Davis Chapman

SAMS
Teach Yourself

Visual G++ b

in 21 Days

SAMS

A Division of Macmillan Computer Publishing
201 West 103rd ., Indianapolis, Indiana, 46290 USA

Sams Teach Yourself Visual

C++" 6 in 21 Days

Copyright © 1998 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-31240-9
Library of Congress Catalog Card Number: 98-84508
Printed in the United States of America

First Printing: August, 1998

01 00 99 98 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of thisinformation. Use of aterm in this book should not be
regarded as affecting the validity of any trademark or service mark.

Visual C++ is aregistered trademark of Microsoft Corporation.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness isimplied. The information provided is on
an “asis’ basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

EXEcuTIVE EDITOR
Brad Jones

ACQUISITIONS EDITOR
Kelly Marshall

DEVELOPMENT EDITOR
Matt Purcell

MANAGING EDITOR
Jodi Jensen

PRrROJECT EDITOR
Dana Rhodes Lesh

Copy EDITOR
Kris Simmons

INDEXER
Erika Millen

TECHNICAL EDITOR
Larry Richardson

PrRODUCTION
Marcia Deboy
Michael Dietsch
Jennifer Earhart
Cynthia Fields
Susan Geiselman

Overview

Introduction

WEEK 1 AT A GLANCE

Day 1 The Visual C++ Development Environment—Building Your First
Visua C++ Application

Using Controlsin Your Application

w N

Allowing User Interaction—Integrating the Mouse and Keyboard in
Your Application

4 Working with Timers

5 Getting User Feedback—Adding Dialog Boxes to Your Application
6 Creating Menus for Your Application

7 Working with Text and Fonts

WEEK 1 IN REVIEW

WEEK 2 AT A GLANCE
Day 8 Adding Flash—Incorporating Graphics, Drawing, and Bitmaps
9 Adding ActiveX Controls to Your Application
10 Creating Single Document Interface Applications
11 Creating Multiple Document Interface Applications
12 Adding Toolbars and Status Bars
13 Saving and Restoring Work—File Access
14 Retrieving Datafrom an ODBC Database

WEEK 2 IN REVIEW

WEEek 3 AT A GLANCE
Day 15 Updating and Adding Database Records Through ADO
16 Creating Your Own Classes and Modules

25

47
67
83
105
121

143

147
149
179
199
229
243
279
315

337

341
343
379

17 Sharing Your Functionality with Other Applications—Creating DLLs 405

18
19
20
21

Doing Multiple Tasks at One Time—M ultitasking
Building Your Own Widgets—Creating ActiveX Controls
Internet Applications and Network Communications
Adding Web Browsing Functionality to Your Applications

WEEK 3 IN REVIEW

APPENDIXES

A

mmOOO®

C++ Review

Answers

Printing and Print Previewing
Understanding and Exception Handling
Using the Debugger and Profiler

Using MFC's Helper Classes

Index

429
473
495
521

537

541
541
579
637
661
677
699
731

Contents

INTRODUCTION 1

WEEK 1 AT A GLANCE 5

DAy 1 THEe VisuAL C++ DEVELOPMENT ENVIRONMENT—BUILDING YOUR FIRST

VISUAL C++ APPLICATION 7
The Visual C++ Development EnVironmentcccoceoeereieneneiesenesese e 8
The OULPUL PaNE ...ttt 9
THE EItOr ATER......cvceeeieecestete e 9
MENU BAEIS ... e e 10
Rearranging the Developer Studio Environmentccccooeereeieinenncieeene 10
Starting YOUr First PrOJECEccoieiririecieeesecsie st 1
Creating the Project WOrkSpacecooceieoreneeneseree e 1
Using the Application Wizard to Create the Application Shell 12
Designing Your Application WINAOWccoeorereeereneneneee e 15
Adding Code to Your APPlICALIONcccooeeiiieeeieeeeeseeeeeee e 17
Finishing TOUCKES........couiiieeee e e e 20
Creating the Dialog BOX [CONcc.oiiiiiiiiieieieeees e 20
Adding Maximize and Minimize BUHtONS...........cccoooriieininnienereree e 21

DAY 2 UsING CONTROLS IN YOUR APPLICATION 25
The Basic WINAOWS CONEIOIScccoueiiirieicieecte s sveseenas 26

The Static TEXE CONIOlc.cceieeeieieiee e 26

The Edit BOX CONIOLccociieeieieiee ettt 26

The Command BUtton CONLrolcccueeveereeirieiieseeesiee s 27

The Check BOX CONLIOL.......ccoiueiiieieriiieisieeee et nan 27

The Radio BUtON CONLIOcccoeieiivieicieecesieese e 27

The Drop-Down List BOX CONIOlcccceveirieiiesiccseeseeee e 27

Adding Controls to YOUr WINAOWcccueeiiieiiiiieiieecesee e 27

Creating the Application Shell and Dialog Layoutcccoveevveevvieneeciieiennens 28

Vi

Sams Teach Yourself Visual C++ 6 in 21 Days

Dar 3

Day 4

Specifying the Control Tab OFderccvceieieieeseeseeesee e 30
Attaching Variables to YOUr CONtrolS.........ccceveeivieiserieisee e 32
Attaching Functionality to the ControlS.........ccceovveiiiereeisee e 33

Closing the APPlICaLION.......c.cceieiieeceeees et 36

Showing the USEr'S MESSAgEccuceiveeriiiieeiieice et nsenen 37

Clearing the USer'S MESSAQE.c.civeiieeeiisiee ettt saessenens 38

Disabling and Hiding the Message Controls...........ccoceceveiveneeisieiisesecssenes 39

Running Another APPliCaHIONccucevieiriicesiee et 42
SUMIMIBIY ..ttt sttt ettt te et stesbesbe st e e e e nse s e s besbeabesbeeseeneasseneeseesbesbenbensensennnens 44
QEA bbbt e b a4

ALLOWING USER INTERACTION—INTEGRATING THE MOUSE AND KEYBOARD

IN YOUR APPLICATION 47
Understanding MOUSE BEVENLS.........ccooiiiireeere e e 48
Drawing With the MOUSE...........cceiiieeeee e 49
Improving the Drawing Programcccccocoeenrineienieneee e 53
Adding the Finishing TOUCNES.........ccccoeiiiiieieeese e 55
Capturing Keyboard EVENEScccoiriieieeeeseese e 56
Changing the Drawing CUISO.........cccieeerereeerieneeieseeeseeseseeseeseseesesseseeessesessens 57
Making the Change StICK ... e 60
SUMIMIBIY ..ttt ettt st se e bt e e s e s e s e e Rt e bt eaeeae e e e e e nseseesbesbesbesbeeneeneens 64
Q& ettt et a et a ettt ne et nenn 64
LAY T o o TSRS 65
(.2 65
EXEICISES ..ottt ettt ne e 65
WORKING WITH TIMERS 67
Understanding WindoWS TIMEFS.......cc.ccuvireineisieseesesie e seseesesaesssseseesssaeseens 68
Placing a Clock on Your Application68
Creating the Project and Application68
Adding the Timer IDsc.ccccveeveenneee .70
Starting the Clock Timercccccevevnee. 7l
Handling the Clock Timer Event................. e f2
Adding a Second Timer to Your Application ... 74
Adding the Application Variables.................. 74

Starting and Stopping the Counting Timercccoeviireieneiseseceseeesiens 75
Enabling the Stop BULLONc.coviiiieiiciceeee e 79

Contents vii

QEA bbbt 81
LY 1o o SRS 82
QUIZ ettt 82
EXEICISE ..ttt bbb 82
DAY 5 GETTING USER FEEDBACK—ADDING DIALOG BOXES TO YOUR APPLICATION 83
Using Pre-existing (or System) Dialog Windowscccccoeerennieneccneneee e 84
USING MESSA0E BOXESc.eeueiiieieieieieneeie sttt sae et e se e 84
USiNg COMMON DialOgS ...c.coveieierieirierieierieesie et e 90
Creating Your Own Dialog WINAOWS.........ccoereireieneneeseeeeseeeseees e 93
Creating the Dialog WINAOWcoiiiirireiereieeese s 93
Using the Dialog in Your AppliCation...........ccouveerennenecnerese e 96
SUMIMIBIY ..ttt e e e e se e b b e bt aeese e e e s e b e nbesbesaeereeneenee e e es 101
Q&A ettt et ettt n e sene s 101
WVOPKSNOP .ttt ettt a et e e enesneneas 103
QUIZ ettt ettt b et At e e ae et bt ae e e es 103
EXEICISES ..ottt sttt sttt seene e b e enas 104
DAY 6 CREATING MENUS FOR YOUR APPLICATION 105
IVIBNUS ...ttt ettt 106
MENU SEYIES ...ttt sttt b saenas 106
Keyboard Shortcut—Enabling Menusccccceeeivecniencicece e 106
Menu Standards and CONVENLIONS..........c.veeiririeeierereeesere e s 107
DESIGNING MENUSooveiinieieieis ettt st b e s 108
Creating @ MENUoceuiieieieiees ettt sttt saene e ns 108
Creating the APPICAIONccceeiiciseeee e 108
Adding and Customizing @ MENUcccoeeeuirieiseeciseese e 109
Attaching the Menu to Your Dialog Windowccccccvevieenevenincesecenenns 112
Attaching Functionality to Menu ENntriescccoevveieiereenecesesee e 112
Creating POP-UP MENUSocveiiiiieiesieeseie ettt st na s nnan 116
Creating a Menu With ACCEIEIatorsccuveieieieeneesieiee s 118
SUMIMIBIY ..ttt sttt re b e et e seesbesbesbeebeeseeseene e s eneenteseeseenbensenne 119
Q&A e h bbb A bbb bR e e bRt e bbb n e s 119
WWOIKSNOP ettt st n bt b e enenneneas 120
QUIZ oottt a et a et e et e nnene e e e 120
EXEITISES ..ttt 120
DAy 7 WORKING WITH TEXT AND FONTS 121
Finding and USING FONES.........cccoiriieieee e 122

Listing the Available FONLSccocoiirrerieeeeee s 122
USING @ FONT ...ttt st 125

viii Sams Teach Yourself Visual C++ 6 in 21 Days

USING FONS.....eitiiciiieesecesie ettt s re et seeae st besaenas 129
Creating the Application Shell ... 129
Building @ List Of FONS........ccoociiieirireiiecesiee e 131
Setting the FONt SaMPIE TEXLc.covcviiiciceses e 135
Selecting a FONt t0 DIiSPlaycccoevieiiieerieesees e 136
SUMIMIBIY vttt st e et te st be s beese e s e e s e s e benbesbesbenbenseeneeneees 139
QEA bbbttt s 139
WWOIKSNOP c.eviiicicie ettt st e bbb enenneneas 140
QUIZ ettt et r ettt neene et e 140
EXEITISES ..ttt bbb 140
WEEK 1 N Review 143
WEEK 2 AT A GLANCE 147
DAy 8 ADDING FLASH—INCORPORATING GRAPHICS, DRAWING, AND BITMAPS 149
Understanding the Graphics Device INterfaceovvevnvneenneeenneecieee 150
DEVICE CONLEXLS.....c.oeiveieiieiiesieeie ettt sresresre e s e re e s e stestesresrestesresreennennens 150
Mapping Modes and Coordinate SYStEMS...........cvverrreererneeenereereeseseeeeees 156
Creating a GraphicS APPlICALION. ..o

Generating the Application Shell
Adding the Graphics Capabilities

DAy 9 ADDING AcTIVEX CONTROLS TO YOUR APPLICATION 179
What 1S an ACEIVEX CONLIOI?c.eouiieiiieieirieeee e 180
ActiveX and the IDispatch Interface......ccovvvinieceiesiescece e 180
ActiveX Containers and SEIVENS........cocireiererieeee et 182
Adding an ActiveX Control t0 YOUr PrOJECEccccceverererieienienineneeseesiesieens 183
Registering the CONtrol ..o 183
Adding the Control t0 YOUr Di@lOg.......c.cooeerereerierenienieeseesesie e 186
Using an ActiveX Control in Your AppliCationcccceereeirennienecnieesenene 187
Interacting With the COontrolcocoririiieineeree s 187
Responding to Control BEVENLS...........ccooeerireneinienereecsee e 193
SUMIMIBIY ..ttt b bbbt b b s bbbt b e nn e s 196
QBEA s 196
WVOPKSNOP .ttt bbb eb i 197
(U 2SS 197

Contents ix
DAY 10 CREATING SINGLE DOCUMENT INTERFACE APPLICATIONS 199
The Document/View ArChiteCtUrecccoveeirnieeierree s 200
Creating an SDI APPlICALION.........ccccivieiieeseee e 202
Building the Application Shell ... 202
Creating aLIiNE ClaSsccvveeiiiciseesee e 203
Implementing the Document FUNCtioNality..........coeevvevieiiviececiesiec e 205
SHOWING thE USEN ...t 208
Saving and Loading the Drawingcccceeiinieenereseseeseesesee e 213
Deleting the Current DIraWing........cccoveeirienisieseiseise e 214
Saving and Restoring the DIrawingccccceieveeeneieseiseseese e 215
Interacting With the MeNU.........cccoueiiiiciccce e 218
Adding Color tothe CLine ClasS........cccvieeiiveeieieieseieseeee e 218
Adding Color t0 the DOCUMENEcooveuiiieeeriieece e 219
MOdifyiNg thE MENUocueiiiiceceeee e 222
Summary
Q&A
Workshop
Quiz
Exercise
DAy 11 CREATING MuULTIPLE DOCUMENT INTERFACE APPLICATIONS 229
What 1S an MDI APPIICALIONT........coieiieieeieie e 229
Creating an MDI Drawing Programcccoceocererrensieneneseseeseesese s 231
Building the Application Shell ... 231
Building the Drawing FUNCHONAIILYccoorereiieirereec e 232
Adding Menu Handling FUNCEIONAlILYcccooeiiiiiiineeeeree e 233
Adding @ CONEXE MENUoeeiiieeiec et 236
SUMIMIBIY ..ttt ettt i e e e e e e b e b e st e seese e e e s e b e nbesbesbesaeeseenne e e es 239
Q& ettt a ettt et s eaene s 239
WVOPKSNOP .ttt et sttt e e eneneaneas 240
[U 2 240
S (o1 = PRSI 241
DAy 12 ADDING TOOLBARS AND STATUS BARS 243
Toolbars, Status Bars, and MENUScccceevirieirnieieenrieeesesieeeesesee s 244
DeSigning @ TOOIDAc.ccviieiiiieiieie e 245
Creating a New TOOIDArcccceeivieiieeceee e 246
Attaching the Toolbar to the Application Frame.........ccccccvvvveienereieniciesienens 247
Controlling the Toolbar Visibilitycccccovveiiiiiincccecesececesees 254
Adding a Combo Box t0 @ TOOIDArccccccvvieiiiieiceecee e 257

Editing the Project RESOUICESccccviieiiiieesieisiese et 257
Creating the Toolbar Combo BOXccccceiieeiiiiriseesieeesee e 260

X

Sams Teach Yourself Visual C++ 6 in 21 Days

Dar 13

DAy 14

Handling the Toolbar Combo BOX EVENLScccccovveeivevieirieice e 267
Updating the Toolbar COMBO BOXcc.covvieieienieiiieiseseec e 268
Adding aNew Status Bar EIEmMent...........ccccvveeeiiieiiereseeeseeeese e 271
Adding aNew Status Bar Pane.............ccoieeeivieiseneciseie e seeee s 271
Setting a Status Bar Pan@ TEXEccoovevveiiieeieesese e 273

Q&A

SAVING AND RESTORING WORK—TFILE ACCESS 279

SETAIZALION .o
The CArchive and CFile Classes..........
The Serialize Function..........cc.cooeveerennee
Making Objects Seridizable....................

Implementing a Serializable Class................
Creating a Serialized Application
Creating a Serializable Class........cociierrenieereeees e
Building Support in the Document Class
Adding Navigating and Editing Support in the View Class.........ccccccvenenene 305

RETRIEVING DATA FROM AN ODBC DATABASE 315

Database Access and ODBC..........ccoviiirnieeieeree e 316
The Open Database Connector (ODBC) Interfacecovevvvevieieviecinieniennns 316
The CRECOrdSEt ClaSS.....ccouvieiiiiiieieci et 317

Creating a Database Application Using ODBCcccccvivvieneinecceseesees 322
Preparing the Databasecccceveiiinieiieceses e
Creating the Application Shell
Designing the Main FOMM ..o
Adding New Records
Deleting Records.........

[0

Contents

Xi

WEEK 2 IN REVIEW

WEEK 3 AT A GLANCE

DAy 15 UPDATING AND ADDING DATABASE RECORDS THROUGH ADO

ADO ODJECES ...ttt
Using the ADO ActiveX CONrolccoveeeerirenieeniriniecnesieeeees
IMpOrting the ADO DLL ...t
Connecting to a Databasecovveevreereinrieee e
Executing Commands and Retrieving Datacovevnernenees
Navigating the RECOrdSEt ..o
Accessing Field ValUES ...
Updating RECOIScovvvereiieiniiiririeieesree et
Adding and DEELINGcceeirreireirieeeseee e
Closing the Recordset and Connection Objects...................
Building a Database Application UsSing ADOccccoveerevincenens
Creating the Application Shell ...
Building a Custom Record Classcccooveverirenieininniecnenineenes
Connecting and Retrieving Data..........ccccoevveeenneneinennecneens
Populating the FOrmM ..o

Saving Updates
Navigating the Record Set......
Adding New Records
Deleting Records.............

DAY 16 CREATING YOUR OWN CLASSES AND MODULES

DeSigning ClaSSeS......cccoeiueerienirerieeries et
ENCAPSUIBLION. ..ot e
INNEITEANCE ...t
Visual CH++ ClasS TYPES ..cecuereeerierieirieseeie et

Creating Library MoOAUIES..........c.cooeiiiiiiireeneeese e

Using Library MOAUIES........c.coeiiiirieereieee e
Creating the Library Module...........ccooeininiieniincseeeene
Creating a Test ApPliCationcccooeerineienireeeeree e
Updating the Library Module ...

Xii

Sams Teach Yourself Visual C++ 6 in 21 Days

Day 17

DAy 18

SHARING YOUR FUNCTIONALITY WITH OTHER APPLICATIONS—CREATING DLLs 405
WHY Create DLLS?....ccveieiieiierirteteeesie ettt s 406
Creating and USING DLLS ..ot 406
DESIGNING DLLS ...ttt 409
Creating and Using an MFC EXteNSION DLLccvviieiiennieeneec e 410
Creating the MFC EXtENSION DLL ..ot 410
Adapting the Test APPlICALTION........ccvveirreereirereee e 413
Changing the DLLc.ciiiieeeereesee e 414
Creating and Using aRegUIAr DLLcocueivirieieireieicesneeeeseseeee e 416
Creating the RegUIAr DLLoeeirriciieinesees e 417
Adapting the Test APPlICALION ..o 423
SUMIMEBIY ..ottt ettt r e e r e e sn e nr e 426
QEA bbb 427
WWOTKSNOP . 428
(O 2SS 428
EXEICISES ..ottt 428
DoING MuLTIPLE TASKS AT ONE TIME—MULTITASKING 429
What 1S MUITIEASKING?.......cueieeirieieicrieeeie st 430
Performing Multiple Tasks a ONne TiMe.......cccooeveirenneneecrereee e 430
Idle Processing THrEaOS.........coeveierieirieie st 431
Spawning Independent Threads ... 431
Building a Multitasking APPliCaLIONccoeerieiirereeriere e 441
Creating & Framework ... 441
DEeSIgNING SPINMELSoouiuiriiieirieie ettt se e e sbe e 443
SUPPOIting the SPINNEFSooiiiie e 449
Adding the ONTA1e TaSKS.....ccccirerererieiriereeie st 455
Adding Independent Threads ... 460
SUMIMIBIY .ttt e bbbt bbb bbbt eb e e e e e 468
Q&A s 468
WVOTKSNOP .ttt e e sb e 471
[U 2SS 471

Contents Xiii
DAY 19 BuUILDING YOUR OWN WIDGETS—CREATING ACTIVEX CONTROLS 473
What S an ACtivVeX CONIOI?cerrieieirerieieenrieeesesee e s 474
PrOPEITIES. ...ttt ae s 474
MEBENOAS ...ttt s 475
EVENES <o 476
Creating an ACtiveX CONIOlccccvvieiieieiece e 476
Building the Control Shell..........ccoeviiiieiiiceseese s 477
Modifying the CMOAArT ClaSScccverieirieicesiei s 478
Adding Propertiescviiiiiieicese ettt 481
Designing and Building the Property Page.........cccovvvieveeivecicie e 483
Adding Basic Control FUNCLIONAlILYccocevveirieiieiccseeseces e 485
Adding MEhOSccociiiiiiicicee e 487
AdAiNG EVENES ...t 489
Testing the CONLIOloocveeeicee e 491
Summary
Q&A
Workshop
Quiz
Exercises
DAy 20 INTERNET APPLICATIONS AND NETWORK COMMUNICATIONS 495
How Do Network CommunicationS WOFK?coeereeireneee e 496
Sockets, Ports, and AQArESSES..........eeiieie ettt s 497
Creating 8 SOCKEL........cciuiieeeirieeeie ettt se e see e 498
MaKing 8 CONNECHIONcccouiririerieiriereeie et 500
Sending and ReCaiVING MESSAEScocruiieierirereneerie s 501
Closing the CONNECLIONcc.eoeiieeeeriee et 503
SOCKEL EVENLS ...ttt 503
DELECHING EFTOIS......ceiieieieeetesieies ettt sttt s s be e 504
Building a Networked AppliCation............cocereererne e 505
Creating the Application Shell ... 505
Window Layout and Startup FUNCHIONAlILYcccoeieriririenirneneeeeriesieens 505
Inheriting from the CAsyncSocket Classccocvveirenneennseesneeeenenns 509
Connecting the APPlICALTIONceiiieeeeere e e 511
Sending and RECEIVINGc.coeiiiieeeeree et 515
Ending the CONNECLIONcco.oiieieiiirieeie et 517
SUMIMIBIY ..ttt sttt e e e e b bt bt e se e st e s e s e b e nbesbesreereeseenee e e es 519
Q& ettt a Rt a et e et R e aene s 519
WVOPKSNOP .ttt ettt sttt a et e e eneneeneas 520
[2SR 520

Xiv Sams Teach Yourself Visual C++ 6 in 21 Days

DAy 21 ADDING WEB BROWSING FUNCTIONALITY TO YOUR APPLICATIONS 521
The Internet Explorer ActiveX Modelcoooeveivieiieneeieeseceesee e 522

The CHEMLVLIEW ClaSS ..cuvcviiceiiieieti ettt sneneas 523

Navigating the WEDccoieicerccee e 523

Controlling the BrOWSESccucuiiieiieeiisie sttt 524

Getting the BroWSEr SEAEUSc.ccevveeiireeiriieesieese s 524

Building a Web-Browsing AppliCation..........cccceereirienisienei s 525

Creating the Application Shell ... 525

Adding Navigation FUNCHONGILYc.ccvverieirieiieecesee e 526

SUMIMIBIY vttt ettt e e et ee st besbeeseese et et e b e s besbesbenbensennaeneees 535

QEA bbbt 535

LYo 1] o SRS 536

QUIZ ettt ettt a R e et neene e 536

EXEITISES ..ttt s 536

WEEK 3 IN Review 537
APPENDIXES 541
APPENDIX A C++ ReviEw 541
Creating Your First APPlICAHONc.eoiveereiririeieire e 541
HELLOWOPLA . CPP cveereerreerieenreesieenreeeessreseesssesneessnesmeesseesseesneesneenseenessesnnenas 543

The if Statement, Operators, and Polymorphismccccoveevenneennennenne 549

Global and Local Variables..........ccceeeierineenieese e 552

Pointers

Contents XV

XVi

Sams Teach Yourself Visual C++ 6 in 21 Days

APPENDIX C

APPENDIX D

QUIZ oottt a et a bttt ne et e 631
EXEITISES ..ttt s 631
DAY 200t 632
QUIZ oottt a ettt neene e e 632
EXEITISES ..ttt s 633
DAY 2L...ieeeeee bbb 634
QUIZ ettt 634
EXEITISES ..ttt 634
PRINTING AND PRINT PREVIEWING 637
Using the Framework’s FUNCHIONAITTYccccoeoirirriieeee e 637
Using Default Print Functionality
(@207 gy o [Talo J 0 o1 3o g ol () SRS
Using the Printer Device Context
Maintaining the ASPECt RALIOcocvueiieeriereeeee e
Pagination and Orientationcoeeeererriereeeeree s
Setting the Start and End Pages ..o
Using the Print Dialog BOXccocoererrerieinieniee e sesie s
Using Portrait and Landscape Orientations.............coeereeereerenereeeseeneneneenes 654
Adding GDI Objects with OnBeginPrinting () .o 654
Customizing Device Context Preparation............ccoeoeveeeeererereeneseneeieseenenes 656
ADOrting the PrNt JODooiiiieee e 657
Direct Printing Without the Framework ... 657
Invoking the Print Dialog BOX DIr€Ctlycccoireeirenniiecee e 657
Using StartDoc () and ENADOC () woeeeeereerereereeereeeseesesueseeesiesesnesesesseseenas 659
Using StartPage () and ENAPAJE () -weerererereerereenereneneseenesiesesnesessesseseenas 660
UNDERSTANDING AND EXCEPTION HANDLING 661
USING EXCEPLIONSocveiiicieieisicie ettt sttt 661
Running Code and Catching the EITorsccoceveveievecicesece e 661
THroWiNg EXCEPLIONS......ccccviiieeeicieieeiecs ettt 666
Deleting EXCEPLIONS........cceiiriieiiieisieseesteie et 668
MPFC EXCEPLION TYPES .vouveveieiiitiieesie sttt s se st st sae e b saenas 668
Using the CException Base Classcccceveiivecisienieiseeee e 668
Using the Memory EXCEPtIONccvveieirieicesiee s 669
Using the RESOUICE EXCEPLIONS......ccccviveirieieiesieisieise et 670
Using the File and Archive EXCEPLIONS..........ccoveiveisenieicece e 670

Using the Database EXCEPLIONS..........cccevvieieenieisicise e 672
USING OLE EXCEPLIONScveviiciiieieiesieeses ettt st 673
Using the Not Supported EXCEPLIONccverieivieiserieisieece e 674
Using the USer EXCEPLIONcccoviviiiirieisiecesee e 674

Generating Your Own Custom Exception Classesccocevevvieveeneeesiennans 675

Contents Xvii

APPENDIX E USING THE DEBUGGER AND PROFILER 677
Creating Debugging and Browse INformationcccceceveveeneiesenisiesieeseeenns 677
Using Debug and RE€ase MOUESccvueiveneinicisesec e 678
Setting Debug Options and LEVES ... 679
Creating and Using Browse Informationcccceeeevevcieneccnenicesiecsees 681
Using Remote and Just-in-Time Debugging........ccoceeveereeirienienseeesereeresaenns 683
Tracing and SiNGIe SLEPPING.......coveirieiiirieiseeee e e sbeneas 685
USING the TRACE MECTO ...cuvcviicieieiciesieie ettt st 685
Using the ASSERT and VERIFY MACIOScccccevverirreisereerisieeereseesessesesseseens 687
Using Breakpoints and Single Stepping the Program...........cccccevevvveieiennnne. 689
Using Edit and CONtINUEc.coviueiriirieisieicesiee e 692
Watching Program Variables..........ccouveiieieiiicisecees e 692
Other Debugger WINAOWS.......c.coiieiiieeiice e 694
Additional Debugging TOOIS..........covvueiiirieiieeee e 694
USING SPYFF oottt se st a s st et e e nesae e beseenas 695
Process Viewer et bbbt E b e bbbt b et 697
The OLE/COM ODbJECt VIEWETc.ccerveeiiieectisiees et 697
THE MIFC TIACEN ..ottt 698
APPENDIX F USING MFC’s HELPER CLASSES 699
Using the ColleCtion ClIaSSEScoeveererrerieeriereee e 699
USING the ArTay ClIESSES ...ccoviieieieiriereer et 700
USING the LiSt ClaSSEScueeruiieierieirienieie et 702
USING the MaD ClESSEScoeruiieieieiriereeie et se e s seenas 704
Creating Custom Collection ClassesS.........coeeiererereiererese e 707
Using the Coordinate-Handling Classes........cocorerrerieneneneee e 710
USING the CPOINT ClaSS ..o s 710
USING the CRECT ClaSS ..ot s 712
USING the CS1ze ClaSSccvveiririirerieeeerre et 717
Using the Time-Handling ClaSSEScooreirrirennereeresie e 718
Using the COleDateTime ClaSS.......ccouoreirnmireiineneeesesreese e 719
Using the COleDateTimeSpan ClaSS.......ccoiirrnreerenrnreenesesreeeseerenees 722
Using the String Manipulation ClasScccverernerierne e 724
USING the CString ClasS ..o s 724
StriNG ManiPUIBETON.cc.eieeeiriecieeeees e 727
S (e 1T 0o S (o TSR 727
Formatting Text for DiSPlaycccccorereeriereeree s 728

INDEX 731

About the Authors

DAvis CHAPMAN first began programming computers while working on his master’s
degree in music composition. Writing applications for computer music, he discovered
that he enjoyed designing and devel oping computer software. It wasn't long before he
came to the realization that he stood a much better chance of eating if he stuck with his
new-found skill and demoted his hard-earned status as a “ starving artist” to a part-time
hobby. Since that time, Davis has focused on the art of software design and devel opment,
with a strong emphasis on the practical application of client/server technology. Davis

is the lead author of Web Development with Visual Basic 5 and Building Internet
Applications with Delphi 2. Davisis also a contributing author of Special Edition Using
Active Server Pages and Running a Perfect Web Ste, Second Edition. He has been a
consultant working and living in Dallas, Texas, for the past eight years, and he can be
reached at davischa@onramp.net.

Contributing Author

JoN Bates has worked on awhole range of commercia, industrial, and military software
development projects worldwide over the past fifteen years. He is currently working

as a self-employed software design consultant and contract software devel oper, specializ-
ing in Visual C++ application development for Windows NT/95/98.

Jon began his career writing computer games for popular microcomputers and has since
worked with a number of operating systems, such as CPM, DOS, TRIPOS, UNIX, and
Windows, and a number of Assembly, third-generation, and object-oriented languages.

He has written system and application software as diverse as device drivers, email, pro-
duction modeling, motion video, image analysis, network and telecommunications, data
capture, control systems, estimating and costing, and visualization software. He has also
written a number of technical articles for computing journals on arange of topics.

Jon lives with his wife, Ruth, and dog, Chaos, in the middle of cool Britannia. When not
playing with computers, he likes to sleep and dream of fractals.

You can reach Jon at jon@chaos1.demon.co.uk and visit his Web site at
www.chaos1.demon.co.uk.

Dedication

To Dore, and the rest of my family, for being very patient with me while |
was busy writing yet another book.

Acknowledgments

There are numerous people without whom this book might never have been written.
Among those who deserve credit is Kelly Marshall, for enabling me to take on this pro-
ject and for sticking with me even though | know | made her life stressful at times.
Credit needs to go to the entire editing team at Macmillan. |’ ve seen what some of the
material you have to work with looks like when it comes in from the authors, and | don’t
want to trade jobs with any of you. I'd also like to thank my family for continuing to
allow me to put in the work required to produce this book—and for not disowning mein
the process.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As the executive editor for the Programming team at Macmillan Computer Publishing, |
welcome your comments. You can fax, email, or write me directly to let me know what
you did or didn’t like about this book—as well as what we can do to make our books
stronger.

Please note that | cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail | receive, | might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your

name and phone or fax number. | will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-817-7070

Email: adv_progemcp.com

Mail: Executive Editor
Programming
Macmillan Computer Publishing
201 West 103rd Street

Indianapolis, IN 46290 USA

Introduction

Welcome to Visual C++. Over the next 21 days, you will learn how to use the features
that Microsoft has built into its C++ development environment to enable you to create
very advanced applications for the Windows and NT platforms. When Microsoft’s devel-
opers first came up with the idea behind Visual C++, they decided to take their world-
class C++ compiler and create a development environment and set of tools that would
enable developers to create Windows applications with a level of ease and speed that was
unheard of among C++ development environments. Since that first version, Microsoft
has continued to improve the tools that are a part of Visual C++ to make it even easier to
create Windows applications. As Microsoft has introduced new technologies into the
Windows platforms, it has also introduced tools into the Visual C++ suite to make it easy
to integrate these new technologies into your applications.

If you are new to C++, don’'t worry. I've tried to make it easy for you to learn the C++
programming language while a so learning how to build applications using the Visual
C++ tools. Just in case you find yourself having trouble understanding some aspect of
C++, I'veincluded a brief overview of the programming language in Appendix A,
“C++ Review.”

If you've looked at previous versions of this book, you might notice that I’ ve completely
rewritten the entire book. Our goal with this new version is not just to introduce you to
and guide you through the various tools and resources that you will use to build applica-
tions with Visual C++; I’ve aso tried to include a great deal more detail about the vari-
ous options that are available to you with each of the features that are covered. This way,
you'll be able to get alot of use out of this book long after the initial 21 days.

How This Book Is Organized

This book is organized in weeks, with each set of seven days set off into a part unto
itself. However, even though the book is organized in weeks, the topics are not neces-
sarily organized that way.

For the first week, you'll be covering the basics of building applications with Visual
C++. You'll learn how to use designers to design your application windows. You'll learn
how to use various controls available to you as a Windows application devel oper. You'll
also learn alot about the Visual C++ development environment and the tools that it
makes available to you.

Sams Teach Yourself Visual C++ 6 in 21 Days

By the time you begin the second week, you'll be doing more and more programming, as
the topics become more involved. You'll till be using the Visual C++ tools to construct
your applications, but the programming code will be getting a little more involved.

You'll also start learning about more advanced topics, such as displaying graphics and
creating SDI and MDI applications. Toward the end of the second week, you'll begin to
work with databases. This topic spills over into the third and final week.

In the third week, you'll learn how to create your own modules, DLLs, and ActiveX con-
trols. You'll also learn how to build multitasking applications, which perform multiple
tasks at atime. Finaly, you'll learn how to integrate Microsoft Internet Explorer, and the
ActiveX controls it provides, into your applications so that you can extend your applica-
tions over the Internet.

After you finish the third week, you'll be ready to tackle the world of Windows program-
ming with Visua C++. You'll have the skills and know-how required to build most
Windows applications available today.

Conventions Used in This Book

While you are reading this book, you will probably notice a couple conventions that have
been used to make it easier for you to learn the topic being discussed.

All the source code in this book is provided in amonospaced font, as shown in Listing
0.1. Thisincludes all the source code from the applications that you will be building and
illustrations of how various functions can be used. Whenever you are adding new code,
or changing code in a function with other code already there, the line numbers of the
code that you add or change will be pointed out in the text.

LisTING O.1. SOME SAMPLE CODE.

1: void main()

2: {

3: // if you are adding or changing code in an existing

4: // code snippet, I will point out the line numbers in the text.
5: }

If atopic needs special attention, it will be set apart from the rest of the text by one of
several special markers:

- Notes

- Tips

- Cautions

Introduction 3 |

N[ltﬂ Notes offer a deeper explanation of a topic or explain interesting or impor-
tant points.

Tips are pieces of information that can make things easier.

Tip
H Cautions warn you about traps that you will want to avoid.
Gaution y ps that y

At the end of each day, you'll find a short quiz and one or two exercises to help make
sure that you learned the topic you were studying. Don’'t worry—just in case you need
the answers to the quizzes and some guidance when building the exercises, the solutions
are provided in Appendix B, “Answers.”

Enough said! You didn’t buy this book to read about this book. You bought this book to
learn how to use Visual C++ to build Windows applications. So go ahead and flip the
page and get started programming...

WEEK 1

At a Glance

Welcome to the world of Visual C++. Over the next three
weeks, you'll learn how to build awide variety of applica-
tions using this extremely flexible and complete program-
ming tool. Each day you'll learn about a different area of
functionality and how you can use it in your applications.
What's more—every one of the areas of functionality will be
accompanied with a hands-on sample application that you
will build yourself. There's not a more effective way of learn-
ing new technologies than to work with them yourself.
Learning by doing...that's what you'll do as you make your
way through this book.

Over the course of the first week, you'll learn about severa

of the basics that are involved in building applications with
Visual C++. This starts on the first day as you learn about and
become familiar with the Visual C++ development environ-
ment by building a simple application.

On Day 2, you'll begin learning more about the specifics of
building applicationsin Visua C++. You'll learn about the
standard controls that are used in Windows applications, how
you can place and configure these on an application window,
and how you can interact with them.

On Day 3, you'll learn how you can capture mouse and key-
board events and react to them in your applications. You'll
see how you can determine where the mouse is in your appli-
cation space. You'll also learn how to determine what keys
the user is pressing on the keyboard and how you can react to
these user actions.

-

Week 1

On Day 4, you'll learn how to work with timersin aVisual C++ application. You'll learn
how to have two or more timers running at the same time and how you can tell them

apart.

On Day 5, you'll see how you can add additional windows to your application and how
you can use them to get information from the user. You'll see how you can use built-in
dialogs to ask the user simple questions and how you can build your own custom dialogs
to get more detailed information.

On Day 6, you'll learn how to create menus to add to your application. You'll see how
you can call functions in your application from menus that you have added to your appli-
cation.

On Day 7, you'll learn about the font infrastructure in Windows and how you can access
itin your Visual C++ applications. You'll see how you can build alist of available fonts
and how you can display text in any of these fonts.

That will end the first week of this book. At that time, you can look back over what you
have learned during the week and think about al that you can do with what you have
learned when you build applications. So, without further ado, go ahead and jump in and
get started.

WEEK 1

DAY 1

The Visual C++
Development
Environment—Building
Your First Visual C++
Application

Welcome to Sams Teach Yourself Visual C++ 6in 21 Days. Over the next three
weeks, you will learn how to build a wide variety of applications with
Microsoft’'s Visual C++. What's even better is that you will learn how to create
these types of applications by actually building them yourself. As you read this
book, you will be gaining actual programming experience using Visual C++. So
let's get started!

Today, your focus will be on learning about the Visual C++ development envi-
ronment and some of the tools that it provides for building applications.
Although Visual C++ provides more tools than you would probably use in any

Day 1

one application development effort—even more than you could possibly learnto usein a
single day—I limit the focus to the primary tools that you will use throughout this book,
aswell asin just about every application you build with Visual C++. Today, you'll learn
about the following:

e The primary areas of the Visual C++ development environment

» The Application Wizard—how you can use it to build the basic infrastructure for
your applications

» The Diaog Painter—how you can use it to paint dialog windows, much in the
same way that you can build windows with Visual Basic, PowerBuilder, or Delphi

» The Class Wizard—how you can use it to attach functionality to your application
windows

The Visual C++ Development Environment

Before you begin your quick tour around the Visual C++ development environment, you
should start Visual C++ on your computer so that you can see firsthand how each of the
areas are arranged and how you can change and alter that arrangement yourself.

After Developer Studio (the Microsoft Visual development environment) starts, you see
awindow that looks like Figure 1.1. Each of the areas has a specific purpose in the
Developer Studio environment. You can rearrange these areas to customize the
Developer Studio environment so that it suits your particular development needs.

The Workspace

When you start Visual C++ for the first time, an area on the left side of Developer Studio
looks like it istaking up alot of real estate and providing little to show for it. This area
is known as the workspace, and it is your key to navigating the various pieces and parts
of your development projects. The workspace allows you to view the parts of your appli-
cation in three different ways:

 Class View alows you to navigate and manipulate your source code on a C++
classlevel.

» Resource View alows you to find and edit each of the various resources in your
application, including dialog window designs, icons, and menus.

 FileView alows you to view and navigate all the files that make up your appli-
cation.

Building Your First Visual C++ Application

Standard toolbar Build minibar
FIGURE 11 *+i Microsoft Visual C++
File Edit View Inset Project Buid Tools Window Help
TheVisual C++ open- mEEoe 7 oo mEs @ Tl
Ing screen. =l | =
2l
Workspace pane
R
4 |
Output pane—ﬂ-— J
Build { Debug) Find in Files1 j Find in Files2 /] 4 | Llﬂ
Readu
Editor area Wizard toolbar

The Output Pane

The Output pane might not be visible when you start Visual C++ for the first time. After
you compile your first application, it appears at the bottom of the Developer Studio envi-
ronment and remains open until you choose to close it. The Output pane is where
Developer Studio provides any information that it needs to give you; where you see all
the compiler progress statements, warnings, and error messages; and where the Visual
C++ debugger displays al the variables with their current values as you step through
your code. After you close the Output pane, it reopens itself when Visual C++ has any
message that it needs to display for you.

The Editor Area

The area on the right side of the Developer Studio environment is the editor area. Thisis
the area where you perform all your editing when using Visual C++, where the code edi-
tor windows display when you edit C++ source code, and where the window painter
displays when you design a dialog box. The editor area is even where the icon painter
displays when you design the icons for use in your applications. The editor areais basi-
cally the entire Developer Studio areathat is not otherwise occupied by panes, menus,

or toolbars.

|1O

Day 1

FIGURE 1.2. v Oupa
lv ‘Warkspace

Toolbar on and off T

menu. Build

Menu Bars

The first time you run Visual C++, three toolbars display just below the menu bar. Many
other toolbars are available in Visual C++, and you can customize and create your own
toolbars to accommodate how you best work. The three toolbars that are initially open
are the following:

» The Standard toolbar contains most of the standard tools for opening and saving
files, cutting, copying, pasting, and a variety of other commands that you are likely
to find useful.

e The WizardBar toolbar enables you to perform a number of Class Wizard actions
without opening the Class Wizard.

» The Build minibar provides you with the build and run commands that you are
most likely to use as you develop and test your applications. The full Build toolbar
also lets you switch between multiple build configurations (such as between the
Debug and Release build configurations).

Rearranging the Developer Studio Environment

The Developer Studio provides two easy ways to rearrange your development environ-
ment. The first is by right-clicking your mouse over the toolbar area. This action opens
the pop-up menu shown in Figure 1.2, alowing you to turn on and off various toolbars
and panes.

[+ Build MiniBar
ATL
Resource
Edit
Debug
Browse

[v \wizardBar

Customize. .

Another way that you can easily rearrange your development environment is to grab the
double bars at the left end of any of the toolbars or panes with the mouse. You can drag
the toolbars away from where they are currently docked, making them floating toolbars,
asin Figure 1.3. You can drag these toolbars (and panes) to any other edge of the
Developer Studio to dock them in a new spot. Even when the toolbars are docked, you
can use the double bars to drag the toolbar left and right to place the toolbar where you
want it to be located.

Building Your First Visual C++ Application 11 |

Ficure 1.3.

Example of a floating
minibar.

Nﬂtﬂ On the workspace and Output panes, the double bars that you can use to
) drag the pane around the Developer Studio environment might appear on
' the top of the pane or on the left side, depending on how and where the
pane is docked.

Starting Your First Project

For your first Visual C++ application, you are going to create a ssimple application that
presents the user with two buttons, asin Figure 1.4. The first button will present the user
with a simple greeting message, shown in Figure 1.5, and the second button will close
the application. In building this application, you will need to do the following things:

1. Create a new project workspace.

2. Usethe Application Wizard to create the application framework.

3. Rearrange the dialog that is automatically created by the Application Wizard to
resemble how you want the application to look.

4. Add the C++ code to show the greeting to the user.
5. Create a new icon for the application.

FiGure 1.4.
Your first Visual C++ ‘ _ I
application. =

Close |
FIGURe 1.5. Doyl

Hello, This is my first Visual C++ Application!

If the user clicks the
first button, a simple
greeting is shown.

Creating the Project Workspace

Every application development project needs its own project workspace in Visual C++.
The workspace includes the directories where the application source code is kept, as well

12 Day 1

as the directories where the various build configuration files are located. You can create a
new project workspace by following these steps:

1. Select File | New. This opens the New Wizard shown in Figure 1.6.

FIGURE 1.6. HER
Files Projects Workspaces Other Documents
The New W zard. e | Viokom | !

£ ¥ Project name,
5] Custom Appwizard

FiR DevStudio Addin Wizard

P Extended Stored Procedurs Appwizard

Location:

1) 15471 Extension Wizard D:\MSVS\MyProjects =
| M akefile

8= MFC ActiveX Conlrolwizard

(58] MFC Appiwizard [dI] & Creste rw workspacs

5% MFC AppWwizard [exe) € feld o cument workspace

Ti Utiity Project I Degendenonict:

[&]win32 Application T
[]'win32 Consale Application

%] win32 Dynamic-Link Library

2] win32 Static Library Bl
Platforms:

2. On the Projects tab, select MFC AppWizard (exe).
3. Type aname for your project, such as Hello, in the Project Name field.

4. Click OK. This causes the New Wizard to do two things: create a project directory
(specified in the Location field) and then start the AppWizard.

Using the Application Wizard to Create the

Application Shell

The AppWizard asks you a series of questions about what type of application you are
building and what features and functionality you need. It uses this information to create
ashell of an application that you can immediately compile and run. This shell provides
you with the basic infrastructure that you need to build your application around. You will
see how this works as you follow these steps:

1. In Step 1 of the AppWizard, specify that you want to create a Dial og-based appli-
cation. Click Next at the bottom of the wizard.

2. In Step 2 of the AppWizard, the wizard asks you about a number of features that
you can include in your application. You can uncheck the option for including sup-
port for ActiveX controlsif you will not be using any ActiveX controlsin your
application. Because you won't be using any ActiveX controls in today’s applica-
tion, go ahead and uncheck this box.

3. Inthefield near the bottom of the wizard, delete the project name (Hello) and type
in the title that you want to appear in the title bar of the main application window,

Building Your First Visual C++ Application 13 |

such asMy First Visual C++ Application. Click Next at the bottom of the
wizard.

4. In Step 3 of the AppWizard, |eave the defaults for including source file comments
and using the MFC library asaDLL. Click Next at the bottom of the wizard to
proceed to the final AppWizard step.

5. Thefinal step of the AppWizard shows you the C++ classes that the AppWizard
will create for your application. Click Finish to let AppWizard generate your appli-
cation shell.

6. Before AppWizard creates your application shell, it presents you with a list of what
it is going to put into the application shell, as shown in Figure 1.7, based on the
options you selected when going through the AppWizard. Click OK and
AppWizard generates your application.

FIGURE 1.7 New Project Information
. Appwizard will create a new skeleton project with the fallawing specifications:
The New Project
. [Epplication ype of Dayl:
Information screen. Dislog-Based Applicalion targeting

Win32

Classes to be created
Application: CDay1App in Dayl.h and Dayl cpp
Diglog: CDay1Dlg in DaylDlgh and DiayiDlg.cpp

Features:
+ About box on system menu
+30 Contials
+ Uses shared DLL implementation (MFC42.DLL)
+ Localizable text in
Englsh (United States]

Project Directory:
D:AMSVS\MyProjects\Dayl

Cancel

7. After the AppWizard generates your application shell, you are returned to the
Developer Studio environment. You will notice that the workspace pane now pre-
sents you with atree view of the classes in your application shell, asin Figure 1.8.
You might also be presented with the main dialog window in the editor area of the
Developer Studio area.

8. Select Build | Build Hello.exe to compile your application.

9. Asthe Visual C++ compiler builds your application, you see progress and other
compiler messages scroll by in the Output pane. After your application is built, the
Output pane should display a message telling you that there were no errors or
warnings, asin Figure 1.9.

|14

Day 1

Ficure 1.8.

Your workspace with a
tree view of the pro-
ject’s classes.

FiGure 1.9.

The Output pane dis-
plays any compiler
errors.

*+, Dayl - Miciosoft Visual C++

File Edit View Insert Project Buid Layout Tools Window Help

[_[E]x]

B zRd |y e - BE =%

CDay1DIg (=][4 clsss members) =|[¢ CDay1DIg =R v| T Sy |
EEMIE Dayl.ic - IDD_DAY1_DIALDG [Dialog) [_[OI]
7 Dayl classes i
N
Fl
My First Visual C++ Application An abl
1 Mo
= = L)
- b TODO: Place dislog controls here. —— EB
7 @ g
: $ m
: > &
= i
= H
a5
B =
© B
B3 ClassView |] ResourceView | [=] FileView -
= e e e = = & =)
|
i j
Build { Debug K Find in Files1) Find in Files2 /] 4| | N »
Ready +: 0.0 [F185x%2 [FEAD

**. Dayl - Microsoft Visual C++

Eile Edit Wiew Inseit Project Build Lapout Tools Window Help

alsmals a|-_nvev||@§%*\%l—_lv [

CDay1Dlg =] 18 class members) =|[& CDayiDIg JJ oL
BE|
ED Day1 classes
P
: ook
2 X @
E] E
TODQ: Place dialog controls here
1 m g
* m
3 =
= iz
=H
B g B ab B
4 ClassView | 28] ResourceView | [E] Fileview
— FH =
=T | pege
H[Tinking. .. =]
4
Dayl.exs — 0 error(s). 0 warning(s)
L
¥ 1 Buitd {Debug) Findin Files 1) Findin Filesz /] 4| | >
F 00 0e0 [FEAD 4|

10. Select Build | Execute Hello.exe to run your application.

11. Your application presents a dialog with a Tobo message and OK and Cancel but-
tons, as shown in Figure 1.10. You can click either button to close the application.

Building Your First Visual C++ Application 15 |

Ficure 1.10.
The unmodified appli-
cation shell. TODO: Place dislog controls here &

Designing Your Application Window

Now that you have a running application shell, you need to turn your focus to the win-
dow layout of your application. Even though the main dialog window may already be
available for painting in the editor area, you should still navigate to find the dialog win-
dow in the workspace so that you can easily find the window in subsequent develop-
ment efforts. To redesign the layout of your application dialog, follow these steps:

1. Select the Resource View tab in the workspace pane, asin Figure 1.11.

Ficure 1.11. % Dayl - Microsoft Visual C++

File Edt View Insert Project Buld Tools Window Help
TheResourceMewtab 3o ga i nelo. o [nee(&l)
in the workspace pane.

COay101a [=[181 clsss members =1[¢ CDay1DIg B Hfﬁg Bt

Dayl.rc - IDD_DAY1_DIALOG (Dialog

A=

(3 Dayl resources |

Az ab|
Mo
o=

®
i
TODO: Place dislag controls here —E

H
808 ClassVien | G RresourceView | |=] Fieiew ab B
SN = i

X|[Tinking
7]

Dayl.exs — 0 srror(s). 0 warning(s)

=

-

of
s

2. Expand the resources tree to display the available dialogs. At this point, you can
double-click the 1DD_DAY1_DIALOG dialog to open the window in the Developer
Studio editor area.

3. Select the text displayed in the dialog and delete it using the Del ete key.

4. Select the Cancel button, drag it down to the bottom of the dialog, and resize it so
that it is the full width of the layout area of the window, asin Figure 1.12.

16 Day 1

FIGURE 1.12.
Positioning the Cancel Lo |
button.

Cencel g

5. Right-click the mouse over the Cancel button, opening the pop-up menu in Figure
1.13. Select Properties from the menu, and the properties dialog in Figure 1.14

opens.
Ficure 1.13.
. h | kl h File Edit View Inset Project Build Layout Tools Window Help
Right-clicking the P = 5
9 9 OEHO tee 2 - mEE & s
mouse to Open a pOp- CDay1DIg _=l[ibcancer |[en_cucken 1551 HJ?% i
up u. SEMIE Day1.rc - IDD_DAY1_DIALDG [Dialog) [l
=43 Day1 resources = ﬁ [Cont.. 3]
£-423 Didlog Lot b oot [y B
IDD_ABOUTEOY - —
DD _D&Y] DIALOE My First Visual C++ Application] S T_:I
leon =
(1 Stiing Table] oK R ®
(10 Version -
2 @ g
p $ m
= Cancel Ll ==
1= = E 13 cu
Copy
1 2 Eosie
B8 ClassView | £ ResourceView | |=] FileView T
= e me e [E = E =l @] T oT—
H[Tinking B Al et Edoes
A 22 Adn T Ecies
Dayl.sxs - 0 srror(s). 0 warning(s)
T Check Mnemorics
|13 Buita {Debug J Find i Files 1) Find in Files2 7] 4| AN Casiard..
Events,
S e propeies

FiGure 1.14.

The Cancel button | Cortors [cores

propertieﬁ d|alog ¥ Visible] G ™ HelpID
I Dissbled ¥ Tabstop s

B R Gened | Syks | Estended Sk |

6. Change the value in the Caption field to &Close. Close the properties dialog by
clicking the Close icon in the upper-right corner of the dialog.

7. Move and resize the OK button to around the middle of the window, as in Figure
1.15.

Building Your First Visual C++ Application

17|

FIGURE 1.15.
Positioning the OK ¥ T L
button. E :

Close

8. Onthe OK button properties dialog, change the ID value to IDHELLO and the cap-
tion to &Hello.

9. Now when you compile and run your application, it will look like what you’ ve just

designed, as shown in Figure 1.16.

FiIGURE 1.16. #2 My First Visual C++ Application [x]

Running your ‘
redesigned applica-
tion.

Close |

N“tﬂ If you play with your application, you will notice that the Close button still
closes the application. However, the Hello button no longer does anything
' because you changed the ID of the button. MFC applications contain a series
of macros in the source code that determine which functions to call based
on the ID and event message of each control in the application. Because you

changed the ID of the Hello button, these macros no longer know which
function to call when the button is clicked.

Adding Code to Your Application

You can attach code to your dialog through the Visual C++ Class Wizard. You can use
the Class Wizard to build the table of Windows messages that the application might
receive, including the functions they should be passed to for processing, that the MFC

macros use for attaching functionality to window controls. You can attach the functional -

ity for thisfirst application by following these steps:
1. To attach some functionality to the Hello button, right-click over the button and
select Class Wizard from the pop-up menu.

2. If you had the Hello button selected when you opened the Class Wizard, it is
aready selected in the list of available Object IDs, asin Figure 1.17.

|18

Day 1

Ficure 1.17.
The ClassWizard.

3. With 1DHELLO selected in the Object ID list, select BN_CLICKED in the list of mes-
sages and click Add Function. This opens the Add Member Function dialog shown
in Figure 1.18. This dialog contains a suggestion for the function name. Click OK

MFC Classwizard BE
Message Maps | MemberVariables | Automation | Activei Events | Class Info |
Proiect Class name: L
[EETTR - | [c0a10l = o
DiA.ADay1\DayiDlg h, DA ADay1\Day1Dlg.cpp &I
Object IDs Messages: Dl Furctin |

TDay10ig BN_CLICKED
[DCANCEL BN_DOUBLECLICKED Edit Code

Member functions

V¥ DoDataExchangs -
W OnlnitDialog ON_WM_INITDIALOG

W OnPaint ON_WwM_PAINT

W OnQueyDraglean ON_WM_GUERYDRAGICON

W OnSusCommand OM /M _SYSCOMMAND]
Description:

Cancel

to create the function and add it to the message map.

Ficure 1.18.

The ClassWzard Add
Member Function dia-
log.

4. After the function is added for the click message on the Hello button, select the
onHello function in the list of available functions, asin Figure 1.19. Click the Edit
Code button so that your cursor is positioned in the source code for the function,

Add Member Function [21x]

Member function name: [o |
OrER
Cancel

Message: BN_CLICKED
Obiject ID: IDHELLO

right at the position where you should add your functionality.

Ficure 1.19.

The list of available
functionsin the Class
Wizard.

MFC ClassWizard [21x]

Messags Maps | MemberVariables | Automation | Activei Events | Class Info |

Project Class pame: Add Class...
pajt LI |EDay1D|g j Add ;funclmn
DA\ ADay1\DayiDlgh, DiA..ADayl\Day1Dlg.cpp [asdrion
Obiect IDs Messages: Delete Function

[DCANCEL BN_DOUBLECLICKED L. EdtCode]

Member functions

V¥ DoDataExchangs -
OnHello ON_IDHELLO.EN_CLICKED

W OnlnitDislog ON_wM_INITDIALOG

W OnPaint ON_WM_PAINT

W OnBuerDraclcon OM M OUERYDRAGICON]
Description: Indicates the user clicked a button

OK Cancel

Building Your First Visual C++ Application

19|

5. Addthecodein Listing 1.1 just below the Tobo comment line, as shown in Figure

FIGURE 1.20. % Day] - Microsoft Visual C++ - [Dayl Dlg.cpp]
Fie Edt View Insett Projct Buld Took Window Help _8x|
Source code view A sEA|s =l DR m =l m
where you insert CDay1Dlg T I[(80 class members] 1=I[¢ OnHella i [-‘ & 5 ! iy |
Listi ng 1.1. 4|zl [HCURSOR CDayiDlg: :OmOueryDraglcon() EI
=} Bgﬂ resources return (HCURSOR) m_hIcon:
=] Dialog }
IDD_ABOUTEOX
woid CDaylDlg::OnHello()
T leon 7 TODO com
(13 Stiing Table
(23 Version i

"B ClassView | ResourceView [] FieView 1)

X|[Tinking W
A

Dayl exe — 0 error(s). 0 warning(s)

Build { Debug %, Find in Files1 3 Find in Files2 /]| 4 |

NaplEy

Ready [Ln175,Col1 _[REC [COL [OVF [READ

Hstart ||| @ &3 A B || @) Explring - E-\quettyve?1.. | ERVuePint- PEX File: [01fg3..| [0 Day? - Microsoft Visu...

LisTING 1.1. HELLODLG.CPP—THE OnHello FUNCTION.

[e13pPM

Void
A

1:
2
3
4:
5:
6.
7
8

©

10:
11:
12:
13:
14:
15: }

CHelloDl1lg: :0OnHello()
// TODO: Add your control notification handler code here

THETHEEE Tty
// MY CODE STARTS HERE

LEEHLETTEETTE LTty

// Say hello to the user
MessageBox("Hello. This is my first Visual C++ Application!");

THETHEEE i rry
// MY CODE ENDS HERE
THETHELEE Tty

6. When you compile and run your application, the Hello button should display the
message shown in Figure 1.21.

|20

Day 1

Ficure 1.21. D551

Now your application
will say hello to you.

Hello, This is my first Visual C++ Application!

(K

Finishing Touches

Now that your application is functionally complete, you can still add afew details to fin-
ish off the project. Those finishing touches include

 Creating the dialog box icon
* Adding maximize and minimize buttons

Creating the Dialog Box Icon

If you noticed the icon in the top-left corner of your application window, you saw three
blocks with the letters M, F, and C. What does MFC have to do with your application?
MFC stands for Microsoft Foundation Classes. Technically, it's the C++ class library that
your application is built with, but do you want to broadcast that to every user who sees
your application? Most likely not. You need to edit the application icon to display an
image that you do want to represent your application. Let’s get busy!

1. Inthetree view of your application resources in the workspace pane, expand the
icon branch and select the IDR_MAINFRAME icon, asin Figure 1.22. This brings the
application icon into the editor area of the Developer Studio.

FIGURE 1 . 22 . .. Dayl - Microsoft Visual C++ - [Dayl.rc - IDR_MAINFRAME (Icon)]
]:3 File Edit Wiew Insert Project Buid Image Toolks Window Help |
Th MF = = z
The standard MFC B I = I —
icon. CDaylDlg [=Af 20 class members) =l[& 0nHello =R JJ@ il ety i ‘
S | peyige: [standard (32:32) | =
=43 Day1 resources T oy)
-3 Dislog ’:g 7
IDD_ABOUTBOX @ O
= i0b_pavi_DIALOG g <
B4 leon N2 A
[A[IDA_MANFRAME]
(1 String Tabls omm=
L Version OO =
o® e
E|
— 7
5 = =
B3 ClassView |] ResourceView | [=] FileView |
H[Tinking. .. =
A
Dayl.exe - 0 error(s). 0 warning(s) B
Guild {Debug Findin Files 1) Findin Files2]| 4| | ! »

Building Your First Visual C++ Application

21|

2. Using the painting tools provided, repaint the icon to display an image that you
want to use to represent your application, asin Figure 1.23.

Ficure 1.23.

Your own custom icon
for your application.

3. When you compile and run your application, you will notice your custom iconin
the top-left corner of your application window. Click the icon and select About
Hello from the drop-down menu.

4. On the About dialog that Visual C++ created for you, you can see alarge version
of your custom icon in all its glory, as shown in Figure 1.24.

FIGURE 1.24.
Your application’s St DRl
AbOUt \NindOW =% Copyright [C) 1998
N[]tﬂ When you open an application icon in the icon designer, the icon is sized by
default at 32x32. You can also select a 16x16 size icon from the drop-down

list box just above where you are drawing the icon. You should draw both
of these icons because there are some instances in which the large icon will
be displayed and some instance in which the small icon will be shown. You
will want both icons to show the same image to represent your application.

Adding Maximize and Minimize Buttons

In the dialog editor, where you design your application window, you can add the mini-
mize and maximize buttons to the title bar of your application window by following
these steps:

1. Select the dialog window itself as if you were going to resize the window.

2. Using the pop-up menu (from right-clicking the mouse), select the dialog proper-
ties.

3. Select the Styles tab, as shown in Figure 1.25.

|22

Day 1

FIGURE 1.25. Dizlog Praperties
4R B Genmal [Sles | MoreStles | Extended Stles
Turning the minimize Styls ¥ Tite bar I™ Clg siblings
and maximize buttons Por =] |Spstemmeny [Cloghiden
on and off. Eu.rdel ™ Minimize box ™ Horizantal scroll
DidbgFrame =] [pMaimize box I Vettical serol

4, After you turn on the minimize and maximize boxes, you can compile and run
your application. The minimize and maximize buttons appear on the title bar, asin
Figure 1.26.

FlGURE 126 My First Visual C++ Application M=

The application win- [
dow with the minimize
and maximize buttons.

Hallo |

Close

Summary

Today you got your first taste of building applications using Visual C++. You learned
about the different areas of the Visual C++ Developer Studio and what function each of
these areas serves. You aso learned how you can rearrange the Developer Studio envi-
ronment to suit the way you work. You also learned how you can use the Visual C++
wizards to create an application shell and then attach functionality to the visual compo-
nents that you place on your application windows.

Q&A

Q How can | change thetitle on the message box, instead of using the applica-
tion name?

A By default, the message box window uses the application name as the window
title. You can change this by adding a second text string to the MessageBox func-
tion call. Thefirst string is aways the message to be displayed, and the second
string is used as the window title. For example, the onHel1o function would look
like
// Say hello to the user

MessageBox("Hello. This is my first Visual C++ Application!",
"My First Application");

Building Your First Visual C++ Application 23 |

Q Can | changethetext on the About window to give my company name and
mor e detailed copyright infor mation?

A Yes, the About window isin the Dialogs folder in the Resources View tab of the
workspace pane. If you double-click the 1Db_ABoUTBOX dialog, the About box will
be opened in the dialog designer, where you can redesign it however you want.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How do you change the caption on a button?
2. What can you do with the Visual C++ AppWizard?
3. How do you attach functionality to the click of a button?

Exercise

Add a second button to the About window in your application. Have the button display a
different message from the one on the first window.

WEEK 1

DAY 2

Using Controls in Your
Application

Some of the things that you will find in just about every Windows application
are buttons, check boxes, text fields, and drop-down list boxes. These are
known as controls, and many of these controls are built into the operating sys-
tem itself. With Visual C++, using these common controls is as easy as placing
them on a dialog window with a drag-and-drop window design method. Today
you are going to learn

What the basic controls in Visual C++ are

How to declare and attach variables to a controls

How to synchronize the values between a control and a variable

How to specify the order users navigate around your application windows
How to trigger actions with controls

How to manipulate and alter the appearance of controls (while your
application is running)

|26 Day 2

The Basic Windows Controls

Several standard controls are built into the Windows operating system, including such
things as sliders, tree and list controls, progress bars, and so on. However, today you will
work with a half dozen controls that appear in just about every Windows application:

o Static text

* Edit box

» Command button

» Check box

* Radio button

 Drop-down list box (& so known as a combo box)

These and other controls are readily available for use in Visual C++ applications. They

can be found on the controls palette in the Dialog Painter editor in the Developer Studio,
as shown in Figure 2.1.

FIGURE 2.1. [
Select -k #H—Picture
The standard controls Static Text —— -« abl Edit Box
available on the Group Box £1 94— Command Button _
C | palett Check Box—F @ - Radio Button
ontrol pi e — List Box
Horizontal Scrollbar ® Vertical Scrollbar
D -D . N
ropiistongr;(Spin sia ¢ ; — Progress Bar
lder —i- = Hot Key
(Combo Box) List Control E — Tree Control
—_— Animate
Rich Text Edit Tab Control = AT Date/Time Picker
Month Calendar — IP Address
Custom Control € E— Extended Combo
Box

The Static Text Control

You use the static text control to present text to the user. The user will not be able to
change the text or otherwise interact with the control. Static text is intended as a read-
only control. However, you can easily change the text displayed by the control as your
application is running through the code you create for your application.

The Edit Box Control

An edit box allows the user to enter or change text. The edit box is one of the primary
tools for allowing the user to enter specific information that your application needs. It is
acontrol that allows the user to type a specific amount of text, which you can capture

Using Controls in Your Application 27 |

and use for any needed purpose. The edit box accepts plain text only; no formatting is
available to the user.

The Command Button Control

A command button is a button that the user can press to trigger some action. Command
buttons have a textual label that can give users some idea of what will happen when they
click that button. Buttons can also have images as part of the button, allowing you to
place an image on the button—alone or along with atextual description—to convey what
the button does.

The Check Box Control

A check box is a square that the user can click to check (x) or uncheck. The check box
control is used to turn a particular value on and off. They are basically on/off switches
with an occasional third, in-between state. You normally use check boxes to control dis-
crete, on/off-type variables.

The Radio Button Control

A radio button is a circle that the user can click to fill with ablack spot. The radio button
is similar to the check box control, but it is used in a group of two or more where only
one of the values can be in the on state at atime. You normally use radio buttonsin
groups of at least three, surrounded by a group box. The group box allows each group of
radio buttons to be independent so that only one radio button in each group can be in the
on state at any time.

The Drop-Down List Box Control

A drop-down list box, or combo control, is an edit box with alist of available values
attached. You use the drop-down list box to provide a list of choices, from which the
user may select one value from the list. Sometimes, the user is given the option of typing
in his own value when a suitable one isn't provided in the list.

Adding Controls to Your Window

The application you are going to build today will have a number of controls on asingle
dialog window, as shown in Figure 2.2. These controls have a number of different func-
tions. At the top of the window is an edit field where the user can enter a message that
displays in a message box when he or she clicks the button beside the field. Below this
edit field are two buttons that either populate the edit field with a default message or
clear the edit field. Below these buttons is a drop-down list box that contains a list of

|28

Day 2

standard Windows applications. When the user selects one of these programs and then
clicks the button beside the drop-down list, the selected program will run. Next are two
groups of check boxes that affect the controls you add to the top half of the dialog: the
controls for displaying a user message and the controls for running another program.
The left set of check boxes will enable and disable each group of controls you provide.
The right set of check boxes will show and hide each group of controls. At the bottom
of the dialog box is a button that can be clicked to close the application.

FIGURE 2.2. 25 Visual C++ Controls
) . This is an example of a Visual C++
TOda_y S appl ication T ST e
will use a number of Enter a Message: [ETPTISeroE Show Message
standard controls. Default Message | | Clear Message
Runafrogams| =] AunProgam

Enable Action: Show Action:
’V [V Enable Message Action ’V [¥ Show Message Action

I¥ Show Program Action

¥ Enable Program Action

Exit

Creating the Application Shell and Dialog Layout
Using what you learned yesterday, create a new application shell and design the applica-
tion dialog layout as follows:

1. Create anew AppWizard workspace project, calling the project bay2.

2. Use the same settings in the AppWizard as you used yesterday; specify the dialog
tittevisual C++ Controls.

3. After you create the application shell, lay out the main dialog as shown earlier in
Figure 2.2.

4. Configure the control properties as specified in Table 2.1.

TABLE 2.1. PROPERTY SETTINGS FOR THE CONTROLS ON THE APPLICATION DIALOG.

Object Property Setting
Static Text ID IDC_STATIC
Caption This is an example of a Visual C++
Application using a number of controls.
Static Text ID IDC_STATICMSG
Caption Enter a &Message:
Static Text ID IDC_STATICPGM

Caption Run a &Program:

Using Controls in Your Application

29|

Object Property Setting
Edit Box ID IDC_MSG
Button ID IDC_SHWMSG
Caption &Show Message
Button ID IDC_DFLTMSG
Caption &Default Message
Button ID IDC_CLRMSG
Caption &Clear Message
Button ID IDC_RUNPGM
Caption &Run Program
Button ID IDC_EXIT
Caption E&xit
Combo Box ID IDC_PROGTORUN
Group Box ID IDC_STATIC
Caption Enable Actions
Group Box ID IDC_STATIC
Caption Show Actions
Check Box ID IDC_CKENBLMSG
Caption &Enable Message Action
Check Box ID IDC_CKENBLPGM
Caption E&nable Program Action
Check Box 1D IDC_CKSHWMSG
Caption S&how Message Action
Check Box ID IDC_CKSHWPGM
Caption Sh&ow Program Action

Tip

When adding a combo box control to the window, it is important that you
click and drag the area for the control as large as you want the drop-down
list to be. After you draw the control on the window, you can resize the
width of the control as you would normally expect to do. To resize how far
the list drops down, you need to click the arrow, as if you were trying to
trigger the drop-down list while the application was running.

|3O

Day 2

5. After you place all these controls on the dialog window and configure all their
properties, reopen the properties dialog for the combo box that you placed on the
window. On the Data tab of the properties dialog, enter the following values, using
a Control+Enter key combination to add the second and third items, as shown in

Figure 2.3.

* Notepad

* Paint

o Solitaire
FIGURE 2.3.) _ 4 P General [Data | Sles | Estended Sijes
Use the properties dia- S = =
log to add entriesin fems. [Sainaie
the combo box's drop-
down list. =l

Specifying the Control Tab Order

Now that you have all the controls laid out on the window, you need to make sure that
the user navigates in the order you want if he or she uses the Tab key to move around
the window. You can specify the tab order by following these steps:

1. Select either the dialog window or one of the controls on the window in the editing
area of the Developer Studio.
2. Choose Layout | Tab Order from the menu. By turning on the Tab Order, you see

anumber beside each of the controls on the window. The numbers indicate the
order in which the dialog will be navigated, as shown in Figure 2.4.

FIGURE 2.4
. . .. example of aVisual C++
Turni ng on Tab Order Application using a number of contrals
shows the order in 2 o TN
which the dialog will . T -
be navigated. oot W
able Action: o Action:
“nahle Message Action mhuw Message Action
mEable Program Action mhgw Program Action
g |

3. Using the mouse, click each of the number boxes in the order that you want the
user to navigate the window. The controls will renumber themselves to match the
order in which you selected them.

Using Controls in Your Application

31|

4. Once you specify the tab order, select Layout | Tab Order once again to return to
the layout editor.

N“tﬂ Any static text that has a mnemonic should appear just before the control
) that accompanies the text in the tab order. Because the user cannot interact
' with the static text, when the user chooses the mnemonic, the focus will go
directly to the next control in the tab order.

A mnemonic is the underlined character in the caption on a button, check box, menu, or
other control label. The user can press this underlined character and the Alt key at the
same time to go directly to that control or to trigger the clicked event on the control. You
specify a mnemonic by placing an ampersand (&) in front of the character to be used as
the mnemonic when you type the Caption value. It isimportant to make certain that you
do not use the same mnemonic more than once on the same window, or set of menus,
because the user can get confused when choosing a mnemonic doesn’t result in the
action that he or she expects.

One last thing that you want to do before getting into the details of the application code
is check your mnemonics to make certain that there are no conflicts in your controls.
Follow these steps:

1. Select the dialog window or one of the controlsin the layout editor. Right-click the
mouse and select Check Mnemonics.

2. If there are no conflicts in your mnemonics, Visual C++ returns a message box
dialog, letting you know that there are no conflicts (see Figure 2.5).

FlGURE 25 Microsolt Visual C++
The mnemonic checker f\l‘) No duplicate mnemorics have been found.
tells you whether there

are conflicts.

3. If any conflicts exist, the dialog indicates the conflicting letter and gives you the
option of automatically selecting the controls containing the conflicting mnemon-
ics, asin Figure 2.6.

FIGURE 2.6. Microsoft Visual C++

Duplicate mnemanic found: 's"
; ; '
DUp| Icate mnemonics & Do you want the conflicting items to be selected?
can be automatically

selected. (] _tio | concel

|32 Day 2

Attaching Variables to Your Controls

At this point, if you've programmed using Visual Basic or PowerBuilder, you probably
figure that you' re ready to start slinging some code. Well, with Visual C++, it’s not quite
the same process. Before you can begin coding, you have to assign variables to each of
the controls that will have a value attached—everything except the static text and the
command buttons. You will interact with these variables when you write the code for
your application. The values that the user enters into the screen controls are placed into
these variables for use in the application code. Likewise, any values that your application
code places into these variables are updated in the controls on the window for the user

to see.

How do you declare these variables and associate them with the controls that you placed
on the window? Follow these steps:

1. Open the Class Wizard, as you learned yesterday.
2. Select the Member Variables tab, as shown in Figure 2.7.

FIGURE 2.7 MFC ClassWizard HE
. Message Maps | Member Variables | Automation | ActiveX Events | Class Info |
The Member Variables . F— rtm -
tab on the Class [EETEI—— | (2200 El =
. D\ ADay2\Dap2Dlg.h, DA ADap2\Day2Dla.cpp —
Wizard is where you - E— Member Doioatant |
add variables to e I = Updae Colars
IDC_CKSHWMSG
controls. |DC_CKSHWPEM Bird &1l

IDC_CLRMSG
IDC_DFLTMSG
|DC_EXIT

IDC_PROGTORLN
IDC_RUNPGM
IDC_SHWMSG |

Description:

Cancel

3. Select the ID of one of the controls that you need to attach a variable to, such as
IDC_MSG.

4. Click the Add Variable button.

5. Inthe Add Member Variable dialog, enter the variable name, specifying the catego-
ry and variable type, as shown in Figure 2.8. Click OK.

6. Repeat steps 3 through 5 for all the other controls for which you need to add vari-
ables. You should add the variables for your application as listed in Table 2.2.

Using Controls in Your Application

33|

FIGURE 2.8.

Adding a variableto a
control.

Add Member Variable

Member variable name

[m_szMessage

Category:
Value

Variable type
CSting

Description,

CStiing with length validation

Cancel

TABLE 2.2. VARIABLES FOR APPLICATION CONTROLS.

Control Variable Name Category Type
IDC_MSG m_strMessage Value cString
IDC_PROGTORUN m_strProgToRun Value CString
IDC_CKENBLMSG m_bEnableMsg Value BOOL
IDC_CKENBLPGM m_bEnablePgm Value BOOL
IDC_CKSHWMSG m_bShowMsg Value BOOL
IDC_CKSHWPGM m_bShowPgm Value BOOL

Tip

All these variables are prefixed with m_ because they are class member vari-
ables. This is an MFC naming convention. After the m_, a form of Hungarian
notation is used, in which the next few letters describe the variable type. In
this case, b means boolean, and str indicates that the variable is a string.
You’ll see this naming convention in use in this book and other books about
programming with Visual C++ and MFC. Following this naming convention
will make your code more readable for other programmers; knowing the
convention will make it easier for you to read other programmer’s code as
well.

7. After you add all the necessary variables, click the OK button to close the Class

Wizard.

Attaching Functionality to the Controls

Before you begin adding code to all the controls on your application window, you need

to add alittle bit of code to initialize the variables, setting starting values for most of
them. Do this by following these steps:

|34

Day 2

1. Using the Class Wizard, on the Message Maps tab, select the onInitDialog func-
tion in the list of member functions. You can do this by finding the function in the
Member Functions list, or by selecting the cbay2b1g object in the list of object IDs
and then selecting the wym_INITDIALOG message in the messages list, as shown in

Figure 2.9.
FIGURE 2 9 MFC ClassWizard
Message Maps | Member Variabes | Automation | ActiveX Events | Classlnfo |

You can use the Class Prect .

i Project: Class name: Add Class... ¥
Wizard to locate exist- Do i [e B =
. . D\ ADay2\Dap2Dlg h, Do\ ADay2\Day2Dla.cpp — —
ing functions. el e Deete Functon |

‘WhM_DESTROY -
IDC_CKENBLMS G WM_DR&WITEM 2l | Estcose

IDE_CKENBLPGM
IDE_CKSHWMSG

IDE_CKSHWPGM

IDE_CLRMSG

IDC_DFLTMSG =l

Member functions:

OnlnitDialog ON_WM_INITDIALOG [<]
W OnPaint ON_wM_PAINT
W OnQueyDraglean ON_WM_GUERYDRAGICON o
W OnAunpam ON_IDC_RUNPGM BN_CLICKED
W OnShwmsa ON IDC SHWMSGEN CLICKED =l
Description: Sent to a dialog box before the dialog box is displayed
Cancel

2. Click Edit Code to be taken to the source code for the onInitDialog function.

3. Find the Topo marker, which indicates where to begin adding your code, and add
the codein Listing 2.1.

LISTING 2.1. DAY2DLG.CPP—THE OnInitDialog FUNCTION IS WHERE YOU NEED TO ADD
INITIALIZATION CODE.

1: BOOL CDay2Dlg::0OnInitDialog()

2: {

3 CDialog::0OnInitDialog();

4:

5:

6.

7

8:

9: // TODO: Add extra initialization here
10:

11: [EEEETTTEEE i

12: // MY CODE STARTS HERE

13: [EELETTTEEE i

14:

15: // Put a default message in the message edit
16: m_strMessage = "Place a message here";
17:

18: // Set all of the check boxes to checked

Using Controls in Your Application

35|

19: m_bShowMsg = TRUE;

20: m_bShowPgm = TRUE;

21: m_bEnableMsg = TRUE;

22: m_bEnablePgm = TRUE;

23:

24: // Update the dialog with the values

25: UpdateData(FALSE) ;

26:

27: LIEETEETEET iy

28: // MY CODE ENDS HERE

29: TIEELEETEE T rrr

30:

31: return TRUE; // return TRUE unless you set the focus to a
Ocontrol

32: }

There is more code in the OnInitDialog function than has been included in
Listing 2.1. | won’t include all the code for every function in the code listings
throughout this book as a means of focusing on the code that you need to
add or modify (and as a means of keeping this book down to a reasonable
size). You are welcome to look at the code that has been left out, to learn
what it is and what it does, as you build your understanding of MFC and
Visual C++.

If you’ve programmed in C or C++ before, you’ve noticed that you are set-
ting the value of the m_strMessage variable in a very un-C-like manner. It
looks more like how you would expect to set a string variable in Visual Basic
or PowerBuilder. That’s because this variable is a CString type variable. The
CString class enables you to work with strings in a Visual C++ application in
much the same way that you would work with strings in one of these other
programming languages. However, because this is the C++ programming
language, you still need to add a semicolon at the end of each command.

This initialization code is smple. You are setting an initial message in the edit box that
you will use to display messages for the user. Next, you are setting all the check boxes
to the checked state. It's the last line of the code you added to this function that you real-
ly need to notice.

The updateData function is the key to working with control variablesin Visual C++.
This function takes the data in the variables and updates the controls on the screen with
the variable values. It also takes the data from the controls and populates the attached

|36

Day 2

variables with any values changed by the user. This process is controlled by the argu-
ment passed into the UpdateData function. If the argument is FALSE, the valuesin the
variables are passed to the controls on the window. If the argument is TRUE, the variables
are updated with whatever appears in the controls on the window. As a result, which
value you pass this function depends on which direction you need to update. After you
update one or more variables in your code, then you need to call updateData, passing it
FALSE asits argument. If you need to read the variables to get their current value, then
you need to call updateData with a TRUE value before you read any of the variables.
You'll get the hang of this as you add more code to your application.

Closing the Application

The first thing that you want to take care of is making sure that the user can close your
application. Because you deleted the OK and Cancel buttons and added a new button for
closing the application window, you need to place code into the function called by the
Exit button to close the window. To do this, follow these steps:

1. Using the Class Wizard, add a function for the IDc_EXIT object on the BN_CLICKED
message, as you learned to do yesterday.

2. Click the Edit Code button to take you to the new function that you just added.

3. Enter the codein Listing 2.2.

LisTING 2.2. DAY2DLG.CPP—THE OnEXit FUNCTION.

1: void CDay2D1lg::0nExit()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [IEETTTEL T rr
6: // MY CODE STARTS HERE
7 FIEETEETEEEE iy
8:

9: // Exit the program

10: OnOoK() ;

11:

12: TIEETEETEETT i
13: // MY CODE ENDS HERE
14: [IEETTTEL T rr
15: }

A single function call within the onExit function closes the Window and exits the appli-
cation. Where did this onok function come from, and why didn’t you haveto call it in
yesterday’s application? Two functions, onok and onCancel, are built into the ancestor

Using Controls in Your Application 37 |

CDialog class from which your cbay2D1g classisinherited. In the cbialog class, the
message map aready has the object 1Ds of the OK and Cancel buttons attached to the
onOK and oncancel buttons so that buttons with these IDs automatically call these
functions. If you had specified the Exit button’s object ID as 100K, you would not have
needed to add any code to the button unless you wanted to override the base onok
functionality.

Showing the User’s Message

Showing the message that the user typed into the edit box should be easy because it’s
similar to what you did in yesterday's application. You can add a function to the Show
Message button and call the MessageBox function, asin Listing 2.3.

LISTING 2.3. DAY2DLG.CPP—THE OnShwmsg FUNCTION DISPLAYS THE USER MESSAGE.

1: void CDay2Dlg::0nShwmsg()

2: {

3: // TODO: Add your control notification handler code here
4:

5: TIEETEETEET i rr

6: // MY CODE STARTS HERE

7 [IEETTTEE i

8:

9: // Display the message for the user
10: MessageBox (m_strMessage);

11:

12: [EEEETTEEEL T rrrrrrr g

13: // MY CODE ENDS HERE

14: [EEEETTTEEL i

15: }

If you compile and run the application at this point, you'll see one problem with this
code. It displays the string that you initialized the m_strMessage variable within the
onInitDialog function. It doesn't display what you type into the edit box. This happens
because the variable hasn't been updated with the contents of the control on the window
yet. You need to call UpdateData, passing it a TRUE value, to take the values of the con-
trols and update the variables before calling the MessageBox function. Alter the onshwmsg
function asin Listing 2.4.

LISTING 2.4. DAY2DLG.CPP—UPDATED OnShwmsg FUNCTION.

1: void CDay2D1lg::0nShwmsg()
2: {

continues

38 Day 2

LISTING 2.4. CONTINUED

3: // TODO: Add your control notification handler code here
4:

5: [EEEETTTEEL i

6: // MY CODE STARTS HERE

7: [EELETTTEEE i

8:

9: // Update the message variable with what the user entered
10: UpdateData(TRUE) ;

11:

12: // Display the message for the user

13: MessageBox (m_strMessage);

14:

15: [EEEETTEEEE i rr

16: // MY CODE ENDS HERE

17: [EEEETTTEEL i

18: }

Now if you compile and run your application, you should be able to display the message
you type into the edit box, as shown in Figure 2.10.

Ficure 2.10.
The e entered This is a test
in the edit box isdis-

played to the user.

Clearing the User’s Message

If the user prefers the edit box to be cleared before he or she types a message, you can
attach a function to the Clear Message button to clear the contents. You can add this
function through the Class Wizard in the usual way. The functionality is a simple matter
of setting the m_strMessage variable to an empty string and then updating the controls
on the window to reflect this. The code to do thisisin Listing 2.5.

LisTING 2.5. DAY2DLG.CPP—THE OnC1lrmsg FUNCTION.

void CDay2Dlg::0nClrmsg()
s A

// TODO: Add your control notification handler code here

// MY CODE STARTS HERE

1:

2

3

4:

5: [EELETELLLEL iy
6:

7 [EELEILLLLLE ity
8

9

// Clear the message

Using Controls in Your Application 39 |

10: m_strMessage = "";

11:

12: // Update the screen
13: UpdateData(FALSE) ;

14:

15: LIEETEETEET iy
16: // MY CODE ENDS HERE
17: TIEETEETEETT i
18: }

Disabling and Hiding the Message Controls

The last thing that you want to do with the message controls is add functionality to the
Enable Message Action and Show Message Action check boxes. The first of these check
boxes enables or disables the controls dealing with displaying the user message. When
the check box isin a checked state, the controls are all enabled. When the check box is
in an unchecked state, all those same controls are disabled. In alikewise fashion, the sec-
ond check box shows and hides this same set of controls. The code for these two func-
tionsisin Listing 2.6.

LisTING 2.6. DAY2DLG.CPP—THE FUNCTIONS FOR THE ENABLE AND SHOW MESSAGE ACTIONS
CHECK BOXES.

1: void CDay2Dlg::0nCkenblmsg()

2: {

3: // TODO: Add your control notification handler code here
4:

5: TIEETELTEE T r

6: // MY CODE STARTS HERE

7 FIEETEEEEEETE i iy

8:

9: // Get the current values from the screen

10: UpdateData(TRUE) ;

11:

12: // Is the Enable Message Action check box checked?
13: if (m_bEnableMsg == TRUE)

14: {

15: // Yes, so enable all controls that have anything
16: // to do with showing the user message

17: GetDlgItem(IDC_MSG) ->EnableWindow(TRUE) ;

18: GetDlgItem(IDC_SHWMSG) ->EnableWindow(TRUE) ;
19: GetDlgItem(IDC_DFLTMSG) ->EnableWindow(TRUE) ;
20: GetDlgItem(IDC_CLRMSG) ->EnableWindow(TRUE) ;
21: GetDlgItem(IDC_STATICMSG) ->EnableWindow(TRUE) ;
22: }

continues

|40 Day 2

LISTING 2.6. CONTINUED

23: else

24: {

25: // No, so disable all controls that have anything
26: // to do with showing the user message

27: GetDlgItem(IDC_MSG) ->EnableWindow(FALSE) ;

28: GetDlgItem(IDC_SHWMSG) ->EnableWindow(FALSE) ;
29: GetDlgItem(IDC_DFLTMSG) ->EnableWindow (FALSE);
30: GetDlgItem(IDC_CLRMSG) ->EnableWindow(FALSE) ;
31: GetDlgItem(IDC_STATICMSG) ->EnableWindow(FALSE) ;
32: }

33:

34: TIEETEETEET i

35: // MY CODE ENDS HERE

36: TIELTEETEETE iy

37: }

38:

39: void CDay2Dlg::0nCkshwmsg()

40: {

41: // TODO: Add your control notification handler code here
42:

43: TIEETEETEET i

44: // MY CODE STARTS HERE

45: FIELTEETEETE iy

46:

47: // Get the current values from the screen

48: UpdateData(TRUE) ;

49:

50: // Is the Show Message Action check box checked?
51: if (m_bShowMsg == TRUE)

52: {

53: // Yes, so show all controls that have anything
54: // to do with showing the user message

55: GetDlgItem(IDC_MSG) ->ShowWindow(TRUE) ;

56: GetDlgItem(IDC_SHWMSG) ->ShowWindow (TRUE) ;

57: GetDlgItem(IDC_DFLTMSG) ->ShowWindow (TRUE) ;

58: GetDlgItem(IDC_CLRMSG) ->ShowWindow(TRUE) ;

59: GetDlgItem(IDC_STATICMSG) ->ShowWindow (TRUE);
60: }

61: else

62: {

63: // No, so hide all controls that have anything
64: // to do with showing the user message

65: GetDlgItem(IDC_MSG) ->ShowWindow (FALSE) ;

66: GetDlgItem(IDC_SHWMSG) ->ShowWindow (FALSE) ;

67: GetDlgItem(IDC_DFLTMSG) ->ShowWindow (FALSE) ;
68: GetDlgItem(IDC_CLRMSG) ->ShowWindow (FALSE) ;

69: GetDlgItem(IDC_STATICMSG) ->ShowWindow (FALSE) ;
70: }

71:

Using Controls in Your Application

41|

72: [IEETTTEE T
73: // MY CODE ENDS HERE
74: LIEETEETEET iy
75: }

By now, you should understand the first part of these functions. First, you update the
variables with the current values of the controls on the window. Next, you check the
value of the boolean variable attached to the appropriate check box. If the variable is
TRUE, you want to enable or show the control. If the variable if FALSE, you want to dis-
able or hide the control.

At this point, the code begins to be harder to understand. The first function, GetDIgltem,
is passed the ID of the control that you want to change. This function returns the object
for that control. You can call this function to retrieve the object for any of the controls on
the window while your application is running. The next part of each command is where
amember function of the control object is called. The second function is a member func-
tion of the object returned by the first function. If you are not clear on how this works,
then you might want to check out Appendix A, “C++ Review,” to brush up on your C++.

The second functions in these calls, EnableWindow and Showwindow, look like they
should be used on windows, not controls. Well, yes, they should be used on windows;
they happen to be members of the cwnd class, which is an ancestor of the cbialog class
from which your cbay2b1g classis inherited. It just so happens that, in Windows, all
controls are themselves windows, completely separate from the window on which they
are placed. This allows you to treat controls as windows and to call windows functions
on them. In fact, all the control classes are inherited from the cwnd class, revealing their
true nature as windows.

If you compile and run your application now, you can try the Enable and Show Message
Action check boxes. They should work just fine, as shown in Figure 2.11.

FIGURE 2.11.
The user message con- e
trols can now be dis- Erfeicbesec [Thmatest || Sz

abled.

Dt fessane || 2

Run a Program: ~| BunProgram

Enable Actian: Show Action
’V I” Enable Message Actiori ’V ¥ Show Messags Action

IV Enable Program Action ¥ Show Proaram Action

Exit

|42 Day 2

Running Another Application

The last major piece of functionality to be implemented in your application is for the set
of controls for running another program. If you remember, you added the names of three
Windows applications into the combo box, and when you run your application, you can
see these application names in the drop-down list. You can select any one of them, and
the value area on the combo box is updated with that application name. With that part
working as it should, you only need to add code to the Run Program button to actually
get the value for the combo box and run the appropriate program. Once you create the
function for the Run Program button using the Class Wizard, add the code in Listing 2.7
to the function.

LISTING 2.7. DAY2DLG.CPP—THE OnRunpgm FUNCTION STARTS OTHER VWINDOWS APPLICATIONS.

1: void CDay2Dlg: :0OnRunpgm()

2: {

3: // TODO: Add your control notification handler code here
4:

5: TIEETEETEET i

6: // MY CODE STARTS HERE

7 [HEEEETEEEE i rrrrr

8:

9: // Get the current values from the screen

10: UpdateData(TRUE) ;

11:

12: // Declare a local variable for holding the program name
13: CString strPgmName;

14:

15: // Copy the program name to the local variable

16: strPgmName = m_strProgToRun;

17:

18: // Make the program name all uppercase

19: strPgmName .MakeUpper() ;
20:
21: // Did the user select to run the Paint program?
22: if (strPgmName == "PAINT")
23: // Yes, run the Paint program
24: WinExec ("pbrush.exe", SW_SHOW);
25:
26: // Did the user select to run the Notepad program?
27: if (strPgmName == "NOTEPAD")
28: // Yes, run the Notepad program
29: WinExec("notepad.exe", SW_SHOW);
30:
31: // Did the user select to run the Solitaire program?
32: if (strPgmName == "SOLITAIRE")
33: // Yes, run the Solitaire program

34: WinExec("sol.exe", SW_SHOW);

Using Controls in Your Application

43|

35:

36: NNy,
37: // MY CODE ENDS HERE
38: [IEEEEEEEELrr i rirt
39: }

As you expect, the first thing that you do in this function is call UpdateData to populate
the variables with the values of the controls on the window. The next thing that you do,
however, might seem alittle pointless. You declare a new cstring variable and copy the
value of the combo box to it. Isthis realy necessary when the valueis aready in a
cstring variable? Well, it depends on how you want your application to behave. The
next line in the code is a call to the cstring function MakeUpper, which converts the
string to al uppercase. If you use the cstring variable that is attached to the combo box,
the next time that UpdateData is called with FALSE as the argument, the value in the
combo box is converted to uppercase. Considering that thisis likely to happen at an odd
time, thisis probably not desirable behavior. That's why you use an additional cstring
in this function.

Once you convert the string to all uppercase, you have a series of if statements that
compare the string to the names of the various programs. When a match is found, the
winExec function is caled to run the application. Now, if you compile and run your
application, you can select one of the applications in the drop-down list and run it by
clicking the Run Program button.

H It is important to understand the difference in C and C++ between using a
Gaution P 9

single equal sign (=) and a double equal sign (==). The single equal sign per-
forms an assignment of the value on the right side of the equal sign to the
variable on the left side of the equal sign. If a constant is on the left side of
the equal sign, your program will not compile, and you’ll get a nice error
message telling you that you cannot assign the value on the right to the
constant on the left. The double equal sign (==) is used for comparison. It is
important to make certain that you use the double equal sign when you
want to compare two values because if you use a single equal sign, you alter
the value of the variable on the left. This confusion is one of the biggest
sources of logic bugs in C/C++ programs.

| 44 Day 2

the CreateProcess function instead. However, the CreateProcess function
has a number of arguments that are difficult to understand this early in pro-
gramming using Visual C++. The WinExec function is still available and is
implemented as a macro that calls the CreateProcess function. This allows
you to use the much simpler WinExec function to run another application
while still using the function that Windows wants you to use.

Nﬂtﬂ The winExec function is an obsolete Windows function. You really should use

Another API function that can be used to run another application is the
ShellExecute function. This function was originally intended for opening or
printing files, but can also be used to run other programs.

Summary

Today, you learned how you can use standard windows controls in a Visual C++ applica
tion. You learned how to declare and attach variables to each of these controls and how
to synchronize the values between the controls and the variables. You also learned how
you can manipulate the controls by retrieving the control objects using their object ID
and how you can manipulate the control by treating it as a window. You aso learned
how to specify the tab order of the controls on your application windows, thus enabling
you to control how users navigate your application windows. Finally, you learned how to
attach application functionality to the controls on your application window, triggering
various actions when the user interacts with various controls. As an added bonus, you
learned how you can run other Windows applications from your own application.

Q&A

Q When | specified the object 1Ds of the controls on the window, three controls
had the same ID, 1Dc_STATIC. These controls were the text at the top of the
window and the two group boxes. The other two static text controls started
out with this same ID until | changed them. How can these controls have the
same | D, and why did | have to change the ID on the two static texts where |
did change them?

A All controlsthat don’'t normally have any user interaction, such as static text and
group boxes, are by default given the same object ID. This works fine aslong as
your application doesn’t need to perform any actions on any of these controls. If
you do need to interact with one of these controls, as you did with the static text
prompts for the edit box and combo box, then you need to give that control a
unique ID. In this case, you needed the unique ID to be able to retrieve the control
object so that you could enable or disable and show or hide the control. You also

Using Controls in Your Application

45|

need to assign it aunique ID if you want to attach a variable to the control so that
you could dynamically alter the text on the control.

The application behaves in a somewhat unpredictable way if you try to ater any of
the static controls that share the same ID. As a general rule of thumb, you can
alow static controls to share the same object ID if you are not going to ater the
controls at all. If you might need to perform any interaction with the controls, then
you need to assign each one a unique object ID.

Isthere any other way to manipulate the controls, other than retrieving the
control objects using their object 1Ds?

You can declare variables in the Control category. This basically gives you an
object that is the control’s MFC class, providing you with a direct way of atering
and interacting with the control. You can then call all of the cwnd class functions
on the control, as you did to enable or disable and show or hide the controlsin
your application, or you can call the control class methods, enabling you to do
things in the code that are specific to that type of control. For instance, if you add
another variable to the combo box control and specify that it is a Control category
variable, you can use it to add items to the drop-down list on the control.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises appear in Appendix B,
“Answers.”

Quiz

1.

Why do you need to specify the tab order of the controls on your application win-
dows?

2. How can you include a mnemonic in a static text field that will take the user to the
edit box or combo box beside the text control?

3. Why do you need to give unique object IDs to the static text fields in front of the
edit box and combo boxes?

4. Why do you need to call the UpdateData function before checking the value of one
of the controls?

Exercises
1. Add code to the Default Message button to reset the edit box to say Enter a

message here.

|46 Day 2

2. Add code to enable or disable and show or hide the controls used to select and run
another application.

3. Extend the code in the onRunpgm function to allow the user to enter his own pro-
gram name to be run.

WEEK 1

DAY 3

Allowing User
Interaction—Integrating
the Mouse and Keyboard
In Your Application

Depending on the type of application you are creating, you might need to
notice what the user is doing with the mouse. You need to know when and
where the mouse was clicked, which button was clicked, and when the button
was released. You also need to know what the user did while the mouse button
was being held down.

Another thing that you might need to do is read the keyboard events. As with
the mouse, you might need to know when a key was pressed, how long it was
held down, and when it was rel eased.

|48 Day 3

Today you are going to learn

» What mouse events are available for use and how to determine which one is appro-
priate for your application’s needs.

» How you can listen to mouse events and how to react to them in your Visual C++
application.

» What keyboard events are available for use and what actions will trigger each of
these events.

» How to capture keyboard events and take action based on what the user pressed.

Understanding Mouse Events

Asyou learned yesterday, when you are working with most controls, you are limited to a
select number of events that are available in the Class Wizard. When it comes to mouse
events, you are limited for the most part to click and double-click events. Just looking at
your mouse tells you that there must be more to capturing mouse events than recognizing
these two. What about the right mouse button? How can you tell if it has been pressed?
And what about drawing programs? How can they follow where you drag the mouse?

If you open the Class Wizard in one of your projects, select the dialog in the list of
object IDs, and then scroll through the list of messages that are available, you will find a
number of mouse-related events, which are also listed in Table 3.1. These event mes-
sages enable you to perform any task that might be required by your application.

TABLE 3.1. MOUSE EVENT MESSAGES.

Message Description

WM_LBUTTONDOWN The left mouse button has been pressed.

WM_LBUTTONUP The left mouse button has been released.

WM_LBUTTONDBLCLK The left mouse button has been double-clicked.

WM_RBUTTONDOWN The right mouse button has been pressed.

WM_RBUTTONUP The right mouse button has been released.

WM_RBUTTONDBLCLK The right mouse button has been double-clicked.

WM_MOUSEMOVE The mouse is being moved across the application window space.

WM_MOUSEWHEEL The mouse whesdl is being moved.

Integrating the Mouse and Keyboard in Your Application 49 |

Drawing with the Mouse

Today you are going to build a simple drawing program that uses some of the available
mouse events to let the user draw simple figures on a dialog window. This application
depends mostly on the wm_MOUSEMOVE event message, which signals that the mouse is
being moved. You will look at how you can tell within this event function whether the
left mouse button is down or up. You will also learn how you can tell where the mouseis
on the window. Sound's fairly straight ahead, so let’s get going by following these steps:

1. Create anew MFC AppWizard workspace project, calling the project Mouse.

2. Specify that this project will be a dialog-based application in the first AppWizard
step.

3. Usethe default settings in the AppWizard. In the second step, specify a suitable
dialog title, such asMouse and Keyboard.

4. After the application shell is created, remove all controls from the dialog window.
This provides the entire dialog window surface for drawing. This step is also nec-
essary for your application to capture any keyboard events.

Nﬂtﬂ If there are any controls on a dialog, all keyboard events are directed to the

control that currently has input focus—the control that is highlighted or has
the cursor visible in it. To capture any keyboard events in a dialog, you have
to remove all controls from the dialog.

5. Open the Class Wizard. Select wv_MouseMovE from the list of messages, and add a
function by clicking the Add Function button. Click the OK button to accept the
suggested function name.

6. Click the Edit Code button to edit the onMouseMove function you just created,
adding the code in Listing 3.1.

LisTING 3.1. THE OnMouseMove FUNCTION.

1: void CMouseDlg: :0OnMouseMove (UINT nFlags, CPoint point)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: [EETEETTEEI i

6: // MY CODE STARTS HERE

7 FEEETTTTETEE LT r

8

continues

|50 Day 3

LISTING 3.1. CONTINUED

9: // Check to see if the left mouse button is down
10: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)

11:

12: // Get the Device Context

13: CClientDC dc(this);

14:

15: // Draw the pixel

16: dc.SetPixel(point.x, point.y, RGB(0, 0, 0));
17: }

18:

19: [IEEEEEELErr iy

20: // MY CODE ENDS HERE

21: [EEEEEEEErr il

22:

23: CDialog: :0OnMouseMove (nFlags, point);

24: }

Look at the function definition at the top of the listing. You will notice that two argu-
ments are passed into this function. The first of these argumentsis a set of flags that can
be used to determine whether a mouse button is depressed (and which one). This deter-
mination is made in the first line of your code with the if statement:

if ((nFlags & MK_LBUTTON) == MK_LBUTTON)

In the first half of the condition being evaluated, the flags are filtered down to the one
that indicates that the left mouse button is down. In the second half, the filtered flags are
compared to the flag that indicates that the left mouse button is down. If the two match,
then the left mouse button is down.

The second argument to this function is the location of the mouse. This argument gives
you the coordinates on the screen where the mouse currently is. You can use this infor-
mation to draw a spot on the dialog window.

Before you can draw any spots on the dialog window, you need to get the device context
for the dialog window. This is done by declaring a new instance of the cclientDC class.
This class encapsulates the device context and most of the operations that can be per-
formed on it, including al the screen drawing operations. In a sense, the device context
is the canvas upon which you can draw with your application. Until you have a canvas,
you cannot do any drawing or painting. After the device context object is created, you
can cal its setPixel function, which colors the pixel at the location specified in the first
two arguments with the color specified in the third argument. If you compile and run
your program, you can see how it allows you to draw on the window surface with the
mouse, as shown in Figure 3.1.

Integrating the Mouse and Keyboard in Your Application 51 |

F'GURE 3.1. % Mouse and Keyboard
Drawing on the win- .
dow with the mouse. J\/\/\J — | Mouse moved slowly
Mouse moved quickly
Nﬂtﬂ In Windows, colors are specified as a single number that is a combination of
N three numbers. The three numbers are the brightness levels for the red,

green, and blue pixels in your computer display. The RGB function in your
code is a macro that combines these three separate values into the single
number that must be passed to the SetPixel function or to any other func-
tion that requires a color value. These three numbers can be any value
between and including 0 and 255.

Using the AND and OR Binaries

If you are new to C++, you need to understand how the different types of AND and OR
work. The two categories of ANDs and oRs are logical and binary. The logical ANDs and
ors are used in logical or conditional statements, such asan if or while statement that is
controlling the logic flow. The binary ANDS and ORs are used to combine two values on a
binary level.

The ampersand character (&) is used to denote AND. A single ampersand (&) is a binary
AND, and a double ampersand (8&) isalogical AND. A logical AND works much like the
word AND in Visual Basic or PowerBuilder. It can be used in an if statement to say “if
this condition AND this other condition...” where both conditions must be true before
the entire statement is true. A binary AND is used to set or unset bits. When two values are
binary ANDed, only the bits that are set to 1 in both values remain as 1; all the rest of the
bits are set to 0. To understand how this works, start with two 8-bit values such as the

following:
Value 1 01011001
Value 2 00101001

If you binary AND these two values together, you wind up with the following value:

ANDed Value 00001001

|52

Day 3

All the bits that had 1 in one of the values, but not in the other value, were set to 0. All
the bits that were 1 in both values remained set to 1. All the bits that were 0 in both val-
ues remained O.

OR is represented by the pipe character (}), and as with AND, asingle pipe (}) isabinary
OR, whereas a double pipe (! !) isalogical or. Aswith AND, alogical 0R can be used in
conditional statements such as if or while statements to control the logical flow, much
like the word oR in Visual Basic and PowerBuilder. It can be used in an if statement to
say “if this condition OR this other condition...” and if either condition is true, the entire
statement is true. You can use a binary oR to combine values on a binary level. With o,
if abitissetto1in either value, the resulting bit is set to 1. With a binary oR, the only
way that a bit is set to 0 in the resulting value is if the bit was already 0 in both values.
Take the same two values that were used to illustrate the binary AND:

Vaue 1 01011001
Value 2 00101001

If you binary or these two values together, you get the following value:

ORed Value 01111001

In this case, every hit that was set to 1 in either value was set to 1 in the resulting value.
Only those hits that were 0 in both values were 0 in the resulting value.

Binary Attribute Flags

Binary AnDs and ORs are used in C++ for setting and reading attribute flags. Attribute
flags are values where each bit in the value specifies whether a specific option is turned
on or off. This enables programmers to use defined flags. A defined flag is a value with
only one bit set to 1 or a combination of other values in which a specific combination of
bitsis set to 1 so that multiple options are set with a single value. The flags controlling
various options are ored together, making a composite flag specifying which options
should be on and which should be off.

If two flags that specify certain conditions are specified as two different bitsin a byte,
those two flags can often be ored together as follows:

Flag 1 00001000
Flag 2 00100000
Combination 00101000

Thisis how flags are combined to specify a number of settingsin a limited amount of
memory space. In fact, thisis what is done with most of the check box settings on the

Integrating the Mouse and Keyboard in Your Application

53|

window and control properties dialogs. These on/off settings are ored together to form
one or two sets of flags that are examined by the Windows operating system to deter-
mine how to display the window or control and how it should behave.

On the flip side of this process, when you need to determine if a specific flag is included
in the combination, you can AND the combination flag with the specific flag that you are
looking for as follows:

Combination 00101000
Flag 1 00001000
Result 00001000

The result of this operation can be compared to the flag that you used to filter the com-
bined flag. If the result is the same, the flag was included. Another common approach is
to check whether the filtered combination flag is nonzero. If the flag being used for fil-
tering the combination had not been included, the resulting flag would be zero. As a
result, you could have left the comparison out of the if statement in the preceding code,
leaving you with an if statement that looks like the following:

if (nFlags & MK_LBUTTON)

You can modify this approach to check whether a flag is not in the combination as fol-
lows:

if (!(nFlags & MK_LBUTTON))

You might find one of these ways of checking for aflag easier to understand than the
others. You'll probably find all of them in use.

Improving the Drawing Program

If you ran your program, you probably noticed a small problem. To draw a solid line,

you need to move the mouse very slowly. How do other painting programs solve this

problem? Simple, they draw a line between two points drawn by the mouse. Although
this seems a little like cheating, it's the way that computer drawing programs work.

As you move the mouse across the screen, your computer is checking the location of the
mouse every few clock ticks. Because your computer doesn’t have a constant trail of
where your mouse has gone, it has to make some assumptions. The way your computer
makes these assumptions is by taking the points that the computer does know about and
drawing lines between them. When you draw lines with the freehand tool in Paint, your
computer is playing connect the dots.

|54 Day 3

Because all the major drawing programs draw lines between each pair of points, what do
you need to do to adapt your application so that it also uses this technique? First, you
need to keep track of the previous position of the mouse. This means you need to add
two variables to the dialog window to maintain the previous X and Y coordinates. You
can do this by following these steps:

In the workspace pane, select the Class View tab.
Select the dialog class—in this case, the cMouseD1g class.
Right-click the mouse and select Add Member Variable from the pop-up menu.

A wDd P

Enter int as the Variable Type and m_iPrevY as the Variable Name and specify
Private for the access in the Add Member Variable dialog, as shown in Figure 3.2.

FlGURE 3 2 . Add Member Yariable

The Add Member e
Variable dial 0g. VVariable Name: &I

[m_iPrevy

Acc
[r Buble (" Protected & Prjvate

5. Click OK to add the variable.

6. Repeat steps 3 through 5, specifying the Variable Name asm_iPrevX to add the
second variable.

After you add the variables needed to keep track of the previous mouse position, you can
make the necessary modifications to the onMouseMove function, as shown in Listing 3.2.

LisTING 3.2. THE REVISED OnMouseMove FUNCTION.

1: void CMouseDlg: :0OnMouseMove (UINT nFlags, CPoint point)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: [EELETTEEEL iy

6: // MY CODE STARTS HERE

7 [HEEELTEEEE i rrrr

8:

9: // Check to see if the left mouse button is down

10: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)

11: {

12: // Get the Device Context

13: CClientDC dc(this);

14:

15: // Draw a line from the previous point to the current point

16: dc.MoveTo(m_iPrevX, m_iPrevY);

Integrating the Mouse and Keyboard in Your Application 55|

17: dc.LineTo(point.x, point.y);

18:

19: // Save the current point as the previous point
20: m_iPrevX = point.Xx;

21: m_iPrevY = point.y;

22: }

23:

24: TIEETEETEETT i

25: // MY CODE ENDS HERE

26: [IEETTTEE T

27:

28: CDialog: :OnMouseMove (nFlags, point);
29: }

Look at the code that draws the line from the previous point to the current point:

dc.MoveTo(m_iPrevX, m_iPrevY);
dc.LineTo(point.x, point.y);

You see that you need to move to the first position and then draw aline to the second
point. The first step is important because without it, there is no telling where Windows
might think the starting position is. If you compile and run your application, it draws a
bit better. However, it now has a peculiar behavior. Every time you press the left mouse
button to begin drawing some more, your application draws aline from where you ended
the last line you drew, as shown in Figure 3.3.

