a InterBase a esperar a que un registro esté
disponible, en vez de fallar inmediatamente, que era lo que pasaba en versiones ante-
riores. En el capitulo sobre transacciones ya hemos ponderado las dos alternativas de
respuesta a un bloqueo. Por dltimo, ROLE NAME permite que el usuario especifi-
que el rol que desea asumir durante la conexion que va a iniciar. Los derechos del rol
se suman a los derechos que ya tenfa como usuatio.

216 La Cara Oculta de C++ Builder

Configuracion de MS SQL Server

También es muy sencillo configurar un ordenador para que pueda acceder a un ser-
vidor de MS SQL Server. Aunque existe un software para instalar en cada cliente, y
que contiene herramientas de administracion y consulta, basta con colocar un par de
DLLs en el directorio de sistema de Windows. Por ejemplo, si queremos utilizar
named pipes para la comunicacion, necesitamos estas dos DLLs, que podemos extraer
del servidor:

ntwdblib.dll La biblioteca DB-Library de programacion.
dbnmpntw.dil Necesatia para named pipes.

En MS SQL Server, a diferencia de InterBase, SERIER NAME representa el nom-
bre del servidor en el cual vamos a situar las bases de datos. Normalmente, este nom-
bre coincide con el nombre del ordenador dentro del dominio, pero puede también
ser diferente. Por ejemplo, si el nombre del ordenador contiene acentos o caracteres
no validos para un identificador SQL, la propia instalacion del servidor cambia el
nombre que identificara al servidor SQL para evitar conflictos. Si vamos a utilizar un
unico servidor de MS SQL Server, es posible configurar SERT'ER NAME con el
nombre del mismo, de modo tal que quede como valor por omisién para cualquier
acceso a estas bases de datos. Una vez que hemos especificado con qué servidor
lidiaremos, hay que especificar el nombre de la base de datos situada en ese servidor,
en el parametro DATABASE NAME.

Sin embargo, en contraste con InterBase, el controlador de MS SQL Server tiene
muchos parametros que pueden ser configurados. La siguiente tabla ofrece un resu-
men de los mismos:

Parametro Significado

CONNECT TIMEOUT Tiempo maximo de espera para una conexion, en
segundos

TIMEOUT Tiempo maximo de espera para un bloqueo

MAX QUERY TIME Tiempo maximo de espera para la ejecucion de una
consulta

BI.OB EDIT I.OGGING Desactiva las modificaciones transaccionales en
campos BLOB

APPILICATION NAME Identificacién de la aplicacion en el servidor

HOST NAME Identificacién del cliente en el servidor

DATE MODE Formato de techa: 0=mdy, 1=dmy, 2=ymd

TDS PACKET SIZE Tamaflo de los paquetes de intercambio

MAX DBPROCESSES Numero maximo de procesos en el cliente

Quizas el parametro MAX DBPROCESSES sea el mas importante de todos. La
biblioteca de acceso utilizada por el SQL Link de Borland para MS SQL Server es la

El Motor de Datos de Borland 217

DB-Library. Esta biblioteca, en aras de aumentar la velocidad, sacrifica el nimero de
cursores que pueden establecerse por conexion de usuario, permitiendo solamente
uno. Asf que cada tabla abierta en una estacién de trabajo consume una conexién de
usuario, que en la versioén 6.5 de SQL Server, por ejemplo, necesita 55KB de memo-
ria en el servidor. Es légico que este recurso se limite a un maximo por cliente, y es
ese el valor que se indica en MAX DBPROCESSES. Este parametro solamente
puede configurarse en el controlador, no en el alias.

Por su parte, el parametro TDS PACKET SIZE esta relacionado con la opcion net-
work packet size del procedimiento sp_confignre de la configuracion del servidor. Se
puede intentar aumentar el valor del parametro para una mayor velocidad de transmi-
sién de datos, por ejemplo, a 8192. TDS quiere decir Tabular Data Stream, y es el for-
mato de transmision utilizado por MS SQL Server.

Configuracion de Oracle

Para configurar un cliente de Oracle, necesitamos instalar obligatoriamente el soft-
ware SQL Net que viene con este producto, y configurarlo. La siguiente imagen co-
rresponde a uno de los cuadros de didlogo de SQL Net Easy Configuration, la apli-
cacion de configuraciéon que acompafia a Personal Oracle para Windows 95. Los
datos corresponden a una conexién que se establece a un servidor situado en la pro-
pia maquina. Observe que la direccién IP suministrada es la 127.0.0.1.

Enter Modification Inforrmation

Make any modiication(z] in the appropriate field(z].

D atabase Alias IS}'bi"a
TCPAP Host Mame |12?.D.D.1
D atabase Instance IDHCL
Help... | Back | s I Lancel |

La siguiente imagen corresponde al SQL Net Easy Configuration que acompafia a la
version Enterprise 8. A pesar de las diferencias en formato, el procedimiento de
conexion sigue siendo basicamente el mismo:

218 La Cara Oculta de C++ Builder

Oracle Netd Easy Config [x]
iBienvenido al Asistente de Service Mamel.

Los Nombres de Sericio, llamados también Alias de
Basge de Datog, son nombres [dgicos definidos por el
uguario ulilizados para identificary conectarse a una hase
de datos Oracle

Elegir Accidn

Elegir Mombre de Servicio-
Muevo Nombre de Servicic
" Afiadir Nuevo Servicio

. .
D (il Senicios Existentes

" Borar CMEXAMPLE WORLD [&
 Probar [TCPEXAMPLE WORLD,
MNMPEXAMPLEWORLD
Cancelar < Anterior | Siguiente = SErinar

Una vez que hemos configurado un alias con SQL Net, podemos acceder a la base
de datos correspondiente. El parametro SERIER NAME del controlador de Oracle
se refiere precisamente al nombre de alias que hemos creado con SQL Net.

Parametro Significado

IVENDOR INIT Nombre de DLL suministrada por Oracle

NET PROTOCOL Protocolo de red; casi siempre TNS

ROWSET SIZE Numero de registros que trae cada peticion

ENABLE INTEGERS Traduce columnas de tipo NUMERIC sin escala
a campos enteros de la VCL

LIST SYNONYMS Incluir nombres alternativos para objetos

ROWSET SIZE permite controlar una buena caracteristica de Oracle. Este servidor,
al responder a los pedidos de registros por parte de un cliente, se adelanta a nuestras
intenciones y envia por omision los préximos 20 registros del cursor. Asi se aprove-
cha mejor el tamafio de los paquetes de red. Debe experimentar, de acuerdo a su red
y a sus aplicaciones, hasta obtener el valor 6ptimo de este parametro.

A partir de la version 5 del BDE, tenemos dos nuevos parametros para configurar en
el controlador de Oracle. El primero es DILL32, en el cual podemos asignar uno de
los valores SOIL.ORA32.DLL 6 SQLLORAS.DLIL. Y es que existen dos implementa-
ciones diferentes del SQL Link de Oracle para sus diferentes versiones. El segundo
nuevo parametro es OBJECT MODE, que permite activar las extensiones de objetos
de Oracle para que puedan ser utilizadas desde C++ Builder.

El problema mas frecuente al configurar el SQL Link de Oracle es el mensaje
“Vendor initialization failure”. Las dos causas mas probables: hemos indicado en el
parametro VENDOR INIT una DLL que no corresponde a la versién de Oracle
instalada, o que dicha DLL no se encuentre en el PATH del sistema operativo. La
ultima causa puede patrecer una enfermedad infantil ficilmente evitable, pero no
lo crea: muchos programas de instalacion modifican el PATH en el fichero auto-
excec.bat utilizando nombres largos que contienen espacios. Al arrancar la maqui-

El Motor de Datos de Borland 219

na, el comando da el etror “Demasiados pardmetros”, pues interpreta el espacio
como separador de pardmetros. Y como casi nadie mira lo que hace su ordena-
dor al arrancar...

Configuracion de otros sistemas

Mencionaré a continuacién algunos de los parametros de configuracion de los res-
tantes formatos. Por ejemplo, DB2 utiliza el parametro DB2 DSN para indicar la
base de datos con la que se quiere trabajar. Este nombre se crea con la herramienta
correspondiente de catalogacion en clientes, y es el unico paraimetro especial del
controlador.

Informix tiene un mecanismo similar a MS SQL Server: es necesario indicar el nom-
bre del servidor, SERI'ER NAME, y el de la base de datos, DATABASE NAME.
El parametro LOCK MODE indica el nimero de segundos que un proceso espera
por la liberacién de un bloqueo; por omision, se espera 5 segundos. El formato de
fechas se especifica mediante los parametros DATE MODE y DATE
SEPARATOR.

Por ultimo, los parametros de conexion a Sybase son lo suficientemente parecidos a
los de MS SQL Setrver como para no necesitar una discusién adicional.

Creacion de alias para bases de datos locales y SQL

Una vez que sabemos como manejar los parametros de configuracién de un contro-
lador, es cosa de nifios crear alias para ese controlador. La razén es que muchos de
los parametros de los alias coinciden con los de los controladores. El comando de
ment Olyject| New, cuando esta activa la pagina Databases del Administrador del Motor
de Datos, permite crear nuevos alias. Este comando ejecuta un cuadro de didlogo en
el que se nos pide el nombre del controlador, y una vez que hemos decidido cual
utilizar, se incluye un nuevo nodo en el arbol, con valores por omisiéon para el nom-
bre y los parametros. A continuacién, debemos modificar estos valores.

220 La Cara Oculta de C++ Builder

Para crear un alias de Paradox 6 dBase debemos utilizar el controlador STANDARD.
El principal parametro de este tipo de alias es P4ATH, que debe indicar el directorio
(sin la barra final) donde se encuentran las tablas. El parametro DEFAULT
DRIVER especifica qué formato debe asumirse si se abre una tabla y no se suminis-
tra su extension, db 6 dbf. Note que este parametro también existe en la pagina de
configuracion del sistema.

Alternativas al Motor de Datos

De cualquier manera, como he explicado al principio del capitulo, BDE no es la
unica forma de trabajar con bases de datos en C++ Builder, aunque sea la mas reco-
mendable. Si no tenemos un SQL Link para nuestra base de datos, y no queremos
utilizar una conexién ODBC, contamos con estas opciones:

Utilizar un sustituto del BDE
Utilizar componentes derivados directamente de TDataSet

La primera opcién va quedando obsoleta, pero era la unica posibilidad en las versio-
nes 1y 2 de la VCL. Consistia en reemplazar tanto el motor de datos como las uni-
dades de la VCL que lo utilizaban. Demasiado radical.

La segunda posibilidad aparece con la versiéon 3 de la VCL, y consiste en desarrollar
componentes derivados de la clase TDazaSet, que es la base de la jerarquia de los
objetos de acceso a datos. De esta forma, podemos seguir utilizando el BDE para
otros formatos, o no usarlo en absoluto, sin tener que cargar con el cédigo asociado.
En realidad existe una tercera alternativa: desarrollar un SQL Link propio con el
DDK (Driver Development Kit) que ofrece Borland. Pero todavia no conozco ningun
producto en este estilo.

Existen, a nivel comercial, alternativas al BDE mas o menos exitosas. Por ejemplo,
para trabajar con bases de datos de Btrieve, Regatta Systems ofrece Titan, que se
comunica directamente con el motor de datos de Btrieve. En realidad, Titan es una
suite de productos de bases de datos que ofrece también acceso directo a bases de
datos de Access y SQL Anywhere. En la misma linea se situa Apollo, de Success-
Ware, ofreciendo acceso a bases de datos de Clipper, FoxPro y un formato nativo de
la compania. Recuerde que la primera version de C++ Builder no permitia trabajar
con FoxPro 6 Access.

C++ Builder: navegacion y
busquedas

Conjuntos de datos: tablas

Acceso a campos

Validaciones y el Diccionario de Datos
Controles de datos y fuentes de datos
Rejillas y barras de navegacion
Indices

Métodos de busqueda

Navegacion mediante consultas
Comunicacion cliente/servidor

Parte

Capitulo

10

Conjuntos de datos: tablas

N CONJUNTO DE DATOS, para C++ Builder, es cualquier fuente de informa-

cion estructurada en filas y columnas. Este concepto abarca tanto a las tablas

“reales” y las consultas SQL como a ciertos tipos de procedimientos alma-
cenados. Pero también son conjuntos de datos los conjuntos de datos clientes, que obtie-
nen su contenido por medio de automatizaciéon OLE remota, o a partir de un fichero
“plano” local, y que son una de las piezas claves de Midas. Y también lo son las ta-
blas anidadas de Oracle 8, y los conjuntos de datos a la medida que desarrollan otras
empresas para acceder a formatos de bases de datos no reconocidos por el Motor de
Datos de Borland. Todos estos objetos tienen muchas propiedades, métodos y
eventos en comun. En este capitulo estudiaremos los conjuntos de datos en general,
pero haremos énfasis en las propiedades especificas de las tablas. En capitulos poste-
riores, nos ocuparemos de las consultas y los procedimientos almacenados.

La jerarquia de los conjuntos de datos

La clase TDataSet representa una mayor abstraccién del concepto de conjunto de
datos, sin importar en absoluto su implementacion fisica. Esta clase define caracte-
risticas y comportamientos comunes que son heredados por clases especializadas.
Estas caracteristicas son, entre otras:

Métodos de navegacion: Un conjunto de datos es una coleccién de registros homogé-
neos. De estos registros, siempre hay un registro activo, que es el unico con el que
podemos trabajar directamente. Los métodos de navegaciéon permiten gestionar la
posicion de este registro activo.

Acceso a campos: Todos los registros de un conjunto de datos estan estructurados a
su vez en campos. Existen mecanismos para descomponer la informacién alma-
cenada en el registro activo de acuerdo a los campos que forman la estructura del
conjunto de datos.

Estados del conjunto de datos: Los conjuntos de datos implementan una propiedad
State, que los transforman en simples autématas finitos. Las transiciones entre
estados se utilizan para permitir las altas y modificaciones dentro de los conjuntos
de datos.

224 La Cara Oculta de C++ Builder

Notificaciones a componentes visuales: Uno de los subsistemas mas importantes asocia-
dos a los conjuntos de datos envia avisos a todos los componentes que se conec-
tan a los mismos, cada vez que cambia la posicion de la fila activa, o cuando se
realizan modificaciones en ésta. Gracias a esta técnica es posible asociar controles
de edicién y visualizacioén directamente a las tablas y consultas.

Control de errores: Cuando detectan un error, los conjuntos de datos disparan
eventos que permiten corregir y reintentar la operacion, personalizar el mensaje
de error o tomar otras medidas apropiadas.

Es interesante ver cémo ha evolucionado la jerarquia de clases a través de la historia
de la VCL. En las dos primeras versiones del producto (Delphi 1y 2, y C++ Builder
1), éstas eran las unicas clases existentes:

TDataSet

TDBDataSet

| TT::IbIe Il TQLIJery IlTStor;dProcl

La implementacion de la clase TDataSet, en aquella época, utilizaba funciones y es-
tructuras de datos del BDE. Ademas, la relacién mutua entre los métodos, eventos y
propiedades de esta clase hacian que la implementacion de descendientes de la
misma fuera bastante fastidiosa. Estos problemas fueron reconocidos durante el
desarrollo de la version 3 de la VCL, que modificé del siguiente modo la jerarquia de
clases:

TDataSet

|TCIientDataSet| | TBDEDataSet |

TDBDataSet
]

| TT::IbIe Il TQLIJery IlTStoredProcI

A partir de este momento, TDataSet pasé a ser totalmente independiente del BDE.
La definicién de esta clase reside ahora en la unidad DB, mientras que las clases que
dependen del BDE (derivadas de TBDEDataSe?) se han movido a la unidad DBTables.
Si desarrollamos un programa que no contenga referencias a la unidad DBTables (ni a
la unidad BDE de bajo nivel, por supuesto) no necesitaremos incluir al Motor de
Datos en la posterior instalacién de la aplicacion. Esto es particularmente cierto para
las aplicaciones clientes de Midas, que se basan en la clase TClientDataSet. Como esta
clase desciende directamente de TDataSet, no necesita la presencia del BDE para su
funcionamiento.

Conjuntos de datos: tablas 225

¢Por qué hay dos clases diferentes: TBDEDataSet y TDBDataSet, si la segunda se
deriva directamente de la primera y no tiene hermanos? La clase TDBDataSet intro-
duce la propiedad Database y otras propiedades y métodos relacionados con la
misma. No todo conjunto de datos del BDE tiene que estar asociado a una base de
datos. A mi se me ocurre pensar en las tablas en memoria del BDE (no encapsuladas
aun en conjuntos de datos). A los desarrolladores de Borland se les ocurrié pensar en
tablas anidadas, para representar el nuevo tipo de campo de Oracle 8, que puede con-
tener una coleccioén de registros anidados:

TDataSet

|TCIiemDataSel| | TBDEDataSet |

| TDBDataSet I |TNestedTabIe|
I

| TTeIlbIe Il TQLIJery I|TStor;dProc|

El cambio de arquitectura realizado en la versiéon 3 ha sido determinante para la crea-
cién de sustitutos del BDE, como lo son en este momento Titan (Btrieve y Access),
Apollo (Clipper y FoxPro), DOA (Oracle) y otros muchos.

La interaccion de los subsistemas de los conjuntos de datos con los demas compo-
nentes de la VCL es bastante compleja, y existen muchas dependencias circulares.
Para explicar el funcionamiento de los campos, necesitamos saber cémo funcionan
las tablas, y viceversa. En este capitulo nos limitaremos al estudio de los métodos de
navegacion. El capitulo siguiente tratara sobre el acceso a campos. Cuando estudie-
mos los controles de datos, profundizaremos en las notificaciones a componentes
visuales. Por tltimo, al estudiar las actualizaciones veremos en detalle las transiciones
de estado y el mecanismo de control de errores.

En vez de comenzar la explicacién con la clase abstracta TDataSet, lo cual harfa
imposible mostrar ejemplos, utilizaremos la clase TTable, que es ademas el com-
ponente de acceso a datos que encontraremos con mayor frecuencia.

La arquitectura de objetos del Motor de Datos

Cuando utilizamos el BDE para acceder a bases de datos, nuestras peticiones pasan
por toda una jerarquia de objetos. El siguiente esquema muestra los tipos de objetos
con los que trabaja el BDE, y la relacion que existe entre ellos:

226 La Cara Oculta de C++ Builder

BDE
System

| Sesion Il Sesion Il Sesion I
I

Base de datos Base de datos Base de datos

[1
|Cursor| |Cursor| |Cursor| |Cursor| |Cursor| |Cursor| |Cursor| |Cursor| |Cursor|

El nivel superior se ocupa de la configuracion global, inicializacién y finalizacion del
sistema: el conjunto de instancias del BDE que se ejecutan en una misma maquina.
Las sesiones representan las diferentes aplicaciones y usuarios que acceden concu-
rrentemente al sistema; en una aplicacién de 32 bits pueden existir varias sesiones
por aplicacion, especialmente si la aplicacion soporta concurrencia mediante hilos
multiples.

Cada sesién puede trabajar con varias bases de datos. Estas bases de datos pueden
estar en distintos formatos fisicos y en diferentes ubicaciones en una red. Su funciéon
es controlar la conexién a bases de datos protegidas por contrasefias, la gestion de
transacciones y, en general, las operaciones que afectan a varias tablas simultanea-
mente.

Por ultimo, una vez que hemos accedido a una base de datos, estamos preparados
para trabajar con los cursores. Un cursor es una coleccion de registros, de los cuales
tenemos acceso a uno solo a la vez, por lo que puede representarse mediante los
conjuntos de datos de la VCL. Existen funciones y procedimientos para cambiar la
posicion del registro activo del cursor, y obtener y modificar los valores asociados a
este registro. El concepto de cursor nos permite trabajar con tablas, consultas SQL y
con el resultado de ciertos procedimientos almacenados de manera uniforme, igno-
rando las diferencias entre estas técnicas de obtencion de datos.

Cada uno de los tipos de objetos internos del BDE descritos en el parrafo anterior
tiene un equivalente directo en la VCL de C++ Builder. La excepcion es el nivel
principal, el de sistema, algunas de cuyas funciones son asumidas por la clase de se-
siones:

Objeto del BDE Clase de la VCL

Sesiones TSession
Bases de datos TDatabase
Cursores TBDEDataSet

Un programa escrito en C++ Builder no necesita utilizar explicitamente los objetos
superiores en la jerarquia a los cursores para acceder a bases de datos. Los compo-
nentes de sesion y las bases de datos, por ejemplo, pueden ser creados internamente

Conjuntos de datos: tablas 227

por la VCL, aunque el programador puede acceder a los mismos en tiempo de ejecu-
cién. Es por esto que podemos postergar el estudio de casi todos estos objetos.

¢ Tabla o consulta?

Y bien, usted va a comenzar a desarrollar esa gran aplicacioén de bases de datos. ¢Qué
componente debe utilizar para acceder a sus datos: tablas o consultas? La respuesta
depende de qué operaciones va a permitir sobre los datos, del formato y tamafio de
los mismos, y de la cantidad de tiempo que quiera invertir en el proyecto. Cuando
lleguemos al capitulo final de esta parte tendremos elementos suficientes para tomar
una decision, pero podemos adelantar algo ahora.

Silos datos estan representados en una base de datos de escritorio, lo mas indicado
es utilizar las tablas del BDE, mediante el componente T1Table de la VCL. Este com-
ponente accede de forma mds o menos directa al fichero donde se almacenan los
datos. Los registros se leen por demanda, solamente cuando son necesarios. Si usted
tiene una tabla de 100.000 clientes y quiere buscar el ultimo, el BDE realizard un par
de operaciones aritméticas y le traerd precisamente el registro deseado. Para las bases
de datos de escritorio, el uso de consultas (TQuwery) es una forma indirecta de acceder
a los datos. La ventaja de las consultas es que hay que programar menos, pero lo
pagamos en velocidad.

Sin embargo, las consideraciones de eficiencia cambian diametralmente cuando se
trata de sistemas cliente/servidor. El enemigo fundamental de estos sistemas es la
limitada capacidad de transmision de datos de las redes actuales. Si usted monta una
red local con 100 megabits de trafico por segundo (tecnologia avanzada) esa sera la
maxima velocidad de transmision, independientemente de si tiene conectados 10 o
100 ordenadores a la red. Se pueden utilizar trucos: servidores con varios puertos de
red, por ejemplo, pero el cuello de botella seguird localizado en la red.

En tales condiciones, hay operaciones peligrosas para la eficiencia de la red, y la prin-
cipal de ellas es la navegacion indiscriminada. Gumersindo Fernandez, un desarrolla-
dor de Clipper “de toda la vida” que empieza a trabajar con C++ Builder, ha visto un
par de ejemplos en los que se utilizan rejillas de datos. Como Gumersindo sigue al
pie de la letra la metodologia MMFM!2, pone un par de rejillas en su aplicacién para
resolver el mantenimiento de sus tablas de 1.000.000 de registros. {Y después se queja
de que la aplicacién va demasiado lental

Vaya un momento a un cajero automatico, pero no a sacar dinero, sino a observar la
interfaz de la aplicaciéon que ejecuta. ¢ Ve usted una rejilla por algin lugar? Cierto que
se trata de una interfaz horrible, pero sirve para ilustrar una decision extrema necesa-

12 Mientras mas facil, mejor. En inglés seria KISS: keep it simple, stupid!

228 La Cara Oculta de C++ Builder

ria para una aplicacién cliente/servidor con grandes demandas de trafico. Resu-
miendo, en la medida en que pueda evitar operaciones de navegacion libre sobre
grandes conjuntos de datos, hagalo. ;:Qué operaciones le quedan entonces?

1. Recuperacion de pequefios conjuntos de datos (Gltimos movimientos en la
cuenta, por ejemplo).
2. Operaciones de actualizacion: altas, bajas y modificaciones.

Bien, en los sistemas cliente/servidor estas operaciones se realizan de forma mas
eficiente utilizando consultas (1 Query) y procedimientos almacenados. Un compo-
nente TQuery puede contener lo mismo una instruccién select para recuperar datos
que una instruccién update, insert, delete o cualquier otra del lenguaje de defini-
cién o control de datos.

¢Qué pasa si no puede evitar navegar de forma libre sobre determinados conjuntos
de datos de medianos a grandes? Es aqui donde realmente tendra que decidir entre
tablas y consultas. Aunque debera esperar hasta el capitulo 25 para conocer los deta-
lles de la implementacion de tablas y consultas, he aqui un par de consejos:

1. Las consultas del BDE que contienen un select implementan la navegacion en
dos direcciones a nivel del cliente. Esto quiere decir que para llegar al registro
100.000 deben transferir al cliente los 99.999 registros anteriores. Por lo tanto,
descarte las consultas para navegar sobre conjuntos de datos grandes. Por el
contrario, al tratarse de un mecanismo relativamente directo de acceder a la intet-
faz de programacion del sistema cliente/servidor, el tiempo de apertura de una
consulta es despreciable.

2. El BDE implementa las tablas utilizando internamente instrucciones select ge-
neradas automaticamente. El objetivo es permitir navegar sobre conjuntos de
datos grandes de forma transparente, como si se tratase de una tabla en formato
de escritorio. A pesar de la mala fama que tienen entre la comunidad de progra-
madores cliente/servidor, en la mayotia de los casos este objetivo se logra de
modo muy eficiente. La mayor desventaja es que el mecanismo de generacion
automatico necesita informacion sobre el esquema de la tabla, y esta informacién
hay que extraerla desde el servidor durante la apertura de la tabla. En consecuen-
cia, abrir una tabla por primera vez es una operacioén costosa. No obstante, exis-
ten una técnica muy sencilla para disminuir este coste: utilice el parametro
ENABLE SCHEMA CACHE para activar la caché de esquemas en el cliente.

Hay que aclarar también que las consultas actualizables necesitan el mismo prélogo
de conexion que las tablas. Existe otro factor a tener en cuenta, y es la posibilidad de
utilizar actualizaciones en caché para obligar al BDE a realizar las actualizaciones
sobre consultas navegables en la forma en que deseemos. Las actualizaciones en
caché seran estudiadas en el capitulo 31.

Conjuntos de datos: tablas 229

Tablas (por el momento)

Para comenzar el estudio de los conjuntos de datos utiliza-
remos las tablas: el componente TTable. Mediante este [Tabiet: T7able =]
. Froperties | Event:
componente podemos conectarnos a tablas en cualquiera | Events|
. Aclive False |
de los formatos reconocidos por el BDE. El componente AT e
TTable también permite conectarnos a una vista definida en | Eachedldates False
. . Constraints [TCheckConstr:

una bases de datos SQL. Las vistas son tablas virtuales, Databaseame| DEDEMOS
definidas mediante una instruccién select, cuyos valores petlncey e

: . . elusive False
se extraen de otras tablas y vistas. Para mas informacion, FieldDefs | [TFieldDefs)

; Filter
puede leer el capitulo 24, que trata sobre las consultas en Fllar i
SQL +Filterd ptions Il
IndexDefz [TIndexDefs]
IndexFieldM ame:
La configuracién de una tabla es muy sencilla. Primero hay | ngeities - {Tindeies)
que asignar el valor de la propiedad DatabaseName. En esta || Masterfisids
. L . MasterS

propiedad se indica el nombre del alias del BDE donde e
reside la tabla. Este alias puede ser un alias persistente, Objectview |False |

como los que creamos con la utilidad de configuracién del

BDE, o un alias local a la aplicacion, creado con el componente TDatabase. Esta
ultima técnica se estudia en el capitulo 29, que trata sobre los componentes de bases
de datos. Es posible también, si la tabla esta en formato Paradox o dBase, asignar el
nombre del directorio a esta propiedad. No es, sin embargo, una técnica recomenda-
ble pues hace mas dificil cambiar dinamicamente la ubicacién de las tablas. El si-
guiente ejemplo muestra cémo asignar un nombre de directorio extraido del registro
de Windows a la propiedad DatabaseName de una tabla:

void _ fastcall TFornil:: FornCreat e(TObj ect *Sender)

{
std::auto_ptr<TReglni File> ini (new TRegl ni Fi |l e(
" SOFTWARE\ \ M Enpresa\\ M Apl i caci on"));
Tabl el- >Dat abaseNane = ini->ReadString("BasebDatos", "Dir", "");
/..
/1 Codigo necesario para terminar de configurar la tabla
/1
}

Una vez que tenemos asignado el nombre del alias o del directorio, podemos especi-
ficar el nombre de la tabla dentro de esa base de datos mediante la propiedad Table-
Name. Las tablas de Paradox y dBase se almacenan en ficheros, por lo que los nom-
bres de estas tablas llevan casi siempre su extension, db 6 dbf- Sin embargo, es prefe-
rible no utilizar extensiones para este tipo de tablas. La razén es que si no utilizamos
extensiones podemos cambiar la base de datos asociada al alias, quizas con la confi-
guracion del BDE, y nuestra aplicacion podra trabajar también con tablas en formato
SQL. Esta técnica se ilustra en la aplicacion wastapp, que se instala en el directorio de
demostraciones de C++ Builder.

230 La Cara Oculta de C++ Builder

Si no utilizamos extensiones con tablas locales, tenemos una propiedad y un para-
metro del BDE para decidir el formato de la tabla. Si la propiedad TableType de la
tabla vale #Default, que es el valor por omision, la decision se realiza de acuerdo al
parametro DEFAULT DRIVER del alias, que casi siempre es PARADOX. Pero
también podemos asignar #DBase, ttParadox 6 ttASCII a TableType, para forzar la in-
terpretacion segun el formato indicado:

Tabl el- >Dat abaseNane = " BCDEMXS";

/] Esta tabla tiene extensién DBF

Tabl el- >Tabl eName = "AN MALS";

// Sin esta asignacioén, falla |la apertura
Tabl el- >Tabl eType = tt DBase;

Para poder extraer, modificar o insertar datos dentro de la tabla, necesitamos que la
tabla esté abierta o activa. Esto se controla mediante la propiedad Aetive de la clase.
También tenemos los métodos Open y Close, que realizan asignaciones a Active; el uso
de estos métodos hace mas legible nuestros programas.

En determinados sistemas cliente/setvidor, como Oracle y MS SQL Setvet, los
nombres de tablas pueden ir precedidos por el nombre del propietario de la ta-
bla. Por ejemplo, dbo.customer significa la tabla customer creada pot el usuatio dbo,
es decit, el propio creador de la base de datos.

iNo elimine el prefijo de usuario del nombre de la tabla, aunque el truco parezca
funcionar! El BDE necesita toda esta informacién para localizar los indices aso-
ciados a la tabla. Sin estos indices, puede que la tabla no pueda actualizarse, o que
ocurran problemas (en realidad bugs) al cambiar dindimicamente el criterio de ot-
denacién. Esto es especialmente aplicable a MS SQL Setver.

Alctive es una propiedad que estd disponible en tiempo de disefio. Esto quiere decir
que si le asignamos el valor True durante el disefio, la tabla se abrird automaticamente
al cargarse desde el fichero dfz. También significa que mientras programamos la
aplicacion, podemos ver directamente los datos tal y como van a quedar en tiempo
de ejecucion; esta importante caracteristica no esta presente en ciertos sistemas RAD
de cuyo nombre no quiero acordarme. No obstante, nunca esta de mas abrir explici-
tamente las tablas durante la inicializacion del formulario o médulo de datos donde
se ha definido. La propiedad .Active puede, por accidente, quedarse en False por culpa
de un error en tiempo de disefo, y de este modo garantizamos que en tiempo de
ejecucion las tablas estén abiertas. Ademds, aplicar el método Oper sobre una tabla
abierta no tiene efectos negativos, pues la llamada se ignora. En cuanto a cerrar la
tabla, el destructor del componente llama automaticamente a Close, de modo que
durante la destruccion del formulario o médulo donde se encuentra la tabla, ésta se
cierra antes de ser destruida.

Conjuntos de datos: tablas 231

Un poco antes he mostrado un ejemplo en el que la propiedad DatabaseName se
asigna en tiempo de ejecucion. ;Coémo hacer entonces para poder visualizar los datos
en tiempo de diseflo, y no tener que programar a ciegas? Si hacemos Aczive igual a
True en el formulario, cuando se inicie la aplicacién tendremos que cerrar la tabla
antes de modificar DatabaseName, y el usuario notara el parpadeo del monitor; sin
contar que el directorio de pruebas que utilizamos durante el disefio puede no existir
en tiempo de ejecucion. La solucién consiste en realizar el cambio de la propiedad
DatabaseName durante la respuesta al evento BeforeOpen, que se activa justo antes de
abrir la tabla. Este evento puede compartirse por todos los componentes cuya base
de datos se determine dinimicamente:

void _ fastcall TFornil:: Tabl asBef oreOpen(TDat aSet *Dat aSet)

{
auto_ptr<TReglni File> ini (new TRegl ni Fi |l e(
" SOFTWARE\ \ M Enpresa\\ M Apl i caci on"));
static_cast <TTabl e*>(Dat aSet) - >Dat abaseNanme =
i ni ->ReadString("BaseDatos", "Dir", "");
}

La apertura de la tabla tiene lugar automaticamente después de terminar la ejecucion
de este método. Observe que el parametro del evento es del tipo TDataSet. Este
evento y otros similares seran estudiados en un capitulo posterior.

Exclusividad y bloqueos

La propiedad Exvlusive permite abrir una tabla en modo exclusivo, garantizando que
solamente un usuario esté trabajando con la misma. Por supuesto, la apertura en este
modo puede fallar, produciéndose una excepcion. Exclusive, sin embargo, sélo fun-
ciona con Paradox y dBase. Del mismo modo, para estos formatos tenemos los si-
guientes métodos, que intentan aplicar un bloqueo global sobre la tabla, una vez que
esta abierta:

enum TLockType (It ReadLock, |tWitelLock);

void _ fastcall TTable::LockTabl e(TLockType LockType);
void __fastcall TTable:: Unl ockTabl e(TLockType LockType);

No cambie el valor de Exclusive en tiempo de disefio, pues impediria la apertura
de la tabla al depurar el programa. Si desea hacer pruebas en este sentido, debe
salir del entorno de desarrollo antes.

Otra propiedad relacionada con el modo de apertura de una tabla es ReadOnly, que
permite abrir la tabla en el modo sélo lectura.

232 La Cara Oculta de C++ Builder

Conexion con componentes visuales

Un conjunto de datos, sea una tabla o una consulta, no puede visualizar directamente
los datos con los que trabaja. Para comunicarse con los controles visuales, el con-
junto de datos debe tener asociado un componente auxiliar, perteneciente a la clase
TDataSonrce. Traduciré esta palabra como fuente de datos, pero trataré de utilizarla lo
menos posible, pues el parecido con “conjunto de datos” puede dar lugar a confu-
siones.

Un objeto TDataSource es, en esencia, un “notificador”. Los objetos que se conectan
a este componente son avisados de los cambios de estado y de contenido del con-
junto de datos controlado por TDataSource. Las dos propiedades principales de TDa-
taSource son:

DataSet: Es un puntero, de tipo TDataSet, al conjunto de datos que se controla.
AuntoEdit. Cuando es True, el valor por omision, permite editar directamente
sobre los controles de datos asociados, sin tener que activar explicitamente el
modo de edicién en la tabla. El modo de edicién se explica mas adelante.

A la fuente de datos se conectan entonces todos los controles de datos que deseemos.
Estos controles de datos se encuentran en la pagina Data Controls de la Paleta de
Componentes, y todos tienen una propiedad DazaSource para indicar a qué fuente de
datos, y por lo tanto, a qué conjunto de datos indirectamente se conectan. Mas ade-
lante, dedicaremos un par de capitulos al estudio de estos controles.

Es posible acoplar mas de una fuente de datos a un conjunto de datos. Estas fuentes
de datos pueden incluso encontrarse en formularios o médulos de datos diferentes al
del conjunto de datos. El propésito de esta técnica es establecer canales de notifica-
ci6én separados. Mas adelante, en este mismo capitulo, veremos una aplicacién en las
relaciones master/ detail. La técnica de utilizar varias fuentes de datos es posible gracias
al mecanismo oculto que emplea C++ Builder. Cuando usted engancha un data source
a un conjunto de datos esto es lo que ve:

TDataSet TDataSource

DataSet l
—
DataSet l

Conjuntos de datos: tablas 233

Sin embargo, existe un objeto oculto que pertenece al conjunto de datos, que es una
lista de fuentes de datos y que completa el cuadro real:

TDataSet TDataSource

DataSet I
|__DataSet|
....... >

Un ejemplo comun de conexiéon de componentes es utilizar una rejilla de datos
(TDBGrid) para mostrar el contenido de una tabla o consulta, con la ayuda de una
barra de navegacion (I'DBNavigator) para desplazarnos por el conjunto de datos y mani-
pular su estado. Esta configuracién la utilizaremos bastante en este libro, por lo cual
nos adelantamos un poco mostrando cémo implementatla:

Objeto Propiedad Valor
Tablel: TTable DatabaseName El alias de la base de datos
TableName El nombre de la tabla
Active True
DataSourcel: TDataSource DataSet Table?
DBGrid1: TDBGrid DataSource DataSonrcel
DBNavigator1: TDBNavigator ~ DataSource DataSourcel
e [r] # =] <] 5]]
DataSourcel
Species Mo |Categor}l |Commom7Name \ﬂ
e d 90020 Triggerfish Clown Triggerfish
: 90030 Snapper Red Emperar
Tablel n 90050 "wrasse Giant baori Wrasse
|| 0070 Angelfish Blue Angelfish
|| 50080 | Cod Lunartail Rockcod
| | 90030 Scorpionfish Firefish =
1 _'l_I

Es tan frecuente ver a estos componentes juntos, que le recomiendo al lector que
guarde la combinacién como una plantilla de componentes.

234 La Cara Oculta de C++ Builder

Navegando por las filas

La mayor parte de las operaciones que se realizan sobre un conjunto de datos se
aplican sobre la fila activa de éste, en particular aquellas operaciones que recuperan o
modifican datos. Los valores correspondientes a las columnas de la fila activa se al-
macenan internamente en un bujfer, del cual los campos extraen sus valores.

Al abrir un conjunto de datos, inicialmente se activa su primera fila. Qué fila es ésta
depende de si el conjunto estd ordenado o no. Si se trata de una tabla con un indice
activo, o una consulta SQL con una cldusula de ordenacién order by, el criterio de
ordenacion es, por supuesto, el indicado. Pero el orden de los registros no queda tan
claro cuando abrimos una tabla sin indices activos. Para una tabla SQL el orden de
las filas es ain mas impredecible que para una tabla de Paradox o dBase. De hecho, el
concepto de posicién de registro no existe para las bases de datos SQL, debido a la
forma en que generalmente se almacenan los registros. Este es el motivo por el cual
las barras de desplazamientos vertical de las rejillas de datos de C++ Builder tienen
solo tres posiciones cuando se conectan a un conjunto de datos SQL: al principio de
la tabla, al final o en el medio.

Los métodos de movimiento son los siguientes:

Método Objetivo

First Ir al primer registro

Prior Ir al registro antetior

Nexct Ir al registro siguiente

Last Ir al dltimo registro

MoveBy Moverse la cantidad de filas indicada en el parametro

Hay dos propiedades que nos avisan cuando hemos llegado a los extremos de la
tabla:

Funcion Significado
BOF ¢Estamos en el principio de la tabla?
EOF ¢Estamos al final de a tabla?

Combinando estas funciones con los métodos de posicionamiento, podemos crear
los siguientes algoritmos de recorrido de tablas:

Hacia adelante Hacia atras

Tabl el->First(); Tabl el- >Last () ;

while (! Tabl el->Eof) while (! Tabl el->Bof)
/1 Acci6n /1 Accio6n
Tabl el- >Next () ; Tabl el->Prior();

Conjuntos de datos: tablas 235

La combinacién de las propiedades Bof'y Eofnos permite saber si un conjunto de
datos esta vacio o no. También existe el método IsEmpty que realiza esta tarea con
mas eficiencia:

void _ fastcall TFornil::acMdificacionesd ick(TObject *Sender)

acModi fi caci ones->Enabl ed = ! Tabl el- >l sEnpty();
/] Tanbi én val e:
/1 acModificaci ones->Enabled = ! (Tabl el->Bof && Tabl el- >Eof);

Si necesitamos conocer la cantidad de filas de un cursor, podemos utilizar el método
RecordConnt. Esta funcion, sin embargo, debe aplicarse con cautela, pues si estamos
tratando con una consulta SQL, su ejecucion puede forzar la evaluacion completa de
la misma, lo cual puede consumir bastante tiempo la primera vez. La evaluacion de la
propiedad RecordCount se realiza en el servidor si el conjunto de datos es un TTable,
ejecutandose la instruccién SQL siguiente:

sel ect count (*)
from Tabl eNane

Existe toda una variedad de métodos adicionales para cambiar la fila activa, relacio-
nados con busquedas por contenido, que se estudiaran en los capitulos que tratan
sobre indices y métodos de busqueda. Por el momento, solamente mencionaré uno
mas:

void _ fastcall TTable:: GotoCurrent(TTable *QraTabl a);

Este método se puede utilizar cuando dos componentes de tablas estan trabajando
sobre la misma tabla “fisica”, y deseamos que una de ella tenga la misma fila activa
que la otra. Puede que una de estas tablas tenga filtros y rangos activos, mientras que
la otra no. Veremos una aplicacion de GozoCurrent en un capitulo posterior, para reali-
zar busquedas sobre tablas de detalles.

Marcas de posicion

Cuando cambiamos la fila activa de una tabla, es importante saber como regresar a
nuestro lugar de origen. C++ Builder nos permite recordar una posicién para volver
mas adelante a la misma mediante la técnica de mwarcas de posicion. Este es un meca-
nismo implementado a nivel del BDE. La VCL nos ofrece un tipo de datos,
TBookmark, que es simplemente un puntero, y tres métodos que lo utilizan:

TBookmark __fastcall TDataSet:: Get Booknmark();
void __fastcall TDataSet:: Got oBookmar k(TBooknark B);
void __fastcall TDataSet:: FreeBookmar k(TBookmark B);

236 La Cara Oculta de C++ Builder

El algoritmo tipico con marcas de posicién se muestra a continuacion. Tome nota
del uso de la instruccién try/__finally para garantizar el regreso y la destruccion de
la marca:

/'l Recordar |a posicién actual
TBookmar k BM = Tabl el- >Get Bookmar k() ;
try

/!l Mover la fila activa ...
}
_finally

/'l Regresar a |a posicioén inicial

Tabl el- >Got oBookmar k(BM ;

/1 Liberar la nenoria ocupada por |a marca
Tabl el- >Fr eeBookmar k(BM ;

En realidad, TBookmark es un f6sil de la primera versiéon de la VCL para 16 bits. Para
simplificar el trabajo con las marcas de posicion puede utilizarse el tipo de datos
TBookmarkStr, y una nueva propiedad en los conjuntos de datos, Bookmark, del tipo
anterior. El algoritmo anterior queda de la siguiente forma:

/'l Recordar |a posicién actual
TBooknar kSt r BM = Tabl el- >Bookmark;
try

/1 Mover la fila activa
}
_finally

/'l Regresar a |a posicioén inicial
Tabl el- >Bookmark = BM

TBookmarkStr esta implementada como una cadena de caracteres larga, a la cual
se le aplica una conversién de tipos estatica. De esta manera, se aprovecha la
destruccion automatica de la clase para liberar la memortia asociada a la marca,
evitaindonos el uso de FreeBookmark.

Encapsulamiento de la iteracion

Como los algoritmos de iteraciéon o recorrido son tan frecuentes en la programacion
para bases de datos, es conveniente contar con algin tipo de recurso que nos ahorre
teclear una y otra vez los detalles repetitivos de esta técnica. Podemos crear un pro-
cedimiento que, dado un conjunto de datos en general, lo recorra fila a fila y realice
una accién. ¢Qué accioén? Evidentemente, cuando programamos este procedimiento
no podemos saber cual; la solucién consiste en pasar la acciéon como parametro al

Conjuntos de datos: tablas 237

procedimiento. El parametro que indica la accién debe ser un puntero a una funcién
o a un método. Es preferible utilizar un puntero a método, porque de este modo se
puede aprovechar el estado del objeto asociado al puntero para controlar mejor las
condiciones de recorrido. La declaraciéon de nuestro procedimiento puede ser:

void _ fastcall RecorrerTabl a(TDat aSet *Dat aSet,
TEvent oAcci on Action);

El tipo del evento, TEwentoAccion, se debe haber definido antes del siguiente modo:

typedef void __fastcall (__closure *TEvent oAcci on)
(TDat aSet *Dat aSet, bool &Stop);

Recuerde que __closure indica que TEwentoAccion debe apuntar a un método, y no a
un procedimiento declarado fuera de una clase.

En el evento pasaremos el conjunto de datos como primer parametro. El segundo
parametro, de entrada y salida, permitira que el que utiliza el procedimiento pueda
terminar el recorrido antes de alcanzar el fin de tabla, asignando True a este parame-
tro. Finalmente, ésta es la implementacion del procedimiento:

void _ fastcall RecorrerTabl a(TDat aSet *ADat aSet,
TEvent oAcci on Acti on)
{

Screen->Cursor = crHourd ass;
ADat aSet - >Di sabl eControl s();
TBookmar kStr BM = ADat aSet - >Booknar k;
try
{
ADat aSet - >First();
bool Stop = Fal se;
whi |l e (! ADat aSet - >Eof && ! St op)

if (Action)
Acti on(ADat aSet, Stop);
ADat aSet - >Next () ;

}
b
_finally

ADat aSet - >Booknmark = BM
ADat aSet - >Enabl eControl s();
Screen->Cursor = crDefault;

En este procedimiento se ha afiadido el cambio de cursor durante la operacién. El
cursor ¢rHourGlass es el famoso reloj de arena que con tanta frecuencia, desgraciada-
mente, aparece en la pantalla de nuestros ordenadores. Ademas se han introducido
un par de métodos nuevos: DisableControls y EnableControls. Estos métodos desactivan
y reactivan el mecanismo interno de notificacion a los controles de datos asociados.

238 La Cara Oculta de C++ Builder

Si estos métodos no se utilizan en la iteracién y la tabla tiene controles de datos aso-
ciados, cada vez que desplacemos la fila activa los controles se redibujaran. Esto
puede ser molesto para el usuario, y es sumamente ineficiente. Hay que garantizar, no
obstante, que EnableControls vuelva a habilitar las notificaciones, por lo que este mé-
todo se llama dentro de la clausula __finally.

Una solucion intermedia puede ser crear una clase auxiliar, que nos ahorren el pro-
logo y el epilogo de la iteracion. Por ejemplo:

class TDataSet!terator

{
private:
TBooknar kSt r BM
TDat aSet * dat aset;
publi c:
TDat aSet | terator(TDataSet* ds) : dataset(ds)
{
Screen->Cursor = crHourd ass;
ds- >Di sabl eControl s();
BM = ds- >Booknar k;
ds->First();
}
~TDat aSet | t er at or ()
dat aset - >Bookmar k = BM
dat aset - >Enabl eControl s();
Screen->Cursor = crDefault;
}
b

Asi nos quedarfa ahora un tipico bucle de iteraciéon:

TDat aSet | terator dsi(Tablel);
while (! Tabl e->Eof)

/'l Hacer algo con la fila activa ...
Tabl el- >Next () ;

NOTA IMPORTANTE

El hecho de que muchos ejemplos escritos en C++ Builder utilicen métodos de
navegacion como los anteriores, no le da patente de corso para abusar de los
mismos en sus programas, especialmente si esta trabajando con una base de da-
tos cliente/servidor. Si usted tiene un bucle de navegacién en cuyo intetior no
existe interaccion alguna con el usuario, debe convertirlo lo antes posible en un
procedimiento almacenado que se ejecute en el servidor. Asi, los registros leidos
no circularan por la red, sus programas se ejecutaran mas rapido, ahorrarin enet-
gia eléctrica y salvaran la selva del Amazonas y la capa de ozono (j).

Conjuntos de datos: tablas 239

Una posible excepcién a la nota anterior puede aplicarse cuando los registros se en-
cuentran en la memoria caché de la maquina, si trabajamos con actualizaciones en
caché. Y por supuesto, si estamos usando Paradox o dBase, no podemos utilizar
procedimientos almacenados. Sin embargo, aqui puede sernos util desarrollar aplica-
ciones distribuidas, como veremos mas adelante en este libro.

La relacion master/detail

Es bastante frecuente encontrar tablas dependientes entre s{ mediante una relacién
uno/ muchos: a una fila de la primera tabla corresponden cero, una o mas filas de la se-
gunda tabla. Esta es la relacién que existe entre los clientes y sus pedidos, entre las
cabeceras de pedidos y sus lineas de detalles, entre Enrique VIII y sus seis esposas...
Al definir el esquema de un base de datos, estas relaciones se tienen en cuenta, por
ejemplo, para crear restricciones de integridad referencial entre tablas.

La VCL permite establecer un tipo de vinculo entre dos tablas, la relacién mas-

ter/ detail, con el que podemos representar este tipo de dependencias. En el vinculo
intervienen dos tablas, a las que denominaremos la tabla maestra y la tabla dependiente.
La tabla maestra puede ser, en realidad, cualquier tipo de conjunto de datos. La tabla
dependiente, en cambio, debe ser un T1Tuble. Existe una técnica para hacer que una

consulta sea controlada desde otro conjunto de datos, que sera estudiada en el capi-
tulo 24.

Cada vez que se cambia la fila activa en la tabla maestra, se restringe el conjunto de
trabajo de la tabla dependiente a las filas relacionadas. Si la tabla maestra es la tabla
de clientes y la tabla dependiente es la de pedidos, la tltima tabla debe mostrar en
cada momento sélo los pedidos realizados por el cliente activo:

Cédigo |Nombre Numero |Cliente |Fecha

1221 Kauai Dive Shoppe 1023 1221 2/]Jul/88

1231 Unisco 1076 1221 26/Abr/89

1351 Sight Diver 1123 1221 24/Ago/93
[Clientes | [Pedidos |

Cédigo | Nombre Numero |Cliente |Fecha

1221 Kauai Dive Shoppe 1060 1231 1/Mar/89

1231 Unisco 1073 1231 15/Abr/89

1351 Sight Diver 1102 1231 6/Jun/92

240 La Cara Oculta de C++ Builder

Para establecer una relacion master/ detail entre dos tablas solamente hay que hacer
cambios en la tabla que va a funcionar como tabla dependiente. Las propiedades de
la tabla dependiente que hay que modificar son las siguientes:

Propiedad Propdésito

MasterSonrce Apunta a un datasonrce asociado a la tabla maestra
IndexName 6 IndexFieldNames Criterio de ordenacion en la tabla dependiente
MasterFields Los campos de la tabla maestra que forman la relacién

Es necesario configurar una de las propiedades IndexIName 6 IndexFieldNames. Aun-
que estas propiedades se estudiaran en el capitulo sobre indices, nos basta ahora con
saber que son modos alternativos de establecer un orden sobre una tabla. Este crite-
rio de ordenacién es el que aprovecha C++ Builder para restringir eficientemente el
cursor sobre la tabla dependiente. En el ejemplo que mostramos antes, la tabla de
pedidos debe estar ordenada por la columna Cliente.

Ayaiable Indexes I Custhlo j

Detail Fields b aster Fields

o]

Joined Fields

CustMa -» Custho DElEfe |
Clear |

ak | Cancel | Help |

Sin embargo, no tenemos que modificar directamente estas propiedades en tiempo
de disefio, pues el editor de la propiedad Mastertields se encarga automaticamente de
ello. Este editor, conocido como el Editor de Enlaces (Links Editor) se ejecuta
cuando realizamos una doble pulsacién sobre la propiedad MasterFields, y su aspecto
depende de si la tabla dependiente es una tabla local o SQL. Si la tabla estd en for-
mato Paradox o dBase, el didlogo tiene un combo, con la leyenda AvazlableIndexes
para que indiquemos el nombre del indice por el cual se ordena la tabla dependiente.
Si la relacion master/ detail esta determinada por una restriccion de integridad referen-
cial, la mayoria de los sistemas de bases de datos crean de forma automatica un in-
dice secundario sobre la columna de la tabla de detalles. Suponiendo que las tablas
del ejemplo anterior sean tablas Paradox con integridad referencial definida entre
ellas, la tabla de pedidos debe tener un {ndice secundario, de nombre Clientes, que es
el que debemos seleccionar. Una vez que se selecciona un indice para la relacion, en
el cuadro de lista de la izquierda aparecen las columnas pertenecientes al indice ele-
gido. Para este tipo de tablas, el Editor de Enlaces modifica la propiedad IndexNamse:
el nombre del indice escogido.

Conjuntos de datos: tablas 241

Pero si la tabla pertenece a una base de datos SQL, no aparece la lista de indices, y en
el cuadro de lista de la izquierda aparecen todas las columnas de la tabla dependiente.
Una tabla SQL no tiene, en principio, limitaciones en cuanto al orden en que se
muestran las filas, por lo que basta con especificar las columnas de la tabla depen-
diente para que la tabla quede ordenada por las mismas. En este caso, la propiedad
que modifica el Editor de Enlaces es IndexFieldNames: las columnas por las que se
ordena la tabla.

En cualquiera de los dos casos, las columnas de la lista de la derecha corresponden a
la tabla maestra, y son las que se asignan realmente a la propiedad MaszerFields. En el
ejemplo anterior, Masterbields debe tener el valor Cddigo.

Gracias a que las relaciones master/ detail se configuran en la tabla dependiente, y no
en la maestra, es facil crear estructuras complejas basadas en esta relacion:

| Clientes

| Consultas técnicas Servicios contratados

| Seguimiento de consultas

En el diagrama anterior, la tabla de clientes controla un par de tablas dependientes. A
su vez, la tabla de consultas técnicas, que depende de la tabla de clientes, controla a la
de seguimiento de consultas.

Datos de clientes

Empresa Servicios contratados

[Aracanda Saftnare 5 4. Fecha [Nombre de servicio -
23709497 Semvicios pricoldgicos
23/09/97 Soparte Técnica Anual Delphi
23/09/97 Soporte Técnico Anual Delphi

Personas de contacto

LI+

|Ian Marteers

[Fiiestich Nietzche

Direccién
|Scolex Walley, 33
[Manaos 26100

Prefijo Telefono Fax

253 |123-1 234 1231233

Etdail

[imarteens@anacanda com

Ala Bl
22/09/97 Servine = = =

—I e | - | Editar |

o Aceptar X Cance\arl < Bestaurar

La relacion master/ detail no esta limitada a representar relaciones uno/muchos, pues
también puede utilizarse para la relacién inversa. Podemos designar como tabla
maestra la tabla de pedidos, y como tabla de detalles la tabla de clientes. En este caso,
por cada fila de la primera tabla debe haber exactamente una fila en la tabla de clien-

242 La Cara Oculta de C++ Builder

tes. Si se aprovecha esta relacion en una ficha de entrada de pedidos, cuando el usua-
rio introduce un cédigo de cliente en la tabla de pedidos, automaticamente la tabla de
clientes cambia su fila activa al cliente cuyo c6digo se ha tecleado. La siguiente ima-
gen, correspondiente a uno de los programas de ejemplo de C++ Builder, muestra
esta técnica.

Order Form

| =] || w|a|s]m] @] 0 eding 1004
Bil T CudNo ShipTs Date [i70m el

4:876 Sugailoa Hey
Suite 103

Kapaa Kauai HI ISQ?EE—W 234

Soidgy Tems Payment Method__ ShipVia FO#
Guckenheimer, i =] [FOB =] [Check. =] JoHC ~

Desciplion
1313 Reguiator System 250Pts 10 60,00%]
12310 |Sonai System 438Fs 10 0
3316 Stabllizing Vest 4urs 8 000 RIS -
EIN] _>l_I

Subtotal 7.885 Pts S ave Edit
Save Edits
850% E70Pts.

Tax
Freight 0OPts Canecel Edits |
Paid 7.895 Pts.

Due 670Fis &I

Los cuadros de edicién que aparecen con fondo gris en la parte superior izquierda
del formulario pertenecen a la tabla de clientes, que esta configurada como tabla de
detalles de la tabla principal de pedidos. Observe que la rejilla muestra también datos
de otra tabla de detalles: las lineas correspondientes al pedido activo.

Otra forma de representar relaciones uno/muchos es mediante las tablas anida-
das de Oracle 8. El nuevo componente TINested I able permite visualizar los datos
de detalles desde C++ Builder 4. La nueva versién también permite tablas anida-
das en conjuntos de datos clientes, que estudiaremos mas adelante.

Navegacion y relaciones master/detail

Supongamos que necesitamos conocer el total facturado por clientes que no viven en
los Estados Unidos. Tenemos un formulario con un par de tablas, #Clientes y thPed;-
dos, en relacion master/ detail, y queremos aprovechar estos componentes patra ejecutar
la operacion. El pais del cliente se almacena en la tabla de clientes, mientras que el
total del pedido va en la tabla de pedidos. Y, muy importante para esta seccion, las
dos tablas estan conectadas a sendas rejillas de datos. Estas seran las propiedades de
la primera tabla:

Propiedad Valor
thClientes DatabaseIName bedemos
TableName customer.db

Active True

Conjuntos de datos: tablas 243
A esta tabla se le asocia un componente TDataSource:

Propiedad Valor
dsClientes DataSet thClientes

Ahora le toca el turno a la segunda tabla:

Propiedad Valor
thPedidos DatabaseName bedemos
TableName orders.db
MasterSource dsClientes
IndexcName CustNo
MasterFields CustNo
Active True

La tabla tendra su correspondiente TDataSource:

Propiedad Valor
dsPedidos DataSet thPedidos

Anada, finalmente, un par de rejillas de datos (I'DBGrid, en la pagina Data Access), y
modifique sus propiedades DafaSource para que apunten a los dos componentes co-
rrespondientes. Ponga entonces un botén en algun sitio del formulario para efectuar
la suma de los pedidos. Y pruebe este algoritmo inicial, en respuesta al evento Oz-
Click del boton:

/1 PRI MERA VARI ANTE: i MJY | NEFI Cl ENTE!!!
void _ fastcall TForml::Buttonld ick(TObject *Sender)
{

DWORD Ti enpo = Get Ti ckCount () ;
Currency Total = 0;
tbdientes->First();

while (! tbdientes->Eof)

if (tbdientes->FieldVal ues["COUNTRY"] != "US")

t bPedi dos->First();
while (! tbPedi dos->Eof)

Total += tbPedi dos->Fi el dVal ues["| TEMSTOTAL"];
t bPedi dos- >Next () ;
}

}
tbd i entes->Next();

}
Showiessage(Format (" %n %",
ARRAYOFCONST((Total , GetTi ckCount() - Tienpo))));

}

He tenido que adelantarme un poco al orden de exposicién del libro. Estoy acce-

244 La Cara Oculta de C++ Builder

diendo a los valores de los campos de las tablas mediante el método mas sencillo ... y
mas ineficiente. Me refiero a estas instrucciones:

if (tbdientes->FieldVal ues["COUNTRY"] != "US")
o
Total += tbPedi dos->Fi el dVal ues["| TEMSTOTAL"];

Por el momento, debe saber que con esta técnica se obtiene el valor del campo como
un tipo Variant, de modo que en dependencia del contexto en que se emplee el valor,
C++ Builder realizara la conversion de tipos adecuada.

Habra observado el comentario que encabeza el primer listado de esta seccion. Si ha
seguido el ejemplo y pulsado el botén, comprendera por qué es ineficiente ese c6-
digo. {Cada vez que se mueve una fila, las rejillas siguen el movimiento! Y lo que mas
tiempo consume es el dibujo en pantalla. Sin embargo, usted ya conoce los métodos
EnableControls y DisableControls, que desactivan las notificaciones a los controles vi-
suales ¢Por qué no utilizarlos?

/1 SEGUNDA VARI ANTE: | NCORRECTA!!!
void _ fastcall TFornil.Buttonld ick(TOoject *Sender)
{

DWORD Ti enpo = Get Ti ckCount () ;
Currency Total = 0;

tbd i ent es->Di sabl eControl s(); /1 € NUEVO
t bPedi dos- >Di sabl eControl s(); /1 €& NUEVO
try

{

tbdientes->First();
while (! tbdientes->Eof)

if (tbdientes->FieldVal ues["COUNTRY"] != "US")

t bPedi dos->First();
while (! tbPedi dos->Eof)

Total += tbPedi dos->Fi el dVal ues["| TEMSTOTAL"];
t bPedi dos- >Next () ;
}
}
tbd i entes->Next ();
}

b
_finally

t bPedi dos- >Enabl eControl s(); /1 € NUEVO
tbd i ent es->Enabl eControls(); // € NUEVO

}
Showvessage(Format (" %n %",
ARRAYOFCONST((Total , GetTi ckCount() - Tienpo))));

Ahora el algoritmo si va rapido, jpero devuelve un resultado a todas luces incorrecto!
Cuando llamamos a DizsableControls estamos desconectando el mecanismo de notifica-

Conjuntos de datos: tablas 245

ci6n de cambios de la tabla a sus controles visuales ... y también a las tablas que de-

penden en relaciones master/ detail. Por lo tanto, se mueve la tabla de clientes, pero la
tabla de pedidos no modifica el conjunto de filas activas cada vez que se selecciona

un cliente diferente.

¢Quiere una solucién que funcione en cualquier version de C++ Builder? Es muy
sencilla: utilice dos componentes TDataSource acoplados a la tabla de clientes. Traiga
un nuevo componente de este tipo, DataSourcel, y cambie su propiedad DazaSet al
valor #hClientes. Entonces, haga que la propiedad DataSonrce de DBGrid1 apunte a
DataSonrcel en vez de a dsClientes. Por Gltimo, modifique el algoritmo de iteracién del
siguiente modo:

/] TERCERA VARI ANTE: jjiAL FIN BIEN!!
void _ fastcall TFornil.Buttonld ick(TOoject *Sender)
{

DWORD Ti enpo = Get Ti ckCount () ;
Currency Total = 0;

Dat aSour cel- >Enabl ed = Fal se; /'l € NUEVO
t bPedi dos- >Di sabl eControl s();

try

{

tbdientes->First();
while (! tbdientes->Eof)

if (tbdientes->FieldVal ues["COUNTRY"] != "US")

t bPedi dos->First();
while (! tbPedi dos->Eof)

Total += tbPedi dos->Fi el dVal ues["| TEMSTOTAL"];
t bPedi dos- >Next () ;
}

}
tbd i entes->Next();
}

}
_finally

t bPedi dos- >Enabl eControl s();
Dat aSour cel- >Enabl ed = True; /1 € NUEVO

}
Showiessage(Format ("%n 9%d",
ARRAYOFCONST((Total , Get Ti ckCount() - Tienpo))));

Ahora, el flujo de notificaciones se corta al nivel de una fuente de datos particular, no
al nivel general de la tabla. De esta forma, #bClientes sigue enviando notificaciones a
sus dos fuentes de datos asociadas. La fuente de datos dsClientes propaga estas notifi-
caciones a los objetos que hacen referencia a ella: en este caso, la tabla dependiente
dsPedidos. Pero DataSourcel se inhabilita temporalmente para que la rejilla asociada no
reciba notificaciones de cambio.

246 La Cara Oculta de C++ Builder

¢Quiere una solucién que funciona solamente a partir de C++ Builder 42 En esta
version se introduce la propiedad BlockReadSize. Cuando el valor de la misma es ma-
yor que cero, el conjunto de datos entra en un estado especial: la propiedad Szaze, que
veremos en la siguiente seccién, toma el valor dsBlockRead. En este estado, las notifi-
caciones de movimiento se envian solamente a las relaciones waster/ detail, pero no a
los controles de datos. Parece ser que también se mejora la eficiencia de las lecturas,
porque se leen simultineamente varios registros por operacion. Hay que tener en
cuenta, sin embargo, dos inconvenientes:

La tnica operacion de navegacion que funciona es Nexz.

Al parecer, la modificacion de esta propiedad en una tabla de detalles no fun-
ciona correctamente en la version 4.0.

Teniendo en cuenta estas advertencias, nuestro algoritmo pudiera escribirse de esta
forma alternativa en C++ Builder 4:

/1 CUARTA VARI ANTE: jjSOLO VERSION 4!!!
void _ fastcall TForml::Buttonld ick(TObject *Sender)
{

DWORD Ti enpo = Get Ti ckCount () ;

Currency Total = O;

/1 Se Ilama a First antes de nodificar Bl ockReadSi ze
tbdientes->First();

t bd i ent es- >Bl ockReadSi ze = 10; /Il € NUEVO

t bPedi dos- >Di sabl eControl s(); /1 Se mantiene

try

while (! tbdientes->Eof)

if (tbdientes->FieldVal ues["COUNTRY"] != "US")
begi n

t bPedi dos->First();

while (! tbPedi dos->Eof)

Total += tbPedi dos->Fi el dVal ues["| TEMSTOTAL"];
t bPedi dos- >Next () ;

}

}
tbd i entes->Next ();
}

_finally

t bPedi dos- >Enabl eControl s();
tbd i entes->Bl ockReadSi ze = 0; // <« NUEVO

}
Showiessage(Format (" %n 9%d",
ARRAYOFCONST((Total , Get TickCount() - Tienpo))));

Ahora que ya sabe como realizar un doble recorrido sobre un par de tablas en
relacién master/ detail, le aconsejo que solamente programe este tipo de algoritmos

Conjuntos de datos: tablas 247

cuando esté trabajando con bases de datos de escritorio. Si esta utilizando una
base de datos cliente/servidor, la ejecucién de una consulta es incomparable-
mente mas rapida. Puede comprobatlo.

El estado de un conjunto de datos

Una de las propiedades mas importantes de los conjuntos de datos es State, cuya
declaracion es la siguiente:

enum TDat aSet St ate = {dsl nactive, dsBrowse, dsEdit, dslnsert,
dsSet Key, dsCal cFields, dsFilter, dsNewal ue, dsQ dVal ue,
dsCur Val ue, dsBl ockRead, dslnternal Cal c};

__property TDataSet State State;

El estado de un conjunto de datos determina qué operaciones se pueden realizar
sobre el mismo. Por ejemplo, en el estado de exploracion, dsBrowse, no se pueden
realizar asignaciones a campos. Algunas operaciones cambian su semantica de
acuerdo al estado en que se encuentre el conjunto de datos. El método Posz, por
ejemplo, graba una nueva fila si el estado es dslnsert en el momento de su aplicacién,
pero modifica la fila activa si el estado es dsEdit.

La propiedad S7ate es una propiedad de sélo lectura, por lo que no podemos cambiar
de estado simplemente asignando un valor a ésta. Incluso hay estados a los cuales el
programador no puede llegar explicitamente. Tal es el caso del estado dsCaleFields, al
cual se pasa automaticamente cuando existen campos calculados en la tabla; estos
campos se estudiaran en el capitulo siguiente. Las transiciones de estado que puede
realizar el programador se logran mediante llamadas a métodos. El siguiente dia-
grama, todo un clasico de los libros de C++ Builder, muestra los diferentes estados
de un conjunto de datos a los que puede pasar explicitamente el programador, y las
transiciones entre los mismos:

Post, Cancel

Open SetKey
—’ —>
.@ — ——
Close GotoKey, GotoNearest,
Cancel

Insert, Append Post, Cancel

248 La Cara Oculta de C++ Builder

En el diagrama no se han representado los estados internos e inaccesibles. Los esta-
dos dsUpdateNew y dsUpdateOld, dsOld) alue, dsNew) alue y dsCurl’alne son estados
utilizados internamente por la VCL, y el programador nunca encontrard que una
rutina programada por él se esta ejecutando con una tabla en uno de estos estados.
En cambio, aunque el programador nunca coloca una tabla de forma explicita en los
estados dsCaleFields y dsFilter, aprovecha estos estados durante la respuestas a un par
de eventos, OnCalcFields y OnFilterRecord. El primero de estos eventos se utiliza para
asignar valores a campos calculados; el segundo evento permite trabajar con un sub-
conjunto de filas de una tabla, y lo estudiaremos en el capitulo sobre métodos de

busqueda.

La comprension de los distintos estados de un conjunto de datos, los métodos y los
eventos de transicién son fundamentales para poder realizar actualizaciones en bases
de datos. Mas adelante volveremos necesariamente sobre este tema.

Capitulo

11

Acceso a campos

OS COMPONENTES DE ACCESO A CAMPOS son parte fundamental de la es-

tructura de la VCL. Estos objetos permiten manipular los valores de los cam-

pos, definir formatos de visualizacion y edicion, y realizar ciertas validaciones
basicas. Sin ellos, nuestros programas tendrian que trabajar directamente con la ima-
gen fisica del baffer del registro activo en un conjunto de datos. Afortunadamente,
C++ Builder crea campos aun cuando a nosotros se nos olvida hacerlo. En este ca-
pitulo estudiaremos las clases de campos y sus propiedades, concentraindonos en los
tipos de campos “simples”, y en el uso del Diccionario de Datos para acelerar la
configuracion de campos en tiempo de disefio. En capitulos posteriores tendremos
oportunidad de estudiar los campos BLOB y los correspondientes a las nuevas ex-
tensiones orientadas a objetos de Oracle 8.

Creacion de componentes de campos

Por mucho que busquemos, nunca encontraremos los componentes de acceso a
campos en la Paleta de Componentes. El quid estd en que estos componentes se
vinculan al conjunto de datos (tabla o consulta) al cual pertenecen, del mismo modo
en que los {ftems de menu se vinculan al objeto de tipo TMainMenn 6 TPopupMenu que
los contiene. Siguiendo la analogfa con los menus, para crear componentes de cam-
pos necesitamos realizar una doble pulsacién sobre una tabla para invocar al Editor de
Campos de C++ Builder. Este Editor se encuentra también disponible en el mend
local de las tablas como el comando Fields editor.

Antes de explicar el proceso de creacién de campos necesitamos aclarar una situa-
cién: podemos colocar una tabla en un formulatio, asociarle una fuente de datos y
una rejilla, y echar a andar la aplicacién resultante. ¢Para qué queremos campos en-
tonces? Bueno, aun cuando no se han definido componentes de acceso a campos
explicitamente para una tabla, estos objetos estan ahi, pues han sido creados auto-
maticamente por C++ Builder. Si durante la apertura de una tabla se detecta que el
usuario no ha definido campos en tiempo de disefio, la VCL crea objetos de acceso
de forma implicita. Por supuesto, estos objetos reciben valores por omision para sus
propiedades, que quizas no sean los que deseamos.

250 La Cara Oculta de C++ Builder

Precisamente por eso creamos componentes de campos en tiempo de disefio: para
poder controlar las propiedades y eventos relacionados con los mismos. La creacién
en tiempo de disefio no nos hace malgastar memoria adicional en tiempo de ejecu-
cién, pues los componentes se van a crear de una forma u otra. Pero si tenemos que
contar con el aumento de tamano del fichero df, que es donde se va a grabar la
configuracion persistente de los valores iniciales de las propiedades de los campos.
Este es un factor a tener en cuenta, como veremos mas adelante.

Form1_Tablel =]
= - - -l

Company
Addr
Addr2
City
State

Zip
Country
Phone oo
Fiix

TaxFate j

El Editor de Campos es una ventana de ejecucién no modal; esto quiere decir que
podemos tener a la vez en pantalla distintos conjuntos de campos, correspondiendo
a distintas tablas, y que podemos pasar sin dificultad de un Editor a cualquier otra
ventana, en particular, al Inspector de Objetos. Para realizar casi cualquier accién en
el Editor de Campos hay que pulsar el botén derecho del ratén y seleccionar el co-
mando de ment adecuado. Tenemos ademas una pequefia barra de navegacion en la
parte superior del Editor. Esta barra no estd relacionada en absoluto con la edicién
de campos, sino que es un medio conveniente de mover, en tiempo de disefio, el
cursor o fila activa de la tabla asociada.

Anadir componentes de campos es muy facil, pues basta con ejecutar el comando
Add fields del ment local. Se presenta entonces un cuadro de didlogo con una lista de
los campos fisicos existentes en la tabla y que todavia no tienen componentes aso-
ciados. Esta lista es de seleccion maltiple, y selecciona por omisioén todos los campos.
Es aconsejable crear componentes para todos los campos, ain cuando no tengamos
en mente utilizar algunos campos por el momento. La explicacion tiene que ver tam-
bién con el proceso mediante el cual la VCL crea los campos. Si al abrir la tabla se
detecta la presencia de al menos un componente de campo definido en tiempo de
disefio, C++ Builder no intenta crear objetos de campo automaticamente. El resul-
tado es que estos campos que dejamos sin crear durante el diseflo #o existen en lo que
concierne a C++ Builder.

Acceso a campos 251

Add fields. . Chrl+,
New field... Ctrl+M
Add all fields Ctil+F
Cut Crl+
LCopy Ctrl+C
Raste [Eerli#:
LDielete Del

Select all Ctrl+L
Eietieve aftitiutes (Bt
Save attributes Ctrl+5
Save attributes as. Chil+E
Agsociate attibutes... Cti+0
hassociate attitbutes: S

Esta operacién puede repetirse més adelante, si afiadimos nuevos campos durante
una reestructuracion de la tabla, o si modificamos la definiciéon de un campo. En este
ultimo caso, es necesario destruir primeramente el viejo componente antes de afiadir
el nuevo. Para destruir un componente de campo, sélo es necesario seleccionarlo en
el Editor de Campos y pulsar la tecla SUPR.

El comando .Add all fields, del ment local del Editor de Campos, es una novedad
de C++ Builder 4 para acelerar la configuracién de campos.

Clases de campos

Una vez creados los componentes de campo, podemos seleccionatlos en el Inspector
de Objetos a través de la lista de objetos, o mediante el propio Editor de Campos. Lo
primero que llama la atencién es que, a diferencia de los menus donde todos los co-
mandos pertenecen a la misma clase, TMenulters, aqui cada componente de acceso a
campo puede pertenecer a una clase distinta. En realidad, todos los componentes de
acceso a campos pertenecen a una jerarquia de clases derivada por herencia de una
clase comun, la clase THield. El siguiente diagrama muestra esta jerarquia:

TField

‘ TBIob‘F\eId I ‘ TBooIe‘anField ‘l ‘TDaleTi‘meF\eldI ‘ TBinar‘yF\eIds | ‘TNume‘ricFie\d ‘l ‘ TS(rin‘gFie\d |

‘ [I : I 1

‘TGraphicF\eIdI ‘ TMemoField ‘l ‘ TDateField I ‘ TTimeField ‘l ‘ TBytesField I ‘ TFloatField I ‘ TBCDField I ‘ TintegerField I ‘TLargeln(F\eldI
‘ ‘ [\‘ 1

‘TVarBytesFieldl ‘TCurrencyFieldI ‘ TAutolncField | ‘TSmallthie\d I ‘ TWordField |

De todos estos tipos, TField, TNumericField y TBinaryField nunca se utilizan directa-
mente para crear instancias de objetos de campos; su papel es servir de ancestro a
campos de tipo especializado. La correspondencia entre los tipos de las variables de
campos y los tipos de las columnas es la siguiente:

252 La Cara Oculta de C++ Builder

Tipo de campo dBase Paradox InterBase
TStringField char alpha char, varchar
TIntegerField longint int, long

T AutolncField autoinc

TWordField

TSmallintField number shortint short
TBCDField bed

TFloatField float, number number float, double
TCurrencyField money

TBooleanField logical logical

TDateField date date

TTimeField time

TDateTimeField timestamp date
TBlobField ole, binary fmtmemo, ole, binary blob
TGraphicField graphic

TMemoField memo memo text blob
TBytesField bytes

TV arBytesField

Algunos tipos de campos se asocian con las clases de campos de C++ Builder en de-
pendencia de su tamafio y precision. Tal es el caso de los tipos number de dBase, y
de decimal y numeric de InterBase.

A la jerarquia de clases que hemos mostrado antes, C++ Builder 4 afiade un par de
ramas:

TField

|TAggregateFieId|| TObjectField I
I

| TAD'II'FieId IlTDataSIetField || TArraIyFieId |

TReferenceField

La clase T.AggregateField permite definir campos agregados con calculo automatico en
conjuntos de datos clientes: sumas, medias, maximos, minimos, etc. Tendremos que
esperar un poco para examinarlos. En cuanto a la jerarquia que parte de la clase abs-
tracta TObjectField, sirve para representar los nuevos tipos de datos orientados a ob-
jetos de Oracle 8: objetos incrustados (T:ADTField), referencias a objetos (1 Reference-
Field), vectores (I'ArrayField) y campos de tablas anidadas (TDataSetField).

Aunque InterBase permite definir campos que contienen matrices de valores, las
versiones actuales de la VCL y del BDE no permiten tratarlos como tales directa-
mente.

Acceso a campos 253

Nombre del campo y etiqueta de visualizacion

Existen tres propiedades de los campos que muchas veces son confundidas entre si
por el programador. Son las propiedades Nawze, FieldName y Displayl abel. La primera
es, como sucede con casi todos los componentes, el nombre de la variable de campo,
o sea, del puntero al objeto. FieldName es el nombre de la columna de la tabla a la que
se refiere el objeto de campo. Y Displaylabel es un texto descriptivo del campo, que
se utiliza, entre otras cosas, como encabezamiento de columna cuando el campo se
muestra en una rejilla de datos.

De estas propiedades, FeldName es 1a que menos posibilidades nos deja: contiene el
nombre de la columna, y punto. Por el contrario, Name se deduce inicialmente a par-
tir del nombre de la tabla y del nombre de la columna. Si el nombre de tabla es
thClientes y el nombre del campo (FieldName) es CustNo, el nombre que C++ Builder
le asigna a Namse, y por consiguiente a la variable que apunta al campo, es #bClientes-
CustNo, la concatenacion de ambos nombres.

Esto propicia un error bastante comuin entre los programadores, pues muchas veces
escribimos por inercia, pensando en un esquema zabla.campo:

t bd i ent es- >Cust No /1 jiil NCORRECTO !!

El siguiente grafico puede ayudar a comprender mejor la relacion entre los nombres
de variables y los componentes de tablas y de campos:

Variables tbdientes tbd i ent esCust No I

A

‘ Tabla de clientes I

‘ Campos I

La asignacion automatica de nombres de componentes de campos nos plantea un
problema practico: el tamafio del fichero dgf crece desmesuradamente. Tomemos
por ejemplo una aplicacién pequefia que trabaje con diez tablas, y supongamos que
cada tabla tiene diez campos; éstas son estimaciones a la baja. Entonces, tendremos
cien componentes de campos, y cada componente tendra un nombre kilométrico que
estard ocupando espacio en el fichero df y luego en la memoria, en tiempo de ejecu-
cién. Es por eso que buscando un menor tiempo de carga de la aplicacion, pues la
memoria no es una consideracién primordial en estos dfas, tengo la costumbre de
renombrar los componentes de campos con el propésito de disminuir la longitud de
los nombres en lo posible, sin caer en ambigliedades. Por ejemplo, el nombre de

254 La Cara Oculta de C++ Builder

componente #ClientesCustNo puede abreviarse a algo asi como #5CI/CustNo; ya sé que
son s6lo seis letras menos, pero multipliquelas por cien y vera.

Acceso a los campos por medio de la tabla

Aunque la forma mis directa, segura y eficiente de acceder a un campo es crear el
componente en tiempo de disefio y hacer uso de la variable asociada, es también
posible llegar indirectamente al campo a través de la tabla a la cual pertenece. Estas
son las funciones y propiedades necesarias:

TField* _ fastcall TDataSet::Fiel dByName(const Ansi String Nonbre);
__property TFields* TDataSet:: Fi el ds;

La clase TFields, por su parte, tiene las siguientes propiedades principales:

__property int TFields::Count;
__property TField* TFields::Fields[int |Index];

La definicién que he mostrado de Fields es la que corresponde a la version 4 de la
VCL. Antes, esta propiedad se definfa del siguiente modo:

__property TField* TDataSet::Fields[int |ndex];

Los cambios se han introducido por culpa de la aparicion de los tipos de objetos de
Oracle 8, y del soporte para campos agregados de Midas 2.

Con FieldByName podemos obtener el componente de campo dado su nombre,
mientras que con Frelds 1o obtenemos si conocemos su posicion. Esta claro que esta
ultima propiedad debe utilizarse con cautela, pues si la tabla se reestructura cambian
las posiciones de las columnas. Mediante Fie/dByName y Fields obtenemos un objeto
de tipo TField, la clase base de la jerarquia de campos. Por lo tanto, no se pueden
utilizar directamente las propiedades especificas de los tipos de campos mas concre-
tos sin realizar una conversién de tipo. A esto volveremos a referirnos. Mientras

tanto, he aqui una muestra de cémo se accede a un campo dada su posicion en C++
Builder 3 y 4:

C++ Builder 3 C++ Builder 4
Tabl el- >Fi el ds[0] - >Fi el dNane Tabl el- >Fi el ds- >Fi el ds[0] - >Fi el dNane

Si a la funcion FieldByName le pasamos un nombre inexistente de campo, se produce
una excepcion, por lo cual no debemos utilizar esta funcién silo que queremos es
saber si el campo existe o no. Para esto ultimo contamos con la funcién FindField,
que devuelve el puntero al objeto si éste existe, o el puntero vacio si no:

Acceso a campos 255

TField* _ fastcall TDataSet::FindFiel d(const AnsiString Nonbre);

Recuerde que el componente de campo puede haber sido creado explicitamente por
usted en tiempo de diseflo, pero que si no ha realizado esta accién, C++ Builder
construye automaticamente estos objetos al abrir el conjunto de datos.

Extrayendo informacion de los campos

Un componente de campo contiene los datos correspondientes al valor almacenado
en la columna asociada de la fila activa de la tabla, y la operaciéon mas frecuente con
un campo es extraer o modificar este valor. La forma mas segura y eficiente es, una
vez creados los campos persistentes con la ayuda del Editor de Campos, utilizar las
variables generadas y la propiedad Va/ue de las mismas. Esta propiedad se define del
tipo apropiado para cada clase concreta de campo. Si el campo es de tipo TS #inglield,
su propiedad Value es de tipo AnsiString si el campo es de tipo TBooleantield, el tipo
de Value es bool.

Showvessage(For mat (" %d- %", ARRAYOFCONST(
(tbd i ent esCodi go- >Val ue, /1 Un valor entero
tbd i entesNonbre->Value)))); // Una cadena de caracteres

Si la referencia al campo es del tipo genérico THie/d, como las que se obtienen con la
propiedad Fields y la funcioén FieldByName, es necesatio utilizar propiedades con
nombres como AsString, Aslnteger, AsFloat, etc., que aclaran el tipo de datos que que-
remos recuperar.

Showiessage(
Int ToStr(tbd ientes->Fi el dByNanme(" Codi go") - >Asl nt eger)
+ "-" + tbdientes->Fi el dByNanme("Nonbre")->AsString);

Las propiedades mencionadas intentan siempre hacer la conversién del valor almace-
nado realmente al tipo especificado; cuando no es posible, se produce una excepcion.
Por ejemplo, en el caso anterior hubiéramos podido utilizar también la propiedad
AsString aplicada al campo entero Codigo.

Ahora bien, existe un camino alternativo para manipular los datos de un campo: la
propiedad Fieldl alues de TDataSet. 1a declaracion de esta propiedad es la siguiente:

__property Variant TDataSet:: Fi el dVal ues[Ansi String Fi el dNane] ;

Como la propiedad devuelve valores variantes, no es necesario preocuparse dema-
siado por el tipo del campo, pues la conversion transcurre automaticamente:

Showvessage(t bC i ent es- >Fi el dVal ues[" Codi go"]
+ "-" + tbCdientes->Fiel dVal ues["Nonbre"]);

256 La Cara Oculta de C++ Builder

También puede utilizarse Freld) alues con una lista de nombres de campos separados
por puntos y comas. En este caso se devuelve una matriz variante formada por los
valores de los campos individuales:

System : Variant V = tbdientes->Fi el dVal ues[" Codi go; Nonbre"];
Showvessage(V. Get El enent (0) + "-" + V.GetEl enment(1));

En Delphi, Fieldl alues es la propiedad vectorial por omisién de los conjuntos de
datos, por lo cual pueden aplicarse los corchetes directamente a una variable de
tabla, como si ésta fuera un vector. Esta facilidad de uso ha propiciado la prolife-
racioén de esta propiedad en los ejemplos de la VCL. No obstante, debemos utili-
zar esta propiedad lo menos posible, pues tiene dos posibles puntos de fallo:
puede que nos equivoquemos al teclear el nombre del campo (no se detecta el
error sino en ejecucion), y puede que nos equivoquemos en el tipo de retorno
esperado.

Intencionalmente, todos los ejemplos que he mostrado leen valores desde las com-
ponentes de campos, pero no modifican este valor. El problema es que las asignacio-
nes a campos solo pueden efectuarse estando la tabla en alguno de los estados espe-
ciales de edicién; en caso contrario, provocaremos una excepcion. En el capitulo 26,
sobre actualizaciones, se tratan estos temas con mayor detalle; un poco mas adelante
veremos c6mo se pueden asignar valores a campos calculados.

Es util saber también cuiando es nulo o no el valor almacenado en un campo. Para
esto se utiliza la funcién IsN#/, que retorna un valor de tipo bool.

Por ultimo, si el campo es de tipo memo, grafico o BLOB, no existe una propiedad
simple que nos proporcione acceso al contenido del mismo. Mas adelante explicare-
mos cémo extraer informacién de los campos de estas clases.

Las mascaras de formato y edicion

El formato en el cual se visualiza el contenido de un campo puede cambiarse, para
ciertos tipos de campos, por medio de una propiedad llamada DisplayFormat. Esta
propiedad es aplicable a campos de tipo numérico, flotante y de fecha y hora; los
campos de cadenas de caracteres no tienen una propiedad tal, aunque veremos en la
proxima seccién una forma de superar este “inconveniente”.

Si el campo es numérico o flotante, los caracteres de formato son los mismos que los
utilizados por la funcién predefinida Formattloar:

Acceso a campos 257

Caréacter Significado
0 Digito obligatorio
Digitos opcionales
. Separador decimal
, Separador de millares
; Separador de secciones

La peculiaridad principal de estas cadenas de formato es que pueden estar divididas
hasta en tres secciones: una para los valores positivos, la siguiente para los negativos
y la tercera seccion para el cero. Por ejemplo, si DisplayFormat contiene la cadena
"$#,:(#.00);Cero", la siguiente tabla muestra la forma en que se visualizara el conte-
nido del campo:

Valor del campo Cadena visualizada
12345 $12.345
-12345 (12345.00)
0 Cero

Observe que la coma, el separador de millares americano, se traduce en el separador
de millares nacional, y que lo mismo sucede con el punto. Otra propiedad relacio-
nada con el formato, y que puede utilizarse cuando no se ha configurado DisplayFor-
mat, es Precision, que establece el nimero de decimales que se visualizan por omision.
Tenga bien en cuenta que esta propiedad no limita el nimero de decimales que po-
demos teclear para el campo, ni afecta al valor almacenado finalmente en el mismo.

Cuando el campo es de tipo fecha, hora o fecha y hora, el significado de las cadenas
de DisplayFormat coincide con el del parametro de formato de la funciéon FormatDate-
Time. He aqui unos pocos aunque no exhaustivos ejemplos de posibles valores de
esta propiedad:

Valor de DisplayFormat Ejemplo de resultado
dd-mmr-yy 04-07-64
dddd, d "de" mmmm "de"" yyyy sédbado, 26 de enero de 1974
bh:mm 14:05
hmm am/pm 2:05 pm

La preposicion “de” se ha tenido que encerrar entre dobles comillas, pues en caso

b
contrario la rutina de conversién interpreta la primera letra como una indicacién para
poner el dia de la fecha.

Si el campo es de tipo logico, de clase TBoolkantield, la propiedad Displayl alues con-
trola su formato de visualizacion. Esta propiedad, de tipo AnsiString, debe contener
un par de palabras o frases separadas por un punto y coma; la primera frase corres-
ponde al valor verdadero y la segunda al valor falso:

258 La Cara Oculta de C++ Builder

t bDi ari oBuenTi enpo- >Di spl ayVal ues =
"Un tienpo maravilloso; Un dia horrible";

Por ultimo, la edicion de los campos de tipo cadena, fecha y hora puede controlarse
mediante la propiedad EditMask. Los campos de tipo numérico y flotante no permi-
ten esta posibilidad. Ademas, la propiedad EditFormat que introducen estos campos
no sirve para este proposito, pues indica el formato inicial que se le da al valor numé-
rico cuando comienza su edicién. Por ejemplo, usted desea que el campo Precio se
muestre en dolares, y utiliza la siguiente mascara de visualizacién en DisplayFormat:

$#0, . 00

Entonces, para eliminar los caracteres superfluos de la edicioén, como el signo de
délar y los separadores de millares, debe asignar #0.00 a la propiedad EditFormar del
campo.

Los eventos de formato de campos

Cuando no bastan las mascaras de formato y edicion, podemos echar mano de dos
eventos pertenecientes a la clase TField: OnGefTexty OnSeflext. Bl evento OnGetText,
por ejemplo, es llamado cada vez que C++ Builder necesita una representacion visual
del contenido de un campo. Esto sucede en dos circunstancias diferentes: cuando se
esta visualizando el campo de forma normal, y cuando hace falta un valor inicial para
la ediciéon del campo. El prototipo del evento OnGerlext es el siguiente:

typedef void _ fastcall (__closure *TFi el dGet Text Event)
(TField *Sender, Ansi String &Text, bool DisplayText);

Un manejador de eventos para este evento debe asignar una cadena de caracteres en
el parametro Text, teniendo en cuenta si ésta se necesita para su visualizacién normal
(DisplayText igual a True) o como valor inicial del editor (en caso contrario).

Inspirado en la pelicula de romanos que pasaron ayer por la tele, he desarrollado un
pequefio ejemplo que muestra el codigo del cliente en nimeros romanos:

void _ fastcall TForml::tbd ientesCust NoGet Text(TField *Sender,
Ansi String &Text, bool DisplayText)

{
static Ansi String Uni dades[10] =
W I L TV VLT, VL, XY
static Ansi String Decenas[10] =
[0 X, XX XX, XL, LY, TLXT, LXK, LXXX', "XC'}:
static Ansi String Centenas[10] =

static AnsiString Mles[4] =
ML, UM, UMWY

Acceso a campos 259

i f (Sender->Aslnteger > 3999)

Text = "Infinitunt;
/1 Hay que ser consecuentes con el |enguaje
el se
{
int i = Sender->Aslnteger;
Text = Mles[i / 1000] + Centenas[i / 100 % 10] +
Decenas[i / 10 % 10] + Uni dades[i % 10];
}

Si a algtn usuario se le ocurriera la peregrina idea de teclear sus datos numéricos
como ndmeros romanos, el evento adecuado para programar esto serfa OnSefText. El
prototipo del evento es el siguiente:

typedef void _ fastcall (__closure *TFi el dSet Text Event)
(TFi el d *Sender, const Ansi String Text);

Este evento es utilizado con frecuencia para realizar cambios sobre el texto tecleado
por el usuario para un campo, antes de ser asignado al mismo. Por ejemplo, un
campo de tipo cadena puede convertir la primera letra de cada palabra a mayusculas,
como sucede en el caso de los nombres propios. Un campo de tipo numérico puede
eliminar los separadores de millares que un usuario puede colocar para ayudarse en la
edicién. Como este evento se define para el campo, es independiente de la forma en
que se visualice dicho campo y, como veremos al estudiar los médulos de datos,
formara parte de las reglas de empresa de nuestro disefio.

Para ilustrar el uso del evento OnSefIext, aqui esta el manejador que lleva a mayuscu-
las la primera letra de cada palabra de un nombre:

void _ fastcall TFornil::tbd ientesConpanySet Text (TFi el d *Sender,
const Ansi String Text)

{
Ansi String S = Text;
for (int i =1; i <= S.Length(); i++)
if (i =211 gi-1 ="'")
Char UpperBuf f (&S[i], 1);
Sender - >AsString = S;
}

Otra situacion practica en la que OnSefIext puede ayudar es cuando se necesite com-
pletar una entrada incompleta, en el caso de que el conjunto de valores a teclear esté
limitado a ciertas cadenas.

Campos calculados

Una potente caracteristica de C++ Builder es la que permite crear campos calenlados,
que no corresponden a campos definidos “fisicamente” sobre la tabla o consulta

260 La Cara Oculta de C++ Builder

base, sino que se calculan a partir de los campos “reales”. Por ejemplo, la antigliedad
de un trabajador puede deducirse a partir de su fecha de contrato y de la fecha actual.
No tiene sentido, en cambio, almacenar fisicamente este dato, pues tendria que actua-
lizarse dia a dia. Otro candidato a campo calculado es el nombre completo de una
persona, que puede deducirse a partir del nombre y los apellidos; es conveniente, en
muchos casos, almacenar nombre y apellidos en campos independientes para permi-
tir operaciones de busqueda sobre los mismos por separado.

Mew Field [%]
~Field propertie:
Mame: INnmbleComplato Component: IlempNnmble
Tupe: ISmng j Size: |3D
Field type
’7(" Data % Calculated i~ Lookup ‘
~Lookup definition
ey Fields: I j [Vataset: I j
LLoalum Feps: I j Fesult Fia\d:l j
0K I Cancel | Help |

Para definir campos calculados, utilizamos el comando New field, del ment local del
Editor de Campos. El cuadro de didlogo que aparece nos sirve para suministrar el
nombre que le vamos a dar al campo, el nombre de la variable asociada al objeto, el
tipo de campo y su longitud, si el campo contendra cadenas de caracteres. También
hay que aclarar que el campo es Calenlated.

Observe que en ninguna parte de este cuadro de didlogo se ha escrito algo parecido a
una férmula. El algoritmo de calculo del campo se especifica realmente durante la
respuesta al evento OnCaleFields de la tabla a la cual pertenece el campo. Durante el
intervalo de tiempo que dura la activacién de este evento, la tabla se sitda automati-
camente en el estado dsCalcFields. En este estado, no se permiten las asignaciones a
campos que no sean calculados: no se puede “aprovechar” el evento para realizar
actualizaciones sobre campos fisicos de la tabla, pues se produce una excepcion.
Tampoco debemos mover la fila activa, pues podemos provocar una serie infinita de
llamadas recursivas; esto ultimo, sin embargo, no lo controla C++ Builder. El evento
OnCalcFields se lanza precisamente cuando se cambia la fila activa de la tabla. Tam-
bién puede lanzarse cuando se realiza alguna modificacién en los campos de una fila,
si la propiedad l6gica AutoCaleFields del conjunto de datos vale True.

Para la tabla employee.db que podemos encontrar en el alias bedermos de C++ Builder,
podemos definir un par de campos calculados con esta estructura:

Campo Tipo Tamarfio
NombreCompleto String 30
Antignedad Integer

Acceso a campos 261

Esto se realiza en el Editor de Campos. Después seleccionamos la tabla de emplea-
dos, y mediante el Inspector de Objetos creamos un manejador para su evento On-
CalcFields; suponemos que el nombre del componente de tabla es #hEmpleados:

void _ fastcall TnodDatos: :tbEnpl eadosCal cFi el ds(TDat aSet *Sender)

t bEnpl eadosNonbr eConpl et o- >Val ue =
t bEnpl eadosLast Nane- >Value + ", " +
t bEnpl eadosFi r st Nane- >Val ue;
if (! tbEnpl eadosHireDate->IsNull)
t bEnpl eadosAnt i guedad- >Val ue =
int(Date() - tbEnpl eadosHi reDate->Val ue) / 365;

Hay que tener cuidado con los campos que contienen valores nulos. En principio
basta con que uno de los campos que forman parte de la expresion sea nulo para que
la expresion completa también lo sea, en el caso de una expresion que no utilice ope-
radores légicos binatios (and/or). Esto es lo que hacemos antes de calcular el valor
de la antigiiedad, utilizando la propiedad IsN#//. Por el contrario, he asumido que el
nombre y los apellidos no pueden ser nulos, por lo cual no me he tomado la molestia
de comprobar este detalle.

Campos de busqueda

Es muy frecuente encontrar tablas conectadas entre si mediante una relacién
uno/muchos; ya hemos visto que esta dependencia se puede expresar en nuestros
programas mediante una relacion master/ detail entre tablas. A veces es conveniente,
sin embargo, considerar la inversa de esta relacion. Por ejemplo, un cliente “posee”
un conjunto de pedidos ¢Debemos por esto trabajar los pedidos como detalles de un
cliente? Podemos hacerlo de esta manera, pero lo usual es que las altas de pedidos se
realicen sobre una tabla sin restricciones. Desde el punto de vista de la tabla de pedi-
dos, su relacion con la tabla de clientes es una relacidn de referencia.

Teniendo el codigo de cliente que se almacena en la tabla de pedidos, es deseable
poder obtener el nombre de la empresa representada por ese codigo. Se pueden crear
campos calculados que realicen manualmente la busqueda por medio de indices en la
tabla a la cual se hace referencia. En los capitulo sobre indices y técnicas de busqueda
veremos coémo implementar esta busqueda. Sin embargo, pocas veces es necesario
llegar a estos extremos, pues desde la version 2 de la VCL disponemos de los deno-
minados canpos de biisqueda (0, en inglés, lookup fields), para los cuales el sistema ejecuta
automaticamente el algoritmo de traduccion de referencias.

Los campos de busqueda se crean por medio del comando de ment New field del
ment local del Editor de Campos; se trata del mismo cuadro de didlogo que crea
campos calculados. Pongamos por caso que queremos crear un campo que nos dé el

262 La Cara Oculta de C++ Builder

nombre del cliente asociado a un pedido. Utilizaremos ahora las tablas de pedidos
(tbPedidos, asociada a orders.db) y de clientes (tbClientes, asociada a customer.db). Nos
vamos a la tabla de pedidos, activamos el Editor de Campos y el comando New field.
La informacion de la parte superior del cuadro de didlogo es la misma que para un
campo calculado:

Campo Tipo Tamafio
Cliente String 30

Después, tenemos que indicar el tipo de campo como Lookup; de este modo, se acti-
van los controles de la parte inferior del didlogo. Estos son los valores que ha que
suministrar, y su significado:

Key fields El campo o conjunto de campos que sirven de base a la referencia. Estan
definidos en la tabla base, y por lo general, aunque no necesariamente,
tienen definida una clave externa. En este ejemplo, teclee CustINo.

Dataset Conjunto de datos en el cual se busca la referencia: use #Clientes.

Lookup keys Los campos de la tabla de referencia sobre los cuales se realiza la bus-
queda. Para nuestro ejemplo, utilice CustNo; aunque es el mismo nombre
que hemos tecleado en Key frelds, esta vez nos estamos refiriendo a la
tabla de clientes, en vez de la de pedidos.

Result field El campo de la tabla de referencia que se visualiza. Seleccione Company, el
nombre de la empresa del cliente.

Feld properies

Memer |Clane Comporert (P adoo:Chenle
Tupa: Sl | Hiza:]

Fie by
|-|"' Dl " Caloa datad % Lockup
rLookup definilion

Eeny Pl |I3mll'l-:- | [alasal Crshonmeiz 'I
Lonkin Keys |I:us|Nu w | Faed Fisd |Compeny "I

ok | caes | den |

Un error frecuente es dejar a medias el dialogo de definicién de un campo de bus-
queda. Esto sucede cuando el programador inadvertidamente pulsa la tecla INTRO,
pensando que de esta forma selecciona el proximo control de dicha ventana. Cuando
esto sucede, no hay forma de volver al cuadro de didlogo para terminar la definicion.
Una posibilidad es eliminar la definicién parcial y comenzar desde cero. La segunda
consiste en editar directamente las propiedades del campo recién creado. La siguiente
tabla enumera estas propiedades y su correspondencia con los controles del didlogo
de definicion:

Acceso a campos 263

Propiedad Correspondencia
Lookup Siempre igual a True para estos campos
KeyFields Campos de la tabla en los que se basa la biasqueda (Key fre/ds)

LookupDataset Tabla de busqueda (Datase?).

LookupKeyFields Campos de la tabla de busqueda que deben corresponder al
valor de los KeyFields (Lookup keys)

LookupResultField Campo de la tabla de bisqueda cuyo valor se toma (Resu/t feld)

La caché de busqueda

A partir de la versién 3 de la VCL se han afiadido propiedades y métodos para hacer
mas eficiente el uso de campos de busqueda. Consideremos, por un momento, un
campo que debe almacenar formas de pago. Casi siempre estas formas de pago estan
limitadas a un conjunto de valores determinados. Si utilizamos un conjunto especifi-
cado directamente dentro del cédigo de la aplicacion se afecta la extensibilidad de la
misma, pues para afiadir un nuevo valor hay que recompilar la aplicacién. Muchos
programadores optan por colocar los valores en una tabla y utilizar un campo de
busqueda para representar las formas de pago; en la columna correspondiente se
almacena ahora el codigo asociado a la forma de pago. Desgraciadamente, este estilo
de programacion era bastante ineficiente en la VCL 2, sobre todo en entornos
cliente/servidor.

Se puede y debe utilizar memoria caché para los campos de busqueda si se dan las si-
guientes condiciones:

La tabla de referencia contiene relativamente pocos valores.
Es poco probable que cambie la tabla de referencia.

Para activar la caché de un campo de busqueda se utiliza la propiedad LookupCache,
de tipo 16gico: asignandole True, los valores de referencia se almacenan en la propie-
dad LookupList, de la cual C++ Builder los extrae una vez inicializada automatica-
mente. Si ocurre algin cambio en la tabla de referencia mientras se ejecuta la aplica-
cién, basta con llamar al método RefreshLookupList, sobre el componente de campo,
para releer los valores de la memoria caché.

¢Son peligrosos los campos de busqueda en la programacion cliente/servidor?
No, en general. Una alternativa a ellos es el uso de consultas basadas en encuen-
tros (joins), que tienen el inconveniente de no ser actualizables intrinsecamente y
el de ser verdaderamente peligrosas para la navegacion, si el conjunto resultado
es grande. El problema con los campos de busqueda surge cuando se visualizan
en un control TDBLookupComboBox, que permite la busqueda incremental insen-
sible a mayuisculas y minusculas. La bisqueda se realiza con el método Locate, que

264 La Cara Oculta de C++ Builder

desempefia atrozmente este cometido en particular. Para mas informacion, lea el
capitulo 25, sobre la comunicacién cliente/servidor.

Cuando estudiemos Midas, veremos otra alternativa para implementar eficientemente
campos de busqueda sobre tablas casi estaticas de pequefio tamafio, que consiste en

mover al cliente el contenido de las tablas de referencia mediante el componente
TClientDataSet.

El orden de evaluaciéon de los campos

Cuando se definen campos calculados y campos de bisqueda sobre una misma tabla,
los campos de busqueda se evaldan antes que los campos calculados. Asi, durante el
algoritmo de evaluacion de los campos calculados se pueden utilizar los valores de
los campos de busqueda.

Tomemos como ejemplo la tabla izems.db, para la cual utilizaremos un componente de
tabla #bDetalles. Esta tabla contiene lineas de detalles de pedidos, y en cada registro
hay una referencia al cédigo del articulo vendido (ParNo), ademas de la cantidad
(O1) y el descuento aplicado (Discount). A partir del campo PartNo, y utilizando la
tabla parts.db como tabla de referencia para los articulos, puede crearse un campo de
busqueda Precio que devuelva el precio de venta del articulo en cuestion, extrayéndolo
de la columna ListPrice de parts.db. En este escenario, podemos crear un campo cal-
culado, de nombre SubTotal y de tipo Currency, que calcule el importe total de esa

linea del pedido:

void _ fastcall TnodDatos::tbDetall esCal cFi el ds(TDat aSet *Dat aSet)

t bDet al | esSubTot al - >Val ue =
tbDetal | esQty->Val ue * /| Canpo base
t bDet al | esPr eci o- >Val ue * /1 Canpo de busqueda
(1 - tbDetall esDi scount->Value / 100); // Canpo base

Lo importante es que, cuando se ejecuta este método, ya C++ Builder ha evaluado
los campos de busqueda, y tenemos un valor utilizable en el campo Precio.

Otra informacién que es importante conocer acerca del orden de evaluacion, es que
la VCL evalta los campos calculados antes de haber fijado el rango de filas de las
tablas de detalles asociadas. Si la tabla #Detalles esta asociada a una tabla con cabece-
ras de pedidos, #bPedidos, por una relacion master/ detail, no es posible definir un
campo calculado en la tabla de pedidos que sume los subtotales las lineas asociadas,
extrayendo los valores de #hDetalles. Ess necesario utilizar una tercera tabla auxiliar,
que se refiera a la tabla de lineas de detalles, para buscar en esta ultima las lineas ne-
cesarias y realizar la suma.

Acceso a campos 265

Extensiones para los tipos de objetos de Oracle 8

Para poder manejar los nuevos tipos de datos de Oracle 8, C++ Builder 4 ha afiadido
cuatro nuevos tipos de campos, un nuevo tipo de conjunto de datos y ha efectuado
modificaciones en el tipo TDBGrid para poder visualizar datos de objetos. Los cam-
bios en el BDE son los siguientes:

El parametro DII.32 del controlador de Oracle debe ser sglora8.d/l.
IVENDOR INIT debe set oci.d/l.
OBJECT MODE debe valer TRUE.

Los nuevos tipos de campos son:

Tipo Significado
TADTFzeld Para los objetos anidados
T ArrayField Representa un vector

TDataSetField Tablas anidadas
TReferencelield ~ Contiene una referencia a un objeto compartido

Y el nuevo conjunto de datos es TINestedable, que representa al conjunto de filas
contenidas en un campo de tipo TDataSetField.

Comencemos por el tipo de campo mas sencillo: el tipo T:ADTField. Pongamos por
caso que en la base de datos hemos definido la siguiente tabla:

create type TFraccion as object (
Nuner ador nunber (9),
Denom nador nunber (9)

)

/

create tabl e Probabilidades (
Suceso varchar2(30) not null prinmary key,
Probabi lidad TFracci on not null

)

En C++ Builder, traemos un TTable, lo conectamos a esta tabla y traemos todos los
campos, mediante el comando Add all fields. Estos son los punteros a campos que
son creados:

TTabl e *t bProb;

TStringField *t bProbSUCESQ,
TADTFi el d *t bPr obPROBABI LI DAD,
TFl oat Fi el d *t bPr obNUVERADOR;
TFl oat Fi el d *t bPr obDENOM NADOR;

266 La Cara Oculta de C++ Builder

Es decir, podemos trabajar directamente con los campos basicos de tipos simples, o
acceder a la columna que contiene el objeto mediante el tipo T:ADTField. Por ejem-
plo, todas estas asignaciones son equivalentes:

t bPr obNUVERADOR- >Val ue = 1;

t bPr obPROBABI LI DAD- >Fi el dVal ues[0] = 1;

t bPr obPROBABI LI DAD- >Fi el ds- >Fi el ds[0] - >Asl nt eger = 1;
t bPr ob- >Fi el dVal ues[" PROBABI LI DAD. NUMERADCR'] = 1;

O sea, que hay mas de un camino para llegar a Roma. Ahora mostraremos la tabla en
una rejilla. Por omision, este sera el aspecto de la rejilla:

pog Al _ |O) =
wl ol mfa]=Jal-]]e
SUCESD |PROBABILIDAD v [«]
Acertar Loteria [1; 74000000]
agar impLe [1:1] _I
Fillar un constipada [3:16]
[|

El campo ADT aparece en una sola columna. En sus celdas, el valor de campo se
representa encerrando entre paréntesis los valores de los campos mas simples; estas
celdas no son editables. Las columnas de rejillas de C++ Builder 4, que estudiaremos
en el momento apropiado, tienen una nueva propiedad Expanded, que en este caso
vale False. Cuando se pulsa sobre la flecha que aparece a la derecha de la columna
Probabilidad, 1a columna se expande en sus componentes, que si se pueden modificar:

I Tipos ADT M= E
| lelwfel=[=] | e
SUCESD PROBABILIDAD 1|~

NUMEHADDHIDENDMINADDH

4 1 14000000
Pagar impuestos 1 1
Pillar un constipada 3 'IE;I

Un campo de tipo T ADTField puede mostrarse, en modo sélo lectura, en cualquier
otro control de datos, como un TDBEdjt. Sin embargo, es mas 16gico que estos con-
troles se conecten a los componentes simples del ADT. Por ejemplo, si quisiéramos
editar la tabla anterior registro a registro, necesitarfamos tres controles de tipo
TDBEdjt, uno para el suceso, otro para el numerador y el dltimo para el denomina-

dor.

Vamos ahora con las tablas anidadas y el campo TDataSetField. Este campo tampoco
tiene previsto editarse directamente en controles de datos. Ahora bien, cuando una
columna de una rejilla esta asociada a uno de estos campos, al intentar una modifica-

Acceso a campos 267

cién aparece una ventana emergente con otra rejilla, esta vez asociada a las filas ani-
dadas de la fila maestra activa, como en la siguiente imagen:

I Paises [=] B
ol ol fmle]=] |v]x]e]
NOMERE [conTivenTE [Clupapes [
| | Espafia Eurapa [DATASET)
| | France Eurapa [DATASET)
lUniledSlates of Armerica Ametica [DATASET) J,LI
I
CIUDADES =
NOMERE IFDBLAE\DNIAIHEHESP\HAELE
| M| Mew Tork I
|_|Miarni M
LA N =

L4

AP

De dénde ha salido 1a tabla anidada? C++ Builder ha configurado un objeto de tipo
TNested'able y 1o ha acoplado a la propiedad NestedDataSet del campo TDataSetEield.
Sin embargo, es mas frecuente que configuremos nosotros mismos un componente
TNestedTable para mostrar la relacién uno/muchos explicitamente. La propiedad
principal de este componente es DataSetlield, y no tenemos que indicar base de datos
ni nombre de tabla, pues estos parametros se deducen a partir del campo.

I Paizes p ciudades M=l 3
wf«[r[mf+]-Ja] [el
Mombre | Continente Mombre \ﬂ
|#|Espafia E || M adid
L France Europa _I || Barcelona
| |United States of America America | |Sevila -
i | K a7

Es conveniente tener un poco de precaucion al editar tablas anidadas, pues no
siempre se refresca correctamente su contenido al realizarse inserciones. (Mo-
tivo?, el hecho de que el BDE siga dependiendo de las claves primarias para
identificar registros (vea el tltimo capitulo de esta parte), cuando en este caso
deberfa utilizar el identificador de fila, o rowid. Mi consejo es, mientras no apa-
rezca otra técnica mejor, llamar al método Post de la tabla principal en el cuerpo
de los eventos Beforelnsert y AfterPost de la tabla anidada.

Los campos de referencia, TReferenceField, son muy similares a las tablas anidadas; de
hecho, esta clase desciende por herencia de TDataSetField. La tnica diferencia con-
siste en que la tabla anidada que se le asocia contiene como maximo una sola fila.
C++ Builder permite extraer de forma sencilla los valores del objeto asociado a la
referencia, el equivalente del operador deref de Oracle:

Showvessage(“Cliente: " +

t bPedi doRef d i ent e- >Fi el ds- >Fi el ds[0] . AsString);

268 La Cara Oculta de C++ Builder

Sin embargo, para hacer que un campo de referencia apunte a un objeto existente
necesitamos apoyarnos en una consulta o procedimiento almacenado que devuelva la
referencia a dicho objeto. Antes habiamos mostrado un pequefio ejemplo en el que
los pedidos tenfan una referencia a una tabla de objetos clientes. Supongamos que en
nuestra aplicacion, al introducir un pedido, el usuario selecciona un cliente mediante
una ventana emergente o algin mecanismo similar. Para asignar la referencia puede
utilizarse el siguiente codigo:

std::auto_ptr<TQuery> query(new TQuery(NULL));

quer y- >Dat abaseNane = t bPedi dos- >Dat abaseNane;
query->SQ.->Add("select ref(Ci) fromCientes i ");
query->SQ.- >Add("where Ci.Nonbre = " + tbCientesNonbre->Val ue);

quer y- >Cpen() ;
// Esta es |a asignaci 6n deseada
t bPedi dod i ent e- >Assi gn(query->Fi el ds->Fi el ds[0]);

Informacién sobre campos

C++ Builder hace distincion entre la informacion sobre los campos fisicos de una
tabla y los componentes de acceso a los mismos. La informacién sobre campos se
encuentra en la propiedad Fie/dDefs, y puede utilizarse, ademas, para la creacion di-
namica de tablas. Esta propiedad pertenece a la clase TFieldDefs, que es basicamente
una lista de objetos de tipo TFieldDef. Las propiedades principales de esta clase son
Connt, que es la cantidad de campos, e I#ezs, que es una propiedad vectorial para
obtener cada definicién individual. En TFieldDefs tenemos el método Update, que lee
la lista de definiciones de campos del conjunto de datos, incluso si éste se encuentra
cerrado:

std::auto_ptr<TTabl e> tabl e(new TTabl e(NULL));
t abl e- >Dat abaseNane = " BCDEMOS";

t abl e- >Tabl eNanme = "enpl oyee. db";

/1 Leer |as definiciones de canpos

t abl e- >Fi el dDef s- >Updat e();

/1

Una vez que tenemos la lista de definiciones en memoria, podemos acceder a cada
definicién por medio de la propiedad IZems. Estas son las propiedades principales de
la clase TFzeldDef, a la cual pertenecen los elementos individuales de la coleccion:

Propiedad Significado

Name El nombre del campo

DataType El tipo del campo

Size Tamafio del campo, si es aplicable
Required ¢Admite valores nulos?

FieldClass Referencia a la clase correspondiente derivada de THie/d

Acceso a campos 269

El siguiente método coloca en una lista de cadenas, que puede ser la de un T1LiszBox
o un TMemo, 1a definicién de los campos de una tabla, en formato parecido al de

SQL:

char* DataTypeStr[] = {"Unknown", "VarChar", "Smallint",

"Word", "Bool ean", "Float", "Currency", "BCD', "Date",

"I nteger",
"Ti me",

"DateTi me", "Bytes", "VarBytes", "Autolnc", "Blob", "Mnmp",
"Graphic", "FntMenmp", "ParadoxO e", "DBased e", "TypedBinary",
"Cursor", "FixedChar", "WdeString", "Largeint", "ADT", "Array",

"Reference", "DataSet"};

void __fastcall LeerDefinicion(const AnsiString ADB,
const Ansi String ATable, TStrings *Lista)
{
std::auto_ptr<TTabl e> tabl e(new TTabl e(NULL));
t abl e- >Dat abaseNane = ADB;
t abl e- >Tabl eNane = ATabl e;
t abl e- >Fi el dDef s- >Updat e();
Li sta->C ear();
Li sta->Add("create table " + ATable + "(");
for (int i =0; i < table->FieldDefs->Count; i++)
{
TFi el dDef *fd = tabl e->Fi el dDefs->Itens[i];
Ansi String S =" " + fd->Name + " " +
Dat aTypeSt r [f d- >Dat aType] ;
if (fd->Size !'=0)
S=S+ "(" +IntToStr(fd->Size) + ")";
if (fd->Required)
AppendStr (S, " not null");
if (i < table->FieldDefs->Count - 1)
AppendStr (S, ",");
Li st a- >Add(S);
}
Li sta->Add(")");
}

Este procedimiento puede llamarse posteriormente del siguiente modo:

void _ fastcall TFormil:: Mstrarlnfolick(TOoject *Sender)

Leer Defi ni ci on(" BCDEMOS", "EMPLOYEE", ListBox1->|tens)

Creacion de tablas

Aunque personalmente prefiero crear tablas mediante instrucciones SQL, es posible
utilizar propiedades y métodos del componente TTable para esta operacion. La razén
de mi preferencia es que la VCL no ofrece mecanismos para la creacion directa de

restricciones de rango, de integridad referencial y valores por omision para columnas;

>

para esto, tenemos que utilizar llamadas directas al BDE, si tenemos que tratar con

tablas Paradox, o utilizar SQL en las bases de datos que lo permiten.

