PROGRAMACION EN C

Metodologia, algoritmos
y estructura de datos

e e & B S T B

i

,l FACGLS D €3, Lnins
|
i
i

| CnD.- 43

Ignacio Zahonero Martinez

Departamento de Lenguajes y Sistemas Informaticos e Ingenieria del Software
Facultad de Informatica/Escuela Universitaria de Informatica
Universidad Pontificia de Salamanca. Campus Madrid

Univer ’!- Macional de Saita
FADL "-|r-
Bi5L10 ﬁ;":z
" I ITH
: [:".-.;‘ i -

L e s AR A - —

MADRID « BUENOS AIRES * CARACAS » GUATEMALA ¢ LISBOA * MEXICO
NUEVA YORK * PANAMA » SAN JUAN « SANTAFE DE BOGOTA » SANTIAGO » SAO PAULO
AUCKLAND *» HAMBURGO* LONDRES ¢ MILAN » MONTREAL * NUEVADELHI * PARIS
SAN FRANCISCO® SIDNEY * SINGAPUR * ST. LOUIS * TOKIO *TORONTO

CONTENIDO

PARTE I. METODOLOGIA DE LA PROGRAMACION

Capitulo1. Introduccién a la ciencia de la computacién y alaprogramacioncccuueeeiiinienaaan. 2
1.1. ;Qué €5 UNa CoMPULAAOra?veno ittt et it e i 4
1.2. Organizacion fisica de una computadora (hardware)ccvviieervnnnn.. . 4

1.2.1. Dispositivos de Entrada/Salida (B/S) i i i e e 5
1.2.2. Lamemoriacentral (iNferNa) ottt eeannnn 6
1.2.3. La Unidad Central de Proceso (UCP) i in v i it e aaa e 9
124, EI microprocesadorouuneinet it i e i L 10
1.2.5. Memoria auxiliar (externa) : 10
1.2.6. Proceso de ejecucion de un programaeeeer ottt et e e ettt 12
1.2.7. Comunicaciones: modems, redes, telefonia RDSIYADSL viiiiiiiiii e 12
1.2.8. La computadora personal multimedia ideal para la programacidin 13

1.3. Conceptodealgoritmocccvunn... A Yy A 15
1.3.1. Caracteristicas de 105 algoritmosiuiii it i e e e 16

1.4. El software (10S Programas)o vvet v oo e e ettt et e et et et e e e 17
15. Los lenguajes de programacion - a] 19
L.5.1. Instrucciones a la compuiasdora | Fob e R A 4 20
152 Lenpguajes méquana REghe Pty R, hikdn e 20
L5 Lenguajes de bajo mivel . 21
15.4. Lenguajesde alto NIVEl . .o v e e 22
L.55, Traductores de lenguaje . . o e 22
L5581, Ineérpreies . . ; : P e S 23

1.5.5.2, Compiladones y - ' 23

L.56 Lacompilacion v sus fases s AL o ey e g vt e e 23

1.6. El lenguaje C: historiay caracteristicaso itvrt ittt it e it 25
1.6.1. Ventajasde C e 25
1.6.2, Caracteristicas tfenicas de © . A BB ¢ et n e ssaaraaneas : 26
1.6.3. Versiones actuales de . .. ; i s . 26

R T 27
Capitulo2. Fundamentos de programacionc.......- e e 28
2.1. Fasesen laresolucién de problemas 30
2.1.1. Andlisisdel problemat i e et e 31
2.1.2. Disefio del algoritmoot e e e 32
2.1.3. Herramientas de la programacionuiir et in ettt ettt 33

2.1.4. Codificacion de un Programa vvt it it ettt 36

B

vi Contenido

2.1.5. Compilacidn ¥ epecucidn de un programa aa s 37
2 L6, Venficacidn v depuracidn de un programi D 38
2.1.7. Documentacion y muanterniimsenio 38
2.2. Programacion modular1 ' 49
2.3. Programacion estructuraiia : 40
2.3.1. RECUISOS ADSIIACIOS « « « « v v v e v vttt e i e e 40
14,2, Dasefio descendeme (fop-divin . 40
2R, Eabructurns de COIOl . .. oo - o e i e 41
234, Teorema de la programuaciin eatructurada:; estructums hasicas Fily 42
2.4, Representocidn grifica de los algoritmos PEFLASEE 42
2.4.). Diagraamns de Mg ; 43
2.5, Dhpgramas de Massi-Schneidermman (MN-50 5 g 52
6. Fl ciclo de vida del sofiware oy i 53
L. Anilisis SR : o 54
262, Dhseho : e i L ol Bl o B B B~ e e T 55
282, Implementaciin (codificacion) . . . 55
264 Pruchas ¢ INPEEracicn 5k . s 56
AT L R e et S S T A PP G : 56
b T T T 1 A T T 57
28T, La ahsolescemicia Flrl.l'e_rll'"J'\- phsisleElog . 57
2.6.8. Iteracion y evilucion del sliware 57
2.7. Métodos formalés de verificacion de programas e 58
2.7.1. Aserciones R AR L . 58
7.2 Precondschomnes y :|5-l.l=~I:-'.l||'h.iI-. e ; 59
2.7.3, Reglas para prueha de |'|r|||_r.|'||1.|-1. ; 60
274 Irwarianben 0 BUCheE . .« ccvci i cisss i s e n e bR s S SRR e 60
2.7.5. Exapas a establecer in -\.'l..JI.[I.IlJ-\.‘I {comeceidn) de un programa 62
1.7.6. Programacidin segura conira fallos . 63
2.8. Factores en la calidad del software : 64
19, Resumen : AR . raeerassa- 65
210, Fiercicios g . i 65
2.11. Ejercicis resaelios ; : — e 66
PARTEIl. FUNDAMENTOS DE PROGRAMACION EN C
Capitulo 3. El lenguaje C: elementos ba=ciis . . SR EEE e . s _-IE
3.1. Estructura general de un programaen ..o ' _-|-'|
3.1.1. Directivas del preprocesashor ; e . _.Ih
3.1.2. Declaraciones globale* . : ik L-':
3.1.3. Funcibn main () ... K3 R '_'h
3.1.4. Funciones definidas por el wsuario ‘i ; J
3.1.5. COMENANIOS -« v v v ve e imie v aasins ! Bl
3.2, CreaCion de UN Programa «vwwwwwwww i ti i s C e 82
3.3. El proceso de ejecucion de i programs en O i ' i . L
3.4. Depuracion de un programa en : ; B
4.1, Errores de saplaxis i H.-!:
3.4.2. Errores logicos . . . + e
4.1 Ervores de regresicn : . K8
Bdd Mensajes de ermoro e e HE
3.4.5. Errores en tiempo A€ gjectathiil - -« -+« o v v e e EH
A5, Prochas =i o B9
L6, Los elemenios de un Tm*u:nnlu en ". 90
L. Tokens (elementos Excos de los r\lTI'||_r.III1.I"-.| P s s 90
Ak ldentificadores P w5 Wt <N 90
A6 Palabras reservadas - - ! a1

Abd, Comentanos o sl i1

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.
3.14.

Capitulo 4.

4.7.

4.8.
4.9.
4.10.

4.11.
4.12.

4.13.
4.14.

. Operadores y expresiones
. Operador de asignacion
. Operadores aritméticos

3.6.5. Signos de puntuacion y separadores
3.6.6. Archivos de cabecera
Tipos de datosen C ..

3.7.1. Enteros (int)
3.7.2. Tipos de coma flotante (f 10at
3.7.3. Caracteres (char)
El tipo de dato LOG CO
3.8.1. Escritura de valores | 6gi cos
constantes .« .. i e
A0, Constantes Inerales
3.9.2. Constantes definidas (simbolicas)
3.9.3. Constantes enumeradas

3.9.4. Constantes declaradas const %
Variables ...
3.10.1. Declaracién
3.10.2. Inicializacién de variables
3.10.3. Declaracion o definicion
Duraciéndeunavariable
3.11.1. Variables locales ..
3.11.2. Variables globales . .
3.11.3. Variables dinamicas
Entradas y salidas

3.12.1. Salida ...

3.12.2. Entrada
3.12.3. Salida de cadenas de caracteres
3.12.4. Entrada de cadenas de caracteres
Resumen
Ejercicios

Operadores y expresiones

4.3.1. Asociatividad
4.3.2. Uso de paréntesis

. Operadores de incrementas-itin y decrementacion
. Operadores relacionales
. Operadores légicos

4.6.1. Evaluacion en cortocircuito
4.6.2. Asignaciones booleanas (l6gicas)
Operadores de manipulacién de bits

4.7.1. Operadores de asignacion adicicmales

4.7.2. Operadores de desplazamiento de bits (», «)

4.7.3. Operadores de direcciones
Operador condicional

Operador coma
Operadores especiales
4.10.1. El operador () .
4.10.2. El operador []

El operador SIZEOF .
Conversiones de tipos
4.12.1. Conversion implicita
412.2. Reglas Py
4.12.3. Conversion explicit
Prioridad y asociatividad
Resumen

Contenido

vii

92
92
92
93
Wl
o5
k]
97
a7
98
101
LLN
1Ex
L]
103
105
105
106
106
106
107
108
108
111
112
112
113
113

114
116
116
117
119
120
1]
124
125
127
128
129
130
131

131
132
133
133
133
153
134
11%
135
135

136
136
137

-

viii Contenido

4.15.
4.16.

Capitulo 5.
5.1
5.2.
5.3.
54.

5.5.

5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.

Capitulo6.
6.1.

6.2.

6.3.

6.4.

6.5.
6.6.

6.7.
6.8.
6.9.
6.10.
6.11.

Capitulo 7.
7.1
7.2.

T o] o o1
PrObIEMaAS ..o

Estructuras de seleccion: sentencias i f yswitch ... o i i
Estructuras de CONtrol

Lasentencia i f ...
Sentenciai f dedosalternativas: i f -€@1S€ ...t

Sentencias i f-el se anidadas
5.4.1. Sangriaen las sentencias i f ansdadas
5.4.2. Comparacion de sentencias i [amidalas ¥ secucncias de semencias

Sentenciade control SWi t Ch ..ottt e

5.5.1. Caso particular de case
5.5.2. Uso de sentencias SW t Cti e ineriis

Expresiones condicionales: el operador 2 : ...

Evaluacion en cortocircuito de expresiones 10giCas « -« .vuuuurre i iiiiiieeeennn.

Puesta @ pUNtO de Programasttt ettt et e e e e
Errores frecuentes de programacionooiiiiiiii e

Resumen 7
EJOrCICIOS ottt

[od 0] 0] 1=T '

Estructuras de control: bucles

La SENteNCIa Whi B ..ottt ittt e e e e

6.1.1. Operadores de incrememnio y decremento |+ +, |
6.1.2. Terminaciones anormales de un ciclo
6.1.3. Disefio eficiente de bucles

6.1.4. Bucleswhi | € con Cero iteraCionesoiiuie ittt

6.1.5. Bucles controlados por centinelas . .

6.1.6. Bucles controlados por indicadores (banderas)ccciiiiiiiiiia,

6.1.7. La sentencia br eak en luas busclis

6.1.8. BUCIES WA | € (T UE) . - voveeeee e R

Repeticion: el bucle €or :

6.2.1. Diferentesusosde bucles f Or ...t e e
Precauciones en el USO de f Or oot e e e e e e e

6.3.1. Bucles infinitos
6.3.2. Losbucles f or vacios b e § :

6.3.3. Sentenciasnulas enbucles fOro

6.3.4. Sentenciasbreakycontinue...........

Repeticion: elbucledo.. . while
6.4.1. Diferenciasentrewhi leydo-while......... ... i,

Comparacion de bucles whi | e, for ydo-whi l e .
Disefiodebuclesccoiiiiiiiin...

6.6.1. Bucles para disefio de sumasy productos
6.6.2. Fin de un bucle

6.6.3. Otras técnicas de termimacion de Bicle e e
6.6.4. BUCIES T O VACIOS .ttt it et i et e et e et e et et e
Bucles anidados
RESUMIBN .t i e e e e e e e

T o] o o1 P
PrOD M AS s s i e b e SmmOR AT d * = » @ o o s s s s e s ssansostnasnasonsnassssstoasnnnnnas

Proyectos de programaciin

FUNCIONES ittt e e e e e
(@0 Lot o] oo [=1 {11 [od o o 1
EstructuradeunafunCiont e e e e
7.2.1. Nombre de una fUNCION ... ittt i e et et et et ittt

137
139

142
144
144
147
150
] |
152
154
159
159
134
161
162
(1K)
164
165
167

[t

170
172

174
14

174
175
175
I
178
1801
184
185
| e
187
188
188

190

191
193
|33
1'%
194
196
196
197
|1

. |1

203
206

208
210
211
213

Contenido ix

7.2.2. Tipode dato deretOrNO . . v vttt it et et e e et et
7.2.3. Resultados de una funcion el T D e H
7.2.4. Llamada a una funcién : .. e e
7.3. Prototipos de 1as fuNCIONESot e i i e
7.3.1. Prototipos con un nimero no especificad de pardmetros 0 L L L.
7.4, Parametros de una fuNCION oo ot it et e
T, Paso de pardmetros por valor
TAL Paso de pardmetnos por relferencia ! R
7.4.3. Diferencias entre paso de variables por valor y por referenua
7.4.4. Parametros const deuna funcion
T.5. Fonciones en bines, mscros com AFEUFEnis
T.5.L Crescein de mactos con argumentos

7.6. Amblto(alcance)...._..._.,,H_.:H= e
7.6.1. AMDito del Programa - «u:eunvere et et e e e e 229
7.6.2. Ambito del archivo fuente 230
7.6.3. Ambitode una funCiON i e e e 230
7.6.4. AMbitode blogquet e 230
7.6.5. Variables 1ocaleso e . 231
7.7. Clasesde almacenamientocoui it iiiiiiiiiiie i ; 231
7.7.1. Variables aUtOMALICASo oottt e e e 231
T.7.2. Variables @XIErNaS oot e e 231
7.7.3. Variablesregistro Y 232
7.7.4. Variables estaticas . e i 232
7.8. Conceptoy uso de funcmneh de blbhﬂlm«a 234
7.9. FUNCIONES 08 CArACTEr . ..ot it ettt i e e et e e e 234
7.9.1. Comprobacion alfabéticay de digitoscooviiiiiiiiii i 235
7.9.2. Funciones de prueba de caracteres especiales B 236
7.9.3. Funciones de conversion de CaraCterescccv i e 236
7.10. FUNCIONES NUMEBKICAS . v v vt e e ettt et ettt ettt e e et iae et e aeae s 237
7.10.1. FUNCIONES MAtBMALICAS . .« v o et et et et et et e e e e et e et 237
7.10.2. FUNCiones trigoNOMEALIiCaS vttt et ittt i e e et . . 238
7.10.3. Funciones logaritmicas y exponencialesccoiviienn.. 238
7.10.4. FUNCIONES AlEAtONIAS . ..\ vttt et et et et e e e 239
T4l Funciones de fecha v hora 240
T Funciones de utilidad . iy : 243
7.13. Visibilidad de una funcion . . 4 244
7.13.1. Variables locales frerie i vartabbes a.inhuhx , 245
7.13.2. Variables estaticasy automAaticas ccvvoii i e 247
7.14. Compilacion SEParada: et i v i e 249
1.5, Voriables registro {reqist or) 250
T.146. Recursividad 25|
7.17. Resumen R . 254
T8, Epercicios i . : S
T00. Problemast e
Capitulo 8. Arrays (listasy tablas)ot vutet e e e 258
BL Amays ... SIS i ieae e 260
8.1.1. Declaracion de un arra¥ . . i - e . 260
8.1.2. SUbINAICES dE UN @ITAY « « « « =« « v vttt et e et ee e e 261
8.1.3. Almacenamiento en mérmsria de b g arrays e 262
8.1.4. El tamafiode los arrays FAA S e een e neaaea e 263
8.1.5. Verificacion del rango el indice de un arvay s . : 264
8.2. Inicializacién de UN AITAY .+ oottt t it et ittt e e e et e e e 264
8.3. Arrays de caracteres y cadenas de Te®lir L L e 266
8.4. Arrays multidimensionales 269
8.4.1. Inicializacion de arrays mul u1=l1-. I'mun.ﬂn 270

_—

X Contenido

8.4.2. Acceso a los elementos de los arrays bidimensionaleso, 271
8.4.3. Lecturay escritura de arrays bidimensionales, 272
8.4.4. Acceso aelementos mediante bucleso, 213
8.4.5. Arrays de mas de dos dimensiones « -« -« vvvvveneniiiiii i e e i 274
8.4.6. Unaaplicacion PractiCaouiuiiiiiinaiiin o e 274
8.5. Utilizacion de arrays COMO Parametrosve i ittt 276
8.5.1. PreCaUCIONES « v v vt vii it it et it e 2T
8.5.2. Paso de cadenas como parametros 2K
8.6. Ordenacion de listas «« v vvveenn i e e 282
8.6.1. Algoritmode laburbujac.ccoiiiiiiiii i s e e e 282
8.7. BUSQUEdA BN TISTAS . ..ottt e i 284
8.7.1. Blsqueda secuencial - -« -coiainnnn e e e e 285
8.8, RESUMEN ¢ttt s i i s e 9
8.9. Ejerciciosciiiiiiiiiin, . e . T
8.10. Problemas ««:: st ceetentt timcaay st ettt e s e 291
Capitulo9. Estructurasy Uniones - - -«o.veveienenenenenisan i e e et 294
0.1, ESIIUCIUIAS « - - - ovitt ettt it et e e 296
LN Declarseide deuna eStructUrao o e ot i e 297
9.1.2. Definicion de variables de eStructurasc..eieiiiiiiiie i 297
9.1.3. Uso de estructuras en asignacCiongSeeireeireeirieen it 298
9.1.4. Inicializacion de una declaracion de estructurasccoeiieiiiieiiineanans 299
9.1.5. El tamafio de una estructura i 300
9.2. Accesoaestructurasc.oeeuninn.. 300
921, Almacenamiento de nformachin @n esIFBCEIEES . . . oo o e e e et e e 300
%12 Leciura de informacidin de wna estrociura . 302
.23 Recuperaciin de infomocion de unm esimaciino irn cerrrirniennenneenn. 302
8.3, Estructuras amidadas 303
9.3.1. Ejemplo de estructuras anidadas 304
9.4, Arrays de eStTUCTUIAS vt vttt i ittt e 307
B, AFTEYR OO FIRERIIE . ..ot o cie s sm s o e e b b v edsn s bms s b tae aeri i 308
9.5, Unlizacidn de cstmuciurs como pardmetnos T 309
9.6. UNIONES .ottt e " 310
9.7. ENUMEracCionesc.oeevireennneennnn. 311
1.1, slizeol de tipos de dotos estructarmdies e 314
T T B e S e 314
9.8. Camposde bit e L A L 315
9.9. Resumen . B i iiiiaeseeaasees 319
%, Ejercicios 320
R Prol B, .« oo i A T e T 321
Capitulo 10. Punteros (pUNtAdOreS) « - -« -« v uuvt et e e e e 322
10.1. DirecCiones N MEMOMIA .. .vveeeirt e it e e 324
10.2. Concepto de puntero (apuntador)uiir @i i ; 125
10.2.1. Declaracion de punteroScev ittt tieii e i L
10.2.2. Inicializacién (iniciacion! de pumteros T 327
10.2.3. Indireccion de punteros g 3 H
10.2.4. Punteros y verificacion de tipos jH
10.3. Punterosnull yvoid 1
10.4. Punteros a punteros T e P e Wt Sy 331
10.5. Punteros y arrays : D 332
10.5.1. Nombres de arrays s :|". 01 (=T (01 332
10.5.2. Ventajasde los punteros i3
10.6. Arraysde punterosoeouenn... Sadle 33
10.6.1. Inicializacion de ub array de punieros & cadenas ... L 335
10.7. PUNtEroS de CAOBNAS . .« vt e v e cwve e ettt e iie it e 335

10.7.1. PUNtEros VErSuS arraysS «« «« -« wi s auunimnsivmmmaensans B

Contenido Xi

10.8. Aritmética de PUNTEIOS o ettt e e e e e 336
10.8.1. Una aplicacion de punicris: comver=10n de CaraCteresc.evviveeevnneeennnn. 338

10.9. Punteros constantes frente a punteros a Constantesoeieiernieriaee i, 339
10.9.1. PUNtEroS CONSTANTES | . ., . v e ettt ettt e et e 339
10.9.2. PUNLeros @ CONSTANTES v . i\ttt et et e e et e e 339
10.93, Punicros constanies & consianes B 340
100, Punteros como argumentos de funciones SRR i 1]
10.1]. Punieros a fumciomnes 143
10.11.1. Inicializaciéon de Ui PUMEND & W |I]Ih.|l-'-|| or TR 343
10102 Aplcackin de punteros a funcidn para ondenacidn . L
10.11.% .|'||.|r;.:|'\-| e punberos o Ll L1 513 T 348
0114 Una aplicacikin de punteros de lunciones . s R 349

T 1% Punieros a estructurms . Ll
10.13. Resumen 5 s A
10.14. EJOrciCios oo e i i W e ohb i ir iNes = = = v e e v e m e ae et e e saaeaneananees 352
L T U Ay Py S S oy S 353
Capitulo 11. Asignacion dindmica de memoria ceiutitti i 354
11.1. Gestion dindmicade la memoria ... e 356
11.1.1. Almacen libre (free StOre) i e 357

11.2. FUNCION MBI | OC () oot e e e e e 357
11.2.1. Asignacion de memoria de un tamafio desconocido 361
11.2.2. Usodemalloc () paraarrays multidimensionales A2

11.3. Liberacion de memoria, funcion free () i, Veled d i a3
11.4. Funciones de asignacion de memoria cal l o ()y realloc ()t 364
1140, Funcion cal | OC () oo e e 364
11.4.2. Funcion real | 0C () . . i e 365

11.5. Asignacion de memoria Para @rrays i e 368
11.5.1. Asignacion de memoria interactivamentec.cih i 369
11.5.2. Asignacién de memoria para un array de eStructurasoveveeniinnnennnn.. 371

11.6. Arrays dindmicoscciiiinnn.. ¥r3
11.7. Reglas de funcionamiento de la asignaciiin el mmsria ‘3 174
1L 8. RESUMBN ittt ettt et e e e e e 376
1109, EJEICICIOS vttt et e e 376
1120, Problemast e e 377
Capitulo 12. CadENAS oottt et ettt e e e e e e 378
12.1. ConceptodeCadeNa . ..o ue et e et 380
12.1.1. Declaracion de variablesde cadenacooiiiii. ; i1
12.1.2. Inicializacion de variables de cadena T 181

125 Leciura de calenas . e : 2
12.2.1. Puncidim get 4 iu XRS5
12.2.2. Funcién put char A 385
12.2.3. Funcibn puts ()ooiaal ; L LH6
12.2.4. Funchones gotch () ¥ Lihu LT

123, La biblioteca st ring . - kLY
1231, La ‘|.j_|.j.|‘-'d f{'qr'\'.jd.j T+ e e O | 389

124, Arrays vy cadenas como paramebros de funciones ; e 389
12.5. Asignacion de CagBNaS | ., . . ettt e 391
12.5.1. Lafuncion st prucpme 0 .ot i aaaa it e 391

12.6. !.‘llll.!.'lllid ¥ comncalenacion de 16 [1 T2 1. T 392
IE6.), Lo Funcidn st o« a2
12.6.2. Las funciones strcat {()ystrncat () i i, 393

12.7. Comparacion de cadenasc..ceviriirinneannnnn. " LT
127.1. La funcidn g remp 05

12.7.2. La funcihin stricm : . 15

]

Xii Contenido

12.7.3. Lafuncion St rNCNP ()« v v e e i e 396
12.7.4. Lafuncion Strni CAP ()« v e oo i 194

12.8. Inversiénde cadenas - e |7
129, Conversidn de cadenas . . . e i 1]
R T T T T I T o 197
12.9.2. Funcion striw () p : L

12.10. Conversionde cadenas a NUMEroSovveeenrnnnn.. VAL b e a e, 399
12.10.1. Funciénatoi ()c.uon... BT =+ = = e = m m m m e aanaanan 399
12.10.2. Funcion at of () .. LA 8TEL n o 4 v sonesenm e ne e a8t e e i AN
12.10.3. FUNCION @EOL () ettt e e ot 400
12.10.4. Entrada de nimerosy cadenas oz TR I 400

12.11. Blsqueda de caracteresy Cadenas « vccvcviieiiii it i 401
1L1L.). Funciin sceche () ... 1 AT | |
12.11.2. FunCion StrrChr () oo e e 402
12.11.3. Funcién strspn () Cy : , 42
12.11.4. Funcién str CSPN ()t e iiaaiiinaanes marraaa .., 403
12.11.5. Funcion strpbrk ()ccooaiiia.... : E b e s e v o mren e 403
12.11.6. Funcién strstr () R e ETi*)
12.10.7. FUNCION St rE OK () vviie e e e et e e et . . Ak

2 2 = L= [0= o T 405
12.13. EJerCiCios . .ovveveiiiii i i 4 coe D6
1204, Problemas ..ot i s P, 4m

PARTEIll. ESTRUCTURA DE DATOS

Capitulo 13. Entradas y salidas por archivos e e e e e ee e 410
13.1. F|ujos ... 412
13,2, PUNErO FILE “ v vttt ittt et ttee et et tie e eiiaeeeenns FA BB REE L e e 412
13.3. Aperturadeunarchase EHEE v v e as 413

13.3.1. Modos de aperturade un archivocoit ittt iiaeans 414
13.3.2. NULL Y EOF -t e : ... 415
13.3.3. Cierrede archivosoveeiieeeiiiiiiiiiiinnn. P S 415

13.4. Creacion de un archivo SECUBNCIAL oo iti et ot it it i et et e eennen 416
1340, Fumciomes putc {1y fpute | . . . Al
134.2. Funciones getc {1y fgete {1 i A e 4 e et s e e 417
1344 Furﬂ.‘tl:-u-m.![-l.':. 1y fgetal) Tk L - R

L 4.4, Fumscumnes Eprint L)y fscant | . 411
L1345 Fumcidn Lol () Ak 47
LL4.6. Funcidn rewind (| SRR R B P C K R i Bt kil 421

135, Archivos binarios en © . . . Lo R o eI P ra: I BB R A SR g AT .. 4F
13.5.0. Funciin de salida fwrite |) i iy R S b 4
13.5.2. Funcionde lectura fread ()oovriiiiiiiiiiii rr e 424

13.6. Funciones para acceso aleatorioo cirimiiiimis tueeie e 426
13.6.1. Funcién fseek () .. I b 428
13.6.2. Funcion ftell () ..oviiiiiiiiiiiiiiiiieeennn, R 431

13.7. Datos externos al programa cof argurmentos de main ik ol 43]
13.8. RESUMEN ++ +r s s s amnsasbtdacn tanassaassaaassanssansssasssannssons e BEA s e e 434
119, Epenacios : e v, 435
13.10. Problemasccoiiiiiiinn... e e e e 436
Capitulo 14. Listas enlazadas -« -« -« vttt ittt i i . £ ieeneeeens 438
14.1. FUuNdamentoS tBOMCOS ... uuvuute i e e eiiaiee i e, 440
14.2. Clasificacion de las listas enlazadas SHA S A EEEE + e s a e emessmsn o o n e maran s n e e e e e e 441
14.3. Operaciones en listas enlazadas . . . e A B A b A MR R A + x e e e e e s s 442
14.3.1. Declaracion de Un N0 .. ccvvvviinne i e i, 442

14.4,

14.5.

14.6.
14.7.

14.8.

Capitulo 15. Pilas ¥ COIAS ... v vttt ittt e i e
Conceptodepila- . i iieesaarraraarant RMEA e aaaarre e

15.1.
15.2.

15.3.
15.4.

15.5.

15.6.
15.7.
15.8.

Capitu Ilo 16.

6.2,
161

16.4.

165
16.6.

16.7.

6K

Contenido

14.3.2. Punterode cabeceray cola - - - -« oo e I
14.3.3. Elpunteronulocccoovvens e
14.3.4. El operador -=> de seleccidn i um |-n|-.ml:1m _________________________
14.3.5. Construcciéonde unalista P e
14.3.6. Insertar un elemento en una lista
14.3.7. Blsquedade un elemento .« .« oo vt i e e .
14.3.8. Supresionde un nodo en una listauuuueu
Listadoblemente enlazadac.ouiiiiiiiiii i e e e
14.4.1. Declaracion de una lista doblementeenlazadaciiiaa.t.

14.4.2. Insertar un elemento en una lista doblemente enlazada

14.4.3. Supresién de un elementoen una listadoblementeenlazadacovunn...

LiStasS CITCUIAIES . o vt vt i e et ettt e et B e

14.5.1. Insertar un elemcnm enunalistacircularc.. .0 Lian e e e e ianaa e
14.5.2. Supresionde un elementoen una listacircularol
R.esum.en ..

EJerciciosccoiiiieuen P e e e e aeeeaaeee e s s
Problemas ... o e e e e e

15.1.1. Especificaciones de una nlla e e

El tipo pila implementado con arrays R ENH AT v e v e rnarernarrrnnrnrnnns
15.2.1. Especificaciéondel tipopida ; R
15.2.2. Implementacion de las operacionessobrepilasc.oooat..

15.2.3. Operaciones de verificacion del estadode lapila i

O]

El tipo colaimplementadacon arrays i e reiaaeeraseerenaneraans
15.4.1. Definicion de la especificacionde unacolacovviiiiiiiinin...

15.4.2. Especificaciondel tipocolao Y p—
15.4.3. Implementaciéndel tipocola e A i eaieeeaae e
15.4.4. Operacionesde [aColavuieeiiiii i o e i e e
Realizacion de una colacon una listaenlazada ciiiiiiiiiiiiii it
15.5.1. Declaraciondel tipo colacon listascviiiiiiiiiin i ieeens
15.5.2. Codificacion de Ja= mperacionesdel tipo codaconlistas

RESUMEN e i i i e e fga BRI
=T (o[o
Problemas

Arboles i - i I T KN

1. Arbolesgeneralesiii iiiiiiiii . apErEas

16.1.1. Repressntacidn de un drbol
Resuwinen de defmiciones el A e b el b=l
Arholes Masmiae

16.3.1. Equilibrio e
16.3.2. Arboles binarios completos

Estructurade un arbol binariocoiiiiiiiiiiiiiiit. e

16-:4-1. Diferentes {iP0e de representaciones en : il i
Operaciones en drboles biparios A iy
Aol e ERPIEEMN ccciiaiisanreee drrii i e bEa e
Ioob. 1. Reglas para la construccion 2 de drboles (¢ expresion

Recorrdo de un drbaol AL Al e
16.7.1. Recomdo preonden

1672 Recomdo enorden - -:--- T T T T T
16.7.3. Recomdo PoStordenccvi viiiiiiriii i T mpmace e eea:
16.7.4. Profundidad de un drbol binarso00 0 e

Arhed hinario de bisoseda

Xiii

444
445

445
447

453
454
456
457
458
459
462
462
463
467
468
468

470
472
473
473

47
47

478
481
483
483
483
484
486
487
488
489
492
493
494

EH]
4|
' I
504
LTl
uli
50K
511
51
51
'\.1.
51
o1 1]
L 1L

521
522

Xiv Contenido

I6Y, i

i i,

1611,
Il
16.18.

16.14.

16.8.1. Creacidin de un drbol hinario de isgueeda

16.8.2. Implemeniacion de un nodo de un drboll benano de hu'uqu-'. |.I.|

? sraciones en drboles bimanos de isgoeda
16.9.1. Busqueda . .

16.9.2. Insertar un nodo ... Bk : R

16.9.) Funcidn insscrari

BERA, EISnmcii .« ovosnnrecivmaneacinanasdansbinii oese

169.5. Recorridos de un abol ..o
16.9.6. Determimacion de la alburas de un drbol |
,-'I,-|:||;|.'..,n,-ﬂ|_'n e drbaoles en algonimes e exploreciyon
16001, Wisita a los nodos de un arb] . .
Hestimen

Ejercicios | 1

Broblemas e

Keferencias mbhiogrificas para ledluras posierones

APENIMCES

Apendice A. Lenguajes C ANS1 Guoin de relerencia

Apéndice B. Cadigos de carscieres ASCT

Apéndice C.
Apéndice D. Guia de sintaxis ANSI/ISO estandar C++
Apéndice E. Biblioteca de funciones ANSI C
Apéndice F. Recursos (Libros/Revistas/URL de Internep de €1 ++|

iNDICE ..

Palabras reservadas de C++

y
527
528
528
525
530
531
535
535
536
517
547
REL]
540
542

543
545
575
5™
590
2 3]
713

PROLOGO

INTRODUCCION

¢ Por qué un libro de C al principio del siglo xxi? A pesar de haber cumplido ya sus bodas de plata
(25 afios de vida), C viaja con toda salud hacia los 30 afios de edad que cumplira el préximo afio. Sigue
siendo una de las mejores opciones para la programacion de los sistemas actuales y el medio mas efi-
ciente de aprendizaje para emigrar a los lenguajes reina, por excelencia, en el mundo orientado a objetos
y componentes y el mundo Web (C++, Java,...) que dominan el campo informéatico y de la computacién.

¢ Cudles son las caracteristicas que hacen tan popular a este lenguaje de programacion e idoneo
comoprimer lenguaje de programacion en las carreras profesionales de programador (deaplicaciones
y de sistemas)y del ingeniero de software? Podemos citar algunas muy sobresalientes:

Es muy portable (transportable entre un gran nimero de plataformas hardware y plataformas soft-
ware, sistemas operativos).Existen numerosos compiladores para todo tipo de plataformas sobre
los que corrren los mismos programas fuentes o con ligeras modificaciones.

Es versatil y de bajo nivel, por lo que es idéneo para tareas relativas a la programacion del siste-
ma.

A pesar de ser un excelente lenguaje para programacion de sistemas, es también un eficiente y
potente lenguaje para aplicaciones de propoésito general.

Es un lenguaje pequefio, por lo que es relativamente facil construir compiladores de C y ademas
es también facil de aprender.

Todos los compiladores suelen incluir potentes y excelentes bibliotecas de funciones compatibles
con el estandar ANSI. Los diferentes fabricantes suelen afiadir a sus compiladores funcionalida-
des diversas que aumentan la eficiencia y potencia de los mismos y constituye una notable venta-
ja respecto a otros lenguajes.

El lenguaje presenta una inrerfaz excelente para los sistemas operativos Unix y Windows, junto
con el ya acreditado Linux.

Es un lenguaje muy utilizado para la construccidn de: sistemas operativos, ensambladores, pro-
gramas de comunicaciones, intérpretes de lenguajes, compiladores de lenguajes, editores de textos,
bases de datos, utilidades, controladores de red, etc.

Por todas estas razones y nuestra experiencia docente, decidimos escribir esta obra que, por otra par-
te, pudiera completar nuestras otras obras de programacion escritas para C++, Java, Turbo Pascal y
Visual Basic. Basados en estas premisas este libro se ha escrito pensando en que pudiera servir de

XV

XVi prélogo

referencia y guia de estudio para un primer curso de introduccién a laprogramacion, con una segunda
parte que, a Su vez, sirviera como continuacion, y de introduccion a las estructuras de datos todo ello
utilizando C, y en particular la version estandar ANSI C, como lenguaje de programacion. El objetivo
final que busca es, no sélo describir la sintaxis de C, sino y, sobre todo, mostrar las caracteristicas mas
sobresalientesdel lenguaje, a la vez que se ensefian técnicas de programacion estructurada. Asi pues, los
objetivos fundamentales del libro son:

e Enfasis fuerte en el analisis, construccion y disefio de programas.
¢ Un medio de resolucién de problemas mediante técnicas de programacion.

e Una introduccidn a la informatica y a las ciencias de la computacion usando una herramienta de
programacion denominada C (ANSI C).

¢ Ensefianza de las reglas de sintaxis mas frecuentes y eficientes del lenguaje C.

En resumen, éste es un libro disefiado para ensefiar a programar utilizando C, no un libro disefiado
para ensefiar C, aunque también pretende conseguirlo. No obstante, confiamos que los estudiantes que
utilicen este libro se conviertan de un modo razonable en acérrimos seguidores y adeptos de C, al igual
que nos ocurre a casi todos los programadores que comenzamos a trabajar con este lenguaje. Asi se tra-
tara de ensefiar las técnicas clésicas y avanzadas de programacion estructurada.

LA EVOLUCION DE C: C++

C es un lenguaje de programacion de proposito general que ha estado y sigue estando asociado con el
sistema operativo UNIX. El advenimiento de nuevos sistemas operativos como Windows (95, 98, NT,
2000 o el recientemente anunciado XP sobre la plataforma.NET) o el ya muy popular Linux, la version
abierta, gratuita de Unix que junto con el entorno Gnome esta comenzando a revolucionar el mundo de
la programacién. Esta revolucion, paraddjicamente, proporciona fuerza al lenguaje de programacién de
sistemas C. Todaviay durante muchos afios C seguira siendo uno de los lenguajes lideres en la ense-
fianza de la programacién tanto a nivel profesional como universitario. Como reconocen sus autores
Kernighany Ritchie, en El Lenguaje de Programacion C,2.* edicion, C, aunque es un lenguaje idéneo
para escribir compiladores y sistemas operativos, sigue siendo, sobre todo, un lenguaje para escribir
aplicaciones en numerosas disciplinas. Esta es la razon por la que a algo méas de un afio para cumplir los
30 afios de vida, C sigue siendo el lenguaje méas empleado en Facultades y Escuelas de Ciencias e Inge-
nieria, y en los centros de ensefianza deformacidn profesional, y en particular los innovadores ciclos
de grado superior, asi como en centros de ensefianza media y secundaria, para el aprendizaje de legio-
nes de promociones (generaciones) de estudiantes y profesionales.

Las ideas fundamentales de C provienen del lenguaje BCPL, desarrollado por Martin Richards. La
influencia de BCPL sobre C continud, indirectamente, a través del lenguaje B, escrito por Ken Thomp-
son en 1979 para escribir el primer sistema UNIX de la computadora DEC de Digital PDP-7. BCPL y
B son lenguajes «sin tipos» en contraste con C que posee una variedad de tipos de datos.

En 1975 se publica Pascal User Manual and Report la especificacion del joven lenguaje Pascal
(Wirth, Jensen 75) cuya suerte corre en paralelo con C, aungue al contrario que el compilador de Pas-
cal construido por la casa Borland, que practicamente no se comercializa, C sigue siendo uno de los
reyes de la iniciacién a la programacion. En 1978 se publicé la primera edicién de la obra The C Pro-
gramming Language de Kernighan y Ritchie, conocido por K&R.

En 1983el American National Standards Institute (ANSI) nombrd un comité para conseguir una defi-
nicién estandar de C. La definicion resultante se llam6 ANSI C, que se present6 a finales de 1988y se
aprobé definitivamente por ANSI en 1989y en 1990 se aprob6 por 1SO. La segunda edicion The C
Programming Language se considera también el manual del estandar ANSI C. Por esta razén la espe-
cificacion estandar se suele conocer como ANSVISO C. Los compiladores modernos soportan todas
las caracteristicas definidas en ese estandar.

—

prélogo XVii

Conviviendo con C se encuentra el lenguaje C++, una evolucién légica suya, y que es tal el estado
de simbiosis y sinergia existente entre ambos lenguajes que en muchas ocasiones se habla de C/C++
para definir a los compiladores que siguen estas normas, dado que C++ se considera un superconjunto
de C.

C++ tiene sus origenes en C, Y, sin lugar a dudas, Kemighan y Ritchie — inventoresde C,— son
«padres espirituales» de C++. Asi lo manifiesta Bjarne Stroustrup —inventorde C++— en el prdlogo
de su afamada obra The C++ Programming Lunguage. C se ha conservado asi como un subconjunto de
C++y es, a su vez, extensidn directa de su predecesor BCPL de Richards. Pero C++, tuvo muchas mas
fuentes de inspiracion; ademas de los autores antes citados, cabe destacar de modo especial, Simula 67
de Dahl que fue su principal inspirador; el concepto de clase, clase derivada y funciones virtuales se
tomaron de Simula; otra fuente importante de referencia fue Algol 68 del que se adoptd el concepto de
sobrecarga de operadores y la libertad de situar una declaracién en cualquier lugar en el que pueda
aparecer una sentencia. Otras aportaciones importantes de C++ como son las plantillas (templates)y la
genericidad (tipos genéricos) se tomaron de Ada, Cluy ML.

C++ se comenzo a utilizar como un «C con clases» Y fue a principios de los ochenta cuando comen-
z6 la revolucién C++, aunque su primer uso comercial, fuera de una organizacién de investigacion,
comenzoéenjulio de 1983.Como Stroustrup cuenta en el prélogo de la 3.* edicién de su citada obra, C++
nacid con la idea de que el autor y sus colegas no tuvieran que programar en ensamblador ni en otros
lenguajes al uso (Iéase Pascal, BASIC,FORTRAN,...).La explosion del lenguaje en la comunidad infor-
matica hizo inevitable la estandarizacion. proceso que comenz6 en 1987 [Stroustrup94}. Asi nacié una
primera fuente de estandarizaciéon The Annotated C++ Reference Manual [Ellis 89]'. En diciembre de
1989 se reunio el comité X3J16 de ANSI, bajo el auspicio de Hewlett-Packard y enjunio de 1991 pasé
el primer esfuerzo de estandarizacién internacional de la mano de I1SO, y asi comenzd a nacer el estan-
dar ANSVISO C++. En 1995 se publicé un borrador estandar para su examen publico y en noviembre
de 1997 fue finalmente aprobado el estandar C++ internacional, aunque ha sido en 1998 cuando el pro-
ceso se ha podido dar por terminado (ANSI/ISO C++ Draft Standard).

El libro definitivo y referencia obligada para conocer y dominar C++ es la 3.* edicion de la obra de
Stroustrup [Stroustrup 97] y actualizada en la Special Edition [Stroustrup 20007°.

OBJETIVOS DEL LIBRO

C++ es un superconjunto de C y su mejor extension. Este es un topico conocido por toda la comunidad
de programadores del mundo. Cabe preguntarse como hacen muchos autores, profesores, alumnosy
profesionales ;se debe aprender primero C Yy luego C++7 Stroustrup y una gran mayoria de programa-
dores, contestan asi: «No s6lo es innecesario aprenderprimero C, sino que ademas es una mala idea.
Nosotros no somos tan radicales y pensamos que se puede llegar a C++ procediendo de ambos caminos,
aunque es légico la consideracién citada anteriormente, ya que efectivamente los habitos de programa-
cion estructurada de C pueden retrasar la adquisicion de los conceptos clave de C++, pero también es
cierto que en muchos casos ayuda considerablemente en el aprendizaje.

e

Este libro supone que el lector no es programador de C, ni de ningun otro lenguaje, aunque también
somos conscientes que el lector que haya seguido un primer curso de programacion en algoritmos o en
algun lenguaje estructurado, llamese Pascal o cualquier otro, éste le ayudara favorablemente al correc-
toy répido aprendizaje de la programacion en C y obtendra el méximo rendimiento de esta obra. Sin
embargo, si ya conoce C++, naturalmente no tendra ningun problema, en su aprendizaje, muy al con-
trario, bastara que lea con detalle las diferencias esenciales de los apéndices C y D de modo que ira

! Traducida al espafiol por el autor de este libro junto con el profesor Miguel Katnb, de la Universidad de la Habana [Ellis 94)
? Esta obra se encuentra en proceso de traduccion al espafiol por un equipo de profesores de vanas universidades espafiolas coordi-
nadas por el autor de esta obra

xviii Prélogo

integrando gradualmente los nuevos conceptos que ira encontrando a medida que avance en la obra con
los conceptos clasicos de C++. El libro pretende ensefiar a programar utilizando dos conceptos funda-
mentales:

1. Algoritmos (conjunto de instrucciones programadas para resolver una tarea especifica).

2. Datos (una coleccién de datos que se proporcionan a los algoritmos que se han de ejecutar para
encontrar una solucion: los datos se organizaran en estructuras de datos).

Los dos primeros aspectos, algoritmos y datos, han permanecido invariablesa lo largo de la corta his-
toria de la informdtica/computacién, pero la interrelacion entre ellos si que ha variado y continuara
haciéndolo. Esta interrelacion se conoce comoparadigma de programacion.

En el paradigma de programacién procedimental (procedural opor procedimientos) un problema se
modela directamente mediante un conjunto de algoritmos. Un problema cualquiera, la némina de una
empresa 0 la gestion de ventas de un almacén, se representan como una serie de procedimientos que
manipulan datos. Los datos se almacenan separadamente y se accede a ellos o bien mediante una posi-
cion global o mediante parametros en los procedimientos. Tres lenguajes de programacion clasicos,
FORTRAN, Pascal y C, han representado el arquetipo de la programacion procedimental, también rela-
cionada estrechamente y —a veces— conocida como programacion estructurada. La programacion
con soporte en C++, proporciona el paradigma procedimental con un énfasis en funciones, plantillas de
funciones y algoritmos genéricos.

En la década de los setenta, el enfoque del disefio de programas se desplaz6 desde el paradigma pro-
cedimental al orientado a objetos apoyado en los tipos abstractos de datos (TAD). En este paradigma un
problema modela un conjunto de abstracciones de datos. En C++ estas abstracciones se conocen como
clases. Las clases contienen un conjunto de instancias o ejemplares de la misma que se denominan obje-
tos, de modo que un programa acttia como un conjunto de objetos que se relacionan entre si. La gran
diferencia entre ambos paradigmas reside en el hecho de que los algoritmos asociados con cada clase se
conocen como interfaz piblica de la clase y los datos se almacenan privadamente dentro de cada objeto
de modo que el acceso a los datos esta oculto al programa general y se gestionan a través de la interfaz.

Asi pues, en resumen, los objetivos fundamentales de esta obra son: introduccién a laprogramacion
estructurada y estructuras de datos con el lenguaje estandar C de ANSVISO; otros objetivo comple-
mentario es preparar al lector para su emigracién a C++, para lo cual se han escrito dos apéndices com-
pletos Cy D que presentan una amplia referencia de palabras reservadas y una guia de sintaxis de C++
con el objeto de que el lector pueda convertir programas escritos en C a C++ (con la excepcion de las
propiedades de orientacion a objetos que se salen fuera del &mbito de esta obra).

EL LIBRO COMO HERRAMIENTADOCENTE

La experiencia de los autores desde hace muchos afios con obras muy implantadas en el mundo uni-
versitario como Programacion en C++, Programacion en Turbo Pascal (en su 3." edicidn), estructura
de datos, Fundamentos de programacion (en su 2." edicion y en preparacion la 3." edicién) y Progra-
macion en BASIC (que alcanzo tres ediciones y numerosisimas reimpresiones en la década de los ochen-
ta), nos ha llevado a mantener la estructura de estas obras, actualizandola a los contenidos que se pre-
vén para los estudiantes del futuro siglo xxi. Por ello en el contenido de la obra hemos tenido en cuenta
no solo las directrices de los planes de estudio espafioles de ingenieria informatica e ingenieria técnica
informatica (antiguas licenciaturas y diplomaturas en informatica) y licenciaturas en ciencias de la com-
putacidn, sino también de ingenierias tales como industriales, telecomunicaciones, agrénomos 0 minas,
o las més recientes incorporadas, en Espafia, como ingenieria en geodesia. Asimismo, en el disefio de
la obra se han tenido en cuenta las directrices oficiales vigentes en Espafia para la Formacion Profesio-
nal de Grado Superior; por ello se ha tratado de que el contenido de la obra contemple los programas
propuestos para el ciclo de desarrollo de Aplicaciones Informdticas en el médulo de Programacion
en Lenguaje Estructurado; también se ha tratado en la medida de lo posible de que pueda servir de

_

Prélogo Xix

referenciaal ciclo de Administracion de Sistemas Informdticos en el mddulo de Fundamentos de Pro-
gramacion.

Nuestro conocimiento del mundo educativo latinoamericano nos ha llevado a pensar también en las
carreras de ingenieria de sistemas computacionales y las licenciaturas en informaticay en sistemas de
informacidn, carreras hermanas de las citadas anteriormente.

Por todo lo anterior, el contenido del libro intenta seguir un programa estandar de un primer curso
de introduccién a la programacion y, segun situaciones, un segundo curso de programacion de nivel
medio en asignaturas tales como Metodologia de la Programacion, Fundamentos de Programacion,
Introduccidn a la Programacion, ... Asimismo, se ha buscado seguir las directrices emanadas de la
ACM-IEEE para los cursos CS1 y CS8 en los planes recomendados en los Computing Curricula de
1991y las recomendaciones de los actuales Computing Curricula 2001 en las areas de conocimiento
Programming Fundamentals [PF, 101 y Programming Languages [PL,11], asi como las vigentes en uni-
versidades latinoamericanas que conocemos, y con las que tenemos relaciones profesionales.

El contenido del libro abarca los citados programas y comienza con la introduccion a los algoritmos
y a laprogramacion, para llegar a estructuras de datos. Por esta circunstancia la estructura del curso no
ha de ser secuencialen su totalidad sino que el profesor/maestro y el alumno/lector podran estudiar sus
materias en el orden que consideren mas oportuno. Esta es la razon principal por la cual el libro se ha
organizado en tres partes y en seis apéndices.

Setrata de describir el paradigma mas popular en el mundo de la programacion: el procedimental y pre-
parar al lector para su inmersion en el ya implantado paradigma orientado a objetos. Los cursos de pro-
gramacion en sus niveles inicial y medio estan evolucionando para aprovechar las ventajas de nuevas y
futuras tendencias en ingenieria de software y en disefio de lenguajes de programacidn, especificamente
disefio y programacion orientada a objetos. Algunas facultades y escuelas de ingenieros,junto con la nue-
va formacion profesional (ciclos formativos de nivel superior) en Espafiay en Latinoamérica, estan intro-
duciendo a sus alumnos en la programacion orientadaa objetos, inmediatamente después del conocimiento
de la programacion estructurada, e incluso —en ocasiones antes—. Por esta razdn, una metodologia que
se podria seguir seriaimpartir un curso de fundamentos de programacion seguido de estructuras de datos
y luego seguir con un segundo nivel de programacién avanzada que constituyen las tres partes del libro.
Pensando en aquellos alumnos que deseen continuar su formacion estudiando C++ se han escrito los apén-
dices Cy D, que les permita adaptarse facilmente a las particularidades basicas de C++y poder continuar
sin esfuerzo la parte primeray avanzar con mayor rapidez a las siguientes partes del libro.

CARACTERISTICAS IMPORTANTESDEL LIBRO

Programacionen C, utiliza los siguientes elementos clave para conseguir obtener el mayor rendimien-
to del material incluido en sus diferentes capitulos:

¢ Contenido. Enumera los apartados descritos en el capitulo.

e Introduccidn.Abre el capitulo con una breve revision de los puntos y objetivos mas importantes que
se trataran y todo aquello que se puede esperar del mismo.

e Conceptos clave. Enumera los términos informéticos y de programacién mas notables que se tra-
taran en el capitulo.

 Descripcién del capitulo. Explicacion usual de los apartados correspondientes del capitulo. En
cada capitulo se incluyen ejemplos y ejercicios resueltos. Los listados de los programas comple-
tos o parciales se escriben en letra courier con la finalidad principal de que puedan ser identifica-
dos facilmente por el lector.

¢ Resumen del capitulo. Revisa los temas importantes que los estudiantes y lectores deben com-
prender y recordar. Busca también ayudar a reforzar los conceptos clave que se han aprendido en
el capitulo.

XX Prélogo

e Ejercicios. Al final de cada capitulo se proporciona a los lectores una lista de ejercicios sencillos
de modo que le sirvan de oportunidad para que puedan medir el avance experimentado mientras
leen y siguen - e n su caso— las explicaciones del profesor relativas al capitulo.

e Problemas. Después del apartado Ejercicios, se afiaden una serie de actividades y proyectos de
programacién que se le proponen al lector como tarea complementaria de los ejercicios y de un
nivel de dificultad algo mayor.

A lo largo de todo el libro se incluyen una serie de recuadros —sombreados 0 no— que ofrecen al
lector consejos, advertencias y reglas de uso del lenguaje y de técnicas de programacion, con la finali-
dad de que puedan ir asimilando conceptos practicos de interés que les ayuden en el aprendizaje y cons-
truccion de programas eficientes y de fécil lectura.

* Recuadro. Conceptos importantes que el lector debe considerar durante el desarrollo del capitulo.

« Consejo. Ideas, sugerencias, recomendaciones, ... al lector, con el objetivo de obtener el mayor ren-
dimiento posible del lenguaje y de la programacion.

e Precaucion. Advertencia al lector para que tenga cuidado al hacer uso de los conceptos incluidos
en el recuadro adjunto.

¢ Reglas. Normas o0 ideas que el lector debe seguir preferentemente en el disefio y construccién de
sus programas.

ORGANIZACION DEL LIBRO

El libro se divide en tres partes que unidas constituyen un curso completo de programacion en C. Dado
que el conocimiento es acumulativo, los primeros capitulos proporcionan el fundamento conceptual
para la comprension y aprendizaje de C y una guia a los estudiantes a través de ejemplos y ejercicios
sencillos y los capitulos posteriores presentan de modo progresivo la programacion en C en detalle, en
el paradigma procedimental. Los apéndices contienen un conjunto de temas importantes que incluyen
desde guias de sintaxis de ANSVISO C, hasta o una biblioteca de funciones y clases, junto con una
extensa bibliografia de algoritmos, estructura de datos, programacién orientada a objetos y una amplia
lista de sitios de Internet (URLs) donde el lector podrd complementar, ampliar y profundizar en el mun-
do de la programacion y en la introduccion a la ingenieria de software.

PARTE |. METODOLOGIA DE LA PROGRAMACION

Esta parte es un primer curso de programacion para alumnos principiantes en asignaturas de intro-
duccidn a la programacion en lenguajes estructurados. Esta parte sirve tanto para cursos de C como de
C++ (en este caso con la ayuda de los apéndices C y D). Esta parte comienza con una introduccién a
la informética y a las ciencias de la computacion como a la programacion. Describe los elementos
basicos constitutivos de un programa y las herramientas de programacidn utilizadas tales como algo-
ritmos, diagramas de flujo, etc. Asimismo se incluye un curso del lenguaje C y técnicas de programa-
cion que debera emplear el lector en su aprendizaje de programacion. La obra se estructura en tres
partes: Metodologia de programacion (conceptos basicos para el analisis, disefio y construccion de
programas), Fundamentos de programacidon en C (sintaxis, reglas y criterios de construccion del len-
guaje de programacion C junto con temas especificos de C como punteros, arrays, cadenas,...), Estruc-
tura de datos (en esta parte se analizan los archivosy las estructuras dindmicas de datos tales como lis-
tas enlazadas, pilas, colas y arboles). Completa la obra una serie de apéndices que buscan
esencialmente proporcionar informacién complementaria de utilidad para el lector en su periodo de
aprendizaje en programacion en C, asi como un pequefio curso de C++ en forma de palabras reser-
vadas y guia de referencia de sintaxis que permita al lector emigrar al lenguaje C++ facilitandole para
ello las reglas y normas necesarias para convertir programas escritos en C a programas escritos
en C++.

-

Prélogo XXi

Capitulo 1. Introduccién a | a ciencia de | a computaciény a laprogramacion. Proporciona una revi-
sion de las caracteristicas mas importantes necesarias para seguir bien un curso de programacion basi-
coy avanzadoen C. Para ello se describe la organizacion fisica de una computadorajunto con los con-
ceptos de algoritmo y de programa. Asimismo se explican los diferentes tipos de lenguajes de
programacion y una breve historia del lenguaje C.

Capitulo2. Fundamentos de programacioén. En este capitulo se describen las fases de resolucion de
un problema y los diferentes tipos de programacion (modulary estructurada).Se explican también las
herramientas de programacion y representaciones graficas utilizadas mas frecuentemente en el mundo
de la programacion.

PARTE II. FUNDAMENTOS DE PROGRAMACION EN C

Capitulo3. El lenguaje C: Elementos basicos. Ensefia la estructura general de un programa en C jun-
to con las operaciones basicas de creacion, ejecucion y depuracion de un programa. Se describen tam-
bién los elementos clave de un programa (palabras reservadas, comentarios, tipos de datos, constantes
y variables,...) junto con los métodos para efectuar entrada y salida de datos a la computadora.

Capitulo4. Operadoresy expresiones. Se describen los conceptos y tipos de operadores y expresiones,
conversionesy precedencias. Se destacan operadores especiales tales como manipulacion de bits, con-
dicional, si zeof, (), [],::, coma,etc.

Capitulo 5. Estructuras de seleccion: sentencias i f y swi t ch Introduce al concepto de estructura
de control y, en particular, estructuras de seleccion, talescomo if , if-el se, case yswitch.
Expresiones condicionales con el operador ? :, evaluacion en cortocircuito de expresiones ldgicas,
errores frecuentes de programacion y puesta a punto de programas.

Capitulo 6. Estructuras repetitivas: bucles (for, whil e y do-while). El capitulointroduce las
estructuras repetitivas (f or, whi | e y do-whi |€). Examina la repeticion (iteracién)de sentencias
en detalley compara los bucles controlados por centinela, bandera, etc. Explica precauciones y reglas
de uso de disefio de bucles. Compara los tres diferentes tipos de bucles, asi como el concepto de bucles
anidados.

Capitulo 7. Funciones. Examina el disefio y construccién de médulos de programas mediante funcio-
nes. Se define la estructura de una funcion, prototipos y parametros. El concepto de funciones en linea
(inline) . Uso de bibliotecas de funciones, clases de almacenamiento, ambitos, visibilidad de una
funcién. Asimismo se introduce el concepto de recursividad y plantillas de funciones.

Capitulo 8. Arrays (listasy tablas). Examina la estructuracion de los datos en arrays o grupos de ele-
mentos dato del mismo tipo. El capitulo presenta numerosos ejemplos de arays de uno, dos 0 multiples
indices. Se realiza una introduccion a los algoritmos de ordenacion y busqueda de elementos en una

lista.

Capitulo 9. Estructurasy uniones. Conceptos de estructuras, declaracion, definicién, iniciacion, uso
y tamafio. Acceso a estructuras, arrays de estructuras y estructuras anidadas. Uniones y enumeracio-
nes.

Capitulo 10. Punteros (apuntadores).Presenta una de las caracteristicas mas potentes y eficientes del
lenguaje C, los punteros. Este capitulo proporciona explicacion detallada de los punteros, arrays de
punteros, punteros de cadena, aritmética de punteros, punteros constantes, punteros como argumentos
de funciones, punteros a funciones y a estructuras.

XXii

Prélogo

Capitulo 11.Asignacién dindmica de memoria. En este capitulo se describe la gestion dindmica de la
memoria y las funciones asociadas para esas tareas :mal loc (), free (), calloc (),
real l oc ().Sedan reglas de funcionamiento de esas funciones y para asignacion y liberacion de
memoria. También se describe el concepto de arrays dindmicos y asignacién de memoria para arrays.

Capitulo 12. Cadenas. Se examina el concepto de cadena (string)asi como las relaciones entre punte-
ros, arrays y cadenas en C. Se introducen conceptos basicos de manipulacién de cadenas junto con ope-
raciones basicas tales como longitud, concatenacion, comparacion, conversion y bisqueda de caracte-
res y cadenas. Se describen las funciones mas notables de la biblioteca st ri ng. h.

PARTE 111. ESTRUCTURA DE DATOS

Esta parte es clave en el aprendizaje de técnicas de programacion. Tal es su importancia que los planes
de estudio de cualquier carrera de ingenieria informatica o de ciencias de la computacion incluyen una
asignatura troncal denominada Estructura de datos.

Capitulo 13. Archivos. El concepto de archivo junto con su definicion e implementacion es motivo de
estudio en este capitulo. Las operaciones usuales se estudian con detenimiento.

Capitulo 14. Listas enlazadas. Una lista enlazada es una estructura de datos que mantiene una colec-
cion de elementos, pero el nimero de ellos no se conoce por anticipado o varia en un amplio rango. La
lista enlazada se compone de elementos que contienen un valor y un puntero. El capitulo describe los
fundamentos tedricos y las operaciones que se pueden realizar en la lista enlazada. También se descri-
ben los distintos tipos de listas enlazadas.

Capitulo 15. Pilas y colas. Colas de prioridades. Las ideas abstractas de pila y cola se describen en el
capitulo. Pilas y colas se pueden implementar de diferentes maneras, bien con vectores (arrays) o con
listas enlazadas.

Capitulo 16. Arboles. Los arboles son otro tipo de estructura de datos dindmica y no lineal. Las ope-
raciones basicas en los arboles junto con sus operaciones fundamentales se estudian en el Capitulo 21.

APENDICES

En todos los libros dedicados a la ensefianza y aprendizaje de técnicas de programacion es frecuente
incluir apéndices de temas complementarios a los explicados en los capitulos anteriores. Estos apéndi-
ces sirven de guia y referencia de elementos importantes del lenguaje y de la programacion de compu-
tadoras.

Apéndice A. Lenguaje ANSI C. Guh de referencia. Descripcion detallada de los elementos funda-
mentales del estandar C.

Apéndice B. Codigos de caracteres ASCZZ. Listado del juego de caracteres del codigo ASCII utiliza-
do en la actualidad en la mayoria de las computadoras.

Apéndice C. Palabras reservadas de C++. Listado por orden alfabético de las palabras reservadas en
ANSI/ISO C++, al estilo de diccionario. Definicion y uso de cada palabra reservada, con ejemplos sen-
cillos de aplicacion.

Apéndice D. G u h de sintaxis ANSI/ISO estandar C++. Referencia completa de sintaxis de C++ para
quejunto con las palabras reservadas facilite la migracion de programas C a C++ y permita al lector con-
vertir programas estructurados escritos en C a C++.

prélogo xxiii

Apéndice E. Biblioteca de funciones estandar ANSI C. Diccionario en orden alfabético de las fun-
ciones estandar de la biblioteca estandar de ANSI/ISO C++, con indicacion de la sintaxis del prototipo
de cada funcidn, una descripcion de su misidn junto con algunos ejemplos sencillos de la misma.

Apéndice F. Recursos de C (Libros,Revistas, URLs de Internet). Enumeracion de los libros més sobre-
salientes empleados por los autores en la escritura de esta obra, asi como otras obras importantes com-
plementarias que ayuden al lector que desee profundizar o ampliar aquellos conceptos que considere
necesario conocer con mas detenimiento. Asimismo se adjuntan direcciones de Internet importantes
para el programador de C junto con las revistas mas prestigiosas del sector informéatico y de computa-
cion en el campo de programacion.

AGRADECIMIENTOS

Un libro nunca es fruto Unico del autor, sobre todo si el libro esta concebido como libro de texto y auto-
aprendizaje, y pretende llegar a lectores y estudiantes de informética y de computacion, y, en general,
de ciencias e ingenieria, formacion profesional de grado superior,. ..,asi como autodidactas en asigna-
turas relacionadas con la programacién (introduccién,fundamentos, avanzada, etc.). Esta obra no es
una excepcién a la regla y son muchas las personas que nos han ayudado a terminarla. En primer lugar
nuestros colegas de la Universidad Pontificia de Salamanca en el campus de Madrid, y en particular del
Departamento de Lenguajesy Sistemas Informaticos e Ingenieria de Software de la misma que desde
hace muchos afios nos ayudan y colaboran en la imparticidn de las diferentes asignaturas del departa-
mento y sobre todo en la elaboracién de los programas y planes de estudio de las mismas. A todos ellos
les agradecemos publicamente su apoyo y ayuda.

Asimismo deseamos expresar nuestro agradecimiento a la innumerable cantidad de colegas (profe-
sores y maestros) de universidades espafiolas y latinoamericanas que utilizan nuestros libros para su
clases y laboratorios de practicas. Estos colegas no sélo usan nuestros textos sino que nos hacen suge-
rencias y nos dan consejos de como mejorarlos. Nos seria imposible citarlos a todos por lo que sélo
podemos mostrar nuestro agradecimiento eterno por su apoyo continuo.

De igual modo no podemos olvidarnos de la razén fundamental de ser de este libro: los lectores. A
ellos también mi agradecimiento eterno. A nuestros alumnos de Espafia y Latinoamérica; a los que no
siendo alumnos personales, 1o son «virtuales» al saber que existen y que con sus lecturas, sus criticas,
sus comentarios, hacen que sigamos trabajando pensando en ellos; y a los numerosos lectores profe-
sionales o autodidactas que confian en nuestras obras y en particular en ésta. A todos ellos nuestro reco-
nocimiento mas sincero de gratitud.

Ademas de estos compafieros en docencia, no puedo dejar de agradecer, una vez mas, a nuestra edi-
tora —y, sin embargo, amiga— Concha Fernandez, las constantes muestras de afecto y comprension
que siempre tiene, y ésta no ha sido una excepcion, hacia nuestras personas y nuestra obra. Sus conti-
nUoS consejos, sugerencias y recomendaciones, siempre son acertadas y, ademas, faciles de seguir; por
si eso no fuera suficiente, siempre benefician a la obra.

A riesgo de ser reiterativos, nuestro reconocimiento y agradecimiento eterno a todos: alumnos, lec-
tores, colegas, profesores, maestros, monitores y editores. Gracias por vuestra inestimable e impagable
ayuda.

En Carchelejo, Jaén (Andalucia)y en Madrid, Febrero de 2001.

Los autores

PARTE I

METODOLOGIA
DE LA PROGRAMACION

CAPITULO 1

INTRODUCCION A LA CIENCIA
DE LA COMPUTACION
Y A LA PROGRAMACION

CONTENIDO
11 ¢Qué es una computadora? 1.5. Los lenguajes de programa-
12 ¢Qué es programacion? cion. _ . _
13 Organizacion fisica de una 16 F{;&gp%&ges(? historia y ca-
computadora. :
1.4. Algoritmosy programas. 1.7. Resumen.

——

INTRODUCCION

Las computadoras electrdnicas modernas son uno de los productos mais impor-
tantes del siglo xx y aspeacialmente de las dos dltimas décadas. Son una herra-
mienta esencial en muchas dreas: Industria, gobierno, ciencia, educacion..., en
realidad en casi todos los campoa de nuestras vidas, El papel de los programas
de computadoras es esencial; sin una lista de instrucciones a seguir, la compu-
tadora es virtualmente inttil. Loa lenguajes de programacicn nos permiten
escribir ssos programas ¥, por congsiguiente, comunicarnos con las computa-
doras.

En esta obra, ust ed comenzaraa estudiar la ciencia de las computadoras o
informatica a través de uno de los lenguajes de programacion més versatiles
disponibleshoy dia: el lenguaje C. Este capitulo le introduce a la computadora
y sus componentes, asi como a los lenguajes de programacion, y a la metodo-
logia a seguir para la resolucion de problemas con computadoras y con una
herramienta denominada C.

La principal razén para que | as personas aprendan lenguajes y técnicas de
programacion es utilizar Ia computadora cOmo una herramienta para resolver

problemas.
CONCEPTOS CLAVE
e Algoritmo. + Lenguaje de programacion.
¢ Athlon. e Lenguaje ensamblador.
e Byte. e Lenguaje maquina.
e CD-ROM. e MB.
+ Compilacién independiente. e Memoria.
+ Compilador. ¢ Memoria auxiliar,
e Computadora. e Memoria central.
e Disquete. s Mobdem,
e DVD. e MHz.
e Hita. ¢ Microprocesador.
* GB. e Ordenador.
* Hardware. e Pentium.
= Hz. e Portabilidad.
e Intel. e software.
¢ Intérprete. e Unidad Central de Proceso.
e KB.

1.1.

1.2

—

Programacion en C. Metodologia, algoritmos y estructura de datos

¢QUE ES UNA COMPUTADORA?

Una computadora’es un dispositivo electrénico utilizado para procesar informacién y obtener resul-
tados. Los datos y la informacién se pueden introducir en la computadora por la entrada (input)y a
continuacion se procesan para producir una salida (output,resultados), como se observaen la Figura 1.1.
La computadora se puede considerar como una unidad en la que se ponen ciertos datos, o entrada de
datos. La computadora procesa estos datos y produce unos datos de salida. Los datos de entraday los
datos de salida pueden ser, realmente, cualquier cosa, texto, dibujos 0 sonido. El sistema mas sencillo
de comunicarse con la computadora una persona es mediante un teclado, una pantalla (monitor) y un
raton (mouse).Hoy dia existen otros dispositivos muy populares tales como escaneres, micréfonos, alta-
voces, camaras de video, etc.; de igual manera, a través de médems, es posible conectar su computado-
ra con otras computadorasa través de la red Internet.

. COMPUTADORA |
| I
| |
| —_— 1
| | Programa | |
| S
L s — il — _ = . _|

Datos de Datos de

entrada salida

Figura 1.1. Proceso de informacion en una computadora.

Los componentes fisicos que constituyen la computadora, junto con los dispositivos que realizan
las tareas de entraday salida, se conocen con el término hardware (traducido en ocasiones por mate-
rial). El conjunto de instrucciones que hacen funcionar a la computadora se denomina programa que
se encuentra almacenado en su memoria; a la persona que escribe programas se llamaprogramador y
al conjunto de programas escritos para una computadorase Ilama software (traducidoen ocasiones por
logical). Este libro se dedicara casi exclusivamente al software, pero se hara una breve revision del
hardware como recordatorio 0 introduccién segun sean los conocimientos del lector en esta materia,

ORGANIZACIONFISICA DE UNA COMPUTADORA (HARDWARE)

La mayoria de las computadoras, grandes 0 pequefias, estan organizadas como se muestra en la Figu-
ra 1.2. Ellas constan fundamentalmente de tres componentes principales: unidad central de proceso
(UCP) oprocesador (compuesta de la UAL, Unidad aritmético-16gicay la UOC, Unidad de Control),
la memoria principal o central y el programa.

' En Espafia esta muy extendido el término ordenador para referirse a la traduccion de la palabra inglesa computer.

1

Introduccién a la ciencia de la computacion y a la programacion 5

|
3
o LIAL 5 E
g 2
E - 3 B
=
= Liniglsd 2
oy de Control L Programa | 2 |
T
| J — = |
Entrada de datos T T Salida de datos

Figura 1.2. Organizacién fisica de una computadora.

Si a la organizacion fisica de la Figura 1.2 se le afiaden los dispositivos para comunicacion con la
computadora, aparece la estructura tipica de un sistema de computadora: dispositivos de entrada, dis-
positivo de salida, memoria externa y el procesador/memoria central con su programa (Fig. 1.3).

1.2.1. Dispositivos de Entrada/Salida (E/S)

Los dispositivosde Entrada/Salida (E/S) [Input/Output (1/O, en inglés)] permiten la comunicacion entre
la computadora y el usuario. Los dispositivos de entrada, como su nombre indica, sirven para introdu-
cir datos (informacidn) en la computadora para su proceso. Los datos se leen de los dispositivos de
entrada y se almacenan en la memoria central o interna. Los dispositivos de entrada convierten la infor-
macion de entrada en sefiales eléctricas que se almacenan en la memoria central. Dispositivos de entra-
da tipicos son los teclados; otros son: lectores de tarjetas —ya en desuso—, lapices Opticos, palan-
cas de mando (joystick), lectores de cddigos de barras, escaneres, micréfonos, etc. Hoy dia tal vez
el dispositivo de entrada mas popular es el ratdn (mouse) que mueve un puntero electrénico sobre la
pantalla que facilita la interaccion usuario-maquina’.

UCP (Procesador)
Unidad de
control
[| i
Dispositivos | Dispositivos
| de entrada 2 | - de salida
Memoria central
| |
Unidad Memoria externa
aritmética 'y ~#——@= g|lmacenamiento
légica permanente

Figura 1.3. Organizacion fisica de una computadora.

* Todas las acciones a realizar por el usuario se realizaran con el raton con la excepcion de las que se requieren de fa escri-
tura de datos por teclado.

6 Programacion en C. Metodologia, algoritmos y estructura de datos

Los dispositivos de salida permiten representar los resultados (salida) del proceso de los datos. El dis-
positivo de salida tipico es la pantalla (CRT)' o monitor. Otros dispositivos de salida son: impresoras
(imprimen resultados en papel), trazadores graficos (plotters), reconocedoresde voz, altavoces, etc.

El teclado y la pantalla constituyen —en muchas ocasiones — un Unico dispositivo, denominado
terminal. Un teclado de terminal es similar al teclado de una méaquina de escribir moderna con la dife-
rencia de algunas teclas extras que tiene el terminal para funciones especiales. Si esta utilizando una
computadora personal, el teclado y el monitor son dispositivos independientes conectados a la compu-
tadora por cables. En ocasiones a la impresora se la conoce como dispositivo de copia dura («hard
copy»), debido a que la escritura en la impresora es una copia permanente (dura) de la salida, y a la
pantalla se le denomina en contraste: dispositivode copia blanda («soft copy»),ya que se pierde la
pantalla actual cuando se visualiza la siguiente.

Los dispositivos de entrada/salida y los dispositivos de almacenamiento secundario o auxiliar
(memoria externa) se conocen también con el nombre de dispositivos periféricos 0 simplemente peri-
féricos ya que, normalmente, son externos a la computadora. Estos dispositivos son unidad de discos
(disquetes, CD-ROM, DVDs, cintas, videocamaras, etc.).

Figura 1.4. Dispositivo de salida (impresora)

1.2.2. La memoria central (interna)

La memoria central o simplemente memoria (internao principal) se utiliza para almacenar informa-
cion (RAM, Random Access Memory). En general, la informacion almacenada en memoria puede ser
de dos tipos: las instrucciones de un programay los datos con los que operan las instrucciones. Por
ejemplo, para que un programa se pueda ejecutar (correr, rodar, funcionar..., en inglés run),debe ser
situado en la memoria central, en una operacion denominada carga (load)del programa. Después, cuan-
do se ejecuta (serealiza, funciona) el programa, cualquier dato a procesur por el programa se debe lle-
var a la memoria mediante las instrucciones del programa. En la memoria central, hay también datos
diversos y espacio de almacenamiento temporal que necesita el programa cuando se ejecuta con €l a fin
de poder funcionar.

' Cathode Ray Tube: Tubo de rayos catodicos

Introduccidna la ciencia de la computacién y a la programacion 7

Ejecucion

Cuando un programa se ejecuta (realiza, funciona) en una computadora, se dice que se ejecuta.

Con el objetivo de que el procesador pueda obtener los datos de la memoria central mas rapida-
mente, la mayoria de los procesadores actuales (muy rapidos) utilizan con frecuencia una memoria
denominada caché que sirva para almacenamiento intermedio de datos entre el procesador y la memo-
ria principal La memoria caché —en la actualidad — se incorpora casi siempre al procesador.

La memoria central de una computadora es una zona de almacenamiento organizada en centenares
o millares de unidades de almacenamiento individual o celdas. La memoria central consta de un con-
junto de celdas de memoria (estas celdas o posiciones de memoria se denominan también palabras,
aunque no «guardanx» analogia con las palabras del lenguaje). El nimero de celdas de memoria de la
memoria central, dependiendo del tipo y modelo de computadora; hoy dia el nimero suele ser millones
(32.64,128, etc.) Cada celda de memoria consta de un cierto numero de bits (normalmente 8, un byze).

La unidad elemental de memoria se llama bvre (octeto).Un byte tiene la capacidad de almacenar un
caracter de informacion, y esta formado por un conjunto de unidades mas pequefias de almacenamien-
to denominadas bits, que son digitos binarios (0 0 1).

Figura 1.5. Computadora portatil digital.

Generalinente. se acepta que un byte contiene ocho bits. Por consiguiente, si se desea almacenar la
frase

Hola Mortimer tode va bien

la computadora utilizara exactamente 27 bytes consecutivos de memoria. Obsérvese que, ademas de las
letras, existen cuatro espacios en blanco y un punto (un espacio es un caracter que emplea también un
byte). De modo similar, el namero del pasaporte

75 487891
ocupara 9 bytes. pero si se almacena como

FS 748 7891

8 Programacion en C. Metodologia, algoritmos y estructura de datos

ocupard 11. Estos datos se llaman alfanuméricos, y pueden constar del alfabeto, digitos o incluso carac-
teres especiales (simbolos: $, #, * etc.).

Mientras que cada caracter de un dato alfanumérico se almacena en un byte, la informacién numé-
rica se almacena de un modo diferente. Los datos numéricos ocupan 2,4 e incluso 8 bytes consecutivos,
dependiendo del tipo de dato numérico (se vera en el Capitulo 3).

Existen dos conceptos importantes asociados a cada celda o posicion de memoria: su direccion y su
contenido. Cada celda 0 byte tiene asociada una Unica direccion que indica su posicién relativa en
memoria y mediante la cual se puede acceder a la posicidn para almacenar o recuperar informacion. La
informacion almacenada en una posicion de memoria es su contenido. La Figura 1.6 muestra una memo-
ria de computadora que consta de 1000 posiciones en memoria con direcciones de 0 a 999. El contenido
de estas direcciones o posiciones de memoria se llaman palabras, de modo gque existen palabras de 8,
16, 32 y 64 bits. Por consiguiente, si trabaja con una maquina de 32 bits, significa que en cada posicion
de memoria de su computadora puede alojar 32 bits, es decir 32 digitos, bien ceros o unos.

Siempre que una nueva informacion se almacena en una posicion, se destruye (desaparece) cual-
quier informacion que en ella hubiera y no se puede recuperar. La direccion es permanente y Unica, el
contenido puede cambiar mientras se ejecuta un programa.

La memoria central de una computadora puede tener desde unos centenares de millares de bytes
hasta millones de bytes. Como el byte es una unidad elemental de almacenamiento, se utilizan maltiplos
para definir el tamafio de la memoria central: Kilo-byte (KB o Kb) igual a 1.024 bytes (2') — précti-
camente se toman 1.000— y Megabyte (MB o0 Mb) igual a 1024 x 1024 bytes (2*’) — practicamente
se considera un 1.000.000—.

Tabla 1.1. Unidades de medida de almacenamiento.

Byte Byte (b) equivale a 8 bits
Kilobyte Kbyte (Kb) equivale a | .24 bytes
Megabyte Mbyte (Mb) equivale a 1.024 Kbytes
Gigabyte Ghyte (Gb) equivale a 1.024 Mbytes
Terabyte Thyte (Th) equivale a 1.024 Gbytes

1 Th=1.024Gb = 1.024Mb = 1.048.576 Kb =1.073.741.824 b

En la actualidad, las computadoras personales tipo PC suelen tener memorias centrales de 32 a 64
Mb, aunque ya es muy frecuente ver PC con memorias de 128 Mby 192 Mb.

direcciones 999
rad
o = - | ~ Contenido de fa
. e s dirgcoion 397
: =
: —

Figura 1.6. Memoria central de una computadora.

—

Introduccién a la ciencia de la computacién y a la programacion 9

La memoria principal es la encargada de almacenar los programas y datos que se estan ejecutando
y su principal caracteristica es que el acceso a los datos o instrucciones desde esta memoria €s muy
rapido.

En la memoria principal se almacenan:

« Los datos enviados para procesarse desde los dispositivos de entrada.
e Los programas que realizaran los procesos.
« Los resultados obtenidos preparados para enviarse a un dispositivo de salida.

En la memoria principal se pueden distinguir dos tipos de memoria; RAM y ROM. La memoria
RAM (Random Access Memory, Memoria de acceso aleatorio) almacena los datos e instrucciones a
procesar. Es un tipo de memoria volatil (su contenido se pierde cuando se apaga la computadora); esta
memoria es, en realidad, la que se suele conocer como memoria principal o de trabajo; en esta memo-
ria se pueden escribir datos y leer de ella. La memoria ROM (Read Only Memory) es una memoria
permanente en la que no se puede escribir (viene pregrabada «grabada» por el fabricante; es una memo-
ria de solo lectura. Los programas almacenados en ROM no se pierden al apagar la computadora y
cuando se enciende, se lee la informacion almacenada en esta memoria. Al ser esta memoria de s6lo
lectura, los programas almacenados en los chips ROM no se pueden modificar y suelen utilizarse para |
almacenar los programas basicos que sirven para arrancar la computadora.

1.2.3. La Unidad Central de Proceso (UCP)

La Unidad Central de Proceso, UCP (Central Processing Unit, CPU, en inglés), dirige y controla el
proceso de informacidnrealizado por la computadora. La UCP procesa 0 manipula la informacion alma-
cenada en memoria; puede recuperar informacion desde memoria (esta informacion son datos o ins-
trucciones: programas). También puede almacenar los resultados de estos procesos en memoria para su
uso posterior.

Unidad central de proceso

Memoria central
Unidad légica y aritmética |

Unidad de control |

| | Programa
1 1
Datos de Datos de
entrada salida

Figura 1.7. Unidad Central de Proceso.

10

Programacion en C. Metodologia, algoritmos y estructura de datos

La UCP consta de dos componentes: unidad de control (UC)y unidad aritmético-légica (UAL)
(Fig. 1.7). La unidad de control (Control Unit,CU) coordina las actividades de la computadora y deter-
mina qué operaciones se deben realizar y en qué orden; asimismo controla y sincroniza todo el proce-
so de la computadora.

La unidad aritmético-l6gica (Aritmethic-Logic Unit, ALU) realiza operaciones aritméticas y 16gi-
cas, tales como suma, resta, multiplicacion, division y comparaciones. Los datos en la memoria central
se pueden leer (recuperar) o escribir (cambiar) por la UCP.

1.2.4. El microprocesador

El microprocesadores un chip (un circuito integrado) que controla y realiza las funciones y opera-
ciones con los datos. Se suele conocer como procesador y es el cerebro y corazén de la computadora.
En realidad el microprocesador representa a la Unidad Central de Proceso.

La velocidad de un microprocesador se mide en megahercios (MHz) y manipulan palabras de 4 a
64 bits. Los microprocesadores historicos van desde el 8080 hasta el 80486/80586 pasando por el 8086,
8088,80286 y 80386, todos ellos del fabricante Intel. Existen otras empresas como AMD y Cyrix, con
modelos similares. Los microprocesadores de segunda generacion de Intel son los Pentium, Pentium
MM X, Pentium II con velocidades de 233,266,300 y 450 MHz. Los microprocesadores mas modernos
(de 3.”generacidn) son los Pentium I1I con frecuencias de 450 hasta 1 GHz.

La guerra de los microprocesadores se centrd en el afio 2000 en torno a AMD, que ofrecen ya pro-
cesadores Athlon de 1GHz y de |.2 GHz. Intel presentd a finales de noviembre de 2000 su nueva arqui-
tectura Pentium IV —a generacidn siguiente a la familia x86—, que ofrecen chips de velocidades de 1.3.
1.4y 1.5GHz y anuncian velocidades de hasta 2 GHz.

: - —
| |
. o 1 -
D t : |
AN ' — oo Unidad de control
de entrada [principal - |
-] = -
A
|
|
|
|
|
» Y L PR SR S
| |
Dispositivos l Dispositivos [Unidad aritmético |
de salida ' de E/S y légica
| |
Microprocesador

Figura 1.8. Organizacién fisica de una computadora con un microprocesador.

1.2.5. Memoria auxiliar (externa)

Cuando un programa se ejecuta, se debe situar primero en memoria central de igual modo que los datos.
Sin embargo, la informacién almacenada en la memoria se pierde (borra)cuando se apaga (desconec-
ta de lared eléctrica) la computadora y, por otra parte, la memoria central es limitada en capacidad. Por

Introduccién a la ciencia de la computacién y a la programacion 1

estarazén, para poder disponer de almacenamiento permanente, tanto para programas como para datos,
se necesitan dispositivos de almacenamiento secundario, auxiliar o masivo («mass storage», 0 «secon-
dary storage»).

Los dispositivos de almacenamiento o memorias auxiliares (externas o secundarias) mas comin-
mente utilizados son: cintas magnéticas, discos magnéticos, discos compactos (CD-ROM Compact
Disk Read Only Memory), y videodiscos digitales (DVD). Las cintas son utilizadas principalmente por
sistemas de computadoras grandes similares a las utilizadas en los equipos de audio. Los discos y dis-
quetes magnéticos se utilizan por todas las computadoras, especialmente las medias y pequefias —las
computadoras personales—. Los discos pueden ser duros, de gran capacidad de almacenamiento (su
capacidad minima es de 10 Mb), disquetes o discosflexibles («floppy disk») (360Kb a 1,44 Mb). El
tamanfio fisico de los disquetes y por el que son conocidos es de 5'/: (5,25)", 3'/2(3,5)". Las dos caras de
los discos se utilizan para almacenar informacion. La capacidad de almacenamiento varia en funcion de
la intensidad de su capa ferromagnética y pueden ser de doble densidad (DD) o de alta densidad (HD).
El disquete normal suele ser de 3,5" y de 1,44 Mb de capacidad.

Figura 1.9. Memorias auxiliares: Unidad y lector ZIP de 100 Mb.

Otro dispositivo cada vez mas utilizado en una computadora es el CD-ROM (Compact Disk) que es
un disco de gran capacidad de almacenamiento (650 Mb) merced a la técnica utilizada que es el laser.
El videodisco digital (DVD)es otro disco compacto de gran capacidad de almacenamiento (equivale a
26 CD-ROM) que por ahora es de 4,7 Gb.

Existen unos tipos de discos que se almacenan en unas unidades especiales denominadas zip que tie-
nen gran capacidad de almacenamiento comparada con los disquetes tradicionales de |.44 Mb. Estos dis-
quetes son capaces de almacenar 100 Mb.

La informacién almacenada en la memoria central es volatil (desaparece cuando se apaga la com-
putadora) y la informacién almacenada en la memoria auxiliar es permanente.

Esta informacion se organiza en unidades independientes llamadas archivos (ficheros,file en
inglés). Los resultados de los programas se pueden guardar como archivos de datos y los programas
que se escriben se guardan como archivos de programas, ambos en la memoria auxiliar. Cualquier tipo
de archivo se puede transferir facilmente desde la memoria auxiliar hasta la memoria central para su
proceso posterior.

En el campo de las computadoras es frecuente utilizar la palabra memoria y almacenamiento o
memoria externa, indistintamente. En este libro —y recomendamos su uso— se utilizara el término
memoria solo para referirse a la memoria central.

12 Programacion en C. Metodologia, algoritmos y estructura de datos

Comparacion de la memoria central y la memoria auxiliar

La memoria central o principal es mucho mas rapida y cara que la memoria auxiliar. Se deben
transferir los datos desde la memoria auxiliar hasta la memoria central, antes de que puedan ser
procesados. Los datos en memoria central son: volatiles y desaparecen cuando se apaga la com-
putadora. Los datos en memoria auxiliar son permanentes y no desaparecen cuando Se apaga la
computadora.

Las computadoras modernas necesitan comunicarse con otras computadoras. Si la computadora se
conecta con una tarjeta de red se puede conectar a una red de datos locales (red de area local).De este
modo se puede acceder y compartir a cada una de las memorias de disco y otros dispositivos de entra-
day salida. Si la computadora tiene un médem, se puede comunicar con computadoras distantes. Se
pueden conectar a una red de datos o enviar correa electronico a través de las redes corporativas Intra-
net/Extranet 0 la propia red Internet. También es posible enviar y recibir mensajes de fax.

1.2.6. Proceso de ejecucidon de un programa
La Figura 1.10 muestra la comunicacion en una computadora cuando se ejecuta un programa, a traves
de los dispositivos de entrada y salida. El ratén y el teclado introducen datos en la memoria central

cuando se ejecuta el programa. Los datos intermedios o auxiliares se transfieren desde la unidad de dis-
co (archivo) a la pantalla y a la unidad de disco, a medida que se ejecuta ¢l programa.

—

Impresora laser

Monitor R f

A = |
- "\\\,s{*:ﬂ
|

T

Raton I l
disrn

Memoria

Teclado

Figura 1.10. Proceso de ejecucioén de un programa.

1.2.7. Comunicaciones: médems, redes, telefonia RDSly ADSL |

Una de las posibilidades mas interesantes de las computadoras es la comunicacién entre ellas, cuando
se encuentran en sitios separados fisicamente y se encuentran enlazadas por via telefénica. Estas com-
putadoras se conectan en redes LAN (Red de Area Local) y WAN (Red de Area Ancha), aunque hoy dia,
las redes mas implantadas son las redes que se conectan con tecnologia Internet, y, por tanto, conexion
a lared Internet. Estas redes son Intraner y Extranet, y se conocen como redes corporativas, ya que
enlazan computadoras de los empleados con las empresas. Las instalaciones de las comunicaciones
requieren de lineas telefénicas analdgicas o digitales y de mdédems.

Introduccién a la ciencia de la computacién y a la programacién 13

El mddem es un dispositivo periférico que permite intercambiar informacion entre computadoras a
través de una linea telefonica. EI médem es un acrénimo de Modulador-Demodulador, y es un dispo-
sitivo que transforma las sefiales digitales de la computadora en sefiales eléctricas analdgicas telefoni-
cas Yy viceversa, con lo que es posible transmitir y recibir informacion a través de la linea telefdnica.
Estas operaciones se conocen como modulacion (se transforman los datos digitales de la computadora
para que puedan ser enviados por la linea telefénica como analdgicos) y demodulacién (transforman
los datos analdgicos recibidos mediante la linea telefonica en datos digitales para que puedan ser leidos
por la computadora).

Un mddem convierte sefial analégica en digital y viceversa.

Los modems permiten, ademas de las conexiones entre computadoras, envio y recepcion de fax,
acceso a Internet, etc. Una de las caracteristicas mas importantes de un médem es la velocidad. Cifras
usuales son 33,600 (33 K) baudios (1 baudio es 1bit por segundo, bps) y 56,000 baudios (56 K).

Los mddems pueden ser de tres tipos: interno (es una tarjeta que se conecta a la placa base inter-
namente); externo (es un dispositivo que se conecta externamente a la computadora a través de puertos
COM, USB, etc.); PC-Card, son mddems del tipo tarjeta de crédito, que sirve para conexion a las com-
putadoras portatiles.

Ademas de los médems analdgicos, es posible la conexién a Internet y a las redes corporativas de
las compafiias mediante la Red Digital de Sistemas Integrados (RDSI, en inglés, IDSN), que permite la
conexién a 128 Kbps, disponiendo de dos lineas telefénicas, cada una de ellas a 64 Kbps.

También, se esta comenzando a implantar la tecnologia digital ADSL, que permite la conexién a
Internet a velocidad similar a la red RDSI, 128 Kbps y a 256 Kbps, segin sea para «subir» 0 «bajar»
datos a la red, respectivamente, pudiendo llegar a 2M bps.

Figura 1.11. Médem comercial.

1.2.8. Lacomputadorapersonal multimedia ideal parala programacion

Hoy dia, las computadoras personales profesionales y domésticas que se comercializan son practica-
mente todas ellas multimedia, es decir, incorporan caracteristicas multimedia (CD-ROM, DVD, tarjeta
de sonido, altavoces y micr6fono) que permiten integrar texto, sonido, graficos e imagenes en movi-
miento. Las computadoras multimedia pueden leer discos CD-ROM y DVD de gran capacidad de alma-
cenamiento. Esta caracteristica ha hecho que la mayoria de los fabricantes de software comercialicen sus
compiladores (programas de traduccién de lenguajes de programacion) en CD-ROM, almacenando en
un solo disco, lo que antes necesitaba seis, ocho o doce disquetes, y cada vez sera mas frecuente el uso
del DVD.

14

Programacion en C. Metodologia, algoritmos y estructura de datos

Figura 1.12. Computadora multimedia.

El estudiante de informatica o de computacién actual, y mucho mas el profesional, dispone de un
amplio abanico de computadoras a precios asequibles y con prestaciones altas. En el cuarto trimestre del
afio 2000, un PC de escritorio tipico para aprender a programar, y posteriormente utilizar de modo pro-
fesional, es posible encontrarlo a precios en el rango entre 100.000 pesetas y 200.000/300.000 pesetas
(US$ 500 a US$ 1.000/1.500), dependiendo de prestaciones y fabricante (segln sean «clénicos» o fabri-
cados por marcas acreditadas como H£, IBM, Compaq),aunque la mayoria de las ofertas suelen incluir,
como minimo, 64 MB de RAM, CD-ROM, monitores de 157", tarjetas de sonido, etc. La Tabla 1.2resu-
me nuestra propuesta y recomendacion de caracteristicas medias de un/a computador/a PC.

Tabla 1.2. Caracteristicas de un PC ideal.

Procesador
Memoria

Caché

Disco duro
Internet

Video

Monitor
Almacenamiento
Puertos

Marcas

Microprocesador de las marcas Intel o AMD, de 800 Mz o superior.
128 Mb y recomendable para aplicaciones profesionales 256 0 512 Mb.

Memoria especial que usa el procesador para acelerar sus operaciones. 512 Kb o 128
Kb.

20 Gigabytes (minimo).

Preparado para Internet (inclusocon médem instalado de 56 Kb).
Memoria de video, con un minimo de 4 Mb.

17”0 19" (pantalla tradicional o plana “TFT").

CD-RW, DVD.

Serie, paralelo y USB.

HP, Compagq, Dell, IBM, EIl System, Futjisu, Inves, ..

Introduccién a la ciencia de la computacién y a la programacion 15

1.3. CONCEPTO DE ALGORITMO

El objetivo fundamental de este texto es ensefiar a resolver problemas mediante una computadora. El
programador de computadora es antes que nada una persona que resuelve problemas, por lo que para lle-
gar a ser un programador eficaz se necesita aprender a resolver problemas de un modo riguroso y sis-
tematico. A lo largo de todo este libro nos referiremos a la metodologia necesaria para resolver pro-
blemas mediante programas, concepto que se denomina metodologia de la programacion. El eje
central de esta metodologia es el concepto, ya tratado, de algoritmo.

Unalgoritmo es un método para resolver un problema. Aunque la popularizacion del término ha lle-
gado con el advenimiento de la era informatica, algoritmo proviene de Mohammed al-KhoWarizmi,
matematico persa que vivio durante el siglo1x y alcanz6 gran reputacién por el enunciado de las reglas
paso a paso para sumar, restar, multiplicar y dividir nimeros decimales; la traduccidn al latin del ape-
llido en la palabra algorismus derivé posteriormente en algoritmo. Euclides, el gran matematico griego
(del siglo1v a.C.) que inventd un método para encontrar el méximo comdn divisor de dos numeros, se
considera con Al-Khowarizmi el otro gran padre de la algoritmia (ciencia que trata de los algoritmos).

El profesor Niklaus Wirth — inventorde Pascal, Modula-2 y Oberon — titul6 uno de sus mas famo-
sos libros, Algoritmos *+ Estructuras de datos = Programas, significandonos que sélo se puede llegar a
realizar un buen programa con el disefio de un algoritmoy una correcta estructura de datos. Esta ecua-
cion sera una de las hipotesis fundamentales consideradas en esta obra.

La resolucion de un problema exige el disefio de un algoritmo que resuelva el problema propuesto.

Disefio del Programa de
Problema -) 1
| algoritmo computadora

Figura 1.13. Resolucion de un problema.

Los pasos para la resolucion de un problema son:

|. Disefio del algoritmo que describe la secuencia ordenada de pasos —sin ambigliedades — que
conducen a la solucién de un problema dado. (Andlisis del problema y desarrollo del algorit-

| mo.)

2. Expresar el algoritmo como un programa en un lenguaje de programacién adecuado. (Fase de
codificacion.)

3. Ejecuciény validacién del programa por la computadora.

Para llegar a la realizacién de un programa es necesario el disefio previo de un algoritmo, de modo
que sin algoritmo no puede existir un programa.

Los algoritmos son independientes tanto del lenguaje de programacion en que se expresan como de
la computadora que los ejecuta. En cada problema el algoritmo se puede expresar en un lenguaje dife-
rente de programacion y ejecutarse en una computadora distinta; sin embargo, el algoritmo sera siem-
pre el mismo. Asi, por ejemplo, en una analogia con la vida diaria, una receta de un plato de cocina se
puede expresar en espafiol, inglés o francés, pero cualquiera que sea el lenguaje, los pasos para la ela-
boracion del plato se realizaran sin importar el idioma del cocinero.

En la ciencia de la computacién y en la programacidn, los algoritmos son méas importantes que los
lenguajes de programacion o las computadoras. Un lenguaje de programacion es tan sélo un medio para
expresar un algoritmo y una computadora es sélo un procesador para ejecutarlo. Tanto el lenguaje de
programacién como la computadora son los medios para obtener un fin: conseguir que el algoritmo se
ejecute y se efectue el proceso correspondiente.

16 Programaciéon en C. Metodologia, algoritmos y estructura de datos

Dada la importancia del algoritmo en la ciencia de la computacion, un aspecto muy importante sera
el disefio de algoritmos. A la ensefianza y préactica de esta tarea se dedica gran parte de este libro.

El disefio de la mayoria de los algoritmos requiere creatividad y conocimientos profundos de la téc-
nica de la programacion. En esencia, la solucidn de un problema se puede expresar mediante un algo-
ritmo.

1.3.1. Caracteristicas de los algoritmos

Las caracteristicas fundamentales que debe cumplir todo algoritmo son:

¢ Un algoritmo debe serpreciso e indicar el orden de realizacion de cada paso.

e Un algoritmo debe estar definido. Si se sigue un algoritmo dos veces, se debe obtener el mismo
resultado cada vez.

» Un algoritmo debe ser finito. Si se sigue un algoritmo, se debe terminar en algin momento; o sea,
debe tener un ndmero finito de pasos.

La definicidn de un algoritmo debe describir tres partes: Entrada, Proceso y Salida. En el algorit-
mo de receta de cocina citado anteriormente se tendra:

Entrada: ingredientes y utensilios empleados.
Proceso: elaboracion de la receta en la cocina.
Salida: terminacion del plato (por ejemplo, cordero).

Ejemplo 1.1

Uncliente ejecuta unpedido u unafébrica. Lafabrica examina en su banco de datos laficha del clien-
te, si el cliente es solvente entonces la empresa acepta el pedido; en caso contrario, rechazara el pedi-
do. Redactar el algoritmo correspondiente.

Los pasos del algoritmo son:

1. lnicio.

2. Leer el pedido.

3. Exami nar la ficha del cliente.

4. Si el cliente es solvente, aceptar pedi do; en caso contrario, recha
zar pedi do.

5. Fin.

Ejemplo 1.2

Se desea disefiar un algoritmo para saber si un nimero esprimo o no.

Un namero es primo si sélo puede dividirse por si mismoy por la unidad (es decir, no tiene mas divi-
sores que él mismoy la unidad). Por ejemplo, 9, 8, 6, 4, 12,16, 20, etc., no son primos, ya que son divi-
sibles por nimeros distintos a ellos mismos y a la unidad. Asi, 9 es divisible por 3, 8 lo es por 2, etc. El
algoritmo de resolucidn del problema pasa por dividir sucesivamente el nimero por 2, 3, 4..., etc.

1. Inicio.

2. Poner X igual a 2 (X = 2, Xvariable que representa a |os divisores de
ninero que se busca N).

3. Dividir N por X (N/X).

4. Si el resultado de N/X es entero, entonces N no es un nUmero prinm y
bi furcar al punto 7; en caso contrario, continuar el proceso.

5. Suma 1 a x (X « x + 1).

Introduccion a la cienciade la computacion y a la programacion 17

6. Si X es igual a N, entonces N es un namero prinpb; en caso contrari o,
bi furcar al punto 3.
7. Fin.

Por ejemplo, si N es 131,los pasos anteriores serian:

I ni cio.

X = 2.

131/X. Cono el resultado no es entero, se continla el proceso.
X ¢« 2+ 1, luego X = 3.

Comb X no es 131, se bifurca al punto 3.

131/X resultado no es entero.

X« 3+ 1, X = 4.

Conmo X no es 131 bhifurca al punto 3.

131/X..., etc.

Fi n.

SWOOWeRWwNE

Ejemplo 1.3

Realizar la suma de todos los nimeros pares entre 2y 1000.

El problema consiste en sumar 2 + 4 + 6 + 8 ... + 1000.Utilizaremos las palabras SUMA
y NUMERO (variables, serdn denominadas mas tarde) para representar las sumas sucesivas (2+4) ,
(2+4+6) , (2+4+6+8),etc. La solucidn se puede escribir con el siguiente algoritmo:

1. Inicio.

2. Establecer SUVA a 0.

3. Establecer NUMERO a 2.

4. Sumar NUMERO a SUVA. H resultado serd el nuevo val or de | a suma (SUMA) .

5. I'ncrementar NUMERO en 2 uni dades.

6. Si NUVERO =< 1000 bifurcar al paso 4 ; en caso contrario, escribir el
ultino valor de SUVAy term nar el proceso.

7. Fin.

1.4. EL SOFTWARE (LOS PROGRAMAYS)

Las operaciones que debe realizar el hardware son especificadas por una lista de instrucciones, llama-
das programas, o software. El software se divide en dos grandes grupos: software del sistema y softwa-
re de aplicaciones.

El software del sistemaes el conjunto de programas indispensables para que la maquina funcione; se
denominan también programas del sistema. Estos programas son, basicamente, el sistema operativo, los
editores de texto, los compiladores/intérpretes (lenguajes de programacion) y losprogramas de utilidad.

Uno de los programas mas importante es el sistema operativo, que sirve, esencialmente, para faci-
litar la escritura y uso de sus propios programas. El sistema operativo dirige las operaciones globales de
la computadora, instruye a la computadora para ejecutar otros programas y controla el almacenamien-
to y recuperacion de archivos (programas y datos) de cintas y discos. Gracias al sistema operativo es
posible que el programador pueda introducir y grabar nuevos programas, asi como instruir a la compu-
tadora para que los ejecute. Los sistemas operativos pueden ser: monousuarios (un solo usuario) y mu!-
tiusuarios, o tiempo compartido (diferentes usuarios), atendiendo al nimero de usuarios y monocarga
(una sola tarea) o multitarea (Muiltiples tareas) segun las tareas (procesos) que puede realizar simulta-
neamente. C corre practicamente en todos los sistemas operativos, Windows 95, Windows NT, Win-
dows 2000, UNIX, Lynux.. ., y en casi todas las computadoras personales actuales PC, Mac, Sun, etc.

Los lenguajes de programacion sirven para escribir programas que permitan la comunicacién usua-
rio/maquina. Unos programas especiales llamados traductores (compiladores o intérpretes) convier-

—

Programacion en C. Metodologia, algoritmos y estructura de datos

£
‘.
-
S
=
-
=]
-

Mg gombA g =F

Figura 1.14. Diferentes programas de software.

ten las instrucciones escritas en lenguajes de programacion en instrucciones escritas en lenguajes maqui-
na (O y 1, bits) que ésta pueda entender.

Los programas de utilidad' facilitan el uso de la computadora. Un buen ejemplo es un editor de
textos que permite la escritura y edicion de documentos. Este libro ha sido escrito en un editor de tex-
tos o procesador de palabras («word procesor»).

Los programas que realizan tareas concretas, ndminas, contabilidad, analisis estadistico, etc. es
decir, los programas que podra escribir en C, se denominan programas de aplicacion. A lo largo del
libro se veran pequefios programas de aplicacion que muestran los principios de una buena programa-
cion de computadora.

Se debe diferenciar entre el acto de crear un programa y la accion de la computadora cuando ejecuta
las instrucciones del programa. La creacion de un programa se hace inicialmente en papel y a conti-
nuacion se introduce en la computadora y se convierte en lenguaje entendible por la computadora.

-'-"'"-''_'_ __-_"‘-\-\.
rogramas de aplicacit
e

GErAMAE gel estem
/
IIII / \
.

A\ s /|

Figura 1.15. Relacion entre programas de aplicacion y programas del sistema.

* Utiliry: programa de utilidad

Introduccién a la ciencia de la computacién y a la programacion 19

== i Memoria
| uce i externa
Terminal | [E———
] | s
m = |
— Prosgraies |
|
TP "' Datos de salida "
1T 3 {resuitados)
Programador reathmo) Lo
[EET LT,
" - . externos

Figura 1.16. Acci6én de un programador

La Figura 1.16 muestra el proceso general de ejecucion de un programa: aplicacion de una entrada
(datos)al programa y obtencion de una salida (resultados). La entrada puede tener una variedad de for-
mas, tales como nimeros o caracteres alfabéticos. La salida puede también tener formas, tales como
datos numéricos o caracteres, sefiales para controlar equipos o robots, etc.

La ejecucidn de un programa requiere — generalmente —unos datos como entrada (Fig. 1.17), ade-
maés del propio programa, para poder producir una salida.

Memoria
externa
uce R =|
| |
‘\‘H—‘._.M_‘___J
Entrada, Salida ,l, |
(datos) (resultados) %

Figura 1.17. Ejecucién de un programa

|.5. LOS LENGUAJES DE PROGRAMACION

Como se ha visto en el apartado anterior, para que un procesador realice un proceso se le debe sumi-
nistrar en primer lugar un algoritmo adecuado. El procesador debe ser capaz de interpretar el algoritmo,
lo que significa:

e Comprender las instrucciones de cada paso.
e Realizar las operaciones correspondientes.

Cuando el procesador es una computadora, el algoritmo se ha de expresar en un formato que se
denomina programa. Un programa se escribe en un lenguaje de programacion y las operaciones que
conducen a expresar un algoritmo en forma de programa se llaman programacion. Asi pues, los len-
guajes utilizados para escribir programas de computadoras son los lenguajes de programacion y pro-
gramadores son los escritores y disefiadores de programas.

e ——————————————————————————

20

Programacion en C. Metodologia, algoritmos y estructura de datos

Los principales tipos de lenguajes utilizados en la actualidad son tres:

¢ Lenguajes maquina.
¢ Lenguaje de bajo nivel (ensamblador).
e Lenguajes de alto nivel.

1.5.1. Instrucciones a la computadora

Los diferentes pasos (acciones)de un algoritmo se expresan en los programas como instrucciones, sen-
tencias o proposiciones (normalmente el término instruccion se suele referir a los lenguajes maquinay
bajo nivel, reservando la sentencia o proposicion para los lenguajes de alto nivel). Por consiguiente, un
programa consta de una secuencia de instrucciones, cada una de las cuales especifica ciertas operacio-
nes que debe ejecutar la computadora.

La elaboracion de un programa requerira conocer el juego o repertorio de instrucciones del lengua-
je. Aunque en el Capitulo 3 se analizardn con mas detalle las instrucciones, adelantaremos los tipos fun-
damentales de instrucciones que una computadora es capaz de manipular y ejecutar. Las instrucciones
basicas y comunes a casi todos los lenguajes de programacion se pueden condensar en cuatro grupos:

o [nstrucciones de entrada/salida. Instrucciones de transferencia de informacion y datos entre dis-
positivos periféricos (teclado, impresora, unidad de disco, etc.) y la memoria central.

« Instrucciones aritmético-légicas. Instrucciones que ejecutan operaciones aritméticas (suma, res-
ta, multiplicacion, division, potenciacién), l6gicas (operacionesand, or, not, etc.).

e Instrucciones selectivas. Instrucciones que permiten la seleccion de tareas alternativas en funcion
de los resultados de diferentes expresiones condicionales.

 Instrucciones repetitivas. Instrucciones que permiten la repeticién de secuencias de instruccio-
nes un nimero determinado de veces.

1.5.2. Lenguajes maquina

Los lenguajes maquina son aquellos que estan escritos en lenguajes directamente inteligibles por la
méaquina (computadora), ya que sus instrucciones son cadenas binarias (cadenas 0 series de caracteres
—digitos— Oy 1) que especifican una operacion, y las posiciones (direccion) de memoria implicadas
en la operacion se denominan instrucciones de maquina o cédigo maquina. El cédigo maquina es el
conocido codigo binario.

Las instrucciones en lenguaje maquina dependen del hardware de la computadora y, por tanto, dife-
riran de una computadora a otra. El lenguaje maquina de un PC (computadora personal) sera diferente
de un sistema HP (Hewlett Packard), Compaq o un sistema de IBM.

Las ventajas de programar en lenguaje maquina son la posibilidad de cargar (transferir un progra-
ma a la memoria) sin necesidad de traduccion posterior, lo que supone una velocidad de ejecucion supe-
rior a cualquier otro lenguaje de programacion.

Los inconvenientes —en la actualidad — superan a las ventajas, lo que hace practicamente no reco-
mendables los lenguajes maquina. Estos inconvenientes son:

Dificultad y lentitud en la codificacion.

Poca fiabilidad.

Dificultad grande de verificar y poner a punto los programas.

Los programas sélo son ejecutables en el mismo procesador (UPC, Unidacd Central de Proceso).

Para evitar los lenguajes maquina, desde el punto de vista del usuario, se han creado otros lengua-
jes que permiten escribir programas con instrucciones similares al lenguaje humano (por desgracia casi
siempre inglés, aunque existen raras excepciones, como es el caso de las versiones espafiolas del len-
guaje LOGO). Estos lenguajes se denominan de alto y bajo nivel.

Introduccién a la ciencia de la computacién y a la programacion 21

1.5.3. Lenguajes de bajo nivel

Los lenguajes de bajo nivel son més faciles de utilizar que los lenguajes maquina, pero, al igual, que
ellos, dependen de la maquina en particular. El lenguaje de bajo nivel por excelencia es el ensamblador
(assembly languuje). Las instrucciones en lenguaje ensamblador son instrucciones conocidas como
nemotécnicos (mnemonics). Por ejemplo, nemotécnicos tipicos de operaciones aritméticas son: en
inglés, ADD, SUB, DIV, etc.; en espaiiol, SUM, RES, DIV, etc.

Una instruccién tipica de suma seria:

ADD M, N, P

Esta instruccion podia significar «sumar el nimero contenido en la posicicin de memoria M al mime-
ro almacenado en /a posicicin de memoria N y situar el resultado en la posicicin de memoria P ». Evi-
dentemente, es mucho mas sencillo recordar la instruccion anterior con un nemotécnico que su equiva-
lente en cddigo maquina:

0110 1001 1010 1011

Un programa escrito en lenguaje ensamblador no puede ser ejecutado directamente por la compu-
tadora —en esto se diferencia esencialmente del lenguaje maquina—, sino que requiere una fase de tra-
duccion al lenguaje maquina.

El programa original escrito en lenguaje ensamblador se denomina programa fuente y el programa
traducido en lenguaje maguina se conoce como programa objeto, ya directamente inteligible por la
computadora.

El traductor de programas fuente a objeto es un programa llamado ensamhludor (assembler),
existente en casi todas las computadoras (Fig. 1.18).

No se debe confundir —aunqueen espafiol adoptan el mismo nombre — el programa ensamhlador
(assembler).encargado de efectuar la traduccidn del programa fuente escrito a lenguaje maquina, con
el lenguaje ensamhlador (assemblylanguaje), lenguaje de programacion con una estructura y graméti-
ca definidas.

Los lenguajes ensambladores presentan la ventaja frente a los lenguajes maquina de su mayor faci-
lidad de codificacion y, en general, su velocidad de calculo.

Programa fuente en Programa SRR Y
ensamblador - ENSAMBLADOR t?LI' oplet
(assembly) {assarminar) codiga naguina

Figura 1.18. Programa ensamblador.

Los inconvenientes méas notables de los lenguajes ensambladores son:

¢ Dependencia total de la maquina, lo que impide la transportabilidad de los programas (posibili-
dad de ejecutar un programa en diferentes maquinas). El lenguaje ensamblador del PC es distin-
to del lenguaje ensamblador del Apple Macintosh.

e La formacion de los programas es mas compleja que la correspondiente a los programadores de
alto nivel, ya que exige no s6lo las técnicas de programacion, sino también el conocimiento del
interior de la maquina.

Hoy dia los lenguajes ensambladores tiene sus aplicaciones muy reducidas en la programacion de
aplicaciones y se centran en aplicaciones de tiempo real, control de procesos y de dispositivos electro-
nicos, etc.

22

Programacion en C. Metodologia, algoritmos y estructura de datos

1.5.4. Lenguajes de alto nivel

Los lenguajes de alto nivel son los mas utilizados por los programadores. Estan disefiados para que las
personas escriban y entiendan los programas de un modo mucho mas facil que los lenguajes maquina
y ensambladores. Otra razén es que un programa escrito en lenguaje de alto nivel es independiente de
la maquina; esto es, las instrucciones del programa de la computadora no dependen del disefio del
hardware 0 de una computadora en particular. En consecuencia, los programas escritos en lenguaje
de alto nivel son portables o transportables, lo que significa la posibilidad de poder ser ejecutados con
poca o ninguna modificacion en diferentes tipos de computadoras; al contrario que los programas en
lenguaje maquina o ensamblador, que so6lo se pueden ejecutar en un determinado tipo de compu-
tadora.
Los lenguajes de alto nivel presentan las siguientes ventajas:

e El tiempo de formacién de los programadores es relativamente corto comparado con otros len-
guajes.

e La escritura de programas se basa en reglas sintacticas similares a los lenguajes humanos. Nom-
bres de las instrucciones, tales como READ, WRITE, PRI NT, OPEN, etc.

e Las modificaciones y puestas a punto de los programas son mas faciles.

¢ Reduccidn del coste de los programas.

e Transportabilidad.

Los inconvenientes se concretan en:

¢ Incremento del tiempo de puesta a punto, al necesitarse diferentes traducciones del programa
fuente para conseguir el programa definitivo.

¢ No se aprovechan los recursos internos de la maquina, que se explotan mucho mejor en lengua-
jes maquina y ensambladores.

e Aumento de la ocupacion de memoria.

e El tiempo de ejecucion de los programas es mucho mayor.

Al igual que sucede con los lenguajes ensambladores, los programas fuente tienen que ser traduci-
dos por los programas traductores, llamados en este caso compiladores e intérpretes.

Los lenguajes de programacién de alto nivel existentes hoy son muy numerosos aunque la practica
demuestra que su uso mayoritario se reduce a

C C++ # COBOL FORTRAN Pascal Visual BASIC Java
estan muy extendidos:

Ada-95 Modula-2 Prolog LISP Smalltalk Eiffel
son de gran uso en el mundo profesional:

Borland Delphi C++ Builder Power Builder

Aungue hoy dia el mundo Internet consume gran cantidad de recursos en forma de lenguajes de
programacién tales como HTML, XML, JavaScript,. ..

1.5.5. Traductores de lenguaje

Los traductores de lenguaje son programas que traducen a su vez los programas fuente escritos en len-
guajes de alto nivel a codigo maquina.

i ——— e

Introduccién a la ciencia de la computacién y a la programacion 23

Los traductores se dividen en:

e Intérpretes.
e Compiladores.

7.5.5.7. Intérpretes

Un intérprete es un traductor que toma un programa fuente, lo traduce y a continuacion lo ejecuta.
Los programas intérpretes clasicos como BASIC. practicamente ya no se utilizan, aungue las versiones
Qbasicy QuickBASIC todavia se pueden encontrar y corren en las computadoras personales. Sin embar-
go, estd muy extendida la version interpretada del lenguaje Smalltalk, un lenguaje orientado a objetos

puro.
Programa fuente Programa fuente
+ .
. - - L
Intérprete .
Cornpilador
Y .
Traduccién y ejecucién T
Linea a linea Programa objeto
Figura 1.19. Intérprete. Figura 1.20. La compilacion de programas.

1.5.5.2. Compiladores

Un compilador es un programa que traduce los programas fuente escritos en lenguaje de alto nivel
—~C, FORTRAN...— a lenguaje maquina.

Los programas escritos en lenguaje de alto nivel se llaman programas fuente y el programa tradu-
cido programa objeto o codigo objeto. EI compilador traduce — sentenciaa sentencia— el programa
fuente. Los lenguajes compiladores tipicos son: C, C++, Pascal, Javay COBOL.

1.5.6. Lacompilaciony sus fases

La compilacion es el proceso de traduccion de programas fuente a programas objeto. El programa obje-
to obtenido de la compilacién ha sido traducido normalmente a cddigo maquina.

Para conseguir el programa maquina real se debe utilizar un programa llamado montador o enlaza-
dor (linker).El proceso de montaje conduce a un programa en lenguaje maquina directamente ejecuta-
ble (Fig. 1.21).

El proceso de ejecucion de un programa escrito en un lenguaje de programacién y mediante un
compilador suele tener los siguientes pasos:

1. Escritura del programa fuente con un editor (programa que permite a una computadora actuar
de modo similar a una maquina de escribir electronica) y guardarlo en un dispositivo de alma-
cenamiento (por ejemplo, un disco).

Priggrarmia Lampilados | Progeama | [] Programa ejecutable
— — t = Montador -
fuenie itraductor] ohjeto o lEmgurage: macpeinag

Figura 1.21. Fases de la compilacion.

24 Programacion en C. Metodologia, algoritmos y estructura de datos

Introducir el programa fuente en memoria.

Compilar el programa con el compilador C.

Verificar y corregir errores de compilacién (listado de errores).

Obtencion del programa objeto.

El enlazador (linker)obtiene el programa ejecutable.

Se ejecuta el programa y, si no existen errores, se tendra la salida del programa.

Noghrwd

El proceso de ejecucién seria el mostrado en las Figuras 1.22y 1.23. En el Capitulo 3 se describira
en detalle el proceso completo y especifico de ejecucidn de programas en lenguaje C.

Programa

'

Programa ————— ' Computadora

Datos —————

Ejecutable 1 .

L)

Resultados

Figura 1.22. Ejecucion de un programa.

Programa
fuente

Modificacién =
programa
fuente +

Compilador

’

T ~Existen ™)
-~~~ erroresenla »
e EOET pikRCIGn

-

S

r
L) g
Programa
Prosgrarma

Montador - ejecutabl
i | Ejgr.u'ltn -S

'

Ejecucién ’

Figura 1.23. Fases de ejecucion de un programa.

Introduccién a la ciencia de la computacién y a la programacion

1.6. EL LENGUAJE C: HISTORIA Y CARACTERISTICAS

C es el lenguaje de programacion de propoésito general asociado, de modo universal, al sistema opera-
tivo UNIX. Sin embargo, la popularidad, eficacia y potencia de C, se ha producido porque este lengua-
je no esté practicamente asociado a ningln sistema operativo, ni a ninguna maquina, en especial. Esta
es larazon fundamental, por la cual C, es conocido como el lenguaje de programacion de sistemas,por
excelencia.

C es una evolucion de los lenguajes BCPL — desarrolladopor Martin Richards— y B — desarro-
Ilado por Ken Thompson en 1970— para el primitivo UNIX de la computadora DEC PDP-7.

C naci6 realmente en 1978, con la publicacién de The C Programming Languaje, por Brian Ker-
nighan y Dennis Ritchie (Prentice Hall, 1978). Desde su nacimiento, C fue creciendo en popularidad y
los sucesivos cambios en el lenguaje a lo largo de los afiosjunto a la creacién de compiladores por gru-
pos no involucrados en su disefio, hicieron necesario pensar en la estandarizacion de la definicién del
lenguaje C.

Asi, en 1983, el American National Estindar Institute (ANSI), una organizacion internacional de
estandarizacion, cre6 un comité (el denominado X3J11) cuya tarea fundamental consistia en hacer «una
definicion no ambigua del lenguaje C, e independiente de la maquina». Habia nacido el estandar ANSI
del lenguaje C. Con esta definicion de C se asegura que cualquier fabricante de software que vende un
compilador ANSI C incorpora todas las caracteristicas del lenguaje, especificadas por el estandar. Esto
significa también que los programadores que escriban programas en C estandar tendran la seguridad de
que correran sus modificaciones en cualquier sistema que tenga un compilador C.

C es un lenguaje de alto nivel, que permite programar con instrucciones de lenguaje de propdsito
general. También, C se define como un lenguaje de programacion estructurado de propdsito general;
aunque en su disefio también primo el hecho de que fuera especificado como un lenguaje de progra-
macién de Sistemas, lo que proporciona una enorme cantidad de potencia y flexibilidad.

El estdindar ANSI C formaliza construcciones no propuestas en la primera version de C, en especial,
asignacion de estructuras y enumeraciones. Entre otras aportaciones, se defini6 esencialmente, una nue-
va forma de declaracion de funciones (prototipos). Pero, es esencialmente la biblioteca estandar de fun-
ciones, otra de las grandes aportaciones.

Hoy, en el siglo xx1, C sigue siendo uno de los lenguajes de programacion mas utilizados en la
industria del software, asi como en institutos tecnolégicos, escuelas de ingenieria y universidades. Prac-
ticamente todos los fabricantes de sistemas operativos, UNIX, LINUX, MacOS, SOLARIS, ... soportan
diferentes tipos de compiladores de lenguaje C.

1.6.1. Ventajas de C

El lenguaje C tiene una gran cantidad de ventajas sobre otros lenguajes, y son, precisamente la razon
fundamental de que después de casi dos décadas de uso, C siga siendo uno de los lenguajes mas popu-
lares y utilizados en empresas, organizaciones y fabricas de software de todo el mundo.

Algunas ventajas que justifican el uso todavia creciente del lenguaje C en la programacion de com-
putadoras son:

¢ El lenguaje C es poderoso y flexible, con 6rdenes, operaciones y funciones de biblioteca que se
pueden utilizar para escribir la mayoria de los programas que corren en la computadora.

e C se utiliza por programadores profesionales para desarrollar software en la mayoria de los
modernos sistemas de computadora.

¢ Se puede utilizar C para desarrollar sistemas operativos, compiladores, sistemas de tiempo real y
aplicaciones de comunicaciones.

* Un programa C puede ser escrito para un tipo de computadora y trasladarse a otra computadora
con pocas o0 ninguna modificacion — propiedad conocida como portabilidad — . EI hecho de que
C sea portable es importante ya que la mayoria de los modernos computadores tienen un compi-

26

Programacion en C. Metodologia, algoritmos y estructura de datos

lador C, una vez que se aprende C no tiene que aprenderse un nuevo lenguaje cuando se escriba
un programa para otro tipo de computadora. No es necesario reescribir un problema para ejecu-
tarse en otra computadora.

C se caracteriza por su velocidad de ejecucién. En los primeros dias de la informatica, los proble-
mas de tiempo de ejecucion se resolvian escribiendo todo o parte de una aplicacion en lenguaje ensam-
blador (lenguaje muy cercano al lenguaje maquina).

Debido a que existen muchos programas escritos en C, se han creado numerosas bibliotecas C para
programadores profesionales que soportan gran variedad de aplicaciones. Existen bibliotecas del len-
guaje C que soportan aplicaciones de bases de datos, graficos, edicion de texto, comunicaciones, etc.

1.6.2. Caracteristicas técnicas de C

Hay numerosas caracteristicas que diferencian a C de otros lenguajes y lo hacen eficiente y potente a la
vez.

e Una nueva sintaxis para declarar funciones. Una declaracion de funcion puede afiadir una des-
cripcion de los argumentos de la funcién. Esta informacidn adicional sirve para que los compila-
dores detecten mas facilmente los errores causados por argumentos que no coinciden.

e Asignacidn de estructuras (registros) y enumeraciones.

e Preprocesador mas sofisticado.

« Una nueva definicion de la biblioteca que acompafia a C. Entre otras funciones se incluyen: acce-
so al sistema operativo (por ejemplo, lectura y escritura de archivos), entrada y salida con for-
mato, asignacion dinamica de memoria, manejo de cadenas de caracteres.

¢ Una coleccion de cabeceras estandar que proporciona acceso uniforme a las declaraciones de fun-
ciones y tipos de datos.

1.6.3. Versiones actuales de C

En la actualidad son muchos los fabricantes de compiladores C, aunque los mas populares entre los
fabricantes de software son: Microsoft, Imprise, etc.

Una evolucién de C, el lenguaje C++ (C con clases) que contiene entre otras, todas las caracteris-
ticas de ANSI C. Los compiladores mas empleados Visual C++ de Microsoft. Builder C++ de Imprise-
antigua Borland, C++bajo UNIX 'y LINUX.

En el verano del 2000, Microsoft patenté una nueva version de C++, que es C#, una evolucion del
C++ estandar, con propiedades de Java y disefiado para aplicaciones en linea, Internet (online)y
fuerra de linea.

Introduccidn a la ciencia de la computaciony a la programacion 27

1.7. RESUMEN

Una computadoraes una maquinapara procesar infor-
maciony obtener resultados en funcién de unos datos
de entrada.

Hardware: parte fisicade una computadora (dis-
positivos electronicos).

Software: parte ldgica de una computadora
(programas).

Las computadoras se componen de:

« Dispositivos de Entrada/Salida (E/S).

« Unidad Central de Proceso (Unidadde Control
y Unidad Légicay Aritmética).

¢ Memoria central.

« Dispositivos de almacenamiento masivo de
informacion (memoria auxiliar o externa).

El software del sistema comprende, entro otros,
el sistema operativo MSDOS, UNIX, Linux... en

computadoras personalesy los lenguajes de progra-
macion.
Los lenguajes de programacion se clasifican en:

¢ alto nivel: Pascal, FORTRAN, VISUAL,
BASIC, C, Ada, Modula-2, C++, Java, Delphi,
C, etc.

e bajo nivel: Ensamblador.

¢ maquina: Cédigo maquina.

Los programas traductores de lenguajes son:

o compiladores.
e intérpretes.

C es un lenguaje de programacion que contiene
excelentes caracteristicas como lenguaje para apren-
dizaje de programacion y lenguaje profesional de pro-
posito general; basicamente es un entorno de progra-
macion con editory compilador incorporado.

CAPITULO 2

FUNDAMENTOS
DE PROGRAMACION

CONTENIDO

28

2.1.

2.2,
2.3.
2.4.

2.6.

Fases en la resolucion de
problemas.

Programacion modular.

Programacion estructurada.

Representacion grafica de
algoritmos.

Diagrama de Nassi
Schneiderman.

2.6.
2.7.

2.8.

2.9.
2.10.
2.11.

El ciclo de vida del software.

Métodos formales de
verificacion de programas.

Factores de calidad del
software.

Resumen.
Ejercicios.
Ejercicios resueltos.

INTRODUCCION

Este capitulo le introduce a la metodologia a seguir para la resoluciéon de
problemas con computadorasy con un lenguaje de programacion como C.

La resolucion de un problema con una computadora se hace escribiendo
un programa, que exige al menos los siguientes pasos:

1. Definicion o analisis del problema.

2. Disefio del algoritmo.

3 Transformacion del algoritmo en un programa.
4. Ejecuciony validacion del programa.

Uno de los objetivos fundamentales de este libro es el aprendizajey diseio
de los algoritmos. Este capitulo introduce al lector en el concepto de algoritmo
y de programa, asi como las herramientas que permiten «dialogar»al usuario
con la maquina: los lenguajes de programacion.

CONCEPTUS CLAVE
e Algoritmo. o Programacion estructurada.
o Ciclo de vida. o Disefno descendente.
o Diagrama Nassi Schneiderman. o Pruebas,
o Diagramas de flujo. o Dominio del problema.
o Meétodos formales. o Pseudocddigo.
o Postcondiciones. o Factoresde calidad.
¢ Precondiciones. o invariantes.
o Programacién modular. o Verificacion.
o Diseno.

29

30

Programaciéon en C. Metodologia, algoritmos y estructura de datos

2.1. FASESEN LA RESOLUCION DE PROBLEMAS

El proceso de resolucion de un problema con una computadora conduce a la escritura de un programa
y a su ejecucion en la misma. Aunque el proceso de disefiar programas es —esencialmente — un proceso
creativo, se puede considerar una serie de fases 0 pasos comunes, que generalmente deben seguir todos
los programadores.

Las fases de resolucién de un problema con computadora son:

Analisis del problema.
Disefio del algoritmo.
Codificacién.
Compilaciény ejecucién.
Verificacion.
Depuracion.
Mantenimiento.
Documentacion.

Constituyen el ciclo de vida del software y las fases o etapas usuales son:

Analisis. El problema se analiza teniendo presente la especificacion de los requisitos dados por
el cliente de la empresa o por la persona que encarga el programa.

Disefio. Una vez analizado el problema, se disefia una solucién que conducira a un algoritmo que
resuelva el problema.

Codificacion (implementacion). La solucion se escribe en la sintaxis del lenguaje de alto nivel
(por ejemplo, C) y se obtiene un programa.

Ejecucion, verificaciony depuracidn. El programa se ejecuta, se comprueba rigurosamente y se
eliminan todos los errores (denominados «bugs», en inglés) que puedan aparecer.
Mantenimiento. El programa se actualiza y modifica, cada vez que sea necesario, de modo que
se cumplan todas las necesidades de cambio de sus usuarios.

Documentacién. Escritura de las diferentes fases del ciclo de vida del software, esencialmente el
andlisis, disefio y codificacion, unidos a manuales de usuario y de referencia, asi como normas
para el mantenimiento.

Las dos primeras fases conducen a un disefio detallado escrito en forma de algoritmo. Durante la ter-
cera etapa (codificacién) se implementa’ el algoritmo en un cddigo escrito en un lenguaje de progra-
macién, reflejando las ideas desarrolladas en las fases de analisis y disefio.

La fase de compilacion y ejecucién traduce y ejecuta el programa. En las fases de verificacion y
depuracién el programador busca errores de las etapas anteriores y los elimina. Comprobara que mien-
tras mas tiempo se gaste en la fase de analisis y disefio, menos se gastara en la depuracién del progra-
ma. Por Gltimo, se debe realizar la documentacién del programa.

Antes de conocer las tareas a realizar en cada fase, vamos a considerar el concepto y significado de
la palabra algoritmo. La palabra algoritmo se deriva de la traduccién al latin de la palabra Alkho-
warizmi’, nombre de un matematico y astrénomo arabe que escribié un tratado sobre manipulacion de
nameros y ecuaciones en el siglo 1x. Un algoritmo es un método para resolver un problema mediante
una serie de pasos precisos, definidos y finitos.

En la dltima edicion (21.%) del DRAE (Diccionariode la Real Academia Espafiola) se ha aceptado cl término implemen-

fur:(Informética) «Poner en funcionamiento, aplicar métodos, medidas, etc. para llevar algo a cabo».
* Escribi6 un tratado matematico famoso sobre manipulacion de nimeros y ecuacioncs titulado Kitub al-jubr w'almugaba-
la. La palabra algebra se derivd, por su semejanza sonora, de al-jubr.

Fundamentos de grosgrarmacian a1

Caracteristicasde un algoritmo

* preciso (indicar el orden de realizacion en cada paso),
* definido (si se sigue dos veces, obtiene el mismo resultado cada vez),
® finito (tiene fin un ndmero determinado de pasos).

Un algoritmo debe producir un resultado en un tiempo finito. Los métodos que utilizan algoritmos
se denominan métodos algoritmicos, en oposicién a los métodos que implican algln juicio o interpre-
tacién que se denominan métodos heuristicos. Los métodos algoritmicos se pueden implementar en
computadoras; sin embargo, los procesos heuristicos no han sido convertidos facilmente en las compu-
tadoras. En los ultimos afios las técnicas de inteligencia artificial han hecho posible la implementacion
del proceso heuristico en computadoras.

Ejemplos de algoritmos son: instrucciones para montar en una bicicleta, hacer una receta de coci-
na, obtener el maximo comun divisor de dos nimeros, etc. Los algoritmos se pueden expresar por fér-
mulas, diagramas de flujo 0 N-S y pseudocodigos. Esta Gltima representacion es la mas utilizada en
lenguajes estructurados como C.

2. 11. Andlisis del problema

La primera fase de la resolucion de un problema con computadoraes el andlisis del problema. Esta fase
requiere una clara definicion, donde se contemple exactamente lo que debe hacer el programa y el resul-
tado o solucion deseada.

Dado que se busca una solucién por computadora, se precisan especificaciones detalladas de entra-
day salida. La Figura 2.1 muestra los requisitos que se deben definir en el analisis.

Resolucion
de un
problema
|
Andlisis Disefio | Resolucion del |
[el [problema con
problema algoritmo | computadora |

Figura 2.1. Andlisis del problema.

Para poder definir bien un problema es conveniente responder a las siguientes preguntas:

e ;Qué entradas se requieren? (tipoy cantidad).
o /Cuél es la salida deseada? (tipoy cantidad).
o ;Qué método produce la salida deseada'?

Problema2.1

Se desea obtener una tabla con las depreciaciones acumuladas y los valores reales de cada afio, de un
automovil comprado en 1.800.000 pesetas en el afio 1996, durante los seis afios siguientes suponiendo
un valor de recuperacion o rescate de 120.000. Realizar el andlisis del problema, conociendo la férmula
de la depreciacicin anual constante D para cada afio de vida Util.

32 Programacion en C. Metodologia, algoritmos y estructura de datos

coste - valor de recuperacion

vida util
D = 1.800.000- 120.000 _ 1.680.000 = 280.000
6 6
Entrada coste original
vida util
valor de recuperacion
Salida depreciacion anual por afio

depreciacion acumulada en cada afio
valor del automdvil en cada afio

Proceso depreciacion acumulada
calculo de la depreciacion acumulada cada afio
1 célculo del valor del automovil en cada afio

La tabla siguiente muestra la salida solicitada

Afio Depreciacion Depreciacién Valoranual
acumulada

1 (1996) 280.000 280.000 1.520.000
2(1997) 280.000 560.000 1.240.000
3(1998) 280.000 840.000 960.000
4 (1999) 280.000 1.120.000 680.000
5 (2000) 280.000 1.400.000 400.000
6 (2001) 280.000 2.180.000 120.000

2.1.2. Diseiio del algoritmo

En la etapa de andlisis del proceso de programacién se determina qué hace el programa. En la etapa de
disefio se determina como hace el programa la tarea solicitada. Los métodos més eficaces para el pro-
ceso de disefio se basan en el conocido por divide y venceras. Es decir, la resolucién de un problema
complejo se realiza dividiendo el problema en subproblemasy a continuacion dividir estos subproble-
mas en otros de nivel mas bajo, hasta que pueda ser implementada una solucién en la computadora.
Este método se conoce técnicamente como disefio descendente (top-down)o modular. El proceso de
romper el problema en cada etapa y expresar cada paso en forma mas detallada se denomina refina-
miento sucesivo.

Cada subprograma es resuelto mediante un médulo (subprograma)que tiene un solo punto de entra-
da y un solo punto de salida.

Cualquier programa bien disefiado consta de un programa principal (el médulo de nivel mas alto)
que llama a subprogramas (maédulos de nivel mas bajo) que a su vez pueden llamar a otros subprogra-
mas. Los programas estructurados de esta forma se dice que tienen un disefio modular y el método de
romper el programa en médulos méas pequefios se llamaprogramaciéon modular. Los médulos pueden
ser planeados, codificados, comprobados y depurados independientemente (incluso por diferentes pro-
gramadores) y a continuacion combinarlos entre si. El proceso implica la ejecucion de los siguientes
pasos hasta que el programa se termina:

1. Programar un maédulo.
2. Comprobar el médulo.

u

Fundamentos de programacion 33

3. Si es necesario, depurar el médulo.
4. Combinar el médulo con los médulos anteriores.

El proceso que convierte los resultados del analisis del problema en un disefio modular con refina-
mientos sucesivos que permitan una posterior traduccién a un lenguaje se denomina disefio del algo-
ritmo.

El disefio del algoritmo es independiente del lenguaje de programacion en el que se vaya a codifi-
car posteriormente.

2.1.3. Herramientas de programacioén

Las dos herramientas mas utilizadas cominmente para disefiar algoritmos son: diagramas de flujo y
pseudocodigos.

Diagramas deflujo

Un diagramade flujo (flowchart) es una representacion grafica de un algoritmo. Los simbolos utili-
zados han sido normalizados por el Instituto Norteamericano de Normalizacion (ANSI),y los mas fre-
cuentemente empleados se muestran en la Figura 2.2, junto con una plantilla utilizada para el dibujo de
los diagramas de flujo (Fig. 2.3). En la Figura 2.4 se representa el diagrama de flujo que resuelve el
Problema 2.1.

Pseudocddigo

El pseudocodigoes una herramienta de programacion en la que las instrucciones se escriben en pala-
bras similares al inglés o espafiol, que facilitan tanto la escritura como la lectura de programas. En esen-
cia, el pseudocddigo se puede definir como un lenguaje de especificaciones de algoritmos.

| 3 WTHON | Subprograma E?ﬁ#g@af
'\'\..\.
i i ' l
Chpcesioin " - Prociss
"f Conectores
Si

Figura 2.2. Simbolos mas utilizados en los diagramas de flujo.

Aungue no existen reglas para escritura del pseudocodigo en espafiol, se ha recogido una notacién
estandar que se utilizara en el libro y que ya es muy empleada en los libros de programacion en espa-

34 Programacion en C. Metodologia, algoritmos y estructura de datos

fiol’. Las palabras reservadas basicas se representaran en letras negritas mindsculas. estas palabras son
traduccidn libre de palabras reservadas de lenguajes como C, Pascal, etc. Mas adelante se indicaran los
pseudocodigos fundamentales a utilizar en esta obra.

R T : FTTTIE T T T TT ||w:i_|| T Ty
: B 43 1+ I iid I

= [e - TR e 4 -4 4 b
= a6 s s i ar k] Bl ey
4 8 -t e . - i e ' e ~+1

- nng - EEE 2 i H

-
T .- ' STILT
E—— w1 hamad ol . i -
N mnE Ha r ik et E
1 T L mmm L -
= - e 3
it -k o]
[ke . - A
- s s i H e i
o ol 4 1 FEE e
as sm ram o mm =T
l T ' i o
. = L I T
1 o R .
= . 45 e -] —
B g wi 4 " e — -

e ——— e e - st =y ¢
- 25 - - ke ou o
-P u s B o +1 T E
: 1 HH = 0 i3 ey bl

. B Ks H 0y " [s =

[WandTRTO PR N nuns TIiT X T IET 5 ITL 1 - =
e = —

||n-||||||| ||||||||||.1|||lllll|| I1III||IIII"1 Ill_H.lllll-II“=lll||l||||l||l1|l||'|l|"||||l|r|||:.;l|l“||

Figura 2.3. Plantilla para dibujo de diagramas de flujo.

El pseudocodigo que resuelve el Problema 2.1 es:

Pr evi si ones de depreci aci on
I ntroducir coste
vida util
valor final de rescate (recuperacion)
inprinmir cabeceras
Est abl ecer el valor inicial del Afo
Cal cul ar depreci aci on
m entras val or afo =< vida util hacer
cal cul ar depreci aci on acurul ada
cal cul ar val or actual
inmprimr una linea en la tabla
i ncrenentar el val or del afio
fin de mentras

Ejemplo 2.1

Calcular la paga neta de un trabajador conociendo el nimero de horas trabajadas, la tarifa horaria y
la tasa de impuestos.