FIGURE 33 # Mouse and Keyboard
The drawing program

with a peculiar

behavior.

Adding the Finishing Touches

Your application is doing all its drawing on the mouse move event when the left button
is held down. Initializing the previous position variables with the position of the mouse
when the left button is pressed should correct this application behavior. Let’s try this
approach by following these steps:

1. Using the Class Wizard, add a function for the wv_LBUTTONDOWN message on the
dialog object.

|56 Day 3

2. Edit the onLButtonDown function that you just created, adding the codein Listing
3.3

LisTING 3.3. THE OnLButtonDown FUNCTION.

1: void CMouseDlg::0nLButtonDown(UINT nFlags, CPoint point)
2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: TIEETEETEETT i rrr

6: // MY CODE STARTS HERE

7 [IEETTTEE T rr

8:

9: // Set the current point as the starting point

10: m_iPrevX = point.Xx;

11: m_iPrevY = point.y;

12:

13: [IEETTTEE T rr

14: // MY CODE ENDS HERE

15: FIEETEETEETE iy

16:

17: CDialog::0OnLButtonDown(nFlags, point);

18: }

When you compile and run your application, you should find that you can draw much
like you would expect with a drawing program, as shown in Figure 3.4.

Ficure 3.4. % Mouse and Keyhoard]

The finished drawing i

program.
Capturing Keyboard Events

Reading keyboard eventsis similar to reading mouse events. As with the mouse, there
are event messages for when a key is pressed and when it is released. These events are
listed in Table 3.2.

Integrating the Mouse and Keyboard in Your Application 57 |

TABLE 3.2. KEYBOARD EVENT MESSAGES.

Message Description
WM_KEYDOWN A key has been pressed down.
WM_KEYUP A key has been released.

The keyboard obviously has fewer messages than the mouse does. Then again, there are
only so many things that you can do with the keyboard. These event messages are avail-
able on the dialog window object and are triggered only if there are no enabled controls
on the window. Any enabled controls on the window have input focus, so all keyboard
events go to them. That’s why you remove all controls from the main dialog for your
drawing application.

Changing the Drawing Cursor

To get agood idea of how you can use keyboard-related event messages, why don’t you
use certain keys to change the mouse cursor in your drawing application? Make the A
key change the cursor to the default arrow cursor, which your application starts with.
Then you can make B change the cursor to the I-beam and C change the cursor to the
hourglass. To get started adding this functionality, follow these steps:

1. Using the Class Wizard, add a function for the wm_KEYDOWN message on the dialog
object.
2. Edit the onkeyDown function that you just created, adding the code in Listing 3.4.

LisTING 3.4. THE OnKeyDown FUNCTION.

1: void CMouseDlg: :0nKeyDown (UINT nChar, UINT nRepCnt, UINT nFlags)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: [EEEETTEEEE T rrrrrrr g

6: // MY CODE STARTS HERE

7 [EELETTTEELE i

8:

9: char 1lsChar; // The current character being pressed
10: HCURSOR 1lhCursor; // The handle to the cursor to be displayed
11:
12: // Convert the key pressed to a character
13: 1sChar = char(nChar);
14:
15: // Is the character "A"
16: if (lsChar == 'A")

continues

|58

Day 3

LISTING 3.4. CONTINUED

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

{

Il
if

Il
if

Il
if

}

// Load the arrow cursor

1hCursor = AfxGetApp()->LoadStandardCursor (IDC_ARROW) ;
// Set the screen cursor

SetCursor(lhCursor);

Is the character "B"
(1lsChar == 'B')

// Load the I beam cursor

1hCursor = AfxGetApp()->LoadStandardCursor(IDC_IBEAM);
// Set the screen cursor

SetCursor(lhCursor);

Is the character "C"
(1sChar == 'C')

// Load the hourglass cursor

1hCursor = AfxGetApp()->LoadStandardCursor(IDC_WAIT);
// Set the screen cursor

SetCursor(lhCursor);

Is the character "X"
(1lsChar == 'X")

// Load the arrow cursor

1hCursor = AfxGetApp()->LoadStandardCursor (IDC_ARROW) ;
// Set the screen cursor

SetCursor(lhCursor);

// Exit the application

0OnOK() ;

PIPTHEEET ity

I

MY CODE ENDS HERE

LIEETEEEE ity

CDialog: :0OnKeyDown(nChar, nRepCnt, nFlags);

In the function definition, you see three arguments to the onkeyDown function. The first is
the key that was pressed. This argument is the character code of the character, which
needs to be converted into a character in the first line of your code. After you convert the

Integrating the Mouse and Keyboard in Your Application 59 |

character, you can perform straight-ahead comparisons to determine which key was
pressed:

void CMouseD1lg: :0nKeyDown (UINT nChar, UINT nRepCnt, UINT nFlags)

The second argument to the onkeyDown function is the number of times that the key is
pressed. Normally, if the key is pressed and then released, thisvalueis 1. If the key is
pressed and held down, however, the repeat count rises for this key. In the end, this value
tells you how many times that Windows thinks the key has been pressed.

The third argument to the onkeybown function is a combination flag that can be exam-
ined to determine whether the Alt key was pressed at the same time as the key or
whether the key being pressed is an extended key. This argument does not tell you
whether the shift or control keys were pressed.

When you determine that a specific key was pressed, then it's time to change the cursor
to whichever cursor is associated with that key. There are two steps to this process. The
first step is to load the cursor into memory. You accomplish this step with the
LoadStandardcursor function, which loads one of the standard Windows cursors and
returns a handle to the cursor.

Nﬂtﬂ A sister function, LoadCursor, can be passed the file or resource name of a
) custom cursor so that you can create and load your own cursors. If you
' design your own cursor in the resource editor in Visual C++, you can pass the
cursor name as the only argument to the LoadCursor function. For example,

if you create your own cursor and name it IDC_MYCURSOR, you can load it
with the following line of code:

1hCursor = AfxGetApp()->LoadCursor(IDC_MYCURSOR) ;

After you load your own cursor, you can set the mouse pointer to your cur-
sor using the SetCursor function, as with a standard cursor.

After the cursor is loaded into memory, the handle to that cursor is passed to the
SetcCursor function, which switches the cursor to the one the handle points to. If you
compile and run your application, you should be able to press one of these keys and get
the cursor to change, asin Figure 3.5. However, the moment you move the mouse to do
any drawing, the cursor switches back to the default arrow cursor. The following section
describes how to make your change stick.

| 60 Day 3

FIGURE 35 % Mouse and Keyboard

Changing the cursor
with specific keys.

Making the Change Stick

The problem with your drawing program is that the cursor is redrawn every time you
move the mouse. There must be some way of turning off this behavior.

Each time the cursor needs to be redrawn—because the mouse has moved, because
another window that was in front of your application has gone away, or because of what-
ever other reason—awMm_SETCURSOR event message is sent to your application. If you
override the native behavior of your application on this event, the cursor you set remains
unchanged until you change it again. To do this, follow these steps:

1. Add anew variable to the cMouseD1g class, as you did for the previous position
variables. This time, declare the type as BooL and name the variable m_bCursor, as
shown in Figure 3.6.

FlGURE 3 . 6_ Add Member Variable HE
. . Variable Type:

Defining a class mem- o

ber variable. Vaiable Name |

[m_bCursor

2. Initialize them_bcCursor variable in the onInitDialog with the codein Listing 3.5.

LisTING 3.5. THE OnInitDialog FUNCTION.

BOOL CMouseDlg::0OnInitDialog()
: q
: CDialog::0OnInitDialog();

1:
2
3
4:
5:
6 .
7
8

// Set the icon for this dialog. The framework does this
Oautomatically

Integrating the Mouse and Keyboard in Your Application 61 |

9: // when the application's main window is not a dialog

10: SetIcon(m_hIcon, TRUE); // Set big icon

11: SetIcon(m_hIcon, FALSE); // Set small icon

12:

13: // TODO: Add extra initialization here

14:

15: [IEETTTEETEE i rr

16: // MY CODE STARTS HERE

17: [EEELTTEEEEEETT i

18:

19: // Initialize the cursor to the arrow

20: m_bCursor = FALSE;

21:

22: [EEEETTTEEEE i

23: // MY CODE ENDS HERE

24: [IEETTTEET i

25:

26: return TRUE; // return TRUE unless you set the focus to a
Ocontrol

27: }

3. Alter the onkeybown function to set the m_bcursor flag to TRUE when you change
the cursor, asin Listing 3.6.

LiIsTING 3.6. THE OnKeyDown FUNCTION.

1: void CMouseDlg: :0nKeyDown (UINT nChar, UINT nRepCnt, UINT nFlags)

2: {

3: // TODO: Add your message handler code here and/or call default

4:

5: [IEETETTELT T

6: // MY CODE STARTS HERE

7: [EEEETTTEEEE i

8:

9: char 1sChar; // The current character being pressed
10: HCURSOR 1lhCursor; // The handle to the cursor to be displayed
11:

12: // Convert the key pressed to a character

13: 1sChar = char(nChar);

14:

15: // Is the character "A"

16: if (lsChar == 'A")

17: // Load the arrow cursor

18: 1hCursor = AfxGetApp()->LoadStandardCursor (IDC_ARROW) ;
19:

20: // Is the character "B"

21: if (lsChar == 'B')

continues

|62 Day 3

LiSTING 3.6. CONTINUED

22: // Load the I beam cursor

23: 1hCursor = AfxGetApp()->LoadStandardCursor (IDC_IBEAM);
24:

25: // Is the character "C"

26: if (lsChar == 'C')

27: // Load the hourglass cursor

28: 1hCursor = AfxGetApp()->LoadStandardCursor(IDC_WAIT);
29:

30: // Is the character "X"

31: if (1sChar == 'X")

32: {

33: // Load the arrow cursor

34: 1hCursor = AfxGetApp()->LoadStandardCursor (IDC_ARROW) ;
35: // Set the cursor flag

36: m_bCursor = TRUE;

37: // Set the screen cursor

38: SetCursor(lhCursor);

39: // Exit the application

40: 0OnOK() ;

41: }

42: else

43: {

44: /! Set the cursor flag

45: m_bCursor = TRUE;

46: // Set the screen cursor

47: SetCursor(lhCursor);

48: }

49:

50: [EEEETTTEEL i

51: // MY CODE ENDS HERE

52: [EELETTTEEE i

53:

54: CDialog: :0OnKeyDown(nChar, nRepCnt, nFlags);
55: }

4. Using the Class Wizard, add a function for the wM_SETCURSOR message on the dia-
log object.
5. Edit the onSetcursor function that you just created, adding the code in Listing 3.7.

LisTING 3.7. THE OnSetCursor FUNCTION.

: BOOL CMouseDlg::0OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)

1
2: {

3: // TODO: Add your message handler code here and/or call default
4:

Integrating the Mouse and Keyboard in Your Application

63|

N O

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19: }

TIETEEELT ity
// MY CODE STARTS HERE
PIEETETEE LTty

// If the cursor has been set, then return TRUE
if (m_bCursor)

return TRUE;
else

TIETEEELT ity
// MY CODE ENDS HERE
LIEETETEE ity

return CDialog::0nSetCursor(pWnd, nHitTest, message);

The onSetcursor function needs to always return TRUE or else call the ancestor function.
The ancestor function resets the cursor and does need to be called when the application
first starts. Because of this, you need to initialize your variable to FALSE so that until the
user presses a key to change the cursor, the default onsetCursor processing is executed.
When the user changes the cursor, you want to bypass the default processing and return
TRUE instead. This allows the user to draw with whichever cursor has been selected,

including the hourglass, as shown in Figure 3.7.

FIGURE 3.7.

Drawing with the
hourglass cursor.

* Mouse and Keyboard [x]

able in MFC that you can use to handle this task. The first is

which all of the MFC window and control classes are derived.

The most common cursor change that you are likely to use in your programs
is setting the cursor to the hourglass while your program is working on
something that might take a while. There are actually two functions avail-

BeginWaitCursor, which displays the hourglass cursor for the user. The sec-
ond function is EndwaitCursor, which restores the cursor to the default cur-
sor. Both of these functions are members of the cCmdTarget class, from

| 64 Day 3

If you have a single function controlling all the processing during which you
need to display the hourglass and you don’t need to display the hourglass
after the function has finished, an easier way to show the hourglass cursor is
to declare a variable of the cwaitCursor class at the beginning of the func-
tion. This automatically displays the hourglass cursor for the user. As soon as
the program exits the function, the cursor will be restored to the previous
cursor.

Summary

In this chapter, you learned about how you can capture mouse event messages and per-
form some simple processing based upon these events. You used the mouse events to
build a simple drawing program that you could use to draw freehand figures on a dialog
window.

You also learned how to grab keyboard events and determine which key is being pressed.
You used this information to determine which cursor to display for drawing. For thisto
work, you had to learn about the default cursor drawing in MFC applications and how
you could integrate your code with this behavior to make your application behave the
way you want it to.

From here, you will learn how to use the Windows timer to trigger events at regular
intervals. You will also learn how to use additional dialog windows to get feedback from
the user so that you can integrate that feedback into how your application behaves. After
that, you will learn how to create menus for your applications.

Q&A

Q How can | change thetype of linethat | am drawing? | would liketo draw a
larger line with a different color.

A When you use any of the standard device context commands to draw on the screen,
you are drawing with what is known as a pen, much like the pen you use to draw
on a piece of paper. To draw bigger lines, or different color lines, you need to
select a new pen. You can do this by adapting the code in the onMouseMove func-
tion, starting where you get the device context. The following code enables you to
draw with a big red pen:

// Get the Device Context
CClientDC dc(this);

// Create a new pen
CPen lpen(PS_SOLID, 16, RGB(255, 0, 0));

Integrating the Mouse and Keyboard in Your Application

65|

// Use the new pen
dc.SelectObject (&lpen);

// Draw a line from the previous point to the current point
dc.MoveTo(m_iPrevX, m_iPrevY);
dc.LineTo(point.x, point.y);

How can you tell whether the Shift or Ctrl keys are being held down when you
receive the WM_KEYDOWN message?

You can call another function, : :GetKeyState, with a specific key code to deter-
mine whether that key is being held down. If the return value of the

: :GetKeyState function is negative, the key is being held down. If the return value
is nonnegative, the key is not being held down. For instance, if you want to deter-
mine whether the Shift key is being held down, you can use this code:

if (::GetKeyState (VK _SHIFT) < 0)
MessageBox("Shift key is down!");

A number of virtual key codes are defined in Windows for all the special keys.
These codes let you look for special keys without worrying about OEM scan codes
or other key sequences. You can use these virtual key codesin the : :GetKeyState
function and pass them to the onkeyDown function as the nchar argument. Refer to
the Visual C++ documentation for alist of the virtual key codes.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1
2.

What are the possible mouse messages that you can add functions for?

How can you tell if the left mouse button is down on the wM_MOUSEMOVE event mes-
sage?

How can you prevent the cursor from changing back to the default cursor after you
set it to a different one?

Exercises

1

Modify your drawing program so that the left mouse button can draw in red and
the right mouse button can draw in blue.

|66 Day 3

2. Extend the onkeyDown function to add some of the following standard cursors:
e IDC_CROSS
e IDC_UPARROW
e IDC_SIZEALL
e IDC_SIZENWSE
e IDC_SIZENESW
e IDC_SIZEWE
e IDC_SIZENS
e IDC_NO
e IDC_APPSTARTING
e IDC_HELP

WEEK 1

DAY 4

Working with Timers

You may often find yourself building an application that needs to perform a
specific action on aregular basis. The task can be something simple such as
displaying the current time in the status bar every second or writing a recovery
file every five minutes. Both of these actions are regularly performed by sever-
al applications that you probably use on a daily basis. Other actions that you
might need to perform include checking specific resources on aregular basis,
as aresource monitor or performance monitor does. These examples are just a
few of the situations where you want to take advantage of the availability of
timers in the Windows operating system.

Today you are going to learn

« How to control and use timersin your Visual C++ applications.
» How to set multiple timers, each with a different recurrence interval.
« How to know which timer has triggered.

* How you can incorporate this important resource into all your Visual C++
applications.

|68 Day 4

Understanding Windows Timers

Windows timers are mechanisms that let you set one or more timers to be triggered at a
specific number of milliseconds. If you set atimer to be triggered at a 1,000 millisecond
interval, it triggers every second. When atimer triggers, it sends awMm_TIMER message to
your application. You can use the Class Wizard to add a function to your application to
handle this timer message.

Timer events are placed only in the application event queue if that queue is empty and
the application is idle. Windows does not place timer event messages in the application
event queue if the application is already busy. If your application has been busy and has
missed several timer event messages, Windows places only a single timer message in the
event queue. Windows does not send your application all the timer event messages that
occurred while your application was busy. It doesn’t matter how many timer messages
your application may have missed; Windows still places only a single timer message in
your queue.

When you start or stop a timer, you specify atimer 1D, which can be any integer value.
Your application uses this timer 1D to determine which timer event has triggered, as well
asto start and stop timers. You'll get a better idea of how this process works as you build
your application for today.

Placing a Clock on Your Application

In the application that you will build today, you will use two timers. The first timer
maintains a clock on the window. This timer is always running while the application is
running. The second timer is configurable to trigger at whatever interval the user speci-
fiesin the dialog. The user can start and stop this timer at will. Let's get started.

Creating the Project and Application

You will build today’s sample application in three phases. In the first phase, you will add
all the controls necessary for the entire application. In the second phase, you will add the
first of the two timers. This first timer will control the clock on the application dialog. In
the third phase, you will add the second timer, which the user can tune, start, and stop as
desired.

To create today’s application, follow these steps:

1. Create anew project, named Timers, using the same AppWizard settings that
you've used for the past three days. Specify the application title as Timers.

Working with Timers 69 |

2. Lay out the dialog window as shown in Figure 4.1, using the control propertiesin
Table 4.1. Remember that when you place a control on the window, you can right-
click the mouse to open the control’s properties from the pop-up menu.

FIGURE 4.1.
. Fle Edi Yiew |nsett Project Buid Layout Iooks Window Help =13
The'ﬁmersappllcallon & sE | Em,g_‘,@,ﬁ@m,—jrﬂ

dialog layout. TDay4Dig =110 class members) =1[& CDay4DIg 52 8 ”@ £ 0 (=l

- ol e

&7 Day# classes e = ’T &

. Az ab|

Timer Interval: [ot Start Timer Step Timer] ED

Time: Curent Time | rae

i Count:0

B

s m

Exit)

-]

= H

i = 5

.2 Class, [Reso. | (2] Fievi B =

D =) = A

<

E|
K]
Guild {Debug Findin Files 1) Findin Files2]| 4| | »

Ready [z 0.0 B 245483 FEAD /)

TABLE 4.1. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC
Caption Timer &Interval:

Edit Box ID IDC_INTERVAL

Button ID IDC_STARTTIME
Caption &Start Timer

Button ID IDC_STOPTIMER
Caption S&top Timer
Disabled Checked

Static Text ID IDC_STATIC
Caption Time:

Static Text ID IDC_STATICTIME
Caption Current Time

continues

|7O

Day 4

TABLE 4.1. CONTINUED

Object Property Setting

Static Text ID IDC_STATIC
Caption Count:

Static Text ID IDC_STATICCOUNT
Caption 0

Button ID IDC_EXIT
Caption E&xit

3. Set the tab order as you learned on Day 2, “Using Controls in Your Application.”
4. Add code to the Exit button to close the application, as you did on Day 2.

Adding the Timer IDs

Because you will be using two timers in this application, you should add two |Ds to your
application to represent the two timer 1Ds. This can be done by following these steps:

1. On the Resource View tab in the workspace pane, right-click the mouse over the
Timers resources folder at the top of the resource tree. Select Resource Symbols
from the pop-up menu, asin Figure 4.2.

FIGURE 4.2. %, Dap# - Microsoft Visual C++ - [Dayd.ic - IDD_DAY4_DIALOG (Dialog)]
The R |Zl 6o Edt view et Proiect Build Took Window Help 1] x|
€ Resource pop-u e ~ 5
N O R Y E) —]
menu. J CDap4Dlg [=EI[IDC_STATICTIME [SI[EN_cUCkED 52 % v‘ J‘fé iy] Sl
EV%A:: LI\\II\\II\J [Cont... 53]
0 Persuce b Y-
E = s, —_ : Aq abl
imet [aterval £ it Stat Timer Stop Timer o
Cjv SsveDapdec = - 0o
(et Time: Curtent Time: R ®
Impat.. Count 0
[¥ Docking View m
Hide S m
Exit =
Properties 0= B2
=
= H
ab
B3 Clsss.. | g Reso.. [[£] Fievi B =
=) © &
S Em = =)
] =
Gl|payd exe - 0 error(s). 0 varning(s)
=
[T\ Build /Debug Findin Files1 » Findin Files2z]| 4| | >
Browses and edits the symbols in the resource fle 7

2. On the Resource Symbols dialog, click the New button.

Working with Timers 71 |

3. Onthe New Symbol dialog, enter ID_CLOCK_TIMER as the symbol name and 1 as
the value, as shown in Figure 4.3.

FIGURE 4.3. +..Dayd - Miciosolt Visual C++ - [Dagd.rc - IDD_DAY4_DIALOG (Dialog]]
i E\u Edit View Inset Project Buld Tools Window Help _18x]
Adding anewresource 5T Ga) me oo mmEal Skl
me0| CDaydDlg [=lfioc sTancrive [=lfen_cuckeo B2 | “@ 4 ' <y
—————— x| T
R [T g e Symbols B [(Cont |
[Diakog =
Dleon An abl
(1 Stiing Table
(10 Version E g
B
$ m
Lol
i
=H
ab 5]
"IjElaw..F!m. =] Filey i ol
|E B : 1
E =
4[pay4.exe — 0 error(s). 0 warning(s)
B =
Build { Debug K Find in Files 1) Find in Files2 /]| 4] | LI_‘
2

Ready

4. Repeat steps 2 and 3, specifying ID_COUNT_TIMER as the symbol name and 2 as the
value.

5. Click the Close button to close the Resource Symbols dialog. The two timer IDs
are now in your application and ready for use.

Starting the Clock Timer

To start the clock timer, you need to edit the onInitDialog function, asyou did in the
previous two days. Add the new codein Listing 4.1.

LISTING 4.1. THE OnInitDialog FUNCTION.

BOOL CTimersDlg::0OnInitDialog()
{

CDialog::0nInitDialog();

// TODO: Add extra initialization here

©oO~NOOODWN-—=

LIEEETTEEEEL iy

continues

|72 Day 4

LISTING 4.1. CONTINUED

10: // MY CODE STARTS HERE

11: [IEETETTEET i rr

12:

13: // Start the clock timer

14: SetTimer (ID_CLOCK TIMER, 1000, NULL);

15:

16: FIEETEETEETE iy

17: // MY CODE ENDS HERE

18: TIEETEETEE i rrr

19:

20: return TRUE; // return TRUE unless you set the focus to a
Ocontrol

21: }.

In thislisting, you started the clock timer with the setTimer function. The first argument
that you passed to the setTimer function isthe ID for the clock timer. The second argu-
ment is how often you want to trigger the event. In this case, the clock timer event is
triggered every 1,000 milliseconds, or about every second. The third argument is the
address of an optional callback function that you can specify to bypass the wm_TIMER
event. If you pass NULL for this argument, the wm_TIMER event is placed in the application

message queue.
Nﬂtﬂ A callback function is a function you create that is called directly by the
_ Windows operating system. Callback functions have specific argument defin-

itions, depending on which subsystem calls the function and why. After you
get past the function definition, however, you can do whatever you want or
need to do in the function.

A callback function works by passing the address of the function as an argu-
ment to a Windows function that accepts callback functions as arguments.
When you pass the function address to Windows, your function is called
directly every time the circumstances occur that require Windows to call the
callback function.

Handling the Clock Timer Event

Now that you' ve started a timer, you need to add the code to handle the timer event mes-
sage. You can do this by following these steps:

1. Using the Class Wizard, add a variable to the 1bc_STATICTIME control of type
CString named m_sTime.

Working with Timers 73 |

2. Using the Class Wizard, add a function to handle the wu_TIMER message for the
CTimersD1lg object.

3. Edit the onTimer function, adding the codein Listing 4.2.

LISTING 4.2. THE OnTimer FUNCTION.

1: void CTimersD1lg::0nTimer (UINT nIDEvent)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: [EEEETTTEEL i r g

6: // MY CODE STARTS HERE

7 [EEEETTTEELE i

8:

9: // Get the current time

10: CTime curTime = CTime::GetCurrentTime();
11:

12: // Display the current time

13: m_sTime.Format("%d:%d:%d", curTime.GetHour(),
14: curTime.GetMinute(),

15: curTime.GetSecond());

16:

17: // Update the dialog

18: UpdateData(FALSE) ;

19:
20: [EEEETTEEEL i r
21: // MY CODE ENDS HERE
22: [EEEETTTEELE i
23:
24: CDialog::0OnTimer (nIDEvent);
25: }

In this listing, you declare an instance of the cTime class, initializing it to the current sys-
tem time. The next thing that you do is set the m_sTime string to the current time, using
the Format method to format the time in the familiar HH:MM:SS format. Finally, you
update the dialog window with the current time. If you compile and run your application
now, you should see a clock running in the middle of your dialog window, asin Figure

4.4,
FIGURE 4.4. # Tineis
. Timer Interval: D e
A running clock on o [EEE
your application s
dialog

Exit

|74

Day 4

Adding a Second Timer to Your Application

As you have seen, adding a single timer to an application is a pretty simple task. All it
takes is calling the setTimer function and then placing the timer code in the onTimer
function. However, sometimes you need more than one timer running simultaneously in
the same application. Then things get a little bit more involved.

Adding the Application Variables

Before you add the second timer to your application, you need to add a few variables to
the controls. With the clock timer, you needed only a single variable for updating the
clock display. Now you need to add a few other variables for the other controls, as listed

in Table 4.2.

TABLE 4.2. CONTROL VARIABLES.

Object Name Category Type
IDC_STATICCOUNT m_sCount Value CString
IDC_INTERVAL m_iInterval Value int
IDC_STARTTIME m_cStartTime Control CButton
IDC_STOPTIMER m_cStopTime Control CButton

After you add all the variables using the Class Wizard, follow these steps:

1. Using the Class Wizard, select the m_iInterval variable and specify a Minimum
Value of 1 and a Maximum Value of 100000 in the two edit boxes below the list of
variables, as shown in Figure 4.5.

FIGURE 4.5.

Soecifying a range
for avariable.

MFC ClassWizard HE
Message Maps | Member Variables | Automation | ActiveX Events | Class Info |
Proiect Class name: L
Dayd ~] [coawni -
L | |EE Add Varisble
D\ ADap#\DapDlg h, DA, ADay#\DapDlg.cpp
Contral IDs Type Member Delete Variable |

F INTE Vel Update Collme
CButton m_cStaitT me —

IDC_STATICCOUNT CString m_sCount Bird &1l

IDC_STATICTIME CSting m_sTime

IDC_STOPTIMER CButton m_cStopTime

Description: ~ int with validation

Minimum Yalue: 1
Magimum Value, 100000

Cancel

Working with Timers 75 |

2. Onthe Class View tab in the workspace pane, add a member variable to the
CTimersDlg class as you learned yesterday. Specify the variable type as int, the
variable name asm_iCount, and the access as Private.

3. Using the Class Wizard, add a function on the EN_CHANGE event message for the
IDC_INTERVAL control 1D (the edit box). Edit the function and add the code in
Listing 4.3.

LiISTING 4.3. THE OnChangeInterval FUNCTION.

1: void CTimersDlg::0nChangelInterval()

2: {

3: // TODO: If this is a RICHEDIT control, the control will not
4: // send this notification unless you override the

[JCDialog::0OnInitialUpdate()

5: // function and call CRichEditCrtl().SetEventMask()
6: // with the EN_CHANGE flag ORed into the mask.

7:

8: // TODO: Add your control notification handler code here
9:

10: [EEEETTTEEL i

11: // MY CODE STARTS HERE

12: [EEEEETEEEE iy

13:

14: // Update the variables

15: UpdateData(TRUE) ;

16:

17: [EEEETTEEEI i r g

18: // MY CODE ENDS HERE

19: [EEEETTTEEL i
20: }

When you specify a value range for the timer interval variable, Visual C++ automatically
prompts the user, stating the available value range if the user enters a value outside of
the specified range. This prompt is triggered by the updatebata function call in the
onChangeInterval function. The last variable that was added through the workspace
paneis used as the actual counter, which is incremented with each timer event.

Starting and Stopping the Counting Timer

To make your second timer operational, you need to

e Initializethem_iInterval variable.

» Start the timer when the 1DC_STARTTIME button is clicked.

* Increment them_icCount variable and update the dialog on each timer event.
 Stop the timer when the 1DC_STOPTIMER button is clicked.

|76 Day 4

To implement this additional functionality, perform the following steps:

1. Edit theonInitbDialog function, updating the code asin Listing 4.4.

LISTING 4.4. THE UPDATED OnInitDialog FUNCTION.

1: BOOL CTimersD1lg::0nInitDialog()

2: {

3: CDialog::0OnInitDialog();

4:

5:

6:

7: // TODO: Add extra initialization here

8:

9: [EEEETTTEEI i

10: // MY CODE STARTS HERE

11: [EEEETTEEEE iy

12:

13: // Initialize the counter interval

14: m_ilInterval = 100;

15:

16: // Update the dialog

17: UpdateData(FALSE) ;

18:

19: // Start the clock timer

20: SetTimer (ID_CLOCK_TIMER, 1000, NULL);

21:

22: [EEEETTTEEI i

23: // MY CODE ENDS HERE

24: [EEEETTTEEI i

25:

26: return TRUE; // return TRUE unless you set the focus to a
Ocontrol

27: }

2. Using the Class Wizard, add a function to the BN_CLICKED message on the
IDC_STARTTIME button. Edit the onstarttime function asin Listing 4.5.

LISTING 4.5. THE OnStarttime FUNCTION.

void CTimersD1lg::0OnStarttime()
A

// TODO: Add your control notification handler code here

// MY CODE STARTS HERE

1:

2

3

4:

5: [IEEEEEErrr i rrrt
6:

7 [IEEEEEEEErrrrrrrrrrrny
8

9

// Update the variables

Working with Timers 77 |

10: UpdateData(TRUE) ;

11:

12: // Initialize the count

13: m_iCount = 0;

14: // Format the count for displaying
15: m_sCount.Format("%d", m_iCount);
16:

17: // Update the dialog

18: UpdateData(FALSE) ;

19: // Start the timer

20: SetTimer (ID_COUNT_TIMER, m_iInterval, NULL);
21:

22: [IEETTTEE T

23: // MY CODE ENDS HERE

24: LEEEETTEEEE i

25: }

3. Using the Class Wizard, add a function to the BN_CLICKED message on the
IDC_STOPTIMER button. Edit the onStoptimer function asin Listing 4.6.

LISTING 4.6. THE OnStoptimer FUNCTION.

1: void CTimersD1lg: :0OnStoptimer()
2: {

3: // TODO: Add your control notification handler code here
4:

5: TIEELEETEE ey

6: // MY CODE STARTS HERE

7: TIEETELTEE T r

8:

9: // Stop the timer
10: KillTimer (ID_COUNT_TIMER);
11:
12: TIETELETEEET ity
13: // MY CODE ENDS HERE
14: TIEELEETEE ey
15: }

4. Edit the onTimer function, updating the code asin Listing 4.7.

LISTING 4.7. THE UPDATED OnTimer FUNCTION.

1: void CTimersD1lg::0nTimer (UINT nIDEvent)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

continues

|78 Day 4

LISTING 4.7. CONTINUED

5: [EEEETTTEEL i

6: // MY CODE STARTS HERE

7: [EELETTTEEL i

8:

9: // Get the current time

10: CTime curTime = CTime::GetCurrentTime();
11:

12: // Which timer triggered this event?
13: switch (nIDEvent)

14: {

15: // The clock timer?

16: case ID_CLOCK_TIMER:

17: // Display the current time

18: m_sTime.Format("%d:%d:%d", curTime.GetHour(),
19: curTime.GetMinute(),

20: curTime.GetSecond());

21: break;

22: // The count timer?

23: case ID_COUNT_TIMER:

24: // Increment the count

25: m_iCount++;

26: // Format and display the count
27: m_sCount.Format("%d", m_iCount);
28: break;

29: }

30:

31: // Update the dialog

32: UpdateData(FALSE) ;

33:

34: [EELETTTEEL i

35: // MY CODE ENDS HERE

36: [EEEETTEEEE i r g

37:

38: CDialog::0OnTimer(nIDEvent);

39: }

Inthe onInitDialog function, you added the initialization of them_iInterval variable,
starting it at 100. Thisinitialization is reflected on the dialog window by calling the
UpdateData function

In the onstarttime function, you first synchronize the variables with the control values,
alowing you to get the current setting of them_iInterval variable. Next, you initialize
them_iCount variable, setting it to @, and then format the value in the m_sCount CString
variable, which is updated in the dialog window. The last thing that you do is to start the
timer, specifying the 10_COUNT_TIMER ID and using the interval from the m_iInterval
variable.

Working with Timers

79|

In the onstoptimer function, all you really need to do is stop the timer. You do this by
calling thekillTimer function, passing the timer ID as the only argument.

Itisinthe onTimer function that things begin to get interesting. Here, you still see the
code for handling the clock timer event. To add the functionality for the counter timer,
you need to determine which timer has triggered this function. The only argument to the
onTimer function just happens to be the timer ID. You can use this ID in a switch state-
ment to determine which timer has called this function and to control which set of code
is executed. The clock timer codeis still the same as it wasin Listing 4.2. The counter
timer code is placed into its spot in the switch statement, incrementing the counter and
then updating the m_sCount variable with the new value. You can compile and run your
application at this point, and you can specify atimer interval and start the timer running,
asin Figure 4.6.

FIGURE 4.6. 8 Timers
. Timer [nterval: et Timer oo T
A running counter on = [t |

your application e
dialog.

Count: B

Exit

Enabling the Stop Button

If you run your application, you'll find that it works well except for one small problem.
When you start your second timer, you can’t stop it. When you were specifying all the

properties of the controls, you disabled the Stop Timer button. Before you can stop the

timer, you need to enable this button.

What makes the most sense is enabling the stop button and disabling the start button
once the timer starts. Then you reverse the situation when the timer stops again. You can
do this in the same way you enabled and disabled controls on Day 2, or you can modify
your approach just alittle.

Remember that when you added variables to the controls, you added variables to the
start and stop buttons. These were not normal variables, but control variables. Instead of
getting a pointer to these controls using their 1Ds, you can work directly with the control
variables. Try that now by updating the onStarttime and onStoptimer functionsasin
Listing 4.8.

|80 Day 4

LISTING 4.8. THE REVISED OnStarttime AND OnStoptimer FUNCTIONS.

1: void CTimersD1lg::0OnStarttime()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEETTEEEL T rrrrr

6: // MY CODE STARTS HERE

7 [EELETTTEEL i

8:

9: // Update the variables

10: UpdateData(TRUE) ;

11:

12: // Initialize the count

13: m_iCount = 0;

14: // Format the count for displaying
15: m_sCount.Format("%d", m_iCount);
16:

17: // Update the dialog

18: UpdateData(FALSE) ;

19: /] Start the timer
20: SetTimer (ID_COUNT_TIMER, m_iInterval, NULL);
21:
22: // Enable the Stop Timer button
23: m_cStopTime.EnableWindow(TRUE) ;
24: // Disable the Start Timer button
25: m_cStartTime.EnableWindow (FALSE) ;
26:
27: [EEEETEEEEr i ny
28: // MY CODE ENDS HERE
29: [EEEETTEEEI i
30: }
31:
32: void CTimersD1lg::0nStoptimer()
33: {
34: // TODO: Add your control notification handler code here
35:
36: [EEEETEEEEr i ny
37: // MY CODE STARTS HERE
38: [EEEETTEEEL i rr
39:
40: // Stop the timer
41: KillTimer (ID_COUNT_TIMER);
42:
43: // Disable the Stop Timer button
44 m_cStopTime.EnableWindow (FALSE) ;
45: // Enable the Start Timer button
46: m_cStartTime.EnableWindow(TRUE) ;
47:
48: [EEEEEEEEEr i ny

49: // MY CODE ENDS HERE

Working with Timers 81 |

50: [IEEEEEEEELrr i rirt
51: }

Now when you compile and run your application, it looks more like Figure 4.7, where
you can start and stop the counter timer. This enables you to play with the timer interval,
putting in a variety of time intervals and observing the difference, with the clock ticking
above the counter for reference.

FIGURE 4.7. 8 Tincis
The finished appli- T" =
cation. o

Ezit
Summary

Today you learned how to use the timers built into the Windows operating system to
trigger your application at various time intervals that you can control. You learned how
to use multiple timers in the same application, running them simultaneously and trigger-
ing different actions.

In the coming days, you'll learn how to use additional dialog windows to get feedback
from the user so that you can integrate that feedback into how your application behaves.
After that, you will learn how to a create menus for your applications. Then you will
learn how you can work with text and fonts in your applications.

Q&A

Q What istheinterval rangethat | can set for timersin my applications?

A The available range that you can set for timersin your applications is around 55
milliseconds on the short end to 2% - 1 milliseconds, or around 49 1/2 days, on the
long end.

Q

How many timers can | have running at the same time in my application?

A That depends. There are alimited number of timers available to all applicationsin
the Windows operating system. Although the number that is available should be
more than sufficient for al running applications using no more than a handful of
timers, if an application goes overboard and begins hogging the timers, the operat-
ing system may run out. It could be your application that is denied the use of some
timers, or it could be other applications that don’t have any to use. As a genera

|82

Day 4

rule, if you use more than two or three timers at the same time, you might want to
reconsider your application design and determine if there is another way to design
and build your application so that it can work with fewer timers.

Isthere any way to trigger my application to perform somework when it is
idle, instead of using a timer to trigger the work when | think my app might
beidle?

Yes, thereis. All Windows applications have an onIdle function that can be used
to trigger idle processing. onIdle is discussed later on Day 18, “Doing Multiple
Tasks at One Time—M ultitasking.”

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1. What did you accomplish by adding the two timer IDs to the resource symbols?

> w D

What is another way to add these two I Ds to the application?
How can you tell two timers apart in the onTimer function?

How many timer events does your application receive if the timer is set for one
second and your application has been busy for one minute, preventing it from
receiving any timer event messages?

Exercise

Update your application so that when the counter timer is started, the clock timer is reset
to run at the same interval as the counter timer. When the counter timer is stopped, return
the clock timer to a one-second interval.

WEEK 1

DAY 5

Getting User Feedback—
Adding Dialog Boxes to
Your Application

With most applications that you might use, there are numerous situations where
the application asks you for information—how you want the application config-
ured or whether you want to save your work before exiting, for example. In
most of these situations, the application opens a new window to ask these ques-
tions. These windows are called dialog windows.

Dialog windows typically have one or more controls and some text explaining
what information the program needs from you. Dialog windows typically do
not have alarge blank work area, as you find in the main windows of aword
processor or a programming editor. All the applications that you have built in
the preceding days have been dialog windows, and your projects will continue
to be dialog windows for the next few days.

All the dialogs that you have created up to now have been single window dia-
log applications. Today you are going to learn

|84 Day 5

* How to use dialog windows in a more flexible way.

» How to call other dialog windows and take the information entered by the user on
these windows back to the main application window for use in the application.

» How to use both standard dialogs, such as the message boxes you used in previous
days and custom dialogs that you have created.

Using Pre-existing (or System) Dialog
Windows

The Windows operating system provides a number of pre-existing dialog windows.
Simple dialog windows, also known as message boxes, present the user with a message
and provide one to three buttons to click. More complex dialogs, such as the File Open,
Save, or Print dialogs, are also provided with Windows. These system (or common)
dialogs are created and used with a combination of a variable declaration of a C++ class
and a series of interactions with the class instance.

Using Message Boxes

Asyou learned in the previous days, using message boxes is as simple as making a sin-
gle function call, passing the message text as the only argument. This resultsin a mes-
sage box that displays the message to the user with an icon and gives the user one button
to click to acknowledge the message. As you probably know from using other Windows
software, you have a whole range of other message box possibilities with various button
combinations and various icons that can be displayed.

The MessageBox Function

As you have seen in previous days, the MessageBox function can be passed one or two
arguments. The first argument is the message to be displayed to the user. The second
argument, which is completely optional, is displayed in the title bar on the message box.
You can use a third argument, which is also optional, to specify the buttons to be pre-
sented to the user and the icon to be displayed beside the message. In addition to this
third argument, the MessageBox function returns a result value that indicates which but-
ton was clicked by the user. Through the combination of the third argument and the
return value, the MessageBox function can provide a whole range of functionality in your
Visual C++ applications.

Getting User Feedback—Adding Dialog Boxes to Your Application

85|

Nﬂlﬂ If you use the third argument to the MessageBox function to specify the but-
tons or the icon to be presented to the user, the second argument (the mes-
' sage box title) is no longer optional. You must provide a value for the title
bar of the message box.

The button combinations that you can use in the MessageBox function are limited. You
do not have the freedom to make up your own button combination. If you get to the
point where you need to make up your own, you have to create a custom dialog window
that looks like a message box. The button combinations that you can use are listed in
Table 5.1.

TABLE 5.1. MEssAGEBox BUTTON COMBINATION IDs.

ID Buttons
MB_ABORTRETRYIGNORE Abort, Retry, Ignore
MB_OK OK

MB_OKCANCEL OK, Cancel
MB_RETRYCANCEL Retry, Cancel
MB_YESNO Yes, No
MB_YESNOCANCEL Yes, No, Cancel

To specify the icon to be displayed, you can add the icon ID to the button combination
ID. Theicons that are available are listed in Table 5.2. If you want to specify either the
icon or the button combination, and you want to use the default for the other, you can
just specify the one ID that you want to use.

TABLE 5.2. MessageBox ICON IDs.

ID Icon
MB_ICONINFORMATION Informational icon
MB_ICONQUESTION Question mark icon
MB_ICONSTOP Stop sign icon
MB_ICONEXCLAMATION Exclamation mark icon

When you do specify a button combination, you want to capture the return value so that
you can determine which button the user clicked. The return value is defined as an inte-
ger data type; the return value IDs are listed in Table 5.3.

|86 Day 5

TABLE 5.3. MessaGeBox RETURN VALUE IDs.

ID Button Clicked
IDABORT Abort

IDRETRY Retry

IDIGNORE Ignore

IDYES Yes

IDNO No

IDOK OK

IDCANCEL Cancel

Creating a Dialog Application

To get a good understanding of how you can use the MessageBox function in your appli-
cations to get information from the user, you will build a simple application that uses the
MessageBox function in a couple of different ways. Your application will have two sepa-
rate buttons that call two different versions of the MessageBox function so that you can
see the differences and similarities between the various options of the function. Later in
the day, you will add a standard File Open dialog so that you can see how the standard
dialogs can be used to allow the user to specify a filename or perform other standard
functions. Finally, you will create a custom dialog that allows the user to enter afew dif-
ferent types of values, and you will see how you can read these values from the main
application dialog after the user has closed the custom dial og.

To start this application, follow these steps:

1. Create anew MFC AppWizard workspace project, naming it Dialogs.

2. Choose the same settings as for the previous days' applications, giving the applica-
tion atitle of pialogs.

3. Lay out the main application dialog as shown in Figure 5.1 using the propertiesin
Table 5.4.

TABLE 5.4. CONTROL PROPERTY SETTINGS.

Object Property Setting

Command Button ID IDC_YESNOCANCEL
Caption &Yes, No, Cancel

Command Button ID IDC_ABORTRETRYIGNORE

Caption &Abort, Retry, Ignore

Getting User Feedback—Adding Dialog Boxes to Your Application

87|

Object Property Setting
Command Button ID IDC_FILEOPEN
Caption &File Open
Command Button ID IDC_BCUSTOMDIALOG
Caption &Custom Dialog
Command Button ID IDC_BWHICHOPTION
Caption &Which Option?
Disabled Checked
Command Button ID IDC_EXIT
Caption E&xit
Static Text ID IDC_STATIC
Caption Dialog Results:
Edit Box ID IDC_RESULTS
Multiline Checked
Auto Vscroll Checked
FIGURE 5 1 #., Day5 - Microsoft Visual C++ - [Day5.ic - IDD_DAYS_DIALOG [Dialog)]
L . | e Edt view Insen Proect Buid Layoul Tooks Window Help =B x|
T_heappllcatlon main B D = L — ‘.‘,M‘
dialog layout. J ThayiDla =l[@l s menbers) <[@ CDayGDlg =E " JJ@ il wat L1 Bl
alx) T T TP T |
L1 Dideg s I~
£ leon e An abl
E\%’Z:Zi;ahle 7 ‘Yes, No, Cancel Abort, Retry, lgnore Mo
| Eile Open
- El
E Custom Dislog ifich Option? @ B
_: i Dialog Results: |Edit i oo
- ialog Result: [Edi e
. i
: 5 | = H
- & 2k
- . Bl -
30| g Reso. [[Pl] N s@
[EE = EEEET]
3 =
J Build {Debug » Findin Files1 Findin Files2 /]| 4 || LlJ
Ready [+ 0.0 i 232138 [0 A

4. Using the Class Wizard, attach variables to the controls as listed in Table 5.5.

|88 Day 5

TABLE 5.5. CONTROL VARIABLES.

Object Name Category Type
IDC_RESULTS m_sResults Vaue CString
IDC_BWHICHOPTION m_cWhichOption Control CButton

5. Using the Class Wizard, attach code to the Exit button to close the application, as
on previous days.

Coding the Message Box Dialogs

For the first command button (the Yes, No, Cancel button), create a function on the
clicked event using the Class Wizard, just as you did on previous days. Edit the function
on this button, adding the code in Listing 5.1.

LisTING 5.1. THE OnYesnocancel FUNCTIONS.

1: void CDialogsDlg::0OnYesnocancel()

2: {

3 // TODO: Add your control notification handler code here

4:

5: [EEEETTTEEL i

6: // MY CODE STARTS HERE

7 [EEEETTTEEL i

8:

9: int iResults; // This variable will capture the button selection
10:

11: // Ask the user

12: iResults = MessageBox("Press the Yes, No, or Cancel button",
13: "Yes, No, Cancel Dialog",

14: MB_YESNOCANCEL | MB_ICONINFORMATION);

15:

16: // Determine which button the user clicked

17: // Give the user a message showing which button was clicked
18: switch (iResults)

19: {
20: case IDYES: // The Yes button?
21: m_sResults = "Yes! Yes! Yes!";
22: break;
23: case IDNO: // The No button?
24: m_sResults = "No, no, no, no, no.";
25: break;
26: case IDCANCEL: // The Cancel button?
27: m_sResults = "Sorry, canceled.";
28: break;
29: }
30:

31: // Update the dialog

Getting User Feedback—Adding Dialog Boxes to Your Application 89 |

32: UpdateData(FALSE) ;

33:

34: [EEEETTEEEL i rr g
35: // MY CODE ENDS HERE
36: [EEEETTTEELE i
37: }

If you compile and run your application, you can see how selecting the different buttons
on the message box can determine the next course of action in your application. If you
add a function to the clicked event of the Abort, Retry, Ignore button using the Class
Wizard and enter the same code as in Listing 5.1, substituting the MB_ABORTRETRYIGNORE
and MB_ICONQUESTION values and changing the prompts and messages, you can see how
this other button combination can be used in the same way.

Both of these control event functions are virtually the same. In each function, thereis an
integer variable declared to capture the return value from the MessageBox function. Next,
the MessageBox function is called with a message to be displayed to the user, atitle for
the message box, and a combination of a button combination ID and an icon ID.

When the return value is captured from the MessageBox function, that value is passed
through a switch statement to determine which value was returned. A message is dis-
played to the user to indicate which button was clicked on the message box. You can just
as easily use one or two if statements to control the program execution based on the
user’s selection, but the return value being an integer lends itself to using a switch
Statement.

If you compile and run your application at this point, you can click either of the top two
buttons and see a message box, as in Figure 5.2. When you click one of the message box
buttons, you see a message in the edit box on the main dialog, indicating which button
you selected, asin Figure 5.3.

FiGURE 5.2. Yes. No, Cancel Dialog
The MessageBox With (\it) Press the Yes, No, or Cancel bulton

three choices. —

FIGURE 5.3. 4Dinlogs
A message is displayed TR
based on which button Fils Oen

was clicked. Custom Dislog UH e Unkionrd

Dialog Results: [Yes! Yes! Yes!

Exit

|9O

Day 5

Using Common Dialogs

Using common dialogs is not quite as simple and easy as using the MessageBox function,
but it's till quite easy. The Microsoft Foundation Classes (MFC) provides several C++
classes for common Windows dialogs. These classes are listed in Table 5.6.

TABLE 5.6. COMMON DIALOG CLASSES.

Class Dialog Type
CFileDialog File selection
CFontDialog Font selection
CColorDialog Color selection
CPageSetupDialog Page setup for printing
CPrintDialog Printing
CFindReplaceDialog Find and Replace

The common dialogs encapsulated in these classes are the standard dialogs that you use
every day in most Windows applications to open and save files, configure printing
options, print, perform find and replace on documents, and so on. In addition to these
choices, a series of OLE common dialog classes provide several common functions to
OLE or ActiveX components and applications.

All these dialogs are used in the same manner, athough the individual properties and
class functions vary according to the dialog functionality. To use one of these dialogs,
you must follow these steps:

1. Declare avariable of the class type.

2. Set any properties that need to be configured before displaying the dialog to the
user.

3. Call the boModal method of the class to display the dialog to the user.

4. Capture the return value of the DoModal method to determine whether the user
clicked the OK or Cancel button.

5. If the user clicks the OK button, read any properties that the user may have set
when using the dialog.

To better understand how this works, you'll add the cFileDialog class to your applica-
tion. To do this, add a function to the clicked message on the File Open button using the
Class Wizard. Edit this function, adding the code in Listing 5.2.

Getting User Feedback—Adding Dialog Boxes to Your Application 91 |

LisTING 5.2. THE OnFileopen FUNCTION.

1: void CDialogsDlg::0nFileopen()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEETTEEEE T rrrrrrr g

6: // MY CODE STARTS HERE

7 [EELETTTEEL i

8:

9: CFileDialog m_ldFile(TRUE);

10:

11: // Show the File open dialog and capture the result
12: if (m_ldFile.DoModal() == IDOK)

13: {

14: // Get the filename selected

15: m_sResults = m_ldFile.GetFileName();
16: // Update the dialog

17: UpdateData(FALSE) ;

18: }

19:
20: [EEEETTEEEE T rrrrrrr g
21: // MY CODE ENDS HERE
22: [EELETTTEEL i
23: }

In this code, the first thing that you do is declare an instance of the cFilebialog class.
This instance is passed TRUE as an argument to the class constructor. This tells the class
that it isa File Open dialog. If you passit FALSE, it displays as a File Save dialog.
There's no real functional difference between these two, only a visual difference. You
can pass many more arguments to the constructor, specifying the file extensions to show,
the default starting file and location, and filters to use when displaying the files. All the
rest of these constructor arguments have default values, so you don’'t have to supply any
of them.

After creating the instance of the File Open dialog, you call its DoModal function. Thisis
amember function of the cbialog ancestor class, and it is available in al dialog win-
dows. The boModal function displays the File Open dialog to the user, as shown in
Figure 5.4. The return value of the boModal function is examined to determine which
button the user clicked. If the user clicks the Open button, the 1Dok value is returned, as
with the MessageBox function. Thisis how you can determine whether your application
needs to take any action on what the user selected with the dialog window.

|92 Day 5
FIGURE 5.4. een HE
.) Lookin |3 0a5 =] M= N
The File Open dial 0g. 1 Debug TEIDas.dsw @] DayBDigepp (8] Stddfn.cpp
s [#]Day5 h |#] Day5DIgh o] Stddfxh
(] Day5.aps |#] DayS.nch] MsaDlg.cpp
o] Day5 v o] Day5 opt I MsaDig h
& DayS.cpp |#] Day5 plg (£] ReadMe.txt
Days.dsp @Daysic |#] Resource h
4 | |
Filename: [MsaDlgh Open |
Files of type: | | el

There are two modes in which a dialog window can be displayed to the
user. The first is as a modal window. A modal window halts all other user
interaction while it is displayed. The user cannot do anything else in the
application until the dialog is closed. A good example of a modal dialog
window is a message box where the user cannot continue working with the
application until she clicks one of the buttons on the message box.

The second mode in which a dialog window can be displayed to the user is
as a modeless window. A modeless window can be open while the user is
doing something else in the application, and it doesn’t prevent the user
from performing other tasks while the dialog is visible. Good examples of a
modeless dialog window are the Find and Find and Replace dialogs in
Microsoft Word. These dialog windows can be open and displayed on the
screen while you are still editing the document that you are searching.

To display the name of the file selected, you set them_sResults variable to the return
value from the GetFileName method of the CFileDialog class. This method returns only
the filename without the directory path or drive name, as shown in Figure 5.5. You can
use other class methods for getting the directory path (GetPathName) or file extension

(GetFileExt).
FiGURrE 5.5. b-4Dialogs
Displaying the selected el] ort, Aety Irore
filename.

LCustom Dialog

gl il

Dislog Results: [MsaDigh

Exit

Getting User Feedback—Adding Dialog Boxes to Your Application 93 |

Creating Your Own Dialog Windows

Now you have an understanding of using standard dialogs. What if you need to create a
custom dialog for your application? This task is fairly smple to do because it is mostly a
combination of the process that you have already used to create and use the main dialog
windows in all your applications and the methods you employed to use the common
dialogs. You have to work through a few additional steps, but they are few and you
should be comfortable with them soon.

Creating the Dialog Window

For the custom dialog that you will add to your application, you will provide the user
with a edit box in which to enter some text and a group of radio buttons from which the
user can select one. When the user clicks the OK button, your application will display
the text entered by the user in the display area of the main application dialog window.
There is another button that the user can, can click to display which one of the radio but-
tons was selected. This exercise enables you to see how you can use custom dialog win-
dows to gather information from the user and how you can read the user’s selections
after the dialog window is closed.

To create a custom dialog for your application, you need to

» Add another dialog to your application resources.
 Design the dialog window layout.
 Declare the base class from which the dialog will be inherited.
* Attach variables to the controls on the dialog.
After doing these things, your custom dialog will be ready for your application. To
accomplish these tasks, follow these steps:
1. Select the Resource View tab in the project workspace pane.
2. Right-click the Dialogs folder, and select Insert Dialog from the pop-up menu.
3. Right-click the new dialog in the resource tree view, and select Properties from the
pop-up menu.
4. Change the object ID for the new dialog to IDD_MESSAGEDLG.

5. When editing the new dialog window, do not delete the OK and Cancel buttons.
Move them to the location shown in Figure 5.6.

|94 Day 5

FlGURE 5 6 . Message and Dption Dialog

Enter s message: [E

The custom dialog
window layout.

~Select an Option
! C Option1 Option3

=

Cancel

 Option 2 € Dption 4

6. Design the rest of the window using the object propertiesin Table 5.7.

TABLE 5.7. THE CUSTOM DIALOG CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC
Caption Enter a &message:

Edit Box ID IDC_MESSAGE
Multiline Checked
Auto Vscroll Checked

Group Box ID STATIC
Caption Select an Option

Radio Button 1D IDC_OPTIONA1
Caption &0ption 1
Group Checked

Radio Button ID IDC_OPTION2
Caption O&ption 2

Radio Button ID IDC_OPTION3
Caption Op&tion 3

Radio Button ID IDC_OPTION4
Caption Opt&ion 4

7. After you design the dialog, open the Class Wizard. You see the diadlog in

Figure 5.7.
FIGURE 5.7 e e
IDD_MESSAGEDLG 5i it
The Adding a Class T e A e
anew class for it You can also select an e~
dialog ising clss.

e
@ [Create a new class

€ Select an existing class

Getting User Feedback—Adding Dialog Boxes to Your Application 95 |

8. Leave the selection on this dialog at the default setting of Create a New Class and
click OK. Another dialog appears to allow you to specify the name for the new
class and the base class from which it is inherited.

9. Enter the class name cMsgblg into the Name field, and make sure that the Base
Classis set to chialog, as shown in Figure 5.8.

FIGURE 5.8. New Class
- i Class information
The New Class dialog. N o []
FReane e _ Coreel |
Change.

Base class: m
Dialog ID: IDD_MESSAGEDLG 2

- Automation
' None

" Automation

€ GreatestlEbytpelD: [DayEiMsabla

10. Click OK, leaving the other settings on this dialog at their defaults.

11. Once the Class Wizard opens, attach the variables to the controls on the new dia-
log as specified in Table 5.8.

TABLE 5.8. CONTROL VARIABLES.

Object Name Category Type
IDC_MESSAGE m_sMessage Value CString
IDC_OPTION1 m_iOption Vaue int

You should notice two things in the way that you configured the control properties and
variables in the custom dialog. First, you should have selected the Group property on
only the first of the radio buttons. This designates that all the radio buttons following
that one belong to a single group, where only one of the radio buttons may be selected at
atime. If you select the Group property on all the radio buttons, they are al independent
of each other, allowing you to select al the buttons simultaneously. This property makes
them behave somewhat like check boxes, but the primary difference is that the user
would find it difficult to uncheck one of these controls due to the default behavior where
one radio button in each group is aways checked. The other differenceisin their
appearance; the radio buttons have round selection areas instead of the square areas of
check boxes.

|96

Day 5

The other thing to notice is that you declared a single integer variable for the one radio
button with the Group property checked. This variable value is controlled by which radio
button is selected. The first radio button causes this variable to have a value of 0, the
second sets this variable to 1, and so on. Likewise, if you want to automatically select a
particular radio button, you can set this variable to one less than the sequence number of
the radio button in the group of radio buttons.

Nﬂtﬂ Because this is the C++ programming language, all numbering begins with
. 0, not 1. Therefore, the first position in an array or a set of controls is posi-

tion 0. The second position is position 1. The third position is number 2, and
so on.

You have now finished al that you need to do to the second dialog window to make it
ready for use. You would expect to need an UpdateData or two in the code behind the
dialog, but because you didn’'t remove the OK and Cancel buttons from the dialog, the
UpdateData cal isaready performed when the user clicks the OK button. As a resullt,
you don’t have to touch any code in this second dialog, only in the first dialog.

Using the Dialog in Your Application

Now that your custom dialog is ready for your application, using it is similar to the way
that you use the common dialogs that are built into Windows. First, you have to declare
an instance of the custom dialog class, which calls the class constructor and creates an
instance of the class. Next, you call the dialog’s DoModal method and capture the return
value of that function. Finally, you read the values of the variables that you associated
with the controls on the dialog.

Creating the Dialog Instance

Before you can use your custom dialog in your application, you have to make your main
dialog window aware of the custom dialog, its variables, and methods and how your
main dialog can interact with your custom dialog. You accomplish this by including the
header file for your custom dialog in the main source file for your main application dia-
log. Follow these steps:

1. Select the File View tab on the workspace pane.

2. Expand the Dialog Files and Source Files folders.

3. Double-click the bialogsD1g.cpp file. This opens the source code file for the
main application dialog in the editing area of Developer Studio.

Getting User Feedback—Adding Dialog Boxes to Your Application 97 |

4. Scroll to the top of the source code file where the #include statements are located,
and add an include for the MsgD1g. h file before the DialogsDlg.h file, asin
Listing 5.3.

LisTING 5.3. THE HEADER FILE INCLUDES.

// DialogsDlg.cpp : implementation file
/]

#include "stdafx.h"
#include "Dialogs.h"
#include "MsgDlg.h"
#include "DialogsDlg.h"

©oONOODWN-=

#ifdef _DEBUG

10: #define new DEBUG_NEW

11: #undef THIS_FILE

12: static char THIS_FILE[] = _ FILE_ ;

13: #endif

14:
S/ i rrre
16: // CAboutDlg dialog used for App About

It is important that you place the #include statement for the MsgD1g. h file before the
#include statement for the DialogsDlg.h file. The reason isthat you will be adding a
variable declaration for your custom dialog to the main dialog class in the main dialog's
header file. If the MsgD1g.h header file isincluded after the header file for the main dia-
log, the compiler will complain loudly and will refuse to compile your application until
you move the #include of the MsgD1g.h file above the #include of the DialogsDlg.h
file

Nﬂtﬂ The #include statement is what is known as a compiler directive in the C
and C++ programming languages. What it tells the compiler to do is read
' the contents of the file named into the source code that is being compiled.
It is used to separate class, structure, and function declarations into a file
that can be included in any source code that needs to be aware of the infor-

mation in the header file. For more information on how the #include state-
ments work, and why you use them, see Appendix A, “C++ Review.”

|98

Day 5

Now that you have made your main application dialog aware of the custom dialog that

you created, you need to declare a variable of your custom dialog. Follow these steps:
1. Select the Class View tab in the workspace pane.

Right-click the cbialogsD1g classto bring up the pop-up menu.

Select Add Member Variable from the pop-up menu.

Specify the Variable Type as cMsgb1g, the Variable Name as m_dMsgblg, and the
Access as Private. Click OK to add the variable to your main dialog.

Ea N SN

If you expand the cDialogsDlg classin the tree view, you should see the instance of
your custom dialog as a member of the main application dialog class. This means that
you are ready to begin using the custom dialog in your application.

Calling the Dialog and Reading the Variables

Now that you have added your custom dialog to the main application dialog as a variable
that is aways available, not just as alocal variable available only within a single func-
tion (as with the cFileDialog variable), you can add code to use the dialog. To do this,
follow these steps:

1. Open the Class Wizard and add a function to the clicked event message of the
IDC_BCUSTOMDIALOG button.

2. Add afunction for the clicked event message (BN_CLICKED) for the 1DC_
BWHICHOPTION button.

3. Edit the onBcustomdialog function, adding the code in Listing 5.4.

LiISTING 5.4. THE OnBcustomdialog FUNCTION.

1: void CDialogsDlg: :0OnBcustomdialog()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEETTTEEL i

6: // MY CODE STARTS HERE

7 [EELETTTEEL i

8:

9: // Show the message dialog and capture the result
10: if (m_dMsgDlg.DoModal () == IDOK)

11: {

12: // The user checked OK, display the message the
13: // user typed in on the message dialog

14: m_sResults = m_dMsgDlg.m_sMessage;

15: // Update the dialog

16: UpdateData(FALSE) ;

17: // Enable the Which Option button

Getting User Feedback—Adding Dialog Boxes to Your Application 99 |

18: m_cWhichOption.EnableWindow(TRUE) ;
19: }

20:

21: THETELEEETEr ity

22: // MY CODE ENDS HERE

23: LEEEETTEEEE i

24: }

4. Edit the onBwhichoption function, adding the code in Listing 5.5.

LisTING 5.5. THE OnBwhichoption FUNCTION.

1: void CDialogsDlg: :0nBwhichoption()

2: {

3: // TODO: Add your control notification handler code here

4:

5: [EELETTTEEI i

6: // MY CODE STARTS HERE

7: [IEETTTELT T

8:

9: // Determine which radio button was selected, and display
10: // a message for the user to show which one was selected.
11: switch(m_dMsgDlg.m_iOption)

12: {

13: case 0: // Was it the first radio button?

14: m_sResults = "The first option was selected.";
15: break;

16: case 1: // Was it the second radio button?

17: m_sResults = "The second option was selected.";
18: break;

19: case 2: // Was it the third radio button?

20: m_sResults = "The third option was selected.";
21: break;

22: case 3: // Was it the fourth radio button?

23: m_sResults = "The fourth option was selected.";
24: break;

25: default: // Were none of the radio buttons selected?
26: m_sResults = "No option was selected.";

27: break;

28: }

29:

30: // Update the dialog

31: UpdateData(FALSE) ;

32:

33: [EEEETTTEEE i

34: // MY CODE ENDS HERE

35: [EEEETTTEEE i

36:

| 100

Day 5

In the first listing, you called the boModal method of the custom dialog, which displayed
the dialog for the user, waiting for the user to click one of the two buttons on the dialog,
asin Figure 5.9. If the user clicks the OK button, you copy the message the user typed in
the custom diaog into the edit box variable to be displayed to the user. After updating
the dialog display with the new variable values, you enable the Which Option button, as
shown in Figure 5.10. If the user clicks the Cancel button, none of thisis done. The dia-
log display is not changed.

FlGURE 5 9 . Message and Dption Dialog
. Enter 8 message: [This is a test message
The custom dialog
allows the user to
enter a message. Select an Option
€ Option 1 {plion 3
_DK
 Option 2 € Dption 4 — |
Ficure 5.10. TS
The n,.e$age entefed Yes, Mo, Cancel Abort, Retry, lgnore

on the custom dialog is File Dpen

displayed for the user. et

Dialog Results: |This is a test message

Exit

When the user clicks the Which Option button, you pass the radio button variable on the
custom dialog to a switch statement, selecting a message that tells the user which radio
button was selected, as shown in Figure 5.11. Notice that in both of these functions, you
can access the control variables on the custom dialog directly from the main dialog. That
is because the Class Wizard automatically declares the variables associated with controls
as public, making them completely accessible outside the dialog class. You can change
this by placing aprivate: access specifier where the public: access specifier is. You
don’t want to place anything after the //{{AFX_DATA line, where the variables are
declared, because the variables are declared within an MFC Class Wizard macro, which
enables the Devel oper Studio wizards to locate and manipulate the variables as needed
without interfering with the Visual C++ compiler when you compile your application.

Getting User Feedback—Adding Dialog Boxes to Your Application

101 |

FIGURE 5.11. E 4Dialogs =
The option selected on Yes, Mo, Cancel e an
the custom dialog is i Open

displayed for the user. DBy

Dialog Resuits: [The thid option was selected

Exit

Summary

Today you learned how you can use additional dialog windows in your application to
provide interactive experience for your users. You learned about the options available to
you with the simple MessageBox function, how you can provide your users a variety of
button combinations, and how you can determine which button the user selects. You saw
how you can use this information to determine which path to take in your application
logic.

You also learned about some of the common dialogs that are built into the Windows
operating systems and how they have been encapsulated into C++ classesin the MFC
class library. You learned how you can use the File Open dialog to present the user with
the standard file selection dialog and how you can determine which file the user selected.

Finally, you learned how you can design your own additional dialogs that you can add to
your applications to get information from the user and how you can capture that informa-
tion and use it in your application.

Q&A

Q Therewas no code added to the custom dialog. Do | have to design my custom
dialogs thisway, or can | add code to them?

A The custom dialog windows are no different from the main dialog windows that
you have been using in all your applications so far. If you need to control the
behavior of the dialog on an interactive basis, you can put as much code into the
dialog as you need. You didn’t add any code to the custom dialog today because
there wasn’t any need to add any code. The only functionality that the dialog
needed to perform was calling the updateData function before closing, which is
automatically done by the onok function. Because you did not delete the OK and
Cancel buttons, you already had this functionality built in.

| 102

Day 5

Q

A

LIsTING 5.

What happensif | specify two or more button combinations in the same
MessageBox function call?

Nothing happens. Your application compiles just fine, but when the MessageBox
function is called, nothing happens. The message box does not open, and the user
does not get to answer the question you are presenting.

How can | integrate the File Open dialog into my application where it opens
in a specific directory that | specify?

The cFileDialog class has a public property called m_ofn. This property is a struc-
ture that contains numerous attributes of the File Open dialog, including the initial
directory. This structure is defined as the OPENFILENAME structure in Listing 5.6.

6. THE OPENFILENAME STRUCTURE.

1:
2
3
4:
5:
6-
7
8

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

typedef struct tagOFN { // ofn

DWORD 1StructSize;
HWND hwndOwner;
HINSTANCE hInstance;
LPCTSTR lpstrFilter;
LPTSTR 1pstrCustomFilter;
DWORD nMaxCustFilter;
DWORD nFilterIndex;
LPTSTR lpstrFile;

DWORD nMaxFile;

LPTSTR lpstrFileTitle;
DWORD nMaxFileTitle;
LPCTSTR IpstriInitialDir;
LPCTSTR lpstrTitle;
DWORD Flags;

WORD nFileOffset;
WORD nFileExtension;
LPCTSTR lpstrDefExt;
DWORD 1CustData;
LPOFNHOOKPROC 1pfnHook;
LPCTSTR 1pTemplateName;

} OPENFILENAME;

You can set any of these attributes before calling the boModal class method to con-
trol the behavior of the File Open dialog. For instance, if you set the starting direc-
tory to C: \Temp before calling the bomModal method, asin Listing 5.7, the File
Open dialog opens in that directory.

Getting User Feedback—Adding Dialog Boxes to Your Application

103 |

LISTING 5.7. THE REVISED OnFileopen FUNCTION.

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

void CDialogsDlg::0OnFileopen()

A

// TODO: Add your control notification handler code here

LIEETETEE ity
// MY CODE STARTS HERE

TIEETEETEET i
CFileDialog m_ldFile(TRUE);

// Initialize the starting directory
m_1ldFile.m_ofn.lpstrInitialDir = "C:\\Temp\\";

// Show the File open dialog and capture the result
if (m_ldFile.DoModal() == IDOK)

{
// Get the filename selected
m_sResults = m_ldFile.GetFileName();
// Update the dialog
UpdateData(FALSE) ;

}

LIEETETEE ity
// MY CODE ENDS HERE

THETHEEE LTy

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,

“Answers.”

Quiz
1. What are the possible return codes that your application might receive from the

MessageBox function call when you specify the MB_RETRYCANCEL button combina-

tion?

2. What are the common dialogs that are built into the Windows operating systems

that are defined as MFC classes?

104 Day 5

3. What is the difference between amodal dialog and a modeless dialog?

4. How can you display aFile Save dialog for the user instead of the File Open dia-
log that you did have in your application?

5. Why did you not need to create any functions and add any code to your custom
dialog?

Exercises
1. Modify your application so that it includes the directory with the filename in the
application. (Hint: The GetFileName function returns the path and filename that
was selected in the File Open dialog.)
2. Add abutton on the custom dialog that calls the MessageBox function with aYes or
No selection. Pass the result back to the main application dialog.

WEEK 1

DAY 6

Creating Menus for Your
Application

Most Windows applications use pull-down menus to provide the user a number
of functions without having to provide buttons on the window. This enables
you to provide your users alarge amount of functionality while preserving most
of your valuable screen real estate for other stuff.

Today you will learn

- How to create menus for your Visual C++ application
- How to attach a menu to your application’s main dialog window
- How to call application functions from a menu

- How to create a pop-up menu that can be triggered with the right mouse
button

- How to set up accelerator keys for keyboard shortcuts to menus

106 Day 6

Menus

Back when the first computer terminals were introduced and users began using computer
software, even on large mainframe systems software devel opers found the need to pro-
vide the users with some sort of menu of the functions that the computer could perform.
These early menus were crude by today’s standards and were difficult to use and navi-
gate. Menus have progressed since then; they’ ve become standardized in how they are
used and easy to learn.

The software designers that first came up with the idea of a graphical user interface
(GUI) planned to make computer systems and applications easier to learn by making
everything behave in a consistent manner. Menus used for selecting application function-
ality were one part of the GUI design that could be more easily learned if they all
worked the same. As aresult, a number of standard menu styles were developed.

Menu Styles

The first menu styles that were standardized are the pull-down and cascading menus.
These are the menus with the categories all listed in arow across the top of the applica
tion window. If you select one of the categories, a menu drops down below the category,
with a number of menu entries that can be selected to trigger various functionsin the
application.

A variation on this menu style is the cascading menu, which has another submenu that
opens to the right of a menu entry. This submenu is similar to the pull-down menu, with
anumber of entries that trigger application functions. The menu designers placed no
limit on how many cascading menus can be strung together, but it quickly became clear
to most developers that more than two cascading levelsis alittle unwieldy.

Eventually, athird style of menu was developed, called a pop-up or context menu—a
menu that pops up in the middle of the application area, floating freely above the appli-
cation work area. Thisis also called a context menu because the specific menu that pops
up is dependent on the selected object or workspace area where the cursor or mouse
pointer is.

Keyboard Shortcut-Enabling Menus

When users began working with keyboard-intensive applications, such as word proces-
sors, it was discovered that taking your hands off the keyboard to use the mouse to make
menu selections dramatically reduced productivity. Software designers decided that they
needed to add keyboard shortcuts for the various menu entries (especially the most fre-
guently used menu options). For this reason, keyboard shortcuts (accelerators) and
hotkeys were added.

Creating Menus for Your Applications

107 |

Hotkeys are letters that are underlined in each menu entry. If you press the Alt key with
the underlined letter, you can select the menu entry that contains the underlined letter.
Thisis a means of navigating application menus without taking your hands off the key-
board.

For more advanced users, application designers added keyboard shortcuts, or accelera-
tors. An accelerator is a single key combination that you can press to trigger an applica
tion function instead of having to navigate through the application menus. This allows
advanced users to avoid the overhead of using menus for the most common application
functions. To enable users to learn what accelerators are available in an application, the
key combination is placed on the menu entry that it can be used to replace, positioned at
the right edge of the menu window.

Menu Standards and Conventions

Although there are no standards in how menus are designed, there are a number of con-
ventions for how they are designed and organized. All these conventions are available in
Windows Interface Guidelines for Software Design, published by Microsoft for use by
Windows software developers. The purpose of this publication is to facilitate the devel-
opment of consistent application behaviors, which will help accomplish one of the pri-
mary goals behind the development of GUI systems. The conventions are as follows:

- Use single-word menu categories across the top menu bar. A two-word category
can easily be mistaken for two one-word categories.

- The File menu is located as the first menu on the left. It contains al file-oriented
functions (such as New, Open, Save, Print, and so on), as well as the Exit function.
The Exit option is located at the bottom of the menu, separated from the rest of the
menu entries by a border.

- The Edit menu is next to the File menu. The Edit menu contains all editing func-
tions such as Copy, Cut, Paste, Undo, Redo, and so on.

- The View menu contains menu entries that control and affect the appearance of the
application work area.

- The Window menu is used in Multiple Document Interface (MDI) style applica
tions. This has functions for controlling the child windows, selecting the current
window, and altering the layout. This menu is the next-to-last menu from the right
end of the menu bar.

- The Help menu is the final menu on the right end of the menu bar. It contains
menu entries that provide instruction or documentation on the application. If the
application has any copyrighted or corporate information that needs to be available
for viewing, this should be located as the final entry on this menu, labeled About
<application name>.

108 Day 6

Designing Menus

Menus are defined as a resource in Visual C++ applications. Because they are aresource,
you can design menus in the Visual C++ editor through the Resource View tab on the
workspace pane. When you first create a dialog-style application, there won’t be a menu
folder in the resource tree, but you can change that.

Nﬂtﬂ Various aspects of Windows applications are considered to be resources,
including window layouts, menus, toolbars, images, text strings, accelera-
' tors, and so on. All these features are organized in what is known as a
resource file, which is used by the Visual C++ compiler to create these
objects from their definitions. The resource file is a text file with an .rc file-

name extension and contains a textual description of all the various objects,
including IDs, captions, dimensions, and so on.

Some resources, such as images and sounds, cannot be described in text, but
have to be stored in a binary format. These resources are stored in individ-
ual files, with the filenames and locations included in the resource file.

Creating a Menu

Creating a menu is not difficult. You will follow several steps:

1. Create the application that will house the menu.

2. Add a menu resource to your project.

3. Customize the menu resource to include the menu items for your application.
4. Add functionality to your menu by connecting routines to your menu items.

Creating the Application
For the example in this chapter, you will create a simple dialog-style application that
contains a single button and a menu. To create your application, do the following:
1. Create anew MFC AppWizard application, naming the project Menus.
2. Select the default AppWizard settings on all screens. For the dialog title, enter
Menus.
3. When the AppWizard has generated your application shell, delete all the controls
from the dialog.
4. Add asingle button to the dialog. Name the button 1bc_EXIT, and specify the cap-
tion as E&xit.

Creating Menus for Your Applications 109 |

5. Add afunction to the button using the Class Wizard. Change the code in this func-
tion to call onok. Remember, the onok function causes the application to close.

Nl]tﬂ If you don’t remember how to add the 0nOK function, review the section
. “Closing the Application” on Day 2, “Using Controls in Your Application,”

for an example.

Adding and Customizing a Menu

Now that you have the basic application built, it's time to start creating a menu for the
application. To create a menu, you will first add a menu resource to your project. When
you add the resource, Visual C++ automatically invokes the Menu Designer, which
allows you to customize the menu. The following steps show you how to add and cus-
tomize a menu:

1. Select the Resource View tab in the workspace pane.

2. Select the project resources folder at the top of the tree; in your example, thisis
Menus.

3. Right-click the mouse to bring up a pop-up menu.
4. Select Insert from the pop-up menu.

5. Inthe Insert Resource dialog that opens, select Menu from the list of available
resources, asin Figure 6.1. Click the New button.

FIGURE 6.1. Insert Resource [21x]
Resource type: New
The Insert Resource '§ pys— —
. &3 Bimap Ml
dialog. B Cusor Costom.
Dialog
@ leon Cancel

B
b Sting Table
38 Toobar
Wersion

6. The Menu Designer opensin the editing area of Developer Studio. The first menu
spot is highlighted, as shown in Figure 6.2.

110 Day 6

F|GURE 6_2 . *% Menus - Microsoft Yisual C++ - [Menus.ic - IDR_MENU1 (Menu]]
=| File Edit ¥iew Insert Project Build Tools Window Help =121 x|
An empty menu. — Ea . .,
D EEB| B - - DR s =
CMenusDlg = 4 class members) =l[& CMenusDIg =R “ = i N Bl
= | ==
-4 Menus resources * oo
(1 Dialag
[leon
B3 Menu
£4[IDR_MENUT]
(L1 Shing Table
(1 Version
578 Class. Reso... | [E] Filevi

lelx

| A[*Th Build {Debug j Findin Files1) Find in Files2 A| 4] |
Ready

=
1 J
o

4

At this point, you have created the menu resource and you are ready to customize it by
adding menu items. To add a menu item, follow these steps:

1. Right-click the mouse on the highlighted area and select Properties from the pop-
up menu.

2. Enter the menu item’s Caption. For this example, enter &File and close the
Properties dialog.

Nﬂtﬂ You are in the menu Properties dialog to specify the text that the user will
_ see on the menu bar while the application is running. Because the Pop-up
check box is checked (by default on any menu items on the top-level menu

bar), this menu element doesn’t trigger any application functionality and
thus doesn’t need to have an object ID assigned to it.

3. Thefirst drop-down menu location is highlighted. To add this menu item, right-
click the mouse again on the highlighted area and select Properties from the pop-
up menu.

4. Enter an ID and caption for the menu item. For this example, enter
IDM_FILE_HELLO for the ID and &Hello for the Caption. Close the dialog.

Creating Menus for Your Applications 111 |

Nﬂtﬂ This time in the menu Properties dialog, you not only specify the text that
) the user will see when the menu is opened from the menu bar, but you also
' specify the object ID that will be used in the event message handler to
determine what function receives each of the menu events.

At this point you have created a menu with a single menu item. You can continue to add
menu items by repeating steps 3 and 4 of the preceding list for each of the highlighted
areas. You can also add separators onto the menu. A separator is adividing line that runs
across the menu to separate two functional areas of menu selections. To add a separator,
perform the following steps:

FIGURE 63 Menu Item Propertiss
2 T General | Extended Styles |
Specifying a menu sep- o] =] covion. |
arator. W Sepasiod T Fopop T lasie Bl ~

2| Checed 1= Gizped) I HED
Promet |

1. Select the highlighted area where you want the separator to be placed. In the exam-
ple you created, the second drop-down menu location should be highlighted. Open
the properties dialog as you did in step 3 in the preceding list. To add a separator,
simply select the Separator option, as shown in Figure 6.3, and close the dialog.

To complete your sample program, follow the same steps | just described to add an Exit
item to your File menu and a second menu called Help with one menu item called
About. The following steps, which resemble the preceding list of steps, walk you
through adding these additional items:

1. Open the properties dialog for the third drop-down location and specify the ID as
IDM_FILE_EXIT and the caption as E&xit. Close the dialog.

2. Select the second top-level menu location and open the properties dialog. Specify
the caption as &Help and close the dialog.

3. Open the properties dialog for the first drop-down location on the second top-level
menu. Specify the ID as ID_HELP_ABOUT and the caption as &About. Close the dia
log.

At this point, your menu is created; however, it is not attached to your application.

| 112

Day 6

FIGURE 6.4.

Attaching the menu to
the dialog window. Fon name: MS Sans Seif

Attaching the Menu to Your Dialog Window

You now have a menu that you can use in your application. If you compile and run
your application at this point, however, the menu doesn’t appear. You still need to
attach the menu to your dialog window. You can attach a menu by following these
steps:

1. Open the diaog painter by double-clicking the primary application dialog in
the Dialog folder in the Workspace pane. For this example, double-click on
IDD_MENUS_DIALOG.

2. Select the entire dialog window, making sure that no controls are selected, and
open the dialog's properties dialog. (What you are doing is opening the prop-
erties for the dialog window itself, not for any of the controls that might be on
the window.)

3. Select the menu you have designed from the Menu drop-down list box, as
shown in Figure 6.4.

40 R Generd | Stles | MoreSiyles | Etended Sty |

ID: [IDD_DAYE_DIALOG |Eaption: [Menus

Font size: 8

Fort. | ®Pos: [0 YPos [0 | Clows e

If you compile and run your application, you find that the menu is attached to the appli-
cation dialog, as shown in Figure 6.5. You can select menu entries as you do with any
other Windows application—with one small difference. At this point, when you select
one of the menu entries, nothing happens. You still need to attach functionality to your
menu.

FIGURE 6.5. 48 Menus 5

Help

The menu is now part Hello
of the application dia-

Attaching Functionality to Menu Entries

Now that you have a menu as part of your application, it sure would be nice if it actually
did something. Well, before your menu can do anything, you have to tell it what to do,
just like everything else in your Visual C++ applications. To attach some functionality to
your menu, follow these steps:

Creating Menus for Your Applications 113 |

FIGURE 66 Adding a Class

IDR_MENUT is & new resource. Since itis a

The menu is now part menu resource you may want to select an
existing view class to associate it with. You can e
H H also create a new class for it
of the application.

" Create a new class

(% Select an existing class

1. Open the Menu Designer to your menu.
2. Open the Class Wizard from the View menu.

3. TheAdding a Class dialog is displayed for you, just as it was yesterday when you
added a second dialog. Leave the dialog selection on Select an Existing Class and
click OK (see Figure 6.6).

Yesterday, when you were adding a second dialog window to your application, you
needed to create a new C++ class for that window. For today’s menu, you want to
attach it to the existing C++ class for the dialog window to which the menu is
attached.

4. Choose the C++ class of the primary dialog window from the list of available
classes in the Select Class dialog. For this example, select cMenusD1g, as shown in
Figure 6.7. Thistells Visual C++ that al the functionality that you will call from
the various menu entries is part of the same dialog class of the window that it's
attached to.

FIGURE 67 Select Class

The Menu resource IDR_MENUT

o iz not associated with a class. To
The Select Class dia i e ——
list below or bring a new class inta
| 0d. Classwizard using Create Class.

Class ist:

For the menu elements that you want to use to trigger new functions in your application,
you can add event-handler functions through the Class Wizard, just as you can with con-
trols that you place on the dialog window.

For this example, add a function for the 1DM_FILE_HELLO object (the Hello menu) on the
COMMAND event message. Name the function onHello and add the code in Listing 6.1 to
the function.

1114 Day 6

LisTING 6.1. THE ONHELLO FUNCTION.

1: void CMenusDlg::0nHello()
2: {
3: // TODO: Add your command handler code here
4:
5: TIEETEETEET iy
6: // MY CODE STARTS HERE
7: TIEETLTETT i
8:
9: // Display a message for the user
10: MessageBox("Hello there", "Hello");
11:
12: FIEETEEEEEEEE i iy
13: // MY CODE ENDS HERE
14: TIEETEETEET iy
15: }
N t . The COMMAND event message is the message that is passed to the application
ote window when a menu entry is selected. Placing a function on this event
) message has the same effect as placing a function on the menu entry selec-
tion

You can call existing event handlers from menu elements by adding the existing function
to the menu COMMAND event. You can do this by adding a function to the menu object ID
and then specifying the existing function name instead of accepting the suggested func-
tion name.

To reuse the onexit function for the Exit menu element, reopen the Menu Designer and
then reopen the Class Wizard. When the Class Wizard is displayed, add a function for
the IDM_FILE_EXIT object on the COMMAND event message. Do not accept the default
function name presented to you by the Class Wizard. Enter the function name onExit.
This automatically attaches the existing onExit function that you created with your Exit
button earlier.

To round out your exampl€e's functionality, add a function to the 1D_HELP_ABOUT object
on the COMMAND event message. Edit the function asin Listing 6.2.

LISTING 6.2. THE ONHELPABOUT FUNCTION.

: void CMenusD1lg::0nHelpAbout ()

1
2:
3: // TODO: Add your command handler code here
4:

Creating Menus for Your Applications 115 |

5: [IELEEEIEErrr it
6: // MY CODE STARTS HERE
7: [IELEEEILErr el
8:

9: // Declare an instance of the About window
10: CAboutDlg dlgAbout;

11:

12: // Show the About window
13: dlgAbout.DoModal();

14:

15: LEEETTEELELETE iy
16: // MY CODE ENDS HERE

17: NNy,
18: }

You attached the File| Exit menu entry to an existing function that closes the application.
On the File| Hello, you added a new function that called the MessageBox function to dis-
play a simple message to the user. With Help | About, you added another function that
declared an instance of the About dialog window and called its boModal method.

If you compile and run your application, you find that all the menu entries are working.
If you select Help | About, as shown in Figure 6.8, you see the application About dialog
(see Figure 6.9). If you select File|Hello, you see aHello there message box, as shown
in Figure 6.10. And if you select File| Exit, your application closes.

FIGURE 6.8. E
The Help | About
menu entry.

FIGURE 6.9. About Menus
H Menus Version 1.0

The AbOUt dlalog' Copyright [C] 1998

FIGURE 6.10.

Hello there

The Hello there mes-
sage box.

1116 Day 6

Creating Pop-Up Menus

Most Windows applications have what are called either pop-up or context menus, which
are triggered by the user right-clicking an object. These are called pop-up menus because
they pop up in the middle of the application area, not attached to a menu bar, the window
frame, or anything else on the computer screen (not counting the mouse pointer). These
menus are often referred to as context menus because the contents of a menu depend on
the context in which it is opened; the elements available on the menu depend on what
objects are currently selected in the application or what the mouse pointer is positioned
over.

To provide a pop-up menu in your application, you have two approaches available. You
can either design a menu specifically for use as a pop-up menu, or you can use one of
the pull-down menus from the primary menu that you have already designed. If you
design a menu specifically for use as a pop-up menu, you will need to skip the top-level,
menu bar element by placing a space or some other text in the caption, knowing that it
will not be seen. You will see how this works when you build a custom menu specifical-
ly for use as a pop-up menu on Day 11, “Creating Multiple Document Interface
Applications,” in the section “ Adding a Context Menu.”

Every drop-down portion of a menu can also be used as a pop-up menu. To use it in this
way, you must get a handle to the submenu (the drop-down menu) and then call the
TrackPopupMenu function on the submenu. The rest of the pop-up menu functionality is
aready covered in the other menu building and coding that you have aready done. To
add a pop-up menu to your application, follow these steps:

1. Using the Class Wizard, add a function for the wM_CONTEXTMENU event message in
your dialog window.

Nﬂtﬂ There are two dialog event messages that you can use to trigger your con-

) text menu. The event that you’d expect to use is the WM_RBUTTONDOWN event,
' which is triggered by the user right-clicking. The other event that can (and
should) be used is the WM_CONTEXTMENU event, which is intended for use
specifically to trigger a context menu. This event is triggered by a couple
user actions: One of these is the release of the right mouse button, and
another is the pressing of the context menu button on one of the newer
Windows-enabled keyboards.

2. Edit the function, adding the code in Listing 6.3.

Creating Menus for Your Applications 117 |

LiSTING 6.3. THE ONCONTEXTMENU FUNCTION.

1: void CMenusDlg:: OnContextMenu(CWnd* pWnd, CPoint point)
2: {

3: // TODO: Add your message handler code here

4:

5: FIEETEEEEEET iy

6: // MY CODE STARTS HERE

7 TIEETEEEELETE iy

8:

9: // Declare local variables

10: CMenu *m_1Menu; // A pointer to the menu

11: CPoint m_pPoint; // A copy of the mouse position
12:

13: // Copy the mouse position to a local variable

14: m_pPoint = point;

15: // Convert the position to a screen position

16: ClientToScreen(&m_pPoint);

17: // Get a pointer to the window menu

18: m_1Menu - GetMenu();

19: // Get a pointer to the first submenu
20: m_1Menu = m_lMenu->GetSubMenu(0);
21: // Show the Popup Menu
22: m_1Menu->TrackPopupMenu (TPM_CENTERALIGN + TPM_LEFTBUTTON,
23: m_pPoint.x, m_pPoint.y, this, NULL);
24:
25: TIEETEEEETE iy
26: // MY CODE ENDS HERE
27: FIEETEEELEETE i riny
28: }

In Listing 6.3, the first thing that you did was make a copy of the mouse position. This
mouse position is arelative position within the window area. It must be converted to an
absolute position on the entire screen area for displaying the pop-up menu. If you don’t
convert the position coordinates, you can't predict where your pop-up menu will appear.

After you convert the position to an absolute position, you get a pointer to the window
menu. This pointer should always be alocal pointer within the function where you are
going to use it because the location of the menu might change as the application runs.
From the menu pointer, you next get a pointer to the first drop-down menu (submenu
numbering begins with 0O, like just about everything else in C/C++). After you have a
pointer to the submenu, you can treat it as aregular cMenu class instance.

The fina piecein this puzzle is the call to the cMenu member function TrackPopupMenu.
This function takes five arguments and uses them to determine where and how to show

| 118

Day 6

the pop-up menu. The first argument is a combination of two flags. The first flag,
TPM_CENTERALIGN, centers the pop-up menu on the mouse point. You can also use
TPM_LEFTALIGN Or TPM_RIGHTALIGN instead. These flags line up the left or right edge of
the pop-up menu with the mouse position. The second part of this flag combination is
TPM_LEFTBUTTON, Which makes the pop-up menu trigger from the left mouse button. You
can also use TPM_RIGHTBUTTON to make the menu trigger from the right mouse button.

The second and third arguments to the TrackPopupMenu function specify the screen posi-
tion for the pop-up menu. Thisis the absolute position on the screen, not a relative posi-
tion within the window area. The fourth argument is a pointer to the window that
receives the menu command messages. The final argument is a rectangle that the user
can click without closing the pop-up menu. By passing NULL, You specify that if the user
clicks outside the pop-up menu, the menu closes. This code enables you to include a
pop-up menu in your application, as shown in Figure 6.11.

FIGURE 6.11. s
The pop-up menu in

action. —
Hello Exit

Exit

Creating a Menu with Accelerators

One of the original keyboard shortcuts for selecting menu entries were accelerator keys.
As mentioned earlier in the chapter, accelerator keys are specific key combinations, usu-
ally the Ctrl key combined with another key, or function keys, that are unique within the
entire application. Each of these key combinations triggers one menu event function.

The way that accelerator keys work is similar to the way menus work. They are aso an
application resource that is defined in atable in the resource tab of the workspace pane.
Each table entry has an object ID and a key code combination. After you define the
accelerators, you can attach functionality to the object IDs. You can also assigh accelera-
tor entries the same object ID as the corresponding menu entry so that you have to
define only a single entry in the application message map.

After you define all your accelerator keys, you can add the key combination to the menu
entry so that the user will know about the accelerator key combination. Add \t to the
end of the menu entry caption, followed by the key combination. The \t isreplaced in
the menu display by atab, which separates the menu caption from the accelerator key
combination.

Creating Menus for Your Applications 119 |

Unfortunately, accelerator keys don’'t work in dial og-style windows, so you cannot add
them to today’s application. You will learn how to attach accelerator keysto menusin a
few days when you learn about single and multi-document interface style applications.

Summary

Today you learned about menus in Visual C++ applications. You learned how to use the
toolsin Visual C++ to create a menu for use in your application and then how to attach
the menu to a window in your application. After you had the menu attached to your win-
dow, you learned how to attach functionality to the various menu entries. Later in the
day, you learned how you can use a portion of your menu as a pop-up, or context, menu.
Finally, you learned how accelerator keys are added to most applications.

Q&A
Q

O

Do | have to name my menu items the same names everyone else uses?

For example, alot of applications use File and Help. Can | hame my menus
something else?

You can name your top-level menus anything you want. However, there are ac-
cepted menu name conventions that place all file-oriented functionality under a
menu labeled File and all help-related functionality under a menu labeled Help. If
you have a menu with entries such as Broccoli, Corn, and Carrots, you will proba-
bly want to call the menu Vegetables, although an equally valid label would be
Food or Plants. In general, if you want to make your application easy for your
usersto learn, you will want to use menu labels that make sense for the entries o
n the pull-down portion of the menu.

Why can’t | specify a single character as an accelerator key?

The single character would trigger the wu_KEY messages, not the menu messages.
When the designers of Windows were deciding how accelerator keys would work,
they decided that single-character keys would most likely be input to the active
application. If they had allowed single-character accelerators, Windows wouldn’t
be able to determine whether the character was input or a shortcut. By requiring a
key combination (with the exception of function keys), the designers ensured that
Windows won't have to make this determination.

| 120

Day 6

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions are provided in Appendix B, “Answers.”

Quiz
1. What event message does a menu selection send to the window message queue?
How do you attach a menu to a dialog window?

N

3. Which existing class do you specify for handling event messages for the menu?
4. What event message should a pop-up menu be triggered by?

Exercises

1. Add a button to the main window and have it call the same function as the Hello
menu entry.

2. Add a pop-up menu to your application that uses the Help drop-down menu as the
pop-up menu.

WEEK 1

DAY 7

Working with Text
and Fonts

In most Windows applications, you don’t need to worry about specifying fonts,
much less their weight, height, and so on. If you don't specify the font to be
used, Windows supplies a default font for your application. If you do need to
use a particular font, you can specify afont to use for a particular dialog win-
dow through the dialog properties. Sometimes, however, you want or need to
control the font used in your application. You might need to change the font
being used or alow the user to select afont to use in a particular instance. It is
for those circumstances that you will learn how to change and list fonts today.
Among the things that you will learn are

» How to build alist of available fonts.
« How to specify afont for use.
* How to change fonts dynamically.

122 Day 7

Finding and Using Fonts

One of the first things that you need to know when working with fonts is that not every
system that your applications run on will have the same fonts installed. Fonts are speci-
fied in files that can be installed and removed from Windows systems with relative ease.
Every computer user can customize his system with whatever combination of fonts he
wants. If you specify afont that doesn’t exist on the system, Windows will choose either
the system default font or what the operating system considers to be a reasonably close
aternative font.

What you can do instead is ask the operating system what fonts are available. This
method allows you to make your own decisions on which font to use or let the user make
the decision. When you ask what fonts are available, you can limit the types of fonts that
are listed, or you can choose to list them all and select various fonts based on various
attributes.

Listing the Available Fonts

To get alist of al available fonts on a computer, you call a Windows APl (Application
Programming Interface) function called EnumFontFamiliesEx. This function tells
Windows that you want a list of the fonts on the system. Before you start using this func-
tion and expecting it to pass you a big list of available fonts, you need to understand how
it givesyou the list.

Callback Functions

One of the key arguments to the EnumFontFamiliesEx function is the address of another
function. This second function is what is known as a callback function, which is called
by the operating system. For almost every enumeration function in the Windows operat-
ing system, you pass the address of a callback function as an argument because the call-
back function is called once for each of the elements in the enumerated list. In other
words, you have to include a function in your application to receive each individual font
that is on the system and then build the list of fonts yourself.

When you create this function to receive each font and build your list, you cannot define
your callback function in any way you want. All callback functions are already defined
in the Windows API. You have to use a specific type of callback function to receive the
list of fonts. For getting alist of fonts, the function type is EnumFontFamProc. This func-
tion type specifies how your function must be defined, what its arguments must be, and
what type of return value it must return. It does not specify what your function should be
named or how it needs to work internally. These aspects are left completely up to you.

Working with Text and Fonts 123 |

The EnumFontFamiliesEx Function

The EnumFontFamiliesEx function, which you call to request the list of available fonts,
takes five arguments. A typical use of this function follows:

// Create a device context variable

CClientDC dc (this);

// Declare a LOGFONT structure
LOGFONT 1lLogFont;

/| Specify the character set

l1LogFont.1fCharSet = DEFAULT_CHARSET;

// Specify all fonts

1LogFont.1fFaceName[@] = NULL;

// Must be zero unless Hebrew or Arabic
1lLogFont.1fPitchAndFamily = 0;

// Enumerate the font families
::EnumFontFamilieskx((HDC) dc, &lLogFont,
(FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);

The first argument is a device context, which can be an instance of the cclientDC class.
Every application running within the Windows operating system has a device context.
The device context provides alot of necessary information to the operating system about
what is available to the application and what is not.

The second argument is a pointer to a LOGFONT structure. This structure contains informa-
tion about the fonts that you want listed. You can specify in this structure which charac-
ter set you want to list or whether you want all the fontsin a particular font family. If
you want all the fonts on the system, you pass NULL in the place of this argument.

The third argument is the address of the callback function that will be used to build your
list of fonts. Passing the address of your callback function is a simple matter of using the
function name as the argument. The Visual C++ compiler takes care of replacing the
function name with the function address. However, you do need to cast the function as
the type of callback function that the function requires.

The fourth argument is a LPARAM value that will be passed to the callback function. This
parameter is not used by Windows but provides your callback function with a context in
which to build the font list. In the example, the value being passed is a pointer to the
window in which the code is being run. This way, the callback function can use this
pointer to access any structures it needs to build the list of fonts. This pointer can also be
the first node in alinked list of fonts or other such structure.

Thefifth and final argument is always 0. This reserved argument may be used in future
versions of Windows, but for now, it must be @ so that your application passes a value
that won't cause the function to misbehave.

| 124

Day 7

The EnumFontFamProc Function Type

When you create your callback function, it must be defined as an independent function,
not as a member of any C++ class. A typical EnumFontFamProc function declaration
follows:

int CALLBACK EnumFontFamProc(

LPENUMLOGFONT 1pelf,

LPNEWTEXTMETRIC lpntm,

DWORD nFontType,

long 1Param)

{
/| Create a pointer to the dialog window
CMyD1g* pWnd = (CMyDlg*) 1Param;

// Add the font name to the list box
pWnd->m_ctlFontList.AddString(lpelf->elfLogFont.1fFaceName);
// Return 1 to continue font enumeration

return 1;

}

The first argument to this function is a pointer to an ENUMLOGFONTEX structure. This struc-
ture contains information about the logical attributes of the font, including the font name,
style, and script. You may have numerous fonts listed with the same name but different
styles. You can have one for normal, one for bold, one for italic, and one for bold italic.

The second argument is a pointer to a NEWTEXTMETRICEX structure. This structure con-
tains information about the physical attributes of the font, such as height, width, and
space around the font. These values are all relative in nature because they need to scale
as the font is made larger or smaller.

The third argument is a flag that specifies the type of font. This value may contain a
combination of the following values:

* DEVICE_FONTYPE

* RASTER_FONTYPE

* TRUETYPE_FONTYPE
Finally, the fourth argument is the value that was passed into the EnumFontFamiliesEx
function. In the example, it was a pointer to the dialog on which the list of fontsis being

built. If you cast this value as a pointer to the dialog, the function can access a list box
control to add the font names.

The return value from this function determines whether the listing of fonts continues. If @
is returned from this function, the operating system quits listing the available fonts. If 1
is returned, the operating system continues to list the available fonts.

Working with Text and Fonts 125 |

Using a Font

To use a particular font in an application, you call an instance of the CFont class. By
calling the createFont method, you can specify the font to be used, along with the size,
style, and orientation. Once you' ve created a font, you can tell a control or window to
use the font by calling the object’s setFont method. An example of this process follows:

CFont m_fFont; // The font to be used

// Create the font to be used

m_fFont.CreateFont(12, 0, @, @, FW_NORMAL,
0, 0, 0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
FF_DONTCARE, m_sFontName);

// Set the font for the display area
m_ctlDisplayText.SetFont (&m_fFont);

'I'ip The CFont variable used in the previous code should be declared as a mem-

ber variable of the class in which this code is placed. In the sample code, it is
declared above where it is used to show how it is declared. This variable
should not be declared or used as a local variable in a function.

Seems simple enough—just two function calls—but that createFont function needs an
awful lot of arguments passed to it. It is these arguments that make the CreateFont
method a flexible function with a large amount of functionality. Once you create the font,
using it is a simple matter of passing the font to the setFont method, which is a member
of the cwnd class and thus available to all window and control classesin Visual C++. This
means that you can use this technique on any visible object within a Visual C++ application.

To understand how the createFont function works, let’s ook at the individual argu-
ments that you have to pass to it. The function is defined as

BOOL CreateFont(

int nHeight,
int nwidth,
int nEscapement,
int nOrientation,
int nWeight,
BYTE bItalic,
BYTE bUnderline,
BYTE cStrikeOut,
BYTE nCharSet,

| 126

Day 7

BYTE nOutPrecision,
BYTE nClipPrecision,
BYTE nQuality,

BYTE nPitchAndFamily,
LPCTSTR 1lpszFaceName);

The first of these arguments, nHeight, specifies the height of the font to be used. This
logical value istrandated into a physical value. If the value is @, a reasonable default
valueis used. If the value is greater or less than @, the absolute height is converted into
device units. It is key to understand that height values of 10 and -1 are basically the
same.

The second argument, nwidth, specifies the average width of the charactersin the font.
Thislogical value istrandated into a physical value in much the same way as the height is.

The third argument, nEscapement, determines the angle at which the text will be printed.
Thisvalue is specified in 0.1-degree units in a counterclockwise pattern. If you want to
print vertical text that reads from bottom to top, you supply 90 as the value for this
argument. For printing normal horizontal text that flows from left to right, supply o as
this value.

The fourth argument, norientation, determines the angle of each individua character in
the font. This works on the same basis as the previous argument, but it controls the out-
put on a character basis, not a line-of-text basis. To print upside-down characters, set this
value to 1800@. To print characters on their backs, set this value to 900.

The fifth argument, nweight, specifies the weight, or boldness, of the font. This can be
any value from o to 1000, with 1000 being heavily bolded. You can use constants defined
for this argument to control this value with ease and consistency. These constants are
listed in Table 7.1.

TABLE 7.1. FONT WEIGHT CONSTANTS.

Constant Value
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400

FW_MEDIUM 500

Working with Text and Fonts 127 |

Constant Value
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The actua interpretation and availability of these weights depend on the font. Some fonts
only have FW_NORMAL, FW_REGULAR, and Fw_BOLD weights. If you specify FW_DONTCARE, a
default weight is used, just as with most of the rest of the arguments.

The sixth argument, bItalic, specifies whether the font isto beitalicized. Thisisa
boolean value; o indicates that the font is not italicized, and any other value indicates
that the font isitalicized.

The seventh argument, bunderline, specifies whether the font is to be underlined. This
is aso aboolean value; o indicates that the font is not underlined, and any other value
indicates that the font is underlined.

The eighth argument, cStrikeout, specifies whether the charactersin the font are dis-
played with aline through the character. Thisis another boolean value using a non-zero
value as TRUE and @ as FALSE.

The ninth argument, ncharset, specifiesthe font’'s character set. The available constants
for thisvalue are listed in Table 7.2.

TABLE 7.2. FONT CHARACTER SET CONSTANTS.

Constant Value

ANSI_CHARSET 0

DEFAULT_CHARSET 1

SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255

The system on which your application is running might have other character sets, and the
OEM character set is system dependent, making it different for systems from different

| 128

Day 7

manufacturers. If you are using one of these character sets, it isrisky to try to manipulate
the strings to be output, so it’'s best to just pass aong the string to be displayed.

The tenth argument, noutPrecision, specifies how closely the output must match the
reguested font’s height, width, character orientation, escapement, and pitch. The avail-
able values for this argument are

* OUT_CHARACTER_PRECIS

* OUT_DEFAULT_PRECIS

* OUT_DEVICE_PRECIS

* OUT_RASTER_PRECIS

* OUT_STRING_PRECIS

* OUT_STROKE_PRECIS

* OUT_TT_PRECIS
The OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and OUT_TT_PRECIS values control which
font is chosen if there are multiple fonts with the same name. For instance, if you use the
OUT_TT_PRECIS value and specify afont with both a TrueType and raster version, then

the TrueType version is used. In fact, the ouT_TT_PRECIS value forces the system to use a
TrueType font, even when the specified font does not have a TrueType version.

The eleventh argument, nClipPrecision, specifies how to clip characters that are par-
tialy outside of the display area. The values for this argument are

* CLIP_CHARACTER_PRECIS

e CLIP DEFAULT_PRECIS

e CLIP_ENCAPSULATE

* CLIP_LH_ANGLES

e CLIP_MASK

e CLIP_STROKE_PRECIS

e CLIP_TT_ALWAYS

These values can be ored together to specify a combination of clipping techniques.

The twelfth argument, nquality, specifies the output quality and how carefully the GDI
(Graphics Device Interface) must attempt to match the logical font attributes to the phys-
ical font output. The available values for this argument are

e DEFAULT_QUALITY

* DRAFT_QUALITY

* PROOF_QUALITY

Working with Text and Fonts

The thirteenth argument, nPitchAndFamily, specifies the pitch and family of the font.
This value consists of two values that are ored together to create a combination value.
Thefirst set of available valuesis

e DEFAULT_PITCH

* VARIABLE_PITCH

e FIXED PITCH
This value specifies the pitch to be used with the font. The second set of available values
specifies the family of fonts to be used. The available values for this portion of the argu-
ment are

* FF_DECORATIVE

* FF_DONTCARE

e FF_MODERN

* FF_ROMAN

* FF_SCRIPT

e FF_SWISS
The font family describes in a general way the appearance of a font. You can use the font
family value to choose an dternative font when a specific font does not exist on a system.
The final argument, 1pszFacename, is a standard C-style string that contains the name of

the font to be used. This font name comes from the font information received by the
EnumFontFamProc callback function.

Using Fonts

Today you will build an application that allows the user to select from alist of available
fonts to be displayed. The user will be able to enter some text to be displayed in the
selected font, allowing the user to see what the font looks like.

Creating the Application Shell
To begin today’s application, follow these steps:
1. Create anew project workspace using the MFC AppWizard. Name the project
Day7.

2. Usethe same defaults that you used for the previous day’s projects, giving the
application atitle of Fonts.

3. Design the main dialog asin Figure 7.1, using the propertiesin Table 7.3.

| 130

Day 7

FIGURE 7.1. %, Day? - Miciosolt Visual C+ - [DayZ.rc - IDD_DAY7_DIALOG (Dialog)]
P EFie Edt View Insstt Project Buid Lsyout Tooks Window Help 13
The main dialog = Ed
layout TR 1 e —
CDay7Dig T=I[ioc_ExT =][BN_CLickED =@ - | ”sg,; B EL
2l T T T
523 Day? resources = = - —
& Diden i Erter Some Test [Et =]
& Slean . [Cont, 1]
[AIDR_MAINFRAME] : Select s Fart [n
221 Sting Table E I
[Version - Aa_abl
’ Mo
B B @
7
] @m 8
: s w
< | Font Samph - B2
- [e
=H
_ : = B
B4 Clas..|] Reso. | [5) Fievi : & | =
[ENEEE =l =) © @
ﬂDay?.ExE — 0 error(s), 0 warning(s) B
4
H Build { Debug K Find in Files 1) Find in Files2 /]| 4] | »
Ready 5191178 [43x16 [READ 7

TABLE 7.3. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text 1D IDC_STATIC
Caption &Enter Some Text:

Edit Box 1D IDC_ESAMPTEXT

Static Text 1D IDC_STATIC
Caption &Select a Font

List Box 1D IDC_LFONTS

Group Box 1D IDC_STATIC
Caption Font Sample

Static Text D IDC_DISPLAYTEXT

(inside group box; sizeto Caption Empty string

fill the group box)

Command Button 1D IDC_EXIT
Caption E&xit

4. Using the Class Wizard, add the variables in Table 7.4 to the controls on the dia-

log.