270 La Cara Oculta de C++ Builder

De cualquier forma, las tablas simples se crean facilmente, y la clave la tienen las
propiedades FieldDefs e IndexDefs; esta tltima propiedad se estudiara con mas pro-
fundidad en el capitulo sobre indices. La idea es llenar la propiedad Fie/dDefs me-
diante llamadas al método Add, y llamar al final al método Createlable. Por ejemplo:

void _ fastcall TForml:: CrearTabl a()

{
std::auto_ptr<TTabl e> tabl e(new TTabl e(NULL));
t abl e- >Dat abaseNane = " BCDEMOS';
t abl e- >Tabl eNanme = " Wi skeys";
t abl e- >Tabl eType = tt Paradox;
t abl e- >Fi el dDef s- >Add(" Cddi go", ftAutolnc, 0, False);
t abl e- >Fi el dDef s- >Add("Marca", ftString, 20, True);
t abl e- >Fi el dDef s- >Add("Preci 0", ftCurrency, 0, True);
t abl e- >Fi el dDef s- >Add(" Puntuaci 6n", ftSmalllInt, O, False);
t abl e->Creat eTabl e();

}

El alias que asociamos a DatabaseName determina el formato de la tabla. Si el alias es
estandar, tenemos que utilizar la propiedad TablkType para diferenciar las tablas Para-
dox de las tablas dBase.

Sin embargo, nos falta saber como crear indices y claves primarias utilizando esta
técnica. Necesitamos manejar la propiedad IndexDefs, que es en muchos sentidos
similar a Fie/dDefs. En el capitulo sobre indices explicaremos el uso de dicha pro-
piedad. Por ahora, adelantaremos la instruccion necesaria para crear un indice prima-
rio para la tabla anterior, que debe afiadirse antes de la ejecucion de CreateTable:

...
t abl e- >l ndexDef s- >Add("", "Cddi go", TIndexOptions()<<ixPrimary);
/1

Hasta C++ Builder 3 las definiciones de campos no eran visibles en tiempo de dise-
fio, pero la version 4 ha movido la declaracion de la propiedad FieldDefs a la seccion
published. De esta forma, cuando queremos crear una tabla en tiempo de ejecucién
podemos ahorrarnos las llamadas al método Add de FieldDefs, pues esta propiedad ya
viene configurada desde el tiempo de disefio. Hay dos formas de rellenar FieldDefs:
entrar a saco en el editor de la propiedad, o leer las definiciones desde una tabla
existente. Para esto ultimo, ejecute el comando Update table definition, desde el menu
de contexto de la tabla, que adicionalmente asigna True a su propiedad StoreDefs.

C++ Builder 4 afiade una propiedad ChildDefs a los objetos de clase TTe/dDef,
para tener en cuenta a los campos ADT de Oracle 8.

Y como todo lo que empieza tiene que acabar, es bueno saber como eliminar y re-
nombrar tablas. El método DeleteTable permite borrar una tabla. La tabla debe estar
cerrada, y deberan estar asignadas las propiedades que especifican el nombre del

Acceso a campos 271

alias, el de la tabla, y el tipo de tabla, de ser necesario. Otro método relacionado es
RenameTable:

void __fastcall TTabl e:: RenaneTabl e(const Ansi String NuevoNonbre);

Este método solamente puede utilizarse con tablas Paradox y dBase, y permite re-
nombrar en una sola operacién todos los ficheros asociados a la tabla: el principal,
los indices, los de campos memos, etc.

Las técnicas de creacion de tablas mediante la VCL no resuelven un problema
fundamental: la creacién de restricciones, principalmente las de integridad refe-
rencial, y de valores por omisioén. Esta carencia no es grave en el caso de los sis-
temas SQL, pues la forma preferida de crear tablas en estos sistemas es mediante
instrucciones SQL. Pero si es un problema para Paradox y dBase. Légicamente,
el BDE permite este tipo de operaciones mediante llamadas al API de bajo nivel,
pero estas son demasiado complicadas para analizatlas aqui. En el CD que
acompafia al libro he incluido un componente que sirve para este proposito. De
todos modos, soy partidario de evitar la creacién dinamica de tablas en la medida
de lo posible.

Capitulo

12

Validaciones y el Diccionario de
Datos

N EL CAPITULO ANTERIOR HEMOS ESTUDIADO LA estructura de los compo-

nentes de campos y las propiedades relacionadas con la visualizacién del

contenido de los mismos. La otra cara de la moneda consiste en la validacion
del contenido de los campos durante la edicién. Necesitamos también estudiar la
herramienta de ayuda al desarrollo conocida como Diccionario de Datos, que nos
permitird acelerar la configuracién de las propiedades de los objetos de acceso a
campos.

Validacioén a nivel de campos

Los componentes de acceso a campos ofrecen dos eventos que se disparan durante
el proceso de asignacion de valores: Onl alidate y OnChange. El segundo se dispara
cuando cambia el contenido del campo, y puede utilizarse para coordinar actualiza-
ciones entre columnas. El mas usado, sin embargo, es Ozl alidate, que se emplea para
verificar que los valores asignhados a un campo sean correctos.

¢Cuando exactamente se dispara este evento? La respuesta es importante: no debe
importarnos cuando. En realidad, el evento se dispara cuando se va a transferir la
informacion del campo al buffer del registro activo. Pero esta operacion se lleva a cabo
en unas cuantas situaciones diferentes, y es dificil rastrear todos estos casos. No hay
que preocuparse de este asunto, pues la VCL se encarga de disparar el evento en el
momento adecuado. Por el contrario, debemos estar preparados para dar la respuesta
adecuada cuando el hecho suceda. Cuando el sabio sefiala a la Luna, el tonto sola-
mente ve el dedo.

Sin embargo, es bueno aclarar que Onl alidate solamente se ejecuta cuando se inten-
tan actualizaciones. Si especificamos una condicioén de validacién sobre una tabla, y
ciertos registros ya existentes violan la condicion, C++ Builder no protestard al vi-
sualizar los campos. Pero si intentamos crear nuevos registros con valores incorrec-
tos, o modificar alguno de los registros incorrectos, se sefialara el error.

274 La Cara Oculta de C++ Builder

El siguiente método, programado como respuesta a un evento Onl alidate, verifica
que un nombre propio debe contener solamente caracteres alfabéticos (no somos
robots):

void _ fastcall TnodDatos:: VerificarNonbrePropio(TFi el d *Sender)

{
Ansi String S = Sender->AsString;
for (int i = S.Length(); i >0; i--)
if (S[i] !'=" "' && !'IsCharAlpha(S[i]))
Dat abaseError (" Caracter no pernitido en nonbre propio", 0);
}

Este manejador puede ser compartido por varios componentes de acceso a campos,
como pueden ser el campo del nombre y el del apellido. Es por esto que se extrae el
valor del campo del parametro Sender. Si falla la verificacion, la forma de impedir el
cambio es interrumpir la operacién elevando una excepcion; en caso contratio, no se
hace nada especial. Para lanzar la excepcion he utilizado la funcion DatabaseError. La
llamada a esta funcion es equivalente a la siguiente instruccion:

t hr ow EDat abaseError("Caréacter no permtido en nonbre propio", 0);

El problema de utilizar throw directamente es que se consume mas c6digo, pues
también hay que crear el objeto de excepcién en linea. La excepcion EDatabaseError,
por convenio, se utiliza para sefialar los errores de bases de datos producidos por el
usuario o por la VCL, no por el BDE.

Propiedades de validacion

La intercepcion del evento Onl/alidate es la forma mas general de verificar el conte-
nido de un campo. Pero la mayor parte de las validaciones pueden efectuarse modifi-
cando valores de propiedades. Por ejemplo, para comprobar que a una columna no
se le asigne un valor nulo se emplea la propiedad Reguired del campo correspon-
diente. Si el campo es numérico y queremos limitar el rango de valores aceptables,
podemos utilizar las propiedades Minl alue y Max1 alne. En el caso de los campos
alfanuméricos, el formato de la cadena se puede limitar mediante la propiedad Edir-
Mastk, que hemos mencionado anteriormente.

He dejado para mas adelante, en este mismo capitulo, el uso de las restricciones
(constraints) y su configuracién mediante el Diccionario de Datos.

Validaciones y el Diccionario de Datos 275

El Diccionario de Datos

El Diccionario de Datos es una ayuda para el disefio que se administra desde la he-
rramienta Database Explorer. E1 Diccionario nos ayuda a:

Definir conjuntos de propiedades o conjuntos de atributos (attribute sets), que pueden
después asociarse manual o automaticamente a los componentes de acceso a
campos que se crean en C++ Builder. Por ejemplo, si nuestra aplicacion trabaja
con varios campos de porcentajes, puede sernos util definir que los campos de
este tipo se muestren con la propiedad DisplayFormat igual a "%#0", y que sus va-
lores oscilen entre 0 y 100.

Propagar a las aplicaciones clientes restricciones establecidas en el servidor, ya
sea a nivel de campos o de tablas, valores por omision, definiciones de dominios,
etcétera.

Organizar de forma centralizada los criterios de formato y validacién entre va-
rios programadores de un mismo equipo, y de una aplicaciéon a otra.

5 Explorer
Object Dictionary Edit Yiew Options Help

B ek
| Dictianany: Barland Data Dictianar: Defiriton of Diélares
Databases Dietionary | Definton |
= P Diclionary TFieldClass T
Databases TConirolCkss
= Attribute Sets Alignment taRightJustify
Custo DisplayL abel
0 [Délares Displayiwidth
- EmpNo FleadOnly
- OrdeNa FRequied
- [DrdeiNas Visible
- PartMo Translterate
- Percent Edit Mask
- Tafate DispiayFomiat 40,00
FEl USPhone EdiFamat
[l Yendoio MirValue
il ZinCode Man/alue
Cunency Fale
Frecision
Display/alues
BlobType
a [| Bassdon <none>

C++ Builder crea al instalarse un Diccionario de Datos por omision, que se alma-
cena como una tabla Paradox, cuyo nombre por omision es bdesdd y que reside en el
alias predefinido DefaultDD. Recuerde que esta herramienta es una utilidad que fun-
ciona en tiempo de disefio, de modo que la tabla anterior no tiene (no debe, mas bien)
que estar presente junto a nuestro producto final.

Ahora bien, podemos trabajar con otro diccionatio, que puede estar almacenado en
cualquier otro formato de los reconocidos por el BDE. Este diccionario puede in-
cluso almacenarse en un servidor SQL y ser compartido por todos los miembros de
un equipo de programacién. Mediante el comando de ment Dictionary | New uno de
los programadores del equipo, digamos que usted, crea una nueva tabla para un
nuevo diccionario, indicando el alias donde residira, el nombre de la tabla y una des-
cripcién para el diccionario:

276 La Cara Oculta de C++ Builder

Create a new Dictionary

Dictionary N ame: IEI Diccionario de mi Equipa
Datsbase: [CASSANDRA =l
Table Name: [EDESDD

Description: |Eontiene log atributos de Cassandra, la aplica

ak. I Cancel | Help |

Después, mediante el comando de mend Dictionary | Register cualquier miembro del
equipo, digamos que yo, puede registrar ese diccionario desde o#7z maquina, para
utilizarlo con s# C++ Builder. También es atil el comando Dictionary | Select, para
activar alguno de los diccionarios registrados en determinado ordenador.

Conjuntos de atributos

Son dos los objetos almacenados en un Diccionario de Datos: los conjuntos de atri-
butos e informacién sobre bases de datos completas. Un conjunto de atributos indica
valores para propiedades comunes de campos. Existen dos formas de crear esta defi-
niciéon: guardando los atributos asociados a un campo determinado, o introducién-
dolos directamente en el Diccionario de Datos. Para salvar las modificaciones reali-
zadas a un campo desde C++ Builder, hay que seleccionarlo en el Editor de Campos,
pulsar el botén derecho del ratén y ejecutar el comando Save attributes as, que nos
pedird un nombre para el conjunto de atributos.

La otra via es crear directamente el conjunto de atributos en el propio Diccionario.
Digamos que nuestra aplicacion debe trabajar con precios en ddlares, mientras que
nuestra moneda local es diferente. Nos situamos entonces sobre el nodo A##ribute sets
y ejecutamos Obyject| New. Renombramos el nuevo nodo como Do/lar, y modificamos
las siguientes propiedades, en el panel de la derecha:

Propiedad Valor
Currency False
DisplayFormat SHO0,.00

¢Qué se puede hacer con este conjunto de atributos, una vez creado? Asociatlo a
campos, por supuesto. Nuestra hipotética aplicacion maneja una tabla .Ar#zculos con
un campo PrecioDolares, que ha sido definido con el tipo money de Paradox o de MS
SQL Server. C++ Builder, por omision, trae un campo de tipo TCurrencyField, cuya
propiedad Currency aparece como True. El resultado: nuestros dolares se transforman
magicamente en pesetas (y pierden todo su valor). Pero seleccionamos el ment local
del campo, y ejecutamos el comando Associate attributes, seleccionando el conjunto de
atributos Do/lar definido hace poco. Entonces C++ Builder lee los valores de las

Validaciones y el Diccionario de Datos 277

propiedades Currency y DisplayFormat desde el Diccionario de Datos y los copia en las
propiedades del campo deseado. Y todo vuelve a la normalidad.

Dos de los atributos mas importantes que se pueden definir en el Diccionario son
TFieldClass y TControlClass. Mediante el primero podemos establecer explicitamente
qué tipo de objeto de acceso queremos asociar a determinado campo; esto es util
sobre todo con campos de tipo BLOB. TContro/Class, por su parte, determina qué
tipo de control debe crearse cuando se arrastra y suelta un componente de campo
sobre un formulario en tiempo de disefio.

Si un conjunto de atributos se modifica después de haber sido asociado a un
campo, los cambios no se propagaran automaticamente a las propiedades de di-
cho campo. Habra entonces que ejecutar el comando del ment local Retrieve at-
tributes.

Importando bases de datos

Pero si nos limitamos a las técnicas descritas en la seccién anterior, tendremos que
configurar atributos campo por campo. Una alternativa consiste en izportar el es-
quema de la base de datos dentro del Diccionario, mediante el comando de menud
Dictionary | Import from database. Aparece un cuadro de didlogo para que seleccionemos
uno de los alias disponibles; nos debemos armar de paciencia, porque la operacion
puede tardar un poco.

Muchas aplicaciones trabajan con un alias de sesién, definido mediante un com-
ponente TDatabase que se sitia dentro de un médulo de datos, en vez de utilizar
alias persistentes. Si ejecutamos Database Explorer como una aplicacion inde-
pendiente no podremos importar esa base de datos, al no estar disponible el alias
en cuestion. La solucién es invocar al Database Explorer desde el Entorno de
Desarrollo, con la aplicacién cargada y la base de datos conectada. Todos los alias
de sesion activos en la aplicacion podran utilizarse entonces desde esta utilidad.

Cuando ha finalizado la importacién, aparece un nuevo nodo para nuestra base de
datos bajo el nodo Databases. El nuevo nodo contiene todas las tablas y los campos
existentes en la base de datos, y a cada campo se le asocia automaticamente un con-
junto de atributos. Por omisién, el Diccionario crea un conjunto de atributos por
cada campo que tenga propiedades dignas de mencién: una restriccion (espere a la
préxima seccién), un valor por omision, etc. Esto es demasiado, por supuesto. Des-
pués de la importacién, debemos sacar factor comun de los conjuntos de atributos
similares y asociarlos adecuadamente a los campos. La labor se facilita en InterBase si

278 La Cara Oculta de C++ Builder

hemos creado dominios, como explicamos en el capitulo 9. Supongamos que defini-
mos el dominio Do/lar en la base de datos mediante la siguiente instruccion:

create domain Dollar as
nureric(15, 2) default O not null;

A partir de esta definicién podremos definir columnas de tablas cuyo tipo de datos
sea Dollar. Entonces el Diccionario de Datos, al importar la base de datos, creara
automaticamente un conjunto de atributos denominado Dolar, y asociara correcta-
mente los campos que pertenecen a ese conjunto.

¢Para qué todo este trabajo? Ahora, cuando traigamos una tabla a la aplicacion y
utilicemos el comando Add fields para crear objetos persistentes de campos, C++
Builder podra asignar de forma automatica los conjuntos de atributos a estos cam-

pos.

Los tipos definidos por el usuatio de MS SQL Setver también son utilizados por
el Diccionario para identificar conjuntos de atributos durante la importacion de
tablas.

Evaluando restricciones en el cliente

Los sistemas de bases de datos cliente/servidor, y algunas bases de datos de esctito-
rio, permiten definir restricciones en las tablas que, normalmente, son verificadas por
el propio servidor de datos. Por ejemplo, que el nombre del cliente no puede estar
vacio, que la fecha de venta debe ser igual o anterior a la fecha de envio de un pedido,
que un descuento debe ser mayor que cero, pero menor que cien...

Un dfa de verano, un usuario de nuestra aplicacion (jah, los usuarios!) se enfrasca en
rellenar un pedido, y vende un raro disco de Hendrix con un descuento del 125%. Al
enviar los datos al servidor, éste detecta el error y notifica a la aplicacion acerca del
mismo. Un registro paso a través de la red, un error nos fue devuelto; al parecer,
poca cosa. Pero multiplique este trafico por cincuenta puestos de venta, y lo poco se
convierte en mucho. Ademas, ¢por qué hacer esperar tanto al usuario para pregun-
tatle si es tonto, o silo ha hecho a posta? Este tipo de validacién sencilla puede ser
ejecutada perfectamente por nuestra aplicacion, pues solamente afecta a columnas
del registro activo. Otra cosa muy diferente setfa, claro estd, intentar verificar por
duplicado en el cliente una restriccion de unicidad.

En C++ Builder 3 se introdujeron cuatro nuevas propiedades, de tipo AnsiString,
para los componentes de acceso a campos:

Validaciones y el Diccionario de Datos 279

Propiedad Significado

DefanltExpression Valor por omisiéon del campo

CustomConstraint Restricciones importadas desde el servidor
TmportedConstraint Restricciones adicionales impuestas en el cliente

ConstraintErrorMessage Mensaje de error cuando se violan restricciones

DefanltExpression es una expresion SQL que sirve para inicializar un campo durante
las inserciones. No puede contener nombres de campos. Antes de la version 3, la
inicializacién de los valores de los campos debia realizarse programando una res-
puesta al evento OnNewRecord del conjunto de datos al que pertenecfa. Si un campo
debe inicializarse con un valor constante, es mas comodo utilizar DefaultExcpression.

Hay un pequefio bug en la VCL: cuando se mezclan inicializaciones en el evento
OnNewRecord con valores en las propiedades DefanitExpression, se producen com-
portamientos anémalos. Evite las mezclas, que no son buenas para la salud.

Podemos asignar directamente un valor constante en DefaultExpression ... peto si he-
mos asociado un conjunto de atributos al campo, C++ Builder puede leer automati-
camente el valor por omision asociado y asignarlo. Este conjunto de atributos puede
haber sido configurado de forma manual, pero también puede haberse creado al
importar la base de datos dentro del Diccionario. En este tltimo caso, el Diccionatio
de Datos ha actuado como eslabén intermedio en la propagacion de reglas de em-
presa desde el servidor al cliente:

APLICACION DICCIONARIO BASE DE DATOS
DE DATOS

Lo mismo se aplica a la propiedad ImportedConstraint. Esta propiedad recibe su valor
desde el Diccionario de Datos, y debe contener una expresiéon SQL evaluable en
SQL Local; léase, en el dialecto de Paradox y dBase. ¢Por qué permitir que esta pro-
piedad pueda modificarse en tiempo de disefio? Precisamente porque la expresion
importada puede ser incorrecta en el dialecto local. En ese caso, podemos eliminar
toda o parte de la expresion. Normalmente, el Diccionatio de Datos extrae las res-
tricciones para los conjuntos de atributos de las clausulas check de SQL definidas a
nivel de columna.

Si, por el contrario, lo que se desea es afiadir nuevas restricciones, debemos asignarlas
en la propiedad CustomConstraint. Se puede suministrar cualquier expresion logica de
SQL Local, y para representar el valor actual del campo hay que utilizar un identifi-

280 La Cara Oculta de C++ Builder

cador cualquiera que no sea utilizado por SQL. Por ejemplo, esta puede ser una ex-
presion aplicada sobre un campo de tipo cadena de caracteres:

X

and x not like '% %

Esta expresion verifica que el campo no esté vacio y que no contenga espacios en

blanco.

Cuando se viola cualquiera de las restricciones anteriores, ImportedConstraint 6 Cus-
tomConstraint, por omision se muestra una excepcion con el mensaje “Record or field
constraint failed”, mas la expresiéon que ha fallado en la segunda linea del mensaje. Si
queremos mostrar un mensaje personalizado, debemos asignatlo a la propiedad
ConstraintErrorMessage.

Sin embargo, no todas las restricciones check se definen a nivel de columna, sino
que algunas se crean a nivel de tabla, casi siempre cuando involucran a dos o mas
campos a la vez. Por ejemplo:

create table Pedidos (

)

/* Restriccién a nivel de columa */
For maPago var char (10)
check (FormaPago in ('EFECTIVO, 'TARJETA)),
/* Restriccién a nivel de tabla */
FechaVenta date not null,
FechaEnvi o dat e,
check (FechaVenta <= FechaEnvi o),
[* x)

Las restricciones a nivel de tabla se propagan a una propiedad de TTablk denominada
Constraints, que contiene tanto las restricciones importadas como alguna restriccion
personalizada afiadida por el programador.

A+ ¥ Kk

0 - ShipD ate

La imagen anterior muestra el editor de la propiedad Constraints de C++ Builder 4. El
botén de la derecha permite leer las restricciones encontradas durante la importacion
de la base de datos al Diccionario; esta vez, C++ Builder no lo hace por si mismo.
Mediante el botén de la derecha se afiaden restricciones personalizadas a la tabla.
Cada restriccion a nivel de tabla, venga de donde venga, tiene su propia propiedad
ConstraintErrorMessage.

Capitulo

13

Controles de datos y fuentes de
datos

STE CAPITULO TRATA ACERCA DE LOS CONTROLES que ofrece la VCL para

visualizar y editar informacién procedente de bases de datos, la filosofia ge-

neral en que se apoyan y las particularidades de cada uno de ellos. Es el mo-
mento de ampliar, ademds, nuestros conocimientos acerca de un componente esen-
cial para la sincronizacién de estos controles, el componente TDataSource. Veremos
cémo un control “normal” puede convertirse, gracias a una sencilla técnica basada en
este componente, en un flamante control de acceso a datos. Por ultimo, estudiaremos
cémo manejar campos BLOB, que pueden contener grandes volimenes de informa-
cién, dejando su interpretacion a nuestro cargo.

Controles data-aware

Los controles de bases de datos son conocidos en la jerga de C++ Builder como
controles data-aware. Estos controles son, generalmente, versiones especializadas de
controles “normales”. Por ejemplo, TDBMeno es una version orientada a bases de
datos del conocido TMemo. Al tener por separado los controles de bases de datos y
los controles tradicionales, C++ Builder evita que una aplicacién que no haga uso de
bases de datos!? tenga que cargar con todo el c6digo necesario para estas operacio-
nes. No sucede asi con Visual Basic, lenguaje en que todos los controles pueden po-
tencialmente conectatrse a una base de datos.

Component Palette

Standardl Additianall Win32| Susteml Intemetl DataAccess Data Controls |Midas |L|_'

b EmARduaarodEihe

Los controles de acceso a datos de C++ Builder se pueden dividir en dos grandes
grupos:

13 Existen.

282 La Cara Oculta de C++ Builder

Controles asociados a campos
Controles asociados a conjuntos de datos

Los controles asociados a campos visualizan y editan una columna particular de una
tabla. Los componentes TDBEdit (cuadros de edicién) y TDBlmage (imagenes alma-
cenadas en campos graficos) pertenecen a este tipo de controles. Los controles aso-
ciados a conjuntos de datos, en cambio, trabajan con la tabla o consulta como un
todo. Las rejillas de datos y las barras de navegacion son los ejemplos mas conocidos
de este segundo grupo. Todos los controles de acceso a datos orientados a campos
tienen un par de propiedades para indicar con qué datos trabajan: DataSource y Data-
Field, estas propiedades pueden utilizarse en tiempo de disefio. Por el contrario, los
controles orientados al conjunto de datos solamente disponen de la propiedad Data-
Source. La conexion con la fuente de datos es fundamental, pues es este componente
quien notifica al control de datos de cualquier alteracién en la informacién que debe
visualizar.

Casi todos los controles de datos permiten, de una forma u otra, la edicion de su
contenido. En el capitulo 17 sobre conjuntos de datos explicamos que hace falta que
la tabla esté en uno de los modos dsEdit 6 dsInsert para poder modificar el contenido
de un campo. Pues bien, todos los controles de datos son capaces de colocar a la
tabla asociada en este modo, de forma automatica, cuando se realizan modificaciones
en su interior. Este comportamiento se puede modificar con la propiedad AutoE dit
del data source al que se conectan. Cada control, ademas, dispone de una propiedad
ReadOnly, que permite utilizar el control Gnicamente para visualizacion.

Actualmente, los controles de datos de C++ Builder son los siguientes:

Nombre de la clase Explicacion

Controles orientados a campos
TDBText Textos no modificables (no consumen recursos)
TDBEdit Cuadros de edicion
TDBMemo Textos sin formato con maltiples lineas
TDBlmage Imagenes BMP y WMF
TDBListBox Cuadros de lista (contenido fijo)
TDBComboBox Cuadros de combinacién (contenido fijo)
TDBCheckBox Casillas de verificacion (dos estados)
TDBRadioGroup Grupos de botones (varios valores fijos)
TDBILookuplistBox Valores extraidos desde otra tabla asociada
TDBI ookupConboBox Valores extraidos desde otra tabla asociada
TDBRichEdit Textos en formato RTF

Controles de datos y fuentes de datos 283

Nombre de la clase Explicacion

Controles orientados a conjuntos de datos
TDBGrid Rejillas de datos para la exploracion
TDBNavigator Control de navegacion y estado
TDBC#IGrid Rejilla que permite incluir controles

En este capitulo nos ocuparemos principalmente de los controles orientados a cam-
pos. El resto de los controles seran estudiados en el siguiente capitulo.

He omitido intencionalmente el control TDBChart de la lista anterior, por traba-
jar con un sistema distinto a los demas. Este componente se estudiara mas ade-
lante.

Los enlaces de datos

Segun lo explicado, todos los controles de datos deben ser capaces de reconocer y
participar en el juego de las notificaciones, y esto supone la existencia de un montén
de cédigo comun a todos ellos. Pero, si observamos el diagrama de herencia de la
VCL, notaremos que no existe un ancestro compartido propio para los controles
data-aware. ;Qué solucion se ha utilizado en la VCL para evitar la duplicacién de c6-

digo?

La respuesta la tiene un objeto generalmente ignorado por el programador de C++
Builder: TDatal ink, y su descendiente TFieldDatal ink. Este desconocimiento es
comprensible, pues no es un componente visual, y sélo es imprescindible para el
desarrollador de componentes. Cada control de datos crea durante su inicializacién
un componente interno perteneciente a una de estas clases. Es este componente
interno el que se conecta a la fuente de datos, y es también a éste a quien la fuente de
datos envia las notificaciones acerca del movimiento y modificaciones que ocurren
en el conjunto de datos subyacente. Todo el tratamiento de las notificaciones se pro-
duce entonces, al menos de forma inicial, en el data /ink. Esta técnica es conocida
como delegacidn, y nos evita el uso de la herencia mualtiple, recurso no soportado por la
VCL hasta el momento.

El siguiente esquema muestra la relacién entre los componentes de acceso y edicion
de datos:

284 La Cara Oculta de C++ Builder

Datasource TEdit I

Data link

TComboBox

Data link

TDBGrid

\ Data link

Creacion de controles de datos

Podemos crear controles de datos en un formulario trayendo uno a uno los compo-
nentes deseados desde la Paleta e inicializando sus propiedades DataSource y Data-
Field. Esta es una tarea tediosa. Muchos programadores utilizaban en las primeras
versiones de C++ Builder el Experto de Datos (Database form experi) para crear un
formulario con los controles deseados, y luego modificar este disefio inicial. Este
experto, sin embargo, tiene un par de limitaciones importantes: en primer lugar, tra-
baja con un tamano fijo de la ventana, lo cual nos obliga a realizar desplazamientos
cuando no hay espacio para los controles, aun cuando aumentando el tamafio de la
ventana se pudiera resolver el problema. El otro inconveniente es que siempre genera
un nuevo componente T Table 6 TQuery, no permitiendo utilizar componentes exis-
tentes de estos tipos. Esto es un problema, pues lo usual es definir primero los con-
juntos de datos en un médulo aparte, para poder programar reglas de empresa de
forma centralizada.

Podemos arrastrar campos desde el Editor de Campos sobre un formulario. Cuando
lo hacemos, se crea automaticamente un control de datos asociado al campo. Junto
con el control, se crea también una etiqueta, de clase TLabe/, con el titulo extraido de
la propiedad Displayl_abel del campo. Recuerde que esta propiedad coincide inicial-
mente con el nombre del campo, de modo que si las columnas de sus tablas tienen
nombre cripticos como NowCli, es conveniente modificar primero las etiquetas de
visualizacion en los campos antes de crear los controles. Adicionalmente, C++ Buil-
der asigna a la propiedad FocusContro/ de los componentes TLabe/ creados el puntero
al control asociado. De este modo, si la etiqueta tiene un caracter subrayado, pode-
mos hacer uso de este caricter como abreviatura para la seleccién del control.

En cuanto al tipo de control creado, C++ Builder tiene sus reglas por omisién: casi
siempre se crea un TDBEd:z. Si el campo es un campo de busqueda, crea un compo-
nente TDBI ookupComboBox. Si es un memo o un campo grafico, se crea un control
TDBMemo o un TDBImage. Si el campo es 1égico, se crea un TDBCheckBox. Estas

Controles de datos y fuentes de datos 285

reglas implicitas, sin embargo, pueden modificarse por medio del Diccionario de
Datos. Si el campo que se arrastra tiene definido un conjunto de atributos, el control
a crear se determina por el valor almacenado en la propiedad TContro/Class del con-
junto de atributos en el Diccionario de Datos.

Los cuadros de edicidon

La forma mas general de editar un campo simple es utilizar un control TDBEdit.
Este componente puede utilizarse con campos de cadenas de caracteres, numéricos,
de fecha y de cualquier tipo en general que permita conversiones desde y hacia cade-
nas de caracteres. Los cuadros de edicién con conexion a bases de datos se derivan
de la clase TCustomMaskEdit. Esto es asi para poder utilizar la propiedad EditMask,
perteneciente a la clase TFeld, durante la ediciéon de un campo. Sin embargo, Edit-
Mask es una propiedad protegida de TDBEdi#, el motivo es permitir que la mascara
de edicién se asigne directamente desde el campo asociado, dentro de la VCL, y que
el programador no pueda interferir en esta asignacion. Si el campo tiene una mascara
de edicién definida, la propiedad IsMasked del cuadro de edicién se vuelve verdadera.

Input Mask Editor [%]

Inpuit M ask: Sample Masks:
|\EIEUEIEVI]EI:‘I :_

Character for Blanks: _

¥ Save Literal Characters

Test Input:
|/

Masks...

Windows no permite definir alineacién para el texto de un cuadro de edicién, a no
ser que el estilo del cuadro sea multilineas. Si nos fijamos un poco, el control TEd:t
estandar no tiene una propiedad A/gnment. Sin embargo, es comdn mostrar los cam-
pos numéricos de una tabla justificados a la derecha. Es por eso que, en el cédigo
fuente de la VCL, se realiza un truco para permitir los distintos tipos de alineacion en
los componentes TDBEdJit. Es importante comprender que A/gnment solamente fun-
ciona durante la visualizacion, no durante la edicién. La alineacion se extrae de la
propiedad correspondiente del componente de acceso al campo.

Los eventos de este control que utilizaremos con mayor frecuencia son OnChange,
OnKeyPress, OnKeyDown y OnExit. OnChange se produce cada vez que el texto en el
control es modificado. Puede causar confusion el que los componentes de campos
tengan un evento también nombrado OnChange. Este Gltimo evento se dispara
cuando se modifica el contenido del campo, lo cual sucede cuando se realiza una
asignacion al componente de campo. Si el campo se esta editando en un TDBEdz,
esto sucede al abandonar el control, o al pulsar INTRO estando el control seleccio-

286 La Cara Oculta de C++ Builder

nado. En cambio, el evento OnChange del control de edicion se dispara cada vez que
se cambia algo en el control. El siguiente evento muestra como pasar al control si-
guiente cuando se alcanza la longitud maxima admitida por el editor. Este comporta-
miento era frecuente en programas realizados para MS-DOS:

void __fastcall TForml:: DBEdi t 1Change(TQbj ect *Sender)
if (Visible)
{

TDBEdit &edit = dynam c_cast <TDBEdi t & (* Sender) ;
if (edit.Text.Length() >= edit.MaxLength)
Sel ect Next (&edit, True, True);

Hasta la version 3, C++ Builder arrastr6 un pequefio problema en relaciéon con
los cuadros de edicién asociados a un campo numérico: la propiedad MaxLength
siempre se hacfa 0 cuando se crea el control. Aunque asignasemos algo a esta
propiedad en tiempo de diseflo, siempre se perdia en tiempo de ejecucién. En la
version 4 se ha corregido el error.

Editores de texto

Cuando el campo a editar contiene varias lineas de texto, debemos utilizar un com-
ponente TDBMenzo. Si queremos ademas que el texto tenga formato y permita el uso
de negritas, cursivas, diferentes colores y alineaciones podemos utilizar el compo-
nente TDBRichEdit.

TDBMemo esta limitado a un maximo de 32KB de texto, ademas de permitir un solo
tipo de letra y de alineacién para todo su contenido. Las siguientes propiedades han
sido heredadas del componente TMemo y determinan la apariencia y forma de inte-
raccién con el usuario:

Propiedad Significado

Alignment La alineacion del texto dentro del control.

Lines El contenido del control, como una lista de cadenas de caracteres.
ScrollBars Determina qué barras de desplazamiento se muestran.

WantTabs Si esta activa, el editor interpreta las tabulaciones como tales; en

caso contrario, sirven para seleccionar el préximo control.
WordWrap Las lineas pueden dividirse si sobrepasan el extremo derecho del
editor.

La propiedad AwutoDisplay es especifica de este tipo de controles. Como la carga y
visualizacion de un texto con multiples lineas puede consumir bastante tiempo, se

Controles de datos y fuentes de datos 287

puede asignar False a esta propiedad para que el control aparezca vacio al mover la
fila activa. Luego se puede cargar el contenido en el control pulsando INTRO sobre el
mismo, o llamando al método LoadMenzo.

El componente TDBRichEdit, por su parte, es similar a TDBMemno, excepto por la
mayor cantidad de eventos y las propiedades de formato.

Textos no editables

El tipo TLabel tiene un equivalente data-aware: el tipo TDBText. Mediante este com-
ponente, se puede mostrar informacién como textos no editables. Gracias a que este
control desciende por herencia de la clase TGraphicControl, desde el punto de vista de
Windows no es una ventana y no consume recursos. Si utilizamos un TDBEdjt con la
propiedad ReadOnly igual a True, consumiremos un handle de ventana. En compensa-
cién, con el TDBEJit podemos seleccionar texto y copiatlo al Portapapeles, cosa im-
posible de realizar con un TDBTexz.

Ademas de las propiedades usuales en los controles de bases de datos, DataSource y
Datakield, 1a otra propiedad interesante es AwtoSize, que indica si el ancho del control
se ajusta al tamafio del texto o si se muestra el texto en un area fija, truncandolo si la
sobrepasa.

Combos y listas con contenido fijo

Los componentes TDBComboBoxy TDBListBox son las versiones data-aware de
TComboBox 'y TListBox, respectivamente. Se utilizan, preferentemente, cuando hay un
numero bien determinado de valores que puede aceptar un campo, y queremos ayu-
dar al usuario para que no tenga que teclear el valor, sino que pueda seleccionarlo
con el ratén o el teclado. En ambos casos, la lista de valores predeterminados se
indica en la propiedad Ifems, de tipo TStrings.

De estos dos componentes, el cuadro de lista es el menos utilizado. No permite in-
troducir valores diferentes a los especificados; si el campo asociado del registro ac-
tivo tiene ya un valor no especificado, no se selecciona ninguna de las lineas. Tam-
poco permite busquedas incrementales sobre listas ordenadas. Si las opciones posi-
bles en el campo son pocas, la mayoria de los usuarios y programadores prefieren
utilizar el componente TDBRadioGroup, que estudiaremos en breve.

En cambio, TDBComboBox es mas flexible. En primer lugar, nos deja utilizar tres
estilos diferentes de interaccion mediante la propiedad S#/; en realidad son cinco
estilos, pero dos de ellos tienen que ver mas con la apariencia del control que con la
interfaz con el usuario:

288 La Cara Oculta de C++ Builder

Estilo Significado

esSimple La lista siempre esta desplegada. Se pueden teclear valores
que no se encuentran en la lista.

esDropDown La lista esta inicialmente recogida. Se pueden teclear valo-
res que no se encuentran en la lista.

esDropDownl ist La lista esta inicialmente recogida. No se pueden teclear
valores que no se encuentren en la lista.

esOwnerDrawFixed El contenido de la lista lo dibuja el programador. Lineas
de igual altura.

esOwnerDrawV ariable El contenido de la lista lo dibuja el programador. La altura
de las lineas la determina el programador.

Por otra parte, la propiedad Sored permite ordenar dinamicamente los elementos de
la lista desplegable de los combos. Los combos con el valor esDropDownl ist en la
propiedad S#/, y cuya propiedad Sorted es igual a True, permiten realizar busquedas
incrementales. Si, por ejemplo, un combo esta mostrando nombres de paises, al te-
clear la letra 4 nos situaremos en Abisinia, luego una N nos llevara hasta la Antirtida,
y asi en lo adelante. Si queremos iniciar la busqueda desde el principio, o sea, que la
N nos sitde sobre Nepal, podemos pulsar ESC 0 RETROCESO ... o esperar dos segun-
dos. Esto ultimo es curioso, pues la duracion de ese intervalo estd incrustada en el
cddigo de la VCL y no puede modificarse facilmente.

Cuando el estilo de un combo es csOwnerDrawFixed 6 esOwnerDraw ariable, es posible
dibujar el contenido de la lista desplegable; para los cuadros de lista, S#/ debe valer
bOwnerDrawFixed 6 lbOwnerDraw) ariable. St utilizamos alguno de estos estilos, tene-
mos que crear una respuesta al evento OnDrawltem y, si el estilo de dibujo es con
alturas variables, el evento OnMeasureltem. Estos eventos tienen los siguientes para-
metros:

void __fastcall TForml:: DBConmboBox1Dr awi t en{ TW nControl *Control,
int Index, TRect Rect, TOwnerDrawState State)
{

}

void _ fastcall TForml:: DBComboBox1Measurel t en(TWnControl *Control,
int Index, int &Altura)
{

}

Para ilustrar el uso de estos eventos, crearemos un combo que pueda seleccionar de
una lista de paises, con el detalle de que cada pais aparezca representado por su ban-
dera (o por lo que mas le apetezca dibujar). Vamos a inicializar el combo en el evento
de creacién de la ventana, y para complicar un poco el cédigo leeremos los mapas de
bits necesarios desde una tabla de paises:

Controles de datos y fuentes de datos 289

void _ _fastcall TForml:: FornCreate(TObj ect *Sender)

{
std::auto_ptr<TTabl e> tabl e(new TTabl e(NULL));
t abl e- >Dat abaseNane = "Prueba";
t abl e- >Tabl eNanme = "Pai ses. DB";
t abl e- >Open() ;
while (! table->Eof)
{
Graphics:: TBitmap *Bnp = new G aphi cs:: TBi t map;
try
Bnp- >Assi gn(t abl e- >Fi el dByNane(" Bandera"));
DBConboBox1- >1t ers- >Addhj ect (
t abl e- >Fi el dByNanme(" Pai s")->AsString, Bnp);
}
cat ch(Excepti on&)
del et e Bnp;
t hr ow,
}
t abl e- >Next () ;
}
}

El c6digo que dibuja el mapa de bits al lado del texto es el siguiente:

void __fastcall TForml:: DBConmboBox1Drawi t en{ TW nControl *Control,
int Index, TRect Rect, TOmnerDrawState State)

{
TDBConmboBox &c = dynami c_cast <TDBConmboBox&>(*Control);
int ih = c.ltenteight;
c. Canvas->Fi | | Rect (Rect) ;
c. Canvas- >St r et chDr am(
Bounds(Rect.Left + 2, Rect.Top, ih, ih),
(TBi t map*) (c. |1t ems->Qoj ect s[I ndex]));
Text Qut (Rect. Left + ih + 6, Rect.Top,
c.ltems->Strings[lndex]);
}

I__ Country combo [H[=] E3

Japan
Metherlands
LSa
France
Gemany
Italy

Congo

[N |

Una propiedad poco conocida de TDBComboBox, que éste hereda de TComboBox, es
DroppedDown, de tipo logico. DroppedDown es una propiedad de tiempo de ejecucion,
y permite saber si la lista estd desplegada o no. Pero también permite asignaciones,
para ocultar o desplegar la lista. Si el usuario quiere que la tecla + del teclado numé-
rico despliegue todos los combos de una ficha, puede asignar Trwe a la propiedad Key-
Preview del formulario y crear la siguiente respuesta al evento OnKeyDown:

290 La Cara Oculta de C++ Builder

void __fastcall TFormil:: For nKeyDown(TCbj ect *Sender;
Word &Key, TShiftState Shift)

if (Key == VK_ADD &&
dynam c_cast <TCust onConboBox*>(Acti veControl))
{

((TCust onConboBox*) Acti veControl)->DroppedDown = Tr ue;
Key = 0;

Combos y listas de busqueda

En cualquier disefio de bases de datos abundan los campos sobre los que se han
definido restricciones de integridad referencial. Estos campos hacen referencia a
valores almacenados como claves primarias de otras tablas. Pero casi siempre estos
enlaces se realizan mediante claves artificiales, como es el caso de los codigos. sQué
me importa a mi que la Coca-Cola sea el articulo de coédigo 4897 de mi base de datos
particular? Soy un enemigo declarado de los cédigos: en la mayoria de los casos se
utilizan para permitir relaciones mas eficientes entre tablas, por lo que deben ser
internos a la aplicacién. El usuario, en mi opinién, debe trabajar lo menos posible
con codigos. ¢Qué es preferible, dejar que el usuario teclee cuatro digitos, 4897, o
que teclee el prefijo del nombre del producto?

Por estas razones, cuando tenemos que editar un campo de este tipo es preferible
utilizar la clave verdadera a la clave artificial. En el caso del articulo, es mejor que el
usuario pueda seleccionar el nombre del articulo que obligarle a introducir un cédigo.
Esta traduccién, de cédigo a descripeion, puede efectuarse a la hora de visualizar
mediante los campos de busqueda, que ya hemos estudiado. Estos campos, no obs-
tante, son solo para lectura; si queremos editar el campo original, debemos utilizar
los controles TDBI ookuplistBoxy TDBILookupConboBox.

Las siguientes propiedades son comunes a las listas y combos de bisqueda, y deter-
minan el algoritmo de traduccion de cédigo a descripcion:

Propiedad Significado

DataSource La fuente de datos original. Es la que se modifica.
Datakield El campo original. Es el campo que contiene la referencia.
ListSource La fuente de datos a la que se hace referencia.

KReyField El campo al que se hace referencia.

ListField Los campos que se muestran como descripcion.

Cuando se arrastra un campo de busqueda desde el Editor de Campos hasta la supet-
ficie de un formulario, el componente creado es de tipo TDBLookupComboBox. En
este caso especial, solamente hace falta dar el nombre del campo de busqueda en la

Controles de datos y fuentes de datos 291

propiedad Datalield del combo o la rejilla, pues el resto del algoritmo de busqueda es
deducible a partir de las propiedades del campo base.

Los combos de busquedas funcionan con el estilo equivalente al de un TDBConzbo-
Box ordenado y con el estilo esDropDownlist. Esto quiere decir que no se pueden
introducir valores que no se encuentren en la tabla de referencia. Pero también signi-
fica que podemos utilizar las busquedas incrementales por teclado. Y esto es también
valido para los componentes TDBIookupl istBox.

Mas adelante, cuando estudiemos la comunicacion entre el BDE y las bases de
datos cliente/servidor, veremos que la busqueda incremental en combos de bus-
queda es una caracteristica 7#y peligrosa. La forma en que el BDE implementa
por omision las busquedas incrementales insensibles a mayusculas es un despilfa-
rro. ¢Una solucién? Utilice ventanas emergentes para la seleccion de valores, im-
plementando usted mismo el mecanismo de busqueda incremental, o disefie su
propio combo de busqueda. Recuerde que esta advertencia solamente vale para
bases de datos cliente/servidor.

Tanto para el combo como para las listas pueden especificarse varios campos en
ListField, en este caso, los nombres de campos se deben separar por puntos y comas:

DBLookupLi st Box1->Li stFi el d = "Nonbre; Apel | i dos";

Si son varios los campos a visualizar, en el cuadro de lista de TDBILookupListBox, y en
la lista desplegable de TDBILookupComboBox se muestran en columnas separadas. En
el caso del combo, en el cuadro de edicién solamente se muestra uno de los campos:
aquel cuya posicion esta indicada por la propiedad ListFieldlndex. Como por omision
esta propiedad vale 0, inicialmente se muestra el primer campo de la lista. ListField-
Index determina, en cualquier caso, cual de los campos se utiliza para realizar la bus-
queda incremental en el control.

I__DBLuokupCumhos H[=] E3

Pedido Fecha Cliente
| w003 120488 [Sight Diver =l
Ka_uaiDive Shoppe K.apaa Kaua ;l

Caym. man _I
Tom Sawyer Diving Centre Christiansted
Blue Jack Aqua Center Waipahu
WVIP Divers Club Christiansted ;I

El combo de la figura anterior ha sido modificado de forma tal que su lista desplega-
ble tenga el ancho suficiente para mostrar las dos columnas especificadas en LiszField.
La propiedad DropDownWidth, que por omision vale 0, indica el ancho en pixeles de
la lista desplegable. Por otra parte, DrgpDownRomws almacena el nimero de filas que se
despliegan a la vez, y DropDownAlign es la alineacion a utilizar.

292 La Cara Oculta de C++ Builder

Esencia y apariencia

Con mucha frecuencia me hacen la siguiente pregunta: ¢cémo puedo inicializar un
combo de busqueda para que no aparezca nada en él (o para que aparezca determi-
nado valor)? Desde mi punto de vista, esta pregunta revela el mismo problema que la
siguiente: ¢c6mo muevo una imagen al control TDBImage?

Hay un defecto de razonamiento en las dos preguntas anteriores. El programador ve
el combo, y quiere cambiar los datos ez e/ combo. Pero pierde de vista que el combo es
una manifestacion del campo subyacente. Hay que buscar la esencia, no la apariencia.
Asf que cuando desee eliminar el contenido de un TDBILookupComboBox 1o que debe
hacer es asignar el valor nulo al campo asociado.

Lo mismo sucederd, como veremos al final del capitulo, cuando deseemos almacenar
una imagen en un TDBlmage: sencillamente cargaremos esta imagen en el campo de
la tabla o consulta. Y no crea que estoy hablando de errores de programacién infre-
cuentes: he visto programas que para mover una imagen a un campo la copian pri-
mero en el Portapapeles, fuerzan a un TDBlwage a que pegue los datos y luego utili-
zan Post para hacer permanente la modificaciéon. Es evidente que el contenido del
Portapapeles no debe ser modificado a espaldas del usuario, por lo que se trata de
una técnica pésima. Mas adelante veremos como utilizar campos blob para este pro-
posito.

Casillas de verificacion y grupos de botones

St un campo admite solamente dos valores, como en el caso de los campos légicos,
es posible utilizar para su edicién el componente TDBCheckBox. Este componente es
muy sencillo, y su modo de trabajo estd determinado por el tipo del campo asociado.
Si el campo es de tipo TBooleantield, el componente traduce el valor True como casilla
marcada, y False como casilla sin marcar. En ciertos casos, conviene utilizar la pro-
piedad A/owGrayed, que permite que la casilla tenga tres estados; el tercer estado, la
casilla en color gtis, se asocia con un valor nulo en el campo.

Si el campo no es de tipo logico, las propiedades ValueChecked y 1V alueUnchecked de-
terminan las cadenas equivalentes a la casilla marcada y sin marcar. En estas propie-
dades se pueden almacenar varias cadenas separadas por puntos y comas. De este
modo, el componente puede aceptar varias versiones de lo que la tabla considera
valores “marcados” y “no marcados™:

DBCheckBox1- >Val ueChecked = "Si; Yes; Qui ; Bai ";
DBCheckBox1- >Val ueUnchecked = "No; Ez";

Controles de datos y fuentes de datos 293

Por su parte, TDBRadioGroup es una version orientada a bases de datos del compo-
nente estandar TRadioGroup. Puede utilizarse como alternativa al cuadro de lista con
contenido fijo cuando los valores que podemos utilizar son pocos y se pueden mos-
trar en pantalla todos a la vez. La propiedad Izems, de tipo TS#rings, determina los
textos que se muestran en pantalla. Si esta asignada la propiedad 1/a/ues, indica qué
cadenas almacenaremos en el campo para cada opcién. Si no hemos especificado
algo en esta propiedad, se almacenan las mismas cadenas asignadas en Iems.

Imagenes extraidas de bases de datos

En un campo BLOB de una tabla se pueden almacenar imagenes en los mas diversos
formatos. Si el formato de estas imagenes es el de mapas de bits o de metaficheros,
podemos utilizar el componente TDBlmage, que se basa en el control TImage, para
visualizar y editar estos datos. Las siguientes propiedades determinan la apariencia de
la imagen dentro del control:

Propiedad Significado

Center La imagen aparece centrada o en la esquina superior izquierda

Stretch Cuando es verdadera, la imagen se expande o contrae para adaptarse
al area del control.

QuickDraw Si es verdadera, se utiliza la paleta global. El dibujo es mas rapido,
pero puede perderse calidad en ciertas resoluciones.

De forma similar a lo que ocurre con los campos de tipo memo, el componente
TDBlmage ofrece una propiedad AutoDisplay para acelerar la exploracion de tablas
que contienen imagenes. Cuando AwutoDisplay esta activo, cada vez que el conjunto de
datos cambia su fila activa, cambia el contenido del control. Si es False, hay que pulsar
INTRO sobre el control para visualizar el contenido del campo, o llamar al método
LoadPicture.

Estos componentes permiten trabajar con el Portapapeles, utilizando las teclas es-
tandar CTRL+C, CTRL+V y CTRL+X, o mediante los métodos CopyToClipboard, CutTo-
Clipboard y PasteFromClipboard.

La técnica del componente del pobre

C++ Builder nos ofrece un componente TDateTimePicker, que permite la edicién y
visualizacion de fechas como en un calendario. Este control se encuentra en la pagina
Win32 de la Paleta de Componentes. No existe ningun control similar para editar del
mismo modo campos de bases de datos que contengan fechas ;Qué hacemos en

294 La Cara Oculta de C++ Builder

estos casos, si no existe el componente en el mercado'* y no tenemos tiempo y pa-
ciencia para crear un nuevo componente? La solucion consiste en utilizar los eventos
del componente TDataSonrce para convertir a la pobre Cenicienta en una hermosa
princesa, capaz de comunicarse con todo tipo de bases de datos:

‘ M 4 > w o = e o

Empho Lasth ame FirstM ame
I 72 ISulhErIand IEIaudla

PhaneExt Salary

[EE [20/04/92 =l

4 ab 99 +

lun_mar mié jue vie sdb do
1.2 3 4 5

6 7 8 3 10 11 12
13 14 15 16 17 18 19
@D 2 22 2324 25 %
27 28 29 30

3 Hoy: 17/09/97

Los eventos del componente TDataSource son los tres siguientes:

Evento Se dispara...

OnStateChange ~ Cada vez que cambia el estado de la tabla asociada
OnDataChange ~ Cuando cambia el contenido del registro actual
OnUpdateData Cuando hay que guardar los datos locales en el registro activo

Para ilustrar el uso del evento OnStateChange, cree la tipica aplicacion de prueba para
tablas; ya sabe a qué me refiero:

Una tabla (TTable) que podamos modificar sin remordimientos.

Una fuente de datos (TDataSource) conectada a la tabla antetiot.

Una rejilla de datos (TDBGrid), para visualizar los datos. Asigne la fuente de
datos a su propiedad DataSource.

Una barra de navegacién (TDBNavigator), para facilitarnos la navegacion y edi-
cién. Modifique también su propiedad DazaSource.

Vaya entonces a DataSonrcel y cree la siguiente respuesta al evento OnStateChange:

char* StateStr[] = {"lInactive", "Browse", "Edit", "lnsert",
"Set Key", "CalcFields", "Filter", "Newalue", "Q dVal ue",
"CurVal ue", "Bl ockRead", "lInternal Calc"};

void __fastcall TForml:: Dat aSour celSt at eChange(TQbj ect *Sender)
{

static TForm *Ventana = NULL;

static TListBox *Lista = NULL;

4 En realidad existen versiones de TDBDateTimePicker de todo tipo y color.

Controles de datos y fuentes de datos 295

if (Ventana == NULL)
{

Ventana = new TForn{this);

Li sta = new TLi st Box(Vent ana) ;
Lista->Align = aldient;

Li sta->Parent = Vent ana;

Vent ana- >Show() ;

Li sta->ltenms->Add(StateStr[Tabl el->State]);

¢Y qué hay de la promesa de visualizar campos de fechas en un TDateTimePicker? Es
facil: cree otra ventana tipica, con la tabla, la fuente de datos, una barra de navega-
cién y unos cuantos TDBEdt. Utilice la tabla ezployee.db del alias bedemos, por ejemplo.
Esta tabla tiene un campo, HireDate, que almacena la fecha de contratacioén del em-
pleado. Sustituya el cuadro de ediciéon de este campo por un componente TDarzeline-
Picker. Finalmente seleccione la fuente de datos y cree un manejador para el evento

OnDataChange:

void __fastcall TForml:: Dat aSour celDat aChange(TCbj ect *Sender,
TField *Field)

Dat eTi nePi cker 1- >Dat eTi ne = Tabl el- >Fi el dVal ues["Hi reDate"];

Antes he mencionado que OnDataChange se dispara cada vez que cambia el contenido
del registro activo. Esto sucede, por ejemplo, cuando navegamos por la tabla, pero
también cuando alguien (un control visual o un fragmento de c6digo) cambia el valor
de un campo. En el primer caso el parametro Field del evento contiene NULL,
mientras que en el segundo apunta al campo que ha sido modificado. Le propongo al
lector que intente optimizar el método anterior haciendo uso de esta caracteristica
del evento.

Permitiendo las modificaciones

Con un poco de cuidado, podemos permitir también las modificaciones sobre el
calendario. Necesitamos interceptar ahora el evento OnUpdateData de la fuente de
datos:

void __fastcall TForml:: Dat aSour celUpdat eDat a(TObj ect *Sender)

Tabl el- >Fi el dval ues["Hi reDate"] = DateTi nePi cker 1- >Dat eTi ne;

Pero atn falta algo para que la maquinaria funcione. Y es que hemos insistido antes
en que solamente se puede asignar un valor a un campo si la tabla esta en estado de
edicién o insercion, mientras que aqui realizamos la asignacion directamente. La

respuesta es que necesitamos interceptar también el evento que anuncia los cambios

296 La Cara Oculta de C++ Builder

en el calendario; cuando se modifique la fecha queremos que el control ponga en
modo de edicién a la tabla de forma automatica. Esto se realiza mediante el siguiente
método:

void _ fastcall TFornil:: DateTi nePi cker 1Change(TObj ect *Sender)

Dat aSour cel->Edit ();

En vez de llamar al método Edit de la tabla o consulta asociada al control, he llamado
al método del mismo nombre de la fuente de datos. Este método verifica primero si
la propiedad AutoEdit del data source esta activa, y si el conjunto de datos estd en
modo de exploracién, antes de ponerlo en modo de edicion.

De todos modos, tenemos un pequefio problema de activacién recursiva. Cuando
cambia el contenido del calendario, estamos poniendo a la tabla en modo de edicioén,
lo cual dispara a su vez al evento OnDataChange, que relee el contenido del registro
activo, y perdemos la modificacion. Por otra parte, cada vez que cambia la fila activa,
se dispara OnDataChange, que realiza una asignacion a la fecha del calendario. Esta
asignacion provoca un cambio en el componente y dispara a OnChange, que pone
entonces a la tabla en modo de edicién. Esto quiere decir que tenemos que controlar
que un evento no se dispare estando activo el otro. Para ello utilizaré una variable
privada en el formulario, que actuard como si fuera un semaforo:

class TForml : public TForm
/1

privat e:
bool FCanbi ando;
b

void __fastcall TFormil:: Dat aSour celDat aChange(TCbj ect *Sender,
TField *Field)

if (! FCanbi ando)
try

FCanbi ando = True;
Dat eTi nePi cker 1- >Dat eTi ne = Tabl el- >Fi el dVal ues["Hi reDate"] ;

b
_finally
FCanbi ando = Fal se;
}
void _ fastcall TForml:: Cal endar 1Change(TObj ect *Sender)
if (! FCanbi ando)
try {

FCanbi ando = True;
Dat aSour cel->Edit ();

Controles de datos y fuentes de datos 297

_finally {
FCanbi ando = Fal se;
}

Finalmente, podemos interceptar también el evento OnExit del calendario, de modo
que las modificaciones realizadas en el control se notifiquen a la tabla cuando aban-
donemos el calendario. Esto puede ser util si tenemos mas de un control asociado a
un mismo campo, o si estamos visualizando a la vez la tabla en una rejilla de datos.
La clave para esto la tiene el método UpdateRecord del conjunto de datos:

void _ _fastcall TForml:: DateTi mePi cker 1Exi t (TQbj ect *Sender)

Tabl el- >Updat eRecor d() ;

Blob, blob, blob...

Las siglas BLOB quieren decir en inglés, Binary Large Objects: Objetos Binarios Gran-
des. Con este nombre se conoce un conjunto de tipos de datos con las siguientes
caracteristicas:

Longitud variable.

Esta longitud puede ser bastante grande. En particular, en la arquitectura Intel
puede superar la temible “barrera” de los 64 KB.

En el caso general, el sistema de bases de datos no tiene por qué saber interpre-
tar el contenido del campo.

La forma mas facil de trabajar con campos BLOB es leer y guardar el contenido del
campo en ficheros. Se pueden utilizar para este proposito los métodos LoadEromFile y
SaveToFile, de la clase TBlobField:

void __fastcall TBl obField::LoadFronFil e(const AnsiString Fichero);
void __fastcall TBl obField::SaveToFil e(const Ansi String Fichero);

El ejemplo tipico de utilizacion de estos métodos es la creacién de un formulario
para la carga de graficos en una tabla, si los graficos residen en un fichero. Suponga-
mos que se tiene una tabla, izagenes, con dos campos: Descripcion, de tipo cadena, y
Foro, de tipo grafico. En un formulario colocamos los siguientes componentes:

thlmagenes La tabla de imagenes.
thlmagenesFoto Bl campo correspondiente a la columna Foz.
OpenDialogl Cuadro de apertura de ficheros, con un filtro adecuado para
cargar ficheros graficos.

298 La Cara Oculta de C++ Builder

bnCargar Al pulsar este botén, se debe cargar una nueva imagen en el
registro actual.

He mencionado solamente los componentes protagonistas; es conveniente afiadir un
DBEdjt para visualizar el campo Descripeion y un DBlmage, para la columna Foto; por
supuesto, necesitaremos una fuente de datos. También sera util incluir una barra de
navegacion.

El codigo que se ejecuta en respuesta a la pulsacion del botén de carga de imagenes
debe ser:

void _ fastcall TFornil::bnCargardick(TCbject *Sender)
if (OpenDi al ogl. Execute())

if (! tblmagenes->State == dsEdit ||
t bl magenes->State == dslnsert)
t bl magenes- >Edi t () ;
t bl magenesFot o- >LoadFr onFi | e(OpenDi al ogl- >Fi | eNan®) ;

Observe que este método no depende de la presencia del control TDBIwage para la
visualizacion del campo. Me he adelantado en el uso del método Edi sin esta lla-
mada, la asignacién de valores a campos provoca una excepcion.

Otra posibilidad consiste en utilizar los métodos LoadbromStream y SaveloStream para
transferir el contenido completo del campo hacia o desde un flujo de datos, en parti-
cular, un flujo de datos residente en memoria. Este tipo de datos, en C++ Builder, se
representa mediante la clase TMemoryStream.

La clase TBlobStream

No hace falta, sin embargo, que el contenido del campo blob se lea completamente
en memoria para poder trabajar con él. Para esto contamos con la clase TBlobStrean,
que nos permite acceder al contenido del campo como si estuviéramos trabajando
con un fichero. Para crear un objeto de esta clase, hay que utilizar el siguiente cons-
tructot:

__fastcall TBI obStream : TBI obStrean{ TBI obFi el d *Canpo,
TBl obSt r eanvbde Mbdo) ;

El tipo TBlobStreamMaode, por su parte, es un tipo enumerativo que permite los valo-
res bmRead, bmWrite y bmReadWrite; el uso de cada uno de estos modos es evidente.

Controles de datos y fuentes de datos 299

¢Quiere almacenar imagenes en formato JPEG en una base de datos? Desgraciada-
mente, el componente TDBlwage no permite la visualizaciéon de este formato, que
permite la compresion de imagenes. Pero no hay problemas, pues podemos almace-
nar estas imagenes en un campo BLOB sin interpretacion, y encargarnos nosotros
mismos de su captura y visualizacién. La captura de la imagen tendra lugar mediante
un procedimiento idéntico al que mostramos en la seccién anterior para imagenes
“normales”:

void _ fastcall TFornil. bnCargardick(TCbject *Sender)
i f (OpenDi al ogl->Execute())

if (tblnagenes->State != dsEdit &&
t bl magenes->State ! = dsEdit)
t bl magenes->Edit ();
t bl magenesFot o- >LoadFr onFi | e(OpenDi al ogl- >Fi | eNane) ;

La tnica diferencia es que asumimos que el campo Fofo de la tabla blmagenes debe ser
un campo BLOB sin interpretacién, y que hemos configurado al componente Open-
Dialogl para que sélo nos permita abrir ficheros de extension jpeg y jpg. Debemos
incluir ademas el fichero de cabecera jpeg.ipp en el formulario.

Para visualizar las imagenes, traemos un componente 1Inage de la pagina Additional
de la Paleta de Componentes, e interceptamos el evento OnDataChange de la fuente
de datos asociada a #blmagenes:

void __fastcall TForml:: Dat aSour celDat aChange(TCbj ect *Sender,
TField *Field)
{

i f (tblmagenesFoto->lsNull)
| magel- >Pi ct ure- >G aphi c = NULL;
el se
{
std::auto_ptr<TBl obStreanr BS(
new TBI obSt r ean{t bl ragenesFot o, bnRead));
aut o_pt r <TIPEG mage> G aphi c(new TJPEG mage) ;
G aphi c- >LoadFr onfst rean(BS. get ()) ;
| magel- >Pi cture->Graphi ¢ = Graphic.get();

La clase TJPEGImage esta definida en la unidad JPEG, y desciende del tipo TGraphic.
El método anterior se limita a crear un objeto de esta clase y llenarlo con el conte-
nido del campo utilizando un objeto TBlobStream como paso intermedio. Finalmente,
el grafico se asigna al control de imagenes.

Capitulo

14

Rejillas y barras de navegacion

UIZAS LOS CONTROLES DE BASES DE DATOS MAS POPULARES entte los pro-

gramadores de Windows sean las rejillas y las barras de navegacion. Las rejillas

de datos nos permiten visualizar de una forma cémoda y general cualquier
conjunto de datos. Muchas veces se utiliza una rejilla como punto de partida para
realizar el mantenimiento de tablas. Desde la rejilla se pueden realizar busquedas,
modificaciones, inserciones y borrados. Las respuestas a consultas ad hoc realizadas
por el usuario pueden también visualizarse en rejillas. Por otra parte, las barras de
navegacién son un util auxiliar para la navegacién sobre conjuntos de datos, estén
representados sobre rejillas o sobre cualquier otro conjunto de controles. En este
capitulo estudiaremos este par de componentes, sus propiedades y eventos basicos, y
la forma de personalizatlos.

El uso y abuso de las rejillas

Sin embargo, es facil utilizar incorrectamente las rejillas de datos. Pongamos por caso
que una aplicacién deba manejar una tabla de clientes de 1.000.000 de registros. El
programador medio coloca una rejilla y jhala, a navegar! Si la aplicacion esta basada
en tablas de Paradox o dBase no hay muchos problemas. Pero si tratamos con una
base de datos SQL es casi seguro que se nos ahogue la red. Esta claro que mostrar 25
filas en pantalla simultineamente es mas costoso que mostrar, por ejemplo, sélo un
registro a la vez. Ademas, es peligroso dejar en manos de un usuario desaprensivo la
posibilidad de moverse libremente a lo largo y ancho de un conjunto de datos. Si
utilizamos el componente TQuery, en vez de TTable, para recuperar los datos y el
usuatio intenta ir al dltimo registro del conjunto resultado, veremos cémo la red se
pone literalmente al rojo vivo, mientras va trayendo al cliente cada uno de los
999.998 registros intermedios.

Quiero aclarar un par de puntos antes de continuar:
1. No siempre es posible limitar el tamariio de un conjunto resultade. Existen técnicas que

estudiaremos mds adelante, como los filtros y rangos, que permiten reducir el
numero de filas de una tabla. Y esta claro que utilizando una clausula where en

302 La Cara Oculta de C++ Builder

una consulta podemos lograr el mismo efecto. Pero esta reduccion de tamafio no
siempre es suficiente. Por ejemplo, ¢como limitamos la vista de clientes? ¢Por la
inicial del apellido? Vale, hay 26 letras, con lo que obtendremos una media de
40.000 registros. ¢Por ciudades? Tampoco nos sirve. ¢Limitamos el resultado a
los 1000 primeros registros? Recuerde que el parametro AMLAX ROWS nos per-
mite hacetlo, pero esta limitacién es demasiado arbitraria para tener sentido.

2. Puede ser imprescindible mostrar varias filas a la vez. Es frecuente oir el siguiente argu-
mento: ¢para qué utilizar una rejilla sobre 1.000.000 de registros, si sélo vamos a
poder ver una pequefia ventana de 25 filas a la vez? ¢Es posible sacar algo en
claro de una rejilla, que no podamos averiguar navegando registro por registro?
Yo creo que si. Muchas veces olvidamos que la navegaciéon con rejillas cobra es-
pecial importancia cuando ordenamos la tabla subyacente por alguna de sus co-
lumnas. En tal caso, el andlisis del contexto en que se encuentra determinado re-
gistro puede aportarnos bastante informacioén. Nos puede ayudar a detectar
errores ortograficos en un nombre, que cierto empleado se encuentra en una
banda salarial especial, etc.

Un error que comete la mayoria de los programadores consiste en sobrecargar una
rejilla con mas columnas de lo debido. Esto es un fallo de disefio, pues una rejilla en
la que hay que realizar desplazamientos horizontales para ver todas las columnas es
poco menos que indtil. Busque, por ejemplo, la libreta de direcciones de su aplicacion
de correo electréonico. Lo mas probable es que los nombres y apellidos de los desti-
natarios de correo aparezcan en una lista o rejilla, y que el resto de sus datos puedan
leerse de uno en uno, en otros controles de edicién. Bien, ese es el modelo que le
propongo de uso de rejillas. Casi siempre, las columnas que muestro en una rejilla
corresponden a la clave primatia o a una clave alternativa. Es posible también que
incluya alguna otra columna de la cual quiera obtener informacién contextual: esto
implica con toda seguridad que la rejilla estara ordenada de acuerdo al valor de esa
columna adicional. El resto de los campos los sitdo en controles dafa-aware orienta-
dos a campos: cuadros de edicién, combos, imagenes, etc.

El funcionamiento basico de una rejilla de datos

Para que una rejilla de datos “funcione”, basta con asignarle una fuente de datos a su
propiedad DataSonrce. Es todo. Quizas por causa de la sencillez de uso de estos com-
ponentes, hay muchos detalles del uso y programacion de rejillas de datos que el
desarrollador normalmente pasa por alto, o descuida explicar en su documentacién
para usuarios. Uno de estos descuidos es asumir que el usuario conoce todos los
detalles de la interfaz de teclado y ratén de este control. Y es que esta interfaz es rica
y compleja.

Las teclas de movimiento son las de uso mas evidente. Las flechas nos permiten
movernos una fila o un caracter a la vez, podemos utilizar el avance y retroceso de

Rejillas y barras de navegacion 303

pagina; las tabulaciones nos llevan de columna en columna, y es posible usar la tabu-
lacién inversa.

La tecla INS pone la tabla asociada a la rejilla en modo de insercion. Aparentemente,
se crea un nuevo registro con los valores por omision, y el usuario debe llenar el
mismo. Para grabar el nuevo registro tenemos que movernos a otra fila. Por su-
puesto, si tenemos una barra de navegacion asociada a la tabla, el botén Post produce
el mismo efecto sin necesidad de cambiar la fila activa. Un poco mas adelante estu-
diaremos las barras de navegacion.

Pulsando F2, el usuario pone a la rejilla en modo de edicién; C++ Builder crea auto-
maticamente un cuadro de edicion del tamafio de la celda activa para poder modificar
el contenido de ésta. Esta accién también se logra automaticamente cuando el usua-
rio comienza a teclear sobre una celda. La edicion automaitica se controla desde la pro-
piedad AutwEdit de 1a fuente de datos (data source) a la cual se conecta la rejilla. Para
grabar los cambios realizados hacemos lo mismo que con las inserciones: pulsamos
el botén Post de una barra de navegacion asociada o nos cambiamos de fila.

Otra combinacién util es CTRL+SUPR, mediante la cual se puede borrar el registro
activo en la rejilla. Cuando hacemos esto, se nos pide una confirmacion. Es posible
suprimir este mensaje, que es lanzado por la rejilla, y pedir una confirmaciéon perso-
nalizada para cada tabla interceptando el evento BeforeDelete de 1a propia tabla. Esto
se explicara en el capitulo 28, sobre eventos de transicion de estados.

La rejilla de datos tiene una columna fija, en su extremo izquierdo, que no se mueve
de lugar aun cuando nos desplazamos a columnas que se encuentran fuera del area
de visualizacién. En esta columna, la fila activa aparece marcada, y la marca depende
del estado en que se encuentre la tabla base. En el estado dsBrowse, la marca es una
punta de flecha; cuando estamos en modo de edicion, una viga I (i-beam), la forma
del cutsor del ratén cuando se sitda sobre un cuadro de edicién; en modo de inser-
cién, la marca es un asterisco. Como veremos, esta columna puede ocultarse mani-
pulando las opciones de la rejilla.

Por otra parte, con el raton podemos cambiar en tiempo de ejecucion la disposicion
de las columnas de una rejilla, manipulando la barra de titulos. Por ejemplo, arras-
trando una cabecera de columna se cambia el orden de las columnas; arrastrando la
division entre columnas, se cambia el tamafio de las mismas. A partir de C++ Builder
3 pueden incluso utilizarse las cabeceras de columnas como botones. Naturalmente,
la accion realizada en respuesta a esta accion debe ser especificada por el usuario
interceptando un evento.

304 La Cara Oculta de C++ Builder

Opciones de rejillas

Muchas de las caracteristicas visuales y funcionales de las rejillas pueden cambiarse
mediante la propiedad Options. Aunque las rejillas de datos, TDbGrid y las rejillas
TDrawGridy TStringGrid estan relacionadas entre si, las opciones de estas clases son
diferentes. He aqui las opciones de las rejillas de datos y sus valores por omision:

Opcidn PO Significado
dgEditing St Permite la edicion de datos sobre la rejilla
dgAlwaysS howEditor No Activa siempre el editor de celdas

dgTitles Si Muestra los titulos de las columnas

delndicator St La primera columna muestra el estado de la tabla
dgColumnResize St Cambiar el tamafio y posicion de las columnas
dgColl ines St Dibuja lineas entre las columnas

dgRowlLines St Dibuja lineas entre las filas

dgTabs St Utilizar tabulaciones para moverse entre columnas
dgRowSelect No Seleccionar filas completas, en vez de celdas
dgAlwaysS howSelection No Dejar siempre visible la seleccion

dgConfirmDelete St Permite confirmar los borrados

dgCancelOnExit St Cancela inserciones vacias al perder el foco
deMultiSelect No Permite seleccionar varias filas a la vez.

Muchas veces, es conveniente cambiar las opciones de una rejilla en coordinacién
con otras opciones o propiedades. Por ejemplo, cuando queremos que una rejilla se
utilice s6lo en modo de lectura, ademas de cambiar la propiedad ReadOnly es aconse-
jable eliminar la opcién dgEditing. De este modo, cuando el usuatio seleccione una
celda, no se creara el editor sobre la celda y no se llevara la impresion de que la rejilla
iba a permitir la modificacién. Como ejemplo adicional, cuando preparamos una
rejilla para seleccionar multiples filas con la opcion dgMultiSelect, es bueno activar
también la opcién dgRowSelect, para que la barra de seleccion se dibuje sobre toda la
fila, en vez de sobre celdas individuales.

Columnas a la medida

La configuracion de una rejilla de datos va mas alld de las posibilidades de la propie-
dad Options. Por ejemplo, es necesario indicar el orden inicial de las columnas, los
titulos, 1a alineacién de los textos dentro de las columnas... En la VCL 1, anterior a
C++ Builder, las tareas mencionadas se llevaban a cabo modificando propiedades de
los componentes de campos de la tabla asociada a la rejilla. Por ejemplo, si querfamos
cambiar el titulo de una columna, debiamos modificar la propiedad Displaylabel del
campo correspondiente. La alineacién de la columna se extrafa de la propiedad
Alignment del campo. Y si querfamos ocultar una columna, debiamos utilizar la pro-
piedad 7sible del componente de campo.

Rejillas y barras de navegacion 305

Esto ocasionaba bastantes problemas; el problema mas grave era lo limitado de las
posibilidades de configuracion segin este estilo. Por ejemplo, aunque un campo se
alineara a la derecha, el titulo de su columna se alineaba siempre a la izquierda. A
partir de la version 2 de la VCL las cosas hubieran podido agravarse, por causa de la
aparicién de los médulos de datos, que permiten utilizar el mismo componente no
visual de acceso con diferentes modos de visualizacion. Al colocar una tabla detet-
minada en un moédulo de datos y configurar las propiedades visuales de un compo-
nente de campo en dicho médulo, cualquier rejilla que se conectara a la tabla mostra-
rfa la misma apariencia. Para poder separar la parte visual de los métodos de acceso,
se hizo indispensable la posibilidad de configurar directamente las rejillas de datos.

o Editing DBGrid1l.Columns

i |

- EmpMo

- LaztM ame
- FirstM arne:
- Phonek «t
- HireD ate:
- Salam

&= L ra— O

La propiedad Columns permite modificar el disefio de las columnas de una rejilla de
datos. El tipo de esta propiedad es TDBGridColummns, y es una coleccion de objetos de
tipo TColumn. Para editar esta propiedad podemos hacer un doble clic en el valor de
la propiedad en el Inspector de Objetos, o realizar el doble clic directamente sobre la
propia rejilla. El aspecto del editor de propiedades es diferente en C++ Builder 3:

Tp

- LastNme

2 - Firsthame Delet I
3 - PhoneE st 2=

4 -HireD ate Mave Up I
5 -Salam =

I ove Down I
Add All Fields |
Restore Defaults |

La propiedades que nos interesan de las columnas son:

Propiedad Significado

Alignment Alineacién de la columna

ButtonStyle Permite desplegar una lista desde una celda, o mostrar un
botén de edicion.

Color Color de fondo de la columna.

DropDownRomws Nuamero de filas desplegables.
FieldName El nombre del campo que se visualiza.

306 La Cara Oculta de C++ Builder

Propiedad Significado

Font El tipo de letra de la columna.

Pickl ist Lista opcional de valores a desplegar.
ReadOnly Desactiva la edicién en la columna.
Width El ancho de la columna, en pixeles.
Title. Alignment Alineacién del titulo de la columna.
Title. Caption Texto de la cabecera de columna.
Title.Color Color de fondo del titulo de columna.
Title. Font Tipo de letra del titulo de la columna.

C++ Builder 4 aflade a esta lista la propiedad Expanded, que se aplica a las columnas
que representan campos de objetos de Oracle. St Expanded es True, la columna se
divide en subcolumnas, para representar los atributos del objeto, y la fila de titulos de
la rejilla duplica su ancho, para mostrar tanto el nombre de la columna principal
como los nombres de las dependientes. Esta propiedad puede modificarse tanto en
tiempo de disefio como en ejecucion.

Si el programador no especifica columnas en tiempo de diseflo, éstas se crean en
tiempo de ejecucion y se llenan a partir de los valores extraidos de los campos de la
tabla; observe que algunas propiedades de las columnas se corresponden a propieda-
des de los componentes de campo. Si existen columnas definidas en tiempo de di-
seflo, son éstas las que se utilizan para el formato de la rejilla.

En la mayoria de las situaciones, las columnas se configuran en tiempo de disefio,
pero es también posible modificar propiedades de columnas en tiempo de ejecucion.
El siguiente método muestra como se pueden mostrar de forma automatica en color
azul las columnas de una rejilla que pertenezcan a los campos que forman parte del
indice activo.

void _ _fastcall TForml:: FornCreate(TCbj ect *Sender)
for (int i =0; i < DBGidl->Colums->Count; i++)
TCol um *C = DBGi d1- >Col utms- >l tens[i];

if (C >Field->IslndexField)
C->Font - >Col or = cl Bl ue;

En este otro ejemplo tenemos una rejilla con dos columnas, que ocupa todo el espa-
cio interior de un formulario. Queremos que la segunda columna de la rejilla ocupe
todo el area que deja libre la primera columna, atin cuando cambie el tamano de la
ventana. Se puede utilizar la siguiente instruccion:

void _ _fastcall TForml:: FornResi ze(TObj ect *Sender)

DBGri d1->Col umms->ltens[1] ->Wdth = DBGidl->CientWdth -

Rejillas y barras de navegacion 307

DBG i d1- >Col umms->ltens[0] ->Wdth - IndicatorWdth - 2;

El valor que se resta en la térmula, IndicatorWidth, corresponde a una variable global
declarada en la unidad DBGrids, y corresponde al ancho de la columna de indicado-
res. He restado 2 pixeles para tener en cuenta las lineas de separacion. Si la rejilla
cambia sus opciones de visualizacion, cambiara el valor a restar, por supuesto.

Para saber qué columna estd activa en una rejilla, utilizamos la propiedad Sekctedlndex,
que nos dice su posicion. SekctedEield nos da acceso al componente de campo aso-
ciado a la columna activa. Por otra parte, si lo que queremos es la lista de campos de
una rejilla, podemos utilizar la propiedad vectorial Fie/ds y la propiedad entera Field-
Count. Un objeto de tipo TColumn tiene también, en tiempo de ejecucion, una pro-
piedad Fie/d para trabajar directamente con el campo asociado.

Guardar y restaurar los anchos de columnas

Para los usuarios de nuestras aplicaciones puede ser conveniente poder mantener el
formato de una rejilla de una sesion a otra, especialmente los anchos de las columnas.
Voy a mostrar una forma sencilla de logratlo, suponiendo que cada columna de la
rejilla pueda identificarse de forma tnica por el nombre de su campo asociado. El
ejemplo utiliza ficheros de configuracion, pero puede adaptarse facilmente para hacer
uso del registro de Windows.

Supongamos que el formulario Form1 tiene una rejilla DBGrid1 en su interior. Enton-
ces necesitamos la siguiente respuesta al evento OnCreate del formulario para restau-
rar los anchos de columnas de la sesion anterior:

const Ansi String SC aveApp = "Software\\ M Enpresa\\ M Aplicaci on\\";
void __fastcall TForml:: FornCreate(TObj ect *Sender)
std::auto_ptr<TReglni File> ini(new TRegl ni Fil e(
SC aveApp + "Rejillas\\" + Name + "." + DBGidl->Nane));
for (int i = 0; i < DBGidl->Col ums->Count; i++)

TCol um ¢ = DBGi d1->Col ums->ltens[i];
c->Wdth = ini->Readl nteger("Wdth", c->FieldName, c->Wdth);

Estamos almacenando los datos de la rejilla DBGrid1 en la siguiente clave del registro
de Windows:

[HKEY_CURRENT_USER\ M Enpr esa\ M Apl i caci on\ Rej i | | as\ For nil. DBGi d1]

308 La Cara Oculta de C++ Builder

El tercer parametro de Readlnteger es el valor que se debe devolver si no se encuentra
la clave dentro de la seccion. Este valor se utiliza la primera vez que se ejecuta el pro-
grama, cuando aun no existe el fichero de configuraciones. Este fichero se debe ac-
tualizar cada vez que se termina la sesion, durante el evento OnClose del formulario:

void __fastcall TForml:: FornC ose(TCbj ect *Sender,
Td oseActi on &Acti on)

{
std::auto_ptr<TReglni File> ini(new TRegl ni Fil e(
SCl aveApp + "Rejillas\\" + Name + "." + DBGidl->Nane));
for (int i = 0; i < DBGidl->Col ums->Count; i++)
TCol um *C = DBGri d1->Col ums->Itens[i];
ini->Witelnteger("Wdth", C >FieldNane, C >Wdth);
}
}

Sobre la base de estos procedimientos simples, el lector puede incorporar mejoras,
como la lectura de la configuracién por secciones completas, y el almacenamiento de
mas informacién, como el orden de las columnas.

Listas desplegables y botones de edicion

Las rejillas de datos permiten que una columna despliegue una lista de valores para
que el usuario seleccione uno de ellos. Esto puede suceder en dos contextos diferen-
tes:

Cuando el campo visualizado en una columna es un campo de busqueda (lookup
field).

Cuando el programador especifica una lista de valores en la propiedad PickList de
una columna.

En el primer caso, el usuario puede elegir un valor de una lista que se extrae de otra
tabla. El estilo de interaccion es similar al que utilizan los controles TDBILookupCom-
boBox, que estudiaremos mas adelante; no se permite, en contraste, la busqueda in-
cremental mediante teclado. En el segundo caso, 1a lista que se despliega contiene
exactamente los valores tecleados por el programador en la propiedad PickList de la
columna. Esto es util en situaciones en las que los valores mas frecuentes de una
columna se reducen a un conjunto pequefio de posibilidades: formas de pagos, for-
mulas de tratamiento (Sefior, Sefiora, Sefiorita), y ese tipo de cosas. En cualquiera de
estos casos, la altura de la lista desplegable se determina por la propiedad DropDown-
Rows: el nimero maximo de filas a desplegar.

Rejillas y barras de navegacion 309

l___ Listas desplegables en rejillas M=] E3
i I T 3 1
Paranl VEndnanI\u"endnr D escription | Enstl L\stPriceIﬂ
L4 900 3820 Techniques ¥ | Dive kayak $1.956.,75 $3.999.95

12 2020 |JW. Luscher Mfg, .
Scuba Professional
1313 E Divers' Supply Shy
1314 5641

Undenwater Diver Yehicle $504.00 $1.680,00
Reqgulator Systemn $117.50 $250,00
_I Second Stage Regulator $124.10 $365.00
136 3N Boaniohat ne Regulator System $119.35 $341.00
1320 351 | Amor Aqua Second Gtage Regulator $7353 $171.00
1328 3511 |Scuba Professionals | Regulator System $154.80 $430,00
1330 3511 Scuba Professionalz Altemate Inflation Regulator $85.80 $ZBU.?IL|
Bl

Perry Scuba

La propiedad ButtonStyle determina si se utiliza el mecanismo de lista desplegable o
no. Si vale bsAuto, la lista se despliega si se cumple alguna de las condiciones anterio-
res. Si la propiedad vale £sNowe, no se despliega nunca la lista. Esto puede ser util en
ocasiones: suponga que hemos definido, en la tabla que contiene las lineas de detalles
de un pedido, el precio del articulo que se vende como un campo de bisqueda, que
partiendo del c6digo almacenado en la linea de detalles, extrae el precio de venta de
la tabla de articulos. En este ejemplo, no nos interesa que se despliegue la lista con
todos los precios existentes, y debemos hacer que ButtonStyle valga bsNone para esa
columna.

Por otra parte, si asignamos el valor bsE/ipsis a la propiedad ButtonStyle de alguna co-
lumna, cuando ponemos alguna celda de la misma en modo de edicion aparece en el
extremo derecho de su interior un pequefio botén con tres puntos suspensivos. Lo
unico que hace este boton es lanzar el evento OnEditButtonClick cuando es pulsado:

void _ fastcall TFornil::DBGi dl1EditButtond ick(TObj ect *Sender)

La columna en la cual se produjo la pulsacion es la columna activa de la rejilla, que se
puede identificar por su posicion, Selectedlndex, o por el campo asociado, Selectedtield.
Este botén también puede activarse pulsando CTRL+INTRO.

En C++ Builder 4 los puntos suspensivos apatrecen también con los campos
TReferencelield y TDataSetlield, de Oracle 8. Cuando se pulsa el botdn, aparece
una rejilla emergente con los valores anidados dentro del campo. El nuevo mé-
todo ShowPopupEditor permite invocar al editor desde el programa.

NUumeros verdes y numeros rojos

La propiedad Columns nos permite especificar un color para cada columna por sepa-
rado. ¢Qué sucede si deseamos, por el contrario, colores diferentes por fila, o incluso
por celdas? Y puestos a pedir, ¢se pueden dibujar graficos en una rejilla? Claro que si:
para eso existe el evento OnDrawColumnCell.

310 La Cara Oculta de C++ Builder

Comencemos por algo sencillo: en la tabla de inventatio parts.db queremos mostrar
en color rojo aquellos articulos para los cuales hay mas pedidos que existencias; la
tabla en cuestion tiene sendas columnas, OnOrder y OnHand, para almacenar estas
cantidades. As{ que creamos un manejador para OnDrawColumnCell, y C++ Builder
nos presenta el siguiente esqueleto de método:

void _ fastcall TFornil::DBG i d1Dr awCol umcCel | (TObj ect *Sender,
const TRect Rect, int DataCol, TColumm *TCol um,
TG idDrawState State)

Rect es el area de la celda a dibujar, DataCol es el indice de la columna a la cual perte-
nece y Column es el objeto correspondiente; por su parte, S7ate indica si la celda esta
seleccionada, enfocada y si es una de las celdas de cabecera. En ninguna parte se nos
dice la fila que se va a dibujar, pero la tabla asociada a la rejilla tendra activo el regis-
tro correspondiente durante la respuesta al evento. Asi que podemos empezar por
cambiar las condiciones de dibujo: si el valor del campo OnOrder iguala o supera al
valor del campo OnHand en la fila activa de la tabla, cambiamos el color del tipo de
letras seleccionado en el lienzo de la rejilla a rojo. Después, para dibujar el texto ...
un momento, ¢no estamos complicando un poco las cosas?

La clave para evitar este dolor de cabeza es el método DefaultDrawColumnCell, perte-
neciente a las rejillas de datos. Este método realiza el dibujo por omisién de las cel-
das, y puede ser llamado en el interior de la respuesta a OnDrawColumnCell. Los pa-
rametros de este método son exactamente los mismos que se suministran con el
evento; de este modo, ni siquiera hay que consultar la ayuda en linea para llamar al
método. Si el manejador del evento se limita a invocar a este método, el dibujo de la
rejilla sigue siendo idéntico al original. Podemos entonces limitarnos a cambiar las
condiciones iniciales de dibujo, realizando asignaciones a las propiedades del lienzo
de la rejilla, antes de llamar a esta rutina. He aqui el resultado:

void __fastcall TForml:: DBG i d1Dr awCol umCel | (TCbj ect *Sender,
const TRect Rect, int DataCol, TColumm *TCol um,
TG idDrawState State)

TDBGid *grid = static_cast<TDBG i d*>(Sender);
if (tbParts->Fiel dVal ues["OnOrder"] >=
t bPart s- >Fi el dVal ues[" OnHand"])
grid->Canvas- >Font - >Col or = cl Red;
gri d->Def aul t Dr awCol umcCel | (Rect, DataCol, Colum, State);

Por supuesto, también podemos dibujar el contenido de una celda sin necesidad de
recurrir al dibujo por omisién. Si estamos visualizando la tabla de empleados en una
rejilla, podemos anadir desde el Editor de Columnas una nueva columna, con el bo-
ton New, dejando vacia la propiedad Fie/dNamse. Esta columna se dibujara en blanco.
Anadimos también al formulario un par de componentes de imagenes, TImage, con

Rejillas y barras de navegacion 311

los nombres CaraAlegre y Caralvriste, y mapas de bits que hagan juego; estos compo-
nentes deben tener la propiedad 17sible a False. Finalmente, interceptamos el evento
de dibujo de celdas de columnas:

void _ fastcall TFornil:: DBG i d1Dr awCol umcCel | (TObj ect *Sender,
const TRect Rect, int DataCol, TColumm *TCol um,
TG idDrawState State)

TDBGid *grid = static_cast<TDBG i d*>(Sender);
if (Colum->FieldNane !="")
gri d- >Def aul t Dr awCol umCel | (Rect, DataCol, Colum, State);
el se if (tbEnpl eados->Fi el dVal ues["Sal ary"] >= 45000)
grid->Canvas- >Stret chDraw(Rect, CaraAl egre->Pi cture->G aphic);
el se
grid->Canvas->StretchDraw Rect, CaraTri ste->Picture->G aphic);
4 - > > + - - 5 e o
EmpMo [Lasthame [Firsthame [PhoneEa|Hielate [Salary [[a]
|| 2 Nelson Fioberta 250 26/12/08 x)
|| 4 Young Bruce 233 26/12/08 J
[N ot Kim 2 6/02/89 25000 (23
|| 8 Johnson Leslie 410 5/04/89 25050 (23)
|| 9 Forest Fhil 223 17/04/83 25050 (33
|| 11 Weston K. el 17/01/90 | 332929375 (3
|| 12 Lee Temi 256 1/05/90 45332 (35
|| 14 Hal Stewart 227 4/06/30 34482,625 (34)
|| 15 Young Katherine 23 14/06/30 24400 (23)
|| 20 Papadopoulos Chirig: a7 1/M/90 25050 (23)
|| 24 Fisher Pete ae 12/09/30 23040 (33)
N 22 Bennet Arn 5 1402491 344823 (333 = |

Otro ejemplo, que quizas sea mas practico, es mostrar el valor de un campo légico
dentro de una rejilla como una casilla de verificacién. Supongamos que la tabla Table?
contiene un campo de nombre Activo, de tipo logico. Para dibujar la columna corres-
pondiente al campo en la rejilla, utilizamos el siguiente método en respuesta al evento
OnDrawColumnCell:

void __fastcall TForml:: DBG i d1Dr awCol umCel | (TCbj ect *Sender,
const TRect Rect, int DataCol, TColumm *TCol umm,
TG idDrawState State)

i f (ConpareText (Col um->Fi el dNanme, "ACTIVO') == 0)

U NT check = 0;
i f (Tabl el->Fi el dval ues["ACTIVO'])
check = DFCS_CHECKED;
DBGri d1- >Canvas- >Fi | | Rect (Rect);
Dr awFr aneCont r ol (DBG'i d1- >Canvas->Handl e, (RECT*) &Rect,
DFC_BUTTON, DFCS_BUTTONCHECK | check);
}
el se
DBGri d1- >Def aul t DrawCol umcCel | (Rect, DataCol, Columm, State);

312 La Cara Oculta de C++ Builder

DrawFrameControl es una funcion del API de Windows que nos permite dibujar mu-
chos de los controles nativos. Recuerde que mientras mas complicado sea el dibujo,
mas tardard en redibujarse la rejilla.

Mas eventos de rejillas

En C++ Builder 3 se afiadieron un par de nuevos eventos a las rejillas de datos. Es-
tos son OnCellClick, que se dispara cuando el usuario pulsa el raton sobre una celda
de datos, y OnTitleClick, cuando la pulsacién ocurre en alguno de los titulos de co-
lumnas. Aunque estos eventos pueden detectarse tedricamente directamente con los
eventos de raton, OnCellClick y OnTitleClick nos facilitan las cosas al pasar, como
parametro del evento, el puntero al objeto de columna donde se produjo la pulsa-
cién.

Para demostrar el uso de estos eventos, coloque en un formulario vacio una tabla con
las siguientes propiedades:

Propiedad Valor
DatabaseName IBI.LOCAL
TableName EMPI.OYEE
Active True

Es importante para este ejemplo que la tabla pertenezca a una base de datos SQL; es
por eso que utilizamos los ejemplos de InterBase. Coloque en el formulario, ademas,
un TDataSource y una rejilla de datos, debidamente conectados.

Luego, cree la siguiente respuesta al evento On1itleClick de la rejilla:

void _ fastcall TFornil::DBGidlTitled ick(TCol um *Col um)

{
try
i f (Colum->Fi el d->Fi el dKi nd == f kLookup)
Tabl el- >l ndexFi el dNames = Col umm- >Fi el d- >KeyFi el ds;
el se
Tabl el- >I ndexFi el dNames = Col urm- >Fi el dNane;
}
cat ch(Excepti on&)
{
}
}

La propiedad IndexFieldNames de las tablas se utiliza para indicar por qué campo, o
combinacién de campos, queremos que la tabla esté ordenada. Para una tabla SQL
este campo puede ser arbitrario, cosa que no ocurre para las tablas locales; en el ca-
pitulo sobre indices trataremos este asunto. Nuestra aplicacion, por lo tanto, permite

Rejillas y barras de navegacion 313

cambiar el criterio de ordenacion de la tabla que se muestra con s6lo pulsar con el
ratén sobre el titulo de la columna por la cual se quiere ordenar.

La barra de desplazamiento de la rejilla

La otra gran diferencia entre las rejillas de datos de C++ Builder 1 y las de versiones
posteriores consiste en el comportamiento de la barra de desplazamiento vertical que
tienen asociadas. En las versiones 1 y 2 de la VCL, para desesperaciéon de muchos
programadores habituados a trabajar con bases de datos locales, la barra solamente
asume tres posiciones: al principio, en el centro y al final. ;Por quér La culpa la tienen
las tablas SQL: para saber cuantas filas tiene una tabla residente en un servidor re-
moto necesitamos cargar todas las filas en el ordenador cliente. ¢Y todo esto sélo
para que el cursor de la barra de desplazamiento aparezca en una posicion propot-
cional? No merece la pena, y pagan justos por pecadores, pues también se utiliza el
mismo mecanismo para las tablas de Paradox y dBase.

Afortunadamente, C++ Builder 3 corrigié esta situacion para las tablas locales aun-
que, por supuesto, las cosas siguen funcionando igual para las bases de datos SQL.

Rejillas de seleccion mualtiple

Como hemos visto, si activamos la opcion dgMultiSelect de una rejilla, podemos selec-
cionar varias filas simultineamente sobre la misma. La seleccion multiple se logra de
dos formas diferentes:

Extendiendo la selecciéon mediante las flechas hacia arriba y hacia abajo, mante-
niendo pulsada la tecla de mayusculas.
Pulsando con el ratén sobre una fila, mientras se sostiene la tecla CTRIL.

Si pulsamos CTRL+SUPR mientras la rejilla tiene el foco del teclado, eliminaremos
todas las filas seleccionadas. Cualquier otra operacién que deseemos deberd ser pro-
gramada.

La clave para programar con una rejilla de seleccién multiple es la propiedad Selected-
Rows. Esta propiedad es del tipo TBookmarkList, una lista de marcas de posicion,
cuyos principales métodos y propiedades son los siguientes:

Propiedades/Métodos Propésito

Connt Cantidad de filas seleccionadas.
Itemslint index| Lista de posiciones seleccionadas.
CurrentRowSelected ¢Hsta seleccionada la fila activa?

314 La Cara Oculta de C++ Builder

Propiedades/Métodos Propdsito

void __fastcall Clear(); Eliminar la seleccion.

void __fastcall Delete(); Borrar las filas seleccionadas.

void __fastcall Refresh(); Actualizar la seleccion, eliminando filas borradas.

El siguiente método muestra cémo sumar los salarios de los empleados seleccio-
nados en una rejilla con selecciéon maltiple:

void _ fastcall TForml::bnSumard i ck(TObj ect *Sender)

{
Currency Total = O;
t bEnpl eados- >Di sabl eControl s();
Ansi String BM = t bEnpl eados- >Booknar k;
try
{ . .
for (int 1 =0; | < DBGidl->Sel ectedRows->Count; | ++)
t bEnpl eados- >Bookmark = DBGri d1- >Sel ect edRows- >l tens[1];
Total += tbEnpl eados->Fi el dVal ues["Sal ary"];
}
_finally
t bEnpl eados- >Bookmar k = BM
t bEnpl eados- >Enabl eCont rol s() ;
}
Showvessage(Format ("Sal ario total: %', ARRAYOFCONST((Total))));
}

La técnica basica consiste en controlar el recorrido desde un bucle for, e ir activando
sucesivamente cada fila seleccionada en la lista de marcas. Para que la tabla se mueva
su cursor al registro marcado en la rejilla, solamente necesitamos asignar la marca a la

propiedad Bookmark de la tabla.

tiple
0 2 1 1]

EmpNo | Lasth ame

2aM2/08
£/02/89 $25.000,

4 Young
5 Lamben

1

17/01/90) $33.292.34
1/05/30 $45.332,00
4706730 $34.482,63
15 Young 14/06/30 $24.400,00
20 Papadopoulos Chris 887 1/07/90 $25.050,00
24 Fisher Pete 680 12/03/30 §23.040.00 = |

a

11 Weston
12 Les
14 Hal

Barras de navegacion

Al igual que sucede con las rejillas de datos, la principal propiedad de las barras de
navegacion es DataSource, la fuente de datos controlada por la barra. Cuando esta
propiedad estd asignada, cada uno de los botones de la barra realiza una accién sobre

Rejillas y barras de navegacion 315

el conjunto de datos asociado a la fuente de datos: navegacion (First, Prior, Next,
Las?), insercion (Inserd), eliminacion (Delete), modificacion (Edif), confirmacion o can-
celacion (Post, Cancel) y actualizacién de los datos en pantalla (Refresh).

7

<« fofm]e]-]a ol

Un hecho curioso: muchos programadores me preguntan en los cursos que imparto
si se pueden modificar las imagenes de los botones de la barra de navegacion. Claro
que se puede, respondo, pero siempre me quedo intrigado, pues no logro imaginar
un conjunto de iconos més “expresivo” o “adecuado”. ¢Acaso flechas ar novean ver-
des sobre fondo rojo? De todos modos, para el que le interese este asunto, las ima-
genes de los botones estan definidas en el fichero dbetris.res, que se encuentra en el
subdirectorio /b de C++ Builder. Se puede cargar este fichero con cualquier editor
grafico de recursos, Image Editor incluido, y perpetrar el correspondiente atentado
contra la estética.

También he encontrado programadores que sustituyen completamente la barra de
navegacion por botones de aceleracion. Esta técnica es correcta, y es facil imple-
mentar tanto las respuestas a las pulsaciones de los botones como mantener el estado
de activacién de los mismos; hemos visto coémo se hace esto ultimo al estudiar los
eventos del componente TDataSonrce en el capitulo anterior. Sin embargo, existe una
razén poderosa para utilizar siempre que sea posible la barra de navegaciéon de C++
Builder, al menos sus cuatro primeros botones, y no tiene que ver con el hecho de
que ya esté programada. ¢Se ha fijado lo que sucede cuando se deja pulsado uno de
los botones de navegacion durante cierto tiempor El comando asociado se repite
entonces periddicamente. Implementar este comportamiento desde cero ya es bas-
tante mas complejo, y no merece la pena.

Habia una vez un usuario torpe, muy torpe...

...tan torpe que no acertaba nunca en el botén de la barra de navegacién que debia
llevarlo a la tltima fila de la tabla. No sefior: este personaje siempre “acertaba” en el
botén siguiente, el que inserta registros. Por supuesto, sus tablas abundaban en filas
vacias ... y la culpa, segin él, era del programador. Que nadie piense que lo estoy
inventando, es un caso real.

Para estas situaciones tenemos la propiedad 7sibleButtons de la barra de navegacion.
Esta propiedad es la clasica propiedad cuyo valor es un conjunto. Podemos, por
ejemplo, esconder todos los botones de actualizacion de una barra, dejando sola-
mente los cuatro primeros botones. Esconder botones de una barra provoca un de-
sagradable efecto secundario: disminuye el nimero de botones pero el ancho total
del componente permanece igual, lo que conduce a que el ancho individual de cada

316 La Cara Oculta de C++ Builder

botén aumente. Claro, podemos corregir la situacion posteriormente reduciendo el
ancho general de la barra.

A proposito de botones, las barras de navegacion tienen una propiedad Flaz, para que
el borde tridimensional de los botones esté oculto hasta que el ratoén pase por encima
de uno de ellos. La moda ejerce su dictadura también en las pantallas de nuestros
ordenadores.

Ayudas para navegar

Aunque la barra de navegacion tiene una propiedad Hint como casi todos los con-
troles, esta propiedad no es utilizada por C++ Builder. Las indicaciones por omisién
que muestran los botones de una barra de navegacion estaban definidas, en C++
Builder 1, en el fichero de recursos dbeonsts.res, y era posible editar este fichero para
cambiar los valores en él almacenados. En las versiones 3 y 4, se definen en la unidad
dbeonsts.pas, utilizando las cadenas de recursos (resourcestring) de Delphi.

Para personalizar las indicaciones de ayuda, es necesario utilizar la propiedad Hinzs,
en plural, que permite especificar una indicacion por separado para cada botén. Hints
es de tipo TS7#ngs, una lista de cadenas. La primera cadena corresponde al primer
botdn, la segunda cadena, que se edita en la segunda linea del editor de propiedades,
corresponde al segundo botdn, y asf sucesivamente. Esta correspondencia se man-
tiene incluso cuando hay botones no visibles. Por supuesto, las ayudas asociadas a los
botones ausentes no tendran efecto alguno.

El comportamiento de la barra de navegacion

Una vez modificada la apariencia de la barra, podemos también modificar parcial-
mente el comportamiento de la misma. Para esto contamos con el evento OnClick de
este componente:

void _ fastcall TFornil:: DBNavi gator1dick(TOoject *Sender,
TNavi gat eButt on Butt on)
{

}

Podemos ver que, a diferencia de la mayorfa de los componentes, este evento OnClick
tiene un parametro adicional que nos indica qué botén de la barra ha sido pulsado.
Este evento se dispara después de que se haya efectuado la accién asociada al botén; si
se ha pulsado el boton de editat, el conjunto de datos asociado ya ha sido puesto en
modo de edicién. Esto se ajusta al concepto basico de tratamiento de eventos: un
evento es un contrato sin obligaciones. No importa si no realizamos accion alguna en

Rejillas y barras de navegacion 317

respuesta a un evento en particular, pues el mundo seguira girando sin nuestra coo-
peracion.

Mostraré ahora una aplicacion de este evento. Segiin mi gusto personal, evito en lo
posible que el usuario realice altas y modificaciones directamente sobre una rejilla.
Prefiero, en cambio, que estas modificaciones se efectien sobre un cuadro de didlogo
modal, con los tipicos botones de aceptar y cancelar. Este didlogo de edicion debe
poderse ejecutar desde la ventana en la que se efectia la visualizacién mediante la
rejilla de datos. Sinos cefiimos a este estilo de interaccién, no nos vale el comporta-
miento normal de las barras de navegacion. Supongamos que Forz2 es el cuadro de
dialogo que contiene los controles necesarios para la edicion de los datos visualiza-
dos en el formulario Form1. Podemos entonces definir la siguiente respuesta al
evento OnClick de la barra de navegacion existente en For1:

void __fastcall TForml:: DBNavi gator1d i ck(TCbj ect *Sender,
TNavi gat eButt on Butt on)

if (Button == nbEdit || Button == nblnsert)
/1 La tabla estad ya en nodo de edicidn o insercion
For n2- >Showivbdal () ;

De este modo, al pulsar el botén de edicion o el de insercién, se pone a la tabla base
en el estado correspondiente y se activa el dialogo de ediciéon. Hemos supuesto que
este didlogo tiene ya programadas acciones asociadas a los botones para grabar o
cancelar los cambios cuando se cierra. Podemos incluso aprovechar los métodos de
clase mostrados en el capitulo de técnicas de gestion de ventanas para crear dindmi-
camente este cuadro de didlogo:

void __fastcall TForml:: DBNavi gator1d i ck(TCbj ect *Sender,
TNavi gat eButt on Button)

if (Button == nbEdit || Button == nblnsert)
/'l La tabla estad ya en nodo de edici6n o insercion
TFornR: : Mostrar (__cl assi d(TFor n2),
Button == nbEdit ? 0 : 1); // Creaci6n dinanca

Un método util es el siguiente:

void _ fastcall TDBNavigator::Btndick(TNavigateBtn |Index);

Este método simula la pulsacién del botén indicado de la barra de navegacion. Su-
pongamos que, en el ejemplo anterior, quisiéramos que una doble pulsacién del ratén
sobre la rejilla de datos activase el didlogo de edicién para modificar los datos de la
fila actual. En vez de programar a partir de cero esta respuesta, lo mas sensato es
aprovechar el comportamiento definido para la barra de navegacion. Interceptamos
de la siguiente forma el evento OnDb/Click de la rejilla de datos:

318 La Cara Oculta de C++ Builder

void _ fastcall TForml::DBGidlDbl dick(TObject *Sender)
{

}

DBNavi gat or 1- >Bt nCl i ck(nbEdi t);

Observe que la llamada al método B#Click va a disparar también el evento asociado a
OnClick de la barra de navegacion.

El evento BeforeAction es disparado cuando se pulsa un botén, pero antes de que se
produzca la accién asociada al mismo. El prototipo del evento es similar al de Oz-
Click. A veces yo utilizo este evento para cambiar la accién asociada al botén de in-
sercion. Este botén znserfa visualmente una fila entre la fila actual y la anterior, pero
en muchos casos es mas interesante que la fila vaya al final de la rejilla, directamente.
Es decir, quiero que el botén ejecute el método Append, no Insert. Bueno, ésta es una
forma de lograrlo:

void _ _fastcall TForml:: DBNavi gat or 1Bef or eActi on(TObj ect *Sender)

{
stati c_cast <TDBNavi gat or *>(Sender) - >Dat aSour ce- >
Dat aSet - >Append() ;
SysUtils::Abort();
}

Rejillas de controles

Un TDBGrid de C++ Builder no puede editar, al menos directamente, un campo
légico como si fuera una casilla de verificacion. Es igualmente cierto que, mediante
los eventos OnDrawColunnCell, OnCellClick y una gran dosis de buena voluntad, po-
demos simular este comportamiento. Pero también podemos utilizar el componente
TDBCtriGrid, que nos permite, mediante la copia de controles de datos individuales,
mostrar varios registros a la vez en pantalla.

En principio, un TDBC#/Grid aparece dividido en paneles, y uno de estos paneles
acepta otros controles en su interior. En tiempo de ejecucion, los otros paneles, que
aparecen inactivos durante el diseflo, cobran vida y repiten en su intetior controles
similares a los colocados en el panel de disefio. En cada uno de estos paneles, por
supuesto, se muestran los datos correspondientes a un registro diferente. Las propie-
dades que tienen que ver con la apariencia y disposicién de los paneles son:

Propiedad Significado

Orientation Orientacién del desplazamiento de paneles.
ColCount Numero de columnas.
RowCount Numero de filas.

PanelBorder ¢Tiene borde el panel?!®

15:Y suefian los androides con ovejas eléctricas?

Rejillas y barras de navegacion 319

Propiedad Significado
PanelWidth Ancho de cada panel, en pixeles.
PanelHeight Altura de cada panel, en pixeles.

Las rejillas de controles tienen la propiedad DataSource, que indica la fuente de datos
a la cual estan conectados los diferentes controles de su interior. Cuando un control
de datos se coloca en este tipo de rejilla debe “renunciar” a tener una fuente de datos
diferente a la del TDBC##/Grid. De este modo pueden incluirse cuadros de edicion,
combos, casillas de verificacion, memos, imagenes o cualquier control que nos dicte
nuestra imaginaciéon. La excepcion son los TDBRadioGroup y los TDBRichEdit.

En C++ Builder 1, sin embargo, no se podian colocar directamente componentes
DBMemoy DBImage en una rejilla de controles. La causa inmediata era que estos
controles carecian de la opcion esReplicatable dentro de su conjunto de opciones Corn-
trolStyle. La causa verdadera era que el BDE no permitfa el uso de caché para campos
BLOB. No obstante, se pueden crear componentes derivados que afiadan la opcién
de replicacién durante la creacion.

Bl DBCHIGrid [_ 0[]
il - » > + - - 7 4 ¢
Clown Triggerfish Red Emperor Giant Maori Wiasse j

Blue Angelfish Lunartail Rockcod Firefish

&

La implementaciéon de componentes duplicables en la VCL es algo complicada y no
esta completamente documentada. Aunque el tema sale fuera del alcance de este
libro, mencionaré que estos componentes deben responder al mensaje interno
CM_GETDATAIINK; y tener en cuenta el valor de la propiedad ControlState para
dibujar el control, pues si el estado asPaintCopy esta activo, hay que leer directamente
el valor a visualizar desde el campo.

=

Capitulo

15

Indices

NO DE LOS ASPECTOS BASICOS de la implementacién de todo sistema de
bases de datos es la definicién y uso de indices. Los indices estan presentes
en casi cualquier drea de la creacién y explotacién de una base de datos:

Mediante los indices se pueden realizar busquedas rapidas.

Las busquedas rapidas se aprovechan en la implementacién de las restricciones de
integridad referencial.

Si los indices se implementan mediante arboles balanceados (-#rees) o alguna
técnica equivalente, que es lo mas frecuente, nos sirven también para realizar dife-
rentes ordenaciones logicas sobre los registros de las tablas.

Sobre un indice que permite una ordenacién se pueden definir eficientemente
rangos, que son restricciones acerca de los registros visibles en un momento de-
terminado.

Gracias a las propiedades anteriores, los indices se utilizan para optimizar las
operaciones SQL tales como las selecciones por un valor y los encuentros entre
tablas.

En el tercer punto de la lista anterior, he mencionado indirectamente la posibilidad
de indices que no estén implementados mediante arboles balanceados. Esto es pet-
fectamente posible, siendo el caso mas tipico los indices basados en técnicas de bash,
o desmenuzamiento de la clave. Estos indices, sin embargo, no permiten la ordena-
cion de los datos bésicos. Por esto, casi todos los indices de los sistemas de bases de
datos mas populares estan basados en arboles balanceados y permiten tanto la bus-
queda rdpida como la ordenacién.

Con qué indices podemos contar

El primer paso pata trabajar con indices en C++ Builder es conocer qué indices
tenemos asociados a una tabla determinada. Si lo Gnico que nos importa es la lista de
nombres de indices, podemos utilizar el método GetlndexNames, aplicable a la clase
TTable. Su prototipo es:

322 La Cara Oculta de C++ Builder

void _ _fastcall TTable:: GetlndexNanmes(TStrings *Lista);

Este método afiade a la lista pasada como parametro los nombres de los indices que
estan definidos para esta tabla. Es importante advertir que la accién realizada por
GetlndexINames es anadir nuevas cadenas a una lista existente, por lo que es necesario
limpiar primero la lista, con el método Clear, si queremos obtener un resultado satis-
factorio. Para que GetlndexNames funcione no hace falta que la tabla esté abierta; un
objeto de tipo TTable necesita solamente tener asignado valores a las propiedades
DatabaseName y TableName para poder preguntar por los nombres de sus indices.
Otra particularidad de este método es que no devuelve en la lista el indice primatio
de las tablas Paradox.

Ahora bien, si necesitamos mas informacion sobre los indices, es en la propiedad
IndexDefs de la tabla donde debemos buscarla. Esta propiedad, que devuelve un ob-
jeto de tipo TIndexDefs, es similar en cierto sentido a la propiedad Fie/dDefs, que ya
hemos analizado. Podemos utilizar IndexDefs incluso con la tabla cerrada, pero para
eso tenemos primeramente que aplicar el método Update al objeto retornado por esta
propiedad. La clase TIndexDefs es en esencia una lista de definiciones de indices; cada
definicion de indice es, a su vez, un objeto de clase TIndexDef, en singular. Para acce-
der a las definiciones individuales se utilizan estas dos subpropiedades de TIndexDefs:

__property int Count;
__property TlndexDef *ltens[int I];

Por su parte, estas son las propiedades de un objeto de clase TTndexDef:

Propiedad Significado

Name Es el nombre del indice; si éste es el indice primario de una tabla
Paradox, la propiedad contiene una cadena vacfa.

Fields Lista de campos de la clave, separados por puntos y comas. Si es un
indice de expresiones de dBase, la propiedad contiene una cadena
vacia.

Expression Expresion que define un indice de expresiones de dBase.

Options Conjunto de opciones del indice.

La propiedad Options es un conjunto al cual pueden pertenecer los siguientes valores:

Opcién Significado

ixPrimary El indice es el primario de una tabla Paradox.
ixUnique No se permiten claves duplicadas en el indice.
ixDescending El criterio de ordenacion es descendente.
ixExpression El indice es un indice de expresiones de dBase.

ixCaselnsensitive Se ignora la diferencia entre mayusculas y minusculas. No
aplicable en tablas dBase.

Indices 323

Si no existiera el método GetlndexNames se podtia simular con el siguiente procedi-
miento:

void __fastcall LeerNonmbresDel ndices(TTabl e *Tabl e,
TStrings *Lista)

{
Tabl a- >I ndexDef s- >Updat e() ;
Lista->C ear(); /] Una mejora al algoritno
for (int i = 0; i < Tabla->IndexDefs->Count; i++)
TI ndexDef *id = Tabl a- >l ndexDefs->Itens[i];
if (id->Name !'="")
Li st a- >Add(i d- >Nan®) ;
}
}

Pero si lo que deseamos es obtener una lista de las definiciones de indices, similar a la
lista desplegable de la propiedad IndexFieldNames que estudiaremos en breve, debe-
mos utilizar un procedimiento parecido a este otro:

void _ fastcall LeerDefiniciones(TTable *Tabla, TStrings* Lista)

{
Tl ndexDefs *I D = Tabl a- >l ndexDef s;
| D- >Updat e() ;
Li sta->C ear();
for (int 1 =0; | <ID>Count; |++)
if (ID>tens[1]->0ptions. Contains(ixExpression))
Li sta->Add(1 D->ltens[|] - >Expr essi on);
el se
Li sta->Add(I D->ltens[|]->Fi el ds);
}

Especificando el indice activo

Ahora que podemos conocer qué indices tiene una tabla, nos interesa empezar a
trabajar con los mismos. Una de las operaciones basicas con indices en C++ Builder
es especificar el Zndice activo. El indice activo determina el orden logico de los registros
de la tabla. Es necesario tener un indice activo para poder realizar las siguientes ope-
raciones:

Busquedas rapidas con FindKey, FindNearest y otros métodos relacionados.
Activacién de rangos.

Uso de componentes TDBILookupComboBox y TDBILookupl istBox con la tabla
asignada indirectamente en su propiedad ListSource.