Al goritmo
1. Leer Horas, Tarifa, tasa
2. Cal cul ar PagaBruta = Horas * Tarifa
3. Cal cul ar inpuestos = PagaBruta * Tasa
4. Cal cul ar pPagaNeta = PagaBruta - |npuestos
5. Vi sual i zar PagaBruta, |mnmpuestos, Pagaleta

Para muyor smpliacicn whee el paedeiiign, pocde consaltar, estpe otras. alzums de odas odhvas: Fumalimemio die oy
g i, Lois Jovvames, 2% exicwn, 197 Meivelimlanziva ale v pevsproemnsciiw, D Josanes, 19960 Predwhrasy obe Matonbvalingsol oy
Iip frrvagerigoma win, Lais Jovanes, PP Dol ¢l |'I-|I|'l|||..|||.|'\- e MboCiram DML Wlaadrad i, msd o Paovm b e sier v D puvsg rpommin nin
dle Clavel y Biondi, Barcelona: Mosson, T, o bien Pedesdcciia i b progess il v fee estrancenns de dvdos dy Brasmsen
§ Oimna. Boenos Algvs, Editonal Badiba, 1986 Parg ng lormodin prigtica o comsilur, Faidvisicifon o g
Latesva ol revalilcmnvs de Lins]ll!ullll"\- |uks Rodoipmes v Msiilie Ferminder on MoGime - B oo, 190

(Inicio

.

Lsger
Coste, Vida
4 il ValsrHescaha

. Leer Afio

' '

&
Fy

Valor actual « Coste
Depreciaciéon «
(Coste-ValorRescate)/
VidaUtil

Acumulada « 0

1

T Afo < Vida_Utl -

: Y

| Acismalada «
Acumulada +
Depraciacicn

Y
Valor Actual «
Valor actual +
Deprecigcitn

Si

v

Afo <« Ano + 1

Fundamentos de programacion

Fin .I
4

Figura 2.4. Diagrama de flujo (Ejemplo 2.1).

35

Ejemplo 2. 2
Calcular el valor de la suma /+2+3+...+100.

Algoritmo

Se utiliza una variable Cont ador como un contador que genere los sucesivos nimeros enteros, y Suna

para almacenar las sumas parciales 1,1+2,1+2+3.. .

1. Est abl ecer Contador a 1
2. Establ ecer Suma a O
3. mentras Contador = = 100 hacer
Sumar Cont ador a Suma
I ncrenmentar Contador en 1
fin-mentras
4. Vi sual i zar Suma

36 Programacion en C. Metodologia, algoritmos y estructura de datos

2.1.4. Codificacionde un programa

Codificacion es la escritura en un lenguaje de programacion de la representacion del algoritmo desa-
rrollada en las etapas precedentes. Dado que el disefio de un algoritmo es independiente del lenguaje de
programacién utilizado para su implementacién, el cddigo puede ser escrito con igual facilidad en un
lenguaje 0 en otro.

Para realizar la conversidn del algoritmo en programa se deben sustituir las palabras reservadas en
espafol por sus homénimos en inglés, y las operaciones/instrucciones indicadas en lenguaje natural
expresarlas en el lenguaje de programacion correspondiente.

/*
Este programa obtiene una tabla de depreciaciones acunul adas y
val ores real es de cada afio de un det erm nado producto
*/
#include <stdio.h>
voi d main ()
{
doubl e Coste, Depreciacion,
Valor_Recuperacion,
Val or - act ual ,
Acunul ado,
Valor_Anual;
int Anio, Vida_util;
puts(”Introduzca coste, val or recuperacidén y vida Ckil");
scanf (“$1f Uf %1f”,&Coste,&Valor_ Recuperacion,&Vida_Util);
puts ("I ntroduzcaafio actual ") ;
scanf (“%d”, &Anio) ;
Valor_Actual = Coste;
Depreciacidn = (Coste-Valor_Recuperacion)/Vida_Utill;
Acumul ado = O;
puts ("AfO0 Depreciaciédn Dep. Acumnul ada") ;
while (Anio < Vida_Util)
I
Acumul ado = Acunul ado + Depreciacion;
Valor_aActual = Val or Actual - Depreciacion;
printf (“Aflc: %, Depreciacion:%.21£, %.21f Acunul ada",
Anio,Depreciacion, Acumulado) ;
Anio = Anio * 1;

}

Documentacion interna

Como se vera mas tarde, la documentacion de un programa se clasifica en interna y externa. La docu-
mentacion interna es la que se incluye dentro del cédigo del programa fuente mediante comentarios
que ayudan a la comprension del cédigo. Todas las lineas de programas que comiencen con un simbo-
lo/ * son comentarios. El programa no los necesita y la computadora los ignora. Estas lineas de comen-
tarios solo sirven para hacer los programas mas faciles de comprender. El objetivo del programador
debe ser escribir cddigos sencillos y limpios.

Debido a que las maquinas actuales soportan grandes memorias (64 Mb o 128 Mb de memoria cen-
tral minima en computadoras personales) no es necesario recurrir a técnicas de ahorro de memoria, por
lo que es recomendable que incluya el mayor nimero de comentarios posibles, pero, eso si, que sean
significativos.

_

Fundamentos de programacion 37

2.1.5. Compilaciény ejecucion de un programa

Una vez que el algoritmo se ha convertido en un programa fuente, es preciso introducirlo en memoria
mediante el teclado y almacenarlo posteriormente en un disco. Esta operacién se realiza con un pro-
grama editor, posteriormente el programa fuente se convierte en un archivo de programa que se guar-
da (graba) en disco.

El programa fuente debe ser traducido a lenguaje maquina, este proceso se realiza con el compi-
lador y el sistema operativo que se encarga practicamente de la compilacién.

Si tras la compilacion se presentan errores (erroresde compilacion)en el programa fuente, es pre-
ciso volver a editar el programa, corregir los errores y compilar de nuevo. Este proceso se repite hasta
que no se producen errores, obteniéndose el programa objeto que todavia no es ejecutable directa-
mente. Suponiendo que no existen errores en el programa fuente, se debe instruir al sistema operativo
para que realice la fase de montaje o enlace (link),carga, del programa objeto con las librerias del pro-
grama del compilador. El proceso de montaje produce un programa ejecutable. La Figura 2.5 descri-
be el proceso completo de compilacién/ejecucién de un programa.

S — Memoria
uce externa
| _epcioe | I~ =]
E— Edetr | i Progiama |
Teclado Qetextos" Py |
| - -
4 !
H
Memoria

axterna

engrara
it

Ccmpﬂadoj frogre=,]
ohin |

L .r |
Memoria
externa
uce - —
=
SR |
objeto A
Erlmes e E——
[B i i

FiguraZ.5. Fases de /a compilacion/erecucion de unprograma: &/ eaicron, &) compiacion, ¢ montafe o en/zce.

38

Programacién en C. Metodologia, algoritmos y estructura de datos

Cuando el programa ejecutable se ha creado, se puede ya ejecutar (correr o rodar) desde el sistema
operativo con sélo teclear su nombre (en el caso de DOS). Suponiendo que no existen errores durante
la ejecucién (llamados errores en tiempo de ejecucion), se obtendra la salida de resultados del pro-
grama.)

Las instrucciones u Ordenes para compilar y ejecutar un programa en C puede variar segun el tipo
de compilador. Asi el proceso de Visual C++ 6 es diferente de C bajo UNIX o bajo Linux.

2.1.6. Verificaciony depuracionde un programa

La verificacion o compilacion de un programa es el proceso de ejecucion del programa con una amplia
variedad de datos de entrada, llamados datos de test 0 prueba, que determinaran si el programa tiene
errores («bugs»). Para realizar la verificacion se debe desarrollar una amplia gama de datos de test: valo-
res normales de entrada, valores extremos de entrada que comprueben los limites del programa y valores
de entrada que comprueben aspectos especiales del programa.

La depuracidn es el proceso de encontrar los errores del programa y corregir o eliminar dichos
errores.

Cuando se ejecuta un programa, se pueden producir tres tipos de errores:

1. Errores de compilacién. Se producen normalmente por un uso incorrecto de las reglas del len-
guaje de programacion y suelen ser errores de sintaxis. Si existe un error de sintaxis, la compu-
tadora no puede comprender la instruccién, no se obtendra el programa objeto y el compilador
imprimira una lista de todos los errores encontrados durante la compilacion.

2. Errores de ejecucién. Estos errores se producen por instrucciones que la computadora puede
comprender pero no ejecutar. Ejemplos tipicos son: division por cero y raices cuadradas de nime-
ros negativos. En estos casos se detiene la ejecucién del programa y se imprime un mensaje de
error.

3. Errores légicos. Se producen en la logica del programa y la fuente del error suele ser el dise-
fio del algoritmo. Estos errores son los mas dificiles de detectar, ya que el programa puede
funcionar y no producir errores de compilacion ni de ejecucidn, y solo puede advertir el error
por la obtencidn de resultados incorrectos. En este caso se debe volver a la fase de disefio del
algoritmo, modificar el algoritmo, cambiar el programa fuente y compilar y ejecutar una vez
mas.

2.1.7. Documentaciéony mantenimiento

La documentacidon de un problema consta de las descripciones de los pasos a dar en el proceso de reso-
lucion de un problema. La importancia de la documentacion debe ser destacada por su decisiva influen-
cia en el producto final. Programas pobremente documentados son dificiles de leer, mas dificiles de
depurar y casi imposibles de mantener y modificar.

La documentacion de un programa puede ser inferna y externa. La documentacion interna es la
contenida en lineas de comentarios. La documentacion externa incluye analisis, diagramas de flujo y/o
pseudocddigos, manuales de usuario con instrucciones para ejecutar el programa y para interpretar los
resultados.

La documentacién es vital cuando se desea corregir posibles errores futuros o bien cambiar el pro-
grama. Tales cambios se denominan muntenimiento del progruma. Después de cada cambio la docu-
mentacion debe ser actualizada para facilitar cambios posteriores. Es practica frecuente numerar las
sucesivas versiones de los programas 1.0, 1.1, 2.0, 2.1, etc. (Si los cambios introducidos son impor-
tantes, se varia el primer digito [1.0, 2.0,...], en caso de pequefios cambios sélo se varia el segundo
digito (2.0, 2.1...].)

Fundamentos de programacion 39

2.2. PROGRAMACION MODULAR

Laprogramacion modular es uno de los métodos de disefio més flexible y potentes para mejorar la pro-
ductividad de un programa. En programaciéon modular el programa se divide en médulos (partes inde-
pendientes), cada una de las cuales ejecuta una Unica actividad o tarea y se codifican independiente-
mente de otros modulos. Cada uno de estos modulos se analizan, codifican y ponen a punto por separado.

Cada programa contiene un modulo denominado progruma principal que controla todo lo que suce-
de; se transfiere el control a submodulos (posteriormente se denominaran subprogramas), de modo que
ellos puedan ejecutar sus funciones; sin embargo, cada submdédulo devuelve el control al médulo prin-
cipal cuando se haya completado su tarea. Si la tarea asignada a cada submddulo es demasiado compleja,
éste debera romperse en otros médulos mas pequefios. El proceso sucesivo de subdivision de médulos
continla hasta que cada mddulo tenga solamente una tarea especifica que ejecutar. Esta tarea puede ser
entrada, salida, manipulacion de datos, control de otros médulos 0 alguna combinacién de éstos. Un
maodulo puede transferir temporalmente (bifurcar) el control a otro médulo; sin embargo, cada médulo
debe eventualmente devolver el control al mddulo del cual se recibe originalmente el control.

Los mddulos son independientes en el sentido en que ningin mddulo puede tener acceso directo a
cualquier otro modulo excepto el mddulo al que llama y sus propios submédulos. Sin embargo, los
resultados producidos por un médulo pueden ser utilizados por cualquier otro modulo cuando se trans-
fiera a ellos el control.

Hair

Médulo 1 Médulo 2 Médulo 3 Médulo 4

Médulo 11 Médulo 12 Médulo 31 Médulo 41 Médulo 42

| !

Mddulo 21 Modulo 22 |

Mddulo 221 hadulo 222

Figura 2 6. Programacién modular.

Dado que los médulos son independientes, diferentes programadores pueden trabajar simultanea-
mente en diferentes partes del mismo programa. Esto reducira el tiempo del disefio del algoritmo y pos-
terior codificacion del programa. Ademas, un mddulo se puede modificar radicalmente sin afectar a
otros modulos, incluso sin alterar su funcién principal.

La descomposicion de un programa en modulos independientes mas simples se conoce también
como el método de «divide y venceras» (divide and conquer). Se disefia cada mddulo con indepen-
dencia de los demas, y siguiendo un método ascendente o descendente se llegara hasta la descomposi-
cion final del problema en médulos en forma jerarquica.

40

Programacion en C. Metodologia, algoritmos y estructura de datos

2.3. PROGRAMACION ESTRUCTURADA

Los términosprogramacion modular;programacién descendente y programacion estructurada se intro-
dujeron en la segunda mitad de la década de los sesenta y a menudo sus términos se utilizan como siné-
nimos aungue no significan lo mismo. La programacién modular y descendente ya se ha examinado
anteriormente. La programacion estructurada significa escribir un programa de acuerdo a las siguien-
tes reglas:

o El programa tiene un disefio modular.

o Los modulos son disefiados de modo descendente.

o Cada modulo se codifica utilizando las tres estructuras de control basicas: secuencia, seleccién y
repeticion.

Si esta familiarizado con lenguajes como BASIC, Pascal, FORTRAN o C, la programacién
estructurada significa también programacion sin GOTO (C no requiere el uso de la sentencia
GOTO).

El término programacion estructurada se refiere a un conjunto de técnicas que han ido evolucio-
nando desde los primeros trabajos de Edgar Dijkstra. Estas técnicas aumentan considerablemente la
productividad del programa reduciendo en elevado grado el tiempo requerido para escribir, verificar,
depurar y mantener los programas. La programacién estructurada utiliza un nimero limitado de estruc-
turas de control que minimizan la complejidad de los programas y, por consiguiente, reducen los erro-
res; hace los programas mas faciles de escribir, verificar, leer y mantener. Los programas deben estar
dotados de una estructura.

La programacion estructuradaes el conjunto de técnicas que incorporan:

*® recursos abstractos,
* disefio descendente (top-down),
* estructuras basicas.

2.3.1. Recursos abstractos

La programacion estructurada se auxilia de los recursos abstractos en lugar de los recursos concretos de
que dispone un determinado lenguaje de programacion.

Descomponer unprograma en términos de recursos abstractos —segun Dijkstra— consiste en des-
componer una determinada accién compleja en términos de un nimero de acciones mas simples capa-
ces de ejecutarlas o que constituyan instrucciones de computadoras disponibles.

2.3.2. Disefo descendente {top-down)

El disefio descendente (top-down)es el proceso mediante el cual un problema se descompone en una
serie de niveles 0 pasos sucesivos de refinamiento (stepwise).La metodologia descendente consiste en
efectuar una relacion entre las sucesivas etapas de estructuracion de modo que se relacionasen unas con
otras mediante entradas y salidas de informacion. Es decir, se descompone el problema en etapas o
estructuras jerarquicas, de forma que se puede considerar cada estructura desde dos puntos de vista:
iqué hace?y ;como lo hace?

Si se considera un nivel n de refinamiento, las estructuras se consideran de la siguiente manera:

Fundamentos de programacion 41

i A

{

Nivel n: desde el exterior Nivel n + 7: Vista desde el interior
«;lo que hace?» «¢zcomo lo hace?.

El disefio descendente se puede ver en la Figura 2.7

Figura 2.7. Disefio descendente.

2.3.3. Estructuras de control

Las estructuras de control de un lenguaje de programacion son métodos de especificar el orden en que
las instrucciones de un algoritmo se ejecutaran. El orden de ejecucién de las sentencias (lenguaje) o
instrucciones determinan el flujo de control. Estas estructuras de control son, por consiguiente, funda-
mentales en los lenguajes de programacion y en los disefios de algoritmos especialmente los pseudo-
codigos.

Las tres estructuras de control basico son:

e Secuencia
¢ seleccién
« repeticion

y se estudian en los Capitulos 5y 6.
La programacién estructurada hace los programas mas faciles de escribir, verificar, leer y mantener;

utiliza un nimero limitado de estructuras de control que minimizan la complejidad de los problemas.

42

Programacion en C. Metodologia, algoritmos y estructura de datos

2.3.4. Teorema de la programacion estructurada: estructuras basicas

En mayo de 1966, Bohm y Jacopini demostraron que un programa propio puede ser escrito utilizando
solamente tres tipos de estructuras de control.

e secuenciales,
« selectivas,
e repetitivas.

Un programa se define como propio si cumple las siguientes caracteristicas:

« Posee un solo punto de entrada y uno de salida o fin para control del programa.
« Existen caminos desde la entrada hasta la salida que s pueden seguir y que pasan por todas /as

partes del programa.
« Todas las instrucciones son ejecutablesy no existen lazos o bucles infinitos (sinfin).

Los Capitulos 5 y 6 se dedican al estudio de las estructuras de control selectivasy repetitivas

La programacion estructurada significa:

El programa completo tiene un disefio modular.

o Los modulos se disefian con metodologiadescendente (puede hacerse también ascendente).
o Cada modulo se codifica utilizando las tres estructuras de control basicas: secuenciales,
selectivasy repetitivas (ausencia total de sentencias GOTO).

Estructuraciony modularidad son conceptos complementarios (se solapan).

2.4. REPRESENTACION GRAFICA DE LOS ALGORITMOS

Para representar un algoritmo se debe utilizar algiin método que permita independizar dicho algoritmo
del lenguaje de programacion elegido. Ello permitird que un algoritmo pueda ser codificado indistinta-
mente en cualquier lenguaje. Para conseguir este objetivo se precisa que el algoritmo sea representado
grafica o numéricamente, de modo que las sucesivas acciones no dependan de la sintaxis de ningan len-
guaje de programacion, sino que la descripcion pueda servir facilmente para su transformacion en un
programa, es decir, su codificacion.

Los métodos usuales para representar un algoritmo son:

. diagrama de flujo,

. diagrama N-S (Nassi-Schneiderman),

. lenguaje de especificacion de algoritmos: pseudocddigo,
. lenguaje espariol, inglés...

. férmulas.

Los métodos 4 y 5 no suelen ser faciles de transformar en programas. Una descripcion en espafiol
narrativo no es satisfactoria, ya que es demasiado prolija y generalmente ambigua. Unaférmula, sin
embargo, es buen sistemade representacidn. Por ejemplo, las formulas para la solucién de una ecuacion
cuadratica (de segundo grado) es un medio sucinto de expresar el procedimiento algoritmico que se
debe ejecutar para obtener las raices de dicha ecuacion.

xl=(=b+tVE “dac)/2a x2=(-b-\b —4ac)/2a

y significa lo siguiente:

abh N —

1. Eleve al cuadrado 4.
2. Tomaa; multiplicar por ¢; multiplicar por 4.
3. Restar el resultado obtenido de 2 del resultado de /, etc.

Fundamentos de programacion 43

Sin embargo, no es frecuente que un algoritmo pueda ser expresado por medio de una simple for-
mula.

2.4.1. Diagramas de flujo

Un diagrama de flujo (flowchart) es una de las técnicas de representacion de algoritmos méas antigua
y a la vez mas utilizada, aungue su empleo ha disminuido considerablemente, sobro todo, desde la apa-
ricion de lenguajes de programacién estructurados. Un diagrama de flujo es un diagrama que utiliza los
simbolos (cajas) estdndar mostrados en la Tabla 2.1y que tiene los pasos de algoritmo escritos en esas
cajas unidas por flechas, denominadas lineas de flujo, que indican la secuencia en que se debe ejecutar.

La Figura 2.8 es un diagrama de flujo basico. Este diagrama representa la resolucion de un progra-
ma que deduce el salario neto de un trabajador a partir de la lectura del nombre, horas trabajadas, pre-
cio de la hora, y sabiendo que los impuestos aplicados son el 25 por 100sobre el salario bruto.

Los simbolos estdndar normalizados por ANSI (abreviatura de American National Standars Insti-
tute) son muy variados. En la Figura 2.9 se representa una plantilla de dibujo tipica donde se contem-
plan la mayoria de los simbolos utilizados en el diagrama; sin embargo, los simbolos més utilizados
representan:

Tabla 2.1. Simbolos de diagrama de flujo

Simbolos
principales Funcion

Terminal (representael comienzo, «inicio».y el final, «fin» de un programa. Puede representar tam-
[(—) bién una parada o interrupcion programada que sea necesario realizar en un programa.

| T | Entrada/Salida (cualquier tipo de introduccion de datos en la memoria desde los periféricos. «entra-
da», o registro de la informacion procesada en un periférico. «salida».

Proceso (cualquier tipo de operacidn que pueda originar cambio de valor, formato o posicion de la
informacion almacenada en memoria, operaciones aritméticas, de transferencia, etc.).

Decisién (indica operaciones logicas o de comparacion entre datos — normalmente dos— y en fun-
cion del resultado de la misma determina cual de los distintos caminos alternativos del programa se
debe seguir; normalmente tiene dos salidas —respuestas S| 0 NO— pero puede tener tres o mas,
Ve segun los casos).

Y

nos de acuerdo con dicho resultado).

Conector (sirve para enlazar dos partes cualesquiera de un ordinograma a través de un conector en

O Decisién maltiple (en funcion del resultado de la comparacion se seguira uno de los diferentes cami-
O la salida y otro conector en la entrada. Se refiere a la conexion en la misma pagina del diagrama.

— Indicador de direccion o linea de flujo (indica el sentido de ejecucién de las operaciones).

Linea conectora (sirve de unién entre dos simbolos).

O Conector (conexion entre dos puntos del organigrama situado en paginas diferentes).

]] Llamada subrutina o0 a un proceso predeterminado (una subrutina es un modulo independiente del
programa principal, que recibe una entrada procedente de dicho programa, realiza una tarea deter-
minada y regresa, al terminar, al programa principal).

{Contintia)

44 Programacién en C. Metodologia, algoritmos y estructura de datos

(Continuacion)

Simbolos
secundarios Funcion

Pantalla (se utiliza en ocasiones en lugar del simbolo de E/S).

Impresora (se utiliza en ocasiones en lugar del simbolo de E/S).

] Teclado (se utiliza en ocasiones en lugar del simbolo de E/S).

Comentarios (se utiliza para afiadir comentarios clasificadores a otros simbolos del diagrama de flu-
jo. Se pueden dibujar a cualquier lado del simbolo).

leer nombre,
horas, [
precio

¥

bruto « |
homas * precs |

L

tasas <«
0,25 * Bruld

Y

neto «
Bruls — lasas

.

' -
/' escribir nombre,
bruto tasas, f
natg

Y

| [0

Figura 2. 8. Diagrama de flujo.

Fundamentos de programacion 45

o proceso,
decisioén,
conectores,

fin,

entrada/salida,

o direccion del flujo.

]

Se resume en la Figura 2.8 en un diagrama de flujo:

» existe una caja etiquetada "i ni ci 0", que es de tipo eliptico,

o existe una caja etiquetada "fi n" de igual forma que la anterior,

o Si existen otras cajas, normalmente son rectangulares, tipo rombo o paralelogramo (el resto de
las figuras se utilizan sélo en diagramas de flujo generales o de detalle y no siempre son impres-
cindibles).

Se puede escribir méas de un paso del algoritmo en una sola caja rectangular. El uso de flechas sig-
nifica que la caja no necesita ser escrita debajo de su predecesora. Sin embargo, abusar demasiado de
esta flexibilidad conduce a diagramas de flujo complicados e ininteligibles.

[Termiru

F Deacisicin -
no Subprogramea

1

Enirada/ { \ HrOCa80

il

Figura 2.9. Plantillatipica para diagramas de flujo.

Ejemplo 23

Calcular la media de una serie de nimeros positivos, suponiendo que los datos se leen desde un ter-
minal. Unvalor de cero —como entrada— indicara que se ha alcanzado elfinal de la serie de niime-
ros positivos.

El primer paso a dar en el desarrollo del algoritmo es descomponer el problema en una serie de
pasos secuenciales. Para calcular una media se necesita sumary contar los valores. Por consiguiente,
nuestro algoritmo en forma descriptiva seria:

1. inicializar contador de nuneros Cy variable suma 5.
2. Leer un nunero
3. Si el nunero leido es cero
o calcular la nedia
o inprimr la nedia
o fin del proceso.
Si el numero |leido no es cero
o calcular la suma
o increnentar en uno el contador de nuneros
e ir al paso 2.
4. Fin.

46

Programacion en C. Metodologia, algoritmos y estructura de datos

El refinamiento del algoritmo conduce a los pasos sucesivos necesarios para realizar las operacio-
nes de lectura, verificacion del Ultimo dato, sumay media de los datos.

Si el primer dato leido es 0, la division S/c produciria un error si se ejecutara el algoritmo en una
computadora, ya que no esta permitida en ella la division por cero.

13]

[
(| 0 C - conlador de numanms
| & =--— 0 | S - sumador de nimeros
i -
' v
| leer dato
| |
L
3 no

P dato <= 0 o

v e
C -~ C+1
|S <& S +dato!

¥ .
Si el primer dato leido es O, ladivision S/ C
Media <€ SIC / producird un error si se ejecutara el

algoritmo en una computadora, ya que no

esté permitida en ella la divisién por cero.

Tmprimir
Igahair

__ _ media

Fundamentos de programacion

Ejemplo 2.4
Suma de los numeros pares comprendidos entre 2 y 100

I IFCnd]

Y
SUMA - 2
| NUMERO - 4
i 1152)
._.____>
i S
| SUMA -
SUMA + MUBMERD
|
T, S
| MUMERD
HUMERD + 2 |

: L
<" NUMERD = < 100 =

Y

Escribir
SUMA

Fa

Ejemplo 25

47

Se desea realizar el algoritmo que resuelva el siguiente problema: Cdlculo de los salarios mensuales de
los empleados de una empresa, subiendo que éstos se calculan en base a las horas semanales trabaja-
das y de acuerdo a un precio especificado por horas. Si se pasan de cuarenta horas semanales, las

horas extraordinarias se pagaran a razon de 1.5 veces /a hora ordinaria.
Los calculos son:

1. Leer datos del archivo de la enpresd, hasta que se encuentre la ficha

final del archivo (HORAS, PRECI O- HORA, NOVBRE).
2. S HORAS <= 40, entonces SALARIO es el producto de horas
PRECI O- HORA.

por

3. Si HORAS = 40, entonces SALARIO es la suma de 40 veces PRECI O- HORA mds

1.5 veces PREC O- HORA por (HORAS-40).

48

Programacioén en C. Metodologia, algoritmos y estructura de datos

El diagrama de flujo completo del algoritmo se indica a continuacion:

)

I
Y

SALARID =
HORAS*

PRECIO-HORA

Inicio

i

HORAS, PRECIO-HORA /

NOMBRE
L)
]
HOHAS < =40 1
|
|
SALARID =
40* PRECIO_HORA+
1,5* PRECIO-HORA*
(HORAS-40)
—
Escribir
SRSEMIO
SALARIO
S
= s dalosg
i
Y

D

Fundamentos de programacion 49
Una variante también valida al diagrama de flujo anterior es:
d Inicad : |
- T
Y
no
,mas datos?
Leer
HORAS, PRECIO-HORA
NOMBRE
si no
HORAS < = 40
SALARID = SALARIO =
HORAS* | 40* PRECIO-HORA+
PRECIO-HORA 1,5 PRECIO-HORA*
i ! (HORAS - 40)
Escribir F
SALARIO
- i

Fin i)

Ejemplo 2.6
La escritura de algoritmos para realizar operaciones sencillas de conteo es una de lasprimeras cosas
que un ordenador puede aprender:

Supongamos que se proporciona una secuencia de nimeros, tales como
5302440023602

v desea contar e imprimir el nimero de ceros de la secuencia.

El algoritmo es muy sencillo, ya que sélo basta leer los nimeros de izquierda a derecha, mientras
se cuentan los ceros. Utiliza como variable la palabra NUMERO para los nimeros que se examinan y
TOTAL para el nimero de ceros encontrados. Los pasos a seguir son:

1. Establecer TOTAL a cero.
2. ¢Quedan MAS nuneros a exam nar?

Programacion en C. Metodologia, algoritmos y estructura de datos

S$i no quedan nuneros, inprimr el valor de TOTAL y fin.
Si existen mas nuneros, ejecutar |os pasos 5 a 8.

si NUMERO = O, increnentar TOTAL en 1
51 NUMERO <> O, no nodificar TOTAL.
Retornar al paso 2.

El diagrama de flujo correspondiente es:

Inicio

TOTAL -«— O

T
gl |
g

b L MES FANMBRDE T e

si

Leer

NUMERS

R

i
L . NUMERD =0

L |
] [§]
| TOTAL -—
TOTAL + 1

Egceinis
TOTAL

TOTAL

Leer el siguiente nunmero y dar su valor a |la variabl e NUMERO

EjemplcTZ.?

Dados tres nimeros, determinar si la suma de cualquier pareja de ellos es igual al tercer nimero. Si se

cumple esta condicién, escribir «Iguales» v, en caso contrurio, escribir «Distintas».

En el caso de que los nimeros sean: 3 9 6

Fundamentos de programacion 51

la respuesta es "Tguales”, yaque 3 + 6 = 9.Sinembargo, si los nimeros fueran:

2 3 4

el resultado seria ' Di sti ntas".
Para resolver este problema, se puede comparar la suma de cada pareja con el tercer nimero. Con

tres nimeros solamente existen tres parejas distintas y el algoritmo de resolucion del problema sera
facil.

Leer los tres valores, A, By C.

S A+ B = Cescribir "lguales" y parar.

Si A+ C=Bescribir "lguales" y parar.

S B+ C= A escribir "lguales" y parar.

Escribir 'Distintas"y parar.

El diagrama de flujo correspondiente es la Figura 2.10.

ORrPNR

[IrHGa |

! ABC

- -, g

A+C=8B —b‘

-
+Cofl =

B+E<A N
Y]

u.*.:rll:ur Fi BESCTIDNr
«distintas» / «iguales»

Figura 2.10. Diagrama de flujo (Ejemplo2.7).

52 Programacién en C. Metodologia, algoritmos y estructura de datos

2.5. DIAGRAMAS DE NASSI-SCHNEIDERMAN (N-S)

El diagrama N-S de Nassi Schneiderman — también conocido como diagrama de Chapin— es como
un diagrama de flujo en el que se omiten las flechas de unién y las cajas son contiguas. Las acciones
sucesivas se escriben en cajas sucesivas y, como en los diagramas de flujo, se pueden escribir diferen-
tes acciones en una caja.

Un algoritmo se representa con un rectangulo en el que cada banda es una accion a realizar:

nonbre, horas, precio

[cal cul ar

LLidf bl T [LE R =]

cal cul ar
i mpuestos « 0.25 * salario

cal cul ar
neto « salario - inpuestos

escribir
nonbre, sal ario, inpuestos, neto

nonbre del al goritno

<accion 1>

<accion 2>

<accion 3>

fin

Figura2.11. Representacion grafica N-S de un algoritmo.

Otro ejemplo es la representacion de la estructura condicional (Fig. 2.12).

(@ N — i —

: Lcondickan? |
‘condicion? o |

accion 1 BOCION 2

'

Figura 2.12. Estructura condicional o selectiva: (a)diagrama de flujo: (b) diagrama N-S.

<acciones> <acciones>

2.6.

Fundamentos de programacion 53

Ejemplo 2.8

Se desea calcular el salario neto semanal de un trabajador enfuncidn del nimero de horas trabaja-
dasy la tasa de impuestos:

« lasprimeras 35 horas se pagan a tarifa normal,

« las horas que pasen de 35 se pagan a 1,5 veces la tarifa normal,

«» las tasas de impuestos son:
a) lasprimeras 60.000pesetas son libres de impuestos,
b) las siguientes 40.000 pesetas tienen un 25 por 100 de impuesto,
c) las restantes, un 45 por 100 de impuestos,

«+ latarifa horaria es 800peseta.s.

También se desea escribir el nombre, salario bruto, tasas y salario neto (esteejemplo se deja como
ejercicio al alumno).

EL CICLO DE VIDA DEL SOFTWARE

Existen dos niveles en la construccién de programas: aquéllos relativos a pequefios programas (los que
normalmente realizan programadores individuales) y aquellos que se refieren a sistemas de desarrollo
de programas grandes (proyectos de software)y que, generalmente, requieren un equipo de programa-
dores en lugar de personas individuales. El primer nivel se denomina programacién a pequefia escala;
el segundo nivel se denominaprogramacion a gran escala.

La programacion en pequefia escala se preocupa de los conceptos que ayudan a crear pequefios pro-
gramas —aquellosque varian en longitud desde unas pocas lineas a unas pocas paginas—. En estos pro-
gramas se suele requerir claridad y precision mental y técnica. En realidad, el interés mayor desde el
punto de vista del futuro programador profesional esta en los programas de gran escala que requiere de
unos principios solidos y firmes de lo que se conoce como ingenieria de software y que constituye un
conjunto de técnicas para facilitar el desarrollo de programas de computadora. Estos programas 0 mejor
proyectos de software estan realizados por equipos de personas dirigidos por un director de proyectos
(analista o ingeniero de software) y los programas pueden tener mas de 100.000 lineas de cédigo.

El desarrollo de un buen sistema de software se realiza durante el ciclo de vida que es el periodo de
tiempo que se extiende desde la concepcidn inicial del sistema hasta su eventual retirada de la comer-
cializacién o uso del mismo. Las actividades humanas relacionadas con el ciclo de vida implican pro-
cesos tales como andlisis de requisitos, disefio, implementacion, codificacion, pruebas, verificacion,
documentacion, mantenimiento Yy evolucidn del sistema y obsolescencia. En esencia el ciclo de vida del
software comienza con una idea inicial, incluye la escritura y depuracion de programas, y continta
durante afios con correcciones y mejoras al software original®.

ANALISIS |- _T

DISERD v

‘ IMPLEMENTACION Y

DEPURACION —*

MANTENIMIENTO |

Figura 2.13. Ciclo de vida del software.

* Carrano, Hellman y Verof: Data structures and problem solving with Turbo Pascal, The Benjaming/Cummings Publis-
hing, 1993, pag. 210.

54

Programacion en C. Metodologia, algoritmos y estructura de datos

El ciclo de vida del software es un proceso iterativo, de modo que se modificaran las sucesivas eta-
pas en funcién de la modificacidn de las especificaciones de los requisitos producidos en la fase de dise-
fio 0 implementacidn, 0 bien una vez que el sistema se ha implementado, y probado, pueden aparecer
errores que sera necesario corregir y depurar, y que requieren la repeticién de etapas anteriores.

La Figura 2.13 muestra el ciclo de vida de software y la disposicion tipica de sus diferentes etapas
en el sistema conocido como ciclo de vida en cascada, que supone que la salida de cada etapa es la
entrada de la etapa siguiente.

2.6.1. Analisis

La primera etapa en la produccion de un sistema de software es decidir exactamente qué se supone ha
de hacer el sistema. Esta etapa se conoce también como analisis de requisitos o especificaciones y por
esta circunstancia muchos tratadistas suelen subdividir la etapa en otras dos:

 Anélisisy definicion del problema.
o Especificacion de requisitos.

La parte mas dificil en la tarea de crear un sistema de software es definir cual es el problema, y a
continuacién especificar lo que se necesita para resolverlo. Normalmente la definicién del problema
comienza analizando los requisitos del usuario, pero estos requisitos, con frecuencia, suelen ser impre-
cisosy dificiles de describir. Se deben especificar todos los aspectos del problema, pero con frecuencia
las personas que describen el problema no son programadores y eso hace imprecisa la definicion. La fase
de especificacion requiere normalmente la comunicacién entre los programadores y los futuros usuarios
del sistema e iterar la especificacion, hasta que tanto el especificador como los usuarios estén satisfechos
de las especificaciones y hayan resuelto el problema normalmente.

En la etapa de especificaciones puede ser muy Util para mejorar la comunicacion entre las diferen-
tes partes implicadas construir un prototipo o modelo sencillo del sistema final; es decir, escribir un
programa prototipo que simule el comportamiento de las partes del producto software deseado. Por
ejemplo, un programa sencillo — inclusoineficiente — puede demostrar al usuario la interfaz propues-
ta por el analista. Es mejor descubrir cualquier dificultad o cambiar su idea original ahora que después
de que la programacion se encuentre en estado avanzado 0, incluso, terminada. EI modelado de datos es
una herramienta muy importante en la etapa de definicion del problema. Esta herramienta es muy uti-
lizada en el disefio y construccion de bases de datos.

Tenga presente que el usuario final, normalmente, no conoce exactamente lo que desea que haga el
sistema. Por consiguiente, el analista de software o programador, en su caso, debe interactuar con el
usuario para encontrar lo que el usuario deseara que haga el sistema. En esta etapa se debe responder
a preguntas tales como:

{Cuales son los datos de entrada?

(Qué datos son vélidos y qué datos no son vélidos'?

(Quién utilizara el sistema: especialistas cualificados o usuarios cualesquiera (sin formacion)?

. Qué interfaces de usuario se utilizaran?

(Cudles son los mensajes de error y de deteccion de errores deseables? ; Cémo debe actuar el sis-
tema cuando el usuario cometa un error en la entrada?

. Qué hipdtesis son posibles?

(Existen casos especiales?

(Cudl es el formato de la salida?

¢ Qué documentacion es necesaria?

;Qué mejoras se introduciran — probablemente —al programa en el futuro?

(Coémo debe ser de rapido el sistema?

;Cada cuanto tiempo ha de cambiarse el sistema después que se haya entregado?

El resultado final de la fase de andlisis es una especificacion de los requisitos del software.

Fundamentos de programacion 55

« Descripcion del problema previa y detalladamente.
o Prototipos de programas que pueden ayudar aresolver el problema.

2.6.2. Disefo

La especificacion de un sistema indica lo que el sistema debe hacer. La etapa de disefio del sistema
indica como ha de hacerse. Para un sistema pequefio, la etapa de disefio puede ser tan sencilla como
escribir un algoritmo en pseudocddigo. Para un sistema grande, esta etapa incluye también la fase de
disefio de algoritmos, pero incluye el disefio e interaccion de un numero de algoritmos diferentes, con
frecuencia s6lo bosquejados, asi como una estrategia para cumplir todos los detalles y producir el codi-
go correspondiente.

Es preciso determinar si se pueden utilizar programas o0 subprogramas que ya existen o es preciso
construirlos totalmente. El proyecto se ha de dividir en médulos utilizando los principios de disefio des-
cendente. A continuacidn, se debe indicar la interaccion entre médulos; un diagrama de estructuras pro-
porciona un esquema claro de estas relaciones’.

En este punto, es importante especificar claramente no sélo el prop6sito de cada moédulo, sino tam-
bién el flujo de datos entre médulos. Por ejemplo, se debe responder a las siguientes preguntas: ; Qué
datos estan disponibles al médulo antes de su ejecucion? ;Qué supone el médulo? ;Qué hacen los datos
después de que se ejecuta el mddulo? Por consiguiente, se deben especificar en detalle las hipotesis,
entrada y salida para cada modulo. Un medio para realizar estas especificaciones es escribir una pre-
condicion, que es una descripcion de las condiciones que deben cumplirse al principio del mddulo y
una postcondicién, que es una descripcion de las condiciones al final de un médulo. Por ejemplo, se
puede describir un subprograma que ordena una lista (un array) de la forma siguiente:

subprograma ordenar (A, n)
{Ordena una |ista en orden ascendent e}
precondi ci6n: A es un array de n enteros, 1<= n <= Max.
postcondici 6n: A[1l] <= A[2] <...<= A[n], n es inalterable}

Por Ultimo, se puede utilizar pseudocddigo”para especificar los detalles del algoritmo. Es importante
que se emplee bastante tiempo en la fase de disefio de sus programas. El resultado final de disefio des-
cendente es una solucion que sea facil de traducir en estructuras de control y estructuras de datos de un
lenguaje de programacion especifico —en nuestro caso, C—

El gasto de tiempo en la fase de disefio sera ahorro de tiempo cuando se escriba y depura su pro-
grama.

2.6.3. Implementacién (codificacion)

La etapa de implementacion (codificacion)traduce los algoritmos del disefio en un programa escrito
en un lenguaje de programacion. Los algoritmos y las estructuras de datos realizadas en pseudocddigo

Fara gmnpdiar sohre csie wma i dagramas do esiruciurs, Do ceibsuiun esla olins nuesirns Faidviseifos o piognml
wieciirr, 2.° edicitn, WeGrmw-HAIL 1992 Protslean de mesadbosia de b oo ovanivi, MoGrmwHill, 19592 g been oo P
Dy Towhar Fioaal, Dl emfwpaie pevdeivees de v, fabonem v Hormosas cm Mo HHEL 1925

Para comsiliar €1 s il pecishogsliging s L alsias: | f

aiiyfviimeradies ofy pirveprarmeis o, A grarniimesy & s P oli
danay, 38 sliciim, MoeGras-Hhll, 19380 de Luss Jovanes v Fandumemtes oy prspramacion. Lib ofe pesdlemas, MoGron-Hill

PRy e Lums Jewvanes. Loy Bodrieoce v Matslde Fermamde s

56 Programacion en C. Metodologia, algoritmos y estructura de datos

han de traducirse codificados en un lenguaje que entiende la computadora: PASCAL, FORTRAN,
COBOL, C, C++, C# o Java.

La codificacion cuando un problema se divide en subproblemas, los algoritmos que resuelven cada
subproblema (tarea 0 médulo) deben ser codificados, depurados y probados independientemente.

Es relativamente facil encontrar un error en un procedimiento pequefio. Es casi imposible encontrar
todos los errores de un programa grande, que se codifico y comprob6 como una sola unidad en lugar de
como una coleccion de mddulos (procedimientos) bien definidos.

Las reglas del sangrado (indentacion) y buenos comentarios facilitan la escritura del codigo. El
pseudocddigo es una herramienta excelente que facilita notablemente la codificacion.

2.6.4. Pruebas e integracion

Cuando los diferentes componentes de un programa se han implementado y comprobado individual-
mente, el sistema completo se ensamblay se integra.

La etapa de pruebas sirve para mostrar que un programa es correcto. Las pruebas nunca son faciles.
Edgar Dijkstra ha escrito que mientras que las pruebas realmente muestran lapresencia de errores, nun-
ca puede mostrar su ausencia. Una prueba con «€xito» en la ejecucion significa s6lo que no se han des-
cubierto errores en esas circunstancias especificas, pero no se dice nada de otras circunstancias. En teo-
ria el Unico modo que una prueba puede mostrar que un programa es correcto si todos los casos posibles
se han intentado y comprobado (es lo que se conoce como prueba exhaustiva); es una situacion técni-
camente imposible incluso para los programas mas sencillos. Supongamaos, por ejemplo, que se ha escri-
to un programa que calcule la nota media de un examen. Una prueba exhaustivarequerira todas las com-
binaciones posibles de marcas y tamafios de clases; puede llevar muchos afios completar la prueba.

La fase de pruebas es una parte esencial de un proyecto de programacion. Durante la fase de prue-
bas se necesita eliminar tantos errores l16gicos como pueda. En primer lugar, se debe probar el progra-
ma con datos de entrada validos que conducen a una solucion conocida. Si ciertos datos deben estar
dentro de un rango, se deben incluir los valores en los extremos finales del rango. Por ejemplo, si el
valor de entrada de n cae en el rango de 1a 10, se ha de asegurar incluir casos de prueba en los que n
esté entre 1y 10. También se deben incluir datos no validos para comprobar la capacidad de deteccion
de errores del programa. Se han de probar también algunos datos aleatorios y, por Ultimo, intentar algu-
nos datos reales.

2.6.5. Verificacion

La etapa de pruebas ha de comenzar tan pronto como sea posible en la fase de disefio y continuard a lo
largo de la implementacion del sistema. Incluso aungue las pruebas son herramientas extremadamente
vélidas para proporcionar la evidencia de que un programa es correcto y cumple sus especificaciones,
es dificil conocer si las pruebas realizadas son suficientes. Por ejemplo, ; cémo se puede conocer que son
suficientes los diferentes conjuntos de datos de prueba o que se han ejecutado todos los caminos posi-
bles a través del programa?

Por esas razones se ha desarrollado un segundo método para demostrar la correccion o exactitud de
un programa. Este método, denominado verificaciénformal implica la construccion de pruebas mate-
maéticas que ayudan a determinar si los programas hacen lo que se supone han de hacer. La verificacién
formal implica la aplicacion de reglas formales para mostrar que un programa cumple su especificacion:
la verificacion. La verificacion formal funciona bien en programas pequefios, pero es compleja cuando
se utiliza en programas grandes. La teoria de la verificacion requiere conocimientos matematicos avan-
zados Y, por otra parte, se sale fuera de los objetivos de este libro; por esta razén s6lo hemos constata-
do la importancia de esta etapa.

La prueba de que un algoritmo es correcto es como probar un teorema matematico. Por ejemplo,
probar que un médulo es exacto (correcto) comienza con las precondiciones (axiomas e hipotesis en

Fundamentos de programacion 57

matematicas)y muestra que las etapas del algoritmo conducen a las postcondiciones. La verificacion tra-
ta de probar con medios matematicos que los algoritmos son correctos.

Si se descubre un error durante el proceso de verificacion, se debe corregir su algoritmoy posible-
mente se han de modificar las especificaciones del problema. Un método es utilizar invariantes (una
condicion que siempre es verdadera en un punto especifico de un algoritmo) lo que probablemente hara
que su algoritmo contenga pocos errores antes de que comience la codificacion. Como resultado se gas-
tard menos tiempo en la depuracion de su programa.

2.6.6. Mantenimiento

Cuando el producto software (el programa) se ha terminado, se distribuye entre los posibles usuarios, se
instala en las computadoras y se utiliza (produccién).Sin embargo, y aunque, a priori, el programa
funcione correctamente, el software debe ser mantenido y actualizado. De hecho, el coste tipico del
mantenimiento excede, con creces, el coste de produccion del sistema original.

Un sistema de software producira errores que seran detectados, casi con seguridad, por los usua-
nos del sistemay que no se descubrieron durante la fase de prueba. La correccion de estos errores es par-
te del mantenimiento del software. Otro aspecto de la fase de mantenimiento es la mejora del software
afladiendo mas caracteristicas o modificando partes existentes que se adapten mejor a los usuarios.

Otras causas que obligaran a revisar el sistema de software en la etapa de mantenimiento son las
siguientes: 1) Cuando un nuevo hardware se introduce, el sistema puede ser modificado para ejecutar-
lo en un nuevo entorno; 2) Si cambian las necesidades del usuario, suele ser menos caro y mas rapido,
modificar el sistema existente que producir un sistema totalmente nuevo. La mayor parte del tiempo de
los programadores de un sistema se gasta en el mantenimiento de los sistemas existentes y no en el dise-
fio de sistemas totalmente nuevos. Por esta causa, entre otras, se ha de tratar siempre de disefiar pro-
gramas de modo que sean faciles de comprender y entender (legibles) y faciles de cambiar.

2.6.7. La obsolescencia: programas obsoletos

La dltima etapa en el ciclo de vida del software es la evolucion del mismo, pasando por su vida Gtil has-
ta su obsolescencia 0 fase en la que el software se queda anticuado y es preciso actualizarlo o escribir
un nuevo programa sustitutorio del antiguo.

La decision de dar de baja un software por obsoleto no es una decision facil. Un sistema grande
representa una inversion enorme de capital que parece, a primera vista, mas barato modificar el sistema
existente, en vez de construir un sistema totalmente nuevo. Este criterio suele ser, normalmente, correc-
to y por esta causa los sistemas grandes se disefian para ser modificados. Un sistema puede ser produc-
tivamente revisado muchas veces. Sin embargo, incluso los programas grandes se quedan obsoletos por
caducidad de tiempo al pasar una fecha limite determinada. A menos que un programa grande esté bien
escrito y adecuado a la tarea a realizar, como en el caso de programas pequefios, suele ser mas eficien-
te escribir un nuevo programa que corregir el programa antiguo.

2.6.8. Iteraciony evolucion del software

Las etapas de vida del software suelen formar parte de un ciclo o bucle, como su nombre sugiere y no
son simplemente una lista lineal. ES probable, por ejemplo, que durante la fase de mantenimiento ten-
ga que volver a las especificaciones del problema para verificarlas o modificarlas.

Obsérvese en la Figura 2.14 las diferentes etapas que rodean al nlcleo: documentacién. La docu-
mentacidn no es una etapa independiente como se puede esperar sino que esta integrada en todas las
etapas del ciclo de vida del software.

e

58 Programacion en C. Metodologia, algoritmos y estructura de datos

MARNE N TIEN D Espacilicacsonas

&

-

Enluicidin . = Dhisghn
1 |
} | :
_l'
Produccidn - Vendicacn |
™ _ Pruabas Caochlscacitn

Figura 2.14. Etapas del ciclo de vida del software cuyo nucleo aglutinador es la documentacion.

2.7. METODOS FORMALES DE VERIFICACION DE PROGRAMAS

Aunque la verificacion formal de programas se sale fuera del &mbito de este libro, por su importancia
vamos a considerar dos conceptos clave, aser:os (afirmaciones) y precondiciones/postcondiciones i na:

riantes que ayuden a documentar, corregir y clarificar el disefio de médulos y de programas.

2.7.1. Aserciones’

Una parte importante de una verificacion formal es la documentacidn de un programa a través de aser-
tos o afirmaciones — sentenciasldgicas acerca del programa que se declaran «verdaderas»—. Un aser-
to se escribe como un comentario y describe lo que se supone sea verdadero sobre las variables del pro-

grama en ese punto.

Un aserto es una frase sobre una condicion especifica en un cierto punto de un algoritmo o pro-

grama.

Ejemplo 2.9
El siguientefragmento de programa contiene una secuencia de sentencias de asignacion, seguidaspor
un aserto.

A = 10; { aserto: A es 10}

X = A { aserto: x es 10 }

Y = X + A; { aserto: Y es 20 }

" Este término se sucle traducir también por afirmeciones o declaraciones, El término aserto esta extendido cn lajerga infor-

matica pero no es aceptado por ¢l DKAE.

Fundamentos de programacion 59

La verdad de la primera afirmacion {A es 103}, sigue a la ejecucion de la primera sentencia con el
conocimiento de que 10es una constante. La verdad de la segunda afirmaciéon { X es 10?%, sigue de
laejecucion de X = Acon el conocimientode que A es 10 La verdad de la tercera afirmacion {y es
207} sigue de la ejecuciéon Y = X + A con el conocimientode que x es 10y A es 10 En este seg-
mento del programa se utilizan afirmaciones como comentarios para documentar el cambio en una varia-
ble de programa después que se ejecuta cada sentencia de afirmacion.

La tarea de utilizar verificacion formal es probar que un segmento de programa cumple su especi-
ficacion. La afirmacion final se llama postcondicion (en este caso, {Y es 20} Y sigue a la presuncién
inicial o precondicién (en este caso {10 es una constante}),después que se ejecuta el segmento de pro-
grama.

2.7.2. Precondicionesy postcondiciones

Las precondiciones y postcondiciones son afirmaciones sencillas sobre condiciones al principio y al
final de los médulos. Una precondicion de un procedimiento es una afirmacion l6gica sobre sus para-
metros de entrada; se supone que es verdadera cuando se llama al procedimiento. Unapostcondicién de
un procedimiento puede ser una afirmacion l6gica que describe el cambio en el estado del programa pro-
ducido por la ejecucion del procedimiento; la postcondicion describe el efecto de llamar al procedi-
miento. En otras palabras, la postcondicién indica que sera verdadera después que se ejecute el proce-
dimiento.

Ejemplo 2.10

{Precondi ci ones y postcondi ci ones del subprograma LeerEnteros)
subprogranma LeerEnteros (Min, Max: Entero;var N Entero);
{
Lectura de un entero entre Min y Max en N

Pre : Min y Max son val ores asi gnados
Post: devuelve en N el prinmer valor del dato entre Min y Max
si Min <= Max es verdadero; en caso contrario
N no esta defi ni do.

La precondicion indica que los parametros de entrada Min y Max se definen antes de que comience
la ejecucion del procedimiento. La postcondicion indica que la ejecucion del procedimiento asigna el
primer dato entre Min y Max al parametro de salida siempre que Min <= Max sea verdadero.

Las precondiciones y postcondiciones son mas que un método para resumir acciones de un proce-
dimiento. La declaracidn de estas condiciones debe ser la primera etapa en el disefio y escritura de un
procedimiento. Es conveniente en la escritura de algoritmos de procedimientos, se escriba la cabecera
del procedimiento que muestra los parametros afectados por el procedimiento asi como unos comenta-
rios de cabecera que contienen las precondiciones y postcondiciones.

Precondicién: Predicado l6gico que debe cumplirse al comenzar la ejecucién de una operacion.
Postcondicién: Predicado l6gico que debe cumplirse ai acabar la ejecucion de una operacion;
siempre que se haya cumplido previamente la precondicion correspondiente.

60 Programacién en C. Metodologia, algoritmos y estructura de datos

2.7.3. Reglas para prueba de programas

Un medio til para probar que un programa P hace lo que realmente ha de hacer es proporcionar aser-
ciones gue expresen las condiciones antes y después de que P sea ejecutada. En realidad las aserciones
son como sentencias o declaraciones que pueden ser o bien verdaderas o bienfalsas.

La primera asercién, la precondicion describe las condiciones que han de ser verdaderas antes de
ejecutar p. La segunda asercion, la postcondicion, describe las condiciones que han de ser verdaderas

después de que P se ha ejecutado (suponiendo que la precondicion fue verdadera antes). EI modelo
general es:

{precondicion) {= condi ci ones | ogi cas que son verdaderas antes de que P
se ej ecute}

(postcondicion) (= condi ci ones | ogi cas que son verdader as
despues de que P se ejecute}

Ejemplo 211

El procedimiento ordenarSeleccion (A, m, n) ordena a los elementos del array. A(m. .nJ en
orden descendente. EI modelo correspondiente puede escribirse asi:

{m < n} {precondicion: A ha de tener al nenos 1 el enento}

OrdenarSeleccion (A,m,n) {prograna de ordenacion a ejecutar}

{Alm] 2A[m+1] 2 ...2 A[n] {postcondicion: el ementos de A en orden
descendent e}

Problema 2.2

Encontrar laposicion del elemento mayor de una lista con indicacién de precondiciones y postcondi-
ciones.

int EncontrarMax (int* A,int m,int n)

{
/* precondicion : m=< n
post condi ci on : devuel ve posicion el emrento mayor en Aim..n] */

int i, j;
i=m
J = n; {aser ci on}
/[* (i =m)"(J = m)~(m < n) */ {~, operador and)
do {
i =1+ 1;

iﬁ (Aﬁi] > Aljl)
)= 1
twhile (i<n);
return j; / *devuel ve j conp el enento nmayor */

2.7.4. Invariantes de bucles

Una invariante de bucle es una condicion que es verdadera antes y después de la ejecucion de un bucle.
Las invariantes de bucles se utilizan para demostrar la correccion (exactitud) de algoritmos iterativos.
Utilizando invariantes, se pueden detectar errores antes de comenzar la codificacion y por esa razén
reducir tiempo de depuracion y prueba.

LIII

Fundamentos de programacion 61

Ejemplo 2.12

Unbucle que calcula la suma de los n primeros elementos del array (lista)A:

Un invariante es un predicado que cumple tanto antes como después de cada iteracion (vuelta)
Yy que describe la misién del bucle.

Invariantes de bucle como herramientas de disefio

Otra aplicacion de los invariantes de bucle es la especificacion del bucle: iniciacién, condicion de repe-
ticion y cuerpo del bucle.

Ejemplo 2.13
Si la invariante de un bucle es:

{invariante : i <= ny Suma es |la suma de todos |os nuneros |eidos del
t ecl ado}

Se puede deducir que:

Suma = 0. 0; {iniciacion}

1 =0,

i<n {condicion/prueba del bucle}
scanf ("sa", &l tem ;

Suma = Suma + ltem {cuerpo del bucle}

i =1+ 1;

Con toda esta informacioén es una tarea facil escribir el bucle de suma

Suma = 0.0;
1 =0,
while (i <« n) /*i, toma los valores 0,1,2,3,..n-1%/

{
scanf ("%d", &l ten) ;
Suma = Suma + ltem
i = l + 1,‘

Ejemplo 2.14

En los bucles f or esposible declarar también invariantes, pero teniendo presente la particularidad
de esta sentencia: la variable de control del bucle es indefinida después que se sale del bucle, por lo que

62 Programacioén en C. Metodologia, algoritmos y estructura de datos

para definir su invariante se ha de considerar que dicha variable de control se incrementa antes de
salir del bucle y mantiene su valor final.

/*precondicion N >= 1*/

Suma = O;
for (i=1; i<=n; 1i=1+1)
{ /*invariante : i <= n+l y Summ €S 1+2+...1-1%/

Suma = Suma + i ;
}
/*postcondicion: Suma es 1+2+3+..n-l+n*/

ProblemaZ2. 3
Escribir un bucle controlado por centinela que calcule el producto de un conjunto de datos. I
/*Cal cul ar el producto de una serie de datos*/

/*precondicion : centinel a es constante*/
Producto = 1;
printf ("Paraterm nar, introduzca %d", Centinela);
puts ("I ntroduzcanunero:") ;
scanf ("¢%d", &\uner o) ;
while (Numero != Centinel a)
{ /*invariante: Producto es el producto de todos |os val ores
| ei dos en Numero y ninguno era el Centinel a*/
Producto = Producto * Nuner o;
puts (' Introduzca nunero siguiente:") ;
scanf ("%d" ,&Nurer o) ;
}
/*postcondicion: Producto es el producto de todos los nuneros |eidos en
Nunero antes del centinela*/

2.7.5. Etapas a establecer la exactitud (correccion)de un programa

Se pueden utilizar invariantes para establecer la correccion de un algoritmo iterativo. Supongamos el
algoritmo ya estudiado anteriormente.

/*calcular la suma de A[0]1, A[2],...A[n-1]%/
Suma = O

j =0

while (j <= n-1)

{

Suma = Suma + A[j];
o= 3+1;
}
/*invariante: Suma es |la suma de |l os elenentos A[0] a &[j-1]%*/

Los siguientes cuatro puntos han de ser verdaderos':

1. El invariante debe ser inicialmente verdadero, antes de que comience la ejecucién por pri-
mera vez del bucle. En el ejemplo anterior, Sumaes 0 y j es O inicialmente. En este caso, €l
invariante significa que Suma contiene la suma de los elementosA[0] aA[j-1], que es ver-
dad ya que no hay elementos en este rango.

* Carrasco, Helnian y Verof, op. cit.. pdg. IS.

Fundamentos de programacion 63 \

2. Una ejecucion del bucle debe mantener el invariante. Esto es si el invariante es verdadero
antes de cualquier iteracidn del bucle, entonces se debe demostrar que es verdadero después de
la iteracion. En el ejemplo, el bucle afiade A[3] a Sumay a continuacion incrementa j en 1. Por
consiguiente, después de una ejecucion del bucle, el elemento afiadido mas recientemente a Suma
eSA[j-1] ;estoes el invariante que es verdadero después de la iteracion.

3. Elinvariante debe capturar la exactitud del algoritmo. Esto es, debe demostrar que si el inva-
riante es verdadero cuando termina el bucle, el algoritmo es correcto. Cuando el bucle del ejem-
plo termina, j contiene n Yy el invariante es verdadero: Suma contiene la suma de los elementos
A[0] aA[j-11, queeslasuma que se trata de calcular.

4. El bucle debe terminar. Esto es, se debe demostrar que el bucle termina después de un nime-
ro finito de iteraciones. En el ejemplo, j comienzaen Oy acontinuacion se incrementa en 1 en
cada ejecucion del bucle. Por consiguiente, j eventualmenteexcederd a n con independencia del
valor de n. Este hecho y la caracteristica fundamental de while garantizan que el bucle termi-
nara.

La identificacion de invariantes de bucles, ayuda a escribir bucles correctos. Se representa el :
invariante como un comentario que precede a cada bucle. En el ejemplo anterior

{Invariante: O <= 3 < NY Sumn = A{0]+...+A[j~11}
| while j <= n-1 do

2.7.6. Programacion segura contra fallos

Un programa es seguro contra fallos cuando se ejecuta razonablemente por cualquiera que lo utilice.
Para conseguir este objetivo se han de comprobar los errores en datos de entrada y en la l6gica del pro-
grama.

{ Supongamos un programa que espera leer datos enteros positivos pero lee —25. Un mensaje tipico
| a visualizar ante este error suele ser:

Error de rango
Sin embargo, es mas Util un mensaje tal como este:

-25 no es un nunero valido de afos
Por favor vuelva a introducir el numero

Otras reglas practicas a considerar son:

o Comprobar datos de entrada no validos
scanf ("$f %4d",Grupo, Numero) ;
if (Nunmeros= 0)

agregar Nunero a total
el se manejar el error

o Cada subprograma debe comprobar los valores de sus parametros. Asi, en el caso de la funcién
SumaIntervalo que sumatodos los enteros comprendidos entre my n.

int SumaIntervalo (int m,int n)
precondicion : my n son enteros tales que m<= n

post condi ci on: Devuel ve sumaIntervalo = m+(m+1)+...+N
my n son inalterables

—‘

64 Programacion en C. Metodologia, algoritmos y estructura de datos

int Suma, Indice;

Suma = O;

for (Indice= m Indice<=n ;Indice++)
Suma = Suma + | ndice;

return Suma;

}

2.8. FACTORES EN LA CALIDAD DEL SOFTWARE

La construccidn de software requiere el cumplimiento de numerosas caracteristicas. Entre ellas se des-
tacan las siguientes:

Eficiencia

La eficiencia de un software es su capacidad para hacer un buen uso de los recursos que manipula.
Transportabilidad (portabilidad)

La transportabilidad o portabilidad es la facilidad con la que un software puede ser transportado sobre
diferentes sistemas fisicos o l6gicos.

Verificabilidad

La verificabilidad —facilidad de verificacion de un software — es su capacidad para soportar los pro-
cedimientos de validacion y de aceptar juegos de test o ensayo de programas.

Integridad
La integridad es la capacidad de un software a proteger sus propios componentes contra los procesos que

no tenga el derecho de acceder.
Facil de utilizar
Un software es facil de utilizar si se puede comunicar consigo de manera comoda.

Correccion
Capacidad de los productos software de realizar exactamente las tareas definidas por su especificacion.

Robustez
Capacidad de los productos software de funcionar incluso en situaciones anormales.

Extensibilidad

Facilidad que tienen los productos de adaptarse a cambios en su especificacion. Existen dos principios
fundamentales para conseguir esta caracteristica:

o disefio simple;
e descentralizacion.
Reutilizacion
Capacidad de los productos de ser reutilizados, en su totalidad o en parte, en nuevas aplicaciones.
Compatibilidad
Facilidad de los productos para ser combinados con otros.

65

Fundamentos de programacion

2.9. RESUMEN -

sivo, llegar a moduios facilmente codificables. Estos
madulos se deben codificar con las estructurasde con-
trol de programacidn estructurada.

Un método general para la resolucion de un problema
con computadoratiene las siguientes fases:

|. Andlisis del programa,

g B?gi?ﬁ:ggg ée:llgorltmo. | Secuenciales: las instrucciones se ejecutan

4 sucesivamenteuna después de otra. _

5 2. Repetitivas: una serie de instrucciones se repi-
ten una y otra vez hasta que se cumple una cier-
ta condicion.

3 Selectivas: permite elegirentre dos alternativas
(dos conjuntos de instrucciones) dependiendo

de una condicién determinada).

. Compilaciény ejecucion.
. Verificacién y mantenimiento.
6. Documentaciény mantenimiento.

El sistema mas idoneo para resolver un problema
es descomponerloen modulos més sencillos y luego,
mediante disefios descendentesy refinamiento suce-

2.10. EJERCICIOS

21 Disefiar un algoritmo que imprimay sume la

serie de.nmeros 3, 6, 9, 12..., 99.

Escribir un algoritmo que lea cuatro nimeros
y acontinuacionimprimasl mayor de ios cua-
tro.

Disefiar un algoritmo que lea tres nimeros y
encuentre si uno de ellos es la sumade los otros
dos.

Disefiar un algoritmo para calcular la velocidad
(en m/s) de los corredoresde lacarrerade 1.500

Disefiar una solucion para resolver cada uno de
los siguientes problemas y trate de refinar sus

soluciones mediante algoritmos adecuados: 26

a) Realizar una llamada telefénica desde un
teléfono publico.

b) Cocinar una tortilla.

c) Arreglar un pinchazo de una bicicleta.

d) Freir un huevo.

27

22 Escribir un algoritmo para:

28.
a) Sumar dos niimeros enteros.

b) Restar dos nimeros enteros.
c) Multiplicardos nimeros enteros.
d) Dividir un nimero entero por otro.

Escribirun algoritmopara determinar el maximo

comun divisor de dos nimeros enteros (MCD)
por el algoritmo de Euclides:

« Dividir el mayor de los dos enteros positivos

por el méas pequefio.

« A continuaciondividir el divisor por el resto.
+ Continuarel proceso de dividir el tltimo divi-

sor por el Ultimo rest 0 hasta que la division sea
exacta.

29

metros. La entrada consistira en parejas de
ndmeros (minutos,segundos) que dan el tiempo
del corredor; por cada corredor, el algoritmo
debe imprimir el tiempo en minutos y segundos
asi como la velocidad media.

Ejemplo de entrada de datos: (3,53) (3,40)
(3,46) (3,52) (4,0) (0,0); el Ultimo par de datos
se utilizar4 como fin de entradade datos.

Disefiar un algoritmo para determinar si un
namero N es primo. (Un nimero primo sélo
puede ser divisible por él mismo y por la uni-
dad.)

« El'Ultimo divisor es el mcd. 210 Escribir un algoritmo que calcule la superficie

24 Disefiar un algoritmo que lea e imprima una S,f (uSn:n}é/zngg;zéeQ E?S:g? delabasey ladtu
serie de nimeros distintos de cero. El algoritmo '

debe terminar con un valor cero que no se debe 21l Calculary visualizar la longitud de la circunfe-

imprimir. Visualizar el nimero de valoresleidos.

renciay el areade un circulo de radio dado.

66

Programacion en C. Metodologia, algoritmos y estructura de datos

2.12. Escribir un algoritmo que encuentre el salario
semanal de un trabajador, dada la tarifa horaria
y el nimero de horas trabajadas diariamente.

2.13. Escribir un algoritmo que indique si una pala-
bra leida dei teclado es un palindromo. Un
palindromo (capicda) es una palabra que se lee

igual en ambos sentidos como «radar».

2.14. Escribir un algoritmo que cuente el nimero de
ocurrencias de cada letra en una palabra leida
como entrada. For ejemplo, «Mortimer»
contiene dos «m», una «o», dos «r=, Una «y>,

una «t>» Yy una «e».

2.11. EJERCICIOS RESUELTOS

Desarrolle los algoritmos que resuelvan los siguien-
tes problemas:

21 Iralcine.

Andlisis del problema

DATOS DE SALIDA: Ver la pelicula.

DATOS DE ENTRADA: Nombre se la pelicula,
direccién de la sala, hora
de proyeccién.

DATOS AUXILIARES: Entrada, nimero de asien-

to.

Para solucionar el problema, se debe seleccionar
una peliculade la carteleradel periddico, ir a la salay
comprar la entrada para, finalmente, poder ver la peli-
cula.

Disefio del algoritmo

inicio

< seleccionar la pelicula >

tomar el periddico

nmentras no |leguenos a la carte-

lera

pasar |la hoja

m entras no se acabe la cartelera
leer la pelicula

si nos gusta, recordarla

el egir una de | as peliculas sel ec-
ci onadas

leer la direcci6n de la salay la
hora de proyecci 6n

2.15. Muchos bancos y cajas de ahorro calculan los
intereses de las cantidades depositadas por los
clientes diariamente en base a las siguientes
premisas. Un capital de 1.000 pesetas, con una
tasa de interés del 6 por 100, renta un interés en
un dia de 0,06 multiplicado por 1000 y dividi-
do por 365. Esta operacion producira 0, 16 pese-
tas de interés y el capital acumulado sera
1000, 16. El interés para el segundo dia se cal-
culard multiplicando0,06 por 1.000 y dividien-
do el resultado por 365. Disefiar un algoritmo
que reciba tres entradas: el capital a depositar,
la tasa de interés y la duracién del depdsitoen
semanas, y calcule el capital total acumuladoal
final del periodo de tiempo especificado.

< conprar la entrada >
trasl adarse a la sal a
g1 no hay entradas, ir a fin
gi hay cola
ponerse el udltino
mentras no Ileguenbs a la
taqui 1la
avanzar
si no hay entradas,
conprar la entrada
< ver la pelicula >
leer el nunero de asiento de la
ent r ada
buscar el asiento
sent ar se
ver la pelicula
fin.

ir afin

22. Compraruna entradapara ir a los toros.
Analisis del problema

DATOS DE SALIDA: La entrada.
DATOS DE ENTRADA: Tipode entrada (sol, som-
bra, tendido, andanada...).
Disponibilidad de la entra-
da.

Hay que ir a lataquillay elegir la entrada deseada.
Si hay entradas se compra (en taquilla o a los reven-
tas). Si no la hay, se puede seleccionar otro tipo de
entrada o desistir, repitiendo esta accion hasta que se
ha conseguido la entrada o el posible comprador ha
desistido.

DATOS AUXILIARES:

Diseiio del algoritmo
inicio
ir alataquilla
si No hay entradas en taquilla
si nos interesa conprarla en la
reventa
ir a conprar |la entrada
si noir afin
< conprar la entrada >
sel ecci onar sol o sonbra
sel ecci onar barrera, t endi do,
andanada o0 pal co
sel ecci onar nunero de asiento
solicitar la entrada
si la tienen disponible
adquirir la entrada
si no
si querenpbs otro tipo de
entrada
ir a conprar |la entrada
fin.

23. Hacer unataza de té.

DATOS DE SALIDA: taza deté.
DATOS DE ENTRADA: bolsa de té, agua.
DATOS AUXILIARES: pitido de la tetera, aspec-
to de la infusién.
Después de echar aguaen la tetera, se pone al f ue-
goy seesperaaque el aguahierva (hastaque suenael
pitido de la tetera). Introducimos el té y se deja un
tiempo hasta que esté hecho.
Disefio del algoritmo
inicio
tomar la tetera
Il enarl a de agua
encender el fuego
poner la tetera en el fuego
nmentras no hierva el agua
esperar
tomar | a bolsa de té
introducirla en la tetera
m entras no estd hecho el té
esperar
echar el té en la taza
fin.

24. Hacer una llamada telefénica. Considerar los
casos: a) llamada manual con oper ador ; b) lla-
mada automatica; ¢) llamada a cobro revertido.

Andlisis del problema

Rara decidir el tipo de llamada que se efectuard, pri-
mero se debe considerarsi se disponede efectivoo no

Fundamentos de programacion 67

pararealizar la llamada a cobro revertido. Si hay efec-
tivo se debe ver si el lugar a donde vamos a llamar
esta conectado a la red sutomditica o no.

Para una llamada con operadora hay que Ilamar s
lacentralitay solicitarla llamada, esper ando hasta que
se establezcala comunicacion.Para una llamada auto-
matica se leen los prefijos del pais y provinciasi fue-
ra necesario, y se realiza la llamada, esperando hasta
que cojan el teléfono. Para ltamar a cobro revertido se
debe llamar a centraiita, solicitar la llamada y espera-
ra que el abonado del teléfono d que se llama dé su
autorizacion, con lo que establecera la comunicacion.

Como datos de entrada tendriamos las variables
quenos van a condicionarel tipo de | i anada, el nime-
ro de teléfono y, en caso de llamada automatica, los
prefijos si los hubiera. Como dato auxiliar se podria
considerar en los casos a)y c¢)el contacto con la cen-
tralita.

Disefio del algoritmo

inicio
SI tenenos di nero
si podenps hacer wuna |l amda

aut omati ca
Leer el prefijo de pais y |oca-
| idad

marcar el ndnero

si no
< |l amada manual >
Ilamar a la centralita
solicitar la comuni caci 6n

m entras no contesten
esper ar

est abl ecer conuni caci 6n

si no
< realizar una |l amada a cobro

revertido >
Ilamar a la centralita
solicitar la |l amnda
esperar hasta tener |la autori-
zaci 6n
est abl ecer comnmuni caci 6n
fin.

2.5. Averiguar si una palabra es un palindromo. Un
palindromo es Unapalabra que se b e igual de
izquierda a derecha que de derecha a izquierda,
como,por ejemplo, «radar»

Adlisisdelproblem

DATOS DE SALIDA: el mensaje que nos dice
si es 0 no un palindromo.

DATOS DE ENTRADA: palabra.

DATOS AUXILIARES: cada caracter de la pala-
bra, palabra al revés.

68

Programacioén en C. Metodologia, algoritmos y estructura de datos

Para comprobar si una palabra es un paiindromo, se
puede ir formandouna palabra con los caract eres inver-
tidos con respecto a la original y comprobar si la pa-
labra al revés es igual a la original. Para obtener esa
palabraal revés, se leerdn en sentido inverso los car ac:
teres de la palabra inicial y seiran juntando sucesiva-
mente hast a liegar al primer caracter.

Disefio del algoritmo

F| L e
,r'j palabra

e
e s ———
/ !
f - i
! ultimo

/ caracter |
! - ELL

[FLid: 1y
el caracter
| | @ oS anbEmoees

e =tk

e
| f ¥
f . i
l," caracter i
/ anterior |

1
e oy
g

) LT
—_— . o
~, COracleres? -
~— e
'\.___."..

o
- T,
~ ipalabras

-"'\-\.._H__\Hll_:lLIEJEE--:'

~
S

1 -

|
Tyl pallndn::m-cj un palindromo

26. Disefiar un algoritmopara calcular la velocidad
(enmerros/segundo) de los corredoresde una
carrerade 1.500 metros. La entrada seran pare-
jas de nimeros (minutos,segundos) que dardn €l
tiempo de cada corredor. Por cada corredor se
imprimira el tiempo en minutosy segundos, asi
como la velocidad media. El bucle se ejecutara
hasta que demos una entrada de 0,0 que serd la
marca de fin de entrada de datos.

Andlisis del problema

DATOS DE SALIDA: v (velocidad media).
DATOS DE ENTRADA mm,ss (minutosy segun-
dos).

DATOS AUXILIARES: di staneia (distancia
recorrida, que en el ejem-
plo es de 1.500 metros)
y tienpo (losininutosy
los segundosque ha tarda-
do en recorrerla).

Se debe efectuarun bucle hasta que mm seaQy ss
sea 0. Dentro del bucle se calculael tiempo en segun-
dos con la férmulatiempo =ss +mm * 60. La veloci-
dad se hallara con la formula

velocidad =distancia / tiempo.

Diseiio del algoritmo

inicio
di st anci a -— 1500
| eer (mm, ssg)

mentras mm = Oy SS = O hacer
ti enpo -w— ss + mm * 60
V - distancia / tienpo
escribir (mm,ss,v)
| eer (mm,ss)
fin

27 Escribir un algoritmo que calcule la superficie
de untridngulo en funcién de la basey la altura.

Analisis del preblema

DATOS DESALDA: s (superficie).
DATOS DEENTRADA: b (base)a (altura).

Para calcular la superficie se aplica la formula
g = base * altura / 2.

Disefio del algoritmo
inicio
leer (b, a)
s =h *a /2
escribir (s)
fin

2.8. Realizar un algoritmo que calcule la sumade los
enterosentre 1y 10, esdecir, 1+2+3+...+10.

Analisis del problema

DATOS DE SALIDA: suma (contiene la suma
requerida).

DATOS AUXILIARES: num (serd una variable
que vaya tomando valores
entre 1y 10y se acumulara

en suna) .

Hay que ejecutarun bucle que se realice 10veces.
En él se ird incrementando en 1 la variable nim, y se
acumulara su valor en la variable suma. Una vez sal-
gamos del bucle se visualizara el valor de la variable
suna.

Disefio del algoritmo

TABLA DE VARIABLES
entero. sum, num

num --— num + 1
suma -4— Ssuma + num

[, 4] e

. '\-\.___\l num = 10 A

.\-.\'H_ X .-_-"

| 5
I E—
e L =
- T,
[Fin b

Fundamentos de programacion 69

2.9. Realizar un algoritmoque calcule y visualice las
potencias de 2 entre Oy 10.

Andlisis del problema

Hay que implementar un bucle que se ejecute once
veces y dentro de él ir incrementandouna variable que
tome valores entre O y 10 y que se llamara num.
También dentro de él se visualizardel resultado de la
operacion 2 ~ num

Disefio del algoritmo

TABLA DE VARIABLES:
entero: num

argpmm—

e

CAPITULO 3

EL LENGUAJE C:
ELEMENTOS BASICOS

CONTENIDO

3.1. Estructura general de un
programaen C.

3.2, Creacion de un programa.

3.3. El proceso de ejecucion de un
programaen C.

3.4. Depuracion de un programa
enC.

3.b. Pruebas.

3.6. Los elementos de un
programaen C.

72

3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.

Tipos de datosen C.

El tipo de dato logico.
Constantes.

Variables.

Duracion de una variable.
Entradasy salidas.
Resumen.

Ejercicios.

INTRODUCCION

Unavez que se le ha ensefiado a crear sus propios programas, vamos a analizar
los fundamentos del lenguaje de programacion C. Este capitulo comienza con
un repaso de los conceptos tedricos y précticos relativos a la estructura de un
programa enunciados en capitulos anteriores, dada su gran importancia en el

desarrollo de aplicaciones, incluyendo ademas los siguientes temas:

® & & ¢ o o

creacion de un programa;

elementos basicos que componen un programa;
tipos de datos en C 'y como se declaran;
concepto de constantesy su declaracion;
concepto y declaracion de variables;

tiempo de vida o duracion de variables;
operacionesbasicas de entrada/salida.

CONCEPTOS CLAVE

(adi go ejecutable.
Cédigo fuente.
Cédigo objeto.
Comentarios.
Constantes.

char.

Directiva #i ncl ude.
Float/double.

® & & & o B o o O

Archivo de cabecera.

® O &6 & & o o o

Flujos.

Funcion main ().

Identificador.
int.
Preprocesador.
grfntf ().
scanf ().
Variables.

73

' 1

74 Programacion en C. Metodologia, algoritmos y estructura de datos

3.1. ESTRUCTURA GENERAL DE UN PROGRAMA ENC

En esta seccion repasamos los elementos constituyentes de un programa escrito en C, fijando ideasy
describiendo ideas nuevas relativas a la mencionada estructura de un programa en C.

Un programa en C se compone de una o mas funciones. Una de las funciones debe ser obligatoria-
mente mai n. Una funciénen C es un grupo de instruccionesque realizan una 0 mas acciones. Asimismo,
un programa contendré una serie de directivas #i ncl ude que permitiran incluir en el mismo archivos
de cabecera que a su vez constaran de funciones y datos predefinidos en ellos.

#i ncl ude <stdio.h> -«—— archivode cabecera stdio.h
int main() - cabecera defuncidn
{ — nombre de la funcion
- sentencias
}
#i ncl ude Directivas del preprocesador
#defi ne Macr os del procesador

Declaraciones globales
o prototipos de funciones
o Vvariables

Funcion principal nain

mai n()

t
declaraciones locales
sentencias

Definiciones de otrasfunciones

tipol funcl(...) |
{

Figura 3.1. Estructura tipica de un programa C.

El lenguaje C elementos basicos 75

De un modo maés explicito, un programa C puede incluir:

directivas de preprocesador;

declaraciones globales;

la funcion mai n() ;

funciones definidas por el usuario;

comentarios del programa (utilizados en su totalidad).

La estructura tipica completa de un programa C se muestra en la Figura 3.1. Un ejemplo de un
programa sencillo en C.

/*Li stado DEMO_UNO.C. Progranma de sal udo */

#i ncl ude <stdio.h>
/* Este programa inprime: Bienvenido a |a programaci én en C */
int main()
{
printf ("Bienvenido a la progranmaci 6n en C\n"};
return O
}

Ladirectiva #i ncl ude de la primera linea es necesaria para que el programa tenga salida. Se refiere
aun archivo externo denominado st di o.h en el que se proporciona la informacién relativa a la funcion
printf ().Obsérvese que los angulos < y > no son parte del nombre del archivo; se utilizan para
indicar que el archivo es un archivo de la biblioteca estandar C.

La segunda linea es un comentario, identificado por los caracteres /* y */. Los comentarios se
incluyen en programas que proporcionan explicaciones a los lectores de los mismos. Son ignorados por
el compilador.

La tercera linea contiene la cabecera de la funcion mai n () , obligatoria en cada programa C. Indica
el comienzo del programa Yy requieren los paréntesis () a continuacion de mai n() .

La cuarta y séptima linea contienen solo las llaves { y } que encierran el cuerpo de la funcion
mai n() y son necesarias en todos los programas C.

La quinta linea contiene la sentencia

printf ("Bienvenido a |l a progranmaci 6n en C\n");

que indica al sistema que escriba el mensaje "Bi enveni do a | a progranaci 6n en C\n".
printf() eslafuncién mas utilizada para dar salida de datos por el dispositivo estandar, la pantalla.
La salida sera
Bi envenido a | a progranmaci 6n en C

El simbolo “\n " es el simbolo de nueva linea. Poniendo este simbolo al final de la cadena entre
comillas, indica al sistema que comience una nueva linea después de imprimir los caracteres
precedentes, terminando, por consiguiente, la linea actual.

La sexta linea contiene la sentencia r et ur n 0. Esta sentencia termina la ejecucion del programa y
devuelve el control al sistema operativo de la computadora. EI nimero O se utiliza para sefialar que el
programa ha terminado correctamente (con éxito).

Obsérvese el punto y coma (;) al final de la quinta y sexta linea. C requiere que cada sentencia
termine con un punto Yy coma. No es necesario que esté al final de una linea. Se pueden poner varias
sentencias en la misma linea y se puede hacer que una sentencia se extienda sobre varias lineas.

Advertencia

« El programam4s corto de C es el «programavacio» que no hace nada.
« Lasentencia return 0; no es obligatoriaen la mayoria de los compiladores, aungque algunos
emiten un mensaje de advertencia si se omite.

76 Programacion en C. Metodologia, algoritmosy estructura de datos

3.1.1. Directivas del preprocesador

Elpreprocesador en un programa C se puede considerar como un editor de texto inteligente que consta
de directivas (instrucciones al compilador antes de que se compile el programa principal). Las dos
directivas mas usuales son #i ncl udey #defi ne.

Todas las directivas del preprocesador comienzan con el signo de libro 0 «almohadilla>*#), que
indica al compilador que lea las directivas antes de compilar la parte (funcién) principal del programa.

Las directivas son instrucciones al compilador. Las directivas no son generalmente sentencias
— obsérvese que su linea no termina en punto y coma—, sino instrucciones que se dan al compilador
antes de que el programa se compile. Aunque las directivas pueden definir macros, nombres de
constantes, archivos fuente adicionales, etc., su uso mas frecuente en C es la inclusion de archivos de
cabecera.

Existen archivos de cabecera estdndar que se utilizan ampliamente, tales como STDIO.H,
STDLI B.H, MATH. H, STRI NG H Y se utilizardn otros archivos de cabecera definidos por el usuario
para disefio estructurado.

La directiva #i ncl ude indica al compilador que lea el archivo fuente que viene a continuacién de
ella'y su contenido lo inserte en la posicion donde se encuentra dicha directiva. Estos archivos se
denominan archivos de cubecera o archivos de inclusién.

Los archivos de cabecera (archivos con extension .h contienen codigo fuente C) se sitGan en un
programa C mediante la directiva del preprocesador #i ncl ude con una instruccién que tiene el
siguiente formato :

#i ncl ude <nombrearch.h> o bien #i ncl ude "nombrearch.h"

nonbr ear chdebe ser un archivo de texto ASCII (su archivo fuente) que reside en su disco. En realidad,
la directiva del preprocesador mezcla un archivo de disco en su programa fuente.

La mayoria de los programadores C sitlan las directivas del preprocesador al principio del
programa, aunque esta posicion no es obligatoria.

Ademas de los archivos de codigo fuente disefiados por el usuario, #i ncl ude se utiliza para incluir
archivos de sistemas especiales (también denominados archivos de cabecera) que residen en su
compilador C. Cuando se instala el compilador, estos archivos de cabecera se almacenaran
automaticamente en su disco, en el directorio de inclusién (i ncl ude) del sistema. Sus nombres de
archivo siempre tienen la extension .h.

El archivo de cabecera méas frecuente es STDI O.H. Este archivo proporciona al compilador C la
informacion necesaria sobre las funciones de biblioteca que realizan operaciones de entrada y salida.

Como casi todos los programas que escriba imprimiran informacion en pantalla y leeran datos de
teclado, necesitardn incluir scanf () y pri nt £ () en los mismos.

Para ello sera preciso que cada programa contenga la linea siguiente:

#i ncl ude <stdio.h>

De igual modo es muy frecuente el uso de funciones de cadena, especialmente strcpy () ; por esta
razon, se requiere el uso del archivo de cabecera denominado st ri ng.h. Por consiguiente, serd muy
usual que deba incluir en sus programas las lineas:

#i ncl ude <stdio.h>
#i ncl ude <string.h>

El orden de sus archivos de inclusion no importan con tal que se incluyan antes de que se utilicen
las funciones correspondientes. La mayoria de los programas C incluyen todos los archivos de cabecera
necesarios antes de la primera funcion del archivo.

La directiva #i ncl ude puede adoptar uno de los siguientes formatos:

#i ncl ude <nombre del archivo>
#i ncl ude "nonbre del archivo"

El lenguaje C: elementos basicos 77

Dos ejemplos tipicos son:

(a) #i ncl ude <stdio.h>
(b) #i ncl ude "pruebas.n"

El formato (a)(el nombre del archivo entre angulos) significa que los archivos se encuentran en el
directorio por defecto i ncl ude. El formato (b} significa que el archivo esta en el directorio actual. Los
dos métodos no son excluyentes y pueden existir en el mismo programa archivos de cabecera estandar
utilizando angulos y otros archivos de cabecera utilizando comillas. Si desea utilizar un archivo de
cabeceraque se cred Yy no esté en el directorio por defecto, se encierra el archivo de cabecera y el camino
entre comillas, tal como

#i ncl ude "D:\MIPROG\CABEZA.H"

#def i ne. La directiva #def i ne indica al preprocesador que defina un item de datos u operacion para
el programa C. Por ejemplo, la directiva

#def i ne TAM_LINEA 65

sustituira TAM- LI NEApor el valor 65 cada vez que aparezca en el programa.

3.1.2. Declaraciones globales '

Las declaraciones globales indican ai compilador que las funciones definidas por el usuario o variables
asi declaradas son comunes a todas las funciones de su programa. Las declaraciones globales se sitian :
antes de la funcion nai n () . Si se declara global una variable G- ado- cl ase del tipo ?

int G ado- cl ase;

cualquier funcion de su programa, incluyendo mai n () , puede acceder a la variable @ ado- cl ase.
La zona de declaraciones globales de un programa puede incluir declaraciones de variables ademas
de declaraciones de funcion. Las declaraciones de funcion se denominan prototipos

int media(int a, int b) : ;

El siguiente programa es una estructura modelo que incluye declaraciones globales.

/* Programa demo.C */
#i ncl ude <stdio.h> '

/* Definicién de macros */
#def i ne MICONST1 0.50
#def i ne MICONS2 0.75

/* Decl araci ones gl obal es */
int Calificaciones

mai n()

3.1.3. Funciénmai n()

Cada programa C tiene una funcién main () que es el punto de entrada al programa. Su estructura es:

78

Programacion en C. Metodologia, algoritmos y estructura de datos

mai n()
{

-« Dbloque de sentencias
}

Las sentencias incluidas entre las llaves { . . .}se denominan blogue. Un programa debe tener sélo
una funcién mai n () . Si se intenta hacer dos funciones mai n() se produce un error. Ademas de la
funcién mai n () ,un programa C consta de una coleccion de funciones.

Una funcién C es un subprograma que devuelve un tnico valor, un comjumitc de valores o realiza
alguna tarea especifica tal como EfS.

En un programa corto, el programa completo puede incluirse totalmente en la funciéon mai n () . Un
programa largo, sin embargo, tiene demasiados codigos para incluirlo en esta funcién. La funcién
mai n () en un programa largo consta practicamente de llamadas a las funciones definidas por el usuario.
El programa siguiente se compone de tres funciones: obt enerdatos(), al fabetizar() y
ver pal abras () que se invocan sucesivamente.

int main()
obt enerdat os () ;
alfabetizar();
ver pal abras() ;

return O;

Las variables y constantes globules se declaran y definen fuera de 1a definicion de las funciones,
generalmente en la cabecera del programa, antes de mai n () , mientras que las variables y constantes
locales se declaran y definen en la cabecera del cuerpo o bloque de la funcién principal, o en la cabecera
de cualquier bloque. Las sentencias situadas en el interior del cuerpo de la funcion mai n () , 0 cualquier
otra funcion, deben terminar en punto y coma.

3.1.4. Funcionesdefinidas por el usuario

Un programa C es una coleccion de funciones. Todos los programas se construyen a partir de una o mas
funciones que se integran para crear una aplicacion. Todas las funciones contienen una 0 mas sentencias
Cy se crean generalmente para realizar una Unica tarea, tales como imprimir la pantalla, escribir un
archivo o cambiar el color de la pantalla. Se pueden declarar y ejecutar un nimero de funciones casi
ilimitado en un programa C.

Las funciones definidas por el usuario se invocan por su nombre y los pardmetros opcionales que
puedan tener. Después de que la funcidn es llamada, el cddigo asociado con la funcion se ejecuta 'y, a
continuacion, se retorna a la funcién llamadora.

Todas las funciones tienen nombre y una lista de valores que reciben. Se puede asignar cualquier
nombre a su funcién, pero normalmente se procura que dicho nombre describa el propésito de la
funcion. En C, las funciones requieren una declaracién o prototipo en el programa:

voi d trazarcurval();

El lenguaje C: elementos basicos 79

Una declaracién de funcién indica al cornpilador el nombre de la funcién por el que ésta sera
invocada en el programa. Si la funcién no se define, el cornpilador informa de un error. La palabra
reservada voi d significa que la funcién no devuelve un valor.

voi d contarvocales{(char caracter);
La definicién de una funcion es la estructura de la misma:

tipo—retorno nombre—f unci dn(lista_de parametros) principio de la funcion
{

sentenci as cuerpo de lafuncion

return; retorno de lafuncidn
} fin de la funcion
tipo-retorno Es el tipo de valor, 0 voi d, devuelto por la funcién
nombre—funcidn Nombre de la funcion
lista_de_pardmetros Lista de parametros, o voi d, pasados a la funcién. Se conoce

también como argumentos de lafunciéon o argumentos formales.

C proporciona también funciones predefinidas que se denominan funciones de biblioteca. Las
funciones de biblioteca son funciones listas para ejecutar que vienen con el lenguaje C. Requieren la
inclusion del archivo de cabecera estandar, tal como STDIO.H, MATH. H, etc. Existen centenares de
funciones definidas en diversos archivos de cabecera.

/* ejenplo funciones definidas por el usuario */
#i ncl ude <stdio.h>

void visualizar();
#int mai n()
{
vi suali zar (j;
return O
,

voi d visualizar ()
{

printf ("primeros pasos en Cyn");
}

Los programas C constan de un conjunto de funciones que normalmente estan controladas por la
funciéon mai ni) .

mai n ()
{

}

obt enerdat os ()
{

al f abeti zar ()
{

}

_'

80 Programacion en C. Metodologia, algoritmos y estructura de datos

3.1.5. Comentarios

Un comentario es cualquier informacién que se afiade a su archivo fuente para proporcionar documenta-
cién de cualquier tipo. EI compilador ignora los comentarios, no realiza ninguna tarea concreta. El uso
de comentarios es totalmente opcional, aunque dicho uso es muy recomendable.

Generalmente, se considera buena practica de programacion comentar su archivo fuente tanto como
sea posible, al objeto de que usted mismo y otros programadores puedan leer facilmente el programa con
el paso de tiempo. Es buena practica de programacion comentar su programa en la parte superior de
cada archivo fuente. La informacion que se suele incluir es el nombre del archivo, el nombre del 1
programador, una breve descripcion, la fecha en que se cre6 la version y la informacion de la revision.

Los comentarios en C estandar comienzan con la secuencia /* y terminan con la secuencia */.
Todo el texto situado entre las dos secuencias es un comentario ignorado por el compilador.

/* PRUEBA1.C — Prinmer programa C */

Si se necesitan varias lineas de programa se puede hacer lo siguiente:

/*
Pr ogr ama : PRUEBAL. C
Pr ogr amador : Pepe Mortinmer
Descri pci 6n : Primer programa C
Fecha creaci 6n : Septienbre 2000
Revisidn : N nguna
*/
También se pueden situar comentarios de la forma siguiente:
scanf ("3d" ,&x) ; /* sentencia de entrada de un val or entero*/
Ejemplo 3.1

Supongamos que se ha de imprimir su nombre y direcciéon muchas veces en su programa C. El sistema
normal es teclear las lineas de texto cuantas veces sea necesario; sin embargo, el método mas rapido
y eficiente seria escribir el codigofuente correspondiente una vez y a continuacion grabar un archivo
MIDIREC. C,de modo que para incluir el codigo s6lo necesitara incluir en su programa la linea

#i ncl ude "midirec.c"”
Es decir, teclee las siguientes lineas y grabelas en un archivo denominado MIDIREC. C

/* archivo midirec.c */

printf("Luis Joyanes Aguilar\n");
printf ("Avda de Andal ucia, 48\n");
printf ("Carchel ej o, JAEN\n)";
printf ("Andal ucia, ESPANA\n");

El programa siguiente:

/* nonbre del archivo demoincl.c,
ilustra el uso de #include
*/

#i ncl ude <stdio.h>
int main()

{
#include "mdirec.c"

El lenguaje C: elementos basicos 81

return O
}

equivale a

/* nonbre del archivo demoincl.c
ilustra el uso de #include
*/

#i ncl ude

int minii

{
printfi "Luis Joyanes Aguilar\n") ;
printfi "Avda de Andal ucia, 48\n"); i
printfi 'Carchel ej 0, JAEN\n") ; |

printf ¢ "Andal ucia, BESPARA\N") ;
return 0;

Ejempl63. 2

El siguiente programa copia un mensaje en un array de caracteres y lo imprime en lapantalla. Ya que
printf()y strcpy() (unafuncién de cadena) se utilizan, se necesitan sus archivos de cabecera
especificos.

/* nonbre del archivo denoinc2.c
utiliza dos archi vos de cabecera

*/

#i ncl ude <stdio.h>

#i ncl ude <string.h>

int mai nO
{

char nmensaj ei207;

strcpy (nmensaje, "Atapuerca\n") ;

/* Las dos lineas anteriores tanbi én se pueden sustituir por
char mensaje([20] = "Atapuerca\n"; |

*/ i

printf (mensaje);

return O

Los archivos de cabecera en C tienen normalmente una extension .h Yy los archivos fuente, la
extension .c.

3.2. CREACION DE UN PROGRAMA

Una vez creado un programa en C como el anterior, se debe ejecutar. ;Cémo realizar esta tarea? Los
pasos a dar dependeran del compilador C que utilice. Sin embargo, seran similares a los mostrados en
la Figura 3.2. En general, los pasos serian:

82

Programacion en C. Metodologia, algoritmos y estructura de datos

Utilizar un editor de texto para escribir el progratna y grabarlo en un archivo. Este archivo
constituye el cddigofuente de un programa.

Compilar el codigo fuente. Se traduce el codigo fuente en un cddigo objeto (extension .obj)
(lenguaje maquina entendible por la computadora). Un archivo objeto contiene instrucciones en
lenguaje maquina gue se pueden ejecutar por una computadora. Los archivos estandar C y los de
cabecera definidos por el usuario son incluidos (#i ncl ude) en su cédigo fuente por el
preprocesador. Los archivos de cabecera contienen informacion necesaria para la compilacion,
como es el caso de stdio.h que contiene informacion scanf() y de printf().

Enlazar el cédigo objeto con las bibliotecas correspondientes. Una biblioteca C contiene codigo
objeto de una coleccidn de rutinas o funciones que realizan tareas, como visualizar informaciones
en la pantalla o calcular la raiz cuadrada de un nimero. El enlace del cédigo objeto del programa
con el objeto de las funciones utilizadas y cualquier otro codigo empleado en el enlace, producira
un codigo ejecutable. Un programa C consta de un namero diferente de archivos objeto y archivos
biblioteca.

Caodigo
fuente

L , |

Compilador |_g | Archivo

| | cabecera
[|

| Caodigo objeto ‘

- T
Bibliotecas | —m= Enlazador |

| — | = -

Y

Cadigo
ejecutable

Figura 3.2. Etapas de creaciéon de un programa

Para crear un programa se utilizan las siguientes etapas:

O N oA LN

Definir su programa.

Definir directivas del preprocesador.

Definicion de declaraciones globales.

Crear main () .

Crear el cuerpo del programa.

Crear sus propias funciones definidas por el usuario.
Compilar, enlazar, ejecutar y comprobar su programa.
Utilizar comentarios.

3.3. EL PROCESO DE EJECUCION DE UN PROGRAMA ENC

Un programa de computadora escrito en un lenguaje de programacion (por ejemplo, C) tiene forma de
un texto ordinario. Se escribe el programa en una hoja de papel y a este programa se le denomina
programa texto 0 cédigo fuente. Considérese el ejemplo sencillo:

El lenguaje C: elementos basicos 83

#i ncl ude <stdio.h>

int main()

{
printf("Longitud de circunferencia de radio 5: %f",2*3.1416*5);
return O;

}

La primera operacion en el proceso de ejecucion de un programa es introducir las sentencias
(instrucciones) del programa con un editor de texto. El editor almacena el texto y debe proporcionarle
un nombre tal como ar ea. c. Si la ventana del editor le muestra un nombre tal como noname. c, €s
conveniente cambiar dicho nombre (por ejemplo, por ar ea. 9. A continuacion se debe guardar el texto
en disco para su conservacion y uso posterior, ya que en caso contrario el editor s6lo almacena el
texto en memoria central (RAM) y cuando se apague la computadora, o bien ocurra alguna anomalia,
se perdera el texto de su programa. Sin embargo, si el texto del programa se almacena en un disquete,
en un disco duro, o bien en un CD-ROM, el programa se guardara de modo permanente, incluso después
de apagar la computadoray siempre gque ésta se vuelva a arrancar.

La Figura 3.3 muestra el método de edicion de un programa y la creacion del programa en un disco,
en un archivo que se denomina archivo de texto (archivofuente). Con la ayuda de un editor de texto se
puede editar el texto facilmente, es decir, cambiar, mover, cortar, pegar, borrar texto. Se puede ver,
normalmente, una parte del texto en la pantalla y se puede marcar partes del texto a editar con ayuda de
un ratén o el teclado. EI modo de funcionamiento de un editor de texto y las 6rdenes de edicidn
asociadas varian de un sistema a otro.

M

Texto del

Editor programa

de
texto Texto del

Taclado Huasdn prograaisivo
| | A fuente

| T e

=

' ' Ly |

Figura 3.3. Proceso de edicion de un archivo fuente.

Una vez editado un programa, se le proporciona un nombre. Se suele dar una extension al nombre
(normalmente .c, aunque en algunos sistemas puede tener otros sufijos) .

La siguiente etapa es la de compilacion. En ella se traduce el codigo fuente escrito en lenguaje C a
cédigo maquina (entendible por la computadora). El programa que realiza esta traduccion se llama
cornpilador.Cada compilador se construye para un determinado lenguaje de programacion (por ejemplo
C) ;un compilador puede ser un programa independiente (como suele ser el caso de sistemas operativos
como VMS, UNIX, etc.) o bien formar parte de un programa entorno integrado de desarrollo (EID).
Los programas EID contienen todos los recursos que se necesitan para desarrollar y ejecutar un
programa, por ejemplo, editores de texto, compiladores, enlazadores, navegadores y depuradores.

Cada lenguaje de programacion tiene unas reglas especiales para la construccién de programas que
se denomina sintaxis. EI compilador lee el programa del archivo de texto creado anteriormente y
comprueba que el programa sigue las reglas de sintaxis del lenguaje de programacién. Cuando se

!

84 Programacion en C. Metodologia, algoritmos y estructura de datos

compila su programa, el compilador traduce el codigo fuente C (las sentencias del programa) en un
cédigo maquina (codigo objeto). El codigo objeto consta de instrucciones maquina e informacion de
como cargar el programa en memoria antes de su ejecucion. Si el compilador encuentra errores, los
presentard en la pantalla. Una vez corregidos los errores con ayuda del editor se vuelve a compilar
sucesivamente hasta que no se produzcan errores.

El cédigo objeto asi obtenido se almacena en un archivo independiente, normalmente con extensién
.obj obien .o.Porejemplo, el programa ar ea anterior, se puede almacenar con el nombre ar ea. obj .

El archivo objeto contiene solo la traduccion del cédigo fuente. Esto no es suficiente para ejecutar
realmente el programa. Es necesario incluir los archivos de biblioteca (por ejemplo, en el programa
area.c, stdio.h). Unabiblioteca es una coleccion de cédigo que ha sido programada y traducida
y lista para utilizar en su programa.

Normalmente un programa consta de diferentes unidades o partes de programa que se han
compilado independientemente. Por consiguiente, puede haber varios archivos objetos. Un programa
especial llamado enlazador toma el archivo objeto y las partes necesarias de la biblioteca del sistemay
construye un archivo ejecutable. Los archivos ejecutables tienen un nombre con la extension .exe (en
el ejemplo, ar ea. exe 0 simplemente ar ea segn sea su computadora). Este archivo ejecutable contiene
todo el codigo maquinas necesario para ejecutar el programa. Se puede ejecutar el programa escribiendo
ar ea en el indicador de 6rdenes o haciendo clic en el icono del archivo.

|
| \“‘“-—-______...-/
| Archivg
Compiiador fuente
[———&
| | Archivo
| A || obreto
i
f ¥ 1 1
;
l Figura3.4. Proceso de edicion de un archivo fuente.
l
E
3

Codigo l Codigo !

i

i & : Programa

i - L ' - | | | - '

il_ | Fueribe | Searmpiacion - i i) '-_I - EpeCUlabie

L ek | - S s
Bibhaboca

Figura 3.5. Proceso de conversién de cédigo fuente a cédigo ejecutable.

Se puede poner ese archivo en un disquete 0 en un CD-ROM, de modo que esté disponible después
de salir del entorno del compilador a cualquier usuario que no tenga un compilador C o que puede no
conocer lo que hace.

El lenguaje C: elementos basicos 85

El proceso de ejecucion de un programa no suele funcionar a la primera vez; es decir, casi siempre
hay errores de sintaxis o errores en tiempo de ejecucion. El proceso de detectar y corregir errores se
denomina depuracién o puesta a punto de un programa.

La Figura 3.6 muestra el proceso completo de puesta a punto de un programa.

rTcio

—editar——— |w—
programa
editar
prodgrama ‘

comipdlar
programa

" pfrones de
sintaxis - |

L1

* T
camp b
errores

|

~ BiTOnRS
en tiempo de
. Bfecucin _

&

| Fin \\

Figura3.6. Procesocompleto de depuracién de un programa.

Se comienza escribiendo el archivo fuente con el editor. Se compila el archivo fuente y se
comprueban mensajes de errores. Se retorna al editor y se fijan los errores de sintaxis. Cuando el
compilador tiene éxito, el enlazador construye el archivo ejecutable. Se ejecuta el archivo ejecutable. Si
se encuentra un error, se puede activar el depurador para ejecutar sentencia a sentencia. Una vez que se
encuentra la causa del error, se vuelve al editor y se repite la compilacion. El proceso de compilar,
enlazar y ejecutar el programa se repetira hasta que no se produzcan errores.

Etapas del proceso

El codigo fuente (archivodel programa) se crea con la ayuda del editor de texto.

El compilador traduce el archivo texto en un archivoobjeto.

El enlazador pone juntos a diferentes archivos objetos para poner un archivo ejecutable.
El sistema operativo pone el archivo ejecutable en la memoria central y se ejecuta el
programa.

O @ O O

86

Programacion en C. Metodologia, algoritmos y estructura de datos

3.4. DEPURACION DE UN PROGRAMA ENC

Rara vez los programas funcionan bien la primera vez que se ejecutan. Los errores que se producen en
los programas han de ser detectados, aislados (fijados) y corregidos. El proceso de encontrar errores se
denomina depuraciondel programa. La correccion del error es probablemente la etapa mas facil, siendo
la deteccion y aislamiento del error las tareas mas dificiles.

Existen diferentes situaciones en las cuales se suelen introducir errores en un programa. Dos de las
maés frecuentes son:

1 Violacion (no cumplimiento) de las reglas gramaticales del lenguaje de alto nivel en el que se
escribe el programa.
2. Los errores en el disefio del algoritmo en el que esta basado el programa.

Cuando el compilador detecta un error, visualiza un mensaje de error indicando que se ha cometido
un error y posible causa del error. Desgraciadamente los mensajes de error son dificiles de interpretar
y a veces se llegan a conclusiones erréneas. También varian de un compilador a otro compilador. A
medida que se gana en experiencia, el proceso de puesta a punto de un programa se mejora
considerablemente. Nuestro objetivo en cada capitulo es describir los errores que ocurren mas
frecuentemente y sugerir posibles causas de error, junto con reglas de estilo de escritura de programas.
Desde el punto de vista conceptual existen tres tipos de errores: sintaxis, 16gicos y de regresion.

3.4.1. Errores de sintaxis

Los errores de sintaxis son aquellos que se producen cuando el programa viola la sintaxis, es decir,
las reglas de gramatica del lenguaje. Errores de sintaxis tipicos son: escritura incorrecta de palabras
reservadas, omision de signos de puntuacién (comillas, punto y coma...). Los errores de sintaxis son los
mas faciles de fijar, ya que ellos son detectados y aislados por el compilador.

Estos errores se suelen detectar por el compilador durante el proceso de compilacion. A medida que
se produce el proceso de traduccion del cddigo fuente (por ejemplo, programa escrito en C) a lenguaje
méaquina de la computadora, el compilador verifica si el programa que se esta traduciendo cumple las
reglas de sintaxis del lenguaje. Si el programa viola alguna de estas reglas, el compilador genera un
mensaje de error (0diagnostico) que explica el problema (aparente). Algunos errores tipicos (ya citados
anteriormente):

o Puntoy coma después de la cabeceramain() .

« Omision de punto y coma al final de una sentencia.

« Olvido de la secuencia */ para finalizar un comentario.
« Olvido de las dobles comillas al cerrar una cadena.

¢ Etc.

Si una sentencia tiene un error de sintaxis no se traducird completamente y el programa no se
ejecutard. Asi, por ejemplo, si una linea de programa es

doubl e radi o

se producird un error ya que falta el puntoy coma (;) después de la letra Gltima "o". Posteriormente se
explicara el proceso de correccion por parte del programador.

3.4.2. Errores légicos

Un segundo tipo de error importante es el error logico, ya que tal error representa errores del
programador en el disefio del algoritmo y posterior programa. Los errores l6gicos son més dificiles de
encontrar y aislar ya que no suelen ser detectados por el compilador.

El lenguaje C: elementos basicos 87

Suponga, por ejemplo, que una linea de un programa contiene la sentencia
doubl e peso = densidad * 5.25 * Pl * pow(longitud,5)/4.0

pero resulta que el tercer asterisco (operador de multiplicacion) es en realidad un signo + (operador
suma). El compilador no produce ningiin mensaje de error de sintaxis ya que no se ha violado ninguna
regla de sintaxis y, por tanto, el cornpilador no detecta error y el programa se compilara y ejecutara
bien, aunque producira resultados de valores incorrectos ya que la férmula utilizada para calcular el
peso contiene un error logico.

Una vez que se ha determinado que un programa contiene un error légico —si es que se encuentra
en la primera ejecucion y no pasa desapercibida al programador — encontrar el error es una de las tareas
mas dificiles de la programacion. El depurador (debugger) un programa de software disefiado
especificamente para la deteccion, verificacion y correccion de errores, ayudara en las tareas de
depuracion.

Los errores légicos ocurren cuando un programa es la implementacion de un algoritmo defectuoso.
Dado que los errores l6gicos normalmente no producen errores en tiempo de ejecucién y no visualizan
mensajes de error; son mas dificiles de detectar porque el programa parece ejecutarse sin contratiempos.
El Gnico signo de un error Idgico puede ser la salida incorrecta de un programa. La sentencia

total - grados- centigrados = fahrenheit_a_centigrados * temperatura_cen;

es una sentencia perfectamente legal en C, pero la ecuacién no responde a ningun célculo valido para
obtener el total de grados centigrados en una sala.

Se pueden detectar errores l6gicos comprobando el programa en su totalidad, comprobando su salida
con los resultados previstos. Se pueden prevenir errores 16gicos con un estudio minucioso y detallado
del algoritmo antes de que el programa se ejecute, pero resultara facil cometer errores ldgicos y es el
conocimiento de C, de las técnicas algoritmicas y la experiencia lo que permitira la deteccidn de los
errores légicos.

3.4.3. Erroresde regresion

Los erroresde regresion son aquellos que se crean accidentalmente cuando se intenta corregir un error
I6gico. Siempre que se corrige un error se debe comprobar totalmente la exactitud (correccién) para
asegurarse que se fija el error que se esta tratando y no produce otro error. Los errores de regresion son
comunes, pero son faciles de leer y corregir. Una ley no escrita es que: «un error se ha producido,
probablemente, por el Gltimo c6digo modificado».

3.4.4. Mensajes de error

Los compiladores emiten mensajes de error o de advertencia durante las fases de compilacion, de enlace
o0 de ejecucion de un programa.

Los mensajes de error producidos durante la compilacién se suelen producir, normalmente, por
errores de sintaxis y suele variar segun los compiladores; pero, en general, se agrupan en tres grandes
bloques:

o Errores fatales. Son raros. Algunos de ellos indican un error interno del compilador. Cuando
ocurre un error fatal, la compilacién se detiene inmediatamente, se debe tomar la accion apropiada
y a continuacion se vuelve a iniciar la compilacion.

« Errores de sintaxis. Son los errores tipicos de sintaxis, errores de linea de drdenes y errores de
acceso a memoria o disco. El compilador terminara la fase actual de compilacion y se detiene.

« Advertencias(warning).No impiden la compilacién. Indican condiciones que son sospechosas,
pero son legitimas como parte del lenguaje.

88

Programacién en C. Metodologia, algoritmos y estructura de datos

3.4.5. Errores en tiempo de ejecucion

3.5.

Existen dos tipos de errores en tiempo de ejecucién: aquellos que son detectados por el sistema en
tiempo de ejecucion de C y aquellos que permiten la terminacién del programa pero producen resultados
incorrectos.

Un error en tiempo de ejecucién puede ocurrir como resultado de que el programa obliga a la
computadora a realizar una operacion ilegal, tal como dividir un ndmero por cero, raiz cuadrada de un
numero negativo o manipular datos no vélidos o no definidos. Cuando ocurre este tipo de error, la
computadora detendré la ejecucion de su programa y emitird (visualizard) un mensaje de diagndstico tal
como:

Di vide error, line nunber ***

Si se intenta manipular datos no validos o indefinidos su salida puede contener resultados extrafios.
Por ejemplo, se puede producir un desbordamiento aritmético cuando un programa intenta almacenar
un namero que es mayor que el tamafio maximo que puede manipular su computadora.

El programa depur ar . ¢ se compila con éxito; pero no contiene ninguna sentencia que asigne un
valor a la variable x que pueda sumarse a y para producir un valor z, por lo tanto al ejecutarse la
sentencia de asignacion

Z =X + V;

se produce un error en tiempo de ejecucion, un error de logica.

1: /* archivo depurar

2: prueba de errores en tienpo de ejecuci én
3 */

4: #include <stdio.h>

5:

6: void main()

7 {

8: /* Variables |ocales */

9: float x, y, z;

10:

11: y = 10.0

12: z =X +tvy; /* val or inesperado: error de ejecucion */
13: printf("El valor de z es = %f\n",z);

14: }

El programa anterior, sin embargo, podria terminar su ejecucion, aunque produciria resultados
incorrectos. Dado que no se asigna ningun valor a x, contendra un valor impredecible y el resultado de
la suma sera también impredecible. Muchos compiladores inicializan las variables automaticamente a
cero, haciendo en este caso mas dificil de detectar la omision, sobre todo cuando el programa se
transfiere a otro compilador que no asigna ningun valor definido.

Otra fuente de errores en tiempo de ejecucion se suele producir por errores en la entrada de datos
producidos por la lectura del dato incorrecto en una variable de entrada.

PRUEBAS

Los errores de ejecucion ocurren después que el programa se ha compilado con éxito y alin se esta
ejecutando. Existen ciertos errores que la computadora s6lo puede detectar cuando se ejecuta el
programa. La mayoria de los sistemas informaticos detectaran ciertos errores en tiempo de ejecucion y
presentaran un mensaje de error apropiado. Muchos errores en tiempo de ejecucion tienen que ver con
los célculos numéricos. Por ejemplo, si la computadora intenta dividir un namero por cero o leer un
archivo no creado, se produce un error en tiempo de ejecucion.

3.6.

El lenguaje C: elementos basicos 89

Es preciso tener presente que el compilador puede no emitir ningin mensaje de error durante la
gjecucion y eso no garantiza que el programa sea correcto. Recuerde que el compilador sélo le indica
si se escribid bien sintacticamente unprograma en C. No indica si el programa hace lo que realmente
desea que haga. Los errores l6gicos pueden aparecer —y de hecho apareceran — por un mal disefio del
algoritmo y posterior programa.

Para determinar si un programa contiene un error légico, se debe ejecutar utilizando datos de
muestray comprobar la salida verificando su exactitud. Esta prueba (testing)se debe hacer varias veces
utilizando diferentes entradas, preparadas —en el caso ideal —, por personas diferentes al programador,
que puedan indicar suposiciones no evidentes en la eleccidn de los datos de prueba. Si cualquier
combinacién de entradas produce salida incorrecta, entonces el programa contiene un error ldgico.

Una vez que se ha determinado que un programa contiene un error légico, la localizacion del error
es una de las partes mas dificiles de la programacion. La ejecucion se debe realizar paso a paso (seguir
la traza) hasta el punto en que se observe que un valor calculado difiere del valor esperado. Para
simplificar este seguimiento o traza, la mayoria de los compiladores de C proporcionan un depurador
integrado’ incorporado con el editor, y todos ellos en un mismo paquete de software, que permiten al
programador ejecutar realmente un programa, linea a linea, observando los efectos de la ejecucion de
cada linea en los valores de los objetos del programa. Una vez que se ha localizado el error, se utilizara
el editor de texto para corregir dicho error.

Es preciso hacer constar que casi nunca sera posible comprobar un programa para todos los posibles
conjuntos de datos de prueba. Existen casos en desarrollos profesionales en los que, aparentemente, los
programas han estado siendo utilizados sin problemas durante afios, hasta que se utilizd6 una
combinacién especifica de entradas y ésta produjo una salida incorrecta debida a un error logico. El
conjunto de datos especificos que produjo el error nunca se habia introducido.

A medida que los programas crecen en tamafio y complejidad, el problema de las pruebas se
convierte en un problema de dificultad cada vez mas creciente. No importa cuantas pruebas se hagan:
«las pruebas nunca se terminan, s6lo se detienen y no existen garantias de que se han encontrado y
corregido todos los errores de un programa». Dijkstra ya predijo a principios de los setenta una maxima
que siempre se ha de tener presente en la construccién de un programa: «Las pruebas s6lo muestran la
presencia de errores, no su ausencia. No se puede probar que unprograma es correcto (exacto)solo se
puede mostrar que es incorrecto».

LOS ELEMENTOS DE UN PROGRAMA ENC

Un programa C consta de uno o mas archivos. Un archivo es traducido en diferentes fases. La primera
fase es el preprocesado, que realiza la inclusion de archivosy la sustitucién de macros. El preprocesador
se controla por directivas introducidas por lineas que contienen # como primer caracter. El resultado
del preprocesado es una secuencia de tokens.

3.6.1. Tokens (elementos|éxicos de los programas)

Existen cinco clases de tokens: identificadores, palabras reservadas, literales, operadores y otros
separadores.

' Este es el caso de Borland C++, Builder C++ de Borland/Imprise, Visual C++ dc Microsott o los coinpiladores bajo UNIX
y Lyiiux. Suelen tener un meni Debug 0 bien una opcion Debiiey €N el mend B .

90 Programacion en C. Metodologia, algoritmos y estructura de datos

3.6.2. ldentificadores

Un identificador es una secuencia de caracteres, letras, digitos y subrayados (_). El primer caracter debe
ser una letra (algtn compilador admite caréacter de subrayado). Las letras mayusculas y mindsculas son

diferentes.
nonbr e- cl ase I ndi ce Dia_Mes_Anyo
elemento_mayor Cant i dad- Tot al Fecha- Conpr a- Casa
a Habitacionl20 1

En Borland C/C++ el identificador puede ser de cualquier longitud; sin embargo, el compilador
ignora cualquier caracter fuera de los 32 primeros.

C es sensible a las mayusculas. Por consiguiente, C reconoce como distintos los identificadores ALFA,
al fa y ALFa. (Lerecomendamos que utilice siempre el mismo estilo al escribir sus identificadores.) Un
consejo que puede servir de posible regla puede ser:

1. Escribir identificadores de variables en letras mindsculas.
2. Constantes en mayusculas.
3. Funciones con tipo de letra mixto: maytdscula/mindscula.

Reglas basicas de formacion de identificadores

1. Secuencia de letras o digitos; el primer caracter puede ser una letra 0 un subrayado
(compiladoresde Borland, entre otros).
2. Los identificadores son sensibles a las mayusculas:

minun esdstintode MiNum

W

Los identificadores pueden tener cualquier longitud, pero sélo son significativos los 32
primeros (ése es el caso de Borland y Microsoft).
4. Los identificadores no pueden ser palabras reservadas, talescomoi f, switchoel se.

3.6.3. Palabras reservadas
Una palabra reservada (keyword o resewed word),tal como voi d es una caracteristica del lenguaje C

asociada con algun significado especial. Una palabra reservada no se puede utilizar como nombre de
identificador o funcién

voi d void{) /* error */

int char; /* error */

'

Los siguientes identificadores estan reservados para utilizarlos como palabras reservadas, y no se
deben emplear para otros propdsitos.

asm enum si gned
auto extern si zeof
br eak fl oat static
case for struct
char goto switch

const if t ypedef

El lenguaje C: elementos basicos 91

conti nue i nt uni on
def aul t | ong unsi gned
do regi ster voi d
doubl e return vol at i le
el se short whi l e

3.6.4. Comentarios

Ya se ha expuesto antes que los comentarios en C tienen el formato:
[*. ..
Los comentarios se encierran entre /* y =/ pueden extenderse a lo largo de varias lineas.

/* Titulo: Deno-uno por M. Martinez */
Otra forma, el comentario en dos lineas:

/* Cabecera del programa text-uno
Autor: J. R Mazinger */

3.6.5. Signos de puntuaciony separadores

Todas las sentencias deben terminar con un punto y coma. Otros signos de puntuacién son:
s Aoy o x O -+ =/ -

1 N 5 7 < s 2, . /0"

Los separadores son espacios en blanco, tabulaciones, retornos de carro y avances de linea.

3.6.6. Archivos de cabecera

Un archivo de cabecera es un archivo especial que contiene declaraciones de elementos y funciones de
la biblioteca. Para utilizar macros, constantes, tipos y funciones almacenadas en una biblioteca, un
programa debe utilizar la directiva #i ncl udepara insertar el archivo de cabecera correspondiente. Por
ejemplo, si un programa utiliza la funcién powque se almacena en la biblioteca matematica math.h,
debe contener la directiva

#i ncl ude <math.h>

para hacer que el contenido de la biblioteca matematica esté disponible a un programa. La mayoria de
los programas contienen lineas como ésta al principio, que se incluyen en el momento de compilacion.

#i ncl ude <stdio.h>
/* o bien */
#i ncl ude "stdi o.h"

3.7. TIPOS DE DATOSENC

C no soporta un gran namero de tipos de datos predefinidos, pero tiene la capacidad para crear sus
propios tipos de datos. Todos los tipos de datos simples o basicos de C son, esencialmente, nimeros. Los
tres tipos de datos basicos son:

s A

Programacion en C. Metodologia, algoritmos y estructura de datos

« enteros;
e numeros de coma flotante (reales);
e caracteres.

La Tabla 3.1 recoge los principales tipos de datos basicos, sus tamafios en bytes y el rango de valores
que puede almacenar.

Tabla 3.1. Tipos de datos simples de C.

Tipo Ejemplo Tamario Rango
en bytes Minimo..Maximo
char 'C I 0..255
short -15 2 -128.. 127
int 1024 2 -32768..32767
unsi gned i nt 42325 2 0..65535
| ong 262144 4 -2147483648. .2147483637
fl oat 10.5 4 3.4* (10 y..3.4*%(10)
doubl e 0. 00045 8 1.7*(10)..1.7*(10)
| ong doubl e le-8 8 igual que doubl e

Los tipos de datos fundamentales en C son:

enteros: (numeros completos y sus negativos), de tipo i nt .

variantes de enteros: tipos short, |ongy unsi gned.

reales: nimeros decimales, tipos f | oat, doubl eo | ong doubl e.
caracteres: letras, digitos, simbolos y signos de puntuacion, tipo char.

char, int, float y doubl e son palabras reservadas, 0 mas especificamente, especificadores de
tipos. Cada tipo de dato tiene su propia lista de atributos que definen las caracteristicas del tipo y pueden
variar de una maquina a otra. Los tipos char, int y double tienen variaciones 0 modificadores de
tiposde datos, talescomo short, | ong, si gnedy unsi gned, para permitir un uso mas eficiente de
los tipos de datos.

Existe el tipo adicional enum (constante de enumeracién (Capitulo 9).

3.7.1. Enteros (i nt)

Probablemente el tipo de dato méas familiar es el entero, o tipo i nt. Los enteros son adecuados para
aplicaciones que trabajen con datos numéricos. Los tipos enteros se almacenan internamente en 2 bytes
(0 16bits) de memoria. La Tabla 3.2 resume los tres tipos enteros basicos, junto con el rango de valores
y el tamafio en bytes usual, dependiendo de cada maquina.

Tabla 3.2. Tipos de datos enteros.

Tipo C Rango de valores Uso recomendado

i nt -32.768 .. +32.767 Aritmética de enteros, bucles f or, conteo.
unsi gned int 0 .. 65.535 Conteo, bucles f or, indices.

short int -128 .. +127 Aritmética de enteros, bucles f or, conteo.

-’;

El lenguaje C elementos basicos 93

Declaracion de variables

La forma mas simple de una declaracion de variable en C es poner primero el tipo de dato y a continua-
cion el nombre de la variable. Si se desea dar un valor inicial a la variable, éste se pone a continuacion.
El formato de la declaracion es:

<tipo de dato> <nombre de variable> = <valor inicial>
Se pueden también declarar multiples variables en la misma linea:
<tipo_de_dato> <nom vari z, <nom_varZ2> ... <nom-varn>
Asi, por ejemplo,

int longitud; int valor = 99;
int valorl, valor2;
int num_parte = 1141, num_items = 45;

Los tres modificadores (unsigned, short, int)que funcionan con i nt (Tabla 3.3) varian el
rango de los enteros.

En aplicaciones generales, las constantes enteras se escriben en decimal o base 70; por ejemplo,
100, 200 0450. Para escribir una constante sin signo, se afiade la letra U (o bien u). Por ejemplo, para
escribir 40 .000, escriba 40000U.

Si se utiliza C para desarrollar software para sistemas operativos o para hardware de computadora,
seré Util escribir constantes enteras en octal (base 8) 0 hexadecimal (base 16).Una constante octal es
cualquier nimero que comienza con un Oy contiene digitos en el rango de | a 7. Por ejemplo, 0377 es
un namero octal. Una constante hexadecimal comienza con Ox y va seguida de los digitos 0 a 9 o las
letras A a F (Obien a a f). Por ejemplo, 0xFF16 es una constante hexadecimal.

La Tabla 3.3 muestra ejemplos de constantes enteras representadas en sus notaciones (bases)
decimal, hexadecimal y octal.

Cuando el rango de los tipos enteros basicos no es suficientemente grande para sus necesidades, se
consideran tipos enteros largos. La Tabla 3.4 muestra los dos tipos de datos enteros largos. Ambos tipos
requieren 4 bytes de memoria (32 bits) de almacenamiento. Un ejemplo de uso de enteros largos es:

long medida_milimetros;
unsigned long distancia_media;

Tabla 3.3. Constantes enteras en tres bases diferentes.

Base 10 Base 16 Base 8
Decimal Hexadecimal (Hex) Octal

8 0x08 010

10 0x0A 012

16 ox10 020
65536 0x10000 0200000
24 0x18 030

17 0x11 021

Si se desea forzar al compilador para tratar sus constantes como iong, afiada la letra 1, (obien 1) a
su constante. Por ejemplo,

long numeros_grandes = 40000L;

924 Programacion en C. Metodologia, algoritmos y estructura de datos

Tabla 3.4. Tipos de datos enteros largos.

Tipo C Rango de valores
| ong -2147483648 .. 2147483647
unsi gned | ong 0 .. +4294967295

3.7.2. Tipos de comaflotante (float/double)

Los tipos de datos de coma (punto)flotante representan nimeros reales que contienen una coma (un
punto) decimal, tal como 3.14159, 0 nimeros muy grandes, tales como 1.85*10".

La declaracion de las variables de coma flotante es igual que la de variables enteras. Asi, un ejemplo
es el siguiente:

fl oat val or; /* declara una vari able real */
float val orl, valor2; /* declara varias vari ables de coma flotante */
float valor = 99.99; /* asigna el valor 99.99 a la variable valor */

C soporta tres formatos de coma flotante (Tabla 3.5). El tipo f | oat requiere 4 bytes de memoria,
doubl e requiere 8 bytes y | ong doubl e requiere 10 bytes (Borland C).

Tabla 3.5. Tipos de datos en coma flotante (Borland C).

TipoC Rango de valores Precision
fl oat 3.4 x 10" ... 3.4 x 10" 7 digitos
doubl e 1.7 x 10" ... 1.7x 10 * 15 digitos
| ong doubl e 3.4x 10 ' ... 1.1x 10" 19digitos
Ejemplos
float f; /* definicién de la variable f */
f = 1.65; /* asignacién a f */
printf ("f: gf\n",f) ; /* visualizacion de f:5.65 */
doubl e h; /* definicidn de 1a variable de tipo double h */
h = 0.0; /* asignaciéon de 0.0a h */

3.7.3. Caracteres (char)

Un caracter es cualquier elemento de un conjunto de caracteres predefinidos o alfabeto. La mayoria de
las computadoras utilizan el conjunto de caracteres ASCII.

C procesa datos caracter (tales como texto) utilizando el tipo de dato char. En unién con la
estructura array, que se vera posteriormente, se puede utilizar para almacenar cadenas de caracteres
(grupos de caracteres). Se puede definir una variable caracter escribiendo:

char dato- car;
char letra = ‘ A‘;
char respuesta = '5';

Internamente, los caracteres se almacenan como nimeros. La letra A, por ejemplo, se almacena
internamente como el nimero 65, la letra B es 66, la letra C es 67, etc. El tipo char representa valores
en el rango —128 a +127 y se asocian con el cédigo ASCII.

3.8.

El lenguaje C: elementos basicos 95

Dado que el tipo char almacena valores en el rango de —128 a +127, C proporciona el tipo
unsi gned char para representar valores de O a 255 y asi representar todos los caracteres ASCII.

Puesto que los caracteres se almacenan internamente como nimeros, se pueden realizar operaciones
aritméticas con datos tipo char . Por ejemplo, se puede convertir una letra mindscula a a una letra
mayuscula A, restando 32 del codigo ASCII. Las sentencias para realizar la conversion:

char car-uno = ‘a‘;

car-uno = car-uno - 32;

Esto convierte a (cdigo ASCII 97) a A (cddigo ASCII 65). De modo similar, afladiendo 32 convierte
el caracter de letra mayuscula a mindscula:

car-uno = car-uno + 32;

Como los tipos char son subconjuntos de los tipos enteros, se puede asignar un tipo char a un entero.
Por ejemplo,

int suma = O
char val or;

scanf ("%c", &val or) ; /* funcidén estéandar de entrada */
suma = suma + val or; /* operador... */

Existen caracteres que tienen un proposito especial y no se pueden escribir utilizando el método
normal. C proporciona secuenciasde escape. Por ejemplo, el literal caracter de un apéstrofe se puede
escribir como

1 \ -w
y el caracter nueva linea
\n

La Tabla 3.7 enumera las diferentes secuencias de escape de C.

EL TIPO DE DATO LOGICO

Los compiladores de C que siguen la norma ANSI no incorporan el tipo de dato | égi co cuyos valores
son «verdadero» (true)y «falso» (false). El lenguaje C simula este tipo de dato tan importante en la
estructuras de control (i f , whi | e. ..).Paraello utiliza el tipo de dato i nt . C interpreta todo valor
distinto de O como «verdadero» y el valor O como «falso». De esta forma se pueden escribir expresiones
I6gicas de igual forma que en otros lenguajes de programacion se utiliza true yfalse. Una expresion
I6gica que se evalla a «0» se considera falsa; una expresion Iégica que se evalGa a 1 (0 valor entero
distinto de 0) se considera verdadera.

Ejemplo

i nt bisiesto;
bi siesto = 1;

int encontrado, bander a;

Dadas estas declaraciones, las siguientes sentencias son todas validas

if (encontrado) ... /* sentencia de sel eccion *,

Programacion en C. Metodologia, algoritmosy estructura de datos

i ndi cador = O; /* indicador tonmn el valor falso */
i ndi cador = suma > 10; /* indicador toma el valor 1(true) si suma es
mayor que 10, en caso contrario, 0 */

Val or distinto de cero representa true (verdadero)
0 representafa se (falso)

En C, se puede definir un tipo que asocia valores enteros constantes con identificadores, es el tipo
enumerado. Para representar los datos légicos en C, el sistema usual es definir un tipo enumerado
Bool ean con dos identificadoresfalse (valor0)y true (valor I) de la forma siguiente:

enum Bool ean { FALSE, TRUE };

Esta declaracion hace a Bool ean un tipo definido por el usuario con literales o identificadores
(valores constantes) TRUE y FALSE.

Ejercicio 3.1

Si desea simular el tipo légico pero al estilo de tipo incorporado propio, se podria conseguir
construyendo un archivo.h (boolean) con constantes con nombre TRUE y FALSE, tal como

/* archivo: boolean.h */
#ifndef BOOLEAN- H

#def i ne BOOLEAN- H
typedef int Bool ean;
const int TRUE = 1;
const int FALSE = O;
#endif /* BOCLEAN- H */

Entonces, basta con incluir el archivo "bool ean. h" y utilizar Bool ean como si fuera un tipo de
dato incorporado con los literales TRUE Yy FALSE como literales 16gicos o booleanos.

Si desea utilizar las letras minasculas para definir bool ean,true y fal se,se puede utilizar esta
version del archivo de cabecera bool ean. h.

/* archivo: boolean.h */
#ifndef BOOLEAN- H

#def i ne BOOLEAN- H
typedef int bool ean;
const int true = 1;
const int false = O
#tendif [* BOLEAN_H */

3.8.1. Escritura devalores | 6gi cos

La mayoria de las expresiones légicas aparecen en estructuras de control que sirven para determinar la
secuencia en que se ejecutan las sentencias C. Raramente se tiene la necesidad de leer valores | 6gi cos
como dato de entrada o de visualizar valores | 6gi cos como resultados de programa. Si es necesario,
se puede visualizar el valor de la variable | 6gi ca utilizando la funcidn para salidapri nt £ () . Asi, si
encont radoes f al se, la sentencia

printf ("8l val or de encontrado es %d\n",encontrado) ;
visualizara

H val or de encontrado es O

El lenguaje C: elementos basicos 97

3.9. CONSTANTES

En C existen cuatro tipos de constantes:

\
| « constantes literales,
¢ constantes definidas,
o constantes enumeradas,
¢ constantes declaradas. -

Las constantes literales son las méas usuales; toman valores tales como 45.32564, 222 o bien
"I ntroduzca sus datos" que se escriben directamente en el texto del programa. Las constantes
definidas son identificadores que se asocian con valores literales constantes y que toman determinados
nombres. Las constantes declaradas son como variables: sus valores se almacenan en memoria, pero no
se pueden modificar. Las constantes enumeradas permiten asociar un identificador, tal como Col or,
con una secuencia de otros nombres, tales comoAzul, Verde, Rojoy amari 1lo.

. 3.9.1. Constantes literales

| Las constantes literales o constantes, en general, se clasifican también en cuatro grupos, cada uno de los
cuales puede ser de cualquiera de los tipos:

constantes enteras,
constantes caracteres,
constantes de coma flotante,
constantes de cadena.

Constantes enteras

La escritura de constantes enteras requiere seguir unas determinadas reglas:

. « No utilizar nunca comas ni otros signos de puntuacion en nimeros enteros o completos.
123456 en lugar de 123. 456

Para forzar un valor al tipo long, terminar con una letra L 0 1 Por ejemplo,

1024 esun tipo entero 10241, esuntipolargo (I ong)

Para forzar un valor al tipo unsigned, terminarlo con una letra mayuscula U. Por ejemplo, 43520,
Para representar un entero en octal (base 8), éste debe de estar precedido de O.

| Formato decimal 123
Formato octal 0777 (estan precedidas de la cifra 0)
« Pararepresentar un entero en hexadecimal (base 16), este debe de estar precedido de Ox.
Formato hexadecimal 0XFF3A (estan precedidas de "ox" o bien "ox")

Se pueden combinar sufijos L (1), que significa long (largo), o bien U(u) , que significa
unsigned (sin signo).

3456UL

Constantesreales

Una constante flotante representa un ndmero real; siempre tienen signo y representan aproximaciones
en lugar de valores exactos.

—

98

Programaciéon en C. Metodologia, algoritmos y estructura de datos

82.347 .63 83. 47e-4 1.25E7 61l.e+4
La notacion cientifica se representa con un exponente positivo o negativo.

2.5E4 equivale u 25000
5.435E-3 equivale a 0.005435

Existen tres tipos de constantes:

fl oat 4 bytes
doubl e 8 bytes
| ong doubl e 10 bytes

Constantes caracter
Una constante caracter (char) es un caracter del codigo ASCII encerrado entre apéstrofes.

1 A [bl o

Ademas de los caracteres ASCII estandar, una constante caracter soporta caracteres especiales que
no se pueden representar utilizando su teclado, como, por ejemplo, los codigos ASCII altos y las
secuencias de escape. (El Apéndice B recoge un listado de todos los caracteres ASCII.)

Asi, por ejemplo, el caracter sigma (2) -c6digo ASCII 228, hex E4— se representa mediante el
prefijo\x y el nimero hexadecimal del cddigo ASCII. Por ejemplo,

char sigma = "\xE4’;

Este método se utiliza para almacenar o imprimir cualquier caracter de la tabla ASCII por su nimero
hexadecimal. En el ejemplo anterior, la variable sigma no contiene cuatro caracteres sino Gnicamente el
simbolo sigma.

Tabla 3.6. Caracteres secuencias (c6digos) de escape.

Caodigo de escape Significado Codigos ASCII

Dec Hex
"\n’ nueva linea 13 10 D OA
N\’ retorno de carro 13 oD
AN tabulacion 9 09
v tabulacion vertical 11 oB
\a' alerta (pitido sonoro) 7 07
"\b’ retroceso de espacio 8 08
INEY avance de pagina 12 aC
AN barra inclinada inversa 92 5¢
AN comilla simple 39 27
M doble comilla 34 22
LR signo de interrogacion 63 3F
“\000"* numero octal Todos Todos
“\xhh’ numero hexadecimal Todos Todos

Un caréacter que se lee utilizando una barra oblicua (\) se llama secuencia o cddigo de escape. La
Tabla 3.6 muestra diferentes secuencias de escape y su significado.

El lenguaje C: elementos basicos 99

/* Programa: Pruebas co6di gos de escape *;
#i ncl ude <stdio.h>

int mai n0
char alarma = '\a'; /* alarma */
char bs = "\b’; /* retroceso de espacio */
printf ("%c %c",al arm,bs) ;
return O

Aritmética con caracteres C

Dada la correspondenciaentre un caractery su coédigo ASCII, es posible realizar operaciones aritméticas
sobre datos de caracteres. Observe el siguiente segmento de codigo:

char c;
c = ‘T t 5; /* suma 5 al caracter ASCI| */

Realmente lo que sucede es almacenar Y en c. El valor ASCII de la letra T es 84,y al sumarle 5
produce 89, que es el codigo de la letra Y. A la inversa, se pueden almacenar constantes de caracter en
variables enteras. Asi,

i nt j = ' pI
No pone una letra p en j , sino que asigna el valor 80 —cédigo ASCII de p— a la variable j .
Observar este pequefio segmento de codigo:

int m;
m=m+ ‘a’'-'A’;

Esta convirtiendo una letra mayuUscula en su correspondiente mindscula. Para lo cual suma el
desplazamiento de las letras mayusculas a las mindsculas (‘a'-*A’).

Constantes cadena

Una constante cadena (también llamada literal cadena o simplemente cadena) es una secuencia de
caracteres encerrados entre dobles comillas. Algunos ejemplos de constantes de cadena son:

"123"
"12 de octubre 1492"
"esto es una cadena"

Se puede escribir una cadena en varias lineas, terminando cada linea con “\”

"est o es una cadena\
que tiene dos |ineas"

Se puede concatenar cadenas, escribiendo

que equivale a

" ABCDEFCHI JKL"

100 Programacioén en C. Metodologia, algoritmos y estructura de datos

En memoria, las cadenas se representan por una serie de caracteres ASCII mas un O o nulo. El
caracter nulo marca el final de la cadena y se inserta automaticamente por el compilador C al final de
las constantes de cadenas. Para representar valores nulos, C define el simbolo NULL como una constante
en diversos archivos de cabecera (normalmente STDEF.H, STDI O.H, STDLIB.HY STRI NG H). Para
utilizar NULL en un programa, incluya uno o mds de estos archivos en lugar de definir NULL con una
linea tal como

#define NULL O

Recuerde que una constante de caracteres se encierra entre comillas simples (apdstrofe), y las
constantes de cadena encierran caracteres entre dobles comillas. Por ejemplo,

17 A

El primer *Z* es una constante caracter simple con una longitud de I, y el segundo "z" es una
constante de cadena de caracteres también con la longitud 1. La diferencia es que la constante de cadena
incluye un cero (nulo) al final de la cadena, ya que C necesita conocer donde termina la cadena, y la
constante caracter no incluye el nulo ya que se almacena como un entero. Por consiguiente, no puede
mezclar constantes caracteres y cadenas de caracteres en su programa.