Working with Text and Fonts

131 |

TABLE 7.4. CONTROL VARIABLES.

Object Name Category Type
IDC_DISPLAYTEXT m_ctlDisplayText Control CStatic
m_strDisplayText Value CString
IDC_LFONTS m_ctlFontList Control CListBox
m_strFontName Value CString
IDC_ESAMPTEXT m_strSampText Value CString

5. Attach afunction to the IDc_EXIT button to close the application, asin the previ-

ous day’s applications.

Building a List of Fonts

To be able to create your list of fonts, you need to add your callback function to get each
font list and add it to the list box that you placed on the dialog window. To do this, edit
the Day7D1g. h header file and add the function declaration in Listing 7.1 near the top of
the file. This function cannot be added through any of the tools available in Visual C++.

You need to open the file and add it yourself.

LISTING 7.1. THE CALLBACK FUNCTION DECLARATION IN THE Day7D1g.h HEADER FILE.

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

ONO O WN =

©

// CDay7Dlg dialog

—_
-

: class CDay7Dlg : public CDialog

—_
S 0N

int CALLBACK EnumFontFamProc (LPENUMLOGFONT lpelf,
LPNEWTEXTMETRIC lpntm, DWORD nFontType, long lParam);

NN NNy,

Once you add the function declaration to the header file, open the bay7D1g.cpp source-
code file, scroll to the bottom of the file, and add the function definition in Listing 7.2.

132 Day 7

LISTING 7.2. THE CALLBACK FUNCTION DEFINITION IN THE Day7D1g.cCpp SOURCE FILE.

1: int CALLBACK EnumFontFamProc (LPENUMLOGFONT lpelf,

2: LPNEWTEXTMETRIC lpntm, DWORD nFontType, long 1lParam)
3: {

4 // Create a pointer to the dialog window

5: CDay7Dlg* pWnd = (CDay7Dlg*) lParam;

6:

7: // Add the font name to the list box

8 pwnd->m_ctlFontList.AddString(lpelf->elfLogFont.1fFaceName);
9 // Return 1 to continue font enumeration
10 return 1;
11: }

Now that you have the callback function defined, you need to add a function to request
the list of fonts from the operating system. To add this function, follow these steps:
1. Select the Class View tab on the project workspace pane.

2. Select the cbay7D1g class, right-click the mouse, and select Add Member Function
from the pop-up menu.

3. Specify the function type as void, the function declaration asFillFontList, and
the access as Private. Click the OK button to close the dialog and add the function.

4. Edit the function definition asin Listing 7.3.

LisTING 7.3. THE FillFontList FUNCTION.

1: void CDay7Dlg::FillFontList()

2: {

3 LOGFONT 1f;

4:

5: // Initialize the LOGFONT structure
6: 1f.1fCharSet = DEFAULT_CHARSET;

7: strcpy(1f.1fFaceName, "");

8: // Clear the list box

9: m_ctlFontList.ResetContent();
10: // Create a device context variable
11: CClientDC dc (this);
12: // Enumerate the font families
13: ::EnumFontFamiliesEx((HDC) dc, &1f,
14: (FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);
15: }

5. Edit theoninitDialog function to call the FillFontList function, asin Listing 7.4.

Working with Text and Fonts 133 |

LISTING 7.4. THE EDITED OnInitDialog FUNCTION.

1: BOOL CDay7Dlg::0OnInitDialog()

2: {

3 CDialog::0OnInitDialog();

4:

5:

6.

7 // TODO: Add extra initialization here

8:

9: [HEEETTEEEE iy
10: // MY CODE STARTS HERE
11: [EEEEETEEEE L rrrrrrr
12:

13: // Fill the font 1list box

14: FillFontList();

15:

16: [IEEEETEEEL i

17: // MY CODE ENDS HERE

18: [HEEETTEEEE iy

19:

20: return TRUE; // return TRUE unless you set the focus to a control
21: }

If you compile and run your application now, you should find that your list box isfilled
with the names of all the fonts available on the system. However, there's one aspect of
this list that you probably don’t want in your application. Figure 7.2 shows many dupli-
cate entriesin the list of fontsin the list box. It would be nice if you could eiminate
these duplicates and have only one line per font.

FIGURE 7.2. F? Fonts Bl E
P . Enter Some Text:
Listing all the fontsin : /
Select aFont [AbadiMT Conds d -~

the system. sk MT Conlanced e

Algerian

lgerian

Avial

Arial

Avial

Arial

Avial

Arial

il lck =

Font Sampl
Exit

It turns out that the EnumFontFamiliesEx function call is synchronousin nature. This
means that it doesn’t return until all the fonts in the system are listed in calls to your

1134 Day 7

callback function. You can place code in the FillFontList function to remove dl the
duplicate entries once the list box isfilled. To do this, modify the FillFontList function
asin Listing 7.5.

LISTING 7.5. THE MODIFIED FillFontList FUNCTION.

1: void CDay7Dlg::FillFontList()

2: {

3 int iCount; // The number of fonts

4: int iCurCount; // The current font

5: CString strCurFont; // The current font name

6: CString strPrevFont = ""; // The previous font name
7 LOGFONT 1f;

8:

9: // Initialize the LOGFONT structure

10: 1f.1fCharSet = DEFAULT_CHARSET;

11: strcpy(lf.1lfFaceName, "");

12: // Clear the list box

13: m_ctlFontList.ResetContent();

14: // Create a device context variable

15: CClientDC dc (this);

16: // Enumerate the font families

17: ::EnumFontFamiliesEx((HDC) dc, &1f,

18: (FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);

19: // Get the number of fonts in the 1list box
20: iCount = m_ctlFontList.GetCount();
21: // Loop from the last entry in the 1list box to the first,
22: // searching for and deleting the duplicate entries
23: for (iCurCount = iCount; iCurCount > 0@; iCurCount--)
24: {
25: // Get the current font name
26: m_ctlFontList.GetText((iCurCount - 1), strCurFont);
27: // Is it the same as the previous font name?
28: if (strCurFont == strPrevFont)
29: {
30: // If yes, then delete it
31: m_ctlFontList.DeleteString((iCurCount - 1));
32: }
33: // Set the previous font name to the current font name
34: strPrevFont = strCurFont;
35: }
36: }

Notice that the for loop started at the end of the list and worked backward. This allowed
you to delete the current entry without worrying about manipulating the loop counter to
prevent skipping lines in the list box. If you compile and run your application, there
shouldn’t be any duplicate entriesin the list of available fonts.

Working with Text and Fonts 135 |

Setting the Font Sample Text

Before you can display the font for the user, you need to place some text into the display
area. The edit box near the top of the dialog is where the user enters text to be displayed
in the font selected. To add the functionality, do the following:

1. EdittheonInitbialog function to add code to initialize the edit box and display
text, asin Listing 7.6.

LISTING 7.6. THE MODIFIED OnInitDialog FUNCTION.

1: BOOL CDay7Dlg::0OnInitDialog()

2: {

3 CDialog::0OnInitDialog();

4:

5:

6.

7 // TODO: Add extra initialization here
8:

9: [HEEELTEEEE i

10: // MY CODE STARTS HERE

11: [EEEELTEEEL iy

12:

13: // Fill the font list box

14: FillFontList();

15:

16: // Initialize the text to be entered
17: m_strSampText = "Testing";

18: // Copy the text to the font sample area
19: m_strDisplayText = m_strSampText;
20: // Update the dialog
21: UpdateData(FALSE);
22:
23: [EEEELTEEEL iy
24: // MY CODE ENDS HERE
25: [HEEETTEEEE i rrrrr
26:
27: return TRUE; // return TRUE unless you set the focus to a control
28: }

2. Using the Class Wizard, add a function on the EN_CHANGE event message for the
IDC_ESAMPTEXT edit box control.

3. Edit the function you just added, adding the code in Listing 7.7.

136 Day 7

LisTING 7.7. THE OnChangeEsamptext FUNCTION.

1: void CDay7Dlg::0nChangeEsamptext()

2: {

3: // TODO: If this is a RICHEDIT control, the control will not
4: // send this notification unless you override the

0JCDialog::0OnInitialUpdate()

5: // function and call CRichEditCrtl().SetEventMask()
6: // with the EN_CHANGE flag ORed into the mask.

7:

8: // TODO: Add your control notification handler code here
9:

10: [EEEEETEEEE L rrrrrr

11: // MY CODE STARTS HERE

12: [IEEELTEEEL i

13:

14: // Update the variables with the dialog controls
15: UpdateData(TRUE);

16:

17: // Copy the current text to the font sample

18: m_strDisplayText = m_strSampText;

19:
20: // Update the dialog with the variables
21: UpdateData(FALSE) ;
22:
23: [HEEELTEEEE L rrrrrrr
24: // MY CODE ENDS HERE
25: [EEEEETEEEL i
26: }

If you compile and run your application, you should be able to type text into the edit box
and see it change in the font display areain the group box below.

Selecting a Font to Display

Before you can start changing the font for the display area, you'll need to have a CFont
member variable of the dialog class that you can use to set and change the display font.
To add this variable, follow these steps:

1. Inthe Class View of the workspace pane, right-click the mouse on the cbay7D1g
class. Select Add Member Variable from the pop-up menu.

2. Specify the variable type as CFont, the variable name as m_fSampFont, and the
access as Private. Click the OK button to close the dialog box and add the
variable.

When adding the code to use the selected font, you'll add it as a separate function that is
not attached to a control. Why you do this will become clear as you proceed further

Working with Text and Fonts 137 |

through building and running today’s application. To add the function to display and use
the selected font, follow these steps:

1. Inthe Class View of the workspace pane, right-click the mouse on the cbay7D1g
class. Select Add Member Function from the pop-up menu.

2. Specify the function type as void, the function declaration as setMyFont, and the
access as Private. Click the OK button to close the dialog and add the function.

3. Edit the function, adding the code in Listing 7.8.

LISTING 7.8. THE SetMyFont FUNCTION.

1: void CDay7Dlg::SetMyFont()

2: {

3 CRect rRect; // The rectangle of the display area
4: int iHeight; // The height of the display area

5:

6: // Has a font been selected?

7: if (m_strFontName != "")

8: {

9: // Get the dimensions of the font sample display area
10: m_ctlDisplayText.GetWindowRect (&rRect);

11: // Calculate the area height

12: iHeight = rRect.top - rRect.bottom;

13: // Make sure the height is positive

14: if (iHeight < 0)

15: iHeight = @ - iHeight;

16: // Release the current font

17: m_fSampFont.Detach();

18: // Create the font to be used

19: m_fSampFont.CreateFont ((iHeight - 5), @, @, @, FW_NORMAL,
20: 0, 0, 0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
21: CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY, DEFAULT PITCH ,
22: FF_DONTCARE, m_strFontName) ;
23:
24: // Set the font for the sample display area
25: m_ctlDisplayText.SetFont (&m_fSampFont);
26: }
27: }

4. Using the Class Wizard, add a function to the LBN_SELCHANGE event message for
the I1DC_LFONTS list box. Edit the function, adding the code in Listing 7.9.

| 138

Day 7

LisTING 7.9. THE OnSelchangeLfonts FUNCTION.

1: void CDay7Dlg::0nSelchangeLfonts()

2: {

3: // TODO: Add your control notification handler code here
4:

5: FIEETEEEEEET T rrin

6: // MY CODE STARTS HERE

7: TIEETEEEEETE iy

8:

9: // Update the variables with the dialog controls
10: UpdateData(TRUE);

11:

12: // Set the font for the sample

13: SetMyFont();

14:

15: PIEETEEELEETrrrririny

16: // MY CODE ENDS HERE

17: FIEETEEEEEET i riny

18: }

In the setMyFont function, you first checked to make sure that a font had been selected.
Next, you retrieved the area of the static text control that will be used to display the font.
This enables you to specify afont height just slightly smaller than the height of the area
you have available to display the font in. After you calculated the height of the static text
control and made sure that it is a positive value, you created the selected font and told
the static text control to use the newly created font.

In the onselchangeLfonts function, you copy the control values to the attached vari-
ables and then call the setMyFont function to use the selected font. If you compile and
run your application, you should be able to select afont and see it displayed in the sam-
ple static text control, asin Figure 7.3.

FIGURE 7.3. J% Fants BRI
Displaying the selected |
font. Select a Font a‘ng%driwaw Condensed j

Eookman Old Style
bl

Font Sampl

Tééting

Exit

Working with Text and Fonts

139 |

Summary

Today you learned how to use fonts in Visual C++ applications. You learned how to get a

list of the available fonts that are loaded on the system and then how to create a font for
use on adisplay object. You learned how you can create and use callback functions to
get alist of resources from the Windows operating system. You a so learned how you

can access controls from the callback function using a window pointer that you passed to

the function requesting the resource list.

Q&A

Q ThecreateFont function hasalot of argumentsto specify and pass. Isthere
any other alternative to using this function?

A Yes, thereis, athough you still specify all of the same information. A structure
called LOGFONT contains all the same attributes that are passed to the CreateFont
function. You can declare an instance of this structure, initializing the attributes to
default values, and then pass this structure to the createFontIndirect function. If
you make numerous font changes, this approach is preferable because you could
use the same instance of the structure, modifying those attributes that are changing
from the current settings and using it to create the various fonts.

The way that you use this alternative way of creating the font is to declare an
instance of the LOGFONT structure as a member of the dialog class and then initial-
ize al the attributes before calling the setMyFont function. In the setMyFont func-
tion, you modify it as shown in Listing 7.10.
LisTING 7.10. THE MODIFIED SetMyFont FUNCTION.

1: void CDay7Dlg::SetMyFont()

2: {

3:

4 // Has a font been selected?

5: if (m_strFontName != "")

6: {

7 // Assume that the font size has already been initialized in the

8: // m_lLogFont structure. This allows you to only have to specify

9: // the font name.

10: tcscpy(m_lLogFont.1lfFaceName, m_strFontName);

11: // Create the font to be used

12: m_fSampFont.CreateFontIndirect (&m_lLogFont);

13:

14: // Set the font for the sample display area

15: m_ctlDisplayText.SetFont (&m_fSampFont);

16: }

17: }

| 140 Day 7

Q How can | limit thefontsin my list to just the TrueType fonts?

A You can check the nFontType argument to your callback function to determine the
font type. For instance, if you want to include only TrueType fonts in your list of
fonts, you modify your callback function to mask the nFontType argument with the
TRUETYPE_FONTTYPE constant and check to see if the resulting value equals the
TRUETYPE_FONTTYPE value, asin the following:
int CALLBACK EnumFontFamProc (LPENUMLOGFONT lpelf,

LPNEWTEXTMETRIC lpntm, DWORD nFontType, long lParam)
{

// Create a pointer to the dialog window
CDbay7Dlg* pWnd = (CDay7Dlg*) lParam;

// Limit the list to TrueType fonts
if ((nFontType & TRUETYPE_FONTTYPE) == TRUETYPE_FONTTYPE)

{
// Add the font name to the list box
pwnd->m_ctlFontList.AddString(
lpelf->elfLogFont.1fFaceName);

}
// Return 1 to continue font enumeration
return 1;

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How can you specify that the text is to be underlined?
2. How can you print your text upside down?

3. How many timesisthe EnumFontFamProc callback function called by the operating
system?

Exercises

1. Add acheck box to switch between using the entered text to display the font and
using the font name to display the font, asin Figure 7.4.

Working with Text and Fonts 141 |

FIGURE 7.4. J% Fants C[o[x]
Displaying the selected Erisens fedTesting
font with the font Selecta Font [Abad MT Candersed
name.
Bookshelf Symbal 2
Euuksh?ll Symbol 3 :l
[~ Use Entered Text
Font Sample
RLGERIAN
Exit
2. Add a check box to display the font sampleinitalics, asin Figure 7.5.
FIGURE 7.5. 5 Fants e
Displaying the selected EnitsaieTat [Tedng
font |n Itaj | CS. Select aFont [Abadi MT Condensed

Bookshelf Symbal 3 ;I

[¥ UseEntered Text W |talic

Font Sample:

TESTING

WEEK 1

INn Review

WEell, you' ve made it through the first week. By this point,
you' ve gotten a good taste for what's possible when building
applications with Visual C++. Now it's time to look back
over what's been covered and what you should have learned
up to this point.

What you might want to do at this point, to cement your
understanding of how you can use these elements in your
own applications, is to try designing and building a couple of
simple applications of your own. You can use a variety of
controls and add some additional dialogs, just so you can
make sure that you do understand and are comfortable with
these topics. In fact, you might want to try out all the topics
that I've covered up to this point in small applications of your
own design. That's the true test of your understanding of how
the concepts work. You might also want to dive into the MFC
documentation to learn alittle about some of the more
advanced functionality that | haven't covered to seeif you
can figure out how you can use and incorporate it into your
applications.

One of the most important things that you should understand
at this point is how you can use controls and dialog windows
in your applications to get and display information to the
user. Thisis an important part of any Windows application
because just about every application interacts with the user in
some way. You should be able to place any of the standard
controls on adialog in your application and be able to incor-
porate them into your application without any problem.
Likewise, you should be comfortable with using the standard
message box and dialog windows provided to your applica
tion by the Windows operating system. You should also be

-

| 144

Week 1

able to create and incorporate your own custom dialog windows into any application you
might want to build. If you don’t feel comfortable with any of these topics, you might
want to go back and review Day 2 to get a better understanding of how you can use con-
trols and Day 5 to understand how you can incorporate standard and custom dialog win-
dows into your applications.

Another key skill that you will be using in the majority of your applications is the ability
to build and incorporate menus into your applications. You need to have a firm under-
standing of how to design a good menu, how to make sure that there are no conflicting
mnemonics, and how you can attach application functionality to the menu selections. At
this point, you should be able to create your own customized menus, with entries for
each of the various functions that your application performs, and integrate it with your
application with no problems. If you aren’t 100% comfortable with this topic, you might
want to go back and study Day 6 alittle more.

You will find that there are various situations in which you need to have some means of
triggering actions on aregular basis or in which you need to keep track of how long
some process has been running. For both of these situations, as well as numerous others,
you'll often find yourself turning to the use of timersin your application. If you are even
slightly foggy on how you can integrate timers into your applications, you will definitely
want to go back and review Day 4.

Understanding how you can use text and fonts in your applications will allow you to
build more flexibility into the appearance of your applications—to give your users the
ability to customize the appearance as they want. You will be able to examine the avail-
able fonts on the computer on which your application is running and, if afont that you
want to use in your application isn’t available, choose another font that is close to use
instead. If you still have any guestions on how the font infrastructure in Windows works
and how you can use it in your applications, you'll want to go back and review Day 7
once more.

Depending on the nature of your application, being able to capture and track mouse and
keyboard actions by the user can be very important. If you are building a drawing appli-
cation, thisis crucia information. If you are building an application that needs to include
drag-and-drop capabilities, thisis important once again. There are any number of situa-
tions in which you' [l want to include this functionality into your applications. By this
point, you should understand how you can capture the various mouse events and deter-
mine which mouse buttons are involved in the event. You should aso be able to capture
keyboard events in situations where the keyboard input isn’t captured by any controls
that are on the window. If you don’t fedl like you have a complete grasp of this, you
should take another ook at Day 3.

In Review

145 |

Finally, you should be familiar with the Visual C++ development environment, the
Developer Studio. You should have a good understanding of what each area of the envi-
ronment is for and how you can use the various tools and utilities in building your appli-
cations. You should be comfortable with using the workspace pane to navigate around
your application project, locating and bringing into the various editors and designers any
part of your application. You should be comfortable with locating and redesigning the
icon that will be displayed to represent your application and with finding any member
functions or variables in any of your application’s classes.

By now you should be getting fairly comfortable working with Visual C++. If you feel
like you understand all the topics that I’ ve covered so far, you are ready to continue for-
ward, learning more about the various things that you can do, and functionality that you
can build, using Visual C++ as your programming tool. With that said, it's on to the sec-
ond week...

WEEK 2

At a Glance

In the second week, you'll dive into several more involved
topics. These topics are still very much core to building
Windows applications. You'll find yourself using what you
learn in this week, along with what you learned during the
first week, in just about al the applications that you build
with Visual C++.

=
@)

To start the week, on Day 8, you'll learn how to draw
graphics in a Windows application. You'll learn how to
draw simple lines, rectangles, and ellipses. What's more
important—you’ll learn about the device context and how
you can use it to draw your graphics without worrying
about the graphics hardware your users might or might not
have in their computers.

On Day 9, you'll learn how easy it is to incorporate ActiveX
controls into your applications. You'll see how Visua C++
builds custom C++ classes around the controls that you add
to your project, enabling you to interact with an added control
just asif it were another C++ object.

=
N

On Day 10, you'll learn how to build a basic Single
Document Interface (SDI) application. You'll learn about the
Document/View architecture that is used with Visual C++ for
building this style of application, and you'll learn how you
can use it to build your own applications.

[EEN
w

On Day 11, you'll learn how you can apply what you learned
about building SDI applications to building Multiple
Document Interface (MDI) applications. You'll see how you
can use the same Document/View architecture to create M DI
applications, some of the most common style of Windows
applications available today.

[EEN
EN

| 148

Week 2

On Day 12, you'll learn how you can create and modify your own toolbars and status
bars. You'll learn how you can attach toolbar buttons to menus in your application and
how you can add additional toolbars. You'll aso learn how you can place your own
informational elements on the status bar at the bottom of most Windows applications and
how you can keep the status bar updated with the status of your application.

On Day 13, you'll see how you can use the structure provided for you by the
Document/View architecture to save and restore the data created in your application.
You'll learn how flexible this facility is and how you can store different data typesin the
same file, restoring them to your application just as they were when you first saved them.

Finally, rounding out the week on Day 14, you'll learn how easy it is to build a database
application with an ODBC database. You'll learn how to query a set of records from the
database and how to allow the user to edit and modify them, saving the changes back to
the database.

When you finish this week, you'll be well prepared for tackling most basic application
development tasks with Visual C++. You might want to take a short break at that point to
experiment a bit—trying to build various types of applications, pushing your skills, and
learning what your limits are (and aren’t)—before jJumping into the final week of more
advanced topics.

WEEK 2

DAY 8

Adding Flash—
Incorporating Graphics,
Drawing, and Bitmaps

You' ve probably noticed that a large number of applications use graphics and
display images. This adds a certain level of flash and polish to the application.
With some applications, graphics are an integral part of their functionality.
Having a good understanding of what’s involved in adding these capabilities to
your applicationsis a key part of programming for the Windows platform.
You've aready learned how you can draw lines and how you can string a series
of these lines together to make a continuous drawing. Today, you' re going to go
beyond that capacity and learn how you can add more advanced graphics capa-
bilities to your applications. Today, you will learn

» How Windows uses a device context to translate drawing instructions into
graphics output.

» How you can determine the level of control you have over the graphics
output through different mapping modes.

| 150 Day 8

* How Windows uses pens and brushes to draw different portions of the graphics
image.
* How you can load and display bitmaps dynamically.

Understanding the Graphics Device Interface

The Windows operating system provides you with a couple of levels of abstraction for
creating and using graphics in your applications. During the days of DOS programming,
you needed to exercise a great deal of control over the graphics hardware to draw any
kind of imagesin an application. This control required an extensive knowledge and
understanding of the various types of graphics cards that users might have in their com-
puters, along with their options for monitors and resolutions. There were afew graphics
libraries that you could buy for your applications, but overall, it was fairly strenuous pro-
gramming to add this capability to your applications.

With Windows, Microsoft has made the job much easier. First, Microsoft provides you
with avirtual graphics device for al of your Windows applications. This virtual device
doesn’'t change with the hardware but remains the same for all possible graphics hard-
ware that the user might have. This consistency provides you with the ability to create
whatever kind of graphics you want in your applications because you know that the task
of converting them to something that the hardware understands isn’t your problem.

Device Contexts

Before you can create any graphics, you must have the device context in which the
graphics will be displayed. The device context contains information about the system,
the application, and the window in which you are drawing any graphics. The operating
system uses the device context to learn in which context a graphic is being drawn, how
much of the areais visible, and where on the screen it is currently located.

When you draw graphics, you always draw them in the context of an application win-
dow. At any time, this window may be full view, minimized, partly hidden, or complete-
ly hidden. This status is not your concern because you draw your graphics on the win-
dow using its device context. Windows keeps track of each device context and usesit to
determine how much and what part of the graphics you draw to actually display for the
user. In essence, the device context you use to display your graphicsis the visual context
of the window in which you draw them.

The device context uses two resources to perform most of its drawing and graphics func-
tions. These two resources are pens and brushes. Much like their real-world counterparts,
pens and brushes perform similar yet different tasks. The device context uses pensto

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 151|

draw lines and shapes, whereas brushes paint areas of the screen. It's the same idea as
working on paper when you use a pen to draw an outline of an image and then pick up a
paintbrush to fill in the color between the lines.

The Device Context Class

InVisua C++, the MFC device context class (CDC) provides numerous drawing func-
tions for drawing circles, squares, lines, curves, and so on. All these functions are part of
the device context class because they al use the device context information to draw on
your application windows.

You create a device context class instance with a pointer to the window class that you
want to associate with the device context. This allows the device context class to place
all of the code associated with allocating and freeing a device context in the class con-
structor and destructors.

anﬂ Device context objects, as well as all of the various drawing objects, are clas-

) sified as resources in the Windows operating system. The operating system
' has only a limited amount of these resources. Although the total number of
resources is large in recent versions of Windows, it is still possible to run out
of resources if an application allocates them and doesn’t free them correctly.
This loss is known as a resource leak, and much like a memory leak, it can
eventually lock up a user’s system. As a result, it’'s advisable to create these
resources in the functions where they will be used and then delete them as
soon as you are finished with them.
Following this advised approach to using device contexts and their drawing
resources, you use them almost exclusively as local variables within a single
function. The only real exception is when the device context object is created
by Windows and passed into the event-processing function as an argument.

The Pen Class

You have aready seen how you can use the pen class, cPen, to specify the color and
width for drawing lines onscreen. cpen is the primary resource tool for drawing any kind
of line onscreen. When you create an instance of the CPen class, you can specify the line
type, color, and thickness. After you create a pen, you can select it as the current drawing
tool for the device context so that it is used for all of your drawing commands to the

| 152

Day 8

Nﬂtﬂ When you use any of these line styles with a pen thickness greater than 1,
_ all of the lines appear as solid lines. If you want to use any line style other

device context. To create a new pen, and then select it as the current drawing pen, you
use the following code:

// Create the device context

CDC dc(this);

/] Create the pen

CPen 1Pen(PS_SOLID, 1, RGB(®, 0, 0));

// Select the pen as the current drawing pen

dc.SelectObject (&1Pen);

You can use a number of different pen styles. These pen styles all draw different patterns
when drawing lines. Figure 8.1 shows the basic styles that can be used in your applica-
tions with any color.

FIGURE 8.1. PS_SOLID
Windows pen styles.
PS_DOT
PSDASH = = — = — — = — — = — — =
PS_DASDOT _____________________

PS_DASHDOTDOT —a w— e e b e —

PS_NULL

PS_INSIDEFRAME

than PS_SOLID, you need to use a pen width of 1.

Along with the line style that the pen should draw, you also have to specify the pen's
width and color. The combination of these three variables specifies the appearance of
the resulting lines. The line width can range from 1 on up, athough when you reach a
width of 32, it's difficult to exercise any level of precision in your drawing efforts.

You specify the color as a RGB value, which has three separate values for the brightness
of the red, green, and blue color components of the pixels on the computer screen. These
three separate values can range from 0 to 255, and the RGB function combines them into a
single value in the format needed by Windows. Some of the more common colors are
listed in Table 8.1.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 153|

TABLE 8.1. ComMON WINDOWS COLORS.

Color Red Green Blue
Black 0 0 0
Blue 0 0 255
Dark blue 0 0 128
Green 0 255 0
Dark green 0 128 0
Cyan 0 255 255
Dark cyan 0 128 128
Red 255 0 0
Dark red 128 0 0
Magenta 255 0 255
Dark magenta 128 0 128
Yellow 255 255 0
Dark yellow 128 128 0
Dark gray 128 128 128
Light gray 192 192 192
White 255 255 255

The Brush Class

The brush class, cBrush, allows you to create brushes that define how areas will be filled
in. When you draw shapes that enclose an area and fill in the enclosed area, the outline is
drawn with the current pen, and the interior of the areaisfilled by the current brush.
Brushes can be solid colors (specified using the same RGB values as with the pens), a
pattern of lines, or even a repeated pattern created from a small bitmap. If you want to
create a solid-color brush, you need to specify the color to use:

CBrush 1SolidBrush(RGB(255, @, 0));

To create a pattern brush, you need to specify not only the color but also the pattern
to use:

CBrush 1PatternBrush(HS_BDIAGONAL, RGB(@, @, 255));

After you create a brush, you can select it with the device context object, just like you do
with pens. When you select a brush, it is used as the current brush whenever you draw
something that uses a brush.

| 154

Day 8

As with pens, you can select a number of standard patterns when creating a brush, as
shown in Figure 8.2. In addition to these patterns, an additional style of brush, HS_BITMAP,
uses a bitmap as the pattern for filling the specified area. This bitmap is limited in size to
8 pixels by 8 pixels, which is a smaller bitmap than normally used for toolbars and other
small images. If you supply it with alarger bitmap, it takes only the upper-left corner,
limiting it to an 8-by-8 square. You can create a bitmap brush by creating a bitmap
resource for your application and assigning it an object ID. After you do this, you can
create a brush with it by using the following code:

CBitmap m_bmpBitmap;

// Load the image
m_bmpBitmap.LoadBitmap (IDB_MYBITMAP) ;
// Create the brush

CBrush 1BitmapBrush (&m_bmpBitmap);

FIGURE 8.2.

patterns.

HS_CROSS

HS_HORIZONTAL

HS, VERTICAL | | | | | | | | | |

“p If you want to create your own custom pattern for use as a brush, you can

create the pattern as an 8-by-8 bitmap and use the bitmap brush. This
allows you to extend the number of brush patterns far beyond the limited
number of standard patterns.

The Bitmap Class

When you want to display images in your applications, you have a couple of options.
You can add fixed bitmaps to your application, as resources with object 1Ds assigned to

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps

155 |

them and use static picture controls or an ActiveX control that displays images. You can
also use the bitmap class, cBitmap, to exercise complete control over the image display.
If you use the bitmap class, you can dynamically load bitmap images from files on the
system disk, resizing the images as necessary to make them fit in the space you've
allotted.

If you add the bitmap as a resource, you can create an instance of the cBitmap class
using the resource 1D of the bitmap as the image to be loaded. If you want to load a
bitmap from afile, you can use the LoadImage API call to load the bitmap from the file.
After you load the bitmap, you can use the handle for the image to attach the image to
the cBitmap class, as follows:
// Load the bitmap file
HBITMAP hBitmap = (HBITMAP)::LoadImage (AfxGetInstanceHandle(),
m_sFileName, IMAGE_BITMAP, @, O,
LR_LOADFROMFILE | LR_CREATEDIBSECTION);

/| Attach the loaded image to the CBitmap object.
m_bmpBitmap.Attach(hBitmap);

After you load the bitmap into the cBitmap object, you can create a second device con-
text and select the bitmap into it. When you' ve created the second device context, you
need to make it compatible with the primary device context before the bitmap is selected
into it. Because device contexts are created by the operating system for a specific output
device (screen, printer, and so on), you have to make sure that the second device context
is also attached to the same output device as the first.

// Create a device context

CDC dcMem;

// Make the new device context compatible with the real DC
dcMem.CreateCompatibleDC(dc);

// Select the bitmap into the new DC
dcMem.SelectObject (&n_bmpBitmap);

When you select the bitmap into a compatible device context, you can copy the bitmap
into the regular display device context using the BitB1t function:

// Copy the bitmap to the display DC
dc->BitBlt(10, 10, bm.bmWidth,
bm.bmHeight, &dcMem, 0, 0,
SRCCOPY) ;

You can also copy and resize the image using the StretchBlt function:

// Resize the bitmap while copying it to the display DC

dc->StretchBlt (10, 10, (1lRect.Width() - 20),
(1Rect.Height() - 20), &dcMem, 0, 0,
bm.bmWidth, bm.bmHeight, SRCCOPY);

| 156

Day 8

By using the StretchB1t function, you can resize the bitmap so that it will fit in any
area on the screen.

Mapping Modes and Coordinate Systems

When you are preparing to draw some graphics on a window, you can exercise alot of
control over the scale you are using and the area in which you can draw. You can control
these factors by specifying the mapping mode and the drawing area.

By specifying the mapping mode, you can control how the coordinates that you specify
are trandated into locations on the screen. The different mapping modes translate each

point into a different distance. You can set the mapping mode by using the SetMapMode
device context function:

dc->SetMapMode (MM_ANSIOTROPIC);

The available mapping modes are listed in Table 8.2.

TABLE 8.2. MAPPING MODES.

Mode Description

MM_ANSIOTROPIC Logica units are converted into arbitrary units with arbitrary axes.

MM_HIENGLISH Each logical unit is converted into 0.001 inch. Positive x isto the
right, and positivey isup.

MM_HIMETRIC Each logical unit is converted into 0.01 millimeter. Positive X isto
the right, and positive y is up.

MM_ISOTROPIC Logical units are converted into arbitrary units with equally scaled
axes.

MM_LOENGLISH Each logical unit is converted into 0.01 inch. Positive x isto the

right, and positivey is up.

MM_LOMETRIC Each logical unit is converted into 0.1 millimeter. Positive x is to the
right, and positivey isup.

MM_TEXT Each logical unit is converted into 1 pixel. Positive x is to the right,
and positivey is down.

MM_TWIPS Each logical unit is converted into 1/20 of a point (approximately
1/1440 inch). Positive x is to the right, and positive y is up.

If you use either the MM_ANSIOTROPIC Or MM_ISOTROPIC mapping modes, you can use
either the setwindowExt or SetViewportExt functions to specify the drawing area where
your graphics should appear.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 157|

Creating a Graphics Application

To get agood understanding of how you can put al of this information to use, you'll
build an application that incorporates a lot of what I’ ve covered so far today. This appli-
cation will have two independent windows, one with a number of options to choose for
the shape, tool, and color to be displayed. The other window will act as a canvas, where
all of the selected options will be drawn. The user can select whether to display lines,
squares, circles, or a bitmap on the second window. The user can also specify the color
and choose whether to display the pen or brush for the circles and squares.

Generating the Application Shell

Asyou have learned by now, the first step in building an application is generating the
initial application shell. This shell provides the basic application functionality, displaying
your first application dialog, along with al startup and shutdown functionality.

For the application that you will build today, you need to start with a standard dialog-
style application shell. You can create this for your application by starting a new
AppWizard project, providing a suitable project name, such as Graphics. After you are
in the AppWizard, specify that you are creating a dialog-style application. At this point,
you can accept all of the default settings, although you won't need ActiveX support, and
you can specify a more descriptive window title if you want.

Designing the Main Dialog

After you make your way through the AppWizard, you' re ready to start designing your
primary dialog. This window will contain three groups of radio buttons: one group for
specifying the drawing tool, the next to specify the drawing shape, and the third to spec-
ify the color. Along with these groups of radio buttons, you' [l have two buttons on the
window: one to open a File Open dialog, for selecting a bitmap to be displayed, and the
other to close the application.

To add all these controls to your dialog, lay them out as shown in Figure 8.3 and specify
the control properties listed in Table 8.3.

158 Day 8

FiGURE 8.3. =, ghat - Microzoft Visual C++ - [gtatre - IDD_GTST_DIALOG (Dialog]]
. - Eie Edt Miew |nseit Project Buld Lapout Took Window Help £l
The main dial -] = |
lavout o9 N A e - A e —
yout. |[cG0 [ot merbers] =][6 CotstDia FE-|[Ses 1 mo
i B TP e PR e v
= gtst e F .
=3 Bimap _ I
g8 oe_piMar] =S F E
(0 Didog f —Diswing Tool—— ~Colai
@ lean = IE BN IEs " Black
- (] Sting Table :
S [Cae || e e
SE L e B i Au 3l
 : $ | o oo
1P - DiswingShape— | T Red - X ®
By *- 1 Maganta BeE
SF L C e © Yetow =
1 ¢ m
: Squae hite < *» |
F |9 @ I
.—|—f‘ E - Bimap_ | e | =8
E“ = E— 26| -
i inking . I B ﬁ:
Build { Dabug), Find in Files 1 Findin Fiea2 3] 4| | _E B _l_l
]'ul B R =

[oo kﬂ15‘u1&2 [FERL
start| | @ @3 @) %) | 8inbox - Outook Ex. | [0 gtat - Microsol... [MSON Libeay Vs, |) Evploing - Etaue..| || 24 1215am

TABLE 8.3. CONTROL PROPERTY SETTINGS.

Object Property Setting
Group Box ID IDC_STATIC
Caption Drawing Tool
Radio Button ID IDC_RTPEN
Caption &Pen
Group Checked
Radio Button ID IDC_RTBRUSH
Caption &Brush
Radio Button ID IDC_RTBITMAP
Caption B&itmap
Group Box ID IDC_STATIC
Caption Drawing Shape
Radio Button ID IDC_RSLINE
Caption &Line
Group Checked
Radio Button ID IDC_RSCIRCLE

Caption &Circle

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps

159 |

Object Property Setting

Radio Button ID IDC_RSSQUARE
Caption &Square

Group Box ID IDC_STATIC
Caption Color

Radio Button ID IDC_RCBLACK
Caption Bl&ack
Group Checked

Radio Button ID IDC_RCBLUE
Caption Bl&ue

Radio Button ID IDC_RCGREEN
Caption &Green

Radio Button ID IDC_RCCYAN
Caption Cya&n

Radio Button ID IDC_RCRED
Caption &Red

Radio Button ID IDC_RCMAGENTA
Caption &Magenta

Radio Button ID IDC_RCYELLOW
Caption &Yellow

Radio Button ID IDC_RCWHITE
Caption &White

Command Button ID IDC_BBITMAP
Caption Bi&tmap

Command Button ID IDC_BEXIT
Caption E&xit

When you finish designing your main dialog, you need to assign one variable to each of
the groups of radio buttons. To do this, open the Class Wizard and assign one integer
variable to each of the three radio button object 1Ds there. Remember that only the object
IDs for the radio buttons with the Group option checked will appear in the Class Wizard.
All of the radio buttons that follow will be assigned to the same variable, with sequential
values, in the order of the object ID values. For this reason, it isimportant to create al of
the radio buttons in each group in the order that you want their values to be sequenced.

| 160 Day 8

To assign the necessary variables to the radio button groups in your application, open the
Class Wizard and add the variables in Table 8.4 to the objects in your dialog.

TABLE 8.4. CONTROL VARIABLES.

Object Name Category Type
IDC_RTPEN m_iTool Value int
IDC_RSLINE m_iShape Value int
IDC_RCBLACK m_iColor Value int

While you have the Class Wizard open, you might want to switch back to the first tab
and add an event-handler function to the Exit button, calling the onok function in the
code for this button. You can compile and run your application now, making sure that
you have al of the radio button groups defined correctly, that you can’t select two or
more buttons in any one group, and that you can select one button in each group without
affecting either of the other two groups.

Adding the Second Dialog

When you design the main dialog, you'll add the second window that you'll use as a
canvas to paint your graphics on. This dialog will be a modeless dialog, which will
remain open the entire time the application is running. You will put no controls on the
dialog, providing a clean canvas for drawing.

To create this second dialog, go to the Resources tab in the workspace pane. Right-click
the Dialogs folder in the resource tree. Select Insert Dialog from the pop-up menu. When
the new diaog is open in the window designer, remove al of the controls from the win-
dow. After you remove al of the controls, open the properties dialog for the window and
uncheck the System Menu option on the second tab of properties. This will prevent the
user from closing this dialog without exiting the application. You'll also want to give this
dialog window an object ID that will describe its function, such as IDD_PAINT_DLG.

After you finish designing the second dialog, create a new class for this window by
opening the Class Wizard. When you try to open the Class Wizard, you'll be asked if you
want to create a new class for the second dialog window. Leave this option at its default
setting and click the OK button. When asked to specify the name of the new class on the
next dialog, give the class a suitable name, such as cPaintD1g, and be sure that the base
classis set to cbialog. After you click OK on this dialog and create the new class, you
can close the Class Wizard.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps

161 |

Nﬂtﬂ You need to make sure that the new dialog is selected when you try to open
the Class Wizard. If the dialog is not selected, and you’ve switched to another
' object, or even some code in your application, the Class Wizard will not
know that you need a class for the second dialog in your application.

Now that you have the second dialog defined, you need to add the code in the first dia-
log window to open the second dialog. You can accomplish this by adding two lines of
code to the onInitDialog function in the first window’s class. First, create the dialog
using the create method of the cDialog class. This function takes two arguments: the
object ID of the dialog and a pointer to the parent window, which will be the main dia-
log. The second function will be the showwindow function, passing the value sw_sHow as
the only argument. This function displays the second dialog next to the first dialog. Add
acouple of lines of variable initialization to make your onInitDialog function resemble
Listing 8.1.

LisTING 8.1. THE OnInitDialog FUNCTION.

1 BOOL CGraphicsDlg::0OnInitDialog()

2: {

3: CDialog::0OnInitDialog();

4

27

28: // TODO: Add extra initialization here
29:

30: [HEEETTEEEE i rrrrr

31: // MY CODE STARTS HERE

32: [HEEEETEEEE L rrrrrrr g

33:

34: // Initialize the variables and update the dialog window
35: m_iColor = 0;

36: m_iShape = 0;

37: m_iTool = 0;

38: UpdateData(FALSE);

39:

40: // Create the second dialog window

41: m_dlgPaint.Create (IDD_PAINT_DLG, this);
42: // Show the second dialog window

43: m_dlgPaint.ShowWindow (SW_SHOW) ;

continues

| 162 Day 8

LiSTING 8.1. CONTINUED

44:

45: FIEETEEEEEET T rrin

46: // MY CODE ENDS HERE

47: TIEETEEEEETE iy

48:

49: return TRUE; // return TRUE unless you set the focus to a control
50: }

Before you can compile and run your application, you'll need to include the header for
the second dialog class in the source code for the first dialog. You'll also need to add the
second dialog class as a variable to the first—which is a smple matter of adding a mem-
ber variable to the first dialog class, specifying the variable type as the class type, in this
case CPaintD1g, giving the variable the name that you used in Listing 8.1, m_d1gPaint,
and specifying the variable access as private. To include the header file in the first dia-
log, scroll to the top of the source code for the first dialog and add an include statement,
asin Listing 8.2.

LISTING 8.2. THE INCLUDE STATEMENT OF THE MAIN DIALOG.

// GraphicsDlg.cpp : implementation file
/1l

#include "stdafx.h"
#include "Graphics.h"
#include "PaintDlg.h"
#include "GraphicsDlg.h"

O~NOO O~ WON =

Conversaly, you'll need to include the header file for the main dialog in the source code
for the second dialog. You can edit this file, PaintD1g.cpp, making the include statements
match thosein Listing 8.2.

If you compile and run your application, you should see your second dialog window
open along with the first window. What you'll also noticed is that when you close the
first dialog, and thus close the application, the second dialog window also closes, even
though you didn’t add any code to make this happen. The second dialog is a child win-
dow to the first dialog. When you created the second dialog, on line 41 of the code list-
ing, you passed a pointer to the first dialog window as the parent window for the second
window. This set up a parent-child relationship between these two windows. When the

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 163|

parent closes, so does the child. Thisis the same relationship the first dialog window has
with al of the controls you placed on it. Each of those controlsis a child window of the
dialog. In a sense, what you' ve done is make the second dialog just another control on
thefirst dialog.

Adding the Graphics Capabilities

Because all of the radio button variables are declared as public, the second dialog will be
able to see and reference them as it needs to. You can place all of the graphic drawing
functionality into the second dialog class. However, you do need to place some function-
ality into the first dialog to keep the variables synchronized and to tell the second dialog
to draw its graphics. Accomplishing thisis simpler than you might think.

Whenever awindow needs to be redrawn (it may have been hidden behind another
window and come to the front or minimized or off the visible screen and now in view),
the operating system triggers the dialog's onPaint function. You can place all the func-
tionality for drawing your graphics in this function and make persistent the graphics you

display.

Now that you know where to place your code to display the graphics, how can you cause
the second dialog to call its onPaint function whenever the user changes one of the
selections on the first dialog? Well, you could hide and then show the second dialog, but
that might look alittle peculiar to the user. Actually, a single function will convince the
second window that it needs to redraw its entire dialog. This function, Invalidate,
requires no arguments and is a member function of the cwnd class, so it can be used on
any window or control. The Invalidate function tells the window, and the operating
system, that the display area of the window is no longer valid and that it needs to be
redrawn. You can trigger the onPaint function in the second dialog at will, without
resorting to any awkward tricks or hacks.

At this point, we have determined that all of the radio buttons can use the same function-
ality on their clicked events. You can set up a single event-handler function for the clicked
event on all of the radio button controls. In this event function, you'll need to synchronize
the class variables with the dialog controls by calling the updateData function and then
tell the second dialog to redraw itself by calling its Invalidate function. You can write a
single event handler that does these two things with the code in Listing 8.3.

| 164 Day 8

LisTING 8.3. THE OnRSelection FUNCTION.

1: void CGraphicsDlg::0nRSelection()

2: {

3: // TODO: Add your control notification handler code here
4:

5: // Synchronize the data

6: UpdateData(TRUE);

7 // Repaint the second dialog

8: m_dlgPaint.Invalidate();

9: }

Drawing Lines

You can compile and run your application at this point, and the second dialog redraws
itself whenever you choose a different radio button on the main dialog, but you wouldn’t
notice anything happening. At this point, you are triggering the redraws, but you haven’t
told the second dialog what to draw, which is the next step in building this application.

The easiest graphics to draw on the second dialog will be different styles of lines because
you aready have some experience drawing them. What you' [l want to do is create one
pen for each of the different pen styles, using the currently selected color. After you have
created all of the pens, you'll loop through the different pens, selecting each one in turn
and drawing a line across the dialog with each one. Before you start this loop, you need
to perform afew calculations to determine where each of the lines should be on the dia-
log, with their starting and stopping points.

To begin adding this functionality to your application, you first add a color table, with
one entry for each of the colorsin the group of available colors on the first dialog. To
create this color table, add a new member variable to the second dialog class, cPaintDlg,
and specify the variable type as static const COLORREF, the nameasm_crColors[8],
and the access as public. Open the source code file for the second dialog class, and add
the color table in Listing 8.4 near the top of the file before the class constructor and
destructor.

LiSTING 8.4. THE COLOR TABLE.

1 const COLORREF CPaintDlg::m_crColors[8] = {
2 RGB (0, 0, 0), // Black

3: RGB (0, 0, 255), // Blue

4: RGB (0, 255, 0), // Green

5: RGB (0, 255, 255), // Cyan

6 RGB(255, 0, 0), // Red

7 RGB(255, 0, 255), // Magenta

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 165|

8: RGB(255, 255, 0), // Yellow
9: RGB(255, 255, 255) // White
10: };

IR NNy,
12: // CPaintDlg dialog

With the color table in place, you can add a new function for drawing the lines. To keep
the onPaint function from getting too cluttered and difficult to understand, it makes
more sense to place a limited amount of code in it to determine what should be drawn

on the second dialog and then call other more specialized functions to draw the various
shapes. With thisin mind, you need to create a new member function for the second dia-
log class for drawing the lines. Declare this as a void function, and specify its declaration
asDrawLine (CPaintDC *pdc, int iColor) and itsaccess as private. You can edit this
function, adding the code in Listing 8.5.

LisTING 8.5. THE DrawLine FUNCTION.

1 void CPaintDlg::DrawLine(CPaintDC *pdc, int iColor)

2: {

3 // Declare and create the pens

4: CPen 1SolidPen (PS_SOLID, 1, m_crColors[iColor]);

5: CPen 1DotPen (PS_DOT, 1, m_crColors[iColor]);

6: CPen 1DashPen (PS_DASH, 1, m_crColors[iColor]);

7 CPen 1DashDotPen (PS_DASHDOT, 1, m_crColors[iColor])

8: CPen 1DashDotDotPen (PS_DASHDOTDOT, 1, m_crColors[iColor]);
9: CPen 1NullPen (PS_NULL, 1, m_crColors[iColor]);

10: CPen 1lInsidePen (PS_INSIDEFRAME, 1, m_crColors[iColor])
11:

12: // Get the drawing area

13: CRect 1lRect;

14: GetClientRect(1lRect);

15: 1Rect.NormalizeRect();

16:

17: // Calculate the distance between each of the lines
18: CPoint pStart;

19: CPoint pEnd;

20: int liDist = 1lRect.Height() / 8;

21: CPen *101dPen;

22: // Specify the starting points

23: pStart.y = 1lRect.top;

24: pStart.x = 1lRect.left;

continues

| 166

Day 8

LisTING 8.5. CONTINUED

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

pEnd.y = pStart.y;
pEnd.x = 1lRect.right;
int 1i;

// Loop through the different pens
for (i = 0; i < 7; i++)

{

}

// Which pen are we on?

switch (i)

{

case 0: // Solid
101dPen = pdc->SelectObject(&1SolidPen);
break;

case 1: // Dot
pdc->SelectObject(&1DotPen);
break;

case 2: // Dash
pdc->SelectObject(&lDashPen);
break;

case 3: // Dash Dot
pdc->SelectObject(&lDashDotPen);
break;

case 4: // Dash Dot Dot
pdc->SelectObject (&lDashDotDotPen);
break;

case 5: // Null
pdc->SelectObject (&1NullPen);
break;

case 6: // Inside
pdc->SelectObject(&lInsidePen);
break;

}

// Move down to the next position
pStart.y = pStart.y + liDist;
pEnd.y = pStart.y;

// Draw the line

pdc->MoveTo (pStart);
pdc->LineTo(pEnd);

// Select the original pen
pdc->SelectObject(101ldPen);

Now you need to edit the onpaint function so that the onLine function is called when it
needs to be called. Add this function through the Class Wizard as an event-handler func-
tion for thewm PAINT message. You'll notice that the generated code for this function
creates a cpaintDC variable instead of the normal CDC class. The cPaintDC classis a

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 167|

descendent of the CDC device context class. It automatically calls the BeginPaint and
EndPaint API functions that all Windows applications must call before drawing any
graphics during the wm_PAINT event message processing. It can be treated just like areg-
ular device context object, calling all of the same functions.

When you are in the onPaint function, you need to get a pointer to the parent window so
that you can check the values of the variables tied to the groups of radio buttons to deter-
mine the color, tools, and shape to be drawn on the second dialog. This information tells
you whether to call the brawLine function or another function that you haven't written
yet.

To add this functionality to your application, add an event handler for the wm_PAINT mes-
sage on the second dialog class, adding the code in Listing 8.6 to the function created in
your class.

LISTING 8.6. THE OnPaint FUNCTION.

1 void CPaintDlg::0nPaint()

2: |

3 CPaintDC dc(this); // device context for painting
4:

5: // TODO: Add your message handler code here

6.

7: // Get a pointer to the parent window

8: CGraphicsDlg *pWnd = (CGraphicsDlg*)GetParent();
9: // Do we have a valid pointer?

10: if (pWnd)

11: {

12: // Is the tool a bitmap?

13: if (pWnd->m_iTool == 2)

14: {

15: }

16: else // No, we're drawing a shape

17: {

18: // Are we drawing a line?

19: if (pWnd->m_iShape == 0)

20: DrawLine(&dc, pWnd->m_iColor);

21: }

22: }

23: // Do not call CDialog::0OnPaint() for painting messages
24:}

At this point, if you compile and run your application, you should be able to draw lines
across the second dialog, as shown in Figure 8.4.

| 168

Day 8

FiGURe 8.4. T]
Drawing lines on the e
. " Fen & Black,
second dialog. (] oy e
 Bamep i fieen
" Cyan
— e e e — Drawing Shape Red
£ L £ Magent
P - - - 1 Ciicle T Yellow
 Souae white
Bimep | |

Drawing Circles and Squares

Now that you have the basic structure in place, and you can see how you can change
what is drawn on the second dialog at will, you are ready to add code to the second dia-
log to draw the circles and squares. To draw these figures, you use the E11ipse and
Rectangle device context functions. These functions will use the currently selected pen
and brush to draw these figures at the specified location. With both functions, you pass a
CRect object to specify the rectangle in which to draw the specified figure. The
Rectangle function fills the entire space specified, and the E11ipse function draws a cir-
cle or ellipse where the middle of each side of the rectangle touches the edge of the
ellipse. Because these functions use both the pen and brush, you'll need to create and
select an invisible pen and invisible brush to alow the user to choose either the pen or
the brush. For the pen, you can use the null pen for this purpose, but for the brush, you'll
need to create a solid brush the color of the window background (light gray).

When you calculate the position for each of these figures, you need to take a different
approach from what you used with the lines. With the lines, you were able to get the
height of the window, divide it by 8, and then draw aline at each of the divisions from
the left edge to the right edge. With the ellipses and rectangles, you'll need to divide the
dialog window into eight even rectangles. The easiest way to do thisis to create two
rows of figures with four figuresin each row. Leave a little space between each figure so
that the user can see the different pens used to outline each figure.

To add this functionality to your application, add a new function to the second dialog
class. Specify the function type as void, the declaration as DrawRegion (CPaintDC *pdc,
int iColor, int iTool, int iShape), and the access as private. Edit the code in this
function, adding the code in Listing 8.7.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 169|

LisTING 8.7. THE DrawRegion FUNCTION.

—_

void CPaintDlg::DrawRegion(CPaintDC *pdc, int iColor, int iTool, int
O iShape)

2: |

3 // Declare and create the pens

4: CPen 1SolidPen (PS_SOLID, 1, m_crColors[iColor]);

5: CPen 1DotPen (PS_DOT, 1, m_crColors[iColor]);

6: CPen 1DashPen (PS_DASH, 1, m_crColors[iColor]);

7 CPen 1DashDotPen (PS_DASHDOT, 1, m_crColors[iColor])

8: CPen 1DashDotDotPen (PS_DASHDOTDOT, 1, m_crColors[iColor]);

9: CPen 1NullPen (PS_NULL, 1, m_crColors[iColor]);

10: CPen 1lInsidePen (PS_INSIDEFRAME, 1, m_crColors[iColor])
11:

12: // Declare and create the brushes

13: CBrush 1SolidBrush(m_crColors[iColor])

14: CBrush 1BDiagBrush(HS_BDIAGONAL, m_crColors[iColor]);
15: CBrush 1CrossBrush(HS_CROSS, m_crColors[iColor])

16: CBrush 1DiagCrossBrush(HS_DIAGCROSS, m_crColors[iColor]);
17: CBrush 1FDiagBrush(HS_FDIAGONAL, m_crColors[iColor]);
18: CBrush 1HorizBrush(HS_HORIZONTAL, m_crColors[iColor])
19: CBrush 1VertBrush(HS_VERTICAL, m_crColors[iColor]);
20: CBrush 1NullBrush(RGB(192, 192, 192));

21

22: // Calculate the size of the drawing regions

23: CRect 1Rect;

24: GetClientRect(1lRect);

25: 1Rect.NormalizeRect();

26: int liVert = 1Rect.Height() / 2;

27: int liHeight = liVert - 10;

28: int liHorz = 1lRect.Width() / 4;

29: int liWidth = 1liHorz - 10;

30: CRect 1DrawRect;

31: CPen *10l1dPen;

32: CBrush *101dBrush;

33: int i;

34: // Loop through all of the brushes and pens

35: for (i = 0; 1 < 7; it++)

36: {

37: switch (1)

38: {

39: case 0: // Solid

40: // Determine the location for this figure.
41: // Start the first row

42: 1DrawRect.top = lRect.top + 5;

43: 1DrawRect.left = 1lRect.left + 5;

44: 1DrawRect.bottom = 1DrawRect.top + liHeight;
45: 1DrawRect.right = 1DrawRect.left + 1liWidth;
46: // Select the appropriate pen and brush

continues

|170

Day 8

LISTING 8.7. CONTINUED

47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:

101dPen = pdc->SelectObject(&lSolidPen);
101dBrush = pdc->SelectObject(&1SolidBrush);
break;

case 1: // Dot - Back Diagonal
// Determine the location for this figure.
1DrawRect.left = 1DrawRect.left + liHorz;
1DrawRect.right = 1DrawRect.left + 1liWidth;
// Select the appropriate pen and brush
pdc->SelectObject(&lDotPen);
pdc->SelectObject(&1BDiagBrush);
break;

case 2: // Dash - Cross Brush
// Determine the location for this figure.
1DrawRect.left = 1DrawRect.left + liHorz;
1DrawRect.right = 1DrawRect.left + 1liWidth;
// Select the appropriate pen and brush
pdc->SelectObject(&lDashPen);
pdc->SelectObject(&1CrossBrush);
break;

case 3: // Dash Dot - Diagonal Cross
// Determine the location for this figure.
1DrawRect.left = 1DrawRect.left + liHorz;
1DrawRect.right = 1DrawRect.left + 1liWidth;
// Select the appropriate pen and brush
pdc->SelectObject(&lDashDotPen);
pdc->SelectObject(&lDiagCrossBrush);
break;

case 4: // Dash Dot Dot - Forward Diagonal
// Determine the location for this figure.
// Start the second row
1DrawRect.top = 1lDrawRect.top + liVert;
1DrawRect.left = 1Rect.left + 5;
1DrawRect.bottom = 1DrawRect.top + liHeight;
1DrawRect.right = 1DrawRect.left + 1liWidth;
// Select the appropriate pen and brush
pdc->SelectObject (&lDashDotDotPen);
pdc->SelectObject (&1FDiagBrush);
break;

case 5: // Null - Horizontal
// Determine the location for this figure.
1DrawRect.left = 1DrawRect.left + liHorz;
1DrawRect.right = 1DrawRect.left + 1liWidth;
// Select the appropriate pen and brush
pdc->SelectObject (&1NullPen);
pdc->SelectObject(&lHorizBrush);
break;

case 6: // Inside - Vertical
// Determine the location for this figure.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps

171 |

95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:}

1DrawRect.left = 1lDrawRect.left + liHorz;
1DrawRect.right = 1DrawRect.left + 1liWidth;
// Select the appropriate pen and brush
pdc->SelectObject(&lInsidePen);
pdc->SelectObject(&1VertBrush);
break;
}
// Which tool are we using?
if (iTool == 0)
pdc->SelectObject (1NullBrush);
else
pdc->SelectObject(1NullPen);
// Which shape are we drawing?
if (iShape == 1)
pdc->Ellipse(1DrawRect);
else
pdc->Rectangle(1DrawRect);
}
// Reset the original brush and pen
pdc->SelectObject (101dBrush);
pdc->SelectObject(101dPen);

Now that you have the capability to draw the circles and squares in the second dialog,
you'll need to call this function when the user has selected either of these two figures

with either a pen or abrush. To do this, add the two lines starting at line 21 in Listing 8.8

to the onPaint function.

LisTING 8.8. THE MODIFIED OnPaint FUNCTION.

1
2
3
4:
5:
6
7
8

©

10:
11:
12:
13:
14:
15:
16:

void CPaintDlg::0nPaint()

{

CPaintDC dc(this); // device context for painting
// TODO: Add your message handler code here
// Get a pointer to the parent window

CGraphicsDlg *pWnd = (CGraphicsDlg*)GetParent();
// Do we have a valid pointer?

if (pWnd)
{
// Is the tool a bitmap?
if (pWnd->m_iTool == 2)
{
}
else // No, we're drawing a shape

continues

172 Day 8

LISTING 8.8. CONTINUED

17: {

18: // Are we drawing a line?

19: if (m_iShape == 0)

20: DrawLine(&dc, pWnd->m_iColor);

21: else // We're drawing a ellipse or rectangle

22: DrawRegion(&dc, pWnd->m_iColor, pWnd->m_iTool,
O pWnd->m_iShape) ;

23: }

24: }

25: // Do not call CDialog::0OnPaint() for painting messages

26:}

Now you should be able to compile and run your application and display not only lines,
but also squares and circles, switching between displaying the outlines and the filled-in
figure without any outline, as shown in Figure 8.5.

FiGUre 8.5.

Drawing rectangles on
the second dialog.

\

Loading Bitmaps

Now that you can draw various graphic images on the second dialog window, al that’s
left is to add the functionality to load and display bitmaps. You could easily add the
bitmaps to the resources in the application, give them their own object I1Ds, and then use
the LoadBitmap and MAKEINTRESOURCE functions to load the bitmap into a cBitmap class
object, but that isn’t extremely useful when you start building your own applications.
What would be really useful is the ability to load bitmaps from files on the computer
disk. To provide this functionality, you use the LoadImage API function to load the
bitmap images into memory and then attach the loaded image to the cBitmap object.

To do this in your application, you can attach a function to the bitmap button on the first
dialog that displays the File Open dialog to the user, allowing the user to select a bitmap
to be displayed. You'll want to build afilter for the dialog, limiting the available files to

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 173|

bitmaps that can be displayed in the second dialog. After the user selects a bitmap, you'll
get the file and path name from the dialog and load the bitmap using the LoadImage
function. When you have a valid handle to the bitmap that was loaded into memory,
you'll delete the current bitmap image from the cBitmap object. If there was a bitmap
loaded into the cBitmap object, you'll detach the cBitmap object from the now deleted
image. After you make sure that there isn’t already an image loaded in the CBitmap
object, you attach the image you just loaded into memory, using the Attach function. At
this point, you want to invalidate the second dialog so that if it's displaying a bitmap, it
displays the newly loaded bitmap.

To support this functionality, you need to add a string variable to hold the bitmap name,
and a cBitmap variable to hold the bitmap image, to the first dialog class. Add these two
variables as listed in Table 8.5.

TABLE 8.5. BITMAP VARIABLES.

Name Type Access
m_sBitmap CString Public
m_bmpBitmap CBitmap Public

After you add the variables to the first dialog class, add an event-handler function to the
clicked event of the Bitmap button using the Class Wizard. After you add this function,
edit it, adding the code in Listing 8.9.

LisTING 8.9. THE OnBbitmap FUNCTION.

1 void CGraphicsD1lg::0nBbitmap()

2: |

3 // TODO: Add your control notification handler code here
4:

5: // Build a filter for use in the File Open dialog

6: static char BASED_CODE szFilter[] = "Bitmap Files (*.bmp),*.bmp;,";
7 // Create the File Open dialog

8: CFileDialog m_ldFile(TRUE, ".bmp", m_sBitmap,

9: OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT, szFilter);
10:

11: // Show the File Open dialog and capture the result

12: if (m_ldFile.DoModal() == IDOK)

13: {

14: // Get the filename selected

15: m_sBitmap = m_ldFile.GetPathName();

16: // Load the selected bitmap file

continues

1174 Day 8

LISTING 8.9. CONTINUED

17: HBITMAP hBitmap = (HBITMAP) ::LoadImage(AfxGetInstanceHandle(),
18: m_sBitmap, IMAGE_BITMAP, 0, 0,

19: LR_LOADFROMFILE | LR_CREATEDIBSECTION);

20:

21: // Do we have a valid handle for the loaded image?

22: if (hBitmap)

23: {

24: // Delete the current bitmap

25: if (m_bmpBitmap.DeleteObject())

26: // If there was a bitmap, detach it

27: m_bmpBitmap.Detach();

28: // Attach the currently loaded bitmap to the bitmap object
29: m_bmpBitmap.Attach(hBitmap);

30: }

31: // Invalidate the second dialog window

32: m_dlgPaint.Invalidate();

33: }

34: }

Displaying Bitmaps

Now that you can load bitmaps into memory, you need to display them for the user. You
need to copy the bitmap from the cBitmap object to aBITMAP structure, using the
GetBitmap function, which will get the width and height of the bitmap image. Next,
you'll create a new device context that is compatible with the screen device context.
You'll select the bitmap into the new device context and then copy it from this second
device context to the original device context, resizing it asit’s copied, using the
StretchBlt function.

To add this functionality to your application, add a new member function to the second
dialog class. Specify the function type as void, the function declaration as
ShowBitmap(CPaintDC *pdc, CWnd *pWnd), and the function access as private. Edit
the function, adding the code in Listing 8.10.

Nﬂtﬂ Notice that you have declared the window pointer being passed in as a
pointer to a CWnd object, instead of the class type of your main dialog. To
' declare it as a pointer to the class type of the first dialog, you'd need to
declare the class for the first dialog before the class declaration for the sec-
ond dialog. Meanwhile, the first dialog requires that the second dialog class
be declared first. This affects the order in which the include files are added
to the source code at the top of each file. You cannot have both classes

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps

175 |

declared before the other; one has to be first. Although there are ways to
get around this problem, by declaring a place holder for the second class
before the declaration of the first class, it’s easier to cast the pointer as a
pointer to the first dialog class in the function in this instance. To learn how
to declare a place holder for the second class, see Appendix A, “C++
Review.”

LisTING 8.10. THE ShowBitmap FUNCTION.

1 void CPaintDlg::ShowBitmap(CPaintDC *pdc, CWnd *pWnd)

2: |

3 // Convert the pointer to a pointer to the main dialog class
4: CGraphicsDlg *1pWnd = (CGraphicsD1lg*)pWnd;

5: BITMAP bm;

6: // Get the loaded bitmap

7 1pWnd->m_bmpBitmap.GetBitmap (&bm);

8

: CDC dcMem;
9: // Create a device context to load the bitmap into
10: dcMem.CreateCompatibleDC(pdc);
11: // Select the bitmap into the compatible device context
12: CBitmap* pOldBitmap = (CBitmap*)dcMem.SelectObject
O (1pWnd->m_bmpBitmap) ;
13: CRect 1lRect;
14: // Get the display area available
15: GetClientRect (1lRect);
16: 1Rect.NormalizeRect();
17: // Copy and resize the bitmap to the dialog window
18: pdc->StretchBlt(10, 10, (lRect.Width() - 20),
19: (1Rect.Height() - 20), &dcMem, 0, 0,
20: bm.bmWidth, bm.bmHeight, SRCCOPY);
21: }

Now that you have the ability to display the currently selected bitmap on the dialog,
you'll need to add the functionality to call this function to the onPaint function in the
second dialog. You can determine whether a bitmap has been specified by checking

the value of the m_sBitmap variable on the first dialog. If this string is empty, there is no
bitmap to be displayed. If the string is not empty, you can call the ShowBitmap function.
To add thislast bit of functionality to this application, edit the onPaint function, adding
lines 15 through 18 from Listing 8.11.

1176 Day 8

LisTING 8.11. THE MODIFIED OnPaint FUNCTION.

1 void CPaintDlg::0nPaint()

2: {

3 CPaintDC dc(this); // device context for painting
4:

5: // TODO: Add your message handler code here

6.

7 // Get a pointer to the parent window

8 CGraphicsDlg *pWnd = (CGraphicsDlg*)GetParent();
9: // Do we have a valid pointer?

10: if (pwWnd)

11: {

12: // Is the tool a bitmap?

13: if (pWnd->m_iTool == 2)

14: {

15: // Is there a bitmap selected and loaded?
16: if (pWnd->m_sBitmap != "")

17: // Display it

18: ShowBitmap (&dc, pwWwnd);

19:

20: else // No, we're drawing a shape

21: {

22: // Are we drawing a line?

23: if (m_iShape == 0)

24: DrawLine(&dc, pWnd->m_iColor);

25: else // We're drawing a ellipse or rectangle
26: DrawRegion(&dc, pWnd->m_iColor, pWnd->m_iTool,
27: pWnd->m_iShape) ;

28: }

29: }

30: // Do not call CDialog::OnPaint() for painting messages
31:}

At this point, you should be able to select a bitmap from your system and display it in
the second dialog, as shown in Figure 8.6.

FIGURE 8.6. [——
Showing a bitmap in : '
the second dialog.

% Black
 Blue

T Giesn
C Cyap
© Bed

" Magenta
 Yellow
™ hite

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 177|

Summary

What away to start the week! You learned a lot today. You learned how Windows uses
device context objects to allow you to draw graphics in the same way every time, with-
out having to worry about what hardware users might have in their computers. You
learned about some of the basic GDI objects, such as pens and brushes, and how they are
used to draw figures on windows and dialogs. You also learned how you can load
bitmaps from the system disk and display them onscreen for the user to see. You learned
about the different pen and brush styles and how you can use these to draw the type of
figure you want to draw. You also learned how you can specify colors for use with pens
and brushes so that you can control how images appear to the user.

Q&A

Q Why do | need to specify both a pen and a brush if | just want to display one
or the other?

A You are aways drawing with both when you draw any object that isfilled in. The
pen draws the outline, and the brush fills in the interior. You cannot choose to use
one or the other; you have to use both. If you only want to display one or the other,
you need to take special steps.

Q Why do all of the pen styles become solid when | increase the pen width
above 1?

A When you increase the pen width, you are increasing the size of the dot that is used
to draw with. If you remember Day 3, “Allowing User Interaction—Integrating the
Mouse and Keyboard in Your Application,” when you first tried to draw by captur-
ing each spot the mouse covered, all you drew were a bunch of dots. Well, when
you increase the size of the dots that you are drawing the line with, the gaps
between the dots are filled in from both sides, providing an unbroken line.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

| 178

Day 8

Quiz
1. What are the three values that are combined to specify a color?

2. What do you use to draw on windows without needing to know what graphics card
the user has?

3. What size bitmap can you use to make a brush from it?
4. What event message is sent to awindow to tell it to redraw itself?
5. How can you cause awindow to repaint itself?

Exercises

1. Make the second dialog window resizable, and make it adjust the figures drawn on
it whenever it's resized.

2. Add abitmap brush to the set of brushes used to create the rectangles and ellipses.

WEEK 2

DAY 9

Adding ActiveX Controls
to Your Application

In today’s application develop market, there are thousands of prebuilt compo-
nents that you can plug into your applications, extending the functionality of
your applications instantaneously. Originally the domain of Visua Basic pro-
grammers, now you can use readily available ActiveX controls with just about
any Windows programming language, including Visual C++. Today you will
learn how you can add ActiveX controlsto your Visual C++ applications, tak-
ing advantage of their existing functionality. Some of the topics that you will
cover today are

* What ActiveX controls are and how they work.

« How you can add ActiveX controls to your project workspace.

» How you can use the ActiveX control in your Visual C++ application.
» How to call the various methods associated with the ActiveX control.
« How to handle events that are triggered by the ActiveX control.

| 180

Day 9

What Is an ActiveX Control?

AnActiveX control is a software component that can be plugged into many different
programs and used as if it were a native part of the program. It's similar to the concept of
separate stereo components. If you buy a new tape deck, you can just plug it into the rest
of your stereo and it works with everything else you aready have. ActiveX controls
bring this same type of interoperability to software applications.

ActiveX used to be called OLE 2.0. OLE 2.0 was Microsoft’s technology for combining
two or more applications to make them work as one (or at least to switch between the
various applications within the same application shell). This idea was an expansion from
the original OLE (Object Linking and Embedding) technology, which only enabled you
to combine documents created with different applications into a single document. When
revamping OLE technologies to work in a distributed environment (such as on the
Internet), Microsoft decided to also revamp the name. Thus, ActiveX was born.

ActiveX and the IDispatch Interface

The ActiveX technology is built on top of Microsoft's COM (Component Object Model)
technology, utilizing its interface and interaction model for making ActiveX control inte-
gration fairly seamless. The COM technology defines how ActiveX objects are constructed
and how their interfaces are designed. The ActiveX technology defines a layer that is
built on top of COM, what interfaces various objects should support, and how different
types of objects should interact.

interact through the use of interfaces. An interface is like a function call
into an ActiveX component. However, COM specifies how that function call
must be built and called, and what supporting functionality must accom-
pany the function call.

Nﬂtﬂ Microsoft’s COM technology defines how applications and components can

There are interfaces, like the IUnknown interface, that are required in every
COM object, and which are used to query the component to find out what
other interfaces are supported by the component. Each interface supports a
specific set of functionality; you might have one interface to handle the
visual appearance of the control, another to control how the control
appearance interacts with the surrounding application, another that triggers
events in the surrounding application, and so on.

Adding ActiveX Controls to Your Application 181 |

One of the key technologies in ActiveX controls is automation. Automation enables an
application embedded within another application to activate itself and control its part of
the user interface or document, making its changes and then shutting itself down when
the user moves on to another part of the application that isn’t controlled by the embedded
application.

This process is what happens when you have an Excel spreadsheet embedded within a
Word document. If you click the spreadsheet, Excel becomes active and you can edit the
spreadsheet using Excel, even though you're still working in Word. Then, once you fin-
ish making your changes to the spreadsheet, Excel closes itself down and you can contin-
ue working in Word.

One of the keys to making automation work is a special interface called the 1Dispatch
(also known as the dispinterface) interface. The IDispatch interface consists of a pointer
to atable of available methods that can be run in the ActiveX control or embedded appli-
cation. These methods have ID numbers, called DISPIDs, which are also loaded into a
table that can be used to look up the ID for a specific method. Once you know the
DISPID for a specific method, you can call that method by calling the 1nvoke method of
the IDispatch interface, passing the DISPID to identify the method to be run. Figure 9.1
shows how the 1Dispatch interface uses the Invoke method to run methods in the
ActiveX object.

Ficure 9.1. [Dispatch:: Invoke(DISPID)

The 1pispatch ActiveX
interface.

Invoke () {switch (DISPID)

| 182

Day 9

ActiveX Containers and Servers

To embed one ActiveX object within another ActiveX object, you have to implement the
embedded object as an ActiveX server, and the object containing the first object must be
an ActiveX container. Any ActiveX object that can be embedded within another is an
ActiveX server, whether it is an entire application or just a small ActiveX control. Any
ActiveX object that can have other ActiveX objects embedded within it is an ActiveX
container.

Nﬂtﬂ Don’t confuse the use of the terms container and server with the term client
. in the previous figure. The client is the object calling the other object’s

IDispatch interface. As you'll learn in a page or so, both the container and
server call the other’s IDispatch interfaces, making each one the client of
the other.

These two types of ActiveX objects are not mutually exclusive. An ActiveX server can
also be an ActiveX container. A good example of this concept is Microsoft’s Internet
Explorer Web browser. Internet Explorer isimplemented as an ActiveX server that runs
within an ActiveX container shell (that can aso house Word, Excel, PowerPoint, or any
other ActiveX server application). At the same time that Internet Explorer is an ActiveX
server running within the browser shell, it can contain other ActiveX controls.

ActiveX controls are a specia instance of an ActiveX server. Some ActiveX servers are
also applications that can run on their own. ActiveX controls cannot run on their own
and must be embedded within an ActiveX container. By using ActiveX componentsin
your Visual C++ application, you automatically make your application an Activex con-
tainer.

Most of the interaction between the ActiveX container and an ActiveX control takes
place through three I1Dispatch interfaces. One of these IDispatch interfacesis on the
control, and it is used by the container to make calls to the various methods that the
ActiveX control makes available to the container.

The container provides two IDispatch interfaces to the control. The first of these
IDispatch interfacesis used by the control to trigger events in the container application.
The second interface is used to set properties of the control, as shown in Figure 9.2.
Most properties of an ActiveX control are actually provided by the container but are
maintained by the control. When you set a property for the control, the container calls a
method in the control to tell the control to read the properties from the container. Most of
this activity is transparent to you because Visual C++ builds a series of C++ classes
around the ActiveX control’s interfaces. You will interact with the methods exposed by
the C++ classes, not directly calling the control’s 1Dispatch interface.

Adding ActiveX Controls to Your Application

183 |

FIGURE 9.2. IDispatch
An ActiveX container (events)
and control interact m\,: o
primarily through IDispatch
afes Inispator gomeX | opanes e
interfaces.
(N Py
IDispatch
o)
i >

Adding an ActiveX Control to Your Project

Looking into how ActiveX controls work can be deceptive because of how easy it realy
isto use them in your applications. Visual C++ makes it easy to add ActiveX controlsto
your applications and even easier to use them. Before you begin adding the ActiveX con-
trol to your application, let’s create an application shell into which you will add an
ActiveX control:

1. Create anew MFC AppWizard project named ActiveX.

2. Use the same defaults on the AppWizard as in previous days, but leave the check
box for ActiveX Controls checked on the second AppWizard step. Give your appli-
cation the title Activex Controls.

3. Once you generate an application shell, remove al the controls and add a single
command button.

4. Set the button’s ID to IDC_EXIT and its caption to E&xit.

5. Using the Class Wizard, add a function to your command button on the
BN_CLICKED event message.

6. Edit the function you just created, calling the onok function, as on earlier days.

Registering the Control

Before you add an ActiveX control to your dialog window, you need to register the con-
trol, both with Windows and with Visual C++. There are two possible ways to register
the ActiveX control with Windows. The first way is to run any installation routine that
came with the ActiveX control. If you do not have an installation routine, you need to
register the control manually. To register the control manually, follow these steps:

1. Open aDOS shell.
2. Change directory to where the ActiveX control is on your system.
3. Run the regsvr32 command, specifying the name of the ActiveX control as the

184 Day 9

only command-line argument. For instance, if you were registering a control
named MycTL.ocx and it was located in your wINDOWS\SYSTEM directory, you would
perform the following:

C:\WINDOWS> CD system
C:\WINDOWS\SYSTEM> regsvr32 MYCTL.OCX

because registering the control manually might not enable the control for
development usage. Controls can be licensed for development or deploy-
ment. If a control is licensed for deployment, you will not be able to use it in
your Visual C++ applications. This is a mechanism that protects control devel-
opers by requiring that developers purchase a development license for con-
trols; they can’t just use the controls they may have installed on their system
with another application.

ﬂﬂlltillll It is preferable to run any installation routine that comes with the control

Nﬂtﬂ COM and ActiveX objects store a lot of information in the Windows Registry
database. Whenever an application uses an ActiveX object, the operating
' system refers to the information in the Windows Registry to find the object
and to determine whether the application can use the object in the way
that it requested. Using the regsvr32.exe utility to register an ActiveX con-
trol places most of the required information about the control into the sys-
tem Registry. However, there may be additional information about the con-
trol that needs to be in the Registry for the control to function properly.

Now that the ActiveX control that you want to use is registered with the operating sys-
tem, you need to register it with Visual C++ and add it to your project. To do this, follow
these steps:

1. Select Project | Add To Project | Components and Controls from the Visual C++
menu.

2. In the Components and Controls Gallery dialog, navigate to the Registered
ActiveX Controls folder, asin Figure 9.3.

Adding ActiveX Controls to Your Application

185 |

FiGUrE 9.3. Components and Controls Gallery
The Actl vex Control S Choose a component to insert into your project
Lookin | '3 Registered Actived Contioks = ek
that can be added to | Epely=’
X | ActiveMovieControl Object T Cormmon Dialog Control,
your project.) ActiveSetup TedtCl Dbiect {x COunteDic Class
Bl ActiveXFlugin Object B8 Cvstal Feport Conirol 4,

Anibutton Contral 2] Data Command Contiol
® Calendar Cantrol 8.0 %] Data Range Foater Conl
Chat FX {2 Data Rangs Headsr Cor

i
File name: Ingert |
Close
LileieAle)
Path ta control

3. Select the control you want to register, such as the Microsoft FlexGrid control, and

click the Insert button.

4. Click OK on the message box asking whether you want to insert this component in

your project.

5. On the Confirm Classes dialog, click the OK button to add the C++ classes speci-

fied, asin Figure 9.4.

FIGURE 9.4.

Confirm Classes
The checked cl; il b ted

Visual C++ tellsyou e r o e

what classes will be

added to your project.

browse or edit its attributes.
Cancel

Class name: Base class:
CMSFlexGrid Cwnd
Header fie

[MSFlesGrid h

Implementation file
[MSFlexGrid.cpp

6. Click the Close button on the Components and Controls Gallery dialog to finish

adding controls to your project.

7. The FlexGrid control should have been added to the Control Palette for your dialog

window, asin Figure 9.5.

186 Day 9

FIGURE 9.5.
.
The ActiveX control E abl
FlexGrid is added to Mo
the Control Palette for
use on your dialog = B
windows. ¢ m
- GF
ic]
= H
a8 B
FH =
(&

B ——The FlexGrid control

If you examine the Class View area of the workspace pane, you see the four classes that
Visual C++ added to your project. Expand the class trees and you see numerous methods
for these classes. Visual C++ created these classes and methods by examining the
ActiveX control that you just added and created class methods to call each of the methods
in the control’s IDispatch interface.

Nﬂtﬂ If you use older ActiveX controls in your Visual C++ applications, Visual C++
might not be able to generate the classes and methods to encapsulate the
' control’s functionality. The information in the control that provided Visual
C++ with the information necessary to build these classes and methods is a

more recent addition to the ActiveX specification. As a result, older controls

might not provide this information, making them more difficult to use with
Visual C++.

Adding the Control to Your Dialog

Now that you have added the FlexGrid control to your project, you can add it to your dia-
log window just as you would any other control. Set the control properties asin Table 9.1.

TABLE 9.1. CONTROL PROPERTY SETTINGS.

Object Property Setting
FlexGrid control ID IDC_MSFGRID
Rows 20
Cols 4
MergeCells 2 - Restrict Rows
Format < Region < Product

(FormatString) '< Employee |>Sales

Adding ActiveX Controls to Your Application

Once you add the control to your dialog window, you will notice that there is an addi-
tional tab on the properties dialog with al the control properties, asin Figure 9.6. You
can choose to use this tab to set all the properties on the control, or you can go through
the other tabs to set the properties, just as you would with the standard controls.

FIGURE 9.6. Mictosoft FlexGiid Contiol, version 6.0 Properties

. -0 R General | Contiol | Stie | Font | Color | Fictwe [Al |
ActiveX controls have =
a property tab that
contains all control Bakto GRS |
propert| €s. BackColorBkg 000808080

BackColarFived T+B000000F
BackColargel 050000000
BordeiSyle 7-Singls
Cols [
DataSourcs <Hot bound to a DataSaurce>

Enabled True

FilStyle 0-Singls =

Once you have finished setting all the properties for the control, you'll need to add a
variable for the control so that you can interact with the control in your code. To add this
variable, open the Member Variables tab on the Class Wizard and add a variable for the
control. Because you are adding a variable for an ActiveX control, you can only add a
control variable, so the only thing available for you to specify is the variable name. For
this example application, name the variable m_ct1FGrid.

Using an ActiveX Control in Your Application

Once Visual C++ has generated all the classes to encapsulate the ActiveX control, work-
ing with the control is a smple matter of calling the various methods and responding to
control events just like the standard controls. You'll start with using the control methods
to get information about the control and to modify data within the control. Then you'll
learn how to respond to control events with Visual C++.

Interacting with the Control

The application that you are building today will generate a number of product sales over
five sales regions with four salespeople. You will be able to scroll through the data,

which will be sorted by region and product, to compare how each salesperson did for
each product.

To make this project, you will build an array of values that will be loaded into cellsin
the grid. The grid will then be sorted in ascending order, using the FlexGrid control’s
internal sorting capabilities.

188 Day 9

Loading Data into the Control

The first thing you will do is create a function to load data into the FlexGrid control. Add
anew function to the cActivexDlg class by right-clicking the Class View of the work-
space and choosing Add Member Function. Specify the Function Type as void, the
Function Declaration as LoadData, and the access as Private. Click the OK button and
edit the function, adding the code in Listing 9.1.

LisTING 9.1. THE LoadData FUNCTION.

1: void CActiveXDlg::LoadData()

2: {

3: int 1liCount; // The grid row count

4: CString lsAmount; // The sales amount

5:

6: // Initialize the random number generator

7: srand((unsigned)time (NULL));

8: // Create Array in the control

9: for (liCount = m_ctlFGrid.GetFixedRows();

10: liCount < m_ctlFGrid.GetRows(); liCount++)

11: {

12: // Generate the first column (region) values

13: m_ctlFGrid.SetTextArray(GenID(1liCount, @), RandomStringValue(0));
14: // Generate the second column (product) values

15: m_ctlFGrid.SetTextArray(GenID(1iCount, 1), RandomStringValue(1));
16: // Generate the third column (employee) values

17: m_ctlFGrid.SetTextArray(GenID(1iCount, 2), RandomStringValue(2));
18: /1 Generate the sales amount values

19: 1sAmount.Format("%5d.00", rand());
20: // Populate the fourth column
21: m_ctlFGrid.SetTextArray(GenID(1iCount, 3), lsAmount);
22: }
23:

24: // Merge the common subsequent rows in these columns

25: m_ctlFGrid.SetMergeCol(@, TRUE);

26: m_ctlFGrid.SetMergeCol(1, TRUE);

27: m_ctlFGrid.SetMergeCol(2, TRUE);

28:

29: // Sort the grid

30: DoSort();

31: }

In this function, the first thing that you do is initialize the random number generator.
Next, you loop through al of the rows in the control, placing data in each of the cells.
You get the total number of rows in the control by calling the GetRows method and the
number of the header row by calling the GetFixedRows method. You are able to add data

Adding ActiveX Controls to Your Application 189 |

to the control cells by calling the setTextArray method, which has the cell ID asthe
first argument and the cell contents as the second argument, both of which are generated
by functions you'll be creating in afew moments.

Once you have data in the grid cells, you call setMergeCol, which tells the control that it
can merge cellsin the first three columns if adjacent rows contain the same value.
Finally, you sort the control, using another function you have yet to create.

Calculating the Cell ID

The cellsin the FlexGrid control are numbered sequentially from left to right, top to bot-
tom. With your control, the first row, which contains the headers (and is already populat-
ed), has cells 0 through 3, the second row cells 4 through 7, and so on. Therefore, you
can caculate the ID of acell by adding its column number to the total number of columns
in the control, multiplied by the current row number. For instance, if your control has
four columns, and you are in the third column and fourth row, you can calculate your cell
ID as2+ (4* 3) = 14. (Remember that the column and row numbers start with 0, so the
third column is 2 and the fourth row is number 3.)

Now that you understand how you can calculate the cell ID, you need to implement that
formulain afunction. Add a new function to the CActivexDlg class using the same
method as for the LoadData function. The type of this function should be int and the
description should be GenID(int m_iRow, int m_iCol). Once you add the function,
edit it with the code in Listing 9.2.

LISTING 9.2. THE GenID FUNCTION.

int CActiveXDlg::GenID(int m_iRow, int m_iCol)
N
: // Get the number of columns

int 1liCols = m_ctlFGrid.GetCols();

1:
2
3
4:
5:
6: // Generate an ID based on the number of columns,
7 // the current column, and the current row

8 return (m_iCol + 1iCols * m_iRow);

9

L)

Generating Random Data

To populate the first three columns in the grid, you want to randomly generate data. In
the first column, you want to put region names. In the second column, you want to put
product names. And in the third column, you want to put salesperson names. By using a
switch statement to determine which column you are generating data for and then using a

| 190

Day 9

modulus division on a randomly generated number in another switch statement, you can
randomly select between a limited set of data strings.

To implement this functionality, add another function to the CActiveXD1g class with a
type of cstring and a description of RandomStringvalue(int m_iColumn). Edit the
resulting function, adding the code in Listing 9.3.

LisTING 9.3. THE RandomStringValue FUNCTION.

1: CString CActiveXD1lg::RandomStringValue(int m_iColumn)

2: {

3 CString 1lsStr; // The return string

4: int liCase; // A random value ID

5:

6: // Which column are we generating for?

7: switch (m_iColumn)

8: {

9: case 0: // The first column (region)
10: // Generate a random value between @ and 4
11: liCase = (rand() % 5);

12: // What value was generated?
13: switch (liCase)

14: {

15: case 0:

16: // @ - Northwest region
17: 1sStr = "Northwest";

18: break;

19: case 1:

20: // 1 - Southwest region
21: 1sStr = "Southwest";

22: break;

23: case 2:

24: // 2 - Midwest region
25: 1sStr = "Midwest";

26: break;

27: case 3:

28: // 3 - Northeast region
29: 1sStr = "Northeast";

30: break;

31: default:

32: // 4 - Southeast region
33: 1sStr = "Southeast";

34: break;

35: }

36: break;

37: case 1: // The second column (product)
38: // Generate a random value between 0 and 4
39: liCase = (rand() % 5);

40: // What value was generated?

41: switch (liCase)

Adding ActiveX Controls to Your Application 191 |

42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:

90:
91:
92:

{

case 0:
// @ - Dodads
1sStr = "Dodads";
break;

case 1:
// 1 - Thingamajigs
1sStr = "Thingamajigs";
break;

case 2:
// 2 - Whatchamacallits
1sStr = "Whatchamacallits";
break;

case 3:
// 3 - Round Tuits
1sStr = "Round Tuits";
break;

default:
// 4 - Widgets
1sStr = "Widgets";
break;

}

break;

case 2: // The third column (employee)

// Generate a random value between 0 and 3
liCase = (rand() % 4);

// What value was generated?

switch (liCase)

{

case 0:
// @ - Dore
1sStr = "Dore";
break;

case 1:
// 1 - Harvey
1sStr = "Harvey";
break;

case 2:
/] 2 - Pogo
1sStr = "Pogo";
break;

default:
// 3 - Nyra
1sStr = "Nyra";
break;

}

break;

}
// Return the generated string
return 1sStr;

192 Day 9

Sorting the Control

To sort the Grid control, you need to select al the columns and then set the sort to
ascending. To implement this functionality, add one more function to the CActiveXxblg
class with atype of void and a definition of boSort. Edit the function asin Listing 9.4.

LisTING 9.4. THE DoSort FUNCTION.

1: void CActiveXDlg::DoSort()
2: {
3: // Set the current column to column 0
4: m_ctlFGrid.SetCol(0);

5: // Set the column selection to all columns
6: m_ctlFGrid.SetColSel((m_ctlFGrid.GetCols() - 1));
7 // Generic Ascending Sort

8: m_ctlFGrid.SetSort(1);
9: }

In the boSort function, you set the current column to the first column using the setCol
method. Next you select from the current column to the last column using the SetColSel
method, effectively selecting al columns in the control. Finally, you tell the control to
sort the columns in ascending order by using the setSort method, passing 1 as the flag
for the sort order.

Now that you have all the functionality necessary to load the control with data, you need
to call the Loadbata function in the onInitDialog function to load the data before the
control is visible to the user. Edit the onInitbialog function asin Listing 9.5 to load the
data.

LisTING 9.5. THE OnInitDialog FUNCTION.

1: BOOL CActiveXDlg::0OnInitDialog()

2: {

3 CDialog::0OnInitDialog();

4:

5:

6 .

7 // TODO: Add extra initialization here
8:

9: [EEETETEEErrr i

10: // MY CODE STARTS HERE

11: [IELTLEEEr i rrln

12:

13: // Load data into the Grid control

14: LoadData();

Adding ActiveX Controls to Your Application 193 |

15:

16: [IEETEEETTE i i

17: // MY CODE ENDS HERE

18: TEEETEEETTE e

19:

20: return TRUE; // return TRUE unless you set the focus to a control
21: }

If you compile and run your application at this point, you find that it is loading the data
and sorting it, asin Figure 9.7.

FIGURE 9.7. ¥ ActiveX Contiols
H Region Froduct [Employee [Sales»
The FlexGrid populated s e O
; _ Hawvey 2678500
with data. Mines [Found Tuits (£ el
Thingamaigs Harvey 2538600
Whatchamaca Dore 2431500
Northomt | Dodas Dore B087.00
eSS |Round Tuits Harvey 2434000
Dodads Dore 2221100~
4 »
Esit

Responding to Control Events

If you play with your application at this point, you know that the Grid control does not
respond to any input that you might try to give it. If you click one of the cells and try to
change the value, it doesn’t respond. What you need to do is add a control event to han-
die the input. ActiveX controls make several events available for usein Visua C++
applications. You can use the Class Wizard to browse through the available events and
determine which events you need to give functionality and which to ignore. Most
ActiveX controls don’t have any default functionality attached to the available events but
instead expect you to tell the control what to do on each event.

You are going to add two control events to capture the mouse clicks and movements.
You will add functionality to allow the user to click a column header and drag it to
another position, thus rearranging the column order. To implement this functionality, you
have to capture two control events, when the mouse button is pressed down and when it
isreleased. On the first event, you need to check whether the user clicked a header, and
if s, you capture the column selected. On the second event, you need to move the
selected column to the column on which the mouse button was rel eased.

To accomplish this functionality, you need to create a new class variable to maintain the
clicked column number between the two events. Add a new variable to the CActiveXDlg
class, just like you added the functions earlier, specifying the type as int, the variable
name as m_iMouseCol, and the access as Private.

| 194

Day 9

Capturing the Column Selected
To capture the mouse click event for the control, follow these steps:

1. Using the Class Wizard, add a function for the MouseDown event message for the
IDC_MSFGRID object.

2. Edit the function using the code in Listing 9.6.

LisTING 9.6. THE OnMouseDownMsfgrid FUNCTION.

1: void CActiveXDlg::0OnMouseDownMsfgrid(short Button, short Shift, long

Ox, long vy)
2: {
3: // TODO: Add your control notification handler code here
4:
5: [EEEETEEEELErrrrr iy
6: // MY CODE STARTS HERE
7: [HEEETTEEEE i rrrrr
8:
9: // Did the user click on a data row and not the
10: // header row?
11: if (m_ctlFGrid.GetMouseRow() != 0)
12: {
13: // If so, then zero out the column variable
14: // and exit
15: m_iMouseCol = 0;
16: return;
17: }
18: // Save the column clicked on
19: m_iMouseCol = m_ctlFGrid.GetMouseCol();
20:
21: [EEEELTEEEL iy
22: // MY CODE ENDS HERE
23: [EEEETEEEELErrrrr iy
24: }

In this function, you checked the row clicked by calling the GetMouseRow method. If the
row is not the first row, then zero out the column-holding variable and exit the function.
Otherwise, you need to get the column clicked by calling the GetMouseCol method. You
can store the returned column number in the m_iMouseCol variable that you just added to
the class.

Moving the Column Where Released

Now that you are capturing the selected column number, you need to capture the column
on which the mouse is released. To capture the mouse release event for the control, fol-
low these steps:

Adding ActiveX Controls to Your Application 195 |

1. Using the Class Wizard, add a function for the MouseUp event message for the
IDC_MSFGRID object.

2. Edit the function using the code in Listing 9.7.

LisTING 9.7. THE OnMouseUpMsfgrid FUNCTION.

1: void CActiveXDlg::0OnMouseUpMsfgrid(short Button, short Shift, long x,

Olong vy)
2: {
3: // TODO: Add your control notification handler code here
4:
5: [HEEETTEEEE i
6: // MY CODE STARTS HERE
7: [HEEELTEEEE T rrrrrrr
8:
9: // If the selected column was the first column,
10: // there's nothing to do
11: if (m_iMouseCol == 0)
12: return;
13: // Turn the control redraw off
14: m_ctlFGrid.SetRedraw(FALSE);
15: // Change the selected column position
16: m_ctlFGrid.SetColPosition(m_iMouseCol, m_ctlFGrid.GetMouseCol());
17: // Resort the grid
18: DoSort();
19: // Turn redraw back on
20: m_ctlFGrid.SetRedraw(TRUE);
21:
22: [EEEEETEEEE T rrrrrr
23: // MY CODE ENDS HERE
24: [IEEEETEEEL i
25: }

In this function, you first check to see if there is a selected column to be moved. If not,
you exit the function with nothing to do. If there is a column selected, you turn off the
redraw on the control using the setRedraw method so that none of the movement is seen
by the user. Next, you move the selected column to the release column using the
SetColPosition method. Once you move the column, you resort the grid by calling the
DoSort function. Finally, you turn the control’s redraw back on so that the control is
refreshed to show the user the moved column. If you compile and link your application,
you should now be able to grab column headers and move the columns about, asin
Figure 9.8.

| 196

Day 9

FIGURE 9.8. X ActiveX Contiols
The Fl exGr i d Wi th Employee Region [Product [Sales»
Flound Tuts | 2336601
reordered columns. Midwest | Thingsmsigs | 18292.0C
o Wwidgets 2121300
Nottheast | Thingamsigs 16867.00
Thingamsjigs | 15238.00
Nothwest 13 foats 1720000
- Midwest Dordads 8366.00
i Nottheast Flound Tuts | 30009.00%
4 »
Exit

Today you learned how you can use ActiveX controls in your Visual C++ applications to
easily extend your application’s functionality. You learned the basics of how ActiveX
controls work and how they interact with the containing application. You also learned
how you can add an ActiveX control to your development project so that you can use it
in your application. You saw how Visual C++ creates C++ classes to encapsulate the
ActiveX controls that you add and how you can interact with the control through the
exposed methods of these generated C++ classes. You aso saw how you can capture
events that are generated by the ActiveX control so that you can program your applica-
tion to react to the events.

Q&A
Q

A

How can | determine what methods are available to me when working with an
ActiveX control?

By examining the C++ classes that Visual C++ builds to encapsulate the control,
you can get a good idea of what functionality is available to you. If you have docu-
mentation for the control, you can compare it to the C++ class to determine which
class method calls which control method. You can examine the events listed for the
control in the Class Wizard to determine which events are also available.

How can | usethe ActiveX controlsthat wereinstalled on my machine with
another application in my Visual C++ applications?

It depends on how the controls are licensed and what application installed the con-
trols. If the controls were installed by another application development tool,
chances are that you have a development license for the control, in which case you
should be able to use them in your Visual C++ applications. If the controls were
installed by an end-user application, such as Word or Quicken, then odds are that
you have only a runtime license for the control. If you want to use these controlsin
your own applications, you need to contact the control developer to acquire a
development license for the controls.

Adding ActiveX Controls to Your Application 197 |

Q Because the FlexGrid control does not allow meto enter data directly into the
control, how can | let my usersenter data intothegrid asif they were using a
spreadsheet?

A To implement this functionality for the FlexGrid control, you need to add a floating
Edit Box control to your window. Your code needs to determine which cell the user
wants to edit and float the edit box in front of that cell. This arrangement allows
the user to feel asif heis entering data directly into the cell. Another approach isto
have a data-entry field outside the grid, much like is used in Excel, into which the
user enters the data. You can highlight the cells as the user maneuvers around the
Grid control to give the user visceral feedback for her actions.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How does an ActiveX container call methods in an ActiveX control?

2. How does an ActiveX control trigger events in the container application?

3. What AppWizard option must be selected for ActiveX controls to work properly in
aVisua C++ application?

4. How does Visual C++ make it easy to work with ActiveX controls?
5. Why might it be difficult to work with older controlsin Visua C++?

Exercise

Modify the application so that the user can double-click a column header and make it the
first column in the grid.

WEEK 2

DAY 10

Creating Single Document
Interface Applications

Today you will learn a different way of approaching application devel opment
with Visual C++ than you have used with the previous days' lessons. Today
you will learn how to create Single Document Interface (SDI) applications. An
SDI application is a document-centric application that can only work with one
document at atime, and can only work with one type of document.

Some good examples of SDI applications are Notepad, WordPad, and Paint. All
of these applications can do only one type of task and can only work on one
task at atime. WordPad is almost like an SDI version of Word. It's able to per-
form alarge number of the tasks that Word does, but although Word allows you
to work on numerous documents at the same time, WordPad limits you to only
one document.

Some of the things that you will learn today are

¢ The Document/View architecture that Visual C++ uses for creating SDI
applications.

| 200

Day 10

« How to create an SDI application shell.

* How to separate your data from the visual representation of the data.
* How to encapsulate your data in its own C++ class.

* How to create interaction between the data and the menus.

The Document/View Architecture

When you create an SDI application, more classes are created for an SDI application
than for a dialog-style application. Each of these classes serves a specific purpose in how
SDI applications operate. Ignoring the About window dialog class, four specific classes
make up an SDI application:

¢ The cwinApp-derived class

e The cFrameview-derived class
¢ The cbocument-derived class
* The cview-derived class

The cwinApp class creates all the other components in the application. It is the class that
receives al the event messages and then passes the messages to the cFrameview and
Cview classes.

The cFrameview classis the window frame. It holds the menu, toolbar, scrollbars, and
any other visible objects attached to the frame. This class determines how much of the
document is visible at any time. Very little (if any) of your programming efforts on SDI
applications will require making any modifications or additions to either of these first
two classes.

The cbocument class houses your document. This class is where you will build the data
structures necessary to house and manipulate the data that makes up your document. This
class receives input from the cview class and passes display information to the cview
class. Thisclassis aso responsible for saving and retrieving the document data from
files.

The cview classis the class that displays the visual representation of your document for
the user. This class passes input information to the cbocument class and receives display
information from the cbocument class. Most of the coding that you will do for this class
consists of drawing the document for the user and handling the input from the user. The
cview class has several descendent classes that can be used as the ancestor for the view

class. These descendent classes are listed in Table 10.1.

Creating Single Document Interface Applications

201 |

TABLE 10.1. THE CView DESCENDENT CLASSES.

Class Description

CEditView Provides the functionality of a edit box control. Can be used to
implement simple text-editor functionality.

CFormView The base class for views containing controls. Can be used to provide
form-based documents in applications.

CHtmlView Provides the functionality of aWeb browser. This view directly han-
dles the URL navigation, hyperlinking, and so on. Maintains a history
list for browsing forward and back.

CListView Provides list-control functionality in the Document/View architecture.

CRichEditView Provides character and paragraph formatting functionality. Can be
used to implement a word-processor application.

CScrollView Provides scrolling capabilitiesto acview class.

CTreeView Provides tree-control functionality in the Document/View architecture.

All four of these classes work together to make up the full functionality of an SDI appli-
cation, as shown in Figure 10.1. By taking advantage of this architecture, you can build
powerful document-centric applications with relative ease.

Ficure 10.1.

The Document/View
architecture.

Messages passed to the
frame window and view

Application object

object
CWinA
¢ 2 (CFrameView)

Frame window (4]
ﬁ
View object o
(CView) I
[0}
<] =m

Document object
(CDocument)

Two-way flow of
information between
the document and the
view objects

| 202 Day 10
N t Don’t let the term document mislead you. This doesn’t mean that you can
ote I o
Y only create applications such as word processors and spreadsheets. In this sit-

uation, the term document refers to the data that is processed by your
application, whereas view refers to the visual representation of that data.
For instance, the Solitaire application could be implemented as a
Document/View application, with the document being the cards and their
position in the playing area. In this case, the view is the display of the cards,
drawing each card where the document specifies it should be.

Creating an SDI Application

To get agood idea of how the Document/View architecture works, and of how you can
use it to build applications, you will build a new version of the drawing application you
created on Day 3, “Allowing User Interaction—Integrating the Mouse and Keyboard in
Your Application.” In this version, the user’s drawing will be persistent, which means it
is not erased each time another window is placed in front of the application. This version
will also be able to save and restore drawings.

Building the Application Shell
To create the application shell for today’s application, follow these steps:

1. Create anew AppWizard project. Name the project bay1e.

On the first step of the AppWizard, select Single Document.

Use the default values on the second step of the AppWizard.

On the third step of the AppWizard, uncheck the support for ActiveX Controls.

On the fourth step of the AppWizard, leave all the default values. Click the
Advanced button.

6. Inthe Advanced Options dialog, enter athree-letter file extension for the files that
your application will generate (for example, dhc or dvp). Click the Close button to
close the dialog and then click Next to move to the next step of the AppWizard.

7. Usethe default settings on the fifth step of the AppWizard.

8. On the sixth and final AppWizard step, you can choose the base class on which

your view class will be based. Leave the base class as cview and click Finish. The
AppWizard will generate the application shell.

o~ DN

Creating Single Document Interface Applications 203 |

Creating a Line Class

One of the first issues that you will need to tackle is how to represent your datain the
document class. For the drawing application, you have a series of lines. Each line con-
sists of a starting point and ending point. You might think that you can use a series of
points for the data representation. If you do this, you also have to make special accom-
modations for where one series of lines between points ends and the next begins. It
makes much more sense to represent the drawing as a series of lines. This alows you to
store each individual line that is drawn on the window without having to worry where
one set of contiguous lines ends and where the next begins.

Unfortunately, the Microsoft Foundation Classes (MFC) does not have aline object
class, although it does have a point object class (CPoint). | guessyou'll just have to cre-
ate your own line class by following these steps:

1. Inthe Class View tab of the workspace pane, select the top-level object in the tree
(Day10 classes). Right-click the mouse and select New Class from the pop-up
menu.

2. Inthe New Class dialog, select Generic Class for the class type. Enter cLine for
the class name and click in the first line in the Base Class list box. Enter cobject
as the base class, leaving the class access as public, asin Figure 10.2.

Ficure 10.2. New Class
The New Class Wizard. Class type [Generic Class =] 3 I

-~ Class infermation concel |

Name [CLine
File name: Linel.cop
Change.

Base classfes)

Derived From As

3. When you click the OK button to add the cLine class, you may be told that the
Class Wizard cannot find the appropriate header file for inheriting the cLine class
from the cobject class, asin Figure 10.3. Click on the OK button on this message
box.

| 204 Day 10
Ficure 10.3. Microsoft Visual C++
Warning about A EdE e
i nCl udl ng the b manually add the appropriate header filefs] to D:\MSVS\MyProjects\D ay1 0\Line2 h.
class definition. ==
The appropriate header class is already included in the CLine class files. Until
ote
your compiler complains because it can’t find the definition for the CObject

class, don’t worry about this message. However, if you are using a base class
that’s a bit further down the MFC class hierarchy, you might need to heed
this message and add the appropriate header file to the include statements
in the class source code file.

Constructing the cLine Class

At thistime, your cLine class needs to hold only two data elements, the two end points
of the line that it represents. You want to add those two data elements and add a class
constructor that sets both values when creating the class instance. To do this, follow
these steps:

LISTING

1. Inthe Class View tab of the workspace pane, select the cLine class.
2. Right-click the cLine class and choose Add Member Variable from the pop-up

menu.

3. Enter cPoint asthe variable type and m_ptFrom as the variable name, and mark the

access as Private. Click OK to add the variable.

4. Repeat steps 2 and 3, naming this variablem_ptTo.
5. Right-click the cLine class and choose Add Member Function from the pop-up

menu.

6. Leave the function type blank, and enter cLine (CPoint ptFrom, CPoint ptTo)

for the function declaration. Click OK to add the function.

7. Edit the new function, adding the code in Listing 10.1.

10.1. THE CLine CONSTRUCTOR.

1
2
3
4:
5
6

: CLine::CLine(CPoint ptFrom, CPoint ptTo)
Y

//Initialize the from and to points
m_ptFrom = ptFrom;
m_ptTo = ptTo;

Creating Single Document Interface Applications 205|

In this object constructor, you are initializing the from and to points with the points that
were passed in to the constructor.

Drawing the cLine Class

To follow correct object-oriented design, your cLine class should be able to draw itself
so that when the view class needs to render the line for the user, it can just pass a mes-
sage to the line object, telling it to draw itself. To add this functionality, follow these
steps:

1. Add anew function to the cLine class by selecting Add Member Function from the

pop-up menu.
2. Specify the function type as void and the function declaration as braw(CDC *pDC).
3. Add the codein Listing 10.2 to the braw function you just added.

LisTING 10.2. THE CLine Draw FUNCTION.

1: void CLine::Draw(CDC * pDC)
2: {

3 // Draw the line

4: pDC->MoveTo(m_ptFrom);

5 pDC->LineTo(m_ptTo);

6

This function is taken amost directly from the application you built aweek ago. It'sa
simple function that moves to the first point on the device context and then draws aline
to the second point on the device context.

Implementing the Document Functionality

Now that you have an object to use for representing the drawings made by the user, you
can store these CLine objects on the document object in a ssmple dynamic array. To hold
this array, you can add a cobArray member variable to the document class.

The cobArray classis an object array class that dynamically sizes itself to accommodate
the number of items placed in it. It can hold any objects that are descended from the
Cobject class, and it islimited in size only by the amount of memory in the system.
Other dynamic array classesin MFC include cStringArray, CByteArray, CWordArray,
cbwordArray, and CPtrArray. These classes differ by the type of objects they can hold.

Add the cobArray to cbay1@Doc, using the Add Member Variable Wizard and giving it a
name of m_oalines.

| 206

Day 10

Adding Lines

The first functionality that you need to add to the document class is the ability to add
new lines. This should be a simple process of getting the from and to points, creating a
new line object, and then adding it to the object array. To implement this function, add
anew member function to the cbay1eboc class, specifying the type as cLine* and the
declaration as AddLine (CPoint ptFrom, CPoint ptTo) with public access. Edit the
function, adding the code in Listing 10.3.

