
PROGRAMACI~N EN c
Metodología, algoritmos

'. . y estructura de datos
. .

as ,>'

L
Ignacio Zahonero Martinez

Departamento de Lenguajes y Sistemas Informáticos e Ingeniería del Software
Facultad de Informática/Escuela Universitaria de Informática

Universidad Pontificia de Salamanca. Cumpus Madrid

MADRID BUEN,OS AIRES CARACAS -,GUATEMALA. LISBOA MÉXICO
NUEVA YORK PANAMA SAN JUAN SANTAFE DE BOGOTA SANTIAGO SA0 PA,ULO

AUCKLAND HAMBURG0 LONDRES MILAN MONTREAL NUEVA DELHI PARIS
SAN FRANCISCO SIDNEY SINGAPUR ST. LOUIS TOKIO *TORONTO

CONTENIDO

Prólogo , .

PARTE I. METODOLOGíA DE LA PROGRAMACIÓN

Capítulo 1. Introducción a la ciencia de la computación y a la programación .
1.1. ¿Qué es una computadora? .
1.2. Organización física de una computadora (hardware) .

1.2.1. Dispositivos de EntradafSalida (E/S) .
1.2.2. La memoria central (interna) .
1.2.3. La Unidad Central de Proceso (UCP)
1.2.4. El microprocesador
1.2.5. Memoria auxiliar (externa)
1.2.6. Proceso de ejecución de un programa .
1.2.7. Comunicaciones: módems, redes, telefonía RDSI y ADSL .
1.2.8. La computadora personal multimedia ideal para 1

1.3. Concepto de algoritmo .
1.3.1. Características de los algoritmos .

1.4. El software (los programas) .
1.5. Los lenguajes de programación

.

1.5.4. Lenguajes de alto nivel .
.

.

1.6. El lenguaje C: historia y características .
1.6.1. Ventajas de C .
1.6.2. Características .
1.6.3. Versiones actu

.

Capítulo 2. Fundamentos de programación
2.1. Fases en la resolución de problemas .

.
. .

2.1.1. Análisis del problema .
2.1.2. Diseño del algoritmo .
2.1.3. Herramientas de la programación .
2.1.4. Codificación de un programa .

xv

2
4
4
5
6
9

10
10
12
12
13
15
16
17
19
20
20
21
22
22
23
23
23
25
25
26
26
27

28
30
31
32
33
36

V

P

vi Contenido

2.1.7. Documentación y
2.2. Programación modular
2.3. Programación estructura

2.3.1. Recursos abstractos .

. _
tructurada: estru

.

.

. _
. _

2.6.8. Iteración y e

2.7.1. Aserciones .
2.7. Métodos formales de verificación de programas . . . _

.
. _

2.8. Factores en la calidad del software
.

.

37
38
38
49
40
40
40
41
42
42
43
52
53
54
55
55
56
56
57
57
57
58
58
59
60
60
62
63
64
65
65
66

PARTE II. FUNDAMENTOS DE PROGRAMACI~N EN c
Capítulo 3. El lenguaje C: elementos bá _

3.1. Estructura general de un programa en , . _ . . .
3.1.1. Directivas del prepro
3.1.2. Declaraciones global
3.1.3. Función main () . . .
3.1.4. Funciones definidas PO

3.1.5. Comentarios .
3.2, Creación de un programa
3.3. El proceso de ejecución de
3.4. Depuración de un program

3.4.2. Errores lógicos . . .

. _ 82

.
3.4.5. Errores en tiempo de

. 90
. 90

90

Contenido vi¡

3.6.5. Signos de puntuación y separadores . 92
3.6.6. Archivos de cabecera 92

3.7. Tipos de datos en C 92
3.7.1. Enteros(in t) . 93
3.7.2. Tipos de coma flotante (f 1 oat
3.7.3. Caracteres (char)

3.8. El tipo de dato LÓGICO

3.9. Constantes
3.8.1. Escritura de valores lógicos 97

es . 98
3.9.2. Constantes definidas (simbólicas) . 101
3.9.3. Constantes enumeradas
3.9.4. Constantes declaradas con latile..

3.10.1. Declaracion . 103
3.10.2. Inicialización de variables 105
3.10.3. Declaración o definición . 105

3.11. Duracióndeunavariable . 106
3.11.1. Variables locales 106
3.11.2. Variables globales . 106
3.11.3. Variables dinámicas . 107

3.12.1. Salida
3.12.2. Entrada . 111
3.12.3. Salida de cadenas de caracteres . 112
3.12.4. Entrada de cadenas de caracteres 112

3.13. Resumen . 113
3.14. Ejercicios . 113

3.10. Variables . .,

3.12. Entradas y salidas

?

Capítulo 4. Operadores y expresiones . 114
4.1. Operadores y expresiones . 1 16
4.2. Operador de asignación 116

4.3.1. Asociatividad . 119
4.3.2. Uso de paréntesis . 120

4.3. Operadores aritméticos . . 117 . . .

4.4. Operadores de increment n y decrementación
4.5. Operadores relacionales .
4.6. Operadores lógicos . 125

4.6.1. Evaluación en cortocircuito 127
4.6.2. Asignaciones booleatias (lógicas) . 128

4.7. Operadores de manipulación de bits . 129
4.7.1. Operadores de asignación adic 130

4.8. Operador condicional 132
4.9. Operador coma

4.7.2. Operadores de desplazamiento de bits (», «) .
4.7.3. Operadores de direcciones .

131
13 1

4.10. Operadores especiales
4.10.1. El operador ()
4.10.2. El operador []

4.11. El operador SIZEOF .
4.12. Conversiones de tipos

4.12.1. Conversión im

4.12.3. Conversión explícita . 136

4.14. Resumen . 137

. 4.12.2. Reglas

4.13. Prioridad y asociatividad 136

vi¡¡ Contenido

4.15. Ejercicios . 137
4.16. Problemas . 139

Capítulo 5. Estructuras de selección: sentencias if y switch . 142
5.1. Estructuras de control 144
5.2. Lasentencia if .
5.3. Sentencia i f de dos alternativas: i f - e 1 se
5.4. Sentencias i f - el se anidadas . 150

5.4.1. Sangría en las sentencias i
5.4.2. Comparación de sentencias

.

5.5. Sentencia de control switch . 154
5.5.1. Caso particular de case . 159
5.5.2. Uso de sentencias swi t c .

5.6. Expresiones condicionales: el operador ? : .

5.8. Puesta a punto de programas .
5.9. Errores frecuentes de programación

5.7. Evaluación en cortocircuito de expresiones lógicas . 161

.
5.10. Resumen 164
5.11. Ejercicios .
5.12. Problemas . 167

Capítulo 6. Estructuras de control: bucles
6.1. La sentencia whi 1 e .

6.1.1. Operadores de inc
6.1.2. Terminaciones anormales de un ciclo 174
6.1.3. Diseño eficiente d
6.1.4. Bucles while con cero iteraciones . 174

6.1.6. Bucles controlados por indicadores (banderas) .
6.1.7. La sentencia break en

6.1.5. Bucles controlados por centinelas 175

6.1.8. Bucles while (true) . 178
6.2. Repetición: el bucle €or

6.2.1. Diferentes usos de bucles for . 184
6.3. Precauciones en el uso de for . 185

6.3.1. Bucles infinitos
6.3.2. Los bucles for vacíos
6.3.3. Sentencias nulas en bucles for . 188

188

191

6.3.4. Sentencias break y continue
6.4. Repetición: el bucle do . . . whi le 190

6.4.1. Diferencias entre while y do-while .
6.5. Comparación de bucles while, for y do-whi le
6.6. Diseño de bucles .

6.6.1. Bucles para diseño de sumas y productos . . .
6.6.2. Fin de un bucle . 194
6.6.3. Otras técnicas d 196
6.6.4. Bucles f o r vacíos . 196

6.7. Bucles anidados . 197
6.8. Resumen .
6.9. Ejercicios

6.10. Problemas . 203
6.11. Proyectos d 206

Capítulo7. Funciones . 208
7.1. Conceptodefunción . 210
7.2. Estructuradeunafunción . 211

7.2.1. Nombre de una función . 213

Contenido

229
230
230
230
23 1
23 1
23 1
23 1
232
232
234
234

236
236
237
237
238
238
239
240
243
244
245
247
249
250
25 I
254

1
1

1
235 1

i

1
1
!

E

7.2.2. Tipo de dato de retorno .
7.2.3. Resultados de una función
7.2.4. Llamada a una función

7.3. Prototipos de las funciones I
7.3.1. Prototipos con un número no

.
.

.
.
. ~ ~

7.4. Parámetros de una función .

7.4.3. Diferencias entre paso de variables por valor y por referencia
7.4.4. Parámetros cons t de una función

.
. 7.6. Ámbito (alcance) .

7.6.1. Ambito del programa .
7.6.2. Ambito del archivo fuente .
7.6.3. Ambito de una función
7.6.4. Ambito de bloque .
7.6.5. Variables locales .

7.7.1. Variables automáticas .
7.7.2. Variables externas .
7.7.3. Variables registro .
7.7.4. Variables estáticas . _

7.8. Concepto y uso de funcione a

7.9.1. Comprobación alfabética y de dígitos
7.9.2. Funciones de prueba de caracteres espe
7.9.3. Funciones de conversión de caracteres

7.10.1. Funciones matemáticas .
7.10.2. Funciones trigonométricas
7.10.3. Funciones logm’tmicas y exponenciales .
7.10.4. Funciones aleatorias .

.

.
.

7.7. Clases de almacenamiento .
.

.

7.9. Funciones de carácter .
.

.

.
. 7.10. Funciones numéricas .

.
.

.

7.13. Visibilidad de una función . .
7.13.1. Variables locales fren
7.13.2. Variables estáticas y automáticas .

. 7.14. Compilación separada .

7.17. Resumen

7.19. Problemas .

. Capítulo 8. Arrays (listas y tablas) .
. .

. 8.1.2. Subíndices de un array

8.1.4. El tamaño de los arrays

.
8.1.3. Almacenamiento en me

8.1.5. Verificación del rango

s arrays .
.

8.2. Iniciaiización de un array
8.3. Arrays de caracteres y cadenas de

.
.

8.4. Arrays multidimensionales
8.4.1. Inicialización de arrays mu

258
260
260
26 1
262
263
264
264
266
269
270

X Contenido

8.4.2. Acceso a los elementos de los arrays bidimensionales . 271
8.4.3. Lectura y escritura de arrays bidimensionales . 272
8.4.4. Acceso a elementos mediante bucles
8.4.5. Arrays de más de dos dimensiones 274

.
.

8.4.6. Una aplicación práctica 274
8.5. Utilización de arrays como parámetros 276

8.5.1. Precauciones .
8.5.2. Paso de cadenas como parámetros .

8.6.1. Algoritmo de la burbuja 282
8.7. Búsqueda en listas . . 284

8.8. Resumen .
8.9. Ejercicios . .

.

8.6. Ordenación de listas 282 .

. 8.7.1. Búsqueda secuencia1 . 28.5
.

. 8.10. Problemas 291

Capítulo 9. Estructuras y uniones . .
9.1. Estructuras . .

de una estructura
9.1.2. Definición de variables de estructuras .
9.1.3. Uso de estructuras en asignaciones
9.1.4. Inicialización de una declaración de estructuras
9.1.5. El tamaño de una estructura

9.2. Acceso a estructuras .
.

.
.

.

9.3.1. Ejemplo de estructuras anidadas
9.4. Arrays de estructuras

9.6. Uniones
9.7. Enumeraciones .

9.8. Campos de bit
9.9. Resumen .

.
.

.

.
.

.

294
296
297
297
298
299
300
300
300
302
302
303
304
307
308
309
3 10
31 1
314
314
315
319
320
32 1

Capítulo 10. Punteros (apuntadores) . . 322
10.1. Direcciones en memoria . . 324
10.2. Concepto de puntero (apuntador)

10.2.1. Declaración de punteros
10.2.2. Inicialización (iniciación 327
10.2.3. Indirección de punteros
10.2.4. Punteros y verificación d

10.3. Punteros n u l l y void
10.4. Punteros a punteros 331
10.5. Punteros y arrays 332

10.5.1. Nombres de arrays nteros 332
10.5.2. Ventajas de los punteros

10.6.1. Inicialización de u 33.5
10.7. Punteros de cadenas 33.5

10.7.1. Punteros versus arrays .

10.6. Arrays de punteros .

Contenido Xi

10.8. Aritmética de punteros . 336
10.8.1. Una aplicación de ón de caracteres . 338

10.9. Punteros constantes frente a punteros a constantes 339
10.9.1. Punteros constantes . 339
10.9.2. Punteros a constantes 339

. 340

10.11.1. Inicialización de u 343

. 348
. 349

10.13. Resumen
10.14. Ejercicios . . 352

. 353

Capítulo 11. Asignación dinámica de memoria . 354
11.1. Gestión dinámica de la memoria 356

11.2. Función malloc () 357
11.2.1. Asignación de memoria de un tamaño desconocido 361

11.1.1. Almacén libre (free store) . 357

11.2.2. Uso de m a l loc () para arrays multidimensionales
11.3. Liberación de memoria, función free () .
11.4. Funciones de asignación de memoria call í) y realloc í) . 364

11.4.1. Función calloc () 364
11.4.2. Función realloc () . 365

11.5. Asignación de memoria para array . 368
11.5.1. Asignación de memoria interactivamente . . 369
11.5.2. Asignación de memoria para un array de estructuras . 371

11.8. Resumen 376
11.9. Ejercicios . . 376

11.10. Problemas 377

11.6. Arrays dinámicos .
11.7. Reglas de funcionamiento de la asignaci

Capítulo 12. Cadenas 378
12.1. Conceptodecadena 380

12.1.1. Declaración de variables de cadena
12.1.2. Inicialización de variables de cadena

.

12.2.2. Función putchar () . 385
12.2.3. Función puts () .

. 389
. 389

12.5.1. La función s t 391
adenas 392

12.6.2. Las funciones strcat () y strncat () . 393

12.5. Asignación de cadenas . 391

12.7. Comparación de cadenas .

I

xi¡ Contenido

. 12.7.3. La función strncmp () . 396
12.7.4. La función strnicmp ()

12.8. Inversión de cadenas

.
12.9.2. Función strlwr () . .

12.10. Conversión de cadenas a números 399
12.10.1. Función atoi () 399
12.10.2. Función atof () .
12.10.3. Función ato1 (1 400
12.10.4. Entrada de números y cadenas

12.11.2. Función strrchr () . . 402
12.11.3. Función strspn ()

12.11.5. Función strpbrk () 403
12.11.6. Función strstr (1
12.11.7. Función strtok () .

12.12. Resumen 405

12.14. Problemas . .

. 12.11. Búsqueda de caracteres y cadenas .

. 12.11.4. Función strcspn () 403

12.13. Ejercicios .

PARTE Ill. ESTRUCTURA DE DATOS

Capítulo 13. Entradas y salidas por archivos . . 410

13.2. Puntero F I L E 412
13.3. Apertura de un 413

13.3.1. Modos de apertura de un archivo 414
13.3.2. NULL y EOF . . 415
13.3.3. Cierre de archivos 415

13.4. Creación de un archivo secuencia1 416

. . 13.1. Flujos 412

.

. 417

. 421

. 423
13.5.2. Función de lectura f read () 424

13.6.1. Función f seek () . .

13.7. Datos externos al programa co

13.6. Funciones para acceso aleatorio 426

13.6.2. Función ftell () 431

13.8. Resumen 434
. 435

13.10. Problemas . . 436

.

Capítulo 14. Listas enlazadas 438
14.1. Fundamentos teóricos . . 440
14.2. Clasificación de las listas enlazadas 441
14.3. Operaciones en listas enlazadas 442

14.3.1. Declaración de un nodo 442

c

Contenido xiii

14.3.2. Puntero de cabecera y cola 443
14.3.3. El puntero nulo 444
14.3.4. El operador - > de selecció . 445
14.3.5. Construcción de una lista 445
14.3.6. Insertar un elemento en una lista 447
14.3.7. Búsqueda de un elemento 453
14.3.8. Supresión de un nodo en una lista . 454

14.4. Lista doblemente enlazada . 456
14.4.1. Declaración de una lista doblemente enlazada .

14.4.3. Supresión de un elemento en una lista doblemente enlazada
14.5. Listas circulares 462

14.5.1. Insertar un elem en una lista circular 462

14.7. Ejercicios 468
14.8. Problemas 468

.

14.4.2. Insertar un elemento en una lista doblemente enlazada .
. 459

14.5.2. Supresión de un elemento en una lista circular . 463
14.6. Resumen 467 . .

Capítulo 15. Pilas y colas
. 15.1. Concepto de pila

15.1.1. Especificaciones de una .
15.2. El tipo pila implementado con arrays

15.2.1. Especificación del tipo p i 1 a
15.2.2. Implementación de las operaciones sobre pilas .

.

.

15.2.3. Operaciones de verificación del estado de la pila .
15.3. Colas .
15.4. El tipo cola implementada con arrays

15.4.1. Definición de la especificación de una cola
15.4.2. Especificación del tipo cola
15.4.3. Implementación del tipo cola

15.5.1. Declaración del tipo co la con listas

.
.

15.4.4. Operaciones de la cola . .
15.5. Realización de una cola con una lista enlazada

eraciones del tipo c o 1 a con listas
15.6. Resumen
15.7. Ejercicios
15.8. Problemas .

.
.

15.5.2. Codificación de 1
.

.

470
472
473
473 I

477 ' I

478
48 1
483
483
483

486
487
488
489
492
493
494 I

475 II

I
I 1 484 I

I

..................... Capítulo 16. Árboles ~

. I 16.1. Árboles generales
I

. 504

16.3.1. Equilibrio

16.4.1. Diferentes ti [I

16.3.2. Árboles binarios completos
16.4. Estructura de un árbol binario 511

.
e expresión

. I

. 16.7.2. Recomdo enorden 521
16.7.3. Recomdo postorden 522

. 525

xiv Contenido

. 528
16.9.1. Búsqueda 528
16.9.2. Insertar un nodo

. 531
16.9.5. Recorridos de un árbol 535

. 535
. 536

.

16.13. Problemas 540
. 542

. 545
. 575

Apéndice C. Palabras reservadas de C++ .
Apéndice D. Guía de sintaxis ANSIASO estándar C++ .
Apéndice E. Biblioteca de funciones ANSI C
Apéndice F. Recursos (Libros/Revistas/URL de Interne . 713

ÍNDICE 727

PRÓLOGO

INTRODUCCIÓN
i Por qué un libro de C al principio del siglo X X I ? A pesar de haber cumplido ya sus bodas de plata
(25 años de vida), C viaja con toda salud hacia los 30 años de edad que cumplirá el próximo año. Sigue
siendo una de las mejores opciones para la programación de los sistemas actuales y el medio más efi-
ciente de aprendizaje para emigrar a los lenguajes reina, por excelencia, en el mundo orientado a objetos
y componentes y el mundo Web (C++, Java,. . .) que dominan el campo informático y de la computación.

i Cuáles son las características que hacen tan popular a este lenguaje de programación e idóneo
como primer lenguaje de programación en las carreras profesionales de programador (de aplicaciones
y de sistemas) y del ingeniero de software? Podemos citar algunas muy sobresalientes:

Es muy portable (transportable entre un gran número de plataformas hardware y plataformas sof-
ware, sistemas operativos). Existen numerosos compiladores para todo tipo de plataformas sobre
los que corrren los mismos programas fuentes o con ligeras modificaciones.

Es versátil y de bajo nivel, por lo que es idóneo para tareas relativas a la programación del siste-
ma.

A pesar de ser un excelente lenguaje para programación de sistemas, es también un eficiente y
potente lenguaje para aplicaciones de propósito general.

Es un lenguaje pequeño, por lo que es relativamente fácil construir compiladores de C y además
es también fácil de aprender.

Todos los compiladores suelen incluir potentes y excelentes bibliotecas de funciones compatibles
con el estándar ANSI. Los diferentes fabricantes suelen añadir a sus compiladores funcionalida-
des diversas que aumentan la eficiencia y potencia de los mismos y constituye una notable venta-
ja respecto a otros lenguajes.

El lenguaje presenta una interjGaz excelente para los sistemas operativos Unix y Windows, junto
con el ya acreditado Linux.

Es un lenguaje muy utilizado para la construcción de: sistemas operativos, ensambladores, pro-
gramas de comunicaciones, intérpretes de lenguajes, compiladores de lenguajes, editores de textos,
bases de datos, utilidades, controladores de red, etc.

Por todas estas razones y nuestra experiencia docente, decidimos escribir esta obra que, por otra par-
te, pudiera completar nuestras otras obras de programación escritas para C++, Java, Turbo Pascal y
Visual Basic. Basados en estas premisas este libro se ha escrito pensando en que pudiera servir de

xv

xvi prólogo

referencia y guía de estudio para un primer curso de introducción a la programación, con una segunda
parte que, a su vez, sirviera como continuación, y de introducción a las estructuras de datos todo ello
utilizando C, y en particular la versión estándar ANSI C, como lenguaje de programación. El objetivo
final que busca es, no sólo describir la sintaxis de C, sino y, sobre todo, mostrar las características más
sobresalientes del lenguaje, a la vez que se enseñan técnicas de programación estructurada. Así pues, los
objetivos fundamentales del libro son:

Énfasis fuerte en el análisis, construcción y diseño de programas.

Un medio de resolución de problemas mediante técnicas de programación.

Una introducción a la informática y a las ciencias de la computación usando una herramienta de

Enseñanza de las reglas de sintaxis más frecuentes y eficientes del lenguaje C.

En resumen, éste es un libro diseñado para enseñar a programar utilizando C, no un libro diseñado
para enseñar C, aunque también pretende conseguirlo. No obstante, confiamos que los estudiantes que
utilicen este libro se conviertan de un modo razonable en acérrimos seguidores y adeptos de C, al igual
que nos ocurre a casi todos los programadores que comenzamos a trabajar con este lenguaje. Así se tra-
tará de enseñar las técnicas clásicas y avanzadas de programación estructurada.

programación denominada C (ANSI C).

LA EVOLUCI~N DE c: c++
C es un lenguaje de programación de propósito general que ha estado y sigue estando asociado con el
sistema operativo UNIX. El advenimiento de nuevos sistemas operativos como Windows (95,98, NT,
2000 o el recientemente anunciado XP sobre la plataforma. NET) o el ya muy popular Linux, la versión
abierta, gratuita de Unix que junto con el entorno Gnome está comenzando a revolucionar el mundo de
la programación. Esta revolución, paradójicamente, proporciona fuerza al lenguaje de programación de
sistemas C. Todavía y durante muchos años C seguirá siendo uno de los lenguajes lideres en la ense-
ñanza de la programación tanto a nivel profesional como universitario. Como reconocen sus autores
Kernighan y Ritchie, en El Lenguaje de Programación C, 2.” edición, C, aunque es un lenguaje idóneo
para escribir compiladores y sistemas operativos, sigue siendo, sobre todo, un lenguaje para escribir
aplicaciones en numerosas disciplinas. Ésta es la razón por la que a algo más de un año para cumplir los
30 años de vida, C sigue siendo el lenguaje más empleado en Facultades y Escuelas de Ciencias e Inge-
niería, y en los centros de enseñanza de formación profesional, y en particular los innovadores ciclos
de grado superior, así como en centros de enseñanza media y secundaria, para el aprendizaje de legio-
nes de promociones (generaciones) de estudiantes y profesionales.

Las ideas fundamentales de C provienen del lenguaje BCPL, desarrollado por Martin Richards. La
influencia de BCPL sobre C continuó, indirectamente, a través del lenguaje B, escrito por Ken Thomp-
son en 1979 para escribir el primer sistema UNIX de la computadora DEC de Digital PDP-7. BCPL y
B son lenguajes «sin tipos» en contraste con C que posee una variedad de tipos de datos.

En 1975 se publica Pascal User Manual and Report la especificación del joven lenguaje Pascal
(Wirth, Jensen 75) cuya suerte corre en paralelo con C, aunque al contrario que el compilador de Pas-
cal construido por la casa Borland, que prácticamente no se comercializa, C sigue siendo uno de los
reyes de la iniciación a la programación. En I978 se publicó la primera edición de la obra The C Pro-
gramming Language de Kernighan y Ritchie, conocido por K&R.

En 1983 el American National Standards Institute (ANSI) nombró un comité para conseguir una defi-
nición estándar de C. La definición resultante se llamó ANSI C, que se presentó a finales de 1988 y se
aprobó definitivamente por ANSI en 1989 y en 1990 se aprobó por ISO. La segunda edición The C
Programming Language se considera también el manual del estándar ANSI C. Por esta razón la espe-
cificación estándar se suele conocer como ANSVISO C. Los compiladores modernos soportan todas
las características definidas en ese estándar.

prólogo xvii

Conviviendo con C se encuentra el lenguaje C++, una evolución lógica suya, y que es tal el estado
de simbiosis y sinergia existente entre ambos lenguajes que en muchas ocasiones se habla de C/C++
para definir a los compiladores que siguen estas normas, dado que C++ se considera un superconjunto
de C.

C++ tiene sus orígenes en C, y, sin lugar a dudas, Kemighan y Ritchie -inventores de C,- son
«padres espirituales» de C++. Así lo manifiesta Bjarne Stroustrup -inventor de C++- en el prólogo
de su afamada obra The C++ Programming Lunguage. C se ha conservado así como un subconjunto de
C++ y es, a su vez, extensión directa de su predecesor BCPL de Richards. Pero C++, tuvo muchas más
fuentes de inspiración; además de los autores antes citados, cabe destacar de modo especial, Simula 67
de Dah1 que fue su principal inspirador; el concepto de clase, clase derivada yfunciones virtuales se
tomaron de Simula; otra fuente importante de referencia fue Algol 68 del que se adoptó el concepto de
sobrecarga de operadores y la libertad de situar una declaración en cualquier lugar en el que pueda
aparecer una sentencia. Otras aportaciones importantes de C++ como son las plantillas (templates) y la
genericidad (tipos genéricos) se tomaron de Ada, Clu y ML.

C++ se comenzó a utilizar como un «C con clases» y fue a principios de los ochenta cuando comen-
zó la revolución C++, aunque su primer uso comercial, fuera de una organización de investigación,
comenzó en julio de 1983. Como Stroustrup cuenta en el prólogo de la 3." edición de su citada obra, C++
nació con la idea de que el autor y sus colegas no tuvieran que programar en ensamblador ni en otros
lenguajes al uso (léase Pascal, BASIC, FORTRAN,...). La explosión del lenguaje en la comunidad infor-
mática hizo inevitable la estandarización. proceso que comenzó en 1987 [Stroustrup 941. Así nació una
primera fuente de estandarización The Annotated C++ Reference Manual [Ellis 891'. En diciembre de
1989 se reunió el comité X3J16 de ANSI, bajo el auspicio de Hewlett-Packard y en junio de 1991 pasó
el primer esfuerzo de estandarización internacional de la mano de ISO, y así comenzó a nacer el están-
dar ANSVISO C++. En 1995 se publicó un borrador estándar para su examen público y en noviembre
de 1997 fue finalmente aprobado el estandar C++ internacional, aunque ha sido en 1998 cuando el pro-
ceso se ha podido dar por terminado (ANSIASO C++ Draft Standard).

El libro definitivo y referencia obligada para conocer y dominar C++ es la 3.a edición de la obra de
Stroustrup [Stroustrup 971 y actualizada en la Special Edition [Stroustrup 2000]*.

OBJETIVOS DEL LIBRO
C++ es un superconjunto de C y su mejor extensión. Éste es un tópico conocido por toda la comunidad
de programadores del mundo. Cabe preguntarse como hacen muchos autores, profesores, alumnos y
profesionales ¿se debe aprender primero C y luego C++? Stroustrup y una gran mayoría de programa-
dores, contestan así: «No sólo es innecesario aprenderprimero C, sino que además es una mala idea».
Nosotros no somos tan radicales y pensamos que se puede llegar a C++ procediendo de ambos caminos,
aunque es lógico la consideración citada anteriormente, ya que efectivamente los hábitos de programa-
ción estructurada de C pueden retrasar la adquisición de los conceptos clave de C++, pero también es
cierto que en muchos casos ayuda considerablemente en el aprendizaje.

Este libro supone que el lector no es programador de C, ni de ningún otro lenguaje, aunque también
somos conscientes que el lector que haya seguido un primer curso de programación en algoritmos o en
algún lenguaje estructurado, llámese Pascal o cualquier otro, éste le ayudará favorablemente al correc-
to y rápido aprendizaje de la programación en C y obtendrá el máximo rendimiento de esta obra. Sin
embargo, si ya conoce C++, naturalmente no tendrá ningún problema, en su aprendizaje, muy al con-
trario, bastará que lea con detalle las diferencias esenciales de los apéndices C y D de modo que irá i r

' Traducida al español por el autor de este libro junto con el profesor Miguel Katnb, de la Universidad de la Habana [Ellis 941
Esta obra qe encuentra en proceso de traducción al español por un equipo de profesores de vanas universidades españolas coordi-

nadas por el autor de esta obra

xviii Prólogo

integrando gradualmente los nuevos conceptos que irá encontrando a medida que avance en la obra con
los conceptos clásicos de C++. El libro pretende enseñar a programar utilizando dos conceptos funda-
mentale s :

1. Algoritmos (conjunto de instrucciones programadas para resolver una tarea específica).

2. Datos (una colección de datos que se proporcionan a los algoritmos que se han de ejecutar para
encontrar una solución: los datos se organizarán en estructuras de datos).