3.9.2. Constantes definidas (simbdlicas)

Las constantes pueden recibir nombres simbélicos mediante la directiva #def i ne.

#def i ne NUEVALI NEA \n
#define Pl 3. 141592
#defi ne VALOR 54

C sustituye los valores \n, 3.141592 Y 54 cuando se encuentra las constantes simbolicas
NUEVALI NEA, P1 Yy VALOR Las lineas anteriores no son sentenciasy, por ello, no terminan en punto
y coma.

printf ("El val or es %ANUEVALINEA", VALOR) ;

Escribe en pantalla la constante VALOR. Realmente, el compilador lo que hace es sustituir en el
progama todas las ocurrencias de VALOR por 54, antes de analizar sintacticamente el programa fuente.

3.9.3. Constantes enumeradas
Las constantes enumeradas permiten crear listas de elementos afines. Un ejemplo tipico es una constante
enumerada de lista de colores, que se puede declarar como:
enum Col ores {Rojo, Naranja, Amarillo, Verde, Azul, Violeta};

Cuando se procesa esta sentencia, el compilador asigna un valor que comienza en O a cada elemento
enumerado; asi, Roj o equivale a O, Nar anj a es 1, etc. EI compilador enumera los identificadores por
usted. Después de declarar un tipo de dato enumerado, se pueden crear variables de ese tipo, como con
cualquier otro tipo de datos. Asi, por ejemplo, se puede definir una variable de tipo enum col or es.

enum Col ores Col orfavorito = Verde;
Otro ejemplo puede ser:
enum Bool ean { Fal se, True };

que asignara al elemento Fal seel valorOy a Tr ue el valor 1.

- v*v————-’ﬁ———m

El lenguaje C: elementos basicos 101

Para crear una variable de tipo l6gico declarar:

enum Bool ean Interruptor = True;

Es posible asignar valores distintos de los que les corresponde en su secuencia natural
enum LucesTrafico {Verde, Amarillo = 10, Rojo};

Al procesar esta sentencia, el compilador asigna el valor 0 al identificador ver de, 10 al
identificador Amarillo y 11aRojo.

3.9.4. Constantes declaradas const yvol atile

El cualificador const permite dar nombres simbélicos a constantes a modo de otros Ienguajes como

Pascal. El formato general para crear una constante es: F 4
r’ & Gl
A .'_"w:l =
const tipo nombre = valor; .n s
“E B0z = -
) -:—' Lo l-\.
Si se omite tipo, C utiliza i nt (entero por defecto) N " s ..F
const int Meses=12; /* Meses es constante sinbélica de va H"'

const char CARACTER='@’
const int OCTAL=0233;
const char CADENA []="Curso de C';

C soporta el calificador de tipo variable const . Especifica que el valor de una variable no se puede
modificar durante el programa. Cualquier intento de modificar el valor de la variable definida con
const producird un mensaje de error.

const int senmana = 7;
const char CADENA []= "Borland C 3.0/3.1 GQuia de referencia";

La palabrareservadavolatile actllacomo const, pero su valor puede ser modificado no sélo por
el propio programa, sino también por el hardware o por el software del sistema. Las variables volatiles,
sin embargo, no se pueden guardar en registros, como es el caso de las variables normales.

Diferenciasentre const y #define

Las definiciones const especifican tipos de datos, terminan con puntos y comay se inicializan como
las variables. La directiva #def i ne no especifica tipos de datos, no utilizan el operador de asignacion
(=) y no termina con punto y coma.

Ventajas de const sobre #def i ne

En C casi siempre es recomendable el uso de const en lugar de #def i ne. Ademas de las ventajas ya
enunciadas se pueden considerar otras:

« El compilador, normalmente, genera cdédigo mas eficiente con constantes const .

o Como las definiciones especifican tipos de datos, el compilador puede comprobar inmediatamente
si las constantes literales en las definiciones de const estan en forma correcta. Con #def i neel
compilador no puede realizar pruebas similares hasta que una sentencia utiliza el identificador
constante, por lo que se hace mas dificil la deteccion de errores.

102

Programacion en C. Metodologia, algoritmos y estructura de datos

Desventajade const sobre #defi ne

Los valores de los simbolos de const ocupan espacio de datos en tiempo de ejecucidn, mientras que
#def i ne solo existe en el texto del programa y su valor se inserta directamente en el codigo compilado.
Los valores const no se pueden utilizar donde el compilador espera un valor constante, por ejemplo
en la definicion de un array. Por esta razén, algunos programadores de C siguen utilizando #def i neen
lugar de const .

Sintaxisde const

const tipoDato nombreConstante = valorConstante;

const unsi gned DiasDeSemana = 7;
const HorasDelDia = 24;

3.10. VARIABLES

En C una variable es una posicién con nombre en memoria donde se almacena un valor de un cierto tipo
de dato. Las variables pueden almacenar todo tipo de datos: cadenas, nimeros y estructuras. Una
constante, por el contrario, es una variable cuyo valor no puede ser modificado.

Una variable tipicamente tiene un nombre (un identificador) que describe su propdsito. Toda variable
utilizada en un programa debe ser declarada previamente. La definicion en C debe situarse al principio
del blogue, antes de toda sentencia ejecutable. Una definicion reserva un espacio de almacenamiento en
memoria. El procedimiento para definir (crear)una variable es escribir el tipo de dato, el identificador
o nombre de la variable y, en ocasiones, el valor inicial que tomara. Por ejemplo,

char Respuest a;

significa que se reserva espacio en memoria para Respuest a, en este caso, un caracter ocupa un solo
byte.

El nombre de una variable ha de ser un identificador valido. Es frecuente, en la actualidad, utilizar
subrayados en los nombres, bien al principio 0 en su interior, con objeto de obtener mayor legibilidad
y una correspondencia mayor con el elemento del mundo real que representa.

salario di as- de- semana edad- al umo _fax

3.10.1. Declaracion

Una declaracién de una variable es una sentencia que proporciona informacién de la variable al
cornpilador C. Su sintaxis es:

tipo variable

tipo es el nombre de un tipo de dato conocido por el C
variable es un identificador (nombre) valido en C.

Ejemplo

| ong dNumero;

doubl e HorasaAcumuladas;
fl oat HorasPorSemana;
fl oat NotaMedia;

short DiaSemana;

El lenguaje C elementos basicos 103

Es preciso declarar las variables antes de utilizarlas. Se puede declarar una variable al principio de
un archivo o bloque de cédigo al principio de una funcion.

#i ncl ude <stdio.h> /* variable al principio del archivo */
int MiNumero;

int main()

{
printf (":Cudl es su nunero favorito?');
scanf ("%d", aMiNumero) ;
return O;

}

/*Vari abl eal principio de una funcién
Al principio de la funciéon main()*/

int main()
{
int i;
int j;

}

/*Variable al principio de un bl oque.
A principio de un bl oque for*/

int main()
{
int i;

faF (1=0; L
{
doubl e summ;

En C las declaraciones se han de situar siempre al principio del bloque. Su &mbito es el bloque en
el que estan declaradas.

Ejemplo

/* Distancia a la luna en kil ometros */
#i ncl ude <stdio.h>

int main()

104 Programacion en C. Metodologia, algoritmos y estructura de datos

const int luna=238857; /* Distancia en mllas */
float |una-kilo;
printf("Distancia a la Luna %d millas\n", luna);

luna-kilo = luna*1.609; /* una milla = 1.609 kil 6netros */
printf ("En kil énetros es %[{Kwm.\n", luna_kilo);
return O

Ejemplo 3.3

Este ejemplo muestra como una variable puede ser declarada al inicio de cualquier blogue de un
programa C.

#i ncl ude <stdio.h>
/* Diferentes decl araci ones */

int main()
{
int x, yi1; /* declarar a las variables x e y1 en la funci 6n main() */
X = 75;
vl = 89;
if (x > 10)
int y2 = 50; /* declarar e inicializa a la variable y2 en el
bl oque if */
vl = vi+y2;

}
printf('"x = %, yv1 = $d\n",x,v1);
return O

3.10.2. Inicializacién de variables

En algunos programas anteriores, se ha proporcionado un valor denominado valor inicial, a una variable
cuando se declara. El formato general de una declaracién de inicializacion es:

tipo nonbre- variabl e = expresion
expresi 6n es cualquier expresionvalida cuyo valor es del mismo tipo que tipo.
Nota. Esta sentencia declaray proporciona un valor inicial a una variable.

Las variables se pueden inicializar a la vez que se declaran, o0 bien, inicializarse después de la
declaracion. El primer método es probablemente el mejor en la mayoria de los casos, ya que combina
la definicidn de la variable con la asignacién de su valor inicial.

char respuesta = ‘3’;
int contador = 1;
float peso = 156. 45;
int anyo = 1993;

Estas acciones crean variables r espuesta, contador, pesoy anyo, que almacenan en
memoria los valores respectivos situados a sy derecha.

El lenguaje C: elementos béasicos 105

El segundo método consiste en utilizar sentencias de asignacion diferentes después de definir la
variable, como en el siguiente caso:

char barra;
barra = */*;

3.10.3. Declaraciéon o definicion

La diferencia entre declaracion y definicién es sutil. Una declaracion introduce un ombre de una
variable y asocia un tipo con la variable. Una definicidn es una declaracion que asigna simultaneamente
memoria a la variable.

doubl e X; /* declara el nonbre de la variable x de tipo double */
char c_var; /* declara c_var de tipo char */

int i; /* definido pero no inicializado */

int i = O /* definido e inicializado a cero.*/

3.11. DURACION DE UNA VARIABLE

Dependiendo del lugar donde se definan las variables de C, éstas se pueden utilizar en la totalidad del
programa, dentro de una funcién o pueden existir s6lo temporalmente dentro de un bloque de una
funcion. La zona de un programa en la que una variable esté activa se denomina, normalmente, ambito
o alcance («scope»).

El &mbito (alcance)de una variable se extiende hasta los limites de la definicién de su bloque. Los
tipos basicos de variables en C son:

o variables locales;
e variables globules;
¢ variables dindmicas.

3.11.1. Variables locales

Las variables locales son aquéllas definidas en el interior de una funcion y son visibles s6lo en esa
funcidn especifica. Las reglas por las que se rigen las variables locales son:

[. En el interior de una funcion, una variable local no puede ser modificada por ninguna sentencia
externa a la funcién.

2. Los nombres de las variables locales no han de ser Unicos. Dos, tres 0 mas funciones pueden
definir variables de nombre Interruptor: Cada variable es distinta y pertenece a la funcién en que
esta declarada.

3. Las variables locales de las funciones no existen en memoria hasta que se ejecuta la funcién.
Esta propiedad permite ahorrar memoria, ya que permite que varias funciones compartan la
misma memoria para sus variables locales (pero no a la vez).

Por la razén dada en el punto 3, las variables locales se llaman también automaticas o auto, ya que
dichas variables se crean automaticamenteen la entrada a la funciony se liberan también automéaticamente
cuando se termina la ejecucién de la funcion.

#i ncl ude <stdio.h>

int main()

106 Programacion en C. Metodologia, algoritmos y estructura de datos

int a, b, ¢, summ, numero; /*variables | ocal es */

printf ("Cuantos ndmeros a sumar:") ;
scanf ("d" ,&numero) ;

suma = a + b + ¢c;

return O

3.11.2. Variables globales

Las variables globales son variables que se declaran fuera de la funcién y por defecto (omisién) son
visibles a cualquier funcién, incluyendo mai n() .

#i ncl ude <stdio.h>

int a, b, c; /* declaraci 6n de vari abl es gl obal es */

int main()

{
int val or; /* decl araci 6n de variable l|local */
printf ("Tresvalores: ") ;
scanf ("$d %d %d",&a,&b,&c); /* a,b,c variables globales */
val or = a+b+c;

Todas las variables locales desaparecen cuando termina su bloque. Una variable global es visible
desde el punto en que se define hasta el final del programa (archivo fuente).

La memoria asignada a una variable global permanece asignada a través de la ejecucidn del
programa, tomando espacio valido segun se utilice. Por esta razdn, se debe evitar utilizar muchas
variables globales dentro de un programa. Otro problema que surge con variables globales es que una
funcidn puede asignar un valor especifico a una variable global. Posteriormente, en otra funcion, y por
olvido, se pueden hacer cambios en la misma variable. Estos cambios dificultaran la localizacion de
errores.

3.11.3. Variables dinamicas

Las variables dindmicas tienen caracteristicas que en algunos casos son similares tanto a variables
locales como a globales. Al igual que una variable local, una variable dindmica se creay libera durante
la ejecucion del programa. La diferencia entre una vuriable local y una variable dinamica es que la
variable dinamica se crea tras su peticion (en vez de automaticamente, como las variables locales), es
decir, a su voluntad, y se libera cuando ya no se necesita. Al igual que una variable global, se pueden
crear variables dinamicas que son accesibles desde multiples funciones. Las variables dindmicas se
examinan en detalle en el capitulo de punteros (Capitulo 10).

El lenguaje C elementos basicos 107

En el segmento de codigo C siguiente, ¢ es una variable global por estar definida fuera de las
funcionesy es accesible desde todas las sentencias. Sin embargo, las definiciones dentro de mai n, como
A, son locules a mai n. Por consiguiente, sélo las sentencias interiores a nmai n pueden utilizar A

#i ncl ude <stdioc.h>
int Q Alcance o ambito global
Q, variable global

int main()
{
int A; Local u main
A, variable local
A = 124;
Q=1;
{
int B; Primer subnivel en mai n
B, variable local
B = 124;
A = 457;
Q=2
{
int C; Subnivel més internode main
C, variable local
C = 124;
B = 457,
A = 788;
Q=3

3.12. ENTRADASY SALIDAS

Los programas interactGan con el exterior, a través de datos de entrada o datos de salida. La biblioteca
C proporciona facilidades para entrada y salida, para lo que todo programa debera tener el archivo de
cabecera st di o.h . En C la entrada y salida se lee y escribe de los dispositivos estandar de entrada y
salida, se denominan stdiny st dout respectivamente. La salida, normalmente, es a pantalla del
ordenador, la entrada se capta del teclado.

En el archivo st di o.h estan definidas macros, constantes, variables y funciones que permiten
intercambiar datos con el exterior. A continuacion se muestran las mas habituales y faciles de utilizar.

3.12.1. Salida

La salida de datos de un programa se puede dirigir a diversos dispositivos, pantalla, impresora, archivos.
La salida que se trata a continuacion va a ser a pantalla, ademas sera formateada. La funcidn
print f () visualiza en la pantalla datos del programa, transforma los datos, que estan en representacion
binaria, a ASCII seguln los cédigos transmitidos. Asi, por ejemplo,

suma = O;
suma = suma+10;
printf ("¢s %d","Suma = ", summ) ;

—

108 Programacion en C. Metodologia, algoritmos y estructura de datos

visualiza
Suma = 10

El nimero de argumentosde printf () es indefinido, por lo que se pueden trasmitir cuantos datos
se desee. Asi, suponiendo que

i =5 j = 12 c = 'A’ n = 40.791512
la sentencia

printf ("4 %4 %c %f",1,3,c,n);
visualizara en pantalla

5 12 A 40.791512

La forma general que tiene la funcién pri ntf ()

printf (cadena-de-control, datol, dato2, ...)

cadena— de— control contiene los tipos de los datos y forma de mostrarlos.
datol, dato2 ... variables, constantes, datos de salida.

print £ () convierte, da forma de salida a los datos y los escribe en pantalla. La cadena de control
contiene codigos de formato que se asocian uno a uno con los datos. Cada cddigo comienza con el
caracter %, a continuacion puede especificarse el ancho minimo del dato y termina con el caracter de
conversion. Asi, suponiendo que

1= 11 7 = 12 c o= ‘A’ n = 40.791512

printf ("$x 98d %c %.3f",i,j.c,n);

visualizara en pantalla
B 12 A 40.792

El primer dato es 11 en hexadecimal (%x) ,el segundo es el nimero entero 12 en un ancho de 3,
le sigue el caracter A 'y, por Ultimo, el nimero real n redondeado a 3 cifras decimales (% .3f).Un
signo menos a continuacion de % indica que el dato se ajuste a la izquierda en vez del ajuste a la derecha
por defecto.

printf ("s$15s", "HOLA LUCAS') ;
printf ("s-15s", "HOLA LUCAS');

visualizara en pantalla

HOLA LUCAS
HOLA LUCAS
Los cddigos de formato mas utilizados y su significado:
%d El dato se convierte a entero decimal.
%O El dato entero se convierte a octal.
%X El dato entero se convierte a hexadecimal.
%J El dato entero se convierte a entero sin signo.
%c El dato se considera de tipo caracter.
oe El dato se considera de tipo f 1oat . Se convierte a notacion cientifica, de la forma
[-In.mmmmmmE{ +\-}dd.
$f El dato se considera de tipo f | oat . Se convierte a notacion decimal, con parte
entera y los digitos de precision.
%g El dato se considera de tipo fl oat. Se convierte segun el codigo %e 0 %f
dependiendo de cual sea la representacion mas corta.
%s El dato ha de ser una cadena de caracteres.

$1f El dato se considera de tipo doubl e.

El lenguaje C: elementos bésicos 109

C utiliza secuencias de escape para visualizar caracteres que no estan representados por simbolos
tradicionales, tales como \ a, \b, etc. Las secuencias de escape clasicas se muestran en la Tabla 3.7.
Las secuencias de escape proporcionan flexibilidad en las aplicaciones mediante efectos especiales.

printf("\n Error Pul sar una tecla para continuar \n");

printf ("\n") ; /* salta a una nueva |inea */ {

printf("Yo estoy preocupado\n no por el \n sino por ti.\n");

la Gltima sentencia visualiza

Yo estoy preocupado
no por el |
sino por ti. '

debido a que la secuencia de escape “\n* significa nueva linea o salto de linea. Otros ejemplos: {

printf ("\n Tabl a de nameros \n"); /* uso de \n para nueva |inea */ l
printf ("\nNuml\t Num2\t Num3\n"); /* uso de \t para tabul aci ones */
printf ("sc", \a’); /* uso de \a para al arma sonora */

en los que se utilizan los caracteres de secuencias de escape de nueva linea (\n) , tabulaciéon (\t) vy
alarma (\a).

Tabla 3.7. Caracteres secuencias de escape.

Secuenciade escape Significado
\a Alarma
\b Retroceso de espacio Ih
\E Avance de pagina
\n Retorno de carro y avance de linea
\r Retorno de carro
\t Tabulacion
\v Tabulacidn vertical
\\ Barra inclinada
\? Signo de interrogacion
\" Dobles comillas
\N00O Numero octal
\xhh Numero hexadecimal
\0 Cero, nulo (ASCII 0)
Ejemplo 3.4

El listado SECESC. C utiliza secuencias de escape, tales como emitir sonidos (pitidos)en el terminal
dos veces y a continuacidnpresentar dos retrocesos de espacios en blanco.

/* Programa:SECESC.C
Propésito: Mostrar funci onam ento de secuenci as de escape

*/

110 Programacion en C. Metodologia, algoritmos y estructura de datos

#i ncl ude <stdio.h =
int main()

{
char sonidos=’\a’; /* secuencia de escape al arma en soni dos */

char bs='\b"’; /* al macena secuenci a escape retroceso en bs =/

printf ("$c%c",sonidos, sonidos);/* emte el sonido dos veces */
printf (*zz") ; /* inprime dos caracteres */

printf ("$c%c",bs,bs) ; /* mueve el cursor al priner caréacter 'Z */

return O;

3.12.2. Entrada

La entrada de datos a un programa puede tener diversas fuentes, teclado, archivos en disco. La entrada
que consideramos ahora es a través del teclado, asociado al archivo estandar de entrada stdin. La funcion
mas utilizada, por su versatilidad, para entrada formateadaes scanf () .

El archivo de cabecera stdio .h de la biblioteca C proporciona la definicién (el prototipo) de
scanf () ,asi como de otras funciones de entrada o de salida. La forma general que tiene la funcién

scanf ()
scanf (cadena_de_control, varl, var2, var3, ...)
cadena—de—control contiene los tipos de los datos y si se desea su anchura.
varl, var2 ... variables del tipo de los codigos de control.

Los codigos de formato mas comunes son los ya indicados en la salida. Se pueden afiadir, como
sufijo del cddigo, ciertos modificadores como | o L. El significado es «largo», aplicado a float
(31€£) indicatipo doubl e,aplicado a int (%1d) indicaentero largo.

int n; double Xx;
scanf ("sd %1(", &n, &x);

La entrada tiene que ser de la forma
134 -1.4E-4

En este caso la funciéon scanf () devuelve n=134 x=-1.4E-4 (en doble precisiéon). Los
argumentosvar | , var2 ...delafuncién scanf () se pasan por direccion o referencia pues van
a ser modificados por la funcion para devolver los datos. Por ello necesitan el operador de direccidn, el
prefijo &. Un error frecuente se produce al escribir, por ejemplo,

doubl e X;
scanf ("$1f", x) ;
en vez de

scanf ("$1f", &x) ;

El lenguaje C: elementos basicos 111

Las variables que se pasan a scanf () se transmiten por referencia para poder ser modificadas
y transmitir los datos de entrada, para ello se hacen preceder de & .

Un ejemplo tipico es el siguiente:

printf ("introduzcavl y v2:");
scanf ("%d %f",&v1,&v2); [*lecturavalores viy v2 */

printf ("Preciode venta al publico") ;
scanf ("$f",&«Precio_venta);

printf ("Basey altura: ") ;
scanf ("%f %f",&b,&h);

La funcién scanf () termina cuando ha captado tantos datos como c6digos de control se han
especificado, o cuando un dato no coincide con el cédigo de control especificado.

Ejemplo 3.5
¢ Cudl es la salida del siguiente programa, si se introducen por teclado las letras LJ?

#i ncl ude <stdio.h> :
| int main() :
{
char prinero, ultino;)
printf("Introduzca su prinmeray Utim inicial:");

1 scanf ("$c¢ %c", &primero, &ultimo) ;
Y printf ("Hol a, ¢ . %c¢ .\n",primeroc,ultimo);
| return O

3.12.3. Salida de cadenas de caracteres
Con la funcion printf () se puede dar salida a cualquier dato, asociandolo el codigo que le
corresponde. En particular, para dar salida a una cadena de caracteres se utiliza el cddigo %s. Asi,

char arbol [] = "Acebo";
printf ("ss\n",arbol);

Para salida de cadenas, la biblioteca C proporciona la funcion especifica put s () . Tiene un solo
argumento, que es una cadena de caracteres. Escribe la cadena en la salida estandar (pantalla) y afiade
el fin de linea. Asi,

puts (arbol);
muestraen pantalla lo mismo que pri ntf ("$s\n", ar bol) ;

Ejemplo 3.6
‘_ ¢ Cudl es la salida del siguiente programa?

#i ncl ude <stdio.h>
#define T "Tanbor de hojalata."
int main()

—

12

Programacion en C. Metodologia, algoritmos y estructura de datos

char st[21 ="Todo puede hacerse."
puts(T);

puts ("Permso para salir en la toto.") ;
puts(st) ;

puts(&st (8);

return O

3.12.4. Entradade cadenas de caracteres

La entrada de una cadena de caracteres se hace con la funcion méas general scanf () y el codigo %s.
Asi, por ejemplo,

char nonbre(51] ;

printf ("Nonbre del atleta: ") ;

scanf ("$s", nonbre) ;
printf ("Nombre i ntroduci do: %s",nombre) ;

La entrada del nombre podria ser

Junipero Serra
La salida
Nonbr e introduci do: Junipero

scanf () con el codigo $s capta palabras, el criterio de terminacion es el encontrarse un blanco, o
bien fin de linea.

También comentar que nonbr e no tiene que ir precedido del operador de direccion &. En C el
identificador de un array, nonbr e lo es, tiene la direccién del array, por lo que en scanf () se transmite
la direccion del array nonbr e.

La biblioteca de C tiene una funcion especifica para captar una cadena de caracteres, la funcién
get s () . Capta del dispositivo estandar de entrada una cadena de caracteres, termina la captacion con
un retorno de carro. El siguiente ejemplo muestra como captar una linea de como méaximo 80 caracteres.

char linea[81] ;
puts ("Nonbrey direccion") ;
gets(linea);
La funcion gets () tiene un solo argumento, una variable tipo cadena. Capta la cadena de entrada
y la devuelve en la variable pasada como argumento.

gets(variable_cadena) ;
Tanto con scanf () como con get s () ,el programa inserta al final de la cadena el caracter que

indica fin de cadena, el caracter nulo, \ 0. Siempre hay que definir las cadenas con un espacio mas del
previsto como maxima longitud para el caracter fin de cadena.

313 RESUMEN

Este capftulo le ha introducido a los componentes
bisicos de un programa C. En posteriores capitulos se
analizardn en profundidad cada uno de los compo-
nenics. En ese capitulo ha sprendido lo siguiente:

« La estructura general de un programa C,

Lamayoris de los programas C tienen una o mis
directivas # include sl principio del programa
fuente. Estas directivas # inc lude proporcio-
nan informacidin adicional para crear su progra-
ma; éste, pormalmente, utiliza #i ncl ude para
acceder a funciones definidas en archivos de
hilslioteca,

s Cada programa debe inclair uns funcidn lamada
malni), sungoe la mayoria de bos programas
tendrin mochas funciones ademids de main ().

« En C, se wiiliza Ia funcidn scanfi) para
ihicner entrada del teclads. Para cadenas puede
utilizarse, sdemds, 1a funclén gets ().

» Para visualizar salida a la pantalla, se utiliza la
funcidn printf (). Parmm cadenas pusde wti-
lizarse la funcidn puts ().

» Los nombres de los identificadores deben co-
menzar con an caricter alfabético, seguido por

3.14. EJERCICIOS

3.1. ;Cudl es la salidadel siguiente programa'?

#i ncl ude <stdio.h>

int main{)

{
char pax{] = "Juan Sin M edo";
princf("k& %s\n",pax,&pax[4]) ;
PULs {pax) ;
pute(&kpax[4});
return 0;

3.2. Escribiry ejecutar un programa que imprima su
nombre y direccién.

33. Escribiry ejecutar un programia gue imprima un
pagina de texto con no mids de 4 caracieres po

linea.
34. Depurar el programa siguiente:

El lenguaje C: elementos basicos 113

en ntmero de caracteres alfabéticos o mu-
méricog, o bien, el cardcter subrayado (_). El
compilador pormalmente ignora lod caracicres
posterior al 32.

Los tipos de datos bdsicos de C son: ente-
ros {int), emtero largo {long), cardcter
ichar),comaflctante (float, double).
Cadda wnd de os tipos enberas tiene UN calificador
unsigned para slmacenar valores positivos,

Los tipos de datos cardcter utilizan | byte de
memoria; el tipo entero wtiliza 2 bytes; el tipo
entero largo utiliza 4 bytes v boa tipos de coma
flotante 4, 8 o 10 bytes de almscenami=nio

Se uvtilizan conversiones forzosas de tipo o
moldes/ahormados (e tipos (cast) para convertir
un tipo a otro. El compilador realiza automati-
camente muchas conversiones de tipos. Por
ejemplo, si se ssigna un entero & una variable
float, el compilador comvierie automitica-
mente el valor entero & un tipo £ loat,

Se puede seleccionar explicitamente una conver
sidn de tipos precediendo la variable o expresion con
{fipc), en donde Hpo es un tipo de dato vilido.

#i ncl ude <stdio.h>

voi d main()

{

35.

printf (E |enguaje de prograna-
cion ¢c*)

Escribir un programa que imprima la letra B
con asteriscos,

sk sk ok
*

* *
* *
Aok Kok ok
* *
* *
sk sk

CAPITULO 4

OPERADORES Y EXPRESIONES

CONTENIDO

114

4.1.
4.2.
4.3.
4.4.

4.5.
4.6.
4.7.

4.8.

Operadoresy expresiones.
Operador de asignacion.
Operadores aritméticos.

Operadores de incrementacion
y decrementacion.

Operadoresrelacionales.
Operadores l6gicos.

Operadores de manipulacion
de bits.

Operador condicional.

4.9.
4.10.

4.11.
4.12.
4.13.
4.14.
4.15.
4.16.

Operador coraa.

Operadores especiales,: () ,
El

El operador si zeof .
Conversiones de tipos.
Prioridad y asociatividad.
Resumen.

Ejercicios.

Problemas.

INTRODUCCION
Los programas de computadoras se apoyan esencialmente en la realizacion de
numerosas operaciones aritméticas y matematicas de diferente complejidad.
Este capitulo muestra como C hace uno de los operadores y expresiones para la

resolucion de operaciones. Los operadores fundamentales que se analizan en el
capitulo son:

aritméticos, logicos y relacionales;
de manipulacion de bits;
condicionales;

especiales.

e o o @9

Ademas se analizaran las conversiones de tipos de datos y las reglas que
seguira el compilador cuando concurran en una misma expresion diferentes
tipos de operadores. Estas reglas se conocen comoprioridad y asociatividad.

CONCEPTOS CLAVE

e Asignacion. e Incrementacién/decrementacién.
e Asociatividad. e Manipulacion de bits.

e Conversion explicita. e Operador.

e Conversionesde tipos. e Operador si zeof .

e Evaluacion en cortocircuito. ¢ Prioridad/precedencia.

Expresion.

115

116

4.1.

4.2.

Programacion en C. Metodologia, algoritmos y estructura de datos

OPERADORESY EXPRESIONES

Los programas C constan de datos, sentencias de programas y expresiones. Una expresion es,
normalmente, una ecuacién matematica, tal como 3+5. En esta expresion, el simbolo mas (+) es el
operador de suma, y los nimeros 3 y 5 se llaman operandos. En sintesis, una expresion es una secuencia
de operaciones y operandos que especifica un calculo.

Cuando se utiliza el + entre nimeros (o variables) se denomina operador binario, debido a que el
operador * suma dos nimeros. Otro tipo de operador de C es el operador unitario («unario»), que actia
sobre un Unico valor. Si la variable x contiene el valor 5, -x es el valor -5. El signo menos (-) es el
operador unitario menos.

C soporta un conjunto potente de operadores unarios, binarios y de otros tipos.

Sintaxis

Variable = expresi6n

variable identificador valido C declarado como variable.

expresion una constante, otra variable a la que se ha asignado previamente un valor

o una férmula que se ha evaluado y cuyo tipo es el de variable

Una expresidn es un elemento de an programa que toma un valor. En algunos casos puede
también realizar una operacién.

Las expresiones pueden ser valores constantes 0 variables simples, tales como 25 o *2°;
pueden ser valores o varables combinadas con operadores (a++, m==n, etc. }; o bien pueden ser
valores combinados con funciones tales COMOt oupper (‘b') .

OPERADOR DE ASIGNACION

El operador = asigna el valor de la expresion derecha a la variable situada a su izquierda.

codi go = 3467;
fahrenheit = 123. 456;
coordX = 525;
coordy = 725;

Este operador es asociativo por la derecha, eso permite realizar asignaciones multiples. Asi,
a=>b=-c =45

equivale a
a= (b= (c=45));

o dicho de otro modo, a las variables a, by c se asigna el valor 45.
Esta propiedad permite inicializar varias variables con una sola sentencia

int a, b, c;
a=b=c = 5 /* se asigna 5 a las variables a, by ¢ */

Ademas del operador de asignacion =, C proporciona cinco operadores de asignacién adicionales.
En la Tabla 4.1 aparecen los seis operadores de asignacion.
Estos operadores de asignacion actlian como una notacién abreviada para expresiones utilizadas
con frecuencia. Asi, por ejemplo, si se desea multiplicar 10 por i,se puede escribir

i:i*lO,

Operadores y expresiones 117

Tabla 4.1. Operadores de asignaciéon de C.

Simbolo uso Descripcion
a==>b Asigna el valor de b a a.

b a *=»b Multiplica a por b y asigna el resultado a la variable a.
a/=Db Divide a entre by asigna el resultado a la variable a.
a 2- b Fija a al resto de’'a/b.
a t=b Sumab y ay ioasigna a la variable a.
a b Resta b de a y asigna el resultado a la variable a.

C proporciona un operador abreviado de asignacion (*=) , que realiza una asignacion equivalente

i *=10; equivalea i =i * 10;
Tabla 4.2. Equivalencia de operadores de asignacion.

Operador Sentencia Sentencia
abreviada no abreviada
m += n m=m + n;
m-=-n m = m - 1n;
. m *= n m=m * n;
m/=n m=m/ n;
- m %= n m=m % n;

Estos operadores de asignacion no siempre se utilizan, aunque algunos programadores C se
acostumbran a su empleo por el ahorro de escritura que suponen.

4.3. OPERADORES ARITMETICOS

Los operadores aritméticos sirven para realizar operaciones aritméticas basicas. Los operadores
aritméticos C siguen las reglas algebraicas tipicas de jerarquia o prioridad. Estas reglas especifican la
precedencia de las operaciones aritméticas.

Consi

dere la expresion

3+ 5 * 2

¢(Cudl es el valor correcto, 16 (8*2) 0 13(3+10) ? De acuerdo a las citadas reglas, la multiplicacion
se realiza antes que la suma. Por consiguiente, la expresidn anterior equivale a:

3t

(5% 2)

En C las expresiones interiores a paréntesis se evallan primero; a continuacion, se realizan los
operadores unitarios, seguidos por los operadores de multiplicacién, division, resto, suma y resta.

Tabla 4.3. Operadores aritméticos.

Operador Tipos enteros Tipos reales Ejemplo
t Suma Suma X +Y
- Resta Resta b - c
Producto Producto X *y
/ Division entera: cociente Division en coma flotante b/ 5
Division entera: resto b %5

118 Programacioén en C. Metodologia, algoritmos y estructura de datos

Tabla 4.4. Precedencia de operadores matematicos basicos.

Operador Operacion Nivel de precedencia
+.o- +25, -6.745 1
*, 0/, % 5*5 es 25 2
25/5 es 5
25%6 es 1
+,o- 2+3 es 5 3
2-3 es -1

Obsérvese que los operadores +y —, cuando se utilizan delante de un operador, actGan como
operadores unitarios mas y menos.

+75 /* 75 significa que es positivo */
-154 /* 154 significa que es negativo */
Ejemplo 4.1

1. ;Cudl es el resultado de la expresion: 6 + 2 * 3 - 4/2?
6 +2 %3 -4 /2

6+6 - 4/2
6 + 6 - 2

12 - 2

2. ;/Cudl es el resultado de la expresion: 5 *5(5+(6-2)+1)?
5* (5+ (6-2) + 1)

5 * (5 + 4 + 1)
5 * 10
50

3. ;/Cuél es el resultado de la expresion: 7-6/3 + 2*3/2 - 4727
7 - 6/3 + 2%¥3/2 - 4]2

7 -2 4 2%3/2 - 4]2
7 - 2 + 3 - 4/ 2
7 - 2 + 3 - 2
5 + 3 - 2

8 - 2

Operadores y expresiones 119

4.3.1. Asociatividad

En una expresion tal como
34 + 5

el compilador realiza primero la multiplicacion —por tener el operador * prioridad mas alta—y luego
la suma, por tanto, produce 17. Para forzar un orden en las operaciones se deben utilizar paréntesis

3 * (4+ 5)
produce 27, ya que 4 +5 se realiza en primer lugar.

La asociatividad determina el orden en que se agrupan los operadores de igual prioridad; es decir,
de izquierda a derecha o de derecha a izquierda. Por ejemplo,

x -y + 17 Seagrupacomo (x —y) + z

yaque - y +, con igual prioridad, tienen asociatividad de izquierda a derecha. Sin embargo,
X =Y =z

se agrupa como
X = (y=2)

dado que su asociatividad es de derecha a izquierda.

Tabla 4.5. Prioridady asociatividad.

Prioridad (mayora menor) Asociatividad

+, - (unarios) izquierda-derecha (—)
/0% izquierda-derecha (—)
+, izquierda-derecha (—)
Ejemplo 4.2

. Cudl es el resultado de la expresion: 7*10-5% 3 *4+ 92>
Existen tres operadores de prioridad més alta(*, & y *)
70 - 5% 3 * 4+ 9
La asociatividad es de izquierda a derecha, por consiguiente se ejecuta a continuacion %
70 2 * 4+ 9
y la segunda multiplicacion se realiza a continuacion, produciendo
70 - 8 + 9

Las dos operaciones restantes son de igual prioridad y como la asociatividad es a izquierda, se
realizard la resta primero y se obtiene el resultado

62 + 9
y, por ultimo, se realiza la suma y se obtiene el resultado final de

120 Programacion en C. Metodologia, algoritmos y estructura de datos

4.3.2. Uso de paréntesis

Los paréntesis se pueden utilizar para cambiar el orden usual de evaluacion de una expresion
determinada por su prioridad y asociatividad. Las subexpresiones entre paréntesis se evallan en primer
lugar segln el modo estandar y los resultados se combinan para evaluar la expresion completa. Si los
paréntesis estan «anidados» —es decir, un conjunto de paréntesis contenido en otro— se ejecutan en
primer lugar los paréntesis mas internos. Por ejemplo, considérese la expresion

(7* (10 - 5) % 3 4 + 9
La subexpresion (10 - 5) se evalla primero, produciendo
(7 *5%3) *4+ 9
A continuacién se evalla de izquierda a derecha la subexpresion (7 * 5 % 3)
(35% 3) *4 + 9
seguida de
2 % 4 4+ 9
Se realiza a continuacion la multiplicacién, obteniendo
i 8 + 9
y la suma produce el resultado final

17

Precaucién

Se debe tener cuidado en la escritura de expresiones que contengan dos 0 mas operaciones para
asegurarse que se evalidan en el orden previsto. Incluso aungue no se requieran paréntesis, deben
utilizarse para clarificar el orden concebido de evaluacion y escribir expresionescomplicadas en
términos de expresiones mas simples. ES importante, sin embargo, que los paréntesis estén equi-
librados - c ad a paréntesis a la izquierda tiene un correspondiente paréntesisa la derecha que apa-
rece posteriormente en la expresién— ya que existen paréntesis desequilibrados se producira un
error de compilacion.

((8 = 5) +4 - (3 + 7) errorde compilacion, falta paréntesis final a la derecha

4.4. OPERADORES DE INCREMENTACIONY DECREMENTACION
De las caracteristicas que incorpora C, una de las mas Utiles son los operadores de incremento ++y

decremento --. Los operadores ++ Yy --, denominados de incrementacion y decrementacion, suman 0
restan 1 a su argumento, respectivamente, cada vez que se aplican a una variable.

Tabla 4.6. Operadores de incrernentacion (++) y decrernentacioén {— -).

Incrementacién Decrementacion
] ++n --n
n += 1 n =1

Operadores y expresiones 121

Por consiguiente,
a+t

es igual que
a = a+tl

Estos operadores tienen la propiedad de que pueden utilizarse como sufijo o prefijo, el resultado de
la expreson puede ser distinto, dependiendo del contexto.
Las sentencias

+411;

N+
tienen el mismo efecto: asi como

—n;
n--;

Sin embargo, cuando se utilizan como expresiones tales como o

m= n++;
printf(" n = %a",n--);

el resultado es distinto si se utilizan como prefijo.

m= ++n;
printf (" n = %3d",--n) ;

t+nproduce un valor que es mayor en uno que el de n++, y - - nproduce un valor que €s menor en uno i
que el valor de n--. Supongamos que

n = 8;

m= ++n; /* increnentan en 1, 9, y lo asignaa m */

n = 9;

printf(" n = %d",--n); /*decrementa n en 1, 8, y |0 pasa a printf() */
1’1:8;

m = n++; /* asigna n(8) a m después increnentan en 1 (9) */

n=9;

printf(" n = %d",n--); /* pasa n(9) a printf(), después decrenmenta n */

En este otro ejemplo,

int a = 1, b;

b = a++; /* bvale 1y avale 2 */
int a=1, b;
b = ++a; /* bvale 2y avale 2 */

Si los operadores ++ y == estan de prefijos, la operaciénde incremento o decremento se efectia
antes que la operacion de asignacion; si los operadores ++y -- estan de sufijos, la asignacion
se efectlia en primer lugar y la incrementaciono decrementacion a continuacion.

I ————————————————————————TAE

P - — =T o

122 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo
int i = 10:
int j;

j o= 14+;

Ejemplo 4.3
Demostracién delfuncionamiento de los operadores de incremento/decremento.

#i ncl ude <stdio.h>
/* Test de operadores ++ y */
voi d mai n()
{
int m= 45, n = 75;
printf({ " m= %, n = sd\n",m,n);

++m
/ --n;
4 printf(" m = %, n = sd\n",m,n);
m++;
n--;
ﬂ printf{ " m= %, n = %d\n",m,n);
.
Ejecucion
m= 45, N = 75
m =46, n = 74
m= 47, n =73

En este contexto, el orden de los operadores es irrelevante.

Ejemplo 4.4
Diferencias entre operadores de preincremento v postincremento.

#i ncl ude <stdio.h>
/* Test de operadores ++y —-- */
void main()
{
int m = 99, n;

n = ++m;

printf{'m = %, n = %d\n",m,n);
n = m++;

printf("m = %, n = 3d\n",m,n);
printf("m = %4 \n",m++);

printf ("m = gd \n", ++m);

Operadores y expresiones 123

Ejecucion
m = 100, n = 100
m = 101, n = 100
m = 101
m = 103
Ejemplo 4.5

Orden de evaluacién no predecible en expresiones.
#i ncl ude <stdio.h>

voi d main ()

s
int n =25, t;
t = ++n * ——n;
printf("n = %, t = %d\n",n,t);
printf ("sd %4 %d\n", ++n, ++n, ++n) ;

}

Ejecucion
n=5t= 25
8 7 6

Aungue parece que aparentemente el resultado de t serd 30, en realidad es 25, debido a que en la
asignacion de t, n se incrementa a 6 y a continuacién se decrementa a 5 antes de que se evalue el
operador producto, calculando 5 * 5. Por Gltimo, las tres subexpresiones se evalGan de derecha a
izquierdasera 8 7 6 al contrario de 6 7 8 que parece que aparentemente se producira.

4.5. OPERADORES RELACIONALES

C no tiene tipos de datos I6gicos o0 booleanos, como Pascal, para representar los valores verdadero (true)
y falso (false).En su lugar se utiliza el tipo i nt para este propdsito, con el valor entero O que representa
a falso y distinto de cero a verdadero.

falso Cero
verdadero distinto de cero

Operadores tales como >= y == que comprueban una relacién entre dos operandos se llaman
operadores relacionalesy se utilizan en expresiones de la forma

124 Programacioén en C. Metodologia, algoritmos y estructura de datos

expr esi 6n, oper ador - relaci onal expresion

expresi on, Yy expresion expresi ones conpati bles C
oper ador - relaci onal un operador de la tabla 4.7

Los operadores relacionales se usan normalmente en sentencias de seleccion (if) o de iteracion
(whi l e, far), que sirven para comprobar una condicién. Utilizando operadores relacionales se realizan
operaciones de igualdad, desigualdad y diferencias relativas. La Tabla 4.7 muestra los operadores
relacionales que se pueden aplicar a operandos de cualquier tipo de dato estandar: char, int,
fl oat, doubl e, etc.

Cuando se utilizan los operadores en una expresion, el operador relacional produce un O, o un 1,
dependiendo del resultado de la condicion. O se devuelve para una condicién falsa, y 1 se devuelve para
una condicién verdadera. Por ejemplo, si se escribe

c =3 < 7;

la variable ¢ se pone a 1, dado que como 3 es menor que 7, entonces la operacion < devuelve un valor
de 1, que seasignaa c.

Precaucion

Un error tipico, incluso entre programadores experimentales, es confundir el operador de
asignacién (=) con el operador de igualdad (==).

Tabla 4.7. Operadores relacionales de C.

Operador Significado Ejemplo
__ Igual a a == b
I No igual a a'=»b
> Mayor que a>»>bo
< Menor que a= Mayor o igual que a=>=>b
<= Menor o igual que a=<=>b
Ejemplo

* Six, a, by csondetipodoubl e, numeroesint e inicial esdetipo char,las siguientes
expresiones booleanas son validas:

x < 5.75

b *b>>50?*a?*c
numero == 100
inicial 1= '5”7

* En datos numéricos, los operadores relacionales se utilizan normalmente para comparar. Asi, si
x =3.1
la expresion
X < 7.5
produce el valor 1 (true).De modo similar si

Operadores y expresiones 125

nunero = 27

la expresion

nunmero == 100

produce el valor O (fal se).
* Los caracteres se comparan utilizando los codigos numeéricos (véase Apéndice B, codigo ASCII)

"A” < 'C” esl,verdadera (true), ya que A es el codigo 65y es menor que el codigo 67 de c.
'a” < 'c” esl, verdadera (true): a (codigo 97) y b (cédigo 99).
"b” < 'B” esO, falsa (false) ya que b (c6digo 98) no es menor que B (cédigo 66).

Los operadores relacionales tienen menor prioridad que los operadores aritméticos, y asociatividad
de izquierda a derecha. Por ejemplo,

m+5 <= 2 * n equivale a (m+5) <= (2 * n)

Los operadores relacionales permiten comparar dos valores. Asi, por ejemplo (if significa si, se
vera en el capitulo siguiente),

if (Nota- asignatura< 9)

comprueba si Not a- asi gnat ur aes menor que 9. En caso de desear comprobar si la variable y el
numero son iguales, entonces utilizar la expresion

if (Nota-asignatura== 9)

Si, por el contrario, se desea comprobar si la variable y el nimero no son iguales, entonces utilice
la expresion

if (Nota-asignatura!= 9)
® Las cadenas de caracteres no pueden compararse directamente. Por ejemplo,
char nonbre[26] ;

get s (nonbre)
if (nonbre< "Marisa")

El resultado de la comparacién es inesperado, no se estdn comparando alfabéticamente, lo que se
compara realmente son las direcciones en memoria de ambas cadenas (punteros). Para una
comparacion alfabética entre cadenas se utiliza la funcion stremp () de la biblioteca de C
(string.h). Asi,

if (strcmp(nombre, "Marisa") < 0) [/* alfabéticanente nonbre es nmenor */

4.6. OPERADORES LOGICOS

Ademaés de los operadores matemdticos, C tiene también operadores l6gicos. Estos operadores se
utilizan con expresiones para devolver un valor verdadero (cualquier entero distinto de cero) o un valor
falso (0). Los operadores logicos se denominan también operadores booleanos, en honor de George
Boole, creador del algebra de Boole.
Los operadores l6gicos de C son: not () , and (&&) y or (1 Il. El operador I6gico ! (not, n0)
produce falso (cero) si su operando es verdadero (distinto de cero) y viceversa. El operador 16gico s& !
(and,) produce verdadero sélo si ambos operandos son verdadero (no cero); si cualquiera de los ope-
randos es falso produce falso. El operador I6gico 11 (or, 0) produce verdadero si cualquiera de los
operandos es verdadero (distinto de cero) y produce falso sélo si ambos operandos son falsos. La Tabla
4.8 muestra los operadores l6gicos de C.

R

126

Programacioén en C. Metodologia, algoritmos y estructura de datos
Tabla 4.8. Operadores ldgicos.
Operador Operacion logica Ejemplo
Negacion (1) No légica 1(x >=Yy)
Y légica (&&) operando-I && operando-2 me<n & I > j
O légica ll operando-1 Il operando-2 m=511n =10

Tabla 4.9. Tabla de verdad del operador l6gico NOT (!}.

Operando (a) NOT a
Verdadero (1) Falso (0)
Falso (0) Verdadero (1)
Tabla 4.10. Tabla de verdad del operador l6gico AND.
Operandos
a b a&& b
Verdadero (1) Verdadero (1) Verdadero (1)
Verdadero (1) Falso (0) Falso (0)
Falso (0) Verdadero (1) Falso (0)
Falso (0) Falso (0) Falso (0)
Tabla 4.11. Tabla de verdad del operador légico OR (li).
Operandos
a b allb
Verdadero (1) Verdadero (1) Verdadero (1)
Verdadero (1) Falso (0) Verdadero (1)
Falso (0) Verdadero (1) Verdadero (1)
Falso (0) Falso (0) Falso (0)

Al igual que los operadores matematicos, el valor de una expresion formada con operadores l6gicos
depende de: (u)el operador y (h)sus argumentos. Con operadores 16gicos existen solo dos valores

posibles para expresiones: verdadero y

La forma mas usual de mostrar los resultados de

operaciones l6gicas es mediante las denominadas rablas de verdad, que muestran como funcionan cada
uno de los operadores l6gicos.

Ejemplo
1 (x+7 ==
(anum= 5) g& (Respuesta== ’'S’)
(bnum > 3) (Respuesta == 'N)

Los operadores logicos se utilizan en expresiones condicionales y mediante sentencias . f, while
o f or, que se analizaran en capitulos posteriores. Asi, por ejemplo, la sentencia i f (si Za condi ci 6n es

1. if
{

((a< b)

se utiliza para evaluar operadores 16gicos.

&& (¢ = d))

puts ("Los resul tados no son véalides");

}

Operadores y expresiones 127

Si la variable a es menor que # y, al mismo tiempo, ¢ es mayor que d, entonces visualizar el
mensaje: Los resul tados no son validos.

2. if ((ventas=> 50000) |1 (horas < 100))
{
prima = 100000;

Si la variable vent as es mayor 50000 0 bien la variable hor as es menor que 100, entonces
asignar a la variable prima el valor 100000.

3.if (!(ventas< 2500))
{
prima = 12500;

En este ejemplo, si vent as es mayor que o igual a 2500, se inicializara prima al valor
12500.

El operador ! tiene prioridad mas alta que &&, que a Su vez tiene mayor prioridad que | | .La
asociatividad es de izquierda a derecha.

La precedencia de los operadores es: los operadores matematicos tienen precedencia sobre los
operadores relacionales, y los operadores relacionales tienen precedencia sobre los operadores l6gicos.
La siguiente sentencia:

it ((ventas < sal_min * 3 && ayos > 10 * iva)...
equivale a

if ((ventas< (sal_min * 3)) && (ayos > (10 * iva))) ...

4.6.1. Evaluacion en cortocircuito

En C los operandos de la izquierda de && y | | se evallan siempre en primer lugar; si el valor del
operando de la izquierda determina de forma inequivoca el valor de la expresidn, el operando derecho
no se evalUa. Esto significa que si el operando de la izquierda de && es falso 0 el de | es verdadero, el
operando de la derecha no se evalUa. Esta propiedad se denomina evaluacién en cortocircuitoy se debe
aque si p es falso, la condicion p && g es falsa con independencia del valor de q y de este modo C no
evallia g. De modo similar si p es verdadera la condicién p! q es verdadera con independencia del
valor de gy C noevallaa qg.

Ejemplo 4.6
Supongamos que se evalla la expresion
(x = 0.0) && (log(x) >= 0.5)

Dado que en una operacion logica Y (s} si el operando de la izquierda (X =0.0) es falso (x
es negativo o cero),la expresion l6gica se evalla a falso, y en consecuencia, no es necesario evaluar el
segundo operando. En el ejemplo anterior la expresion evita calcular el logaritmo de ndmeros (x)
negativos o cero.

La evaluacion en cortocircuito tiene dos beneficios importantes:

128 Programacion en C. Metodologia, algoritmos y estructura de datos

1. Una expresion booleana se puede utilizar para guardar una operacion potencialmente insegura
en una segunda expresion booleana.
2. Se puede ahorrar una considerable cantidad de tiempo en la evaluacion de condiciones complejas.

, Ejemplo 4.7
Los beneficios anteriores se aprecian en la expresién booleana
(n!=0) && (x = 1.0/n)

ya que no se puede producir un error de division por cero al evaluar esta expresién, pues si n es 0,
entonces la primera expresion

n =0
es falsa y la segunda expresion
X < 1.0/n

no se evalua.
De modo similar, tampoco se producira un error de divisién por cero al evaluar la condicién

(n==0) || (x »>= 5.0/n)
ya que si n es g, la primera expresion

n == 0
es verdadera y entonces no se evalUa la segunda expresion

X »>= 5.0/n

Aplicacion
Dado el test condicional
if ((7>5) |l (ventas < 30) && (30 != 30))...

C examina sdlo la primera condicion (7 > 5), ya que como es verdadera, la operacion ldgica | (0)
serd verdadera, sea cual sea el valor de la expresion que le sigue.
Otro ejemplo es el siguiente:

if ((8< 4) «& (edad> 18) && (letra-inicial == ‘z2’)) ...

En este caso, C examina la primera condicién y su valor es falso; por consiguiente, sea cual sea el
valor que sigue al operador &%, la expresion primitiva sera falsa y toda la subexpresion a la derecha de
(8 < 4)no se evalta por C.

Por altimo, en la sentencia

if ((10> 4) || (num == 0))

la operacién num == 0 nunca se evaluara.

4.6.2. Asighaciones booleanas (l6gicas)

Las sentencias de asignacion booleanas se pueden escribir de modo que dan como resultado un valor de
tipo i nt que sera cero o0 uno.

4.7.

Operadores y expresiones 129

Ejemplo

int edad, Mayor DeEdad, juvenil;
scanf ("3d", &edad) ;

Mayor DeEdad = (edad:> 18); /* asigna el valor de edad > 18 Mayor DeEdad.
Cuando edad es mayor que 18, MayorDeEdad es 1 , sino O */
juvenil = (edad>15) && (edad<= 18); /* asigna 1 a juvenil si edad estéa

conprendi da entre 15(mayor que 15) y 18 (inclusive18). */

Ejemplo 4.8

Las sentencias de asignacién siguientes asignan valores cero o uno a los dos tipos de variables int,
rangoy es— letra. La variable rangoes 1 (true)si el valor de n esta en el rango -100 a 100; la
variable es— letraes 1 (verdadera)si car es una letra mayUscula o minuscula.
a. rango = (n > -100) && (n < 100);
b. es-letra = ({ "A°<= car) && (car <= "Z ")) 1|
(("a' <= car) && (car <= "z7));

La expresion de a es 1 (t rue) si n cumple las condiciones expresadas (n mayor de =100y menor
de 100);en caso contrario es O (fal se) . La expresion b utiliza los operadores & y ' | . La primera
subexpresion (antesde | 1) es 1 (true) sicar esuna letra mayUscula; la segunda subexpresion (después
de | 1) es 1 (true) si car esuna letra mindscula. En resumen, es-l etraes 1 (true) si car es una
letra, y 0 (f al se) en caso contrario.

OPERADORES DE MANIPULACION DE BITS

Una de las razones por las que C se ha hecho tan popular en computadoras personales es que el lenguaje
ofrece muchos operadores de manipulacion de bits a bajo nivel.

Los operadores de manipulacion o tratamiento de bits (bitwise) ejecutan operaciones l6gicas sobre
cada uno de los bits de los operandos. Estas operaciones son comparables en eficiencia y en velocidad
a sus equivalentes en lenguaje ensamblador.

Cada operador de manipulacion de bits realiza una operacion ldgica bit a bit sobre datos internos.
Los operadores de manipulacién de bits se aplican s6lo a variables y constantes char, inty |l ong,y
no a datos en coma flotante. Dado que los nUmeros binarios constan de 1,s y 0,s (denominados bits),
estos 1y 0 se manipulan para producir el resultado deseado para cada uno de los operadores.

Las siguientes tablas de verdad describen las acciones que realizan los diversos operadores sobre los
diversos patrones de bit de un dato i nt (char o | ong).

Tabla 4.12. Operadores légicos bit a bit.

Operador Operacion

& Y (AND) légica bit a bit

| 0 (OR) logica (inclusiva) bit a bit

A 0 (xOR) logica (exclusiva)bit a bit (OR exclusive, XOR)
~ Complemento a uno (inversidnde todos los bits)

<< Desplazamiento de bits a izquierda

>> Desplazamiento de bits a derecha

130 Programacioén en C. Metodologia, algoritmos y estructura de datos

Ejemplo

1. Si se aplica el operador & de manipulacién de bits a los nimeros 9y 14, se obtiene un resultado
de 8. La Figura4.1 muestracomo se realiza la operacion.

2. (&)0x3A6B = 0011 1010 0110 1011
0x00F0 = 0000 0000 1111 0000
0x3A6B & 0x00F0 = 0000 0000 0110 0000 = 0x0060
3. () 152 0x0098 = 0000 0000 1001 1000
5 0x0005 0000 0000 0000 0101
152 | 5 = 0000 0000 1001 1101 = 0x009d
4. (~) 83 0x53 = 0101 0011
204 Oxcc = 1100 1100
837204 = 1001 1111 = 0x9f
9 decimal equivalea 1 0 0 1 binario
& & & &
l4decimal equivale a 1 1 1 0 binario
= 1 0 0 0 Dbinario
- 8 decimal

Figura 4.1. Operador & de manipulacion de bits.

4.7.1. Operadores de asignacion adicionales

Al igual que los operadores aritméticos, 10s operadores de asignacién abreviados estan disponibles
también para operadores de manipulacién de bits. Estos operadores se muestran en la Tabla4.13.

Tabla 4.13. Operadores de asignacion adicionales.

Simbolo uso Descripcion

<<= a <<=Db Desplaza a a la izquierda b bits y asigna el resultado a a.
>>= a »>= b . Desplaza aaladerecha b bitsy asignael resultadoa a.
&= as=Db Asigna a a el valor asb.

A a"=b Establecea aa"b.

I = al=>b Estableceaaalb.

Operadores y expresiones 131

4.7.2. Operadores de desplazamiento de bits (>>, <<)

Equivalen a la instruccion SHR (>>) y SHL (<<) de los microprocesadores 80x86. Efectia un
desplazamiento a la derecha (>>) 0 a la izquierda (<<) de n posiciones de los bits del operando, siendo
n un nimero entero. EI nimero de bits desplazados depende del valor a la derecha del operador. Los
formatos de los operadores de desplazamiento son:

1.val or << nunero-de-bits;
2.valor >> nunero-de-bits

El valor puede ser una variable entera o caracter, o una constante. El nimero—de-hits determina
cuantos bits se desplazaran. La Figura 4.2 muestra lo que sucede cuando el nimero 29 (binario
00011101) se desplaza a la izquierda tres bits con un desplazamiento a la izquierda bit a bit (<<).

000 1 1 1 0 1 (29deciml)

Después de tres desplazamientos

Figura 4.2. Desplazamiento a la izquierda tres posiciones de los bits del nimero binario equivalente a 29.

Supongamos que la variable nuni contiene el valor 25, si se desplaza tres posiciones (num << 3),
se obtiene el nuevo nimero 200 (11001000 en binario).

int numM = 25; /* 00011001 binario */
int despl, desp2;

despl = num << 3; /* 11001000 binario */

En los siguientes ejemplos se desplazan los bits de una variable a la derecha y a la izquierda. El
resultado es una division y una multiplicacion respectivamente.

int X ,y,d
x=y= 24;
d =x > 2 : /* O0x18>=2 = 0001 1000 >> 2
= 0000 0110 = 6 (divisi6n por 4) */
d =y << 2; /* 0x1B8<<2 = 0001 1000 >> 2

= 0110 0000 = Ox60 (96) (multiplicacidén por 4)*/

*4.7.3. Operadores de direcciones

Son operadores que permiten manipular las direcciones de las variables y registros en general:

*expr esi 6n

&valor_1i (lvalue)
registro.miembro

punt er o- haci a- regi stro -> m enbro

132

4.8.

Programacién en C. Metodologia, algoritmos y estructura de datos

Tabla 4.14. Operadores de direcciones.

Operador Accion

* . -,
Lee o modifica el valor apuntado por la expresion. Se corresponde con un puntero y el resultado es del

tipo apuntado.

& Devuelve un puntero al objeto utilizado como operando, que debe ser un Ivalue (variable dotada de una
direccion de memoria). El resultado es un puntero de tipo idéntico al del operando.
Permite acceder a un miembro de un dato agregado (union, estructura).

-> Accede a un miembro de un dato agregado (union, estructura) apuntado por el operando de la
izquierda.

OPERADOR CONDICIONAL

El operador condicional, ? :,es un operador ternario que devuelve un resultado cuyo valor depende de
la condicién comprobada. Tiene asociatividad a derechas (derecha a izquierda).

Al ser un operador ternario requiere tres operandos. El operador condicional se utiliza para
reemplazar a la sentencia if -else ldgica en algunas situaciones. El formato del operador condicional
es:

expresion-c ? expresion-v :- expresion-f;

Se evalla expr esi on- cy su valor (cero = falso, distinto de cero = verdadero) determina cual es
la expresion a ejecutar; si la condicion es verdadera se ejecuta expresion_v Yy si es falsa se ejecuta
expresion- f.

La Figura 4.3 muestra el funcionamiento del operador condicional.

(ventas > 150000) ? com sion = 100 conmsion = O
S ventas esmayor s ventas noes
que 150.000 se mayor que 150.000 se
gjecuta: ejecuta:

comi sion = 100 conmsion = 0

Figura 4.3. Formato de un operador condicional.

Otros ejemplos del uso del operador 2 : son:
n-=0¢7?21:-1 /[*l si n es positivo, -1 si es negativo */
m>>mn?2m:n /* devuel ve el mayor valor de my n */

/*escribex, y escribe el caracter fin de linea(\n) si x%5(resto 5) es
0, en caso contrario un tabulador(\t) */

printf("%d %c", X, X% ?2’\t‘:’'\n’);

La precedenciade 2 y : es menor que la de cualquier otro operando tratado hasta ese momento.
Su asociatividad es a derechas.

Operadores y expresiones 133

¥4.9. OPERADOR COMA

El operador coma permite combinar dos 0 mas expresiones separadas por comas en una sola linea. Se
evalua primero la expresion de laizquierda y luego las restantes expresiones de izquierda a derecha. La
expresion mas a la derecha determina el resultado global. El uso del operador coma es como sigue:

expresi 6n , expresi 6n, expresion, ..., expresion

Cada expresion se evalla comenzando desde la izquierda y continuando hacia la derecha. Por
ejemplo, en

int 1 = 10, j = 25;

dado que el operador coma se asocia de izquierda a derecha, la primera variable esta declarada e
inicializada antes que la segunda variablej . Otros ejemplos son:

144, jJ++; equivale u [T
i+, Jo+, K++ equivale a 144 J++; K+

El operador coma tiene la menor prioridad de todos los operadores C, y se asocia de izquierda
a derecha.

El resultado de la expresion global se determina por el valor de expresion,,.Por ejemplo,
int 1, j, resultado;
resultado = j = 10, i = j, ++i;

El valor de esta expresion y valor asignado a r esul t ado es 11.En primer lugar, a j se asigna el
valor 10, a continuacion a i se asigna el valor de j . Por ultimo, i se incrementa a 11.
La técnica del operador coma permite operaciones interesantes

i =10;
j o= (i =12, 1 + 8);

Cuando se ejecute la seccion de codigo anterior, j vale 20, ya que i vale 10 en la primera sentencia,
en la segunda toma i el valor 12y al sumar i + 8resulta 20.
4. 10. OPERADORES ESPECIALES (), I1
C admite algunos operadores especiales que sirven para propdsitos diferentes. Entre ellos se destacan:

0, (.

4.10. 1. El operador ()

El operador () es el operador de llamada a funciones. Sirve para encerrar los argumentos de una
funcion, efectuar conversiones explicitas de tipo, indicar en el seno de una declaracién que un
identificador corresponde a una funcion, resolver los conflictos de prioridad entre operadores.

4.10. 2. El operador [1

Sirve para dimensionar los arraysy designar un elemento de un array.

134 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplos de ello:

doubl e v[201]; /* define un array de 20 el enentos */
printf ("vi2] = %e",v[21); /* escribe el elemento 2 de v */
return vii-INFERIOR]; /* devuel ve el elemento i-INFERIOR */

4.11. EL OPERADOR SIZEOF

Con frecuencia su programa necesita conocer el tamafio en bytes de un tipo de dato o variable. C
proporciona el operador si zeof ,que toma un argumento, bien un tipo de dato o bien el nombre de una
variable (escalar, array, registro, etc.). El formato del operador es

si zeof (nonbr e- vari able)
si zeof (tipo_dat o)
sizecof (expresion)

Ejemplo 4.9

Si se supone que el tipo i nt consta de cuatro bytesy el tipo doubl e consta de ocho bytes, las siguientes
expresiones proporcionaran los valores 1,4y 8 respectivamente

sizeof (char)
sizeof (unsigned int)
sizeof (double).

El operador si zeof se puede aplicar también a expresiones. Se puede escribir

printf ("Lavariable k es Xd bytes ", sizeof (k));
printf ("La expresion a + b ocupa %d bytes ",sizeof (a+ b));

El operador si zeof es un operador unitario, ya que opera sobre un valor Unico. Este operador
produce un resultado que es el tamafio, en bytes, del dato o tipo de dato especificados. Debido a que la
mayoria de los tipos de datos y variables requieren diferentes cantidades de almacenamiento interno en
computadores diferentes, el operador si zeof permite consistencia de programas en diferentes tipos de
computadores.

El operador si zeof se denomina también operador en tiempo de compilacion, ya que en tiempo de
compilacion, el compilador sustituye cada ocurrencia de si zeof en su programa por un valor entero
sin signo (unsi gned) . El operador si zeof se utiliza en programacion avanzada.

Ejercicio 4.1

Suponga que se desea conocer el tamafio, en bytes, de variables de coma flotante y de doble precisidn
de su computadora. El siguiente programa realiza esta tarea:

/* Inprine el tanafio de val ores de coma flotante y double */
#i ncl ude <stdio.h>

int main()
{
printf("El tanmafio de variables de cona flotante es %d \n",
sizeof (float)):
printf("E1l tamafio de vari abl es de dobl e precisi6n es %4 \n",
sizeof (double)) ;

Operadores y expresiones 135
return O

Este programa producira diferentes resultados en diferentes clases de computadores. Compilando
este programa bajo C, el programa produce la salida siguiente:

El tanafio de vari ables de coma flotante es: 4
BE tamafio de vari abl es de dobl e precisién es: 8

4.12. CONVERSIONES DE TIPOS

Con frecuencia, se necesita convertir un valor de un tipo a otro sin cambiar el valor que representa. Las
conversiones de tipos pueden ser implicitas (ejecutadas automaticamente) o explicitas (solicitadas
especificamente por el programador). C hace muchas conversiones de tipos automaticamente:

o C convierte valores cuando se asigna un valor de un tipo a una variable de otro tipo.
o C convierte valores cuando se combinan tipos mixtos en expresiones.
o C convierte valores cuando se pasan argumentos a funciones.

4.12.1. Conversion implicita

Los tipos fundamentales (basicos) pueden ser mezclados libremente en asignaciones y expresiones. Las
conversiones se ejecutan automaticamente: los operandos de tipo mas bajo se convierten en los de tipo

mas alto.

int i = 12;

double x = 4;

X = x+1; /*val or de i se convierte en double antes de la suma */

X = 1/5; /* primero hace una divisién entera i/5==2, 2 se convierte a
tipo doble: 2.0 y se asigna a x */

X = 4.0;

X = x/5 /* convierte 5 a tipo double, hace una divisién real: 0.8 y se
asigna a x */

4.12.2. Reglas

Si cualquier operando es de tipo char, short o enumerado se convierte en tipo i nt y si los
operandos tienen diferentes tipos, la siguiente lista determina a qué operacion convertira. Esta operacion
se llamapromocion integral.

i nt

unsi gned int

| ong

unsi gned | ong

fl oat

doubl e

El tipo que viene primero en esta lista se convierte en el que viene segundo. Por ejemplo, si los tipos
operandos son i nt y | ong, el operando i nt se convierte en | ong.

char c 65; /* 65 se convierte en tipo char permtido */
char ¢ = 10000; /* permtido, pero resultados inpredecibles */

136 Programacion en C. Metodologia, algoritmos y estructura de datos

4.12.3. Conversion explicita

C fuerza la conversién explicita de tipos mediante el operador de molde (cast).El operador molde tiene

el formato:
(tiponombre)val or /* convierte valor a tiponombre */
(float)i; /* convierte i a float */
(int)3.4; /* convierte 3.4 a entero, 3%/
(int*) malloc(2*16) ; /* convierte el valor devuelto por nalloc: void*

a int*. ES una conversi 6n de punteros. */

El operador molde (tipo, cast) tiene la misma prioridad que otros operadores unitarios tales como
+H -yl
precios = (int)19.99 + (int)11.99;

4.13. PRIORIDADY ASOCIATIVIDAD

La prioridad o precedencia de operadores determina el orden en el que se aplican los operadores a un
valor. Los operadores C vienen en una tabla con dieciséis grupos. Los operadores del grupo 1 tienen
mayor prioridad que los del grupo 2, y asi sucesivamente:

» Si dos operadores se aplican al mismo operando, el operador con mayor prioridad se aplica
primero.

» Todos los operadores del mismo grupo tienen igual prioridad y asociatividad.

o La asociatividad izquierda-derecha significa aplicar el operador mas a la izquierda primero, y en
la asociatividad derecha-izquierda se aplica primero el operador mas a la derecha.

« Los paréntesis tienen la maxima prioridad.

Prioridad Operadores Asociatividad
1 x -> [1 0 I-D
++ - - 1 -+ g * sjzeof D-1
3 " ' I-D
4 I-D
5 1-D
6 I1-D
7 1-D
8 = e I1-D
9 . 1-D
10 1-D
11 I-D
12 && I-D
13 [I-D
14 ?: (expresion condicional) D-1
15 = > /= %= 4= -=
E—s &= /= n= D-1
16 , (operador coma) I1-D

1 - D :lzquierda — Derecha.
D - 1:Derecha - Izquierda.

4.14.

RESUMEN

Este capituloexaminalos siguientes temas:

¢ Concepto de operadoresy expresiones.

o Operadores de asignacion: basicosy aritméti-
COS.

Operadores aritméticos, incluyendo +, -, *,/y
% (modulos).

e Operadoresde incrementoy decremento. Estos
operadores se aplican en formatospre (anterior)
y post (posterior). C permite aplicar estos ope-
radores a variables que almacenan caracteres,
enteros e incluso numeros en coma flotante.

Operadores relacionalesy légicos que permiten
construir expresiones logicas. C no soporta un
tipo l6gico (beolean) predefinido y en su lugar
considera0 (cero) como falso y cualquier valor
distinto de cero como verdadero,

Operadores de manipulacion de bits que reali-
zan operaciones bit a bit (bitwise), AND, OR,
XOR'y NOT. C soporta los operadores de des-
plazamientode bits << y >>,

4.15. EJERCICIOS
41 Determinar el valor de las siguientes expresio-
nes aritméticas:

15 / 12 15 % 12
24 /7 12 24 % 12
123 / 100 123 % 100
200 / 100 200 % 100

42. ;Cudl es el valor de cada una de las siguientes

expresiones?

a 15 * 14 - 3 * 7
by -4 * 5 * 2

c) (24 + 2 *6)/ 4

43.

137

Operadores y expresiones

Operadores de asignacion de manipulacion de
bits que ofrecen formatos abreviados para
sentenciassimples de manipulacion de bits.

El operador coma, que es un operador muy
especial, separa expresiones multiples en las
mismas sentencias y requiere que el programa
evalle totalmente una expresion antes de
evaluar la siguiente.

La expresion condicional, que ofrece una forma
abreviada para la sentencia alternativa simple-
doblei f - el se, que se estudiara en el capitulo
siguiente.

Operadores especiales: (), [] .

Conversidn de tipos (typecasting) o moldeado,
que permite forzar la conversionde tipos de una
expresion.

Reglas de prioridad y asociatividad de los
diferentes operadores cuando se combinan en
expresiones.

El operadorsizeof, que devuelve el tamafio en
bytes de cualquiertipo de dato o una variable.

da/a/a*b

)3 + 4 *(8 * (4 - (9 + 3)/6))
DL *3 x5 4 8% 4*2 -5
€ 4 - 40 / 5

h) (-5) % (-2)

Escribir las siguientes expresiones aritméticas
como expresiones de computadora: La potencia
puede hacerse con la funcién pow(), por ejemplo
(x ty)*==pow(x+y,2)

a)i+1

Y e) (ath) —

138

4.4,

4.5.

4.6.

47.

48.

49.

Programaciéon en C. Metodologia, algoritmos y estructura de datos

b —— N [a+by)
I N
y Y
C) x+ — & &
X + X L] Xy
z LR
) —2) x+y) .(a-b)
P] xTy) .

¢Cudl de los siguientes identificadores son
validos?

n 85 Nonbre
MiProblema AAAAAAAADA

M Juego Nonbr e- Apel | i dos
Mi Juego Sal do- Act ua
wite 92

n&m Uni ver si dad

_m_m Pontificia
registro Set 15

A B * 143Edad

X es una variable entera e Y una variable
caracter. Qué resultados producirala sentencia
scanf ("¢a %d",& X, & y) silaentrada
es

a)5 ¢

b) 5C

Escribir un programa que lea un entero, lo
multiplique por 2 y a continuacion lo escriba
de nuevo en la pantalla.

Escribir las sentencias de asignacion que
permitan intercambiar los contenidos (valores)
de dos variables.

Escribir un programa que lea dos enterosen las
variables x e y, y a continuacion obtenga los
valores de : 1. x 7 vy, 2. X % y. Ejecute el
programa varias veces con diferentes pares de
enteros como entrada.

Escribir un programa que solicite al usuario la
longitud y anchura de una habitacion y a
continuacion visualice su superficiecon cuatro
decimales.

4.10. Escribir un programaque convierte un nimero

4.11.

412

4.13.

4.14.

4.15.

dado de segundosen el equivalentede minutos
y segundos.

Escribir un programa que solicite dos ndimeros
decimales y calcule su suma, visualizando la
suma ajustada a la derecha. Por ejemplo, si los
nimeros son 57.45 y 425.55, el programa
visualizara:

57. 45
425. 55
483. 00

(Cudles son los resultados visualizados por el
siguiente programa, si los datos proporciona-
dosson 5y 8?
#i ncl ude <stdio.h>
const int M= 6;
int main()
{
int a, b, c;

gets ("Introduce el valor de a
y de b");

scanf ("sd %ad", &a, &«b) ;

c =2 * a - Db;

c -= M

b=a+c-M

a = b * M;

printf ("“\n a = %d\n",a);

b = - 1;

printf (" 9%%d %64",b,c);

return O

}

Escriba un programa para calcular la longitud
de la circunferenciay el area del circulo para
un radio introducido por el teclado.

Escribir un programa que visualice valores
tales como:

7.1

7.12
7.123
7.1234
7.12345
7.123456

Escribir un programa que lea tres enteros y
emita un mensaje que indique si estan o no en
orden numeérico.

4.16.

417.

418.

419

4.16.

41

42.

Escribir una sentencia |l 6gi ca(bool ean)
que clasifique un entero x en una de las
siguientes categorias.

X <0 o bien
obien

0= 100
X >

o A

X
10

Escribir un programa que introduzca el nimero
de un mes (1 a 12) y visualice el nimero de
di as de ese mes.

Escribir un programa que lea dos nimeros y
visualiceel mayor, utilizar el operador ternario

?

El domingo de Pascua es el primer domingo
después de la primera luna llena posterior al
equinoccio de primavera, y se determina
mediante el siguiente calculo sencillo.

A = afio § 19

PROBLEMAS

Escribirun programa que lea dos enteros de tres
digitosy calcule e imprimasu producto, cocien-
te y el resto cuando el primero se divide por el
segundo. La salida serajustificadaa derecha.

Una temperatura Celsius (centigrados)puede ser
convertida a una temperatura equivalente F de
acuerdoa la siguiente formula:

f =)

Escribir un programa que lea la temperaturaen
grados Celsiusy laescribaen F.

4.20.

43.

139

Operadores y expresiones

B = afio % 4

C = afio & 7

D= (19* A+ 24) % 30

E=((2*B+4*C+6*D+5)
% 7

N= (22 +D+E)

donde N indica el nimero de dia del mes de
marzo (si N es igual o menor que 31) o
abril (si es mayor que 31).Construir un
programa que tenga como entrada un afio y
determine la fecha del domingo de Pascua.
Nota: utilizar el operador ternario 2 : para
seleccionar.

Determinar si el caracterasociado a un codigo
introducido por teclado corresponde a un
caracter alfabético, digito, de puntuacion,
especial 0 no imprimible.

Un sistema de ecuaciones lineales

ax+by=c¢
dx+ey=f
se puede resolver con las siguientes formulas:
ce - bf _ af-cd
* = ae -hd ae - bd

Disefiar un programa que lea dos conjuntos de
coeficientes(a,by c;d, ey y visualice los
valoresdex ey.

140

Programacion en C. Metodologia, algoritmos y estructura de datos

44.

45.

4.6.

47.

438.

49.

4.10.

411.

Escribir un programa que dibuje el rectangulo
siguiente:

K % ok k% % Kk k K K %k

* ok o

#*
*
*
*
*

*

k ok ok sk ok ko k ok ok ok ok ¥

Modificar el programa anterior, de modo que
se lea una palabra de cinco letras y se imprima
en el centrodel rectdngulo.

Escribir un programa C que lea dos nimerosy
visualice el mayor.

Escribir un programa para convertir una
medida dada en pies a sus equivalentesen :a)
yardas; b) pulgadas; c) centimetros, y d)
metros (1 pie = 12 pulgadas, 1yarda = 3 pies,
1 pulgada = 2,54 cm, 1 m = 100 cm). Leer el
nimero de pies e imprimir el nimero de
yardas, pies, pulgadas, centimetrosy metros.

Teniendo como datos de entradael radioy la
alturade un cilindroqueremoscalcular: el area
lateral y el volumen del cilindro.

Calcular el area de un triangulo mediante la
formula:

Area=(p(p —a)p -b)(p - c))”?

donde p es el semiperimetro,p = (@a+b +¢)22,
siendoa, b, c los tres lados del triangulo.

Escribimos un programa en el que se
introducen como datos de entrada la longitud
del perimetrode un terreno, expresadacon tres
ndmeros enteros que representan hectometros,
decdmetros y metros respectivamente. Se ha de
escribir, con un rétulo representativo, la
longitud en decimetros.

Construirun programaque calcule y escriba el
producto, cociente entero y resto de dos
ndmeros de tres cifras.

412,

413

4.14.

4.15.

4.16.

4.17.

Construir un programa para obtener la
hipotenusa y los angulos agudos de un
tridngulo rectangulo a partir de las longitudes
de los catetos.

Escribir un programa que desglose cierta
cantidad de segundos introducida por teclado
en su equivalente en semanas, dias, horas,
minutos y segundos.

Escribir un programa que exprese cierta
cantidad de pesetas en billetes y monedas de
curso legal.

La fuerza de atraccién entre dos masas, m, y
m, separadas por una distanciad, estd dada por
la formula:

G *m, *m,

&

donde G es la constante de gravitacion
universal

G=6.673x 10 cm'/g. seg®

Escribir un programa que lea la masa de
dos cuerpos y la distancia entre ellos y a
continuacién obtenga la fuerza gravitacional
entre ella. La salida debe ser en dinas; un dina
esigual a gr. cm/seg’.

La famosa ecuacion de Einstein para
conversion de una masa m en energia viene
dada por la formula

c es la velocidad de la luz
c=2.997925 x 10"°cm/sg

Escribir un programa que lea una masa en
gramos y obtenga la cantidad de energia
producida cuando la masa se convierte en
energia.

Nota: Si la masa se da en gramos, la formula
produce le energiaen ergios.

E=cm

La relacion entre los lados (a,b) de un triangulo
y la hipotenusa (h) viene dada por la formula

@t =

| 4.19.

4.18.

Escribir un programaque lea la longitud de
los lados y calcule la hipotenusa.

Escribir un programaque lea lahora de un dia
de notacion de 24 horas y la respuesta en
notacion de 12horas. Rx ejemplo, si la entrada
es 13:45, lasalidaserd

1:45 PM

El programapediraal usuario que introduzca
exactamente cinco caracteres. Asf, por ejem-
plo, las nueve en punto se introduce como

09 :00

Escribir un programa que lea el radio de un
circulo y a continuacion visualice: area del

4.20.

421,

|

141

Operadores y expresiones

circulo, didametro del circulo y longitud de la
circunferenciadel circulo.

Escribir un programa que determine Si un afo
es bisiesto. Un afio es bisiesto si es maltiplo
de 4 (por ejemplo, 1984). Sin embargo, los
afios multiplos de 100 solo son bisiestos
cuando a la vez son multiples de 400 (por
ejemplo, 1800 no es bisiesto, mientras que
2000 si lo sera).

Construir un programa que indique si un
namero introducido por teclado es positivo,
igual a cero, o negativo, utilizar para hacer la
seleccionel operador 2 :.

CAPITULO 5

ESTRUCTURAS DE SELECCION:

SENTENCIAS I F Y SW TCH

TENII

5.1.
5.2.
5.3.

54.
5.5.
5.6.

142

Estructuras de control.
La sentencizfrf)

Sentenciaif de dos alternativas:

if-el se.
Sentenciasi f - el se anidadas.
Sentencia de control sw t ch.

Expresiones condicionales:
el operador ? -.

5.7.

5.8.

5.0.

5.10.
5.10.
5.12.

Evaluacion en cortocircuito
de expresioneslogicas.

Puest a a punto de programas.

Errores frecu_entes
de programacion.

Resumen.
H ercicios.
Problemas.

INTRODUCCION

Los programas definidos hasta este punto se ejecutan de nodo secuencial, es
decir, una sentencia después de otra. La ejecucion comienza con la primera
sentencia de la funcion y prosigue hasta la Ultima sentencia, cada una de las
cuales se ejecuta una sola vez. Esta forma de programacion es adecuada para
resolver problemas sencillos. Sin embargo, para la resolucion de problemas de
tipo general se necesita la capacidad de controlar cuales son las sentencias que
se ejecutan, en qué momentos. Las estructuras o construcciones de control
controlan la secuencia o flujo de ejecucion de las sentencias. Las estructuras
de control se dividen en tres grandes categorias en funcion del flujo de
ejecucion: secuencia, seleccion y repeticion.

Este capitulo considera las estructuras selectivas o condicionales —sen-
tencias i f y sw tch— que controlan si una sentenciao lista de sentenciasse
ejecutan en funcidon del cumplimiento o no de una condicion.

— —— —— e) _ -
CONCEPTOS CLAVE

e Estructura de control. e Sentencia enum

e Estructura de control selectiva. e Sentenciaif.

e Sentencia br eak. e Sentenciaswi t ch.

e Sentenciacompuesta. e Tipo légicoen C.

143

144

5.1.

5.2.

Programacién en C. Metodologia, algoritmos y estructura de datos

ESTRUCTURAS DE CONTROL

Las estructurasde control controlan el flujo de ejecucién de un programa o funcién. Las estructuras
de control permiten combinar instrucciones 0 sentencias individuales en una simple unidad lI6gica con
un punto de entrada y un punto de salida.

Las instrucciones o sentencias se organizan en tres tipos de estructuras de control que sirven para
controlar el flujo de la ejecucidn: secuencia, seleccion (decisién)y repeticion. Hasta este momento sélo
se ha utilizado el flujo secuencial. Una sentencia compuesta es un conjunto de sentencias encerradas
entre llaves ({ y }) que se utiliza para especificar un flujo secuencial.

{
sentenci a ;
sentenci a ;

sentenci a ;
}

El control fluye de la sentenciu, a la sentencia, y asi sucesivamente. Sin embargo, existen problemas
que requieren etapas con dos 0 mas opciones o alternativasa elegir en funcién del valor de una condicién
0 expresion.

LA SENTENCIA i f

En C, la estructura de control de seleccidn principal es una sentencia i f. La sentencia i f tiene dos
alternativas o formatos posibles. El formato mas sencillo tiene la sintaxis siguiente:

if (Expresion) Accidn
Accidn se ejecuta si la expresién

légica es verdadera

Expresion légica que determina

siI la accién se ha de ejecutar

La sentencia i f funciona de la siguiente manera. Cuando se alcanza la sentencia i f dentro de un
programa, se evalla la expresién entre paréntesis que viene a continuacion de i f. Si Expresion es
verdadera, se ejecuta Accidn;en caso contrario no se ejecuta Accién (en su formato mas simple,
Accidn es una sentencia simple y en los restantes formatos es una sentencia compuesta). En cualquier
caso la ejecucion del programa continda con la siguiente sentencia del programa. La Figura 5.1 muestra
un diagrama de flujo que indica el flujo de ejecucion del programa.

Otro sistema de representar la sentencia i f es:

if (condicién) sentencia;

condicidn es una expresion entera(légica).
sentencia es cualquier sentencia ejecutable, que se ejecutara s6lo si la condicién toma
un valor distinto de cero.

—ﬂ

Estructuras de seleccion: sentencias 1 £ y switch 145
|
'-':._t:.r.lrr.'suh Te——

i
T
|

verdadera { falsa

ol

Ejemplo 5.1
Prueba de divisibilidad

#i ncl ude <stdio.h>
int main()
{
int n, d;
printf ("Introduzca dos enteros: ");
scanf ("sd %a", &n,&d) ;
if (n%d == 0) printf (" %a es divisible por %a\n",n,d);
return O

— e s

Ejecucion

Introduzrea dos enteros: 36 4
36 ea divisible par 4

Este programa lee dos nimeros enterosy comprueba cudl es el valor del resto de la division n entre
d (n%d). Si el resto es cero, n es divisible por d (en nuestro caso 36 es divisible por 4, yaque 36 :4=9
y el resto es 0).

I:Ejemplo_5.2

Representar la superacion de un examen (Nota >=5, Aprobado).

* if (Notas- 5) ’

" [}
- . verdadera puts ("Aprobado") ;

< MNolm>=5_"= 1

o - |

Imprimir
aprobado

146 Programacion en C. Metodologia, algoritmos y estructura de datos

#i ncl ude <stdio.h>

voi d main()
{
fl oat numero;
/* conparar nunero introduci do por usuario */
printf ("Introduzca un ndnmero positivo 0 negativo: ");
scanf ("%f", &anumero) ;

/* conparar namero con cero */
if (nuneros> 0O)
printf ("%f es mayor que cero\n" , numero);
}

La ejecucion de este programa produce

Introduzca un nUnero positivo o0 negativo: 10.15
10.15 es mayor que cero

Si en lugar de introducir un nimero positivo se introduce un nimero negativo ;Qué sucede?: nada.

El programa es tan simple que s6lo puede comprobar si el nimero es mayor que cero.

Ejemplo 5.3
#i ncl ude <stdio.h>

voi d main¢)
{
fl oat numero;

/* conparar numero introducido por usuario */
printf("Introduzca un nUnero positivo o negativo: ");
scanf ("$f", &numero) ;
/* conparar namero */
if (nunmero> 0
printf ("$f es mayor que cero\n",numero) ;
if (nunero=< 0
printf ("$f es menor que cero\n",numero) ;
if (nunmero== 0
printf ("sf es igual a cero\n",numero);

Este programa simplemente afiade otra sentencia i f que comprueba si el nimero introducido es
menor que cero. Realmente, una tercera sentencia i f se afiade también y comprueba si el nimero es

igual a cero.

Ejercicio 5.1

Visualizar la tarifa de la luz segun el gasto de corriente eléctrica. Para un gasto menor de 1.000Kwxh

la tarifa es 1.2, entre 1.000 y 1.850Kwxh es 1.0 y mayor de 1.850Kwxh 0.9.

#i ncl ude <stdio.h>

#define TARIFAL 1.2
#define TARIFA2 1.0
#defi ne TARI FA3 0.9

5.3.

Estructuras de seleccién: sentencias 1+ y sWitch

int main()
{
fl oat gasto, tasa;
printf ("\n Gasto de corriente: ") ;
scanf ("%f", &gasto) ;
if (gasto=< 1000.0)
tasa = TARIFAL;
if (gasto>=1000.0 && gasto <=1850.0)
tasa = TARIFA2;
if (gasto>1850.0)
tasa = TARIFA3;

printf ("\nTasa que |l e corresponde a %

)

gasto, tasa);
return O;
}

.1f Kwxh es de gf\n",

147

En el ejercicio se decide entre tres rangos la tasa que le corresponde. Se ha resuelto con tres

selecciones simples.

SENTENCIA i f DE DOS ALTERNATIVAS: i f -else

Un segundo formato de la sentencia i f es la sentencia i f -~else. Este formato de la sentencia i f tiene

la siguiente sintaxis:

if (Expresién) Accion

Expresion l6gica que l

determina la accion Accion que se realiza

a ejecutar si la expresion logica
es verdadera

el se

Accion que se ejecuta
si la expresion logica
es falsa

En este formato Accion y Accion son individualmente, o bien una Unica sentencia que termina
en un punto y coma (;) o un grupo de sentencias encerrado entre llaves. Cuando se ejecuta la sentencia
i f-el se, seevalla Expresion. Si Expresion es verdadera, se ejecuta Accién y en caso contrario

se ejecuta Accion . La Figura 5.2 muestra la semantica de la sentenciai f -else.

)

T — Fuﬁ."fls.-.:.rl_
+ verdadera

Accion,
T

Y

Figura5.2. Diagrama de flujo de la representacion de una sentencia i f ~else.

falsa

Accion,

148 Programacion en C. Metodologia, algoritmos y estructura de datos
Ejemplos
I.if (salario= 100000)
salario-neto = salario - inpuestos;
el se

sal ari o- neto = sal ari o;

Si sal ari o es mayor que 100.000 se calcula el salario neto, restandole los impuestos; en caso
contrario (else)el salario neto es igual al salario (bruto).

2. if (Notas>= 5)
put s ("Aprobado') ;
el se
put s ("suspenso");

Si Not a es mayor 0 igual que 5 se escribe Apr obado; en caso contrario, Not a menor que 5, se escribe

Suspenso.
Formatos
.| if (expresién_i6gica) 2. |if (expresion-146gica)
sentencia sent enci a,
— — — — else
sent enci a,
3.| if (expresion-logica) sentencia

4| if (expresion-ldégica) sentencia else sentencia

Si expresion 106gicaesverdaderase ejecuta sentencia obien sentencia,, si esfalsa (sino,
€n caso contrario) se ejecuta sentencia .

Ejemplos
1.if (x> 0.0)
producto =

2 if (x !=0.0)
producto = producto * x;

producto * x;

/* Se ejecuta |la sentenci a de asignaci 6n cuando x no es igual a O
en este caso producto se nultiplica por x y el nuevo val or se
guarda en producto reenpl azando el val or anti guo.

Si X es igual a O, lamultiplicacién no se ejecuta.

*/

Ejemplo 5.4
Prueba de divisibilidad (igual que el Ejemplo 5.1, al que se ha afiadido la clausula else)

#i ncl ude <stdio.h>
int main ()

Estructuras de seleccion: sentencias 1 £ y switch 149

int n, d;
printf("Introduzca dos enteros: ") ;
scanf ("sd %d", &n, &d) ;
if (n%d ==0)
printf ("sd es divisible por %3\n",n,d) ;
el se
printf ("¢d no es divisible por %a\n",n,d) ;
return O
}
Ejecucion

I ntroduzca dos enteros 36 5
JE6 no &8 divielbla por 5

Comentario

36 no es divisible por 5 ya que 36 dividido entre 5 produce un resto de 1 (n%d == O, esfalsa, y se
ejecuta la clausula € se).

Ejemplo 5.5
Calcular el mayor de dos nimeros leidos del tecladoy visualizarlo en pantalla.

#i ncl ude <stdio.h>

int main()
{
int x, y;
printf ("Introduzca dos enteros: ") ;
scanf ("%d %d",&x,&y) ;
if (x>vy)
printf ("s6d\n",x) ;
el se
printf ("s6d\n",y) ;
return O
}
Ejecucidn

Introduzca dos entercs: 17 54

Comentario

Lacondicidnes (x = y). Six esmayor quey, lacondicion es «verdadera» (true)y se evallaa 1; en caso
contrario la condicion es «falsa» (false)y se evalGa a 0. De este modo se imprime x (en un campo de
ancho 6, %6d) cuando es mayor que y, como en el ejemplo de la ejecucion.

— =

150

5.4.

Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 5.6
Duda la funcion fix), calcular lufuncién puru un vulor dudo de x y visualizarlo en pantalla

X - X para X £ 0.0
f(x)=
-x + 3x para X >0

#i ncl ude <stdio.h>
#i ncl ude <math.h>
int main{()
{
float f,x;
printf("\n Elige un valor de x: ");
scanf ("$f", &x) ;
/* sel ecci 6n del rango en que se encuentra x */
if (x <=0.0)
f = pow(x,2)
else
f = -pow(x,
printf ("f(%.1
return O;

X,

2y + 3*x;
f 3

) = %.

Ejecucion

Elige un valor de x:-1.5
£(-1.5)= 3.750 *

Comentario

Una vez introducido x, se evalla la condicién x <=0.0, si es cierta asignaa f, X - X; en caso
contrario asignaa £, -x + 3x.

SENTENCIAS i f ~else ANIDADAS

Hasta este punto, las sentencias i f implementan decisiones que implican una o dos alternativas. En esta
seccion, se mostrara como se puede utilizar la sentencia i f para implementar decisiones que impliquen
diferentes alternativas.

Una sentencia i £ es anidada cuando la sentencia de la rama verdadera o la rama falsa, es a su vez
una sentencia i £. Una sentencia i f anidada se puede utilizar para implementar decisiones con varias
alternativas o multi-alternativas.

Sintaxis : 1 red
sentenci a
el se if (condicioén)
sentenci a

el se if (condicién)
sent enci a
el se

sentencia,

Estructuras de seleccion: sentencias : f

Ejemplo 5.7
/* increnmentar contadores de nuneros positivos,
ceros */
if (x>0
num pos = nun+ pos + 1;
el se
t |
] 1 H
nun+ ceros = num-ceros + 1;

I : 1

-

yswiten 151

ndmer os negativos o

La sentencia i f anidada tiene tres alternativas. Se incrementa una de las tres variables (num pos,
num neg Yy num- ceros) en 1, dependiendo de que x sea mayor gue cero, menor que cero o igual a
cero, respectivamente. Las cajas muestran la estructura Idgica de la sentencia i f anidada; la segunda
sentencia i f es la accion o tarea falsa (a continuacion de el se) de la primera sentenciaif.

La ejecucion de la sentencia i f anidada se realiza como sigue: se comprueba la primera condicién
(x > 0); siesverdadera,num_pos Se incrementaen 1y se salta el resto de la sentencia i f. Si la primera
condicion es falsa, se comprueba la segunda condicidn (x < 0); si es verdadera num neg se incrementa
€N uno; en caso contrario se incrementa nun] - ceros en uno. ES importante considerar que la segunda

condicién se comprueba sélo si la primera condicién esfalsa.

5.4.1. Sangria en las sentencias i f anidadas

El formato multibifurcacién se compone de una serie de sentencias i f anidadas, que se pueden escribir
en cada linea una sentencia i f . La sintaxis myltibifurcaciéon anidada es:

Formato I: Formato 2:
Lo (expresi 6n-16gi ca) if (expresién-16gica)
sent enci a sent enci a
el se else if (expresion-1o6gica |

if (expresion-|6gica)

sentencza

el se else if (expresion-16gica)
if (expresion-16gica) sentenci a
| sentenci a else if (expresioén-16gica
el se sentenci a
if (expresion-|d6gica) | el se
sent enci a sentencia
else _- |
sentenci a
Ejemplos
1. if (x = 0)
Z = 2*log(x);
el se
if (y= Q)

152 Programacion en C. Metodologia, algoritmos y estructura de datos

z = sqgrt{x) + sgrt(y);

2. if (x> 0
Z = 2%log(x);
else if (y > 0)
Z = sqQrt(x) + sqrt(y);
el se
puts("\n *** Inposible calcular z"};

Ejemplo 5.8
El siguiente programa realiza selecciones multiples con la sentencia compuestas if-else.

#i ncl ude <stdio.h>
voi d main ()

fl oat nunero;
printf(" introduzca un ndmero positivo o negativo: ");
scanf ("$f", &uner o) ;
/* conparar nanero con cero */
if (nunero= 0)
{
printf ("$.2f %s", nunero, "es mayor que cero\n") ;
puts("pruebe de nuevo introduci endo un nanero negativo");
I
else if (nunero< Q)
{
printf ("s.2f %s", numero, "es menor que cero\n");
puts("pruebe de nuevo introduci endo un ndnero negativo");
|
el se
{ printf ("$.2f %s", numero, "es igual a cero\n");
puts(" ¢por qué no introduce otro numero? ");
I

5.4.2. Comparacioén de sentencias i f anidadas y secuencias de sentencias i f

Los programadores tienen dos alternativas: 1) usar una secuencia de sentencias i f ; 2) una Unica

sentenciai f anidada. Por ejemplo, la sentencia i f del Ejemplo 5.7 se puede reescribir como la siguiente
secuencia de sentencias i f .

if (x> 0

num_pos = num pos + 1;
if (x < 0

num neg = num neg + 1;
if (x ==0)

num ceros = num ceros + 1;

Estructuras de seleccion: Sentencias 1t y sw2tch 153

Aungue la secuencia anterior es Idgicamente equivalente a la original, no es tan legible ni eficiente.
Al contrario que la sentencia i f anidada, la secuencia no muestra claramente cual es la sentencia a
ejecutar para un valor determinado de x. Con respecto a la eficiencia, la sentencia i f anidada se ejecuta
mas rapidamente cuando x es positivo ya que la primera condicién (x > o) es verdadera, lo que significa
que la parte de la sentencia i f a continuacion del primer else se salta. En contraste, se comprueban
siempre las tres condiciones en la secuencia de sentencias i f. Si x es negativa, se comprueban dos
condiciones en las sentencias i f anidadas frente a las tres condiciones de las secuencias de sentencias
i f. Una estructura tipica i f -else anidada permitida es:

if (nunmero= O

Ejercicio 5.9
Existen diferentesformas de escribir sentencias i f anidadas.
1.if (a> 0) if (b > O ++a; else if (c > 0

if (a< B) ++b; else if (b < 5) ++c; else --a;
else if (c«< 5) --b; else --c; else a =20

2if (a= 0 /* forma mas |egible */
if (b > 0) ++a;
el se
if (¢ > 0
if (a< 5) ++b;
el se
if (b < 5) ++c;
else --a;
el se
if (¢ < 5) --b;
el se ——c;
el se
a=0;

3.if (a=> 0) /* forma mas legible */

—

154 Programacioén en C. Metodologia, algoritmos y estructura de datos

if (b> Q0 ++a;

else if (¢ = 0)
if (a< 5) ++b;
else if (b < 5) ++c;

el se —--a;
else if (c< 5) ——b;
el se --c;
el se
a= 0

Ejercicio 5.10
Calcular el mayor de tres nimeros enteros.

#i ncl ude <stdio.h>
int main()
1
int a, b, c, mayor;
printf ("\nIntroduzca tres enteros:") ;
scanf ("$d %4 %d", &a, &b,&c) ;
if (a> b)
if (a> ¢) mayor = a;
el se mayor = c;
el se
if (b > c) myor = b;
el se mayor = c;
printf("El mayor es %d \n", mayor);
return O

Ejecucion

I ntroduzca tres enteros: 77 54 85
B mayor es 85

Anélisis
Al ejecutar el primer i f, la condicion (a > b) es verdadera, entonces se ejecuta la segunda i f. En el

segundo i f lacondicion (a > c) es falsa, en consecuenciael primer el se mayor = 85y se termina
la sentencia i f, acontinuacién se ejecuta la Gltima linea y se visualiza E1 nmayor es 85.

5.5. SENTENCIA DE CONTROL swi t ch

La sentencia swi t ch es una sentencia C que se utiliza para seleccionar una de entre multiples alter-
nativas. La sentencia swi t ch es especialmente Util cuando la seleccion se basa en el valor de una
variable simple o de una expresion simple denominada expresién de control o selector. El valor de esta
expresion puede ser de tipo i nt o char, pero no de tipo f | oat ni doubl e.

Estructuras de seleccién: sentencias 1+ y switch 155
Sintaxis

switch (selector)

{
case etiqueta, : sentencias,;
case etiqueta, : sentencias,;

case etiqueta, : sentencias,;
defaul t: sentencias,; /* opcional. */

La expresion de control 0 selector seevallay se compara con cada una de las etiquetas de case.
La expresion selector debe serun tipo ordinal (por ejemplo, int, char, perono fl oat 0 string).
Cada etiqueta es un valor Unico, constante y cada etiqueta debe tener un valor diferente de los otros.
Si el valor de la expresion selector es igual a una de las etiquetas case —por ejemplo, etiqueta —
entonces la ejecucién comenzara con la primera sentencia de la secuencia sentencia Yy continuara
hasta que se encuentra el final de la sentencia de control sw: tch, 0 hasta encontrar la sentencia br eak.
Es habitual que después de cada bloque de sentencias correspondiente a una secuencia se desee terminar
la ejecucion del swi t ch; para ello se sitGia la sentencia br eak como Ultima sentencia del bloque.
br eak hace que siga la ejecucidn en la siguiente sentencia ai swi t ch.

Sintaxis con break

switch (selector)

{
case etiqueta, : sentencias,;
br eaki
case etiqueta, : sentencias,;
br eak ;

case etiqueta, : sentencias,;
br eak;
defaul t: sentencias,; /* opcional */

El tipo de cada etiqueta debe ser el mismo que la expresion de selector. Las expresiones estan
permitidas como etiquetas pero sélo si cada operando de la expresion es por si misma una constante
—por ejemplo, 4 + 8obienm * 15—, siempre que m hubiera sido definido anteriormente como
constante con nombre.

Si el valor del selector no esta listado en ninguna etiqueta case, no se ejecutara ninguna de las
opciones a menos que se especifique una accién por defecto (omisién). La omision de una etiqueta
def aul t puede crear un error ldgico dificil de prever. Aunque la etiqueta def aul t es opcional, se
recomienda su uso a menos que se esté absolutamente seguro de que todos los valores de selector estén
incluidos en las etiquetas case.

—— e — A

156

Programacion en C. Metodologia, algoritmos y estructura de datos

Una sentencia br eak consta de la palabra reservada br eak seguida por un punto y coma. Cuando
la computadora ejecuta las sentencias siguientes a una etiqueta case, continta hasta que se alcanza una
sentencia br eak. Si la computadora encuentra una sentencia br eak, termina la sentencia swi t ch. Si
se omiten las sentencias br eak, después de ejecutar el codigo de case, la computadora ejecutara el
codigo que sigue a la siguiente case.

Ejemplo 5.11

switch (opcion)
{
case O
puts("Cero!");
br eak;
case 1:
puts ("Uno!") ;
br eak;
case 2:
puts ("Dos!'") ;
br eak;
defaul t:
puts ("Fuerade rango") ;

Ejemplo 5.12
switch (opcion)
{
case O
case 1:
case 2:
puts ("Menor de 3") ;
br eak;
case 3.
puts("lgual a 3");
br eak;
defaul t:
puts ("Mayor que 3") ;

Ejemplo 5.13

Comparacion de las sentencias i f-el se-i f ¥ swi tch. Se necesita saber si un determinado caracter
car esuna vocal. Solucion con i f -el se-i f.

if ((car == 'a) | (car == 'A))
printf("$c es una vocal\n",car) ;
else if ((car == '€) |{ (car == "E))
printf ("$c es una vocal\n",car) ;
else if ((car== "1") || (car == "I7))
printf (“%c es una vocal\n",car) ;

Estructuras de seleccion: sentencias if y switch 157

else if ((car== '0) || (car == '0))
printf("$c es una vocal\n",car) ;
elseif ((car== "u) 1l (car == 'U))
printf("$c es una vocal\n",car) ;

el se
printf{ "%c no es una vocal\n",car);

Solucién con switch.

switch (car) {
case ‘a’ case 'A :
case ‘e case 'E’:
case '1” case 'I’:
case 'o case 'O :
case ‘u’ case 'U’:
printf "% es una vocal\n",car) ;
br eak;
defaul t
printf "% no es una vocal\n",car) ;

Ejemplo 5.15
Dada una nota de un examen mediante un cddigo escribir el literal que le corresponde a la nota.

/* Programa resuelto con |a sentencia switch */
#i ncl ude <stdio.h>

int main()

{
char not a;
printf("Introduzca calificacién (A-F)y pulse Intro:");
scanf (%c", ¬ a) ;

switch (nota)
{

case 'A : put s ("Excel ente. Exanen superado") ;
br eak;
case 'B: puts("Notable. Suficiencia");
br eak;
case 'C’: puts("Aprobado");
br eak;
case 'D’:
case 'F : put s ("Suspendido") ;
br eak;
defaul t:

puts ("No es posible esta nota") ;
|
puts("Fi nal de programm") ;
return O
I

Cuando se ejecuta la sentencia swi t ch, se evalla not a; si el valor de la expresion es igual al valor
de una etiqueta, entonces se transfiere el flujo de control a las sentencias asociadas con la etiqueta

o i e

158

Programacion en C. Metodologia, algoritmos y estructura de datos

correspondiente. Si ninguna etiqueta coincide con el valor de not a se ejecuta la sentencia def aul t y
las sentencias que vienen detras de ella. Normalmente la Gltima sentencia de las sentencias que vienen
después de una case es una sentencia break. Esta sentencia hace que el flujo de control del programa
salte a la siguiente sentencia de swi t ch. Si no existiera break, se ejecutarian también las sentencias
restantes de la sentencia swi t ch.

Ejecucidn de prueba 7

Introduzca calificacién (A-F)y pulse Intro: A
Excel ente. Exanen superado
Fi nal de prograna

Ejecucidn de prueba 2

i ntroduzca calificacion (A-F)y pulse Intro: B
Not abl e. Sufi ci enci a
Fi nal de programa

Ejecucidn de prueba 3

Introduzca calificacién (A-F)y pulse Intro: E
No es posi bl e esta nota
Fi nal de programa

Precaucion

Si se olvida break enuna sentencia switch, el compilador no emitird un mensaje de error
ya que se habra escrito una sentencia swi t ch correcta sintacticamente pero no realizara las
tareas previstas.

Ejemplo 5.15

Seleccionar un tipo de vehiculo segin un valor numérico.
int tipo-vehiculo;
printf ("I ntroduzcatipo de vehiculo:");
scanf ("3d", stipo_vehiculo);
switch(tipo_vehiculo)

{

case 1:

printf ("turismo\n");

peaj e = 500;

br eak; » Siseomiteesta break el vehiculo primero serd t uri sno
case 2: y luego aut obUs

printf ("autobus\n") ;
peaj e = 3000;
br eak;
case 3:
printf ("motocicleta\n");
peaj e = 300;
br eak;
defaul t:
printf ("vehicul o no autorizado\n") ;

-

Estructuras de seleccion: sentencias :f y switch 159

Cuando la computadora comienza a ejecutar un case no termina la ejecucion del swi t ch hasta
gue se encuentra, o bien una sentencia br eak, o bien la Ultima sentencia del swi t ch.

5.5.1. Caso particular de case

Esta permitido tener varias expresiones case en una alternativadada dentro de la sentencia swi t ch. Por
ejemplo, se puede escribir:
switch(c) {
case ‘0":case '1l: case '2: case '3: case '4:
case 'b':case '6: case '7': case '8: case '9:

num_digitos++; /*se increnenta en 1 el valor de num_digitos */
br eak;

case "’ : case ‘\t’: case ‘\n’
num_blancos++; /*se incrementa en 1 el valor de num_blancos*/
br eak;

defaul t:

num_distintos++;

5.5.2. Uso de sentencias switch en menus

La sentencia i f - el se es mas versatil que la sentencia swi t chy se puede utilizar unas sentencias i f -
el se anidadas 0 multidecision, en cualquier parte que se utiliza una sentencia case. Sin embargo,
normalmente, la sentencia swi t ch es més clara. Por ejemplo, la sentencia swi t ch es idonea para
implementar mendus.

Un menu de un restaurante presenta una lista de alternativas para que un cliente elija entre sus
diferentes opciones. Un mend en un programa de computadora hace la misma funcién: presentar una
lista de alternativas en la pantalla para que el usuario elija una de ellas.

En los capitulos siguientes se volvera a tratar el tema de los menUs en programacion con ejemplos
practicos.

5.6. EXPRESIONES CONDICIONALES: EL OPERADOR 2 :

Las sentencias de seleccion (if y swi t ch) consideradas hasta ahora, son similares a las sentencias
previstas en otros lenguajes, tales como Pascal y Fortran 90. C tiene un tercer mecanismo de seleccion,
una expresion que produce uno de dos valores, resultado de una expresion l6gica o booleana (también
denominada condicién). Este mecanismo se denomina expresién condicional. Una expresién
condicional tiene el formatoc » A : BY esrealmente una operacion ternaria (tres operandos) en el
que C, AY Bson lostres operandosy 2 :es el operador.

Sintaxis

condiciéon ? expresidn, : expresion,

condi cidn es una expresion légica
expresi 6n/ expresi 6n son expresiones compatibles de tipos

160

Programacion en C. Metodologia, algoritmos y estructura de datos

Se evalla condicion, si el valor de condicién es verdadera (distinto de cero) entonces se
devuelve como resultado el valor de expresién ; si el valor de condicidn es falsa (cero) se devuelve
como resultado el valor de expresién .

Uno de los medios mas sencillos del operador condicional (? :) es utilizar el operador condicional
y llamar a una de dos funciones.

Ejemplos

1. Selecciona con el operador 7 : la ejecucién de una funcion u otra.

a == b ? funcionl() : funcion2();

es equivalente a la siguiente sentencia:

if (a== b)
funcionl ¢});
el se

funcion2 () ;

2. El operador 2 : se utiliza en el siguiente segmento de cédigo para asignar el menor de dos valores
de entrada a nenor .
int entradal, entrada2;
int menor;
scanf ("s$d %d",sentradal, &ntrada2) ;
nmenor = entradal <= entrada2 ? entradal : entrada2;
Ejemplo 5.16

Seleccionar el mayor de dos nimeros enteros con la sentencia i f -elscy con el operador 2 :

#i ncl ude <stdio.h>

voi d main()

{

float nl, n2;

printf ("Introduzca dos ndmeros positivos 0 negativos:");
scanf ("&d %d",&nl, &n2);
/* seleccioén con if-else */
if (n1 > n2)
printf ("$d = %d",nl,n2);
else
printf ("%d <= %d",nl,n2) ;

/* operador condicional */
nl > n2 2 printf("sd > %d",nl,n2): printf("%d <= %d4",nl,n2);

A Ty

[———

Estructuras de seleccion: sentencias 1+ y switc i 161 \

5.7. EVALUACION EN CORTOCIRCUITO DE EXPRESIONES LOGICAS

i Cuando se evallan expresiones logicas en C se puede emplear una técnica denominada evaluacion en

cortocircuito. Este tipo de evaluacion significa que se puede detener la evaluacion de una expresion
I6gica tan pronto como su valor pueda ser determinado con absoluta certeza. Por ejemplo, si el valor de
(soltero == ’s’) es falso, la expresion logica (soltero == "s7) && (sexo = "h’) && (edad
> 18) && (edad <= 45) serafalsa con independencia de cual sea el valor de las otras condiciones. La
razén es que una expresion légica del tipo

falso && (...)
debe ser siempre falsa, cuando uno de los operandos de la operacion AND es falso. En consecuencia no
hay necesidad de continuar la evaluacion de las otras condiciones cuando (sol tero == 's') seevalla
a falso.

El compilador C utiliza este tipo de evaluacion. Es decir, la evaluacion de una expresion logica de
laforma, a2 && a se detiene si la subexpresion a de la izquierda se evalla a falsa.

C realiza evaluacion en cortocircuito con los operadores s& Yy | |, de modo que evalUa primero la
expresion mas a la izquierda de las dos expresiones unidas por && o bien por | |. Si de esta evaluacion
se deduce la informacion suficiente para determinar el valor final de la expresiéon (independiente del
valor de la segunda expresion), el compilador de C no evalla la segunda expresion.

Ejemplo 5.17

Si x es negativo, la expresion
(x >= 0) && (y> 1)

se evalla en cortocircuito ya que X >= 0 serd falso y, por tanto, el valor final de la expresion sera falso.

En el caso del operador | | se produce una situacion similar. Si la primera de las dos expresiones uni-
das por el operador | | es verdadera, entonces la expresion completa es verdadera, con independencia
de que el valor de la segunda expresion sea verdadero o fulso. La razon es que el operador or produce
resultado verdadero si el primer operando es verdadero.

Otros lenguajes, distintos de C, utilizan evaluacion completa. En evaluacién completa, cuando dos
expresiones se unen por un simbolo & 0 | ,se evalian siempre ambas expresiones y a continuacion se
utilizan las tablas de verdad de && o bien | para obtener el valor de la expresion final.

Ejemplo 5.18
Si x es cero, la condicion
if ((x 1= 0.0) & (y/x = 7.5))
es falsayaque (x 1= 0. 0) es falsa. Por consiguiente, no hay necesidad de evaluar la expresion (v /x

> 7.5) cuando x sea cero, de utilizar evaluacion completa se produciria un error en tiempo de ejecucion.
Sin embargo, si altera el orden de las expresiones, al evaluar el compilador la sentencia i f

if (y/x > 7.5) && (x 1= 0.0))

se produciria un error en tiempo de ejecucion de division por cero (“di vi si on by zero”).

El orden de las expresiones con operadores && Yy | | puede ser critico en determinadas
situaciones.

162 Programacion en C. Metodologia, algoritmos y estructura de datos

5.8. PUESTA A PUNTO DE PROGRAMAS

Estiloy disefio

1. El estilo de escritura de una sentencia i f e i f-elsc es el sangrado de las diferentes lineas en el
formato siguiente:

if (expresién-—ldgica) if (expresion—16gica)
sentencia {
else sentenc:a

sentencia

sentencia

1
H

else
{
sentencia

sentencid
i

En el caso ae sentencias i f-else- 1 f utilizadas para implementar una estructura de seleccién
multialternativa se suele escribir de la siguiente forma:

if (expresion-légica)
sentencia

else if (expresidn_ldgica)
sentencia

else if (expresion—légica)
sentencia

else
sentencia

2. Una construccion de seleccion miltiple se puede implementar mas eficientemente con una
estructura 1 f-else-1f (Uecon una secuentencia de sentencias independientes i £. Por ejemplo:

printf (‘introduzca nota");

scanf ("gd", ¬a) ;

if (nhota= 0 | nota = 100)

{
printf (" %d no es una nota valida.\n",nota);
return'? ’;

}

if ((nota=m 90) && (nota - 100))
return 'A’;

if ((nota>= 80) && (nota < 90))
return 'B’;

if ((nota>=70) && (nota =< 80))

Estructuras de seleccion: sentencias | £ y switch 163

return c’;

if ((nota>= 60) && (nota< 70))
return 'D;

if (nota< 60)
return 'F’;

Con independencia del valor de not a se ejecutan todas las sentencias i f ; 5 de las expresiones

I6gicas son expresiones compuestas, de modo que se ejecutan 16 operaciones con independencia de
la nota introducida. En contraste, las sentencias i f anidadas reducen considerablemente el nimero
de operaciones a realizar (3 a 7), todas las expresiones son simples y no se evaltan todas ellas
siempre.

printf ("I ntroduzcanota") ;

scanf ("%d4", ¬ a) ;

if (nota< O || nota = 100)

J
printf ("#d no es una nota valida.\n",nota);
return "27;

}

else if (nota>= 90)

return 'A7;

else if (nota>= 80)
return 'B’;

else if (notas>= 70)
return 'Cc”;

else if (nota>= 60)
return 'D;

el se
return 'F;

5.9. ERRORES FRECUENTES DE PROGRAMACION

1.

2.

Unode los errores mas comunes en una sentencia if es utilizar un operador de asignacion (=)
en lugar de un operador de igualdad (==).

En una sentencia i £ anidada, cada clausula e1se se corresponde con la ir precedente méas
cercana. Por ejemplo, en el segmento de programa siguiente

if (a= 0
if (b > 0)
c = a + b;

c = a *+ abs(b) ;
d=a * b * ¢;
(Cuadl es la sentencia i f asociada a else?

El sistema mas facil para evitar errores es el sangrado 0 indentacién, con lo que ya se aprecia
que la clausula el se se corresponde a la sentencia que contiene la condicionb > ¢

if (a> 0
if (b> 0

cC = a + b;

c = a t+ abs(b);

—a——

Programacion en C. Metodologia, algoritmosy estructura de datos

3. Las comparaciones con operadores ==de cantidades algebraicamente iguales pueden producir

una expresién légicafalsa, debido u que la mayoria de los nimeros reales no se almacenan
exactamente. Por ejemplo, aunque las expresiones reales siguientes son equivalentes:

a* (l/a)
1.0

son algebraicamente iguales, la expresién
a* (lra) == 1.0
puede ser falsa debido a que a es real.

. Cuando en una sentencia switch o en un bloque de sentencias falta una de las llaves (¢, })

aparece un mensaje de error tal como:
Error ...: Cumpound statement missing } in function

Si no se tiene cuidado con la presentacion de la escritura del codigo, puede ser muy dificil
localizar la llave que falta.

. El selector de una sentencia switch debe ser de tipo entero o compatible entero. Asi las

constantes reales
2.4, -4.5, 3.1416
no pueden ser utilizadas en el selector.

. Cuando se utiliza una sentencia switch, aseglrese que el selector de switchy las etiquetas

case son del mismo tipo (i nt, charpero no f 1oat). Si el selector se evalia a un valor no
listado en ninguna de las etiquetas case, la sentencia switch no gestionara ninguna accién;
por esta causa se suele poner una etiqueta deraul t pura resolver este problema.

5.10. RESUMEN

Sentencia i f
Unaalternativa

i (a 1]

resultado = a/b;

Dos alternativas

Multiples alternativas

if (a»- 0

el 5@

if (x < 0)
{
puts("Negativo");
abs_x = -X;
}
else if (x == 0)
{

puts{("Cero");
f = 5*cos(a*pi/180.); abs_x = 0
H
f = -2%*sin(a*pi/180.) + 0.5; el se

{
puts ("positivo");
abs_x = X;

Estructuras de seleccion: sentencias L £ y switch 165

Sentencia swi tch

case 'A : case'a’:
puts ("Sobresaliente") ;
br eak;
case ‘B’: case 'b:
puts ("Notable") ;
br eak;
case ‘C-: case 'c":
put s ("Aprobado") ;
br eak;
case 'D: case "da":
put s ("Suspenso") ;
br eak;
def aul t:
puts(“nota no valida") ;

5.11. EJERCICIOS

5.1 (Qué errores de sintaxis tiene la siguiente sen-
tencia?

if x > 25.0
= X
el se

= Z,

<K<

52 (Qué valor se asignaa consun en la senten-
ciaif siguiente si velocidad es 120?

if (vel ocidad> 80)
consunp = 10. 00;

else if (vel ocidad> 100)
consuno = 12.00;

else if (velocidad> 120)
consunpo = 15. 00;

53 Explique las diferenciasentre las sentenciasde
la columnade laizquierday de lacolumnade la
derecha. Para cada una de ellas deducirel valor
final de x si el valor inicial de x es 0.

Gif (x »>= Q) if (x >= 0
X++; X++ 3
else if (x >=1);if (x »>= 1)
X+= 2; X+= 2;

54.

¢ Qué salidaproducira el codigo siguiente, cuan-
do se empotra en un programa completo y
prinera-opcionvale 1?7;Ysiprime-
ra_opcion val e 27

int prinmera- opcion;

switch (prinmera-opcion+ 1)
{
case 1:
puts ("Cordero asado") ;
br eak;
case 2:
puts ("Chuleta lechal") ;
br eak;
case 3:
put s ("Chuletén") ;
case 4
puts ("Postre
de pastel") ;
br eak;
defaul t:
put s ("Buen apetito") :

ey~

166

Programacioén en C. Metodologia, algoritmos y estructura de datos

55.

56.

5.7.

58

59.

5.10.

511

(Qué salida producira el siguiente cadigo,
cuando se empotra en un programa completo?

int x = 2;
puts ("Arranque" ;
if {(x <= 3)
if (x 1= 0
put s ("Hol a desde el
if");

segundo

el se
puts ("Hol a desde el else.") ;
put s ("Fin\nArrangue de nuevo'') ;

if (x> 3)
if (x 1= 0
puts ("Hol a desde el segundo
if."
el se
puts ("Hol a desde el else.") :

puts ("De nuevo fin") ;

Escribiruna sentenciai f -e1se que visualice
la palabra Al t a si el valor de la variable nota
es mayor que 100 y Baj a si el valor de esa
nota es menor que 100.

:Qué hay de incorrectoen el siguiente codigo?

if (x= 0 printf("sd = 0\n",x);
else printf ("&d = 0\n",x) ;

(Cuél es el error del siguiente codigo?

if (x <y < z) printf("3sd < %4 <
%d\n"/XIY/Z)I'

;Cudl esel errorde este codigo?

printf ("I ntroduzcan:") ;

scanf ("%d", &n) ;

if (n <0
puts("Este nlnero es negati -

vo. Pruebe de nuevo.") ;

scanf ("%a" ,&n) ;

el se
printf ("“conforme. n=%d\n",n) ;

Escribir un programa que lea tres enteros y
emita un mensaje que indigue si estan o no en
orden numérico.

Escribiruna sentenciai f - else queclasifique
un entero x en una de las siguientes categorias
y escriba un mensaje adecuado:

512,

513.

514.

515.

5.16.

5.17.

0 £x £ 100
X > 100

o bien
o bien

X < 0

Escribirun programaque introduzcael nimero
de un mes (1 a 12)y visualice el nimero de
dias de ese mes.

Se trata de escribir un programa que clasifique
enteros leidos del teclado de acuerdo a los
siguientes puntos:

+ si el entero es 30 0 mayor, o negativo,
visualizar un mensaje en ese sentido;

e en caso contrario, si €s un NUevo primo,
potencia de 2, 0 un nimero compuesto,
visualizar el mensaje correspondiente;

e si son cero o 1, visualizar 'cero'o 'uni-
dad".

Escribir un programa que determine el mayor
de tres ndmeros.

El domingo de Pascua es el primer domingo
después de la primera luna llena posterior al
equinoccio de primavera, y se determina
mediante el siguiente calculo sencillo:

mga o >

= (19* A + 24) nod 30
= (2*B+4*C+6*D+5)
nod 7

N = (22+ D+ E)

1

Donde v indica el nimero de dia del mes de
marzo (si N es igual o menor que 3) o abril (si
es mayor que 31). Construir un programa que
determine fechas de domingos de Pascua.

Codificar un programa que escriba la cali-
ficacion correspondientea una nota, de acuerdo
con el siguiente criterio:

0 a<50 Suspenso

5 a<65 Aprobado

6.5 a <85 Notable

85a <10 Sobresaliente

10 Matricula de honor.

Determinar si el caracter asociado a‘ coidign
introducido por teclado corresponde a un
caracter alfabético, digito, de puntuacion,
especial o no imprimible.

Estructuras de seleccién: sentencias 1 £ y swiztch

5.12. PROBLEMAS

5.1

5.2

5.3.

5.4.

5.5.

Cuatroenterosentre O y 100representan las pun-
tuaciones de un estudiantede un curso de infor-
matica. Escribir un programa para encontrar la
media de estas puntuaciones y visualizar una
tabla de notas de acuerdo al siguiente cuadro:

v Media - PuRtUacion
90-100 | .
80-89 B
70-79 C

| &nso - O

| 0-59 | [

Escribir un programaque lea la hora de un dia
de notacion de 24 horas y la respuesta en
notacién de 12horas. Por ejemplo, si la entrada
es13:45, la salidaserd

1:45 PM

El programa pedira al usuario que intro-
duzca exactamente cinco caracteres. Asi, por
ejemplo, las nueve en punto se introduce como

09:00

Escribir un programa gque acepte fechas escri-
tas de modo usual y las visualice como tres
ndmeros. Por ejemplo, la entrada

15, Febrero 1989
producira la salida

15 2 1989

Escribir un programaque acepte un nimero de
tres digitos escrito en palabra y a continuacion
los visualice como un valor de tipo entero. La
entrada se termina con un punto. por ejemplo,
la entrada

dosci ent os veinticinco
producira la salida
225

Escribir un programa que acepte un afio escrito
en cifras arabigasy visualice el afio escritoen
ndmeros romanos, dentro del rango 1000 a2000.
Nota: RecuerdequeV =5 X =10 L=50

C=100 D=500 M=1000
V=4 XL =40
MCM =1900 CM =900
MCMLX = 1960 MCML = 1950
MCMLXXXIX = 1989 MCMXL = 1940

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

167

Se desea redondear un entero positivo N a la
centena mas préxima y visualizar la salida.
Para ello la entrada de datos debe ser los cuatro
digitosA,B,C,D, del enteroN. Por ejemplo, si
Aes2,13es3,CesbyDes2, entonces N serd
2362y el resultado redondeadoserd 2400. SiN
es 2342, el resultado sera 2300, y si N = 2962,
entonces el nimero serd 3000. Disefiar el
programa correspondiente.

Se quiere calcular la edad de un individuo, para
ellose va a tener como entrada dos fechasen el
formatodia(1a31), mes (1 a 12)y afio (entero
de cuatrodigitos), correspondientes a la fecha
de nacimiento y la fecha actual, respec-
tivamente. Escribir un programa que calcule y
visualice la edad del individuo. Si es la fecha
de un bebé (menos de un afio de edad), la edad
se debe dar en meses y dias; en caso contrario,
la edad se calculara en afios.

Escribir un programa que determine si un afio
es bisiesto. Un afio es bisiesto si es multiplo de
4 (por ejemplo, 1984). Sin embargo, los afios
multiplos de 100s6lo son bisiestos cuando a la
vez son multiples de 400 (por ejemplo, 1800no
es bisiesto, mientras que 2000 si lo sera).

Escribir un programa que calculeel nimero de
dias de un mes, dados los valores numéricos del
mes y el afio.

Se desea calcular el salarioneto semanal de los
trabajadores de una empresa de acuerdo a las
siguientes normas:

+ Horas semanales trabajadas < 38 a una tasa
dada.

o Horas extras (38 0 mas) a una tasa 50 por
100 superior a la ordinaria.

« Impuestos 0 por 100, si el salario bruto es
menor o igual a 50.000 pesetas.

o Impuestos 10 por 100, si el salario bruto es
mayor de 50.000 pesetas.

Determinar el menor ndmero de billetes y
monedas de curso legal equivalentes a cierta
cantidad de pesetas (cambio 6ptimo).

Escribir y ejecutarun programa que simule un
calculador simple. Lee dos enteros y un carac-
ter. Si el caracter es un +, se imprime la suma;
si es un—, se imprime la diferencia; si es un *,
se imprime el producto; si es un /, se imprime
el cociente; y si es un % se imprime el resto.
Nota: utilizar la sentencia swi t ch.

—‘

CAPITULO 6

ESTRUCTURAS DE CONTROL:
BUCLES

CONTENIDO

6.1. La sentenciawhi | e.
6.2. Repeticién: el bucle for.

8.5. Comparacion de bucleswhi | e,

€or y do-whi | e.
6.6. Disefno de bucles.

| .

6.3. Precauciones en el uso de for.
6.4. Repeticion: el bucle do- whi | e.

8.7.
6.8.
6.9.
6.10.

6.11.

Bucles anidados.
Resumen.
Ejercidos.
Problemas.

Proyectos de programacion.

INTRODUCCION

Una de las caracteristicas de las computadoras que aumentan considerable-
mente su potencia es su capacidad para ejecutar una tarea muchas (repetidas)
veces con gran velocidad, precision y fiabilidad. Las tareas repetitivas es al go
que los humanos encontramos dificilesy tediosas de realizar. En este capitulo
se estudian las estructuras de control iterativas o0 repetitivas que realizan la
repeticion o iteracion de acciones. C soportatres tipos de estructuras de control:
losbucleswhil e, fory do-while. Estasestructuras de control o sentencias
repetitivas controlan el nUmero de veces que una sentencia o listas de sen-
tencias se ejecutan.

CONCEPTOS CLAVE
e Bucle. e Sentenciabreak.
e Comparacion dewhi | e, for y do. e Sentencia do- whi | e.
e Control de bucles. e Sentencia for.
¢ Iteracién/repeticién. e Sentenciawhi 1le.
e Optimizacién de bucles. e Terminacion de un bucle.

169

170 Programacion en C. Metodologia, algoritmos y estructura de datos

6.1. LA SENTENCIAwhi | e

Un bucle (ciclo)es cualquier construccién de programa que repite una sentencia o secuencia de
sentencias un nimero de veces. La sentencia (0grupo de sentencias) que se repiten en un bloque se
denomina cuerpo del bucle y cada repeticion del cuerpo del bucle se llama iteracion del bucle. Las dos
principales cuestiones de disefio en la construccion del bucle son: ;Cudl es el cuerpo del bucle? ;Cudntas
veces se iterara el cuerpo del bucle?

Un bucle whi | e tiene una condicion del bucle (una expresién logica) que controla la secuencia de
repeticion. La posicion de esta condicién del bucle es delante del cuerpo del bucle y significa que un
bucle whi | e es un bucle pr et est de modo que cuando se ejecuta el mismo, se evalla la condicion
antes de que se ejecute el cuerpo del bucle. La Figura 6.1 representa el diagrama del bucle whi | e.

El diagrama indica que la ejecucion de la sentencia 0 sentencias expresadas se repite mientras la
condicion del bucle permanece verdadera y termina cuando se hace falsa. También indica el diagrama
anterior que la condicién del bucle se evalla antes de que se ejecute el cuerpo del bucle y, por
consiguiente, si esta condicion es inicialmente falsa, el cuerpo del bucle no se ejecutara. En otras
palabras, el cuerpo de un bucle whi | e se ejecutaréd cero o mds veces.

= = - -

-, hih
= Condicidn_ bucly —=— =
T'verdadera
e
; LB
| : |
-
Figura 6.1

Sintaxis

I while (condicién-bucle)
Sentencia; —————® cuerpo

2 while (condiciéon-bucle)

1
sentencia-1;)
sentencia-2;

F cuerpo

sentencia-n;)

Estructuras de control: bucles 171

whi | e es una palabra reservada C
condicidn_bucle es una expresion ldgica o booleana
sentencia s una sentencia simple o compuesta

El comportamiento o funcionamiento de una sentencia (bucle) while es:

1. Se eval ta |a condicién-bucle
2. Si condicién-bucle es verdadera (distintode cero):
a. La sentencia especificada, denom nada el cuerpo del bucle, se
ej ecut a.
b. Vuelve el control al paso |.
3. En caso contrario:
El control se transfiere a la sentencia siguiente al bucle o

sentenci a while.

Las sentencias del cuerpo del bucle se repiten mientras que la expresion légica (condicion
del bucle) sea verdadera. Cuando se evalla la expresion l6gica Y resulta falsa, se terminay se
sale del bucle y se ejecuta la siguiente sentencia de programa después de la sentencia while.

/* cuenta hasta 10 */
int X =0
while (x <« 10)

printf ("x: 2%d",x++);

Ejemplo
/* visualizar n asteriscos */
contador = O; » inicializacion

while (contador < n) — g prueba/condicion
{

pri ntf (II * u) :

cont ador ++; » actualizacion (incrementaen 1 contador)
} /* finde while */

La variable que representa la condicién del bucle se denomina también variable de control del
bucle debido a que su valor determina si el cuerpo del bucle se repite. La variable de control del bucle
debe ser: 1) inicializada, 2) comprobada, y 3) actualizada para que el cuerpo del bucle se ejecute
adecuadamente. Cada etapa se resume asi:

1. Inicializacién. Cont ador se establece a un valor inicial (se inicializa a cero, aunque podria ser

otro su valor) antes de que se alcance la sentencia whi 1e.
2. Prueba/condicion. Se comprueba el valor de cont ador antes de que comience la repeticion de

cada bucle (denominada iteracion opasada).
3. Actualizacion. Cont ador se actualiza (su valor se incrementa en |, mediante el operador ++)

durante cada iteracion.

Si la variable de control no se actualiza el bucle se ejecutara «siempre». Tal bucle se denomina bucle
infinito. En otras palabras un bucle infinito (sin terminacién) se producird cuando la condicién del bucle
permanece y no se hace falsa en ninguna iteracion.

/* bucle infinito */

contador = 1;

while (contador < 100)

172 Programacion en C. Metodologia, algoritmos y estructura de datos

{
printf("$d \n", contador) ;
cont ador--; ———————» decrementa en I contudor

cont ador se inicializa a 1 (menor de 100)y como cont ador-- decrementa en 1 el valor de
cont ador en cada iteracion, el valor del contador nunca llegara a valer 100, valor necesario de
cont ador para que la condicién del bucle sea falsa. Por consiguiente, la condicién cont ador < 100
siempre sera verdadera, resultando un bucle infinito, cuya salida sera:

1

0
-1
-2
-3
-4

Ejemplo
/* Bucl e de nuestra con while */

#i ncl ude <stdio.h>
int main()

: {

int contador = O; /* inicializa la condicién */
while(contador < 5) /* condicion de prueba */
{

contador ++; /* cuerpo del bucle */

printf ("contador: %d \n",contador) ;
}

printf ("Terminado.Contador: %4 \n",contador);
return O
}

Ejecucion
cont ador :
cont ador :
cont ador :
cont ador :

cont ador :
Terminado.Contador: 5

ORrWNE

6.1.1. Operadores de incrementoy decremento (++, —-)

C ofrece los operadores de incremento (+ +) y decremento (- -) que soporta una sintaxis abreviada para
afiadir (incrementar) o restar (decrementar) 1 al valor de una variable. Recordemos del Capitulo 4 la
sintaxis de ambos operadores:

++nombreVariable
nombrevariable++

Estructuras de control: bucles 173

/* preincremento */
/* postincrenento */

--nombrevariable /* predecrenento */
nombrevVariable—- /* postdecrenento */
Ejemplo 6.1

Si i es una variable entera cuyo valor es 3, las variables k e i toman los valores sucesivos gue se

indican en las sentencias siguientes:

' /* asigna el valor 3 aky 4 ai */
/* asigna el valor 5aky s ai */
/* asigna el valor 5aky 4ai */
/* asigna el valor 3 aky 3 ai */

Ejemplo 6.2

Usodel operador de incremento ++para controlar la ireracién de un bucle (unade las aplicaciones muds

usuales de ++).

/* programa cal cul o de calorias */

#i ncl ude <stdio.h>

int mai nO
{

int num_de_elementos, cuenta,
calorias_por_alimento, calorias-total;

printf (";Cudntos alinmentos ha com do hoy? ");
scanf ("%d ", &num_de_elementos) ;

calorias-total = O

cuenta = 1;

printf ("Introducir el nuamero de cal orias de cada uno de los ");
printf ("4 %s",num el enent os,"al i ment os tomados :\n") ;

whi l e (cuent a++ <= numrero- de- el enent 0s)

scanf ("$d", &calorias_por_alimento);
calorias-total += calorias_por_alimento;
}

printf ("Las calorias total es consunidas hoy son = ");
printf ("ta \n",calorias-total);
return O;

Ejecucién de muestra

¢Cuéntos al i nentos ha coni do hoy? 8

Introducir el nimero de calorias de cada uno de 1los 8 alimentos tomados:
500 50 1400 700 10 5 250 100
Las cal orias total es consumidas hoy son = 3015

174 Programacioén en C. Metodologia, algoritmos y estructura de datos

6.1.2. Terminaciones anormales de un bucle (ciclo)

Un error tipico en el disefio de una sentencia whi | e se produce cuando el bucle s6lo tiene una sentencia
en lugar de varias sentencias como se plane6. El cédigo siguiente

contador = 1;

whil e (contador < 25)
printf ("sd\n", contador);
cont ador ++;

visualizara infinitas veces el valor 1. Es decir, entra en un bucle infinito del que nunca sale porque no
se actualiza (modifica) la variable de control cont ador .

La razon es que el punto y coma al final de la linea pri ntf ("$d\n", cont ador) ; hace que el
bucle termine en ese punto y coma, aunque aparentemente el sangrado pueda dar la sensacion de que
el cuerpo de whi | e contiene dos sentencias, printf () y cont ador ++; El error se hubiera detectado
rapidamente si el bucle se hubiera escrito correctamente

contador = 1;

whil e (contador = 25)
printf ("¢d\n", contador) ;

cont ador ++;

La solucion es muy sencilla, utilizar las llaves de la sentencia compuesta:
contador = 1;

whil e (contador < 25)

I

printf ("sd\n", contador) ;
cont ador ++;
)

6.1.3. Diseifo eficientede bucles

Una cosa es analizar la operacion de un bucle y otra disefiar eficientemente sus propios bucles. Los
principios a considerar son: primero, analizar los requisitos de un nuevo bucle con el objetivo de
determinar su inicializacidn, prueba (condicion) y actualizacion de la variable de control del bucle. El
segundo es desarrollar patrones estructurales de los bucles que se utilizan frecuentemente.

6.1.4. Bucleswhi | e con cero iteraciones

El cuerpo de un bucle no se ejecuta nunca si la prueba o condicién de repeticion del bucle no se cumple,
es falsa (es cero en C), cuando se alcanza whi | e la primera vez.

contador = 10;
whil e (contador > 100)
{

}

El bucle anterior nunca se ejecutara ya que la condicion del bucle (cont ador > 100) es falsa
la primera vez que se ejecuta. El cuerpo del bucle nunca se ejecutara.

-

Estructuras de control: bucles 175

6.1.5. Bucles controlados por centinelas

Normalmente, no se conoce con exactitud cuantos elementos de datos se procesaran antes de comenzar
Su ejecucidn. Esto se produce bien porque hay muchos datos a contar normalmente o porque el nimero
de datos a procesar depende de cémo prosigue el proceso de calculo.

Un medio para manejar esta situacion es instruir al usuario a introducir un Unico dato definido y
especificado denominado valor centinela como Ultimo dato. La condicion del bucle comprueba cada
dato y termina cuando se lee el valor centinela. El valor centinela se debe seleccionar con mucho cuidado
y debe ser un valor que no pueda producirse como dato. En realidad el centinela es un valor que sirve
para terminar el proceso del bucle.

En el siguiente fragmento de codigo hay un bucle con centinela; se introducen notas mientras que
ésta sea distinta de cent i nel a.