Tablas en relacidn master/ detail. 1a tabla de detalles debe indicar un indice activo.
Esto lo veremos mas adelante.

324 La Cara Oculta de C++ Builder

Aunque normalmente en una aplicaciéon de entrada de datos el criterio de ordenacion
de una tabla es el mismo para toda la aplicacion, el cambio de indice activo es una
operacion posible y completamente dindmica. A pesar de que los manuales aconsejan
cerrar la tabla antes de cambiar de indice, esta operacion puede realizarse con la tabla
abierta sin ningun tipo de problemas, en cualquier momento y con un costo despre-
ciable.

Existen dos formas de especificar un indice para ordenar una tabla, y ambas son
mutuamente excluyentes. Se puede indicar el nombre de un {ndice existente en la
propiedad IndexName, o se pueden especificar los campos que forman el indice en la
propiedad IndexFEieldNames. St utilizamos IndexIName debemos tener en cuenta que los
indices primarios de Paradox no aparecen en la lista desplegable del editor de la pro-
piedad. Si queremos activar este indice debemos asignar una cadena vacia a la pro-
piedad: este es, por otra parte, su valor por omision. La propiedad IndexFieldNamses,
en cambio, es mas facil de utilizar, pues en la lista desplegable de su editor de pro-
piedad aparecen los campos que forman la clave de cada indice; generalmente, esto
es mas informativo que el simple nombre asignado al indice.

I‘_Seleccién dindmica de indices
I+ M = a 7 i

Eéd\golApeIhdos |Nombre
L 2| Melson Roberto T 5o $40.000,00
|| 4[Young Bruce 28/12/88| $55.500,00
|| 5 Lambert Kim 2z E/02/83 $26.000.00
| 8| Johnson Leslie 410 5/04/83 $25.050,00
| 49| Forest Phil 229 17/04/83 | $25.050,00
| 11 Weston K. 34 17//30) $33.292.94
|| 12| Lee Temi 256 1/05/90) $45.332.00
| 14 Hal Stewart 227 4/06/90) $34.43263
|| 15 “oung E.atherine 23 14/08/90| $24.400,00
|| 20 Papadopouloz | Chrig 887 140190 $25.050.00
| 24 Fisher Pete 888 12/03/30) $23.040.00
| 28 Bennet Ann 5 1/02/91) $34.482.80
o 29 De Souza Roger 288 18/02/91 | $25.500.00 = |

En el siguiente ejemplo muestro cémo cambiar en tiempo de ejecucion el orden de
una tabla utilizando un combo con la lista de criterios posibles de ordenacion. Para el
ejemplo se necesita, por supuesto, una tabla (TablT) y un cuadro de combinacién
(ComboBoxT) cuya propiedad S#yle sea igual a esDropDownlist. Es necesario definir
manejadores para el evento OnCreate de la tabla y para el evento OnChange del combo:

void _ _fastcall TForml:: FornCreate(TCbj ect *Sender)
{
/1 Llamar a la funcién del epigrafe anterior
Leer Defi ni ci ones(Tabl el, ConboBox1->ltens);
/1 Sel eccionar el priner elenento del conbo
ConboBox1->Item ndex = O;
/1 Simular el canbio de seleccién en el conbo
ConmboBox1Change(ConmboBox1) ;

Indices 325

void _ fastcall TForml:: ComboBox1Change(TObj ect *Sender)

Tabl el- >l ndexNane =
Tabl el- > ndexDef s[ConboBox1- >I t em ndex] - >Naneg;

Observe que, en vez de asignar directamente a IndexFie/dNames los campos alma-
cenados en el texto del combo, se busca el nombre del indice correspondiente en
IndexDefs. El motivo son los indices de expresiones de dBase; recuerde que la funcién
LeerDefiniciones fue programada para mostrar la expresion que define al indice en
estos casos.

Aunque algunos sistemas SQL permiten definir indices descendentes, como In-
terBase, la activacién de los mismos mediante la propiedad IndexName no fun-
ciona correctamente, pues se utiliza siempre el orden ascendente. La unica forma
de lograr que los datos aparezcan ordenados descendentemente es utilizar una
consulta TQxnery. Sin embargo, las consultas presentan determinados inconve-
nientes, sobre los que trataremos mas adelante en el capitulo 25, sobre comuni-
cacién cliente/servidor.

Indices en dBase

En dBase es posible, aunque no aconsejable, la existencia de varios ficheros mwdx
asociados a una tabla. Estos indices secundarios no se actualizan automaticamente.
La razén fundamental de esta restriccion consiste en que al abrir el fichero principal
dbf no existe forma de saber, sin intervencién del programador, si tiene algin fichero
mdx secundario asociado.

Forml.Tablel T
—Index File
[Mone]
Add. | Drlete | Cleer |
0K I Cancel | Help |

Si necesita de todos modos este tipo de indices debe utilizar la propiedad IndexFiles

de las tablas. Esta propiedad, de tipo T:#ings, almacena la lista de nombres de fiche-
ros mdx y ndx (jsi, los de dBase I11I) que deben abrirse junto a la tabla para su mante-
nimiento. Normalmente, esta propiedad debe asignarse en tiempo de disefio, pero es

326 La Cara Oculta de C++ Builder

posible afadir y eliminar dinamicamente elementos en esta propiedad. El mismo
resultado se obtiene mediante los métodos OpenlndexFile y CloselndexFile, de la clase
TTable. Cualquier componente de un indice secundario abierto puede seleccionarse,
en la propiedad IndexIName, para utilizarlo como {ndice activo de la tabla.

Especificando un orden en tablas SQL

Si estamos trabajando con una tabla perteneciente a una base de datos orientada a
registros (una forma elegante de decir Paradox 6 dBase), solamente podemos utilizar
los criterios de ordenacién inducidos por los indices existentes. Si quiero ordenar una
tabla de empleados por sus salarios y no existe el indice correspondiente mis deseos
quedaran insatisfechos. Sin embargo, si la base de datos es una base de datos SQL,
puedo ordenar por la columna o combinacién de columnas que se me antoje; es
responsabilidad del servidor la ordenacion segun el método mas eficiente. Y para
esto se utiliza la propiedad IndexFieldNames. En esta propiedad se puede asignar el
nombre de una columna de la tabla, o una lista de columnas separadas por puntos y
comas. Por supuesto, las columnas deben pertenecer a tipos de datos que permitan la
comparacion. El orden utilizado es el ascendente.

Se puede realizar demostrar esta técnica si visualizamos una tabla de InterBase o
cualquier otro sistema SQL en una rejilla. En el formulario creamos un mend emer-
gente, de tipo TPopupMenu, con una opcion Ordenar. En el evento OnPopup programa-
mos lo siguiente:

void _ fastcall TFornil:: PopupMenulPopup(TObj ect *Sender)

Ansi String S = "';' + Tablel.lndexFiel dNanes + ';";
O denar 1- >Checked =
S.Pos(';' + DBGidl.SelectedField.FieldName + ';') = 0;

De esta forma el comando de ment aparece inicialmente marcado si el nombre del
campo correspondiente a la columna seleccionada se encuentra ya en el criterio de
ordenacién. Para afadir o eliminar el campo del criterio de ordenacion, creamos un
manejador para el evento OnClick del comando:

void _ fastcall TFornil:: Ordenar1dick(TCbject *Sender)
{
Ansi String Criterio = ";" + Tabl el- >l ndexFi el dNanes + ";";
Ansi String Canpo = ";" + DBGidl->Sel ect edFi el d->Fi el dNane + ";";
int Posicion = Criterio. Pos(Canpo);
if (Posicion != 0)
{
Criterio.Del ete(Posicion, Canpo.Length() - 1);
Tabl el- >l ndexFi el dNames = Criterio. SubString(2,
Criterio.Length() - 2);

Indices 327

else if (Criterio ==";;")
Tabl el- >l ndexFi el dNanmes = DBG i d1->Sel ect edFi el d- >Fi el dNane;
el se
Tabl el- >l ndexFi el dNanes = Tabl el- >l ndexFi el dNanes
+ ";" + DBGidl->Sel ect edFi el d->Fi el dNane;

Le propongo al lector que mejore esta técnica afladiendo al mend emergente la posi-
ci6n del campo en la lista de columnas, si es que esta ordenado.

Busqueda basada en indices

En C++ Builder es muy facil realizar una busqueda rapida sobre el indice activo. Al
estar los indices principales de todos los formatos de bases de datos soportados por
el BDE implementados mediante arboles balanceados o técnicas equivalentes, es
posible realizar dos tipos de busqueda: la busqueda exacta de un valor y la busqueda
inexacta en la cual, si no encontramos el valor deseado, nos posicionamos en la fila
correspondiente al valor mas cercano en la secuencia ascendente o descendente de
claves del indice. Estas dos operaciones, a su vez, se pueden realizar en C++ Builder
utilizando directamente ciertos métodos simples o descomponiendo estos métodos
en secuencias de llamadas mas elementales; por supuesto, esta segunda técnica es
mas complicada. Comenzaremos por la forma mas sencilla y directa, para luego ex-
plicar el por qué de la existencia de la segunda.

Para realizar una busqueda exacta sobre un indice activo se utiliza el método FindKey.
Su prototipo es:

bool _ fastcall TTabl e:: Fi ndKey(const TVarRec *KeyVal ues,
const int KeyVal ues_Size);

El parametro [Valores corresponde a la clave que deseamos buscar. Como la clave
puede ser compuesta y estar formada por campos de distintos tipos, se utiliza un
vector de valores de tipo arbitrario para contenerla. Ya hemos visto el mecanismo de
la VCL para listas de parametros en el capitulo que trata sobre los tipos de datos de
C++ Builder.

Si FindKey encuentra la clave especificada, la tabla a la cual se le aplica el método cam-
bia su fila activa a la fila que contiene el valor. En ese caso, FindKey devuelve True. Si
la clave no se encuentra, devuelve False y no se cambia la fila activa.

Por el contratio, el método FindNearest no devuelve ningin valor, porque siempre
encuentra una fila:

void __fastcall TTabl e:: Fi ndNearest(const TVarRec *KeyVal ues,
const int KeyVal ues_Si ze);

328 La Cara Oculta de C++ Builder

El propésito de FindNearest es encontrar el registro cuyo valor de la clave coincide
con el valor pasado como parametro. Sin embargo, si la clave no se encuentra en la
tabla, el cursor se mueve a la primera fila cuyo valor es superior a la clave especifi-
cada. De este modo, una insercién en ese punto dejatfa espacio para un registro cuya
clave fuera la suministrada al método.

La aplicacion mas evidente del método FindNearest es la busqueda incremental. Su-
pongamos que tenemos una tabla ordenada por una clave alfanumérica y que la es-
tamos visualizando en una rejilla. Ahora colocamos en el formulario un cuadro de

edicién, de tipo TEdit, y hacemos lo siguiente en respuesta al evento OnChange:

void _ fastcall TFornil:: Edit1Change(TObj ect *Sender)

Tabl el- >Fi ndNear est (ARRAYOFCONST((Edi t 1- >Text)));

Se puede evitar el uso del cuadro de edicién si la rejilla esta en modo de sélo lectura:

Propiedad Valor
ReadOnly True
Options Eliminar dgEditing

Necesitamos también declarar una variable de cadena para almacenar la clave de
busqueda actual; ésta se declara en la seccion private de la declaraciéon de la clase del
formulario:

private:
Ansi String Clave; // Se inicializa a cadena vacia

Después hay que interceptar el evento OnKeyPress de la rejilla:

void _ fastcall TForml::DBG i dlKeyPress(TCbj ect *Sender, char &Key)

{
if (Key >= "' ")
AppendStr (d ave, Key);
else if (Key == 8)
Cl ave. Del et e(C ave. Lengt h(), 1);
el se
return;
Key = 0;
Tabl el- >Fi ndNear est (ARRAYOFCONST((C ave)));
}

El inconveniente principal de esta técnica es que no sabemos en un momento de-
terminado qué clave hemos tecleado exactamente, pero se puede utilizar un texto
estatico, TLabel, para paliar este problema.

Indices 329

I, fixgueda incesantal sobes o indss active

H oA F F o = A o Bann
Cidige [Apelds [Honke [esenibn] Cowee| Gewi =]

M Ealdewn lwel AR | £ a0

105 Berde ks H. 25 RADE? £33 M0

¥ E:arnst A 5 1O | 40

N B3 Exthogp Dana 0 OLTEED 40000

] 108 Broan 1] e W 0N

] 1 Buhank Jarndei M. 29 IRODED S X0

I 107 Cank. Farm S 1729 | £35 5000

] 2 Dim & ura Arge 268 BRI | 55 SO0

I 121 Femai Auherin 1 12T | 05000

24 Fihes Paty 68| 127990 £04000

: 4 Fomel Fhil 24 1N0Am £25 05000

] 124 | Gln Jacrpar 2TE] | 2 BRS0
L] 138 | Graan T. I8 1187 $3E00000 =]

Implementacion de referencias mediante FindKey

Como sabemos, los campos de referencia tienen una implementacién directa y senci-
lla en C++ Builder. Sin embargo, puede que en ciertas ocasiones nos interese pres-
cindir de esta técnica e implementar de forma manual la traduccion de un cédigo a
una descripcion.

Volvemos al ejemplo de los pedidos de la base de datos bedemos. La tabla items repre-
senta las cantidades vendidas de un producto en determinado pedido. En cada fila de
esta tabla se almacena unicamente el cédigo del producto, Par#No, por lo cual para
conocer el precio por unidad del mismo hay que realizar una busqueda en la tabla de
articulos, parts. El problema consiste en que necesitamos la descripcién del producto
y su precio. Si creamos dos campos de referencia, C++ Builder realizara dos busque-
das sobre la misma tabla, cuando en realidad solamente necesitamos una busqueda.

Por lo tanto, crearemos dos campos calculados, llamémosle Descripcion 'y PrecioUnitario,
sobre la tabla zzems. El primero sera de tipo String y el segundo de tipo Currency. Para
calcular sus valores interceptamos el evento OnCaleFields del siguiente modo:

void _ fastcall TForml.tbltensCal cFi el ds(TDat aSet *Sender)
if (tbParts->Fi ndkey(ARRAYOFCONST((tbltensPart No->Val ue)))

t bl tenmsDescri pci on->Val ue = tbPartsDescription->Val ue;
tbltensPreci oUnitari o->Val ue = tbPartsListPrice->Val ue;

He supuesto que estan creados ya los campos para cada una de las dos tablas utiliza-

das.

Este cédigo tiene un par de detalles importantes para asimilar. En primer lugar, la
tabla parts tiene que tener al indice primario, definido sobre el c6digo de producto,
como indice activo. En segundo lugar, este algoritmo cambia la posicion de la fila

330 La Cara Oculta de C++ Builder

activa de la tabla de articulos. Es por ello que no debe utilizarse esta misma tabla para
visualizar los articulos, pues el usuario vera como el cursor de la misma se mueve
desenfrenadamente de vez en cuando. En realidad, el algoritmo utilizado por la VCL
para los campos de referencia utiliza la funcion Lookup, de mas facil manejo, que
veremos un poco mas adelante.

Busquedas utilizando SetKey

Ahora vamos a descomponer la accién de los métodos FindKey y FindNearest en lla-
madas a métodos de mas bajo nivel. El método fundamental de esta técnica es SezKey:

void _ fastcall TTable:: SetKey();

El objetivo de este método es muy simple: colocar a la tabla en el estado especial
dsSetKey. En este estado se permiten asignaciones a los campos de la tabla; estas asig-
naciones se interpretan como asignaciones a una especie de bxffer de busqueda. Por
supuesto, estas asignaciones deben realizarse sobre los campos que componen la
clave del indice activo. Una vez que los valores deseados se encuentran en el buffer de
busqueda, podemos utilizar uno de los métodos siguientes para localizar un registro:

bool _ fastcall TTabl e:: Got oKey();
void _ fastcall TTable:: GotoNearest();

La correspondencia de estos métodos con FindKey y FindNearest es evidente. GotoKey
intentara localizar una fila que corresponda exactamente a la clave especificada, y
GotoNearest localizara siempre la mas cercana. Si deseamos salir del estado dsSezKey sin
realizar busqueda alguna, podemos utilizar el método Cance/ para regresar al estado
normal: el estado dsBrowse.

Experimentando con SetKey

Para comprender mejor el uso de SezKey le propongo un pequefio experimento, no
muy util como técnica de interfaz, pero que aclara el sentido de este método. Para el
experimento necesitamos un formulario con una rejilla de exploracién. Supongamos
ademads que la tabla visualizada es la tabla de empleados del alias bedermos, la tabla
employee.db. Los objetos protagonistas son:

Objeto Propiedad Valor
Form1 (El formulario principal)
Tablel (La tabla de empleados)

DatabaseName — bedemos
TableName employee.db

Indices 331

IndexName ByName

DataSonrcel (Fuente de datos para TableT)
DataSet Tablel

DBGrid1 (Rejilla de exploracion)
DataSource DataSonrcel

Buttonl (Para invocar el didlogo de busqueda)

El indice ByName utilizado en la tabla ezzployee esta definido sobre las columnas
LastName, el apellido, y FirstNanze, el nombre del empleado. El botén que hemos
colocado permitira invocar a un cuadro de bisqueda. En este segundo formulario
colocamos los siguientes objetos:

Objeto Propiedad Valor

Form2 (El formulario de busqueda)

DBEdit1 (Nombre del empleado)
DataSonrce Form1->DataSourcel
DatalField FirstName

DBEdir2 (Apellido del empleado)
DataSonrce Form1->DataSourcel
DataField LastName

Buttonl (Botoén para aceptar)
Kind bkO

Button2 (Boton para cancelar)
Kind bkCancel

Observe que los cuadros de edicion estan trabajando directamente con la misma
tabla que la rejilla del primer formulario; ésta es la parte fundamental del experi-
mento.

El tnico cédigo que necesitamos en este ejemplo se produce en respuesta a la pulsa-
ci6n del botén del primer formulario:

void _ fastcall TFornil.Buttonld ick(TOoject *Sender)

Tabl el- >Set Key() ;
i f (Fornm2->Showvbdal () == nr)
Tabl el- >Got oNear est () ;
el se
Tabl el- >Cancel () ;
}

Cuando se pulsa el botén la tabla se pone en el estado dsSezKey y se invoca al cuadro
de busqueda que hemos creado. Si mueve este cuadro y observa la rejilla vera como
desaparecen las filas de la misma temporalmente. Ahora, cualquier cosa que teclee-
mos en los cuadros de edicion del didlogo sera considerada como una asignacion a
un campo de la tabla, aunque en realidad se trata de una asignacion a un buffer de

332 La Cara Oculta de C++ Builder

busqueda: mientras tecleamos podemos ver también el efecto sobre el contenido de
la rejilla. Cuando por fin cerramos el didlogo cancelamos la bisqueda o la dispara-
mos, en dependencia del bot6n utilizado para terminar el didlogo, y entonces la tabla
regresa a la normalidad. Repito, no es una técnica para incluir directamente en un
programa, pero es interesante para comprender el mecanismo de busquedas me-
diante el indice activo.

¢Por qué existe SetKey?

Ademas de cualquier motivo filoséfico o espiritual que puedan alegar ciertos libros
de C++ Builder que circulan por ahi, SezKey existe porque existen los indices de ex-
presiones de dBase; de no ser por esta razoén, SezKey pudiera quedar como un método
interno de la implementacién de la VCL. En este tipo de indices, FindKey y FindNear-
est se niegan rotundamente a trabajar: el primer paso de estos métodos es “repartir”
los valores de lista pasada como parametro entre los campos que forman el indice.
Pero en un indice de expresiones no es sencillo determinar cuales son los campos
que forman el indice; en realidad es algo que no se intenta en absoluto.

Por ejemplo, tomemos una tabla que tenga los campos Nowmbre y Apellidos, y cuyo
indice activo sea un indice basado en la expresion Nowbre + Apellidos. Hay dos cam-
pos involucrados en el indice, y un programador inocente puede verse tentado a
programar algo asi:

/1 No funciona
Tabl el- >Fi ndKey(ARRAYOFCONST((" Howar d", "Lovecraft")));

¢Cual es el valor que debe tomarse como nombre y cual debe tomarse como ape-
llido? C++ Builder no puede saberlo. Y tanto FindKey como FindNearest estan pro-
gramados para lanzar una excepcion si el indice activo es un {ndice de expresiones.
La técnica correcta para realizar una busqueda sobre este tipo de indices es la si-

guiente:

Tabl el- >Set Key() ;

Tabl el- >Fi el dval ues[" Nonbre"] = "Howard";

Tabl el- >Fi el dVal ues[" Apel | i dos"] = "Lovecraft";
Tabl el- >Got oNear est () ;

Observe que el ultimo método de la secuencia es GotolNearest, en vez de GotoKey. La
causa es la misma: para determinar si encontramos la fila buscada tendriamos que ser
capaces de descomponer la expresion del indice en campos, y esto puede no ser po-
sible, en el caso general.

Existe una variante de SezKey, el método EditKey, que es util solamente cuando el
indice activo, o el criterio de ordenacion, incluye varias columnas. EdjtKey coloca la

Indices 333

tabla en el estado dsSezKey, pero no borra las asignaciones anteriores en el buffer de
busqueda. De este modo, después de efectuar la busqueda del ejemplo anterior po-
demos ejecutar las siguientes instrucciones para buscar a un tal Howard Duncan:

Tabl el- >Edi t Key();
Tabl el- >Fi el dVal ues[" Apel | i dos"] = "Duncan";
Tabl el- >Got oNear est () ;

Rangos: desde el Alfa a la Omega

Un rango en C++ Builder es una restriccion de las filas visibles de una tabla, me-
diante la cual se muestran solamente las filas en las cuales los valores de ciertas co-
lumnas se encuentran entre dos valores dados. La implementacion de este recurso se
basa en los indices, por lo cual para poder establecer un rango sobre una o varias
columnas debe existir un indice sobre las mismas y estar activo. No podemos definir
rangos simultineamente sobre dos indices diferentes; si tenemos un indice sobre
nombres de empleados y otro sobre salarios, no podemos utilizar rangos para pedir
las personas cuyos nombres comienzan con la letra A y que ganen entre tres y cinco
millones de pesetas anuales. Eso si, podemos establecer una de estas restricciones y
luego utilizar alguna otra técnica, como los filtros que veremos mas adelante, para
volver a limitar el resultado.

El indice sobre el cual se define un rango puede ser un indice compuesto, definido
sobre varias columnas. Sin embargo, la semantica de la aplicacion de rangos sobre
indices compuestos es bastante confusa e induce facilmente a errores. Lo digo por
experiencia personal, pues en la edicion anterior de este libro di una explicacion
equivocada de cémo funciona esta operacion. El ejemplo concreto que utilicé fue
éste: tenemos una tabla Tabl! que esta ordenada por un indice compuesto por el
nombre y el apellido. ¢Qué hace la siguiente instrucciéon?

Tabl el- >Set Range(ARRAYOFCONST(("M, "F")),
ARRAYOFCONST((" Mezzz", "Fzzzz")));

Al parecer, debe limitar el conjunto de registros activos a aquellas personas cuyo
nombre comienza con “M” y su apellido con “F”. {No! Ahora aparecen, ademas de
Maria Filiberta, casi todas las personas cuyo nombre comienza con “M” ... sin im-
portar el apellido, al parecer. El problema es que uno espera los registros que satisfa-
cen la condicion:

'M <= Nonbre and Nonbre <= 'Mezzz' and
'"F' <= Apellidos and Apellidos <= 'Fzzzz'

Pero lo que C++ Builder genera es lo siguiente:

334 La Cara Oculta de C++ Builder

(("M = Nonbre and 'F <= Apellidos) or "M < Nonbre) and
((Nonbre = 'Megzzz' and Apel lidos <= 'Fzzzz') or Nonbre <= 'Mzzz")

Es decir, el criterio sobre el apellido solamente se aplica ez los extremos del rango defi-

nido por el criterio establecido sobre el nombre. La siguiente imagen muestra la si-
tuaciéon:

Esto es lo que esperamos... .. y esto es lo que obtenemos...

Los filtros, que seran estudiados en el siguiente capitulo, nos permiten restringir

el conjunto de registros activos utilizando criterios independientes para cada
campo.

Lo mismo que sucede con las busquedas sobre {ndices activos, sucede con los ran-
gos: existen métodos de alto nivel y de bajo nivel, y la razén es la misma. La forma

mas facil de establecer restricciones de rango es utilizar el método SezRange, que ya
hemos visto en accion.

void _ fastcall TTabl e:: Set Range(
const TVarRec *StartValues, const int StartVal ues_Si ze,
const TVarRec *EndVal ues, const int EndVal ues_Si ze);

La aplicacion de este método provoca la actualizacion inmediata de la tabla. EI mé-

todo inverso a la aplicacién de un rango es la cancelacion del mismo mediante una
llamada a Cance/Range:

void __fastcall TTabl e:: Cancel Range();

En alguna que otra ocasién puede ser til la propiedad KeyExclusive. Si esta propiedad

tiene el valor True, los extremos del rango son descartados; normalmente la propie-
dad vale False.

Indices 335

El ejemplo de rangos de casi todos los libros

Si el indice activo de una tabla esta definido sobre una columna alfanumérica, se
puede realizar una sencilla demostracion de la técnica de rangos. Reconozco, no
obstante, que no es un ejemplo muy original, pues casi todos los libros de C++ Buil-
der traen alguna variante del mismo, pero no he encontrado todavia algo mejor.

Para esta aplicacion utilizaremos un formulario tipico de exploracién con una rejilla,
mediante el cual visualizaremos una tabla ordenada por alguna columna de tipo ca-
dena. He elegido la tabla de clientes de bedemos, customers.db, que tiene un indice By-
Company para ordenar por nombre de compafifa:

Objeto Propiedad Valor

Form1 (El formulario principal)

Table? (La tabla de clientes)
DatabaseName bedemos
TableName customer.db
IndexName ByCompany

DataSourcel (Fuente de datos para TableT)
DataSet Table?

DBGridl (La rejilla de datos)
DataSource DataSonrcel

Hasta aqui, lo tipico. Ahora necesitamos afiadir un nuevo control de tipo TabControl,
de la pagina Win32 de la Paleta, para situar un conjunto de pestanas debajo de la
rejilla. En este componente modificamos la propiedad Tabs, que determina el con-
junto de pestafas del control. Esta propiedad, que es una lista de cadenas de caracte-
res, debe tener 27 lineas. La primera linea debe contener un asterisco, o la palabra To-
dos, 0 lo que mas le apetezca. Las restantes 26 deben corresponder a las 26 letras del
alfabeto (no conozco a nadie cuyo nombre comience con N, al menos en Espafia): la
primera serd una A, la segunda una B, y asf sucesivamente. Después asigne las si-

guientes propiedades:

Propiedad Valor

Align alBottom
TabPosition tpBottom
TabWidth 18
Height 24

Cuando tenga lista la interfaz de usuario, realice una doble pulsacion sobre el control
para interceptar su evento OnChange:

336 La Cara Oculta de C++ Builder

void _ fasctcall TForml:: TabControl 1Change(TObj ect *Sender)

{
Ansi String Letra,;
Letra = TabControl 1- >Tabs->Stri ngs[TabCont r ol 1- >Tabl ndex] ;
i f (TabControl 1->Tabl ndex == 0)
/1 Si es |la pestafia con el asterisco ...
// ...nostranps todas las filas.
Tabl el- >Cancel Range() ;
el se
/1 Activanps el rango correspondiente
Tabl el- >Set Range(
ARRAYOFCONST((Letra)),
ARRAYOFCONST((Letra + "zzz")));
/1 Actualizanpos | os control es asoci ados
Tabl el- >Refresh();
}

Aunque la actualizacién de los controles asociados a la tabla ocurre automaticamente

en la mayoria de las situaciones, hay casos en los cuales es imprescindible la llamada
al método Refresh.

I_.. Rangos M=l B3
M4 4 > » F = a 7 @

Cadign |Apelidos |N0mbre |Extensi0’n| Contrato ISaIario -

£E2 E aldwin Janet 2 21/03/91 $23.300,00

105 Bender Oliver H. 255 8/10/92 $36.799,00

28 Bennet Ann 5 1/02/91 $34.482,80

23 Bishop Dana 240 1/06/92 $45.000,00

109 Brown Kelly 202 4/02/33 $27.000,00

71 Burbank Jennifer M. 289 15/04/92 $45.332.00
=

ERNEERnEEERDIEEEAABNRNOARE

Mas problemas con los indices de dBase

dBase nos sigue dando problemas con sus famosos indices de expresiones; nueva-
mente tenemos dificultades con la asignacién automatica de valores a campos en el
método SefRange. Para solucionar este inconveniente, hay que descomponer la lla-
mada a SefRange en las funciones de mas bajo nivel SetRangeStart, SetRangeEnd y
ApplyRange:

void _ fastcall TTable:: Set RangeStart();
void __fastcall TTabl e:: Set RangeEnd();
void __fastcall TTabl e:: Appl yRange();

Los métodos SeRangeStart y SetRangeEnd indican que las asignaciones a campos que
se produzcan a continuacion especifican, en realidad, los valores minimo y maximo
del rango; el rango se activa al llamar al método App/yRange. El ejemplo del epigrafe
anterior puede escribirse de la siguiente forma mediante estos métodos:

Indices 337

Tabl el- >Set RangeStart();

Tabl el- >Fi el dVal ues[" Conpany"] = Letra;
Tabl el- >Set RangeEnd() ;
Tabl el- >Fi el dval ues[" Conpany"] = Letra + "zzz";

Tabl el- >Appl yRange() ;

Como es 16gico, si el indice activo para la tabla o el criterio de ordenacién establecido
en IndexFieldNames contemplan varias columnas, hay que realizar varias asignaciones
después de SeRangeStart y SetRangeEnd, una por cada columna del indice o del crite-
rio. Por ejemplo, si Tablel se refiere a la tabla employees.db, y esta activo el indice
ByName, definido sobre los apellidos y el nombre de los empleados, es posible esta-
blecer un rango compuesto con los empleados del siguiente modo:

Tabl el- >Set RangeStart () ;

Tabl el- >Fi el dval ues["Last Nane"] = "A";
Tabl el- >Fi el dVal ues[" Fi rst Nane"] = "A";
Tabl el- >Set RangeEnd() ;

Tabl el- >Fi el dval ues["Last Nane"] = "Azzz";
Tabl el- >Fi el dval ues["Fi rst Name"] = "Azzz";

Tabl el- >Appl yRange() ;

El ejemplo anterior setfa, precisamente, lo que tendriamos que hacer si la tabla en
cuestion estuviese en formato dbfy tuviéramos como indice activo un indice de ex-
presiones definido por la concatenacion del apellido y del nombre. Recuerde, no
obstante, que este rango compuesto no afecta de forma independiente a los dos
campos involucrados, y que desde un punto de vista practico tiene poca utilidad.

Del mismo modo que contamos con los métodos SetKey y EditKey para la busqueda
por indices, tenemos también los métodos EditRangeStart y EdifRangeEnd, como va-
riantes de SefRangeStart y SetRangeEnd cuando el indice esta definido sobre varias
columnas. Estos dos nuevos métodos permiten la modificacion del buffer que con-
tiene los valores extremos del rango sin borrar los valores almacenados con anterio-
ridad. En el ejemplo anterior, si quisiéramos modificar el rango de modo que incluya
solamente a los apellidos que comienzan con la letra B, dejando intacta la restriccion
de que los nombres empiecen con A, podriamos utilizar el siguiente cédigo:

Tabl el- >Edi t RangeStart();

Tabl el- >Fi el dval ues["Last Nane"] = "B";
Tabl el- >Edi t RangeEnd() ;
Tabl el- >Fi el dVal ues[" Last Nane"] = "Bzzz";

Tabl el- >Appl yRange() ;

Como crear un indice temporal

Para afiadir un nuevo indice a los existentes desde un programa escrito en C++ Buil-
der, hay que utilizar el método Addlndex, del componente TTable, que debe ejecutarse

338 La Cara Oculta de C++ Builder

sobre una tabla abierta en exclusiva. Los parametros de este método son similares a
los del método Add de la clase TlndexDefs:

void __fastcall TTabl e:: Addl ndex(const Ansi String Nonbre,
const Ansi String Definicion, TlndexOptions Opciones,
const Ansi String CanposDescendentes);

La Definicion, en la mayoria de los casos, es la lista de campos separados por puntos y
comas. Pero si la tabla estd en formato dBase, podemos utilizar la opcion ixExpression
en el conjunto de opciones, y especificar una expresion en el parametro Definicion:

Tabl aDBase- >Add| ndex(" Por Norbr e”, " NOVBRE+APELLI DOS",
Tl ndexQptions() << ixExpression, "");

Usted se estara preguntando para qué demonios sirve el altimo parametro del mé-
todo. Yo también. Este parametro se ha colado sigilosamente en la versién 4 de la
VCL, pero es curioso que en Delphi 4 permite un valor por omisién (la cadena vacia,
por supuesto), mientras que C++ Builder (jque ha tenido parametros por omision
desde siemprel) no lo permite.

En realidad, esta es una caracteristica de Paradox nivel 7; no lo intente sobre las ta-
blas del alias bedemos, pues casi todas estan en el formato de Paradox 5. Supongamos
que una tabla tiene los campos Pais, Cindad y Ventas. Queremos ordenar primero por
paises, pero dentro de cada pais necesitamos ordenar descendentemente de acuerdo
al total de ventas. Lo que tenemos que hacer es pasar los campos descendentes, en
este caso uno solo, en el ultimo parametro de Addlndex:

Tabl el- >Addl ndex(" Pai sVent as", "Pais; Ventas",
TI ndexOptions() << ixCasel nsensitive, "Ventas");

¢A que no adivina qué formato de bases de datos presenta problemas durante la
creacion de indices? jClaro esta, dBasel Los desarrolladores de la VCL pasaron por
alto una nueva opcién del BDE durante la creacién de indices para dBase: se puede
pedir que un indice sea Gnico (unique) o distinto (distined). Un indice tnico rechaza
cualquier intento de insercién de un registro con clave duplicada. Un indice distinto
sencillamente reemplaza la clave anterior; esto no tiene mucho sentido, pero existe
por razones historicas. Y, por supuesto, esta también el indice que permite entradas
repetidas. En total, tres tipos de indices. Y una sola opcién, ixUnique, para especificar
la condicién de unicidad. Como resultado, los indices dBase creados desde C++
Builder no pueden ser #nicos. Tampoco pueden serlo los creados mediante Database
Desktop. Tendremos que esperar al capitulo sobre el API del BDE para aprender a
crear {ndices tnicos para dBase nosotros mismos.

ara eliminar el indice recién creado necesitamos el método Deletelndex. Para que este
P liminar el indice reci read 1t 1 método Deletelndex. P t

procedimiento pueda cumplir su tarea es necesario que la tabla esté abierta en modo

exclusivo. Esta es la declaracién de Deletelndex:

Indices 339

void _ fastcall TTabl e:: Del et el ndex(const Ansi String Nonbre);

Capitulo

16

Métodos de busqueda

N EL CAPITULO ANTERIOR estudiamos la bisqueda de valotes utilizando

indices y el uso de rangos como forma de restringir las filas accesibles de una

tabla. En este capitulo estudiaremos los restantes métodos de busqueda y
filtrado que ofrece C++ Builder. Comenzaremos con los filtros, un método de espe-
cificacién de subconjuntos de datos, y luego veremos métodos de busqueda directa
similares en cierta forma a FindKey y FindNearest, pero mas generales.

Filtros

Los filtros nos permiten limitar las filas visibles de un conjunto de datos mediante
una condicién arbitraria establecida por el programador. De cierta manera, son simi-
lares a los rangos, pero ofrecen mayor flexibilidad y generalidad, pues no estan limi-
tados a condiciones sobre las columnas del indice activo. Cuando se aplican a tablas
locales, son menos eficientes, pues necesitan ser evaluados para cada fila del conjunto
de datos original. En cambio, rangos y filtros se implementan en cliente/servidor por
medio de mecanismos similares, al menos cuando hablamos de filtros definidos por
expresiones, y en el caso tipico nos ofrecen la misma velocidad.

Enla VCL 1, donde no existian filtros, habia que utilizar consultas SQL para simular
este recurso. En efecto, una tabla filtrada es equivalente a una consulta sobre la
misma tabla con la condicion del filtro situada en la clausula where. No obstante, en
muchos casos el uso de los filtros es preferible al uso de consultas, si nos andamos
con cuidado, sobre todo por su mayor dinamismo.

Existen dos formas principales de establecer un filtro en C++ Builder. La mas gene-
ral consiste en utilizar el evento OnlZlterRecord, de esta técnica hablaremos mas ade-
lante. La otra forma, mas facil, es hacer uso de la propiedad Filter. Estas son las pro-
piedades relacionadas con el uso de filtros:

Propiedad Significado
AnsiString Filter Contiene la condicion légica de filtrado
bool Filtered Indica si el filtro esta “activo” o “latente”

342 La Cara Oculta de C++ Builder

Propiedad Significado
TFilterOptions FilterOptions Opciones de filtrado; las posibles opciones son
foCaselnsensitive y foNoPartialCompare.

La propiedad Filtered, de tipo 16gico, determina si tiene lugar la seleccion segin el
filtro o no; mas adelante veremos como podemos aprovechar el filtro incluso cuando
no esta activo.

La condicién de seleccion se asigna, como una cadena de caracteres, en la propiedad
Filter. La sintaxis de las expresiones que podemos asignar en esta propiedad es bas-
tante sencilla; basicamente, se reduce a comparaciones entre campos y constantes,
enlazadas por operadores and, ory not. Por ejemplo, las siguientes expresiones son
validas:

Pais = 'Sian
(Provincia <> ""'") or (UtimFactura > '4/07/96")
Sal ari o >= 30000 and Sal ari o <= 100000

Si el nombre del campo contiene espacios o caracteres especiales, hay que encerrar el
nombre del campo entre corchetes:

[Afio] = 1776

Cuando se trata de tablas de Paradox y dBase, siempre hay que comparar el valor del
campo con una constante; no se pueden comparar los valores de dos campos entre
si. En contraste, esta limitacién no existe cuando se utilizan tablas pertenecientes a
bases de datos cliente/servidor.

Esto no lo dice la documentacion...

De no ser por esos “detalles” que se le olvidan a los escritores de manuales, mal lo
pasarfamos los escritores de libros. Con el tema de los filtros, al equipo de docu-
mentacion de C++ Builder se le quedaron un par de trucos en el tintero. El primero
de ellos tiene que ver con la posibilidad de utilizar algo parecido al operador is null
de SQL en una expresion de filtro. Por ejemplo, si queremos filtrar de la tabla de
clientes, customer.db, solamente aquellas filas que tengan una segunda linea de direc-
ci6én no nula, la columna Addr2, la expresion apropiada es:

Addr2 <> NULL

Con la constante N#// solamente podemos comparar en busca de igualdades y desi-
gualdades. Si, por el contrario, queremos los clientes con la segunda linea de direc-
ci6n no nula, con toda naturalidad utilizamos esta otra expresion:

Métodos de busqueda 343

Addr2 = NULL

Recuerde que null no es exactamente lo mismo que una cadena vacia, aunque en
Paradox se represente de esta manera.

El segundo de los trucos no documentados esta relacionado con las bisquedas pat-
ciales. Por omisién, C++ Builder activa las bisquedas parciales dentro de las tablas
cuando no se especifica la opcion folNoPartialCompare dentro de la propiedad Filter-
Options. Pero si asignamos la siguiente expresion a la propiedad Filzer de la tabla de
clientes, no logramos ninguna fila:

Conpany = "A

Esto fue lo que se les olvido aclarar: hay que terminar la constante de cadena con un
asterisco. La expresion correcta es la siguiente:

Company = ' A*'

De esta manera obtenemos todas las compatfifas cuyos nombres comienzan con la
letra A. Sin embargo, por razones que explicaré en el capitulo 25, que se ocupa de la
comunicacion cliente/servidor, prefiero sustituir la expresion anterior por esta otra:

Conmpany >= 'A" and Conpany < 'B

Un ejemplo con filtros rapidos

Es facil disefiar un mecanismo general para la aplicacién de filtros por el usuario de
una rejilla de datos. La clave del asunto consiste en restringir el conjunto de datos de
acuerdo al valor de la celda seleccionada en la rejilla. Si tenemos seleccionada, en la
columna Provincia, una celda con el valor Madrid, podemos seleccionar todos los re-
gistros cuyo valor para esa columna sea igual o diferente de Madrid. Si esta selec-
cionada la columna Edad, en una celda con el valor 30, se puede restringir la tabla a
las filas con valores iguales, mayores o menores que este valor. Pero también quere-
mos que estas restricciones sean acumulativas. Esto significa que después de limitar la
visualizacion a los clientes de Madrid, podamos entonces seleccionar los clientes con
mas de 30 afios que viven en Madrid. Y necesitamos poder eliminar todos las condi-
ciones de filtrado.

Por lo tanto, comenzamos con la ficha clasica de consulta: una rejilla de datos y una
barra de navegacion conectada a una tabla simple; si quiere experimentar, le reco-
miendo conectar la rejilla a la tabla customer del alias bedemos, que tiene columnas de
varios tipos diferentes. A esta ficha basica le afiadimos un mend emergente,
PopupMennl, que se conecta a la propiedad PopupMenn de la rejilla; basta con esto para
que el mend se despliegue al pulsar el botén derecho del ratén sobre la rejilla.

344 La Cara Oculta de C++ Builder

Para el menu desplegable especificamos las siguientes opciones:

Comando de menu Nombre del objeto de menu
Igual a (=) milgual

Distinto de (<>) miDistinto

Mayor o igual (>=) miMayorlgual

Menor o igual (<=) miMenorlgual

Activar filtro miActivarFiltro

Eliminar filtro miE lininarFiltro

Observe que he utilizado las relaciones mayor o igual y menor igual en lugar de las
comparaciones estrictas; la razon es que las condiciones individuales se van a conec-
tar entre si mediante conjunciones logicas, el operador and, y las comparaciones es-
trictas pueden lograrse mediante una combinacién de las presentes. De todos modos,

es algo trivial aumentar el ment y el cédigo correspondiente con estas relaciones
estrictas.

i Generacion automatica de filtros
|| o |m]e]=]a|-]5]e]

Addi2 |Eompany IElly |State |Z|p ;I
|| Suite 103 F.auai Dive Shoppe F.apaa Kauai HI 9476
|| Suite 310 Blue Jack Aqua Center ‘Waipahu HI 99771
|| Ocean Paradise Kailua-Kona HI 9475
ILd Makai SCUBA Club ailuakons) HI 9475
|| Washon Ventures Fm 92851
N Ocean Adventures b Distinto de <] 95737—'

Menor o igual [<=]
Mapor o igual =]
v Activar filtrg
Eliminar filro
I | H 2

Ahora debemos crear un manejador de evento compartido por las cuatro primeras
opciones del menu:

void _ fastcall TFornil::Filtrar(TCbject *Sender)
{
Set <TFi el dType, ftUnknown, ftDataSet> Ti posConConill as;
Ti posConConmil las << ftString << ftDate << ftTine << ftDateTine;

Ansi String Operador, Valor;

Qperador = Sender == milgual ? "="
Sender == mi Mayorlgual ? ">="
Sender == ni Menorlgual ? "<="
">t

/'l Extraer el nonbre del canpo

Ansi String Canpo = DBGi d1->Sel ect edFi el d- >Fi el dNaneg;

/'l Extraer y dar formato al val or sel ecci onado

if (Ti posConConill as. Contains(DBG i dl->Sel ect edFi el d->Dat aType))

Val or = QuotedStr(DBG i dl->Sel ect edFi el d->AsString);
el se

Val or = DBGi d1- >Sel ect edFi el d- >AsStri ng;

Métodos de busqueda 345

for (int i =1; i <= Valor.Length(); i++)
if (Valor[i] == Decinal Separator) Valor[i] =".";

/1 Conbi nar |a nueva condicion con |as anteriores
if (Tablel->Filter =="")
Tabl el->Filter = Format ("[%] % %",
ARRAYOFCONST((Canpo, Operador, Valor)));
el se
Tablel->Filter = Format ("% AND [%] % %",
ARRAYOFCONST((Tabl el->Fi | ter, Canpo, Operador, Valor)));
/1 Activar directamente el filtro
m ActivarFi |l tro->Checked = True;
Tabl el->Filtered = True;
Tabl el- >Refresh();

El nombre del campo ha sido encerrado automaticamente entre corchetes, para evi-
tar sorpresas con espacios, acentos y efies. La parte mas trabajosa del método es la
que tiene que ver con el formato del valor. Si la columna Company tiene el valor
Marteens’ Diving Academy, un filtro por igualdad sobre este valor tendtia el siguiente
aspecto:

Conpany = 'Marteens'' Diving Acadeny'

Tome nota de los apostrofes repetidos dentro de la constante de cadena; esta es una
convencion léxica heredada de Pascal. Si, por el contrario, creamos un filtro sobre
salarios, no son necesarios los apostrofes para encerrar el valor:

Sal ary = 100000

La funcién QuotedStr nos ayuda a dar formato a una cadena de caracteres, y esta defi-
nida en la unidad SysUz/s. También hay que tener cuidado con el formato de los
campos numéricos con decimales. Nuestro separador de decimales es la coma,
mientras que la VCL espera un punto.

En C++ Builder 4, todos estos problemas se resuelven facilmente, pues se pue-
den encerrar entre comillas todos los valores constantes, incluidos los numéticos.
De este modo, para todos los tipos de datos le darfamos formato a la constante
mediante la funcién QuotedStr.

En el método que afiade la nueva condicién al filtro, se ha activado de paso el filtro,
estableciendo la propiedad Fi/ered de 1a tabla a True; de esta forma se obtiene inme-
diatamente una idea de lo que estamos haciendo. Independientemente de lo anterior,
es conveniente tener una opcion para activar y desactivar manualmente el filtro, y de
esto se encarga el comando de menu Activar filtro:

void _ fastcall TForml::m ActivarFiltrod ick(TObject *Sender)
{

m ActivarFiltro->Checked = ! m ActivarFiltro->Checked,;

346 La Cara Oculta de C++ Builder

/1 Activar o desactivar en dependencia ...

/1 ...del estado de |a opci 6n del nend.

Tabl el->Filtered = m ActivarFiltro->Checked;
Tabl el- >Refresh();

Por ultimo, se requiere un comando para eliminar todas las condiciones establecidas:

void _ fastcall TFornl::m ElimnarFiltrodick(TObject *Sender)

m ActivarFil tro->Checked = Fal se;
Tabl el->Filtered = Fal se;
Tablel->Filter = "";

Tabl el- >Refresh();

El evento OnFilterRecord

Mas posibilidades ofrece la intercepcion del evento OnFilterRecord. Este es el evento
tipico que en su encabezamiento tiene un parametro légico pasado por referencia,
para que aceptemos o rechacemos el registro actual:

void _ fastcall TForml:: Tabl elFilterRecord(TDat aSet *Sender,
bool &Accept);

El parametro Acept trae por omision el valor True; solamente si queremos rechazar
un registro necesitamos asignarle False a este parametro. El algoritmo de decisiéon que
empleemos, por otra parte, puede ser totalmente arbitrario; debemos recordar, sin
embargo, que este evento se disparara para cada fila de la tabla original, por lo cual el
algoritmo de filtrado debe ser lo mas breve y eficiente posible.

¢Como podemos aprovechar este eventor En primer lugar, se puede utilizarlo para
expresar relaciones que no sean simples comparaciones. Por ejemplo, quiero selec-
cionar solamente las compafiias que pertenezcan al grupo multinacional Marteens (la
fantasia no tributa todavia a Hacienda, ¢no?). Una posible solucion es utilizar este
manejador de eventos:

void _ fastcall TForml:: Tabl elFilterRecord(TDat aSet *Sender,
bool &Accept)
{

Ansi String Conpany = Sender - >Fi el dVal ues[" Conpany"];
Accept = Conpany. Upper Case. Pos(" MARTEENS") != O;

El método UpperCase lleva una cadena a mayusculas y Pos busca un subcadena dentro

de otra. Este otro ejemplo compara entre si los prefijos de los nimeros de teléfono y
de fax:

Métodos de busqueda 347

void _ fastcall TForml:: Tabl elFilterRecord(TDat aSet *Sender,
bool &Accept)

{

Ansi String Phone = Sender->Fi el dVal ues[" Phone"];

Ansi String Fax = Sender->Fi el dVal ues[" Fax"];

Accept = Phone. SubString(1, 3) != Fax.SubString(1, 3);

/'l jEstos tienen el teléfono y el fax en distintas ciudades!
}

También se puede aprovechar el filtro para comparar entre s{ dos campos de una
tabla Paradox y dBase.

Medite bien antes de decidirse a utilizar OnLi/terRecord. Tenga por seguro que este
filtro se aplica en el cliente, lo cual implica que la aplicacién debe bajarse a través
de la red incluso los registros que no satisfacen al filtro. Todo depende, sin em-
bargo, del nivel de selectividad que esperamos de la expresion.

Localizacion y busqueda

Si el uso de filtros es similar al uso de rangos, en cierto sentido, los métodos Locate y
Lookup amplian las posibilidades de los métodos de busqueda con indices. El pri-
mero de estos dos métodos localiza la primera fila de una tabla que tenga cierto valor
almacenado en una columna, sin importar si existe o no un indice sobre dicha co-
lumna. I.a declaracién de este método es:

bool _ fastcall TDataSet::Locate(const Ansi String Col umas,
const Variant &Val ores, TLocateOptions Qpciones);

En el primer parametro se pasa una lista de nombres de columnas; el formato de esta
lista es similar al que hemos encontrado en la propiedad IndexFie/dNames: las colum-
nas se separan entre si por puntos y comas. Para cada columna especificada hay que
suministrar un valor. Si se busca por una sola columna, necesitamos un solo valor, el
cual puede pasarse directamente, por ser el segundo parametro de tipo Variant. Si se
especifican dos o0 més columnas, tenemos que pasar una matriz variante; en breve
veremos ejemplos de estas situaciones. Por tltimo, el conjunto de opciones del tercer
parametro puede incluir las siguientes:

Opcidén Propdésito
loCaselnsensitive Ignorar mayusculas y mindsculas
loPartialKey Permitir busquedas parciales en columnas alfanuméricas

Cuando Locate puede encontrar una fila con los valores deseados en las columnas
apropiadas, devuelve Trze como resultado, y cambia la fila activa de la tabla. Si, por el
contrario, no se localiza una fila con tales caracteristicas, la funciéon devuelve False y
no se altera la posicioén del cursor sobre la tabla. El algoritmo de busqueda imple-

348 La Cara Oculta de C++ Builder

mentado para Locate es capaz de aprovechar los indices existentes. Si el conjunto de
columnas no puede aprovechar un indice, Locate realiza la bisqueda mediante filtros.
Esto es lo que dice la documentacién de Inprise/Botland; en el capitulo 25 veremos
cémo se implementan realmente estas operaciones en bases de datos SQL.

Ahora veamos un par de ejemplos sencillos de traspaso de parametros con Locate. El
uso mas elemental de Locate es la localizacidén de una fila dado el valor de una de sus
columnas. Digamos:

if (! thdientes->Locate("CustNo",
t bPedi dos- >Fi el dVal ues[" Cust No"], TLocateOptions()))
ShowVessage("Se nos ha extraviado un cliente en el bosque..!);

En este caso, el valor a buscar ha sido pasado directamente como un valor variante,
pero podiamos haber utilizado un entero con el mismo éxito, suponiendo que el
campo Cddigo es de tipo numérico:

if (! tbdientes->Locate("CustNo", 007, TLocateQOptions()))
Showvessage("...o se lo ha tragado la tierra");

Se puede aprovechar este algoritmo para crear un campo calculado sobre la tabla de
clientes, que diga si el cliente ha realizado compras o no. Suponiendo que el nuevo
campo, HaComprado, es de tipo logico, necesitamos la siguiente respuesta al evento
OnCalcFields de 1a tabla TablaClientes:

void _ fastcall TFornil::tbdientesCal cFiel ds(TDataSet *TDataSet)

tbd i ent es- >Fi el dVal ues[" HaConprado"] = tbPedi dos->Locat e(
"Cust No", tbdientes->Fiel dval ues["Cust No"],
TLocat eOptions());

Consideremos ahora que queremos localizar un empleado, dados el nombre y el ape-
llido. La instruccion necesaria es la siguiente:

t bEnpl eados- >Locat e(" Last Nane; Fi r st Nane",
Var Arr ayOf (ARRAYOFCONST((Apel |'i do, Nonmbre))), TLocateOptions());

En primer término, hay que mencionar los nombres de ambas columnas en el primer
parametro, separadas por punto y coma. Después, hay que pasar los dos valores co-
rrespondientes como una matriz variante; la funciéon IarArrayOf es util para esta
ultima mision. En este ejemplo, las variables Apelfido y Nombre son ambas de tipo
AnsiString, pero pueden pertenecer a tipos diferentes, en el caso mas general.

Cuando la bisqueda se realiza con el objetivo de recuperar el valor de otra columna
del mismo registro, se puede aprovechar el método Lookup:

Métodos de busqueda 349

Vari ant TDat aSet:: Lookup(const Ansi String Col umas,
const Variant Val ores, const Ansi String Col Resul t ados);

Lookup realiza primero un Locate, utilizando los dos primeros parametros. Si no se
puede encontrar la fila correspondiente, Lookup devuelve el valor variante especial
Null, por supuesto, la fila activa no cambia. Por el contrario, si se localiza la fila ade-
cuada, la funcién extrae los valores de las columnas especificadas en el tercer para-
metro. Si se ha especificado una sola columna, ese valor se devuelve en forma de
variante; si se especificaron varias columnas, se devuelve una matriz variante formada
a partir de estos valores. A diferencia de Locate, en este caso no se cambia la fila ac-
tiva original de la tabla al terminar la ejecucién del método.

Por ejemplo, la siguiente funcién localiza el nombre de un cliente, dado su cédigo:

Ansi String TDat aModul el:: ot ener Nonbre(i nt Codi go)

{
return VarToStr (tbd i entes->Lookup("Coddi go", Codi go,

" Conpafiia"));

He utilizado la funcién 1VarloSt para garantizar la obtenciéon de una cadena de ca-
racteres, ain cuando no se encuentre el cédigo de la compafifa; en tal situacion,
Lookup devuelve el variante Nu/l, que es convertido por VarloStr en una cadena va-
cla.

También se puede utilizar Lookup eficientemente para localizar un cédigo de em-
pleado dado el nombre y el apellido del mismo:

i nt TDat aModul el: : Obt ener Codi go(const Ansi String Apellido,
const Ansi String Nonbre)

{
Variant V = t bEnpl eados- >Lookup(" Apel | i do; Normbre",
Var ArrayOf (ARRAYOFCONST((Apel I'i do, Nonbre))), "Codi go");
if (VarlsNull(V))
Dat abaseError (" Enpl eado no encontrado", 0);
return V,
}

Por variar, he utilizado una excepcion para indicar el fallo de la busqueda; esto equi-
vale a asumir que lo normal es que la funcién ObtenerCodigo deba encontrar el registro
del empleado. Note nuevamente el uso de la funciéon I"ar4rrayOf, ademas del uso de
VarlsINull para controlar la presencia del valor variante nulo.

Por ultimo, presentaremos la funcién inversa a la anterior: queremos el nombre
completo del empleado dado su codigo. En este caso, necesitamos especificar dos
columnas en el tercer parametro de la funcién. He aqui una posible implementacion:

350 La Cara Oculta de C++ Builder

Ansi String TDat aMbdul el: : Norbr eDeEnpl eado(i nt Codi go)

{
Variant V = tbEnpl eados- >Lookup(" Codi go", Codi go,
"Nonbre; Apel Ii do");
if (VarlsNull(V))
Dat abaseError (" Enpl eado no encontrado", 0);
return V.GetEl enent (0) + " " + V.GetEl enent(1);
}

Un dialogo genérico de localizacion

Se puede programar un didlogo general de busqueda que aproveche el método Locate
para localizar la primera fila de una tabla que tenga determinado valor en determi-
nada columna. Este didlogo genérico se programa una sola vez y puede utilizarse
sobre cualquier tabla en la que se quiera hacer la busqueda.

I‘.. Buscar |- (O] x]

— Campo:

~ Walor. XK Cancelar |
[Sight Diver

Necesitamos un formulario, al que denominaremos TD/gBusqueda, con un combo, lla-
mémosle cbColumnas, de estilo ecsDropDownl ist, un cuadro de edicién, de nombre

edV alor, y el par tipico de botones para aceptar o cancelar el dialogo. Definiremos
también, de forma manual, los siguientes métodos y atributos en la declaracién de
clase del formulatio:

class TD gBusqueda : public TForm

/1
private:
TTabl e *FTabl a;
void _ _fastcall AsignarTabla(TTable *Valor);

pr ot ect ed:
__property TTable *Tabla = {read=FTabl a, write=Asignar Tabl a};
publi c:
bool _ fastcall Ejecutar(TTable *ATable);
}

El atributo Flabla servira para recordar la Gltima tabla utilizada para la busqueda.
Para llenar el combo de columnas con los nombres de los campos de la tabla sobre la
cual se realiza la busqueda, se utiliza el método Asignarlabla:

void __fastcall TD gBusqueda:: Asi gnar Tabl a(TTabl e *Val or)

if (Valor != FTabl a)

Métodos de busqueda 351

{
cbCol umas- >l t ens- >Cl ear () ;
edval or->Text = "";
for (int i =0; i < Valor->FieldCount; i++)
TField *f = Val or->Fields->Fields[i];
if (f->FieldKind == fkData
&& ! ftNonText Types. Cont ai ns(f->DataType))
cbCol ummas- >1 t ens- >Addbj ect (
f->Di spl ayLabel , Val or->Fields->Fields[i]);
cbCol umas- >l t em ndex = 0;
FTabla = Val or;
}

Este método solamente modifica los valores del combo si la tabla pardmetro es dife-
rente de la tltima tabla asignada; asi se ahorra tiempo en la preparacion de la bus-
queda. El algoritmo también verifica que los campos a afiadir no sean campos calcu-
lados o de referencia, con los que el método Locate no trabaja. Por las mismas razo-
nes se excluyen los campos BLOB de la lista de columnas; la constante de conjunto
fHNonTextTypes esta detinida en la unidad DB. Finalmente, se afiaden las etiquetas de
visualizacion, DisplayLabel, en vez de los nombres originales de campos. Para poder
encontrar el campo original sin tener que efectuar una bisqueda de estas etiquetas, la
insercién dentro del vector Izems del combo se realiza mediante el método AddObject
en vez de Add, de esta manera, asociamos a cada elemento del combo el puntero al
campo correspondiente.

La basqueda en s se realiza en el método Ejecutar:

bool __fastcall TD gBusqueda:: Ej ecutar(TTabl e *ATabl e)

{
bool Rslt = Fal se;
Tabl a = ATabl e;
i f (Showwbdal () == nrCk)
{
TField *Canmpo = (TFi el d*) (cbCol utmas- >l t ens- >bj ect s|
cbCol umas- >l t eml ndex]) ;
Rsl't = FTabl a- >Locat e(Canpo- >Fi el dNane, edVal or - >Text,
TLocat eOptions());
if (! Rslt)
Appl i cati on- >MessageBox("Val or no encontrado”,
"Error", MB_OK | MB_| CONSTOP);
return Rslt;
}

Se asigna la tabla, para llenar si es preciso el combo con los nombres de columnas, y
ejecutamos el didlogo con ShowModal. St el usuario pulsa el boton Aceptar, recupe-
ramos primeramente el puntero al campo seleccionado mediante la propiedad Obyjects
de la lista de elementos del cuadro de combinacion. A partir del nombre de este
campo y del valor tecleado en el cuadro de edicion, se efectda la bisqueda mediante

352 La Cara Oculta de C++ Builder

el método Locate. No he implementado el uso de opciones de biasqueda para no
complicar innecesariamente el codigo de este algoritmo, pero usted puede afaditlas
sin mayor dificultad.

Hasta aqui lo relacionado con el disefio y programacién del didlogo genérico de bus-
queda. En cuanto al uso del mismo, es muy sencillo. Suponga que estamos explo-
rando una tabla, Table?, sobre una ventana con una rejilla. Colocamos un botén de
busqueda en algun sitio libre de la ventana y programamos la siguiente respuesta a su

método OnClick:

void _ fastcall TForml::bnBusquedad i ck(TObj ect *Sender)

Dl gBusqueda- >Ej ecut ar (Tabl el) ;

He supuesto que el formulario D/gBusqueda se crea automaticamente al ejecutarse la
carga del proyecto.

Filtros latentes

Hay que darle al publico lo que el publico espera. Si un usuario estd acostumbrado a
actuar de cierta manera frente a cierto programa, esperara la misma implementacion
de la técnica en nuestros programas. En este caso, me estoy refiriendo a las técnicas
de bisqueda en procesadores de textos. Generalmente, el usuario dispone al menos
de un par de comandos: Buscary Buscar signiente; a veces, también hay un Buscar ante-
rior. Cuando se ejecuta el comando Buscar, el usuario teclea lo que quiere buscar, y
este valor es utilizado por las restantes llamadas a Buscar signiente y Buscar anterior. Y
nuestro problema es que este tipo de interaccion es dificil de implementar utilizando
el método Locate, que solamente nos localiza la primera fila que contiene los valores
deseados.

La solucién a nuestro problema la tienen, curiosamente, los filtros otra vez. Por lo
que sabemos hasta el momento, hace falta activar la propiedad Filfered para reducir el
conjunto de datos activo segin la condiciéon deseada. L.a novedad consiste en la posi-
bilidad de, teniendo Filtered el valor False, recorrer a saltos los registros que satisfacen
la condicién del filtro, para lo cual contamos con las funciones FindFirst, FindLast,
FindNext y FindPrior:

bool TDataSet:: FindFirst();
bool TDataSet:: FindPrior();
bool TDat aSet: : Fi ndNext () ;
bool TDat aSet:: Fi ndLast();

Métodos de busqueda 353

Las cuatro funciones devuelven un valor légico para indicarnos si la operacion fue
g

posible o no. Ademas, para mayor comodidad, los conjuntos de datos tienen una

propiedad Found, que almacena el resultado de la dltima operacion sobre filtros.

Se puede adaptar el cuadro de didlogo del ejercicio anterior para poder también esta-
blecer filtros adecuados a este tipo de busqueda. Esto lo haremos definiendo un
nuevo método, Buscar, para establecer el filtro y buscar el primer registro:

bool _fastcall TD gBusqueda:: Buscar(TTabl e *ATabl e)

{
bool Rslt = Fal se;
Asi gnar Tabl a(ATabl e) ;
i f (ShowMwbdal () == nrCk)
TFi el d* Canpo = (TFi el d*) (cbCol umas- >l t ens- >Cbj ect s
cbCol umas- >l t em ndex]) ;
FTabl a->Filter = Format ("[%] = %",
ARRAYOFCONST((Canpo- >Fi el dNane,
Quot edStr (edVal or->Text))));
Rsl't = FTabl a->Fi ndFirst();
if (!'Rslt)
Appl i cati on- >MessageBox("Val or no encontrado", "Error",
MB_| CONERRCR | MB_(XK) ;
return Rslt;
}

Si, aqui tenemos otra vez a nuestra vieja conocida: la funcién QuotedStr, que utili-
zamos en el ejemplo de filtros rapidos. La implementacion del comando Buscar si-
guiente seria algo asi:

bool _ fastcall TD gBusqueda:: Buscar Si gui ente()

if (! FTabl a->Fi ndNext ())

{
Appl i cati on- >MessageBox("Val or no encontrado", "Error",
MB_| CONERROR | MB_(XK) ;
return Fal se;
}
el se

return True;

Por supuesto, para este tipo de busqueda es preferible habilitar botones en el propio
cuadro de didlogo, para lograr el mayor parecido posible con el cuadro estandar de
bisqueda de Windows.

354 La Cara Oculta de C++ Builder

Filter By Example

Este es otro ejemplo de como disefiar un mecanismo de busqueda genérico, que
aproveche la técnica de los filtros latentes. Vamos a crear un prototipo de ventana que
pueda ser aprovechada mediante la herencia visual. En esta ventana podremos situar
componentes de edicién, uno por cada columna por la que queramos buscar. El
filtro estara determinado por los valores que introduzcamos en estos campos de
edicién, de forma similar a lo que ocurre en el lenguaje de consultas Query By Exam-

Ple.

Por ejemplo, supongamos que tenemos una tabla de clientes con campos para el
codigo, el nombre y el teléfono. Entonces la ventana de busqueda tendra tres edito-
res, uno por cada campo. Si el usuario teclea estos valores:

Cddigo | >34
Nombre | M cr o*
Teléfono

queremos que la expresion de filtro sea la siguiente:

Codigo > '34' and Nonmbre >= 'Mcro' and Nonbre < 'Mcrp'

No se ha generado ninguna comparacién para el teléfono, porque el usuario no ha
tecleado nada en el campo correspondiente. Observe que he evitado el uso del aste-
risco al final de la constante, para que el filtro sea realmente eficiente.

Creamos una aplicacion, y en su ventana principal situamos una rejilla conectada a
una tabla arbitraria. Llamaremos wndMain a esta ventana principal. Creamos un
nuevo formulatio en la aplicacion, con el nombre wudSearch, y lo guardamos en la
unidad Search. Lo quitamos de la lista de creacién automatica, pues cuando lo nece-
sitemos lo crearemos nosotros mismos. Le cambiamos la propiedad BorderStyle a
bsToolWindow, y FormStyle al valor fsStayOnTop, de modo que siempre se encuentre en
primer plano. Luego afiadimos una barra de herramientas, con cuatro botones de
navegacion y, un poco separados, un par de botones, para aplicar el filtro de bus-

queda (bnApply) y para eliminatlo (bnClean).

La idea es que, en los descendientes de este formulario, se afiadan cuadros de bus-
quedas del tipo TEdit, es decir, comunes y corrientes. Para asociar un campo de la
tabla en que se quiere buscar a cada editor, se asignara el nombre del campo en la
propiedad Text del control. Por ejemplo, la siguiente figura muestra el aspecto de una
ventana de busqueda sobre la tabla de clientes en tiempo de disefio:

Métodos de busqueda 355

DRI

[TECEFOND

Pero no se preocupe por la propiedad Text de estos controles, pues durante la crea-
ci6én de la ventana se utilizard para asociar un campo al control, y después se borrara.
Esta tarea es responsabilidad del siguiente método publico estatico:

TwndSear ch* TwndSear ch: : Launch(TMet ad ass *ad ass, TForn¥ AOaner,
TTabl e *ATabl e)
{

TwndSearch *f = NULL;
LockW ndowUpdat e(Appl i cat i on- >Mai nFor m >Cl i ent Handl e) ;
try
{
for (int i =0; i < Screen->FornmCount; i++)
if (Screen->Forns[i]->C assType() == ad ass)
return (TwndSearch*) Screen->Forns[i];
Appl i cati on->Creat eForm(ad ass, &f);
AOaner - >FreeNot i fication(f);
f->FTabl e = ATabl e;
for (int i =0; i < f->ConponentCount; i++)
{
TConmponent *C = f->Conponents[i];
if (dynam c_cast<TEdit*>(C))

((TEdit*) C)->Tag =

i nt (ATabl e->Fi ndFi el d(((TEdit *)C)->Text));
((TEdit*) C)->Text = "";

}
f->bnAppl y- >Enabl ed = Fal se;

-

finally

{
LockW ndowUpdat e(0) ;

}

r

eturn f;

Como se puede apreciat, se utiliza el valor guardado en el texto del control para bus-
car el puntero al campo, el cual se asigna entonces a la propiedad Tag. La respuesta a
los cuatro botones de navegacion es elemental:

void _ fastcall TwndSearch::bnFirstdick(TOoject *Sender)

FTabl e- >Fi ndFi rst ();
}

void _ fastcall TwndSearch::bnPriordick(TOoject *Sender)

FTabl e- >Fi ndPri or () ;

356 La Cara Oculta de C++ Builder
void _ fastcall TwndSearch::bnNextd ick(TObject *Sender)

FTabl e- >Fi ndNext () ;
}

void _ fastcall TwndSearch::bnLastd ick(TObject *Sender)

FTabl e- >Fi ndLast () ;

También es predecible la respuesta al botén que elimina el filtro:

void __fastcall TwndSearch::bnd eand i ck(TObj ect *Sender)

FTable->Filter = "";
bnd ean- >Enabl ed Fal se;
bnAppl y- >Enabl ed = True;

Donde realmente hay que teclear duro es en la respuesta al botén que activa el filtro:

void __fastcall TwndSearch::bnAppl ydick(TObject *Sender)

{
Ansi String F;
for (int i =0; i < ConponentCount; i++)
TEdit *C = dynam c_cast <TEdi t *>(Conponents[i]);
if (C!= NULL)
AddFilter(F, C (TField*)(C>Tag));
}
FTable->Filter = F;
FTabl e- >Fi ndFi rst () ;
bnAppl y- >Enabl ed = Fal se;
bnd ean- >Enabled = F ! = "*";
}

El método AddFilter debe haber sido definido en la parte privada de la declaracién
del formulario, y se encarga de dar el formato correcto al valor tecleado en cada
control. Si el campo es de tipo cadena, debe encerrarse el valor entre apdstrofos; si es
un namero real, hay que sustituir nuestras comas decimales por los puntos ameri-
canos:

void __fastcall TwndSearch::AddFilter(AnsiString &, TEdit *E,
TField *AFi el d)
{

static AnsiString Ops[6] = {"<>", "<=", ">=", "< ">" "="},

Ansi String S = E->Text. Trinm();

if (S==""]| AField == NULL) return;
/1 Buscar el operador

Ansi String Op = "=";

for (int i = 0; 6; i++)

if (S F’OS(QDSI[I]) == 1)
{
O = Ops[il;

Métodos de busqueda 357

S.Del ete(1, Op.Length());
S =S Trimeft();
br eak;

/! Formatear el valor resultante
ifo(== "=" && AFiel d->DataType == ftString
&% S.Length() > 1 & S[S. Length()] == "*")

S. Del ete(S. Length(), 1);

Ansi String S1 = S;

++S1[S1. Length()1;

S = Format ("[%] >=% and [%0: s] <%:s", ARRAYOFCONST((
AFi el d->Fi el dNanme, QuotedStr(S), QuotedStr(S1))));

}
el se
S="[" + AField->FieldName + "]" + Op + QuotedStr(S);
/1 Anadir al filtro existente
if (F1="")

AppendStr(F, " AND ");
AppendStr (F, S);

Ahora derivamos por herencia visual a partir de esta ventana un nuevo formulario, de
nombre TschClientes, y afiadimos los tres cuadros de edicién para los tres campos que
queremos que participen en la busqueda. Recuerde quitarlo de la lista de creacion
automatica. El aspecto en ejecucion del didlogo de bisqueda de clientes es el si-
guiente:

Cadign I Mambre I Teléfano |555-5959

Y la instruccion utilizada para lanzarlo, desde la ventana de exploracion principal, es
la que mostramos a continuacion:

void _ fastcall TwndMain.Buscar1d ick(TCbject *Sender)

Tschd i entes::Launch(__cl assid(Tschd ientes), this,
nodDat os- >t bd i) - >Show() ;

Lo principal es que, teniendo esta plantilla, no hace falta escribir una linea de cédigo
en las ventanas de busqueda que heredan de la misma. Se pueden disefiar estrategias
de bisqueda atn mas sofisticadas. Por ejemplo, se pueden habilitar teclas para que un
campo de edicién tome el valor real de la fila activa en la ventana. También se puede
hacer que esta ventana se pueda aparcar (dock) en la barra de tareas de la ventana
principal. Todo eso se lo dejo a su paciencia e imaginacion.

358 La Cara Oculta de C++ Builder

Busqueda en una tabla de detalles

Para terminar, supongamos que la tabla sobre la cual se busca es una tabla de deta-
lles, es decir, una tabla que juega el rol de subordinada en una relacién master/ detail.
Quizas deseemos buscar todas las ventas de cierto producto, para mostrar la factura
correspondiente; el codigo del producto debe buscarse en la tabla de detalles, pero
las filas visibles de esta tabla estan limitadas por el rango implicito en su relaciéon con
la tabla de pedidos. No queda mas remedio que buscar en otro objeto de tabla, que
se refiera a la misma tabla fisica de pedidos, pero que no participe en una relacién
master/ detail. Después tendremos que localizar el pedido correspondiente en la tabla
de pedidos, para mostrar la factura completa. Ya sabemos la teorfa necesaria para
todo esto, y solamente tenemos que coordinar las acciones.

Necesitamos dos ventanas, una para mostrar los pedidos y las lineas de detalles, y
otra para seleccionar el articulo a buscar. Esta dltima es la mas sencilla, pues situare-
mos en la misma un par de botones (Aceptary Cancelar), una rejilla s6lo para lectura,
una fuente de datos y una tabla, #hArticulos, que haga referencia a la tabla de articulos
parts.db de la base de datos bedemos. Llamaremos a este formulario digSeleccion.

En el formulario principal, lamémosle wndPrincipal, situaremos las siguientes tablas:

Tabla Propésito

thPedidos Trabaja con la tabla orders.db, del alias bedemos.
tbDetalles ‘Tabla ztems.db, en relacidn master/ detail con la anterior.
thBusqueda Tabla stems.db, pero sin relacion master/ detail.

También necesitaremos rejillas para mostrar las tablas, y un par de botones: bnBuscar
v bnSiguiente, este Gltimo con la propiedad Enabled a False. La respuesta al evento Oz-
Click del boton bnBuscar es 1a siguiente:

void __fastcall TwndPrincipal::bnBuscardick(TObject *Sender)

i f (dl gSel ecci on->Showbdal () == nr X)

{
t bBusqueda->Filter = "PartNo = " +
Var ToStr (dl gSel ecci on->t bArti cul os->Fi el dVal ues["Part No"]);
t bBusqueda- >Fi ndFirst ();
bnSi gui ent e- >Enabl ed = True;
Si ncroni zar () ;
}

En el método anterior, ejecutamos el didlogo de seleccion, inicializamos el filtro,
buscamos la primera fila que satisface el criterio de busqueda y sincronizamos la
posicion de las tablas visibles con el método Szncronizar. Este método lo definimos
del siguiente modo:

Métodos de busqueda 359

void _ fastcall TwndPrincipal::Sincronizar()

if (! tbBusqueda->Found)
bnSi gui ent e- >Enabl ed = Fal se;
el se

t bPedi dos- >Locat e(" Or der No",
t bBusqueda- >Fi el dVal ues[" Order No"], TLocateOptions());
t bDet al | es- >CGot oCurrent (t bBusqueda) ;

Se sabe si la tltima busqueda tuvo éxito o no consultando la propiedad Found de 1a
tabla de bisqueda. En caso afirmativo, se localiza el pedido correspondiente en la

tabla de pedidos, y solamente entonces se procede a activar la fila encontrada de la
tabla de detalles; observe el uso del método GotoCurrent para realizar la sincroniza-
cién.

La respuesta al boton bnSiguiente, teniendo el método anterior programado, es trivial:

void _ fastcall TwndPrincipal::bnSiguientedick(TOoject *Sender)

t bBusqueda- >Fi ndNext () ;
Si ncroni zar () ;

Capitulo

17

Navegacion mediante consultas

ODAS LAS OPERACIONES SOBRE BASES DE DATOS QUE hemos estudiado hasta

el momento se han basado en el uso de componentes TTabl. Ahora mostra-

remos como podemos utilizar el componente T Query para navegar sobre el
contenido de una tabla, y como recuperar informacién en general desde una base de
datos. Aprovecharemos también la ocasién para conocer algunas peculiaridades del
dialecto de SQL local implementado en el Motor de Datos de Borland, y para mos-
trar la herramienta SQL. Builder, para generar instrucciones SQL de forma visual.

El componente TQuery como conjunto de datos

Para enviar instrucciones SQL a la base de datos se utiliza el componente TQuxery,
que se encuentra en la pagina Data Access de la Paleta de Componentes. Desde el
punto de vista de la jerarquia de herencia de la VCL, la clase TQuery desciende del
tipo TDBDataSet, por lo que los objetos de consultas son conjuntos de datos. Esto
quiere decir que podemos conectar una fuente de datos a un objeto de consultas para
mostrar y editar su contenido desde controles de datos, que podemos movernos por
sus filas, extraer informacién de sus campos; en definitiva, que casi todas las opera-
ciones aplicables a las tablas son aplicables a este tipo de componente.

No obstante, un objeto TQuery sélo puede tratarse como un conjunto de datos en el
caso especial de que la instruccion SQL que contenga sea una consulta. Si la instruc-
cién pertenece al DDL, DCL, o es una de las instrucciones update, insert 6 delete,
no tiene sentido pensar en el resultado de la ejecucion de la instruccién como si fuera
un conjunto de datos. En este caso, tenemos métodos especiales para tratar con el
componente.

Para una tabla, las propiedades DatabaseName y TableName determinan, en lo fun-
damental, el origen de los datos; para una consulta, necesitamos por lo menos asignar
valores a DatabaseName, 1a base de datos contra la cual se ejecuta la instruccion, y
SQIL, 1a lista de cadenas que contiene la instruccién SQL en si. Es posible omitir el
valor de la propiedad DatabaseNamse. Si se omite esta propiedad, hay que especificar
dentro de la instrucciéon SQL a qué base de datos pertenece cada tabla; més adelante

362 La Cara Oculta de C++ Builder

veremos c6mo hacerlo. Esta técnica, sin embargo, no es recomendable si queremos
trabajar con una base de datos SQL remota, pues en tal situacion la evaluacion de la
consulta la realiza el SQL. local del BDE.

Un componente TQuwery utilizado como conjunto de datos puede hacer uso de la
propiedad Active, o de los métodos Open 'y Close, para abrir y cerrar la consulta. Una
vez abierta la consulta, podemos aplicar casi todas las operaciones que son aplicables
a tablas; la gran excepcién son las operaciones que se implementan mediante indices.
No obstante, también pueden aplicarse filtros a la consulta. El acceso a la informa-
ci6n de cada campo se logra del mismo modo: se pueden crear campos petsistentes
en tiempo de disefio, o se puede acceder dinimicamente a los mismos con las pro-
piedades Fields, Fieldl alues y con la funcién FieldByNanze.

¢Quién ejecuta las instrucciones?

Esta es una buena pregunta, pero estoy seguro de que ya intuye la respuesta. En pri-
mer lugar, si la peticién se dirige a una base de datos local, esto es, si la base de datos
asignada a DatabaseNamse se refiere al controlador STAND.ARD, la instruccion es
interpretada en la maquina cliente por el denominado SQL Local, perteneciente al
BDE. En contraste, si la propiedad DatabaseName se refiere a una base de datos re-
mota, estamos ante lo que el BDE llama passthrongh SQOL., es decir, instrucciones SQL
que se “pasan” al servidor remoto y que son ejecutadas por el mismo. Este compot-
tamiento por omision puede modificarse mediante el parametro SOLORYMODE de
la configuracion del BDE, aunque es recomendable dejatlo tal como esta.

Las cosas se complican cuando se utilizan consultas heterogéneas. En este tipo de con-
sultas se mezclan datos de varias bases de datos. Estas consultas son siempre inter-
pretadas por el SQL local. En una consulta heterogénea, los nombres de las bases de
datos se indican delante de los nombres de tablas, en la clausula from. Para poder
utilizar este recurso, la propiedad DatabaseName de la consulta debe estar vacia o
hacer referencia a un alias local. Por ejemplo, en la siguiente consulta mezclamos
datos provenientes de una tabla de InterBase y de una tabla Paradox. Los nombres
de tablas incluyen el alias utilizando la notacion :AILLAS:, y deben encerrarse entre
comillas. Claro esta, necesitamos sinénimos para las tablas si queremos cualificar
posteriormente los nombres de los campos:

sel ect E. FULL_NAME, sunm(O ItensTotal)

from ":1BLOCAL: EMPLOYEE" E, ":BCDEMOS: ORDERS' O
where O EmpNo = E. EMP_NO

group by E. FULL_NAME

order by 2 desc

Cuando se trata de una tabla local para la cual sabemos el directorio, pero no tene-
mos un alias, podemos especificar el directorio en sustitucion del nombre de alias:

Navegacion mediante consultas 363

select *
from "C\Data\Oders.db"

La propiedad Local de la clase TQuery indica si la base de datos asociada a la consulta
es cliente/servidor o de escritorio.

Consultas actualizables

Como sabemos, existen reglas matematicas que determinan si una expresion relacio-
nal puede considerarse actualizable o no. En la practica, los sistemas relacionales
tienen sus propias reglas para determinar qué subconjunto de todas las expresiones
posibles pueden ser actualizadas. Las reglas de actualizabilidad las encontramos
cuando se definen vistas en un sistema SQL, y las volvemos a encontrar al establecer
consultas sobre una base de datos desde el ordenador cliente. En C++ Builder, para
pedir que una consulta retorne un cursor actualizable, de ser posible, es necesario
asignar True a la propiedad 16gica Reguest] ive de la consulta. El valor por omisién de
esta propiedad es False.

No obstante, ReguestLive es solamente una peticioén. El resultado de esta peticiéon hay
que extraerlo de la propiedad CanModify una vez que se ha activado la consulta. Si la
consulta se ejecuta contra una base de datos local y su sintaxis permite la actualiza-
cién, el BDE retorna un cursor actualizable; en caso contrario, el BDE proporciona
un conjunto de datos de s6lo lectura. Sin embargo, si la peticién se establece contra
un servidor SQL, puede llevarse la desagradable sorpresa de provocar una excepcion
si pide una consulta “viva” y el sistema se la niega.

Desafortunadamente, el algoritmo que decide si una expresion select es actualizable
o no depende del sistema de base de datos. Aqui exponemos las reglas de actualiza-
bilidad del SQL local; es una regla en dos partes, pues depende de si la instruccion
utiliza una sola tabla o utiliza varias. Si se utiliza una sola tabla, deben cumplirse las
siguientes restricciones para la actualizabilidad:

La tabla base debe ser actualizable (...clemental, Watson...).

No se utilizan union, minus, intersect, group by 6 having.

Si se utiliza distinct, que sea innecesario (j!).

No se permiten funciones de conjuntos en la seleccion.

No se permiten subconsultas.

Si existe un order by, que se pueda implementar mediante un indice.

La explicacion de la regla 3 era demasiado larga y rompia la simetria de la lista. Que-
rfa decir simplemente que si aparece la palabra distinct en la cldusula de seleccién,

364 La Cara Oculta de C++ Builder

deben aparecer también todos los campos de la clave; en ese caso, la instruccién
también podria haberse escrito sin especificar distinct.

Por otra parte, deben cumplirse las siguientes reglas si la clausula from contiene va-
rias tablas:

Las tablas estan formando todas un encuentro natural (zatural join), o un
encuentro externo (outer join) de izquierda a derecha.

Los encuentros deben implementarse mediante {ndices.

No se usa la clausula order by.

Cada tabla es una tabla base, no una vista.

Se cumplen las restricciones aplicables de la primera lista.

Curiosamente, las reglas de las consultas actualizables para los servidores SQL de-
penden no de los servidores, jsino del propio BDE! El problema basico consiste en
que el BDE siempre implementa los cursores bidireccionales en el cliente a partir de
cursores unidireccionales del servidor, aun si el servidor soporta cursores en dos
sentidos. Supongamos que hemos lefdo 50 registros desde el servidor y decidimos
regresar al primer registro. El registro activo en el servidor es el numero 50, no el
numero 1. Asi que los posibles cambios que hagamos sobre el primer registro no
pueden grabarse utilizando sentencias (como update where current of cursor) que
afecten al registro activo de un cursor del servidor. E1 BDE se ve obligado a utilizar
alguna clave unica para establecer la correspondencia entre registro del cliente y re-
gistro del servidor. Como resultado, si hay dos o més tablas en la clausula from, la
consulta no es actualizable, pues en general no se puede establecer tal corresponden-
cia.

La apertura de un objeto TQuery es mas rapida que la de un TTable, pues el com-
ponente de tablas necesita extraer informacién acerca de los campos, claves, in-
dices y restricciones antes de comenzar a recibir datos del servidor. Este hecho
se utiliza como justificacién para evitar el uso de tablas. Sin embargo, muchas ve-
ces se pasa por alto que una consulta actualizable necesita ejecutar el mismo
preambulo que las tablas, con lo cual los dos componentes tardan lo mismo en
abrirse. De todos modos, existe una solucion intermedia: utilizar consultas con
actualizaciones en caché y objetos de actualizacién. En el siguiente capitulo estu-
diaremos mas detalles de las técnicas de navegacion utilizadas por el BDE.

Existe una forma de permitir modificaciones sobre una consulta no actualizable.
Consiste en activar las actualizaciones en caché para el componente TQuery y aso-
ciarle un objeto de actualizaciéon TUpdateSQL.. Las actualizaciones en caché se con-
trolan mediante la propiedad CachedUpdates de los conjuntos de datos, pero se estu-
diaran mucho mas adelante. Los objetos de actualizacion, por su parte, permiten

Navegacion mediante consultas 365

especificar reglas por separado para implementar los borrados, modificaciones e
inserciones sobre la consulta; estas reglas son también instrucciones SQL.

Siempre hacia adelante

El uso mas comun de un objeto TQuery basado en una instruccion select es la visua-
lizacién de sus datos mediante algin dispositivo de navegacion. La navegacién nos
obliga a una implementacién que nos permita movernos arbitrariamente dentro del
conjunto de datos producido como resultado de la instruccién SQL. Casi todos los
intérpretes SQL construyen una representacion fisica del resultado, que puede con-
sistir, en dependencia de si la consulta es actualizable o no, en una copia fisica tem-
poral del conjunto de datos generado, o en un fichero de punteros a las filas origina-
les de las tablas implicadas. A este tipo de estructura se le conoce con el nombre de
cursor bidireccional.

En cambio, si solamente nos tenemos que desplazar por el cursor en una sola direc-
cién, la implementacion puede ser menos costosa en algunos casos. Por ejemplo,
suponga que la consulta en cuestién consiste en una seleccion de filas a partir de una
sola tabla, como la siguiente:

select *
from dientes
where U tinoPedido > "4/7/96"

En tal caso, si solamente vamos a desplazarnos hacia adelante al usar esta consulta, el
intérprete SQL lo unico que tiene que hacer es abrir la tabla base, Clientes, e interpre-
tar el método Nexz sobre la consulta como una sucesién de llamadas al método Next
sobre la tabla base hasta que se cumpla la condicién de la clausula where.

Para ilustrar el uso de consultas unidireccionales, le mostraré cémo generar un gra-
fico de ventas a partir de la informacion de pedidos. El grafico que nos interesa debe
mostrar la cantidad de clientes por tramos de ventas totales: cuantos clientes nos han
comprado hasta $50.000, cuantos de $50.001 hasta $100.000, etc. Por supuesto, nece-
sitamos los totales de ventas por clientes, y esta informacién podemos extraerla me-
diante la siguiente consulta:

sel ect count(ltenmsTotal)
from Orders
group by CustNo

Esta instruccion se coloca dentro de un objeto TQxery, al cual se le modifica a True el
valor de su propiedad UniDirectional.

366 La Cara Oculta de C++ Builder

Para mostrar el grafico utilizaré el T1TeeChart, ubicado en la pagina Additional de la
Paleta de Componentes. Me estoy adelantando un poco, pues este control sera estu-
diado con mas detalles en un capitulo posterior. Por el momento, traiga a un formu-
lario un componente TTeeChart, realice un doble clic sobre el mismo y pulse el boton
Add para afiadir una nueva serie al grafico. Elija entonces un grafico de barras:

Editing Chart1
Chart I Sernies I

Series |General| Bz I Titles I Legendl FPanel I Pagingl wialls I i) I

Series Title

| [[=]

LDelete
Title...

Clane

LChange...

Cloze

_ Do |
|
[|
G|
=

Después necesitamos ir a la pagina Series, y en la pagina anidada DataSonrce debemos
seleccionar No data, para que el grafico aparezca inicialmente vacio. Como resultado
de estas acciones, el formulario contiene una nueva variable Serzes7, un puntero a
TBarSeries, que contendra los datos del grafico de barra.

Nos interesa establecer los valores de umbral de la forma mas flexible que podemos.
Para esto declaramos un método en la definicién de tipo del formulario:

class TForml : public TForm
/1

privat e:
void __fastcall LlenarGafico(double *Valores, int Valores_High);
b

La idea es llamar a este método desde la respuesta al evento OnCreate de la ventana:

void _ fastcall TFornil:: FornCreat e(TObj ect *Sender)

LI enar Gr af i co(OPENARRAY(doubl e,
(25000, 50000, 75000, 100000, 150000)));

Bajo estas suposiciones, el método LlenarGrafico se implementa muy facilmente:

Navegacion mediante consultas 367

void _ fastcall TFormil::LlenarG afico(double *Val ores,
int Val ores_Hi gh)

{
/1 Inicializar un vector con |os valores
int* ¢ = new int[Valores_H gh + 2];
try {
nenset ((void*)c, 0, (Valores_Hi gh + 2) * sizeof(int));
// Abrir la consulta y recorrer sus filas
Queryl->Qpen();
try {
while (! Queryl->Eof)
{
/'l Localizar el valor de unbral
int i =0;
while (i <= Valores_Hi gh &&
Queryl->Fi el ds->Fi el ds[0] - >AsFl oat > Valores[i]) i ++;
cli]++
Queryl->Next ();
}
}
_finally
{
Queryl->Cl ose();
}
for (int i =0; i <= Valores_H gh + 1; i++)
Seriesl->Add(c[i], "", clTeeColor);
}
_finally
del ete c;
}
}
I‘_Histngrama de ventas =]
- - : T : - 124
offzr e
sofpecoapoosspossspasscpassapad| [k
] L e
20_ -sTTrT-TT-TrT-T--TrTTTTr---°r-- I3
B e e NI £
15 2 .
10 N
5.
0
0] 1 2 3 4 a2

Observe que la consulta se examina en una pasada desde el principio hasta el final,
sin necesidad de dar marcha atras. El que realmente signifique algin adelanto esta-
blecer un cursor unidireccional o uno bidireccional depende de la implementacion
del intérprete SQL que ofrezca el sistema de bases de datos.

368 La Cara Oculta de C++ Builder

Consultas paramétricas

Es posible modificar en tiempo de ejecucion el contenido de la propiedad SQL de
una consulta. Esto se realiza en ocasiones para permitir que el usuario determine,
casi siempre de una forma visual y mas o menos intuitiva, qué informacién quiere
obtener. El programa genera la instrucciéon SQL correspondiente y jzas!, el usuario
queda satisfecho. Sin embargo, muchas veces los cambios que distinguen una ins-
truccion de otra se refieren a valores constantes dentro de la expresién. Ahora vere-
mos cémo podemos cambiar de forma mis eficiente estos valores sin afectar a la
consulta en su totalidad.

Supongamos que el usuario quiere filtrar la tabla de clientes para mostrar los clientes
de acuerdo al estado (S7aze) al que pertenecen. Traemos a un formulatio una rejilla de
datos, DBGridl, una fuente de datos, DataSourcel, un cuadro de edicién, Editl, y una
consulta Queryl. Conectamos los componentes de base de datos como es usual, y
modificamos las siguientes propiedades del cuadro de edicién:

Propiedad Valor
CharCase ecUpperCase
MaxcLength 2

Text <Vacio>

Ahora vamos a la consulta. Asignamos bedernros a DatabaseName, y tecleamos la si-
guiente instruccion en la propiedad SQIL.:

select *
from Customner
where State l|ike :Estado

La novedad es el operando :Estado, que representa un parametro de la consulta. Es
importante que los dos puntos vayan junto al nombre del parametro, para que C++
Builder pueda reconocerlo como tal. En una instruccién SQL podemos utilizar tan-
tos parametros como queramos, y pueden utilizarse como sustitutos de constantes;
nunca en el lugar de un nombre de tabla o de columna.

Después de tener el texto de la instruccion, necesitamos asignar un tipo a cada pata-
metro, e indicar opcionalmente un valor inicial para cada uno de ellos. Esto se hace
editando la propiedad Params. Mas adelante veremos un ejemplo en el cual es necesa-
rio no asociar tipos a parametros, pero esta serd la excepcion, no la regla. En nuestro
ejemplo, asignamos al Gnico parametro el tipo S7#ing, y le damos como valor inicial el
caracter %; como recordara el lector, si se utiliza un signo de porcentaje como patrén
de una expresion like, se aceptaran todas las cadenas de caracteres. Una vez que
hayamos asignado los parametros, podemos abrir la consulta, asignando a la propie-
dad Active a True.

Navegacion mediante consultas 369

Form1_Query1 Parameters E

rDefine Parameter

Parameter name:

Data type: IString 'I
Walue: I‘Z

™ Mullalue

(u] 4 I Caticel | Help |

La imagen anterior corresponde al editor de parametros de C++ Builder 3. En la
version 4 los parametros se editan mediante el editor genérico de colecciones.

Para cambiar dindmicamente el valor de un parametro de una consulta es necesario,
en primer lugar, que la consulta esté inactiva. Del mismo modo que sucede con los
campos, existen dos formas de acceder al valor de un parametro: por su posiciéon y
por su nombre. Es muy recomendable utilizar el nombre del parametro, pues es muy
probable que si se modifica el texto de la instruccién SQL, la posicién de un para-
metro varfe también. Para acceder a un pardmetro por su nombre, necesitamos la
tuncién ParamByNanze:

TParanmt _ fastcall TQuery:: ParanmByNanme(const Ansi String Nonbre);

De todos modos, también es posible utilizar la propiedad Params, mediante la cual
obtenemos el puntero al parametro por medio de su posicion:

__property TParamnms* Parans;

En nuestro pequefio ejemplo, la asignacion al parametro debe producirse cuando el
usuario modifique el contenido del cuadro de edicion. Interceptamos, en consecuen-
cia, el evento OnChange del cuadro de edicion:

void __fastcall TForml:: Edit1Change(TObj ect *Sender)

{ Queryl->Cl ose();
try
Quer y1- >Par anByNanme(" Est ado") - >AsString = Edit1->Text + "% ;
}_fi nal l'y
Queryl->Cpen();
}

Como se puede apreciar, se garantiza mediante un bloque de proteccion de recursos
la reapertura de la consulta. Utilizamos la funcion ParamByNamse para acceder al pa-

370 La Cara Oculta de C++ Builder

rametro; el nombre del parametro se escribe ahora sin los dos puntos iniciales. Por
ultimo, hay que utilizar la propiedad .AsS#ring (o Aslnteger o AsDatelime...) para mani-
pular el valor del parametro; no existe una propiedad parecida a alue, como en el
caso de los campos, para hacer uso del valor sin considerar el tipo del parametro.

Consultas dependientes

Es posible asociar a un parametro el valor obtenido de una columna perteneciente a
otra tabla o consulta. El cambio de parametro se produce automaticamente cada vez
que cambia la fila en el primer conjunto de datos. De este modo, se puede lograr un
efecto similar a las tablas de detalles, pero sobre consultas SQL. A este tipo de con-

sultas se le denomina consultas dependientes o, en castellano antiguo: Jnked gueries.

Para poder asociar un parametro de una consulta a una tabla, siga estas instrucciones:

Asigne a la propiedad DataSonrce de la consulta una fuente de datos enlazada a la
tabla maestra. Esta es una propiedad con un nombre inadecuado. Le regalarfa
una botella de champagne al equipo de desarrolladores de Borland si en la pro-
xima version de C++ Builder cambiasen el nombre de la propiedad a Master-
Source, jpalabra de programador!’¢

No asigne tipo al parametro en el editor de la propiedad Params.

Considere, por ejemplo, la siguiente consulta:

sel ect Parts.Description, Items.Qy, |tens. D scount
from Itens, Parts
where Itens.PartNo = Parts. PartNo

Mediante esta instruccién podemos obtener un listado de los articulos vendidos,
junto a sus descripciones. Esto pudiera servirnos para sustituir a los campos de refe-
rencia de C++ Builder si queremos mostrar las descripciones de articulos en una
rejilla. Pero la instruccién muestra fodos los articulos vendidos, mientras que el uso
mas frecuente de esta informacién es mostrarla como detalles de los pedidos.

En este caso, la instruccién necesaria es la siguiente:

sel ect Parts.Description, Items.Qy, |tens. D scount
from Itens, Parts
where Itens.PartNo = Parts. PartNo

and Iltenms. OrderNo = : OrderNo

16 Me parece que tienen intencién de no beberse la botella.

Navegacion mediante consultas 371

El inconveniente principal de esta técnica, si se utiliza para sustituir los campos de
busqueda de C++ Builder, es que el resultado de la consulta no es actualizable. Le
sugiero que pruebe esta consulta con la base de datos mastsql.gdb, que se encuentra en
el directorio de demostraciones de C++ Builder. El intérprete SQL de InterBase es
mas eficiente para este tipo de cosas que el SQL local del BDE.

La preparacion de la consulta

Si una consulta con parametros va a ser abierta varias veces, es conveniente prepararia
antes de su ejecucion. Preparar una consulta quiere decir realizar su analisis sintactico
y producir el cédigo de ejecucion necesario; por supuesto, cada servidor realiza esta
tarea de forma diferente. La preparacion de una consulta se realiza por medio del
método Prepare de la clase TQuery. Normalmente, esta operacion se realiza automati-
camente durante la apertura de la consulta, y la operacion inversa tiene lugar cuando
se cierra la consulta. Sin embargo, la preparacion consume tiempo y recursos. Si los
parametros cambian varias veces durante la vida del objeto de consulta, estaremos
repitiendo la misma cantidad de veces la tediosa operacion de preparacion. La solu-
cién es preparar la consulta explicitamente, y deshacer, consecuentemente, la prepa-
racion antes de destruir el objeto, o cuando no se vaya a utilizar por mucho tiempo.
En especial, si va a utilizar una consulta dependiente, tenga en cuenta que cada vez
que se cambie la fila activa de la tabla maestra, se estd cerrando y reabriendo la con-
sulta asociada.

Precisamente, la posibilidad de preparar una consulta la primera vez y ejecutatla
cuantas veces deseemos, cambiando los parametros cada vez que haga falta,
constituye la ventaja de utilizar pardmetros frente a la modificacién directa del
texto de la consulta.

Si las instrucciones de apertura y cierre de la consulta se realizan explicitamente, la
preparacion se puede programar de esta manera:

void _ fastcall TQueryForm : FornCreate(TObj ect *Sender)

if (! Queryl->Prepared)
Queryl->Prepare();
Queryl1->Qpen();

void _ fastcall TQueryForm : FornC ose(TCbj ect *Sender)
Queryl->C ose();

if (Queryl->Prepared)
Queryl1->UnPrepare();

372 La Cara Oculta de C++ Builder

¢Y qué sucede si hace falta que la consulta esté abierta en tiempo de disefio? El pro-
blema es que cuando se dispara el evento OnCreate del formulario o del médulo de
datos, ya las consultas y tablas que estaban abiertas en tiempo de disefio han sido
activadas. Alguien puede tener la idea de realizar la preparacion en el evento Before-
Open de estos componentes. Pero no pierda su tiempo: en pruebas realizadas por el
autot, la preparacion de la consulta en el evento BeforeOpen del conjunto de datos no
reportaba ventaja alguna con respecto a la preparacion automatica. Lo cual quiere
decir que, al producirse este evento, la VCL ya ha preparado la consulta por si misma
y no agradece nuestra intervencion.

Una solucion de fuerza bruta para estos casos puede ser cerrar primeramente la con-
sulta, prepararla y volver a abrirla, mediante un c6digo parecido al siguiente:

void _ fastcall TQueryForm : FornCreate(TObj ect *Sender)

Queryl->C ose(); /] Cerrar primeranente la consulta
if (! Queryl->Prepared)

Queryl->Prepare();
Queryl->Qpen(); /1 Reabrir la consulta

Pero conozco un truco mejor. Vaya a la seccion protected de la declaracion del mo-
dulo o formulario (si no hay, créela), y declare el siguiente método:

class TQueryForm: public TForm

/...

pr ot ect ed:
void __fastcall Loaded();
/1

b

El método virtual Loaded es invocado por el formulario después de haber leido todos
sus componentes hijos, pero antes de aplicar propiedades como Active, Connected, etc.
Es decir, se llama justo en el momento que necesitamos. Aqui estamos sustituyendo
su implementacién predefinida mediante el siguiente método:

void __fastcall TQueryForm :Loaded();

TForm : Loaded() ;
Queryl->Prepare();

Este truco de redefinir oaded puede ser util también para modificar durante la
carga de una aplicacion los parametros de conexién de un componente TData-
base.

Navegacion mediante consultas 373

Visual Query Builder

Las versiones cliente/servidor de C++ Builder vienen acompafiadas con una utilidad
denominada V7sual Query Builder, 6 Constructor Visual de Consultas. No la busque
dentro del directorio de ejecutables de C++ Builder, pues no es una herramienta que
se ejecute por separado. Su objetivo es ayudar en la creacién de consultas dentro de
un componente 1Qzuery, y se activa mediante la opcion SQL Builder del ment de con-
texto asociado a un TQuery.

& SO Builder I[=] 3
File Edit Query Help

=] patabase [pEDEMOS =l

USUARIOS DB

Criteria |Sele|:1inn I Grauping I Group Criteria | Sorting | Joing I

ALL ¥ | of the following criteriz ate met:

|Fia\d ar Walug |Cnmpare Field or walue

] e

Para ilustrar el uso de la herramienta, diseflaremos una consulta que nos muestre un
listado de clientes junto al total de dinero que han invertido en pedidos. Queremos
ademas que el listado quede ordenado en forma descendente de acuerdo al total
gastado; al que mas nos haya comprado le enviaremos una tarjeta de felicitaciéon por
Navidades. Afiadimos sobre un formulario vacio un componente TQuwery, y asigna-
mos bedemos ala propiedad DatabaseName de la consulta. Después pulsamos el botén
derecho del ratén sobre la misma, y activamos el comando SQL. Builder.

Para afiadir tablas, debemos seleccionarlas en el combo de la izquierda. En nuestro
caso, sabemos que los nombres de clientes se encuentran en la tabla customer.db, y que
los totales por factura estan en orders.db: las cabeceras de pedidos; afladimos entonces
ambas tablas. No se preocupe si afiade una tabla de mds o de menos, pues mas ade-
lante se pueden eliminar y afiadir tablas. Ya tenemos la cldusula from de la consulta.

Como el lector sabe, si en una consulta mencionamos dos tablas y no la relaciona-
mos, obtendremos el temible producto cartesiano: todas las combinaciones de filas posi-
bles, ain las mas absurdas. Para relacionar estas dos tablas entre si, arrastramos el
campo CustNo de customer sobre el campo del mismo nombre de orders. Debe apare-
cer una linea que une a ambos campos. Si se ha equivocado, puede seleccionar la

374 La Cara Oculta de C++ Builder

linea, eliminarla con la tecla SUPR y reintentar la operacion. Ya tenemos la clausula
where.

El préximo paso es indicar qué columnas se mostraran como resultado de la con-
sulta. Realice un doble clic sobre la columna Cozzpany de la tabla de clientes (el nom-
bre de la empresa), y sobre IfemsTotal, de la tabla de pedidos (el total por factura).
Esto determina la clausula select. Si quiere ver el texto generado para la consulta,
pulse un botén que dice “SQL”; si quiere ver los datos que devuelve la consulta,
pulse el botén que tiene el rayo de Jupiter.

i SAL Builder =] E3
File Edit Querny Help

D@ %R EE bk [ordrsds

7| Database [pEDEMOS

[~

&7 Customer Orders

™ CustHo (M) ™ CustHo (H)
Comparry (A30) ™ Orderblo (M)

™ Adr (A30) ™ SaleDate (@)
™ medr2 (A30) ™ ShipDste (@)
™ City (815) ™ Emphlo (S)

Criteria Selection IGroupmg' Group Crneria' Sarting | Joing: |

[~ Remove Duplicates

Output Maime: |Summary’ ‘Fleld
SUM OF femsTaotal SUM j Orelers temsTotal
CompaEny Customer.Company

Todavia no esta lista la consulta, pues se muestra una fila por cada pedido. Nos hace
falta agrupar el resultado, para lo cual activamos la pagina Selection, y pulsamos el
botén derecho del ratén sobre el campo [#emsTotal. En el menu que se despliega indi-
camos que este campo debe mostrar realmente una estadistica (S#mmary). Entonces
se divide en dos la celda, y en la nueva celda de la izquierda debemos seleccionar qué
tipo de estadistica necesitamos: en nuestro caso, SUM. Después ejecutamos la con-
sulta generada, para comprobar el resultado de la operacién; el texto de la consulta,
hasta aqui, es el siguiente:

SELECT SUM O ders.|tensTotal), Custoner. Conpany
FROM "custoner. db" Custoner

INNER JO N "orders.db" Orders

ON (Custoner. CustNo = Orders. Cust No)
GROUP BY Cust oner. Conpany

Nos falta ordenar el resultado por la segunda columna; seleccionamos la pagina Sor#-
ing, afladimos la columna IzemsTotal al criterio de ordenacién, y pedimos que se ot-
dene descendentemente. La consulta final es la siguiente:

Navegacion mediante consultas 375

SELECT SUM O ders.ltensTotal) O ders."SUM OF ItensTotal ",
Cust omrer . Conpany

FROM "custoner.db" Custoner
I NNER JO N "orders. db" Orders
ON (Custoner. CustNo = Orders. Cust No)

GROUP BY Cust oner. Conpany

ORDER BY Orders."SUM OF ItensTotal " DESC

Por supuesto, para un programador experto en SQL puede ser mas rapido y sencillo
teclear directamente el texto de la instruccién. Recuerde también que ésta es una
utilidad para tiempo de disefio. Si queremos permitir la generacién visual de consul-
tas al usuario final de nuestras aplicaciones, existen buenas herramientas en el mer-
cado disefiadas para este proposito.

La interfaz de esta herramienta ha cambiado en C++ Builder 4 con respecto a
versiones anteriores. El tltimo paso efectuado, afadir un criterio de ordenacién
basado en una expresion, generaba en versiones anteriores una instruccioén inco-
rrecta que habia que corregir a mano.

Capitulo

18

Comunicacion cliente/servidor

ODA LA COMUNICACION ENTRE EL Motor de Datos de Botland y los setvi-

dores SQL tiene lugar mediante sentencias SQL, incluso cuando el progra-

mador trabaja con tablas, en vez de con consultas. Para los desarrolladores en
entornos cliente/servidor es de primordial importancia comprender c6mo tiene
lugar esta comunicacién. En la mayoria de los casos, el BDE realiza su tarea eficien-
temente, pero hay ocasiones en las que tendremos que echatle una mano.

El propésito de este capitulo es ensefiatle como detectar estas situaciones. Para lo-
grarlo, veremos cémo el BDE traduce a instrucciones SQL las instrucciones de na-
vegacion y busqueda sobre tablas y consultas. La forma en que se manejan las actua-
lizaciones sera estudiada mas adelante.

Nuestra arma letal: SQL Monitor

Necesitamos un espia que nos cuente qué estd pasando entre el servidor y nuestro
cliente, y para esta labor contrataremos al SQL Monitor. Esta utilidad puede lanzarse
desde el mend de programas de Windows, o directamente desde el ment Database,
opcion SOL Monitor, del propio C++ Builder. La ventana principal de este programa
muestra las distintas instrucciones enviadas por el BDE vy las respuestas que éste
recibe del servidor. Podemos especificar qué tipos de instrucciones o de respuestas
queremos mostrar en esta ventana mediante el comando de ment Options | Trace op-
tions. En ese mismo cuadro de didlogo se ajusta el tamafio del buffer que albergara las
instrucciones. En principio, dejaremos las opciones tal y como vienen de la fabrica.
Mas adelante podra desactivar algunas de ellas para mostrar una salida mas compacta
y legible.

También necesitaremos una aplicacion de prueba, que utilice una base de datos
cliente/servidor. Para simplificar, utilizaremos un TTable asociado a la tabla employee
del alias de InterBase iblocal. Crearemos los objetos de acceso a campos, los arrastra-
remos a la superficie del formulario, y anadiremos una barra de navegacion. Impor-
tante: no se le ocurra utilizar una rejilla por el momento, pues se complicara la lectura
e interpretacion de los resultados de SQL Monitor.

378 La Cara Oculta de C++ Builder

La siguiente imagen muestra nuestra aplicaciéon de pruebas en funcionamiento:

A el =

EMP_ND FIRST_MAME LAST_NAME PHONE_EXT HIRE_DATE
|2 [Rabert [Netson [250 |28/12/08

DEFT_NO JOB_CODE JOB_GRADE JOB_COUMTRY SALARY

€00 = | 2 Jusa | 105300

Apertura de tablas y consultas

Estando “apagada” la aplicacion, lance SQL Monitor, mediante el método que mas le
guste. Luego, ejecute la aplicacion y vea la salida generada:

& sq
File Edit View Clients Options Help

L) i
Ref Ho. Time Stamp SOL Statement]
142 2310:31 S0L Data Out: INTRBASE - Column = 4, Name = PHONE_EXT, Type = IS TRING, Precisio
142 23710:32 SOL Data Dut INTRBASE - Column = 5, Mame = HIRE_DATE, Type = ldTIMESTAMP, Precic
144 231032 SOL Data Ouk INTRBASE - Column = B, Mame = DEPT_NO, Type = IdZS TRING. Precision =
145 231032 SOL Data Dut: INTRBASE - Column = 7. Name = JOB_CODE. Type = IdZSTRING. Precision
146 2310:32 50U Data Out: INTRBASE - Column = 8, Name =.J0B_GRADE, Type = fldINT16, Precision =
147 231033 SOL Data Out: INTRBASE -
1428 L Data Out: INTRE.
143 G Data Clut: [N _ .
SOL Data Out INTREASE - Column = 11, Name = FULL_MAME, Type = fIlZSTRING, Precision = 37, Scale =0, &
D ata = Nelson, Robert

iz

| Trace Enabled | Salmontest .

iNada menos que 149 entradas'’, solamente por abrir una tabla y leer el primer regis-
trol Hagamos una prueba. Sustituya la tabla con una consulta que tenga la siguiente
instruccién:

sel ect * from enpl oyee

Repita ahora el experimento, |y vera que con s6lo 15 entradas se puede comenzar a
ejecutar la aplicacion!

Hay un chiste (muy malo) acerca de unos cientificos y un cangrejo. Al desdichado
crustaceo le van arrancando las patas, mientras le ordenan verbalmente que se
mueva. Al final, el animal se queda tieso en la mesa y no obedece las 6rdenes. Resul-
tado anotado por los cientificos: un cangtejo sin patas no oye. Parecida es la conclu-
sion a la que llegaron algunos “gurus” de C++ Builder al ver estos resultados: hay
que utilizar siempre consultas, en vez de tablas, si se esta programando en un en-
torno cliente/servidor.

17 El nimero concreto de entradas puede variar, en funcion del sistema de bases de datos del
servidor, de la ubicacion del cliente, las opciones de trazado, etc. Los numeros que se den mads
adelante son también orientativos.

Comunicacion cliente/servidor 379

Y es que hay trampa en el asunto. ¢Se ha fijado que la consulta tiene la propiedad
Reguestl ive igual a False? Cambiela a True y repita la prueba, para que vea como vuelve
a dispararse el contador de entradas en el monitor. Y pruebe después ir al dltimo
registro, tanto con la consulta como con la tabla, para que vea que la ventaja inicial de
la consulta desaparece en este caso.

¢Qué esta pasandor ¢Cémo podemos orientarnos entre la marafia de instrucciones
del SQL Monitor? La primera regla de supervivencia es:

“Concéntrese en las instrucciones SQL. Prepare y SQL. Excecute”

La razén es que éstas son las 6rdenes que envia el BDE al servidor. Repitiendo la
apertura de la tabla, ;con qué sentencias SQL nos tropezamos? Helas aqui:

sel ect rdb$owner _name, rdb$rel ati on_name, rdb$system flag,
rdb$vi ew bl r, rdb$relation_id

from rdb$relations

where rdb$rel ation_nanme = ' enpl oyee'

El propésito de la sentencia anterior es comprobar si existe o no la tabla esployee. St

esta instruccion diera como resultado un conjunto de filas vacio, fallarfa la apertura
de la tabla.

select r.rdb$field_name, f.rdb$field_type, f.rdb$field_sub_type,
f.rdb$di mensions, f.rdb$field_|ength, f.rdb$field_scale,
f.rdb$validation_blr, f.rdb$conputed_blr,
r.rdb$defaul t _val ue, f.rdb$default_value, r.rdb$null_flag
from rdb$relation_fields r, rdb$fields f
where r.rdb$field_source = f.rdb%$field_name and
r.rdb$rel ati on_nane = 'enpl oyee'
order by r.rdb$field_position asc

sel ect i.rdb$index_nane, i.rdb$unique flag, i.rdb$index_type
f.rdb$fiel d_nane

from rdb$indices i, rdb$index_segnents f

where i.rdb$relation_nane = 'enployee' and
i .rdb$i ndex_nanme = f.rdb$i ndex_nane

order by i.rdb$index_id, f.rdb$field_position asc

sel ect r.rdb$field_name, f.rdb$validation_blr, f.rdb$conputed_blr,
r.rdb$def aul t _val ue, f.rdb$default_value, r.rdb$null_flag
from rdb$relation_fields r, rdb$fields f
where r.rdb$field_source = f.rdb%$fiel d_name and
r.rdb$rel ati on_name = 'enpl oyee'
order by r.rdb$field _position asc

No hace falta ser un especialista en InterBase para darse cuenta de lo que esta pa-
sando. El BDE esta extrayendo de las tablas del sistema la informacién sobre qué
campos, indices y restricciones estan definidas para esta tabla. Estos datos se almace-
nan dentro de las propiedades FieldDefs e IndexDefs de la tabla.

380 La Cara Oculta de C++ Builder
Finalmente, se abre la consulta basica para extraer datos de la tabla:

sel ect enp_no, first_nane, |ast_nane, phone_ext, hire_date, dept_no,
job_code, job_grade, job_country, salary, full_nanme

from enpl oyee

order by enp_no asc

Anote como detalle el que la consulta ordene las filas ascendentemente por el campo
Emp_No, que es la clave primaria de esta tabla. Dentro de poco comprenderemos
por qué.

La caché de esquemas
Traiga un bot6n al formulario y asocie el siguiente método con su evento OnClick:

void _ fastcall TFormil::Buttonld ick(TCbject *Sender)

Tabl el- >0 ose();
Tabl el- >Qpen() ;

Si pulsamos este boton durante la ejecucion de la aplicacion, veremos que la segunda
vez que se abre la misma tabla no se produce la misma retahila de sentencias que al
inicio, sino que directamente se pasa a leer el primer registro del cursor. La explica-
cién es que la tabla ya tiene la informacion de su esquema almacenada en las propie-
dades FieldDefs e IndexDefs. Esta es una buena optimizacion, porque disminuye el
trafico de datos en la red. Sin embargo, cada vez que se vuelve a ejecutar la aplicacion
partimos de cero, y hay que traer otra vez todos los datos del catalogo. Imagine una
empresa con cincuenta empleados, todos conectando su ordenador a las 9:15 de la
mafiana (si, porque de las 9:00 hasta entonces, café y cotilleo) y arrancando su aplica-
cién ...

Este problema es el que resuelve la opciéon ENABLE SCHEM.A CACHE del BDE,
que vimos en el capitulo sobre la configuraciéon del Motor de Datos. Asi que ya sabe
por qué es recomendable activar siempre la caché de esquemas.