Los dos primeros aspectos, algoritmos y datos, han permanecido invariables a lo largo de la corta his-
toria de la informáticdcomputación, pero la interrelación entre ellos sí que ha variado y continuará
haciéndolo. Esta interrelación se conoce como paradigma de programación.

En el paradigma de programación procedimental @rocedural o por procedimientos) un problema se
modela directamente mediante un conjunto de algoritmos. Un problema cualquiera, la nómina de una
empresa o la gestión de ventas de un almacén, se representan como una serie de procedimientos que
manipulan datos. Los datos se almacenan separadamente y se accede a ellos o bien mediante una posi-
ción global o mediante parámetros en los procedimientos. Tres lenguajes de programación clásicos,
FORTRAN, Pascal y C, han representado el arquetipo de la programación procedimental, también rela-
cionada estrechamente y -a veces- conocida como programación estructurada. La programación
con soporte en C++, proporciona el paradigma procedimental con un énfasis en funciones, plantillas de
funciones y algoritmos genéricos.

En la década de los setenta, el enfoque del diseño de programas se desplazó desde el paradigma pro-
cedimental al orientado a objetos apoyado en los tipos abstractos de datos (TAD). En este paradigma un
problema modela un conjunto de abstracciones de datos. En C++ estas abstracciones se conocen como
clases. Las clases contienen un conjunto de instancias o ejemplares de la misma que se denominan obje-
tos, de modo que un programa actúa como un conjunto de objetos que se relacionan entre sí. La gran
diferencia entre ambos paradigmas reside en el hecho de que los algoritmos asociados con cada clase se
conocen como interfaz pública de la clase y los datos se almacenan privadamente dentro de cada objeto
de modo que el acceso a los datos está oculto al programa general y se gestionan a través de la interfaz.

Así pues, en resumen, los objetivos fundamentales de esta obra son: introducción a la programación
estructurada y estructuras de datos con el lenguaje estándar C de ANSVISO; otros objetivo comple-
mentario es preparar al lector para su emigración a C++, para lo cual se han escrito dos apéndices com-
pletos C y D que presentan una amplia referencia de palabras reservadas y una guía de sintaxis de C++
con el objeto de que el lector pueda convertir programas escritos en C a C++ (con la excepción de las
propiedades de orientación a objetos que se salen fuera del ámbito de esta obra).

EL LIBRO COMO HERRAMIENTA DOCENTE
La experiencia de los autores desde hace muchos años con obras muy implantadas en el mundo uni-
versitario como Programación en C++, Programación en Turbo Pascal (en su 3." edición), estructura
de datos, Fundamentos de programación (en su 2." edición y en preparación la 3." edición) y Progra-
mación en BASIC (que alcanzó tres ediciones y numerosísimas reimpresiones en la década de los ochen-
ta), nos ha llevado a mantener la estructura de estas obras, actualizándola a los contenidos que se pre-
vén para los estudiantes del futuro siglo XXI. Por ello en el contenido de la obra hemos tenido en cuenta
no sólo las directrices de los planes de estudio españoles de ingeniería informática e ingeniería técnica
informática (antiguas licenciaturas y diplomaturas en informática) y licenciaturas en ciencias de la com-
putación, sino también de ingenierías tales como industriales, telecomunicaciones, agrónomos o minas,
o las más recientes incorporadas, en España, como ingeniería en geodesia. Asímismo, en el diseño de
la obra se han tenido en cuenta las directrices oficiales vigentes en España para la Formación Profesio-
nal de Grado Superior; por ello se ha tratado de que el contenido de la obra contemple los programas
propuestos para el ciclo de desarrollo de Aplicaciones Informáticas en el módulo de Programación
en Lenguaje Estructurado; también se ha tratado en la medida de lo posible de que pueda servir de

Prólogo xix

referencia al ciclo de Administración de Sistemas Informúticos en el módulo de Fundamentos de Pro-
gramación.

Nuestro conocimiento del mundo educativo latinoamericano nos ha llevado a pensar también en las
carreras de ingeniería de sistemas computacionales y las licenciaturas en informática y en sistemas de
información, carreras hermanas de las citadas anteriormente.

Por todo lo anterior, el contenido del libro intenta seguir un programa estándar de un primer curso
de introducción a la programación y, según situaciones, un segundo curso de programación de nivel
medio en asignaturas tales como Metodología de la Programación, Fundamentos de Programación,
Introducción a la Programación, ... Asimismo, se ha buscado seguir las directrices emanadas de la
ACM-IEEE para los cursos CS 1 y CS8 en los planes recomendados en los Computing Curricula de
1991 y las recomendaciones de los actuales Computing Curricula 2001 en las áreas de conocimiento
Programming Fundamentals [PF,10] y Programming Languages [PL, 1 11, así como las vigentes en uni-
versidades latinoamericanas que conocemos, y con las que tenemos relaciones profesionales.

El contenido del libro abarca los citados programas y comienza con la introducción a los algoritmos
y a laprogramación, para llegar a estructuras de datos. Por esta circunstancia la estructura del curso no
ha de ser secuencia1 en su totalidad sino que el profesor/maestro y el alumno/lector podrán estudiar sus
materias en el orden que consideren más oportuno. Ésta es la razón principal por la cual el libro se ha
organizado en tres partes y en seis apéndices.

Se trata de describir el paradigma más popular en el mundo de la programación: el procedimental y pre-
parar al lector para su inmersión en el ya implantado paradigma orientado a objetos. Los cursos de pro-
gramación en sus niveles inicial y medio están evolucionando para aprovechar las ventajas de nuevas y
futuras tendencias en ingeniería de software y en diseño de lenguajes de programación, específicamente
diseño y programación orientada a objetos. Algunas facultades y escuelas de ingenieros, junto con la nue-
va formación profesional (ciclos formativos de nivel superior) en España y en Latinoamérica, están intro-
duciendo a sus alumnos en la programación orientada a objetos, inmediatamente después del conocimiento
de la programación estructurada, e incluso +n ocasiones antes-. Por esta razón, una metodología que
se podría seguir sería impartir un curso defindamentos de programación seguido de estructuras de datos
y luego seguir con un segundo nivel de programación avanzada que constituyen las tres partes del libro.
Pensando en aquellos alumnos que deseen continuar su formación estudiando C++ se han escrito los apén-
dices C y D, que les permita adaptarse fácilmente a las particularidades básicas de C++ y poder continuar
sin esfuerzo la parte primera y avanzar con mayor rapidez a las siguientes partes del libro.

CARACTER~STICAS IMPORTANTES DEL LIBRO
Programación en C, utiliza los siguientes elementos clave para conseguir obtener el mayor rendimien-
to del material incluido en sus diferentes capítulos:

Contenido. Enumera los apartados descritos en el capítulo.
Introducción. Abre el capítulo con una breve revisión de los puntos y objetivos más importantes que
se tratarán y todo aquello que se puede esperar del mismo.
Conceptos clave. Enumera los términos informáticos y de programación más notables que se tra-
tarán en el capítulo.
Descripción del capítulo. Explicación usual de los apartados correspondientes del capítulo. En
cada capítulo se incluyen ejemplos y ejercicios resueltos. Los listados de los programas comple-
tos o parciales se escriben en letra courier con la finalidad principal de que puedan ser identifica-
dos fácilmente por el lector.
Resumen del capítulo. Revisa los temas importantes que los estudiantes y lectores deben com-
prender y recordar. Busca también ayudar a reforzar los conceptos clave que se han aprendido en
el capítulo.

XX Prólogo

Ejercicios. Al final de cada capítulo se proporciona a los lectores una lista de ejercicios sencillos
de modo que le sirvan de oportunidad para que puedan medir el avance experimentado mientras
leen y siguen - e n su cas- las explicaciones del profesor relativas al capítulo.

Problemas. Después del apartado Ejercicios, se añaden una serie de actividades y proyectos de
programación que se le proponen al lector como tarea complementaria de los ejercicios y de un
nivel de dificultad algo mayor.

A lo largo de todo el libro se incluyen una serie de recuadros -sombreados o n o - que ofrecen al
lector consejos, advertencias y reglas de uso del lenguaje y de técnicas de programación, con la finali-
dad de que puedan ir asimilando conceptos prácticos de interés que les ayuden en el aprendizaje y cons-
trucción de programas eficientes y de fácil lectura.

0 Recuadro. Conceptos importantes que el lector debe considerar durante el desarrollo del capítulo.
0 Consejo. Ideas, sugerencias, recomendaciones, ... al lector, con el objetivo de obtener el mayor ren-

Precaución. Advertencia al lector para que tenga cuidado al hacer uso de los conceptos incluidos

Reglas. Normas o ideas que el lector debe seguir preferentemente en el diseño y construcción de

dimiento posible del lenguaje y de la programación.

en el recuadro adjunto.

sus programas.

ORGANIZACI~N DEL LIBRO
El libro se divide en tres partes que unidas constituyen un curso completo de programación en C. Dado
que el conocimiento es acumulativo, los primeros capítulos proporcionan el fundamento conceptual
para la comprensión y aprendizaje de C y una guía a los estudiantes a través de ejemplos y ejercicios
sencillos y los capítulos posteriores presentan de modo progresivo la programación en C en detalle, en
el paradigma procedimental. Los apéndices contienen un conjunto de temas importantes que incluyen
desde guías de sintaxis de ANSYISO C, hasta o una biblioteca de funciones y clases, junto con una
extensa bibliografía de algoritmos, estructura de datos, programación orientada a objetos y una amplia
lista de sitios de Internet (URLs) donde el lector podrá complementar, ampliar y profundizar en el mun-
do de la programación y en la introducción a la ingeniería de software.

PARTE I. METODOLOGÍA DE LA PROGRAMACI~N
Esta parte es un primer curso de programación para alumnos principiantes en asignaturas de intro-
ducción a la programación en lenguajes estructurados. Esta parte sirve tanto para cursos de C como de
C++ (en este caso con la ayuda de los apéndices C y D). Esta parte comienza con una introducción a
la informática y a las ciencias de la computación como a la programación. Describe los elementos
básicos constitutivos de un programa y las herramientas de programación utilizadas tales como algo-
ritmos, diagramas de flujo, etc. Asimismo se incluye un curso del lenguaje C y técnicas de programa-
ción que deberá emplear el lector en su aprendizaje de programación. La obra se estructura en tres
partes: Metodologia de programación (conceptos básicos para el análisis, diseño y construcción de
programas), Fundamentos de programación en C (sintaxis, reglas y criterios de construcción del len-
guaje de programación C junto con temas específicos de C como punteros, arrays, cadenas,...), Estruc-
tura de datos (en esta parte se analizan los archivos y las estructuras dinámicas de datos tales como lis-
tas enlazadas, pilas, colas y árboles). Completa la obra una serie de apéndices que buscan
esencialmente proporcionar información complementaria de utilidad para el lector en su período de
aprendizaje en programación en C, así como un pequeño curso de C++ en forma de palabras reser-
vadas y guía de referencia de sintaxis que permita al lector emigrar al lenguaje C++ facilitándole para
ello las reglas y normas necesarias para convertir programas escritos en C a programas escritos
en C++.

Prólogo xxi

1

Capítulo 1. Introducción a la ciencia de la computación y a la programación. Proporciona una revi-
sión de las características más importantes necesarias para seguir bien un curso de programación bási-
co y avanzado en C. Para ello se describe la organización física de una computadora junto con los con-
ceptos de algoritmo y de programa. Asimismo se explican los diferentes tipos de lenguajes de
programación y una breve historia del lenguaje C.

Capítulo 2. Fundamentos de programación. En este capítulo se describen las fases de resolución de
un problema y los diferentes tipos de programación (modular y estructurada). Se explican también las
herramientas de programación y representaciones gráficas utilizadas más frecuentemente en el mundo
de la programación.

PARTE 11. FUNDAMENTOS DE PROGRAMACI~N EN c
Capítulo 3. El lenguaje C: Elementos básicos. Enseña la estructura general de un programa en C jun-
to con las operaciones básicas de creación, ejecución y depuración de un programa. Se describen tam-
bién los elementos clave de un programa (palabras reservadas, comentarios, tipos de datos, constantes
y variables, ...) junto con los métodos para efectuar entrada y salida de datos a la computadora.

Capítulo 4. Operadores y expresiones. Se describen los conceptos y tipos de operadores y expresiones,
conversiones y precedencias. Se destacan operadores especiales tales como manipulación de bits, con-
dicional, sizeof, () , [I , : : , coma, etc.

Capítulo 5. Estmcturas de selección: sentencias if y swí tch Introduce al concepto de estructura
de control y, en particular, estructuras de selección, tales como if , if -else, case y switch.
Expresiones condicionales con el operador ? : , evaluación en cortocircuito de expresiones lógicas,
errores frecuentes de programación y puesta a punto de programas.

Capítulo 6. Estructuras repetitivas: bucles (for, while y do-while). El capítulo introduce las
estructuras repetitivas (for, while y do-whi le). Examina la repetición (iteración) de sentencias
en detalle y compara los bucles controlados por centinela, bandera, etc. Explica precauciones y reglas
de uso de diseño de bucles. Compara los tres diferentes tipos de bucles, así como el concepto de bucles
anidados.

Capítulo 7. Funciones. Examina el diseño y construcción de módulos de programas mediante funcio-
nes. Se define la estructura de una función, prototipos y parámetros. El concepto de funciones en línea
(inline) . Uso de bibliotecas de funciones, clases de almacenamiento, ámbitos, visibilidad de una
función. Asimismo se introduce el concepto de recursividad y plantillas de funciones.

Capítulo 8. Arrays (listas y tablas). Examina la estructuración de los datos en arrays o grupos de ele-
mentos dato del mismo tipo. El capítulo presenta numerosos ejemplos de arays de uno, dos o múltiples
índices. Se realiza una introducción a los algoritmos de ordenación y búsqueda de elementos en una

I
I

I

lista. 1
I

Capítulo 9. Estructuras y uniones. Conceptos de estructuras, declaración, definición, iniciación, uso
y tamaño. Acceso a estructuras, arrays de estructuras y estructuras anidadas. Uniones y enumeracio-
nes.

Capítulo 10. Punteros (apuntadores). Presenta una de las características más potentes y eficientes del
lenguaje C, los punteros. Este capítulo proporciona explicación detallada de los punteros, arrays de
punteros, punteros de cadena, aritmética de punteros, punteros constantes, punteros como argumentos
de funciones, punteros a funciones y a estructuras.

xxii Prólogo

Capítulo 11. Asignación dinámica de memoria. En este capítulo se describe la gestión dinámica de la
memoria y las funciones asociadas para esas tareas : mal loc () , free () , cal loc () ,
realloc () . Se dan reglas de funcionamiento de esas funciones y para asignación y liberación de
memoria. También se describe el concepto de arrays dinámicos y asignación de memoria para arrays.

Capítulo 12. Cadenas. Se examina el concepto de cadena (string) así como las relaciones entre punte-
ros, arrays y cadenas en C. Se introducen conceptos básicos de manipulación de cadenas junto con ope-
raciones básicas tales como longitud, concatenación, comparación, conversión y búsqueda de caracte-
res y cadenas. Se describen las funciones más notables de la biblioteca string. h.

PARTE 111. ESTRUCTURA DE DATOS
Esta parte es clave en el aprendizaje de técnicas de programación. Tal es su importancia que los planes
de estudio de cualquier carrera de ingeniería informática o de ciencias de la computación incluyen una
asignatura troncal denominada Estructura de datos.

Capítulo 13. Archivos. El concepto de archivo junto con su definición e implementación es motivo de
estudio en este capítulo. Las operaciones usuales se estudian con detenimiento.

Capítulo 14. Listas enlazadas. Una lista enlazada es una estructura de datos que mantiene una colec-
ción de elementos, pero el número de ellos no se conoce por anticipado o varía en un amplio rango. La
lista enlazada se compone de elementos que contienen un valor y un puntero. El capítulo describe los
fundamentos teóricos y las operaciones que se pueden realizar en la lista enlazada. También se descri-
ben los distintos tipos de listas enlazadas.

Capítulo 15. Pilas y colas. Colas de prioridades. Las ideas abstractas de pila y cola se describen en el
capítulo. Pilas y colas se pueden implementar de diferentes maneras, bien con vectores (arrays) o con
listas enlazadas.

Capítulo 16. Árboles. Los árboles son otro tipo de estructura de datos dinámica y no lineal. Las ope-
raciones básicas en los árboles junto con sus operaciones fundamentales se estudian en el Capítulo 2 1.

APÉNDICES

En todos los libros dedicados a la enseñanza y aprendizaje de técnicas de programación es frecuente
incluir apéndices de temas complementarios a los explicados en los capítulos anteriores. Estos apéndi-
ces sirven de guía y referencia de elementos importantes del lenguaje y de la programación de compu-
tadoras.

Apéndice A. Lenguaje ANSI C. G u h de referencia. Descripción detallada de los elementos funda-
mentales del estándar C.

Apéndice B. Códigos de caracteres ASCZZ. Listado del juego de caracteres del código ASCII utiliza-
do en la actualidad en la mayoría de las computadoras.

Apéndice C. Palabras reservadas de C++. Listado por orden alfabético de las palabras reservadas en
ANSIíiSO C++, al estilo de diccionario. Definición y uso de cada palabra reservada, con ejemplos sen-
cillos de aplicación.

Apéndice D. G u h de sintuxis ANSUISO estándar C++. Referencia completa de sintaxis de C++ para
que junto con las palabras reservadas facilite la migración de programas C a C++ y permita al lector con-
vertir programas estructurados escritos en C a C++.

prólogo xxi i i

Apéndice E. Biblioteca de funciones estándar ANSI C. Diccionario en orden alfabético de las fun-
ciones estándar de la biblioteca estándar de ANSIASO C++, con indicación de la sintaxis del prototipo
de cada función, una descripción de su misión junto con algunos ejemplos sencillos de la misma.

Apéndice E Recursos de C (Libros, Revistas, URLS de Internet). Enumeración de los libros más sobre-
salientes empleados por los autores en la escritura de esta obra, así como otras obras importantes com-
plementarias que ayuden al lector que desee profundizar o ampliar aquellos conceptos que considere
necesario conocer con más detenimiento. Asimismo se adjuntan direcciones de Internet importantes
para el programador de C junto con las revistas más prestigiosas del sector informático y de computa-
ción en el campo de programación.

AGRADECIMIENTOS
Un libro nunca es fruto único del autor, sobre todo si el libro está concebido como libro de texto y auto-
aprendizaje, y pretende llegar a lectores y estudiantes de informática y de computación, y, en general,
de ciencias e ingeniería, formación profesional de grado superior,. . . , así como autodidactas en asigna-
turas relacionadas con la programación (introducción, fundamentos, avanzada, etc.). Esta obra no es
una excepción a la regla y son muchas las personas que nos han ayudado a terminarla. En primer lugar
nuestros colegas de la Universidad Pontijicia de Salamanca en el campus de Madrid, y en particular del
Departamento de Lenguajes y Sistemas Informáticos e Ingeniería de Software de la misma que desde
hace muchos años nos ayudan y colaboran en la impartición de las diferentes asignaturas del departa-
mento y sobre todo en la elaboración de los programas y planes de estudio de las mismas. A todos ellos
les agradecemos públicamente su apoyo y ayuda.

Asimismo deseamos expresar nuestro agradecimiento a la innumerable cantidad de colegas (profe-
sores y maestros) de universidades españolas y latinoamericanas que utilizan nuestros libros para su
clases y laboratorios de prácticas. Estos colegas no sólo usan nuestros textos sino que nos hacen suge-
rencias y nos dan consejos de cómo mejorarlos. Nos sería imposible citarlos a todos por lo que sólo
podemos mostrar nuestro agradecimiento eterno por su apoyo continuo.

De igual modo no podemos olvidarnos de la razón fundamentul de ser de este libro: los lectores. A
ellos también mi agradecimiento eterno. A nuestros alumnos de España y Latinoamérica; a los que no
siendo alumnos personales, lo son «virtuales» al saber que existen y que con sus lecturas, sus críticas,
sus comentarios, hacen que sigamos trabajando pensando en ellos; y a los numerosos lectores profe-
sionales o autodidactas que confian en nuestras obras y en particular en ésta. A todos ellos nuestro reco-
nocimiento más sincero de gratitud.

Además de estos compañeros en docencia, no puedo dejar de agradecer, una vez más, a nuestra edi-
tora -y, sin embargo, amiga- Concha Fernandez, las constantes muestras de afecto y comprensión
que siempre tiene, y ésta no ha sido una excepción, hacia nuestras personas y nuestra obra. Sus conti-
nuos consejos, sugerencias y recomendaciones, siempre son acertadas y, además, fáciles de seguir; por
si eso no fuera suficiente, siempre benefician a la obra.

A riesgo de ser reiterativos, nuestro reconocimiento y agradecimiento eterno a todos: alumnos, lec-
tores, colegas, profesores, maestros, monitores y editores. Gracias por vuestra inestimable e impagable
ayuda.

En Carchelejo, Jaén (Andalucía) y en Madrid, Febrero de 2001.

Los autores

P A R T E I

METODOLOGÍA
DE LA PROGRAMACI~N

CAPíTULO 1

INTRODUCCIÓN A LA CIENCIA
DE LA COMPUTACIÓN

Y A LA PROGRAMACIÓN

CONTENIDO

1.1. ¿Qué es una computadora?
1.2. ¿Qué es programación?
1.3. Organización física de una

1.4. Algoritmos y programas.

1.6. Los lenguajes de programa-

1.6. El lenguaje C: historia y ca-

1.7. Resumen.

ción.

racterísticas. computadora.

L 2

doras.
computadoras o

informática a travks de uno de los lenguajes de programación más versatiles
disponibles hoy día: el lenguaje C . Este capítulo le introduce a la computadora
y sus componentes, así como a los lenguajes de programación, y a la metodo
logía a seguir para la resolución de problemas con computadoras y con una
herramienta denominada C.

La principal razón para que las personas aprendan lenguajes y teCnicas de
programación es utilizar la computadora como m a herramienta para resolver
problemas.

En esta obra, usted comenzará a estudiar la ciencia de

1 CONCEPTOS CLAVE

i

E

Algoritmo.
* Athlon.

Byte.

* Compilax=idn
* Compilador.

Computadora.
Disquete.
DWD.
Editor.
GB.

CD-ROM.

Inbl.
* Intérprete.
fus.

* Lenguaje de programación.
Lenguaje ensamblador.
Lenguajemáquina.
m.
Memoria.
Memoriaauxiliar.
Memoria central.

* Módem,
MHZ.
Mcroprocesador.
Ordenador.
Pentium.
Portabiiidad.
software.
Unidad Central de Proceso.

3

4 Programación en C. Metodología, algoritmos y estructura de datos

1 .l. LQUÉ ES UNA COMPUTADORA?

Una computadora' es un dispositivo electrónico utilizado para procesar información y obtener resul-
tados. Los datos y la información se pueden introducir en la computadora por la entrada (input) y a
continuación se procesan para producir una salida (output, resultados), como se observa en la Figura 1.1.
La computadora se puede considerar como una unidad en la que se ponen ciertos datos, o entrada de
datos. La computadora procesa estos datos y produce unos datos de salida. Los datos de entrada y los
datos de salida pueden ser, realmente, cualquier cosa, texto, dibujos o sonido. El sistema más sencillo
de comunicarse con la computadora una persona es mediante un teclado, una pantalla (monitor) y un
ratón (mouse). Hoy día existen otros dispositivos muy populares tales como escáneres, micrófonos, alta-
voces, cámaras de vídeo, etc.; de igual manera, a través de módems, es posible conectar su computado-
ra con otras computadoras a través de la red Internet.

COMPUTADORA

Programa u
Datos de Datos de
entrada salida

Figura 1.1. Proceso de información en una computadora.

Los componentes físicos que constituyen la computadora, junto con los dispositivos que realizan
las tareas de entrada y salida, se conocen con el término hardware (traducido en ocasiones por mate-
rial). El conjunto de instrucciones que hacen funcionar a la computadora se denomina programa que
se encuentra almacenado en su memoria; a la persona que escribe programas se llama programador y
al conjunto de programas escritos para una computadora se llama software (traducido en ocasiones por
logical). Este libro se dedicará casi exclusivamente al software, pero se hará una breve revisión del
hardware como recordatorio o introducción según sean los conocimientos del lector en esta materia,

1.2. ORGANIZACIÓN FíSlCA DE UNA COMPUTADORA (HARDWARE)

La mayoría de las computadoras, grandes o pequeñas, están organizadas como se muestra en la Figu-
ra 1.2. Ellas constan fundamentalmente de tres componentes principales: unidad central de proceso
(UCP) o procesador (compuesta de la UAL, Unidad aritmético-lógica y la UOC, Unidad de Control),
la memoria principal o central y el programa.

' En España está muy extendido el término ordenador para referirse a la traducción de la palabra inglesa computer.

Introducción a la ciencia de la computación y a la programación 5

t Entrada de datos Salida de datos t
Figura 1.2. Organización física de una computadora.

Si a la organización física de la Figura 1.2 se le añaden los dispositivos para comunicación con la
computadora, aparece la estructura típica de un sistema de computadora: dispositivos de entrada, dis-
positivo de salida, memoria externa y el procesador/memoria central con su programa (Fig. 1.3).

1.2.1. Dispositivos de Entrada/Salida (E/S)

Los dispositivos de EntraddSalida (E/S) [InputlOutput (UO, en inglés)] permiten la comunicación entre
la computadora y el usuario. Los dispositivos de entrada, como su nombre indica, sirven para introdu-
cir datos (información) en la computadora para su proceso. Los datos se leen de los dispositivos de
entrada y se almacenan en la memoria central o interna. Los dispositivos de entrada convierten la infor-
mación de entrada en señales eléctricas que se almacenan en la memoria central. Dispositivos de entra-
da típicos son los teclados; otros son: lectores de tarjetas -ya en desuso-, lápices Ópticos, palan-
cas de mando (joystick), lectores de códigos de barras, escáneres, micrófonos, etc. Hoy día tal vez
el dispositivo de entrada más popular es el ratón (mouse) que mueve un puntero electrónico sobre la
pantalla que facilita la interacción usuario-máquina2.

Dispositivos
de entrada

- I
Dispositivos
de entrada

1 I

UCP (Procesador)

Unidad de 1 control I
Memoria central

I I
I I

Unidad
aritmética y

lógica

Dispositivos
de salida

Memoria externa
almacenamiento

permanente

Figura 1.3. Organización física de una computadora.

’ Todas las acciones a realizar por el usuario se realizarán con el ratón con la excepción de las que se requieren de la escri-
tura de datos por teclado.

6 Programación en C. Metodología, algoritmos y estructura de datos

Los dispositivos de salida permiten representar los resultados (salida) del proceso de los datos. El di+
positivo de salida típico es la pantalla (CRT)' o monitor. Otros dispositivos de salida son: impresoras
(imprimen resultados en papel), trazadores gráficos (plotters), reconocedores de voz, altavoces, etc.

El teclado y la pantalla constituyen -en muchas ocasiones- un Único dispositivo, denominado
terminal. Un teclado de terminal es similar al teclado de una máquina de escribir moderna con la dife-
rencia de algunas teclas extras que tiene el terminal para funciones especiales. Si está utilizando una
computadora personal, el teclado y el monitor son dispositivos independientes conectados a la compu-
tadora por cables. En ocasiones a la impresora se la conoce como dispositivo de copia dura («hard
copy»), debido a que la escritura en la impresora es una copia permanente (dura) de la salida, y a la
pantalla se le denomina en contraste: dispositivo de copia blanda (eso$ copy»), ya que se pierde la
pantalla actual cuando se visualiLa la siguiente.

Los dispositivos de entraddsalida y los dispositivos de almacenamiento secundario o auxiliar
(memoria externa) se conocen también con el nombre de di.sposirivci.\ perlféricos o simplemente peri-
féricos ya que, normalmente, son externos a la computadora. Estos dispositivos son unidad de discos
(disquetes, CD-ROM, DVDs, cintas, videocámaras,etc.).

Figura 1.4. Dispositivo de salida (impresora)

1.2.2. La memoria central (interna)

La memoria central o simplemente memoria (interna o principal) se utiliza para almacenar informa-
ción (RAM, Random Access Memory). En general, la información almacenada en memoria puede ser
de dos tipos: las instrucciones de un programa y los duros con los que operan las instrucciones. Por
ejemplo, para que un programa se pueda ejecutar (correr, rodar, funcionar.. ., en inglés run), debe ser
situado en la memoria central, en una operación denominada carga (load) del programa. Después, cuan-
do se ejecuta (se realiza, funciona) el programa, cualquier dato u procesur por el programa se debe lle-
var a la memoria mediante las instrucciones del programa. En la memoria central, hay también datos
diversos y espacio de almacenamiento temporal que necesita el programa cuando se ejecuta con él a fin
de poder funcionar.

Introducción a la ciencia de la computación y a la programación 7

Cuando un programa se ejecuta (realiza, funciona) en una computadora, se dice que se ejecuta.

Con el objetivo de que el procesador pueda obtener los datos de la memoria central más rápida-
mente, la mayoría de los procesadores actuales (muy rápido\) utilitan con frecuencia una memoriu
denominada cuche‘que sirva para almacenamiento intermedio de datos entre el procesador y la memo-
ria principal La memoria caché -en la actualidad- \e incorpora casi siempre al procesador.

La memoria central de una computadora es una zona de almacenamiento organizada en centenares
o millares de unidades de almacenamiento individual o celdas. La memoria central consta de un con-
junto de (*eldar úe memoria (estas celdas o posiciones de memoria se denominan también palahms,
aunque no «guardan» analogía con las palabras del lenguaje). El número de celdas de memoria de la
memoria central, dependiendo del tipo y inodelo de computadora; hoy día el número suele ser millones
(32.64, 128, etc.) Cada celda de ineinoria consta de un cierto número de bits (normalmente 8, un hite).