/*

entrada de dat os numéri cos,
centinela -1

*/

const int centinela = -1;

printf ("I ntroduzcaprinera nota:");

scanf ("sd", ¬ a) ;

while (nota'!= centinela)

{

cuent a++;

suma += not a;

printf ("I ntroduzcala siquiente nota: ") ;
scanf ("¥a", &iot a) ;

} /* fin de while */

puts ("Fi nal");

Ejecucion
Si se lee el primer valor de not a, por ejemplo 25 Yy luego se ejecuta, la salida podria ser ésta:

Introduzca prinera nota: 25

I ntroduzca siguiente nota: 30

I ntroduzca siguiente nota: 90

I ntroduzca siguiente nota: -1 /* valor del centinela */
Fi nal

6.1.6. Bucles controlados por indicadores (banderas)

En lenguajes, como Pascal, que tienen el tipo bool , se utiliza una variable booleana con frecuencia
como indicadores o banderas de estado para controlar la ejecucion de un bucle. El valor del indicador
se inicializa (normalmente a falso " f al se") antes de la entrada al bucle y se redefine (normalmente a
verdadero "true") cuando un suceso especifico ocurre dentro del bucle. En C no existe el tipo boolean,
por lo que se utiliza como bandera una variable entera que puede tomar dos valores, 1 0 0. Un bucle
controlado por bandera-indicador se ejecuta hasta que se produce el suceso anticipadoy se cambia el
valor del indicador.

176 Programacionen C. Metodologia, algoritmos y estructura de datos

Ejemploé. 3

Se desea leer diversos datos tipo caracter introducidos por teclado mediante un bucle whiley se debe
terminar el bucle cuando se lea un datro tipo digito (rango '0& 9°).

La variable bandera, di gi t o- | ei do se utilizacomo un indicador que representa cuando un digito
se ha introducido por teclado.

Variable bandera Significado

digito-1eido su valor es falso (cero) antes de entrar en el bucle y mientras el

El problema que se desea resolver es la lectura de datos caracter y la lectura debe detenerse cuando
el dato leido sea numérico (un digito de 'Oa '9"). Por consiguiente. antes de que el bucle se ejecute y
se lean los datos de entrada, la variable digito_lei do se inicializa a falso (cero). Cuando se ejecuta
el bucle, éste debe continuar ejecutdndose mientras el dato leido sea un caracter y en consecuencia la
variable di gi t o- | ei dotiene de valor falso y se debe detener el bucle cuando el dato leido sea un
digito y en este caso el valor de la variable di gi t o- | ei do se debe cambiar a verdadero (uno).En
consecuencia la condicién del bucle debe ser ! di git o- | ei doya que esta condicion es verdadera
cuando di gi t o- | ei does falso. El bucle whi | e sera similar a:

digito-leido = O /* no se ha |leido ninglun dato */
while (!ldigito_leido)

{

1

dato leido sea un caracter y es verdadero cuando el dato leido es
un digito.

printf ("I ntroduzcaun caracter: "j;
scanf ("&c", &car) ;
digito-leido = (("0°<= car) && (car <= '9)) ;

/* fin de while */

El bucle funciona de la siguiente forma:

1.
2.

3.

Entrada del bucle: la variable di gi t o- | ei do tiene por valor «falso».

La condicién del bucle 'digito_leido es verdadera, por consiguiente se ejecutan las sentencias
del interior del bucle.

Se introduce por teclado un dato que se almacena en la variable car . Si el dato leido es un
caracter, la variable di gi t o- | ei dose mantiene con valor falso (0) ya que ése es el resultado de
la sentencia de asignacion.

digito-leido = (("0°<= car) && (car <= "'9));

Si el dato leido es un digito, entonces la variable di gi t o- | ei do toma el valor verdadero (1),
resultante de la sentencia de asignacién anterior.

. El bucle se termina cuando se lee un dato tipo digito ("0~ a "9 ") ya que la condicién del bucle

es falsa.

Modelo de bucle controladopor un indicador
El formato general de un bucle controlado por indicador es el siguiente:

1. Establecer el indicador de control del bucle a «falso»0 «verdadero» (a cero 0 a uno) con
el objeto de que se ejecute el bucle whi | e correctamente la primera vez (normalmente
se suele inicializar a «falso»).

Estructuras de control: bucles 177

2. Mientras la condicién de control del bucle sea verdadera:

2.1. Realizar las sentencias del cuerpo del bucle.

2.2. Cuando se produzca la condicion de salida (en el ejemplo anterior que el dato
carfcter leido fuese un digito) se cambia el valor de la wariable indicador o
bandera, con el objeto de que entonces la condicion de comtrol se haga falsa y, por
tanio, el bucle se termina.

3. Ejecucién de las sentencias siguientes ai bucle.

Ejemplo 6.4

Se desea leer un dato numérico x cuyo valor ha de ser mayor que ceropara calcular lafuncién fix) =
x*log(x).

La variable bandera, x_positi vo se utiliza como un indicador que representa que el dato leido es
mayor que cero. Por consiguiente, antes de que el bucle se ejecute y se lea el dato de entrada, la variable
x_positivo se inicializa a falso (0). Cuando se ejecuta el bucle, éste debe continuar ejecutandose
mientras el nimero leido sea negativo o cero y en consecuencia la variable x_posi ti vo tengael valor
falso y se debe detener el bucle cuando el nimero leido sea mayor que cero y en este caso el valor de la
variable x_posi t i vo se debe cambiar a verdadero (uno). En consecuencia la condicion del bucle debe
ser x_positivo ya que esta condicion es verdadera cuando x_positivo es falso. A la salida del
bucle se calcula el valor de la funcién y se escribe:

#i ncl ude <stdio.h>
#i ncl ude <math.h>

int main()
{
float f£,x;
int xgositivo;
x_positivo = 0; /* inicializado a fal so */

whil e (!x_positivo)
{

printf ("\n Valor de x: ");

scanf ("%f", &x) ;

xgositivo = (x > 0.0); /* asigna verdadero(l) si cunple la

condi ci 6n*/

}
f = x*log(x
printf (" fq
return O

7

)
$.1f) = %.3e",x,£f);

6.1.7. Lasentencia break en los bucles

La sentencia br eak se utiliza, a veces, para realizar una terminacién anormal del bucle. Dicho de otro
modo, una terminacion antes de lo previsto. Su sintaxis es:

break;

La sentencia br eak se utiliza para la salida de un bucle whi | e 0 do- whi | e, aunque también se puede
utilizar dentro de una sentencia swi t ch, siendo éste su uso mas frecuente.

e e T E——

178 Programacioén en C. Metodologia, algoritmos y estructura de datos

whil e (condicidn)

{
i f (condicidn2)
br eak;
/* sentencias */
}
Ejemplo 6.5

El siguiente codigo extrae y visualiza valores de entrada desde el dispositivo estandar de entrada (stdin)
hasta gque se encuentra un valor especificado

int clave = -9;
int entrada;
whil e (scanf("sd", &ntrada))
{
if (entrada'!= clave)
printf ("sd\n", entrada);
else
break;
}

;Como funciona este bucle whi | e? La funcion scant () devuelve el nimero de datos captados de
dispositivo de entrada o bien cero si se ha introducido fin-de-fichero. Al devolver un valor distinto de
cero el bucle se ejecutaria indefinidamente, sin embargo, cuando entrada==clave la ejecucion sigue
por el sey la sentencia br eak que hace que la ejecucion siga en la sentencia siguiente al bucle whi | e.

Ejecucion
El uso de break en un bucle no es muy recomendable ya que puede hacer dificil la
comprension del comportamiento del programa. En particular, suele hacer muy dificil

verificar los invariantes de los bucles. Por otra parte suele ser facil la reescritura de los bucles
sin la sentencia break. El bucle del Ejemplo 6.5 escrito sin la escritura de br eak:

int clave;
int entrada;
while ((scanf("$d",&entrada)) && (entrada != cl ave))

{
printf ("sa\n" ,entrada) ;

}

6.1.8. Bucleswhi l e (true)

La condicién que se compruebaen un bucle whi 1e puede ser cualquier expresion valida C. Mientras que
la condicion permanezca verdadera (distinto de 0), el bucle whi | e continuara ejecutandose. Se puede
crear un bucle que nunca termine utilizando el valor 1 (verdadero)para la condicién que se comprueba.

1. /*Listadowhile (true) */

2: #i ncl ude <stdio.h>

3: int main()

ei——

Estructuras de control: bucles 179

{
int flag = 1, contador = O

4
5

6: whil e (fl ag)
/: i

8

9

cont ador ++;
: if (contador > 10)
10: br eak;
11: }
12: printf ("Contador: %d\n",contador) ;
13: return O
14: 1}

Salida
Cont ador: 11

Anélisis
En la linea 6, un bucle whi | e se establece con una condicién que nunca puede ser falsa. El bucle
incrementa la variable cont ador en la linea 8, y a continuacion la linea 9 comprueba si el contador es

mayor que 10.Si no es asi el bucle se itera de nuevo. Si cont ador es mayor que 10, la sentencia br eak
de la linea 10termina el bucle whi | e, y la ejecucion del programa pasa a la linea 12.

Ejercicio 6.1
Calcular la media de seis nimeros.

El calculo tipico de una media de valores numéricos es: leer sucesivamente los valores, sumarlos y
dividir la suma total por el nimero de valores leidos. El c6digo méas simple podria ser:

float numl;

fl oat num2;

fl oat num3;

fl oat num4;

fl oat numS;

fl oat numé6;

float nedi a;

scanf ("%f %t $f $f $f Sf", &numl, &num?2, &num3, &numd , &nums, &numé) ;
medi a = (numl+numZ+num3+numd+numS+numé) /6 ;

Evidentemente, si en lugar de 6 valores fueran 1.000, la modificacion del c6digo no sélo seria de
longitud enorme sino que la labor repetitiva de escritura seria tediosa. Por ello, la necesidad de utilizar
un bucle. El algoritmo mas simple seria:

definir ndnero de el enent os conb constante de valor 6

Inicializar contador de numeros

Inicializar acumul ador (sunador) de nuameros

Mensaj e de petici 6n de datos

mentras no estén | efdos todos | os dat os hacer
Leer nunero
Acumul ar val or del nUmero a vari abl e acunul ador
| ncrenment ar cont ador de numer os

fin- mentras

Cal cul ar nedia (Acumulador/Total nuner o)

Vi sualizar valor de |la nedia

Fin

180 Programacioén en C. Metodologia, algoritmos y estructura de datos

El codigo en C es:

/* Calculo de la nedia de seis nuneros */
#i ncl ude <stdio.h>
#i ncl ude <string.h>

int main()
{
const int TotalNum = 6;
int Cont ador Num= O;
float SumaNum= 0;
float nmedi a;
printf ("Introduzca %d numeros\n", TotalNum) ;
whi | e (Cont ador Num< TotalNum)
{
/* val ores a procesar */
fl oat nuner o;

scanf ("%f", &numero) ; /* leer siguiente nanero */
SumaNum += numer o; /* afiadir val or a Acumul ador */
++ContadorNum; /* increnmentar nuneros | eidos */

}

nmedi a = SumalNum/ContadorNum;
printf ("Media: %.2f \n",nedi a) ;
return O

6.2 REPETICION: EL BUCLE for

El bucle f or de C es superior a los bucles f or de otros lenguajes de programacién tales como BASIC,
Pascal y Fortran ya que ofrece més control sobre la inicializacién y el incremento de las variables de
control del bucle.

Ademas del bucle whi | e, C proporciona otros dos tipos de bucles for y do. El bucle f or que se
estudia en esta seccion es el mas adecuado para implementar bucles controladospor contador que son
bucles en los que un conjunto de sentencias se ejecutan una vez por cada valor de un rango especificado,
de acuerdo al algoritmo:

por cada valor de una variable—contador de un rango especifico: ejecutar sentencias

La sentencia f or (bucle f or) es un método para ejecutar un bloque de sentencias un nimero fijo de
veces. El bucle f or se diferencia del bucle whi | e en que las operaciones de control del bucle se sitian
en un solositio: la cabecera de la sentencia.

Sintaxis
(2) Expresion légica que determina
si las sentencias se han de ejecutar
mientras sea verdadera
(1) Inicializa la variable (3) Incrementa o decrementa

de control del bucle la variable de control del bucle

. e

-,
for (Inicializacio6n; CondicidnIteraci 6n; |ncrenento)

sent enci as

& (4) sentencias a ejecutar en cada iteracion del bucle

Estructuras de control: bucles 181

El bucle f or contiene las cuatro partes siguientes:

« Parte de inicializacion, que inicializa la variables de control del bucle. Se pueden utilizar variables
de control del bucle simples o mdltiples.

« Parte de condicién, que contiene una expresion logica que hace que el bucle realice las iteraciones
de las sentencias, mientras que la expresion sea verdadera.

« Parte de incremento, que incrementa o decrernenta la variable o variables de control del bucle.

e Sentencias, acciones 0 sentencias que se ejecutaran por cada iteracion del bucle.

La sentencia f or es equivalente al siguiente codigo whi | e

inicializacidn;

whil e (condicidnIteracidn)

{

sentencias del bucle for;
incremento;

Ejemplo 1
int i;
/* inprimr Hola 10 veces */
for (1 = 0; i < 10; i++)
printf ("Hola!");

Ejemplo 2
int i;
for (i = 0; i < 10; i++)
{
printf "Holar\n") ;
printf "El valor de i es: %d",i) ;
}

Ejemplo 3

#i ncl ude <math.h>
#i ncl ude <stdio.h>

#define M 15
#define f (x) exp(2*x) - X

int main()
{
int i;
doubl e X;
for (1 = 1; i <= M i++)
{
printf ("valor de X: ");
scanf ("$1f", &x) ;
printf ("f(%.11f) = %.4g\n",x,f(x));
}
return O

m

182 Programacion en C. Metodologia, algoritmosy estructura de datos

En este ejemplo se define la constante simbolica M y una «funcién en linea» (también Ilamada una
macro con argumentos). El bucle se realiza 15 veces; cada iteracién pide un valor de x, calcula la funcién
y escribe los resultados. El diagrama de sintaxis de la sentencia f or es:

Variable—control = Valor-inicial

Y

Variabla conbnol -
| e, e WEOT_limile

-

] vendadera |
| Sentencia [

resign incremento !
g [ExxBremgn—mcremento

Y

Figura 6. 2. Diagrama de sintaxis de un bucle for

Existen dos formas de implementar la sentencia for que se utilizan normalmente para implementar
bucles de conteo: formato ascendente, en el que la variable de control se incrementa y formato
descendente, en el que la variable de control se decrementa.

for (var_control=valor_imicial; var_control<=valor_limite; exp_incremento)
sentenci a "‘\

format o ascendent e for rmgg_ggscendente
g
for (var_control=valor_inicial; var_controls=valor_lfmite; exp_ decremento)
sentenci a ;

Ejemplo deformato ascendente
int n:

for (n=1; n <= 10; n++)
printf("$d \t %d \n",n, n * n);

La variable de control es n'y su valor inicial es | de tipo entero, el valor limite es 10 y la expresion
de incremento es n++. Esto significa que el bucle ejecuta la sentencia del cuerpo del bucle una vez por
cada valor de n en orden ascendente | a 10. En la primera iteracion (pasada) n tomara el valor 1; en la
segunda iteracion el valor 2 y asi sucesivamente hasta que n toma el valor 10. La salida que se producira
al ejecutarse el bucle sera:

Estructuras de control: bucles 183

1
4
9
16
25
36
49
64
81
10 100

Ejemplo deformato descendente
int n;

OCONOOITBEARWNPE

for (n = 10; n > 5; n--)
printf("$d \t %d \n",n, n * n);

La salida de este bucle es:

10 100
9 81
8 64
7 49
6 36

debido a que el valor inicial de la variable de control es 10,y el limite que se ha puestoesn = 5 (es decir,
verdadera cuando n = 10,9, 8, 7, 6); la expresiéon de decremento es el operador de decremento n—-
que decrementa en 1el valor de n tras la ejecucion de cada iteracion.

Otros intervalos de incremento/decremento

Los rangos de incremento/decremento de la variable o expresién de control del bucle pueden ser
cualquier valor y no siempre 1,es decir 5, 10,20, 4, ..., dependiendo de los intervalos que se necesiten.
Asi el bucle

int n;

for (n = 0; n < 100; n += 20)
printf ("$d \t %d \n",n, n * n);

utiliza la expresion de incremento
n += 20

que incrementa el valor de n en 20, dado que equivalean = n + 20. Asi la salida que producirg la
ejecucion del bucle es:

0 0

20 400

40 1600

60 3600

80 6400
Ejemplos

/* ejemplo 1 */

int c;

for (¢ = "A'; ¢ <= '7Z'; Cc++)
printf ("sc ",c);

/* ejenplo 2 */

L

184 Programacion en C. Metodologia, algoritmos y estructura de datos

for (i = 9; i >=0; i -=3)
printf ("sa ", (i * i)):

/* ejemplo 3 */

for (1 = 1; i < 100; i*=2)
printf ("sa ",i);

/* ejemplo 4 */
#def i ne MAX 25

int i, j;
for (i =0, j = MAX; | < j; 1++, J—)
printf("sd ", (1 + 2 * j));

El primer ejemplo inicializa la variable de control del bucle c al caracter &, equivale a inicializar
al entero 65 (ASCII de A), e itera mientras que el valor de la variable ¢ es menor o igual que el ordinal
del caréacter “z-. La parte de incremento del bucle incrementa el valor de la variable en 1. Por
consiguiente, el bucle se realiza tantas veces como letras mayusculas.

El segundo ejemplo muestra un bucle descendente que inicializa la variable de control a 9. El bucle
se realiza mientras que i no sea negativo,como la variable se decrementa en 3, el bucle se ejecuta cuatro
veces con el valor de la variable de control i, 9,6, 3y 0.

El ejemplo 3, la variable de control i se inicializa a 1y se incrementa en multiplos de 2, por
consiguiente, i toma valoresde 1,2,4 .8, 16,32, 64y el siguiente 128 no cumple la condicion, termina
el bucle.

El ejemplo 4, declara dos variables de control i y j y lasinicializa a0y a la constante MAX. El bucle
se ejecutara mientras i sea menor que j . Las variable de control i se increnenta en 1, y a la
vez j sedecrementaen 1.

Ejemplo 6.6
Suma de los 10 primeros ndmeros pares
#i ncl ude <stdio.h>
int main()
int n, suma = O;

for (n = 1; n <= 10; n++)
suma += 2*n;

printf("La sunma de |os 10 primeros nuneros pares: %d4",suma);
return O;
}

El bucle lo podriamos haber disefiado con un incremento de 2:

for (n = 2; n <= 20; n+=2)
suma += n;

6.2.1. Diferentes usos de bucles for
El lenguaje C permite:

o El valor de la variable de control se puede modificar en valores diferentes de 1.
« Se puedan utilizar mas de una variable de control.

Ejemplos de incrementos/decrementos con variables de control diferentes

La/s variable/s de control se pueden incrementar o decrementar en valores de tipo i nt , pero también es
posible en valores de tipo f| oat o doubl ey en consecuencia se incrementaria 0 decrementaria en una
cantidad decimal

6.3.

Estructuras de control: bucles 185

int n;
for (n=1; n<= 10; n = n + 2)
printf("n es ahora igual a %d ".,n);

int n,v=9;
for (n =V, n>= 100; n =n - 5)
printf ("n es ahora igual a %d ",n);

doubl e p;
for (p= 0.75; p<= 5; p+= 0.25)
printf("Perimetro es ahora igual a %.21f ",p);

La expresion de incremento en ANSI C no necesita incluso ser una suma o una resta. Tampoco se
requiere que la inicializacion de una variable de control sea igual a una constante. Se puede inicializar
y cambiar una variable de control del bucle en cualquier cantidad que se desee. Naturalmente cuando la
variable de control no sea de tipo i nt, se tendrdn menos garantias de precision. Por ejemplo, el siguiente
codigo muestra un medio mas para arrancar un bucle f or.

doubl e X;
for (x = pow(y,3.0); X > 2.0; X = sgrt(x))
printf ("x es ahora igual a %. 5e",x) ;

PRECAUCIONES EN EL USO DE f or

Un bucle f or se debe construir con gran precaucion, asegurandose que la expresion de inicializacion,
la condicion del bucle y la expresion de incremento haran que la condicién del bucle se convierta en
false en algin momento. En particular: «si el cuerpo de un bucle de conteo modifica los valores de
cualquier variable implicada en la condicién del bucle, entonces el nimero de repeticiones se puede
modificar».

Esta regla anterior es importante, ya que su aplicacion se considera una mala practica de
programacién. Es decir, no es recomendable modificar el valor de cualquier variable de la condicion
del bucle dentro del cuerpo de un bucle f or, ya que se pueden producir resultados imprevistos. Por
ejemplo, la ejecucion de

int i,limite = 11;

for (i =0, | <= limte; i++)

{

printf("sda\n",i);
[imte++;
}

produce una secuencia infinita de enteros (puede terminar si el compilador tiene constantes MAXINT,
con maximos valores enteros, entonces la ejecucion terminara cuando i sea MAXINTY linite sea
MAXINT+1 = MNNI).

0

L
2
3

ya que a cada iteracion, la expresion 1i mi t e+t incrementa1i mi t een 1, antes de que i ++ incremente
i . A consecuencia de ello, lacondicidn del bucle i <= 1i ni t e siempre es cierta.
Otro ejemplo de bucle mal programado:

T

-

Programacion en C. Metodologia, algoritmos y estructura de datos
int i,limite = 1;

for (i = 0; i <= limte; i++)
print f("sa\n", i) :

}
que producira infinitos ceros

0
0
0

ya que en este caso la expresion i - - del cuerpo del bucle decrementa i en lantes de que se incremente
la expresién i ++ de la cabecera del bucle en 1. Como resultado i es siempre O cuando el bucle se
comprueba. En este ejemplo la condicién para terminar el bucle depende de la entrada, el bucle esta
mal programado:

#define LI M 50
int iter,tope;
for (iter = O; tope <= LIM iter++)
{
printf ("sd\n", iter);
scanf ("%d", &t ope) ;
}

6.3.1. Buclesinfinitos

El uso principal de un bucle f or es implementar bucles de conteo en el que el nimero de repeticiones
se conoce por anticipado. Por ejemplo, la suma de enteros de 1a n. Sin embargo, existen muchos
problemas en los que el nimero de repeticiones no se pueden determinar por anticipado. Para estas
situaciones algunos lenguajes modernos tienen sentencias especificas tales como las sentencias LOOP de
Modula-2y Modula-3, el bucle bo de FORTRAN 90 o el bucle | oop de Ada. C no soporta una sentencia
que realice esa tarea, pero existe una variante de la sintaxis de f or que permite implementar bucles
infinitos que son aquellos bucles que, en principio, no tienen fin.

Sintaxis

for (;;)
sentencia ;

La sentencia se ejecuta indefinidamente a menos que se utilice una sentencia r et ur n o br eak
(normalmente una combinacion i f -break 0 1f-return).

La razon de que el bucle se ejecute indefinidamente es que se ha eliminado la expresion de
inicializacién, la condicion del bucle y la expresién de incremento; al no existir una condicion de bucle
que especifique cual es la condicion para terminar la repeticién de sentencias, asume que la condicion
es verdadera (1) y éstas se ejecutaran indefinidamente. Asi, el bucle

for (;;)
printf("Siempre asi, te |l amanos sienpre asi...\n");

Estructuras de control: bucles 187

producira la salida

Sienpre asi, te |lamanos sienpre asi ...
Sienpre asi, te |l amanpbs sienpre asi ...

un namero ilimitado de veces, a menos que el usuario interrumpa la ejecucion (normalmente pulsando
las teclas ctr1 y ¢ en ambientes PC).
Para evitar esta situacion, se requiere el disefio del bucle f or de la forma siguiente:

1. El cuerpo del bucle ha de contener todas las sentencias que se desean ejecutar repetidamente.
2. Una sentencia terminara la ejecucién del bucle cuando se cumpla una determinada condicion.

La sentencia de terminacién suele ser i f - br eak con la sintaxis
if (condicién) break;

condici 6n es una expresion logica
br eak termina ia ejecucion del bucle y transfiere el control a la sentencia
siguiente al bucle

y la sintaxis completa

for (i;) /* bucle */

{
li sta-sentenci as, I
if (condicion-term nacion) break;

1i sta—sentenci as, '
} /* fin del bucle */
li sta—sentenci as puede ser vacia, simple o compuesta.
Ejemplo 6.7
#defi ne CLAVE -999

for (;:)

{
printf("Introduzca un nUnero, (%d) para terminar",CLAVE) ;
scanf ("%d ", &num) ; f
if (num== CLAVE) break;

6.3.2. Los bucles for vacios

Tenga cuidado de situar un punto y coma después del paréntesis inicial del bucle f or . Es decir, el bucle

for (i =1; i <= 10; i++); problema
puts ("Si erraMagi na") ;

no se ejecuta correctamente, ni se visualiza la frase "Si erra Magi na" 10 veces como era de esperar,
ni se produce un mensaje de error por parte del compilador.

188 Programacién en C. Metodologia, algoritmos y estructura de datos

En realidad lo que sucede es que se visualiza una vez la frase "Si er ra Magi na" ya que la sentencia
f or es una sentencia vacia al terminar con un punto y coma (;). Sucede que la sentencia f or no hace
absolutamente nada durante 10 iteraciones y, por tanto, después de que el bucle f or haya terminado, se
ejecuta la siguiente sentencia put s y se escribe "Si erra Magi na".

El bucle for con cuerpos vacios puede tener algunas aplicaciones, especialmente cuando se
requieren ralentizaciones 0 temporizaciones de tiempo.

6.3.3. Sentencias nulas en bucles f or

Cualquiera o todas las sentencias de un bucle f or pueden ser nulas. Para ejecutar esta accion, se utiliza
el punto y coma (;) para marcar la sentencia vacia. Si se desea crear un bucle f or que actle exactamente
como un bucle whi | e, se deben incluir las primeras y terceras sentencias vacfas.

1: /* Listado

2: bucl es for con sentencias nul as
3: */

4: #include <stdio.h>

5:

6: int main()

7: {

8: int contador = O;

9:

10: for (;contador < 5;)
11: {

12 cont ador ++;

13: printf ("; Bucl e!");
14: }

15:

16: printf ("\n Contador: %d \n", Contador) ;
17: return O

18: 1

Salida
: Bucl e! ; Bucle! ;Bucle! ;Bucle! ;Bucle!
Cont ador: 5

Analisis

En la linea 8 se inicializa la variable del contador. La sentencia f or en la linea 10no inicializa ningun
valor, pero incluye una prueba de cont ador < 5. NoO existe ninguna sentencia de incrementacion, de
modo que el bucle se comporta exactamente como la sentencia siguiente.

while(contador < 5)

{

cont ador ++;

printf ("; Bucle!")
}

6.3.4. Sentencias break y conti nue

La sentenciabr eak termina la ejecucion de un bucle, de una sentencia swi t ch, en general de cualquier
sentencia.

Estructuras de control: bucles 189

*
/ Ej enpl o de utilizaci 6n de break
*
#{nclude <stdio.h>
int main()
int contador = O; /* inicializacién */
int max;

printf ("Cuantos hol as? ") ;
scanf ("%d", smax) ;
for (;:) /* bucle for que no termna nunca */
{
if(contador < max) /* test */
{
puts ("Hola!") ;
cont ador ++; /* increnento */
}
el se
br eak;
}
return O
}

Salida

Cuant os hol as? 3
Hol a!
Hol a!
Hol a!

La sentencia cont i nue hace que la ejecucion de un bucle vuelva a la cabecera del bucle.

#i ncl ude <stdio.h>
int main()
{
int clave,i;
puts ("I ntroduce -9 para acabar.") ;
clave = 1;
for (1 =0, i <« 8; i++) {
if (clave==-9) continue;
scanf ("sd", &cl ave) ;
printf ("cl ave 3d\n",clave) ;
}
printf ("VALORES FINALES i = %d clave = %d",i,clave);
return O

Ejecucion

Introduce -9 para acabar
4
clave 4

190 Programacion en C. Metodologia, algoritmos y estructura de datos

7
clave 7

-9

VALCRES FINALES i = 8 clave = -9

La sentencia cont i nue ha hecho que la ejecucion vuelva a la cabecera del bucle for, como no se
vuelve a cambiar el valor de clave, realiza el resto de las iteraciones hasta que i vale 8.

6.4. REPETICION: EL BUCLEdo. .. while

La sentencia do- whi | e se utiliza para especificar un bucle condicional que se ejecuta al menos una
vez. Esta situacion se suele dar en algunas circunstancias en las que se ha de tener la seguridad de que
una determinada accion se ejecutara una o varias veces, pero al menos una vez.

Sintaxis
Accién (sentencia) a ejecutar Expresion l6gica que
al menos unavez determina si la accién

se repite
4 il

1. | do sentencia while (expresi 6n)

2. do
sent enci a
whil e (expresioén)

La construccion do comienza ejecutando sentencia. Se evalla a continuacién expr esi é6n. Si
expr esi 6n es verdadera, entonces se repite la ejecucion de sentencia. Este proceso continla hasta que
expr esi énes falsa. La semantica del bucle do se representa graficamente en la Figura 6.3.

Sentencia sa, se termina el bucle y se ejecuta la
]

Exprgsiin >

T

| laiss

Y

Figura 6. 3. Diagrama de flujo de la sentencia do.

6.4.1. Diferenciasentrewhi l e y do-whil e t

Estructuras de control: bucles 191

Ejemplo 6.8
Bucle para introducir un digito.
do
{
printf ("Introduzcaun digito (0-9): ") ;
scanf ("%c", &digito) ;
} while ((digito < '0) (I (9°< digito));

Este bucle se realiza mientras se introduzcan digitos y se termina cuando se introduzca un caracter
que no sea un digito de ‘Oa '9'.

Ejercicio 6.2

Aplicacién simple de un bucle whi | e: seleccionar una opcién de saludo al usuario dentro de un
programa.

#i ncl ude <stdio.h>
int main() I
(I
char opcion
do
{
puts ("Hol a"); |
puts(";Desea otro tipo de sal udo?") ; 4
puts("Pulse s para si y n para no,") ; !
printf ("ya continuaci 6n pulse intro: ") ; :
scanf ("%c", &opcion) ; |
} while (opcion== 's'|! opcion == "s") ; |
puts ("Adi 6s"); i
return O ”
} il

Salida de muestra |

Hol a I
:Desea otro tipo de saludo?

Pul se s para si y n para no,

y a continuaci 6n pulse intro: s

Hol a

¢Desca otro tipo de sal udo? |
Pul se s para si y n para no,
y a continuaci 6n pulse intro: N [
Adids

Una sentencia do- whi | e es similar a una sentencia whi | e excepto que el cuerpo del bucle se ejecuta
siempre al menos una vez

—ﬁ

192 Programacion en C. Metodologia, algoritmos y estructura de datos
Sintaxis
Sentencia compuesta
R - _ _ —— 1 - R
whille (Expr: 1 g do |
| T |
_-— { 4
sentencia-1: sent enci a- 1;
sent enci a- 2; sentenci a2 ;
sent enci a-n; sent enci a- n;
} } while (expresion_ldgica)
whil e (Expresion-16gica) do
sentenci a sentenci a
e while (expresion-|dégica
» _ il p | 69

\

Sentenciasimple

Ejemplo 1
/*
cuenta de O a 10(sin incluir el 10)
I * [
f int X = O
' do

print ("x: %d",x++) ;
while (x < 10);

Ejemplo 2

/*
Bucle para inprimr las |letras m nasculas del alfabeto
*/
char car = "a’';
do
{
printf("sa ", car):
car ++;
}while (car <= "z7);

7Ejemp|o 6.9
Visualizar las potencias de 2 cuyos valores estén en el rango | a 1.000.
/* Realizado con while */ /* Realizado con do-while */
potencia = 1; potencia = 1;
whil e (potencia< 1000) do
{
printf ("sd \n",potencia) ; printf ("$d \n",potencia) ;
potencia * = 2 ; potencia * = 2;
} /* €inde while */ } while (potencia< 1000);

Estructuras de control: bucles 193

6.5. COMPARACION DE BUCLESWhi |l e, forydo-while

C proporciona tres sentencias para el control de bucles: whi | e, for y do-whi | e. El bucle whi | e se
repite mientras su condicion de repeticion del bucle es verdadero; el bucle f or se utiliza normalmente
cuando el conteo esté implicado, o bien el nimero de iteraciones requeridas se pueda determinar al
principio de la ejecucién del bucle, o simplemente cuando exista una necesidad de seguir el nimero de
veces que un suceso particular tiene lugar. El bucle do-whi 1e se ejecuta de un modo similar a whi ke
excepto que las sentencias del cuerpo del bucle se ejecutan siempre al menos una vez.

La Tabla 6.1 describe cuando se usa cada uno de los tres bucles. En C, el bucle f or es el méas
frecuentemente utilizado de los tres. Es relativamente facil reescribir un bucle do- whi | e como un bucle
whi | e, insertando una asignacion inicial de la variable condicional. Sin embargo, no todos los bucles
while se pueden expresar de modo adecuado como bucles do-wh | e, ya que un bucle do-whi | e se
ejecutard siempre al menos una vez y el bucle whi | e puede no ejecutarse. Por esta razén un bucle
whi le suele preferirse a un bucle do- whi 1e, a menos que esté claro que se debe ejecutar una iteracion

como minimo.
Tabla 6.1. Formatos de los bucles.
whil e El uso mas frecuente es cuando la repeticién no estd controlada por contador; el test de
condicion precede a cada repeticion del bucle; el cuerpo del bucle puede no ser ejecutado. Se
debe utilizar cuando se desea saltar el bucle si la condicion es falsa.
for Bucle de conteo, cuando el nimero de repeticiones se conoce por anticipado y puede ser

controlado por un contador; también es adecuado para bucles que implican control no contable
del bucle con simples etapas de inicializacion y de actualizacion; et test de la condicién precede
a la ejecucion del cuerpo del bucle.

do-whi | e Esadecuada para asegurar que al menos se ejecuta el bucle una vez.

Comparacién de tres bucles

cuenta = valor-inicial;
whil e (cuenta < val or- parada)
{

cuent a++ ;
p /% finde while */

for (cuenta= valor-inicial; cuenta < val or- parada; cuenta++)
|

y /* finde for */
cuenta = valor-inicial;

if (valor-inicial < val or- parada)
do

cuent a++;
}while (cuenta < val or- parada);

6.6. DISENIO DE BUCLES

El disefio de un bucle necesita tres puntos a considerar:

194 Programacién en C. Metodologia, algoritmos y estructura de datos

1. El cuerpo del bucle.
2. Las sentencias de inicializacion.
3. Las condiciones para la terminacion del bucle.

6.6.1. Bucles para disefio de sumas y productos

Muchas tareas frecuentes implican la lectura de una lista de nimeros y calculan su suma. Si se conoce
cuantos numeros habrd, tal tarea se puede ejecutar facilmente por el siguiente pseudocddigo. El valor de
la variable t ot al es el nimero de valores que se suman. La suma se acumula en la variable suna.

suma = O;
repetir lo siguiente total veces:
leer(siguliente) ;
suma = suna + siguiente;
fin-bucle

Este codigo se implementa facilmente con un bucle for

int cuenta, suma = O
for (cuenta= 1; cuenta <= total; cuenta++)
{
scanf ("sa ", &si gui ente) ;
sunma = suma + Siguiente;
}

Obsérvese que la variable suma se espera tome un valor cuando se ejecuta la siguiente sentencia
suma = suma * siguiente;

Dado que suna debe tener un valor la primera vez que la sentencia se ejecuta, suna debe estar ini-
cializada a algun valor antes de que se ejecute el bucle. Con el objeto de determinar el valor correcto de
inicializacién de suma se debe pensar sobre qué sucede después de una iteracion del bucle. Después de
afladir el primer nimero, el valor de suna debe ser ese nimero. Esto es, la primera vez que se ejecute
el bucle el valor de suma + si gui ent e sera igual a siguient e. Para hacer esta operacion, el valor
de sunadebe ser inicializado a 0. Si en lugar de sunma, se desea realizar productos de una lista de nime-
ros, la técnica a utilizar es:

i nt cuenta,producto;
for (cuenta = producto = 1; cuenta <= total; cuenta++)
{
scanf ("%a", &si gui ente) ;
producto = producto * siguiente;
}

La variable pr oduct o debe tener un valor inicial, se inicializajunto a cuent a en la expresion de
inicializacién a |. No se debe suponer que todas las variables se deben inicializar a cero. Si pr oduct o
se inicializa a cero, seguiria siendo cero después de que el bucle anterior terminara.

6.6.2. Finalde un bucle

Existen cuatro métodos utilizados normalmente para terminar un bucle de entrada. Estos cuatro métodos
son:

1. Alcanzar el tamafio de la secuencia de entrada.

2. Preguntar antes de la iteracion.

3. Secuencia de entrada terminada con un valor centinela.
4. Agotamiento de la entrada.

b

Estructuras de control: bucles 195

Tamafio de la secuencia de entrada

Si su programa puede determinar el tamafio de la secuencia de entrada por anticipado, bien preguntando
al usuario o por algun otro método, se puede utilizar un bucle «repetir n veces» para leer la entrada
exactamente n veces, en donde n es el tamafio de la secuencia.

Preguntar antes de la iteracion

El segundo método para la terminacion de un bucle de entrada es preguntar, simplemente al usuario,
después de cada iteracion del bucle, si el bucle debe ser o0 no iterado de nuevo. Por ejemplo:

int numero, suma = O;
char resp = 'S;
while ((resp== "s’i| (resp== "S"))
;
printf ("I ntroduzca un ninero:") ;
scanf ("%d", &uner o) ; ;
sSuma += NUNEer o;
printf(";Existen MAS numeros?(S pdra Si, N para No): ");
scanf ("%d", &resp) ;

}

Este método es muy tedioso para listas grandes de nimeros. Cuando se lea una lista larga es
preferible incluir una Unica sefial de parada, como se incluye en el método siguiente.

Valor centinela

El método mas préctico y eficiente para terminar un bucle que lee una lista de valores del teclado es
con un valor centinela. Un valor centinela es aquel que es totalmente distinto de todos los valores
posibles de la lista que se esta leyendo y de este modo indica el final de la lista. Un ejemplo tipico se

presenta cuando se lee una lista de nimeros positivos; un nimero negativo se puede utilizar como un
valor centinela para indicar el final de la lista.

/* ejenplo de val or centinela (nuneronegativo) */

puts ("Tntroduzca una |ista de enteros positivos");
puts ("Terminela lista con un nanero negativo')
suma = O;
scanf ("%d",&nuner o) ;
while (nunmero>= 0)
{

suma += numner o;

scanf ("$d", &numero) ;

}

printf ("Lasuma es: %d\n", sunm) ;

Si al ejecutar el segmento de programa anterior se introduce la lista
4 8 15 -99

el valor de la suma sera 27. Es decir, -99, Ultimo nimero de la entrada de datos no se afiade a suma.

—-99 es el ultimo dato de la lista que actia como centinela y no forma parte de la lista de entrada de
ndmeros.

Agotamiento de la entrada

Cuando se leen entradas de un archivo, se puede utilizar un valor centinela, aunque el método mas
frecuente es comprobar simplemente si todas las entradas del archivo han sido procesadas y se alcanza
el final del bucle cuando no hay mas entradas a leer. Este es el método usual en la lectura de archivos,

[ENUNEST %

196 Programacion en C. Metodologia, algoritmos y estructura de datos

que se suele utilizar una marca al final de archivo, eof . En el capitulo de archivos se dedicara una
atencion especial a la lectura de archivos con una marca de final de archivo.

6.6.3. Otrastécnicas determinacion de bucle

Las técnicas mas usuales para la terminacion de bucles de cualquier tipo son:

1. Bucles controlados por contador.
2. Preguntar antes de iterar.
3. Salir con una condicién bandera.

Un bucle controlado por contador es cualquier bucle que determina el nimero de iteraciones antes
de que el bucle comience y a continuacion repite (itera) el cuerpo del bucle esas iteraciones. La técnica
de la secuencia de entrada precedida por su tamafio es un ejemplo de un bucle controlado por contador.

La técnica de preguntar antes de iterar se puede utilizar para bucles distintos de los bucles de
entrada, pero el uso mas comun de esta técnica es para procesar la entrada. La técnica del valor centinela
es una técnica conocida también como salida con una condicion bandera o sefializadora.Una variable
que cambia su valor para indicar que algin suceso o evento ha tenido lugar, se denomina normalmente
bandera o indicador. En el ejemplo anterior de suma de nimeros, la variable bandera es nuner o de
modo gue cuando toma un valor negativo significa que indica que la lista de entrada ha terminado.

6.6.4. Bucles f or vacios

La sentencia nula (;) esuna sentencia que estéa en el cuerpo del bucle y no hace nada. Un bucle f or
se considera vacio si consta de la cabecera y de la sentencia nula (;) .

Ejemplo
Muestra los valores del contador, de O a 4.

1: /*
2: Ej enpl 0 de 1a sentencia nula en for.
3. */
4: #include <stdio.h>
5. int mai n0O
6: {
7: int i
8: for (i = 0 1 < 5; printf("i: sd\n",i++))
9: return O;
10: 3}
Salida
i 0
i 1
i: 2
i: 3
i: 4
Analisis

El bucle f or de la linea 8 incluye tres sentencias: la sentenciade inicializacion establece el valor
inicial del contador i a 0. La sentencias de condicién comprueba i < 5,y la sentencia accidn
imprime el valor de i y lo incrementa.

Estructuras de control: bucles 197

Ejercicio 6.3

Escribir un programa que visualice el factorial de un entero comprendido entre 2 y 20.

El factorial de un entero n se calcula con un bucle f or desde 2 hasta n, teniendo en cuenta que factorial
de les 1 (I1'= 1)y que n! = n*(n-1)! .Asi, por ejemplo,

41 =4%31 =4*3 21 =4#3*2* || =4*3%2%] =24

En el programa se escribe un bucle do-whi 1e para validar la entrada de n, entre 2y 20. Otro bucle
f or para calcular el factorial. El bucle for va a ser vacio, en la expresion de incremento se va a
calcular los n productos, para ello se utiliza el operador *=junto al de decremento (- -).

#i ncl ude <stdio.h>
int main()

long int n,m, fact;
do

printf ("\nFactorial de nUnero n, entre 2y 20: ");
scanf ("%1d" ,&n) ;
twhile ((n <2) Il (n > 20));

for (m=n, fact=1; n>1; fact *= n--)

printf ("s14a! = %1d4",m, fact) ;
return O;

6.7. BUCLES ANIDADOS

Es posible anidar bucles. Los bucles anidados constan de un bucle externo con uno o mas bucles
internos. Cada vez que se repite el bucle externo, los bucles internos se repiten, se vuelven a evaluar los
componentes de control y se ejecutan todas las iteraciones requeridas.

Ejemplo 6.10

El segmento de programa siguiente visualiza una tabla de multiplicacién por calculoy visualizacién
de productos de laforma x * y para cada x en el rango de 7 @ xultimoy desde caday en el
rango 1 a vultimo (donde xultinmo,y yulti noson enteros prefijados). La Tabla que se desea
obtener es

[

DD DN N ==
L I R N A . R
I
P oo NI WN

O W N = W N
1l
[e]

198 Programacion en C. Metodologia, algoritmos y estructura de datos

for (x = 1; X <= Xultimo; x++)

for (y=1; ¥y <= Yultimo; y++)
{
i nt producto;
producto = x * y;
printf(" %d * %d = %d\n", x,y,producto);

e

o

bucle externo ™ bucle interno

El bucle que tiene x como variable de control se denomina bucle externoy el bucle que tiene y
como variable de control se denomina bucle interno.

Ejemplo 6.11

/*

Escribe |l as vari ables de control de dos bucl es ani dados
*/

#i ncl ude <stdio.h>

void mai n0O

.
int i,j;
/* <cabecera de la salida */
printf ("\n\t\t i \t j\n");
for (i= O, i < 4; i++)

printf ("Externo\t %d\n", 1) ;
for (3 =0; jJ < i; Jj++)
printf ("Interno\t\t %d \n",j) ;
+ /* fin del bucle externo */

La salida del programa es
i j

Ext er no

Ext er no n

I nt er no 0

Ext er no 2

I nt erno

I nt erno

Ext er no 3

I nt erno

I nt erno

I nt erno

- O

N~ O

—

Estructuras de control: bucles 199

Ejercicio 6.4
Escribir unprograma que visualice un triangulo is6sceles.
*
* * *
* * * * *
* * * * * * *
* * * * * * * *

El tridangulo isdsceles se realiza mediante un bucle externo y dos bucles internos. Cada vez que se
repite el bucle externo se ejecutan los dos bucles internos. El bucle externo se repite cinco veces (cinco
filas); el nimero de repeticiones realizadas por los bucles internos se basan en el valor de la variable
fila. EIlprimer bucle interno visualiza los espacios en blanco no significativos; el segundo bucle
interno visualiza uno 0 mas asteriscos.

#i ncl ude <stdio.h>

/* constantes gl obal es */
const int num_lineas = 5;
const char blanco = =-;
const char asterisco = "*’;

voi d main ()

{
int fila, blancos, cuenta- as;

L m m —

puts(* *y; /* Deja una |inea de separacién */

/* bucl e externo: dibuja cada |inea */
for (fila= 1; fila <= num_lineas; fila++)
{
putchar (“\t’);
/*primer bucle interno: escribe espacios */
for (blancos = num_lineas-fila; blancos = 0; bl ancos--)
put char (bl anco);

for (cuenta-as= 1; cuenta-as < 2 * tila; cuenta_as++)
putchar (asterisco);

/* termnar |inea */
pUtS(" u) :
v /* fin del bucle externo */

1
g

El bucle externo se repite cinco veces, uno por linea o fila; el niUmero de repeticiones ejecutadas i
por los bucles internos se basa en el valor de fil a. La primera fila consta de un asterisco y cuatro
blancos, la fila 2 consta de tres blancos y tres asteriscos, y asi sucesivamente; la fila 5 tendra 9 asteriscos
(2x 5 - 1). En este ejercicio se ha utilizado para salida de un carécter la funcién put char () . Esta
funcioén escribe un argumento de tipo caracter en la pantalla.

Ejercicio 6.5

Ejecutar el programa siguiente que imprime una tabla de m filas por n columnasy un caracter de entrada.
1: #i ncl ude <stdio.h>

2:
3: int main ()
4: !

—

200

Programacioén en C. Metodologia, algoritmos y estructura de datos

5 int tilas, columas;

6: int i, j;

7: char elcar;

8: printf (":Cudntas filas?: ") ;

9: scanf ("sd",&filas) ;

10: printf (":Cudntas columas?: ");
11: scanf ("3d" ,&columnas) ;

12: printf(";Qué caréacter?: ") ;

13: scanf ("\n%c",&elCar) ;

14: tor (i = 0; i < filas; i++)

15: {

16: for (7 = 0, | < columnas; Jj++)
17: put char (elCar) ;

18: putchar (‘\n’);

19 : }

20: return O;

21: 3

Analisis

El usuario solicita el nimero de filas y de columnas y un caracter a imprimir. Merece la pena comentar, que
para leer el caracter a escribir es necesario saltarse el caracter fin de linea (scanf ("\n%¢" selcar))quese
encuentra en el buffer de entrada, debido a la peticion anterior del nimero de columnas. El primer bucle f or
de la linea 14 inicializa un contador (i) a O y a continuacion se ejecuta el cuerpo del bucle f or externo.

En la linea 16 se inicializa otro bucle f or y un segundo contador j se inicializa a O y se ejecuta el
cuerpo del bucle interno. En la linea 17 se imprime el caracter e1car (*). Se evalla la condicién (j <
col umtmas) y si se evalla a true (verdadero),j se incrementa y se imprime el siguiente caracter. Esta
accion se repite hasta que j sea igual al nimero de columnas.

El bucle interno imprime doce caracteres asterisco en una misma filay el bucle externo repite cuatro
veces (numero de filas) la fila de caracteres.

Ejercicio 6.6

Escribir en pantalla el factorial de n, entre los vulores 1 a 10.

Con dos bucles for sesolucion el problema. El bucle externo determina el niimero » cuyo factorial se
calcula en el bucle interno.

#i ncl ude <stdio.h>
#define S 10
int main()
{
long int n,m, fact;
for (n = 1, n <= 3; n++)
4
fact = 1;
for (m=n ; m>1; m--)
fact *= m
printf ("\t %1d! = %14 \n",n,fact);
}
return O

6.8. RESUMEN

En programacidn ¢3 habitual tener goe repetir In
epecuciin de una senencia, esto e o que se conooe
como bucle, Un bucle es un grupo de instrucciones
que se ejecutan repetidamente hasta que se cumple
uma condicidn de terminacidn. Los bacles representan
estructuras de control repetitivas, el nimero de
repebiciones pasde ser esiablecido inicialmente, o bien
hacerlo depender de una condicidn (verdadera o
flalsa),

Un bucle puede discfiarse de diversas formas, las
mis imporianies som: repeticidn controlada por
contador ¥ repeticiin controlada por condicidn.

LUna variable de control del bucle s utilizs para
contar las repeticiones de un grupo de senten-
cims. Se incrementa o decrementa normalmente
en | cada vez que ¢ cjecuta el grupo de senten-
cing,

* La condicién de finalizacidn de bucle se wiiliza
para controbar la repetickin cuando el mimero de
ellas (ibersciones) no s¢ conoce por adelantado.
LUn walor centinela se introduce para determinar
el hecho de que s2 cumpla o no la condicidn.

* Los bucles for inicializan una variable de
conirol & un valor, & continuacidn compruehan
una expresitng i la expresidn es verdadera se
gjecutan las sentencias del cuerpo del bocle. La

6.9. EJERCICIOS

6.1. [Cudl es la salida del siguiente segmento de
programa?

for (cusnta = 1; cusnbna < 5; Cusnta++]
printf("sd ", (2 * cuenta));

6.2 (Cudl es la salida de los siguientes bucles?
A for (n = 10; n> 0; n = n-2)

Estructuras de control: bucles 201

upmuhuaupuhﬂhmqmummh

ileracidn. cuando es fales se terming del bacle y
sigue la ejecucidn en la siguiente sentencia. Es
importante que en e cuerpo del buck: haya una

sentencia que haga que alguna vez sea falsa In
gue controla la neracion del bacle,

expousida :
* Los bacles while comprechan una condicadn,

s e verdadera, se cjecuta las sentencias del
bucle, A continuacidn, s¢ vuclve a comprobar ln
condicitn si sigue siendo verdadera, se ejecutan
las sentencias del bocle; termina cuando la
condicidn es falsa.

La condicién estd en la cabecera del bucle whi -
Le, por eso el ndmens de veces que se repite puede
serde 0 an.

& Log bocles de - while también comprueban

una condicidn; se diferencian de los bucles
while en que compruochan la condicidn al final
del bucle, en vez de en la cabecera.

= Laseniencia break produce la salida inmediata

del bucle.

¢ La sentencia cont inue hace que cuando s¢

ejecuta se salien indas las sentencias que vienen
n continuaciin, ¥ comicnza una nueva lisracidn
= s cumple la condicidn del bucle.

printf ("Hola®)
printf(" %d \n".n);
}

B double n = 2;

for (; n > 0, n = n-0.%)
printE("%g ".n);

202

64.

65.

6.6.

6.7.

68.

Programacion en €. Metodologia, algoritmos y estructura de datos

Seleccione y escriba el bucle adecuado gue
micjor resuehva las siguientes Laress:

b Somade la sene 124004 LA S5, 4 1050

&) Lectura de In listn de cahifcaciones de un
examen de Histona,

) Visualizar la suma de enteros en el mtervalo
.50,

Considerar ¢ siguiente ofdigo de programa

int i = 1;
while (i <= n] |
1T ({1 % n) == O} |
++1;
}

}
print£{(“%d \n*,i);

a) JCuil es s salids 5i noes 07
&) pCuil e ln salids si roes 17
&) Cudl es la salids gi noes 37

Considérese el sigubenie otdigo de prog,
for (i = 05 1L = By ++1] A
ey 3
}
printf (*%d wn",i);
a) ¢(Cudl es lasalidasin es@?
b) ;Cudl eslasalidasines1?
¢) (Cudl es la salida si n es 37

(Cudl es la salida de los siguientes bucles?

int n, m
for ((n = 1; n «= 10; n++)
for (m= 10; Mm>= 1; m—)
printf ("¢dveces %d=%d\n", n,
mn*mj;
Escriba un programa que calcule y visualice
M+ 2+ 3+ . +in-t) +nt

donde # es un valor de un dato.

(Cuil es la salida del siguienie bucle?

suma = O
while (suma< 100)
sumg +: 55

printf (* & \n";,sum);

6.9, Escribir un bucle while goe visualice todas
kns polencias de un enlero n, Menores gue un
valor especificado max_limite,

610, [Qué hace el siguiente bucle while?
Reescribirlo con sentencias for v do-
while,

num = 10;

while (num <= 1000

{
printf (*wd \n", num);
num += 10;

1

611, Suponiendoquem = 3yn = 5. (Cudlesla
salidn de los siguientes segmentos de
programa’?

A €or (1 =0; | < n; i++)
{
for (3 = 0; F < i; F++)
putchar{ ®** |y
putchar{*\n'):

}

Bfor (1 =n; i >0 i--)
{
for (3 =m j > 0 3F--)
putchar('*/);
putchar{‘\n’);
}

6.12. ;Cudl es la salidade los siguientesbucles?

A for (i = O i < 10; i++)
printf (" 2% %d = & \n", |,
2 * i)

B for (i =0 |1 <= 5; i++)
printf(" % ",2 * 1 + 1);
put char (“\n*) ;

C for (1 = 1; i < 4; i++)

{
peinc (™ %d ",1);1
for (j = &; 3§ == 1; F--)
printf(” %4 \n",3):
}

6.13. Escribir un programas que visuslice el siguients
dibasjo.

L I |
LS B B
= B & B B 8 &
 F B @ B 8 B F @
& & # F ® F 8
& R W
B #

614, Describir la salida de los siguienbes bucles.

A for (1 = 1; § <= 55 d&s)

{
printf(* %4 \n",1};
for (] = 37 § == 13 J=-=2)
princf (™ %4 Yn",3);
|
B for (1 = 3r & > 0; 1-—)
for (§ = 1; § == 43 Je=)

for (k= 1; K »= J7 k—)
printf{*%d %d %4 ‘\n*°,
1; 3 X);

6.10. PROBLEMAS

6.1. En unaempress de computadoras, 10S salarios
de los empleados se van a aumentar seguin SU
contrato actual:

0 a 9,000 délares 2
Q001 8 15.000 délares 10
15001 & 70,000 ddkares 5
s de 0000 ddlares 0

203

Estructuras de control: bucles

C for (1 = 1; 1 == 3; 144}
Eoxr df = 15 4 == 33 J++)
{
for tk = 1; K <= J7 kes)

princf|*%d &4 %3 “n-,
Y& KN
patchari{“yn*):

iy

}

615, (Cuil es la salida de este bacle?

I = ﬂl.'
while (i*i < 10)
|
1= 1
while (j*j <= 100}
{
printf("%d wn®.4i + j):
;[B £
}
Lok
i
printf ("yneeeer,p¥),

Escribir un programa qoe solicite ¢ salario
actual del emplesdo y calcule y visaalice el
fwevo salano.

La constantepi (3.1415%2..1 es muy wtilizada
en matematicas. Un mélada sencillo de caleu-

lar su valor es:
=4 %) T Tl 2) L
Pi (3 5/ \5/ \7

204

6.7.

Programacion en C. Metodologia, algoritmos y estructura de datos

Escribir un programa que efectie este cilculo
con n ndmero de Erminos cepecificados por
el usuario.

Escribir un progruma que calcule y visualice el
miis grande, &l mis pequefio v la media de N
ntimeros. Bl valor de M se solicitard al princi-
pio del programa ¥ los ndmeros serdn introdu-
cidos por ¢l usuano,

Escribir un programa que determina y escriba
la descomposicidn factorial de los mimeros
enteros comprendidos entre 1900 v 2000,

Escribir un progruma que determine todos los
afios que son biskestos en el siglo xxn. Un afio
s higbesto 41 es mibtiplo de 4 (1988), excepto
s mibaplos de 100 que no son bisiestos salvo
gue a su vez tambidn sean mdltiplos de 400
(1800 no es bisiesto, 2000 sf).

Escribir un programa gue visualice un cusdrado
miigico de orden impar g, comprendido entre 3
y 11; el usuario elige el valor de n. Lin candr-
do migico se compone de nldmeros enleros
comprendidos entre 1 y n'. La suma de los
nidmeros que figuran en cada Mnes, cads colum-
na ¥ cada dinponal son iguakes, Un epemplo s

8 1 6
3 5 7
4 9 2

Un método de construccién del cuadrado
consiste en situar el nimero 1en el centrode
la primera linea, el nimero siguiente en la
casilla situada encima y a la derecha, y asi
sucesivamente. Es preciso considerar que el
cuadrado se cierra sobre si mismo: la linea
encima de Ia primera es de hecho la ditima y
la codumna & la derecha de la dlbma es In
primera. Sin embargo, cuando la posicidn del
milmere caiga en una casilla ocupada, se elige
Ln casilla situnda debajo del mimero que acaba
de sér situado.

Escribir un programa que encuentre los tres
primseros nédmeros pesfiectos pares y los tres pri-
meros niimenos perfectos impares.

Un midmere perfecto es Un entero positivo, que
g4 igual a la suma de todos los enteros

6.9.

6.10,

6.11.

positivos (excluido el mismo) que son
divisores del mdmero. El primer ndmero
perfecto es 6, ya que los divisores de & son 1,
Z3yl+1+3=6

El valor de ¢ s¢ puade aproximar por la suma
:‘ 1‘
M LY
Escribir un programa que tome un valor de x

como entrada y visualice la suma pars cada
uno de los valores de 1 a 100.

|+1+-—+

El matemético italiano Leonardo Fibonacc
propuso el siguiente problema. Suponiendo
e un par de conejos bene un par de orias cada
mes ¥ cada nueva pareja s¢ hace fértil a la edad
de un mes. 5i se dispone de una pareja férml y
nmgunc de los conejos muoerios, [cuinias
parcjas habrd después de un afioT Mejorar gl
problema calculande ¢l ndmers de meses
necesarios para producir up ndmero dado de
parejas de conejos.

Para encontrar el mizim comuin divisor {modl)
de dos nimeros se emples el algoriimo de
Euclides, que se puede describir asi: Diados los
enteros a y b (@ > b), se divide a por b,
obteniendo el cocienteql y el restorl.

Sirl <> 0, se divide r por b1, Obteniendo el
cocienteq2 y elresto 2. Sir2 <> 0, sedivide rl
por r2, para obtener g3 y r3, y asi suce-
sivamente. Se continGia el proceso hasta que se
obtieneun resto O. El rest 0 anterior es entonces
el med de los nimeros a y b. Escribir un
programa que calcule el med de dos nimeros.

Escribir un programa que encuentre el primer
nimero primo introducido por teclado.

612, Cabeular la sama de laserie 11 + 142 +

613.

6.14.

+ 1/N donde N es un nimero que se
introduce por teclado.
Calcular la suma de los términos de In serie:
1/2 + 2/2° + 3/2° + ... * n/2¢
Un ndmero perfecio &5 aquel nUmero que es

igual a la suma de todas sus divisionesexcepto
el mismo. El primer nimero perfecto €s 6, ya

615

6k

617

618

619

64

62

623

gue I+ 2 + 3 = 6. Escribir un programa que
muscstre tochos bos ndmeros perfecios hasta un
niimero dado leido del eclado.

Encontrar un mimero natural &N mds pequefio
tal que la suma de los N primeros mimenos
exceda de una cantidad introducida por el
teclado.

Escribir un programa que calcule v visualice el
mufis grande, el mds pequefio ¥ la media de N
pimerod. Bl valor de N s soliciiard al
principio del programa v los mimenos sesdn
introducidos por el usnano

Calcular el factorial de un nimero entero leido
desde el teclado utilizando las sentencias
whil e, repeatyfor.

Encontrar el nimero mayor de una serie de
numeraos.

Calcularla media de las notas introducidas por
teclado con un didlogn interactivo semejanteal
siguiente:

L Cudnias motasT 20

Nota | : 7.50

Nota 2: 6.40

Nota 3 4.20
Nota 4: 8.50

Nota 20. 9.50
Media de estas 20: 7.475

Determinar si un nimero dado leido del
teclado es primo o no.

Calcularlasumadelaserie 1/1 + 1/2 +
1/n donde N es un nimero entero que se
determina com ls condicion que 1/N sea
menor que épsilon prefijado (por ejemplo
1.10%).

Escribir un programa que calcule la suma de
los 50 primeros ndmeros enteros.

Calcular la suma de una serie de nimeros
leidos det teclado.

Estructuras de control: bucles 205

6.24. Calcular In suma de los wrminos de la sene:
12 -2+ 3 - o4 2 paraun valor dado
den.

6.25, Contar el nUmero de enteros negativos mtrody-
cidos en una linea.

6.26. Visualizar en pantalla una figura similar a la
siguiente

-
1
*k%

ke sk
Hesteskeok

siendo variable el nimero de lineas que se
pueden introducir.

627 Escribir un programa para mostrar, mediante
bucles, los codigoascii de laletras mayusculas
y mindscula.

6.28. Encontrar el nimero natural N més pequefio 5]

que lasumade los N primeros nimerosexceda
de una cantidad introducidapor el teclado.

622 Disefiar un programaque produzcala siguiente
salida:

ZYXW/TSRQPONM_H] | HGFEDCBA
YXWVTSRQPONMLKJIHGFEDCBA
XW/TSRQPONMLKJI I HGFEDCBA
WVTSRQPONMLKJI IHGFEDCBA
VTSRQPONM_KJ | HGFEDCBA
TSRQPONM_KJ | HGFEDCBA
SROPONMLKJ | HGFEDCBA
ROPONMLKJ I HGFEDCBA
QPONMLKJ | HGFEDCBA
PONMLKJ | HGFEDCBA

ONMLKJ | HGFEDCBA

NMLKJ | HGFEDCBA

M_KJ| HGFEDCBA

LKJI HGFEDCBA

KJ1 HGFEDCBA

J1 HGFEDCBA

| HGFEDCBA

HGFEDCBA

GFEDCBA

206

Programacioén en C. Metodologia, algoritmos y estructura de datos

FEDCHRR
EDCBA
DCBA
CBA

Bh
A

5.3, Escribir un programa gue calcole ¥ visualice el

miis grande, el més pequefio ¥ Ia media de N
mil e, valor de N s solicitard al
principie del programa v loé plmeros sérin
introducidos por el usuano,

6.31. Encontrar ¥ mostrar todos los ndmeros de 4

cifras que la condicida de que la suma
de las cifras de orden impar e igual a I suma
det las cifras de orden par.

632 Calcular todos los mimeros de tres cifiras iales

6.11. PROYECTOS DE PROGRAMACION

61

6.2.

64.

Escribir un programa que visualice la siguienie
salida

O e el e e
B B3 bbb R
hal [ad Lap
F

Disefiar & implementar un programa gue clente
el mimero de sus entradas que son positivos,

negatives ¥ cem,

Disefior ¢ implementar un programa gue
extraiga valores del flujo de entrada estindar y
& continuacidn visualice el mayor ¥ el menor
de esos valores en ¢l Majo de salids estindar
El programa debe visualirzar mensajes de
advenencias cuando no haya entradas,

Diseflar ¢ implementar un programa gue
solicite al usuario una entrada como un daio
tipo fecha v & continuaciin visualice el mimero
del dia correspondiente del afio. Ejemplo. si la
focha e 30 12 1999, &l mimero visuslizado es
364,

65,

6.6.

5.7.

6.8.

que la suma de los cubos de las cifras es igual
al valor del ndmero.

DHsefiar ¢ implementar an programa gque
solicite 4 su usuario un valor no negativo n ¥

visualice ln siguicnte sakida;
1 2 gl n=1 n
1 2 i e e n=1

Un carficter es un espacio en blanco 51 es un
blance ("), una tabulacidn (), un caricter de
nucva linea () o un avance de pdgina (d°).
Msefiar y construlr un programa gue cuente el
nidmero de espacios en blanco de ln entrada de
dains,

Escribir un programa gue lea La altura desde la
e cae un objeto, & imprima la velocidad v la
altura a la gue se encuentra cade segundo
suponicndo caida libre.

Escribir un programa que convierta: a) centi-
metros a pulgadas; b) libras a kilogramos. El
programa debe iener como entrada longitud ¥
masa, lerminard cuando se introduzcan cienos
walores clave,

6.9. Escribir un programa que lea el radio de una

6.10.

edfera y wvisualice su drea y su volumen
(A =4nr, V = 4(3nr').

Escribir un programa gue lea 3 enteros
positivos dia, mes y anyo ¥ a continuacidn
visunlice ln fecha que represente, el mimero de
dis, del mes ¥ una frase que diga s el afio cs o
0 bisiesto. Ejemplo, 41 1/1999 debe visualizar
4 de noviemibre de 1999, Ampliar el programa
det modo que calcale ln fecha comespondiente a
10 difns s tarde.

6.11. Escribir y epecutar un programa que invierta los

digitos de un entero positivo dado.

6.1 Implementar el algoritmo de¢ Euclides que

encuentra el miximo comidn divisor de dos
NITErDs EMETDE ¥ PoSitivos.

Estructuras de control: bucles 207

Mgm.ﬁ'ﬂtﬁdﬂ:&mrl

El algoritmo transforma un par de enieros
positivos (mn) en una par (d.0), dividiendo
repetidamente &l entero mayor por el menor y
reemplazando el mayor con el resio. Cuando
el resto es 0, el oire entere de ks pareja serd 2l
mAximo comun divisor de la pareja original,

Ejemplomed (5332, 112)

] 1 3 | = cocienies

532 112 B4 2]

Resios B4 28 LI

med = 28

CAPITULO 7

FUNCIONES

CONTENIDO

208

7.1 Concepto de funcion.

7.2,
7.8,
7.4
7.5.
7.6.
77

7.8.

7.9

Estructura de una funcion.
Prototipos de las funciones.
Parametros de una funcion.
Funciones en linea: macros.
Ambito (alcance).

Clases de almacenamiento.

Con_cePto y uso de funciones
de biblioteca.

Funciones de caracter.

7.10,
7.1
7.12.
7.13
7. 14
7. 16

7.16.
7.17.
7.18
7. 19,

Funciones numéricas.
Funciones de fechay hora.
Funciones de utilidad.
Visibilidad de una funcion.
CompilaciOn separada.

Variables registro
(register).

Recursividad.
Resumen.
Ejercicios.
Problemas.

INTRODUCCION

Una funcitn es un miniprograma dentro de un programa. Las funciones
oontienén varias sentencias bajo un solo nombre, que un programa pusde utilizar
una 0 mis veces para ejecutar dichas sentencias. Las funciones ahorran espacio,
reduciendo repeticiones ¥y haciendo mis ficil la programacidn, proporcionando
un medio de dividir un proyecto grande an modulos pequefios més manejables.
En otros lenguajes como BABIC o ensamblador se denominan subrutinas; en
Pascal, las funciones son equivalentes a funciones y procedimientos,

Este capitulo examina el papel (rol) de las funciones en un programa C. Las
funciones existen de modo autdnomo, cada una tiens su dmbito. Como ya conooe,
ocada programa C tiene al menos una funcitn main(); sin embargo, cada
programa C consta de muchas funciones en lugar de una funcidn main() grande.
La divisitn del eddigo en funciones hace que las mismas se puadan reutilizar en
AU programa ¥ én otros programas. Después de que esoriba, pruebe y depure su
funcidm, se pusde utilizar nuevamente uns ¥ otra vez. Para reutilizar una funcidn
deniro de su programa, sdlo se necesita llamar a la funcidn.

8i se agrupan funciones en bibliotecas otros programas pueden reutilizar las
funciones, por esa razin se puede ahorrar tiempo de desarrollo. Y dado que las
bibliotecas contienen rutinas presumiblements comprobadas, se incrementa la
fiabilidad del programa completo.

La mayoria de los programadores no construyen bibliotecas, sino que,
simplements, las utilizan. Por sjemplo, cualquier compilador incluye més de
quinientas funcionea de biblioteca, que esencialmente pertenecen a la biblioteca
matdndar ANSI (American National Btandards Institute). Dado que existen tantas
funciones de bibliotecas, no siempre serd ficil encontrar la funcién necesaria,
més por & cantidad de funciones a consultar que por su contenido en ai. Por ello,
es frecuente disponer del manual de biblioteca de funciones del compilador o
algtin libro que lo incluys.

La potencia real del lenguaje es proporcionada por la biblioteca de funciones.
Por eata razon, serd preciso conocer las pautas para localizar funciones de la
hiblioteca estindar y utilizarias adecuadamente. En este capitulo aprenderi:

e Utilizar las funciones proporcionadas por la biblioteca estindar ANSI C,

gue incorporan todos los compiladores de C.

» Los grupos de funciones relacionadas entre si y los archivos de cabecera en

que astdn declarados.

Las funciones son una de las piedras angulares de la programacién en C ¥ un
buen uso de todas las propiedades bédsicas ya expusstas, asi como de las propiedades
avanzadas de las funciones, le proporoionardn una potencia, a veces impensable, a
sus programacionss. La compilacion separada ¥ la recursividad son propiedades
ouyo conocimiento es esencial pars un disefio eficients de programas en NUMearOSas
aplicaciones.

CONCEPTOS CLAVE

* Biblioteca de funciones,

* Compilacién independiente.
* Funcién.

¢ Modularizacion.

e Parametros de una funcién.

Pasar pardametros por valor.
Paso por referencia.
Recursividad.
Sentenciareturn.
Subprograma.

209

210 Programacion en C. Metodologia, algoritmos y estructura de datos

7.1. CONCEPTO DE FUNCION

C fue disefiado como un lenguaje de programacién estructurado, también llamado programacién
modular. Por esta razon, para escribir un programa se divide éste en varios modulos, en lugar de uno solo
largo. El programa se divide en muchos mdédulos (rutinas pequefias denominadas funciones), que
producen muchos beneficios: aislar mejor los problemas, escribir programas correctos mas rapido y
producir programas que son mucho mas faciles de mantener.

Asi pues, un programa C se compone de varias funciones, cada una de las cuales realiza una tarea
principal. Por ejemplo, si esta escribiendo un programa gque obtenga una lista de caracteres del teclado,
los ordene alfabéticamente y los visualice a continuacion en la pantalla, se pueden escribir todas estas
tareas en un unico gran programa (funciénmai n (}).

int main()
{
/* Cbdigo C para obtener una |lista de caracteres */

/* Cbdigo C para al fabetizar |os caracteres */
/* Codigo C para visualizar la lista por orden al fabético */
return O

}

Sin embargo, este método no es correcto. EI mejor medio para escribir un programa es escribir

funciones independientes para cada tarea que haga el programa. ElI mejor medio para escribir el citado
programa seria el siguiente:

int main ()
{

obtenercaracteres () ; /* Llamada a una funci 6n que obtiene |os
ndineros */

al fabeti zar () ; /* Ll anada a |la funci 6n que ordena
al fabéti canente las letras */

verletras() ; /* Llamada a |l a funci 6n que visualiza
letras en la pantalla */

return O, /* retorno al sistema */

}

i nt obtenercaracteres ()

{

/*

Codi go de C para obtener una lista de caracteres
*/
return(0O ; /* Retorno a main() */

}

int alfabetizar()
{

/...
Coédi go de C para al fabetizar |os caracteres
*/
return(0) ; /* Retorno a main() */

}
void verletras()

[*. ..

Funciones 211

Codi go de C para visualizar lista al fabetizada
>/

return /* Retorno a main{() */
}

Cada funcién realiza una determinada tarea y cuando se ejecuta r et ur n se retorna al punto en que
fue llamada por el programa o funcién principal.

Consejo

Una buena regia para determinar la longitud de una funcién (nimero de | i neas que contiene) es que
no ocupe mds longitud que el equivalentea una pantalla.

7.2. ESTRUCTURA DE UNA FUNCION

Una funcion es, sencillamente, un conjunto de séntencias que se pueden llamar desde cualquier parte de
un programa. Las funciones permiten al programador un grado de abstraccion en la resolucion de un
problema.

Las funciones en C no se pueden anidar. Esto significa que una funcién no se puede declarar dentro
de otra funcion. La razon para esto es permitir un acceso muy eficiente a los datos. En C todas las
funciones son externas o globales, es decir, pueden ser llamadas desde cualquier punto del programa.

La estructura de una funcion en C se muestra en la Figura 7.1.

ti po- de-ret orno nombreFuncidén (listaDePardmetr 0S)
{
- cuerpo de la funcién
- return expresion
}
ti po- de-retorno Tipo de valor devuelto por la funcién o la palabra
reservada voi d si la funcién no devuelve ningun vaior.

nombreFuncidn Identificador 0 nombre de la funcidn.
listabDePardmet r 0s Listade declaraciones de los pardmetros de la funcion separados por comas.
expresi 6n valor que devuelve la funcidn.
Tipo de resultado — — Lista de parametros
) | | _ Cabecera de la funcion
float. suma (float numl, floal num2}
dovarales | float resp; Velor
var e devuelto
resp = numl + num?2 ; |
return resp; 1 !

Figura7.1. Estructura de una funcion.

212

Programacién en C. Metodologia, algoritmos y estructura de datos

Los aspectos mas sobresalientes en el disefio de una funcion son:

e Tipode resultado. Es el tipo de dato que devuelve la funcién Cy aparece antes del nombre de la
funcion.

o Lista de pardmetros. Es una lista de parametros tipificados (con tipos) que utilizan el formato
siguiente:

tipol paranetrol, tipo2 pardmetroZ,

o Cuerpo de lafuncién. Se encierra entre llaves de apertura ({) y cierre ()). No hay punto y coma
después de la llave de cierre.

e Paso de parametros. Posteriormente se vera que el paso de parametros en C se hace siempre por
valor.

» No se pueden declararfunciones anidadas.

o Declaracion local. Las constantes, tipos de datos y variables declaradas dentro de la funcién son
locales a la misma y no perduran fuera de ella.

o Valordevuelto por lafuncion. Mediante la palabra reservada r et ur n se devuelve el valor de la
funcion.

Una llamada a la funcion produce la ejecucién de las sentencias del cuerpo de la funcion y un
retorno a la unidad de programa llamadora después que la ejecucion de la funcién se ha terminado,
normalmente cuando se encuentra una sentencia r et ur n.

Ejemplo 7.1
Lasfunciones cuadr ado() y suma () muestran dos ejemplos tipicos de ellas.

/* funci 6n que cal cul e | os cuadrados de naneros enteros
sucesivos a partir de un nunero dado (n), paranetro
de la funci 6n y hasta obtener un cuadrado que sea
mayor de 1000

*/

voi d cuadrado(int n)

{
int cuadrado=0, g=0;

while (g <= 1000) /*el cuadrado ha de ser nenor de 1000 */
{
g = n*n;
printf ("E1 cuadrado de: %d es %d \n",n,q);
n++;
}
return;
}
/*

Calcula | a suna de un nunero dado (paranetro) de el enentos | eidos de |la
entrada estdndar (teclado) .
*/
float suma (i nt nun+ el enent 0s)
{
int indice;
float total = 0.0;
printf("\n \t Introduce 3d nlineros reales\n",num_elementos) ;
for (indice= 0; indice < num el enentos; indice++)
{
float X;
scanf ("$f ";&x) ;

Funciones 213

total += x;
}
return total

7.2.1. Nombre de unafunciéon

Un nombre de una funcién comienza con una letra o un subrayado (_) y puede contener tantas letras,
nlmeros o subrayados como desee. El compilador ignora, sin embargo, a partir de una cantidad dada (32
en Borland/Inprise C, 248 en Microsoft). C es sensible a mayusculas, lo que significa que las letras
mayusculas y mindsculas son distintas a efectos del nombre de la funcién.

int mx (intx, int y); /* nonbre de la funci 6n max */
doubl e nedi a (doubl e x|, double x2); /* nonbre de la funci é6n nedia */
doubl e MAX (int* m int n); /* nonbre de funci 6n MAX,

distinta de max */

7.2.2. Tipo de dato de retorno

Si la funcion no devuelve un valor i nt, se debe especificar el tipo de dato devuelto (de retorno) por la
funcién; cuando devuelve un valor i nt, se puede omitir ya que por defecto el C asume que todas las
funciones son enteras, a pesar de ello siempre conviene especificar el tipo aun siendo de tipo i nt , para
mejor legibilidad. El tipo debe ser uno de los tipos simples de C, tales como i nt,char o fl oat,oun
puntero a cualquier tipo C, o un tipo st ruct.

int max(int X, int y) /* devuel ve un tipo int =/

doubl e media(double x|, double x2) /* devuelve un tipo double */
float func0O() {...} /* devuel ve un float =*/

char funcl() {...} /* devuel ve un dato char */

int *func3 () {...} /* devuel ve un puntero a int */
char *func4() {...} /* devuel ve un puntero a char */
int funcs5() {...} /* devuel ve un int (es opcional)*/

Si una funcién no devuelve un resultado, se puede utilizar el tipo voi d, que se considera como un
tipo de dato especial. Algunas declaraciones de funciones que devuelven distintos tipos de resultados
son:

int calculo_kilometraje(int litros, int kil onmetros);
char mayusculas(char car);

fl oat DesvEst (void);

struct InfoPersona BuscarRegistro(int num_registro);

Muchas funciones no devuelven resultados. La razén es que se utilizan como subrutinas para
realizar una tarea concreta. Una funcidn que no devuelve un resultado, a veces se denomina
procedimiento. Para indicar al compilador que una funcion no devuelve resultado, se utiliza el tipo de
retorno voi d, como en este ejemplo:

voi d VisualizarResultados (float Total, int num el ement 0s);
Si se omite un tipo de retorno para una funcion, como en
VerResultados(float Total, int |ongitud);

el compilador supone que el tipo de dato devuelto es i nt . Aunque el uso de i nt es opcional, por razones
de claridad y consistencia se recomienda su uso. Asi, la funcion anterior se puede declarar también:

int VerResultados(float Total, int | ongitud);

214

Programacién en C. Metodologia, algoritmos y estructura de datos

7.2.3. Resultados de unafuncidén

Una funcion puede devolver un Unico valor. El resultado se muestra con una sentenciar et ur n cuya
sintaxis es:

return (expresi dn)

return;

El valor devuelto (expresi 6n)puede ser cualquier tipo de dato excepto una funcién o un array. Se
pueden devolver valores multiples devolviendo un puntero o una estructura. El valor de retorno debe
seguir las mismas reglas que se aplican a un operador de asignacidon. Por ejemplo, no se puede devolver
un valor int, si el tipo de retorno es un puntero. Sin embargo, si se devuelveun int y el tipo de retorno
esun fl oat, se realiza la conversidon automaticamente.

Una funcion puede tener cualquier nUmero de sentencias r et ur n. Tan pronto como el programa
encuentracualquierade las sentencias r et ur n, devuelve control a la sentencia llamadora. La ejecucién
de la funcion termina si no se encuentra ninguna sentencia r et ur n; en este caso, la ejecucion continda
hasta la llave final del cuerpo de la funcion.

Si el tipo de retorno es voi d, la sentencia r et ur n se puede escribir como r et ur n; sin ninguna
expresion de retorno, o bien, de modo alternativo se puede omitir la sentenciar et ur n.

voi d funcl (void)
{

puts ("Esta funci 6n no devuel ve val ores") ;
}

El valor devuelto se suele encerrar entre paréntesis, pero su uso es opcional. En algunos sistemas
operativos,como DOS, se puede devolver un resultado al entorno llamador. Normalmente el valor O, se
suele devolver en estos casos.

int main()

{
puts ("Prueba de un programa C, devuelve O al sistema ");
return O;

Consejo

Aunque no es obligatorioel uso de la sentenciareturn en la Ultima Linea, se recomienda su uso,
ya que ayuda a recordar el retorno en ese punto a la funcién llamadora.

Precaucion

Un error tipico de programacion es olvidar incluir la sentenciar et ur n o situarla dentro de una
seccion de codigo que NO se ejecute. Sininguna sentenciareturn se ejecuta, entonces el resultado
que devuelve la funcién es impredecible y puede originar que su programa falle o produzca
resultadosincorrectos. Por ejemplo, supongaque se sitla la sentenciareturn dentro de una seccion
de cédigo que se ejecuta condicionalmente, tal como:

Funciones 215

if (Total >= 0.0)
return Total;
Si Tot al es menor que cero, no se ejecuta la sentencia returny el resultado de la funcion es
un valor aleatorio (C puede generar el mensaje de advertencia "Function should return a
value®; que le ayudard a detectar este posible error).

7.2.4. Llamada a unafuncion

Las funciones, para poder ser ejecutadas, han de ser llamadas o invocadas. Cualquier expresion puede
contener una llamada a unafuncion que redirigira el control del programa a la funcién nombrada.
Normalmente la llamada a una funcién se realizara desde la funcién principal main(), aunque
naturalmente también podra ser desde otra funcion.

Nota

La funcion que llama a otra funcidn se denomina funcién llamadora y la funcién controlada se
denominafuncién llamada.

La funcion llamada que recibe el control del programa se ejecuta desde el principio y cuando
termina (se alcanza la sentencia return, o la llave de cierre (1) si se omite r et ur n) el control del
programa vuelve y retorna a la funcion main () o0 a la funcion llamadora si no es main.

funcl ()7 ——— -
func2 (}; e

return O;

}

void funcl () -1

S

void func2 0 w-—m———
{

return;

Figura 7.2. Traza de llamadas de funciones.

216 Programacion en C. Metodologia, algoritmosy estructura de datos

En el siguiente ejemplo se declaran dos funcionesy se llaman desde la funcionmain() .
#i ncl ude <stdio.h>

void funcl (voi d)

{
puts ("Segunda f unci 6n") ;
return;

}

voi d func2 (voi d)

{
puts ("Tercerafuncion");
return;

}

int main()

{
puts ("Primera funci on |l amada main()");
funcl () ; /* Segunda funcién |l amada */
func2 () ; /* Tercera funcién || amada */
puts ("mai n se tern na") ;

return O /* Devuel ve control al sistema */
}

La salida de este programa es:

Primera funci én || anada nmai n{)
Segunda funci é6n
Tercera funci 6n
mai n se termnna

Se puede llamar a una funcién y no utilizar el valor que se devuelve. En esta Illamada a funcion:
func () ; el valor de retorno no se considera. El formato func () sin argumentos es el mas simple. Para
indicar que la llamada a una funcion no tiene argumentos se sitla una palabra reservada voi d entre
paréntesis en la declaracion de la funcién y posteriormente en lo que se denominara prototipo; también,
con paréntesis vacios.

int main()
func() ; /* Llamada a la funcion */
}
voi d func(void) /* Decl araci 6n de la funci én */

{
printf ("Funci 6n sin argunentos \n") ;
}

Precaucion

Mo se puede definir una funcién dentro de otra. Todo codigo de la funcidén debe ser listado
secuencialmente, a lo largo de todo el programa. Antes de que aparczca el cddigo de una funcidn,
debe aparecer la Hove de cierre de la funcidn anierior.

Funciones

217

Ejemplo 7.2
Lafuncién max devuelve el nimero mayor de dos enteros.

#i ncl ude <stdio.h>
int max(int x, int y)
{
if (x <y)
return vy;
el se
return x;
}

int main ()
{
int m n;
do {
scanf ("sd %d", &m&n) ;
printf ("Maximo de %d,%d es %d\n",max(m, n));
}while(m t= 0);
return O

/*l | ampda a max*/

Ejemplo 7.3
Calcular la media aritmética de dos nimeros reales.

#i ncl ude <stdio.h>
doubl e media(double x|, double x2)
{
returni{xl + x2)/2;
}

int main()

{
doubl e num , num2, ned;
printf ("Introducir dos nuneros reales:");
scanf ("$1f %$1f", &numl, &num2)
nmed = media(numl, num2);
printf ("El valor nedio es %.41f \n", ned) ;
return O;

7.3. PROTOTIPOS DE LAS FUNCIONES

La declaracién de una funcién se denomina prototipo. Los prototipos de una funcién contienen la
cabecera de la funcidn, con la diferencia de que los prototipos terminan con un punto y coma.
Especificamente un prototipo consta de los siguientes elementos: nombre de la funcion, una lista de
argumentos encerrados entre paréntesis y un puntoy coma. En C no es estrictamente necesario que una
funcion se declare o defina antes de su uso, no es necesario incluir el prototipo aunque si es
recomendable para que el compilador pueda hacer chequeos en las llamadas a las funciones. Los
prototipos de las funciones llamadas en un programa se incluyen en la cabecera del programa para que

asi sean reconocidas en todo el programa.

——h—

218

Programacioén en C. Metodologia, algoritmos y estructura de datos

C recomienda que se declare una funcion si se llama a la funcion antes de que se defina.

Sintaxis

tipo- retorno nombre—funcidén (lista_de_declaracidn_pardametros) ;

tipo-retorno Tipo del valor devuelto por la funcién o palabra reservada voi d
si no devuelve un valor.
nombre—f uncidén Nombre de la funcidn.

lista_declaracidén_pardmetros Lista de declaracion de los parametros de la funcién, separados
por comas (los nombres de los parametros son opcionales, pero
es buena practica incluirlos para indicar lo que representan).

Un prototipo declara una funcién y proporciona una informacion suficiente al compilador para
verificar que la funcién esté siendo llamada correctamente, con respecto al nimero y tipo de los
parametros y el tipo devuelto por la funcion. Es obligatorio poner un punto y coma al final del prototipo
de la funcion con el objeto de convertirlo en una sentencia.

doubl e FahraCelsius (double tempFahr) ; /* prototipos validos */
int max(int x, int y);

int longitud(int h, int a);

struct persona entrad(void) ;

char* concatenar (char* cl, char* c2);

doubl e intensidad(double, doubl e);

Los prototipos se sitian normalmente al principio de un programa, antes de la definicién de la fun-
cion nai n () . El compilador utiliza los prototipos para validar que el namero y los tipos de datos de
los argumentosreales de la llamada a la funcion son los mismos que el nimero y tipo de argumentos for-
males en la funcién llamada. Si se detecta una inconsistencia, se visualiza un mensaje de error. Sin pro-
totipos, un error puede ocurrir si un argumento con un tipo de dato incorrecto se pasa a una funcion. En
programas complejos, este tipo de errores son dificiles de detectar.

En C, la diferencia entre los conceptos declaracion y dejnicién es preciso tenerla clara. Cuando
una entidad se declara, se proporciona un nombre y se listan sus caracteristicas. Una definicién
proporciona un nombre de entidad y reserva espacio de memoria para esa entidad. Una definicion indica
que existe un lugar en un programa donde «existe» realmente la entidad definida, mientras que una
declaracion es s6lo una indicacion de que algo existe en alguna posicion.

Una declaracién de la funcion contiene sélo la cabecera de la funcion y una vez declarada la
funcién, la definicion completa de la funcion debe existir en algun lugar del programa, antes o después
demain().

En el siguiente ejemplo se escribe una funcion ar ea() de rectdngulo. En la funcién mai n() se
llama a ent r ada() para pedir labase y la altura; a continuacion se llama a la funcién ar ea(} .

#i ncl ude <stdio.h>

float area_rectangulo(float b, float a);/* declaracién */

fl oat entrada(); /* prototipo o declaracién */
int main()
{

float b, h;

printf ("\n Base del rectangulo: ") ;

b = entrada() ; °

printf ("\n Altura del rectangulo: ") ;
h = entrada() :
printf("\n Area del rectangulo: %.2f",area_rectangulo(b,h));

Funciones 219

return O;
}

/* devuel ve nlnero positivo */
float entradaf()
{
float m
do {
scanf ("/%f" ,&m) ;
} while (m<=0.0);
return m
}
/* calcula el area de un rectangulo */

float area_rectangulo(float b, float a)

{
return (b*a);

¥
En este otro ejemplo se declara la funcion media

#i ncl ude <stdio.h>
doubl e nedi a (duble x|, double x2); / *decl ar aci 6n de nedi a*/

int main()

{
nmed = media(numl, num2);

1

doubl e media{double x|, double x2) /* definicién */
{

return (xI + x2)/2;
}

« Declaraciones de una funcion

« Antes de que unafuncién pueda ser invocada, debe ser declarada.
+ Una declaracidn de una funcion contiene sélo la cabecera de la funcién (Ilamado también
prodoripo)

tipo resulcado nombre (tipol paraml, tipoZ param2, ...)7
» Los nombres de los pardmetros se pueden omitir

char* cobiar (char*. imt):
char* copiar (char * buffer, int n);

La comprobacion de tipos es una accidn realizada por el compilador. EI compilador conoce cuales
son los tipos de argumentos que se han pasado una vez que se ha procesado un prototipo. Cuando se
encuentra una sentencia de llamada a una funcién, el compilador confirma que el tipo de argumento en
la llamada a la funcion es el mismo tipo que el del argumento correspondiente del prototipo. Si no son
los mismos, el compilador genera un mensaje de error. Un ejemplo de prototipo:

int procesar(int a, char b, float c, double d, char *e);

El compilador utiliza sélo la informacion de los tipos de datos. Los nhombres de los argumentos,
aunque se aconsejan, no tienen significado; el propdsito de los nombres es hacer la declaracion de tipo%
mas facil para leer y escribir. La sentencia precedente se puede escribir también asi:

)

220 Programacion en C. Metodologia, algoritmos y estructura de datos

w
i int procesar(int, char, float, double, char *)

Si una funcién no tiene argumentos, se ha de utilizar la palabra reservada voi d como lista de
argumentos del prototipo (también se puede escribir paréntesis vacios).

i nt muestra(void) ;

Ejemplos ‘

1./* prototipo de |la funci 6n cuadrado */
doubl e cuadrado (double) ;

int main()

{
doubl e x=11.5;
printf("%6.21f al cuadrado = %$8.41f \n",x,cuadrado(x));
return O

}

doubl e cuadrado (double n)
|

[return n*n;
}

2. /* prototipo de visualizar-nonbre */
voi d visualizar_nombre (char*);

i voi d main()

3 ¢
vi sual i zar - nonbre("Lucas E Fuerte");
}

voi d visualizar_nombre (char* nom
{

printf ("Hol a%s \n",nom) ;
}

7.3.1. Prototipos con un numero no especificado de parametros

Un formato especial de prototipo es aquel que tiene un nimero no especificado de argumentos, que se
representa por puntos suspensivos (...). Por ejemplo,

i Nt muestras(int a, ...);
int printf(const char *formato, ...);
int scanf (const char *formato, ...);

Para implementar una funcion con lista variable de pardmetros es necesario utilizar unas macros
(especie de funciones en linea) que estdn definidas en el archivo de cabecera stdarg.h, por
consiguiente lo primero que hay que hacer es incluir dicho archivo.

#i ncl ude <stdarg_h>

En el archivo estéa declarado el tipo va_1ist ,un puntero para manejar la lista de datos pasada a la
funcion.

val - list puntero;

Funciones 221

La funcidon va- start () inicializa punt er o, de tal forma que referencia al primer parametro
variable. El prototipo que tiene:

void va- start(va— listpuntero,ultimofijo) :

El segundo argumento es el Ultimo argumento fijo de la funcion que se esta implementando. Asi
para la funcién muestras (int a, ...);

va- start (puntero,a) ;

Con la funcion va- arg () se obtienen, consecutivamente, los sucesivos argumentos de la lista
variable. El prototipo que tiene

ti po va_arg(va_list puntero, tipo);

Donde ti po es el tipo del argumento variable que es captado en ese momento, a su vez es el tipo

de dato que devuelve va- ar g () . Para la funcion nuest r as () si los argumentos variables son de tipo
int:

int m
m = va_arg(puntero,int);

La Ultima llamada que hay que hacer en la implementacion de estas funciones es a va- end () . De
esta forma se queda el puntero preparado para siguientes llamadas. El prototipo que tiene va- end () :

void va_end(va_list puntero).

Ejercicio 7.1

Una aplicacion completa de unafuncidn con lista de argumentos variables es maximo(int, ...), que
calcula el maximo de n argumentos de tipo double, donde n es el argumento fijo que se utiliza.

#i ncl ude <stdio.h>
#i ncl ude <stdarg.h>

voi d maximo(int n, ...);

int mai n(void)

{
puts ("\t\tPRIMERA BUSQUEDA DEL MAXIMO\n");
maximo(6,3.0,4.0,-12.5,1.2,4.5,6.4);
put s ("\n\t\tNUEVA BUSQUEDA DEL MAXIMO\n") ;
maximo(4,5.4,17.8,5.9,-17.99) ;
return O

}

voi d maximo(int n, ...)
{
doubl e mx, actual;
va-list puntero;

int i
va_start (puntero,n) ;
MK = actual = va_arg(puntero,double);

printf ("\t\tArgumento actual: %.21f\n",actual);
for (i=2; i<=n; 1i++)
{
actual = va_arg(puntero,double);
printf ("\t\tArgumento actual: %.21f\n",actual);
if (actual > nx)
{

222

7.4.

Programacion en C. Metodologia, algoritmosy estructura de datos

mx = actual ;
}
}
printf ("\t\tMédximo de la lista de %4 nUneros es %.21f\n",n,mx) ;
va_end (puntero) ;

PARAMETROS DE UNA FUNCION

C siempre utiliza el método de parametros por valor para pasar variables a funciones. Para que una
funcién devuelva un valor a través de un argumento hay que pasar la direccion de la variable, y que el
argumento correspondiente de la funcion sea un puntero, es la forma de conseguir en C un paso de
parametro por referencia. Esta seccion examina el mecanismo que C utiliza para pasar parametros a
funciones y como optimizar el paso de pardmetros, dependiendo del tipo de dato que se utiliza.
Suponiendo que se tenga la declaracion de una funcion ci r cul o con tres argumentos

void circulo(int X, int y, int diametro);

Cuando se llama a ci r cul o se deben pasar tres parametros a esta funcion. En el punto de llamada
cada parametro puede ser una constante, una variable o una expresion, como en el siguiente ejemplo:

circulo(25, 40, vueltas*4);

7.4.1. Paso de parametros por valor

Paso por valor (también llamadopaso por copia)significa que cuando C compila la funcién y el cddigo
que llama a la funcion, la funcion recibe una copia de los valores de los pardmetros. Si se cambia el
valor de un parametro variable local, el cambio s6lo afecta a la funcidn y no tiene efecto fuera de ella.
La Figura 7.3 muestra la accion de pasar un argumento por valor. La variable real i no se pasa, pero
el valor de i, 6, se pasa a la funcion receptora.
En la técnica de paso de parametro por valor, la modificacién de la variable (parametro pasado) en
la funcidn receptora no afecta al parametro argumento en la funcion Ilamadora.

main ()
{
irit 1 = 6;

func (1); 6 >
return O; l

printf ("sa" ,i),
144

Figura 7. 3. Paso de la variable i por valor.

Funciones 223

Nota

El método por defecto de pasar parametros es por valor, a menos que Se pasen arrays. Los arrays
se pasan siempre por direccion.

El siguiente programa muestra el mecanismo de paso de parametros por valor.
/*
Muestra el paso de paranetros por val or
Se puede canbiar la variable del paranetro en la funcio6n
pero su nodificaci 6n no puede salir al exterior
*/
#i ncl ude <stdio.h>
voi d DemoLocal (int val or);

voi d nmai n (voi d)
{
int n= 10;
printf("aAntes de |lamar a DenpLocal, n = %d\n",n);
DemoLocal (n) ;
printf ("Después de ||l amada a DenpLocal, n = %d\n",n);
}

voi d DemoLocal (int val or)
{

printf ("Dentro de DenoLocal, val or = %d\n",val or) ;
val or = 999;

printf ("Dentro de DenpoLocal , val or zd\n" ,val or) ;

}
Al ejecutar este programa se visualiza la salida:

Antes de |lamar a DenolLocal, n = 10
Dentro de DenpLocal, valor = 10
Dentro de DenpLocal, valor = 999
Después de |l amar a DenoblLocal, n = 10

7.4.2. Paso de parametros por referencia

Cuando una funcién debe modificar el valor del parametro pasado y devolver este valor modificado a la
funcioén llamadora, se ha de utilizar el método de paso de parametro por referencia o direccidn.

En este método el compilador pasa la direccion de memoria del valor del pardmetro a la funcién.
Cuando se modifica el valor del parametro (la variable local), este valor queda almacenado en la misma
direccion de memoria, por lo que al retornar a la funcion llamadora la direccion de la memoria donde
se almacend el pardmetro contendréa el valor modificado. Para pasar una variable por referencia, el
simbolo & debe preceder al nombre de la variable y el pardmetro variable correspondiente de la funcion
debe declararse como puntero.

float X;

int y;

entrada (&x, &v) ;

voi d entrada(float* X, int* y)

C permite utilizar punteros para implementar parametros por referencia, ya que por defecto en C el
paso de parametros es por valor.

- -

224

Programacion en C. Metodologia, algoritmos y estructura de datos

/* método de paso por referencia, nedi ante punteros */

voi d intercambio(int* a, int* b)
{

int aux = *a;

*a = *b;

*b = aux;

}

En la llamada siguiente, la funcion i nt er canbi o() utiliza las expresiones *ay *b para acceder
a los enteros referenciados por las direcciones de las variables 1y 7 :

int i = 3, 3 = 5O;

printf("i = %dy j = %d \n", 1,]);
i ntercanbi o(&i, &J) ;

printf ("i = %dy j = %d \n", 1,73);

La llamada a la funcién i nt er canbi o() debe pasar las direcciones de las variables intercambiadas.
El operador & delante de una variable significa «dame la direccion de la variable».

doubl e x;
&x /* direccién en nenoria de x */

Una variable, o parametro puntero se declara poniendo el asterisco (*) antes del nombre de la
variable. Las variables p, ry g son punteros a distintos tipos.

char* p; /* variable puntero a char */
int *r; /* variable puntero a int */
doubl e* q; /* variable puntero a double */

7.4.3. Diferenciasentre paso de variables por valor y por referencia

Las reglas que se han de seguir cuando se transmiten variables por valor y por referencia son las
siguientes:

o los parametros valor reciben copias de los valores de los argumentos que se les pasan;

o la asignacion a parametros valor de una funcién nunca cambian el valor del argumento original
pasado a los parametros;

o los parametros para el paso por referencia (declarados con *, punt er os) reciben la direccion de
los argumentos pasados; a estos les debe de preceder del operador &, excepto los arrays;

o en una funcién, las asignaciones a parametros referencia (punteros) cambian los valores de los
argumentos originales.

Por ejemplo, la escritura de una funcién potrat () para cambiar los contenidos de dos variables,
requiere que los datos puedan ser modificados.

Paso por valor

float a, b;

potratl (float x,float y)
{

}

Paso par referencia

float a, b;

potrat2 (float* x,float* y)
{

1

So6loen el caso de potrat2 los valores de a 'y b se cambiaran. Veamos una aplicacién completa de

ambas funciones:

#i ncl ude <stdio.h>
#i ncl ude <math.h>

Funciones 225

voi d potratl(float, float);
voi d potrat2 (float*, fl oat*)

voi d mai n()

{
float a, b;
a=5.0; b =1.0e2;
potratl (a, b) ;
printf("\n a =
potrat2 (a, b) ;
printf("\n a =

}

voi d potratl (float x, float y)
{

X = xX*x;

Y = sart(y);

L1 b o=

o0
oe

L1E" a,b);

=
©

L1 b = %.1F",a,b);

voi d potrat2 (float* x, float* y)

-

*X o= (*X)*(*X);

*y = sqrt (*y) ;

La ejecucion del programa produciré:

a=50b=100.0 J
a=250b=10.0
Nota

Todos los pardmetros en C se pasan por valor. C no tiene pardmetros por referencia, hay que
hacerlo con punteros y el operador &.

Se puede observar en el programa cémo se accede a los punteros, el operador * precediendo al
parametro puntero devuelve el contenido.

7.4.4. Pardmetrosconst de unafunciéon

Con el objeto de afiadir seguridad adicional a las funciones, se puede afiadir a una descripcion de un
parametro el especificador const , que indica al compilador que sélo es de lectura en el interior de la
funcidn. Si se intenta escribir en este pardmetro se producird un mensaje de error de compilacion.

void fl(const int, const int*);
void £2(int, int const*);

void fl(const int X, const int* y)
{

X = 10; /* error por canbiar un objeto constante*/
y = 11; / error por canbiar un objeto constante*/
Yy = &X; /* correcto */

}

void f2(int X, int const* Yy)
I

x = 10; /* correcto */
y = 11; [error */
Yy = &X%; /* correcto */

226 Programacion en C. Metodologia, algoritmosy estructura de datos

La Tabla 7.1 muestra un resumen del comportamiento de los diferentes tipos de parametros.

Tabla 7.1. Paso de parametros en C.

Paradmetro especificadocomo: Item pasado por ~ Cambiaitem dentro Modifica pardmetros

de la funcion al exterior
int item valor Si NO
const int item valor NO No
int* item por direccion Si Si
const int* item por direccion No su contenido NO

7.5. FUNCIONES EN LINEA, MACROS CON ARGUMENTOS

Una funcién normal es un bloque de cédigo que se llama desde otra funcion. EI compilador genera !
codigo para situar la direccion de retorno en la pila. La direccion de retorno es la direccion de la |
sentenciaque sigue a la instruccion que llama a la funcion. A continuacidn, el compilador genera codigo

que sitda cualquier argumento de la funcion en la pila a medida que se requiera. Por altimo, el
compilador genera una instruccion de Illamada que transfiere el control a la funcién.

float fesp(float Xx)

{
return (x*x + 2*x -1);

}

Las funciones en linea sirven para aumentar la velocidad de su programa. Su uso es conveniente
cuando la funcién es una expresion, su codigo es pequefio y se utiliza muchas veces en el programa.
Realmente no son funciones, el preprocesador expande o sustituye la expresion cada vez que es llamada.
Asi la anterior funcién puede sustituirse:

#define fesp(x) (x*x + 2*x -1)
En este programa se realizan calculos de la funcién para valores de x en un intervalo.

#i ncl ude <stdio.h>
#defi ne fesp(x) (x*x + 2*x -1)

voi d main{()

{
float Xx;
for (x = 0.0; X <=6.5; =
printf ("\t f(2.1f) = %6.2f ",x, fesp(x));

}

Antes de que el compilador construya el codigo ejecutable de este programa, el preprocesador
sustituye toda llamada a fexp (x) por la expresién asociada. Realmente es como si hubiéramos escrito

printf("\t £(%.1f) = %6.2f ",x, (x*x + 2*x -1));

Para una macro con argumentos (funcién en linea),el compilador inserta realmente el cédigo en el
punto en gue se llama, esta accion hace que el programa se ejecute mas rapidamente, ya que no ha de
ejecutar el codigo asociado con la llamada a la funcién.

Sin embargo, cada invocacion a una macro puede requerir tanta memoria como se requiera para
contener la expresion completa que representa. Por esta razdn, el programa incrementa su tamafio,
aunque es mucho mas rapido en su ejecucion. Si se llama a una macro diez veces en un programa, el
compilador inserta diez copias de ella en el programa. Si la macrofuncion ocupa 0.1K, el tamafio de su
programa se incrementa en | K (1024 bytes). Por el contrario, si se llama diez veces a la misma funcién

Funciones 227

Macos con

| !
argumentos (funcién | Programa Funciones
| en linea) se inserta comunes se laman
' directamente | ——} normalmente
T T | Sentencias [S — :
| V4
™
F . oy e =
Sentencias

Figura7.4. Co6digo generado por una funcién fuera de linea.

con una funcién normal, y el codigo de llamada suplementario es 25 bytes por cada llamada, el tamafio
se incrementa en una cantidad insignificante.
La Figura 7.5 ilustra la sintaxis general de una macro con argumentos.

#def i ne NombreMacro (pardmetros Sin tipos) expresioén-texto

REQ_A: La definicion de una macro s6lo puede ocupar una linea. Se puede prolongar la linea
con el carécter \ ai final de la linea.

Figura7.5. Cédigo de una macro con argumentos.

La Tabla 7.2 resume las ventajas y desventajas de situar un codigo de una funcién en una macro o
fuera de linea (funcion normal):

Tabla 7.2. Ventajas y desventajas de macros.

Ventajas Desventajas
Macros (funcionesen linea) Répida de ejecutar. Tamafio de codigo grande.
Funcionesfuera de linea Pequefio tamafio de cédigo. Lenta de ejecucion.

7.5.1. Creacion de macros con argumentos

Para crear una macro con argumentos utilizar la sintaxis:
#def i ne NombreMacro (pardmetros sin tipos) expresioon-texto

La definicion ocupara sélo una linea, aunque si se necesitan mas texto, situar una barra invertida (\) al
final de la primera linea y continuar en la siguiente, en caso de ser necesarias mas lineas proceder de
igual forma; de esa forma se puede formar una expresién mas compleja. Entre el nombre de la macro y
los paréntesis de la lista de argumentos no puede haber espacios en blanco. Por ejemplo, la funcidn
media de tres valores se puede escribir:

#defi ne MEDIA3 (x,vy,z) ((x) + (y) + (2))/3.0

228 Programacién en C. Metodologia, algoritmos y estructura de datos

En este segmento de cdédigo se invoca a MEDI A3

double a = 2. 9;
printf("\t %1f ", MEDIA3(a,4.5,7));

En esta llamada a MEDI A3 se pasan argumentos de tipo distinto. Es importante tener en cuenta que
en las macros con argumentos no hay comprobacién de tipos. Para evitar problemas de prioridad de
operadores, es conveniente encerrar entre paréntesis cada argumento en la expresion de definicion e
incluso encerrar entre paréntesis toda la expresion.

En la siguiente macro, la definicion de la expresion ocupa mas de una linea.

#define FUNCION3 (x) { \
if (({x) <-1.0) \

(- (x)*(x) +3); \

else if ((x)<=1) \

(2*(x)+5); \

el se \

((x)*(x)-5); \

}

Al tener la macro mas de una sentencia, encerrarla entre llaves hace que sea una sola sentencia,
aunque sea compuesta.

Ejercicio 7.2

Una aplicaciéon completa de una macro con argumentos es volCono (}, que calcula el volumen de la
figura geométrica Cono.

1
(V=Farh)

#include <stdio.h>
#define Pi 3.141592

#define VOLCONO(radio,altura) ((Pi*(radio*radio)*altura)/3.0)

int main ()

{
float radi o, altura, vol unen;

printf ("\nIntroduzca radi o del cono: ") ;

scanf ("$f", &radio) ;

printf ("I ntroduzcaaltura del cono: ") ;

scanf ("sf", &l tura) ;

vol unen = VOLCONO (radio, altura);

printf ("\nkEl vol unmen del cono es: %.2f",volumen);
return O;

7.6. AMBITO (ALCANCE)

El ambito o alcance de una variable determina cuales son las funciones que reconocen ciertas variables.
Si una funcién reconoce una variable, la variable es visible en esa funcion. EI &mbito es la zona de un
programa en la que es visible una variable. Existen cuatro tipos de ambitos: programa, archivofiente,
funcién y bloque. Se puede designar una variable para que esté asociada a uno de estos ambitos. Tal
variable es invisible fuera de su &mbito y sélo se puede acceder a ella en su &mbito.

Funciones 229

Normalmente la posicion de la sentencia en el programa determina el &mbito. Los especificadores
de clases de almacenamiento, static, extern, autoy register,pueden afectar al ambito. El
siguiente fragmento de programa ilustra cada tipo de dmbito:

int i: /* Anmbito de programa */
static int j; /* Anbito de archivo */
float func(int k) /* k, anbito de funcién */
{

int m /* Anbito de bl oque */

7.6.1. Ambito del programa

Las variables que tienen ambito de programa pueden ser referenciadas por cualquier funcién en el
programa completo; tales variables se llaman variables globules. Para hacer una variable global,
declarela simplemente al principio de un programa, fuera de cualquier funcion.

int g, h; /* variabl es gl obal es */
mai n ()

{

}

Una variable global es visible («se conocen) desde su punto de definicion en el archivo fuente. Es
decir, si se define una variable global, cualquier linea del resto del programa, no importa cuantas
funciones y lineas de cédigo le sigan, podra utilizar esa variable.

#i ncl ude <stdio.h>
#i ncl ude <math.h>

float ventas, beneficios; /* variabl es gl obal es */
void f3(void)

}

void fl(void)
| {

3

voi d main ()
{

Consejo

Declare todas las variables en la parte superior de su programa. Aunque se pueden definir tales
variables entre dos funciones, podria realizar cualquier cambio en su programa de modo méas
réapido, si sitdal as variables globales al principio del programa.

I — N

230 Programacion en C. Metodologia, algoritmos y estructura de datos

7.6.2. Ambito del archivo fuente

Una variable que se declara fuera de cualquier funcién y cuya declaracion contiene la palabra reservada
st at i c tiene &mbito de archivo fuente. Las variables con este ambito se pueden referencia desde el
punto del programa en que estan declaradas hasta el final del archivo fuente. Si un archivo fuente tiene
maés de una funcién, todas las funciones que siguen a la declaracién de la variable pueden referenciarla.
En el ejemplo siguiente, i tiene &mbito de archivo fuente:

static int i;

void func(void)

{

}

7.6.3. Ambito de unafuncién

Una variable que tiene ambito de una funcién se puede referenciar desde cualquier parte de la funcion.
Las variables declaradas dentro del cuerpo de la funcion se dice que son locales a la funcion. Las
variables locales no se pueden utilizar fuera del &mbito de la funcion en que estan definidas.

voi d calculo{void)

{
double X, r, t ; /* Anbito de la funcion */

7.6.4. Ambito de bloque

Una variable declarada en un bloque tiene ambito de bloque y puede ser referenciada en cualquier parte
del bloque, desde el punto en que esta declarada hasta el final del bloque. Las variables locales
declaradas dentro de una funcidn tienen ambito de bloque de la funcion; no son visibles fuera del bloque.
En el siguiente ejemplo, i es una variable local:

voi d funcl (int x)
{

int i;
for (i = X; | < =x+10; i++)
printf ("t = %d \n",1*1) ;

i
Una variable local declarada en un bloque anidado s6lo es visible en el interior de ese bloque.

float func(int j)
{
if (3 = 3)
|
int i;
for (i = 0; i < 20; i++)
funcl (i) ;
}
/* aqui ya no es visible i */
}i

Funciones 231

7.6.5. Variables locales

Ademas de tener un &mbito restringido, las variables locales son especiales por otra razén: existen en
memoria sélo cuando la funcidn esté activa (es decir, mientras se ejecutan las sentencias de la funcion).
Cuando la funcion no se esta ejecutando, sus variables locales no ocupan espacio en memoria, ya que
no existen. Algunas reglas que siguen las variables locales son:

e Los nombres de las variables locales no son Gnicos. Dos 0 mas funciones pueden definir la misma
variable t est . Cada variable es distinta y pertenece a su funcion especifica.

« Las variables locales de las funciones no existen en tnemoria hasta que se ejecute la funcion. Por
esta razon, maltiples funciones pueden compartir la misma memoria para sus variables locales
(pero no al mismo tiempo).

7.7. CLASES DE ALMACENAMIENTO

Los especificadores de clases (tipos) de almacenamiento permiten modificar el ambito de una variable.
Los especificadores pueden ser uno de los siguientes: aut o, extern, register, static y
t ypedef .

7.7.1. Variables automaticas

Las variables que se declaran dentro de una funcidon se dice que son automaticas (auto), significando
que se les asigna espacio en memoria automaticamente a la entrada de la funcion y se les libera el
espacio tan pronto se sale de dicha funcidn. La palabra reservada aut o es opcional.

auto int Total; es igual que int Total;
Normalmente no se especifica la palabra aut o.

7.7.2. Variables externas

A veces se presenta el problema de que una funcién necesita utilizar una variable que osra funcion
inicializa. Como las variables locales sélo existen temporalmente mientras se esta ejecutando su funcion,
no pueden resolver el problema. ;Cémo se puede resolver entonces el problema? En esencia, de lo que
se trata es de que una funcidn de un archivo de cédigo fuente utilice una variable definida en otro
archivo. Una solucién es declarar la variable local con la palabra reservada ext er n. Cuando una variable
se declara externa, se indica al compilador que el espacio de la variable esta definida en otro lugar.

/* variables externas: parte 1 */
/* archivo fuente exterl.c */
#i ncl ude <stdio.h>

extern void leerReal(void);/* funcioén definida en otro archivo; en este
caso no es necesario extern */

float f;

int main()

{
leerReal () ;
printf ("Val or de f = 2f",f);
return O;

232 Programacioén en C. Metodologia, algoritmos y estructura de datos

/*variabl es externas: parte 2 */
/* archivo fuente exter2.c */
#i ncl ude <stdio.h>

voi d leerReal (void)

{
extern float f;

printf ("Introduzca valor en coma flotante: ");
scanf ("%f",&f);
}

En el archivo EXTER2 .C la declaracion externa de f indica al compilador que f se ha definido en
otra parte (archivo). Posteriormente, cuando estos archivos se enlacen, las declaraciones se combinan de
modo que se referiran a las mismas posiciones de memoria.

7.7.3. Variables registro

Otro tipo de variable C es la variable registro. Precediendo a la declaracién de una variable con la

palabra reservada r egi st er, se sugiere al compilador que la variable se almacene en uno de los

! registros hardware del microprocesador. La palabra register es una sugerencia al compilador y no una
orden. La familia de microprocesadores 80x86 no tiene muchos registros hardware de reserva, por lo que
el compilador puede decidir ignorar sus sugerencias. Para declarar una variable registro, utilice una
declaracion similar a:

register int k;

Una variable registro debe ser local a una funcion, nunca puede ser global al programa completo.

El uso de la variable r egi st er no garantiza que un valor se almacene en un registro. Esto sélo
sucedera si existe un registro disponible. Si no existen registros suficientes, C ignora la palabra reservada
regi st er y crea la variable localmente como ya se conoce.

Una aplicacion tipica de una variable registro es como variable de control de un bucle. Guardando
la variable de control de un bucle en un registro, se reduce el tiempo que la CPU requiere para buscar
el valor de la variable de la memoria. Por ejemplo,

regi ster int indice;
for (indice= 0; indice < 1000; indice++) ...

7.7.4. Variables estaticas

Las variables estaticas son opuestas, en su significado, a las variables automaticas. Las variables
estaticas no se borran (no se pierde su valor) cuando la funcion termina y, en consecuencia, retienen
sus valores entre llamadas a una funcidn. Al contrario que las variables locales normales, una variable
st at i c seinicializa sélo una vez. Se declaran precediendo a la declaracion de la variable con la palabra
reservada st ati c.

func_uno (}

{ - .
int i;
static int j 25; /*j, k variabl es estdticas */
static int k = 100;

i

}
Las variables estéticas se utilizan normalmente para mantener valores entre llamadas a funciones.

h—

Funciones 233

float ResultadosTotales (float val or)

{
static float sunmm;

suma = suma + val or;

return sum;
!

En la funcion anterior se utiliza suna para acumular sumas a través de sucesivas llamadas a
rResult adosSot ales.

Ejercicio 7.3
Una aplicacién de una variable static en una funcién es la que nospermite obtener la serie de niimeros
de fibonacci. El ejercicio lo plantearnos: dado un entero n, obtener los n primeros nimeros de /a serie

de fibonacci.

Analisis

La secuencia de nimeros de fibonacci: O, I, 1, 2, 3, 5, 8, 13..., se obtiene partiendo de los nimeros 0,
1y a partir de ellos cada nimero se obtiene sumando los dos anteriores:

a,=d,,+4a,.

"

La funcion fibonacci tiene dos variables estéticas, x e y . Se inicializanx aOey a [; a partir de esos
valores se calcula el valor actual, y, se deja preparado x para la siguiente llamada. Al ser variables
estaticas mantienen el valor entre llamada y llamada.

#i ncl ude <stdio.h>
long int fibonacci();
int main()
{
int n,i;
printf ("\nCuantos numeros de fibonacci ?2: ") ;
scanf ("sa",&n) ;
printf ("\nSecuencia de fibonacci: 0,1") ;
for (i=2; i<n; 1++)
printf (",%1d", fibonacci());
return O;
}
long int fibonacci()
{
static int x = O
static int y = 1;

y =Y + X
X =y - X
returny;
}
Ejecucion

Quant os nuneros de fibonacci ? 14
Secuenci a de fibonacci: 0,1,1,2,3,5,8,13,21,34,55,89,144,233

234

7.8.

7.9.

Programacion en C. Metodologia, algoritmos y estructura de datos

CONCEPTOY USO DE FUNCIONES DE BIBLIOTECA

Todas las versiones del lenguaje C ofrecen con una biblioteca estandar de funciones en tiempo de
gjecucion que proporcionan soporte para operaciones utilizadas con mas frecuencia. Estas funciones
permiten realizar una operacion con sélo una llamada a la funcién (sin necesidad de escribir su cédigo
fuente).

Lasfunciones estdndar 0 predefinidas, como asi se denominan las funciones pertenecientes a la
biblioteca estandar, se dividen en grupos; todas las funciones que pertenecen al mismo grupo se declaran
en el mismo archivo de cabecera.

Los nombres de los archivos de cabecera estandar utilizados en nuestro programa se muestran a
continuacién encerrados entre corchetes tipo angulo:

<assert.h> <ctype.h> <errno.h- <f| oat . h>

<limits.h> <mat h.h> <setjmp.h> <si gnal .h>
<stdarg.h> <stdef.h> <stdio.h> <string.h>
<time.h>

En los moédulos de programa se pueden incluir lineas #i ncl ude con los archivos de cabecera
correspondientes en cualquier orden, y estas lineas pueden aparecer mas de una vez.

Para utilizar una funcién o un macro, se debe conocer su nimero de argumentos, sus tipos y el tipo
de sus valores de retorno. Esta informacion se proporcionara en los prototipos de la funcién. La
sentencia #i ncl ude mezcla el archivo de cabecera en su programa.

Algunos de los grupos de funciones de biblioteca mas usuales son:

o E/S estdndar (para operaciones de Entrada/Salida);

o Mmatematicas (para operaciones matematicas);

o rutinas estandar (para operaciones estandar de programas);

o Vvisualizar ventana de texto;

o de conversion (rutinas de conversion de caracteres y cadenas);
o de diagndstico (proporcionan rutinas de depuracién incorporada);
o de manipulacion de memoria;

o control del proceso;

o clasificacidn (ordenacion);

o directorios;

o fechay hora;

o de interfaz;

o diversas;

o busqueda;

o manipulacion de cadenas;

o gréficos.

Se pueden incluir tantos archivos de cabecera como sean necesarios en sus archivos de programa,
incluyendo sus propios archivos de cabecera que definen sus propias funciones.
En este capitulo se estudiaran las funciones mas sobresalientes y mas utilizadas en programacion.

FUNCIONES DE CARACTER

El archivode cabecera <CTYPE .H> define un grupo de funciones/macros de manipulacién de caracteres.
Todas las funciones devuelven un resultado de valor verdadero (distinto de cero) o falso (cero).

Para utilizar cualquiera de las funciones (Tabla 7.3) no se olvide incluir el archivo de cabecera
CTYPE .H en la parte superior de cualquier programa que haga uso de esas funciones.

Funciones 235

Tabla 7. 3. Funciones de caracteres.

Funcién Prueba (test) de

i nt .i salpha(int <) Letra mayuscula o minuscula.

int isdigit(int c) Digito decimal.

int isupper(int c) Letra mayuscula (A-2Z).

int islower (int c) Letra mindscula (a-2).

int isalnum(int c) letra o digito; isalphaf(c)!|lisdigit(c)

int iscntrl(int c) Caracter de control.

int isxdigit(int c) Digito hexadecimal.

int isprint(int c¢) Caréacter imprimible incluyendo ESPACIO.

int isgraph(int c) Carécter imprimible excepto ESPACIO.

int isspace(int c) ESPACIO, AVANCE DE PAGINA, NUEVA LINEA, RETORNO DE
CARRO, TABULACION, TABULACION VERTICAL.

int ispunct (int <) Carécter imprimible no espacio, digito o letra.

int toupper(int c) Convierte a letras mayusculas.

int tolower (int c) Convierte a letras minusculas.

7.9.1. Comprobacion alfabéticay de digitos

Existen varias funciones que sirven para comprobar condiciones alfabéticas:

isalpha(c)

Devuelve verdadero (distinto de cero) si ¢ es una letra mayuUscula o minuscula. Se devuelve un
valor falso si se pasa un caracter distinto de letra a esta funcion.

islower(c)

Devuelve verdadero (distinto de cero) si ¢ es una letra mindscula. Se devuelve un valor falso (0),
si se pasa un caracter distinto de una minuscula.

isupper(c)

Devuelve verdadero (distinto de cero) si c es una letra mayuscula, falso con cualquier otro
carcter.

Las siguientes funciones comprueban caracteres numéricos:

isdigit(c)

Comprueba si ¢ es un digito de 0 a 9, devolviendo verdadero (distinto de cero) en ese caso, y
falso en caso contrario.

isxdigit (c)

Devuelve verdadero si c es cualquier digito hexadecimal (0 a9, Aa F, obien aa f)Yy falso en
cualquier otro caso.

Las siguientes funciones comprueban argumentos numeéricos o alfabéticos:

isalnum(c)
Devuelve un valor verdadero, si c es un digito de 0 a 9 o un caracter alfabético (bien mayuscula
o mindscula) y falso en cualquier otro caso.

236 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 7.4

Leer un cardcter del tecladoy comprobarsi es una letra.
/*

Solicita iniciales y conprueba que es alfabética

*/
#i ncl ude <stdio.h>
#i ncl ude <ctype.h>

int main ()

{

char inicial;
printf(":Cual €S su prinmer caracter inicial?: ");
scanf ("%c" ,&inicial) ;
while (!isalpha(inicial))
{
puts ("Caracter no al fabético ") ;
printf (":Ccudl es su siguiente inicial?: ");
scanf ("$c", &inicial) ;
}
puts (";Terminado!") ;
return O

7.9.2. Funciones de prueba de caracteres especiales

Algunas funciones incorporadas a la biblioteca de funciones comprueban caracteres especiales,
principalmente a efectos de legibilidad. Estas funciones son las siguientes:

iscntrl(c)

Devuelve verdadero si c es un caracter de control (codigos ASCII 0 a 31) y falso en caso
contrario.

isgraph(c)

Devuelve verdadero si c es un caracter imprimible (no de control) excepto espacio; en caso
contrario, se devuelve falso.

isprint(c)

Devuelve verdadero si ¢ es un caracter imprimible (cédigo ASCII 32 a 127) incluyendo un
espacio; en caso contrario, se devuelve falso.

ispunct (c)

Devuelve verdadero si c es cualquier caracter de puntuacién (un caracter imprimible distinto de
espacio, letra o digito); falso, en caso contrario.

isspace(c)

Devuelve verdadero si ¢ es caracter un espacio, nueva linea (\ n), retorno de carro (\r),
tabulacion (\t) o tabulacion vertical (\v).

7.9.3. Funciones de conversidon de caracteres

Existen funciones que sirven para cambiar caracteres mayusculas a mindsculas o viceversa.

t ol ower (c¢)
Convierte el caracter ¢ a minuascula, si ya no lo es.
toupper(c)
Convierte el caracter c a mayuscula, si ya no lo es.

Funciones

237

Ejemplo 7.5
El programa MAYMIN1 .C comprueba si la entrada es una Vo una H.

#i ncl ude <stdio.h>
#i ncl ude <ctype.h>

int main ()

{
char resp; /* respuesta del usuario */
char c;

printf ("¢Es un varén o una henbra (v/H)?: ") ;
scanf ("%c", &resp) :
resp=toupper (resp) ;
switch (resp)
{
case 'V':
puts ("Es un enfernero") ;
br eak;
case ‘H':
puts ("Es una maestra") ;
br eak;
defaul t:
puts ("No es ni enfernero ni maestra") ;
br eak;
}
return O

7.10. FUNCIONES NUMERICAS

Virtualmente cualquier operacion aritmética es posible en un programa C. Las funciones matematicas

disponibles son las siguientes:

o Matematicas;
trigonométricas;
o logaritmicas;

o exponenciales;
o aleatorias.

]

La mayoria de las funciones numéricas estan en el archivo de cabecera MATH. H, las funciones abs
y | abs estan definidas en MATH HYy STDLI B.H, y lasrutinas divy | diven STDLIB.H.

7.10.1. Funciones matematicas

Las funciones matematicas usuales en la biblioteca estandar son:

e ceil (x)

Redondea al entero méas cercano.
e fabs(x)

Devuelve el valor absoluto de x (un valor positivo).
e floor(x)

Redondea por defecto al entero méas proximo.

238 Programacion en C. Metodologia, algoritmos y estructura de datos

e fmod(x, V)
Calcula el resto f en coma flotante para la divisién x/y, de modo que x = i*y+f, donde i es un
entero, f tiene el mismo signo que x y el valor absoluto def es menor que el valor absoluto de y.
e pow(x, Y)
Calcula x elevado a la potenciay (x'). Si x es menor que o igual a cero, y debe ser un entero. Si x
es igual a cero,y no puede ser negativo.
e powl0(x)
Calcula 10elevado a la potencia x (10);x debe ser de tipo entero.
e sqgrt(x)
Devuelve la raiz cuadrada de x; x debe ser mayor o igual a cero.

7.10.2. Funcionestrigonométricas

La biblioteca de C incluye una serie de funciones que sirven para realizar calculos trigonométricos. Es
necesario incluir en su programa el archivo de cabecera MATH. H para utilizar cualquier funcion.

e acos(x)
Calcula el arco coseno del argumento x. El argumento x debe estar entre -1y 1.
e agin(x)
Calcula el arco seno del argumento x. El argumento x debe estar entre -1y 1.
e atan (x)
Calcula el arco tangente del argumento x.
e atan2(x,y)
Calcula el arco tangente de x dividido por y.
e cos(x)
Calcula el coseno del angulo x ; x se expresa en radianes.
e sin(x)
Calcula el seno del dangulo x; x se expresa en radianes.
e tan (x)
Devuelve la tangente del angulo x ; x se expresa en radianes.

Regla

Si necesita pasar un angulo expresadoen grados a radianes, para poder utilizarlocon las funciones
trigonométricas, multiplique los grados por pi/180, donde pi = 3.14159.

7.10.3. Funciones logaritmicasy exponenciales

-

Las funciones logaritmicas y exponenciales suelen ser utilizadas con frecuencia no sdlo en matematicas,
sino también en el mundo de la empresa y los negocios. Estas funciones requieren también el archivo
de inclusion MATH. H.

e exp(x), expl(x)
Calcula el exponencial e ,donde e es la base de logaritmos naturales de valor 2.7 18282.

valor = exp (5.0) ;

Una variante de esta funcion es exp1, que calcula e utilizando un valor long doubl e (largo
doble).

Funciones 239

e log(x), logl(x)
La funcién | og calcula el logaritmo natural del argumento x y 10g1 (x) calcula el citado
logaritmo natural del argumento x de valor Tong doubl e (largo doble).

e 1loglO(x), loglOl(x)
Calcula el logaritmo decimal del argumento x, de valor real double en 1cg10 (%) y de valor real
long doubl een 1ogl01 (x) ; x ha de ser positivo.

7.10.4. Funciones aleatorias

Los nameros aleatorios son de gran utilidad en numerosas aplicaciones y requieren un trato especial en
cualquier lenguaje de programacion. C no es una excepciony la mayoria de los compiladores incorporan
funciones que generan ndmeros aleatorios. Las funciones usuales de la biblioteca estandar de C son:
rand, random randomi ze y srand. Estas funciones se encuentra en el archivo STDLTBE . H.

e rand(void)

La funcién rand genera un numero aleatorio. El numero calculado por r and varia en el rango
entero de O a RAND—MAX. La constante RAND- MAX se define en el archivo stpLTr. 1 en forma
hexadecimal (por ejemplo, 7FFF). En consecuencia, asegurese incluir dicho archivo en la parte superior
de su programa.

Cada vez que se llamaarand () en el mismo programa, se obtiene un nimero entero diferente. Sin
embargo, si el programa se ejecuta una y otra vez, se devuelven el mismo conjunto de niameros
aleatorios. Un método para obtener un conjunto diferente de nimeros aleatorios es llamar a la funcion
srand() 0 ala macrorandoni ze.

La llamada a la funcion rand() se puede asignar a una variable o situar en la funcién de salida

printf ().

test = rand() ; e
printf ("Este es un nlnero aleatorio %d\n",rand(}) ; !

¢ randomize(void)

La macro r andomi ze inicializa el generador de numeros aleatorios con una semilla aleatoria
obtenida a partir de una llamada a la funcién ti ne. Dado que esta macro llama a la funcion ti ne, el
archivo de cabecera T1ME. H se incluird en el programa. No devuelve ningidn valor.

/* progrnma para generar 10 nlmeros aleatorios */
#i ncl ude <stdio.h>

#i ncl ude <stdlib.h>

#i ncl ude <time.h>

#i ncl ude <conio.h>

¥nt main (voi d)
. . |
int i;
clrscr(); /* linpia la pantalla */
random ze() ;
for (i=1; i<=10; i++)
printf ("% “Srand()) ;

return O;
}
e srand(semilla)

La funcidén sr and inicializa el generador de nimeros aleatorios. Se utiliza para fijar el punto de
comienzo para la generacion de series de nimeros aleatorios; este valor se denomina semi 11a.

240 Programacion en C. Metodologia, algoritmos y estructura de datos

Siel valor de seni 11a es 1, se reinicializa el generador de nimeros aleatorios. Cuando se llama
a la funcion r and antes de hacer una llamada a la funcion sr and, se genera la misma secuencia
que si se hubiese Ilamado a la funcién sr and con el argumento seni 1l atomando el valor 1.

e random(num)

La macro r andomgenera un nimero aleatorio dentro de un rango especificado (0 y el limite
superior especificado por el argumento nun). Devuelve un nimero entero entre O y num-1.

/*
progranma para generar encontrar e mayor de 10 nuneros al eatorios
entre Oy 1000

*/

#i ncl ude <stdio.h>

#i ncl ude <stdlib.h>

#i ncl ude <time.h>

#i ncl ude <conio.h>

#defi ne TOPE 1000

#define MAX(x,y) ({x)>({y)?(x):(y))

int main(void)
{

int mx,i;

clrscr();
random ze() ;
MK = random (TOPE) ;
for (i=2; i<=10; i++)
{
int y;
Yy = random{(TOPE) ;
N = MAX(mxX,v);
}
printf("E1 mayor nunmero al eatori o generado: %d", nx);
return O;

1

En este otro ejemplo de generacion de numeros aleatorios, se fija la semilla en 50 y se genera un
namero aleatorio.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <conio.h>
int main(void)
{
clrscr () ;
srand (50) ;
printf ("Este es un nUnero al eatorio: %d",rand());
return O

7.11. FUNCIONES DE FECHA'Y HORA

La familia de microprocesadores 80x86 tiene un sistema de reloj que se utiliza principalmente para
controlar el microprocesador, pero se utiliza también para calcular la fechay la hora.

El archivo de cabecera TI ME. H define estructuras, macrosy funciones para manipulacion de fechas
y horas. La fecha se guarda de acuerdo con el calendario gregoriano.

Funciones 241

Las funcionesti ne, cl ock, _strdatey _strtime devuelven la hora actual como el nimero de
segundos transcurridos desde la medianoche del 1 de enero de 1970 (hora universal, GMT), el tiempo

de CP

U empleado por el proceso invocante, la fecha y hora actual, respectivamente.

La estructura de tiempo utilizada incluye los miembros siguientes:

st
I

I

ruct tm

int tm_sec; /* segundos */

int tm_min; /* mnutos */

int tm_hour; /* horas */

int tm_mday; /* dia del mes 1 a 31 */

int tm_mon; /* mes, 0 para Ene, 1 para Feb, ... */

int tm_year; /* afio desde 1900 */

int tm_wday; /* dias de |la semana desde domi ngo (0-6) */
int tm day; /* dia del afio desde el 1 de Ene(0-365) */
int tm_isdt; /* sienpre O para gntine */

cl ock (voi d)

La funcion cl ock determina el tiempo de procesador, en unidades de click, transcurrido desde el
principio de la ejecucién del programa. Si no se puede devolver el tiempo de procesador se
devuelve —1.

inicio = clock();
fin = clock();
ti me(hora)
La funcién t i me obtiene la hora actual; devuelve el nimero de segundos transcurridos desde la
medianoche (00:00:00) del 1 de enero de 1970. Este valor de tiempo se almacena entonces en la
posicion apuntada por el argumento hora. Si hora es un puntero nulo, el valor no se almacena. El
prototipo de la funcién es:

time-t tinme(tine-t *hora) ;

El tipo time_h esta definido comotipo | ong entime .h.

localtime (hora)
Convierte la fecha y hora en una estructura de tipo t m. Su prototipo es

struct tm*localtime(const time-t *tptr);

e mktime(t)

Convierte la fecha en formato de calendario. Toma la informacién del argumento y determina
los valores del dia de la semana (tm_wday) Y del dia respecto al inicio del afio, también conocido
como fechajuliana (tm_yday). Su prototipo es

tinme-t mktime(struct tm *tptr)
La funcién devuelve -1 en caso de producirse un error.
En este ejercicio se pide el afio, mes y dia; escribe el dia de la semana y los dias pasados

desde el 1de enero del afio leido. Es utilizado un array de cadenas de caracteres, su estudio se hace
en capitulos posteriores.

#i ncl ude <stdio.h>
#i ncl ude <time.h>

char *dias[] = { " ","Lunes", "Martes", "Miercoles",
"Jueves", "Vi ernes", "Cabado","Dom ngo"} ;

int mai n(void)
!

242 Programacion en C. Metodologia, algoritmos y estructura de datos

struct tm fecha;
int anyo, nes, dia;

/* Entrada: afio, mes y dia */
printf ("Afo: ") ;

scanf ("¢d", s&anyo) ;
printf("Mes: ") ;

scanf ("3d", s&mes) ;
printf("Dia: ") ;

scanf ("$d", &dia) ;

/* Asigna fecha a la estructura fecha, en fornato establ ecido */

fecha.tm_year = anyo - 1900;

fecha.tm_mon = nMes - 1;
fecha.tm_mday = di a;
fecha.tm_hour = O;
fecha.tm_min = O;
fecha.tm_sec = 1;
fecha.tm_isdst = -1;

/* nktine encuentra el dia de la semana y el dia del aifio.
Devuel ve -1 si error.
*/
if (nktinme(& echa) == -1)
{
puts(" Error en la fecha.") ;
exit (-1);
)

/* BH domingo, la funcién | e considera dia 0 */
if (fecha.tm_wday == 0)
fecha.tm_wday = 7;

printf("\nDia de la semana: %l; dia del afo: %d",
fecha.tm_wday, fecha.tm_yday+1) ;

/* Escribe el dia de |a semana */
printf("\nkEs el dia de |la semana, %s\n", dias([fecha.tm wday]l);
return O

Ejercicio 7.4

Una aplicacion de cl ock () para determinar el tiempo de proceso de un programa que calcula el
factorial de un nimero.

El factorial de n/ = n*(n-1)*(n-2) ... 2*1. La variable que vaya a calcular el factorial, se define de
tipo long para poder contener un valor elevado. EI nimero, arbitrariamente, va a estar comprendido
entre 3y 15. El tiempo de proceso va a incluir el tiempo de entrada de datos. La funcion cl ock ()
devuelve el tiempo en unidades de click, cada cLK_TCK es un segundo. El programa escribe el tiempo
en ambas unidades.

/*

En este ejercicio se determina el tienpo del procesador para
calcular el factorial de un narmero requerido, entre 3 y 15.
*/

#i ncl ude <time.h>
#i ncl ude <stdio.h>

Funciones 243

int mai n(voi d)

{
float inicio, fin;
int n, Xx;
long int fact;

inicio = clock();

do {
printf (" Factorial de (3 <x< 15): ");
scanf ("%d", &x) ;

twhile (x<=3 || x>=15);

for (n=x,fact=1; X; x--)
fact *=x;
fin = clock();

printf ("\n Factorial de %! = %14d",n,fact);
printf ("\n Uni dades de tienpo de proceso: %f,\t En segundos: %f",
(fin-inicio), (fin-inicio)/CLK_TCK) ;

return O

7.12. FUNCIONES DE UTILIDAD
C incluyen una serie de funciones de utilidad que se encuentran en el archivo de cabecera STDLIE.H
y que se listan a continuacion.
e abg(n), labs(n)

int abs(int n)
| ong labs (long n)

devuelven el valor absoluto de n.
® div(num, denom
div-t div(int num int denom)

Calcula el cociente y el resto de num, dividido por denomy almacena el resultado en quot y r em
miembros i nt de la estructura div_t.

t ypedef struct
{

int quot; /* cociente */
int rem /* resto */
}odiv-t;

El siguiente ejemplo calculay visualiza el cociente y el resto de la division de dos enteros.

#i ncl ude <stdlib.h>
#i ncl ude <stdio.h>

int main(void)
{
div-t resul tado;

resultado = div (16, 4);
printf("Cociente %a", resultado. quot) ;
printf ("Resto %d", resultado.rem ;
return O

244

Programacién en C. Metodologia, algoritmosy estructura de datos

® | di v(nnum,denom)

Calcula el cociente y resto de numdividido por denom y almacena los resultados de quot y rem
miembros | ong de la estructura 1div_t.

t ypedef struct
{

long int quot; /* cociente */
long int rem /* resto */
}oldiv_t;

resultado = 1div(1600L, 40L);

7.13. VISIBILIDAD DE UNA FUNCION

El &mbito de un elemento es su visibilidad desde otras partes del programa y la duracion de un elemento
es su tiempo de vida, lo que implica no s6lo cuanto tiempo existe la variable, sino cuando se creay
cuando se hace disponible. El ambito de un elemento en C depende de donde se sitle la definicion y de
los modificadores que le acompafian. En resumen, se puede decir que un elemento definido dentro de
una funcién tiene ambito local (alcance local), o si se define fuera de cualquier funcién, se dice que
tiene un ambito global. La Figura 7.6 resume el modo en que se ve afectado el &mbito por la posicion
en el archivo fuente.

Existen dos tipos de clases de almacenamiento en C: aut oy st ati c. Una variable aut o es aquella
que tiene una duracioén automatica. No existe cuando el programa comienza la ejecucion, se crea en
algun punto durante la ejecucion y desaparece en algin punto antes de que el programa termine la
ejecucion. Una variable st at i ¢ es aquella que tiene una duracion fija. El espacio para el elemento de
programacion se establece en tiempo de compilacion; existe en tiempo de ejecucién y se elimina sélo
cuando el programa desaparece de memoria en tiempo de ejecucion.