Operaciones de navegacion simple

Volvemos a las pruebas con la aplicacion. Limpie el buffer de SQL Monitor, y pulse el
botén de la barra de navegacion de la aplicacién que lo lleva al dltimo registro de la
tabla. Esta es la sentencia generada por el BDE, después de cerrar el cursor activo:

sel ect enp_no, first_nane, |ast_nane, phone_ext, hire_date, dept_no,
job_code, job_grade, job_country, salary, full_name
from enpl oyee

Comunicacion cliente/servidor 381

order by enp_no desc

jHa cambiado el criterio de ordenaciéon! Por supuesto, cuando el BDE ejecute la
siguiente sentencia fetch el registro leido sera el ultimo de la tabla. Si seguimos nave-
gando hacia atras, con el boton Prior, el BDE solamente necesita ejecutar mas ins-
trucciones fetch, como en el moon walk de Michael Jackson: parece que nos movemos
hacia atras, pero en realidad nos movemos hacia delante.

Este truco ha sido posible gracias a la existencia de una clave primaria Gnica sobre la
tabla. Algunos sistemas SQL admiten que una clave primaria sea nula, permitiendo
un solo valor nulo en esa columna, por supuesto. El problema es que, segun el estan-
dar SQL, al ordenar una secuencia de valores siendo algunos de ellos nulos, estos
ultimos siempre apareceran en la misma posicién: al principio o al final. Por lo que
invertir el criterio de ordenacion en el select no nos proporcionara los mismos datos
en sentido inverso. E1 BDE no podra practicar sus habilidades, y nos obligara a leer
el millén de registros de la tabla a través de nuestra fragil y delicada red.

Precisamente eso es lo que sucede con un TQuery, sea actualizable o no. Cuando
vamos al final del cursor, siempre se leen todos los registros intermedios. Cangrejo
sin patas no oye, ¢cierto?

Cuando se indica un criterio de ordenacién para la tabla, ya sea mediante Index-
Name o IndexIieldNames, se cambia la clausula order by del cursor del BDE. Sin
embargo, sucede algo curioso cuando el critetio se especifica en IndexName: el
BDE extrae los campos del indice para crear la sentencia SQL. Si la tabla es de
InterBase, aunque el indice sea descendente la clausula order by indicara el or-
den ascendente. Esto, evidentemente, es un b#g, pues nos fuerza a utilizar una
consulta si queremos ver las filas de una tabla ordenadas en forma descendente
por determinada columna.

Busquedas exactas con Locate

Anada al formulario un cuadro de edicion (TEdz) y un botén. Con estos compo-
nentes vamos a organizar una busqueda directa por cédigo. Cree la siguiente res-
puesta al evento OnClick del boton:

void _ _fastcall TFornR::Button2d ick(TObject *Sender)

if (! Tablel->Locate("EMP_NO', Editl->Text, TLocateOptions())
Beep();

Esta es una busqueda exacta. Primero se prepara la siguiente instruccion:

382 La Cara Oculta de C++ Builder

sel ect enp_no, first_nanme, |ast_nanme, phone_ext, hire_date, dept_no,
job_code, job_grade, job_country, salary, full_nanme

from enpl oyee

where enp_no = ?

La sentencia tiene un parametro. Para ejecutarla, el BDE utiliza antes una instruccion
Data in, en la que proporciona el valor pasado en el segundo paraimetro de Locate a la
instrucciéon SQL. Lo interesante es lo que sucede cuando nos movemos con Priory
Next a partir del registro seleccionado. Si buscamos el registro anterior después de
haber localizado uno, se genera la siguiente instruccion:

sel ect enp_no, first_nanme, |ast_nanme, phone_ext, hire_date, dept_no,
job_code, job_grade, job_country, salary, full_nanme

from enpl oyee

where enp_no < ?

order by enp_no desc

Es decir, el BDE abre un cursor descendente con los registros cuyo codigo es menor
que el actual.

Busquedas parciales

Cambiemos ahora la respuesta al evento OnClick del boton de bisqueda, para que
efectie una busqueda parcial sobre la columna del apellido del empleado:

void _ _fastcall TFornR::Button2d ick(TObject *Sender)

if (! Tablel->Locate("LAST_NAME', Edit1->Text,
TLocat eOptions() << loParti al Key))
Beep();

Si tecleamos GUCK, encontraremos el registro de Mr. Guckenheimer, cuyo codigo de
empleado es el 145. En este caso, el BDE dispara dos consultas consecutivas sobre la
tabla. Esta es la primera:

sel ect enp_no, first_nane, |ast_name, phone_ext, hire_date
job_code ,job_grade ,job_country ,salary ,full_nanme
enpl oyee

| ast _name = ?

dept _no,

from
wher e

La consulta anterior intenta averiguar si hay alguien cuyo apellido sea exactamente
“Guck”. Si no sucede tal cosa, se dispara la segunda consulta:

sel ect enp_no, first_nane, |ast_nane, phone_ext, hire_date,
job_code ,job_grade ,job_country ,salary ,full_name

dept _no,

from enpl oyee
where |ast_nanme > ?
order by |ast_nanme asc

Comunicacion cliente/servidor 383

Evidentemente, si un apellido comienza con “Guck”, es posterior alfabéticamente a
este prefijo, y es esto lo que busca la segunda consulta: el primer registro cuyo ape-
llido es mayor que el patrén de buasqueda tecleado. Eficiente, ¢no es ciertor? Sin em-
bargo, una pequena modificacién puede arruinar la buena reputacion del BDE:

void _ _fastcall TFornR::Button2d ick(TObject *Sender)

if (! Tablel->Locate("LAST_NAME', Edit1->Text,

TLocateOptions() << |oPartial Key << | oCasel nsensitive))
Beep();

La busqueda ahora es también insensible a mayudsculas y mindsculas. Si teclea nue-
vamente GUCK, estando al principio de la tabla, vera como en el SQL Monitor apa-
rece una instruccion fetch por cada registro de la tabla. De lo que se puede deducir
que si la tabla tuviera un millén de registros y estuviéramos buscando el ultimo, po-
drfamos dejar la maquina encendida e irnos a disfrutar de una semana de merecidas
vacaciones.

El lector puede pensat, como pensé en su momento el autor, que la culpa de este
comportamiento la tiene InterBase, que no permite {indices insensibles a mayus-
culas y mindsculas. No obstante, lo mismo sucede con Oracle y con SQL Server,
como puede comprobar facilmente quien tenga acceso a estos sistemas.

Una solucidn para busquedas parciales rapidas

¢Qué pasa si para nuestra aplicacién cliente/servidor son indispensables las busque-
das parciales rapidas insensibles a mayudsculas y mindsculas? Por ejemplo, queremos
que el usuario pueda ir tecleando letras en un cuadro de edicién, y en la medida en
que teclee, se vaya desplazando la fila activa de la tabla que tiene frente a si. En este
caso, lo aconsejable es ayudar un poco al BDE.

Coloque un componente TQuwery en el formulario que hemos estado utilizando, co-
néctelo a la base de datos y suministrele la siguiente instrucciéon SQL:

sel ect enp_no
from enpl oyee
where upper(last_nane) starting with :patron

Con esta consulta pretendemos localizar los empleados cuyos apellidos comienzan
con el prefijo que pasaremos en el parimetro patron. Edite la propiedad Params de la
consulta y asignele a este parametro el tipo string. Como la consulta se ejecuta en el
servidor, nos ahorramos todo el trafico de red que implica el traernos todos los re-

384 La Cara Oculta de C++ Builder

gistros. Claro, ahora es responsabilidad del servidor el implementar eficientemente la
consulta.

Por ultimo, elimine el botén de busqueda junto con el método asociado a su OnClick,
y asocie esta respuesta al evento OnChange del cuadro de edicion:

void _ fastcall TFornil:: Edit1Change(TObj ect *Sender)

if (Editl->Text == "")
Tabl el->First();
el se

{
Queryl->Parans[0] - >AsString = Ansi Upper Case(Edi t1- >Text);
Queryl1->Cpen();
try

if (Queryl->Eof || ! Tabl el->Locate("EMP_NO',
Queryl- >Fi el ds- >Fi el ds[0] - >Val ue,
TLocat eOptions()) Beep();

b
_finally

Queryl. C ose;

Cuando el usuario teclea algo en el cuadro de edicion, se ejecuta la consulta para
recuperar los cédigos de los posibles empleados. Evidentemente, si la consulta esta
vacia no existen tales empleados. En caso contrario, se escoge el primero de ellos y se
busca su fila, utilizando una busqueda exacta por el codigo mediante Locate, la cual ya
sabemos que es rapida y segura.

El algoritmo anterior puede mejorarse con un par de trucos. Primero, puede prepa-
rarse la consulta antes de utilizarla, para ahorrarnos la compilacién de la misma cada
vez que busquemos algo. Y podemos hacer lo mismo que el BDE: utilizar una pri-
mera consulta que intente localizar el registro que corresponda exactamente al valor
tecleado, antes de buscar una aproximacion.

Busquedas con filtros latentes

Para terminar este capitulo, analizaremos cémo el BDE implementa los filtros y ran-
gos para las bases de datos cliente/servidor. Asigne la siguiente expresion en la pro-

piedad Filter de la tabla:

Job_Grade = 5 and Sal ary >= 30000

Comunicacion cliente/servidor 385

A continuacién active el filtro mediante la propiedad Filtered, y ejecute la aplicacion.
El cursor que abre el BDE afiade la expresion de filtro dentro de su clausula where:

sel ect enp_no, first_nanme, |ast_nanme, phone_ext, hire_date, dept_no,
job_code, job_grade, job_country, salary, full_name

from enpl oyee

where (job_grade = ? and salary >= ?)

order by enp_no asc

Aunque se estan utilizando parimetros para las constantes, hasta aqui no hay ningin
misterio. Llegamos a la conclusion, ademas, que los filtros se implementan eficiente-
mente en sistemas cliente/servidor, pues la responsabilidad de la seleccion de filas

queda a cargo del servidor. Sin embargo, es una conclusién prematura. Considere la

inocente expresion:
Last _Nanme = 'B*'

Como hemos dicho en un capitulo anterior, con esta expresion se pretende seleccio-
nar los empleados cuyos apellidos comienzan con la letra B. Al activar el filtro, po-
demos comprobar con SQL Monitor que el BDE trae al cliente todos los registros
de la tabla, y los descarta localmente, a pesar de que la expresion anterior es equiva-
lente a esta otra, que sabemos que se implementa eficientemente:

Last _Nane >= 'B' and LastNane < 'C

El mismo problema se presenta cuando se afiade la opcion foCaselnsensitive a la pro-
piedad FilterOptions. Por lo tanto, hay que tener cuidado con las expresiones que va-
mos a utilizar como filtro.

Los rangos se implementan de forma similar a las expresiones de filtro equiva-
lentes. En tablas cliente/servidor es preferible, entonces, utilizar filtros en vez de
rangos, pues son menos las limitaciones de los primeros: no hay que tener las fi-
las ordenadas, se pueden establecer condiciones para los valores de varias filas
simultaneamente...

Es interesante ver cémo se las arregla el BDE para navegar con FindEirst, FindPrior,
FindNext y Findl ast por las filas definidas por un filtro no activo, o filtro latente.
Supongamos que Filtered sea False, y que a Filter le asignamos la expresion:

Job_Country <> ' USA

Cuando se ejecuta el método FindFirst, el BDE lanza la siguiente sentencia:

386 La Cara Oculta de C++ Builder

sel ect

from
wher e
order

emp_no, first_nanme, |ast_nanme, phone_ext, hire_date, dept_no
job_code, job_grade, job_country, salary, full_nanme

enpl oyee

job_country <> ?

by enp_no asc

Para buscar el siguiente (FindNex), se utiliza el codigo de registro actual:

sel ect

from
wher e
order

enp_no, first_nane, |ast_nanme, phone_ext, hire_date, dept_no
job_code, job_grade, job_country, salary, full_name

enpl oyee

job_country <> ? and enp_no > ?

by enp_no asc

Las operaciones Findl asty FindPrior se implementan de forma similar, invirtiendo
solamente el orden de las filas. Y por supuesto, pueden surgir problemas si se utilizan
filtros con busquedas parciales o insensibles a mayusculas y minusculas.

He dejado el analisis de las operaciones de actualizacion sobre bases de datos
SQL para los capitulos 26 y 27.

C++ Builder: actualizaciones
y concurrencia

Actualizaciones

Actualizaciones mediante consultas
Eventos de transicion de estados
Bases de datos y transacciones
Sesiones

Actualizaciones en caché

Parte

Capitulo

19

Actualizaciones

L VIAJE MAS LARGO comienza con un simple paso. Después de crear las ta-

blas, hay que alimentarlas con datos. En este capitulo iniciaremos el estudio

de los métodos de actualizacion. Se trata de un tema extenso, por lo cual nos
limitaremos al principio a considerar actualizaciones sobre tablas aisladas, en entor-
nos de un solo usuario, dejando para mas adelante las actualizaciones coordinadas y
el control de transacciones y concurrencia.

Los estados de edicion y los métodos de transicion

Como ya hemos explicado, cuando un conjunto de datos se encuentra en el estado
dsBrowse, no es posible asignar valores a los campos, pues se produce una excepcion.
Para realizar modificaciones, hay que cambiar el estado del conjunto de datos a uno
de los estados dsEdit & dslnsert. Para realizar la transicion a estos estados, debemos
utilizar el método Ediz, si es que deseamos realizar modificaciones sobre el registro
activo; si queremos afladir registros debemos utilizar Insert & Append.

/1 Para nodificar /] Para afiadir un nuevo registro
Tabl el->Edi t () ; Tabl el- >Append() ;
[/ ...secuencia de nodificacién ... /'l ...secuencia de insercioén ...

dsBrowse

Post

Edit Insert

Cuando estudiamos los controles de datos, vimos que se podia teclear directamente
valores sobre los mismos, y modificar de este modo los campos, sin necesidad de
llamar explicitamente al método Edit. Este comportamiento se controla desde la
fuente de datos, el objeto DataSource, al cual se conectan los controles de datos. Si
este componente tiene el valor True en su propiedad AwutoEdit, una modificacion en el

390 La Cara Oculta de C++ Builder

control provocara el paso del conjunto de datos al estado Ediz. Puede ser deseable
desactivar la edicion automatica cuando existe el riesgo de que el usuario modifique
inadvertidamente los datos que esta visualizando.

El método Edit debe releer siempre el registro actual, porque es posible que haya
sido modificado desde otro puesto desde el momento en que lo leimos por primera
vez.

Se puede aprovechar el comportamiento de Edzz, que es valido tanto para bases
de datos de esctitorio como pata bases de datos cliente/servidor, para releer el

registro actual sin necesidad de llamar al método Refresh, que es potencialmente
mas costoso. Para asegurarse de que el contenido de la fila activa esté al dia, eje-
cute el siguiente par de instrucciones:

Tabl el>Edit () ;
Tabl el>Cancel () ;

Es necesario llamar a Cance/ para devolver la tabla al estado original dsBrowse.

Asignhaciones a campos

Bien, ya tenemos los campos de la tabla en un modo receptivo a nuestras asigna-
ciones. Ahora tenemos que realizar dichas asignaciones, y ya hemos visto cémo reali-
zar asignaciones a un campo al estudiar la implementacién de los campos calculados.
Recordemos las posibilidades:

Asignacién por medio de variables de campos creadas mediante el Editor de
Campos. Es la forma mas eficiente de asignacion, y la mas segura, pues se com-
prueba su validez en tiempo de compilacion.

tbdientes->Edit();
tbd i entesLast|nvoi ceDate->Value = Date(); // Utim factura
/1

Asignacién mediante los objetos de campo creados en tiempo de ejecucion, por
medio de la funcién FieldByName o la propiedad Fields. FieldByName es menos es-
table frente a cambios de nombres de columnas, y respecto a errores tipograficos.
Tampoco suministra informacién en tiempo de compilacion acerca del tipo de
campo. La propiedad Frelds debe utilizarse solamente en casos especiales, pues
nos hace depender ademas del orden de definicién de las columnas.

tbdientes->Edit();
t b i ent es- >Fi el dByNane("Last | nvoi ceDate")->AsDateTine = Date();
/1

Actualizaciones 391

Asignacion mediante la propiedad Fieldl alues. Es la forma menos eficiente de
todas, pues realiza la busqueda de la columna y se asigna a una propiedad 1 ariant,
pero es quizas la mas flexible.

tbdientes->Edit();
tbd i ent es- >Fi el dVal ues["Last | nvoi ceDate"] = Date();

En Delphi tiene mas atractivo utilizar Fieldl alues, pues ésta es la propiedad vec-
torial por omisién de la clase TDaraSet. La siguiente instruccion setfa correcta:

tbdientes['LastlnvoiceDate'] := Date; // jEsto es Del phi!

Lamentablemente, C++ Builder no ofrece un equivalente para las propiedades
por omisién, aunque hubiera sido facil conseguitlo mediante la sobrecarga de
operadores.

La asignacion de valores a campos mediante la propiedad Freldl alues nos permite
asignar el valor null de SQL a un campo. Para esto, utilizamos la variable variante
especial Null, detinida en la unidad Systenz:

tbd i ent es- >Fi el dVal ues["Last | nvoi ceDate"] = Null;

Pero yo prefiero utilizar el método Clear del campo:

tbd i entesLast| nvoi ceDate->C ear();

Es necesario tener bien claro que, aunque en Paradox y dBase un valor nulo se repre-
senta mediante una cadena vacia, esto no es asf para tablas SQL.

Otra posibilidad es utilizar el método Assign para copiar el contenido de un campo en
otro. Por ejemplo, si Tablel y Table2 son tablas con la misma estructura de campos, el
siguiente bucle copia el contenido del registro activo de Table2 en el registro activo de
TableT; se asume que antes de este codigo, Tablel se ha colocado en alguno de los
estados de edicion:

for (int i = 0; i < Tabl el->FieldCount; i++)
Tabl el- >Fi el ds- >Fi el ds[i] - >Assi gn(Tabl e2- >Fi el ds->Fi el ds[i]);

Cuando se copia directamente el contenido de un campo a otro con .Asszgn deben
coincidir los tipos de los campos y sus tamafios. Sin embargo, si los campos son
campos BLOB, esta restriccion se relaja. Incluso puede asignarse a estos campos el
contenido de un memo o de una imagen:

Tabl elFot o- >Assi gn(| magel- >Picture);

392 La Cara Oculta de C++ Builder

Por ultimo, la propiedad Modjfied nos indica si se han realizado asignaciones sobre
campos del registro activo que no hayan sido enviadas aun a la base de datos:

voi d Grabar CCancel ar (TDat aSet * ADat aSet) ;

if (ADataSet->State == dsEdit || ADataSet->State == dslnsert)
i f (ADataSet->Mdified)
ADat aSet - >Post () ;
el se
ADat aSet - >Cancel () ;

El método CheckBrowseMode, de la clase TDataSet, es aproximadamente equivalente a
nuestro GrabarOCancelar, como veremos mas adelante.

Confirmando las actualizaciones

Una vez realizadas las asignaciones sobre los campos, podemos elegir entre confir-
mar los cambios o descartar las modificaciones, regresando en ambos casos al estado
inicial, dsBrowse. Para confirmar los cambios se utiliza el método Posz, indistintamente
de si el conjunto de datos se encontraba en el estado dslnsert o en el dsEdit. E1 mé-
todo Post corresponde, como ya hemos explicado, al boton que tiene la marca de
verificacion de las barras de navegacién. Como también hemos dicho, Post es llamado
implicitamente por los métodos que cambian la fila activa de un conjunto de datos,
pero esta técnica es recomendada s6lo para acciones inducidas por el usuario, nunca
como recurso de programacion. Siempre es preferible un Post explicito.

Si la tabla o consulta se encontraba inicialmente en el modo dslusert, los valores ac-
tuales de los campos se utilizan para crear un nuevo registro en la tabla base. Si por el
contratio, el estado inicial es dsEdt, los valores asignados modifican el registro activo.
En ambos casos, y esto es importante, si la operacion es exitosa la fila activa de la
tabla corresponde al registro nuevo o al registro moditicado.

Para salir de los estados de edicién sin modificar el conjunto de datos, se utiliza el
método Cancel, que corresponde al botén con la “X” en la barra de navegacion. Can-
ce/ restaura el registro modificado, si el estado es dsEEdiz, o regresa al registro previo a
la llamada a Insert 6 Append, si el estado inicial es dslnsers. Una caracteristica intere-
sante de Cancel es que si la tabla se encuentra en un estado diferente a dslnsert 6 dsEdit
no pasa nada, pues se ignora la llamada.

Por el contrario, es una precondicién de Post que el conjunto de datos se encuentre
alguno de los estados de edicion; de no ser asi, se produce una excepcién. Hay un
método poco documentado, llamado CheckBrowseMode, que se encarga de asegurar
que, tras su llamada, el conjunto de datos quede en el modo dsBrowse. Si la tabla o la
consulta se encuentra en alguno de los modos de edicion, se intenta una llamada a

Actualizaciones 393

Post. St el conjunto de datos esta inactivo, se lanza entonces una excepcién. Esto nos
ahorra repetir una y otra vez la siguiente instruccion:

if (Tablel->State == dsEdit || Tablel->State == dslnsert)
Tabl el- >Post () ;

Es muy importante, sobre todo cuando trabajamos con bases de datos locales, ga-
rantizar que una tabla siempre abandone el estado Edit. La razén, como veremos mas
adelante, es que para tablas locales Edif pide un bloqueo, que no es devuelto hasta
que se llame a Cance/ 6 Post. Una secuencia correcta de edicién por programa puede
ser la siguiente:

Tabl el->Edit();
try

/'l Asignaci ones a canpos
Tabl el- >Post () ;

}
cat ch(Exception&)

Tabl el- >Cancel () ;
t hr ow;

Diferencias entre Insert y Append

¢Por qué Insert y también Append? Cuando se trata de bases de datos SQL, los con-
ceptos de insercion 7 situ y de insercion al final carecen de sentido, pues en este tipo
de sistemas no existe el concepto de posicion de registro. Por otra parte, el formato
de tablas de dBase no permite una implementacion eficiente de la insercién i situ,
por lo cual la llamada al método Iusert es siempre equivalente a una llamada a 4ppend.

En realidad, en el unico sistema en que estos dos métodos tienen un comporta-
miento diferente es en Paradox, en el caso especial de las tablas definidas sin indice
primario. En este caso, Insert es realmente capaz de insertar el nuevo registro después
del registro activo. Pero este tipo de tablas tiene poco uso, pues no se pueden definir
indices secundarios en Paradox si no existe antes una clave primaria.

Pero la explicacion anterior se refiere solamente al resultado final de ambas opera-
ciones. Si estamos trabajando con una base de datos cliente/servidor, existe una
pequena diferencia entre Insert y Append, a tener en cuenta especialmente si paralela-
mente estamos visualizando los datos de la tabla en una rejilla. Cuando se realiza un
Append, 1a fila activa se desplaza al final de la tabla, por lo que el BDE necesita leer
los ultimos registros de la misma. Luego, cuando se grabe el registro, la fila activa
volvera a desplazarse, esta vez a la posicion que le corresponde de acuerdo al criterio
de ordenacién activo. En el peor de los casos, esto significa releer dos veces la canti-

394 La Cara Oculta de C++ Builder

dad de registros que pueden aparecer simultineamente en pantalla. Por el contrario,
si se trata de Iusert, solamente se produce el segundo desplazamiento, pues inicial-
mente la fila activa crea un “hueco” en la posicién en que se encontraba antes de la
insercion. Esta diferencia puede resultar o no significativa.

Sila tabla en que se estd insertando contiene registros ordenados por algin
campo secuencial, o por la fecha de insercién, y esta ordenada por ese campo, es
preferible utilizar Append, pues lo normal es que el registro quede definitivamente
al final del cursor.

Como por azar...

¢Un pequeno ejemplo? Vamos a generar aleatoriamente filas para una tabla; esta
operacion es a veces util para comprobar el funcionamiento de ciertas técnicas de
C++ Builder. La tabla para la cual generaremos datos tendra una estructura sencilla:
una columna Cadena, de tipo cadena de caracteres, y una columna Enfero, de tipo
numérico. Supondremos que la clave primaria de esta tabla consiste en el campo
Cadena, para el ejemplo actual es indiferente qué clave esta definida. Lo primero sera
crear una funcién que nos devuelva una cadena alfabética aleatoria de longitud fija:

Ansi String RandonString(int Longitud)
{
char* Vocal es
char Last Char
Ansi String Rslt;

"AEI QJ';
A

Rslt. Set Lengt h(Longi tud);
for (int i =1; i <= Longitud; i++)

Last Char = strchr("AEI OUNS", LastChar) ?
randon(26) + '"A : Vocal es[randon(5)];
Rslt[i] = LastChar;

return Rslt;

Me he tomado incluso la molestia de favorecer las secuencias consonante/vocal. El
procedimiento que se encarga de llenar la tabla es el siguiente:

voi d Ll enar Tabl a(TTabl e *Tabl a, int CantRegi stros)
{

random ze();

int Intentos = 3;

whi |l e (Cant Regi stros > 0)

try

Tabl a- >Append() ;
Tabl a- >Fi el dVal ues[" Cadena"] = RandonStri ng(
Tabl a- >Fi el dByName(" Cadena") - >Si ze) ;

Actualizaciones 395

Tabl a- >Fi el dVal ues["Entero"] = randon{ MAXI NT) ;
Tabl a- >Post () ;

Intentos = 3;

Cant Regi stros--;

}
cat ch(Exception&)
{

}

if (--Intentos == 0) throw

La mayoria de las excepciones se produciran por violaciones de la unicidad de la
clave primaria. En definitiva, las excepciones son ignoradas, a no ser que sobrepase-
mos el nimero predefinido de intentos; esto nos asegura contra el desbordamiento
de la capacidad de un disco y otros factores imprevisibles. El numero de registros se
decrementa solamente cuando se produce una grabacién exitosa.

NOTA IMPORTANTE

Cuando se trata de una base de datos SQL, el método de insercién masivo ante-
rior es muy ineficiente. En primer lugar: cada grabacién (Pos?) abre y cierra una
transaccion, asi que es conveniente agrupar varias grabaciones en una transac-
cién. En segundo lugar, este algoritmo asume que estamos navegando sobre la
tabla en la que insertamos, por lo que utiliza un TTable. Eso no es eficiente; mas
adelante veremos como utilizar un TQuery con parametros para lograr mas rapi-
dez.

Métodos abreviados de insercion

Del mismo modo que FindKey y FindNearest son formas abreviadas para la busqueda
basada en indices, existen métodos para simplificar la insercion de registros en tablas
y consultas. Estos son los métodos InsertRecord y AppendRecord:

void _ fastcall TDataSet::InsertRecord(

const System:TVarRec *Val ues, const int Values_Size);
void _ fastcall TDataSet:: AppendRecor d(

const System:TVarRec *Val ues, const int Val ues_Size);

En principio, por cada columna del conjunto de datos donde se realiza la insercién
hay que suministrar un elemento en el vector de valores. El primer valor se asigna a
la primera columna, y asf sucesivamente. Pero también puede utilizarse como para-
metro un vector con menos elementos que la cantidad de columnas de la tabla. En
ese caso, las columnas que se quedan fueran se inicializan con el valor por omision.
El valor por omisién depende de la definicion de la columna; si no se ha especificado
otra cosa, se utiliza el valor nulo de SQL.

396 La Cara Oculta de C++ Builder

Siuna tabla tiene tres columnas, y queremos insertar un registro tal que la primera y
tercera columna tengan valores no nulos, mientras que la segunda columna sea nula,
podemos pasar la constante N/l en la posicion correspondiente:

Tabl el- >l nsert Recor d(ARRAYOFCONST(("Val or1", Null, "Valor3")));
/...
Tabl el- >AppendRecor d(ARRAYOFCONST((

Randonft ri ng(Tabl a- >Fi el dByNane(" Cadena") - >Si ze),

randon{ MAXINT))));

C++ Builder también ofrece el método SezFields, que asigna valores a los campos de
una tabla a partir de un vector de valores:

Tabl el->Edit();
Tabl el- >Set Fi el ds(ARRAYOFCONST((" Val or1", Null, "Valor3")));
Tabl el- >Post () ;

El inconveniente de estos métodos abreviados se ve facilmente: nos hacen depen-
dientes del orden de definicién de las columnas de la tabla. Se reestructura la tabla y
jadios inserciones!

El Gran Experimento

Hasta el momento hemos asumido que solamente nuestra aplicacion tiene acceso,
desde un solo puesto, a los datos con los que trabaja. Aun sin trabajar con bases de
datos SQL en entornos cliente/servidor, esta suposicion es irreal, pues casi cualquier
escenario de trabajo actual cuenta con varios ordenadores conectados en una red
puesto a puesto; a una aplicacién para los formatos de datos mas sencillos, como
Paradox y dBase, se le exigird que permita el acceso concurrente a éstos.

¢Qué sucede cuando varias aplicaciones intentan modificar simultineamente el
mismo registro? En vez de especular sobre la respuesta, lo més sensato es realizar un
sencillo experimento que nos aclare el desarrollo de los acontecimientos. Aunque el
experimento ideal deberfa involucrar al menos dos ordenadores, podremos arreglar-
nosla ejecutando dos veces la misma aplicaciéon en la misma maquina. Lo mas im-
portante que descubriremos es que sucederan cosas diferentes cuando utilicemos
bases de datos de escritorio y servidores SQL. La aplicacion en si serd muy sencilla:
una tabla, una fuente de datos (I'DataSource), una rejilla de datos (TDBGrid) y una
barra de navegacion (I'DBNavigator), esta Gltima para facilitarnos las operaciones
sobre la tabla.

Actualizaciones 397

El Gran Experimento: tablas locales

En su primera version, la tabla debe referirse a una base de datos local, a una tabla en
formato Paradox 6 dBase. Para lograr que la misma aplicacién se ejecute dos veces
sin necesidad de utilizar el Explorador de Windows o el menu Inicio, cree el siguiente
método en respuesta al evento OnCreate del formulario principal:

void _ fastcall TFornil:: FornCreat e(TObj ect *Sender)

{

Top = O;

Wdth = Screen->Wdth / 2;

Hei ght = Screen->Hei ght;

if (CreateMtex(NULL, Fal se,
Extract Fi | eNane(Appl i cati on->ExeNane).c_str()) !'= 0 &&
Get Last Error () == ERROR_ALREADY_EXI STS)
Left = Screen->Wdth / 2;

el se

Left = 0;
W nExec(Appl i cati on->ExeNane.c_str(), SW NORVAL);

Para detectar la presencia de la aplicacion he utilizado un semaforo binario soportado
por Windows, llamado mutex, que se crea con la funcién CreateMutex. Para que se
reconozca globalmente el semaforo hay que asignarle un nombre, que estamos for-
mando a partir del nombre de la aplicacion.

Ejecute dos instancias de la aplicacion y efectie entonces la siguiente secuencia de
operaciones:

Sittese sobre un registro cualquiera de la rejilla, en la primera aplicacion. Diga-
mos, por conveniencia, que éste sea el primer registro.

Ponga la tabla en estado de edicion, pulsando el boton del tridngulo (Edi?) de la
barra de navegacion. El mismo efecto puede obtenerlo tecleando cualquier cosa
en la rejilla, pues la fuente de datos tiene la propiedad AwnfoEdit con el valor por
omision, True. En cualquiera de estos dos casos, tenga cuidado de no cambiar la
fila activa, pues se llamaria automaticamente a Posz, volviendo la tabla al modo
dsBrowse.

Deje las cosas tal como estan en la primera aplicacién, y pase a la segunda.
Sittese en el mismo registro que escogio para la primera aplicacion e intente po-
ner la tabla en modo de edicién, pulsando el correspondiente botén de la barra de
navegacion, o tecleando algo.

He escrito “intentar”, porque el resultado de esta accion es un mensaje de error: “Re-
gistro bloqueado por otro usuario”. Si tratamos de modificar una fila diferente no en-
contraremos problemas, lo que quiere decir que el bloqueo se aplica solamente al re-

398 La Cara Oculta de C++ Builder

gistro que se esta editando en la otra aplicacion, no a la tabla completa. También
puede comprobar que el registro vuelve a estar disponible en cuanto guardamos las
modificaciones realizadas en la primera aplicacion, utilizando el botén de la marca de
verificacion (O o moviéndonos a otra fila. .o mismo sucede si se cancela la opera-
cion.

Post

Cancel

La conclusion a extraer de este experimento es que, para las tablas locales, el método
Edit, que se llama automaticamente al comenzar alguna modificacién sobre la tabla,
intenta colocar un bloqueo sobre la fila activa de la tabla. Este bloqueo puede elimi-
narse de dos formas: con el método Posz, al confirmar los cambios, y con el método
Cancel, al descartarlos.

El Gran Experimento: tablas SQL

Repetiremos ahora el experimento, pero cambiando el formato de la tabla sobre la
cual trabajamos. Esta vez conecte con una tabla de InterBase, da lo mismo una que
otra. Ejecute nuevamente la aplicaciéon dos veces y siga estos pasos:

En la primera aplicacién, modifique el primer registro de la tabla, pero no con-
firme la grabacién, dejando la tabla en modo de insercién.

En la segunda aplicacion, ponga la tabla en modo de edicién y modifique el pri-
mer registro de la tabla. Esta vez no debe ocurrir error alguno. Grabe los cambios
en el disco.

Regrese a la primera aplicacion e intente grabar los cambios efectuados en esta
ventana.

En este momento, §7 que tenemos un problema. La excepcion se presenta con el si-
guiente mensaje: “No se pudo realizar la edicién, porque otro usuario cambi6 el
registro”. Hay que cancelar los cambios realizados, y entonces se releen los datos de
la tabla, pues los valores introducidos por la segunda aplicacién aparecen en la pri-
mera.

Actualizaciones 399

Pesimistas y optimistas

La explicacion es, en este caso, mas complicada. Acabamos de ver en accién un me-
canismo optimista de control de edicion. En contraste, a la técnica utilizada con las
bases de datos locales se le denomina pesimista. Ya hemos visto que un sistema de
control pesimista asume, al intentar editar un registro, que cualquier otro usuario
puede estar editando este registro, por lo que para iniciar la edicion “pide permiso”
para hacerlo. Pedir permiso es el simil de colocar un bloqueo (/¢£): si hay realmente
otro usuario editando esta fila se nos denegara dicho permiso.

C++ Builder transforma la negacién del bloqueo en una excepcion. Antes de lanzar
la excepcidn, se nos avisa mediante el evento OnEditError de la tabla. En la respuesta
a este evento tenemos la posibilidad de reintentar la operacién, fallar con la excep-
ci6on o fallar silenciosamente, con una excepcion EAbort. En la lejana época en la que
los Flintstones hacfan de las suyas y la mayor parte de las aplicaciones funcionaban
en modo batch, era de suma importancia decidir cuando la aplicaciéon que no obtenia
un bloqueo se cansaba de peditlo. Ahora, sencillamente, se le puede dejar la decision
al usuario. He aqui una simple respuesta al evento OzEditError, que puede ser com-
partido por todas las tablas locales de una aplicacion:

void __fastcall TForml:: Tabl elEditError(TDat aSet *DataSet,
EDat abaseError *E, TDataAction &Action)

i f (MessageDl g(E- >Message, nt \Warni ng,
TMsgDl gButton() << mbRetry << nmbAbort, 0) == nrRetry)
Action = daRetry;

el se
Action = daAbort;

Otra posibilidad es programar un bucle infinito de reintentos. En este caso, es reco-
mendable reintentar la operacioén transcurrido un intervalo de tiempo prudencial;
cuando llamamos por teléfono y esta la linea ocupada no marcamos frenéticamente
el mismo numero una y otra vez, sino que esperamos a que la otra persona termine
su llamada. En este c6digo muestro ademas como esperar un intervalo de tiempo
aleatorio:

void _ fastcall TForml:: Tabl elEditError(TDat aSet *TDataSet,
EDat abaseError *E, TDataAction &Action)
{

/| Esperar entre 1y 2 segundos
Sl eep(1000 + randon(1000));

/'l Reintentar

Action = daRetry;

El sistema pesimista es el mas adecuado para bases de datos locales, pero para bases
de datos SQL en entornos cliente/servidor, donde toda la comunicacién transcurre a

400 La Cara Oculta de C++ Builder

través de la red, y en la que se trata de maximizar la cantidad de usuarios que pueden
acceder a las bases de datos, no es la mejor politica. En este tipo de sistemas, el mé-
todo Edit, que marca el comienzo de la operacién de modificacion, no intenta colo-
car el bloqueo sobre la fila que va a cambiar. Es por eso que no se produce una ex-
cepcién al poner la misma fila en modo de edicién por dos aplicaciones simultaneas.

Las dos aplicaciones pueden realizar las asignaciones al buffer de registro sin ningun
tipo de problemas. Recuerde que este buffer reside en el ordenador cliente. La primera
de ellas en terminar puede enviar sin mayores dificultades la peticién de actualizacion
al servidor. Sin embargo, cuando la segunda intenta hacer lo mismo, descubre que el
registro que habfa leido originalmente ha desaparecido, y en ese momento se aborta
la operacién mediante una excepcion. Esta excepcién pasa primero por el evento
OnPostError, aunque en este caso lo mejor es releer el registro, si no se ha modificado
la clave primaria, y volver a repetir la operacion.

La suposicion basica tras esta aparentemente absurda filosoffa es que es poco proba-
ble que dos aplicaciones realmente traten de modificar el mismo registro a la vez.
Piense, por ejemplo, en un cajero automatico. ;Qué posibilidad existe de que trate-
mos de sacar dinero al mismo tiempo que un buen samaritano aumenta nuestras
existencias economicas? Siendo de breve duracién este tipo de operaciones, scuan
probable es que la compafiia de teléfonos y la de electricidad se topen de narices al
saquearnos a principios de mes? Sin embargo, la razén de mas peso para adoptar una
tilosofia optimista con respecto al control de concurrencia es que de esta manera
disminuye el tiempo en que el bloqueo esta activo sobre un registro, disminuyendo
por consiguiente las restricciones de acceso sobre el mismo. Ahora este tiempo de-
pende del rendimiento del sistema, no de la velocidad con que el usuario teclea sus
datos después de la activacion del modo de edicion.

El modo de actualizacion

Cuando una tabla esta utilizando el modo optimista de control de concurrencia, este
mecanismo se configura de acuerdo a la propiedad UpdareMode de la tabla en cues-
tion. Esta propiedad nos dice qué algoritmo utilizaran C++ Builder y el BDE para
localizar el registro original correspondiente al registro modificado. Los posibles
valores son los siguientes:

Valor Significado
upWhereAll Todas las columnas se utilizan para buscar el registro a modifi-
car.

upWhereChanged ~ Solamente se utilizan las columnas que pertenecen a la clave
primaria, mas las columnas modificadas.
upWhereKeyOnly Solamente se utilizan las columnas de la clave primaria.

Actualizaciones 401

El valor por omisién es upWhereAll Este valor es nuestro seguro de vida, pues es el
mas restrictivo de los tres. Es, en cambio, el menos eficiente, porque la peticion de
busqueda del registro debe incluir mas columnas y valores de columnas.

upWhereAll

? r upWhereChanged

* upWhereKeyOnly

- Clave primaria [:] Modificado D Originales

Aunque #pWhereKeyOnly parezca una alternativa mas atractiva, el emplear solamente
las columnas de la clave puede llevarnos en el caso mds general a situaciones en que
dos aplicaciones entran en conflicto durante la modificacién de un registro. Piense,
por ejemplo, que estamos modificando el salario de un empleado; la clave primaria de
la tabla de empleados es su codigo de empleado. Por lo tanto, si alguien esta modifi-
cando en otro lugar alguna otra columna, como la fecha de contratacion, las actuali-
zaciones realizadas por nuestra aplicacién pueden sobrescribir las actualizaciones
realizadas por la otra aplicacion. Si nuestra aplicacion es la primera que escribe, ten-
dremos un empleado con una fecha de contratacion correcta y el salario sin corregir;
si somos los altimos, el salario sera el correcto (jsuerte que tiene el chicol), pero la
fecha de contrataciéon no estara al dia.

Sin embargo, el valor #pWhereChanged puede aplicarse cuando queremos permitir
actualizaciones simultaneas en diferentes filas de un mismo registro, que no modifi-
quen la clave primaria; esta situacion se conoce como actualizaciones ortogonales, y vol-
veremos a mencionatlas en el capitulo sobre bases de datos remotas. Supongamos
que nuestra aplicaciéon aumenta el salario al empleado Ian Marteens. Si el valor de
UpdateMode es upW hereAll, la instruccion SQL que lanza el BDE es la siguiente:

updat e Enpl oyee

set Sal ary = 1000000 -- Me lo nerezco
where EnpNo = 666
and FirstNane = 'lan'
and LastName = ' Marteens'
and Salary =0 -- Este es el salario anterior
and PhoneExt = ' 666’
and HireDate = '1/1/97"

Por supuesto, si alguien cambia cualquier dato del empleado 666, digamos que la
extension telefénica, la instruccién anterior no encontrara registro alguno y se pro-
ducird un fallo de bloqueo optimista. En cambio, con #pWhereChanged la instruccion
generada serfa:

402 La Cara Oculta de C++ Builder

updat e Enpl oyee

set Sal ary = 1000000 -- Me lo nerezco
where EnpNo = 666
and Salary =0 -- Este es el salario anterior

Lo unico que se exige ahora es que no hayan cambiado a nuestras espaldas el codigo
(nuestra identidad) o el salario (ja ver si se pelean ahora por aumentarnos la pagal).
Este tipo de configuracién aumenta, por lo tanto, las posibilidades de acceso concu-
rrente. Debe, sin embargo, utilizarse con cuidado, en particular cuando existen rela-
ciones de dependencia entre las columnas de una tabla. El siguiente ejemplo es un
caso extremo: se almacena en una misma fila la edad y la fecha de nacimiento; esta
claro que no tiene sentido permitir la modificacién concurrente de ambas.

Pongamos ahora un ejemplo mas real: una relacién entre salario y antigliedad laboral,
de manera que dentro de determinado rango de antigiiedad solamente sean posibles
los salarios dentro de cierto rango. Desde un puesto, alguien aumenta la antigiiedad,
pero desde otro puesto alguien disminuye el salario. Ambas operaciones darfan re-
sultados correctos por separado, pero al sumarse sus efectos, el resultado es inadmi-
sible. Sin embargo, la solucién es sencilla: si existe la regla, debe haber algiin meca-
nismo que se encargue de verificarla, ya sea una restricciéon check o un #igger. En tal
caso, la primera de las dos modificaciones triunfarfa sin problemas, mientras que la
segunda serfa rechazada por el servidor.

La relectura del registro actual

Hay otro detalle que no he mencionado con respecto a los fallos de bloqueos opti-
mistas, y que podemos comprobar mediante SQL Monitor. Cuando se produce uno
de estos fallos, el BDE relee sigilosamente el registro actual, a nuestras espaldas. Vol-
vamos al ejemplo de la actualizacién de dos filas. Dos usuarios centran su atencién
simultineamente en el empleado Marteens. El primero cambia su fecha de contrato
al 1 de Enero del 96, mientras que el segundo aumenta su salario a un millén de dé-
lares anuales. El segundo usuario es mas rapido, y lanza primero el Posz. Para compli-
car las cosas, supongamos que la tabla de empleados esta configurada con la opcién
upWhereAll. A estas alturas debemos estar firmemente convencidos de que la actuali-
zacion de la fecha de contrato va a fallar:

updat e Enpl oyee

set H reDate = '1/1/96' -- Canbi ando | a fecha
where EnpNo = 666
and FirstNanme = 'lan'
and LastName = ' Marteens'
and Salary =0 -- iYa no, gracias a Dios!
and PhoneExt = ' 666’
and HreDate = '1/1/97"

Actualizaciones 403

Por supuesto, el usuario recibe una excepcion. Sin embargo, observando la salida del
SQL Monitor descubrimos que la aplicacién lanza la siguiente instruccion:

sel ect EnpNo, FirstNanme, LastNanme, Sal ary, PhoneExt, HireDate
from Enpl oyee
where EnpNo = 666 -- S6lo enplea la clave prinmaria

La aplicacién ha releido nuestros datos, pero los valores actuales no aparecen en
pantalla. ;Para qué ha hecho esto, entonces? El primer usuario, el que insiste en co-
rregir nuestra antigiledad, es un individuo terco. La fila activa de su tabla de emplea-
dos sigue en modo dsEdit, por lo cual puede repetir la operacion Post. Esta es la
nueva sentencia enviada:

updat e Enpl oyee

set H reDate = '1/1/96', -- Canbiando |a fecha
Salary = 0 -- iNo es justo!

where EnpNo = 666

and FirstNane = 'lan'

and LastName = ' Marteens'

and Salary = 1000000 -- Nos pillé

and PhoneExt = '666'

and HireDate = '1/1/97"

Es decir, al releer el registro, la aplicacion esta en condiciones de reintentar la graba-
ci6on del registro que esta en modo de edicién. Ademas, se produce un efecto nega-
tivo: esta dltima grabaciéon machaca cualquier cambio realizado concurrentemente
desde otro puesto. Tenemos entonces un motivo adicional para utilizar #pWhere-
Changed, pues como es logico, este tipo de situaciones no se producen en este modo
de actualizacién.

Por desgracia, no tenemos propiedades que nos permitan conocer los valores
actuales del registro durante el evento OnPostError. Si revisamos la documenta-
cion, encontraremos propiedades OV alue, Curl alue y New alue para cada
campo. Si, estas propiedades son precisamente las que nos hacen falta para dise-
flar manejadores de etrores inteligentes ... pero solamente podemos utilizatlas si
estan activas las actualizaciones en caché, o si estamos trabajando con clientes
Midas. Tendremos que esperar un poco mas.

El método Edit sobre tablas cliente/setvidor lanza una instruccién similat, para leer
los valores actuales del registro activo. Puede suceder que ese registro que tenemos
en nuestra pantalla haya sido eliminado por otro usuario, caso en el cual se produce
el error correspondiente, que puede atraparse en el evento OzEditError. Este com-
portamiento de Edit puede aprovecharse para implementar un equivalente de Refresh,
pero que solamente afecte al registro activo de un conjunto de datos:

Tabl el->Edit();
Tabl el- >Cancel ();

404 La Cara Oculta de C++ Builder

Es necesario llamar a Cance/ para restaurar la tabla al modo dsBrowse.

Eliminando registros

La operaciéon de actualizacion mas sencilla sobre tablas y consultas es la eliminacion
de filas. Esta operacion se realiza con un solo método, Delete, que actia sobre la fila
activa del conjunto de datos:

void TDataSet: : Del ete();

Después de eliminar una fila, se intenta dejar como fila activa la siguiente. Si ésta no
existe, se intenta activar la anterior. Por ejemplo, para borrar todos los registros que
satisfacen cierta condicion necesitamos este codigo:

void _ fastcall TFormil:: BorrarTodosC i ck(TOoj ect *Sender)

Tabl el->First();
while (! Tabl el->Eof)
i f (Condicion(Tablel))
Tabl el- >Del ete();
/1 No se Ilama a Next() en este caso
el se
Tabl el- >Next () ;

Recuerde que eliminar una fila puede provocar la propagacion de borrados, si existen
restricciones de integridad referencial definidas de este modo.

Puede ser util, en ocasiones, el método Emptylable, que elimina todos los registros de
una tabla. La tabla no tiene que estar abierta; si lo esta, debe haberse abierto con la
propiedad Exclusive igual a True.

dBase utiliza marcas légicas cuando se elimina un registro. Paradox no las usa,
pero deja un “hueco” en el sitio que ocupaba un registro borrado. Es necesaria
una operacién posterior para recuperar el espacio fisico ocupado por estos regis-
tros. En el capitulo sobre programacioén con el BDE explicaremos cémo hacerlo.

Actualizacion directa vs variables en memoria

En la programacion tradicional para bases de datos locales lo comun, cuando se leen
datos del teclado para altas o actualizaciones, es leer primeramente los datos en va-
riables de memoria y, posteriormente, transferir los valores leidos a la tabla. Esto es
lo habitual, por ejemplo, en la programaciéon con Clipper. El equivalente en C++
Builder serfa ejecutar un cuadro de didlogo “normal”, con controles TEdjt, TConsbo-

Actualizaciones 405

Box 'y otros extraidos de la pagina Standard y, si el usuario acepta los datos tecleados,
poner la tabla en modo de edicion o insercién, segun corresponda, asignar entonces
el resultado de la edicién a las variables de campo y terminar con un Post:

i f (D al ogoEdi ci on- >Showivbdal () == nr Ck)

Tabl el->I nsert();

Tabl elNonbr e- >Val ue = Di al ogoEdi ci on- >Edi t 1- >Text ;

Tabl elEdad- >Val ue = StrTol nt (D al ogoEdi ci on- >Edi t 2- >Text);
Tabl el- >Post () ;

Esta técnica es relativamente simple, gracias a que la actualizacion tiene lugar sobre
una sola tabla. Cuando los datos que se suministran tienen una estructura mas com-
pleja, es necesario recibir y transferir los datos utilizando estructuras de datos mas
complicadas. Por ejemplo, para entrar los datos correspondientes a una factura, hay
que modificar varios registros que pertenecen a diferentes tablas: la cabecera del
pedido, las distintas lineas de detalles, los cambios en el inventatio, etc. Por lo tanto,
los datos de la factura se leen en variables de memoria y, una vez que el usuario ha
completado la ficha de entrada, se intenta su grabacion en las tablas.

Por el contrario, el estilo preferido de programacion para bases de datos en C++
Builder consiste en realizar siempre las actualizaciones directamente sobre las tablas,
o los campos de la tabla, utilizando los componentes de bases de datos. ¢Qué gana-
mos con esta forma de trabajo?

Evitamos el c6digo que copia el contenido del cuadro de edicién al campo. Esta
tarea, repetida para cada pantalla de entrada de datos de la aplicacién, puede con-
vertirse en una carga tediosa, y el cédigo generado puede consumir una buena
parte del cédigo total de la aplicacion.

La verificacién de los datos es inmediata; para lograrlo en Clipper hay que dupli-
car el codigo de validacion, o esperar a que la grabacion tenga lugar para que sal-
ten los problemas. Ciertamente, el formato xBase es demasiado permisivo al res-
pecto, y la mayor parte de las restricciones se verifican por la aplicacién en vez de
por el sistema de base de datos, pero hay que duplicar validaciones tales como la
unicidad de las claves primarias. Esto también cuesta codigo y, lo peor, tiempo de
ejecucion.

Y ahora viene la pregunta del lector:

- Vale, tio listo, pero ¢qué haces si después de haber grabado la cabecera de un
pedido y cinco lineas de detalles encuentras un error en la sexta linea? ¢Vas bo-
rrando una por una todas las inserciones e invirtiendo cada modificacién hecha a
registros existentes?

406 La Cara Oculta de C++ Builder

En este capitulo no podemos dar una solucién completa al problema. La pista con-
siste, sin embargo, en utilizar el mecanismo de transacciones, que sera estudiado mas
adelante, en combinacién con las actualizaciones en caché. Asi que, por el momento,
confiad en mi.

Automatizando la entrada de datos

Lo que hemos visto, hasta el momento, es la secuencia de pasos necesaria para crear
o modificar registros por medio de programacion. Antes mencioné la posibilidad de
utilizar componentes dafa-aware para evitar la duplicacion de los datos tecleados por
el usuario en variables y estructuras en memoria, dejando que los propios controles
de edicién actien sobre los campos de las tablas. Supongamos que el usuario esta
explorando una tabla en una rejilla de datos. Si quiere modificar el registro que tiene
seleccionado, puede pulsar un botén que le hemos preparado con el siguiente mé-
todo de respuesta:

void _ fastcall TForml::bnEditardick(TObject *Sender)

Tabl el->Edit();
Di al ogoEdi ci on- >Showivbdal () ;
// Hasta aqui, por el momento ...

La ventana DialogoEdicion debe contener controles data-aware para modificar los valo-
res de las columnas del registro activo de Tablel. DialogoEdicion tiene también un par
de botones para cerrar el cuadro de didlogo, los tipicos Aceptary Cancelar. He aqui lo
que debe suceder al finalizar la ejecucion del cuadro de didlogo:

Si el usuario pulsa el boton Aceprar, debemos grabar, o intentar grabar, los datos
introducidos.

Si el usuario pulsa el botéon Cancelar, debemos abandonar los cambios, llamando
al método Cancel.

Lo mas sencillo es verificar el valor de retorno de la funcién ShowModal, para decidir
qué accion realizar:

/1 Version inicial
void _ fastcall TFornil::bnEditardick(TCbject *Sender)

Tabl el->Edit();

i f (D al ogoEdi ci on->Showvbdal () == nr k)
Tabl el- >Post () ;

el se
Tabl el- >Cancel ();

Actualizaciones 407

Pero este c6digo es muy malo. La llamada a Pos? puede fallar por las més diversas
razones, y el usuario recibira el mensaje de error con el cuadro de didlogo cerrado,
cuando ya es demasiado tarde. Ademas, esta técnica necesita demasiadas instruccio-
nes para cada llamada a un didlogo de entrada y modificacion de datos.

Por lo tanto, debemos intentar la grabacion cuando el cuadro de didlogo esta todavia
activo. El primer impulso del programador es asociar la pulsacién del boton Aceptar
con una llamada a Posz, y una llamada a Cance/ con el boton Cancelar. Pero esto nos
obliga a escribir demasiado codigo cada vez que creamos una nueva ventana de en-
trada de datos, pues hay que definir tres manejadores de eventos: dos para los even-
tos OnClick de ambos botones, y uno para el evento OnCloseQuery, del formulario. En
este ultimo evento debemos preguntar si el usuario desea abandonar los cambios
efectuados al registro, si es que existen y el usuario ha cancelado el cuadro de dialogo.

En mi opinién, el mejor momento para realizar la grabacién o cancelaciéon de una
modificaciéon o insercion es durante la respuesta al evento OnCloseQuery. Durante ese
evento podemos, basandonos en el resultado de la ejecucién modal que estd almace-
nado en la propiedad Moda/Result del formulario, decidir si grabamos, cancelamos o
sencillamente si nos arrepentimos sinceramente de abandonar nuestros cambios. El
codigo que dispara el evento OnCloseQuery tiene prevista la posibilidad de que se
produzca una excepcién durante su respuesta; en este €aso, tampoco se cierra la
ventana. Asi, es posible evitar que se cierre el cuadro de dialogo si falla la llamada a
Post. El algoritmo necesario se puede parametrizar y colocar en una funcién que
puede ser llamada desde cualquier didlogo de entrada de datos:

bool PuedoCerrar(TForm *AForm TDat aSet *DS)

i f (AFor m >Mbdal Result == nr Ck)
DS- >Post () ;
else if (! DS->Modified
|| (Application->MessageBox("¢Desea abandonar |os canbi os?",
" Atenci 6n", MB_| CONQUESTION | MB_YESNO) == | DYES)
DS- >Cancel () ;
el se
return Fal se;
return True;

La llamada tipica a esta funcién es como sigue:

void __fastcall TDi al ogoEdicion:: FornC oseQuery(TCbj ect *Sender,
bool &Cand ose);

CanCl ose = PuedoCerrar(this, Tablel);

408 La Cara Oculta de C++ Builder

Esta funcién, PuedoCerrar, desempefiara un papel importante en este libro. A partir de
este momento desarrollaremos variantes de la misma para aprovechar las diversas
técnicas (transacciones, actualizaciones en caché) que vayamos estudiando.

La funcién PuedoCerrar puede definirse también como un método protegido en
un formulatio de prototipo. Este formulario puede utilizarse en el proyecto para
que el resto de los didlogos de entrada de datos hereden de él, mediante la heren-
cia visual.

Entrada de datos continua

Muchas aplicaciones estan tan orientadas a la entrada de datos que, en aras de la
facilidad de uso, no es conveniente tener que estar invocando una y otra vez la ficha
de entrada de datos por cada registro a insertar. En este tipo de programas es prefe-
rible activar una sola vez el cuadro de didlogo para la entrada de datos, y redefinir el
sentido del botén Aceptar de modo tal que grabe los datos introducidos por el usua-
rio y vuelva a preparar inmediatamente las condiciones para insertar un nuevo regis-
tro.

Es muy facil modificar un cuadro de dialogo semejante a los desarrollados en la sec-
ci6én anterior, para que adopte el nuevo estilo de interaccién. Basta con asignar
mrNone a la propiedad ModalResult del boton Aceptar; de este modo, pulsar el boton
no implica cerrar el cuadro de didlogo. En compensacion, hay que teclear el siguiente
codigo en la pulsacion de dicho botén:

void _ fastcall TForml::bnOkd ick(TObject *Sender)

Tabl el- >Post () ;
Tabl el- >Append() ;

Pero mi solucién favorita, que nos permite utilizar menos eventos y teclear menos, es
modificar el método PuedoCerrar, afiadiéndole un parametro que active o desactive la
entrada de datos continua:

bool PuedoCerrar(TForm *AForm TDataSet *DS, bool MdoConti nuo)

i f (AFor m >Mbdal Result == nr Ck)
{
TDat aSet State PrevState = DS->State;
DS- >Post () ;
if (MbdoContinuo & PrevState == dslnsert)

DS- >Append() ;
return Fal se;

Actualizaciones 409

else if (! DS->Modified ||
(Appl i cati on- >MessageBox(" ¢Desea abandonar |os canbi os?",
"Atenci 6n", MB_| CONQUESTION | MB_YESNO) == | DYES)
DS- >Cancel () ;
el se
return Fal se;
return True;

En este caso, la propiedad Moda/Result del boton Aceptar debe seguir siendo 7rOk. Lo
unico que varfa es la forma de llamar a PuedoCerrar durante el evento OnCloseQuery:

void _ fastcall TFornil:: FornCl oseQuery(TObj ect *Sender,
bool &Cand ose)

CanCl ose = PuedoCerrar(this, Tablel, True);

Capitulo

20

Actualizaciones mediante
consultas

A MAYORIA DE LOS PROGRAMADORES NOVATOS PIENSA en SQL como en un

lenguaje limitado a la seleccién de datos. Pero, como hemos visto, con SQL

podemos también crear objetos en la base de datos, eliminarlos y modificar la
informacién asociada a ellos. Cuando se utilizan instrucciones de ese tipo con un
objeto TQuery, éste no puede tratarse como un conjunto de datos, que es lo que he-
mos visto hasta el momento.

Instrucciones del DML

Pongamos como ejemplo que queremos aumentatrle el salario a todos los empleados
de nuestra base de datos. Podemos entonces traer un objeto TQuwery al formulario (o
al médulo de datos), asignatle un valor a la propiedad DatabaseName y escribir la
siguiente instruccién en la propiedad SQL:

updat e Enpl oyee
set Salary = Salary * (1 + :Puntos / 100)

Lo hemos complicado un poco utilizando un parametro para el tanto por ciento del
aumento. Ahora, nada de activar la consulta ni de traer fuentes de datos. Lo Gnico
que se necesita es ejecutar esta instruccién en respuesta a alguna accion del usuario:

void _ fastcall TFornil:: Aunentod ick(TCbject *Sender)

{
Quer y1- >Par anByNane(" Punt 0s") - >Asl nt eger = 5;
Queryl- >ExecSQL();

Como se ve, la ejecucion de la consulta se logra llamando al método ExecSOL. Con
anterioridad se ha asignado un valor al parametro Puntos.

412 La Cara Oculta de C++ Builder

¢Coémo saber ahora cuantos empleados han visto aumentar sus ingresos? El compo-
nente TQuery tiene la propiedad RowsAffected, que puede ser consultada para obtener
esta informacion:

void _ fastcall TFornil:: Aunentod ick(TCbject *Sender)

{
Quer y1- >Par anByNane(" Punt 0s") - >Asl nt eger = 5;
Queryl- >ExecSQ();
Showessage(Fornmat ("Has traido la felicidad a % personas",
ARRAYOFCONST((Queryl- >RowsAf fected))));
}

En el ejemplo previo, la instruccion estaba almacenada en un objeto TQuwery incluido
en tiempo de disefio. También se pueden utilizar instrucciones almacenadas en ob-
jetos creados en tiempo de ejecucion. Se puede incluso programar un método gené-
rico que nos ahorre toda la preparacién y limpieza relacionada con la ejecucion de
una instruccion SQL. El siguiente procedimiento es uno de mis favoritos; en mi
ordenador tengo una unidad en la cual incluyo ésta y otras funciones parecidas para
utilizarlas de proyecto en proyecto:

int _ fastcall EjecutarSql(const Ansi String ADatabase,
const Ansi String |nstruccion)

{
std::auto_ptr<TQuery> query(new TQuery(NULL));
quer y- >Dat abaseNane = ADat abase;
query->SQ.->Text = |nstruccion;
query->ExecSQ();
return query->RowsAff ect ed;

}

El procedimiento se utilizara de este modo:

void _ fastcall TFormil::Buttonld ick(TCbject *Sender)
{
Ej ecut ar Sgl (" dbdenps", "update enpl oyee "
"set salary = salary * 1.05");
/1 Note el espacio en blanco después de enpl oyee
/1 y que no hay coma entre |as dos Ul tinmas cadenas

He dividido la consulta en dos lineas simplemente por comodidad; en ANSI C++
dos constantes literales de cadena consecutivas se concatenan automaticamente du-
rante la compilacién. Recuerde ademas que AnsiString no tiene limitaciones de ta-
mafo.

Almacenar el resultado de una consulta

Y ya que vamos de funciones auxiliares, he aqui otra de mis preferidas: una que
guarda el resultado de una consulta en una tabla. Bueno, ¢y no existe acaso una ins-

Actualizaciones mediante consultas 413

truccién insert...into en SQL? Si, pero con la funciéon que vamos a desarrollar po-
dremos mover el resultado de una consulta sobre cierta base de datos sobre o#7a base
de datos, que podra incluso tener diferente formato.

El procedimiento que explico a continuacion se basa en el método BazchMove de los
componentes 1 Table, que permite copiar datos de un conjunto de datos a una tabla.
El conjunto de datos puede ser, por supuesto, una tabla, un procedimiento almace-
nado del tipo apropiado o, como en este caso, una consulta SQL.

void _ fastcall GuardarConsulta(
const Ansi String SourceDB, const AnsiString AQuery,
const Ansi String TargetDB, const Ansi String ATabl eNane)

std::auto_ptr<TQuery> Q new TQuery(NULL));
Q >Dat abaseNane = Sour ceDB;

Q >SQ@L- >Text = AQuery;

std::auto_ptr<TTabl e> T(new TTabl e(NULL));
T- >Dat abaseNane = Tar get DB;

T- >Tabl eName = ATabl eNang;

T- >Bat chMove(Q get (), bat Copy);

Una importante aplicacién de este procedimiento puede ser la de realizar copias
locales de datos procedentes de un servidor SQL en los ordenadores clientes.

¢Ejecutar o activar?

El ejemplo que voy a exponer en este epigrafe quizas no le sea muy util para incluirlo
en su proxima aplicacion de bases de datos, pero le puede ayudar con la comprension
del funcionamiento de las excepciones. El ejercicio consiste en crear un intérprete
para SQL, en el cual se pueda teclear cualquier instruccion y ejecutarla pulsando un
botén. Y el adjetivo “cualquier” aplicado a “instruccién” es el que nos causa pro-
blemas: scémo distinguir antes de ejecutar la instruccion si es una instruccion DDL,
de manipulacién o una consulta? Porque los dos primeros tipos necesitan una lla-
mada al método ExesSQL para su ejecucion, mientras que una consulta la activamos
con el método Opern o la propiedad Active, y necesitamos asociatle un DataSource para
visualizar sus resultados.

Los componentes necesatios en este proyecto son los siguientes:

Memo1: Un editor para teclear la instruccién SQL que deseamos ejecutar.

Query?: Un componente de consultas, para ejecutar la instruccion
tecleada.

DataSonrcel: Fuente de datos, conectada al objeto anterior.
DBGrid1: Rejilla de datos, conectada a la fuente de datos.

414 La Cara Oculta de C++ Builder

bnEjecutar: Boton para desencadenar la ejecucion de la instruccion.

¢bAlias: Un combo, con el estilo esDrgpDownlist, para seleccionar un alias
de los existentes.

Habilitaremos ademas un mend con opciones para controlar qué tipo de consultas
queremos:

[Opciones
Actualizables
Restringidas

Estos dos comandos, a los cuales vamos a referirnos mediante las variable #zActuali-
zables y miRestringidas, funcionaran como casillas de verificacion; la respuesta a ambas
es el siguiente evento compartido:

void __fastcall TForml:: Canbi ar Opci 6n(TQbj ect *Sender)

TMenul tenm& mi = dynam c_cast <TMenul t em&>(* Sender) ;
m . Checked = ! m . Checked;

Necesitaremos alguna forma de poder indicar el valor de la propiedad DatabaseNasme
de la consulta. En vez de teclear el nombre de la base de datos, voy a utilizar un mé-
todo de una clase que todavia no hemos estudiado: el método GetDatabaseNames, de
la clase TSession. En el capitulo 30 se estudia esta clase con mas detalle. Por el mo-
mento, s6lo necesitamos saber que la funcién inicializa una lista de cadenas con los
nombres de los alias disponibles en el momento actual. Esta inicializacién tiene lugar
durante la creacion del formulario:

void _ _fastcall TForml:: FornCreate(TCbj ect *Sender)
{

Sessi on- >CGet Dat abaseNanes(cbAl i as->Itens);
cbAlias->ltem ndex = 0;

Cuando pulsemos el botén bnEjecutar, debemos transferir el contenido del memo a la
propiedad SQOL de la consulta, y el nombre del alias seleccionado, que se encuentra
en la propiedad chAlias. Text, a la propiedad DatabaseName de la consulta. Una vez
realizadas estas asignaciones, intentaremos abrir la consulta mediante el método Oper.
i Sal Interpreter H=E|
| BRI =] [cusToMeR.DB =l Mil ‘

select
fiom 'CUSTOMER.DE"
where CustMo not in [select CustMo from 'ORDERS.DE

Cusilo | Company [addn City [State_[7ip [County |i|
[Diver's Grotta 2460 Universal Lane Dawney Ca 942200 LS

1] ,

Not updateable [4

Actualizaciones mediante consultas 415

iUn momento! :No habiamos quedado en que habifa que analizar si el usuario habia
tecleado un select, o cualquier otra cosar Bueno, esa serfa una solucién, pero voy a
aprovechar un truco del BDE y la VCL.: si intentamos activar una instruccién SQL
que no es una consulta, se produce una excepcion, jpero la instruccion se ejecuta de
todos modos! Lo cual quiere decir que podemos situar la llamada a Query?->Open
dentro de una instruccién try/catch, y capturar esa instruccion en patticular, de-
jando que las restantes se propaguen para mostrar otros tipos de errores al usuario.
La excepcion que se produce en el caso que estamos analizando es de tipo ENoRe-
sultSet, y el mensaje de error, en la version original, es “Ervor creating cursor handle”. He
aqui la respuesta completa a la pulsacion del boton Ejecutar:

void _ fastcall TFornil::bnEj ecutardick(TObject *Sender)

{
Queryl->Cl ose();
Queryl- >Dat abaseNanme = cbAlias->Text;
Queryl->SQ. = Menol- >Lines;
Queryl- >Request Li ve = m Actual i zabl es- >Checked;
Queryl->Constrai ned = m Restringi das- >Checked;
try
{
Queryl->Qpen();
if (Queryl->Canhodify)
St at usBar 1- >Si npl eText = "Consul ta actual i zabl e";
el se
St at usBar 1- >Si npl eText = "Consulta no actualizable";
}
cat ch(ENoResul t Set & E)
St at usBar 1- >Si npl eText = "I nstrucci 6n ej ecutabl e";
}
}

Adicionalmente, hemos colocado una barra de estado para mostrar informacion
sobre el tipo de instruccién. Si es una instruccion ejecutable, se muestra el mensaje
correspondiente. Si hemos tecleado una consulta, pedimos que ésta sea actualizable o
no en dependencia del estado del comando de ment wiActualizable; el resultado de
nuestra peticién se analiza después de la apertura exitosa del conjunto de datos, ob-
servando la propiedad CanModify.

El programa puede ampliarse facilmente afiadiendo soporte para comentarios. Por
ejemplo, una forma rapida, aunque no completa, de permitir comentarios es sustituir
la asignacion a la propiedad SQL de la consulta por el siguiente coédigo:

Queryl->SQ.->Cl ear();
for (int i = 0; i < Menol->Lines->Count; i++)
if (Menpl->Lines->Strings[i].TrinmLeft().SubString(1, 2) !'="--")
Queryl->SQ.- >Add(Menol- >Li nes->Strings[i]);

De esta forma, se descartan todas las lineas cuyos dos primeros caracteres sean dos
guiones consecutivos: el inicio de comentario del lenguaje modular de SQL. El lector

416 La Cara Oculta de C++ Builder

puede completar el ejemplo eliminando los comentarios que se coloquen al final de
una linea.

Nuevamente como por azar....

¢Recuerda el ejemplo de insercion de registros aleatorios que vimos en el capitulo
anterior? Vamos sustituir la insercion por medio del componente TTable por una mas
eficiente basada en TQuwery. Lo primero que necesitamos es un componente de con-
sultas, que asociamos a la base de datos correspondiente, y en cuya propiedad SOL
introducimos la siguiente instruccion:

insert into Tabl aAl eatoria(Entero, Cadena)
val ues (:Ent, :Cad)

El préximo paso es ir a la propiedad Params de 1a consulta, para identificar al para-
metro Ent con el tipo ftnteger, y a Cad como ftString. El método que llena la tabla es el
siguiente:

voi d Ll enar Tabl a(TQuery *Query, int CantRegi stros)
{

random ze();
Query->Prepare();
try
{
int Intentos = 3;
whi |l e (Cant Regi stros > 0)
try
{
Query->Par anByNane(" ENT") - >Asl nt eger = randon{ MAXI NT) ;
Query->Par anByNanme(" CAD") - >AsString = RandonString(35);
Query->ExecSQ();
Intentos = 3;
Cant Regi stros--;

}
cat ch(Exception&)
if (--Intentos == 0) throw,
_finally

Query->UnPrepare();

Una de las mayores ganancias de velocidad se obtiene al evitar preparar en cada paso
la misma consulta. Por supuesto, y como dije al presentar antes este ejemplo, necesi-
taremos transacciones explicitas para lograr ain mas rapidez.

Actualizaciones mediante consultas 417

Actualizacion sobre cursores de consultas

Una cosa es realizar una actualizacién ejecutando una instrucciéon SQL contenida en
un TQuery, y otra bien distinta es utilizar una consulta select dentro de un TQuwery,
abrirla para navegacion y realizar las modificaciones sobre este cursor. La primera
técnica funciona de maravillas. La segunda es un desastre.

¢Por qué muchos programadores insisten, sin embargo, en la segunda técnica? Pues
porque saben que una consulta no actualizable, contra un servidor SQL, tiene un
tiempo de apertura infinitamente menor que el de una tabla, y tratan de extrapolar
este resultado a las consultas actualizables, pensando que deben ser también mas
eficientes que las tablas. Falso: usted puede comprobar con el SQL Monitor que una
consulta a la cual modificamos su Reguest ive a True tarda lo mismo en iniciarse que
una tabla, pues ejecuta el mismo protocolo de apertura.

Realmente existe una técnica para que las actualizaciones sobre cursores defini-
dos por consultas sean mas rapidas en general que las actualizaciones sobre ta-
blas. Se trata de utilizar actualizaciones en caché, y emplear componentes TUp-
dateSOL, o interceptar el evento OnUpdateRecord, para evitar que el BDE decida el
algoritmo de actualizacion. De esta forma se evitan el protocolo de apertura y
otros problemas que mencionaré en esta seccion. Pero debe tener en cuenta que
tendra que cambiar la metafora de interaccién del usuatrio.

De todos modos, el problema més grande que presentan las actualizaciones sobre
consultas en estos momentos (BDE version 5.01) es la inserciéon de un registro en un
cursor. Me estoy arriesgando al poner sobre un papel con mi firma este tipo de afir-
maciones: puede que un préximo parche del Motor de Datos o de la VCL resuelva
definitivamente estos detalles, pero es preferible el riesgo a que usted pruebe una
técnica, pensando que le va a ir bien, y cuando le salga mal se quede perplejo ru-
miando si la culpa es suya.

En concreto, cuando afladimos un registro a una consulta sobre la cual estamos na-
vegando, desaparece siempre alguno de los registros anteriores. Si la consulta muestra
inicialmente 10 registros, aunque creemos el onceno seguiran mostrandose 10 regis-
tros en pantalla. ¢Solucién? Refrescar el cursor....

...y aqui es surge la segunda dificultad con las consultas: no es posible refrescar una
consulta abierta. Para colmo, el mensaje de error tiende a despistar: “I'able is not
uniguely indexed”. Ignore este mensaje: si necesita actualizar el cursor el Gnico camino
que tiene es cerrar y volver a abrir la consulta, y si es necesario, restaurar la posicién
del cursor. Como debe recordar, cualquier bisqueda sobre una consulta implica re-
cuperar desde el servidor todos los registros intermedios (me gustaria que viese mi
sonrisa sardonica mientras escribo esto).

418 La Cara Oculta de C++ Builder

No obstante, la actualizacion de registros existentes transcurre sin problemas. Las
mismas consideraciones aplicables a las tablas (el modo de actualizacion, por ejem-
plo) son también validas en esta situacion.

Utilizando procedimientos almacenados

Para ejecutar un procedimiento almacenado desde una aplicacién escrita en C++
Builder debemos utilizar el componente TS#oredProc, de la pagina Data Access de la
Paleta de Componentes. Esta clase hereda, al igual que TTable y TQuery, de la clase
TDBDataSet. Por lo tanto, técnicamente es un conjunto de datos, y esto quiere decir
que se le puede asociar un TDataSource para mostrar la informaciéon que contiene en
controles de datos. Ahora bien, esto solamente puede hacerse en ciertos casos, en
particular, para los procedimientos de seleccion de Sybase. ¢Recuerda el lector los
procedimientos de seleccion de InterBase, que explicamos en el capitulo sobre #riggers
y procedimientos almacenados? Resulta que para utilizar estos procedimientos nece-
sitamos una instruccién SQL, por lo cual la forma de utilizarlos desde C++ Builder
es por medio de un componente TQxuery.

En casi todos los casos, la secuencia de pasos para utilizar un TS%oredProc es la si-

guiente:

Asigne el nombre de la base de datos en la propiedad DatabaseNanze, y el
nombre del procedimiento almacenado en StoredProcNamse.

Edite la propiedad Params. TS toredProc puede asignar automaticamente los ti-
pos a los parametros, por lo que el objetivo de este paso es asignar opcional-
mente valores iniciales a los parametros de entrada.

Si el procedimiento va a ejecutarse varias veces, prepare el procedimiento, de
forma similar a lo que hacemos con las consultas paramétricas.

Asigne, de ser necesario, valores a los parametros de entrada utilizando la
propiedad Params o la tuncion ParamByNanze.

Ejecute el procedimiento mediante el método ExecProc.

Si el procedimiento tiene parametros de salida, después de su ejecucion pue-
den extraerse los valores de retorno desde la propiedad Params o por medio
de la funcién ParamByNanme.

Pongamos por caso que queremos estadisticas acerca de cierto producto, del que
conocemos su codigo. Necesitamos saber cuantos pedidos se han realizado, qué
cantidad se ha vendido, por qué valor y el total de clientes interesados. Toda esa in-
formacién puede obtenerse mediante el siguiente procedimiento almacenado:

Actualizaciones mediante consultas 419

create procedure EstadisticasProducto(CodProd int)

as

returns (Total Pedidos int, CantidadTotal int,
Total Ventas int, TotalCientes int)

declare variable Precio int;
begi n

sel ect Precio
from Articulos
where Codi go = : CodProd
into : Precio;
sel ect count (Nunmero), count(distinct RefCliente)
from Pedidos
where :CodProd in

(select RefArticulo fromDetalles

where Ref Pedi do = Numer o)

into : Tot al Pedi dos, :Total dientes;
sel ect sun{Canti dad),

sumn(Cant i dad*: Preci 0*(100- Descuent 0) / 100)
from Detalles
where Detalles.RefArticulo = : CodProd
into :CantidadTotal, :Total Ventas;

end »

Para llamar al procedimiento desde C++ Builder, configuramos en el médulo de
datos un componente TS%redProc con los siguientes valores:

Propiedad Valor
DatabaseName El alias de la base de datos
StoredProcName EstadisticasProducto

Después, para ejecutar el procedimiento y recibir la informacion de vuelta, utilizamos
el siguiente cédigo:

void _ fastcall TFornil:: Mstrarlnfo(TOoject *Sender)

{

Ansi String S;
if (! InputQery("Informaci6n", "Codigo del producto", S)
|l Trim(S) == "") return;
TSt oredProc *sp = nodDat os- >St or edProcl;
sp- >Par anByNane(" CodProd") - >AsString = S;
sp- >ExecProc();
Showiessage(For nat (
"Pedi dos: %\ nClientes: %\ nCantidad: %\ nTotal: %,
ARRAYOFCONST((
sp- >Par anByNane(" Tot al Pedi dos") - >Asl nt eger,
sp- >Par anByNane(" Tot al d i ent es") - >Asl nt eger,
sp- >Par anByNane(" Canti dadTot al ") - >Asl| nt eger,
sp- >Par anByNane(" Tot al Vent as") - >AsFl oat))));

Al total de ventas se le ha dado formato con la secuencia de caracteres %, que tra-
duce un valor real al formato nacional de moneda.

Capitulo

21

Eventos de transicion de estados

A PARTE VERDADERAMENTE COMPLICADA del disefio y programacién con

C++ Builder viene cuando se trata de establecer y forzar el cumplimiento de

las reglas de consistencia, o como la moda actual las denomina en inglés: busi-
ness rules. Algunas de estas reglas tienen un planteamiento sencillo, pues se tratan de
condiciones que pueden verificarse analizando campos aislados. Ya sabemos como
hacerlo, utilizando propiedades de los campos, como Reguired, Minlalue, Max'l alue y
EditMas#k o, si la condicion de validacion es muy complicada, el evento Onl alidate.

Otras reglas imponen condiciones sobre los valores de varios campos de un mismo
registro a la vez; en este capitulo veremos coémo realizar este tipo de validaciones. Y
las reglas mas complejas requieren la coordinacién entre los valores de varios regis-
tros de una o mas tablas: claves primarias, integridad referencial, valores previamente
calculados, etc. Para casi todas estas restricciones, necesitaremos el uso de los lla-
mados eventos de transicion, que se disparan automaticamente durante los cambios de
estado de los conjuntos de datos. Aprenderemos a utilizar estos eventos tanto para
imponer las condiciones correspondientes como para detectar el incumplimiento de
las mismas.

Cuando el estado cambia...

Como corresponde a una arquitectura basada en componentes activos, la VCL oftrece
una amplia gama de eventos que son disparados por los conjuntos de datos. Ya he-
mos visto algunos de estos eventos: OnCalcFields, para los campos calculados, OnFil-
terRecord, para el filtrado de filas. Pero la mayoria de los eventos producidos por las
tablas y consultas se generan cuando se producen cambios de estado en estos com-
ponentes. Esta es la lista de los eventos disponibles en C++Builder:

Método de transicion Eventos generados

Open BeforeOpen, AfterOpen
Close BeforeClose, AfterClose
Edit BeforeEdit, OnEditError, AfterEdit

Insert Beforelnsert, OnlNewRecord, Afterlnsert

422 La Cara Oculta de C++ Builder

Método de transicién Eventos generados

Post BeforePost, OnPostError, AfterPost
Cancel BeforeCancel, AfterCancel
Delete BeforeDelete, OnDeleteError, AfterDelete

Ademais de los eventos listados, falta mencionar a los eventos OnUpdateError y
OnUpdateRecord, relacionados con las actualizaciones en caché. Existen también los
eventos BeforeScroll y AfterScroll, asociados a los cambios de fila activa, no a cambios
de estado.

Los eventos BeforeScroll y AfterScroll son mas especificos que el evento OnData-
Change del componente TDataSource. Este tltimo evento, ademas de dispararse
cuando cambia la fila activa, también se genera cuando se realizan cambios en los
valores de los campos de la fila activa.

Algunos de los eventos de la lista estan relacionados con lo que sucede antes y des-
pués de que la tabla ejecute el método de transicién; sus nombres comienzan con los
prefijos Before y After. Otros estan relacionados con los errores provocados durante
este proceso: OnEditError, OnDeleteError y OnPostError. Queda ademas OnNewRecord,
que es disparado por la tabla después de entrar en el estado dslusert, y a continuacion
del cual se limpia el indicador de modificaciones del registro activo. Es natural que,
ante tanta variedad de eventos, el programador se sienta abrumado y no sepa por
dénde empezar. No obstante, es relativamente sencillo marcarnos una guia acerca de
qué eventos tenemos que interceptar de acuerdo a nuestras necesidades.

Reglas de empresa: ¢en el servidor o en el cliente?

Muchas veces, los programadores que conocen algin sistema SQL y que estan apren-
diendo C++ Builder se plantean la utilidad de los eventos de transicién de estado, si
el sistema al que se accede es precisamente un sistema SQL cliente/setvidor. El argu-
mento es que la implementacién de las reglas de empresa debe tener lugar preferen-
temente en el servidor, por medio de #ggers y procedimientos almacenados. La im-
plementacion de reglas en el servidor nos permite ahorrar codigo en los clientes, nos
ofrece mas seguridad y, en ocasiones, mas eficiencia.

Sin embargo, el hecho basico del cual debemos percatarnos es el siguiente: los even-
tos de transicion de C++ Builder se refieren a acciones que transcurren durante la edicion,
en el lado cliente de la aplicacién. Aunque en algunos casos realmente tenemos la
libertad de implementar alguna regla utilizando cualquiera de estas dos técnicas, hay
ocasiones en que esto no es posible. La siguiente tabla muestra una equivalencia entre
los #riggers y los eventos de transicion de estados:

Eventos de transicion de estados 423

Trigger | Insert Update Delete
Antes | BeforePost BeforePost BeforeDelete
Después | AfterPost AfterPost AfterDelete

Como se aprecia, solamente un pequefio grupo de eventos de transicién estan repre-
sentados en esta tabla. No hay equivalente en SQL a los eventos BeforeEdit, AfterCan-
cel 6 BeforeClose, por mencionar algunos. Por otra parte, incluso cuando hay equivalen-
cia en el comportamiento, desde el punto de vista del usuario puede haber diferen-
cias. Por ejemplo, como veremos en la siguiente seccion, el evento OnNewRecord
puede utilizarse para asignar valores por omisién a los campos de registros nuevos.
Esto mismo puede efectuarse con el #igger before insert. Sin embargo, si utilizamos
OnNewRecord, el usuario puede ver durante la edicién del registro los valores que van
a tomar las columnas implicadas, cosa imposible si se implementa el #gger.

Por lo tanto, lo ideal es una mezcla de ambas técnicas, que debe decidirse en base a
los requisitos de cada aplicaciéon. Mas adelante, cuando estudiemos las actualizaciones
en caché, profundizaremos mas en este tema.

Inicializacion de registros: el evento OnNewRecord

Posiblemente el evento mas popular de los conjuntos de datos sea OnNewRecord.
Aunque su nombre no comienza con Affer ni con Before, se produce durante la transi-
ci6on al estado dslnsert, cuando ya el conjunto de datos se encuentra en dicho estado,
pero antes de disparar Afferlnsert. Este evento se utiliza para la asignacién de valores
por omision durante la insercion de registros.

La diferencia entre OnNewRecord y Afterlnsert consiste en que las asignaciones reali-
zadas a los campos durante el primer evento 70 marcan el registro actual como modi-
ficado. ¢Y en qué notamos esta diferencia? Tomemos por ejemplo, la tabla ezzployee.db
de la base de datos bedermos, y visualicémosla en una rejilla. Interceptemos el evento
OnNewRecord y asociémosle el siguiente procedimiento:

void _ fastcall TFornil:: Tabl elNewRecor d(TDat aSet *Dat aSet)

Dat aSet - >Fi el dVal ues["Hi reDate"] = Date();

Estamos asignando a la fecha de contratacién la fecha actual, algo légico en un pro-
ceso de altas. Ahora ejecute el programa y realice las siguientes operaciones: vaya a la
ultima fila de la tabla y utilizando la tecla de cursor FLECHA ABAJO cree una nueva fila
moviéndose mas alld de este ultimo registro. Debe aparecer un registro vacio, con la
salvedad de que el campo que contiene la fecha de contratacion ya tiene asignado un
valor. Ahora dé marcha atras sin tocar nada y el nuevo registro desaparecera, precisa-
mente porque, desde el punto de vista de C++ Builder, no hemos modificado nada

424 La Cara Oculta de C++ Builder

en el mismo. Recuerde que esta informacion nos la ofrece la propiedad Modified de
los conjuntos de datos.

State=dsInsert

»
»

Modified=False

{OnNewRecord] [Afterlnsert]
?

Linea del tiempo

Beforelnsert

»
»

Para notar la diferencia, desacople este manejador de eventos de OnNewRecord y asé-
cielo al evento Afferlnsert. Si realiza estas mismas operaciones en la aplicacion resul-
tante vera cOmo si se equivoca y crea un registro por descuido, no puede deshacer la
operacion con solo volver a la fila anterior.

En el capitulo 18 vimos que la propiedad DefanltExpression de los campos sirve
para asignar automaticamente valores por omision sencillos a estos componen-
tes. Sin embargo, dadas las limitaciones de las expresiones SQL que son recono-
cidas por el intérprete local, en muchos casos hay que recurrir también al evento
OnNewRecord para poder completar la inicializacion. Al parecer, existe un bug que
impide que estos dos mecanismos puedan utilizarse simultineamente. Por lo
tanto, si necesita utilizar OzNewRecord en una tabla, es muy importante que limpie
todas las propiedades DefaultExpression de los campos de dicha tabla. Por lo me-
nos, hasta nuevo aviso.

Validaciones a nivel de registros

En los casos en que se necesita imponer una condicién sobre varios campos de un
mismo registro, la mejor forma de lograrlo es mediante el evento BeforePost. Se veri-
fica la condicién y, en el caso en que no se cumpla, se aborta la operaciéon con una
excepcion, del mismo modo que hacfamos con el evento Onl alidate de los campos.
Hay que tener en cuenta que BeforePost se llama igualmente para las inserciones y las
modificaciones. Para distinguir entre estas dos situaciones, tenemos que utilizar, por
supuesto, la propiedad S7afe del conjunto de datos. Por ejemplo, para impedir que un
empleado nuevo gane una cantidad superior a cierto limite salarial podemos progra-
mar la siguiente respuesta a BeforePost:

Eventos de transicion de estados 425

void _ fastcall TnodDatos::tbEnmpl eadosBef or ePost (TDat aSet *Dat aSet)

if (tbEnpl eados->State == dslnsert)
i f (tbEnpl eadosSal ary->Val ue > TopeSal ari al)
Dat abaseError (" Denasi ado di nero para un aprendi z", 0);

Asumimos que TopeSalarial es una constante definida en el médulo, o una variable
convenientemente inicializada. El procedimiento DatabaseError ya ha sido utilizado
en el capitulo sobre acceso a campos, durante la respuesta al evento Onl alidate.

Este manejador de eventos no impedird, sin embargo, modificar posteriormente el
salario una vez realizada la insercién. Ademas, hubiera podido implementarse en
respuesta al evento Onl alidate del componente thEmpleadosSalary, pues tnicamente
verifica los valores almacenados en un solo campo. Una alternativa valida tanto para
las altas como para las modificaciones es realizar la validacion comprobando la anti-
giiedad del trabajador, fijando un tope para los empleados que llevan menos de un
afio en la empresa:

void __fastcall TnodDatos: :tbEnmpl eadosBef or ePost (TDat aSet *Dat aSet)

if (Date() - tbEnpl eadosHi reDate->Val ue < 365
&& t bEnpl eadosSal ary->Val ue > TopeSal ari al)
Dat abaseError ("jEste es un enchufado!", 0);

Este criterio de validacién no puede implementarse correctamente utilizando sélo los
eventos Onl’alidate, pues involucra simultineamente a mas de un campo de la tabla.
Observe el uso de la funcién Date (fecha actual), y de la resta entre fechas para cal-
cular la diferencia en dias.

Antes y después de una modificacion

Cuando simulamos #iggers en C++ Builder tropezamos con un inconveniente: no te-
nemos nada parecido a las variables de contexto new y o/d, para obtener los valores
nuevos y antiguos del registro que se actualiza. Si necesitamos estos valores debemos
almacenarlos manualmente, y para ello podemos utilizar el evento BeforeEdit. Luego,
podemos aprovechar los valores guardados anteriormente en el evento AfferPost, para
efectuar acciones similares a las de un #rgger.

Pongamos por caso que queremos mantener actualizada la columna IzemsTotal de la
tabla de pedidos cada vez que se produzca un cambio en las lineas de detalles asocia-
das. Para simplificar nuestra exposicion, supondremos que sobre la tabla de detalles
se ha definido un campo calculado S#bTotal, que se calcula multiplicando la cantidad
de articulos por el precio extraido de la tabla de articulos y que tiene en cuenta el
descuento aplicado. Tenemos que detectar las variaciones en este campo para refle-

426 La Cara Oculta de C++ Builder

jarlas en la columna IzemsTotal de la fila activa de pedidos. Asumiremos, por supuesto,
que existe una relacién master/ detail entre las tablas de pedidos y detalles.

Como primer paso, necesitamos declarar una variable, O/dSu#bTotal, para almacenar el
valor de la columna SubTotal antes de cada modificaciéon. Esto lo hacemos en la de-
claracién de la clase correspondiente al médulo de datos, en su seccioén private (pues
esta declaracion no le interesa a nadie mas):

class TnodDatos : public TDat aMbdul e

/1
private:

Currency O dSubTot al ;
s

Cuando declaramos una variable, debemos preocuparnos inmediatamente por su
inicializacién. Esta variable, en particular, por estar definida dentro de una clase ba-
sada en la VCL, se inicializa con 0 al crearse el mddulo de datos. Cuando vamos a
realizar modificaciones en una linea de detalles, necesitamos el valor anterior de la
columna SubTotal

void _ fastcall TnodDatos::tbLi neasBef oreEdit(TDat aSet *DataSet)

A dSubTotal = tbLi neas->Fi el dVal ues[" SubTotal "] ;

Como la actualizacion de ItemsTotal se realizara en el evento AferPost, que también se
dispara durante las inserciones, es conveniente inicializar también O/dSubTotal en el
evento Beforelnsert:

void _ fastcall TnodDatos::tbLi neasBeforel nsert(TDataSet *DataSet)

A dSubTotal = 0;

El mismo resultado se obtiene si la inicializacion de OldSubTotal para las inserciones
se realiza en el evento OnNewRecord, pero este evento posiblemente tenga mas codigo
asociado, y es preferible separar la inicializacion de variables de contexto de la asigna-
ci6én de valores por omision.

Entonces definimos la respuesta al evento AfferPost de la tabla de lineas de detalles:

void _ fastcall TnodDatos::tbLi neasAfterPost(TDataSet *DataSet)
{
Currency DiffSubTotal =
t bLi neas- >Fi el dVal ues[" SubTotal "] - O dSubTotal ;
if (DiffSubTotal !'= 0)

i f (tbPedidos->State!=dsEdit && tbPedi dos->St at e! =dsl nsert)
t bPedi dos- >Edi t () ;

Eventos de transicion de estados 427

t bPedi dos- >Fi el dVal ues["I tensTotal "] =
t bPedi dos- >Fi el dVal ues["I tensTotal "] + DiffSubTotal;

Como la tabla de pedidos es la tabla maestra de la de detalles, no hay necesidad de
localizar el registro del pedido, pues es el registro activo. He decidido no llamar al
método Post sobre la tabla de pedidos, asumiendo que estamos realizando la edicién
simultanea de la tabla de pedidos con la de lineas de detalles. En los capitulos sobre
transacciones y actualizaciones en caché veremos métodos para automatizar la graba-
ci6n de datos durante la edicién e insercion de objetos complejos.

Le propongo al lector que implemente el c6digo necesario para mantener actualizado
ItemsTotal durante la eliminacion de lineas de detalles.

Propagacion de cambios en cascada

Una aplicacion util de los eventos de transicion de estados es la propagacion en cas-
cada de cambios cuando existen restricciones de integridad referencial entre tablas.
Normalmente, los sistemas SQL y Paradox permiten especificar este comporta-
miento en forma declarativa durante la definicién de la base de datos; ya hemos visto
como hacerlo al estudiar las restricciones de integridad referencial. Pero hay sistemas
que no implementan este recurso, o lo implementan parcialmente. En tales casos,
tenemos que recurtir a #zggers o a eventos de transicion de estados.

Si estamos programando para tablas dBase anteriores a la version 7, y queremos
establecer la propagacion de borrados desde la tabla de pedidos a la de lineas de
detalles, podemos crear un manejador de eventos en este estilo:

void _ fastcall TnodDatos::tbPedi dosBef oreDel et e(TDat aSet *Dat aSet)

{
t bLi neas->First();
while (! tbLi neas->Eof)
t bLi neas->Del ete();
}

Observe que no se utiliza el método Next para avanzar a la proxima fila de la tabla
dependiente, pues el método Delete se encarga de esto automaticamente. Curiosa-
mente, C++ Builder trae un ejemplo de borrado en cascada, pero el ciclo de borrado
se implementa de este modo:

whi | e (Tabl a- >Recor dCount > 0)
/] ..etcétera ...

Este cédigo funciona, por supuesto, pero si la tabla pertenece a una base de datos
SQL, RecordCount es una propiedad peligrosa, como ya hemos explicado.

428 La Cara Oculta de C++ Builder

Silo que queremos, por el contrario, es prohibir el borrado de pedidos con lineas
asociadas, necesitamos esta otra respuesta:

void _ _fastcall TnodDatos: :tbPedi dosBef oreDel et e(TDat aSet *Dat aSet)

if (! tbLineas->IsEnpty())
Dat abaseError ("Este pedido tiene |ineas asociadas", 0);

Incluso si el sistema permite la implementacion de los borrados en cascada, puede
interesarnos interceptar este evento, para dejar que el usuario decida qué hacer en
cada caso. Por ejemplo:

void _ fastcall TnodDatos::tbPedi dosBef oreDel et e(TDat aSet *Dat aSet)

t bLi neas->First();
if (! tbLineas->Eof)
if (MessageDi g("¢Elimnar |ineas de detalles?",
nt Confirmation, TMsgD gButtons()<<nbYes<<nbNo, 0)==nt Yes)
do

t bLi neas->Del ete();

}

while (! tbLi neas->Eof);
el se

Abort ();

Note el uso de Abort, la excepcidn silenciosa, para interrumpir la ejecucion de la
operacion activa y evitar la duplicacién innecesatia de mensajes al usuatio.

Actualizaciones coordinadas master/detail

He aqui otro caso especial de coordinaciéon mediante eventos de conjuntos de datos,
que es aplicable cuando existen pares de tablas en relacion master/ detail. Para precisar
el ejemplo, supongamos que son las tablas orders.db e items.db, del alias bedemos: una
tabla de pedidos y su tabla asociada de lineas de detalles. En la mayoria de las ocasio-
nes existe una restriccion de integridad referencial definida en la tabla esclava. Por lo
tanto, para poder grabar una fila de la tabla de detalles tiene que existir previamente
la correspondiente fila de la tabla maestra. Para garantizar la existencia de la fila
maestra, podemos dar respuesta al evento Beforelnsert de la tabla dependiente:

void _ fastcall TnodDatos::tbDetall esBeforelnsert(TDataSet *DataSet)
if (tbPedidos->State == dslnsert)

t bPedi dos- >Post () ;
t bPedi dos->Edi t ();

Eventos de transicion de estados 429

En este caso, ademas, hemos colocado automaticamente la tabla maestra en modo de
edicién, por si son necesarias mas actualizaciones sobre la cabecera, como el mante-
nimiento de la columna IzemsTotal que vimos anteriormente.

Esta misma técnica es la que he recomendado en el capitulo sobre Oracle, en rela-
ci6én con las tablas anidadas. Es recomendable guardar los cambios en la tabla maes-
tra antes de afadir registros a la tabla anidada. También es bueno realizar un Posz
sobre la tabla maestra una vez que se ha afiadido el registro en la tabla anidada:

void _ fastcall TnodDatos::tbAni dadaAfterlnsert(TDataSet *DataSet)
{

}

void _ fastcall TnodDatos::tbAni dadaAfterEdit(TDat aSet *DataSet)

I nsertando = True;

I nsertando = Fal se;

}
void _ fastcall TnodDatos::tbAni dadaAfter Post (TDat aSet *Dat aSet)

if (Insertando)
t bMaest r a- >CheckBr owseMode() ;

En este ejemplo, la variable 16gica Inserfando debe haber sido definida en la seccion
private del médulo de datos.

Antes y después de la apertura de una tabla

Puede ser util especificar acciones asociadas a la apertura y cierre de tablas. Si nuestra
aplicacion trabaja con muchas tablas, es conveniente que éstas se abran y cierren por
demanda; si estas tablas representan objetos complejos, es posible expresar las de-
pendencias entre tablas en los eventos Before y AfterOpen, y Before y AfterClose. En el
ejemplo de la entrada de pedidos, la tabla de pedidos, #Pedidos, funciona en coordina-
cién con la tabla de lineas de detalles, #5Lineas. Supongamos, por un momento, que
necesitamos también una tabla para resolver las referencias a clientes, #6RefClientes, y
otra para las referencias a articulos, #6RefArticulos. Podemos entonces programar los
siguientes métodos como respuesta a los eventos BeforeOpen y AfterClose de 1a tabla de
pedidos:

void _ fastcall TnodDatos::tbPedi dosBef oreCOpen(TDat aSet *Dat aSet)

t bRef d i ent es- >Open();
t bRef Arti cul os->0Open();
t bLi neas->0Open();

430 La Cara Oculta de C++ Builder

void _ fastcall TnodDatos::tbPedi dosAfterd ose(TDat aSet *Dat aSet)

t bLi neas->C ose();
t bRef Arti cul os->Cl ose();
tbRef d i ent es->C ose();

De esta manera, las tres tablas dependientes pueden estar cerradas durante el disefio
y carga de la aplicacion, y ser activadas por demanda, en el momento en que se abra

la tabla de pedidos.

El ejemplo que he utilizado quizas no sea el mejor. C++ Builder abre automati-

camente las tablas de referencia cuando abre una tabla que tiene campos de este

tipo. Sin embargo, al cerrar la tabla maestra, no cierra automaticamente las tablas
de referencia.

Tirando de la cadena

Paradox, dBase y Access tienen un grave problema: si se cae el sistema después de
una actualizacién, pueden estropearse las tablas irreversiblemente. Las modificacio-
nes realizadas por una aplicacién se guardan en buffers internos del BDE, desde
donde son transferidas al disco durante los intervalos en que la aplicacion esta
ociosa. Un corte de tension, por ejemplo, puede dejar una modificaciéon confirmada
en un fichero indice, pero no en el fichero de datos principal, lo cual puede ser mor-
tal en ocasiones.

La mejor cura consiste en transferir los buffers modificados en cuanto podamos, aun
al coste de ralentizar la aplicacion. C++ Builder ofrece el siguiente método, aplicable
a los conjuntos de datos del BDE:

void _ fastcall TBDEDataSet:: FlushBuffers();

El mayor grado de seguridad se obtiene cuando llamamos a FushBuffers inmediata-
mente después de cada modificacion. Traducido al cristiano: en los eventos AfferPost
y AfterDelete de las tablas y consultas actualizables:

void _ fastcall TnodDatos:: Tabl elAfterPost (TObj ect *Sender)
{

}

stati c_cast <TDBDat aSet *>(Sender) - >Fl ushBuf f ers() ;

Por supuesto, existen soluciones intermedias, como vaciar los bauffers solamente des-
pués de terminar transacciones largas.

Eventos de transicion de estados 431

Los eventos de deteccidn de errores

La politica de control de errores de la VCL version 1 estaba basada completamente
en las excepciones, aplicando a rajatabla la Tercera Regla de Marteens:

“Escriba la menor cantidad posible de instrucciones try...catch”

Es decir, si se producia un error durante la grabacién de un registro, se producia una
excepcion que iba abortando las funciones pendientes en la pila de ejecucion del pro-
grama, y que terminaba su andadura en la instruccién de captura del ciclo de mensa-
jes. Un cuadro de mensajes mostraba al usuario lo errado de sus planteamientos, y
jvuelta a intentar la operacion!

Bajo esta estrategia, scémo mostrar mensajes mas especificos? No nos interesa que el
usuario de nuestro programa vea mensajes como: “Violacion de unicidad™’8. Nos
interesa que el mensaje diga ahora “Cédigo de cliente repetido”, y que en otra cit-
cunstancia diga “Cdédigo de articulo ya utilizado”. La unica posibilidad que nos de-
jabala VCL 1 era encerrar en instrucciones try...catch todas las llamadas que pudie-
ran fallar, y esto no es siempre posible pues algunos métodos, como Posz, son llama-
dos implicitamente por otras operaciones.

A partir de la version 2 de la VCL se introdujeron los lamados eventos de deteccion de
errores, que se disparan cuando se produce un error en alguna operacién de un con-
junto de datos, pero antes de que se eleve la excepcion asociada:

__property TDataSet Error Event OnEditError;
__property TDat aSet Error Event OnPost Error;
__property TDat aSet Error Event OnDel et eError;

Por supuesto, estos eventos estan disponibles en todas las versiones de C++ Builder.
La declaracién del tipo de estos eventos, en la enrevesada sintaxis de C++, es la si-

guiente:

typedef void _ fastcall (__closure *TDataSetErrorEvent)
(TDat aSet *Dat aSet, EDat abaseError *E, TDataAction &Action);

Estos eventos, cuando se disparan, lo hacen durante el “nicleo” de la operacién aso-
ciada, después de que ha ocurrido el evento Before, pero antes de que ocurra el evento
After. Bl siguiente diagrama representa el flujo de eventos durante la llamada al mé-
todo Delete. Similar a este diagrama son los correspondientes a los métodos Edit y
Post:

18 Suponiendo que los mensajes de error estan traducidos, y no obtengamos: “Key violation”

432 La Cara Oculta de C++ Builder

BeforeDelete AfterDelete
Delete

OnDeleteError

Linea del tiempo

v

Dentro del manejador del evento, podemos intentar corregir la situacion que produjo
el error, e indicar que la operacion se reintente; para esto hay que asignar daRezry al
parametro DataAction. Podemos también dejar que la operacion falle, y que C++
Builder muestre el mensaje de error; para esto se asigna a DataAction el valor daFail,
que es el valor inicial de este parametro. Por ultimo, podemos elegir mostrar el men-
saje dentro del manejador y que C++ Builder luego aborte la operacion sin mostrar
mensajes adicionales; esto se logra asignando daAbort al parametro DataAction.

El ejemplo mis sencillo de respuesta a un evento de deteccién de errores es la imple-
mentacion de un ciclo de reintentos infinito, sin intervencion del usuatio, cuando se
produce un error de bloqueo. Como estudiaremos en el capitulo sobre control de
concurrencia, cuando se produce una situacion tal, se dispara el evento OnEditError.
Una posible respuesta es la siguiente:

void _ fastcall TnodDatos:: Tabl elEditError(TDat aSet *DataSet,
EDat abaseError *E, TDataAction &Action)

{
// Esperar de 0.5 a 1 segundo
Sl eep(500 + randon{500));
/'l Reintentar
Action = daRetry;
}

En este ejemplo, el reintento se produce después de una espera aleatoria que vatia
desde medio segundo hasta un segundo: de este modo se logra un trafico menor en
la red si se produce una colisiéon multiple entre aplicaciones.

La estructura de la excepcion EDBENngineError

En el caso del evento OnEditError, era relativamente facil crear un manejador para el
evento, pues los errores de edicién tienen en su mayor parte una unica causa: un blo-
queo no concedido, en el caso de Paradox y dBase, y un registro eliminado por otro
usuario, en cliente/servidor. Pero en el caso de los etrores producidos por Posty
Delete, las causas del error pueden variadas. En este caso, tenemos que aprovechar la

Eventos de transicion de estados 433

informacién que nos pasan en el parametro E, que es la excepcidon que estd a punto
de generar el sistema. Y hay que aprender a interpretar el tipo EDatabaseError.

La clase de excepcion EDatabaseError es la clase base de la jerarquia de excepciones
de base de datos. Sin embargo, aunque existen algunos errores que se reportan di-
rectamente mediante esta excepcion, la mayoria de los errores de bases de datos dis-
paran una excepcion de tipo EDBEngineError. La causa es sencilla: los errores del
Motor de Datos pueden haber sido generados por el propio motor, pero también
por un servidor SQL. Debemos conocer, entonces, el error original del servidor,
pero también la interpretacién del mismo que hace el BDE. La excepcién generada
por el BDE, EDBEngineError, tiene una estructura capaz de contener esta lista de
errores. Por regla, si el error de base de datos es detectado por el BDE se lanza una
excepcion EDBEngineError; si el error es detectado por un componente de la VCL,
se lanza un EDatabaseError.

Exception

EDat abaseEr r or Field X needs a value

EDBENgi neEr r or Key violation

Dentro del codigo fuente de la VCL, encontraremos a menudo una funcién Check
definida en la unidad DBTubles, cuyo objetivo es transformar un error del BDE en
una excepcién EDBEngineError. Por ejemplo:

/] Cbédigo fuente en Del phi
procedur e TDat abase. Start Transacti on;

var

TransHandl e: HDBI XAct ;
begi n

CheckActi ve;

if not 1sSQBased and (Translsolation <> tiDirtyRead) then
Dat abaseError (SLocal TransDirty, Self);
Check(Dbi Begi nTran(FHandl e, EXI LType(FTransl sol ation),
TransHandl e));
end;

Observe que la llamada a la funcién del API del BDE se realiza dentro de Check. De
este modo, el resultado de DbiBeginTran es analizado por esta funcién: si es cero, no
pasa nada, pero en caso contrario, se dispara la excepcion. Observe también en el
algoritmo anterior como se llama a una funcién DatabaseError cuando la VCL detecta
por si misma una condicion errénea. Esta funcion es la encargada de disparar las

434 La Cara Oculta de C++ Builder

excepciones EDatabaseError. Existe también una version DatabaseErrorFmt, en la que
se permite pasar cadenas de formato, al estilo de la funcién Format.

Un objeto de la clase EDBEngineError tiene, ademas de las propiedades heredadas de
EDatabaseError, las siguientes propiedades:

__property int ErrorCount;
__property TDBError *Errors[int |ndex];

El tipo TDBError corresponde a cada error individual. He aqui las propiedades dis-
ponibles para esta clase:

Propiedad Significado
ErrorCode El cédigo del error, de acuerdo al BDE

Category Categoria a la que pertenece el error

SubCode Subcédigo del error

NativeError Si el error es producido por el servidor, su codigo de error
Message Cadena con el mensaje asociado al error.

NativeError corresponde al codigo Sg/Code propio de cada servidor SQL. De todas
estas propiedades, la mas util es ErorCode, que es el codigo de error devuelto por el
motor de datos. ¢Como trabajar con estos coédigos? C++ Builder trae un ejemplo,
dberrors, en el cual se explica como aprovechar los eventos de deteccion de errores.
En el programa de demostracion se utiliza un método bastante barroco para formar
el codigo de error a partir de una direccion base y de unos valores numéricos bas-
tante misteriosos. Curiosamente, todo este revuelo es innecesario, pues en la unidad
BDE estos cédigos de error ya vienen declarados como constantes que podemos
utilizar directamente.

Para profundizar un poco mas en el sistema de notificacién de errores, cree una apli-
cacion sencilla con una tabla, una rejilla y una barra de navegacion. Luego asigne el
siguiente manejador compartido por los tres eventos de errores, los correspondientes
a Post, Edit y Delete:

void _ fastcall TForml:: Tabl elPost Error(TDat aSet *TDat aSet,
EDat abaseError *E, TDataAction &Action)
{

Ansi String S;

EDBEngi neError *Err = dynam c_cast <EDBEngi neError*>(E);
if (Err)

for (int i =0; i < Err->ErrorCount; i++)

if (i >0) AppendStr(S, '\n');

Eventos de transicion de estados 435

TDBError *E = Err->Errors[i];
AppendStr(S, Format ("% 4x (%): %",
ARRAYOFCONST((E- >Err or Code, E->Nati veError,
E->Message)))) ;

}
Dat abaseError (S, 0);

Por cada error que aparece en la lista, afadimos una linea al mensaje que estamos
componiendo, mostrando el valor de ErorCode en hexadecimal (pronto veremos por
qué), el valor de NativeErrory el mensaje especifico de ese error. Cuando tenemos el
mensaje, lanzamos una excepcién de clase EDatabaseError. Dicho en otras palabras:
no dejamos reaccionar al manejador del evento. Esta técnica es correcta, y se emplea
con frecuencia cuando se quiere cambiar sencillamente el mensaje de error que se
mostrara al usuario.

Ahora de lo que se trata es de hacer fallar a la aplicacién por todos las causas que
podamos, para ver como protesta C++ Builder. Por ejemplo, cuando se produce una
violacién de unicidad, éste es el resultado que he obtenido, haciendo funcionar a la
aplicacion contra una tabla de Paradox:

2601 (0): Key violation

El cero en NativeError indica que no es un error del servidor, pues no hay un servi-
dor SQL en este caso. ¢Se ha dado cuenta de que he ignorado las dos propiedades
Category y SubCode de los errores? Es que en este caso, la primera vale 0x26, y la se-
gunda 0x07, expresados en notaciéon hexadecimal. Con estos dos datos, usted puede
bucear en la interfaz de la unidad BDE, para encontrar que corresponden a la cons-
tante DBIERR_KEYT/IOL.

Sin embargo, si conecto la tabla a InterBase, éste es el error que obtengo:

2601 (0): Key violation
3303 (-803): Violation of PRI MARY or UNI QUE key constraint
"1 NTEG 56" on table "PARTS"

Primero el BDE ha detectado el error -§03 del servidor. ¢Recuerda que en el capitulo
sobre #riggers y procedimientos almacenados, al hablar de las excepciones mencionaba
la variable sqlcode? Pues este codigo negativo corresponde al valor asumido por esta
variable después del error. El problema es que no existe un estandar para los cédigos
de errores nativos en SQL, pero el SQL Link del BDE amablemente interpreta el
error por nosotros, convirtiéndolo en nuestro conocido 0x2607: "Key violation", que
es lo que verfa el usuario. Hay una regla que se puede inferir a partir de este ejemplo
y otros similares: los c6digos nativos del servidor vienen acompafiando al ErrorCode

0x3303, correspondiente a la constante simbodlica DBIERR_UNKNOWNSQL..

436 La Cara Oculta de C++ Builder

Hagamos fallar una vez mas al BDE. Esta vez he puesto una restriccién en la pro-
piedad Constraints de la tabla, y he intentado modificar un registro con valores inco-
rrectos. Esto es lo que he obtenido:

2EC4 (0): Constraint failed. Expression:
2EAE (0): La cantidad de pedi dos debe ser positiva.

Esta vez tenemos dos errores, y ninguno de ellos proviene del servidor, pues se trata
de una restriccion a verificar en el lado cliente. El primer error corresponde a la
constante DBIERR_USERCONSTRERRK (parece una maldicién polaca). Y el se-
gundo es DBIERR_CONSTRAINTFEAILED. Lo curioso es que el algoritmo que
muestra los mensajes de una excepcion al usuario esta preparado para ignorar el
mensaje de la primera linea, y mostrar solamente el mensaje disefiado por el progra-
mador.

Aplicaciones de los eventos de errores

¢Qué podemos hacer en un evento de deteccién de errores? Hemos visto que en
algunos casos se podia reintentar la operacion, después de efectuar algunas correc-
ciones, o de esperar un tiempo. Sin embargo, en la mayorfa de los casos, no puede
hacerse mucho. Tendremos que esperar al estudio de las actualizaciones en caché
para disponer de herramientas mas potentes, que nos permiten recuperarnos con
efectividad de todo un rango de errores.

Sin embargo, la mayor aplicacion de estos eventos es la contextualizacion de los men-
sajes de errores. Soy consciente de que acabo de escribir una palabra de 17 letras, ¢no
debia haber dicho mejor #raduecidn? Resulta que no. Un usuario intenta insertar un
nuevo cliente, pero le asigna un nombre o un cédigo ya existente. El BDE le res-
ponde enfadado: "Key violation". Pero usted servicialmente traduce el mensaje: "1 7o/a-
¢ion de clave”. Y ala mente del usuario, que no conoce a Codd y la historia de su perro,
viene una serie desconcertante de asociaciones de ideas. Lo que tenfamos que haber
notificado era: "Cddigo 0 nombre de cliente ya existe’”. Es decit, tenfamos que adecuar el
mensaje general a la situacion particular en que se produjo.

Pero antes tendremos que simplificar un poco la forma de averiguar qué error se ha
producido. La siguiente funcién nos va a ayudar en ese sentido, “aplanando” las ex-
cepciones de tipo EDBEngineErrory produciendo un solo cédigo de error que re-
suma toda la informacion, o la parte méas importante de la misma:

19Y yo me pregunto: ¢por qué la mayoria de los mensajes en inglés y castellano prescinden de
los articulos, las preposiciones y, en algunos casos, de los tiempos verbales? Yo Tarzan, tu
Juana...

Eventos de transicion de estados 437

i nt Get BDEErr or (EDat abaseError *E)

EDBENngi neError *Err = dynam c_cast <EDBEngi neError*>(E);

if (Er
for

}

r

(int 1 =0; | < Err->ErrorCount; |++)

TDBError *dbe = Err->Errors[1];
i f (dbe->NativeError == 0)
return dbe->Error Code;

return -1;

Si la excepcidn no es del BDE, la funcién devuelve -1, es decir, nada concreto. En
caso contrario, husmeamos dentro de Errors buscando un error con el cédigo nativo
igual a cero: una interpretacién del BDE. En tal caso, terminamos la funcién dejando
como resultado ese primer error del BDE correspondiente a la parte cliente de la

aplicacion.

Ahora las aplicaciones de esta técnica. El siguiente método muestra cémo detectar

los errores que se

producen al borrar una fila de la cual dependen otras gracias a una

restriccién de integridad referencial. A diferencia de los ejemplos que hemos visto
antes, este es un caso de deteccioén de errores a posteriors:

void __fastcall TnodDatos::tbPedi dosDel et eError(TDat aSet *TDat aSet,
EDat abaseError *E, TDataAction &Action)

if (GetBDEError(E) == DBI ERR_DETAI LRECORDSEXI ST)

if

(MessageDl g("¢Eli minar tanbi én | as |ineas de detalles?",
nt Confirmation, TMsgD gButtons() << nmbYes << nmbNo, 0)
== nr Yes)

t bLi neas->First();
while (! tbLi neas->Eof)
t bLi neas->Del ete();
/'l Reintentar el borrado en |a tabla de pedidos
Action = daRetry;

el se

// Fallar sin nostrar otro nensaje
Action = daAbort;

Solamente hemos intentado solucionar el error cuando el coédigo de error generado
es DBIERR_DETAII RECORDSEXIST, que hemos encontrado en la unidad BDE.