La unidad elemental de memoria se llama byte (octeto). Un h\te tiene la capacidad de almacenar un
carácter de información, y está formado por un conjunto de unidades más pequeñas de almacenamien-
to denominadas hifv, que son dígitos binarim (O o 1).

Figura 1.5. Computadora portátil digital.

Generalinente. se acepta que un byte contiene ocho bits. Por umigiitente, si \e desea almacenar la
frase

la computadora utili/ará exactamente 27 byte\ conscculivos de iTictnoria. Obsérvese que, además de las
letras, existen cuatro espacios en blanco y u n punto (u n espacio es un carácter que emplea también un
byte). De modo similar, el número del pasaporte

1’5 4 d / t ! i I

ocupará 9 bytes. pero si se almacena como

1 5 148 /891

1

8 Programación en C. Metodología, algoritmos y estructura de datos

ocupará 1 1. Estos datos se llaman alfanuméricos, y pueden constar del alfabeto, dígitos o incluso carac-
teres especiales (símbolos: $, #, *, etc.).

Mientras que cada carácter de un dato alfanumérico se almacena en un byte, la información numé-
rica se almacena de un modo diferente. Los datos numéricos ocupan 2 ,4 e incluso 8 bytes consecutivos,
dependiendo del tipo de dato numérico (se verá en el Capítulo 3) .

Existen dos conceptos importantes asociados a cada celda o posición de memoria: su dirección y su
contenido. Cada celda o byte tiene asociada una única dirección que indica su posición relativa en
memoria y mediante la cual se puede acceder a la posición para almacenar o recuperar información. La
información almacenada en una posición de memoria es su contenido. La Figura 1.6 muestra una memo-
ria de computadora que consta de 1 .O00 posiciones en memoria con direcciones de O a 999. El contenido
de estas direcciones o posiciones de memoria se llaman palabras, de modo que existen palabras de 8,
16,32 y 64 bits. Por consiguiente, si trabaja con una máquina de 32 bits, significa que en cada posición
de memoria de su computadora puede alojar 32 bits, es decir 32 dígitos, bien ceros o unos.

Siempre que una nueva información se almacena en una posición, se destruye (desaparece) cual-
quier información que en ella hubiera y no se puede recuperar. La dirección es permanente y única, el
contenido puede cambiar mientras se ejecuta un programa.

La memoria central de una computadora puede tener desde unos centenares de millares de bytes
hasta millones de bytes. Como el byte es una unidad elemental de almacenamiento, se utilizan múltiplos
para definir el tamaño de la memoria central: Kilo-byte (KB o Kb) igual a 1.024 bytes (2“’) -prácti-
camente se toman 1 .O00- y Megabyte (MB o Mb) igual a 1 .O24 x 1 .O24 bytes (2”’) -prácticamente
se considera un 1 .OO0.000-.

Tabla 1.1. Unidades de medida de almacenamiento.

Byte Byte (b)
Kilobyte Kbyte (Kb)
Megabyte Mbyte (Mb)
Gigabyte Gbyte (Gb)
Terabyte Tbyte (Tb)

equivale a 8 bits
equivale a I .24 bytes
equivale a 1 .O24 Kbytes
equivale a 1 .O24 Mbytes
equivale a 1 .O24 Gbytes

1 Tb = 1.024 Gb = 1.024 Mb = 1.048.576 Kb = 1.073.741.824 b

En la actualidad, las computadoras personales tipo PC suelen tener memorias centrales de 32 a 64
Mb, aunque ya es muy frecuente ver PC con memorias de 128 Mb y 192 Mb.

direcciones 999 -1

Figura 1.6. Memoria central de una computadora.

Introducción a la ciencia de la computación y a la programación 9

La memoria principal es la encargada de almacenar los programas y datos que se están ejecutando
y su principal característica es que el acceso a los datos o instrucciones desde esta memoria es muy
rápido.

En la memoria principal se almacenan:
0 Los datos enviados para procesarse desde los dispositivos de entrada.

Los programas que realizarán los procesos.
0 Los resultados obtenidos preparados para enviarse a un dispositivo de salida.

En la memoria principal se pueden distinguir dos tipos de memoria: RAM y ROM. La memoria
RAM (Random Access Memory, Memoria de acceso aleatorio) almacena los datos e instrucciones a
procesar. Es un tipo de memoria volátil (su contenido se pierde cuando se apaga la computadora); esta
memoria es, en realidad, la que se suele conocer como memoria principal o de trabajo; en esta memo-
ria se pueden escribir datos y leer de ella. La memoria ROM (Read Only Memory) es una memoria
permanente en la que no se puede escribir (viene pregrabada «grabada» por el fabricante; es una memo-
ria de sólo lectura. Los programas almacenados en ROM no se pierden al apagar la computadora y
cuando se enciende, se lee la información almacenada en esta memoria. Al ser esta memoria de sólo
lectura, los programas almacenados en los chips ROM no se pueden modificar y suelen utilizarse para
almacenar los programas básicos que sirven para arrancar la computadora.

1.2.3. La Unidad Central de Proceso (UCP)

La Unidad Central de Proceso, UCP (Central Processing ünit, CPU, en inglés), dirige y controla el
proceso de información realizado por la computadora. La UCP procesa o manipula la información alma-
cenada en memoria; puede recuperar información desde memoria (esta información son datos o ins-
trucciones: programas). También puede almacenar los resultados de estos procesos en memoria para su
uso posterior.

Unidad central de proceso

Unidad lógica y aritmética

Unidad de control

Memoria central

Datos de 1 1 Datos de
entrada salida

Figura 1.7. Unidad Central de Proceso.

10 Programación en C. Metodología, algoritmos y estructura de datos

La UCP consta de dos componentes: unidad de control (UC) y unidad aritmético-16gicu (UAL)
(Fig. I .7). La unidad de control (Control Unit, CU) coordina las actividades de la computadora y deter-
mina qué operaciones se deben realizar y en qué orden; asimismo controla y sincroniza todo el proce-
so de la computadora.

La unidad aritmético-lógica (Aritmethic-Logic Unit, ALU) realiza operaciones aritméticas y Iógi-
cas, tales como suma, resta, multiplicación, división y comparaciones. Los datos en la memoria central
se pueden leer (recuperar) o escribir (cambiar) por la UCP.

1.2.4. El microprocesador

El microprocesador es un chip (un circuito integrado) que controla y realiza las funciones y opera-
ciones con los datos. Se suele conocer como procesador y es el cerebro y corazón de la computadora.
En realidad el microprocesador representa a la Unidad Central de Proceso.

La velocidad de un microprocesador se mide en megahercios (MHz) y manipulan palabras de 4 a
64 bits. Los microprocesadores históricos van desde el 8080 hasta el 80486/80586 pasando por el 8086,
8088,80286 y 80386, todos ellos del fabricante Intel. Existen otras empresas como AMD y Cyrix, con
modelos similares. Los microprocesadores de segunda generación de Intel son los Pentium, Pentium
MMX, Pentium I1 con velocidades de 233,266,300 y 450 MHz. Los microprocesadores más modernos
(de 3.” generación) son los Pentium 111 con frecuencias de 450 hasta 1 GHz.

La guerra de los microprocesadores se centró en el año 2000 en torno a AMD, que ofrecen ya pro-
cesadores Athlon de 1 GHz y de I .2 GHz. Intel presentó a finales de noviembre de 2000 su nueva arqui-
tectura Pentium TV -la generación siguiente a la familia x86-, que ofrecen chips de velocidades de 1.3.
1.4 y 1.5 GHz y anuncian velocidades de hasta 2 GHz.

Unidad de control
principal

Dispositivos
de entrada

v
Unidad aritmético

y lógica
Dispositivos Dispositivos

de salida de €IS

I Microprocesador

Figura 1.8. Organización física de una computadora con un microprocesador.

1.2.5. Memoria auxiliar (externa)

Cuando un programa se ejecuta, se debe situar primero en memoria central de igual modo que los datos.
Sin embargo, la información almacenada en la memoria se pierde (borra) cuando se apaga (desconec-
ta de la red eléctrica) la computadora y, por otra parte, la memoria central es limitada en capacidad. Por

-

Introducción a la ciencia de la computación y a la programación 11

esta razón, para poder disponer de almacenamiento permanente, tanto para programas como para datos,
se necesitan dispositivos de almacenamiento secundario, auxiliar o masivo («mass storage», o «secon-
dary storage»).

Los dispositivos de almacenamiento o memorias auxiliares (externas o secundarias) más común-
mente utilizados son: cintas magnéticas, discos magnéticos, discos compactos (CD-ROM Compact
Disk Read Only Memory), y videodiscos digitales (DVD). Las cintas son utilizadas principalmente por
sistemas de computadoras grandes similares a las utilizadas en los equipos de audio. Los discos y dis-
quetes magnéticos se utilizan por todas las computadoras, especialmente las medias y pequeñas -las
computadoras personales-. Los discos pueden ser duros, de gran capacidad de almacenamiento (su
capacidad mínima es de 10 Mb), disquetes o discosflexibles (<díoppy disk») (360 Kb a 1,44 Mb). El
tamaño físico de los disquetes y por el que son conocidos es de 5 '/J (5,25)", 3'/2 (3,5)". Las dos caras de
los discos se utilizan para almacenar información. La capacidad de almacenamiento varía en función de
la intensidad de su capa ferromagnética y pueden ser de doble densidad (DD) o de alta densidad (HD).
El disquete normal suele ser de 3,5" y de 1,44 Mb de capacidad.

Figura 1.9. Memorias auxiliares: Unidad y lector ZIP de 100 Mb.

Otro dispositivo cada vez más utilizado en una computadora es el CD-ROM (Cumpacf Disk) que es
un disco de gran capacidad de almacenamiento (650 Mb) merced a la técnica utilizada que es el láser.
El videodisco digital (DVD) es otro disco compacto de gran capacidad de almacenamiento (equivale a
26 CD-ROM) que por ahora es de 4,7 Gb.

Existen unos tipos de discos que se almacenan en unas unidades especiales denominadas zip que tie-
nen gran capacidad de almacenamiento comparada con los disquetes tradicionales de l .44 Mb. Estos dis-
quetes son capaces de almacenar 100 Mb.

La información almacenada en la memoria central es volátil (desaparece cuando se apaga la com-
putadora) y la información almacenada en la memoria auxiliar es permanente.

Esta información se organiza en unidades independientes llamadas archivos (ficheros, file en
inglés). Los resultados de los programas se pueden guardar como archivos de datos y los programas
que se escriben se guardan como archivos de programas, ambos en la memoria auxiliar. Cualquier tipo
de archivo se puede transferir fácilmente desde la memoria auxiliar hasta la memoria central para su
proceso posterior.

En el campo de las computadoras es frecuente utilizar la palabra memoria y almacenamiento o
memoria externa, indistintamente. En este libro -y recomendamos su uso- se utilizará el término
memoria sólo para referirse a la memoria central.

12 Programación en C. Metodología, algoritmos y estructura de datos

Comparación de la memoria central y la memoria auxiliar
La memoria central o principal es mucho más rápida y cara que la memoria auxiliar. Se deben
transferir los datos desde la memoria auxiliar hasta la memoria central, antes de que puedan ser
procesados. Los datos en memoria central son: volátiles y desaparecen cuando se apaga la com-
putadora. Los datos en memoria auxiliar son permanentes y no desaparecen cuando se apaga la
computadora.

Las computadoras modernas necesitan comunicarse con otras computadoras. Si la computadora se
conecta con una tarjeta de red se puede conectar a una red de datos locales (red de área local). De este
modo se puede acceder y compartir a cada una de las memorias de disco y otros dispositivos de entra-
da y salida. Si la computadora tiene un rncídem, se puede comunicar con computadoras distantes. Se
pueden conectar a una red de datos o enviar correa electrhnica a través de las redes corporativas Intra-
nemxtranet o la propia red Internet. También es posible enviar y recibir mensajes de fax.

1.2.6. Proceso de ejecución de un programa

La Figura 1.1 O muestra la comunicación en una computadora cuando se ejecuta un programa, a través
de los dispositivos de entrada y salida. El ratón y el teclado introducen datos en la memoria central
cuando se ejecuta el programa. Los datos intermedios o auxiliares se transfieren desde la unidad de dis-
co (archivo) a la pantalla y a la unidad de disco, a medida que se ejecuta el programa.

Monitor

Ratbn

Impresora lbser

i=-=I Unidad de

central & Memoria

Teclado

Figura 1.10. Proceso de ejecución de un programa.

1.2.7. Comunicaciones: módems, redes, telefonía RDSl y ADSL

Una de las posibilidades más interesantes de las computadoras es la comunicación entre ellas, cuando
se encuentran en sitios separados físicamente,y se encuentran enlazadas por vía telefónica. Estas com-
putadoras se conectan en redes LAN (Red de Area Local) y WAN (Red de Area Ancha), aunque hoy día,
las redes más implantadas son las redes que se conectan con tecnología Internet, y, por tanto, conexión
a la red Internet. Estas redes son Zntranef y Extranet, y se conocen como redes corporativas, ya que
enlazan computadoras de los empleados con las empresas. Las instalaciones de las comunicaciones
requieren de líneas telefónicas analógicas o digitales y de módems.

Introducción a la ciencia de la computación y a la programación 13

El módem es un dispositivo periférico que permite intercambiar información entre computadoras a
través de una línea telefónica. El módem es un acrónimo de Modulador-Demodulador, y es un dispo-
sitivo que transforma las señales digitales de la computadora en señales eléctricas analógicas telefóni-
cas y viceversa, con lo que es posible transmitir y recibir información a través de la línea telefónica.
Estas operaciones se conocen como modulación (se transforman los datos digitales de la computadora
para que puedan ser enviados por la línea telefónica como analógicos) y demodulación (transforman
los datos analógicos recibidos mediante la línea telefónica en datos digitales para que puedan ser leídos
por la computadora).

Un módem convierte señal analógica en digital y viceversa.

Los módems permiten, además de las conexiones entre computadoras, envío y recepción de fax,
acceso a Internet, etc. Una de las características más importantes de un módem es la velocidad. Cifras
usuales son 33,600 (33 K) baudios (1 baudio es 1 bit por segundo, bps) y 56,000 baudios (56 K).

Los módems pueden ser de tres tipos: interno (es una tarjeta que se conecta a la placa base inter-
namente); externo (es un dispositivo que se conecta externamente a la computadora a través de puertos
COM, USB, etc.); PC-Card, son módems del tipo tarjeta de crédito, que sirve para conexión a las com-
putadoras portátiles.

Además de los módems analógicos, es posible la conexión a Internet y a las redes corporativas de
las compañías mediante la Red Digital de Sistemas Integrados (RDSI, en inglés, IDSN), que permite la
conexión a 128 Kbps, disponiendo de dos líneas telefónicas, cada una de ellas a 64 Kbps.

También, se está comenzando a implantar la tecnología digital ADSL, que permite la conexión a
Internet a velocidad similar a la red RDSI, 128 Kbps y a 256 Kbps, según sea para «subir» o «bajar»
datos a la red, respectivamente, pudiendo llegar a 2M bps.

Figura 1.11. Módem comercial.

1.2.8. La computadora personal multimedia ideal para la programación

Hoy día, las computadoras personales profesionales y domésticas que se comercializan son práctica-
mente todas ellas multimedia, es decir, incorporan características multimedia (CD-ROM, DVD, tarjeta
de sonido, altavoces y micrófono) que permiten integrar texto, sonido, gráficos e imágenes en movi-
miento. Las computadoras multimedia pueden leer discos CD-ROM y DVD de gran capacidad de alma-
cenamiento. Esta característica ha hecho que la mayoría de los fabricantes de software comercialicen sus
compiladores (programas de traducción de lenguajes de programación) en CD-ROM, almacenando en
un solo disco, lo que antes necesitaba seis, ocho o doce disquetes, y cada vez será más frecuente el uso
del DVD.

14 Programación en C. Metodología, algoritmos y estructura de datos

Figura 1.12. Computadora multimedia.

El estudiante de informática o de computación actual, y mucho más el profesional, dispone de un
amplio abanico de computadoras a precios asequibles y con prestaciones altas. En el cuarto trimestre del
año 2000, un PC de escritorio típico para aprender a programar, y posteriormente utilizar de modo pro-
fesional, es posible encontrarlo a precios en el rango entre 100.000 pesetas y 200.000/300.000 pesetas
(US$500 a US$ 1.000/1 .500), dependiendo de prestaciones y fabricante (según sean d6nico.w ofahri-
cudos por nzarcus acreditadas como HI;: IBM, Compaq), aunque la mayoría de las ofertas suelen incluir,
como mínimo, 64 MB de RAM, CD-ROM, monitores de 15”, tarjetas de sonido, etc. La Tabla 1.2 resu-
me nuestra propuesta y recomendación de características medias de un/a computador/a PC.

Tabla 1.2. Características de u n PC ideal.

Procesador Microprocesador de las marcas Intel o AMD, de 800 Mz o superior.

Memoria 128 Mb y recomendable para aplicaciones profesionales 256 o 5 12 Mb.

Caché Memoria especial que usa el procesador para acelerar sus operaciones. 5 12 Kb o 128
Kb.

Disco duro 20 Gigabytes (mínimo).

Internet

Video

Preparado para Internet (incluso con módem instalado de 56 Kb).

Memoria de vídeo, con un mínimo de 4 Mb.

Monitor 17” o 19” (pantalla tradicional o plana “TFT”).

Almacenamiento CD-RW, DVD.

Puertos Serie, paralelo y USB.

Marcas HP, Compaq, Dell, IBM, El System, Futjisu, Inves, . .

Introducción a la ciencia de la computación y a la programación 15

1.3. CONCEPTO DE ALGORITMO

El objetivo fundamental de este texto es enseñar a resolver problemas mediante una computadora. El
programador de computadora es antes que nada una persona que resuelve problemas, por lo que para Ile-
gar a ser un programador eficaz se necesita aprender a resolver problemas de un modo riguroso y sis-
temático. A lo largo de todo este libro nos referiremos a la metodología necesaria para resolver pro-
blemas mediante programas, concepto que se denomina metodología de la programación. El eje
central de esta metodología es el concepto, ya tratado, de algoritmo.

Un algoritmo es un método para resolver un problema. Aunque la popularización del término ha Ile-
gado con el advenimiento de la era informhtica, algoritmo proviene de Mohammed al-KhoW¿irizmi,
matemático persa que vivió durante el siglo I X y alcanzó gran reputación por el enunciado de las reglas
paso a paso para sumar, restar, multiplicar y dividir números decimales; la traducción al latín del ape-
llido en la palabra algorismus derivó posteriormente en algoritmo. Euclides, el gran matemático griego
(del siglo IV a.c.) que inventó un método para encontrar el máximo común divisor de dos números, se
considera con Al-Khowirizmi el otro gran padre de la algoritmia (ciencia que trata de los algoritmos).

El profesor Niklaus Wirth -inventor de Pascal, Modula-2 y Oberon- tituló uno de sus más famo-
sos libros, Algoritmos + Estructuras de datos = Programas, significándonos que sólo se puede llegar a
realizar un buen programa con el diseño de un algoritmo y una correcta estructura de datos. Esta ecua-
ción será una de las hipótesis fundamentales consideradas en esta obra.

La resolución de un problema exige el diseño de un algoritmo que resuelva el problema propuesto.

I I I I I I

Problema
Diseño del
algoritmo

Programa de
computadora

I I I I

Figura 1.13. Resolución de un problema.

Los pasos para la resolución de un problema son:

I . Diseño del algoritmo que describe la secuencia ordenada de pasos -sin ambigüedades- que
conducen a la solución de un problema dado. (Andisis del problema y desarrollo del algorit-
mo.)
Expresar el algoritmo como un programa en un lenguaje de programación adecuado. (Fase de
codificación.)
Ejecución y validación del programa por la computadora.

2.

3 .

Para llegar a la realización de un programa es necesario el diseño previo de un algoritmo, de modo
que sin algoritmo no puede existir un programa.

Los algoritmos son independientes tanto del lenguaje de programación en que se expresan como de
la computadora que los ejecuta. En cada problema el algoritmo se puede expresar en un lenguaje dife-
rente de programación y ejecutarse en una computadora distinta; sin embargo, el algoritmo será siem-
pre el mismo. Así, por ejemplo, en una analogía con la vida diaria, una receta de un plato de cocina se
puede expresar en español, inglés o francés, pero cualquiera que sea el lenguaje, los pasos para la ela-
boración del plato se realizarán sin importar el idioma del cocinero.

En la ciencia de la computación y en la programación, los algoritmos son más importantes que los
lenguajes de programación o las computadoras. Un lenguaje de programación es tan sólo un medio para
expresar un algoritmo y una computadora es sólo un procesador para ejecutarlo. Tanto el lenguaje de
programación como la computadora son los medios para obtener un fin: conseguir que el algoritmo se
ejecute y se efectúe el proceso correspondiente.

16 Programación en C. Metodología, algoritmos y estructura de datos

Dada la importancia del algoritmo en la ciencia de la computación, un aspecto muy importante será
el diseño de algoritmos. A la enseñanza y práctica de esta tarea se dedica gran parte de este libro.

El diseño de la mayoría de los algoritmos requiere creatividad y conocimientos profundos de la téc-
nica de la programación. En esencia, la solución de un problema se puede expresar mediante un algo-
ritmo.

1.3.1. Características de los algoritmos

Las características fundamentales que debe cumplir todo algoritmo son:

Un algoritmo debe ser preciso e indicar el orden de realización de cada paso.
Un algoritmo debe estar definido. Si se sigue un algoritmo dos veces, se debe obtener el mismo

Un algoritmo debe ser$nito. Si se sigue un algoritmo, se debe terminar en algún momento; o sea,

La definición de un algoritmo debe describir tres partes: Entrada, Proceso y Salida. En el algorit-
mo de receta de cocina citado anteriormente se tendrá:

Entrada: ingredientes y utensilios empleados.
Proceso: elaboración de la receta en la cocina.
Salida: terminación del plato (por ejemplo, cordero).

resultado cada vez.

debe tener un número finito de pasos.

Ejemplo 1.1

Un cliente ejecuta un pedido u una fábrica. La fábrica examina en su banco de datos la ficha del clien-
te, si el cliente es solvente entonces la empresa acepta el pedido; en caso contrario, rechazará el pedi-
do. Redactar el algoritmo correspondiente.

Los pasos del algoritmo son:

1. Inicio.
2. Leer el pedido.
3. Examinar la ficha del cliente.
4. Si el cliente es solvente, aceptar pedido; en caso contrario, recha

5. Fin.
zar pedido.

Ejemplo 1.2

Se desea diseñar un algoritmo para saber si un número es primo o no.
Un número es primo si sólo puede dividirse por sí mismo y por la unidad (es decir, no tiene más divi-

sores que él mismo y la unidad). Por ejemplo, 9 ,8 ,6 ,4 , 12, 16,20, etc., no son primos, ya que son divi-
sibles por números distintos a ellos mismos y a la unidad. Así, 9 es divisible por 3, 8 lo es por 2, etc. El
algoritmo de resolución del problema pasa por dividir sucesivamente el número por 2, 3 , 4 ..., etc.

1. Inicio.
2. Poner X igual a 2 (X = 2, X variable que representa a los divisores del

3. Dividir N por X (N/X).
4. Si el resultado de N / X es entero, entonces N no es un número primo y

5. Suma 1 a X (X c X + 1).

número que se busca N).

bifurcar al punto 7; en caso contrario, continuar el proceso.

Introducción a la ciencia de la computación y a la programación 17

6. Si X es igual a N, entonces N es un número primo; en caso contrario,

7. Fin.
bifurcar al punto 3.

Por ejemplo, si N es 1 3 1, los pasos anteriores serían:

1. Inicio.
2. x = 2.
3. 131/X. Como el resultado no es entero, se continúa el proceso.
5. X t 2 + 1, luego X = 3.
6. Como X no es 131, se bifurca al punto 3.
3. 131/X resultado no es entero.
5. x t 3 + 1, x = 4.
6. Como X no es 131 bifurca al punto 3.
3. 131/X . . . , etc.
7. Fin.

Ejemplo 1.3

Realizar la suma de todos los números pares entre 2 y 1000.

y NUMERO (variables, serán denominadas más tarde) para representar las sumas sucesivas (2 +4
(2 + 4 + 6) , (2 + 4 + 6 + 8) , etc. La solución se puede escribir con el siguiente algoritmo:

El problema consiste en sumar 2 + 4 + 6 + 8 . . . + 1000 . Utilizaremos las palabras SUMA
,

1. Inicio.
2. Establecer SUMA a O.
3. Establecer NUMERO a 2.
4. Sumar NUMERO a SUMA. El resultado será el nuevo valor de la suma (SUMA).
5. Incrementar NUMERO en 2 unidades.
6. Si NUMERO =< 1000 bifurcar al paso 4 ; en caso contrario, escribir el

7. Fin.
ultimo valor de SUMA y terminar el proceso.

1.4. EL SOFTWARE (LOS PROGRAMAS)

Las operaciones que debe realizar el hardware son especificadas por una lista de instrucciones, Ilama-
das programas, o software. El software se divide en dos grandes grupos: sofnvare del sistema y softwa-
re de aplicaciones.

El software del sistema es el conjunto de programas indispensables para que la máquina funcione; se
denominan también programas del sistema. Estos programas son, básicamente, el sistema operativo, los
editores de texto, los compiladores/intérpretes (lenguajes de programación) y los programas de utilidad.

Uno de los programas más importante es el sistema operativo, que sirve, esencialmente, para faci-
litar la escritura y uso de sus propios programas. El sistema operativo dirige las operaciones globales de
la computadora, instruye a la computadora para ejecutar otros programas y controla el almacenamien-
to y recuperación de archivos (programas y datos) de cintas y discos. Gracias al sistema operativo es
posible que el programador pueda introducir y grabar nuevos programas, así como instruir a la compu-
tadora para que los ejecute. Los sistemas operativos pueden ser: monousuarios (un solo usuario) y mul-
tiusuarios, o tiempo compartido (diferentes usuarios), atendiendo al número de usuarios y monocarga
(una sola tarea) o multitarea (múltiples tareas) según las tareas (procesos) que puede realizar simultá-
neamente. C corre prácticamente en todos los sistemas operativos, Windows 95, Windows NT, Win-
dows 2000, UNIX, Lynux.. ., y en casi todas las computadoras personales actuales PC, Mac, Sun, etc.

Los lenguajes de programación sirven para escribir programas que permitan la comunicación usua-
rio/máquina. Unos programas especiales llamados traductores (compiladores o intérpretes) convier-

18 Programación en C. Metodología, algoritmos y estructura de datos

Figura 1.14. Diferentes programas de software.

ten las instrucciones escritas en lenguajes de programación en instrucciones escritas en lenguajes máqui-
na (O y 1, bits) que ésta pueda entender.

Los programas de utilidad' facilitan el uso de la computadora. Un buen ejemplo es un editor de
textos que permite la escritura y edición de documentos. Este libro ha sido escrito en un editor de tex-
tos o procesador de palabras («wordprocesor»).

Los programas que realizan tareas concretas, nóminas, contabilidad, análisis estadístico, etc. es
decir, los programas que podrá escribir en C, se denominan programas de aplicación. A lo largo del
libro se verán pequeños programas de aplicación que muestran los principios de una buena programa-
ción de computadora.

Se debe diferenciar entre el acto de crear un programa y la acción de la computadora cuando ejecuta
las instrucciones del programa. La creación de un programa se hace inicialmente en papel y a conti-
nuación se introduce en la computadora y se convierte en lenguaje entendible por la computadora.

Figura 1.15. Relación entre programas de aplicación y programas del sistema.

Introducción a la ciencia de la computación y a la programación

I1

19

IIIIIIIIIIIIII

Memoria
externa

r- - ----'
I L--_ -2
1 UCP

Terminal
1

- 1

externos

Datos d e salida
(rociiitadocl

Programador

Figura 1.16. Acción de un programador

La Figura 1.16 muestra el proceso general de ejecución de un programa: aplicación de una entrada
(datos) al programa y obtención de una salida (re.sultados). La entrada puede tener una variedad de for-
mas, tales como números o caracteres alfabéticos. La salida puede también tener formas, tales como
datos numéricos o caracteres, señales para controlar equipos o robots, etc.

La ejecución de un programa requiere -generalmente- unos datos como entrada (Fig. 1.17), ade-
más del propio programa, para poder producir una salida.

Memoria
externa

UCP

'-
Entrada Salida
(datos) (resultados)

Figura 1.17. Ejecución de un programa

I .5. LOS LENGUAJES DE PROGRAMACI~N

Como se ha visto en el apartado anterior, para que un procesador realice un proceso se le debe sumi-
nistrar en primer lugar un algoritmo adecuado. El procesador debe ser capaz de interpretar el algoritmo,
lo que significa:

Comprender las instrucciones de cada paso.
Realizar las operaciones correspondientes.

Cuando el procesador es una computadora, el algoritmo se ha de expresar en un formato que se
denomina programa. Un programa se escribe en un lenguaje de programación y las operaciones que
conducen a expresar un algoritmo en forma de programa se llaman programación. Así pues, los len-
guajes utilizados para escribir programas de computadoras son los lenguajes de programación y pro-
gramadores son los escritores y diseñadores de programas.