LisTING 10.3. THE CDay10Doc AddLine FUNCTION.

1: CLine * CDay1@Doc::AddLine(CPoint ptFrom, CPoint ptTo)
2: {

3: // Create a new CLine object

4: CLine *pLine = new CLine(ptFrom, ptTo);

5: try

6: {

7: // Add the new line to the object array

8: m_oalLines.Add(pLine);

9: // Mark the document as dirty

10: SetModifiedFlag();

11: }

12: // Did we run into a memory exception?

13: catch (CMemoryException* perr)

14: {

15: // Display a message for the user, giving him or her the
16: // bad news

17: AfxMessageBox("Out of memory", MB_ICONSTOP |, MB_OK);
18: // Did we create a line object?

19: if (pLine)
20: {
21: // Delete it
22: delete pLine;
23: pLine = NULL;
24: }
25: // Delete the exception object
26: perr->Delete();
27: }
28: return pLine;
29: }

At first, this function is understandable. You create a new CLine instance, passing the
from and to points as constructor arguments. Right after that, however, you have some-
thing interesting, the following flow control construct:

1: try
2: {
3: .

Creating Single Document Interface Applications

207 |

4: .

5: .

6: }

7: catch (...)

8: {

9: .
10: .
11: .
12: }
What is this? This construct is an example of structured exception handling. Some code
could fail because of afactor beyond your control, such as running out of memory or
disk space, you can place a try section around the code that might have a problem. The
try section should always be followed by one or more catch sections. If a problem
occurs during the code in the try section, the program immediately jumps to the catch
sections. Each catch section specifies what type of exception it handles (in the case of
the AddLine function, it specifically handles memory exceptions only), and if thereis a
matching catch section for the type of problem that did occur, that section of codeis
executed to give the application a chance to recover from the problem. If thereis no
catch section for the type of problem that did occur, your program jumps to a default
exception handler, which will most likely shut down your application. For more informa-
tion on structured exception handling, see Appendix A, “C++ Review.”

Within the try section, you add the new cLine instance to the array of line objects. Next,
you call the setModifiedFlag function, which marks the document as “dirty” (unsaved)
so that if you close the application or open another file without saving the current draw-
ing first, the application prompts you to save the current drawing (with the familiar Yes,
No, Cancel message box).

In the catch section, you inform the user that the system is out of memory and then
clean up by deleting the cLine object and the exception object.

Finally, at the end of the function, you return the cLine object to the calling routine. This
enables the view object to let the line object draw itself.

Getting the Line Count

The next item you will add to the document class is a function to return the number of
lines in the document. This functionality is necessary because the view object needs to
loop through the array of lines, asking each line object to draw itself. The view object
will need to be able to determine the total number of lines in the document and retrieve
any specific line from the document.

Returning the number of lines in the document is a simple matter of returning the num-
ber of linesin the object array, so you can just return the return value from the GetSize

208 Day 10

method of the cobArray class. To implement this function, add a new member function
to the cbay10Doc class, specifying the type as int and the declaration as GetLineCount
with public access. Edit the function, adding the code in Listing 10.4.

LisTING 10.4. THE CDay10Doc GetLineCount FUNCTION.

1: int CDay1@Doc: :GetLineCount()
2: {

3: // Return the array count
4: return m_oalLines.GetSize();
5: }

Retrieving a Specific Line

Finally, you need to add a function to return a specific line from the document. Thisisa
simple matter of returning the object at the specified position in the object array. To
implement this function, add a new member function to the cbay1eDoc class, specifying
the type as cLine* and the declaration as GetLine (int nIndex) with public access. Edit
the function, adding the code in Listing 10.5.

LisTinGg 10.5. THE CDay1@Doc GetLine FUNCTION.

1: CLine * CDay1@Doc::GetLine(int nIndex)

2: {

3 // Return a pointer to the line object

4: // at the specified point in the object array
5 return (CLine*)m_oalLines[nIndex];

6

Nﬂtﬂ Notice that the object being returned had to be cast as a pointer to a CLine
object. Because the CObArray class is an array of CObjects, every element
' that is returned by the array is a CObject instance, not a CLine object
instance.

Showing the User

Now that you have built the capability into the document class to hold the drawing, you
need to add the functionality to the view object to read the user’s drawing input and to
draw the image. The mouse events to capture the user input are amost identical to those
you created a week ago. The second part of the functionality that you need to implement

Creating Single Document Interface Applications 209 |

is drawing the image. You will make an addition to a function that already existsin the
view object class.

Before adding these functions, you need to add a member variable to the cDay10oview
class to maintain the previous mouse point, just as you did a week ago. Add a member
variable to the cbay1eview class through the workspace pane, specifying the type as
CPoint, the name asm_ptPrevPos, and the access as private.

Adding the Mouse Events

To add the mouse events to capture the user’s drawing efforts, open the Class Wizard and
add functions to the cbay1eview class for the wm_LBUTTONDOWN, WM_LBUTTONUP, and
WM_MOUSEMOVE event messages. Edit the functions asin Listing 10.6.

LisTING 10.6. THE CDay10View MOUSE FUNCTIONS.

1: void CDay1@View: :0OnLButtonDown (UINT nFlags, CPoint point)
2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: TIEETELEELTE iy

6: // MY CODE STARTS HERE

7: FIEETEEELEET iy

8:

9: // Capture the mouse, so no other application can

10: // grab it if the mouse leaves the window area

11: SetCapture();

12: // Save the point

13: m_ptPrevPos = point;

14:

15: FIEETELEELET iy

16: // MY CODE ENDS HERE

17: LIEETELEELET iy

18:

19: CView: :OnLButtonDown(nFlags, point);
20: }
21:
22: void CDay1@View: :0nLButtonUp (UINT nFlags, CPoint point)
23: {

24: // TODO: Add your message handler code here and/or call default
25:

26: TIEETELEELETEE iy

27: // MY CODE STARTS HERE

28: FIEETEEELEET iy

29:

30: // Have we captured the mouse?

continues

210 Day 10

LisTING 10.6. CONTINUED

31: if (GetCapture() == this)

32: // If so, release it so other applications can
33: // have it

34: ReleaseCapture();

35:

36: [HEEETTEEEE iy

37: // MY CODE ENDS HERE

38: [EEEETEEEE T rrrrrrr

39:

40: CView: :0OnLButtonUp(nFlags, point);

41: }

42:

43: void CDay1@View::OnMouseMove (UINT nFlags, CPoint point)
44: {

45: // TODO: Add your message handler code here and/or call default
46:

47: [EEEEETEEEE i

48: // MY CODE STARTS HERE

49: [IEEEETEEEL LT ir g

50:

51: // Check to see if the left mouse button is down
52: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)

53: {

54: // Have we captured the mouse?

55: if (GetCapture() == this)

56: {

57: // Get the Device Context

58: CClientDC dc(this);

59:

60: // Add the line to the document

61: CLine *pLine = GetDocument()->AddLine(m_ptPrevPos, point);
62:

63: // Draw the current stretch of line

64: pLine->Draw(&dc);

65:

66: // Save the current point as the previous point
67: m_ptPrevPos = point;

68: }

69: }

70:

71: [EEEEETEEEE L rrrrrr

72: // MY CODE ENDS HERE

73: [IEEELTEEEL i

74:

75: CvView: :OnMouseMove (nFlags, point);

76: }

Creating Single Document Interface Applications 211 |

In the onLButtonDown function, the first thing you do is call the setCapture function.
This function “ captures’ the mouse, preventing any other applications from receiving
any mouse events, even if the mouse leaves the window space of this application. This
enables the user to drag the mouse outside the application window while drawing and
then drag the mouse back into the application window, without stopping the drawing. All
mouse messages are delivered to this application until the mouse is released in the
onLButtonUp function, using the ReleaseCapture function. In the meantime, by placing
the GetCapture function in an if statement and comparing its return value to this, you
can determine whether your application has captured the mouse. If you capture the
mouse, you want to execute the rest of the code in those functions; otherwise, you don't.

In the onmMouseMove function, after you create your device context, you do several things
inasingle line of code. The line

CLine *pLine = GetDocument()->AddLine(m_ptPrevPos, point);

creates a new pointer to acLine class instance. Next, it calls the GetDocument function,
which returns a pointer to the document object. This pointer is used to call the document
class's AddLine function, passing the previous and current points as arguments. The
return value from the AddLine function is used to initialize the cLine object pointer. The
CLine pointer can now be used to call the line object’s braw function.

Nﬂtﬂ A pointer is the address of an object. It is used to pass an object more effi-

) ciently around a program. Passing a pointer to an object, instead of the
' object itself, is like telling someone that the remote control is “on the couch
between the second and third cushion, beside the loose pocket change”
instead of handing the remote to the person. Actually, in programming
terms, handing the remote to the person requires making an exact copy of
the remote and handing the copy to the other person. It is obviously more
efficient to tell the person where to find the remote than to manufacture
an exact copy of the remote.

The notation -> denotes that the object’s functions or properties are
accessed through a pointer, as opposed to directly through the object itself
with the period (.) notation.

Drawing the Painting

In the view class, the function onbraw is called whenever the image presented to the user
needs to be redrawn. Maybe another window was in front of the application window, the
window was just restored from being minimized, or a new document was just |oaded
from afile. Why the view needs to be redrawn doesn’t matter. All you need to worry

| 212 Day 10

about as the application developer is adding the code to the onbraw function to render the
document that your application is designed to create.

Locate the onbraw function in the cbay1eview class and add the code in Listing 10.7.

LisTING 10.7. THE CDay1@View OnDraw FUNCTION.

1: void CDay1@View: :0nDraw(CDC* pDC)

2: {

3: CDay1@Doc* pDoc = GetDocument();

4: ASSERT_VALID(pDoc) ;

5:

6: // TODO: add draw code for native data here
7:

8: [IPEEETEEEL i

9: // MY CODE STARTS HERE

10: [HEEETTEEEE L rrrrrrr

11:

12: // Get the number of lines in the document
13: int 1liCount = pDoc->GetLineCount();

14:

15: // Are there any lines in the document?

16: if (liCount)

17: {

18: int 1liPos;

19: CLine *1ptLine;
20:
21: // Loop through the lines in the document
22: for (liPos = @; 1liPos < liCount; liPos++)
23: {
24: // Get the from and to point for each line
25: 1ptLine = pDoc->GetLine(1liPos);
26: // Draw the line
27: 1ptLine->Draw(pDC) ;
28: }
29: }
30:
31: [HEEETTEEEE L rrrrrrr
32: // MY CODE ENDS HERE
33: [EEEELTEEEL iy
34: }

In this function, the first thing you did was find out how many lines are in the document
to be drawn. If there aren’t any lines, then there is nothing to do. If there are linesin the
document, you loop through the lines using a for loop, getting each line object from
the document and then calling the line object’s braw function.

Creating Single Document Interface Applications 213 |

Before you can compile and run your application, you'll need to include the header file
for the cline classin the source code file for the document and view classes. To add this
to your application, edit both of these files (Day1@Doc.cpp and Day1oView.cpp), adding
the Line.h file to the includes, as shown in Listing 10.8.

LisTING 10.8. THE CDay1@Doc includes.

#include "stdafx.h"
#include "Day10.h"
#include "MainFrm.h"
#include "Line.h"
#include "Day1@Doc.h"

aprowON =

At this point, you should be able to compile and run your application, drawing figuresin
it as shown in Figure 10.4. If you minimize the window and then restore it, or if you
place another application window in front of your application window, your drawing
should still be there when your application window is visible again (unlike the applica-
tion you built a week ago).

Ficure 10.4. - Untitled - Day10 M= 3
. . File Edit Wiew Help
Drawing with your el e &3
application
Ready T

Saving and Loading the Drawing

Now that you can create drawings that don’t disappear the moment you look away, it'd
be nice if you could make them even more persistent. If you play with the menus on
your application, it appears that the Open, Save, and Save As menu entries on the File
menu activate, but they don’t seem to do anything. The printing menu entries all work,
but the entries for saving and loading a drawing don’'t. Not even the New menu entry
works! Well, you can do something to fix this situation.

| 214

Day 10

Deleting the Current Drawing

If you examine the cbay1@Doc class, you'll see the onNewDocument function that you can
edit to clear out the current drawing. Wrong! This function isintended for initializing
any class settings for starting work on a new drawing and not for clearing out an existing
drawing. Instead, you need to open the Class Wizard and add a function on the
DeleteContents event message. This event message is intended for clearing the current
contents of the document class. Edit this new function, adding the code in Listing 10.9.

LisTinGg 10.9. THE CDay1@Doc DeleteContents FUNCTION.

1: void CDay1@Doc: :DeleteContents()

2: {

3: // TODO: Add your specialized code here and/or call the base class
4:

5: [HEEELTEEEE L rrrrrr

6: // MY CODE STARTS HERE

7: [EEEELTEEEL iy

8:

9: // Get the number of lines in the object array
10: int liCount = m_oalLines.GetSize();

11: int liPos;

12:

13: // Are there any objects in the array?

14: if (liCount)

15: {

16: // Loop through the array, deleting each object
17: for (liPos = @; liPos < liCount; 1liPos++)
18: delete m_oalLines[liPos];

19: // Reset the array
20: m_oalLines.RemoveAll();
21: }
22:
23: [HEEELTEEEE T rrrrrr
24: // MY CODE ENDS HERE
25: [EEEELTEEEL iy
26:
27: CDocument: :DeleteContents();
28: }

This function loops through the object array, deleting each line object in the array. Once
al the lines are deleted, the array is reset by calling its RemoveAll method. If you com-
pile and run your application, you'll find that you can select File | New, and if you decide
not to save your current drawing, your window is wiped clean.

Creating Single Document Interface Applications 215|

Saving and Restoring the Drawing

Adding the functionality to save and restore your drawings is pretty easy to implement,
but it might not be so easy to understand. That's okay; you'll spend an entire day on
understanding saving and restoring files, also known as serialization, in three days. In the
meantime, find the serialize function in the cbay1eboc class. The function should look
something like
void CDay1@Doc::Serialize(CArchive& ar)
R
: if (ar.IsStoring())

// TODO: add storing code here

else

{
}

1:

2

3

4

5

6: }
7

8

9 // TODO: add loading code here
0

1

Ly
Remove all the contents of this function, and edit the function so that it looks like

Listing 10.10.

LisTiING 10.10. THE CDay1@Doc Serialize FUNCTION.

1: void CDay1@Doc::Serialize(CArchive& ar)
2: {

3: [EEEETEEEE L rrrrrrr

4: // MY CODE STARTS HERE

5: [EEEEETEEEL i

6:

7: // Pass the serialization on to the object array
8: m_oalLines.Serialize(ar);

9:
10: [HEEETTEEEE iy
11: // MY CODE ENDS HERE
12: [EEEETEEEE L rrrrrrr
13: }

This function takes advantage of the functionality of the cobArray class. This object
array will pass down its array of objects, calling the serialize function on each of the
objects. This means that you need to add aserialize function to the cLine class.
Specify it as a void function type with the declaration of Serialize(CArchive& ar).
Edit the function, adding the code in Listing 10.11.

216 Day 10

LisTING 10.11. THE CLine Serialize FUNCTION.

1: void CLine::Serialize(CArchive &ar)
2: {

3: CObject::Serialize(ar);

4:

5: if (ar.IsStoring())

6: ar << m_ptFrom << m_ptTo;

7 else

8: ar >> m_ptFrom >> m_ptTo;
9: }

This function follows basically the same flow that the original serialize function would
have followed in the cbay10Doc class. It uses the I/O stream functionality of C++ to save
and restore its contents.

At this point, if you compile and run your application, you expect the save and open
functions to work. Unfortunately, they don't (yet). If you run your application and try to
save a drawing, a message box will tell you that the application was unable to save the
file, asin Figure 10.5.

Ficure 10.5. Day10
Unable to save & Pl s
drawings.

The reason that you are unable to save your drawing is that Visual C++ must be told that
aclass should be serializable. To do this, you add one line to the cLine class header file

and one line to the cLine source code file. Open the cLine header file (Line.h), and add
the DECLARE_SERIAL linein Listing 10.12 just after the first line of the class definition.

LisTING 10.12. THE Line.h EDIT FOR SERIALIZATION.

1: class CLine : public CObject

2: {

3: DECLARE_SERIAL (CLine)

4: public:

5 CLine(CPoint ptFrom, CPoint ptTo, UINT nWidth, COLORREF crColor);

Next, open the cLine source code file, and add the IMPLEMENT SERIAL linein Listing 10.13
just before the class constructor functions.

Creating Single Document Interface Applications

217 |

LisTiNG 10.13. THE Line.cpp EDIT FOR SERIALIZATION.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

©oOo~NOOO»WN-=

// Line.cpp: implementation of the CLine class.
/1
LHCETEEELTEE i r i r e i i ri i ri el

#include "stdafx.h"
#include "Day10.h"
#include "Line.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS FILE[]=_FILE_ ;
#define new DEBUG_NEW

#endif

IMPLEMENT_SERIAL (CLine, CObject, 1)
NNy,
// Construction/Destruction

LIELETTEEEI LIl

CLine::CLine()
{

}

Now if you compile and run your application, you should be able to draw your own self-
portrait and save it for posterity, as shown in Figure 10.6.

Ficure 10.6. 4 SelfPortrait.dhc - Day10 M= B
. Ele Edt View Help
My self-portrait. DeHm=eE72)

Ready [

218 Day 10

Interacting with the Menu

Now that you have a working drawing program, it would be nice if the user could choose
the color with which she wants to draw. Adding this functionality requires making
changes in the cLine class to associate the color with the line and to cbay1@boc to main-
tain the currently selected color. Finally, you need to add a pull-down menu to select the
desired color.

Adding Color to the cLine Class

The changes to the CLine class are fairly straightforward. The first thing that you need to
do is to add another member variable to the cLine class to hold the color of each line.
Next, you need to modify the class constructor to add color to the list of attributes to be
passed in. Third, you need to modify the braw function to use the specified color. Finally,
you need to modify the Serialize function to save and restore the color information
along with the point information. To do al these things, follow these steps:

1. Select the cLine classin the Class View tab of the workspace pane. Right-click the
mouse and select Add Member Variable from the pop-up menu.

2. Specify the variable type as COLORREF, the name asm_crColor, and the access as
private. Click OK to add the variable.

3. Right-click the cLine constructor in the Class View tree. Select Go to Declaration
from the pop-up menu.

4. Add COLORREF crColor as athird argument to the constructor declaration.

5. Right-click the cLine constructor in the Class View tree. Select Go to Definition
from the pop-up menu.

6. Modify the constructor to add the third argument and to set the m_crcolor member
to the new argument, asin Listing 10.14.

LisTING 10.14. THE MODIFIED CLine CONSTRUCTOR.

CLine::CLine(CPoint ptFrom, CPoint ptTo, COLORREF crColor)
{

1:

2:

3: //Initialize the from and to points
4: m_ptFrom = ptFrom;

5: m_ptTo = ptTo;

6 m_crColor = crColor;

7:

Sy

7. Scroll down to the braw function and modify it asin Listing 10.15.

Creating Single Document Interface Applications

219 |

LisTING 10.15. THE MODIFIED Draw FUNCTION.

1: void CLine::Draw(CDC * pDC)

2: {

3: // Create a pen

4: CPen 1lpen (PS_SOLID, 1, m_crColor);

5:

6: // Set the new pen as the drawing object
7 CPen* pOldPen = pDC->SelectObject(&lpen);
8: // Draw the line

9: pDC->MoveTo(m_ptFrom) ;

10: pDC->LineTo(m_ptTo);

11: // Reset the previous pen

12: pDC->SelectObject(pOldPen);

13: }

8. Scroll down to the serialize function and modify it asin Listing 10.16.

LisTING 10.16. THE MODIFIED Serialize FUNCTION.

1: void CLine::Serialize(CArchive &ar)

2: {

3 CObject::Serialize(ar);

4:

5: if (ar.IsStoring())

6: ar << m_ptFrom << m_ptTo << (DWORD) m_crColor;
7 else

8: ar >> m_ptFrom >> m_ptTo >> (DWORD) m_crColor;
9: }

The only part of any of these steps that should be a surprise is that you are capturing the
return value from the Selectobject function when you are specifying the pen to usein
drawing the lines. You didn’t do this last week. The return value from the selectobject
function is the pen that was in use before you changed it. This way, you can use the pre-
vious pen to restore it to the device context when you are done drawing.

Adding Color to the Document

The changes that you need to make to the cbay1@Doc class are just slightly more exten-
sive than those made to the CLine class. You need to add a member variable to hold the
current color and a color table to convert color IDs into RGB values. You need to initial-
ize the current color variable in the onNewDocument function. Then, you need to modify
the AddLine function to add the current color to the cLine constructor. Finaly, you add a
function to return the current color. That's all that you need to do for now until you start

| 220

Day 10

adding menu message handlers for setting the current color. To do these things, follow
these steps:

1.

Select the cbay10Doc classin the Class View tab on the workspace pane. Right-
click the mouse and choose Add Member Variable from the pop-up menu.

Specify the variable type as UINT, the name asm_nColor, and the access as private.
Click OK to add the variable.

Repeat step 1.

4. Specify the variable type as “static const COLORREF,” the name as

m_crColors[8], and the access as public.

Open the cbay1eDoc source code (Day1@Doc . cpp) and add the population of the
m_crColors color table asin Listing 10.17.

LisTING 10.17. THE COLOR TABLE SPECIFICATION.

1 / 1} YAFX_MSG_MAP

2: END_MESSAGE_MAP ()

3:

4: const COLORREF CDay1@Doc::m_crColors[8] = {
5: RGB (0, 0, 0), // Black

6: RGB (0, 0, 255), // Blue

7: RGB (0, 255, 0), // Green

8: RGB (0, 255, 255), // Cyan

9: RGB(255, 0, 0), // Red

10: RGB(255, 0, 255), // Magenta

11: RGB(255, 255, 0), /1 Yellow

12: RGB(255, 255, 255) // White

13: };

14:

S J/LIIHETE i rrrrrr g
16: // CDay1@Doc construction/destruction

17:

18: CDay1@Doc: :CDay1@Doc ()

19: .
20:
21: .
22: }

6. Scroll down to the onNewDocument function and edit it asin Listing 10.18.

Creating Single Document Interface Applications 221 |

LisTING 10.18. THE MODIFIED OnNewDocument FUNCTION.

1: BOOL CDay1@Doc: :0OnNewDocument ()

2: {

3: if (!CDocument::0OnNewDocument())

4: return FALSE;

5:

6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:

9: [HEEETTEEEE iy

10: // MY CODE STARTS HERE

11: [EEEEETEEEE L rrrrrrr

12:

13: // Initialize the color to black

14: m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;
15:

16: TIEETEEEELETE iy

17: // MY CODE ENDS HERE

18: [HEEETTEEEE iy

19:
20: return TRUE;
21: }

7. Scroll down to the AddLine function, and modify it asin Listing 10.19.

LisTING 10.19. THE MODIFIED AddLine FUNCTION.

1: CLine * CDay1@Doc::AddLine(CPoint ptFrom, CPoint ptTo)

2: {

3: // Create a new CLine object

4: CLine *pLine = new CLine(ptFrom, ptTo, m_crColors[m_nColor]);
5: try

6: {

7: // Add the new line to the object array

8: m_oalLines.Add(pLine);

9: // Mark the document as dirty

10: SetModifiedFlag();
11: }
12: // Did we run into a memory exception?
13: catch (CMemoryException* perr)
14: {
15: // Display a message for the user, giving him or her the
16: // bad news
17: AfxMessageBox("Out of memory", MB_ICONSTOP | MB_OK);
18: // Did we create a line object?
19: if (pLine)

continues

| 222 Day 10

LisTING 10.19. CONTINUED

20: {

21: // Delete it

22: delete pLine;

23: pLine = NULL;

24: }

25: // Delete the exception object
26: perr->Delete();

27: }

28: return pLine;

29: }

8. Add anew member function to the cbay1eDoc class. Specify the function type as
UINT, the declaration as GetColor, and the access as public.

9. Edit the GetColor function, adding the codein Listing 10.20.

LisTING 10.20. THE GetColor FUNCTION.

1: UINT CDay1@Doc::GetColor()

2: {

3: // Return the current color

4: return ID_COLOR_BLACK + m_nColor;
5: }

In the onNewDocument and the GetColor functions, the color is added and subtracted
from 1D_COLOR_BLACK. Thisis the lowest numbered color menu ID when you add the
menu entries. These calculations maintain the variable as a number between 0 and 7, but
when working with the menus, they allow comparison with the actual menu IDs.

Modifying the Menu

Now comes the fun part. You need to add a new pull-down menu to the main menu. You
need to add menu entries for all the colors in the color table. You need to add message
handlers for all the color menu entries. Finally, you need to add event handlers to check
the menu entry that is the current color. To do al of this, follow these steps:

1. Select the Resource View tab in the workspace pane. Expand the tree so that you
can see the contents of the Menu folder. Double-click the menu resource.

2. Grab the blank top-level menu (at the right end of the menu bar) and drag it to the
left, dropping it in front of the View menu entry.

3. Open the properties for the blank menu entry. Specify the caption as &Color. Close
the properties dialog.

Creating Single Document Interface Applications 223|

4. Add submenu entries below the Color top-level menu. Specify the submenusin
order, setting their properties as specified in Table 10.2. You should wind up with a
menu looking like Figure 10.7.

Ficure 10.7.
The Color menu as Y E}:
designed. Cyan

Magenta

Yelow

White
]

TABLE 10.2. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry 1D ID_COLOR_BLACK
Caption &Black

Menu Entry 1D ID_COLOR_BLUE
Caption B&lue

Menu Entry 1D ID_COLOR_GREEN
Caption &Green

Menu Entry 1D ID_COLOR_CYAN
Caption &Cyan

Menu Entry 1D ID_COLOR_RED
Caption &Red

Menu Entry 1D ID_COLOR_MAGENTA
Caption &Vagenta

Menu Entry 1D ID_COLOR_YELLOW
Caption &Yellow

Menu Entry 1D ID_COLOR_WHITE
Caption &White

5. Open the Class Wizard. Select the cbay1eDoc in the Class Name combo box.

6. Add functions for both the COMMAND and UPDATE_COMMAND_UI event messages for
al the color menu entries.

7. After the final menu entry function has been added, click Edit Code.
8. Edit the Black menu functions asin Listing 10.21.

| 224

Day 10

LisTING 10.21. THE BLACK MENU FUNCTIONS.

A

1:
2
3
4:
5:
6
7
8

©

10:
11:
12:
13:
14:
15: }
16:

void CDayi@Doc::0nColorBlack()

// TODO: Add your command handler code here

PIEETETE iy
// MY CODE STARTS HERE
PIPETILTEE iy

// Set the current color to black
m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;

LEEETEETELTL iy
// MY CODE ENDS HERE
PIEETETE iy

17: void CDay1@Doc: :0nUpdateColorBlack(CCmdUI* pCmdUI)

18: {
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31: }

// TODO: Add your command update UI handler code here

LEEETEETETL iy
// MY CODE STARTS HERE
LIPETETE iy

// Determine if the Black menu entry should be checked
pCmdUI->SetCheck (GetColor() == ID_COLOR_BLACK ? 1 : 0);

PIPETILTEE iy
// MY CODE ENDS HERE
LEEETEETETL iy

9. Edit the Blue menu functions asin Listing 10.22. Edit the remaining menu func-

tions in the same way, substituting their menu IDs for ID_COLOR_BLUE.

LisTING 10.22. THE BLUE MENU FUNCTIONS.

s A

1:
2
3
4:
5:
6-
7
8
9

void CDay1@Doc::0nColorBlue()

// TODO: Add your command handler code here
[IEEELTEEEL i
// MY CODE STARTS HERE
[HEEETTEEEE i rrrrr

// Set the current color to blue

Creating Single Document Interface Applications 225|

10: m_nColor = ID_COLOR_BLUE - ID_COLOR_BLACK;

11:

12: [EEEETEEEE L rrrrrrr

13: // MY CODE ENDS HERE

14: [EEEEETEEEL i

15: }

16:

17: void CDay1@Doc: :0OnUpdateColorBlue (CCmdUI* pCmdUI)

18: {

19: // TODO: Add your command update UI handler code here
20:

21: [HEEEETEEEE L rrrrrrr

22: // MY CODE STARTS HERE

23: [EEEEETEEEL i

24:

25: // Determine if the Blue menu entry should be checked
26: pCmdUI ->SetCheck(GetColor() == ID_COLOR_BLUE ? 1 : 0);
27:

28: [HEEETTEEEE i rrrr

29: // MY CODE ENDS HERE

30: [EEEEETEEEE L rrrrrrr

31: }

In the first of the two menu functions, the commanDd function, the current color variableis
set to the new color. If you add the menu entries in the correct order, their ID numbers
are sequential, starting with ID_COLOR_BLACK. Subtracting ID_COLOR_BLACK from the
menu 1D should always result in the correct position in the color table for the selected
color. For example, the Black color is position O in the color table. 1D_COLOR_BLACK —
ID_COLOR_BLACK = 0. Blueis position 1 in the color table. Because 1D_COLOR_BLUE
should be one greater than ID_COLOR_BLACK, ID_COLOR BLUE — ID_COLOR_BLACK = 1.

The second function, the UPDATE_COMMAND_UTI function, may need a little explaining. The
UPDATE_COMMAND_UI event is called for each menu entry just before it is displayed. You
can use this event message function to check or uncheck the menu entry, based on
whether it is the current color. You can also use this event to enable or disable menu
entries or make other modifications as necessary. The code in this function

pCmdUI ->SetCheck (GetColor() == ID_COLOR BLUE ? 1 : 0);

does several things. First, the pcmdul object that is passed in as the only argument isa
pointer to a menu object. The setcheck function can check or uncheck the menu entry,
depending on whether the argument passed is 1 or @ (1 checks, @ unchecks). The argu-
ment portion for the SetCheck function is a flow-control construct that can be somewhat

| 226

Day 10

Ficure 10.8. - Untitled - Day10 M= B
L Fie Edt Widh Yiew Help

Soecifying the current DE@| » B R

color on the menu. s

confusing if you haven't spent alarge amount of time programming in C/C++. The
first half

GetColor() == ID_COLOR_BLUE

is asimple boolean conditional statement. It results in atrue or false result. The portion
following this conditional statement

?21:0

isbasically an if. . .else statement in shorthand. If the conditional statement is true,
then the value is 1, and if the statement is false, the valueis @. Thisis afancy way of
placing an if..else flow control within the argument to another function.

If you compile and run your application, you should be able to change the color that you
are drawing with. When you pull down the color menu, you should see the current draw-
ing color checked on the menu, asin Figure 10.8.

Cyan

v Bed
Magsrta
Yelow
White T

)

~—

[

Summary

Whew! What aday! You learned quite a bit today because this was a packed chapter.
You initially learned about the SDI style application and about a couple of standard
applications that you have probably used that are SDI applications. You next learned
about the Document/View architecture that Visual C++ uses for SDI applications. You
learned to create a simple class of your own for use in your drawing application. You
created a drawing application that can maintain the images drawn using it. You learned
how you can save and restore documents in the Document/View architecture. You also
learned about the cobArray object array class and how you can use it to create a dynamic
object array for storing various classes. Finally, you learned how you can check and
uncheck menu entries in MFC applications.

Creating Single Document Interface Applications 227 |

Q&A

Q Isthere any way that you can reduce the number of COMMAND and UPDATE_
commAND_UI functions for the menus?

A Yes, you can send all the color COMMAND events to the same function. From there,
you can examine the n1D value (which is passed as an argument) and compare it to
the menu 1Ds to determine which menu is calling the function. As a result, you can
write the commanD function for the color menus as follows:

void CDay1@Doc::0nColorCommand (UINT nID)

{
// TODO: Add your command handler code here

LEEETTETET L iy
// MY CODE STARTS HERE
LETETTETTLEL iy

// Set the current color to blue
m_nColor = nID - ID_COLOR_BLACK;

LEEETTETEETE Ly
// MY CODE ENDS HERE

LEEETTETET L iy
}

For the UPDATE_COMMAND_UI functions, you can do the same thing, only dightly
differently. In this case, you can examine the pCmdUI ->m_nID value to determine
which menu the function is being called for. This makes the UPDATE_COMMAND_UI
function look like the following:

void CDay1@Doc: :0OnUpdateColor(CCmdUI* pCmdUI)

{
// TODO: Add your command update UI handler code here

LEEETTETET Ly
// MY CODE STARTS HERE

LEEETTETELTETE Ly

// Determine if the Blue menu entry should be checked
pCmdUI ->SetCheck (GetColor() == pCmdUI->m _nID ? 1 : 0);

LEEETTETEETE iy
// MY CODE ENDS HERE

LEEETTETEE Ly

228 Day 10

Q What'sthe difference between SDI and MDI applications?

A Although SDI applications can perform only one task, MDI (Multiple Document
Interface) applications can have multiple documents open at the same time. Plus, in
an MDI application, not all document types need be the same. You'll learn more
about MDI applications tomorrow.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What does SDI stand for?
2. What functionality isin the view class?

3. What function is called to redraw the document if the window has been hidden
behind another window?

4. Where do you place code to clear out the current document before starting a new
document?

5. What is the purpose of the document class?

Exercise

Add another pull-down menu to control the width of the pen used for drawing. Give it
the following settings:

Menu Entry Width Setting
Very Thin 1

Thin 8

Medium 16

Thick 24

Very Thick 32

“p In the pen constructor, the second argument is the width.

WEEK 2

DAY]J.

Creating Multiple
Document Interface
Applications

Today, you will learn how to build Multiple Document Interface (MDI) appli-
cations using Visual C++. You will be able to build applications that allow
users to work on multiple documents at one time, switching between the win-
dows of the application to do their work. In this chapter, you will learn

¢ The difference between SDI and MDI applications.

» How to create an MDI application.

« How to send multiple menu entries to a single event-handling function.

« How to add a context menu to a Document/View style application.

What Is an MDI Application?

Asfar as coding an MDI application with Visual C++, there's little difference
between creating an SDI and an MDI application. However, when you get

| 230

Day 11

deeper into the two application styles, you'll find quite a few differences. Although an
SDI application allows the user to work on only one document at atime, it also normally
limits the user to working on a specific type of document. MDI applications not only
enable the user to work on multiple documents at the same time, but also MDI applica-
tions can alow the user to work on multiple types of documents.

An MDI application uses a window-in-a-window style, where there is a frame window
around one or more child windows. This is a common application style with many popu-
lar software packages, including Word and Excel.

Architecturally, an MDI application is similar to an SDI application. In fact, with a sim-
ple MDI application, the only difference is the addition of a second frame class to the
other classes that the AppWizard creates, as shown in Figure 11.1. As you can see, the
Document/View architecture is still very much the approach you use for developing MDI
applications as well as SDI applications.

Ficure 11.1. Messages passed to the
The MDI Docu t/ / frame window and view

View architecture.

object

Application object
(CWinApp)

= Main Frame window
(CMainFrame)

B Child Frame window R
(CChildView)

Two-way flow of
information between
the document and the

. . View object
view objects

(CView)

Document object
(CDocument)

When you create an MDI application, you will create just one more class than you created
with an SDI application. The classes are

¢ The cwinApp derived class

¢ The cMDIFrameWnd derived class

* The cMpIChildwnd derived class

¢ The cbocument derived class

e Thecview derived class

Creating Multiple Document Interface Applications 231 |

The two MDI derived classes, CMDIFrameWnd (the CMainFrame classin your project) and
CMDIChildwnd (the cchildFrame classin your project), are the only two classes that are
different from the SDI application that you created.

Thefirst of these two classes, the CMDIFrameWnd-derived CMainFrame, isthe main frame

of the application. It provides an enclosed space on the desktop within which all applica-
tion interaction takes place. This frame window is the frame to which the menu and tool-
bars are attached.

The second of these two classes, the cMpIChildwnd-derived cchildFrame class, isthe
frame that holds the cview class. It is the frame that passes messages and events to the
view class for processing or display.

In a sense, the functionality of the frame class in the SDI application has been split into
these two classesin an MDI application. There is additional support for running multiple
child frames with their own document/view class instances at the same time.

Creating an MDI Drawing Program

To get agood understanding of just how alike the Document/View architectures are for
the SDI and MDI applications, today you will implement that same drawing application
that you created yesterday, only this time as an MDI application.

Building the Application Shell
To create the application shell for today’s application, follow these steps:

1. Create anew AppWizard project. Name the project bay11.

2. Onthefirst step of the AppWizard, select Multiple Documents, as shown in
Figure 11.2.

FIGURE 11.2. [Mrc Appwizand - Step 1

Soecifying an MDI
application.

Swihat lype of spphestion would you ke bo creste?

s Cdin View Wisdew Hal
AL LI

¥ Document/View aichiteciuns suppot?

‘What language would vou ke your resouces in?

|Englech [Uriled States] [AFPWZENUDLL |

< Back Meat > Eirish Cancel

| 232

Day 11

3. Use the default values on the second step of the AppWizard.
4. On the third step of the AppWizard, uncheck the support for ActiveX Controls.

5. On the fourth step of the AppWizard, leave all the default values. Click the
Advanced button.

6. Inthe Advanced Options dialog, enter athree-letter file extension for the files that
your application will generate (for example, dhc or dvp). Click the Close button to
close the dialog and then click Next to move to the next step of the AppWizard.

7. Usethe default settings on the fifth step of the AppWizard.

8. On the sixth and final AppWizard step, leave the base class as cview and click
Finish. The AppWizard generates the application shell.

Building the Drawing Functionality

Because you are creating the same application that you created yesterday, only as an
MDI application this time, you need to add the same functionality to the application that
you added yesterday. To save time, and to reemphasize how alike these two application
architectures are, perform the same steps you did yesterday to create the cLine class and
add the functionality to the cbay11Doc and CDay11View classes. Add the support into the
Cbay11Doc and CLine classes for selecting colors and widths, but do not add any menu
event message handlers or create the color menu. When you finish adding all that func-
tionality, you should have an application in which you can open multiple drawings, all
drawing with only the color black.

Because you haven’t created the menus yet, and the color initialization uses
the color menu IDs, you will probably have to hard-code the initialization of
the color to 0 to get your application to compile. Once you add the color
menu, the menu IDs should have been added, so you will be able to return
to using the IDs in your code. For the time being, change the line of code in
the OnNewDocument function in the CDay11Doc class from

m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;
to
m_nColor = 0;

You will also need to make the same sort of change to the GetColor function
because it uses one of the color menu IDs also.

Creating Multiple Document Interface Applications 233 |

Adding Menu Handling Functionality

Now that you've got all the functionality in your application, you would probably like to
add the color menu so you can use all those available colors in your drawings. When you
expand the Resource View tree and look in the Menu folder, you'll find not one, but two
menus defined. Which one do you add the color menu to?

The IDR_MAINFRAME menu is the menu that is available when no child windows are open.
If you run your application and close all child windows, you'll see the menu change,
removing al the menus that apply to child windows. Once you open another document,
either by creating a new document or by opening an existing document, the menu
changes back, returning all the menus that apply to the documents.

The IDR_DAY11TYPE menu is the menu that appears when a child window is open. This
menu contains all the functions that apply to documents. Therefore, this is the menu that
you need to add the color menu to. Add the color menu by following the same directions
as yesterday, using the same menu properties.

Once you add al the menus, you need to add the menu event handlers. Today, you are
going to take a different approach to implementing the menu event handlers than you did
yesterday. The Q& A section at the end of yesterday’s chapter had a discussion of using a
single event-handler function for al the color menus. That is what you are going to
implement today. Unfortunately, the Class Wizard doesn’t understand how to route multi-
ple menu event messages to the same function correctly, so you’ re going to implement
this yourself by following these steps:

1. Open the Day11Doc.h header file.

2. Scroll down toward the bottom of the header file until you find the protected sec-
tion where the AFX_MsSG message map is declared (search for
/1 {{AFX_MSG (CDay11Doc)).

3. Add the function declarations in Listing 11.1 before the line that you searched for.
(The string that you searched for is the beginning marker for the Class Wizard
maintained message map. Anything you place between it and the end marker,

/| }YAFX_MSG, is likely to be removed or corrupted by the Class Wizard.)

LisTING 11.1. THE EVENT-HANDLER DECLARATIONS IN Day11Doc. h.

1: #ifdef _DEBUG
2: virtual void AssertValid() const;

continues

234 Day 11

LisTING 11.1. CONTINUED

3: virtual void Dump(CDumpContext& dc) const;

4: #endif

5:

6: protected:

7:

8: // Generated message map functions

9: protected:

10: afx_msg void OnColorCommand (UINT nID);

11: afx_msg void OnUpdateColorUI(CCmdUI* pCmdUI);

12: / 1 {{AFX_MSG (CDay11Doc)

13: // NOTE - the ClassWizard will add and remove member functions
Ohere.

14: // DO NOT EDIT what you see in these blocks of generated
Ocode !

15: / 1} YAFX_MSG

16: DECLARE_MESSAGE_MAP ()

17: private:

18: UINT m_nColor;

19: CObArray m_oalLines;
20: };

4. Open the bay11Doc.cpp source-code file.

5. Search for the line BEGIN_MESSAGE_MAP and add the linesin Listing 11.2 just after
it. It'simportant that this code be between the BEGIN_MESSAGE_MAP line and the
/1 {{AFX_MSG_MAP line. If these commands are between the // { {AFX_MSG_MAP and
/1 }YAFX_MSG_MAP lines, then the Class Wizard will remove or corrupt them.

LisTING 11.2. THE EVENT-HANDLER MESSAGE MAP ENTRIES IN Day11Doc.cpp.

LEEEEETEEEE i i bbbl irrl
// CDay11Doc

IMPLEMENT_DYNCREATE (CDay11Doc, CDocument)

: BEGIN_MESSAGE_MAP (CDay11Doc, CDocument)

ON_COMMAND_RANGE (ID_COLOR_BLACK, ID_COLOR_WHITE, OnColorCommand)
H ON_UPDATE_COMMAND_UI RANGE (ID_COLOR_BLACK, ID_COLOR_WHITE,

0 OnUpdateColorul)

9: / 1 {{AFX_MSG_MAP (CDay11Doc)

10: // NOTE - the ClassWizard will add and remove mapping macros
Ohere.

1
2
3
4
5:
6
7
8

Creating Multiple Document Interface Applications 235|

11: // DO NOT EDIT what you see in these blocks of generated
Ocode!

12: / 1} }YAFX_MSG_MAP

13: END_MESSAGE_MAP ()

14:

15: const COLORREF CDayi1Doc::m_crColors[8] = {
16: RGB (0, 0, 0), // Black

17: RGB (0, 0, 255), // Blue

18: .

19:

20:

6. Scroll to the bottom of the file and add the two event message handler functionsin
Listing 11.3.

LisTING 11.3. THE COLOR MENU EVENT-HANDLER FUNCTIONS.

1: void CDay11Doc::0nColorCommand (UINT nID)

2: {

3 // Set the current color

4 m_nColor = nID - ID_COLOR_BLACK;

5: }

6:

7: void CDayi1Doc: :0nUpdateColorUI (CCmdUI* pCmdUI)

8: {

9: // Determine if the menu entry should be checked
10: pCmdUI->SetCheck(GetColor() == pCmdUI->m_nID ? 1 : 0);
11: }

In Listing 11.1, the two function declarations that you added are specified as event mes-
sage handlers by the afx_msg function type declarations. These type of function declara-
tions need to have protected access. Otherwise, they are virtually identical to any other
class member function declaration.

In Listing 11.2, the two message map entries, ON_COMMAND_RANGE and
ON_UPDATE_COMMAND_UI_RANGE, are standard message map entries, but the Class Wizard
does not support or understand them. If you examine the message map entries from the
previous day’s applications, you will notice that there are ON_COMMAND and
ON_UPDATE_COMMAND_UI message map entries. These macros have two arguments, the mes-
sage I1D and the event-handler function name that should be called for the event message.
These new message map entries function in the same way, but they have two event ID
arguments instead of one. The two event ID arguments mark the two ends of a range of

| 236

Day 11

event |Ds that should be passed to the function specified. These two event IDs should be
the first and last menu entries you created when building the color menu.

Nﬂtﬂ The message map is a mechanism used by Visual C++ and MFC to easily
specify event messages and the functions that should be called to handle the
' event. These message-map commands are converted by the Visual C++ com-
piler into a fast and efficient map for calling the appropriate event functions
when a message is received by the application. Whenever you add a function
through the Class Wizard, you are not only adding the function to the code,
but you are also adding an entry into the message map for that class.

When you use the ON_COMMAND_RANGE message-map entry, the event message ID is auto-
matically passed as an argument to the event-handler function. This allows you to create
the function in Listing 11.3 to handle the color selection event messages. If you compile
and run your application at this point, you should find that the color selection functional-
ity isall working just asit did yesterday, as shown in Figure 11.3.

Ficure 11.3. AL Dayl1 - Dayl 11 BEE
i Fle Edi Widh Color Mew MWindow Help

Running the MDI DSl =r 87

application. [T =

Fieady [NOM | 5

Adding a Context Menu

In most Windows applications, you can right-click the mouse and what is known as a
context menu, or pop-up menu, appears. Back on Day 6, “ Creating Menus for Your
Application,” you implemented a simple pop-up menu. However, there is a mechanism
for creating and using these context menus when Windows thinks that the menu should
be opened. This process allows you to add context menus that behave more consistently

Creating Multiple Document Interface Applications

237 |

with other Windows applications (and if Microsoft changes how the context menus are
triggered with a new version of Windows, yours will still behave according to the
Windows standard).

An event message WM_CONTEXTMENU is passed to the event queue when the right mouse
button is released or when the context menu button is pressed (if you have a newer
Windows-enabled keyboard with the context menu button). If you place an event-handler
function on the wm_CONTEXTMENU event message, you can display a pop-up menu with
confidence that you are showing it at the appropriate time.

To add the context menu to your application, you create a new menu for use as the con-
text menu. To do this, follow these steps:

1
2.
3.

In the Resource View tab on the workspace pane, right-click the Menu folder.
Select Insert Menu from the pop-up menu (or should | say context menu).

Select the new menu (still in the workspace pane), open its properties dialog, and
name the menu IDR_CONTEXTMENU.

In the Menu Designer, specify the top-level menu caption as a single space. This
causes Visual C++ to add the first entry in the drop-down portion of the menu.

In the first drop-down menu entry, specify the caption as &width and check the
Pop-up check box. (This causes the ID combo box to be disabled and an arrow to
display beside the caption, along with another menu entry to the right of the menu
entry you are modifying.)

Do not add any menu entries into the Width cascading menu at this time (that is
left for an exercise at the end of the chapter). Instead, select the menu entry below
the Width entry and open its properties dialog. Specify the caption as &Colors and
check the Pop-up check box.

In the colors cascading menu, add the color menu entries as you did for the
IDR_DAY11TYPE menu, using the same property settings. You can select the ID from
the drop-down list of IDs, if you would rather search for them instead of type.
When you finish, your menu should look like the one in Figure 11.4.

Select the Class View tab in the workspace pane.

Select the CDay11View class. Open the Class Wizard by selecting View |
ClassWizard from the menu.

238 Day 11

Ficure 11.4. . Day11 - Miciosolt Wisual C++ - [Day11.rc - IDR_CONTEXTMENU [Menu)]
The context menu | Ete Edi View Inset Promct Buld Iock Window Help TS|
design. I A =R Y) T — Y
] 1 e e = & CLine S = e N
BE

=3 Dayll resowices

-] Accelerstor

#-] Diskog

® lcon

=3 Menu
e on conTeiie
= IDR_DAYTITYPE
B 10A_MAIMFRAME

®-) Stiing T able

&1 Toakbar

-] Versian

=i, | e Resous.. | =] Fieviewe | k

E|[Tinking
r

=
Dayll exe - 0 errar{s), 0 warning{s) |

Eunid {Babug), Findin Filez 1 FindinFales2 14| | O

1

10. Add afunction for thewMm CONTEXTMENU event message on the CDay11View class.
11. Edit the function, adding the code in Listing 11.4.

LisTING 11.4. THE CDay11View OnContextMenu FUNCTION.

1: void CDay11View: :0OnContextMenu(CWnd* pWnd, CPoint point)
2: {
3 // TODO: Add your message handler code here
4:
5: FIELTEEEELET i
6: // MY CODE STARTS HERE
7: TIEETELEELETE iy
8:
9: CMenu menu;
10:
11: // Load the context menu
12: menu.LoadMenu (IDR_CONTEXTMENU) ;
13: // Get the first sub menu (the real menu)
14: CMenu *pContextMenu = menu.GetSubMenu(0);
15:
16: // Display the context menu for the user
17: pContextMenu->TrackPopupMenu (TPM_LEFTALIGN
18: TPM_LEFTBUTTON | TPM_RIGHTBUTTON,
19: point.x, point.y, AfxGetMainWnd());
20:

21: LITETEETETL iy

Creating Multiple Document Interface Applications 239 |

22: // MY CODE ENDS HERE
23: [EEEEETEEEL i
24: }

This code should all look familiar to you from what you learned on Day 6. If you com-
pile and run your application now, you should be able to click your right mouse button
on the child window and change your drawing color from the context menu that opened,
as shown in Figure 11.5.

Ficure 11.5. £ Doyl -Day111 RIS
. Eie Edt ‘Widh Coke Yew ‘window Help

Using the context DEd e &%

menu to change T _]

drawing colors.

HLIK

Summary

That wasn't too bad; was it? After yesterday, you probably needed the easy day today,
along with all the review of what you did yesterday to help it al sink in. But you did get
to learn some new things today. You learned about MDI applications, what they are, and
how they differ from SDI applications. You learned how you could take a series of
menus and use a single event-handler function for all of them. You also learned how you
can create a menu specifically for use as a pop-up context menu and how you can inte-
grate it into an MDI application.

Q&A

Q Becauseit’'sbasically the same code to create an MDI or SDI application, why
would | want to create an SDI application? Why wouldn’t | want to make all
my applications M DI applications?

A It depends on the application and how it’s going to be used. You probably use both
types of applications on adaily basis. If you are writing a memo or working on a

| 240

Day 11

spreadsheet, you are probably using an MDI application. If you are browsing the
World Wide Web, your Web browser is most likely an SDI application. A simple
text editor such as Notepad would probably be more difficult for the user as an
MDI style application, but as an SDI application, it’s just about right (for the task it
handles). Certain applications make more sense implemented as an SDI application
than as an MDI application. You need to think through how your application is
going to be used and determine which model it's more suited for.

Some entries on my color menu are changing to the wrong color. How can |
determine the problem?

The problem is that the color menu IDs are probably not in sequential order or are
out of order. You can check them by right-clicking on the Day11 resources in the
Resource View tab of the workspace pane. Select Resource Symbols from the pop-
up menu to display alist of the IDs and the numbers assigned to them in alphabeti-
cal order. Start with the Black ID and make sure that the numbers increase by 1
without skipping any numbers. Be sure to check these IDs in the order that the col-
ors appear on the menu (and in the color table in the bay11Doc . cpp fil€), not in the
alphabetical order in which they are displayed in thislist. If you find some errors,
you have to close Visual C++ and open the Resource . h file in atext editor to
renumber the IDs correctly. Once you make the corrections (be sure to delete any
duplicates), save your corrections, restart Visual C++, and recompile your applica
tion. The color menu should work correctly.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1
2.

What are the five base classes that are used in MDI applications?

Why do you have to place the ON_COMMAND RANGE message map entry outside the
section maintained by the Class Wizard?

What argument does ON_COMMAND_RANGE pass to the event function?

. What event message should you use to display a pop-up menu?

Creating Multiple Document Interface Applications 241 |

Exercise

Add the pull-down and context menus for the width, using the same pen widths as
yesterday.

WEEK 2

DAY 12

Adding Toolbars and
Status Bars

When you created your SDI and MDI applications, they not only came with
default menus aready attached, but also they came with simple toolbars to go
with the menus. These simple toolbars had the standard set of functions (New,
Open, Save, Print, Cut, Copy, and Paste) that are on the toolbars of most
Windows applications. Most applications don’t limit their toolbars to just this
standard selection of functions but have customized toolbars that reflect the
specific functionality of the application.

In addition to the toolbars, the SDI and MDI applications have a status bar at
the bottom of the frame that provides textual descriptions of the toolbar buttons
and menu entries. The status bar also has default areas that display whether the
Caps, Num, and Scroll Lock keys are on.

Today, you will learn

- How to design your own toolbar.
- How to attach your toolbar to the application frame.

| 244

Day 12

- How to show and hide your toolbar with a menu entry.

- How to place a combo box on your toolbar.

- How to display descriptions of your toolbar entries in the status bar.
- How to add your own status bar elements.

Toolbars, Status Bars, and Menus

One of the driving intentions behind the development of Graphical User Interfaces (GUI)
such as Windows was the goal of making computers easier to use and learn. In the effort
to accomplish this goal, GUI designers stated that all applications should use a standard
set of menus and that the menus should be organized in a standardized manner. When
Microsoft designed the Windows operating system, it followed this same philosophy,
using a standard set of menus organized in a standard order on most of its applications.

A funny thing happened once Windows became widely used. The application designers
found that new users till had a difficult time learning new applications and that
advanced users found the menus cumbersome. As a result, the application designers
invented toolbars as one solution to both problems.

A toolbar is a small band attached to the window frame or a dialog window that is float-
ing independent of the application frame. This band (or dialog) has a number of small
buttons containing graphic images that can be used in place of the menus. The applica-
tion designers place the most commonly used functions for their applications on these
toolbars and do their best to design graphical images that illustrate the functions the but-
tons serve.

Once advanced users learned what each of the toolbar buttons do, the toolbars were a hit.
However, novice users still had problems learning what the toolbar does. As aresult, the
application designers went back to the drawing board to come up with ways to help the
new user learn how use the toolbar buttons.

One of the solutions was to use the information bar that many of them had begun placing
at the bottom of application windows to provide detailed descriptions of both menu
entries and toolbar buttons. One of the other solutions was to provide a little pop-up win-
dow with a short description of the button that appears whenever the mouse is positioned
over the button for more than a couple of seconds. The first of these solutions became
known as the status bar, and the second became known as tooltips. Both solutions are in
common practice with most Windows applications today.

If you want to design and use your own toolbars and status bars in your applications, you
might think that Visual C++ provides plenty of support for your efforts and even makes

Adding Toolbars and Status Bars 245 |

it easy to implement. After al, Microsoft's own application devel opers have been in the
forefront of developing these elements, and most, if not al, of Microsoft's Windows
applications are developed using its own Visual C++. Well, you are correct in making
that assumption, and today, you'll learn how to create your own custom toolbars and sta-
tus bars for your applications.

Designing a Toolbar

For learning how to create your own toolbar, you will modify the application that you
created on Day 10, “Creating Single Document Interface Applications,” the SDI drawing
application, to add a toolbar for selecting the color to use in drawing.

Nﬂtﬂ Although the sample application you are working with today is an extension

to the application you built on Day 10, all file and class names have been
changed from Day10 to Toolbar. If you are making the changes in the Day
10 project, then when the following text specifies that you make changes to
the CToolbarDoc class, you should make the changes to the CDay1@Doc class.
Likewise, when you are asked to edit the Toolbar.rc file, you can edit the
Day10.rc file.

If al you want to do is add a few additional toolbar buttons to the default toolbar that the
AppWizard creates when you start a new SDI or MDI application, you can pull up the
toolbar in the Visual C++ designer through the Resource View in the workspace pane
and begin adding new buttons. Just asin the Menu Designer, the end of the toolbar
always has a blank entry, waiting for you to turn it into another toolbar button, as shown
in Figure 12.1. All you have to do is select this blank button, drag it to the right if you
want a separator between it and the button beside it, or drag it to a different position if
you want it moved. After you have the button in the desired location, you paint an icon
on the button that illustrates the function that the button will trigger. Finally, double-
click the button in the toolbar view to open the button’s properties dialog and give the
button the same ID as the menu that it will trigger. The moment that you compile and
run your application, you will have a new toolbar button that performs a menu selection
that you chose. If you want to get rid of atoolbar button, just grab it on the toolbar view,
and drag it off the toolbar.

| 246

Day 12

FIGURE 12.1.
The toolbar designer.

% Toolbar - Micrasoft Visual C++ - [Toolbar.ic - IDR_MAINFRAME (Bitmap)]

2 File Edit View [nsert Project Buld Tools Window Help

'i%‘ﬁ-"ﬂﬁ“é Eﬂa@,"_?:v:?_‘vHﬁlﬁlﬁ,ﬂ%cnemmsel '|‘:‘M
(Gilobals) = [(&1 global members] [=[iNo members - Create New

Al

£l Toolbar resources *

NEEIREEEE

(=
[Dialog

(1 leon

(3 Menu

(] Stiing T ahle
(1 Toolbar

B3 Class... | 2 Reso... | [£] Filevi.

E|

[T\ Build /Debug Findin Files1) Findin Files2z 3| 4| |

Ready

HAstart|| @ &3 A B || Eyinbos-0._| 5 Ewploring_|[0m Toolbar... | MSDN Li. | EFVuePint

Creating a New Toolbar

To insert a new toolbar, right-click on the Toolbar folder and select Insert Toolbar from
the pop-up menu. This creates an empty toolbar with a single blank button. As you start
drawing an icon on each of the blank buttons in the toolbar, another blank button is

added on the end.

BT T

For use in your drawing application, fill eight buttons with the eight colors available in
the drawing application.

Once you draw icons on each of the buttons in your toolbar, double-click on the first but-
ton in the toolbar view. This should open the toolbar button properties dialog. In the ID
field, enter (or select from the drop-down list) the ID of the menu that this toolbar button
should trigger. In the Prompt field, enter the description that should appear in the status
bar for this toolbar button. (If you entered a prompt for the menu, then this field is auto-
matically populated with the menu description.) At the end of the status bar description,
add \n and a short description to appear in the tooltips for the toolbar button.

Adding Toolbars and Status Bars 247 |

Nﬂtﬂ In C/C++, the \n string is a shorthand notation for “begin a new line.” In the

) prompt for toolbar buttons and menu entries, this string is used to separate
' the status bar descriptions of the menu entries and the tooltips pop-up
prompt that appears when the mouse is held over a toolbar button for a
few seconds. The first line of the prompt is used for the status bar descrip-
tion, and the second line is used for the tooltips description. The tooltips
description is only used with the toolbars, so there’s no reason to add this
for menu entries that will have no toolbar equivalents.

For example, for the black button on the toolbar that you are creating for your drawing
application, enter an ID of 1b_COLOR_BLACK and a prompt of Black drawing
color\nBlack, as shown in Figure 12.2.

FIGURE 12.2. Toolbar Button Propetiss

T General |
The toolbar button

properties dialog. \;,,g,h - Heignt: [15

Prompt: [Black drawing color\nBlack

Once you finish designing your toolbar and have icons on all of your buttons with the
properties set for each button, you will change the toolbar 1D. In the workspace pane,
right-click the new toolbar that you just added and open its properties dialog. Change the
toolbar 1D to a descriptive name.

As an example, for the color toolbar that you created for your drawing application,
change the toolbar ID to IDR_TBCOLOR.

Attaching the Toolbar to the Application Frame

In the previous SDI and MDI applications, you didn’t add any functionality that required
you to touch the frame window. Well, because the toolbar is attached to the frame, you'll
have to begin adding and modifying code in that module. If you open the cMainFrame
classto the oncreate function, you'll see where it’s creating the existing toolbar and
then later in this function where the toolbar is being attached to the frame.

Before you can add your toolbar to the application frame, you need to add a variable to
the cMainFrame class to hold the new toolbar. This variable of type CTool1Bar should be
protected in accessibility.

| 248 Day 12

To add your color toolbar to your draw application, right-click the cMainFrame classin
the Class View tab of the workspace pane. Select Add Member Variable from the pop-up
menu, and specify the variable type as CToolBar, the name asm_wndColorBar, and the
access as protected.

After you add a variable for your toolbar, you need to add some code in the OnCreate
function in the cMainFrame class to add the toolbar and attach it to the frame. Make the
modificationsin Listing 12.1 to add the color toolbar to your drawing application.

LisTING 12.1. THE MODIFIED CMainFrame.OnCreate FUNCTION.

1 int CMainFrame::0OnCreate (LPCREATESTRUCT lpCreateStruct)
2: {

3 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)

4: return -1;

5-

6 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT,

OWS_CHILD , WS _VISIBLE ; CBRS_TOP
7: i CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |
OCBRS_SIZE_DYNAMIC)

8: !m_wndToolBar.LoadToolBar (IDR_MAINFRAME))

9: {

10: TRACEOQ("Failed to create toolbar\n");

11: return -1; // fail to create

12: }

13:

14: [IEEETTEEEL i

15: // MY CODE STARTS HERE

16: [HEEETTEEEE L rrrrrr

17:

18: // Add the color toolbar

19: int iTBCtlID;
20: int i;
21:
22: // Create the Color Toolbar
23: if (!m_wndColorBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD ,
24: WS_VISIBLE | CBRS_TOP | CBRS_GRIPPER | CBRS_TOOLTIPS |
25: CBRS_FLYBY | CBRS_SIZE_DYNAMIC)
26: !m_wndColorBar.LoadToolBar (IDR_TBCOLOR))
27: {
28: TRACEOQ("Failed to create toolbar\n");
29: return -1; // fail to create
30: }
31: // Find the Black button on the toolbar
32: iTBCt1lID = m_wndColorBar.CommandToIndex (ID_COLOR_BLACK);
33: if (iTBCtlID >= 0)

34: {

Adding Toolbars and Status Bars 249 |

35:

36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:

// Loop through the buttons, setting them to act as radio
Obuttons
for (i= iTBCtlID; i < (iTBCtlID + 8); i++)
m_wndColorBar.SetButtonStyle(i, TBBS_CHECKGROUP);
}

LEEETEETEEL iy
// MY CODE ENDS HERE
PIEETETE iy

if (!m_wndStatusBar.Create(this) |,
!m_wndStatusBar.SetIndicators(indicators,
sizeof(indicators)/sizeof (UINT)))

TRACEQ("Failed to create status bar\n");
return -1; // fail to create

}

// TODO: Delete these three lines if you don't want the toolbar to
// be dockable
m_wndToolBar.EnableDocking (CBRS_ALIGN_ANY);

PIPETELTE iy
// MY CODE STARTS HERE
LETETEETETE iy

// Enable docking for the Color Toolbar
m_wndColorBar.EnableDocking (CBRS_ALIGN_ANY);

PIPETEETE iy
// MY CODE ENDS HERE
PIPETELTE iy

EnableDocking (CBRS_ALIGN_ANY);
DockControlBar (&m_wndToolBar);

LEEETEETELTL iy
// MY CODE STARTS HERE
PIPETEETE iy

// Dock the Color Toolbar
DockControlBar (&m_wndColorBar);

PIPETELTE iy
// MY CODE ENDS HERE
LEEETEETELTE iy

return 0;

| 250

Day 12

Creating the Toolbar
The first part of the code you added,

if (!m_wndColorBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD
WS_VISIBLE | CBRS_TOP ; CBRS_GRIPPER | CBRS_TOOLTIPS
CBRS_FLYBY | CBRS_SIZE_DYNAMIC) i,
!m_wndColorBar.LoadToolBar (IDR_TBCOLOR))

contains two separate functions that are necessary in creating atoolbar. The first func-
tion, createEx, creates the toolbar itself, whereas the second, LoadToolBar, loads the
toolbar that you designed in the toolbar designer. The second function, LoadToolBar,
requires a single argument, the ID for the toolbar that you want to cresate.

The createEx function has several arguments that you can pass with the function. The
first argument, and the only required argument, is a pointer to the parent window. In this
case (which is normally the case), this argument is a pointer to the frame window to
which the toolbar will be attached.

The second argument is the style of controls on the toolbar that is to be created. Several
toolbar control styles are available for use, some of which have been introduced with the
last two versions of Internet Explorer. Table 12.1 lists the available styles.

TABLE 12.1. TOOLBAR CONTROL STYLES.

Style Description

TBSTYLE_ALTDRAG Allows the user to move the toolbar by dragging it while holding
down the Alt key.

TBSTYLE_CUSTOMERASE Generates aNM_CUSTOMDRAW message when erasing the toolbar and

button background, allowing the programmer to choose when and
whether to control the background erasing process.

TBSTYLE_FLAT Creates a flat toolbar. Button text appears under the bitmap
image.

TBSTYLE_LIST Button text appears to the right of the bitmap image.

TBSTYLE_REGISTERDROP For use in dragging and dropping objects onto toolbar buttons.

TBSTYLE_TOOLTIPS Creates atooltip control that can be used to display descriptive
text for the buttons.

TBSTYLE_TRANSPARENT Creates a transparent toolbar.

TBSTYLE_WRAPABLE Creates atoolbar that can have multiple rows of buttons.

The third argument is the style of the toolbar itself. This argument is normally a combi-
nation of window and control bar styles. Normally, only two or three window styles are
used, and the rest of the toolbar styles are control bar styles. The list of the normally
used toolbar styles appearsin Table 12.2.

Adding Toolbars and Status Bars 251 |

TABLE 12.2. TOOLBAR STYLES.

Style Description
WS_CHILD The toolbar is created as a child window.
WS_VISIBLE The toolbar will be visible when created.

CBRS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

CBRS_ALIGN_ANY

CBRS_BORDER_TOP

CBRS_BORDER_BOTTOM

CBRS_BORDER_LEFT

CBRS_BORDER_RIGHT

CBRS_FLOAT_MULTI

CBRS_TOOLTIPS

CBRS_FLYBY

CBRS_GRIPPER

Allows the toolbar to be docked to the top of the view area of the
frame window.

Allows the toolbar to be docked to the bottom of the view area of
the frame window.

Allows the toolbar to be docked to the left side of the view area
of the frame window.

Allows the toolbar to be docked to the right side of the view area
of the frame window.

Allows the toolbar to be docked to any side of the view area of
the frame window.

Places a border on the top edge of the toolbar when the top of the
toolbar is not docked.

Places a border on the bottom edge of the toolbar when the top of
the toolbar is not docked.

Places a border on the left edge of the toolbar when the top of the
toolbar is not docked.

Places a border on the right edge of the toolbar when the top of
the toolbar is not docked.

Allows multiple toolbars to be floated in a single miniframe
window.

Causes tooltips to be displayed for the toolbar buttons.

Causes status bar message text to be updated for the toolbar but-
tons at the same time as the tooltips.

Causes a gripper to be drawn on the tool bar.

The fourth argument, which you did not provide in your code, is the size of the toolbar
borders. This argument is passed as a standard CRect rectangle class to provide the
length and height desired for the toolbar. The default valueis o for al of the rectangle
dimensions, thus resulting in a toolbar with no borders.

The fifth and final argument, which you also did not provide in your code, is the tool-
bar’s child window ID. This defaults to AFX_IDW_TOOLBAR, but you can specify any
defined ID that you need or want to use for the toolbar.

| 252

Day 12

Setting the Button Styles
After you create the toolbar, there is a curious bit of code:

// Find the Black button on the toolbar
iTBCt1lID = m_wndColorBar.CommandToIndex (ID_COLOR_BLACK);
if (iTBCtl1lID >= 0)

{
// Loop through the buttons, setting them to act as radio buttons
for (i= iTBCtlID; i < (iTBCtlID + 8); i++)
m_wndColorBar.SetButtonStyle (i, TBBS_CHECKGROUP) ;
}

The first line in this code snippet uses the commandToIndex toolbar function to locate the
control number of the ID_COLOR_BLACK button. If you design your toolbar in the order of
colors that you used on the menu, this should be the first control, with aindex of o. It's
best to use the commandToIndex function to locate the index of any toolbar button that
you need to alter, just in case it's not where you expect it to be. This function returns the
index of the toolbar control specified, and you use this as a starting point to specify the
button style of each of the color buttons.

In the loop, where you are looping through each of the eight color buttons on the toolbar,
you use the setButtonStyle function to control the behavior of the toolbar buttons. The
first argument to this function is the index of the button that you are changing. The sec-
ond argument is the style of button that you want for the toolbar button specified. In this
case, you are specifying that each of the buttons be TBBS_CHECKGROUP buttons, which
makes them behave like radio buttons, where only one of the buttons in the group can be
selected at any time. The list of the available button stylesisin Table 12.3.

TABLE 12.3. TOOLBAR BUTTON STYLES.

Style Description

TBSTYLE_AUTOSIZE The button’s width will be calculated based on the text on the button.

TBSTYLE_BUTTON Creates a standard push button.

TBSTYLE_CHECK Creates a button that acts like a check box, toggling between the
pressed and unpressed state.

TBSTYLE_CHECKGROUP Creates a button that acts like aradio button, remaining in the

pressed state until another button in the group is pressed. Thisis
actually the combination of the TBSTYLE_CHECK and TBSTYLE_GROUP

button styles.
TBSTYLE_DROPDOWN Creates a drop-down list button.
TBSTYLE_GROUP Creates a button that remains pressed until another button in the

group is pressed.

Adding Toolbars and Status Bars 253 |

Style Description

TBSTYLE_NOPREFIX The button text will not have an accelerator prefix associated with it.

TBSTYLE_SEP Creates a separator, making a small gap between the buttons on
either side.

Docking the Toolbar
The last thing that you do in the code that you add to the oncreate function in the
CMainFrame classis the following:

// Enable docking for the Color Toolbar
m_wndColorBar.EnableDocking (CBRS_ALIGN_ANY) ;

EnableDocking (CBRS_ALIGN_ANY); // (AppWizard generated line)

// Dock the Color Toolbar
DockControlBar (&m_wndColorBar);

In the first of these lines, you called the EnableDocking toolbar function. This function
enables the toolbar for docking with the frame window. The value passed to this toolbar
function must match the value passed in the following EnableDocking function that is
caled for the frame window. The available values for these functions are listed in Table
12.4. These functions enable the borders of the toolbar, and the frame window, for dock-
ing. If these functions are not called, then you will not be able to dock the toolbar with
the frame window. If a specific side is specified in these functions for use in docking,
and the sides do not match, you will not be able to dock the toolbar with the frame.

TABLE 12.4. TOOLBAR DOCKING SIDES.

Style Description

CBRS_ALIGN_TOP Allows the toolbar to be docked to the top of the view area of the
frame window.

CBRS_ALIGN_BOTTOM Allows the toolbar to be docked to the bottom of the view area of the
frame window.

CBRS_ALIGN_LEFT Allows the toolbar to be docked to the left side of the view area of
the frame window.

CBRS_ALIGN_RIGHT Allows the toolbar to be docked to the right side of the view area of
the frame window.

CBRS_ALIGN_ANY Allows the toolbar to be docked to any side of the view area of the
frame window.

CBRS_FLOAT_MULTI Allows multiple toolbars to be floated in a single miniframe window.
0 The toolbar will not be able to dock with the frame.

| 254

Day 12

The final function that you added was a frame window function, bockControlBar, which
is passed the address of the toolbar variable. This function physically docks the toolbar
to the frame window. Because al of this code appears in the oncreate function for the
frame window, the toolbar is docked before the user sees either the window or the tool-
bar.

Now, after adding all of this code to the oncreate function of the CMainFrame class, if
you compile and run your application, you'll find aworking color toolbar that you can
use to select the drawing color, as shown in Figure 12.3.

FIGURE 12.3. - Untitled - Toolbar M=
File Edit ‘width Color Wiew Help

The color toolbar on ET IR

the drawing pro- mEE =m |

gram.
Fieady [N

Controlling the Toolbar Visibility

Now that you have your color toolbar on the frame of your drawing application, it would
be nice to be able to show and hide it just as you can the default toolbar and status bar
through the View menu. Thisis simple enough functionality to add, but it doesn’t neces-
sarily work the way you might expect it to.

The first thing you need to do is add a menu entry to toggle the visibility of the color
bar. Do this through the Menu Designer, adding a new menu entry on the View menu.
Specify the menu properties as shown in Table 12.5.

TABLE 12.5. COLOR BAR MENU PROPERTIES.

Property Setting
ID ID_VIEW_COLORBAR
Caption &Color Bar

Prompt Show or hide the colorbar\nToggle ColorBar

Adding Toolbars and Status Bars 255|

Updating the Menu

To determine whether the toolbar is visible or hidden, you can get the current style of the
toolbar and mask out for thews_VvISIBLE style flag. If the flag isin the current toolbar
style, then the toolbar is visible. By placing this evaluation into the setCheck function in
the UPDATE_COMMAND_UI event message handler, you can check and uncheck the color bar
menu entry as needed.

To add this functionality to your drawing program, add an event handler for the
UPDATE_COMMAND_UI event message on the ID_VIEW_COLOR menu. Be sureto add this
event-handler function into the cMainFrame class. (You're still making all of your coding
changes so far in the frame class.) Edit the event-handler function, adding the code in
Listing 12.2.

LisTING 12.2. THE MODIFIED CMainFrame.OnUpdateViewColorbar FUNCTION.

1: void CMainFrame: :0OnUpdateViewColorbar (CCmdUI* pCmdUI)

2: {

3: // TODO: Add your command update UI handler code here
4: [HEEETTEEEE i rrrrr

5: // MY CODE STARTS HERE

6: [EEEEETEEEE T rrrrrr

7

8: /] Check the state of the color toolbar

9: pCmdUI ->SetCheck(((m_wndColorBar.GetStyle() & WS_VISIBLE) != 0));
10:

11: [EEEEETEEEL i

12: // MY CODE ENDS HERE

13: [HEEETTEEEE i rrrrr

14: }

Toggling the Toolbar Visibility

Because the cToolBar classis derived from the cwnd class (viathe cControlBar class),
you might think that you could call the showwindow function on the toolbar itself to show
and hide the toolbar. Well, you can, but the background for the toolbar will not be hidden
along with the toolbar. All the user would notice is the toolbar buttons appearing and dis-
appearing. (Of course, this might be the effect you are after, but your users might not like
it.)

Instead, you use a frame window function, ShowControlBar, to show and hide the tool-
bar. This function takes three arguments. The first argument is the address for the toolbar
variable. The second argument is a boolean, specifying whether to show the toolbar.

| 256

Day 12

(TRUE shows the toolbar; FALSE hides the toolbar.) Finally, the third argument specifies
whether to delay showing the toolbar. (TRUE delays showing the toolbar; FALSE shows the
toolbar immediately.)

Once atoolbar is toggled on or off, you need to call another frame window function,
RecalclLayout. This function causes the frame to reposition all of the toolbars, status
bars, and anything else that is within the frame area. This is the function that causes the
color toolbar to move up and down if you toggle the default toolbar on and off.

To add this functionality to your drawing program, add an event handler for the COMMAND
event message on the ID_VIEW_COLOR menu. Be sure to add this event-handler function
into the cMainFrame class. (You're still making all of your coding changes so far in the
frame class.) Edit the event-handler function, adding the code in Listing 12.3.

LisTING 12.3. THE MODIFIED CMainFrame.OnViewColorbar FUNCTION.

1: void CMainFrame: :0OnViewColorbar()

2: {

3: // TODO: Add your command handler code here
4:

5: [HEEELTEEEE L rrrrrrr

6: // MY CODE STARTS HERE

7: [EEEELTEEEL iy

8: BOOL bVisible;

9:

10: /] Check the state of the color toolbar

11: bvisible = ((m_wndColorBar.GetStyle() & WS_VISIBLE) != 0);
12:

13: // Toggle the color bar

14: ShowControlBar (&m_wndColorBar, !bVisible, FALSE);
15: // Reshuffle the frame layout

16: RecalcLayout();

17:

18: [EEEETTEEEL i

19: // MY CODE ENDS HERE
20: [HEEETTEEEE L rrrrrrr
21: }

At this point, after compiling and running your application, you should be able to toggle
your color toolbar on and off using the View menu.

Adding Toolbars and Status Bars 257 |

Adding a Combo Box to a Toolbar

It's commonplace now to use applications that have more than just buttons on toolbars.
Look at the Visual C++ Developer Studio, for example. You' ve got combo boxes that
enable you to navigate through your code by selecting the class, 1D, and function to edit
right on the toolbar. So how do you add a combo box to atoolbar? It's not available in
the toolbar designer; al you have there are buttons that you can paint icons on. You can't
add a combo box to any toolbar by using any of the Visual C++ wizards. You have to
write alittle C++ code to do it.

To learn how to add a combo box to a toolbar, you'll add a combo box to the color tool-
bar you just created. The combo box will be used to select the width of the pen the user
will use to draw images. (If you haven’t added the support for different drawing widths
from the exercise at the end of Day 10, you might want to go back and add that now.)

Editing the Project Resources

To add a combo box to your toolbar, the first thing that you need to do is what Visual
C++ was designed to prevent you from having to do. You need to edit the resource file
yourself. You cannot do this through the Visual C++ Developer Studio. If you try to open
the resource file in the Developer Studio, you will be popped into the Resource View tab
of the workspace pane, editing the resource file through the various resource editors and
designers. No, you'll have to edit this file in another editor, such as Notepad.

Close Visual C++, the only way to guarantee that you don’t write over your changes.
Open Notepad and navigate to your project directory. Open the resource file, which is
named after the project with a . rc filename extension. Once you open thisfilein
Notepad, scroll down until you find the toolbar definitions. (You can search for the word
“toolbar.”) Once you've found the toolbar definitions, go to the end of the Color toolbar
definition and add two separator lines at the bottom of the toolbar definition.

For instance, to make these changes to your drawing application, you need to navigate to
the Toolbar project directory and then open the Toolbar.rc file. (If you are adding these
toolbars to the MDI drawing application, you need to look for the Day1l.rc file.) Search
for the toolbar section, and then add two SEPARATOR lines just before the end of the
IDR_TBCOLOR section, as shown in Listing 12.4. Once you add these two lines, save the
file, exit Notepad, and restart Visual C++, reloading the project.

| 258

Day 12

LISTING 12.4. THE MODIFIED PROJECT RESOURCE FILE (Toolbar.rc).

a4
O©CoONOODODMWN-=S

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

©oOoO~NOOOD»WN-=

LEELEIELEELEI i rr i iirriiiini
/1
// Toolbar
/1
IDR_MAINFRAME TOOLBAR DISCARDABLE 16, 15
BEGIN
BUTTON ID_FILE_NEW
BUTTON ID_FILE_OPEN
BUTTON ID_FILE_SAVE
SEPARATOR
BUTTON ID_EDIT_CUT
BUTTON ID_EDIT_COPY
BUTTON ID_EDIT_PASTE
SEPARATOR
BUTTON ID_FILE_PRINT
BUTTON ID_APP_ABOUT
. END
IDR_TBCOLOR TOOLBAR DISCARDABLE 16, 15
BEGIN
BUTTON ID_COLOR_BLACK
BUTTON ID_COLOR_BLUE
BUTTON ID_COLOR_GREEN
BUTTON ID_COLOR_CYAN
BUTTON ID_COLOR_RED
BUTTON ID_COLOR_MAGENTA
BUTTON ID_COLOR_YELLOW
BUTTON ID_COLOR_WHITE
SEPARATOR
SEPARATOR
END

You added these two SEPARATOR lines in the toolbar definition so that the second separa-
tor can act as a place holder for the combo box that you are going to add to the toolbar.
There are two reasons that you had to make this edit by hand and not use the Visual C++
toolbar designer. The first reason is that the toolbar designer would not allow you to add
more than one separator to the end of the toolbar. The second reason is that, if you don’t
add anything else on the end of your toolbar after the separator, the toolbar designer
decides that the separator is a mistake and removes it for you. In other words, the Visual
C++ toolbar designer does not allow you to add the place holder for the combo box to
your toolbar.

Adding Toolbars and Status Bars 259 |

Next, you need to add the text strings that you will load into your combo box. To add
these strings, you need to open the string table in the Resource View of the workspace
pane. Here you find all of the strings that you entered as prompts in various properties
dialogs. This table has a number of IDs, the values of those IDs, and textual strings that
are associated with those I1Ds, as shown in Figure 12.4. You'll need to add the strings to
be placed into your toolbar combo box in the string table; each line in the drop-down list
must have a unique ID and entry in the strings table.

FlGURE 12 4 # Toolbar - Micrasoft Visual C++ - [Toolbar.ic - String Table [String Table]]
The string table ,LEEile Edit View lnset Project Bulld Took Window Help —1& %]
. 9 SR =1- RN = - [E[E R | G [CRecordset 1|
editor. CMainFiame =@ class members) =] @ CHainFrame B H T =T
| i
S/ Toolbar resources q
,ugcje'e'am' IDS_WIDTH_THIN 130
{1 Dialog IDS_WIDTH_MEDIUM 13
(] Ioon IDS_WIDTH_THICK 132
(3 Menu ID5_WIDTH_VTHICK 133 | Very Thick
143 String Table ID_INDICATOR_COLOR 134 | MAGENTA
a2 Stiing Table ID_WIDTH_VTHIN 32771 | Very thin drawing ine\rivery Thin
(1 Taokbar ID_WIDTH_THIN 32772 | Thin drawing inenThin
(£ Version ID_WIDTH_MEDIUM 32773 | Medium drawing line\nMedium
ID_WIDTH_THICK 32774 | Thick drawing line\nThick
ID_WIDTH_VTHICK 32775 | Very thick chawing nskrivery Thick
ID_COLOR_BLACK 32776 | Black drawing color\nBlack
ID_COLOR_BLUE 32777 | Blue drawing colornBlus
ID_COLOR_GREEN 32778 | Gireen drawing color\nGireen
ID_COLOR_CYAN 32779 | Cyan drawing color\nCyan
ID_COLOR_RED 32780 | Fied diawing color\nRed
ID_COLOR_MAGENTA 32781 | Magents diawing colornMagenta
= B ID_COLOR_YELLOW 32782 | Yellow drawing coloi\rellaw
250, | G Reso. | [it ID COLOR WHITE 327683 | Whils drawing colorinwhits =l
B Configuration. Toolbar — WimiZ Debug— =
Jl|compiling
MainFrn.cpp
Linking
Toolbar exe — 0 error(s). 0 warning(s) T
T[> Build {Debug) Findin Files 1 Findin Files2 3| 4| | 3
Ready

HAstart||| @ &3 A B || Eyinbor-Duto_ | &) Evploring-E-|[0m Toolbar .. | MSDN Librar | B vuePint-PC. | ||<f-24» 209 M

For instance, to add the strings for the combo box that you will be adding to the color
toolbar, insert a new string, either by selecting Insert|New String from the menu or by
right-clicking the string table and selecting New String from the pop-up menu.

In the String properties dialog, specify a string ID for the string and then enter the string
to appear in the drop-down list. Close the properties dialog to add the string. For the
strings in the Width combo box that you are going to add to the color toolbar, add the
stringsin Table 12.6.

| 260 Day 12

TABLE 12.6. WIDTH TOOLBAR COMBO BOX STRINGS.

ID Caption
IDS_WIDTH_VTHIN Very Thin
IDS_WIDTH_THIN Thin
IDS_WIDTH_MEDIUM Medium
IDS_WIDTH_THICK Thick
IDS_WIDTH_VTHICK Very Thick

Creating the Toolbar Combo Box

Before you can add the combo box to the color toolbar, you need to create a combo box
variable that you can use for the combo box. Because you are not able to add this combo
box through any of the designers, you need to add it as a variable to the cMainFrame
class.

To add the combo box variable to the main frame class for the color toolbar, select the
Class View tab in the workspace pane. Right-click the cMainFrame class and select Add
Member Variable from the pop-up menu. Specify the variable type as cComboBox, the
name asm_ct1width, and the access as protected.

Once you add the combo box variable to the main frame class, you need to perform a
series of actions, all once the toolbar has been created:

1. Set the width and the ID of the combo box place holder on the toolbar to the width
and ID of the combo box.

2. Get the position of the toolbar placeholder and use it to size and position the
combo box.

3. Create the combo box, specifying the toolbar as the parent window of the combo
box.

4. Load the strings into the drop-down list on the combo box.

To organize this so that it doesn’t get too messy, it might be advisable to move the cre-
ation of the color toolbar to its own function that can be called from the oncreate func-
tion of the main frame class. To create this function, right-click the cMainFrame classin
the workspace pane and select Add Member Function from the pop-up menu. Specify the
function type as BooL, the function description as createColorBar, and the access as
public. Edit the new function, adding the code in Listing 12.5.

Adding Toolbars and Status Bars 261 |

LisTING 12.5. THE CMainFrame CreateColorBar FUNCTION.

1: BOOL CMainFrame: :CreateColorBar()
2: {
3: int iTBCtlID;
4: int i;
5:
6 if (!m_wndColorBar.CreateEx(this, TBSTYLE_FLAT,
OWS _CHILD | WS_VISIBLE | CBRS_TOP
7: ! CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY !
OCBRS_SIZE_DYNAMIC)
8: !m_wndColorBar.LoadToolBar (IDR_TBCOLOR))
9: {
10: TRACEOQ ("Failed to create toolbar\n");
11: return FALSE; // fail to create
12: }
13: iTBCt1lID = m_wndColorBar.CommandToIndex (ID_COLOR_BLACK) ;
14: if (iTBCtlID >= 0)
15: {
16: for (i= iTBCtlID; i < (iTBCtlID + 8); i++)
17: m_wndColorBar.SetButtonStyle(i, TBBS_CHECKGROUP);
18: }
19: // Add the Combo
20: int nWidth = 100;
21: int nHeight = 125;
22:
23: // Configure the combo place holder
24: m_wndColorBar.SetButtonInfo(9, IDC_CBWIDTH, TBBS_SEPARATOR,
Onwidth);
25:
26: // Get the colorbar height
27: CRect rect;
28: m_wndColorBar.GetItemRect (9, &rect);
29: rect.bottom = rect.top + nHeight;
30:
31: // Create the combo box
32: m_ctlWidth.Create(WS_CHILD | WS_VISIBLE | WS_VSCROLL |
33: CBS_DROPDOWNLIST, rect, &m_wndColorBar, IDC_CBWIDTH);
34:
35: // Fill the combo box
36: CString szStyle;
37: if (szStyle.LoadString(IDS_WIDTH_VTHIN))
38: m_ctlWidth.AddString((LPCTSTR)szStyle);
39: if (szStyle.LoadString(IDS_WIDTH_THIN))
40: m_ctlWidth.AddString((LPCTSTR)szStyle);
41: if (szStyle.LoadString(IDS_WIDTH_MEDIUM))
42: m_ctlWidth.AddString((LPCTSTR)szStyle);
43: if (szStyle.LoadString(IDS_WIDTH_THICK))

continues

| 262 Day 12

LiSTING 12.5. CONTINUED

44: m_ctlWidth.AddString((LPCTSTR)szStyle);
45: if (szStyle.LoadString(IDS_WIDTH_VTHICK))
46: m_ctlWidth.AddString((LPCTSTR)szStyle);
47:

48: return TRUE;

49: }

Online 24 in Listing 12.5, you specify that the combo box should be created using the
object ID IDC_CBWIDTH. Thisobject ID is used to identify the combo box when the
combo box sends an event message to the application or when you need to specify what
list entry is displayed in the edit field. However, this object ID doesn't exist in your
application. Before you can compile the application, you'll need to add this ID to the
project resource IDs, just as you did on Day 4, “Working with Timers.” To add this ID to
your project, select the Resource view in the workspace pane. Select the top of the
resource tree and right-click the mouse to trigger the context menu. Select Resource
Symbols from the pop-up menu and add the object 1D IDC_CBWIDTH. Make sure that you
add the new object ID with a unique numerical value so that it won't conflict with any
other objects in use in your application.

Configuring the Placeholder

After creating the toolbar and configuring all of the toolbar buttons, the first thing you
need to do is to configure the separator that is acting as the place holder for the combo
box you are about to create. You do this with the setButtonInfo toolbar function, as fol-
lows:

m_wndColorBar.SetButtonInfo(9, IDC_CBWIDTH, TBBS_SEPARATOR, nWidth);

This function takes four arguments. The first argument is the current index of the control
in the toolbar—in this case, the tenth control in the toolbar (eight color buttons and two
separators). The second argument is the new 1D of the toolbar control. Thisisthe ID that
will be placed in the event message queue when a control event occurs. The third argu-
ment is the type of toolbar control this control should be. The fourth and final argument
is somewhat deceptive. If you look at the function documentation, the fourth argument is
the new index of the control in the toolbar. Thisis the position to which the control will
be moved. However, if the control is a separator, this argument specifies the width of the
control and doesn’t move it anywhere. Because this toolbar control is a separator, this
argument has the effect of setting it to be as wide as the combo box that you are going to
create.

Adding Toolbars and Status Bars 263 |

Getting the Toolbar Combo Box Position

Now that you have configured the toolbar separator as the place holder for the combo
box, you need to get the position of the combo box place holder on the toolbar so that
you can use it to set the position of the combo box:

m_wndColorBar.GetItemRect (9, &rect);
rect.bottom = rect.top + nHeight;

In the first line, you called the toolbar function GetItemRect to get the position and size
of the placeholder for the combo box. In the next line, you added the height of the drop-
down list to the height that the combo box will eventually be.

Creating the Combo Box

Now that you' ve got a place holder sized correctly, and you have the position and size
for the combo box, it's time to create the combo box. You do this with the create combo
box function, as follows:

m_ctlwidth.Create(WS_CHILD ; WS VISIBLE ; WS_VSCROLL ,
CBS_DROPDOWNLIST, rect, &m_wndColorBar, IDC_CBWIDTH);

The first argument to the combo box create function is the combo box style. Normally,
severa style flags are combined to create a combination style value. Table 12.7 lists the
flags that you can use in this value.

TABLE 12.7. COMBO BOX STYLES.

Style Description

WS_CHILD Designates this as a child window (required).

WS_VISIBLE Makes the combo box visible.

WS_DISABLED Disables the combo box.

WS_VSCROLL Adds vertical scrolling to the drop-down list.

WS_HSCROLL Adds horizontal scrolling to the drop-down list.

WS_GROUP Groups controls.

WS_TABSTOP Includes the combo box in the tabbing order.

CBS_AUTOHSCROLL Automatically scrolls the text in the edit control to the right when the

user types a character at the end of the line. This allows the user to
enter text wider than the edit control into the combo box.

CBS_DROPDOWN Similar to cBs_SIMPLE, but the list is not displayed unless the user
selects the icon next to the edit control.

continues

| 264 Day 12

TABLE 12.7. CONTINUED

Style Description

CBS_DROPDOWNLIST Similar to cBs_DROPDOWN, but the edit control is replaced with a
static-text item displaying the currently selected item in the list.

CBS_HASSTRINGS The owner of the list box is responsible for drawing the list box con-
tents. The list box items consist of strings.

CBS_OEMCONVERT Text entered in the edit control is converted from ANSI to the OEM
character set and then back to ANSI.

CBS_OWNERDRAWF IXED The owner of the list box is responsible for drawing the list box con-

tents. The contents of the list are fixed in height.

CBS_OWNERDRAWVARIABLE The owner of the list box is responsible for drawing the list box con-
tents. The contents of the list are variable in height.

CBS_SIMPLE The list box is displayed at all times.
CBS_SORT Automatically sorts the strings in the list box.
CBS_DISABLENOSCROLL List shows a disabled scrollbar when there are not enough itemsin

the list to require scrolling.
CBS_NOINTEGRALHEIGHT Specifies that the combo box is exactly the size specified.

The second argument is the rectangle that the combo box is to occupy. This argument is
the position within the parent window—in this case, the toolbar—that the combo box
will stay in. It will move with the parent window (the toolbar), staying in this position
the entire time.

The third argument is a pointer to the parent window. Thisis the address of the color
toolbar variable.

The fourth argument is the object ID for the combo box.

Populating the Combo Box

The final action that you have to do in creating the combo box on the color toolbar is
populate the drop-down list with the available items that the user can select from. You do
this with the combination of two functions:

if (szStyle.LoadString(IDS_WIDTH_VTHIN))
m_ctlWidth.AddString((LPCTSTR)szStyle);

The first function is acstring function, LoadString. This function takes a string ID and
loads the string matching the ID from the string table. The second function is a combo
box function, Addstring, which adds the string passed in as an argument to the drop-
down list. By calling this function combination for each of the elements that should be in
the drop-down list, you can populate the combo box from the application string table.

Adding Toolbars and Status Bars

265 |

Updating the onCreate Function

After moving all of the code to create the color toolbar to a separate function, you can
update the oncreate function so that it callsthe createColorBar function where it used
to create the color toolbar, asin Listing 12.6.

LisTING 12.6. THE MODIFIED CMainFrame.OnCreate FUNCTION.

7:

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

1
2
3:
4:
5:
6

{

int CMainFrame::0OnCreate (LPCREATESTRUCT lpCreateStruct)

if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
return -1;

if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT,
OWS_CHILD , WS _VISIBLE ; CBRS_TOP
i CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |

OCBRS_SIZE_DYNAMIC) ;,
!m_wndToolBar.LoadToolBar (IDR_MAINFRAME))

TRACEOQ("Failed to create toolbar\n");
return -1; // fail to create

}

FIELTEEEEEET iy
// MY CODE STARTS HERE
LHCTETEEEEE i rrrirtry

// Add the color toolbar

if (!CreateColorBar())

{
TRACEOQ ("Failed to create color toolbar\n");
return -1; // fail to create

}

LITETEETETE iy
// MY CODE ENDS HERE
PIPETETE iy

if (!m_wndStatusBar.Create(this) |,
!m_wndStatusBar.SetIndicators(indicators,
sizeof(indicators)/sizeof (UINT)))

TRACEQ("Failed to create status bar\n");
return -1; // fail to create

}

// TODO: Delete these three lines if you don't want the toolbar to
// be dockable
m_wndToolBar.EnableDocking (CBRS_ALIGN_ANY);

continues

| 266 Day 12

LISTING 12.6. CONTINUED

40:

41: [EEEEETEEEE L rrrrrrr

42: // MY CODE STARTS HERE

43: [IEEETTEEEL i

44:

45: // Enable docking for the Color Toolbar
46: m_wndColorBar.EnableDocking (CBRS_ALIGN_ANY);
47:

48: [HEEETTEEEE iy

49: // MY CODE ENDS HERE

50: [EEEEETEEEE i

51:

52: EnableDocking (CBRS_ALIGN_ANY);
53: DockControlBar (&m_wndToolBar);
54:

55: [IEEEETEEEL LT ir g

56: // MY CODE STARTS HERE

57: [HEEETTEEEE i rrrrr

58:

59: // Dock the Color Toolbar

60: DockControlBar (&m_wndColorBar);
61:

62: [EEEEETEEEE i

63: // MY CODE ENDS HERE

64: [IEEEETEEEL LT ir g

65:

66: return 0;

67: }

Now when you compile and run your application, you should have a combo box on the
end of your color toolbar, asin Figure 12.5. However, the combo box doesn’t do any-

thing yet.
Ficure 12.5. - Untitled - Toolbar M=
File Edit Width Color View Help
The color toolbar IEECIEEEER]
with a width combo B EW |feymin]
box.

Fieady [[NUM 4

Adding Toolbars and Status Bars 267 |

Handling the Toolbar Combo Box Events

Adding an event handler for the combo box is fairly simple, although it does have to be
done by hand (because the Class Wizard doesn’t even know that the combo box exists).
You have to add an ON_CBN_SELCHANGE entry into the message map and then add the
actual message-handler function into the cMainFrame class.

To start with, add the message-handler function by selecting the cMainFrame classin
the workspace pane and selecting New Member Function from the pop-up menu.

Enter the function type as afx_msg void, the function definition as onSelChangewidth,
and the access as protected. Edit the new function asin Listing 12.7.

LisTING 12.7. THE OnSelChangeWidth FUNCTION.

1: void CMainFrame::0nSelChangeWidth()

2: {

3: // Get the new combo selection

4: int nIndex = m_ctlWidth.GetCurSel();
5: if (nIndex == CB_ERR)

6: return;

7:

8: // Get the active document

9: CToolbarDoc* pDoc = (CToolbarDoc*)GetActiveDocument();
10: // Do we have a valid document?

11: if (pDoc)

12: // Set the new drawing width

13: pDoc->SetWidth(nIndex);

14:

15: }

In this function, you first get the current selection from the combo box. Remember that
the entries were added in order, and the cBs_SoRT flag was not specified in the combo
box creation, so the selection index numbers should correspond to the widths in the doc-
ument. As aresult, you can get a pointer to the current document instance, using the
GetActiveDocument function, and then pass the new width to the document using its
Setwidth function.

For the combo box selection changes to call this message-handler function, you need to
add the appropriate entry to the cMainFrame message map. Scroll to the top of the
CMainFrame source code until you find the message map section. Add line 12 in Listing
12.8 to the message map.

| 268 Day 12

LisTING 12.8. THE MODIFIED CMainFrame MESSAGE MAP.

I NNy,
2: // CMainFrame

3:

4: IMPLEMENT_DYNCREATE (CMainFrame, CFrameWnd)

5:

6: BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

7: /1 {{AFX_MSG_MAP (CMainFrame)

8: ON_WM_CREATE ()

9: ON_COMMAND (ID_VIEW_COLORBAR, OnViewColorbar)

10: ON_UPDATE_COMMAND_UI (ID_VIEW_COLORBAR, OnUpdateViewColorbar)
11: / 1} YAFX_MSG_MAP

12: ON_CBN_SELCHANGE (IDC_CBWIDTH, OnSelChangeWidth)

13: END_MESSAGE_MAP ()

This message map entry
ON_CBN_SELCHANGE (IDC_CBWIDTH, OnSelChangeWidth)

specifies that on combo box selection change events with the object ID of the color tool-
bar combo box, the onselchangewidth function should be called. Now if you compile
and run your application, you should be able to change the drawing width with the
combo box on the color toolbar.

Updating the Toolbar Combo Box

The one remaining problem with the combo box is that it needs to be updated if the user
selects a new value from the menu instead of the combo box. One of the most efficient
methods of doing thisisto set the current selection in the combo box when any of the
menu selections are triggered. This requires a function in the main frame class that can
be called from the document class to accomplish this action. All the function in the main
frame needs to do is to set the current selection in the combo box.

To implement this function in the main frame, add a new member function to the
CMainFrame class, specifying the function type as void, the definition as
UpdateWwidthCB(int nIndex), and the access as public. Once you add this function, edit
the function asin Listing 12.9.

Adding Toolbars and Status Bars 269 |

LisTING 12.9. THE CMainFrame.UpdateWidthCB FUNCTION.

1: void CMainFrame: :UpdateWidthCB(int nIndex)

2: {

3: // Set the new selection in the combo box
4: m_wndColorBar.m_ctlWidth.SetCurSel(nIndex);
5: }

This function uses a single combo box function, setCursel, which sets the current selec-
tion in the combo box drop-down list to the entry specified with the index number. The
edit control of the combo box is updated with the new selected list entry. If an index
number that doesn’t exist in the drop-down list is supplied to the combo box, then the
function returns an error.

On the document side, you need to call this function in the main frame whenever the
appropriate menu event-handling functions are called. Because this could occur in sev-
eral functions, it makes the most sense to enclose the necessary functionality in asingle
function. This function needs to get a pointer to the view associated with the document
and then, through the view, get a pointer to the frame, which can then be used to call the
UpdatewidthcB function that you just added to the main frame class.

To add this function to your application, select the CToolbarDoc class in the workspace
pane, and select Add Member Function from the pop-up menu. Specify void as the func-
tion type, UpdateColorbar(int nIndex) asthe function definition, and private as the
function access. Edit the function asin Listing 12.10.

LisTING 12.10. THE CToolbarDoc.UpdateColorbar FUNCTION.

1: void CToolbarDoc: :UpdateColorbar(int nIndex)

2: {

3: // Get the position of the first view

4: POSITION pos = GetFirstViewPosition();

5: // Did we get a valid position?

6: if (pos != NULL)

7: {

8: // Get a pointer to the view in that position
9: CvView* pView = GetNextView(pos);

10: // Do we have a valid pointer to the view?
11: if (pView)

12: {

13: // Get a pointer to the frame through the view

continues

270 Day 12

LisTING 12.10. CONTINUED

14: CMainFrame* pFrame = (CMainFrame*)pView-
OGetTopLevelFrame();

15: // Did we get a pointer to the frame?

16: if (pFrame)

17: /] Update the combo box on the color toolbar
18: // through the frame

19: pFrame->UpdateWidthCB(nIndex) ;

20: }

21: }

22: }

This function traces through the path that you have to follow to get to the application
frame from the document class. The first thing that you did was get the position of the
first view associated with the document, using the GetFirstviewPosition function. A
document may have multiple views open at the same time, and this function returns the
position of the first of those views.

The next function, GetNextView, returns a pointer to the view specified by the position.
This function also updates the position variable to point to the next view in the list of
views associated with the current document.

Once you have a pointer to the view, you can call the window function,
GetTopLevelFrame, which returns a pointer to the application frame window. You have
to call this function through the view because the document is not descended from the
cwnd class, although the view is.

Once you have a pointer to the frame window, you can use this pointer to call the func-
tion you created earlier to update the combo box on the toolbar. Now if you call this new
function from the Width menu command event handlers, asin Listing 12.11, the combo
box that you placed on the color toolbar is automatically updated to reflect the currently
selected drawing width, regardless of whether the width was selected from the combo
box or the pull-down menu.

Listing 12.11. AN UPDATED WIDTH MENU COMMAND EVENT HANDLER.

1: void CToolbarDoc: :0nWidthVthin()

2: {

3: // TODO: Add your command handler code here
4: // Set the new width

5: m_nWidth = 0;

6: // Update the combo box on the color toolbar
7: UpdateColorbar(0);

8: }

Adding Toolbars and Status Bars 271 |

Adding a New Status Bar Element

Earlier today, you learned how to specify status bar messages and tooltips for both tool-
bar buttons and menus. What if you want to use the status bar to provide the user with
more substantial information? What if, asin the Visual C++ Developer Studio, you want
to provide information about what the user is doing, where he isin the document heis
editing, or the mode that the application isin? This information goes beyond the Caps,
Num, and Scroll lock keys that Visual C++ automatically reports on the status bar.

It's actually easy to add additional panes to the status bar, as well as take away the panes
that are already there. To learn just how easy a change thisis, you will add a new pane to
the status bar in your drawing application that will display the color currently in use.

Adding a New Status Bar Pane

Before you add a new status bar pane, you need to add a new entry to the application
string table for use in the status bar pane. This string table entry will perform two func-
tions for the status bar pane. The first thing it will do is provide the object ID for the sta-
tus bar pane. You will use this ID for updating the pane as you need to update the text in
the pane. The second function this string table entry will perform is size the pane. To size
the pane correctly, you need to provide a caption for the string table entry that is at |east
as wide as the widest string that you will place in the status bar pane.

Add a new string to your application string table, using the same steps you used earlier
when adding the text for the combo box you placed on the color toolbar. Specify the
string ID as ID_INDICATOR_COLOR and the caption as MAGENTA (the widest string that you
will put into the status bar pane).

A small section in the first part of the main frame source code defines the status bar lay-
out. This small table contains the object 1Ds of the status bar panes as table elements, in
the order in which they are to appear from left to right on the status bar.

To add the color pane to the status bar, add the ID of the color pane to the status bar indi-
cator table definition, just after the message map in the source-code file for the main
frame. Place the color pane ID in the table definition in the position that you want it to
be on the status bar, asin line 18 of Listing 12.12.

| 272 Day 12

LisTING 12.12. A MODIFIED STATUS BAR INDICATOR TABLE DEFINITION.

IR NNy,
2: // CMainFrame

3:

4: IMPLEMENT_DYNCREATE (CMainFrame, CFrameWnd)

5:

6: BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

7: /1 {{AFX_MSG_MAP (CMainFrame)

8: ON_WM_CREATE ()

9: ON_COMMAND (ID_VIEW_COLORBAR, OnViewColorbar)

10: ON_UPDATE_COMMAND_UI (ID_VIEW_COLORBAR, OnUpdateViewColorbar)
11: / 1} YAFX_MSG_MAP

12: ON_CBN_SELCHANGE (IDC_CBWIDTH, OnSelChangeWidth)
13: END_MESSAGE_MAP ()

14:

15: static UINT indicators[] =

16: {

17: ID_SEPARATOR, /] status line indicator
18: ID_INDICATOR_COLOR,

19: ID_INDICATOR_CAPS,
20: ID_INDICATOR_NUM,
21: ID_INDICATOR_SCRL,
22: };
23:

24011 1TTTTETTTIEEEE i ri i rrirrng
25: // CMainFrame construction/destruction

If you want to drop any of the lock key indicators from the status bar, just remove them
from the indicators table definition. If you examine the oncreate function, where the sta-
tus bar is created (just after the toolbars are created), you'll see where thistable is used
to create the status bar with the following code:

if (!m_wndStatusBar.Create(this) |}

!'m_wndStatusBar.SetIndicators(indicators,
sizeof (indicators)/sizeof (UINT)))

Once the status bar is created, the SetIndicators function is called on the status bar to
add the panes as they are defined in the indicators table. The strings associated with the
IDs in the indicators table are used to initialize the panes and set their size. If you com-
pile and run your application at this point, you see the new color pane on the status bar
with the caption from the string table displayed within.

Adding Toolbars and Status Bars 273 |

Setting a Status Bar Pane Text

Once you' ve added the pane to the status bar, you can let the UPDATE_COMMAND_UI event
do al the updating of the pane. All you need to do is add an event handler for this event
on the object ID of the pane and use this event to set the pane text. Because the status
bar is always visible, the UPDATE_COMMAND_UI event for the panes on the status bar is
triggered every time that the application isidle. This means that it is triggered after the
application is finished processing just about every keystroke and mouse movement. In
amost aweek, on Day 18, “Doing Multiple Tasks at One Time—M uultitasking,” you will
learn more about how often and when any tasks that are performed when the application
isidle are triggered.

In the event handler, you need to create a string containing the name of the current color
(or whatever other text you want to display in the status bar pane). Next, you have to
make sure that the pane is enabled. Finally, you need to set the text of the pane to the
string that you have created.

To implement this in your application, you need to create an UPDATE_COMMAND_UI event
handler. Once again, the Class Wizard does not know about the status bar pane, so you
have to create the message handler and add it to the message map yourself. To create the
message handler, add a new member function to the document class (CToolbarboc) with
atype of afx_msg void, adefinition of onUpdateIndicatorColor (CCmdUI *pCmdUI),
and an access of protected. Edit the newly created function, adding the code in Listing
12.13.

LisTiING 12.13. THE OnUpdateIndicatorColor FUNCTION.

1: void CToolbarDoc: :0nUpdateIndicatorColor(CCmdUI *pCmdUI)
2: {

3: CString strColor;

4:

5: // What is the current color?
6: switch (m_nColor)

7: {

8: case 0: // Black

9: strColor = "BLACK";

10: break;

11: case 1: /1 Blue

12: strColor = "BLUE";

13: break;

14: case 2: /| Green

continues

| 274

Day 12

LisTING 12.13. CONTINUED

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

strColor = "GREEN";

break;

case 3: // Cyan
strColor = "CYAN";
break;

case 4: /1 Red
strColor = "RED";
break;

case 5: // Magenta
strColor = "MAGENTA";
break;

case 6: /1 Yellow
strColor = "YELLOW";
break;

case 7: /1 White
strColor = "WHITE";
break;

}
// Enable the status bar pane

pCmdUI ->Enable(TRUE) ;

// Set the text of the status bar pane
// to the current color

pCmdUI ->SetText(strColor);

In this function, you followed three steps exactly: You created a string with the current
color name, made sure that the pane was enabled, and set the pane text to the string that
you had created.

Now, to make sure that your new message handler is called when it is supposed to be,
you need to add an ON_UPDATE_COMMAND_UI entry to the message map at the top of the
document source code file, as specified in Listing 12.14.

LisTING 12.14. THE MODIFIED CToolbarDoc MESSAGE MAP.

1

1
2
3
4
5:
6:
7
8
9
0

NN NNy,
// CToolbarDoc

: IMPLEMENT_DYNCREATE (CToolbarDoc, CDocument)

BEGIN_MESSAGE_MAP (CToolbarDoc, CDocument)

ON_UPDATE_COMMAND_UI (ID_INDICATOR_COLOR, OnUpdateIndicatorColor)
/1 {{AFX_MSG_MAP (CToolbarDoc)
ON_UPDATE_COMMAND_UI (ID_WIDTH_VTHIN, OnUpdateWidthVthin)

Adding Toolbars and Status Bars 275|

11: .

12: ON_COMMAND (ID_WIDTH_VTHIN, OnWidthVthin)
13: / /Y YAFX_MSG_MAP

14: END_MESSAGE_MAP ()

After adding the message handler and message map entry, you should now be able to
compile and run your application and see the color status bar pane automatically updated
to reflect the current drawing color, as shown in Figure 12.6.