Como ultimo ejemplo, programaremos una respuesta que puede ser compartida por
varias tablas en sus eventos OnPostError, y que se ocupa de la traduccion genérica de
los mensajes de excepciéon mas comunes:

438 La Cara Oculta de C++ Builder

void __fastcall TnodDatos:: ErrorDeG abaci on(TDat aSet *Dat aSet,
EDat abaseError *E, TDataAction &Action)

TTable *T = static_cast<TTabl e*>(Dat aSet);

switch (GetBDEError(E))

{
case DBl ERR_KEYVI OL:
Dat abaseError Fnt ("d ave repetida en la tabla %",
ARRAYOFCONST((T- >Tabl eNange)), 0);
br eak;
case DBl ERR_FOREI GNKEYERR:
Dat abaseError Fnt ("Error en clave externa. Tabla: %",
ARRAYOFCONST((T- >Tabl eNange)), 0);
br eak;
}

Observe que si GeBDEEror no encuentra un codigo apropiado, este manejador de
evento no hace nada, y el programa dispara la excepcion original. Si el error ha sido
provocado por el fallo de una restriccion en el lado cliente, la funcion ErrorDeGraba-
cion dispara una nueva excepcion con el mensaje personalizado introducido por el
programador. Y si se trata de una violacién de clave primaria, o de una integridad
referencial, al menos se da un mensaje en castellano.

Una vez mas, la orientacién a objetos...

Los eventos de deteccién de errores nos muestran la forma correcta de entender la
Programacién Orientada a Objetos. Tomemos por caso la deteccion de los errores de
violacién de unicidad. Este es un error que se produce durante la ejecucion del mé-
todo Post. Por lo tanto, pudiéramos encerrar las llamadas al método Posz dentro de
instrucciones try/catch, y en cada caso tratar la excepcion correspondiente. Este
estilo de programacion se orienta a la gperacidn, mas bien que al objeto, y nos fuerza a
repetir el codigo de tratamiento de excepciones en cada caso en que la operacion se
emplea. Incluso, lo tendremos dificil si, como es el caso, la operacion puede también
producirse de forma implicita.

En cambio, utilizando los eventos de deteccién de errores, especificamos el com-
portamiento ante la situacién de error una sola vez, asociando el cédigo al objeto. De
este modo, sea cual sea la forma en que se ejecute el método Posz, las excepciones son
tratadas como deseamos.

Capitulo

22

Bases de datos y transacciones

N LA JERARQUIA DE OBJETOS manejada por el BDE, las bases de datos y las

sesiones ocupan los puestos mas altos. En este capitulo estudiaremos la

forma en que los componentes TDatabase controlan las conexiones a las
bases de datos y la activacion de transacciones. Dejaremos las posibilidades de los
componentes de la clase TSession para el siguiente capitulo.

El componente TDatabase

Los componentes TDatabase de C++ Builder representan y administran las conexio-
nes del BDE a sus bases de datos. Por ejemplo, este componente lleva la cuenta de
las tablas y consultas activas en un instante determinado. Reciprocamente, las tablas y
consultas estin conectadas en tiempo de ejecucién a un objeto TDatabase, que puede
haber sido definido explicitamente por el programador, utilizando en tiempo de di-
sefio el componente TDatabase de la paleta de componentes, o haber sido creado
implicitamente por C++ Builder en tiempo de ejecucién. Para saber si una base de
datos determinada ha sido creada por el programador en tiempo de disefio o es una
base de datos temporal creada por C++ Builder, tenemos la propiedad de tiempo de
ejecucion Temporary, en la clase TDatabase. Con las bases de datos se produce la
misma situacién que con los componentes de acceso a campos: que pueden definirse
en tiempo de disefio o crearse en tiempo de ejecucion con propiedades por omision.
Como veremos, las diferencias entre componentes TDatabase persistentes y dinami-
cos son mayores que las existentes entre ambos tipos de componentes de campos.

Las propiedades de un objeto TDatabase pueden editarse también mediante un cua-
dro de didlogo que aparece al realizar una doble pulsacién sobre el componente:

440 La Cara Oculta de C++ Builder

Form1.Databasel Database

i Database

Hame: Aliaz name:

Diiver name:
I | = |

Parameter overides:
;I Defaults |
Clear |

[

— Optiohs
¥ Login prompt
V¥ Keep inactive conrection

QK I Cancel | Help |

Un objeto TDatabase creado explicitamente define siempre un alias local a la sesion a
la cual pertenece. Basicamente, existen dos formas de configurar tal conexién:

Crear un alias a partir de cero, siguiendo casi los mismos pasos que en la con-
figuracién del BDE, especificando el nombre del alias, el controlador y sus para-
metros.

Tomar como punto de partida un alias ya existente. En este caso, también se pue-
den alterar los parametros de la conexion.

En cualquiera de los dos casos, la propiedad IsSQI Based nos dice si la base de datos
esta conectada a un servidor SQL. o un controlador ODBC, o a una base de datos
local.

Haya sido creado por la VCL en tiempo de ejecucion, o por el programador en
tiempo de diseflo, un objeto de base de datos nos sirve para:

Modificar los parametros de conexién de la base de datos: contrasefias, conexio-
nes establecidas, conjuntos de datos activos, etc.
Controlar transacciones y actualizaciones en caché.

El control de transacciones se trata en el presente capitulo, y las actualizaciones en
caché se dejan para mas adelante.

Objetos de bases de datos persistentes

Comenzaremos con los objetos de bases de datos que el programador incluye en
tiempo de disefio. La propiedad fundamental de estos objetos es DatabaseName, que
corresponde al cuadro de edicion Nawe del editor de propiedades. El valor alma-

Bases de datos y transacciones 441

cenado en DatabaseName se utiliza para definir un alias local a la aplicacion. La forma
en que se define este alias local depende de cual de las dos propiedades, .A%asName 6
DriverName, sea utilizada por el programador. ~AkasName y DriverName son propieda-
des de uso mutuamente excluyente: si se le asigna algo a una, desaparece el valor
almacenado en la otra. En este sentido se parecen al par IndexName e IndexFieldNames
de las tablas. O al Yang y el Yin de los taoistas.

Si utilizamos AliasName estaremos definiendo un alias basado en otro alias existente.
El objeto de base de datos puede utilizarse entonces para controlar las tablas perte-
necientes al alias original. ;Qué sentido tiene esto? La respuesta es que es posible
modificar los parametros de conexion del alias original. Esto quiere decir que po-
demos afiadir parametros nuevos en la propiedad Params. Esta propiedad, declarada
de tipo TS%rings, esta inicialmente vacia para los objetos T Database. Se puede, por
ejemplo, modificar un parametro de conexién existente:

SQLPASSTHRUMODE=NOT SHARED
ENABLE SCHEMVA CACHE=TRUE

El dltimo parametro permite acelerar las operaciones de apertura de tablas, y puede
activarse cuando la aplicaciéon no modifica dindmicamente el esquema relacional de la
base de datos creando, destruyendo o modificando la estructura de las tablas. El
significado del parametro SOLPASSTHRU MODE ya ha sido estudiado en el capi-
tulo sobre transacciones y control de concurrencia. Otro motivo para utilizar un alias
local que se superponga sobre un alias persistente es la intercepcion del evento de
conexion a la base de datos (/ogin). Pero muchas veces los programadores utilizan el
componente TDatabase sélo para declarar una variable de este tipo que controle a las
tablas pertinentes. Si estd utilizando esta técnica con este unico proposito, existen
mejores opciones, como veremos dentro de poco.

La otra posibilidad es utilizar DriverNanse. ;Recuerda como se define un alias con la
configuracion del BDE? Es el mismo proceso: DatabaseName indica el nombre del
nuevo alias, mientras que DriverName especifica qué controlador, de los disponibles,
queremos utilizar. Para configurar correctamente el alias, hay que introducir los para-
metros requeridos por el controlador, y para esto utilizamos también la propiedad
Params. De este modo, no necesitamos configurar alias persistentes para acceder a
una base de datos desde un programa escrito en C++ Builder.

Cambiando un alias dinamicamente

Un buen ejemplo de aplicacién que necesita utilizar alias locales, o de sesion, es
aquella que, trabajando con tablas locales en formato Paradox o dBase, necesite
cambiar periddicamente de directorio de trabajo. Por ejemplo, ciertas aplicaciones de
contabilidad y gestién estan disefladas para trabajar con diferentes ejercicios o em-

442 La Cara Oculta de C++ Builder

presas, cuyas tablas se almacenan en distintos directorios del ordenador. Si se utilizan
alias persistentes, es engorroso hacer uso de la utilidad de configuracién del BDE, o
de los métodos del componente TSession para definir o redefinir un alias persistente
cada vez que tenemos que cambiar el conjunto de tablas con las cuales se trabaja.

Sin embargo, es relativamente facil lograr este resultado si las tablas de la aplicacion
se conectan a un objeto TDatabase definido en tiempo de disefio, y este objeto define
un alias local a la aplicacién. Supongamos que la aplicacién contiene, posiblemente
en el médulo de datos, un objeto de tipo TDatabase con las siguientes propiedades:

Propiedad Valor

Name Databasel
DatabaseName MiBD
DriverName STANDARD

Las tablas del médulo de datos, por supuesto, se conectaran por medio del alias
M:BD, definido por este objeto. Para simplificar, supondré que dentro del médulo de
datos solamente se ha colocado una tabla, Tabl1. Se puede asignar algin directorio
inicial en la propiedad Params del componente TDatabase, incluyendo una linea con el
siguiente formato:

PATH=C: \ Ar chi vos de programa\ Cont abi | i dad

El cambio de directorio debe producirse a peticién del usuario de la aplicacion; tras
cada cambio, debe quedar grabado el camino al nuevo directorio dentro de un fi-
chero de extension zxi. El siguiente método se encarga de cerrar la base de datos,
cambiar el valor del parametro PATH vy reabrir la tabla, conectando de este modo la
base de datos. Si todo va bien, se graba el nuevo directorio en un fichero de configu-
racion de extension 7

void _ fastcall TForml:: NuevoDirectori o(Ansi String ADir)

{
Dat aMbdul el- >Dat abasel- >Cl ose();
Dat aMbdul el- >Dat abasel- >Par ans- >Val ues[" PATH'] = ADir;
Dat aMbdul el- >Tabl el- >Open() ; /1 Conecta tanbi én |a BD
std::auto_ptr<TIniFile> iniFile(
new Tl ni Fi | e(ChangeFi | eExt (Appl i cation->ExeName, ".IN")));
iniFile->WiteString("Database", "Path", ADr);
}

Posiblemente, el método anterior se utilice después de que el usuatio elija el directo-
rio de trabajo mediante un cuadro de didlogo apropiado. Durante la carga del for-
mulatio se llama a NuevoDirectorio para utilizar el dltimo directorio asignado, que debe
encontrarse en el fichero de inicializacién:

Bases de datos y transacciones 443

void _ _fastcall TForml:: FornCreate(TObj ect *Sender)

{
Ansi String S;
std::auto_ptr<TIniFile> iniFile(
new TI ni Fi | e(ChangeFi | eExt (Appl i cation->ExeNarme, ".IN")));
S = iniFile->ReadString("Dat abase", "Path", "");
if (! S.IsEnpty()) NuevoDirectorio(S);
}

Esta misma técnica puede aplicarse a otros tipos de controladores de bases de datos.

Bases de datos y conjuntos de datos

Es posible, en tiempo de ejecucion, conocer a qué base de datos esta conectado
cierto conjunto de datos, y qué conjuntos de datos estan activos y conectados a cierta
base de datos. La clase TDatabase define las siguientes propiedades para este propo-
sito:

__property int DataSetCount;
__property TDBDataSet* DataSets[int I|];

Por ejemplo, se puede saber si alguno de los conjuntos de datos conectados a una
base de datos contiene modificaciones en sus campos, sin que se le haya aplicado la
operacion Post:

bool HayModi fi caci ones(TDat abase * ADat abase)

{
int i = ADatabase. Dat aSet Count - 1;
while (i >= 0 & ! ADat abase->DataSets[i]->Mdified) i--;
return (i >= 0);

}

En la seccién anterior definimos un método NuevoDirectorio que cerraba una base de
datos estandar, cambiaba su directorio asociado y volvia a abritla, abriendo una tabla
conectada a la misma. Ahora estamos en condiciones de generalizar este algoritmo,
recordando qué conjuntos de datos estaban abiertos antes de cerrar la conexion para
restaurarlos mds adelante:

void _ _fastcall TForml:: NuevoDirectorio(TDat abase* ADB,
const AnsiString ADir)
{

std::auto_ptr<TList> Lista(new TList);
/'l Recordar qué conjuntos de datos estaban abiertos
for (int i =0; i < ADB->DataSetCount; i++)
Li st a- >Add(ADB- >Dat aSet s[i]);
[/ Canbiar el directorio
ADB- >O ose();
ADB- >Par anms- >Val ues["PATH'] = ADir;
ADB- >pen() ;

444 La Cara Oculta de C++ Builder

/1 Reabrir |os conjuntos de datos
for (int i =0; i < Lista->Count; i++)
static_cast<TDataSet*>(Lista->ltens[i])->0pen();
std::auto_ptr<TIniFile> iniFile(
new Tl ni Fil e (ChangeFi | eExt (Application->ExeName, ".IN")));
iniFile->WiteString("Database", "Path", ADr);

Por otra parte, todo conjunto de datos activo tiene una referencia a su base de datos
por medio de la propiedad Database. Antes mencionaba el hecho de que muchos
programadores utilizan un componente TDatabase que definen sobre un alias persis-
tente con el unico proposito de tener acceso al objeto de bases de datos al que se
conectan las tablas. La alternativa, mucho mas eficiente, es declarar una variable de
tipo TDatabase en la seccién puiblica de declaraciones del médulo de datos, o en algin
otro sitio conveniente, e inicializarla durante la creaciéon del modulo:

cl ass TDat aMbdul el : public TDat aMbdul e

..
publi c:

TDat abase *Dat abase;
b

/1
void _ fastcall TDataMdul el:: Dat aMbdul e2Cr eat e(TObj ect * Sender)

Dat abase = Tabl el- >Dat abase;
if (! Database->l sSQ.Based)
Dat abase- >Transl sol ati on = ti DirtyRead;

La asignacion realizada sobre la propiedad Translsolation es bastante frecuente cuando
se trata con tablas Paradox y dBase, y se quieren utilizar transacciones locales. Como
ya explicamos en el capitulo 12, las bases de datos de escritorio solamente admiten el
nivel més bajo de aislamiento. Por supuesto, cuando tenemos un componente T Data-
base persistente, es preferible asignar el nivel de aislamiento directamente en el Ins-
pector de Objetos.

Parametros de conexion

Hay aplicaciones que comienzan con todas sus tablas abiertas, y solamente las cierran
al finalizar. Pero hay otras que van abriendo y cerrando tablas segiin sea necesatio.
¢Qué debe suceder cuando todas las tablas han sido cerradas? Todo depende de la
propiedad KeepConnection, del componente TDatabase al cual se asocian las tablas. Esta
propiedad vale True por omision, lo cual quiere decir que una vez establecida la cone-
xi6n, ésta se mantiene aunque se cierren posteriormente todas las tablas. Si por el
contratio, KeepConnection vale False, al cerrarse el tltimo conjunto de datos activo de la
base de datos, se desconecta la base de datos.

Bases de datos y transacciones 445

El problema es que una conexién a una base de datos consume recursos, especial-
mente si la base de datos se encuentra en un servidor. Tipicamente, por cada usuario
conectado, el software servidor debe asignar un proceso o hilo (#hread), junto con
memoria local para ese proceso. Asi que en ciertos casos es conveniente que, al ce-
rrarse la dltima tabla, se desconecte también la base de datos. Pero también sucede
que el restablecimiento de la conexién es costoso, y si tenemos una base de datos
protegida por contrasefias, el proceso de reapertura no es transparente para el usua-
rio (a no ser que tomemos medidas). Por lo tanto, depende de usted lograr un buen
balance entre estas dos alternativas.

La peticidon de contrasefas

Cuando se intenta establecer la conexion de un objeto TDatabase a su correspon-
diente base de datos, si la propiedad LoginPrompt del objeto es Truey se trata de una
base de datos SQL, el Motor de Datos debe pedir, de un modo u otro, la contrasefia
del usuario. Como se hace, depende de si hay algiin método asociado con el evento
Onl_ggin del objeto o no. Si el evento no estd asignado, C++ Builder muestra un cua-
dro de dialogo predefinido, a través del cual se puede indicar el nombre del usuario y
su contrasefia. El nombre del usuario se inicializa con el valor extraido del parametro

USER NAME del alias:
Dat abasel- >Par ans- >Val ues[" USER NAVE"]

Database Login

Database: |IBLOCAL

UserName: [SYSDBA

Passmand: Ixxxxxxxxx

Ok I Cancel |

Si, por el contrario, interceptamos el evento, es responsabilidad del método receptor
asignar un valor al parametro PASSTWORD de la base de datos. Es bastante comin
interceptar este evento para mostrar un dialogo de conexién personalizado. Otro
motivo para interceptar este evento puede ser la necesidad de quedarnos con el
nombre del usuario, quizas para validar mas adelante ciertas operaciones, o para lle-
var un registro de conexiones, si el sistema no lo hace automaticamente. Incluso, si
queremos hacer trampas, es posible programar una especie de “caballo de Troya”
para espiar las contrasefias, ya que también estaran a nuestra disposicion; todo de-
pende de la ética del programador.

La declaracién del evento Onlogin es la siguiente:

446 La Cara Oculta de C++ Builder

typedef void _ fastcall (__closure *TLogi nEvent)
(TDat abase *Dat abase, TStrings *Logi nParans);

Una posible respuesta a este evento puede set:

void _ fastcall TnodDatos:: Dat abasellLogi n(TDat abase *Dat abase,
TStrings *Logi nPar ans)

{
i f (FNonmbreUsuario.|sEmpty())
i f (dl gPassword- >Showvbdal () == nr &)
FNonbr eUsuari o = dl gPasswor d- >Edi t 1- >Text ;
FPassword = dl gPasswor d- >Edi t 2- >Text ;
}
Logi nPar ans- >Val ues[" USER NAMVE"] = FNonbreUsuari o;
Logi nPar ans- >Val ues[" PASSWORD'] = FPasswor d;
}

Este método asume que hay una sola base de datos en la aplicacion. Estamos almace-
nando el nombre de usuario y su contrasefa en los campos FINowbreUsuario y FPass-
word, declarados como privados en la definicién del médulo. Si es la primera vez que
nos conectamos a la base de datos, aparece el didlogo mediante el cual pedimos los
datos de conexién; aqui hemos nombrado dlgPassword a este formulario. A partir de la
primera conexion, los datos del usuario no vuelven a necesitarse. Esto puede ser util
cuando intentamos mantener cerradas las conexiones inactivas (KegpConnection igual a
False), pues es bastante engorroso que el usuario tenga que estar tecleando una y otra
vez la contrasefa cada vez que se reabre la base de datos.

Hay que tener cuidado, sin embargo, con la técnica anterior, pues no ofrece la posi-
bilidad de verificar si los datos suministrados son correctos. De no setlo, cualquier
intento posterior de conexion falla, pues ya estan almacenados en memoria un nom-
bre de usuatio y contrasefia no validos.

En versiones anteriores de C++ Builder, el cuadro de didlogo de peticién de
contrasefias de la VCL era un “verdadero” cuadro de didlogo, cuya definicioén vi-
sual se almacenaba en un recurso asociado a la VCL y se creaba mediante una
llamada a la funcién CreateDialog del API de Windows. En la versién 4 ya se ha
convertido en un formulario con ejecucién modal, por lo que si desea traducitlo
al castellano solamente debe buscar el fichero dfz asociado.

Mas motivos para desear cambiar la peticién de contrasefias: Supongamos que esta-
mos conectandonos a InterBase 5 o posterior. Recuerde que a partir de esta version
InterBase ofrece soporte para rofes, y que estos roles se asumen durante la conexion a
la base de datos. El didlogo de conexién estandar de la VCL no contempla la posibi-
lidad de especificar un rol, asi que en caso de querer aprovechar los roles, debemos
crear nuestro propio formulario, con editores para el nombre de usuario, el rol y la

Bases de datos y transacciones 447

contrasefla, y definir un manejador para el evento Onlogin que asigne los valores
tecleados a los correspondientes parametros del BDE:

void __fastcall TnodDatos:: Dat abasellLogi n(TDat abase *Dat abase,
TStrings *Logi nPar ans)

{
i f (dl gPassword->Showibdal () == nr Ck)
{
FNorbr eUsuari o = dl gPasswor d- >Edi t 1- >Text ;
FRol = dl gPasswor d- >Edi t 2- >Text ;
FPassword = dl gPasswor d- >Edi t 3- >Text ;
}
Logi nPar ans- >Val ues[" USER NAME'] = FNonbreUsuari o;
Logi nPar anms- >Val ues["ROLE NAME"] = FRol ;
Logi nPar anms- >Val ues[" PASSWORD'] = FPasswor d;
}

El directorio temporal de Windows

El lector sabe que el parametro ENABLE SCHEMA CACHE de los controladores
SQL permite acelerar la conexién de una aplicacién a un servidor, porque indica al
BDE que almacene la informacion de esquema de las tablas en el cliente. Sabe tam-
bién que el parametro SCHEMA CACHE DIRK sirve para indicar en qué directorio
situar esta informacién de esquema. Sin embargo, es muy poco probable que alguien
suministre un directorio estatico para este parametro, pues el directorio debe existir
en el momento en que se realiza la conexion a la base de datos. Por ejemplo, ¢qué
pasaria si quisiéramos que esta informacion se almacenara siempre en el directorio
temporal de Windows? Pues que tendrfamos problemas si la aplicacion puede ejecu-
tarse indistintamente en Windows NT o en Windows 95, ya que ambos sistemas
operativos definen diferentes ubicaciones para sus directorios temporales.

La solucion consiste en utilizar también el evento Onlggin para cambiar el directorio
de la caché de esquemas antes de que se abra la base de datos:

void __fastcall TnodDatos:: Dat abasellLogi n(TDat abase *Dat abase,
TStrings *Logi nPar ans)
{

Ansi String S;

S. Set Lengt h(255) ;

int L = GetTenpPat h(255, S.c_str());

if (S.IsPathDelimter(L)) L--;

S. Set Lengt h(L);

Dat abasel- >Par ans- >Val ues[" ENABLE SCHEMA CACHE'] = "TRUE";
Dat abasel- >Par ans- >Val ues[" SCHEMA CACHE DI R'] = S;

/1

El truco ha consistido en modificar el valor del paraimetro directamente en la base de
datos, no en el objeto LoginParams del evento.

448 La Cara Oculta de C++ Builder

También vale redefinit el método [oaded del médulo de datos, de forma similar a
como hicimos para preparar las consultas explicitamente en el capitulo 24.

Compartiendo la conexion

St un médulo de datos de C++ Builder 1 contenfa un componente TDafabase, no era
posible derivar médulos del mismo por medio de la herencia. La explicaciéon es sen-
cilla: un objeto TDatabase define, con su sola presencia, un alias local para la aplica-
cion en la que se encuentra. Por lo tanto, si hubieran dos objetos de esta clase con
iguales propiedades en dos médulos diferentes de la misma aplicacion, y esto es lo
que sucede cuando se utiliza la herencia visual, se intentarfa definir el mismo alias
local dos veces.

Existian dos soluciones para este problema. La primera era no utilizar objetos TDa-
tabase persistentes en el modulo; si lo tnico que necesitabamos era acceso facil al
objeto TDatabase asociado a las tablas, para controlar transacciones, por ejemplo, se
podia utilizar con la misma facilidad la propiedad Database de los conjuntos de datos.
La otra solucion consistia en situar el objeto de bases de datos en un médulo aparte
de las tablas. En este caso, el médulo que contiene las tablas podia servir como clase
base para la herencia, mientras que el médulo de la base de datos debia utilizarse
directamente o ser copiado en nuestro proyecto.

Aislar la base de datos en un médulo separado puede seguir siendo conveniente por
otros motivos. En el epigrafe anterior vimos una forma de evitar que el usuario te-
clee innecesariamente sus datos cada vez que se inicia una conexiéon. Habfamos men-
cionado también el problema de validar la conexion, para reintentarla en caso de
fallo. Si tenemos la base de datos aislada en un médulo, que se debe crear antes de
los médulos que contienen las tablas, podemos controlar la conexion del siguiente
modo, durante la creacion del médulo:

void _ fastcall TnodDat osDB:: nodDat osDBCr eat e(TObj ect *Sender)

/1 Tres reintentos conp néxino
for (int Intentos = 0; Intentos < 3; Intentos++)

try

Dat abasel- >Open();
/1 Si todo va bien, nos vanps
return;

}
cat ch(Excepti on&)
/! Reiniciar |os datos de usuario, y volver a probar

FNormbr eUsuario = "";
FPassword = "";

Bases de datos y transacciones 449

/1 Si no se puede, terminar |a aplicacioén
Application->Term nate();

La condicién necesaria para que el cdédigo anterior funcione es que la base de datos
esté cerrada en tiempo de disefio.

El problema expuesto anteriormente se resuelve a partir de C++ Builder 3 con una
nueva propiedad: HandleShared. Si esta propiedad es True, dos bases de datos pueden
tener el mismo nombre y compartir el mismo handle del BDE. Si colocamos un
TDatabase en un médulo, basta con activar esta propiedad para poder derivar médu-
los por herencia sin ningtn tipo de problemas.

Control explicito de transacciones

Como ya el lector se habra dado cuenta, el modo de trabajo habitual de C++ Builder
considera que cada actualizacion realizada sobre una tabla esta aislada légicamente de
las demas posibles actualizaciones. Para base de datos locales, esto quiere decir senci-
llamente que no hay transacciones involucradas en el asunto. Para un sistema SQL,
las cosas son distintas.

El objeto encargado de activar las transacciones explicitas es el componente TData-
base. Los tres métodos que ofrece TDatabase para el control explicito de transacciones
son:

void _ fastcall TDatabase::StartTransaction();
void _ fastcall TDatabase:: Commt();
void __fastcall TDatabase:: Roll back();

Después de una llamada a Ro//back es aconsejable realizar una operacion Refresh sobre
todas las tablas abiertas de la base de datos, para releer los datos y actualizar la panta-
lla. Considerando que la base de datos lleva cuenta de los conjuntos de datos activos,
se puede automatizar esta operacion:

voi d Cancel ar Canbi os(TDat abase* ADat abase)

ADat abase- >Rol | back();
for (int i = ADatabase->DataSetCount - 1; i >=0; i--)
ADat abase- >Dat aSet s[i] ->Refresh();

La propiedad InTransaction, disponible en tiempo de ejecucion, nos avisa si hemos
iniciado alguna transaccién sobre la base de datos activa:

void _ fastcall TFormil:: Transacci onC i ck(TOoj ect *Sender)
{

I ni ci ar Transacci onl- >Enabl ed = | Dat abasel->I nTransacti on;

450 La Cara Oculta de C++ Builder

Confi rmar Tr ansacci onl- >Enabl ed
Cancel ar Transacci onl- >Enabl ed

Dat abasel- >l nTransacti on;
Dat abasel- >l nTransacti on;

Una transferencia bancaria que se realice sobre bases de datos de escritorio, por
ejemplo, podria programarse del siguiente modo:

/1 lniciar la transaccion

Dat abasel->St art Transacti on();
try

{

TLocat eOpti ons Opt;
if (! Tablel->Locate("Apellidos", "Einstein", Opt))
Dat abaseError ("La velocidad de la luz no es un linmte", 0);
Tabl el->Edit();
Tabl el- >Fi el dVal ues[" Sal do"] =
Tabl el- >Fi el dval ues[" Sal do"] - 10000;
Tabl el- >Post () ;
if (! Tablel->Locate("Apellidos", "Newton", Opt))
Dat abaseError ("No todas | as manzanas caen al suel 0", 0);
Tabl el->Edit();
Tabl el- >Fi el dval ues[" Sal do"] =
Tabl el- >Fi el dVal ues[" Sal do"] + 10000;
Tabl el- >Post () ;
// Confirmar |a transaccién
Dat abasel->Commit () ;

}
cat ch(Exception&)

/1 Cancel ar |a transacci 6n
Dat abasel- >Rol | back();

Tabl el- >Refresh();

t hr ow;

Observe que la presencia de la instruccion throw al final de la cldusula catch garan-
tiza la propagacién de una excepcién no resuelta, de modo que no quede enmasca-
rada; de esta forma no se viola la Tercera Regla de Marteens.

Entrada de datos y transacciones

Se puede aprovechar el caracter atémico de las transacciones para automatizar el fun-
cionamiento de los dialogos de entrada de datos que afectan simultaneamente a va-
rias tablas de una misma base de datos, del mismo modo que lo hemos logrado con
las actualizaciones sobre una sola tabla. Si el lector recuerda, para este tipo de actuali-
zaciones utilizdbamos la siguiente funcién, que llamabamos desde la respuesta al
evento OnCloseQuery del cuadro de dialogo:

bool

PuedoCerrar (TForm *AFor m TDat aSet *DS)

i f (AFor m >Mbdal Result == nr Ck)

DS- >Post () ;

Bases de datos y transacciones 451

else if (! DS->Modified ||
Appl i cati on- >MessageBox(" ¢Desea abandonar | os canbi os?",
"Atenci 6n", MB_| CONQUESTION | MB_YESNO) == | DYES)
DS- >Cancel () ;
el se
return Fal se;
return True;

La generalizacion del algoritmo de cierre del cuadro de dialogo es inmediata. Ob-
serve el uso que se hace de CheckBrowseMode, para garantizar que se graben los cam-
bios pendientes.

bool PuedoCerrar Trans(TFor m * AFor m
TDBDat aSet * const* DataSets, int DataSets_size)

{
i f (AFor m >Mbdal Result == nr Ck)
{
for (int i = 0; i <= DataSets_size; i++)
Dat aSet s[i] - >CheckBr owseMbde() ;
Dat aSet s[0] - >Dat abase- >Commi t () ;
else if (Application->MssageBox("¢Desea abandonar | os canbi 0s?",
"Atenci 6n", MB_| CONQUESTION | MB_YESNO) == | DYES)
{
for (int i = 0; i <= DataSets_size; i++)
Dat aSet s[i] ->Cancel ();
Dat aSet s[0] - >Dat abase- >Rol | back() ;
}
el se
return Fal se;
return True;
}

Esta funcion se debe llamar desde el evento OnCloseQuery del didlogo de la siguiente
manera:

void _ fastcall Tdl gPedi dos:: FornC oseQuery(TCbj ect *Sender,
var Cand ose: Bool ean);

CanCl ose = PuedoCerrarTrans(this, OPENARRAY(TDBDat aSet *,
(modDat os- >t bPedi dos, nodDat os->t bDetal | es)));

Ahora hay que llamar explicitamente a StarfIransaction antes de comenzar la edicién o
insercién:
void _ fastcall TPrincipal::AltaPedi dos(TObject *Sender)
nodDat os- >t bPedi dos- >Dat abase- >St art Tr ansacti on();

nodDat os- >t bPedi dos- >Append() ;
dl gPedi dos- >Showivbdal () ;

452 La Cara Oculta de C++ Builder

Es un poco incémodo tener que iniciar explicitamente la transaccion cada vez que se
active el cuadro de didlogo. También hemos perdido la posibilidad de detectar facil-
mente si se han realizado modificaciones en algunas de la tablas involucradas; es
posible que algunos de los cambios realizados hayan sido enviados con el método
Post a la base de datos, como sucede frecuentemente en la edicion master/ detail. De
esta forma, si activamos por error el formulario de entrada de datos y pulsamos la
tecla Esc inmediatamente, obtenemos una inmerecida advertencia sobre las conse-
cuencias de abandonar nuestros datos a su suette.

Mas adelante estudiaremos las actualizaciones en caché, un mecanismo que nos ayudara,
entre otras cosas, a resolver éstos y otros inconvenientes menores.

Capitulo

23

Sesiones

I SEGUIMOS ASCENDIENDO EN LA JERARQUIA de organizacién de objetos del

BDE, pasaremos de las bases de datos a las sesiones. El estudio de estos com-

ponentes es de especial importancia cuando necesitamos utilizar varios hilos en
una misma aplicacién, pero también cuando deseamos extraer informacioén del BDE
y del esquema de una base de datos, como demostraremos en la aplicacién que desa-
rrollaremos al final del presente capitulo.

¢Para qué sirven las sesiones?

El uso de sesiones en C++ Builder nos permite lograr los siguientes objetivos:

Cada sesion define un usuario diferente que accede al BDE. Si dentro de una
aplicaciéon queremos sincronizar acciones entre procesos, sean realmente concu-
rrentes o no, necesitamos sesiones.

Las sesiones nos permiten administrar desde un mismo sitio las conexiones a
bases de datos de la aplicacion. Esto incluye la posibilidad de asignar valores por
omision a las propiedades de las bases de datos.

Las sesiones nos dan acceso a la configuracién del BDE. De este modo podemos
administrar los alias del BDE y extraer informacién de esquemas de las bases de
datos.

Mediante las sesiones, podemos controlar el proceso de conexién a tablas Para-
dox protegidas por contrasefias.

En las versiones de 16 bits del BDE, anteriores a C++ Builder, sélo era necesaria
una sesion por aplicacion, porque podia ejecutarse un solo hilo por aplicacién. En la
primera versién de la VCL, por ejemplo, la clase TSession no estaba disponible como
componente en la Paleta, y para tener acceso a la tinica sesion del programa tenfamos
la variable global Session. En estos momentos, ademds de poder crear sesiones adicio-
nales en tiempo de diseflo, seguimos teniendo la variable Session, que esta vez se re-
fiere a la sesién por omision. También se ha afiadido la variable global Sessions, de la

454 La Cara Oculta de C++ Builder

clase TSessionlist, que permite el acceso a todas las sesiones existentes en la aplica-
cion.

Tanto Sessions, como Session, estan declaradas en la unidad DBTables, y son creadas
automaticamente por el cédigo de inicializacion de esta unidad en el caso de que sea
mencionada por alguna de las unidades de su proyecto.

Especificando la sesion

Los componentes TSession tienen una propiedad llamada SesszonNamse, de tipo Ansi-
String, que le sirve al BDE para identificar las sesiones activas. No pueden existir si-
multaneamente dos sesiones que compartan el mismo nombre dentro de un mismo
proceso. La sesion por omision, a la que se refiere la variable global Session, se define
con el nombre de Default.

Cada componente TDatabase posee también una propiedad SessionName que debe
coincidir con el nombre de alguna de las sesiones del proyecto. Por supuesto, el valor
de esta propiedad para un TDatabase recién creado es Defanlt, con lo que se indica que
la conexién se realiza mediante la sesién por omision. Como explicamos en el capi-
tulo anterior, todo TDatabase crea un alias “de sesién” dentro de la aplicaciéon a la
cual pertenece. Ahora podemos ser mas precisos: este alias temporal realmente per-
tenece a la sesion a la cual se asocia el componente. Esto quiere decir que podemos
tener dos componentes TDatabase dentro de la misma aplicaciéon con el mismo valor
en sus propiedades DatabaseName, ain cuando HandleShared sea False para ambos.

En consecuencia, todos los conjuntos de datos detrivados de TDBDataSet también
contienen una propiedad SessionName. Cuando desplegamos en el Inspector de Ob-
jetos la lista de valores asociada a la propiedad DatabaseName de una tabla o consulta,
solamente veremos los alias persistentes s los alias de sesion definidos para la se-
sion a la cual estd asociado el conjunto de datos.

Cada sesidn es un usuario

Hemos explicado que cada sesion define un acceso diferente al BDE, como si fuera
un usuario distinto. La consecuencia mas importante de esto es que el BDE levanta
barreras de contencion entre estos diferentes usuarios. Por ejemplo, si en una sesion
se abre una tabla en modo exclusivo, dentro de la misma sesion se puede volver a
abrir la tabla en este modo, pues la sesiéon no se bloquea a s{ misma. Lo mismo ocu-
rre con cualquier posible bloqueo a nivel de registro. Es facil realizar una demostra-
ci6n practica de esta peculiaridad. Sobre un formulario vacio coloque dos objetos de
tipo TSession y configarelos del siguiente modo:

Propiedad Primera sesion Segunda sesién
Name Sessionl Session2
SessionName S 52

Sesiones 455

Traiga también un par de tablas, con las siguientes propiedades:

Propiedad Primera tabla Segunda tabla
Name Tablel Table?
DatabaseName dbdemos dbdemos
TableName biolife.db biolife.db
Excclusive true true

Por ultimo, sittie dos botones sobre el formulario, con las etiquetas “Una sesion”y
“Dos sesiones”. El primer botén intentara abrir las dos tablas en exclusiva durante la
misma sesion; el segundo hara lo mismo, asignando primero diferentes sesiones. La

respuesta a estos botones sera compartida:

void _ fastcall TFormil::Buttonld ick(TCbject *Sender)
{
Tabl el- >0 ose();
Tabl e2- >0 ose();
Tabl el- >Sessi onNane = "S1";
if (Sender == Buttonl)
Tabl e2- >Sessi onNane = "S1";
el se
Tabl e2- >Sessi onNane = "S2";
Tabl el- >Qpen() ;
Tabl e2- >Qpen() ;

El resultado, por supuesto, sera que el primer botén podra ejecutar su codigo sin

problemas, mientras que el segundo botoén fallara en su intento.

Ha sido fundamental que la tabla del ejemplo perteneciera a una base

de datos de

escritorio. La mayoria de los sistemas SQL ignoran la propiedad Exc/usive de las

tablas.

El inicio de sesidon y la inicializacion del BDE

La inicializacién del Motor de Datos de Borland por la VCL corre a cargo del com-
ponente TSession. Cada vez que se va a ejecutar un método de esta clase, la imple-
mentacién verifica en primer lugar que la propiedad Active sea True, es decir, que la
sesion esté iniciada. Sino lo esta, se inicializa el BDE, lo cual quiere decir que se
cargan las estructuras de las DLLs del Motor de Datos en memortia. Si es la primera
vez que se inicializa una sesion en esa maquina en particular, las DLLs necesarias se

456 La Cara Oculta de C++ Builder

cargan en memoria por primera vez. En caso contrario, se inicializa un nuevo cliente
o instancia de las DLLs.

Comprender cémo funciona la inicializacién del BDE es importante, pues durante la
misma la VCL especifica en qué idioma deben estar los mensajes del Motor de Da-
tos. El siguiente método ha sido extraido del c6digo fuente de la VCL (en Delphi) y
muestra como la sesién inicializa ritualmente el BDE:

procedure TSession.|lnitializeBDE;
var
Status: DBl Result;
Env: Dbi Env;
CientHandl e: hDBI Ovj ;
Set Cur sor: Bool ean;
begi n
Set Cursor := (GetCurrent Threadl D = Mai nThr eadl D)
and (Screen. Cursor = crDefault);
i f SetCursor then
Screen. Cursor : = crHourd ass;
try
Fi Il Char (Env, SizeO (Env), 0);
St rPLCopy(Env. szLang, S| DAPI Langl D, SizeO (Env.szlLang) - 1);
Status := Dbilnit(@nv);
if (Status <> DBl ERR_NONE)
and (Status <> DBIERR_MJLTIPLEINIT) then
Check(St atus);
Check(Dbi Get Curr Sessi on(FHandl e)) ;
i f Dbi Get Obj FronNane(obj CLI ENT, nil, CientHandle) = 0 then
Dbi Set Prop(d i ent Handl e, | nteger(cl SQLRESTRI CT), GDAL);
if IsLibrary then
Dbi Regi st er Cal | back(nil, cbDETACHNOTIFY, 0, O, nil,
DLLDet achCal | Back) ;

finally
if SetCursor and (Screen.Cursor = crHourd ass) then
Screen. Cursor := crDefault;
end;
end;

Como podemos ver, el método gira alrededor de la llamada a la funcién Dbilnit, para
la cual preparamos una variable Env, de tipo DbiEny. Esta funcién puede detectar si
no es la primera vez que se inicializa el BDE (c6digo de retorno DBIERR_MULTI-
PLLEINIT); si tal cosa sucede, la VCL lo pasa por alto. La parte que nos interesa en
este momento es la inicializacién de la variable de entorno, Env. El Gnico campo que
nos tomamos la molestia de modificar es szlang, en el cual se copia el valor de la
constante de cadenas de recursos SIDAPILanglD. En una version de C++ Builder
pata inglés, esta cadena contiene el valor "0009", que como podemos verificar en el
tichero winnt.h, corresponde al inglés.

Esta inicializacion instruye al BDE para que busque sus mensajes dentro de los re-
cursos almacenados en la biblioteca dinamica r20009.d/l. Si queremos nuestros
mensajes en castellano, por ejemplo, tenemos que crea un fichero idr2000a.dll, y tra-
ducir la cadena de recurso SIDAPILangID de la VCL al valor "000A". Pero si desea-

Sesiones 457

mos ahorrarnos el ultimo paso, podemos también inicializar el BDE en nuestra apli-
cacion antes de que el codigo de sesiones tenga su oportunidad. En cualquier mo-
mento antes de la carga de los formularios y médulos de datos de la aplicacion po-
demos insertar las siguientes instrucciones:

DBl Env Env;

nenset (Env, 0, sizeof(Env));

strncpy(Env. szLang, "000A"', sizeof (Env.szlLang) - 1);
Check(Dbi Il nit(&Env));

Es posible pasar el puntero nulo como parametro de la funcién Débilnit. En tal
caso, el lenguaje con el que se inicializa el BDE corresponde al identificador al-
macenado en la clave de registro siguiente:

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ Bor | and\ Dat abase Engi ne\ RESOURCE]

Sesiones e hilos paralelos

La principal aplicacién de estas propiedades de la sesiéon es poder realizar operacio-
nes de bases de datos en distintos hilos de la misma aplicacion; cada hilo enchufa sus
componentes de bases de datos por medio de una sesion diferente. Los servidores de
automatizacion y las extensiones ISAPI/NSAPI para servidores de Internet, que
estudiaremos en capitulos posteriores, permiten que varios clientes se conecten a la
misma instancia de la aplicacion. A cada cliente se le asigna un hilo diferente, por lo
que es esencial utilizar sesiones para evitar conflictos entre las peticiones y modifica-
ciones de datos. Todo esto lo veremos en su momento.

Ahora bien, Jes apropiado utilizar hilos en aplicaciones clientes “normales”? El
ejemplo mas socorrido en los libros de C++ Builder es el de una aplicacién MDI que
abre una ventana hija basada en el resultado de la ejecucién de una consulta. Como la
ejecucion de la consulta por el servidor (o por el intérprete local) puede tardar, para
que el usuario no pierda el control de la interfaz de la aplicacién, la apertura de la
consulta se efectiia en un hilo separado. La técnica es correcta, y los motivos impe-
cables. Pero yo nunca harfa tal disparate en una aplicacion real, pues cada ventana
lanzada de esta manera consumirfa una conexion a la base de datos, que es un re-
curso generalmente limitado y costoso. Atdn después de haber terminado la ejecucion
del hilo que abre la consulta, el objeto TQuery sigue conectado a una sesién separada,
como si hubiera un Dr. Jekyll y un Mr. Hide dentro de mi ordenador personal.

Se me ocurre, sin embargo, un ejemplo ligeramente diferente en el que sf es reco-
mendable utilizar un hilo en paralelo. Sustituya en el parrafo anterior la palabra “con-
sulta” por “procedimiento almacenado”. Supongamos que nuestra base de datos
cliente/setvidor tiene definido un procedimiento que realiza una operacién de man-

458 La Cara Oculta de C++ Builder

tenimiento larga y costosa, y que ese procedimiento debemos lanzarlo desde la apli-
cacion. En principio, el procedimiento no devuelve nada importante. Si utilizamos la
técnica de lanzamiento convencional, tenemos que esperar a que el servidor termine
para poder continuar con la aplicacién. Y esta espera es la que podemos evitar utili-
zando hilos y sesiones. sQué diferencia hay con respecto al ejemplo de la consulta?
Una fundamental: que cuando termina la ejecucion del procedimiento podemos
desconectar la sesion adicional, mientras que no podemos hacer lo mismo con la
consulta hasta que no cerremos la ventana asociada.

Iniciamos una aplicacién. Ponga en la ventana principal una rejilla conectada a una
tabla perteneciente a una base de datos cliente/servidor. Ahora cree un médulo de
datos, lamelo modThread y coloque en €l los siguientes tres objetos:

::’-J;‘_' rmodThread

2 oo &

Session] Databasel StoredProcl

En el objeto Session! solamente es necesatio asignar un nombre en SessionNanmse, di-
gamos que sea S7. Este mismo nombre debe copiarse en la propiedad homoénima del
TDatabase. Configure, ademas, este componente para que podamos conectarnos a la
misma base de datos que estamos explorando en la ventana principal. Finalmente,
cambie también SessionName en el procedimiento almacenado, y enganchelo a algun
procedimiento almacenado de la base de datos cuya ejecucion requiera bastante
tiempo. Y muy importante: jdeje inactivos a todos los objetos! No queremos que esta
sesion esté abierta desde que arranque la aplicacion.

Vamos ahora a programar el hilo que se encargara de ejecutar el procedimiento. Eje-
cute Fi/e| New para obtener el dialogo del Depdsito de Objetos, y realice una doble
pulsacion en el icono Thread object:

Mew Thread

Class Mame: ITSF'Thread

] 4 I Cancel

Este experto crea, en una unidad aparte, un esqueleto de clase que debemos modifi-
car del siguiente modo:

class TSPThread : public TThread

pr ot ect ed:
void _ fastcall Execute();

Sesiones 459

publi c:
__fastcall TSPThread();
}

Hemos afiadido un constructor al objeto. He aqui el cuerpo de los métodos:

__fastcall TSPThread:: TSPThread()

TThr ead(True) /1 Crear un hilo "suspendi do"
{

FreeOnTerm nate = True;

Resune(); /1 Continuar |a ejecucion
}

void _ fastcall TSPThread:: Execute()

nodThr ead- >Dat abasel- >Cpen() ;
try
{
nmodThr ead- >St or edPr oc1- >ExecProc();
}
_finally

nmodThr ead- >Sessi onl- >Cl ose();

El constructor crea inicialmente el hilo en estado “suspendido”, es decir, no co-
mienza inmediatamente su ejecucion. Antes de lanzarlo, asigna Trxe a la propiedad
FreeOnTerminate, para que la memoria del objeto TSPThread sea liberada al finalizar la
ejecucion del hilo. Lo que haga el hilo estara determinado por el contenido del mé-
todo Execute. En éste se accede a los objetos necesarios (sesion, base de datos, pro-
cedimiento almacenado) mediante la variable global #od T hread, rtecuerde que los hilos
comparten el mismo espacio de memoria dentro de una aplicacion. He abierto expli-
citamente la base de datos antes de ejecutar el procedimiento, y después me he ase-
gurado de que se cierra la sesion (y con ella la base de datos). Quizas usted tenga que
retocar un poco el codigo para que no se vuelva a pedir el nombre de usuario y su
contrasefia al abrirse la base de datos.

Con este objeto a nuestra disposicién, lo tnico que tiene que hacer la ventana princi-
pal para ejecutar el procedimiento almacenado en segundo plano es lo siguiente:

void _ fastcall TFornil:: Consolidacionldick(TCbject *Sender)

new TSPThr ead;

Al crearse el objeto del hilo, automaticamente se inicia su ejecucion. Recuerde que la
ultima instruccion del constructor es Resume. La destruccion del objeto creado es
automatica, y ocurre cuando el procedimiento almacenado ha finalizado su accién, y
se ha roto la segunda conexién a la base de datos.

460 La Cara Oculta de C++ Builder

Informacién sobre esquemas

La clase TSession tiene métodos para extraer la informacion sobre esquemas de las
bases de datos registradas por el BDE. Para comenzar por la cima de la jerarquia,
tenemos GetDriverNames, para recuperar los nombres de controladores instalados:

void _ fastcall TSession::GetDriverNanmes(TStrings *Lista);

Este método, y la mayorfa de los que siguen a continuacién que devuelven una lista
de nombres, vacfan primero la lista de cadenas antes de asignar valores. En este caso,
en Lista queda la lista de controladores registrados en el BDE; el controlador
STANDARD se refiere a Paradox y dBase. Una vez que tenemos un nombre de
controlador podemos averiguar sus parametros:

void _ fastcall TSession:: GetDriverParans(
const Ansi String Controlador, TStrings *Lista);

Para obtener la lista de bases de datos y alias, se utilizan GetDatabaseNames y Get-
AliasName. La diferencia entre ambos métodos es que el primero devuelve, ademads
de los alias persistentes, los alias locales declarados mediante objetos TDatabase; el se-
gundo se limita a los alias persistentes. Tenemos ademas las funciones GezAliasDri-
verName 'y GetAliasParams para extraer la informacién asociada a un alias determi-
nado:

void __fastcall TSession:: Get Dat abaseNanmes(TStrings *Lista);
void _ fastcall TSession::GetAliasNames(TStrings *Lista);
Ansi String __fastcall TSession::GetAliasDriverName(
const AnsiString Alias);
void _ fastcall TSession::GetAliasParans(const AnsiString Alias,
TStrings *Lista);

Una vez que tenemos un alias en la mano, podemos averiguar qué tablas existen en la
base de datos asociada. Para esto utilizamos el método GerfTableNames:

void _ fastcall TSession:: Get Tabl eNanmes(const Ansi String Ali as,
const Ansi String Patron, bool Extensiones, bool Tabl asDeSi stens,
TStrings *Lista);

El parametro Patron permite filtrar las bases de datos; la cadena vacia se utiliza para

seleccionar todas las tablas. El pardmetro Extensiones sirve para incluir o eliminar las
extensiones de ficheros en los sistemas de bases de datos locales. Por tltimo, Tablas-
DelSistema se utiliza en las bases de datos SQL para incluir o descartar las tablas que
el sistema de bases de datos crea automaticamente.

Del mismo modo, para una base de datos SQL se puede utilizar el siguiente método
que devuelve los procedimientos almacenados definidos:

Sesiones 461

void _ fastcall TSession:: GetStoredProcNanmes(const AnsiString Alias,
TStrings *Lista);

El MiniExplorador de Bases de Datos

El ejemplo siguiente muestra una forma sencilla de llenar un arbol con la informa-
ci6én de alias y tablas existentes. Necesitamos un formulario con un componente
TTreel iew, de la pagina Win32 de la paleta, alineado a la izquierda, un cuadro de lista,
TIistBox, que ocupe el resto del formulario, y un objeto TImagel ist, también de la
pagina Win32, para que contenga los iconos que vamos a mostrar al lado de los alias
y las tablas. Para inicializar este dltimo objeto, pulsamos dos veces sobre el mismo.
En el editor que aparece, utilizamos el boton Add para cargar un par de imagenes en
el control. Utilizaremos la primera para representar los alias, dejando la segunda para
las tablas.

Ahora debemos interceptar el evento OnCreate del formulario, para inicializar la lista
de alias presentes en el ordenador:

void _ _fastcall TForml:: FornCreate(TObj ect *Sender)

{
std::auto_ptr<TStringList> List(new TStringList);
Sessi on- >Get Dat abaseNanes(List.get());
for (int i =0; i < List->Count; i++)
TTreeNode* AliasPtr =
TreeVi ewl- >| t ems- >Add(NULL, List->Strings[i]);
Ali asPtr->l magel ndex = 0;
TreeVi ewl- >l t ens- >AddChi | d(Al'i asPtr, "");
}
}

He utilizado el truco de afiadir un hijo ficticio al nodo alias, para que aparezca el
botén de expansion. Solamente cuando se pulse por primera vez este botén, se bus-
caran las tablas pertenecientes al alias, con el objetivo de minimizar el tiempo de
carga de la aplicacién. La expansion del nodo se realiza en respuesta al evento OnEx-
panding del visualizador de arboles:

void _ fastcall TForml:: TreeVi ewlExpandi ng(TObj ect *Sender,
TTreeNode *Node, bool &Al | owExpansi on)
{

if (Node->Data != NULL) return;

Node- >Del et eChi | dren();

std::auto_ptr<TStringList> List(new TStringList);

Sessi on- >CGet Tabl eNanes(Node- >Text, "", False, False, List.get());
for (int i =0; i < List->Count; i++)

TTreeNode* t =
TreeVi ewl- >| t ens- >AddChi | d(Node, List->Strings[i]);
t->l magel ndex = 1;

462 La Cara Oculta de C++ Builder

t->Sel ect edl ndex = 1;

}
Node- >Dat a = Node;

Estoy utilizando otro truco “sucio” para saber si un nodo ha sido expandido o no.
Los nodos de arboles tienen una propiedad Data, de tipo void*, en la cual podemos
guardar la informacion que se nos antoje. Para este ejemplo, si Data contiene el pun-
tero vacfo estamos indicando que el nodo aun no ha sido expandido; cuando el nodo
se expanda, Data pasara a apuntar al propio nodo.

Por ultimo, cuando seleccionemos un nodo alias, extraeremos la informacion del
mismo y la visualizaremos en el cuadro de listas de la derecha:

void __fastcall TForml:: TreeVi ewlChange(TCbj ect *Sender,
TTr eeNode *Node)

if (! Node->Parent)

Li st Box1- >l t ens- >Begi nUpdat e();
try
{
Sessi on- >Get Al i asPar ans(Node- >Text, ListBox1->ltens);
Li st Box1->Itens- >l nsert (0,
"DRI VER=" + Sessi on->Cet Al i asDri ver Name(Node- >Text));

b
_finally
Li st Box1->Itens- >EndUpdat e();
}
}
}

iiil Database Browser

- DBDEMOS =] Fields | indeses |
Sl ROERS = 7 5 T Feqied]=
| A
@ COUNTRY CustMio Float 0 Yes
-0 CUSTOMER SaleDate DateTime 0 Mo
--[@ BIOLIFE ShipDate DateTime 0 Mo o
- MExTCUST J ErpMao Inteqer 0 Yes
@ MNEXTORD ShipT oContact Sting 20 Mo
ShipT adddi Sting 30 Mo
0 NEXTITEM ShipTaAddr2 Stri 00N
-0 ITEMS I Qi fing a
@ VENDORS LI ShipT oCity Sting 15 Mo ﬂ

Observe el uso del método BeginUpdate para evitar el parpadeo provocado por la ac-
tualizacion de la pantalla mientras insertamos cadenas en el control.

Sesiones 463

Gestion de alias a través de TSession

También se pueden crear alias y modificar parametros de alias existentes mediante
los objetos de sesion. Para afiadir nuevos alias, utilizamos los siguientes métodos:

void _ fastcall TSession::AddAlias(const Ansi String Nonbre,
const AnsiString Ctrldor, TStrings *Lista);

void __fastcall TSession::AddStandardAl i as(const Ansi String Nonbre,
const AnsiString Dir, const AnsiString Cirldor);

AddAlias es el método mas general para afladir un nuevo alias, mientras que .Add-
StandardAlias simplifica las cosas cuando queremos crear un alias para bases de datos
locales. El tipo de alias que se cree, persistente o local, depende de la propiedad Coz-
figMode de la sesion; esta variable puede asumir los valores cwPersistent, cnSession y
enAll. Bl dltimo valor es el valor por omision. Si queremos que el alias creado sea
local, debemos utilizar el valor euSession.

Para modificar o eliminar un alias existente, se pueden utilizar los siguientes métodos:

void _ fastcall TSession::MdifyAlias(const AnsiString Alias,
TStrings *Paranetros);
void _ fastcall TSession::DeleteAlias(const AnsiString Alias);

Por dltimo, para guardar la configuracién y que los cambios sean permanentes hay
que utilizar el siguiente método:

void _ fastcall TSession:: SaveConfigFile();

En nuestro mini-explorador de bases de datos afiadimos un par de comandos de
men: Crear alias y Eliminar alias. Para eliminar un alias utilizamos el siguiente proce-
dimiento:

void _ fastcall TFornil::m Del eteAliasCick(Sender: TObject);

TTreeNode* t = TreeVi ewl- >Sel ect ed;
if (t->Parent == NULL &&
MessageDl g("Eli mi nando el alias " + t->Text +
".\n¢Esta seguro?", ntConfirmtion,

TMsgDl gButtons() << mbYes << mbNo, 0) == nrYes)
{
Sessi on->Del et eAli as(t->Text);
delete t;
}

Para crear un nuevo alias, necesitaremos una segunda ventana en la aplicacion, a la
cual nombraremos dglNew.Alias. Esta ventana, configurada como dialogo, contiene
los siguientes objetos:

464 La Cara Oculta de C++ Builder

Componente Funcién
Edit Contlene el nombre del nuevo alias.
ComboBox1 De estilo esDropDownl ist, contiene las cadenas PARADOX y

DBASE. Es el nombre del controlador por omisién.
DirectoryListBox1 Para seleccionar un directorio.

Necesitamos también botones para aceptar y cancelar la ejecucion del didlogo. La
respuesta al comando de creacién de alias es la siguiente:

void _ fastcall TFornil::m NewAliasd ick(TObject *Sender)
i f (dl gNewAl i as->Showibdal () == nr k)

Sessi on- >AddSt andar dAl i as(dl gNewAl i as- >Edi t 1- >Text,
dl gNewAl i as- >Di rect oryLi st Box1->Di rectory,
dl gNewAl i as- >ConboBox1- >Text);

TTreeNode *AliasPtr = TreeVi ewl- >l t ens- >Add(NULL,
dl gNewAl i as- >Edi t 1- >Text) ;

Al'i asPtr->l magel ndex = 0;

TreeVi ewl- >l t ens- >AddChi | d(Al'i asPtr, "");

Para simplificar la explicacién, hemos creado un alias para el controlador estandar. La
creacion de alias para otros controladores no plantea mayores dificultades.

Directorios privados, de red y contrasenas

Como si las sesiones no hicieran bastante ya, también se ocupan de la configuracion
de los directorios NezDiry PrivateDir del Borland Database Engine, y de la gestion de
contrasefias de usuarios de Paradox. Ya hemos visto, al configurar el BDE, la funcién
de estos directorios. Sepa ahora que puede cambiarlos desde un programa Delphi
utilizando objetos TSession, si no se han efectuado alin conexiones a bases de datos.
Para cambiar estas propiedades es util el evento OnStartup, que se dispara justamente
antes de iniciar la sesion.

En cuanto a las contrasefias de las tablas Paradox, el mecanismo de gestion de las
mismas es diferente al de las bases de datos SQL tipicas. Aqui, las contrasefias se
definen a nivel de tabla, no de la base de datos. Por lo tanto, la contrasefia se pide al
intentar abrir una tabla protegida mediante este recurso. Este es el comportamiento
de C++ Builder por omisién, y no hay que programar nada especial para trabajar con
este tipo de tablas. Sin embargo, por causa de que las contrasefias son locales a tablas,
si tenemos un par de tablas protegidas por la misma contrasefa, tendremos que te-
clearla dos veces para abrir las dos tablas. Esto puede ser bastante engorroso, por lo
cual el BDE permite almacenar a nivel de sesiéon un conjunto de contrasefias permi-
tidas. El cuadro de apertura para tablas con contrasefia permite almacenar en la se-

Sesiones 465

si6n actual la contrasefia suministrada. De este modo, si se guarda la contrasefia du-
rante la apertura de la primera tabla, ésta no sera solicitada al abrir la siguiente tabla.

Los siguientes métodos de las sesiones trabajan sobre la lista de contrasefias disponi-
bles en la sesién:

void __fastcall TSession::AddPassword(const Ansi String Password);
void __fastcall TSession::RenovePassword(const Ansi String Password);
void __fastcall TSession::RenoveAl | Passwords();

Si queremos saltarnos el didlogo de peticién de contrasefias de la VCL, podemos
realizar una llamada a .AddPassword en cualquier momento previo a la apertura de la
tabla protegida. Por lo general, el mejor momento para esto es durante el evento
OnPassword del componente TSession. Este evento se dispara cuando se produce un
error al abrir una tabla por no disponer de los suficientes derechos. OnPassword per-
tenece al tipo de eventos que controlan un bucle de reintentos; para esto cuenta con
un parametro légico Continne, con el cual podemos controlar el fin del bucle:

void __fastcall TForml:: Sessi onlPassword(TCbj ect *Sender,
bool &Conti nue)
{

Ansi String S;

if (InputQery("Dis-npi, mroir magique..",
"¢Cual es el nejor lenguaje de la Galaxia?", S) &&
S. Pos("Visual") == 0)

Sessi onl- >AddPasswor d(" BuenChi co") ;
Conti nue = True;

Capitulo

24

Actualizaciones en caché

AS ACTUALIZACIONES EN CACHE SON UN RECURSO de las versiones de 32

bits del BDE para aumentar el rendimiento de las transacciones en entornos

cliente/servidor. Los conjuntos de datos de C++ Builder vienen equipados
con una propiedad, CachedUpdates, que decide si los cambios efectuados en el con-
junto de datos son grabados inmediatamente en la base de datos o si se almacenan en
memoria del ordenador cliente y se envian en bloque al servidor, a peticién del pro-
grama cliente, en un momento dado.

En este capitulo estudiaremos las caracteristicas basicas de las actualizaciones en
caché, y como se pueden aplicar a la automatizacién de los procesos de entrada de
datos. Al final, veremos cémo aprovechar esta técnica para mejorar el tratamiento de
consultas en entornos cliente/servidor y para minimizar el impacto sobre el usuatio
de los bloqueos optimistas.

¢Caché para qué?

¢Qué nos aporta este intrincado mecanismo? En primer lugar, mediante este recurso
una transaccioén que requiera interaccion con el usuario puede hacerse mas corta. Y,
como hemos explicado antes, una transaccién mientras mas breve, mejor. Por otra
parte, las actualizaciones en caché pueden disminuir drasticamente el numero de pa-
quetes enviados por la red. Cuando no estin activas las actualizaciones en caché, cada
registro grabado provoca el envio de un paquete de datos. Cada paquete va precedido
de cierta informacién de control, que se repite para cada envio. Ademas, estos pa-
quetes tienen un tamafio fijo, y lo mds probable es que se desaproveche parte de su
capacidad. También se benefician aquellos sistemas SQL que utilizan internamente
técnicas pesimistas de bloqueos para garantizar las lecturas repetibles. En este caso,
los bloqueos impuestos estan activos mucho menos tiempo, durante la ejecucion del
método ApplyUpdates. De este modo, se puede lograr en cierto modo la simulacién
de un mecanismo optimista de control de concurrencia.

Las ventajas mencionadas se aplican fundamentalmente a los entornos cliente/set-
vidor. Pero también es correcto el uso de actualizaciones en caché para bases de

468 La Cara Oculta de C++ Builder

datos locales. Esta vez la razén es de simple conveniencia para el programador, y
tiene que ver nuevamente con la modificacién e insercién de objetos complejos,
representados en varias tablas. Como vimos con anterioridad, se pueden utilizar las
transacciones para lograr la atomicidad de estas operaciones. Pero para programar
una transaccion necesitamos iniciarla y confirmarla o deshacerla explicitamente,
mientras que, como veremos, una actualizacion en caché no necesita ser iniciada: en
cada momento existe sencillamente un conjunto de actualizaciones realizadas desde
la Gltima operacion de confirmacion. Todo lo cual significa menos trabajo para el
programador.

En particular, si intentamos utilizar transacciones sobre bases de datos locales, tene-
mos que enfrentarnos al limite de bloqueos por tabla (100 para dBase y 255 para
Paradox), pues las transacciones no liberan los bloqueos hasta su finalizacién. Si en
vez de utilizar directamente las transacciones locales utilizamos actualizaciones en
caché, la implementacién de las mismas por el BDE sobrepasa esta restriccion esca-
lando automaticamente el nivel de los bloqueos impuestos.

La historia, sin embargo, no acaba aqui. Al seguir estando disponibles los datos origi-
nales de un registro después de una modificacién o borrado, tenemos a nuestro al-
cance nuevas posibilidades: la seleccion de registros de acuerdo a su estado de actua-
lizacién y la cancelacion de actualizaciones registro a registro. Incluso podremos
implementar algo parecido a los borrados logicos de dBase.

Me permitiré una breve disgresion lingiifstica sobre nuestro neologismo “caché”.
Como sucede con muchas de las palabras incorporadas al castellano que estan
relacionadas con la informatica, esta incorporacion ha sido incorrecta. El pro-
blema es que pronunciamos “caché”, acentuando la palabra en la dltima silaba.
En inglés, sin embargo, esta palabra se pronuncia igual que cash, y su significado
es esconder; en particular, puede significar un sitio oculto donde se almacenan
provisiones. Es cutioso que, en francés, existe la expresion cache-cache que se pro-
nuncia como en inglés y quiere decir “el juego del escondite" (cacher es ocultar).

Activacion de las actualizaciones en caché

La activacion del mecanismo se logra asignando el valor True a la propiedad Cached-
Updates de las tablas o consultas. El valor de esta propiedad puede cambiarse incluso
estando la tabla activa. Como las actualizaciones en caché utilizan internamente tran-
sacciones para su confirmacion, cuando se efectiian sobre tablas locales la propiedad
Translsolation de la correspondiente base de datos debe valer #DirtyRead.

Se puede conocer si existen actualizaciones en la caché, pendientes de su confirma-
ci6on definitiva, utilizando la propiedad de tipo logico UpdatesPending para cada tabla o

Actualizaciones en caché 469

consulta. Observe que la propiedad UpdatesPending solamente informa acerca de las
actualizaciones realizadas con Posty Delete; si la tabla se encuentra en alguno de los
modos de edicién dsEditModes y se han realizado asignaciones a los campos, esto no
se refleja en UpdatesPending, sino en la propiedad Modified, como siempre.

RAM Caché Base de datos

(o ——> —»
[ﬁ::] Post, Delete Ej ApplyUpdates

Modified UpdatesPending

La activacion de la caché de actualizaciones es valida inicamente para el conjunto de
datos implicado. Si activamos CachedUpdates para un objeto TTable, y creamos otro
objeto TTable que se refiera a la misma tabla fisica, los cambios realizados en la pri-
mera tabla no son visibles desde la segunda hasta que no se realice la confirmacién
de los mismos.

Una vez que las actualizaciones en caché han sido activadas, los registros del con-
junto de datos se van cargando en el cliente en la medida en que el usuario va le-
yendo y realizando modificaciones. Es posible, sin embargo, leer el conjunto de datos
completo desde un servidor utilizando el método FezchAlk

void _ fastcall TDBDataSet::FetchAll();

De esta forma, se logra replicar el conjunto de datos en el cliente. No obstante, este
método debe usarse con cuidado, debido al gran volumen de datos que puede du-
plicar.

Confirmacion de las actualizaciones

Existen varios métodos para la confirmacion definitiva de las actualizaciones en ca-
ché. El mis sencillo es el método ApplyUpdates, que se aplica a objetos de tipo TDa-
tabase. ApplyUpdates necesita, como parametro, la lista de tablas en las cuales se gra-

ban, de forma simultinea, las actualizaciones acumuladas en la caché:

void _ fastcall TDatabase:: Appl yUpdat es(
TDBDat aSet * const * DataSets,
const int DataSets_size);

Un detalle interesante, que nos puede ahorrar cédigo: si la tabla a la cual se aplica el
método ApplyUpdates se encuentra en alguno de los estados de edicion, se llama de
forma automatica al método Post sobre la misma. Esto implica también que Appl-

470 La Cara Oculta de C++ Builder

Updates graba, o intenta grabar, las modificaciones pendientes que todavia residen en
el buffer de registro, antes de confirmar la operacion de actualizacion.

A un nivel mas bajo, los conjuntos de datos tienen implementados los métodos
ApplyUpdates y CommitUpdates; la igualdad de nombres entre los métodos de los con-
juntos de datos y de las bases de datos puede confundir al programador nuevo en la
orientacién a objetos. Estos son métodos sin parametros:

void _ fastcall TDataSet:: Appl yUpdates();
void _ fastcall TDataSet:: Conm t Updat es();

ApplyUpdates, cuando se aplica a una tabla o consulta, realiza la primera fase de un
protocolo en dos etapas; este método es el encargado de grabar fisicamente los cam-
bios de la caché en la base de datos. La segunda fase es responsabilidad de Comit-
Updates. Este método limpia las actualizaciones ya aplicadas que aun se encuentran en
la caché. ;Por qué necesitamos un protocolo de dos fases? El problema es que, si
realizamos actualizaciones sobre varias tablas, y pretendemos grabarlas atomica-
mente, tenemos que enfrentarnos a la posibilidad de errores de grabacion, ya sean
provocados por el control de concurrencia o por restricciones de integridad. Por lo
tanto, en el algoritmo de confirmacién se han desplazado las operaciones falibles a la
primera fase, la llamada a _ApplyUpdates; por el contrario, CommitUpdates no debe fallar
nunca, a pesar de Murphy.

La divisién en dos fases la aprovecha el método ApplyUpdates de la clase TDatabase.
Para aplicar las actualizaciones pendientes de una lista de tablas, la base de datos
inicia una transaccion e intenta llamar a los métodos ApplyUpdates individuales de
cada conjunto de datos. Si falla alguno de éstos, no pasa nada, pues la transaccion se
deshace y los cambios siguen residiendo en la memoria caché. Si la grabacion es exi-
tosa en conjunto, se confirma la transaccién y se llama sucesivamente a CommitUpda-
tes para cada conjunto de datos. El esquema de la implementacion de ApplyUpdates es
el siguiente:

Start Transaction(); /1 this = la base de datos
try
{

for (int i = 0; i <= DataSets_size; i++)

Dat aSet s[i] - >Appl yUpdat es(); /1 Pueden fallar

Commi t () ;
cat ch(Exception&)

Rol | back() ;

t hr ow; /'l Propagar |a excepci6n
}
for (int i = 0; i <= DataSets_size; i++)

Dat aSet s[i] ->Conmi t Updat es() ; /1 Nunca fallan

Es recomendable llamar siempre al método ApplyUpdates de 1a base de datos para
confirmar las actualizaciones, en vez de utilizar los métodos de los conjuntos de

Actualizaciones en caché 471

datos, atin en el caso de una sola tabla o consulta. No obstante, es posible aprovechar
estos procedimientos de mas bajo nivel en circunstancias especiales, como puede
suceder cuando queremos coordinar actualizaciones en caché sobre dos bases de
datos diferentes.

Por ultimo, una advertencia: como se puede deducir de la implementaciéon del mé-
todo ApplyUpdates aplicable a las bases de datos, las actualizaciones pendientes se
graban en el orden en que se pasan las tablas dentro de la lista de tablas. Por lo tanto,
si estamos aplicando cambios para tablas en relacién master/ detail, hay que pasar pri-
mero la tabla maestra y después la de detalles. De este modo, las filas maestras se
graban antes que las filas dependientes. Por ejemplo:

Dat abasel- >Appl yUpdat es(
OPENARRAY(TDBDat aSet *, (tbPedi dos, tbDetalles)));

Debemos tener en cuenta que, en bases de datos cliente/servidor, los #zggers aso-
ciados a una tabla se disparan cuando se graba la caché, no en el momento en
que se ejecuta el Post sobre la tabla correspondiente. .o mismo sucede con las
restricciones de unicidad y de integridad referencial. Las restricciones check, sin
embargo, pueden duplicarse en el cliente mediante las propiedades Constraints, del
conjunto de datos, y CustomConstraint 6 lmportedConstraint a nivel de campos.

Marcha atras

En contraste, no existe un método predefinido que descarte las actualizaciones pen-
dientes en todas las tablas de una base de datos. Para descartar las actualizaciones
pendientes en caché, se utiliza el método Cance/Updates, aplicable a objetos de tipo
TDBDataSet. Del mismo modo que ApplyUpdates llama automaticamente a Post, si el
conjunto de datos se encuentra en algin estado de edicion, Cance/Updates llama impli-
citamente a Caznce/ antes de descartar los cambios no confirmados.

El siguiente procedimiento muestra una forma sencilla de descartar cambios en una
lista de conjuntos de datos:

voi d Descart ar Canbi os(TDBDat aSet * const* Dat aSets,
int DataSets_size)
{

for (int i =0; i <= DataSets_size; i++)
Dat aSet s[i]->Cancel Updat es();

También se pueden cancelar las actualizaciones para registros individuales. Esto se
consigue con el método ReverRecord, que devuelve el registro a su estado original.

472 La Cara Oculta de C++ Builder

El estado de actualizacion

La funcién UpdateStatus de un conjunto de datos indica el tipo de la tltima actualiza-
cion realizada sobre el registro activo. UpdateStatus puede tomar los siguientes valores:

Valor Significado

usUnmodified El registro no ha sufrido actualizaciones
usModjfied Se han realizado modificaciones sobre el registro
uslnserted Este es un registro nuevo

usDeleted Este registro ha sido borrado (ver més adelante)

La forma mas sencilla de comprobar el funcionamiento de esta propiedad es mostrar
una tabla con actualizaciones en caché sobre una rejilla, e interceptar el evento Oz-
DrawColumnCell de 1a rejilla para mostrar de forma diferente cada tipo de registro. Por
ejemplo:

void __fastcall TForml:: DBG i d1Dr awCol umCel | (TCbj ect *Sender,
const TRect& Rect, int DataCol, TColumm *Col um,
TG idDrawState State)

{
TDBGid *grid = static_cast<TDBG i d*>(Sender);
TFont Styl es FS;
switch (grid->DataSource->Dat aSet - >Updat eSt at us())
{
case usModified: FS << fsBold; break;
case uslnserted: FS << fsltalic; break;
case usDeleted: FS << fsStrikeQut; break;
grid->Canvas- >Font->Style = FS;
gri d- >Def aul t Dr awCol umCel | (Rect, DataCol, Columm, State);
}

También puede aprovecharse la funcion para deshacer algin tipo de cambios en la
tabla:

void _ fastcall TForml:: Deshacerlnserci onesd i ck(TObj ect *Sender)

Tabl el- >Di sabl eControl s();
Ansi String BM = Tabl el- >Booknar k;
try
{
Tabl el->First();
while (! Tabl el->Eof)

i f (Tabl el->UpdateStatus() == uslnserted)
Tabl el- >Revert Record();
el se

Tabl el- >Next () ;
}
_finally

Tabl el- >Bookmar k = BM

Actualizaciones en caché 473

Tabl el- >Enabl eControl s();

En el siguiente epigrafe veremos un método mas sencillo de descartar actualizaciones
selectivamente.

El filtro de tipos de registros

¢Qué sentido tiene el poder marcar una fila de una rejilla como borrada, si nunca
podemos verlar Pues si se puede ver. Para esto, hay que modificar la propiedad
UpdateRecord Dypes del conjunto de datos en cuestién. Esta propiedad es un conjunto
que puede albergar las siguientes constantes:

Valor Significado

rtModjfied Mostrar los registros modificados
rtlnserted Mostrar los nuevos registros
rtDeleted Mostrar los registros eliminados

rtUnModified Mostrar los registros no modificados

Inicialmente, esta propiedad contiene el siguiente valor, que muestra todos los tipos
de registros, con excepcion de los borrados:

TUpdat eRecordTypes() << rtMdified << rtlnserted << rtUnModified

Si por algiin motivo asignamos el conjunto vacio a esta propiedad, el valor de la
misma se restaura a este valor por omision:

Tabl el- >Updat eRecor dTypes = TUpdat eRecor dTypes();
i f (Tabl el->Updat eRecor dTypes == TUpdat eRecor dTypes() <<
rtModified << rtlnserted << rtUnMdified)
ShowiMessage(" Updat eRecor dTypes restaurado al val or por omsioén");

ombinemos ahora el uso de los filtros de tipos de registros con este nuevo método
Combi hora el de los filtros de ti de regist t todo,
para recuperar de forma facil todos los registros borrados cuya eliminacién no ha
sido atn confirmada:

void __fastcall TForml::bnRecuperardick(TObject *Sender)
{
TUpdat eRecor dTypes URT = Tabl el- >Updat eRecor dTypes;
Tabl el- >Updat eRecor dTypes = TUpdat eRecordTypes() << rtDel et ed;
try {
Tabl el->First();
while (! Tabl el->Eof)
Tabl el- >Revert Record();

474 La Cara Oculta de C++ Builder

_finally {
Tabl el- >Updat eRecor dTypes = URT;
}

No hace falta avanzar el cursor hasta el siguiente registro después de recuperar el
actual, porque automaticamente el registro recuperado desaparece de la vista del
cursor. Para completar el ejemplo, serfa necesario restaurar la posicién inicial de la
tabla, y desactivar temporalmente la visualizacion de los datos de la misma; esto
queda como ejercicio para el lector.

Un ejemplo integral

El siguiente ejemplo integra las distintas posibilidades de las actualizaciones en caché
de modo tal que el lector puede verificar el funcionamiento de cada una de ellas.
Necesitamos un formulario con una tabla, Tabl1, una fuente de datos DataSourcel,
una rejilla de datos y una barra de navegacién. Da lo mismo la tabla y la base de da-

tos que elijamos; lo tnico que necesitamos es asignar Trwe a la propiedad CachedUpda-
tes de la tabla.

Entonces necesitamos un menu. Estas son las opciones que incluiremos:

Caché Ver

Grabar Originales

Cancelar Modificados

Cancelar actual Nuevos
Borrados

Para hacer mis legible el c6digo que viene a continuacion, he renombrado coheren-
temente las opciones de menu; asi, la opcién Caché, cuyo nombre por omision seria
Cach1, se ha transtormado en miCache (n2i = menu item).

En primer lugar, daremos respuesta a los tres comandos del primer submend:

void _ fastcall TFormil::m Aplicardick(TObject *Sender)
if (! Tabl e->Dat abase- >l sSQ.Based)
Tabl el- >Dat abase- >Transl sol ation = ti D rtyRead;
Tabl el- >Dat abase- >Appl yUpdat es((TDBDat aSet **) &Tabl el, 0);
}
void _ fastcall TFornil:: m Cancel ard i ck(TObj ect *Sender)

Tabl el- >Cancel Updat es() ;

Actualizaciones en caché 475

void _ fastcall TForml:: m Cancel ar Actual O i ck(TObj ect *Sender)

Tabl el- >Revert Record();

La primera linea en el primer método sélo es necesaria si se ha elegido como tabla de
prueba una tabla Paradox o dBase. Ahora necesitamos activar y desactivar las op-
ciones de este submenu; esto lo hacemos en respuesta al evento OnClick de niCache:

void _ fastcall TForml::m Cached i ck(TObject *Sender)
m Apl i car - >Enabl ed = Tabl el- >Updat esPendi ng;
m Cancel ar - >Enabl ed = Tabl el- >Updat esPendi ng;

m Cancel ar Act ual - >Enabl ed =
Tabl el- >Updat eSt at us() != usUnModi fi ed;

Luego creamos un manejador compartido para los cuatro comandos del menu 1er:

void __fastcall TForml:: ComandosVer (TObj ect *Sender)

{
TMenul tent Command = static_cast <TMenul t ent>(Sender);
Conmmand- >Checked = ! Command- >Checked;
TUpdat eRecor dTypes URT;
if (m Oiginal es->Checked) URT << rtUnnodifi ed;
i f (m Mdificados->Checked) URT << rtMdifi ed,;
i f (m Nuevos->Checked) URT << rtlnserted,
i f (m Borrados->Checked) URT << rtDel et ed;
Tabl el- >Updat eRecor dTypes = URT;
}
v Originales -
" Uif\cadus =R ‘
1 v Muewvos INnmhre Exlensiﬁnl Enntralnl Salarinl;l
] v Bomados Roberto 250 28/12/88) $40.000,00
L 4 Lee Bruce 233 28712788 $55.500,00
|| 5 Bassinger Kim 22 6/02/89 SZB,I]I]I]_I]I]J
| & Johnsan Leslie 410 5/04/23 $25.050,00
L 9 Farast 2hi 229 17404423 $25.050.00
|| KT Fomact Fazr
L 11 Westan K. 34 17/01/30 $33.292.34
| 12|Les Teni 25 1405/90 $45.332.00
| 1 Hal 1408490 $34.43253
C 15 oung 14/06/30 $24.400,00
|| 20 Papadopaulos Chiriz 887 1/01/90 %25 I]EEI,I]DLI

Por ultimo, debemos actualizar las marcas de verificacién de estos comandos al des-
plegar el subment al que pertenecen:

void _ fastcall TFornil::m Verdick(TOoject *Sender)

{
TUpdat eRecor dTypes URT = Tabl el- >Updat eRecor dTypes;
m Ori gi nal es->Checked = URT. Cont ai ns(rt Unnodi fi ed);
m Modi fi cados- >Checked = URT. Cont ai ns(rt Mdified);
m Nuevos- >Checked = URT. Contai ns(rtlnserted);

476 La Cara Oculta de C++ Builder

m Bor r ados- >Checked = URT. Cont ai ns(rt Del et ed);

Silo desea, puede incluir el codigo de personalizacién de la rejilla de datos que he-
mos analizado antes, para visualizar el estado de actualizacién de cada registro mos-
trado.

El Gran Final: edicion y entrada de datos

Podemos automatizar los métodos de entrada de datos en las aplicaciones que tratan
con objetos complejos, del mismo modo que ya lo hemos hecho con la edicién de
objetos representables en una sola tabla. En el capitulo sobre bases de datos y tran-
sacciones habifamos desarrollado la funcién PuedoCerrarlrans, que cuando se llamaba
desde la respuesta al evento OnCloseQuery de la ventana de entrada de datos, se ocu-
paba de guardar o cancelar automaticamente las grabaciones efectuadas sobre un
conjunto de tablas. Esta era la implementacién lograda entonces:

bool PuedoCerrar Trans(TFor m * AFor m
TDBDat aSet * const* DataSets, int DataSets_size)

i f (AFor m >Mbdal Result == nr Ck)
{

for (int i = 0; i <= DataSets_size; i++)
Dat aSet s[i] - >CheckBr owseMde() ;
Dat aSet s[0] - >Dat abase- >Commi t () ;

else if (Application->MessageBox("¢Desea abandonar | os canbi 0s?",

"Atenci 6n", MB_| CONQUESTION | MB_YESNO) == | DYES)
{
for (int i =0; i <= DataSets_size; i++)
Dat aSet s[i] - >Cancel ();
Dat aSet s[0] - >Dat abase- >Rol | back() ;
}
el se

return Fal se;
return True;

El uso de esta rutina se complicaba, porque antes de ejecutar el cuadro de didlogo
habfa que iniciar manualmente una transaccién, ademas de poner la tabla principal en
modo de insercion o edicion. Teniamos el inconveniente adicional de no saber si se
habfan realizado modificaciones durante la edicién, al menos sin programacion adi-
cional; esto causaba que la cancelacion del didlogo mostrase cada vez un incémodo
mensaje de confirmacion.

En cambio, si utilizamos actualizaciones en caché obtenemos los siguientes bene-
ficios:

Actualizaciones en caché 477

No hay que llamar explicitamente a Star/Iransaction.

Combinando las propiedades Modjfied y UpdatesPending de los conjuntos de datos
involucrados en la operacion, podemos saber si se han realizado modificaciones,
ya sea a nivel de campo o de caché.

El uso de StarfTransaction disminuye la posibilidad de acceso concurrente, pues
por cada registro modificado durante la transaccién, el sistema coloca un bloqueo
que solamente es liberado cuando cerramos el cuadro de dialogo. Con las actuali-
zaciones en caché, la transaccion se inicia y culmina durante la respuesta a los
botones de finalizacién del dialogo.

Esta es la funcién que sustituye a la anterior:

bool PuedoCerrar (TFor m * AFor m
TDBDat aSet* const* DataSets, int DataSets_size)

{
/1 Verificanps si hay canbi os en caché
bool Actualizar = Fal se;
for (int i =0; i <= DataSets_size; i++)
if (DataSets[i]->UpdatesPending || DataSets[i]->Modified)
Actual i zar = True;
/1 Nos han pedido que grabenps | os canbi os
i f (AFor m >Mbdal Result == nr k)
Dat aSet s[0] - >Dat abase- >Appl yUpdat es(Dat aSet s, Dat aSets_si ze);
/1 Hay que deshacer |os canbi os
else if (! Actualizar ||
Appl i cati on- >MessageBox(" ¢Desea abandonar |os canbi os?",
"Atenci 6n", MB_| CONQUESTION | MB_YESNO) == | DYES)
for (int i = 0; i <= DataSets_size; i++)
/1 Cancel Updates Ilanma a Cancel si es necesario
Dat aSet s[i]->Cancel Updat es();
/] El usuario se arrepiente de abandonar |os canbios
el se
return Fal se;
return True;
}

Se asume que todas las tablas estin conectadas a la misma base de datos; la base de
datos en cuestion se extrae de la propiedad Database de la primera tabla de la lista.

Si, por ejemplo, el formulario de entrada de datos entPedidos realiza modificaciones en
las tablas #hPedidos, thDetalles, thClientes y thArticnlos (orders, items, customery parts) perte-

necientes al médulo de datos modDatos y conectadas a la misma base de datos, pode-

mos asociar el siguiente método al evento OnCloseQuery de la ventana en cuestion:

void _ fastcall entPedidos:: entPedi dosC oseQuery(TOoj ect *Sender,
bool &CanC ose)

Cand ose = PuedoCerrar(this, OPENARRAY(TDBDat aSet *,
(modDat os- >t bPedi dos, nodDat os- >t bDet al | es,
nodDat os- >t bA i ent es, nodDat os- >t bArticul 0s)));

478 La Cara Oculta de C++ Builder

El orden en que se pasan las tablas a esta funcion es importante. Tenga en cuenta
que para grabar una linea de detalles en el servidor tiene que existir primeramente la
cabecera del pedido, debido a las restricciones de integridad referencial. Por lo tanto,
la porcién de la caché que contiene esta cabecera debe ser grabada antes que la por-
ci6én correspondiente a las lineas de detalles.

Combinando la caché con grabaciones directas

Resumiendo lo que hemos explicado a lo largo de varios capitulos, tenemos en defi-
nitiva tres técnicas para garantizar la atomicidad de las actualizaciones de objetos
complejos:

La edicién en memoria de los datos del objeto, y su posterior grabacién durante
una transaccion.

La edicién con controles dafa-aware, activando una transaccion al comenzar la
operacion.

El uso de actualizaciones en caché.

De entrada, trataremos de descartar la primera técnica siempre que sea posible. La
segunda técnica nos permite evitar la duplicacion de verificaciones, y nos libera del
problema de la transferencia de datos a las tablas. Pero no es aconsejable usar tran-
sacciones durante la edicion, pues los bloqueos impuestos se mantienen todo el
tiempo que el usuario necesita para la edicion. Las actualizaciones en caché evitan el
problema de los bloqueos mantenidos durante largos intervalos, ademas de que el
usuario tampoco tiene que duplicar restricciones. El uso automatico de transacciones
durante la grabacion de la caché nos asegura la atomicidad de las operaciones. Pero el
comportamiento exageradamente “optimista” de las actualizaciones en caché puede
plantearle dificultades al usuario y al programador.

Utilizaré como ejemplo el sistema de entrada de pedidos. Supongamos que las tablas
de pedidos vy las lineas de detalles tienen la caché activa. Como estas tablas se utilizan
para altas, no hay problemas con el acceso concurrente a los registros generados por
la aplicacion. Ahora bien, si nuestra aplicacién debe modificar la tabla de inventario,
thArticulos, al realizar altas, ya nos encontramos en un aprieto. Si utilizamos actualiza-
ciones en caché, no podremos vender Coca-Cola simultineamente desde dos termi-
nales, pues estas dos terminales intentaran modificar el mismo registro con dos ver-
siones diferentes durante la grabacion de la caché, generando un error de bloqueo
optimista. En cambio, si no utilizamos caché, no podemos garantizar la atomicidad
de la grabacion: si, en la medida que vamos introduciendo y modificando lineas de
detalles, actualizamos el inventario, estas grabaciones tienen caracter definitivo. La
solucién completa tampoco es realizar estas modificaciones en una transaccion aparte,

Actualizaciones en caché 479

posterior a la llamada a ApplyUpdates, pues al ser transacciones independientes no se
garantiza el éxito o fracaso simultineo de ambas.

A estas alturas, el lector se habra dado cuenta de que, si estamos trabajando con un
sistema SQL, la solucién es muy facil: implementar los cambios en la tabla de arti-
culos en un #rigger. De este modo, la modificacion de esta tabla ocurre al transferirse
el contenido de la caché a 1a base de datos, durante la misma transaccion. Asi, todas
la grabaciones tienen éxito, o ninguna.

¢Y qué pasa con los pobres mortales que estan obligados a seguir trabajando con
Paradox, dBase, FoxPro y demas engendros locales? Para estos casos, necesitamos
ampliar el algoritmo de escritura de la caché, de manera que se puedan realizar gra-
baciones directas durante la transaccion que inicia ApplyUpdates. Delphi no ofrece
soporte directo para esto, pero es facil crear una funcién que sustituya a AppyUpda-
tes, aplicada a una base de datos. Y una de las formas de implementar estas extensio-
nes es utilizando punteros a métodos:

void __fastcall ApplyUpdatesEx(
TDBDat aSet* const* DataSets, int DataSets_size,
TNot i f yEvent Bef oreApply,
TNot i f yEvent BeforeConmmit,
TNoti f yEvent After Conmmit)

TDat abase *DB = Dat aSet s[0] - >Dat abase;
DB- >St art Transacti on();
try
{
i f (BeforeApply) BeforeApply(DB);
for (int i = 0; i <= DataSets_size; i++)
Dat aSet s[i] - >Appl yUpdat es() ;
if (BeforeConmit) BeforeCommt(DB);
DB- >Commi t () ;

}
cat ch(Exception&)

DB- >Rol | back() ;
t hr ow;

}

for (int i = 0; i <= DataSets_size; i++)
Dat aSet s[i]->Conmi t Updat es();

if (AfterCommit) AfterCommit (DB);

Los punteros a métodos BeforeApply, BeforeCommit y AfterCommit se han declarado
como pertenecientes al tipo TNo#fyEvent por comodidad y conveniencia. Observe
que cualquier escritura que se realice en los métodos BeforeApply y BeforeCommit se
realiza dentro de la misma transaccion en la que se graba la caché. La llamada a Affer-
Commit, en cambio, se realiza después del bucle en que se vacia la caché, utilizando el
método CommitUpdates. Esto lo hemos programado asf para evitar que una excepcion
producida en la llamada a este evento impida el vaciado de la caché.

480 La Cara Oculta de C++ Builder

He marcado la diferencia entre BeforeApply y BeforeCommit pot causa de un com-
portamiento algo anémalo de las actualizaciones en caché: cuando se ha llamado
a ApplyUpdates, pero todavia no se ha vaciado la caché de la tabla con CommitUp-
dates, los registros modificados aparecen dos veces dentro del cursor de la tabla.
Si necesitamos un método que recorra alguna de las tablas actualizadas, como el
que veremos dentro de poco, debemos conectarlo a BeforeApply mejor que a Befo-
reCommit.

Si estamos utilizando el evento OnCloseQuery de la ficha para automatizar la grabacion
y cancelacion de cambios, tenemos que extender la funcion PuedoCerrar para que
acepte los punteros a métodos como parametros. He incluido también la posibilidad
de realizar la entrada de datos en modo continuo, como se ha explicado en el capi-
tulo sobre actualizaciones. Esta es la nueva version:

bool _ fastcall PuedoCerrar(TForm *AForm
TDBDat aSet* const* DataSets, int DataSets_size,
bool MdoConti nuo,
TNot i f yEvent Bef oreApply,
TNoti f yEvent BeforeCommit,
TNoti fyEvent AfterCommit)

{
/1 Verificanps si hay canbi os en caché
bool Actualizar = Fal se;
for (int i =0; i <= DataSets_size; i++)
if (DataSets[i]->UpdatesPending || DataSets[i]->Mdified)
Actual i zar = True;
/1 Nos han pedi do que grabenps | os canbi os
i f (AForm >Mbdal Result == nr)
{
Appl yUpdat esEx(Dat aSets, Dat aSets_si ze,
Bef or eAppl y, BeforeConmit, AfterConmit);
i f (MbdoConti nuo)
Dat aSet s[0] - >Append() ;
return Fal se;
}
/1 Hay que deshacer |os canbios
else if (! Actualizar ||
Appl i cati on- >MessageBox(" ¢Desea abandonar |os canbi os?",
"Atenci 6n", MB_| CONQUESTION | MB_YESNO) == | DYES)
for (int i = 0; i <= DataSets_size; i++)
Dat aSet s[i] - >Cancel Updat es() ;
/] El usuario se arrepiente de abandonar |os canbios
el se
return Fal se;
return True;
}

Para implementar la entrada de datos continua se ha supuesto que la primera tabla
del vector es la tabla principal, a partir de la cual se desarrolla todo el proceso de
actualizacion.

Actualizaciones en caché 481

Ahora volvemos al ejemplo que motivé estas extensiones. Supongamos que tenemos
una ficha de entrada de pedidos y queremos actualizar el inventario, en la tabla #.4r#-
culos, una vez grabado el pedido. La solucién consiste en declarar un método publico

en el moédulo de datos que realice los cambios en la tabla de articulos de acuerdo a las
lineas de detalles del pedido activo:

void _ fastcall TnodDatos:: Actualizarlnventario(TOoject *Sender)

{
TLocat eOpti ons Opt;
tbDetal | es->First();
while (! tbDetall es->Eof)
{
if (tbArticul os->Locate("PartNo",
t bDet al | es- >Fi el dVal ues["Part No"], Opt)
{
tbArticul os->Edit();
t bArti cul os->Fi el dval ues["OnOrder"] =
t bArti cul os->Fi el dval ues["OnOrder"] +
tbDet al | es- >Fi el dVal ues["Q y"];
tbArti cul os->Post ();
}
tbDet al | es- >Next () ;
}
}

Luego, en la ficha de altas de pedidos modificamos la respuesta al evento OnClose-
Query de esta forma:

void _ fastcall entPedidos::entPedi dosC oseQuery(TOoj ect *Sender,
bool &Cand ose)

CanCl ose = PuedoCerrar(this, OPENARRAY(TDBDat aSet *,
(modDat os- >t bPedi dos, nodDat os- >t bDetal |l es)),
True, Actualizarlnventario, NULL, NULL);

Hemos especificado el puntero nulo NULL como valor para los parametros Before-
Commit y AfterCommit. Este Gltimo parametro puede aprovecharse, por ejemplo, para
realizar la impresion de los datos del pedido una vez que se ha confirmado su en-
trada.

Los sistemas cliente/setvidor también pueden obtener beneficios de esta técnica.
En el mismo ejemplo de altas de pedidos podemos utilizar para actualizar el in-
ventario un procedimiento almacenado que se ejecutaria después de haber gra-
bado la caché, en vez de apoyatnos en el uso de #iggers. Una ventaja adicional es
que minimizamos la posibilidad de un deadlock, o abrazo mortal.

482 La Cara Oculta de C++ Builder

Prototipos y métodos virtuales

Realmente, el uso de punteros a métodos es cuando menos engorroso, pero es nece-
sario mientras PuedoCerrar sea una funcién, no un método. Una forma de simplificar
esta metodologia de trabajo es definiendo un prototipo o plantilla de formulario de
entrada de datos, que se utilice como clase base para todas las altas y modificaciones
de objetos complejos. En este caso, PuedoCerrar puede definirse como un método de
esta clase, y los punteros a métodos sustituirse por métodos virtuales.

Partamos de un nuevo formulario, al cual configuraremos visualmente como un cua-
dro de didlogo, y al cual afiadiremos los siguientes métodos en su declaracién de
clase:

class TwndDi al ogo : public TForm

{
/...
pr ot ect ed:
virtual void BeforeAppl y(TDat abase *DB);
virtual void BeforeConm t(TDat abase *DB);
virtual void AfterConmit(TDat abase *DB);
voi d Appl yUpdat esEx(TDBDat aSet * const* Dat aSets,
int DataSets_size);
bool PuedoCerrar (TDBDat aSet * const* Dat aSet s,
int DataSets_size, bool MdoContinuo);
/...
b

En principio, los tres métodos virtuales se definen con cuerpos vacios:

voi d TwndDi al ogo: : Bef or eAppl y(TDat abase *DB)

{
}

voi d TwndDi al ogo: : Bef or eConmi t (TDat abase *DB)

{
}

voi d TwndDi al ogo: : Aft er Cormi t (TDat abase *DB)

{
}

La nueva implementacion de ApplyUpdatesEx ejecuta estos métodos:

void _ fastcall TwndDi al ogo: : Appl yUpdat esEx(
TDBDat aSet* const* DataSets, int DataSets_size)
{

TDat abase *DB = Dat aSet s[0] - >Dat abase;
DB->St art Transaction();
try

Bef or eAppl y(DB) ;
for (int i =0; i <= DataSets_size; i++)
Dat aSet s[i]->Appl yUpdat es();

Actualizaciones en caché 483

Bef or eConmi t (DB) ;
DB- >Commi t () ;

}
cat ch(Exception&)

DB- >Rol | back() ;
t hr ow,

}

for (int i =0; i <= DataSets_size; i++)
Dat aSet s[i] ->Conmi t Updat es() ;

Af t er Conmi t (DB) ;

Finalmente, PuedoCerrar se simplifica bastante:

bool _ fastcall TwndDi al ogo: : PuedoCerr ar (
TDBDat aSet * const* DataSets, int DataSets_size,
bool MdoConti nuo)

{
/1 Verificanps si hay canbi os en caché
int i = DataSets_size;
while (i >= 0 & ! DataSets[i]->Updat esPendi ng &&
| DataSets[i]->Modified) i--;
/1 Nos han pedido que grabenps | os canbi os
i f (Mbdal Result == nrCk)
Appl yUpdat esEx(Dat aSet s, DataSets_si ze);
i f (MbdoConti nuo)
Dat aSet s[0] - >Append() ;
return Fal se;
}
/1 Hay que deshacer |os canbios
else if (i <0 |] /'l ¢Hay canbi 0s?
Appl i cati on- >MessageBox(" ¢Desea abandonar | os canbi os?",
"Atenci 6n", MB_| CONQUESTION | MB_YESNO) == | DYES)
for (i = 0; i <= DataSets_size; i++)
Dat aSet s[i]->Cancel Updat es();
/] El usuario se arrepiente de abandonar |os canbios
el se
return Fal se;
return True;
}

Partiendo de este prototipo, el programador puede derivar de él los formularios de
entrada de datos, redefiniendo los métodos virtuales sélo cuando sea necesatio.

COmo actualizar consultas “no” actualizables

Cuando una tabla o consulta ha activado las actualizaciones en caché, la grabacion de
los cambios almacenados en la memoria caché es responsabilidad del BDE. Normal-
mente, el algoritmo de actualizacién es generado automaticamente por el BDE, pero
tenemos también la posibilidad de especificar la forma en que las actualizaciones

484 La Cara Oculta de C++ Builder

tienen lugar. Antes, en el capitulo 26, hemos visto cémo podiamos modificar el algo-
ritmo de grabacién mediante la propiedad UpdateMode de una tabla. Bien, ahora po-
demos ir mas lejos, y no solamente con las tablas.

Esto es especialmente til cuando estamos trabajando con consultas contra un set-
vidor SQL. Las bases de datos SQL se ajustan casi todas al estandar del 92, en el cual
se especifica que una sentencia select no es actualizable cuando contiene un en-
cuentro entre tablas, una clausula distinct o group by, etc. Por ejemplo, InterBase
no permite actualizar la siguiente consulta, que muestra las distintas ciudades en las
que viven nuestros clientes:

select distinct Gty
from Customer

No obstante, es facil disefiar reglas para la actualizacion de esta consulta. La mas
sencilla es la relacionada con la modificacion del nombre de una ciudad. En tal caso,
deberfamos modificar ese nombre en todos los registros de clientes que lo mencio-
nan. Mas polémica es la interpretacion de un borrado. Podemos eliminar a todos los
clientes de esa ciudad, tras peditle confirmacion al usuario. En cuanto a las insercio-
nes, lo més sensato es prohibirlas, para no vernos en la situaciéon de Alicia, que habia
visto muchos gatos sin sonrisa, pero nunca una sonrisa sin gato.

C++ Builder nos permite intervenir en el mecanismo de actualizacién de conjuntos
de datos en caché al ofrecernos el evento OnUpdateRecord:

typedef void _ fastcall (__closure *TUpdat eRecordEvent)
(TDat aSet * Dat aSet, TUpdat eKi nd Updat eKi nd,
TUpdat eActi on &Updat eActi on);

El parametro DataSet representa al conjunto de datos que se esta actualizando. El
segundo parametro puede tener uno de estos valores: wklnsert, ukModify 6 ukDelete,
para indicar qué operacién se va a efectuar con el registro activo de DazaSer. El Gl-
timo parametro debe ser modificado para indicar el resultado del evento. He aqui los
posibles valores:

Valor Significado

nalail Anula la aplicacion de las actualizaciones, lanzando una excepcion
uaAbort Aborta la operacién mediante la excepcion silenciosa

uaSkip Ignora este registro en particular

uaRetry No se utiliza en este evento

uaApplied Actualizacién exitosa

Dentro de la respuesta a este evento, podemos combinar cuantas operaciones de
actualizacion necesitemos, siempre que no cambiemos la fila activa de la tabla que se
actualiza. Cuando estamos trabajando con este evento, tenemos acceso a un par de

Actualizaciones en caché 485

propiedades especiales de los campos: O/dl alue y Newl alne, que representan el valor
del campo antes y después de la operacion, al estilo de las variables #ew y 0/d de los
triggers en SQL.

OldValue []<— Valores previos

—
—
—
—
—
—

NewValue []<— Valores modificados

Sin embargo, lo mas frecuente es que cada tipo de actualizacién pueda realizarse
mediante una sola sentencia SQL. Para este caso sencillo, las tablas y consultas han
previsto una propiedad UpdateObject, en la cual se puede asignar un objeto del tipo
TUpdateSQL. Este componente actiia como deposito para tres instrucciones SQL,
almacenadas en las tres propiedades InsertSQL., ModifySOL y DeleteSQL.. Primero hay
que asignar este objeto a la propiedad UpdateObject de la consulta. La operacion tiene
un efecto secundario inverso: asignar la consulta a la propiedad no publicada DataSer
del componente TUpdateSQL.. Sin esta asignacion, no funciona ni la generacion au-
tomatica de instrucciones que vamos a ver ahora, ni la posterior sustitucién de para-
metros en tiempo de ejecucion.

Una vez que el componente TUpdateSQL. esta asociado a un conjunto de datos, po-
demos hacer doble clic sobre él para ejecutar un editor de propiedades, que nos ayu-
dard a generar el codigo de las tres sentencias SQL. El editor del componente TUp-
dateSQL. necesita que le especifiquemos cudl es la tabla que queremos actualizar, pues
en el caso de un encuentro tendrfamos varias posibilidades. En nuestro caso, se trata
de una consulta muy simple, por lo que directamente pulsamos el botén Generate
SOL, y nos vamos a la pagina siguiente, para retocar las instrucciones generadas si es
necesario. Las instrucciones generadas son las siguientes:

/1 Borrado
del ete from Cust onmer
where City = :0O.LD Cty

/1 Modi ficaci én

updat e Cust oner

set Cty =:Cty
where City = :0.D Cty

/1 Atas
insert into Custoner(City)
values (:City)

486 La Cara Oculta de C++ Builder

Form1.UpdateSQL1 (Form1_Queryl) [%]
Options ISQL I
— S0OL Generation

Table Mame: Key Fields: Update Fields:

Get Table Fields |
[ataser Mefaults |
Select Primary Keys |
Generate SOL |

™ Quots Field Mames

oK I Cancel | Help |

Las instrucciones generadas utilizan parametros especiales, con el prefijo OLD_, de
modo similar a la variable de contexto o/d de los #riggers de InterBase y Oracle. Es
evidente que la instruccién insert va a producir un error, al no suministrar valores
para los campos no nulos de la tabla. Pero recuerde que de todos modos no tenia
sentido realizar inserciones en la consulta, y que no {bamos a permitirlo.

El evento OnUpdateRecord

Si un conjunto de datos con actualizaciones en caché tiene un objeto enganchado en
su propiedad UpdateObject, y no se ha definido un manejador para OnUpdateRecord, el
conjunto de datos utiliza directamente las instrucciones SQL del objeto de actualiza-
ci6én para grabar el contenido de su caché. Pero si hemos asignado un manejador
para el evento mencionado, se ignora el objeto de actualizacién, y todas las grabacio-
nes deben efectuarse en la respuesta al evento. Para restaurar el comportamiento
original, debemos utilizar el siguiente coédigo:

void _ fastcall TnodDatos:: QuerylUpdat eRecor d(TDat aSet *Dat aSet,
TUpdat eKi nd Updat eKi nd, TUpdat eActi on &Updat eActi on)
{

Updat eSQ.1- >Dat aSet = Queryl;

Updat eSQ.1- >Appl y(Updat eKi nd) ;

/1 O alternativanente:

/1 Updat eSQL1- >Set Par ans(Updat eKi nd) ;
/1 Updat eSQL1- >ExecSqgl (Updat eKi nd) ;
Updat eAction = uaAppli ed;

En realidad, la primera asignacién del método anterior sobra, pero es indispensable si
el objeto de actualizacién no estd asociado directamente a un conjunto de datos me-
diante la propiedad UpdateObject, sino que, por el contrario, es independiente. Como
observamos, el método Apply realiza primero la sustitucion de parametros y luego
ejecuta la sentencia que corresponde. La sustitucion de parametros es especial, por-

Actualizaciones en caché 487

que debe tener en cuenta los prefijos OLD_. En cuanto al método ExecSQOL, esta
programado del siguiente modo (en Delphi, naturalmente):

procedure TUpdat eSQ.. ExecSQ.(Updat eKi nd: TUpdat eKi nd) ;

begi n
with Query[Updat eKi nd] do
begi n
Pr epare;
ExecSQL;
if RowsAffected <> 1 then Dat abaseError (SUpdat eFai | ed);
end;
end;

¢Se da cuenta de que no podemos utilizar el comportamiento por omisién para
nuestra consulta, aparentemente tan simple? El problema es que ExecSQL espera que
su ejecucién afecte exactamente a una fila, mientras que nosotros queremos que al
modificar un nombre de ciudad se puedan modificar potencialmente varios usuarios.
No tendremos mas solucion que programar nuestra propia respuesta al evento:

void _ fastcall TnodDatos:: QuerylUpdat eRecor d(TDat aSet *Dat aSet,
TUpdat eKi nd Updat eKi nd, TUpdat eActi on &Updat eActi on)

{
i f (UpdateKind == ukl nsert)
Dat abaseError ("No se perniten inserciones", 0);
else if (UpdateKind == ukDel ete &&
MessageDl g(" ¢Esta seguro?", ntConfirmation,
TMsgDl gButtons() << mbYes << mbNo, 0) != nrYes)
Updat eActi on = uaAbort;
return;
}
Updat eSQL1- >Set Par ans(Updat eKi nd) ;
Updat eSQL1- >Quer y[Updat eKi nd] - >ExecSQL() ;
Updat eActi on = uaAppli ed;
}

En algunas ocasiones, la respuesta al evento OnUpdateRecord se basa en ejecutar
procedimientos almacenados, sobre todo cuando las actualizaciones implican
modificar simultineamente varias tablas.

Detecciodn de errores durante la grabacion

Cuando se producen errores durante la confirmacion de las actualizaciones en caché,
éstos no se reportan por medio de los eventos ya conocidos, OnPostError y OnDelete-
Error, sino a través del nuevo evento OnUpdateError:

void _ fastcall TDataMdul el:: Tabl elUpdat eError (TDat aSet *Dat aSet,
EDat abaseError* E, TUpdateKi nd Updat eKi nd,
TUpdat eActi on &Updat eActi on);

488 La Cara Oculta de C++ Builder

La explicacion es sencilla: como la grabacion del registro se difiere, no es posible
verificar violaciones de claves primarias, de rangos, y demas hasta que no se apliquen
las actualizaciones.

Como se puede ver, la filosoffa de manejo de este evento es similar a la del resto de
los eventos de aviso de errores. Se nos indica el conjunto de datos, DataSet y la ex-
cepcién que esta a punto de producirse. Se nos indica ademas qué tipo de actualiza-
cién se estaba llevando a cabo: si era una modificacién, una insercién o un borrado
(UpdateKind). Por tltimo, mediante el parametro UpdateAction podemos controlar el
comportamiento de la operacién. Los valores son los mismos que para el evento
OnUpdateRecord, pero varfa la interpretacion de dos de ellos:

Valor Nuevo significado
uaRetry Reintenta la operacion sobre este registro
uaApplied No lo utilice en este eventol!

A diferencia de lo que sucede con los otros eventos de errores, en este evento tene-
mos la posibilidad de ignorar el error o de corregir nosotros mismos el problema
realizando la actualizacién. La mayor parte de los ejemplos de utilizacion de este
evento tratan los casos mds sencillos: ha ocurrido alguna violacién de integridad, la
cual es corregida y se reintenta la operacién. Sin embargo, el caso mas frecuente de
error de actualizacion en la practica es el fallo de un bloqueo optimista: alguien ha
cambiado el registro original mientras nosotros, reflexionando melancélicamente
como Hamlet, decidiamos si aplicar o no las actualizaciones. El problema es que, en
esta situacién, no tenemos forma de restaurar el registro antigno para reintentar la
operacion. Recuerde que, como explicamos al analizar la propiedad UpdateMode, el
BDE realiza la actualizacion de un registro de una tabla SQL mediante una instruc-
cién SQL en la que se hace referencia al registro mediante sus valores anteriores. Para
generar la sentencia de actualizacién, se utilizan los valores almacenados en los cam-
pos, en sus propiedades O/dl alune. Estas propiedades son s6lo para lectura de modo
que, una vez que nos han cambiado el registro original, no tenemos forma de saber
en qué lo han transformado.

Sin embargo, en casos especiales, este problema tiene solucién. Supongamos que
estamos trabajando con la tabla parss, el inventario de productos. El conflicto que
surge con mayor frecuencia es que alguien vende 18 Coca-Colas, a la par que noso-
tros intentamos vender otras 15. Las cantidades vendidas se almacenan en la colum-
na OnOrder. Evidentemente, se producira un error si el segundo usuario realiza su
transaccion después que hemos leido el registro de las Coca-Colas, pero antes de que
hayamos grabado nuestra operacién. El problema se produce por un pequefio desliz
de concepto: a mi no me interesa decir que se han vendido 100+15=115 unidades,
sino que se han vendido otras 15. Esta operacion puede llevarse a cabo facilmente
mediante una consulta paralela, Query1, cuya instruccion SQL sea la siguiente:

Actualizaciones en caché 489

update Parts
set OnOrder = OnOrder + : NewOnOrder - : O dOnOrder
where PartNo = :PartNo

En estas circunstancias, la respuesta al evento OnUpdateError de la tabla de articulos
puede ser la siguiente:

void _ fastcall TForml:: Tabl elUpdat eError (TDat aSet *TDat aSet,
EDat abaseError *E, TUpdateKi nd *Updat eKi nd,
TUpdat eActi on &Updat eActi on)

EDBENngi neError *Err = dynam c_cast <EDBEngi neError*>(E);
if (UpdateKind == ukModify && Err)
if (Err->Errors[0]->ErrorCode == DBl ERR_OPTRECLOCKFAI LED)
{
Quer y1- >Par anByNane(" Part No") - >AsFl oat =
Tabl el- >Fi el dByNane(" Part No") - >0 dVal ue;
Queryl->ParanByNanme(" O dOnOrder") - >Asl nt eger
Tabl el- >Fi el dByNanme(" OnOrder ") - >0 dVal ue;
Quer y1- >Par anByNanme(" NewOnOr der ") - >As| nt eger
Tabl el- >Fi el dByNanme(" OnOr der ") - >NewVal ue;
Queryl->ExecSQL();
Updat eActi on = uaSki p;

Hemos tenido cuidado en aplicar la modificacién tnicamente cuando el error es el
fallo de un bloqueo optimista; podfamos haber sido mas cuidadosos, comprobando
que la tnica diferencia entre las versiones fuera el valor almacenado en la columna
OnOrder. Un dltimo consejo: después de aplicar los cambios es necesario vaciar la
caché, pues los registros que provocaron conflictos han quedado en la misma, gracias
a la asignacion de #aSkip al parametro UpdateAction.

¢Tablas ... o consultas en caché?

¢Recuerda que, cuando a una consulta se le asigna en ReguestLive el valor True, el
BDE genera instrucciones de recuperacion sobre las tablas de esquema de la base de
datos? Estas instrucciones que se lanzan en segundo plano al servidor durante la
apertura de la consulta son idénticas a las que el BDE siempre lanza con las tablas, y
hacen que la apertura de la consulta tarde bastante.

Cuando la consulta se abre con actualizaciones en caché, y se utiliza alguno de los
métodos anteriores para indicar manualmente las instrucciones de actualizacion, el
BDE no necesita ejecutar el protocolo de apertura antes mencionado. De este modo,
la apertura de la consulta es casi instantanea (en realidad, dependera del tiempo que
tarde el servidor en evaluarla, pero si se trata de una consulta “con sentido”, el
tiempo necesario serd minimo gracias a la optimizacién).

490 La Cara Oculta de C++ Builder

Otro problema grave de las consultas se resuelve también con esta técnica. Recordara
que cuando insertabamos un registro en una consulta actualizable, habia que cerrarla
y volverla a abrir para que el nuevo registro apareciera en el cursor. Pero cuando se
utilizan actualizaciones en caché no es necesario refrescar el cursor para que aparezca
la nueva fila.

¢Quiere decir todo esto que la mejor opcidn para navegacion y mantenimiento son
las consultas con actualizaciones en caché? La respuesta es un s pero con los si-
guientes reparos:

1. Al utilizar actualizaciones en caché se le complicara algo la interfaz de usuario. El
usuario medio espera que, al cambiar de fila activa, las modificaciones que haya
realizado en la misma se graben inmediatamente.

2. Las actualizaciones en caché no resuelven los problemas asociados a la navega-
ci6én sobre conjuntos de datos grandes. Si usted puede siempre limitar inteligen-
temente el tamafio de los conjuntos de datos a navegar, no hay problema alguno.
En caso contrario, las tablas siguen siendo una buena idea.

Tenga en cuenta que, debido a lo complicado de la implementacion de las actua-
lizaciones en caché, siguen existiendo bugs en el BDE, incluso en la version 5.0.1
que estamos utilizando durante la redaccién de este libro.

Programacion distribuida

Conjuntos de datos clientes

El Modelo de Objetos Componentes
Servidores COM

Automatizacién OLE: controladores
Automatizacion OLE: servidores
Midas

Servidores de Internet

arte

Capitulo

25

Conjuntos de datos clientes

ER ORGANIZADOS TIENE SU RECOMPENSA, Y NO HAY que esperar a moritse e

ir al Cielo para disfrutar de ella. Al parecer, los programadores de Borland

(perdén, Inprise) hicieron sus deberes sobresalientemente al disefiar la biblio-
teca dinamica dbclient.dll, y el tipo de datos TClientDataSet, que se comunica con ella.
Al aislar el c6digo de manejo de bases de datos en memoria en esta biblioteca, han
podido mejorar ostensiblemente las posibilidades de la misma al desarrollar la ver-
sion 4 de la VCL.

Los conjuntos de datos clientes, o client datasets, son objetos que pertenecen a una clase
derivada de TDataSet: 1a clase TClientDataSet. Estos objetos almacenan sus datos en
memoria RAM local, pero la caracteristica que los hizo famosos en C++ Builder 3 es
que pueden leer estos datos desde un servidor de datos remoto mediante automati-
zacion DCOM. En la edicién anterior de este libro, los conjuntos de datos clientes se
explicaban junto a las técnicas de comunicacién con bases de datos remotas me-
diante Midas. Pero, como he explicado antes, hay tantas nuevas caracteristicas que
estos componentes se han ganado un capitulo independiente.