P
20 Programación en C. Metodología, algoritmos y estructura de datos

Los principales tipos de lenguajes utilizados en la actualidad son tres:

Lenguajes máquina.
Lenguaje de bajo nivel (ensamblador).
Lenguajes de alto nivel.

1.5.1. Instrucciones a la computadora

Los diferentes pasos (acciones) de un algoritmo se expresan en los programas como instrucciones, sen-
tencias o proposiciones (normalmente el término instrucción se suele referir a los lenguajes máquina y
bajo nivel, reservando la sentencia o proposición para los lenguajes de alto nivel). Por consiguiente, un
programa consta de una secuencia de instrucciones, cada una de las cuales especifica ciertas operacio-
nes que debe ejecutar la computadora.

La elaboración de un programa requerirá conocer el juego o repertorio de instrucciones del lengua-
je. Aunque en el Capítulo 3 se analizarán con más detalle las instrucciones, adelantaremos los tipos fun-
damentales de instrucciones que una computadora es capaz de manipular y ejecutar. Las instrucciones
básicas y comunes a casi todos los lenguajes de programación se pueden condensar en cuatro grupos:

Instrucciones de enrraúdsalidu. Instrucciones de transferencia de información y datos entre dis-

lnstrucciones aritmético-lógicas. Instrucciones que ejecutan operaciones aritméticas (suma, res-

Instrucciones selectivas. Instrucciones que permiten la selección de tareas alternativas en función

0 Instrucciones repetitivas. Instrucciones que permiten la repetición de secuencias de instruccio-

positivos periféricos (teclado, impresora, unidad de disco, etc.) y la memoria central.

ta, multiplicación, división, potenciación), lógicas (operaciones and, o r , n o t , etc.).

de los resultados de diferentes expresiones condicionales.

nes un número determinado de veces.

1.5.2. Lenguajes máquina

Los lenguajes máquina son aquellos que están escritos en lenguajes directamente inteligibles por la
máquina (computadora), ya que sus instrucciones son cadenas binarias (cadenas o series de caracteres
-dígitos- O y 1) que especifican una operación, y las posiciones (dirección) de memoria implicadas
en la operación se denominan instrucciones de máquina o código máquina. El código máquina es el
conocido código binario.

Las instrucciones en lenguaje máquina dependen del hardware de la computadora y, por tanto, dife-
rirán de una computadora a otra. El lenguaje máquina de un PC (computadora personal) será diferente
de un sistema HP (Hewlett Packard), Compaq o un sistema de IBM.

Las ventajas de programar en lenguaje máquina son la posibilidad de cargar (transferir un progra-
ma a la memoria) sin necesidad de traducción posterior, lo que supone una velocidad de ejecución supe-
rior a cualquier otro lenguaje de programación.

Los inconvenientes -en la actualidad- superan a las ventajas, lo que hace prácticamente no reco-
mendables los lenguajes máquina. Estos inconvenientes son:

Dificultad y lentitud en la codificación.
Poca fiabilidad.
Dificultad grande de verificar y poner a punto los programas.
Los programas sólo son ejecutables en el mismo procesador (UPC, ünidad Central de Proceso).

Para evitar los lenguajes máquina, desde el punto de vista del usuario, se han creado otros lengua-
jes que permiten escribir programas con instrucciones similares al lenguaje humano (por desgracia casi
siempre inglés, aunque existen raras excepciones, como es el caso de las versiones españolas del len-
guaje LOGO). Estos lenguajes se denominan de alto y hujo nivel.

Introducción a la ciencia de la computación y a la programación 21

1.5.3. Lenguajes de bajo nivel

Los lenguajes de bajo nivel son más fáciles de utilizar que los lenguajes máquina, pero, al igual, que
ellos, dependen de la máquina en particular. El lenguaje de bajo nivel por excelencia es el ensumhlacfor
(assembly languuje). Las instrucciones en lenguaje ensamblador son instrucciones conocidas como
nernotécnicos (mnemonics). Por ejemplo, nemotécnicos típicos de operaciones aritméticas son: en
inglés, ADD, SUB, D I V , etc.; en español, SUM, RES , DIV, etc.

Una instrucción típica de suma sería:

ADD M, N, P

Esta instrucción podía significar «.sutnar el número contenido e ~ i la posicicín de memoria M u1 niime-
ro almacenado en la posicicín de memoria N y situar el resultado en la posicicín de memoria P ». Evi-
dentemente, es mucho más sencillo recordar la instrucción anterior con un nemotécnico que su equiva-
lente en código máquina:

0110 1001 1010 1011

Un programa escrito en lenguaje ensamblador no puede ser ejecutado directamente por la coinpu-
tadora -en esto se diferencia esencialmente del lenguaje máquina-, sino que requiere una fase de tra-
duccicín al lenguaje máquina.

El programa original escrito en lenguaje ensamblador se denomina programa fuente y el programa
traducido en lenguaje máquina se conoce como programa objero, ya directamente inteligible por la
computadora.

El traductor de programas fuente a objeto es un programa llamado ensamhludor (assemhler),
existente en casi todas las computadoras (Fig. 1.18).

No se debe confundir -aunque en español adoptan el mismo nombre- el programa ensamhlador
(assembler), encargado de efectuar la traducción del programa fuente escrito a lenguaje máquina, con
el lenguaje ensamhlador (assembly languaje), lenguaje de programación con una estructura y graináti-
ca definidas.

Los lenguajes ensambladores presentan la ventuju frente a los lenguajes máquina de su mayor faci-
lidad de codificación y, en general, su velocidad de cálculo.

Programa fuente en
ensam blador

(assembly)

3rna oDjero en
iáquina

I
Figura 1.18. Programa ensamblador.

Los inconvenientes más notables de los lenguajes ensambladores son:

Dependencia total de la máquina, lo que impide la transportabilidad de los programas (posibili-
dad de ejecutar un programa en diferentes máquinas). El lenguaje ensamblador del PC es distin-
to del lenguaje ensamblador del Apple Macintosh.
La formación de los programas es más compleja que la correspondiente a los programadores de
alto nivel, ya que exige no sólo las técnicas de programación, sino también el conocimiento del
interior de la máquina.

Hoy día los lenguajes ensambladores tiene sus aplicaciones muy reducidas en la programación de
aplicaciones y se centran en aplicaciones de tiempo real, control de procesos y de dispositivos electró-
nicos, etc.

22 Programación en C. Metodología, algoritmos y estructura de datos

1.5.4. Lenguajes de alto nivel

Los lenguajes de alto nivel son los más utilizados por los programadores. Están diseñados para que las
personas escriban y entiendan los programas de un modo mucho más fácil que los lenguajes máquina
y ensambladores. Otra razón es que un programa escrito en lenguaje de alto nivel es independiente de
la máquina; esto es, las instrucciones del programa de la computadora no dependen del diseño del
hurdware o de una computadora en particular. En consecuencia, los programas escritos en lenguaje
de alto nivel son portables o transportables, lo que significa la posibilidad de poder ser ejecutados con
poca o ninguna modificación en diferentes tipos de computadoras; al contrario que los programas en
lenguaje máquina o ensamblador, que sólo se pueden ejecutar en un determinado tipo de compu-
tadora.

Los lenguajes de alto nivel presentan las siguientes ventajas:

El tiempo de formación de los programadores es relativamente corto comparado con otros len-

La escritura de programas se basa en reglas sintácticas similares a los lenguajes humanos. Nom-

Las modificaciones y puestas a punto de los programas son más fáciles.
Reducción del coste de los programas.
Transportabilidad.

Los inconvenientes se concretan en:

guajes.

bres de las instrucciones, tales como RE A D , WRITE:, PRINT, OPEN, etc.

Incremento del tiempo de puesta a punto, al necesitarse diferentes traducciones del programa

No se aprovechan los recursos internos de la máquina, que se explotan mucho mejor en lengua-

Aumento de la ocupación de memoria.
El tiempo de ejecución de los programas es mucho mayor.

AI igual que sucede con los lenguajes ensambladores, los programas fuente tienen que ser traduci-

Los lenguajes de programación de alto nivel existentes hoy son muy numerosos aunque la práctica

C C++ # COBOL FORTRAN Pascal Visual BASIC Java

fuente para conseguir el programa definitivo.

jes máquina y ensambladores.

dos por los programas traductores, llamados en este caso compiladores e intérpretes.

demuestra que su uso mayoritario se reduce a

están muy extendidos:

Ada-95 Modula-2 Prolog LISP Smalltalk Eiffel

son de gran uso en el mundo profesional:

Borland Delphi C++ Builder Power Builder

Aunque hoy día el mundo Internet consume gran cantidad de recursos en forma de lenguajes de
programación tales como HTML, XML, JavaScript,. . .

1.5.5. Traductores de lenguaje

Los traducrores de lenguaje son programas que traducen a su vez los programas fuente escritos en len-
guajes de alto nivel a código máquina.

Introducción a la ciencia de la computación y a la programación 23

Los traductores se dividen en:

Intérpretes.
Compiladores.

7.5.5.7. Intérpretes

Un intérprete es un traductor que toma un programa fuente, lo traduce y a continuación lo ejecuta.
Los programas intérpretes clásicos como BASIC. prácticamente ya no se utilizan, aunque las versiones
Qbasic y QuickBASIC todavía se pueden encontrar y corren en las computadoras personales. Sin embar-
go, está muy extendida la versión interpretada del lenguaje Smalltalk, un lenguaje orientado a objetos
puro.

Programa fuente

Intérprete

Traducción y ejecución
Línea a línea

Figura 1.19. Intérprete.

Programa fuente

Cornpilador

Programa objeto

Figura 1.20. La compilación de programas.

1.5.5.2. Compiladores

Un compilador es un programa que traduce los programas fuente escritos en lenguaje de alto nivel
-C, FORTRAN ...- a lenguaje máquina.

Los programas escritos en lenguaje de alto nivel se llaman programas.fuente y el programa tradu-
cido programa objeto o código objeto. El compilador traduce -sentencia a sentencia- el programa
fuente. Los lenguajes compiladores típicos son: C, C++, Pascal, Java y COBOL.

1.5.6. La compilación y sus fases

La conzpilación es el proceso de traducción de programas fuente a programas objeto. El programa obje-
to obtenido de la compilación ha sido traducido normalmente a código máquina.

Para conseguir el programa máquina real se debe utilizar un programa llamado montador o enlaza-
dor (linker). El proceso de montaje conduce a un programa en lenguaje máquina directamente ejecuta-
ble (Fig. 1.21).

El proceso de ejecución de un programa escrito en un lenguaje de programación y mediante un
compilador suele tener los siguientes pasos:

1. Escritura del progranza~fuente con un editor (programa que permite a una computadora actuar
de modo similar a una máquina de escribir electrónica) y guardarlo en un dispositivo de alrna-
cenamiento (por ejemplo, un disco).

Figura 1.21. Fases de la compilación.

24 Programación en C. Metodología, algoritmos y estructura de datos

2.
3.
4.
5. Obtención del programa objeto.
6.
7.

El proceso de ejecución sería el mostrado en las Figuras 1.22 y 1.23. En el Capítulo 3 se describirá

Introducir el programa fuente en memoria.
Compilar el programa con el compilador C.
Verijcar y corregir errores de compilación (listado de errores).

El enlazador (linker) obtiene el programa ejecutable.
Se ejecuta el programa y, si no existen errores, se tendrá la salida del programa.

en detalle el proceso completo y específico de ejecución de programas en lenguaje C.

Programa

Programa - Computadora

Ejecutable

Resultados

Figura 1.22. Ejecución de un programa.

Modificación
programa
fuente

Programa
fuente

$.
Compilador

errores en la

Programa u
r q - - y ejecutable
I I

I Ejecución I
Figura 1.23. Fases de ejecución de un programa.

Introducción a la ciencia de la computación y a la programación

1.6. EL LENGUAJE C: HISTORIA Y CARACTERISTICAS

C es el lenguaje de programación de propósito general asociado, de modo universal, al sistema opera-
tivo UNIX. Sin embargo, la popularidad, eficacia y potencia de C, se ha producido porque este lengua-
je no está prácticamente asociado a ningún sistema operativo, ni a ninguna máquina, en especial. Ésta
es la razón fundamental, por la cual C, es conocido como el lenguaje de programación de sistemas, por
excelencia.

C es una evolución de los lenguajes BCPL -desarrollado por Martin Richards- y B -desarro-
llado por Ken Thompson en 1970- para el primitivo UNIX de la computadora DEC PDP-7.

C nació realmente en 1978, con la publicación de The C Programming Languaje, por Brian Ker-
nighan y Dennis Ritchie (Prentice Hall, 1978). Desde su nacimiento, C fue creciendo en popularidad y
los sucesivos cambios en el lenguaje a lo largo de los años junto a la creación de compiladores por gru-
pos no involucrados en su diseño, hicieron necesario pensar en la estandarización de la definición del
lenguaje C.

Así, en 1983, el American National Estándar Institute (ANSI), una organización internacional de
estandarización, creó un comité (el denominado X3J11) cuya tarea fundamental consistía en hacer «una
definición no ambigua del lenguaje C, e independiente de la máquina». Había nacido el estándar ANSI
del lenguaje C. Con esta definición de C se asegura que cualquier fabricante de software que vende un
compilador ANSI C incorpora todas las características del lenguaje, especificadas por el estándar. Esto
significa también que los programadores que escriban programas en C estándar tendrán la seguridad de
que correrán sus modificaciones en cualquier sistema que tenga un compilador C.

C es un lenguaje de alto nivel, que permite programar con instrucciones de lenguaje de propósito
general. También, C se define como un lenguaje de programación estructurado de propósito general;
aunque en su diseño también primó el hecho de que fuera especificado como un lenguaje de progra-
mación de Sistemas, lo que proporciona una enorme cantidad de potencia y flexibilidad.

El estándar ANSI C formaliza construcciones no propuestas en la primera versión de C, en especial,
asignación de estructuras y enumeraciones. Entre otras aportaciones, se definió esencialmente, una nue-
va forma de declaración de funciones (prototipos). Pero, es esencialmente la biblioteca estándar de fun-
ciones, otra de las grandes aportaciones.

Hoy, en el siglo XXI, C sigue siendo uno de los lenguajes de programación más utilizados en la
industria del software, así como en institutos tecnológicos, escuelas de ingeniería y universidades. Prác-
ticamente todos los fabricantes de sistemas operativos, UNIX, LINUX, MacOS, SOLARIS, ... soportan
diferentes tipos de compiladores de lenguaje C.

1.6.1. Ventajas de C

El lenguaje C tiene una gran cantidad de ventajas sobre otros lenguajes, y son, precisamente la razón
fundamental de que después de casi dos décadas de uso, C siga siendo uno de los lenguajes más popu-
lares y utilizados en empresas, organizaciones y fábricas de software de todo el mundo.

Algunas ventajas que justifican el uso todavía creciente del lenguaje C en la programación de com-
putadoras son:

El lenguaje C es poderoso y flexible, con órdenes, operaciones y funciones de biblioteca que se
pueden utilizar para escribir la mayoría de los programas que corren en la computadora.
C se utiliza por programadores profesionales para desarrollar software en la mayoría de los
modernos sistemas de computadora.
Se puede utilizar C para desarrollar sistemas operativos, compiladores, sistemas de tiempo real y
aplicaciones de comunicaciones.
Un programa C puede ser escrito para un tipo de computadora y trasladarse a otra computadora
con pocas o ninguna modificación -propiedad conocida como portabilidad-. El hecho de que
C sea portable es importante ya que la mayoría de los modernos computadores tienen un compi-

26 Programación en C. Metodología, algoritmos y estructura de datos

lador C , una vez que se aprende C no tiene que aprenderse un nuevo lenguaje cuando se escriba
un programa para otro tipo de computadora. No es necesario reescribir un problema para ejecu-
tarse en otra computadora.

C se caracteriza por su velocidad de ejecución. En los primeros días de la informática, los proble-
mas de tiempo de ejecución se resolvían escribiendo todo o parte de una aplicación en lenguaje ensam-
blador (lenguaje muy cercano al lenguaje máquina).

Debido a que existen muchos programas escritos en C, se han creado numerosas bibliotecas C para
programadores profesionales que soportan gran variedad de aplicaciones. Existen bibliotecas del len-
guaje C que soportan aplicaciones de bases de datos, gráficos, edición de texto, comunicaciones, etc.

1.6.2. Características técnicas de C

Hay numerosas características que diferencian a C de otros lenguajes y lo hacen eficiente y potente a la
vez.

Una nueva sintaxis para declarar funciones. Una declaración de función puede añadir una des-
cripción de los argumentos de la función. Esta información adicional sirve para que los compila-
dores detecten más fácilmente los errores causados por argumentos que no coinciden.
Asignación de estructuras (registros) y enumeraciones.
Preprocesador más sofisticado.
Una nueva definición de la biblioteca que acompaña a C. Entre otras funciones se incluyen: acce-
so al sistema operativo (por ejemplo, lectura y escritura de archivos), entrada y salida con for-
mato, asignación dinámica de memoria, manejo de cadenas de caracteres.
Una colección de cabeceras estándar que proporciona acceso uniforme a las declaraciones de fun-
ciones y tipos de datos.

1.6.3. Versiones actuales de C

En la actualidad son muchos los fabricantes de compiladores C , aunque los más populares entre los
fabricantes de software son: Microsoft, Imprise, etc.

Una evolución de C , el lenguaje C++ (C con clases) que contiene entre otras, todas las caracterís-
ticas de ANSI C. Los compiladores más empleados Visual C++ de Microsoft. Builder C++ de lmprise-
antigua Borland, C++ bajo UNIX y LINUX.

En el verano del 2000, Microsoft patentó una nueva versión de C++, que es C#, una evolución del
C++ estándar, con propiedades de Java y diseñado para aplicaciones en línea, Internet (on line) y
fuerra de línea.

Introducción a la ciencia de la computación y a la programación 27

1.7. RESUMEN

Una computadora es una máquina para procesar infor-
mación y obtener resultados en función de unos datos
de entrada.

Hurdwure: parte física de una computadora (dis-
positivos electrónicos).

Software: parte lógica de una computadora

Las computadoras se componen de:

Dispositivos de Entrada/Salida (WS).
0 Unidad Central de Proceso (Unidad de Control

Memoria central.
Dispositivos de almacenamiento masivo de

El softwure del sistema comprende, entro otros,
el sistema operativo MSDOS, UNIX, Linux... en

(program=).

y Unidad Lógica y Aritmética).

información (memoria auxiliar o externa).

computadoras personales y los lenguajes de progra-
mación.

Los lenguajes de programación se clasifican en:

alto nivel: Pascal, FORTRAN, VISUAL,
BASIC, C, Ada, Modula-2, Ctt-, Java, Delphi,
C, etc.
bajo nivel: Ensamblador.
máquina: Código máquina.

Los programas traductores de lenguajes son:

comjdudores.
intérpretes.

C es un lenguaje de programación que contiene
excelentes características como lenguaje para apren-
dizaje de programación y lenguaje profesional de pro-
pósito general; básicamente es un entorno de progra-
mación con editor y compilador incorporado.

CAPITULO 2

FUNDAMENTOS
DE PROGRAMACIÓN

CONTENIDO

2.1. Fases en la resolución de
problemas.

2.2. Programación modular.
2.3. Programación estructurada.
2.4. Representación gráfica de

algoritmos.
2.6. Diagrama de Nmsi

Schneiderman .

2.6. El ciclo de vida del software.
2.7. Métodos formales de

verificación de programas.
2.8. Factores de calidad del

soft ware.
2.9. Resumen.

2.10. Ejercicios.
2.11. Ejercicios resueltos.

* /

INTRODUCCI~N
Este capítulo le introduce a la metodología a seguir para la resolución de
problemas con computadoras y con un lenguaje de programación como C.

La resolución de un problema con una computadora se hace escribiendo
un programa, que exige al menos los siguientes pasos:

1. Definición o análisis del problema.
2. Diseño del algoritmo.
3. Transformación del algoritmo en un programa.
4. Ejecución y validación del programa.
Uno de los objetivos fundamentales de este libro es el aprendizaje y diseño

de los dgoritmos. Este capítulo introduce al lector en el concepto de algoritmo
y de programa, así como las herramientas que permiten «dialogar» al usuario
con la máquina: los lenguajes de programación.

CONCEPTUS CLAVE
0 A1goritmo. O Programación estructurada.
O Ciclo de vida. O Diseño descendente.
O Diagrama Nss i Schneiderman.
O Diagramas de flujo.
O Métodos formales. O Pseudoeódigo.
O Rwtcondieiones. O Factores de calidad.
.r Precondiciones. O invariantes.
O Prograrnación modular. O Verificación.
O Diseño.

O Pruebas,
O Dominio del problema.

29

30 Programación en C. Metodología, algoritmos y estructura de datos

2.1. FASES EN LA RESOLUCIÓN DE PROBLEMAS

El proceso de resolución de un problema con una computadora conduce a la escritura de un programa
y a su ejecución en la misma. Aunque el proceso de diseñar programas es -esencialmente- un proceso
creativo, se puede considerar una serie de fases o pasos comunes, que generalmente deben seguir todos
los programadores.

Las fases de resolución de un problema con computadora son:

Análisis del problema.
Diseño del algoritmo.
Codificación.
Compilación y ejecución.

o Verijicación.
Depuración.

o Mantenimiento.
Documentación.

Constituyen el ciclo de vida del software y las fases o etapas usuales son:

Análisis. El problema se analiza teniendo presente la especificación de los requisitos dados por
el cliente de la empresa o por la persona que encarga el programa.
Diseño. Una vez analizado el problema, se diseña una solución que conducirá a un algoritmo que
resuelva el problema.
Codificación (implementación). La solución se escribe en la sintaxis del lenguaje de alto nivel
(por ejemplo, C) y se obtiene un programa.
Ejecución, verificación y depuración. El programa se ejecuta, se comprueba rigurosamente y se
eliminan todos los errores (denominados «bugs», en inglés) que puedan aparecer.
Mantenimiento. El programa se actualiza y modifica, cada vez que sea necesario, de modo que
se cumplan todas las necesidades de cambio de sus usuarios.
Documentación. Escritura de las diferentes fases del ciclo de vida del software, esencialmente el
análisis, diseño y codificación, unidos a manuales de usuario y de referencia, así como normas
para el mantenimiento.

Las dos primeras fases conducen a un diseño detallado escrito en forma de algoritmo. Durante la ter-
cera etapa (cod$cación) se implementa’ el algoritmo en un código escrito en un lenguaje de progra-
mación, reflejando las ideas desarrolladas en las fases de análisis y diseño.

La fase de compilación y ejecución traduce y ejecuta el programa. En las fases de verijicación y
depuración el programador busca errores de las etapas anteriores y los elimina. Comprobará que mien-
tras más tiempo se gaste en la fase de análisis y diseño, menos se gastará en la depuración del progra-
ma. Por último, se debe realizar la documentación del programa.

Antes de conocer las tareas a realizar en cada fase, vamos a considerar el concepto y significado de
la palabra algoritmo. La palabra algoritmo se deriva de la traducción al latín de la palabra Alkh6-
wafizmi’, nombre de un matemático y astrónomo árabe que escribió un tratado sobre manipulación de
números y ecuaciones en el siglo IX. Un algoritmo es un método para resolver un problema mediante
una serie de pasos precisos, definidos y finitos.

’ En la últinia edición (21.”) del DRAE (Diccionario de la Real Academia Española) se ha aceptado cl término i,nplrmc,n-

’ Escribió un tratado matemático famoso sobre manipulacich de números y ecuacioncs titulado Kit& d:juhr ~~‘cilnzugciha-
fur: (Informática) «Poner en funcionamiento, aplicar métodos, medidas, etc. para llevar algo a cabo».

la. La palabra álgebra se derivó, por su semejanza sonora, de aí,jahr.

~~

Fundamentos

-

de

Características de un algoritmo
preciso (indicar el orden de realización en cada paso),
definido (si se sigue dos veces, obtiene el mismo resultado cada vez),
finito (tiene fin; un número determinado de pasos).

Un algoritmo debe producir un resultado en un tiempo finito. Los métodos que utilizan algoritmos
se denominan métodos algorítmicos, en oposición a los métodos que implican algún juicio o interpre-
tación que se denominan métodos heurísticos. Los métodos algorítmicos se pueden implementar en
computadoras; sin embargo, los procesos heurísticos no han sido convertidos fácilmente en las compu-
tadoras. En los últimos años las técnicas de inteligencia artificial han hecho posible la implementacicín
del proceso heurístico en computadoras.

Ejemplos de algoritmos son: instrucciones para inontar en una bicicleta, hacer una receta de coci-
na, obtener el máximo común divisor de dos números, etc. Los algoritmos se pueden expresar porfijr-
mulas, diagramas de pujo o N-S y pseudocódigos. Esta última representación es la más utilizada en
lenguajes estructurados como C.

2.1 . I . Análisis del problema

La primera fase de la resolución de un problema con computadora es el análisis del problema. Esta fase
requiere una clara definición, donde se contemple exactamente lo que debe hacer el programa y el resul-
tado o solución deseada.

Dado que se busca una solución por computadora, se precisan especificaciones detalladas de entra-
da y salida. La Figura 2.1 muestra los requisitos que se deben definir en el análisis.

Resolución

problema
deun I

Análisis

problema

Diseño

algoritmo

Resolución del
problema con

Figura 2.1. Análisis del problema.

Para poder definir bien un problema es conveniente responder a las siguientes preguntas:

¿,Qué entradas se requieren? (tipo y cantidad).
o ¿Cuál es la salida deseada? (tipo y cantidad).

¿Qué método produce la salida deseada'?

Problema 2.1

Se desea obtener una tabla con las deprwiuciones acumuladas y I n s valores reales de cada año, de un
automcívil comprado en I . 800.000 pesetas en el año 1996, durante los seis años siguientes suponiendo
un valor de recuperacicín o rescate de 120.000. Realizar el anúlisis del problema, conociendo lu,fórmula
de la depreciacicín anual constante D para cudu año de vida útil.

32 Programación en C. Metodología, algoritmos y estructura de datos

coste - valor de recuperación
D =

vida útil

1.800.000 - 120.000 - 1.680.000 = 280.000 D = -
6 6

coste original
vida útil
valor de recuperación
depreciación anual por año
depreciación acumulada en cada año
valor del automóvil en cada año
depreciación acumulada
cálculo de la depreciación acumulada cada año

Entrada

I Salida

! cálculo del valor del automóvil en cada año

Proceso

La tabla siguiente muestra la salida solicitada

Año Depreciación Depreciación
acumulada

Valor anual

~ ~~

1 (1996) 2 80.000 280.000
2 (1 997) 280.000 5 60.000
3 (1 998) 280.000 840.000
4 (1 999) 280.000 1.120.000
5 (2000) 280.000 1.400.000
6 (2001) 280.000 2.180.000

1 S20.000
1.240.000

960.000
680.000
400.000
120.000

2.1.2. Diseño del algoritmo

En la etapa de análisis del proceso de programación se determina qué hace el programa. En la etapa de
diseño se determina como hace el programa la tarea solicitada. Los métodos más eficaces para el pro-
ceso de diseño se basan en el conocido por divide y vencerás. Es decir, la resolución de un problema
complejo se realiza dividiendo el problema en subproblemas y a continuación dividir estos subproble-
mas en otros de nivel más bajo, hasta que pueda ser implementada una solución en la computadora.
Este método se conoce técnicamente como diseño descendente (top-down) o modular. El proceso de
romper el problema en cada etapa y expresar cada paso en forma más detallada se denomina refina-
miento sucesivo.

Cada subprograma es resuelto mediante un módulo (subprograma) que tiene un solo punto de entra-
da y un solo punto de salida.

Cualquier programa bien diseñado consta de un programa principal (el módulo de nivel más alto)
que llama a subprogramas (módulos de nivel más bajo) que a su vez pueden llamar a otros subprogra-
mas. Los programas estructurados de esta forma se dice que tienen un diseño modular y el método de
romper el programa en módulos más pequeños se llama programación modular. Los módulos pueden
ser planeados, codificados, comprobados y depurados independientemente (incluso por diferentes pro-
gramadores) y a continuación combinarlos entre sí. El proceso implica la ejecución de los siguientes
pasos hasta que el programa se termina:

1. Programar un módulo.
2. Comprobar el módulo.

c

-
Fundamentos de programación 33

3 . Si es necesario, depurar el módulo.
4. Combinar el módulo con los módulos anteriores.

El proceso que convierte los resultados del análisis del problema en un diseño modular con refina-
mientos sucesivos que permitan una posterior traducción a un lenguaje se denomina diseño del algo-
ritmo.

El diseño del algoritmo es independiente del lenguaje de programación en el que se vaya a codifi-
car posteriormente.

2.1.3. Herramientas de programación

Las dos herramientas más utilizadas comúnmente para diseñar algoritmos son: diagramas de pujo ,Y
pseudocódigos.

Diagramas de flujo

Un diagrama de flujo íJowchart) es una representación gráfica de un algoritmo. Los símbolos utili-
zados han sido normalizados por el Instituto Norteamericano de Normalización (ANSI), y los más fre-
cuentemente empleados se muestran en la Figura 2.2, junto con una plantilla utilizada para el dibujo de
los diagramas de flujo (Fig. 2.3). En la Figura 2.4 se representa el diagrama de flujo que resuelve el
Problema 2.1.

Pseudocódigo

El pseudocódigo es una herramienta de programación en la que las instrucciones se escriben en pala-
bras similares al inglés o español, que facilitan tanto la escritura como la lectura de programas. En esen-
cia, el pseudocódigo se puede definir como un lenguaje de especijicaciones de algoritmos.