Las variables con ambito global se denominan variables globales y son las definidas externamente
a la funcion (declaracidn externa). Las variables globales tienen el siguiente comportamiento y atributos:

prog_demo.c ‘
Las variables globales declaradas

| en este nivel tienen ambito global. [
Sonvalidas paratodas las funcio-

| nes de este archivofuente. Dispo- |
nible en otros archivos fuente a
menos que se utilice la palabra

[reservada static. |

Ambito

| Functi on- af) | i global

| Las variables declaradas en este
| nivel son localesy tienen clase de |
| almq?enamlentoauto al sall'r'de la Ambito
| funcion, a menos que se utilice la | docai
palabla reservada static. Visible
| | sblo a esta funcién. |

Y Y

Figura 7.6. Ambito de variable local y global.

Funciones 245

e Las variables globales tienen duracion estatica por defecto. EI almacenamiento se realiza en
tiempo de compilacidn y nunca desaparece. Por definicion, una variable global no puede ser una
variable auto.

e Las variables globales son visibles globalmente en el archivofuente. Se pueden referenciar por
cualquier funcion, a continuacién del punto de definicion.

o Las variables globules estan disponibles, por defecto, a otros archivos fuente. Esta operacion se
denomina enlace externo.

7.13.1. Variables locales frente a variables globales

Ademas de las variables globales, es preciso considerar las variables locales. Una variable local esta
definida solamente dentro del bloque o cuerpo de la funcidn y no tiene significado (vida)fuera de la
funcidn respectiva. Por consiguiente, si una funcion define una variable como local, el &mbito de la
variable esta protegido. La variable no se puede utilizar, cambiar o borrar desde cualquier otra funcién
sin una programacion especifica mediante el paso de valores (parametros).

Una variable lecal es una variable que se define dentro de una funcion.

Una variable global es una variable que puede ser utilizada por todas las funciones de un
programa dado, incloyendo maln ().

Para construir variables globales en C, se deben definir fuerade la funcién mai n() . Para ilustrar el
uso de variables locales y globales, examine la estructura de bloques de la Figura 7.7. Aqui la variable
global es %0 y la variable local es x1. La funcién puede realizar operaciones sobre x0 y x1. Sin embargo,
main() sOlo puede operar con x0, ya que x1 no esta definida fuera del bloque de la funcién
funcionil (). Cualquier intento de utilizar x1 fuera de funcionl () producird un error.

—_— —_—— =

int x0 ; /* variable global */
funcionl (. ..) /* prototipo funcional */
int main
{
}

funcioril (...) I

{

int xlI /* wvariable local */

Figura7.7. x0 es global al programa completo, mientras que x1 es local a lafunciéon funcionl (}.

246

Programacion en C. Metodologia, algoritmos y estructura de datos

Exainine ahora la Figura 7.8. Esta vez existen dos funciones, ambas definen x1 como variable local.
Nuevamente x0 es una variable global. La variable x1 s6lo se puede utilizar dentro de las dos funciones.
Sin embargo, cualquier operacién sobre x1 dentro de funci oni () no afecta al valor de %1 en
funcion2 () Y viceversa. En otras palabras, la variable x1 de f unci oni () se considera una variable
independiente de x1 en f unci ona().

Al contrario que las variables, las funciones son externas por defecro. Es preciso considerar la
diferencia entre definicion de una funcidn y declaracion. Si una declaracion de variable comienza con
la palabra reservada ext er n, no se considera definicién de variable. Sin esta palabra reservada es una
definicidn. Cada definicidn de variable es al mismo tiempo una declaracion de variable. Se puede utilizar
una variable sélo después de que ha sido declarada (en el mismo archivo). Unicamente las definiciones
de variables asignan memoria y pueden, por consiguiente, contener inicializaciones. Una variable s6lo
se define una vez, pero se puede declarar tantas veces como se desee. Una declaracion de variable al
nivel global (externa a las funciones) es valida desde esa declaracidn hasta el final del archivo; una
declaracidn en el interior de una funcién es valida so6lo en esa funcion. En este punto, considérese que
las definiciones y declaraciones de variables globales son similares a las funciones; la diferencia
principal es que se puede escribir la palabra reservada ext er n en declaraciones de funcion.

int x0
float. funcionl (); /* prototipo funcionl */
float. funcion2 () ; /* prototipo funcion2 */

int mainO0
{

float funcionl () {

int x1

float funcion2i()
{
irit x1 /*variable local*/
Figura 7.8. x0 es global al programa completo, x1 es local tanto func +enl () como a funci1on? (), pero

se tratan como variables independientes.

La palabra reservada ext er n se puede utilizar para notificar al compilador que la declaracion del
resto de la linea no esta definida en el archivo fuente actual, pero esté localizada en otra parte, en otro
archivo. El siguiente ejemplo utiliza ext er n:

Funciones 247

/* archivo con la funcion main(): programa.c */

int total ;

extern int sunm,
extern void f (void);
void mai n(void)

/*
archivo con | a definicién de funcionesy variable: modulo.c
*/
int sums;
void f(void)

Utilizando la palabra reservada extern se puede acceder a simbolos externos definidos en otros
moédulos. sumay la funcién f () se declaran externas.

Las funciones son externas por defecto, ai contrario que las variables.

7.13.2. Variables estaticas y automaéticas

Los valores asignados a las variables locales de una funcién se destruyen cuando se termina la ejecucion
de la funcion y no se puede recuperar su valor para ejecuciones posteriores de la funcién. Las variables
locales se denominan variables automaticas, significando que se pierden cuando termina la funcion.
Se puede utilizar aut o para declarar una variable

auto int ventas;

aunque las variables locales se declaran automaticas por defectoy, por consiguiente, el uso de aut o es
opcional y, de hecho, no se utiliza.

Las variables estaticas (stati c), por otra parte, mantienen su valor después que una funcién se ha
terminado. Una variable de una funcién, declarada como estatica, mantiene un valor a través de
ejecuciones posteriores de la misma funcion. Haciendo una variable local estatica, su valor se retiene de
una llamada a la siguiente de la funcion en que esta definida. Se declaran las variables estaticas situando
la palabra reservada st at i ¢ delante de la variable. Por ejemplo,

static int ventas = 10000;
static int dias = 500;

Este valor se almacena en la variable estatica, s6lo la primera vez que se ejecuta la funcion. Si su
valor no esta definido, el compilador almacena un cero en una variable estatica por defecto.
El siguiente programa ilustra el concepto estatico de una variable:

#i ncl ude <stdio.h>
/* prototipo de la funcién */
voi d Ejemplo_estatica(int);

void main ()

{
Ejemplo_estatica(l) ;
Ej emplo_estatica(2) ;
Ejemplo_estatica(3);

t

/* Ejenplo del uso de una variable estatica */

248 Programacion en C. Metodologia, algoritmos y estructura de datos

voi d Ejemplo_estatica{int LI anmada)
{
static int Cuenta;
if (Llamada== 1)
Cuenta = 1;
printf("\n H valor de Cuenta en |lamda n® %d es: %d",
Llamada, Cuenta) ;
++Cuent a;
}

Al ejecutar el programa se visualiza:

El valor de Cuenta en |lanmada n® 1 es: 1
B valor de Cuenta en |l amada n® 2 es: 2
El val or de Cuenta en |l amada ne 3 es: 3

Si quita la palabra reservada st at i ¢ de la declaracion de Cuent a, el resultado sera:

El valor de Cuenta en |lanmada n® 1 es: 1
El valor de Cuenta en |l anada n® 2 es: 1046

no se puede predecir cuél es el valor de Cuent a en llamadas posteriores a la primera.

Las variables globales se pueden ocultar de otros archivos fuente utilizando el especificador de
almacenamiento de clase static.

Para hacer una variable global privada al archivo fuente (y, por consiguiente, no Util a otros modulos
de codigo) se le hace preceder por la palabra st at i c. Por ejemplo, las siguientes variables se declaran
fuera de las funciones de un archivo fuente:

static int m= 25;

static char linea_texto[80];
static int indice-1inea;
static char bufer [MAXLOGBUF];
static char *pBuffer;

Las variables anteriores son privadas al archivo fuente. Observe este ejemplo:
#define OFF 0
#define ON 1

static unsigned char naestro = OFF;
mai n ()

}

f unci on- a()
|

}

maest r o se puede utilizar tanto en f unci on- a{) como enmai n() , en este archivo fuente, pero no se
puede declarar como extern a otro archivo fuente.

Se puede hacer también una declaracidn de funcién st at i c. Por defecto, todas las funciones tienen
enlace externoy son visibles a otros modulos de programa. Cuando se sitlia la palabra reservada st at i ¢
delante de la declaracion de la funcién, el compilador hace privada la funcién al archivo fuente. Se
puede, entonces, reutilizar el nombre de la funcion en otros modulos fuente del programa.

Funciones 249

7.14. COMPILACION SEPARADA

Hasta este momento, casi todos los ejemplos que se han expuesto en el capitulo se encontraban en un
sélo archivo fuente. Los programas grandes son mas faciles de gestionar si se dividen en varios archivos
fuente, también Ilamados médulos, cada uno de los cuales puede contener una o mas funciones. Estos
modulos se compilany enlazan por separado posteriormente con un enlazador, 0 bien con la herramienta
correspondiente del entorno de programacion. Cuando se divide un programa grande en pequefios, los
Unicos archivos que se recompilan son los que se han modificado. El tiempo de compilacion se reduce,
dado que pequefios archivos fuente se compilan méas rapido que los grandes. Los archivos grandes son
dificiles de mantener y editar, ya que su impresion es un proceso lento que utilizara cantidades excesivas
de papel.

La Figura 7.9 muestra como el enlazador puede construir un programa ejecutable, utilizando
maodulos objetos, cada uno de los cuales se obtiene compilando un médulo fuente.

" Archive Anchieg 7 Auehig

| | } |
 Noende 1 v, luanie 2 fpantan -
- . r - y ™ e l__ -
l o { Compilador
* Archwo ™ Archivg ¢ Archivg ™ " Middutos

., olojaia 1 ., objalo 2 - b objalon s . bibhcieca

| i | [
v

| Enlazador I-'-l Programa ejecutable
- Ll o iy - .

Figura 7.9. Compilaciéon separada.

Cuando se tiene méas de un archivo fuente, se puede referenciar una funcién en un archivo fuente
desde una funcién de otro archivo fuente. Al contrario que las variables, las funciones son externas por
defecto. Si desea, por razones de legibilidad —no recomendable —, puede utilizar la palabra reservada
extern con un prototipo de funciény en la cabecera.

Se puede desear restringir la visibilidad de una funcién, haciéndola visible s6lo a otras funciones en
un archivo fuente. Una razon para hacer esto es tener la posibilidad de tener dos funciones con el mismo
nombre en diferentes archivos. Otra razon es reducir el namero de referencias externas y aumentar la
velocidad del proceso de enlace.

Se puede hacer una funcion no visible al exterior de un archivo fuente utilizando la palabra reservada
stati c con la cabecera de la funcion y la sentencia del prototipo de funcidn. Se escribe la palabra
st ati c antes del tipo de valor devuelto por la funcion. Tales funciones no seran publicas al enlazador,
de modo que otros modulos no tendran acceso a ellas. La palabra reservada static, tanto para variables
globales como para funciones, es Util para evitar conflictos de nombres y prevenir el uso accidental de
ellos. Por ejemplo, imaginemos un programa muy grande que consta de muchos modulos, en el que se
busca un error producido ot una variable global; si la variable es estatica, se puede restringir su
busqueda al mddulo en que esta definida; si no es asi, se extiende nuestra investigacién a los restantes
maodulos en que esta declarada (con la palabra reservada extern).

250 Programacion en C. Metodologia, algoritmos y estructura de datos

Comoregla general, son preferibles las variables locales a las globales. Si realmente es necesario
0 deseable que alguna variable sea global, es preferible hacerla estatica, lo que significaque sera
«local» en relacién al archivo en que esta definida.

Ejemplo 7.6

Supongamos dos modulos: MODULOL y MOpULOZ2. En el primero se escribe /afuncion main(), hace
referencia afunciones y variables globales definidas en el segundo mddulo.

/* MODULQOL. C */
#i ncl ude <stdio.h>

voi d mai n()
|
void f£(int i), gi{void);
extern int n; /* Decl araci 6n de n (nodefinicié6n) */
£(8);
n++;
g();
puts ("Finde programa.";
}

/* MODULO2. C */

#i ncl ude <stdio.h>
int n = 100; /* Definicién de n (tanbi éndecl aracioén) */
static int m= 7;
void f (int i)
{
n += (i+m) ;
}
voi d g(void)
printf ("n = %d\n",n);
}

£ y g se definen en el mddulo 2y se declaran en el moédulo 1. Si se ejecuta el programa, se produce la
salida

n =116
Fin de prograna.

Se puede hacer una funcién invisible fuera de un archivo fuente utilizando la palabra reservada
st ati ccon la cabeceray el prototipo de la funcion.

7.15. VARIABLES REGISTRO (r egi st er)

Una variable registro (regi ster) es similar a una variable local, pero en lugar de ser almacenada en
la pila, se almacena directamente en un registro del procesador (tal como ay o bx). Dado que el nimero

Funciones 251

de registros es limitado y ademds estan limitados en tamafio, el nimero de variables registro que un
programa puede crear simultdneamente es muy restringido.

Para declarar una variable registro, se hace preceder a la misma con la palabra reservada
regi ster

register int k;

La ventaja de las variables registro es su mayor rapidez de manipulacion. Esto se debe a que las
operaciones sobre valores situados en los registros son normalmente mas rapidas que cuando se realizan
sobre valores almacenados en memoria. Su uso se suele restringir a segmentos de c6digo mucha veces
gjecutados. Las variables registro pueden ayudar a optimizar el rendimiento de un programa
proporcionando acceso directo de la CPU a los valores claves del programa.

Una variable registro debe ser local a una funcién; nunca puede ser global al programa completo. El
uso de la palabra reservada r egi st er no garantiza que un valor sea almacenado en un registro. Esto
s6lo sucedera si un registro esta disponible (libre). Si no existen registros disponibles, C crea la variable
como si fuera una variable local normal.

Una aplicacién usual de las variables registro es como variable de control de bucles f or o en la
expresion condicional de una sentencia whi | e, que se deben ejecutar a alta velocidad.

voi d usoregistro(void)
{
register int k;
puts("\n Contar con una variable registro.")
for (k = 1; k <= 100; k++)
printf ("s84d",k);

7.16. RECURSIVIDAD

Una funcion recursiva es una funcioén que se llama a si misma directa o indirectamente. La recursividad
0 recursion directa es el proceso por el que una funcién se llama a si misma desde el propio cuerpo de
la funcion. La recursividad o recursién indirecta implica mas de una funcion.

La recursividad indirecta implica, por ejemplo, la existencia de dos funciones: uno() y dos ().
Suponga que mei n () llama auno() , y a continuacion uno () llama a dos () . En alguna parte del
proceso, dos () llama auno () —unasegunda llamada auno () — . Esta accién es recursién indirecta,
pero es recursiva, ya que uno () ha sido llamada dos veces, sin retornar nunca a su llamadora.

Un proceso recursivo debe tener una condicion de terminacién, ya que si no puede continuar
indefinidamente.

Un algoritmo tipico que conduce a una implementacion recursiva es el calculo del factorial de un
namero. El factorial de n (n!).

n =n* (n-1) * (n-2)* .. *3*2*]|

En consecuencia, el factorial de 4 es igual a 4*3*2*1, el factorial de 3 es igual a 3*2*1. Asi pues,
el factorial de 4 es igual a 4 veces el factorial de 3. La Figura 7.10 muestra la secuencia de sucesivas
invocaciones a la funcion factorial.

252 Programacion en C. Metodologia, algoritmos y estructura de datos

factorial (5) = 120
S*4*3%2%1 - i

retorno n * factorial (4);

== 4 letorno n factorial (3);

e e

retorno n factorial (2);

retorno n * factorial (1);

—» _ —t

n == 1 retorno 1;

}

Figura 7.10. Llamadas a funciones recursivas para factorial (5).

Ejemplo 7.7

Realizar el algoritmo de la funcionfactorial.
La implementacidn de la funcion recursiva f act ori al es:

doubl e factorial (int numer o)
{
if (nunmero> 1)
return nunero * factorial (numero-1);
return 1;

Ejemplo 7.é
Contar valores de 1 a /0 de modo recursivo.
#i ncl ude <stdio.h>
voi d contar (int cinmm);

int main()
{
contar (10} ;
return O
}
voi d contar (int ci nm)
{
if (cima> 1)
contar (cima-1) ;
printf ("sda ", cim) ;

Funciones 253

Ejemplo 7.9
Determinar si un nimero entero positivo espar o impar; con dosfunciones que se llaman mutuamente:
recursividad indirecta.

#i ncl ude <stdio.h>

int par(int n) :
int impar (int n);
int main(void)

{

int n;
/* Entrada: entero > 0 */
do {
printf ("\nEntero > O "y,

scanf ("d", &n) :
} while (n<=0);

/* Llanda a |la funci¢n par() */
if (par(n))
printf("El nunmero %d es par.",n) ;
el se
printf ("El nunmero %4 es inpar.",n) ;

return O;
}

int par(int n)
{
if (n == 0
return 1; /* es par */
el se
return impar (n-1);
}
int impar(int n)
[
if (n == 0
return O; /* es inpar */
el se
return par(n-1);
}

La funcion par () llamaa la funcién impar () ,ésta a su vez llama a la funcién par (). La
condicion para terminar de hacer llamadas es que n sea cero; el cero se considera par.

254

7.17. RESUMEN

Las funciones son la base de la construccion de
programas en C. Se utilizan funciones para subdividir
problemas grandes en tareas mas pequefias. El
encapsuiamientode las caracteristicas en funciones,
hace los programas mas féciles de mantener. El uso de
funciones ayuda al programador a reducir el t amafio
de su programa, ya que se puede llamar repetidamente
y reutilizarel cddigo dentro de una funcion.
En este capitulo habra aprendido lo siguiente:

« el concepto, declaracién, definicion y uso de una
funcioén;

e las funciones que devuelven un resultado lo
hacen a través de la sentenciar et ur n;

e los parametros de funciones se pasan por valor,
para un paso por referencia se utilizan punteros;

¢ el modificador const se utiliza cuando se
desea que los parametros de la funcion sean
valores de solo lectura;

e ¢l concepto y uso de prototipos, cuyo uso es
recomendable en C;

« la ventaja de utilizar macros con argumentos,
para aumentar la velocidad de ejecucion;

« ¢l concepto de &mbito 0 alcance y visibilidad,
junto con el de variable global y local;

» clases de almacenamiento de variables en
memoria; aut o, extern, registery
static.

La biblioteca estandar C de funciones en tiempo
de ejecucion incluye gran cantidad de funciones. Se
agrupan por categorias, entre las que destacan:

manipulacion de caracteres;
numeéricas;

tiempoy hora;

conversion de datos;
blsqueda y ordenacidn;

etc.

Tenga cuidado de incluir el archivo de cabecera
correspondiente cuando desee incluir funciones de
bibliotecaen sus programas.

Una de las caracteristicas mas sobresalientesde C
gue aumentan considerablemente la potencia de los
programas es la posibilidad de manejar las funciones
de modo eficiente, apoyandose en la propiedad que
les permite ser compiladas por separado.

Otros temas tratados han sido:

« Ambito 0 las regl as de visibilidad de funciones
y variables.

Programacién en C. Metodologia, algoritmos y estructura de datos

« Enentorno de un programa tiene cuatrotipos de
ambito: de programa, archivo fuente, funciény
bloque. Una variableesta asociadaa uno de esos
ambitosy es invisible (no accesible) desde otros
&mbitos.

« Las variables globules se declaran fuera de
cualquier funcién y son visibles a todas las
funciones. Las variables locales se declaran
dentro de una funcién y sélo pueden ser
utilizadas por esa funcion.

int i; /* variabl e gl obal,
anbito de programa
*
/

static int j /* anbito de archivo
*/

mai n()

{

int d, e; /* variable |ocal,

anbito de funci 6n */

func (int j)
{

if (3 > 3)
{
int i; /* dmbito de bl oque */
for (1 = 0 i < 20; i++)
func2 (i) ;
}

/* i yano es visible */
}

¢ Variables automaticas son las variables, por
defecto, declaradas localmente en una funcion.

e Variablesestdticas mantienen su informacion,
incluso después que la funcién ha terminado.

Cuando se llama de nuevo la funcion, la variable
se pone al valor que tenia cuando se llamé anterior-
mente.

» Funciones recursivas son aquellas que se pue-
den llamar a si mismas.

¢ Las variables registro se pueden utilizar cuando
se desea aumentar la velocidad de procesamien-
to de ciertas variables.

7.18. EJERCICIOS

7.1. Escrbir una funcidn que ienga un argumento de
tipo entero ¥ que devoebva la betra P s el ndmero

&5 poaitivo, ¥ la letra IS 5i &% cerd O negativo.

7.2 Escribir una funcidn ldgica de dos argumentos
enieros, que devoclva true 5 uno divide al otro y
false en caso contraro.

T3, Escribir una funcidn que convierta una lempera-
tura dada en grados Celiios a grados Fahrenhei
La fdrmulas de comversidn ex:

F-EE+32
5

7.A. Escribir una funcidn bpca Digira gue determine
51 un cardcter es uno de los digitos de 0 a 9.

7.19. PROBLEMAS

7.1. Escribir un programa que solicite del wsuario un
caricier y que sitde ese cardcler en el centro de la
pantalla. El ussario debe poder a continascidn
desplazar e cardcter polsando las letras A
{arriba), B {abajo), I (izquierda), D (derechal ¥
F (fin} para termimnar,

72 Escribir una funcion que reciba una cadena de
caracteresy ladevuelva en forma inversa (fiola’
se convierteen “aloh”).

73 Escribir una funcién que determine si una
cadena de caracteres es un palindromo (un
palindrorno es un texto que se lee igual en
sentido directoy en inverso: radar).

Funciones 255

7.5, Escribir una funcidn lgica Vocal que determine
o un caricler es una vocal.

7.6. Escribir una funcidén Redondeo que aceple un
valor real Cantidad y un valor entero Decimales
y devuelva el valor Cantidad redondeado ol

de Decimabes. Por ejemplo,
mtmﬂlﬂdﬂuﬂwm:‘iﬁ

7.7, Determinar y vissalizar ¢l ndmene mids grande
de dos nimercs dados, mediante un subpro-
grama.

7.8, Escribir un programa recursivo que calcule los
N primeros ndemeros naturabes.

7.4. Escribirun programa mediante uma funcidn que
acepte un nimero de dia, mes ¥ aflo y lo
visuaiice en el formato

dd/mm/aa

Por ejemplo, los valares 8, 10 y 1946 se
visualizan como

8/10/46

75 Escribir un programa gue utilice una funcion
para convertir coordenadas polares a rectan-
gulares.

P(x, y)
X = I cos8

r y = rsinf

= ejex

256 Programacioén en C. Metodologia, algoritmos y estructura de datos

7.6. Escribir un programa que lea un entero positivo 7.8, Escribir un programa que lea los dos emteros

¥y a continuacidn llame a una funcidm gque positivos m ¥ & que llame a una funcidn
visualice sus factores primos. CambigrBase para calcalar v visualizar la
representacion del ndmero men la base b,
7.7. Escribir un programa, mediants funciones, que Escribir un programa gue permita el cdlculo
vismalios un oslendario de In farma: - mﬂ{u:mumfﬂhmdn:mnﬁﬁ
por el algoritmo de Buclides. (Dividir a entre b,
L " f ‘; ‘:'; f E nuihﬂcn:h:[gdmhrliumb
P 3 B a 0 11 12 ei el med, si no se divide b entre r, ¥ asi
13 TR R AT < a8 1D PUSHRAEHINN KiSSNC S NN U0 abteh O o
0 T3 0 33 23 24 25 23 ditima mll_lllﬁﬂ-}l-l'ﬂﬂhlﬂfﬂ}
27 38, 29 '3p . devolven el miximo comin divisor.
T8, Escribir una funcitn que devoelva el inverso de
El usuario indics dnicamente ¢l mes ¥ ¢l aflo. un ndmero dado (1234, imverso 4321).

7.11. Calcular el coeficients del binomio con una funcidn factorial.

e

n ' (= Rt 1.23..m 5wz

T.12. Escribir una funcitn que permita caloulsr la serie:

; 10, (2m+ 1
P+P4¥V 4. . +n'= b '::: -y =n*{n+ 10}* (2 *n+l) /6

T3, Escribir un programa que bea dos nimeros ©y n T.16, Escribir una funcitn con dos parkmetros, ¥ ¥ n,

¥ en una funcidn calculs la suma de la progre- gque devuelva lo siguiente:
sidin geométrica.
x R
I+ x4+ 4.+ 2 B —— — §i x==0
7.4, Escribir un programa que encuenire el valor £ !
mayor, el valor menor v la suma de Jos dabos de x4 ety LR B x<=0
mmﬂdhhﬁl#mmm
i ; 7.17. Escribir una funcidn que tome como parime-
tros ins longiindes de bos tres lados de un tridn-
7185, Escribir una funcidn que acepie un pardmetro
aix # 0} y devoelva el siguiente valor: gubo (a, by ¢} y devuelva el drea del tridngulo.

Area=Vplp-alp-Bi (p—<)

AL a+b+e

-

7.18. Escribir un programa mediante funciones que
realicen las 5 Lareas:

a) Devalver gl valor del dia de la semana en
respuesta a la entrada de la letra inicial
{mayiiscula o mindscula) de dicho dia.

b Determinar el mimero de dise de un mes.

7.19. Escribir un programa que lea una cadena de
hasta diez caracieres gue represenia a an
HiMErS &N MUMErscitn romand & imprima ¢l
formagn del nadmero fomano ¥ s equivalentes en
numerachm ardbiga. Los carscterss momanos ¥

s equivalentes son:

M 1000 L 50
D 500 X {1
C 100 v 5

I 1
w“mmhﬂm

Funciones 257

LXXXV1 (B6), COCXIX (319), MCCLIV
(1254).

7.20. Escribs una funcidn que caleale cusmos puntos
de coordenadas enteras existen dentro de un
tridngule del que se contcen las coordenadas
de sus tres wértices.

7.21. Escribir un programa que mediante funciones
determine el drea del circubo comespondienie &
la circunferencia circunscrita de un tridngulo
del que conocemos las coordenadas de loa
wértices.

7.21. Dado el valor de un dngulo escribir una fancidn
gue muesirs] valor de todas las funciones

rigonométrices comespondientes nl mismi.

.‘
3

CAPITULO 8

ARRAYS (LISTAS Y TABLAS)

CONTENIDO

258

8.1
8.2,
8.3.

84.

8.5.

Arrays.
Inicializacién de un array.

Arrays de caracteres
y cadenas de texto.

Arrays multidimensiona-
les.

Utilizacién de arrays como
parametros.

8.6
8.7

8.8.

8.9

8.10.

. Ordenacion de listas.
. Busqueda en listas.
Resumen.

. Ejercicios.

Problemas.

INTRODUCCION

En capitulos anteriores se han descrito las caracteristicas de los tipos de
datos bédsicos o simples (cardcter, entero y coma flotante). Asimismo, se
ha aprendido a definir y utilizar constantes simbdlicas utilizando const,
#define y el tipo enum. En este capitulo continuaremos el examen de los
restantes tipos de datos de C, examinando especialmente el tipo array
(lista o tabla), la estructura, la unién.

En este capitulo aprenders el concepto y tratamiento de los arrays. Un
array almacena muchoS elementos del mismo tipo, tales como veinte
entercs, cincuenta niimeros de coma flotante o quince caracteres. El array
es muy importante por diversas razones. Una operacién muy importante
e almacenar secuencias o cadenas de texto. Hasta el momento C
proporciona datos de UN solo caracter; utilizando el tipo array, se puede
crear una variable que contenga un grupo de caracteres.

CONCEPTOS CLAVE
= Array. e Declaracién de un array.
= Array de caracteres. * Inicializacién de un array.
* Arrays bidimensionales. » Lista, tabla.
* Arrays multidimensionales. * Ordenacién y blisqueda.
» Cadena de texto. « Pardmetros de tipo array.

259

-

260

8.1.

~

Programacion en C. Metodologia, algoritmosy estructura de datos

ARRAYS

Un array (lista o tabla) es una secuencia de datos del mismo tipo. Los datos se llaman elementos del
array y se numeran consecutivamente O, 1, 2, 3, etc. El tipo de elementos almacenados en el array puede
ser cualquier tipo de dato de C, incluyendo estructuras definidas por el usuario, como se describira mas
tarde. Normalmente el array se utiliza para almacenar tipos tales como char, int o float.

Un array puede contener, por ejemplo, la edad de los alumnos de una clase, las temperaturas de
cada dia de un mes en una ciudad determinada, o el nimero de personas que residen en cada una de las
diecisiete comunidades autonomas espafiolas. Cada item del array se denomina elemento.

Los elementos de un array se humeran, como ya se ha comentado, consecutivamente O, 1, 2, 3,...
Estos nimeros se denominan valores indice o subindice del array. El término «subindice» se utiliza ya
que se especifica igual que en matematicas, como una secuencia tal como a,, a,, a,... Estos nimeros
localizan la posicion del elemento dentro del array, proporcionando acceso directo al array.

Si el nombre del array es a, entonces a{0] es el nombre del elemento que esta en la posicion 0,
al1] esel nombre del elemento que esta en laposicidn 1,etc. En general, el elemento i-ésimo esta en
la posicioni-1. De modo que si el array tiene n elementos, sus nombres sona{01 ,afl1l,...,aln-1].
Graficamente se representa asi el array a con seis elementos.

25.1 34.2 5.25 7.45 6.09 7.54

Figura8.1. Array de seis elementos.

El array atiene 6 elementos: a{0] contiene 25.1. a{ 1) contiene 34.2, a(2] contiene 5.25, a[3!
contiene 7.45, a[4) contiene 6.09y a{5] contiene 7.54. El diagrama de la Figura 8.1 representa
realmente una region de la memoria de la computadora, ya que un array se almacena siempre con sus
elementos en una secuencia de posiciones de memoria contigua.

En C los indices de un array siempre tienen como limite inferior O, como indice superior el tamafio
del array menos 1.

8.1.1. Declaraciénde un array

Al igual que con cualquier tipo de variable, se debe declarar un array antes de utilizarlo. Un array se
declara de modo similar a otros tipos de datos, excepto que se debe indicar al compilador el famasio o
longitud del array. Para indicar al compilador el tamafio o longitud del array se debe hacer seguir al
nombre, el tamafio encerrado entre corchetes. La sintaxis para declarar un array de una dimension
determinada es:

ti po nombreArray [numeroDeElement 0S] ;
Por ejemplo, para crear un array (lista) de diez variables enteras, se escribe:
int nuneros(10] ;

Esta declaracidon hace que el compilador reserve espacio suficiente para contener diez valores
enteros. En C los enteros ocupan, normalmente, 2 bytes, de modo que un array de diez enteros ocupa 20
bytes de memoria. La Figura 8.2 muestra el esquema de un array de diez elementos; cada elemento
puede tener su propio valor.

Arrays (listasy tablas) 261

Array de datos enteros: a

(0] (1] [2] [31] (41 [5] (el [7] [8] (91

Un array de enteros se almacena en bytes consecutivos de memoria. Cada elemento
utiliza dos bytes. Se accede a cada elemento de array mediante un indice que
comienza en cero. Asi, el elemento quinto (a{4]}del array ocupa los bytes 92y 10°.

Figura8.2. Almacenamiento de un array en memoria.

Se puede acceder a cada elemento del array utilizando un indice en el nombre del array. Por ejemplo,
printf ("$d \n",numeros[4]1);

visualiza el valor del elemento 5 del array. Los arrays siempre comienzan en el elemento 0. Asi pues, el
array numer os contiene los siguientes elementos individuales:

numeros[0] numer os [1] numer os (2] numer os [3]
numer os [4] numer os [5] nurmer os [6] nuner os[7]
numer os [8] nuner os (9]

Si por ejemplo, se quiere crear un array de nimeros reales y su tamafio es una constante represen-
tada por un parametro

#define N 20
float vector[N];

Para acceder al elemento 3 y leer un valor de entrada:

scanf ("$f ",&vector(2]);

Precaucion

C no comprueba que los indices del array estan dentro del rango definido. Asi, por ejemplo, se
puede intentar acceder a nuner os(12] y el compiladorno producira ningtn error, lo que puede
producir un fallo en su programa, dependiendodel contexto en que se encuentre el error.

8.1.2. Subindicesde un array

El indice de un array se denomina, con frecuencia, subindice del array. El término procede de las
matematicas, en las que un subindice se utiliza para representar un elemento determinado.

Nnuner os equivale a nuner os [0]
nurrer os equivule a numer os{3]

El método de numeracion del elemento i-ésimo con el indice o subindice i-7 se denomina indexacicn
basada en cero. Su uso tiene el efecto de que el indice de un elemento del array es siempre el mismo que
el nimero de «pasos» desde el elemento inicial a[0] a ese elemento. Por ejemplo, a[3] estd a 3 pasos
o0 posiciones del elemento a[0] . La ventaja de este método se vera de modo mas evidente al tratar las

relaciones entre arrays y punteros.

262

- =TT e

Programacion en C. Metodologia, algoritmos y estructura de datos
Ejemplos
int edad{5] ; Array edad contiene 5 elementos: e/ primero, edad[0ly
el Ultimo, edad[41 .
i nt pesos[25], | ongitudes[100] ; Declara 2 arrays de enteros.
float salarios[25] ; Declara un array de 25 elementos f | oat .
doubl e temperaturas{50]; Declara un array de 50 elementos doubl e.
char letras[15] ; Declara un array de caracteres.

#define Mx 120
char®buffer [MX+1]; Declara un array de caracteres de tamafio MX+ 1/,
el primer elemento es buffer{0] y el Gltimo buffer[MX].

En los programas se pueden referenciar elementos del array utilizando férmulas para los subindices.
Mientras que el subindice puede evaluar a un entero, se puede utilizar una constante, una variable o una
expresion para el subindice. Asi, algunas referencias individuales a elementos son:

edad[4]
ventas[total+5!
bonos [nes

sal ario[nes[i]*5]

8.1.3. Almacenamiento en memoriade los arrays

Los elementos de los arrays se almacenan en bloques contiguos. Asi, por | mplo, los arrays

int edades[5! ;
char codi gos(5] ;

se representan graficamente en memoria en la Figura 8.3.

Edades |

Figura 8. 3. Almacenamiento en memoria de arrays.

Arrays (listas y tablas) 263

Nota

Todos los subindices de los arrays comienzan con O.

Precaucion

C permite asignar valores fuera de rango a los subindices. Se debe tener cuidado no hacer esta
accion, debido a que Se sobreescribirfan datos o cédigo.

Los arrays de caracteres funcionan de igual forma que los arrays numéricos, partiendo de la base de
que cada caracter ocupa normalmente un byte. Asi, por ejemplo, un array llamado nonbr e se puede

representar en la Figura 8.4.

-

char nombre [] = "Cazorla"

Figura 8.4. Almacenamiento de un arrays de caracteres en memoria.

A tener en cuenta, en las cadenas de caracteres el sistema siempre inserta un Ultimo caracter (nulo)
para indicar fin de cadena.

8.1.4. Eltamarfo de los arrays

El operador si zeof devuelve el nimero de bytes necesarios para contener su argumento. Si se usa
si zeof para solicitar el tamafio de un array, esta funcién devuelve el niUmero de bytes reservados para

el array completo.
Por ejemplo, supongamosque se declaraun array de enteros de 100 elementos denominado edades;

si se desea conocer el tamafio del array, se puede utilizar una sentencia similar a:

n = sizeof (edades) ;

264 Programacion en C. Metodologia, algoritmos y estructura de datos

donde » tomara el valor 200. Si se desea solicitar el tamafio de un elemento individual del array, tal
como

N = sizeof {edades|[6]);

n almacenara el valor 2 (nimero de bytes que contienen un entero).

8.1.5. Verificaciéon del rango del indice de un array

C, al contrario que otros lenguajes de programacion —por ejemplo, Pascal —, no verifica el valor del
indice de la variable que representa al array. Asi, por ejemplo, en Pascal si se define un array a con
indices 0 a 5, entonces a[61 hara que el programa se «rompa» en tiempo de ejecucion.

Ejemplo 8.1

Proteccidnfrente a errores en el infervalo (rango)de valores de una variable de indice que representa
unarray.

doubl e suma(const double a[], const int n)

{
double S = 0.0;

if (n * sizeof (double) > sizeof(a))
return 0;

for (inti = 0; i < n; i++)
S += ali]l;

return S

8.2. INICIALIZACION DE UN ARRAY

Se deben asignar valores a los elementos del array antes de utilizarlos, tal como se asignan valores a
variables. Para asignar valores a cada elemento del array de enteros pr eci os, se puede escribir:

precios[0] = 10;
precios[1l] = 20;
precios(3] = 30;
precios[4] = 40;

La primera sentencia fija pr eci os (0] al valor 10,preci os[1] al valor 20, etc. Sin embargo, este
método no es practico cuando el array contiene muchos elementos. ElI método utilizado, normalmente,
es inicializar el array completo en una sola sentencia.

Cuando se inicializa un array, el tamafio del array se puede determinar automaticamente por las
constantes de inicializacion. Estas constantes se separan por comas y se encierran entre llaves, como
en los siguientes ejemplos:

int numeros(6] = {10, 20, 30, 40, 50, 60};
int nl] = {3, 4, 5} /* Declara un array de 3 el enentos */

char c¢{] = {'L’','u’,"1",’s"}; /* Declara un array de 4 el enentos */

El array nuner os tiene 6 elementos, n tiene 3 elementosy el array c tiene 4 elementos.

Arrays (listasy tablas) 265

En C los arrays de caracteres, las cadenas, se caracterizan por tener un caracter final que indica el
fin de la cadena, es el caracter nulo. Lo habitual es inicializar un array de caracteres (una variable
cadena) con una constante cadena.

char s[] = "Puesta del Sol";

Nota

C puede dejar los corchetes vacios, sélo cuando se asignan valores al array, tal como
int cuentafl] = {15, 25, -45, 0, 50};
El compilador asigna autométicamente cinco elementos a cuenta

El método de inicializar arrays mediante valores constantes después de su definicién es adecuado
cuando el nimero de elementos del array es pequefio. Por ejemplo, para inicializar un array (lista) de |0
enteros a los valores 10a I, y a continuacion visualizar dichos valores en un orden inverso, se puede

escribir:
int cuenta(l10] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
fOI’ (l: 9, | >= O, |")
printf ("\n cuenta descendente %d = %d",i,cuentalil);
Se pueden asignar constantes simbdlicas como valores numéricos, de modo que las sentencias
siguientes son validas:
#defi ne ENE 31

+ #defi ne FER 28
#defi ne MAR 31

int meses[12] = {ENE, FEB, MAR, ABR, MNAY, JUN,
JUL, AGO, SEP, OCT, NOV, DIC};

Pueden asignarse valores a un array utilizando un bucle f or o while/do-while, Y €ste suele ser
el sistema mas empleado normalmente. Por ejemplo, para inicializar todos los valores del array
nuner os al valor 0, se puede utilizar la siguiente sentencia:

for (i =0, i <=

numeros{i] = 0;
debido a que el valor del subindice i varia de O a 5, cada elemento del array numrer os se inicializa y
establece a cero.

5: i++)

Ejemplo 8.2
Elprograma rnrcrAarnr. C lee ocho enteros; a continuacion visualiza el total de los nimeros.

#i ncl ude <stdio.h>
#defi ne NUM 8

int main ()

{
int nums [NUM] ;
int i;
int total = 0

266 Programacion en C. Metodologia, algoritmos y estructura de datos

for (i = O, i <« NUM 1i++)

{
printf ("Por favor, introduzca el namero: "};

scanf ("%d", snums (11) ;

}
printf("\nLista de nUneros: ") ;

for (1 = 0; i « NUM 1i++)

{
printf ("&d ", nums([i]) ;

total += nums[i] ;
}
printf("\nLa sunma de |os nlineros es %d",toLal);
return O;
}

Las variables globales que representan arrays se inicializan a O por defecto. Por ello, la ejecucion del
siguiente programa visualiza O para los 10 valores del array:

int listal[10];

int mai n0
{ .
int j;
for (3 = 0; j <= 9; j++)
printf{("\n listal[%d] = %d",j,listaljl);
return O;
A Asi, por ejemplo, en

int Notas([5] ;
voi d main ()

{
static char Nonbres(5] ;

Si se define un array globalmente 0 un array estatico y no se proporciona ningun valor de
inicializacion, el cornpilador inicializard el array con un valor por defecto (cero para arrays
de elementos enterosy reales --coma flotante — y carécter nulo para arrays de caracteres).

el array de enteros se ha definido globalmente y el array de caracteres se ha definido como un array
local estatico de mai n() . Si se ejecuta ese segmento de programa, se obtendran las siguientes

asignaciones a los elementos de los arrays:

Nonbr es
101 \O
[1]1“\O”
[21\0"
[31'\0"
[(41'\0

8.3. ARRAYS DE CARACTERES Y CADENAS DE TEXTO

Una cadena de texto es un conjunto de caracteres, tales como «ABCDEFG». C soporta cadenas de texto -
utilizando un array de caracteres que contenga una secuencia de caracteres:

Arrays (listasy tablas) 267

char cadenal[] = "ABCDEFG" ;

Es importante comprender la diferencia entre un array de caracter s r una cadena de caracteres. Las
cadenas contienen un caracter nulo al final del array de caracteres.

Las cadenas se deben almacenar en arrays de caracteres, pero no todos los arrays de caracteres
contienen cadenas.

Examine la Figura 8.5. donde se muestra una cadena de caracteres y un array de caracteres.

|) (44

Figura8.5. (a)Array de caracteres; (b} cadena.

Cadena A B C D E F \0

268

Programacioén en C. Metodologia, algoritmos y estructura de datos

Cadenal3] = 'D;
Cadena (4] = '"FE ;
Cadenal[5] = ‘F’;
cadenal6] = '\0;

Sin embargo, no se puede asignar una cadena a un array del siguiente modo:
Cadena = "ABCDEF" ;

Para copiar una constante cadena o copiar una variable de cadena a otra variable de cadena se debe
utilizar la funcion de la biblioteca estandar — posteriormentese estudiard— st r cpy () («copiar cade-
nas»). st rcpy () permite copiar una constante de cadena en una cadena. Para copiar el nombre " Abr a-
cadabr a" en el array nonbr e, se puede escribir

strcpy (nonmbre, "Abracadabra") ; / *Copi a Abracadabra en nonmbre */

strcpy () afiade un caracter nulo al final de la cadena. A fin de que no se produzcan errores en la

sentencia anterior, se debe asegurar que el array de caracteres nonbr e tenga elementos suficientes para
contener la cadena situada a su derecha.

Ejemplo 8.3

Rellenar los elementos de un array con nimeros reales positivos procedentes del teclado.
#i ncl ude <stdio.h>

/* Constantes y variabl es globales */

#def i ne MAX 10
fl oat muestral[MAX];
voi d main ()

int i;
printf ("\nIntroduzca una lista de %d el ementos positivos.\n",MAX) ;
for (1 = 0; i = MAX; muestralil]l>07?++1:1)

scanf ("%f", smuestralil) ;
}

En el bucle principal, sélo se incrementa i si nuestratli] es positivo: muestralil=02++i :i.
Con este incremento condicional se consigue que todos los valores almacenados sean positivos.

Ejemplo 8.4

Visualizar el array muestra después de introducir datos en el mismo, separandolos con el tabulador.

#i ncl ude <stdio.h>
#defi ne MAX 10
fl oat muestra[MAX];

voi d main ()
{

int i;
printf {("\nIntroduzca una lista de %d el enentos positivos.\n",MAX) ;
for (i = 0; i < MAX; muestral[i}>0?++1i:1)
scanf ("$f", &muestralil);
printf ("\nDatos | eidos del teclado: ") ;
for (i O, 1 = MAX, ++1)

printf?"%f\t",muestra[i]);

Arrays (listas y tablas) 269

8.4. ARRAYS MULTIDIMENSIONALES

Los arrays vistos anteriormente se conocen como arrays unidimensionales (una sola dimension) y se
caracterizan por tener un solo subindice. Estos arrays se conocen también por el término listas. Los
arrays multidimensionales son aquellos que tienen mas de una dimensién y, en consecuencia, mas de un
indice. Los arrays més usuales son los de dos dimensiones, conocidos también por el nombre de tablas
0 matrices. Sin embargo, es posible crear arrays de tantas dimensiones como requieran sus aplicaciones,
esto es, tres, cuatro 0 mas dimensiones.

Un array de dos dimensiones equivale a una tabla con multiples filas y multiples columnas (Fig.
8.6).

=

o | il |

Figura 8.6. Estructura de un array de dos dimensiones.

Obsérvese que en el array bidimensional de la Figura 8.6, si las filas se etiquetan de O am y las
columnas de O a n, el nimero de elementos que tendra el array seré el resultado del producto (m+1) x
(n+1). El sistema de localizar un elemento sera por las coordenadas representadas por su nimero de fila
y su nimero de columna (a,b).La sintaxis para la declaracion de un array de dos dimensiones es:

<tipo de datoElemento> <nombre array> [<NimeroDeFilas<] [<NimeroDeColumnas>]
Algunos ejemplos de declaracién de tablas:

char Pantalla[25]180] ;
int pUEStOS[6J (8] ;
int equi pos([4] (30! ;
int matriz (4] (2] ;

Atencidén

A contrario que otros lenguajes, C requiere que cada dimensi6n esté encerrada entre corchetes. La
sentencia

int equipos([4, 301
no es valida.

270

Programacion en C. Metodologia, algoritmos y estructura de datos

Un array de dos dimensiones en realidad es un array de arrays. Es decir, es un array unidimensional,
y cada elemento no es un valor entero, o de coma flotante o caracter, sino que cada elemento es otro
array.

Los elementos de los arrays se almacenan en memoria de modo que el subindice mas préoximo al
nombre del array es la filay el otro subindice, la columna. En la Tabla 8.1 se representan todos los
elementos y sus posiciones relativas en memoria del array, i nt tabl al4] [2] ; suponiendo que cada
entero ocupa 2 bytes.

Tabla 8.1. Un array bidimensional.

Elemento Posicién relativa de memoria
tablal0] 0] 0
tabla[0] (1] 2
tablall][0] 4
tabla[1][1] 6
tablal[2]) (0] 8
tabla(2][1] 10
tablaf3]1[0] 12
tablaf{3][1] 14

8.4.1. Inicializaciéon de arrays multidimensionales

Los arrays multidimensionales se pueden inicializar, al igual que los de una dimension, cuando se
declaran. La inicializacion consta de una lista de constantes separadas por comas y encerradas entre
llaves, como en los ejemplos siguientes:

1. int tabla[21[3] = {51, 52, 53, 54, 55, 56};
0 bien en los formatos mas amigables:

int tablaf{2][3]= { {51, 52, 531,

{54, 55, 56} };
int tabla(2][3)= {{51, 52, 531, {54, 55, 56}};
{

int tabla(2][3]

won

{51, 52, 531,
. {54, 55, 561
bi
I
= ! -
[
| | =
1 |
0 1 2 3 Columna
- R e
Fila o 1 2 3 | g |
1] i | 7T i
SR S S
2 =] 10 11 12
g I
Figura 8.7. Tablas de dos dimensiones.

Arrays (listasy tablas) 271

2. int tada! [3]14] = ¢
{1, 2, 3, 4},

Consejo

Los arrays multidimensionales (a menos que sean globales) no se inicializan a valores especificos
+ amenos que se les asignen valores en el momento de la declaracion o en el programa. Si se
inicializan uno 0 més elementos, pero no todos, C rellena el resto con ceros o valores nulos
("\0").Sise desea inicializara cero un array multidimensional, utilice una sentenciatal como

ésta:
fl oat ventas[3] (4] = {0.,0.,0,0., 0,0 ,0.,0., 0.,0,0.,0.};

tabta

Figura8.8. Almacenamiento en memoria de tabla i31[4].

8.4.2. Acceso alos elementos de los arrays bidimensionales

Se puede acceder a los elementos de arrays bidimensionales de igual forma que a los elementos de un
array unidimensional. La diferenciareside en que en los elementos bidimensionales deben especificarse
los indices de lafilay la columna.

El formato general para asignacion directa de valores a los elementos es:

insercién de elementos
<nonbre arrayslindice filal[indice columnal=valor el enento;

272 Programacion en C. Metodologia, algoritmos y estructura de datos

extracci 6n de el enent os
<variable> = <nonbre array> [indice fila] [indice columa];

Algunos ejemplos de inserciones:

Tabla[2][3] = 4.5;
Resistencias[2][4] =
AsientosLibres(5][12] = 5;

y de extraccion de valores:

Ventas = Tablall][1] :
Dia = Semanal[3][6];

8.4.3. Lecturay escriturade elementos de arrays bidimensionales

Las funciones de entrada o salida se aplican de igual forma a los elementos de un array bidimensional.
Por ejemplo,

int tabla[311(4];
doubl e resistencias([4] (5] ;:

scanf ("%d",&tabla(2]1[3]1);
printf ("%43d",tabla{l](1]);
scanf ("$1ft", &resistencias(2]1[4]);

if (asientosLibresi3]1(11])
put s ("VERDADERO") ;

el se
put s ("FALSO') ;

8.4.4. Acceso a elementos mediante bucles

Se puede acceder a los elementos de arrays bidimensionales mediante bucles anidados. Su sintaxis es:

int IndiceFila, IndiceCol;

for (IndiceFila = 0, IndiceFila < NumFilas; ++IndiceFila)
for (IndiceCol = 0; IndiceCol < NumCol; ++IndiceCol)
Procesar elemento[IndiceFilal [IndiceCol];

E-jerﬁplo_8.9.
Define una tabla de discos, rellena la tabla con datos de entrada y se muestran por pantalla.

float discos(2] (4] ;
int fila, col;

for (fila= 0; fila< 2; fila++)
{ for (col = 0, col < 4; col++)

{ scanf ("$f", &discos[fila] [col]) ;
} }

/* Visualizar 1la tabla */

Arrays (listas y tablas) 273

for (fila= 0, fila < 2; fila++)
{
for (col = O, col < 4; col++)
{
printf("\n Pts %.1f \n",discos [fila]lcoll) ;
|

Ejercicio 8.1
Lectura y visualizacion de un array de dos dimensiones.

La funcion 1eer () lee un array (una tabla) de dos dimensiones y la funcién vi sual i zar ()
presenta la tabla en la pantalla.

#include <stdio.h>

/* prototipos */

void leer(int af]l[5]);

voi d visualizar (const int al(][5]);

int main()

{
int a[3][5];
leer (a);
visualizar(a);
return O;

|

void leer(int afll {5])

int i,j;

puts ("Introduzca 15 nUnmeros enteros, 3 por fila");
for (1 =0, i < 3; i++)

{

printf ("Fila%: ",1i) ;
for (3 =0, j < 5; j++)
scanf ("&d",&alil[j1);
|
voi d visualizar (const int all(5])

{
int i,j;
for (i = 0, | < 3; 1++)
I
i i 4 |
(=3 E{" ®d", a 11 |
pri "vn")
Ejecucion

La traza (ejecucidn) del programa:

Introduzca 15 numéros Encearcs, J por fila

274

Programacion en C. Metodologia, algoritmos y estructura de datos

Fila O 45 75 25 10 40
Fila 1: 20 14 36 15 26
Fila 22 21 15 37 16 27
45 75 25 10 40

20 14 36 15 26

21 15 37 16 27

8.4.5. Arrays de méas de dos dimensiones

C proporciona la posibilidad de almacenar varias dimensiones, aunque raramente los datos del mundo
real requieren mas de dos o tres dimensiones. El medio mas facil de dibujar un array de tres dimensiones
es imaginar un cubo tal como se muestra en la Figura 8.10.

Un array tridimensional se puede considerar como un conjunto de arrays bidimensionales
combinados juntos para formar, en profundidad, una tercera dimension. El cubo se construye con filas
(dimension vertical), columnas (dimensién horizontal) y planos (dimension en profundidad). Por
consiguiente, un elemento dado se localiza especificando su plano, filay columna. Una definicion de un

array tridimensional equipos es:
int equipos[3]1[15][107;

Un ejemplo tipico de un array de tres dimensiones es el modelo libro, en el que cada pagina del
libro es un array bidimensional construido por filas y columnas. Asi, por ejemplo, cada pagina tiene
cuarenta y cinco lineas que forman las filas del array y ochenta caracteres por linea, que forman las
columnas del array. Por consiguiente, si el libro tiene quinientas paginas, existiran quinientos planos y
el nimero de elementos sera 500 x 80 x 45 = 1.800.000.

Figura 8.10. Un arrayde tres dimensiones (4x 5 x 3).

8.4.6. Una aplicacion practica

El array libro tiene tres dimensiones [PAG NAS] [LI NEAS] [COLUMNAS], que definen el tamafio
del array. El tipo de datos del array es char, ya que los elementos son caracteres.

Arrays (listasy tablas) 275

(Cémo se puede acceder a la informacion del libro? El método maés facil es mediante bucles
anidados. Dado que el libro se compone de un conjunto de paginas, el bucle mas externo sera el bucle
de pagina; y el bucle de columnas el bucle mas interno. Esto significa que el bucle de filas se insertara
entre los bucles pagina y columna. El codigo siguiente permite procesar el array

int pagina, linea, columna;

for (pagina= O, pagina < PAQ NAS; ++pagi na)
for (linea= 0; linea = LINEAS; ++linea)
for (columas= 0; columa <« COLUWNAS; ++col uma)
<procesar Libro[pagina]llineal [columal>

Ejercicio 8.2
Comprobar si una matriz de nlmeros enteros es simétrica respecto a la diagonal principal.

La matriz se genera internamente, con la funcion r andom() y argumento N(8) para que la matriz
tenga valores de O a 7. El tamafio de la matriz se pide como dato de entrada. La funcion si netrica ()
determina si la matriz es simétrica. La funcién nmai n () genera matrices hasta encontrar una que sea
simétrica y la escribe en pantalla.

/*
Determina si una matriz es sinétrica. La matriz se genera con ndmeros
aleatorios de O a 7. El programa itera hasta encontrar una matriz
sineétri ca.

*/

#i ncl ude <stdlib.h>

#include <stdio.h>

#include <time.h>
#define N 8

void genmat (int al][N], int n) ;

int simetrica(int a[]IN], int n) ;
void escribemat (int a[] [N], int n) ;

int mai n(void)

{
int a[N][N]; /* define matriz de tamafio maxino N */

int n,i,j;

int es-sim

random ze() ;

do {
printf ("\nTamafioc de cada dinensién de la matriz, maxino %l: ", N);
scanf ("sd",&n) ;

}while (n<2 | n>N) ;

do {

gen- mat (an);
es-sim= simetrica(a,n);
if (es-sim
{
put s ("\n\Encontrada matriz sinmétrica.\n") ;

escribe_mat (a,n);

}
} while (!es_sim) :
return O;

276 Programacion en C. Metodologia, algoritmos y estructura de datos

}

void genmat (int afl][N], int n)

{
int i,73;

for (i=0; i<n; i++)
for (§=0; Jj<n; Jj++)
alil[j]l= random(N) ;
\

int simetrica(int afl][N], int n)
{

int i,j;

int es-sinmetrica;

for (es_simetrica=1,1i=0; i<n-1 && es-sinetrica; i++)
{
for (j=i+1; jcn && es-simetrica; j++)
if (alil(J1 1= al(jllil)
es_simetrica= O
}
return es-sinetrica;
}

void escri bemat (int al] [N], int n)
{

int i,j;
puts(“\tMatriz analizada") ;
puts ("\t—- - —__----—/"\m");

for (izo; i<n; i++)
{ putchar(’\t’);
for (j=0; j<n; j++)
printf ("sd %c",afil[j], (j==n-1 2'\n ‘" *));

8.5. UTILIZACION DE ARRAYS COMO PARAMETROS

En C todos los arrays se pasan por referencia (direccién). Esto significa que cuando se llama a una
funcidn y se utiliza un array como parametro, se debe tener cuidado de no modificar los arrays en
una funcion llamada. C trata automaticamente la llamada a la funcién como si hubiera situado el ope-
rador de direccion & delante del nombre del array. La Figura 8.11 ayuda a comprender el mecanismo.
Dadas las declaraciones

#defi ne MAX 100
doubl e datos[MAX];

se puede declarar una funcidn que acepte un array de valores double como parametro. La funcion
SunmaDeDat os () puede tener el prototipo:

doubl e SumaDeDatos (double dalos[MAX]) ;

Incluso mejor si se dejan los corchetes en blanco y se afiade un segundo pardmetro que indica el
tamafio del array:

doubl e SumaDeDatos (double datos[], int n);

Arrays (listasy tablas) 277

int main()
{
char
pal abra [4]="ABC"; palabra — M
canbi ar-(palabra) ;
puts(palabra);
return O; T a =
void Y

Figura 8.11. Pasode un array por direccién.

A la funcion SumaDeDat os se pueden entonces pasar argumentos de tipo array junto con un entero
n, que informa a la funcién sobre cuantos valores contiene el array. Por ejemplo, esta sentencia visualiza
la suma de valores de los datos del array:

printf ("\nSuma = %1f",SumaDeDatos (dat os, MAX)) ;

La funcion SumaDeDat os no es dificil de escribir. Un simple bucle f or suma los elementos del
array y una sentencia r et ur n devuelve el resultado de nuevo al llamador:

doubl e SumaDeDatos (double datos{], int n)

doubl e suma = O;

while (n = 0)
suma += datos[-—n];

return sunmg;
}

El cddigo que se utiliza para pasar un array a una funcion incluye el tipo de elemento del array y su
nombre. El siguiente ejemplo incluye dos funciones que procesan arrays. En ambas listas de parametros,
el array al] se declara en la lista de pardmetros tal como

doubl e all

El nimero real de elementos se pasa mediante una variable entera independiente. Cuando se pasa un
array a una funcion, se pasa realmente sélo la direccion de la celda de memoria donde comienza el
array. Este valor se representa por el nombre del array a. La funcion puede cambiar entonces el
contenido del array accediendo directamente a las celdas de memoria en donde se almacenan los
elementos del array. Asi, aunque el nombre del array se pasa por valor, sus elementos se pueden cambiar
como si se hubieran pasado por referencia.

Ejemplo 8.5
Paso de arrays afunciones. En el ejemplo se lee un array y se escribe.

El array tiene un tamafio maximo, L, aunque el nimero real de elementos es determinado en la
funcién leerarray () . El segundo argumento es, por tanto, un puntero para asi poder transmitir por
referencia y obtener dicho dato de la funcién.

278 Programacién en C. Metodologia, algoritmos y estructura de datos

#i ncl ude <stdio.h>

#define L 100

voi d leerArray (double al[], int*);

void imprimirArray (const double [], int);

int main ()

{
double alL];
int n;

leerarray (a, &n) ;
printf("E1l array a tiene %d el enentos, estos son\n ",n);
imprimirArray (a, n);

return O
}
voi d leerArray (double al[], int* num
{
int n = 0;
puts ("Introduzca datos. Para term nar pul sar 0.\n");
for (; n < L; n++)
{
printf ("sd: ",n);
scanf ("$1f",&aln});
if (a[n] == 0) break
Y
*num = N;

}

voi d imprimirArray (const double al],int n)
{
int i = 0;
for (; i < n; i++)
printf("\tzd: %1f\n",i,alil);

Ejecucion

Incroduica datos. Para terminar pulsar 0.
s 31.131
1: 15. 25
2: 44. 77
3: 0

El array tiene tres elementos, €stos son:

31.31
15.25
44. 77

NE O

Arrays (listas y tablas) 279

Ejercicio 8.2

Escribir unafuncion que calcule el maximo de los primeros n elementos de un array especificado.
doubl e maximo (const double all,int n)

doubl e nx;
int i;
mx = al0];
for (i = 1; 1 < n; i++)
mx = (alilsmx ? al[i]l: mx);

return nx;

8.5.1. Precauciones

Cuando se utiliza una variable array como argumento, la funcion receptora puede no conocer cuantos
elementos existen en el array. Sin su conocimiento una funcion no puede utilizar el array. Aunque la
variable array puede apuntar al comienzo de él, no proporciona ninguna indicacioén de donde termina el
array.

La funciéon SunaDeEnt er os () suma los valores de todos los elementos de un array y devuelve el
total.

int SumaDeEnteros(int *ArrayEnteros)

{

}

int main()

{
int lista[5] = {10, 11, 12, 13, 14};
SunmaDeEnteros (lista);

}

Aungue SunaDeEnt er os () conoce donde comienza el array, no conoce cuantos elementos hay en
el array; en consecuencia, no sabe cuantos elementos hay que sumar.

Se pueden utilizar dos métodos alternativos para permitir que una funcién conozca el nimero
de argumentos asociados con un array que se pasa como argumento de una funcion:

o situar un valor de sefial al final del array, que indique a la funcion que se ha de detener
el proceso en ese momento;
» pasar Un segundo argumento que indica el nimero de elementos del array.

Todas las cadenas utilizan el primer método ya que terminan en nulo. Una segunda alternativa es
pasar el nimero de elementos del array siempre que se pasa el array como un argumento. El array y el
numero de elementos se convierten entonces en una pareja de argumentos que se asocian con la funcion
Ilamada. La funcién SumaDeEnt er os (), por ejemplo, se puede actualizar asi:

int SumaDeEnteros (int ArrayEnteros[], int NoEl enent os)
{

}

280 Programacion en C. Metodologia, algoritmos y estructura de datos

El segundo argumento, NoEl enent os, es un valor entero que indicaa la funcién SunaDeEnt er os()
cuantos elementos se procesaran en el array Ar r ayEnt er os . Este método suele ser el utilizado para
arrays de elementos que no son caracteres.

Ejemplo 8.6
Este programa introduce una lista de 10 nimeros enterosy calcula su sumay el valor maximo.

#i ncl ude <stdio.h>
int SumaDeEnteros (const int ArrayEnteros([], int NoEl enentos);

int maximo{const int ArrayEnteros(], int NoEl enentos);

int main()

{
int itens[10] ;
int Total, 1i;

puts ("Introduzca 10 ndmer os, segui dos por return");
for (i =0, i < 10; i++)
scanf ("%d",&Items[i]) ;
printf ("Total = %4 \n", SumaDelnteros (Items,10));
printf ("Valor maxi nb: %d \n",maximo(Items,10)};
return O
}
int SumabDeEnteros (cons int ArrayEnteros[], int NoEl ement os)
{
int i, Total = O;
for (i = 0; i < NoEl enentos; i++)
Total += ArrayEnteros(il];

return Total ;
}
int maximo (const int ArrayEnteros[], int NoEl ement os)

{
int nx;
int i;
nmnk = ArrayEnteros(0]; i
for (i = 1; i < NoEl enentos; i++)
mx = (ArrayEnteros[i]>mx ? ArrayEnteros(i] : mx) ;

return nx;

El siguiente programa muestra cOmo se pasa un array de enteros a una funcién de ordenacion,

ordenar ().
#i ncl ude <stdio.h>
voi d ordenar(int{],int); /* prototipo de ordenar */
int main()

{
int ListaEnt{] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 10};

int i;
int LongLista = sizeof(ListaEnt) / sizeof(int);

ordenar (ListaEnt, LongLista) ;

Arrays (listasy tablas) 281

for (i = 0, | <« LongLista; i++)
printf ("¢d ",ListaEnt[i]) ;
return O;

}

voi d ordenar (int listal], int numElementos)

{
/* cuerpo de la funci én ordenar el array */

}

Como C trata las cadenas como arrays de caracteres, las reglas para pasar arrays como argumentos
a funciones se aplican también a cadenas. El siguiente ejemplo de una funcion de cadena que convierte
los caracteres de sus argumentos a mayusculas, muestra el paso de parametros tipo cadena.

voi d convierte_mayus {(char cadl[])
{
int i =0
int intervalo = "a'-'"A *;
while (cadlil)

{
cad[i] = (cadlil>='a’ && cadl[il<='z’) ? cad[il-intervalo: cadl[i] ;
14+

}

La funcion convi ert emayus () recibe una cadena, un array de caracteres cuyo ultimo caracter es
el nulo (0). El bucle termina cuando se alcance el fin de cadena (nulo, condicién false). La condicion del
operador ternario determina si el caracter es mindscula, en cuyo caso resta a dicho caracter el intervalo
que hay entre las minasculas y las mayusculas.

8.5.2. Paso de cadenas como parametros

La técnica de pasar arrays como parametros se utiliza para pasar cadenas de caracteres a funciones. Las
cadenas terminadas en nulo utilizan el primer método dado anteriormente para controlar el tamafio de
un array. Las cadenas son arrays de caracteres. Cuando una cadena se pasa a una funcion, tal como
strlen()(véase capitulo de tratamiento de cadenas), la funcidn conoce que se ha almacenado el final
del array cuando ve un valor de O en un elemento del array.

Las cadenas utilizan siempre un O para indicar que es el Ultimo elemento del array de caracteres. Este
0O es el caracter nulo del codigo de caracteres ASCII.

Considérese estas declaraciones de una constante y una funcion que acepta un pardmetro cadenay
un valor de su longitud.

#define MAXLON 128
voi d FuncbDemo(char s[],int |ong);

El pardmetro s es un array de caracteres de longitud no especificada. El parametro long indica a la
funcidn cuantos bytes ocupa (que puede ser diferente del nimero de caracteres almacenados en s).
Dadas las declaraciones siguientes:

char presidente[MAXLON] = "Manuel Martinez";
FuncDemo (presidente, MAXLON);

la primera linea declara e inicializa un array de caracteres llamado pr esi dent e, capaz de almacenar
hasta MAXLON 1 caracteres méas un byte de terminacidn, carécter nulo. La segunda linea, pasa la cadena
a la funcion.

282 Programacion en C. Metodologia, algoritmos y estructura de datos

8.6. ORDENACION DE LISTAS

La ordenacion de arrays es otra de las tareas usuales en la mayoria de los programas. La ordenacién o
clasificacion es el procedimiento mediante el cual se disponen los elementos del array en un orden
especificado, tal como orden alfabético u orden numeérico.

18 | .
14 |
) N]
Lista Lista ordenada Lista ordenada
desordenada (ascendente) (descendente) |

Figura8.12. Lista de numeros desordenada y ordenada en orden ascendente y en orden descendente. I

Un diccionario es un ejemplo de una lista ordenada alfabéticamente, y una agenda telefonica o lista
de cuentas de un banco es un ejemplo de una lista ordenada numéricamente. El orden de clasificacion
u ordenacion puede ser ascendente o descendente.

Existen numerosos algoritmos de ordenacion de arrays: insercion, burbuja, seleccion, rapido (quick
sort),fusién (merge),monticulo (heap),shell, etc.

8.6.1. Algoritmo de la burbuja

La ordenacidn por burbuja es uno de los métodos mas faciles de ordenacion. El método (algoritmo) de
ordenacién es muy simple. Se compara cada elemento del array con el siguiente (por parejas), si ho
estan en el orden correcto, se intercambian entre si sus valores. El valor mas pequeiio flota hasta la parte
superior del array como si fuera una burbuja en un vaso de refresco con gas.

La Figura 8.13 muestra una lista de nimeros, antes, durante las sucesivas comparaciones y a la
terminacion del algoritmo de la burbuja. Se van realizando diferentes pasadas hasta que la lista se
encuentra ordenada totalmente en orden ascendente.

Lista desordenada: 6 4 10 2 8
Primera pasada 6 4 4 4
4 6 6 6
10 10 2 2
2 2 10 8
8 8 8 10
Segunda pasada 4 4
6 2
2 6
8 8
10 10

Arrays (listasy tablas) 283

Tercerapasada 4 2
2 4
6 6
8 8
10 10
Cuartapasada 2
4
6
8
10

Figura 8.13. Secuencias de ordenacién.

La ordenacidn de arrays requiere siempre un intercambio de valores, cuando éstos no se encuentran

en el orden previsto. Si, por ejemplo, en la primera pasada 6 y 4 no estan ordenados se han de
intercambiar sus valores. Suponiendo que el array se denomina lista:

lista[O] 6
listall] 4
listaf2] 10
listal3] 2
listal4] 8

para intercambiar dos valores, se necesita utilizar una tercera variable auxiliar que contenga el resultado
inmediato. Asi, por ejemplo, si las dos variablesson 1ista[0i y 1xsta[1], el siguiente cédigo realiza
el intercambio de dos variables:

Ejemplo 8.7

Lafuncién i nt er canbi ointercambia los valores de dos variables X e y
El algoritmo de intercambio utiliza una variable auxiliar

aux = X;
X =vy;
y = aux;

La funcion i nt er canbi o sirve para intercambiar dos elementos x e y que se pasan a ella. Al tener
que pasar por referencia, los argumentos de la funcién son punteros.

voi d intercambio(float* x, float" y)
{

float aux;

aux = *x;

*x = *y;

*y = aux;
1

Una llamada a esta funcion:
float r, v;

intercambio (&1, &V) ;

284 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 8.8
El programa siguiente ordena una lista de nimeros realesy a continuacion los imprime.

#i ncl ude <stdio.h>

/* prototipos */

void imprimir(float all, int n);

voi d intercambio(float* x, float* y);

void ordenar (float al], int n) ;

int main()

float a[10]={25.5,34.1,27.6,15.24. 3.27, 5.14, 6.21,7.57,4.61, 5.4};

imprimir(a,10);
ordenar (a,10) :
imprimir(a,10);

return O
}
void imprimir(float al], int n)
{
int i =0
for (; i < n-1; i++) {
printf ("$f,%c",alil, ((i+1)%10==0 ? '\n’ : " “)};

}
printf ("$f \n",aln-11);
}

voi d intercambio(float* x, float* y)
(

fl oat aux;
aux = *x;
*x = *Y;

*y = aux;

}
/* ordenar burbuja */

void ordenar (float a[], int n)
{

int i,j;
for (i = n-1; i>0; 1i--)
for (j = 0; jJ < i; J++)
if (aljl = alj+1])

intercambio(&alj],&alj+1]1);

8.7. BUSQUEDA EN LISTAS

Los arrays (listas y tablas) son uno de los medios principales por los cuales se almacenan los datos en
programas C. Debido a esta causa, existen operaciones fundamentales cuyo tratamiento es imprescin-
dible conocer. Estas operaciones esenciales son: la busqueda de elementos y la ordenacion o clasifica-
cién de las listas.

La busqueda de un elemento dado en un array (lista o tabla) es una aplicacién muy usual en el
desarrollo de programas en C. Dos algoritmos tipicos que realizan esta tarea son la bisqueda secuencial

Arrays (listasy tablas) 285

0 en serie y la basqueda binaria o dicotémica. La busqueda secuencial es el método utilizado para
listas no ordenadas, mientras que la busqueda binaria se utiliza en arrays que ya estan ordenados.

8.7.1. Busqueda secuencial

Este algoritmo busca el elemento dado, recorriendo secuencialmente el array desde un elemento al
siguiente, comenzando en la primera posicion del array y se detiene cuando se encuentra el elemento
buscado o bien se alcanza el final del array.

Por consiguiente, el algoritmo debe comprobar primero el elemento almacenado en la primera
posicion del array, a continuacion el segundo elemento y asi sucesivamente, hasta que se encuentra el
elemento buscado o se termina el recorrido del array. Esta tarea repetitiva se realizara con bucles, en
nuestro caso con el bucle whi | e.

Algoritmo BusquedaSec

Se utiliza una variable ldgica, en C tipo i nt, denominada Encontrado, que indica si el elemento se
encontrd en la busqueda. La variable Encont r ado se inicializa a falso(0) y se activa a verdadero(1)
cuando se encuentra el elemento. Se utiliza un operador and (en C &&),que permita evaluar las dos
condiciones de terminacion de la busqueda: elemento encontrado o no haya méas elementos (indice del
array excede al altimo valor valido del mismo).

Cuando el bucle se termina, el elemento o bien se ha encontrado, o bien no se ha encontrado. Si el
elemento se ha encontrado, el valor de Encontrado sera verdadero y el valor del indice seré la posicién
del array (indice del elemento encontrado). Si el elemento no se ha encontrado, el valor de Encontrado
serd falso y se devuelve el valor —1 ai programa llamador.

BusguedaSec
inicio
Poner Encontrado = fal so
Poner Indice = priner indice del array
nentras (El ementono Encontrado) y (lIndice=< Utinm) hacer
si (A[indice] = El enento) entonces
Poner Encontrado a Verdadero
si no
I ncrenmentar | ndice
fin-mentras

si (Encontrado) entonces
retorno (I ndice)
si no
retorno (-1)
fin-si
€in
El algoritmo anterior implementado como una funcion para un array Li st aes:
enum { FALSE, TRUE};

int BusquedaSec(int Lista(MaX], int El enento)
{

int Encontrado = FALSE;

int i =0

/* BUsqueda en la lista hasta que se encuentra el elenento
o se alcanza el final de la lista.
*/

286

Programacion en C. Metodologia, algoritmos y estructura de datos

while ((!Encontrado) && (i <= MAX-1))
{
Encontrado = ((A[i] == Elemento)?TRUE:1++);
}
/*Si se encuentra el elenento se devuelve la posicién en la lista. */
if (Encontrado)
return (i) ;
el se
return (-1);
}

En el bucle whi | e se ha utilizado el operado condicional » : para asignar TRUE si Se encuentra el
elemento, o bien incrementar el indice i.

Ejemplo 8.9

El siguiente programa busca todas las ocurrencias de un elemento y la posicién que ocupa en una
matriz. La posicion viene dada por fila y columna; la matriz se genera con nimeros aleatorios de 0
a 49.

La funciéon de busqueda devuelve O si no encuentra al elemento, 1 si lo encuentra. Tiene el
argumento de la matriz y dos parametros para devolver la filay columna, por lo que tendran que ser de
tipo puntero para poder devolver dicha informacién. La busqueda se har & a partir de la filay columna
de la dltima coincidencia.

#i ncl ude <stdlib.h>
#i ncl ude <stdio.h>
#i ncl ude <time.h>
#define F 8
#define C 10
#define N 50

void escribemat (int a[]l([C]) ;
void genmat (int al]I[Cl) ;

int buscar(int a[][C],int* fila,int* col,int el emento);

int main()

{
int al[F]I[C] ;
int item nf,nc,esta;
int veces = O

random ze() ;

genmat (a) ;

printf ("\n Elerento a buscar: ") ;
scanf ("sd", & temn);

do {
esta = buscar(a,&nf,&nc,item);
if (esta)

{
veces = veces+1;
printf ("\n coincidencia %: Fila %, Columna %d\n",veces,nf,nc) ;
}
Jwhile (esta);
escribe_mat (a);
printf ("\nNumero de coi ncidenci as del elenento %4 : %4",

Arrays (listasy tablas)

item, veces) ;
return O;

/* Busqueda lineal en toda la matriz */
int buscar(int al[]{C],int* fila,int* col,int el emento)

}

staticint x =0, y = -1;
int i,7j,encontrado;

/* avanza al siguiente elemento(fila,columna) */

if (y==c-1) /* ultima columa */
I
y =0,
X = x+1;
|
el se
y = y+l;

encontrado = O
while (!encontrados&s& (x<F))

{
encontrado = (alx][y] == elenmento);
if (!encontrado) /* avanza a siguiente elenmento */
if (y==c-1)
{
y =0,
X = x+1;
I
el se
y = y+1;
}

/* ultinmo valor de x ey */
*fila = X;

*col = Yy;

return encontrado;

void gen-nmat (int al][C])

{

int i,j;
for (i=0; i<F; i++)
for (3=0; j<C; j++)
alil[j)l= random(N) ;

void escri bemat (int al][C])

{

int i,7;
puts("\t\tMatriz analizada") ;
puts ("\t\t—- - —— —\n") -

for (i=0; i<F; i++)
{ putchar(‘\t’);
for (j=0; j<C; Jj++)
printf("%da %c",alill[j], (J==C-1 2'\n *:" *});

287

_ sNa s

288

Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 8.10

En este programa se quiere buscar la fila de una matriz real que tiene la maxima suma de sus elementos
en valor absoluto, La matriz se genera con nimeros aleatorios, las dimensiones de la matriz se
establecen con una constante predejinida.

Para determinar la suma de una fila se define la funciéon sunar () ,se la pasa la direccion del primer
elemento de la fila para tratar cada fila como una array unidimensional. Para generar nimeros aleatorios
de tipo real, se divide el nimero que devuelve la funcion r and () entre 100.0.

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#define F 6
#define C 10
#define V 100.0

voi d escribe-mat (float nt [][C]);
void gen-mat (float m [1[C])
float sumar (float vI[]};

int maximo(float m [1[C]) ;

7

int main()

t
float mat [F]I[C] ;
int fila;
random ze() :
gen- nat (nmat);
escribe_mat (mat) :

fila = maximo(mat) ;
printf ("\n\nFila cuya suna de el enentos es mayor: %d",fila);

return O
}

void gen-nmat (float mat [1[C])
{
int i,j;
for (i=0; 1i<F; i++)
for (3=0; j<C; j++)
mat (1] [j]l= rand()/V;
}

voi d escribe_mat (float mat[][C]})
{

int i,j;
puts ("\ n\t\tMatriz analizada\n");
puts ("\t\t—- - ———------ \n") ;

for (i=0; i<F; 1i++)
{
for (j=0; 3<C; J++)
printf ("%.2f%c", mat [i] [J], (J==C-1 2'\n ':" “));

}

float sumar (float v(])
{

int i;

float s;

Arrays (listas y tablas) 289

for (s=0.0,1=0; 1<C; i++)
S *+= v[il;
return s;

int maximo(float m []{C])
{
float nx;
int i,f;
mx = sumar {(&mt[0][0}); /* direccion de prinmera fila */
printf ("\nSuma fila %4 %.2f",0,mx);
for (f=0,i=1; i<F; i++)
{
float t ;
t = sumar (&mt [i1[0]) ;
printf ("\nSuma fila %4 %.2f",1,t);
if (£ > mx)

nK = t;
f=i;
I
I
return f;
1
|
|
|
8.8. RESUMEN
En este capitulo se smalizsn los tipos agregados de C der & los elementos del armay 4o deben utilizar
arrayi. Despuds de leer esie capitubo debe tener un sentencias de asignacidn directas, sentencias de
uen conocimicnto de los conceptos fundamentales lecturafescriturs o bucles (mediante las senten-
de los tipos agregados, ciss for, whileodo-while)

Se describen ¥ analizan los siguicnics concepins:

« Un o 0 tipo ds date o gue e int total_mesas([12];

wtiliza para bcalizar ¥ almacenar elementos de » Los arrays de caracieres contienen cadenas de

"H ﬂ“&m:h . de dos di textos. Em C se bermiinan kas cadenas de caracte-
. .';'p ; I:I:Iilintnllh. res situando un cardcter nudo (W) como dWlimo
* En C los ammays s definen especificando el 590, ¢ ueroera srrays maltdimensionsles.

de dato del elemento, el nombre del array y el

tamaiho de cads dimensidn del srray. Para scoe- int ventas_totales[12][50];

290

8.9. EJERCICIOS

Para los Ejercicios 8.1a 8.5, supongalas declaracio-
nes:

int i,3,k;
int Prinmerof{21}, Segundo[217];
int Tercerol[6][12] ;

Determinar la salida de cada segmentode progra-
ma (en los casos que se necesite, se indica debajo el
archivo de datos de entrada correspondiente).

81 for (i=1; 1<=6; i++)
scanf ("$d"&Primerofil) ;:
for(i= 3; i>»0; i--)
printf ("$4d", Primero[2*i])

3 7 4 - 1 0 6

82. scanf ("sd",&k) :
for(i=3; i<=k;)
scanf ("%d", &Segundo [i++])
i= 4,
printf ("%d 2d\n"
, Segundo[k],Segundo[j+1]) ;

6 3 0 1 9

83. for(i= O i<10;i++)
Primero[i] =i + 3;
scanf ("sd %d",&J ,&k) :
for(i= 3; i<=k;)
printf ("s3\n", Primero{i++]}) ;

84, for(i=0, i<12; i++)
scanf(*%d”,&Primero(i]) ;
for(j=0; j<6;3++)
Segundo[31=Pri merol2*3]
for(k=3; k<=7,k++)
printf ("%sd %d \n"
Prinmero [k+1],Segundo

t s
[k-11);

6 -5 0O s -8 1

85. for(i= O 4<7;)
scanf ("$d", &Primero[j++]);
i = O
=1
while ((j< 6) &&
<Primero(j]))

(Primero[j-1}

8.6.

8.7.

88.

89.

Programacion en C. Metodologia, algoritmosy estructura de datos

{

14, J++i
}
for (k= -1; k<j+2;)
printf ("sa", Primerol++k]) ;

20 60 70 10 0O 40
30 90

for(i= O

for(j= 0
Tercero[

for(i= O

i< 3, 14+)
J<12; J++)

1103} = 1i+3+1;
i< 3;1++)

(J < 12)

printf ("$d %a %da \n",i,j,
Tercero [1]{3))
j +=3:

Escribir un programa que lea el array

4 7 1 3 5
2 0 6 9 7
3 1 2 6 4

y lo escribacomo

GWk~NM
~NOOON
AONPEFP W

Dado el array

4 7 - 5 4 9
0O 3 -2 6 -2
1 2 4 1 1
6 1 0 3 - 4

escribirun programa gque encuentre la sumade
todos los elementos que no pertenecen a la
diagonal principal.

Escribir una funcién que. intercambie la fila
i-6sima por la j-ésima de un array de dos
dimensiones, mxn.

8.10. PROBLEMAS

Mota: boados los programas que s¢ proponen deben

82

8.3.

84.

8.5,

86.

Escribir un programa que convierta un ndmero
romano {en forma de cadena de caracieres) en
ndmero arabigo.

Reglas de conversion

1000
500
100
50
10

5

1

P<XrOOZ

Escribirun programaque pernit a visualizarel
triangulo de Pascal:

1 6 15 20 15 6 1

En el triangulode Pascal cada nimeroes la
suma de los dos nimeros situados encima de
él. Este problema se debe resolver utilizando
un array de una sola dimension.

Escribir una funcién que invierta el contenido
de n nimeros enteros. EI primero se vuelve el
Gltimo; el segundo, el pendltimo, etc.

Escribiruna funcion a la cual se le proporcione
una fecha (dia, mes, afio), asf como un nimero
de dias a afiadir a esta fecha. La funcion
calcula lanueva fechay se visualiza.

Un ndmero entero es primo si ningln otro
ndmero primo mas pequefio que él es divisor
suyo. A continuacionescribirun programa que
rellene una tabla con los 80 primeros niimeros
primos y los visualice.

Escribir un programaque visualice un cuadra-
do magico de orden impar n comprendido
entre 3y 1 1;el usuario debe elegir el valor de

87.

8.8.

89.

Arrays (listasy tablas)

A Un cusdrado migico se compone de ndme-
rod enteros comprendidos entre 1 ¥ n. La suma
de los ndmeros que figuram en cada fila,

columna y diagonal son iguales.
Ejemplo

8 1 6

3 5 7

4 L] 2

Un método die penerscidn consiste en sitwar
el mimiero 1 en el centro de la primera fila,
nimero siguiente en la casilla situada por
encima y a la derecha, y asi sucesivamente, El
cuadrado es ciclico: la linea encima de la
primers ea, de hacho, la ditima v 1a columna &
derecha de la dltima e la primera. En el caso
de que el nimero generado caiga en una
casilla ocupada, se elige la casilla situada
encima del mimero que acaba de ser situado.

El juego del ahorcado se juega con dos perso-
nas (0 una persona y una compuiadora). Un
jugador selecciona uma palabra v el otro juga-
dor trata de adivinar la palabra adivinando
letras individuales. Disefiar un programa para
jugar al ahorcado. Sugerencia: almacenar una
lista de palabrasen un array y seleccionar pala-
bras aleatoriamente.

Escribir un programa que lea las dimensiones
de una matriz, lea y visualice la matrizy a
continuacion encuentre el mayor y menor
elemento de la matriz y sus posiciones.

Si x representa la media de los nimeros x;,
Xo.-- Xy ENtONCES la varianza es la media de los
cuadrados de las desviaciones de los nimeros
de la media.

: ! 4 i
Varimnsa = :-HELT.—.:F

Y la desviacion estdndar es la raiz cuadra-
da de la varanza. Escribir un programa qoe
lea una lista de ndmeros reales, los ceente ¥ a
continuacion calcule e imprima su media,
varianza y desviacion estandar. Utilizar fun-
ciones para calcular la media, varianza y des-
viacién estandar.

291

292

Programacion en C. Metodologia, algoritmos y estructura de datos

H.1i

812

Escribir un programa para loer una matriz A ¥
formar |s mainz ranspuesia de A. El programa
debe de esctibir ambas matrices.

tro un vector que puede contener elementos
duplicados. La funcion debe sustituir cada
valor repetido por -5y devolver ai punto don-
de fue Illamado el vector modificado y el
ndmero de entradas modificadas.

Los resultados de las Ultimas eIe_ccipnes a
alcalde en el pueblo x han sido los siguientes:

Distrito Candidato Candidato Candidato Candidato

GOBRWN -

B.13

A 3 c D
194 48 206 45
180 20 ix 16
221 90 140 20
432 50 821 14
820 61 946 18

Escribir un programa que haga las siguien-
tes tareas:

a) Imprimir la tabla anterior con cabeceras
incluidas.

b} Calcular ¢ imprimir ¢l nimero todal de
voios recibidos por cada candidato y el
porcentaje del total de voios emitidos,
Asimismo, visualizar el candidato mis
viilsdo,

¢} 5i algin candidato recibe mads del 30 por
ciento de los datos, ¢l programa imprimicd
un mensaje declardndole gansdor.

d) i ningiin candidato recibe maés del 30 por
ciento de los datos, el debe
imprimir el sambre de los dos candidatos
mds voisdos, que serin los que pasen & la
segunda romds de las elecciones.

Escribir un programa que lea una coleccidn de
cadenas de caracteres de longitud arbitraria.
Por cada cadenas befda, su programa hari lo
siguiente:

aj Impriemir Ia longited de la cadena,

b) Contar el pdmero de ocurrencia de pala-
bras de custro letras.

¢) Suestituir cada palabra de cuatro letras por
una cadena de cuntro asteriscos ¢ imprimir
|2 mmeva cadena.

8.14. Una agencia de venta de vehiculos automdvi-

bes distrabarye quince modelos diferentes v te-

oe en su plantilla diez vendedores. Se desea un
programa que escriba un informe mensual de
las venitas por vendedor ¥ maodelo, ssi come el
olimero de automdviles vendidos por cada
vendedor v el mimero total de cadas modelo
vendido por todos lox vendedores. Asimismao,
pars entregar el premio al mejor vendedor,
necesita saber cual es el vendedor que méas
coches ha vendido.

[]
vendedior 1 2 3 4 15
1 4 8 1 4
2 12 4 25 14
3 15 3 4 7
10
815. Diseflar un programa que determine la fre-

8.16.

817,

818.

B9

8.20.

cuencia de apariciton de cada betra mayuscula
en un texto escrito por &l wsusrio (fin de leci-
ra, el punto o el retomo de carmo, ASCIT 13).

Escribir un programa que lea una cadena de
caracteres y ka visualice en un cuadro.

Escribir un programa que lea una frase, susti-
tuya todas las secoencias de dos o més blan-
cos por un solo blanco y visualice la frase res-
tante.

Escribir un programa que fea una frasey a con-
tinuacién visuaiice cada palabra de la frase en
columna, seguido del ndmero de letras que
commpone cada palabes,

Escribir un que desplace una palabra
leida del ioclado desde la izquicrda hasta I
derecha de la pantalls.

Escribir un programa gue lea una linea de
caracterss, y vl.n.-hu: |I linen de tal forms gue

- Eseribir un programa que calcule la frecoencia

de aparicion de las vocales de un texto propor-
cionado por el usuario. Esta solucidn debe

presentarse en forma de histograma.

8.22.

8.23.

8.24.

8.25.

8.26.

Escribir un programa que lea una serie de
cadenas, a comtinuacidn determine Si la cadena
es un idemtificador vilido segin la sintaxisde
C. Sugerencias: utilizar las siguientes funcio-
nes: lamgiud (tamafio del identificador en el
rango permitido); primero (determinar si el
nombre comienzacon un simbolo permitido);
restantes (comprueba si los restantes son
caracteres permitidos).

Escriba una funcién sort que ordeneun con-
junto de n cadenas en orden alfadético.

Disefiar un programa que determine la media
del nimero de horas trabajadas durante todos
los dias de la semana. para cada uno de los
empleadosde la Universidad.

Escriba una funcién que ordeneen sentido des-
cendente los n primeros elementos de un array
de cadenas basado en las longitudes de las cade-
nas. Por ejemplo, “bibi” vendra antes que ‘Ana.

Se introduce una frase por teclado. Se desea
imprimir cada palabra de la frase en lineas
diferentesy consecutivas.

837.

839.

Arrays (listasy tablas)

Escribirun pr ogr ana que determine si una fra-
4 0 una palabra es un palindrome. Un palin-
dromdo et wid cadenn de caracteres que s leen
de igual forma en ambos sentidos: por ejem-
pbu: ana,

Escribir un programa que lenga como enitrada
una palabra ¥ o lineas. Se quicre determinar]
namero de veces que se encuentra la palabra
en las# lineas.

Sedice que una matriz tiene unpunto de silla
si alguna posicién de la matriz es el menor
valor de su fila, y a la wez el mayor de su
columna. Escribir un programa que lenga
como entrada una meatriz de numeros reales, y
calcule la posicién de um punto de silla (si es
que existe).

Escribir un programs en el que se penere alea-
toriamente un vector de 20 mimeros enferos,
El vector ha de quedar de tal forma que In
suma de los 10 primeros elemenos sea mayor
que la suma de los 10 dhimos elementos. Mos-
trar el vector original y el vector con la distri-
bucion indicada.

293

CAPITULO 9

ESTRUCTURAS Y UNIONES

CONTENIDO

294

B.1.
a2
8.3.
B.4.
2.5.

Estructuras.

Acces0 & estructuras.
Estructuras anidadas.
Arrays de estructuras.

Utilizacidén de estructuras
COmo parametros.

9.8,

8.7.
B.8.
B.8.
B.10.
B.11.

Uniones,
Enumeraciones.
Campoa de bit.
Resumen.
Ejercicios.
Problafias.

INTRODUCCION

Este capitulo examina estructuras, uniones, enumeracionesy tipos definidos
por el usuario que permite a un programador crear nuevos tipos de datos. La
capacidad para crear nuevos tipos es una caracteristicaimportante y potente de
Cy liberaa un programador de restringirse al uso de los tipos ofrecidospor el
lenguaje. Una estructura contiene multiples variables, que pueden ser de tipos
diferentes. La estructura es importante para la creacion de programas potentes,
tales como bases de datos u otras aplicaciones que requieran grandes
cantidades de datos. Por otra parte, se analizara el concepto de uni 6n, otro tipo
de dato no tan importante como las estructuras array y estructura, pero si
necesarias en algunos casos.

Un tipo de dato enumerado es una coleccion de miembros con nombre que
tienen valores enteros equivalentes. Un t ypedef esde hecho no un nuevo tipo
de dato sino simplemente un sinénimo de un tipo existente.

CONCEPTOS CLAVE

e Estructura. e Sizeof.

o Estructuras anidadas. e uni on.

+ Selector de campos. e typedef.

e struct. o Operadores de bits,

295

296

9.1.

Programacion en C. Metodologia, algoritmosy estructura de datos

ESTRUCTURAS

Los arrays son estructuras de datos que contienen un nimero determinado de elementos (su tamafio) y
todos los elementos han de ser del mismo tipo de datos; es una estructura de datos homogénea. Esta
caracteristica supone una gran limitacién cuando se requieren grupos de elementos con tipos diferentes
de datos cada uno. Por ejemplo, si se dispone de una lista de temperaturas, es muy Util un array; sin
embargo, si se necesita una lista de informacidn de clientes que contengan elementos tales como el
nombre, la edad, la direccion, el nimero de la cuenta, etc., los arrays no son adecuados. La solucion a
este problema es utilizar un tipo de dato registro, en C llamado estructura.

Los componentes individuales de una estructura se llaman miembros. Cada miembro (elemento) de
una estructura puede contener datos de un tipo diferente de otros miembros. Por ejemplo, se puede
utilizar una estructura para almacenar diferentes tipos de informacion sobre una persona, tal como
nombre, estado civil, edad y fecha de nacimiento. Cada uno de estos elementos se denominan nombre
del miembro.

Una estructura es una coleccidn de uno o més tipos de elementos denominados miembros,
cada uno de los cuales puede ser un tipo de dato diferente.

Una estructura puede contener cualquier nimero de miembros, cada uno de los cuales tiene un
nombre Unico, denominado nombre del miembro. Supongamos que se desea almacenar los datos de una
coleccion de discos compactos (CD) de musica. Estos datos pueden ser:

o Titulo.

o Artista.

o NUmero de canciones.
o Precio.

o Fecha de compra.

La estructura CD contiene cinco miembros. Tras decidir los miembros, se debe decidir cuales son
los tipos de datos para utilizar por los miembros. Esta informacion se representa en la tabla siguiente:

Nombre miembro Tipo de dato

Titulo Array de caracteres de tamafio 30.
Aurtista Array de caracteres de tamafio 25.
Numero de canciones Entero.

Precio Coma flotante.

Fecha de compra Array de caracteres de tamafio 8.

La Figura 9.1 contiene la estructura CD, mostrando graficamente los tipos de datos dentro de la
estructura. Obsérvese que cada miembro es un tipo de dato diferente.

| Titulo Ay, ay, ay, cémo se aleja el sol.

I Artista No ne pises |la sandali as. |
NUmero de canciones 10

| Precio 2222.25 |
Fecha de compra 8-10-1999

Figura9.1. Representacion gréafica de una estructura CD.

-4

Estructuras y uniones 297

9.1.1. Declaracién de una estructura

Una estructura es un tipo de dato definido por el usuario, que se debe declarar antes de que se pueda
utilizar. El formato de la declaracion es:

struct <nombre de la estructura>

{
<tipo de dato m enbro > <nombre m enbr o>
<ti po de dato m enbro> <nonbre m enbr o>

<tipo de dato miembro.> <nombre n emdr o>
}i

La declaracion de la estructura CD es

struct coleccion_CD
{
char titulo(307 ;
char artistal25] ;:
i nt num- canci ones;
fl oat precio;
char fecha- conprafl8! :

Ejemplo

struct conpl ejo
{

float parte-real, parte-inmaginaria,
b

En este otro ejemplo se declara el tipo estructura venta ;

struct venta

{
char vededor [30];
unsi gned int codigo;
int inids_articulos;
float precio-unit;

Y

9.1.2. Definiciénde variables de estructuras

Al igual que a los tipos de datos enumerados, a una estructura se accede utilizando una variable o
variables que se deben definir después de la declaracién de la estructura. Del mismo modo que sucede
en otras situaciones, en C existen dos conceptos similares a considerar, declaracién y dejnicion. La
diferencia técnica es la siguiente, una declaracion especifica simplemente el nombre y el formato de la
estructura de datos, pero no reserva almacenamiento en memoria; la declaracion especifica un nuevo
tipo de dato: st ruct <nonbr e- estruct ur a>. Por consiguiente, cada definicion de variable para una
estructura dada crea un area en memoria en donde los datos se almacenan de acuerdo al formato
estructurado declarado.

Las variables de estructuras se pueden definir de dos formas: 1) listdndolas inmediatamente después
de la llave de cierre de la declaracion de la estructura, 0 2) listando el tipo de la estructura creado seguida
por las variables correspondientes en cualquier lugar del programa antes de utilizarlas. La definicion y
declaracidn de la estructura col ecci ones- CDse puede hacer por cualquiera de los dos métodos:

-

298 Programacién en C. Metodologia, algoritmos y estructura de datos

1. struct col ecci ones- CD
{
char titulo[30] ;
char artistal25] ;
i nt num- canci ones;
float precio;
char fecha_compral8];
} cdl, cd2, cd3;

2. struct colecciones_CD cdl, cd2, cd3;

Otros ejemplos de definicion/declaracion

Considérese un programa que gestione libros y procese los siguientes datos: titulo del libro, nombre del
autor, editorial y afio de publicacidn. Una estructura i nf o- | i br opodria ser:

struct info_libro

{
char titulo([60] ;
char autor {30] ;:
char editorial([30] ;:
int anyo;

Y

La definicion de la estructura se puede hacer asi:

1l.struct info_libro
{
char titulo[60];
char autor [30] ;
char editorial(30] ;
int anyo;
} librol, libro2, libro3;

2.struct info_libro librol, libro2, libro3;

Ahora se nos plantea una aplicacion de control de los participantes en una carrera popular, cada
participante se representa por los datos: nombre, edad, sexo, categoria, club y tiempo. El registro se
representa con la estructura cor r edor :

struct corredor

{
char nonbre(40] ;
i nt edad;
char sexo;
char categorial20} ;
char club{26] ;:
float tienpo;

b

La definicidn de variables estructura se puede hacer asi:

struct corredor vl, sl, cl;

9.1.3. Uso de estructuras en asignaciones

Como una estructura es un tipo de dato similar a un i nt oun char, se puede asignar una estructura a
otra. Por ejemplo, se puede hacer que 1ibro3, |'i bro4y |i br o5 tengan los mismos valores en sus
miembros que 1i br ol . Por consiguiente, serfa necesario realizar las siguientes sentencias:

Estructuras y uniones 299
libro3 = librol;
libro4 = librol;
libro5 = librol

De modo alternativo se puede escribir
librod4 = libro5 = libro6 = Iibrol

9.1.4. Inicializacion de una declaracion de estructuras

Se puede inicializar una estructura de dos formas. Se puede inicializar una estructura dentro de la seccion
de cddigo de su programa, o bien se puede inicializar la estructura como parte de la definicion. Cuando
se inicializa una estructura como parte de la definicidon, se especifican los valores iniciales, entre llaves,
después de la definicion de variables estructura. El formato general en este caso:

struct <tipo> <nonbre variable estructura> =
{ val or m enbr o,
val or m enbro ,

val or m enbro
s
struct info-libro
{
char titulo[607];
char auto[30];
char editorial [30];
int anyo;
y librol = {"Maravilladel saber ","Lucas Garcia", "McGraw-Hill", 1999);

Otro ejemplo podria ser:

struct coleccion_CD
{
char titulo[30];
char artistal25];
i nt num- canci ones;
float precio;
char fecha_compral8];
} ocdl = {
"El hunb nubla tus ojos",
"Col Porter",
15,
2545,
"02/6/99"
};

Otro ejemplo con la estructura corredor:

struct corredor vl = {
"Sal vador Rrapido",
29,
lvl ,
"Senior",
"I ndependi ent e',
0.0

¥

300 Programacion en C. Metodologia, algoritmos y estructura de datos

9.1.5. Eltamafio de una estructura

El operador si zeof se aplica sobre un tipo de datos, o bien sobre una variable. Se puede aplicar para
determinar el tamafio que ocupa en memoria una estructura. El siguiente programa ilustra el uso del
operador si zeof para determinar el tamafio de una estructura:

#i ncl ude <stdio.h>

/* decl arar una estructura Persona */
struct persona
{
char nonbre[30] ;
i nt edad;
float altura;
fl oat peso;
}

voi d main{()
{

struct persona nar;

printf ("Sizeof (persona): %4 \n", sizeof (mar)) ;
}

Al ejecutar el programa se produce la salida:
Sizeof (persona) : 40

El resultado se obtiene determinando el nimero de bytes que ocupa la estructura

Persona Miembros dato Tamario (bytes)
nonbr e[30! char (1) 30
edad int(2) 2
altura float (4) 4
peso float (4) 4
Total 40

9.2. ACCESO A ESTRUCTURAS

Cuando se accede a una estructura, o bien se almacena informacion en la estructura 0 se recupera la
informacion de la estructura. Se puede acceder a los miembros de una estructura de una de estas dos
formas: 1) utilizando el operador punto (.), o bien 2) utilizando el operador puntero ->.

9.2.1. Almacenamiento de informacién en estructuras

Se puede almacenar informacion en una estructura mediante inicializacion, asignacion directa o lectura
del teclado. El proceso de inicializacion ya se ha examinado, veamos ahora la asignacién directay la
lectura del teclado.

Acceso a una estructura de datos mediante el operadorpunto

La asignacion de datos a los miembros de una variable estructura se hace mediante el operador punto.
La sintaxis en C es:

<nombre variabl e estructura> . <nonbre ni enbro> = dat os;

-~

Estructuras y uniones 301

Algunos ejemplos:

strepy (cdl.titulo, "Granada®™) :
cdl.precio = 3450.75;
cdl.num_canciones = 7;

El operador punto proporciona el camino directo al miembro correspondiente. Los datos que se
almacenan en un miembro dado deben ser del mismo tipo que el tipo declarado para ese miembro. En
el siguiente ejemplo se lee del teclado los datos de una variable estructura corredor:

struct corredor cr;
printf ("Nonbre: ") ;

gets(cr.nombre) ;
printf ("edad: ") ;
scanf ("%d" ,&cr .edad) ;
printf ("Sexo: ") ;
scanf ("%c" ,&cr.sexo) ;
printf ("Club: ") ;
gets{cr.club) ;

if (cr.edad <= 18)

Cr.categoria = "Juvenil"; ;
el seif (cr.edad <= 40)

cr.categoria = "Senior";
el se

cr.categoria = 'Veterano';

Acceso a una estructura de datos mediante el operadorpuntero

El operador puntero, -, sirve para acceder a los datos de la estructura a partir de un puntero. Para
utilizar este operador se debe definir primero una variable puntero para apuntar a la estructura. A
continuacién, utilice simplemente el operador puntero para apuntar a un miembro dado.

La asignacion de datos a estructuras utilizando el operador puntero tiene el formato:

<puntero estructura> -> <nombre m enbro> = dat os;

Asi, por ejemplo, una estructura est udi ant e

struct estudi ante

{
char Nonbre[41] ;
int Num_Estudiante;
int Anyo- de- matri cul a;
fl oat Not a;

};

Se puede definir ptr - est como un puntero a la estructura

struct estudiante *ptr_est;
struct estudi ante nejor;

A los miembros de la estructura est udi ant e se pueden asignar datos como sigue (siempre y
cuando la estructura ya tenga creado su espacio de almacenamiento, por ejemplo, con malloc(); O
bien, tenga la direccién de una variable estructura).

ptr-est = &rejor; /* ptr-est tiene |la direccidn(apunta a) nmejor *y
strcopy (ptr_est-»>Nombre, "Pepe alomdra") ;

ptr-est -> Num_Estudiante = 3425;

ptr-est -> Nota = 8.5;

302

Programacion en C. Metodologia, algoritmos y estructura de datos

Nota

Previamente habria que crear espacio de almacenamientoen memoria; por ejemplo, con la funcion
mal | oc ().

9.2.2. Lecturade informacién de una estructura

Si ahora se desea introducir la informacion en la estructura basta con acceder a los miembros de la
estructura con el operador punto o flecha (puntero). Se puede introducir la informacion desde el teclado
o desde un archivo, o asignar valores calculados.

Asi, si z es una variable de tipo estructura complejo, se lee parte real, parte imaginaria y se calcula
el modulo:

struct conpl €j o
{
float pr;
float pi;
fl oat nodul o;
}i
struct conplejo z;

printf ("\nParte real: ") ;
scanf ("$f", &z .pr) ;
printf ("\nParte inmaginaria: ") ;
scanf ("&f",&z.pi);
/* cal cul o del mddul o */
z.modulo = sgrt({z.pr*z.pr + z.pi*z.pi);

9.2.3. Recuperacion de informacion de una estructura

Se recupera informacidn de una estructura utilizando el operador de asignacion o una sentencia de salida
(printf(), puts(), ..). lgual que antes, se puede emplear el operador punto o el operador flecha
(puntero). El formato general toma uno de estos formatos:

1. <nonbre variable> =
<nombre vari abl e estructura>.<nombre m enbro>;

o bien

<nombre vari abl e> =
<punt ero de estructura> -> <nonbre miembro>;

2 .para salida:

printf (" ", <nonbr evariabl e estructura>.<nombre m enbro>);
o bien
printf (" ", <puntero de estructura>-> <nombre miembro>);

Algunos ejemplos del uso de la estructura conpl ej o:

float x,y;
struct conplejo z;
struct conpl ej o *pz;

Estructuras y uniones 303

pz = &z;
X = z.pr;
z.pi;

<
o

printf ("\nNimero conplejo (%.1f,%.1f), nddul o: %.2f",
pz->pr,pz->pi,pz->modulo) ;

9.3. ESTRUCTURAS ANIDADAS

Una estructura puede contener otras estructuras llamadas estructuras ani dadas. Las estructuras anidadas
ahorran tiempo en la escritura de programas que utilizan estructuras similares. Se han de definir los
miembros comunes s6lo una vez en su propia estructura y a continuacion utilizar esa estructura como
un miembro de otra estructura. Consideremos las siguientes dos definiciones de estructuras:

struct enpl eado

{
char nonbre-enp(30] ;
char direccion{25] ;
char ciudad{20];
char provincial20] ;
I ong int cod- postal;
doubl e sal ari o;

b

struct clientes

char nombre_cliente[30];
char direccion{25] ;
char ciudad[20];
char provincia({20];
| ong int cod- postal;
doubl e sal do;

Y

Estas estructuras contienen muchos datos diferentes, aunque hay datos que estan solapados. Asi, se
podria disponer de una estructura, i nfo_dir, que contuviera los miembros comunes.

struct info-dir

char direccion([25] ;

char ciudad(20];

char provincial20] ;

| ong int cod- postal;
i

Esta estructura se puede utilizar como un miembro de las otras estructuras, es decir, anidarse.

struct enpl eado

{
char nonbre- enp(30] ;
struct info-dir direccion_emp;
doubl e sal ari o;

Y

struct clientes
{

304 Programacioén en C. Metodologia, algoritmos y estructura de datos

char nombre_cliente([30];
struct info-dir direccion_clien;
doubl e sal do;

}i

Gréaficamente se podrian mostrar estructuras anidadas en la Figura 9.2,

enpl eado: cliente:
nonbr e- enp nonbre-cliente
di recci on di recci on
info-dir ci udad info-dir ci udad
provinci a provi nci a
cod- post al cod_post al

salario sal do

Figura 9.2. Estructuras anidadas.

9.3.1. Ejemplo de estructuras anidadas

Se desea disefiar una estructura que contenga informacion de operaciones financieras. Esta estructura
debe constar de un nimero de cuenta, una cantidad de dinero, el tipo de operacion (depdsito=0, retirada
de fondos=1, puesta al dia=2 o0 estado de la cuenta=3) y la fecha y hora en que la operacién se ha
realizado. A fin de realizar el acceso correcto a los campos dia, mes y afio, asi como el tiempo (la hora
y minutos) en que se efectud la operacion, se define una estructura fecha y una estructura tiempo. La
estructura r egi st r o- oper aci on tiene como miembros una variable (un campo) de tipo fecha, otra
variable del tipo tiempo y otras variables para representar los otros campos. La representacion del tipo
de operacidn se hace con una variable entera, aunque el tipo apropiado es un tipo enumerado (descrito
en siguientes apartados). A continuacion se declara estos tipos, se escribe una funcion que lee una
operacion financiera y devuelve la operacion leida. La fecha y hora es captada del sistema.

#i ncl ude <stdio.h>
#i ncl ude <dos.h>

struct registro-operation entrada();
struct fecha
{
unsi gned int nes, dia, anyo;
}i
struct tienpo
{
unsi gned int horas, m nutos;
b
struct regi stro- operacion
!
| ong nuner o- cuent a;
fl oat canti dad,
int tipo-operacion;
struct fecha f;
struct tienpo t;
b

int main()
{
struct regi stro- operacion w,

}

Estructuras y uniones

w = entrada() ;

printf ("\n\n Operaci¢n realizada\n ") ;

printf ("\tsld\n",w.numero- cuenta) ;

printf ("\t%d-%d-%d\n",w.f.dia,w.f.mes,w.f.anyo) ;
(

printf ("\t%d:%d\n",w.t.horas,w t.m nutos) ;

return O;

struct registro- operaci on entrada ()

struct time t;

struct date d;

struct regi stro- operacionuna,;
printf ("\nNumero de cuenta: ") ;
scanf ("¢1d", &una.numero_cuenta) ;
puts("\n\tTipo de operacion") ;
puts ("Deposito(0)") ;

puts ("Retiradade fondos(1)") ;
puts ("Puesta al dia(2)");

puts ("Estado de | a cuenta(3)") ;
scanf ("%4d" ,&una. t ipo_operacion) ;:

/* Fechay tienpo del sistema */
gettime (&t) ;
una.t.horas = t.ti_hour;
una.t.minutos = t.ti_min;

getdate (&d)
una.f.anyo d.da_year;
una.f.mes = d.da_mon;
una.f.dia = d.da- day;
return una;

305

Ejercicio 9.1

[per sona- Enpl eado ‘

#i ncl ude <stdio.h>

struct fecha

unsi gned int dia, nes, anyo;

o

Se desea registrar una estructura rersonaEmpleado que contenga como miembros los datos de una
persona empleado que a su vez tenga los datos de lafecha de nacimiento. En unprograma se muestra
el uso de la estructura, se define unafunciénpara dar entrada a los datos de la estructuray otra funcion
para dar salida a los datos de una estructura persona. A lafuncidn de entrada se transmite por
direccion (&p) la variable estructura, por lo que el argumento correspondiente tiene que ser un
puntero(*p)y el acceso a los campos se hace con el selector ->

306 Programacion en C. Metodologia, algoritmos y estructura de datos

struct persona {
char nonbre[20! ;
unsi gned int edad;
int altura;
int peso;
! struct fecha fec;
| I
struct persona- enpl eado
{

struct persona unapersona;
unsi gned int sal ari o;
unsi gned int horas_por_semana;

I
/* prototipos de funciones */

| voi d entrada(struct persona- enpl eado *p);
| voi d muestra (struct persona- enpl eado up);

i voi d main{()
{
/* define una vari abl e persona- enpl eado */
struct persona- enpl eado p;
/* |Ilamada a entrada() transnitiendo |la direccion */

entrada (&p) ;

muestral(p) ;
}

voi d entrada(struct persona- enpl eado *p)
| {

L /* salida de | os datos al nacenados */
|
]

printf ("\nIntroduzca su nonbre: ") ;
i gets (p->unapersona.nonbre) ;
I printf ("i ntroduzca su edad: ") ;
scanf ("%d" ,&p->unapersona. edad) ;
printf ("I ntroduzcasu altura: ") ;
! scanf ("%d" ,&p->unapersona.al tura) ;
printf ('Introduzca su peso: ") ;
scanf ("%d" ,&p->unapersona.peso) ;
printf ("Introduzca su fecha de nacinmiento: ");
scanf ("¢d %d %d" ,sp->unapersona.fec.di a,
&p->unapersona.fec.mes,
&p-~>unapersona.fec.anyo);
printf ("I ntroduzcasu salario:");
scanf ("%a", &p->sal ari o) ;
printf ("i ntroduzcanunero de horas:") ;
scanf ("%d" ,&p->horas_por_semana) ;
}

voi d muestra(struct persona- enpl eado up)
{

puts("\n\n\tDatos de un enpl eado") ;

puts ("\n\n\t ")

printf ("Nombre: %s \n",up.unapersona.nombre) ;
printf ("Edad: %d \n",up.unapersona.edad) ;
printf ("fecha de naci m ento: %d-%d-%d\n",

Estructuras y uniones 307

up.unapersona. fec.dia,
up.unapersona. fec.mes,
up.unapersona. fec.anyo) ;
printf("Altura: %d \n",up.unapersona.altura);
printf ("Peso: %d \n",up.unapersona.peso) ;
printf ("Numero de horas: %d \n",up.horas_por_semana) ;

|

El acceso a miembros dato de estructuras anidadas requiere el uso de muiltiples operadores punto.
Ejemplo: acceso al dia del mes de la fecha de nacimiento de un empleade.

up.unapersona. fec.dia

Las estructuras se pueden anidar a cualquier grado. También es posible inicializar estructuras
anidadas en la definicién. El siguiente ejemplo inicializa una variable Lui s detipo struct persona.

struct persona Luis { "Luis", 25, 1940, 40, {12, 1, 70}};

9.4. ARRAYS DE ESTRUCTURAS

Se puede crear un array de estructuras tal como se crea un array de otros tipos. Los arrays de estructuras
son idoneos para almacenar un archivo completo de empleados, un archivo de inventario, o cualquier
otro conjunto de datos que se adapte a un formato de estructura. Mientras que los arrays proporcionan
un medio practico de almacenar diversos valores del mismo tipo, los arrays de estructuras le permiten
almacenar juntos diversos valores de diferentes tipos, agrupados como estructuras.

Muchos programadores de C utilizan arrays de estructuras como un método para almacenar datos
en un archivo de disco. Se pueden introducir y calcular sus datos de disco en arrays de estructuras y a
continuacién almacenar esas estructuras en memoria. Los arrays de estructuras proporcionan también un
medio de guardar datos que se leen del disco.

La declaracion de un array de estructuras i nf o- | i br o se puede hacer de un modo similar a
cualquier array, es decir,

struct info-libro libros[100];

asigna un array de 100elementos denominado | i br os. Para acceder a los miembros de cada uno de los
elementos estructura se utiliza una notacién de array. Para inicializar el primer elemento de 1ibros, por
ejemplo, su cédigo debe hacer referencia a los miembros de |'i br os101 de la forma siguiente:

strepy (libros[0] .titulo, "C++ a su al cance");
strcpy (1ibros[0] . autor, "Luis Joyanes") ;
strcpy(libros[QO] .editorial, "McGraw-Hill") ;
libros[0].anyo = 1999;

También puede inicializarse un array de estructuras en el punto de la declaracion encerrando la lista
de inicializadores entre llaves, (}. Por ejemplo,

struct info-libro libros[3] = { "C++ a su al cance", "Luis Joyanes",
"McGraw-Hi11", 1999, "Estructura de datos", "Luis Joyanes",
“McGraw-Hi11", 1999, "Probl emas en Pascal ", "Angel Hermoso",
"McGraw-Hi11", 19971 :

En el siguiente ejemplo se declara una estructura que representa a un namero racional, un array de
nameros racionales es inicializado con valores al azar.

308

9.4.1.

Programacion en C. Metodologia, algoritmos y estructura de datos

struct raci ona
{
int N,
int D;
Y
struct racinal rs{4] = { 1,2, 2,3, -4,7, 0,1};

Arrays como miembros

Los miembros de las estructuras puede ser asimismo arrays. En este caso, sera preciso extremar las
precauciones cuando se accede a los elementos individuales del array.

Considérese la siguiente definicion de estructura. Esta sentencia declara un array de 100 estructuras,

cada estructura contiene informacion de datos de empleados de una compafiia.

struct nom na
|
char nonbre[30] ;
i nt dependi ent es;
char departanentol10];

float horas_dias{7]; /* array de tipo float */
float sal ari o;
} enpl eado[100] ; /* Un array de 100 enpl eados */
Ejemplo 9.1

Una libreria desea caralogar su inventario de libros. El siguiente programa crea un array de 100
estructuras, donde cada estructura contiene diversos tipos de variables, incluyendo arrays.

#i ncl ude <stdio.h> [
#i ncl ude <ctype.h>
#i ncl ude <stdlib.h>

struct inventario
{
char titulo[25] ;
char fecha_pub([20] ;
char autor[30] ;
int num
int pedi do;
float precio-venta;
i

int main()

{
struct inventario 1ibro[100};
int total = O
char resp, b[21];

do {
printf ("Total Iibros %4 \n", (total+1)) ;
printf (":Cudl es el titulo?: ") ;
gets{libroltotall .titul 0);

printf (";Cuédl es la fecha de publicaci 6n?: ");
gets(libro[total] .fecha_pub);

Estructuras y uniones 309

printf (":Quién es el autor?");
gets(libro(total] . autor);

printf (":Cuédntos |ibros existen?: ");
scanf ("sa" ,& ibro[total] .num;

printf (";Cuantos ej enpl ares existen pedi dos?: ");
scanf ("%d",&libro{total] . pedi do);

printf(";Cual es el precio de venta?: ");

gets(b);

libro[total].precio_venta = atof(b); /* conversion a real */
fflush(stdin);

printf ("\n ¢Hay mas libros? (s/N}") ;
scanf ("sc", &resp) :
fflush(stdin);
resp = toupper(resp); /* convierte a mayuscul as */
if (resp== 's")
{
t ot al ++;
conti nue;
}
} while (resp== 's");
return O;

9.5. UTILIZACION DE ESTRUCTURAS COMO PARAMETROS

C permite pasar estructuras a funciones, bien por valor o bien por referencia utilizando el operador &.
Si la estructura es grande, el tiempo necesario para copiar un parametro st ruct a la pila puede ser
prohibitivo. En tales casos, se debe considerar el método de pasar la direccidn de la estructura.

El listado siguiente muestra un programa que pasa la direccion de una estructura a una funcion para
entrada de datos. La misma variable estructura la pasa por valor a otra funcion para salida de los campos.

#i ncl ude <stdio.h>
/* Define el tipo estructura info_persona */

struct info- persona {
char nonbre(20] ;
char calle[30];
char ciudad[25];
char provincial[25] ;
char codigopostallé];

/* prototipos de funciones */

voi d entrad_pna(struct info_persona* pp);
voi d ver_info(struct info_persona p);

void mai n(void)

{
struct info- persona reg- dat;
/* Pasa por referencia la variable */
entrad_pna (®_dat) ;
/* Pasa por val or */
ver_info(reg_dat) ;

310 Programacién en C. Metodologia, algoritmos y estructura de datos

printf("\nPulsa cual qui er caréacter para continuar\n");
getchar () ;
].

voi d entrad_pna(struct info_persona* pp)

{
puts ("\n Entrada de |os datos de una persona\n");

/* Para aceder a |os canpos se utiliza e1 selector -> */
printf ("Nonmbre: ") ; gets(pp->nonbre);

printf ("Calle: "); gets(pp->callc) ;

printf ("G udad: ") ; gets(pp->ciudad) ;

printf ("Provincia:"); gets(pp->provincia);

printf ("Codi gopostal: "): gets(pp->codigopostal) ;

}

voi d ver_info(struct into- persona p)
{

put s(p.nonbre) ;
p.calle);
p.ciudad) ;
p.provincia) ;
p.codigopostal) ;

Si se desea pasar la estructura por referencia, necesita situar un operador de referencia & antes i
| de reg-daten lallamadaa la funcidonentrada_pna () . El pardmetro cosrespondiente debe
p de sertipopunterostruct info_persona* pp .El accesoamiembro: dstn de la satmctirs
. apartir de un puntero requiere el uso del selector ->.

9.6. UNIONES

Las uniones son similares a las estructuras en cuanto que agrupa a una serie de variables, pero la forma
de almacenamiento es diferente y, por consiguiente, efectos diferentes. Una estructura (st r uct) permite
almacenar variables relacionadas juntas y almacenadas en posiciones contiguas en memoria. Las
uniones, declaradas con la palabra reservada uni on, almacenan también miembros multiples en un
paquete; sin embargo, en lugar de situar sus miembros unos detras de otros, en una union, todos los
miembros se solapan entre si en la misma posicion. El tamafio ocupado por una unién se determina asi:
es analizado el tamafio de cada variable de la unidn, el mayor tamafio de variable sera el tamafio de la
unién. La sintaxis de una union es la siguiente:

uni on nombre {
tipol miembrol;
tipo2 m embrol;

FB
I

Un ejemplo:

uni on PruebaUnion

{
float Iten;
int Item2;

Estructuras y uniones 311

La cantidad de memoria reservada para una union es igual a la anchura de la variable mas grande.
En el tipo uni on, cada uno de los miembros dato comparten memoria con los otros miembros de la
unién. La cantidad total de memoria utilizada por la unién conpart e es de 8 bytes, ya que el elemento
doubl e es el miembro dato mayor de la unién.

uni on conparte

{
char letra;
int el enento;
float precio;
doubl e z;
Y

Una razon para utilizar una union es ahorrar memoria. En muchos programas se deben tener varias
variables, pero no necesitan utilizarse todas al mismo tiempo. Considérese la situacion en que se
necesitan tener diversas cadenas de caracteres de entrada. Se pueden crear varios arrays de cadenas de
caracteres, tales como las siguientes:

char linea_ordenes[80];
char mensaj e- error [80] ;
char ayudal80];

Estas tres variables ocupan 240 bytes de memoria. Sin embargo, si su programa no necesita utilizar
las tres variables simultaneamente, ;por qué no permitirle compartir la memoria utilizando una unién?
Cuando se combinan en el tipo union f r ases, estas variables ocupan un total de sélo 80 bytes.

uni on frases {
char linea ordenes[80] ;
char mensaje_error[80];
char ayuda(80];

} cadenas, *pc;

Para referirse a los miembros de una union, se utiliza el operador punto (.), o bien el operador ->si
se hace desde un puntero a union. Asi:

cadenas.ayuda;
cadenas. nensaj e- error;
pc -> mensaje_error;

9.7. ENUMERACIONES

Un enumes un tipo definido por el usuario con constantes de nombre de tipo entero. En la declaracion
de un tipo enum se escribe una lista de identificadores que internamente se asocian con las constantes

enteras O, 1,2, etc.
Formato

1. enum
{
enuner ador , enuner ador , ...enumerador

}i

2. enum nonbr e

{
enuner ador , enunerador , ...enunerador

K

N

312 Programacion en C. Metodologia, algoritmos y estructura de datos

En la declaracidn del tipo enumpueden asociarse a los identificadores valores constantes en vez de
la asociacién que por defecto se hace (O, 1, 2, etc.). Para ello se utiliza este formato:

3. enum nonbr e
{

enumerador,

enuner ador

expresidn_congtante,
expresi 6n- constante,

enuner ador, - exprsesi 6n- const ant e,
I

Ejemplo 9.2

Usos tipicos de enum

enum | nt errupt or
{

ENCENDI DO,
APAGADO
I

enum Bool ean
{

FALSE,
TRUE
I

Ejemplo

enum

{
RQJIO, VERDE, AZUL

Y

define tres constantes RQJO, VERDE y AZUL de valores iguales a O, 1y 2, respectivamente. Los
miembros datos de un enumse Illaman enumeradores y la constante entera por defecto del primer
enumerador de la lista de los miembros datos es igual a 0. Obsérvese que, al contrario que struct y
union, los miembros de un tipo enum se separan por el operador coma. EIl ejemplo anterior es
equivalente a la definicion de las tres constantes, ROJO, VERDEY AzZUL, tal como:

const int RQJO = O;
const int VERDE = 1;
const int AZUL = 2;

En la siguiente declaracién de tipo enumerado se le da un nombre al tipo

enum di as- senmana
{

LUNES, MARTES, M ERCOLES, JUEVES, VI ERNES, SABADO, DOM NGO
Y

Una variable de tipo enum di as- sermana puede tomar los valores especificados en la declaracion
del tipo. El siguiente bucle esta controlado por una variable del tipo enumerado.
enum di as- semana di a;

for (dia = LUNES; dia <= DOM NGO, dia++)

l

Estructuras y uniones 313

printf ("sa ",dia);
}

La ejecucion del bucle escribiria en pantalla: 0123 4 5 6.
A los enumeradores se pueden asignar valores constantes o expresiones constantes durante la
declaracion:

enum Hexaedr o

{
VERTI CES = 8,

LADCS = 12,
CARAS =6
}
Ejercicio 9.2

El siguiente programa muestra el uso de la enumeracién boolean. El programa lee un textoy cuenta
las vocales leidas. La funcion vocal () devuelve TRUE si el caracter de entrada es vocal.

#i ncl ude <stdio.h>
#i ncl ude <ctype.h>

enum bool ean
{

FALSE, TRUE
}i

enum bool ean vocal (char c¢);

voi d main ()
{
char car;
int numvocal = O

puts ("\nIntroduce un texto. Para termnar: |INTRO"|;
while ((car = getchar()) !="\n")
{
if (vocal (tol ower(car)))
numvocal++;

}
printf("\n Total de vocal es | eidas: %d\n", numvocal) ;

}

enum bool ean vocal (char <)

switch (c)

{
case 'a':
case 'e':
case 'i':
case 'o':
case ‘u’':

return TRUE;

defaul t:

return FALSE

314 Programacion en C. Metodologia, algoritmosy estructura de datos

9.7.1. si zeof detipos de datos estructurados

El tamafio en bytes de una estructura, de una unién o de un tipo enumerado se puede determinar con el
operador si zeof .

El siguiente programa extrae el tamafio de una estructura (struct), de una unién (uni on) con
miembros dato idénticos, y de un tipo enumerado.

/* decl ara una uni on */
uni on ti po- union
{
char c;
int i;
float f ;
doubl e d;
}i

/* decl ara una estructura */
struct tipo-estructura
{
char c;
int i;
float £;
doubl e d;
};

/* declara un tipo enunerado */
enum nonedas
{

PESETA,
DURQ,
Cl NCODURGCS,
Cl EN

i

printf ("\nsizeof (tipo- estructura): %d\n",

sizeof (struct tipo-estructura));
printf ("\nsizeof (ti po- uni on): %d\n",

sizeof (union ti po- union));
printf ("\nsizeof (nmonedas): %d\n",

sizeof (enum nonedas));

La salida que se genera con estos datos:
sizeof (tipo_estructura) :15

sizeof (tipo_union): 8
sizeof (monedas): 2

9.7.2. typedef

Un t ypedef permite a un programador crear un sinénimo de un tipo de dato definido por el usuarioo
de un tipo ya existente.

Estructuras y uniones 315

Ejemplo
Usode t ypedef para declarar un nuevo nombre, Longitud, de tipo de dato double.

t)}r;édef doubl e Longi tud;

Longitud Di stancia (const struct Pto* p, const struct Pto* p2)
{

Longitud longitud = sqgrt(r-cua);
return | ongitud;

Otros ejemplos:
typedef char* String;
typedef const char* string;

Puede declararse un tipo estructura o un tipo unioén y a continuacién asociar el tipo estructrura a un
nombre con rypedef.

Ejemplo
Declaracion del tipo de dato complejoy asociacion a complex.

struct conpl ej o
{
float x,vy;

b
t ypedef struct conpl ej o conpl ex;

/* definicionde un array de conpl ej os */
conpl ex v[12];

Laventajadet ypedef esque permite dar nombres ae tipos ae datos més acordescon lo que
representan en una determinada aplicacion.

9.8. CAMPOS DE BIT

El lenguaje C permite realizar operaciones con los bits de una palabra. Ya se han estudiado los
operadores de manejo de bits: >>, <<, ... Con los campos de bits, C permite acceder a un nimero de
bits de una palabra entera. Un campo de bits es un conjunto de bits adyacentes dentro de una palabra
entera. La sintaxis para declarar campos de bits se basa en la declaracion de estructuras. El formato
general:

struct identificador-canpo {
ti po nonbrel: |ongitudl;
ti po nombre2: longitud2;
ti po nombre3: longitud3;

ti po nonbren: | ongitudn;
b

3¢

Programacion en C. Metodologia, algoritmos y estructura de datos

ti po ha de ser entero, i nt ; generalmente unsi gned i nt
| ongi t ud es el nimero de bits consecutivos que se toman

Ejemplo 9.3

En este ejemplo se declara un campo de bits para representar enformato comprimido el dia, mes afio
(losdos ultimos digitos)y si el afio es bisiesto.

struct fecha {
unsi gned dia: 5;
unsi gned nes: 4;
unsi gned afio: 7;
unsi gned bi si esto: 1;

Ejemplo 9.4

El siguiente ejemplo muestra como puede utilizarse campos de bits para representar s estan o no
conectados diversos componentes eléctricos. Cada componente se representa con un flag, con un bit;
cuando esté puesto a cero es que no esta conectado, cuando esté puesto a uno esta conectado.

struct conponentes {
unsi gned di odo: 1;
unsi gned resistencia: 1;
unsi gned anperinetro: 1;
unsi gned transistor: 1;
unsi gned condensador: 1;
unsi gned i nductancia: 1;
i

Los campos individuales se referencian como cualquier otro miembro de una estructura: selector
punto (.). Por ejemplo,

struct Corrponent es ct;
ct.diodo = 1;

if (ct.amperimetro)

{

}

Al declarar campos de bits, la suma de los bits declarados puede exceder el tamafio de un entero; en
ese caso se emplea la siguiente posicion de almacenamiento entero. No esta permitido que un campo de
bits solape los limites entre dos i nt .

Al declarar una estructura puede haber miembros que sean variables y otros campos de bits. La
siguiente estructura tiene esta caracteristica:

struct reg- estudi ant e{
char nonbre (33}1;
char apelll [33];
char apell2 [33]:
unsi gned nmascul i no: 1;
unsi gned fenenino: 1;
unsi gned curso: 3;

Estructuras y uniones 317

Los campos de bits se utilizan para rutinas de encriptacion de datos y fundamentalmente para ciertos
interfaces de dispositivos externos. Presentan ciertas restricciones. Asi, no se puede tomas la direccion
de una variable campo de bits; no puede haber arrays de campos de bits; no se puede solapar fronteras
de i nt. Depende del procesador que los campos de bits se alineen de izquierda a derecha o de derecha
aizquierda (conviene hacer una comprobacion para cada procesador, utilizando para ello un uni on con
variable entera y campos de bits).

Ejemplo 9.5
Se tiene lafuncién pet icion_acceso () capaz de direccionar una posicion de memoria de 8 bits si
recibe como argumento una variable llamada ochobi t s. Con esta variable controla a través de cada
bit las peticiones de acceso a cada uno de los ocho periféricos distintos con que trabaja; eventos
externos son los que se encargan de cargar la variable ochobi t s.

Se quiere escribir una funcién que determine cuantos accesos se producen por cada periférico en un
bucle de 1000 llamadas a la funcioén peticion_acceso (). Se supone que cada llamada solo activa
un periférico.

Anélisis
El tipo de la variable ochobi t sva a ser una estructura de campos de bits, cada campo con longitud 1;

por lo que puede tener dos estados, 0 0 1, para indicar no acceso o si acceso. Un array de 8 elementos,
tantos como periféricos se utiliza para contar los accesos a cada periférico.

/* Tipo estructura de canpos de bits */

struct perifericos{
unsi gned perfl: 1
unsi gned perf2: 1
unsi gned perf3: 1;
unsi gned perf4: 1;
1

1

1

1

unsi gned perf5: 1;
unsi gned perfé6:
unsi gned perf7:
unsi gned perfs8:

b
/* Prototipo de funci én peticion_acceso() */
void petition-acceso (const struct perifericos ochobits);

/* Funci 6n que contabiliza |l os accesos a cada periférico. */

voi d accesos_perf (int acceper(])
!
int i;
const struct perifericos ochobits;
const neventos=1000;
for (i=0; i<8;)
accper [i++]= O;

/* Bucle principal de 1000 || amadas */
for (i=0; i<neventos; i++)

{

318

Programacion en €. Metodologia, algoritmos y estructura de datos

peticion_acceso(ochobits) ;
if (ochobits.perfl)
++acceper [O] ;

el seif (ocho.bits.perf2);
++acceper[13 ;

el seif (ocho.bits.perf3);
++acceper (2] ;

el seif (ocho.bits.perf4);
++acceper([3] ;

el seif (ocho.bits.perf5);
++acceper [4] ;

el seif (ocho.bits.perfé6);
++acceper 5] ;

el seif (ocho.bits.perf?7);
++acceper (6] ;

el seif (ocho.bits.perf8);
++acceper (7] ;

Ejemplo 9.6

Haciendo uso de una estructura de campo de bits y de una uni on, en este ejercicio se escribe un
programa para visualizar la decodificacién en bits de cualquier caracter leido por teclado.

Analisis

Se declara un tipo estructura campo de bits, con tantos campos como bits tiene un byte, que a su vez es
el almacenamiento de un caracter. La decodificacion es inmediata declarando una uni on entre una
variable caracter y una variable campo de bits del tipo indicado.

#i ncl ude <stdio.h>
#i ncl ude <conio.h>

#defi ne mayus (ch) ((ch>='a’ && ch<='z")

stuct byte {
unsi gned int
unsi gned int
unsi gned int
unsi gned int
unsi gned int
unsi gned int
unsi gned int
unsi gned int

'

uni on charbits{
char ch;
struct byte bits;

}caracter;

voi d decodifica (struct byte b);

Q@ rToa2o00oo
RPRRPRRRPPRR

? (ch+'A’-'a’) : ch)

Estructuras y uniones 319

void main()
{
puts ('Teclea caracteres. Para salir caréacter x*);
do {
caracter.ch = getche();
printf (" : "y;
decodifica(caracter.bits);
}while mavyusc (caracter.ch) !'='X");
}
voi d decodifica(struct byte b)

/* Los canpos de bits se alinean de derecha a izquierda, por esa razén se
escri ben | os canpos en orden inverso */
printf("$2u%2u%2u%2u%2u%2u%2ui2u \n",

b.h, b.g, b.f, b.e, b.d, b.c, b.b, b.a);

9.9. RESUMEN
Una estruceura permite que los micmbros dato de los * Para determinar ¢l tamafio en bytes de cuslquier
rﬁmmhfnmm-fmmwlﬂmmmh tipo de dato C wtilizar el operador sizeof .
implementacido, al contrario que los armays que son * El tipo de dato union es similar a struct de
agregados de un tipo de dato simple. Los miembros modo que es una coleccidn de miembeos dato de
daio de una estructura son accesibles con ¢l operador tipos diferentes o similares, pero al contrario
puasitad, }, o con el operndor flechal->). que una definicidn struct, que asigna memo-
; ria suficiente para contener lodos kos miembros
* Lina estructura es un tipo de dato que contiene :
nmmwmﬁnm_ G dato, una union pusde contener sébo un maem-
bro dato en cualgquier maomento dedo y el tams-
struct empleado | fier dhe uma unidn s, por consiguiente. el tamafio
char nombere[30]; de su mbembio mayor,
long salariag = Utilizando un tipo union se puede hacer que
char num_telefono[10]; diferentes variables coexistan en ¢l mismo cspa-
¥ cio de memoria. La pnidn permite reducir espa-
cio de memoria en sus
e Para crear una variable estructura se escribe # Untypedaf no es nuevo hpmﬂ dato simo un

struct enpl eado pepe: sindnimode un tipo existente.

typedef struct enpl eado
r egenpl eado;

320

9.10. EJERCICIOS

9.2

9.4,

Encuentra los errores en la siguieme declara-
clén de estroctura v posterior definicldn de
variable.
geruct harmiga
{

int patcas;

char eapecield4lls

float tismpo;
} hoermiga colonia{lOd];

Declara un tipo de dalos pars representar
estaciones del afo.

Escribe un funcidn que devuelva ln estacidn
afic que se ha lefdo del teclado. La funcidn d
de ser del tipo declarado en el Ejercicio 9.2.

Declars un tpo de dato enamerado pars reg
enilar bos meses del afio, el Mt enera o
de estar asocisdo al dato entero 1, v asi suci
vamenie los demis meses.

Encuenira los errores del siguienie cddigo

#include <prdio.h>
wvoid escribe(struct fecha f
int maini)
{
atruct fecha
{
int diaj
int mes;
int anyo;
char mag(];

Programacion en C. Metodologia, algoritmos y estructura de datos

} - EL;
£ff = {1,1,2000, "ENERO")
ascribe{fLf):
raturn 1;
i

i B e LT Ty PN FY

9.11.

91

9.3,

94.

95.

9.6.

PROBLEMAS

Escribe un programa para calcular el nimerode
dias que hay entre dos fechas; declarar fecha
COME NG £3tnaciura.

Escribe un programa de facturacion de clientes.
Los clientes tienen un nombre, el nimero de
unidades solicitadas, el precio de cada unidad y
el estado &m gue Se encuentra: motoso, atrasado,
pagada. El programa debe generar a los diversos
clientes.

Modifique el programa de facturacion de clien-
tes de ta modo que se puedan obtener los
siguientes listados.

« Clientes en estado moroso.
¢ Clientesen estado pagado con factura mayor
de una determinada cantidad.

Escribe un programaque permita hacer las ope-
raciones de suma, resta, multiplicacion y divi-
sion de numeros complejos. El tipo complejo ha
de definirse como una estructura,

Un namero racional se caracteriza por el nume-
rador y denominador. Escribe un programa para
& definir son ln suma, resta, moltiplicacidn ¥
diwizidn; ademis de una funcidn paa simplifi-
car cada nimero racional.

Se guiere informatizar los resuliados obtenidos
por los equipos de baloncesio y de Ritbol de la
localidad alcarrefia Lupiana. La informacidn de
cada rquipa:

+ MNombree del equipo.

* Mimero de victorias.

= MNimero de derrotas,

Para los equipos de baloncesto afiadir o
informacion:

Estructuras y uniones 321

Numero de perdidas de balén.
NUmerode rebotes cogidos.

Nombre del mejor anotador de triples.
NUmero de triples del mejor triplista.

o & N O

Para los equipos de futbol afiadir la informacién:

9.7.

9.8

Nimero de empaies.

Midmero de goles a favor,
MNimero de goles en comtra.
Mombee del goleador del equipo.
Niimero de goles del goleador.

Escribir un programa para introducir la
informacion para todos los equipos integrantes
en ambas ligas.

Modificar el programa 9.6 para obtener los
siguientes informes 0 datos.

e Listado de los mejores triplistas de cada
equipo.

o Maximo goleador de la liga de fiubol.

e Suponiendo que el pantido ganado son ires
punios v el empate | punto; equipo ganador
de la liga de fitbal,

¢ Eguipo ganador de la liga de baloncesto.

Un punto en el plano se puede nrepressnisr

medianie una estructurs con dos camipos.

Escribir un programa qué realice las siguientes

operaciones con puntos en el plano,

» Diados dos puntos caloular 1a distancia entre
ellos.

e Dados dos puntos determinar la ecuacidn de
la recta que pasa por ellos,

e Dados tres pumtos, gue representan los
viémices de un ridagulo calcular su drea.

CAPITULO 10

PUNTEROS
(APUNTADORES)

CONTENIDO

10.1. Direcciones en memoria. 10.9. Punteros constantes frente

108 Conceptode puntero a punteros a constantes.
(apuntador). 10.10. Punteros como argumento

. de funciones.
10.8. Punterosnul | y void.]
10.11. Punteros a funciones.
10.4. Punteros a punteros.