Aqui nos concentraremos en las caracteristicas de TClientDataSet que nos permiten
gestionar bases de datos en memoria, utilizando como origen de datos a ficheros
“planos” del sistema operativo. ¢Qué harfa usted si tuviera que implementar una apli-
cacién de bases de datos, pero cuyo volumen de informacion esté en el orden de
1.000 a 10.000 registros? En vez de utilizar Paradox, dBase o Access, que requieren la
presencia de un voluminoso y complicado motor de datos, puede elegir los conjuntos
de datos en memoria. Veremos que en C++ Builder 4 estos conjuntos soportan
caracteristicas avanzadas como tablas anidadas, valores agregados mantenidos, indi-
ces dindmicos, etc. Para mas adelante dejaremos las propiedades, métodos y eventos
que hacen posible la comunicacién con servidores Midas.

Creacion de conjuntos de datos

El componente TClientDataSet esta situado en la pagina Midas de la Paleta de Com-
ponentes. Usted trae uno de ellos a un formulario y se pregunta: ¢cual es el esquema

494 |La Cara Oculta de C++ Builder

de los datos almacenados por el componente? Si el origen de nuestros datos es un
servidor remoto, la definicién de campos, indices y restricciones del conjunto de
datos se leen desde el servidor, por lo cual no tenemos que preocuparnos en ese
sentido.

Supongamos ahora que los datos deban extraerse de un fichero local. Este fichero
debe haber sido creado por otro conjunto de datos TClientDataSet, por lo cual en
algin momento tenemos que definir el esquema del conjunto y creatlo, para evitar un
circulo vicioso. Para crear un conjunto de datos en memoria debemos definir los
campos e indices que deseemos, y aplicar posteriormente el método CreateDataSet:

TFi el dDefs *fd = O i ent Dat aSet 1- >Fi el dDef s;
fd->dear();

fd->Add("Nonmbre", ftString, 30, True);
fd->Add(" Apel | i dos", ftString, 30, True);
fd->Add("Direccion", ftString, 30, True);
fd->Add(" Tel efono", ftString, 10, True);
fd->Add("FAX", ftString, 10, True);
fd->Add("Mail", ftString, 80, True);

Cl i ent Dat aSet 1- >Cr eat eDat aSet () ;

Al igual que sucede con las tablas, en C++ Builder 4 existe la alternativa de llenar la
propiedad Fie/dDefs en tiempo de disefio, con lo cual la propiedad StoredDefs se vuelve
verdadera. Cuando deseemos crear el conjunto de datos en tiempo de ejecucion,
solamente tenemos que llamar a CreateDataSet. St no existen definiciones en FieldDefs,
pero si se han definido campos persistentes, se utilizan estos ultimos para crear el
conjunto de datos.

También se puede crear el conjunto de datos junto a sus {ndices, utilizando la pro-
piedad IndexDefs en tiempo de disefio o de ejecucion:

/1 Definir canpos
TFi el dDefs *fd = dient Dat aSet 1- >Fi el dDef s;
fd->dear();
fd->Add(" Nonbre", ftString, 30, True);
fd->Add(" Apel | i dos", ftString, 30, True);
fd->Add("Direccion", ftString, 30, False);
fd->Add(" Tel ef ono", ftlnteger, O, True);
fd->Add("FAX", ftlnteger, 0, False);
fd->Add("Mail", ftString, 80, False);
/1 Definir indices
Tl ndexDefs *id = dientDataSet 1- >l ndexDef s;
id->Cear();
i d->Add(" xNonbre", "Nonbre",

TI ndexOptions() << ixCaselnsensitive);
i d- >Add(" xApel | i dos", "Apellidos",

TI ndexOpti ons() << ixCasel nsensitive);
i d->Add(" xTel ef ono", "Tel efono", TlIndexOptions());
/'l Crear el conjunto de datos
Cl i ent Dat aSet 1- >Cr eat eDat aSet () ;

Conjuntos de datos clientes 495

Mas adelante veremos todos los tipos de indices que admiten los conjuntos de datos
clientes.

Por dltimo, también podemos crear el conjunto de datos cliente en tiempo de diseflo,
pulsando el botén derecho del ratén sobre el componente y ejecutando el comando
del ment local Create DataSet.

Como el TClientDataSet obtiene sus datos

Un componente TClientDataSet siempre almacena sus datos en dos vectores situados
en la memoria del ordenador donde se ejecuta la aplicacion. Al primero de estos
vectores se accede mediante la propiedad Data, de tipo Olel ariant, y contiene los
datos lefdos inicialmente por el componente; después veremos desde donde se leen
estos datos. La segunda propiedad, del mismo tipo que la anterior, se denomina
Delta, y contiene los cambios realizados sobre los datos iniciales. Los datos reales de

un TClientDataSet son el resultado de mezclar el contenido de las propiedades Data y
Delta.

Data

TClientDataSet

Como mencionaba en la introduccién, hay varias formas de obtener estos datos:

A partir de ficheros del sistema operativo.
Copiando los datos almacenados en otro conjunto de datos.

Mediante una conexion a una interfaz IProvider suministrada por un servidor
de datos remoto.

Para obtener datos a partir de un fichero, se utiliza el método LoadFromFile. El fi-
chero debe haber sido creado por un conjunto de datos (quizas éste mismo) me-
diante una llamada al método SaveToFile, que también esta disponible en el menu
local del componente. Los ficheros, cuya extensiéon por omision es ¢ds, no almacenan
los registros en formato texto, sino en un formato que es propio de estos compo-
nentes. Podemos leer un conjunto de datos cliente a partir de un fichero aunque el
componente no contenga definiciones de campos, ya sea en FreldDefs o en Fields.

Sin embargo, la forma mas comun de trabajar con ficheros es asignar un nombre de
fichero en la propiedad Fi/eName del componente. Si el fichero existe en el momento

496 La Cara Oculta de C++ Builder

de la apertura del conjunto de datos, se lee su contenido. En el momento en que se
cierra el conjunto de datos, se sobrescribe el contenido del fichero con los datos

actuales.

Navegacion, busqueda y seleccion

Como todo buen conjunto de datos, los TClientDataSet permiten las ya conocidas
operaciones de navegacioén y basqueda: First, Next, Last, Prior, Locate, rangos, filtros,
etc. Permiten también especificar un criterio de ordenacion mediante las propiedades
IndexName e IndexFieldNames. En esta Gltima propiedad, al igual que sucede con las
tablas SQL, podemos indicar cualquier combinacién de columnas, pues el conjunto
de datos cliente puede generar dinamicamente un indice de ser necesatio.

La siguiente imagen muestra una sencilla aplicacién para el mantenimiento de una
libreta de teléfonos. La aplicacion completa viene incluida en el CD-ROM del libro:

I} Agenda telefénica M= E
Fichero _Edician

Hl 1| >|H|+|—|A|,/|;(|(.|

Nombre Apelidos

Ambrose Bisrcs Marbre

uthur Machen Howard

August Derleth p—

Bram Stokes —

|Edgar Poe ovecrsft

Lovecraft Direccion

Telefono Fax
N

M ail
[rovie@dunwich.com

S

En todo momento, el conjunto de datos se encuentra ordenado por el campo Nowbre
o por el campo Apellidos. El orden se puede cambiar pulsando el ratén sobre el titulo
de la columna en la rejilla:

void _ fastcall TwndMain::DBGidiTitled ick(TCol um *Col um)
Cl i ent Dat aSet 1- >Cancel Range();

d i ent Dat aSet 1- >l ndexFi el dNanes = Col umm- >Fi el dNane;
TabControl 1- >Tabl ndex = 0;

Debajo de la rejilla he situado un componente T1TabControl, con todas las letras del
alfabeto. En respuesta al evento OnChange de este control, se ejecuta este método:

void __fastcall TwndMain:: TabControl 1Change(TObj ect *Sender)

Ansi String Tab;
Tab = TabControl 1- >Tabs- >Stri ngs[TabCont r ol 1- >Tabl ndex] ;

Conjuntos de datos clientes 497

if (Tab == "*")
Cl i ent Dat aSet 1- >Cancel Range() ;
el se

C i ent Dat aSet 1- >Set Range(ARRAYOFCONST((Tab)),
ARRAYOFCONST((Tab + "zzz")));

Por supuesto, los indices que se han definido sobre este conjunto de datos no hacen
distincién entre mayuisculas y mindsculas.

Hay una simpatica peculiaridad de estos conjuntos de datos que concierne a la nave-
gacion: la propiedad RecNo no solamente nos indica en qué nimero de registro esta-
mos situados, sino que ademads permite que nos movamos a un registro determinado
asignando su numero de posicion en la misma:

void __fastcall TwndMain::IrAExecute(TObj ect *Sender)

{
Ansi String S;
if (InputQuery("lr a posicion", "Ninmero de registro:", S))
ClientDataSet1->RecNo = StrTolnt(S);
}

Filtros

Una agradable sorpresa: las expresiones de filtros de los conjuntos de datos clientes
soportan montones de caracteristicas no permitidas por los conjuntos de datos del
BDE. En primer lugar, ya podemos saber si un campo es nulo o no utilizando la
misma sintaxis que en SQL:

Direccion is null
Podemos utilizar expresiones aritméticas:
Descuento * Cantidad * Precio < 100
Se han afiadido las siguientes funciones de cadenas:
upper, lower, substring, trim trimeft, trinright
Y disponemos de estas funciones para trabajar con fechas:
day, nmonth, year, hour, minute, second, date, tine, getdate

La funcién date extrae la parte de la fecha de un campo de fecha y hora, mientras que
time aisla la parte de la hora. La funcién getdate devuelve el momento actual. También
se permite la aritmética de fechas:

498 La Cara Oculta de C++ Builder

getdate — HireDate > 365

Por ultimo, podemos utilizar los operadores in y like de SQL.:

Nonbre like '9%oft"’
year (FechaVenta) in (1994, 1995)

Edicion de datos

Como hemos explicado, los datos originales de un TClientDataSet se almacenan en su
propiedad Data, mientras que los cambios realizados van a parar a la propiedad De/za.
Cada vez que un registro se modifica, se guardan los cambios en esta dltima propie-
dad, pero sin descartar o mezclar con posibles cambios anteriores. Esto permite que
el programador ofrezca al usuario comandos sofisticados para deshacer los cambios
realizados, en comparacion con las posibilidades que ofrece un conjunto de datos del
BDE.

En primer lugar, tenemos el método UndoLastChange:

void _ fastcall TdientDataSet:: UndoLast Change(bool Fol |l owChanges);

Este método deshace el dltimo cambio realizado sobre el conjunto de datos. Cuando
indicamos True en su parametro, el cursor del conjunto de datos se desplaza a la po-
sicién donde ocurri6 la accion. Con UndolastChange podemos implementar facil-
mente el tipico comando Deshacer de los procesadores de texto. Claro, nos interesa
también saber si hay cambios, para activar o desactivar el comando de mend, y en
esto nos ayuda la siguiente propiedad:

__property int ChangeCount;

Tenemos también la propiedad SavePoint, de tipo entero. El valor de esta propiedad
indica una posicién dentro del vector de modificaciones, y sirve para establecer un
punto de control dentro del mismo. Por ejemplo, supongamos que usted desea imitar
una transaccioén sobre un conjunto de datos cliente para determinada operacién
larga. Esta pudiera ser una solucién sencilla:

void _ fastcall TwndMai n:: Operaci onLarga()

{
int SP = dientDataSet 1- >SavePoi nt ;
try
/1 Aqui se realizan |as distintas nodificaciones ...

}
cat ch(Exception&)

d i ent Dat aSet 1- >SavePoi nt = SP;

Conjuntos de datos clientes 499

t hr ow;

A diferencia de lo que sucede con una transaccién verdadera, podemos anidar varios
puntos de verificacion.

Cuando se guardan los datos de un TClientDataSet en un fichero, se almacenan por
separado los valores de las propiedades De/ta y Data. De este modo, cuando se rea-
nuda una sesién de edicién que ha sido guardada, el usuario sigue teniendo a su dis-
posicién todos los comandos de control de cambios. Sin embargo, puede que nos
interese mezclar definitivamente el contenido de estas dos propiedades, para lo cual
debemos utilizar el método siguiente:

void _ fastcall TdientDataSet:: MergeChangelLog();

Como resultado, el espacio necesario para almacenar el conjunto de datos disminuye,
pero las modificaciones realizadas hasta el momento se hacen irreversibles. Si le inte-
resa que todos los cambios se guarden directamente en Data, sin utilizar el /g, debe
asignar False a la propiedad LogChanges.

Estos otros dos métodos también permiten deshacer cambios, pero de forma radical:

void _ fastcall TdientDataSet:: Cancel Updates();
void _ fastcall TdientDataSet::RevertRecord();

Como puede ver, estos métodos son analogos a los que se utilizan en las actualiza-
ciones en caché. Recuerde que cancelar todos los cambios significa, en este contexto,
vaciar la propiedad De/ta, y que si usted no ha mezclado los cambios mediante Mer-
geChangel og en ningun momento, se encontrara de repente con un conjunto de datos
vacio entre sus manos.

Conjuntos de datos anidados

Los conjuntos de datos clientes de la version 4 de C++ Builder permiten definir
campos de tipo ffDataSet, que contienen tablas anidadas. Este recurso puede servir
como alternativa al uso de tablas conectadas en relaciones waster/ detail. Las principa-
les ventajas son:

Todos los datos se almacenan en el mismo fichero.
Las tablas anidadas funcionan a mayor velocidad que las relaciones master/ detail.

Las técnicas de deshacer cambios funcionan en sincronia para los datos de cabe-
cera y los datos anidados.

500 La Cara Oculta de C++ Builder

Como las transacciones en bases de datos tradicionales pueden simularse me-
diante el registro de cambios, podemos realizar transacciones atbmicas que in-
cluyan a los datos de cabecera y los de detalles, simultineamente.

La siguiente imagen muestra una variante de la aplicacion de la libreta de teléfonos
que utiliza una tabla anidada para representar todos los nimeros de teléfonos que
puede poseer cada persona.

I Another phonebook M= B
Fichero Edicidn
7 e e = A @
MNombre Apellidos MNombre
m [Michele |

Apelido:

[Preter

Direccion

Telefana Comentario -
909-00-0000 El méwil
91-000-0000 El de casa

B R B D E

[E3

Comencemos por definir el conjunto de datos. Traemos un componente de tipo
TClientDataSet al formulario, lo nombramos Pegple, vamos a su propiedad FieldDefs y
definimos los siguientes campos:

Campo Tipo Tamafio Atributos
Nowsbre fString 30 [fiRequired
Apellidos StString 30 [fiRequired
Direccion fString 35

Telefonos ftDataSet 0

Este es el formato de los datos de cabecera. Para definir los detalles, seleccionamos la

definicién del campo Telefonos, y editamos su propiedad ChildDefs:

Campo Tipo Tamarfio Atributos
Telefono fHnteger 0 [fiRequired
Comentario [fiString 20

También afiadiremos un par de indices persistentes al conjunto de datos. Editamos la

propiedad IndexDefs de este modo:

Indice Campos Atributos
Nombre Nombre ixCaselnsensitive
Apellidos Apellidos ixCaselnsensitive

Conjuntos de datos clientes 501

El préximo paso es crear el conjunto de datos en memoria, para lo cual pulsamos el
botén derecho del ratén sobre Pegple, y ejecutamos el comando Create DataSet. Este
comando deja la tabla abierta, asignando True a Active. Aproveche y cree ahora los
campos del conjunto de datos mediante el Editor de Campos. Asigne también a la
propiedad IndexFieldNames el campo Nombre, para que los datos se presenten inicial-
mente ordenados por el nombre de la persona.

He dejado intencionalmente vacia la propiedad Fi/eName del conjunto de datos. Mi
proposito es redefinir el método Loaded del formulario, para asignar en tiempo de
carga el nombre del fichero de trabajo:

void _ fastcall TwndMai n:: Loaded()

{
TForm : Loaded();
Peopl e- >Fi | eName = ChangeFi | eExt (Appl i cati on- >ExeNane, ".cds");

También es conveniente interceptar el evento OnClose del formulario, para mezclar
los cambios y los datos originales antes de que el conjunto de datos cliente los guarde
en disco:

void __fastcall TwndMain:: FornC ose(TCbj ect *Sender,
Td oseAction &Acti on)

Peopl e- >Mer geChangelLog() ;

Los datos anidados se guardan de forma eficiente en la propiedad Daza, es decir, sin
repetir la cabecera. Pero cuando se encuentran en la propiedad De/fa, es inevitable
que se repita la cabecera. Por lo tanto, es conveniente mezclar periédicamente los
cambios, con el fin de disminuir las necesidades de memoria.

No intente lamar a MergeChangeLog en el evento BeforeClose del conjunto de datos,
pues al llegar a este punto ya se han guardado los datos en disco, al menos en la
versioén actual del componente.

Si en este momento mostramos todos los campos de Pegple en una rejilla de datos,
podemos editar el campo Telfonos pulsando el botén que aparece en la celda de la
rejilla. Al igual que sucede con las tablas anidadas de Oracle 8, esta accién provoca la
aparicién de una ventana emergente con otra rejilla. Esta dltima contiene dos colum-
nas: una para los numeros de teléfono y otra para los comentarios asociados.

Sin embargo, es mas apropiado traer un segundo conjunto de datos cliente al for-
mulario. Esta vez lo llamaremos Phones, y para configurarlo bastara asignar a su pro-
piedad DataSetField el campo PegpleTelefonos. Cree campos persistentes para este con-

502 La Cara Oculta de C++ Builder

junto de datos, y asigne a IndexFieldNames el campo Telefono, para que estos aparezcan
de forma ordenada.

Es muy probable también que desee eliminar todos los teléfonos antes de eliminar a
una persona®, para lo que basta este método:

void _ fastcall TwndMai n:: Peopl eBef oreDel et e(TDat aSet *Dat aSet)

{
Phones->First();
whil e (! Phones- >Eof)
Phones->Del ete();
}

Y ya puede definir formatos de visualizacién, comandos de edicion y reglas de inte-
gridad al modo tradicional para completar este ejemplo.

Campos calculados internos

Por supuesto, podemos definir campos calculados y campos de busqueda al utilizar
conjuntos de datos clientes. Hay, sin embargo, un nuevo tipo de campo calculado que
es tipico de esta clase de componentes: los campos calculados internos. Para definir este
tipo de campo, se utiliza el comando New field, del Editor de Campos:

—Field propertie
HName: | Companent: |
Type: I j Size: I

Field type
’7(5' Data i~ Calculated Lookup i~ IntemalCale Aggregate ‘

~Lookup definitiary

FepiFields: | j [iataset: | j

Lanfup keys I j HesultFeld: I j

0k I Cancel | Help |

Como podemos apreciar, el grupo de botones de radio que determina el tipo de
campo tiene dos nuevas opciones: InternalCale y Aggregate. La primera es la que nos
interesa por el momento, pues la segunda se estudiara en la siguiente seccién. El
campo calculado interno se define marcando la opcion InternalCale, y especificando el
nombre y tipo de datos del campo. El valor del campo se calcula durante la respuesta
al evento OnCalcFields del conjunto de datos.

20 Le apuesto una cena a que al leer la frase anterior penso6 en alguien de su entorno. sNo?
Bueno, yo si.

Conjuntos de datos clientes 503

¢En qué se diferencian los campos calculados internos de los ya conocidos? Simple-
mente, en que el valor de los campos calculados internos se almacena también junto
al conjunto de datos. La principal consecuencia de esta politica de almacenamiento es
que pueden definirse indices basados en estos campos. Asi que tenemos algo pare-
cido a indices por expresiones para los conjuntos de datos clientes.

Una informacién importante: aunque ambos tipos de campos calculados reciben sus
valores en respuesta al evento OnCalcFields, en realidad este evento se dispara dos
veces, una para los campos calculados internos y otra para los normales. Para dife-
renciar entre ambas activaciones, debemos preguntar por el valor de la propiedad
State del conjunto de datos. En un caso, valdra dsCalcFields, mientras que en el otro
valdra dslnternalCale. E1 c6digo de respuesta al evento puede evitar entonces realizar
calculos innecesarios.

Indices, grupos y valores agregados

Existen tres formas de crear indices en un conjunto de datos cliente:

Utllizando la propiedad IndexDefs, antes de crear el conjunto de datos.
Dinamicamente, cuando ya esta creado el conjunto de datos, utilizando el mé-
todo Addlndex. Estos indices sobreviven mientras el conjunto de datos esté ac-
tivo, pero no se almacenan en disco.

Dinamicamente, especificando un criterio de ordenacién mediante la propiedad
IndexFieldNames. Estos indices desaparecen al cambiar el criterio de ordenacion.

Cuando utilizamos alguna de las dos primeras técnicas, podemos utilizar opciones
que solamente estan disponibles para este tipo de indices:

Para claves compuestas, algunos campos pueden ordenarse ascendentemente y
otros en forma descendente.

Para claves compuestas, algunos campos pueden distinguir entre mayusculas y
minusculas, y otros no.

Puede indicarse un nivel de agrupamiento.

Para entender como es posible indicar tales opciones, examinemos los paraimetros
del método Addlndex:

void _ fastcall TdientDataSet:: Addl ndex(
const Ansi String Name, const AnsiString Fields,
TI ndexOpti ons Opti ons,
const Ansi String DescFields = "";
const Ansi String CaselnsFields = "";
const int G oupingLevel = 0);

504 La Cara Oculta de C++ Builder

Los nombres de los campos que formaran parte del indice se pasan en el parametro
Fields. Ahora bien, podemos pasar en DesclFields y en CaselnsEields un subconjunto de
estos campos, indicando cudles deben ordenarse en forma descendente y cuales de-
ben ignorar mayusculas y minusculas. Por ejemplo, el siguiente indice ordena ascen-
dentemente por el nombre, teniendo en cuenta las mayudsculas y mindsculas, de
modo ascendente por el apellido, pero sin distinguir los tipos de letra, y de modo
descendente por el salario:

C i ent Dat aSet 1- >Add| ndex(" | ndi cel", "Nonbre; Apel | i dos; Sal ari o",
"Sal ario", "Apellidos");

El tipo TIndexDef utiliza las propiedades DescFields, CaselnsEFields y Groupingl_evel para
obtener el mismo efecto que los parametros correspondientes de Addlndex.

¢Y qué hay acerca del nivel de agrupamientor Este valor indica al indice que dispare
ciertos eventos internos cuando alcance el final de un grupo de valores repetidos.
Tomemos como ejemplo el conjunto de datos que mostramos en la siguiente imagen:

l_.. Grupos [_ O] <]
Fichero Edicidn
- a 0O
Ciudad INomble |Sa\do | Total por pais |Tala\ por ciudadl;l

&l Grand Cayman | Capman Divers World Unlimited $59.660.05 765118 7B511.8
|| Fisherman's Eve $12.022,00
|| Safar Under the Sea $4.829.75
|_|Canada Kitchener armot Divers Club $12.22325 973689 1222325
|| Wancouver Davy Jones' Locker $44.073 65 44073 65
|| winnipeg On-Target SCLBA $41.0682,00 41082
|| Columbia Bogota Fantastique Aquatica 39014340 901434 907434
|| Cyprus Kato Paphos Sight Diver $261.6575,80 2615758 2B1575,8
|| Fii Suwa Diversfar-Hire $21.534,00 37076 21534
|| Taveuni Princess lsland SCUBA $16.542.00 16642
| |Greece Ayios Matthaios | Divers of Coifu, Inc. $98.278,60 982786 952788
|| Republic 0. Afiica Johannesburg | Central Undenwater S upplies $6.675.95 BE7E.95 EE75.95
| |Us Cataling [land | Catamaran Dive Club 45270355 14343018 5270355
o Eugene Frank's Divers Supply $20.602.00 20602 ;'
| 4

En realidad, solamente las cuatro primeras columnas pertenecen al conjunto de da-
tos: el pafs, la ciudad, el nombre de un cliente y el estado de su cuenta con nosotros.
El indice que esta activo, llamado Jerarguia, ordena por los tres primeros campos, y su
Groupingl evel es igual a 2. De esta manera, podremos mantener estadisticas o agtre-
gados por los dos primeros campos del indice: el pais y la ciudad.

Para activar el agrupamiento debemos definir agregados (aggregates) sobre el conjunto
de datos. Hay dos formas de hacetlo: definir los agregados en la propiedad .4ggregates,
o definir campos agregados en el Editor de Campos. En nuestro ejemplo seguiremos
la segunda via. En el Editor de Campos ejecutamos el comando New freld. Como
recordara de la seccién anterior, ahora tenemos la opcion Aggregate en el tipo de
campo. Como nombre, utilizaremos Toza/PorPais. Repetiremos la operacion para crear

Conjuntos de datos clientes 505

un segundo campo agregado: TozalPorCindad. En el Editor de Campos, estos dos
campos se muestran en un panel situado en la parte inferior del mismo:

vandhd ain. ClientD ataS
FN I N T
Marnbre
Ciudad
Paiz
Saldo

TotalPorCiudad

Debemos cambiar un par de propiedades para los objetos recién creados:

TotalPorPais TotalPorCiudad

Expression Sum(Saldo) Sum(Saldo)
IndexName [erarguia Jerarguia
GroupingLevel 7 2

Vamos ahora a la rejilla de datos, y creamos un par de columnas adicionales, a la que
asignamos explicitamente el nombre de los nuevos campos en la propiedad Field-
Name (C++ Builder no muestra los campos agregados en la lista desplegable de la
propiedad). Para completar el ejemplo, debemos asignar False en la propiedad De-
SfanltDrawing de la rejilla, y dar respuesta su evento OnDrawColumnCell:

void __fastcall TwndMain::DBG i d1Dr awCol umCel | (TCbj ect *Sender,
const TRect Rect, int DataCol, TColumm Col um,
TG idDrawState State);

{
if (Colum->Field == dientDataSet1Pais ||
Col um->Field == O ient Dat aSet 1Tot al Por Pai s)
if (! dientDataSet1l->CGetGoupState(l). Contains(gbFirst))
return;
if (Colum->Field == dientDataSet 1C udad | |
Col um->Field == O ientDat aSet 1Tot al Por Ci udad)
if (! dientDataSet1l->Cet G oupState(2).Contains(gbFirst))
return;
DBGri d1- >Def aul t Dr awCol umCel | (Rect, Dat aCol, Columm, State);
}

Aqui hemos aprovechado la funcién GetGroupState del conjunto de datos. Esta fun-
ci6n devuelve un conjunto con los valores ghtirst, gbMiddle y gbl ast, para indicar si
estamos al inicio, al final o en mitad de un grupo.

Capitulo

26

El Modelo de Objetos
Componentes

Componentes o COM, segun sus siglas en inglés. El Modelo de Objetos Com-

ponentes es una de las armas mds potentes con las que cuenta el programa-
dor de Windows para desarrollar aplicaciones distribuidas. COM es, ademas, uno de
los pilares en los que se basa el desarrollo con Midas y con Microsoft Transaction
Server. Desafortunadamente, potencia equivale en este caso a complejidad. Aunque
los conceptos de la programacién COM son muy sencillos, la forma en que se plas-
man en lenguajes “histéricos” como C y C++ deja mucho que desear.

l j N ESTE CAPITULO INICIAMOS EL ESTUDIO DEL denominado Modelo de Objetos

Es por eso que he dividido el material sobre COM en varios capitulos. Aqui desarro-
llaremos los conceptos basicos y le ensefiaremos a trabajar con objetos creados por
otros.

Un modelo binario de objetos

La cercania y la familiaridad son el peor enemigo de la perspectiva. Muchas veces no
apreciamos correctamente aquello que utilizamos a diario, y esta vez me refiero a las
Bibliotecas de Enlace Dinamico, o DLLs, no a la belleza de su conyuge. El progra-
mador de Windows se ha acostumbrado a este recurso que le permite ejecutar desde
su programa, desarrollado en el lenguaje a/fa, funciones y procedimientos desarrolla-
dos en un lenguaje beza. Tal es la costumbre que pocas veces meditamos en qué es lo
que hace posible esta comunicacién tan sencilla y transparente. ¢La respuesta?, la
existencia de unas reglas de juego que deben ser respetadas por el que crea la DLL y
por aquellos que la usan. Unas reglas de juego que son, nada mas y nada menos, que
un modelo binario (o fisico) de intercambio de informacién. ¢Quiere ver algunas de
las reglas para las DLLs? Por ejemplo:

1. Los parametros de las funciones se copian en la pila de derecha a izquierda.
2. Elespacio de memoria reservado para los parametros es liberado por el que
implementa la funcién, no por quien la llama.

508 La Cara Oculta de C++ Builder

3. Siusted implementa una funcién que debe recibir informacién alfanumérica, es
aconsejable que utilice como parametro un puntero a una lista de caracteres que
termine con el caracter nulo. Su lenguaje de programacién posiblemente tenga
una mejor representacion para este tipo de datos, pero usted tendra que renun-
ciar a ella si quiere que la funcién pueda ser llamada desde un lenguaje arbitrario.

Poder compartir y reutilizar funciones y procedimientos es algo muy positivo. Pero
cualquier programador medianamente informado conoce las innumerables ventajas
que ofrece la Programacién Orientada a Objetos sobre la programacién tradicional
basada en funciones. ;Qué tal si pudiéramos compartir objetos con la misma facili-
dad con la que usamos una DLL? Necesitarfamos entonces un estandar binario para
el intercambio de objetos. Y ese, precisamente, es el proposito de COM: el Modelo de
Objetos Componentes o, en inglés, Component Object Model.

De modo que COM nos permitira reutilizar objetos sin preocuparnos del lenguaje en
que han sido creados, compilados y enlazados. Naturalmente, las exigencias de un
modelo binario de objetos van mas alld de la simple independencia del lenguaje. Hace
falta también la independencia de localizaciéon, de modo que un proceso pueda utili-
zar transparentemente objetos ubicados en ordenadores remotos. Veremos también
como COM resuelve este problema.

iYOo quiero ver codigo!

El peor error que puede cometer un escritor es no confiar en la inteligencia de sus
lectores?!. Cuando escribi este capitulo por primera vez, comencé explicando todos
los conceptos tedricos, dejando para el final los ejemplos. Llegd el momento de la
revision: en un par de ocasiones intenté leer lo que habia escrito, y en ambas ocasio-
nes me quedé dormido a mitad del intento. Tanta teoria sin ejemplos puede agotar
hasta la infinita paciencia del presidente de la ONU.

Esta seccion es un afiadido posterior. Aqui le presento de golpe un ejemplo de fun-
cién que crea un objeto COM, realiza un par de llamadas a sus métodos y lo libera
finalmente. ¢El objetivo? Crear un icono de acceso directo a un programa.

/1 Necesita incluir |a cabecera shlobj.h

voi d CreateLink(const Ansi String& APath, const WdeString& AFile)
{

I Unknown *intf;
I Shel | Li nk *sli nk;
| PersistFile *pfile;

QA eCheck(CoCr eat el nst ance(CLSI D_Shel I Li nk, NULL,

21 El siguiente consiste en confiar demasiado.

El Modelo de Objetos Componentes 509

CLSCTX_ALL, 11D I Unknown, (void**) & ntf));
try
QA eCheck(intf->Querylnterface(llD_I ShellLink,
(void**) &slink));
try

{
sl i nk->Set Pat h(APath.c_str());

QA eCheck(intf->Querylnterface(lID_|PersistFile,
(void**) &pfile));
try

pfil e->Save(AFil e, False);
}
_finally

pfil e->Rel ease();

b
_finally

sl i nk- >Rel ease();

}
}
_finally

i ntf->Rel ease();

¢Se entera de algo? En caso afirmativo, cierre el libro y saque a su cocodrilo a pasear
por el parque, que es mejor para la salud que leer libros de Informatica. En caso
contrario, tenga fe en que al terminar el capitulo no sélo sabra de qué va el asunto,
sino que podra escribir una version mas reducida de CreateLink y envidarmela por
correo.

Clases, objetos e interfaces

En este juego hay dos protagonistas principales: un cliente y un servidor. Como es de
esperar, el servidor es quien implementa los objetos a compartir, y el cliente es el que
los utiliza. Estos roles no son fijos, pues es posible que un cliente de determinado
servidor sea, a su vez, el servidor de otro cliente. Incluso se puede dar el caso en que
dos procesos actien mutuamente como cliente y servidor: ambos procesos definen
objetos que son utilizados por la parte contraria.

Ahora, para comenzar a familiarizarnos con la jerga de COM, veamos las fichas que
mueven los personajes anteriores: las clases, los objetos y las interfaces.

510 La Cara Oculta de C++ Builder

Interfaces: El concepto basico del modelo es el concepto de interfaz. Una interfaz
representa un conjunto de funciones que se ponen a disposicion del publico. Por
ejemplo, una maquina de bebidas puede modelarse mediante funciones para:

Introducir monedas.
Seleccionar producto.
Extraer producto.
Recuperar monedas.

No se trata de funciones sin relacién entre si, pues el objeto que ofrece estos servi-
cios debe recordar, al ejecutar el segundo paso, cuantas monedas hemos introducido
en el primer paso. Esta informacién, como es clasico en la Programacién Orientada a
Objetos, debe almacenarse en variables internas del objeto que implementa los servi-
cios.

Clases: Es importante comprender que una interfaz debe ser una especificacion
abstracta, que debe haber libertad en su implementacion y que al usuario de los servi-
cios le debe dar lo mismo hacer uso de una u otra implementacion alternativa. Una
clase es una entidad conceptual que puede ofrecer a sus clientes potenciales una o mas
interfaces.

Objetos: Para usted, que ya estd familiarizado con la Programacién Orientada a Ob-
jetos, la distincion entre clase y objeto le sera mas que conocida. Por lo tanto, no insis-
tiré en este punto.

Naturalmente, para crear un objeto hay que especificar una clase (no una interfaz).
Como consecuencia, cada objeto COM puede ser percibido y tratado por sus clientes
de diversas formas, de acuerdo al numero de interfaces que implementa la clase a la
cual pertenece. Por ejemplo, una clase que implemente la interfaz IMaguinaBebida
posiblemente implemente también la interfaz LAparatoE ectrico, con métodos para
enchufar, desenchufar y calcular consumo. A un cliente sediento solamente le im-
portaré la primera interfaz. En cambio, al duefio del local donde esta la maquina le
interesa principalmente la interfaz de aparato eléctrico, lo cual no quita que de vez en
cuando se beba una cerveza de la maquina, a la salud del Modelo de Objetos Com-
ponentes.

En el ejemplo de la seccién antetior, se crea un objefo de la clase identificada me-
diante la constante CLSID_She//link. Las variables locales iutf, slink y pfile son
punteros a interfaces, que se utilizan para ejecutar los métodos exportados por el
objeto creado.

En la mayoria de los articulos y libros sobre COM, se utiliza un diagrama parecido al
siguiente para representar un objeto de este modelo:

El Modelo de Objetos Componentes 511

Interfaz #1
Interfaz #2
—O
Objeto COM
Interfaz #3

La simbologia es explicita: un objeto COM es una caja negra, a la cual tenemos ac-
ceso tnicamente a través de un conjunto de interfaces, representadas mediante las
lineas terminadas con un circulo. El circulo hueco significa que los clientes pueden
“enchufarse” a estas interfaces para llamar los métodos ofrecidos por ellas. La pre-
sencia de los “huecos” no es trivial ni redundante; mas adelante veremos cémo los
objetos COM pueden implementar interfaces “de salida™ (outgoing interfaces), que nos
serviran para recibir eventos disparados por servidores COM. En tales casos, la inter-
faz de salida se representa mediante una flecha convencional:

Interfaz #1
Interfaz #2
—O
Objeto COM Interfaz #3

Por el momento, mantendré en secreto el motivo por el que una de las “antenas” de
nuestro insecto apunta a las alturas.

El lenguaje de descripcion de interfaces

Es hora de ser mas precisos. Hasta el momento hemos mencionado interfaces como
servicios, y clases como entidades que implementan uno o mas de estos servicios,
pero no hemos presentado ni una sola linea de cédigo. ¢Qué tal si le presento como
ejemplo la definicién de una maquina de bebidas? Usted espera que yo le muestre
entonces una declaracién en C++ que corresponda a la estructura de una interfaz.
Pero, ¢no habfamos quedado en que los objetos COM pueden utilizarse desde cual-
quier lenguaje de programacion?

Queda claro que debe existir un lenguaje #eutro para describir las posibilidades de las
interfaces y clases. Debe permitir expresar todas las caracteristicas de la descripcion
de un objeto COM que sean comunes a cualquier lenguaje. Y el lenguaje que utiliza
COM se llama IDL, por las iniciales de Interface Description Langnage. E1 IDL de COM
es en realidad una variacién del lenguaje del mismo nombre que se utiliza en RPC
para describir procedimientos remotos.

512 La Cara Oculta de C++ Builder

El objetivo principal de IDL no es generar programas, sino desctipciones. Se su-
pone que, utilizando las herramientas adecuadas, una especificacién en IDL
puede traducirse mecanicamente a declaraciones del lenguaje en el que deseemos
desarrollar realmente. En particular, los programadores de C++ Builder no tie-
nen por qué escribir nada en IDL, pues pueden utilizar un editor visual para de-
finir clases e interfaces: el Editor de Bibliotecas de Tipos, que veremos mas ade-
lante.

Veamos primero el aspecto de IDL, para ocuparnos después de como podemos
sacar partido del lenguaje. Comenzaremos la definicién de clases:

cocl ass Maqui naBebi das

[defaul t] interface | Maqui naBebi das;
interface | AparatoEl ectrico;

}s

La palabra coclass se utiliza para declarar clases de objetos componentes; se trata
unicamente de un problema de terminologfa. La descripciéon publica de una clase de
componentes sencillamente consiste en enumerar las interfaces que implementa. En
nuestro caso, se implementan dos interfaces: IMaguinaBebidas y LAparatoElectrico, las
cuales deben haberse definido antes. Como convenio, los tipos de interfaces comien-
zan con la letra I.

El atributo default asociado a la primera interfaz indica que ésta es la interfaz
que representa “de forma mas natural” la funcionalidad de la clase asociada.
Cuando se crea un objeto de dicha clase, casi siempre se intenta suministrar al
cliente inicialmente un puntero a dicha interfaz (no siempre es posible). Por su-
puesto, se trata de recomendaciones de caracter semantico. Este es el motivo por
el que, en un diagrama anterior, un objeto COM era dibujado con una de sus
“antenas’ erectas.

La siguiente declaracién simplificada muestra como definir una interfaz:

i nterface | Maqui naBebi das

{
HRESULT | nt r oduci r Monedas([in] |ong Cantidad);
HRESULT Sel ecci onar Product o([i n] BSTR Nonbr eProduct o) ;
HRESULT Extraer Product o(void);
HRESULT Recuper ar Monedas([out] |ong* Cantidad);
h

A simple vista se aprecia la semejanza de las declaraciones de interfaces con las decla-
raciones de clases de C/C++. Los métodos definidos en las interfaces, sin embargo,
no pueden indicar una implementaciéon. Ademas, IDL afiade informacién semantica
que no se puede expresar en C++. Por ejemplo, el parametro de RecuperarMonedas

El Modelo de Objetos Componentes 513

esta marcado con el atributo out, mientras que nada impide que una rutina en C++
utilice un parametro de puntero para leer y escribir. En cuanto al tipo HRESULT
que retornan los métodos de la interfaz, me reservo su explicacién para otro mo-
mento mas adecuado.

En general, toda la informacién semantica de IDL que no puede expresarse de
forma directa en la mayoria de los lenguajes de programacion, se coloca dentro
de corchetes, a modo de atributos.

Identificadores globales Unicos

Para poder compartir definiciones de clases e interfaces entre aplicaciones escritas en
diferentes lenguajes se necesita algin modo de identificar a estas entidades. Si nece-
sitamos pedir a un servidor que cree un objeto de la clase MaguinaBebidas, podemos
vernos tentados a utilizar el nombre de la clase como identificacién de la misma. El
mecanismo basico de COM, sin embargo, no se basa en la identificacién mediante
cadenas de caracteres. El principal motivo es que podrian aparecer colisiones de
nombres con suma facilidad. Por el contrario, COM identifica a las clases e interfaces
mediante valor numéricos unicos de 128 bits.

A este tipo de numeros se les conoce como GUIDs (Global Unigue Identifiers, o identi-
ficadores unicos globales). Cuando definimos una clase o una interfaz con IDL de-
bemos asociatle uno de estos numeros, para lo cual se habilita una seccién de atri-
butos previa a la definicién de la entidad:

uui d(CADC5FCA- DAA8- 11D2- B67D- 0000E8D7F7B2)
]

cocl ass Maqui naBebi das

[defaul t] interface | Maqui naBebi das;
interface | AparatoEl ectrico;

}s

Los guiones y llaves son pura parafernalia mnemotécnica, por si algun chalado es ca-
paz de recordarlos. Si un GUID se utiliza para identificar una interfaz, se le aplica el
nombre especial de IID; si identifica a una clase, estamos frente a un CLSID.

Si usted o yo definimos una clase o interfaz, debemos asignarle un nimero tnico de
éstos. Podemos peditle uno a Microsoft, de forma similar en que las direcciones de
Internet se piden a la organizaciéon INTERNIC; realmente, Microsoft lo tiene mas
facil, al tratarse de 128 bits en vez de 32. Pero los GUID también pueden generarse
localmente, por medio de una funcién definida en el API de Windows, CoCreateGuid.
Esta funcion genera nimeros con wnicidad estadistica; vamos, que la probabilidad de un

514 La Cara Oculta de C++ Builder

conflicto es menor que la de que acertemos la loterfa. El algoritmo empleado intro-
duce la fecha y la hora dentro de un sombrero de copa, le afiade el identificador de
red del usuario, o informacién del BIOS,; si no estamos en red, realiza un par de pa-
ses con la varita magica y saca un conejo con un GUID en la boca.

La siguiente funcién devuelve como resultado el numero de la tarjeta de red del or-
denador donde se ejecuta. Este nimero es un entero de 48 bits, por lo cual me he
limitado a devolver la representaciéon en hexadecimal del mismo:

Ansi String _ fastcall Networkld()
_GQUI D gui d;

CoCr eat eCui d(&gui d) ;
Ansi String rslt = QU DToString(guid);
return rslt.SubString(rslt.Length() - 12, 12);

La mayoria de las veces, C++ Builder genera por nosotros los identificadores de
interfaces y otros tipos de GUID utilizados por COM. Pero si en algin mo-
mento necesita uno de estos numeros, pulse la combinacién CTRL+MAY+G en el
Editor de Cédigo.

Interfaces

Para el Modelo de Objetos Componentes es fundamental el concepto de znzerfaz.
Sabemos que una de las técnicas fundamentales de la programacién consiste en de-
negar al programador el acceso a la implementacion de un recurso; de esta forma lo
protegemos de los cambios que ocurririn muy probablemente en la misma. Conse-
cuentemente con esta filosofia, en COM usted nunca trabajara con un objeto COM,
ni con el puntero al objeto. Por el contrario, con lo que podra contar es con punteros a
interfaces.

—F—» «—]» Amaodoms

o——P Al método #2
o——P Al método #3
o——p Al método #4
o———p Al método #5

Puntero a
interfaz

PROCESO SERVIDOR (O PROXY)

Al ser COM precisamente un modelo binario, es muy importante saber como deben
implementarse fisicamente las interfaces. Resulta que una interfaz se representa como

El Modelo de Objetos Componentes 515

un puntero a una tabla de punteros a métodos, similar a la Tabla de Métodos Virtua-
les de los objetos de C++.

¢Por qué un puntero a una tabla de punteros a funciones? Porque esta es la im-
plementacién mas frecuente de un objeto en lenguajes que permiten sélo heren-
cia simple. Supongamos que los objetos de una clase COM implementan una
sola interfaz. En tal caso, el implementador de la clase puede utilizar el formato
de objetos con herencia simple, y el puntero al objeto es valido igualmente como
puntero a la interfaz. Sin embatgo, no se deje engafiar por esta aparente simplici-
dad. Es habitual que un objeto COM resida en un espacio de memoria diferente
al del cliente que lo utiliza. Por ese motivo, en el diagrama anterior he utilizado la
misteriosa palabra proxy, que explicaremos mas adelante.

Cada lenguaje de programacion representara los punteros a interfaces mediante sus
propios tipos nativos. En la medida en que el lenguaje esté mas o menos preparado
para este propésito, la traduccion serda mas o menos legible. La forma mds comun de
obtener una representacion nativa es utilizar alguna herramienta que traduzca auto-
maticamente desde IDL hacia el lenguaje que queremos utilizar. Si estamos traba-
jando con C/C++, Microsoft nos ofrece un compilador denominado MIDL, que se
encarga de esta tarea. Pero si desarrollamos con C++ Builder, la traduccion se puede
realizar desde el Editor de Bibliotecas de Tipos, que explicaremos mas adelante.

¢Recuerda nuestra declaracion de la interfaz de una maquina de bebidas? Su repre-
sentacion en C++ serfa:

i nterface | Maqui naBebi das : public | Unknown

{
public:
virtual HRESULT STDMETHODCALLTYPE I ntroduci r Monedas
(long Cantidad) = 0;
virtual HRESULT STDMETHODCALLTYPE Sel ecci onar Product o
(BSTR Nonbr eProducto) = O0;
virtual HRESULT STDVMETHODCALLTYPE Extraer Producto
(void) = 0;
virtual HRESULT STDMETHODCALLTYPE Recuper ar Monedas
(long* Cantidad) = O;
}

La declaracién comienza con la macro znserface, que se define del siguiente modo en el
tichero objbase.b:

#define interface struct

Como la estructura definida tiene métodos virtuales, el compilador de C++ crea
automaticamente una Tabla de Métodos Virtuales (VMT), y cada instancia de esta
estructura comienza precisamente con un puntero a dicha VMT. Un programa es-

516 La Cara Oculta de C++ Builder

crito en C++ que trabajara con esta interfaz tendria mas o menos el siguiente as-
pecto:

{
| Maqui naBebi das *nmq; /] Qbserve que se trata de un puntero
N
/Il Crear un objeto y obtener puntero a la interfaz
N
mag- > nt r oduci r Monedas(100) ;
mag- >Sel ecci onar Pr oduct o(L" Coca- Col a") ;
mag- >Ext r aer Product o() ;
N
// Liberar el puntero a la interfaz
N
}

Las representaciones de interfaces en lenguajes mas modernos, como Delphi y
Java, tienen un aspecto mas “natural”’, porque no hacen tanto uso de macros.
Estos dos lenguajes ofrecen un tipo nativo interface que hace mas facil el tra-
bajo con punteros a interfaces.

La interfaz lUnknown

En la seccién anterior, al presentar la declaracion de la interfaz IMaqguinaBebidas en
C++ se nos escap6 un pequenio adelanto:

i nterface | Maqui naBebi das : public | Unknown

Al parecer, la estructura que representa a nuestra interfaz hereda de una clase o es-
tructura que no hemos aun explicado. Bien, IUnknown es una interfaz predefinida por
COM a partir de la cual se derivan obligatoriamente todas las demas interfaces. Vea-
mos en primer lugar la definicion de la interfaz IUnknown para explicar después
cémo es posible que una interfaz derive de otra. Esta es la definicién de [Unknown en
el lenguaje IDL:

[local, object,
uui d(00000000- 0000- 0000- CO00- 000000000046) ,
poi nt er _def aul t (uni que)

]

i nterface | Unknown

HRESULT Queryl nterface(

[in] REFIIDriid,

[out, iid_is(riid)] void **ppvObject);
ULONG AddRef ();
ULONG Rel ease();

El Modelo de Objetos Componentes 517

Olvidémonos por un momento de los atributos que acompafian a la definicién, para
analizar qué servicios nos ofrece esta interfaz basica. Son tres los métodos exporta-
dos por [Unknown, y sus objetivos son:

Querylnterface: Aporta introspeccion a los objetos. Dada una interfaz cualquiera,
nos dice si el objeto asociado soporta otra interfaz determinada; en caso afirma-
tivo, nos devuelve el puntero a esa interfaz. Si tenemos un puntero a una interfaz
de tipo IMagninaBebidas en nuestras manos, por ejemplo, podemos aprovechar
Querylnterface para averiguar si el objeto asociado soporta también la interfaz LApa-
ratoE lectrico.

AddRef. Debe incrementar un contador de referencias asociado al objeto. En
conjuncioén con el siguiente método, se utiliza para controlar el tiempo de vida de
los objetos COM.

Release: Debe decrementar el contador de referencias, y destruir el objeto si el
contador se vuelve cero.

Existe una relacién de herencia simple entre interfaces. Tomemos como ejemplo la
siguiente definicion:

[obj ect, uui d(0000011b-0000- 0000- CO00- 000000000046) ,
poi nt er _def aul t (uni que)
]

interface 10 eContainer : |ParseDi spl ayNanme

HRESULT Enun®Obj ects([in] DWORD grfFl ags,
[out] | Enunnknown **ppenun);
HRESULT LockCont ai ner ([in] BOOL fLock);

Segun la declaracion, la interfaz 10/eContainer debe ofrecer todos los métodos de la
interfaz [ParseDisplayName, sean los que sean, mas los métodos EnumObjects y Lock-
Container. Cuando una declaracién de interfaz no menciona ninguna interfaz madre,
se asume que ésta es [Unknown. Por lo tanto, todas las interfaces ofrecen obligatoria-
mente los tres métodos AddRef, Release y Querylnterface.

Tiempo de vida

Los lenguajes mas modernos, como Java y Delphi, tienen tipos nativos que sirven
para representar de forma transparente los punteros a interfaces. Los lenguajes men-
cionados se ocupan automaticamente de la liberacién de los objetos COM, para lo
cual el compilador genera llamadas a los métodos .AddRef'y Release de las interfaces
con que trabaja. Pero en los lenguajes tradicionales como C y C++, tenemos que
ocuparnos explicitamente de llamar a los métodos AddRef'y Release para que el objeto
COM asociado sepa cuando destruirse. Por lo tanto, debemos aprender bien las re-
glas relacionadas con el tiempo de vida.

518 La Cara Oculta de C++ Builder

1. Las funciones que devuelven un puntero a interfaz ya han incrementado el con-
tador de referencia del objeto subyacente. Usted no debe llamar a AddRef.

2. Cuando se asigna una variable que apunta a una interfaz en otra, se debe llamar a
AddRef.

3. Cuando se termina el tiempo de vida de una variable de puntero a interfaz, o se
va a sobrescribir su valor, debemos llamar a Reease.

En nuestro ejemplo de creacion de accesos directos la mayor parte de las lineas se
dedican a garantizar el mantenimiento de las interfaces. Es facil identificar el si-
guiente patrén de programacion:

| Tipolnterfaz* interfaz = Pedirlnterfaz();
try

/1l Wilizar la interfaz
}
_finally

i nterfaz->Rel ease();

En realidad, la mayor parte de las lineas de la funcién CreateLink se han dedicado a
asegurar la liberacion del objeto creado. Dentro de muy poco presentaremos técnicas
para facilitar esta tarea.

Introspeccion

El siguiente simil le serd de utilidad para comprender la relacion entre clases e intet-
faces en COM: un objeto COM es una caja negra con varios paneles de botones.
Cada panel representa una interfaz, y los botones son los métodos declarados por esa
interfaz. El problema consiste en que cada panel tiene una tapa independiente, y en
que inicialmente solamente estd descubierta la tapa de un solo panel (IUnknown). Para
abrir la tapa de cualquier otro panel, debe pulsar un botén especial, que estd presente
en todos los paneles (Querylnterface).

En el ejemplo del inicio del capitulo llamamos a Querylnterface en dos ocasiones dife-
rentes. La primera es la siguiente:

A eCheck(intf->Querylnterface(llD_|IShellLink, (void**) &slink));

En primer lugar, veamos el control de errores. Casi todas las funciones de COM
utilizan cédigos para sefialar incumplimientos de contrato. Los cddigos se represen-
tan mediante el tipo HRESULT, que contiene enteros de 32 bits. El valor especial
S_OK indica que no hubo problemas con la funcién. OkCheck es un procedimiento

El Modelo de Objetos Componentes 519

especifico de C++ Builder, que recibe un valor de tipo HRESULT 'y lanza una ex-
cepcién, como mandan las normas, si hay problemas.

I Interfaces

En cuanto a Querylnterface en si, recibe como primer parametro un identificador dnico
de interfaz, mientras que el segundo pardmetro es un puntero a un puntero a inter-
faz. En C++ moderno quizas hubiéramos utilizado una referencia a un puntero a
interfaz, aunque hubiéramos perdido la posibilidad de pasar 0 en este parametro.
Observe que hay que convertir “a lo bestia” el puntero obtenido en un puntero a
puntero a void. Cosas de este lenguaje.

Querylnterface

Interfaz
por omisién

Existen unas reglas del juego que cualquier implementacién de Querylnterface debe
satisfacer. Este método define una relaciéon matematica de equivalencia entre las in-
terfaces soportadas por un mismo objeto. Supongamos que un objeto implementa
las interfaces [ID_I7, IID_I2 e IID_I3. Entonces se cumple que la relacién entre
interfaces determinada por Querylnterface es:

Simétrica: Si la interfaz I7 puede obtenerse a partir de un puntero a la interfaz
12, se podra también obtener la interfaz I2 a partir de un puntero a I7:

if (11->Querylnterface(l1D 12, (void**) & 2) !=
12->Querylnterface(l1D 11, (void**) & 1))
Showivessage(" | mposi bl el ");

Transitiva: Si de la interfaz 7 puede obtenerse un puntero a I2, y si desde 12
puede obtenerse un puntero I3, también se podra obtener directamente desde I7
un puntero a I3.

if (11->Querylnterface(l1D 12, (void**) & 2) == S K &&
| 2->Querylnterface(l1D 13, (void**) & 3) == S K &&
I 1->Querylnterface(l1D 13, (void**) & 3) != S OK)
Showivessage(" i | nposi bl e!");

Reflexiva: A partir de cualquier puntero a interfaz, siempre puede volver a ob-
tenerse ella misma.

520 La Cara Oculta de C++ Builder

if (11->Querylnterface(l1D 11, (void**) & 1) !'= S OK)
Showivessage("j | nposi bl e!");

Como obtener un objeto COM

Para que una aplicacién pueda crear un objeto definido en otro médulo, sea ejecuta-
ble o DLL, necesitamos funciones y procedimientos definidos por COM. La funcién
mas sencilla que permite crear un objeto COM es CoCreatelnstance.

STDAPI CoCreat el nstance(REFCLSI D rcl sid, LPUNKNOAN pUnkQuter,
DWORD dwd sContext, REFIID riid, LPVO D * ppv);

Cada parametro tiene el siguiente significado:

relsid: Aqui pasamos el identificador de la clase del objeto que deseamos crear.
pUnkOuter: COM ofrece soporte especial para la agregacion de objetos. En este
modelo, un objeto “externo” pueda administrar el tiempo de vida de uno o mas
objetos “internos”, a la vez que permite al cliente trabajar directamente con
punteros a interfaces de los subobjetos.

dwClsContext: Indica qué tipo de servidor deseamos utilizar. Mas adelante vere-
mos que un servidor puede implementarse mediante un DLL o un ejecutable lo-
cal o remoto.

riid: Una vez creado el objeto, se busca determinada interfaz en su interior, para
devolver el puntero a la misma. Este parametro sirve para identificar dicha inter-
faz. En la mayoria de los casos se utiliza [ID_[Unknown.

ppr: Es un puntero a un puntero a una interfaz que sirve para depositar el pun-
tero a la interfaz localizada por CoCreatelnstance.

La siguiente instruccion es utilizada por el ejemplo del principio del capitulo para
obtener el objeto COM. Se pide un objeto de la clase CLSID_Shelll ink; la declara-
ci6én de esta constante reside en el fichero sbloly.h. El objeto que se crea no formara
parte de un agregado (el NULL en el segundo parametro). Nos da lo mismo el tipo
de servidor (CLSCTX_AIL). El puntero de interfaz inicial debe ser de tipo puntero
a IUnknown; mas eficiente hubiera sido pedir un puntero a la interfaz IShe/ll ink, pero
he seguido el camino mas largo para ilustrar mejor el uso de COM.

QA eCheck(CoCreat el nst ance(CLSI D_Shel | Li nk, NULL,
CLSCTX_ALL, I1D_I Unknown, (void**) & ntf));

C++ Builder ofrece una funcién mas conveniente para determinadas situaciones:

_di _I Unknown CreateConbj ect (const GUI D& O asslD);

El Modelo de Objetos Componentes 521

El tipo _di_1Unknown lo define C++ Builder como un “puntero inteligente” a la
interfaz [Unknown; en la siguiente seccioén explicaré de qué se trata. CreateComOlbject
crea un objeto de la clase ClassID, no utiliza agregacion, requiere un servidor local, y
la interfaz inicial que busca es la de tipo [Unknown.

Otra variante de creaciéon de objetos COM la ofrece la siguiente funcién de la VCL:

di _I Unknown Creat eRenpt eContbj ect (const W deStri ng& Machi neNane,
const QU D& ClasslD);

Esta vez COM busca la informacion de la clase indicada en el registro de otra ma-
quina, crea el objeto basado en la clase en el espacio de direcciones de ese ordenador,
y devuelve nuevamente un “puntero” al objeto creado. En el siguiente capitulo vere-
mos como DCOM hace posible esta magia.

Existen otras dos funciones importantes para la creaciéon de objetos COM: Co-
CreatelnstanceEx, que permite obtener varias interfaces a la vez durante la crea-
cién, y CoGetClassObject. Esta tltima es util cuando se quieren crear varias instan-
cias de la misma clase, pero tendremos que esperar al capitulo siguiente para ex-
plicar su funcionamiento.

Punteros inteligentes a interfaces

En el manual del programador de C++ Builder se nos intenta convencer de que el
prefijo _di_, como el que se emplea en _di_Unknown, quiere decir dual interface, o in-
terfaz dual. Es mentira. En realidad quiere decir Dejphi interface; en el capitulo sobre
Automatizaciéon OLE explicaremos qué es en realidad una interfaz dual. La clave del
asunto estd en que C++ Builder define una clase Delphilnterface que, como seguro que
ya usted sospecha, implementa punteros inteligentes a interfaces. Sin embargo, no
voy a utilizar esta clase en mis ejemplos, pues solamente resuelve los problemas de
referencias asociados a la copia de punteros, y no ofrece ningtn tipo de encapsula-
miento a las dos operaciones mas frecuentes en COM: creacién de objetos y llama-

das a Querylnterface.

No obstante, es muy facil crear nuestras propias clases alternativas de punteros inte-
ligentes a interfaces. La siguiente clase, por ejemplo, esta inspirada a medias en la
Delphilnterface de Borland y en una clase homénima descrita en el excelente libro
Essential COM, de Don Box?22,

22 Addison-Wesley, 1998, ISBN 0-201-63446-5

522 La Cara Oculta de C++ Builder

tenpl ate <class T> class TSmartlntf
{
private:
/| Datos privados de |la clase
T t;
publi c:
/1 Constructores
__fastcall TSmartintf();
_ fastcall TSmartIntf(T* intf);
__fastcall TSmartlntf(const GU D& clsid);
__fastcall TSnmartlntf(lUnknown* intf, const GUI D& iid);
/1l El destructor de |a clase
_ fastcall ~TSmartintf();
/1 El operador de asignaci6n
TSmartIntf<T> _ fastcall operator=(T* intf);
/| Operadores de conversi 6n y m scel &neos
operator T*() const;
bool operator !() const;
T** _ fastcall operator &();
T* _ fastcall operator->() const;

b
He definido cuatro diferentes constructores:

tenplate <class T> _ _fastcall TSmartlntf<T> :TSmartlntf()
intf(0) {}

tenplate <class T> _ _fastcall TSmartIntf<T> :TSmartlntf(T* intf)

if (intf 1'=0)
i ntf->AddRef ();
t = intf;

}

tenplate <class T> _ fastcall TSmartlntf<T>::TSnartlntf(
const QU D& cl sid)

QA eCheck(CoCreatel nstance(cl sid, NULL, CLSCTX ALL,
I'1 D_I Unknown, (void**) &t));

}

tenplate <class T> __fastcall TSmartlntf<T> :TSmartlntf(
| Unknown* intf, const QU D& iid)

A eCheck(intf->Querylnterface(iid, (void**) &t));

El destructor de la clase verifica que el puntero a interfaz que contiene no sea nulo,
para ejecutar el método Refease sobre el mismo. Se asigna 0 al puntero para mayor
seguridad:

tenplate <class T> _ fastcall TSmartInft<T>::~TSmartlntf()

if (t '=0) t->Release();
t =0;

El Modelo de Objetos Componentes 523
También se sobrecarga el operador de asignacion.

tenpl ate <class T>
TSmartIntf<T> _ fastcall TSmartlntf<T>::operator=(T* intf)

{
if (intf !'=0) intf->AddRef();
if (t '=0) t->Release();
t =intf;
return *this;
}

¢Por qué no he definido un constructor que reciba como parametro una referencia a
la propia clase TSmartIntf (un constructor de copia), o una version del operador de
asignacion que a la derecha pueda recibir una interfaz inteligente? Pues porque he
incluido un operador que convierte a los objetos de tipo TSmartntf en punteros a la
interfaz subyacente, y porque ya existen versiones del constructor y de la asignacion
que acepta a este ultimo tipo de datos:

tenpl ate <class T> TSmartlntf<T>::operator T*() const

{
}

return t;

El siguiente operador se utiliza para saber si el puntero a interfaz es o no es nulo:

tenpl ate <class T> bool TSmartlntf<T>::operator !() const

return (t !'= 0);

Por dltimo, estos son los clasicos operadores que permiten delegar al puntero a inter-
faz interno las llamadas realizadas sobre la clase TSwartntf:

tenplate <class T> T** _ fastcall TSmartlntf<T>: :operator &)

{
return &t;
}
tenplate <class T> T* _ fastcall TSmartlntf<T>::operator->() const
{
return t;
}

¢Recuerda el ejemplo de creacién de accesos directos? Utilizando la nueva clase, el
codigo necesario adelgaza radicalmente:

void __fastcall CreateLink(const Ansi String& APath,
const WdeString& AFile)
{

TSmar t | nt f <I Unknown> i (CLSI D_Shel I Li nk);
TSmart I ntf <l Shel | Li nk> sl (i, I1D_IShellLink);
sl ->Set Pat h(APat h. c_str());

524 La Cara Oculta de C++ Builder

TSmartIntf<lPersistFile> pf(i, IID IPersistFile);
pf - >Save(AFi |l e, Fal se);

Capitulo

27

Servidores COM

permiten crear un “lenguaje a la medida”, que solamente entienden el pro-

gramador que se lo inventa y un pufiado de celotes. Uno de los mejores
ejemplos es la ATL (ActiveX Template Library), 1a biblioteca de clases de Microsoft
que supuestamente debe ayudarnos a programar para el modelo COM. Lamentable-
mente, C++ Builder basa la programacion de servidores COM, en aras de la tan
traida compatibilidad, en la ATL.

I j L GRAN DEFECTO DE C Y C++ CONSISTE en el uso y abuso de macros, que

Serfa demasiado complicado explicar todos los detalles de la programacion con ATL
a los recién llegados al mundo COM. Por lo tanto, en este capitulo se narra, desde lo
mas basico, la creacion de servidores COM.

Interceptando operaciones en directorios

Cuando estudiamos algun tipo de sistema cliente/servidor (en el sentido mas amplio,
que va mas alld de las bases de datos) y pensamos en algun ejemplo de programacion,
nuestras neuronas adoptan casi inmediatamente el papel de clientes. ¢Los servidores?,
bueno, alguien los debe programar... Sin embargo, en la programacién COM es bas-
tante frecuente que tengamos que desempefiar el papel de servidores.

Por ejemplo, si queremos definir extensiones al Explorador, Windows nos pide que
le suministremos clases COM que implementen determinadas interfaces predefini-
das. Las extensiones mas comunes son los menus de contexto. ¢Ha instalado alguna
vez el programa WinZip en su ordenador? ¢Se ha fijado en que el mend que aparece
cuando se pulsa el botén derecho del ratén sobre un fichero cualquiera tiene una
nueva opcidn, para afiadir a un archivo comprimido? Esto sucede porque WinZip
instala y registra DLLs que actian como servidores dentro del proceso, y que son
utilizadas automdticamente por el Explorador de Windows. Otro ejemplo de exten-
sién se conoce como copy hooks (¢ganchos de copia?), y son médulos que se activan
cuando el usuario va a realizar algin tipo de operaciéon sobre un directorio.

526 La Cara Oculta de C++ Builder

En este capitulo vamos a implementar un cgpy ook, porque aunque es la extension
mas sencilla al Explorador, nos permitira ilustrar todas las fases necesarias para la
creacion de un servidor COM. El objeto se activara cada vez que intentemos eliminar
un directorio que contenga ficheros con extension ¢hp, y nos preguntara si estamos
en nuestros cabales antes de permitir tal atrocidad.

Dentro del proceso, en la misma maquina, remoto...

¢Dénde pueden residir los objetos COM? Existen tres modelos diferentes de servi-
dor:

El objeto reside en una DLL.
El objeto reside en una aplicacién local, dentro del mismo ordenador.
El objeto reside en una aplicacién remota, en otro ordenador de la red.

Los servidores de objetos implementados como DLLs reciben el nombre en inglés
de 7n-process servers, o servidores dentro del proceso. Los controles ActiveX se crean
obligatoriamente mediante servidores de este estilo. La ventaja de los servidores
dentro del proceso es que comparten el mismo espacio de direcciones que la aplica-
ciéon cliente. De esta forma, el puntero a la interfaz que utiliza que cliente apunta a la
verdadera interfaz proporcionada por el objeto, y no es necesatio realizar traduccién
alguna de los parametros en las llamadas a métodos, resultando en tiempos de ejecu-
cién muy eficientes.

Cliente Servidor
(EXE 6 DLL) (DLL)
s>
Interfaz -
Objeto

El siguiente paso son los servidores locales; los programas de Office pertenecen a
esta categoria. La aplicacion servidora puede ejecutarse frecuentemente por si misma,
ademas de efectuar su papel de servidor de objetos. En este modelo, cliente y servi-
dor funcionan sobre espacios de direcciones diferentes y, gracias a las caracteristicas
del modo protegido del procesador, las aplicaciones no tienen acceso directo a las
direcciones ajenas. Por lo tanto, OLE implementa un protocolo de comunicacién
entre aplicaciones simplificado basado en el estandar Remote Procedure Calls, conocido
como LRPC.

Servidores COM 527

(Cliente \ (Servidor \
(EXE 6 DLL) (EXE)
-
Interf;
nieraz Objeto
<]
\. J LRPC \. J
Proxy Stub

En este caso, el objeto del servidor no puede pasar directamente un puntero a inter-
faz a sus clientes. Entonces COM crea, de forma transparente para ambos procesos,
objetos delegados (proxies) en el cliente y en el servidor, que se encargan de la comunica-
ciéon real entre ambos. El cliente piensa que esta trabajando directamente con la in-
terfaz del servidor, pero realmente estd actuando sobre una especie de mando de
distancia. Cuando se produce una llamada a un método, los parametros deben empa-
quetarse en el lado cliente, enviarse via RPC, para que finalmente el servidor los de-
sempaquete. Lo mismo sucede con los valores retornados por el servidor. A este
proceso se le denomina mwarshaling, y mas adelante veremos que ciertas interfaces
ofrecen soporte predefinido para el mismo.

Si el servidor y el cliente se ejecutan en distintos puestos, el protocolo simplificado se
sustituye por el verdadero protocolo de red RPC. RPC permite ejecutar procedi-
mientos remotos pasando por alto incluso las diferencias en la representacion de
tipos de datos entre distintos tipos de procesadores. Por ejemplo, el orden entre el
byte mas significativo y el menos significativo es diferente en los procesadores de
Intel y de Motorola. Por supuesto, el warshaling debe ocuparse de estos detalles.

La implementacion actual de DCOM solamente admite aplicaciones como con-
tenedores remotos de objetos COM, no DLLs. Sin embargo, podemos utilizar
alguna aplicacion en el servidor que nos sirva de enlace con la DLL. Precisa-
mente, Microsoft Transaction Server es una aplicacion de este tipo.

Finalmente, ¢dénde ubicaremos nuestro servidor? Evidentemente, tiene que ser en
un proceso local. ¢DLL o ejecutable? Utilizaremos una DLL, para lograr mejores
tiempos de carga. Por lo tanto, vamos a la primera pagina del Dep6sito de Objetos, y
seleccionamos el icono DLL:

528 La Cara Oculta de C++ Builder

'&;"New Items

Hew |Active><| Multit\erl Proiacnl Forms | Dia\ogsl F'lmeclsl Data Modulasl Busmessl

= m ¢ B B ¥ O
e

Application Batch File Companent Consale Data Module Form
“Wwizard
[MEE] (o, = fad
B =

Library MFC Wfizard OWwWL Wizard Package Project Group Report Resource DLL
Wwizard

=
o S
Service Service Text Thread Object Unit “Wweb Server

Application Application

) Bopy) bt 60 se

oK I Cancel | Help |

Este asistente genera una DLL, que guardamos con el nombre 1VerfyCpp. El coédigo
generado es el siguiente, después de haber eliminado algunos comentarios e incluir
un par de ficheros de cabecera:

#i ncl ude <vcl . h>

#i ncl ude <dir. h>

#i ncl ude <shl obj . h>
#pragma hdrstop

int WNAPI D | EntryPoi nt (H NSTANCE hi nst, unsigned |ong reason,
voi d*)

return 1;

El modo habitual de programar un servidor dentro del proceso, sin embargo, pasa
por crear, mediante el Depésito de Objetos, una ActiveX Library:

Dialogs | Projects I D ata Modules I Business I
Mew Auctive] | tultitier I Project2 I Farms

= vy

£ i

ActiveForm Actives, f (IEWE Automation COM Object
Control Object

Froperty Page Tupe Libram

€ Copy) [rbenit €0 Use

ak. I Cancel | Help |

Una DLL preparada para contener servidores COM debe exportar cuatro funciones:

Servidores COM 529

Funcién Propdésito

D/[RegisterServer Crear entradas de registro del servidor
DI[UnregisterServer Eliminar las entradas del registro
DIiGetClassObject Localizacién y creacion de clases y objetos

D/CanUnloadNow Decide si puede descargarse la DLL de memoria

La plantilla ActiveX Library del Depésito de Objetos crea una DLL con estas funcio-
nes, pero basa su implementacion en la infame ATL.

Carga y descarga de la DLL

Antes de seguir adelante, vamos a crear una clase auxiliar con una sola instancia, que
nos servira para simplificar un par de tareas relacionadas con la DLL que sirve de
anfitriona a nuestra futura clase:

cl ass Thodul e

private:
LONG Ref erences;
HI NSTANCE FI nst ance;
char FName[MAX_PATH] ;
char *GetNane() { return FNare; }
voi d Setlnstance(H NSTANCE hi nst)

Get Modul eFi | eNanme(hi nst, FName, MAX PATH);
}
public:
TModul e() : References(0) {}
void _ fastcall Lock()

I nterl ockedl ncrement (&Ref er ences) ;
void _ fastcall UnLock()
I nterl ockedDecr enment (&Ref er ences) ;

}
HRESULT __fastcall CanUnl oad()
{

}
__property H NSTANCE | nstance =

{ read = FInstance, wite = Setlnstance };
__property char *Nane =
{ read = GetNane };
} Modul €;

return References == 0 ? S OK: S FALSE;

Por una parte, la clase TModule define las funciones Lock y UnlLock, que mantienen un
contador de referencias al médulo. He definido también una funcién CanUnload que
indica si el nimero de referencias es cero, para poder desactivar el médulo. ¢Ha ob-
servado las funciones que se utilizan para incrementar y decrementar el contador? Se
trata de funciones del API de Windows que garantizan la consistencia del contador

530 La Cara Oculta de C++ Builder

en entornos potencialmente concurrentes. Tome nota de estas funciones porque las
volveremos a ver mas adelante.

Ademas, he incluido un par de propiedades, Instance y Name, que devuelven respecti-
vamente el nimero de instancia de la DLL y el nombre del fichero, incluyendo el
directorio. La inicializacién del numero de instancia, y en consecuencia del nombre
del fichero base, se realiza en el punto de entrada de la DLL:

int WNAPI Di| EntryPoint (H NSTANCE hi nst, unsigned |ong reason,
voi d*)

Modul e. | nst ance = hi nst;
return 1;

El objetivo final de toda esta parafernalia es implementar una funcién con el nombre
predefinido D//CanUnloadNow y exportarla para que pueda ser ejecutada desde fuera
de la DLL:

STDAPI __export D | CanUnl oadNow()
{

}

return Mdul e. CanUnl oad();

Esta es una de las cuatro funciones que debe implementar toda DLL decente que
intente albergar un servidor COM. Asi que podemos hacer como el Conde de Mon-
tecristo, y tachar a uno de nuestros enemigos de la lista.

OLE y el registro de Windows

Para que las aplicaciones clientes puedan sacar provecho de los servidores COM,
estos ultimos deben anunciarse como tales en algun lugar. El tablén de anuncios de
Windows es el Registro de Configuraciones. Los datos acerca de servidores COM se
guardan bajo la clave HKEY_CLASSES_ROOT. Estas son, por ejemplo, las entradas
del registro asociadas con un servidor COM programado con C++ Builder; el for-
mato es el de los ficheros de exportacion del Editor del Registro:

[HKEY_CLASSES ROOT\ SenfSer ver . Semaf or o]

@" Senaf or oObj ect "

[HKEY_CLASSES ROOT\ Senter ver . Semaf or o\ d si d]
@"{9346D962- 195A- 11D1- 9412- 00A024562074} "

[HKEY_CLASSES ROOT\ CLSI D\ { 9346D962- 195A- 11D1- 9412- 00A024562074}]
@" Senaf or obj ect "

[HKEY_CLASSES_ROOT\ CLSI D\ { 9346D962- 195A- 11D1- 9412-
00A024562074}\ Local Ser ver 32]

@" C:\\ MARTEENS\ \ PROGS\ \ SEMSERVER\ \ SEMSERVER. EXE"
[HKEY_CLASSES ROOT\ CLSI D\ { 9346D962- 195A- 11D1- 9412-
00A024562074}\ Pr ogl D]

@" Senfter ver . Senaf or 0"

Servidores COM 531

[HKEY_CLASSES ROOT\ CLSI D\ { 9346D962- 195A- 11D1- 9412-
00A024562074}\ Ver si on]

@"1.0"

[HKEY_CLASSES ROOT\ CLSI D\ { 9346D962- 195A- 11D1- 9412-
00A024562074}\ TypelLi b]

@"{9346D960- 195A- 11D1- 9412- 00A024562074} "

Para explicar el significado de esta informacion, lo mejor es mostrar paso a paso lo
que ocurre cuando una aplicacién pide la creacién de un objeto COM. Es mas facil
comenzar con una llamada sencilla a CoCreatelnstance:

I Unknown *intf;
CoCr eat el nstance(CLSI D_I Semaf oro, NULL, CLSCTX ALL,
Il D_I Unknown, (void**) & ntf);

El identificador de clase se busca en la clave CLLSID de la raiz de las clases del
registro: HKEY CLASSES_ROOT.

Una vez encontrada la clave, se busca una subclave dentro de la misma que nos
indique de qué tipo de servidor se trata. Los tipos posibles son: IuprocServer32,
para servidores dentro del proceso, y LocalServer32, para servidores locales im-
plementados como ejecutables.

La clave encontrada contiene como valor predeterminado la ruta a la DLL o al
ejecutable que actuard como servidor. Aqui nos detendremos, de momento.

La mayoria de los desarrolladores que se inician en el mundo de la programacion
COM perciben como una tragedia el tener que trabajar con identificadores globales
de clase. No veo por qué. Cuando usted tenga que crear un objeto de una clase, sen-
cillamente tendra a su disposicién un fichero de cabecera de C que contendra las
declaraciones necesarias, incluyendo los identificadores de clase y de interfaz. En
caso contrario, tendrd todas las facilidades para generar dicho fichero; se lo prometo,
pero tendrd que esperar un poco, hasta ver las bibliotecas de tipo, para comprender el
motivo.

No obstante, reconozco que en ocasiones puede ser mas comodo disponer de una
representacion “legible” del nombre de una clase, que se traduzca univocamente a un
CLSID. En la jerga de COM, a estos nombres se les conoce como identificadores de
programas, & programmatic identifiers. Las siguientes funciones convierten un identifica-
dor de programa en un identificador de clase, y viceversa:

HRESULT CLSI DFr onProgl D(const OLECHAR *pwszProgl D, CLSID *pcl sid);
HRESULT Progl DFronCLSI D{ REFCLSI D rcl sid, OLECHAR **pwszProgl D);
/1 ¢Sabéis una cosa? jGdio | a notaci 6n hangaral!

Para que la conversion sea eficiente en las dos direcciones, se deben almacenar en el
registro entradas redundantes. Directamente dentro de HKEY_CLASSES_ROOT se
almacena una clave con el identificador de programa; casi siempre, éste tiene el for-
mato NowmbreServidor.NombreClase. Dentro de dicha clave, existe una subclave Clsid,

532 La Cara Oculta de C++ Builder

que naturalmente contiene el identificador de clase correspondiente. Por su parte, la
clave que explicamos primero contiene una subclave Progld que nos indica el identifi-
cador de programa. Circuito cerrado y asunto concluido.

Bueno, no tan rapido. La siguiente complicacion surge por la existencia de identi-
ficadores de programa dependientes e independientes de la versién. Como ejet-
cicio, si tiene Word instalado en su maquina, utilice el Editor del Registro para
explorar toda la basura que graba este procesador de textos en su maquina.

Registrando el servidor

Existen técnicas estindar para registrar un servidor COM, y dependen de si el servi-
dor es una DLL o un ejecutable. En el primer caso, la DLL debe implementar y ex-
portar las siguientes dos funciones:

STDAPI __export D | Regi sterServer(void);
STDAPI __export DI UnregisterServer(void);

Si se trata de un ejecutable, el convenio para registrarlo es invocarlo con el parametro
/ regserver, o sin parametros. En el primer caso, solamente se graban las entradas del
registro y la ejecucién del programa termina inmediatamente. Para borrar las entradas
del registro, el convenio consiste en utilizar el parametro /unregserver.

Inprise ofrece el programa zregsur.exe, cuyo codigo fuente se encuentra entre los
programas de demostracién de C++ Builder, para registrar indistintamente set-
vidores ejecutables y bibliotecas dinamicas.

Necesitamos un GUID que identifique a la clase que vamos a implementar. Para
obtenetlo, colocamos el cursor en cualquier linea vacia del editor de cédigo y pulsa-
mos la combinacién de teclas CTRL+MAY+G, para obtener la siguiente cadena:

[{26042460- DFO2- 11D2- B67D- 0000ESD7F7B2} ']

Tenemos que maquillar la cadena obtenida para que sea utilizable por C++ Builder:

GUID CLSID VerifyCpp = {0x26042460L, OxDF02, O0x11D2,
{0xB6, Ox7D, 0x00, 0x00, OXE8, 0xD7, OxF7, OxB2}};

Antes de programar a D//RegisterServer y su compafiera, voy a definir una funcién
auxiliar para crear mas facilmente las entradas en el registro:

void _ fastcall CreateStrKey(void *Raiz, const char *d ave,
const char *Param const char *Datos)

Servidores COM 533

{
HKEY hkey;
long error = RegCreateKey(Raiz, Cave, &hkey);
if (error == ERROR_SUCCESS)
{
error = RegSet Val ueEx(hkey, Param 0, REG SZ,
(const unsigned char*) Datos, strlen(Datos) + 1);
Regd oseKey(hkey);
}
if (error !'= ERROR_SUCCESS)
throw Exception("Error creando cl ave");
}

Ya es facil implementar las dos funciones que tocan el Registro; primero la que lo
limpia, y después la que lo ensucia:

STDAPI __export Dl | UnregisterServer()

HRESULT Rslt = S OK;
i f (RegDel et eKey(HKEY_CLASSES_ ROOT,
"Directory\\shel | ex\\ CopyHookHandl er s\\ Veri f yCpp")
= ERROR_SUCCESS) Rslt = S FALSE;
i f (RegDel et eKey(HKEY_CLASSES_ ROOT,
"CLSI D\ {26042460- DF02- 11D2- B67D- 0000E8D7F7B2} "
"\\ 1 nprocServer32") != ERROR SUCCESS) Rslt = S_FALSE;
i f (RegDel et eKey(HKEY_CLASSES_ROOCT,
" CLSI D\ {26042460- DF02- 11D2- B67D- 0000E8D7F7B2} ")
1= ERROR_SUCCESS) Rslt = S FALSE;
return Rslt;
}

STDAPI __export D | Regi sterServer()

{
try

Creat eSt r Key(HKEY_CLASSES ROOT,
"CLSI D\ {26042460- DF02- 11D2- B67D- 0000E8D7F7B2} ",
0, "VerifyCpp");
Cr eat eSt r Key(HKEY_CLASSES_ROOT,
"CLSI D\ {26042460- DF02- 11D2- B67D- 0000E8D7F7B2} "
"\\'l nprocServer 32", 0, Modul e. Nane);
Cr eat eSt r Key(HKEY_CLASSES_ROOT,
"CLSI D\ {26042460- DF02- 11D2- B67D- 0000E8D7F7B2} "
"\\'l nprocServer 32", "Threadi nghdel ", "Apartnment");
Creat eSt r Key(HKEY_CLASSES ROOT,
"Directory\\shel | ex\\ CopyHookHandl er s\ \ Veri f yCpp",
0, "{26042460- DF02- 11D2- B67D- 0000E8D7F7B2}") ;

}
catch(...)

Dl | Unregi sterServer();
return SELFREG E CLASS;

}
return S_OK;

Es facil reconocer la grabacion de las entradas que he explicado en la seccién ante-
rior. Aqui, sin embargo, no estoy grabando informacién para que los clientes utilicen

534 La Cara Oculta de C++ Builder

identificadores de programa. Para las extensiones del Explorador, ademas, hace falta
afiadir claves adicionales, pues el Explorador no va a revisar todas las clases registra-
das en el sistema, crear instancias de ellas y determinar cual implementa una exten-

sion y cual no. En el caso de los copy hooks, debemos afiadir valores en las siguientes
claves:

HKEY_CLASSES ROOT\ Di r ect or y\ shel | ex\ CopyHookHandl er s
HKEY_LOCAL_MACHI NE\ SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on\
Shel | Ext ensi ons\ Apr oved

La segunda clave es necesaria Gnicamente cuando se quiere registrar la extension en
Windows NT. Esto se lo dejo como ejercicio.

La funcién D//[RegisterServer asigna al parametro ThreadingModel el valor Apartment.
Este tiene que ver con el modelo de concurrencia permitido por el servidor, no-
vedad introducida por la version COM para objetos remotos (DCOM). Los mo-
delos de concurrencia seran estudiados en los proximos capitulos.

Implementacion de interfaces

Ahora veremos como se crea la clase, en el sentido tradicional del término, que im-
plementard los métodos ofrecidos por la interfaz [CopyHook, que no es otra cosa para
C++ que una clase abstracta.

class TVerifyCpp : public | CopyHook

.
private:
LONG Ref erenci as;
publi c:
TVerifyCpp();
STDMETHODI MP Queryl nterface(REFI I D, LPVO D*);
STDVETHODI MP_(ULONG) AddRef () ;
STDVETHODI MP_(ULONG) Rel ease() ;
STDVETHODI MP_(Ul NT) CopyCal | back(HAND, Ul NT wFunc, Ul NT,
LPCSTR pszSrcFile, DWORD, LPCSTR, DWORD);
h

La clase T1 erifyCpp hereda de la clase ICopyHook, definida en shlobj, y que declara los
métodos de la interfaz correspondiente como funciones miembros virtuales puras.
Por lo tanto, si queremos poder crear instancias de 1T erifyCpp tendremos que pro-
porcionar un cuerpo a cada uno de estos métodos. Los tres métodos que siguen al
constructor son nuestros viejos conocidos soportados por IUnknown.

Se supone que CopyCallback, el método especifico de ICopyHook, es llamado por
Windows cuando vamos a realizar alguna operacion sobre un directorio. wEunc es la

Servidores COM 535

operacioén que se va a ejecutar, y pszSrelile es el nombre del directorio origen de la
operacion. Esta funcion puede devolver uno de los tres valores siguientes:

Valor de retorno Significado

IDYES Se aprueba la operacion

IDNO Cancela solamente esta operacién
IDCANCEL Cancela esta operacion y las siguientes

Primero nos ocuparemos de contar referencias, implementando los métodos .AddRef
y Release:

TVerifyCpp:: TVeri fyCpp() : Referencias(0) {}
STDVETHODI MP_(ULONG) TVeri f yCpp: : AddRef ()

Modul e. Lock();
return I nterlockedl ncrenent (&Ref erenci as) ;

}
STDVETHODI MP_(ULONG) TVer i f yCpp: : Rel ease()
{
Modul e. UnLock();
LONG r = Interl ockedDecr enent (&Ref er enci as) ;
if (r ==0)
delete this;
return r;
}

He vuelto a utilizar a Interlockedlncrement y a su pareja para mantener un contador con
las referencias a un objeto de la clase. Ademas, es necesario manejar también las refe-
rencias al médulo, para lo cual se utilizan los métodos Lock y Unlock definidos para
la variable global Module. Obsetrve en Release como se libera la memoria del objeto
cuando las referencias al mismo caen a cero. Quiere decir que todas las instancias de
la clase TT erifyCpp deben crearse en memoria dinamica.

Para completar la implementacion de los métodos de IUnknown debemos dar un
cuerpo a Querylnterface:

STDVETHODI MP TVer i fyCpp: : Querylnterface(REFIID riid, LPVOD* ppv)

{
if (riid ==11D_Unknown || riid == 11D_| Shel | CopyHook)
*ppv = this;
el se
return E_NO NTERFACE;
AddRef () ;
return S_OK;
}

Nuestra clase implementa la interfaz identificada mediante IID_IShellCopyHook, defi-
nida por Windows. Pero también implementa explicitamente la interfaz I[Unknown,
aunque esta implicitamente incluida dentro de ICopyHook. Cuando se pide cualquiera

536 La Cara Oculta de C++ Builder

de estas dos interfaces, se devuelve directamente un puntero al propio objeto. Si la

clase tuviera que implementar mas de una interfaz explicita, tendrfamos que utilizar
conversiones dinamicas (dynamic casi) para devolver el puntero adecuado dentro del
objeto.

MUY IMPORTANTE

Obsetrve como se llama a AddRef cuando se devuelve sin problemas un puntero a
interfaz. Esta es una de las reglas del juego que comentaba en el capitulo ante-
rior: el cliente no tiene que llamar a 4ddRef después de obtener una interfaz me-
diante Querylnterface, porque este método ya se encarga de ello. Durante la escti-
tura del presente capitulo, se me olvidé ese pequefio detalle, y el ejemplo fallaba
de forma ignominiosa. Después de consumir litros de café y toneladas de aspi-
rina, logré darme cuenta de la omisién, pero me quedé preocupado por mi salud
gastrica. Han pasado un par de meses desde entonces y ain estoy vivo.

Finalmente, ésta es la implementacion del método CopyCallback declarado en la inter-
taz ICopyHook:

STDVETHCODI MP_(Ul NT) CopyCal | back(HWND hwnd, U NT wFunc, U NT wFl ags,
LPCSTR pszSrcFile, DWORD dwSrcAttribs, LPCSTR pszDestFile,
DWORD dwDest Attri bs)

if (WFunc == FO DELETE)

{
struct ffblk ffblk;

char fichero[256];
strcpy(fichero, pszSrcFile);
strcat (fichero, "*.cpp");
int done = findfirst(fichero, & fblk, 0);
findcl ose(&f fl bk);
if (done == 0)
return MessageBox(hwnd, "¢;Me cepillo este directorio?",
"jPrecauci 6n!", MB_YESNOCANCEL) ;

}
return | DYES;

El huevo, la gallina y las fabricas de clases

Una de las interfaces importantes definidas por COM es [ClassFactory, que propor-
ciona los servicios necesarios para la creacion de objetos. De esta manera COM re-
suelve el eterno dilema de quién fue primero, si el huevo, la gallina o la tortilla de
patatas: si usted quiere crear un objeto, la aplicacién o DLL servidora debe ser capaz
de ofrecer primero una interfaz IC/assFactory para que sea ésta quien se encargue de la
creacion. Los clases que soportan esta interfaz reciben el nombre de fibricas de clases.

Servidores COM 537

¢Para qué se necesitan fabricas de clases? Piense por un momento en una clase de
C++ “clasica”, y en la forma que se llama al constructor en el caso de los objetos
creados en la memoria dindmica. De cierto modo, se puede ver al constructor como
un método especial estatico (static) o de clase; de hecho, la notacién utilizada por un
lenguaje como Delphi refuerza esta percepcion. ¢Tenemos constructores o métodos
estaticos en COM? Por simplicidad del modelo, no existe tal posibilidad actualmente.
Sin embargo, para simular estos recursos puede declararse una clase auxiliar, de la
que siempre se creard una sola instancia, y utilizar los métodos de esta instancia
como métodos globales de la clase principal, que se pueden ejecutar existan o no
objetos de esta clase.

¢Hay algo que nos obligue a utilizar fabricas de clase como método de construccion?
Bueno, no es necesario que estos “objetos de clase” se implementen como derivados
de IClassFactory. Pudiéramos utilizar nuestra propia interfaz personal para la instan-
ciacién ... siempre y cuando advirtiésemos a los clientes del cambio. Ahora bien, si
existe un estandar, ¢para qué inventarnos otro? Ademas, ciertas aplicaciones COM
exigen que los objetos que manejan se creen mediante [ClassFactory; una de ellas es
Microsoft Transaction Server.

Como todas las interfaces, IClassFactory contiene los métodos de 1Unknown, ademas
de definir sus métodos especificos:

HRESULT Creat el nst ance(
| Uhknown *pUnkCQuter, REFIID riid, LPVO D *ppv);
HRESULT LockServer (BOOL fLock);

Createlnstance hace el papel de constructor de objetos: se le suministra el identificador
unico de clase y, si puede crear objetos de esa clase, devuelve un puntero a la interfaz
IUnfknown del objeto recién creado. LockServer, por su parte, mantiene a la aplicacion
servidora en memoria, para acelerar la creacién posterior de objetos por la misma.

La idea es que todo servidor COM debe crear una instancia de un objeto que imple-
mente la interfaz IC/assFactory, y ponetlo a disposicion del sistema operativo. En el
caso de un ejecutable, se debe llamar a la funciéon CoRegisterClassObject por cada fa-
brica de clase soportada. En el caso de una DLL, se debe exportar la siguiente fun-
cién, para que sea ejecutada por el sistema:

STDAPI __export DI Get Gl assObj ect (REFCLSID rclsid, REFIID riid,
LPVA D* ppv);

Ya estamos en condiciones de terminar la descripcion del proceso de creacion de un
objeto componente. Al principio del capitulo habiamos esbozado los primeros pasos,
que se pueden resumir del siguiente modo:

538 La Cara Oculta de C++ Builder

Dado un identificador de clase o de programa, el sistema operativo se las apafia
con el Registro para encontrar si la clase reside en un EXE o en una DLL, y eje-
cuta el correspondiente servidor.

A continuacién:

Se le solicita al servidor una fabrica de clase para la clase que queremos instan-
ciar. Si el servidor es una DLL, el sistema llama a su funcion D/GetClassObject. Si
es un EXE, se busca dentro de la lista de fabricas de clase registradas.

Una vez localizado el objeto, se llama a su método Createlnstance para generar el
objeto deseado.

Conociendo el algoritmo anterior podemos plantearnos optimizaciones al proceso de
creacion de un objeto. Silo que deseamos es crear varios objetos de una misma clase,
por ejemplo, en vez de lamar a CoCreatelnstance varias veces tenemos la posibilidad de
llamar una sola vez a la funcién CoGetClassObject, y una vez que tenemos un puntero
a la interfaz IClassFactory, lamamos cuantas veces sea necesatio a Createlnstance.

Implementando la fabrica de clases

Para terminar con nuestro servidor, definiremos una clase que implemente la interfaz
IClassFactory:

class TVerifyCppCF : public | C assFactory

{
public:
STDVETHODI MP_(ULONG) AddRef ()

Modul e. Lock() ;
return 2;

}
STDVETHODI MP_(ULONG) Rel ease()

Modul e. UnLock();
return 1;

}
STDVETHODI MP Queryl nterface(REFI I D, LPVO D*);
STDMVETHODI MP Cr eat el nst ance(

| Uhknown *pUnkCQuter, REFIID riid, LPVO D *ppv);
STDMVETHODI MP LockSer ver (BOOL f Lock) ;

}s

iUn momento! ;Por qué esta implementacion tan extrafia para .AddRefy para Release?
Es que las instancias de esta clase van a residir en memoria estatica, y no nos interesa
que Release destruya el objeto. Por lo tanto, tras cualquier llamada a Release, nuestro
contador de referencias valdra siempre 7. Eso si, nos debemos ocupar del contador
de referencias del médulo.

Servidores COM 539

El método Querylnterface se implementa con igual facilidad:

STDMETHODI MP TVer i fyCppCF: : Querylnterface(REFIID riid, LPVOD* ppv)

{
if (riid==11D_IUnknown || riid == 11D_|C assFactory)
*ppv = this;
el se
return E_NO NTERFACE;
AddRef () ;
return S_OK;
}

Pero el método mas importante es Createlnstance. Para simplificar, no soportaremos la
creacion de este objeto como parte de un agregado. Y debemos acordarnos de in-
crementar el contador de referencias del objeto recién creado:

STDVETHODI MP TVer i f yCppCF: : Cr eat el nst ance(
| Unknown *pUnkCQuter, REFIID riid, LPVO D *ppv)
{

*ppv = 0;
if (pUnkQuter != 0)
return CLASS_E NOAGGREGATI ON;
TVerifyCpp *vcpp = new TVeri fyCpp;
if (vepp == 0)
return E_OUTOFMEMORY,;
vcpp- >AddRef () ;
*ppv = LPVO D(vcpp);
return S_OK;

En la implementacién de LockServer nos ocupamos de llamar a los métodos Lock y

Unlock del objeto médulo que creamos al principio del capitulo. LockServer es utili-
zado por los clientes cuando, por alguna razoén, les interesa mantener el servidor en
memortia:

STDVETHCODI MP TVer i f yCppCF: : LockSer ver (BOOL fLock)

if (fLock)

Modul e. Lock() ;
el se

Mbdul e. UnLock() ;
return S_OK;

Finalmente, he aqui la implementacion de la funcion D/iGetClassObject:

STDAPI __export DI Get Cl assObject (REFCLSID rclsid, REFIID riid,
void **ppv)
{
static TVerifyCppCF veri fyCppCF;
if (rclsid == CLSID VerifyCpp)
return verifyCppCF. Querylnterface(riid, ppv);
*ppv = 0;

540 La Cara Oculta de C++ Builder

return CLASS_E CLASSNOTAVAI LABLE;

Como nuestro servidor solamente implementa una clase COM, debe reaccionar Gni-
camente cuanto el parametro ro/sid trae el GUID de dicha clase. La fabrica de clases
se crea como un objeto estatico, y la peticion del objeto de clase se satisface llamando
a Querylnterface; de este modo, se llama indirectamente a 4ddRef sobre el dicho objeto.

Los servidores situados en ejecutables deben crear un objeto de la fabrica de cla-
ses, y registratlo llamando a la funcién CoRegisterClassObject, al comienzo de la eje-
cucién del programa.

Capitulo

28

Automatizacion OLE:
controladores

S EN ESTE PUNTO DONDE LOS MANUALES DE C++ Builder realmente co-

mienzan sus explicaciones. Se denomina Automatizacion OLE al area de COM

que permite manejar métodos de objetos mediante una interfaz de macros.
Veremos como esta técnica se amplia y mejora mediante el uso de #nserfaces duales. E1
plan de trabajo es sencillo. En este primer capitulo actuaremos cémo clientes, o
como dice la jerga, controladores de automatizacion. En el préximo capitulo aprende-
remos a programar los servidores.

¢Por qué existe la Automatizacion OLE?

Quizas la interfaz mas popular de COM sea [Dispatch, que define los servicios de
antomatizacion OLE (OLE Auntomation). Esta es una forma de ejecutar métodos de un
objeto COM, que puede residir en una DLL o en otra aplicacién. La llamada a los
métodos remotos puede efectuarse por medio del nombre de los mismos, en el estilo
de un lenguaje de macros. De hecho, la automatizaciéon OLE sustituye al viejo meca-
nismo de ejecucién de macros de DDE. La automatizacién OLE se ha hecho po-
pular gracias sobre todo a que Word, y los restantes productos de Office, pueden
actuar como servidores de automatizacién. Pero muchos otros productos comienzan
a aprovechar esta técnica, ya sea como servidores o controladores. Por ejemplo, MS
SQL Server puede controlar objetos de automatizacion desde seripts programados en
Transact-SQL. La automatizacién también es importante para C++ Builder, pues es
una de las formas en que se implementan las técnicas de acceso a bases de datos
remotas con Midas. C++ Builder define una interfaz IDataBroker, derivada de IDis-
patch, y por medio de la misma comunica las aplicaciones clientes con los servidores
de aplicaciones.

He dicho que la automatizacion OLE esta basada en macros. Pero, ¢no es obsoleto y
peligroso recurrir a macros para el control de objetos? Por supuesto que si: creo que
a estas alturas a nadie se le ocurrirfa defender la falta de comprobacién estatica de
tipos, excepto a los adictos a Visual Basic. Y fue principalmente por culpa de Visual

542 La Cara Oculta de C++ Builder

Basic que Microsoft disefié [Dispatch. Colateralmente, sin embargo, la automatizacion
OLE ofrece algunos beneficios, siendo el principal la implementacién implicita del
marshaling: la organizacion de los datos para su transferencia entre procesos. Ademas,
y como veremos mas adelante, el uso de interfaces duales permite evitar muchos de
los riesgos de esta técnica.

No es que yo tenga inclinaciones sadicas, pero es mi obligacién mostrarle la declara-
cion de IDisparch en IDL:

[obj ect, uui d(00020400- 0000- 0000- CO00- 000000000046)]
interface |Dispatch : | Unknown
{
HRESULT Get Typel nf oCount ([out] U NT *pctinfo);
HRESULT Get Typel nf o(
[in] U NT iTlnfo,
[in] LADIcid,
[out] |Typelnfo **ppTlnfo);
HRESULT Get | DsOf Nanes(
[in] REFIIDTriid,
[in, size_is(cNanes)] LPOLESTR *rgszNanes,
[in] U NT cNanes,
[in] LADIcid,
[out, size_is(cNanes)] DI SPID *rgid);
HRESULT | nvoke(
[in] DSPID id,
[in] REFIIDriid,
[in] LAODIcid,
[in] WORD wFl ags,
[in, out] DI SPPARAMS *pDi spPar ans,
[out] VARIANT *pVar Resul t,
[out] EXCEPI NFO *pExcepl nf o,
[out] UINT *puArgErr);

No se preocupe, yo mismo soy incapaz de recordar todos los parametros de estas
funciones. En realidad, nunca he utilizado directamente la interfaz IDisparch. Dada su
complejidad, la mayoria de los lenguajes ofrece algin tipo de encapsulamiento para
realizar llamadas a la misma. En Delphi y en Visual Basic, ese encapsulamiento nos
puede llegar a engafiar, de modo que no nos demos cuenta de que realmente estamos
utilizando macros. En C++ existen clases para esta tarea, que estudiaremos en breve.

El nucleo de [Dispatch es el método Invoke, que sirve para ejecutar una macro en el
servidor. Para tal proposito, Invoke permite la especificacion de parametros de entrada
y salida, de valores de retorno para funciones y la propagacion de excepciones desde
el servidor al cliente. Ahora bien, Invoke no utiliza cadenas de caracteres para especi-
ficar el método a ejecutar. Por el contratio, el método se identifica mediante un valor
numérico, que se pasa en el parametro i, de tipo DISPID. Lo mismo sucede con los
nombres de pardmetros. Invoke admite pasar paraimetros por nombre a los métodos
que activa, lo cual evita que tengamos que recordar siempre la posicion exacta de un
parametro cuando la macro tiene muchos.

Automatizacién OLE: controladores 543

La funcién GeZIDsOfNanzes es la encargada de traducir los nombres de métodos y de
parametros en codigos numéricos, para pasarlos posteriormente a Invoke. ;Por qué la
ejecucién de una macro se realiza en estos dos pasos, traduccion a identificador nu-
mérico y posterior ejecucion? La razén es evidente: la lucha por la eficiencia. Si va-
mos a ejecutar un método mediante Invoke varias veces consecutivas, quizas dentro
de un bucle, no queremos que en cada ejecucion el objeto tenga que efectuar una
larga serie de comparaciones de cadenas de caracteres; mas rapido es comparar dos
enteros.

¢Coémo se asignan estos valores enteros a los métodos de automatizacién? En el
lenguaje IDL se utiliza un tipo especial de declaracion: las interfaces de despacho, o
dispatch interfaces:

[uui d(20D56981- 3BA7- 11D2- 837B- 0000E8D7F7B2)]
di spinterface | GenericReport

nmet hods:
[id(1)] void Print([in] BOOL DoSetup);
[id(2)] void Preview);

Esta no es una interfaz, en el sentido normal de la palabra, sino que es una tabla para
el consumo interno del objeto que implemente una interfaz de automatizacién con
los dos métodos anteriotes.

Controladores de automatizacion con variantes

A los clientes de objetos de automatizacion se les llama controladores de automatizacion.
Un controlador de automatizacién escrito en C++ Builder puede obtener un puntero
a la interfaz IDispatch de un objeto de automatizacién y almacenarlo en una variable
de tipo Variant mediante una llamada a la funcion estatica CreateObject, de la propia
clase Variant.

static Variant _ fastcall CreateObject(const String& ProglD);

Esta funcion utiliza el identificador de programa de la clase, en vez del identificador
de clase. Una vez que tenemos la interfaz [Dispatch bien oculta dentro del variante,
podemos utilizar el método Exec para ejecutar las macros que deseemos:

void _ fastcall TForml::Buttonld ick(TObject *Sender)
{

Variant word = Variant:: CreateQbject("Wrd.Basic");

wor d. Exec(Procedur e(" AppShow"));

wor d. Exec(Procedure("Fil eNewDef aul t"));

for (int i =0; i < Menpl->Lines->Count; i++)

wor d. Exec(Procedure("lnsert") <<
(Menpl->Lines->Strings[i] + "\n"));

544 La Cara Oculta de C++ Builder

wor d. Exec(Procedure("Fil eSaveAs") <<
ChangeFi | eExt (Appl i cati on- >ExeNane, ".doc");

El ejemplo anterior es un clasico de los libros de C++ Builder. Hemos obtenido un
puntero a un objeto de la clase Word. Basic, exportada por Microsoft Word. Los méto-
dos que se llaman a continuacioén son métodos exportados por esa clase. El primero,
AppShow, hace visible a Word, el segundo, FileNewDefanlt, crea un fichero con pro-
piedades por omision, Insert inserta una linea y FileSaveAs guarda el fichero en el
directorio de la aplicacion. No hay que destruir explicitamente al objeto creado, pues
el compilador se encarga de hacerlo llamando al destructor de Variant cuando desa-
parece la variable local word. St quisiéramos destruir el objeto explicitamente, ten-
driamos que llamar al método Clear, que asigna el valor especial Unassigned:

word. C ear();
/1 Equival ente a:
word = Unassi gned;

Para especificar los nombres de métodos o macros se utilizan las clases Procedure y
Function. En el ejemplo anterior los objetos de estas clases se crean zn/ine, de forma
ano6nima, pero también pueden crearse explicitamente, sobre todo en los casos en
que buscamos mayor eficiencia. Por ejemplo:

Procedure insert("Insert");
for (int i = 0; i < Menol->Lines->Count; i++)
wor d. Exec(i nsert << (Menpl->Lines->Strings[i] + "\n"));

Propiedades OLE y parametros por nombre

También puede controlarse Word mediante la clase Word. Application, a partir de Of-
tice 97. Al parecer, Word. Basic esta destinada a desaparecer en proximas versiones del
producto. En vez de definir un sinniimero de métodos en una sola y monstruosa
clase, con las nuevas clases se crea una jerarquia de objetos: un objeto de clase App/i-
cation contiene un puntero a una coleccién Documents, que contiene objetos de tipo
Document, etcétera, etcétera. El siguiente ejemplo es equivalente al anterior:

void _ fastcall TFormil::Button2dick(TCbject *Sender)
{
Variant WApp = Variant:: CreateCbj ect ("Word. Application");
WApp. A ePropertySet ("Visible", True);
WApp. A ePropertyGet ("Docunment s") . d eFunction("Add");
Vari ant Wboc = WApp. O ePropertyGet ("ActiveDocunent");
WDoc. A ePropertyGet ("Content"). Exec(
Procedure("InsertAfter") << "Mra |l o que hago con Wrd\n");
WDoc. Exec(Procedur e(" SaveAs") << NamedPar n{
"Fi |l eName", ChangeFil eExt (Application->ExeNanme, ".doc")));

Automatizacion OLE: controladores 545

Aqui hay novedades. Las interfaces dispatch ofrecen soporte para propiedades, que
internamente se implementan mediante métodos de lectura y escritura. Los métodos
OleGetProperty y OleSetProperty sirven para leer y modificar dichas propiedades:

WApp. A ePropertySet ("Visible", True);
WApp. A ePropertyGet ("Docunments"). d eFunction("Add");

En la dltima instruccién del ejemplo he mostrado un ejemplo de cémo utilizar un
pardmetro con nombre:

WDoc. Exec(Procedur e(" SaveAs") << NamedPar m(
"Fi |l eName", ChangeFil eExt (Application->ExeNanme, ".doc")));

Resulta que el método Saveds, del objeto Document de Word, tiene nada mas y nada
menos que once parametros. De todos ellos, solamente nos importa el primero, pues
los restantes van a utilizar valores por omisién. Podiamos haber escrito esa instruc-
ci6én de esta otra forma, aprovechando que el parimetro que suministramos es el
primero:

WDoc. Exec(Procedur e(" SaveAs") <<
ChangeFi | eExt (Appl i cati on- >ExeNane, ".doc"));

Recuerde que esta rocambolesca sintaxis se traduce, en definitiva, a llamadas al mé-
todo GerIDsOfNames y en operaciones sobre los parametros de Invoke.

Interfaces duales

A pesar de la inseguridad que provoca la carencia de verificaciones estaticas de tipos,
hay que reconocer que en ciertas ocasiones puede ser ventajoso un acoplamiento
débil entre cliente y servidor. El cliente no tiene por qué conocer todos los detalles
de la interfaz del servidor. Piense un momento en un servidor de automatizacion
como Word, que ofrece cientos de funciones, con montones de parametros y valores
por omisién. A usted, sin embargo, solamente le interesa saber cémo abrir un fichero
e imprimirlo. ¢Para qué tener que aprender todos los demas métodos?

Pero también hay ventajas a la inversa: un cliente puede trabajar con mas servidores.
Si yo necesito ejecutar un método Imprimiry sé que determinado servidor lo imple-
menta, me da lo mismo la existencia de otros métodos dentro de ese servidor, siem-
pre que pueda utilizar su interfaz IDispatch.

No obstante, y a pesar de las mejoras en tiempo de acceso que ofrecen los Displd, las
llamadas a métodos por medio de Inwoke son inevitablemente lentas e inseguras. Para
paliar el problema, existen las denominadas zuzerfaces duales. Se dice que una clase so-

546 La Cara Oculta de C++ Builder

porta una interfaz dual cuando implementa una interfaz derivada de [Dispatch, en la
cual se han incluido los mismos métodos que pueden ejecutarse via Invoke.

RoboCop: IAparatoElectrico

Querylnterface
AddRef

Release

Robbie.Exec(Procedure(“Enchufar))L
Invoke

Robbie->Enchufar();

Enchufar

Apagar

¢Le ocasiona algin trastorno al programador el hecho de que determinada interfaz
sea dual? Ninguno, pues puede seguir utilizando los métodos variantes para controlar
el método mediante macros, pero también puede trabajar directamente con la inter-
faz ampliada, del mismo modo en que lo haciamos en el capitulo inicial sobre COM.

Bibliotecas de tipos

Para que el programador pueda aprovechar una interfaz dual en C++ Builder debe
tener a su alcance el fichero de cabecera con las declaraciones de los tipos de interfaz,
lo cual no sucedfa cuando utilizaba solamente la interfaz IDispatch. Antes bastaba con
una documentacion informal acerca de cuales macros utilizar y con qué parametros.
La descripcion podia incluso estar destinada a programadores de Visual Basic, pero
era facil hacer corresponder estos conceptos a C++, a Java o a Delphi.

Cuando presentamos el ejemplo de creacién de accesos directos utilizamos las intet-
taces IShellLink y 1PersistFile. ;De donde las sacamos? Como son interfaces manteni-
das directamente por Windows, los ficheros de cabeceras se suministran con el pro-
pio compilador de C++, o por el propio Kit de Desarrollo del sistema operativo.
¢Quiere decir esto que cada implementador de una interfaz dual esta obligado a su-
ministrar los ficheros de cabecera correspondiente? Aunque no estarfa mal, esta idea
hace aguas. Recuerde que uno de los objetivos es que nuestros objetos sean aprove-
chables por cualquier lenguaje medianamente decente?’. No es practico ni factible
prever todas las plataformas de desarrollo desde donde se puede utilizar el servidor.

Una solucion es utilizar el lenguaje IDL para describir las interfaces. Serfa entonces
responsabilidad del lenguaje proporcionar alguna herramienta de compilacién que
traduzca automaticamente las descripciones y genere los ficheros de cabecera corres-
pondientes. Pero aqui también puede aplicarse el encapsulamiento. En vez de pro-
porcionar el fichero ejecutable o la DLL que contiene la clase s un fichero IDL

2Y también por Visual Basic.

Automatizacion OLE: controladores 547

con las declaraciones, ¢por qué no incluimos las declaraciones directamente dentro
del servidor?

Ese es el proposito de las bibliotecas de tipos (type libraries). Una biblioteca de tipos es
una representacion binaria e independiente de cualquier lenguaje que se obtiene a
partir de un fichero IDL. Puede almacenarse en un fichero independiente, casi siem-
pre de extension #b 6 olb, o incluirse como un recurso de Windows, de clase #pelib,
dentro de un servidor COM.

Hay ciertos tipos de servidores para los cuales es obligatorio suministrar una biblio-
teca de tipos, como los controles ActiveX. Pero en general, se trata de un bonito
detalle por parte del implementador. En el préximo capitulo veremos como C++
Builder permite la edicién visual de una biblioteca de tipos cuando creamos servido-
res de automatizacion:

54 srvrtib M=
PoSADEFH v AH F-

= -
o g E ditS arver Atibutes | Uses | Flags | Tert |

- Clear

Narme: |srw

GUID: |{921 443E3-8905-1101-B695-00204F 3F 4B 77}
5 EditSt
op EditSt Wersion: |1.EI
- SetThreeSt LCiD I

a EditServer

Help

Help Stiing: Isrw Library

Help Context: I

Help Stiing Cantext: I

Help String DLL: I
Help File: |

Importacion de bibliotecas de tipos

¢Coémo transformamos una biblioteca de tipos en un fichero de cabecera para C++
Builder, de modo que podamos aprovechar una interfaz dual? Necesitamos zzportar
la biblioteca, para lo cual C++ Builder ofrece el comando de mend Project | Inmport type
library. Cuando se ejecuta dicho comando, aparece en primer lugar la lista de bibliote-
cas registradas. Con los botones Add y Remove podemos registrar una nueva biblio-
teca, o eliminar alguna del Registro. En el caso de que la biblioteca contenga uno o
mas controles ActiveX, la unidad generada contendra declaraciones de componentes
para los mismos, y un método Register para poder incluir estos componentes en la
Paleta de Componentes, si asf lo desea.

548 La Cara Oculta de C++ Builder

Lo que necesitamos en estos momentos son las interfaces duales para poder contro-
lar a Word. Al ejecutar el comando de importacion, tenemos que buscar la biblioteca

de tipos de Word (no se encuentra dentro del ejecutable) mediante el botén Add. El
fichero es el siguiente:

C:\Archivos de programa\ M crosoft O fice\Ofice\Msword8.olb

Import Type Library E
Import Type Library |

Tabular D ata Contral 1.1 Type Library [Mersion 1.1] ;I
Telemark Library [Werszion 1.0]

WLl First Impression Library (Version 1.0]

WCI Formula One Library [Version 1.0]

4l WisualSpeller Library [Version 2.0

(k=
.0 Type Library [ersion 1.0]
C:\Archivos de programatMicrosoft Office’Office’Msword8. olb

Bemove |

Llazs names: ;I

|

Unit dir name: IE:\Archivos de programa‘BorlandCE uilderdm J

QK | Cancel | Help |

Una vez localizado el fichero, pulse el botén OK y péngase comodo, pues la opera-
cién tarda un poco en completarse. Al final de la misma tendremos a nuestra disposi-
ci6n un nuevo par de ficheros: Word_TLB.pp y Word_TI.B.h, que podemos incluir en
nuestros proyectos. Compruebe que, efectivamente, contienen todas las interfaces y
declaraciones necesarias para acceder a Word 97.

La traduccion literal produce una serie de interfaces de bajo nivel; digo de bajo nivel
porque no soportan propiedades, punteros inteligentes y todas esas pequefias mejo-
ras que hacen soportable trabajar con C++. Por ejemplo, para extraer la lista de do-
cumentos a partir de la interfaz de la aplicacion es necesario el siguiente codigo:

Docunent s* Docs;

HRESULT hr = App->get_Docunent s(&Docs) ;
i f (SUCCEEDED(hr))

/1 Trabajar con la |lista de docunentos
Docs- >Rel ease();

}

En el ejemplo anterior incluso he evitado introducir el control de excepciones, y ya
vemos que para recuperar una simple propiedad necesitamos un montén de lineas de
cédigo. Afortunadamente, cuando C++ Builder importa una biblioteca de tipos
también define interfaces inteligentes que automatizan el uso de AddRef'y Release, y

Automatizacién OLE: controladores 549

define adicionalmente propiedades en las mismas que corresponden a las definicio-
nes de propiedades del lenguaje IDL. El siguiente método muestra como utilizar las
interfaces inteligentes:

void _ fastcall TFormil::Button3dick(TCbject *Sender)

{
TCOM Application App = CoApplication_::Create();
App. Visible = true;
TCOM Docunent Doc = TCOVDocunent s(App. Docunents_). Add() ;
Doc. Activate();
TCOVRange R = Doc. Content;
WdeString texto = "Mra | o que hago con Wrd\n";
R I nsert After(texto);
}

Las nuevas clases, como TCOM_Document, estan basadas en plantillas como TCOM-
Interface detinidas por la ATL.

Existe una técnica intermedia entre el uso de variantes y el de interfaces duales.
Consiste en evitar las llamadas a GesIDsOfINames, al conocer directamente los
identificadores dispatch de los métodos soportados. Cuando se importa una bi-
blioteca de tipos, C++ Builder crea también clases para este tipo de llamadas. Sin
embargo, en la mayoria de los casos nos interesa utilizar directamente la interfaz
dual y no pasar por una técnica que no es ni la mas rapida ni la mas sencilla.