Subprograma Entrada! J salida

"3
Conectores

f
Si

Figura 2.2. Símbolos más utilizados en los diagramas de flujo.

Aunque no existen reglas para escritura del pseudocódigo en español, se ha recogido una notación
estándar que se utilizará en el libro y que ya es muy empleada en los libros de programación en espa-

Y

34 Programación en C. Metodología, algoritmos y estructura de datos

ñol'. Las palabras reservadas básicas se representarán en letras negritas minúsculas. estas palabras son
traducción libre de palabras reservadas de lenguajes como C, Pascal, etc. Más adelante se indicarán los
pseudocódigos fundamentales a utilizar en esta obra.

Figura 2.3. Plantilla para dibujo de diagramas de flujo.

El pseudocódigo que resuelve el Problema 2. I es:

Previsiones de depreciacion
Introducir coste

vida util
valor final de rescate (recuperacion)

imprimir cabeceras
Establecer el valor inicial del Año
Calcular depreciacion
mientras valor año =< vida util hacer

calcular depreciacion acumulada
calcular valor actual
imprimir una linea en la Labla
incrementar el valor del año

fin de mientras

Ejemplo 2.1

Calcular la paga neta de un trabajador conociendo el número de horas trabajadas, la tarifa horaria y
la tasa de impuestos.

Al gori t m o
1 . Leer Horas, Tarifa, tasa
2. Calcular PagaBruta = Horas * Tarifa
3 . Calcular impuestos = PagaRrutd * ' i 'usd
4. Calcular PagaNeta = PagaBruta - Impuestos
5 . Visualizar PdgaBrutei, Impuestos, PdgdNetd

(Inicio

Coste, Vida

Leer Año

Valor actual t Coste
Depreciación t
(Coste-ValorRescate)/
VidaUtil
Acumulada t O

Fundamentos de programación 35

Acumulada +

Valor Actual t
Valor actual +

I A ñ o t A ñ o + l I

Figura 2.4. Diagrama de flujo (Ejemplo 2.1).

,
Ejemplo 2.2
Calcular el valor de la suma 1+2+3+ ...+ 100.

A l g o r i t m o
Se utiliza una variable Contador como un contador que genere los sucesivos números enteros, y Suma
para almacenar las sumas parciales 1 , I +2,1+2+3.. .

1. Establecer Contador d 1
2. Establecer Suma a O
3 . mientras Contador < = 100 hacer

Sumar Contador a Suma
Incrementar Contador en 1

fin-mientras
4. Visualizar Sumd

36 Programación en C. Metodología, algoritmos y estructura de datos

2.1.4. Codificación de un programa

Codificación es la escritura en un lenguaje de programación de la representación del algoritmo desa-
rrollada en las etapas precedentes. Dado que el diseño de un algoritmo es independiente del lenguaje de
programación utilizado para su implementación, el código puede ser escrito con igual facilidad en un
lenguaje o en otro.

Para realizar la conversión del algoritmo en programa se deben sustituir las palabras reservadas en
español por sus homónimos en inglés, y las operaciones/instrucciones indicadas en lenguaje natural
expresarlas en el lenguaje de programación correspondiente.

/ *
E s t e programa obtiene una tabla de depreciaciones acumuladas y
valores reales de cada año de un determinado producto

* /
#include <stdio.h>
void main0
i

double Coste, Depreciacion,
Valor-Recuperacion,
Valor-actual,
Acumulado,
ValorAnual;

int Anio, Vida-util;
puts("1ntroduzca cos te , valor recuperación y vida Útil");
scanf("%lf %lf %lf",&Coste,&Valor-Recuperacion,&Vida-ütil);
puts ("Introduzca año actual") ;
scanf ("%d", &Anio) ;
ValorActual = Coste;
Depreciación = (Coste-Valor-Recuperac¡on)/V¡da-Util;
Acumulado = O;
puts ("Año Depreciación Dep. Acumulada") ;
while (Anio < Vida-Util)
I

Acumulado = Acumulado + Depreciacion;
ValorActual = ValorActual - Depreciacion;
printf ("Año: %d, Depreciacion:%.21f, R.21f Acumulada",

Anio = Ani0 + 1;
Anio,Depreciacion,Acumulado) ;

i
1

Documentación interna
Como se verá más tarde, la documentación de un programa se clasifica en interna y externa. La dum-
mentación interna es la que se incluye dentro del código del programa fuente mediante comentarios
que ayudan a la comprensión del código. Todas las líneas de programas que comiencen con un símbo-
lo / * son comentarios. El programa no los necesita y la computadora los ignora. Estas líneas de comen-
tarios sólo sirven para hacer los programas más fáciles de comprender. El objetivo del programador
debe ser escribir códigos sencillos y limpios.

Debido a que las máquinas actuales soportan grandes memorias (64 Mb o 128 Mb de memoria cen-
tral mínima en computadoras personales) no es necesario recurrir a técnicas de ahorro de memoria, por
lo que es recomendable que incluya el mayor número de comentarios posibles, pero, eso sí, que sean
significativos.

Fundamentos de programación 37

2.1.5. Compilación y ejecución de un programa

Una vez que el algoritmo se ha convertido en un programa fuente, es preciso introducirlo en memoria
mediante el teclado y almacenarlo posteriormente en un disco. Esta operación se realiza con un pro-
grama editor, posteriormente el programa fuente se convierte en un archivo de programa que se guar-
da (graba) en disco.

El programa fuente debe ser traducido a lenguaje máquina, este proceso se realiza con el compi-
lador y el sistema operativo que se encarga prácticamente de la compilación.

Si tras la compilación se presentan errores (errores de compilación) en el programa fuente, es pre-
ciso volver a editar el programa, corregir los errores y compilar de nuevo. Este proceso se repite hasta
que no se producen errores, obteniéndose el programa objeto que todavía no es ejecutable directa-
mente. Suponiendo que no existen errores en el programa fuente, se debe instruir al sistema operativo
para que realice la fase de montaje o enlace (link), carga, del programa objeto con las librerías del pro-
grama del compilador. El proceso de montaje produce un programa ejecutable. La Figura 2.5 descri-
be el proceso completo de compilaciódejecución de un programa.

Teclado

I'""\

--__I

UCP

1 ElDCiDE 1

de textos

Memoria
externa

Memoria

Campilador

Memoria
externa

UCP

I I

t i

objeto

I . 1 I
C)

Figura 25 Fases de /a comp/~ac;Ón/eiecuc;Ón de un programa: a/ ed/c/on; 6/ compAac/Ün; c/ montale o en/ace.

-_ A

38 Programación en C. Metodología, algoritmos y estructura de datos

Cuando el programa ejecutable se ha creado, se puede ya ejecutar (correr o rodar) desde el sistema
operativo con sólo teclear su nombre (en el caso de DOS). Suponiendo que no existen errores durante
la ejecución (llamados errores en tiempo de ejecución), se obtendrá la salida de resultados del pro-
grama.

Las instrucciones u Órdenes para compilar y ejecutar un programa en C puede variar según el tipo
de compilador. Así el proceso de Visual C++ 6 es diferente de C bajo UNIX o bajo Linux.

2.1.6. Verificación y depuración de un programa

La verijkución o compilacirín de un programa es el proceso de ejecución del programa con una amplia
variedad de datos de entrada, llamados datos de rest o pruehu, que determinarán si el programa tiene
errores in bug^»). Para realizar la verificación se debe desarrollar una amplia gama de datos de test: valo-
res normales de entrada, valores extremos de entrada que comprueben los límites del programa y valores
de entrada que comprueben aspectos especiales del programa.

La depuración es el proceso de encontrar los errores del programa y corregir o eliminar dichos
errores.

Cuando se ejecuta un programa, se pueden producir tres tipos de errores:

1. Errores de compilación. Se producen normalmente por un uso incorrecto de las reglas del len-
guaje de programación y suelen ser errores de sintusis. Si existe un error de sintaxis, la compu-
tadora no puede comprender la instrucción, no se obtendrá el programa objeto y el compilador
imprimirá una lista de todos los errores encontrados durante la compilación.

2. Errores de ejecución. Estos errores se producen por instrucciones que la computadora puede
comprender pero no ejecutar. Ejemplos típicos son: división por cero y raíces cuadradas de núme-
ros negativos. En estos casos se detiene la ejecución del programa y se imprime un mensaje de
error.

3 . Errores lógicos. Se producen en la lógica del programa y la fuente del error suele ser el dise-
ño del algoritmo. Estos errores son los más difíciles de detectar, ya que el programa puede
funcionar y no producir errores de compilación ni de ejecución, y sólo puede advertir el error
por la obtención de resultados incorrectos. En este caso se debe volver a la fase de diseño del
algoritmo, modificar el algoritmo, cambiar el programa fuente y compilar y ejecutar una vez
más.

2.1.7. Documentación y mantenimiento

La documentación de un problema consta de las descripciones de los pasos a dar en el proceso de reso-
lución de un problema. La importancia de la documentación debe ser destacada por su decisiva influen-
cia en el producto final. Programas pobremente documentados son difíciles de leer, más difíciles de
depurar y casi imposibles de mantener y modificar.

La documentación de un programa puede ser interriu y externa. La documentación interna es la
contenida en líneas de comentarios. La documenracicín exrema incluye análisis, diagramas de flujo y/o
pseudocódigos, manuales de usuario con instrucciones para ejecutar el programa y para interpretar los
resultados.

La documentación es vital cuando se desea corregir posibles errores futuros o bien cambiar el pro-
grama. Tales cambios se denominan muntenimiento del progruma. Después de cada cambio la docu-
mentación debe ser actualizada para facilitar cambios posteriores. Es práctica frecuente numerar las
sucesivas versiones de los programas 1.0, 1.1, 2.0, 2.1, etc. (Si los cambios introducidos son impor-
tantes, se varía el primer dígito [1.0, 2.0, ...I, en caso de pequeños cambios sólo se varía el segundo
dígito [2.0,2.1 ...I.)

Fundamentos de programación 39

Módulo 1 Módulo 2

2.2. PROGRAMACIÓN MODULAR

Módulo 3 Módulo 4

La programación modular es uno de los métodos de diseño más flexible y potentes para mejorar la pro-
ductividad de un programa. En programación modular el programa se divide en módulos (partes inde-
pendientes), cada una de las cuales ejecuta una Única actividad o tarea y se codifican independiente-
mente de otros módulos. Cada uno de estos módulos se analizan, codifican y ponen a punto por separado.

Cada programa contiene un módulo denominado progruma principul que controla todo lo que suce-
de; se transfiere el control a submódulos (posteriormente se denominarán subprogramas), de modo que
ellos puedan ejecutar sus funciones; sin embargo, cada submódulo devuelve el control al módulo prin-
cipal cuando se haya completado su tarea. Si la tarea asignada a cada submódulo es demasiado compleja,
éste deberá romperse en otros módulos más pequeños. El proceso sucesivo de subdivisión de módulos
continúa hasta que cada módulo tenga solamente una tarea específica que ejecutar. Esta tarea puede ser
entrada, salidu, manipulación de datos, control de otros módulos o alguna combinación de éstos. Un
módulo puede transferir temporalmente (hifurcur) el control a otro módulo; sin embargo, cada módulo
debe eventualmente devolver el control al módulo del cual se recibe originalmente el control.

Los módulos son independientes en el sentido en que ningún módulo puede tener acceso directo a
cualquier otro módulo excepto el módulo al que llama y sus propios submódulos. Sin embargo, los
resultados producidos por un módulo pueden ser utilizados por cualquier otro módulo cuando se trans-
fiera a ellos el control.

Módulo 11 Módulo 12

Raíz 7
Módulo 31 Módulo 41 Módulo 42

p G q p G G z q
Figura 2.6. Programación modular.

Dado que los módulos son independientes, diferentes programadores pueden trabajar simultánea-
mente en diferentes partes del mismo programa. Esto reducirá el tiempo del diseño del algoritmo y pos-
terior codificación del programa. Además, un módulo se puede modificar radicalmente sin afectar a
otros módulos, incluso sin alterar su función principal.

La descomposición de un programa en módulos independientes más simples se conoce también
como el método de «divide y vencerás» (divide and conquer). Se diseña cada módulo con indepen-
dencia de los demás, y siguiendo un método ascendente o descendente se llegará hasta la descomposi-
ción final del problema en módulos en forma jerárquica.

40 Programación en C. Metodología, algoritmos y estructura de datos

2.3. PROGRAMACIÓN ESTRUCTURADA

Los términos programación modular; programación descendente y programación estructurada se intro-
dujeron en la segunda mitad de la década de los sesenta y a menudo sus términos se utilizan como sinó-
nimos aunque no significan lo mismo. La programación modular y descendente ya se ha examinado
anteriormente. La programación estructurada significa escribir un programa de acuerdo a las siguien-
tes reglas:

El programa tiene un diseño modular.
Los módulos son diseñados de modo descendente.
Cada módulo se codifica utilizando las tres estructuras de control básicas: secuencia, selección y
repetición.

Si está familiarizado con lenguajes como BASIC, Pascal, FORTRAN o C, la programación
estructurada significa también progrumación sin GOTO (C no requiere el uso de la sentencia
GOTO).

El término programación estructurada se refiere a un conjunto de técnicas que han ido evolucio-
nando desde los primeros trabajos de Edgar Dijkstra. Estas técnicas aumentan considerablemente la
productividad del programa reduciendo en elevado grado el tiempo requerido para escribir, verificar,
depurar y mantener los programas. La programación estructurada utiliza un número limitado de estruc-
turas de control que minimizan la complejidad de los programas y, por consiguiente, reducen los erro-
res; hace los programas más fáciles de escribir, verificar, leer y mantener. Los programas deben estar
dotados de una estructura.

La programación estructurada es el conjunto de técnicas que incorporan:

recursos abstractos,
diseño descendente (top-down),
estructuras básicas.

2.3.1. Recursos abstractos

La programación estructurada se auxilia de los recursos abstractos en lugar de los recursos concretos de
que dispone un determinado lenguaje de programación.

Descomponer un programa en términos de recursos abstractos -según Dijkstra- consiste en des-
componer una determinada acción compleja en términos de un número de acciones más simples capa-
ces de ejecutarlas o que constituyan instrucciones de computadoras disponibles.

2.3.2. Diseño descendente (topdown)

El diseño descendente (top-down) es el proceso mediante el cual un problema se descompone en una
serie de niveles o pasos sucesivos de refinamiento (stepwise). La metodología descendente consiste en
efectuar una relación entre las sucesivas etapas de estructuración de modo que se relacionasen unas con
otras mediante entradas y salidas de información. Es decir, se descompone el problema en etapas o
estructuras jerárquicas, de forma que se puede considerar cada estructura desde dos puntos de vista:
¿qué hace? y ¿cómo lo hace?

Si se considera un nivel n de refinamiento, las estructuras se consideran de la siguiente manera:

Fundamentos de programación 41

I

Nivel n: desde el exterior
,,¿lo que hace?»

I

t
Nivel n + 7: Vista desde el interior

<.¿cómo lo hace?.

El diseño descendente se puede ver en la Figura 2.7

Figura 2.7. Diseño descendente.

2.3.3. Estructuras de control

Las estructuras de control de un lenguaje de programación son métodos de especificar el orden en que
las instrucciones de un algoritmo se ejecutarán. El orden de ejecución de las sentencias (lenguaje) o
instrucciones determinan el .flujo de control. Estas estructuras de control son, por consiguiente, funda-
mentales en los lenguajes de programación y en los diseños de algoritmos especialmente los pseudo-
códigos.

Las tres estructuras de control básico son:

a secuencia
a selección
a repetición

La programación estructurada hace los programas más fáciles de escribir, verificar, leer y mantener;
y se estudian en los Capítulos 5 y 6.

utiliza un número limitado de estructuras de control que minimizan la complejidad de los problemas.

1
42 Programación en C. Metodología, algoritmos y estructura de datos

2.3.4. Teorema de la programación estructurada: estructuras básicas

En mayo de 1966, Bohm y Jacopini demostraron que un programa propio puede ser escrito utilizando
solamente tres tipos de estructuras de control.

0 secuenciales,
e selectivas,

repetitivas.

Un programa se define como propio si cumple las siguientes características:

o Posee un solo punto de entrada y uno de salida of in para control del programa.
o Existen caminos desde la entrada hasta la salida que .se pueden seguir y que pasan por todas lus

o Todas las instrucciones son ejecutahles y no existen /ai.os CJ bucles infinitos (sin fin).

Los Capítulos 5 y 6 se dedican al estudio de las estructuras de control selectivas y repetitivas

partes del programa.

La programación estructurada signijica:

o El programa completo tiene un diseño modular.
O Los módulos se diseñan con metodología descendente (puede hacerse también ascendente).
O Cada módulo se codifica utilizando las tres estructuras de control básicas: secuenciales,

0 Estructuración y modularidad son conceptos complementarios (se solapan).
selectivas y repetitivas (ausencia total de sentencias GOTO).

2.4. REPRESENTACI~N GRÁFICA DE LOS ALGORITMOS

Para representar un algoritmo se debe utilizar algún método que permita independizar dicho algoritmo
del lenguaje de programación elegido. Ello permitirá que un algoritmo pueda ser codificado indistinta-
mente en cualquier lenguaje. Para conseguir este objetivo se precisa que el algoritmo sea representado
gráfica o numéricamente, de modo que las sucesivas acciones no dependan de la sintaxis de ningún len-
guaje de programación, sino que la descripción pueda servir fácilmente para su transformación en un
programa, es decir, su codi$cución.

Los métodos usuales para representar un algoritmo son:

1. diagrama de flujo,
2. diagrama N-S (Nassi-Schneiderman),
3 . lenguaje de especificación de algoritmos: pLseudoccídigo,
4. lenguaje esparlol, inglés ...
5. ~ fórmulas .

Los métodos 4 y 5 no suelen ser fáciles de transformar en programas. Una descripción en español
narrativo no es satisfactoria, ya que es demasiado prolija y generalmente ambigua. Una fórmula, sin
embargo, es buen sistema de representación. Por ejemplo, las fórmulas para la solución de una ecuación
cuadrática (de segundo grado) es un medio sucinto de expresar el procedimiento algorítmico que se
debe ejecutar para obtener las raíces de dicha ecuación.

-~

X I = (- b + m) / 2a x2 = (- b - <b' - 4ac) / 2a

y significa lo siguiente:

1 . Eleve al cuadrado b.
2. Toma a; multiplicar por c; multiplicar por 4.
3 . Restar el resultado obtenido de 2 del resultado de I , etc.

a

Fundamentos de programación 43

Sin embargo, no es frecuente que un algoritmo pueda ser expresado por medio de una simple fór-
mula.

2.4.1. Diagramas de flujo

Un diagrama de flujo (fZowchart) es una de las técnicas de representación de algoritmos más antigua
y a la vez más utilizada, aunque su empleo ha disminuido considerablemente, sobro todo, desde la apa-
rición de lenguajes de programación estructurados. Un diagrama de flujo es un diagrama que utiliza los
símbolos (cajas) estándar mostrados en la Tabla 2.1 y que tiene los pasos de algoritmo escritos en esas
cajas unidas por flechas, denominadas líneas deflujo, que indican la secuencia en que se debe ejecutar.

La Figura 2.8 es un diagrama de flujo básico. Este diagrama representa la resolución de un progra-
ma que deduce el salario neto de un trabajador a partir de la lectura del nombre, horas trabajadas, pre-
cio de la hora, y sabiendo que los impuestos aplicados son el 25 por 100 sobre el salario bruto.

Los símbolos estándar normalizados por ANSI (abreviatura de American National Stanúars Znsti-
tute) son muy variados. En la Figura 2.9 se representa una plantilla de dibujo típica donde se contem-
plan la mayoría de los símbolos utilizados en el diagrama; sin embargo, los símbolos más utilizados
representan:

Tabla 2.1. Símbolos de diagrama de flujo

Símbolos
principales Función

(-)

/T

Terminal (representa el comienzo, «inicio». y el final, «fin» de un programa. Puede representar tam-
bién una parada o interrupción programada que sea necesario realizar en un programa.

EntradaíSalida (cualquier tipo de introducción de datos en la memoria desde los periféricos. «entra-
da», o registro de la información procesada en un periférico. «salida».

Proceso (cualquier tipo de operación que pueda originar cambio de valor, formato o posición de la
información almacenada en memoria, operaciones aritméticas, de transferencia, etc.).

Decisión (indica operaciones lógicas o de comparación entre datos -normalmente dos- y en fun-
ción del resultado de la misma determina cuál de los distintos caminos alternativos del programa se
debe seguir; normalmente tiene dos salidas -respuestas SI o NO- pero puede tener tres o más,
según los casos).

Decisión múltiple (en función del resultado de la comparación se seguirá uno de los diferentes cami-
nos de acuerdo con dicho resultado). O I

Conector (sirve para enlazar dos partes cualesquiera de un ordinograma a través de un conector en
la salida y otro conector en la entrada. Se refiere a la conexión en la misma página del diagrama.

Indicador de dirección o línea de flujo (indica el sentido de eiecución de las operaciones).

O
Línea conectora (sirve de unión entre dos símbolos).

Conector (conexión entre dos puntos del organigrama situado en páginas diferentes). O
Llamada subrutina o a un proceso predeterminado (una subrutina es un módulo independiente del
programa principal, que recibe una entrada procedente de dicho programa, realiza una tarea deter-
minada y regresa, al terminar, al programa principal).

(C.otziinikiJ

44 Programación en C. Metodología, algoritmos y estructura de datos

(Cotiririuucih)
~

Símbolos
secundarios Función

Pantalla (se utiliza en ocasiones en lugar del símbolo de E/S).

c-] Impresora (se utiliza en ocasiones en lugar del sínibolo de E/S).

Teclado (se utiliza en ocasiones en lugar del símbolo de E/S).

Comentarios (se utiliza para añadir comentarios clasificadores a otros símbolos del diagrama de flu-
jo. Se pueden dibujar a cualquier lado del símbolo).

inicio 9
leer nombre,

horas,
precio

bruto t

tasas t

neto t

escribir nombre,
bruto tasas,

Figura 2.8. Diagrama de flujo.

Fundamentos de programación 45

O proceso,
o decisión,
o conectores,
O fin,
o entraddsalida,
O dirección del flujo.

Se resume en la Figura 2.8 en un diagrama de flujo:

o existe una caja etiquetada "inicio", que es de tipo elíptico,
O existe una caja etiquetada I' fin" de igual forma que la anterior,
O si existen otras cajas, normalmente son rectangulares, tipo rombo o paralelogramo (el resto de

las figuras se utilizan sólo en diagramas de flujo generales o de detalle y no siempre son impres-
cindibles).

Se puede escribir más de un paso del algoritmo en una sola caja rectangular. El uso de flechas sig-
nifica que la caja no necesita ser escrita debajo de su predecesora. Sin embargo, abusar demasiado de
esta flexibilidad conduce a diagramas de flujo complicados e ininteligibles.

1
,/ E2ir;F ,/ 0 0 lp'.c.-1

Figura 2.9. Plantilla típica para diagramas de flujo.

Ejemplo 2.3
Calcular la media de una serie de números positivos, suponiendo que los datos se leen desde un ter-
minal. Un valor de cero -como entrada- indicará que se ha alcanzado el final de la serie de niime-
ros positivos.

El primer paso a dar en el desarrollo del algoritmo es descomponer el problema en una serie de
pasos secuenciales. Para calcular una media se necesita sumar y contar los valores. Por consiguiente,
nuestro algoritmo en forma descriptiva sería:

1. inicializar contador de numeros C y variable suma S.
2. Leer un numero
3. Si el numero leído es cero :

O calcular la media ;
O imprimir la media ;
O fin del proceso.
Si el numero leido no es cero :
O calcular la suma ;
0 incrementar en uno el contador de números ;
O ir al paso 2.

4. Fin.

46 Programación en C. Metodología, algoritmos y estructura de datos

El refinamiento del algoritmo conduce a los pasos sucesivos necesarios para realizar las operacio-

Si el primer dato leído es O , la división s / c produciría un error si se ejecutara el algoritmo en una
nes de lectura, verificación del Último dato, suma y media de los datos.

computadora, ya que no está permitida en ella la división por cero.

S - sumador de números

leer dato

no
dato O O v

S f S + dato

Si el primer dato leído es O, la división s / C '
producirá un error si se ejecutara el
algoritmo en una computadora, ya que no
está permitida en ella la división por cero.

Media 4- SIC

Imprimir i media

Fundamentos de programación 47 ' j

Ejemplo 2.4
I

Suma de los números pares comprendidos entre 2 y I O O. I

Inicio <_I>
SUMA f- 2 .

Ejemplo 2.5

Se desea realizar el algoritmo que resuelva el siguiente problema: Cúlculo de Ins salarios mensuales de
los empleados de una empresa, subiendo que éstos se calculan en base a las horas semanales trahaja-
das J J de acuerdo a un precio especificado por horas. Si se pasan de cuarenta horas semanales, las
horas extraordinarias se pagarán a razón de 1.5 veces lu hora ordinaria.

Los cálculos son:

1. Leer datos del archivo de 1u. empresd, hasta que se encuentre la ficha

2. Si HORAS <= 40, entonces S A L A R I O es el producto de horas por

3. Si HORAS > 40, entonces SAL,ARIO es I d s u m de 40 veces PRECIO-HORA más

final del archivo (HORAS, PRECIO-HORA, NOMBRE).

PRECIO-HORA.

1.5 veces PRECIO-HORA por (HORAS-40) .

SUMA f-

NUMERO = < 100 9
Escribir 1 SUMA ,/

48 Programación en C. Metodología, algoritmos y estructura de datos

El diagrama de flujo completo del algoritmo se indica a continuación:

Inicio

HORAS, PRECIO-HORA
NOMBRE

HORAS < =40 <
HORAS*

PRECIO-HORA
40* PRECIOpHORA+
1,5* PRECIO-HORA*

(HORAS-40)

Escribir 7 SALARIO

4
Si

~

Fundamentos de programación 49 'I
i

Una variante también válida al diagrama de flujo anterior es:

¿más datos? 0 JI si

Leer
HORAS, PRECIO-HORA

NOMBRE

HORAS c = 40 <7
HORAS*

PRECIO-HORA

SALARIO =
40* PRECIO-HORA+
1,5* PRECIO-HORA*

(HORAS - 40)

Escribir
SALARIO

Ejemplo 2.6

La escritura de algoritmos para realizar operaciones sencillas de conteo es una de las primeras cosas
que un ordenador puede aprender:

5 3 0 2 4 4 0 0 2 3 6 0 2

y desea contar e imprimir el número de ceros de la secuencia.
El algoritmo es muy sencillo, ya que sólo basta leer los números de izquierda a derecha, mientras

se cuentan los ceros. Utiliza como variable la palabra NUMERO para los números que se examinan y
TOTAL para el número de ceros encontrados. Los pasos a seguir son:

Supongamos que se proporciona una secuencia de números, tales como

1. Establecer TOTAL a cero.
2. ¿Quedan más numeros a examinar?

50 Programación en C. Metodología, algoritmos y estructura de datos

3. Si no quedan numeros, imprimir el valor de TOTAL y fin.
4. Si existen mas numeros, ejecutar los pasos 5 a 8.
5. Leer el siguiente numero y dar su valor a la variable NUMERO.
6. Si NUMERO = O, incrementar TOTAL en 1
7. Si NUMERO <> O, no modificar TOTAL.
8. Retornar al paso 2.

El diagrama de flujo correspondiente es:

Inicio

TOTAL +- o

f si

“7 NUMERO

TOTAL t-
TOTAL + 1

Escribir & TOTAL

~~

Ejemplo 2.7

Dados tres números, determinar si la suma de cualquier p r e j u de ellos es igual u1 tercer número. Si se
cumple esta condición, escribir «Iguales» y, en cuso contrurio, escribir «Distintas».

En el caso de que los números sean: 3 9 6

Fundamentos de programación 51

la respuesta es "Iguales", ya que 3 + 6 = 9. Sin embargo, si los números fueran:
2 3 4

el resultado sería 'Distintas".
Para resolver este problema, se puede comparar la suma de cada pareja con el tercer número. Con

tres números solamente existen tres parejas distintas y el algoritmo de resolución del problema será
fácil.

1. Leer los tres valores, A, B y C .
2. Si A + B = C escribir "Iguales" y parar.
3. Si A + C = B escribir "Iguales" y parar.
4. Si B + C = A escribir "Iguales" y parar.
5. Escribir 'Distintas" y parar.

El diagrama de flujo correspondiente es la Figura 2. I O.

Inicio a

A + C = B - B + C = A

<(distintas= <<iguales>)

Figura 2.10. Diagrama de flujo (Ejemplo 2.7).

52 Programación en C. Metodología, algoritmos y estructura de datos

<acciones>

2.5. DIAGRAMAS DE NASSI-SCHNEIDERMAN (N-S)

<acciones>

El diagrama N-S de Nassi Schneiderman -también conocido como diagrama de Chapin- es como
un diagrama de flujo en el que se omiten las flechas de unión y las cajas son contiguas. Las acciones
sucesivas se escriben en cajas sucesivas y, como en los diagramas de flujo, se pueden escribir diferen-
tes acciones en una caja.

Un algoritmo se representa con un rectángulo en el que cada banda es una acción a realizar:

nombre, horas, precio

calcular

calcular
impuestos t 0.25 * salario

I calcular
neto t salario - impuestos

I escribir
nombre, salario, impuestos, neto

nombre del algoritmo

<action 1>

<action 2>

<action 3 >

. . .
fin I

Figura 2.11. Representación gráfica N-S de un algoritmo.

Otro ejemplo es la representación de la estructura condicional (Fig. 2.12).