FIGURE 12.6 - Untitled - Toolbar =B
e File Edit Width Color View Help

The drawing appli- SEC IR

cation with the cur- L [L] [Medium 5]

rent color displayed
in the status bar.

Ready RED [[NUM Z

Summary

You learned quite a bit today. (Is this becoming a trend?) You learned how to design and
create your own toolbars. Along with learning how to design toolbars, you learned how
to specify status bar prompts for the toolbar buttons and menus, along with tooltips text
that will display after holding the mouse over toolbar buttons for a couple of seconds.
You learned how to create these toolbars and how to attach them to the application
frame. You also learned how you can control whether the toolbar is visible from a menu
entry.

Next you learned how to place a combo box on atoolbar so that you can provide your
application users with the same level of convenience that you have when using many
popular software packages. In learning how to add this combo box to the toolbar, you
learned how to create a combo box in code, without having to depend on the dialog
designers to create combo boxes, and how to populate the combo box drop-down list
with text entries. Then, you learned how to tie the combo box into your application by

| 276

Day 12

adding event handlers for the combo box events and how to update the combo box to
reflect changes made through the application menus.

Finally, you learned how to add your own panes to the status bar and how you can
update the pane to reflect the current status of the application.

Q&A
Q

A

In some applications, toolbar s have the option of showing text, asin Internet
Explorer. How can | add text to my toolbar buttons?

Unfortunately, the toolbar designer provides no way to add text to the toolbar but-
tons. This means that you have to add the text to the buttons in your application
code, much in the same way that you had to specify for all of the color toolbar but-
tons to behave as radio buttons. You use the setButtonText function to set the text
on each toolbar button individually. This function takes two arguments: The first is
the index number of the button, and the second is the text for the button. If you
really want to place text on the toolbar buttons, you also have to resize the toolbar
to alow the room for the text to be displayed.

I made some changes to the color toolbar in the toolbar designer, and now |
get an assertion error every timel try to run my application. What happened?

The problem is that the toolbar designer found the separators you added to the
resource file as place holders for the combo box. The toolbar designer assumed
that these were mistakes and removed them for you. The error that you are getting
occurs because you are trying to work with a control in the color toolbar that
doesn’t exist. To fix this problem, reopen the resource file in Notepad and again
add the two separators at the end of the color toolbar definition. Then, reload the
project into Visual C++ and recompile the application.

The combo box on my toolbarslooks too big. How can | get it to fit within the
toolbar a little better ?

To make the combo box fit within the toolbar like the combo boxes in the Visual
C++ Developer Studio, you need to do a couple of things. First, lower the top of
the combo box by 3; this places a small border between the top of the combo box
and the edge of the toolbar. Next, set the font in the combo box to a smaller font
that will fit within the toolbar better. You can experiment with fonts and pitches
until you have afont that you like for the combo box in the toolbar.

Adding Toolbars and Status Bars 277 |

Q How can | set thetext in thefirst section of the status bar other than by using
menu and toolbar prompts?

A You can use SetWindowText to set the text in the first pane of the status bar. Asa
default setting, the first pane in the status bar is a separator that automatically
expands to fill the width of the status bar with the other panes right-justified on the
bar. The setwindowText function, called on the status bar variable, sets the text in
the first pane only. If you want to set the text in any other pane, at any other time
than in the ON_UPDATE_COMMAND_UI event handler, you can use the SetPaneText
function. There are two ways that you can set the text in the main part of the status
bar. Thefirst islike this:

CString myString = "This is my string"
m_wndStatusBar.SetWindowText (myString);
The other method is

CString myString = "This is my string"
m_wndStatusBar.SetPaneText (@, myString);

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How do you tie atoolbar button to a menu entry that triggers that same function?
2. How do you make sure that atoolbar can be docked with the frame window?
3. How can you remove the Num Lock status indicator from the status bar?
4. Why do you have to edit the resource file to add a combo box to a toolbar?

Exercises
1. Add another pane to the status bar to display the current width selected.

2. Add abutton to the main toolbar that can be used to toggle the color toolbar on
and off, asin Figure 12.7.

278 Day 12

Ficure 12.7. 1 Untitled - Toolbar M= B
File Edit Width Color View Help
The color toolbar SR

on/off button.

Ready BLACK | [NUM 4

WEEK 2

DAY 13

Saving and Restoring
Work—~File Access

Most applications provide the user the option of saving what has been created.
The creation can be a word-processing document, a spreadsheet, a drawing, or
a set of data records. Today, you will explore how Visual C++ provides you
with the means to implement this functionality easily. Today, you will learn

- How Visual C++ uses C++ streams to save information about your appli-

cation

- How to store your application data in binary files

- How to make your application objects serializable

- How you can store variables of differing data typesinto asingle file

Serialization

There are two parts of seriaization. When application data is stored on the sys-
tem drive in the form of afile, it is called serialization. When the application

| 280

Day 13

state is restored from thefile, it is caled deserialization. The combination of these two
parts makes up the serialization of application objectsin Visual C++.

The CArchive and CFile Classes

Seridization in Visual C++ applications is accomplished through the CArchive class. The
CArchive classis designed to act as an input/output (1/0O) stream for aCFile object, as
shown in Figure 13.1. It uses C++ streams to enable efficient data flow to and from the
file that is the storage of the application data. The CArchive class cannot exist without a
CFile class object to which it is attached.

Ficure 13.1. = Application

The cArchive class
stores application data
inacFile object.

Application

Object

Serialize
Function

CArchive

A

CFile

The cArchive class can store data in a number of types of files, al of which are descen-
dants of the cFile class. By default, the AppWizard includes all the functionality to cre-
ate and open regular CFile objects for use with CArchive. If you want or need to work
with one of these other file types, you might need to add additional code to your applica-
tion to enable the use of these different file types.

Saving and Restoring Work—File Access 281 |

The Serialize Function

The cArchive classis used in the Serialize function on the document and data objects
in Visual C++ applications. When an application is reading or writing a file, the docu-
ment object’s Serialize function is called, passing the CArchive object that is used to
write to or read from thefile. In the serialize function, the typical logic to follow isto
determine whether the archive is being written to or read from by calling the CArchive
IsStoring or IsLoading functions. The return value from either of these two functions
determines if your application needs to be writing to or reading from the CArchive
class's 1/0 stream. A typical Serialize function in the view classlooks like Listing 13.1.

LisTING 13.1. A TYPICAL Serialize FUNCTION.

1: void CAppDoc::Serialize(CArchive& ar)
2: {

3: // Is the archive being written to?
4: if (ar.IsStoring())

5: {

6: // Yes, write my variable

7 ar << m_MyVar;

8: }

9: else

10: {

11: // No, read my variable

12: ar >> m_MyVar;

13: }

14: }

You can place aSerialize function in any classes you create so that you can call their
Serialize function from the document serialize function. If you place your custom
objects into an object array, such as the cobArray that you used in your drawing applica-
tion for the past three days, you can call the array’s Serialize function from the docu-
ment’s Serialize function. The object array will, in turn, call the serialize function of
any objects that have been stored in the array.

Making Objects Serializable

When you created the cLine class on Day 10, “Creating Single Document Interface
Applications,” you had to add two macros before you could save and restore your draw-
ings. These two macros, DECLARE_SERIAL and IMPLEMENT SERIAL, include functionality
in your classes that are necessary for the Serialize function to work correctly.

| 282

Day 13

Including the DECLARE_SERIAL Macro

You must include the DECLARE_SERIAL macro in your class declaration, as shown in
Listing 13.2. The DECLARE_SERIAL macro takes a single argument, the class name. This
macro automatically adds to your class some standard function and operator declarations
that are necessary for serialization to work correctly.

LISTING 13.2. INCLUDING THE DECLARE_SERIAL MACRO IN THE CLASS DECLARATION.

1: class CMyClass : public CObject

2: {

3: DECLARE_SERIAL (CMyClass)

4: public:

5: virtual void Serialize(CArchive &ar);
6: CMyClass();

7: virtual ~CMyClass();

8: };

Including the IMPLEMENT_SERIAL Macro

You need to add the IMPLEMENT_SERIAL macro to the implementation of your class. This
macro needs to appear outside any other class functions because it adds the code for the
class functions that were declared with the DECLARE_SERIAL macro.

The IMPLEMENT_SERIAL macro takes three arguments. The first argument is the class
name, as in the DECLARE_SERIAL macro. The second argument is the name of the base
class, from which your class is inherited. The third argument is a version number that
can be used to determine whether afile is the correct version for reading into your appli-
cation. The version number, which must be a positive number, should be incremented
each time the serialization method of the class is changed in any way that alters the data
being written to or read from afile. A typical usage of the IMPLEMENT_SERIAL macro is
provided in Listing 13.3.

LisTING 13.3. INCLUDING THE IMPLEMENT_SERIAL MACRO IN THE CLASS IMPLEMENTATION.

// MyClass.cpp: implementation of the CMyClass class.
/1
PIEETEIELT I ri i i ri i i i il

#include "stdafx.h"
#include "MyClass.h"

#ifdef _DEBUG
#undef THIS_FILE
static char THIS FILE[]=_ FILE_;

-
S WO NGO WN =

Saving and Restoring Work—File Access

11: #define new DEBUG_NEW

12: #endif

13:

14: IMPLEMENT_SERIAL (CMyClass, CObject, 1)

I N NNy,
16: // Construction/Destruction

170 S10TTHEEErrrrrrrrrrrrrrrrrrrrrr i r e rr e rrr i
18:

19: CMyClass::CMyClass()

20: {

21: }

22:

23: CMyClass::~CMyClass()

24: {

25: }

Defining the serialize Function

Along with the two macros, you need to include a serialize function in your class. This
function should be declared as a void function with a single argument (CArchive &ar),
public access, and the virtual check box selected—producing the function declaration in
Listing 13.2. When you implement the serialize function for your class, you typically
use the same approach as that used in the document class, shown in Listing 13.1, where
you check to determine whether the file is being written to or read from.

Implementing a Serializable Class

When you begin designing a new application, one of the first things you need to design
is how to store the data in the document class that your application will create and oper-
ate on. If you are creating a data-oriented application that collects sets of data from the
user, much like a contact database application, how are you going to hold that datain the
application memory? What if you are building a word processor application—how are
you going to hold the document being written in the application memory? Or a spread-
sheet? Or a painting program? Or...you get the idea.

Once you determine how you are going to design the data structures on which your
application will operate, then you can determine how best to serialize your application
and classes. If you are going to hold all data directly in the document class, al you need
to worry about is writing the data to and reading the data from the cArchive object in the
document’s Serialize function. If you are going to create your own class to hold your
application data, you need to add the seriaization functionality to your data classes so
that they can save and restore themselves.

| 284

Day 13

In the application that you are going to build today, you will create a simple, flat-file
database application that illustrates how you can combine a mixture of data types into a
single data stream in the application serialization. Your application will display a few
fields of data, some of which are variable-length strings, and others that are integer or
boolean, and will save and restore them in a single data stream to and from the CArchive
object.

Creating a Serialized Application

You can create your own classes, which can aso be seriaized, for usein an SDI or MDI
application. In short, any application that works with any sort of data, whether a database
or a document, can be serialized. Now you will create a simple, flat-file database appli-
cation that you will serialize.

Nﬂtﬂ A flat-file database is one of the original types of databases. It is a simple
. file-based database, with the records sequentially appended to the end of

the previous record. It has none of the fancy relational functionality that is
standard in most databases today. The database that you will build today is
closer to an old dBASE or Paradox database, without any indexes, than to
databases such as Access or SQL Server.

Creating the Application Shell

To get your application started, create a new AppWizard application. Give your applica
tion aname, such as serialize, and click OK to start the AppWizard.

In the AppWizard, select to create a single document style application using the
Document/View architecture. You can choose to include support for ActiveX controlsin
the third AppWizard step, although it’s not really necessary for the example that you will
build.

In the fourth step, be sure to specify the file extension for the files that your application
will create and read. An example of afile extension that you might want to useis ser for
serialize or fdb for flat-file database.

In the sixth AppWizard step, you need to specify which base class to use for the applica
tion view class. For a description of the different base classes available for inheriting the
view class from, refer to Day 10 in the section “ The Document/View Architecture.” For
the sample application you are building, because it will be a database application, you'll

Saving and Restoring Work—File Access

285 |

find it easiest to use CFormview as the base class from which your view class will be
inherited. This enables you to use the dialog designer for your application view.

Once you finish making your way through the AppWizard and let the AppWizard create
your application shell, you will see alarge window canvas in the dialog designer as if
you had created a dialog-style application, only without the OK and Cancel buttons, as
shown in Figure 13.2.

Ficure 13.2. 4 Serialize - Microsolt Visual C++ - [Serialize.ic - IDD_SERIALIZE_FORM [Dialog]]
h ind des =|Fie Edt View Insett Project Buid Layout Tooks Window Help & x|
The window eSllgner 8|S E@ | =8 2 - - |m[E | G4DECLARE SERIAL =1 |
for an SDI appll_ CSerializeView = |[(1 class members) =|[@ CSerializeView JE |8 v‘ = ' Sl |
cation. — T
& Serialize classes | —
Cont...
E Y
h TOD0: Place form controls on this dislog. sl ol
, ™o
2 x (@
:
2 B
X & m
2 i B
: i
B3 Class.. | 2 Reso.. | [£] Filev E HH _,'LI
o+ +o| TE = . ab Ff
DR EEIREE m o
x| [} =
Build {Debug j Find in Files1 % Find in Files2 /]| 4| | Llﬂ
Ready T 00 [320x200 [READ 4

Designing Your Application Window

After you create an SDI or MDI application where the view class is based on the
CFormView class, you need to design your application view. Designing the view is much
like designing the window layout for a dialog window, but you don’t need to worry
about including any buttons to close the window while either saving or canceling the
work done by the user. With an SDI or M DI application, the functionality to save and
exit the window is traditionally located on the application menus or on the toolbar. As a
result, you need to include only the controls for the function that your application win-
dow will perform.

Nﬂtﬂ If you are building dialog-style applications, the AppWizard doesn’t provide

any serialization code in your application shell. If you need to serialize a
dialog-style application, you’ll need to add all this code yourself.

| 286

Day 13

For the sample application that you are building today, lay out controls on the window
canvas as shown in Figure 13.3 using the control properties listed in Table 13.1.

Ficure 13.3.

The sample applica-
tion window layout.

% Serialize - Microsoft Visual C++ - [Serialize.rc - IDD_SERIALIZE_FORM [Dialog)]

Eile Edit Wiew Inset Project Build Lapout Tools Mindow Help

@‘gﬂﬁ“{, E,‘-_’;vg_--‘E’E@W%DECMHE,SEHML v|‘;M

CSeridlizeView [(Al class members) =1 ¢ CSerializeView = - H N] i) |
i " bosNonaoasaninooantosalonaossaolas aiaasalonen ..,
B Serialize classes =F = T
: Cont.. B3
- Name IEmt ’T
: Az ab|
2 Age [Edi -
: = 0o
3 Maital Status: (" Single Divorced K@
: C Maied € Widowed
m A
g ™ Emplayed 2 m "
s
2 Fist | Previous Nest Last 4 G2
Recod 0ol 0 i
B2 Class... @ Reso. [S Fievi | || = [= H _’l_l
— - " ab EF
[ENEE R = =N = & o
x| e @ =
i 1
[T\ Build /Debug Findin Files1 y Findin Files2z /]| 4| | »
Ready Fm 0.0 |5 320%200 |READ

TABLE 13.1. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text i IDC_STATIC
Caption &Name:

Edit Box i IDC_ENAME

Static Text 1D IDC_STATIC
Caption &Age

Edit Box 1D IDC_EAGE

Static Text i IDC_STATIC
Caption Marital Status:

Radio Button i IDC_RSINGLE
Caption &Single
Group Checked

Radio Button 1D IDC_RMARRIED
Caption &Married

Radio Button 1D IDC_RDIVORCED
Caption &Divorced

Saving and Restoring Work—File Access

287 |

Object Property Setting

Radio Button 1D IDC_RWIDOW
Caption &Widowed

Check Box 1D IDC_CBEMPLOYED
Caption &Employed

Button ID IDC_BFIRST
Caption &First

Button D IDC_BPREV
Caption &Previous

Button D IDC_BNEXT
Caption Nex&t

Button D IDC_BLAST
Caption &Last

Static Text D IDC_SPOSITION
Caption Record @ of 0

When you were developing dialog-style applications or windows, you attached variables
to the controls on the window in the dialog class. However, with an SDI or MDI applica
tion, which class do you create the variables in? Because the UpdateData functionisa
member of the cwnd class, and the view class is descended from the cwnd class, although
the document is not, then the view class is the most logical place to add the variables that
you will attach to the controls you placed on the window.

To attach variables to the controls in your sample application, open the Class Wizard and
add variables to the controls, specifying that the place to add them is the view class (in
this case, CSerializeView). For the sample application, add the variables in Table 13.2
to the controls specified.

TABLE 13.2. CONTROL VARIABLES.

Object Name Category Type
IDC_CBEMPLOYED m_bEmployed Value BOOL
IDC_EAGE m_iAge Value int
IDC_ENAME m_sName Value CString
IDC_RSINGLE m_iMaritalStatus Value int
IDC_SPOSITION m_sPosition Value CString

| 288

Day 13

If you examine the source code for the view class, you will notice that there is no onbraw
function. If you are using the CFormview ancestor class for your SDI or MDI application,
you don’'t need to worry about the onbraw function. Instead, you treat the view class very
much as you would the dialog class in a dialog window or dialog-style application. The
primary difference is that the data that you need to use to populate the controls on the
window are not in the view class, but in the document class. As a result, you need to
build the interaction between these two classes to pass the data for the controls back and
forth.

Creating a Serializable Class

When you create a form-based application, it is assumed that your application will hold
multiple records in the form and that the user will be able to scroll through the records to
make changes. The user will be able to add additional records or even remove records
from the record set. The challenge at this point in building this application is how you
represent this set of records, supporting all the necessary functionality.

One approach is to create a class that would encapsulate each record, and then hold these
records in an array, much as you did with the drawing application that you created and
enhanced over the past few days. This class would need to descend from the cobject
class and would need to contain variables for al the control variables that you added to
the view class, along with methods to read and write all of these variables. Along with
adding the methods to set and read all of the variables, you need to make the class serial-
izable by adding the serialize function to the class, as well as the two macros that
complete the serialization of the class.

Creating the Basic Class

Asyou may remember from Day 10, when you want to create a new class, you can
select the project in the Class View tab of the workspace pane, right-click the mouse but-
ton, and select New Class from the context menu. This opens the New Class dialog.

In the New Class dialog, you specify the type of class, whether it's an MFC class, and
generic class, or aform class. To create a class that can contain one record’s data, you
most likely want to create a generic class. You'll learn more about how to determine
which of these types of classes to create on Day 16, “ Creating Your Own Classes and
Modules.” The other things that you need to do are give your class a name and specify
the base class from which it will be inherited.

For your sample application, because the form that you created has information about a
person, you might want to call your class something like cPerson. To be able to hold
your class in the object array, you need to give it cobject as the base class. Just like on

Saving and Restoring Work—File Access 289 |

Day 10, the New Class dialog will claim that it cannot find the header with the base class
init and that you need to add this. Well, it's aready included, so you can ignore this
message. (On Day 16, you'll learn when you need to pay attention to this message.)

Once you create your new class, you'll need to add the variables for holding the data ele-
ments that will be displayed on the screen for the user. Following good object-oriented
design, these variables will all be declared as private variables, where they cannot be
directly manipulated by other classes. The variable types should match the variable types
of the variables that are attached to the window controls in the view class.

With the sample application you are creating, you need to add the variables in Table
13.3.

TABLE 13.3. CLASS VARIABLES FOR THE CPerson CLASS.

Name Type
m_bEmployed BOOL
m_iAge int
m_sName CString
m_iMaritalStatus int

Adding Methods for Reading and Writing Variables

Once you create your class, you need to provide a means for reading and writing to the
variables in the class. One of the easiest ways to provide this functionality isto add

inline functions to the class definition. You create a set of inline functions to set each of
the variables and then make another set for retrieving the current value of each variable.

N“tﬂ An inline function is a short C++ function in which, when the application is
being compiled, the function body is copied in place of the function call. As

' a result, when the compiled application is running, the function code is exe-
cuted without having to make a context jump to the function and then
jump back once the function has completed. This reduces the overhead in
the running application, increasing the execution speed slightly, but also
makes the resulting executable application slightly larger. The more places
the inline function is called, the larger the application will eventually get.
For more information on inline functions, consult Appendix A, “C++
Review.”

290 Day 13

If you want to implement the Get and Set variable functions for your cPerson classin
the sample application that you are building, edit the Person.h header file, adding the
linesin Listing 13.4.

LisTING 13.4. THE Get AND Set INLINE FUNCTION DECLARATIONS.

1: class CPerson : public CObject

2: {

3: public:

4: // Functions for setting the variables

5: void SetEmployed(BOOL bEmployed) { m_bEmployed = bEmployed;}
6: void SetMaritalStat(int iStat) { m_iMaritalStatus = iStat;}
7 void SetAge(int iAge) { m_iAge = iAge;}

8: void SetName(CString sName) { m_sName = sName;}

9: // Functions for getting the current settings of the variables
10: BOOL GetEmployed() { return m_bEmployed;}

11: int GetMaritalStatus() { return m_iMaritalStatus;}

12: int GetAge() {return m_iAge;}

13: CString GetName() {return m_sName;}

14: CPerson();

15: virtual ~CPerson();

16:

17: private:

18: BOOL m_bEmployed;

19: int m_iMaritalStatus;
20: int m_iAge;
21: CString m_sName;
22: };

After you have the methods for setting and retrieving the values of the variablesin your
custom class, you'll probably want to make sure that the variables are initialized when
the classis first created. You can do this in the class constructor by setting each of the
variables to a default value. For instance, in your sample application, you add the code in
Listing 13.5 to the constructor of the cPerson class.

LisTING 13.5. THE CPerson CONSTRUCTOR.

: CPerson::CPerson()
{

// Initialize the class variables
m_iMaritalStatus = 0;

m_iAge = 0;

m_bEmployed = FALSE;

m_sName = "";

O~NOO O~ WOWOND =

-

Saving and Restoring Work—File Access 291 |

Serializing the Class

After you have your custom class with all variables defined and initialized, you need to
make the class serializable. Making your class serializable involves three steps. The first
step is adding the Serialize function to the class. This function writes the variable val-
ues to, and reads them back from, the CArchive object using C++ streams. The other two
steps consist of adding the DECLARE_SERIAL and IMPLEMENT_SERIAL macros. Once you
add these elements, your custom class will be serializable and ready for your application.

To add the serialize function to your custom class, add a member function through the
Class View tab in the workspace pane. Specify the function type as void, the function
declaration as Serialize(CArchive &ar), and the access as public and check the Virtual
check box. This should add the serialize function and place you in the editor, ready to
flesh out the function code.

Inthe serialize function, the first thing you want to do is to call the ancestor’s
Serialize function. When you call the ancestor’s function first, any foundation informa-
tion that has been saved is restored first, providing the necessary support for your class
before the variables in your class are restored. Once you call the ancestor function, you
need to determine whether you need to read or write the class variables. You can do this
by calling cArchive’s IsStoring method. This function returns TRUE if the archiveis
being written to and FALSE if it's being read from. If the IsStoring function returns
TRUE, you can use C++ 1/O streams to write all your class variables to the archive. If the
function returns FALSE, you can use C++ streams to read from the archive. In both cases,
you must be certain to order the variables in the same order for both reading and writing.
If you need more information about C++ streams, see Appendix A.

An example of atypical serialize function for your sample custom classis shown in
Listing 13.6. Notice that the cPerson variables are in the same order when writing to and
reading from the archive.

LisTING 13.6. THE CPerson.Serialize FUNCTION.

1: void CPerson::Serialize(CArchive &ar)

2: {

3: // Call the ancestor function

4: CObject::Serialize(ar);

5:

6: // Are we writing?

7 if (ar.IsStoring())

8: // Write all of the variables, in order

9: ar << m_sName << m_iAge << m_iMaritalStatus << m_bEmployed;
10: else

11: // Read all of the variables, in order

12: ar >> m_sName >> m_iAge >> m_iMaritalStatus >> m_bEmployed;

13: }

| 292

Day 13

Once you have the serialize function in place, you need to add the macros to your cus-
tom class. The first macro, DECLARE_SERIAL, needs to go in the class header and is
passed the class name as its only argument.

For example, to add the DECLARE_SERIAL macro to the custom CcPerson classin your
sample application, you add the macro just below the start of the class declaration, where
it will receive the default access for the class. You specify the class name, cPerson, as

the only argument to the macro, asin Listing 13.7.

LisTING 13.7. THE SERIALIZED CPerson CLASS DECLARATION.

1:
2
3
4
5:
6.
7
8

©

10:
11:
12:
13:
14:
15:
16:
17:

class CPerson : public CObject

DECLARE_SERIAL (CPerson)

! public:

// Functions for setting the variables

void SetEmployed(BOOL bEmployed) { m_bEmployed = bEmployed;}
void SetMaritalStat(int iStat) { m_iMaritalStatus = iStat;}
void SetAge(int iAge) { m_iAge = iAge;}

void SetName(CString sName) { m_sName = sName;}

// Functions for getting the current settings of the variables
BOOL GetEmployed() { return m_bEmployed;}

int GetMaritalStatus() { return m_iMaritalStatus;}

int GetAge() {return m_iAge;}

CString GetName() {return m_sName;}

CPerson();

virtual ~CPerson();

18: private:

19:
20:
21:
22:
23: };

BOOL m_bEmployed;

int m_iMaritalStatus;
int m_iAge;

CString m_sName;

The default access permission for functions and variables in C++ classes is
public. All functions and variables that are declared before the first access
declaration are public by default. You could easily add all of the public class
functions and variables in this area of the class declaration, but explicitly
declaring the access permission for all functions and variables is better

of any of the class functions or variables.

practice—because that way, there is little to no confusion about the visibility

Saving and Restoring Work—File Access 293 |

N t Most C++ functions need a semicolon at the end of the line of code. The
oie o _

) two serialization macros do not, due to the C preprocessor, which replaces
each of the macros with all of the code before compiling the application. It
doesn’t hurt to place the semicolons there; they are simply ignored.

To complete the serialization of your custom class, you need to add the IMPLEMENT _
SERIAL macro to the class definition. The best place to add this macro is before the
constructor definition in the CPP file containing the class source code. This macro takes
three arguments: the custom class name, the base class name, and the version number.

If you make any changes to the Serialize function, you should increment the version
number argument to the IMPLEMENT _SERIAL macro. This version number indicates when
afile was written using a previous version of the serialize function and thus may not
be readable by the current version of the application.

Nﬂtﬂ In practice, if you read a file that was written using a previous version of the
Serialize function in your class, your application will raise an exception,
' which you can then catch using standard C++ exception-handling tech-
niques. This allows you to add code to your application to recognize and

convert files created with earlier versions of your application. For informa-
tion on C++ exception handling, see Appendix A.

To add the IMPLEMENT_SERIAL macro to your sample application, add it into the
Person.cpp file just before the cPerson class constructor. Pass CPerson as the first argu-
ment (the class name), cobject as the second argument (the base class), and 1 as the ver-
sion number, asin Listing 13.8.

LisTING 13.8. THE IMPLEMENT_SERIAL MACRO IN THE CPerson CODE.

/] Person.cpp: implementation of the CPerson class.
/1
LIEETEEEEEET i i irirrirly

#include "stdafx.h"
#include "Serialize.h"
#include "Person.h"

#ifdef _DEBUG
#undef THIS_FILE

S OWoONOOOPA~WN =

—_

continues

294 Day 13

LiSTING 13.8. CONTINUED

11: static char THIS_FILE[]=__ FILE_ ;

12: #define new DEBUG_NEW

13: #endif

14:

15: IMPLEMENT_SERIAL (CPerson, CObject, 1)

16 ///1TTTTTITEIIEErr b i i rr i
17: // Construction/Destruction

A8 S/t rrrrrriirrn

19:

20: CPerson::CPerson()

21: {

22: // Initialize the class variables
23: m_iMaritalStatus = 0;

24: m_iAge = 0;

25: m_bEmployed = FALSE;

26: m_sName = "";

27: }

Building Support in the Document Class

When you build a form-based application, where the form on the window is the primary
place for the user to interact with the application, there is an unstated assumption that
your application will allow the user to work with a number of records. This means that
you need to include support for holding and navigating these records. The support for
holding the records can be as simple as adding an object array as a variable to the docu-
ment class, as you did back on Day 10. This alows you to add additional record objects
as needed. The navigation could be a number of functions for retrieving the first, last,
next, or previous record objects. Finally, you need informational functionality so that you
can determine what record in the set the user is currently editing.

To hold and support this functionality, the document class will probably need two vari-
ables, the object array and the current record number in the array. These two variables
will provide the necessary support for holding and navigating the record set.

For your example, add the two variables for supporting the record set of cPerson objects
aslisted in Table 13.4. Specify private access for both variables.

TABLE 13.4. DOCUMENT CLASS VARIABLES.

Name Type

m_iCurPosition int

m_oaPeople CObArray

Saving and Restoring Work—File Access 295 |

The other thing that you need to do to the document class to provide support for the
record objects is make sure that the document knows about and understands the record
object that it will be holding. You do this by including the custom class header file
before the header file for the document class is included in the document class source
code file. Because the document class needs to trigger actions in the view class, it'sa
good idea to also include the header file for the view class in the document class.

To include these header files in your sample application, open the source-code file for
the document class and add the two #include statements as shown in Listing 13.9.

LisTING 13.9. INCLUDING THE CUSTOM AND VIEW CLASSES IN THE DOCUMENT CLASS
IMPLEMENTATION.

// SerializeDoc.cpp : implementation of the CSerializeDoc class
/1

#include "stdafx.h"
#include "Serialize.h"

#include "Person.h"
#include "SerializeDoc.h"
#include "SerializeView.h"

©oO~NOOOD»WN-=

—_
-

: #ifdef _DEBUG

. #define new DEBUG_NEW

: #undef THIS_FILE

: static char THIS_FILE[] = _ FILE_ ;
. #endif

-
NO Ok~ N

NNy,
: // CSerializeDoc

-
o]

Adding New Records

Before you can navigate the record set, you need to be able to add new records to the
object array. If you add a private function for adding new records, you can add new
records to the set dynamically as new records are needed. Because new records should
be presenting the user with blank or empty data fields, you don’'t need to set any of the
record variables when adding a new record to the object array, so you can use the default
constructor.

Following the same logic that you used to add new line records on Day 10, you should
add a new person record to the object array in your document class in today’s sample

| 296

Day 13

application. Once you add a new record, you can return a pointer to the new record so
that the view class can directly update the variables in the record object.

Once the new record is added, you will want to set the current record position marker to
the new record in the array. This way, the current record number can easily be deter-
mined by checking the position counter.

If there are any problems in creating the new person record object, let the user know that
the application has run out of available memory and delete the allocated object, just as
you did on Day 10.

To add this functionality to your sample application, add a new member function to the
document class. Specify the type as a pointer to your custom class. If you named your
custom class cPerson, the function type is cPerson*. This function needs no arguments.
Give the function a name that reflects what it does, such as AddNewRecord. Specify the
access for this function as private because it will only be accessed from other functions
within the document class. You can edit the resulting function, adding the code in Listing
13.10.

LisTING 13.10. THE CSerializeDoc.AddNewRecord FUNCTION.

1: CPerson * CSerializeDoc::AddNewRecord()

2: {

3: // Create a new CPerson object

4: CPerson *pPerson = new CPerson();

5: try

6: {

7: // Add the new person to the object array

8: m_oaPeople.Add(pPerson);

9: // Mark the document as dirty

10: SetModifiedFlag();

11: // Set the new position mark

12: m_iCurPosition = (m_oaPeople.GetSize() - 1);
13: }

14: // Did we run into a memory exception?

15: catch (CMemoryException* perr)

16: {

17: // Display a message for the user, giving them the
18: // bad news

19: AfxMessageBox("Out of memory", MB_ICONSTOP ; MB_OK);
20: // Did we create a line object?

21: if (pPerson)

22: {

23: // Delete it

24: delete pPerson;

Saving and Restoring Work—File Access 297 |

25: pPerson = NULL;

26: }

27: // Delete the exception object
28: perr->Delete();

29: }

30: return pPerson;

31: }

Getting the Current Position

To aid the user in navigating the record set, it's always helpful to provide a guide about
where the user isin the record set. To provide this information, you need to be able to
get the current record number and the total nhumber of records from the document to dis-
play for the user.

The functions to provide this information are both fairly simple. For the total humber of
records in the object array, all you need to do is get the size of the array and return that
to the caller.

For your sample application, add a new member function to the document class. Specify
the function type as int, the function name as GetTotalRecords, and the access as pub-
lic. Once you add the function, edit it using the code in Listing 13.11.

LisTING 13.11. THE CSerializeDoc.GetTotalRecords FUNCTION.

1: int CSerializeDoc::GetTotalRecords()
2: {

3: // Return the array count

4: return m_oaPeople.GetSize();

5: }

Getting the current record number is almost just as simple. If you are maintaining a posi-
tion counter in the document class, this variable contains the record number that the user
is currently editing. As aresult, all you need to do is return the value of this variable to
the calling routine. Because the object array begins with position 0, you probably need to
add 1 to the current position before returning to display for the user.

To add this function to your sample application, add another new member function to the
document class. Specify the type as int, the function name as GetCurRecordNbr, and the
access as public. Edit the function using the code in Listing 13.12.

298 Day 13

LisTING 13.12. THE CSerializeDoc.GetCurRecordNbr FUNCTION.

1: int CSerializeDoc::GetCurRecordNbr()
2: {

3: // Return the current position
4: return (m_iCurPosition + 1);

5: }

Navigating the Record Set

To make your application really useful, you will need to provide the user with some way
of navigating the record set. A base set of functionality for performing this navigation is
a set of functions in the document class to get pointers to specific records in the record
set. First is afunction to get a pointer to the current record. Next are functions to get
pointers to the first and last records in the set. Finally, you need functions to get the pre-
vious record in the set and the next record in the set. If the user is already editing the last
record in the set and attempts to move to the next record, you can automatically add a
new record to the set and provide the user with this new, blank record.

To add al this functionality, start with the function to return the current record. This
function needs to check the value in the position marker to make sure that the current
record is avalid array position. Once it has made sure that the current position is valid,
the function can return a pointer to the current record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as cPerson* (a pointer to the custom class), the
function name as GetCurRecord, and the access as public. Edit the function, adding the
codein Listing 13.13.

LisTing 13.13. THE CSerializeDoc.GetCurRecord FUNCTION.

: CPerson* CSerializeDoc::GetCurRecord()
{

/] Are we editing a valid record number?
if (m_iCurPosition >= 0)

/! Yes, return the current record

return (CPerson*)m_oaPeople[m_iCurPosition];
else

// No, return NULL

return NULL;

S OWO~NOOUA~»WN =

-
-

The next function you might want to tackle is the function to return the first record in the
array. In this function, you need to first check to make sure that the array has records. If

Saving and Restoring Work—File Access 299 |

there are records in the array, set the current position marker to 0 and return a pointer to
the first record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as cPerson* (a pointer to the custom class), the
function name as GetFirstRecord, and the access as public. Edit the function, adding
the codein Listing 13.14.

LisTING 13.14. THE CSerializeDoc.GetFirstRecord FUNCTION.

1: CPerson* CSerializeDoc::GetFirstRecord()
2: {

3: // Are there any records in the array?
4: if (m_oaPeople.GetSize() > 0)

5: {

6: // Yes, move to position 0

7: m_iCurPosition = 0;

8: // Return the record in position @
9: return (CPerson*)m_oaPeople[0];
10: }

11: else

12: // No records, return NULL

13: return NULL;

14: }

For the function to navigate to the next record in the set, you need to increment the cur-
rent position marker and then check to see if you are past the end of the array. If you are
not past the end of the array, you need to return a pointer to the current record in the
array. If you are past the end of the array, you need to add a new record to the end of the
array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as cPerson* (a pointer to the custom class), the

function name as GetNextRecord, and the access as public. Edit the function, adding the
codein Listing 13.15.

LisTING 13.15. THE CSerializeDoc.GetNextRecord FUNCTION.

CPerson * CSerializeDoc::GetNextRecord()
{

1:

2

3 // After incrementing the position marker, are we

4: // past the end of the array?

5 if (++m_iCurPosition < m_oaPeople.GetSize())

6 // No, return the record at the new current position

continues

300 Day 13

LisTING 13.15. CONTINUED

return (CPerson*)m_oaPeople[m_iCurPosition];
else

// Yes, add a new record

return AddNewRecord();

—_
- © © 00 N

For the function to navigate to the previous record in the array, you need to make several
checks. First, you need to verify that the array has records. If there are records in the
array, you need to decrement the current position marker. If the marker is less than zero,
you need to set the current position marker to equal zero, pointing at the first record in
the array. Once you've made it through all of this, you can return a pointer to the current
record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as cPerson* (a pointer to the custom class), the
function name as GetPrevRecord, and the access as public. Edit the function, adding the
codein Listing 13.16.

LisTING 13.16. THE CSerializeDoc.GetPrevRecord FUNCTION.

1: CPerson * CSerializeDoc::GetPrevRecord()

2: {

3: // Are there any records in the array?

4: if (m_oaPeople.GetSize() > 0)

5: {

6: // Once we decrement the current position,
7: // are we below position 07?

8: if (--m_iCurPosition < 0)

9: // If so, set the record to position 0@
10: m_iCurPosition = 0;

11: // Return the record at the new current position
12: return (CPerson*)m_oaPeople[m_iCurPosition];
13: }

14: else

15: // No records, return NULL

16: return NULL;

17: }

For the function that navigates to the last record in the array, you still need to check to
make sure that there are records in the array. If the array does have records, you can get
the current size of the array and set the current position marker to one less than the num-
ber of recordsin the array. Thisis actualy the last record in the array because the first

Saving and Restoring Work—File Access 301 |

record in the array is record 0. Once you set the current position marker, you can return a
pointer to the last record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as cPerson* (a pointer to the custom class), the
function name as GetLastRecord, and the access as public. Edit the function, adding the
codein Listing 13.17.

LisTING 13.17. THE CSerializeDoc.GetLastRecord FUNCTION.

1: CPerson * CSerializeDoc::GetLastRecord()

2: {

3: // Are there any records in the array?

4: if (m_oaPeople.GetSize() > 0)

5: {

6: // Move to the last position in the array

7: m_iCurPosition = (m_oaPeople.GetSize() - 1);
8: // Return the record in this position

9: return (CPerson*)m_oaPeople[m_iCurPosition];
10: }

11: else

12: // No records, return NULL

13: return NULL;

14: }

Serializing the Record Set

When filling in the Serialize functionality in the document class, there'slittle to do
other than pass the CArchive object to the object array’s Serialize function, just asyou
did on Day 10.

When reading data from the archive, the object array will query the cArchive object to
determine what object type it needs to create and how many it needs to create. The
object array will then create each object in the array and call its Serialize function,
passing the cArchive object to each in turn. This enables the objects in the object array
to read their own variable values from the CArchive object in the same order that they
were written.

When writing data to the file archive, the object array will call each object’'s Serialize
function in order, passing the CArchive object (just as when reading from the archive).
This allows each object in the array to write its own variables into the archive as neces-
sary.

For the sample application, edit the document class's Serialize function to passthe
CArchive object to the object array’s Serialize function, asin Listing 13.18.

| 302

Day 13

Listing 13.18. THe CSerializeDoc.Serialize FUNCTION.

1
2
3:
4
5

: void CSerializeDoc::Serialize(CArchive& ar)

:

// Pass the serialization on to the object array
m_oaPeople.Serialize(ar);

Cleaning Up

Now you need to add the code to clean up the document once the document is closed or
anew document is opened. This consists of looping through all objects in the object
array and deleting each and every one. Once all the objects are deleted, the object array
can be reset when you call its RemoveA11 function.

To implement this functionality in your sample application, add an event-handler func-
tion to the document class on the DeleteContents event message using the Class
Wizard. When editing the function, add the code in Listing 13.19.

LisTING 13.19. THE CSerializeDoc.DeleteContents FUNCTION.

1:
2
3
4:
5:
6
7
8

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

void CSerializeDoc::DeleteContents()

A

// TODO: Add your specialized code here and/or call the base class

PITETEETE iy
// MY CODE STARTS HERE

PIEETETE iy

// Get the number of lines in the object array
int liCount = m_oaPeople.GetSize();
int liPos;

// Are there any objects in the array?
if (liCount)

{
// Loop through the array, deleting each object
for (liPos = @; liPos < liCount; liPos++)
delete m_oaPeople[liPos];
// Reset the array
m_oaPeople.RemoveAll();
}

LITETEETEE iy
// MY CODE ENDS HERE

PIEETETE iy

CDocument: :DeleteContents();

Saving and Restoring Work—File Access 303 |

Opening a New Document

When a new document is started, you need to present the user with an empty form, ready
for new information. To make that empty record ready to accept new information, you
need to add a new record into the object array, which is otherwise empty. This resultsin
only one record in the object array. Once the new record is added to the array, you must
modify the view to show that a new record exists; otherwise, the view will continue to
display the last record edited from the previous record set (and the user will probably
wonder why your application didn’t start a new record set).

To implement this functionality, you will need to edit the onNewDocument function in
your document class. This function is already in the document class, so you do not need
to add it through the Class Wizard. The first thing that you do in this function is add a
new record to the object array. Once the new record is added, you need to get a pointer
to the view object. You use the GetFirstViewPosition function to get the position of the
view object. Using the position returned for the view object, you can use the
GetNextView function to retrieve a pointer to the view object. Once you have avalid
pointer, you can use it to call a function that you will create in the view class to tell the
view to refresh the current record information being displayed in the form.

N“tﬂ One thing to keep in mind when writing this code is that you need to cast

) the pointer to the view as a pointer of the class of your view object. The
' GetNextView function returns a pointer of type Cview, so you will not be
able to call any of your additions to the view class until you cast the pointer
to your view class. Casting the pointer tells the compiler that the pointer is
really a pointer to your view object class and thus does contain all the func-
tions that you have added. If you don’t cast the pointer, the compiler will
assume that the view object does not contain any of the functions that you
have added and will not allow you to compile your application.

Locate the onNewDocument function in the document class source code, and add the code
in Listing 13.20. Before you will be able to compile your application, you will need to
add the NewDataSet function to the view class.

LisTING 13.20. THE CSerializeDoc.OnNewDocument FUNCTION.

1: BOOL CSerializeDoc::0nNewDocument ()
2: {

3: if (!CDocument::0OnNewDocument())
4: return FALSE;

5

continues

304 Day 13

LisTING 13.20. CONTINUED

6: // TODO: add reinitialization code here

7: // (SDI documents will reuse this document)
8:

9: TIEETEEEEETE iy

10: // MY CODE STARTS HERE

11: PIEETEEELEETrrrririny

12:

13: // If unable to add a new record, return FALSE
14: if (!AddNewRecord())

15: return FALSE;

16:

17: // Get a pointer to the view

18: POSITION pos = GetFirstViewPosition();

19: CSerializeView* pView = (CSerializeView*)GetNextView(pos);
20: // Tell the view that it's got a new data set
21: if (pView)

22: pView->NewDataSet();

23:

24: TIEETEEEET i rriny

25: // MY CODE ENDS HERE

26: PIEETEEELEET iy

27:

28: return TRUE;

29: }

When opening an existing data set, you don’t need to add any new records, but you still
need to let the view object know that it needs to refresh the record being displayed for
the user. As aresult, you can add the same code to the onopenbocument function as you
added to the onNewDocument, only leaving out the first part where you added a new
record to the object array.

Add an event-handler function to the document class for the onopenDocument event
using the Class Wizard. Once you add the function, edit it adding the code in Listing
13.21.

LisTinG 13.21. THE CSerializeDoc.OnOpenDocument FUNCTION.

1: BOOL CSerializeDoc::0nOpenDocument (LPCTSTR lpszPathName)
2: {
3: if (!CDocument::0nOpenDocument(lpszPathName))
4: return FALSE;
5:
6
7

// TODO: Add your specialized creation code here

Saving and Restoring Work—File Access 305 |

8: [HEEETTEEEE i rrrr

9: // MY CODE STARTS HERE

10: [EEEETEEEE L rrrrrrr

11:

12: // Get a pointer to the view

13: POSITION pos = GetFirstViewPosition();

14: CSerializeView* pView = (CSerializeView*)GetNextView(pos);
15: // Tell the view that it's got a new data set
16: if (pView)

17: pView->NewDataSet();

18:

19: [HEEEETEEEE L rrrrrrr

20: // MY CODE ENDS HERE

21: [EEEEETEEEL i

22:

23: return TRUE;

24: }

Adding Navigating and Editing Support in the View

Class

Now that you' ve added support for the record set to your document class, you need to
add the functionality into the view class to navigate, display, and update the records.
When you first designed your view class, you placed a number of controls on the win-
dow for viewing and editing the various data elements in each record. You also included
controls for navigating the record set. Now you need to attach functionality to those con-
trols to perform the record navigation and to update the record with any data changes the
user makes.

Because of the amount of direct interaction that the form will have with the record
object—reading variable values from the record and writing new values to the record—it
makes sense that you want to add a record pointer to the view class as a private variable.
For your example, add a new member variable to the view class, specify the type as
CPerson*, give it a name such as m_pcurPerson, and specify the access as private. Next,
edit the view source code file and include the header file for the person class, asin
Listing 13.22.

LISTING 13.22. INCLUDING THE CUSTOM OBJECT HEADER IN THE VIEW CLASS SOURCE CODE.

// SerializeView.cpp : implementation of the CSerializeView class
/1

#include "stdafx.h"
#include "Serialize.h"

OO wWN =

continues

306 Day 13

LISTING 13.22. CONTINUED

7: #include "Person.h"

8: #include "SerializeDoc.h"
9: #include "SerializeView.h"
10:

11: #ifdef _DEBUG

12: .

13: .

14: .

Displaying the Current Record

The first functionality that you will want to add to the view classis the functionality to
display the current record. Because this functionality will be used in several different
places within the view class, it makes the most sense to create a separate function to per-
form this duty. In this function, you get the current values of all the variables in the
record object and place those values in the view class variables that are attached to the
controls on the window. The other thing that you want to do is get the current record
number and the total number of records in the set and display those for the user so that
the user knows his or her relative position within the record set.

In your sample application, add a new member function, specify the function type as
void, give the function a name that makes sense, such as Populateview, and specify the
access as private. In the function, get a pointer to the document object. Once you have a
valid pointer to the document, format the position text display with the current record
number and the total number of records in the set, using the GetCurRecordNbr and
GetTotalRecords functions that you added to the document class earlier. Next, if you
have a valid pointer to a record object, set al the view variables to the values of their
respective fields in the record object. Once you set the values of all of the view class
variables, update the window with the variable values, as shown in Listing 13.23.

LisTING 13.23. THE CSerializeView.PopulateView FUNCTION.

1: void CSerializeView::PopulateView()
2: {
3: // Get a pointer to the current document

4 CSerializeDoc* pDoc = GetDocument();

5: if (pDoc)

6: {

7 // Display the current record position in the set

8 m_sPosition.Format("Record %d of %d", pDoc->GetCurRecordNbr(),
9: pDoc->GetTotalRecords());
10:

Saving and Restoring Work—File Access 307 |

11: // Do we have a valid record object?

12: if (m_pCurPerson)

13: {

14: // Yes, get all of the record values

15: m_bEmployed = m_pCurPerson->GetEmployed();
16: m_iAge = m_pCurPerson->GetAge();

17: m_sName = m_pCurPerson->GetName();

18: m_iMaritalStatus = m_pCurPerson->GetMaritalStatus();
19: }

20: // Update the display

21: UpdateData(FALSE) ;

22: }

Navigating the Record Set

If you added navigation buttons to your window when you were designing the form, then
adding navigation functionality is a simple matter of adding event-handler functions for
each of these navigation buttons and calling the appropriate navigation function in the
document. Once the document navigates to the appropriate record in the set, you need to
call the function you just created to display the current record. If the document naviga-
tion functions are returning pointers to the new current record object, you should capture
that pointer before calling the function to display the current record.

To add this functionality to your sample application, add an event handler to the clicked
event for the First button using the Class Wizard. In the function, get a pointer to the
document object. Once you have a valid pointer to the document, call the document
object’'s GetFirstRecord function, capturing the returned object pointer in the view
CPerson pointer variable. If you receive avalid pointer, call the Populateview function
to display the record data, asin Listing 13.24.

LisTING 13.24. THE CSerializeView.OnBfirst FUNCTION.

1: void CSerializeView::0nBfirst()

2: {

3: // TODO: Add your control notification handler code here

4:

5: // Get a pointer to the current document

6: CSerializeDoc * pDoc = GetDocument();

7: if (pDoc)

8: {

9: // Get the first record from the document
10: m_pCurPerson = pDoc->GetFirstRecord();
11: if (m_pCurPerson)

12: {

continues

| 308

Day 13

LiSTING 13.24. CONTINUED

13: // Display the current record
14: PopulateView();

15: }

16: }

17: }

For the Last button, perform the same steps as for the First button, but call the document
object’s GetLastRecord function, asin Listing 13.25.

LisTING 13.25. THE CSerializeView.OnBlast FUNCTION.

1: void CSerializeView::0nBlast()

2: {

3: // TODO: Add your control notification handler code here

4:

5: // Get a pointer to the current document

6: CSerializeDoc * pDoc = GetDocument();

7: if (pDoc)

8: {

9: // Get the last record from the document
10: m_pCurPerson = pDoc->GetLastRecord();
11: if (m_pCurPerson)

12: {

13: // Display the current record
14: PopulateView();

15: }

16: }

17: }

For the Previous and Next buttons, repeat the same steps again, but call the document
object’s GetPrevRecord and GetNextRecord functions. This final step provides your
application with al the navigation functionality necessary to move through the record
set. Also, because calling the document’s GetNextRecord on the last record in the set
automatically adds a new record to the set, you also have the ability to add new records
to the set as needed.

Saving Edits and Changes

When the user enters changes to the data in the controls on the screen, these changes
somehow need to make their way into the current record in the document. If you are
maintaining a pointer in the view object to the current record object, you can call the
record object’s various set value functions, passing in the new value, to set the valuein
the record object.

Saving and Restoring Work—File Access 309 |

To implement this in your sample application, add an event handler to the CLICKED event
for the Employed check box using the Class Wizard. In the function that you created,
first call the updateData to copy the values from the form to the view variables. Check
to make sure that you have a valid pointer to the current record object, and then call the
appropriate set function on the record object (in this case, the SetEmployed function as
in Listing 13.26).

LisTING 13.26. THE CSerializeView.OnCbemployed FUNCTION.

void CSerializeView::0nCbemployed()
R

// TODO: Add your control notification handler code here

1:

2

3

4

5: // Sync the data in the form with the variables

6: UpdateData(TRUE);

7: // If we have a valid person object, pass the data changes to it
8 if (m_pCurPerson)

9 m_pCurPerson->SetEmployed(m_bEmployed);

0

10:)

Repeat these same steps for the other controls, calling the appropriate record object func-
tions. For the Name and Age edit boxes, you add an event handler on the EN_CHANGE
event and call the setName and SetAge functions. For the marital status radio buttons,
add an event handler for the BN_CLICKED event and call the same event-handler function
for al four radio buttons. In this function, you call the SetMaritalStat functionin the
record object.

Displaying a New Record Set

The last functionality that you need to add is the function to reset the view whenever a
new record set is started or opened so that the user doesn’t continue to see the old record
set. You will call the event handler for the First button, forcing the view to display the
first record in the new set of records.

To implement this functionality in your sample application, add a new member function
to the view class. Specify the function type as void, give the function the name that you
were calling from the document object (NewDataSet), and specify the access as public
(so that it can be called from the document class). In the function, call the First button
event handler, asin Listing 13.27.

310 Day 13

LisTING 13.27. THE CSerializeView.NewDataSet FUNCTION.

1: void CSerialize1View: :NewDataSet ()

2: {

3: // Display the first record in the set
4: onBfirst();

5: }

Wrapping Up the Project

Before you can compile and run your application, you need to include the header file for
your custom class in the main application source-code file. Thisfile is named the same
as your project with the CPP extension. Your custom class header file should be included
before the header files for either the document or view classes. For your sample applica-
tion, you edit the serialize.cpp file, adding line 8 in Listing 13.28.

LisTING 13.28. INCLUDING THE RECORD CLASS HEADER IN THE MAIN SOURCE FILE.

// Serialize.cpp : Defines the class behaviors for the application.
/1l

#include "stdafx.h"
#include "Serialize.h"

#include "MainFrm.h"
#include "Person.h"
#include "SerializeDoc.h"
: #include "SerializeView.h"

O~NOO O~ WN =

—_
N =< 0

: #ifdef _DEBUG

—_
a bW

At this point, you can add, edit, save, and restore sets of records with your application. If
you compile and run your application, you can create records of yourself and all your
family members, your friends, and anyone else you want to include in this application. If
you save the record set you create and then reopen the record set the next time that you
run your sample application, you should find that the records are restored back to the
state that you originally entered them, asin Figure 13.4.

Saving and Restoring Work—File Access

311 |

FIGURE 13.4. . Peoplel_ser - Serialize

The running serializa- DS s BR(& T
tion application.

File Edit ¥iew Help

Mame: |Davis Chapman

Age [37

Marital Status: € Single € Divorced
& Married € widowed

v Employed

Fist | Previous Ne Last

Record 1 of 4

, 7

Ready [[HUM v

Summary

Today, you learned quite a bit. You learned how serialization works and what it does.
You learned how to make a custom class serializable and why and how to use the two
macros that are necessary to serialize a class. You also learned how to design and build a
form-based SDI application, maintaining a set of records in a flat-file database for usein
the application. You learned how to use serialization to create and maintain the flat-file
database and how to construct the functionality in the document and view classes to pro-
vide navigating and editing capabilities on these record sets.

Q&A

Q If I make any changesto one of therecordsin my record set after | savethe

record set and then | close the application, or open a different set of records,
my application doesn’t ask if | want to save my changes. How do | get it to ask
me? How do | get my application to prompt for saving when data has been
changed?

One function call in the AddNewRecord function in the document object is the key
to this problem. After adding a new record to the object array, you call the
SetModifiedFlag function. This function marks the document as “dirty.” When
you save the record set, the document is automatically set to a“clean” state (unless
the application is unable to save the record set for any reason). What you need to
do when saving the edits is set the document to the “dirty” state so that the applica-
tion knows that the document has unsaved changes.

| 312

Day 13

You can fix this by adding some code to each of your data control event handlers.
Once you save the new value to the current record, get a pointer to the document
object and call the document’s setModifiedFlag function, asin Listing 13.29. If
you make this same addition to all the data change event handlers, your application
will ask you whether to save the changes you made since the last time the record
set was saved.

LisTING 13.29. THE MODIFIED CSerializeView.0OnCbemployed FUNCTION.

1: void CSerializeView: :0nCbemployed()
2: {
3: // TODO: Add your control notification handler code here
4:
5: // Sync the data in the form with the variables
6: UpdateData(TRUE);
7: // If we have a valid person object, pass the data changes to it
8: if (m_pCurPerson)
9: m_pCurPerson->SetEmployed(m_bEmployed);
10: // Get a pointer to the document
11: CSerializeDoc * pDoc = GetDocument();
12: if (pDoc)
13: // Set the modified flag in the document
14: pDoc->SetModifiedFlag();
15: }
Q Why do | need to change the version number in the IMPLEMENT_SERIAL mMacro
if I change the serialize function in the record custom class?
A Whether you need to increment the version number depends on the type of change

you make. For instance, if you add a calculated field in the record class and you
add the code to calculate this new variable from the values you read in the vari-
ables from the cArchive object, then you don't really need to increment the ver-
sion number because the variables and order of the variables that you are writing to
and reading from the archive did not change. However, if you add a new field to
the record class and add the new field into the 1/O stream being written to and read
from the cArchive object, then what you are writing to and reading from the
archive will have changed, and you do need to increment the version number. If
you don’'t increment the version number, reading files created using the previous
version of your application will result in an “Unexpected file format” message
instead of the file being read. Once you increment the version number and you
read a file written with the old version number, you get the same message, but you
have the option of writing your own code to handle the exception and redirecting
the archive to a conversion routine to convert the file to the new file format.

Saving and Restoring Work—File Access 313 |

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What two macros do you have to add to a class to make it serializable?

2. How can you determine whether the cArchive object is reading from or writing to
the archivefile?

3. What arguments do you need to pass to the IMPLEMENT_SERIAL macro?

4. What class do you need to inherit the view class from to be able to use the dialog
designer to create aform for the main window in an SDI or MDI application?

5. What type of file does the CArchive write to by default?

Exercise

Add a couple of radio buttons to the form to specify the person’s sex, as shown in Figure
13.5. Incorporate this change into the cPerson class to make the field persistent.

FIGURE 13 5 T+ peoplel_ser - Serialize

File Edit View Help
The running serializa- DE 5 EES 2]
tion application with o
the person’s X, Warme: |Daws Chapman

Age |3‘7_

Maital Status: € Single " Divorced
@ Married © Widowed
Sex: & Male Eemale

¥ Employed

] Previous Next Last

| | »

Ready [NOM 4

WEEK 2

DAY 14

Retrieving Data from
an ODBC Database

A large number of applications use a database. Everything from a personal
organizer to alarge, corporate personnel system uses a database to store and
maintain all the records that the applications use and manipulate. Visual C++
provides you with four different technologies for using and accessing databases
in your applications, Data Access Objects (DAO), ODBC, OLE DB, and
ActiveX Data Objects (ADO). Today and tomorrow, you'll learn about two of
these technologies, how they differ, and how you can use them in your own
applications. Today, you will learn

- How the ODBC interface allows you to use a consistent way to access a
database.

- How Visual C++ usesthe CRecordset class to provide access to an
ODBC data source.

- How you can create a simple database application using the Wizards in
Visual C++.

- How you can add and delete records from an ODBC database in Visua
C++.

316 Day 14

Database Access and ODBC

Most business applications work with data. They maintain, manipulate, and access
records of data that are stored in databases. If you build business applications, odds are
that you will need to be able to access a database with your applications. The question is,
which database?

There are a number of databases on the market. If you need to create a single-user appli-
cation that is self-contained on a single computer, you can use any one of numerous PC-
based databases, such as Microsoft’'s Access, FoxPro, or Borland’s Paradox. If you are
building applications that need to access large, shared databases, you are probably using
an SQL -based (Structured Query Language) database such as SQL Server or Oracle. All
of these databases provide the same basic functionality, maintaining records of data.
Each will alow you to retrieve several records or a single record, depending on your
needs. They'll al let you add, update, or delete records as needed. Any of these data-
bases will be able to serve your application’s needs, so you should be able to use any
database for one application and then switch to another for the next application, based on
the needs of the application and which database is most suited for the specific applica-
tion needs (or your employer’s whim).

Nﬂtﬂ To be completely honest, there are numerous differences between the vari-

) ous databases that are available today. Each of these databases has specific

' strengths and weaknesses, making one more suitable for a specific situation
than another. However, a discussion of the differences between any of these
databases is beyond the scope of this book. For the discussions of databases

today and tomorrow, you can assume that all of these databases are func-
tionally equal and interchangeable.

The problem that you will encounter when you switch from one database to another is
that each database requires you to use a different interface for accessing the database.
Therefore, you have to learn and use a whole new set of programming techniques and
functions for each database that you need to work with. Thisis the problem that the
ODBC interface was designed to correct.

The Open Database Connector (ODBC) Interface

Microsoft saw the incompatibility between database interfaces as a problem. Each data-
base had its own application devel opment language that was well integrated with the
database but didn’'t work with any other database. This presented a problem to any devel-
oper who needed to use one database for an application and then a different database for

Retrieving Data from an ODBC Database

317 |

the next application. The developer had to learn the specific development language for
each of the databases and couldn’t use any languages that she already knew. For pro-
grammers to work with any database with the programming language of the developer’s
choice, they needed a standardized interface that works with every database.

The Open Database Connector (ODBC) interface is implemented as a standard, SQL -
based interface that is an integral part of the Windows operating system. Behind this
interface are plug-ins for each database that take the ODBC function calls and convert
them into calls to the specific interface for that database. The ODBC interface also uses a
central set of database connection configurations, with a standardized way of specifying
and maintaining them. This setup allows programmers to learn and use a single database
interface for all databases. This also allowed programming language vendors to add
ODBC support into their languages and development tools to make database access all
but transparent.

The CRecordset Class

In the Visual C++ development environment, most of the ODBC functionality has been
encapsulated into two classes, CRecordset and CDatabase. The CDatabase class contains
the database connection information and can be shared across an entire application. The
CRecordset class encapsulates a set of records from the database. The CRecordset class
allows you to specify a SQL query to be run, and the CRecordset class will run the
query and maintain the set of records that are returned by the database. You can modify
and update the records in the record set, and your changes will be passed back to the
database. You can add or delete records from the record set, and those same actions can
be passed back to the database.

Connecting to the Database

Before the CRecordset class can perform any other functions, it has to be connected to a
database. This is accomplished through the use of the cbatabase class. You don’'t need to
create or set the cbatabase instance; the first instance of the CRecordset class does this
for you. When you create an application using the AppWizard and choose to include
ODBC database support, the AppWizard includes the database connection information in
the first CRecordset-derived class that it creates. When this CRecordset classis created
without being passed a cbatabase object, it uses the default connection information,
which was added by the AppWizard, to create its own database connection.

Opening and Closing the Record Set

Once the CRecordset object is created and connected to the database, you need to open
the record set to retrieve the set of records from the database. Do this by calling the open
member function of the CRecordset object. You can call this function without any

| 318

Day 14

arguments if you want to take the default values for everything, including the SQL state-
ment to be executed.

The first argument to the open function is the record set type. The default value for this,
AFX_DB_USE_DEFAULT_TYPE, isto open the record set as a snapshot set of records. Table
14.1 lists the four types of record set types. Only two of these record set types are avail-

able in the AppWizard when you are specifying the data source.

TABLE 14.1. RECORD SET TYPES.

Type

Description

CRecordset: :dynaset

CRecordset: :snapshot

CRecordset: :dynamic

CRecordset::forwardOnly

A set of records that can be refreshed by calling the Fetch function so
that changes made to the record set by other users can be seen.

A set of records that cannot be refreshed without closing and then
reopening the record set.

Very similar to the CRecordset: :dynaset type, but it is not available in
many ODBC drivers.

A read-only set of records that can only be scrolled from the first to the
last record.

The second argument to the open function is the SQL statement that is to be executed to
populate the record set. If aNULL is passed for this argument, the default SQL statement
that was created by the AppWizard is executed.

The third argument is a set of flags that you can use to specify how the set of recordsis
to be retrieved into the record set. Most of these flags require an in-depth understanding
of the ODBC interface so you understand how the flags can and should be used in your
applications. Because of this, I'll discuss only afew of these flagsin Table 14.2.

TABLE 14.2. RECORD SET OPEN FLAGS.

Flag

Description

CRecordset: :none

CRecordset: :appendOnly

CRecordset::readOnly

The default value for this argument; specifies that no options affect how
the record set is opened and used.

This flag prevents the user from being able to edit or delete any of the
existing records in the record set. The user will only be able to add new
records to the set of records. You cannot use this option with the
CRecordset: :readonly flag.

This flag specifies that the record set is read-only and no changes can be
made by the user. You cannot use this option with the
CRecordset: :appendonly flag.

Retrieving Data from an ODBC Database

319 |

Once the user finishes working with the record set, you can call the Close function to
close the record set and free any resources used by the record set. The close function
doesn’t take any arguments.

Navigating the Record Set

Once you have a set of records retrieved from the database, you need to be able to navi-
gate the set of records (unless the set has only one record). The CRecordset class pro-
vides severa functions for navigating the record set, allowing you to move the user to
any record. Table 14.3 lists the functions that you use to navigate the record set.

TABLE 14.3. RECORD SET NAVIGATION FUNCTIONS.

Function Description

MoveFirst Moves to the first record in the set.

MovelLast Moves to the last record in the set.

MoveNext Moves to the next record in the set.

MovePrev Moves to the previous record in the set.

Move Can be used to move a specific number of records from the current record or
from the first record in the set.

SetAbsolutePosition Moves to the specified record in the set.

IsBOF Returns TRUE if the current record is the first record in the set.

ISEOF Returns TRUE if the current record is the last record in the set.

GetRecordCount Returns the number of records in the set.

Of all of these navigation and informational functions, only two, Move and
SetAbsolutePosition, take any arguments. The SetAbsolutePosition function takes a
single numeric argument to specify the row number of the record toward which to navi-
gate. If you pass o, it navigates to the beginning-of-file (BOF) position, whereas 1 takes
you to the first record in the set. You can pass negative numbers to this function to cause
it to count backward from the last record in the set. (For example, -1 takes you to the
last record in the set, -2 to the next-to-last record, and so on.)

The move function takes two arguments. The first argument is the number of rowsto
move. This can be a positive or negative number; a negative number indicates a back-
ward navigation through the record set. The second argument specifies how you will
move through the set of rows. The possible values for the second argument are listed in
Table 14.4 with descriptions of how they affect the navigation.

| 320

Day 14

TABLE 14.4. MOVE NAVIGATION TYPES.

Type

Description

SQL_FETCH_RELATIVE

SQL_FETCH_NEXT

SQL_FETCH_PRIOR

SQL_FETCH_FIRST

SQL_FETCH_LAST

SQL_FETCH_ABSOLUTE

Moves the specified number of rows from the current row.

Moves to the next row, ignoring the number of rows specified. The same as
calling the moveNext function.

Moves to the previous row, ignoring the number of rows specified. The same
as calling the MovepPrev function.

Moves to the first row, ignoring the number of rows specified. The same as
calling the MoveFirst function.

Moves to the last row, ignoring the number of rows specified. The same as
calling the moveLast function.

Moves the specified number of rows from the start of the set of rows. The
same as calling the setAbsolutePosition function.

Adding, Deleting, and Updating Records

Navigating a set of records from a database is only part of what you need to be able to
do. You also need to be able to add new records to the record set, edit and update exist-
ing records, and delete records. These actions are all possible through the various func-
tions that the CRecordset class provides. The functions that you will use to provide this
functionality to the user are listed in Table 14.5.

TABLE 14.5. RECORD SET EDITING FUNCTIONS.

Function Description

AddNew Adds a new record to the record set.

Delete Deletes the current record from the record set.

Edit Allows the current record to be edited.

Update Saves the current changes to the database.

Requery Rerunsthe current SQL query to refresh the record set.

None of these functions takes any arguments. However, some of them require following
afew specific steps to get them to work correctly.

To add a new record to the database, you can call the AddNew function. The next thing
that you need to do is set default values in any of the fields that require values, such as
the key fields. Next, you must call the Update function to add the new record to the data-
base. If you try to navigate to another record before calling the update function, the new

Retrieving Data from an ODBC Database

321 |

record will be lost. Once you save the new record, you heed to call the Requery function
to refresh the record set so that you can navigate to the new record and let the user edit
it. This sequence of function calls typically looks like the following:

// Add a new record to the record set

m_pSet.AddNew();

// Set the key field on the new record

m_pSet.m_AddressID = m_1NewID;

// Save the new record to the database

m_pSet.Update();

// Refresh the record set

m_pSet.Requery();

// Move to the new record

m_pSet.MoveLast();

When you need to delete the current record, you can simply call the belete function.
Once you delete the current record, you need to navigate to another record so the user
isn't still looking at the record that was just deleted. Once you delete the current record,
there is no current record until you navigate to another one. You do not need to explicitly
call the Uupdate function because the navigation functions call it for you. This allows you
to write the following code to delete the current record:

/| Delete the current record

m_pSet.Delete();

// Move to the previous record
m_pSet.MovePrev();

Finally, to allow the user to edit the current record, you need to call the Edit function.
This alows you to update the fields in the record with the new values entered by the user
or calculated by your application. Once all changes are made to the current record, you
need to call the Update function to save the changes:

// Allow the user to edit the current record

m_pSet.Edit();
// Perform all data exchange, updating the fields in the recordset

// Save the user's changes to the current record
m_pSet.Update();

You might be wondering how you get to the fields in the records to update them. When
the AppWizard creates the CRecordset-derived class for your application, it adds all the
fields in the records that will be in the record set as member variablesin order of the

record set class. As aresult, you can access the member variables in order to access and
manipulate the data elements in the database records that are members of the record set.

322 Day 14

Creating a Database Application Using ODBC

For the sample application that you will build today, you'll create an SDI application
with ODBC database support. The application will retrieve records from an ODBC data-
base, allowing the user to edit and update any of the records. You'll also add function-
ality to enable the user to add new records to the database and to delete records from the
database.

Preparing the Database

Before you can begin building an application that uses a database, you need a database to
use with your application. Almost every database that you can purchase for your applica
tions comes with tools for creating a new database. You'll need to use these tools to cre-
ate your database and then use the ODBC administrator to configure an ODBC data
source for your new database.

For the sample application in this chapter, | used Access 95 to create a new database. |
used the Access Database Wizard to create the database, choosing the Address Book
database template as the database to be created. When the Database Wizard started, |
selected the default set of fields for including in the database and selected the option to
include sample data, as shown in Figure 14.1. | then accepted the rest of the default set-
tings offered in the Database Wizard.

FiGURE 14.1.
. The database you've chosen requires certain fislds. Possible aditionl fislds are shown talic
| nc| ud| ng San'p| e data below, and may be in mare than one table.
. Do you want to add any optional fields?
in the database. Tables in the database: Fields in the table:
Address information [V Address ID f’
[V First Name
¥ Last Name
¥ Spouse Name
™ G Mamss =l

Do you want sample data in the database?

Having sample data can help you ta lsam to use the database

Cancel <Back | Mewt> | Finish

Once you create the database, you need to configure an ODBC data source to point to
the database you just created. To do this, run the ODBC Administrator, which isin the
Control Panel on your computer.

Once in the ODBC Administrator, you'll add a new data source. You can do this by
clicking the Add button, as shown in Figure 14.2. This opens another dialog, which
allows you to select the database driver for the new data source, as shown in Figure 14.3.

Retrieving Data from an ODBC Database 323 |

For the sample application that you will build today, because the database was created
using Access, select the Microsoft Access Driver and click the Finish button.

FlGURE 14 2 & 0DBC Data Source Administiator
User DSN | ystem DSN | File DSN | Diivers | Tracing | Cannection Pooling | About |
The ODBC Data
.. User Data Sources: Add
Source Administrator. = {ioe =
SOL Server Bemove
BREAWebDB SOL Server
dBASE Files Microsoft dBase Driver % dbf) Configure.
demoapp Sybase SOL Anywhere 5.0
Excel Files Microsoft Excel Driver (%+ls)
FoxPro Files Microsoft ForPra Driver [dbf] __|
M5 Access 7.0 Databass Miciosalt Access Driver [* mdb)
Paradax Files Microsoft Paradox Driver [db |
PFC Sybase SOL Anywhere 5.0
plcexam Sybase SOL Anywhere 50 =
4] | »
An ODBC User data source storss information about how to connect to
@ the indicated data provider. 4 User data source is anly visible t you,
and can only be used on the cunent machine
0K | Cancel B Help
FlGURE 14 3 Create New Data Source
Select a diiver for which you want to sst up & data source.
The Create New Data —
H 351102900 Microsoft Corporat
Source dial 0g. 351102900 Micrasoft Corporat
Micrasoft Excel Driver [*4ls) 351102900 Micrasoft Corporat
Micrasoft FosPro Diiver (bf) 351102900 Micrasoft Corporat
Micrasoft ODBC Driver for Oracle 2.00.006325 Micrasoft Corporat
Micrasoft ODEC for Dracls 273730200 Micrasoft Corporat
Micrasoft Paradax Driver (db) 3.51.102900 Micrasoft Corporat—
Micrasoft Test Driver (=t csv] 3.51.102900 Micrasoft Corporat
Micrasoft Test Driver (=t “csv] 351102900 Micrasoft Corporat
Nrarle 200000 Visinerie Crfhaar 32
4 r T »
ci=ck [Fnsh | Cancel

In the ODBC Microsoft Access Setup dialog, shown in Figure 14.4, you'll provide a
short, simple name for the data source. Your application will use this name to specify the
ODBC data source configuration to use for the database connection, so it should reflect
the function that the database will be serving, or it should be similar to the name of the
application that will be using this database. For the purposes of the sample application
database, name your data source Tyvcps (for Teach Yourself Visual C++ Database) and
enter a description for the database in the next field.

Once you enter a name and description for the data source, you need to specify where
the database is. Click the Select button and then specify the Access database that you
created. Once you finish configuring the ODBC data source for your database, click the
OK button to add the new data source to the ODBC Administrator. You can click the OK
button to finish the task and close the ODBC Administrator because you are now ready
to turn your attention to building your application.

324 Day 14

FIGURE 14 4 DODBC Microsoft Access 97 Setup
. Data Source Name: | oK
The ODBC Microsoft e | |
Access 97 Setup . Carcel_|
dial 0og. Database: Help
Select.. | Create. | Bepai Compact. |
Advanced..
~System Databa
& Nong
" Dalabase:
CUSeT Daanese —
QOptions:

Creating the Application Shell

For the sample application that you will build today, you'll create a standard SDI-style
application with database support. First, start a new project, selecting the AppWizard,
and give your application a suitable name, such as bbodbe.

On the first AppWizard form, specify that you want to build an SDI application. On the
second AppWizard form, specify that you want to include Database view with file sup-
port. Click the Data Source button to specify which data source you will use in your
application. In the Database Options dialog, specify that you are using an ODBC data
source, and select the ODBC configuration from the list that you configured for your

Access database, as shown in Figure 14.5. You can set the record set type to either
Snapshot or Dynaset.

F|GURE 145 Database Options

Datasourcs I
The Database Options goee: | E E;;
dialog. coo | =

€ OLEDB: f\/ebSnDB

1ef 1

Recordsst typ
[(-‘ Snapshot € Dynaset it ‘

Adwanced
[F [etest dityealims |

Once you click the OK button, another dialog opens, presenting you with the available
tables in the database you selected. Select the Addresses table, as shown in Figure 14.6,
and click the OK button to close this dialog and return to the AppWizard.

You can continue through the rest of the AppWizard, accepting all of the default settings.
When you reach the final AppWizard step, you'll notice that the AppWizard is going to
create an extraclass. If you select this class, you'll see that it is derived from the
CRecordset class, and it is the record set class for your application. You'll also notice

Retrieving Data from an ODBC Database 325|

that the view class is derived from the CRecordview class, which is a descendent of the
CFormView class, with some added support for database functionality.

FlGURE 146 Select Database Tables

The Salect Database Swichboard liems
Tables dialog. e |

Designing the Main Form

Once you create the application shell, you need to design the main form that will be used
for viewing and editing the database records. You can design this form using the stan-
dard controls that are part of Visual C++, without adding any specia ActiveX controls.
For designing the main form in your sample application, lay out the main form as shown
in Figure 14.7, and configure the controls with the properties specified in Table 14.6.

'I'ip If you want to save a little time when building the example, you can leave

out most of the controls and database fields from the application. The key
fields that you’ll need to include are ID, First and Last Names, Birthdate, and
Send Card. If you want to leave out the other fields from the application,
that’s fine.

TABLE 14.6. CONTROL PROPERTY SETTINGS.

Object Property Setting
Static Text ID IDC_STATIC
Caption ID:
Edit Box ID IDC_EID
Static Text ID IDC_STATIC
Caption First Name:
Edit Box ID IDC_EFNAME
Static Text ID IDC_STATIC
Caption Last Name:
Edit Box ID IDC_ELNAME

continues

326 Day 14

TABLE 14.6. CONTINUED

Object Property Setting
Static Text ID IDC_STATIC
Caption Spouse Name:
Edit Box ID IDC_ESNAME
Static Text ID IDC_STATIC

Caption Address:
Edit Box ID IDC_EADDR
Multiline Checked
Static Text ID IDC_STATIC
Caption City:
Edit Box ID IDC_ECITY
Static Text ID IDC_STATIC
Caption State:

Edit Box ID IDC_ESTATE

Static Text ID IDC_STATIC
Caption Zip:

Edit Box ID IDC_EZIP

Static Text ID IDC_STATIC

Caption Country:

Edit Box ID IDC_ECOUNTRY
Static Text ID IDC_STATIC
Caption E-Mail:
Edit Box ID IDC_EEMAIL
Static Text ID IDC_STATIC
Caption Home Phone:
Edit Box ID IDC_EHPHONE
Static Text ID IDC_STATIC
Caption Work Phone:
Edit Box ID IDC_EWPHONE
Static Text ID IDC_STATIC
Caption Extension:
Edit Box ID IDC_EWEXT
Static Text ID IDC_STATIC

Caption Fax:

Retrieving Data from an ODBC Database

327 |

Object Property Setting
Edit Box ID IDC_EFAX
Static Text ID IDC_STATIC
Caption Birthdate:
Edit Box ID IDC_EDOB
Check Box ID IDC_CBCARD
Caption Send Card
Static Text ID IDC_STATIC
Caption Notes:
Edit Box ID IDC_ENOTES

Multiline Checked

FIGURE 14.7.
The main form design.

*+1 testdb5 - Microsoft Visual C++ - [testdbb.rc - IDD_TESTDB5_FORM (Dialog)]

e Edi Yiew Insent Project Buld Layout ool Window Help =18
Blead | me|o- = |BER | Bfcrecodse ""'n‘

CTestdbEView T=][(A class members] [CTestdbSView i JJ@ sl e 8 Ay

- o =

= CAboutDlg = - o =]
78 CMainFrame E [Edit [Edit

*75 CTestabS4pp First Name: Home Phone: i

1% CTestdbSDoc : Bz E

*15 CTestdb55 et - Last Name: [Edt Work Phone: [Edi

B CTestdbSView]

|1 Globals g Spouse Name: [Edi Ewension: [eat X @

b E @ g
b Addiess. [Ear o

] Edit

= H -

a
s
] Bithdate: [Eqw =
_: City: [Edit (]
: &
e

H
I Send Card

] State: [Edit =

3 Notes: [Eqit

g Zip- [Edit —

E Cownti: [Ear
e] =
=] =
F |
|| [3T5ebus {Findin Files 1) Find in Files2 j, Resuts 7] 4] | >
B E R EEEEE s
Ready [0.0 [Fa0sz00 [FEAD
Astart|| @ & A B || Eytrbor-0 | ZM5ON L [0n testabs... | 5] Exploing | ERVuePrint - |[4-2® sopm

Once you have added and configured al the controls on the main form for your applica-
tion, you're ready to begin associating the controls with database fields. When you click
the Member Variables tab of the Class Wizard and select a control to add a variable for,
you'll notice that the Add Member Variable dialog has a drop-down combo box where
you enter the variable name. If you click the arrow to drop down the list, you'll find that
it's filled with the fields in the record set, as shown in Figure 14.8. This enables you to
attach the database fields directly to the controls on the form. To attach the database
fields to the controls on your application form, add the variables specified in Table 14.7.

328 Day 14
Ficure 14.8. Add Member Variable
The Add Member
Variable dialog with ,St e e |
record set fields. mpSetom Loy Iy

m_pSet->m_Emaildddress
m_pSet->m_Fashumber

Description:

CString with lenath validation

TABLE 14.7. CONTROL VARIABLES.

Object Name

IDC_CBCARD m_pSet->m_SendCard
IDC_EADDR m_pSet->m_Address
IDC_ECITY m_pSet->m_City

IDC_ECOUNTRY m_pSet->m_Country
IDC_EEMAIL m_pSet->m_EmailAddress
IDC_EFAX m_pSet->m_FaxNumber
IDC_EFNAME m_pSet->m_FirstName
IDC_EHPHONE m_pSet->m_HomePhone
IDC_EID m_pSet->m_AddressID
IDC_ELNAME m_pSet->m_LastName
IDC_ENOTES m_pSet->m_Notes
IDC_ESNAME m_pSet->m_SpouseName
IDC_ESTATE m_pSet->m_StateOrProvince
IDC_EWEXT m_pSet->m_WorkExtension
IDC_EWPHONE m_pSet->m_WorkPhone

IDC_EZIP m_pSet->m_PostalCode

You probably noticed when it was time to attach a database field to the birthdate control
that the birthday field is missing from the list of database fields. If you look at the record
set class in the class view and expand its tree, you' ll notice that the birthdate field is
included as one of the database fields, but it’'s not available in the list of available
columns for use with the controls. Double-click on the birthdate field in the record set
classto view its definition. You'll notice that them Birthdate variable is declared as a
CTime variable. Thisisthe reason that it's not available in the list of database fields that
can be attached to controls. Thereisn't a macro or function you can call for exchanging

Retrieving Data from an ODBC Database 329 |

data between a control and a cTime variable. Thisis also a problem because the cTime
variable type cannot handle dates before December 31, 1969. To use this database field,
you'll need to change its definition from aCcTime to aCc0OleDateTime variable type, asin
line 17 in Listing 14.1. Once you change the variable type of this database field, you will
be able to attach it to the 1DCc_EDOB control.

LISTING 14.1. THE DATABASE FIELD VARIABLE DECLARATIONS.

1: // Field/Param Data

2: /1 {{AFX_FIELD(CTestdb5Set, CRecordset)

3: long m_AddressID;

4: CString m_FirstName;

5: CString m_LastName;

6: CString m_SpouseName;

7: CString m_Address;

8: CString m_City;

9: CString m_StateOrProvince;

10: CString m_PostalCode;

11: CString m_Country;

12: CString m_EmailAddress;

13: CString m_HomePhone;

14: CString m_WorkPhone;

15: CString m_WorkExtension;

16: CString m_FaxNumber;

17: COleDateTime m_Birthdate;

18: BOOL m_SendCard;

19: CString m_Notes;

20: /[}}AFX_FIELD

Nﬂtﬂ Normally, you do not want to edit the portions of code in your applications
that are created and maintained by the various wizards. The change | out-

line here is one of the few exceptions to this rule. This obstacle could
possibly be considered a bug in the Visual C++ AppWizard, although it’s
technically not a bug. You can convert the date/time database field to sev-
eral variable types when creating a class variable to represent that field.
CTime is one of these variable types; COleDateTime is another. Because these
are both equally valid choices, and the functions that populate this variable
can work with either, making this change is possible without dire conse-
quences.

Once you make the change to the variable type for the m_Birthdate variable in the
record set class (CbbodbcSet), and attach this database field to the Birthdate control on
the form, you might think that you are ready to compile and run your application.
Unfortunately, your application will not compile. You'll get a compiler error stating that

| 330

Day 14

the DDX_FieldText cannot convert the coleDateTime variable type. What you need to do
is add the code to perform this conversion yourself. Return to the Class Wizard and
delete the variable that you added to the 1bc_EDOB control. Add a new variable to this
control. Specify that the variable is type coleDateTime, and give the variable a name
such as m_oledtDoB. Pull up the bobataExchange function in the view class,
CDbOdbcView, into the editor, and add lines 4 through 6 and lines 26 through 28

to the function, as shown in Listing 14.2.

LisTING 14.2. THE CDbOdbcView DoDataExchange FUNCTION.

1 void CDbOdbcView: :DoDataExchange (CDataExchange* pDX)

2: {

3 CRecordView: :DoDataExchange (pDX) ;

4: // Copy the DOB from the record set to the view variable
5: if (pDX->m_bSaveAndValidate == FALSE)

6: m_oledtDOB = m_pSet->m_Birthdate;

7 /1 {{AFX_DATA_MAP (CTestdb5View)

8 DDX_FieldText(pDX, IDC_EID, m_pSet->m_AddressID, m_pSet);
9

: DDX_FieldText (pDX, IDC_EFNAME, m_pSet->m_FirstName, m_pSet);
10: DDX_FieldText(pDX, IDC_ELNAME, m_pSet->m_LastName, m_pSet);
11: DDX_FieldText(pDX, IDC_ESNAME, m_pSet->m_SpouseName, m_pSet);
12: DDX_FieldText (pDX, IDC_ESTATE, m_pSet->m_StateOrProvince, m_pSet);
13: DDX_FieldText(pDX, IDC_ECITY, m_pSet->m_City, m_pSet);
14: DDX_FieldText(pDX, IDC_EADDR, m_pSet->m_Address, m_pSet);
15: DDX_FieldCheck(pDX, IDC_CBCARD, m_pSet->m_SendCard, m_pSet);
16: DDX_FieldText(pDX, IDC_ECOUNTRY, m_pSet->m_Country, m_pSet);
17: DDX_FieldText(pDX, IDC_EEMAIL, m_pSet->m_EmailAddress, m_pSet);
18: DDX_FieldText(pDX, IDC_EFAX, m_pSet->m_FaxNumber, m_pSet);
19: DDX_FieldText(pDX, IDC_EHPHONE, m_pSet->m_HomePhone, m_pSet);
20: DDX_FieldText(pDX, IDC_ENOTES, m_pSet->m_Notes, m_pSet);
21: DDX_FieldText (pDX, IDC_EWEXT, m_pSet->m_WorkExtension, m_pSet);
22: DDX_FieldText(pDX, IDC_EWPHONE, m_pSet->m_WorkPhone, m_pSet);
23: DDX_FieldText(pDX, IDC_EZIP, m_pSet->m_PostalCode, m_pSet);
24: DDX_Text (pDX, IDC_EDOB, m_oledtDOB);
25: / 1} }YAFX_DATA_MAP
26: // Copy the DOB variable back from the view variable to the record

Oset

27: if (pDX->m_bSaveAndValidate == TRUE)
28: m_pSet->m_Birthdate = m_oledtDOB;
29: }

In addition to the above change, you have to remove the initialization of the
m_Birthdate variablein the set class. Thisis also code that was added by the
AppWizard, and once again you have to break the rules by modifying the code that you
are never supposed to touch. To make this change, you can take the simple approach by

Retrieving Data from an ODBC Database 331 |

commenting out the initialization of this variable in the set class constructor, in line 19 of
Listing 14.3.

LisTING 14.3. THE CDbOdbcSet CONSTRUCTOR.

CDbOdbcSet: :CDbOdbcSet (CDatabase* pdb)

1:

2 : CRecordset (pdb)

3: |

4: /1 {{AFX_FIELD_INIT(CTestdb5Set)
5: m_AddressID = 0;

6: m_FirstName = _T("");

7: m_LastName = _T("");

8: m_SpouseName = _T("");

9: m_Address = _T("");

10: m_City = _T("");

11: m_StateOrProvince = _T("");
12: m_PostalCode = _T("");
13: m_Country = _T("");

14: m_EmailAddress = _T("");
15: m_HomePhone = _T("");

16: m_WorkPhone = _T("");

17: m_WorkExtension = _T("");
18: m_FaxNumber = _T("");

19: //m_Birthdate = 0;

20: m_SendCard = FALSE;

21: m_Notes = _T("");

22: m_nFields = 17;

23: //}}AFX_FIELD INIT

24: m_nDefaultType = dynaset;
25: }

Now compile and run your application once again. You'll find that you have a fully func-
tioning database application that retrieves a set of records from the database and allows
you to scroll through them and make changes to the data, as shown in Figure 14.9.

Adding New Records

You've already created a fully functioning database application without writing a single
line of code. However, afew functions are missing. Most database applications let the
user add new records to the database. To add a new record to the database, you'll want to
figure out what the next ID number should be, so you'll scroll to the last record in the set
to get the ID and then increment it by one. Next, you'll call the AddNew function to add a
new record, set the ID field to the new 1D you calculated, and then call the update func-
tion to save the new record. Finally, you'll call the Requery function to refresh the set of
records and then scroll to the last record in the set to let the user enter data into the new
record.

332 Day 14

FIGURE 14.9. L Untitled - testdb5 M= B
. . File Edt Record View Help
The running appli- DSE|FEB[S] 14 MR
cation. D EMail [nancyd@anywhere.com
First Name: [Nancy Home Phone: [[504) 555-9857
LastName: [Davalio Work Phane: [[504] 5559522
Spouse Name: 'F'E“'— Extension: l—
Address gu; ézAUthAve.E. Fax [(504) 5567722
Bithdste: [aiayz
City: [Seattle
™ SendCard
State: 'WA—
Notes:
Zip: [gg122
Country: [Usa
Ready [INoM[4
"l] Because the ID field in the database in defined as an AutoIncrement field,
you do not normally specify your own ID for the field. However, because the

record set is creating a new record with the ID field, you need to assign a
valid ID to the record or you won’t be able to add it to the database. The
method used in this application will not work with any multiuser database
because each person would generate the same IDs for new records. In this
situation, a centralized method for generating new IDs, such as a counter
field in the database, is a better solution. The other option is to create a SQL
statement to insert a new record into the database that was missing the ID
field. This allows the auto-increment functionality to work correctly.

To add this functionality to your application, start by adding a function to your record set
class to determine the next ID number to be used. Add a member function to the record
set class, cbbodbcSet. Specify the function type as long, the function declaration as
GetMaxID, and the access as public. Edit the function, adding the code in Listing 14.4.

LisTING 14.4. THE CDbOdbcSet GetMaxID FUNCTION.

1: long CDbOdbcSet::GetMaxID()

2: {

3: // Move to the last record

4: MovelLast();

5: // return the ID of this record
6 return m_AddressID;

7

}

Retrieving Data from an ODBC Database 333 |

Next, you'll need a menu entry that the user can select to add a new record to the data-
base. Add a new menu entry to the Record menu. Configure the new menu entry with the
propertiesin Table 14.8.

TABLE 14.8. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry 1D IDM_RECORD_NEW
Caption N&ew Record

Prompt Add a new record\nNew Record

Using the Class Wizard, add an event-handler function for the COMMAND event message
for this menu to the view class, cbbodbcview. Edit this function, adding the code in
Listing 14.5.

LisTING 14.5. THE CDbOdbcView OnRecordNew FUNCTION.

1 void CDbOdbcView: :OnRecordNew()

2: |

3 // TODO: Add your command handler code here

4: // Get a pointer to the record set

5: CRecordset* pSet = OnGetRecordset();

6: // Make sure that any changes to the current record
7 // have been saved

8: if (pSet->CanUpdate() && !pSet->IsDeleted())
9: {

10: pSet->Edit();

11: if (!UpdateData())

12: return;

13:

14: pSet->Update();

15: }

16: // Get the ID for the new record
17: long m_INewID = m_pSet->GetMaxID() + 1;
18: // Add the new record

19: m_pSet->AddNew() ;

20: // Set the ID in the new record
21: m_pSet->m_AddressID = m_1NewID;
22: // Save the new record

23: m_pSet->Update();

24: // Refresh the record set

25: m_pSet->Requery();

26: // Move to the new record

27: m_pSet->MovelLast();

28: // Update the form

29: UpdateData(FALSE);

| 334

Day 14

Add a new toolbar button for the New Record menu, and then compile and run your
application. You should be able to add new records to the database, entering the data you
want into the records.

Deleting Records

The only functionality remaining is the ability to delete the current record from the data-
base. You' Il need to add another menu entry to trigger this action. Once the action istrig-
gered, you'll verify that the user really does want to delete the current record and then
call the belete function to remove the record. Once the record has been deleted, you'll
call the MovePrev function to navigate to the previous record in the set.

To add this functionality to your application, you'll need a menu entry that the user can
select to delete the current record from the database. Add a new menu entry to the
Record menu. Configure the new menu entry with the properties in Table 14.9.

TABLE 14.9. MENU PROPERTY SETTINGS.

Object Property Setting

MenuEntry D IDM_RECORD_DELETE
Caption &Delete Record

Prompt Delete the current record\nDelete Record

Using the Class Wizard, add an event-handler function for the COMMAND event message
for this menu to the view class, cbbodbcview. Edit this function, adding the code in
Listing 14.6.

LISTING 14.6. THE CDbOdbcView OnRecordDelete FUNCTION.

void CTestdb5View: :0OnRecordDelete()

1
2

3 // TODO: Add your command handler code here

4: // Make sure the user wants to delete this record

5 if (MessageBox("Are you sure you want to delete this record?",
6 "Delete this record?", MB_YESNO ;, MB_ICONQUESTION) ==

0 IDYES)
7: {
8: // Delete the record
9: m_pSet->Delete();
10: // Move to the previous record
11: m_pSet->MovePrev();
12: // Update the form
13: UpdateData(FALSE) ;
14: }

15: }

Retrieving Data from an ODBC Database

Add another button to the toolbar and associate it with the 10DM RECORD_DELETE menu ID
so that the user can delete the current record without having to go to the menu. If you
compile and run your application at this point, you'll have a full-function database appli-
cation in which you can add, edit, and delete records, as shown in Figure 14.10.

Ficure 14.10. - Untitled - testdb5 1o
File Edit Record View Help
The completed appli- DEM fER[& 14y 222
cation. D [5 EMait [davischa@onramp.net
First Name: — [Diavis Home Phone: [123.456-7880
LastName: [Chapman Wok Phone: [ag7.654320
Spouselane: [ow | Bwension 13

Address: 123 Somewhere Farx [qa70543211

Bithdate: [1/10/51

Cit: [Nawhere
I¥ {Send Cardt
State: [Ts :
Notes:
Zip: [75222
County: [~
Ready NUM v

Summary

Today, you learned how you can use the ODBC interface to build database applications
that can be easily run against any database you might need to use. You saw how the
CRecordset class provides you with a substantial amount of functionality so that you can
provide database functionality in your applications. You also saw how the AppWizard

provides you with a large amount of database functionality without your typing a single
line of code.

Tomorrow, you will learn about Microsoft's newest database access technology, ActiveX
Data Objects, and how this can be combined with the ODBC interface to make your
database access even easier.

Q&A

Q Why would | want to use the ODBC interface instead of the Data Access
Objects?

A The DataAccess Objects (DAO) use the Microsoft Jet database engine to perform
all of the database access. This adds at least a megabyte of overhead to your appli-
cation, and if you're using a SQL -based database, the database is already doing all
of the work that the Jet engine is doing for you. What's more, the Jet database

| 336

Day 14

engine uses the ODBC interface to access any SQL-based databases. As a resullt,
unless you are using PC-based databases, such as Access, FoxPro, or Paradox, you
get better performance from going directly to the ODBC interface yourself.

How can | add different record setsin an MDI application?

You can add additional cRecordset-derived classes through the New Class Wizard
in an MDI application project. You need to specify that the new classis an MFC
class and that its base class is the CRecordset class. The New Class Wizard will
have you specify the data source, just as the AppWizard had you do when creating
the shell for today’s application. Once you create the record set class, you can cre-
ate a new view class the same way, specifying the base class as CRecordView.
Once you click the OK button, the New Class Wizard asks you to specify which of
the record set classes to use with the new record view class.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1. What does ODBC stand for?

2. What functions can you use to navigate the record set in a CRecordset object?
3. What view class should you use with an ODBC application?
4. What sequence of functions do you need to call to add a new record to arecord
Set?
5. What function do you need to call before the fields in the CRecordset object can
be updated with any changes?
Exercise

Add amenu entry and dialog to let the user indicate the record number to move to, and
then move to that record.

WEEK 2

INn Review

Now that you’ ve finished the second week, you should be
getting very comfortable working with Visual C++. You
should be beginning to understand how you can use the MFC
class hierarchy to provide a substantial amount of existing
functionality in your applications. You should also be starting
to understand how much supporting infrastructure your appli-
cations start with when you use the Visual C++ wizards to
construct as much of your application as you can.

=
@)

Thisis agood time to take a little break and try some of the
things that you’ ve learned on your own. Build an MDI appli-
cation, using a custom document type that you’ ve come up
with yourself. See how you can save and restore the docu-
ment, as well as maintain it. Practicing on your own is key to
cementing your understanding of what you' ve learned in this
book. Thiswill help you identify any areas that you might
need to go back and read again, as well as those areas where
you feel comfortable enough to not review.

12

By this time, you should have a good understanding of the
Document/View architecture and how it can be used to main-
tain the separation of the data from the representation of the
data that is displayed for the user. You' ve used this model for
both Single Document Interface (SDI) and Multiple
Document Interface (MDI) style applications, and you've
used it for reading and writing files to the disk drive. This
model is one of the main building blocks of MFC applica
tions built with Visual C++. You should know where to place
any initialization information for a new set of data and where
to clean up when closing a set of data.

[EEN
w

[EEN
EN

| 338

Week 2

You should also have a good understanding of how the SDI and MDI application styles
are alike and how they differ from each other and from the dialog application style. You
should have a good idea of when an application you are building should use one of these
styles and when it should use a different style. You should be able to create your own
SDI and MDI applications, as you need to, without any significant problems. If you've
got any questions about either of these areas, you might want to take another look at
Days 10 and 11 to review how the Document/View architecture works in both SDI and
MDI style applications.

You should understand how, in SDI and MDI style applications, you can save and restore
complex data structures in files on the system hard drive. You should be able to create
mixed-type objects that you create and maintain in the document object in your applica-
tions, be able to use the serialize function with the CArchive object to write the
objects to afile, and then be able to restore the objects at a later time. If you are having
any trouble understanding how this works or are running into any problems trying to
implement this functionality in your own applications, review Day 13.

Along with reading and writing files, you also have learned how you can design and
build toolbars for use in your SDI and MDI applications. At this point, you should be
completely comfortable with designing and creating your own toolbars and using them
in your applications. You should understand the importance of matching the toolbar but-
ton ID to the ID of the menu for which the toolbar will be used as a substitute. You
should also have a basic understanding of creating and using your own customized status
bar elements in SDI and MDI applications. You should understand how you can use the
UPDATE_COMMAND_UI event message to evaluate and alter the status of menu, toolbar, and
status bar elements, relieving you of al the work of setting each of these elements, and
how to maintain their appearance and status yourself. If you aren’t clear on how you can
do any of these things, you might want to go back over Day 12 one more time.

You' ve seen how you can build a simple database application, pulling data from a data-
base through the ODBC interface. You should have a basic understanding of how you
can build database applications using this approach, how to maintain the data, how to
add new records, and how to delete records. You should know how al the database inter-
action is directed through the record set class and how you can directly control the data
through this object. If you're not sure of some of this, you might want to look back at
Day 14 for a quick refresher.

You learned how easy it isto add ActiveX controls to your projects and how Visual C++
builds C++ classes around the control, enabling you to interact with the control asif it
were just another C++ object. You should have a good grasp of how to add any ActiveX
control (armed with the documentation for the control) to your application and interact

In Review

339 |

with it in a seamless manner. You should be able to declare a variable for the control, set
the control’s properties, call its methods, and react to its eventsjust asif it were a stan-
dard part of the Visual C++ development environment. If you aren’t sure how you can
do some of this, you might want to go back and reread Day 9.

Finally, you started this week by learning how to draw graphics on the windows of your
applications. You learned how to draw lines, circles, and squares, using a variety of pens
and brushes. You even learned how you can make a customized brush from a bitmap.
You learned how you can load a bitmap image from afile and display it for the user to
see. But most importantly, you learned about the device context and how it is used to
draw all these features on the windows of your applications. You should be able to use
these and other figure drawing device context methods to draw any image you might
want to draw on the window for the user to see and interact with. If you are unsure about
how you can do this, you probably want to look back at Day 8 once more.

By this time, you have built up quite a set of programming skills with Visual C++. You
are probably ready to tackle most of the smaller programming tasks you might
encounter—and maybe even a few not-so-small tasks. At this point, you are well on your
way to becoming an accomplished Visual C++ programmer. That said—now is not the
time to stop because there's still more to be learned. There's only one more week to go,
so tallyho!

WEEK 3

=
a1

At a Glance

For the third and final week, you'll be learning about several
of the more advanced aspects of building applications with
Visual C++. Some of these topics you' Il use more than
others, but if you do much work with Visual C++, odds

are that you'll work with most, if not all, of these areas
before long.

=
o

l—\
\l

You'll begin the week by picking up where you left off the
previous week with building database applications. On Day
15, you'll learn about Microsoft’s latest database access tech-
nology, ActiveX Data Objects (ADO), and how you can
incorporate it into your Visual C++ applications to provide
database access to your application’s users. You'll learn how
using ADO is similar to and different from building database
applications using ODBC.

On Day 16, you'll learn how to create your own custom
classes and how to approach the design of these classes.
You'll also learn how to build your functionality into library
modules that you can give to other Visual C++ programmers
for use in their applications.

19

On Day 17, you'll learn a different means of allowing other
programmers to use your code by building DLLs. You'll learn
how to build two different types of DLLs: those that can be
used only by other Visual C++ applications and those that can
be used by applications built with any other Windows devel-
opment language or tool.

N
@)

On Day 18, you'll learn how you can enable your applica-
tions to work on two or more separate tasks at the same time.
You'll learn how to trigger some background processing
whenever your application is sitting idle and how to spin off
independent threads that continue to work even when your
application is busy.

N
=

| 342

Week 3

On Day 19, you'll learn how to build your own ActiveX controls that can be used in
other applications or even in Web pages. You'll see how you can define the properties
and methods for your control and how you can trigger events in the containing applica-
tion from your control.

On Day 20, you'll learn how Internet applications communicate with each other using
the Winsock interface. You'll learn how you can use this same interface to enable your
applications to communicate over a network or even on the same machine.

Finally, on Day 21, you'll see how easy it is to incorporate the Microsoft Internet
Explorer Web browser into your own Visual C++ application. You'll learn how you can
control the Web browser, specifying what Web pages for it to display, and how you can
provide the user with information about what the browser is doing.

When you finish this final week, you'll be knowledgeable about most areas of Visual
C++ programming. Although there will still be areas and technologies that require more
in-depth study for you to master, you'll know and understand what those areas are all
about. You'll be prepared to dive head first into all areas of Visual C++ programming,
and by then you might aready have identified some areas that you want to learn more
about than can be covered in this book.

You have only one week |eft to go, so go ahead and dive in and get going.

WEEK 3

DAY 15

Updating and Adding
Database Records
Through ADO

Now that you’ ve gotten your feet wet with an ODBC database application, one
of the oldest Microsoft database access technologies, it's time to turn your
attention to the newest Microsoft database access technology, ActiveX Data
Objects (ADO). Designed for use with all of Microsoft’'s programming and
scripting technologies, ADO presents the Visual C++ programmer with new
challenges in database programming, while still keeping the functionality famil-
iar. Today, you will learn

- How ADO works and how it uses the OLE DB technology for providing
simple database access.

- How you can build a simple ADO application in a couple of minutes
using ActiveX controls.

344 Day 15

- How you can build a complete database application using regular forms controls.

- How you can use special ADO macros to build a custom record set class for usein
your database applications.

H This chapter works with some features that may not be included in all
Gaution P y

versions of Visual C++. Although ADO is an important new area of pro-
gramming with Microsoft data access technologies, this chapter discusses
some things that you may not have the ability to do with your version of
Visual C++.

What Is ADO?

A couple years ago, Microsoft designed a new data access technology called OLE DB.
This data access technology was intended to be much more than simply away of getting
data into and out of databases. This technology was intended to be the means of access-
ing data, regardless of where that data may be located. Through the OLE DB technology,
you could access mail messages, spreadsheets, files, and so on. Anything that might have
data could possibly be accessed through the OLE DB technology. This was one of the
first technologies to be produced from the research and development of the object-
oriented file system at the heart of what Microsoft has been calling “ Cairo” for the

past few years.
NIIII} Many of the technologies bundled under the product name of Cairo will be
_ released some time next year in the Windows NT 5.0 operating system.

As you can imagine, with the range of functionality that OLE DB must have to access
datain all of those different sources, it might be quite complex to work with this tech-
nology. Well, it is. Thisis where ActiveX Data Objects come into play. ADO was
designed as another layer on top of OLE DB, specifically for providing database access.

One of the goalsin designing ADO was to create a control that could be used to provide
data access and control in Web pages, caching the data records on the client. Part of the
reason for this goal was to allow a\Web browser user to access an entire set of data
records, without having to pull down each individual record, one at a time, to navigate
and make changes to the records. Because of this capability with ADO, the ADO control
is distributed with Microsoft’s Internet Explorer Web browser (version 4.0 and above).

Updating and Adding Database Records Through ADO

345 |

ADO Objects

To make ADO as easily usable in scripting languages such as VBScript asit isin pro-
gramming environments such as Visua Basic, Microsoft tried to keep the number of
objects to a minimum. As a result, you have a small number of basic objects:

- Connection
- Error

- Command

- Parameter
- Recordset
+ Field

Along with these objects, you have collection objects for containing collections of Error,
Parameter, and Field objects.

The Cconnection Object

The connection object is used for establishing and maintaining a connection to a data-
base. This object is configured with the connection information, including database loca-
tion, user 1D, and password, before opening the connection. Once all of thisinformation
is appropriately configured, the connection object should have its open method called to
open the connection. Once the Connection object goes out of scope, the connection is
automatically closed. If you want more control over closing and opening the database
connection, you can call the Connection object’s Close method to close the connection.

The Connection object is also the object through which any high-level connection func-
tionality is controlled. Thisincludes all transaction control, through the Connection
object’'sBeginTrans, CommitTrans, and RollbackTrans methods.

The Error Object

Whenever a database error occurs, the error information from the database is placed into
an ADO Error object. The error information in the error object is the database error
information, not ADO error information. Whenever you encounter an error and need to
look up the error information to determine what went wrong, you'll need to examine the
database error codes and descriptions, not the ADO error codes.

The command Object

The command object is used to execute commands in the database. You can use this object
to run SQL statements or call stored procedures (SQL functions that are stored in the

| 346

Day 15

database). Any time that a command returns rows of data, you need to attach the command
object to aRecordset object for the returned data to be stored in.

When you call a stored procedure, as with functions in any other programming language,
you' |l often need to pass parameters to the stored procedure. To pass these parameters,
you'll attach a series of Parameter objects to the command object. Each of the Parameter
objects will have the name of the parameter that it holds the value for, along with the
value that should be passed to the database for that particular parameter.

The pParameter Object

The parameter object is used for passing variables and for calling stored procedures or
parameterized queries. These are attached to a Command object for use in calling the com-
mand that has been programmed into the Command object.

The Recordset Object

The Recordset object contains a set of records from the database. The set of recordsis
the result of a command being sent to the database that results in a set of records being
returned. You can navigate through the Recordset, much like you do with the Recordset
objects for other database access technologies. You can also access the fields in each
record in the Recordset through the Field objects that are associated with the
Recordset. You can update the records in the Recordset, and then use the Recordset to
update the database. You can also insert new records into the Recordset, or delete
records and have those changes made in the database.

The Field Object

The Field object represents a single column in the Recordset. Each Field object con-
tains the column name, data value, and how the data value should be represented.
Because ADO was designed to be used in Microsoft’s scripting languages, and the only
data type available in these scripting languages is the variant datatype, the Field
objects always contain avariant data value. The data value is automatically converted
to the correct data type when updating to the database. As the programmer working with
the ADO objects, you will have to convert the value from a variant to whatever data
type you need it to be, as well as convert it back to avariant when updating the value.

Using the ADO ActiveX Control

There are two different ways in which you can use the ADO control in your Visual C++
applications. The simple way to incorporate ADO into your application is through the
use of ActiveX controls. You can add the ADO data control to your Visual C++ project,
just like any other ActiveX control, as shown in Figure 15.1.

Updating and Adding Database Records Through ADO 347 |

Ficure 15.1. Components and Controls Gallery
Addi ng the ADO Ehnnsaa:nmp?ner\t to insert into your project:
Lookir: | 8 Regitered ActiveX Contil: =+ 1| 5| [8

ActiveX control to a
project.

B2 MCTwind Contiel Tl Mictosoft Animation Con
W 1 ediaview 1.41k Control i Microsoft Arimation Con
o4 Microsaft Activei Hat Spot Control 1.0 B Miciosot Chart Control,
B3] Micrasoft ActiveX Imags Cantiol 1.0 Microsaft Common Dialo
B Microsoft ActiveX Upload Control, version 1.5 Microsoft Communicatior
BF Microsoft ADD Data Contr on 6.0 [Microsoft Coolbar Contrc

Filename: [Micrasoft ADO Data Control, version B.0.Ink Ingert |
[Microsoft ADD Data Coniol 6.0 Close
More Infa

151
b.

n

=

Path to control:
[CAWINNT 354 System32\MSADODC.OCX

Once you add the ADO contral to your project, and place it on awindow, you'll need to
specify the data connection in the control properties, as shown in Figure 15.2. You'll also
need to specify the source for the records that will be retrieved by the control, as shown
in Figure 15.3.