.12. Punteros a estructuras.
10.6. Punterosa arrays. 10

10.6. Arrays de punteros. 10.13. Res u.mi:n.
.14, i 0S.

10.7. Punteros a cadenas. 10.24. 5 ergll °o

10.8. Aritmética de punteros. 10.15. Problemas.

322

INTRODUCCION

Los punteros en C tienen la fama, en el mundo de la programacion, de
dificultad, tanto en el aprendizaje como en su uso. En este capitulo se tratara de
mostrar que los punteros no son més dificiles de aprender que cualquier otra
herramienta de programacion ya examinada o por examinar a lo largo de este
libro. El puntero, no es mas que una herramienta muy potente que puede
utilizar en sus programas para hacerlos mas eficientes y flexibles. Los punteros
son, sin género de dudas, una de las razones fundamentales para qye el
lenguaje C sea tan potente y tan utilizado. ,

Una variable puntero (o puntero, COMO se llama normalmente) €S una variable
gue contiene direcciones de otras variables. Todas | as variables vistas hast a este
momento contienen valores de datos, por el contrario las variables punteros
contienen valores que son direcciones de memoria donde se almacenan datos.En
resumen, un puntero es una variable que contiene una direccion de memoria, y
utilizando punteros su programa puede realizar muchas tareas que no seria
posible utilizando tipos de datos estandar.

En este capitulo se estudiaran los diferentes aspectos de los punteros:

punteros;

utilizacion de punteros;

asignacion dinamica de memoria;

aritmética de punteros;

arrays de punteros;

punteros a punteros, funcionesy estructuras.

*« & & & o o

CONCEPTOS CLAVE

Puntero (apuntador).
Direcciones.
Referencias.

Palabra reservadanul | .
Palabra reservada voi d.

Arrays de punteros.
Aritmética de punteros.
Punteros versus arrays.
Tipos de punteros.
Palabra reservada const .

323

324 Programacion en C. Metodologia, algoritmos y estructura de datos

10.1. DIRECCIONES EN MEMORIA

Cuando una variable se declara, se asocian tres atributos fundamentales con la misma: su hombre, su tipo
y su direccién en memoria.

Ejemplo
int n; /* asocia al nonbre n, el tipo int y la direccién
de al guna posici 6n de nenori a donde se al macena
el valor de n
*/
Ox4fffd34
i nt

Esta caja representa la posicion de almacenamiento en memoria. EI nombre de la variable esta ala
izquierda de la caja, la direccion de variable estd encima de la caja y el tipo de variable esta debajo en
la caja. Si el valor de la variable se conoce, se representa en el interior de la caja

i nt
Al valor de una variable se accede por medio de su nombre. Por ejemplo, se puede imprimir el valor
de n con la sentencia:
printf ("sd",n) ;

A la direccién de la variable se accede por medio del operador de direccion &. Por ejemplo, se
puede imprimir la direccion de n con la sentencia:

printf ("sp",&n) ;

El operador de direccién "s" «opera» (se aplica) sobre el nombre de la variable para obtener sus

direcciones. Tiene precedencia de nivel 15 con el mismo nivel que el operador l6gico NOT () y el
operador de preincremento ++. (Véase Capitulo 4.)

Ejemplo 10.1
Obtener el valory la direccién de una variable.
#i ncl ude <stdio.h>

voi d main ()
1

int n = 75;
printf('n = %d\n" n); /* visualiza el valor de n */
printf ("sn = %p\n", &) ; /* visualiza direcci 6n de n */

}

Punteros (apuntadores) 325

Ejecucion
n = 45
&n = Ox4fffd34

Nota: 0x4fffd34 esuna direcciénen codigo hexadecimal.
"0x" es el prefijo correspondiente al codigo hexadecimal.

10.2. CONCEPTO DE PUNTERO (APUNTADORY)'

Cada vez que se declara una variable C, el compilador establece un area de memoria para almacenar el
contenido de la variable. Cuando se declara una variable i n t (entera), por ejemplo, el compilador asigna
dos bytes de memoria. El espacio para esa variable se sitlia en una posicion especifica de la memoria,
conocida como direccién de memoria. Cuando se referencia (se hace uso) al valor de la variable, el
compilador de C accede automaticamente a la direccién de memoria donde se almacena el entero. Se
puede ganar en eficacia en el acceso a esta direccion de memoria utilizando un puntero.

Cada variable que se declara en C tiene una direccion asociada con ella. Un puntero es una direccion
de memoria. EI concepto de punteros tiene correspondencia en la vida diaria. Cuando se envia una carta
por correo, su informacién se entrega basada en un puntero que es la direccion de esa carta. Cuando se
telefonea a una persona, se utiliza un puntero (el nimero de teléfono que se marca). Asi pues, una
direccion de correos y un nimero de teléfono tienen en comin que ambos indican donde encontrar algo.
Son punteros a edificios y teléfonos, respectivamente. Un puntero en C también indica dénde encontrar
algo, ;dénde encontrar los datos que estan asociados con una variable? Unpuntero C es la direccion de
una Variable. Los punteros se rigen por estas reglas basicas:

un puntero es una variable como cualquier otra;

una variable puntero contiene una direccién que apunta a otra posicién en memoria;
en esa posicion se almacenan los datos a los que apunta el puntero;

un puntero apunta a una variable de memoria.

Direccion de
3 memoria alta
-
El valor de un puntero es 1001 p—— . _
una direccion. La direccion p —» 1000 p_contiene el valor 100, que
' 999 es la direccion de aifa

|

depende del estado de la [

computadora en la cual se [
ejecuta el programa.

*p es el valor del elemento

al que apuntap Por consi-

guiente, *p toma el valor

lol e —— e

alfa —m 100 A, _ il A
99
Direccion de

memoria baja

Figura 10.1. Relaciones entre *p y el valor de p (direccién de al fa).

' En Latinoamérica es usual emplear el término apuntador.

— . —— —

326 Programacion en C. Metodologia, algoritmos y estructura de datos

El tipo de variable que almacena una direccion se denominapuntero.

Ejemplo 10.2

#i ncl ude <stdio.h>
voi d main()
{
int n = 75;
int* p = &n; /* p variable puntero, tiene direcci 6n de n*/
printf("n = %, &n = %p, p = %p\n",n,&n,p);
printf ("sp = %p\n",&p);

Ejecucion
N =75, &n = 0x4f££d34, p = Ox4£££434
&p = Ox4f££d430

Ox4££fd30 Ox4£££434

p | txdffEdi4 n 75

int* int

La variable p se denomina «puntero»debido a que su valor «apunta» a la posicién de otro valor. Es
un puntero i nt cuando el valor al que apunta es de tipo i nt como en el ejemplo anterior.

10.2.1. Declaracién de punteros

Al igual que cualquier variable, las variables punteros han de ser declaradas antes de utilizarlas. La
declaracidn de una variable puntero debe indicar al compilador el tipo de dato al que apunta el puntero;
para ello se hace preceder a su nombre con un asterisco (*), mediante el siguiente formato:

<tipo de dato apuntado> *<identificador de puntero>

Algunos ejemplos de variables punteros:

int* ptrl; /* Puntero a un tipo de dato entero (int)*/

| ong* ptr2; /* Puntero a un tipo de dato entero largo (long int)*/
char* ptr3; /* Puntero a un tipo de dato char */

float *f; /* Puntero a un tipo de dato float */

Un operador * en una declaracion indica que la variable declarada almacenara una direccién de un
tipo de dato especificado. La variable pt r1 almacenara la direccion de un entero, la variable ptr2
almacenaré la direccién de un dato tipo | ong, etc.

Siempre que aparezca un asterisco (*) en una definicion de una variable, ésta es una variable
puntero.

|

Punteros (apumradaras) 327

10.2.2. Inicializacion? (iniciacion)de punteros

Al igual que otras variables, C no inicializa los punteros cuando se declaran y es preciso inicializarlos
antes de su uso. La inicializacién de un puntero proporciona a ese puntero la direccidn del dato
correspondiente. Después de la inicializacion, se puede utilizar el puntero para referenciar los datos
direccionados. Para asignar una direccion de memoria a un puntero se utiliza el operador de referencia
&. Asi, por ejemplo,

&val or

significa «la direccion de valor». Por consiguiente, el método de inicializacion (iniciacién), también
denominado estético, requiere:

e Asignar memoria (estaticamente) definiendo una variable y a continuacion hacer que el puntero
apunte al valor de la variable.

int i; /* define una variable i */
int *p; /* define un puntero a un entero p*/
p = & ; /* asigna la direccién de 1 a p */

¢ Asignar un valor a la direccion de memoria.
*p = 50;

Cuando ya se ha definido un puntero, el asterisco delante de la variable puntero indica «el contenido
de» de la memoria apuntada por el puntero y sera del tipo dado.

Este tipo de inicializacion es estatica, ya que la asignacion de memoria utilizada para almacenar el
valor es fijo y no puede desaparecer. Una vez que la variable se define, el compilador establece suficiente
memoria para almacenar un valor del tipo de dato dado. La memoria permanece reservada para esta
variable y no se puede utilizar para otra cosa durante la ejecucion del programa. En otras palabras, no
se puede liberar la memoria reservada para una variable. El puntero a esa variable se puede cambiar,
pero permanecera la cantidad de memoria reservada.

El operador & devuelve la direccion de la variable a la cual se aplica,

Otros ejemplos de inicializacion estaticos:

1. int edad = 50; /*define una vari abl e edad de val or 50 */
int *p_edad = &edad; /*defineun puntero de enteros inicializdndolo
con la direccién de edad */
2. char *p; /*Pigura 10.1 */
char alfa = '"A';
p = &alfa;

3. char cdll = "Conpacto'
char *c;
.c = cd; /*c tiene la dircccidén de 1a cadena cd */

Es un error asignar un valor, a un contenido de una variable puntero si previamente no se ha
inicializado con la direccion de una variable, o bien se le ha asignado dindmicamente memoria. Por

ejemplo:
float* px; /* puntero a float */
px = 23.5; / error, px no contiene direccidn */

* El diccionario de la Real Academia de la Lengua Espafiola s6lo acepta el término iniciar y el término inicial. EI empleo
de inicializar s6lo se justifica por el extenso uso de dicho término en jerga informética.

328 Programacion en C. Metodologia, algoritmos y estructura de datos

Existe un segundo método para inicializar un puntero, es mediante asignacion dinamica de
memoria. Este método utiliza las funciones de asignacion de memoria malloc (), calloc(),
realloc() Y free(),y seanalizara méas adelante en el capitulo siguiente.

10.2.3. Indirecciéon de punteros

Después de definir una variable puntero, el siguiente paso es inicializar el puntero y utilizarlo para
direccionar algun dato especifico en memoria. El uso de un puntero para obtener el valor al que apunta,
es decir, su dato apuntado se denomina indireccionar el puntero («desreferenciar el puntero»); para ello,
se utiliza el operador de indireccién *.

i nt edad;

int* p_edad;
p_edad= &edad;
*p_edad= 50;

Las dos sentencias anteriores se describen en la Figura 10.2. Si se desea imprimir el valor de edad,
se puede utilizar la siguiente sentencia:

printf ("sd",edad);/* inprine el valor de edad */

También se puede imprimir el valor de edad dereferenciando el puntero a edad:

printf ("sa", *p_edad) ; /*indirecciona p_edad */
memoria
direcciones :
edad en [1
120. 000 v ra
(LT T
]
p_edad en 1300 ANX) |
350.420 I

linea de memoria

Figura 10.2. p_edad contiene la direccion de «dadi, p_edact apunta a la variable edad

El listado del siguiente programa muestra el concepto de creacidn, inicializacidn e indireccion de
una variable puntero.

#i ncl ude <stdio.h>

char c; /* variable global de tipo caracter*/
int mai n0O
char *pc; /* un puntero a una vari abl e caracter*/
pc = &c;
for (c= "A; Cc <= 'Z"; c++);
printf (#%c”,*pc);
return O

Punteros (apuntadores) 329

La ejecucion de este programa visualiza el alfabeto. La variable puntero pc es un puntero a una
variable caracter. La linea pc = &c asigna a pc la direccion de la variable ¢ (&c) . El bucle f or
almacena en c las letras del alfabeto y la sentencia pri nt £ ("$c" ,*pc) ; visualiza el contenido de la
variable apuntada por pc; c Y pc se refieren a la misma posicion en memoria. Si la variable c , que se
almacena en cualquier parte de la memoria, y pc , que apunta a esa misma posicion, se refiere a los
mismos datos, de modo que el cambio de una variable debe afectar a la otra; pc y ¢ se dice que son
alias, debido a que pc actla como otro nombre de c.

Valor de direccién del |_ i [1 | 1
puntero | # By | |
Direcciones 00 01 02 03 04 05 06 07

Memoria

Figura 10.3. pc y « direccionan la misma posicion de memoria. |

La Tabla 10.1 resume los operadores de punteros.

Tabla 10.1. Operadores de punteros.

Operador Propésito

& Obtiene la direccién de una variable.
Define una variable como puntero. |
Obtiene el contenido de una variable puntero. el

Nota

Son variables punteros aquellas que apuntan a la posicion en donde otra/s variable/s de programa
se almacenan.

10.2.4. Punterosy verificacion detipos w

Los punteros se enlazan a tipos de datos especificos, de modo que C verificara si se asigna la direccion
de un tipo de dato al tipo correcto de puntero. Asi, por ejemplo, si se define un puntero a f | oat , no se
le puede asignar la direccién de un caracter o un entero. Por ejemplo, este segmento de cédigo no |
funcionaré:

float *fp;
char c;
fp = &c; /* no es valido */

C no permite la asignacion de la direccion de c a fp, ya que fp es una variable puntero que apunta
a datos de tipo real, fl oat .

C requiere que las variables puntero direccionen realmente variables del mismo ti po de dato que
esté ligado a los punteros en sus declaraciones.

330 Programacion en C. Metodologia, algoritmos y estructura de datos

10.3. PUNTEROS nul | Y void

Normalmente un puntero inicializado adecuadamente apunta a alguna posicién especificade la memoria.
Sin embargo, un puntero no inicializado, como cualquier variable, tiene un valor aleatorio hasta que se
inicializa el puntero. En consecuencia, serd preciso asegurarse que las variables puntero utilicen
direcciones de memoria vélida.

Existen dos tipos de punteros especiales muy utilizados en el tratamiento de sus programas: los
punteros void y nul | (nulo).

Un puntero nulo no apunta a ninguna parte — dato valido— en particular, es decir, «un puntero nulo
no direcciona ningln dato valido en memoria». Un puntero nulo se utiliza para proporcionar a un
programaun medio de conocer cuando una variable puntero no direcciona a un dato valido. Para declarar
un puntero nulo se utiliza la macro NuLL, definida en los archivos de cabecera STDEF .H, STD10.H,
STDLIB.HY STRING.H. Se debe incluir uno o més de estos archivos de cabecera antes de que se pueda
utilizar la macro NuLL. Ahora bien, se puede definir nuT.T. en la parte superior de su programa (0en un
archivo de cabecera personal) con la linea:

#define NuULL O
Un sistema de inicializar una variable puntero a nulo es:
char *p = NULL;

Algunas funciones C también devuelven el valor NULL si se encuentra un error. Se pueden afadir test
para el valor NULL comparando el puntero con NULL:

char *p;
p = malloc(121*sizeof (char));
if (p == NULL)

puts ("Error de asignaci 6n de nenoria") ;
1

0 bien
if (p != NULL)
/* este if es equivalente a : */
if (p)

Otra forma de declarar un puntero nulo es asignar un valor de 0. Por ejemplo,
int *ptr = (int *) O /* ptr es un puntero nulo */

El modelo (casting)anterior (i nt *), no es necesario, hay una conversion estandar de O a una
variable puntero.

int *ptr = O

Nunca se utiliza un puntero nulo para referenciar un valor. Como antes se ha comentado, los
punteros nulos se utilizan en un test condicional para determinar si un puntero se ha inicializado. En el
ejemplo

1f (ptr)

printf("valor de la variabl e apuntada por ptr es: %d\n",*ptr);

se imprime un valor si el puntero es valido y no es un puntero nulo.

Los punteros nulos se utilizan con frecuencia en programas con arrays de punteros. Cada posicion
del array se inicializa a NULL; después se reserva memoria dinamicamente y se asigna a la posicion
correspondiente del array, la direccion de la memoria.

En C se puede declarar un puntero de modo que apunte a cualquier tipo de dato, es decir, no se
asigna a un tipo de dato especifico. El método es declarar el puntero como un puntero void *,
denominado puntero genérico.

Punteros (apuntadores) 331

voi d *ptr; /* declara un puntero void, puntero genérico */

El puntero pt r puede direccionar cualquier posicion en memoria, pero el puntero no esta unido a
un tipo de dato especifico. De modo similar, los punteros voi d pueden direccionar una variable
fl oat, unachar, ouna posicion arbitraria 0 una cadena.

Nota

No confundir punteros voi d y NULL. Un puntero nulo no direcciona ningin dato valido. Un
puntero voi d direcciona datos de un tipo no especificado. Un puntero voi d se puede igualar a
nulo si no se direcciona ningun dato valido. Nulo es un valor; voi d es un tipo de dato.

10.4. PUNTEROS A PUNTEROS

Un puntero puede apuntar a otra variable puntero. Este concepto se utiliza con mucha frecuencia en
programas complejos de C. Para declarar un puntero a un puntero se hace preceder a la variable con
dos asteriscos (**) .

En el ejemplo siguiente ptr5 es un puntero a un puntero.

int valor-e = 100;
int *ptrl = &val or-eg;
int **ptrb = &ptrl;

ptri y ptrS5 son punteros. ptrl apunta a la variable val or - e de tipo int. ptr5 contiene la
direccion de pt r1. En la Figura 10.4 se muestran las declaraciones anteriores.
Se puede asignar valores a val or - e con cualquiera de las sentencias siguientes:

valor-e = 95;

ptrl= 105; / Asigna 105 a valor-c */
**prr5 = 99; /* Asigna 99 a valor-e */
' |
ptrl 8080 I valor_e
8000 |= |
8081 |
ptrs 8082 |
8080 |
8083

Figura 10.4. Un puntero a un puntero.

Ejemplo

char ¢ = "z7;

char* pc = &c;

char** ppc = &pc;

char*** pppc = &ppc;

***pppc = 'm; /* canbia el valor de c a 'm */

332 Programacién en C. Metodologia, algoritmos y estructura de datos
FERpC | -
L
I |
LT "*
L I -_'
|

10.5. PUNTEROS Y ARRAYS

Los arrays y punteros estan fuertemente relacionados en el lenguaje C. Se pueden direccionar arrays
como si fueran punteros y punteros como si fueran arrays. La posibilidad de almacenar y acceder a
punteros y arrays, implica que se pueden almacenar cadenas de datos en elementos de arrays. Sin
punteros eso no es posible, ya que no existe el tipo de dato cadena (st ri ng)en C. No existen
variables de cadena. Unicamente constantes de cadena.

10.5.1. Nombres de arrays como punteros

Un nombre de un array es simplemente un puntero. Supongamos que se tiene la siguiente declaracion
de un array:

int listal5} = {10, 20, 30, 40, 501;

Memoriu
- LO
e

LO

40

-
-

30 - "
-
=

Figura 10.5. Unarray almacenado en memoria.

Si se manda visualizar Listal[0] severd 10 . Pero, ;qué sucedera si se manda visualizar *1ista?
Como un nombre de un array es un puntero, también se vera 10 . Esto significa que

lista + O apunta a listal0]
lista + 1 apunta a listalll
lista + 2 apunta a listal2]
lista + 3 apunta a listal3]
lista + 4 apunta a listal4]

Punteros (apuntadores) 333

Por consiguiente, para imprimir (visualizar), almacenar o calcular un elemento de un array, se puede
utilizar notacién de subindices o notacion de punteros. Dado que un nombre de un array contiene la
direccién del primer elemento del array, se debe indireccionar el puntero para obtener el valor del
elemento.

El nombre de un array es un puntero, contiene la direccién en memoria de comienzo de la secuencia
de elementos que forma el array. Es un puntero constante ya que no se puede modificar, sélo se puede
acceder para indexar a los elementos del array. En el ejemplo se pone de manifiesto operaciones
correctas y erroneas con nombres de array.

float v[101;
float *p;
floa X =
int j;

100. 5;

/* se indexa a partir de v */
for (j=0; j<10; Jj++)

*(vij) = 3*10.0;
p = v+4; /* se asigna la direcci 6n del quinto elenento */
V = &X; /* error: intento de nodificar un puntero constante */

10.5.2. Ventajas de los punteros

Un nombre de un array es una constante puntero, no una variable puntero. No se puede cambiar el valor
de un nombre de array, como no se pueden cambiar constantes. Esto explica por qué no se pueden
asignar valores nuevos a un array durante una ejecucion de un programa. Por ejemplo, si cnonbr e es
un array de caracteres, la siguiente sentencia no es valida en C:

cnonbre = "Her manos Daltdn";

Se pueden asignar valores al nombre de un array sélo en el momento de la declaracion, o bien
utilizando funciones, tales como (ya se ha hecho anteriormente) st rcpy ().

Se pueden cambiar punteros para hacerlos apuntar a valores diferentes en memoria. El siguiente
programa muestra como cambiar punteros. El programa define dos valores de coma flotante. Un puntero
de coma flotante apunta a la primera variable v 1y se utiliza en printf () . El puntero se cambia
entonces, de modo que apunta a la segunda variable de coma flotante v2.

#i ncl ude <stdio.h>

int main{()

{
float vl = 756.423;
Il oat v2 = 900. 545;

|l oat *p_v;

p_v = &vl;

printf ("El primer valor es %f \n",*p_v) ; /*se inprinme 756.423 */
p_vV = &V2;

printf("E1l segundo val or es %f \n",*p_v) ; /*se inprinme 900.545 */
return O;

Por esta facilidad para cambiar punteros, la mayoria de los programadores de C utilizan punteros en
lugar de arrays. Como los arrays son faciles de declarar, los programadores declaran arrays y a
continuacion utilizan punteros para referencia a los elementos de dichos arrays.

334 Programacién en C. Metodologia, algoritmos y estructura de datos

10.6. ARRAYS DE PUNTEROS

Si se necesita reservar muchos punteros a muchos valores diferentes, se puede declarar un array de
punteros. Un array de punteros es un array que contiene como elementos punteros, cada uno de los
cuales apunta a un tipo de dato especifico. La linea siguiente reserva un array de diez variables puntero
a enteros:

int *ptr[101; /* reserva un array de 10 punteros a enteros */

La Figura 10.6 muestra como C organiza este array. Cada elemento contiene una direccion que
apunta a otros valores de la memoria. Cada valor apuntado debe ser un entero. Se puede asignar a un
elemento de pt r una direccion, tal como para variables puntero no arrays. Asi, por ejemplo,

ptr[5] = &edad; /* ptr(5] apunta a la direcci 6n de edad */
ptri4] NULL; /* ptr{4] no contiene direccio6n alguna */

Otro ejemplo de arrays de punteros, en este caso de caracteres es:

char *puntos{25] ; /* array de 25 punteros a caracter */
De igual forma, se podria declarar un puntero a un array de punteros a enteros.
int *(*ptrl0) [];

y las operaciones paso a paso son:

(*ptrl0) es un puntero, ptrl0 es un nonbre de variable.
(*ptrl0) [€s un puntero a un array

*(*ptrl0) [] €S un puntero u un array de punteros

int *(*ptr10) (] €S un puntero a un array de punteros de variables int

Una matriz de nimero enteros, o reales, puede verse como un array de punteros; de tantos elementos
como filas tenga la matriz, apuntando cada elemento del array a un array de enteros o reales, de tantos
elementos como columnas.

| | Cada elemento puede apuntar a un entero
memoria
4l

Figura 10.6. Un array de 10 punteros a enteros.

Punteros (apuntadores) 338

10.6.1. Inicializacion de un array de punteros a cadenas

La inicializacién de un array de punteros a cadenas se puede realizar con una declaracion similar a ésta:

char *nombres_meses[12 = { "Enero", "Febrero", "Marzo",
"Abril", "Mayo", "Junio",
"Julio", "Agosto", "Septienbre",
"Octubre", "Novi enbre",
"Di ci enbre" };

10.7. PUNTEROS DE CADENAS

Los punteros se pueden utilizar en lugar de indices de arrays. Considérese la siguiente declaracion de un
array de caracteres que contiene las veintiséis letras del alfabeto internacional (no se considera la 7).

char alfabeto[27] = ' ABCDEFGHI JKLMNOPQRSTUWVWKYZ" ;

Declaremos ahora p un puntero a char

char *p;

Se establece que p apunta al primer caracter de al f abet o escribiendo

p = &alfabetol[0]; /* o tanbi én p = al fabeto */
de modo que si escribe la sentencia

printf ("$c \n", *p) ;
se visualiza la letra A, ya que p apunta al primer elemento de la cadena. Se puede hacer también

P = &alfabetoll5]; -
de modo que p apuntara al caracter 16° (la letra Q). Sin embargo, no se puede hacer

p = &al fabeto;
ya que al f abet o es un array cuyos elementos son de tipo char , y se produciria un error al compilar
(tipo de asignacidn es incompatible).

|
AIBCDEiF_GlHI J KlLlM' i | =8 ol O

Figura 10.7. Un punteroaalfabeto[[5] .

Es posible, entonces, considerar dos tipos de definiciones de cadena:

char cadenal[]="Hola viejo nmundo"; /* array contiene una cadena */
char *cptr = "C a su al cance"; /* puntero a cadena, el sistenma
reserva menoria para |a cadena*/

10.7.1. Punteros versus arrays

El siguiente programa implementa una funcién para contar el nimero de caracteres de una cadena. En
el primer programa, la cadena se describe utilizando un array, y en el segundo, se describe utilizando un
puntero.

* —— (-

336 Programacién en C. Metodologia, algoritmos y estructura de datos

/* | npl enent aci 6n con un array */
#i ncl ude <stdio.h>
int longitud(const char cadl]);

voi d main()
{
static char cad[] = "Universidad Pontificia";
printf("La longitud de %s es %d caracteres\n",
cad, longitud(cad)) ;
}
int longitud(const char cadl})
{
int posicion = O
whil e (cadlposicion] 1= "\0)
{
posicion++;
}
return posicion;
}

El segundo programa utiliza un puntero para la funcion que cuenta los caracteres de la cadena.
Ademas, utiliza la aritmética de punteros para indexar los caracteres. El bucle termina cuando llega al
Gltimo caréacter, que es el delimitador de una cadena: \ 0.

/* I npl enentaci 6n con un puntero */

#i ncl ude <stdio.h>
int longitud(const char*);

voi d main ()
{
static char cadf] = "Universidad Pontificia";
print€("Lalongitud de %s es %d caracteres\n",
cad, longitud(cad) ;
}
int longitud(const char* cad)
{
int cuenta = O
whil e (*cad++) cuent a++;
return cuent a;
}

En ambos casos se imprimira:
La |longitud de Universidad Pontificiaes 22 caracteres

Comparacionesentre punterosy arrays de punteros

int *ptrill; /* Array de punteros a int */
int (*ptr2) [l ; /* Puntero a un array de el enentos int */
int *(*ptr3)[]; /* Puntero a un array de punteros a int */

10.8. ARITMETICA DE PUNTEROS

Al contrario que un nombre de array, que es un puntero constante y no se puede modificar, un puntero
es una variable que se puede modificar. Como consecuencia, se pueden realizar ciertas operaciones
aritméticas sobre punteros.

Punteros (apuntadores) 337

A un puntero se le puede sumar o restar un entero n; esto hace que apunte » posiciones adelante, o
atras de la actual. Una variable puntero puede modificarse para que contenga una direccidon de memoria
n posiciones adelante o atrds. Observe el siguiente fragmento:

int v[10]:

int *p;

p =V,

(v+d}); /* apunta al 5° elenmento */

p = p+6; /* contiene la direccio6n del 72 elenmento */

A una variable puntero se le puede aplicar el operador ++, 0 el operador — — . Esto hace que contenga
la direccion del siguiente, o anterior elemento. Por ejemplo:

float m[20];

float *r;

r=nmn

r++; /* contiene la direcci 6n del el enento siguiente */

Recuérdese que un puntero es una direccion, por consiguiente, sélo aquellas operaciones de «sentido
comun» Son legales. No tiene sentido, por ejemplo, sumar o restar una constante de coma flotante.

Operaciones no validas con punteros

¢ No se pueden sumar dos punteros.
¢ No se pueden multiplicar dos punteros.
¢ No se pueden dividir dos punteros.

Ejemplo 10.3
Sip apuntaalaletraA en al f abet o, si se escribe
p = p+l;

entonces p apunta a la letra B.
Se puede utilizar esta técnica para explorar cada elemento de a1 f abet o sin utilizar una variable de
indice. Un ejemplo puede ser

p = &alfabeto{0];
for (i = 0, i « strlen(alfabeto); i++)
{
printf ("&c", *p) ;
p = p+l;
}i

Las sentencias del interior del bucle se pueden sustituir por

printf ("sc", *p++) ;

El ejemplo anterior con el bucle f or puede ser abreviado, haciendo uso de la caracteristica de
terminador nulo al final de la cadena. Utilizando la sentencia whi | e para realizar el bucle y poniendo

la condicidn de terminacion de nulo o byte cero al final de la cadena. Esto elimina la necesidad del bucle
f or y su variable de control. El bucle f or se puede sustituir por

while (*p) printf ("sc", *p++) ;

mientras que *p toma un valor de carécter distinto de cero, el bucle whi | e se ejecuta, el caracter se
imprime y p se incrementa para apuntar al siguiente caracter. Al alcanzar el byte cero al final de la
cadena, *p toma el valor de -\ 0’ o cero. El valor cero hace que el bucle termine.

338 Programacién en C. Metodologia, algoritmos y estructura de datos

10.8.1. Una aplicacion de punteros: conversion de caracteres

El siguiente programa muestra un puntero que recorre una cadena de caracteres y convierte cualquier
caracter en mindsculas a caracteres mayusculas.

/* Wiliza un puntero conb indice de un array de caracteres
y convierte caracteres mintsculas a mayuscul as

*/

#i ncl ude <stdio.h>

#i ncl ude <conio.h>

voi d main ()

|
char *p;
char cadenaTexto[81];

puts ("I ntroduzca cadena a convertir :") ;
gets (CadenaTexto) ;

/* p apunta al priner caracter de |la cadena */
p = &CadenaTexto[0]; /* equivale a p = CadenaTexto */

/* Repetir mentras *p no sea cero */
while (*p)
{
/* restar 32, constante de cédigo ASCIl */
if ((*p >= 'a&') && (*p <= 'Z"))
*p++ = "p-32;
el se
SE
}
puts("La cadena convertida es:") ;
puts (CadenaTexto) ;

puts ("\nPulse Intro (Enter) para continuar") ;
getchi();

}

Obsérvese que si el caracter leido estaen el rangoentre ‘a’ y ‘ z*; es decir, es una letra mindscula,
la asignacion

*Pr+ = *p-32;
se ejecutara, y restar 32 del codigo ASCII de una letra minuscula convierte a esta letra en mayuscula).

.CIIAIR:CIHIE;LIE‘JIO. ' i |

L

T "
I |

putchar (*p) ;
p++;
putchar (*p) ;
p++;

put char (*p) ;
P++;

put char (*p) ;

Figura 10.8. *p 1+ se utiliza para acceder de modo incremental en la cadena

. S

Punteros (apuntadores) 339

10.9. PUNTEROS CONSTANTES FRENTE A PUNTEROS A CONSTANTES

Ya esta familiarizado con punteros constantes, como es el caso de un nombre de un array. Un puntero
constante es un puntero que no se puede cambiar, pero que los datos apuntados por el puntero pueden
ser cambiados. Por otra parte, un puntero a una constante se puede modificar para apuntar a una
constante diferente, pero los datos apuntados por el puntero no se pueden cambiar.

10.9.1. Punteros constantes

Para crear un puntero constante diferente de un nombre de un array, se debe utilizar el siguiente formato:
<tipo de dato > *const <nombre puntero> = <«direccién de variable >;
Como ejemplo de una definicién de punteros de constantes, considérense las siguientes sentencias:
int x;

int y;
int *const pl = &x;

pl esun puntero de constantes que apunta a X, por loquep1 es una constante, pero * pl es una variable.
| Por consiguiente, se puede cambiar el valor de * pl , pero no pl

Por ejemplo, la siguiente asignacion es legal, dado que se cambia el contenido de memoria a donde
apunta p1, pero no el puntero en si.

*pl = v;
Por otra parte, la siguiente asignacion no es legal, ya que se intenta cambiar el valor del puntero
pl = &y;
El sistema para crear un puntero de constante a una cadena es:
char *const nonbre = "Luis";

nonbr e no se puede modificar para apuntar a una cadena diferente en memoria. Por consiguiente,
*nonbre = 'C’;

es legal, ya que se modifica el dato apuntado por nombre (cambia el primer caracter). Sin embargo, no
es legal:

nonbre = & ra- Cadena;

dado que se intenta modificar el propio puntero

10.9.2. Punteros a constantes

El formato para definir un puntero a una constante es:

const <tipo de dato el enent 0> *<nombre puntero> -
<direccidén de constante >;

Algunos ejemplos:

const int X = 25;
const int y = 50;
const int *pl = &x;

340 Programacion en C. Metodologia, algoritmos y estructura de datos

en los que p1 se define como un puntero a la constante x. Los datos son constantes y no el puntero; en
consecuencia, se puede hacer que p1 apunte a otra constante.

pl = &v;

Sin embargo, cualquier intento de cambiar el contenido almacenado en la posicion de memoria a
donde apunta p1 creara un error de compilacion. Asi, la siguiente sentencia no se compilara
correctamente:

*pl = 15;

Nota

Una definicién de un puntero constante tiene la palabra reservada const delante del nombre del
puntero, mientras que el puntero a una definicion constante requiere que la palabra reservada
const se sitlie antes del tipo de dato. Asi, la definicién en el primer caso se puede leer como
«punteros constante 0 de constante», mientras que en el segundocaso la definicién se lee «puntero
a tipo constante de dato».

La creacion de un puntero a una constante cadena se puede hacer del modo siguiente:
const char *apellido = "Remirez";
En el prototipo de la siguiente funcion se declara el argumento como puntero a una constante:

float cargo(const float *v) ;

10.9.3. Punteros constantes a constantes

El Gltimo caso a considerar es crear punteros constantes a constantes utilizando el formato siguiente:

const <tipo de dato elemento> *comnst <nonbre puntero> =
<di recci 6n de constante >;

Esta definicidn se puede leer como «un tipo constante de dato y un puntero constante». Un ejemplo
puede ser:

const int x = 25;
const int *const pl = &x;

que indica: «p1 es un puntero constante que apunta a la constante entera x». Cualquier intento de
modificar p1 o bien *p1 producird un error de compilacion.

Regla

e Sisabe que un puntero siempre apuntard a la misma posicion y nunca necesita ser reubicado
(recolocado), definalo como un puntero constante.

e Sisabe que el dato apuntado por el puntero nunca necesitara cambiar, defina el puntero como
un puntero a una constante.

Punteros (apuntadores) 341

Ejemplo 10.4

Unpuntero a una constante es diferente de un puntero constante. El siguiente ejemplo muestra las
diferencias.
/*
Este trozo de cédigo define cuatro vari abl es:
un puntero p; un puntero constante cp; un puntero pc a una
constante y un puntero constdnte cpc a una constante

*/

int *p; /* puntero a un int */

++(*p); /* increnento del entero *p */

+4+p; /* incrementa un puntero p */

int *const cp; /* puntero constante a un int */
++{*cp); /* increnenta el entero *cp */

++Cp; /* no valido: puntero cp es constante */
const int * pc; /* puntero a una constante int */
++(*pc); /* no valido: int * pc es constante */
+4DC ; /* increnmenta puntero pc */

const int * const cpc; /* puntero constante a constante int */
++ (*cpc) ; /* no valido: int *cpc es constante */
++CpC; /* no véalido:. puntero cpc es constante */
Regla

El #zpmc 0 en blancono es SigniﬁC&tiVO en ladeclaracién de punterOS. I—..H.'i declaraciones 5ig‘|_|'|=n|;¢g
son equivalentes:

int* p;
int * p;
int *p;

10.10. PUNTEROS COMO ARGUMENTOS DE FUNCIONES

Con frecuencia se desea que una funcién calcule y devuelva mas de un valor, o bien se desea que una
funcién modifique las variables que se pasan como argumentos. Cuando se pasa una variable a una
funcion (paso por valor) no se puede cambiar el valor de esa variable. Sin embargo, si se pasa un puntero
a una variable a una funcion (paso por direccion) se puede cambiar el valor de la variable.

Cuando una variable es local a una funcion, se puede hacer la variable visible a otra funcion
pasandola como argumento. Se puede pasar un puntero a una variable local como argumento y cambiar
la variable en la otra funcion.

Considere la siguiente definicion de la funcién 1ncrementars(,que incrementa un entero en 5:

voi d IncrementarS(int *i)
{
*i += 5,

}

La llamada a esta funcion se realiza pasando una direccion que itilice esa funcién. Por ejemplo,
para llamar a la funcion incrementars () utilice:

int i;

i = 10;

I ncrementar5(&i) ;

342

Programacién en C. Metodologia, algoritmos y estructura de datos

Es posible mezclar paso por referencia y por valor. Por ejemplo, la funcién func1 definidacomo

void funcl(int *s, 1int t)
{

*s = 6;

t = 25;
}

y la invocacién a la funcién podria ser:

i nt

’(&i, i) /*1 |l amada a funcl */

Cuando se retorna de la funcion runc1 tras su ejecucion, i serd igual a 6 y 7 seguird siendo 7, ya
que se paso por valor. El paso de un nombre de array a una funcién es lo mismo que pasar un puntero
al array. Se pueden cambiar cualquiera de los elementos del array. Cuando se pasa un elemento a una
funcidn, sin embargo, el elemento se pasa por valor. En el ejemplo

int lista[] = {1, 2, 3};
func(listall], listal2]) ;

ambos elementos se pasan por valor.

En C, por defecto, el paso de pardmetros se hace por valor. C no tiene pardmetros por referencia,
hay que emularlo mediante el paso de la direccion de una variable, utilizando punteros en los
argumentos de la funcion.

En el siguiente ejemplo, se crea una estructura para apuntar las temperaturas mas alta y mas baja de
un dia determinado.

struct tenperatura {
float alta;
float baja;
bi
Un caso tipico podria ser almacenar las lecturas de un termdmetro conectado de algiin modo posible
a una computadora. Una funcién clave del programa lee la temperatura actual y modifica el miembro
adecuado, al t aobaj a, en una estructura t enper at ur a de la que se pasa la direccién del argumento
aun parametro puntero.

voi d registrotemp (struct tenperatura *t)
.

L

fl oat actual :

leertempactual (actual) ;
if (actual >t -> alta)
t -> alta = actual;
else if (actual < t -> baja)
t -> baja = actual;
}

La llamada a la funcion se puede hacer con estas sentencias:

struct tenperatura tnp;
registrotemp (&tmp) ;

Punteros (apuntadores) 343

10.11. PUNTEROSA FUNCIONES

Hasta este momento se han analizado punteros a datos. Es posible declarar punteros a cualquier tipo de
variables, estructura o array. De igual modo, las funciones pueden declarar pardmetros punteros para
permitir que sentencias pasen las direcciones de los argumentos a esas funciones.

Es posible también crear punteros que apunten a funciones. En lugar de direccionar datos, los
punteros de funciones apuntan a codigo ejecutable. Al igual que los datos, las funciones se almacenan
en memoriay tienen direcciones iniciales. En C se pueden asignar las direcciones iniciales de funciones
a punteros. Tales funciones se pueden Ilamar en un modo indirecto, es decir, mediante un puntero cuyo
valor es igual a la direccidn inicial de la funcién en cuestion.

La sintaxis general para la declaraciéon de un puntero a una funcién es:

Ti po- de-retorno (*PunteroFuncion) (<lista de pardmetros>);

Este formato indica al cornpilador que PunteroFuncion €s un puntero a una funcion que devuelve
el tipo Ti po- de- r et or noy tiene una lista de parametros.

Un puntero a una funcién es simplemente un puntero cuyo valor es la direccion del nombre de la
funcion. Dado que el nombre es, en si mismo, un puntero; un puntero a una funcién es un puntero a un
puntero constante.

Figura 10.9. Puntero a funcién.

Por ejemplo:
int f£(int); /* declara la funcién f */
int (*pf) (int) ; /* define puntero pf o funcidn int con argunento
int */
pf = f; /* asigno. la direccion de f a pf =/
Ejemplo 10.5
double (*fp) (int n);
float (*p) (int i, int J);

void (*sort) (int* ArrayEnt, unsigned n);
unsi gned ("search)(int BuscarClave, int* ArrayEnt,unsigned n);

El primer identificador, fp , apunta a una funcién que devuelve un tipo doubl ey tiene un Unico
parametro de tipo i nt . El segundo puntero, p , apunta a una funcién que devuelve un tipo f1cat y
acepta dos parametros de tipo i nt . El tercer puntero, sort, esun puntero a una funcién que
devuelve un tipo voi d y toma dos pardmetros: un puntero a i nt y un tipo unsi gned. Por Ultimo,
sear ches un puntero a una funcion que devuelve un tipo unsigned y tiene tres pardmetros: un i nt ,
un puntero a int y un unsi gned.

10.11.1. Inicializacion de un puntero a unafuncion

La sintaxis general para inicializar un puntero a una funcion es:

344 Programacion en C. Metodologia, algoritmos y estructura de datos

PunteroFuncion = unaFuncion

La funcién asignada debe tener el mismo tipo de retorno y lista de parametros que el puntero a
funcidn; en caso contrario, se producira un error de compilacién. Asi, por ejemplo, un puntero gf auna
funcion double:

doubl e calculo (int* v; unsigned n); /* prototipo de funcion */

double (*gf) (int*, unsigned); /* puntero a funcién */
int r{11} = {3,5,6,7,1,7,3,34,5,11,44};

doubl e X;
gf = cal cul o; /* asigna direcci6n de |la funcién */
X = qgf(r,11); /* Ilamada a la funcién con el puntero a funcidn */

Algunas de las funciones de la biblioteca, tales como gsort (), requiere pasar un argumento que
consta de un puntero a una funcién. Se debe pasar a gsort un puntero de funcién que apunta a una
funcion.

Ejemplo 10.6
Se desea ordenar un array de nimeros reales, la ordenacion se va a realizar con la funcion qsort () .

Esta funcidn tiene un parametro que es un puntero a funcion del tipo i nt (*) (const voi d", const
voi d*). Se necesita un funcion de comparacion, que devuelva negativo si primer argumento es menor
que el segundo, O si son iguales y positivo si es mayor. A continuacion se escribe el programa:

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>

int compara_float (const voi d* a, const void* b); /* prototipo de funcidn
de conparaci 6n */

float v[]= {34.5, -12.3, 4.5, 9.1, -2.5, 18.0, 10., 5.5);

int main()
1
int j, n;
int (*pf) (const void*,const void*); /* puntero a funcion */

N = sizeof (v)/sizeof(v(0]); [/* nunero de el ementos */
printf ("\n Nunmero de el ementos: %d\n" ,n);

pf = conpara-float;
gsort ((void*)v,n,sizeof(v(0]),pf);/* Ll amada a funci 6n de
bi bl i oteca. */
for (3 =0, j = n; j++)
printf("$.2f ", vI[il);
puts ("\n Pulsa cual quier tecla para continuar. ...");
j = getchar();
return O;
}

i nt compara_float (const void *a, const void *Db)
{ float *x, *y;

X = (float*)a; y = (float*)b;

return(*x - *y);

Punteros (apuntadores) 349

Ejemplo 10.7
Supongamos un puntero p a unafuncion tul como
float (*p) (inti, int j);
a continuacion se puede asignar la direccion de lafuncion ej enpl o:

float ejemplo(int i, int J)
{
return 3.14159 * i * 1 + j;
}

al puntero p escribiendo
p = ejenplo;
Después de esta asignacion se puede escribir la siguiente Ilamada a la funcién:
{(*p) (12,45)
Su efecto es el mismo que
ejenpl o(12,45)

También se puede omitir el asterisco (asi como los paréntesis) en la llamada (*p) (12,45):
convirtiéndose en esta otra llamada.

p(l2,45)

La utilidad de las funciones a punteros se ve mas claramente si se imagina un programa grande, al
principio del cual se desea elegir una entre varias funciones, de modo que la funcion elegida se llama,
entonces, muchas veces. Mediante un puntero, la eleccidn so6lo se hace una vez: después de asignar (la
direccion de) la funcion seleccionada a un puntero y a continuacion se puede llamar a través de ese
puntero.

Los punteros afunciones también permiten pasar una funcién como un argumento a otrafuncion.
Para pasar el nombre de una funcién como un argumento funcidn, se especifica el nombre de la funcion
como argumento. Supongamos que se desea pasar la funcion mif une () ala funcién suf unc () . El
codigo siguiente realiza las tareas anteriores:

voi d sufunc(int (*f)()) ; /* prototipo de sufunc */
int mifunc(int 1i); /* prototipo de mfunc */
void main ()

{

suf unc(mifunc) ;
}

int mifunc(int 1)

return 5*%i;
}
En la funcion llamada se declara la funcién pasada como un puntero funcion.

voi d sufunc(int (*£) ()}

346

Programacion en C. Metodologia, algoritmos y estructura de datos
Como ejemplo practico veamos cémo escribir una funcién general que calcule la suma de algunos
valores, es decir,

£(L)y + £(2) + ... t f(n)

para cualquier funcién f que devuelva el tipo doubl e y con un argumento i nt . Disefiaremos una
funcion f uncsuma que tiene dos argumentos: n, el nUmero de términos de la suma, y £, la funcion
utilizada. Asi pues, la funcion f uncsunase va a llamar dos veces, y va a calcular la suma de

inversos(k) = 1.0/k {para k
cuadrados (k) = Kk {para k

1, 2, 3, 4, 5
1, 2, 3}

El programa siguiente muestra la funcion f uncsuma, que utiliza la funcién f en un caso para
inversosy en otro para cuadrados.

#i ncl ude <stdio.h>

/* prototipos de funciones */

doubl e inversos(int k) ;

doubl e cuadrados (int k) ;

doubl e funcsuma(int n, double (*f) (int Xk));

int main()

printf("Suma de cinco inversos: %.31f \n", funcsuma (5, inversos)) ;
printf ("Suma de tres cuadrados: %.31f \n", funcsuma(3, cuadrados)) ;
return O

}

doubl e funcsuma(int n, double (*f) (int k))

double s = 0
int i;
for (i = 1; i <= n; i++)
S += f£(1);
return s;
}

doubl e i nversos(int k)
{

return 1.0/k;
}

doubl e cuadrados(int k)

return (double)k * Kk;
}

El programa anterior calcula las sumas de

a) 1.0 1.0 1.0 1.0

1+ + + +

2 3 4 5
b) 1.0+ 4.0 + 9.0

y su salida sera:

Suma de cinco inversos: 2.283
Suma de tres cuadrados: 14. 000

r'

Punteros (apuntadores) 347

10.11.2. Aplicacion de punteros afuncion para ordenacion

Algunas de las funciones de la biblioteca, tal como gsort () 0 bsearch() , requieren pasar un
argumento que consta de un puntero a una funcién. Se debe pasar aambas, gsort () y bsearch() , un
puntero de funcién que apunta hacia una funcién que se debe definir. gsort() utiliza el algoritmo de
ordenacion rapida (quicksort)para ordenar un array de cualquier tipo de dato. bsearch() utiliza la
busqueda binaria para determinar si un elemento esta en un array. La funcion que debe de proporcionarse
es para realizar comparaciones de elementos de array. En el programa siguiente, la funcién comparar()
se pasa a gsort() y a bsearch() . La funcién comparar() compara entradas del array t abl a 'y
devuelve (retorna) un nimero negativo si argl es menor que arg2, devuelve cero si son iguales, o un
nUumero positivo si argl s mayor que arg2 .
El programa siguiente ordena un array de nimeros enteros y busca si existe un valor clave.

#i ncl ude <stdio.h>

#i ncl ude <search.h>
#i ncl ude <stdlib.h>
#i ncl ude <time.h>

int comparar (const void *argl, const void *arg?2);
void maing)

irit i, X;
int tablal[l15];
int *b;

random ze() ;
/* genera tabla de el enentos al eatorios de 1 a 100 */
for (i = O 1i<15; i++)
tablal[i] = random(100)+1;
printf ("\n\nLLista original : ");
for (i = 0, 1 < 15; i++)
printf ("sa ", tablali]);

/* Ordena tabla utilizando el algoritnmo quicksort */
gsort ((void *)tabla,(size_t)15,sizeof (int),comparar) ;

printf ("\nLista ordenada: ") ;
for (i = 0, i < 15; i++)
printf ("% “,tablali]);

printf ("\n\nClave a buscar: ") ;

scanf ("%4", &x) ;

/* Realiza una blsqueda binaria en el vector ordenado */

b = bsearch(&x, (void *)tabla, {(size_t)15,sizeof (int),comparar) ;

if (b)
/* clave encontrada */
printf ("\nEl elenmento %d estéa en |la tabla",x);
el se
printf ("\nEl elenento %d no esta en la tabla",x);

printf ("\nPulsa cual quier tecla para continuar ");
1 = getch();

348 Programacion en C. Metodologia, algoritmosy estructura de datos

/* Conparar dos elenentos de la lista */
int comparar (const void *argl, const void *arg?2)
{

return *(int *) argl - *(int *) arg2;

}
Recuerde
Los pardmetros de la funcién gsort() y bsearch () son:
® 5x Direccion de la clave a buscar.
e (void *)tabla Array que contiene valores a ordenar.
* (size_t)15 Numero de elementos del array.
e sizeof {int) Tamafio en bytes de cada elemento del array.
e comparar{) Nombre de la funcion que compara dos elementos del array.

10.11.3. Arrays de punteros de funciones

Ciertas aplicaciones requieren disponer de numerosas funciones, basadas en el cumplimiento de ciertas
condiciones. Un método para implementar tal aplicacion es utilizar una sentencia swi t ch con muchos
selectores case. Otra solucion es utilizar un array de punteros de funcion. Se puede seleccionar una
funcién de la lista y llamarla.

La sintaxis general de un array de punteros de funcién es:

tipoRetorno (*PunteroFunc [LongArray)) (<Lista de pardmetros>);
Ejemplo 10.8
double (*fp([3]) (int n);

void (*ordenar[MAX- ORD]) (int* ArrayEnt, unsigned n) ;

fp apuntaaun array de funciones; cada miembro devuelve un valor doubl ey tiene un Unico parametro
detipo i nt . ordenar esun puntero aun array de funciones; cada miembro devuelve un tipo voi d y
toma dos parametros: un puntero a i nt y un unsigned .

Recuerde

e func, nombre de un elemento.

e func([] esun array.

e (*funcll) esun array de punteros.

(*funcl]) () esun array de punteros a funciones.

e int (*funcl]) () esun array de punteros a funciones que devuelven valoresint .

Se puede asignar la direccion de las funciones al array, proporcionando las funciones que ya han sido
declaradas. Un ejemplo es
int funcl(int i, int J);

int func2(int i, int J);
int (*funcl]) (int,int) = {funcl, func2};

o

Punteros (apuntadores)

10.11.4. Una aplicaciéon de punteros de funciones

S

349

El listado siguiente, CALCULA. C, es un programa que simula calculador que puede sumar, restar,
multiplicar o dividir nimeros. Se escribe una expresién simple por teclado y el programa visualiza la

respuesta.

El programa define cuatros funciones: sumar () , restar () , mult () ydiv (), Yy un array de
punteros a funcion que se inicializa a cada una de las funciones. Se pide la operacion a realizar, se
busca el indice del puntero a funcién que le corresponde (dependiendo del operador) y se realiza la

llamada a la funcion con su puntero.

#i ncl ude <stdio.h>

/* prototipos de funciones */
float sumar(float x, float y);
float restar(float X, float y);
float mult(float x, float y);
float div(float x, float y);

void main{()

{
char signo, operadores|] {
float (*func(]) (float, fl oat)
int i;
unsi gned char t;
float x, y;

[:71’ l*r’ I/I};

{sumar, restar, nult,

puts("\nCalculador de expresiones");
do {
printf ("\nExpresidén: ") ;
scanf ("$f %c %f",&x,&signo, &y);
/* busqueda del operador */
for (i =0 i < 4; i++)
{
if (signo== operadores(i])
{

printf ("\n%.1f %c %.1f = %.2f",
}
printf ("\nOtra expresion?: ") ;
scanf ("$*c%c",&t) ;t=tolower (t);
Iwhile (t=='s");
}

float sumar(float x, float y)
{
return x + vy;
}
float restar(float x, float y)
{
return x - y;
I
float mult (float x, float y)

{
return x * vy;
)

div}y;

x,signo,y, funcli] (x,v));

350

Programacion en C. Metodologia, algoritmos y estructura de datos

float div(float x, float y)

return x / vy;

10.12. PUNTEROS A ESTRUCTURAS

Un puntero también puede apuntar a una estructura. Se puede declarar un puntero a una estructura tal
como se declara un puntero a cualquier otro objeto y se declara un puntero estructura tal como se declara
cualquier otra variable estructura: especificando un puntero en lugar del nombre de la variable estructura.

struct persona
{
char nonbre(307 ;
int edad;
int altura;
int peso;
b
struct persona enpleado = {"Am go, Pepe", 47, 182, 85};
struct persona *p; /* se crea un puntero de estructura */
p = &enpl eado;

Cuando se referenciaun miembro de la estructura utilizando el nombre de la estructura, se especifica
la estructura y el nombre del miembro separado por un punto (.). Para referenciar el nombre de una
persona, utilice enpl eado. nonbr e. Se referencia una estructura utilizando el puntero estructura. Se
utiliza el operador -> para acceder a un miembro de ella.

Ejemplo 10.9
En este ejemplo se declara el tipo estructura t_persona, que se asocia con el tipo per sona para
facilidad de escritura. Un array de esta estructura se inicializa con campos al azary se muestran por

pantalla.
#i ncl ude <stdio.h>

struct t_persona
{
char nonbre(30] ;
i nt edad;
int altura;
int peso;
e
typedef struct t_persona persona;

voi d mostrar_persona (persona *ptr
voi d main()
{
int i;
persona enpleados{] = { {"Morti er, Pepe", 47, 182, 85},
{"Garcia, Luis", 39, 170, 75},
{"Jiménez, Tomas",18, 175, 80} };
persona *p; /* puntero a estructura */
p = enpl eados;

for (i =0 1 < 3; i++, p++)
mostrar_persona{p);
}

voi d mostrar_persona (persona *ptr)

{

printf ("\nNombre :
printf ("\tEdad:
printf("\taltura:
printf ("\tpPeso:

}

Purievas (apunfadorss) 351

$s",ptr -> nonbre) ;
$d ",ptr -> edad);
$d ",ptr -> altura);
%d\n",ptr -> peso);

Al ejecutar este programa se visualiza la salida siguiente:
Nonbre: Mortimer, Pepe Edad: 47 Altura: 180 Peso: 85

Nonbre: Garcia, Luis

Nonbr e: Jiménez, TomAs Edad:

10.13. RESUMEN

Los punteros son una de las herramientas mas efi-
cientes para realizar aplicaciones en C. Aunque su
practica puede resultar dificil y tediosa es, sin lugar a
dudas, una necesidad vital su aprendizaje si desea
obtener el maximo rendimiento de sus programas.

En este capitulo habra aprendido los siguientes
conceptos:

» Un puntero es una variable que contiene la
direccidn de una posicién en memoria.

« Para declarar un puntero se sitlla un asterisco
entre el tipo de datoy el nombre de la variable,
comoenint *p.

o Para obtener el valor almacenado en la direc-
cion utilizada por el puntero, se utiliza el ope-
rador de indireccion (*) . El valor de p esuna
direccion de memoria y el valor de *p es el
dato entero almacenado en esa direccion de
memoria.

Edad: 39 Altura: 170 Peso: 75
18 Altura: 175 Peso: 80

e Para obtener la direccién de una variable
existente, se utiliza el operador de direccion
(&) .

o Se debe declarar un puntero antes de su uso.

 Un puntero void esun punteroque no se asig-
na a un tipo de dato especifico y puede, por
consiguiente, utilizarse para apuntar a tipos de
datos diferentesen diversos lugares de su pro-
grama.

» Para inicializar un puntero que no apunta a
nada, se utiliza la constante NULL.

 Estableciendoun puntero a la direcciéndel pri-
mer elemento de un array, se puede utilizar el
puntero para acceder a cada elemento del array
de modo secuencial.

Asi mismo, se han estudiado los conceptos de
aritméticade punteros, punteros a funciones, punteros
aestructurasy arrays de punteros.

Programacion en C. Metodologia, algoritmos y estructura de datos

10.14. EJERCICIOS

10.1. Encuentra loserroresen la siguiente declara-
cion de punteros:

int X, *p;, &Y,

char* b= "Cadena | arga";
char* c= *C’;

float x;

voi d* r = &x;

102 Dada la siguiente declaracion, escribir una
funcidn gue enga COMO argumento UN punte-
ro al tipe de dato y muestre por pantalla los
campos.

struct boton
{
char* rotul o;
int codi go;
}i

103 ;Qué diferenciasse pueden encontrarentre un
puntero a constante y una constante puntero?

104. Un array unidimensional se puede indexarcon
la aritméticade punteros. ;Qué tipo de punte-
ro habria que definir para indexar un array
bidimensional?

10.5. En el siguiente cidigo se accede a los cle-
mentos de una matriz. Acceder a los mismos
elementos con anitmética de punderos.,

#define H 4
fdefine M 5

int £,o1

double mo [H] (M] &

for (£ = 0; f<M; L++]
!
for (¢ = Oy <My Sed)
printf("slf ", mc{fllc]);
princf("wvn"};
I

10.6. Escribe ups funcitn con un argumento de tpo
pumiero a double y oo agumento de tipo
int . El primer argumento ¢ debe de comes-
ponder con wn amray ¥ el segundo con el
mimero de elementos del armay. La funcidn ha
de ser de tipo puntero & double pars devol-
wer la difeccidn del elemento menor,

107. Dada la siguiente funcion:

doubl e* gorta(double* V, int
m doubl e k)
{
int 731
for (1 = 07 J=<m § Fé+]
if (*v =sx k]
E@CUrn Vi
return 0,
}
s ;Hay errores en la codificacion? ;De qué
tipo?
Dadas las siguientes definiciones:

doubl e w(15], X, z;
void *r;

» ;Es correcta la siguiente llamada a la
funcion?:

r = gorta(w,10,12.3);

* ;Y estas otras llamadas?:

printf ("$1f", *gorta(w,15,10.5)) ;
Z = gorta(w,15,12.3);

108, [Oud diferencias se pueden encontrar entre
esias dos declaraciones:

float me(5][5];
float "m[5]:

[5e podria hacer csiss asignnciones?:

m = mkt;
mil] = mE[1]:
mid] = Gmt[2](0)r

109. Dadas las siguientes declarciones de estruc-
furas, escribe cdmo scceder al campo X de la
variable estructara ©.

struct fecha

{
int d, m, aj
Eloat x:

b3

etruct dato

[|

char* mes;
struct fecha* r;
} ot

e ——

BRI
BUP S ETRRUN MEABOME ered sopoRMr s0183
op oan mexjde ppiang 2p cenund suwipagy
WLy A 1SEg-enEay woaap P opoigu
[‘musmesnsadsa ‘umususdu anb saeoo
-y S35 NQUSS (BHIIAL0S BUR) TP TN RN

oo wied "O=3 - 5, E UDIWNID U] D0 35 0101

W 13 wRo[E waiuuad anb
S¥] SIUDIOUNJ §¥] OPUS ‘SIUDIIEN] AP SO
“md ap AR un SEZEC) omasD un A eooden
un ‘oprIpEns un sapacsgst onfupin on ond
eppas ophfupin in semfy seuaadp ap vay
[megnapes mursd snb moedosd on Bguseg

OPIETLIF SN U T3 WY
-[9la 3P WP 0ANS sxEsaed so] masom 4 {eum
un w2 saured sosasp s seprend muaeed
un 3p sop 50| ap epenua med ugiumy
wun sos) sgap ewnidosd [ospow vy
~oad £ wELA 3 WP OESE OJEINUN 3P Vo)
‘BOLIANP “AqEeot nsdsog un ap guwared un
Ugos BoLwuLG Ui vy eed Bmonnss
eun a¥n anb) wa ewssdond un ejjouEEag

L
£] 9p SOMLI[S 50 ¥ Japadde ered sossyund
mrnm A sgosdgas w3 sdmoodwossap
ap aqap swesload |5 sornposd sof ap wwns
o] snsow & k0o sambpens sod munpos e
pﬂqmﬂdpmmm-;:t#
zugeus wyn el wpd wuedosd oo nguosg

([Ba SOfRA TSP
“B0u] - |3 0D ITLESALIOD O BY 98 0L G, W
-apea 1) opdurafa Jod) (ruep omuwog U3 [Fu
CUMOTIE N 3P SRR SO MM NuIpeED
B TR GUMMEDE UN EA[INASD £ PUIpED Bun
rpEnua owos edua anb wgzany Fun gquosy

wwins g 2aeea £ sofm) saumus sop v anb
rurefoud oo squosg FWnE B JeziEa L o

-2 e meprnd wied Saumoumes ap seaapes

‘sacund ap expUOUT B opueRjde ugiian
¥| 3p uppIRawapdun ¥] WU T B) ap
SEUIN|OD A FEIY 3P UL [3 59 U L op
-enfd |3 RIS FLIEW TON 003

a8 oqmsusnde s g T u] wppeeed sod
mensow opsodoud ousd ausn upoan) e

EGE (SRIOPEFILNGR) SO

al

—_—————_——-1

uEzIjnn 3% wwapqoud |3 amusaos weg o)
AF5P O 3P DU U UIUAN S0INE3 sor] "0l
-] 01003 cuwiyp |2 wsadns anb soudp op o
~SHUAL 0N B0 5080R] U eums usnb a5 Rl

T + M2 - X =(¥)2
G'T +(X)UlS %= =(X)B
Kf= Bef =(X}J

SNTANFIS T¥] B0S FIO0EUNY 5]
upiung v sousqund ap {esm on arEEgon S0
-unij weyap snpEas snb sumdond on aguosy
T AP cpuMuA D3 Of > X 3 [OfRa
~1390) |3 U ¥ 3p SO B0q sopog weed (x) 2
£ (%) B* (%) 7 seuopumg w) angeas asmb 25 el

-oduan £ eqansd ‘pepa ‘augEuou [wpams:
oanpsodsip |3p w3 anb upioun) wun nugap
*SCIEp 3p EpRnUS ¥] Ry odwan @ coadsa
JEPUFI? UDIIRIASIP W] o 4 soqep sof
ap wprnua v) acipeal anb ewndosd un ngquosg
‘wqaeud ¥) ap (sopuniss ‘soynupm) odusan
& wdisqumd anb #) ua wganud “prpa ‘asguon ns
30 WTUIZIRIED 3% JOPEPRU BPET) SA0pEpe
umussud 98 upromen ap upotadwos wun oy Cggl

PP FPUMEas §] U= ugiran) wemud
¥] uz sauund ap wanguUE ¥ JEIn

Gl ¥ | 9p sopow
SOIERNE 003 T B geadusd 98 upiwn)
ENO U EINJUIS §3 WSy [¢ PRI
TLOEW W] WPENES U0 RIEWA EQIUny wun
"Of? W% NPT MBI SOINERL op TG
vun anuancus snb vamifosd un nqusg TOl

®ouj| TR 2020 2nb saEaos 3p
ouatspy [eppaand 1od sgsoly saRELE (F
ap OWITXPI UN 0D B2UJ) TPED 01X3) 3P S|
0f uea| 29 anb (@ o3 sonufoad wn aquosy g
TAAIOIDI 3P FUUIPOD (O3 FOIL PRI OJuET S
so) 3P sopusuz £o) 0 aapaoon siod sossnmd spqised
mag aab asdds sorgun smaegond F0) Fopol Wy

SYIN3T80Hd SLOL

! [ou
T "FU JUT "1 seJUT) IEW BQTID
-8% PToA &3 upauny vun op odnomosd [0101

{ foeam- 1) 83k

i
“uauas undvs | U2 spgey sewsngod gad?

CAPITULO 11

ASIGNACION DINAMICA

DE MEMORIA

CONTENIDO

11.1. Gestién_dina’,mica de la
memorila.

11.2. Funcion de asignacién de
memoriamalleci}.

11.8. La funcion free().

11.4. Funciones de asignacion
calloc() y realloc().

11.6. Asignacién dinamica para
arrays.

354

11.6.
11.7.

11.8.
11.8.
11.10.

Arrays dinamicos.

Regi as de funcionamiento
de funciones de asignacion
dinamica.

Resumen.
Ejercicios.
Problemas.

INTRODUCCION

Los programas pueden crear variables globales o locales. Las variables
declaradas globales en sus programas se almacenan en posiciones fijas de
memoria, en la zona conocida como segmento de datos del programa, y todas
las funcionespueden utilizar estas variables. Las variables locales se almacenan
en lapila (stack)y existen solo mientras estan activas las funciones que estan
declaradas. Es posible, también, crear variables static (similaresa las globales)
que se almacenan en posiciones fijas de memoria, pero solo estan disponiblesen
el médulo (esdecir, el archivo de texto) o funcion en que se declaran; su espacio
de almacenamientoes el segmento de dat os.

Todas estas clases de variables comparten una caracteristica comuin: se defi-
nen cuando se compila el programa. Esto significa que el cornpilador reserva
(define) espacio para almacenar valores de los tipos de datos declarados. Es
decir, en el caso de las variables globales y locales se ha de indicar al compila-
dor exactamente cuantas y de qué tipo son las variables a asignar. O sea, el
espacio de almacenamiento se reserva en el momento de la compilacién.

3 n embargo, no siempre es posible conocer con antelacion a la ejecucion
cuanta memoria se debe reservar al programa. En C, se asigna memoria en el
momento de la ejecucion en el monticulo o monton (heap), mediante las
funciones malloc(), realloc(), calloe() y free(), que asignan y liberan la
memoria de una zona denominada al nacén libre.

CONCEPTOS CLAVE
o Array dindmico. o Funcién mal | oc.
o Array estatico. o Gestion dinamica.
o Desbordamiento de memoria. o Puntero genérico.
o Funcidn free. o Variable apuntada.

355

356

Programacion en C. Metodologia, algoritmos y estructura de datos

11.1. GESTION DINAMICA DE LA MEMORIA

Consideremos un programa que evalGe las calificaciones de los estudiantes de una asignatura. El
programa almacena cada una de las calificaciones en los elementos de una lista o tabla (array)y el
tamafio del array debe ser lo suficientemente grande para contener el total de alumnos matriculadosen
la asignatura. Por ejemplo, la sentencia

int asignatura [40];

reserva40 enteros, un nimero fijo de elementos. Los arrays son un método muy eficaz cuando se conoce
su longitud o tamafio en el momento de escribir el programa. Sin embargo, presentan un grave
inconveniente si el tamafio del array s6lo se conoce en el momento de la ejecucioén. Las sentencias
siguientes producirian un error durante la compilacion:

scanf ("%$d" ,&num_estudiantes) ;
int asignaturalnum_estudiantes] ;

ya que el compilador requiere que el tamafio del array sea constante. Sin embargo, en numerosas
ocasiones no se conoce la memoria necesaria hasta el momento de la ejecucion. Por ejemplo, si se desea
almacenar una cadena de caracteres tecleada por el usuario, no se puede prever, apriori, el tamafio del
array necesario, a menos que se reserve un array de gran dimensién y se malgaste memoria cuando no
se utilice. En el ejemplo anterior, si el nimero de alumnos de la clase aumenta, se debe variar la longitud
del array y volver a compilar el programa. ElI método para resolver este inconveniente es recurrir a
punteros y a técnicas de asignacién dinamica de memoria.

El espacio de la variable asignada dinamicamente se crea durante la ejecucion del programa, al
contrario que en el caso de una variable local cuyo espacio se asigna en tiempo de compilacion. La
asignacion dinamica de memoria proporciona control directo sobre los requisitos de memoria de su
programa. El programa puede crear o destruir la asignacion dinamica en cualquier momento durante la
ejecucion. Se puede determinar la cantidad de memoria necesaria en el momento en que se haga la
asignacion. Dependiendo del modelo de memoria en uso, se pueden crear variables mayores de 64 K.

El codigo del programa compilado se sitlia en segmentos de memoria denominados segmentos de
codigo. Los datos del programa, tales como variables globales, se sitan en un area denominada
segmento de datos. Las variables locales y la informacion de control del programa se sitlan en un éarea
denominadapila. La memoria que queda se denomina memoria del monticulo o almacén libre. Cuando
el programa solicita memoria para una variable dindmica, se asigna el espacio de memoria deseado
desde el monticulo.

Error fipico de programacidn en ©

La declaracidn de un array exige especificar su longitud como una expresidn constante, asi
st r declara un armay de 100 elementos:

char str[100];

Si se wtiliza una variable en la expresidn que determina la longitud de wn array, se
producird un error.

1AE fy

geanf (*kd", &n) ;
char strinl: i* arroar "/

-

Asignacion dindmica de memoria 357

11.1.1. Almacén libre (freestore)

El mapa de memoria del modelo de un programa grande es muy similar al mostrado en la Figura | 1.1.
El disefio exacto dependera del modelo de programa que se utilice. Para grandes modelos de datos, el
almacén libre (heap)se refiere al area de memoria que existe dentro de la pila del programa. Y el
almacén libre es, esencialmente, toda la memoria que queda libre después de que se carga el programa.

Memoria El monticulo (almacénlibre)

alta
Toda la memoria que queda libre esta
disponible en asignacionesdinamicas

de memoria.
Segmento de Pila Cada segmento dato, codigo o pila
se limitaa 64 K.
SP —— La pila crece hacia abajo en memoria.
sS —» Datos no inicializados.
DS ——m» Datos inicializados.
Segmentode codigo #n. -I

CS ——»

Segmento de codigo #2. ‘

Memoria baja Segmento de codigo #1

Figura 11.1. Mapa de memoria de un programa.

En C las funciones mai i oc () , reaiioc(), caiioc()yfree() asignany liberan memoria de
un bloque de memoria denominado el monticulo del sistema. Las funcionesmalloc (), calloc() vy
real 1loc () asignan memoria utilizando asignacion dinamica debido a que puede gestionar la memoria
durante la ejecucion de un programa; estas funciones requieren, generalmente, moldeado (conversionde
tipos).

11.2. FUNCION mai i oc ()

La forma mas habitual de C para obtener bloques de memoria es mediante la [lamada a la funcién
malloc (). La funcion asigna un blogue de memoria que es el nimero de bytes pasados como
argumento. malloc () devuelve un puntero, que es la direccion del bloque asignado de memoria. El
puntero se utiliza para referenciar el bloque de memoria y devuelve un puntero del tipo void*. La forma
de llamar a la funcién mal | oc () es:

puntero = malloc(tamafio en bytes);
Generalmente se har& una conversion al tipo del puntero:
ti po *puntero;

puntero =(ti po *)malloc(tamafio en bytes);

358 Programacion en C. Metodologia, algoritmos y estructura de datos

Por ejemplo:

long* p;
p = (long")malloc(32);

El operador unario si zeof se utiliza con mucha frecuencia en las funciones de asignacion de
memoria. El operador se aplica a un tipo de dato (ouna variable), el valor resultante es el nimero de
bytes que ocupa. Asi, si se quiere reservar memoria para un buffer de 10enteros:

int *r;
r = (int*) malloc{(1l0*sizeof (int));

Al llamar a la funcion malloc () puede ocurrir que no haya memoria disponible, en ese caso
mal | oc () devuelve NULL.

Sintaxisde llamada amalloc ()
ti po *puntero;
puntero = (tipo*)malloc (tamafio);

La funcién devuelve la direccién de la variable asignada dindmiicamente, el tipo que
devuelve esvoi d*.

Prototipo que incluye malloc ()

voi d* malloc(size_t n);

Figura 10.2. Sintaxis (formato)de la funcion mi1loc ().

En la sintaxis de llamada, puntero es el nombre de la variable puntero a la que se asigna la direccién
del objeto dato, o se le asigna la direccion de memoria de un blogue lo suficientemente grande para
contener un array de n elementos, 0 NULL, si falla la operacién de asignacion de memoria. El siguiente
codigo utiliza malloc () para asignar espacio para un valor entero:

int *pkEnt;
pENt = (int*) malloc(sizeof(int));

La llamada a malloc () asigna espacio para un i nt (entero) y almacena la direccién de la
asignacion en pEnt . pEnt apunta ahora a la posicion en el almacén libre (monticulo) donde se
establece la memoria. La Figura 10.3muestra como pEnt apunta a la asignacion del almacén libre. Asi,
por ejemplo, para reservar memoria para un array de 100 nimeros reales:

fl oat *BlogueMem;
BlogueMem = (float") malloc(100*sizeof (float));

En el ejemplo se declara un puntero denominado BlogueMen Y lo inicializan a la direccion devuelta
por malloc (). Siun bloque del tamafio solicitado esta disponible, malloc () devuelve un puntero al
principio de un blogue de memoria del tamafio especificado. Si no hay bastante espacio de
almacenamiento dinamico para cumplir la peticion, malloc () devuelve cero o NULL. La reserva den
caracteres se puede declarar asi:

int n;

char *s;

scanf ("sd" ,&n) ;
s = (char*) malloc(n*sizeof (char));

Asignacién dindmica de memoria 359

La funcién mal1oc () estad declarada en el archivo de cabecera stdlib .h.

Monticulo
(almacén libre)

[_vglor int J =8
Pila
Datos l |
pEnt ——— g ! Direcciénde int -
| Caodigo de programa
Figura 11.3. Despuésdemal loc (), con eltamafio de un entero, plsnt apunta a la posicién del monticulo

donde se ha asighado espacio para el entero.

Ejemplo 11.1

En el siguiente ejemplo se lee una linea de caracteres, se reserva memoria para un buffer de tantos
caracteres como los leidos y se copia en el buffer la cadena.

#i ncl ude <stdio.h>
#i nclude <string.h> /* por el uso de strcpy() */

voi d main ()

{
char cadl[121], *ptr;
int |on;

puts ("\nIntroduce una |inea de texto\n") ;
gets (cad);

|l on = strlen(cad) ;

ptr = (char*) malloc({(lon+1)*sizeof (char)) ;

strcpy (ptr, cad) ; /* copia cad a nueva area de nenoria
apunt ada por ptr */

printf ("ptr = %s",ptr) ; /* cad est& ahora en ptr */

free(ptr) ; /* libera menmoria de ptr */

La expresioén
ptr = (char*) malloc((lon+1)*sizeof (char));

devuelve un puntero que apunta a una seccién de memaoria capaz de contener la cadena de longitud
strlen() mas un byte extra por el caracter -\ 0" al final de la cadena.

-

L

Programaciénen C. Metodologia, algoritmos y estructura de datos

Memoria resarsada por

Figura 11.4. Memoria obtenida por funcién nmal | oc () .

Precaucion

El almacenamientolibre no es una fuente inagotable de memoria. Si la funcién mal | oc () se
ejecuta con falta de memoria, se devuelve un puntero NULL. ES responsabilidad del programador
comprobar Si enpr e el puntero para asegurar que es valido, antes de que se asigne un valor al
puntero. Supongamos, por ejemplo, que se desea asignar un array de 1.000 nimeros reales en
doble precision:

#define TOPE 1999
doubl e *ptr_lista;
int i;
ptr-lista = (double*)malloc(1000*sizeof (double));
if (ptr_lista == NULL)
{
puts ("Error en |l a asignaci 6n de nmenoria") ;
return -1; /* intentar recuperar nenoria */
}

for (i = 0 i < 1000; i++)
ptr_lista(i] = (double) *random(TOPE) ;

Si no existe espacio de almacenamiento suficiente, 1a funcion mal | oc {) devuelve NULL. La
escriturade un programa totalmente seguro, exige comprobar el valor devuelto por mailloc ()
para asegurar que no es NULL. NULL es una constante predefinida en C. Se debe incluir los
archivos de cabecera «<stdlib.h> para obtener la definicion de NULL.

Asignacién dindmica de memoria 361

Ejemplo 11.2

El programa TESTMEM comprueba la cantidad de memoria que se puede asignar dinimicamente (estd
disponible). Para ello se llama amalloc (), solicitando en cada Ilamada 1.000 bytes de memoria.

/*
TESTMEM progranma para determ nar nenoria |ibre.
*/
#i ncl ude <stdio.h>
int main()
{
void *p;
int i;
long m = O;
for (1 = 1; sodi+4)

{
p = malloc (1000} ;
if (p == NULL) break;
m += 1000;
I
printf ("\nTotal de nenoria asignada %d\n",m) ;
return O;

Se asigna repetidamente 1 kB (Kilobytes) hasta que falla la asignacion de memoria y el bucle se
termina.

11.2.1. Asignacion de memoria de un tamafo desconocido

Se puede invocar a la funcién malloc () para obtener memoria para un array, incluso si no se conoce
con antelacidn cuanta memoria requieren los elementos del array. Todo lo que se ha de hacer es invocar
amalloc ()en tiempo de ejecucion, pasando como argumento el nimero de elementos del array
multiplicado por el tamafio del tipo del array. EI nimero de elementos se puede solicitar al usuario y
leerse en tiempo de ejecucion. Por ejemplo, este segmento de codigo asigna memoria para un array de
n elementos de tipo double, el valor de n se conoce en tiempo de ejecucion:

doubl e *ad;

int n;

printf ("Narmero de el enmentos del array: ") ;
scanf ("%d" ,&n) ;

ad = (double*)malloc(n*sizeof (double));

En este otro ejemplo se declara un tipo de dato complejo, se solicita cudntos nimeros complejos se
van a utilizar, se reserva memoria para ellosy se comprueba que existe memoria suficiente. Al final,
se leen los n nimeros complejos.

struct conpl ej o
{

L
int n, j;
struct conplejo *p;

float x, y;

printf ("Cuantos ndmeros conpl ej os: ") ;
scanf ("%d" ,&n) ;

Programacion en C. Metodologia, algoritmos y estructura de datos

p = (struct complejo*) malloc(n*sizeof (struct complejo));
if (p == NULL)
{
puts ("Fin de ej ecuci 6n. Error de asignaci 6n de nenoria.");
exit (-1);
}
for (j = O; jcn; j++,p++)

printf("Parte real e inmaginaria del conplejo %a : ",3);
scanf ("sf %f",s&p->%,&p->y) ;

11.2.2. Uso demalloc () paraarrays multidimensionales

Un array bidimensional es, en realidad, un array cuyos elementos son arrays. Al ser el nombre de un
array unidimensional un puntero constante, un array bidimensinal serd un puntero a puntero constante
(ti po **). Para asignar memoria a un array multidimensional, se indica cada dimension del array de
igual forma que se declara un array unidimensional. En el Ejemplo 11.3 se reserva memoria en tiempo
de ejecucion para una matriz de n filas y para cada fila m elementos.

I;jemblo 11.3

/* matriz de n filas y cada fila de un numero variable de el enentos */
#include <stdio.h>
#include <stdlib.h>
int main()
!
int **p
int n,m,i;

do {
printf ("\n Numero de filas: "}; scanf ("%d",&n);
} while (n<=0);
p = (int**) malloc(n*sizeof (int*));
for (i = O i<n; i++)
;
int j;
printf ("Nanmero de el enentos de fila %sa ",1+1) ;
scanf ("sa", &m) ;
pli] = (int*)malloc{m*sizeof(int));
for (j = O Jj<m; J++)
scanf ("%d",&pl(i]1(31);
1

return 1;

En el ejemplo, lasentencia p = (int**) mall oc (n*sizeof (int*)); reserva memoria para
un array de n elementos, cada elemento es un puntero a entero (i nt *) . Cada iteracion del bucle f or
externo requiere por teclado, el namero de elementos de la fila (m);reserva memoria para esos m
elementos con lasentenciap (il = (int*)malloc(m*si zeof (int)) ;acontinuacién lee los datos
de la fila.

Asignacion dinamica de memoria

11.3. LIBERACION DE MEMORIA, FUNCION free()

Cuando se ha terminado de utilizar un bloque de memoria previamente asignado por malloc () ,u otras
funciones de asignacion, se puede liberar el espacio de memoria y dejarlo disponible para otros usos,
mediante una llamada a la funcion f r ee() . El bloque de memoria suprimido se devuelve al espacio de
almacenamiento libre, de modo que habra mas memoria disponible para asignar otros bloques de

memoria. El formato de la llamada es
free(puntero)
Asi, por ejemplo, para las declaraciones

1.int *ad;
ad = (int*)malloc(sizeof (int));

2. char *adc;
adc = (char*) nalloc(100*sizeof (char)) ;

el espacio asignado se puede liberar con las sentencias

free(ady;

free(adc) ;

Sintaxisde Hamada a free ()

ti po *puntero;

fr ee(punt er 0);

La variable puntero puede apuntar a una direccién de memoria de cualquier ti po
Prototipo que incluye free()

voi d free(void *);

Figura 11.5. Sintaxis (formato)de la funcién Free(}.

Ejemplo 11.4

En este ejemplo se reserva memoria para un array de 10 estructuras; después se libera la memoria

reservada.

struct gato *pgato; /* declara puntero a la estructura gato */

pgato = (struct gato*)malloc(l0*sizeof (struct gato));
if (pgato== NULL)
puts ("Menori a agot ada") ;
el se
{

f-r-ée(pgat 0); /* Liberar nmenoria asignada a pgato */
}

364 Programacion en C. Metodologia, algoritmosy estructura de datos

11.4. FUNCIONES DE ASIGNACION DE MEMORIA cal l oc () y real | oc ()

Ademés de la funcién malloc () para obtener bloques de memoria, hay otras dos funciones que
permiten obtener memoria libre en tiempo de ejecucion, éstas son calloc()y real loc () .Con ambas
se puede asignar memoria, como con mal l1oc () , cambia la formade transmitir el nimero de bytes de
memoria requeridos. Ambas devuelven un puntero al bloque asignado de memoria. El puntero se utiliza
para referenciar el bloque de memoria. El puntero que devuelven es del tipo voi d* .

11.4.1. Funciéncal | oc ()

La forma de llamar a la funcién cal | oc () es:

puntero = calloc(numero elementos, tamafio de cada el enento);
Generalmente se har& una conversion al tipo del puntero:

ti po *puntero;

puntero =(tipo*)calloc (numero elementos,tamafio de cada el emento);

El tamafio de cada elemento se expresa en bytes, se utiliza para obtenerlo el operador sizeof. Por
ejemplo, se quiere reservar memoria para 5 datos de tipo doubl e:

#define N 5
doubl e* pd;

pd = (doubl e*) calloc(N,sizeof (double));

En este otro ejemplo se reserva memoria para una cadena variable:

char *c, B[121];

puts ("Introduce una |inea de caracteres.");

gets(B); .

/* Se reserva nenoria para el nunero de caracteres + 1 para el caracter
fin de cadena.

*/

c = (char*) calloc(strlen(B)+1,sizeof (char));

strcpy (c,B) ;

Al llamar a la funcion calloc () puede ocurrir que no haya memoria disponible, en ese caso
cal | oc()devuelve NULL.

Sintaxisde llamada a cai i oc ()

ti po *puntero;

int numelementos;

puntero = {tipo*)calloc (numelementos,tamafio de tipo);

La funcidn devuelve la direccion de la variable asignada dindmicamente, el tipo que
devuelve es voi d*.

Prototipo que tiene calloc()
voi d* calloc(gize_t n,size_t t);

Figura 11.6. Sintaxis (formato) de lafuncién cal | oc ()

Asignacién dindmica de memoria 365

En la sintaxis de llamada, puntero es el nombre de la variable puntero al que se asigna la direccion
de memoria de un bloque de numelementos, 0 NULL si falla la operacion de asignacién de memoria.

La funcion cal | oc() esta declarada en el archivo de cabecera std1i b. h, por lo que serd necesario
incluir ese archivo de cabecera en todo programa que Ilame a la funcién. Se puede reservar memoria
dindmicamente para cualquier tipo de dato, incluyendo char, int, fl oat, arrays, estructuras e
identificadores de t ypedef.

En el siguiente programa se considera una secuencia de nimeros reales, con una variable puntero a
f1 oat se procesa un array de longitud variable, de modo que se puede ajustar la cantidad de memoria
necesaria para el nimero de valores durante la ejecucion del programa.

#i ncl ude <stdlib.h>
#i ncl ude <stdio.h>

int main(void)
{
float *pf = NULL
int num i;
do {
printf ("Numero de el enmentos del vector: ");

scanf ("%d" ,&num) ;
}while (num< 1);

/* Asigna nenoria: num*tamafio bytes */

pf (float *) calloc(num, sizeof(float));
if (pf == NULL)
{

puts("Error en | a asignaci 6n de menoria.");
return 1,

}
printf ("\Introduce%d val ores ",num) ;
for (1=0; i<num; 1i++)

scanf ("$f",&pf{i]);

/* proceso del vector */
/* liberaci é6n de | a nenoria ocupada */

free(pf);
return O;

11.4.2. Funcionreal | oc ()

Esta funcién también es para asignar un bloque de memoria libre. Tiene una variacion respecto a

malloc () Y calloc () ,permite ampliar un bloque de memoria reservado anteriormente. La forma de
Ilamar a la funcién realloc () es:

puntero = realloc(punteroa bl oque,tanafio total de nuevo bl oque);
Generalmente se hard una conversion al tipo del puntero:

ti po *puntero;

puntero =(tipo*)realloc (puntero a bloque, tamafio total nuevo bl oque);

El tamafio del bloque se expresa en bytes. El puntero a bl oque referencia a un bloque de memoria
reservado previamente con mal l oc () , calloc() o lapropiarealloc() .

366

Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 11.5
Reservar memoria para una cadena y a continuacién, ampliar para otra cadena mas larga.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <string.h>

int main()

{
char *cadena;

int tam
tam = (strlen("Primavera")+1)*sizeof (char);
cadena = (char*)malloc(tam);

strcpy(cadena, "Pri mavera');
put s (cadena);

/* Anplia el bloque de nenoria */

tam += (strlen(" en Lupiana\n")+1l)*sizeof (char);
cadena = (char *) realloc(cadena, tam ;

strcat (cadena," en Lupiana\n") ;

puts (cadena) ;

/* |iberaci 6n de nenoria */

free(cadena);
return O;

El segundo argumentode real | oc() , es el tamafio total que va a tener el bloque de memoria libre.
Si se pasa cero (0) como tamafio se libera el bloque de memoria al que esta apuntando el puntero primer
argumento, y la funcion devuelve NULL. En el siguiente ejemplo se reserva memoria con cal | oc () Y
después se libera con realloc ().

#define N 10
| ong* pl;

pl = (long*) calloc(N, sizeof (1 ong) ;:

pl = realloc(pl,0) ;

El puntero del primer argumento de r eal | oc() puede tener el valor de NULL, en este caso la
funcion realloc () reserva tanta memoria como la indicada por el segundo argumento, en definitiva,
actla comomalloc ().

Ejemplo 11.6
En este ejemplo se leen dos cadenas de caracteres; si la segunda cadena comienza por COPIA £ afiade
a laprimera. La memoria se reserva conrealloc().

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <string.h>

int main()

{
char *C1=NULL, *C2=NULL, B[121];
char *cl ave ="COPI A";

Asignacién dindmica de memoria 367

int tam

puts(*\n\t Prinmera cadena ") ;
gets(B);

tam= (strlen(B)+1)*sizeof (char);

Cl1 = (char*)realloc(c1,tam ;
strcpy (C1,B) ;

puts("\n\t Segunda cadena ") ;
gets(B);
tam = (strlen(B)+1)*sizeof (char);

C2 = (char*)realloc(c2,tam) ;
strcpy(c2,B) ;

/* Conpara |los prineros caracteres de C2 con cl ave.
La conparaci 6n se realiza con la funcién strcmp() */

if (strlen(clave) <= strlen(C2))
{
int j;
char *rR = NULL
R = realloc(R,(strlen(clave)+1)*sizeof (char)) ;
/* copia los strlen(clave) prineros caracteres */

for (7=0; dJ<strlen(clave);j++)
*(R+J) = *(C2+7);

*(Rej) = \0';
/* conpara con clave */

if (strcmp(clave,R)==0)

/* anplia el bloque de nmenoria */
tam = (strlen(Cl)+strlen(C2)+1)*sizeof (char);
Cl = realloc(Cl,tam);
strcat (C1,C2) ;
}
}

printf ("\nCadena pri ner
printf ("\nCadena segund
return 1,

a.
a.

Al llamar a la funcién realloc () para ampliar el bloque de memoria puede ocurrir que no haya
memoria disponible; en ese caso r eal 1oc () devuelve NULL

Sintaxisde llamada a realloc()
ti po *puntero;
puntero = (tipo*)ealloc (puntero,tanafio del bl oque de nenoria)
La funcion devuelve la direccion de la variable asignada dindmicamente, el tipo que
devuelve es voi d*.
Prototipo que tiene real i oc ()

voi d* realloc(void* puntero,size_t t);

Figura 11.7. Sintaxis (formato)de la funcién realloc (}.

368 Programacion en C. Metodologia, algoritmos y estructura de datos

Hay que tener en cuenta que la expansion de memoria que realiza r eal | oc() puede hacerla en
otra direccién de memoria de la que contiene la variable puntero transmitida como primer argumento.
En cualquier caso, realloc () copia los datos referenciados por puntero en la memoria expandida.

La funcién r eal 1oc () , al igual que las demas funciones de asignacion de memoria, est4 declarada
en el archivo de cabecerastdlib.h.

11.5. ASIGNACION DE MEMORIA PARA ARRAYS

La gestion de listas y tablas mediante arrays es una de las operaciones mas usuales en cualquier
programa. La asignacion de memoria para arrays s, en consecuencia, una de las tareas que es preciso
conocer en profundidad.

El listado de ASTGCADS ¢ muestra como se puede utilizar la funcion mal | oc () para asignar
memoria a un array de cadenas de longitud variable.

) Ejemplo 11.7

El programa ASI GCADS.C lee n lineas de texto, reserva memoria segln la longitud de la linea leida,
cuenta las vocales de cada linea e imprime cada linea y el nimero de vocales que tiene.

#i ncl ude <stdio.h>

#i ncl ude <stdlib.h>
#i ncl ude <string.h>
#i ncl ude <ctype.h>

#define N 10

] voi d salida(char*[], int*);
" - voi d entrada(char*[]);
int vocal es (char*);

int main()

{
char *cad[N];
int j, voc(N] ;

entrada(cad);
/* Cuenta de vocal es por cada |inea */
for (3 = 0; J<N; J++)

voc[j)l = vocales(cadljl);
salida{cad, voc);

return O
}

voi d entrada(char* <dl[])
{
char B[121];
int j, tam
printf ("\n\tEscribe %d |ineas de texto\n",N);
for (7 = 0; j<N; J++)
{

get s(B);

tam = (strlen(B)+1)*sizeof (char);
cdljl = (char*)malloc(tam) ;
strepy (cd(jl,B);

}

-

Asignacion dinamica de memoria

}

int vocal es(char* c)
{
int k, j;
/* Cuenta vocal es de | a cadena c */
for (j=k = O, jestrlen(c); J++)
switch (tolower {*(c+j)))
{

}
return k;
}

void salida(char* cd[], int* v)
int j;
puts("\n\tSalida de las lineas junto al nunero de vocal es") ;:
for (3 = 0; J<N; Jj++)
{

printf ("ss : %2d\n",cdl[j1,vI[3]);
[}

[El programa declara char *cadin] como array de punteros a char, de tal formaque en la funcién
entrada() sereserva memoria, con mai | oc () ,paracada linea de texto.

11.5.1. Asignacion de memoria interactivamente

El programa ASI GVEM C muestra cOmo se puede invocar a calloc () para asignar memoria para un
array. Cuando se ejecuta el programa, se pide al usuario teclear el tamafio de un array, y si se contesta
adecuadamente el programa genera un array de nimeros enteros aleatorios. A su vez, genera otro array
con los mismos valores pero sin duplicidades; este segundo array se crea dindmicamente con la funcién
real | oc().La estrategia para reservar memoria es llamar a realloc () para expandir el array cada 10
valores; es decir, primero se asigna memoria para 10 valores y cuando se ha completado se asignan
otros 10y asi sucesivamente.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <time.h>
#define S 10
#def i ne NUM 99

struct array
t

int *v; /* puntero al array */

int n; /* nunero de el ementos del array */
b
typedef struct array vector'; /* dcclaracion del nuevo tipo: vector x*/
voi d gen_array (vector* inic); /* genera array con n valores */
voi d nuevo_array (vector inic, vector* nd); /* genera nuevo

vector Sin duplicados */

Programacion en C. Metodologia, algoritmos y estructura de datos

voi d escribe_array{vector w);

int main()
{
vector prim dest;

do {
printf{"\nNumero de el enentos del array: "):
scanf ("%d", &prim.n);

twhile (prim.n<1);

random ze() ;

gen_array (&prim) ;
escri be- array(prim;

nuevo_array (prim, &dest) ;
escribe_array (dest) ;

return O

voi d gen_array (vector* inic)
{

int k;
inic-»v = (int*)calloc(inic->n,sizeof(int)); /*reserva nenoria */
for (k = 0; k< inic->n; k++)

inic->v[k] = random(NUM)+1; /* genera valores enteros de 1 a NUM */

}

voi d escribe_array (vector w)
{

int k;

printf ("\n\t Val ores que contiene el vector\n");

for (k = 0, k< w.n; k++)

printf("sdsc", w.v[ik], (k+1)%19==0 2’\n’:" ');/*cada 19 enteros salta
de |inea*/

1

voi d nuevo_array (vector inic, vector* nd)

{
int k,tam

/* Reserva inicial de nenoria para 10 valores */

nd->v = NULL;
tam = sizeof{(int)*S;

nd->v = (int*)realloc(nd->v,tam;
/* copia el priner elenento */

nd->v[0] = inic.v[0];

nd-»>n = 1;

/* copia |l os demas el enentos si no estan ya en el array.
Cuenta | os el enentos copi ados para reservar nenoria */

for (k = 1; k< inic.n; k++)
int j,dup;
j=dup= O
while ({(j<nd-»>n) && !dup)
{

dup = inic.v[kl==nd->v[j++];
}

Asignacién dindmica de memoria 371

if (rdup)
{
if (nd-»>n%s == 0) /* amplia nmenoria */
r
tan += sizeof (int) *S5;
nd->v =(int*)realloc(nd-=v, tam);

/*
asigna el elenento. Los indices en C estan en el rango de O a n-1, por
esa razon Se asigna y despues se increnenta.

*/

nd->vind->n++] = inic.v[lkl;

}

11.5.2. Asignacion de memoria para un array de estructuras

El programa asicNaEs.c define varios modelos de estructuras para representar un curso de
perfeccionamiento,al que asisten varios alumnos de diversos departamentos de una empresa. Se declara
una estructura per sona, una estructura al ummo, otra pr of esor y la estructura cur so. Un al ummo es
una per sonay los campos departamento Y ni vel . El pr of esor es una per sonay el campo expe
aflos de experiencia. El cur so consta de N al ummos y un pr of esor, ademas del nimero de dias de
duraciény la descripcion del curso. El programa utiliza funciones de asignacion de memoria dindmica
para asignar memoria que contenga las cadenas de caracteres y un array de Nestructuras a1 unmo; define
una funcion que recibe una cadenay reserva memoria para contener la cadena; la funcion de biblioteca
strepy () se utiliza para copiar una constante de cadena en la memoria reservada. El programa da
entrada a los datos referidos anteriormente y visualiza el contenido del curso.

#i ncl ude <stdio.h>
#i ncl ude <stdiib.h>
#include <string.h>

t ypedef struct persona
!

char* nom

int edad;

char* dir;
} PERSONA;

typedef struct alumno

PERSONA p;
char* depar;
short nivel;

} ALUMNO

t ypedef struct profesor
PERSONA p;
short expe;

} PROFESOR;

struct curso
{

372

Programacion en C. Metodologia, algoritmos y estructura de datos

ALUMNC* ptral;
PROFESOR* pf ;
char* descrip;
short di as;
short n; /* Nunmero de alumnos del curso */
I
char* asigcad(void) ;
PERSONA* asigper (void) ;
PROFESOR* asigprof (void) ;
ALUMNCG* asigalms(short n);

int main()
{
struct curso dom

int 7j;

printf ("\n\tCurso de perfeccionamiento.\nDescripcion del curso: ");
dom.descrip = asigcadl();

printf ("Dias lectivos del curso: ");

scanf ("$d%*c", &sdom.dias) ;

printf("\t Datos del profesor del curso.\n");
dom.pf = asigprof();

printf ("\t Nunmero de al ummos del curso: ");
scanf ("¢dg*c", &dom.n) ;

dom.ptral = asigalms(dom.n) ;
/* Mustra de |os datos del curso */

printf ("\n\n\t\t Curso: %s\n",dom.descrip) ;
puts ("\t\t —- ") ;
printf("\tProfesor: %s\n",dom.pf ->p.non ;
printf ("\tRelacion de asistentes al curso\n");
for (j = 0, j<dom.n; j++)
{
printf ("\t\t%s\n", (dom.ptral+j)->p.nom) ;
}
return O;
}

char* asigcad()
{
char bl121], *cd;
gets(b);
cd = (char*) malloc((strlen(b)+1)*sizeof (char)) ;
if (cd== NULL)
{

puts ("\n\t!! Error de asignacion de nenoria, fin de ejecucion.!!");

exit(-1);
|
strcpy(cdb) ;
return cd;
}

PERSONA" asigper ()
{
PERSONA* p;

p = (PERSONA*)malloc (sizeof (PERSONA)) ;

———

! Asignacién dinamica de memoria 373
printf ("\nNombre: ") ; p->nom = asigcad() ;
printf ("Edad: ") ; scanf ("sas*c", &->edad) ;
printf ("Direccion: ") ; p->dir = asigcad() ;
return P,

}

PROFESCOR* asigprof ()

{
PROFESOR* t;
t = (PROFESOR*)malloc(sizeof (PERSONA)) ;
t ->p = *asigper();
printf ("\nAfios de experiencia: ") ;
scanf ("%d%*c" ,&t->expe) ;
returnt ;

}

ALUMNO* asigalms (short n)
{

int j;

ALUWC* a;

a = (ALUMNO*)calloc({n,sizeof (ALUMNO)) ;

if (a== NULL)

{

puts ("\n\t! ! Error de asi gnacion de nenoria, fin de ejecucion.!!");
exit (-1);

}
/* Entrada de datos de cada al umo */

for (§=0; J<n; j++)

{
(a+j)->p = *asigper();
printf ("Departamento al que pertenece: ");
(a+7j) ->depar = asigcad();
printf ("Ni vel en que se encuentra: ") ;
scanf ("$d%s*c",&(a+7j) ->nivel) ;

}

return a;

11.6. ARRAYS DINAMICOS

Un nombre de un array es realmente un puntero constante que se asigna en tiempo de compilacion:

float m([30]; /* mes un puntero constante a un bl oque de 30 float*/
float" const p =(float*)malloc(30*sizeof (float));

mY p son punteros constantes a blogues de 30 nimeros reales (fl oat). La declaracion de m se denomina
ligadura estatica debido a que se asigna en tiempo de compilacion; el simbolo se enlaza a la memoria
asignada aunque el array no se utiliza nunca durante la ejecucion del programa.

Por el contrario, se puede utilizar un puntero no constante para posponer la asignacién de memoria
hasta que el programa se esté ejecutando. Este tipo de enlace o ligadura se denomina ligadura dinamica
o ligadura en tiempo de ejecucion

fl oat" p = (float*)malloc(30*sizeocf(float));

Un array que se declara de este modo se denomina array dinamico.

)

374 Programacion en C. Metodologia, algoritmos y estructura de datos

Comparar los dos métodos de definicion de un array

e float m[307]; /* array estatico */
e float* p=(float*)malloc(30*sizeof(float)); /* array di nam co*/

El array estatico mse crea en tiempo de compilacion; su memoria permanece asignada durante
toda la ejecucion del programa. El array dindmico se crea en tiempo de ejecucion; su memoria se asigna
s6lo cuando se ejecuta su declaracion. No obstante, la memoria asignada al array p se libera tan pronto
como se invoca a la funcién f r ee() , de este modo

freelp);

11.7. REGLAS DE FUNCIONAMIENTO DE LA ASIGNACION DE MEMORIA

Como ya se ha comentado se puede asignar espacio para cualquier objeto dato de C. Las reglas para
utilizar las funciones malloc () ,calloc (), realloc() y free() como medio para obtener/liberar
espacio libre de memoria son las siguientes:

1. El prototipo de las funciones estaen stdlib.h.
#i ncl ude <stdlib.h>
int* dat os;
datos = (int*)malloc(sizeof(int));

2. Las funciones malloc (), calloc(), realloc () devuelven el tipo void*, lo cual exige
hacer una conversion al tipo del puntero.

#i ncl ude <stdlib.h>
void main()
{

doubl e* vec;
int n;

vec = (double*)calloc(n,sizeof (double));
}
3. Las funciones de asignacion tienen como argumento el nimero de bytes a reservar.
4. El operador si zeof permite calcular el tamafio de un tipo de objeto para el que esta asignando
memoria.

struct punto

I
L

float x,v,z;
}i

struct punto*p = (struct punto*)malloc(sizeof (struct punto));
5. Lafunciénreal | oc () permite expandir memoria reservada.
#i ncl ude <stdlib.h>

int *v=NULL; ;

mt N,
scanf ("&d", &n) ;
V = (int*)realloc(v,n};

V = (int*)realloc(v,2*n);

Asignacion dinamica de memoria 375

6. Las funciones de asignacion de memoria devuelven NULL si no han podido reservar la memoria

requerida.

doubl e" v;

V = malloc(1000*sizeof (double)) ;

if (v == NULL)

{
puts ("Error de asignaci 6n de nenoria.") ;
exit(-1);

}

Se puede utilizar cualquier funcién de asignacion de memoria para reservar espacio de objetos
mas complejos, tales como estructuras, arrays, en el almacenamiento libre.

#i ncl ude <stdlib.h>
struct conplejo

float x,vy;
bi

voi d main ()
|
struct conpl ej o* pz; /* Puntero a estructura conplejo */
int n;
scanf /"sd", &n) ;
/* Asigna nenoria para un array de ti po conplejo */
pz = (struct conplejo *)calloc(n,sizeof (struct conplejo));
if (pz == NULL)
{
puts ("Error de asi gnaci 6n de nenoria.") ;
exit(-1);

. Se pueden crear arrays multidimensionales de objetos con las funciones de asignacion de

memoria. Para un array bidimensional » x m, se asigna en primer lugar memoria para un array de
punteros (de n elementos), y después se asigna memoria para cada fila (m elementos) con un
bucle desde 0 a n-1.

#i ncl ude <stdlib.h>

doubl e **mat ;
int n,m,1;

mat = (double**)malloc (n*sizeof (double*));/* array de punteros */
for (i=0; i<n; i++)
{

mat [1]=(double*)malloc (m*sizeof (double));/*fila de m el enent os */
)

. Toda memoria reservada con alguna de las funciones de asignacion de memoria se puede liberar

con la funcién free(). Para liberar la memoria de la matriz dindmica mat :
doubl e **mat ;

for (i=0; 1<n; i++)
{

free(mat [i]) ;
}

Programacién en C. Metodologia, algoritmos y estructura de datos

11.8. RESUMEN

La asignacion dindmica de memoria permite utilizar
tanta memoria como se necesite. Se puede asignar
espacio a una variable en el almacenamiento libre
cuando se necesite y se libera la memoria cuando se
desee.

En C se utilizan las funciones mal | oc () ,
cal loc() ,reall oc() y £free() para asignar
y liberar memoria. Las funciones mal | oc (),
cal l oc() ,real | oc() permiten asignar memo-
ria para cualquier tipo de dato especificado (un i nt ,
un f | oat , una estructura, un array o cualquier otro
tipo de dato).

Cuando se termina de utilizar un bloque de
memoria, se puede liberar con lafuncion f r ee() .La
memoria libre se devuelve al almacenamiento libre,
de modo que quedara méas memoria disponible para
asignar otros bloques de memoria.

El siguiente ejemplo asigna un array y llama a la
funcién f r ee () que libera el espacio ocupado en
memoria:

11.9. EJERCICIOS

11.1. Encuentrelos erroresen las siguientesdeclara-
cionesy sentencias.

int n, *p;

char** dob= "Cadena de dos
punt er os" ;

p = n*malloc(sizeof (int));

11.2. Dada la siguiente declaracion, definir un pun-
tero b a la estructura, reservar memoria dind-
micamente para una estructura asignando su
direccionah.

struct boton

{

char* rotul o;
int codigo;
}i

11.3. Una vez asignada memoria al puntero b del
Ejercicio 11.2 escribir sentencias para leer los
campos r ot ul oy codi go.

typedef struct ani nal

{
) ANl VAL
AN MAL* pperr o;
pperro =
(ANIMAT*Ymalloc (S*sizeof (ANl MAL)) ;
if (pperro == NULL)
puts ("jFalta menorial") ;
el se
{

/* uso de pperro */

/* |libera espacio
de pperro */

free(pperro) ;

11.4. Un array unidimensional puede considerarse
una constante puntero. ;Cémo puede conside-
rarse un array bidimensional?, ;y un array de
tres dimensiones?

115. Declara una estructura para representar un
punto en el espacio tridimensional. Declara un
puntero a la estructura para que tenga la
direccidnde un array dindmicode » estructuras
punto. Utiliza la funcion cal | oc () para
asignar memoria al array y comprueba que se
ha podido asignar la memoria requerida.

11.6. ;Qué diferencias existen entre las funciones
mal l oc () ,calloc()yrealloc()?

11.7. Dada la declaracion de la estructura punt o
(Ejercicio 11.5) escribe una funcion que
devuelva la direccidn de un array dindmico de
n puntos en el espacio tridimensional. Los
valores de los datos se leen del dispositivo de
entrada (teclado).

11.8. Dada la declaracion del array de punteros:

#define N 4
char *[NJ;

Escriba las sentencias de cddigo para leer
N lineas de caracteres y asignar cada linea a
un elementodel array.

11.9. Escriba una funcién que reciba el array dina-

mico creado en el Ejercicio 11.7 y amplie el
array en otros m puntos del espacio.

11.10. PROBLEMAS

En todos los problemas, utilice siempre que sea
posible punterospara acceder a los elementosde los
arrays, tanto numeéricos como cadenas de caracteres.

11.1. Escriba un programa para leer n cadenas de

11.2

11.3.

caracteres. Cada cadena tiene una longitud
variable y esta formada por cualquier caracter.
La memoria que ocupa cada cadena se ha de
ajustar al t amafo que tiene. Una vez leidas las
cadenas se debe de realizar un proceso que
consisteen eliminartodos los blancos, siempre
manteniendo el espacio ocupado ajustado al
nimero de caracteres. ElI programa debe
mostrar las cadenas leidas y las cadenas
transformadas.

Se desea escribir un programa para leer
nimeros grandes (de tantos digitos que no
entran en variables | ong) y obtener la suma
de ellos. El almacenamiento de un ndmero
grande se ha de hacer en una estructura que
tenga un array dindmicoy otro campo con el
numero de digitos. La suma de dos nimeros
grandes dard como resultado otro ndmero
grande representado en su correspondiente
estructura.

En una competicidnde ciclismo se presentan n
ciclistas. Cada participante se representapor el
nombre, club, los puntos obtenidosy pruebaen
que participarden la competicion. La competi-

)

377

Asignacion dinamica de memoria

11.10. Escriba una funcion gue reciba las N lineas

1LIL

11.4.

11.5.

leddas en el Ejercicio 11.8 v libere las -
neas de longitud menor de 20 caracteres. Las
lineas restantes han de guedar en orden
consecutivo, desde ln posicidn cern

LOué diferencias existe entre las siguientes
declaraciones?:

char *c{15]1;
char **c,
char c[1511[12}1;

cidn es por eliminacion. Hay prueba de dos
tipos, persecucidn y velocidad. En la de perse-
cucin l'rln.'inpun tres ciclistas, el primerm reci=
be 3 puntos ¥ el tercero 8e elimina. En la de
velocidad participan 4 ciclistas, el mas rapido
obtiene4 puntos el segundo 1y el cuarto se eli-
mina. Las pruebas se van alternando, empe-
zando por velocidad. Los ciclistas participan-
tes en una prueba se eligen al azar entre los que
en menos pruebas han participado. El juego
termina cuando no quedan ciclistas para alguna
de las dos pruebas. Se ha de mantener arrays
dindmicos con los ciclistas participantes y los
eliminados. El ciclista ganador serael que mas
puntos tenga.

Se tiene una matriz de 20x20 elementos ente-
ros. En la matriz hay un elemento repetido
muchas veces. Se quiere generar otra matriz de
20 filas y que en cada fila estén sélo los ele-
mentos no repetidos. Escribir un programa que
tenga como entradala matriz de 20x20, genere
la matriz dinamica pedida y se muestre en pan-
talla.

Escriba un programa para generar una matriz
simétricacon niimeros aleatoriosde 1a 9. El
usuario introduce el tamafio de cada dimension
de la matriz y el programa reserva memoria
libre para el tamafio requerido.

CAPITULO 12

CADENAS

! CONTENIDO

21
122
12.3.
12. 4.

12.5.
12.6.

12.7.

378

Concepto de cadena.
Lectura de cadenas.
La biblioteca stri ng. h.

Arraysy cadenas como
parametros de funciones.

Asignacion de cadenas.

Longitud y concatenacion
de cadenas.

Comparacion de cadenas.

188
129
12. 10.

1211

12.12.
12.13.
12. 14.

Inversién de cadenas.
Conversion de cadenas.

Conversion de cadenas a
ndmeros.

Busqueda de caracteresy
cadenas.

Resumen.
Ejercicios.
Problemas.

INTRODUCCION

El lenguaje C no tiene datos predefinidos tipo cadena (string).En su lugar C,
manipula cadenas mediante arrays de caracteres que terminan con el cardcter
nulo ASCII (\0%). Una cadena se considera como un array unidimensional de
tipo char o unsigned char. En este capitulo se estudiaran temas tales como:

cadenas en C;

lecturay salida de cadenas;

uso de funciones de cadena de la biblioteca estandar;

asignacion de cadenas;

operacionesdiversas de cadena (longitud, concatenacion, comparacion y
conversion);

localizacion de caracteresy subcadenas;

o inversion de | os caracteres de una cadena.

O O O o ©

[e]

CONCEPTOS CLAVE

o Asignacién. Comparacion.

o
o Biblioteca string.h. o Conversion.
o Cadena. o Funciones de cadena.
o Cadenavacia. o Inversion.
« Caracter nulo (NULL, “\0 7). o String.

379

380

Programacion en C. Metodologia, algoritmos y estructura de datos

12.1. CONCEPTO DE CADENA

Una cadena (también llamada constante de cadena o literal de cadena) es un tipo de dato compuesto,
un array de caracteres (char), terminado por un caracter nulo (- \ 0*), NuLL (Fig. 12.1). Un ejemplo es
“ABC" .

Cuando la cadena aparece dentro de un programa se vera como si se almacenaran cuatro elementos:
‘A’, ’B’, rc* y ‘\0’.En consecuencia, se considerara que la cadena "aBc" esun array de cuatro
elementos de tipo char . El valor real de esta cadena es la direccion de su primer caracter y su tipo es
un puntero a char . Aplicando el operador * a un puntero a char se obtiene el caracter que forma su
contenido; es posible también utilizar aritmética de direcciones con cadenas:

o FN=Tell es igual a A
*("ABC" + 1) es igual a 'B'
*("ABC" + 2) es igual a ok
*("ARC" + 3) es igual a "0
De igual forma, utilizando el subindice del array se puede escribir:
*ABC" es igual a "A
"ABECH es igual a ‘B’
AR es igual a i
“ABC" es igual a ‘\NO

T s
a

(@) LTa C\ildleln ?_ dle, -tEe-s-tI
®) iLﬁa, cadenal |de tlels!tl\oi

I N S

Figura 12.1. (a)array de caracteres; (b) cadena de caracteres.

El nddmero total de caracteres de una cadenaen C es siempre igual a la longitud de la cadena

mis 1.
Ejemplos
1.char cad[] = "Lupiana";
cad tiene ocho caracteres; 'L', ‘u’, 'p', ‘i, ‘a’, ‘'n’, 'a’ y '\0

2.printf ("3s", cad) ;
el sistema copiara caracteres de cad a st dout (pantalla) hasta que el caracter NuULL, "10 ~, se
encuentre.

3. scanf ("$s", cad) ;
el sistema copiara caracteres desde st di n (teclado) a cad hasta que se encuentre un caracter
espacio en blanco o fin de linea. El usuario ha de asegurarse que el buffer cad esté definido como
una cadena de caracteres lo suficiente grande para contener la entrada.

Cadenas 381

Las funciones declaradas en el archivo de cabecera <string.n> se utilizan para manipular
cadenas.

12.1.1. Declaraciéon de variables de cadena

Las cadenas se declaran como los restantes tipos de arrays. El operador postfijo [] contiene el tamafio
méaximo del objeto. El tipo base, naturalmente, es char, o bien unsi gned char:

char texto[81]; /* una linea de caracteres de texto */

char orden[40] ; /* cadena utilizada para recibir una orden de
tecl ado */

unsi gned char dat os; /* puede contener cual quier caracter ASC | */

El tipo unsi gned char puede ser de interés en aquellos casos en que los caracteres especiales
presentes puedan tener el bit de orden alto activado. Si el caracter se considera con signo, el bit de mayor
peso (orden alto) se interpreta como hit de signo y se puede propagar a la posicion de mayor orden
(peso) del nuevo tipo.

Observe que el tamafio de la cadena ha de incluir el caracter <\ ¢ . En consecuencia, para definir un
array de caracteres que contenga la cadena "ABRCDEF" , escriba

char UnaCadenal7];

A veces se puede encontrar una declaracion como ésta:

char *a:

i Es & realmente una cadena? No. no es. ES un puntero aun carécter (el primer cardcter de una
cadena), que todavia no tiene memoriz asignada,

12.1.2. Inicializacion de variables de cadena

Todos los tipos de arrays requieren una inicializacién (iniciacion) que consiste en una lista de valores
separados por comas y encerrados entre llaves.

char texto[81] = "Esto es una cadend.’;
char textodemo[255] = "Esta es una cadena muy |arga";
char cadenatest[] = "¢;Cu&l es la longitud de esta cadena?";

Las cadenas t ext oy t ext odeno pueden contener 80y 254 caracteres respectivamente mas el
caracter nulo. La tercera cadena, cadenat est , se declara con una especificacion de tipo incompleta y
se completa sélo con el inicializador. Dado que en el literal hay 36 caracteres y el compilador afiade el
caracter *\ 0, un total de 37 caracteres se asignaran a cadenat est .

Ahora bien, una cadena no se puede inicializar fuera de la declaracidn. Por ejemplo, si trata de hacer

UnaCadena = "ABC";

C le daréd un error al compilar. La razon es que un identificador de cadena, como cualquier
identificador de array se trata como un valor de direccidén, como un puntero constante. ; Cémo se puede
inicializar una cadenafuera de la declaracion? Mas adelante se verd, pero podemos indicar que sera
necesario utilizar una funcién de cadena denominada strcpy () .

382

Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 12.1

Las cadenas terminan con el caracter nulo. Asi en el siguiente programa se muestra que el caracter
NULL ¢ "\0 ") se afiade a la cadena:

#i ncl ude <stdio.h>

int main()

{
char S[] = "aBcD";
for (inti =0, i < 5; i++)

printf("s(sd] = %c\n",1,S[il) ;

return O

1

Ejecucion

Conentari o: Cuando el caréacter NULL se ndndd inprimir, no escribe nada.

12.2. LECTURA DE CADENAS

La lectura usual de datos se realiza con la funciéon scanf () , cuando se aplica a datos cadena el codigo
de formato es %s. La funcion da por terminada la cadena cuando encuentra un espacio (un blanco) o fin
de linea. Esto puede producir anomalias al no poder captar cadenas con blancos entre caracteres. Asi, por
ejemplo, trate de ejecutar el siguiente programa:

/* Este programa nuestra cémo scanf()lee datos cadena */

#i ncl ude <stdio.h>

void main()

{
char nonbre[30] ; /* Define array de caracteres */
scanf ("$s", nonbre) ; /* Leer l|la cadena */
printf("ss \n",nonbre) ; /* Escribir la cadena nonbre */

}

El programa define nonbr e como un array de caracteres de 30 elementos. Suponga que introduce
la entrada Pepe Mar gol | es, cuando ejecuta el programa se visualizara en pantalla Pepe. Es decir, la
palabra Mar gol | es no se ha asignado a la variable cadena nonbre. La razén es que la funcion
scanf () termina la operacion de lectura siempre que se encuentra un espacio en blanco o fin de linea.

Asi pues, ;cudl serd la mejor forma para lectura de cadenas, cuando estas cadenas contienen més de
una palabra (caso muy usual)? El método recomendado serd utilizar una funcién denominada get s ().
La funcion get s () permitira leer la cadena completa, incluyendo cualquier espacio en blanco, termina
al leer el caracter de fin de linea.

El prototipo de la funcidn esté en el archivo stdio. h . La funcion asigna la cadena al argumento
transmitido a la funcién, que serd un array de caracteres o un puntero (char *) a memoria libre, con un
numero de elementos suficiente para guardar la cadena leida. Si ha habido un error en la lectura de la

cadena, devuelve NULL.
/* Lectura de caracteres hasta fin de 1inea */

Cadenas 383

char bl[81] ;
gets(b);

Ejemplo 12.2

Entraday salida de cadenas. Lectura de palabras de 79 caracteres de mdxima longitud en una memoria
intermedia (buffer) de 80 caracteres.

#i ncl ude <stdio.h>
void mai n{)
{
char palabral80];
do {
scanf ("¢s",pal abra) ;
if (1feof (stdin)
printf{"\t\"sg\" \n",pal abra) ;
} while (!feof(stdin));

Al ejecutar este programa el nimero de veces que se repite el bucle whi | e dependera del nimero
de palabras introducidas, incluido el caracter de control que termina el bucle cont r ol -z.

Ejecucion

Hoy es 1 de Enero del 2000.
"HOY"
"ag"
] 1I‘I
ndelt
"Ener 0"
Nde 1il
"2000."

Mafiana es Doni ngo.
"Mafana"
IIeS‘I
"Domi ngo."

El bucle anterior se ejecuta 11 veces, una vez por cada palabra introducida (incluyendo Cont r ol -
Z que detiene el bucle). Cada palabra de la entrada (st di n) hace eco en la salida (st dout). El flujo de
salida no «se limpia» hasta que el flujo de entrada encuentra el final de la linea.

Cada cadena se imprime encerrada entre comillas. No sera fin de archivo (feof () distinto de cero)
mientras que no se pulse Control-Z (en Windows/DOS), que envia el caracter final de archivo del
flujo estandar de entrada st di n.

Advertencia

Los signos de puntuacion, apostrofes, comas, puntos, etc.,se incluyen en las cadenas, pero no asi
los caracteres espacios en blanco (blancos, tabulaciones, nuevas lineas, etc.).

384 Programacion en C. Metodologia, algoritmosy estructura de datos

Ejemplo 12.3

El siguiente programa solicita introducir un nombre, comprueba la operaciény lo escribe en pantalla.

#i ncl ude <stdio.h>
int main()

char nombre[807;
printf ("\nintroduzca su nonbre: ") ;
if (gets(nonbre)r= NULL)
printf ("Hol a%s (cémo estd usted?",nombre) ;
return O;
}

Si al ejecutarlo se introduce la cadena Mara Martina, el array nonbr e almacenar los caracteres

siguientes:
nonbr e

M a r a M a r t i n a \o

Ejemplo 11.4
El siguiente programa lee y escribe el nombre, direccion y teléfono de un usuario.
#i ncl ude <stdio.h>

voi d main ()

{
char Nonbre[32] ;
char Callel32] ;
char Ciudad(27];
char Provincial27];
char Codigorostal[5] ;
char Telefono[10] :

printf "\nNombre: ") ; gets (Nonbre);

printf "\nCalle: ") ; gets(Calle);

printf "\nCiudad: ") ; gets (Ci udad);

printf "\nProvincia: "); gets (Provincia);

printf "\nCodigo Postal: "); gets(CodigoPostal);
printf "\nTelefono: ") ; gets(Teclefono) ;

/* vis alizar cadenas */
printf ("\n\n%s \t %s\n",Nombre,Calle) ;

printf ("$s \t %s\n",Ciudad, Provincia);
printf ("$s \t %s\n",CodigoPostal,Telefono);

Raegla

e Lallamadaget s (cad) lee todos los caracteres hasta encontrar el caracter fin de linea,
que en lacadena cad Se sustituye por '\0-.

r\n,,

Cadenas 385

12.2.1. Funcién get char ()

La funcion get char () se utiliza para leer caracter a caracter. La llamada a get char () devuelve el
caracter siguiente del flujo de entrada st di n. En caso de error, o de encontrar el fin de archivo, devuelve

EOF (macro definida en st di o. h).

E_jémplo 12.5

El siguiente programa cuenta las ocurrencias de la letra *t * del flujo de entrada. Se disefia un bucle
whi | e que continlia ejecutandose mientras que la fincion get char () lee caracteresy se asignana car .

#i ncl ude <stdio.h>

int main()
{
int car;
int cuenta = 0O
while ((car = getchar ()) '=EOF)
if (car == "t’) ++cuenta;
printf ("\n %d letras t \n",cuenta) ;
return O;
}
Nota

La salida del bucle es con Cont r ol -z.

12.2.2. Funciénput char ()

La funcion opuesta de get char () esput char () .La funcion put char () se utiliza para escribir en la
salida (st dout) caracter a caracter. El caracter que se escribe es el transmitido como argumento. Esta
funcion (realmente es una macro definida en stdio.h) tiene como prototipo:

int putchar(int ch);

Ejercicio 12.1

El siguiente programa hace «eco» del flujo de entrada y convierte laspalabras enpalabras iguales que
comienzan con letra mayuscula. Es decir, si la entrada es "pobl ado de pefias rubi as" se hade
convertir en "Pobl ado De Pefias Rubi as". Para realizar esa operacion se recurre a la funcidn
t oupper (car)que devuelve el equivalente mayuscula de car si car es una letra minuscula. El archivo
de cabecera necesario para poder utilizar la funcién t oupper (car)es <ctype .h>.

#i ncl ude <stdio.h>
#i ncl ude <ctype.h>
int main()
{
char car, pre = '\n’;
whi |l e ((car=getchar()) I=EOF)
{
if (pre=="+ "+ 1|] pre == ‘\n’)
putchar (toupper (car)) ;
el se

386

Programacioén en C. Metodologia, algoritmos y estructura de datos
put char (car);
pre = car;
}

return O

.
Ejecucion

pobl ado de pefias rubias con capital en Lupiana
Pobl ado De Pefias Rubi as Con Capital En Lupiana
Analisis

La variable pre contiene el caracter leido anteriormente. El algoritmo se basa en el hecho de que si pre
es un blanco o el caracter nueva linea, entonces el caracter siguiente car serd el primer caracter de la
siguiente palabra. En consecuencia, car, se reemplaza por su caracter mayuscula equivalente: car +
P

12.2.3. Funciénput s ()

La funcion put s () escribe en la salida una cadena de caracteres, incluyendo el carécter fin de linea
por los que situa el puntero de salida en la siguiente linea. Es la funcién reciproca de gets() ; si
gets () capta unacadena hasta fin de linea, put s () escribe una cadenay el fin de linea. El prototipo
de la funcién se encuentra en stdi o:

int puts(const char *s);

Ejercicio 12.2

El programa siguiente lee unafrase y escribe en pantalla tantas lineas como palabras tiene lafrase;
cada linea que escribe, a partir de laprimera, sin la Ultima palabra de la linea anterior:

Andlisis
La funcion sgt epal () explora los caracteres pasados en p hasta que encuentra el primer blanco
(separador de palabras). La exploracion se realiza de derecha a izquierda, en la posicién del blanco

asigna "\ 0" para indicar fin de cadena.

#i ncl ude <stdio.h>
#i ncl ude <string.h>
voi d sgtepal (char* p);

voi d main()
{
char linea(81] ;:
printf ("\n\tIntroduce una |linea de caracteres.\n");
gets (linea);
while (*linea)
{
puts (linea);
sgtepal (linea);
}
}

voi d sgtepal (char* p)
{

Cadenas 387

int j:

j = strlen(p)-1;

while{j=0 && pljli=" *)
=i

plil = '"\@:

Ejecucion

I ntroduce una |inea de caracteres.
Erase una vez | a Mancha

Erase una vez | a Mancha

Erase una vez La

Erase una vez

Erase una

Er ase

12.2.4. Funcionesgetch() y getche()

Estas dos funciones no pertenecen a ANSI C, sin embargo, se incorporan por estar en casi todos los
compiladores de C. Ambas funciones leen un caréacter tecleado sin esperar el retorno de carro. La
diferencia entre ellas reside en que con get ch() el caracter tecleado no se visualiza en pantalla (no
hace eco en la pantalla), y con get che () si hay eco en la pantalla. La llamada a cada una de ellas:

car
car

getch() ;
getche () :

El prototipo de ambas funciones se encuentra en al archivo coni o0.h

int getch(void) ;
int getche(void);

Ejemplo 12.6
La siguiente funcion devuelve el caracter So N:

ERVREER e

#i ncl ude <conio.h>
#i ncl ude <ctype.h>

int respuestaf)
{

char car;

do

car = toupper(getche());

while (car 1= 'S g& car !'='N');

return car;

12.3. LABIBLIOTECA STRI NG H

La biblioteca estandar de C contiene la biblioteca de cadena STRI NG H, que incorpora las funciones de
manipulacion de cadenas utilizadas mas frecuentemente. El archivo de cabecera sTpT0. H también

388

Programacion en C. Metodologia, algoritmosy estructura de datos

soporta E/S de cadenas. Algunos fabricantes de C también incorporan otras bibliotecas para manipular
cadenas, pero como no son estandur no se consideraran en esta seccién. Las funciones de cadena tienen
argumentos declarados de forma similar a:

char #*s1;

0 bi en, const char *sl;

Esto significa que la funcion espera una cadena que puede o no modificarse. Cuando se utiliza la
funcidn, se puede usar un puntero a char o se puede especificar el nombre de una variable array char .
Cuando se pasa un array a una funcion, C pasa automaticamente la direccion del array char . La Tabla
12.1resume algunas de las funciones de cadena mas usuales.

Tabla 12.1. Funciones de <string.h>.

Funcién Cabecerade la funciony prototipo
memcpy () voi d* memcpy (void* sl, const void* s2, size-t n);
Reemplaza los primeros n bytes de * s d.con los primeros n bytes de *s2. Devuelve s1.
strcat char *strcat (char *destino, const char *fuente);
Afiade la cadenafuente al final de destino. concatena. Devuelve la cadena destino.
strchr () char* strchr(char* s1, int ch);
Devuelve un puntero a la primera ocurrenciade ch en s1.Devuelve NULL si ch no estaen
sl.
strcnp() int strcmp(const char *si1, const char *s2);
Compara alfabéticamente la cadena s/ a s2 y devuelve:
0 si sl = s2
<0 si sl < s2
>0 si sl = g2
strcnpi () int strcmpi(const char #*sl1, const char *s2);
Igual que st rcnp() , pero sin distinguir entre mayusculas y minusculas.
strepy () char *strcpy(char *destino, const char *fuente);
Copia la cadena fuente a la cadena destino. Devuelve la cadena destino.
strcspn() size-t strcspn(const char* &1, const char* s2);
Devuelve la longitud de la subcadena mas larga de s 1.que comienza con el caracter s1 (0]
y no contiene ninguno de [os caracteres de la cadena s 2.
strlen() size-t strlen (const char *s)
Devuelve la longitud de la cadena s.
strncat () char* strncat (char* sl, const char*s2, size-t n);
Anade los primeros n caracteres de s2 a s1.Devuelve s1.Sin >= strlen(s2),
entonces strncat (s1, s2, n) tiene el mismo efecto que strcat (s1, s2) .
strncnp) int strncmp (const char* s1, const char* s2, size-t n);
Compara s1 con la subcadena formada por los primeros n caracteres de s2. Devuelve un
entero negativo, cero 0 un entero positivo, segin que s1 lexicograficamente sea menor, igual
o mayor que la subcadena s2.8in 2 strlen(s2),entonces strncmp(sl, s2, n)
y strcnp(sl, s2) tienen el mismo efecto.
strnset) char *strnset(char *s, int ch, size-t n);
Copia n veces el cardcter ch en la cadena s a partir de la posicion inicial de s (s [0]). El
maximo de caracteres que copia es la longitud de s .
strpbrk() char* strpbrk(const char* sl, const char* s2);

Devuelve la direccion de la primera ocurrencia en s 1de cualquiera de los caracteres de s2.
Devuelve NULL si ninguno de los caracteres de s2 aparece en s .

Cadenas 389

strrchr(char* strrchr(const char* s, int c);
Devuelve un puntero a la Ultima ocurrencia de ¢ en s. Devuelve NULL sic noestaens. La
busqueda la hace en sentido inverso, desde el final de la cadena al primer caracter, hasta que
encuentra el caracter c.

strspn() size-t strspn(const char* sl, const char* s2);
Devuelve la longitud de la subcadena izquierda (sl1{0]1) ...) mas larga de s 1 que
contiene Unicamente caracteres de la cadena s2.

strstr() char *strstr(const char *sl, const char *s2);
Busca la cadena s2 en s/ y devuelve un puntero a los caracteres donde se encuentra s2

strtok() char* strtok(char* sl, const char* s2);
Analiza la cadena s 1.en tokens (componentes léxicos), éstos delimitados por caracteres de
la cadena s2. La llamada inicial a st rt ok (s1, s2)devuelve la direccion del primer
token y sitia NULL al final del token. Después de la Ilamada inicial, cada Ilamada sucesiva
astrtok (NULL, s2) devuelve un puntero al siguiente token encontrado en s . Estas
llamadas cambian la cadena s 1, reemplazando cada separador con el caracter NULL.

12.3.1. La palabrareservada const

Las funciones de cadena declaradas en <string.n>, recogidas en la Tabla 12.1y algunas otras,
incluyen la palabra reservada const. La ventaja de esta palabra reservada es que se puede ver
rapidamente la diferencia entre los parametros de entrada y salida. Por ejemplo, el segundo parametro
fuente de str cpy representa el area fuente; se utiliza s6lo para copiar caracteres de ella, de modo que
este area no se modificara. La palabra reservada const se utiliza para esta tarea. Se considera un
parametro de entrada, ya que la funcidn recibe datos a través de ella. En contraste, el primer pardmetro
destino de str cpy es el area de destino, la cual se sobreescribird y, por consiguiente, no se debe utilizar
const para ello. En este caso, el pardmetro correspondiente se denominapararnetro de salida, ya que
los datos se escriben en el &rea de destino.

12.4. ARRAYS Y CADENAS COMO PARAMETROS DE FUNCIONES

En los arrays y cadenas siempre se pasa la direccidn del objeto, un puntero al primer elemento del array.
En la funcién, las referencias a los elementos individuales se hacen por indireccion de la direccién del
objeto. Considérese el programa PASARRAY. C, que impiementa una funcion Longi t ud() que calcula
la longitud de una cadena terminada en nulo. El pardmetro cad se declara como un array de caracteres
de tamafio desconocido.

/* PASARRAY.C */

#i ncl ude <stdio.h>
#i ncl ude <conio.h>
int longitud(char cadl]);

voi d mai n(void)

{
char* cd = "Cual qui er nonento es bueno para la felicidad";
printf ("\nLongitud de la cadena \"%s\": %d\n",cd, longitud(cd)) ;
puts ("Pul se cual qui er tecla para continuar ") ;
getchi);

}

int longitud(char cadl])

{
int cuenta = O;

390 Programacion en C. Metodologia, algoritmos y estructura de datos

whil e (cadlcuenta++] !'= ‘\0');
return cuenta;
}

En la funcion mai n () se reserva memoria para la constante cadena cd, a la funcion | ongi t ud() se
transmite la direccion de la cadena. El cuerpo del bucle whi | e dentro de la funcién cuenta los caracteres
no nulos y termina cuando se encuentra el byte nulo al final de la cadena.

Ejercicio 12.3

B programa siguiente extrae n caracteres de una cadena introducida por el usuario.
Analisis
La extraccion de caracteres se realiza en una funcién que tiene como primer argumento la subcadena a

extraer, como segundo argumento la cadena fuente y el tercero el nimero de caracteres a extraer. Se
utilizan los punteros para pasar arrays a la funcion.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <string.h>
#i ncl ude <conio.h>
int extraer(char *dest, const char *fuente, int num_cars);
void mai n(voi d)
{
char s1[817];
char* s2;
int n;
printf ("\n\tCadena a analizar 2:") ;
gets(sl) ;
do {
printf ("Numero de caracteres a extraer: ");
scanf ("%d",&n) ;
twhile(n<1l || n>strlen(sl));

s2 = malloc ((n+1)*sizeof (char) ;
extraer(s2,sl,n);
printf ("Cadenaextraida \"%s\"",s2) ;

puts ("\nPulse intro para continuar");
getch();
1

i nt extraer(char *dest, const char *fuente, int nunt cars)
t
int cuenta;
BT LTl e L L i 1 | I Lenl # of)
*dest++ = *fuente++;
*dest = ‘\0’;

}

Observe que en las declaraciones de pardmetros, ninguno esta definido como array, sino como
punteros de tipo char. En la linea

*dest++ = *fuent e++;

los punteros se utilizan para acceder a las cadenas fuente y destino, respectivamente. En la llamadaala
funcion ext raer (1 se pasa la direccidn de las cadenas fuente ¥ desting,

Cadenas 391

125. ASIGNACION DE CADENAS

C soporta dos métodos para asignar cadenas. Uno de ellos ya se ha visto anteriormente cuando se
inicializaban las variables de cadena. La sintaxis utilizada:

char varCadena[LongCadena] = ConstanteCadena;

Ejemplo 12.7

Inicializa dos arrays de caracteres con cadenas constantes.
char Cadena[81] = "C naneja eficientenente |as cadenas"”;
char nonmbre[] = "Luis Martin Cebo";

El segundo método para asignacion de una cadena a otra es utilizar la funcion strcpy (). La
funcidonstrcpy () copia los caracteres de la cadena fuente a la cadena destino. La funcién supone que
la cadena destino tiene espacio suficiente para contener toda la cadena fuente. El prototipo de la funcién:

char* strcpy (char* destino, const char* fuente);

Ejemplo 12.8
Una vez definido un array de caracteres, se le asigna una cadena constante.

char nonbrel41] ;
strcpy (nombre, "Cadena a copiar") ;

La funcion strcpy () copia "Cadena a copi ar" en la cadena nombre y afiade un carécter nulo
al final de la cadena resultante. El siguiente programa muestra una aplicacion de strcpy () .

#i ncl ude <stdio.h>
#i ncl ude <string.h>

voi d nmai n(void)
{
char s[100] = "Buenos dias M. Pal acios", t[100] ;:

strepy(t, s);

strcpy(t+12, "Mr. C");

printf ("\n%s\n%s",s,t):
}

Al ejecutarse el programa produce la salida:

Buenos dias M. Pal aci os
Buenos dias M. C

La expresion t+12 obtiene la direccion de lacadenat en M . Pal aci os. En esa direccién copia
M . Cy afade el caracter nulo (- \0").

12.5.1. Lafuncion strncpy ()

El prototipo de la funcion st r ncpy es
char* strncpy(char* destino, const char* fuente, size-t num);

y su propoésito es copiar num caracteres de la cadena fuente a la cadena destino. La funcion realiza
truncamiento o rellenado de caracteres si es necesario.

392 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 12.9

Estas sentencias copia 4 caracteres de una cadena en otra.
char cadl [1 = "Pascal ";
char cad2[] = "Hol a mundo";

strncpy (cadl, cad2, 4);

La variable cadl contiene ahora la cadena "Hol a" .

Consejo
Los punteros pueden manipular | as partes posteriores de una cadena, asignando la direccion
del primer carécter a manipular,

char cadl[41] = "Hola mundo";
char cad2[41)];
char* p = cadl;

p += 5; /* p apunta a la cadena "mundo" */
strcpy (cada, p) ;
puts(cad2);

La sentencia de salida visualiza la cadena "mundo".

12.6. LONGITUD Y CONCATENACION DE CADENAS

h Muchas operaciones de cadena requieren conocer el nimero de caracteres de una cadena (longitud),asi
como la unién (concatenacidn)de cadenas.

12.6.1. Lafuncion strl en()
La funcion stri en() calcula el nimero de caracteres del parametro cadena, excluyendo el caracter
nulo de terminacion de la cadena. El prototipo de la funcién es
size-t strlen(const char* cadena)
El tipo de resultado si ze- t representa un tipo entero general.
char cadf] = ''1234567890";
unsi gned i;
i = strlen{cad);

Estas sentencias asignan 10 a la variable i.

Ejemplo
Este programa muestra por pantalla la longitud de varias cadenas.

#i ncl ude <string.h>
#i ncl ude <stdio.h>
voi d mai n(void)
:
char s[] = "IJKLMN";
char buf er [81];

Cadenas 393

printf ("strlen(%s) = %d\n",s,strlen{(s)) ;
printf ("strlen(\"\") = %d\n",strlen("")) ;
printf ("I ntroduzcauna cadend: ") ;
gets(bufer) ;

printf ("strlen(%s) = %d",bufer,strlen(bufer)) ;

Ejecucion
strlen(IJKLMN) = 6
strlen("") =0

I ntroduzca una cadena: S erra de Horche
strlen(Sierra de Horche) = 16

12.6.2. Las funciones strcat() y strncat()

En muchas ocasiones se necesita construir una cadena, afiadiendo una cadena a otra cadena, operacion
gue se conoce como concatenacicin. Las funciones strcat () y strncat () realizan operaciones de
concatenacion. st r cat () afiade el contenido de la cadena fuente a la cadena destino, devolviendo un
puntero a la cadena destino. Su prototipo es:

char* strcat (char” destino, const char* fuente);

Ejemplo 12.10
Copia una constante cadenay a continuacion concatena con otra cadena.

char cadena(81] ;
strcpy(cadena, "Borl and") ;
strcat (cadena, "Cc");

La vari abl e cadena conti ene ahora "Boriand C".

Es posible limitar el nimero de caracteres a concatenar utilizando la funcién strncat (). La
funcién st r ncat () afiade num caracteres de la cadena fuente a la cadena destino y devuelve el puntero
a la cadena destino. Su prototipo es

char* strncat (char* destino, const char* fuente, size-t num)
y cuando se invoca con una llamada tal como
strncat(t, S, n);

n representa los primeros n caracteres de s que se van a unir a t, a menos que se encuentre un caracter
nulo, en cuyo momento se termina el proceso.