'condición?

(b)

acción 1 1 acción 2 u
Figura 2.12. Estructura condicional o selectiva: (a) diagrama de flujo: (b) diagrama N-S.

Fundamentos de programación 53

Ejemplo 2.8

Se desea calcular el salario neto semanal de un trabajador en función del número de horas trabaja-
das y la tasa de impuestos:

o las primeras 35 horas se pagan a tarifa normal,
las horas que pasen de 35 se pagan a 1,5 veces la tarifa normal,

o las tasas de impuestos son:
a) las primeras 60.000 pesetas son libres de impuestos,
b) las siguientes 40.000peseta.s tienen un 25 por 100 de impuesto,
c) las restantes, un 45 por 100 de impuestos,

o la tarifa horaria es 800peseta.s.

También se desea escribir el nombre, salario bruto, tasas y salario neto (este ejemplo se deja como
ejercicio al alumno).

2.6. EL CICLO DE VIDA DEL SOFTWARE

Existen dos niveles en la construcción de programas: aquéllos relativos a pequeños programas (los que
normalmente realizan programadores individuales) y aquellos que se refieren a sistemas de desarrollo
de programas grandes (proyectos de software) y que, generalmente, requieren un equipo de programa-
dores en lugar de personas individuales. El primer nivel se denomina programación a pequeña escala;
el segundo nivel se denomina programación a gran escala.

La programación en pequeña escala se preocupa de los conceptos que ayudan a crear pequeños pro-
gramas -aquellos que vm'an en longitud desde unas pocas líneas a unas pocas páginas-. En estos pro-
gramas se suele requerir claridad y precisión mental y técnica. En realidad, el interés mayor desde el
punto de vista del futuro programador profesional está en los programas de gran escala que requiere de
unos principios sólidos y firmes de lo que se conoce como ingenieria de software y que constituye un
conjunto de técnicas para facilitar el desarrollo de programas de computadora. Estos programas o mejor
proyectos de software están realizados por equipos de personas dirigidos por un director de proyectos
(analista o ingeniero de software) y los programas pueden tener más de 100.000 líneas de código.

El desarrollo de un buen sistema de software se realiza durante el ciclo de vida que es el período de
tiempo que se extiende desde la concepción inicial del sistema hasta su eventual retirada de la comer-
cialización o uso del mismo. Las actividades humanas relacionadas con el ciclo de vida implican pro-
cesos tales como análisis de requisitos, diseño, implementación, codificación, pruebas, verificación,
documentación, mantenimiento y evolución del sistema y obsolescencia. En esencia el ciclo de vida del
software comienza con una idea inicial, incluye la escritura y depuración de programas, y continúa
durante años con correcciones y mejoras al software original4.

pi-/-$
IMPLEMENTACI~N 3.

DEPURACI~N +
MANTENIMIENTO

Figura 2.13. Ciclo de vida del software.

' Camano, Hellman y Verof: Dutti .structur<'.s and problem .solr.inR with Turbo Pu'rccil, The Benjam¡ng/Cuinm¡ngs Publis-
hing, 1993, pág. 210.

54 Programación en C. Metodología, algoritmos y estructura de datos

El ciclo de vida del software es un proceso iterativo, de modo que se modificarán las sucesivas eta-
pas en función de la modificación de las especificaciones de los requisitos producidos en la fase de dise-
ño o implementación, o bien una vez que el sistema se ha implementado, y probado, pueden aparecer
errores que será necesario corregir y depurar, y que requieren la repetición de etapas anteriores.

La Figura 2.13 muestra el ciclo de vida de software y la disposición típica de sus diferentes etapas
en el sistema conocido como ciclo de vida en cascada, que supone que la salida de cada etapa es la
entrada de la etapa siguiente.

2.6.1. Análisis

La primera etapa en la producción de un sistema de software es decidir exactamente qué se supone ha
de hacer el sistema. Esta etapa se conoce también como análisis de requisitos o especificaciones y por
esta circunstancia muchos tratadistas suelen subdividir la etapa en otras dos:

Análisis y definición del problema.
Especificación de requisitos.

La parte más difícil en la tarea de crear un sistema de software es definir cuál es el problema, y a
continuación especificar lo que se necesita para resolverlo. Normalmente la definición del problema
comienza analizando los requisitos del usuario, pero estos requisitos, con frecuencia, suelen ser impre-
cisos y difíciles de describir. Se deben especificar todos los aspectos del problema, pero con frecuencia
las personas que describen el problema no son programadores y eso hace imprecisa la definición. La fase
de especificación requiere normalmente la comunicación entre los programadores y los futuros usuarios
del sistema e iterar la especificación, hasta que tanto el especificador como los usuarios estén satisfechos
de las especificaciones y hayan resuelto el problema normalmente.

En la etapa de especificaciones puede ser muy Út i l para mejorar la comunicación entre las diferen-
tes partes implicadas construir un prototipo o modelo sencillo del sistema final; es decir, escribir un
programa prototipo que simule el comportamiento de las partes del producto software deseado. Por
ejemplo, un programa sencillo -incluso ineficiente- puede demostrar al usuario la interfaz propues-
ta por el analista. Es mejor descubrir cualquier dificultad o cambiar su idea original ahora que después
de que la programación se encuentre en estado avanzado o, incluso, terminada. El modelado de datos es
una herramienta muy importante en la etapa de definición del problema. Esta herramienta es muy uti-
lizada en el diseño y construcción de bases de datos.

Tenga presente que el usuario final, normalmente, no conoce exactamente lo que desea que haga el
sistema. Por consiguiente, el analista de software o programador, en su caso, debe interactuar con el
usuario para encontrar lo que el usuario deseará que haga el sistema. En esta etapa se debe responder
a preguntas tales como:

¿Cuáles son los datos de entrada?
¿Qué datos son válidos y qué datos no son válidos'?
¿Quién utilizará el sistema: especialistas cualificados o usuarios cualesquiera (sin formación)?
¿Qué interfaces de usuario se utilizarán?
¿,Cuáles son los mensajes de error y de detección de errores deseables? ¿Cómo debe actuar el sis-

¿Qué hipótesis son posibles?
¿Existen casos especiales?
¿,Cuál es el formato de la salida?
¿Qué documentación es necesaria?
¿Qué mejoras se introducirán -probablemente- al programa en el futuro?
¿,Cómo debe ser de rápido el sistema?
¿Cada cuanto tiempo ha de cambiarse el sistema después que se haya entregado?
El resultado final de la fase de análisis es una especificación de los requisitos del sc$ware.

tema cuando el usuario cometa un error en la entrada?

Fundamentos de programación 55

0 Descripción del problema previa y detalladamente.
0 Prototipos de programas que pueden ayudar a resolver el problema.

2.6.2. Diseño

La especificación de un sistema indica lo que el sistema debe hacer. La etapa de diseño del sistema
indica cómo ha de hacerse. Para un sistema pequeño, la etapa de diseño puede ser tan sencilla como
escribir un algoritmo en pseudocódigo. Para un sistema grande, esta etapa incluye también la fase de
diseño de algoritmos, pero incluye el diseño e interacción de un número de algoritmos diferentes, con
frecuencia sólo bosquejados, así como una estrategia para cumplir todos los detalles y producir el códi-
go correspondiente.

Es preciso determinar si se pueden utilizar programas o subprogramas que ya existen o es preciso
construirlos totalmente. El proyecto se ha de dividir en módulos utilizando los principios de diseño des-
cendente. A continuación, se debe indicar la interacción entre módulos; un diagrama de estructuras pro-
porciona un esquema claro de estas relaciones’.

En este punto, es importante especificar claramente no sólo el propósito de cada módulo, sino tam-
bién elpujo de duros entre módulos. Por ejemplo, se debe responder a las siguientes preguntas: ¿Qué
datos están disponibles al módulo antes de su ejecución? ¿Qué supone el módulo? ¿Qué hacen los datos
después de que se ejecuta el módulo? Por consiguiente, se deben especificar en detalle las hipótesis,
entrada y salida para cada módulo. Un medio para realizar estas especificaciones es escribir una pre-
condición, que es una descripción de las condiciones que deben cumplirse al principio del módulo y
una postcondición, que es una descripción de las condiciones al final de un módulo. Por ejemplo, se
puede describir un subprograma que ordena una lista (un array) de la forma siguiente:

subprograma ordenar (A, n)
{Ordena una lista en orden ascendente}
precondición: A es un array de n enteros, 1<= n <= Max.
postcondición: AL11 <= AL21 < . . . < = A[n], n es inalterable}

Por Último, se puede utilizar pseudocódigo” para especificar los detalles del algoritmo. Es importante
que se emplee bastante tiempo en la fase de diseño de sus programas. El resultado final de diseño des-
cendente es una solución que sea fácil de traducir en estructuras de control y estructuras de datos de un
lenguaje de programación específico -en nuestro caso, C-.

El gasto de tiempo en la fase de diseño será ahorro de tiempo cuando se escriba y depura su pro-
grama.

2.6.3. Implementación (codificación)

La etapa de implementución (codificación) traduce los algoritmos del diseño en un programa escrito
en un lenguaje de programación. Los algoritmos y las estructuras de datos realizadas en pseudocódigo

56 Programación en C. Metodología, algoritmos y estructura de datos

han de traducirse codificados en un lenguaje que entiende la computadora: PASCAL, FORTRAN,
COBOL, C, C++, C# o Java.

La codificacion cuando un problema se divide en subproblemas, los algoritmos que resuelven cada
subproblema (tarea o módulo) deben ser codificados, depurados y probados independientemente.

Es relativamente fácil encontrar un error en un procedimiento pequeño. Es casi imposible encontrar
todos los errores de un programa grande, que se codificó y comprobó como una sola unidad en lugar de
como una colección de módulos (procedimientos) bien definidos.

Las reglas del sangrado (indentación) y buenos comentarios facilitan la escritura del código. El
pseudocódigo es una herramienta excelente que facilita notablemente la codificación.

2.6.4. Pruebas e integración

Cuando los diferentes componentes de un programa se han implementado y comprobado individual-
mente, el sistema completo se ensambla y se integra.

La etapa de pruebas sirve para mostrar que un programa es correcto. Las pruebas nunca son fáciles.
Edgar Dijkstra ha escrito que mientras que las pruebas realmente muestran lapresencia de errores, nun-
ca puede mostrar su ausencia. Una prueba con «éxito» en la ejecución significa sólo que no se han des-
cubierto errores en esas circunstancias específicas, pero no se dice nada de otras circunstancias. En teo-
ría el Único modo que una prueba puede mostrar que un programa es correcto si todos los casos posibles
se han intentado y comprobado (es lo que se conoce como prueba exhaustiva); es una situación técni-
camente imposible incluso para los programas más sencillos. Supongamos, por ejemplo, que se ha escri-
to un programa que calcule la nota media de un examen. Una prueba exhaustiva requerirá todas las com-
binaciones posibles de marcas y tamaños de clases; puede llevar muchos años completar la prueba.

La fase de pruebas es una parte esencial de un proyecto de programación. Durante la fase de prue-
bas se necesita eliminar tantos errores lógicos como pueda. En primer lugar, se debe probar el progra-
ma con datos de entrada válidos que conducen a una solución conocida. Si ciertos datos deben estar
dentro de un rango, se deben incluir los valores en los extremos finales del rango. Por ejemplo, si el
valor de entrada de n cae en el rango de 1 a 10, se ha de asegurar incluir casos de prueba en los que n
esté entre 1 y 10. También se deben incluir datos no válidos para comprobar la capacidad de detección
de errores del programa. Se han de probar también algunos datos aleatorios y, por Último, intentar algu-
nos datos reales.

2.6.5. Verificación

La etapa de pruebas ha de comenzar tan pronto como sea posible en la fase de diseño y continuará a lo
largo de la implementación del sistema. Incluso aunque las pruebas son herramientas extremadamente
válidas para proporcionar la evidencia de que un programa es correcto y cumple sus especificaciones,
es difícil conocer si las pruebas realizadas son suficientes. Por ejemplo,.¿cómo se puede conocer que son
suficientes los diferentes conjuntos de datos de prueba o que se han ejecutado todos los caminos posi-
bles a través del programa?

Por esas razones se ha desarrollado un segundo método para demostrar la corrección o exactitud de
un programa. Este método, denominado verijicación formal implica la construcción de pruebas mate-
máticas que ayudan a determinar si los programas hacen lo que se supone han de hacer. La verificación
formal implica la aplicación de reglas formales para mostrar que un programa cumple su especificación:
la verificación. La verificación formal funciona bien en programas pequeños, pero es compleja cuando
se utiliza en programas grandes. La teoría de la verificación requiere conocimientos matemáticos avan-
zados y, por otra parte, se sale fuera de los objetivos de este libro; por esta razón sólo hemos constata-
do la importancia de esta etapa.

La prueba de que un algoritmo es correcto es como probar un teorema matemático. Por ejemplo,
probar que un módulo es exacto (correcto) comienza con las precondiciones (axiomas e hipótesis en

Fundamentos de programación 57

matemáticas) y muestra que las etapas del algoritmo conducen a las postcondiciones. La verificación tra-
ta de probar con medios matemáticos que los algoritmos son correctos.

Si se descubre un error durante el proceso de verificación, se debe corregir su algoritmo y posible-
mente se han de modificar las especificaciones del problema. Un método es utilizar invariantes (una
condición que siempre es verdadera en un punto específico de un algoritmo) lo que probablemente hará
que su algoritmo contenga pocos errores antes de que comience la codificación. Como resultado se gas-
tará menos tiempo en la depuración de su programa.

2.6.6. Mantenimiento

Cuando el producto software (el programa) se ha terminado, se distribuye entre los posibles usuarios, se
instala en las computadoras y se utiliza (producción). Sin embargo, y aunque, a priori, el programa
funcione correctamente, el software debe ser mantenido y actualizado. De hecho, el coste típico del
mantenimiento excede, con creces, el coste de producción del sistema original.

Un sistema de software producirá errores que serán detectados, casi con seguridad, por los usua-
nos del sistema y que no se descubrieron durante la fase de prueba. La corrección de estos errores es par-
te del mantenimiento del software. Otro aspecto de la fase de mantenimiento es la mejora del software
añadiendo más características o modificando partes existentes que se adapten mejor a los usuarios.

Otras causas que obligarán a revisar el sistema de software en la etapa de mantenimiento son las
siguientes: 1) Cuando un nuevo hardware se introduce, el sistema puede ser modificado para ejecutar-
lo en un nuevo entorno; 2) Si cambian las necesidades del usuario, suele ser menos caro y más rápido,
modificar el sistema existente que producir un sistema totalmente nuevo. La mayor parte del tiempo de
los programadores de un sistema se gasta en el mantenimiento de los sistemas existentes y no en el dise-
ño de sistemas totalmente nuevos. Por esta causa, entre otras, se ha de tratar siempre de diseñar pro-
gramas de modo que sean fáciles de comprender y entender (legibles) y fáciles de cambiar.

2.6.7. La obsolescencia: prog r a mas o bso I et os

La última etapa en el ciclo de vida del software es la evolución del mismo, pasando por su vida útil has-
ta su ohsolescencia o fase en la que el software se queda anticuado y es preciso actualizarlo o escribir
un nuevo programa sustitutorio del antiguo.

La decisión de dar de baja un software por obsoleto no es una decisión fácil. Un sistema grande
representa una inversión enorme de capital que parece, a primera vista, más barato modificar el sistema
existente, en vez de construir un sistema totalmente nuevo. Este criterio suele ser, normalmente, correc-
to y por esta causa los sistemas grandes se diseñan para ser modificados. Un sistema puede ser produc-
tivamente revisado muchas veces. Sin embargo, incluso los programas grandes se quedan obsoletos por
caducidad de tiempo al pasar una fecha límite determinada. A menos que un programa grande esté bien
escrito y adecuado a la tarea a realizar, como en el caso de programas pequeños, suele ser más eficien-
te escribir un nuevo programa que corregir el programa antiguo.

2.6.8. Iteración y evolución del software

Las etapas de vida del software suelen formar parte de un ciclo o bucle, como su nombre sugiere y no
son simplemente una lista lineal. Es probable, por ejemplo, que durante la fase de mantenimiento ten-
ga que volver a las especificaciones del problema para verificarlas o modificarlas.

Obsérvese en la Figura 2.14 las diferentes etapas que rodean al núcleo: documentación. La docu-
mentación no es una etapa independiente como se puede esperar sino que está integrada en todas las
etapas del ciclo de vida del software.

58 Programación en C. Metodología, algoritmos y estructura de datos

Figura 2.14. Etapas del ciclo de vida del software cuyo núcleo aglutinador es la documentación.

2.7. MÉTODOS FORMALES DE VERIFICACIÓN DE PROGRAMAS

Aunque la verificación formal de programas se sale fuera del ámbito de este libro, por su importancia
vamos a considerar dos conceptos clave, aser’os (afirmaciones) y precondiciones/postcondiciones inva-
riantes que ayuden a documentar, corregir y clarificar el diseño de módulos y de programas.

2.7.1. Aserciones’

Una parte importante de una verificación fmmal es la documentación de un programa a través de aser-
tos o afirmaciones -sentencias lógicas acerca del programa que se declaran «verdaderas»-. Un aser-
to se escribe como un comentario y describe lo que se supone sea verdadero sobre las variables del pro-
grama en ese punto.

Un aserto es una frase sobre una condición específica en un cierto punto de un algoritmo o pro-
grama.

Ejemplo 2.9

El siguiente fragmento de programa contiene una secuencia de sentencias de asignación, seguidas por
un aserto.

A = 10; { aserto: A es 10 1
X = A; { aserto: X es 10 1
Y = X + A ; { aserto: Y es 20 1

’ Este término se suck traducir también por c/firtncrcion<,.v o ~ / ~ ~ ~ / ~ i ~ ~ r ~ ~ i o r i c . r . El término ei.\e’rto está extendido cn la jerga infor-
niática pero ti» es aceptado por cl DKAE.

Fundamentos de programación 59

A

La verdad de la primera afirmación { A es 1 O 1, sigue a la ejecución de la primera sentencia con el
conocimiento de que 10 es una constante. La verdad de la segunda afirmación { x es i 0 }, sigue de
la ejecución de x = A con el conocimiento de que A es 1 O. La verdad de la tercera afirmación { Y es
2 o } sigue de la ejecución Y = x + A con el conocimiento de que x es 1 O y A es 1 O. En este seg-
mento del programa se utilizan afirmaciones como comentarios para documentar el cambio en una varia-
ble de programa después que se ejecuta cada sentencia de afirmación.

La tarea de utilizar verificación formal es probar que un segmento de programa cumple su especi-
ficación. La afirmación final se llamapostcondicicín (en este caso, { Y es 2 O 1 y sigue a la presunción
inicial o precondición (en este caso { 1 O es una constante}), después que se ejecuta el segmento de pro-
grama.

2.7.2. Precondiciones y postcondiciones

Las precondiciones y postcondiciones son afirmaciones sencillas sobre condiciones al principio y al
final de los módulos. Una precondición de un procedimiento es una afirmación lógica sobre sus pará-
metros de entrada; se supone que es verdadera cuando se llama al procedimiento. Unapostcondición de
un procedimiento puede ser una afirmación lógica que describe el cambio en el estado delprograma pro-
ducido por la ejecución del procedimiento; la postcondición describe el efecto de llamar al procedi-
miento. En otras palabras, la postcondición indica que sera verdadera después que se ejecute el proce-
dimiento.

Ejemplo 2.10

{Precondiciones y postcondiciones del subprograma LeerEnteros)
subprograma LeerEnteros (Min, Max: Entero;var N: Entero);
{
Lectura de un entero entre Min y Max en N

Pre : Min y Max son valores asignados
Post: devuelve en N el primer valor del dato entre Min y Max

si Min <= Max es verdadero; en caso contrario
N no esta definido.

La precondición indica que los parámetros de entrada Min y Max se definen antes de que comience
la ejecución del procedimiento. La postcondición indica que la ejecución del procedimiento asigna el
primer dato entre Min y Max al parámetro de salida siempre que Min <= Max sea verdadero.

Las precondiciones y postcondiciones son más que un método para resumir acciones de un proce-
dimiento. La declaración de estas condiciones debe ser la primera etapa en el diseño y escritura de un
procedimiento. Es conveniente en la escritura de algoritmos de procedimientos, se escriba la cabecera
del procedimiento que muestra los parámetros afectados por el procedimiento así como unos comenta-
rios de cabecera que contienen las precondiciones y postcondiciones.

Precondición: Predicado lógico que debe cumplirse al comenzar la ejecución de una operación.
Postcondición: Predicado lógico que debe cumplirse ai acabar la ejecución de una operación;
siempre que se haya cumplido previamente la precondición correspondiente.

60 Programación en C. Metodología, algoritmos y estructura de datos

2.7.3. Reglas para prueba de programas

Un medio útil para probar que un programa P hace lo que realmente ha de hacer es proporcionar aser-
ciones que expresen las condiciones antes y después de que P sea ejecutada. En realidad las aserciones
son como sentencias o declaraciones que pueden ser o bien verdaderas o bien falsas.

La primera aserción, la precondición describe las condiciones que han de ser verdaderas antes de
ejecutar P. La segunda aserción, la postcondicicín, describe las condiciones que han de ser verdaderas
después de que P se ha ejecutado (suponiendo que la precondición fue verdadera antes). El modelo
general es:

{precondición) { = condiciones logicas que son verdaderas antes de que P

(postcondición) { = condiciones logicas que son verdaderas
se ejecute}

despues de que P se ejecute}

Ejemplo 2.1 1

El procedimiento OrdenarSeleccion
orden descendente. El modelo correspondiente puede escribirse así:

(A, m , n) ordena a los elementos del array. A [m. . n] en

{m I n} {precondicion: A ha de tener al menos 1 elemento}
OrdenarSeleccion (A,m,n) {programa de ordenacion a ejecutar}
{A[m] 2 A[m+l] 2 . . . 2 A[n] {postcondicion: elementos de A en orden

descendente}

Problema 2.2

Encontrar la posición del elemento mayor de una lista con indicación de precondiciones y postcondi-
ciones.

int EncontrarMax (int* A,int m,int n)
{
/ * precondicion : m < n

postcondicion : devuelve posicion elemento mayor en A[m..n] * /
int i, j;

i = m;
J = n; {asercion}
/ * (i = m)"(j = m)"(m < n) * / { ^ , operador and)
do i

i = i + l ;
if (A[i] > A[jl)
j = i;

}while (i<n);
return j; /*devuelve j como elemento mayor*/

1

2.7.4. lnvariantes de bucles

Una invariante de bucle es una condición que es verdadera antes y después de la ejecución de un bucle.
Las invariantes de bucles se utilizan para demostrar la corrección (exactitud) de algoritmos iterativos.
Utilizando invariantes, se pueden detectar errores antes de comenzar la codificación y por esa razón
reducir tiempo de depuración y prueba.

Fundamentos de programación 61

Ejemplo 2.12

Un bucle que calcula la suma de los n primeros elementos del array (lista) A:

Un invariante es un predicado que cumple tanto antes como después de cada iteración (vuelta)
y que describe ia misión del bucle.

/ I
$

lnvariantes de bucle como herramientas de diseño

Otra aplicación de los invariantes de bucle es la especificación del bucle: iniciación, condición de repe-
tición y cuerpo del bucle.

Ejemplo 2.13

Si la invariante de un bucle es:
{invariante : i <= n y Suma es la suma de todos los números leidos del
teclado }

Se puede deducir que:
Suma = 0.0;
1 = o;
i < n
scanf ("%d", &Item) ;
Suma = Suma + Item;
i = i + 1 ;

{ i n i c iac ion}

{ condicion/prueba d e l buc le}

{ cuerpo d e l b u c l e }

Con toda esta información es una tarea fácil escribir el bucle de suma
Suma = 0.0;
1 = o ;
while (i < n) /*i, toma los valores 0,1,2,3,. .n-1*/
i

scanf ("%d", &Item) ;
Suma = Suma + Item;
i = i + l ;

I

Ejemplo 2.14

En los bucles for es posible declarar también invariantes, pero teniendo presente la particularidad
de esta sentencia: la variable de control del bucle es inde$nida después que se sale del bucle, por lo que

62 Programación en C. Metodología, algoritmos y estructura de datos

para de@nir su invariante se ha de considerar que dicha variable de control se incrementa antes de
salir del bucle y mantiene su valor~final.

/*precondition n >= I*/
Suma = O;
f o r (i=l; i<=n; i=i+l)
{ /*invariante : i <= ntl y Suma es 1+2+ . . . i-l*/

1
/*postcondicion: Suma es 1+2+3+..n-l+n*/

Suma = Suma + i;

Problema 2.3
Escribir un bucle controlado por centinela que calcule el producto de un conjunto de datos.

/*Calcular el producto de una serie de datos*/
/*precondition : centinela es constante*/
Producto = 1;
printf ("Para terminar, introduzca %d", Centinela) ;
puts ("Introduzca numero:") ;
scanf ("%d", &Numero) ;
while (Numero ! = Centinela)
i /*invariante: Producto es el producto de todos los valores

leidos en Numero y ninguno era el Centinela*/
Producto = Producto * Numero;
puts ('Introduzca numero siguiente: ") ;
scanf ("%d" , &Numero) ;

I
/*postcondicion: Producto es el producto de todos l o s numeros leidos en

Numero antes del centinela*/

2.7.5. Etapas a establecer la exactitud (corrección) de un programa

Se pueden utilizar invariantes para establecer la corrección de un algoritmo iterativo. Supongamos el
algoritmo ya estudiado anteriormente.

/*calcular la suma de A I O I , A l a l , . . .A[n-ll*/
Suma = O;
j = O;
while (j <= n-1)
c

Suma = Suma + A [j l ;
j = j+l;

1
/*invariante: Suma es la suma de los elementos A [O] a A [j - l] * /

Los siguientes cuatro puntos han de ser verdaderosX:

1. El invariante debe ser inicialmente verdadero, antes de que comience la ejecución por pri-
mera vez del bucle. En el ejemplo anterior, Suma es O y j es O inicialmente. En este caso, el
invariante significa que Suma contiene la suma de los elementos A [O 1 a A [j - 1 I , que es ver-
dad ya que no hay elementos en este rango.

' Carrasca, Helnian y Verof, op. cit.. pág. IS.