FIGURE 15.2.

Soecifying the data-
base connection.

Authentication | RecordSource | C¢

Source of Connectior

€ Use Data Link File

Eroneey
&' Use ODBC Data Source Name

[Tvvcoe =] hew

e

" UUse Connection Sting

Other Attributes: |

FiGure 15.3.

B jes =
L h General | Conirol | Authentication | FecordSource | c [A]]

Specifying the record eeson
source. Command Type

[1- scCmdTent =

Table or Stored Procedure Name

Command Text (SQL]

Select * fiom Addresses =l

To use the ADO control efficiently, you'll also want to use data-bound controls that are
ADO-enabled, such as the Microsoft DataGrid control. When you add these controls to
the window with the ADO control, you'll specify the ADO control as the data source

348 Day 15

for the control, as shown in Figure 15.4. If the control is designed to only provide access
toasinglefield in arecord set, you'll also need to specify which field is to be used for

the control.
FIGURE 15.4. Miciosolt DataGiid Conlral, Version 6.0 Propetlis E
o 4R % Layout | Color | Font | Spite | Fomat Al | Kl

Specifying the data D Vako

Hlawkddiew False =
Source. Alawhirows Tue

AlanDelete False

Alawlipdate Tue

Appearance T dbgaD

BackColor DB0000005

BorderSiyle 1- dbgFiredsingle

Caption Databiid!

ColumrHeaders Tue

Enabled

Font M Sans Sert)
ForeColor | DvE00000E =l

Once you add al these controls to the window and configure them, you can run your
application and have full database access through ADO without having written a single
line of code, as shown in Figure 15.5.

Ficure 15.5. 7 Untitled - SimpleAda M=
3 File Edit Yiew Help
A running ADO Dl =ie& e
control database WD E
application.
DataGridi
Address|D | FirstName LastName SpouseName Addr
» Mancy Darvolio Paul 507
2 Andrew Fuller Anne 308
3 Janet Leverling Robert 722
4 Margarst Peacock Michael 110]
5 John Buchanan 14 G.
14 Davis Chapman Dore 123
22 Dore Terada Davis 123
23 John Chapter Paul 507
24 Pogo Terada 987
33 Myra Terada 987
34 Harvey Chapman |
35 Myneva Chapman |234
[« | > -
Ready [NOM[2

This is such a simple way to build database applications: Just place controls on a window
and configure the properties to tell it where to get the data. What's the downside of
building ADO applications this way? First, using this approach involves a lot of unneces-
sary overhead in building ADO applications. For each SQL query or table that you want
to pull in a separate record set, you have to add a separate ADO control. Each of these
ADO controls will establish a separate connection to the database, which could cause
problems with databases that have a limited number of connections available (not to

Updating and Adding Database Records Through ADO 349 |

mention the additional overhead on the application). Finally, not al data-bound controls
are ADO enabled. ADO is such a new technology that there are few controls that you can
use with it at this time. You may find some controls that allow you to retrieve and dis-
play datafor the user, but do not allow the user to change and edit the data. Others may
not even provide you with that much functionality.

Importing the ADO DLL

If you look around in the MFC class hierarchy, you'll find that there are no classes for
use with ADO. If you don’t want to use the controls approach, then what are your
options? Do you have to create the classes yourself? No, Microsoft has provided other
means for you to create and use classes for each of the objectsin ADO, through the use
of anew C++ precompiler directive called #import.

The #import precompiler directive was first added to Visual C++ with the 5.0 release.
You can use this directive to import an ActiveX DLL that has been built with the
IDispatch interface description included in the DLL. This directive tells the Visual C++
compiler to import the DLL specified by the #import directive and to extract the object
information from the DLL, creating a couple of header files that are automatically
included in your project. These header files have the filename extensions . TLH and . TLI
and are in the output directory for your project (the Debug or Release directory, the same
directory where you'll find the executable application after you' ve compiled your pro-
ject). These two files contain definitions of classes for each of the objectsin the DLL
that you can use in your code. The #import directive also tells the compiler to include
the DLL as part of the project, eliminating the need to include the . L1B file for the DLL
in your project.

You can import the ADO DLL by placing the following code at the beginning of the

header file in which you are defining any database objects:

#define INITGUID

#import "C:\Program Files\Common Files\System\ADO\msado15.d1ll"
Orename_namespace("ADOCG") rename("EOF", "EndOfFile")

using namespace ADOCG;
#include "icrsint.h"

In these four lines of directives, the first line defines a constant that needs to be defined
for ADO. The second imports the ADO DLL, creating the two header files mentioned
earlier. After the filename to be imported, this directive includes two attributes to the
#import directive. The first, rename_namespace, renames the namespace into which

the DLL has been imported. This is followed with the line following the #import, where
the renamed namespace is specified as the one used. The second attribute, rename,
renames an element in the header files that are created using the #import directive.

| 350

Day 15

The reason you rename elements in these header filesis to prevent conflicts with another
element named elsewhere. If you examine the header file, the element specified is not
renamed in the file, but when the compiler reads the file, the element is renamed. The
final line includes the ADO header file, which contains the definition of some macros
that you will use when writing your ADO applications.

Connecting to a Database

Before you can use any of the ADO objects, you need to initialize the COM environment
for your application. You can do this by calling the coInitialize API function, passing
NULL asthe only parameter, as follows:

::CoInitialize(NULL);

This enables you to make calls to ActiveX objects. If you leave out this one line of code
from your application, or don't put it before you begin interacting with the objects, you
get an COM error whenever you run your application.

When you are finished with al ADO activity, you also need to shut down the COM envi-
ronment by calling the Couninitialize function, asfollows:

CoUninitialize();

This function cleans up the COM environment and prepares your application for shutting
down.

Once you initialize the COM environment, you can create a connection to the database.
The best way to do thisis not to declare a Connection object variable, but to declare a
Connection object pointer, ConnectionPtr, and useit for all your interaction with the
Connection object. Once you declare a Connection object pointer, you can initialize it
by creating an instance of the Connection object, calling the CreateInstance function,
passing it the uuID of the Connection object asits only parameter, as follows:

_ConnectionPtr pConn;
pConn.CreateInstance(__uuidof(Connection));

'I'ip When you work with these objects and functions, you need to use the cor-

rect number of underscore characters in front of the various object and
function names. The _ConnectionPtr object has only a single underscore
character, whereas the __uuidof function has two.

Once you create the object, you can call the open function to establish the connection to
the database. This function takes four parameters. The first parameter is the connection
definition string. This string defines the OLE DB data source for the database. It may be

Updating and Adding Database Records Through ADO 351 |

an ODBC OLE DB driver, where OLE DB is sitting on top of an ODBC data source, as
you'll use in your sample application. If you are using SQL Server or Oracle databases,
it may be a direct connection to the OLE DB interface provided by the database itself.
The second parameter is the user ID for connecting to the database. The third parameter
is the password for connecting to the database. The fourth parameter is the cursor type to
use with the database. These types are defined in the msado15. t1h header file that is cre-
ated by the #import directive. A typical use of the open function to connect to an ODBC
data source that doesn’'t need a user ID or password is like the following:

pConn->0pen(L"Provider=MSDASQL.1;Data Source=TYVCDB", L"", L"",
OadOpenUnspecified);

Executing Commands and Retrieving Data

Once you have the connection open, you can use a Command object to pass SQL com-
mands to the database. This is the normal method of executing SQL commands with
ADO. To create a command object, follow the same process that you used to create a
Connection object. Declare a command object pointer, CommandPtr, and then create an
instance of it using the uu1D of the command object, as follows:

_CommandPtr pCmd;
pCmd.CreateInstance(__uuidof (Command));

Once you create your Command object, assuming that you have aready established the
connection to the database, set the active connection property of the Command object to
the open Connection object pointer, as follows:

pCmd->ActiveConnection = pConn;

Next, specify the SQL command to be executed by setting the CommandText property of
the command object, as follows:

pCmd ->CommandText = "Select * from Addresses";

At this point, you have two options for how you execute this command and retrieve the
records. The first isto call the Ccommand object’s Execute method, which will return a
new Recordset object, which you'll want to set to aRecordset object pointer, as
follows:

_RecordsetPtr pRs;
pRs = pCmd->Execute();

The other approach to running the command and retrieving the records is to specify that
the command object is the source for the records in the Recordset. This requires cresting
the Recordset object as follows:

_RecordsetPtr pRs;

pRs.CreateInstance(__uuidof (Recordset));
pRs->PutRefSource(pCmd) ;

| 352

Day 15

Now, you'll need to create two NULL variant values to pass as the first two parameters
to the Recordset’s Open method. The third parameter will be the cursor type to use, fol-
lowed by the locking method to use. Finally, the fifth parameter to the Recordset’s Open
method is an options flag that indicates how the database should evaluate the command
being passed in. You do this with the following code:

// Create the variant NULL

_variant_t vNull;

vNull.vt = VT_ERROR;
vNull.scode = DISP_E_PARAMNOTFOUND;

// Open the recordset
pRs->0pen(vNull, vNull, adOpenDynamic, adLockOptimistic, adCmdUnknown);

You could take another approach to accomplish all of the preceding tasks with only a
few lines of code. Skip the use of the command and Connection objects altogether, plac-
ing all the necessary connection information in the Recordset’s Open function. You can
specify the SQL command as the first parameter and the connection information as the
second parameter, instead of the two NULLS that you passed previously. This method
reduces all of the preceding code to the following few lines:

_RecordsetPtr pRs;

pRs.CreateInstance(__uuidof (Recordset));
pRs->0pen(_T("Provider=MSDASQL.1;Data Source=TYVCDB"),

_T("select * from Addresses"), adOpenDynamic,
adLockOptimistic, adCmdUnknown) ;

“p Although placing all of the command and connection information into the

Recordset Open function is fine for a simple application, such as the one that
you will build today, you are better off using the Connection object with any
application that has more than a couple of database queries. This allows you
to make a single connection to the database and use that one connection
for all interaction with the database.

Navigating the Recordset

Once you've retrieved a set of records from the database, and you are holding themin a
Recordset object, you'll need to navigate the set of records. This functionality is avail-
able, just as you would expect, through the MoveFirst, MovelLast, MovePrevious, and
MoveNext functions. None of these functions take any parameters because they perform
the functions that you would expect them to perform.

Updating and Adding Database Records Through ADO 353 |

Along with these functions, the Recordset object also has two properties, BoF and EOF
(which you should normally rename to prevent a collision with the default definition of
EOF), which can be checked to determine if the current record in the set is beyond either
end of the set of records.

Accessing Field Values

When you need to begin accessing the data values in each of the fields is where working
with ADO in Visual C++ begins to get interesting. Because ADO is intended to be easy
to use in Microsoft’s scripting languages, VBScript and JScript, which only have
variant datatypes, all data elements that you'll retrieve from fields in the ADO
Recordset are variant values. They have to be converted into the data types that you
need them to be. There are two ways of doing this. The first way is the straight-forward
way of retrieving the valuesinto a variant and then converting them, as in the following
code:

_variant_t vFirstName;
CString strFirstName;

vFirstName = pRs->GetCollect(_variant_t("FirstName"));
vFirstName.ChangeType (VT_BSTR);
strFirstName = vFirstName.bstrval;

The not-so-straight-forward way to do this is actually the better way, and in the long run,
isalot easier to work with. Microsoft has created a series of macros that perform the
conversion for you and that maintain a set of variables of the records in the set. To do
this, you'll define a new class to use as the interface for your record set. This class will
be a descendent of the CADORecordBinding class, which is defined in the icrsint.h
header file, which you included just after the #import directive. This class will not have
any constructor or destructor but will have a series of macros, along with a number of
variables. Each field in the set of records has two variables, an unsigned long, whichis
used to maintain the status of the variable, and the field variable itself. These variables
must be regular C variables, and they cannot be C++ classes such as cstring. A smple
example of this class declaration is the following:

class CCustomRs :

public CADORecordBinding

{

BEGIN_ADO_BINDING(CCustomRs)
ADO_FIXED_LENGTH_ENTRY(1, adInteger, m_lAddressID, 1lAddressIDStatus,
OFALSE)
ADO_VARIABLE_LENGTH_ENTRY2(2, adVarChar, m_szFirstName,

Osizeof(m_szFirstName), 1lFirstNameStatus, TRUE)

ADO_FIXED_LENGTH_ENTRY (3, adDate, m_dtBirthdate, 1BirthdateStatus,
OTRUE)
ADO_FIXED_LENGTH_ENTRY (4, adBoolean, m_bSendCard, 1SendCardStatus,
O TRUE)

| 354

Day 15

END_ADO_BINDING()

public:

LONG m_lAddressID;

ULONG 1AddressIDStatus;
CHAR m_szFirstName[51];
ULONG 1FirstNameStatus;
DATE m_dtBirthdate;

ULONG 1BirthdateStatus;
VARIANT_BOOL m_bSendCard;
ULONG 1SendCardStatus;

b

Once you define this record layout class to match the record layout that will be returned
by your database query, you can declare a variable of this class for use in your applica-
tion, as follows:

CCustomRs m_rsRecSet;
Next, you need to create a pointer to an IADORecordBinding interface, as follows:
IADORecordBinding *picRs = NULL;

Thisis apointer to a com interface that is part of the ADO Recordset object. Once you
retrieve the set of records, you need to retrieve the pointer to the IADORecordBinding
interface and bind the custom record set class to the Recordset object, as in the follow-
ing code:
if (FAILED(pRs->QueryInterface(__uuidof (IADORecordBinding), (LPVOID
0 *)&picRs)))

_com_issue_error (E_NOINTERFACE) ;
picRs->BindToRecordset (&m_rsRecSet);

Now, as you navigate the records in the set, you just need to access the member variables
of your custom record class to retrieve the current value for each field.

The BEGIN_ADO_BINDING and END_ADO_BINDING Macros

The key to the second method of accessing the data values in the record set isin the
macros that are used in defining the record class. The set of macros start with the
BEGIN_ADO_BINDING macro, which takes the class name asits only parameter. This macro
sets up the structure definition that is created with the rest of the macros that follow.

The set of macros is closed by the END_ADO_BINDING macro. This macro doesn’t take any
parameters, and it wraps up the definition of the record binding structure that is created
in the class. It isin the rest of the macros, which are used between these two, where the
real work is done.

Updating and Adding Database Records Through ADO 355 |

The ADO_FIXED_LENGTH_ENTRY Macros

The ADO_FIXED_LENGTH_ENTRY macro is used for any database fields that are fixed in
size. It can be used with a date or boolean field, or even atext field that is a fixed size,
with no option for any variation in the database. There are two versions of this macro;
you add a 2 to the end of the name of the second version (ADO_FIXED LENGTH_ENTRY2).

Both versions require the same first three and last parameters. The first version requires
an additional parameter that is not required in the second version. The first parameter is
the ordinal number of the field in the record set. Thisis the position in the field order as
returned by the SQL query that is run to populate the record set. The second parameter is
the data type of the field; the available data types are defined in the header file created
by the #import directive. The third parameter is the variable into which the datavalueis
to be copied. For the first version of the macro, the fourth parameter is the variable for
the field status (the unsigned long that you defined with the variable for the actual
value). The last variable is a boolean that specifies whether this field can be modified.

The ADO_NUMERIC_ENTRY Macros

You use the ADO_NUMERIC_ENTRY macros with numeric fields only. They are similar to the
ADO_FIXED LENGTH_ENTRY macros in that there are two different versions of the macro,
named in the same way. In these macros, the first five parameters are the same in both
versions, along with the final parameter. Like with the ADO_FIXED LENGTH_ENTRY

macros, the first version has an additional parameter that is not used in the second ver-
sion.

The first three parameters for the ADO_NUMERIC_ENTRY macros are the same as those for
the ADO_FIXED LENGTH_ENTRY Macros, as are the last parameter and the next to last para-
meter for the first version. It is the fourth and fifth parameters that are unique to these
macros. The fourth parameter specifies the precision of the value in this field of the
record set. The fifth parameter specifies the scale of the value. Both of these parameters
are crucial in correctly converting the value to and from avariant datatype.

The ADO_VARIABLE_LENGTH_ENTRY Macros

The final series of macrosisthe ADO_VARIABLE LENGTH_ENTRY macros. You use this
series of macros with database fields that are likely to vary in length. With a SQL -based
database, you want to use this series of macros with any varchar (variable-length char-
acter string) columns. There are three versions of this macro. In all three versions, the
first four parameters are the same, and the final parameter is the same. It is the parame-
ters between them that vary.

| 356

Day 15

The first parameter is the ordinal position of the column in the record set as returned by
the SQL query. The second parameter is the data type. The third parameter is the variable
in which the data value should be placed. The fourth parameter for all versions of the
macro is the size of the variable into which the value is to be placed. This prevents the
data from being written past the end of the variable that you defined for it to be placed
in. As with the previous macros, the final parameter specifies whether the field is update-
able.

In the first version of this macro, there are two parameters between the fourth and final
parameters. The second version of this macro only has the first of these two parameters,
and the third version only has the second of these two parameters. The first of these two
parameters is the status variable for use with this field. The second of these two parame-
tersisthe length of the field in the database. The preceding example used the second
version of this macro.

Updating Records

When you need to update values in arecord in the recordset, how you handle it depends
on which of the two methods you used to retrieve the data el ements from the recordset.
If you retrieved each field and converted it from avariant yourself, you need to update
each individual field that has been changed. The update is done using the Recordset
object’s Update method, which takes two variables, the field being updated and the new
value for the field. You could make this update using the following code:

_variant_t vName, vValue;

vName.SetString("FirstName");

vValue.SetString("John");
pRs->Update(vName, vValue);

If you created your record class and bound it to the recordset, updating the record is a lit-
tle simpler. Once you have copied the new values into the variables in the record class,
you can call the record-bound version of the update function, asin the following:

picRs->Update (&m_rsRecSet);

This updates the record in the Recordset object to be updated with the values in the
record class that you have bound to the set.

Adding and Deleting

Adding and deleting records from an ADO recordset is similar to how you accomplish
it in other database access technologies. However, there are some slight subtleties to how
you perform the addition of new records.

Updating and Adding Database Records Through ADO

357 |

For deleting the current record, you can call the Recordset object’s Delete method. This
method requires a single parameter that specifies how the delete is supposed to be done.
Most likely, you'll pass the adAffectCurrent value so that only the current record in the
recordset is deleted, as in the following code:

pRs->Delete(adAffectCurrent);
pRs->MovePrevious() ;

As with any other database access technology, once you' ve deleted the current record,
there is no current record, so you need to navigate to another record before alowing the
user to do anything else.

When you are adding a new record, you can call the Recordset object’s AddNew method.
Once you have added a new record, the new record is the current record in the record set.
If you check the variables in the record class that you created, you'll find that they are al
empty. However, you cannot just begin entering data values into these fields. To allow
the user to immediately enter the various data elements in the new record, you'll blank
out the values in the record class and pass this variable as the only parameter to the Add
New class. You need to cal it through the record-binding interface pointer, as in the fol-
lowing example:

CString strBlank = " ";
COleDateTime dtBlank;

m_rsRecSet.m_lAddressID = 0;
strcpy(m_rsRecSet.m_szFirstName, (LPCTSTR)strBlank);
m_rsRecSet.m_dtBirthdate = (DATE)dtBlank;
m_rsRecSet.m_bSendCard = VARIANT_FALSE;
picRs->AddNew(&m_rsRecSet);

This alows you to provide the user with a blank record, ready for editing. Once the user
has entered all the various values in the record, copy all these values back to the record
variable. Then, call the update method to save the record.

Closing the Recordset and Connection Objects

Once you finish working with arecord set, you'll close the record set by calling the
Close method, asfollows:

pRs->Close();

Once you finish all database interaction for the entire application, you'll also close the
connection to the database by calling the Connection object’s Close method:

pConn->Close();

358 Day 15

Building a Database Application Using ADO

The sample application that you will build today is another simple database application,
basically the same as the one you built yesterday. You' Il use ADO to retrieve a set of
records from an Access database, providing functionality to navigate the record set. The
user will be able to make changes to the data in the record set, and those changes will be
reflected in the database as well. The user will aso be able to add new records to the
record set and delete records as desired. You will accomplish all of thisusing ADO as
the means of accessing the database, which will go through the ODBC driver that was
configured yesterday.

Creating the Application Shell

The application that you will build today will be an SDI-style application. As with sev-
eral other sample applications that you build in the course of reading this book, every-
thing that you do in today’s application is just as applicable to an MDI or dialog-style
application. To start the application, you'll use the MFC AppWizard to build the applica
tion shell, using most of the SDI-style application default settings.

To start your application, create a new AppWizard project, naming the project something
appropriate, such as bbAdo. Specify on the first panel of the AppWizard that you are
building an SDI-style application. Accept all the default settings for steps 2 through 5,
being sure to leave the second step stating that you want no database support included in
the application. On the final AppWizard step, specify that the view class should be inher-
ited from the CFormview class.

Once you finish creating your application shell, design the main dialog form for use in
your application. Add the standard controls for each of the fields in the Addresses table
from the database you used yesterday (or if you used a different database yesterday, add
controls for all the fields in the table that you used), as shown in Figure 15.6. Configure
the controls using the properties listed in Table 15.1.

'I'ip If you want to save a little time when building the example, you can leave

out most of the controls and database fields from the application. The key
fields that you’ll need to include on the screen are ID, First and Last Names,
Birthdate, and Send Card. If you want to leave out the other fields from the
application, that’s fine. You will need to include these fields in the
CCustomRs class that you create in this chapter.

Updating and Adding Database Records Through ADO 359 |

FIGURE 15.6. *+., dbado - Microsoft Visual C++ - [DbAdo.c - IDD_DBADO_FORM (Dialog)]
T inf | t [E)Ele Edt View Insert Project Buld Layout Tooks Window Help =15 x|
€ maln Torm layout. T
y B EEE| e (D DR G =)
CDbAdaView =110 class members) =176 CObAddView A - JJ@ sl e 8 i ‘
2l T T T T T T R TR SO
1 DbAda = o =
Addiess D [Eqy Email Address [Eqi N
] abl [O
= Fisteme [Eqt | HomePhone [Edr % ® &
LestMame [Eqr | WekPhome [Emr | @ B
E Spouse Name [E gt ‘Work Extension [Eqi; & @ -
E 8 Addiess I_Ed‘t Faw Number |—m =] =
d T T— Bihdete [Ez | = H a8
S sweOiFeviee [Em SendCard [=
PosilCode [Eqe | Woes [Esr | e E
? Countriy [Edit
BaCL. | R... | (=] Fi. - Bl

[[-=:|m|Hz|a D=l

E| -
A 7
Build {Debug , Find in Files 1) Findin Files2 3 4| | Llﬂ

Ready b [0o [fF 320x200 [READ

TABLE 15.1. CONTROL PROPERTY SETTINGS.

Object Property Setting
Static Text ID IDC_STATIC

Caption Address ID
Edit Box ID IDC_EDIT_ADDRESSID
Static Text ID IDC_STATIC

Caption First Name
Edit Box ID IDC_EDIT_FIRSTNAME
Static Text ID IDC_STATIC

Caption Last Name
Edit Box ID IDC_EDIT_LASTNAME
Static Text ID IDC_STATIC

Caption Spouse Name
Edit Box ID IDC_EDIT_SPOUSENAME
Static Text ID IDC_STATIC

Caption Address
Edit Box ID IDC_EDIT_ADDRESS

continues

| 360 Day 15

TABLE 15.1. CONTINUED

Object Property Setting
Static Text ID IDC_STATIC

Caption City
Edit Box ID IDC_EDIT_CITY
Static Text ID IDC_STATIC

Caption State Or Province
Edit Box ID IDC_EDIT_STATEORPROVINCE
Static Text ID IDC_STATIC

Caption Postal Code
Edit Box ID IDC_EDIT_POSTALCODE
Static Text ID IDC_STATIC

Caption Country
Edit Box ID IDC_EDIT_COUNTRY
Static Text ID IDC_STATIC

Caption Email Address
Edit Box ID IDC_EDIT_EMAILADDRESS
Static Text ID IDC_STATIC

Caption Home Phone
Edit Box ID IDC_EDIT_HOMEPHONE
Static Text ID IDC_STATIC

Caption Work Phone
Edit Box ID IDC_EDIT_WORKPHONE
Static Text ID IDC_STATIC

Caption Work Extension
Edit Box ID IDC_EDIT_WORKEXTENSION
Static Text ID IDC_STATIC

Caption Fax Number
Edit Box ID IDC_EDIT_FAXNUMBER
Static Text ID IDC_STATIC

Caption Birthdate
Edit Box ID IDC_EDIT_BIRTHDATE
Static Text ID IDC_STATIC

Caption Send Card

Updating and Adding Database Records Through ADO

361 |

Object Property Setting
Check Box ID IDC_CHECK_SENDCARD
Static Text ID IDC_STATIC
Caption Notes
Edit Box ID IDC_EDIT_NOTES

Once you add al of the controls to the form, use the Class Wizard to attach variables to
each of these controls, as specified in Table 15.2. The variables should match the data

types of the columns in the database that the control will be used to display.

TABLE 15.2. CONTROL VARIABLES.

Object Name Category Type
IDC_CHECK_SENDCARD m_bSendCard Value BOOL
IDC_EDIT_ADDRESS m_strAddress Value cstring
IDC_EDIT_ADDRESSID m_lAddressID value long
IDC_EDIT_BIRTHDATE m_oledtBirthdate Value COleDateTime
IDC_EDIT_CITY m_strCity Value CString
IDC_EDIT_COUNTRY m_strCountry Value cString
IDC_EDIT_EMAILADDRESS m_strEmailAddress Value CString
IDC_EDIT_FAXNUMBER m_strFaxNumber Value cString
IDC_EDIT_FIRSTNAME m_strFirstName Value CString
IDC_EDIT_HOMEPHONE m_strHomePhone Value cstring
IDC_EDIT_LASTNAME m_strLastName Value CString
IDC_EDIT_NOTES m_strNotes value CString
IDC_EDIT_POSTALCODE m_strPostalCode Value CString
IDC_EDIT_SPOUSENAME m_strSpouseName Value CString
IDC_EDIT_STATEORPROVINCE m_strStateOrProvince Value CString
IDC_EDIT_WORKEXTENSION m_strWorkExtension Value CString
IDC_EDIT_WORKPHONE m_strWorkPhone Value CString

Building a Custom Record Class

Before you go any further in building your application, you need to create your custom
record class that you will bind to the record set. This class will need public variables
for each of the columns in the database table that you are selecting, as well as status

| 362 Day 15

variables for each of these columns. You'll also build the set of macros to exchange the
column values between the record set and the class variables. To create this class, create
anew class using the same method you used in previous days, specifying that a generic
class. Specify a suitable class name, such as ccustomRs, and specify the base class as
CADORecordBinding with public access.

Once you have created your new class, delete the constructor and destructor functions
from both the header and source code files for the new class. Edit the header file for
your new class, importing the ADO DLL and filling in the macros and variables, asin
Listing 15.1.

LisTING 15.1. THE CUSTOM RECORD CLASS.

1: #define INITGUID

2: #import "C:\Program Files\Common Files\System\ADO\msado15.d11"
Orename_namespace ("ADOCG") rename("EOF", "EndOfFile")

using namespace ADOCG;

#include "icrsint.h"

class CCustomRs :
public CADORecordBinding
{
BEGIN_ADO BINDING(CCustomRs)
ADO_FIXED_LENGTH_ENTRY(1, adInteger, m_lAddressID,
0 1AddressIDStatus,FALSE)
ADO_VARIABLE_LENGTH_ENTRY2(2, adVarChar, m_szFirstName,
Osizeof(m_szFirstName), 1lFirstNameStatus, TRUE)
12: ADO_VARIABLE_LENGTH_ENTRY2(3, adVarChar, m_szlLastName,
Osizeof(m_szLastName), lLastNameStatus, TRUE)
13: ADO_VARIABLE_LENGTH_ENTRY2(4, adVarChar, m_szSpouseName,
Osizeof (m_szSpouseName), 1lSpouseNameStatus, TRUE)
14: ADO_VARIABLE_LENGTH_ENTRY2(5, adVarChar, m_szAddress,
Osizeof(m_szAddress), lAddressStatus, TRUE)
15: ADO_VARIABLE_LENGTH_ENTRY2(6, adVarChar, m_szCity,
Osizeof(m_szCity),1CityStatus, TRUE)
16: ADO_VARIABLE_LENGTH_ENTRY2(7, adVarChar, m_szStateOrProvince,
Osizeof(m_szStateOrProvince), 1StateOrProvinceStatus, TRUE)
17: ADO_VARIABLE_LENGTH_ENTRY2(8, adVarChar, m_szPostalCode,
Osizeof(m_szPostalCode), 1lPostalCodeStatus, TRUE)
18: ADO_VARIABLE_LENGTH_ENTRY2(9, adVarChar, m_szCountry,
Osizeof (m_szCountry), lCountryStatus, TRUE)
19: ADO_VARIABLE_LENGTH_ENTRY2(1@, adVarChar, m_szEmailAddress,
Osizeof(m_szEmailAddress), lEmailAddressStatus, TRUE)
20: ADO_VARIABLE_LENGTH_ENTRY2(11, adVarChar, m_szHomePhone,
Osizeof(m_szHomePhone), lHomePhoneStatus, TRUE)
21: ADO_VARIABLE_LENGTH_ENTRY2(12, adVarChar, m_szWorkPhone,
Osizeof (m_szWorkPhone), 1lWorkPhoneStatus, TRUE)

S ©WO~NOO AW

—_

—_
—_

Updating and Adding Database Records Through ADO 363 |

22:

23:

24:

25:

26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

ADO_VARIABLE_LENGTH_ENTRY2(13, adVarChar, m_szWorkExtension,
Osizeof(m_szWorkExtension), 1lWorkExtensionStatus, TRUE)

ADO_VARIABLE_LENGTH_ENTRY2(14, adVarChar, m_szFaxNumber,
Osizeof(m_szFaxNumber), 1FaxNumberStatus, TRUE)

ADO_FIXED_LENGTH_ENTRY (15, adDate, m_dtBirthdate,

0O1BirthdateStatus, TRUE)

ADO_FIXED LENGTH_ENTRY (16, adBoolean, m_bSendCard,

[0 1SendCardStatus, TRUE)

ADO_VARIABLE_LENGTH_ENTRY2(17, adLongVarChar, m_szNotes,
Osizeof(m_szNotes), 1NotesStatus, TRUE)

END_ADO_BINDING()

public:

LONG m_lAddressID;

ULONG 1AddressIDStatus;
CHAR m_szFirstName[51];
ULONG 1FirstNameStatus;
CHAR m_szlLastName[51];
ULONG lLastNameStatus;

CHAR m_szSpouseName[51];
ULONG 1SpouseNameStatus;
CHAR m_szAddress[256];
ULONG 1AddressStatus;

CHAR m_szCity[51];

ULONG 1CityStatus;

CHAR m_szStateOrProvince[21];
ULONG 1StateOrProvinceStatus;
CHAR m_szPostalCode[21];
ULONG 1PostalCodeStatus;
CHAR m_szCountry[51];

ULONG 1CountryStatus;

CHAR m_szEmailAddress[51];
ULONG 1EmailAddressStatus;
CHAR m_szHomePhone[31];
ULONG 1HomePhoneStatus;
CHAR m_szWorkPhone[31];
ULONG 1WorkPhoneStatus;
CHAR m_szWorkExtension[21];
ULONG 1WorkExtensionStatus;
CHAR m_szFaxNumber([31];
ULONG 1FaxNumberStatus;
DATE m_dtBirthdate;

ULONG 1BirthdateStatus;
VARIANT_BOOL m_bSendCard;
ULONG 1SendCardStatus;

CHAR m_szNotes[65536];
ULONG 1NotesStatus;

| 364

Day 15

Once you' ve created this class, you need to add a variable to the document class. Add a
new member variable to the document class, specifying the variable type as cCustomRs,
the name asm_rsRecSet, and the access as private. You'll also need to include the cus-
tom record class header file in the document source code file, asin Listing 15.2.

LisTING 15.2. THE DOCUMENT SOURCE CODE INCLUDES.

// dbadoDoc.cpp : implementation of the CDbAdoDoc class
/1l

#include "stdafx.h"
#include "dbado.h"

#include "CustomRs.h"
#include "dbadoDoc.h"
#include "dbadoView.h"

©oO~NOO»WN =

Another detail that you need to attend to before going any further is providing away for
the view to get a pointer to the record class from the document class. This function
should return a pointer to the record class variable. To add this function to your applica-
tion, add a new member function to the document class, specifying the function type as
CCustomRs*, the function declaration as GetRecSet, and the function access as public.
Edit this function, adding the code in Listing 15.3.

LisTING 15.3. THE CDbAdoDoc GetRecSet FUNCTION.

1: CCustomRs* CDbAdoDoc: :GetRecSet ()

2: {

3: // Return a pointer to the record object
4: return &m_rsRecSet;

5: }

One last piece of functionality that you'll add before getting to the real heart of ADO
programming is the function for reporting ADO and database errors. This function will
display a message to the user, reporting that an error occurred and displaying the error
code and error message for the user. To add this function to your application, add a new
member function to your document class. Specify the function type as void, the function
declaration as GenerateError (HRESULT hr, PWSTR pwszDescription), and the access
as public. Edit the function, entering the code in Listing 15.4.

Updating and Adding Database Records Through ADO

365 |

LisTING 15.4. THE CDbAdoDoc GenerateError FUNCTION.

void CDbAdoDoc::GenerateError(HRESULT hr, PWSTR pwszDescription)
: Ao

CString strError;

1:
2
3
4
5: // Format and display the error message

6: streError.Format("Run-time error '%sd (%x)'", hr, hr);
7: strError += "\n\n";

8 strError += pwszDescription;

9

0

1

AfxMessageBox(strError);

-

Connecting and Retrieving Data

You can perform all of the connecting to the database and retrieving the record set in the
onNewDocument function in the document class. Before you can add this functionality,
you need to add a few more variables to the document class. You'll need aRecordset
object pointer, an IADORecordBinding interface pointer, a couple of string variables for
holding the database connection string, and the SQL command to execute to populate the
record set. Add all of these variables to the document class as specified in Table 15.3.

TABLE 15.3. DOCUMENT CLASS MEMBER VARIABLES.

Name Type Access

m_pRs _RecordsetPtr Private
m_piAdoRecordBinding IADORecordBinding* Private
m_strConnection CString Private

m_strCmdText cstring Private

In the onNewDocument function, you'll perform a series of steps for connecting and
retrieving the record set. First, you'll set the strings for the database connection and the
SQL command to be run. Next, you'll initialize the com environment and initialize the
two pointers so that they are both NULL. You'll create the Recordset object using the
CreateInstance function. Open the Recordset, connecting to the database and running
the SQL command at the same time. Bind the record class to the record set using the
IADORecordBinding interface pointer. Finally, tell the view class to refresh the bound
data, displaying the initial record for the user using a view class function that you'll add
in alittle while. To add al this functionality, edit the onNewdocument function in the doc-
ument class, adding the code starting with line 8 in Listing 15.5.

| 366 Day 15

LisTING 15.5. THE CDbAdoDoc OnNewDocument FUNCTION.

1: BOOL CDbAdoDoc: :0OnNewDocument ()

2: {

3 if (!CDocument::0OnNewDocument())

4: return FALSE;

5:

6: // TODO: add reinitialization code here

7: // (SDI documents will reuse this document)

8: // Set the connection and SQL command strings

9: m_strConnection = _T("Provider=MSDASQL.1;Data Source=TYVCDB");
10: m_strCmdText = _T("select * from Addresses");

11:

12: // Initialize the Recordset and binding pointers

13: m_pRs = NULL;

14: m_piAdoRecordBinding = NULL;

15: // Initialize the COM environment

16: ::ColInitialize(NULL);

17: try

18: {

19: // Create the record set object
20: m_pRs.CreateInstance(__uuidof(Recordset));
21:
22: // Open the record set object
23: m_pRs->0pen((LPCTSTR)m_strCmdText, (LPCTSTR)m_strConnection,
24: adOpenDynamic, adLockOptimistic, adCmdUnknown);
25:
26: // Get a pointer to the record binding interface
27: if (FAILED(m_pRs->QueryInterface(__uuidof (IADORecordBinding),
28: (LPVOID *)&m_piAdoRecordBinding)))
29: _com_issue_error(E_NOINTERFACE) ;
30: // Bind the record class to the record set
31: m_piAdoRecordBinding->BindToRecordset (&m_rsRecSet);
32:
33: // Get a pointer to the view
34: POSITION pos = GetFirstViewPosition();
35: CDbAdoView* pView = (CDbAdoView*)GetNextView(pos);
36: if (pView)
37: // Sync the data set with the form
38: pView->RefreshBoundData();
39: }
40: // Any errors?
41: catch (_com_error &e)
42: {
43: // Display the error
44: GenerateError(e.Error(), e.Description());
45: }
46:
47: return TRUE;

48: }

Updating and Adding Database Records Through ADO 367 |

Before moving any further, it's a good idea to make sure that you add &l the code neces-
sary to clean up as your application is closing. You need to close the record set and
release the pointer to the record binding interface. You'll also shut down the COM envi-
ronment. To add all this functionality to your application, add a function to the
DeleteContents event message in the document class. Edit this function, adding the
codein Listing 15.6.

LisTING 15.6. THE CDbAdoDoc DeleteContents FUNCTION.

1: void CDbAdoDoc::DeleteContents()
2: {
3: // TODO: Add your specialized code here and/or call the base class
4: // Close the record set

5: if (m_pRs)

6: m_pRs->Close();

7 // Do we have a valid pointer to the record binding?

8 if (m_piAdoRecordBinding)

©

// Release it
10: m_piAdoRecordBinding->Release();
11: // Set the record set pointer to NULL
12: m_pRs = NULL;
13:
14: // Shut down the COM environment
15: CoUninitialize();
16:
17: CDocument: :DeleteContents();
18: }

Populating the Form

To display the record column values for the user, you'll add a function for copying the
values from the record class to the view variables. This function first needsto get a
pointer to the record class from the document class. Next, it will check the status of each
individual field in the record class to make sure that it’'s okay to copy, and then it will
copy the value. Once al values have been copied, you can call UpdateData to display the
valuesin the controls on the form. To add this functionality to your application, add a
new member function to the view class. Specify the function type as void, the function
declaration as RefreshBoundData, and the access as public. Edit this new function,
adding the code in Listing 15.7.

|368

Day 15

LisTING 15.7. THE CDbAdoView RefreshBoundData FUNCTION.

1:
2
3
4:
5:
6
7
8

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

{

void CDbAdoView: :RefreshBoundData()

CCustomRs* pRs;

// Get a pointer to the document object
pRs = GetDocument()->GetRecSet();

// Is the field OK
if (adFldOK == pRs->1AddressIDStatus)
// Copy the value
m_lAddressID = pRs->m_lAddressID;
else
// Otherwise, set the value to 0
m_lAddressID = 0;
// Is the field OK
if (adFldOK == pRs->1FirstNameStatus)
// Copy the value
m_strFirstName = pRs->m_szFirstName;
else
// Otherwise, set the value to 0
m_strFirstName = _T("");
if (adFldOK == pRs->1LastNameStatus)
m_strLastName = pRs->m_szlLastName;
else
m_strLastName = _T("");
if (adFldOK == pRs->1SpouseNameStatus)
m_strSpouseName = pRs->m_szSpouseName;
else
m_strSpouseName = _T("");
if (adFldOK == pRs->1AddressStatus)
m_strAddress = pRs->m_szAddress;
else
m_strAddress = _T("");
if (adFldOK == pRs->1CityStatus)
m_strCity = pRs->m_szCity;
else
m_strCity = T("");
if (adF1dOK == pRs->1StateOrProvinceStatus)
m_strStateOrProvince = pRs->m_szStateOrProvince;
else
m_strStateOrProvince = _T("");
if (adFldOK == pRs->1PostalCodeStatus)
m_strPostalCode = pRs->m_szPostalCode;
else
m_strPostalCode = _T("");
if (adFldOK == pRs->1CountryStatus)
m_strCountry = pRs->m_szCountry;
else

Updating and Adding Database Records Through ADO 369 |

49: m_strCountry = _T("");

50: if (adF1dOK == pRs->1EmailAddressStatus)

51: m_strEmailAddress = pRs->m_szEmailAddress;

52: else

53: m_strEmailAddress = _T("");

54: if (adFldOK == pRs->1HomePhoneStatus)

55: m_strHomePhone = pRs->m_szHomePhone;

56: else

57: m_strHomePhone = _T("");

58: if (adFldOK == pRs->1WorkPhoneStatus)

59: m_strWorkPhone = pRs->m_szWorkPhone;

60: else

61: m_strWorkPhone = _T("");

62: if (adF1dOK == pRs->1WorkExtensionStatus)

63: m_strWorkExtension = pRs->m_szWorkExtension;

64: else

65: m_strWorkExtension = _T("");

66: if (adFldOK == pRs->1FaxNumberStatus)

67: m_strFaxNumber = pRs->m_szFaxNumber;

68: else

69: m_strFaxNumber = _T("");

70: if (adFldOK == pRs->1BirthdateStatus)

71: m_oledtBirthdate = pRs->m_dtBirthdate;

72: else

73: m_oledtBirthdate = OL;

74: if (adFldOK == pRs->1SendCardStatus)

75: m_bSendCard = VARIANT_FALSE == pRs->m_bSendCard ? FALSE :
OTRUE;

76: else

77: m_bSendCard = FALSE;

78: if (adFldOK == pRs->1NotesStatus)

79: m_strNotes = pRs->m_szNotes;

80: else

81: m_strNotes = _T("");

82:

83: // Sync the data with the controls

84: UpdateData(FALSE) ;

85: }

Nﬂtﬂ Because you are working directly with the custom record class that you cre-
ated in this function, you must include the header file for your custom

record class in the view class source file, just as you did with the document
class source file.

370 Day 15

Saving Updates

When you need to copy changes back to the record set, reverse the process of copying
data from the controls on the form to the variables in the record class. You could take the
approach of copying all values, regardless of whether their values have changed, or you
could compare the two values to determine which have changed and need to be copied
back. Call the function that does this before navigating to any other records in the record
set so that any changes that the user has made are saved to the database. To add this
functionality to your application, add a new member function to the view class. Specify
the function type as void, the function declaration as UpdateBoundData, and the access
as private. Edit the function, adding the code in Listing 15.8.

LisTING 15.8. THE CDbAdoView UpdateBoundData FUNCTION.

1: void CDbAdoView: :UpdateBoundData()
2: {
3 CCustomRs* pRs;
4:
5: // Get a pointer to the document
6: pRs = GetDocument()->GetRecSet();
7:
8: // Sync the controls with the variables
9: UpdateData(TRUE);
10:
11: // Has the field changed? If so, copy the value back
12: if (m_lAddressID != pRs->m_lAddressID)
13: pRs->m_lAddressID = m_lAddressID;
14: if (m_strFirstName != pRs->m_szFirstName)
15: strcpy (pRs->m_szFirstName, (LPCTSTR)m_strFirstName);
16: if (m_strLastName != pRs->m_szlLastName)
17: strcpy (pRs->m_szLastName, (LPCTSTR)m_strLastName);
18: if (m_strSpouseName != pRs->m_szSpouseName)
19: strcpy (pRs->m_szSpouseName, (LPCTSTR)m_strSpouseName);
20: if (m_strAddress != pRs->m_szAddress)
21: strcpy (pRs->m_szAddress, (LPCTSTR)m_strAddress);
22: if (m_strCity != pRs->m_szCity)
23: strcpy(pRs->m_szCity, (LPCTSTR)m_strCity);
24: if (m_strStateOrProvince != pRs->m_szStateOrProvince)
25: strcpy (pRs->m_szStateOrProvince,
O (LPCTSTR)m_strStateOrProvince);
26: if (m_strPostalCode != pRs->m_szPostalCode)
27: strcpy (pRs->m_szPostalCode, (LPCTSTR)m_strPostalCode);
28: if (m_strCountry != pRs->m_szCountry)
29: strcpy (pRs->m_szCountry, (LPCTSTR)m_strCountry);
30: if (m_strEmailAddress != pRs->m_szEmailAddress)
31: strcpy (pRs->m_szEmailAddress, (LPCTSTR)m_strEmailAddress);

32: if (m_strHomePhone != pRs->m_szHomePhone)

Updating and Adding Database Records Through ADO 371 |

33: strcpy (pRs->m_szHomePhone, (LPCTSTR)m_strHomePhone);
34: if (m_strWorkPhone != pRs->m_szWorkPhone)

35: strcpy (pRs->m_szWorkPhone, (LPCTSTR)m_strWorkPhone);
36: if (m_strWorkExtension != pRs->m_szWorkExtension)

37: strcpy (pRs->m_szWorkExtension, (LPCTSTR)m_strWorkExtension);
38: if (m_strFaxNumber != pRs->m_szFaxNumber)

39: strcpy (pRs->m_szFaxNumber, (LPCTSTR)m_strFaxNumber);
40: if (((DATE)m_oledtBirthdate) != pRs->m_dtBirthdate)

41: pRs->m_dtBirthdate = (DATE)m_oledtBirthdate;

42: if (m_bSendCard == TRUE)

43: pRs->m_bSendCard = VARIANT_TRUE;

44: else

45: pRs->m_bSendCard = VARIANT_FALSE;

46: if (m_strNotes != pRs->m_szNotes)

47: strcpy (pRs->m_szNotes, (LPCTSTR)m_strNotes);

48: }

Navigating the Record Set

For navigating the record set, add a series of menus for each of the four basic navigation
choices: first, previous, next, and last. Because the Recordset object and the record-
binding interface pointers are in the document object, the event messages for these
menus must be passed to the document class to update the current record and then to
navigate to the selected record. However, the view class needs to receive the event
message first because it needs to copy back any changed values from the controls on
the form before the update is performed. Once the navigation is complete, the view aso
needs to update the form with the new record’s column values. Looking at the sequence
of where the event message needs to be passed, it makes the most sense to add the event
message handler to the view class, and from there, call the event message handler for the
document class.

To add this functionality to your application, add the four menu entries and the corre-
sponding toolbar buttons. Using the Class Wizard, add a event message handler function
to the view class for the command event for all four of these menus. Edit the event func-
tion for the Move First menu, adding the code in Listing 15.9.

LisTING 15.9. THE CDbAdoView OnDataFirst FUNCTION.

void CDbAdoView::OnDataFirst()

// Update the current record

1:
2: {
3: // TODO: Add your command handler code here
4
5 UpdateBoundData();

continues

| 372

Day 15

LisTING 15.9. CONTINUED

// Navigate to the first record
GetDocument () ->MoveFirst();

// Refresh the form with the new record's data
RefreshBoundData();

S ©W O NO®

Now add the MoveFirst function to the document class and perform all the actual record
set functionality for this function. To add this, add a member function to the document
classin your application. Specify the function type as void, the declaration as
MoveFirst, and the access as public. Edit this function, adding the code in Listing 15.10.

LisTING 15.10. THE CDsADoDoc MovEFIRST FUNCTION.

1: void CDbAdoDoc: :MoveFirst()

2: {

3 try

4 {

5: // Update the current record

6: m_piAdoRecordBinding->Update (&m_rsRecSet);
7 // Move to the first record

8: m_pRs->MoveFirst();

9: }
10: // Any errors?
11: catch (_com_error &e)
12: {
13: // Generate the error message
14: GenerateError(e.Error(), e.Description());
15: }
16: }

Edit and add the same set of functions to the view and document classes for the
MovePrevious, MoveNext, and MoveLast ADO functions. Once you' ve added al these
functions, you should be ready to compile and run your application. Your application will
be capable of opening the Addresses database table and presenting you with each indi-
vidua record, which you can edit and update, as in Figure 15.7.

Updating and Adding Database Records Through ADO 373 |

Ficure 15.7. 7 Untitled - DbAdo [=] B3
. Fle Edt Dala View Help
The running DSHE 4 EE|S [«
application.
Address ID Email Addhess [nancyd@anpwhere.co
First Name INem:y— Home Phane [(504) 555-9857
Lssthams [Davalo | WorkPhons [f5od 5555922
Spouse Name |pau|— Waork Extension |—
Address 'm Fax Number [[504) 555 7722
City W Birthdate W
StateOrProvinee fus Send Caid [
PostalCode [og122 Nates |—
Countiy [[5a
Ready [NoM[

Adding New Records

Now that you are able to retrieve and navigate the set of records in the database table, it
would be nice if you could add some new records to the table. You can add this function-
ality in exactly the same fashion that you added the navigation functionality. Add a
menu, trigger an event function in the view class from the menu, update the current
record values back to the record set, call afunction in the document class, and refresh
the current record from the record set. As far as the menu and the view class are con-
cerned, the only difference between this functionality and any of the navigation menus
and functions is the ID of the menu and the name of the functions that are called, just as
with the different navigation functions. It's in the document function where things begin
to diverge just alittle.

In the document class function for adding a new record, once you’ ve updated the current
record, you'll make sure that adding a new record is an option. If it is, then you'll build
an empty record and add it to the record set. Once you' ve added the empty record, navi-
gate to the last record in the set because this will be the new record. At this point, you
can exit this function and let the view class refresh the form with the data values from
the new, empty record.

To add this functionality to your application, add a new menu entry for adding a new
record. Add a command event-handler function to the view class for this new menu,
adding the same code to the function as you did with the navigation functions, but call
the AddNew function in the document class. Now, add the AddNew function to the docu-
ment class. Add a new member function to the document class, specifying the type as
void, the declaration as AddNew, and the access as public. Edit the function, adding the
codein Listing 15.11.

374 Day 15

LisTING 15.11. THE CDbAdoDoc AddNew FUNCTION

1: void CDbAdoDoc: :AddNew()

2:

3 try

4 {

5: // Update the current record

6: m_piAdoRecordBinding->Update (&m_rsRecSet);
7 // Can we add a new record?

8: if (m_pRs->Supports(adAddNew))

9: {

10: // Create a blank record

11: CreateBlankRecord();

12: // Add the blank record

13: m_piAdoRecordBinding->AddNew(&m_rsRecSet);
14: // Move to the last record

15: m_pRs->MoveLast();

16: }

17: }

18: // Any errors?

19: catch (_com_error &e)
20: {
21: // Generate an error message
22: GenerateError(e.Error(), e.Description());
23: }
24: }

Now add the function that creates the blank record. In this function, you'll set each of
the field variables in the record class to an almost empty string. To add this function to
your class, add a new member function to the document class. Specify its type as void,
its declaration as CreateBlankRecord, and its access as private. Edit this new function,
adding the code in Listing 15.12.

LisTING 15.12. THE CDbAdoDoc CreateBlankRecord FUNCTION.

void CDbAdoDoc::CreateBlankRecord()

{
// Create the blank values to be used
CString strBlank = " ";
COleDateTime dtBlank;

1:
2
3
4
5:
6:
7: // Set each of the values in the record object

8 m_rsRecSet.m_lAddressID = 0;

9 strcpy(m_rsRecSet.m_szFirstName, (LPCTSTR)strBlank);
0 strcpy(m_rsRecSet.m_szlLastName, (LPCTSTR)strBlank);

1

Updating and Adding Database Records Through ADO

11: strcpy(m_rsRecSet.m_szSpouseName, (LPCTSTR)strBlank);
12: strcpy(m_rsRecSet.m_szAddress, (LPCTSTR)strBlank);

13: strcpy(m_rsRecSet.m_szCity, (LPCTSTR)strBlank);

14: strcpy(m_rsRecSet.m_szStateOrProvince, (LPCTSTR)strBlank);
15: strcpy(m_rsRecSet.m_szPostalCode, (LPCTSTR)strBlank);
16: strcpy(m_rsRecSet.m_szCountry, (LPCTSTR)strBlank);

17: strcpy(m_rsRecSet.m_szEmailAddress, (LPCTSTR)strBlank);
18: strcpy(m_rsRecSet.m_szHomePhone, (LPCTSTR)strBlank);

19: strcpy(m_rsRecSet.m_szWorkPhone, (LPCTSTR)strBlank);

20: strcpy(m_rsRecSet.m_szWorkExtension, (LPCTSTR)strBlank);
21: strcpy(m_rsRecSet.m_szFaxNumber, (LPCTSTR)strBlank);

22: m_rsRecSet.m_dtBirthdate = (DATE)dtBlank;

23: m_rsRecSet.m_bSendCard = VARIANT_FALSE;

24: strcpy(m_rsRecSet.m_szNotes, (LPCTSTR)strBlank);

25: }

If you compile and run your application, you should be able to insert and edit new
records in the database table.

Deleting Records

The final piece of functionality that you'll add to your application is the ability to delete
the current record from the set. This function can follow the same form as all the naviga
tion and add functions with a menu entry calling an event-handler function in the view
class. The function in the view class can even follow the same set of code that you used
in these previous functions, updating the current record, calling the corresponding func-
tion in the document class, and then refreshing the current record to the form.

In the document class function, the record deletion should follow almost the same path
that you took for adding a new record. Update the current record, check to seeif it's
possible to delete the current record, check with the user to verify that he wants to delete
the current record, and then call the belete function and navigate to another record in
the set.

To add this functionality to your application, add a new menu entry for the delete func-
tion and then attach an event-handler function for the menu’s command event in the view
class. Edit this function, adding the same code as in the navigation and add record func-
tions and calling the belete function in the document class. Now, add a new member
function to the document class. Specify the new function’s type as void, the declaration
asDelete, and the access as public. Edit this function, adding the code in Listing 15.13.

376 Day 15

LisTING 15.13. THE CDbAdoDoc Delete FUNCTION.

1: void CDbAdoDoc: :Delete()

2: {

3 try

4 {

5: // Update the current record
6: m_piAdoRecordBinding->Update (&m_rsRecSet);
7: // Can we delete a record?

8 if (m_pRs->Supports(adDelete))
9

0

1

{
1 // Make sure the user wants to delete this record
1 if (AfxMessageBox("Are you sure you want to delete this
Orecord?",
12: MB_YESNO |, MB_ICONQUESTION) == IDYES)
13: {
14: // Delete the record
15: m_pRs->Delete(adAffectCurrent);
16: // Move to the previous record
17: m_pRs->MovePrevious();
18: }
19: }
20: }
21: // Any errors?
22: catch (_com_error &e)
23: {
24: // Generate an error message
25: GenerateError(e.Error(), e.Description());
26: }
27: }

When you compile and run your application, you should be able to delete any records
from the set that you want.

Summary

Today, you learned about Microsoft’s newest database access technology, ActiveX Data
Objects. You saw how you can use ADO as asimple ActiveX control to provide database
access through data-bound controls without any additional programming. You also
learned how to import the DLL, providing arich set of data access functionality that you
can use and control in your applications. You learned how to retrieve a set of data,
manipulate the records in the set, and save your changes back in the database. You
learned two different ways of accessing and updating the data values in arecord in the
record set and how you can do a little more work up front to save alarge amount of
work in the midst of the application coding.

Updating and Adding Database Records Through ADO

377 |

Q&A

Because Visual C++ doesn’t support ADO with its wizards, why would | want
touseit?

ADO is the database access technology direction for Microsoft. It's till in the
early stages of this technology, but it will gradually become the data access tech-
nology for use with al programming languages and applications.

If ADO uses ODBC to get to my database, why wouldn’t | want to just go
straight to the ODBC interface to access my database?

ADO can use ODBC to access those databases that don’t have a native OLE DB
interface. If you are using either Microsoft's SQL Server database or an Oracle
database, there are OLE DB interfaces available, in which case ADO would not go
through ODBC to get to the database. In these cases, using ADO gives your appli-
cation better performance than using the ODBC interface. With the upcoming
operating system releases from Microsoft, you'll find that using ADO islikely to

provide you with access capabilities that extend far beyond conventional databases.

ADO is anew technology that you'll start seeing in more use in the coming years.
Because of its growing importance, it's a good thing to start working with ADO
now so that you'll already be prepared to work with it when it's everywhere.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1. What does ADO stand for?

IS

What does ADO use for database access?

What are the objectsin ADO?

How do you initialize the COM environment?

How do you associate a Connection object with a Command object?

How do you associate a command object with and populate aRecordset object?

378 Day 15

Exercise

Enable and disable the navigation menus and toolbar buttons based on whether the
recordset is at the beginning of file (8oF) or end of file (EOF, renamed to EndofFile).

WEEK 3

DAY 16

Creating Your Own
Classes and Modules

Sometimes you need to build a set of application functionality that will be used
in an application that another programmer is working on. Maybe the functional -
ity will be used in a number of applications. Another possibility is that you
want to separate some functionality from the rest of the application for organi-
zational purposes. You might develop this separate set of functionality and then
give a copy of the code to your friend to include in his application, but then
every time you make any changes to your set of functiondlity, it has to be
reincorporated into the other set of application code. It would be much more
practical if you could give a compiled version of your functionality to the other
programmer so that every time you updated your part, all you had to hand over
was a new compiled file. The new file could just replace the previous version,
without having to make any changes to the other programmer’s code.

Well, it is possible to place your set of functionality into a self-contained com-
piled file, link it into another programmer’s application, and avoid adding any
new files to the finished application. Today, you will learn

| 380 Day 16

- How to design your own classes.
- How to create compiled modules that can be linked into other applications.
- How to include these modules into an application.

Designing Classes

You've already designed and built your own classes over the past few days, so the basics
of creating a new classis not a new topic. Why did you create these classes? Each of

the new classes that you created encapsulated a set of functionality that acted as a self-
contained unit. These units consisted of both data and functionality that worked together
to define the object.

Encapsulation

Object-oriented software design is the practice of designing software in the same way
that everything else in the world is designed. For instance, you can consider your car
built from a collection of objects: the engine, the body, the suspension, and so on. Each
of these objects consists of many other objects. For instance, the engine contains either
the carburetor or the fuel injectors, the combustion chamber and pistons, the starter, the
aternator, the drive chain, and so on. Once again, each of these objects consists of even
more objects.

Each of these objects has a function that it performs. Each of these objects knows how to
perform its own functions with little, if any, knowledge of how the other objects perform
their functions. Each of the objects knows how it interacts with the other objects and
how they are connected to the other objects, but that’s about all they know about the
other objects. How each of these objects work internally is hidden from the other objects.
The brakes on your car don’t know anything about how the transmission works, but if
you’'ve got an automatic transmission, the brakes do know how to tell the transmission
that they are being applied, and the transmission decides how to react to this information.

You need to approach designing new classes for your applications in the same way. The
rest of the application objects do not need to know how your objects work; they only
need to know how to interact with your objects. This principle, called encapsulation, is
one of the basic principles of object-oriented software.

Inheritance

Another key principle of object-oriented software design is the concept of inheritance.
An object can be inherited from another object. The descendent object inherits al the
existing functionality of the base object. This alows you to define the descendent object
in terms of how it's different from the base object.

Creating Your Own Classes and Modules

381 |

Let'slook at how this could work with a thermostat. Suppose you had a basic thermostat
that you could use in just about any setting. You could set the temperature for it to main-
tain, and it would turn on the heating or the air-conditioning as needed to maintain that
temperature. Now let’s say you needed to create a thermostat for use in afreezer. You
could start from scratch and build a customized thermostat, or you could take your exist-
ing thermostat and specify how the freezer version differs from the original. These differ-
ences might include that it's limited to turning on the air conditioning and could never
turn on the heater. You would probably also put a strict limit on the range of tempera-
tures to which the thermostat could be set, such as around and below 32° Fahrenheit, or
0° Celsius. Likewise, if you needed a thermostat for an office building, you would proba-
bly want to limit the temperature range to what is normally comfortable for people and
not allow the temperature to be set to an extremely cold or hot setting.

With inheritance in creating your own classes, this method just described represents the
same principle that you want to apply. If possible, you should start with an existing C++
class that has the basic functionality that you need and then program how your classis
different from the base class that you inherited from. You have the ability to add new
data elements, extend existing functionality, or override existing functionality, as you
see fit.

Visual C++ Class Types

In most application projects, when you are creating a new class, you have a few options
on the type of class that you are creating. These options are

- Generic class
- MFC class
- Form class

Which of these types of classes you choose to create depends on your needs and what
your class will be doing. It also depends on whether your class needs to descend from
any of the MFC classes.

Generic Class

You use ageneric class for creating a class that is inherited from a class you have
already created. This class type isintended for creating classes that are not inherited
from any MFC classes (although you have aready seen where you need to use it to cre-
ate classes that are based on MFC classes). If you want to create a more specialized ver-
sion of the cLine class, for instance, a CRedLine class, that only drew in red, you create
it as a generic class because it’'s inherited from another class that you created.

| 382

Day 16

When you create a generic class, the New Class Wizard tries to locate the declaration of
the base class (the header file with the class declared). If it cannot find the appropriate
header file, it tells you that you might need to make sure that the header file with the
base class definition is included in the project. If the base class happens to be an MFC
class that is not accessible as an MFC class (such as cobject), then you can ignore this
warning because the correct header file is already part of the project.

MFC Class

If you want to make areusable class that is based on an existing MFC class, such as an
edit box that automatically formats numbers as currency, you want to create an MFC
class. The MFC class typeis for creating new classes that are inherited from existing
MFC classes.

Form Class

The form class is a specialized type of MFC class. You need to create this type of classif
you are creating a new form style window. It can be a dialog, form view, or database
view class. This new class will be associated with a document class for use with the view
class. If you are building a database application, you will probably create a number of
this style of classes.

Creating Library Modules

When you create new classes for your application, they might be usable in other applica-
tions as well. Often, with alittle thought and effort, classes you create can be made flexi-
ble enough so that they could be used in other applications. When thisis the case, you
need some way of packaging the classes for other applications without having to hand
over all your source code. Thisis the issue that library modules address. They allow you
to compile your classes and modules into a compiled object code library that can be
linked into any other Visual C++ application.

Library modules were one of the first means available to provide compiled code to other
programmers for use in their applications. The code is combined with the rest of the
application code by the linker as the final step in the compilation process. Library mod-
ules are still aviable means of sharing modules with other developers. All the devel oper
needsisthe library (.1ib) file and the appropriate header files that show all the exposed
classes, methods, functions, and variables, which the other programmer can access and
use. The easiest way to do thisisto provide the same header file that you used to create
the library file, but you can also edit the header so that only the parts that other program-
mers need are included.

Creating Your Own Classes and Modules 383 |

By using library files to share your modules with other programmers, you are arranging
that your part of the application is included in the same executable file as the rest of the
application. Your modules are not included in a separate file, such asa DLL or ActiveX
control. Thisresultsin one less file to be distributed with the application. It also means
that if you make any changes to the module, fix any bugs, or enhance any functionality,
then the applications that use your module must be relinked. Using library files has a
slight disadvantage to creating DLLs, where you may be able to just distribute the new
DLL without having to make any changes to the application, but you'll learn al about
that tomorrow.

Using Library Modules

To get agood idea of how to use library modules, it's helpful to create a library module,
use it in another application, and then make some modifications to the library module.
For today’s sample application, you'll create a module that generates a random drawing
on the window space specified. It'll be able to save and restore any of these drawings.
You'll then use this module in an SDI application, where every time a new document is
specified, a new drawing is generated. The initial module will only use eight colors and
will generate only a limited number of line sequences. Later, you'll modify the module
so that it will generate any number of colors and will generate a larger number of line
sequences.

Creating the Library Module

To create alibrary module project, you need to specify in the New dialog that you want
to create aWin32 Static Library, as shown in Figure 16.1. This tells Visual C++ that the
output from the project compilation will be alibrary module instead of an executable
application. From there, all you have to do is define the classes and add the code. You
have the options of including support for MFC and using precompiled headers in your
project, asin Figure 16.2, the only step in the Project Wizard.

The library that you will create for today’s sample application will consist of two classes.
Thefirst class will be the cLine class that you first created on Day 10, “Creating Single
Document Interface Applications.” The second class will be the class that creates the ran-
dom drawings on the drawing surface. This class will contain an object array of the
CLine objectsthat it will create and populate with each of the drawing efforts. This sec-
ond class will also need functionality to save and restore the drawing, as well as to delete
the existing drawing so that a new drawing can be started. It will need to know the
dimensions of the drawing area so that it can generate a drawing that will fit in the draw-
ing area. Once you create this module, you'll take alook at how you can use this module
in an application project.

384 Day 16

FIGURE 16.1. New B

a)ecn‘ylng a Ilbrary Files Projects | Workspaces | Other Documents |
H &1 ATL COM AppWwizard Project name:
module project. ¥] Cluster Resaurce Type Wizard ModéiMod

] Custom Appwizard

@ D atabase Project pocion

DevStudio Add-in Wizard D:4\MSYS \MyProjects\ModArt J
S Extended Stared Proc Wizard

ISAP!| Extension Wizard

i Makeile @ Creale new warkspace

MFC ActiveX Controlwizard € Add o curent worlkspace.

(4] MFC Appwizard (dI) I~ Dependency of

MFC AppWwizard (eve) o
4 Utiity Project

B Win32 Application

\Win32 Console Application

Platforms
%] Win32 Dynamic-Link Library =
5] Win32 Static Library wivwin32
e
FIGURE 16.2. \Win32 Static Library - Step 1 of 1
S:)eq fy| ng proj ect sup- Do you want the following in your static library ?

port options.
IV Pre-Compied heade

¥ MFC support

<Back | Erish | Cancel

Creating a Library Project

To start the library project for today’s example, you need to create a new project, speci-
fying that the project isaWin32 Static Library project. Give the project a suitable name
and click OK to create the project.

For today’s sample project, specify on the one wizard step to include both MFC and pre-
compiled header support. Although the precompiled header support is not necessary, it
will speed up most compiles that you perform while building the module.

Once you create your module project, you'll find yourself working with a project that
has no classes. You've got a blank slate from which you can create whatever type of
module you need.

For your sample project, because you already have the cLine class built, copy it from the
Day 10 project area into the project directory for today’s project. Add both the header

Creating Your Own Classes and Modules 385|

and source code file to today’s project by choosing Project | Add To Project\ Files. Once
you add both of these files to the project, you should see the CLine class appear in the
Class View of your project.

Defining the Classes

Now that you've got a basic library module project ready to go, it’s time to begin adding
the meat of the module. Using the CLine classis an easy way of reusing some function-
ality that you created earlier in another setting. However, the real functionality of this
module will be in its ability to generate random drawings, or squiggles. For this func-
tionality, you'll need to create a new class.

To start this new class, add a new class to the project by selecting New Class from the
pop-up menu in the Class View tab. The first thing that you' Il notice in the New Class
dialog is that you are limited to creating generic classes. Because you are creating a
static library that will be linked into the application, Visual C++ is making some assump-
tions about the type of class that you want to create. Because thisis not an MFC project,
even though MFC support is included, you are prevented from creating a new MFC or
form class. If you need to inherit a new class from an MFC class, you haveto add it as if
it were a generic class.

Use the New Class dialog to create your new class. Give the class a name that reflects its
functionality, such as cModArt, and specify that it's derived from the cobject class as
public. You'll receive the same warning that the base class header file cannot be found,
but because you specified that MFC support should be included, you can ignore that

message.

Once you create your class, you need to add a couple of variables to the class. First, you
need somewhere to hold all the lines that will make up the drawing, so you'll add an
object array. Second, you need to know the area of the drawing surface, so you'll want a
CRect to hold the drawing area specification. You can add both of these variables to your
new class using the types and names in Table 16.1.

TABLE 16.1. CModArt VARIABLES.

Type Name Access

static const COLORREF m_crColors[8] Public
CRect m_rDrawArea Private

CObArray m_oalLines Private

| 386

Day 16

Setting the Drawing Area

Before you can draw anything, you need to know the area that you have to draw within.
You can add a public function to your class that will copy the passed in CRect to the
member CRect variable. To add this function to your project, add a new member function
to your new class, specifying the type as void, the declaration as SetRect (CRect
rDrawArea), and the access as public. Edit the function asin Listing 16.1.

LisTING 16.1. THE CModArt SetRect FUNCTION.

1: void CModArt::SetRect(CRect rDrawArea)
2: {

3: // Set the drawing area rectangle
4: m_rDrawArea = rDrawArea;

5: }

Creating a New Drawing

One of the key pieces to this module is the ability to generate random squiggles that
appear on the drawing area. By generating a whole series of these squiggles, your mod-
ule will be able to create an entire drawing. Starting with the single squiggle, you can
design afunction that generates one squiggle and then calls this function a number of
times to generate the entire drawing.

This first function, the sguiggle generator, needs to determine how many lines will be in
the squiggle. It needs to determine the color and width of the pen to be used when draw-
ing the squiggle. It also needs to determine the starting point for the squiggle. From this
point, it could loop through the appropriate number of lines, generating a new destination
to continue the squiggle from the previous destination point.

To add this functionality to your project, add a new member function to the drawing
class. Specify the function type as void, the definition as NewLine, and the access as pri-
vate because this function will only be called by the master loop that is determining how
many of these squiggles will be in the final drawing. Edit the new function with the code
in Listing 16.2.

LisTING 16.2. THE CModArt NewLine FUNCTION.

1 void CModArt::NewLine()
2: |

3: int 1NumLines;

4: int 1CurLine;

5: int nCurColor;

6 UINT nCurWidth;

Creating Your Own Classes and Modules

387 |

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

CPoint pTo;
CPoint pFrom;

// Normalize the rectangle before determining the width and height

m_rDrawArea.NormalizeRect();

// get the area width and height
int 1Width
int lHeight

m_rDrawArea.Width();
= m_rDrawArea.Height();

// Determine the number of parts to this squiggle
INumLines =
// Are there any parts to this squiggle?
if (1NumLines > 0)

{

rand() % 100;

// Determine the color

nCurColor = rand() % 8;

// Determine the pen width

nCurWidth = (rand() % 8) + 1;

// Determine the starting point for the squiggle
pFrom.x

pFrom.y = (rand()

= (rand() % 1Width) + m_rDrawArea.left;
% lHeight) + m_rDrawArea.top;

// Loop through the number of segments

for (1CurLine = 0@; 1lCurLine < INumLines; 1lCurLine++)

{

// Determine the end point of the segment
pTo.x = ((rand() % 20) - 10) + pFrom.x;

pTo.y = ((rand()

s 20) - 10) + pFrom.y;

// Create a new CLine object
CLine *pLine = new CLine(pFrom, pTo, nCurWidth,

try
{

}

Om_crColors[nCurColor]);

// Add the new line to the object array
m_oalLines.Add(pLine);

// Did we run into a memory exception?
catch (CMemoryException* perr)

{

// Display a message for the user, giving him the

// bad news

AfxMessageBox("Out of memory", MB_ICONSTOP ; MB_OK);

// Did we create a line object?
if (pLine)
{
// Delete it
delete pLine;
pLine = NULL;
}
// Delete the exception object

continues

|388 Day 16

LISTING 16.2. CONTINUED
55: perr->Delete();
56: }
57: // Set the starting point to the end point
58: pFrom = pTo;
59: }
60: }
61: }

In this function, the first thing that you did was get the area that you had available for
drawing with the following three lines:
m_rDrawArea.NormalizeRect();

int 1width = m_rDrawArea.Width();
int 1Height = m_rDrawArea.Height();

In the first of these lines, you normalized the rectangle. Thisis necessary to guarantee
that the width and height returned in the next two lines are both positive values. Because
of the coordinate system used in Windows, getting the width by subtracting the left-side
position from the right-side position can result in a negative number. The same can hap-
pen with the height. By normalizing the rectangle, you are guaranteeing that you'll get
positive results for these two values.

Once you determined the drawing area, you determined the number of line segments you
would use in this squiggle:

INumLines = rand() % 100;

The rand function is capable of returning numbers in awide range. By getting the modu-
lus of 100, you are guaranteeing that the resulting number will be between 0 and 100.
This is a common technique for generating random numbers within a certain range, using
the modulus function with the upper limit of the value range (or the upper limit minus
the lower limit, if the lower limit is not equal to 0, and then adding the lower limit to the
resulting number). You use the same technique to determine the color, width, and starting
position for the squiggle:

nCurColor rand() % 8;

nCurWidth (rand(8) + 1;

) %
pFrom.x = (rand() % 1Width) + m_rDrawArea.left;
pFrom.y (rand() % 1lHeight) + m_rDrawArea.top;

Notice how when you were determining the starting position, you added the left and top
of the drawing areato the position that you generated. This guarantees that the starting

Creating Your Own Classes and Modules 389 |

position is within the drawing area. Once you enter the loop, generating all the line seg-
ments in the squiggle, you limit the available area for the next destination within 10 of
the current position:

pTo.X ((rand() % 20) - 10) + pFrom.Xx;

pTo.y ((rand() % 20) - 10) + pFrom.y;

CLine *pLine = new CLine(pFrom, pTo, nCurWidth, m_crColors[nCurColor]);
m_oalLines.Add(pLine);

You can easily increase this distance to make the drawings more angular. Once you gen-
erate the next line segment, you create the line object and add it to the object array.
Finally, you set the starting position to the ending position of the line segment you just
generated:

pFrom = pTo;

Now you are ready to go through the loop again and generate the next line segment, until
you have generated al line segments in this squiggle.

Now that you can generate a single squiggle, the rest of the processis easy. First, you
determine how many squiggles will be in the drawing. Next, you loop for the number of
squiggles that need to be generated and call the NewLine function once for each squiggle.
To add this functionality to your project, add a new member function to the drawing
class. Specify the type as void, the declaration as Newdrawing, and the access as public.
Edit the function asin Listing 16.3.

LisTING 16.3. THE CModArt NewDrawing FUNCTION.

1: void CModArt::NewDrawing()

2:

3: int 1NumLines;

4: int 1lCurlLine;

5:

6: // Determine how many lines to create
7: INumLines = rand() % 10;

8: // Are there any lines to create?

9: if (1NumLines > 0)

10: {

11: // Loop through the number of lines
12: for (1lCurLine = @; 1lCurLine < 1NumLines; 1lCurLine++)
13: {

14: /! Create the new line

15: NewLine();

16: }

17: }

| 390

Day 16

Displaying the Drawing

To draw the set of squiggles on the drawing area, you can add a function that will loop
through the object array, calling the braw function on each line segment in the array. This
function needs to receive the device context as the only argument and must pass it along
to each of the line segments. To add this function to your project, add a new member
function to the drawing class. Specify the function type as void, the function declaration
asDraw(CDC *pDC), and the access as public. Edit the function asin Listing 16.4.

LisTING 16.4. THE CModArt Draw FUNCTION.

1 void CModArt::Draw(CDC *pDC)

2: {

3 // Get the number of lines in the object array
4: int liCount = m_oalLines.GetSize();

5: int liPos;

6-

7 // Are there any objects in the array?

8: if (liCount)

9: {

10: // Loop through the array, drawing each object
11: for (liPos = 0; liPos < liCount; liPos++)
12: ((CLine*)m_oalLines[1iPos])->Draw(pDC);
13: }

14: }

Serializing the Drawing

Because you are using the line segment class that you created earlier and have already
made serializable, you do not need to add the serialization macros to the drawing class.
What you do need to add isa serialize function that passes the archive object on to the
object array, letting the object array and line segment objects do all the seriaization
work. To add this function to your project, add a new member function to the drawing
class. Specify the function type as void, the declaration as Serialize (CArchive &ar),
and the access as public. Edit the function asin Listing 16.5.

LisTING 16.5. THE CModArt Serialize FUNCTION.

1: void CModArt::Serialize(CArchive &ar)

2: {

3: /] Pass the archive object on to the array
4: m_oalLines.Serialize(ar);

5: }

Creating Your Own Classes and Modules 391 |

Clearing the Drawing

To provide full functionality, you need to be able to delete a drawing from the drawing
class so that a new drawing can be created or an existing drawing can be loaded. Thisis
a simple matter of looping through the object array and destroying every line segment
object and then resetting the object array. To add this functionality to your project, add a
new member function to the drawing class. Specify the type as void, the declaration as
ClearDrawing, and the access as public. Edit the function asin Listing 16.6.

LISTING 16.6. THE CModArt ClearDrawing FUNCTION.

1 void CModArt::ClearDrawing()

2: {

3 // Get the number of lines in the object array
4: int liCount = m_oalLines.GetSize();

5: int liPos;

6-

7 // Are there any objects in the array?

8: if (liCount)

9: {

10: // Loop through the array, deleting each object
11: for (liPos = 0; liPos < liCount; liPos++)
12: delete m_oalLines[liPos];

13: // Reset the array

14: m_oalLines.RemoveAll();

15: }

16: }

Completing the Class

Finally, to wrap up your drawing class, you need to initialize the random number genera-
tor. The random number generator function, rand, generates a statistically random num-
ber sequence based on a series of mathematical calculations. If the number generator
starts with the same number each time, then the sequence of numbers is the same each
time. To get the random number generator to produce a different sequence of numbers
each time your application runs, you need to seed it with avalue that is different each
time. The typical way to do thisis to feed the current system time into the srand func-
tion, which seeds the random number generator with a different time each time that the
application runs. This seeding of the number generator must be done only once each time
the application is run, so you can add this functionality by editing the drawing class con-
structor with the code in Listing 16.7.

392 Day 16

LisTING 16.7. THE CModArt CONSTRUCTOR.

1: CModArt::CModArt()

2: {

3: // Initialize the random number generator
4: srand((unsigned)time(NULL));

5: }

To complete the class, you need to include all of the necessary header files for the func-
tionality that you' ve added to this class. The random number generator needs the
stdlib.h and time.h header files, and the object array needs the header file for the
CLine class. You aso need to populate the color table for use when generating squiggles.
You can add all of these finishing touches by scrolling to the top of the source code file
for the drawing class and adding lines 5, 6, 9, and 12 through 21 in Listing 16.8.

LISTING 16.8. THE CModArt INCLUDES AND COLOR TABLE.

/] ModArt.cpp: implementation of the CModArt class.
/1
PIEETEIELT R ri i i i rin i i i i rirr il

#include <stdlib.h>
#include <time.h>

O~NO O~ WN =

#include "stdafx.h"
9: #include "Line.h"
10: #include "ModArt.h"

11:

12: const COLORREF CModArt::m_crColors[8] = {
13: RGB (0, 0, 0), // Black
14 RGB (0, 0, 255), // Blue

15 RGB (0, 255, 0), /] Green
16 RGB (0, 255, 255), // Cyan

17 RGB(255, 0, 0), // Red

18 RGB(255, 0, 255), // Magenta
19 RGB(255, 255, 0), /! Yellow
20: RGB(255, 255, 255) // White
21: };

You have now completed your library module. Before you go any further, you need to
compile your project. Once you compile your project, you cannot run anything because
you need to create an application that uses your library module in order to run and test
your code. To get ready for creating this test application, close the entire workspace so
that you will start with a clean workspace for the test application.

Creating Your Own Classes and Modules 393 |

Creating a Test Application

To be able to test your module, you need to create a test application that uses the module.
This plain application can contain just enough functionality to thoroughly test the mod-
ule. All you want to do at this point is test all the functionality in the module; you don’t
have to create a full-blown application.

When you create your test application, you need to include the header file for the draw-
ing class in the relevant classes in your application. In atypical SDI or MDI application,
this means including the header file in the document class at a minimum and probably
the view and application class source files also. You also have to add the library file that
your module created in the application project so that it will be linked into your appli-
cation.

Creating the Test App Shell

Creating atest application shell is a simple matter of creating a standard SDI or MDI
application shell. For the purposes of keeping the test application as simple as possible,
it's probably advisable to use an SDI application. However, if you’' ve got some function-
ality in your module that is intended for use in an MDI application, then that application
style might be a better selection as your test application.

For the test application for the sample module you created, create a standard SDI appli-
cation shell using the AppWizard. Give the project a name such as TestApp or some
other suitable name. Specify a file extension on the advanced button on the fourth
AppWizard step. Otherwise, just go ahead and use the default settings for everything
else

Once you create the application shell, you need to add the library module to the project.
You can do this by selecting Project | Add To Project | Files. Once in the Insert Files dia-
log, specify the file types as library files, as shown in Figure 16.3. Navigate to the debug
directory of the module project to find the library module that you created with the pre-
vious project. This typically requires moving up one directory level, finding the project
directory for the module, and then navigating through it to the debug directory. (If you
are building the release version of the module and application, you want to navigate
down to the release directory of the module project.) You should be able to find the
library file for the module you created, as shown in Figure 16.4. Select this module and
click OK to add it to the project.

394 Day 16
FIGURE 163 Insert Files into Project
e . . . Look jn {3 Debug - cf| |&
Soecifying library files. l o
File name: | oK |
Files of tpe: [+ Files [c:.opp:. cxs. tiz bz th inl: ic) =] Tl
Tmage Flis [bmp; db: gl jpa jpe": ico; cul] &, —I
Insettinto: | Executable Fies [exe:.dll.ock)
Browse Info Files [bsc]
ActiveX Conirol Files (.ocx)

Text Fies (it
Obiect Files [abi) J
Comic Chat Room [.cer]

Excel Workbook [#1s]
PowerPoint Presentation [.ppt]

FIGURE 16.4. Insert Files into Project

Lookju |54 Debug

Adding alibrary file to
the project.

Filename; [ModArMod b o]
Fies of type: [LUibrary Files (i) = Cancel
Ingertinto: [Testapp =

Once you add the library file to the project, you also need to add the header files for any
of the classes in the module that will be used into the appropriate application source code
files. For the test application that you are building, this entails adding line 7 in Listing
16.9. You want to add the same line in the include sections of the source code files for
the view and application classes as well.

LISTING 16.9. THE CTestAppDoc INCLUDES.

// TestAppDoc.cpp : implementation of the CTestAppDoc class
/1

#include "stdafx.h"
#include "TestApp.h"

#include "..\ModArtMod\ModArt.h"
#include "TestAppDoc.h"

ONOOOA~WOND =

The last thing that you need to do in preparing the application shell is add a variable for
any classes from the library module that need to be included in any of the application

Creating Your Own Classes and Modules 395|

classes. In the case of the test application that you are building, thisis avariable in the
document class of the drawing class that you created in the library module project. To
add this variable to your application, add a new member variable to the document class.
Specify the variable type as the drawing class from the library module (in this instance,
CModArt) and specify the name as m_maDrawing and the access as private.

Creating a New Drawing

The first place where you want to put some of the functionality of your module is when
you are creating a new document. This is the time to be generating a new drawing. Asa
result, you want to do two things. First, get the drawing area of the view class, passing it
along to the drawing object. Second, tell the drawing object to generate a new drawing.
Thisisal fairly straightforward. To add this functionality to your application, edit the
onNewDocument function in the document class, adding the lines 923 in Listing 16.10.

LisTING 16.10. THe CTestAppDoc OnNewDocument FUNCTION.

1: BOOL CTestAppDoc::0nNewDocument()

2: {

3: if (!CDocument::0OnNewDocument())

4: return FALSE;

5:

6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:

9: // Get the position of the view

10: POSITION pos = GetFirstViewPosition();
11: // Did we get a valid position?

12: if (pos != NULL)

13: {

14: // Get a pointer to the view

15: CView* pView = GetNextView(pos);
16: RECT 1WndRect;

17: // Get the display area rectangle
18: pView->GetClientRect (&1WndRect);
19: // Set the drawing area

20: m_maDrawing.SetRect (1WndRect) ;

21: // Create a new drawing

22: m_maDrawing.NewDrawing() ;

23: }

24:

25: return TRUE;

| 396

Day 16

Saving and Deleting a Drawing

The other functionality that you want to add to the document class is to save and restore
the drawing and to delete the current drawing. These tasks are the last of the document-
related functionality of your library module.

To add the functionality to save and restore drawings to your application, edit the
Serialize function in the document class. Delete all the current contents of the function,
replacing it with a call to the drawing object’s Serialize function, asin Listing 16.11.

LisTING 16.11. THE CTestAppDoc Serialize FUNCTION.

1: void CTestAppDoc::Serialize(CArchive& ar)
2:

3: // Serialize the drawing

4: m_maDrawing.Serialize(ar);

5: }

To add the functionality to delete the current drawing so that a new drawing can be gen-
erated or a saved drawing can be loaded, you need to add the event handler for the
DeleteContents function to the document class. In this function, you call the drawing
object’s clearDrawing function. To add this functionality to your application, use the
Class Wizard to add the event handler for the DeleteContents event to the document
class. Edit this function, adding line 5in Listing 16.12.

LisTING 16.12. THE CTestAppDoc DeleteContents FUNCTION.

1: void CTestAppDoc::DeleteContents()

2: {

3: // TODO: Add your specialized code here and/or call the base class
4: // Delete the drawing

5: m_maDrawing.ClearDrawing();

6-

7: CDocument: :DeleteContents();

8: }

Viewing a Drawing

You need to add one final set of functionality to your test application before you can test
your library module: the drawing functionality to the application. This functionality
belongs in the view class because it is the object that knows when it needs to redraw
itself. Before you can add this functionality to the view class, you need some way for the
view class to get access to the drawing object. The easiest way to add this capability isto

Creating Your Own Classes and Modules 397 |

add another function to the document class that can be called to get a pointer to the
drawing object. Once the view has this pointer, it can call the drawing object’s own bdraw
function.

To add the capability to get a pointer to the drawing object to your document class, add a
new member function to the document class. Specify the function type as a pointer to the
drawing object, in this case, cModArt*, and specify the function declaration as

GetDrawing and the access as public. Edit the function, adding the code in Listing 16.13.

LisTING 16.13. THE CTestAppDoc GetDrawing FUNCTION.

1: CModArt* CTestAppDoc::GetDrawing()
2: {

3: // Return the drawing object
4: return &m_maDrawing;

5: }

Adding the drawing functionality to the view classis a simple matter of editing the
onbraw function in the view class. In this function, you need to get a pointer to the draw-
ing object and then call its braw function, asin Listing 16.14.

LisTING 16.14. THE CTestAppView OnDraw FUNCTION.

1: void CTestAppView: :0nDraw(CDC* pDC)

2: {

3: CModTestAppDoc* pDoc = GetDocument();

4: ASSERT_VALID(pDoc) ;

5:

6: // TODO: add draw code for native data here
7:

8: // Get the drawing object

9: CModArt* m_maDrawing = pDoc->GetDrawing();
10: // Draw the drawing

11: m_maDrawing->Draw(pDC) ;

12: }

Once you add al this functionality, you can compile and run your application to test the
functionality of your library module. Each time you select File| New from your applica-
tion menu, a new drawing is created, asin Figure 16.5.

| 398

Day 16

FiGure 16.5. 4l Untitled - TestApp [L[oIX]
. Fie Edt View Help

Creating random FrEEIEEEEED

squiggle drawings.

N

2
Fieady | N[2

Updating the Library Module

Now that you have a working application, let’s go back to the library module and make
some changes. Whenever you make any changes to the library module code, no matter
how minor, you need to relink all applications that use the module in order to get the
updates into those applications. This is because the library module is linked into the EXE
of the application. It does not remain in a separate file.

To see how this works, reopen the library module project. You will make three changes
to this module. First, you'll increase the number of squiggles that may be included in a
single drawing. Second, you' Il increase the number of line segments that may make up a
single squiggle. Third, you'll generate random colors, beyond just the eight colors
included in the color table. Once you make these changes, you'll recompile your library
module. Once you generate a new module, you'll relink your test application so that you
can incorporate these changes into the application.

To make the first change in your module, increasing the number of squiggles that can be
in a drawing, edit the NewDrawing function in the drawing class, increasing the modulus
valuein line 7 of the function, asin Listing 16.15. This will increase the number of pos-
sible squiggles in a single drawing from a maximum of 10 to a maximum of 50. There
may still be an occasional drawing that doesn’'t have any squiggles, but you can ignore
this possibility for now.

LisTING 16.15. THE MODIFIED CModArt NewDrawing FUNCTION.

1: void CModArt: :NewDrawing()
2: {

3: int 1NumLines;

4: int 1CurlLine;

Creating Your Own Classes and Modules 399 |

N O

o

11:
12:
13:
14:
15:
16:
17:
18:

// Determine how many lines to create
INumLines = rand() % 50;

// Are there any lines to create?

if (I1NumLines > 0)

{
// Loop through the number of lines
for (1CurLine = 0@; 1lCurLine < INumLines; 1lCurLine++)
{
/] Create the new line
NewLine();
}
}

With the increased number of squiggles that can be included in a drawing, next you want
to increase the number of line segments that may be in a squiggle. To do this, edit the
NewLine function and increase the modulus number on line 20 in Listing 16.16 from 100
to 200. While you're in this function, you can aso increase the number of colors that
may be generated for use in each drawing. First, add three integer variable declarations,
one for each of the three additive colors (red, green, and blue, asin lines 9 through 11 in
Listing 16.16). Next, generate random values for each of these integers between the val-
ues of 0 and 255 (lines 26 through 28). Finally, when creating the cLine object, pass
these colors through the rGB function to create the actual color that will be used in the
drawing, asin line 41 of Listing 16.16.

LISTING 16.16. THE MODIFIED CModArt NewLine FUNCTION.

void CModArt::NewLine()

{

I

int 1NumLines;
int 1CurlLine;
int nCurColor;
UINT nCurWidth;
CPoint pTo;
CPoint pFrom;
int cRed;

int cBlue;

int cGreen;

// Normalize the rectangle before determining the width and height
m_rDrawArea.NormalizeRect();

/! get the area width and height

int 1width = m_rDrawArea.Width();

continues

|4OO

Day 16

LISTING 16.16. CONTINUED

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

I

int 1lHeight = m_rDrawArea.Height();

// Determine the number of parts to this squiggle
INumLines = rand() % 200;

/] Are there any parts to this squiggle?

if (1NumLines > 0)

{

// Determine the color
nCurColor = rand() % 8;
cRed = rand() % 256;
cBlue = rand() % 256;
cGreen = rand() % 256;
// Determine the pen width
nCurWidth = (rand() % 8) + 1;
// Determine the starting point for the squiggle
pFrom.x = (rand() % 1lWidth) + m_rDrawArea.left;
pFrom.y = (rand() % lHeight) + m_rDrawArea.top;
// Loop through the number of segments
for (1CurLine = 0@; 1lCurLine < 1NumLines; 1lCurLine++)
{
// Determine the end point of the segment
pTo.x = ((rand() % 20) - 10) + pFrom.x;
pTo.y = ((rand() % 20) - 10) + pFrom.y;
// Create a new CLine object
CLine *pLine = new CLine(pFrom, pTo, nCurWidth,
ORGB(cRed, cGreen, cBlue));
try

// Add the new line to the object array
m_oalLines.Add(pLine);
}
// Did we run into a memory exception?
catch (CMemoryException* perr)

{

// Display a message for the user, giving him the

// bad news
AfxMessageBox ("Out of memory", MB_ICONSTOP
// Did we create a line object?
if (pLine)
{
/] Delete it
delete pLine;
pLine = NULL;
}
// Delete the exception object
perr->Delete();
}
// Set the starting point to the end point

MB_OK) ;

Creating Your Own Classes and Modules 401 |

64: pFrom = pTo;
65: }

67: }

Now that you've made all the necessary changes to the library module, compile it so that
it'sready for use in the test application. If you run your test application from the Start |
Run Taskbar option, asin Figure 16.6, you' Il notice that there is no noticeable difference
in how your application behaves. Thisis because the application hasn’t changed. The
application is till using the old version of your library module. To get the test applica-
tion to use the new version of the library module, reopen the test application project in
Visual C++. Build the project, which should not do anything other than relink the pro-
ject, and then run the application. You should see a significant difference in the drawings
that your application is now generating, as shown in Figure 16.7.

Ficure 16.6. Run B

ica- | Type th i . folder, d t, or Intemet
Run the test applica | B e i
tion from the Start Open: |D AMSYS AMyProjects\T estAppADsbugh Testhpp exs =]
menu. 1% Pl 20 er e dee space

T | Canedl || Browse.. |

FIGURE 16.7. . NTestl - TestApp M= B3
File Edit View Help

The updated test appli- Desd|hEe]S 2]

cation.

Summary

Today you learned about how to approach creating and designing new classes for your
applications. You learned the differences between the different types of classes that are
available to you through the New Class Wizard in Visual C++. You also learned how you
can create a library module with a set of your functionality that you can hand to other

| 402

Day 16

programmers for including in their applications. You learned how this module will be
linked into the actual applications, thus not requiring a separate file to be distributed
along with the applications.

Tomorrow you will learn about a different approach to creating reusable packaged func-
tionality that you can give to other programmers. You will learn how to create DLLS
using Visual C++, what the differences are between creating library modules and DLL,
and how you need to approach each task.

Q&A
Q

A

Isn’t most functionality packaged in DLLs now? Why would | want to create
library modulesinstead of DLLS?

Yes, the trend toward packaging functionality modules has been to create DLLS
instead of library modules for a number of years now. However, there are still
instances where library modules are preferable. If you are creating a module that
contains proprietary functionality that you do not want to risk exposing to others,
but that is needed for any applications that you or another programmer in your
company is building, then you would probably want all that functionality packaged
in alibrary module so that it isinternal to the application. Using library modules
makes it effectively inaccessible to your competition without significant disassem-
bly and reverse engineering efforts.

Why does the header file need to beincluded in the application that is using
my library file?

The application needs to know about the objects that are in the library file. In the
sample application, you didn't need to include the header file for the cLine class
because the application didn’t directly use or reference the cLine class. However,
the application did use the drawing object that was in your library module, so it did
need to know about that object, how it is defined, and what functions are available
for it. If you don’'t want the other programmers to know all of the internal structure
of your classes, then you can create another header file to be distributed with your
library module. This header would contain definitions of all of the same classes
that are in the library module but would only provide the public functions and vari-
ables that the other programmers can actually access.

Creating Your Own Classes and Modules 403 |

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. When do you want to create a new MFC class?

2. When you make changesto alibrary file, what do you have to do to the applica-
tions that use the library file?

3. What are the different types of classes that you can create?

4. When you package some functionality in alibrary file, what do you need to give to
other programmers who want to use your library module?

5. What are two of the basic principles in object-oriented software design?

Exercise

Separate the cLine class into a different library module from the drawing class so that
you have two library modules instead of one. Link them into the test application.

WEEK 3

DAY 17

Sharing Your
Functionality with Other
Applications—Creating
DLLs

Yesterday you learned how you could create a set of functionality that might be
useful for multiple applications and how you could package it in alibrary file
that could be linked into those applications. Today you will learn how to do this
same thing, only with a much more dynamic package.

Often, afamily of applications will have some functionality in common. When
you place this shared functionality into DLLs instead of library modules, all
the applications can use the same functionality with only a single copy of the
functionality distributed in the form of DLLs, instead of duplicating the same
functionality in each of the applications. This method saves disk space on any
systems where the applications are installed.

| 406 Day 17

Today, you will learn

- About the different types of DLLs that you can create with Visual C++ and how to
determine which type best suits your needs.

- How to build two of these types of DLLs and the different approaches for the
various DLL types.

- How to use the functionality for both of these types of DLLsin aVisua C++
application.

- How to determine when an application needs to be relinked when you make modi-
ficationsto a DLL that is used by the application.

Why Create DLLS?

Dynamic link libraries (DLL) were introduced by Microsoft back in the early days of
Windows. DLLs are similar to library modulesin that they both contain sets of function-
ality that have been packaged for use by applications. The difference is when the appli-
cations link to the library. With alibrary module (LIB), the application is linked to the
functionality in the library during the compile and build process. The functionality con-
tained in the library file becomes part of the application executable file. With aDLL, the
application links to the functionality in the library file when the application is run. The
library file remains a separate file that is referenced and called by the application.

There are several reasons for creating DLLs instead of library module files. First, you
can reduce the size of the application executable files by placing functionality that is
used by multiple applications into DLL s that are shared by all of the applications. You
can update and modify functionality in the DLLs without having to update the applica-
tion executable (assuming that the exported interface for the DLL doesn’t change).
Finally, you can use DLLs with just about any other Windows programming language,
which makes your functionality available to awider number of programmers, not just
fellow Visual C++ programmers.

Creating and Using DLLs

DLLsare library files with compiled code that can be used by other applications. The
DLLs expose certain functions and classes to these applications by exporting the func-
tion. When afunction is exported, it is added to atable that isincluded in the DLL. This
table lists the location of all exported functions contained in the DLL, and it is used to
locate and call each of these functions. Any functions that are not exported are not added
to this table, and they cannot be seen or called by any outside application or DLL.

Sharing Your Functionality with Other Applications—Creating DLLs

407 |

An application can call the functionsin the DLL in two ways. The more involved

method of calling these functions is to look up the location of the desired function in the
DLL and get a pointer to this function. The pointer can then be used to call the function.

The other, much easier way (and the only way that you'll use in any of the examplesin
this book) is to link the application with the LIB file that is created with the DLL. This
LIB fileistreated by the linker as a standard library file, just like the one that you cre-
ated yesterday. However, this LIB file contains stubs for each of the exported functions
inthe DLL. A stub is a pseudo-function that has the same name and argument list as the
real function. In the interior of the function stub is a small amount of code that calls the
real function in the DLL, passing all of the arguments that were passed to the stub. This
allows you to treat the functions in the DLL as if they were part of the application code

and not as a separate file.

Tip

The LIB file for a DLL is automatically created for the DLL during the compil-
ing of the DLL. There is nothing extra that you need to do to create it.

Not only is it easier to create your applications using the LIB files for any
DLLs that you will be using, but also it can be safer when running the appli-
cation. When you use the LIB files, any DLLs that are used by your applica-
tion are loaded into memory the moment the application is started. If any
of the DLLs are missing, the user is automatically informed of the problem
by Windows, and your application does not run. If you don’t use the LIB
files, then you are responsible for loading the DLL into memory and
handling any errors that occur if the DLL cannot be found.

There are two types of DLLs that you can easily create using Visual C++. These two
types are MFC extension DLLs and regular DLLs.

You can create other types of DLLs using Visual C++. All these other types of
DLLs involve a significant amount of ActiveX functionality, so they are
beyond the scope of this book. If you need to build ActiveX in-process
server DLLs, or other types of ActiveX DLLs, | recommend that you find an
advanced book on Visual C++ that provides significant coverage for these
topics.

| 408 Day 17

MFC Extension DLLs

MFC DLLs are the easiest to code and create because you can treat them just like any
other collection of classes. For any classes that you want to export from the DLL, the
only thing that you need to add is the AFX_EXT_CLASS macro in the class declaration, as
follows:

class AFX_EXT_CLASS CMyClass
{

};
This macro exports the class, making it accessible to Visual C++ applications. You need

to include this macro in the header file that is used by the applications that will use the
DLL, where it will import the class from the DLL so that it can be used.

The one drawback to creating MFC extension DLLs s that they cannot be used by any
other programming languages. They can be used with other C++ compilers as long as the
compiler supports MFC (such as with Borland's and Symantec’s C++ compilers).

Regular DLLs

The other type of DLL isaregular DLL. Thistype of DLL exports standard functions
from the DLL, not C++ classes. As aresult, this type of DLL can require alittle more
thought and planning than an MFC extension DLL. Once inside the DLL, you can use
classes al you want, but you must provide straight function calls to the external applica
tions.

To export afunction, declare it as an export function by preceding the function name
with

extern "C" <function type> PASCAL EXPORT <function declaration>

Include all this additional stuff in both the header file function prototype and the actual
source code. The extern "C" portion declares that thisis a standard C function call

so that the C++ name mangler does not mangle the function name. PASCAL tells the
compiler that all function arguments are to be passed in PASCAL order, which places the
arguments on the stack in the reverse order from how they are normally placed. Finaly,
EXPORT tells the compiler that this function is to be exported from the DLL and can be
called outside the DLL.

The other thing that you need to do to export the functions from your DLL isto add all
the exported function names to the DEF file for the DLL project. Thisfileis used to
build the stub LIB file and the export table in the DLL. It contains the name of the DLL,

Sharing Your Functionality with Other Applications—Creating DLLs

409 |

or library, a brief description of the DLL, and the names of al functions that are to be
exported. This file has to follow a specific format, so you should not modify the default
DEF file that is automatically created by the DLL Wizard other than to add exported
function names. A typical DEF file follows:

LIBRARY "mydll"
DESCRIPTION 'mydll Windows Dynamic Link Library'

EXPORTS
; Explicit exports can go here
MyFunc1
MyFunc?2

If you are using MFC classes in your regular DLLS, you need to call the
AFX_MANAGE_STATE macro as the first line of code in al exported functions. Thisis nec-
essary to make the exported functions threadsafe, which alows your class functions to be
called simultaneously by two or more programs (or threads). The AFX_MANAGE_STATE
macro takes a single argument, a pointer to a AFX_MODULE_STATE structure, which can be
retrieved by calling the AfxGetStaticModuleState function. A typical exported function
that uses MFC looks like the following:

extern "C" void PASCAL EXPORT MyFunc(...)

{
AFX_MANAGE_STATE (AfxGetStaticModuleState());

// normal function body here

}
Designing DLLs
When you are designing your DLLSs, you should be aware that any of the functionsin

your DLLs can be called simultaneously by multiple applications al running at the same
time. As aresult, al the functionality in any DLLs that you create must be threadsafe.

All variables that hold any values beyond each individual function call must be held and
maintained by the application and not the DLL. Any application variables that must be
manipulated by the DLL must be passed in to the DLL as one of the function arguments.
Any global variables that are manipulated within the DLL may be swapped with vari-
ables from other application processes while the function is running, leading to unpre-
dictable results.

| 410

Day 17

Creating and Using an MFC Extension DLL

To see how easy it isto create and use an MFC extension DLL, you'll convert the library
module that you created yesterday into an MFC extension DLL today. After you see how
easy it is, and what types of changes you have to make to use the DLL, you'll then reim-
plement the same functionality as aregular DLL so that you can get an understanding of

the different approaches that are necessary with the two DLL styles.

Creating the MFC Extension DLL

To convert the library module you created yesterday into an MFC extension DLL, you
need to create a new MFC DLL Wizard project, specifying that the project is an MFC
extension DLL. Copy the source code and header files for the line and drawing classes
into the project directory. Load the files for the line and drawing classes into the current
project. Add the AFX_EXT_CLASS macro to the drawing class. Finally, move the color
table from a global static table to alocal variable inside the function that creates the
squiggles.

To create this DLL, start a new project. Give the project a suitable name, such as
ModArtD11, and specify that the project isan MFC AppWizard (DLL) project, asin
Figure 17.1. Once in the DLL Wizard, specify that the DLL isan MFC Extension DLL,
asin Figure 17.2.

FIGURE 17.1. New B
Sdecting the MFC Fies Prokects | Workspaces | Other Documents |
DLL W zard &1 ATL COM Appwizard Project nams
.] Cluster Resource Type Wizard HodAntDLL
9 Custom Appwizard .
@D atabase Project Coceon:
188 D vStudio Addin Wizard D:HSVS WMy Projects\ModéiD | .|
B E dtended Stored Proc Wizard
15API Extension Wizard
5 Makefile @ Cieate new workspace
MFC ActiveX Controbwizard (0 i st esess
(3] MFC Appwizard (di) I~ | Dependency of
MFC AppWwizard (eve) =
71 Utilty Project
2] win32 Application
|~ Win32 Console Application P
| %) Win32 Dynamic-Link Library
%] win32 Static Libran [win32
Cancel

Once you create the DLL shell, open the file explorer and copy the source code and
header files for the line and drawing classes (1ine.cpp, line.h, ModArt.cpp, and
ModArt.h) from the library module project you created yesterday into the project direc-
tory that you just created. Add all four of these files to the project. Both classes should
appear in the Class View of the workspace pane.

Sharing Your Functionality with Other Applications—Creating DLLs 411 |

FiIGURE 17.2. MFC AppWizard - Step 1 of 1
Soecifying the DLL P T Whal e o DLL woud you ke [0 reste?
OO

type € Regular DLL with MFC statically linked

€ Regular DLL using shared MFC DLL

‘What features would you like in your DLL?

™ Automation
I~ Windows Sockets
‘Would you like to generate source file comments?

% Yes, please
€ No, thank you

<Back | Hed | Erish | Cancdl |

Open the header file containing the definition of the drawing class. Add the
AFX_EXT_CLASS macro to the class declaration as shown in Listing 17.1. Remove the
color table variable from the class declaration also.

LisTING 17.1. THE MODIFIED CModArt CLASS DECLARATION.

1: class AFX_EXT_CLASS CModArt : public CObject
2: {

3: public:

4: void NewDrawing();

5: virtual void Serialize(CArchive &ar);
6: void Draw(CDC *pDC);

7: void ClearDrawing();

8: void SetRect(CRect rDrawArea);

9: CModArt();

10: virtual ~CModArt();

11:

12: private:

13: void NewLine();

14: CRect m_rDrawArea;

15: CObArray m_oalLines;

16: };

You cannot have public static tablesin DLLSs, so you cannot declare the color table as a
public, static member of the drawing class, as it was yesterday. As aresult, you'll move
it to alocal variable in the NewLine member function. Edit the NewLine function to add
this local variable and to reset the function to behave asit did in itsinitial incarnation,
asin Listing 17.2.

| 412 Day 17

LisTING 17.2. THE CModArt NewLine FUNCTION.

1 void CModArt::NewLine()

2: {

3 int 1NumLines;

4: int 1lCurlLine;

5: int nCurColor;

6: UINT nCurWidth;

7: CPoint pTo;

8: CPoint pFrom;

9:

10: // Normalize the rectangle before determining the width and height
11: m_rDrawArea.NormalizeRect();

12: // get the area width and height

13: int 1width = m_rDrawArea.Width();

14: int 1Height = m_rDrawArea.Height();

15:

16: COLORREF crColors[8] = {

17: RGB(O, 0, 0), // Black

18: RGB (0, 0, 255), /] Blue

19: RGB (0, 255, 0), /] Green

20: RGB (0, 255, 255), /] Cyan

21: RGB(255, 0, 0), // Red

22: RGB(255, 0, 255), // Magenta

23: RGB(255, 255, 0), /] Yellow

24: RGB(255, 255, 255) /] White

25: };

26:

27: // Determine the number of parts to this squiggle
28: INumLines = rand() % 100;

29: // Are there any parts to this squiggle?

30: if (1NumLines > 0)

31: {

32: // Determine the color

33: nCurColor = rand() % 8;

34: // Determine the pen width

35: nCurWidth = (rand() % 8) + 1;

36: // Determine the starting point for the squiggle
37: pFrom.x = (rand() % 1lWidth) + m_rDrawArea.left;
38: pFrom.y = (rand() % lHeight) + m_rDrawArea.top;
39: // Loop through the number of segments

40: for (1CurLine = 0@; 1lCurLine < 1NumLines; 1lCurLine++)
41: {

42: // Determine the end point of the segment
43: pTo.x = ((rand() % 20) - 10) + pFrom.Xx;

44: pTo.y = ((rand() % 20) - 10) + pFrom.y;

45: // Create a new CLine object

46: CLine *pLine = new CLine(pFrom, pTo, nCurWidth,

OcrColors[nCurColor]);
47: try

Sharing Your Functionality with Other Applications—Creating DLLs

413 |

48: {

49: // Add the new line to the object array

50: m_oalLines.Add(pLine);

51: }

52: // Did we run into a memory exception?

53: catch (CMemoryException* perr)

54: {

55: // Display a message for the user, giving him the
56: // bad news

57: AfxMessageBox("Out of memory", MB_ICONSTOP ; MB_OK);
58: // Did we create a line object?

59: if (pLine)

60: {

61: // Delete it

62: delete pLine;

63: pLine = NULL;

64: }

65: // Delete the exception object

66: perr->Delete();

67: }

68: // Set the starting point to the end point
69: pFrom = pTo;

70: }

71: }

72: }

After making these changes to the drawing class, you are ready to compile your DLL.
Once you compile the DLL, switch over to the file explorer, find the DLL in the debug
subdirectory under the project directory, and copy the DLL to the debug directory in the
test application project directory.

Adapting the Test Application

To adapt the test application to use the DLL, open the test application project that you
created yesterday. You are going to delete the library module that you created yesterday
and add the LIB file that was created with the DLL. You are also going to change the
header file that isincluded for the drawing class. After making these two changes, your
test application will be ready to use with the DLL.

To delete the library module from the project, open the File View in the workspace pane.
Select the LIB file from the list of project files and press the Delete key. Once you delete
the library file from the project, select Project | Add To Project | Files from the main
menu. Specify the Library Files (.lib) file type, and then navigate to the debug directory
of the DLL project. Select the LIB file that was created with your DLL, in this case,
ModArtD11.1ib. Click OK to add the file to the project.

414 Day 17

Once you add the DLL’s LIB file, edit the source-code files for the document, view, and
application classes, changing the include of the drawing class to point to the project
directory of the DLL, asinline 7 in Listing 17.3.