:E]emplo 1211

Concatenar 4 caracteres.

char cadl1{811 = "Hola soy yo ";
char cad2({41] = "Luis Merino";
strncat (cadl, cad2, 4);

394 Programacion en C. Metodologia, algoritmos y estructura de datos

La variable cad! contiene ahora "Hola soy yo Lulis"

Ni la funcion strcat () ,ni strncat () coinprueba que la cadena destino tenga suficiente espacio
para la cadena resultante. Por ejemplo:

char s1[] = "ABCDEFGH"; /* reserva cspacio para 8+1 caracteres */
char s2([] = "xvz"; /* reserva espacio para 3+1 caracteres */
strcat(sl,s2) ; /* produce resultado extrafios por no haber espacio

para |la concatenacién sl con s2 */

Ejercicio 12.4

El programa afiade la cadena s2 alfinal de la cadena si . Reserva memoria dinamicamente, en tiempo
de ejecucion.

#i ncl ude <stdio.h>

#i ncl ude <string.h>

#i ncl ude <malloc.h>

voi d main (voi d)

|
char* s| = "ABCDEFGH';
char s2[] = "xyz";

printf ("\nantes de strcat (sl, s2): \n") ;
printf ("\tsl = s], longitud = od\n",sl strlen(sl));

[%
printf{("\ts2 = [%$s], longitud = %d\n",s2,strlen(s2));
/* anplia memoria para la cadend resultante de |a concatenaci6n */
sl = realloc(sl, (strlen(sl)+strilen(=s2)+1)*sizeof (char));
printf("\tsl = [%s], longitud = %d (amplja menoria)\n",

s]
sl,strlen{(sl));
strcat (sl,s?2) :

puts ("Despues de strcat (s1,s2)") ;

printf ("\tsl = [%s], longitud = %d\n",sl,strlen
printf("\ts2 = [%s], longitud = %d\n",s2,strlen
}
Ejecucion

Antes de strcat(sl,s2):
sl = [ABCDEFGH], | ongitud
s2 [(xyz], longitud = 3
sl [ABCDEFGH|, longitud = 8 (anplianenoria)
Despues de strcat(sl,s2)
sl = [ABCDFEGHXYZ], longitud = 11
s2 = [XYZ], longitud = 3

8

1l

12.7. COMPARACION DE CADENAS

Dado que las cadenas son arrays de caracteres, la biblioteca sTriNG. Hproporciona un conjunto de
funciones que comparan cadenas. Estas funciones comparan los caracteres de dos cadenas utilizando
el valor ASCII de cada caracter. Las funciones son strcmp() , stricmp(), strncmp()
strnicnmp()-

Cadenas 395

12.7.1. Lafuncion strcnp()

Si se desea determinar si una cadena es igual a otra, mayor o menor que otra, se debe utilizar la funcién
strcnp().La comparacion siempre es alfabética. st rcnp() compara su primer pardmetro con su
segundo, y devuelve O si las dos cadenas son idénticas; un valor menor que cero si lacadena 1es menor
que la cadena 2; o un valor mayor que cero si la cadena 1 es mayor que la cadena 2 (los términos «mayor
que» y «menor que» se refieren a la ordenacion alfabética de las cadenas). Por ejemplo, Alicante es
menor que Sevilla. Asi, la letra A es menor que la letra a, la letra Z es menor que la letra a. El prototipo
de la funcion st rcnp() es

int strcmp (const char* cadl, const char* cad2) ;

La funcién compara las cadenas cadl y cad2. El resultado entero es:

< O cadl es menor que cad2
= 0 si cadl es igual a cad2
> 0 i cadl €s mayor que cad2

Ejemplo 12.12
Resultados de realizar comparaciones de cadenas.

char cadl [] = "Mcrosoft C';
char cad2[] = "Mcrosoft visual C"
int i;

i = strecmpf{cadl, cad2); /* i, toma un valor negativo */

strenmp("waterloo", "Wndows") < O {Devuel ve un val or negati vo}
strenmp("Mortiner', "Mortim") = 0 {Devuel ve un val or positivo}
strenp("Jertru", "Jertru") =0 {Devuel ve cero)

La comparacion se realiza examinando los primeros caracteres de cadl y cad2; a continuacion los
siguientes caracteres y asi sucesivamente. Este proceso termina cuando:

e se encuentran dos caracteres distintos del mismo orden: cad1 (i] y cad2(i | ;
s Seencuentra el caracter nuloen cad[i] ocad2(i]

Wat er 1oo €s menor que W ndows
Mort imer es mayor que Mortim_cardcter nul o
Jertru es igual que Jertru

12.7.2. Lafuncion stricnp()

La funcién stri cnp() compara las cadenas cadl y cad2 sin hacer distincion entre mayusculas y
minusculas. El prototipo es

int stricnp(const char* cadl, const char* cad2) ;

Ejemplo 12.13

Comparacion de dos cadenas. con independencia de que sean letras mayUsculas o minGsculas.

char cadl [] = "Turbo c¢";
char cad2[] = "TURBO C";
int i;

i = stricmp(cadl, cad2);

396 Programacion en C. Metodologia, algoritmos y estructura de datos

Asigna O a la variable i ya que al no distinguir entre mayusculas y minusculas las dos cadenas son
iguales.

12.7.3. Lafuncién strncrnp()

La funcion st r ncnp() compara los numcaracteres mas a la izquierda de las dos cadenas cadly cad2.
El prototipo es

int strncmp(const char* cadl, const char* cad2, size-t num);

y el resultado de la comparacion sera (considerando los numprimeros caracteres):

<0 si cadl es menor que cad2
=0 i cadl es igual que cad2
= 0 Sl cadl €s mayor que cad2

Ejemplo 12.14
Comparar los 7primeros caracteres de dos cadenas.

char cadenal[] = "Turbo C';

char cadena2(] = "Turbo Prol og"
int i;

i = strncmp(cadenal, cadena2, 7);

Esta sentencia asigna un nimero negativo a la variable i, ya que "Tur bo c" es menor que "Tur bo
*. En el caso de comparar los 5 primeros caracteres:

i = strncmp (cadenal, cadena2, 5);

esta sentencia asigna un cero a la variable i, ya que "Tur bo" es igual que "Turbo" .

12.7.4. Lafuncién strnicrnp()

La funcion st rni cnp () compara los caracteres nurn a la izquierda en las dos cadenas, cadl y cad2,
sin distinguir entre mayusculas y minusculas. El prototipo es

int strnicmp(const char* cadl, const char* cad2, size-t num);

El resultado sera (considerando numprimeros caracteres):

<0 s cadl esmenorque cad2
=0 si cadl esigual que cad2
>0 i cadl esmayorque cad2

Ejemplo 12.15
Comparacion de los 5 primeros caracteres. sin distincion entre mayUsculas y mindsculas

char cadenall] = "Turbo C';

char cadena2{] = "TURBO C';

int i;

i = strnicmp(cadenal, cadena2, 5);

Esta sentencia asigna O a la variable i, ya que las cadenas " Tur bo" y "TurB0" difieren solo en que
son mayusculas o mindsculas.

e

Cadenas 397

12.8. INVERSION DE CADENAS

La biblioteca STRI NG H incluye la funcidn st rrev () que sirve para invertir los caracteres de una
cadena. Su prototipo es:

char *strrev(char *s);

strrev () invierte el orden de los caracteres de la cadena especificada en el argumento s; devuelve un
puntero a la cadena resultante.

Ejemplo 12.16
Muestra de inversion de cadenas.

char cadena[] = "Hol a";
strrev(cadena);
put s (cadena); /* visualiza "aloH" */

El programa siguiente invierte el orden de la cadena Hola nundo

#i ncl ude <stdio.h>
#i ncl ude <string.h>

int mai n(void)

{
char *cadena = "Hol a nundo";
strrev(cadena);
printf("\nCadena inversa: %s\n", cadena);
return O;

}

Estas dos sentencias

strrev(cadena);
printf("\nCadena inversa: %s\n", cadena);

se podrian haber sustituido por

printf ("\nCadena inversa: %s\n", strrev(cadena)) ;

12.9. CONVERSION DE CADENAS

La biblioteca STRI NG. H de la mayoria de los compiladores C suele incluir funciones para convertir los
caracteres de una cadena a letras mayusculas y minusculas respectivamente. Estas funciones se llaman
striw ()Y strupr() encompiladores de AT&T y Borland, mientras que en Microsoft se denominan
_strlwr() Yy _strupr().

12.9.1. Funcién st rupr ()

La funcién st rupr () convierte las letras mindsculas de una cadena a mayusculas. Su prototipo es:

char *strupr(char *s);

398 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 12.17

Este programa convierte los caracteres en mintsculas de una cadena a mayusculas; se escribe la cadena
por pantalla.

#i ncl ude <stdio.h>
#i ncl ude <string.h>

int mai n(void)
{
char *cadena = "abcdefg";

strupr (cadena) ;

printf ("La cadend convertida es: %s\n",cadena) ;
return O

12.9.2. Funciénstriw ()

La funcion st riwr () convierte las letras mayudsculas de una cadena a letras minGsculas. Su prototipo
es:

char *strlwr (char *s);

Ejemplo 12.18

Una cadenaformada por caracteres en mayUsculas se convierten en mindsculas.

#i ncl ude <stdio.h>
#i ncl ude <string.h>

int mai n(void)
{
char *cadena = "ABCDEFG";

strlw (cadena);
printf ("La cadena convertida es: %s\n",cadena);
return O

Ejercicio 12.5

Se desea encontrar una cadena que sea palindromo. El programa lee cadenas hasta encontrar un
palindromo.

Anélisis
La cadena se lee con get s}, se transforman todos los caracteres a mayusculas con la funcion
st rupr () ,se obtiene la cadena inversa con strrev () y se comparan con strcnp() .

No hubiera hecho falta convertir a mayusculas si la comparacion de cadenas se hubiera hecho con
stricmp().

#include <stdio.h>
#i ncl ude <string.h>
int main void)

{

Cadenas 399

char ctr[81], ictr[81];
puts("\n\tIntroducir una frase hasla que Sea capicua.") ;
do {

gets(ctr) ;

strupr{ctr); /* Todos 10S caracteres en nayuscul as */
strepy(ictr,ctr) ;

strrev(ctr); /* Invierte la cadena */
} while (stremp(ctr,ictr)); /*termna el bucle cuando son igual es */
printf ("\nCadena %s es palindromp",ictr) ;
return O;

12.10. CONVERSION DE CADENAS A NUMEROS

Es muy frecuente tener que convertir nimeros almacenados en cadenas de caracteres a tipos de datos
numeéricos. C proporciona las funciones at oi (), at of () y atol (), que realizan estas conversiones.
Estas tres funciones se incluyen en la biblioteca stoi.18.H, por lo que ha de incluir en su programa la
directiva

#include <stdlib.h=>

12.10.1. Funciénat oi ()

La funcion at oi () convierte una cadena a un valor entero. Su prototipo es:
int atoi(const char "cad);

at oi () convierte la cadena apuntada por cad a un valor entero. La cadena debe tener la representacion
de un valor entero y el formato siguiente:

[espaci o en blanco] [signo] [ddd]

[espaci o en blanco) = cadena opcional de tabulaciones y espacios
fsignoj = un signo opcional para el valor
faddj - la cadena de digitos

Una cadena que se puede convertir a un entero es:
"1232"
Sin embargo, la cadena siguiente no se puede convertir a un valor entero:
"-1234596. 495"
La cadena anterior se puede convertir a un nimero de coma flotante con la funcién at of () .

Si la cadena no se puede convertir, at oi () devuelve cero.

Ejemplo 12.19
Convierte los digitos de una cadena en un valor entero.

char *cadena = "453423";
int val or;
valor = atoi(cadena);

400 Programacion en C. Metodologia, algoritmos y estructura de datos

12.10.2. Funcioén at of ()

La funcion at of () convierte una cadena a un valor de coma flotante. Su prototipo es:

doubl e atof (const char *cad);

at of () convierte la cadena apuntada por cad a un valor doubl e en coma flotante. La cadena de
caracteres debe tener una representacion de caracteres de un nimero de coma flotante. La conversion
termina cuando se encuentre un caracter no reconocido. Su formato es:

[espacio en blanco] [signo]/ddd][.] [dddl[e/E] [signo][dddl

Ejemplo 12.20

Convierte los digitos de una cadena a un nimero de tipo double.

char *cadena = "545.7345";
doubl e val or;
val or = atof (cadena) ;

12.10.3. Funci6natol ()

La funcion atol () convierte una cadena a un valor largo (long). Su prototipo es:
| ong atol {(const char *cad);

La cadena a convertir debe tener un formato de valor entero largo:
[espaci o en blanco] [signo] [ddd]

Ejemplo 12.21

Una cadena que tiene digitos consecutivos se convierte en entero largo.

char *cadena = "45743212'";
| ong val or;
val or = atol (cadena) ;

12.10.4. Entradade numerosy cadenas

Un programa puede necesitar una entrada que consista en un valor numérico y a continuacion una
cadena de caracteres. La entrada del valor numérico se puede hacer con scanf () y la cadena con
gets().

Ejemplo 12.22
Lectura de un entero largo y a continuacicin una cadena.

long int k;
char cadl81];

printf ("Metros cuadrados: "); scanf ("$1d",&k) ;

Cadenas 401

_r -

printf ("Nonbrede la finca: ") ; gets(cad); o s Ty N

Al ejecutarse este fragmento de cddigo, en pantalla sale File wipL;IRECA = i
Metros cuadrados: 1980756 "Lr_f':-_ L
Nonbre de la finca: s, Lins

No se puede introducir el nombre de la finca, el programa le asigna la cadena vacia. ;Por qué?: al
teclear 1980756 y retorno de carro se asigna la cantidad a k y queda en el buffer interno el caracter fin
de linea, que es el caracter en que termina la captacion de una cadena por get s (), por lo que no se le
asigna ningun caracter a cad. Para solucionar este problema tenemos dos alternativas, la primera:

printf ("Metros cuadrados: ") ; scanf ("$1d%*c", &k);
printf ("Nonmbrede la finca: "); gets(cad);

Después de captar el niimero,%*c , hace que se lea el siguiente caractery no se asigne, asi se queda
el buffer de entrada vacio y get s (cad) puede captar la cadena que se teclee. La segunda alternativa es
leer el valor numérico como una cadena de digitos y después transformarlo con atol (cad) aentero
largo.

printf ("Metros cuadrados: ") ; gets(cad);
k = atol (cad);
printf ("Nonbrede la finca: "); gets(cad);

12.11. BUSQUEDA DE CARACTERES Y CADENAS

La biblioteca STRING. H contiene un namero de funciones que permiten localizar caracteres en cadenas
y subcadenas en cadenas.

Funciones de blsqueda strchr strrchr strspn
de caracteres strcspn strpbrk

Funciones de bisqueda strstr strtok

de cadenas

12.11.1. Lafuncién strchr ()

El prototipo de la funcién st rchr () es
char *strchr(const char *s, int c¢);

strchr () permite buscar caracteres y patrones de caracteres en cadenas; localiza la primera
ocurrencia de un carcter ¢ en una cadena s. La bdsqueda termina en la primera ocurrencia de un caracter
coincidente.

Ejemplo 12.23
Blsqueda del caracter ‘v’ en una cadena.

char cad[81] = "C | enguaje de nmedi o nivel";
char *cadPtr;
cadPtr = strchr(cad, ‘'v’);:

]

402 Programacion en C. Metodologia, algoritmos y estructura de datos

12.11.2. Lafuncion strrchr()

La funcion st rrchr () localiza la Ultima ocurrencia del patron c en la cadena s. La blsqueda se realiza
en sentido inverso, desde el Gltimo caracter de la cadena al primero; termina con la primera ocurrencia
de un caracter coincidente. Si no se encuentra el caracter ¢ en la cadena s, la funcién produce un
resultado NULL. Su prototipo es

char *strrchr(const char *s, int c);

caructer buscado
cadena de bisqueda

Ejemplo 12.24

Busqueda en orden inverso del cardcter ‘x’ en un una cadena y escribe la cadena que estd a
continuacion.

#include <stdio.h>
#include <string.h>
int main (void)
f
char *cadena = "—x—";
char *resultado;

resultado = strrchr(cadena, ‘x’);
printf ("Cadena devuelta: %s\n",resultado);
| return O;

12.11.3. Lafuncién strspn()

La funcién strspn() devuelve el nimero de caracteres de la parte izquierda de una cadena s/ que
coincide con cualquier caracter de la cadena patrdn s2. El prototipo de st rspn() es

size-t strspn(const char *sl, const char *s2);

Ejemplo 12.25
El siguiente ejemplo busca el segmento de cadenal que tiene un subconjunto de cadena2 .

#i ncl ude <stdio.h>
#i ncl ude <string.h>

int main(void)
{
char *cadenal
char *cadena2 = "abcl23";
int |ongitud;

L] azAn N
3al2934567;

longitud = strspn(cadenal, cadenaZ2) ;
printf ('Longitud = %d", longitud);
return O

T e e st

L

<N

Ejecucion

Cadenas 403

Longitud = 4
Este resultado se obtiene porque el primer caracter de cadenal es 3 Yy pertenece a cadena2, l0s
tres caracteres siguientes al2 pertenecen a cadena?2.

12.11.4. Lafuncién strcspn()

La funcion strcepn () encuentra el indice del primer caracter de la primera cadena s1 que esta en el
conjunto de caracteres especificado en la segunda cadena s2. El prototipo de st rcspnes:

size-t strcspn(const char *s1, const char *s2);

Ejemplo 12.26

Blsqueda de la primera posicion del caracter '’ o *w' en una cadena.
char cadenal[] = "Los manolos de Carchclejo";
int i;

= strespn(cadena, "dw") ;

El ejemplo anterior asigna 12 (posicion del caracter d en cadend) a la variable 1.

12.11.5. Lafuncion strpbrk()

| La funcidn strpbrk() recorre una cadena buscando caracteres pertenecientes a un conjunto de
caracteres especificado. El prototipo es

char *strpbrk(const char *sl, const char *s2);

Esta funcién devuelve un puntero a la primera ocurrencia de cualquier caracter de s2 en s1. Si las
dos cadenas no tienen caracteres comunes se devuelve NULL.

Ejemplo 12.27
Encuentra la direccion en cad del primer caracter encontrado que pertenezca a subcad.

char *cad = "Hell o bolly, hey Julio";
char *subcad = "hy";
char *ptr;

ptr = strpbrk(cad, subcad);
printf ("\n%s\n",ptr);

El segmento de programa visualiza "y, hey Julio", yaque encuentra"v" en lacadena antes
quela "nh".

404 Programacioén en C. Metodologia, algoritmos y estructura de datos

12.11.6. Lafuncién strstr ()

La biblioteca STRI NG H contiene las funciones strstr() y strtok(),que permiten localizar una
subcadena en una cadena 0 bien romper una cadena en subcadenas. La funcion strstr() busca una
cadena dentro de otra cadena. El prototipo de la funcién es

char *strstr(const char *sl, const char *s2);

La funcion devuelve un puntero al primer caracter de la cadena s1 que coincide con la cadena s2. Si la
subcadena s2 no esta en la cadena s1, la funcién devuelve NULL.

Ejemplo 12.28
Blsqueda de la cadena "456" en cadi.

char *cadl = "123456789";
char *cad2 = "456";
char *resul t ado;

resultado = strstr(cadl, cad2);
printf ("\n%s\n", resul t ado) ;

El segmento de programa anterior visualiza 4567 89

12.11.7. Lafuncién strtok ()

La funcion strtok () permite romper una cadena en subcadenas, basada en un conjunto especificado
de caracteres de separacion. Su prototipo es

char *strtok(char *sl1, const char *s2);

strtok () lee lacadena s1 como una serie de cero 0 inas simbolosy la cadena s2 como el conjunto de
caracteres que se utilizan como separadores de los simbolos de la cadena s1. Los simbolos en la cadena
s1 pueden encontrarse separados por un caracter o mas del conjunto de caracteres separadores de la
cadena s2. La segunda y posteriores llamadas a strtok() ha de hacerse con el primer argumento a
NULL cuando devuelva NULT .

Ejercicio 11.6

Este programa rompe una cadena en subcadenas y se imprime cada una de ellas.

#i ncl ude <stdio.h>
#i ncl ude <string.h>

int mai n0

{
char *cad = "Pepe Luis + Canovas * Marcos";
char "separador = "+*";

char *ptr = cad;

printf ("\n%s\n", cad) ;
ptr = strtok(cad, separador);

/* Anterior |lamada, devuel ve direccién a priner
caracter y sitda un NULL en @ primer caracter
coi ncidente con algun cardcter de s2

*/

Cadenas 405

printf("\tSe ronpe en tres subcadenas");

while (ptr)
{
printf("\ngs",ptr) ;

ptr = strtok (NULL, separador);

/ *Devuel ve direcci 6n prinmer caracter
(apartir de subcadena anterior) y situa NULL en
prinmer caracter coincidente con al guno de s2 */

\
return O;

Al ejecutar este programa se visualiza:

Pepe Luis + Canovas * Marcos
Se ronpe en tres subcadenas

Pepe Luis

Canovas

Mar cos

12.12. RESUMEN

En este capitulo se han examinado las funciones de
manipulacion de cadenas incluidas en el archivo de
cabeceraSTRING. H. Los temas tratados han sido:

¢ Las cadenasen C son mays de caracteres que
terminan con el caracter nulo (el caracter O de
ASCII).

o La entradade cadenas requiere el uso de la fun-
cibnget s().

* Labiblioteca STRING. H contiene numerosas
funciones de manipulacion de cadenas; entre
ellas, se destacan las funciones que soportan
asignacion, concatenacion, conversion, inversion
y blsqueda.

« C soporta dos métodos de asignacion de cade-
nas. El primer método, asigna una cadena a otra,
cuando se declara esta Ultima. El segundo méto-
do, utiliza la funcion st r cpy (), que puede
asignar una cadena a otra en cualquier etapa del
programa.

e Lafuncién strlen() devuelvela longitud de
una cadena.

e Las funciones strcat () y strncat () per-
miten concatenar dos cadenas. La funcion
st rncat () permite especificar el nUmero de
caracteres a concatenar.

e Las funciones stremp(), stricmp(),
strncnp() y st rni cnp() permiten realizar
diversostipos de comparaciones. Las funciones

strcnp() y strfcnp() realizan una com-
paracién de dos cadenas, sin tener en cuen-
ta mayusculas y minasculas. La funcién
strnemp () €S una variante de la funcién
st r cnp(), que utiliza un nimero especificado
de caracteres al comparar las cadenas. La fun-
cidn st r ni cnp() esuna version de la funcion
st rncnp() que realiza una version con inde-
pendencia del tamafio de las letras.

e Las funcionesstrlwr () y strupr () con-
vierte los caracteres de una cadena en letras
minusculas y mayusculas respectivamente.

e La funcion strrev() invierte el orden de
caracteres en una cadena.

e Las funciones strchr (), strspn(),
strcspn() y strpbrk{) permiten buscar
caracteres y patrones de caracteres en cadenas.

e Lafuncin st r st r () busca una cadenaen otra
cadena. La funcidn st r t ok () rompe (divide)
una cadena en cadenas mas pequefias (subcade-
nas) que se separan por caracteres separadores
especificados.

Asimismo, se han descrito las funciones de con-
version de cadenas de tipo numérico a datos de tipo
numérico. C proporciona las siguientes funciones de
conversion: atoi(s), atol(s) y atof(s),
que convierten el argumento s (cadena) a enteros,
enteros largos y reales de coma flotante.

406

12.13.

121

12.2.

12.3.

12.4.

12.5.

EJERCICIOS

Teniendo en cuenta el siguiente segmento de
cddigo, indicar los erroresy la forma de corre-
girlos.

char *b = "Descanso activo";
char *p = b;

char c[] = "Para recuperar”;
char* cd;

cd = C;

cd = "Asigna cadena",

Se quiere leer del dispositivoestandar de entra-
da las n codigos de asignaturas de la carrera de
Sociologia. Escribe un segmento de cddigo
para realizar este proceso.

Para entrada de cadenas de caracteres, qué
diferencia existe entre scanf ("$s",
cadena) y get s (cadena) ¢En qie casos
serd mejor utilizar una u otra?

En el siguiente codigo C se lee un nimero real
y una cadena de caracteres. ;Qué problemas
surgeny por qué? ;Cémo resolverlo?

float X;

char nom[61] ;
printf ('Dstancia en Km: ") ;
scanf ("%f", &x) ;
printf ("Nonbre del

gets(nom;

puebl o: ") ;

Define un array de cadenas de caracteres para
poder leer un texto compuesto por un Maximo
de 80 lineas. Escribe una funcion para leer el
texto; la funcion debe de tener dos argumentos,
uno el texto y el segundo el nimero de lineas.

12.6.

12.7.

12.8.

12.9.

12.10.

12.11.

12.12.

Programacion en C. Metodologia, algoritmos y estructura de datos

Escribir una funcién que tenga como entrada
una cadenay devuelva el nimero de vocales,
de consonantesy de digitos de la cadena.

. Qué diferenciasy analogiasexisten entre las
variables c 1, c2, ¢3? La declaracion es:

char **ci;
char *c2[101] ;
char *c3[10][21] ;

Escribe una funcion que obtenga una cadena
del dispositivo de entrada, de igual forma que
char* gets (char*) .Utilizar paraello
getchar ().

Escribir una funcién que obtenga una cadena
del dispositivo estandar de entrada. La cadena
termina con el caracter de fin de linea, o bien
cuando se han leido » caracteres. La funcién
devuelve un puntero a la cadena leida, o EOF
si se alcanzGel fin de fichero. El prototipode
la funcion debe de ser:

char* lee_linea (char *c,int n);

La funcién at oi () transforma una cadena
formada por digitos decimales en el equiva-
lente nimero entero. Escribiruna funcién que
transforme una cadena formada por digitos
hexadecimales en un entero largo.

Escribir una funcién para tranformar un
ndmero entero en una cadena de caracteres
formadapor los digitos del nimero entero.

Escribir una funcion para tranformar un
ndmero real en una cadena de caracteres que
sea la representacion decimal del nimero real.

12.14.

12.1.

12.2.

12.3.

12.4.

12.5.

12.6.

12.7.

PROBLEMAS

Escribir un programa que lea un texto de como
maximo 60 lineas, cada linea con un maximo
de 80 caracteres. Una vez leido el texto inter-
cambiar la linea de mayor longitud por la linea
de menor longitud.

Escribir un programa que lea una linea de tex-
to y escriba en pantalla las palabras de que
consta la linea. Utilizar las funciones de
string-h.

Se tiene un texto formado por un maximo de
30 lineas, del cual se quiere saber el nimero de
apariciones de la palabra CLAVE. Escribir un
programa que lea el texto y la palabra CLAVE,
determine el nimero de apariciones de CLAVE
en el texto.

Setiene un texto de 40 lineas. Las lineas tienen
un ndmero de caracteres variable. Escribir un
programa para almacenar el texto en una
matriz de lineas, ajustada la longitud de cada
linea al nimero de caracteres. El programa
debe de leer el texto, almacenarlo en la estruc-
tura matricial y escribir por pantalla las lineas
en orden creciente de su longitud.

Escribir un programa que lea lineas de texto,
obtenga las palabras de cada linea y las escriba
en pantalla en orden alfabético. Se puede con-
siderar que el maximo nimero de palabras por
lineaes 28.

Se quiere leer un texto de como maximo 30
lineas. Se quiere que el texto se muestre de tal
forma que aparezcan las lineas en orden alfa-
bético.

Se sabe que en las lineas de que formaun tex-
to hay valores numéricos enteros, representan

12.8.

12.9.

12.10.

12.11.

Cadenas 407

los Kg de patatas recogidos en una finca. Los
valores numéricos estan separados de las
palabras por un blanco, o el caracter fin de
linea. Escribirun programa que leael texto y
obtenga la suma de los valores numéricos.

Escribir un programa que lea una cadena cla-
Ve y un texto de como méximo 50 lineas. El
programa debe de eliminar las lineas que con-
tengan la clave.

Se quiere sumar nimeros grandes, tan gran-
des gque no pueden almacenarse en variables
de tipo long. Por lo que se ha pensado en
introducir cada nimero como una cadena de
caracteres y realizar la suma extrayendo los
digitos de ambas cadenas. Hay que tener en
cuenta que la cadena suma puede tener un
caracter mas que la maxima longitud de los
sumandos.

Un texto esta formado por lineas de longitud
variable. La maxima longitud es de 80 carac-
teres. Se quiere que todas las lineas tengan la
misma longitud, la de la cadena mas larga.
Para ello se debe de cargar con blancos por la
derecha las lineas hasta completar la longitud
requerida. Escribir un programa para leer un
texto de lineas de longitud variable y forma-
tear el texto para que todas las lineas tengan
la longitud de la maxima linea.

Escribir un programa que encuentre dos cade-
nas introducidas por teclado que sean anagra-
mas. Se considera que dos cadenas son ana-
gramas si contienen exactamente los mismos
caracteres en el mismo o en diferente orden.
Hay que ignorar los blancos y considerar que
las mayusculas y las mintsculas son iguales.

PARTE III

ESTRUCTURA DE DATOS

CAPITULO 13

ENTRADAS Y SALIDAS
POR ARCHIVOS

CONTENIDO
13 1 Flujos.
13.2 PunteroFILE.
13.3 Apertura de un archivo.
13 4. Creacion de archivo
secuencial.
135 Archivos binarios en C.

410

13 6.

137.
138
139
13.10.

Funciones para acceso
aleatorio.

Argumentos de mai n().
Resumen.

Ejercicios.

Problemas.

INTRODUCCION

Hasta este momento se han realizado las operaciones basicas de entrada y
salida. La operacién de introducir (leer)datos en el sistema se denomina lectura
y la generacion de datos del sistema se denomina eseritura. La lectura de datos
se realiza desde su teclado e incluso desde su unidad de disco, y la escritura de
datos se realiza en el monitor y en la impresora de su sistema.

Las funciones de entradaisalida no estan definidas en el propio lenguaje C,
si no que estan incorporadasen cada compilador de C bajo la forma de biblioteca
de ejecucidn. En C existe la biblioteca stdio.h estandarizada por ANSI; esta
biblioteca proporciona tipos de datos, macros y funciones para acceder a los
archivos. El manejo de archivos en C se hace mediante el concepto de flujo
(streams)o canal, o también denominado secuencia. Los flujos pueden estar
abiertos o cerrados, conducen los datos entre el programa y los dispositivos
externos. Con las funciones proporcionadas por la biblioteca se pueden tratar
archivos secuenciales, de acceso directo, archivos indexados, etc.

En este capitulo aprenderéa a utilizar las caracteristicastipicas de E/S para
archivos en C, asi como las funciones de acceso mas utilizadas.

CONCEPTOS CLAVE

Archivos indexados.
Colisiones de claves.
Flujos.

Registro logico.
Transformacion de claves.

Acceso aleatorio.

Acceso secuencial.

Aperturay cierre de un archivo.
Archivos binarios.

Archivos de caracteres.

411

o

412

Programacion en C. Metodologia, algoritmos y estructura de datos

13.1. FLUJOS

Un flujo (stream)es una abstraccién que se refiere a un flujo o corriente de datos que fluyen entre un
origen o fuente (productor)y un destino o sumidero (consumidor).Entre el origen y el destino debe
existir una conexion o canal («pipe») por la que circulen los datos. La apertura de un archivo supone
establecer la conexion del programa con el dispositivo que contiene al archivo, por el canal que
comunica el archivo con el programa van a fluir las secuencias de datos. Hay tres flujos o canales
abiertos automaticamente:

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

Estas tres variables se inicializan al comenzar la ejecucion del programa para admitir secuencias de
caracteres, en modo texto. Su cometido es el siguiente:

stdin asocia la entrada estandar (teclado) con el programa.
st dout asocia la salida estandar (pantalla) con el programa.
stderr asocia la salida de mensajes de error (pantalla) con el programa.

Asf cuando se ejecuta printf ("Call e Mayor 2.") ; seescribe en st dout,en pantalla; si se
desea leer una variable entera con scanf ("%d", &x) ; se captan los digitos de la secuencia de entrada
stdin.

El acceso a los archivos se hace con un buffer intermedio. Se puede pensar en el buffer como un
array donde se van almacenando los datos dirigidos al archivo, o desde el archivo; el buffer se vuelca
cuando de una forma u otra se da la orden de vaciarlo. Por ejemplo, cuando se llama a una funcion para
leer del archivo una cadena, la funcidn lee tantos caracteres como quepan en el buffer. A continuacion
se obtiene la cadena del buffer; una posterior llamada a la funcién obtendré la siguiente cadena del buffer
y asi sucesivamentehasta que se quede vacio y se llene con una llamada posterior a la funcion de lectura.

El lenguaje C trabaja con archivos con buffer, y esta disefiado para acceder a una amplia gama de
dispositivos, de tal forma que trata cada dispositivo como una secuencia, pudiendo haber secuencias de
caracteres y secuencias binarias. Con las secuencias se simplifica el manejo de archivo en C.

13.2. Puntero FI LE

Los archivos se ubican en dispositivos externos como cintas, cartuchos, discos, disco compactos, etc.
y tienen un nombre y unas caracteristicas. En el programa el archivo tiene un nombre interno que es un
puntero a una estructura predefinida (puntero a archivo). Esta estructura contiene informacion sobre el
archivo, tal como la direccion del buffer que utiliza, el modo de apertura del archivo, el Gltimo caracter
leido del buffer y otros detalles que generalmente el usuario no necesita saber. El identificador del tipo
de la estructura es FI LEY esta declarada en el archivo de cabecera st di 0. h:

typedef struct({
short |evel;
unsi gned flags;/*estado del archivo: lectura, binario ... */
char fd;
unsi gned char hol d;
short bsize;
unsi gned char *buffer, *curp;
unsi gned istemp;
short token;
}FILE;

El detalle de los campos del tipo FI LE puede cambiar de un compilador a otro. Al programador le
interesa saber que existe el tipo FI LEy que es necesario definir un puntero a FI LE por cada archivo a

Entradas y salidas por archivos 413

procesar. Muchas de las funciones para procesar archivos son del tipo FI LE *, y tienen argumento(s)
de ese tipo.

Ejemplo 13.1

Se declara un puntero a FlI LE; se escribe e/ prototipo de una funcion de tipo puntero a FTLEY con un
argumento del mismo tipo.

FILE* pf;
FI LE* mostrar(FILE*); /* Prototipo de una funci 6n definida por el
programador* /

Cabe recordar que la entrada estandar al igual que la salida estan asociadas a variables puntero a
FI LE

FI LE *stdin, *stdout;

13.3. Apertura de un archivo

Para procesar un archivoen C (y en todos los lenguajes de programacion) la primera operacion que hay
que realizar es abrir el archivo. La apertura del archivo supone conectar el archivo externo con el
programa, e indicar cdmo va a ser tratado el archivo: binario, de caracteres, etc. El programa accede a
los archivos a través de un puntero a la estructura r11.x, la funcién de apertura devuelve dicho puntero.
La funcion para abrir un archivo es fopen() y el formato de llamada es:

fopen (nombre_archivo, nodo);

nonbr e
modo

cadena Contiene el identificador externo del archivo.
cadena Contiene el modo en que se vu a tratar e/ archivo.

La funcién devuelve un puntero a FILE, a través de dicho puntero el programa hace referencia al
archivo. La llamada a f open () se debe de hacer de tal forma que el valor que devuelve se asigne a una
variable puntero a FI LE, para asi después referirse a dicha variable.

Ejemplo 13.2
Declara una variable de tipopuntero a FILE. A continuacién escribir una sentencia de apertura de un
archivo.

FI LE* pf;

pf = fopen{nombre_archivo, nmpdo);

La funcion puede detectar un error al abrir el archivo, por ejemplo que el archivo no exista y se quiera
leer, entonces devuelve NULL.

Ejemplo-13.3

Se desea abrir un archivo de nombre LICENCTA .EST para obtener ciertos datos.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>

FI LE *pf;
char nm{] = "C:\LICENCIA.EST";

414 Programacion en C. Metodologia, algoritmos y estructura de datos
pf = fopen(nm, "r");
if (pf == NULL)
{
puts ("Error al abrir el archivo.");
exit(1);
}

Ejemplo 13.4

En este ejemplo se abre el archivo de texto JARDTNES .DAT pura escribir en é/ 10s datos de un programa.

En la misma linea en que se ejecuta ftopen () se comprueba que la operacion ha sido correcta, en caso
contrario termina la ejecucion.

#include <stdio.h>
#i ncl ude «<stdlib.h>

FILE *ff;
char* arch = "C \AMBIENTE\NJARDINES.DAT";
if ((ff = fopen(nm, "w"))==NULL)

{
puts("Error al abrir e archivo para escribir.");
exit (-1);

}

El prototipo de fopen() se encuentraen el archivo stdio. h, es el siguiente:

FILE* fopen (const char* nonbre- archivo, const char* npdo) ;

13.3.1. Modos de apertura de un archivo

Al abrir el archivo fopen () se espera como segundo argumento el modo de tratar el archivo. Funda-
mentalmente se establece si el archivo es de lectura, escritura o afiadido; y si es de texto o binario. Los
modos basicos se expresan en esta tabla:

Modo Significado

et Abre para lectura.

nwh Abre para crear nuevo archivo (si ya existe se pierden sus datos).
a Abre para afadir al final.

nran Abre archivo ya existente para modificar (leer/escribir).
W+

Crea un archivo para escribir/leer (si ya existe se pierden los datos).
Abre el archivo para modificar (escribir/leer) al final. Si no existe es como w+.

En estos modos no se ha establecido el tipo del archivo, de texto o binario. Siempre hay una opcién
por defecto y aunque depende del coinpilador utilizado, suele ser modo texto. Para no depender del
entorno es mejor indicar si es de texto o binario. Se utiliza la letra para modo texto, la 5 para
modo binario como Ultimo caracter de la cadena nmodo (también se puede escribir como caracter
intermedio). Por consiguiente, los modos de abrir un archivo de texto:

.at“, "r+t", IIthII’ "at{“.

r:u y ||wtl ,
Y los modos de abrir un archivo binario:

Entradas y salidas por archivos 415

"o n b Mabh s " "wi" e
ri — 3 ’ *

Ejemplo 13.5

Se dispone archivo de texto LICENCIA. EST, Se quiere leerlo para realizar un ciertoproceso y escribir
datos resultantes en al archivo hinario RESUMEN .REC. Las operaciones de apertura son:

#i ncl ude <stdio.h>
#include <stdlib.h>

FI LE *pfl, *pf2;
char org(] = "C:\LICENCIA.EST";
char dst[] = "C:\RESUMEN.REC" ;

pfl = fopen{org, "rt");
pf2 = fopen(dst,"wb");
if (pfl == NULL || pf2 == NULL)

puts ("Error al abrir los archivos.");
exit(l);

13.3.2. NULL y EOF

Las funciones de biblioteca que devuelven un puntero (strcpy () , fopen() .. .) especifican que si
no pueden realizar la operacion (generalmente si hay un error) devuelven NULL. Esta es una macro
definida en varios archivos de cabecera, entre los que se encuentran stdio.hy stdlib.h .

Las funciones de libreria de E/S de archivos, generalmente empiezan por f de fil e, tienen
especificado que son de tipo entero de tal forma que si la operacidn falla devuelven EoF, también
devuelven eor para indicar que se ha leido el fin de archivo. Esta macro esta definida en st di 0.h .

Ejemplo 13.6
El siguiente segmento de cddigo lee del flujo estdndur de entrada hastafin de archivo:

13.3.3. Cierrede archivos

Los archivos en C trabajan con una memoria intermedia, son con buffer. La entrada y salida de datos se
almacena en ese buffer, volcandose cuando esta lleno. Al terminar la ejecucion del programa podra
ocurrir que haya datos en el buffer, si no se volcasen en el archivo quedaria este sin las dltimas
actualizaciones. Siempre que se termina de procesar un archivo y siempre que se termine la ejecucion
del programa los archivos abiertos hay que cerrarlos para que entre otras acciones se vuelgue el buffer.

416

Programacion en C. Metodologia, algoritmos y estructura de datos

La funcién £close (puntero_file) cierrael archivo asociado al punt er o- f i | e, devuelve ECF si ha
habido un error al cerrar. El prototipo de la funcién se encuentra en st di o.h y es:

int fclose(FILE* pf);

Ejemplo 13.7

Abrir dos archivos de texto, después se cierra cada uno de ellos.

#i ncl ude <stdio.h>
FI LE *pfl, *pf2;

pfl = fopen("C:\DATOS.DAT","a+") ;
pf2 = fopen("C:\TEMPS.RET", "b+") ;
fclose(pfl);

fclose(pl2);

13.4. CREACION DE UN ARCHIVO SECUENCIAL

Una vez abierto un archivo para escribir datos hay que grabar los datos en el archivo. La biblioteca C
proporciona diversas funciones para escribir datos en el archivo a través del puntero a FI LE asociado.

Las funciones de entrada y de salida de archivos tienen mucho parecido con las funciones utilizadas
para entrada y salida para los flujos stdi n (teclado) y stdout (pantalla): printf (), scanf (),
getchar () ,put char (),gets() y puts ().Todas tienen una version para archivos que empieza por
la letra £, asi se tiene fprintf (), fscanf (), fputs(), fgets(); la mayoria de las funciones
especificas de archivos empiezan por f.

13.4.1. Funcionesputc () y fputc ()

Ambas funciones son idénticas, put ¢ () estd definida como macro. Escriben un caracter en el archivo
asociado con el puntero a FI LE. Devuelven el caracter escrito, 0 bien £or si no puede ser escrito. El
formato de llamada:

putc(c, puntero- archivo);
fputc(c, puntero- archivo);

siendo c el caracter a escribir.

Ejercicio 13.1

Se desea crear un archivo SALI DA. PTa con los caracteres introducidos por teclado.

Anélisis

Una vez abierto el archivo, un bucle mientras (whi | €) no sea fin de archivo (macro ECF) lee caracter a
caracter y se escribe en el archivo asociado al puntero FI LE.

#i ncl ude <stdio.h>
int main()
{ -
int c;
FI LE* pf;
char *salida = "¥ASALIDA.ZXP";

Entradas y salidas por archivos 417

if ((pf = fopen(salida,"wt"))== NULL)

{
puts ("ERROR EN LA OPERACION DE APERTURA') i

return 1;

fcl ose(pt);
return O;

En el Ejercicio 13.I en vez de put ¢ (c,pf) se puede utilizar f put c(c,pf) . El prototipo de ambas
funciones se encuentra en st di 0. h , es el siguiente:

int putc(int c, FILE* pf);
int fputci{int ¢, FILE* pf) ;

13.4.2. Funcionesgetc () Yy fgetc()

Estas dos funciones son iguales, igual formato e igual funcionalidad; pueden considerarse que son
reciprocas de putc () y fputc().Estas, getc() y fgetc() , leen un caracter (el siguiente caracter)
del archivo asociado al puntero a FI LE. Devuelven el caréacter leido o eoF si es fin de archivo (0si ha
habido un error). El formato de llamada es:

get ¢ (punt er o- ar chi vo);
fgetc(puntero_archivo);

Ejercicio 13.2
El archivo saL1pa. pTa, creado en el Problema /3.7, se desea leer para mostrarlo por pantalla y
contar las lineas que tiene.

Analisis
Una vez abierto el archivo de texto en modo lectura, un bucle mientras no sea fin de archivo (macro

EOF) lee caracter a caracter y se escribe en pantalla. En el caso de leer el caracter de fin de linea se debe
saltar a la linea siguiente y contabilizar una linea mas.

#i ncl ude <stdio.h>
int main()
{
int ¢, n=0;
FI LE* pf;
char *nonbre = "\\SALIDA.TXT";

if ((pf = fopen(nombre,"rt")} == NULL)
{

put s ("ERROR EN LA OPERACI ON DE APERTURA') ;
return 1;

418 Programacion en C. Metodologia, algoritmos y estructura de datos

n++; printf ("\n");
}
el se
put char (c);
}

printf ("\nNumero de lineas del archivo: %d",n);
fcl ose(pf) ;
return O;

El prototipo de ambas funciones se encuentra en st di o.h y es el siguiente:

int getc (FILE* pf);
int fgetc (FILE* pf);

13.4.3. Funciones fputs() y fgets()

Estas funciones escriben/leen una cadena de caracteres en el archivo asociado. La funcion fput s ()
escribe una cadena de caracteres. La funcion devuelve 120¥ si no ha podido escribir la cadena, un valor
no negativo si la escritura es correcta; el formato de Ilamada es:

fputs (cadena, puntero- archivo);

La funcion fgets () lee una cadena de caracteres del archivo. Termina la captacién de la cadena cuando
lee el caracter de tin de linea, o bien cuando ha leido n-1 caracteres, siendo n un argumento entero de
la funcién. La funcion devuelve un puntero a la cadena devuelta, o nuLl. si ha habido un error. El
formato de llamada es:

fgets(cadena, N, puntero_archivo);

Ejemplo 13.8
Lectura de un miximo de 80 caracteres de un archivo:

#define T 81
char cad[T] ;
FI LE *f;

fgets(cad, T, f);

Ejercicio 13.3

El archivo CARTAS. DAT contiene un texto al que se le deseu asiadir nuevas lineas, de longitud minima
30 caracteres, desde el archivo priMiERO. DAT.

Analisis
El problema se resuelve abriendo el primer archivo en modo afiadir ("=") ,el segundo archivo en modo
lectura ("r"). Las lineas se leen con f get s (), si cumplen la condicion de longitud se escriben en el

i

Entradas y salidas por archivos 419

archivo cCARTAS. Al tener que realizar un proceso completo del archivo, se realizan iteraciones
mentras no fin de archivo.

#i ncl ude <stdlib.h>
#i ncl ude <stdio.h>
#i ncl ude <string.h>
#defi ne MX 121
#defi ne MN 30

int main()

{
FILE *in, *out;
char noml{]= "\\CARTAS. DAT" ;
char nonR{]= "\\PRlI MERO.DAT";
char cad[MX];

in = fopen(nom2, "rt") ;

out = fopen(noml,"at");

if (in==NULL || out==NULL)

{
puts ("Error al abrir archivos. ");
exit (-1);

}

while (fgets(cadMx,in)) /*itera hasta que devuel ve puntero NULL*/
{

if (strlen(cad) >= M)

fputs(cad,out)

el se

puts (cad);
}
fcloge(in) ;

fclose (out);
return O;

El prototipo de ambas funciones esta en st di o0.h, es el siguiente:

int fputs(char* cad, FILE* pf);
char* fgets(char* cad, int n, FILE* pf);

13.4.4. Funciones fprintf () y fscanf ()

Las funciones pri ntf () y scant () permiten escribir o leer variables cualquier tipo de dato estandar,
los codigos de formato (%4, %f...) indican a C la transformacion que debe de realizar con la secuencia
de caracteres (conversion a entero...). La misma funcionalidad tiene fprint£ () y £scanf () con los
I flujos (archivos asociados) a que se aplican. Estas dos funciones tienen como primer argumento el
puntero a f i | easociado al archivo de texto.

Ejercicio 13.4

I Se desea crear el archivo de texto PERSONAS. paT de tal forma que cada linea contenga un registro con
los datos de una persona que contenga los campos nombre, fecha de nacimiento (dia(nn), mes(nn),
afio(nnnn)y mes en ASCII).

420 Programacion en C. Metodologia, algoritmos y estructura de datos

Analisis
En la estructura per sona se declaran los campos correspondientes. Se define una funcién que devuelve
una estructura persona leida del teclado. EI mes en ASCII se obtiene de una funcién que tiene como

entrada el nimero de mes y devuelve una cadena con el mes en ASCII. Los campos de la estructura son
escritos en el archivocon fprintf ().

#i ncl ude <malloc.h>
#i ncl ude <stdio.h>
#i ncl ude <string.h>
#i ncl ude <ctype.h>
/* decl araci 6n de tipo global estructura */
t ypedef struct (¢

char* nm

int dia;

int nBg;

int aa;

char nmes(11] ;
} PERSONA

voi d entrada (PERSONA* p
char* mes_asci (short n)

int main ()

FI LE *pff;
char nf [J= "\\ PERSONS DAT":
char r = "g';

if ((pff = fopen(nf,"wt"))==NULL)

{
puts ("Error al abrir archivos. ") ;
exit (-1} ;

}

whil e (toupper(r) == 'S’")
|

PERSONA pt ;

entrada (&pt) ;

printf ("¢s %d-%d-% %s\n",pt.nm,pt.dla,pt.ms,pt.aa,pt.mes);
fprintf (pff,"ss %d-%-% %s\n",pt.nm,pt.dia,pt.ms,pt.aa,pt.mes);
printf ("otro registro?: ") ; scanf ("%c%*c",&r) ;

fcl ose(pff) ;
return O
}

voi d entrada (PERSONA* p)
{ char bf(81];
printf ("Nonbre: "); gets(bf) ;
p->nm =(char*)malloc((strlen(bf)+1)*sizeof (char));
strcpy(p->nm,bf) ;
printf ("Fecha de nacimiento(dd nm aaaa): ");
scanf ("$d %d %d%*c",&p->dia, &p->ms, &p->aa) :
printf ("\n %s\n",mes_asci(p->ms)) ;
strcpy (p->mes,mes_asci(p->ms)) ;

}

char* mes_asci (short n)

Entradas y salidas por archivos 421

static char *mes([12]= {
"Ener 0", "Febrero", "Marzo", "Abril",

"Mayo", "Junio", "Julic", "Agosto",
"Septienbre", "Cctubre", "Novienbre", "Dicienbre"; ;

if (n >=1 && N <= 12)
return mes[n-1];

el se
return "Error nes";

El prototipo de ambas funciones esta en st di 0.h, y es el siguiente:

int fprintf(FILE* pf,const char* formato,. . .);
int fscanf(FILE* pf,const char* formato,. . .);

13.4.5. Funcioén f eof ()

Diversas funciones de lectura de caracteres devuelven ecr cuando leen el caracter de fin de archivo.
Con dicho valor, gue es una macro definida en st di o.h, ha sido posible formar bucles para leer un
archivo completo. La funcidn f eof () realiza el cometido anterior, devuelve un valor distinto de O
(true) cuando se lee el caracter de fin de archivo, en caso contrario devuelve O (fal se).

Ejemplo 13.9

El siguiente ejemplo transforma el bucle del ejercicio 13.2, utilizando la funcion f eof ()
int ¢, n=0;
FI LE* pt;
char *nonbre = "\\SALIDA.TXT";

V.Vhi-le. (!feof (pf))
{
c=getc (pf) ;
if (¢ == "\n")
{
n++; printf ("\n") ;
}

El prototipo de la funcidon esta en st di o0.h, es el siguiente:

int feof (FILE* pf);

13.4.6. Funcionrew nd ()

Una vez que se alcanza el fin de un archivo, nuevas llamadas a feof () siguen devolviendo un valor
distinto de cero (true). Con la funcién rewi nd() se sitla el puntero del archivo al inicio de éste. El

formato de llamada es

rewind (punterc_archivo).

422

Programacioén en C. Metodologia, algoritmos y estructura de datos

El prototipo de la funcion se encuentra en st di 0.h:

voi d rewind(FILE*pf) ;

Ejemplo 13.10

Este ejemplo lee un archivo de texto, cuenta el nimero de lineas que contiene y a continuacion sitda el
puntero del archivo al inicio para una lectura posterior.

#i ncl ude <stdio.h>
#i ncl ude <string.h>

FI LE* pg;

char nom[]="PLUVIO.DAT";
char buf [121];

int nl = 0;

if ((pg = fopen(nom,"rt"))==NULL)

{
puts("Error al abrir el archivo.");
exit(-1);

}

while (!feof (pg))
{
fgets(buf 121,pg); nl++;
}
rewind (pg) ;
/* De nuevo puede procesarse el archivo */

while (!feof (pg))
!

13.5. Archivos binarios en C

Para abrir un archivo en modo binario hay que especificar la opcién b en el nodo. Los archivos binarios
son secuencias de 0,5y 1,s. Una de las caracteristicas de los archivos binarios es que optimizan la
memoria ocupada por un archivo, sobre todo con campos numéricos. Asi, almacenar en modo binario
un entero supone una ocupacion de 2 bytes o 4 bytes (depende del sistema), y un nimero real 4 bytes o
8 bytes; en modo texto primero se convierte el valor numérico en una cadena de digitos (%6d,
%8.2f ...) y después se escribe en el archivo. La mayor eficiencia de los archivos binarios se
contrapone con el hecho de que su lectura se tiene que hacer en modo binario y que sélo se pueden
visualizar desde el entorno de un programa C. Los modos para abrir un archivo binario son los mismos
que para abrir un archivo de texto, sustituyendo la t por b:

n r\l.}!l . Ilwbll . 1] dl’_‘?" y Ilr+bll s "W+b" , n 14 bll

Ejemplo 13.11
En este ejemplo se declaran 3 punteros a F1LE. A continuacion se abren tres archivos en modo binario.

FI LE *pfl, *pf2, *pf3;
pfl = fopen("gorjal.arr", "rb"); /*Lectura de archivo binario */
pf2 = fopen ("tempes.feb","w+b") ;/*leer/escribir archivo binario*/

Entradas y salidas por archivos 423

pf3 = fopen("telcon.fff","ab"); /*afiadir a archivo binario*/

La biblioteca de C proporciona dos funciones especialmente dirigidas al proceso de entrada y salida
de archivos binarios con buffer,son fread() y fwite ().

13.5.1. Funciénde salidafwite()

La funcion fwrite () escribe un buffer de cualquier tipo de dato en un archivo binario. El formato de
llamada es:

fwite(direction-buf fer, tamasio, num_element 0s, puntero_archivo) ;

Ejemplo 13.12

En el ejemplo se abre un archivo en modo binario para escritura. Se escriben nimeros reales en doble
precision en el bucle f or . El buffer es la variable x, el tamafio lo devuelve el operador siveof.

FI LE *fd;
doubl e Xx;

fd = fopen("reales.num", "wb") ;
for (x=0.5; x>0.01;)

fwrite(&x, sizeof (double), 1, f4) ;
X = pow(x,2.);

El prototipo de la funcion esta en stdio. h:
size-t fwrite(const void *ptr,size_t tam,size t n,FILE *pf);

Eltipo size-t estd definidoen stdio.hyes untipo int.

Ejercicio 13.5

Se dispone de una muestra de las coordenadas de puntos de un plano representada por pares de
ndmeros enteros (x,y) fales que 1< x <100 e i<y <100. Se desea guardar en un urchivo binario
todos los puntos disponibles.

Anélisis
El nombre del archivo es PUNTOS. DAT . Segin se lee un punto se comprueba la validez del puntoy se

escribe en el archivo con una llamada a la funcién fwrite () . La condicion de terminacion del bucle es
la lectura del punto (0,0) .

#include <stdio.h>
struct punto

int x,y;
}i
typedef struct punto PUNTO;
int main ()

IS

PUNTO p;
char *nom="C:\PUNTOS.DAT";

424 Programacioén en C. Metodologia, algoritmos y estructura de datos

FI LE *pp;

if ((pp = fopen(nom, "wb"))==NULL)

{
puts ("\nError en la operaci 6n de abrir archivo.")
return -1;

puts ("\nIntroduce coordenadas de puntos, para acabar:

do ¢
scanf ("3d %d",&p.x,&p.vy);
while (p.x<0 || p.y=0)

printf ("Coordenas deben ser -=0 :");
scanf ("%d %d",&p.x,&p.v);

'

if (p.x>0 Il p.y=0)

{
fwrite (&p, sizeof (PUNTO), 1, pp);

}
} while (p.x>0 || p.y=0);

fcl ose(pp) ;
return O
}

Los archivos binarios estan indicados especialmente para guardar registros, estructuras en C. El
método habitual es la escritura sucesiva de estructuras en el archivo asociado al puntero, la lectura de

estos archivos es similar.

13.5.2. Funcion de lecturafread()

Esta funcion lee de un archivo n bloques de bytes y los almacena en un buffer. EI nGmero de bytes de
cada bloque (t amafio) se pasa como parametro, al igual que el nimero n de bloques y la direccion del

buffer (ovariable) donde se almacena. El formato de llamada:

fread(direccion_buffer, tamafio,n, puntero_archivo) ;

La funcion devuelve el nimero de bloques que lee y debe de coincidir con n. El prototipo de la

funcién estaen stdio. h:

size-t fread(void *ptr,size_t tam,size_t n,FILE *pf);

(0,00");

Ejemplo 13.13

En el ejemplo se abre un archivo en modo binario para lectura. El archivo se lee hasta el final del

archivo; cada lectura de un nimero real se acumula en la variable s.

FI LE *£4d;
doubl e x,s=0.0;

if((fd= fopen("reales.num","rb"))==NULL)
exit(-1) ;

while (leof (£d))

{
fread(&x, sizeof(double), 1, fd);
S+= X;

Entradas y salidas por archivos 425

Ejercicio 13.6

En el Ejercicio 13.5 se ha creado un archivo hinario de puntos en el plano. Se desea escribir un
programa para determinar los siguientes valores:

e n,,numero de veces que aparece un punto dado (i,j) en el archivo.
e Dado un valor de j, obtener la media de / para los puntos que contienen aj .

Analisis

La primera instruccidn es abrir el archivo binario para lectura. A continuacién se solicita el punto donde
se cuentan las ocurrencias en el archivo. En la funcion cuent a- pt o() se determina dicho nimero;
para lo cual hay que leer todo el archivo. Para ejecutar el segundo apartado, se solicita el valor dej. Con
un bucle desde i=1hasta 100 se cuenta las ocurrencias de cada punto (i,j) llamando a la funcién
cuenta_pto (); antes de cada llamada hay que situar el puntero del archivo al inicio, llamando para ello
ala funcion rewi nd() .

#i ncl ude <stdio.h>
struct punto
{
int 1,j;
bi
typedef struct punto PUNTO
FI LE *pp;
int cuenta_pto(PUNTO w) ;

int main ()

{
PUNTO p;
char *nom ="C :\ PUNTCS.pAT";
fl oat nedi a, nnd, dnm

if ((pp= fLopen(nom,"rb"))==NULL)

{
puts ("\nError al abrir archivo pdra lectura.");
return -1,

)

printf ("\nIntroduce coordenadas de punto a buscar: ") ;

scanf ("&d %d",&p.1,&p.7) ;

printf ("\nRepeticiones del punto (%d,%d) : %d\n",
p.1,p-]1,cuenta_ptol(p));

/* Calculo de la nedia 1 para un valor j */

printf ("Valor de j: "); scanf ("%d",&p.j) ;
media=nmd=dnm= 0.0;

426 Programacion en C. Metodologia, algoritmos y estructura de datos

for (p.i=1; p.i<= 10; p.i++)
{
int st;
rewind{pp) ;
st = cuenta_pto(p);
nmd += (float)st*p.i;
dnm += (float)st;
if (dnm=0.0)
media = nmd/dnm;
printf (" nMedia de los valores de | para %d $.2f",p.J,media);
return O;
}

int cuenta- pto(PUNTO w)
{

PUNTO p;

irit r;

r =0

while (1feof (pp))

i
L

fread(&p,sizeof (PUNTO),1,pp) ; '
if (p.i==w.1 && p.Jj==w.]J) r++;

}

return r;

13.6. Funciones para acceso aleatorio

El acceso directo —aleatorio— a los datos de un archivo se hace mediante su posicion, es decir, el lugar
relativo que ocupan. Tiene la ventaja de que se pueden leer y escribir registros en cualquier orden y
posicién. Son muy rapidos de acceso a la informacion que contienen. El principal inconveniente que
tiene la organizacién directa es que necesita programar la relacién existente entre el contenido de un
registro y la posicion que ocupan.

Las funciones fseek () y ftell () se usan principalmente para el acceso directo a archivos en C.
Estas consideran el archivo como una secuencia de bytes; el nimero de byte es el indice del archivo.
Segun se va leyendo o escribiendo registros o datos en el archivo, el programa mantiene a través de un
puntero la posicién actual. Con la llamada a la funcién ttell () se obtiene el valor de dicha posicion.
La llamada a fseek () permite cambiar la posicion del puntero al archivo a una direccién determinada.

13.6.1. Funcién fseek()

Con la funcion fseek () se puede tratar un archivo en C como un array que es una estructura de datos
de acceso aleatorio. f scek () sitda el puntero del archivo en una posicion aleatoria, dependiendo del
desplazamientoy el origen relativo que se pasan como argumentos. En el Ejemplo 13.14 se supone que
existe un archivo de productos, se pide el nimero de producto y se sitla el puntero del archivo para leer
el registro en una operacion de lectura posterior.

Ejemplo 13.14

Declarar una estructura (registro) PRODUCTQ,Y abrir un archivo para lectura. Se desea leer un registro
cuyo numero (posicion)se pide por teclado.

Entradas y salidas por archivos 427

t ypedef struct
{
char nonbre[41};
int uni dades;
fl oat precio;
i nt pedi dos;
} PRODUCTG,
PRODUCTO uno;
int n, stat;
FI LE* pfp;

if ((pfp= fopen("conservas.dat","r"))==NULL)
{

puts ("No se puede abrir el archivo.");

exit (-1);
}

/* Se pide el nunero de registro */

printf ("Ninmero de registro: ") : scanf ("sd",&an);
/* Situa el puntero del archivo */

stat = fseek(pfp, n*sizeof (PRODUCTO),0) ;
/* Conprueba que no ha habido error */

if (stat != 0)

{
puts ("Error, puntero del archivo novido fuera de este");
exit(-1):

}
/* Lee el registro */

fread(&uno, sizeof (PRODUCTO}, 1, pfp);

El segundo argumento de f seek () esel desplazamiento, el tercero es el origen del desplazamiento,
el 0 indica que empiece a contar desde el principio del archivo.
El formato para llamar a f seek () :

fseek (puntero_archivo, desplazamiento, origen);

despl azami ent o: es el namero de bytes a mover; tienen que ser de tipo long.
origen : es la posicion desde la que se cuenta el nimero de bytes a mover. Puede tener
tres valores, que son:
0 :Cuenta desde el inicio del archivo.
1 : Cuenta desde la posicion actual del puntero al archivo.
2 :Cuenta desde el final del archivo.
Estos tres valores estan representados por tres identificadores (macros):
0 : SEEK- SET
1 : SEEK- QR
2 . SEEK- END
La funcidn f seek() devuelve un valor entero, distinto de cero si se comete un error en su ejecucion;
cero si no hay error. El prototipo se encuentra en stdio .h :

int fseek(FILE *pf,long dsplz,int origen);

Ejercicio 13.7

Para celebrar las fiestas patronales de un pueblo se celebra una carrera popular de 9 Km. Se establecen
las categorias masculina (M) y femenina (F),y por cada una de ellas, senior y veterano. Los nacidos

428

Programacion en C. Metodologia, algoritmos y estructura de datos

antes de 1954 son veteranos (tanto para hombres como para mujeres) y el resto seniors. Segun se
realizan inscripciones se crea el archivo binario CARRERA. roPp, de tal forma que el nimero de dorsal es
la posicion que ocupa el registro en el archivo. La carrera se celebra; segin llegan los corredores se
toman los tiempos realizados y los nimeros de dorsales.

Se desea escribir un programa para crear el archivo CARRERA. POP y un segundo programa que
actualice cada registro, segun el nimero de dorsal, con el tiempo realizado en la carrera.

Analisis

En una estructura se agrupan los campos necesarios para cada participante: nombre, afio de nacimiento,
sexo, categoria, tiempo empleado (minutos, segundos), nimero de dorsal y puesto ocupado. El primer
programa abre el archivo en modo binario para escribir los registros correspondientes a los participantes
en la posicién del nimero de dorsal. Los nimeros de dorsal se asignan segun la categoria, para las
mujeres veteranas del 51 al 100; para mujeres senior de 101 al 200. Para hombres veteranos de 251 al
500, y para senior del 501 al 1000.

El programa, en primer lugar inicializa los nombres de los registros del archivo a blancos. Los
dorsales se asignan aleatoriamente, comprobando que no estén previamente asignados. El segundo
programa abre el archivo en modo modificacién, accede a un registro, segin dorsal y escribe el tiempo
y puesto. Los tipos de datos que se crean para la aplicacién, estructura fecha, estructura tiempo,
estructura atleta, se incluyen en el archivo at | et a .h.

/* Archivo atleta.h */

typedef struct fecha
{

int d, m, a;
} FECHA;
typedef struct tienpo
{
int h, m s;
} TI EMPG,
struct atleta
{
char nonbre(28] ;

FECHA f;

char sx; /* Sexo */

char cat; /* Categoria */
TIEMPO t ;

unsi gned int dorsal
unsi gned short puestoo;

iypedef struct atleta ADTA;
#define despl z(n) (n-1)*sizeof (ADTA)

/* Programa para dar entrada en el archivo de atletas. */

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <time.h>

#i ncl ude <string.h>
#i ncl ude <ctype.h>
#i nclude "atl eta.n"

void inicializar (FILE*) ;
voi d unatleta (ADTA* at,FILE*);
unsi gned numdorsal (char S, char cat, FILE* pf);

int main()

}

Entradas y salidas por archivos

FILE *pf;

ADTA a;

char *archi vo= "C: \CARRERA. POL";
random ze() ;

if ({(pf=fopen(archivo, "wb+"))==NULL)
.

printf ("\nError al abrir el archivo %s, fin del proceso.\n");

return -1;

}
inicializar(pfj ;

/* Se introducen regi stros hasta teclear conp nonbre: FIN */
unatleta(&a,pf);
do {

fseek(pf,desplz(a.dorsal) , SEEK- SET);

fwrite(&a,sizeof (ADTA),1,pf);

unatleta(&a,pf);
}while (strcnpi(a.nombre,"FIN')) ;

fcl ose(pf) :
return O;

voi d unatleta (ADTA* at, FILE*pf)

{

}

4

printf("Nonbre: "} ; get s(at->nombre) ;

if (strcmpi(at ->nonbre,"fin"j)

{
printf ("Fecha de nacimento: ") ;
scanf ("%d %d %d%*c",&at->f.d,&at->f. m&at->f.a);
if (at->f.a<1954)

at->cat = 'vV’;
el se
at->cat = ‘S’;
printf ("Sexo: ") ;scanf ("%c%*c", &at->sXx) ;

at->gsx=(char) toupper (at ->sx) ;

at->t.h = 0; at->t.m = 0; at->t.s = 0
at ->dorsal = numdorsal(at-=sx,at->cat,pf};
printf("Dorsal asignado: %u\n",at->dorsal});

unsi gned numdorsal (char s, char cat, FILE* pf)

unsi gned base, tope, d;
ADTA a;

if (s=="M’' && cat=="V’)

base = 251; tope 500

base = 501; tope = 1000;

429

430 Programacioén en C. Metodologia, algoritmos y estructura de datos

d = (unsigned) random(tope+1l-base)+base;

fseek(pf,desplz(d), SEEK_SET) ;

fread(&a,sizeof (ADTA) ,1,pf);

if (! (*a.nombre)) /* Cadena hul a: estéa vacio */
return d;

el se

return numdorsal (g, cat,pf);
}

void inicializar (FILE*pf)
{

int k;

ADTA a:

a.nombre[0] = '\0;

for (k=1; k<=1000; k++)
fwrite(&a,sizeof (ADTA) ,1,pf);

¥

/* Programa para dar entrada a los tienpos de los atletas. Prinmero, dado
un nurmero de dorsal se visualiza el registro del atleta, a continuaci6n
se introduce los nminutos y segundos realizados por el atleta.

*/

#i ncl ude <stdio.h>

#i ncl ude <string.h>

#include "atl eta.h"

voi d datosatleta (ADTA at);

int main()

FI LE *pf;

ADTA a;

TIEMPO h={0,0,0};

char *archivo= "C:\CARRERA.POL";
unsi gned dorsal=1;

if ((pf=fopen(archivo, "rb+"))==NULL)

printf ("\nError al abrir el archivo %s, fin del proceso.\n") ;
return -1;
}

/* E1 proceso iterativo termina con el dorsal 0 */
printf ("\n Dorsal del atleta: "); scanf ("su", &dorsal);
for (; dorsal ;)

Entradas y salidas por archivos 431

/* Se situa el puntero en el registro */
fseek (pf despl z(dorsal) ,SEEK_SET) ;
fread(&a,sizeof (ADTA),1,pf) ;

if (*a.nombre)
i

datosatletal(a);

printf ("\n Tienpo realizado en minutos y segundos: ") ;
scant ("&d %d",&h.m, &h.s) ;
a.t = h;

fseek (pf ,despl z (dorsal),SHEK_SET) ;
fwrite (&a, sizeof (ADTA),1,pfl);
I
el se
printf ("Este dorsal no estd reyistrado.\n") ;

printf ("\n Dorsal del atleta: ") ; scanf ("%u",&dorsal);
\

fclose(pf) ;

return O;

printf("Nonbre :%s\n" ,at .nombre) ;

printf ("Fecha de nacimiento:%d-%d-%d:\n",at.f.d,at.f.m,at.f.a) ;
printf ("Categor:a :%c\tDorsal: %u\n",at.cat,at.dorsal);

if (at.t.m>0)
printf ("Ti empode carrera :Ud min %d seg\n",at.t.m,at.t.s);

13.6.2. Funcién ftell ()

La posicidn actual del archivo se puede obtener [lamando a la funcién ftell () y pasando un puntero
al archivo como argumento. La funcién devuelve la posicién como nimero de bytes (en entero largo:
long int) desde el inicio del archivo (byte 0).

Ejemplo 13.15

En este ejemplo se puede observar como se desplaza el puntero del archivo segun se escriben datos en
él.
#i ncl ude <stdio.h>
int main(void)
{
FILE *pf;
float x = 123.5;
pf = fopen("CARTAS.TxX1", "w");
printf ("Posiciéninicial : $1d\n",ftell(pf));/*muestra 0*/
fprintf (pf "Caracteres de prueba");
printf ("Posiciénactual: %1d\n", ftell (pf)) ;/*muestra 20%/
fwrite(&x,sizeof (float),1,pf);

- S —

432

Programacion en C. Metodologia, algoritmos y estructura de datos

printf ("Posicién actual: %1d\n",ftell (pf));/*muestra 24*/
fclose(pf);
return O

Para Ilamar a la funcion se pasa como argumento el puntero a F1LEe. El prototipo se encuentra en
stdio.h:

long int ftell (FILE *pf);

13.7. DATOS EXTERNOS AL PROGRAMA CON ARGUMENTOS DE nmai n ()

La linea de comandos o de drdenes es una linea de texto desde la que se puede ejecutar un programa. Por
ejemplo, si se ha escrito el programa mat ri ces. ¢ ,una vez compilado da lugaramat ri ces. exe . Su
ejecucion desde la linea de 6rdenes:

C:>matrices

La linea de dérdenes puede ser una fuente de datos al programa, asi se podria pasar las dimensiones de
la matriz:

C:>matrices 4 5

Para que un programa C pueda captar datos, informacién en la linea de érdenes, la funcion mai n(}
tiene dos argumentos opcionales: el primero es un argumento entero que contiene el nimero de
pardmetros transmitidos al programa (incluyendo el mismo numero de programa). El segundo
argumento contiene los parametros transmitidos, en forma de cadenas de caracteres; por lo que el tipo
de este argumento es un array de punteros a char . Puede haber un tercer argumento que contiene las
variables de entorno, definido también como array de punteros a caracter que no se va a utilizar. Un
prototipo valido de la funcién mai n () :

int main(int argc, char*argvl(]) ;
También puede ser
int main{int argc, char**argv);

Los nombres de los argumentos pueden cambiarse, tradicionalmente siempre se pone ar gc, argv.

Ejemplo 13.16

En este ejemplo se escribe un programa que muestra en pantalla los argumentos escritos en la linea de
ordenes.

#i ncl ude <stdio.h>

int main(int argc, char *argv([])
{
int i;
printf ("Ninmero de argumentos %d \n\n", argc) ;
printf ("Argumentos de la |inea de ordenes pasados a main:\n\n");

for €5 0; i < argc; i++)
printf (" argv{[%d] : $s\n\n", i, argvl[il);
return O;

Entradas y salidas por archivos

433

En el supuesto que el nombre del programa ejecutable sea ARGMTOS .EXE, Yy que esté en la unidad

de disco C:, la ejecucidn se realiza con esta instruccion:

C:\ARGMTOS Buenas pal abras "el am go agradece" 6 7 Adi os.

Los argumentos se separan por un blanco. Para que el blanco forme parte del argumento se debe de

encerrar entre dobles comillas. La salida de la ejecucion de ARGMICS (ARGMTOS .EXE) :
Nunero de argunentos 7

Argunentos de la |linea de ordenes pasados a nmi n:

argv(0]: C:\ARGMTOS.EXE
argvil] : Buenas

argv(2] : pal abras

argv(3]: el am go agradece
argvi4d]: 6

argv[5]: 7

argv(e] : Adios.

Ejercicio 13.8

Se desea escribir un programa para concatenar archivos. Los nombres de los archivos han de estar en
la linea de 6rdenes, el nuevo archivo resultante de la concatenacion ha de ser el Gltimo argumento de

la linea de 6rdenes.

Analisis

El nimero minimo de argumentos de la linea de Ordenes ha de ser 3, nombre del programa ejecutable,
primer archivo, segundo archivo, etc. y el archivo nuevo. El programa debe de comprobar este hecho.
Para copiar un archivo se utiliza la funcion fget s() que lee una linea del archivo de entrada, y la
funcion f put s () que escribe la linea en el archivo de salida. En una funcidn, copi a- ar chi vo() , se
realiza la operacion de copia, que se llamara tantas veces como archivos de entrada se introduzcan desde

la linea de 6rdenes.

#i ncl ude <stdio.h>

#define MAX-LIN 120

voi d copia_archivo(FILE*, FILE*);
int min (int argc, char *argvl[])

-
1

FI LE *pfe, *pfw;
int i;

if (argc< 3)

{

puts ("Error en la linea de ordenes, archivos insuficientes.");
return -2;
I

/= El Utim archivo es donde se realiza | a concat enaci 6n */

if ((pfw = fopen(argviargc-1]1,"w"))== NULL)

printf ("Error al abrir el archivo %s ",argviargc-11) ;
return -3;

for (i=1; i<argc-1; i++)
{
if ((pfe = fopen(argv(i],"r"))== NULL)

434

Programacioén en C. Metodologia, algoritmos y estructura de datos

{
printf ("Error al abrir el
return -1;
}
copia_archivo(pte,pfw) ;
fcl ose(pfe);
}

fclose(pfw) ;
return O;

archivo %s ",argv[i]);

/* Funcidén copla un richer-o en otro fichero */

/* utiliza fputs() y fgets()

voi d copia_archivo(FILE*fl,FILE* f2)

{
char cad{MAX_LIN];

whi | e
{

(tfeof (£1))

fgets(cad, MAX-LIN, {1);
if (1feof(fl)) fputs(cad,

£2);

*/

13.8. RESUMEN

Este capitulo explora las operaciones fundamentales
de la biblioteca estandar de entrada y salida para el
tratamiento y manejo de archivos externos.

El lenguaje C, ademas de las funciones basicas de
E/S, contiene un conjunto completo de funciones de
manipulacion de archivos, de tipos y macros, que se
encuentranen el archivostdi o .h . Estas funciones
se identifican porque empiezan todas por f de file,
exceptoaquellas que proceden de versiones anteriores
de C. Las funciones més utilizadas:

e fopen() y fclose() abren o cierran el
archivo.

e fputc(),fgetc() para acceder ai archivo
caracter a cardcter(byte a byte).

e fputs (), fgets() para acceder al archivo
de caracteres linea a linea.

e fread() y fwrite () paraleeryescribirpor
bloques, generalmente por registros.

e ftell()yfseek() paradesplazarel punte-
ro a una posicion dada (en bytes).

Con estas funciones y otras que estan disponibles
se puede hacer cualquier tratamiento de un archivo,

modo texto o modo binario; modo secuencial o modo
directo.

Para asociar un archivo externo con un flujo, o
también podriamos decircon el nombre interno en el
programa (punteroa FI LE) se utiliza fopen () .La
funcion fclose () termina la asociaciony vuelca el
buffer del archivo; los archivos que se han manejado
son todos con buffer intermedio para aumentar la
efectividad.

Un archivo de texto almacenatoda la informacion
en formato caracter. Por ejemplo, los valores nume-
ricos se convierten en caracteres (digitos) que son la
representacion numérica. Se indica el modo texto en
el segundo argumento de fopen () ,con una t. Las
funciones més usuales con los archivos de texto son
fputc(), fgetc(), fputs{), fgets(),
fscanf () y fprintf ().

Un archivo binario almacenatoda la informacion
utilizando la misma representacion binaria que la
computadora utiliza internamente. Los archivosbina-
rios son mas eficientes, no hay conversion entre la
representacion en la computadoray la representacion
en el archivo; también ocupan menos espacio. Sin

embargo son menos transportables que los archivos
de texto. Se indica el modo binario en el segundo
argumento de f open () ,con una b. Las funciones
fputc(), fgetc() y sobre todo fread()
fwrite() son las que soportan entrada y salid%
binaria.

Para proporcionar un acceso aleatorio se dispone
de las funciones ftel | () y fseek().También

13.9. EJERCICIOS

13.1. Escribir las sentencias necesarias para abrir un
archivo de caracteres cuyo nombre y accesose
introduce por teclado en modo lectura; en el
caso de que el resultado de la operacion sea
erréneo, abrir el archivo en modo escritura.

13.2. Sefialen los errores del siguiente programa:

#i ncl ude <stdio.h>
int main()
{
FI LE* pf;
pf = fopen("almacen.dat");

fputs("Dat os de los al macenes
TI ESO, pf);

fcl ose(pf) ;
return O
}

13.3. Se tiene un archivo de caracteres de nombre
"SALAS. paT". Escribir un programa para
crear el archivo " SALAS. BIN" con el conte-
nido del primer archivo pero en modo binario.

13.4. La funcién r ewi nd{) sitla el puntero del
archivo en el inicio del archivo. Escribir una
sentencia, con la funcion f seek () que reali-
ce el mismo cometido.

13.5. Utiliza los argumentos de la funcion nai n ()
para dar entrada a dos cadenas; la primera
representa una mascara, la segunda el nombre
de un archivode caracteres. El programa tiene
que localizar las veces que ocurre la mascara
en el archivo.

Entradas y salidas por archivos 435

hay otras funciones como f set pos() y fget -
pos ().)

Con las funciones expuestas se puede hacer todo
tipo de tratamiento de archivos, sobre todo archivos
con direccionamiento hash, archivos secuenciales
indexados.

13.6. Las funciones f get pos{) y f set pos()
devuelven la posicién actual del puntero
del archivo, y establecen el puntero en
una posicion dada. Escribir las funciones
pos- actual () ymover_pos ()}, conlos
prototipos:

int pos- actual (FILE*pf, | ong* p) ;
i nt movergos (Fl LE*pf, const long" p) ;

La primera funcion devuelve en p la posi-
cion actual del archivo. La segunda funcion
establece el punterodel archivoen la posicion
B

13.7. Un archivo contiene enteros positivosy nega-
tivos. Utiliza la funcién f scanf () para leer
el archivo y determinar el nimero de enteros
negativos.

13.8. Un archivode caracteres quiere escribirseen la
pantalla. Escribir un programa para escribir el
archivo, cuyo nombre viene dado en la lineade
oOrdenes, en pantalla.

13.9. Escribir una funcion que devuelva una cadena
de caracteres de longitud n, del archivo cuyo
puntero se pasa como argumento. La funcién
termina cuando se han leido los n caracteres o
es fin de archivo. Utilizar la funcion f get c () .

El prototipo de la funcion solicitada:

char* | eer - cadena(FILE* pf, int n) ;

13.10. Se quiere concatenar archivos de texto en un
nuevo archivo. La separacion entre archivoy

436

13.11.

archivo ha de ser una linea con el nombre del
archivo que se acaba de procesar. Escribir el
programa correspondiente de tal forma que
los nombres de los archivos se encuentren en
la linea de 6rdenes.

Escribir una funcién que tenga como argu-
mentos: un puntero de un archivo de texto, un

13.10. PROBLEMAS

13.1.

13.2.

133.

13.4.

Escribir un programa que compare dos archi-
vos de texto. El programa ha de mostrar las
diferencias entre el primer archivoy el segun-
do, precedidas del nimero de lineay de colum-
na.

Un atleta utiliza un pulsémetro para sus entre-
namientos. El pulsémetro almacena las pulsa-
ciones cada 15 segundos, durante un tiempo
maximo de 2 horas. Escribir un programa para
almacenar en un archivo los datos del pulsé-
metro del atleta, de tal forma que el primer
registro contenga la fecha, hora y tiempo en
minutos de entrenamiento,a continuacion los
datos del pulsémetro por parejas: tiempo, pul-
saciones.

Se desea obtener una estadistica de un archivo
de caracteres. Escribir un programa para con-
tar el nimero de palabras de que consta un
archivo, asi como una estadisticade cada lon-
gitud de palabra.

En un archivo binario se encuentran pares de
valores que representan la intensidad en
miliamperiosy el correspondiente voltaje en
voltios para un diodo. Por ejemplo:

0.5 0.35
1.0 0. 45
2.0 0.55
2.5 0.58

13.12.

13.5.

13.6.

Programacion en C. Metodologia, algoritmos y estructura de datos

ndmero de lineainicial y otro nimero de linea
final. La funcion debe de mostrar las lineas
del archivo comprendidas entre los limites
indicados.

Escribir un programa que escribapor pantalla
las lineas de texto de un archivo, numerando
cada linea del mismo.

Nuestro problema es que dado un valor del
voltaje v, comprendido entre el minimo valor
y el méximo encontrar el correspondientevalor
de la intensidad. Para ello el programa debe
leer el archivo, formar una tabla y aplicar un
método de interpolacién, por ejemplo el méto-
do de polinomios de Lagrange. Una vez calcu-
lada la intensidad, el programa debe de escribir
el par de valores en el archivo.

Un profesor tiene 30 estudiantes y cada estu-
diante tiene tres calificaciones en el primer
parcial. Almacenar los datos en un archivo,
dejando espacio para dos notas méas y la nota
final. Incluirun mentt de opciones, para afiadir
mas estudiantes, visualizar datos de un estu-
diante, introducir nuevas notas y calcular nota
final.

Se desea escribir una carta de felicitacion navi-
defia a los empleados de un centro sanitario. El
texto de la carta se encuentra en el archivo
CARTA. TXT . El nombre y direccién de los
empleados se encuentra en el archivo binario
EMPLA .DAT, comouna secuencia de registros
con los campos nombre, direccion, etc. Escri-
bir un programa que genere un archivo de tex-
to por cada empleado, la primera linea contie-
nen el nombre, la segunda esta en blanco, la
tercera la direcciony en la quinta empiezael
texto CARTA. TXT.

13.7. Se desea crear un archivobinario formado por

registros que representan productos de perfu-
meria. Los campos de cada registro son codigo
de producto, descripcion, precio y nimero de
unidades. La direccion de cada registro viene
dada por una funcién hash que toma como
campo clave el codigo del producto(tres digi-
tos):

hash(clave) = (cl avemodulo 87) +1

El nimero méximo de productos distintos es
100. Las colisiones, de producirse, se situaran
secuencialmente a partir del registro nimero
120.

13.8.

13.9.

13.10.

437

Entradas y salidas por archivos

Escribir un programa para listar el contenido
de un determinado subdirectorio, pasado
como parametro a la funciénmai n () .

Modificar el Problema 13.2 para afiadir un
men(con opciones de afiadir al archivo nue-
Vos entrenamientos, obtener el tiempo que se
esta por encima del umbral aerébico (data
pedido por teclado) para un dia determinado
y media de las pulsaciones.

Un archivo de texto consta en cada linea de
dos cadenas de enteros separadas por el ope-
rador +, 0 -, . Se desea formar un archivo
binario con los resultados de la operacion que
se encuentra en el archivo de texto.

CAPITULO 14

LISTAS ENLAZADAS

CONTENIDO

14.1. Fundamentos teoéricos.

14.2. Clasificacion de las listas
enlazadas.

14.3. Operacionesen listas enla-

zadas.

14.4. Listas doblemente enlaza-
das.

438

14.5.
14.6.

14.7

14.8.

Listas circulares.
Resumen.

. Hercicios.
Problemas.

INTRODUCCION

En este capitulo se comienza el estudio de las estructuras de datos dinamicas.
Al contrario que las estructuras de datos estaticas (arrays —listas, vectores y
tablas— y estructuras) en las que su tamafio en memoria se establece durante
la compilacion y permanece inalterable durante la ejecucion del programa, las
estructuras de datos dinamicascrecen y se contraen a medida que se ejecuta el
programa.

La estructura de datos que se estudiara en este capitulo es la lista enl aza-
da (ligadao encadenada, ((linkedist») que es una coleccion de elementos (deno-
minados nodos)dispuestosuno a continuacion de otro, cada uno de ellos conec-
t ado al siguiente elemento por un «enlace» 0 ((puntero)).as listas enlazadas
son estructuras muy flexiblesy con numerosas aplicacionesen el mundo de la
programacion.

CONCEPTOS CLAVE

* Busqueda de un nodo en una e Recorridode una lista.
lista enlazada. ¢ Fundamentos tedricos de listas
 Lista doblemente enlazada. enlazadas.
o Estructura de una lista enlazada. e Variables puntero y variables
e Operacionesen listas enlazadas. apuntadas.
e Eliminacion de nodos en una e Lista circular.

lista enlazada.

439

440 Programacion en C. Metodologia, algoritmos y estructura de datos

14.1. FUNDAMENTOS TEORICOS

En capitulos anteriores se han estudiado estructuras lineales de elementos homogéneos (listas, tablas,

vectores) y se utilizaban arrays para implementar tales estructuras. Esta técnica obliga a fijar por

adelantado el espacio a ocupar en memoria, de modo que cuando se desea afiadir un nuevo elemento que

rebase el tamafio prefijado del array, no es posible realizar la operacién sin que se produzca un error en

tiempo de ejecucion. Ello se debe a que los arrays hacen un uso ineficiente de la memoria. Gracias a la
asignacion dinamica de variables, se pueden implementar listas de modo que la memoria fisica utilizada
se corresponda con el nimero de elementos de la tabla. Para ello se recurre a los punteros (apuntadores)
que hacen un uso mas eficiente de la memoria como ya se ha visto con anterioridad.

Una lista enlazada es una coleccién o secuencia de elementos dispuestos uno detrés de otro, en la
que cada elemento se conecta al siguiente elemento por un «enlace» o «puntero». La idea basica consiste
en construir una lista cuyos elementos llamados nodos se componen de dos partes o campos: la primera
parte o campo contiene la informacion y es, por consiguiente, un valor de un tipo genérico (denominado
Dato, TipoElemento, Info, etc.) y la segunda parte 0 campo es un puntero (denominado enlace o0 sgte)
que apunta al siguiente elemento de la lista.

I |) —
= sodo | l-i Nodo

L] puntero | ! puntero |

Figura 14.1. Lista enlazada (representaciéonsimple).

La representacion grafica mas extendida es aquella que utiliza una caja (un rectangulo) con dos
secciones en su interior. En la primera seccion se escribe el elemento o valor del dato y en la segunda
seccion, el enlace o puntero mediante una flecha que sale de la caja y apunta al nodo siguiente.

Unalistaenlazadaconsta de un nimero de elementosy cada elemento tiene dos componentes
(campos), un puntero ai siguiente elemento de la lista y un valor, que puede ser de cualquier
tipo.

Los enlaces se representan por flechas para facilitar la comprension de la conexion entre dos nodos;
ello indica que el enlace tiene la direccién en memoria del siguiente nodo. Los enlaces también sitlan
los nodos en una secuencia. En la Figura 14.2los nodos forman una secuencia desde el primer elemento
(e,)al ultimo elemento (e,). El primer nodo se enlaza al segundo nodo, el segundo nodo se enlaza al
tercero y asi sucesivamente hasta llegar al Gltimo nodo. El nodo Gltimo ha de ser representado de forma
diferente para significar que este nodo no se enlaza a ningun otro. La Figura 14.3 muestra diferentes
representaciones graficas que se utilizan para dibujar el campo enlace del Gltimo nodo.

Listas enlazadas 441

Figura 14.3. Diferentes representaciones graficas del nodo Ultimo

14.2. CLASIFICACION DE LAS LISTAS ENLAZADAS

Las listas se pueden dividir en cuatro categorias :

« Listas simplemente enlazadas. Cada nodo (elemento) contiene un Unico enlace que conecta ese
nodo al nodo siguiente 0 nodo sucesor. La lista es eficiente en recorridos directos («adelante»).

« Listas doblemente enlazadas. Cada nodo contiene dos enlaces, uno a su nodo predecesor y el
otro a su nodo sucesor. La lista es eficiente tanto en recorrido directo («adelante») como en
recorrido inverso («atras»).

o Lista circular simplemente enlazada. Una lista enlazada simplemente en la que el ultimo |
elemento (cola) se enlaza al primer elemento (cabeza) de tal modo que la lista puede ser recorrida
de modo circular («enanillo»).

« Lista circular dohlenzente enlazada. Una lista doblemente enlazada en la que el Ultimo elemento
se enlaza al primer elemento y viceversa. Esta lista se puede recorrer de modo circular (en anillo)
tanto en direccidn directa («adelante») como inversa («atras»).

Por cada uno de estos cuatro tipos de estructuras de listas, se puede elegir una implementacion
basada en arrays o una implementacion basada en punteros. Como ya se ha comentado estas
implementacionesdifieren en el modo en que asigna la memoria para los datos de los elementos, como
se enlazan juntos los elementos y cdmo se accede a dichos elementos. De forma mas especifica, las
implementaciones pueden hacerse con cualquiera de éstas:

e Asignacion fija, 0 estatica, de memoria mediante array.
« Asignacion dinamica de memoria mediante punteros.

Dado que la asignacion fija de memoria mediante arrays es mas ineficiente, utilizaremos en este
capituloy siguientes, la asignacion de memoria mediante punteros, dejando como ejercicio al lector la
implementacion mediante arrays.

Conceptos béasicos sobre listas

Una lista enlazadaconsta de un conjunto de nodos. Un nodo consta de un campo dato y un puntero
que apuntaal «siguiente» elemento de la lista.

dato | siguiente | ll--i dato | siguiente |- - | diEtd | Siguiernbe [daho |
L 1 i L . i -
cabeza Ptr actual cola

e

442

Programacion en C. Metodologia, algoritmos y estructura de datos

El primer nodo, frente, es el nodo apuntado por cabeza. La lista encadena nodos juntos desde el
frente al final (cola) de la lista. El final se identifica como el nodo cuyo campo puntero tiene el valor
NULL - 0. La lista se recorre desde el primero al Ultimo nodo; en cualquier punto del recorrido la
posicion actual se referencia por el puntero ptr_actual. En el caso en que la lista no contiene ningin
nodo (esta vacia), el puntero cabeza es nulo.

cabeza —

14.3. OPERACIONES EN LISTAS ENLAZADAS

Una lista enlazada requiere unos controles para la gestion de los elementos contenidos en ellas. Estos
controles se manifiestan en forma de operaciones que tendran las siguientes funciones:

« Declaracion de los tipos nodo y puntero a nodo.

e [Inicializacién 0 creacion.

« Insertar elementos en una lista.

« Eliminar elementos de una lista.

« Buscar elementos de una lista (comprobar la existencia de elementos en una lista).
e Recorrer una lista enlazada (visitar cada nodo de la lista).

« Comprobar si la lista esta vacia.

14.3.1. Declaracion de un nodo

Una lista enlazada se compone de una serie de nodos enlazados mediante punteros. Cada nodo es una
combinacién de dos partes: un tipo de dato (entero, real, doble, caracter o tipo predefinido) y un enlace
(puntero) al siguiente nodo. En C, se puede declarar un nuevo tipo de dato por un nodo mediante las
palabras reservadas struct que contiene las dos partes citadas.

struct Nodo t ypedef struct Nodo
4 {

int dat o; int dato;

struct Nodo* enl ace; struct Nodo "enl ace;
}i }NODO;

La declaracion utiliza el tipo st ruct que permite agrupar campos de diferentes tipos, el campo
dato y el campo enlace. Con t ypedef se puede declarar a la vez un nuevo identificador de struct
Nodo, en el caso anterior se ha elegido NODO.

Dado que los tipos de datos que se puede incluir en una lista pueden ser de cualquier tipo (enteros,
dobles, caracteres o incluso cadenas), con el objeto de que el tipo de dato de cada nodo se pueda cambiar
con facilidad, se suele utilizar una sentencia Lypedcf para declarar el nombre de El enent o como un
sinénimo del tipo de dato de cada campo. El tipo Element o se utiliza entonces dentro de la estructura
nodo, como se muestra a continuacion:

t ypedef doubl e El enent o;
struct nodo
{

El enent o dat o;

Listas enlazadas 443

ctruct nodo *enl ace;
}i

Entonces, si se necesita cambiar el tipo de elemento en los nodos, s6lo tendra que cambiar la
sentencia de declaracion de tipos que afecta a £1 enent o. Siempre que una funcién necesite referirse al
tipo del dato del nodo, puede utilizar el hombre tlemento.

Ejemplo 14.1

En este ejemplo se declara un tipo denominado PUNTO que representa un punto en el plano con su
coordenada x e y. También se declara el tipo noDO con el campo dato del tipo PUNTO. Por Ultimo, se
define un puntero a NODO.

#i ncl ude <stdlib.h>
t ypedef struct punto

float x, y;
} PUNTGQ,

typedef struct Nodo
{

PUNTO dat o;
struct Nodo* enl ace;
+ NODG,

NODO* cabecer a;
cabecera = NULL;

14.3.2. Puntero de cabeceray cola

Normalmente, los programas no declaran realmente variables de nodos. En su lugar, cuando se construye
y manipula una lista enlazada, a la lista se accede a través de uno o mas punteros a los nodos. El acceso
mas frecuente a una lista enlazada es a través del primer nodo de la lista que se llama cabeza o cabecera
de lalista. Un puntero al primer nodo se llama puntero cabeza. En ocasiones, se mantiene también un
puntero al Gltimo nodo de una lista enlazada. El Gltimo nodo es la cola de la lista, y un puntero al Gltimo
nodo es el puntero cola. También se pueden mantener punteros otros nodos de una lista enlazada.

o—1 = 235 ——pm= 40.7 ® = /1.7
- ! - J'...
.
Declaracién del nodo Definicion de punteros
e rit 0 dat o ; truct rodo *pti_cola;
it1 1wt nodo *erilaoo;

Figura 14.4. Declaraciones de tipo en lista enlazada

444 Programacion en C. Metodologia, algoritmos y estructura de datos

Cada puntero a un nodo debe ser declarado como una variable puntero. Por ejemplo, si se mantiene
una lista enlazada con un puntero de cabecera y otro de cola, se deben declarar dos variables puntero:

struct nodo *ptr _cabeza;
struct nodo *ptr_cola;

El tipo st ruct nodo a veces se simplifica utilizando la declaracion t ypedef . Asi podemos escribir:

typedef struct nodo NODG

t ypedef struct nodo* ptrnodo;
ptrnodo ptr_cabeza;

ptrnodo ptr_cola;

La construcciény manipulacion de una lista enlazadarequiere el acceso a los nodos de la
lista a través de uno 0 mas punteros a nodos. Normalmente, un programa incluye un puntero
ai primer nodo (cabeza)y un puntero al Ultimo nodo (cola).

En cualquier forma, el Gltimo elemento de la lista contiene un valor de O, esto es, un puntero
nulo (NuLL) que sefiala el final de la lista.

14.3.3. El puntero nulo

La Figura 14.4muestra una lista con un puntero cabezay un puntero nulo al final de la lista sobre el que
se ha escrito la palabra NuLL. La palabra nui.i, representa el puntero nulo, que es una constante
especial de C. Se puede utilizar el puntero nulo para cualquier valor de puntero que no apunte a ningln
sitio. El puntero nulo se utiliza, normalmente, en dos situaciones:

o Usar el puntero nulo en el campo enlace o siguiente del nodo final de una lista enlazada.
« Cuando una lista enlazada no tiene ningln nodo, se utiliza el puntero NULL como puntero de
cabezay de cola. Tal lista se denomina lista vacia.

En un programa, el puntero nulo se puede escribir como NULL, que es una constante de la biblioteca
estandar st dl i b. h'. El puntero nulo se puede asignar a una variable puntero con una sentencia de
asignacion ordinaria. Por ejemplo:

ptr_tabeza

Figura 14.5. Puntero NULL

El puntero de cabezay de cola en una lista enlazada puede ser NULL, lo que indicara que la lista
es vacia (no tiene nodos). Este suele ser un método usual para construir una lista. Cualquier ,
funcioén que se escribe para manipular listas enlazadas debe poder manejar un puntero de
cabezay un puntero de cola nulos.

" A veces algunos programadores escriben el puntero nulo como O, pero pensamos €s un estilo mds claro escribirlo como MiI[LL

Listas enlazadas 445

14.3.4. El operador -> de seleccién de un miembro

Si p es un puntero a una estructura y m es un miembro de la estructura, entoncesp -> m accede al
miembro m de la estructura apuntada por .

El simbolo “->" se considera como un operador simple (en vez de compuesto, al constar de dos
simbolos independientes“-” y “>”. Se denomina operador de seleccion de miembro o también operador
de seleccidn de componente. De modo visual el operador P -> m recuerda a una flecha que apunta del
puntero p al objeto que contiene al miembro m.

Suponiendo que un programa ha de construir una lista enlazada y crear un puntero de cabecera
ptr- cabezaaun nodo Nodo, el operador * de indireccion aplicado a una variable puntero representa
el contenido del nodo apuntado por pt r - cabeza. Es decir, *ptr_cabeza es un tipo de dato Nodo.

Al igual que con cualquier objeto, se puede acceder a los dos miembros de *ptr_cabeza en la
Figura 14.5.Por ejemplo, la sentencia siguiente escribe los datos del nodo cabecera.

printf("s1f", (*ptr_cabeza) . dato);
(*ptr_cabeza) m enbro dato del nodo apuntado por ptr_cabeza

Precaucion

Los paréntesis son necesarios alrededor de la primera parte de la expresion (*ptr_cabeza) ya
que los operadores unitarios que aparecen a la derecha tienen prioridad mas dta que los operadores
unitarios que aparecen en el lado izquierdo (el asterisco de indireccion).

Sin los paréntesis, el significado de pt r_cabexza producird un error de sintaxis, al intentar evaluar
ptr - cabeza. dat o antes de la indireccién o desreferencia.

P -> m significalo mismo que (*p) .m

Utilizando el operador de seleccién -= se pueden imprimir los datos del primer nodo de la lista

printf ("$1f" ,ptr_cabeza->dato) ;

Error

Uno de los errores tipicos en el tratamiento de punteros €s escribir la expresién *p o bien p->
cuando el valor del puntero p es el puntero nulo, ya que como se sabe el puntero nulo no apunta
a nada.

14.3.5. Construccién de una lista

Un algoritmo para la creacion de una lista enlazada entrafia los siguientes pasos:
Paso |. Declarar el tipo de dato y el puntero de cabeza o primero.
Puso 2. Asignar memoria para un elemento del tipo definido anteriormente utilizando alguna de
las funciones de asignacion de memoria (malloc () ,calloc (), realioc ())Yy un cast
para la conversion de voia* al tipo puntero a nodo; la direccion del nuevo elemento es

ptr_nuevo.

»,

446 Programacioén en C. Metodologia, algoritmos y estructura de datos

Paso 3. Crear iterativamente el primer elemento (cabeza) y los elementos sucesivos de una lista
enlazada simplemente.
Puso 4. Repetir hasta que no haya mas entrada para el elemento.

Ejemplo 14.2
Crear una lista enlazada de elementos que almacenen datos de tipo entero.
Un elemento de la lista se puede definir con la ayuda de la estructura siguiente:

struct El enento

{
i nt dato;
struct El enento * siguiente;

by

t ypedef struct El enento Nodo;

En la estructura El enent o hay dos miembros, dat o y siguiente que es un puntero al siguiente
nodo y dat o que contiene el valor del elemento de la lista. También se declara un nuevo tipo: Nodo
que es sindnimo de st ruct El enent o. El siguiente paso para construir la lista es declarar la variable
Pri mer o que apuntara al primer elemento de la lista:

Nodo "Prinmero = NULL /* o bien = 0 */

El puntero Pri ner o (también se puede llamar Cabeza) se ha inicializado a un valor nulo, lo que
implica que la lista esta vacia (no tiene elementos). Ahora se crea un elemento de la lista, para ello hay
que reservar memoria, tanta como tamafio tiene cada nodo, y asignar la direccién de la memoria
reservada al puntero Pri ner o:

Prinero = (Nodo*)malloc(sizeof (Nodo));

Con el operador sizeof se obtiene el tamafio de cada nodo de la lista, la funcidn mai i oc ()
devuelve un puntero genérico (void*), por lo que se convierte a Nodo*. Ahora se puede asignar un
valor al campo dato:

Prinmero -> dato = 11;
Primero ->» siguiente = NUILL;

Primero

El puntero Pri ner o apunta al nuevo elemento, que se inicializa a | I. EI campo si gui ent e del
nuevo elemento toma el valor nulo, por no haber un nodo siguiente. La operacidn de crear un nodo se
puede hacer en una funcién a la que se pasa el valor del campo dat o y del campo si gui ent e. La
funcion devuelve un puntero al nodo creado:

Nodo* Crearnodo(int X, Nodo* enl ace)
{
Nodo *p;
p = (Nodo*)malloc (sizeof (Nodo)) ;
p->dato = X;
p->siguiente = enl ace;
return p;

-

Listas enlazadas 447

La lamada a la funcién Cr ear nodo () para crear el primer nodo de la lista:
Prinmero = Crearnodo (11, NULL);

Si ahora se desea afiadir un nuevo elemento con un valor 6, y situarlo en el primer lugar de la lista se
escribe simplemente:

Prinmero = Crearnodo (6,Primero);

= 6 e =1l NILI,

Por Ultimo para obtener una lista compuesta de 4 , 6, 11se habria de ejecutar:

Prinmero = Crearnodo (4, Primero) ;

- P =] 19 :
! L L LI l ¥

14.3.6. Insertar un elemento en una lista

El algoritmo empleado para afiadir o insertar un elernento en una lista enlazada varia dependiendo de la
posicion en que se desea insertar el elemento. La posicién de insercion puede ser:

o En la cabeza (elemento primero) de la lista.
En el final de la lista (elemento Gltimo).

o Antes de un elemento especificado.

o Después de un elemento especificado.

L]

Insertar un nuevo elemento en la cabeza de una lista

Aungue normalmente se insertan nuevos datos al final de una estructura de datos, es mas facil y mas
eficiente insertar un elemento nuevo en la cabeza de una lista. El proceso de insercion se puede resumir
en este algoritmo:

1. Asignar un nuevo nodo apuntado por nuevo que es una variable puntero local que apunta al
nuevo nodo que se va a insertar en la lista.

2. Situar el nuevo elemento en el campo dat o (| nf o) del nuevo nodo.

3. Hacer que el campo enlace si gui ent e del nuevo nodo apunte a la cabeza (primer nodo) de la
lista original.

4. Hacer que cabeza (puntero cabeza) apunte al nuevo nodo que se ha creado.

Ejemplo 14.3
Una lista enlazada contiene tres elementos, 10, 25 v 40. Insertar un nuevo elemento, 4, en cabeza de la

|.I'|r||'

Pavox [v 2

448 Programacion en C. Metodologia, algoritmos y estructura de datos

_ : |
| o——w»=f 10 | ot - 25 1o

Codigo C
typedef int Item
typedf struct tipo- nodo
{
It emdat o;
struct tipo- nodo* siguiente;
} Nodo; /* decl araci 6n del tipo Nodo */

Nodo* nuevo;
nuevo = (Nodo*)malloc (sizeof(Nodo));/* se asigna un nuevo nodo */
nuevo -> dato = entrada;

Paso 3
El campo enlace (si gui ent e) del nuevo nodo apunta a la cabeza actual de la lista
Codigo C
nuevo -> siguiente = cabeza;
§ = 1
[=—}—= | -
) 1 1 |
| _ = i -
-l 0 | e |-| 25 l-.] - NTULL
cabeza T | | 8 | A -
| =
Paso 4

Se cambia el puntero de cabeza para apuntar al nuevo nodo creado: es decir, el puntero de cabeza apunta
al mismo sitio que apunte nuevo

Cddigo C

cabeza = nuevo;

cabeza - nuevo;

nuevo

Listas enlazadas 449

En este momento, la funcion de insertar un elemento en la lista termina su ejecucion y la variable
local nuevo desaparece y sélo permanece el puntero de cabeza cabeza que apunta a la nueva lista
enlazada

o - 4 - I-l 10 w25 - = NULI
L | | I T |

El cddigo fuente de la funcién | nsert ar Cabezali st a

voi d InsertarCabezal.ista(Nodo** cabeza, |tem entrada)

Nodo *nuevo ;

nuevo = (Nodo*)malloc (sizeof (Nodo)); /* asignha nuevo nodo */

nuevo -> dato = entrada; /* pone elenento en nuevo */

nuevo -> siguiente = *cabeza; /* enlaza nuevo nodo al frente de
la lista */

cabeza = nuevo; / mueve puntero cabeza y apunta

al nuevo nodo */

Casoparticular

La funcion | nsert ar Cabezali st a actla también correctamente si se trata el caso de afiadir un primer
nodo o elemento a una lista vacia. En este caso, y como ya se ha comentado cabeza apunta a NULL y
termina apuntando al nuevo nodo de la lista enlazada.

Ejercicio 14.1

Crear una lista de nimeros aleatorios e insertar los nuevos nodos por la cabeza de la lista. Un vez
creada la lista, & ha de recorrer los nodos pura mostrar los nimeros pares.

Andlisis
La funcién | nsert ar Cabezali st a() afiade un nodo a la lista, siempre como nodo cabeza. El priiner
argumento es un puntero a puntero porgue tiene que modificar la variable cabeza, que es a su vez un

puntero a Nodo. La funcion NuevoNodo () reserva memoria para un nodo, asigna el campo dato y
devuelve la direccion del nodo creado.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <time.h>
#def i ne MX 99
typedef int item

typedef struct El enento

I
L

It em dat o;
struct El enmento* siguiente;
}Nodo;

voi d InsertarCabezalista (Nodo** cabeza, |tementrada);
Nodo* NuevoNodo({Item X);
void main()

450 Programacién en C. Metodologia, algoritmos y estructura de datos

Iltemd;
Nodo *cabeza, *ptr;
int k;

cabeza = NULL; [/* Inicializa cabeza a lista vacia */
random ze() ;
/* B bucle termina cuando se genera el nUmero aleatorio 0 */
for (d=random(MX); d;)
1
InsertarCabezalista (&cabeza,d) ;
d = random(MX) ;

/* Ahora se recorre la lista para escribir | os pares */

for (k=0,ptr=cabeza; ptr; |
1

if (ptr->dato%2 == 0)
{
printf ("34 ",ptr->dato) ;
K++;
printf ("$c”, (k%122 “:'\n’)); /*cada 12 datos salta de |linea */

}
ptr = ptr-=siguiente;
}
printf ("\n\n") ;
}

voi d TnsertarCabezalista (Nodo** cabeza, Itementrada)
A
Nodo *nuevo
nuevo = NuevoNodo (entrada) ;
nuevo -> siguiente = *cabeza; /* enlaza nuevo nodo al
frente de la lista */
cabeza = nuevo; / mueve puntero cabeza y apunta a nuevt
nodo */

}

Nodo* NuevoNodo (Itemx)
{
Nodo *a ;
a - (Nodo*)malloc(sizeof (Nodo)); /* asigna nuevo nodo */
a -> dato = X;
a -> siguiente = NULL;
return a;

Insercion de un nuevo nodo que No esta en la cabeza de lista

La inserciéon de un nuevo nodo no siempre se realiza al principio (en cabeza) de la lista. Se puede inse
en el centro o al final de la lista.

Ejemplo 14.4

Se desea insertar un nuevo elemento 75 entre el elemento 25 y el elernento 40 en la lista enlazadal
25, 40.

Listas enlazadas 451

El algoritmo de la nueva operacion insertar requiere las siguientes etapas:

1. Asignar el nuevo nodo apuntado por el puntero nuevo.

2. Situar el nuevo elemento en el campo dato (Info) del nuevo nodo.

3. Hacer que el campo enlace si gui ent e del nuevo nodo apunte al nodo que va después de la
posicion del nuevo nodo (o bien a NULL si no hay ningn nodo después de la nueva posicién).

4. En la variable puntero ant eri or tener la direccion del nodo que esta antes de la posicién
deseada'para el nuevo nodo. Hacer que ant eri or -> si gui ent e apunte al nuevo nodo que se
acaba de crear.

Etapas |y 2
Se crea un nuevo nodo que contiene a 75

- I |
- 10 - 1 -l - | ;
w b | ras S iera
g £ - Fi=!]
Cédigo C
nuevo = (Nodo*)malloc (si zeof(Nodo))
nuevo -> dato = entrada ;
Etapa 3
L
¥ e T 1
10 L [25 I - - &}
| ! ‘

—

452

Programacién en C. Metodologfa, algoritmos y estructura de datos

Codigo C
nuevo -> siguiente = anterior -> siguiente
Etapa 4
f
anterior L]

]]
10 [— il - - r NUL L
= - 1 =] |
. - |
| |
-]
- ! - = T | -
nuevo L
nuevo

Despueés de ejecutar todas las sentencias de las sucesivas etapas, la nueva lista comenzaria en el nodo 10,
seguiria 25, 75y, por Ultimo, 40.

Codigo C
voi d InsertarLista(Nodo* anterior,Item entrada)

{
Nodo *nuevo;

nuevo = (Nodo*)malloc(sizeof (Nodo)) ;

nuevo -> dato = entrada;

nuevo -> siguiente = anterior -> siguiente;
anterior -> siguiente = nuevo;

Insercion al final de la lista

La insercién al final de la lista es menos eficiente debido a que, normalmente, no se tiene un puntero al
Ultimo elemento de la lista y entonces se ha de seguir la traza desde la cabeza de la lista hasta el Ultimo
nodo de la lista y a continuacion realizar la insercion. Cuando ul t i no es una variable puntero que
apunta al Ultimo nodo de la lista, las sentencias siguientes insertan un nodo al final de la lista.

ultinb -> siguiente = (Nodo*)malloc(sizeof (Nodo));
ultino -> siguiente -> dato = entrada;

ultinmb -> siguiente -> siguiente = NULL

ultino = ultinob -> siguiente;

La primera sentencia asigna un nuevo nodo que esta apuntado por el campo si gui ent e al Gltimo
nodo de la lista (antes de la insercidon) de modo que el nuevo nodo ahora es el Gltimo nodo de la lista.
La segunda sentencia establece el campo dat o del nuevo Ultimo nodo al valor de ent r ada. La tercera
sentencia establece el campo si gui ent e del nuevo Ultimo nodo a NULL. La Gltima sentencia pone la
variable u1ti no al nuevo ultimo nodo de la lista.

Listas enlazadas 453

14.3.7. Busqueda de un elemento

Dado que una funcién en C puede devolverun puntero, el algoritmo que sirva para localizar un elemento
en una lista enlazada puede devolver un puntero a ese elemento.

. = 575 | @ = 41.0% wd --] 101. 43| wi =l

La funcién BuscarLista utiliza una variable puntero denominada i ndi ce que va recorriendo la
lista nodo a nodo. Mediante un bucle, I ndi ceapunta a los nodos de la lista de modo que si se encuentra
el nodo buscado, se devuelve un puntero al nodo buscado con la sentencia de retorno (return); en el
caso de no encontrarse el nodo buscado la funcién debe devolver NULL (return NULL)

Caddigo C
Nodo* Buscarlista (Nodo" cabeza, Item destino)
/* cabeza: puntero de cabeza de una |lista enl azada.
destino: dato que se busca en la lista.
indice: valor de retorno, puntero que apunta al priner
nodo que contiene el destino (el enentobuscado);
si no existe el nodo, se devuel ve puntero nul o.
*/

Nodo "i ndi ce;

for (indice= cabeza; indice != NULL; indice = indice ->
si gui ent e)
if (destino== indice -> dato)
return indice;

Ejemplo 14.5

En este ejemplo se escribe una funcion para encontrar la direccion de un nodo dada su posicion en
una lista enlazada.
Anélisis

El nodo o elemento se especifica por su posicion en la lista; para ello se considera posicion 1, la
correspondienteal nodo de cabeza, posicion 2, la correspondiente al siguiente nodo, y asi sucesivamente.
El algoritmo de busqueda del elemento comienza con el recorrido de la lista mediante un puntero
i ndi ce que comienza apuntando al nodo cabeza de la lista. Un bucle mueve el i ndi ce hacia adelante
el nimero correcto de sitios (lugares). A cada iteracion del bucle se mueve el puntero i ndi ce un nodo
hacia adelante. El bucle termina cuando se alcanza la posicion deseada e i ndi ce apunta al nodo
correcto. El bucle también se puede terminar si i ndi ce apunta a NULL, lo que indicara que la posicion
solicitada era mas grande que el nimero de nodos de la lista.

Codigo C
Nodo* BuscarPosicion(Nodo "cabeza, size-t posicion)
/* B programa que |lane a esta funci én ha de incluir
bi blioteca stdlib.h (parainplenentar tipo size-t)
*/

.
1

Nodo "i ndi ce;

454 Programacion en C. Metodologia, algoritmos y estructura de datos

size-t i;

if (0 < posicion) /* posicion ha de ser mayor que O */
return NULL;

i ndi ce = cabeza;

for (1 = 1 ;(i < posiciodn) && (indice!= NULL) ; i++)

| indice = indice -> siguiente;

I return indice;

| 14.3.8. Supresion de un nodo en una lista

La operacion de eliminar un nodo de una lista enlazada supone enlazar el nodo anterior con el noc
siguiente al que se desea eliminar y liberar la memoria que ocupa. El algoritmo para eliminar un noc
que contiene un dato se puede expresar en estos pasos:

1. Busqueda del nodo que contiene el dato. Se ha de tener la direccién del nodo a eliminary
direccion del anterior.

2. El puntero si gui ent e del nodo anterior ha de apuntar al si gui ent e del nodo a eliminar.

3. En caso de que el nodo a eliminar sea el primero, cabeza, se modifica cabeza para que teng
la direccion del nodo si gui ent e.

4. Por ultimo, se libera la memoria ocupada por el nodo.

A continuacidn se escribe una funcién que recibe la cabeza de la lista y el dato del nodo que ¢
quiere borrar.

void elimnar (Nodo** cabeza, item entrada)
{
= Nodo* actual, "anterior;
int encontrado = O;

actual = *cabeza; anterior = NULL;
/* Bucl e de busqueda */
while (({actual!=NULL) && (!encontrado))
{
encontrado = (actual->dato = = entrada);
if (!encontrado)
{
anterior = actual;
actual = actual -> siguiente;
}
|

/* Enl ace de nodo anterior con siguiente */
if (actual '= NULL)
t)
/* Se distingue entre que el nodo sea el cabecera o del
resto de la lista */
if (actual == *cabeza)

"cabeza = actual ->si gui ent e;

|
el se {
anterior -> siguiente = actual ->siguiente

free (actual);

s

Ejercicio 14.2

Analisis

#incl ude <«stdio.h>

#i ncl ude <stdlib.h>

#i ncl ude <time.h>

#defi ne MX 101

typedef int Item
typedef struct El enento
J

| t emdat o;
struct Elemento* Siguiente;
}Nodo;

voi d InsertaOrden (Nodo** cabeza,
Nodo* NuevoNodo(Item x);
voi d recorrer (Nodo* cabeza);

voi d main ()

Itemd;
Nodo* cabeza;

cabeza = NULL; /* Inicia 1za cabeza a

randomize () ;

/* Bl bucle termina cuando se genera €

for (d=random(Mx); d;)
{
nsertalOrden (&cabeza,d) ;
= random (MX) ;
}

recorrer (cabeza) ;

1

voi d lnsertaOrden (Nodo** cabecza,
{
Nodo *nuevo;

nuevo = NuevoNodo (entrada) ;

if ("cabeza == NULI)
"cabeza = nuevo;

Se desea crear una lista enlazada de nimeros enteros ordenada. La lista va estar organizada de tal
forma que el nodo cabecera tenga el menor elemento, v asi en orden creciente los demas nodos. Una vez
creada la lista, se recorre para escribir los datos por pantalla.

La funcion Insertaorden () aflade los nuevos elementos. Inicialmente la lista se crea con el primer
valor. El segundo elemento se ha de insertar antes del primero o después, dependiendo de que sea menor
0 mayor. Asi, en general, para insertar un nuevo elemento, primero se busca la posicién de insercion en
la lista actual, que en todo momento esta ordenada, del nodo a partir del cual se ha de enlazar el nuevo
nodo para que la lista siga ordenada. La funcion r ecorrer () avanza por cada uno de los nodos de la
lista con la finalidad de escribir el campo dato.

ltcmentrada) ;

Item entrada)

else if (entrada=« (*cabeza)->dato)

{
nuevo -> siguiente = *cabeza;
*cabeza = nuevo;

Listas enlazadas

lista vacia */

ninero aleatorio O */

456 Programacion en C. Metodologia, algoritmos y estructura de datos

}
el se /* busqueda del nodo anterior a partir del que

se debe insertar */
{

Nodo* anterior, *p;
anterior = p = "cabeza;

while ((p->siguiente!= NLL,) && (entrada> p->dato))
{

anterior = p;

p = p->siguiente;
}

if (entrada> p->dato) /* se inserta después del U tinmo nodo */
anterior = p;

/* Se procede al enlace del nuevo nodo */
nuevo -> siguiente = anterior -> siguiente;
anterior -> siguiente = nuevo;

Nodo* NuevoNodo (Item x)
1

Nodo *a

a = (Nodo*)malloc{sizeof (Nodo)); /* asigna nuevo nodo */
a -> dato = x; /* pone el emento en nuevo */

a -> siguiente = NULL

return a;

}

voi d recorrer (Nodo* cabeza)
{
int k;
printf ("\n\t\t Lista Ordenada \n") ;
for (k=0; cabeza; cabeza=-cabeza->siguiente)
{
printf ("sa ", cabeza->dat 0);
k++;
printf ("$c", (k%15 2> ~:'\n’));
}
printf ("\n\n") ;

14.4. LISTA DOBLEMENTE ENLAZADA

Hasta ahora el recorrido de una lista se realizaba en sentido directo (adelante)o, en algunos casos, en
sentido inverso (haciaatras). Sin embargo, existen numerosas aplicaciones en las que es conveniente
poder acceder a los elementos o nodos de una lista en cualquier orden. En este caso se recomienda el
uso de una lista doblemente enlazada. En tal lista, cada elemento contiene dos punteros, aparte del
valor almacenado en el elemento. Un puntero apunta al siguiente elemento de la lista y el otro puntero
apunta al elemento anterior. La Figura 14.6muestra una lista doblemente enlazada y un nodo de dicha
lista.

Listas enlazadas 457

- | Izguisnda Crabo Damacho I— -
I

(b)

Figura 14.6. Lista doblemente enlazada. (a)Lista contres nodos; (b) nodo.

Existe una operacidn de insertar y eliminar (borrar) en cada direccion. La Figura 14.7 muestra el
problema de insertar un nodo p a la derecha del nodo actual. Deben asignarse cuatro nuevos enlaces

Nodo actual

l | I" L :D_-**!‘_| I |

Figura 14.7. Insercion de un nodo en una lista doblemente enlazada

En el caso de eliminar (borrar) un nodo de una lista doblemente enlazada es preciso cambiar dos
punteros.

Figura 14.8. Eliminaciéon de un nodo en una lista doblemente enlazada.

14.4.1. Declaracionde una lista doblemente enlazada

Una lista doblemente enlazada con valores de tipo i nt necesita dos punteros y el valor del campo datos.
En una estructura se agrupan estos datos del modo siguiente:

typedef int Item
struct unnodo
|
| t em dat o;
struct unnodo *adel ant e;

458 Programacioén en C. Metodologia, algoritmos y estructura de datos

struct unnodo *atras;
b
typedef struct unnodo Nodo;

14.4.2. Insertar un elemento en una lista doblemente enlazada

El algoritmo empleado para afiadir o insertar un elemento en una lista doble varia dependiendo de la
posicién en que se desea insertar el elemento. La posicion de insercion puede ser:

o En la cabeza (elemento primero) de la lista.
o En el final de la lista (elemento Ultimo).

o Antes de un elemento especificado.

o Después de un elemento especificado.

Insertar un nuevo elemento en la cabeza de una lista doble
El proceso de insercion se puede resumir en este algoritmo:

1. Asignar un nuevo nodo apuntado por nuevo que es una variable puntero local que apunta al
nuevo nodo que se va a insertar en la lista doble.

2. Situar el nuevo elemento en el campo dat o (1nfo) del nuevo nodo.

3. Hacer que el campo enlace adel ant e del nuevo nodo apunte a la cabeza (primer nodo) de la lista
original, y que el campo enlace at. ras del nodo cabeza apunte al nuevo nodo.

4 Hacer que cabeza (puntero cabeza) apunte al nuevo nodo que se ha creado.

Codigo C

typedet int Item

typedf struct tipo- nodo

{
I tem dat o;
struct tipo- nodo* adel ant e;
struct tipo_nodo* atras;

}Nodo;

Nodo* nuevo;

nuevo = (Nodo*)malloc{sizeof (Nodo));
nuevo -> dato = entrada

nuevo -> adel ante = cabeza;

nuevo -> atras = NULL;

cabeza - atras = nuevo;

cabeza = nuevo;

En este momento, la funcién de insertar un elemento en la lista termina su ejecucién y la variable
local nuevo desaparece y s6lo permanece el puntero de cabeza cabeza que apunta a la nueva lista
doblemente enlazada.

Insercion de un nuevo nodo que no esta en la cabeza de lista
La insercion de un nuevo nodo en una lista doblemente enlazada se puede realizar en un nodo intermedio
de ella. El algoritmo de la nueva operacion insertar requiere las siguientes etapas:

1. Asignar el nuevo nodo apuntado por el puntero nuevo.

2. Situar el nuevo elemento en el campo dato (Info) del nuevo nodo.

3. Hacer que el campo enlace adel ant e del nuevo nodo apunte al nodo que va después de la
posicion del nuevo nodo (obien anNULL si no hay ningln nodo después de la nueva posicion).El
campo at r as del nodo siguiente al nuevo tiene que apuntar a nuevo.

Listas enlazadas 459

4. Ladireccion del nodo que esté antes de la posicion deseada para el nuevo nodo esta en la variable
puntero ant er i or . Hacer que ant eri or -> adel ant e apunte al nuevo nodo. El enlace atras
del nuevo nodo debe de apuntar a ant er 10r .

Cédigo C

nuevo = (Nodo*)malloc (sizeof (Nodo)) ;

nuevo -> dato = entrada ;

nuevo -> adelante = anterior -> adel ante;

anterior -> adelante -> atras = nuevo; /* canpo atras del siguiente
apunta al nodo nuevo creado */

anterior -> adelante = nuevo;

nuevo -> atras = anterior;

14.4.3. Supresion de un elemento en una lista doblemente enlazada

La operacion de eliminar un nodo de una lista doble supone realizar el enlace de dos punteros, el nodo
anterior con el nodo siguiente al que se desea eliminar con el puntero adel ant e y el nodo siguiente con
el anterior con el puntero at r as Y liberar la memoria que ocupa.

El algoritmo para eliminar un nodo que contiene un dato es similar al algoritmo de borrado para
una lista simple. Ahora la direccion del nodo anterior se encuentra en el puntero at r as del nodo a
borrar. Los pasos a seguir:

1. Busqueda del nodo que contiene el dato. Se ha de tener la direccidn del nodo a eliminar y la
direccion del anterior.

2. El puntero adel ant e del nodo anterior tiene que apuntar al puntero adel ant e del nodo a
eliminar, esto en el caso de no ser el nodo cabecera.

3. El puntero at ras del nodo siguiente a borrar tiene que apuntar al puntero at r as del nodo a
eliminar, esto en el caso de no ser el nodo Gltimo.

4. En caso de gque el nodo a eliminar sea el primero, cabeza, se modifica cabeza para que tenga
la direccion del nodo si gui ent e.

5. Por dltimo, se libera la memoria ocupada por el nodo.

La codificacidn se presenta en la siguiente funcion:

void elimnar (Nodo** cabeza, itementrada)

Nodo* act ual ;
int encontrado = O

ictual - *cabeza;
/* Bucle de busqueda */
while ((actual!=NULL) && (!encontrado))

encontrado = (actual->dato == entrada);
if (!encontrado)
actual = actual -> adelante;

1

/* Enl ace de nodo anterior con siguiente */
if (actual !'= NULL)
{
/* Se distingue entre que el nodo sed el cabecera o de
resto de la lista */
if (act ual == *cabeza)
{

"cabeza = actual ->adel ant e;

460

Programacion en C. Metodologia, algoritmos y estructura de datos

if (actual ->adel ante != NULL)
actual->adelante->atras = NULL;
}
else if (actual->adelante != NULL) /* No es el Ultimo nodo */
{
actual -> atras ->adel ante = actual - adel ant e;
actual -> adelante -» atras = actual -> atras;

}
el se { /* ultinm nodo */
actual -> atras -> adelante = NULL

free(actual);

}

Ejercicio 14.3

Se va a crear una lista doblemente enlazada con nimeros enteros obtenidos aleatoriamente. Una vez
creada la lista se desea eliminarse los nodos que esténfuera de un rango determinado.

Anélisis

La insercion de elementos en la lista se hace por el nodo cabecera. EI nimero de elementos de la lista
se pide para ser introducido por teclado. También se pide por teclado el rango de valores que deben de
estar en la lista. Para eliminar los elementos se recorre la lista, los nodos que no estan dentro del rango

se borran de la lista. Para borrar los nodos se utiliza la funcién eli ni nar () ,teniendo en cuenta que la
direccion del nodo a suprimir ya se tiene.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <time.h>

typedef int Item
t ypedef struct El enento
{
| t em dat o;
struct El enento" adel ant e;
struct El enento* atras;
}Nodo ;
voi d InsertarCabezalista(Nodo** cabeza, ltem entrada);
Nodo* NuevoNodo (Item X) ;
voi d eliminar (Nodo** cabeza, Nodo* actual);
voi d recorrer (Nodo* ptr);

void main()

{
Nodo* cabeza, *ptr;
int x,v;

cabeza = NULL; /* Inicializa cabeza a lista vacia */
random ze() ;
printf("\n Nimero de el enentos a generar: ");
scanf ("%d" ,&x) ;
/* Se genera la lista doble */
for (; X--;)
{

InsertarCabezalista (&cabeza, rand()) ;
|

Listas enlazadas

recorrer (cabeza);

printf ("\nRango de los valores que va a tener la lista: "y;
scanf ("%d %d", &x, &y) ;

/* Recorre la lista para d iminar nodos que no estan en
el rango de val ores */
printf ("\n\tNodos eliminados\n") ;
for (ptr=cabeza; ptr; |

if ((ptr->dato<x) || (ptr >dato>y))
{
Nodo* t ;
t = ptr->adelante; /* Guarda el nodo por el que seguir */
printf ("$-d ",ptr->dato) ;
eliminar (&cabeza,ptr) ;
ptr =t;
|
el se
ptr = ptr->adel ante;

/* Recorre la lista para nostrar sus clementos */
recorrexr (cabeza) ;

void elimnar (Nodo** cabeza, Nodo* actual)
{
/* Elimna el nodo de direccion act ual
Se distingue entre que el nodo sea el cabecera o de
resto de la lista.
*/
if (actual == *cabeza)
{
*cabeza = actual ->adel ant e;
if (actual ->adel ante != NULL)
actual->adelante->atras = NULL;
}
else if (actual ->adel ante 1= NULL) /* No es el Utino nodo */
{
actual -> atras ->adel ante = actual -> adel ante;
actual -> adelante -> atras = actual -> atras;

el se ¢ /* Utinm nodo */
actual -> atras -> adelante = NULL

free(actual);
}

voi d recorrer (Nodo* ptr)
{

int k = 0
printf ("\n\n\t El ementos de la lista\n") ;
for (; ptr ;)
{
k++

printf ("%$-5d4",ptr -> dato);
printf ("sc", (k%12==0?'\n":" *));

461

462 Programacion en C. Metodologia, algoritmos y estructura de datos

ptr = ptr -» adelante;

}

void InsertarCabezaLista (Nodo** cabcza, Item entrada)
{
Nodo* nuevo;

nuevo = NuevoNodo (entrada) ;
nuevo -- adelante = *cabecza;
nuevo -> atras = NULL;
if (*cabeza != NULL)
("cabeza) -> atras = nuevo;
*cabeza = nuevo;
I

| Nodo* NuevolNodo {Item x)
{
Nodo *a
4 a = (Nodo*)malloc [i 1
| a -> dato = X;
| a -> adelante = a
return a;

14.5. LISTAS CIRCULARES

] En las listas lineales simples o0 en las dobles siempre hay un primer nodo y un Gltimo nodo que tiene el

-, campo de enlace a nulo. Una lista circular, por propia naturaleza no tiene ni principio #¢ fin. Sin
embargo, resulta Util establecer un nodo a partir del cual se acceda a la lista y asi poder acceder a sus
nodos. La Figura 14.9 muestra una lista circular con enlace simple; podria considerarse como una lista
lineal, de tal manera que el Ultimo nodo apunta al primero.

Figura 14.9. Lista circular.

Las operaciones que se realizan sobre una lista circular son similares a las operaciones sobre listas
lineales, teniendo en cuenta que el i1+ imo nodo no apunta a nulo sino al primero. La creacion de una
lista circular se puede hacer con un enlace simple o un enlace doble. Consideramos que la lista circular
se enlaza con un solo enlace, la realizacion con enlace adelante y atrds es similar (se puede consultar
el Apartado 14.4).

14.5.1. Insertar un elemento en una lista circular

El algoritmo empleado para afiadir o insertar un elemento en una lista circular varia dependiendo de la
posicion en que se desea insertar el elemento. La posicion de insercion puede variar, consideramos que

Listas enlazadas 463

se hace como nodo anterior al del nodo de acceso a la lista i.:, y que Lc tiene la direccidn del Gltimo
nodo insertado. A continuacion se escribe la declaracion de un nodo, una funcion que crea un nodo y la
funcidn que inserta el nodo en la lista circular.

typedef char* ltem
typedcf struct ®lemento
{
Iltemdato;
struct H enento" siguiente;
} Nodo ;

Nodo* NuevoNodo(Ttem X
{

Nodo *a

a = (Nodo*)malloc (s

a -> dato = X;

a -> siyuiente = u; S 1Y E i " ;
ret-urn a;

1
f

void TnsertaCircular (Nodo**
{

t

Nodo* nuevo;

nuevo = NuevoNodo(entrada
if (*Lc !'= NULL) /* 1i i ; ®

nuevo = siguiente = (*

}
*Lc = NUevo;

14.5.2. Supresion de un elemento en una lista circular

La operacion de eliminar un nodo de una lista circular sigue los mismos pasos que los dados para
eliminar un nodo en una lista lineal. Hay que enlazar el nodo anterior con el nodo siguiente al que se
desea eliminary liberar la memoria que ocupa. El algoritmo para eliminar un nodo de una lista circular:

1. Busqueda del nodo que contiene el dato.

2. Se enlaza el nodo anterior con el siguiente.

3. En caso de que el nodo a eliminar sea el referenciado por el puntero de acceso a la lista, 1., se
modifica Lc para que tenga la direccion del nodo anterior.

4 Por Gltimo, se libera la memoria ocupada por el nodo.

En la funcion de eliminar hay que tener en cuenta la caracteristica de lista circular, asi para detectar
si la lista es de un solo nodo ocurre que se apunta a él mismo.

L.c == Le->siguiente Siesta expresion escierta la lista consta de un solo nodo.

A continuacién se escribe el codigo de la funcion eliminar para una lista circular. Para ello recorre
la lista con un puntero al nodo anterior, por esa raz6n se accede al dato con la sentencia
actual->siyuient e->dato.

Esto permite, en el caso de encontrarse el nodo, teneren actual el nodo anterior. Después del bucle
es necesario volver a preguntar por el campo dato, ya que no se compar6 el nodo Lc y el bucle puede
haber terminado sin encontrar el nodo:

464 Programacion en €. Metodologia, algoritmosy estructura de datos

Codigo C
void elimnar (Nodo** Lc, |tem entrada)

{
Nodo* actual ;

int encontrado = O

actual = *Lc;
/* Bucl e de busqueda */
while ((actual->siguiente!= *Lc) && (!encontrado))
{
encontrado = (actual->siguiente->dato == entrada);
if (!encontrado)
{
actual = actual -> siguiente;
}

!

}
encontrado = (actual-»siguiente->dato == entrada);

t

/* Enl ace de nodo anterior con siguiente */

if (encontrado)
{

Nodo* p;
p = actual ->sigui ente; /* Nodo a elimnar */
if (*Lc == (*Lc)->siguiente) [/* Lista con un sol o nodo */
*Le = NULL;
el se {
if (p == *Lc)

{
Lc = actual; / Se borra el elenento referenciado por Lc;
el nuevo acceso a la lista es el anterior */
}
act ual ->si gui ente = p->siguiente;
}
freelp);

Ejercicio 14.4
Este ejercicio crea una lista circular con palabras leidas del teclado. El programa debe tener |
conjunto de opcionespara:

a) Mostrar las cadenas que forman la lista;

b) Borrar una palabra dada;

c¢) Al terminar la ejecucién, recorrer la lista eliminando los nodos.

Anélisis

Los nodos de la lista tienen como campo dato un puntero a una cadena que es la palabra. Desde
teclado se lee la palabra en un buffer suficientemente amplio; se ha de reservar memoria para tant
caracteres como longitud (st rien()) tenga la cadena leida y asignar su direccion al puntero del nod
a continuacion se copia el buffer a la memoria reservada (campo dato del nodo). El nodo se inser

llamando a la funcion insertacircular (). Para borrar una palabra se llama a la funci
elimnar ().

#i ncl ude <stdio.h>
#i ncl ude <string.h>

Listas enlazadas

typedef char* Item
typedef struct El enento
{
|t em dat o;
struct El ement o* siguiente;
} Nodo;

Nodo* NuevoNodo (Item X) ;

voi d InsertaCircular (Nodo** Lc, |tementrada);
voi d eliminar (Nodo** Lc, |ltementrada);

voi d recorrer (Nodo* Lc);

voi d borrarlista (Nodo** Lc);

int main()

char cadenal81] ;
Nodo *Lc; int opc;

Le = NULL;

printf ("\n\n Entrada de Nonbres. Termina con "“z.\n");
whil e (gets(cadena))

{

InsertaCircular (&Lc, cadena) ;

}
recorrer (Lc) ;

puts ("\n\n\t Opciones para manejar la lista");

do {
puts("\n 1. Elimar una palabra de la lista circular.\n");
puts ("\n 2. Mostrar todos |os elenentos de la lista.\n");
puts("\n 3. Salir y elimnar |los nodos de la lista.\n");

do {
scanf ("$d%*c", &opc) ;
twhile (opc<l |1 opc>3);

switch (opc) {
case 1: printf ("Palabraa elimnar: ") ;
gets (cadena);
eliminar (&Lc, cadena) ;
br eak;
case 2: printf("\nPalabras que continen |la Lista:\n");
recorrer (Lc) ;
br eak;
case 3: puts("Eliminacién de los nodos de la lista.");

}
} while opc 1= 3);

return O;
}

Nodo* NuevoNodo (Item x)
{
Nodo *a

a = (Nodo*)malloc(sizeof (Nodo)) ;
/* Se reserva nenoria para |a cadena */
a -> dato = (char*) malloc((strlen(x)+1)*sizeof (char)) ;
strcpy (a->dato, x) ;
a -> siguiente = a; /* apunta asi misnmo, es un nodo circular */
return a;

465

466 Programacioén en C. Metodologia, algoritmos y estructura de datos

void InsertaCircular (Nodo** Lo, Item ent rada)
Nodo* nuevo;

nuevo = NuevoNodo (entrada) ;

if (*Lc != NULL) /[* lista circular no vacia */
{

nuevo -> Siguiente = (*Lc) -> siguiente;

(*Lc) -> siguliente = nuevo;
}

*Lc = nuevo,

void elimnar (Nodo** Lc, Iltem entrada)
|

Nodo* actual ;

int encontrddo = O;

actual = *Lc;
/* Bucl e de busqueda */
while (lactual-=sigulente = *Lc) && (!encontrado)!

{
encontrado = strcnp{actual--siguiente->dato,entrada)==0;
if (tencontrado)
{
s actual = actual -> siguiente;
s }
y }

encontrddo = strcmp{actual-=siguiente--dat 0,entrada)==0;

/* Enl ace de nodo anterior con siquiente */
if (encontrddo

{
Nodo* p;
printf ("\nhodo de la palabra \" %s \" encontrado.\n", entrada) ;
p = actual->siguiente; /* Nodo a elimnar */
if (*Lc == (*Lc)-»siguiente) /* Lista con un solo nodo */
*Lc = NULL
el se {
if (p== *Lc)
{

,c = actual; / Se borra el elenento referenciado por Lc;
el nuevo accesc a la lista e; el anterior */
4

actual->siguiente - p-=siguiente;

voi d recorrer-(Nodo" Lc)

Nodo* p;
if (Lc !'= NULL)

i
3

S

Listas enlazadas 467

p = Lc->siguiente; /* Lc tiene e ultino nodo, el siguiente es
el prinero que se insertd */
do {
printf ("\t\t%s",p->dato);
p = p->siguiente;
lwhile(p != Lc->siguiente);

else
printf ("\n\t Lista vacia.\n") ;

voi d borrarlista(Nodo** Lc)
{

Nodo* p;

if (Lc != NULL)

{

p = *Lc;
do ¢
Nodo* t ; |
t = p; p = p->siguiente;
free(t);
}while(p '= *Lc) ;
) ;
el se 1
printf ("\n\t Lista vacia.\n") ;
*Lc = NULL;

14.6. RESUMEN |

La estructura de datos lista se puede implementar, Para borrar un elemento, primero hay que buscar
bien como un array, bien como una lista enlazada. el nodo que lo contieney considerar dos casos: borrar |
Una lista enlazadaes una estructura de datos dina- el primer nodo y borrar cualquier otro de la lista.

mica en la que sus componentesestan ordenadoslégi- El recorrido de una lista enlazada significa pasar

camente por sus campos punteros en vez de ordena- por cada nodo (visitar) y procesarlo. EI proceso pue-

dos fisicamente como estan en un array. El final de la de ser escribir su contenido, modificar el campo de

lista se sefiala mediante una constante o puntero espe- datos.

cial llamado NULL. Una lista doblemente enlazada es aquellaen la

La gran ventaja de una lista enlazada sobre un que cada nodo tiene un puntero a su sucesory otro a
array es que la lista enlazadapuede crecer y decrecer su predecesor.

en tamafio, ajustandose al nimero de elementos. Las listas doblemente enlazadas se pueden reco-
Una lista simplemente enlazada contiene sélo un rrer en ambos sentidos. Las operaciones bésicas son
enlace a un sucesor (inico, a menos que sea el tltimo, insercion, borrado y recorrer la lista; similares a las
€N cuyo caso no se enlaza con ningun otro nodo. listas simples.
Cuandose insertaun elementoen una lista enlaza- Una lista enlazada circularmente por propia
da, se deben considerar cuatro casos: afiadir a una lis- naturaleza no tiene primero ni Ultimo nodo. Las listas
ta vacia, afiadir al principio de la lista, afiadir en el circulares pueden ser de enlace simple o doble.

interior y afiadir al final de la lista.