7
~~~ ~ 

I 

Fundamentos de programacion 63 I 
2. Una ejecución del bucle debe mantener el invariante. Esto es si el invariante es verdadero 

antes de cualquier iteración del bucle, entonces se debe demostrar que es verdadero después de 
la iteración. En el ejemplo, el bucle añade A [ j I a Suma y a continuación incrementa j en I .  Por 
consiguiente, después de una ejecución del bucle, el elemento añadido más recientemente a Suma 
es A [ j - 1 I ; esto es el invariante que es verdadero después de la iteración. 

3. El invariante debe capturar la exactitud del algoritmo. Esto es, debe demostrar que si el inva- 
riante es verdadero cuando termina el bucle, el algoritmo es correcto. Cuando el bucle del ejem- 
plo termina, j contiene n y el invariante es verdadero: Suma contiene la suma de los elementos 
A [ O I a A [ j -1 I , que es la suma que se trata de calcular. 

4. El bucle debe terminar. Esto es, se debe demostrar que el bucle termina después de un núme- 
ro finito de iteraciones. En el ejemplo, j comienza en O y a continuación se incrementa en 1 en 
cada ejecución del bucle. Por consiguiente, j eventualmente excederá a n con independencia del 
valor de n . Este hecho y la característica fundamental de while garantizan que el bucle termi- 
nará. 

La identificación de invariantes de bucles, ayuda a escribir bucles correctos. Se representa el 
invariante como un comentario que precede a cada bucle. En el ejemplo anterior 

{InvarianLe: O <= j c N Y Suma = A i O l + .  . . + A [ j - l l )  
while j <= n-1 do 

2.7.6. Programación segura contra fallos 

Un programa es seguro contra fallos cuando se ejecuta razonablemente por cualquiera que lo utilice. 
Para conseguir este objetivo se han de comprobar los errores en datos de entrada y en la lógica del pro- 
grama. 

Supongamos un programa que espera leer datos enteros positivos pero lee -25. Un mensaje típico 
a visualizar ante este error suele ser: 

Error de rango 

Sin embargo, es mas Útil un mensaje tal como este: 

-25 no es un número válido de años 
Por favor vuelva a introducir el número 

Otras reglas prácticas a considerar son: 

Comprobar datos de entrada no válidos 

scanf ("%f %d",Grupo,Numero) ; 

if (Numero >= O) 

else m a n e j a r  el error 

. . .  

a g r e g a r  Numero a total 

Cada subprograma debe comprobar los valores de sus parámetros. Así, en el caso de la función 

int SumaIntervalo (int m,int n) 

SumaIntervalo que suma todos los enteros comprendidos entre m y n. 

precondicion : m y n son enteros tales que m i= n 
postcondicion: Devuelve SumaIntervalo = m+(m+l)+ . . . +  n 

m y n son inalterables 
I 



64 Programación en C. Metodología, algoritmos y estructura de datos 

i n t  Suma,Indice; 
Suma = O; 
f o r  (Indice= m; Indicei=n ;Indice++) 

return Suma; 
Suma = Suma + Indice; 

2.8. FACTORES EN LA CALIDAD DEL SOFTWARE 

La construcción de software requiere el cumplimiento de numerosas características. Entre ellas se des- 
tacan las siguientes: 

Ef iciencia 
La eficiencia de un software es su capacidad para hacer un buen uso de los recursos que manipula. 

Transportabilidad (portabilidad) 
La transportabilidad o portabilidad es la facilidad con la que un software puede ser transportado sobre 
diferentes sistemas físicos o lógicos. 

Ve rif icabilidad 
La verificabilidad -facilidad de verificación de un software- es su capacidad para soportar los pro- 
cedimientos de validación y de aceptar juegos de test o ensayo de programas. 

Integridad 
La integridad es la capacidad de un software a proteger sus propios componentes contra los procesos que 
no tenga el derecho de acceder. 

Fácil de utilizar 
Un software es fácil de utilizar si se puede comunicar consigo de manera cómoda. 

Corrección 
Capacidad de los productos software de realizar exactamente las tareas definidas por su especificación. 

Robustez 
Capacidad de los productos software de funcionar incluso en situaciones anormales. 

Extensibilidad 
Facilidad que tienen los productos de adaptarse a cambios en su especificación. Existen dos principios 
fundamentales para conseguir esta característica: 

O diseño simple; 
descentralización. 

Reutilización 

Capacidad de los productos de ser reutilizados, en su totalidad o en parte, en nuevas aplicaciones. 

Compatibilidad 

Facilidad de los productos para ser combinados con otros. 



-- 
Fundamentos de programación 65 

2.9. RESUMEM- 

Un método general para la resolución de un problema 
con computadora tiene las siguientes fases: 

I .  Andlisis del pmgramu, 
2. Diseño del algoritmo. 
3. Codificación. 
4. Compilación y ejecución. 
5. Ver$cación y mantenimiento. 
6. Documentación y mantenimiento. 

El sistema más idóneo para resolver un problema 
es descomponerlo en módulos m á s  sencillos y luego, 
mediante diseños descendentes y refinamiento suce- 

2.10. EJERCICIOS 

2.1. Diseñar una solución para resolver cada uno de 
los siguientes problemas y trate de refinar sus 
soluciones mediante algoritmos adecuados: 

a) Realizar una llamada telefónica desde un 
teléfono público. 

b) Cocinar una tortilla. 
c) Arreglar un pinchazo de una bicicleta. 
6)  Freír un huevo. 

2.2. Escribir un algoritmo para: 

a) Sumar dos números enteros. 
b) Restar dos números enteros. 
c) Multiplicar dos números enteros. 
6 )  Dividir un número entero por otro. 

23. Escribir un algoritmo para determinar el máximo 
común divisor de dos números enteros (MCD) 
por el algoritmo de Euciides: 

o Dividir el mayor de los dos enteros positivos 

o A continuación dividir el divisor por el resto. 
o Continuar el proceso de dividir el último divi- 

sor por el Último resto hasta que la división sea 
exacta. 

por el más pequeño. 

o El Último divisor es el mcd. 

2.4. Diseñar un algoritmo que lea e imprima una 
serie de números distintos de cero. El algoritmo 
debe terminar con un valor cero que no se debe 
imprimir. Visualizar el número de valores lefdos. 

sivo, llegar a móduios fácjlmente codificables. Estos 
módulos se deben codificar con las estructuras de con- 
trol de programación estructurada. 

I .  Secuenciales: las instrucciones se ejecutan 
sucesivamente una después de otra. 

2. Repctitivas: una serie de instrucciones se repi- 
ten una y otra vez hasta que se cumple una cier- 
ta condición. 

3. Selectivas: permite elegir entre dos alternativas 
(dos conjuntos de inshucciones) dependiendo 
de una condición determinada). 

2.5. Diseñar un algoritmo que imprima y sume la 
serie de. números 3,6,9, 12 ..., 99. 

2.6. Escribir un algoritmo que lea cuatro números 
y a continuación imprima 131 mayor de íos cua- 
tro. 

2.7. Diseñar un algoritmo que lea tres números y 
encuentre si uno de ellos es la suma de 10s otros 
dos. 

2.8. Diseñar un algoritmo para calcular la velocidad 
(en mls) de los corredores de la carrera de 1 SO0 
metros. La entrada consistirá en parejas de 
números (minutos, segundos) que dan el tiempo 
del corredor; por cada corredor, el algoritmo 
debe imprimir el tiempo en minutos y segundos 
así como la velocidad media. 

Ejemplo de entrada de datos: (333) (3,40) 
(3,46) (332) (4,O) (0,O); el Último par de datos 
se utilizará como fin de entrada de datos. 

2.9. Diseñar un algoritmo para determinar si un 
número N es primo. (Un número primo sólo 
puede ser divisible por él mismo y por la uni- 
dad.) 

2.10. Escribir un algoritmo que calcule la superficie 
de un tri6nguio en función de la base y la altu- 
ra (S = 1/2 Base x Altura). 

2.11. Calcular y visualizar la longitud de la circunfe- 
rencia y el área de un circulo de radio dado. 



66 Programación en C. Metodología, algoritmos y estructura de datos 

2.12. Escribir un algoritmo que encuentre el salario 
semanal de un trabajador, dada la tarifa horaria 
y el número de horas trabajadas diariamente. 

2.13. Escribir un algoritmo que indique si una pala- 
bra leída dei teclado es un palíndromo. Un 
palfndromo (capicúa) es una palabra que se lee 
igual en ambos sentidos como urdan>. 

2.14. Escribir un algoritmo que cuente el número de 
ocurrencias de cada letra en una palabra leída 
como entrada. For ejemplo, *Mort imer» 
contiene dos <mi», una «o», dos *r», una ->>, 
una «t» y una «e». 

2.1 I. EJERCICIOS RESUELTOS 

Desarrolle los algoritmos que resuelvan los siguien- 
tes problemas: 

2.1. Ir al cine. 

Análisis del problema 

DATOS DE SALIDA: 
DATOS DE ENTRADA: 

Ver la película. 
Nombre se la película, 
dirección de la sala, hora 
de proyección. 
Entrada, número de asien- 
to. 

Para solucionar el problema, se debe seleccionar 
una película de la cartelera del periódico, ir a la sala y 
comprar la entrada para, finalmente, poder ver la pelí- 
cula. 

DATOS AUXILIARES: 

Diseño del algoritmo 
inicio 

< seleccionar la película > 
tomar el periódico 
mientras no lleguemos a la carte- 

lera 
pasar la hoja 

leer la película 
si nos gusta, recordarla 

cionadas 

hora de proyección 

mientras no se acabe la cartelera 

elegir una de las películas selec- 

leer la dirección de la sala y la 

2.15. Muchos bancos y cajas de ahorro calculan los 
intereses de las cantidades depositadas por los 
clientes diariamente en base a las siguientes 
premisas. Un capital de 1 .O00 pesetas, con una 
tasa de interés del 6 por 100, renta un interés en 
un día de 0,06 multiplicado por 1 .O00 y dividi- 
do por 365. Esta operación producirá O, 16 pese- 
tas de interés y el capital acumulado será 
1 .OOO, 16. El interés para el segundo día se cal- 
culará multiplicando 0,06 por l .O00 y dividien- 
do el resultado por 365. Disefiar un algoritmo 
que reciba tres entradas: el capital a depositar, 
la tasa de interés y la duración del depósito en 
semanas, y calcule d capital total acumulado al 
final del período de tiempo especificado. 

< comprar la entrada > 
trasladarse a la sala 
si no hay entradas, ir a fin 
si hay cola 

ponerse el último 
mientras no lleguemos a la 

t aqui 1 1 a 
avanzar 
si no hay entradas, ir a fin 

comprar la entrada 
< ver la película 
leer el número de asiento de la 

entrada 
buscar el asiento 
sentarse 
ver la película 

fin. 

2.2. Comprar una entrada para ir a los toros. 

Análisis del problema 

DATOS DE SALIDA: 
DATOS DE ENTRADA: 

DATOS AUXILIARES: 

La entrada. 
Tipo de entrada (sol, som- 
bra, tendido, andanada.. .). 
Disponibilidad de la entra- 
da. 

Hay que ir a la taquilla y elegir la entrada deseada. 
Si hay entradas se compra (en taquilla o a los reven- 
tas). Si no la hay, se puede seleccionar otro tipo de 
entrada o desistir, repitiendo esta acción hasta que se 
ha conseguido la entrada o el posible comprador ha 
desistido. 



Fundamentos de programación 67 

Diseñodelalgori&o I 

inicio 
ir a la taquilla 
si no hay entradas en taquilla 
si nos interesa comprarla en la 

revent a 
ir a comprar la entrada 

si no ir a fin 
< comprar la entrada > 
seleccionar sol o sombra 
seleccionar barrera, tendido, 

seleccionar número de asiento 
solicitar la entrada 
si la tienen disponible 

andanada o palco 

adquirir la entrada 
si no 

si queremos otro tipo de 
entrada 

ir a comprar la entrada 
fin. 

2.3. Hacer una taza de té. 

DATOS DE SALIDA: 
DATOS DE ENTRADA: 
DATOS AUXILWES: 

taza de té. 
bolsa de té, agua. 
pitido de la tetera, aspec- 
to de la infusión. 

Después de echar agua en la tetera, se pone ai fue- 
go y se espera a que el agua hierva (hasta que suena el 
pitido de la tetera). Introducimos el té y se deja un 
tiempo hasta que esté hecho. 
Diseño del dgorzbno 

inicio 
tomar la tetera 
llenarla de agua 
encender el fuego 
poner la tetera en el fuego 
mientras no hierva el agua 

tomar la bolsa de té 
introducirla en la tetera 
mientras no está hecho el té 

echar el té en la taza 

esperar 

esperar 

fin. 

2.4. Hacer una llamada telefónica. Considerar los 
casos: a) llamada manual con operador; b) lla- 
mada automática; c) llamada a cobro revertido. 

Analisis del problema 
Para decidir el tipo de llamada que se efectuar&, pri- 
mero se debe considerar si se dispone de efectivo o no 

para realizar la llamada a cobro revertido. Si hay efec- 
tivo se debe ver si el lugar a donde vamos a llamar 
está conectado a la red 

la centralita y solicitar la llamada, esperando hasta que 
se establezca la comunicación. pata una llamada auto- 
mática se leen los prefijos del país y provincia si fue- 
ra necesario, y se realiza la liamada, espemdo hasta 
que cojan el teléfono. Para llamar a cobro revertido se 
debe 11- a centraiita, solicitar la llamada y espera- 
ra que el abonado del teléfono d que se llama dé su 
autorización, con lo que establecerá la comunicación. 

Como datos de entrada tendrfmos las variables 
que nos van a condicionar el tipo de liamada, el núme 
ro de teléfono y, en caso de llamada automática, los 
prefijos si los hubiera. Como dato auxiliar se podría 
considerar en íos casos a)  y c) el contacto con la cen- 
tralita. 

Diseño del ulgonhno 
inicio 

Para una llamada con 

si tenemos dinero 
si podemos hacer una llamada 

automática 
Leer el prefijo de país y loca- 

l idad 
marcar el número 

c llamada manual > 
llamar a la centralita 
solicitar la comunicación 

esperar 

si no 

mientras no contesten 

establecer comunicación 
si no 

revertido > 
c realizar una llamada a cobro 

llamar a la centralita 
solicitar la llamada 
esperar hasta tener la autori- 

zación 
establecer comunicación 

fin. 

25. Averiguar si una palabra es un palíndromo. Un 
palíndmmo es una palabra que se b e  igual de 
izquierda a derecha que de derecha a izquierda, 
como, por ejemplo, «radar* 

Análisis del problem 

DATOS DE SALIDA: 

DATOS DE ENTRADA: palabra. 
DATOS AUXILIARES: 

el mensaje que nos dice 
si es o no un palíndromo. 

cada carácter de la pala- 
bra, palabra al revés. 



68 Programación en C. Metodología, algoritmos y estructura de datos 

Para comprobar si una palabra es un paiíndromo, se 
puede ir formando una palabra con los caracteres inver- 
tidos con respecto a la original y comprobar si la pa- 
labra al revés es iguai a la original. Para obtener esa 
palabra al revés, se leerán en sentido inverso los carac- 
teres de la palabra inicial y se irán juntarido sucesiva- 
mente hasta iiegar al primer cadcter. 

Diseño del algoritmo 

Inicio 

palabra 

último 
carácter 

,I 

el carácter 

carácter 

un palíndrorno u un palíndromo I 

2.6. Diseñar un algoritmo Pam calcular la velocidad 
(en metroslsegundo) de los corredores de una 
carrera de 1 .SO0 metros. La entrada serán pare- 
jm de números (minutos, segundos) que darán el 
tiempo de cada corredor. Por cada corredor se 
imprimirá el tiempo en minutos y segundos, así 
como la velocidad media. El bucle se ejecutará 
hasta que demos una entraa'a de 0,O que será la 
marca de f in de entrada de datos. 

Andlisis del problema 
DATOS DE SALIDA: v (velocidad media). 
DATOS DE ENTRADA mm , s s (minutos y segun- 

dos). 
DATOS AUXILIARES: di s t ane ia (distancia 

reconida, que en el ejem- 
plo es de 1.500 metros) 
y tiempo (los ininutos y 
los segundos que ha tarda- 
do en recorrerla). 

Se debe efectuar un bucle hasta que rnm sea O y ss 
sea O. Dentro del bucle se calcula el tiempo en segun- 
dos con la fórmula tiempo = ss + mm * 60. La veloci- 
dad se hallará con la fórmula 

velocidad = djstaucía I tiempo. 

Disefio del a l g o h  
inicio 

distancia 4 ~ -  1500 
leer (mm, s s )  
mientras mm = O y ss = O hacer 

tiempo 4- ss + mm * 60 
v +distancia / tiempo 
escribir (mm, s s ,  v) 
leer (m,ss) 

fin 

2.7. Escribir un algoritmo que calcule la superficie 
de un triángulo enfuplción de la base y la altura. 

Análisis del probiem 
DATOS DE SALDA: s (superficie). 
DATOS DE FNTRADA: b (base) a (altura). 

S = base * altura / 2. 

Diseño del algoritmo 
inicio 

Para calcular la superficie se aplica la fórmula 

leer (b, a) 
s = b * a / 2  
escribir ( s )  

fin 



2.8. Realizar un algoritmo que calcule la suma de los 
enteros entre 1 y 10, es decir, 1+2+3+ ...+ 10. 

Análisis del problema 
DATOS DE SALIDA: suma (contiene la suma 

requerida). 
DATOS AUXILIARES: num (será una variable 

que vaya tomando valores 
entre 1 y 10 y se acumulará 
en suma). 

Hay que ejecutar un bucle que se realice 10 veces. 
En él se irá incrementando en 1 la variable núm, y se 
acumulará su valor en la variable suma. Una vez sal- 
gamos del bucle se visualizará el valor de la variable 
suma. 

Diseño del dgorihno 

TABLA DE VARIABLES 
entero: suma, num 

r 

num + num+ 1 
suma + suma+num 

Inicio a 
I 

Fundamentos de programación 69 

2.9. Realizar un algoritmo que calcule y visualice las 
potencias de 2 entre O y 10. 

Análisis del problema 
Hay que implementar un bucle que se ejecute once 
veces y dentro de él ir incrementando una variable que 
tome valores entre O y 1 O y que se llamará num . 
También dentro de él se visualizará el resultado de la 
operación 2 num. 

Diseño del a l g o h o  
TABLA DE VARIABLES: 
entero: num 

Inicio 

l-----l num + O 

escribir 

num f- n u m + l  



CAPíTULO 3 

EL LENGUAJE C: 
ELEMENTOS BASICOS 

CONTENIDO 

3.1. 

3.2. 

3.3. 

3.4. 

3.b. 

3.6. 

Estructura general de un 
programa en C. 
Creación de un programa. 
El proceso de ejecución de un 
programa en C. 
Depuración de un programa 
en C. 
Pruebas. 
Los elementos de un 
programa en C. 

3.7. Tipos de datos en C. 
3.8. El tipo de dato lógico. 
3.9. Constantes. 

3.10. Variables. 
3.11. Duración de una variable. 
3.12. Entradas y salidas. 
3.13. Resumen. 
3.14. Ejercicios. 

I, 72 



INTRODUCCI~N 
Una vez gue se le ha enseñado a crear sus propios programas, vamos a analizar 
los fundamentos del lenguaje de programación C. Este capitulo comienza con 
un repaso de los conceptos teóricos y pr&cticos relativos a la estructura de un 
programa enunciados en capítulos anteriores, dada su gran importancia en el 
desarrollo de aplicaciones, incluyendo adeniás los siguientes temaa: 

0 creación de un programa; 
0 elementos básicos gue componen un programa; 
o tipos de datos en C y cómo se declaran; 
0 concepto de constantes y su declaración; 
0 concepto y declaración de variables; 
0 tiempo de vida o duración de variables; 
0 operaciones básicas de entradasalida. 

L 

CONCEPTOS CLAVE 
0 Archivo de cabecera. 
o Código ejecutable. 
o Códigofuente. 
o Wgoobjeto. 
o Comentarios. 
o Constantes. 
o char. 
o Directiva #include. 
o Float/double. 

o Flujos. 
o Función main(). 
o IdentiOlcador. 
o int. 
0 Preprocesador. 
o grfntf O .  
O scanf 0 .  
o Variables. 

73 



74 Programación en C. Metodología, algoritmos y estructura de datos 

3.1. ESTRUCTURA GENERAL DE UN PROGRAMA EN C 

En esta sección repasamos los elementos constituyentes de un programa escrito en C, fijando ideas y 
describiendo ideas nuevas relativas a la mencionada estructura de un programa en C .  

Un programa en C se compone de una o más funciones. Una de las funciones debe ser obligatoria- 
mente main. Una función en C es un grupo de instrucciones que realizan una o más acciones. Asimismo, 
un programa contendrá una serie de directivas #include que permitirán incluir en el mismo archivos 
de cabecera que a su vez constarán de funciones y datos predefinidos en ellos. 

#include Cstdi0.b archivo de cabecera s tdi o. h 

int main() 4 cabecera defunción 

{ f nombre de la.función 

. . .  4 sentencias 

#include D i r e c t i v a s  d e l  p r e p r o c e s a d o r  

#define Macros del procesador 

I I 
Declaraciones globales 
O prototipos de funciones 
O variables 

Función principal ma in 

main ( ) 

i 
d e c l a r a c i o n e s  l o c a l e s  
sent en c i  a s  

1 

Dejkiciones de otras funciones 

tipo1 funcl( . . . ) 
{ 

} 

. . .  

Figura 3.1. Estructura típica de un programa C. 



El lenguaje C: elementos básicos 75 

De un modo más explícito, un programa C puede incluir: 
o directivas de preprocesador; 
0 declaraciones globales; 
o la función main ( ) ; 

funciones definidas por el usuario; 
0 comentarios del programa (utilizados en su totalidad). 
La estructura típica completa de un programa C se muestra en la Figura 3.1. Un ejemplo de un 

/*Listado DEMO-UN0.C. Programa de saludo * /  
programa sencillo en C. 

#include <stdio.h> 
/ *  Este programa imprime: Bienvenido a la programación en C * /  
int main0 
{ 
printf("Bienvenid0 a la programación en C\n"); 
return O; 

1 
La directiva # include de la primera línea es necesaria para que el programa tenga salida. Se refiere 

a un archivo externo denominado s tdio . h en el que se proporciona la información relativa a la función 
printf ( ) . Obsérvese que los ángulos < y > no son parte del nombre del archivo; se utilizan para 
indicar que el archivo es un archivo de la biblioteca estándar C. 

La segunda línea es un comentario, identificado por los caracteres /* y */. Los comentarios se 
incluyen en programas que proporcionan explicaciones a los lectores de los mismos. Son ignorados por 
el compilador. 

La tercera línea contiene la cabecera de la función main ( , obligatoria en cada programa C. Indica 
el comienzo del programa y requieren los paréntesis ( ) a continuación de main ( ) . 

La cuarta y séptima línea contienen sólo las llaves { y 1 que encierran el cuerpo de la función 
main ( ) y son necesarias en todos los programas C. 

La quinta línea contiene la sentencia 
printf("Bienvenid0 a la programación en C\n"); 

que indica al sistema que escriba el mensaje "Bienvenido a la programación en C\n" . 

La salida será 
p r i n t  f I )  es la función más utilizada para dar salida de datos por el dispositivo estándar, la pantalla. 

Bienvenido a la programación en C 
El símbolo ' \n ' es el símbolo de nueva línea. Poniendo este símbolo al final de la cadena entre 

comillas, indica al sistema que comience una nueva línea después de imprimir los caracteres 
precedentes, terminando, por consiguiente, la línea actual. 

La sexta línea contiene la sentencia return o.  Esta sentencia termina la ejecución del programa y 
devuelve el control al sistema operativo de la computadora. El número O se utiliza para señalar que el 
programa ha terminado correctamente (con éxito). 

Obsérvese el punto y coma ( ; ) al final de la quinta y sexta línea. C requiere que cada sentencia 
termine con un punto y coma. No es necesario que esté al final de una línea. Se pueden poner varias 
sentencias en la misma línea y se puede hacer que una sentencia se extienda sobre varias líneas. 

i 

Advertancia 
O El programa más corto de C es el «programa vacio» que no hace nada. 

advertencia si se omite. 
n O; no es obligatoria en la mayoría de los compiladores, aunque algunos 



#include "nombre del a r c h i  vol1 

76 Programación en C. Metodología, algoritmos y estructura de datos 

3.1 . I .  Directivas del preprocesador 

El preprocesador en un programa C se puede considerar como un editor de texto inteligente que consta 
de directivas (instrucciones al compilador antes de que se compile el programa principal). Las dos 
directivas más usuales son #include y #define. 

Todas las directivas del preprocesador comienzan con el signo de libro o «almohadilla>> (#), que 
indica al compilador que lea las directivas antes de compilar la parte (función) principal del programa. 

Las directivas son instrucciones al compilador. Las directivas no son generalmente sentencias 
-obsérvese que su línea no termina en punto y coma-, sino instrucciones que se dan al compilador 
antes de que el programa se compile. Aunque las directivas pueden definir macros, nombres de 
constantes, archivos fuente adicionales, etc., su uso más frecuente en C es la inclusión de archivos de 
cabecera. 

Existen archivos de cabecera estándar que se utilizan ampliamente, tales como STDI O . H ,  
STDLIB . H, MATH. H, STRING. H y se utilizarán otros archivos de cabecera definidos por el usuario 
para diseño estructurado. 

La directiva #include indica al compilador que lea el archivo fuente que viene a continuación de 
ella y su contenido lo inserte en la posición donde se encuentra dicha directiva. Estos archivos se 
denominan archivos de cubecera o archivos de inclusión. 

Los archivos de cabecera (archivos con extensión . h contienen código fuente C) se sitúan en un 
programa C mediante la directiva del preprocesador #include con una instrucción que tiene el 
siguiente formato : 

#include <nombrearch. h> O bien #include "nombrearch.h" 

nombrearch debe ser un archivo de texto ASCII (su archivo fuente) que reside en su disco. En realidad, 
la directiva del preprocesador mezcla un archivo de disco en su programa fuente. 

La mayoría de los programadores C sitúan las directivas del preprocesador al principio del 
programa, aunque esta posición no es obligatoria. 

Además de los archivos de código fuente diseñados por el usuario, # include se utiliza para incluir 
archivos de sistemas especiales (también denominados archivos de cabecera) que residen en su 
compilador C. Cuando se instala el compilador, estos archivos de cabecera se almacenarán 
automáticamente en su disco, en el directorio de inclusión (include) del sistema. Sus nombres de 
archivo siempre tienen la extensión . h. 

El archivo de cabecera más frecuente es STDIO . H. Este archivo proporciona al compilador C la 
información necesaria sobre las funciones de biblioteca que realizan operaciones de entrada y salida. 

Como casi todos los programas que escriba imprimirán información en pantalla y leerán datos de 
teclado, necesitarán incluir scanf ( ) y print f ( ) en los mismos. 

Para ello será preciso que cada programa contenga la línea siguiente: 

#include <stdio.h> 

De igual modo es muy frecuente el uso de funciones de cadena, especialmente s t rcpy ( ) ; por esta 
razón, se requiere el uso del archivo de cabecera denominado string . h. Por consiguiente, será muy 
usual que deba incluir en sus programas las líneas: 

#include <stdio.h> 
#include <string.h> 

El orden de sus archivos de inclusión no importan con tal que se incluyan antes de que se utilicen 
las funciones correspondientes. La mayoría de los programas C incluyen todos los archivos de cabecera 
necesarios antes de la primera función del archivo. 

La directiva #include puede adoptar uno de los siguientes formatos: 

#include <nombre del a r c h i v o >  



El lenguaje C: elementos básicos 77 

Dos ejemplos típicos son: 

(a)  #include <stdio. h> 
(b) #include "pruebas. h" 

El formato (a )  (el nombre del archivo entre ángulos) significa que los archivos se encuentran en el 
directorio por defecto include. El formato ( b )  significa que el archivo está en el directorio actual. Los 
dos métodos no son excluyentes y pueden existir en el mismo programa archivos de cabecera estándar 
utilizando ángulos y otros archivos de cabecera utilizando comillas. Si desea utilizar un archivo de 
cabecera que se creó y no está en el directorio por defecto, se encierra el archivo de cabecera y el camino 
entre comillas, tal como 

#include I'D: \MIPROG\CABEZA. H" 

#define. La directiva #define indica al preprocesador que defina un item de datos u operación para 
el programa C. Por ejemplo, la directiva 

#define TAP-LINEA 65 

sustituirá TAM-LINEA por el valor 65 cada vez que aparezca en el programa. 

3.1.2. Declaraciones globales 

Las declaraciones globales indican ai compilador que las funciones definidas por el usuario o variables 
así declaradas son comunes a todas las funciones de su programa. Las declaraciones globales se sitúan 
antes de la función main ( ) . Si se declara global una variable Grado-clase del tipo 

int Grado-clase; 

cualquier función de su programa, incluyendo main ( ) , puede acceder a la variable Grado-clase. 

de declaraciones de función. Las declaraciones de función se denominan prototipos 
La zona de declaraciones globales de un programa puede incluir declaraciones de variables además 

int media(int a, int b) ; 

El siguiente programa es una estructura modelo que incluye declaraciones globales. 

# / *  Programa dem0.C * /  
i #include <stdio.hz 

/ *  Definición de macros * /  
#define MICONSTl 0.50 
#define MICONS2 0.75 

/ *  Declaraciones globales * /  
int Calificaciones ; 

I main ( ) 

3.1.3. Función main ( ) 

Cada programa C tiene una función main ( ) que es el punto de entrada al programa. Su estructura es: 



78 Programación en C. Metodología, algoritmos y estructura de datos 

main í ) 
{ 

I 

Las sentencias incluidas entre las llaves { . . . } se denominan bloque. Un programa debe tener sólo 
una función main ( . Si se intenta hacer dos funciones main ( ) se produce un error. Además de la 
función main ( ) , un programa C consta de una colección de funciones. 

. . . 4- bloque de sentencias 

UnafuncuSn C es un subpro devuelve un único valor, un c 

En un programa corto, el programa completo puede incluirse totalmente en la función main ( ) . Un 
programa largo, sin embargo, tiene demasiados códigos para incluirlo en esta función. La función 
main ( ) en un programa largo consta prácticamente de llamadas a las funciones definidas por el usuario. 
El programa siguiente se compone de tres funciones: obtenerdatos ( ) , alfabetizar ( ) y 
verpalabras ( ) que se invocan sucesivamente. 

int main() 

obtenerdatos ( )  ; 

alEabetizar ( )  ; 

verpalabras ( ) ; 

return O; 
1 

Las variables y constantes globules se declaran y definen fuera de A definición de las funciones, 
generalmente en la cabecera del programa, antes de main ( ) , mientras que las variables y constantes 
locales se declaran y definen en la cabecera del cuerpo o bloque de la función principal, o en la cabecera 
de cualquier bloque. Las sentencias situadas en el interior del cuerpo de la función main ( ) , o cualquier 
otra función, deben terminar en punto y coma. 

3.1.4. Funciones definidas por el usuario 

Un programa C es una colección de funciones. Todos los programas se construyen a partir de una o más 
funciones que se integran para crear una aplicación. Todas las funciones contienen una o más sentencias 
C y se crean generalmente para realizar una única tarea, tales como imprimir la pantalla, escribir un 
archivo o cambiar el color de la pantalla. Se pueden declarar y ejecutar un número de funciones casi 
ilimitado en un programa C. 

Las funciones definidas por el usuario se invocan por su nombre y los parámetros opcionales que 
puedan tener. Después de que la función es llamada, el código asociado con la función se ejecuta y, a 
continuación, se retorna a la función llamadora. 

Todas las funciones tienen nombre y una lista de valores que reciben. Se puede asignar cualquier 
nombre a su función, pero normalmente se procura que dicho nombre describa el propósito de la 
función. En C, las funciones requieren una declarucihn o prototipo en el programa: 

void trazarcurva(); 



El lenguaje C: elementos básicos 79 

Una declaración de función indica al cornpilador el nombre de la función por el que ésta será 