LisTING 17.3. THE CTestAppDoc INCLUDES.

// TestAppDoc.cpp : implementation of the CTestAppDoc class
/1l

#include "stdafx.h"
#include "TestApp.h"

#include "..\ModArtD11l\ModArt.h"
#include "TestAppDoc.h"

O~NOO O~ WOWN =

After making this change to all three source-code files, you are ready to compile and run
your test application. You should find your test application running just like it did yester-
day, only generating shorter squiggles and using only the eight colors in the color table.

Changing the DLL

Now that you have the test application running with the DLL, you'll make the same
changes to the DLL that you made to the library module yesterday. You'll increase the
number of squiggles that can be included in a drawing, increase the possible length of
each sguiggle, and generate any number of colors for use in the squiggles.

To make these changes, switch back to the DLL project. Increase the number of lines
that may be generated in the NewDrawing member function of the drawing class. Increase
the possible length of the squiggles in the NewLine member function, and add the random
colorsback in, asin Listing 17.4.

LISTING 17.4. THE MODIFIED CModArt NewLine FUNCTION.

1 void CModArt::NewLine()
2: |

3 int 1NumLines;

4: int 1CurlLine;

5: // 1int nCurColor;

6: UINT nCurWidth;

7

8

CPoint pTo;
: CPoint pFrom;
9: int cRed;
10: int cBlue;
11: int cGreen;

Sharing Your Functionality with Other Applications—Creating DLLs

415|

13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:
31:
32:
33:
34:
35:

36:

I

37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:

53:
54:
55:
56:
57:
58:
59:
60:

// Normalize the rectangle before determining the width and height

m_rDrawArea.NormalizeRect();

// get the area width and height
int 1width = m_rDrawArea.Width();
int 1lHeight = m_rDrawArea.Height();

COLORREF crColors[8] = {

RGB (0, 0, 0), // Black
RGB (0, 0, 255), // Blue
RGB (0, 255, o), // Green
RGB (0, 255, 255), // Cyan
RGB(255, 0, 0), // Red
RGB(255, 0, 255), // Magenta
RGB(255, 255, 0), /! Yellow
RGB(255, 255, 255) // White
b

// Determine the number of parts to this squiggle
INumLines = rand() % 200;
// Are there any parts to this squiggle?
if (1NumLines > 0)
{
// Determine the color
nCurColor = rand() % 8;
cRed = rand() % 256;
cBlue = rand() % 256;
cGreen = rand() % 256;
// Determine the pen width
nCurWidth = (rand() % 8) + 1;
// Determine the starting point for the squiggle
pFrom.x = (rand() % 1lWidth) + m_rDrawArea.left;
pFrom.y = (rand() % lHeight) + m_rDrawArea.top;
// Loop through the number of segments
for (1CurLine = @; 1lCurLine < 1NumLines; 1lCurLine++)
{
// Determine the end point of the segment
pTo.x = ((rand() % 20) - 10) + pFrom.Xx;
pTo.y = ((rand() % 20) - 10) + pFrom.y;
// Create a new CLine object
CLine *pLine = new CLine(pFrom, pTo, nCurWidth,
ORGB(cRed, cGreen, cBlue));
try
{
// Add the new line to the object array
m_oalLines.Add(pLine);
}
// Did we run into a memory exception?
catch (CMemoryException* perr)

{

continues

| 416 Day 17
LISTING 17.4. CONTINUED
61: // Display a message for the user, giving him the
62: // bad news
63: AfxMessageBox("Out of memory", MB_ICONSTOP , MB_OK);
64: // Did we create a line object?
65: if (pLine)
66: {
67: // Delete it
68: delete plLine;
69: pLine = NULL;
70: }
71: // Delete the exception object
72: perr->Delete();
73: }
74: // Set the starting point to the end point
75: pFrom = pTo;
76: }
77: }
78: }

After making these changes, compile the DLL again. Once you compile the DLL, switch
to the file explorer and copy the DLL into the debug directory of the test application
again. Once you copy the DLL, run the test application from the Start | Run Taskbar, asin
Figure 17.3. You should find that the application has been updated, and it is now includ-
ing more squiggles and using many different colors.

FIGURE 17.3. Aun
Sar ting _the sample ﬁ e
application

Oper [D:AMSVS\MyProjects\Testhpp\DebughTestApp exe |

[| Auriniseparate memon space

Cancel | Browse.. |

Creating and Using a Regular DLL

You might think that you broke the rules about using variables that are not owned by the
application in a DLL when you created and used the MFC extension DLL. Well, you
didn’t. The instance of the drawing class was a member of the document class in the test
application. It was created and maintained by the application, not the DLL. Now that you
are turning your attention to implementing the same functionality as aregular DLL, this
will become clearer.

To convert the MFC extension DLL into aregular DLL, you'll have to convert the draw-
ing class into a series of regular function calls. In the course of making this conversion,

Sharing Your Functionality with Other Applications—Creating DLLs 417 |

the object array must become a member variable of the application document class and
must be passed as an argument to every exported function in the DLL.

Creating the Regular DLL

To convert the MFC extension DLL into aregular DLL, you have to start a new project.
Visual C++ hasto build a project that tells the compiler what type of fileit's creating.
You can create this new project using the same steps you used to create the MFC exten-
sion DLL project, but specify on the DLL Wizard that you are creating aregular DLL.
(You can leave the wizard at the default settings.) Once you create the project, you can
copy the line and drawing class source code and header files into the project directory
and add these files to the project. Once you add these files to the project, you need to
begin the process of converting the drawing class into a series of straight function calls.

Altering the Header File

To start with, you need to radically alter the header file for the drawing class so that it
will work for aregular DLL. You have to eliminate every trace of the actual class from
the header file, leaving only the function calls. All of these functions must be passed in
any objects that they need to work with. (Every function will need to be passed the
object array as one of its arguments.) Next, you need to slightly modify al the function
names so that the compiler does not get mixed up and call a member function of any
class by mistake (such asthe Serialize function). Finaly, each of the public functions
must be declared as an exportable function. Making these changes to the header file, you
end up replacing the entire class declaration with the function prototypesin Listing 17.5.

LisTING 17.5. THE MODIFIED ModArt HEADER FILE.

1: extern "C" void PASCAL EXPORT ModArtNewDrawing(CRect pRect,

O CObArray *poalLines);
2: extern "C" void PASCAL EXPORT ModArtSerialize(CArchive &ar,

O CObArray *poalLines);
3: extern "C" void PASCAL EXPORT ModArtDraw(CDC *pDC, CObArray *poalLines);
. extern "C" void PASCAL EXPORT ModArtClearDrawing(CObArray *poalLines);
5: void NewLine(CRect pRect, CObArray *poalLines);

I

N t Notice that the object array is always passed as a pointer to each of these
ote . . . : :
. functions. Because these functions are adding and removing objects from

the array, they need to work with the actual array and not a copy of it.

418 Day 17

Adapting the Drawing Generation Functions

Moving to the source-code file, you need to make humerous small yet significant
changes to these functions. Starting with the NewDrawing function, you need to passin
the CRect object to get the drawing area. You dropped the function for setting the draw-
ing area because you have no local variables in which you can hold this object. As a
result, you are better off passing it to the drawing generation functions. The other change
is where you pass in the object array as another argument to the function. You aren’t
doing anything with either of these arguments in this function, just passing them along to
the squiggle generating function. The other alteration in this function is the addition of
the AFX_MANAGE_STATE macro as the first line in the body of the function. After making
these changes, the NewDrawing function will look like the onein Listing 17.6.

LisTING 17.6. THE ModArtNewDrawing FUNCTION.

1: extern "C" void PASCAL EXPORT ModArtNewDrawing(CRect pRect,
O CObArray *poaLines)

2: {

3: AFX_MANAGE_STATE (AfxGetStaticModuleState());
4: // normal function body here

5: int 1NumLines;

6: int 1CurLine;

7:

8: // Initialize the random number generator
9: srand((unsigned)time (NULL));

10: // Determine how many lines to create

11: INumLines = rand() % 50;

12: // Are there any lines to create?

13: if (INumLines > 0)

14: {

15: // Loop through the number of lines
16: for (1CurLine = 0@; 1lCurLine < INumLines; 1lCurLine++)
17: {

18: // Create the new line

19: NewLine (pRect, poalLines);

20: }

21: }

22: }

Another change that is required in the NewDrawing function is the addition of the random
number generator seeding on line 9. Because there is no class constructor any more, you
cannot seed the random number generator in it. Therefore, the next logical place to add
thisisin the Newdrawing function before any random numbers are generated.

Sharing Your Functionality with Other Applications—Creating DLLs 419 |

On the NewLine function, the changes are more extensive. First, the CRect object and the
object array are passed in as arguments. Second, because this is not an exported function,
you do not need to add the AFX_MANAGE_STATE macro. Third, all the places where the
CRect member variable is used must be changed to use the CRect that is passed as an
argument to the function. Finally, when adding objects to the object array, you need to
change this to use the object array pointer that was passed as an argument. Making these
changes leaves you with the code in Listing 17.7.

LisTING 17.7. THE NewLine FUNCTION.

1 void NewLine(CRect pRect, CObArray *poalLines)
2 {

3 int 1NumLines;

4: int 1lCurlLine;

5: // int nCurColor;

6: UINT nCurWidth;

7

8

: CPoint pTo;
: CPoint pFrom;
9: int cRed;
10: int cBlue;
11: int cGreen;
12:
13: // Normalize the rectangle before determining the width and
Oheight
14: pRect.NormalizeRect();
15: // get the area width and height
16: int 1width = pRect.Width();
17: int 1lHeight = pRect.Height();
18:
19: // COLORREF crColors[8] = {
20: // RGB (0, 0, 0), // Black

21: // RGB
22: // RGB 0, 255, 0 // Green
23: // RGB 0, 255, 255 // Cyan

(o, 0, 2%5),
()
()
24: /] RGB(255, 0, 0), // Red
()
()
()

// Blue

25: // RGB(255, 0, 255 // Magenta
26: // RGB(255, 255, 0 // Yellow

27: /] RGB(255, 255, 255 // White

28: // }s

29:

30: // Determine the number of parts to this squiggle
31: INumLines = rand() % 200;

32: // Are there any parts to this squiggle?

33: if (1NumLines > 0)

34: {

35: // Determine the color

continues

| 420 Day 17

LISTING 17.7. CONTINUED

36: // nCurColor = rand() % 8;

37: cRed = rand() % 256;

38: cBlue = rand() % 256;

39: cGreen = rand() % 256;

40: // Determine the pen width

41: nCurWidth = (rand() % 8) + 1;

42: // Determine the starting point for the squiggle

43: pFrom.x = (rand() % 1lWidth) + pRect.left;

44: pFrom.y = (rand() % lHeight) + pRect.top;

45: // Loop through the number of segments

46: for (1CurLine = 0@; 1lCurLine < INumLines; 1lCurLine++)

47: {

48: // Determine the end point of the segment

49: pTo.x = ((rand() % 20) - 10) + pFrom.x;

50: pTo.y = ((rand() % 20) - 10) + pFrom.y;

51: // Create a new CLine object

52: CLine *pLine = new CLine(pFrom, pTo, nCurWidth,
ORGB(cRed, cGreen, cBlue));

53: try

54: {

55: // Add the new line to the object array

56: poaLines->Add(pLine);

57: }

58: // Did we run into a memory exception?

59: catch (CMemoryException* perr)

60: {

61: // Display a message for the user, giving him the

62: // bad news

63: AfxMessageBox("Out of memory", MB_ICONSTOP |, MB_OK);

64: // Did we create a line object?

65: if (pLine)

66: {

67: // Delete it

68: delete pLine;

69: pLine = NULL;

70: }

71: // Delete the exception object

72: perr->Delete();

73: }

74: // Set the starting point to the end point

75: pFrom = pTo;

76: }

77: }

78: }

Adapting the Other Functions

Making the necessary changes to the other functionsis less involved than the changes to
the drawing generation functions. With the rest of the functions, you must add a pointer

Sharing Your Functionality with Other Applications—Creating DLLs 421 |

to the object array as a function argument and then alter the uses of the array to use the
pointer instead of the no longer existing member variable. You also need to add the
AFX_MANAGE_STATE macro as the first line in each of the remaining functions. This leaves
you with the functions shown in Listings 17.8, 17.9, and 17.10.

LISTING 17.8. THE ModArtDraw FUNCTION.

1 extern "C" void PASCAL EXPORT ModArtDraw(CDC *pDC, CObArray *poalLines)
2: |

3 AFX_MANAGE_STATE (AfxGetStaticModuleState());

4: // normal function body here

5: // Get the number of lines in the object array

6: int liCount = poalLines.GetSize();

7: int 1liPos;

8:

9: // Are there any objects in the array?

10: if (1iCount)

11: {

12: // Loop through the array, drawing each object
13: for (1iPos = 0; liPos < liCount; 1liPos++)

14: ((CLine*)poaLines[liPos]) ->Draw(pDC);

15: }

16: }

LisTING 17.9. THE ModArtSerialize FUNCTION.

1: extern "C" void PASCAL EXPORT ModArtSerialize(CArchive &ar,
O CObArray *poalLines)

2: {

3: AFX_MANAGE_STATE (AfxGetStaticModuleState());
4: // normal function body here

5: // Pass the archive object on to the array
6: poalLines.Serialize(ar);

7.}

LisTING 17.10. THE ModArtClearDrawing FUNCTION.

1 extern "C" void PASCAL EXPORT ModArtClearDrawing(CObArray *poalLines)
2: |

3: AFX_MANAGE_STATE (AfxGetStaticModuleState());

4: // Normal function body here

5: // Get the number of lines in the object array

6 int 1liCount = poalLines.GetSize();

7 int liPos;

continues

| 422 Day 17

LisTING 17.10. CONTINUED

8:

9: /] Are there any objects in the array?

10: if (liCount)

11: {

12: // Loop through the array, deleting each object
13: for (liPos = @; liPos < liCount; liPos++)
14: delete poalLines[liPos];

15: // Reset the array

16: poaLines.RemoveAll();

17: }

18: }

Once you make the changes to these functions, the only thing remaining is to remove all
code for the class constructor and destructor, along with the code for the setRect func-
tion.

Building the Module Definition File

Before you compile the DLL, you need to add all the function names to the module defi-
nition file. You can find this file in the list of source-code filesin the File View of the
workspace pane. When you open this file, you'll find that it briefly describes the module
that you are building in generic terms. You'll see a place at the bottom of the file where
you can add the exports for the DLL. Edit this file, adding the exportable function
names, asin Listing 17.11.

LISTING 17.11. THE DLL MODULE DEFINITION FILE.

; ModArtRDll.def : Declares the module parameters for the DLL

LIBRARY "ModArtRD11"
DESCRIPTION 'ModArtRD11 Windows Dynamic Link Library'

EXPORTS
; Explicit exports can go here
ModArtNewDrawing
ModArtSerialize
ModArtDraw
ModArtClearDrawing

= 2 oo ~NOOOPWOWN =

_a o .-

You are now ready to compile your regular DLL. Once you compile the DLL, copy it
into the debug directory of the test application.

Sharing Your Functionality with Other Applications—Creating DLLs 423 |

Adapting the Test Application

To adapt the test application to use the new DLL that you have just created, you need to
make a number of changes. First, you need to change the member variable of the docu-
ment class from an instance of the drawing class to the object array. Next, you need to
change the include in the document and view source code to include the header from the
new DLL instead of the header from the old DLL. (You can completely remove the
include in the application source-code file.) Drop the DLL LIB file and add the LIB file
for the new DLL to the project. Change all of the drawing class function calls to call
functions in the new DLL instead. Finally, change the Getbrawing function in the docu-
ment class so that it returns a pointer to the object array, instead of the drawing object.

You can start making these changes by deleting the LIB file from the test application
project. Once you delete the file, add the LIB file for the new DLL to the project by
selecting Project | Add To Project | Files from the main menu.

Once you switch the LIB files in the project, edit the source code for the document and
view classes to change the include statement, changing the project directory to the new
DLL project directory. You can edit the application class source-code file and remove the
include from this file. Because you are not creating any instances of the drawing class,
the application file doesn’t need to know about anything in the DLL.

Once you make all those changes, open the header file for the document class. Edit the
document class declaration: Change the function type of the GetDrawing function to
return a pointer to an object array, remove the drawing class variable, and add an object
array variable, asin Listing 17.12. Make only these three changes; do not change any-
thing else in the class declaration.

LisTING 17.12. THE CTestAppDoc CLASS DECLARATION.

1: class CTestAppDoc : public CDocument
2: {

3: protected: // create from serialization only
4: CTestAppDoc();

5: DECLARE_DYNCREATE (CTestAppDoc)

6:

7:

8: .

9: // Implementation

10: public:

11: CObArray* GetDrawing();

12: virtual ~CTestAppDoc();

13: .

continues

| 424 Day 17

LISTING 17.12. CONTINUED

14:

15: .

16: private:

17: CObArray m_oalLines;
18: };

Modifying the Document Functions

Now that you’ ve made the general changes to the test application, it's time to start mak-
ing the functionality changes. All the calls to a class method of the drawing object must
be changed to the appropriate function call in the new DLL.

The changes necessary in the onNewDocument function consist of dropping the function
call to pass the CRect to the drawing object and replacing the NewDocument function call
with the new DLL function—in this instance, ModArtNewDrawing, as showninline 19 in
Listing 17.13.

LisTiNng 17.13. THE CTestAppDoc OnNewDocument FUNCTION.

1 BOOL CTestAppDoc::0OnNewDocument ()

2: {

3 if (!CDocument::0OnNewDocument())

4: return FALSE;

5:

6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:

9: // Get the position of the view

10: POSITION pos = GetFirstViewPosition();
11: // Did we get a valid position?

12: if (pos != NULL)

13: {

14: // Get a pointer to the view

15: CView* pView = GetNextView(pos);
16: RECT 1WndRect;

17: // Get the display area rectangle
18: pView->GetClientRect (&1WndRect);
19: // Create a new drawing

20: ModArtNewDrawing (1WndRect, &m_oalLines);
21: }

22:

23: return TRUE;

24: }

Sharing Your Functionality with Other Applications—Creating DLLs 425|

Inthe serialize function, change the drawing object Serialize function call to the new
DLL seriaization function—in this case, ModArtSerialize, asin Listing 17.14.

LisTING 17.14. THe CTestAppDoc Serialize FUNCTION.

1: void CTestAppDoc::Serialize(CArchive& ar)
2: {

3: // Serialize the drawing

4: ModArtSerialize(ar, &m_oalLines);

5: }

For the DeleteContents function, you need to change the call to the cleardrawing func-
tion to the new DLL function, ModArtClearDrawing, asin line 5 of Listing 17.15.

LisTING 17.15. THE CTestAppDoc DeleteContents FUNCTION.

1: void CTestAppDoc::DeleteContents()

2: {

3: // TODO: Add your specialized code here and/or call the base class
4: // Delete the drawing

5: ModArtClearDrawing (&m_oalLines);

6.

7: CDocument: :DeleteContents();

8: }

Finally, for the Getbrawing function, you need to change the function declaration to des-
ignate that it's returning a pointer to an object array, just as you did in the header file.
Next, you need to change the variable that is being returned to the object array variable
that you added to the header file, asin Listing 17.16.

LisTING 17.16. THE CTestAppDoc GetDrawing FUNCTION.

1: CObArray* CTestAppDoc::GetDrawing()
2: {

3: // Return the drawing object

4: return &m_oalines;

5: }

Modifying the View Functions

Switching to the view class, there’s only one simple change to make to the onbraw func-
tion. In this function, you need to change the type of pointer retrieved from the
GetDrawing function from a drawing object to an object array object, asin line 9 of

| 426 Day 17

Listing 17.17. Next, call the DLL function, ModArtDraw, to perform the drawing on the
window, as shown in line 11.

LisTING 17.17. THE CTestAppView OnDraw FUNCTION.

1: void CTestAppView: :0nDraw(CDC* pDC)

2:

3: CModTestAppDoc* pDoc = GetDocument();

4: ASSERT_VALID(pDoc);

5:

6: // TODO: add draw code for native data here
7:

8: // Get the drawing object

9: CObArray* m_oalLines = pDoc->GetDrawing();
10: // Draw the drawing

11: ModArtDraw(pDC, m_oalLines);

12: }

After making al these changes to the test application, you are ready to compile and test
it. You should find that the application is working just asit did with the previous DLL.
You can also play around with it, going back and changing the DLL, copying the new
DLL into the debug directory for the test application, and seeing how the changes are
reflected in the behavior of the test application.

H The particular example of a regular DLL that you developed in this exercise
Gaution P P g Yy P

is still not usable by other programming languages. The reason is that you
are passing MFC classes as the arguments for each of the DLL's functions.
This still limits the usage to other applications that are built using MFC. To
make this DLL truly portable, you need to pass the bare-bones structures
instead of the classes (such as the RECT structure instead of the CRect class)
and then convert the structures to the classes inside the DLL.

Summary

Today you learned about two more ways that you can package your functionality for
other programmers. You learned how you can easily package your classes as an MFC
extension DLL and how easily it can be used by a Visual C++ application. You saw how
you can make changes to the DLL without having to recompile the applications that use
it. You also learned what's involved in creating aregular DLL that can be used with
other, non-Visual C++ applications. You saw how you needed to convert the exported
classes from the DLL into standard C-style functions and what's involved in adapting an
application to use this style of DLL.

Sharing Your Functionality with Other Applications—Creating DLLs

427 |

Q&A

Q How can | convert theregular DLL so that it can be used by non-Visual C++

A

applications?

First, you have to make all the arguments to the functions use the bare-bones struc-
tures, instead of the MFC classes. For instance, to convert the ModArtNewDrawing
function, change it to receive the RECT structure instead of the CRect class and aso
to receive a generic pointer instead of a pointer to an object array. You have to
make the conversions to the appropriate classesin the DLL, asin lines 4 through 9
inListing 17.18.

LisTiNG 17.18. THE ModArtNewDrawing FUNCTION.

—_

extern "C" void PASCAL EXPORT ModArtNewDrawing (RECT spRect,

{

OLPVOID lpoaLines)

AFX_MANAGE_STATE (AfxGetStaticModuleState());
CRect pRect;

pRect.top = spRect.top;

pRect.left = spRect.left;

pRect.right = spRect.right;

pRect.bottom = spRect.bottom;

CObArray* poaLines = (CObArray*)lpoalLines;
// Normal function body here

int m_IlNumLines;

int m_1CurLine;

// Initialize the random number generator
srand((unsigned)time(NULL));

// Determine how many lines to create
m_1NumLines = rand() % 50;

// Are there any lines to create?

if (m_1NumLines > 0)

{
// Loop through the number of lines
for (m_1lCurLine = @; m_lCurLine < m_IlNumLines; m_1CurLine++)
{
// Create the new line
NewLine(pRect, poalLines);
}
}

You also have to add functions to create and destroy the object array, with the
application storing the object array as a generic pointer asin Listing 17.19.

| 428 Day 17

LisTING 17.19. THE ModArtInit FUNCTION.

1: extern "C" LPVOID PASCAL EXPORT ModArtInit()

2: {

3 AFX_MANAGE_STATE (AfxGetStaticModuleState());
4: // Create the object array

5 return (LPVOID)new CObArray;

6

When do | need to recompile the applications that use my DLLs?

O

A Whenever you change any of the exported function calls. Changing, adding, or
removing arguments to any of these functions would mean recompiling the
applications that use the DLL. If you are working with an MFC extension DLL,
the applications that use the DLL need to be recompiled if the public interface for
the exported classes change or a new function or variable is added or removed.

It doesn’t matter if the application isn't using any of the functions that were
changed; it's till good practice to recompile the applications, just to be sure.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What kind of DLL do you have to create to make classesin the DLL available to
applications?
2. What do you have to add to the class to export it fromaDLL?
3. What kind of DLL can be used with other programming languages?

4. If you make changesin aDLL, do you have to recompile the applications that use
the DLL?

5. What function does the LIB file provide for aDLL?

Exercises

1. Separate the line class into its own MFC extension DLL and use it with the second
(regular) DLL.

2. Alter theline class DLL so that it uses a consistent line width for all lines.

WEEK 3

DAY 18

Doing Multiple Tasks at
One Time—Multitasking

Sometimes it is convenient to let your applications do more than one thing at a
time. Your application could write a backup file or print in the background
while the user is working on the same document. Your application could per-
form calculations while the user enters new data or draws multiple images
simultaneoudly. There are many different reasons why you might want to add
this capability, called multitasking, to your applications. Windows provides sev-
eral facilities specifically for building this into applications.

Today, you will learn

- How tasks can be performed while an application isidle.
- How tasks can run independently of the rest of the application.

- How to coordinate access to resources that are shared between multiple
independent tasks.

- How to start and stop independently running tasks.

| 430 Day 18

What Is Multitasking?

In the days of Windows 3.x, all Windows applications were single-threaded, with only
one path of execution at any point in time. The version of multitasking that Windows 3.x
offered is known as cooperative multitasking. The key to cooperative multitasking is that
each individual application makes the decision about when to give up the processor for
another application to perform any processing that it might be waiting to perform. Asa
result, Windows 3.x was susceptible to an ill-behaved application that would hold other
applications prisoner while it performed some long, winding process or even got itself
stuck in some sort of loop.

With Windows NT and Windows 95, the nature of the operating system changed. No
more cooperative multitasking—the new method was preemptive multitasking. With pre-
emptive multitasking, the operating system decides when to take the processor away
from the current application and give the processor to another application that is waiting
for it. It doesn’t matter whether the application that has the processor is ready to give it
up; the operating system takes the processor without the application’s permission. Thisis
how the operating system enables multiple applications to perform computation-intensive
tasks and still let al the applications make the same amount of progress in each of their
tasks. Giving this capability to the operating system prevents a single application from
holding other applications prisoner while hogging the processor.

Nﬂtﬂ With the 16/32 bit structure of Windows 95, it is still possible for an ill-
) behaved 16-bit application to lock up the system because a large amount of
' 16-bit code remains a core part of the operating system. The 16-bit code on
Windows 95 is still a cooperative multitasking environment, so only one
application can execute 16-bit code at a time. Because all the USER functions,

and a good portion of the GDI functions, thunk down to the 16-bit version,
it is still possible for a single 16-bit application to lock up the entire system.

On Windows NT, if all of the 16-bit applications run in a shared memory
space, an ill-behaved application can lock up all of the 16-bit applications,
but this has no effect on any 32-bit applications.

Performing Multiple Tasks at One Time

Along with the capability to allow multiple applications to run simultaneously comes the
capability for a single application to execute multiple threads of execution at any time. A
thread is to an application what an application is to the operating system. If an
application has multiple threads running, it is basically running multiple applications

Doing Multiple Tasks at One Time—Multitasking 431 |

within the whole application. This lets the application accomplish more things simultane-
oudly, such as when Microsoft Word checks your spelling at the same time you are typ-
ing your document.

Idle Processing Threads

One of the easiest ways to let your application perform multiple tasks at onetimeisto
add some idle processing tasks. An idle processing task is atask that is performed when
an application is sitting idle. Literally, a function in the application classis called when
there are no messages in the application message queue. The idea behind this function is
that while the application isidle, it can perform work such as cleaning up memory (also
known as garbage collection) or writing to a print spool.

The onidle function is a holdover from the Windows 3.x days. It is a member of the
cwinApp class, from which your application class is inherited. By default, no processing
in this function is added by the AppWizard, so if you want this function in your applica-
tion, you must add it to your application class through the Class Wizard. (onIdle isone
of the available messages for the App class in your applications.)

The on1dle function receives one argument, which is the number of timesthe onidle
function has been called since the last message was processed by your application. You
can use this to determine how long the application has been idle and when to trigger any
functionality that you need to run if the application is idle for more than a certain amount
of time.

One of the biggest concernsin adding onIdle processing to your applicationsis that any
functionality you add must be small and must quickly return control to the user. When an
application performs any onIdle processing, the user cannot interact with the application
until the onIdle processing finishes and returns control to the user. If you need to per-
form some long, drawn-out task in the onIdle function, break it up into many small and
quick tasks so that control can return to the user; then, you can continue your OnIdle
task once the message queue is empty again. This means that you also have to track your
application’s progress in the onidle task so that the next time the onidle function is
called, your application can pick up the task where it left off.

Spawning Independent Threads

If you really need to run along background task that you don’t want interfering with the
user, you should spawn an independent thread. A thread is like another application run-
ning within your application. It does not have to wait until the application isidle to per-
form its tasks, and it does not cause the user to wait until it takes a bresk.

| 432

Day 18

The two methods of creating an independent thread use the same function to create and
start the thread. To create and start an independent thread, you call the AfxBeginThread
function. You can choose to pass it afunction to call for performing the thread’s tasks, or
you can pass it a pointer to the runtime class for an object derived from the cwinThread
class. Both versions of the function return a pointer to a cwinThread object, which runs
as an independent thread.

In the first version of the AfxBeginThread function, the first argument is a pointer to the
main function for the thread to be started. This function is the equivalent of the main
function in a C/C++ program. It controls the top-level execution for the thread. This
function must be defined as a UINT function with a single LPvoID argument:

UINT MyThreadFunction(LPVOID pParam);

This version of the AfxBeginThread function also requires a second argument that is
passed along to the main thread function as the only argument to that function. This
argument can be a pointer to a structure containing any information that the thread needs
to know to perform itsjob correctly.

The first argument to the second version of the AfxBeginThread function is a pointer to
the runtime class of an object derived from the cwinThread class. You can get a pointer
to the runtime class of your cwinThread class by using the RUNTIME_CLASS macro, pass-
ing your class as the only argument.

After these initial arguments, the rest of the arguments to the AfxBeginThread function
are the same for both versions, and they are all optional. The first of these argumentsis
the priority to be assigned to the thread, with a default priority of
THREAD_PRIORITY_NORMAL. Table 18.1 lists the available thread priorities.

TABLE 18.1. THREAD PRIORITIES.

Priority

Description

0

THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_HIGHEST
THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_IDLE

THREAD_PRIORITY_TIME_CRITICAL

The thread will inherit the thread priority of the application creat-
ing the thread.

A normal (default) priority.

1 point above normal priority.

1 point below normal priority.

2 points above normal priority.

2 points below normal priority.

Priority level of 1 for most threads (all non-real-time threads).
Priority level of 15 for most threads (all non-real-time threads).

Doing Multiple Tasks at One Time—Multitasking 433 |

N“tﬂ Thread priority controls how much of the CPU’s time the thread gets in rela-

) tion to the other threads and processes running on the computer. If a thread
' will not be performing any tasks that need to be completed quickly, you
should give the thread a lower priority when creating it. It is not advisable
to give a thread a priority higher than normal unless it is vitally important
that the thread perform its tasks faster than other processes running on the
computer. The higher a thread’s priority, the more CPU time that thread will
receive, and the less CPU time all other processes and threads on the com-
puter will receive.

The next argument to the AfxBeginThread function is the stack size to be provided for
the new thread. The default value for this argument is @, which provides the thread the
same size stack as the main application.

The next argument to the AfxBeginThread function is the thread-creation flag. Thisflag
can contain one of two values and controls how the thread is started. If
CREATE_SUSPENDED is passed as this argument, the thread is created in suspended mode.
The thread does not run until the ResumeThread function is called for the thread. If you
supply @ as this argument, which is the default value, the thread begins executing the
moment it is created.

The final argument to the AfxBeginThread function is a pointer to the security attributes
for the thread. The default value for this argument is NULL, which causes the thread to be
created with the same security profile as the application. Unless you are building applica
tions to run on Windows NT and you need to provide a thread with a specific security
profile, you should always use the default value for this argument.

Building Structures

Imagine that you have an application running two threads, each parsing its own set of
variables at the same time. Imagine also that the application is using a global object array
to hold these variables. If the method of allocating and resizing the array consisted of
checking the current size and adding one position onto the end of the array, your two
threads might build an array populated something like the one in Figure 18.1, where
array positions populated by the first thread are intermingled with those created by the
second thread. This could easily confuse each thread as it retrieves values from the array
for its processing needs because each thread is just as likely to pull avalue that actually
belongs to the other thread. This would cause each thread to operate on wrong data and
return the wrong results.

434 Day 18

Ficure 18.1.

Two threads populat-
ing a common array.

Created by thread 1

Created by thread 2

Created by thread 2

Created by thread 1

Created by thread 1

Created by thread 2

Y Created by thread 1 Y

If the application built these arrays as localized arrays, instead of global arrays, it could
keep access to each array limited to only the thread that builds the array. In Figure 18.2,
for example, there is no intermingling of data from multiple threads. If you take this
approach to using arrays and other memory structures, each thread can perform its pro-
cessing and return the results to the client, confident that the results are correct because
the calculations were performed on uncorrupted data.

Ficure 18.2.

Two threads populat-
ing localized arrays.

Created by thread 1

Created by thread 2

Created by thread 1

Created by thread 2

Created by thread 1

Created by thread 2

Created by thread 1

Created by thread 2

Managing Access to Shared Resources

Not all variables can be localized, and you will often want to share some resources
between all the threads running in your applications. Such sharing creates an issue with
multithreaded applications. Suppose that three threads all share a single counter, which is
generating unique numbers. Because you don’'t know when control of the processor is

Doing Multiple Tasks at One Time—Multitasking

435 |

going to switch from one thread to the next, your application might generate duplicate
“unique” numbers, as shown in Figure 18.3.

FiGure 18.3.

Three threads sharing
a single counter.

Process Time

Counter

Thread 1 checks the
counter value.

counter =1

Thread 2 gets the
processor.
Thread 2 checks the
counter value.

counter =1

Thread 2 increments
the counter value.

processor.

Thread 3 checks the
counter value.

counter = 2

Thread 3 increments
the counter value.

Thread 1 gets the

processor.
Thread 1 increments
the counter value
(still thinking
its value is 1).

counter = 2

As you can seg, this sharing doesn’t work too well in a multithreaded application. You
need a way to limit access to a common resource to only one thread at atime. In redlity,
there are four mechanisms for limiting access to common resources and synchronizing
processing between threads, all of which work in different ways and whose suitability
depends on the circumstances. The four mechanisms are

. Critical sections

- Mutexes
- Semaphores
- Events

| 436

Day 18

Critical Sections

A critical section is a mechanism that limits access to a certain resource to asingle
thread within an application. A thread enters the critical section before it needs to work
with the specific shared resource and then exits the critical section after it is finished
accessing the resource. If another thread tries to enter the critical section before the first
thread exits the critical section, the second thread is blocked and does not take any
processor time until the first thread exits the critical section, allowing the second to enter.
You use critical sections to mark sections of code that only one thread should execute at
atime. This doesn’t prevent the processor from switching from that thread to another; it
just prevents two or more threads from entering the same section of code.

If you use a critical section with the counter shown in Figure 18.3, you can force each
thread to enter a critical section before checking the current value of the counter. If each
thread does not leave the critical section until after it has incremented and updated the
counter, you can guarantee that—no matter how many threads are executing and regard-
less of their execution order—truly unique numbers are generated, as shown in Figure
18.4.

If you need to use a critical section object in your application, create an instance of the
CCriticalSection class. This object contains two methods, Lock and Unlock, which you
can use to gain and release control of the critical section.

Mutexes

Mutexes work in basically the same way as critical sections, but you use mutexes when
you want to share the resource between multiple applications. By using a mutex, you can
guarantee that no two threads running in any number of applications will access the same
resource at the same time.

Because of their availability across the operating system, mutexes carry much more over-
head than critical sections do. A mutex lifetime does not end when the application that
created it shuts down. The mutex might still be in use by other applications, so the oper-
ating system must track which applications are using a mutex and then destroy the mutex
onceit is no longer needed. In contrast, critical sections have little overhead because
they do not exist outside the application that creates and uses them. After the application
ends, the critical section is gone.

If you need to use a mutex in your applications, you will create an instance of the cMutex
class. The constructor of the cMutex class has three available arguments. The first argu-
ment is a boolean value that specifies whether the thread creating the cMutex object is
the initial owner of the mutex. If so, then this thread must release the mutex before any
other threads can access it.

Doing Multiple Tasks at One Time—Multitasking

437 |

FIGUre 18.4.

Three threads using
the same counter,
which is protected by
acritical section.

Process Time

Counter

Thread 1 enters the
critical section.
Thread 1 checks the
counter value.

Thread 2 gets the
Thread 2 tries to enter

the critical section and
is blocked.

Thread 3 gets the
processor.
Thread 3 tries to enter
the critical section and

Thread 1 gets the is blocked.
processor.
Thread 1 increments
the counter value.

|counter = 2|

Thread 1 leaves the
critical section.

.\ Thread 3 gets the

processor.

Thread 3 enters the
critical section.

Thread 3 checks the
counter value.

Thread 3 increments
the counter value.

countel

Thread 3 leaves the
critical section.

Thread 2 gets the
processor.
Thread 2 enters the
critical section.
Thread 2 checks the
counter value.

counter =3

Thread 2 increments
the counter value.

counter = 4

Thread 2 leaves the
critical section.

| 438

Day 18

The second argument is the name for the mutex. All the applications that need to share
the mutex can identify it by this textual name. The third and final argument to the
CMutex constructor is a pointer to the security attributes for the mutex object. If aNuLL is
passed for this pointer, the mutex object uses the security attributes of the thread that cre-
ated it.

Once you create a CMutex object, you can lock and unlock it using the Lock and Unlock
member functions. This allows you to build in the capabilities to control accessto a
shared resource between multiple threads in multiple applications.

Semaphores

Semaphores work very differently from critical sections and mutexes. You use sema-
phores with resources that are not limited to a single thread at a time— a resource that
should be limited to afixed number of threads. A semaphore is aform of counter, and
threads can increment or decrement it. The trick to semaphores is that they cannot go any
lower than zero. Therefore, if athread is trying to decrement a semaphore that is at zero,
that thread is blocked until another thread increments the semaphore.

Suppose you have a queue that is populated by multiple threads, and one thread removes
the items from the queue and performs processing on each item. If the queue is empty,
the thread that removes and processes items has nothing to do. This thread could go into
an idle loop, checking the queue every so often to see whether something has been
placed in it. The problem with this scenario is that the thread takes up processing cycles
doing absolutely nothing. These processor cycles could go to another thread that does
have something to do. If you use a semaphore to control the queue, each thread that
places items into the queue can increment the semaphore for each item placed in the
gueue, and the thread that removes the items can decrement the semaphore just before
removing each item from the queue. If the queue is empty, the semaphoreis zero, and
the thread removing items is blocked on the call to decrement the queue. This thread
does not take any processor cycles until one of the other threads increments the sema-
phore to indicate that it has placed an item in the queue. Then, the thread removing items
isimmediately unblocked, and it can remove the item that was placed in the queue and
begin processing it, as shown in Figure 18.5.

If you need to use a semaphore in your application, you can create an instance of the
CSemaphore class. This class has four arguments that can be passed to the class construc-
tor. The first argument is the starting usage count for the semaphore. The second argu-
ment is the maximum usage count for the semaphore. You can use these two arguments
to control how many threads and processes can have access to a shared resource at any
one time. The third argument is the name for the semaphore, which is used to identify

Doing Multiple Tasks at One Time—Multitasking

439 |

FIGURE 18.5.
Multiple threads plac-

ing objectsinto a /\ /\

queue.

Multiple threads placing As items are placed into
items into a queue the queue, the semaphore
is incremented

As items are removed from
the queue, the semaphore
is decremented

A single thread removing
items from the queue for
processing

the semaphore by all applications running on the system, just as with the cMutex class.
The final argument is a pointer to the security attributes for the semaphore.

With the csemaphore object, you can use the Lock and Unlock member functions to gain
or release control of the semaphore. When you call the Lock function, if the semaphore
usage count is greater than zero, the usage count is decremented and your program is
allowed to continue. If the usage count is aready zero, the Lock function waits until the
usage count is incremented so that your process can gain access to the shared resource.
When you call the unlock function, the usage count of the semaphore is incremented.

Events

As much as thread synchronization mechanisms are designed to control access to limited
resources, they are also intended to prevent threads from using unnecessary processor
cycles. The more threads running at one time, the slower each of those threads performs
its tasks. Therefore, if athread does not have anything to do, block it and let it sit idle,
allowing other threads to use more processor time and thus run faster until the conditions
are met that provide the idle thread with something to do.

Thisiswhy you use events—to allow threads to be idle until the conditions are such that
they have something to do. Events take their name from the events that drive most
Windows applications, only with atwist. Thread synchronization events do not use the
normal event queuing and handling mechanisms. Instead of being assigned a number and

| 440

Day 18

then waiting for that number to be passed through the Windows event handler, thread
synchronization events are actual objects held in memory. Each thread that needs to wait
for an event tells the event that it is waiting for it to be triggered and then goes to sleep.
When the event is triggered, it sends wake-up calls to every thread that told it that it was
waiting to be triggered. The threads pick up their processing at the exact point where
they each told the event that they were waiting for it.

If you need to use an event in your application, you can create a CEvent object. You need
to create the CEvent object when you need to access and wait for the event. Once the
CEvent constructor has returned, the event has occurred and your thread can continue on
its way.

The constructor for the CEvent class can take four arguments. The first argument is a
boolean flag to indicate whether the thread creating the event will own it initially. This
value should be set to TRUE if the thread creating the CEvent object is the thread that will
determine when the event has occurred.

The second argument to the CEvent constructor specifies whether the event is an auto-
matic or manual event. A manual event remains in the signaled or unsignaled state until

it is specifically set to the other state by the thread that owns the event object. An auto-
matic event remains in the unsignaled state most of the time. When the event is set to the
signaled state, and at least one thread has been released and continued on its execution
path, the event is returned to the unsignaled state.

The third argument to the event constructor is the name for the event. This name will be
used to identify the event by all threads that need to access the event. The fourth and
final argument is a pointer to the security attributes for the event object.

The ceEvent class has severa member functions that you can use to control the state of
the event. Table 18.2 lists these functions.

TABLE 18.2. CEvent MEMBER FUNCTIONS.

Function Description

SetEvent Puts the event into the signaled state.

PulseEvent Putsthe event into the signaled state and then resets the event back to the
unsignaled state.

ResetEvent Puts the event into the unsignaled state.
Unlock Releases the event object.

Doing Multiple Tasks at One Time—Multitasking 441 |

Building a Multitasking Application

To see how you can create your own multitasking applications, you'll create an applica
tion that has four spinning color wheels, each running on its own thread. Two of the
spinners will use the onIdle function, and the other two will run as independent threads.
This setup will enable you to see the difference between the two types of threading, as
well as learn how you can use each. Your application window will have four check boxes
to start and stop each of the threads so that you can see how much load is put on the sys-
tem as each runs alone or in combination with the others.

Creating a Framework

For the application that you will build today, you'll need an SDI application framework,
with the view class inherited from the CFormview class, so that you can use the dialog
editor to lay out the few controls on the window. It will use the document class to house
the spinners and the independent threads, whereas the view will have the check boxes
and variables that control whether each thread is running or idle.

To create the framework for your application, create a new project workspace using the
MFC Application Wizard. Give your application a suitable project name, such as
Tasking.

In the AppWizard, specify that you are creating a single document (SDI) application.
You can accept the defaults through most of the rest of the AppWizard, although you
won't need support for ActiveX controls, a docking toolbar, the initial status bar, or
printing and print preview, so you can unselect these options if you so desire. Once you
reach the final AppWizard step, specify that your view classis inherited from the
CFormView class.

Once you create the application framework, remove the static text from the main applica
tion window, and add four check boxes at approximately the upper-left corner of each
quarter of the window space, as in Figure 18.6. Set the properties of the check boxes as
in Table 18.3.

TABLE 18.3. CONTROL PROPERTY SETTINGS.

Object Property Setting

Check Box ID IDC_CBONIDLET1
Caption On &Idle Thread 1

Check Box ID IDC_CBTHREADT
Caption Thread &1

continues

| 442

Day 18

TABLE 18.3. CONTINUED

Object Property Setting

Check Box ID IDC_CBONIDLE2
Caption On Idle &Thread 2

Check Box ID IDC_CBTHREAD2
Caption Thread &2

FIGURE 18 6 . #.. Tasking - Microsoft Visual C++ - [Tasking.rc - IDD_TASKING_FORM [Dialog)]

.) Fie Edt View Insett Project Buld Took Window Help x|
The main window BsEdseelo-o- @RS R Slla
desi an. CTaskingiew (=80 class members) [#1[%e CTaskingView I H] J

EHl Tasking classes
"% CAboutDlg
1% CMainFrame
®1% CSpinner
1% CTasking4pp
=}
L @ Assertvalid])

& CalcPoint(int niD, €

$& CTaskingDoc()

- @ ~CTaskingDoc()

- @ DoSpinfint nindsx)

- & Dump(COumpCont

& InitSpinners()

- @ OnNewDocumeni(

- @ Serializs(CArchive v g
4 3 =t
13 Class.. | [§& Reso... | [£] Filevi. k=g

E|

I OnldeThead1 T Thead1

= /| 1 OnldeIhead2 ™ Thiead2

AE L EET B8
BIHOD®4AE =H

[AT»]\ Build { Debug % Find in Files 1

Ready

Find in Files2 3| 4| | [L'ﬂ
e EEET =

Once you add the check boxes to the window and configure their properties, use the
Class Wizard to add a variable to each of them. Make al of the variables BooL, and give
them names like in Table 18.4.

TABLE 18.4. CONTROL VARIABLES.

Object Name Category Type
IDC_CBONIDLE1 m_bOnIdlel Value BOOL
IDC_CBONIDLE2 m_bOnIdle2 Value BOOL
IDC_CBTHREAD1 m_bThread1 Value BOOL

IDC_CBTHREAD2 m_bThread2 Value BOOL

Doing Multiple Tasks at One Time—Multitasking 443 |

Designing Spinners

Before you can start adding threads to your application, you'll create the spinning color
wheel that the threads will operate. Because four of these color wheels will all spin inde-
pendently of each other, it makes sense to encapsulate all of the functionality into asin-
gle class. This class will track what color is being drawn, where in the spinning it needs
to draw the next line, the size of the color wheel, and the location of the color wheel on
the application window. It will also need a pointer to the view class so that it can get the
device context in which it is supposed to draw itself. For the independent spinners, the
class will need a pointer to the flag that will control whether the spinner is supposed to
be spinning.

To start the spinner class, create a new generic class, inherited from the cobject base
class. Provide the new class with a name that is descriptive of what it will be doing, such
as CSpinner.

Setting Spinner Variables

Once you create a new class for your spinner object, you'll add some variables to the
class. To follow good object-oriented design principles, you need to make al these vari-
ables private and add methods to the class to set and retrieve the values of each.

The variablesyou'll add are

- The current color.

- The current position in the rotation of the color wheel.

- The size of the color wheel.

- The position on the application window for the color wheel.

- The color table from which the colors are picked for drawing in the color whesl.

- A pointer to the view object so that the spinner can get the device context that it
will need for drawing on the window.

- A pointer to the check box variable that specifies whether the thread should be
running.

You can add all these variables to the spinner class using the names and types specified
in Table 18.5.

TABLE 18.5. CSpinner CLASS VARIABLES.

Name Type Description
m_crColor int The current color from the color table.
m_nMinute int The position in the rotation around the wheel.

continues

| 444 Day 18

TABLE 18.5. CONTINUED

Name Type Description

m_iRadius int The radius (size) of the whedl.

m_pCenter CPoint The center point of the wheel.

m_crColors[8] static COLORREF The color table with al of the colors to be drawn in the
color wheel.

m_pViewWnd CWnd* A pointer to the view object.

m_bContinue BOOL* A pointer to the check box variable that specifies

whether this thread should be running.

Once you add al the necessary variables, you need to make sure that your class either
initializes them or provides a suitable means of setting and retrieving the values of each.
All the integer variables can be initialized as zero, and they’ |l work their way up from
that point. The pointers should be initialized with NULL. You can do all of thisinitializa-
tion in the class constructor, asin Listing 18.1.

LisTING 18.1. THE CSpinner CONSTRUCTOR.

: CSpinner::CSpinner()
{

// Initialize the position, size, and color
m_iRadius = 0;

m_nMinute = 0;

m_crColor = 0;

// Nullify the pointers

m_pViewWnd = NULL;

m_bContinue = NULL;

S WO NOOOhWN =

-
—

For those variables that you need to be able to set and retrieve, your spinner classis sim-
ple enough that you can write al the set and get functions as inline functions in the class
declaration. The color and position will be automatically calculated by the spinner
object, so you don't need to add set functions for those two variables, but you do need to
add set functions for the rest of the variables (not counting the color table). The only
variables that you need to retrieve from the spinner object are the pointers to the view
class and the check box variable. You can add al these functions to the cspinner class
declaration by opening the Spinner header file and adding the inline functions in Listing
18.2.

Doing Multiple Tasks at One Time—Multitasking

445 |

LisTING 18.2. THE CSpinner CLASS DECLARATION.

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

class CSpinner : public CObject

: Ao
: public:

BOOL* GetContinue() {return m_bContinue;}

void SetContinue(BOOL* bContinue) { m_bContinue = bContinue;}
CWnd* GetViewWnd() { return m_pViewWnd;}

void SetViewWnd(CWnd* pWnd) { m_pViewWnd = pWnd;}

void SetLength(int ilLength) { m_iRadius = ilLength;}

void SetPoint(CPoint pPoint) { m_pCenter = pPoint;}
CSpinner();

virtual ~CSpinner();

private:

};

BOOL* m_bContinue;

CWnd* m_pViewWnd;

static COLORREF m_crColors[8];
int m_iRadius;

CPoint m_pCenter;

int m_nMinute;

int m_crColor;

Now that you have added all the support functions for setting and retrieving the neces-
sary variables, you need to declare and populate the color table. Thiswill look just like
the color table definition you added to the drawing application on Day 10, “Creating
Single Document Interface Applications.” The color table will consist of eight RGB val-
ues, with each value being either @ or 255, with every combination of these two settings.
The best place to add this table declaration is in the spinner source code file, just before
the class constructor, asin Listing 18.3.

LisTING 18.3. THE CSpinner COLOR TABLE.

_.
[I SR ST (o)

O~NOO O~ WN =

static char THIS_FILE[]=__ FILE_ ;
#define new DEBUG_NEW
#endif

COLORREF CSpinner::m_crColors[8] = {

RGB(©, 0, 0), // Black
RGB(©, 0, 255), // Blue
RGB(0, 255, 0), /| Green
RGB(@, 255, 255), /| Cyan
RGB(255, 0, 0), /| Red

RGB(255, 0, 255), // Magenta
RGB(255, 255, 0), // Yellow
RGB(255, 255, 255) // White

continues

| 446 Day 18

LiSTING 18.3. CONTINUED

14: };

15:

L NN NNy,
17: // Construction/Destruction

A8 /LTI r i rrrrrirrg
19:

20: CSpinner::CSpinner()

21: {

22: // Initialize the position, size, and color

23: m_iRadius = 0;

24:

25:

26:

Drawing the Spinner

Now comes the fun part: getting the spinner object to actually spin. To accomplish this,
you'll calculate the new position of the starting and ending points of each line, set the
view port origination point, select the drawing color, and create a pen to draw in that
color. Once you have al of this, you will be able to draw the line from the starting point
to the ending point. Once the line is drawn, you can restore the pen to what it was before
the line was drawn. Next, you'll calculate the position of the next line to draw before
exiting the function.

To add this functionality to your spinner object, add a member function to the cSpinner
class. Specify the type as void, the name as Draw, and the access as public. Edit the func-
tion, adding the code in Listing 18.4.

LISTING 18.4. THE CSpinner Draw FUNCTION.

1: void CSpinner::Draw()

2: {

3: // Get a pointer to the device context
4: CDC *pDC = m_pViewWnd->GetDC();

5: // Set the mapping mode

6 pDC->SetMapMode (MM_LOENGLISH);

7 // Copy the spinner center

8 CPoint org = m_pCenter;

©

CPoint pStartPoint;
10: // Set the starting point
11: pStartPoint.x = (m_iRadius / 2);
12: pStartPoint.y = (m_iRadius / 2);
13: // Set the origination point

14: org.x = m_pCenter.x + (m_iRadius / 2);

Doing Multiple Tasks at One Time—Multitasking

447 |

15: org.y = m_pCenter.y + m_iRadius;

16: // Set the viewport origination point

17: pDC->SetViewportOrg(org.x, org.y);

18:

19: CPoint pEndPoint;

20: // Calculate the angle of the next line

21: double nRadians = (double) (m_nMinute * 6) * 0.017453292;
22: // Set the end point of the line

23: pEndPoint.x = (int) (m_iRadius * sin(nRadians));
24 pEndPoint.y = (int) (m_iRadius * cos(nRadians));
25:

26:

27: // Create the pen to use

28: CPen pen(PS_SOLID, @, m_crColors[m_crColor]);
29: // Select the pen for use

30: CPen* pOldPen = pDC->SelectObject(&pen);

31:

32: // Move to the starting point

33: pDC->MoveTo (pEndPoint);

34: // Draw the line to the end point

35: pDC->LineTo (pStartPoint);

36:

37: // Reselect the previous pen

38: pDC->SelectObject (&p0OldPen);

39:

40: // Release the device context

41: m_pViewWnd->ReleaseDC(pDC) ;

42:

43: // Increment the minute

44 if (++m_nMinute == 60)

45: {

46: // If the minutes have gone full circle, reset to @
47: m_nMinute = 0;

48: // Increment the color

49: if (++m_crColor == 8)

50: // If we've gone through all colors, start again
51: m_crColor = 0;

52: }

53: }

That was quite a bit of code to type. What does it do? Well, to understand what this func-
tion is doing, and how it's going to make your spinner draw a color wheel on the win-
dow, let’s take a closer look at the code.

To make efficient use of the spinner by the different threads, it’'ll only draw one line each
time the function is called. This function will be called 60 times for each complete circle,
once for each “minute” in the clockwise rotation. Each complete rotation will cause the
spinner to switch to the next color in the color table.

| 448

Day 18

One of the first things that you need to do in order to perform any drawing on the win-
dow is get the device context of the window. You do this by calling the GetDdc function
on the view object pointer:

CDC *pDC = m_pViewWnd->GetDC();

This function returns a cbc object pointer, which is an MFC class that encapsulates the
device context.

Once you have a pointer to the device context, you can call its member function,
SetMapMode, to set the mapping mode:

pDC->SetMapMode (MM_LOENGLISH);

The mapping mode determines how the x and y coordinates are trandated into positions
on the screen. The MM_LOENGLISH mode converts each logical unit to 0.01 inch on the
screen. There are several different mapping modes, each converting logical units to dif-
ferent measurements on the screen.

At this point, you start preparing to draw the current line for the color wheel. You start
by calculating the starting point for the line that will be drawn. This point will be consis-
tent for al lines drawn by the spinner object. After you calculate the starting point for the
line, you calculate the position of the viewport. The viewport is used as the starting point
for the coordinates used for drawing.

Nﬂtﬂ The starting point for the line to be drawn is calculated in an off-center
_ position. If you want the starting point for the lines to be in the center of

the color wheel, set both the x and y coordinates of the starting point to 0.

Once the viewport origination point is calculated, use the setviewportorg function to
set the viewport:

pDC->SetViewportOrg(org.x, org.y);

Now that you' ve got the drawing area specified, and the starting point for the line that
you are going to be drawing, you need to figure out where the other end of the line will
be. You'll perform this calculation using the following three lines of code:

double nRadians = (double) (m_nMinute * 6) * 0.017453292;

pEndPoint.x = (int) (m_iRadius * sin(nRadians));
pEndPoint.y = (int) (m_iRadius * cos(nRadians));

Doing Multiple Tasks at One Time—Multitasking 449 |

In the first of these calculations, convert the minutes into degrees, which can then be fed
into the sine and cosine functions to set the x and y coordinates to draw acircle. This
sets the end point of the line that will be drawn.

Now that you' ve figured out the starting and ending points of the line, you'll create a pen
to use in drawing the line:

CPen pen(PS_SOLID, @, m_crColors[m_crColor]);

You’ ve specified that the pen will be solid and thin, and you are picking the current color
from the color table. Once you create the pen to use, select the pen for drawing, being
sure to capture the current pen as the return value from the device context object:

CPen* pOldPen = pDC->SelectObject(&pen);

Now you are ready to draw the line, which is done using the MoveTo and LineTo func-
tions that you're well familiar with by now. Once the line is drawn, release the device
context so that you don’t have a resource leak in your application:

m_pViewWnd->ReleaseDC(pDC);

At this point, you' ve drawn the line, so all that’s |eft to do is increment the minute
counter, resetting it if you've made it al the way around the circle. Each time you com-
plete acircle, you increment the color counter until you' ve gone through al eight colors,
at which time you reset the color counter.

In order to be able to use the trigonometric functions in this function, include the math.h
header file in the Spinner class source file. To add this, scroll up to the top of the source
code file and add another #include line, specifying the math.h header file as the file to
be included, asin Listing 18.5.

LisTING 18.5. THE CSpinner SOURCE FILE.

// Spinner.cpp : implementation of the CSpinner class
/1
LHEEELTEEEE L r i i rriirrry

#include "stdafx.h"
#include <math.h>
#include "Tasking.h"
#include "Spinner.h"

oONOOOA~WOND =

Supporting the Spinners

Now that you' ve created the spinner class for drawing the spinning color wheel on the
window, add some support for the spinners. You can add an array to hold the four

| 450 Day 18

spinners in the document class, but you'll still need to calculate where each spinner
should be placed on the application window and set all the variables in each of the
spinners.

You can add all of this code to the document class, starting with the array of spinners.
Add a member variable to the document class (in this instance, cTaskingDoc), specifying
the type as cspinner, the name asm_cSpin[4], and the access as private. Once you add
the array, open the source code to the document class and include the spinner header file,
asin Listing 18.6.

LisTING 18.6. THE CTaskingDocC SOURCE FILE.

// TaskingDoc.cpp : implementation of the CTaskingDoc class
/1

#include "stdafx.h"
#include "Tasking.h"

#include "Spinner.h"
#include "TaskingDoc.h"
: #include "TaskingView.h"

O~NOOOLAWOWON =

—_
N = ©

Calculating the Spinner Positions

One of the preparatory things that needs to happen while initializing the application is
determining the locations of all four spinners. The window is roughly broken up into
four quarters by the check boxes that will turn the spinner threads on and off, so it makes
sense to divide the window area into four quarter squares and place one spinner in each
guarter.

To calculate the location of each spinner, it is easiest to create a function that calcul ates
the location for one spinner, placing the spinner into the quarter square appropriate for
the spinner number. If the function was passed a pointer to the spinner object, it could
update the spinner object directly with the location.

To add this functionality to your application, add a new member function to the docu-
ment class (for instance, in the CTaskingDoc class). Specify the function type as void, the
declaration as calcPoint (int nID, CSpinner *pSpin), and the access as private. Edit
the function, adding the code in Listing 18.7.

Doing Multiple Tasks at One Time—Multitasking 451 |

LisTinGg 18.7. THE CTaskingDoc CalcPoint FUNCTION.

1: void CTaskingDoc::CalcPoint(int nID, CSpinner *pSpin)
2:

3 RECT 1WndRect;

4: CPoint pPos;

5: int ilLength;

6: CTaskingView *pWnd;

7

8

: // Get a pointer to the view window
9: pWnd = (CTaskingView*)pSpin->GetViewWnd();

10: // Get the display area rectangle

11: pWnd->GetClientRect (&1WndRect);

12: // Calculate the size of the spinners

13: iLength = 1WndRect.right / 6;

14: // Which spinner are we placing?

15: switch (nID)

16: {

17: case 0: // Position the first spinner

18: pPos.x = (1WndRect.right / 4) - ilLength;

19: pPos.y = (1WndRect.bottom / 4) - ilength;

20: break;

21: case 1: // Position the second spinner

22: pPos.x = ((1WndRect.right / 4) * 3) - ilength;
23: pPos.y = (1WndRect.bottom / 4) - ilLength;

24: break;

25: case 2: // Position the third spinner

26: pPos.x = (1WndRect.right / 4) - ilength;

27: pPos.y = ((1WndRect.bottom / 4) * 3) - (iLength * 1.25);
28: break;

29: case 3: // Position the fourth spinner

30: pPos.x = ((1WndRect.right / 4) * 3) - ilLength;
31: pPos.y = ((1WndRect.bottom / 4) * 3) - (iLength * 1.25);
32: break;

33: }

34: // Set the size of the spinner

35: pSpin->SetLength(iLength);

36: // Set the location of the spinner

37: pSpin->SetPoint (pPos);

38: }

In this function, the first thing that you do is move the pointer to the view window from
the spinner object by calling the Getviewwnd function:

pWnd = (CTaskingView*)pSpin->GetViewWnd();

By moving the pointer directly from the spinner object, you save a few steps by taking a
more direct route to get the information that you need.

| 452

Day 18

Once you have a pointer to the view object, you can call the window’s GetClientRect
function to get the size of the available drawing area:

pWnd->GetClientRect (&1WndRect);

Once you have the size of the drawing area, you can calculate a reasonable color wheel
size by dividing the length of the drawing area by 6:

iLength = 1lWndRect.right / 6;

Dividing the drawing area by 4 will position you at the middle of the upper-left square.
Subtract the size of the circle from this point, and you have the upper-left corner of the
drawing areafor the first spinner:

pPos.x
pPos.y

(1wndRect.right / 4) - ilLength;
(1WndRect.bottom / 4) - ilLength;

You can then include variations on this position, mostly by multiplying the center of the
quadrant by 3 to move it to the center of the right or lower quadrant, and you can calcu-
late the positions of the other three spinners.

Once you calculate the length and position for the spinner, you call the SetLength and
SetPoint functions to pass these values to the spinner that they have been calculated for:

pSpin->SetLength(iLength);
pSpin->SetPoint (pPos);

Initializing the Spinners

Because you wrote the previous function to calculate the location of each spinner on the
window to work on only one spinner each time it is called, you need some routine that
will initialize each spinner, calling the previous function once for each spinner. You need
this function to get a pointer to the view object and pass that along to the spinner. You
also need to get pointers to the check box variables for the spinners that will be used by
the independently running threads. Your code can do all this by just looping through the
array of spinners, setting both of these pointers for each spinner, and then passing the
spinner to the function you just finished.

To create this function for your application, add a new member function to the document
class (cTaskingDoc in thisinstance). Specify the type as void, and give the function a
suitable name (for instance, InitSpinners), and then specify the access as private
because you'll only need to call this function once when the application is starting. Edit
the new function, adding the codein Listing 18.8.

Doing Multiple Tasks at One Time—Multitasking 453 |

LisTinGg 18.8. THe CTaskingDoc InitSpinners FUNCTION.

1: void CTaskingDoc::InitSpinners()

2: {

3 int i;

4:

5: // Get the position of the view

6: POSITION pos = GetFirstViewPosition();

7 // Did we get a valid position?

8: if (pos != NULL)

9: {

10: // Get a pointer to the view

11: CView* pView = GetNextView(pos);

12:

13: // Loop through the spinners

14: for (1 = 0; 1 < 4; i++)

15: {

16: // Set the pointer to the view

17: m_cSpin[i].SetViewWnd (pView);

18: // Initialize the pointer to the continuation indicator

19: m_cSpin[i].SetContinue (NULL);

20: switch (1)

21: {

22: case 1: // Set the pointer to the first thread

23: // continuation indicator

24: m_cSpin[i].SetContinue (&((CTaskingView*)pView) -
O>m_bThread1);

25: break;

26: case 3: // Set the pointer to the second thread

27: // continuation indicator

28: m_cSpin[i].SetContinue (&((CTaskingView*)pView) -
O>m_bThread2) ;

29: break;

30: }

31: // Calculate the location of the spinner

32: CalcPoint(i, &m_cSpin[i]);

33: }

34: }

35: }

In this function, you first went through the steps of getting a pointer to the view class
from the document, as you did initially back on Day 10. Once you have a valid pointer
to the view, start aloop to initialize each of the spinnersin the array. You call the
SetVviewWnd spinner function to set the spinner’s pointer to the view window and then
initialize the spinner’s pointer to the check box variable to NULL for all spinners. If the
spinner is either of the two that will be used by independent threads, you pass a pointer
to the appropriate check box variable. Once you set al of this, call the calcPoint

| 454

Day 18

function that you created just a few minutes earlier to calculate the location of the spin-
ner on the view window.

Although you’ve seen several examples of using pointers, the way that you
are passing a pointer to the check box variable to the spinner deserves tak-
ing a closer look:

m_cSpin[i].SetContinue (&((CTaskingView*)pView)->m_bThread1);
In this statement, you take the pointer to the view object, pview, which is a
pointer for a CView object, and cast it as a pointer to the specific view class
that you have created in your application:

(CTaskingView*)pView

Now that you can treat the pointer to the view object as a CTaskingView
object, you can get to the check box variable, m_bThread1, which is a public
member of the CTaskingView class:

((CTaskingView*)pView) ->m_bThread1

Once you access the m_bThread1 variable, get the address of this variable by
placing an ampersand in front of this whole string:
&((CTaskingView*)pView) ->m_bThread1

Passing this address for the m_bThread1 variable to the SetContinue function,
you are, in effect, passing a pointer to the m_bThread1 variable, which can
be used to set the pointer to this variable that the spinner object contains.

Now that you' ve created the routines to initialize all the spinners, make sure that this
routine is called when the application is started. The best place to put thislogic is the
onNewDocument function in the document class. This function will be called when the
application is started, so it isalogical place to trigger the initialization of the spinner
objects. To add this code to the onNewDocument function, add the code in Listing 18.9
to the onNewDocument function in the document class.

LisTING 18.9. THeE CTaskingDoc OnNewDocument FUNCTION.

{

1:
2
3:
4:
5-
6
7

BOOL CTaskingDoc: :0OnNewDocument ()

if (!CDocument::0OnNewDocument())

return FALSE;

// TODO: add reinitialization code here

(SDI documents will reuse this document)

Doing Multiple Tasks at One Time—Multitasking 455 |

8:

9: [EEEEETEEEL i
10: // MY CODE STARTS HERE
11: [HEEETTEEEE i rrrr
12:

13: // Initialize the spinners
14: InitSpinners();

15:

16: [EEEETEEEE L rrrrrrr
17: // MY CODE ENDS HERE

18: [EEEEETEEEL i
19:

20: return TRUE;

21: }

Spinning the Spinner

Once last thing that you'll add to the document class for now is a means of calling the
praw function for a specific spinner from outside the document class. Because the array
of spinners was declared as a private variable, no outside objects can get access to the
spinners, so you need to add access for the outside objects. You can add a function to
provide this access by adding a new member function to your document class. Specify
the function type as void, specify the function declaration with a name and a single inte-
ger argument for the spinner number, such as boSpin(int niIndex), and then specify the
function’s access as public. Once you have added the function, you can add the code in
Listing 18.10 to the function to perform the actual call to the specified spinner.

LisTINg 18.10. THE CTaskingDoc DoSpin FUNCTION.

1: void CTaskingDoc: :DoSpin(int nIndex)
2: {

3: // Spin the Spinner

4: m_cSpin[nIndex].Draw();

5: }

Adding the onIdle Tasks

Now that you have the supporting functionality in place, it's time to turn your attention
to adding the various threads that will turn the various spinners. The first threads to add
are the ones executing while the application isidle. You'll add a clicked event handler
for the two On Idle check boxes so that you can keep the variables for these two check
boxes in sync with the window. You'll also add the code to the application’s onIdle
function to run these two spinners when the application is idle and the check boxes for
these two spinner threads are checked.

| 456

Day 18

Nﬂtﬂ The use of the term thread in the preceding is slightly misleading. Any
_ functionality that you place in the OnIdle function is running in the main

application thread. All the OnIdle processing that you add to the sample
application won’t be running as an independent thread, but will be just
functions that can be called from the main thread.

Starting and Stopping the onIdle Tasks

The on1dle function will check the values of the two check box variables that specify
whether each should run, so al your application needs to do when either of these check
boxes is clicked is make sure that the variables in the view object are synchronized with
the controls on the window. All that you need to do to accomplish thisis call the
UpdateData function when either of these controlsis clicked. You need to be able to start
and stop the onIdle tasks by adding a single event handler for both of the On Idle
Thread check boxes and then calling the updateData function in this event function.

To add this to your application, open the Class Wizard and select the view class (in this
case, CTaskingView). Select one of the On Idle check boxes and add a function for the
BN_CLICKED event. Change the name of the suggested function to onCbonidle and click
OK. Do the same thing for the other On Idle check box. Once you specify that both of
these events use the same code, click on the Edit Code button and add the code in
Listing 18.11.

LisTinGg 18.11. THe CTaskingView OnCbonidle FUNCTION.

1: void CTaskingView::0nCbonidle()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEELTEEEL iy

6: // MY CODE STARTS HERE

7: [HEEETTEEEE i rrrrr

8:

9: // Sync the variables with the dialog
10: UpdateData(TRUE);

11:

12: [EHEEETEEEL i

13: // MY CODE ENDS HERE

14: [EEEELTEEEL iy

15: }

Doing Multiple Tasks at One Time—Multitasking 457 |

Building the onIdle Threads

If you examine the application class (CTaskingApp) source code, you'll find that the
onIdle function isn't there. All the functionality that the On1dle function needs to per-
form by default is in the ancestor class of the application class that was created for your
project. The only reason to have an onIdle function in your application classis that your
application needs some specific functionality to be performed during this event. As a
result, you need to specifically add this event handler to your application using the Class
Wizard.

Once you add the on1d1e function to your application class, what does it need to do?
First, it needs to get a pointer to the view so that it can check the status of the check box
variables. Next, it needs to get a pointer to the document class so that it can call the
DoSpin function to trigger the appropriate spinner object. The key to both of these
actions is getting pointers to each of these objects. When you begin looking at what is
necessary to get these pointers, you'll find that you have to reverse the order in which
you get the pointers. You need to get a pointer to the document object in order to get a
pointer to the view. However, to get a pointer to the document, you have to go through
the document template, getting a pointer to the template before you can get a pointer to
the document. Each of these steps requires the same sequence of events, first getting the
position of the first object and then getting a pointer to the object in that position. What
you'll do is get the position of the first document template and then get a pointer to the
document template in that position. Next, you'll use the document template to get the
position of the first document and then use the document template to get a pointer to the
document in that first position. Finally, you'll use the document to get the position of the
first view and then use the document again to get a pointer to the view in the position
specified. Once you’ ve got a pointer to the view, you can check the value of the check
boxes and call the appropriate spinner.

To add this functionality to your application, use the Class Wizard to add a function to
the onIdle event message for the application class (in this case, CTaskingApp). Once you
add the function, click the Edit Code button and add the code in Listing 18.12.

LisTiNnGg 18.12. THe CTaskingApp OnIdle FUNCTION.

BOOL CTaskingApp::0nIdle(LONG 1Count)
o

// TODO: Add your specialized code here and/or call the base class

POSITION pos = GetFirstDocTemplatePosition();
// Do we have a valid template position?

1:
2
3
4:
5: // Get the position of the first document template
6:
7
8 if (pos)

continues

| 458 Day 18

LisTING 18.12. CONTINUED

9: {
10: // Get a pointer to the document template
11: CDocTemplate* pDocTemp = GetNextDocTemplate(pos);
12: // Do we have a valid pointer?
13: if (pDocTemp)
14: {
15: // Get the position of the first document
16: POSITION dPos = pDocTemp->GetFirstDocPosition();
17: // Do we have a valid document position?
18: if (dPos)
19: {
20: // Get a pointer to the document
21: CTaskingDoc* pDocWnd =
22: (CTaskingDoc*)pDocTemp->GetNextDoc (dPos) ;
23: // Do we have a valid pointer?
24: if (pDocWnd)
25: {
26: // Get the position of the view
27: POSITION vPos = pDocWnd->GetFirstViewPosition();
28: // Do we have a valid view position?
29: if (vPos)
30: {
31: // Get a pointer to the view
32: CTaskingView* pView =
0 (CTaskingView*)pDocWnd->GetNextView(vPos);
33: // Do we have a valid pointer?
34: if (pView)
35:
36: // Should we spin the first idle thread?
37: if (pView->m_bOnIdlel)
38: // Spin the first idle thread
39: pDocWnd->DoSpin(0);
40: // Should we spin the second idle thread?
41: if (pView->m_bOnIdle2)
42: // Spin the second idle thread
43: pDocWnd->DoSpin(2);
44: }
45: }
46: }
47: }
48: }
49: }
50:
51: // Call the ancestor's idle processing
52: return CWinApp::0nIdle(1lCount);
53: }

If you compile and run your application now, you should be able to check either of the
On Idle Thread check boxes, and see the spinner drawing a color wheel, as shown in

Doing Multiple Tasks at One Time—Multitasking 459 |

Figure 18.7, aslong as you are moving the mouse. However, the moment you let the
application become totally idle—no mouse movement or anything else—the spinner will
stop spinning.

FIGURE 18.7. 1 Untitled - Tasking M= B

File Edit Help
On Idle Thread draw-
ing a color wheel.

I~ Thead1

[~ Onldie Thiead 2 [~ Thead2

Ready [[HUM 7

Making the onIdle Tasks Continuous

It's not very practical to keep moving the mouse around to make your application contin-
ue performing the tasks that it's supposed to do when the application isidle. There must
be away to get the application to continue to call the onidle function aslong as the
application isidle. Well, there is. If you look at the last line in the onIdle function,
you'll notice that the onidle function returns the result value from the ancestor onIdle
function. It just so happens that this function returns FALSE as soon as there isno onIdle
functionality to be performed.

You want the onIdle function to always return TRUE. Thiswill cause the onidle function
to continue to be called, over and over, whenever the application isidle. If you move the
call to the ancestor onIdle function to the first part of the function and then return TRUE,
asin Listing 18.13, you will get your spinner to continue turning, no matter how long the
application sitsidle.

LisTiNG 18.13. THE MODIFIED CTaskingApp OnIdle FUNCTION.

BOOL CTaskingApp::0nIdle(LONG 1lCount)
 q

// TODO: Add your specialized code here and/or call the base class

// Call the ancestor's idle processing

1:
2
3
4:
5
6 CWinApp::0nIdle(1lCount);
7

continues

| 460 Day 18

LisTING 18.13. CONTINUED

8: // Get the position of the first document template
9: POSITION pos = GetFirstDocTemplatePosition();

10: // Do we have a valid template position?

11: if (pos)

12: {

51: }

52: return TRUE;

53: }

If you compile and run your application, you can turn on the onIdle tasks and see them
continue to turn, even when you are not moving the mouse. However, if you activate any
of the menus, or if you open the About window, both of these tasks come to a complete
stop, asin Figure 18.8. The reason is that the open menus, and any open modal dialog
windows, prevent the onidle function from being called. One of the limitations of
OnIdle processing is that certain application functionality preventsit from being per-

formed.
FiGURe 18.8. Unking B
On Idle Thread P ——
stopped by the menu. \\

7 {0nide Thiead 2 I~ Thiead 2

y

Adding Independent Threads

Now that you' ve seen what isinvolved in adding an onIdle task, it's time to see what's
involved in adding an independent thread to your application. To add a thread to your
application, you'll add a main function for the threads. You' Il also add the code to start
and stop the threads. Finally, you'll add the code to the independent thread check boxes
to start and stop each of these threads.

[oM

Doing Multiple Tasks at One Time—Multitasking 461 |

Creating the Main Thread Function

Before you can spin off any independent threads, the thread must know what to do. You
will create a main thread function to be executed by the thread when it starts. This func-
tion will act as the main function for the thread, and the thread will end once the function
ends. Therefore, this function must act as the primary control of the thread, keeping the
thread running as long as there is work for the thread to do and then exiting once the
thread’s work is completed.

When you create a function to be used as the main function for a thread, you can pass a
single parameter to this function. This parameter is a pointer to anything that contains all
the information the thread needs to perform its tasks. For the application you' ve been
building in this chapter, the parameter can be a pointer to the spinner that the thread will
operate. Everything else that the thread needs can be extracted from the spinner object.

Once the thread has a pointer to its spinner, it can get a pointer to the check box variable
that tells it whether to continue spinning or stop itself. Aslong as the variable is TRUE,
the thread should continue spinning.

To add this function to your application, add a new member function to the document
classin your application. Specify the function type as UINT, the function declaration as
ThreadFunc (LPVOID pParam), and the access as private. You'll start the thread from
within the document class, so there’s no need for any other classes to see this function.
Once you’' ve added this function, edit it with the code in Listing 18.14.

LisTinGg 18.14. THe CTaskingDoc ThreadFunc FUNCTION.

1: UINT CTaskingDoc::ThreadFunc(LPVOID pParam)
2: {
3: // Convert the argument to a pointer to the
4: // spinner for this thread

5: CSpinner* 1pSpin = (CSpinner*)pParam;

6: // Get a pointer to the continuation flag

7 BOOL* pbContinue = 1lpSpin->GetContinue();

8

©

// Loop while the continue flag is true
10: while (*pbContinue)
11: // Spin the spinner
12: 1pSpin->Draw();
13: return 0;

14: }

| 462

Day 18

Starting and Stopping the Threads

Now that you have a function to call for the independent threads, you need some way of
controlling the threads, starting and stopping them. You need to be able to hold onto a
couple of pointers for cwinThread objects, which will encapsulate the threads. You'll add
these pointers as variables to the document object and then use them to capture the return
variable from the AfxBeginThread function that you will use to start both of the threads.

To add these variables to your application, add a new member variable to your document
class. Specify the variable type as cwinThread*, the variable name as
m_pSpinThread[2], and the variable access as private. This will provide you with atwo
slot array for holding these variables.

Now that you have a place to hold the pointers to each of the two threads, you'll add the
functionality to start the threads. You can add a single function to start either thread, if
it's not currently running, or to wait for the thread to stop itself, if it is running. This
function will need to know which thread to act on and whether to start or stop the thread.

To add this functionality, add a new member function to the document class. Specify the
function type as void, the function declaration as SuspendSpinner(int nIndex, BOOL
bSuspend), and the function access as public, and check the Static check box. Edit the
code for this function, adding the code in Listing 18.15.

LisTING 18.15. THE CTaskingDoc SuspendSpinner FUNCTION.

1: void CTaskingDoc: :SuspendSpinner(int nIndex, BOOL bSuspend)
2: {

3: // if suspending the thread

4: if (!bSuspend)

5: {

6: // Is the pointer for the thread valid?

7: if (m_pSpinThread[nIndex])

8: {

9: // Get the handle for the thread

10: HANDLE hThread = m_pSpinThread[nIndex]->m_hThread;
11: // Wait for the thread to die

12: ::WaitForSingleObject (hThread, INFINITE);

13: }

14: }

15: else // We are running the thread

16: {

17: int iSpnr;

18: // Which spinner to use?

19: switch (nIndex)
20: {

21: case 0:

Doing Multiple Tasks at One Time—Multitasking 463 |

22: iSpnr = 1;

23: break;

24: case 1:

25: iSpnr = 3;

26: break;

27: }

28: // Start the thread, passing a pointer to the spinner
29: m_pSpinThread[nIndex] = AfxBeginThread(ThreadFunc,
30: (LPVOID)&m_cSpin[iSpnr]);

31: }

32: }

The first thing that you do in this function is check to see if the thread is being stopped
or started. If the thread is being stopped, check to seeif the pointer to the thread is valid.
If the pointer is valid, you retrieve the handle for the thread by reading the value of the
handle property of the cwinThread class:

HANDLE hThread = m_pSpinThread[nIndex]->m_hThread;

Once you have the handle, you use the handle to wait for the thread to stop itself with
thewaitForSingleObject function.

::WaitForSingleObject (hThread, INFINITE);

ThewaitForSingleObject function is a Windows APl function that tells the operating
system you want to wait until the thread, whose handle you are passing, has stopped. The
second argument to this function specifies how long you are willing to wait. By specify-
ing INFINITE, you tell the operating system that you will wait forever, until this thread
stops. If you specify atimeout value, and the thread does not stop by the time you
specify, the function returns a value that indicates whether the thread has stopped.
Because you specify INFINITE for the timeout period, you don’'t need to worry about
capturing the return value because this function does not return until the thread stops.

If the thread is being started, you determine which spinner to use and then start that
thread by calling the AfxBeginThread function.

m_pSpinThread[nIndex] = AfxBeginThread(ThreadFunc,
(LPVOID)&m_cSpin[iSpnr]);

You passed the function to be called as the main function for the thread and the address
of the spinner to be used by that thread.

Triggering the Threads from the View Object

Now that you have a means of starting and stopping each of the independent threads, you
need to be able to trigger the starting and stopping from the check boxes on the window.

| 464

Day 18

When each of the two check boxes is checked, you'll start each of the threads. When the
check boxes are unchecked, each of the threads must be stopped. The second part of this
iseasy: Aslong as the variable tied to the check box is kept in sync with the control,
once the check box is unchecked, the thread will stop itself. However, when the check
box is checked, you'll need to call the document function that you just created to start
the thread.

To add this functionality to the first of the two thread check boxes, use the Class Wizard
to add a function to the BN_CLICKED event for the check box. Once you add the function,
edit it with the code in Listing 18.16.

LisTING 18.16. THE CTaskingView OnCbthreadi FUNCTION.

1: void CTaskingView::0nCbthreadi ()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEEETEEEL i

6: // MY CODE STARTS HERE

7: [HEEELTEEEE L rrrrrrr

8:

9: // Sync the variables with the dialog
10: UpdateData(TRUE);

11:

12: // Get a pointer to the document

13: CTaskingDoc* pbDocWnd = (CTaskingDoc*)GetDocument();
14: // Did we get a valid pointer?

15: ASSERT_VALID(pDocWnd) ;

16:

17: // Suspend or start the spinner thread
18: pDocWnd ->SuspendSpinner (@, m_bThreadl);
19:
20: [EEEETTEEEL i
21: // MY CODE ENDS HERE
22: [HEEETTEEEE L rrrrrrr
23: }

In this function, the first thing that you do isto call UpdateData to keep the variablesin
sync with the controls on the window. Next, you retrieve a pointer to the document.
Once you have a valid pointer, you call the document’s Suspendspinner function, speci-
fying the first thread and passing the current value of the variable tied to this check box
to indicate whether the thread isto be started or stopped.

To add this same functionality to the other thread check box, perform the same steps,
adding the code in Listing 18.17.

Doing Multiple Tasks at One Time—Multitasking 465 |

LisTinGg 18.17. THe CTaskingView OnCbthread2 FUNCTION.

1: void CTaskingView::0nCbthread2()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEEETEEEE L rrrrrrr

6: // MY CODE STARTS HERE

7 [IEEEETEEEL i

8:

9: // Sync the variables with the dialog
10: UpdateData(TRUE);

11:

12: // Get a pointer to the document

13: CTaskingDoc* pDocWnd = (CTaskingDoc*)GetDocument();
14: // Did we get a valid pointer?

15: ASSERT_VALID (pDocWnd) ;

16:

17: // Suspend or start the spinner thread
18: pDocWnd ->SuspendSpinner(1, m_bThread2);
19:
20: [EEEETEEEE L rrrrrrr
21: // MY CODE ENDS HERE
22: [EEEEETEEEL i
23: }

Now that you' ve added the ahility to start and stop the independent threads, compile and
run your application. You'll see that you can start and stop the independent threads with
their check boxes, as well asthe onIdle tasks.

At this point, if you play around with your application for awhile, you'll notice a bit of a
difference between the two types of threads. If you have all threads running and are
actively moving the mouse, you might notice the onIdle spinners slowing down in their
spinning (unless you have a very fast machine). The independent threads are taking a
good deal of the processor time away from the main application thread, leaving less
processor time to beidle. As aresult, it's easier to keep your application busy. The other
thing that you might notice is that if you activate the menus or open the About window,
although the on1d1e tasks come to a complete stop, the independent threads continue to
run, asin Figure 18.9. These two threads are completely independent processes running
within your application, so they are not affected by the rest of the application.

| 466

Day 18

FlGURE 189 - Untitled - Tasking [_ o[x]

The threads are not = o TR r—
affected by the menu.

File Edit [

¥ Thead2

Display program information, version number and copyright NUM A

Shutting Down Cleanly

You might think that you are done with this application until you try to close the applica-
tion while one or both of the independent threads is running. You' ll see an unpleasant
notification that you still have some work to do, asin Figure 18.10. It seems that leaving
the threads running when you closed the application caused it to crash.

FIGURE 18 . 10 1 Tasking.exe - Application Error
Application error

et Click on OK o teminate the application
notification. Click on CANCEL ta debug the application

The instruction at “0x004019dd" referenced memory at “0x00000000". The memory
could not be "read".

Cancel

Even though the application was closing, the threads were continuing to run. When these
threads checked the value of the variable indicating whether to continue running or spin
their spinners, they were trying to access a memory object that no longer existed. This
problem causes one of the most basic and most fatal application memory errors, which
you should eliminate before allowing anyone else to use the application.

What you need to do to prevent this error is stop both of the threads before allowing the
application to close. The logical place to take this action is the onDestroy event message
processing in the view class. This event message is sent to the view class to tell it to
clean up anything that it needs to clean up before closing the application. You can add
code to set both of the check box variables to FALSE so that the threads will stop them-
selves and then call the suspendSpinner function for each thread to make sure that both
threads have stopped before allowing the application to close. You do not need to call
UpdateData to sync the variables with the controls because the user doesn’t need to see
when you’ ve change the value of either check box.

Doing Multiple Tasks at One Time—Multitasking

467 |

To add this functionality to your application, add an event-handler function for the
OnDestroy event message to the view class. This function does not normally exist in the
view class that is created by the AppWizard, so you need to add it when it is needed in
the descendent view class. Edit the function, adding the code in Listing 18.18.

LisTING 18.18. THE CTaskingView OnDestroy FUNCTION.

1:
2
3
4:
5:
6
7
8

o

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

34:
35:
36:
37:
38:
39:
40:
41:

void CTaskingView::0nDestroy ()

R

CFormView: :OnDestroy();
// TODO: Add your message handler code here

PITETELTEE iy
// MY CODE STARTS HERE
PIPETEETE iy

// Is the first thread running?

if (m_bThreadi)

{
// Specify to stop the first thread
m_bThread1 = FALSE;
// Get a pointer to the document
CTaskingDoc* pDocWnd = (CTaskingDoc*)GetDocument();
// Did we get a valid pointer?
ASSERT_VALID(pDocWnd);

// Suspend the spinner thread
pDocWnd ->SuspendSpinner (@, m_bThreadl);
}
// Is the second thread running?
if (m_bThread2)
{
// Specify to stop the second thread
m_bThread2 = FALSE;
// Get a pointer to the document
CTaskingDoc* pDocWnd = (CTaskingDoc*)GetDocument();
// Did we get a valid pointer?
ASSERT_VALID(pDocWnd);

// Suspend the spinner thread
pDocWnd->SuspendSpinner(1, m_bThread2);

}

LEEETEETET Ly
// MY CODE ENDS HERE

PITETEETEE iy

| 468

Day 18

In this function, you do exactly what you need to do. You check first one check box vari-
able and then the other. If either is TRUE, you set the variable to FALSE, get a pointer to
the document, and call the suspendSpinner function for that thread. Now when you
close your application while the independent threads are running, your application will
close without crashing.

Summary

Today, you learned quite a bit. You learned about the different ways you can make your
applications perform multiple tasks at one time. You also learned about some of the con-
siderations to take into account when adding this capability to your applications. You
learned how to make your application perform tasks when the application is sitting idle,
along with some of the limitations and drawbacks associated with this approach. You
also learned how to create independent threads in your application that will perform their
tasks completely independently of the rest of the application. You implemented an appli-
cation that uses both of these approaches so that you could experience how each
approach works.

“I] When you start adding multitasking capabilities to your applications to per-

form separate tasks, be aware that this is a very advanced aspect of pro-
gramming for Windows. You need to understand a lot of factors and take
into account far more than we can reasonably cover in a single day. If you
want to build applications using this capability, get an advanced book on
programming Windows applications with MFC or Visual C++. The book
should include a substantial section devoted to multithreading with MFC
and cover all the synchronization classes in much more detail than we did
here. Remember that you need a book that focuses on MFC, not the Visual
C++ development environment. (MFC is supported by most commercial C++
development tools for building Windows applications, including Borland
and Symantec’s C++ compilers, so coverage for this topic extends beyond the
Visual C++ environment.)

Q&A

Q How can | usethe other version of the AfxBeginThread to encapsulate a thread
in a custom class?

A First, the other version of AfxBeginThread is primarily for creating user-interface

threads. The version that you used in today’s sample application is for creating
what are called worker threads that immediately take off on a specific task. If you

Doing Multiple Tasks at One Time—Multitasking

469 |

want to create a user-interface thread, you need to inherit your custom class from
the cwinThread class. Next, override severa ancestor functions in your custom
class. Once the class is ready to use, you use the RUNTIME_CLASS macro to get a
pointer to the runtime class of your class and pass this pointer to the
AfxBeginThread function, as follows:

CWinThread* pMyThread =
AfxBeginThread (RUNTIME_CLASS(CMyThreadClass));

Can | use suspendThread and ResumeThread to start and stop my independent
threadsin my sample application?

Yes, but you need to make afew key changes to your application. First, in the
onNewDocument function, initialize the two thread pointers to NULL, as shown in
Listing 18.19.

LisTING 18.19. THE MoODIFIED CTaskingDoc OnNewDocument FUNCTION.

1:
2
3
4:
5:
6-
7
8

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

q

BOOL CTaskingDoc: :0OnNewDocument ()

if (!CDocument::0nNewDocument())
return FALSE;

// TODO: add reinitialization code here
// (SDI documents will reuse this document)

PIPETETE iy
// MY CODE STARTS HERE
PIPETILTE iy

// Initialize the spinners
InitSpinners();

// Initialize the thread pointers
m_pSpinThread[@] = NULL;
m_pSpinThread[1] = NULL;

PIPETILTE iy
// MY CODE ENDS HERE
LITETEETETL iy

return TRUE;

Next, modify the thread function so that the thread does not stop itself when the
check box variable is FALSE but continues to loop, as shown in Listing 18.20.

| 470 Day 18

LisTinGg 18.20. THE MODIFIED CTaskingDoc ThreadFunc FUNCTION.

1: UINT CTaskingDoc::ThreadFunc(LPVOID pParam)

2:

3 // Convert the argument to a pointer to the
4: // spinner for this thread

5: CSpinner* 1pSpin = (CSpinner*)pParam;

6 // Get a pointer to the continuation flag

7 BOOL* pbContinue = 1lpSpin->GetContinue();

8

©

// Loop while the continue flag is true
10: while (TRUE)
11: // Spin the spinner
12: 1pSpin->Draw();
13: return 0;
14: }

Finally, modify the suspendSpinner function so that if the thread pointer is valid,
it calls the suspendThread function on the thread pointer to stop the thread and the
ResumeThread function to restart the thread, as shown in Listing 18.21.

LisTING 18.21. THE MODIFIED CTaskingDoc SuspendSpinner FUNCTION.

1: void CTaskingDoc: :SuspendSpinner(int nIndex, BOOL bSuspend)
2: {

3 // if suspending the thread

4: if (!bSuspend)

5: {

6: // Is the pointer for the thread valid?

7: if (m_pSpinThread[nIndex])

8: {

9: // Suspend the thread

10: m_pSpinThread[nIndex] ->SuspendThread();
11: }

12: }

13: else // We are running the thread

14: {

15: // Is the pointer for the thread valid?
16: if (m_pSpinThread[nIndex])

17: {

18: // Resume the thread

19: m_pSpinThread[nIndex] ->ResumeThread();
20: }
21: else
22: {
23: int iSpnr;
24: // Which spinner to use?

25: switch (nIndex)

Doing Multiple Tasks at One Time—Multitasking 471 |

26: {

27: case 0:

28: iSpnr = 1;

29: break;

30: case 1:

31: iSpnr = 3;

32: break;

33: }

34: // Start the thread, passing a pointer to the spinner
35: m_pSpinThread[nIndex] = AfxBeginThread(ThreadFunc,
36: (LPVOID)&m_cSpin[iSpnr]);

37: }

38: }

39: }

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. WhenistheonIdle function called?
2. How can you cause the onId1e function to be repeatedly called while the applica-
tion is sitting idle?
3. What is the difference between an onidle task and athread?
4. What are the four thread synchronization objects?

5. Why shouldn’t you specify a higher than normal priority for the threads in your
application?

Exercises

1. If you open a performance monitor on your system while the application that you
built today is running, you'll find that even without any of the threads running, the
processor usage remains 100 percent, as shown in Figure 18.11. The onIdle func-
tion is continuously being called even when there is nothing to be done.

Modify the on1dle function so that if there’s nothing to be done, neither of the
onIdle tasks are active. Then, the onIdle function will not continue to be called
until one of these threads is active, at which time it should be continuously called
until both threads are once again turned off. This will alow the processor to drop
to aminimal utilization, as shown in Figure 18.12.

| 472 Day 18

Ficure 18.11.

Eile QOptions Yiew Help

Processor utilization at Appicatons | Procssses Pefomance |
100 percent. ~CPUUssge— -CPU Usage History

~MEM Usage— - Memary Usage Histop —————————————
BrEcEk =

CTotals [PhysicalMemon (K}
Handles 4104 | Tol 81332
Thieads 279 | Avalable 26652
Fiocesses 35 | Fiie Cache 19372

~ Commit Charge (K] ———— - Kemel Memory (K] ——————
Tatal 82228 | Totdl 21184
Limit 233855 | Paged 18008
Feak 85748 | Nonpaged 37

|Processes: 35 [CPU Usage: 100% [Mem Usage: 82228K / 233856

Eile QOptions Yiew Help

Processor utilization at Applications | Processes Perfomancs |
normal levels. | CPUUssge— -CPUUsageHitoy

FIGURE 18.12. [emioms T ok vomoge————————EEIE
|

~MEM Usage— - Memory Usage Histoy ————————————
B 126K _
~Totals——————— ~Physical Memary (K]
Handles 4076 Total 81332
Thieads 279| | Avalable 27316
Piocesses 34| | File Cache 20288
- Commit Charge (KI————— - Kemel Memory (K)——————
Total 81260 | Total 21176
Lirnit 233856 Paged 18000
Peak. 87860 | Nonpaged 3176
“F’rucesseS 34 [CPU Usage: 7% |Mem Usage: 81260K / 233856K

2. When starting the independent threads, give one of the threads a priority of
THREAD_PRIORITY_NORMAL and the other a priority of THREAD PRIORITY LOWEST.

WEEK 3

DAY 19

Building Your Own
Widgets—Creating
ActiveX Controls

The software industry has seen a revolution over the past couple years. How
software is built and packaged has moved from a model where all applications
are large, monalithic pieces of executable code to a model where most applica-
tions consist of small building blocks. These small building blocks, often called
components, can be created using any of severa different languages and can
take many different forms. One of the most popular components is the ActiveX
control. If you know how to create your own ActiveX controls, you can build
your own components and provide them to other programmers. Today, you will
learn

. How to use the Visual C++ wizards to build ActiveX controls.

- How to add properties and methods to your controls using the Class
Wizard.

- How to test your control using the tools provided with Visual C++.

| 474 Day 19

What Is an ActiveX Control?

AnActiveX control is aset of functionality packaged in a COM (Component Object
Model) object. This COM object is self-contained, although it does not have the ability
to run by itself. An ActiveX control can only run within aActiveX container, such asa
Visual C++ or Visual Basic application.

Asyou learned on Day 9, “Adding ActiveX Controlsto Your Application,” ActiveX con-
trols provide a series of interfaces used by the container application to trigger the various
sets of functionality contained in the control. Many of these interfaces are used for trig-
gering events in the control or in the containing application. Others are for specifying
the property page of the control or for communicating whether the control has been
activated. All in al, so many interfaces are built into most ActiveX controls that coding
the functionality for each of these interfaces yourself would take quite some time.
Luckily, the Visual C++ App and Class Wizards add much of this functionality for you,
allowing you to focus on the specific functionality that the control is supposed to have.

Among the aspects of the control you create that you still must plan yourself are what
properties, methods, and events you will expose for your control. You can add these ele-
ments to your control through the Class Wizard, but if any of the properties or events
require special code on your part, then you must add it yourself. As should be expected
with any methods that you add to your controls, you have to supply al of the code. The
Class Wizard will add the surrounding structure and code to allow the containing appli-
cation to see and call the method, just as it will add all the code necessary to call any
event handlers for your applications.

Properties

Properties are attributes of controls that are visible to, and often modifiable by, the con-
tainer application. The four basic types of properties are ambient, extended, stock, and
custom. Ambient properties are provided by the container application to the control—
such things as background color or the default font to be used—so that the control 1ooks
like part of the container application. Extended properties are not actually properties of
the control but instead are provided and implemented by the container application, such
as tab order. The control may extend these properties somewhat; for example, if the
control contains two or more standard controls, it may control the tab order within the
overall control, returning the tab order control to the application once the control has
completed itsinternal tab order. Stock properties are implemented by the ActiveX control
development kit, such as control font or control background color. The final type of
properties, custom properties, are what you are most concerned with because these

Building Your Own Widgets—Creating ActiveX Controls 475 |

properties are specific to your control and are directly related to the functionality of your
control.

You can specify any properties you need in your control using the Automation tab on the
Class Wizard. When you add a new property to your control through the Class Wizard,
you' Il specify several aspects of the property.

The first aspect is the external property name, which is the name shown to the containing
application for the property. Another aspect that you can specify is the internal variable
name, which is used in your code, but only if the property is implemented as a member
variable. You also specify the variable type for the property.

If you specify that the property isto be implemented as a member variable (the property
is amember variable of the control class), then you can specify the name of the notifica-
tion function, which is called when the property is changed by the containing applica-
tion. If the property is not a member variable of the control class, you need to specify
that it is altered and viewed through Get and set methods, where the containing applica-
tion calls aGet method to get the current value of the property and calls a set method to
change the value of the property. If the property is maintained through Get and Set
methods, then you can specify the names of these two methods.

For al these aspects of a property, the Add Property dialog suggests appropriate names
for everything once you enter the external name for the property. If you want to accept
the default names, the only things you need to specify are the external name, the type,
and whether the property is a member variable or uses Get and Set methods. If you
choose a stock property from the list of available stock properties, the rest of the ele-
ments are automatically specified for you. Once you specify all of this information, the
Class Wizard adds all of the necessary code and variables to your control project.

Methods

Methods are functions in the control that can be called by the container application.
These functions are made available to other applications through the 1bispatch inter-
face, which we discussed on Day 9. Because of the way the IDispatch worksin calling
the methods in a control, the variables passed to the method have to be packaged in a
structure that is passed to the control. This structure is machine independent so that it
doesn’t matter whether your control is running with Windows 95/98 on an Intel Pentium
Il or on aWindows NT with a MIPS or Alpha processor; the structure will look the
same. It is the responsibility of each side of the function call to convert the parameters as
necessary to fit them into the structure correctly or to extract them from the structure.
This process of packaging the method parametersis called marshaling.

| 476

Day 19

When you add a hew method to your control through the Class Wizard on the
Automation tab, the Class Wizard adds al of the necessary code to perform the marshal-
ing of the parameters, as well as all other supporting functionality, including building the
IDispatch interface and table.

When you add a new method to your control through the Class Wizard, you are asked to
provide the external name for the method called by the container application. Your
method will get a default internal name, which you can override by entering your own
internal name. Other aspects of your control methods that you have to specify are the
method’s return type and the parameters for the method. Once you finish entering all this
information, the Class Wizard adds al the necessary code to the control.

Events

Events are notification messages that are sent from the control to the container applica-
tion. They are intended to notify the application that a certain event has happened, and
the application can take action on that event if desirable. You can trigger two types of
events from your control, stock or custom events. Stock events are implemented by the
ActiveX control development kit and are available as function calls within the control.
These stock events enable you to trigger events in the container application for mouse or
keyboard events, errors, or state changes.

Along with the stock events, you can add your own custom events to be triggered in the
container application. These events should be related to the specific functionality of your
control. You can specify arguments to be passed with the event to the container applica
tion so that the application can have the data it needs for reacting to the event message.

When you need to trigger any of these events, all you do is call the internal event func-
tion that fires the event, passing all the necessary parameters to the function. The Class
Wizard will have added all of the necessary code to trigger the event message from the
internal function call.

Events are one of the three elements that you do not add to your controls through the
Automation tab in the Class Wizard. Events are added through the ActiveX Eventstab in
the Class Wizard.

Creating an ActiveX Control

TheActiveX control that you will build as the example today is the squiggle drawing
module that you packaged as alibrary module and then as DLLs on Day 16, “Creating
Your Own Classes and Modules,” and Day 17, “ Sharing Your Functionality with Other
Applications—Creating DLLS.” In converting this module into an ActiveX control,

Building Your Own Widgets—Creating ActiveX Controls 477 |

you'll expose the maximum number of squiggles that the control will draw, as well as
the maximum length of the squiggles, as properties that the container application can set.
Every time the control is clicked, you'll program it to create a new squiggle drawing.
You'll also add a method to load a squiggle drawing into the control that was created
with the previous versions of the squiggle module. Finaly, you'll have the control fire an
event to let the container application know that the control has loaded the drawing.

Building the Control Shell

You’ ve probably noticed by now that one of the options on the new project dialog is an
MFC ActiveX Control Wizard. Thisis another project wizard just like the AppWizard for
creating application and DLL projects. You can use it to build a shell for any ActiveX
controls that you want to build. It will create all of the necessary files and configure the
project so that the compiler will build an ActiveX control when you compile.

When you start the Control Wizard, you are asked some simple questions about your
control project, such as how many controls will be in the project and whether the con-
trols will have runtime licenses.

Nﬂtﬂ Runtime licenses are a means of making sure that the user of your control

) has purchased a license to use the control. Controls developed for selling to
' developers often have runtime licenses. The license prevents use of a control
by users who haven’t paid for it. When you use the control in an applica-
tion, either the runtime license for the control is installed in the user’s
registry by the install routine or the runtime license is compiled into the
application. These means prevent someone from using the control to build
new applications.

In the second step of the Control Wizard, the questions get a little more involved but are
still fairly easy to answer. In this step, you can click the Edit Names button to provide
the control with descriptive names for the user. At the bottom of the Control Wizard,
you'll find a combo box that lists a number of window classes that you can subclassin
your control. If you want to create a special edit box that performs some special edits on
anything the user types into the box, you choose EDIT from the list of window classesin
the drop-down portion of this combo box. If you choose to click the Advanced button,
the questions about your project require a fairly thorough understanding of Activex
controls.

To begin the sample control project today, start a new project, selecting the MFC
ActiveX Control Wizard and giving the project a suitable name, such as squiggle, as
shown in Figure 19.1.

| 478

Day 19

control project.

FiGURE 19.1. MEw HE
. i Files Projects | Workspaces | Dther Documents |
Sarting an ActiveX
&1 ATL COM Appwizard Project nams
] Cluster Resource Type Wizard Squiggld
Y Custom Appwizard X
@D atabase Project Coceon:
%Devstudln Add-in Wizard D:\MSYS\MyProjects\Squiggle J
B E dtended Stored Proc Wizard
I1SAPI Extension ‘wizard
o3 Makefie @ Cieate new workspace
MFC ActiveX, Controlw/izard (0 i st esess
(3] MFC Appiwizard (dI) I Dependency of
MFC Appiwizard [sxe) 'ﬁ
T Utiiy Project
2] win32 Application
|~ Win32 Console Application P
| %) Win32 Dynamic-Link Library
%] win32 Static Libran [win32
Cancel

Leave al the options with their default settings in the first Control Wizard step because
you'll create only a single control today, and you won't need to include any runtime
licensing. On the second Control Wizard step, click the Edit Names button and make
sure that the type name is sufficiently descriptive of the control. Click OK to approve the
names, returning to the second Control Wizard step. If you had specified in the first step
that you were creating multiple controls, then you would choose each control in the
drop-down list beside the Edit Names button, specifying the names for each individual
control in the project. You can leave the rest of the options in the Control Wizard at their
default settings for this sample project.

Modifying the CModArt Class

Once you create the control shell, copy the Line and ModArt files from the library mod-
ule project directory, the project you built on Day 16. Load all four of these filesinto the
control project, adding the cLine and cModArt classes to the project.

The primary changes that you need to make to the cModArt class for your control is set-
ting the maximum number of squiggles and length of squiggles variables that can be
exposed as control properties. To be able to implement this, you'll add two member vari-
ables to the cModArt class, one to control the length of the squiggles and the other to
control the number of squiggles. Add these two variables to the cModArt class asin Table
19.1.

TABLE 19.1. MEMBER VARIABLES FOR CMOdAIrt CLASS.

Name Type Access

m_ilength int Private
m_iSegments int Private

Building Your Own Widgets—Creating ActiveX Controls 479 |

You need to provide away for these variables to be retrieved and updated from the
exposed properties. This means that you’'ll need functions for getting the current value,
and for setting the new value, for each of these variables. To add these functions for the
m_ilLength variable, add a member function to the cModArt class, specifying the type as
int, the declaration as GetLength, and the access as public. Edit the function with the
codein Listing 19.1.

LisTiNnG 19.1. THE CModArt GetLength FUNCTION.

1: int CModArt::GetLength()

2: {

3: // Return the current value for the m_ilLength variable
4: return m_ilLength;

5: }

Next, add another member function to the cModArt class, specifying the function type as
void, the declaration as SetLength (int ilLength), and the access as public. Edit this
function, adding the code in Listing 19.2.

LisTING 19.2. THE CModArt SetLength FUNCTION.

1: void CModArt::SetLength(int ilLength)

2:

3: // Set the current value for the m_ilLength variable
4: m_ilLength = ilength;

5: }

Add the same two functions for the m_iSegments variable so that it can also be exposed
as a property of the control.

Now that you have made these two properties available for the control, you' Il make sure
that they have been initialized to reasonable values before the control is used. To initial-
ize these values, modify the cModArt constructor asin Listing 19.3.

LisTING 19.3. THE MODIFIED CModArt CONSTRUCTOR.

CModArt: :CModArt ()
A

1:
2
3 // Initialize the random number generator
4: srand((unsigned)time(NULL));

5: // Initialize the property variables

6: m_ilLength = 200;

7: m_iSegments = 50;

8: }

| 480 Day 19

Finally, you'll modify the two function that create the squiggle drawings so that they use
these variables instead of the hard-coded values that they currently use. To modify the
NewDrawing function, replace the maximum number of squigglesin line 7 with the vari-
ablem_iSegments, asin Listing 19.4.

LisTING 19.4. THE MODIFIED CModArt NewDrawing FUNCTION.

1: void CModArt::NewDrawing()

2: {

3 int 1NumLines;

4 int 1CurlLine;

5:

6: // Determine how many lines to create
7: INumLines = rand() % m_iSegments;

8: // Are there any lines to create?

9: if (1NumLines > 0)
10: {
11: // Loop through the number of lines
12: for (1CurLine = 0@; 1lCurLine < INumLines; 1lCurLine++)
13: {
14: // Create the new line
15: NewLine();
16: }
17: }
18: }

Finally, replace the maximum length of each squiggle with them_iLength variable on
line 20 in the NewLine function, asin Listing 19.5.

LisTING 19.5. THE MODIFIED CModArt NewLine FUNCTION.

1: void CModArt::NewLine()

2: {

3: int 1NumLines;

18:

19: // Determine the number of parts to this squiggle
20: INumLines = rand() % m_ilLength;
21: // Are there any parts to this squiggle?

é?: }

Building Your Own Widgets—Creating ActiveX Controls 481 |

You have made al of the necessary modifications to the cModArt and cLine classes for
your ActiveX control. Now you have to add an instance of the cModArt class to the con-
trol class as a member variable. Add a new member variable to the control class,
CSquiggleCtrl, specifying its type as CModArt, its name as m_maDrawing, and its access
as private. You also need to include the header file for the cModArt class in the control
class source code file, so open thisfile, scroll to the top of the file, and add an include
statement for the ModArt.h file, asin Listing 19.6.

LisTING 19.6. THE CSquiggleCtrl INCLUDES.

: // SquiggleCtl.cpp : Implementation of the CSquiggleCtrl ActiveX
ontrol class.

1
C
2
3: #include "stdafx.h"

4: #include "Squiggle.h"

5: #include "SquiggleCtl.h"
6: #include "SquigglePpg.h"
7: #include "ModArt.h"

Adding Properties

Because the two variables that you added to the cModArt class are not variables of the
control class (csquiggleCtrl), you will probably want to add Get and Set methods to
set and retrieve the property value. If these two variables were members of the control
class, you could add them through the Class Wizard as member variables. You would
still know when and if the variables had been changed because you would have a notifi-
cation method in the control class that would be called when the property values are
changed. However, because they are members of an internal class, you'll want to exer-
cise alittle more control over their values.

m—\ Even if the variables that you want to expose are member variables of the
. control class, you might still want to use the Get and Set methods for access-
' ing the variables as control properties. Using the Get and Set methods allow
you to add validation on the new value for the properties so that you can

make certain that the container application is setting an appropriate value
to the property.