468

14.7. EJERCICIOS

14.1.

14.2.

14.3.

14.4.

14.5.

14.6.

14.7.

Escribiruna funcién que devuelva cierto (# 0)
si la lista esta vacia.

Escribir una funcién entera que devuelva el
ndmero de nodos de una lista enlazada.

En una lista enlazada de nimeros enteros se
desea afiadir un nodo entre dos nodos consecu-
tivos con campos dato de distinto signo; el
valor del campo dato del nuevo nodo que sea la
diferencia en valor absoluto.

Escribir una funcion que elimine el nodo que
ocupa la posicion i, siendo el nodo cabecera el
que ocupa la posicion 0.

Escribir una funcidn que tenga como argumen-
to el puntero cabeza ai primer nodo de una
lista enlazada. La funcion debe de devolver un
puntero a una lista doble con los mismos cam-
pos dato pero en orden inverso.

Se tiene una lista simplemente enlazada de
ndmeros reales. Escribir una funcién para obte-
ner una lista doble ordenada respecto al campo
dato, con los valores reales de la lista simple.

Escribir una funcidn para crear una lista doble-
mente enlazada de palabras introducidas por
teclado. La funcion debe tener un argumento

14.8. PROBLEMAS

14.1.

Escribirun programa o funciones individuales
que realicen las siguientes tareas:

» Crear una listaenlazadade nimeros enteros
positivos al azar, la insercion se realiza por
el ultimo nodo.

» Recorrer la lista para mostrar los elementos
por pantalla.

« Eliminar todos los nodos que superen un
valor dado.

14.8.

14.9.

14.10.

14.11.

14.12.

14.2.

Programacion en C. Metodologia, algoritmos y estructura de datos

puntero 1.4 en el que se devuelva la direccion
del nodo que esta en la posicidn intermedia.

Se tiene que Lc es una lista circular de pala-
bras. Escribir una funcién que cuente el
namero de veces que una palabra dada se
encuentraen la lista.

Escribir una funcién entera que tenga como
argumento una lista circular de nimeros ente-
ros. La funcion debe de devolver el dato del
nodo con mayor valor.

Se tiene una lista de simple enlace, el campo
dato es un registro (estructura) con los cam-
pos de un alumno: nombre, edad, sexo. Escri-
bir una funcion para transformar la listade tal
forma que si el primer nodo es de un alumno
de sexo masculino el siguiente sea de sexo
femenino.

Una lista circular de cadenas estd ordenada
alfabéticamente.El puntero L.c tiene la direc-
cion del nodo alfabéticamente mayor, apunta
al nodo alfabéticamente menor. Escribir una
funcidn para afiadir una nueva palabra, en el
orden que le corresponda,a la lista.

Dada la lista del Ejercicio 14.11 escribir una
funcidn que elimine una palabra dada.

Se tiene un archivo de texto de palabras sepa-
radas por un blanco o el caracter de tin de linea.
Escribir un programa para formar una lista
enlazadacon las palabras del archivo. Una vez
formada la lista se pueden afiadir nuevas pala-
bras o borrar algunade ellas. Al finalizarel pro-
grama escribir las palabras de la lista en el
archivo.

143.

14.4,

14.5.

14.6.

14.7.

Un polinomio se puede representar como una
lista enlazada. El primer nodo de la lista repre-
senta el primer término del polinomio, el
segundo nodo al segundo término del polino-
mio y asi sucesivamente. Cada nodo tiene

[ey

Escribir un programa que permita dar
entrada a polinomios en x, representandolos
con una lista enlazada simple. A continuacién
obtener una tabla de valores del polinomio
para valoresde x =0.0, 0.5, 1.0, 1.5, ..., 5.0.

Teniendo en cuenta la representacion de un
polinomio propuesta en el Problema 14.3,
hacer los cambios necesarios para que la lista
enlazada sea circular. EI puntero de acceso
debe de tener la direccién del Ultimo término
del polinomio, el cual apuntara al primer tér-
mino.

Segun la representacién de un polinomio pro-
puesta en el Problema 14.4, escibir un progra-
ma para realizar las siguientes operaciones:

+ Obtener la lista circular suma de dos poli-
nomios.

» Obtener el polinomio derivada.

« Obtener una lista circular que sea el pro-
ducto de dos polinomios.

Escribir un programa para obtener una lista
doblemente enlazada con los caracteres de una
cadena leida desde el teclado. Cada nodo de la
lista tendrd un caracter.

Una vez que se tiene la lista ordenarla alfa-
béticamentey escribirla por pantalla.

Un conjunto es una secuencia de elementos
todos del mismo tipo, sin duplicidades. Escri-
bir un programa para representar un conjunto
de enteros mediante una lista enlazada. El pro-
grama debe contemplar las operaciones:

Cardinal del conjunto.

Pertenencia de un elemento al conjunto.
Afiadir un elemento al conjunto.
Escribiren pantalla los elementosdel con-
junto.

* o & o

469

Listas enlazadas

como campo dato el coeficiente del términoy
el exponente.
Por ejemplo, el polinomio 3x* - 4x* + 11
se representa

A 11 | O F 4

14.8.

14.9.

14.10.

14.11.

14.12.

Con la representacion propuesta en el Proble-
ma 14.7, afadir las operaciones basicas de
conjuntos:

Unién de dos conjuntos.
Interseccidn de dos conjuntos.
Diferencia de dos conjuntos.
Inclusién de un conjunto en otro.

® & o o

Escribir un programa en el que dados dos
archivosF1, F2 formados por palabras sepa-
radas por un blanco o tin de linea, se creen
dos conjuntos con las palabras de F1 y F2,
respectivamente.Posteriormenteencontrar las
palabras comunes y mostrarias por pantalla.

Utilizar una lista doblemente enlazada para
controlar una lista de pasajeros de una linea
aérea . El programa principal debe ser contro-
lado por mend y permitir al usuario visualizar
fos datos de un pasajero determinado, insertar
un nodo (siempre por el final), eliminar un
pasajero de la lista. A la lista se accede por un
puntero ai primer nodo y otro al Gltimo nodo.

Para representar un entero largo, de méas de 30
digitos, utilizar una lista circular teniendo el
campo dato de cada nodo un digito del entero
largo. Escribir un programaen el que se intro-
duzcan dos enteros largos y se obtenga su
suma.

Un vector disperso es aquel que tiene muchos
elementos que son cero. Escribir un programa
que permita representar mediante listas enla-
zadas un vector disperso. Los nodos de la lis-
ta son los elementos de la lista distintos de
cero; en cada nodo se representa el valor del
elementoy el indice (posicion del vector). El
programa ha de realizar las operaciones:
sumar dos vectores de igual dimension y
hallar el producto escalar.

CAPITULO 15

PILASY COLAS

CONTENIDO

15.1. Concepto de pila.

15.2. El tipo pila implementado
con arrays.

15.3. Concepto de cola.

15.4. Colas implementadas con
arrays.

470

15.5.

15.6.
15.7.
15.8.

Realizacién de una cola con
unalista enlazada.

Resumen.
g ercicios.
Problemas.

INTRODUCCION

En este capitulo se estudian en detalle las estructuras de datos pilas y colas que
son probablemente las utilizadas mas frecuentemente en los programas mas
usuales. Son estructuras de datos que almacenan y recuperan sus elementos
atendiendo a un estrictoorden. Las pilas se conocen también como estructuras
LIFO (Last-in,first-out, Gltimo en entrar-primero en salir) y las colas como
estructuras FIFO (First-in, First-out, primero en entrar-primero en sdir). Entre
las numerosas aplicaciones de las pilas destaca la evaluacion de expresiones
algebraicas, asi como la organizacion de la memoria. Las colas tienen numero-
sas aplicaciones en el mundo de la computacion: colas de mensajes, colas de
tareas a realizar por una impresora, colas de prioridades.

CONCEPTOS CLAVE

o Concepto de tipo abstractode e Concepto de una pila.
datos. e Listas enlazadas.

e Concepto de una cola.

471

472 Programacion en C. Metodologia, algoritmos y estructura de datos

15.1. CONCEPTO DE PILA

Una pila (stack)es una coleccion ordenada de elementos a los que sélo se puede acceder por un Gnico
lugar 0 extremo de la pila. Los elementos de la pila se afladen o quitan (borran) de la misma solo por su
parte superior (cima)de la pila. Este es el caso de una pila de platos, una pila de libros, etc.

Una pila es una estructura de datos de entradas ordenadas tales que sélo se pueden introducir
y eliminar por un extremo, llamado cima.

Cuando se dice que la pila esta ordenada, lo que se quiere decir es que hay un elemento al que se
puede acceder primero (el que esta encima de la pila), otro elemento al que se puede acceder en segundo
lugar (justo el elemento que esta debajo de la cima), un tercero, etc. No se requiere que las entradas se
puedan comparar utilizando el operador «menor que» (<) y pueden ser de cualquier tipo.

Las entradas de la pila deben ser eliminadas en el orden inverso al que se situaron en la misma. Por
ejemplo, se puede crear una pila de libros, situando primero un diccionario, encima de él una
enciclopedia y encima de ambos una novela de modo que la pila tendra la novela en la parte superior.

3 R
] Novela H
! -,
Enciclopedia)
. o
Diccionario

Figura 15.1. Pila de libros.

Cuando se quitan los libros de la pila, primero debe quitarse la novela, luego la enciclopedia y,
por altimo, el diccionario. Debido a su propiedad especifica «Ultimo en entrar, primero en salir» Se
conoce a las pilas como estructura de datos LIFO (last-in,first-out). Las operaciones usuales en la
pila son Insertar y Quitar. La operacion Insertar (push) afiade un elemento en lacima de la pilay la
operacion Quitar (pop) elimina o saca un elemento de la pila. La Figura 15.3muestra una secuencia
de operaciones Insertar y Quitar. El tltimo elemento afiadido a la pila es el primero que se quita de la

pila.
Insertar M Insertar A Insertar C Quitar C Quitar A Quitar M
v Y rall /‘ ‘
P |
. |
i |
M L M M
| S S| L__._.I
Entrada: MAC Salida: cAM

Figura 15.2. Ponery quitar elementos de la pila.

Pilas y colas 473

La operacion | nsert ar (push)sitia un elemento dato en la cima de la pila y Qui t ar (pop)
elimina o quita el elemento de la pila.

Insertar Quitar

Cima — : i |

~ |<g———— Fondo

Figura 15.3. Operaciones basicas de una pila.

La pila se puede implementar mediante arrays en cuyo caso su dimension o longitud es fija, y
mediante punteros o listas enlazadas en cuyo caso se utiliza memoria dindmica y no existe limitacion en
su tamario.

Una pila puede estar vacia (no tiene elementos) o llena (en el caso de tener tamafio fijo, si no cabe
mas elementos en la pila). Si un programa intenta sacar un elemento de una pila vacia, se producira un
error debido a que esa operacion es imposible; esta situacién se denomina desbordamiento negativo
(underflow).Por el contrario, si un programa intenta poner un elemento en una pila se produce un error
llamado desbordamiento (overflow)o rehosamiento. Pata evitar estas situaciones se disefia funciones,
que comprueban si la pila estéa llena o vacia.

15.1.1. Especificaciones de una pila

Las operaciones que sirven para definir una pila y poder manipular su contenido son las siguientes (no
todas ellas se implementan al definir una pila).

Tipo de dato Dato que se almacena en la pila.

Insertar (push) Insertar un dato en la pila.

Quitar (pop) Sacar (quitar) un dato de la pila.

Pila vacia Comprobar si la pila no tiene elementos.

Pila llena Comprobar si la pila esté llena de elementos.

Limpiar pila Quitar todos sus elementos y dejar la pila vacia.
Tamafiode lapila NUmero de elementos maximo que puede contener la pila.
Cima Obtiene el elemento cima de la pila.

15.2. EL TIPO PILAIMPLEMENTADO CON ARRAYS

Una pila se puede implementar mediante arrays 0 mediante listas enlazadas. Una implementacién
estatica se realiza utilizando un array de tamafio fijo y una implementacion dindmica mediante una lista
enlazada.

474

Programacion en C. Metodologia, algoritmos y estructura de datos

En C para definir una pila con arrays se utiliza una estructura. Los miembros de la estructura pila
incluyen una lista (array)y un indice o puntero a la cima de la pila; ademas una constante con el maximo
numero de elementos. El tipo pila junto al conjunto de operaciones de la pila se pueden encerrar en un
archivode inclusion (pil a.r) . Al utilizar un array para contener los elementos de la pila hay que tener
en cuenta que el tamafio de la pila no puede exceder el nimero de elementos del array y la condicion pila
llena sera significativa para el disefio.

El método usual de introducir elementos en una pila es definir el fondo de la pila en la posicion O del
array Yy sin ningn elemento en su interior, es decir, definir una pila vacia; a continuacion, se van
introduciendo elementos en el array (en la pila) de modo que el primer elemento afiadido se introduce
en una pila vaciay en la posicion O, el segundo elemento en la posicion 1, el siguiente en la posicién 2
y asi sucesivamente. Con estas operaciones el puntero (apuntador) que apunta a la cima de la pila se va
incrementando en 1cada vez que se afiade un nuevo elemento; es decir, el puntero de lapila almacena
el indice del array que se esta utilizando como cima de la pila. Los algoritmos de introducir «insertar»
(push) y quitar «sacar» (pop) datos de la pila utilizan el indice del array como puntero de la pila son:

I nsertar (push)

1.Verificar si la pila no esta Ilena
2.Incrementar en 1 el puntero de la pila.
3.Almacenar elemento en |la posici6n del puntero de la pila.

Quitar (pop)
1.81 la pila no esta vacia.
2.Leer el elemento de la posicion del puntero de la pila.
3.Decrementar en 1 el puntero de la pila.

En el caso de que el array que define la pila tenga TamanioPila elementos, las posiciones del
array, es decir, el indice o puntero de la pila, estaran comprendidas en el rango 0 a TamanioPila-1
elementos, de modo que en una pila llena el puntero de la pila apuntaa TamanioPila-1Yy en unapila
vacia el puntero de la pila apunta a - 1,ya que O, tedricamente, serd el indice del primer elemento.

Ejemplo 15.1
Unapila de 7elementos se puede representar grdficamente asi:

Cima

ERRREN

Pila vacia Pila llena
puntero de la pila=-1 punterode la pila=6

punterode la pila

Sise almacenan los datosA, B, C, ...en lapila se puede representar graficamente por alguno de estos
métodos

Pilas y coias 475

y

Indice

Veamos ahora como queda la pila en funcidn de diferentes situaciones de un posible programa.

Punberoli g

15.2.1. Especificaciéndel tipo pi |l a

La declaracion de una pila incluye los datos y operaciones ya citados anteriormente.

1. Datos de la pila (tipo TipoDat a, que es conveniente definirlo mediante typedef).

2. Verificar que la pila no esta llena antes de intentar insertar o poner («push») un elemento en la
pila ; verificar que una pila no esta vacia antes de intentar quitar sacar («pop») un elemento de
la pila. Si estas precondiciones no se cumplen se debe visualizar un mensaje de error y el
programa debe terminar.

3. pilavacia devuelve | (verdadero)si la pila esta vacia y 0 (falso)en caso contrario.

4. rilallena devuelve 1 (verdadero)si la pila esta llena y O (falso) en caso contrario. Estas
funciones se utilizan para verificar las operaciones del parrafo 2.

5. LimpiarPila. Selimpia o vacia la pila, dejandola sin elementos y disponible para otras tareas.

6. cima, devuelve el valor situado en la cima de la pila, pero no se decrernenta el puntero de la
pila, ya que la pila queda intacta.

e

Programacion en C. Metodologia, algoritmos y estructura de datos

Declaracion
/* archivo pilaarray.h */

#include <stdioc.h»
#include <stdlib. h>

#def 1 ne MaxTamaPila 100

typedef struct

int Pilavacia(Pila P);
int Pilal.lena(kila P);

Antes de incluir el archivo pi 1aarray . h debe de declararseel i pobato. Asi si se quiere unapila
de enteros:

typedef int TipoDato;
#include "pilaar ray .h"

En el caso de que la pila fuera de nimeros complejos:
typedef struct
float x,y;

}TipobDato;
#include "pilaarray .h"

Ejemplo 15.2

Escribir un programa que manipule una rila de enteros, con el tipo definido anreriormente ¢
introduzca un dato de tipo entero.

El programa crea una pila de nimeros enteros, insertaen la pila un dato leido del teclado y visualizael
elemento cimu.

typcdef iii## TipoDato ;
#include "pilaarray .h";
#include <stdio.h>
void main()
{
Fila P;
irit Xx;
CrearPila (&P) ; /* Crea una pila vacia */
scanf ("sd" ,&x)

Pilas y colas 477

Insertar (&P, x) ; /* inserta x en la pila p */
printf ("sd \n",Cima(P)); /* visualiza el Utim elemento */

/* Elimna el elenment-ocim (x) y deja la pila vacia */
if (1Pilavacia(p))

aux = Quitar(&pP);
printf ("sda \n",aux) ;

LimpiarPila(&®) ; /* limpla la pila, queda vacia *,

15.2.2. Implementacion de las operaciones sobre pilas

Las operaciones de la pila definidas en la especificacion se implementan en el archivopilaarray.c
para después formar un proyecto con otros mddulos y la funcién principal.

/* archivo P laarray.c */
#i ncl ude "pilaarray .h"

/* Inicializa la pila a pila vacia */
void CrearPila(Pila* P)

P ->cCim = -1;

Las otras operaciones de la pila declaradas en el archivopi laarray .h SOn: Insertar, Quitar
y G ma. La operacion Lnsertar Y Quitar, insertan y eliminan un elemento de la pila; la operacion

¢i ma permite a un cliente recuperar los datos de la cima de la pila sin quitar realmente el elemento de
la misma.

La operacion de Tnsertdr un elemento en la pila incrementa el puntero de la pila (cima)en | y
asigna el nuevo elemento a la lista de la pila. Cualquier intento de afiadir un elemento en una pila llena
produce un mensaje de error «Desbordamiento p1la» y debe terminar el programa.

/* poner un elenento en la pila */

void Insertar(Pila* P,const TipoDalo elemento)

/* si la pila estd llena, Lermina d programa */

if (P->cima == MaxTamaPila-1)
{
puts ("Desbordamiento pi La") ;
exit (1);
}

/* incrementar puntero cima Yy copiar elernento en lListapila */
P->cima++;
p-=listapilal[pP->cimal = elemento ;

Antes de Ot an Despuesde i 11 ¢

I. lI - lI elernento r [77?_ (- ‘ B

t t se devuelve

) ¢ el
cima (

478 Programacién en C. Metodologia, algoritmos y estructura de datos

La operacion Qui t ar- elimina un elemento de la pila copiando primero el valor de la cima de la pila
en una variable local aux y a continuacion decrementa el puntero de la pila en 1. La variable aux se
devuelveen la ejecucion de la operacion Qui t ar . Si se intenta eliminar o borrar un elemento en una pila
vacia se debe producir un mensaje de error y el programa debe terminar.

/* Quitar un elenento de la pila */

Ti poDato Quitar(Pila* P)
{
Ti poDat o aux;
/* si lapila esta vacia, termna el programa */
if (P->cima == -1)
{
puts("Se intenta sacar un elenmento en pila vacia");
exit (1);

/* guardar elenento de la cima */
aux = P->listapilalP->cimal;

/* decrenmentar cimy devolver vulor del elenento */
P->clima--—;
return aux;

15.2.3. Operaciones de verificacion del estado de la pila

Se debe proteger la integridad de la pila, para lo cual el tipo »11a ha de proporcionar operaciones que
comprueben el estado de la pila: pila vacia o pila llena. Asimismo se ha de definir una operacion que
restaure la condicion inicial de la pila, que fue determinada por el constructor crearpila (cimade la
pilaa-/), LimpiarpPila.

La funcién rilavacia comprueba (verifica) si la cima de la pila es —1. En ese caso, la pila esta
vaciay se devuelve un 1 (verdadero);en caso contrario, se devuelve O (falso).

/* verificar pila vacia */

int pilavacia(Pila P)

{ /*devuel ve el val or |104gico resultante de expresidén cima == -1 */
return P.cima == -1;

}

La funcién rilaLlena comprueba (verifica) si la cima es MaxTamaPila-1. En ese caso, la pila
esta llena y se devuelve un 1 (verdadero); en caso contrario, se devuelve O (falso).

/* verificar si la pila esta 1lena */

int pilalLlena (Pilap)

{
/* devuel ve valor 1égico de la expresién cima == MaxTamaPila-1 */
return P.cima == MaxTamaPila-1;

}

Por ultimo la operacidn Li npi ar »i 1a reinicializa la ¢cima a su valor inicial con la pila vacia (-1).

/* quitar todos los elementos de la pila */
void LimpiarPila(Pila* P)
{

P->cima = -1;

}

Pilas vy coias 479

Ejercicio 15.1

Escribir un programa que utilice la clase »i1a para comprobar si una determinada frase/palabra
(cadenade caracteres) es unpalindromo. Nota. Unapalabra o frase esun palindromo cuando 1a lectura
directa e indirecta de la misma tiene igual valor: alila, es un palindromo; cara (arac)no es un
palindromo.
Andlisis
La palabra se lee caracter a caracter, de tal forma que a la vez que se afiade a un st ring Se inserta en
una pila de caracteres. Una vez leida la palabra, se compara el primer caracter del st r i ngcon el caracter
que se extrae de la pila, si son iguales sigue la comparacion con siguiente caracter del stringy de la
pila; asi hasta que la pila se queda vacia o hay un caracter no coincidente.

Al guardar los caracteres de la palabra en la pila se garantiza que las comparaciones son entre
caracteres que estan en orden inverso: primero con Ultimo...

La codificacion consta de tres archivos, el archivo pi | ar-ray.h con las declaraciones de la pila; el
archivo pilarray .c con la implementacion de las operaciones de la pila y el archivo paldromo.c
para leer la palabra y comprobar con ayuda de la pila si es palindromo.

/* Archivo pilarray.h */

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>

#def i ne MaxTamaPila 100

t ypedef struct

{
TipoDato listapilal[MaxTamaPilal;
int cim;

} Pila;
/* Operaciones sobre la pila */

voi d CrearPila(Pila* P);

voi d Insertar (Pila* P,const TipobDato el emento);
Ti poDato Quitar(pPila* P);

void LimpiarPila(Pila* P);

/* Operaci 6n de acceso a Pila */
Ti poDat o Cima(Pila P);
/* verificaci 6n estado de 1a Pila */

int Pilavacia(Pilap);
int PilalLlena(Pila P);

/* Archi vo pilarray.c
Implementacidén de operaciones sobre pilas
*/
t ypedef char Ti poDat o;
#include “pilarray.h"

/* Inicializa la pila a pila vacia */
void CrearPila(Pila* P)
{

P ->cim = -1;
1

/* poner un elenmento en 1a pila */

lIII‘

480 Programacion en C. Metodologia, algoritmos y estructura de datos

voi d Insertar(Pila* P,const Ti poDato el enento)
f

/* si lapila esta llena, termna el programa */
if (PilaLlena (*P))
{
put s ("Desbor dam ento pila") ;
exit (1);
}

/* increnentar puntero cima y copiar elenmento en listapila */
P->cima++;
P->listapilal[P->cima] = el enento;

}

/* Quitar un elenento de la pila */
Ti poDato Quitar (Pila" p)
|

Ti poDat o Aux;

/* si lapila esta vacia, termna el programa */

if (Pilavacia (*p))

{
puts("Se intenta sacar un elenento en pila vacia");
exit (1);

/* guardar elenento de la cim */
Aux = P->listapilalP->cimal;

/* decrenentar cima y devol ver val or del elenento */
P->cima—-—;
return Aux;
}

/* verificar pila vacia */

int Pilavacia(Pilap)

{ /*devuel ve el valor |6gico resultante de expresién cima == -1 */
return P.cima == -1;

}

/* verificar si lapila esta Ilena */

int pilallena (Pilap)
{

return P.cima == MaxTamaPila-1;
}
/* quitar todos los elenentos de la pila */
void LimpiarPila(Pila* P)
{
P->cima = -1;
}
Ti poDato Cima(Pi |l ap)
{
if (P.cima == -1)
{
puts("Se intenta sacar un elenento en pila vacia");
exit (1);
}
return P.listapilal[P.cimal ;

Pilas y coias 481

|
/* Archi vo paldromo.c */

t ypedef char Ti poDat o;

#i nclude 'pilarray.h"
#i ncl ude <ctype.h>

int main()
{
char palabra[100], ch;
Pila p;
int j, pal no;
CrearPila(&P) ;
/* Lee |la palabra */

do {
puts{("\n Pal abra a conprobar si es pali{ndromo");
for (j=0; (ch=getchar())!="\n"; |
{
palabral[j++] = ch;
Insertar (&P, ch); /* pone en la pila */
|
palabraljl = "\O;

/* conprueba si es pal indrono */
palm = 1;
for (j=0; palnb && !'Pilavacia(pP);)
{
pal "o = palabral[j++] == Quitar(&P);

LimpiarPila(&P);

if (pal m)
printf ("\n La pal abra %s es un palindromo \n",palabra);
el se
printf("\n La palabra %s no es un palindronpo \n",palabra);
printf ("\n ; Qra palabra 2: "); scanf ("$c%*c" ,&ch};
twhile (tolower(ch) == ‘g’);
return O;
I
15.3. COLAS

Una cola es una estructura de datos que almacena elementos en una lista y permite acceder a los datos
por uno de los dos extremos de la lista (Fig. 15.4).Un elemento se inserta en la cola (parte final) de la
listay se suprime o elimina por la frente (parte inicial, cabeza) de la lista. Las aplicaciones utilizan una
cola para almacenar elementos en su orden de aparicion o concurrencia

1" 2" 3 4 Ultimo
| 1
Frente Final

Figura 15.4. Una cola.

482

Programacion en C. Metodologia, algoritmos y estructura de datos

Los elementos se eliminan (se quitan) de la cola en el mismo orden en que se almacenan Y, por
consiguiente, una cola es una estructura de tipo FIFO (first-in/firs-out, primero en entrar/primero en
salir o bien primero en llegar/primero en ser servido). El servicio de atencion a clientes en un almacén
es un ejemplo tipico de cola. La accion de gestion de memoria intermedia (huffering) de trabajos o tareas
de impresora en un distribuidor de impresoras (spooler) es otro ejemplo tipico de cola'. Dado que la
impresion es una tarea (un trabajo) que requiere mas tiempo que el proceso de la transmision real de los
datos desde la computadora a la impresora, se organiza una cola de trabajos de modo que los trabajos
se imprimen en el mismo orden en que se recibieron por la impresora. Este sistema tiene el gran
inconveniente de que si su trabajo personal consta de una Unica pagina para imprimir y delante de su
peticion de impresion existe otra peticion para imprimir un informe de 300 paginas. debera esperar a la
impresion de esas 300 paginas antes de que se imprima su pagina.

Desde el punto de vista de estructura de datos, una cola es similar a una pila, en donde los datos se
almacenan de un modo lineal y el acceso a los datos sélo esta permitido en los extremos de la cola. Las
acciones que estan permitidas en una cola son:

o Creacion de una cola vacia.

Verificacion de que una cola estd vacia.

Afiadir un dato al final de una cola.

Eliminacién de los datos de la cabeza de la cola.

o
o

]

frente final
| |
frente final
frente final
T
frente final
s | -
frente final
Figura 15.5. Operaciones de 11 :: 1 y i t 11 enuna Cola

Moyl s v o b el LN D w SEOTTERS T i rusgiarin vl il By Shrn e IEiiiiiidles b sa sl ikl TR 0 A =0Tl L i)

wovilone= em la ool ik et]

o e

Pilas y colas 483

15.4. EL TIPO COLA IMPLEMENTADA CON ARRAYS

Al igual que las pilas, las colas se pueden implementar utilizando arrays o listas enlazadas. En esta
seccidn se considera la iinplementacidn utilizando arrays.

La definicion de una cola ha de contener un array para almacenar los elementos de la cola, y dos
marcadores o0 punteros (variables) que mantienen las posiciones frente y final de la cola ; es decir, un
marcador apuntando a la posicion de la cabeza de la cola y el otro al primer espacio vacio que sigue al
final de la cola. Cuando un elemento se afiade a la cola, se verifica si el inarcador final apunta a una
posicién valida, entonces se afiade el elemento a la colay se incrementa el marcador final en 1. Cuando
un elemento se elimina de la cola, se hace una prueba para ver si la cola esta vacia y, si no es asi, se
recupera el elemento de la posicion apuntada por el marcador (puntero) de cabezay éste se incrementa
en 1. Este procedimiento funciona bien hasta la primera vez que el puntero de cabeza o cabecera alcanza
el extremo del array y el array queda o bien vacio o bien lleno.

15.4.1. Definicion de la especificacion de una cola

Una cola debe manejar diferentes tipos de datos; por esta circunstancia, se define en primer lugar el
tipo genérico Ti poDat o. La clase Col a contiene una lista (1istaQ) cuyo maximo tamafio se determina
por la constante MaxTanmQ Se definen dos tipos de variables puntero o marcadores, frentey final.
Estas son los punteros de cabecera y cola o final respectivamente.

Las operaciones tipicas de la cola son: I nsertar Q EliminarQ, Quaci a, Qllena, Y Frente.
I nsert ar Qtoma un elernento del tipo Ti poDat oy lo inserta en el final de 1a cola. E1iminarg elimina
(quita) y devuelve el elemento de la cabeza o frente de la cola. La operacion Fr ent eQdevuelve el valor
del elemento en el frente de la cola, sin eliminar el elemento y, por tanto, no modifica la cola.

La operacion Quaci a comprueba si la cola esta vacia, es necesario esta comprobacidn antes de
eliminar un elemento. 011ena comprueba si la pila esta llena, esta comprobacion se realiza antes de
insertar un nuevo miembro. St las precondiciones para | nsert ar Qy E1iminarQ Se violan, el programa
debe imprimir un mensaje de error y terminar.

15.4.2. Especificacion del tipo col a

La declaracion del tipo de dato Col a y los prototipos de las operaciones de la cola se almacena en un
archivo de cabecera "col aarray. h".

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>

#def i ne MaxTamQ 100
t ypedef struct
{
int frente;
int final;
Ti poDat 0 listaQ[MaxTamQ] ;
}Colaj;

/* Operaciones del tipo de datos Cola */

/* operaciones de modificacién de la cola */

voi d CrearCola(Cola* Q); [/* inicializa la cola conb vacia */
voi d InsertarQ(Cola* Q,TipoDato elemento);

Ti poDat o EliminarQ(Cola* Q);

voi d BorrarCola (Col a* Q) ;

484

Programacion en C. Metodologia, algoritmos y estructura de datos

/* acceso a la cola */
Ti poDat 0 FrenteQ(Cola Q) ;

/* métodos de verificaci6n del estado de la cola */
int LongitudQ(Cola Q) ;

int Qvacia(Cola Q);

int Qllena(Cola Q) ;

15.4.3. Implementacién del tipo col a

La declaracion que se ha hecho del tipo Cola contiene un array para el almacenamiento de los elementos
de la cola y dos marcadores o punteros: uno apuntando a la posicion de la cabeza o cabecera de la cola
y la otra al primer espacio vacio a continuacion del final de la cola. Cuando un elemento se afiade a la
cola, se hace un test (prueba) para ver si el marcador final apunta a una posicién valida, a continuacién
se afiade el elemento a la cola y el marcador final se incrementa en 1. Cuando se quita (elimina) un
elemento de la cola, se realiza un test (prueba) para ver si la cola esta vacia, y si no es asi, se recupera
el elemento que se encuentra en la posicion apuntada por el marcador de cabezay el marcador de cabeza
se incrementa en 1.

Este procedimiento funciona bien hasta la primera vez que el marcador final alcanza el final del
array. Si durante este tiempo se han producido eliminaciones, habra espacio vacio al principio del array.
Sin embargo, puesto que el marcador final apunta al extremo del array, implicara que la cola esté llena
y ningun dato mas se afiadird. Se pueden desplazar los datos de modo que la cabeza de la cola vuelve
al principio del array cada vez que esto sucede, pero el desplazamiento de datos es costoso en términos
de tiempo de computadora, especialmente si los datos almacenados en el array son estructuras de datos
grandes.

El medio mas eficiente, sin embargo, para almacenar una cola en un array, es utilizar un tipo especial
de array que junte el extremo final de la cola con su extremo cabeza. Tal array se denomina array
circulary permite que el array completo se utilizara para almacenar elementos de la cola sin necesidad
de que ningun dato se desplace. Un array circular con n elementos se visualiza en la Figura 15.6.

-1 0

Figura 15.6. Un array circular.

El array se almacena de modo natural en la memoria tal como un bloque lineal de n elementos. Se
necesitan dos marcadores (punteros) cabeza y final para indicar la posicion del elemento que precede a
la cabeza y la posicion del final, donde se almacené el Ultimo elemento afiadido. Una cola vacia se
representa por la condicion cabeza = final.

Pilas y colas 485

-« cabeza
.

e . final

Figura 15.7. Una cola vacia.

La variable frente o cabeza es siempre la posicion del elemento que precede al primero de lacolay
se avanza en el sentido de las agujas del reloj. La variable fi nal es la posicién en donde se hizo la
Gltima insercién. Después que se ha producido una insercidn, fi nal se mueve circularmente a la
derecha. La implementacion del movimiento circular se realiza utilizando la reoria de los restos:

Mover final adelante

= (final + 1) % MaxTamQ
Mover cabeza adelante

(frente+ 1) % MaxTamQ

=l cabeza

1 firus

Figura 15.8. Una cola que contiene un elemento

Los algoritmos que formalizan la gestion de colas en un array circular han de incluir al menos las
siguientes tareas:

o Creacion de una cola vacia: cabeza = final = Q
o Comprobar si una cola esta vacia:
es cabeza == final ?
o Comprobar si una cola esté llena:
(final + 1) ¥ MaxTanQQ == cabeza 2
« Afiadir un elemento a la cola: si la cola no esta llena, afiadir un elemento en la posicién siguiente
a final y se establece:
final = (final + 1) % MaxTamQ (% operador resto)
o Eliminacién de un elemento de una cola: si la cola no esta vacia, eliminarlo de la posicion
siguiente a cabeza y establecer cabeza = (cabeza+ 1) % MaxTanQ

486

Programacion en C. Metodologia, algoritmos y estructura de datos

15.4.4. Operaciones de la cola

Una cola permite un conjunto limitado de operaciones, para inicializar la cola, para afiadir un nuevo
elemento (1 nsertar@ O quitar/eliminar un elemento (kliminarQ) . El tipo Cola proporciona
también frenteQ, que permite «ver» el primer elemento de la cola. Para esta implementacién, con
array circular, el tipo cola es el siguiente:

#def i ne MaxTanQ 100
t ypedef struct

int frente;

int final;

Ti poDat 0 listaQ[MaxTamQ] ;
}Cola;

Crearcol a

La primera operacidn que se realiza sobre una cola es inicializarla para que a continuacién puedan
afiadirse elementos a la cola.

voi d CrearCola(Cola* Q)
{
Q>frente = 0;
Q->final = O
1

InsertarQ

Antes de que comience el proceso de insercion, el indice final apunta al Ultimo elemento insertado. El
nuevo elemento se sitla en la posicién siguiente. El calculo de las posiciones sucesivas se consigue
mediante el operador resto (%) . Después de situar el elemento de la lista, el indice fi nal se debe
actualizar para apuntar en la siguiente posicion.

/* insertar elenento en la cola */

voi d InsertarQ(Cola* Q,TipoDato el enento)
{ /* termnar si la cola estd llena */
if (Qllena(Q))

{
put s ("desbor dam entocol d");

exit (1);
|
/* asignar elemento a listaQ y actualizar final */
O->final = (Q->final + 1)% MaxTamQ;
O->listaQ[Q->final] = el enento;
EliminarQ

La operacién £1iminaro borra 0 elimina un elemento del frente de la cola, una posicion que se referen-
cia por el indice fr ent e. Comienza el proceso de eliminacién avanzando f r ent e ya que se establecio
que referencia al anterior elemento.

frente = (frente + 1) %NMaxTanQ

En el modelo circular, la cabeza se debe volver a posicionar en el siguiente elemento de la lista
utilizando el operador resto (%) . El codigo fuente es:

/* borrar elenento del frente de 1a cold y devuel ve su val or *,
Ti poDat o EliminarQ(Cola* Q)

Pilas y colas 487

Tipobato aux;

/*si listaQ estdé vacia, terminar el programa */
it (Qvacia(Q))
{

puts ("Eliminacidén de una cold vacia") ;

exit (1);

1
J

/* avanzar frente y devolver prinero del frente */
Q->frente = (Q-=frente + 1) % MaxTamQ;

aux = Q->listaQlQ->frente];

return aux;

FrenteQ

La operacion rrente0 obtiene el elemento del frente de la cola, una posicion que se referencia por el
indice frent e.

TipobDato FrenteQ (Cola Q)
1
Tipobato aux;

/*si la cola esta vacia, terminar el programa */
if (Quacia0))

puts ("El enent o €rente de una cold vacia") ;
exit (1);

Quaci a
Las operaciones que preguntan por el estado de la cola pueden implementarse preguntando por los
campos frentey final. La operacidén ovacia prueba si la cola no tiene elementos.
int Qvacia(Cola O)
|
return (Qfrente == O.flinal);
}

Qlena
La operacion ¢11ena prueba si la cola no puede contener mas elementos.

int Qliena(Cola Q)
{

return (Q.frente == (Q.final+1})%MaxTamQ) ;
}

15.5. REALIZACION DE UNA COLA CON UNA LISTA ENLAZADA

La realizacion de una cola mediante una lista enlazada permite ajustarse exactamente al nimero de
elementos de la cola. Esta implementacion utiliza dos punteros para acceder a la lista. El puntero
Frent ey el puntero 7inu.l.

488 Programacion en C. Metodologia, algoritmosy estructura de datos

Frente Final

P ,

& * - o = A e | @

Figura 15.9. Cola con lista enlazada (representacion grafica tipica)

El puntero Fr ent e referencia al primer elemento de la cola, el primero en ser retirado de la cola. El
puntero Fi nal referencia al Gltimo elemento en ser afiadido, el Gltimo que sera retirado.

Con esta representacion no tiene sentido la operacion que prueba si la cola esta llena. Al ser una
estructura dindmica puede crecer y decrecer segun las necesidades (el limite esta en la memoria libre del
computador).

15.5.1. Declaraciondel tipo cola con listas

Para esta representacion se declara una estructura que represente al nodo de la lista enlazada, un puntero
a esta estructuray la estructura cola con los punteros Fr ent ey Fi nal . Las operaciones son las mismas,
excepto la operacion Q | ena que no es necesaria al ser una estructura dindmica. La declaracién se
almacenaenelarchivo colalist.h.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>

struct nodo
{
Ti poDat o el enment o;
struct nodo* siguiente;
}i

t ypedef struct nodo Nodo;
t ypedef struct
{
Nodo* Frente;
Nodo* Fi nal
}Cola;

/* Los prototipos de las operaci ones */

voi d CrearCola(Cola* Q); [/* Inicializa la cola conp vacia */
voi d InsertarQ(Cola* Q,Tipobato el enento);

Ti poDat 0 EliminarQ(Cola* Q);

voi d BorrarCola(Cola* Q);

/* acceso a la cola */
Ti poDat 0 FrenteQ(Cola Q);

/* métodos de verificaci 6n del estado de la cola */
int Qvacia{Cola Q);

i

Pilas y colas 489

15.5.2. Codificaciénde las operaciones del tipo col a con listas

Estas operaciones se van a almacenar en el archivo fuente colali st .c. En primer lugar hay que incluir
el archivocolalist.hy declarar el tipo de dato de los elementos de la cola.

La inicializacion de la cola, al ser una implementacién con punteros, consiste en asignar el puntero
nulo a Frentey Final. La operacion de insertar se realiza creando un nuevo nodo (funcion auxiliar
crearnodo ())Yy enlazéndolo a partir del nodo final. La operacion de eliminar se realiza sobre el otro
extremo.

Codi fi caci 6n de | as operaci ones.

t ypedef char Tipobato;
#i ncl ude "colalist.h"

voi d CrearcCola(Cola* Q)
{

Q>Frente = Q->Final = NULL;
}

Nodo* crearnodo(Tipobato elernento)
{
Nodo" t ;
t = (Nodo*)malloc{(sizeof (Nodo)) ;
t->elenento = € enento;
t->sigulente = NULI;
return t;
t

int Qvacia{Cola Q)
{
return (Q.Frente == NULL);

}

void InsertarQ(Col a* Q,Tipobato el enent o)
{

Nodo* a;
a = crearnodo(elemento) ;
if (Quacia(*Q))

{
Q >Frente = &;
}
el se
{
Q->Final->siguienLe = a;
}
O->Final = a;
H

TipoDato EliminarQ{Cola* Q)
{

TipoDato aux;

if (!Qvacia(*Q))

Nodo" a;

a = Q>Frente;

aux = Q->Frente->elemento;
Q>Frente = Q->Frente->sigulente;
free(a);

490

Programacion en C. Metodologia, algoritmos y estructura de datos

else /* error: eliminar dc una cola vdcia */
J

return aux;
}

1Tipobato FrenteQ(Cola Q)

puts ("Frror: cold vacia") ;
exit (1);

1
}

return (Q.Frente->clemento) ;

voi d BorrarCola (Cola* Q)
{

/* klimina y libera todos los nodos de la cola *y
for (; QO->Frente!=NULL;)
{

Nodo* n;

n = Q->Frente;

O->Frente = Q-=I"renLe-=siquiente,

free(n) ;

Ejercicio 15.2

Unavariacion del famoso problema matemdtico llamado «problema de José » permite generar niimeros
de la suerte. Se parte de una lista inicial de n nimeros, esta lista se va reduciendo siguiendo el siguiente
algoritmo:

1. Se genera un nimero aleatorion,.

2. Sin, > n fin del algoritmo.

3. Sin, <= n se quitan de la lista los nimeros que ocupan las posiciones I, I+ n,, /+2%n, ... 0
toma el valor del nimero de elementos que quedan en la lista.

4. Se vuelve al paso 1.

Andlisis

El problema se va a resolver utilizando la estructura Cola. En primer lugar, se genera una lista de n
nlimeros aleatorios que se almacena en una cola. A continuacidn, se siguen los pasos del algoritmo, en
cada pasada se mueven los elementos de la cola a otra cola excepto aquellos que estan en las posicio-
nes (miltiplos de ni) +1. Estas posiciones i se pueden expresar matematicamente:

1 modulo n1 = 1

El tipo cola y las operaciones sobre colas se agrupan en el archivo de inclusion cola.h
implementado con estructuras dindmicas. Ademas, se afiade la operacién de mostrarcola para escribir
los nimeros que quedan en la lista.

Pilas y colas 491

Archivo con el tipo colay prototipos de las operaciones

#i ncl ude «<stdio.h>
#i ncl ude <stdlib.h>

struct nodo
{
Ti poDat o el enent o;
struct nodo* si gui ente;
bi
t ypedef struct nodo Nodo;
t ypedef struct
{
Nodo* Frente;
Nodo* Fi nal
} Col a;

/* Los prototipos de |as operaciones */

voi d CrearCola(Cola* Q); [/* Inicializala cola conb vacia */
voi d InsertarQ(Cola* Q,TipoDato el enento);

Ti poDat o EliminarQ(Cola* Q);

voi d BorrarCola(Cola* Q);

/* acceso a la cola */
Ti poDato FrenteQ(Cola Q);

/* mét odos de verificaci 6n del estado de ia cola */
int Qvacia(Cola Q);

Archivo con la implementacién® de las operaciones
/* «colalist.c */
typedef int Ti poDat o;
#include "col alist.n"

Archivo con el algoritmo para obtener nimeros de la suerte

typedef int Ti poDat o;

#i ncl ude "col al i st.h"

#i ncl ude <time.h>

voi d MostrarCola (Cola* Q) ;

int main()
{
Cola Q
int n, nl, n2, n3, i

random ze() ;
/* Nanmero de elenentos de la lista */

n =1+ random(50) ;
Crearcol a(&Q) ;
/* Se generan n nlneros aleatorios */
for (i=1; i<=n; 1i++)
InsertarQ(&Q, l+random (1001)) ;
nl = l+random(11);
while (nl <= n)
{
printf ("\n se quitan elenentos a distancia %d ",nl) ;

Laimplementacion esta en el Apartado 1S.5.2

492

15.6.

Programacion en C. Metodologia, algoritmos y estructura de datos

n2 = 0, /* Contador de el enentos que quedan */
for (i=1; i<=n; 1i++)
{
N3 = EliminarQ(&Q); /* retira el elemento frente */
if (isnl == 1)
printf ("\t %d se quita.",n3) ;
}
el se
{
InsertarQ(&Q,n3); /* se vuelve a meter en la cola */

n2++;
}
n =n2;
nl = l+random(11l};

}

printf ("\n Los nUneros de la suerte: ");
MostrarCola (&Q) ;

return 1;
}

voi d MostrarCola(Coda* Q)
while (!Qvacia(*Q))

printf ("sa ",EliminarQ(9Q));
}

RESUMEN
Unapila es una estructurade datostipo LIFO (last e pilallena, determinasiexiste espacioen lapila
in first out, Ultimo en entrar/primero en salir)en la para afiadir un nuevo elemento. De no haber espa-
que los datos (todos del mismo tipo) se afiaden y cio devuelve true. Esta operacion se aplica en la
eliminan por el mismo extremo, denominado cima representacion de la pila mediante array.
de la pila.

e liberarpila, el espacio asignado a la pila se

Se definen las siguientes operacionesbasicas sobre libera, queda disponible.

pilas: crear, i nsertar, ci ma, elimnar,

pilavaci a, pilallenay liberarpila. e Una cola es una lista lineal en la que los datos se

crear, inicializa la pila como pila vacfa. insertan por un extremo (final) y se extraen por el
insertar, afiade un elemento en la cima de la pila. otro extremo (frente). Es una estructura FIFO
Debe de haber espacio en la pila. (first infirst out, primero en entrar/primero en
ci ma, devuelve el elemento que esté en la cima, salir).

sm'ex'FraerIo. . . o Las operacionesbésicas que se aplican sobre colas:
el i m nar , extrae de 1a pila el elemento cima de crear, qvacia, qllena, insertarq,
la pila. frenteq, eliminarqg.

pi lavacia, determinasi el estado de la pila es R)

vacia, en su caso devuelveel valor l6gico true. e crear, inicializaa una cola sin elementos.

gvaci a, determina si una cola tiene o no ele-
mentos. Devuelve frue Si no tiene elementos.

gll ena, determina si no se pueden almacenar
mas elementos en una cola. Se aplica esta opera-
cion cuandose utiliza un array para guardar los ele-
mentos de la cola.

i nsert ar q, afiade un nuevo elementoa lacola,
por el extremo final.

frent eq, devuelveel elemento que esta en el
extremo frente sin sacarlo de la cola.

15.7. EJERCICIOS

15.1. ;Cuél es la salida de este segmento de cddigo,
teniendo en cuentaque el tipo de dato de la pila
esint?

[]
Pila p;
int x=4, vy,

CrearPila (&P);
I nsertar (&P, x) ;
printf ("\n%d ",Cima(P));
Y = Quitar (&P) ;
Insertar (&P, 32);
I nsertar (&P, Quitar (&P)) ;
do {
printf ("\n%d",Quitar (&P)) ;
lwhile (!Pilavacia(P));

15.2. Escribir en el archivo pi | a. h los tipos de
datosy los prototipos de las operaciones basi-
cas sobre pilas con estructuras dinamicas.

15.3. Escribir la funcién MostrarPila () para
escribir los elementos de una pila de cadenas
de caracteres, utilizando sélo las operaciones
bésicas y una pila auxiliar.

15.4. Obtener una secuenciade 10elementos reales,

guardarlosen un array y ponerlos en una pila.
Imprimir la secuencia original y, a continua-
cion, imprimir la pila extrayendolos elementos.

15.5. Considerar una cola de nombres representada
por una array circular con 6 posiciones, el cam-

Pilas y colas 493

* el i m nar q, extraeel elementofrente de la cola.

o Numerosos modelos de sistemas del mundo real

son de tipo cola: cola de impresion en un servidor
de impresoras, programas de simulacion, colas de
prioridades en organizacion de viajes. Una cola es
laestructuratipica que se suele utilizar como alma-
cenamiento de datos, cuando se envian datos desde
un componente rapido de una computadora a un
componente lento (por ejemplo, una impresora).

po frente con el valor: Frente = 2.Y los
elementos de la Cola: Mar, Sel | a, Cen-
turion.

Escribir los elementos de la colay los cam-
pos Frent ey Fi nal segun se realizan estas
operaciones:

e Afiadir G ori ay Gener osaalacola.
e Eliminar de la cola.

e Afiadir Posi ti vo.

¢ Afiadir Hor che alacola.

« Eliminar todos los elementos de la cola.

15.6. Una bicola es una estructurade datos lineal en

la que la insercién y borrado se pueden hacer
tanto por el extremo f r ent e como por el
extremo f i nal . Suponer que se ha elegido
una representacién dinamica, con punteros, y
que los extremos de la lista se denominan
frentey final . Escribirlaimplementacién
de las operaciones: InsertarFrente (),
InsertarFinal (), EliminarFren-
te() YEliminarFinal ().

15.7. Considere una bicola de caracteres, representa-

da en un array circular. El array consta de 9
posiciones. Los extremos actuales y los ele-
mentos de la bicola:

frente =5 final = 7
Bicola: A,C,E

Escribir los extremos y los elementos de la
bicola seglin se realizan estas operaciones:

494

Programaciéon en C. Metodologia, algoritmos y estructura de datos

15.8.

15.1.

153.

153.

15.4.

o Afiadir loselementos F y K porel f i nal de

la bicola.

o Afiadir los elementosR, Wy v porel f r en-

t e de labicola.

o Afiadir el elemento M por el fi nal dela

bicola.

o Eliminar dos caracteresporel frent e.
o Afiadir loselementosK y L por el f i nal de

la bicola.

PROBLEMAS

Escribir una funcién, copiarPila, que copie
el contenido de una pila en otra. La funcidn ten-
dré dos argumentosde tipo pila, uno para la pila
fuente y otro para la pila destino. Utilizar las
operacionesdef i ni das sobreel tipo de datos pila.

Con un archivo de texto se quieren realizar las
siguientes acciones: formar una lista de colas,
detd formaque en cadanodo de la lista tenga
la direccion de una cola que tiene todas las
palabras del archivo que empiezan por una
misma letra. Visualizar las palabras del archi-
vo, empezando por la cola que contiene las
palabras que comienzan por a, a continuacion
las de la letra b, y asi sucesivamente.

Escribir una funcion para determinar si una
secuenciade caracteres de entradaes de la for-
ma:

X & Y

donde x es una cadena de caracterese Y es la
cadenainversa. El caracter & es el separador.

Escribirun programa que haciendo uso del tipo
Pila de caracteres, procese cada uno de los
caracteres de una expresion que viene dada en
una linea de caracteres. La finalidad es verifi-
car el equilibrio de paréntesis, llavesy corche-
tes.

Por ejemplo, la siguiente expresion tiene un
ndmero de paréntesis equilibrado:

15.8.

15.5.

15.6.

15.7.

15.8.

o Afiadir el elemento s por el frent e de la
bicola. -

Se tiene una pila de enteros positivos. Con las
operaciones basicas de pilasy colas escribirun
fragmento de cddigo para poner todos los ele-
mentos que sonpar de la pila en la cola.

((a+b)*5) - 7
A esta otra expresion le faltaun corchete:

2*[(a+b) /2.5 + X - T*y

Se tiene un archivo de texto del cual se quiere
determinar las frases que son palindromo. Para
lo cual se ha de seguir la siguiente estrategia:

o Considerar cada linea del texto una frase.

¢ Afadir cada caracter de la frase a una pilay
alavez aunacola.

o Extraer caracter a caracter, y simultanea-
mente de la pila y de la cola. Su compara-
cion determina si es palindromo o no.

Escribir un programa en C que lea cada linea
del archivoy determine si es palindromo.

Escribir un programa en el que se generen 100
ndmeros aleatorios en el rango -25 +25
y se guarden en una cola implementada
mediante un array considerado circular. Una
vez creada la cola, el usuario puede pedir que
se forme otra cola con los nimeros negativos
que tiene la cola original.

Escribir una funcién que tenga como argumen-
tos dos colas del mismo tipo. Devuelva cierto
si las dos colas son idénticas.

Escribir un programa en el que se manejen un
total de n=5 pilas: »,, P,, P,, P,y P..lA
entrada de datos sera pares de enteros (i ,j)

tal que 1< abs(i) < n.Detal formaqueel
criterio de seleccién de pila:

e Si i es positivo, debe de insertarse el
elemento j en lapilaP, .

e Si i es negativo, debe de eliminarse el
elemento j de la pila P..

e Sii es cero, fin del proceso de entrada.

Los datos de entrada se introducen por
teclado. Cuandotermina el proceso el progra-
ma debe de escribir el contenido de la » pilas
en pantalla.

15.9. Modificar el Problema 15.8 para que la entra-

da sean triplas de nimeros enteros (i ,3 ,k),
donde i, j tienen el mismo significadoque
en 15.8,y k es un nimero entero que puede
tomar los valores -1, 0 con este significado:

e -1,hay que borrar todos los elementos de
lapila.

Pilas y colas 495

¢ 0, el proceso es el indicado en 15.8 con i
y3.

15.10. Un pequefio supermercado dispone en la

salida de tres cajas de pago. En el local hay
25 carritos de compra. Escribir un programa
que simule el funcionamiento, siguiendo las
siguientes reglas:

« Si cuando llega un cliente no hay ningun
carrito disponible, espera a que lo haya.

¢ Ningun cliente se impacientay abandonael
supermercado sin pasar por alguna de las
colas de las cajas.

e Cuando un cliente finaliza su compra, se
coloca en la cola de la caja que hay menos
gente, y no se cambia de cola.

¢ Enel momentoen que un cliente paga en la
caja, el carro de la compra que tiene queda
disponible.

Representar la lista de carritos de la compray
las cajas de salida mediante colas.

CAPITULO 16

ARBOLES

CONTENIDO

16.1. Arboles generales. 16.8. Arbol binario de busqueda.
16.B8 Resumen de definiciones. 16.9. Operacionesen arboles

binarios de busqueda.

16.10. Aplicaciones de arbolesen
algoritmos de exploracion.

16.3. Arbolesbinarios.
16.4. Estructura de un arbol

binario. .
. , 16. 11. esumen.
16.6. Operaciones en arboles L
binarios. 16.12. Ejercicios.
16.6. Arbol de expresiones. 16.13. Problemas.
16.7. Recorrido de un arbol. 16.14. Referencias bibliogréaficas.

496

INTRODUCCION

El arbol es una estructura de datos muy importante en informaticay en cien-
cias de la computacion. Los arboles son estructuras no linealesd contrario que
los arrays vy las listas enlazadas que constituyen estructuras lineales.

Los arboles son muy utilizados en informatica para representar formulas
algebraicas como un método eficiente para busquedas grandes y complejas, lis
tas dindmicasy aplicaciones diversas tales como inteligencia artificial o algo-
ritmos de cifrado. Casi todos los sistemas operativos almacenan sus archivos
en arboles o estructuras similares a arboles. Ademés de las aplicaciones cita-
das, los arboles se utilizan en disefio de compiladores, proceso de texto y algo-
ritmos de busqueda.

En el capitulo se estudiara el concepto de arbol general y los tipos de arbo-
les mas usuales, binario y binario de busqueda. Asimismo se estudiaran al gu-
nas aplicacionestipicas del disefioy construccion de arboles.

CONCEPTOS CLAVE
+ Arbol. e Enorden.
» Arbol binario. e Nodo.
« Arbol binario de busqueda. Preorden.
e Conceptos tedricos (nivel, e Postorden.
profundidad, raiz, hoja, e Recorridode un arbol.
rama, ...), e Subérbol.

497

498

16.1. ARBOLES GENERALES

Programacion en C. Metodologia, algoritmos y estructura de datos

Intuitivamente el concepto de arbol implica una estructura en la que los datos se organizan de modo
que los elementos de informacion estan relacionados entre si a través de ramas. El arbol genealégico es
el ejemplo tipico mas representativo del concepto de arbol general. La Figura 16.1 representa dos

ejemplos de arboles generales.

| Luis
(bisabuelo)
L |
] |
1
[I - I .
Micaela | LLCas | Miria
(hermana) | | {abueis] (hermana)
| . | l
1 .
Linis Juana Maria
| {padra) (hija)
x 4 |
- I ¥ - i
V(hifa)a Ci(hijed)ia (hije)
| | i) (hija) | (g
Figura 16.1. Arbol genealdgico (bisabuelo-bisnietos).
— il = = I B o
Director Director de Director de Director de Director
. recursos . i) .
general marketing humanos informatica financiero
| Director de Director de Director red
| marammano software intranet
- ¥ 1
1 Ingeniero de ‘ ’ Analista ‘ ‘ Programador
software |

L |

Figura 16.2. Estructura jerarquicatipo arbol.

Arboles 499

Un arbol consta de un conjunto finito de elementos, denominados nodos y un conjunto finito de
lineas dirigidas, denominadas ramas, que conectan los nodos. EI nimero de ramas asociado con un

nodo es el grado del nodo.

Definicién 1: Un arbol consta de un conjunto finito de elementos, llamados nodos y un conjunto
finito de lineas dirigidas, llamadas ramas, que conectan los nodos.
Definiciéon 2: Un arbol es un conjunto de uno o mas nodos tales que:
1. Hay un nodo disefiado especialmente Ilamado raiz.
2. Los nodos restantes se dividen en n>o conjuntos disjuntos tales que T,...T,, en
donde cada uno de estos conjuntos es un arbol. A T,,T,,...T,,se les denomina
subarboles del raiz.

Si un arbol no estéa vacio, entonces el primer nodo se llama raiz. Obsérvese en la definicion 2 que
el arbol ha sido definido de modo recursivo ya que los subarboles se definen como arboles. La Figura
16.3 muestra un arbol.

__F'. | - Rz
- | A
(8) (E) (F)
2N 1 a
(C) (D i) [H] _t.

Figura 16.3. Arbol.

Terminologia

Ademas del raiz existen muchos términos utilizados en la descripcién de los atributos de un arbol. En
la Figura 16.4,el nodo A es el raiz. Utilizando el concepto de arboles genealdgicos, un nodo puede ser
considerado como padre si tiene nodos sucesores.

A

-

(1) Jd]

Figura 16.4. Arbol general.

500 Programacion en C. Metodologia, algoritmos y estructura de datos

Estos nodos sucesores se llaman hijos. Por ejemplo, el nodo B es el padre de los hijos E 'y F. El
padre de H es el nodo D. Un arbol puede representar diversas generaciones en la familia. Los hijos de
un nodo Yy los hijos de estos hijos se llaman descendientesy el padre y abuelos de un nodo son sus
ascendientes. Por ejemplo, los nodos E, F, | y J son descendientes de B. Cada nodo no raiz tiene un
Unico padre y cada padre tiene cero 0 mas nodos hijos. Dos o méas nodos con el mismo padre se Ilaman
hermanos. Un nodo sin hijos, tales como E, I, J, G y H se llaman nodos hoja.

El nivel de un nodo es su distancia al raiz. El raiz tiene una distancia cero de si misma, por lo que
se dice que el raiz esta en el nivel O. Los hijos del raiz estan en el nivel 1, sus hijos estan en el nivel 2y
asi sucesivamente. Una cosa importante que se aprecia entre los niveles de nodos es la relacion entre
niveles y hermanos. Los hermanos estan siempre al mismo nivel, pero no todos los nodos de un mismo
nivel son necesariamente hermanos. Por ejemplo, en el nivel 2 (Fig. 16.5), Cy D son hermanos, al igual
que loson G, H e |, pero D y G no son hermanos ya que ellos tienen diferentes padres.

Nivel 0 - { A
o Hama AF
¥
Nivel 7 - |)
? L E.- \ E J Rama FI
-~
Nivel 2 - .:T{:-- { D} (G} {HY {1}
padre: A, B, F hermanos: {B, E, F), {C,D},{G, H, I}
hijos: B,E,F, C,D, G, H, | hojas: C,D, E, G, H, |

Figura 16.5. Terminologia de arboles.

Existen varias formas de dibujar los atributos de los arboles y sus nodos. Un camino es una
secuencia de nodos en los que cada nodo es adyacente al siguiente. Cada nodo del arbol puede ser
alcanzado (se llega a él) siguiendo un Gnico camino que comienza en el raiz. En la Figura 16.5,¢l
camino desde el raiz a la hoja I, se representa por AFI. Incluye dos ramas distintas AF y FI.

La altura o profundidad de un arbol es el nivel de la hoja del camino mas largo desde la raiz méas uno.
Por definicion' la altura de un &rbol vacio es 0. La Figura 16.5contiene nodos en tres niveles :0, 1y 2.
Su altura es 3.

Definicion
El nivel de un nodo es su distancia desde el raiz. La altura de un arbol es el nivel de la hoja del
camino mas largo desde el raiz mas uno.

' También se suele definir la profundidad dc un drbol como el nivel maximo de cada nodo. En consecuencia. la profundidad del
nodo raiz es O, la de su hijo 1, etc. Las dos terminologias son aceptadas.

Arboles 501

'_- . {0 T Mival 3
‘B .- { | | 1 | i Mzl 1
D {E) L)) Mivel 2
G-. i H J | y Miveiel 3
(a)Profundidad 4 (b) Profundidad 4
| A
. E . 3 4
: o
LG/ A, $
J L N T
o
E)
(c)Profundidad 5

Figura 16.6. Arboles de profundidades diferentes.

Un éarbol se divide en subarboles. Un subarbol es cualquier estructura conectada por debajo del
raiz. Cada nodo de un arbol es la raiz de un subarbol que se define por el nodo y todos los descendientes
del nodo. El primer nodo de un subarbol se conoce como el raiz del subarbol y se utiliza para nombrar
el subarbol. Ademas, los subarboles se pueden subdividir en subarboles. En la Figura 16.5,BCD es un
subarbol al igual que E'y FGHI. Obsérvese que por esta definicion, un nodo simple es un subéarbol. Por
consiguiente, el subarbol B se puede dividir en subérboles Cy D mientras que el subarbol F contiene los
subéarboles G, H e I. Se dice que G, H, I, C y D son subarboles sin descendientes. ElI concepto de
subarbol conduce a una defi ni ci 6nrecursi va de un arbol. Un arbol es un conjunto de nodos que:

1. O bien es vacio, o bien
2. Tiene un nodo determinado llamado raiz del que jerdrquicamente descienden cero o mis
subarboles, que son también arboles.

Un éarbol esta equilibrado cuando, dado un nimero maximo de k hijos para cada nodo y la altura
del arbol h, cada nodo de nivel / < h - 1 tiene exactamente k hijos. El arbol esta equilibrado
perfectamente cuando cada nodo de nivel / < h tiene exactamente k hijos.

502 Programacion en C. Metodologia, algoritmos y estructura de datos

(O

)

(b)

Figura 16.7. {a) Un arbol equilibrado; (b) Un arbol perfectamente equilibrado.

16.11. Representacion de un arbol

Aungue un arbol se implementa en un lenguaje de programacién como C mediante punteros, cuando se
ha de representar en papel, existen tres formas diferentes de representacién. La primera es el diagrama
o carta de organizacion utilizada hasta ahora en las diferentes figuras. El término que se utiliza para esta
notacidn es el de arbol general.

Representacion en niveles de profundidad

Este tipo de representacion es el utilizado para representar sistemas jerarquicos en modo texto o nimero
en situaciones tales como facturacién, gestion de stocks en almacenes, etc.

Por ejemplo, en las Figuras 16.8 y 16.9se aprecia una descomposicion de una computadora en sus
diversos componentes en una estructura arbol. Otro ejemplo podria ser una distribucién en arbol de las
piezas de una tienda de recambios de automdviles distribuidas en niveles de profundidad segun los
numeros de parte o codigos de cada repuesto (motor, bujia, bateria, piloto, faro, embellecedor, etc.).

Arboles 503

LCoamputadorg

|
|
Wonitor | CPLU m', " Teclado Peddénicns Discos
¥ T -~ i i . L 1 S -
g 1
1
1
]
{ I"“_.nr-lr:.'.;l.-.‘hr._- AL) U] 1] | Escaner | [CD-ROM) -- WD

{ Irgwesoda § |3

Figura 16.8. Arbol general (computadora).

NUmero codigo Descripcion
501 Computadora
501-11 Monitor
501-21 CPU
501-211 Controlador
501-212 ALU
501-219 ROM
501-31 Teclado
501:4;1 -F;ériféricos
501-411 Escaner
501-412 impresora
501-51 Discos
501-511 CD-ROM
501-512 CD-RW
501-513 DVD

Figura 16.9. Arbol en nivel de profundidad (computadora).

Representacidn de lista

Otro formato utilizado para representar un arbol es la lista entre paréntesis. Esta es la notacion utilizada
con expresiones algebraicas. En esta representacion, cada paréntesis abierto indica el comienzo de un
nuevo nivel; cada paréntesis cerrado completa un nivel y se mueve hacia arriba un nivel en el arbol. La
notacidn en paréntesis de la Figura 16.3 es: A(B (C, p), E, F, (G, H, 1)}.

Ejemplo 16.1

Convertir el drbol general siguiente en representacion en lista.

iy

504 Programacioén en C. Metodologia, algoritmos y estructura de datos
LA
E | [|: | D |
| ’
E) F) | G H | } J)
|
i K [L M
Lasoluciébnesa (B (E (K, L), F}, C (G), D{(H (M), I, J))).

16.2. RESUMEN DE DEFINICIONES

1. Dado un conjunto E de elementos:

o
-

Un arbol puede estar vacio; es decir, no contiene ningln elemento,

Un arbol no vacio puede constar de un Unico elemento e e E denominado un nodo, o bien
Un arbol consta de un nodo e ¢ E, conectado por arcos directos a un namero finito de otros
arboles.

2. Definiciones:

o

El primer nodo de un éarbol, normalmente dibujado en la posicion superior, se denomina raiz
del arbol.

Las flechas que conectan un nodo a otro se llaman arcos o ramas.

Los nodos terminales, esto es, nodos de los cuales no se deduce ningin nodo, se denominan
hojas.

o Los nodos que no son hojas se denominan nodos internos o nodos no terminales.
e En un arbol una rama va de un nodo », a un nodo #., se dice que #, es el padre de n, y que =,

O o O©

esun hijoden,.

n, se llama ascendiente de », si », es el padre de 7, o si 1, es el padre de un ascendiente de #..
n, se llama descendiente de n, si n, es un ascendiente de #..

Un camino de n, a n, es una secuencia de arcos contiguos que van de n, a n,.

La longitud de un camino es el nimero de arcos que contiene (en otras palabras el nimero de
nodos - 1).

El nivel de un nodo es la longitud del camino que lo conecta al raiz.

La profundidad o altura de un arbol es la longitud del camino mas largo que conecta el raiz
a una hoja.

Arboles 505

e Un subarbol de un arbol es un subconjunto de nodos del arbol, conectados por ramas del
propio arbol, esto es a su vez un arbol.

« Sea S un subéarbol de un arbol A: si para cada nodo n de SA, SA contiene también todos los
descendientes de n en A. SA se llama un sub&rbol completo de A.

 Un éarbol est4 equilibrado cuando, dado un nimero maximo K de hijos de cada nodo y la
altura del arbol h, cada nodo de nivel k < &-7 tiene exactamente K hijos. El arbol esta
equilibrado perfectamente entre cada nodo de nivel I<h tiene exactamente K hijos.

AR | iz
1 .
82 g | - nods inbernd (padne da
s L e5 y ascendiente de e5,
| €6,e8ye9)
e4,e5,e8y e9
junto con los a4 . * e
arcos que les al) B85 [e7) (@8
conectan, son ; r ;
un subarbol del
arbol principal
1 'E'Ei.l | g |- haj

16.3. ARBOLES BINARIOS

Un arbol binario es un arbol en el que ningin nodo puede tener mas de dos subarboles. En un arbol
binario, cada nodo puede tener, cero, uno o dos hijos (subérboles). Se conoce el nodo de la izquierda
como hijo izquierdo y el nodo de la derecha como hijo derecho.

(] |k |

506 Programacién en C. Metodologia, algoritmos y estructura de datos

‘A A
f S ®)
B [) T
=, g '_I ':: |
2 :
e - il : I
(D]} E) (F) ™ (-
E (o] | (A
G} .NH__. I:._E : ’ b .
(el - (i i
(A)
| &) J B
:_J-B .J.'[: |
(g) (h)
Figura 16.10. Arboles binarios.
Nota

Un érbol binario no puede tener mas de dos subarboles.

Un arbol binario es una estructura recursiva. Cada nodo es el raiz de su propio subéarbol y tiene
hijos, que son raices de arboles llamados los subarboles derecho e izquierdo del nodo, respectivamente.
Un arbol binario se divide en tres subconjuntos disjuntos:

{R} Nodo raiz
{r, 1., ...1} Subdrbol izquierdo de R
{D, D, ...D} Subdrbol derecho de R

Arboles 507

Subarbol izquierdo

Figura 16.11. Arbol binario.

En cualquier nivel n, un arbol binario puede contener de 1 a2 nodos. EI nimero de nodos por nivel
contribuye a la densidad del arbol.

(a) (b)
Figura 16.12. Arboles binarios: (a)profundidad 4; (b) profundidad 5.

En la Figura 16.12 (u)el arbol A contiene 8 nodos en una profundidad de 4, mientras que el arbol
16.12 (h)contiene 5 nodos y una profundidad 5. Este Gltimo caso es una forma especial, denominado
arbol degenerado, en el que existe un solo nodo hoja (E) y cada nodo no hoja sélo tiene un hijo. Un
arbol degenerado es equivalente a una lista enlazada.

16.3.1. Equilibrio

La distancia de un nodo al raiz determina la eficiencia con la que puede ser localizado. Por ejemplo,
dado cualquier nodo de un arbol, a sus hijos se puede acceder siguiendo s6lo un camino de bifurcacion

508 Programacion en C. Metodologia, algoritmos y estructura de datos

o de ramas, el que conduce al nodo deseado. De modo similar, los nodos a nivel 2 de un arbol sélo
pueden ser accedidos siguiendo s6lo dos ramas del arbol.

La caracteristica anterior nos conduce a una caracteristica muy importante de un arbol binario, su
balance o equilibrio.Para determinar si un arbol esté equilibrado, se calcula su factor de equilibrio. El
factor de equilibrio de un arbol binario es la diferencia en altura entre los subarboles derecho e
izquierdo. Si definimos la altura del subarbol izquierdo como H, y la altura del subarbol derecho como
H,,, entonces el factor de equilibrio del arbol B se determina por la siguiente formula: B = H - H.

Utilizando esta formula el equilibrio del nodo raiz los ocho arboles de la Figura 16.10son (u)0 (h)
0, (¢)0 por definicion, (d) -1, (e)4, (H -1, (g)1, (h) 2.

Un arbol est4 perfectamente equilibradosi su equilibrio o balance es cero y sus subarboles son
también perfectamente equilibrados. Dado que esta definicidn ocurre raramente se aplica una definicion
alternativa. Un arbol binario estéd equilibrado si la altura de sus subarboles difiere en no méas de uno (su
factor de equilibrio es -1, 0, +1) y sus subarboles son también equilibrados.

16.3.2. Arboles binarios completos |

Un éarbol binario completo de profundidad » es un arbol en el que para cada nivel, del 0 al nivel n-1
tiene un conjunto lleno de nodos y todos los nodos hoja a nivel n ocupan las posiciones mas a la
izquierda del arbol.

Un arbol binario completo que contiene 2" nodos a nivel n es un arbol lleno. Un arbol lleno es un
arbol binario que tiene el maximo nimero de entradas para su altura. Esto sucede cuando el Ultimo nivel
esta lleno. La Figura 16.13 muestra un arbol binario completo; el arbol de la Figura 16.14 (b) se
corresponde con uno lleno.

(H (1) (4 K

y A
-- E .:
c ‘B (G
(D] ,
Arbol degenerado / Arbol lleno
(profundidad 5) N : — e : (profundidad 3)
(@ E o) \E \F G (b)

Figura 16.14. Clasificacién de arboles binarios: (a)degenerado; (b) lleno.

Arboles 509

El Ultimo caso de arbol es un tipo especial denominado arbol degenerado en el que hay un solo
nodo hoja (E) y cada nodo no hoja s6lo tiene un hijo. Un arbol degenerado es equivalente a una lista
enlazada. En la Figura 16.15 se muestran arboles llenos y completos.

{ |

(bn (ch

Figura 16.15. (8} Arboles llenos (enniveles 0, 1y 2); {b),{c) y (d) arboles completos (en nivel 2).

Los arboles binarios y llenos de profundidad k+1 proporcionan algunos datos matematicos que es
necesario comentar. En cada caso, existe un nodo (2")al nivel O (raiz), dos nodos (2')a nivel 1, cuatro
nodos (2') a nivel 2, etc. A través de los primeros k-7 niveles hay 2'-1 nodos.

1+2+4+ .. +2 '=2

510 Programacion en C. Metodologia, algoritmos y estructura de datos

A nivel &, el nimero de nodos adicionados para un &rbol completo esta en el rango de un minimo
de 1aun maximo de 2 (lleno). Con un arbol lleno, el nimero de nodos es

142+4+ 420 42 =00 1

El nimero de nodos n en un arbol binario completo de profundidad k +1 (0 a k niveles) cumple la
inigualdad

< p g2 <2

Aplicando logaritmos a la ecuacion con desigualdad anterior
k mog, (n)<k+1

Se deduce que la altura o profundidad de un arbol binario completo de n nodos es:
h=/log,n +1/ (parteentera delog.n + 1)

Por ejemplo, un arbol lleno de profundidad 4 (niveles O a 3) tiene 2* —1= 15nodos

Ejemplo 16.2
Calcular la profundidad maximay minima de un arbol con 5 nodos.
La profundidad maxima de un arbol con 5 nodos es 5

La profundidad minima n (nidmero de niveles mas uno) de un arbol con 5 nodos es

k<log,(5)<kt+1
log, (5)=2.32 y laprofundidad n =3

Ejemplo 16.3
La profundidad de un &rbol degenerado con n nodos es n, dudo que es la longitud del camino mds largo
(raiz anodo)nés |.

En el arbol binario completo con n nodos, la profundidad del arbol es el valor entero de log, n + 1,
que es a su vez la distancia del camino mas largo desde el raiz a un nodo més uno.
Suponiendo que el arbol tiene n = 10.000elementos, el camino mas largo es

int (log 10000) + 1 = int (13.28)+ 1 = 14

r-_

Arboles 511

16.4. ESTRUCTURA DE UN ARBOL BINARIO

La estructura de un arbol binario se construye con nodos. Cada nodo debe contener el campo dato (datos
aalmacenar) y dos campos punteros, uno ai subarbol izquierdo y otro al subarbol derecho, que se cono-
cen como puntero izquierdo (izquierdo, izdo) y puntero derecho (derecho, dcho) respectivamente.
Un valor NuLL indica un &rbol vacio.

SRR s [T b G104 o I P oy
1 A o hoja—izquierd hoja-derecha
— izquierdo | datos derecho
izguierdo datos derecho |

El algoritmo correspondiente a la estructura de un arbol es el siguiente:

Nodo
subarbolIzquierdo < puntero a Nodo>
dat os = Tipodato =
subarbolDerecho < puntero a Nodo>
Fi n Nodo
La Figura 16.16 muestra un arbol binario y su estructura en nodos:
(A)
lzdo | A Dch 8 C)
/
) E) F
. i . . i
lzdo B Dch Izdo C Dch “ s
L 1 / L] \ 'El__.' H
- / \ (a)Arbol
lzdo D Dch tado = Oich kzdo | F | Dch |
. | | | P
I I
lzdo G Dch lzdo H Dch
. L

(b)Estructura

Figura 16.16. Arbol binarioy su estructura en nodos

512 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 16.4

Representar la estructura en nodos de los dos arboles binarios de raiz A:

(A A Nivel 0

B) < > |
= !‘.E.' :|:'- e —w-- Nivel 1

C)
(D) E ! F) (G) Nivel 2
(D) = - :

m H) Nivel 3
\E . A : Nivel 4

La representacion enlazada de estos dos arboles binarios es:

r e
¥ _ 1 I >+,
» o i
H & &
- PN | €
A :
= s EY
; i [| | UL F | sl ML aLILL
AN D T T et - INOC. @ NG
¥] : | | |
I i ik . -
E] | NLIL | H | MUl | (WL | 1 :NUL

16.4.1. Diferentestipos de representacionesen C

Los nodos pueden ser representados con la estructura st ruct. Suponiendo que el nodo tiene los campo
Dat os, |zquierdoy Derecho.

Representacion |

t ypedef struct nodo "puntero- arbol;
t ypedef struct nodo ¢

int datos;

punt ero- arbol hijo-izdo, hijo-dcho;
}i

Arboles 513

dakns

hijo— =&~ hij@edcho
hijo-izdo datos hijo—dcho

Representacion 2
typedef int Ti poEl enento; /* Puede ser cual quier tipo */

struct Nodo {

TipoElemento | nfo;

struct Nodo *hijo_izdo, *hijo_dcho;
Yi

typedef struct Nodo ElementoDeArbolBin;
typedef ElementoDeArbolBin *ArbolBinario;

Para crear un nodo de un arbol binario, con la representacién 2, se reserva memoria para el nodo, se
asigna el dato al campo infoy se inicializa los punteros hi jo_izdo, hijo_dcho aNULL .

ArbolBinario CrearNodo (TipoElemento x)
{
ArbolBinario a;
a = (ArbolBinario) malloc(gsizeof (ElementoDeArbolBin)} ;
a -> Info = Xx;
a-> hijo-dcho = a -> hijo-izdo = NULL;
return a;
i

Si por ejemplo se desea crear un arbol binario de raiz 9, rama izquierda 7 y rama derecha 11 :

ArbolBinario raiz;
raiz = Creariodo(9);
raiz -> hijo-izdo = CrearNodo(7);
raiz -> hijo-dcho = CrearNodo(11);

16.5. OPERACIONES EN ARBOLES BINARIOS

Una vez que se tiene creado un arbol binario, se pueden realizar diversas operaciones sobre él. El hacer
uso de una operacion u otra dependera de la aplicacion que se le quiera dar al arbol. Algunas de las
operaciones tipicas que se realizan en arboles binarios son:

o Determinar su altura.

« Determinar su nimero de elementos.

o Hacer una copia.

o Visualizar el arbol binario en pantalla o en impresora.

o Determinar si dos arboles binarios son idénticos.

o Borrar (eliminar el arbol).

o Siesun arbol de expresion', evaluar la expresion.

o Siesun arbol de expresion, obtener la forma de paréntesis de la expresion.

Todas estas operaciones se pueden realizar recorriendo el arbol binario de un modo sistematico. El

* En ¢l apartado siguiente se estudia el importante concepto de drbol de expresiin.

514

Programacion en C. Metodologia, algoritmos y estructura de datos

recorrido de un arbol es la operacion de visita al arbol, o lo que es lo mismo, la visita a cada nodo del
arbol una vez y solo una. La visita de un arbol es necesaria en muchas ocasiones, por ejemplo, si se
desea imprimir la informacion contenida en cada nodo. Existen diferentes formas de visitar o recorrer

un arbol que se estudiaran mas tarde.

16.6. ARBOLES DE EXPRESION

Una aplicacion muy importante de los &rboles binarios son los drboles de expresion. Una expresion es
una secuencia de tokens (componentes de Iéxicos que siguen unas reglas prescritas). Un token puede ser

0 bien un operando o bien un operador.
La Figura 16.17 representa la expresion infija a* (b+c) td y su arbol de expresion. En una primera

A e ched
a*(b+c)+d !

d v)
d | d

Figura 16.17. Unaexpresioninfija'y su arbol de expresion.

observacion vemos que los paréntesis no aparecen en el arbol.
Un arbol de expresion es un arbol binario con las siguientes propiedades:

1. Cada hoja es un operando.
2. Los nodos raiz e internos son operadores.
3. Los subarboles son subexpresiones en las que el nodo raiz es un operador.

Los arboles binarios se utilizan para representar expresiones en memoria; esencialmente, en
compiladores de lenguaje de programacion. La Figura 16.18 muestra un arbol binario de expresiones

para la expresion aritmética (a + b)* c.
Obsérvese que los paréntesis no se almacenan en el arbol pero estan implicados en la forma del

Figura 16.18. Arbol binario de expresiones que representa (atl] *c.

Arboles 515

arbol. Si se supone que todos los operadores tienen dos operandos, se puede representar una expresion
por un arbol binario cuya raiz contiene un operador y cuyos subarboles izquierdo y derecho son los
operandos izquierdo y derecho respectivamente. Cada operando puede ser una letra (x, y, a, b,
etc.) 0 una subexpresion representada como un subarbol. En la Figura 16.19 se puede ver como el
operador que esté en la raiz es *, su subarbol izquierdo representa la subexpresién ix + y) y su
subarbol derecho representa la subexpresion (a-b) . El nodo raiz del subarbol izquierdo contiene el
operador (+) de la subexpresion izquierda y el nodo raiz del subarbol derecho contiene el operador (-)
de la subexpresién derecha. Todos los operandos letras se almacenan en nodos hojas.

Utilizando el razonamiento anterior, se puede escribir la expresién almacenada en la Figura 16.20
como

Figura 16.19. Arbol de expresion (xty | * (a b

(x*{y-z))+(a-Db)

en donde se han insertado paréntesis alrededor de subexpresiones del arbol (la operacion y- z,
subexpresion inas interna, tiene el nivel de prioridad mayor).

Figura 16.20. Arbol de expresion (x* (y-z))+(a-b}.

516 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 16.5
Deducir las expresiones que representan los siguientes arboles binarios.

i & | { w }
& A, S P
.,
- e
“y . ",
o e e a1 -\. .
| X i & | | =) | | C
s e . - b .
i -'\':-" = - ..}
¥ |] H | | A + |
¥ 4 o . {
LY .\,.
Z +) (2 (¥
() o)
{a [- [£]
Soluciones
(a) x*(y/-2)

() A +(B*-(C+D))
(c) (A*(X+Y))*C

Ejemplo 16.6
Dibujar la representacion en arbol binario de cada una de las siguientes expresiones.

(a) x*Y/ (a+B) *C
(b) X*Y/A+B*C

Soluciones

(a) (by

16.6.1. Reglas para la construccion de arboles de expresion

Los arboles de expresiones se utilizan en las coinputadoras para evaluar expresiones usadas en
programas. El algoritmo mas sencillo para construir un arbol de expresion es uno que lee una expresion
completa que contiene paréiitesis en la misma. Una expresion con paréntesis es aquella en que

Arboles 517

1. La prioridad se determina s6lo por paréntesis.
2. Laexpresion completa se sitGa entre paréntesis.

Por consiguiente (4+ (5*6)) esun ejemplo de una expresion completa entre paréntesis. Su valor es
34. Si se desean cambiar las prioridades, se escribe ((4«5} *6) , su valores 54. A fin de ver la prioridad
en las expresiones, considérese la expresion

(4*5) + 6/7 - (8+9)
Los operadores con prioridad més alta son * y /. es decir,
(4*5) + (6/7) - (8+9)
El orden de los operadores aqui es +y —. Por consiguiente, se puede escribir
((4*5) + (6/7)) - (8+9)
Por ultimo la expresion completa entre paréntesis sera
(((4*%5) + (6/7)) - (B+9)})
El algoritmo para la construccion de un arbol de expresion es:

1. La primera vez que se encuentra un paréntesis a izquierda, crea un nodo y lo hace en el raiz. Se
llama a éste, el nodo actual y se sitla su puntero en una pila.

2. Cada vez que se encuentre un nuevo paréntesis a izquierda, crear un nuevo nodo. Si el nodo
actual no tiene un hijo izquierdo, hacer el nuevo nodo el hijo izquierdo; en caso contrario, hacerlo
el hijo derecho. Hacer el nuevo nodo el nodo actual y situar su puntero en una pila.

3. Cuando se encuentra un operando, crear un nuevo nodo Yy asignar el operando a su campo de
datos. Si el nodo actual no tiene un hijo izquierdo, hacer el nuevo nodo el hijo izquierdo; en caso
contrario, hacerlo el hijo derecho.

4. Cuando se encuentra un operador, sacar un puntero de la pila y situar el operador en el campo
datos del nodo del puntero.

5. Ignorar paréntesis derecho y blancos.

Ejemplo 16.7
Calcular las expresiones correspondientes de los arboles de expresion.

(a)

ful]

518 Programacion en C. Metodologia, algoritmos y estructura de datos

Las soluciones correspondientes son:

* + (c / 4 . ((—a) + (x +v)) / ((+b) * (¢ * d))

(a)
(a +b) + c) +d

u.
b. «

Ejercicio 16.1 (arealizar por el lector)
Dibujar los arboles binarios de expresion correspondiente a cada una de las siguientes expresiones:

(Uy (a +b) / (c -d*e) + e+ 9 * hla
(h)y-x -~y * z+ (a+b+c/ d*e)
(c)(la +b) > (c-e)) |t a<f&a (x<y Ily=>2)

16.7. RECORRIDO DE UN ARBOL

Para visualizar o consultar los datos almacenados en un &rbol se necesita recorrer el arbol o visitar los
nodos del mismo. Al contrario que las listas enlazadas, los arboles binarios no tienen realmente un
primer valor, un segundo valor, tercer valor, etc. Se puede afirmar que el raiz viene el primero, pero
;quién viene a continuacion? Existen diferentes métodos de recorrido de arbol ya que la mayoria de las
aplicaciones binarias son bastante sensibles al orden en el que se visitan los nodos, de forma que sera
preciso elegir cuidadosamente el tipo de recorrido.

Un recorrido de un arbol binario requiere que cada nodo del arbol sea procesado (visitado) una
vez y s6lo una en una secuencia predeterminada. Existen dos enfoques generales para la secuencia de
recorrido, profundidad y anchura.

En el recorrido en profundidad, el proceso exige un camino desde el raiz a través de un hijo, al
descendiente mas lejano del primer hijo antes de proseguir a un segundo hijo. En otras palabras, en el
recorrido en profundidad, todos los descendientes de un hijo se procesan antes del siguiente hijo.

En el recorrido en anchura, el proceso se realiza horizontalmente desde el raiz a todos sus hijos,
a continuacion a los hijos de sus hijos y asi sucesivamente hasta que todos los nodos han sido
procesados. En otras palabras, en el recorrido en anchura, cada nivel se procesa totalmente antes de que
comience el siguiente nivel.

El recorrido de un arbol supone visitar cada nodo sélo una vez.

Dado un arbol binario que consta de un raiz, un subarbol izquierdo y un subarbol derecho se pueden
definir tres tipos de secuencia de recorrido en profundidad. Estos recorridos estandar se muestran en la

Figura 16.21.
1 2 L]
[]
TN »
- r -

¥ 1 1 3 i 3
Subarbol Subarbol Subarbol Subérbol Subérbol Subérbol
izquierdo derecho izquierdo derecho izquierdo derecho

(a) Recorridopreorden (b) Recorridoen orden (c) Recorrido postorden

Figura 16.21. Recorridos de arboles binarios

Arboles 519

La designacién tradicional de los recorridos utiliza un nombre para el nodo raiz (N),para el subarbol
izquierdo (1) y para el subarbol derecho (D).
Segun sea la estrategia a seguir, los recorridos se conocen como enorden (inorder),preorden

(preorder) y postorden (postorder)

Preorden (nodo-izquierdo-derecho) (NID)
Enorden (izquierdo-nodo-derecho) (IND)
Postorden (izquierdo-derecho-nodo) (IDN)

16.7.1. Recorrido preorden

El recorrido preorden’ (NID) conlleva los siguientes pasos, en los que el raiz va antes que los subarboles:

1. Recorrer el raiz (N).
2. Recorrer el subarbol izquierdo (1) en preorden.
3. Recorrer el subarbol derecho (D)en preorden.

Dado las caracteristicas recursivas de los arboles, el algoritmo de recorrido tiene naturaleza
recursiva. Primero, se procesa la raiz, a continuacion el subarbol izquierdo y a continuacién el subarbol
derecho. Para procesar el subarbol izquierdo, se hace una Ilamada recursiva al procedimiento preorden
y luego se hace lo mismo con el subarbol derecho. El algoritmo recursivo correspondiente para un arbol

T es:
si T no es vaci o entonces
inicio
ver los datos en el raiz de T
Preorden (subarbol izquierdo del raiz de T)
Preorden (subarbol derecho del rarz de T)
fin
Regla

En el recorridopreorden, el raiz se procesa antes que los subarboles izquierdo y derecho.

Si utilizamos el recorrido preorden del arbol de la Figura 16.22 se visita primero el raiz (nodo A).
A continuacion se visita el subéarbol izquierdo de 2, que consta de los nodos B, b y E. Dado que el
subarbol es a su vez un arbol, se visitan los nodos utilizando el orden n1D. Por consiguiente, se visita
primero el nodo B, después D (izquierdo) y, por ultimo, E (derecho).

P
{ A |
e 4 CaminoA,B, D E,C F G
1
lllﬁ.. .E:.:
o, S - 1
D] (E) (F) (G)
3 4 6 7

Figura 16.22. Recorrido preorden de un arbol binario.

* El nombre prearden. viene del prefijo latino pre que significa «ir antes»

520 Programacion en C. Metodologia, algoritmos y estructura de datos

A continuacién se visita el subarbol derecho de A, que es un arbol que contiene los nodos C, =y
G. De nuevo siguiendo el orden n1D, se visita primero el nodo c, a continuacion F (izquierdo) y, por
Ultimo, G (derecho). En consecuencia el orden del recorrido preorden para el arbol de la Figura 16.22es
A-B-DE-CF-G

Un refinamiento del algoritmo es:

al goritnp preOrden (val raiz <puntero nodos>)
Recorrer un arbol binario en secuenci a nodo-izdo-dcho
Pre raiz es el nodo de entrada del arbol o subarbo
Post cada nodo se procesa en orden
1 si (raizno es nulo)

1 procesar (raiz)

2 preOrden (raiz -> subarbollzdo)

3 preOrden (raiz -> subarbolDcho
2 return

La funcién pr eor den muestra el cédigo fuente en C del algoritmo ya citado anteriormente. El tipo
de los datos es entero.

typedef int Ti poEl enent o;
struct nodo {
Ti poEl enent o dat os;
struct nodo *hijo_izdo, *hijo_dcho; {
i
t ypedef struct nodo Nodo;

voi d preorden (Nodo *p)
|

£ (p)

~

printf ("sa ",p -> datos) ;
PreOrden(p -> hijo-izdo);
PreOrden{p -> hijo-dcho);
}
}

Graficasde las Ilamadas recursivas de preorden

El recorrido recursivo de un arbol se puede mostrar graficamente por dos métodos distintos: 1) paseo
preorden del arbol; 2) recorrido algoritmico.

Un medio grafico para visualizar el recorrido de un arbol es imaginar que se esta dando un «paseo»
alrededor del arbol comenzando por la raiz y siguiendo el sentido contrario a las agujas del reloj, un
nodo a continuacién de otro sin pasar dos veces por el mismo nodo. El camino sefialado por una linea
continua que comienza en el nodo 1 (Fig. 16.21) muestra el recorrido preorden completo. En el caso de
la Figura 16.22¢l recorridoesA B D E C F G.

El otro medio grafico de mostrar el recorrido algoritmico recursivo es similar a las diferentes etapas
del algoritmo. Asi la primera llamada procesa la raiz del arbol A. A continuacion se llama recursivamente
a procesar subarbol izquierdo, procesa el nodo k. La tercera Ilamada procesa el nodo D, que es un
subarbol formado por un Unico nodo. En ese punto, se llama en preorden, con un puntero nulo, que
produce un retorno inmediato al subarbol D para procesar a su subarbol derecho. Debido a que el
subarbol derecho de D es también nulo, se vuelve al nodo B de modo que va a procesar (visitar)su
subarbol derecho, E Después de procesar el nodo E, se hacen dos Illamadas més, una con el puntero
izquierdonull de E y otra con su puntero derecho null. Como el subarbol & ha sido totalmente procesado,
se vuelve a la raiz del arbol y se procesa su subarbol derecho, ¢. Después de procesar c, llama para
procesar su subarbol izquierdo r. Se hacen dos llamadas con null, vuelve al nivel donde esta el nodo
para procesar su rama derecha G. Aln se realizan dos llamadas mas, una al subarbol izquierdo null y otra
al subarbol derecho. Entonces se retorna en el arbol, se concluye el recorrido del arbol.

Arboles 521

16.7.2. Recorrido enorden

El recorrido en orden (inorder) procesa primero el subarbol izquierdo, después el raiz y a continuacién
el subarbol derecho. El signiticado de in es que la raiz se procesa entre los subarboles. Si el arbol no esta
vacio, el método implica los siguientes pasos:

1. Recorrer el subdrbol izquierdo (I)en inorder.
2. Visitar el nodo raiz (N).
3. Recorrer el subarbol derecho (D) en inorden.

El algoritmo correspondiente es:
Enorden (A)

si el arbol no esta vacio entonces
inicio
Recorrer el subarbol izquierdo
Visitar el nodo raiz
Recorrer el subarbol derecho
fin
Un refinamiento del algoritmo es:

al goritm enOrden (val railz <puntero a nodos>)
Recorrer un &rbol binario en |a secuencia izquierdo-nodo-derecho
pre raiz en el nodo de entrada de un arbol o subarbo
post cada nodo se ha de procesar en orden
1 si (raizno es nulo)
1 enorden (raiz -> subarbol Izquierdo)
2 procesar (raiz)
3 enOrden {raiz->subarbolbDerechao)
2 retorno
fin enorden

En el arbol de la Figura 16.23, los nodos se han numerado en el orden en que son visitados durante
el recorrido enorden. El primer subarbol recorrido es el subarbol izquierdo del nodo raiz (arbol cuyo
nodo contiene la letra B. Este subarbol consta de los nodos B, Dy E Y es a su vez otro &rbol con el hodo
B cOMo raiz, por lo que siguiendo el orden 1D, se visita primero D, a continuacion B (nodo raiz) vy,
por ultimo, E (derecha). Después de la visita a este subarbol izquierdo se visita el nodo raiz A y, por
Ultimo, se visita el subarbol derecho que consta de los nodos C, Fy G. A continuacion, siguiendo el
orden TnD para el subarbol derecho, se visita primero F, después ¢ (nodo raiz) y, por Ultimo, 6. Por
consiguiente, el orden del recorrido inorden de la Figura 16.23es D-B-E-A-F-C-G.

[A . -
" 4 Camino DB EAFC G
]
L B -{:
:_l _u
D) E) Fl e
1 3 5 ;

Figura 16.23. Recorrido enorden de un arbol binario.

522 Programacion en C. Metodologia, algoritmos y estructura de datos

La siguiente funcidn visita y escribe el contenido de los nodos de un arbol binario de acuerdo al

recorrido EnOrden. La funcion tiene como parametro un puntero al nodo raiz del arbol.

voi d enorden (Nodo *p)
{

if (p)

{
enorden{p -> hijo-izqdo); /* recorrer subarbol izquierdo */
printf ("sd ",p -> datos) ;: /* visitar laraiz */
enorden (p-> hijo-dcho); /* recorrer subarbol derecho */

16.7.3. Recorrido postorden

El recorrido postorden (IDN) procesa el nodo raiz (posr) después de que los subarboles izquierdo y
derecho se han procesado. Se comienza situdndose en la hoja més a la izquierda y se procesa. A
continuacion se procesa su subarbol derecho. Por Gltimo se procesa el nodo raiz. Las etapas del

algoritmo son:

1 Recorrer el subarbol izquierdo (1) en postorden.
2. Recorrer el subarbol derecho (D) en postorden.
3. Visitar el nodo raiz (N.

El algoritmorecursivo para un arbol A es:

si A no esta vaci o entonces
inicio
Post orden (subarbol i zquierdo del raiz de A)
Postorden (subarbol derecho del raiz de A)
Visitar laraiz de A
fin
El refinamiento del algoritmo es:
al goritno postorden (val raiz <puntero a nodo>)

Recorrer un arbol binario en secuencia izquierda-derecha-nodo

pre raiz es el nodo de entrada de un arbol a un subarbol
post cada nodo ha sido procesado en orden

1 Si (raizno es nulo)
lpostOrden (raiz -> SubarbolIzdo)
2postOrden (raiz -> SubarbolDcho)
3procesar (raiz)

2 retorno

fin postorden

Si se utiliza el recorrido postorden del arbol de la Figura 16.24, se visita primero el subéarbol
izquierdo A. Este subarbol consta de los nodos B,D Yy E Yy siguiendo el orden | DN, se visitara primero D
(izquierdo), luego E (derecho)y, por Ultimo, B (nodo). A continuacion, se visita el subarbol derechoa
que constade los nodos ¢ , Fy G Siguiendo el orden 1DN para este arbol, se visita primero F (izquierdo)
después G (derecho) y, por Ultimo, € (nodo). Finalmente se visita el raiz A (nodo). Asi el orden del

recorrido postorden del &rbol de la Figura 16.24 es D- E- B- F- G C A

Arboles 523

d
(A)
PN Camino L E B EG CyA
:' oy
"4 ™
,
- .-.-l--l \\-\\\.
1
r‘;-E*-" (. ':.*:
4 3 "'." -"-l-ﬁ
y | ; LY
.-"r "'-,L # L
.J-"{'I o _.-'J: -.J""'H.
i i 1 i 1 |
l"‘\. Et.-" I"\. E.- 'L.‘F__-'I |:1|:_3 F
1 2 4 5

Figura 16.24. Recorrido postorden de un arbol binario.

La funcién post or den que implementa en C el codigo fuente del algoritmo correspondiente

voi d postorden (Nodo *p)
{
if (p)
{
postorden (p -> hijo-izqdo);
postorden (p -> hijo-dcho);
printf ("¢d ",p -> datos) ;
}

Nota de programacién modular

La visita al nodo raiz del drbol que se representa mediante una sentencia printf () podria
representarse también con una funcidn visicar

wvold visitar [(Hodo *p)
{

printf("%d ".p -> datos);
]

La funcidm postarden quedsria asi:

vold postorden (Nodo *p)
{
if (p)
{
pastorden (p -> hijo_izgdo) ;
postorden (p =-> hijo_dcho);
visivar ip);
J
b

524 Programacion en C. Metodologia, algoritmos y estructura de datos

T~ e {e]

(@

Figura 16.25. Arboles de expresion.

Ejercicio 16.2
Si la funcion vi si t ar () se reemplazapor la .sentencia.
printf ("%d ",t -> dato);

deducir los elementos de los arboles binarios siguientes en cada uno de los tres recorridos
fundamentales.

Los elementos de los arboles binarios listados en preorden, enorden y postorden.

| Arbola Arbol b Arbol ¢
PreOrden +*ab/cd +++abcd /+- a + xy * +b * cd
EnOrden a*c+c/d a+b+c+d ~c;a+x+vy / +b* ¢ * d
PostOrden, ab*cd/+ ab+c+d+ a - Xy ++ b + cd ** /

16.7.4. Profundidad de un arbol binario

La profundidad de un arbol binario es una caracteristica que se necesita conocer con frecuencia durante
el desarrollo de una aplicacion con arboles. La funcién Pr of undidad evalta laprofundidad de un arbol
binario. Para ello tiene un pardmetro que es un puntero a la raiz del arbol.

El caso mas sencillo de calculo de la profundidad es cuando el arbol esta vacio en cuyo caso la
profundidad es O. Si el &rbol no esté vacio, cada subarbol debe tener su propia profundidad, por lo que
se necesitaevaluar cada una por separado. Las variablesprofundidadl, profundidadD almacenaran
las profundidades de los subarboles izquierdo y derecho respectivamente.

El método de célculo de la profundidad de los subarboles utiliza llamadas recursivas a la funcion
Pr of undi dad con punteros a los respectivos subarboles como parametros de la misma. La fun-

|

Arboles 525

cion Pr of undi daddevuelve como resultado la profundidad del subarbol mas profundo mas | (la mis-
ma del raiz).

int Profundi dad (Nodo *p)

i

if ('p)
return 0

el se

{
int profundi dadl = rrofundidad (p -> hijo-izqdo);
int profundidadb = Profundidad (p -> hijo-dcho) ;
if (profundidadl> profundidadb)

return profundi dadl + 1;

el se
return profundidadb + 1;

16.8. ARBOL BINARIO DE BUSQUEDA

Los arboles vistos hasta ahora no tienen un orden definido; sin embargo, los arboles binarios ordenados
tienen sentido. Estos arboles se denominan arboles binarios de busqueda, debido a que se pueden buscar
en ellos un término utilizando un algoritmo de busqueda binaria similar al empleado en arrays.

Un arbol binario de busqueda es aquel que dado un nodo, todos los datos del subarbol izquierdo
son menores que los datos de ese nodo, mientras que todos los datos del subarbol derecho son mayores
que sus propios datos. El arbol binario del Ejemplo 16.8es de busqueda.

Ejemplo 16.8
Arbol binario de blsqueda.

= 30 menor que 55
| 55) 41 mayor que 30
i, 75 mayor que 55

85 mayor que 75

4 menor que 30

(30 (75
(a) (41) (85)

16.8.1. Creacionde un arbol binario de busqueda

Supongamos que se desea almacenar los nimeros 8 3 1 20 10 5 4 en un arbol binario de blisqueda.
Siguiendo la regla, dado un nodo en el arbol todos los datos a su izquierda deben ser menores que todos
los datos del nodo actual, mientras que todos los datos a la derecha deben ser mayores que los datos.
Inicialmente el arbol esta vacio y se desea insertar el 8. La Unica eleccion es almacenar el 8 en el raiz:

T

526

Programacion en C. Metodologia, algoritmos y estructura de datos

A continuacion viene el 3.Ya que 3 es menor que 8, el 3 debe ir en el subarbol izquierdo.

(8)

.‘.-"' :
4
(3)

-

A continuacidn se ha de insertar 1que es menor que 8y que 3, por consiguiente ird a la izquierda
y debajo de 3.

g 8 “-.,I

P

GS

-
L

El siguiente nimero es 20, mayor que 8, lo que implica debe ir a la derecha de 8.

Cada nuevo elemento se inserta como una hoja del arbol. Los restantes elementos se pueden situar
facilmente.

®) (&)
= .1-" .\"\.‘_ . — : — o ..'*:-"
(3) (20) (3) .20 (3) (20
e I\"b-_- e il y
) J/ i Y . " !
F ‘.\-._I —y F "'-\.I e { -"'\l I.-"" Sy P ":-\
Il"1 _n.-"i \ '\-1] I“L?—- I Juj \ I-"-l I"_:--‘l;l-"-II r Tn I
'y
(4)

Una propiedad de los arboles binarios de busqueda es que no son Unicos para los mismos datos.

s T

Arboles 527

Ejemplo 16.9
Construir un arbol binario para almacenar los datos 12, 8, 7, 16y 14.
Solucién .
f b
11%4
¥ ol |
i L
;aﬁ (16)
¥ -
Fa —.-'H.. A
kzi k‘i

Ejemplo 16.10

Construir un arbol binario de busqueda que corresponda a un recorrido enorden cuyos elementos
son: 1,3,4,5,6,7 8,9y 10.

I 5]
A,
' 'f:.f T‘PI?“
L "_-,_ _.e:l
: .:”f ™
I.-"_I l :' E‘__,-I L g{[
ey A
(3) (8) (10

16.8.2. Implementacion de un nodo de un arbol binario de busqueda

Un arbol binario de busqueda se puede utilizar cuando se necesita que la informacién se encuentre
rapidamente. Estudiemos un ejemplo de arbol binario en el que cada nodo contiene informacion relativa
a una persona. Cada nodo almacena un nombre de una persona y el nimero de matricula en su
universidad (dato entero).

Declaracion de tipos

Nombre Tipo de dato cadena (st ri ng)
Matricula Tipo entero

Nombre

nummat

lzda ' Dcha

struct nodo {

int nunmat ;

char nonbre[301 ;

struct nodo *izda, *dcha;
Ei
t ypedef struct nodo Nodo;

528 Programacion en C. Metodologia, algoritmosy estructura de datos

Creacion de un nodo

La funcién tiene como entrada un dato entero que representa un nimero de matricula y el nombre.
Devuelve un puntero al nodo creado.

Nodo* CrearNodo(int id, char* n)

Nodo* t ;

t = (Nodo*)malloc(siveof (Nodo));
t -> nummat = id;

strepy (L-snombre,n)

t —=izda = t -> dcha = NULL;
return t;

16.9. OPERACIONES EN ARBOLES BINARIOS DE BUSQUEDA

De lo expuesto se deduce que los arboles binarios tienen naturaleza recursiva y en consecuencia las
operaciones sobre los arboles son recursivas, si bien siempre tenemos la opcidn de realizarlas de forme
iterativa. Estas operaciones son:

¢ Biisqueda de un nodo.
e Insercién de un nodo.
o Kecorrilio de un arbol.
e Borrado de un nodo.

16.9.1. Busqueda

La busqueda de un nodo comienza en el nodo raiz y sigue estos pasos:

1 Laclave buscada se compara con la clave del nodo raiz.

2. Silas claves son iguales, la busqueda se detiene.

3. Silaclave buscada es mayor que la clave raiz, la busqueda se reanuda en el subarbol derecha. Si
la clave buscada es menor que la clave raiz, la blusqueda se reanuda con el subarbol izquierdo.

Buscar una informacion especifica

Si se desea encontrar un nodo en el arbol que contenga la informacién sobre una persona especifica. La
funcién buscar tiene dos parametros, un puntero al arbol y un nimero de matricula para la persona
requerida. Como resultado, la funcién devuelve un puntero al nodo en el que se almacena la informacion
sobre esa persona; en el caso de que la informacién sobre la persona no se encuentra se devuelve el
valor O. El algoritmo de busqueda es el siguiente:

1. Comprobar si el arbol esta vacio.
En caso afirmativo se devuelve 0.
Si laraiz contiene la persona, la tarea es facil: el resultado es, simplemente, un puntero a la raiz.
2. Si el arbol no esta vacio, el subarbol especifico depende de que el nimero de matricula requerido
es mas pequefio o mayor que el nimero de matricula del nodo raiz.
3. La funcién de busqueda se consigue llamando recursivamente a la funcién buscar con un
puntero al subarbol izquierdo o derecho como parainetro.

El codigo C de la funcion buscar. es:

Nodo* buscar (Nodo* p, int buscado)
{

Arboles 529

if (ip)
return O;
else it (buscado== p -> nummat)
return p;
else if (buscado«< p -> nummat)
return buscar (p -> izda, buscado);
el se y
return buscar (p -> dcha, buscado);

16.9.2. Insertar un nodo

Una caracteristica fundamental que debe poseer el algoritmo de insercidn es que el arbol resultante de
una insercion en un arbol de bldsqueda ha de ser también de busqueda. En esencia, el algoritmo de
insercion se apoya en la localizacion de un elemento, de modo que si se encuentra el elemento (clave)
buscado, no es necesario hacer nada; en caso contrario, se inserta el nuevo elemento justo en el lugar
donde ha acabado la basqueda (es decir, en el lugar donde habria estado en el caso de existir).

25) 25

10 36 (10 (36)

15) 30) (64) (8) (15 (30 (64)
Antes de insertar 8 Después de insertar 8

Figura 16.26. Insercion en un arbol binario de bisqueda.

Por ejemplo, considérese el caso de afiadir el nodo 8 al arbol de la Figura 16.26. Se comienza el
recorrido en el nodo raiz 25; la posicion 8 debe estar en el subarbol izquierdo de 25 (8 < 25). En el nodo
10, la posicion de 8 debe estar en el subarbol izquierdo de 10,que esta actualmente vacio. El nodo 8 se
introduce como un hijo izquierdo del nodo 10.

Ejeh-{plo 16.11
Insertar un elemento con clave 80 en el arbol hinario de bisqueda siguiente:

(a0

530 Programacion en C. Metodologia, algoritmos y estructura de datos

A continuacién insertar un elemento con clave 36 en el arbol binario de bisqueda resultante.

Solucion
F Y o
& 4 p A
& ., i -
rd ., F
& .-. '\'\-‘ 3
(5) (40) (5) (40)
hY i J 1
o ._'- ! p—], X
(2 (BO) [2) (36 |80}
(a)Insercion de 80 (a)Insercion de 36

16.9.3. Funcién i nsertar ()

La funcion i nser t ar que pone nuevos nodos es sencilla. Se deben declarar tres argumentos: un puntero
al raiz del arbol, el nuevo nombre y nimero de matricula de la persona. La funcidn creara un nuevo
nodo para la nueva persona y lo inserta en el lugar correcto en el arbol de modo que el &rbol permanezca
como binario de busqueda.

La operacidn de insercién de un nodo es una extension de la operacion de blsqueda. Los pasos a
seguir son:

1. Asignar memoria para una nueva estructura nodo.

2. Buscar en el arbol para encontrar la posicion de insercidn del nuevo nodo, que se colocard como
nodo hoja.

3. Enlazar el nuevo nodo al arbol.

El codigo C de la funcion:

void insertar (Nodo** raiz, int nuevomat, char *nuevo- nonbre)
{
if ('(*raiz))
*raiz = CrearNodo(nuevo_mat, nuevo- nonbre) ;
else if (nuevomat < (*raiz) -> nummat)
insertar (&((*raiz) -> izda), nuevomat, nuevo- nonbre);
el se
insertar (&((*raiz) -» dcha), nuevomat, nuevo- nonbre);
)

Si el arbol esté vacio, es facil insertar la entrada en el lugar correcto. EI nuevo nodo es la raiz del
arbol y el puntero r ai z se pone apuntando a ese nodo. El parametro r ai z debe ser un pardmetro
referencia ya que debe ser leido y actualizado, por esa razon se declara puntero a puntero (Nodo**) .Si
el arbol no esta vacio, se debe elegir entre insertar el nuevo nodo en el subarbol izquierdo o derecho,
dependiendo de que el nimero de matricula de la nueva persona sea mas pequefio 0 mayor que €l
numero de matricula en la raiz del arbol.

Arboles 531

16.9.4. Eliminacién

La operacidn de eliminacion de un nodo es también una extension de la operacion de blsqueda, si bien
méas compleja que la insercion debido a que el nodo a suprimir puede ser cualquieray la operacion de
supresion debe mantener la estructura de arbol binario de basqueda después de la eliminacion de datos.
Los pasos a seguir son:

1 Buscar en el arbol para encontrar la posicién de nodo a eliminar.

2. Reajustar los punteros de sus antecesores si el nodo a suprimir tiene menos de 2 hijos, o subir a
la posicion que éste ocupa el nodo méas préximo en clave (inmediatamente superior o
inmediatamente inferior) con objeto de mantener la estructura de arbol binario.

Ejemplo 16.12

Suprimir el elemento de clave 36 del siguiente arbol binario de bisqueda:

(s5) (40)

El arbol resultante es:

532 Programacion en C. Metodologia, algoritmos y estructura de datos

Ejemplo 16.13
Borrar el elemento de clave 60 del siguiente arbol:

(40)
. Ec} (60)

1|:I JEI :'Stfl :;'.:1-

Se reemplaza 60 bien con el elemento mayor (55) en su subarbol izquierdo o el elemento mas
pequefio (70) en su subarbol derecho. Si se opta por reemplazar con el elemento mayor del subarbol
izquierdo. Se mueve el 55 al raiz del subarbol y se reajusta el arbol.

40)
l.." -
E'ﬂ' '55'5.1
1) (30 (50 70)
45 (54)

Ejercicio 16.3

Con los registros de estudiantes formar un drbol hinario de blsqueda, ordenado respecto al campo
clave nummat. El programa debe de tener las opciones de mostrar los registros ordenadosy eliminar
un registro dando el nimero de matricula.

Anélisis
Cada registro tiene s6lo dos campos de informacion: nonbr e y nunmmat . Ademas los campos de enlace
con el subarbol izquierdo y derecho.

Arboles

533

Las operaciones que se van a implementar son las de insertar, elimnar, buscar ¥y
vi sual i zar el arbol. Los algoritmos de las tres primeras operaciones ya estan descritos anteriormente.
La operacion de vi sual i zar va a consistir en un recorrido en i nor den, cada vez que se visite el nodo

raiz se escribe los datos del estudiante.

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>
#i ncl ude <conio.h>

struct nodo {

int nummat ;

char nonbre{30] ;

struct nodo *izda, *dcha;
I
t ypedef struct nodo Nodo;
Nodo* CrearNodo (int id, char* n);
Nodo* buscar (Nodo* p, int buscado);
void insertar (Nodo** raiz, int nuevo- mat, char *nuevo- nonbre);
void elimnar (Nodo**r, int mat);
voi d visualizar (Nodo* r);

int main()

{
int nm
char nom[30] ;
Nodo* R = O;

/* Crea el arbol */

do{
printf ("Nunmero de matricula(0 -> Fin): ") ; scanf ("%d%*c" ,anm) ;
if (nm)

{
printf ("Nonbre: ") ; gets(nom;
insertar (&R, nm, nom) ;
I
twhile (nm) ;
/* Qpciones de escribir el arbol o borrar una registro */

clrscr () ;:
dof

puts (" 1. Mostrar el Arbol\n") ;

puts(" 2. Hlimnar un registro\n");
puts (" 3. Salir\n ")

do scanf ("$d%*c", &nm); while(nm<l || nm>3);
if (nm==1) ¢

printf ("\n\t Regi stros ordenados por nunero de matricula:\n");
visual i zar (R) ;

else if (nm== 2){
int cl;
printf ("Clave: "); scanf ("%d",&cl);

eliminar (&R, cl);
}
}while (nm != 3) ;

return 1;

Nodo* CrearNodo (int id, char* n)
{

534 Programacién en C. Metodologia, algoritmos y estructura de datos

Nodo* t :
t = (Nodo") malloc(sizeof (Nodo));
t -> nummat = id;
strcpy (t->nombre, n) ;
t -> izda = t-> dcha = NULL;
returnt ;

}

Nodo* buscar (Nodo* p, int buscado)

if (!p)
return O
else if (buscado== p -> nummat)
return p;
else if (buscado< p -> nunmmat)
return buscar (p -> izda, buscado);
el se
return buscar (p -> dcha, buscado);
}

void insertar (Nodo** raiz, int nuevomat, char *nuevo- nonbre)
{
if (1 (*raiz))
*raiz = CrearNodo (nuevo_mat, huevo- nonbre);
else if (nuevomat < (*raiz) -> nummat) |
insertar (&((*raiz) -> izda), nuevomat, nuevo- nonbre);
el se
insertar (&((*raiz) -» dcha), nuevo- mat, nuevo- nonbre);
}

voi d visualizar (Nodo" r)
{
if (r)
{
visualizar(r -»> izda);
printf ("Matricula %4 \t %s \n",r-snummat, r->nombre) ;
visualizar(r -»> dcha);

void elimnar (Nodo**r, int mat)

if o (r(*r))
printf("!! Registro con clave %d no se encuentra !!. \n",mat);
else if (mat < (*r)->nummat)
elimnar (&(*r)->izda, mat) ;
else if (mat = (*r)->nummat)
eliminar (& (*r) ->dcha,mat) ;
el se /* Matricula encontrada */
{
Nodo* q; /* puntero al nodo a suprimir */

g = (*r);

if (g->izda == NULL)

(*r) = g->dcha;

else if (g->dcha == NULL)
(*r) = g->izda;

el se

Arboles 535

{ /* tiene rama i zda y dcha. Se reenpl aza por el mayor
de | os nenores */

>izda;
(a->dcha) {
= a,

= a->dcha;

g->nummat = a->nummat;
strcpy (g->nombre, a->nombre) ;
if (p ==a
p->izda = a->izda;

el se
p->dcha = a->izda;

q = a;

}

free(qg);

}

16.9.5. Recorridosde un arbol

Existen dos tipos de recorrido de los nodos de un arbol: el recorrido en anchura y el recorrido en
profundidad. En el recorrido en anchura se visitan los nodos por niveles. Para ello se utiliza una
estructura auxiliar tipo cola en la que después de mostrar el contenido de un nodo, empezando por el
nodo raiz, se almacenan los punteros correspondientes a sus hijos izquierdo y derecho. De esta forma si
recorremos los nodos de un nivel, mientras mostramos su contenido, almacenamos en la cola los
punteros a todos los nodos del nivel siguiente.

El recorrido en profundidad se realiza por uno de tres métodos recursivos: preorden, inorden v
postorden. El primer método consiste en visitar el nodo raiz, su arbol izquierdo y su arbol derecho, por
este orden. El recorrido inorden visita el arbol izquierdo, a continuacion el nodo raiz y finalmente el
arbol derecho. El recorrido postorden consiste en visitar primero el arbol izquierdo, a continuacion el
derecho y finalmente el raiz.

preorden Rai z | zdo Dcho
en orden lzdo Rai z Dcho
postorden | zdo Dcho Rai z

16.9.6. Determinaciéonde la altura de un arbol

La altura de un arbol dependera del criterio que se siga para definir dicho concepto. Asi, si en el caso de
un arbol que tiene nodo raiz, se considera que su altura es 1, la altura del arbol es 2, y la altura del arbol

i

.EI I_'E.:

536 Programacion en C. Metodologia, algoritmos y estructura de datos

es 4. Por ultimo, si la altura de un arbol con un nodo es 1, la altura de un arbol vacio (el puntero es
NULL) es 0.

Nota
La alturade un arbol es 1 mas que la mayor de las alturas de sus subarboles izquierdoy derecho.

A continuacién, en el Ejemplo 16.14 se escribe una funcion entera que devuelve la altura de un
arbol.

Ejemplo 16.14

Funcién que determina la altura de un arbol binario de manera recursiva. Se considera que la altura
de un arbol vacio es O; si no est4 vacio. la aftura es | + miximo entre las alturas de rama izquierday

derecha.

int altura(Nodo* r)
J

if (r == NULL)
return O;

el se
return (l + max(altura(r->izda),altura(r->dcha)));

16.10. APLICACIONES DE ARBOLES EN ALGORITMOS DE EXPLORACION

Los algoritmos recursivos de recorridos de arboles son el fundamento de muchas aplicaciones de
arboles. Proporcionan un acceso ordenado y metddico a los nodos y a sus datos. Vamos a considerar en
esta seccién una serie de algoritmos de recorrido usuales en numerosos problemas de programacion,
tales como: contar el nimero de nodos hoja, calcular la profundidad de un arbol, imprimir un arbol o

copiar y eliminar arboles.

==

Arboles 537

16.10.1. Visita a los nodos de un arbol

En muchas aplicaciones se desea explorar (recorrer) los nodos de un arbol pero sin tener en cuenta un

orden de recorrido preestablecido. En esos casos, el cliente o usuario es libre para utilizar el algoritmo
oportuno.

La funcidén contarHojas recorre el &rbol y cuenta el nimero de nodos hoja. Para realizar esta

[operacidn se ha de visitar cada nodo comprobando si es un nodo hoja. El recorrido utilizado seré el
post or den.

/* Funci 6n Contarliojas
la funci6n utiliza recorrido postorden
en cada visita se conprueba si el nodo es un nodo hoja
(notiene descendi entes)

*/

voi d contarhoj as (Nodo" r, int* nh)
{
if (r = NULL)
{
contarhojas(r -> izda, nh) ;
contarhojas(r -> dcha, nh) ;
/* procesar raiz: determnar si es hoja */
if (r-»izda==NULL && r->dcha==NULL) (*nh)++;

}

La funcién el i ni nar bol utiliza un recorrido postorden para liberar todos los nodos del arbol
binario. Este recorrido asegura la liberacién de la memoria ocupada por un nodo después de haber
liberado su rama izquierda y derecha.

/* Funci 6n el i m nar bol
Recorre en postorden el &arbol. Procesar la raiz, en esta
funcién es liberar el nodo con free().

*/

voi d elim narbol (Nodo" r)

{
if (r = NULL)

{
eliminarbol (r -> izda);
eliminarbol (r -> dcha);
printf ("\tNodo borrado: %4 ",r->nummat) ;
free(r):

16.11. RESUMEN

N este capitulo se introdujo y desarrolldla estructura La estructura arbol mas utilizada normalmente es
ce datos dindmica arbol. Esta estructura, muy potente, el drbol binario. Un arbol binario es un arbol en el
se puede utilizar en una gran variedad de aplicaciones que cada nodo tiene como maximo dos hijos, llama-
de programacion. dos subdrbol izquierdo y subarbol derecho.

538 Programacién en C. Metodologia, algoritmos y estructura de datos

En un firbol binanio, cada elemento Léne 080, URG
o dos hijos. El nodo raiz no tiene un padre, pero sf
cada elemento restanie teme un padre. X es un
antecesor o ascendenis del elementn ¥

(60)
a7 75
(2
30 69)

La aliwra de un irbal binaro es el mimero de
ramas enire el rair y la hojs mis lepann, més 1. 59 el
drbol A es vacio, la alvara es 0, La altura del drbol
anderior e 6. El nivel 0 profisdided de un elemenio
&4 un copceplo similar al de abiura. En el &rbol ante-
rior ¢l nivel de 30 es 3 ¥ ¢l nivel de 37 es 5, Un mivel
de un elemenio se conoce también como profundi-
dad.
Un drbol binanio no vacio estd eguilibrado ronal-
mente si sus subdirboles izguicrdo ¥ derecho ticnen s
misma altura ¥ ambos son o bien vacios o tolalmenic
equilibrados.

A A
B C c B
equilibrado 25 equilibrado

15 /E-E
55

no equilibrado
totalmente

Los arboles binarios presentan dos tipos caracte-
risticos: arboles binarios de busqueda y arboles bina-
rios de expresiones.Los drboles binarios de blsqueda
se utilizan fundamentalmente para mantener una
colecciénordenada de datos y los arboles binarios de
expresiones para almacenar expresiones.

Arboles 539

16.12. EJERCICIOS

161, Explicar porgué cada una de las siguiemies esirocions no e un debol binario,

16.2, Considérese el firbol siguiente: 16.3. Para cads una de las siguienies Hatas de letras:

a) Dibajar el firbol binario de blisqueds que se
construve cuando las letras se insertan en el

16.4. Para ¢l drbol del ejercicio 2 hacer recormidos

16.5. Dibujar los drboles binarios que representan las

siguicmies expresiones:
a) (A+B)/ (C-D)
@) (Cudl es su almra? b) AeBaC/D
b) (Esti el drbol equilibrade? ;For qué? €) A= (B-(C-D) / |E+F))
¢) Listar todos los nodos hoja. d) (A+B)* ((C+D) / (E+F))
d) Cudl es el predecesor inmedisto (padre) €) (A-B)/((C*D)~(E/F))
del nodo 17
#) Listar los hijos del nodoR. 16.6. El recorrido preorden de un cierto4rbol binario

11 Listar los sucesores del nodo R. produce.

540

16.7

16.8.

Programacion en C. Metodologia, algoritmos y estructura de datos

ADFGHKL PQRWZ

y en recorrido enorden produce
GFHKDLAVWRQPZ

Dibujar el arbol binario.

. Escribir una funcién no recursiva que cuente
las hojas de un arbol binario.

Escribir un programa que procese un arbol
binario cuyos nodos contengan caracteresy a
partir del siguiente menu de opciones:

I (seguidode un caracter): Insertar un caracter
B (seguidode un caracter): Buscar un caracter

RE : Recorrido en orden
RP : Recorrido en preorden
RT : Recorrido postorden
SA - Salir

16.13. PROBLEMAS

16.1.

163.

Crear un archivo de datos en el que cadalinea
contenga la siguiente informacion

Columnas 1-20 Nombre
21-31 Numerode la Seguridad
Social

32-78 Direccién

Escribir un programa que lea cada registro
de datos de un érbol, de modo que cuando el
arbol se recorra Utilizando recorrido en orden,
los némeros de la seguridad social se or denen
en orden ascendente. Imprimir una cabecera
"DATOS DE EMPLEADOS ORDE-NADOS
POR NUMERO SEGURIDAD SOCIAL"™. A
continuacion se han de imprimir los tres datos
utilizando el siguiente formatode salida.

Columnas 1-11 Numero de la Seguridad
Social
25-44 Nombre

58-104 Direccion

Escribir un programa que lea un texto de lon-
gitud indeterminada y que produzca como
resultado la lista de todas las palabras diferen-

16.9. Escribir una funcién que tome un arbol como

16.10.

16.11.

16.12.

163.

16.4.

16.5.

16.6.

entrada y devuelva el nimero de hijos del
arbol.

Escribir una funcién booleana a la que se le
pase un puntero aun arbol binario y devuelva
verdadero (true)si el arbol es completoy fal-
Se en caso contrario.

Disefiar una funcidn recursiva de blsqueda,
que devuelvaun puntero a un elemento en un
arbol binario de busqueda; si no esta el ele-
mento, devuelvaNULL.

Disefiar una funcion iterativaque encuentreel
ndmero de nodos hoja en un arbol binario.

tes contenidas en el texto, asi como su frecuen-
cia de aparicién.

Hacer uso de la estructuraarbol binariode
busqueda, cada nodo del arbol que tenga una
palabray su frecuencia.

Sedispone de un 4rbol binarie de elementosde
tipo entero. Escribir funcionesque calculen:

a) Lasumade suselementos
b) La suma de sus elementos que son mdlti-
plos de 3.

Escribir una funcién booleana IDENTICOS
que permita decir si dos drboles binarios son
iguales.

Disefiar un programa interactive que permita
dar altas, bajas, listar, etc., en un arbol binario
de busqueda

Construir un procedimiento recursivo para
escribirtodos los nodos de un érbol binario de
blsqueda cuyo campo clave sea mayor que un
valor dado (el campo clave es de tipo entero).

16.7. Escribir una funcion que determine la altura

16.8.

16.9.

de un nodo. Escribir un programa que cree
un arbol binario con nimeros generados ale-
atoriamente y muestre por pantalla:

o Laaltura de cada nodo del &rbol.
 Ladiferenciade alturaentre rama izquier-
day derecha de cada nodo.

Disefiar procedimientos no recursivos que
listen los nodos de un arbol en inorden, pre-
orden y postorden.

Dados dos arboles binarios de blsqueda
indicar mediante un programasi los arboles
tienen o no elementos comunes.

16.10. Dado un arbol binario de busqueda cons-
truir su arbol espejo. (Arbol espejo es el
que se construyea partir de uno dado, con-
virtiendo el subarbol izquierdoen subarbol
derechoy viceversa.)

16.11.

16.12.

16.13.

541

Arboles

Un érbol binario de busqueda puede imple-
mentarse CON UN array. La representacion no
enlazada correspondiente consiste en que para
cualquier nodo del arbol almacenado en la
posicion | del array, su hijo izquierdo se
encuentraen la posicion 2*1y su hijo derecho
en la posicion 21 + 1. Disefiar a partir de esta
representacion los correspondientes procedi-
mientos y funciones para gestionar inte-
ractivamente un &rbol de nimeros enteros.
(Comente el inconveniente de esta represen-
tacion de cara al maximo y minimo nimero
de nodos que pueden almacenarse.)

Una matriz de N elementos almacena cadenas
de caracteres. Utilizando un arbol binario de
blisqueda como estructura auxiliar ordene
ascendentementela cadena de caracteres.

Dado un arbol binario de bisqueda disefie un
procedimiento que liste los nodos del arbol
ordenados descendentemente.

	Prólogo
	Capítulo 1 Introducción a la ciencia de la computación y a la programación
	1.1 ¿Qué es una computadora?
	1.2 Organización física de una computadora (hardware)
	1.2.1 Dispositivos de EntradafSalida (E/S)
	1.2.2 La memoria central (interna)
	1.2.3 La Unidad Central de Proceso (UCP)
	1.2.4 El microprocesador
	1.2.5 Memoria auxiliar (externa)
	1.2.6 Proceso de ejecución de un programa
	1.2.7 Comunicaciones: módems redes telefonía RDSI y ADSL
	1.2.8 La computadora personal multimedia ideal para

	1.3 Concepto de algoritmo
	1.3.1 Características de los algoritmos

	1.4 El software (los programas)
	1.5 Los lenguajes de programación
	1.5.4 Lenguajes de alto nivel

	1.6 El lenguaje C: historia y características
	1.6.1 Ventajas de C
	1.6.2 Características
	1.6.3 Versiones actu

	Capítulo 2 Fundamentos de programación
	2.1 Fases en la resolución de problemas
	2.1.1 Análisis del problema
	2.1.2 Diseño del algoritmo
	2.1.3 Herramientas de la programación
	2.1.4 Codificación de un programa
	3.6.5 Signos de puntuación y separadores
	3.6.6 Archivos de cabecera

	3.7 Tipos de datos en C
	3.7.1 Enteros(int)

	3.8.1 Escritura de valores lógicos
	3.9.2 Constantes definidas (simbólicas)
	3.10.1 Declaracion
	3.10.2 Inicialización de variables
	3.10.3 Declaración o definición
	3.11 Duracióndeunavariable
	3.11.1 Variables locales
	3.11.2 Variables globales
	3.11.3 Variables dinámicas
	3.12.2 Entrada
	3.12.3 Salida de cadenas de caracteres
	3.12.4 Entrada de cadenas de caracteres

	3.13 Resumen
	3.14 Ejercicios

	Capítulo 4 Operadores y expresiones
	4.1 Operadores y expresiones
	4.2 Operador de asignación
	4.3 Operadores aritméticos
	4.3.1 Asociatividad
	4.3.2 Uso de paréntesis

	4.6 Operadores lógicos
	4.6.1 Evaluación en cortocircuito
	4.6.2 Asignaciones booleatias (lógicas)
	4.7 Operadores de manipulación de bits
	4.7.1 Operadores de asignación adic
	4.7.2 Operadores de desplazamiento de bits », «)
	4.7.3 Operadores de direcciones

	4.8 Operador condicional
	4.12.3 Conversión explícita

	4.13 Prioridad y asociatividad
	4.14 Resumen
	4.15 Ejercicios
	4.16 Problemas

	Capítulo 5 Estructuras de selección: sentencias if y switch
	5.1 Estructuras de control
	5.4 Sentencias i f - el se anidadas
	5.5 Sentencia de control switch
	5.5.1 Caso particular de case

	5.7 Evaluación en cortocircuito de expresiones lógicas
	5.10 Resumen
	5.12 Problemas
	6.1.2 Terminaciones anormales de un ciclo
	6.1.4 Bucles while con cero iteraciones
	6.1.5 Bucles controlados por centinelas
	6.1.8 Bucles while (true)
	6.2.1 Diferentes usos de bucles for
	6.3 Precauciones en el uso de for
	6.3.3 Sentencias nulas en bucles for
	6.3.4 Sentencias break y continue

	6.4 Repetición: el bucle do whi le
	6.4.1 Diferencias entre while y do-while
	6.6.2 Fin de un bucle
	6.6.3 Otras técnicas d
	6.6.4 Bucles for vacíos

	6.7 Bucles anidados
	6.10 Problemas
	6.11 Proyectos d

	Capítulo7 Funciones
	7.1 Conceptodefunción
	7.2 Estructuradeunafunción
	7.2.1 Nombre de una función
	7.6.1 Ambito del programa
	7.6.2 Ambito del archivo fuente
	7.6.3 Ambito de una función
	7.6.4 Ambito de bloque
	7.6.5 Variables locales

	7.7 Clases de almacenamiento
	7.7.1 Variables automáticas
	7.7.2 Variables externas
	7.7.3 Variables registro
	7.7.4 Variables estáticas

	7.8 Concepto y uso de funcione a
	7.9 Funciones de carácter
	7.9.1 Comprobación alfabética y de dígitos
	7.9.2 Funciones de prueba de caracteres espe
	7.9.3 Funciones de conversión de caracteres

	7.10 Funciones numéricas

	7.10.1 Funciones matemáticas
	7.10.2 Funciones trigonométricas
	7.10.3 Funciones logm?tmicas y exponenciales
	7.10.4 Funciones

	7.10.4 Funciones aleatorias
	7.13 Visibilidad de una función
	7.13.1 Variables locales fren
	7.13.2 Variables estáticas y automáticas

	7.14 Compilación separada
	7.17 Resumen
	Capítulo 8 Arrays (listas y tablas)
	8.1.2 Subíndices de un array
	arrays
	8.1.4 El tamaño de los arrays
	8.1.5 Verificación del rango
	8.2 Iniciaiización de un array
	8.3 Arrays de caracteres y cadenas de
	8.4 Arrays multidimensionales
	8.4.1 Inicialización de arrays mu

	8.4.2 Acceso a los elementos de los arrays bidimensionales
	8.4.3 Lectura y escritura de arrays bidimensionales
	8.4.5 Arrays de más de dos dimensiones
	8.4.6 Una aplicación práctica
	8.5 Utilización de arrays como parámetros
	8.6 Ordenación de listas
	8.6.1 Algoritmo de la burbuja

	8.7 Búsqueda en listas
	8.10 Problemas

	Capítulo 9 Estructuras y uniones
	9.1 Estructuras
	una estructura
	9.1.2 Definición de variables de estructuras
	9.1.3 Uso de estructuras en asignaciones
	9.1.4 Inicialización de una declaración de estructuras
	9.1.5 El tamaño de una estructura

	9.2 Acceso a estructuras
	9.3.1 Ejemplo de estructuras anidadas

	9.4 Arrays de estructuras
	9.6 Uniones
	9.7 Enumeraciones
	9.8 Campos de bit
	9.9 Resumen

	Capítulo 10 Punteros (apuntadores)
	10.1 Direcciones en memoria
	10.2.2 Inicialización (iniciación
	10.4 Punteros a punteros
	10.5 Punteros y arrays
	nteros
	10.8 Aritmética de punteros
	10.8.1 Una aplicación de ón de caracteres

	10.9 Punteros constantes frente a punteros a constantes
	10.9.1 Punteros constantes
	10.9.2 Punteros a constantes
	10.11.1 Inicialización de u

	10.14 Ejercicios

	Capítulo 11 Asignación dinámica de memoria
	11.1 Gestión dinámica de la memoria
	11.1.1 Almacén libre (free store)

	11.2 Función malloc ()
	11.2.1 Asignación de memoria de un tamaño desconocido

	11.4 Funciones de asignación de memoria call í)y realloc í)
	11.4.1 Función calloc ()
	11.4.2 Función realloc ()

	11.5 Asignación de memoria para array
	11.5.1 Asignación de memoria interactivamente
	11.5.2 Asignación de memoria para un array de estructuras

	11.8 Resumen
	11.9 Ejercicios
	11.10 Problemas

	Capítulo 12 Cadenas
	12.1 Conceptodecadena
	12.2.2 Función putchar ()

	12.5 Asignación de cadenas
	12.5.1 La función s t
	adenas

	12.6.2 Las funciones strcat ()y strncat ()
	12.7.3 La función strncmp ()

	12.10 Conversión de cadenas a números
	12.10.1 Función atoi ()
	12.10.3 Función ato1
	12.11.2 Función strrchr ()
	12.11.4 Función strcspn ()
	12.11.5 Función strpbrk ()

	12.12 Resumen

	Capítulo 13 Entradas y salidas por archivos
	13.1 Flujos
	13.2 Puntero FILE
	13.3 Apertura de un
	13.3.1 Modos de apertura de un archivo
	13.3.2 NULL y EOF
	13.3.3 Cierre de archivos

	13.4 Creación de un archivo secuencia1
	13.5.2 Función de lectura f read ()

	13.6 Funciones para acceso aleatorio
	13.6.2 Función ftell ()

	13.8 Resumen
	13.10 Problemas

	Capítulo 14 Listas enlazadas
	14.1 Fundamentos teóricos
	14.2 Clasificación de las listas enlazadas
	14.3 Operaciones en listas enlazadas
	14.3.1 Declaración de un nodo
	14.3.2 Puntero de cabecera y cola
	14.3.3 El puntero nulo
	14.3.4 El operador - > de selecció
	14.3.5 Construcción de una lista
	14.3.6 Insertar un elemento en una lista
	14.3.7 Búsqueda de un elemento
	14.3.8 Supresión de un nodo en una lista

	14.4 Lista doblemente enlazada
	14.4.3 Supresión de un elemento en una lista doblemente enlazada

	14.5 Listas circulares
	14.5.1 Insertar un elem en una lista circular
	14.5.2 Supresión de un elemento en una lista circular

	14.6 Resumen
	14.7 Ejercicios
	14.8 Problemas

	Capítulo 15 Pilas y colas
	15.1 Concepto de pila
	15.1.1 Especificaciones de una

	15.2 El tipo pila implementado con arrays
	15.2.1 Especificación del tipo pi 1 a
	15.2.3 Operaciones de verificación del estado de la pila

	15.3 Colas
	15.4 El tipo cola implementada con arrays
	15.4.1 Definición de la especificación de una cola
	15.4.2 Especificación del tipo cola
	15.4.3 Implementación del tipo cola
	15.4.4 Operaciones de la cola

	15.5 Realización de una cola con una lista enlazada
	15.5.1 Declaración del tipo cola con listas
	15.5.2 Codificación de
	eraciones del tipo c o 1 a con listas

	15.6 Resumen
	15.7 Ejercicios
	15.8 Problemas
	16.4 Estructura de un árbol binario
	16.7.3 Recomdo postorden

	16.9.1 Búsqueda
	16.9.5 Recorridos de un árbol
	16.13 Problemas