Eventos

El tipo de comunicacion mas frecuente en la automatizaciéon OLE es unidireccional:
el cliente da 6rdenes al objeto servidor. El paso siguiente para facilitar la programa-
cion es que el servidor pueda enviar eventos al cliente. Suponga que, en vez de en-
frentarse a una maquina de bebidas, tiene usted que plantar cara a la maquina expen-
dedora de pizzas. La maquina de bebidas podifa soportar una interfaz simple con este
método, declarado en IDL.:

HRESULT Pedi r Bebi da([in] BSTR producto, [out] |Bebida bebida);

El tiempo que transcurre entre que pulsemos el botén y que la maquina escupa el
bote correspondiente es despreciable. PedirBebida puede hacernos esperar hasta en-
tonces. Pero la maquina de pizzas tiene un retardo inherente: hay que seleccionar los
ingredientes, mezclarlos y ponerlos en el horno. Hasta que la pizza esté en su punto,
¢qué hacemos, silbar con las manos en los bolsillos aparentando indiferencia? Mejor
que eso, podemos definir un método de peticién mas sencillo aun:

HRESULT PedirPi zza([in] |1ngredi entes bazofia);

550 La Cara Oculta de C++ Builder

Cuando la pizza esté lista, queremos que la maquina nos avise asincronamente para
entonces actuar. Si el objeto expendedor de pizzas fuera un componente VCL, im-
plementarfamos el aviso mediante un evento. (Cémo envian eventos los componen-
tes de la VCL? Utilizando punteros a métodos. ¢Existen punteros a métodos en
COMP? No directamente ... pero si agrupados dentro de interfaces. Entonces, para
que un servidor pueda enviar métodos a un cliente, debe llamar a métodos de una
interfaz implementada por el cliente, como se muestra en el siguiente diagrama.

Interfaz entrante

Cliente

Servidor
Receptor e
interno h

Interfaz saliente

El servidor es el encargado de definir la interfaz de envio de eventos, conocida con el
nombre de interfaz, saliente (ontgoing interface), y puede tener todos los métodos que se le
ocurra al programador. Eso si, el que inventa la interfaz de salida tiene que tener en
cuenta que el cliente no puede escribir directamente en la memoria del servidor,
como si puede suceder en la interaccién con un componente VCL. Tiene entonces
que proporcionar algin mecanismo para que el cliente se suscriba a los envios de
determinada interfaz de eventos.

El mecanismo de suscripcion puede ser todo lo arbitrario segun lo decida el imple-
mentador del servidor. Pero es de agradecer la existencia de una técnica de conexion
estandar definida por COM, como son los puntos de conexion, representados mediante
las interfaces [ConnectionPoint e IConnectionPointContainer. En el capitulo siguiente ten-
dremos la ocasiéon de ver como C++ Builder ayuda a la implementacion de estas
interfaces en los servidores de automatizacion. Aqui explicaremos cémo utilizarlas
desde una aplicacion cliente.

En pocas palabras, si un servidor desea soportar una o mas interfaces de eventos
debe implementar una o mas interfaces [ConnectionPoint, que serviran para que los
clientes se suscriban a las mismas. Sin embargo, estas interfaces de suscripcién no se
exportan directamente: el cliente no debe poder obtenerlas mediante llamadas al
método Querylnterface. La encargada de publicatlas es la interfaz [ConnectionPoint, que
ofrece métodos para localizar un punto de conexién dado su identificador unico de
interfaz:

Automatizacion OLE: controladores 551

IUnknown

O———— IConnectionPoint

|AvisosCliente

IConnectionPointContainer

IConnectionPoint

IFallosElectricos
+—

Cuando, mas adelante, muestre un ejemplo de cémo recibir eventos de Word 97,
aprovecharé la rutina InterfaceConnect de la VCL para enlazar al emisor y al receptor de
una interfaz de eventos. Es muy probable que la ATL ofrezca una funcién de este
tipo, pero ni siquiera me he tomado la molestia de buscarla. Sin embargo, la mejor
forma de mostrar cOmo se realiza la conexion al nivel mas detallado, es conveniente
estudiar cémo se implementarfa un sustituto de InzerfaceConnect en el propio C++
Builder:

voi d I ntfConn(lUnknown* Emisor, REFIID riid,
I Unknown* Receptor, unsigned | ong& Cooki e)

{
| Connect i onPoi nt Cont ai ner *CPC,
Cookie = 0;
HRESULT hr = Emi sor->Queryl nterface(
I I D_I Connect i onPoi nt Cont ai ner, (void**) &CPC);
i f (SUCCEEDED(hr))
{
| Connecti onPoi nt *CP;
hr = CPC- >Fi ndConnecti onPoint(riid, &CP);
i f (SUCCEEDED(hr))
CP- >Advi se(Recept or, &Cooki e);
CP- >Rel ease() ;
}
CPC- >Rel ease();
}
}

Primero se intenta buscar la interfaz genérica IConnectionPointContainer dentro del
objeto emisor. Si el intento triunfa, se le pide a la lista de puntos de conexién encon-
trada que busque un punto de conexion para la interfaz de eventos identificada me-
diante r7d. Si existe tal punto de conexion, se le “avisa” mediante el método Adpise
para que envie notificaciones al nuevo receptor. Adpise devuelve un identificador para
la conexién, que hemos almacenado en el parametro Cookie.

La funcion InterfaceDisconnect de la VCL invierte la accion de InterfaceConnect. Su equi-
valente en C++ serfa como sigue:

voi d I ntfDi sconn(lUnknown* Emi sor, REFIID riid,
unsi gned | ong& Cooki e)

552 La Cara Oculta de C++ Builder

if (Cookie !'= 0)

| Connect i onPoi nt Cont ai ner *CPC,
HRESULT hr = Emi sor->Queryl nterface(

I I D_I Connect i onPoi nt Cont ai ner, (void**) &CPC);
i f (SUCCEEDED(hr))

| Connect i onPoi nt *CP;
hr = CPC- >Fi ndConnecti onPoint (riid, &CP);
i f (SUCCEEDED(hr))
{
hr = CP->Unadvi se(&Cooki e) ;
i f (SUCCEEDED(hr)) Cookie = 0;
CP- >Rel ease() ;

}
CPC- >Rel ease();

Los parametros de In#fDisconn, que imitan a los de InterfaceDisconnect, son casi iguales a
los de la rutina de conexion, exceptuando el puntero al receptor, que ahora es inne-
cesario. Incluso es similar el prélogo de las rutinas, y lo que cambia es que para inte-
rrumpir la conexion se llama a Unadpise, con el identificador de conexién generado
anteriormente.

Una importante propiedad de Advise es que, si el implementador asi lo desea,
puede permitir que varios clientes se abonen simultineamente a la misma inter-
faz de eventos. Un evento de la VCL solamente puede contener un puntero a
método, por lo que puede soportar sélo un cliente a la vez. Pero un servidor
COM puede mantener una lista de clientes susctitos, o decidir mantener un solo
cliente simultaneo, denegando las restantes conexiones.

Escuchando a Word

Como ejercicio, haremos que una aplicacion escrita en C++ Builder reciba notifica-
ciones enviadas por Word97. La clase Word Application soporta la interfaz de salida
ApplicationEvents, cuyo evento mas importante es DocumentChange, y se dispara cada
vez que cambia el documento activo de la aplicacion. Para recibir estos eventos con
mayor facilidad necesitaremos definir un pequefio objeto auxiliar que actie como
receptor. Esta es la declaracion de la clase receptora:

class TReceptor : public |Dispatch

{
private:

int Cookie;

| Unknown *Sour ce;
publi c:

TRecept or (1 Unknown *ASour ce) ;

Automatizacién OLE: controladores 553

~TReceptor();

STDVETHODI MP_(ULONG) AddRef () ;

STDVETHODI MP_(ULONG) Rel ease() ;

STDMETHODI MP Queryl nterface(REFI I D, LPVO D*);

STDVETHODI MP Get Typel nf oCount (Ul NT *pcti nfo);

STDVETHODI MP Get Typel nfo(UINT i TInfo, LCID lcid,
| Typel nfo **ppTI nfo);

STDVETHODI MP Get | DsOf Names(REFI I D riid, LPOLESTR *rgszNanes,
U NT cNanmes, LCID Icid, DI SPID *rgDhi spld);

STDVETHODI MP | nvoke(Dl SPI D di spl dMenber, REFIID riid, LCID lcid,
WORD wHl ags, DI SPPARAMS *pDi spParans, VARI ANT *pVar Resul t,
EXCEPI NFO *pExcepl nfo, U NT *puArgErr);

}

La clase TReceptor es utilizada un poco mas adelante por el formulario principal de la
aplicacion:

class TForml : public TForm

{
__publ i shed: /1 | DE- managed Conponents
TLi st Box *Li st Box1;
private: /'l User declarations
pr ot ect ed:
TCOM Appl i cati on Wor dApp;
TReceptor *receptor;
public: /1 User declarations
__fastcall TFornil(TConponent* Oaner);
__fastcall ~TFornmil();
void _ fastcall Signal Event(const AnsiString s);

b

Durante la construccién y la destruccion del receptor activamos o rompemos el en-
lace con el emisor:

TRecept or: : TRecept or (I Unknown *ASource) : Cooki e(0), Source(ASource)

I nt erfaceConnect (Source, DI | D _ApplicationEvents,
(1 Unknown*) this, Cookie);
}

TReceptor:: ~TReceptor ()

I nterfaceD sconnect (Source, DI | D _ApplicationEvents, Cookie);

La implementacion de Querylnterface es muy simple:

STDMVETHODI MP TReceptor:: Querylnterface(REFIID riid, LPVOD* ppv)

if (riid == 11D_lUnknown ||
riid == 11D_|Dispatch ||
riid == DI D _ApplicationEvents)
*ppv = (LPVO D) this;
el se
return E_NO NTERFACE;

554 La Cara Oculta de C++ Builder

return S_OK;

El nucleo de la clase es la implementacion de Invoke. Aqui debemos consultar el fi-
chero importado desde la propia biblioteca de tipos de Word para comprobar cuales
son los identificadores numéricos asociados a los eventos que nos interesan. Vere-
mos, por ejemplo, que la interfaz ApplicationEvents recibe la notificacion 3 para indicar
que ha cambiado el documento activo:

STDVETHODI MP TRecept or: : I nvoke(Dl SPI D di spl dMenber, REFIID riid,
LCID Icid, WORD wFl ags, DI SPPARAMS *pDi spPar ans,
VARI ANT *pVar Resul t, EXCEPI NFO *pExcepl nfo, U NT *puArgErr)

{
if (displdMvenber == 3)
For ml- >Si gnal Event ("Ha canbi ado el docunmento activo");
return S_OK;
}

A los métodos restantes, heredados de [Unknown y de 1Dispatch, les podemos asignar
una implementacién minima:

STDVETHODI MP_(ULONG) TRecept or : : AddRef ()

{
return 2;
}
STDVETHODI MP_(ULONG) TRecept or: : Rel ease()
{
return 1;
}

STDVETHODI MP TRecept or : : Get Typel nf oCount (Ul NT *pcti nf 0)
*pctinfo = O;
return S_OK;

}

STDVETHODI MP TRecept or: : Get Typel nfo(UINT i TInfo, LCID lcid,
| Typel nfo **ppTI nf 0)

return E_NOTI MPL;
}

STDMETHODI MP TRecept or: : Get | DsOf Names(REFI I D riid,
LPOLESTR *rgszNames, U NT cNarmes, LCID Icid, DI SPID *rgDhi spld)
{

}

return E_NOTI MPL;

Y ya estamos listos para aprovecha la nueva clase auxiliar en nuestra aplicacién, como
podemos ver en el constructor y en el destructor de la ventana principal:

__fastcall TFornil:: TFor nil(TConponent* Oaner) : TFor n{ Oaner),
Wor dApp(CoApplication_::Create())

Automatizacion OLE: controladores 555

receptor = new TRecept or (Wor dApp. Application__);
Wor dApp. Visible = true;
}

__fastcall TFormil::~TFormil()

del ete receptor;

Para que el usuario se entere del disparo del evento, he utilizado un sencillo cuadro
de listas:

voi d TForml: : Si gnal Event (const Ansi String s)

Li st Box1->ltens->Add(s + " -> " + TineToStr(Now()));

Para poder sacar un poco mas de partido de los eventos de Word, serfa también
necesario interceptar la interfaz de eventos DocumentEvents, del objeto Document.

La dificultad consiste en atender al cambio de documento activo para establecer
y romper la conexién con el receptor. Como a estas alturas usted se ha conver-

tido en todo en un experto en la materia, esta tarea se la dejo como desayuno.

Capitulo

29

Automatizacion OLE: servidores

HORA ESTAMOS EN CONDICIONES DE explicar como se crean servidores de

automatizacién con C++ Builder. Al ser bastante sencilla la programacién de

este tipo de aplicaciones gracias a la existencias de asistentes, el énfasis de la
presentacion se desplazara de la teorfa a la practica. Incluiremos usos practicos tanto
de los servidores como de sus clientes. Aunque no hay muchas diferencias en la pro-
gramacion COM entre las versiones 3 y 4 de C++ Builder, los ejemplos estaran ba-
sados principalmente en C++ Builder 4, como es de suponer.

Informes automatizados

Un servidor de automatizacion debe ofrecer clases que implementen la interfaz IDzs-
patch. Utilizaremos la siguiente excusa para su creacion: tenemos una aplicacioén de
bases de datos y hemos definido una serie de informes con QuickReport sobre las
tablas con las que trabaja el programa. Pero prevemos que el usuario querra mas
adelante nuevos tipos de informes. ¢Qué hacemos cuando el usuario tenga una idea
genial de ese tipo? ¢Abrimos la aplicacién en canal para enlazar el nuevo informe?
Claro que no. Una solucién es definir los informes dentro de DLLs, y permitir la
carga dinamica de las mismas. La otra, que exploraremos aqui, es programar los nue-
vos informes como servidores de automatizacién, y que la aplicaciéon pueda impri-
mirlos llamando a métodos exportados tales como Print, Preview y SetupPrint.

QuickReportt sera estudiado unos cuantos capitulos mas adelante. Pero no se
preocupe ahora por ello, pues utilizaremos asistentes para generar los informes
de prueba del servidor.

Comencemos por la creaciéon de un servidor de este tipo. La primera decision con-
siste en elegir entre un servidor dentro del proceso (una DLL) o fuera del proceso
(un EXE). Por supuesto, una DLL es mas eficiente, por lo que vamos al Depésito de
Objetos, seleccionamos la pagina AcziveX y pulsamos el icono ActiveX Library.

558 La Cara Oculta de C++ Builder

Dialogs | Projects I Data Modules I Buziness I
New ActiveX Multitier I Infarmes I Farmns

=X kas
£ 7)
ActiveForm Activerl, 3 Automation COM Dbject
Caontral Obiject

Property Page Type Library

) Bopyl) [afert €00 e

QK. I Cancel | Help |

Esta operacion genera un esqueleto de DLL, que guardamos con el nombre Informes.
En el capitulo sobre servidores COM vimos que estas DLLs implementan y expor-
tan cuatro funciones:

Di[RegisterServer: registra el servidor.
D/[UnregisterServer. elimina las entradas del registro.

DIliGetClassObject: paso inicial del proceso de construccién de instancias.
DiliCanUnloadNow: controla el tiempo de vida del médulo.

También necesitaremos un informe. Para los propésitos de este ejercicio, da lo

mismo qué informe utilicemos y como lo generemos. Utilizaremos el QuickReport
Wizard, de la pagina Business del Deposito de Objetos:

New Items

Mew I Activer I Multitier I Informes | Faorms |
Dialogs I Projects I Data Modules Buziness

TeeChart
Wizard

D atabase DB'web Decision Cube
Form'wizard Applicati... Sample

@« Copy € |nbeit € e

Ok I Cancel | Help |

El asistente nos permite seleccionar una tabla de cualquiera de los alias registrados
por el BDE, y elegir qué campos queremos imprimir. Utilice cualquier alias, prefe-
rentemente uno correspondiente a una base de datos de escritorio, y cualquier tabla
de la misma. Yo he elegido imprimir todos los campos de la tabla customer del alias
predefinido bebdemos. Al finalizar el proceso, nos encontramos una nueva unidad, que
guardaremos con el nombre de ClientesRpt, y un formulario Fornl que contiene una
serie de componentes de impresién. El formulario, en si, nunca se mostrara directa-
mente en pantalla, sino que se limitara a servir de contenedor.

Automatizacién OLE: servidores 559

Como el formulario reside dentro de una DLL, no se crea automaticamente al car-
garse el moédulo en memoria. Para simplificar la creacion y destruccién automatica de
este formulario declararemos una serie de métodos estaticos en la clase TFomn1:

class TForml : public TForm

{

__publ i shed: /1 | DE- managed Conponents
/...

private: /'l User declarations

public: /1 User declarations
__fastcall TFornil(TConponent* Oaner);
static void Print();
static void Preview);
static void SetupPrint();

}s

Print imprime directamente el informe. Preview muestra una ventana modal con la
vista preliminar del informe. Dentro de esta vista hay un bot6n para imprimir el
informe. Por altimo, SezupPrint muestra primero un didlogo de impresién antes de
proceder a la impresion. La implementacion de los tres métodos es muy sencilla:

void TForml:: Print()

std::auto_ptr<TForml> f(new TForml(0));
f->Qui ckRepl->Print();
}

voi d TForml: : Previ ew)

std::auto_ptr<TFornl> f(new TFornil(0));
f - >Qui ckRepl- >Pr evi ewMbdal () ;
}

void TForml:: SetupPrint()

std::auto_ptr<TForml> f(new TForml(0));
f - >Qui ckRepl->PrinterSetup();
if (f->QuickRepl->Tag == 0)

f->Qui ckRepl->Print();

Aqui QOnickRepT apunta al componente principal del informe, que es el encargado de
la impresion y de la vista preliminar. Estoy realizando un truco sucio en SetupPrint
que explicaré en el capitulo dedicado a QuickReport.

El objeto de automatizacion

Hasta el momento, hemos logrado una DLL algo especial que contiene una clase con
un informe. Para que esta DLL se convierta realmente en un servidor de automatiza-
ci6én y que cualquier programa pueda aprovechar el informe que hemos definido,
debemos ejecutar el Depésito de Objetos, seleccionar y aceptar el icono Automation

560 La Cara Oculta de C++ Builder

Object, de la pagina ActiveX. De esta manera crearemos una clase de componentes

que implementara la clase [Dispatch, para que pueda aceptar macros de controladores
de automatizacién.

New Items
Dialogs | Praojects | Data Maodules I Business |
Mew Active | Iuiltitier I Informes I Forms
' = & v
&= ® B
ActiveForm Activex Activel Library COM Object

Control

,

Froperty Page Type Library

! Copw £ [nheit) se

El didlogo que aparece al ejecutar el asistente nos ayuda a configurar las principales
caracteristicas de la clase que vamos a implementar. La primera de ellas es el nombre
de la clase, donde tecleamos Clientes. Esto implica que el identificador de programa
de la clase sera Informes.Clientes, esto es, la concatenacion del nombre del servidor con
el nombre de la clase.

LCoClass Name: ICIienles
Threading Modsl: IAparlment j
Description: Ilnforme de clientes

Optiong
’7 [~ Generate Event support code ‘

Ok I Cancel | Help |

A continuacién, se nos pide el modelo de concurrencia. Un poco mas adelante expli-
caremos en qué consiste, pero ahora utilizaremos el modelo Apartment. También hace
falta una descripcion para la clase, y finalmente se nos pregunta si queremos generar
cédigo para soportar eventos. Si activairamos esta opcion, nuestra clase implementa-
rfa la ya conocida interfaz [ConnectionPointContainer, pero para los propositos de este
ejemplo no nos interesa enviar eventos.

Cuando aceptamos el didlogo de creacion de objetos de automatizacién, C++ Buil-
der genera automaticamente varios ficheros y los incluye dentro del proyecto activo,
para que hagan compafia a ClientesRpt, que contiene el formulario del informe:

Automatizacién OLE: servidores 561

Informes.CPP
(Cédigo de la DLL)

Informes.TLB | | | Informes_TLB.Hy CPP

(Biblioteca de tipos) (Biblioteca importada)

Informes_ ATLHyCPP | | | Clientesimpl.Hy CPP
(Ficheros de la ATL) (Implementacién de la clase)

En primer lugar, se crea el fichero Informes_ATL.cpp y su cabecera correspondiente.
Ahf se define e implementa la variable global _Modute, de tipo CComModule, y se in-
cluyen dentro del proyecto las declaraciones de la ATL. Asi ya hemos garantizado los
pasos mecanicos de grabacion en el registro y exposicion de la fabrica de clases.

Se incluye ademas una biblioteca de tipos para la aplicacion, que es una entidad glo-
bal al proyecto. Como nuestro proyecto se llama Informes, la biblioteca se guarda en el
tichero Informes.tlb. Como es de suponer, también se crea el fichero de cabecera co-
rrespondiente a la biblioteca, con el nombre Informes_TI.B.h. Ademas, se genera un
tichero Informes_TLB.cpp para la que contenga la inicializacién de variables globales
con los identificadores de clases, interfaces y bibliotecas definidos. No debemos edi-
tar directamente ninguno de estos dos ficheros, sino a través del editor visual de las
bibliotecas de tipos, que puede activarse explicitamente mediante el comando de
menu [View | Type Library:

%4 Informes.tih _[O]
POSADS TS be- D T-
A
B Inforlncﬂ;?:ntes Attributes | Parametelsl Flags I Tent I
< Print -
& Preview Mame: IF'nntSetup
ID: I
Client
entes Ty I ﬂ
Irevoke Kind: IFunction j
Help
Help String: I
Help Contexst: I
Help String Context: I
|Modified [v

Seleccionamos en el arbol de la izquierda del editor de la biblioteca de tipos el nodo
correspondiente a la interfaz IC/entes. Mediante el menud de contexto, o mediante los
iconos de la barra de herramientas, afiadimos tres métodos, a los cuales nombrare-
mos Print, Preview 'y SetupPrint. Ninguno de los tres métodos tiene parametros, ni valo-

562 La Cara Oculta de C++ Builder

res de retorno; en caso contrario, deberfamos especificarlos en la segunda pagina de
las propiedades de estos nodos (Parameters).

Sélo nos queda proporcionar una implementacion a esta interfaz. Y aqui C++ Buil-
der ha vuelto a echarnos una mano, pues ha generado una unidad, Clenteslmpl, con la
declaracion de la clase TClentesImpl:

class ATL_NO VTABLE TCdienteslnpl :
publ i ¢ CConthj ect Root Ex<CConSi ngl eThr eadMbdel >,
publ i ¢ CComCoCl ass<TClienteslnpl, &CLSID Cientes>,
public IDi spatchlnpl<lCientes, & ID |Cientes, &LIBID_|nformes>

{

publi c:
Td i entesl mpl ()
{
}

/1 Data used when registering bject
DECLARE_THREADI NG_MODEL (ot Apar t nent) ;
DECLARE_PROG D("I nfornes. Cientes");
DECLARE_DESCRI PTI ON(" I nforne de clientes");

/1 Function invoked to (un)register object
static HRESULT W NAPI Updat eRegi stry(BOOL bRegi ster)

TTypedConSer ver Regi strar T<Td i ent esl npl >
regObj (Get Obj ect CLSI (), GetProglD(), GetDescription());
return regQbj . Updat eRegi stry(bRegi ster);

}

BEG N_COM MAP(TC i ent esl npl)
COM | NTERFACE_ENTRY(1 d i ent es)
COM_| NTERFACE_ENTRY(| Di spat ch)

END_COM MAP()

/1 Idientes

publi c:
STDVETHOD(Previ ew()) ;
STDVETHOD(Print ());
STDVETHOD(Pri nt Set up());

b

La implementacion de los tres métodos es elemental, pues nos limitaremos a pasarle
la patata caliente a la clase TFomT:

STDVETHODI MP T i entesl npl :: Previ ew()

{
TFor ml: : Previ ewhbdal () ;
return S_OK;

}

STDVETHODI MP TA i enteslnpl::Print()

TForml: : Print();
return S_OK;

Automatizacién OLE: servidores 563

STDVETHODI MP TCl i ent esl npl : : Pri nt Set up()

TForml: : SetupPrint();
return S_OK;

La parte cliente

La creacion de un controlador de automatizacion que utilice al servidor definido an-
teriormente es sumamente sencilla. Creamos una nueva aplicacién, con un solo for-
mulario. Colocamos un cuadro de edicién sobre el mismo, para que el usuario pueda
teclear el nombre de la clase de automatizacién, un boton para mostrar la vista pre-
liminar del informe y otro para configurar la impresora e imprimir. Recuerde que el
objetivo del ejemplo anterior era la creaciéon de informes genéricos, que podian eje-
cutarse desde una aplicacién con sélo conocer el nombre de la clase. Por supuesto,
en una aplicacion real emplearfamos un mecanismo mas sofisticado para ejecutar los
informes genéricos, que quizas contara con la creacién de claves especiales en el
Registro durante la instalacién de los informes. Pero aqui nos basta con una sencilla
demostracion de la técnica.

Imprimir informe [1X]

Clasze de informme:

Ilnformes. Cliertes
Wista preliminar |

Irnpririiir

La respuesta al evento OnClick de los botones que hemos situado en el formulario es
la siguiente:

void _ fastcall TForml::Buttonld ick(TObject *Sender)

Variant Rpt = Variant::CreateObject(Editl->Text);
Rpt . Exec(Procedure("Preview'));
}

void _ fastcall TFornil::Buttonld ick(TCbject *Sender)
{
Variant Rpt = Variant::CreateCbject(Editl->Text);
Rpt . Exec(Procedure("SetupPrint"));

564 La Cara Oculta de C++ Builder

Declarando una interfaz comun

Pero, un momento ... ¢no habfamos quedado en que {bamos a crear un mecanismo
de impresion genéricor Si, y el ejemplo que hemos desarrollado permite la impresion
genérica. Usted solamente tiene que indicar el nombre de una clase que implemente
los métodos Print, Preview 'y SetupPrint, y la aplicacion cliente se encarga de crear un
objeto de dicha clase y aplicarle el método correspondiente. ¢ Trampa? Claro que la
hay: el polimorfismo se logra mediante llamadas a macros. St hubiéramos deseado
aprovechar la interfaz dual IC/entes se habria roto la magia polimértica pues, si utili-
zamos el asistente de creacion de objetos de automatizacion, cada servidor de impre-
si6n implementara una clase diferente con una interfaz diferente, aunque cada inter-
faz exporte los mismos tres métodos.

¢Es esto inevitable? Por supuesto que no. Podemos definir una interfaz genérica, a la
que llamaremos IGenRpt, que exporte los tres métodos de impresion, y podemos
hacer que cada servidor de informes cree clases diferentes, eso si, pero que imple-
menten la misma interfaz.

Para crear la interfaz comtin podemos seguir varias alternativas: crear un fichero IDL
y compilarlo, crear la interfaz mediante el editor de bibliotecas de tipos de C++ Buil-
der, etc. Aqui vamos a seguir la ultima via mencionada. Primero cerramos todos los
ficheros abiertos en el Entorno de Desarrollo (File | Close al)). Luego activamos el
Deposito de Objetos (File| New), y en la pagina ActiveX seleccionamos Type Library:

9 GenRpt.tlb =] &
2OSADST S v Da B

%pt Atributes I Uses | Flags | Text I

ij E:;:Ew M ame: |GeanlLlh

s SetupPrint GUID: |{42D41?ED—E918'11D2rBB?DrDDDDEED?F?E2}
Wersion: |1.U
LCiD: |
Help
Help String: IGench Reports Library
Help Contest: |
Help String Context: I
Help String DLL: I
Help File: |

[\ 4

Aparecera el conocido editor grafico de bibliotecas de tipos, y en él crearemos la
nueva interfaz IGenRpt, definiendo para ella los métodos Print, Preview 'y SetupPrint.
Cambie el nombre de la biblioteca en el nodo raiz del panel de la izquierda a
GenRptlLib, y modifique la cadena de ayuda asociada. Cuando haya terminado, guarde
el fichero, lo cual servird también para crear los ficheros GenRprl ib_TI.B con exten-
siones ¢pp y b. Finalmente, registre la biblioteca pulsando el botén correspondiente

Automatizacién OLE: servidores 565

de la barra de herramientas del editor. Este paso es crucial para que C++ Builder
pueda hacer referencias a la nueva biblioteca desde otro proyecto.

Para modificar el servidor de informes existente son necesarios dos pasos. Primero
tenemos que incluir la nueva biblioteca de tipos en la biblioteca del servidor. Selec-
cionamos el nodo Informes y activamos la pagina Uses del editor. Pulsamos el botén
derecho del ratén y ejecutamos el comando del ment local Show Al Type Libraries,
para que se muestren todas las bibliotecas registradas. Cuando localice la biblioteca
GenRptLib utilizando la cadena de ayuda, seleccionela:

2o SAaDS TS o HNF T

=-4% Informes

-G Clentes Attributes Uses |Flags | Text |
Type library | Wersion | File name ;I
[Directénimation Library 1.0 CwIND OWSHSYSTEMSDANIM. D
O birectShowstream 1.0 T... 1.0 EI:\WINDD\/\;"S\SYSTEM\AMSTF\E_l
O Effect Librany 1.0 CAWINDOWSSSYSTEMWMEFSE

Generic Repaits Library 1.0 C:hMarteens ACBProgst nformesG

I HHCHI 4.0 Type Library 4.0 CAWINDOWSMNSYSTEMAHHCTRL

[hosting 1.0 Type Library 1.0 CHARCHIVOS DE PROGRAMANCT
G e e e PR ’_I

L2 et

l

[[A

A continuacién hay que eliminar la interfaz IC/ientes de 1a lista de interfaces imple-
mentadas por la clase Clientes, lo cual se realiza en la pagina Implements del nodo Clien-
tes. Para terminar, se quita también la definicion de IC/entes del arbol de la izquierda,
se aflade IGenRpr a la lista de interfaces implementadas por la clase Clientes y se marca
como la interfaz por omision (Defanlt):

%9 Informes.tib [_ O]
PSS ADSLE Ho- D E-
g Inf:
Ere g’g;m Atubutes Implements | Flags | Test |
Interface | GUID | Source | Default | Hesmctedl T able
|GenRpt [FEWTF False: True Falze Falze
4 1
I I 7

Anada ahora al proyecto el fichero GenRptLib_TI.B.cpp, pues ahi es donde se inicia-
liza la variable que contiene el identificador de la interfaz genérica IGenRpr. Y ya
estamos en condiciones de guardar el proyecto y volverlo a compilar. Posiblemente
sea necesario retocar algo el cédigo fuente generado para C++, sobre todo algunas
referencias a la extinta interfaz IC/entes que seguiran vagando como almas en pena
por todo nuestro codigo.

566 La Cara Oculta de C++ Builder

¢Coémo queda ahora la aplicacion que utiliza los objetos de impresién? En primer
lugar, también hay que incluir el fichero de importacién de la biblioteca de tipos
GenRptl_ib, e incluir la cabecera dentro de la unidad del formulario principal. Para la
vista preliminar del informe hace falta el siguiente codigo:

void _ fastcall TForml::Buttonld ick(TObject *Sender)

{
GQUI D clsid = Progl DToC assl| D(Edi t 1- >Text) ;

| GenRpt *rpt;

OLECHECK(CoCr eat el nst ance(cl sid, NULL, CLSCTX ALL, |ID_| GenRpt,
(void**) &rpt));

rpt->Preview();

rpt - >Rel ease();

Observe que la activacion del informe es completamente genérica. Cada servidor
implementara una clase distinta, de la cual tendremos que saber solamente su identi-
ticador de programa, no el de clase. La traduccién la estamos realizando mediante
ProgIDToClassID. A continuacion, se crea una instancia de esa clase, y se pide direc-
tamente el puntero a su interfaz IGenRpr. Como pueden existir errores, se verifica la
operacion mediante la macro OLECHECK. Si la obtencién de la interfaz triunfa, se
ejecuta el método Preview sobre la misma, y finalmente se libera el objeto por medio
del método Release.

Quizas hubiera sido més sencillo respetar la interfaz original IClientes, y hacer que
la clase Clientes implementara “ademas” la interfaz IGenRpt. Pero el generador de
c6digo de C++ Builder enloquecié cuando le propuse esta posibilidad, que es en
realidad bastante inocua.

Modelos de instanciacion

¢Qué tal un poco de teoria, para variar? Comencemos por explicar qué es un odelo de
instanciacion. Tomemos como punto de partida un servidor dentro del proceso. Cuan-
do una aplicacién necesita una clase implementada dentro del servidor, se carga la
DLL dentro del espacio de memoria de la aplicacion cliente para crear el objeto. Si
otro cliente necesita simultineamente un objeto de la misma clase, el proceso de
carga se repite en un espacio de direcciones distinto.

¢Qué pasa cuando el servidor es un fichero ejecutable? Cuando el cliente solicita un
objeto de la clase COM, el sistema operativo busca dentro del Registro y encuentra el
programa servidor asociado con la clase y lo lanza. El ejecutable, por su parte, debe
llamar a la funcién CoRegisterClassObject para que COM tenga a su alcance las fabricas
de clase implementadas. Luego, el programa entra dentro de su ciclo de mensajes.

Automatizacién OLE: servidores 567

Ya podemos imaginar lo que sucede cuando se pide la primera instancia de la clase:
COM busca en la lista de fabricas de clase, selecciona la adecuada y ejecuta sobre ella
el método Createlnstance. :Qué sucede si ese mismo cliente, o cualquier otra aplica-
cién, solicita una instancia adicional? Depende de como se haya registrado la clase.
Veamos primero el prototipo de la funcién de registro de clases:

STDAPI CoRegi st erd assObj ect (REFCLSI D rcl sid, |Unknown *pUnk,
DWORD dwd sCont ext, DWORD flags, LPDWORD *| pdwRegi ster);

El parametro que nos interesa ahora es el cuarto parametro, en el cual se puede pasar
uno de los siguiente valores enumerativos:

typedef enum t agREGCLS {

REGCLS_SI NGLEUSE =0,
REGCLS MULTIPLEUSE = 1,
REGCLS_MULTI _SEPARATE = 2,

} REGOLS;

St utilizamos REGCLS_SINGLEUSE, una vez que se crea el primer objeto, COM
“esconde” la fabrica de clases, para que no puedan crearse mds instancias de la clase.
De este modo, solamente se permite globalmente un solo objeto de la clase. Lo
normal es, sin embargo, que se utilice REGCLS_MULTIPLLEUSE. En tal caso, la
misma instancia del programa puede crear otras instancias de la clase; eso si, cada
una en su propio hilo paralelo. Todos estos objetos pueden compartir el espacio de
direcciones global de la aplicacion. Por dltimo, REGCLS_MULTI SEPARATE
fuerza a COM a que ejecute otra vez la aplicaciéon para obtener otro objeto: un ob-
jeto equivale a una instancia de la aplicacion.

¢Coémo se le indica a la ATL el modelo de instanciacién que necesitamos? Cuando el
proyecto activo contiene objetos COM, se activa la pagina 4TI dentro del dialogo
de opciones del proyecto (Project| Options):

Project Dptions

Forms I Applicatinnl Enmpilerl Advanced Enmpilerl C++ | Pascall Linker I
Directories/Conditionals I Versiunlnful Packages ATL |Tasm I COREA

i Inztancing OLE Initialization COINIT s Flag——
¢ Single Use ¢ APARTMENTTHREADED

& Multiple Use & MULTITHREADED

i Threading kaodel

= Single + Fiee

= Apattment = Both

i~ Debugging

I Trace Query Interface
™ Check Ref Counts
I~ General Tracing

™ Automatically Begister InProc Servers

I Default Cancel Help

568 La Cara Oculta de C++ Builder

También se puede recurrir a la “fuerza bruta”. Por omision, se utiliza multiple use,
pero si necesitamos multi separate hay que definir el siguiente simbolo:

#define _ATL_SI NGLEUSE | NSTANCI NG

El mejor sitio para la definicion es al principio del coédigo fuente del proyecto, que es
el primer fichero que se compilara dentro de la aplicacion. Recuerde que el modelo
de instanciacién solamente es importante para servidores ejecutables, pero no para
servidores dentro del proceso.

Modelos de concurrencia

Los modelos de concurrencia aparecieron con DCOM, en relacién con la posibilidad
de activar un servidor situado en otro puesto de la red. Por este motivo, los libros
clasicos sobre COM de la primera generaciéon no hacen referencia al problema. Para
colmo de males, la explicacion que incluyen hasta el momento los manuales de C++
Builder y Delphi es confusa, cuando menos. Dentro de mis humildes posibilidades,
intentaré organizar y condensar parte de la informacién que se encuentra dispersa
sobre la concurrencia en el Modelo de Objetos Componentes.

Probablemente usted tenga aunque sea unas nociones minimas acerca de la estruc-
tura de procesos de Windows. Sabra entonces que en Windows pueden existir si-
multaneamente varios procesos concurrentes, y que cada proceso es el propietario de
uno o mas hilos (#hreads) de ejecuciéon. Pues ahora le presento un nuevo personaje:
los apartamentos (apartments). Un apartamento no es un proceso, ni un hilo; tampoco
es un péjaro, un avién o Superman. Un hilo de una aplicacién COM debe ejecutarse
exactamente en un apartamento, pero un apartamento puede ser utilizado simulta-
neamente por varios hilos. La existencia de un apartamento impone restricciones a
los objetos que habitan en su interior, relacionadas con la forma en que pueden co-
municarse con otros apartamentos. Microsoft denominé originalmente a los aparta-
mentos con el nombre de contexto de ejecucidn; en mi opinidn, este nombre es preferi-
ble, ya que no posee connotaciones inmobiliarias...

Mas informacién sobre los apartamentos. Un proceso puede contener dos tipos de
apartamentos: los MTA (multi-threaded apartment) y los STA (single-threaded apartment).
Solamente se permite un MTA por proceso, pero se admite la presencia de varios
STA. Como sus nombres sugieren, dentro de un MTA pueden ejecutarse varios hilos,
pero no dentro de un STA.

Para que un hilo pueda utilizar COM debe llamar a una de las siguientes funciones:

HRESULT Colnitialize(LPVO D pvReserved);
HRESULT O elnitialize(LPVO D pvReserved);
HRESULT ColnitializeEx(LPVO D pvReserved, DWORD dwCol nit);

Automatizacién OLE: servidores 569

El primer parametro de las tres funciones anteriores siempre debe ser 0. Las dos
primeras indican que el hilo activo se ejecutara dentro de un nuevo STA. La tercera
funcién es un afladido posterior de Microsoft, y controla el tipo de apartamento de
acuerdo al valor pasado en el segundo parametro:

dwColnit Tipo de apartamento
COINIT_APARTMENTTHREADED STA
COINIT_MULTITHREADED MTA

iEh, cuidado! Hace un par de capitulos programamos un servidor COM sencillo,
iy no llamamos a Colnitialize para nada! Es verdad, pero recuerde que se trataba
de un servidor dentro del proceso, es decir, una DLL, por lo que la llamada en
cuestién la realizaba el cliente.

¢Para qué se han introducido los apartamentos? ¢Sélo para complicarnos la vidar La
respuesta es que cuando un objeto COM reside en un STA, la activacién de sus mé-
todos se realiza indirectamente a través de una cola de mensajes propia del aparta-
mento. Si varios hilos clientes intentan acceder a los métodos del objeto no se pro-
duce conflicto alguno, pues la cola de mensajes serializara automaticamente las lla-
madas. Por lo tanto, los métodos de la clase no tendran que utilizar primitivas de
sincronizacion (secciones criticas, por ejemplo) para acceder a los datos del objeto.
Eso si, si el servidor es un ejecutable que puede suministrar varios objetos dentro de
la misma instancia, no hay una proteccion similar para los datos globales a todos los
objetos.

Proceso

[STA

?’:liwz’:b o
A =

o_
O—

Los servidores locales y remotos pueden indicar el modelo de concurrencia de sus
objetos controlando las llamadas a ColntializeEx. Pero si el servidor es una DLL, es
el cliente el unico que puede llamar a la funcién mencionada. ;Qué sucede si el servi-
dor supone que va a ejecutarse en determinadas condiciones de concurrencia, y re-
sulta que el cliente utiliza otras?

Por este motivo, los servidores dentro del proceso deben indicar su modelo de con-
currencia en el Registro de Configuraciones, en la subclave Threading Model. Entonces
el sistema operativo puede tomar las precauciones necesarias al cargar el servidor

570 La Cara Oculta de C++ Builder

para evitar conflictos entre los modelos de concurrencia del cliente y del servidor.
Una de estas medidas puede incluso ser la delegacion de las llamadas del cliente a un
proxy, aunque el objeto servidor resida en el mismo espacio de memoria de la aplica-
ci6én que lo utiliza.

La funcién ColnitializeEx es una extension anadida para DCOM, y como todos
sabemos Windows 95 no soporta objetos distribuidos ... a no ser que instalemos
un parche suministrado por Microsoft. Si usted no instala este parche, no podra
ejecutar (ni siquiera registrar) los ejemplos de ActiveX que se generan con C++
Builder, ya que la VCL llama a ColnitializeEx automaticamente al iniciar cualquier
aplicacion que utilice COM.

Un servidor de bloqueos

En determinadas aplicaciones, es inaceptable que un usuario se enfrasque en una
larga operacién de modificacion de un registro ... para descubrir en el momento de la
grabacién que no puede guardar sus cambios, porque otro usuario ha modificado
mientras tanto el mismo registro. Esto es lo que sucede habitualmente en las aplica-
ciones desarrolladas para bases de datos cliente/setvidor.

A lo largo de este libro hemos visto técnicas que ayudan a disminuir la cantidad de
conflictos que se pueden producir. Ahora ofreceremos una alternativa radical: im-
plementaremos una aplicaciéon que actie como servidor remoto de bloqueos. La
aplicacion se ejecutara en un punto central de la red, que no tiene por qué coincidir
con el del servidor SQL. Cada vez que un usuatio intente acceder a un registro para
modificarlo, debe pedir permiso al servidor, para ver si algun otro usuario esta utili-
zandolo. El servidor mantendra una lista de los registros “bloqueados”. Y cuando
una aplicacién a la que se le haya concedido el derecho a editar un registro termine su
edicién, ya sea cancelando o grabando, la aplicacion debe retirar el bloqueo mediante
otra llamada al servidor.

Primero desarrollaremos el servidor, para después ponetlo a punto con una aplica-
cién de prueba. De acuerdo a lo explicado anteriormente, son solamente dos los
procedimientos que tendremos que implementar para el servidor de bloqueos:

HRESULT LockRow(BSTR Tabl eNarre, int Key);
HRESULT Unl ockRow(BSTR Tabl eNane, int Key);

Las funciones devolveran los valores §_OK, para indicar éxito, y S_FAISE cuando
fracasan. Luego el cliente deberd transformar estos codigos en excepciones. He deci-
dido, para simplificar el cédigo del servidor, que las claves primarias sean siempre un
numero entero. Segun hemos visto en los ejemplos de este libro, existen razones
convincentes para introducir claves artificiales incluso en los casos en que semanti-

Automatizacion OLE: servidores 571

camente la clave primaria natural serfa una clave compuesta. El lector puede, no
obstante, aumentar las posibilidades del servidor afiadiendo métodos que bloqueen
registros de tablas con otros tipos de claves primarias.

De modo que iniciamos una nueva aplicacion (File| New application). A la ventana
principal le damos el nombre de wndMain (jqué originall). Mas adelante, podra modi-
ficar esta ventana para que aparezca como un icono en la bandeja de iconos de
Windows. En el capitulo 5 ya hemos explicado como hacetlo. Incluso, si solamente
va a utilizar el servidor en Windows NT, puede transformar esta aplicacion en un
servicio.

Guardamos ahora la aplicacién. Silo desea, llame Main a la unidad de la ventana
principal. Ahora bien, le ruego que llame LockServer al fichero de proyecto, y que no
mueva durante el desarrollo el directorio donde estara situado. A continuacion, eje-
cute el didlogo del Depésito de Objetos (File | New), vaya a la segunda pagina
(ActiveX), y pulse el icono Automation Object.

En el didlogo de creacion de objetos de automatizacion, teclee Locker como nombre
de clase, y deje el modo de generacion de instancias como Multiple instance; esto quiere
decir que una sola instancia de la aplicacion podra ejecutar concurrentemente el co-
digo de multiples instancias de objetos de automatizacion. En el modelo de concu-
rrencia especificaremos Free. Cuando cierre el didlogo, guarde el proyecto y nombre a
la nueva unidad generada como LockImpl:

New Automation Dbject

LoClass Mame: ILocker

Threading Model: IF[ee j
Description: ILock Marager
— Dptionz

[Generate Event support code

QK I Cancel | Help |

Aparecera entonces el Editor de la Biblioteca de Tipos del proyecto. Utilizando el
botén Method debemos crear el par de métodos LockRow y UnlockRow bajo el nodo
correspondiente a la interfaz ILocker, con los prototipos establecidos al principio de
esta seccion. Después debemos pulsar el boton Refresh, para que los cambios se re-
flejen en la unidad de declaracion de las interfaces, LockServer_TLB, y en la unidad
Lockerlmpl, en la cual implementaremos los métodos definidos.

572 La Cara Oculta de C++ Builder

LockServer.tlh

¢ LockServer
=% ‘. ILacker:

 LockPow
- UnlockRow

i Locker

|Locker

{3DCEA3DT-EA15-11D2-BE7D-0000E BD7F7EZ}
1.0

|Dispatch

Dispatch interface for Locker Object

La implementacion de la lista de bloqueos

La estructura de datos a elegir para implementar la lista de bloqueos dependera en
gran medida de la estimacién que hagamos del uso del servidor. Mis calculos con-
sisten en que un nimero relativamente pequefio de tablas contendran un nimero
elevado de bloqueos. Por lo tanto, mi sugerencia es utilizar una lista vectorial de
nombres de tablas, ordenada alfabéticamente, y asociar a cada una de las entradas en
esta lista, un puntero a un arbol binario ordenado.

Debemos crear una nueva unidad, con el nombre #rees, que implemente las opera-
ciones de borrado y de bisqueda e insercidén en un arbol binario. Este es el fichero
de cabecera de la unidad:

Automatizacion OLE: servidores 573

El procedimiento Treelnsert trata de insertar un nuevo nodo con la clave indicada, y
devuelve False cuando ya existe un nodo con esa clave. TreeDelete, por su parte, busca
el nodo con la clave especificada para borratlo, y devuelve True s6lo cuando lo ha
podido encontrar.

574 La Cara Oculta de C++ Builder

el se
T = & *T)->Ri ght;

return Fal se;

La explicacion de esta unidad va mas alla de los propésitos del libro. La funcién de
insercion es relativamente sencilla. La de borrado es ligeramente mas complicada; el
caso mas barroco sucede cuando se intenta borrar un nodo que tiene ambos hijos
asignados. Entonces hay que buscar el mayor de los nodos menores que el que se va
a borrar (es decir, el nodo anterior en la secuencia de ordenacién). Se mueve el valor
de este nodo al nodo que se iba a borrar y se elimina fisicamente el antiguo nodo, del
que se ha extraido el valor anterior.

Control de concurrencia

La implementacion directa de los métodos LockRow y UnlockRow tiene lugar en la
unidad Locklmpl, que es la que contiene la declaracion de la clase TLockerImpl. Pero
antes crearemos una clase TLockManager, a partir de la cual crearemos una instancia
global al servidor. El objeto global nos servira para almacenar la lista de tablas que
contienen bloqueos, el nimero de bloqueos existente en cualquier instante y un ob-
jeto de clase TCriticalSection, que evitara colisiones en el uso de los objetos anteriores.
Todos los objetos de automatizacion trabajaran sobre la instancia global.

La declaraciéon de la clase la podemos ubicar dentro del propio fichero #rees.b:

cl ass TLockManager

pr ot ect ed:
TStringList* fTables;
int flLocks;
TCritical Section* cSection;
publi c:
TLockManager () ;
~TLockManager () ;
HRESULT LockRow(BSTR Tabl eNane, int AKey);
HRESULT Unl ockRow(BSTR Tabl eNane, int AKey);

static TLockManager *| ockManager;
b

La estructura de la lista de bloqueos es la siguiente: en el primer nivel tendremos una
lista ordenada de cadenas, almacenada en la variable fIzblas. Para cada tabla guarda-
remos un arbol binario diferente, en el vector paralelo Objects de la clase TStringl ist.
Por su parte, la clase TCriticalSection esta definida dentro de la unidad SyncObjs de la
VCL 4. Las secciones criticas son uno de los mecanismos que ofrece Windows para
sincronizar procesos paralelos. Operan dentro de una misma aplicacion, a diferencia

Automatizacion OLE: servidores 575

de otros recursos de sincronizacion globales como los semaforos y zutexes, pero son

mas eficientes.

He aqui el constructor y el destructor de la clase TLockManager:

TLockManager : : TLockManager ()
f Tabl es(new TStringList),
cSection(new TCritical Section),

f Locks(0)
{

f Tabl es->Sorted = True;

f Tabl es->Dupl i cat es = dupl gnore;
}

TLockManager : : ~TLockManager ()

del ete cSection;
del ete fTabl es;

}
TLockManager *TLockManager: :|ockManager = 0;

Los métodos puiblicos se implementan dentro de la proteccion de la seccion critica,
de modo que dos objetos servidores no puedan simultaineamente realizar cambios en
la lista de tablas o en los arboles binarios asociados. Cada cliente que se conecte al
servidor de bloqueos lanzara un hilo independiente. Si Enfer encuentra que otro hilo
ha ejecutado Entery todavia no ha salido con Leave, pone en espera al hilo que lo ha

ejecutado, hasta que quede liberada la seccion:

HRESULT TLockManager: : LockRow BSTR Tabl eNanme, int AKey)

{
cSection->Enter();
try
e
int i = fTabl es->Add(Tabl eNane) ;
PTree t = PTree(fTabl es->0bjects[i]);
if (! Treelnsert(AKey, t))
return S_FALSE;
f Tabl es->0bj ects[i] = (Thject*) t;
f Locks++;
b
_finally
{
cSection->Leave();
}
return S_OK;
}
HRESULT TLockManager : : Unl ockRow(BSTR Tabl eNane,
{
cSection->Enter();
try
{

int i = fTabl es->l ndexCf (Tabl eNane) ;

i nt AKey)

576 La Cara Oculta de C++ Builder

if (i 1=-1)
{ . .
PTree t = PTree(fTabl es->0bjects[i]);
if (TreeDel ete(AKey, t))
f Tabl es->bj ects[i] = (TOohject*) t;
f Locks--;
return S_OK;
}
}
b
_finally
{ .
cSection->Leave();
}
return S_FALSE;

La construccién y destruccion de la instancia global se realizara en el codigo de inicio
del servidot:

W NAPI W nMai n(H NSTANCE, HI NSTANCE, LPSTR, int)

{
TLockManager: : | ockManager = new TLockManager ;

try

{ N o
Application->Initialize();
Appl i cati on->Creat eForm(__cl assi d(TwndMai n), &wndMai n);
Appl i cation->Run();

catch (Exception &exception)

del et e TLockManager: : | ockManager;
Appl i cati on- >ShowExcept i on(&xception);
}

return O;

Finalmente estamos listos para implementar los métodos de automatizacion. La in-
sercion y eliminaciéon de un registro en la lista de bloqueos se realiza del siguiente
modo:

STDVETHCODI MP TLocker | npl : : LockRow BSTR Tabl eNare, int AKey)

{

return TLockManager: : | ockManager - >LockRow(Tabl eNane, AKey);
}
STDMVETHODI MP TLocker | npl : : Unl ockRow(BSTR Tabl eNanme, int AKey)
{

return TLockManager: : | ockManager - >Unl ockRow(Tabl eNane, AKey);
}

Automatizacion OLE: servidores 577

Poniendo a prueba el servidor

Ahora que hemos completado la aplicacion servidora, estamos en condiciones de
ponerla a prueba. Comenzaremos las pruebas en modo local, con el servidor y los
clientes situados en el mismo ordenador; asf evitaremos los problemas iniciales que
pueden surgir durante la comunicacion remota entre aplicaciones. El primer paso es
compilar y ejecutar el servidor, al menos una vez, para que éste grabe las entradas
necesarias en el registro de Windows.

A continuacién creamos una nueva aplicacion, en la cual colocamos una tabla enla-
zada a alguna base de datos SQL,; el alias IBLLOCAL de los ejemplos de C++ Builder
puede servir. Afiada es este proyecto los ficheros LockerServer_TI.B con extensiones
¢p v b, que contienen las declaraciones en C++ de la biblioteca de tipos. De este
modo, podremos utilizar las interfaces duales en vez de tener que utilizar variantes
engorrosos.

Para concretar, supongamos que la tabla elegida es employee, cuya clave primaria es la
columna Emp_No. La interfaz de usuario, en si, serd muy sencilla: una rejilla de datos
y una barra de navegacion bastan. Vamos a la declaracion de la clase TFom1, a la sec-
cion private, y afladimos la siguiente declaracion:

class TForml : public TForm

I
private:

TCOM Locker Locker;
b

La clase TCOMILocker corresponde a la interfaz “inteligente” declarada en la biblio-
teca de tipos importada. La variable se inicializa durante la construccién del formula-
rio; no sera necesario destruir el enlace explicitamente, pues de eso se encargara el
destructor de la clase de la ventana principal:

__fastcall TForml:: TFor ml(TConponent *QOaner)
TForm(Omner), Locker(CoLocker::Create())
{

}

El resto del cédigo se concentrara en los eventos de transicion de estado del com-
ponente de acceso a la tabla. Estos seran los eventos necesarios:

Accion Eventos
Bloquear BeforeE dit
Desbloquear OxnEditError, AfterPost, AfterCancel

578 La Cara Oculta de C++ Builder

En este caso simple, en que no necesitamos mas instrucciones dentro de los mane-
jadores de estos eventos, podemos crear tres métodos para que sirvan de receptores:

void _ fastcall TForml:: Tabl elBef or eEdi t (TDat aSet *Dat aSet)

WdeString tabl eName = Tabl el- >Tabl eNane;
HRESULT hr = Locker. LockRow(tabl eNane, Tabl elEMP_NO >Asl nt eger) ;
A eCheck(hr);
if (hr == S _FALSE)
t hrow Excepti on("Regi stro bl oqueado");
}

void _ fastcall TForml:: Tabl elAft er Post Cancel (TDat aSet *Dat aSet)

/] Conpartido por AfterPost y AfterCancel

W deString tabl eNanme = Tabl el- >Tabl eNang;

A eCheck(Locker. Unl ockRow(t abl eNanme, Tabl elEMP_NO >Asl nt eger)) ;
}

void __fastcall TForml. Tabl elEditError(TDat aSet *DataSet,
EDat abaseError *E, TDataAction &Action)

WdeString tabl eName = Tabl el- >Tabl eNane;
A eCheck(Locker. Unl ockRow(t abl eNanme, Tabl elEMP_NO >Asl nt eger));

Hemos necesitado la vatiable temporal de tipo WideString para crear el puntero
de tipo BSTR que debemos pasar a los métodos del administrador de bloqueos.
BSTR se representa como una cadena Unicode con un prefijo de cuatro bytes
con la longitud. Si no hubiéramos recurrido a esta clase importada desde Delphi,
tendrfamos que llamar a las funciones del API de Windows SysA/ocString y Sys-
FreeString, ademas de garantizar la llamada de esta dltima en caso de excepcion.

Ahora puede ejecutar dos copias de la aplicaciéon y comprobar que, efectivamente,
cuando editamos una fila de la tabla de empleados bloqueamos el acceso a la misma
desde la otra copia de la aplicacion.

Para sustituir el servidor local por un servidor remoto sélo necesitamos cambiar el
mecanismo de creacion de la instancia Locker:

__fastcall TForml:: TFor ml(TConponent *QOaner)
TFor m(Owner), Locker (CoLocker:: Creat eRenpt e(" Nonbr eServi dor"))
{

}

Capitulo

30

Midas

N ESTE CAPITULO NOS OCUPAMOS del modelo de desarrollo de aplicaciones

en mualtiples capas, y en particular de los servicios que ofrece la tecnologia

Midas de Inprise (o Borland, como prefiera). Enfocaremos el desarrollo de
servidores de datos en la capa intermedia, y veremos qué componentes n0os propot-
ciona C++ Builder para desarrollar las partes del servidor y del cliente de la aplica-
cién, estudiando los mecanismos particulares de este modelo para resolver los pro-
blemas que ocasiona el acceso concurrente.

¢Qué es Midas?

Las siglas Midas quieren decir, con un poco de buena voluntad, Mu/ti-tiered Distributed
Application Services, que traducido viene a ser, poco mas o menos, Servicios para Apli-
caciones Distribuidas en Multiples Capas. Midas no es una aplicacion, ni un compo-
nente, sino una serie de servicios 0 mecanismos que permiten transmitir conjuntos
de datos entre dos aplicaciones. En la primera version de Midas, que aparecié con
Delphi 3.0, el vehiculo de transmision era DCOM, aunque podiamos utilizar un sus-
tituto, también basado en COM, denominado OLEnterprise. Con C++ Builder 4
podemos transmitir conjuntos de datos entre aplicaciones utilizando indistintamente
COM/DCOM, OLEnterprise y TCP/IP.

En el mecanismo basico de comunicacién mediante Midas intervienen dos aplicacio-
nes. Una actda como servidora de datos y la otra actia como cliente. Lo normal es
que ambas aplicaciones estén situadas en diferentes ordenadores, aunque en ocasio-
nes es conveniente que estén en la misma maquina, como veremos mas adelante.
También es habitual que el servidor sea un ejecutable, aunque si vamos a colocar el
cliente y el servidor en el mismo puesto es posible, y preferible, programar un servi-
dor DLL dentro del proceso.

A grandes rasgos, la comunicacion cliente/servidor se establece a través de una intet-
faz COM nombrada IDataBroker, que es una interfaz de automatizacién. Esta interfaz
permite el acceso a un conjunto de proveedores; cada proveedor es un objeto que so-

porta la interfaz [Provider. Los proveedores se sitian en la aplicacién servidora, y cada

580 La Cara Oculta de C++ Builder

uno de ellos proporciona acceso al contenido de un conjunto de datos diferente.
Esta estructura tiene su paralelo en la parte cliente. Los componentes derivados de la
clase abstracta TDispatchConnection utilizan la interfaz IDataBroker de la aplicacién
servidora, y ponen a disposicion del resto de la aplicacion cliente los punteros a las
interfaces [Provider. Cada clase concreta derivada de TDispatchConnection implementa la
comunicacién mediante un protocolo determinado: TDCOM Connection, TSocketCon-
nection y TOLEnterpriseConnection.

Nuestro viejo conocido, el componente T ClientDataSet, puede utilizar una interfaz
IProvider extraida de un TDispatchConnection como fuente de datos. A partir de estos
componentes, la arquitectura de la aplicacion es similar a la tradicional, con conjuntos
de datos basados en el BDE. El siguiente esquema muestra los detalles de la comuni-
cacion entre los clientes y el servidor de aplicaciones:

O IDataBroker >)_ J
>
B]

Médulo de datos remoto

1 o J

TClientDataSet ~ TDispatchConnection TProvider Conjunto de datos

Las mas popular de las posibles configuraciones de un sistema de este tipo es la cla-
sica aplicacion en tres capas, cuya estructura se muestra en el siguiente diagrama:

Clientes Servidor de Servidor de

Aplicaciones Bases de Datos
OLEnterprise SQL-Links
TCP/IP

Win95, WIinNT Workstation WinNT, Win95 WinNT, NetWare, Unix

En esta configuracion los datos se almacenan en un servidor dedicado de bases de
datos. El sistema operativo que se ejecuta en este ordenador no tiene por qué ser
Windows: UNIX, en cualquiera de sus mutaciones, o NetWare pueden ser alternati-
vas mejores, pues la concurrencia estd mejor disefiada y, en mi opinidn, son mas esta-
bles, aunque también mas dificiles de administrar correctamente. Hay un segundo

Midas 581

ordenador, el servidor de aplicaciones, que actia de capa intermedia. En esta ma-
quina estd instalado el BDE y los SQL Links, con el propésito de acceder a los datos
del servidor SQL. El sistema operativo, por lo tanto, debe ser Windows NT Server,
preferentemente, 6 Windows N'T Workstation e incluso Windows 95 /98. La aplica-
ci6én escrita en C++ Builder (o incluso Delphi) que se ejecuta aqui no tiene necesidad
de presentar una interfaz visual; puede ejecutarse en segundo plano, aunque es con-
veniente disponer de algiin monitor de control. Finalmente, los ordenadores clientes
son los que se encargan de la interfaz visual con los datos; éstos son terminales relati-
vamente baratas, que ejecutan preferentemente Windows 95/98 6 N'T Workstation.
En estos ordenadores no se instala el Motor de Datos de Botland, pues la comuni-
cacion entre ellos y el servidor intermedio se realiza a través de DCOM, OLEnter-
ptise o TCP/IP.

Cuando utilizar y cuando no utilizar Midas

Las bondades de Midas, pero sobre todo la propaganda acerca de la nueva técnica, ha
llevado a muchos equipos de programacion a lanzarse indiscriminadamente al desa-
rrollo utilizando el modelo que acabo de presentar. Desde mi punto de vista, muchas
de las aplicaciones planteadas no justifican el uso de este modelo. De lo que se trata
no es de la conveniencia indiscutible de estratificar los distintos niveles de trata-
miento de datos en una aplicacién de bases de datos, sino de si es rentable o no que
esta division se exprese fisicamente. Es algo de sentido comun el hecho de que al
afiadir una capa adicional de software o de hardware, cuya tnica funcién es la de
servir de correa de transmision, solamente logramos ralentizar la ejecucion de la
aplicacion.

Olvidémonos por un momento de la estratificacién metodolégica y concentrémonos
en el andlisis de la eficiencia. ¢Cuadl es la ventaja del modelo de dos capas, mas cono-
cido como modelo cliente/servidor? La principal es que gran parte de las reglas de
empresa pueden implementarse en el ordenador que almacena los datos. Por lo tanto,
para su evaluacion los datos no necesitan viajar por la red hasta alcanzar el nodo en
que residen las reglas. ¢Qué sucede cuando se afiade una capa intermedia? Pues que
en la mayorfa de las aplicaciones no existen reglas de empresa lo suficientemente
complejas como para justificar un nivel intermedio: casi todo lo que puede hacer un
servidor Midas puede implementarse en el propio servidor SQL. Existe una excep-
cién importante para este razonamiento: si nuestra aplicacién requiere reglas de em-
presa que involucren simultaneamente a varias bases de datos. Por ejemplo, el inven-
tario de nuestra empresa reside en una base de datos Oracle, pero el sistema de factu-
racion utiliza InterBase. Ninguno de los servidores SQL puede asumir por sf mismo
la ejecucion de las reglas correspondientes, por lo que la responsabilidad debe des-
cargarse en un servidor Midas.

582 La Cara Oculta de C++ Builder

Existe, sin embargo, una técnica conocida como balance de carga, que en C++ Builder
3 solamente podia implementarse con OLEnterprise, pero que en la version 4 tam-
bién puede aplicarse a otros protocolos. La técnica consiste en disponer de una bate-
rfa de servidores de capa intermedia similares, que ejecuten la misma aplicacion ser-
vidora y que se conecten al mismo servidor SQL. Los clientes, o estaciones de tra-
bajo, se conectan a estos servidores de forma balanceada, de forma tal que cada ser-
vidor de capa intermedia proporcione datos aproximadamente al mismo ntimero de
clientes.

Se deben dar dos condiciones para que esta configuracion disminuya el trafico de red
y permita una mayor eficiencia:

El segmento de red que comunica al servidor SQL con los servidores Midas y el
que comunica a los servidores Midas con los clientes deben ser diferentes fisi-
camente.

Los servidores Midas deben asumir parte del procesamiento de las reglas de
empresa, liberando del mismo al servidor SQL.

Otra desventaja del uso de Midas consiste en que las aplicaciones clientes deben
emplear conjuntos de datos clientes, y estos componentes siguen una filosoffa opti-
mista respecto al control de cambios. Ya es bastante dificil convencer a un usuario
tipico de las ventajas de los bloqueos optimistas, como para ademas llevar este modo
de accién a su mayor grado. Los conjuntos de datos clientes obligan a realizar las
grabaciones mediante una accién explicita (ApplyUpdates), y es bastante complicado
disfrazar esta accion de modo que pase desapercibida para el usuario. Es mas, le su-
glero que se olvide de las rejillas de datos en este tipo de aplicacién. Como ya sabe, si
la curiosidad del usuatio le impulsa a examinar el Gltimo registro de una tabla, no
pasa nada pues el BDE implementa eficientemente esta operacion. Pero un conjunto
de datos clientes, al igual que una consulta, se ve obligado a traer todos los registros
desde su servidor.

De todos modos, existen otras consideraciones aparte de la eficiencia que pueden
llevarnos a utilizar servidores de capa intermedia. La principal es que los ordenadores
en los que se ejecutan las aplicaciones clientes no necesitan el Motor de Datos de
Botland ni, lo que es mas importante, el cliente del sistema cliente/servidor. Co-

Midas 583

nozco dos importantes empresas de zele-marketing que programan en Delphi y C++
Builder; una de ellas tiene sus datos en Oracle y la otra en Informix. Es bastante
frecuente que, tras contratar una campafia, tengan que montar de un dfa para otro
treinta o cuarenta ordenadores para los nuevos operadores telefonicos y, después de
instalar el sistema operativo, se vean obligados a instalar y configurar el BDE y el
cliente de Oracle e Informix en cada uno de ellos. Evidentemente, todo resulta ser
mas facil con los clientes de Midas, que solamente necesitan para su funcionamiento

una DLL de 206 KB (C++ Builder 4).

Midas y las bases de datos de escritorio

Los razonamientos anteriores suponen que nuestra base de datos reside en un sis-
tema cliente/servidor. Curiosamente, una aplicacion que funcione con Paradox o
dBase puede beneficiarse mucho de utilizar un servidor Midas para determinadas
tareas. No voy a sugeritle que utilice conjuntos de datos clientes para el manteni-
miento de las tablas, pues estas operaciones se realizan mas eficientemente acce-
diendo directamente a los ficheros. Pero las consultas sobre la base de datos son
excelentes candidatas a ser sustituidas por componentes TClientDataSet. Son las once
de la mafiana, y todos en la oficina se afanan en introducir datos de pedidos desde
sus ordenadores a la Gran Base de Datos Central (que a pesar de las mayutsculas esta
en formato Paradox). A esa hora el Gran Jefe se digna en honrar con su presencia a
sus empleados. Se repantinga en su sillén de cuero, enciende su Gran Ordenador y
ejecuta el inico comando que conoce de la aplicacion: obtener un grafico con la
distribuciéon de las ventas. Pero mientras el grafico se genera, el rendimiento de la red
cae en picado, las aplicaciones parecen moverse en camara lenta, y los pobres em-
pleados miran al cielo raso, suspiran y calculan cuantos meses quedan para las pré-
ximas vacaciones.

Lo que ha sucedido es que los datos del grafico se reciben de un TQwery, mediante
una consulta que implica el encuentro entre cinco tablas, un group by y una ordena-
ci6én posterior. Y el encargado de ejecutar esa consulta es el intérprete local de SQL
del Gran Ordenador. Esto significa que todos los datos de las tablas implicadas de-
ben viajar desde la Gran Base de Datos Central hacia la maquina del Gran Jefe, y
consumir el recurso mas preciado: el ancho de banda de la red.

Mi propuesta es la siguiente: que las operaciones de mantenimiento sigan efectuan-
dose como hasta el momento, accediendo mediante componentes T1Table a la base de
datos central. Pero voy a instalar un servidor Midas en el ordenador de la Gran Base
de Datos, que contendra la consulta que utiliza el grafico, y exportara ese conjunto de
datos. Por otra parte, cuando la aplicacion necesite imprimir el grafico, extraera sus
datos de un conjunto de datos clientes que se debe conectar al servidor Midas.
¢Dénde ocurrird la evaluacion de la consulta? Estd claro que en la misma maquina
que contiene la base de datos y, como consecuencia, los datos originales no tendran

584 La Cara Oculta de C++ Builder

que viajar por la red. El conjunto resultado es normalmente pequefio, y sera lo tnico
que tendra que desplazarse hasta el ordenador del Gran Jefe. sResultado? Menos
trafico en la red (y empleados que miran menos al techo).

S S

Mantenimientos

Aplicacion
cliente

Servidor
Midas

| S

Consultas

Un servidor Midas también puede encargarse de ejecutar operaciones en lote que no
requieran interaccién con el usuario. Estas operaciones se activarfan mediante una
peticion emitida por un cliente, y se ejecutarfan en el espacio de procesos del servi-
dor. De esta forma, estarfamos implementando algo parecido a los procedimientos
almacenados, pero sobre una base de datos de escritorio.

Modulos de datos remotos

Una vez sopesados los pros y los contras de las aplicaciones Midas, veamos como
crearlas. Para desarrollar una aplicacién en tres capas es necesario, en primer lugar,
crear la aplicacion intermedia que actuara como servidor de aplicaciones. De esta
manera, la aplicacién cliente conocera la estructura de los datos con que va a trabajar.
Es parecido a lo que ocurre en las aplicaciones en una o dos capas: necesitamos que
las tablas estén creadas, y de ser posible con datos de prueba, para poder trabajar
sobre su estructura.

Projects I [rata Modules I Business I
Activel Fultitier | Project] | Forms | Dialogs

3 =

TS|

DL CORBEA Object CORBA Server MTS Data
Implermentation Maodule

MTS Object

) Bopy 0] [Rbent) se

oK I Cancel Help

Midas 585

Partiremos de una aplicacién vacia; en principio no necesitamos el formulario princi-
pal, pero lo dejaremos con el propésito de controlar la ejecucion del servidor. Pri-
mero creamos un médulo de datos remoto, por medio del Depésito de Objetos. El
icono necesario se encuentra en la pagina Multitier del Dep6sito, bajo el castizo nom-
bre de Remote data module. Al seleccionar el icono y pulsar el boton Ok, C++ Builder
nos pide un nombre de clase y un modelo de concurrencia, al igual que para los ob-
jetos de automatizacion que hemos visto en el capitulo anterior:

MNew Remote Data Module Dbject

LCoClass Name: IM astSiL

Thieading Maodel: IApaltmEnl j

Diescription |Servidur Midas de prusba

Oplions
’7 ™ Generate Event support code ‘

oK I Cancel | Help |

Como nombre de clase utilizaremos MastSQL; guardaremos la aplicacion como Servi-
dorApl, por lo que el identificador de clase que utilizaremos mas adelante para refe-
rirnos al objeto de automatizacion sera la concatenacion de estos nombres: Servidor-
AplMastSQL.. Como modelo de instanciacion, utilizaremos Multiple instances, que es el
utilizado por omisién por la ATL; recuerde que el modelo de instanciacion puede
cambiarse en la pagina 4TI de las opciones del proyecto. De esta forma, cuando se
conecten varios clientes al servidor, la aplicacion se ejecutara una sola vez. Por cada
cliente, sin embargo, habra un médulo remoto diferente, ejecutandose en su propio
hilo. Y como estamos creando un servidor remoto, podemos ignorar el modelo de
concurrencia.

A primera vista, el médulo incorporado al proyecto tiene el mismo aspecto que un
moédulo normal, pero no es asi. Si abrimos el Administrador de Proyectos, veremos
que C++ Builder ha incluido una biblioteca de tipos en el proyecto. Esto se debe a
que el médulo de datos remoto implementa una interfaz, denominada IDataBroker,
que Borland define como descendiente de la interfaz de automatizacion IDisparch. En
la biblioteca se define una nueva interfaz y una clase de componentes asociada:

[
uui d(03B79CE1- FO3A- 11D2- B67D- 0000E8D7F7B2) ,

version(1.0),

hel pstring("Dispatch interface for Mast SQ Object"),

dual ,

ol eaut omati on
]
interface | Mast SQL: | Dat aBr oker
{
}.

586 La Cara Oculta de C++ Builder

uui d(03B79CE3- FO3A- 11D2- B67D- 0000E8D7F7B2) ,
version(1l.0),
hel pstring("Mast SQL Object")

]

cocl ass Mast SQL

[default] interface | Mast SQ;
b

Recuerde que no debemos modificar directamente los ficheros importados a partir
de la biblioteca, sino a través del Editor de la Biblioteca de Tipos.

Para controlar el nimero de clientes que se conectan al servidor, aprovecharemos
que por cada cliente se crea un nuevo objeto de tipo TMuastSQL.. En el formulario
principal afladimos un componente Labe/l, un nuevo atributo de tipo TCriticalSection
y un método ReportConnection:

class TForml : public TForm

{
__published: /1 1 DE- managed Conponents
TLabel *Label 1;
privat e: /'l User decl arations
TCritical Section *csection;
int fConnections;
public: /1 User declarations
__fastcall TFornil(TConponent* Oaner);
void _ fastcall ReportConnection(int delta);

b

La seccion critica se crea y se destruye explicitamente en el constructor del formula-
rio, y durante la respuesta a OnClose, respectivamente:
__fastcall TForml:: TFor ml(TConponent* Oaner) : TForn{ Oaner)

csection = new TCritical Section;

}

void _ fastcall TFormil:: FornCl ose(TObj ect *Sender,
Td oseAction &Acti on)

del ete csection;

La implementacion de ReportConnection es la siguiente:

void _ _fastcall TForml:: ReportConnection(int delta)
{

csection->Enter();
try

f Connections += delta;

Midas 587

Label 1- >Caption = IntToStr (fConnections) +
" clientes conectados"”;

_finally

csection->Leave();

Regresamos al médulo de datos, incluimos la cabecera de la unidad principal y crea-
mos estos métodos como respuesta a los eventos OnCreate y OnDestroy del médulo
remoto:

void _ fastcall TMastSQL:: Mast SQLCreat e(TObj ect* Sender)

For nml- >Report Connecti on(+1);
}

void __fastcall TMastSQL:: Mast SQLDestroy(TObj ect* Sender)

For nml- >Report Connection(-1);

Proveedores

Las aplicaciones clientes deben extraer sus datos mediante una interfaz remota cuyo
nombre es [Provider. El propdsito del médulo de datos remoto, ademas de contener
los componentes de acceso a datos, es exportar un conjunto de proveedores por
medio de la interfaz IDataBroker. Por lo tanto, nuestro proximo paso es crear estos
proveedores. Comenzaremos con el caso mas sencillo: una sola tabla. Mas adelante
veremos como manejar relaciones master/ detail, y cémo pueden manejatse transac-
ciones de forma explicita.

Colocamos una tabla en el modulo de datos remotos, cambiamos su nombre a
thClientes, su base de datos a bedemos y sunombre de tabla a customer.db; después la
abrimos mediante su propiedad Aczive. Pulsamos el botén derecho del ratén sobre la
tabla y elegimos el comando Export thClientes from data module:

§#MastsqL

Fields Editor...
Explore

n data module

Rename T able...
Update T able Definition

Align to Grid
B Align.
Feverttaintiented
éE Creation Order.
Add To Repositor...
View ag Text

588 La Cara Oculta de C++ Builder

Con esta accién hemos provocado que una nueva propiedad, #Clientes de sélo lec-
tura, aparezca en la interfaz del objeto de automatizacion. La declaracion IDL de la
interfaz se ha modificado de la siguiente forma:

[
uui d(03B79CE1- FO3A- 11D2- B67D- 0000ES8D7F7B2) ,

version(1.0),

hel pstring("Dispatch interface for Mast SQ Object"),
dual ,

ol eaut omat i on

]
interface | Mast SQL: | Dat aBr oker

{
[propget, id(0x00000001)]
HRESULT _stdcall tbdientes([out, retval] |Provider ** Value);

}s

Como se trata de una interfaz sélo lectura, se implementa mediante un método de
nombre gez thClientes, generado automaticamente por C++ Builder:

STDVETHODI MP TMast SQLI npl : : get _t bCl i ent es(| Provi der** Val ue)
{
try
. . . .
_di _I Provider |Prov = m Dat aMbdul e->t bd i ent es- >Provi der;

| Prov->AddRef () ;
*Val ue = | Prov;

}
cat ch(Exception &e)
return Error(e. Message.c_str(), |1D_|I MastSQ);

}
return S_OK;

En primer lugar, observe que la implementacion de la interfaz estd a cargo de la clase
TMastSQLImpl, mientras que el médulo de datos esta asociado a la clase TMastSQOL..
No importa: la primera clase desciende por herencia de la segunda, y es la que serd
utilizada por la fabrica de clases para la creacion de objetos.

Los conjuntos de datos basados en el BDE tienen una propiedad Provider, del tipo
IProvider, que ha hecho posible exportar directamente sus datos desde el médulo
remoto. Ahora bien, es preferible realizar la exportacién incluyendo explicitamente
un componente TProvider, de la pagina Data Access de la Paleta de Componentes,
conectandolo a un conjunto de datos y exportindolo mediante su menu de contexto.
La ventaja de utilizar este componente es la posibilidad de configurar opciones y de
crear manejadores para los eventos que ofrece, ganando control en la comunicacion
entre el cliente, el servidor de aplicaciones y el servidor de bases de datos.

Para deshacer la exportacion de #6Clientes, debemos buscar en primer lugar la Biblio-
teca de Tipos (View | Type library), seleccionar la propiedad #Clientes de la interfaz

Midas 589
IMastSQL. y eliminarla. Después, en la unidad del médulo de datos, hay que eliminar
la funcién gez_thClientes. Traemos entonces un componente TProvider, de la pagina Mi-

das, y lo situamos sobre el médulo de datos. Cambiamos las siguientes propiedades:

Propiedad Valor

Name Clientes
DataSet thClientes
Options Anadir polncFieldProps

La opcion polnctieldProps hace que el proveedor incluya en los paquetes que envia al
cliente informacién sobre propiedades de los campos, tales como Displaylabel, Dis-
playFormat, Alignment, etc. De esta forma, podemos realizar la configuracion de los
campos en el servidor y ahorrarnos repetir esta operacién en sus clientes. Mas ade-
lante estudiaremos otras propiedades de TProvider, ademas de sus eventos. Final-
mente, pulsamos el botén derecho del ratén sobre el componente y ejecutamos el
comando Export Clientes from data modnle.

Como estamos utilizando una tabla perteneciente a una base de datos de esctito-
rio, es necesatio activar la opcién ResolveToDataSet del TProvider. Si esta opcidén no
estd activa, el proveedor genera sentencias SQL que envia directamente a la base
de datos, saltando por encima del conjunto de datos asociado. Esto es lo mas
conveniente para las bases de datos SQL a las cuales se accede por medio del
BDE, pero no vale para Paradox, dBase y Access.

Una vez que hemos exportado una interfaz IProvider, de una forma u otra, podemos
guardar el proyecto y ejecutatlo la primera vez; asi se registra el objeto de automa-
tizacion dentro del sistema operativo. Recuerde que para eliminar las entradas del
registro, se debe ejecutar la aplicacién con el parametro /unregserver en la linea de co-
mandos.

Servidores remotos y conjuntos de datos clientes

Es el momento de programar la aplicacién cliente. Si el lector no dispone de una red
con DCOM configurado de algin modo, no se preocupe, porque podemos probar el
cliente y el servidor dentro de la misma maquina. Iniciamos una aplicaciéon nueva,
con un formulario vacio, y afiadimos un médulo de datos de los de siempre. Sobre
este moédulo de datos colocamos un componente TDCOMConnection, de la pagina
Midas, cuyas propiedades configuramos de este modo:

Propiedad Valor Significado
Computer Nombre del ordenador donde reside el
servidor. Se deja vacio si es local.

590 La Cara Oculta de C++ Builder

Propiedad Valor Significado

ServerName — ServidorApl.MastSQL. Identificador de clase del objeto de
automatizacion

ServerGUID Lo llena automiticamente C++ Builder

Connected True Al activarla, se ejecuta el servidor de
aplicaciones

Por cada proveedor que exporte el médulo de datos remoto y que nos interese, tra-
emos al médulo local un componente TClentDataSet, de la pagina Midas de 1a Paleta
de Componentes. Ya hemos visto en funcionamiento a este componente en el capi-
tulo 32, pero trabajando con datos extraidos de ficheros locales. Ahora veremos qué
propiedades, métodos y eventos tenemos que utilizar para que funcione con una
interfaz IProvider como origen de datos. En concreto, para este proyecto traemos un
TClientDataSet al médulo local, y asignamos las siguientes propiedades; después trae-
mos un TDataSonrce para poder visualizar los datos.

Propiedad Valor
RemoteServer DCOMConnection?
ProviderNamze Clientes

Active True

Hay un par de propiedades que controlan la forma en que el conjunto de datos
cliente extrae los registros del servidor de aplicaciones. FetehOnDemand, por ejemplo,
debe ser True (valor por omisién) para que los registros se lean cuando sea necesario;
si es False, hay que llamar explicitamente al método GezINextPacket, por lo que se re-
comienda dejar activa esta propiedad. PackerRecords indica el nimero de registros que
se transfiere en cada pedido. En el caso en que es -1, el valor por omisién, todos los
registros se transfieren en la primera operacion, lo cual solamente es aconsejable para
tablas pequefias.

A partir de ahi, podemos crear y configurar los objetos de acceso a campos igual que
si estuviésemos tratando con una tabla o una consulta. Si me hizo caso e incluy6 la
opcion polncEieldProps en el proveedor, se podra ahorrar la configuracion de los cam-
pos. He aqui el médulo de datos local después de colocar todos los componentes
necesarios:

-

DCOMCannection ClentDataSet] DataSourcel

Midas 591

Ya podemos traer una rejilla, o los componentes visuales que deseemos, al formula-
rio principal y enlazar a éste con el médulo local, para visualizar los datos extraidos
del servidor de aplicaciones.

Grabacion de datos

Si realizamos modificaciones en los datos por medio de la aplicacion cliente, salimos
de la misma y volvemos a ejecutarla, nos encontraremos que hemos perdido las ac-
tualizaciones. Las aplicaciones que utilizan TClentDataSet son parecidas a las que
aprovechan las actualizaciones en caché: tenemos que efectuar una operacion expli-
cita de actualizacioén del servidor para que éste reconozca los cambios producidos en
los datos.

Ya hemos visto que TClientDataSet guarda los cambios realizados desde que se cargan
los datos en la propiedad Delta, y que ChangeCount almacena el numero de cambios.
En las aplicaciones basadas en ficheros planos, los cambios se aplicaban mediante el
método MergeChangel og. Ahora, utilizado proveedores como origen de datos, la pri-
mera regla del juego dice:

"Probibido ntilizar MergeChangel og con proveedores”

Para grabar los cambios en el proveedor, debemos enviar el contenido de De/fa utili-
zando la misma interfaz IProvider con la que rellenamos Data. El siguiente método es
la forma mas facil de enviar las actualizaciones al servidor:

int _ fastcall TdientDataSet:: Appl yUpdates(int MaxErrors);

El parametro MaxErrors representa el nimero maximo de errores tolerables, antes de
abortar la operacién:

St indicamos -1, la operacién tolera cualquier nimero de errores.

Si indicamos 0, se detiene al producirse el primer error.

Si indicamos # > 0, se admite ese nimero de errores antes de abortar todo el
proceso.

Estamos hablando, por supuesto, de C++ Builder 4. En la version 3 de la VCL, el
valor —1 indicaba que no se toleraban errores. Otra diferencia importante es que el
servidor en C++ Builder 4 inicia una transaccion sobre la base de datos si no hemos
iniciado una explicitamente. Por lo tanto, cuando hablamos de abortar la operacion,
en realidad estamos hablando de realizar un Ro//back sobre la base de datos en el
servidor. Mas adelante veremos con detalle qué sucede cuando se producen errores, y
cémo podemos controlar estos errores, tanto en el cliente como en el servidor Mi-

592 La Cara Oculta de C++ Builder

das. Ademas, veremos cémo manejar transacciones mas complejas que las simples
transacciones automaticas de los proveedores Midas.

¢Cuando debemos llamar al método ApplyUpdates? Depende del modo de edicién y
de los convenios de interfaz que usted establezca con sus usuarios. Si el usuario uti-
liza cuadros de didlogo para insertar o modificar registros, es relativamente sencillo
asociar la grabacion al cierre del didlogo. Las cosas se complican cuando las actuali-
zaciones se realizan directamente sobre una rejilla. Personalmente, soy partidario en
tales casos de que el usuario considere a la aplicacion como una especie de procesa-
dor de textos, y que disponga de un comando Guardar para enviar los cambios al
servidor. Realmente, ésta es la metafora mas apropiada para los conjuntos de datos
clientes, que no mantienen una conexion directa con los datos originales.

Voy a mostrar como incluir el comando Guardar y los demas comandos de edicién,
como Deshacer, Deshacer todo y Deshacer registro, en una lista de acciones de C++ Buil-
der 4. Colocamos un objeto de tipo T.ActionList (pagina Standard) en el médulo de
datos, para que esté “cerca” del conjunto de datos cliente. Podemos traer también
una lista de imagenes para asociarle jeroglificos a las acciones. Estas son las acciones
que debemos crear:

ting Form1-=ActionList1 %]

- ¥

Categories: Actions;

n ApplyUpdates
Cancellpdates

«7 Undo
UndoRecard

El evento OnUpdate de las acciones individuales se dispara para que podamos activar
o desactivar la accién en dependencia del estado de la aplicacion. Las tres primeras
acciones de nuestro ejemplo se activan cuando hemos realizado cambios sobre el
conjunto de datos clientes, por lo que utilizaremos una respuesta compartida para el
evento OnUpdate de todas ellas:

void __fastcall TnodDatos:: HayCanbi os(TQbj ect *Sender)
{

static_cast <TActi on*>(Sender)->Enabl ed =
d i ent Dat aSet 1- >ChangeCount > O0;

La accién UndoRecord, por el contrario, solamente es aplicable cuando el registro ac-
tivo del conjunto de datos tiene modificaciones, algo que podemos comprobar con la
ya conocida funcion UpdateStatus:

Midas 593

void _ fastcall TnodDatos:: Regi strohMdifi cado(TCbj ect *Sender)

UndoRecor d- >Enabl ed =
CientDataSet 1- >Updat eStatus() != usUnnodifi ed;

La respuesta de cada accién se programa en el evento OnExecute:

void _fastcall TnodDat os: : Appl yUpdat esExecut e(TObj ect *Sender)

Cl i ent Dat aSet 1- >Appl yUpdat es(0) ;
}

void _ fastcall TnodDatos:: Cancel Updat esExecut e(TObj ect *Sender)

Cl i ent Dat aSet 1- >Cancel Updat es() ;
}

void _ fastcall TnodDatos:: UndoExecut e(TObj ect *Sender)

C i ent Dat aSet 1- >UndoLast Change(Tr ue) ;
}

void __fastcall TnodDatos:: UndoRecor dExecut e(TObj ect *Sender)

C i ent Dat aSet 1- >Revert Record();

Estas acciones que hemos preparado son objetos no visuales. Para materializarlas
creamos un mend, y en vez de configurar sus comandos laboriosamente, propiedad
por propiedad, podemos asignar acciones en la propiedad Action de cada TMenultem.
La misma operacioén puede efectuarse sobre los botones T1Too/Button de una barra de
herramientas.

Es conveniente, para terminar, programar la respuesta del evento OnCloseQuery, de
forma similar a como lo harfamos en un procesador de textos:

void __fastcall TwndMain:: FornC oseQuery(TCbj ect *Sender,
bool &Cand ose)

i f (nodDat os->C i ent Dat aSet 1- >ChangeCount > 0)
switch (MessageBox(0, "¢Desea guardar |os canbi 0os?",
"Confirmar", MB_YESNOCANCEL))
{

case | DCANCEL:
CanCl ose = Fal se;
br eak;
case | DYES:
nodDat os- >C i ent Dat aSet 1- >Appl yUpdat es(0) ;
CanCl ose = npdDat os->Cl i ent Dat aSet 1- >ChangeCount == 0;
br eak;

594 La Cara Oculta de C++ Builder

Resolucion

El algoritmo empleado para grabar los cambios efectuados en el cliente mediante el
servidor remoto es un ballet muy bien sincronizado y ensayado, cuyas primas ballerinas
son el cliente y el proveedor, pero en el que interviene todo un coro de componen-
tes. La obra comienza cuando el cliente pide la grabacién de sus cambios mediante el

método ApplyUpdates:

Cl i ent Dat aSet 1- >Appl yUpdat es(0) ;

Internamente, el conjunto de datos echa mano de su interfaz Provider, ejecuta el si-
guiente método remoto, y se queda a la espera del resultado para efectuar una opera-
cién que estudiaremos mas adelante, llamada reconciliacion:

Provi der - >Appl yUpdat es(Del ta, MaxErrors, Result);

Como vemos, al servidor Midas se le envia Delta: el vector que contiene los cambios
diferenciales con respecto a los datos originales. Y ahora cambia el escenario de la
danza, pasando la accién al servidor:

ApplyUpdates p» TProvider

-

TClientDataSet OnUpdateData

BeforeUpdateRecord

After UpdateRecord || OnUpdateError |
| _Datosa reconciliar I

El proveedor utiliza un pequefio componente auxiliar, derivado de la clase TCustom-
Resolver, que se encarga del proceso de grabar las diferencias en la base de datos. En
la jerga de Borland/Inptise, este proceso recibe el nombre de resolucion. El algotitmo
de resolucién puede concretarse de muchas formas diferentes. El componente TPro-
vider, por ejemplo, aplica las modificaciones mediante sentencias SQL que lanza di-
rectamente a la base de datos, saltindose el conjunto de datos que tiene conectado en
su propiedad DataSet. Asi se logra mayor eficiencia, pero se asume que DafaSet
apunta a un conjunto de datos del BDE. El componente TDataSetProvider, que tam-
bién se encuentra en la pagina Midas, aplica las actualizaciones utilizando como in-
termediario a su conjunto de datos asociado. Es mas lento, pero puede utilizarse con
cualquier tipo de conjunto de datos. Y si usted tiene la suficiente paciencia, puede
crearse su proveedor personalizado, detivando clases a partir de TBaseProvider y de
TCustomResolyer.

Midas 595

Veamos la secuencia de eventos que se disparan durante la resolucién. El primer
evento se activa una sola vez, antes de que comience la accion. Se trata de OnUpdate-
Data, y puede utilizarse para editar los datos antes de que sean grabados. Su tipo es el
siguiente:

typedef void _ fastcall (__closure *TProvi der Dat aEvent)
(TObj ect *Sender, TdientDataSet *DataSet);

El parametro DataSet contiene un conjunto de datos cliente creado al vuelo por el
proveedor, que contiene la informacién pasada en De/ta. Podemos recorrer este
conjunto de datos, a diferencia de lo que sucede en otros eventos que prohiben mo-
ver la fila activa. ¢Qué podemos hacer aqui? Tenemos la oportunidad de modificar
registros o completar informacién. El ejemplo que viene en el Manual del Desarro-
llador muestra cémo llenar un campo con el momento en que se produce la graba-
cién, para los registros nuevos:

void _ fastcall TRem\bd:: Provi der 1Updat eDat a(TObj ect *Sender,
Td i ent Dat aSet *Dat aSet)

{
Dat aSet - >Fi rst () ;
while (! DataSet->Eof)
{
i f (DataSet->UpdateStatus() == uslnserted)
{
Dat aSet - >Edi t () ;
Dat aSet - >Fi el dVal ues[" FechaAlta"] = Now();
Dat aSet - >Post () ;
}
Dat aSet - >Next () ;
}
}

Pero también se puede utilizar el evento para controlar el contenido de las sentencias
SQL que va a lanzar el proveedor al servidor de datos. Antes de llegar a este extremo,
permitame que mencione la propiedad UpdazeMode del proveedor, que funciona de
modo similar a la propiedad homoénima de las tablas. Con UpdateMode controlamos
qué campos deben aparecer en la clausula where de una modificacién (update) y de
un borrado (delete). Como expliqué en el capitulo 26, nos podemos ahorrar muchos
conflictos asignando #pWhereChanged a la propiedad, de forma tal que solamente
aparezcan en la clausula where las columnas de la clave primaria y aquellas que han
sufrido cambios.

¢Necesita mas control sobre las instrucciones SQL generadas para la resolucion?
Debe entonces configurar, campo por campo, la propiedad Propiderflags de los mis-
mos, que ha sido introducida en C++ Builder 4:

Opcién Descripcién
PfInWhere El campo no aparece en la clausula where
PInUpdate El campo no aparece en la clausula set de las modificaciones

596 La Cara Oculta de C++ Builder

Opcién Descripcién
PfInKey Utilizado para releer el registro
pfHidden Impide que el cliente vea este campo

Analizando frfamente la lista de opciones anterior, vemos que a pesar de la mayor
complejidad, no hay muchas mas posibilidades reales que las basicas de UpdateMode.
Ademas, los nombres de las dos primeras opciones inducen a pensar completamente
en lo contrario de lo que hacen. Cosas de la vida.

Después de haber sobrevivido a OnUpdateData, el componente de resolucién aplica
los cambios en un bucle que recorre cada registro. Antes de cada grabacién se activa
el evento BeforeUpdateRecord, se intenta la grabacion y se llama posteriormente al
evento AfterUpdateRecord. BeforeUpdateRecord sirve para los mismos propositos que
OnUpdateData, petro esta vez los cambios que realizamos afectaran sélo al registro
activo. Este es su prototipo:

typedef void _ fastcall (__closure *TBeforeUpdat eRecordEvent)
(Toj ect *Sender, TDataSet *SourceDS, Td ientDataSet *DeltaDS,
TUpdat eKi nd Updat eKi nd, bool &Applied);

Nuevamente, podemos utilizar este evento para modificar la forma en que se aplicara
la actualizacion. El registro activo de De/faDS es el que contiene los cambios. Por
ejemplo, éste es un buen momento para asignar claves tnicas de forma automatica.
Pero también podemos optar por grabar nosotros mismos el registro, o eliminarlo.
Muchas bases de datos estan disefiadas con procedimientos almacenados como me-
canismo de actualizacion. Si durante la respuesta a BeforeUpdateRecord ejecutamos uno
de esos procedimientos almacenados y asignamos True al parametro Applied, el pro-
veedor considerara que el registro ya ha sido modificado, y pasara por alto el registro
activo.

Finalmente, después de la grabacion exitosa del registro, se dispara el evento Affer-
UpdateEvent, que es similar al anterior, pero sin el parametro Applied:

typedef void _ fastcall (__closure *TAfterUpdat eRecor dEvent)
(Toj ect *Sender, TDataSet *SourceDS, Td ientDataSet *DeltaDS,
TUpdat eKi nd Updat eKi nd) ;

Este evento es de poco interés para nosotros.

Control de errores durante la resolucion

Cada vez que se produce un error durante la resolucion se dispara el evento OnUp-
dateError, cuya declaracion en C++ Builder 4 es:

Midas 597

enum TUpdat eKi nd
{ ukModify, uklnsert, ukDelete };

enum TResol ver Response
{ rrSkip, rrAbort, rrMerge, rrApply, rrignore };

typedef void _ _fastcall (__closure *TResol verErrorEvent)
(Toj ect* Sender, Td ientDataSet* DataSet,
EUpdat eError *E, TUpdat eKi nd Updat eKi nd,
TResol ver Response &Response);

En términos generales, se recomienda realizar la recuperacion de errores en las apli-
caciones clientes, donde el usuatio puede intervenir con mayor conocimiento de
causa. Sin embargo, existen situaciones especiales en las que los conflictos pueden
resolverse automaticamente en el servidor. Por supuesto, debemos en lo posible tra-
tar estos errores durante la resoluciéon. La correccion de errores se hace mas facil,
tanto en la resolucién como en la posterior reconciliacién, gracias a la existencia de
una propiedad asociada a los campos, Curl alne, que indica cual es el valor del campo
encontrado en el registro de la base de datos, si se produce un fallo del bloqueo op-
timista. El siguiente esquema representa la relacién entre las propiedades O/l alue,

CurValue y Newl alue:

Oldvalue [I I I I I I]<— Valores previos
cuvave (] T T T | []<— Valores reales
NewValue [I I I I I I_l<— Valores modificados

Supongamos por un momento que el valor de UpdateMode del proveedor sigue siendo
upWhereAll. Si dos usuarios realizan actualizaciones en diferentes columnas, sin llegar
a afectar a la clave primaria, estamos ante una situacion conocida como actualizaciones
ortogonales (orthogonal updates), y se produce un error. Cuando el segundo usuario que
intenta grabar recibe el correspondiente error, el estado de los campos puede repre-
sentarse mediante el siguiente diagrama:

Oldvalue [I I I I I I '<—Valores previos

]
]

I I I l<— Valores reales

|
I I I I_)<— Valores modificados

CurValue [1
I

NewValue [

D Clave primaria D Modificados D Originales

Otro caso frecuente se produce cuando dos aplicaciones diferentes intentan modifi-
car la misma columna, y el valor numérico almacenado en la misma representa un
acumulado:

598 La Cara Oculta de C++ Builder

OldValue [I I]<— Valores previos

I 1 [1
CurValue [l I 1 I+XI I]<— Valores reales
I 1 1 1

NewValue [

+VI I]<— Valores modificados

D Clave primaria D Modificados [:] Originales

Todos estos tipos de conflicto pueden solucionarse automaticamente dentro del
evento OnUpdateRecord del servidor. Veamos, por ejemplo, cémo puede resolverse un
conflicto con una actualizacién acumulativa sobre el salario de un empleado. Comen-
zaré definiendo una funcién auxiliar que compruebe que solamente se ha cambiado
el salario en una actualizacién:

bool _ fastcall Sal aryChanged(TDat aSet *ADat aSet)

for (int i = ADataSet->FieldCount - 1; i >=0; i--)
{
TField *f = ADataSet->Fi el ds->Fields[i];
bool Changed = ! VarlsEnpty(f->CurVal ue)
&& ! Var| sEmpt y(f->NewVal ue);
i f (Changed != (ConpareText (f->Fi el dName, "SALARY") != 0))
return Fal se;

}

return True;

La funcioén se basa en que Curlalue y New alue valen Unassigned cuando el valor que

representan no ha sido modificado. Recuerde que IVarlsEmpty es la forma mas segura
de saber si un ariant contiene este valor especial. La regla anterior tiene una curiosa
excepcion: si Curl/alue y Newl alne han sido modificados con el mismo valor, la pro-

piedad Curl/alue también contiene Unassigned:

void _ fastcall TMastSql:: Enpl eadosUpdat eError (TObj ect *Sender,
Td i ent Dat aSet *Dat aSet, EUpdateError *E,
TUpdat eKi nd Updat eKi nd, TResol ver Response &Response)

i f (UpdateKind == ukModi fy && Sal aryChanged(Dat aSet))
{

TField *f = DataSet->Fi el dByNanme(" SALARY");

Currency CurSal = VarlsEmpty(f->CurValue) ?
f->Newval ue : f->CurVal ue;

f->Newval ue = CurSal + f->Newvalue - f->0 dVal ue;

Response = rrApply;

Midas 599

Reconciliacion

Como todas las modificaciones a los datos tienen lugar en la memoria de la estacion
de trabajo, la grabacion de las modificaciones en el servidor presenta los mismos
problemas que las actualizaciones en caché, como consecuencia del comportamiento
optimista. El mecanismo de resolucién de conflictos, denominado reconciliacion, es
similar al ofrecido por las actualizaciones en caché, y consiste en un evento de
TClientDataSet, cuyo nombre es OnReconcileError y su tipo es el siguiente:

enum TUpdat eKi nd
{ ukModify, uklnsert, ukDelete };

enum TReconci | eActi on
{ raSkip, raAbort, raMerge, raCorrect, raCancel, raRefresh };

typedef void _ fastcall (__closure *TReconcil eErrorEvent)
(TA i ent Dat aSet *Dat aSet, EReconcil eError *E,
TUpdat eKi nd Updat eKi nd, TReconci |l eAction &Action);

En contraste con las actualizaciones en caché, hay mas acciones posibles durante la
reconciliacién de los datos en este modelo. Los valores del tipo TReconcileAction son:

Valor Significado

raSkip El registro no se actualiza, pero permanece en la lista de cambios.
raAbort Se aborta la operacion de reconciliacion.

raMerge Se mezclan los cambios con los del registro actual.

raCorrect Se reintenta la grabacion.

raCancel No se actualiza el registro, definitivamente.

raRefresh Se relee el registro.

La forma mas conveniente de reconciliar datos es presentando un cuadro de dialogo
de reconciliacién, definido como plantilla en la pagina Dzalogs del Depésito de Ob-
jetos. Para incluirlo en nuestra aplicacion, vaya a dicha pagina del Depésito y selec-
cione el icono Reconcile error dialog. Al proyecto se le afade entonces un formulario de
dialogo, con el nombre TReconciteErrorForm.

1 Update Error =] &3

Reconcile Action | -

[] reen |

T~ Show conficing fields only T Show changed fields only

600 La Cara Oculta de C++ Builder

Nada es perfecto: hay que traducir los mensajes del dialogo. Es importante ademas
utilizar el mend Project | Options para eliminar este formulario de la lista de ventanas
con creacién automatica. Para garantizar que realizamos la operacion, la variable que
normalmente aparece en la interfaz, y que se utiliza en la creacién automatica, ha sido
eliminada de la plantilla. La creacién y ejecucion del didlogo es tarea de la siguiente
funcion, declarada en la cabecera de la unidad asociada:

TReconci | eActi on Handl eReconci | eError(
TComponent * Oaner, TDataSet *DataSet,
TUpdat eKi nd Updat eKi nd, EReconcil eError *Reconcil eError);

El uso tipico de la misma durante el evento OnReconcileError es como sigue:

void __fastcall TDatalModul e2::tbEnpl eadosReconcil eError(
Td i ent Dat aSet *Dat aSet, EReconcileError *E,
TUpdat eKi nd Updat eKi nd, TReconci | eActi on &Acti on)

Action = Handl eReconci | eError (NULL, DataSet, UpdateKind, E);

Si el programador no quiere complicarse demasiado la vida, o no conffa en la sensa-
tez de sus usuarios, puede programar un evento de reconciliacién mas elemental:

void __fastcall TDataModul e2::tbEnmpl eadosReconcil eError(
Td i ent Dat aSet *Dat aSet, EReconcileError *E,
TUpdat eKi nd Updat eKi nd, TReconci | eActi on &Acti on)

Showvessage("Hay errores");
Action = raAbort;

En tal caso es conveniente que los cambios efectuados queden sefialados en la rejilla
de datos (si es que esta utilizando alguna):

void _ fastcall TFornil:: DBG i d1Dr awCol umcCel | (TObj ect *Sender,
const TRect &Rect, int DataCol, TColumm *Col um,
TG idDrawState State)

i f (DataMdul e2->d i ent Dat aSet 1- >Updat eSt at us() != usUnnodi fi ed)
DBGri d1- >Canvas- >Font->Styl e = TFont Styl es() << fsBol d;
DBG i d1- >Def aul t Dr awCol umcCel | (Rect, Dat aCol, Columm, State);

Si va a utilizar la funcion UpdateStatus de los registros del conjunto de datos
clientes, es aconsejable que llame a Refresh después de grabar los cambios exito-
samente, pues la grabacion no modifica el valor de esta propiedad.

Midas 601

Relaciones master/detail y tablas anidadas

Hay dos formas de configurar relaciones master/ detail en un cliente Midas. Podemos
exportar dos interfaces IProvider desde el servidor, correspondientes a dos tablas
independientes, enganchar a las mismas dos componentes TClientDataSet en el mo-
dulo cliente, y establecer entonces la relacion entre ellos. Haga esto si quiere sabotear
la aplicacion.

La mejor forma de establecer la relacién es configurarla en las tablas del servidor
Midas, en el médulo remoto, y exportar solamente el proveedor de la tabla maestra.
A partir de la versién 4 de la VCL, el proveedor puede enviar las filas de detalles
junto a las filas maestras (la opciéon mas simple y sensata), o esperar a que el cliente
pida explicitamente esos datos, mediante la opcion poFetchDetailsOnDemand de la pro-
piedad Options. Cuando programe el cliente, utilice dos TClentDataSet. El primero
debe conectarse al proveedor de la tabla maestra. Si trae todos los objetos de acceso
a campos del componente, vera que se crea también un campo de tipo TDataSetField,
con el nombre de la tabla de detalles. Este campo se asigna a la propiedad DataSet-
Field del segundo conjunto de datos. Y ya tenemos una relacion master/ detail entre los
dos componentes.

Hay dos importantes ventajas al utilizar este enfoque para tablas dependientes. La
primera: menos trafico de red, pues la relacion se establece en el servidor, y los datos
viajan s6lo por demanda. La segunda: todas las modificaciones deben acumularse en
el /og del conjunto maestro y deben poder aplicarse en una sola transacciéon cuando se
apliquen las actualizaciones (ApplyUpdates) de este conjunto.

Envio de parametros

Cuando aplicamos un filtro en un TClientDataSet la expresion se evalua en el lado
cliente de la aplicacion, por lo cual no se limita el conjunto de registros que se trans-
fieren desde el servidor. Existe, sin embargo, la posibilidad de aplicar restricciones en
el servidor Midas si utilizamos la propiedad Params del conjunto de datos clientes. La
estructura de esta propiedad es similar a la propiedad del mismo nombre del compo-
nente TQuery, pero su funcionamiento es diferente, ya que requiere coordinacién con
el servidor de aplicaciones.

Si el proveedor al cual se conecta el conjunto de datos clientes esta exportando una
consulta desde el servidor, se asume que los parametros del TClientDataSet coinciden
en nombre y tipo con los de la consulta. Cuando cambiamos el valor de un parame-
tro en el cliente, el valor se transmite al servidor y se evalta la consulta con el nuevo
parametro. Hay dos formas de asignar un parametro en un conjunto de datos cliente.
La primera es cerrar el conjunto de datos, asignar valores a los parametros deseados y
volver a abritlo:

602 La Cara Oculta de C++ Builder

C i ent Dat aSet 1- >Cl ose() ;

Cl i ent Dat aSet 1- >Par ans- >Par anByNane(" Cl UDAD") - >AsString =
"Cant al api edra”;

Cl i ent Dat aSet 1- >Qpen() ;

La otra es asignar el parametro sin cerrar el conjunto de datos, y aplicar el método
SendParams:

Cl i ent Dat aSet 1- >Par ans- >Par anByNane(" Cl UDAD") - >AsString =
"Cant al api edra”;
C i ent Dat aSet 1- >SendPar ans() ;

El método FetchParams realiza la accion contraria a SendParams: lee el valor actual de
un parametro desde el servidor de aplicaciones.

¢Qué sucede cuando el conjunto de datos que se exporta desde el servidor es una
tabla? La documentacién de C++ Builder establece que, en ese caso, el nombre de
los parametros del TClientDataSet debe corresponder a nombres de columnas de la
tabla, y que la tabla restringe el conjunto de registros activos como si se tratara de un
filtro sobre dichos campos. Sin embargo, este humilde programador ha examinado el
codigo fuente (procedimiento SesParams del componente TProvider), y ha encontrado
que la VCL intenta establecer un rango en el servidor. Hay entonces una diferencia
clave entre lo que dice la documentacién y lo que sucede en la practica, pues el rango
necesita que los campos afectados sirvan de criterio de ordenacién activo. Tampoco
he logrado hacer que funcione SendParams con el conjunto de datos clientes abierto:
es preferible cerrar el conjunto de datos, asignar parametros y volver a abrirlo.

Extendiendo la interfaz del servidor

En la version 3 de la VCL,, la resolucién de las modificaciones efectuadas en el cliente
no transcurtia, por omision, dentro de una transaccion que garantizara su atomici-
dad. Esto era una fuente de problemas cuando editdbamos objetos complejos, distri-
buidos entre varias tablas, como sucede al trabajar con una telacion master/ detail. Para
resolver esta dificultad, no quedaba mas remedio que definir métodos dentro del ob-
jeto de automatizacion y exportarlos, de modo que las actualizaciones en el cliente
hicieran uso de los mismos.

Como he dicho antes, la versioén 4 si utiliza transacciones automaticamente, cuando
no las hemos iniciado de forma explicita. Ahora bien, ;cémo puede una aplicacion
cliente remota iniciar una transaccion mediante objetos situados en el servidor? La
respuesta es simple: el médulo de datos remoto implementa, en definitiva, una intet-
faz de automatizacion. Si el servidor exporta otros métodos de automatizaciéon que
los predetinidos, el cliente puede ejecutatlos a través de la siguiente propiedad de la
conexion al servidor:

Midas 603

__property Variant AppServer;

De modo que regresamos al servidor de aplicaciones y abrimos la biblioteca de tipos,
con el comando de mend View| Type library. En el nodo correspondiente a la interfaz
IMastSq/ ahadimos tres métodos, de los cuales muestro su declaracién en IDL:

HRESULT _stdcall StartTransaction(void);
HRESULT _stdcall Commit(void);
HRESULT _stdcall Rollback(void);

En la unidad de implementaciéon del médulo remoto proporcionamos el cuerpo a los
métodos anteriores:

STDMVETHODI MP TMast SQLI npl : : Start Transacti on()

{
try
{
TDat abase *db = m Dat aMbdul e- >t bd i ent es- >Dat abase;
if (! db->lsSQBased) db->Translsolation = tiDirtyRead;
db->Start Transaction();
}
cat ch(Exception &e)
return Error(e. Message.c_str(), 11D | MastSQ);
}
return S_OK;
}
STDVETHODI MP TMast SQLI npl : : Commi t ()
{
try
m Dat aMbdul e- >t bd i ent es- >Dat abase- >Conmi t () ;
}
cat ch(Exception &e)
return Error(e. Message.c_str(), 11D | MastSQ);
}
return S_OK;
}
STDVETHODI MP TMast SQLI npl : : Rol | back()
{
try
m Dat aMbdul e- >t bl i ent es- >Dat abase- >Rol | back() ;
}
cat ch(Exception &e)
{
return Error(e. Message.c_str(), 11D I MastSQ);
}
return S_OK;
}

El truco mas importante consiste en como acceder al médulo de datos (el objeto de
clase TMastSQL) desde el objeto de automatizacion, de clase TMastSQL Impl hay que

604 La Cara Oculta de C++ Builder

utilizar el atributo #_DataModule de esta tltima clase. Observe también como prote-
gemos al servidor del lanzamiento de excepciones, propagando éstas al cliente por
medio del cédigo de retorno de los métodos exportados.

En Delphi no es necesario arropar los métodos de automatizacién de un servi-
dor dentro de instrucciones de captura de excepciones, pues la directiva safecall
genera por nosotros el coédigo necesatio.

Ahora desde el cliente podemos ejecutar secuencias de instrucciones como la si-

guiente:

/...
DCOMConnect i onl- >AppSer ver . Exec(Procedure("Start Transaction"));

try

/1 Aplicar canbios en varios conjuntos de datos
DCOMConnect i onl- >AppSer ver . Exec(Procedure("Conmit"));

}
cat ch(Exception&)

DCOMConnect i onl- >AppSer ver . Exec(Procedur e(" Rol | back"));
t hr ow;

}
/1

La técnica anterior tiene muchas aplicaciones, como poder activar procedimien-
tos almacenados situados en el médulo remoto desde las aplicaciones clientes.
Mas adelante veremos cémo y cuando aprovechar las interfaces duales para ace-
lerar las llamadas al servidor.

Alguien llama a mi puerta

En la mayoria de los casos, la capa intermedia de una aplicacioén desarrollada con
Midas accedera a una bases de datos SQL, que probablemente controlara su uso
mediante contrasefias. ¢Cémo puede un usuario remoto suministrar su nombre y
contrasefla a un servidor Midas para que éste, a su vez, realice la conexién a la base
de datos? ¢Hay algin tipo de magia en juego? No, no hay magia, pero si una propie-
dad y un evento.

La propiedad se llama LoginPrompt, y se define en la clase TDispatchConnection, por lo
cual esta disponible en TDCOMConnection, el componente que hemos estado em-
pleando para conectarnos al servidor, pero también podremos utilizarla en TSocker-
Connection y TOLEnterpriseConnection, que estudiaremos mas adelante. Cuando Login-
Prompt esta activa, TDCOMConnection produce la siguiente secuencia de eventos du-
rante su conexion al moédulo remoto:

Midas 605

BeforeConnect

Diélogo de .
OnGetUsername P contragseﬁas % Conectado;|—> OnLogin

AfterConnect

El primer evento que se dispara, OnGetUsername, nos da la posibilidad de inicializar el
nombre de usuario que se muestra en el didlogo de peticién contrasefias. Podemos,
por ejemplo, utilizar el nombre con el que el sistema operativo conoce al usuario:

void __fastcall TDataMdul el:: DCOMConnect i on1Get User name(
TObj ect *Sender, Ansi String &User nane)

{
char buffer[128];
DWORD | en = sizeof (buffer);
W n32Check(Get User Nane(buffer, & en));
Usernane = buffer;
}

Entonces aparece en pantalla el didlogo de identificacién, para que el usuario teclee
su contrasefla y corrija su nombre, si es necesario. Si se cancela el dialogo la conexion
se aborta, naturalmente. En caso contrario, se dispara el evento BeforeConnect, se esta-
blece la conexion en si, se activa AfterConnect ... y el control de la ejecucion vuelve a

nuestras manos, pues tenemos que dar respuesta al evento OnLogin, también de la
clase TDCOMConnection:

void _ fastcall TDataMdul el:: DCOMConnecti onlLogi n(
Toj ect *Sender, Ansi String Username, Ansi String Password)
{

DCOMConnect i onl- >AppSer ver . Exec(
Procedure("ldentificar") << Username << Password);

Aqui termina todo lo que Midas hace para ayudarnos: sencillamente nos dice quién
se ha conectado, y con cudl contrasefia. Es responsabilidad nuestra comunicarselo al
servidor, y lo hemos hecho llamando a un método disefiado por nosotros e imple-
mentado por el servidor, de nombre Identificar, y que recibe como parametros el
nombre del usuario y su contrasefia. El método puede asignar los parametros USER
NAME y PASSWORD en la propiedad Params de un TDatabase, para activar este
componente posteriormente.

606 La Cara Oculta de C++ Builder

La metafora del maletin

Paco McFarland, empleado de la mitica Anaconda Software, inicia todos los lunes
por la mafiana desde casa, al terminar de cepillarse los dientes, una sesiéon de acceso
remoto telefonico entre su portatil y el servidor de aplicaciones de la compafifa. Una
vez establecida la conexién, ejecuta una aplicacién que accede a los datos de los
clientes de Anaconda y los guarda en el disco duro del portatil; a continuacion, y
aunque la linea la paga la empresa, corta el cordén umbilical de la conexion. El tra-
bajo de Paco consiste en realizar visitas programadas a determinados clientes y, como
resultado de las mismas, actualizar los datos correspondientes en el portatil. Al ter-
minar el dia, y antes de ingerir sus vitaminas y analgésicos, Paco vuelve a enchufar el
portatil al servidor de aplicaciones e intenta enviar los registros modificados al orde-
nador de la empresa. Por supuesto, es posible que encuentre conflictos en determi-
nados registros, pero para esto cuenta con técnicas de reconciliacién apropiadas.

La historia anterior muestra en accioén el “modelo del maletin® (briefease model). Este
modelo puede implementarse en C++ Builder utilizando el mismo componente
TClientDataSet. Para soportar el modelo, el componente ofrece los métodos Load-
FromFile y SaveToFile; estas rutinas trabajan con ficheros “planos” en formato ASCII
y ya las hemos estudiado en el capitulo 32. Una aplicacién cliente puede incluir op-
ciones para guardar sus datos en un fichero de este tipo y para recuperar los datos
posteriormente, sobre todo en el caso en que no se detecta un servidor de aplicacio-
nes al alcance del ordenador.

Tipos de conexion

Todos los ejemplos que he mostrado utilizan el componente TDCOMC Connection para
establecer la comunicacién con el servidor Midas. He utilizado dicho componente
como punto de partida pensando en el lector que realiza sus pruebas comodamente
en casa, en su ordenador personal, y que al no disponer de una red para probar téc-
nicas sofisticadas de comunicacion, sitda al cliente Midas y a su servidor en el unico
nodo disponible. Veamos ahora los distintos tipos de conexiones que pueden esta-
blecerse y los problemas de configuracién de cada uno de ellos.