To add these properties to your control, open the Class Wizard and select the Automation
tab, asin Figure 19.2. Click on the Add Property button to add the first property. In the
Add Property dialog, enter the external name that you want your property to have, such

| 482

Day 19

as Squigglelength, and specify the type as short (the int typeis not available, only
short and 1long). Click the Get/set methods radio button, and the dialog enters function
names for these two methods, asin Figure 19.3. Click OK to add this property.

FIGURE 192 MFC ClassWizard [71x]
Message Maps | Member Varisbles Automation | ActiveX Events | Classinfo |

The Class Wzard Project Class pame e

Automation tab. S =] [Coasgaiecu Sl o
D:\...\Squiggle\SquiggleCtLh, D:\...ASquiggleCtl.cpp, £
External names: Add Propety.

Select a class that supports Automation
and click Add Property or Add Method to Delete
add functionality to your interface.

Edit Code

Both Add Method and Add Property allow

you'to add stack and custom interfaces ok el

Implementation:

I= | Detault property

Cancel
Ficure 19.3. iy HE
Estemal name: [SauiaaleL enath =l oK,
The Add Property |
. Lype = Cancel
dl al Og' Get function: [GetSauingleLenath
Set function: [SetS quiggleLength

Implementation
’V(' Stocl € Member vaiiable ' Get/Set methods

Parameter st

Name Type

Click the Edit Code button to add the code for the Get and set methods. In each method,
you'll call the Get and set functions that you added to the cModArt class to control
access to the length variable. Edit these two methods as shown in Listing 19.7.

LisTING 19.7. THE CSquiggleCtrl Get/SetSquiggleLength FUNCTIONS.

1 short CSquiggleCtrl::GetSquiggleLength()

2: {

3: // TODO: Add your property handler here

4: // Return the result from the GetLength function
5 return m_maDrawing.GetLength();

6

7

Building Your Own Widgets—Creating ActiveX Controls 483 |

8: void CSquiggleCtrl::SetSquigglelLength(short nNewValue)

9: {

10: // TODO: Add your property handler here
11: // Set the new length value

12: m_maDrawing.SetLength(nNewValue);

13: SetModifiedFlag();

14: }

Add another property for the number of squigglesin a drawing by following the same
steps, substituting an appropriate property name, such as NumberSquiggles.

One last property you might want to add to your control is a boolean property that the
container application could use to keep the control from creating any new drawings and
to keep the current drawing visible. Add a new property through the Class Wizard, giv-
ing it a suitable name such as KeepCurrentDrawing, and specify the type as BooL. Leave
this property set as a member variable and click OK. The Class Wizard automatically
adds the variable to the control class, along with al of the necessary code to maintain the
variable.

Designing and Building the Property Page

You need to provide a property page with your control that developers can use when they
are working with your control. This property page will provide the users with a means of
setting the properties of the control, even if their own development tools do not provide
them with afacility to get to these properties in any way other than with code.

Adding a property page to your control is pretty easy. If you select the Resources view
tab in the workspace and expand the dialog folder, you'll see adialog for your control’s
property page already in the folder. Open this dialog, and you'll find that it's a standard
dialog window that you can design using the standard controls available in the dialog
designer. To design the property page for your sample control, lay out the property page
dialog as shown in Figure 19.4, using the property settings in Table 19.2.

F|GURE 194 e of Squiggles: [E dit
The COntrOI property B Maximum Length of Squiggles: [E it L]

pagelayout. . | I Maintan Curert Drating

| 484 Day 19

TABLE 19.2. CONTROL PROPERTY SETTINGS.

Object Property Setting
Static Text ID IDC_STATIC

Caption Maximum Number of Squiggles:
Edit Box ID IDC_ENBRSQUIG
Static Text ID IDC_STATIC

Caption Maximum Length of Squiggles:
Edit Box ID IDC_ELENSQUIG
Check Box ID IDC_CMAINTDRAW

Caption Maintain Current Drawing

Once you add al the controls and specify their properties, open the Class Wizard to add
variables for these controls. When you add a variable to one of the controls on the prop-
erty page dialog, you'll notice an additional combo box on the Add Member Variable
dialog. This new combo box is for the external name of the property that the variable
should be tied to in the control. The drop-down list on this combo box isalist of al of
the standard properties that you might want to tie the property page control to, but if you
are tying it to a custom property, you have to enter the property name yourself, as shown

in Figure 19.5.
FIGURE 19.5. Add Member Variable HE
Member variable name:
The Add Member e
Variable dial 0d. Category,
Value -
Varlable lype:
int <]

Optional property name:

|SquiggleLength

Deseription:

int with validation

Add variables to the controls on the property page for your control, tying them to the
control’s properties, as specified in Table 19.3.

TABLE 19.3. CONTROL VARIABLES.

Object Name Category Type Property
IDC_CMAINTDRAW m_bKeepDrawing value BOOL KeepCurrentDrawing
IDC_ELENSQUIG m_ilenSquig Value int SquiggleLength

IDC_ENBRSQUIG m_iNbrSquiggles Value int NumberSquiggles

Building Your Own Widgets—Creating ActiveX Controls 485 |

Click the OK button to add all these variables to the control property page class.

Adding Basic Control Functionality

The basic functionality that your control needs is the ability to respond to mouse clicks
by generating a new drawing. To control this behavior, you'll add a second boolean vari-
able to the control class so that the onbraw function knows that a mouse click has been
triggered. The easiest place to get the drawing area of the control is the onbraw function,
so this is where the new drawing needs to be generated. Do you want the control to gen-
erate a new drawing every time the user moves the application using your control in
front of another application? Probably not. You will most likely want a greater amount of
control over the behavior of the control, so it makes sense to add this second boolean
variable. Add a member variable to the control class (CSquiggleCtrl), specifying the
variable type as BooL, the variable name as m_bGenNewDrawing, and the variables access
as private.

Before you start adding the code to perform all the various tasks, it's important that you
initialize all the member variables in the control class. This consists of the member vari-
able property, m_keepCurrentDrawing, and the member variable that you just added,
m_bGenNewDrawing. You'll want your control to generate a new drawing right off the bat,
and you probably don’'t want it to maintain any drawings, unless the container applica
tion explicitly specifies that a drawing is to be maintained. You'll set these two variables
accordingly in the control class constructor, as shown in Listing 19.8.

LisTiNnG 19.8. THE CSquiggleCtrl CONSTRUCTOR.

CSquiggleCtrl::CSquiggleCtrl()
R
InitializeIIDs(&IID DSquiggle, &IID DSquiggleEvents);
// Initialize the variables

m_bGenNewDrawing = TRUE;

1:
2
3
4:
5: // TODO: Initialize your control's instance data here.
6.
7
8 m_keepCurrentDrawing = FALSE;

9

L)

Next, you'll add the code to generate and display the squiggle drawings. The place to
add this functionality is the ondraw function in the control class. This function is called
every time that the control needs to draw itself, whether it was hidden or something trig-
gered the redrawing by calling the Invalidate function on the control. Oncein the
onbraw function, you'll determine whether you need to generate a new drawing or just
draw the existing drawing. Another thing to keep in mind is that you are responsible for

| 486

Day 19

drawing the entire area that the control occupies. This means that you need to draw the
background of the squiggle drawing, or else the squiggles will be drawn on top of what-
ever was displayed in that same spot on the screen. (Who knows? That might be the
effect you are looking for.) To add this functionality to your control, edit the onDraw
function in the control class, adding the code in Listing 19.9.

LisTiNG 19.9. THE CSquiggleCtrl OnDraw FUNCTION.

1: void CSquiggleCtrl::OnDraw(
2: CDC* pdc, const CRect& rcBounds, const CRect& rclInvalid)
3: {
4: // TODO: Replace the following code with your own drawing code.
5 //pdc->FillRect(rcBounds, CBrush::FromHandle((HBRUSH)
O GetStockObject (WHITE_BRUSH)));
6: //pdc->Ellipse(rcBounds);
7: // Do we need to generate a new drawing?
8: if (m_bGenNewDrawing)
9: {
10: // Set the drawing area for the new drawing
11: m_maDrawing.SetRect (rcBounds);
12: // Clear out the old drawing
13: m_maDrawing.ClearDrawing() ;
14: /] Generate the new drawing
15: m_maDrawing.NewDrawing() ;
16: // Reset the control flag
17: m_bGenNewDrawing = FALSE;
18: }
19: // Fill in the background
20: pdc->FillRect(rcBounds,
21: CBrush: :FromHandle ((HBRUSH)GetStockObject (WHITE_BRUSH)));
22: // Draw the squiggle drawing
23: m_maDrawing.Draw(pdc) ;
24: }

Finally, you'll trigger the control to generate a new drawing whenever the control is
clicked. This requires adding an event handler for the control’s onclick event. First,
however, you'll add a stock method to the control to make sure that it receives the
onClick event message. To add this stock method, open the Class Wizard and select the
Automation tab. Add a new method to the control class, selecting the boc1lick method
from the drop-down list of stock methods that can be added to your control, as shown in
Figure 19.6. Click the OK button to add the method to your control, and then select the
Message Maps tab in the Class Wizard. Select the onCclick event message from the list
of available event messages, and add a function to handle this event message. Edit the
code for the onclick event handler, adding the code in Listing 19.10.

Building Your Own Widgets—Creating ActiveX Controls 487 |

FiGURe 19.6. A
The Add Method [
dialog. o |

Return type:

Implementation
£ Stock & Custom

Parameter st

Name Type

LisTING 19.10. THE CSquiggleCtrl OnClick FUNCTION.

1: void CSquiggleCtrl::0nClick (USHORT iButton)

2: {

3: // TODO: Add your specialized code here and/or call the base class
4: // Can we generate a new drawing?

5: if (!m_keepCurrentDrawing)

6: {

7: // Set the flag so a new drawing will be generated

8: m_bGenNewDrawing = TRUE;

9: // Invalidate the control to trigger the OnDraw function
10: Invalidate();

11: }

12: COleControl::0OnClick(iButton);

13: }

In the onclick function, you check to see whether you could generate a new drawing or
maintain the current drawing. If you could generate a new drawing, you set the
m_bGenNewDrawing flag to TRUE and invalidated the control, which triggers the onDraw
function.

Adding Methods

Remember the functionality that you are going to give your control: One of the functions
isloading a squiggle drawing created with the version of the Squiggle module that you
created on Day 16. To add this functionality, you'll add a method to the control that the
container application can call to pass a filename to be loaded. You' ve already added one
method to your application, a stock method. Adding a custom method is similar, but you
have to provide alittle more information to the Add Method dialog.

In the method to load an existing drawing, you'll create acFile object for the filename
that was passed as a parameter. The CFile constructor will take the filename and the flag
CFile::modeRead to let it know that you are opening the file for reading only. Once you

| 488

Day 19

FIGUre 19.7. Add Method HE

External name: oK
The Add custom [ostaig 7] Tl
Method dialog. It e

Retum type:

foo A

create the CFile object, you'll create a CArchive object to read the file. The CArchive
constructor will take the cFile object that you just created and the CArchive: : 1load flag
to tell it that it needsto load the file. At this point, you can pass the CArchive object to
the drawing object’s Serialize function and let it read and load the drawing. Once the
drawing isloaded, you need to display the drawing by invalidating the control. Before
you invalidate the control, you probably want to make sure that the m_bGenNewDrawing
flag is set to FALSE so that the drawing you just loaded won't be overwritten.

To add this functionality to your control, open the Class Wizard and select the
Automation tab. Click the Add Method button to add a custom method. Enter the exter-
nal method name in the first combo box; in this case, call it LoadDrawing. The internal
name will automatically be generated based on the external name you entered. Next,
specify the return type as BooL so that you can let the container application know
whether you were able to load the drawing. Finally, add a single parameter to the para-
meter list, giving it a name such as sFileName and specifying itstype as LPCTSTR (the
CString typeis not available, but the LPCTSTR type is compatible), as shown in Figure
19.7. Click the OK button to add the method to your control. Once you add the method,
click the Edit Code button to edit the method, adding the code in Listing 19.11.

Implementation
& Stock & Custom

Parameter list

LisTiNG 19.11. THE CSquiggleCtrl LoadDrawing FUNCTION.

1: BOOL CSquiggleCtrl::LoadDrawing(LPCTSTR sFileName)
2: {

3 // TODO: Add your dispatch handler code here

4 try

5: {

6: // Create a CFile object

7: CFile 1File(sFileName, CFile::modeRead);

8 // Create a CArchive object to load the file
9 CArchive lArchive(&lFile, CArchive::load);

0 // Load the file

Building Your Own Widgets—Creating ActiveX Controls 489 |

11: m_maDrawing.Serialize (1lArchive);
12: // Make sure that the loaded drawing won't be overwritten
13: m_bGenNewDrawing = FALSE;

14: // Draw the loaded drawing

15: Invalidate();

16: }

17: catch (CFileException err)

18: {

19: return FALSE;

20: }

21: return TRUE;

22: }

Adding Events

The final part of building your control is adding the events that your control will trigger
in the container application. When using your control, the user will be able to add code
to be triggered on these events. Adding these events to your control is done through the
ActiveX Events tab of the Class Wizard. If you want to add a stock event to be triggered
by your control, then you just click the Add Event button and select a stock event from
the drop-down list of stock events. If you need to add a custom event to your control,
then in the Add Event dialog, instead of selecting a stock event, you enter the name of
your custom event. At the bottom of the Add Event dialog is an area for adding parame-
ters that you can pass from your control to the container application with the event.

For the sample control, you'll add one event, a custom event to let the application know
that the drawing file specified has been loaded. To add this event, open the Class Wizard
and select the ActiveX Events tab, as shown in Figure 19.8. Click the Add Event button
to add the event. Enter the name for your custom event, FileLoaded. You'll notice that
the Add Event dialog automatically builds an internal name for the event, in this case,
FireFilelLoaded, as shown in Figure 19.9. Thisinternal name is the name for the func-
tion that you need to call in your code when you want to trigger this event. Click the OK
button to add this event. To add a stock event, select the desired stock event from the
drop-down list of stock events, and click the OK button to add this second event.

Now that you' ve added your event to your control, you need to make the necessary
changes to the code to trigger this event at the appropriate places. You'll trigger your
event at the end of your Loadbrawing function, assuming that you are able to load the
drawing correctly. Add this additional functionality to the Loadbrawing function, as
shown in line 17 of Listing 19.12.

| 490 Day 19

FicUre 19.8. MFC ClassWizard HE
X Message Maps | MemberVarisbles | Automation ActiveX Events | ClassInfo |
The ActiveX Events tab |
Project Class name: dd Class..,
of the Class Wizard. Eauiack [CSaiaglu =T psdbven
D\, \SquiggletSquiggleCtLh, DA, ASquiggleCtl cpp S
External name: Delet

Select a class that implements an Activeid
Control and ciick Add Event to add support
for control events.

‘You can use Add Event to add both stock
and custom events.

Implementation:

Cancel

FIGURE 19.9. Add Event
Esternal name: oK

The Add Event dialog. FioLoaded - ———

Intemal name

FireFileLoaded

Implementation
& Stock & Gustom,

Parameter list:

Name Type

LisTING 19.12. THE MODIFIED CSquiggleCtrl LoadDrawing FUNCTION.

1: BOOL CSquiggleCtrl::LoadDrawing(LPCTSTR sFileName)

2: {

3 // TODO: Add your dispatch handler code here

4 try

5: {

6: // Create a CFile object

7 CFile 1File(sFileName, CFile::modeRead);

8: // Create a CArchive object to load the file
9: CArchive 1lArchive(&lFile, CArchive::load);
10: // Load the file

11: m_maDrawing.Serialize(1lArchive);

12: // Make sure that the loaded drawing won't be overwritten
13: m_bGenNewDrawing = FALSE;

14: // Draw the loaded drawing

15: Invalidate();

16: // Fire the FilelLoaded event

17: FireFilelLoaded();

18: }

19: catch (CFileException err)

Building Your Own Widgets—Creating ActiveX Controls 491 |

20: {

21: return FALSE;
22: }

23: return TRUE;

24: }

Testing the Control

Now you are ready to compile and begin testing your control. Before you run to the store
to pick up a copy of Visua Basic, you aready have atool just for testing ActiveX con-
trols. On the Tools menu is one entry labeled ActiveX Control Test Container. Thisisa
utility that is designed specifically for testing ActiveX controls that you have built. Once
you compile your control, run the ActiveX Control Test Container to test your control.

“l] If Visual C++ is unable to register your control, but is able to compile it, you

might need to register your control yourself. You can do this by selecting
Tools | Register Control from the menu. This will register the compiled con-
trol in the Registry database.

When you first start the test container, you see a blank area where your control will
appear. You need to insert your control into this container area by selecting Edit | Insert
New Control. Thiswill open the Insert Control dialog, as shown in Figure 19.10. Select
your control from the list of available controls and click the OK button to add your con-
trol to the container area, as shown in Figure 19.11.

FicuRe 19.10. Insert Control [2]x]
Fieahidealtm] ActiveX. Cantial [32.bi) (4 o
The Insert Control ooy oy e e [o |
RichText Canlial, versian 5.0 Tl
d' aJ Shockwave Flash Object
1al0g. Slider Contiol, versian 5.0

SpinButton

StatusBar Contral, warsion 5.0

TabStip Contil, versian 5.0 = | Nt
Tabular Data Control -
Threed Checkbax Contral =l Requied Categories...

DAMSVSAMYPROJ~145q. Squiggle.ock | lanore requited categories

Now that you have your control loaded into the test container, you can play with it,
resizeit, click it, and check when it generates a new drawing and when it just redraws
the existing drawing. If you trigger any events for your control, you'll see the event that
your control fired in the bottom pane of the test container so that you can watch as each
of the events you added to your control are triggered.

| 492

Day 19

Ficure 19.11.

The squiggle control in
the test container.

.| Untitled - ActiveX Control Test Container
Eile Edit Container Contiol Yiew Options Tools Help

|IDSHE| & BiEE|eE D F 02 [RnMecn]

5 R
&

Ji]

For Help, press F1 [Ulbctive [Windowed |

[NUM | &

With your control selected, if you select Edit | Properties from the menu, you' Il open the
property page that you designed for your control, allowing you to modify the various
properties of the control so that you can see whether they work correctly, as shown in

Figure 19.12.

FiGure 19.12.

The Squiggle Control
Properties page.

Squiggle Control Properties

General | Extended |

Maimum Number of Seuiggles: 5
Masimum Lengh of Squiggles: oo

™ Maintain Current Drawing

]

Cancel | Apgl HER |

Finally, to test the methods that you added to your control, select Control | Invoke
Methods. This opens the Invoke Methods dialog, as shown in Figure 19.13. In here, you
can select from the list of available methods in your control, entering each of the para-
meters required for the methods, and then click the Invoke button to call that method.
You can watch as your methods are called and your control responds.

Building Your Own Widgets—Creating ActiveX Controls 493 |

F'GURE 19 13 Invoke Methods
Method Name: o
The Invoke Methods e |
dialog. Parameters e]
Parameter [Value [Tupe
sFileName VT_BSTR
Parameter Value Parameter Type:
| [viestR = [SetVale I
Return Value:
Exception Description
Exceplion Source,
Exception Help

Today, you learned how you can use the tools and wizards in Visual C++ to build
ActiveX controls with little effort on your part. You learned how you can create the shell
of the control project using the Control Wizard. You also learned how you can use the
Class Wizard to add properties, methods, and events to your control. You saw how you
can design a property page for your control and how you can use the Class Wizard to
attach the controls on this dialog to the properties you defined for your control without
having to add any code. Finally, you learned how you can use the ActiveX Control Test
Container to test your control, triggering all the functionality by using the tools of this
utility.

Q&A

Q How do | changetheicon that appearsin thetoolbox for my control?

A In the Resource View tab of the workspace pane, open the Bitmap folder. You
should find a single bitmap in this folder. Thisimage is displayed in the toolbox
for your control when you add it to a Visual C++ or Visual Basic project. You
should edit this bitmap so that it displays the image that you want to represent your
control.

Why does my control have an About box?

A If you are building ActiveX controls that will be used by other devel opers, whether
you sell the control or give it away, you probably want to include some way of
indicating that you wrote the control, and that you, or your employer, owns the
copyright on the control. This acts as a legal identification on the control so that
whoever obtains your control cannot turn around and sell it as his creation.

O

| 494 Day 19

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the three aspects of a control that are visible to the container application?
Why do you need to design a property page for your control?
What are the four types of properties that a control might have?
What happens to the parameters that are passed to the methods of a control?
What tool can you use to test your controls?

o~ DN

Exercises
1. Add amethod to your control to enable the container application to trigger the gen-
eration of a new squiggle drawing.

2. Add amethod to your control to save a squiggle drawing. Use the
CFile::modeWrite and CArchive: :store flags when creating the cFile and
CArchive objects.

WEEK 3

DAY 20

Internet Applications and
Network Communications

Thanks in part to the explosion in popularity of the Internet, more applications
have the ability to communicate with other applications over networks, includ-
ing the Internet. With Microsoft building networking capabilities into its operat-
ing systems, starting with Windows NT and Windows 95, these capabilities are
becoming commonplace in al sorts of applications.

Some applications perform simple networking tasks such as checking with a
Web site to see whether there are any updates to the program and giving the
user the option of updating her copy of the program. Some word processing
applications will format documents as Web pages, giving the user the option of
loading the pages onto the Web server. You' ve got computer games that allow
the user to play against another person halfway around the world instead of just
competing against the game itself.

Applications can have any number of networking functions, and they all are
built around the Winsock interface. If you know and understand how to pro-
gram using the Winsock interface and the MFC Winsock classes, this entire

| 496 Day 20

realm of application programming is open to you, expanding your programming options
considerably. Today, you will learn

- How applications use the Winsock interface to perform network communications
between two or more computers.

- The difference between a client and a server application and the role each playsin
establishing a communications link.

- How the MFC Winsock classes simplify the process of writing Internet applica-
tions.

- How you can create your own Winsock class, descended from the MFC Winsock
classes, to easily build an event-driven, networking application.

How Do Network Communications Work?

Most applications that communicate over a network, whether it's the Internet or a small
office network, use the same principles and functionality to perform their communica-
tion. One application sits on a computer, waiting for another application to open a com-
munication connection. This application is “listening” for this connection regquest, much
like you listen for the phone to ring if you are expecting someone to call.

Meanwhile, another application, most likely on another computer (but not necessarily),
tries to connect to the first application. This attempt to open a connection is similar to
calling someone on the telephone. You dial the number and hope that the other person is
listening for the phone on the other end. As the person making the call, you have to
know the phone number of the person you are calling. If you don’t know the phone num-
ber, you can look it up using the person’s name. Likewise, the application trying to con-
nect to the first application has to know the network location, or address, of the first
application.

Once the connection is made between the two applications, messages can pass back and
forth between the two applications, much like you can talk to the person on the other end
of the phone. This connection is atwo-way communications channel, with both sides
sending information, as shown in Figure 20.|.

Ficure 20.1.

The basic socket con-
nection process.

Tries to open connection

\

Accepts connection request

A

Messages sent both directions

A
\

Server (Listening for connections)

Internet Applications and Network Communications 497 |

Finally, once one or both sides have finished their sides of the conversation, the connec-
tion is closed, much like you hang up the phone after you have finished talking to the
person you called. Once the connection is closed from either side, the other side can
detect it and close its side, just like you can tell if the person on the other end of the
phone has hung up on you or if you’' ve been disconnected by some other means. This
is a basic explanation of how network communications work between two or more
applications.

Nlllﬂ This is a basic description of how network communications work with the

. TCP/IP network protocol, which is the primary network protocol over the
' Internet. Many other network protocols use a subtle variation on this
description. Other protocols, such as the UDP protocol, are more like radio
broadcasts, where there is no connection between the two applications; one
sends messages, and the other is responsible for making sure that it receives
all of the messages. These protocols are more involved than we have the
luxury to discuss today. If you want to learn more about network protocols
and how they work, many books cover this one topic and look at the various
Internet applications and how they communicate over the connections they
establish.

Sockets, Ports, and Addresses

The basic object used by applications to perform most network communications is called
a socket. Sockets were first developed on UNIX at the University of California at
Berkley. Sockets were designed so that most network communications between applica-
tions could be performed in the same way that these same applications would read and
write files. Sockets have progressed quite a bit since then, but the basics of how they
work are till the same.

During the days of Windows 3.x, before networking was built into the Windows operat-
ing system, you could buy the network protocols required for network communications
from numerous different companies. Each of these companies had a dlightly different
way that an application performed network communications. As a result, any applica-
tions that performed network communications had a list of the different networking soft-
ware that the application would work with. Many application developers were not happy
with this situation. As aresult, all the networking companies, including Microsoft, got
together and devel oped the Winsock (Windows Sockets) API. This provided all applica
tion developers with a consistent API to perform all network communications, regardless
of the networking software used.

| 498

Day 20

When you want to read or write a file, you must use a file object to point to the file.
Although this was hidden from you in most of the Visual C++ applications so far, with
the ActiveX control you created yesterday, you had to work through the steps of creating
the file object for reading and writing. A socket is similar; it is an object used to read and
write messages that travel between applications.

Making a socket connection to another application does require a different set of infor-
mation than opening afile. To open afile, you need to know the file's name and loca-
tion. To open a socket connection, you need to know the computer on which the other
application is running and the port on which it's listening. A port is like a phone exten-
sion, and the computer address is like the phone number. If you call someone at alarge
office building, you may dial the main office number, but then you need to specify the
extension number. Likewise, ports are used to route network communications (see Figure
20.2). As with the phone number, there are means of looking up the port number, if you
don't already know what it is, but this requires your computer to be configured with the
information about which port the connecting application is listening on. If you specify
the wrong computer address or port number, you may get a connection to a different
application; with making the phone call, someone other than the person you called may
answer the phone call. You also may not get an answer at all if there is no application lis-
tening at the other end.

Nﬂ[ﬂ Only one application may be listening on any specific port on a single com-
_ puter. Although numerous applications may listen for connection requests

on a single computer at the same time, each of these applications must lis-
ten on a different port.

Creating a Socket

When you build applications with Visual C++, you can use the MFC Winsock classes to
add network communications capabilities with relative ease. The base class,
CAsyncSocket, provides complete, event-driven socket communications. You can create
your own descendent socket class that captures and responds to each of these events.

H This discussion of socket communications assumes that you check the
Gaution y

AppWizard option for adding support for Windows Sockets. This adds sup-
porting functionality to the application that is not discussed here.

Internet Applications and Network Communications 499 |

FIGURe 20.2.
Ports are used to route
: Networked
qetwork communica- Port100 [——>| o on
tions to the correct
lication.
app catio Port 150 Networked
or Application
The network interface in a
computer uses socket ports 5 Networked
to direct network messages Port 200 Application
to the correct application.
»[Network Interface
\ Ports0 f——| Networked
Application
Networked
Port 4000 Application
Networked
Port 801 > Application

To create a socket that you can use in your application, the first thing you need to do is
declare avariable of CAsyncSocket (Or your descendent class) as a class member for one
of the main application classes:

class CMyDlg : public CDialog

{
private:

CAsyncSocket m_sMySocket;
};

Before you can begin using the socket object, you must call its create method. This
actually creates the socket and prepares it for use. How you call the create method
depends on how you will be using the socket. If you will be using the socket to connect
to another application, as the one placing the call (the client), then you do not need to
pass any parameters to the create method:

if (m_sMySocket.Create())
{

// Continue on

| 500

Day 20

}

else
// Perform error handling here

However, if the socket is going to be listening for another application to connect to it,
waiting for the call (the server), then you need to pass at least the port number on which
the socket should be listening:

if (m_sMySocket.Create(4000))
{

}

else
// Perform error handling here

// Continue on

You can include other parametersin the create method call, such as the type of socket
to create, the events that the socket should respond to, and the address that the socket
should listen on (in case the computer has more than one network card). All these
options require a more thorough understanding of sockets than we'll be able to cover
today.

Making a Connection

Once you create a socket, you are ready to open a connection with it. Three steps go
along with opening a single connection. Two of these steps take place on the server, the
application listing for the connection, and the third step takes place on the client, the one
making the call.

For the client, opening the connection is a simple matter of calling the connect method.
The client has to pass two parameters to the connect method: the computer name, or net-
work address, and the port of the application to connect to. The Connect method could
be used in the following two ways:

if (m_sMySocket.Connect("thatcomputer.com", 4000))
{

}

else
// Perform error handling here

// Continue on

The second form is

if (m_sMySocket.Connect("178.1.25.82", 4000))
{

}

else
// Perform error handling here

// Continue on

Internet Applications and Network Communications 501 |

Once the connection is made, an event istriggered to let your application know that it is
connected or that there were problems and the connection couldn’t be made. (1’1l cover
how these events work in the section “ Socket Events,” later in this chapter.)

For the server, or listening, side of the connection, the application first must tell the
socket to listen for incoming connections by calling the Listen method. The Listen
method takes only a single argument, which you do not need to supply. This parameter
specifies the number of pending connections that can be queued, waiting for the connec-
tion to be completed. By default thisvalueis 5, which is the maximum. The Listen
method can be called as follows:

if (m_sMySocket.Listen())
{

}
else

// Perform error handling here

// Continue on

Whenever another application is trying to connect to the listening application, an event is
triggered to let the application know that the connection request is there. The listening
application must accept the connection request by calling the Accept method. This
method requires the use of a second cAsyncSocket variable, which is connected to the
other application. Once a socket is placed into listen mode, it stays in listen mode.
Whenever connection requests are received, the listening socket creates another socket,
which is connected to the other application. This second socket should not have the
create method called for it because the Accept method creates the socket. You call the
Accept method as follows:

if (m_sMySocket.Accept(m_sMySecondSocket))

// Continue on

}

else
// Perform error handling here

At this point, the connecting application is connected to the second socket on the listen-
ing application.

Sending and Receiving Messages

Sending and receiving message through a socket connection gets slightly involved.
Because you can use sockets to send any kind of data, and they don’'t care what the data
is, the functions to send and receive data expect to be passed a pointer to a generic
buffer. For sending data, this buffer should contain the data to be sent. For receiving
data, this buffer will have the received data copied into it. As long as you are sending

| 502

Day 20

and receiving strings and text, you can use fairly simple conversions to and from
cStrings with these buffers.

To send a message through a socket connection, you use the send method. This method
reguires two parameters and has a third, optional parameter that can be used to control
how the message is sent. The first parameter is a pointer to the buffer that contains the
datato be sent. If your messageisin acstring variable, you can use the LPCTSTR opera-
tor to pass the cstring variable as the buffer. The second parameter is the length of the
buffer. The method returns the amount of data that was sent to the other application. If an
error occurs, the send function returns SOCKET_ERROR. You can use the Send method as
follows:

CString strMyMessage;

int ilLen;

int iAmtSent;

ilLen = strMyMessage.GetLength();
iAmtSent = m_sMySocket.Send(LPCTSTR(strMyMessage), ilLen);
if (iAmtSent == SOCKET_ERROR)

{
// Do some error handling here
}
else
{
// Everything's fine
}

When datais available to be received from the other application, an event is triggered on
the receiving application. This lets your application know that it can receive and process
the message. To get the message, the Receive method must be called. This method

takes the same parameters as the send method with a slight difference. The first parame-
ter is a pointer to a buffer into which the message may be copied. The second parameter
is the size of the buffer. This tells the socket how much data to copy (in case moreis
received than will fit into the buffer). Like the send method, the Receive method will
return the amount that was copied into the buffer. If an error occurs, the Receive method
also returns SOCKET_ERROR. If the message your application is receiving is a text mes-
sage, it can be copied directly into acstring variable. This allows you to use the
Receive method asfollows:

char *pBuf = new char[1025];

int iBufSize = 1024;

int iRcvd;

CString strRecvd;

iRcvd = m_sMySocket.Receive(pBuf, iBufSize);

Internet Applications and Network Communications 503 |

if (iRcvd == SOCKET_ERROR)

¢ // Do some error handling here

}

else

{
pBuf[iRcvd] = NULL;
strRecvd = pBuf;
/] Continue processing the message

}

“l] When receiving text messages, it’s always a good idea to place a NULL in the

buffer position just after the last character received, as in the preceding
example. There may be garbage characters in the buffer that your applica-
tion might interpret as part of the message if you don’t add the NULL to
truncate the string.

Closing the Connection

Once your application has finished all of its communications with the other application,
it can close the connection by calling the close method. The close method doesn’t take
any parameters, and you use it as follows:

m_sMySocket.Close();

N t The Close function is one of the few CAsyncSocket methods that does not
ote : :
return any status code. For all the previous member functions that we have
examined, you can capture the return value to determine if an error has
occurred.

Socket Events

The primary reason that you create your own descendent class of CAsyncSocket is that
you want to capture the events that are triggered when messages are received, connec-
tions are completed, and so on. The CAsyncSocket class has a series of functions that are
called for each of these various events. These functions al use the same definition—the
function name is the only difference—and they are intended to be overridden in descen-
dent classes. All of these functions are declared as protected members of the
CAsyncSocket class and probably should be declared as protected in your descendent
classes. The functions all have a single integer parameter, which is an error code that

| 504

Day 20

should be checked to make sure that no error has occurred. Table 20.1 lists these event
functions and the events they signal.

TaBLE 20.1. CAsyncSocket OVERRIDABLE EVENT-NOTIFICATION FUNCTIONS.

Function Event Description

OnAccept This function is called on a listening socket to signal that a connection request from
another application is waiting to be accepted.

OnClose This function is called on a socket to signal that the application on the other end of the
connection has closed its socket or that the connection has been lost. This should be fol-
lowed by closing the socket that received this notification.

onconnect Thisfunction is called on a socket to signal that the connection with another application
has been completed and that the application can now send and receive messages through
the socket.

onReceive Thisfunctionis called to signal that data has been received through the socket connec-
tion and that the datais ready to be retrieved by calling the Receive function.

onSend This function is called to signal that the socket is ready and available for sending data.

This function is called right after the connection has been completed. Usually, the other
time that this function is called is when your application has passed the send function
more data than can be sent in a single packet. In this case, thisis asignal that all of the
data has been sent, and the application can send the next buffer-full of data.

Detecting Errors

Whenever any of the CAsyncSocket member functions return an error, either FALSE for
most functions or SOCKET_ERROR 0n the Send and Receive functions, you can call the
GetLastError method to get the error code. This function returns only error codes, and
you have to look up the trandation yourself. All the Winsock error codes are defined
with constants, so you can use the constants in your code to determine the error message
to display for the user, if any. You can use the GetLastError function as follows:

int iErrCode;

iErrCode = m_sMySocket.GetLastError();
switch (iErrCode)

{

case WASNOTINITIALISED:

Internet Applications and Network Communications 505 |

Building a Networked Application

For the sample application that you will build today, you'll create a simple dialog appli-
cation that can function as either the client or server in a Winsock connection. This will
allow you to run two copies of the sample application, one for each end of the connec-
tion, on the same computer or to copy the application to another computer so that you
can run the two copies on separate computers and see how you can pass messages across
a network. Once the application has established a connection with another application,
you will be able to enter text messages and send them to the other application. When the
message has been sent, it will be added to a list of messages sent. Each message that is
received will be copied into another list of all messages received. Thiswill allow you to
see the complete list of what is sent and received. It will also allow you to compare what
one copy of the application has sent and what the other has received. (The two lists
should be the same.)

Creating the Application Shell

For today’s sample application, just to keep things simple, you'll create a dialog-style
application. Everything that you are doing in today’s application can be done in an SDI
or MDI application just as easily as with a dialog-style application. By using a dialog-
style application today, we are getting everything that might distract from the basic
socket functionality (such as questions about whether the socket variable belongsin the
document or view class, how much of the application functionality belongs in which of
these two classes, and so on) away from the sample application.

To start today’s sample application, create a new MFC AppWizard project, giving the
project a suitable name, such as Sock. On the first step of the AppWizard, specify that
the application will be a dialog-based application. On the second step of the AppWizard,
specify that the application should include support for Windows Sockets, as in Figure
20.3. You can accept the default settings for the rest of the options in the AppWizard.

Window Layout and Startup Functionality

Once you create your application shell, you can lay out the main dialog for your applica-
tion. On this dialog, you'll need a set of radio buttons to specify whether the application
isrunning as the client or server. You'll also need a couple of edit boxes for the
computer name and port that the server will be listening on. Next, you'll need a com-
mand button to start the application listening on the socket or opening the connection to
the server, and a button to close the connection. You'll also need an edit box for entering
the message to be sent to the other application and a button to send the message. Finally,
you'll need a couple of list boxes into which you can add each of the messages sent and

| 506

Day 20

received. Place all these controls on the dialog, as shown in Figure 20.4, setting all of the
control properties as specified in Table 20.2.

Ficure 20.3.

Including sockets
support.

Ficure 20.4.

The main dialog
layout.

MFC AppWizard - Step 2 of 4
what features would you like to includs?

IV bout box

™ Contest-sensitive Help

v 3D controls
‘What other support would you fike to include?

™ Automation

[V ActiveX Controls
‘Would you like to include WOSA support?
Editing Control: [Record

% Gheck Box

17 windows Sockets
) Radio Batton

Pleass enter a ttle for your dislog

Sock

<gack [Net> | Erish | Concel

*+ sock - Microsoft Visual C++ - [Sock.ic - IDD_SOCK_DIALOG (Dialog)]

=lFile Edt View Inseit Project Buid Layout Tools Window Help

_lB]x

BECEID D Y S e Y

CSockDlg][clsss members)][& CSockDIg B2 iz HJ@ X0 Ll ‘
=1 " [oolinn 60066000 60060006 6066 606 6600 6606 D66 6 666 60D 06D, |
3 Sock F =
e =]
| i Socket Type ServerName: [Edit Ax
JEHEA sever Server Pott. [Edit _Comen | b abl M O
E - X @
Ifessage IEdll Send =
i $ m 3
Sent &3 [&
E =Ha
=il
= i s
: Received : |
BaCL. | R... | (=] Fi. Eu =
B = == |
E| =
A Build { Debug K Find in Files 1) Find in Files2 3| 4[| I »
Ready T 00 [30x200 [FEAD

TABLE 20.2. CONTROL PROPERTY SETTINGS.

Object Property Setting

Group Box ID IDC_STATICTYPE
Caption Socket Type

Radio Button ID IDC_RCLIENT
Caption &Client
Group Checked

Internet Applications and Network Communications

507 |

Object Property Setting

Radio Button ID IDC_RSERVER
Caption &Server

Static Text ID IDC_STATICNAME
Caption Server &Name:

Edit Box ID IDC_ESERVNAME

Static Text ID IDC_STATICPORT
Caption Server &Port:

Edit Box ID IDC_ESERVPORT

Command Button 1D IDC_BCONNECT
Caption c&onnect

Command Button 1D IDC_BCLOSE
Caption C&lose
Disabled checked

Static Text ID IDC_STATICMSG
Caption &Message:
Disabled Checked

Edit Box ID IDC_EMSG
Disabled Checked

Command Button 1D IDC_BSEND
Caption S&end
Disabled checked

Static Text ID IDC_STATIC
Caption Sent:

List Box ID IDC_LSENT
Tab Stop unchecked
Sort Unchecked
Selection None

Static Text ID IDC_STATIC
Caption Received:

List Box ID IDC_LRECVD
Tab Stop unchecked
Sort Unchecked
Selection None

508 Day 20

Once you have the dialog designed, open the Class Wizard to attach variables to the con-
trols on the dialog, as specified in Table 20.3.

TABLE 20.3. CONTROL VARIABLES.

Object Name Category Type
IDC_BCONNECT m_ctlConnect Control CButton
IDC_EMSG m_strMessage Value CString
IDC_ESERVNAME m_strName Value CString
IDC_ESERVPORT m_iPort Value int
IDC_LRECVD m_ctlRecvd Control CListBox
IDC_LSENT m_ctlSent Control CListBox
IDC_RCLIENT m_iType Value int

So that you can reuse the Connect button to place the server application into listen mode,
you'll add a function to the clicked event message for both radio buttons, changing the
text on the command button depending on which of the two is currently selected. To add
this functionality to your application, add a function to the BN_CLICKED event message
for the 1bc_RCLIENT control 1D, naming the function onRType. Add the same function to
the BN_CLICKED event message for the 1bc_RSERVER control ID. Edit this function,
adding the code in Listing 20.1.

LisTinGg 20.1. THe CSockD1g OnRType FUNCTION.

1: void CSockD1lg::0nRType()

2: {
3: // TODO: Add your control notification handler code here
4 // Sync the controls with the variables

5: UpdateData(TRUE);

6: // Which mode are we in?

7: if (m_iType == 0) // Set the appropriate text on the button
8 m_ctlConnect.SetWindowText ("C&onnect");

9 else

0: m_ctlConnect.SetWindowText ("&Listen");

1: }

Now, if you compile and run your application, you should be able to select one and then
the other of these two radio buttons, and the text on the command button should change
to reflect the part the application will play, asin Figure 20.5.

Internet Applications and Network Communications

509 |

Ficure 20.5. # Sock Ed
Changing the button o e

text.

& Server Server Port: Listen [E[ose
fessane: | Send

Sent:

Received:

Inheriting from the CAsyncSocket Class

So that you will be able to capture and respond to the socket events, you'll create your
own descendent class from CAsyncSocket. This class will need its own versions of the
event functions, as well as a means of passing this event to the dialog that the object will
be a member of. So that you can pass each of these events to the dialog-class level,
you'll add a pointer to the parent dialog class as a member variable of your socket class.
You'll use this pointer to call event functions for each of the socket events that are mem-
ber functions of the dialog, after checking to make sure that no errors have occurred (of
course).

To create this class in your application, select Insert| New Class from the menu. In the
New Class diaog, leave the class type with the default value of MFC Class. Enter a
name for your class, such as cMySocket, and select CAsyncSocket from the list of avail-
able base classes. Thisis all that you can specify on the New Class dialog, so click the
OK button to add this new class to your application.

Once you have created the socket class, add a member variable to the classto serve as a
pointer to the parent dialog window. Specify the variable type as cbialog*, the variable
name as m_pwWnd, and the access as private. You also need to add a method to the class to
set the pointer, so add a member function to your new socket class. Specify the function
type as void, the declaration as SetParent (CDialog* pwnd), and the access as public.
Edit this new function, setting the pointer passed as a parameter to the member variable
pointer, asin Listing 20.2.

LisTING 20.2. THE CMySocket SetParent FUNCTION.

: void CMySocket::SetParent(CDialog *pWnd)

1
2:
3: // Set the member pointer
4 m_pWnd = pWnd;

5

| 510

Day 20

The only other thing that you need to do to your socket class is add the event functions,
which you'll use to call similarly named functions on the dialog class. To add a function
for the onAccept event function, add a member function to your socket class. Specify the
function type as void, the function declaration as onAccept (int nErrorcCode), and the
access as protected and check the virtual check box. Edit this function, adding the code
in Listing 20.3.

LisTING 20.3. The CMySocket OnAccept FUNCTION.

1: void CMySocket::0nAccept(int nErrorCode)

2: {

3 // Were there any errors?

4: if (nErrorCode == 0)

5: // No, call the dialog's OnAccept function
6: ((CSockD1lg*)m_pWnd) ->0OnAccept();

7:}

Add similar functions to your socket class for the onConnect, OnClose, OnReceive, and
onSend functions, calling same-named functions in the dialog class, which you'll add
later. After you've added all these functions, you'll need to include the header file for
your application dialog in your socket class, asin line 7 of Listing 20.4.

LisTING 20.4. THE CMySocket INCLUDES.

/1 MySocket.cpp: implementation file
/1l

#include "stdafx.h"
#include "Sock.h"
#include "MySocket.h"
#include "SockDlg.h"

NOoO O~ ON =

Once you've added all the necessary event functions to your socket class, you'll add a
variable of your socket class to the dialog class. For the server functionality, you' Il need
two variables in the dialog class, one to listen for connection requests and the other to be
connected to the other application. Because you will need two socket objects, add two
member variables to the dialog class (CSockD1g). Specify the type of both variables as
your socket class (cMySocket) and the access for both as private. Name one variable
m_sListenSocket, to be used for listening for connection requests, and the other
m_sConnectSocket, to be used for sending messages back and forth.

Internet Applications and Network Communications 511 |

Once you' ve added the socket variables, you'll add the initialization code for all the vari-
ables. As a default, set the application type to client, the server name as loopback, and
the port to 4000. Along with these variables, you'll set the parent dialog pointers in your
two socket objects so that they point to the dialog class. You can do this by adding the
codein Listing 20.5 to the onInitbialog function in the dialog class.

Nﬂtﬂ The computer name loopback is a special name used in the TCP/IP network
protocol to indicate the computer you are working on. It's an internal com-
puter name that is resolved to the network address 127.0.0.1. This is a com-

puter name and address that is commonly used by applications that need to
connect to other applications running on the same computer.

LisTING 20.5. THE CSockD1g OnInitDialog FUNCTION.

1: BOOL CSockDlg::0OnInitDialog()
2: {
3 CDhialog::0OnInitDialog();
4:
5: // Add "About..." menu item to system menu.
6
26: SetIcon(m_hIcon, FALSE); // Set small icon
27:
28: // TODO: Add extra initialization here
29: // Initialize the control variables
30: m_iType = 0;
31: m_strName = "loopback";
32: m_iPort = 4000;
33: // Update the controls
34: UpdateData(FALSE) ;
35: // Set the socket dialog pointers
36: m_sConnectSocket.SetParent (this);
37: m_sListenSocket.SetParent(this);
38:
39: return TRUE; // return TRUE wunless you set the focus to a
Ocontrol
40: }

Connecting the Application

When the user clicks the Connect button, you'll disable al the top controls on the dialog.
At this point, you don’t want the user to think that she is able to change the settings of

| 512

Day 20

the computer that she’s connecting to or change how the application is listening. You'll
call the create function on the appropriate socket variable, depending on whether the
application is running as the client or server. Finaly, you'll call either the Connect or
Listen function to initiate the application’s side of the connection. To add this function-
ality to your application, open the Class Wizard and add a function to the BN_CLICKED
event message for the Connect button (ID 1bc_BCONNECT). Edit this function, adding the
codein Listing 20.6.

LisTiNnG 20.6. The CSockD1g OnBconnect FUNCTION.

1: void CSockDlg::0nBconnect()

2: {

3 // TODO: Add your control notification handler code here
4: // Sync the variables with the controls

5: UpdateData(TRUE) ;

6: // Disable the connection and type controls

7 GetDlgItem(IDC_BCONNECT) ->EnableWindow(FALSE) ;

8 GetDlgItem(IDC_ESERVNAME) ->EnableWindow(FALSE) ;

©

GetDlgItem(IDC_ESERVPORT) ->EnableWindow(FALSE) ;
10: GetDlgItem(IDC_STATICNAME) ->EnableWindow(FALSE) ;
11: GetDlgItem(IDC_STATICPORT) ->EnableWindow(FALSE) ;
12: GetDlgItem(IDC_RCLIENT) ->EnableWindow(FALSE);
13: GetDlgItem(IDC_RSERVER) ->EnableWindow(FALSE) ;
14: GetDlgItem(IDC_STATICTYPE) ->EnableWindow(FALSE) ;
15: // Are we running as client or server?
16: if (m_iType == 0)
17: {
18: // Client, create a default socket
19: m_sConnectSocket.Create();
20: // Open the connection to the server
21: m_sConnectSocket.Connect (m_strName, m_iPort);
22: }
23: else
24: {
25: // Server, create a socket bound to the port specified
26: m_sListenSocket.Create(m_iPort);
27: // Listen for connection requests
28: m_sListenSocket.Listen();
29: }
30: }

Next, to complete the connection, you' |l add the socket event function to the dialog class
for the onAccept and OnConnect event functions. These are the functions that your
socket classis caling. They don't require any parameters, and they don’'t need to return
any result code. For the onAccept function, which is called for the listening socket when

Internet Applications and Network Communications 513 |

another application is trying to connect to it, you'll call the socket object’s Accept func-
tion, passing in the connection socket variable. Once you’ ve accepted the connection,
you can enable the prompt and edit box for entering and sending messages to the other
application.

To add this function to your application, add a member function to the dialog class
(csockb1g). Specify the function type as void, the declaration as onAccept, and the
access as public. Edit the function, adding the code in Listing 20.7.

LisTiNnGg 20.7. THe CSockD1g OnAccept FUNCTION.

1: void CSockDlg: :0nAccept()

2: {

3: // Accept the connection request

4: m_sListenSocket.Accept(m_sConnectSocket);

5: // Enable the text and message controls

6: GetDlgItem(IDC_EMSG) ->EnableWindow(TRUE) ;

7 GetDlgItem(IDC_BSEND) ->EnableWindow(TRUE) ;

8 GetDlgItem(IDC_STATICMSG) ->EnableWindow(TRUE) ;
9

L)

For the client side, there’s nothing to do once the connection has been completed except
enable the controls for entering and sending messages. You'll also enable the Close but-
ton so that the connection can be closed from the client side (but not the server side). To
add this functionality to your application, add another member function to the dialog
class (csockb1g). Specify the function type as void, the function declaration as
onConnect, and the access as public. Edit the function, adding the code in Listing 20.8.

LisTING 20.8. THE CSockD1g OnConnect FUNCTION.

1: void CSockDlg::0nConnect()

2: {

3: // Enable the text and message controls

4: GetDlgItem(IDC_EMSG) ->EnableWindow(TRUE) ;

5: GetDlgItem(IDC_BSEND) ->EnableWindow(TRUE) ;

6: GetDlgItem(IDC_STATICMSG) ->EnableWindow(TRUE) ;
7 GetDlgItem(IDC_BCLOSE) ->EnableWindow(TRUE) ;

8

L)

If you could compile and run your application now, you could start two copies, put one

into listen mode, and then connect to it with the other. Unfortunately, you probably can’t
even compile your application right now because your socket classislooking for several
functions in your dialog class that you haven't added yet. Add three member functions to

514 Day 20

the dialog class (CSockD1g). Specify al of them as void functions with public access.
Specify the first function’s declaration as onsend, the second as onReceive, and the third
asonClose. You should now be able to compile your application.

Once you’ ve compiled your application, start two copies of the application, side-by-side.
Specify that one of these two should be the server, and click the Listen button to put it
into listen mode. Leave the other as the client and click the Connect button. You should
see the connection controls disable and the message sending controls enable as the con-
nection is made, asin Figure 20.6.

FiIGURe 20.6. * Sock [x]
) Sacket Type Server Mame: l'b"—
Connecting the two & Dl =
appli cations. D sy GeryerBort: (4000 Connect Close
Message: I Send
Sent:
% Sock [x]
Recaived: Socket Type Serverliarme; lluupbacl.—
€ Client
@ sy Seiver Port (4000 Close
Message: | Send
Sent:
Received:
“l] Be sure that you have the server application listening before you try to con-

nect it to the client application. If you try to connect to it with the client
application before the server is listening for the connection, the connection
will be rejected. Your application will not detect that the connection was
rejected because you haven't added any error handling to detect this event.

“p To run these applications and get them to connect, you’ll need TCP/IP run-
ning on your computer. If you have a network card in your computer, you
may already have TCP/IP running. If you do not have a network card, and

Internet Applications and Network Communications

515 |

you use a modem to connect to the Internet, then you will probably need to
be connected to the Internet when you run and test these applications.
When you connect to the Internet through a modem, your computer usually
starts running TCP/IP once the connection to the Internet is made. If you do
not have a network card in your computer, and you do not have any means
of connecting to the Internet, or any other outside network that would
allow you to run networked applications, you may not be able to run and
test today’s applications on your computer.

Sending and Receiving

Now that you are able to connect the two running applications, you'll need to add func-
tionality to send and receive messages. Once the connection is established between the
two applications, the user can enter text messages in the edit box in the middle of the
dialog window and then click the Send button to send the message to the other applica-
tion. Once the message is sent, it will be added to the list box of sent messages. To pro-
vide this functionality, when the Send button is clicked, your application needs to check
whether there is a message to be sent, get the length of the message, send the message,
and then add the message to the list box. To add this functionality to your application,

use the Class Wizard to add a function to the clicked event of the Send (Ibc_BSEND) but-

ton. Edit this function, adding the code in Listing 20.9.

LisTING 20.9. The CSockD1g OnBsend FUNCTION.

1:
2
3
4:
5:
6
7
8

©

10:
11:
12:
13:
14:
15:
16:

void CSockDlg::0nBsend()

A

// TODO: Add your control notification handler code here
int ilLen;
int iSent;

// Sync the controls with the variables

UpdateData(TRUE);

// Is there a message to be sent?
if (m_strMessage != "")

{

// Get the length of the message

ilLen = m_strMessage.GetLength();

// Send the message

iSent = m_sConnectSocket.Send(LPCTSTR(m_strMessage), ilLen);
// Were we able to send it?

continues

516 Day 20
LISTING 20.9. CONTINUED
17: if (iSent == SOCKET_ERROR)
18: {
19: }
20: else
21: {
22: // Add the message to the 1list box.
23: m_ctlSent.AddString(m_strMessage);
24: // Sync the variables with the controls
25: UpdateData(FALSE) ;
26: }
27: }
28: }

When the onReceive event function is triggered, indicating that a message has arrived,
you'll retrieve the message from the socket using the Receive function. Once you've
retrieved the message, you'll convert it into acstring and add it to the message-
received list box. You can add this functionality by editing the onReceive function of the
dialog class, adding the code in Listing 20.10.

LisTING 20.10. THE CSockD1g OnReceive FUNCTION.

1: void CSockDlg::0OnReceive()

2: {

3 char *pBuf = new char[1025];
4: int iBufSize = 1024;

5: int iRcvd;

6: CString strRecvd;

7

8

// Receive the message

©

iRcvd = m_sConnectSocket.Receive(pBuf, iBufSize);
10: // Did we receive anything?
11: if (iRcvd == SOCKET_ERROR)
12: {
13: }
14: else
15: {
16: // Truncate the end of the message
17: pBuf[iRcvd] = NULL;
18: // Copy the message to a CString
19: strRecvd = pBuf;
20: // Add the message to the received list box
21: m_ctlRecvd.AddString(strRecvd);
22: // Sync the variables with the controls
23: UpdateData(FALSE) ;
24: }

25: }

Internet Applications and Network Communications

517 |

At this point, you should be able to compile and run two copies of your application, con-
necting them as you did earlier. Once you' ve got the connection established, you can
enter a message in one application and send it to the other application, as shown in

Figure 20.7.
Ficure 20.7. * Sack
Sending messages P
between the applica- € S
tions. e

Sent

Received

Serverllame: [lsopback

ServerEort: (4000 [Egnimest Close

|This is a message from the client

Sgnd

This is a message fiom the client

This is a message fiom the server

Ending the Connection

To close the connection between these two applications, the client application user can
click the Close button to end the connection. The server application will then receive the
onClose socket event. The same thing needs to happen in both cases. The connected
socket needs to be closed, and the message sending controls need to be disabled. On the
client, the connection controls can be enabled because the client could change some of
this information and open a connection to another server application. Meanwhile, the
server application continues to listen on the port that it was configured to listen to. To
add all this functionality to your application, edit the onclose function, adding the code

in Listing 20.11.

LisTiNnG 20.11. THE CSockD1g OnClose FUNCTION.

Sack
Sucket Tupe
€ Gt
& Server

Message

Sent

Received

Serverllame: [lsopback

Server Port: [4000 Listen Clse

|This is a message from the server

Send

This is a message fiom the server

This is a message fiom the client

1: void CSockDlg::0nClose()

2: {

continues

518 Day 20

LisTING 20.11. CONTINUED

3: // Close the connected socket

4: m_sConnectSocket.Close();

5: // Disable the message sending controls

6: GetDlgItem(IDC_EMSG) ->EnableWindow(FALSE) ;

7: GetDlgItem(IDC_BSEND) ->EnableWindow(FALSE) ;

8: GetDlgItem(IDC_STATICMSG) ->EnableWindow(FALSE) ;

9: GetDlgItem(IDC_BCLOSE) ->EnableWindow(FALSE) ;

10: // Are we running in Client mode?

11: if (m_iType == 0)

12:

13: // Yes, so enable the connection configuration controls
14: GetDlgItem(IDC_BCONNECT) ->EnableWindow(TRUE) ;
15: GetDlgItem(IDC_ESERVNAME) ->EnableWindow(TRUE) ;
16: GetDlgItem(IDC_ESERVPORT) ->EnableWindow(TRUE) ;
17: GetDlgItem(IDC_STATICNAME) ->EnableWindow(TRUE) ;
18: GetDlgItem(IDC_STATICPORT) ->EnableWindow(TRUE) ;
19: GetDlgItem(IDC_RCLIENT) ->EnableWindow(TRUE);
20: GetDlgItem(IDC_RSERVER) ->EnableWindow(TRUE);
21: GetDlgItem(IDC_STATICTYPE) ->EnableWindow(TRUE);
22: }

23: }

Finally, for the Close button, call the onclose function. To add this functionality to your
application, use the Class Wizard to add a function to the clicked event for the Close but-
ton (1pc_BCLOSE). Edit the function to call the onclose function, asin Listing 20.12.

LisTiNG 20.12. THE CSockD1g OnBclose FUNCTION.

1: void CSockDlg::0nBclose()

2: {

3 // TODO: Add your control notification handler code here
4: // Call the OnClose function

5: OnClose();

6: }

If you compile and run your application, you can connect the client application to the
server, send some messages back and forth, and then disconnect the client by clicking the
Close button. You'll see the message-sending controls disable themselves in both appli-
cations, as in Figure 20.8. You can reconnect the client to the server by clicking the
Connect button again and then pass some more messages between the two, as if they had
never been connected in the first place. If you start athird copy of the application,

Internet Applications and Network Communications

519 |

change its port number, designate it as a server, and put it into listening mode, you can
take your client back and forth between the two servers, connecting to one, closing the
connection, changing the port number, and then connecting to the other.

-]
Ficure 20.8. Suck
. . Socket Type Server Name: I—mpmk
Closing the connection & Tiert
i € Server ™" _Comest |
between the applica- :
tions. Message: [T T a message fomthe clert Send
Sent This is a message fiom the client
Received: |This is a message fiom the server i I\nnphac\-—
ort: 4000 Listern Close
E from the server Send
Sent This is a message fiom the server
Received: |This is @ message fiom the client

Today, you learned how you can enable your applications to communicate with others
across a network or across the Internet by using the MFC Winsock classes. You took a
good look at the CAsyncSocket class and learned how you could create your own
descendent class from it that would provide your applications with event-driven network
communications. You learned how to create a server application that can listen for and
accept connections from other applications. You also learned how to build a client appli-
cation that can connect to a server. You learned how to send and receive messages over a
socket connection between two applications. Finally, you learned how to close the con-
nection and how to detect that the connection has been closed.

Q&A

Q How do Internet applications work?

A Most Internet applications use the same functionality that you created today. The
primary difference is that the applications have a script of messages that are passed
back and forth. The messages consist of a command and the data that needs to

| 520

Day 20

accompany that command. The server reads the command and processes the data
appropriately, sending back a status code to let the client know the success or fail-
ure of the command. If you want to learn more about how Internet applications do
this, several books cover this subject areain detail.

Q How does a server application handle a large number of simultaneous connec-
tions from clients?

A With afull-strength server, the connection sockets are not declared as class vari-
ables. The server instead uses some sort of dynamic allocation of sockets, in an
array or link-list, to create sockets for the clients as the connection requests come
in. Another approach often taken by serversisto spin off a separate thread for each
connection request. This alows the application to have a single socket connection
per thread, and keeping track of the sockets is much easier. In any case, server
applications don’t normally have a single connection socket variable.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the two things that a client application must know to be able to connect
to a server application?

2. What cAsyncSocket function is used to enable a server application to detect con-
nection efforts by client applications?

3. What cAsyncSocket member function is called to signal that data has arrived
through a socket connection?

4. What function is called to signal that a connection has been established?

5. What function do you use to send a message through a socket connection to the
application on the other end?

Exercise

The server application that you wrote can handle only a single connection at atime. If a
second application tries to open a connection to it while it’s got an existing connection to
an application, the server application will crash. The server tries to accept the second
connection into the socket that is already connected to the first client application. Add a
third socket object to the application that will be used to reject additional client connec-
tions until the first client closes the connection.

WEEK 3

DAY 21

Adding Web Browsing
Functionality to Your
Applications

When Microsoft made the decision a few years ago to make all its applications
Internet-enabled, it wasn't just talking about making Word read and write
HTML pages. It wanted to make the Internet an integrated part of every appli-
cation, in some way or another. Well, when it comes to development tools,
making the editor double as an email client isn't really a practical integration.
However, making it easy for the users of development tools to build Internet-
enabled applicationsis a very practical feature. And thisis exactly what
Microsoft did.

One of the capabilities that Microsoft made available to its application develop-
ment tools is using Internet Explorer as an integrated part of any application.
This means that you can include Internet Explorer, and al its associated com-
ponents, in your own applications. The possibilities extend far beyond

| 522

Day 21

providing your users Web browsing capability; your applications can also house, and
interact with, Java applets. You can provide your users with not one, but two macro lan-
guages, VBScript and JScript (Microsoft’s version of JavaScript).

Today, you will learn
- How the Internet Explorer ActiveX Object Model enables you to integrate all the
components into your applications.

- How the cHtmlview view class encapsulates most of the Internet Explorer func-
tionality in a ready-made class.

- How to build a simple Web browser using the cHtm1view class and Internet
Explorer.

The Internet Explorer ActiveX Model

When Microsoft came up with the idea of integrating ActiveX with its Web browser,
Internet Explorer, it realized that it would need to reengineer Internet Explorer to support
the use of ActiveX controls. Well, the developers looked at what they would need to do,
and what was possible, and decided to make Internet Explorer alot more than just a Web
browser.

The first thing that Microsoft did was separate the Web browser from the ActiveX
objects that perform all the work. As aresult, it ended up with the Internet Explorer
application, which islittle more than an ActiveX document container, and the Internet
Explorer HTML viewer control, which ran as an ActiveX document server inside the
application. This meant that the Internet Explorer application could host more than just
Web pages; it could also be used to host Word documents, Excel spreadsheets,
PowerPoint presentations, and any other ActiveX document that had an ActiveX docu-
ment server installed on the same computer, as shown in Figure 21.1.

Within the HTML viewer component, Microsoft added the capability to host other con-
trols, including scripting engines and ActiveX controls, as shown in Figure 21.2. This
gave Microsoft the flexibility to add more scripting languages to Internet Explorer as
they were requested and created. This also enabled Internet Explorer to host any ActiveX
controls that devel opers might want to create.

In designing Internet Explorer this way, Microsoft not only gave itself alot of flexibility
for future expansion of the functionality supported by Internet Explorer, but it also made
the entire workings of Internet Explorer available to any developer that wants to take
advantage of it and integrate Internet Explorer into his or her applications.

Adding Web Browsing Functionality to Your Applications 523 |

Ficure 21.1.

The Internet Explorer
ActiveX document

model.
ActiveX Documents
Server Interfaces
o c HTML Viewer
- | T
Other ActiveX
Documents Server
Frame Oo— (Word)
O Other ActiveX
Web Browser —O / Documents Server|
Object _O OoO— (Excel)
ActiveX Documents
Container Interfaces
FIGURE 21.2. Activex ActiveX Control
Scripting Host ICon'Ifalner
nterfaces
The Internet Explorer Interfaces
HTML viewer ActiveX o HTML Viewer O
- o— —o0
object model.
ActiveX
Control
ActiveX
ActiveX Scripting F——Q Cgrll\tlsjls
Engine —-0 Interfaces
ActiveX
Scripting
Engine Oo— ActiveX
Interfaces oO— Control

The CHtmlView Class

To make it easy to incorporate the Internet Explorer HTML viewer into Visual C++
applications, Microsoft wrapped it in the CHtmlview class. This class can be used as the
base class for the view class in your Single Document Interface (SDI) or Multiple
Document Interface (MDI) applications. You can easily create applications that have
built-in Web browsing capabilities.

Navigating the Web

Several functions available in the cHtm1view class cover navigating the Web. There are
functions for returning the browser to the starting page of the user or for taking the user

| 524

Day 21

to an Internet search page. There are also functions for taking the user to the previous or
next page or even to a remote Web page. All these functions are members of the
CHtm1View class and thus are member functions of your application view class (when
using the cHtm1view class as the base class for your view class).

The navigation functions for the cHtm1view class are listed in Table 21.1.

TABLE 21.1. CHtm1View NAVIGATION FUNCTIONS.

Function Definition Description

GoBack () Takes the user to the previous Web page.

GoForward () Takes the user to the next Web page. (This assumes that the user has
backed up from at least one Web page.)

GoHome () Takes the user to the start page for Internet Explorer.

GoSearch() Takes the user to an Internet search page.

Navigate (LPCTSTR URL) Takes the user to the Web page specified in the URL variable.

The first four functions do not take any arguments and perform the exact same function
as their toolbar equivalents in Internet Explorer. The last function does take arguments;
the only required argument is the URL of the Web page to display.

Controlling the Browser

Along with the functions for navigating around the Web, you use some functions for
controlling the browser. Two of these functions are Refresh (), which makes the HTML
viewer control reload the current Web page, and Stop (), which halts a download in
progress. As with most of the navigation functions, these functions do not take any argu-
ments and work just like their equivalent toolbar buttons in Internet Explorer.

Getting the Browser Status

Another category of functions that are available in the CHtm1view class is informational
in nature. You can use these functions to get information about the current state of the
browser. For instance, if you want to get the current Web page in the browser, you can
call GetLocationURL (), which returns acstring containing the URL. If you want to
determine if the browser is busy with a download, you can call GetBusy (), which returns
a boolean value specifying whether the browser is busy.

Many more functions are available in the cHtm1view class, and some of them only work
on Internet Explorer itself, not on the browser control.

Adding Web Browsing Functionality to Your Applications 525 |

Building a Web-Browsing Application

For an example of how you can integrate the Internet Explorer Web browser component
into your own applications, you will build a ssmple Web browser application. You will
create an SDI application using the cHtm1view class as the base for your own view class.
You'll add a menu with functions for the back and forward navigation options. You'll
also add adialog for getting from the user a URL that you will use to navigate the
browser to the specified Web page.

Creating the Application Shell

To create a Web browser application, you can create a standard SDI or MDI application
shell. The only other thing that you need to ensure is that Internet Explorer isinstaled on
the computer where your application will run. For your development computer, thisis
not a problem because the Visual C++ installation probably required you to install the
latest version of Internet Explorer. On any computers where you run your application,
however, you might need to make sure that Internet Explorer isinstalled or install it
yourself.

To create the shell of the application that you will build today, start a new project using
the MFC AppWizard to create the application shell. Give the project a suitable name,
such as webBrowse, and click the OK button to start the AppWizard.

In the AppWizard, you can just as easily create an MDI Web browsing application as you
can create an SDI application. For the purposes of the sample application that you are
building today, go ahead and specify that the application is a Single document (SDI)
application. You can accept the default settings for the rest of the AppWizard; for this
example, however, choose the Internet Explorer ReBars for the toolbar appearance on the
fourth AppWizard step.

Finally, on the sixth step, specify the cHtm1view class as the base class for your view
class. This causes your application to be created using the Internet Explorer Web browser
control as the main application view.

Once you finish generating the shell for your application, if you compile and run it while
connected to the Internet, you'll find that you already have a working Web browser, as
shown in Figure 21.3. However, you do not have the ability to specify where your
browser will take you, other than clicking links in the Web pages displayed.

526 Day 21

FIGURE 21.3. Lo BIE]
File Edit View Help
The initial Web brows- [OE | FesS?

| T0D0: layout disog bar

ing application.

wcnosorr | probucts | seancw | sueeomt | swor | wemeus |

Microsoft: B

o Norton
Headlines AntiVirus
Start Page built with
Microsoft Visual C++ Developers Wl‘dcﬂ‘
::;nd“lo”lnl'w 4 '" Conference —
- DA niatuue Boston Marriott Copley Place
esonrces April 15-17, 1998 Headlines
Developer Programs Current News
Feedback
Frea Dommionts A_amn Contorer, Don Box, Paul Gross, TG AEnen
Owners' Area . Richard Hale Shaw, Mary Kirtland, Jeff | New festures and
P Prosise, Matt Pietrek, and many more: | additions on this sit,
urchase 3 5 ; -
Tnin 2 wvaritahla “wha's Wha? of vicnal
4 | ;IJ
NUM

Adding Navigation Functionality

Now that you've got a working Web browser, it would be nice if you could control
where it takes you. What you need to add is an edit control where the user can enter a
URL. Looking at the toolbar of the running application, you notice there's a place to put
this control.

Specifying a URL

You probably noticed when you ran your application that the second toolbar had some
static text telling you to lay out the dialog bar. The dialog bar is different from what you
have worked with before. It is atoolbar with dialog controls on it. You even design the
bar in the dialog layout designer. When you look for this dialog bar in the resource tab,
you won't find it in the toolbar folder; it's in the dialogs folder.

If you open the dialogs folder and double-click the IDR_MAINFRAME dialog to openitin
the dialog designer, you'll see that it’s the second toolbar in your application. You can
place edit boxes, buttons, combo boxes, and check boxes on this toolbar. You can place
any control that you can use on a dialog window on this tool bar.

For your Web browser, modify the static text control already on the dialog bar and add
an edit box, as shown in Figure 21.4. Specify an ID for the edit box; for this example,
use the ID IDC_EADDRESS.

Before you open the Class Wizard to begin adding variables and event functions to the
dialog bar, be aware that the dialog bar will automatically send its events to the main
frame class in your application. When you open the Class Wizard, it assumes that you
need to associate the dialog bar with a class and prompts you to create a new class. This
association is not necessary because you can map all its events through the frame and
from there feed them to the view or document classes.

Adding Web Browsing Functionality to Your Applications

527 |

FIGURE 21.4. ‘Web Browse - Microsoft Visual C++ - [Web Browse.ic - IDR_MAINFRAME [Dialog)]
File Edt View Inset Project Buld Lapout Took Window Help _l& %]
The dialog bar layout. B eE@| s =8 o o | B[ER | caacwnd 1|
CaboutDlg = (21 class members) |=l[& CAboutDIg B2 e H o Clj
i | Ty P Y P Y VT Y PP P Y P P VY YV VP Py P P P v)
523 Web Browse o =
([Accelerator |_ b Addess: [Edt .
(=43 Dialog B n -
=) 10D_sBOUTBOX Cont. B
=|[IDR_MAINFRAME] I
3
(1 Menu Az abl
(1 String Table: M a
(1 Toolbar
(2 Version K@
@ E
B33 Class., | 2 Reso... [[] Filevi. 4 s m =]
o &
o e 2
= H
ab B
=
e B
[T\ Build /Debug Findin Files1) Findin Files2z 3| 4| | I »
B EEEEE
Ready [+ oo [t 330x16 [READ

For this example, you don’'t even need to use the Class Wizard to add any event handlers
to the dialog bar. You need to trigger an action when the user finishes entering a URL
into the edit box. The closest event available to you through the Class Wizard is the
EN_CHANGED event, which will trigger for each letter the user types. What you need is an
event that will trigger when the user presses the Enter key. Fortunately, when the user
types in the edit box on the dialog bar and presses the Enter key, the 1Dok command ID
is sent to the frame class. What you can do is add a command handler in the message
map to call afunction on the 100k command.

In your command handler, you need to get the window text from the edit box on the dia-
log bar. You can pass this string to the Navigate function in the view class, making the
browser go to the page specified by the user.

To add this functionality to your application, add a new member function to the
cMainFrame class. Specify the function type as void, the function declaration as
onNewAddress, and the access as public. Edit the new function, adding the code in
Listing 21.1.

LisTING 21.1. THE CMainFrame OnNewAddress FUNCTION.

1: void CMainFrame: :0nNewAddress()
2: {

3: CString sAddress;

4:

5 // Get the new URL

continues

528 Day 21

LISTING 21.1. CONTINUED

m_wndDlgBar.GetDlgItem(IDC_EADDRESS) ->GetWindowText (sAddress);
// Navigate to the new URL
((CWebBrowseView*)GetActiveView())->Navigate(sAddress);

© o0o~NO®

In this function, line 6 got the text in the edit box using the GetwindowText function,
placing the text into the m_sAddress variable. The dialog bar was declared in the
CMainFrame class asthe m_wndDlgBar variable, so you were able to use the GetDlgItem
function on the dialog bar variable to get a pointer to the edit box.

In line 8, you cast the return pointer from the GetActiveVview function as a pointer to the
CwebBrowseView class. This alowed you to call the Navigate function on the view class,
passing it the URL that was entered into the edit box.

Now that you are able to take the URL that the user entered and tell the browser compo-
nent to go to that Web page, how do you trigger this function? You have to add the
message-map entry by hand because this is one that the Class Wizard isn’t able to add. In
the message map, after the closing marker of the AFX_MSG_MAP (the section maintained

by the Class Wizard), add the ON_COMMAND macro, specifying the 1bok command and
your new function as the handler to be called, asin Listing 21.2. You can aso add this
entry before the Class Wizard section as long asit’s on either side and not inside the
section maintained by the Class Wizard.

LisTING 21.2. THE CMainFrame MESSAGE MAP.

1: BEGIN_MESSAGE_MAP (CMainFrame, CFrameWnd)

2: /1 {{AFX_MSG_MAP (CMainFrame)

3: // NOTE - the ClassWizard will add and remove mapping macros
Ohere.

4: // DO NOT EDIT what you see in these blocks of generated
Ocode !

5 ON_WM_CREATE ()

6: [/} }YAFX_MSG_MAP

7 ON_COMMAND (IDOK, OnNewAddress)

8: END_MESSAGE_MAP ()

If you compile and run your application, you can enter a URL into the edit box on the
toolbar and press the Enter key, and your application should browse to the Web page you
specified, asin Figure 21.5.

Adding Web Browsing Functionality to Your Applications 529 |

FIGURE 21.5. > Web Browse T
) = File Edit “iew Help

Browsing to a specified IR

URL. Address: Ihtlpwawhutwuedcum.‘fmntduun‘sp hes/meta/ne_splash himi?sp plash

HOTWIRED WIRED NEW HOTBOT WIRED MA| LIVEWIRED

sucK.co
ey Synnpse Memb:r Gentral W:b 1u1 RGB Gallery

Whnwouldywpay H 0 T @ I e E D
for high powered
02 workstation
visualization? - ng the Web since 1QB;Ap”rgs
@ Get HotWWired dalivered -
by email or PointCast (Cst
Wired for Speed

FireWire Is superfast digital advertisement

{Select One) racevile
cable for the average Joe -
Ar. but when will he get to use We are, and we're
Bl l/] it? > ready to help you. -
[stop] 2l L'J

Done [[NUM G

Displaying the Current URL

When surfing the Web, you often follow links on Web pages that take you to other Web
sites. When you do this, you wouldn’t know what Web site you accessed if your browser
didn’t place the URL into the address box, indicating the site where you are and provid-
ing the opportunity to copy or modify the URL to find another page on the same site.

Getting the current URL from the browser is a simple matter of calling the
GetLocationURL function and passing the result to the dialog bar. The problem is when
to get the URL. It turns out that some event functions in the CHtm1view class can be
overridden in your class. These functions will be triggered on various events that are
triggered by the browser control. There are event functions for starting the navigation,
beginning a download, monitoring a download's progress, and, most important for our
needs, indicating a download has finished. None of these event handler functions can be
added to your view class through the Class Wizard. You have to add them all.

To add the download-complete event handler to your application, add a new member
function to the view class of your application. Specify the function type as void, the
function declaration as onDocumentComplete (LPCTSTR 1pszUrl), and the access as pub-
lic. Edit the function, adding the code in Listing 21.3.

LisTING 21.3. THE CWebBrowseView OnDocumentComplete FUNCTION.

1: void CWebBrowseView: :0OnDocumentComplete (LPCTSTR lpszUrl)
2: {

3: // Pass the new URL to the address bar

4: ((CMainFrame*)GetParentFrame())->SetAddress(lpszUrl);
5: }

| 530

Day 21

You'll notice in this function that you didn’t need to call the GetLocationURL function
after all. The URL that is downloaded is passed as an argument to this function. This
allows you to pass the URL along to the frame, where you'll add another function to
populate the edit box on the dialog bar with the URL.

To add the function to populate the dialog bar with the new URL, add a member function
to the main frame class, cMainFrame. Specify the function type as void, the function dec-
laration as SetAddress (LPCTSTR 1pszURL), and the access as public. Edit the function,
adding the code in Listing 21.4.

LisTING 21.4. THE CMainFrame SetAddress FUNCTION.

1: void CMainFrame: :SetAddress(LPCTSTR lpszURL)

2:

3: // Set the new URL in the address edit control

4: m_wndDlgBar.GetD1lgItem(IDC_EADDRESS) ->SetWindowText(1lpszURL);
5: }

In this function, you took the opposite path from the one you used to get the text from
the edit box. You used the SetWindowText to change the text in the edit box to the URL
that you are passing in. When you run your application, you should be able to see the
URL address on the dialog bar change to reflect the Web page that you are viewing.

Back and Forth

Now that you can enter a URL into the dialog bar and have your application go to that
Web site, and you can see the address of any Web sites that you view, it'd be nice if you
could back up from where you might have gone. Thisis a simple matter of calling the
GoBack and GoForward functions on the view class in your application. You can call
these functions from menu entries, which also alows you to attach toolbar buttons to
perform the same calls.

To add this functionality, open the main menu in the Menu Designer. You can delete the
Edit menu from the bar, and all of the entries below it, because they are of no use in the
application that you are building today. Grab the blank menu entry on the bar, and drag it
to the left of the Help menu. Open the properties dialog for this menu entry and give it a
caption of &Go. Thisis the menu where all navigation functions will be located.

To provide the back-and-forth functionality, you need to add two menu entries, one for
the GoBack function and one for the GoForward function. Specify the properties for these
two menu entries as shown in Table 21.2.

Adding Web Browsing Functionality to Your Applications 531 |

TABLE 21.2. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry 1D IDM_GO_BACK

Caption &Back\tCtrl + B

Prompt Back to the previous page\nBack
Menu Entry 1D IDM_GO_NEXT

Caption &Next\tCtrl + N

Prompt Go forward to the next page\nNext

Once you add the menu entries, you can use the Class Wizard to add functions to the
view class on both of these menu events. For the 1DM_Go_BACK menu ID, add an event
function on the cOMMAND event message. Edit the function, adding the code in Listing
215,

LisTING 21.5. THE CWebBrowseView OnGoBack FUNCTION.

1: void CWebBrowseView: :0nGoBack()

2: {

3 // TODO: Add your command handler code here
4:

5 // Go to the previous page

6 GoBack () ;

7:}

Open the Class Wizard again, and add an event-handler function for the IDM GO _NEXT
object ID on the COMMAND event message. Edit this function with the code in Listing 21.6.

LisTING 21.6. THE CWebBrowseView OnGoNext FUNCTION.

1: void CWebBrowseView: :0nGoNext ()

2: {

3 // TODO: Add your command handler code here
4:

5 // Go to the next page

6 GoForward() ;

7.}

Now you can run your application and use the menus to back up to the previous Web
pages from wherever you surfed to and then trace your steps forward again. However,
it's somewhat difficult using the menus, so what you need to do is add an accelerator for
each of these menu entries.

| 532

Day 21

If you open the accelerator table in the resources tree, you see a bunch of accelerators
tied to menu IDs. Each of these accelerators consist of an ID and a key combination. If
you right-click anywhere in the accelerator table, you see the option of adding a new
accelerator to the table. Choosing this option presents you a dialog to enter the accelera-
tor information. First, you need to specify the menu ID that the accelerator will be tied
to. (Aswith toolbar buttons, accelerators are tied to menu entries.) Below that, you can
enter the key that will trigger the accelerator, or you can select a key from the drop-down
list.

On the right side of the dialog, you can select the modifiers for the key. Modifiers are the
other keys that must be pressed in combination with the key that you’ ve already speci-
fied for the accelerator to be triggered. Once you' ve entered all the necessary informa-
tion for the accelerator, close the dialog and the information you specified is added to the
table.

"I] It’s recommended that you use either the Ctrl or Alt key as one of the modi-

fier keys on all accelerators using standard keys. If you don’t use one of
these two keys as part of the accelerator, your application might get con-
fused about when the user is typing information into your application and
when the user is triggering an accelerator.

To add accelerators to the back and forward menus in your application, delete the accel-
erator for the ID_FILE_OPEN menu ID because you won't use it in this application. Add a
new accelerator and specify the ID as 10M_GO_BACK and the key as B and select the Citrl
modifier. Add a second accelerator, specifying the ID as 1DM_GO_NEXT and the key as N
and select the Ctrl modifier. When you run your application, you can use the Ctrl+B

key combination to back up to the previous page and the Ctrl+N key combination to go
forward.

To really make your application work like most available Web browsers, you would also
add toolbar buttons for these two menu entries with arrows pointing to the left for back
and to the right for forward.

Controlling the Browser

Often when browsing, you come across a Web page that you don’t want to wait to down-
load. You'll want to stop the transfer part-way through. Maybe you entered the wrong
URL or maybe the download is taking too long. It doesn’'t matter why you want to stop
the download; it's enough that you want to stop it. Thisiswhy the cHtm1view class has
the stop function. It cancels the download currently in progress. To add this functionali-

Adding Web Browsing Functionality to Your Applications 533 |

ty to your application, add a new menu entry to the View menu in the Menu Designer.
Specify the menu entry propertiesin Table 21.3.

TABLE 21.3. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry 1D IDM_VIEW_STOP
Caption Sto&p

Prompt Stop the current transfer\nStop

Using the Class Wizard, add an event-handler function to the view class for this menu ID
on the COMMAND event message. Edit the function with the code in Listing 21.7.

LISTING 21.7. THE CWebBrowseView OnViewStop FUNCTION.

1: void CWebBrowseView: :0nViewStop()

2

3 // TODO: Add your command handler code here
4:

5 // Stop the current download

6 Stop();

7}

If you run your application, you can use this menu entry to stop any download of a Web
page that you don’t want to wait on. It would be more convenient if you added a toolbar
button for this menu ID.

Another control function that most browsers have is the capability to reload the current
Web page. This function is handy for Web pages that contain dynamic elements that
change each time the page is downloaded. It's also helpful for Web pages that your
browser may have in its cache so that it doesn’t retrieve the newest version of the page.
It's necessary to be able to force the browser to reload the page and not just display the
cached version (especialy if it's a Web page that you are in the process of creating). The
browser component has the capability built in with the Refresh function. One call to this
function means the current page is rel oaded.

You can add this functionality to your application by adding another menu entry to
the View menu. Specify the properties for the new menu entry using the settingsin
Table 21.4. You can add a separator bar between the two View menu entries that were
originally there, and the two new entries, to make your menu look like the onein
Figure 21.6.

534 Day 21

TABLE 21.4. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry 1D IDM_VIEW_REFRESH

Caption &Refresh

Prompt Refresh the current page\nRefresh
FIGURE 21.6. %, Web Browse - Microsoft Visual C++ - [Weh Browse.rc - IDR_MAINFRAME (Menu)]
E| File Edi View Ilnset Project Buid Tooks Window Help _|8] x|
The modified View 1$ﬁnﬁm%35%94@@@Mﬁmmr————gm‘
menu. CwWebBrowseView [0 class members) [=1[& OnBoStart =R JJ@ R] -l
2 | Fe View Go Help [
=13 Weh Browse resources Toolbar
B3 Accelerator Status Bar
@3 IDR_MAINFRAME 7&
(21 Dialag o
- leon FJEEL_j
=2 Menu
£4[IDR_MAINFRAME]
{1 String Table
(2 Toolbar
(1 Version
B3 Class... | 2 Reso... | (] FileVi...
L Configuration: Web Browse - Win3Z Debug——————————————————— =]
H|compiling rescurces
Linking. ..
FEb Brawse.exe - 0 error(s). 0 warning(s)
¥ 1 Buitd {Debug) Findin Files 1) Findin Files2 3 4| | 1 >
Ready ["In&.Col1 [HEC COL [0V [READ

Once you add the menu entry, use the Class Wizard to add an event-handler function to

the view class for the cOMMAND event message for this menu entry. Edit the function,
adding the code in Listing 21.8.

LisTING 21.8. THE CWebBrowseView OnViewRefresh FUNCTION.

1: void CWebBrowseView::0nViewRefresh()

2: {

3 // TODO: Add your command handler code here
4:

5 // Reload the current page

6 Refresh();

7}

Now you can test this functionality by finding a Web site that returns a different page
each time that you refresh the browser, such as the Random Monty Python Skit Server in

Adding Web Browsing Functionality to Your Applications

535 |

Figure 21.7. As with the rest of the menu functions that you added to this application,
this one should a so be added to the toolbar.

Ficure 21.7. PG Hi e BEIE
File View Go Help

The Refresh function [p X £

will perform anew J Addiess: [hitp://ugweb o5 Ualberta, carstust/manty/

download.

sRandom Monty Python Skit Server!s :I

B&=or... Now for something ‘completely different'| "0

This .cgi file randemly choses a monty python sketch from a list in my directory- Hope you
enjoy it as much as I dol

* NEUS PYTHON
* is Transcribed 10/87 by Steve "L5 in a plain brown wrapper"” Okay
® (ACS04SRGMUVAX.BITNET or CSRO3Z on The Source)

(irmri puening. Here is the nems for Parrofs: | _'LI
4 »

Summary

Today you learn how Microsoft designed its Internet Explorer Web browser as a series of
ActiveX components that could be used in other applications. You saw how Microsoft
encapsulated the browser into the cHtm1view class, which can be used in SDI and MDI
applications to provide Web browsing functionality to almost any application. You
learned how you can use this view class to build a Web browser. You saw how you could
use the diaog bar to place controls on atoolbar and how the events for these controls
can be handled in the frame class for the application. Finally, you learned how to add
menus to your application to call the various functions of the Web browser to provide a
complete surfing experience.

Q&A

Q Why isPrint Preview not included on the default menus when | choose
CHtmlview as the base class for my view class?

A The printing for the cHtm1view classis performed by the browser, not the view
class. You don't have print preview because the browser doesn't support it.

Q How can | get the HTML source code from the browser so that | can see or
edit it?
A The cHtmlview class has a member function, GetHtm1Document, that returns a

pointer to the 1Dispatch interface of the document object in the browser. You have
to use the invoke IDispatch function to call the functionsin the document object

| 536

Day 21

to retrieve the HTML source code. For documentation on how to do this, check out
the Microsoft Developer Network CD that you received with your copy of Visua
C++ 6.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1. What does the cHtm1lview class encapsulate for use in Visual C++ applications?

2. How can you get the URL for the current Web page from the CHtm1View class?

3. What command is triggered for the frame class when the user presses the Enter key
in the edit box on the dialog bar?

4. What functions can you call to navigate the browser to the previous and the next
Web pages?

5. How can you stop a download in progress?

Exercises

1. Add the Gosearch function to the menu and toolbar.

2. Add the GoHome function to the menu and toolbar.

3. Disahle the Stop toolbar button and menu entry when the application is not down-

loading a Web page.

WEEK 3

=
a1

INn Review

You made it! You now have the skills to tackle most of the
Windows programming tasks in Visual C++, with the excep-
tion of those that require specialized knowledge and under-
standing. Although there’s still plenty for you to learn, you
have covered the vast mgjority of the topics in avery short
amount of time. From here you will probably want to delve
into one or two more specialized areas of Windows program-
ming—the type that an entire book can be written on—
because at this point, you've got just about al the generalized
skills down.

=
o

l—\
\l

Just in case you don't have them all down, it's not a bad idea
to take some time once again to come up with some of your
own applications where you can apply the things you've
learned. Thiswill help pinpoint any areas that you might need
to go back and review before jumping into any more
advanced topics. Let's take a quick look back at what you
should have learned during the past week, just to make sure.

=
©

You started off the week by learning about Microsoft’s latest
database application development technology, ActiveX Data
Objects (ADO). You learned how ADO sits on top of the
OLE DB technology, simplifying database access consider-
ably. You learned how you can easily build a database appli-
cation by using ADO as an ActiveX control and connecting it
to some ADO-compatible, data-bound ActiveX controls. You
also learned how you can import the DLL and dive into the
code, exerting complete control over how your application
deals with the database. You learned how you can read and
write each of the fieldsin arecord in the record set by con-
verting it from and to the variant data type. You also learned
how you can design your own custom record class and can

N
@)

N
=

| 538

Week 3

bind it to the record set object, providing you with a much more convenient way to
access the individual field values in the database. If you are having problems with any of
this, you might want to review Day 15 once more.

You learned three different ways of sharing the functionality modules that you develop
with other programmers, without having to share your code. First you learned how to
build your modules into library files that can be linked into applications by other Visual
C++ developers. You saw how with this approach, if any change is made to the library
module, then al the applications that it's used in have to be rebuilt. You learned how you
can create these modules without making any specia changes to the way you write your
code. If you don’t remember how you did all of this, you can go back to Day 16 to
review it.

The second way that you learned to share your functionality with other programmers
was to build DLLs. You learned how you can create two different types of DLLs: one
that can be used only by other Visual C++ applications and one that can be used by any
other application, regardless of what programming language was used to build it. You
saw how you can create aDLL for use by other Visual C++ programmers without having
to make any real changes to the way you design or code your modules. You aso learned
how you need to make dramatic changes to how your module is used and interacted with
when creating DLLs that can be used by all programming languages. You learned how to
provide straight function calls as an interface for use by other applications, with all nec-
essary information to be passed in as parameters to the functions. You also learned how
to build a definition file, with the names of all functions to be exported included in it. If
you need any reminders of how you can do any of this, you'll want to look over Day 17

again.

The third and final way that you learned to share the functionality of your modules with-
out sharing the code was to package it as an ActiveX control. You learned how to use the
Control and Class Wizards to add in all the properties, methods, and events that you
want to have in your control. You learned how to read and write the properties in your
control. You saw how there are two different ways that the properties in your control can
be implemented, and you learned how to determine which type is appropriate for each of
your control’s properties. You learned how you can raise events in the container applica
tion from your control by firing the event in your code. Along with all of this, you
learned how you can use the ActiveX Control Test Container utility to test your control,
calling all its methods and triggering all the events that it's capturing. You saw how you
can monitor the events that your control is firing in the containing application to make
sure that they are being fired as and when they should. If you need any reminders of how
all thisworks, you can look back at Day 19 for a refresher.

In Review

539 |

An important thing that you learned was how you can enable your applications to per-
form more than one task at atime. Thisis an important piece of functionality, and more
applications are requiring this capability every day. Not only did you learn how to make
your applications perform multiple tasks at once, but you also learned two different ways
to do so. First, you learned about the on1d1e function and how you can hook into this
function to trigger your own functionality to be run when the application is sitting idle.
You aso learned about the shortcomings of using this approach to adding a second task
to your application and how it can prevent your application from responding to the user.
You need to dlice the background task into little pieces that can be done quickly, which
reguires you to develop some elaborate way of keeping track of where the task is and
where it needs to pick back up when the application isidle again.

The second way that you learned to give your applications a second or third task to do is
by spinning off separate threads, which run completely independent of the main user-
interface thread. You learned how to create a callback function that controls the top

level of execution for the threads and how you can start and stop the thread as necessary.
You also saw how these independent threads are completely independent from the rest of
the application and how they’ll continue to run, even when the rest of the application is
also busy. If you feel the need to look at all this a second time, you might want to read
Day 18 again.

Another area of growing importance that you learned about was how to build Internet
applications using the Winsock interface classes. You learned how you can build one
application that connects to another over a network and sends messages back and forth.
You learned that, just like with a telephone, for one application to connect to another, the
second application has to be listening for the connection. You saw how easy it is to send
messages and to be notified when a message has arrived after the connection between
the two applications has been made. If you need to review some of this, you might want
to look back at Day 20.

Finally, you learned how you can incorporate the Microsoft Internet Explorer Web
browser into your application without any effort whatsoever. You learned how you can
control the browser by specifying the URL that it should load and display for the user
and how you can display informational messages to the user to show what the browser is
doing and when it's busy. If you need to look back at this to refresh your memory, you
can go back to Day 21.

That’sit. You're done. You' ve covered alot of ground and learned some advanced top-
ics, especially over this last week. Now it's time to put this book down and get busy pro-
gramming, building your own applications using what you’ ve learned. Good luck. If you
find that you need allittle help or advice, a good place to turn is the Microsoft news-
groups on the Internet. They are full of people who are both knowledgeable and helpful.

APPENDIX A

C++ Review

The appendix is designed to provide you with a quick review of the fundamen-
tals of the C++ programming language. After reading this appendix, you will
have a thorough understanding of the various aspects of C++ and its syntax.

Creating Your First Application

Your first example is a simple program that displays “Hello World” on the
screen. For this, you create a workspace and the C++ file required for the pro-
gram. The procedure for writing a C++ program using Visual C++ issimple
and easy. Follow these steps:

1. From the main menu, select Visual C++.

2. Select File|New from the Visual C++ toolbar.

Make sure the Projects tab is selected (see Figure A.1).
3. Select Win32 Console Application from the options on the left.

| 542 Appendix A

FIGURE A.1. L]
. Fles Fiojects | Warkspaces | Other Documents |
Setting up the Hello :
L2 ATL COM Appizard Project name:
wor kspace. [Custom Appiw/izard Held

R DevStudio Addin Wizard

B DirectaD Appwizard Logation:

DirectDraw Appwizard C\cplusplusiHello E
B 154P! Extension Wizard

] Makefile

8% MFC ActiveX Controhwizard & Create new workspacs

(3] MFC AppWwizard (dl) () fdd to cuent worksnace

[MFC AppWizard [exe) I Derereeoh

[S5]'in32 Application

[=win32 Console Application |
%] Win32 Dynamic-Link Library

%] win32 Static Library Ek
Blatforms:

Cancel

4. Type Hello on the right side under Project Name.
5. Select OK.
Visual C++ creates the workspace of your application. Visual C++ actually creates a
directory Hello, which enables you to store all files related to a particular project in one
area. You will begin adding the files you require for this project:
1. Once again, select File|New from the toolbar.
Select the Files tab if it is not already selected.
Highlight C++ Source File.
Check the Add to Project box on the right side.
In the File Name edit box, type Helloworld (see Figure A.2).
Click OK.

o 00k~ w DN

FIGURE A.2. New EEd

. Files Projects | Workspaces Other Documents
Setting up the | s | Wil | 0 |
Helloworld project.

] Active Server Page ¥ Add to project:

[23] Binary File lﬁ
Bitmap File:

[] C/C++ Headsr File

[31 [C++ Source File File name:

T Cursor File Helloworld

3 icon File Lagation

e Macra File C:vcplisplus\Helo [
45 Resource Script

3 Resouce Template

Test Fils

Cancel

C++ Review 543 |

The Helloworld.cpp fileiswhere you add the C++ source code. All C++ source code
files have a . cpp extension. Later, | will cover other file types.

You create al the tutorial examplesin this section in a similar way. The only difference
is that the names of the workspaces and the files are different.

Helloworld.cpp

The Helloworld program displays HELLO WORLD on the screen. Listing A.1 contains the
code. Type the code exactly as shown in the Helloworld.cpp window. Do not type the
line numbers; they are for reference only. C++ is case sensitive, so main is not the same
asMAIN, which is not the same asMain.

Listing A.1. Helloworld.cpp.

1: // Workspace Name: Hello
2: // Program Name: Helloworld.cpp
3:

4: # include <iostream.h>

5:

6: int main()

7:

8: {

9: cout<< "HELLO WORLD \n";
10: return 0;

11: }

To run the program, follow these steps:
1. Select File| Save to save your work.
2. Select Build| Set Active Configuration (see Figure A.3).
3. Highlight Hello - Win32 Debug and click OK (see Figure A .4).
4. Select Build|Build Hello.exe.

Visual C++ compiles and links the program to create an executable file. The configura-
tion window indicates the success or failure of the compilation. A successful compilation
returns

Hello.exe - @ error(s), 0 warning(s)

If you encounter any errors, verify that al the lines of the program were typed exactly as
shown.

To execute the Helloworld program, select Build | Execute Hello.exe.

| 544 Appendix A

FIGURE A. 3 X “*. Hello - Microsoft Developer Studio
Fie Edit View Insert Project [Buid ook Window Help
Setting the active con- BT e o — L LA |
1 ; T T BuidHeloess
figuration. {Globals) =1[® £ ebuid Al =IH - JJ@ s gt o IS REU)
=——— __________________________HEE
[Hello classes Cicon ane: Hello =
Update All Dependencies = Helovorld cpp =
Start Debug Plean h>
Debugger Remote Connection.
ExeculeHeloere CHl+FS

L10 WORLD “a":

Configurations
Profile

B33 Classvi. | [] FileView | 7} Infoview Ll Bl

El
o

Tl ol

Selects the active project and configuration [In11.Col2 | [REC|COL [0VA [AEAD

Find in Files 1 Find in Files 2

FIGURE A.4. Set Active Project Configuration
. Project configurations:
Selecting Win32 Hello W32 Release
cllo chuc

Debug.

The program executes by opening an MS-DOS shell and displaying the text HELLO
WORLD (see Figure A.5).

FIGURE A.5.
_ o=l e B3])5 Al
HELLO WORLD dISp| ay. HELLO WORLD

Press any key to continue

C++ Review 545|

Components of Helloworld.cpp
The first two lines of the program are comment lines:

// Workspace Name: Hello
// Program Name: Helloworld.cpp

The double slash command (/ /) tells the compiler to ignore everything after the slash. It
is good programming practice to comment your work because it makes the program easi-
er to read, especially for someone who did not write it. Comments become important
when you are working on a complex program for months. When you want to make
changes, comments assist you in recollecting your thoughts from more than a month ago.

The third line begins with the pound symbol (#):
include <iostream.h>

Thisis adirective to the preprocessor to search for the filename that follows
(iostream.h) and include it. The angled brackets (< >) cause the preprocessor to search
for the file in the default directories. The iostream.h file contains definitions for the
insertion (<<) and extraction (>>) operators. This directive is required to process the cout
statement defined on line 9 in the program. The iostream.h file is a precompiled header
provided with your compiler. You may experiment with the Helloworld program by com-
menting out the include line. To do this, insert the backslash (//) before the pound sign
(#). When you compile and execute this program, you get an error:

Compiling...

Helloworld.cpp

C:\cplusplus\Hello\Helloworld.cpp(9) : error C2065:

O ‘'cout' : undeclared identifier

C:\cplusplus\Hello\Helloworld.cpp(9) : error C2297: '<<' : bad right

Ooperand
Error executing cl.exe.

Hello.exe - 2 error(s), @ warning(s)

Without the iostream.h file, the program does not recognize the cout command or the
insertion operator (<<).

The next line of code, line 6, is actually where program execution begins. Thisisthe
entry point of your code:

int main()

This line tells the compiler to process a function named main. Every C++ program is a
collection of functions. You will cover functions in greater detail later in this appendix.
For now, you define a function as the entry point for a block of code with a given name.
The empty parentheses indicate that the function does not pass any parameters. Passing

| 546

Appendix A

parameters by functions is described in the section “Functions and Variables,” later in
this chapter.

Every C++ program must have the function main (). It is the entry point to begin pro-
gram execution. If afunction returns a value, its name must be preceded by the type of
value it will return; in this case, main () returns avalue of type int.

The block of code defined by any function should be enclosed in curly brackets ({ }):

{
cout<< "HELLO WORLD \n";

return 0;

}

All code within these brackets belongs to the named function—in this case, main ().

The next line executes the cout object. It is followed by the redirection operator <<,
which passes the information to be displayed. The text to be displayed is enclosed in
guotes. Thisis followed by the newline operator (\n). The redirection or insertion opera-
tor (<<) tells the code that whatever follows is to be inserted to cout.

N“tﬂ Line 9 ends with a semicolon. All statements in C++ must end with a semi-
colon.

Line 10 of the code has a return statement. Programmers often use return statements
either to return certain values or to return errors. Also remember that on line 7 when you
defined the main () function, you defined its return type to be an integer (int). You may
rerun this code by deleting the return statement on line 10, in which case line 7 would
have to be modified as follows:

void main()

It is good programming practice to include return codes for complex programs. They
will help you identify and track down bugs in your program.

Functions and Variables

The Helloworld program consists of only one function, main(). A functional C++ pro-
gram typically consists of more than a single function. To use a function, you must first
declareit. A function declaration is also called its prototype. A prototype is a concise
representation of the entire function. When you prototype a function, you are actually

C++ Review 547 |

writing a statement, and as mentioned before, all statements in C++ should end with
semicolons. A function prototype consists of a return type, name, and parameter list. The
return typein themain() function is int, the name is main, and the parameter list is (),
null.

A function must have a prototype and a definition. The prototype and the definition of a
function must agree in terms of return type, name, and parameter list. The only differ-
ence is that the prototype is a statement and must end with a semicolon. Listing A.2
illustrates this point with a ssmple program to calculate the area of atriangle.

LisTING A.2. Area.cpp.

1: // Workspace: Triangle

2: // Program name: Area.cpp

3: // The area of a triangle is half its base times height

4: // Area of triangle = (Base length of triangle * Height of triangle)/2
5:

6: #include <iostream.h> // Precompiled header

7:

8: double base,height,area; // Declaring the variables

9: double Area(double,double); // Function Prototype/declaration

10:

11: int main()

12: {

13: cout << "Enter Height of Triangle: "; // Enter a number

14: cin >> height; // Store the input in variable

15: cout << "Enter Base of Triangle: "; // Enter a number

16: cin >> base; // Store the input in variable

17:

18: area = Area(base,height); // Store the result from the Area

Ofunction
19: // in the variable area
20: cout << "The Area of the Triangle is: "<< area << endl ; // Output the
Oarea

21:
22: return 0;
23: }
24:
25: double Area (double base, double height) // Function definition
26: {

27: area = (0.5*base*height);
28: return area;
29: }

This program declares three variables, base, height, and area, on line 8. Variables store
values that are used by the program. The type of a variable specifies the values to be
stored in the variable. Table A.1 shows the various types supported by C++.

| 548 Appendix A
TABLE A.1l. VARIABLE DATA TYPES.
Variable Data Type Values
unsigned short int 0to 65,535
short int 32,768 to 32,767
unsigned long int 0to 4,294,967,925
long int —2,147,483,648 to 2,147,483,647
int —2,147,483,648 to 2,147,483,647 (32 hit)
unsigned int 0 to 4,294,967,295 (32 hit)
char 256 character values
float 1.2e-38 to 3.4e38
double 2.2e-308 to 1.8e308

To define avariable, you first define its type, followed by the name. You may also assign
values to variables by using the assignment (=) operator, as in these two examples:

double base = 5;
unsigned long int base =5;

In C++, you may also define your own type definition. You do this by using the keyword
typedef, followed by the existing type and name:

typedef unsigned long int ULONG;

ULONG base =5;

Defining your own type does save you the trouble of typing the entire declaration.
The next line of the code, line 9, defines the prototype of your function:

double Area (double,double);

This function has a type double, a name Area, and a parameter list of two variables of
type double. When you define the prototype, it is not necessary to define the parameters,
but it is agood practice to do so. This program takes two inputs from the user, namely
base and height of the triangle, and calculates the area of the triangle. The base,
height, and area are al variables. The Helloworld.cpp example used the insertion (<<)
operator. In this example, you use the extraction (>>) operator. The program queries the
user to enter avalue for the height of the triangle on line 13. When the user enters a
value for height, the data from the screen is extracted and placed into the variable
height. The processis repeated for the base of the triangle on lines 15 and 16. After

C++ Review 549 |

accepting the input from the user, the function main () passes execution to the function
Area(base,height) along with the parameter values for base and height. When main ()
passes the execution to the function Area (base, height), it expects avalue of type
double in return from the function. The calculation of the area of the triangle is
conducted on line 27:

area = (0.5*base*height);

Nﬂtﬂ Area is the name of a function, and area is a variable name. Because C++ is
) case sensitive, it clearly distinguishes these two names.

This statement uses the standard operators, the assignment operator (=), and the multipli-
cation operator (*). The assignment operator assigns the result of (@.5*base*height) to
the variable area. The multiplication operator (*) calculates the resulting values of
(0.5*base*height). The assignment operator (=) has an evaluation order from right-to-
left. Hence, the multiplication is carried out prior to assigning the valuesto area. The
five basic mathematical operators are addition (+), subtraction (-), multiplication (*),
division (/), and modulus (%).

Line 28 of the Area function returns the value of the variable area to the main() func-
tion. At this point, the control of the program is returned to line 18 of the main () func-
tion. The remainder of the program displays the result of area to the screen.

The if Statement, Operators, and Polymorphism

While programming large complex programs, it is often necessary to query the user and
provide direction to the program based on his input. This is accomplished by using the
if statement. The next example demonstrates the application of an if statement. The
format of the if statement is

if (this expression)
do this;

The if statement is often used in conjunction with relational operators. Another format
of the if statement is
if (this expression)

do this;

else
do this;

Because if statements often use relational operators, let’s review relationa operators.
Relational operators are used to determine if two expressions or numbers are equal . If

| 550 Appendix A

the two expressions or numbers are not equal, the statement will evaluate to either o or
false. Table A.2 lists the six relational operators defined in C++.

TABLE A.2. RELATIONAL OPERATORS.

Operator Name

== Comparative

1= Not equal

> Greater than

< Lessthan

>= Greater than or equal to
<= Less than or equal to

C++ also has logical operators. The advantage of logical operators is the ability to com-
pare two individual expressions and conclude whether they are true or false. Table A.3
lists the three logical operators.

TABLE A.3. LOGICAL OPERATORS.

Symbol Operator

&& AND
' OR
! NOT

An important and powerful feature of C++ is function overloading, or polymorphism.
Polymorphism is the ability to have more than one function with the same name that dif-
fer in their parameter lists. The next example is an extension of the previous triangle
code. In this program, you will calculate the area of atriangle and acircle. You will be
asked whether you want to calculate the area of atriangle or a circle. Depending upon
your response, 1 for triangle and 2 for circle, the program collects your input and cal cu-
lates the area. In Listing A.3, the Area function is overloaded. The same function nameis
used to calculate the area of the triangle or the circle. The functions differ only in their
parameter lists.

LisTING A.3. Overload.ccp.

: // Workspace Name: Overload
// Program Name: Overload.cpp

: # include <iostream.h>

a s =

C++ Review 551 |

6: double base,height,radius; // Global variables
7: double Area_of_triangle,Area_of_circle; // Global variables
8: int choice; // Global variable

9:

10: double Area (double,double); // Function prototype
11: double Area (double); // Function prototype
12:

13: const double pi = 3.14; // Constant variable
14:

15: void main() // main function

16:

17: {

18: cout << "To find the area of a Triangle, input 1 \n";
19: cout << "To find the area of a Circle, input 2 \n";
20: cin >> choice;

21:

22: if (choice == 1)

23:

24: {

25: cout << "Enter the base of the triangle: ";

26: cin >> base;

27: cout << "Enter the height of the triangle: ";
28: cin >> height;

29:

30: Area_of_triangle = Area(base,height);

31:

32: cout << "The Area of the Triangle is: "<<Area_of_triangle<<endl;
33: }

34:

35: if (choice == 2)

36:

37: {

38: cout << "Enter radius of the Circle: ";

39: cin >> radius;

40: Area_of_circle = Area(radius);

41: cout << "The area of the Circle is: "<<Area_of_circle<<endl;
42: }

43:

44: if (choice != 1 && choice != 2)

45:

46: {

47: cout << "Sorry! You must enter either 1 or 2 \n";
48: }

49: }

50:

51: double Area (double base, double height)

52: {

53: return (0.5*base*height)

54: }

continues

| 552 Appendix A

LISTING A.3. CONTINUED

55:

56: double Area(double radius)
57: {

58: return (pi*radius*radius);
59: }

Global and Local Variables

In al of the preceding examples, the variables have been declared at the beginning of the
program, prior to defining the main () function. Declaring variables in this fashion is
more akin to C programs than C++. They are global variables and can be accessed by all
the functions. However, you may aso define local variables that have a scope only in a
particular function. Local variables can have the same names as the global variables, but
they do not change the global variables. Local variables refer only to the function in
which they are defined. This difference can be confusing and lead to erratic results.

The program in Listing A.4 clearly shows the difference be