El primer tipo de conexién se basa en COM/DCOM. Ya hemos visto que cuando el
cliente y el servidor residen en la misma maquina es éste el tipo de protocolo que
utilizan para comunicarse, y no hace falta ninguna configuracioén especial. Asi que
vamos directamente a DCOM. Para poder utilizar este protocolo, debe tener los
siguientes elementos:

Una red Windows/Windows N'T en la que los ordenadores controlen el acceso a
los recursos compartidos mediante el nombre de usuarios.

Midas 607

Si las estaciones de trabajo tienen instalado Windows 95/98, el requisito antetior
obliga a que estén conectadas a un dominio NT. Asf que, en cualquier caso, ne-
cesitara un ordenador que actie como controlador de dominio de Windows NT.
Los ordenadores que tienen Windows 95 necesitan un parche de Microsoft para
activar DCOM, tanto si van a actuar como clientes o como servidotes. Si se trata
de Windows 98, NT Server o Workstation, el soporte DCOM viene incorpo-
rado.

Una de las rarezas de DCOM es que no se configura, como seria de esperar, me-
diante el Panel de Control. Hay que ejecutar, desde la linea de comandos o desde
Inicio | Ejecutar, el programa deomenfg.exe. La version para Windows 95 permite activar
o desactivar DCOM en el ordenador local, principalmente:

figuration

Applications | Defaul Properties | Default Securiy

Applications:

Documenta de Microsoft Wword ;l
Documento de WordPad

Documento del Visor de fax

EmpServerdbject

Galeria de imagenes de Microsaft

Hoja de célculo de Microsoft Excel

Imagen de mapa de bitz

Internet Explorer(ver 1.0

IPH

LibretasObject

MAPI 1.0 Session [v1.0]
MAPILoganR emate

icrosoft 5 chedule+ 7.0 Application
tic sic

Outlook Registered Central
Presentacion de Microsoft PowerPaint

Private Debug Manager for Java(Th]

Text Conferencing Application

“wfordmail - Enviar mensaje -

Aoeptar I Cancelar I Fipliear |

La version de deomenfg para Windows NT se utiliza para controlar la seguridad del
acceso a las aplicaciones situadas en el servidor. El control de acceso es la principal
ventaja que ofrece DCOM respecto a otros protocolos. Sin embargo, a veces es un
poco complicado echar a andar DCOM en una red existente, configurada de acuerdo
a las practicas viciosas y perversas de algunos “administradores de redes”.

En tales casos, la forma mas sencilla de comunicacion es utilizar el propio protocolo
TCP/IP, instalando en el ordenador que contiene el servidor Midas una aplicacién
que actia como proxy, o delegada, y que traduce las peticiones TCP/IP en llamadas a
métodos COM dentro del servidor. Esta aplicacion se llama sckzsrorexe, y se encuen-
tra en el directorio bin de C++ Builder:

608 La Cara Oculta de C++ Builder

Borland Socket Server [x|
Froperties IUsers |

Port
Listen on Part IE'H ﬂ

tdany walues of Port are associated by convention with a
particular service such as ftp or hitp. Port is the [D of the
connection on which the server listens for chent requests.

~Thread Caching
Thread Cache Size: |1U ﬂ

Thread Cache Size is the maximum number of threads that can
be reused for new client connections.

ntercept GUID
GUID:

Intercept GUID is the GUID for a data interceptor COM object
See help for the TSocketConnection For details.

La aplicacion al ejecutarse se coloca en la bandeja de iconos; la imagen anterior co-
rresponde en realidad al dialogo de propiedades de la misma. También hay una ver-
sion, scktsrvc.exe, que se ejecuta como un servicio en Windows NT. Si queremos utili-
zar TCP/IP con Midas, debemos ejecutar cualquiera de estas dos versiones antes de
conectar el primer cliente al servidor. Da lo mismo que la maquina que contiene el
servidor ejecute Windows 95, 98 o NT. :Qué modificaciones debemos realizar en las
aplicaciones clientes y servidoras para que se conecten via TCP/IP? En el servidor,
ninguna. En el cliente debemos sustituir el componente TDCOMCConnection por un
TSocketConnection. El uso de este tipo de conexion puede disminuir el trafico en la red.
DCOM envia periédicamente desde el servidor a su cliente notificaciones, que le
permiten saber si sus clientes siguen activos y no se ha producido una desconexion.
Asi pueden ahorrarse recursos en caso de fallos, pero las notificaciones deben viajar
por la red. TSocketConnection evita este trafico, pero un servidor puede perder a un
cliente y no darse cuenta. Este tipo de conexién tampoco soporta el control de ac-
ceso basado en roles de DCOM.

OLEnterprise es el tercer mecanismo de comunicacién. Esta basado en RPC, fun-
ciona en cualquiera de las variantes de Windows, y permite implementar de forma
facil estas tres deseables caracteristicas:

Transparencia de la ubicacion: El cliente no tiene por qué conocer el ordena-
dor exacto donde esta situado su servidor. Todo lo que tiene que especificar es el
nombre del servicio (ServerGUID) y el nombre del ordenador donde se ejecuta el
Agente de Objetos (Object Broker). Este ultimo es el software central de OLEn-
terprise, que lleva un directorio de servicios para toda la red.

Balance de carga: Gracias a su arquitectura, el Agente de Objetos puede decidir
a qué servidor se conecta cada cliente. Al principio de este capitulo mencionaba-
mos la posibilidad de habilitar una baterfa de servidores Midas redundante para

Midas 609

reducir el trafico en red. Bien, el balance de carga de OLEnterprise es la técnica
mas completa y segura para aprovechar esta configuracion.

Seguridad contra fallos: El uso de una baterfa de servidores redundantes per-
mite que, cuando se cae un servidor, sus clientes puedan deshacer las transaccio-
nes pendientes, si es que existen, y conectarse a otro servidor de la lista.

La gran desventaja de OLEnterprise es que debemos instalarlo tanto en los servido-
res como en los clientes, y se trata de una instalacion bastante pesada. La imagen de
la pagina siguiente corresponde al Object Explorer, la herramienta de OLEnterprise
que permite registrar para su uso global a las aplicaciones situadas en los servidores
de capa intermedia:

9 OLEnterprize Object Explorer - LOCAL REGISTRY

Registry Object Yiew Help

£ %] 5v]e4] 55| == 2 220 3”

LOCAL REGISTRY Registy | Communications I Interface
g DBJECT BROKER |

G.si
TransServ. Database
bty

Frogram ID: |TransServ.Database

Class ID: [{51(75283-4301-11d2-ab4F-0080c 579181}

: Staber —————————
Yersion: |-| In [¥ Exported

[~ Imported

[~ Remate

For Help, press F1 v

Balance de carga simple

Con C++ Builder 4 no hace falta OLEnterprise para disponer de un mecanismo
sencillo de balance de la carga de los servidores. La técnica alternativa estd basada en
el componente TSumpleObjectBroker, que es un descendiente de la clase mas general
TCustomObjectBroker. La idea consiste en especificar una lista de servidores, dando sus
nombres o sus direcciones IP, dentro de la propiedad Servers de un TSimpleObjectBro-
ker. Los componentes de conexion, como TDCOM Connection 'y ‘IS ocketConnection, en
vez de especificar el nombre o direccion de un ordenador deben conectarse al agente

por medio de la propiedad ObjectBroker.

¢Qué sucede cuando se intenta realizar la conexiéon? El componente de conexion
pide un servidor al agente de objetos, y éste devuelve un servidor de la lista de

610 La Cara Oculta de C++ Builder

acuerdo a su propiedad LoadBalanced. Si vale True, el servidor se elige aleatoriamente.
En caso contrario, se selecciona el primer servidor de la lista. ¢Qué sentido tiene
entonces utilizar este componente? Bien, en vez de confiar en el azar, usted puede
configurar el orden de la lista de servidores en un cliente determinado, una vez ins-
talada la aplicacion. Por ejemplo, los ordenadores del departamento comercial se
deben conectar siempre a ST'ENTAS, mientras que Investigacion y Desarrollo
siempre se conectara a SID. Por supuesto, esto implica desarrollar cédigo especial
para poder realizar esta reconfiguracién persistente en tiempo de ejecucion.

Interfaces duales en Midas

Si el mecanismo de comunicacién que utilizamos es DCOM, podemos utilizar la
interfaz dual del médulo remoto en el cliente para acelerar las llamadas a las exten-
siones exportadas por el médulo, en vez de utilizar la interfaz [Dispatch que devuelve
la propiedad AppServer de TDCOMConnection. Recuerde que C++ Builder genera un
fichero de cabecera, en nuestro ejemplo ServidorApp_TI.B.h, a partir de la biblioteca
de tipos del servidor. Dentro de este fichero se define una clase IMasztSQL. que repre-
senta la interfaz del mismo nombre.

Una aplicacién cliente puede incluir este fichero, junto a su compafiero de extension
¢hp, para tener acceso a las declaraciones de tipos y constantes. Si nuestro moédulo
implementaba IMastSg/, podiamos realizar llamadas a métodos remotos de la si-
guiente forma:

{
| Mast SQL *Mast SQL;

A eCheck(LPDI SPATCH(DCOMConnect i onl- >AppSer ver) - >
Querylnterface(l1D_| Mast SQL, (void**) &VastSQ));

try

A eCheck(Mast SQL- >St art Transaction());

try {
/1 Aplicar canbios en varios conjuntos de datos

QA eCheck(Mast SQL->Conmit ());

}

cat ch(Exception&) {
A eCheck(Mast SQL- >Rol | back());
t hr ow;

}

}_fi nal l'y
{ MastSQ.->Rel ease(); }
}

También podriamos hacer uso de la interfaz “inteligente” TCOMIMastSQL, para
evitar las llamadas explicitas a los métodos AddRefy Release.

Midas 611

Si el protocolo no es DCOM, no podemos realizar esta mejora al algoritmo, pues
OLEnterprise y el Servidor de Sockets se limitan a realizar el marshaling para la inter-
taz IDispatch. Sin embargo, algo podemos hacer: utilizar la interfaz IMastSQOILDisp,
que también se declara en el fichero obtenido a partir de la biblioteca de tipos:

{
| Mast SQLDi sp Mast SQL;
Mast SQL. Bi nd(LPDI SPATCH(DCOMConnect i onl- >AppServer));
Mast SQL. St art Transacti on();
Il ..etc ..
}

Como esta interfaz asocia codigos de identificacion a los métodos, evitamos el uso
de GerIDOfINames para recuperar estos codigos, aunque estemos obligados a seguir
utilizando implicitamente a Invoke. Algo es algo.

Coge el dinero y corre: trabajo sin conexion

Ahora que ya sabemos qué es Midas y como funciona, podemos mostrar una de las
aplicaciones mas frecuentes y utiles de esta técnica. Se trata de la posibilidad de tra-
bajar con copias gff-/ine de determinados datos.

- “Espera”, me corrige el lector, “eso es el modelo del maletin”.

- Pues no, porque en ese modelo de programacion la copia local de las tablas se
almacena en el disco duro del cliente, como ficheros planos, lo cual no sucedera
con la nueva técnica.

- “Entonces se trata del trabajo habitual con Midas, que nos ofrece siempre una
copia local de los datos para que la consultemos y modifiquemos”.

Tampoco. Cuando nos conectamos a un proveedor remoto, es cierto que vamos
leyendo poco a poco conjuntos pequefios de registros de la tabla o consulta original.
También es cierto que la edicion se realiza sobre la copia local, y que la grabacion se
produce mediante una operacioén explicita a iniciativa del usuario. Pero durante todo
este proceso la fuente de datos original continua activa. El cursor abierto en el servi-
dor sigue ocupando recursos de memoria, bloqueos, etc. Como demostraremos, este
gasto de recursos puede evitarse mediante la siguiente técnica:

1. El servidor no tiene que exportar la interfaz [Provider. Por el contrario, debe ex-
portar al menos un par de métodos: uno para leer datos y otro para recibir las
modificaciones. En ambos casos, los datos se transtieren dentro de un parime-
tro de tipo O/l ariant, con el formato usual de Midas.

2. Para traer registros al cliente llamamos al primero de los dos métodos menciona-
dos, que s7 utilizara internamente una interfaz IPropider para obtener el paquete
de datos correspondiente. El método debe abrir los cursores necesarios, ya sea

612 La Cara Oculta de C++ Builder

mediante consultas o tablas (preferiblemente consultas en este caso), y cerrarlos
una vez que tenga la informacion solicitada.

3. El paquete de datos se asigna directamente a la propiedad Dataz de un
TClientDataSet. El usuario navega sobre esta copia y realiza cambios y adiciones
sobre la misma. Esta claro que, mientras tanto, el servidor se ha podido desen-
tender de nosotros.

4. Si hay grabar modificaciones, se envia el contenido de la propiedad De/fa del
TClientDataSet al segundo método exportado por el servidor. Dentro del mismo,
tenemos que llamar manualmente al método ApplyUpdates de la interfaz I[Provider.
Si detectamos conflictos en la actualizacion, debemos enviar los registros con
problemas de vuelta al cliente, para su reconciliacion.

La condicién fundamental para que la técnica explicada funcione es que los
conjuntos de datos transferidos deben ser pequefos. Por ejemplo, setfa un dispa-
rate traerse toda la tabla de clientes a una estacion de trabajo. Es muy probable
entonces que tengamos que adaptar la interfaz de usuario de nuestra aplicacién a
estas condiciones de trabajo. Si no podemos realizar la adaptacion, entonces de-
bemos olvidarnos de utilizar Midas.

No es necesario que hayamos dividido el sistema en tres capas “fisicas” para poder
sacar partido de la nueva forma de trabajo. Para simplificar, haremos una demostra-
ci6én con un sistema tradicional en dos capas, en los que la interfaz IProvider la pro-
porcionard un TProvider ubicado en el mismo médulo de datos que los TClientData-
Set.

Inicie una aplicacion, cree un médulo de datos dentro de la misma y traiga un com-
ponente TDatabase. Conéctelo al alias zblocal, de las demostraciones que trae C++
Builder. Traiga entonces un par de TQuweries, y asigne las siguientes instrucciones en
sus propiedades SOL respectivas:

*

WD@”‘: sel ect

from Departnent
where Departnent |ike : PATTERN
order by Departnent asc

rEmp: Sel ect *
7 P from Enpl oyee

where Dept_No = : DEPT_NO

La primera consulta devuelve aquellos departamentos cuyo nombre es parecido a un
patrén que suministraremos. El parametro Pattern debe declararlo mediante el tipo
fString. La segunda retorna los empleados pertenecientes al departamento activo de
grDept. Hay que traer un TDataSource y conectarlo a grDept, para después asignar el
nuevo componente en la propiedad DazaSource de grEEmp. De este modo, la consulta

Midas 613

sabe que el parametro Depz No corresponde a la columna del mismo nombre en la
consulta maestra de departamentos.

La siguiente imagen muestra el médulo de datos final, con todos sus componentes.
Hasta el momento solamente hemos traido aquellos que acceden directamente al
servidor SQL, y los hemos agrupado a la izquierda del médulo:

modD atos
(=T
DB
77| [T A e
BE B B
qiDept dsDept piDept Diept
Bird ==
E2 I
qEmp Emp

Debemos entonces traer un componente 1T Propider. Hay que cambiar su DataSet para
que apunte a grDept, hay que incluir la opcion polncEieldProps dentro de Options, y es
conveniente asignar #pWhereChanged a la propiedad UpdateMode.

Por ultimo, debemos afiadir un par de componentes TClientDataSer. Para simplificar
su configuracion, realizamos los siguientes pasos:

Vaya directamente a la propiedad ProviderName del primero de los conjuntos de
datos clientes. Asignele el nombre del proveedor que reside en el médulo.
Invoque al Editor de Campos del componente y traiga todos los campos asocia-
dos desde el proveedor. Observe que hay un dltimo campo cuyo nombre es
grEmp, y su tipo TDataSetField.

Seleccione el segundo conjunto de datos y asigne ese campo en la propiedad
DataSetField. Cree sus objetos de acceso a campo.

Asegurese de que las dos consultas y los dos conjuntos de datos clientes estén
cerrados en tiempo de disefio.

Para leer y grabar datos de departamentos debemos crear un par de métodos publi-
cos en el médulo de datos. Si se tratase de un servidor Midas remoto, los métodos
deberian pertenecer a la interfaz del médulo. Primero tenemos el método de lectura:

void _ fastcall TnodDatos::Load(const Ansi String Dept Name)
{
int RecsQut;

gr Dept - >Par anByNane(" Pattern")->AsStri ng = Dept Nane;
qr Dept - >Cpen() ;
qr Enp- >Cpen() ;

614 La Cara Oculta de C++ Builder

Dept - >Dat a = pr Dept - >Get Records(0, RecsCut);

Dept - >AppendDat a(pr Dept - >Get Records(1, RecsCut), True);
Enp->Open() ;

gr Enp- > ose() ;

gr Dept - >Cl ose();

Load abre las dos consultas después de asignar el patron de la busqueda en la con-
sulta maestra. Como nuestro ejemplo utiliza InterBase como servidor SQL, no te-
nemos una forma sencilla de limitar el numero de filas devuelto por la consulta prin-
cipal; recuerde que DB2, MS SQL y Oracle tienen extensiones para especificar
cuantos registros queremos como maximo. Si dispusiéramos de tales extensiones,
podriamos haber sustituido las dos instrucciones que llaman a GesRecords por ésta
mas simple:

Dept - >Data = pr Dept - >Dat a;

Cuando se pide la propiedad Dataz de un proveedor, éste recupera todas las filas del
conjunto de datos asociado. Por este motivo es que llamamos cautelosamente a
GetRecords. La primera llamada recupera la informacion de “esquema” de la consulta,
mientras que con la segunda leemos realmente el primer registro, si es que existe. El
método Load termina abriendo el conjunto de datos de detalles, y cerrando el origen
de datos. De esta forma se liberan las estructuras de datos asociadas a este usuario en
el servidor.

Esta claro que ahorrarfamos mas recursos si cerraramos también la conexioén de
la base de datos. El problema consiste en que la reapertura de la conexién con-
sumirfa demasiado tiempo. Los tipos duros pueden programar una especie de ca-
ché de conexiones para eliminar la dificultad ... o pueden recurrir a Microsoft
Transaction Server, que se ocupa precisamente de este tipo de administracion.

El método de grabacion es también relativamente sencillo:

void _ fastcall TnodDatos:: Save()
{
Enp- >CheckBr owseMde() ;
Dept - >CheckBr owseMde() ;
i f (Dept->ChangeCount == 0) return;
DB->St art Transaction();
try {
i nt ECount;
O eVariant Delta = Dept->Delta;
Dept - >Reconci | e(pr Dept - >Appl yUpdates(Del ta, -1, ECount));
gr Enp- > ose() ;
if (ECount > 0) Sysutils::Abort();
DB- >Commi t () ;

}
catch (Exception&) {
DB- >Rol | back() ;

Midas 615

t hr ow;

Y ya podemos dedicarnos a traer componentes visuales al formulario principal,
como sugiere la siguiente imagen:

I__Take the money and run. ..

[(O] %]

| Departamento a buzcar IE

Grabar |

Cédign Departamenta Dpta cabecera Jefe Presupuesta
[600 " [Engineering fn | 2| 1100000
Ubicacidn Teléfono
IMonlerey |[4DB] 5551234
Cadigo |Mombre IApeIIidos | Teléfonol Contrata | Cédigo cargo| = |

14 2 Robert Melzon 250 28412488 WP

109 Kelly Brown 202 4/02/93 Admin
4| | >|

Observe, en primer lugar, que no hay una interfaz de navegacion en el sentido “tradi-
cional”: primer registro, registro anterior, registro siguiente... Por el contrario, nave-
gamos tecleando prefijos para el nombre del departamento en un cuadro de edicion.
El evento OnChange del editor hace lo siguiente:

void _ fastcall TwndMai n:: Edit1Change(TCbj ect *Sender)

{

Ti mer 1- >Enabl ed Fal se;
Ti mer 1- >Enabl ed = True;

Timer? es un temportizador con un intervalo de 500 milisegundos, inactivo en tiempo
de disefio. Su proposito es realizar la busqueda medio segundo después de que el
usuario haya dejado de teclear:

void _ fastcall TwndMain:: TinerlTi ner (TCbj ect *Sender)

nodDat os- >Load(Edi t 1- >Text + "%');
Ti mer 1- >Enabl ed = Fal se;

Y la grabacion es trivial, pues se reduce a llamar al método Save del médulo de datos.
Recuerde solamente que debe manejar el evento OnReconcileError del conjunto de
datos Dept, para informar al usuario de los errores durante la grabacion.

Capitulo

31

Servidores de Internet

ARA SER SINCEROS, TITULAR UN CAPITULO tal como lo hemos hecho revela

un poco de presuntuosidad. Los temas relacionados con Internet son tantos

que pueden redactarse libros completos (los hay). Tenemos el estudio de la
infinidad de protocolos existentes, la comunicaciéon mediante sockess, el envio y re-
cepcion de correo electrénico, el uso de controles ActiveX y las ActiveForms que
nos permiten programar clientes de Internet inteligentes...

Sin embargo, este capitulo estard dedicado a un tema muy concreto: la programacién
de extensiones de servidores HTTP. Se trata de aplicaciones que se ejecutan en el
servidor Web al que se conectan los navegadores de Internet, y que permiten el desa-
rrollo de paginas con informacién dinamica. Tradicionalmente se han utilizado pro-
gramas desarrollados para la interfaz CGI con este propésito. C++ Builder permite,
a partir de la version 3, desarrollar aplicaciones para la interfaz CGI, asi como para
las mas modernas y eficientes interfaces ISAPI y NSAPI, de Microsoft y Netscape
respectivamente. Pero lo mds importante de todo es que podemos abstraernos del
tipo concreto de interfaz final con la que va a trabajar la extension. Para ilustrar estas
técnicas, desarrollaremos una sencilla aplicaciéon Web de busqueda de informacién
por palabras claves.

El modelo de interaccion en la Web

El protocolo HTTP es un caso particular de arquitectura cliente/servidor. Un cliente,
haciendo uso de algin navegador politicamente correcto, pide un “documento” a un
servidor situado en determinado punto de la topologia de la Internet; por ahora, no
nos interesa saber como se produce la conexion fisica entre ambas maquinas. He
puesto la palabra “documento” entre comillas porque, como veremos en breve, éste
es un concepto con varias interpretaciones posibles.

Una vez que el servidor recibe la peticion, envia al cliente el documento solicitado, si
es que éste existe. Lo mas importante que hay que comprender es lo siguiente: una
vez enviado el documento, el servidor se desentiende totalmente del cliente. El setvi-
dor nunca sabra si el cliente estuvo mirando la pagina uno o quince minutos, o si

618 La Cara Oculta de C++ Builder

cuando terminé sigui6 o no ese enlace que le habiamos recomendado al final de la
pagina. Esta es la caracteristica mas abominable de Internet, inducida por las peculia-
ridades del hardware y los medios de transporte de la informacién, pero que com-
plica gravemente la programacién de aplicaciones para la red global. El navegante
que utiliza Internet principalmente para bajarse imagenes bonitas, excitantes o joco-
sas, incluye en sus plegarias el que Internet 2 aumente su velocidad de transmision.
Nosotros, los Programadores De Negro, rezamos porque mejore su protocolo infer-
nal.

Para solicitar un “documento” al servidor, el cliente debe indicar qué es lo que desea
mediante una cadena conocida como URL: Uniform Resonrce Locator. La primera parte
de una URL tiene el propésito de indicar en qué maquina vamos a buscar la pagina
que deseamos, y qué protocolo de comunicacién vamos a utilizar:

http://ww. marteens. conltrucos/truco0l. htm

El protocolo utilizado sera HT'TP; podtia haber sido, por ejemplo, FILE, para abrir
un documento local. La maquina queda identificada por el nombre de dominio:

WWW. mart eens. com

El resto de la URL anterior describe un directorio dentro de la maquina, y un docu-
mento HTML situado dentro de este directotio:

trucos/truco0Ol. htm

Este directorio es relativo al directorio definido como publico por el servidor HTTP
instalado en la maquina. En mi portatil, por ejemplo, el directorio piblico HTTP se

llama swebshare, y ha sido definido por el Personal Web Server de Microsoft, que es el
servidor que utilizo para pruebas.

Mas adelante veremos que una URL no tiene por qué terminar con el nombre de un
fichero estatico que contiene texto HTML, sino que puede apuntar a programas y
bibliotecas dinamicas, y ah{ sera donde tendremos la oportunidad de utilizar a nues-
tro querido C++ Builder.

Aprenda HTML en 14 minutos

No hace falta decirlo por ser de sobra conocido: las paginas Web estan escritas en el
lenguaje HTML, bastante facil de aprender sobre todo con una buena referencia al
alcance de la mano. HTML sirve para mostrar informacién, textual y grafica, con un
formato similar al que puede ofrecer un procesador de textos sencillo, pero ademas
permite la navegacion de pagina en pagina y un modelo simple de interaccion con el
servidor Web.

Servidores de Internet 619
Un documento HTML cercano al minimo serfa como el siguiente:

<HTM_>

<HEAD><TI TLE>M pri mer docunent o</ TlI TLE></ HEAD>
<BODY>j Hol a, mundo! </ BODY>

</ HTM.>

Este documento mostratia el mensaje jHola, mundo! en la parte de contenido del na-
vegador, mientras que la barra de titulo del mismo se cambiaria a Mz primer documento.
Los cédigos de HTML, o etiguetas, se encierran entre paréntesis angulares: <>. Una
gran parte de las etiquetas consiste en pares de apertura y cierre, como <TI TLE> y

</ TI TLE>; la etiqueta de cierre utiliza el mismo nombre que la de apertura, pero pre-
cedido por una barra inclinada. Otras etiquetas, como <HR>, que dibuja una linea
horizontal, realizan su cometido por si mismas y no vienen por pares.

Existe un amplio repertorio de etiquetas que sirven para dar formato al texto de un
documento. Entre éstas tenemos, por ejemplo:

Etiqueta Significado

<HL>, <H2> ... Encabezamientos

<P> Marca de parrafo

, <uUL> Listas ordenadas y sin ordenar
<I M Inclusién de imagenes

<PRE> Texto preformateado

Una de las etiquetas mas importantes es el ancla (anchor), que permite navegar a otra
pagina. Por ejemplo:

<HTM>

<HEAD><TI TLE>M pri mer docunent o</ TlI TLE></ HEAD>
<BODY>

<H1>j Hol a, nundo! </ H1>

<HR>

<P>Visite |a pagina de <A HREF=http://ww. borl and. con®l npri se
Cor porati on</ A> para mas informaci 6n sobre C++ Buil der. </ P>
</ BODY>

</ HTM.>

En el ejemplo anterior, la direccion del enlace que se ha suministrado es una URL
completa, pero podemos incorporar enlaces locales: dentro del propio servidor
donde se encuentra la pagina actual, e incluso a determinada posicién dentro de la
propia pagina. Existen mas etiquetas de este tipo, como la etiqueta <ADDRESS>, que
indica una direccién de correo electronico. También se puede asociar un enlace a una
imagen, colocando una etiqueta <I M3 dentro de un ancla.

El subconjunto de HTML antes descrito ofrece, en cierto sentido, las mismas carac-
terfsticas del sistema de ayuda de Windows. Es, en definitiva, una herramienta para

620 La Cara Oculta de C++ Builder

definir sistemas de navegacion a través de textos (vale, y graficos también). Pero se
necesita algo mas si se desea una comunicacién minima desde el cliente hacia el ser-
vidor, y ese algo lo proporcionan los formmularies HTMI.. Mediante estos formularios,
el usuario tiene a su disposicién una serie de controles de edicién (no muy sofistica-
dos, a decir verdad) que le permiten teclear datos en la pantalla del navegador y re-
mititlos explicitamente al servidor. Un formulario ocupa una porcién de un docu-
mento HTML.:

<HTML>

<HEAD><TI| TLE>M pri nmer docunent o</ TlI TLE></ HEAD>
<BODY>

<H1>j Hol a, nundo! </ H1>

<HR>

<FORM METHOD=GET ACTI ON=ht 't p: // www. mar t eens. coni scri pt s/ prg. exe>
<P>Nonbre: <INPUT TYPE="TEXT" NAME="Nonbre"></ P>

<P>Apel | i dos: <I NPUT TYPE="TEXT" NAME="Apel |lidos"></P>

<I NPUT TYPE="SUBM T" VALUE="Envi ar">

</ FORW>

</ BODY>

</ HTM.>

El aspecto de este documento sobre un navegador es el siguiente:

Ei mi primer documenta - b ft Internet Explorer

fichiva Edicin Wer lra Favoitos Ayuds
B x) : .
Atigs Adelanic Detener Actualiar || Yinculos || Direccion
=l
;Hola, mundo!
Nombre: |
Apellidos:
Enviar
‘L\sto ‘ |@ 4

La etiqueta <FORM> marca el inicio del formulario, y define dos parametros: METHOD y
ACTI ON. El método casi siempre es POST o GET, e indica de qué manera se pasan los
valores tecleados por el usuario al servidor. Si utilizamos GET, los parametros y sus
valores se afladen a la propia URL de destino del formulatio; en breve veremos
coémo. En cambio, con el método PCST estos valores se suministran dentro del cuerpo
de la peticién, como parte del flujo de datos del protocolo HTTP.

Extensiones del servidor y paginas dinamicas

La etiqueta ACTI ONindica a qué URL se dirige la peticion del cliente. En el ejemplo

hemos utilizado esta cadena:
http://ww. marteens. coni scri pts/prg. exe

Servidores de Internet 621

Ya lo habiamos anunciado: una URL no termina necesariamente con el nombre de
un fichero HTML. En este caso, termina con el nombre de un programa: prg.exe. El
proposito de este programa es generar dinamicamente el texto correspondiente a la
pagina HTML que debe enviarse al cliente. Esta aplicacion se ejecutara con una serie
de parametros, que se construiran tomando como base los valores suministrados por
el cliente al formulario. Por supuesto, el algoritmo de generacién de la pagina tendra
en cuenta estos parametros.

A este tipo de programas creadores de paginas dinamicas se le conoce como aplica-
ciones CGl, del inglés Common Gateway Interface. Es responsabilidad del servidor
HTTP el ejecutar la extension CGI adecuada a la peticion del cliente, y pasatle los
parametros mediante la entrada estandar. El texto generado por el programa se envia
de vuelta al servidor HTTP a través de la salida estandar de la aplicacion, un meca-
nismo muy a lo UNIX.

Como puede imaginar, todo este proceso de llamar al ejecutable, configurar el flujo
de entrada y recibir el flujo de salida es un proceso costoso para el servidor HT'TP.
Ademas, si varios usuarios solicitan simultineamente los servicios de una aplicacion
CGl, esta sera cargada en memoria tantas veces como sea necesario, con el deducible
desperdicio de recursos del ordenador. Los dos principales fabricantes de servidores
HTTP en el mundo de Windows, Microsoft y Netscape, idearon mecanismos equi-
valentes a CGI, pero que utilizan DLLs en vez de ficheros ejecutables. La interfaz de
Microsoft se conoce como ISAPI, mientras que la de Netscape es la NSAPI, y éstas
son algunas de sus ventajas:

El proceso de carga es mas rapido, porque el servidor puede mantener cierto
numero de DLLs en memoria un tiempo determinado, de modo que una se-
gunda peticién de la misma extensién no necesite volver a cargarla.

La comunicaciéon es mas rapida, porque el servidor ejecuta una funcién de la
DLL, pasando los datos y recibiendo la pagina mediante parimetros en memo-
ria.

La ejecucién concurrente de la misma extension debido a peticiones simultaneas
de cliente es menos costosa en recursos, porque el codigo esta cargado una sola
vez.

¢Desventajas? Hay una importante, sobre todo para los malos programadores (es
decir, que no nos afecta):

La extension pasa a formar parte del espacio de procesos del servidor. Si se
cuelga, el servidor (o uno de sus hilos) también se cuelga.

622 La Cara Oculta de C++ Builder

Nos queda pendiente explicar como se pasan los parametros a la extension del servi-
dor. Supongamos que el usuario teclea, en el formulario que hemos utilizado como
ejemplo, su nombre y apellidos, y pulsa el boton para enviar la solicitud. Como el
método asociado al formulario es GET, la URL que se buscara tendra la siguiente
forma completa:

http://ww. marteens. coni scripts/
prg. exe?Nonbr e=| an&Apel | i dos=Mart eens

Si el método fuera POST, los datos que aparecen después del signo de interrogacion se
codificarfan dentro del propio protocolo HTTP. Pero en el fondo se estaria pasando
la misma informacién que en el otro caso.

¢Qué necesito para este seguir los ejemplos?

Para desarrollar extensiones de Web con C++ Builder va a necesitar una copia de
C++ Builder ... pero creo que esto ya se lo imaginaba. Ademas, hace falta un explo-
rador de Internet, de la marca que sea y un servidor HTTP. Aqui es donde pueden
complicarse un poco las cosas. Veamos, stiene usted un Windows NT? Mas bien,
¢tiene un BackOffice, de Microsoft? Entonces tendrd un Internet Information
Server, o podra instalarlo si todavia no lo ha hecho. ¢Y qué pasa si el lector pertenece
a la secta que clava alfileres en el mapa en el sitio donde dice Redmond? Siempre
puede utilizar el servidor de la competencia, el Netscape FastTrack.

Propiedades de Servidor personal de Weh
Gensrall Inicio | Adminishiacion Servicios |

El servicor personal da Wb ofrecs dos lipos de servicios

El servidor HT TP [Protacalo de Transporte de Hipertextal
permite al usuario ohlener accesn a sus paginas en Intemet o
£n una intranet.

El servidar FTP permite a cualguiera que utiice PCs que
funcionen con protocalo FTP ver archivios y copiarlos desde o
hacia los directorios FTP de su FC.

- Srvicio

Para cambiar las propiedades de un servicia, seleccione el
nambie del servicio y haga clic en Propiedades
Parainiciar o finalizar un servicio, seleccione el nombre del
servicio y haga clic en el botén apropiado.

Servicio Estado Inicio

FEIE. detenidn Manual

[HTTP activo dutomatica
glieiie] etenern I Eicpiedades |

Corceler

Otra solucion es utilizar Personal Web Server para Windows 95, un producto que
puede conseguirse gratuitamente en la pagina Web de Microsoft. O, si tiene Windows
98, aprovechar que esta version ya lo trae incorporado. La imagen anterior muestra
una de las paginas del didlogo de propiedades del servidor, que puede ejecutarse

Servidores de Internet 623

desde el Panel de Control, o desde el icono en la Bandeja de Iconos, si se ha cargado
este programa.

Si va a desarrollar extensiones ISAPI/NSAPI en vez de CGI, se encontrara con que
necesitara descargar la DLL programada cada vez que quiera volver a compilar el
proyecto, si es que la ha probado con un navegador. Lo que sucede es que el servidor
de Internet deja a la DLL cargada en una caché, de forma tal que la préxima peticion
a esa URL pueda tener una respuesta mas rapida. Mientras la DLL esté cargada, el
fichero en disco estara bloqueado, y no podra ser sustituido. Este comportamiento es
positivo una vez que nuestra aplicacién esté en explotacion, pero es un engorro
mientras la desarrollamos. Una solucion es detener cada vez el servidor después de
cada cambio, lo cual es factible solamente cuando lo estamos probando en modo
local. La mejor idea es desactivar temporalmente la caché de extensiones en el servi-
dor Web, modificando la siguiente clave del registro de Windows:

[HKEY_LOCAL_MACHI NE\ Syst eml Cur r ent Cont r ol Set \ Ser vi ces\ VBSvc\
Par anet er s]
CacheExt ensi ons="00"

El ejemplo mostrado en este capitulo ha sido desarrollado y depurado utilizando
Personal Web Server de Microsoft para Windows 95.

Modulos Web

Podemos crear aplicaciones CGI facilmente con C++ Builder: basta con desarrollar
una aplicacién de tipo cwnsola y manejar directamente la entrada estandar y la salida
estandar. Recuerde que las aplicaciones de tipo consola se crean en el dialogo de
opciones del proyecto, y que son aproximadamente equivalentes a las aplicaciones
“tradicionales” de MS-DOS. Desde siempre hemos podido generar este estilo de
aplicaciones. Pero serfamos responsables de todo el proceso de analisis de la URL, de
los parametros recibidos y de la generacién del codigo HTML con todos sus detalles.
Si nuestra extension Web es sencilla, como puede ser implementar un contador de
accesos, no serfa demasiado asumir todas estas tareas, pero las aplicaciones mas com-
plejas pueden irsenos de las manos. Lo mismo es aplicable a la posibilidad de pro-
gramar directamente DLLs para las interfaces ISAPI y NSAPI: tarea reservada para
tipos duros de matar.

Para crear una aplicacién Web, debemos invocar al Depdsito de Objetos, comando
File| New, y elegir el icono Web Server Application. El didlogo que aparece a continua-
cién nos permite especificar qué modelo de extensiéon Web deseamos:

624 La Cara Oculta de C++ Builder

Mew Web Server Application | %]

'ou may select from one of the following twpes of Y orld
Wide \Web server applications.

@ SAPLMS AP Dynamic Link Librang
" CGI Stand-alone executable
" Win-CGl Stand-alone executable

QK I Cancel | Help |

En cualquiera de los casos, aparecera en pantalla un médulo de datos, de nombre
WebModule1 y perteneciente a una clase derivada de TWebModule. Lo que varia es el
tichero de proyecto asociado. Si elegimos crear una aplicaciéon CGI, C++ Builder
generard el siguiente fichero dpr:

#i ncl ude <condefs. h>

#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#i ncl ude <string. h>

#incl ude <SysUtils. hpp>

#i ncl ude <htt papp. hpp>

#i ncl ude <Cd App. hpp>

#pragma hdr st op

USEFORM " Uni t 1. cpp", WebMbdul el); /* TWebModul e: Designd ass */

#define Application Httpapp:: Application
#pragma |ink "cgi app. obj"

int main(int argc, char* argv[])
{
try
{ N o
Application->Initialize();
Appl i cati on->Creat eFor m(__cl assi d(TWebMbdul el), &WebMbdul el);
Appl i cation->Run();

catch (Exception &exception)

Sysutil s:: ShowExcepti on(&exception, Sysutils::ExceptAddr());
}

return O;

Como se puede ver, el proyecto sera compilado como un fichero ejecutable. En
cambio, si elegimos ISAPI/NSAPI, C++ Builder crea cédigo para una DLL:

#i ncl ude <HTTPApp. hpp>

#i ncl ude <I SAPI App. hpp>

#i ncl ude <l sapi 2. hpp>

#pragma hdrstop

USEFORM " Uni t 1. cpp", WebMbdul el); /* TWebModul e: Desi gnCl ass */

Servidores de Internet 625

e T TP
#define Application Httpapp:: Application
#pragma |ink "isapi app.obj"

e e
int WNAPI Di| EntryPoint (H NSTANCE hi nst, unsigned |ong reason,
voi d*)
{
try
{ N o
Application->Initialize();
Appl i cati on->Creat eFornm(__cl assi d(TWebModul el), &WebModul el);
Appl i cation->Run();
catch (Exception &exception)
{}
return 1;
}
I e
extern "C'
{
BOOL __export W NAPI Get Ext ensi onVer si on(
| sapi 2: : THSE_VERSI ON_|I NFO &Ver)
return |sapiapp:: Get Ext ensi onVer si on(Ver);
}
e
int __export WNAPI HttpExtensionProc(
| sapi 2: : TEXTENSI ON_CONTROL_BLOCK &ECB)
{
return |sapiapp:: Htt pExt ensi onProc(ECB);
}
L

BOOL _ _export W NAPI Ter nmi nat eExt ensi on(i nt dwFl ags)

return |sapi app: : Ter m nat eExt ensi on(dwFl ags) ;

¢Tres funciones para exportar? Si, se trata de las funciones que el servidor Web es-
pera que tenga nuestra extension, y las llamara para la carga de la DLL, la generacion
de documentos dinamicos y para descargar finalmente la DLL cuando haga falta.
C++ Builder implementa estas tres funciones por nosotros.

Ahora seguramente el lector saltara de alegtfa: le voy a contar como corregir un bug
del asistente de generacién de aplicaciones ISAPI/NSAPI de Borland. Resulta que
existe una variable global en la unidad Systezz que es utilizada por el administrador de
memoria dindmica de C++ Builder para saber si puede utilizar o no el algoritmo mads
rapido, pero no reentrante, que asume la existencia de un solo subproceso dentro de
la aplicacion. Esta variable se lama IsMultiThread, y tenemos que afiadir la siguiente
inicializacién en el fichero de proyecto:

IsMul ti Thread = True;

626 La Cara Oculta de C++ Builder

C++ Builder 4 ha corregido el bug, inicializando IsMultiThread en las unidades de
soporte de las extensiones ISAPI/NSAPI.

Existe una alternativa a la creacion de nuevos médulos Web mediante el Asistente de
C++ Builder. Si ya tenemos un médulo de datos, desarrollado en otra aplicacion,
podemos crear el esqueleto inicial tal como hemos explicado, eliminar del proyecto el
médulo Web y afiadir entonces el médulo existente. jPero el médulo eliminado des-
ciende de TWebModule, mientras que el médulo afiadido es un vulgar descendiente de
TDataModule! No importa, porque a continuacion afiadiremos al médulo un compo-
nente TWebDispatcher, de la pagina Internet. Este componente contiene una propiedad
llamada Actions, que es precisamente la que marca la diferencia entre los médulos de
datos “normales” y los médulos Web.

Acciones

Cada vez que un navegante solicita un documento dinamico a una extension de set-
vidor, se ejecuta la correspondiente aplicacion CGl, o la funcion disefiada para este
propésito de la DLL ISAPI 6 NSAPI. Sin embargo, en cada caso los parametros de
la peticién contenidos en la URL pueden ser distintos. El primer parametro verda-
dero contenido en la URL va a continuacién del nombre del médulo, separado por
una barra inclinada, y se conoce como énformacion de camino, o path info. Y para discri-
minar facilmente entre los valores de este parametro especial los médulos Web de
C++ Builder ofrecen las acciones.

Tanto TWebModule como TWebDispatcher contienen una propiedad Actions, que es una
coleccion de elementos de tipo TWebActionltem. La siguiente imagen muestra el editor

de esta propiedad:

i@ Editing WebModulel Actions

Pathinfo
Add

W ebdctionltem _—I
Delete |

Move Up |
Move Dowgl

Cada objeto WebActionltem que se afade a esta coleccion posee las siguientes propie-
dades importantes:

Propiedad Significado
Pathlnfo El nombre del camino especificado en la URL, después del nom-
bre de la aplicacién

Servidores de Internet 627

Propiedad Significado

Method Type El tipo de peticion ante la cual reacciona el elemento

Defanit St es True, se dispara cuando no se encuentre una accion mas
apropiada

Enabled Si estd activo o no

Estos objetos tienen un unico evento, OnAction, que es el que se dispara cuando el
moédulo Web determina que la accion es aplicable, y su tipo es éste:

typedef void _ fastcall (__closure *THTTPMet hodEvent)
(Toj ect* Sender, TWebRequest *Request, TWebResponse *Response,
bool &Handl ed);

Toda la informacion acerca de la peticion realizada por el cliente viene en el parame-
tro Reguest del evento, que analizaremos en la préxima seccion. El propésito principal
de los manejadores de este evento es asignar total o parcialmente el texto HTML que
debe enviarse al cliente como respuesta, en el parametro Response. Digo parcialmente
porque para una misma peticién pueden dispararse varias acciones en cascada, como
veremos enseguida; cada accién puede construir una seccién de la pagina HTML
tinal. Pero, ademas, en la respuesta al evento asociado a la accién se pueden provocar
efectos secundarios, como grabar o modificar un registro en una base de datos, alte-
rar variables del médulo Web, y cosas patecidas.

Supongamos que el cliente pide la siguiente URL:
http://ww. wet _wi | d_woods. coni scri pts/buscar.dll/clientes

La informacién de ruta viene a continuacién del nombre de la DLL: c/entes. Cuando
nuestra aplicacion recibe la peticion, busca todas las acciones que tienen asignada
esta cadena en su propiedad Pazblnfo. El siguiente diagrama muestra la secuencia de
disparo de las distintas acciones dentro del médulo:

WebModule NO - NO - NO
BeforeDispatch Actionl H Action2]—>
Sl

Default action

Sl Sl
A A A
Sl, NO: Valor del parametro Handled v
e
WebModule NO o
AfterDispatch >
- No hay respuesta
A

Enviar respuesta/

Antes de comenzar a recorrer las posibles acciones, el médulo Web dispara su propio
evento BeforeDispateh, cuyo tipo es idéntico al de OnAction. De este modo, el médulo

628 La Cara Oculta de C++ Builder

tiene la oportunidad de preparar las condiciones para la cadena de acciones que
puede dispararse a continuacion. El evento utiliza un parametro Handled, de tipo
légico. Si se le asigna True a este parametro y se asigna una respuesta a Response (pa-
ciencia, ya contaré c6mo), no llegaran a dispararse el resto de las acciones del mo-
dulo, y se devolvera directamente la respuesta asignada.

En caso contrario, el médulo explora secuencialmente todas las acciones cuya pro-
piedad Pathlnfo sea igual a clientes; pueden existir varias. Para que la cadena de disparos
no se interrumpa, cada accién debe dejar el valor False en el parametro Handled del
evento. Si después de probar todas las acciones que corresponden por el valor alma-
cenado en su Pazhlnfo, ninguna ha marcado Handled como verdadera (o no se ha en-
contrado ninguna), se trata de ejecutar aquella accién que tenga su propiedad Default
igual a True, si es que hay alguna.

Al finalizar todo este proceso, y si alguna accién ha marcado como manejada la peti-
cioén, se ejecuta el evento AfterDispatch del médulo Web.

Recuperacion de parametros

¢Dénde vienen los parametros de la peticion? Evidentemente, en las propiedades del
parametro Reguest del evento asociado a la accion. La propiedad concreta en la que
tenemos que buscarlos depende del tipo de accién que recibimos. Claro estd, si no
conocemos qué tipo de método corresponde a la accién, tenemos que verificar la
propiedad MezhodType de la peticién, que pertenece al siguiente tipo enumerativo:

enum TMet hodType { nt Any, ntGet, mtPut, ntPost, ntHead };

Estamos interesados principalmente en los tipos mGet y mtPost. El tipo mtAny repre-
senta un comodin, incluso para otros tipos de métodos menos comunes no incluidos
en TMethodIype, como OPTI ONS, DELETE y TRACE; en estos casos, hay que mirar tam-
bién la propiedad Method, que contiene la descripcion literal del método empleado.

Supongamos ahora que el método sea GET. La cadena con todos los parametros viene
en la propiedad Query de Request. Por ejemplo:

URL: http://ww. Wt W dWwbods. cont fi nd. dl | / ani mal ?ki nd=cat &al k=al one
QOuery: kind=cat&mwalk=alone

Pero mas facil es examinar los parametros individualmente, mediante la propiedad
QueryFields, de tipo TS#rings. En el siguiente ejemplo se aprovecha la propiedad vecto-
rial alues de esta clase para aislar el nombre del parametro del valor:

Servidores de Internet 629

void __fastcall TwebModul el:: WebModul elWebActi onl t emlActi on(
Toj ect *Sender, TWebRequest *Request, TWebResponse *Response,
bool &Handl ed)

i f (Request->QueryFi el ds->Val ues["ki nd"] == "cat")
/l ... estan preguntando por un gato ...

Por el contrario, si el método es POST los parametros vienen en las propiedades
Content, que contiene todos los parametros sin descomponer, y en Contentlields, que
es analoga a QueryFields. Si el programador no quiere depender del tipo particular de
método de la accion para el analisis de parametros, puede utilizar uno de los proce-
dimientos auxiliares ExtractContentFields 6 ExtractQueryFields:

void _ fastcall TWebModul el:: WebMddul elWebActi onl t emlActi on(
Toj ect *Sender, TWebRequest *Request, TWebResponse *Response,
bool &Handl ed)

{
i f (Request->MethodType == nt Post)
Request - >Ext r act Cont ent Fi el ds(Request - >Quer yFi el ds) ;
i f (Request->QueryFi el ds->Val ues["kind"] == "cat")
/1 ... estan preguntando por un gato ...
}

Generadores de contenido

El propésito de los manejadores de eventos de acciones es, principalmente, generar
el contenido, o parte del contenido de una pagina HTML. Esto se realiza asignando
el texto HTML a la propiedad Content del parametro Response del evento en cuestion.
Por ejemplo:

void __fastcall TwebModul el:: WebMbdul elWebActi onl t emlActi on(
TObj ect *Sender, TWebRequest *Request, TWhbResponse *Response,
bool &Handl ed)

Response- >Cont ent = " <HTM_.><BODY>j Hol a, col ega! </ BODY></ HTM.>";

Por supuesto, siempre podriamos asignar una larga cadena generada por codigo a
esta propiedad, siempre que contenga una pagina HTML valida. Pero vemos que,
incluso en el sencillo ejemplo anterior, ésta es una tarea pesada y es facil cometer
errores de sintaxis. Por lo tanto, C++ Builder nos ofrece varios componentes en la
pagina Internet para facilitar la generacién de texto HTML. Para empezar, veamos el
componente TPageProducer, cuyas propiedades relevantes son las siguientes:

Propiedad Significado
Dispatcher El médulo en que se encuentra, o el componente TWebDispatcher al
que se asocia

630 La Cara Oculta de C++ Builder

Propiedad Significado
HTMI Doc Lista de cadenas que contiene texto HTML
HTMI File Alternativamente, un fichero con texto HTML

La idea es que HTMI .Doc contenga el texto a generar por el componente, de forma
tal que este texto se especifica en tiempo de diseflo y se guarda en el fichero df del
médulo, para que no se mezcle con el codigo. Pero también puede especificarse un
fichero externo en HTMI File, para que pueda modificarse el texto generado sin
necesidad de tocar el ejecutable de la aplicacién. En cualquiera de estos dos casos, el
ejemplo de respuesta al evento anterior se escribirfa de este otro modo:

void __fastcall TwebModul el:: WebModul elWebActi onl t emlActi on(
TObj ect *Sender, TWebRequest *Request, TWhbResponse *Response,
bool &Handl ed)

Response- >Cont ent = PagePr oducer 1- >Cont ent () ;

No obstante, si nos limitamos a lo que hemos descrito, las paginas producidas por
nuestra extension de servidor siempre seran paginas estaticas. La principal ventaja del
uso de TPageProducer es que podemos realizar la sustitucion dindmica de etiguetas trans-
parentes por texto. Una etiqueta transparente es una etiqueta HTML cuyo primer ca-
racter es la almohadilla: #. Estas etiquetas no pertenecen en realidad al lenguaje, y
son ignoradas por los navegadores. En el siguiente ejemplo, el propésito de la eti-
queta <H#HORA> es el de servir como comodin para ser sustituido por la hora ac-
tual:

<HTM.><BCODY>
jHol a, colega! ¢Qué haces por aqui a |as <#HORA>?
</ BODY></ HTML>

¢Por qué se sustituye la etiqueta transparente anterior por la hora? ¢Acaso hay algun
mecanismo automatico que detecte el nombre de la etiqueta y ...? No, por supuesto.
Cuando utilizamos la propiedad Content del productor de paginas, estamos iniciando
en realidad un algoritmo en el que nuestro componente va examinando el texto
HTML que le hemos suministrado, va detectando las etiquetas transparentes y, para
cada una de ellas, dispara un evento durante el cual tenemos la posibilidad de indicar
la cadena que la sustituira. Este es el evento OnHTMI Tag, y el siguiente ejemplo
muestra sus parimetros:

void __fastcall TrnodWbDat a:: PagePr oducer 1HTM.Tag(TCbj ect *Sender,
TTag Tag, const Ansi String TagString, TStrings *TagParans,
Ansi String &Repl aceText)

if (TagString == "HORA")
Repl aceText = TimeToStr(Now());

Servidores de Internet 631

Generadores de tablas

Un caso particular de generadores de contenido son los generadores de tablas que
incorpora C++ Builder: TDataSetTableProducer, y TQueryTableProducer. Ambos son
muy parecidos, pues descienden de la clase abstracta TDSTableProducer, y generan una
tabla HTML a partir de los datos contenidos en un conjunto de datos de la VCL.
TQueryTableProducer se diferencia en que el conjunto de datos debe ser obligatoria-
mente una consulta, y en que esta consulta puede extraer sus parametros de los pa-
rametros de la peticion HTTP en curso, ya sea a partir de QueryFields, en el caso de
acciones GET, o de Contentlields, en el caso de POST.

Las principales propiedades comunes a estos componentes son:

Propiedad Significado

DataSet El conjunto de datos asociado

MaxcRows Numero maximo de filas de datos generadas
Caption, CaptionAlignment Permite afiadir un titulo a la tabla

Header, Footer Para colocar texto antes y después de la tabla
Columns, Row.Attributes, Formato de la tabla

ColumnAttributes

Para dar formato a la tabla, es conveniente utilizar el editor asociado a la propiedad
Columns de estos componentes. La siguiente imagen muestra el aspecto del editor de
columnas del productor de tablas, que permite personalizar columna por columna el
aspecto del codigo generado:

diting DataSetTableProducerl-=>Columns

|+ ¥ &

Table Propertie: Field Mame | Field Type |
Aligre [haDefaul 'I Empho TlntegerField
e LastMame T5tringField
Border: |1 FirstMame TS tringField
X PhaoneE st TStringField
Batalar [uhite]' HireDate TDateTimeField
Cellpadding |1— Salary TFloatField
Cellzpacing: |-1
itk {100) b4

£

Cadigo Apellidos Nombre Teléfono Contrato Salario
Emp# 0002 Melson Roberto | 250 28112188 40.000 Pts
Emp# 0004 Young Bruce 233 28/12/88 55.500 Pts| =]

Para ambos componentes, la funcion Content genera el texto HTML correspondiente.
En el caso de TQueryTableProducer, la propia funcién se encarga de extraer los para-
metros de la solicitud activa, y de asignarlos al objeto T Query asociado.

El evento OnFormatCell, comun a ambos componentes, es muy util, porque permite
retocar el contenido de cada celda de la tabla generada. Podemos cambiar colores,

632 La Cara Oculta de C++ Builder

alineacion, tipos de letras, e incluso sustituir completamente el contenido. Por ejem-
plo, el siguiente ejemplo muestra cémo se pueden generar cuadros de edicién en la
primera columna de una tabla:

void _ fastcall TForml:: DataSet Tabl eProducer 1For mat Cel | (
Toj ect *Sender, int Cell Row, int Cell Col um,
THTMLBgCol or &BgCol or, THTMLAl i gn &Align, THTMLVAlign &VAlign,
Ansi String & ustomAttrs, Ansi String &Cel | Dat a)

{
if (CellRow > 0 && Cel | Col um == 0)
Cel | Data = "<I NPUT TYPE=\"TEXT\" VALUE=" +
Ansi QuotedStr(Cel | Data, '\"') + ">";
}

Mantenimiento de la informacion de estado

El problema principal de los servidores Web es su corta memoria. Usted le pide a
uno de ellos: dame, por favor, la lista de los diez discos mas vendidos, y el servidor le
respondera con mil amores. Pero si se le ocurre preguntar por los diez que siguen, el
servidor fruncird una ceja: ¢y quién eres tu?

Evidentemente, no tiene sentido que el servidor recuerde la conversacion que ha
mantenido con nosotros. Después que leamos la pagina que nos ha enviado la pri-
mera vez como respuesta, es muy probable que apaguemos el navegador, o nos va-
yamos a navegar a otra parte. No merece la pena guardar memoria de los potenciales
cientos o miles de usuarios que pueden conectarse diariamente a una pagina muy
transitada.

Pero no hay problemas insolubles, sino preguntas mal planteadas. En nuestro ejem-
plo anterior, acerca de la lista de éxitos, podemos formular la peticiéon de este otro
modo: Jcudles son los discos de la lista que van desde el 11 al 202 O en esta otra
forma: hola, soy Ian Marteens (conexion numero 12345678), scuales son los proxi-
mos diez discos? En este dltimo caso, por ejemplo, necesitamos que se cumplan estas
dos condiciones:

El servidor debe asignar a cada conexién una identificacion, del tipo que sea.
Ademas, debe llevar en una base de datos un registro de las acciones realizadas
por la “conexién”.

El usuario debe disponer a su vez de este identificador, lo que implica que el
servidor debe pensar en algin de método para comunicar este nimero al cliente.

Sigamos aclarando el asunto: observe que yo, lan Marteens, puedo ser ahora la cone-
xi6n 3448 para cierto servidor, pero al apagar el ordenador y volver a conectarme al
dia siguiente, recibiré el nimero 5237. Por supuesto, podemos idear algun meca-

Servidores de Internet 633

nismo de identificacién que nos permita recuperar nuestra ultima identificacién, pero
esta es una variacion sencilla del mecanismo basico que estamos explicando.

¢Como puede comunicar el servidor al cliente su niumero de identificacién? Planteé-
moslo de otra manera: ¢qué es lo que un servidor de Internet puede suministrar a un
cliente? Documentos HTML, qué diablos! Pues bien, introduzca traicioneramente el
identificador de la conexion dentro del documento HTML que se envia como res-
puesta. Se supone que se recibe un nimero de conexién porque queremos seguir
preguntando tonterias al servidor (bueno, ¢y qué?). Entonces es muy probable que el
documento contenga un formulario, y que podamos utilizar un tipo especial de
campo conocido como campos ocultos (bidden felds):

<HTM.>
<HEAD><TI TLE>Canci ones mas sol i citadas</ Tl TLE></ HEAD>
<BODY>
<H1>Li sta de éxitos</Hl>
<H2>(del 1 al 5)</H2>
<HR><OL START=1><L| >Dust in the w nd
Stairway to heaven
<Ll >More than a feeling
<Ll >W sh you were here
<Ll >Macar ena (uh-oh) </ LI ></ OL><HR>
<FORM METHOD=CGET
ACTI ON=ht t p: / / www. mar t eens. coni scri pts/ prg. exe/ hits>
<I NPUT TYPE="H DDEN' NAME="USER' VALUE="1234">
<I NPUT TYPE="SUBM T" VALUE="Del 6 al 10">
</ FORW>
</ BODY>
</ HTM_>

De todo el documento anterior, la clausula que nos interesa es la siguiente:

<I NPUT TYPE="H DDEN' NAME="USER' VALUE="1234">

Esta clausula no genera ningin efecto visual, pero como forma parte del cuerpo del
formulario, contribuye a la generacién de parametros cuando se pulsa el botén de
envio. El atributo NAME vale USER en este ejemplo, pero podemos utilizar un nombre
arbitrario para el parametro. Como el método del formulario es GET, la pulsacion del
botén solicita la siguiente URL:

http://ww. marteens. coni scri pts/prg. exe/ hits?USER=1234

Cuando el servidor Web recibe esta peticion puede buscar en una base de datos cual
ha sido el ultimo rango de valores enviado al usuario 1234, generar la pagina con los
proximos valores, actualizar la base de datos y enviar el resultado. Otra forma de
abordar el asunto serfa incluir el proximo rango de valores dentro de la pagina:

<I NPUT TYPE="H DDEN' NAME="STARTFROM' VALUE="6">

634 La Cara Oculta de C++ Builder

De esta forma, no es necesario que el servidor tenga que almacenar en una base de
datos toda la actividad generada por una conexion. Este enfoque, no obstante, es
mejor utilizarlo en casos sencillos como el que estamos exponiendo.

¢Le apetece una galleta?

Existen muchas otras formas de mantener la informacién de estado relacionada con
un cliente. Una de estas técnicas son las “famosas” cookzes, que son plenamente so-
portadas por C++ Builder mediante propiedades y métodos de las clases TWWebRe-
guesty TWebResponse.

Todo comienza cuando una extension HTTP envia junto a una pagina HTML una de
estas cookies. El método de envio pertenece a la clase TWebResponse, y tiene el si-
guiente aspecto:

void _ fastcall TWebResponse:: Set Cooki eFi el d(TStrings *Val ues,
const Ansi String ADonmin, const Ansi String APath,
TDat eTi me AExpires, bool ASecure);

La informacion basica de este método se pasa en el parametro Values, como una lista
de cadenas con el formato Pardmetro=1"alor. Por ejemplo:

void _ fastcall EnviarldentificadorUsuario(
TWebResponse *Response, int UserlD)

{
TStrings *val ores = new TStringList;
val ores->Add("User I D=" + IntToStr(UseriD));
Response- >Set Cooki eFi el d(val ores, "nmarteens.cont, "",
Now() + 30, False);
del ete val ores;
}

El objetivo de una cookie es que sea devuelta en algin momento al servidor. Los pa-
rametros ADomain y APath indican a qué dominio y ruta se debe enviar de vuelta esta
informacién. AExpires establece una fecha de caducidad para la cookie; en el ejemplo
anterior, a partir de treinta dfas desde la fecha actual. Por ultimo, el parametro .4Se-
cure, cuando vale True, especifica que solamente puede devolverse la informacion de
la cookie a través de una conexion segura.

La otra cara de la moneda: como recibir esta informacién de vuelta. Para eso, 1a clase
I'WebRequest tiene las propiedades Cookie, de tipo AnsiString, y CookieFields, que
apunta a una lista de cadenas. El trabajo con estas propiedades es similar al de las

propiedades Query/ QueryFields y Content/ Contentields.

La diferencia principal entre las cookies y el uso de parametros en la consulta o en el
contenido consiste en que la informacién almacenada por el primer mecanismo

Servidores de Internet 635

puede recuperarse de una sesion a otra, mientras que los restantes sistemas de man-
tenimiento de informacién solamente sirven para encadenar secuencias de pagina
durante una misma sesion.

Sin embargo, a pesar de que esta técnica es inofensiva y relativamente poco intrusiva,
goza de muy poca popularidad entre los usuarios de la Internet. Cuando una cookie es
recibida por un navegador Web, se le pregunta al usuario si desea o no aceptarla, y es
muy probable que la rechace. También hay que contar con la fecha de caducidad, y
con la posibilidad de que el propietario del ordenador se harte de tener la mitad de su
disco duro ocupada por porquerias bajadas desde la Internet, y borre todo el directo-
rio de archivos temporales, cookies incluidas. Por lo tanto, utilice este recurso para
guardar informacién opcional, de la que pueda prescindir sin mayor problema.

Un simple navegador

Es conveniente organizar todo el contenido que hemos expuesto mediante un ejem-
plo sencillo. ¢Qué tal si le muestro cémo navegar registro a registro sobre una tabla
alcanzable desde el servidor HTTP? Mostrar un registro de una tabla en una pagina
HTML sera muy sencillo, gracias al componente TDataSetPageProducer. Lo mas com-
plicado sera coordinar al cliente y al servidor, de modo que cuando el cliente pida el
“proximo” registro, el servidor sepa de qué registro esta hablando. La técnica que
voy a emplear esta inspirada en la forma en el que el BDE implementa la navegacién
sobre tablas cliente/servidor.

Iniciamos entonces una nueva aplicacion Web, mediante el icono Web Server Applica-
tion del Depésito de Objetos; da lo mismo que sea una DLL o un ejecutable, pero le
recomiendo que utilice una DLL para que no tenga problemas al seguir el ejemplo.
Guarde entonces el proyecto como WebBrowse, y la unidad del médulo de datos como
Datos.

Nuestra aplicacién solamente implementara una accion, a la cual no asociaremos
nombre alguno. Para controlar el cédigo HTML que genera el servidor utilizaremos
un par de parametros: Direccion y Codigo. En el primero indicaremos en qué direccién
desea navegar el usuario: First, Prior, Next o Last. Cuando se trata de Prior o Next hay
que indicarle al servidor en qué registro se encontraba el usuario, para lo cual utiliza-
remos el parametro Codigo. Por lo tanto, pulse sobre la propiedad Actions del médulo
Web, y afiada una nueva accién, de nombre acFirst, marcada como Defanlt, y deje
vacia su propiedad Pathlnfo:

636 La Cara Oculta de C++ Builder

Editing WebModulel-=Actions

|
Mame | Pathlnfo | Enabled | Default |
acFirst Tiue *

Sobre el médulo Web generado afiadiremos los siguientes componentes:

E;%3WehMudule1

DataSetPageProducer! PageProducer] Cuenyd

Mas sencillo imposible: dos productores de datos HTML (DataSetPageProducer? y
PageProducerT), mas una consulta. El componente DataSetPageProducer] tiene una pro-
piedad llamada DataSet, que debemos hacer que apunte a Query1. Por su parte, sola-
mente tenemos que asignar DafabaseName a la consulta. He utilizado el alias bedemos,
pero usted puede utilizar la base de datos que se le antoje. La instruccién SQL de la
consulta se generara dinamicamente, cada vez que se realice una peticiéon de pagina al
servidor.

El contenido de DataSetPageProducer! se asigna en la propiedad HTMI Do, y sera el
siguiente:

<HTML><BODY>

<H1>Enpl oyees</ H1><HR>

<FORM METHOD=GET ACTI ON="WbBrowse. dl | ">

<pP>

Code: <#EnmpNo>

Nane: <#First Name> <#Last Name>

Ext ensi on: <#PhoneExt >

Sal ary: <#Sal ar y>

Hire date: <#HireDate>

</ P><HR>

<#CODE>

<I NPUT TYPE="SUBM T" NAME="Direction" VALUE="First">
<I NPUT TYPE="SUBM T" NAME="Direction" VALUE="Prior">
<I NPUT TYPE="SUBM T" NAME="Direction" VALUE="Next">
<I NPUT TYPE="SUBM T" NAME="Direction" VALUE="Last">
</ FORM></ BODY></ HTM.>

Observe la presencia de etiquetas con los nombres de campos de la tabla de emplea-
dos. Cuando le pidamos a este generador HTML su contenido, automaticamente se
sustituiran dichas etiquetas por el valor de los campos del conjunto de datos aso-
ciado. Ademas de las etiquetas que corresponden directamente a campos, he incluido

Servidores de Internet 637

una etiqueta especial, <#CODE>, para que la pagina “recuerde” cudl es el cddigo del
registro visualizado. Este <#CODE> sera expandido como un campo de formulario de
tipo HI DDEN. El aspecto de la pagina generada sera el siguiente:

[http://naroa/scripts/webBrowse.dll - Microsoft Internet Explorer

| Fle Edt View Bo Favoites Help

J N A @ ﬁ | @ @ Qs @ | El @ Eé,' HAddress I@ http:/naroadseripts/we ¥
El

Employees

Code: 2

Name: Roberto Nelson
Extension: 250

Salary: 40000

Hire date: 28/12/48

| €] Done [,_’_,_ by Local intranet 2one

|
4

Por su parte, el contenido de PageProducer! se mostrara dnicamente en una situacion
muy especial, como veremos mas adelante:

<HTM.><BCDY>

<H1>Enpl oyees</ H1><HR>

<FORM METHOD=GET ACTI ON="WebBrowse. dl | ">

<P>Recor d/ key del et ed. </ P><HR>

<I NPUT TYPE="SUBM T" NAME="Direction" VALUE="First">
<I NPUT TYPE="SUBM T" NAME="Direction" VALUE="Last">
</ FORM></ BODY></ HTM.>

Después hay que interceptar el evento OnAction de la tnica accién del médulo, para
que se ejecute durante el mismo el algoritmo de generacién y apertura de la consulta:

void _ fastcall TWebModul el:: WebModul elacFi rst Acti on(
TObj ect *Sender, TWebRequest *Request, TWhbResponse *Response,
bool &Handl ed)

Ansi String Direction;
int CurrRecord = 0;
/| Extraer paréanetros
i f (Request->QueryFi el ds->l ndexOf Name(" CODE") != -1)
{
CurrRecord = StrTol nt (Request - >Quer yFi el ds->Val ues[" CODE"]) ;
Direction =
Request - >Quer yFi el ds- >Val ues[" Di recti on"] . Upper Case();

/'l Generar contenido

if (Direction == "FIRST" || Direction == "")
Gener at eQuery("order by EnmpNo asc", CurrRecord);
else if (Direction == "PRIOR")

Gener at eQuery("where EnpNo < % order by EnpNo desc",
CurrRecord);

638 La Cara Oculta de C++ Builder

else if (Direction == "NEXT")
Gener at eQuery("where EmpNo > %l order by EnpNo asc",
CurrRecord);
el se

Gener at eQuery("order by EnpNo desc", CurrRecord);
if (Queryl->Eof)
Gener at eQuery("where EmpNo = %", CurrRecord);
if (Queryl->Eof)
Response- >Cont ent = PageProducer 1->Content ();
el se
Response- >Cont ent = Dat aSet PagePr oducer 1- >Cont ent () ;
Queryl->C ose();

Quiero que preste atencion a esta parte del método:

if (Queryl->Eof)
Gener at eQuery("where EmpNo = %", CurrRecord);
if (Queryl->Eof)
Response- >Cont ent = PagePr oducer 1- >Cont ent () ;
el se
Response- >Cont ent = Dat aSet PagePr oducer 1- >Cont ent () ;

Supongamos que estamos ya en el dltimo registro de la tabla, y que el usuario pide el
siguiente. Es evidente que Query7 estara vacfa, porque estaremos solicitando el regis-
tro cuyo codigo es mayor que el mayor de los codigos. En tal caso, generamos una
nueva consulta que pida el mismo registro que tenia el usuario antes. Normalmente,
esta peticion no falla, pero puede darse el caso en que algin proceso concurrente
elimine al empleado deseado. Para cubrirnos las espaldas, mostramos entonces la
pagina contenida en PageProducer1, que contiene el mensaje de error Record or fey de-
leted, y dejamos al usuario la libertad de dirigirse al primer o al dltimo registro de la
tabla.

Todo el algoritmo anterior estd basado en el uso de un método auxiliar, Generate-
Query, que se implementa del siguiente modo:

void __fastcall TwebModul el:: Generat eQuery(const Ansi String tail,
int CurrRecord)
{

Queryl->C ose();

/'l Generar contenido

Queryl->SQ.->Cl ear();

Queryl->SQ.- >Add("sel ect * from Enpl oyee");

Queryl->SQ.- >Add(Format (tail, ARRAYOFCONST((CurrRecord))));
Queryl->Qpen();

Lo tnico que nos queda es la sustitucion de etiquetas durante la generacion del con-
tenido de DataSetPageProducert:

void __fastcall TwebModul el:: Dat aSet PagePr oducer 1HTM.Tag(
Toj ect *Sender, TTag Tag, const Ansi String TagString,
TStrings *TagParans, Ansi String &Repl aceText)

Servidores de Internet 639

if (TagString == "CODE")
Repl aceText = Fornat ("<I NPUT TYPE=\"H DDEN\ " "
" NAME=\ " CODE\ " VALUE=\"9%@\ " >",
ARRAYOFCONST((Quer y1EnpNo- >Val ue)));

Al otro lado de la linea...

Volvamos la vista atras por un momento, para evaluar cuanto hemos avanzado. Las
técnicas estudiada nos permiten desarrollar aplicaciones o médulos que se ejecutarin
en el servidor HTTP, y nos permiten generar dinimicamente el contenido de las
paginas HTML. Sin embargo, una vez que dichas paginas llegan al ordenador que las
solicita, se convierten en paginas estaticas, de contenido fijo. La tnica forma de inte-
raccién que se le permite al usuario es la navegacion por medio de los vinculos in-
cluidos en el documento, y el uso de formularios HTML, que ya hemos visto que son
bastante limitados. Puede interesarnos, por ejemplo, realizar algin tipo de validacién
sobre los datos tecleados en un cuadro de edicidn antes de enviar su contenido a
través de Internet. Estas verificaciones puede, por supuesto, ejecutarlas la propia
extension del servidor, pero el usuario tendria que esperar por la respuesta del servi-
dor para saber que ha tecleado datos no aceptables.

Esta situacion ha propiciado la aparicion de diversas técnicas aplicables al lado cliente
para permitir extensiones al lenguaje HTML basico. Algunas de ellas estan basadas
en el uso de lenguajes de serzpt, como JavaScript y VBScript. En este modelo de do-
cumento, se asocian eventos a las diversas etiquetas permitidas por HTML. Cuando
se produce un evento, se ejecutan instrucciones programadas con los lenguajes men-
cionados:

<HTM.>

<HEAD><TI| TLE>Denpstraci 6n sencilla de JavaScri pt </ TI TLE></ HEAD>
<BODY><H2 onnouseover =" MakeBl ue();" onnouseout =" MakeBl ack();">
Pasa el ratén por encinma de este titul o</ H2><HR>

<FORM METHOD="CGET" ACTI ON="www. mart eens. comf encuest a. dl | / nuevo"
onsubm t =" CheckPar ans(Nonbre) ; " >

<P>Su nonbre: <INPUT NAVE="Nonbre"></ P>

<I NPUT TYPE="SUBM T" VALUE="Envi ar">

</ FORW>

</ BODY>

<SCRI PT LANGUAGE=JavaScri pt >
function MakeBl ue() {

wi ndow. event . srcEl ement . style.color = "Bl ue";
}
function MakeBl ack() {

wi ndow. event. srcEl ement . styl e.color = "Bl ack";

function CheckParans(inpField) {
if (inpField.value == "") {
alert("Este canpo es obligatorio");

640 La Cara Oculta de C++ Builder

i npFi el d. focus();

wi ndow. event . returnVal ue = “fal se";
}
el se
wi ndow. event . returnValue = "true";
}
</ SCRI PT>
</ HTM.>

En el fragmento anterior, basado en JavaScript, he sefialado con negritas los ele-
mentos novedosos. Tenemos un titulo que cambia de color cuando el ratén pasa
sobre €l, gracias al tratamiento de los eventos OnMouseOver y OnMouseOut. Hay tam-
bién un formulario cuyos datos se validan en respuesta al evento OnSubmit. Observe
cémo las funciones se describen dentro de una etiqueta <SCRI PT>.

ActiveForms: formularios en la Web

Si hace falta mds potencia que ofrecida por estos lenguajes seripts, debemos entonces
echar mano de algin lenguaje mas complejo y potente. Una de las alternativas con-
siste en el uso de applets de Java (no confundir con JavaScript). Estas serfan pequefias
aplicaciones disefladas para ejecutarse en el contexto del navegador de Internet, es-
critas en Java y traducidas a un cédigo binario interpretable, que es independiente del
procesador y del sistema operativo. Otra alternativa casi equivalente consiste en in-
cluir dentro de la pagina controles ActiveX, que podemos programar con el propio
C++ Builder. La desventaja de esta técnica es que los controles ActiveX nos atan a
un tipo de procesador (Intel) y a un sistema operativo (Windows).

La forma mas sencilla de incluir controles ActiveX en una pagina Web utilizando
C++ Builder consiste en crear un formulario activo, o ActiveForm, que es sencillamente
un control ActiveX con algunas caracteristicas de un formulario “normal”: puede
contener otros componentes VCL y puede actuar como receptor de los eventos por
ellos disparados. Para crear un formulario activo debemos ejecutar el asistente Ae¢-
tiveForm de la pagina ActiveX del Depésito de Objetos, que se muestra en la pagina
siguiente.

El formulario activo debe crearse dentro del contexto de una biblioteca dinamica
ActiveX, para obtener un servidor COM dentro del proceso. De no ser éste el caso,
C++ Builder cierra el proyecto activo y crea un nuevo proyecto de este tipo. Observe
que el modelo de concurrencia debe ser Apartment, pues cada hilo del Internet
Explorer de Microsoft se ejecuta en su propio STA.

Servidores de Internet 641

WIELL Elaes iEme: I TactiveForm j

New Active Mame: IHeIIDX

Implementation Unit: IHelIoImpI‘I .cpp

Project Mame: IHeIIoF‘roi‘I .Cpp
Threading fade!: IApartment j
— Activex Contral Optiohs
™ Include Design-Time License ™ Include About Box
™ Include Yersion Infarmation
0k I Cancel | Help |

Para el programador, el formulario activo se comporta en tiempo de disefio como
cualquier otro formulario. Asi que puede colocar cuantos controles desee, asignar
propiedades, crear manejadores de eventos, etc. Una vez terminado el disefio del
formulario, debe ejecutar el comando de menu Prgject| Web Deployment Options:

Web Deployment Options

Froject | F'ackages' Additional F\Ias' Code Sigmng'

rDirectories and URL:

Target dir:

IC WWEBSHAREWAWWROOT

Browse. |

Target URL: Ihllp #inaroa

HTHML dir:

IE WWWEBSHARENAAWWRODT

Browse. |

—General Option:
¥ Use CAB file compression

¥ Include file version number

I Auto increment release number

[~ Code sign project
[+ Deploy required packages
[~ Deploy additional files

[~ Default

o |

Cancel Help |

La idea es que C++ Builder puede generar automaticamente una pagina HTML de
prueba para nuestra ActiveForm, y mediante el didlogo anterior podemos especificar
las opciones de la pagina y la forma en la que vamos a distribuir el control. En la pri-
mera pagina, por ejemplo, debemos indicar dos directorios y una URL:

Opcién
Target dir

Target URL

HTML dir

Significado

Directorio donde se va a ubicar el control ActiveX compilado y listo

para su distribucién

URL, vista desde un explorador Web, donde residira el formulario

activo

Directorio donde se va a crear la pagina HTML

642 La Cara Oculta de C++ Builder

B http:/ /naroa/helloprojl.htm - Microsoft Internet Explorer
J Fille Edit “iew Go Favoites Help ‘
JAddressI@ hitp: A/ maroashelloprof ktm j H e @ ﬁ ‘ @ @ g @ | E
=
C++Builder 4 ActiveX Test Page
Cuestionario necesario para gue su sistema operativo se cuelgue solamente una vez a la semana
Soy Bull Great, ¥ necesito inmiscuirme en tuvida privada
Tu nombre Tu direccidn
INo te interesa I
LColor de b 1opa interior
=1 Enwiar |
[|
&7 Done [’_’_’_ 201 Local intranst zone 4

En el resto del didlogo podemos indicar si queremos comprimir el formulatio (reco-
mendable), si vamos a utilizar paquetes en su distribucion, si necesitamos ficheros
adicionales, etc. Una vez completado el didlogo, podemos llevar la pagina HTML y el
formulario activo a su ubicacién final mediante el comando Projects | Web deploy. La

imagen anterior muestra un formulario activo cargado localmente con Internet
Explorer.

Ahora bien, ¢qué posibilidades reales tenemos de crear aplicaciones serias de bases
de datos con esta técnica? En primer lugar, podemos hacer que una aplicacién ba-
sada en extensiones de servidor utilice formularios activos en el lado cliente como
sustitutos de los limitados formularios HTML. Ganatfamos una interfaz de usuario
mas amigable, pero a costa de perder portabilidad.

La unidad URLMon contiene declaraciones de interfaces y rutinas para que
nuestro formulario ActiveX pueda comunicarse con el navegador que lo esta vi-
sualizando. En particular, pueden interesarnos las funciones con el prefijo Hiink,
como H/inkGoForwardy HiinkGoBack, que nos permiten cambiar la pagina activa.
También podemos utilizar los componentes de la pagina Infernet para enviar co-
rreo electrénico, o abtir sockets que se comuniquen con el servidor HTTP.

La otra oportunidad consiste en situar en el formulario activo componentes de ac-
ceso a bases de datos. ¢Quiero decir conjuntos de datos del BDE? {No! En tal caso
estarfamos complicando aun mas las condiciones de configuracién en el cliente. De
lo que se trata es de utilizar clientes “delgados” como los que desarrollamos con
Midas en el capitulo 37, para lo cual debemos colocar un servidor Midas en una di-
reccion accesible para los usuarios de Internet. El cliente se conectaria al servidor
utilizando esa direccién IP con un componente TSocketConnection. La principal difi-
cultad tiene que ver con la seguridad: cémo decidir si un usuario tiene derecho o no a
acceder al servidor. Existen complicaciones adicionales relacionadas con la configu-

Servidores de Internet 643

racion del servidor. Muchos servidores de Internet utilizan una barrera de fuego para
proteger al verdadero servidor HT'TP; la barrera filtra las peticiones de conexion a
los servicios IP y deja pasar solamente a los usuarios autorizados al servidor prote-
gido. Si queremos utilizar un servidor Midas desde Internet, hay que convencer al
administrador de nuestro dominio para que las peticiones al puerto del servidor Mi-
das (por omision, el 211) sean también aceptadas.

Leftoverture

Impresion de informes con QuickReport
Analisis grafico

Descenso a los abismos

Creacion de instalaciones

Ejemplos: libretas de ahorro

Ejemplos: un servidor de Internet

Parte

Capitulo

32

Impresion de informes con
QuickReport

UNQUE LA PROPAGANDA COMERCIAL intente convencernos de las bondades

del libro electrénico, nuestros ojos siempre agradeceran un buen libro im-

preso en papel. Del mismo modo, toda aplicacion de bases de datos debe
permitir imprimir la informacién con la que trabaja. Sistemas de creacién e impre-
sion de informes para C++ Builder hay muchos, quizas demasiados. Inicialmente,
junto con Delphi 1 se suministraba un producto de Borland, llamado ReportSmith.
Era un generador de informes bastante bueno, con posibilidades de impresién de in-
formes por columnas, master/ detail, tabulares, graficos, etc. Sin embargo, no tuvo la
acogida deseable por parte de los programadores. ¢La razén?: un runtime bastante
grande e incomodo que distribuir, demasiado ineficiente en tiempo y espacio (esta-
mos hablando de los tiempos de Delphi 1, sobre Windows 3.1, cuando 16 MB en
una maquina era bastante memoria) y, sobre todo, una molesta pantalla de presenta-
cién con los créditos de Borland, que aparecia cada vez que se imprimia un informe.
Posteriormente se descubrié que era muy facil ocultar esta pantalla, pero estoy se-
guro de que ésta fue una de las causas no confesadas que motivaron la aparicién de
toda una variedad de sistemas de informes alternativos.

La historia del producto

En junio de 1995, un programador noruego llamado Allan Lochert colocé en la In-
ternet un pequefio y eficiente sistema de impresioén de informes de libre distribucion,
al que bautizé QuickReport. Era un producto simple y elegante, basado en el princi-
pio “lo pequefio es bello”; el cédigo fuente solamente ocupaba 5000 lineas. El sis-
tema fue creciendo y depurandose, llamando la atencién de Botland, que lo incluyé
como alternativa a ReportSmith en Delphi 2 y C++ Builder 1. Adicionalmente, era
posible comprar aparte la version profesional de QuickReport, que contenia el co-
digo fuente y los componentes para 16 y 32 bits.

Cuando aparecio la siguiente versién de QuickReport, éste habia sido reprogramado
de arriba abajo, cambiando totalmente su apariencia y afladiéndose mas potencia. La

648 La Cara Oculta de C++ Builder

filosoffa del producto seguia siendo la misma, y era facil, para alguien familiarizado
con la versioén anterior, crear un informe con la nueva. También era posible convertir
de forma automatica un informe de la versioén 1 a la 2, pero en ciertos casos especia-
les, la conversion debia complementarse manualmente.

Por desgracia, junto a la inclusion de nuevas caracteristicas aparecieron visitantes no
deseados: me refiero a bugs. Durante el afio y poco que duré C++ Builder 3, QuSoft
(la empresa responsable de QuickReport) saco parches designados alfabéticamente,
desde la A hasta la K. A veces un parche no sélo corregia errores, sino que introdu-
cia otros nuevos. Para colmo de males, Borland se deshizo de ReportSmith, pasando
el producto a la compafifa Strategic Reporting, aunque continué incluyendo en la Pa-
leta de Componentes el componente TReport, que permite establecer una conexion
con el motor de impresiéon de ReportSmith. Este componente esta inicialmente es-
condido, y hay que utilizar el didlogo de propiedades de la Paleta para mostrarlo.

Ahora con C++ Builder 4, tenemos la version 3 de QuickReport. Solamente el
tiempo y la experiencia nos dira si es una version estable y fiable. Esperemos que si
(presuncion de inocencia).

En este capitulo estudiaremos solamente las versiones 2 y 3, pues la version 1 ha
quedado obsoleta. Cuando tenga que referirme a alguna version en especifico, utili-
zaré las siglas QR1, QR2 y QR3 por brevedad. He aqui la Paleta de Componentes de
QR3:

Component Palette [x]

Data Accessl Data Eontrolsl Iidaz | Decision Cube URepart | Dialousl Win 3.1 | Samnlesl Acti\teXl

& 2 AR 5 53 Y R

= =

La filosofia del producto

QuickReport es un sistema de informes basado en bandas. Esto quiere decir que du-
rante el disefio del informe no se ve realmente la apariencia final de la impresion,
sino un simple esquema, aunque bastante realista. Tomemos un listado simple de una
base de datos: la mayor parte de una pagina estara ocupada con las lineas proceden-
tes de los registros de la tabla. Pues bien, todas estas lineas tienen la misma funcién y
formato y, en la terminologfa de QuickReport se dice que proceden de una misma
banda: la banda de detalles. En ese mismo listado se pueden identificar otras bandas:
una correspondiente a la cabecera de paginas, la de pie de paginas, etc. Son estas
bandas las que se editan y configuran en QuickReport. Durante la edicién, la banda
de detalles no se repite, como sucedera durante la impresion. Pero en cualquier mo-
mento podemos ver el aspecto final del informe mediante el comando Preview.

Impresién de informes con QuickReport 649

La otra caracteristica singular es que el proceso de disefio tiene lugar dentro de C++
Builder, utilizando las propias herramientas de disefio del Entorno de Desarrollo.
Los componentes de QuickReport se colocan en un formulario, aunque este formu-
lario solamente sirve como contenedor, y nunca es mostrado al usuario de la aplica-
ci6n. Como consecuencia, todo el motor de impresion reside dentro del mismo es-
pacio de la aplicacién; no es un programa externo con carga independiente. Con esto
evitamos las demoras relacionadas con la carga en memoria de un programa de im-
presion externo. Por supuesto, en C++ Builder 3 y 4 el cédigo del motor puede utili-
zase desde un paquete; grpt30.dpl 6 grpt40.bpl, segin la version.

Otra ventaja de QuickReport es que los datos a imprimir se extraen directamente de
conjuntos de datos de C++ Builder. Una tabla que se esta visualizando en una ven-
tana de exploracion, sobre la cual hemos aplicado filtros y criterios de ordenacion,
puede también utilizarse de forma directa para la impresion de un informe. En el
listado solamente apareceran las filas aceptadas por el filtro, en el orden especificado
para la tabla. El hecho de que los datos salgan directamente de la aplicacion implica
que no son necesatias conexiones adicionales durante la impresion del informe. Y
esto significa muchas veces, en dependencia del servidor, ahorrar en el numero de
licencias.

Claro esta, también existen inconvenientes para este estilo de creaciéon de informes.
Ya hemos mencionado el primero: no hay una retroalimentacién inmediata de las
acciones de edicion. El segundo inconveniente es mas sutil. Con un sistema de in-
formes independiente se pueden incluir a posteriori informes adicionales, que puede
disefar el propio usuario de la aplicaciéon. Esto no puede realizarse directamente con
QuickReportt, a no ser que montemos un sofisticado mecanismo basado en DLLs o
en Automatizacion OLE (como el desarrollado en el capitulo 36), o un formato de
intercambio disefiado desde cero.

Plantillas y expertos para QuickReport

QuickReport trae plantillas de formularios para acelerar la creacién de informes, y las
podemos encontrar en la pagina Forms del Depdsito de Objetos. Las plantillas son
tres: una pata listados de una sola tabla, una para informes master/ detail, y otra pata la
impresion de etiquetas. No voy a entrar en detalles acerca del trabajo con estas plan-
tillas pues, a partir de la explicacién que haré de los componentes de impresion,
puede deducirse facilmente qué se puede hacer con ellas.

C++ Builder también ofrece un experto para la generacién de listados simples, en la
pagina Business del Dep6sito. Cuando ejecutamos el experto, en la primera pagina de-
bemos indicar el tipo de informe que queremos generar. En la version de QuickRe-
port que viene con C++ Builder, solamente tenemos una posibilidad: Lz Report, es
decir, un listado simple. En la siguiente pantalla, debemos seleccionar la tabla cuyos

650 La Cara Oculta de C++ Builder

datos vamos a imprimir, ya sea mediante un alias o un directorio, si se trata de una
base de datos local. Ademas, debemos elegir qué campos de la tabla seleccionada
queremos mostrar:

[Select a table
Alias or directory |DEDEMOS hd Browse
Table name customer.db B
[Select Field:
Byailable fields Selected fislds
5 Custo iI
o |Compary
&dcir
< [Addr2
City
e State]
Einish Cancel

El resultado es un formulario con una tabla y con los componentes necesarios de
QuickReport. Si quiere visualizar el informe generado, pulse el botén derecho del
ratén sobre el componente TQuickRep y ejecute el comando Preview.

El generador de informes de la version antetior fallaba constantemente. La se-
cuencia de pantallas era ligeramente diferente a la del experto de C++ Builder 4,
y la tabla que creaba la dejaba cerrada, por lo que el comando Preview no funcio-
naba inmediatamente.

El corazdn de un informe

Ahora estudiaremos como montar manualmente los componentes necesatios para un
informe. Para definir un informe, traemos a un formulario vacio un componente
TQunickRep, que ocupard un area dentro del formulario en representacioén de una pa-
gina del listado. Luego hay que asignar la propiedad fundamental e imprescindible,
que indica de qué tabla principal se extraen los datos que se van a imprimir: DataSet.
Esta propiedad, como su nombre indica apunta a un conjunto de datos, no a una
fuente de datos. Si se trata de un informe master/ detail, 1a tabla que se asigna en Data-
Set es la maestra.

La tarea principal de un componente TQuickRep es la de iniciar el proceso de impre-
sién, cuando se le aplica uno de los métodos Print & Preview. También podemos utili-
zar el método PrintBackground, que realiza la impresioén en un proceso en segundo
plano. Por ejemplo, el informe generado en la seccién anterior se puede imprimir en
respuesta a un comando de menu de la ventana principal utilizando el siguiente c6-

digo:

Impresién de informes con QuickReport 651

void _ fastcall TFormil::Inprimrldick(TObject *Sender)

For n2- >Qui ckRepl->Print ();

La propiedad ReporfTitle del informe se utiliza como titulo de la ventana de previsua-
lizacién predefinida.

& rptCustomers

1 2 3 4 5 & 7 & 9 10 11 12 13 14 = s 16 17

Para obtener la vista preliminar de un informe en tiempo de disefio, utilice el co-
mando Preview del ment local del componente. Tenga en cuenta que en tiempo
de disefio no se ejecutan los métodos asociados a eventos, asi que para ver cual-
quier opcién que haya implementado por cédigo, tendra ejecutar su aplicacion.

La configuracion de un informe comienza normalmente por definir las caracteristicas
de la pagina, que se almacenan dentro de la propiedad Page. Esta es una clase con las
siguientes propiedades anidadas:

Propiedad Significado
PaperSize, Length, Width Tamafio del papel
Orientation Orientacién de la pagina

LeftMargin, RightMargin Ancho de los margenes horizontales
TopMargin, BottomMargin -~ Ancho de los margenes verticales

Ruler Mostrar regla en tiempo de disefio
Columns Numero de columnas
ColummnSpace Espacio entre columnas

Sin embargo, es mas cémodo realizar una doble pulsacion sobre el componente

TQuickRep, para cambiar las propiedades anteriores mediante el siguiente cuadro de
edicion:

652 La Cara Oculta de C++ Builder

Paper size
’7 i > | width |210.0 | Length [297.0 Partrait = ‘

—Margin:

Top 10,00 Left 10,00 Column space 0,00
Bottom ~ [10.00 Right |10.00 Humber of columns rﬂ

Mther
’7an [arial =l see [0 7] Urits WM - ‘

[Page frame

I Top et Coor W Chage| Frame width [

I Bottom I Right
Band:
Length Length
I~ Page header l— I Page footer
I Tile l— I Summary I—
I Column header l— ¥ Piint first page header
I Detail band l— ¥ Frint last page footer

Abaut Quickﬁeporll Preview | Apply | 0K I Cancel |

La configuracion del tamafio de papel es una de las mayores frustraciones de los
programadores de QuickReport, aunque la culpa no es achacable por completo a
este producto. En primer lugar, no todos los tamafios de papel son aceptados
por todas las impresoras. En segundo lugar, el controlador para Windows de la
mayoria de las impresoras no permite definir tamafios personalizados de papel.

Como puede verse en el editor del componente, podemos asignar un tipo de letra
por omision, global a todo el informe. Esta corresponde a la propiedad Fonz del
componente TQuickRep, y por omision se emplea la Arial de 10 puntos, que es bas-
tante legible. En el mismo recuadro, a la derecha, se establece en qué unidades se
indican las medidas (propiedad Units); inicialmente se utilizan milimetros. En el re-
cuadro siguiente se muestran las subpropiedades de la propiedad Frame, que sirve
para trazar un recuadro alrededor de la pagina. Pueden seleccionarse las lineas que se
van a dibujar, el color, el ancho y su estilo.

Las bandas

Una banda es un componente sobre el cual se colocan los componentes “imprimi-
bles”; en este sentido, una banda actiia como un panel. Sobre las bandas se colocan
los componentes de impresion, en la posicion aproximada en la que queremos que aparez-
can impresos. Para ayudarnos en esta tarea, el componente TQuwickRep muestra un par
de reglas en los bordes de la pagina, que se muestran y ocultan mediante el atributo

Ruler de la propiedad Page.

La propiedad mas importante de una banda es BandD)pe, y estos son sus posibles
valores:

Tipo de banda
rbTitle

Impresién de informes con QuickReport 653

Objetivo
Se imprime una sola vez, al principio del informe

rbSummary Se imprime una sola vez, al terminar el informe
rbPageHeader Se imprime en cada pagina, en la cabecera

rbPageFooter Se imprime en cada pagina, al final de la misma
rbColumnHeader Si la pagina se divide en columnas, al comienzo de cada una
rbDetail Se imprime para cada registro de la tabla principal
rbSubDetail Se imprime para cada registro de una tabla dependiente
rbGroupHeader Se imprime cuando se detecta un cambio de grupo
rbGroupFooter Se imprime cuando termina la impresion de un grupo
rbChild Banda hija: se imprime siempre después de su banda madre
rbQverlay Se sobreimprime sobre cada pagina

El orden de impresion de los diferentes tipos de bandas, para un listado simple, es el

siguiente:

rbPageHeader: En todas las paginas

rbTitle: En la primera pagina

rbColumnHeader: En cada columna, si las hay
rbDetail: Una banda por cada fila de la tabla
rbSummary: Al final del informe
rbPageFooter: Al final de cada pagina

Las bandas de tipo rbChild se imprimen siempre a continuacion de la banda madre,
pero podemos ejercer mas control sobre ellas mediante eventos. En la siguiente sec-
ci6én veremos un ejemplo.

Las bandas pueden afadirse manualmente al informe. Traemos un componente
TORBand desde la Paleta de Componentes, e indicamos el tipo de banda en su pro-
piedad BandIype. Sin embargo, es mas facil indicar las bandas que necesitamos en el
Editor de Componente de TQuickRep, en el panel inferior, o mediante la propiedad
Bands del componente. Tenga en cuenta que los componentes TORGronp y TORSub-
Detail, que estudiaremos mas adelante, son componentes visuales y traen incorpo-
radas sus respectivas bandas. En la primera versién de QuickReport, estos compo-
nentes venfan separados de sus bandas.

La propiedad Options del componente TQuickRep permite omitir la impresion de la
cabecera en la primera pagina del listado, y la del pie de pagina en la dltima. Esto
también puede especificarse en el Editor del componente, en el panel inferior, me-
diante dos casillas de verificacion. De este modo, si definimos una banda de titulo
(rbTitle) en el informe, se logra el efecto de tener una cabecera de pagina diferente
para la primera pagina y para las restantes. Sin embargo, las bandas de resumen
(rbSummary) se imprimen por omision justo a continuacioén de la dltima banda de

654 La Cara Oculta de C++ Builder

detalles. Si queremos que aparezca como si fuera un pie de pagina, debemos asignar
True a su propiedad A/gn’ToBottom.

El evento BeforePrint

Todas las bandas tienen los eventos BeforePrint y AfferPrint, que se disparan antes y
después de su impresién. Podemos utilizar estos eventos para modificar caracteristi-
cas de la banda, o de los componentes que contienen, en tiempo de ejecucion. Por
ejemplo, si queremos que las lineas de un listado simple salgan a rayas con colores

alternos, como un pijama, podemos crear la siguiente respuesta al evento BeforePrint
de la banda de detalles:

void _ fastcall TFornR:: Detail Band1Bef orePri nt(
TQRCust omBand *Sender, bool &PrintBand)

{
if (Sender->Color == clWite)
Sender - >Col or = cl Sil ver;
el se
Sender - >Col or = cl Wi te;
}

i Listade de Proveedores [-10] %]

al2 @ «| | n] g5la| al=

CODIGO PROVEEDORES

1
2
3
4
5
B
7
&}

Barland International
Microsoft Corparation
Oracle Corparation
WollZyioll

InstallShield Software Corp
Seagate Software
Wextech

Pervasive Software, Inc. o
« ;l_l

Page 1 of 1

También podemos impedir que se imprima una banda en determinadas circunstan-
cias. Supongamos que la columna Direccion2 de la tabla thClientes tiene valores no
nulos para pocas filas. Nos interesa mostrar esta segunda linea de direccion sola-
mente cuando vaya a contener algin valor. La soluciéon mas elegante es colocar el
componente de impresion correspondiente a la columna (ver la siguiente seccion) en
una banda hija de la banda de detalles. Para evitar la impresion de bandas vacias, se
crea el siguiente manejador para el evento BeforePrint de la nueva banda:

Impresién de informes con QuickReport 655

void _ _fastcall TForn®:: Chil dBand1Bef or ePri nt (TQRCust onBand * Sender,
bool &Pri nt Band)

PrintBand = ! tbCientesDireccion2->IsNull;

Componentes de impresion

Una vez que tenemos bandas, podemos colocar componentes de impresioén sobre las
mismas. Los componentes de impresion de QuickReport son:

Componente Imprime...

TORLabel Un texto fijo de una linea

TORMenmo Un texto fijo con varias lineas

TORRichEdit Un texto fijo en formato RTF

TORImage Una imagen fija, en uno de los formatos de Delphi
TORShape Una figura geométrica simple

TORSysData Fecha actual, nimero de pagina, nimero de registro, etc.
TORDBText Un texto extraido de una columna
TORDBRichEdit Un texto RTF extraido de una columna

TORExpr Una expresion que puede referirse a columnas
TORDBImage Una imagen extraida de una columna

Todos estos objetos, aunque pertenecen a clases diferentes, tienen rasgos comunes.
La propiedad AutoSize, por ejemplo, controla el area de impresion en la dimension
horizontal. Normalmente, esta propiedad debe valer False, para evitar que se super-
pongan entre si los diferentes componentes de impresion. En tal caso, es necesario
agrandar el componente hasta su area maxima de impresion. La posicion del texto a
imprimir dentro del 4rea asignada se controla mediante la propiedad A/gnment: ala
derecha, al centro o a la izquierda. Ahora bien, el significado de esta propiedad puede
verse afectado por el valor de AlgnToBand. Cuando AlignToBand es True, Alignment
indica en qué posiciéon horizontal, con respecto a la banda, se va a imprimir el com-
ponente. Da lo mismo, entonces, la posicién en que situemos el componente. Todos
los componentes de impresion tienen también la propiedad AutoStretch que, cuando
es True, permite que la impresién del componente continde en varias lineas cuando
no cabe en el area de impresion vertical definida.

El componente mas frecuentemente empleado es TORDBText, que imprime el con-
tenido de un campo de un conjunto de datos. Hay que configurar sus propiedades
DataSet y DataField. Tiene la ventaja de que aprovecha automaticamente el formato
de visualizacién del campo asociado, algo que no hace el componente alternativo
TORExpr, que veremos a continuacién. Este componente, ademas, es capaz de
mostrar el contenido de un campo memo, sin mayores complicaciones.

656 La Cara Oculta de C++ Builder

El evaluador de expresiones

Con QuickReport tenemos la posibilidad de imprimir directamente expresiones que
utilizan campos de tablas. Muchas veces, podemos utilizar campos calculados con
este proposito, por ejemplo, si queremos imprimir el nombre completo de un em-
pleado, teniendo como columnas bases el nombre y los apellidos por separado. Esto
puede ser engorroso, sobre todo si la nueva columna es una necesidad exclusiva del
informe, pues tenemos que tener cuidado de que el campo no se visualice acciden-
talmente en otras partes de la aplicacion. Pero también cabe utilizar un componente
TORExpr, configurando su propiedad Expression como sigue:

t bEnpl eados. Last Name + ', ' + tbEnpl eados. First Nane

Enter expression:

PRETTY[T able1.LastMame]

Inzert at cursor position
Database field Function | Wariable |
+| | | /| =|<| > |<>|<=|>=|Nut|And|Dr|
Clear | Valida_lel ok Cancell

Para ayudarnos a teclear las expresiones, QuickReport ofrece un editor especializado
para la propiedad Expression. El editor es un cuadro de dialogo en el cual podemos
formar expresiones a partir de constantes, nombres de campos, operadores y funcio-
nes. Una expresiéon como la anterior se compone muy facilmente con el editor de
expresiones. Como vemos en la imagen anterior, podemos utilizar una serie de fun-
ciones en la expresion. El siguiente didlogo aparece cuando pulsamos el botén Fuue-
tion:

[Select function
Categary Available functions

Al

Date & time
Math & trig
Statistical
D atabase
Logical
Informaticr
Other

PRETTY([<X>]
Makes the first character upper case and the rest lower case

Cont\nuel Cancel

Impresion de informes con QuickReport 657

Una vez elegida una funcién, pulsamos el boton Continne, y aparece el siguiente dia-
logo, para configurar los argumentos:

~Enter p ters for function
PRETTY[<X>]
Makes the first character upper case and the rest lower case

Argument 1 - text Value

J

Si somos lo suficientemente vagos como para pulsar el boton de la derecha, aparece
otra instancia del editor de expresiones, para ayudarnos a componer cada uno de los
argumentos de la funcién.

El componente TORExpr también permite definir estadisticas, si utilizamos las fun-
ciones de conjuntos de SQL. Si en una banda rbSummary quiere que se imprima la
suma total de los salarios de la tabla de empleados, utilice la expresion Sum(Salary). La
propiedad ResezAfterPrint indica si se limpia el acumulador del evaluador después de
imprimir el componente. No olvide configurar también la propiedad Master de la
expresion, pues en caso contrario la evaluacion no es correcta. En un informe sim-
ple, debemos indicar aqui el componente QuickRep correspondiente, pero en un in-
forme master/ detail o que esta basado en grupos, hay que indicar el componente
TORSubDetail 6 TORGroup que pertenece al nivel de anidamiento de la funcién esta-
distica.

Podemos tener problemas al tratar de imprimir campos de tablas que, aunque
son accesibles desde el formulario del informe, no estan siendo utilizadas expli-
citamente por alguno de sus componentes. En tal caso, hay que afiadir manual-
mente la tabla a la lista A/DataSets del informe, preferiblemente en el evento Be-
forePrint del mismo.

Utilizando grupos

Al generar un listado, podemos imprimir una banda especial cuando cambia el valor
de una columna o expresioén en una fila de la tabla base. Por ejemplo, si estamos im-
primiendo los datos de clientes y el listado esta ordenado por la columna del pais, po-
demos imprimir una linea con el nombre del pafs cada vez que comienza un grupo

658 La Cara Oculta de C++ Builder

de clientes de un pafs determinado. De esta forma, puede eliminarse la columna de la
banda de detalles, pues ya se imprime en la cabecera de grupo.

Para crear grupos con QuickReport necesitamos el componente TQORGroup. Este
realiza el cambio controlando el valor que retorna la expresién indicada en la propie-
dad Expression. La siguiente expresion, por ejemplo, provoca que, en un listado de
clientes ordenados alfabéticamente, la banda de cabecera de grupo se imprima cada
vez que aparezca un cliente con una letra inicial diferente:

COPY(tbd i entes. Conpany, 1, 1)

Ya hemos mencionado que el componente TORGroup actia también como banda de
cabecera. Los componentes que se deben imprimir en la cabecera del grupo pueden
colocarse directamente sobre el grupo. Para indicar la banda del pie de grupo sigue
existiendo un propiedad FooterBand. Usted trae una banda con sus propiedades pre-
definidas, y la asigna en esta propiedad. Entonces QuickReport cambia automatica-
mente el tipo de la banda a r6GroupFooter.

Demostraré el uso de grupos con un ejemplo sencillo: quiero un listado de clientes
agrupados por totales de ventas: los que han comprado entre 0 y $25.000, los que
han comprado hasta $50.000, etc. La base del listado es la siguiente consulta, que se
coloca en un componente TQuery:

sel ect Conpany, sun(ltensTotal) Total
from Custoner, Oders

where Customer. Cust No = Orders. Cust No
group by Conpany

order by Total desc

Es muy importante que la consulta esté ordenada, en este caso por los totales de
ventas, en forma descendente. Colocamos un componente TQuickRep en un formu-
lario y asignamos el componente TQxery que contiene la consulta anterior a su pro-
piedad DataSet. Después, con ayuda del editor del informe, afiadimos una banda de
detalles y una cabecera de pagina. En la banda de detalles situamos un par de com-
ponentes JRDBText, asociados respectivamente a cada una de las columnas de la
consulta. En este punto, podemos visualizar el resultado de la impresion haciendo
clic con el botén derecho del ratén sobre el componente QuickRep1 y seleccionando
el comando Preview.

Ahora traemos un componente TORGroup al informe, y editamos su propiedad Ex-
pression, para asignatle el siguiente texto:

I NT(Total / 25000)

Esto quiere decir que los clientes que hayan comprado $160.000 y $140.000 se impri-
miran en grupos diferentes, pues la expresiéon que hemos suministrado devuelve 6 en

Impresién de informes con QuickReport 659

el primer caso, y 5 en el segundo. Cuando se inicie un nuevo grupo se imprimira la
banda de cabecera de grupo. Traemos un TORExpr sobre el grupo, y tecleamos la
siguiente férmula en su propiedad Expression:

"Mas de ' + STR(INT(Total / 25000) * 25000)

Cada grupo mostrara entonces el criterio de separacion adecuado. Para terminar,
afiada una banda directamente sobre el formulario. Modifique la propiedad Bandype
a rbGroupFooter, y Name a PieDeGrupo. Seleccione el grupo, QRGroupl, y asigne Pre-
DeGrupo en su propiedad FooterBand. Por Gltimo, coloque un TORExpr sobre la nueva
banda, con la propiedad ResetAfterPrint activa y la siguiente expresion:

SUM Tot al)

De este modo, cuando termine cada grupo se imprimira el total de todas las compras
realizadas por los clientes de ese grupo.

¢ Informe con grupos [_[O]]
o] v]v] =l 8] mle
Informe con grupos
Empresa Total
Wias de 250000
Sight Diver $261.575,80
TOfaJ'.T?S.BU
Mas de {75000
“IP Divers Club $183.079.75
American SCUBA Supply §183.094 40
Toraf.w
Mas de 750000
Blue Sports $165.245 45
Total §1BR 24545 -
1 | LIJ

Page 1 of 2

La versién 3 de QuickReport introduce la propiedad RepearOnNewPage, de tipo
Boolean. Cuando esta propiedad esta activa, las cabeceras de grupo se repiten al
inicio de las paginas, si es que el grupo ocupa varias paginas.

Eliminando duplicados

Los grupos de QuickReport, sin embargo, no nos permiten resolver todos los casos
de informacién redundante en un listado. Por ejemplo, tomemos un listado de clien-
tes agrupados por ciudades:

660 La Cara Oculta de C++ Builder

Shangri-La Sports Center Freeport
Unisco Freeport
Blue Sports Giribaldi
Cayman Divers World Unlimited Grand Cayman
Safari Under the Sea Grand Cayman

Una forma de mejorar la legibilidad del listado es no repetir el nombre de la ciudad
en una linea, si coincide con el nombre de ciudad en la linea antetior:

Shangri-La Sports Center Freeport
Unisco

Blue Sports Giribaldi
Cayman Divers World Unlimited Grand Cayman

Safari Under the Sea

Si utilizamos el componente TORGroup, agrupando por ciudad, el nombre de la ciu-
dad no puede aparecer en la misma banda que el nombre de la compania. Sin em-
bargo, es muy facil lograr el efecto deseado, manejando el evento OnPrint del com-
ponente que imprime el nombre de la ciudad. Primero debemos declarar una variable
UltimaCindad en la seccion private del formulario:

private:
Ansi String U tinmaG udad;
...

Vamos a inicializar esa variable en el evento BeforePrint del informe:

void _ fastcall TFornR:: Qui ckReplBef orePrint(
TCust omQui ckRep *Sender, bool &PrintReport)

UtimCudad = "";
}

Suponiendo que el componente que imprime el nombre de ciudad sea QRDBText2,
interceptamos su evento OnPrint:

void _ fastcall TForn®R:: QRExpr2Print (TCbj ect *Sender,
Ansi String &Val ue)

if (UtimG udad == Val ue)
Value = "";

el se
U ti maC udad = Val ue;

Impresién de informes con QuickReport 661

Informes master/detail

Existen dos formas de imprimir datos almacenados en tablas que se encuentran en
relacién master/ detail. La ptimera consiste en utilizar una consulta SQL basada en el
encuentro natural de las dos tablas, dividiendo el informe en grupos definidos por la
clave primaria de la tabla maestra. Por ejemplo, para imprimir un listado de clientes
con sus numeros de pedidos y las fechas de ventas necesitamos la siguiente instruc-
cion:

sel ect C. CustNo, C Conpany, O OrderNo, O SaleDate, O ItensTotal

from Customer C, Orders O
where C. CustNo = O CustNo

El componente de grupo estaria basado en la columna CuszINo del resultado. En la
cabecera de grupo se imprimirfan las columnas CustNo y Company, mientras que en
las filas de detalles se mostrarian OrderNo, SaleDate y ItenssTotal.

La alternativa es emplear el componente TORS#bDetail y dejar que QuickReport se
ocupe de la gestion de las relaciones entre tablas. Este componente es también una
banda, del mismo modo que TORGroup, y sus propiedades principales son:

Propiedad Significado

Master Apunta a un TQuickReport o a otro TORSubDetail
DataSet El conjunto de datos de detalles

Bands Permite crear rapidamente la cabecera y el pie
HeaderBand Una banda de tipo rbGroupHeader

FooterBand Una banda de tipo rbGroupFooter

Tomemos como ejemplo el informe descrito anteriormente, acerca de clientes y pe-
didos, y supongamos que esta vez tenemos dos tablas, #bClientes y thPedidos, enlazadas
en relacion master/ detail. Para crear el informe cotrespondiente, afiada un compo-
nente TQuickRep a un formulario vacio y cambie su propiedad DataSet a thClientes.
Cree ahora una banda de detalles, rbDetail, que es donde colocaremos los compo-
nentes de impresioén correspondientes a la tabla de clientes. Ahora coloque un
TORSubDetail, con su propiedad DataSet igual a thPedidos. Encima de éste se coloca-
ran los componentes de impresion de los pedidos. Ajuste la propiedad Maszer del
enlace de detalles a QuickRepT; 1a propiedad Master puede apuntar también a otro
componente TQORSubDetail, permitiendo la impresion de informes con varios niveles
de detalles.

662 La Cara Oculta de C++ Builder

[vall il
[1 = 2 B 5 3 ¥ s] ws N 12 5
— - = =
o
tbCust:—'dsCust_thrders_____________________________,_—_________:. ___________
: Clientes
\Page Hender L - —
S U T e i
: . Cadigoy CustMa | Compaiiia: Company
. anirecciéna Bddr1 |
......... T e e e L oo odocoobed oo be
child {2 o
e S IS ey - CTTTThEr
4 fGroup Header rfeda'dg E:echg Empor?g
F T T T T
ub Dol U OrderMg | SaleDatg | ltemsTotal
5 Lol =mmmm -
EGMPFWW [Orders. terns Total]
e
L
\Fage Foater _lﬂ
1| | H 4

Para crear las bandas de cabecera y pie de grupo, expanda la propiedad Bands del
TORSubDetail. La clase a la que pertenece Bands contiene las propiedades HasHeader
y HasFooter. Basta con asignar True a las dos para que se afladan y configuren auto-
maticamente las dos bandas indicadas. De este modo, queda configurado el esqueleto
del informe. Solamente queda colocar sobre las bandas los componentes de impre-
sion, de tipo TORDBText, que queremos que aparezcan en el informe.

Por supuesto, es incomodo tener que configurar los componentes de la manera ex-
plicada cada vez que necesitamos un informe con varias tablas. Por ese motivo, todas
las versiones de QuickReport incluyen una plantilla en la cual ya estan incluidas las
bandas necesarias para este tipo de informe. Solamente necesitamos afiadir sobre las
mismas los componentes de impresion correspondientes.

Informes compuestos

QR2 introduce el componente TORCompositeReport, que sirve para imprimir consecu-
tivamente varios informes. Este componente tiene los métodos Print, PrintBackground
v Preview, al igual que un informe normal, para imprimir o visualizar el resultado de
su ejecucion. Pongamos por caso que queremos un listado de una tabla con muchas
columnas, de modo que es imposible colocar todas las columnas en una misma linea.
Por lo tanto, disefiamos varios informes con subconjuntos de las columnas: en el
primer informe se listan las siete primeras columnas, en el segundo las nueve si-
guientes, etc. A la hora de imprimir estos informes queremos que el usuario de la
aplicacion utilice un solo comando. Una solucién es agrupar los informes individua-
les en un tnico informe, y controlar la impresién desde éste. Podemos traer entonces
un componente ORCompositeReport1 e interceptar su evento OnAddReports:

Impresion de informes con QuickReport 663

void __fastcall TForml:: QRConposi t eReport 1AddReport s(
Toj ect* Sender)

{
QRConposi t eReport 1- >Repor t s- >Add(For n2- >Qui ckReport1);
QRConposi t eReport 1- >Repor t s- >Add(For n8- >Qui ckReport1);
QRConposi t eReport 1- >Repor t s- >Add(For md- >Qui ckReport1);
}

Normalmente, los informes se imprimen uno a continuacién del otro. La documen-
tacion indica que basta con asignar True a la propiedad ForceNewPage de la banda de
titulo de un informe para que este comience su impresién en una nueva pagina. Sin
embargo, esto no funciona. Lo que si puede hacerse es crear un manejador para el
evento BeforePrint del informe:

void _ fastcall TInforme3::TitleBandlBeforePrint(
TQRCust omBand *Sender, bool &PrintBand)

Qui ckRepl- >NewPage() ;

Al parecer, QuickReport ignora la propiedad ForceNewPage cuando se debe aplicar en
la primera pagina de un informe.

Cuando se utilizan informes compuestos, todos los informes individuales deben
tener el mismo tamafio de papel y la misma orientacion.

Previsualizacion a la medida

Las versiones anteriores de QuickReport solamente permitian la vista preliminar en
forma no modal. En la versién que acompafia a C++ Builder 4 existen tres métodos
para este propdsito:

Método Resultados

Preview Vista modal; impresién en el hilo principal del programa.
PreviewModal Vista modal; impresion en hilo paralelo.

PreviewModeless Vista no modal; impresion en hilo paralelo.

Me estoy ajustando a la escasa documentacién de QuickReport para describir las
diferencias entre los tres métodos anteriores. Algunos programadores han en-
contrado pérdidas de memortia cuando utilizan métodos de previsualizacién dis-
tintos de