invocada en el programa. Si la función no se define, el cornpilador informa de un error. La palabra 
reservada void significa que la función no devuelve un valor. 

void contarvocales(char caracter); 

La definición de una función es la estructura de la misma: 

t ipo-re t orn o nombre- f un ci ón ( 1  i s t a - d e s a  ráme t ros ) principio de la .función 
I 

sen t en ci as cuerpo de la función 
return; retorno de lafunción 

1 fin de lajünción 

t ipo-re t orno Es el tipo de valor, o void, devuelto por la función 
nombre- f un c i  Ón Nombre de la función 
1 ista-deparámetroc Lista de parámetros, o void, pasados a la función. Se conoce 

también como argumenros de la función o argumentos formales. 

C proporciona también funciones predefinidas que se denominan funciones de biblioteca. Las 
funciones de biblioteca son funciones listas para ejecutar que vienen con el lenguaje C. Requieren la 
inclusión del archivo de cabecera estándar, tal como S T D I O  . H I  MATH. H, etc. Existen centenares de 
funciones definidas en diversos archivos de cabecera. 

/ *  ejemplo funciones definidas por el usuario * /  

#include <stdio.h> 

void visualizar(); 
#int main ( ) 

{ 
visualizar ( j ; 
return O; 

J 

void visualizar() 
i 
printf ( "primeros 

1 

Los programas C constan 

main ( ) 

función main ( ) . 

pasos en C\n"j ; 

de un conjunto de funciones que normalmente están controladas por la 

i 

I 
. . .  

obtenerdatos ( 1  
t 

. . .  

alfabetizar ( )  
{ 

1 
. . .  



80 Programación en C. Metodología, algoritmos y estructura de datos 

3.1.5. Comentarios 

Un comentario es cualquier información que se añade a su archivo fuente para proporcionar documenta- 
ción de cualquier tipo. El compilador ignora los comentarios, no realiza ninguna tarea concreta. El uso 
de comentarios es totalmente opcional, aunque dicho uso es muy recomendable. 

Generalmente, se considera buena práctica de programación comentar su archivo fuente tanto como 
sea posible, al objeto de que usted mismo y otros programadores puedan leer fácilmente el programa con 
el paso de tiempo. Es buena práctica de programación comentar su programa en la parte superior de 
cada archivo fuente. La información que se suele incluir es el nombre del archivo, el nombre del 
programador, una breve descripción, la fecha en que se creó la versión y la información de la revisión. 

Los comentarios en C estándar comienzan con la secuencia / * y terminan con la secuencia * /. 
Todo el texto situado entre las dos secuencias es un comentario ignorado por el compilador. 

/ *  PRUEBA1.C - Primer programa C * /  

Si se necesitan varias líneas de programa se puede hacer lo siguiente: 

/ *  
Programa : PRUEBA1.C 
Programador : Pepe Mortimer 
Descripción : Primer programa C 
Fecha creación : Septiembre 2000 
Revis iÓn : Ninguna 

* /  

También se pueden situar comentarios de la forma siguiente: 

scanf ("%d" , &x) ; / *  sentencia de entrdda de un valor entero*/ 

~~ ~ 

Ejemplo 3.1 

Supongamos que se ha de imprimir su nombre y dirección muchas veces en su programa C. El sistema 
normal es teclear las líneas de texto cuantas veces sea necesario; sin embargo, el método más rápido 
y &ciente sería escribir el códigofuente correspondiente una vez 4' a continuación grabar un archivo 
M I D I R E C .  c, de modo que para incluir el código sólo necesitará incluir en su programa la línea 

#include "midirec. c" 

Es decir, teclee las siguientes líneas y grábelas en un archivo denominado MIDIREC. C 

/ *  archivo mi di re c.^ * /  
printf ( "Luis Joyanes Aguilar\n") ; 
printf ( "Avda de Andalucía, 48\n") : 
printf ( "Carchelejo, JAEN\n) 'I; 
printf ( "Andalucía, ESPAÑA\n") : 

El programa siguiente: 

/ *  nombre del archivo demoincl.~, 
ilustra el uso de #include 

* /  

#include <stdio.h> 

int main0 
i 
#include "midirec. c" 



El lenguaje C: elementos básicos 81 

return O; 
1 

equivale a 

/ *  nombre del archivo demoinc1.c 
ilustra el uso de #include 

* /  

#include 

int main 

i 

print f 
print f 
print f 
printf 
return 

1 

"Luis Joyanes Aguilar\n") ; 
"Avda de Andalucía, 48\n") ; 
'Carchelejo, JAEN\n") ; 
"Andalucía, ESPAÑA\II") ; 

O; 

Ejemplo 3.2 
El siguiente programa copia un mensaje en un array de caracteres y lo imprime en la pantalla. Ya que 
printfo y strcpy O (una función de cadena) se utilizan, se necesitan sus archivos de cabecera 
especrjTcos. 

/ *  nombre del archivo demoinc2.c 

* /  
#include <stdio.h> 
#include <string.h> 

utiliza dos archivos de cabecera 

int main0 
i 
char mensaje [201 ; 
strcpy (mensaje, "Atapuerca\n") ; 
/ *  Las dos líneas anteriores también se pueden sustituir por 

* /  
printf(mensaje1; 
return O; 

char mensaje[20] = "Atapuerca\n"; 

1 

Los archivos de cabecera en C tienen normalmente una extensión . h y los archivos fuente, la 
extensión . c .  

3.2. CREACI~N DE UN PROGRAMA 

Una vez creado un programa en C como el anterior, se debe ejecutar. ¿Cómo realizar esta tarea? Los 
pasos a dar dependerán del compilador C que utilice. Sin embargo, serán similares a los mostrados en 
la Figura 3.2. En general, los pasos serían: 



82 Programación en C. Metodología, algoritmos y estructura de datos 

O Utilizar un editor de texto para escribir el progratna y grabarlo en un archivo. Este archivo 
constituye el códigofuente de un programa. 
Compilar el código fuente. Se traduce el código fuente en un codigo objeto (extensión . ob j ) 
(lenguaje máquina entendible por la computadora). Un archivo objeto contiene instrucciones en 
lenguaje máquina que se pueden ejecutar por una computadora. Los archivos estándar C y los de 
cabecera definidos por el usuario son incluidos (#include) en su código fuente por el 
preprocesador. Los archivos de cabecera contienen información necesaria para la compilación, 
como es el caso de stdi0.h que contiene información scanf() y de printf(). 
Enlazar el código objeto con las bibliotecas correspondientes. Una biblioteca C contiene código 
objeto de una colección de rutinas ofinciones que realizan tareas, como visualizar informaciones 
en la pantalla o calcular la raíz cuadrada de un número. El enlace del código objeto del programa 
con el objeto de las funciones utilizadas y cualquier otro código empleado en el enlace, producirá 
un código ejecutable. Un programa C consta de un número diferente de archivos objeto y archivos 
biblioteca. 

fuente 

I I 
Compilador Archivo 

cabecera 
I I 

I 1 Código objeto 

Bibliotecas Enlazador 
I I 

Código 
ejecutable 

I I 

Figura 3.2. Etapas de creación de un programa 

Para crear un programa se utilizan las siguientes etapas: 

1. Definir su programa. 
2. Definir directivas del preprocesador. 
3 .  Definición de declaraciones globales. 
4. Crear main ( ) . 
5 .  Crear el cuerpo del programa. 
6. Crear sus propias funciones definidas por el usuario. 
7. Compilar, enlazar, ejecutar y comprobar su programa. 
8. Utilizar comentarios. 

3.3. EL PROCESO DE EJECUCIÓN DE UN PROGRAMA EN C 

Un programa de computadora escrito en un lenguaje de programación (por ejemplo, C) tiene forma de 
un texto ordinario. Se escribe el programa en una hoja de papel y a este programa se le denomina 
progmmu texto o ccídig:o.fuente. Considérese el ejemplo sencillo: 



El lenguaje C: elementos básicos 83 

#include <stdio.h> 
int main() 
{ 
printf('Longitud de circunferencia de radio 5: %€",2*3.1416*5); 
return O ;  

1 

La primera operación en el proceso de ejecución de un programa es introducir las sentencias 
(instrucciones) del programa con un editor de texto. El editor almacena el texto y debe proporcionarle 
un nombre tal como area. c. Si la ventana del editor le muestra un nombre tal como noname. c, es 
conveniente cambiar dicho nombre (por ejemplo, por area. c). A continuación se debe guardar el texto 
en disco para su conservación y uso posterior, ya que en caso contrario el editor sólo almacena el 
texto en memoria central (RAM) y cuando se apague la computadora, o bien ocurra alguna anomalía, 
se perderá el texto de su programa. Sin embargo, si el texto del programa se almacena en un disquete, 
en un disco duro, o bien en un CD-ROM, el programa se guardará de modo permanente, incluso después 
de apagar la computadora y siempre que ésta se vuelva a arrancar. 

La Figura 3.3 muestra el método de edición de un programa y la creación del programa en un disco, 
en un archivo que se denomina archivo de texto (archivo fuente). Con la ayuda de un editor de texto se 
puede editar el texto fácilmente, es decir, cambiar, mover, cortar, pegar, borrar texto. Se puede ver, 
normalmente, una parte del texto en la pantalla y se puede marcar partes del texto a editar con ayuda de 
un ratón o el teclado. El modo de funcionamiento de un  editor de texto y las órdenes de edición 
asociadas varían de un sistema a otro. 

Editor 
de 

texto Texto del 
programa 

archivo 4 fuente 

1 I 

Figura 3.3. Proceso de edición de un archivo fuente. 

Una vez editado un programa, se le proporciona un nombre. Se suele dar una extensión al nombre 
(normalmente . c, aunque en algunos sistemas puede tener otros sufijos) . 

La siguiente etapa es la de compilación. En ella se traduce el código fuente escrito en lenguaje C a 
código máquina (entendible por la computadora). El programa que realiza esta traducción se llama 
cornpilador. Cada compilador se construye para un determinado lenguaje de programación (por ejemplo 
C ) ;  un compilador puede ser un programa independiente (como suele ser el caso de sistemas operativos 
como VMS, UNIX, etc.) o bien formar parte de un programa entorno integrado de desarrollo (EID). 
Los programas EID contienen todos los recursos que se necesitan para desarrollar y ejecutar un 
programa, por ejemplo, editores de texto, compiladores, enlazadores, navegadores y depuradores. 

Cada lenguaje de programación tiene unas reglas especiales para la construcción de programas que 
se denomina sintaxis. El compilador lee el programa del archivo de texto creado anteriormente y 
comprueba que el programa sigue las reglas de sintaxis del lenguaje de programación. Cuando se 



84 Programación en C. Metodología, algoritmos y estructura de datos 

compila su programa, el compilador traduce el código fuente C (las sentencias del programa) en un 
código máquina (código objeto). El código objeto consta de instrucciones máquina e información de 
cómo cargar el programa en memoria antes de su ejecución. Si el compilador encuentra errores, los 
presentará en la pantalla. Una vez corregidos los errores con ayuda del editor se vuelve a compilar 
sucesivamente hasta que no se produzcan errores. 

El código objeto así obtenido se almacena en un archivo independiente, normalmente con extensión 
. obj o bien . o. Por ejemplo, el programa area anterior, se puede almacenar con el nombre area. obj . 

Compiiador r- v 

fuente 

Archivo 

Figura 3.4. Proceso de edición de un archivo fuente. 

El archivo objeto contiene sólo la traducción del código fuente. Esto no es suficiente para ejecutar 
realmente el programa. Es necesario incluir los archivos de biblioteca (por ejemplo, en el programa 
area. c , s t d i o  . h). Una biblioteca es una colección de código que ha sido programada y traducida 
y lista para utilizar en su programa. 

Normalmente un programa consta de diferentes unidades o partes de programa que se han 
compilado independientemente. Por consiguiente, puede haber varios archivos objetos. Un programa 
especial llamado enlazador toma el archivo objeto y las partes necesarias de la biblioteca del sistema y 
construye un archivo ejecutable. Los archivos ejecutables tienen un nombre con la extensión . exe (en 
el ejemplo, area. exe o simplemente area según sea su computadora). Este archivo ejecutable contiene 
todo el código máquinas necesario para ejecutar el programa. Se puede ejecutar el programa escribiendo 
area en el indicador de órdenes o haciendo clic en el icono del archivo. 

Figura 3.5. Proceso de conversión de código fuente a código ejecutable. 

Se puede poner ese archivo en un disquete o en un CD-ROM, de modo que esté disponible después 
de salir del entorno del compilador a cualquier usuario que no tenga un compilador C o que puede no 
conocer lo que hace. 



El lenguaje C: elementos básicos 85 

El proceso de ejecución de un programa no suele funcionar a la primera vez; es decir, casi siempre 
hay errores de sintaxis o errores en tiempo de ejecución. El proceso de detectar y corregir errores se 
denomina depuración o puesta a punto de un programa. 

La Figura 3.6 muestra el proceso completo de puesta a punto de un programa. 

( Inicio 1 

editar L programa 

programa 

errores 

en tiempo de 

Fin > 
Figura 3.6. Proceso completo de depuración de un programa. 

Se comienza escribiendo el archivo fuente con el editor. Se compila el archivo fuente y se 
comprueban mensajes de errores. Se retorna al editor y se fijan los errores de sintaxis. Cuando el 
compilador tiene éxito, el enlazador construye el archivo ejecutable. Se ejecuta el archivo ejecutable. Si 
se encuentra un error, se puede activar el depurador para ejecutar sentencia a sentencia. Una vez que se 
encuentra la causa del error, se vuelve al editor y se repite la compilación. El proceso de compilar, 
enlazar y ejecutar el programa se repetirá hasta que no se produzcan errores. 

Etapas del proceso 
O El código fuente (archivo del programa) se crea con la ayuda del editor de texto. 
O El compilador traduce el archivo texto en un archivo objeto. 

El enlazador pone juntos a diferentes archivos objetos para poner un archivo ejecutable. 
O El sistema operativo pone el archivo ejecutable en la memoria central y se ejecuta el 

programa. 



86 Programación en C. Metodología, algoritmos y estructura de datos 

3.4. DEPURACIÓN DE UN PROGRAMA EN C 

Rara vez los programas funcionan bien la primera vez que se ejecutan. Los errores que se producen en 
los programas han de ser detectados, aislados (fijados) y corregidos. El proceso de encontrar errores se 
denomina depuración del programa. La corrección del error es probablemente la etapa más fácil, siendo 
la detección y aislamiento del error las tareas más difíciles. 

Existen diferentes situaciones en las cuales se suelen introducir errores en un programa. Dos de las 
más frecuentes son: 

1. Violación (no cumplimiento) de las reglas gramaticales del lenguaje de alto nivel en el que se 

2. Los errores en el diseño del algoritmo en el que está basado el programa. 

Cuando el compilador detecta un error, visualiza un mensaje de error indicando que se ha cometido 
un error y posible causa del error. Desgraciadamente los mensajes de error son difíciles de interpretar 
y a veces se llegan a conclusiones erróneas. También varían de un compilador a otro compilador. A 
medida que se gana en experiencia, el proceso de puesta a punto de un programa se mejora 
considerablemente. Nuestro objetivo en cada capítulo es describir los errores que ocurren más 
frecuentemente y sugerir posibles causas de error, junto con reglas de estilo de escritura de programas. 
Desde el punto de vista conceptual existen tres tipos de errores: sintaxis, lógicos y de regresión. 

escribe el programa. 

3.4.1. Errores de sintaxis 

Los errores de sintaxis son aquellos que se producen cuando el programa viola la sintaxis, es decir, 
las reglas de gramática del lenguaje. Errores de sintaxis típicos son: escritura incorrecta de palabras 
reservadas, omisión de signos de puntuación (comillas, punto y coma.. .). Los errores de sintaxis son los 
más fáciles de fijar, ya que ellos son detectados y aislados por el compilador. 

Estos errores se suelen detectar por el compilador durante el proceso de compilación. A medida que 
se produce el proceso de traducción del código fuente (por ejemplo, programa escrito en C) a lenguaje 
máquina de la computadora, el compilador verifica si el programa que se está traduciendo cumple las 
reglas de sintaxis del lenguaje. Si el programa viola alguna de estas reglas, el compilador genera un 
mensuje de error (o  diagnóstico) que explica el problema (aparente). Algunos errores típicos (ya citados 
anteriormente): 

o Punto y coma después de la cabecera m a  i n  ( ) . 
O Omisión de punto y coma al final de una sentencia. 
0 Olvido de la secuencia */ para finalizar un comentario. 
0 Olvido de las dobles comillas al cerrar una cadena. 
o Etc. 

Si una sentencia tiene un error de sintaxis no se traducirá completamente y el programa no se 
ejecutará. Así, por ejemplo, si una línea de programa es 

double radio 

se producirá un error ya que falta el punto y coma (;) después de la letra última "o". Posteriormente se 
explicará el proceso de corrección por parte del programador. 

I 3.4.2. Errores lógicos 

Un segundo tipo de error importante es el error lógico, ya que tal error representa errores del 
programador en el diseño del algoritmo y posterior programa. Los errores lógicos son más difíciles de 
encontrar y aislar ya que no suelen ser detectados por el compilador. 

I 



El lenguaje C: elementos básicos 87 

Suponga, por ejemplo, que una línea de un programa contiene la sentencia 

double peso = densidad * 5.25 * PI * pow(longitud,5)/4.0 

pero resulta que el tercer asterisco (operador de multiplicación) es en realidad un signo + (operador 
suma). El compilador no produce ningún mensaje de error de sintaxis ya que no se ha violado ninguna 
regla de sintaxis y, por tanto, el cornpilador no detecta error y el programa se compilará y ejecutará 
bien, aunque producirá resultados de valores incorrectos ya que la fórmula utilizada para calcular el 
peso contiene un error lógico. 

Una vez que se ha determinado que un programa contiene un error lógico -si es que se encuentra 
en la primera ejecución y no pasa desapercibida al programador- encontrar el error es una de las tareas 
más difíciles de la programación. El depurador (debugger) un programa de software diseñado 
específicamente para la detección, verificación y corrección de errores, ayudará en las tareas de 
depuración. 

Los errores lógicos ocurren cuando un programa es la implementación de un algoritmo defectuoso. 
Dado que los errores lógicos normalmente no producen errores en tiempo de ejecución y no visualizan 
mensajes de error; son más difíciles de detectar porque el programa parece ejecutarse sin contratiempos. 
El único signo de un error lógico puede ser la salida incorrecta de un programa. La sentencia 

total-grados-centigrados = fahrenhei t -a-cent igrddos  * temperatura-cen; 

es una sentencia perfectamente legal en C, pero la ecuación no responde a ningún cálculo válido para 
obtener el total de grados centígrados en una sala. 

Se pueden detectar errores lógicos comprobando el programa en su totalidad, comprobando su salida 
con los resultados previstos. Se pueden prevenir errores lógicos con un estudio minucioso y detallado 
del algoritmo antes de que el programa se ejecute, pero resultará fácil cometer errores lógicos y es el 
conocimiento de C, de las técnicas algorítmicas y la experiencia lo que permitirá la detección de los 
errores lógicos. 

3.4.3. Errores de regresión 

Los errores de regresión son aquellos que se crean accidentalmente cuando se intenta corregir un error 
lógico. Siempre que se corrige un error se debe comprobar totalmente la exactitud (corrección) para 
asegurarse que se fija el error que se está tratando y no produce otro error. Los errores de regresión son 
comunes, pero son fáciles de leer y corregir. Una ley no escrita es que: «un error se ha producido, 
probablemente, por el último código modificadon. 

3.4.4. Mensajes de error 

Los compiladores emiten mensajes de error o de advertencia durante las fases de compilación, de enlace 
o de ejecución de un programa. 

Los mensajes de error producidos durante la compilación se suelen producir, normalmente, por 
errores de sintaxis y suele variar según los compiladores; pero, en general, se agrupan en tres grandes 
bloques: 

Errores fatales. Son raros. Algunos de ellos indican un error interno del compilador. Cuando 
ocurre un error fatal, la compilación se detiene inmediatamente, se debe tomar la acción apropiada 
y a continuación se vuelve a iniciar la compilación. 

O Errores de sintaxis. Son los errores típicos de sintaxis, errores de línea de órdenes y errores de 
acceso a memoria o disco. El compilador terminará la fase actual de compilación y se detiene. 
Advertencias (warning). No impiden la compilación. Indican condiciones que son sospechosas, 
pero son legítimas como parte del lenguaje. 



88 Programación en C. Metodología, algoritmos y estructura de datos 

3.4.5. Errores en tiempo de ejecución 

Existen dos tipos de errores en tiempo de ejecución: aquellos que son detectados por el sistema en 
tiempo de ejecución de C y aquellos que permiten la terminación del programa pero producen resultados 
incorrectos. 

Un error en tiempo de ejecución puede ocurrir como resultado de que el programa obliga a la 
computadora a realizar una operación ilegal, tal como dividir un número por cero, raíz cuadrada de un 
número negativo o manipular datos no válidos o no definidos. Cuando ocurre este tipo de error, la 
computadora detendrá la ejecución de su programa y emitirá (visualizará) un mensaje de diagnóstico tal 
como: 

Divide error, line number * * *  

Si se intenta manipular datos no válidos o indefinidos su salida puede contener resultados extraños. 
Por ejemplo, se puede producir un desbordumiento aritmético cuando un programa intenta almacenar 
un número que es mayor que el tamaño máximo que puede manipular su computadora. 

El programa depurar. c se compila con éxito; pero no contiene ninguna sentencia que asigne un 
valor a la variable x que pueda sumarse a y para producir un valor z, por lo tanto al ejecutarse la 
sentencia de asignación 

z = x + y ;  

se produce un error en tiempo de ejecución, un error de lógica. 

1: / *  archivo depurar 
2: prueba de errores en tiempo de ejecución 
3: * /  
4: #include <stdio.h> 
5: 
6: void main0 
I :  { 
8: / *  Variables locales * /  
9: float x, y, z; 
10: 
11: y = 10.0 
12: z = x + y; / *  valor inesperado: error de ejecución * /  
13: printf("E1 valor de z es = %f\n",z); 
14: 1 

El programa anterior, sin embargo, podría terminar su ejecución, aunque produciría resultados 
incorrectos. Dado que no se asigna ningún valor a x, contendrá un valor impredecible y el resultado de 
la suma será también impredecible. Muchos compiladores inicializan las variables automáticamente a 
cero, haciendo en este caso más difícil de detectar la omisión, sobre todo cuando el programa se 
transfiere a otro compilador que no asigna ningún valor definido. 

Otra fuente de errores en tiempo de ejecución se suele producir por errores en la entrada de datos 
producidos por la lectura del dato incorrecto en una variable de entrada. 

3.5. PRUEBAS 

Los errores de ejecución ocurren después que el programa se ha compilado con éxito y aún se está 
ejecutando. Existen ciertos errores que la computadora sólo puede detectar cuando se ejecuta el 
programa. La mayoría de los sistemas informáticos detectarán ciertos errores en tiempo de ejecución y 
presentarán un mensaje de error apropiado. Muchos errores en tiempo de ejecución tienen que ver con 
los cálculos numéricos. Por ejemplo, si la computadora intenta dividir un número por cero o leer un 
archivo no creado, se produce un error en tiempo de ejecución. 



El lenguaje C: elementos básicos 89 

Es preciso tener presente que el compilador puede no emitir ningún mensaje de error durante la 
ejecución y eso no garantiza que el programa sea correcto. Recuerde que el compilador sólo le indica 
si se escribió bien sintácticamente un programa en C. N o  indica si el programa hace lo que realmente 
desea que haga. Los errores lógicos pueden aparecer -y de hecho aparecerán- por un mal diseño del 
algoritmo y posterior programa. 

Para determinar si un programa contiene un error lógico, se debe ejecutar utilizando datos de 
muestra y comprobar la salida verificando su exactitud. Esta prueba (testing) se debe hacer varias veces 
utilizando diferentes entradas, preparadas - e n  el caso ideal-, por personas diferentes al programador, 
que puedan indicar suposiciones no evidentes en la elección de los datos de prueba. Si cualquier 
combinación de entradas produce salida incorrecta, entonces el programa contiene un error lógico. 

Una vez que se ha determinado que un programa contiene un error lógico, la localización del error 
es una de las partes más difíciles de la programación. La ejecución se debe realizar paso a paso (seguir 
la traza) hasta el punto en que se observe que un valor calculado difiere del valor esperado. Para 
simplificar este seguimiento o traza, la mayoría de los compiladores de C proporcionan un depurador 
integrado' incorporado con el editor, y todos ellos en un mismo paquete de software, que permiten al 
programador ejecutar realmente un programa, línea a línea, observando los efectos de la ejecución de 
cada línea en los valores de los objetos del programa. Una vez que se ha localizado el error, se utilizará 
el editor de texto para corregir dicho error. 

Es preciso hacer constar que casi nunca será posible comprobar un programa para todos los posibles 
conjuntos de datos de prueba. Existen casos en desarrollos profesionales en los que, aparentemente, los 
programas han estado siendo utilizados sin problemas durante años, hasta que se utilizó una 
combinación específica de entradas y ésta produjo una salida incorrecta debida a un error lógico. El 
conjunto de datos específicos que produjo el error nunca se había introducido. 

A medida que los programas crecen en tamaño y complejidad, el problema de las pruebas se 
convierte en un problema de dificultad cada vez más creciente. No importa cuantas pruebas se hagan: 
<<las pruebas nunca se terminan, sólo se detienen y no existen garantías de que se han encontrado y 
corregido todos los errores de un programa». Dijkstra ya predijo a principios de los setenta una máxima 
que siempre se ha de tener presente en la construcción de un programa: <<Las pruebas sólo muestran la 
presencia de errores, no su ausencia. No se puede probar que un programa es correcto (exacto) sólo se 
puede mostrar que es incorrecton. 

3.6. LOS ELEMENTOS DE UN PROGRAMA EN C 

Un programa C consta de uno o más archivos. Un archivo es traducido en diferentes fases. La primera 
fase es el preprocesado, que realiza la inclusión de archivos y la sustitución de macros. El preprocesador 
se controla por directivas introducidas por líneas que contienen # como primer carácter. El resultado 
del preprocesado es una secuencia de tokens. 

3.6.1. Tokens (elementos léxicos de los programas) 

Existen cinco clases de tokens: identificadores, palabras reservadas, literales, operadores y otros 
separadores. 

' Éste es el caso de Borland C++, Builder C++ de Borland/Irnprise, Visual <:++ dc Microsott o los coinpiladores bajo UNIX 
y Lyiiux. Suelen tener un menú Debug o hien una opción »ei)kiq cn cI menú K i L r i .  



90 Programación en C. Metodología, algoritmos y estructura de datos 

3.6.2. Identificadores 

Un ident$cador es una secuencia de caracteres, letras, dígitos y subrayados (J. El primer carácter debe 
ser una letra (algún compilador admite carácter de subrayado). Las letras mayúsculas y minúsculas son 
diferentes. 

nombre-clase Indice 
elementomayor Cantidad-Total 
a Habitacionl20 

DiaMesAnyo 
Fecha-Compra-Casa 
1 

En Borland C/C++ el identificador puede ser de cualquier longitud; sin embargo, el compilador 
ignora cualquier carácter fuera de los 32 primeros. 

C es sensible a las mayúsculas. Por consiguiente, C reconoce como distintos los identificadores ALFA, 
al f a y ALFa. (Le recomendamos que utilice siempre el mismo estilo d escribir sus identificadores.) Un 
consejo que puede servir de posible regla puede ser: 

1. Escribir identificadores de variables en letras minúsculas. 
2. Constantes en mayúsculas. 
3 .  Funciones con tipo de letra mixto: mayúsculdminúscula. 

Reglas básicas de formación de identificadores 
1. Secuencia de letras o dígitos; el primer carácter puede ser una letra o un subrayado 

2. Los identificadores son sensibles a las mayúsculas: 
(compiladores de Borland, entre otros). 

minun es distinto de MiNum 

primeros (ése es el caso de Borland y Microsoft). 

* 
3. Los identificadores pueden tener cualquier longitud, pero sólo son significativos los 32 

4. Los identificadores no pueden ser palabras reservadas, tales como if, switch o else. 

3.6.3. Palabras reservadas 

Una palabra reservada (keyword o resewed word), tal como void es una característica del lenguaje C 
asociada con algún significado especial. Una palabra reservada no se puede utilizar como nombre de 
identificador o función 

void void( ) / *  error * /  

. . .  
int char; / *  error * /  
. . .  

i 

Los siguientes identificadores están reservados para utilizarlos como palabras reservadas, y no se 
deben emplear para otros propósitos. 

a sm enum signed 
auto extern sizeof 
break float static 
case for struct 
char goto switch 
const if typedef 



continue 
default 
do 
double 
else 

El lenguaje C: elementos básicos 

int union 
long un8 igned 
register void 
return vol at i 1 e 
short while 

3.6.4. Comentarios 

Ya se ha expuesto antes que los comentarios en C tienen el formato: 

/ * .  . . * /  

Los comentarios se encierran entre / * y * / pueden extenderse a lo largo de varias líneas. 

/ *  Titulo: Demo-uno por Mr. Martinez * /  

Otra forma, el comentario en dos líneas: 

/ *  Cabecera del programa text-uno 
Autor: J.R. Mazinger * /  

3.6.5. Signos de puntuación y separadores 

Todas las sentencias deben terminar con un punto y coma. Otros signos de puntuación son: 

i % A & *  o -+ =  { } -  
[ I  \ ; '  : < > ? , . / I '  

Los separadores son espacios en blanco, tabulaciones, retornos de carro y avances de línea. 

3.6.6. Archivos de cabecera 

Un archivo de cabecera es un archivo especial que contiene declaraciones de elementos y funciones de 
la biblioteca. Para utilizar macros, constantes, tipos y funciones almacenadas en una biblioteca, un 
programa debe utilizar la directiva #include para insertar el archivo de cabecera correspondiente. Por 
ejemplo, si un programa utiliza la función pow que se almacena en la biblioteca matemática math.h, 
debe contener la directiva 

#include <math.h> 

para hacer que el contenido de la biblioteca matemática esté disponible a un programa. La mayoría de 
los programas contienen líneas como ésta al principio, que se incluyen en el momento de compilación. 

#include <stdio.h> 

#include "stdio. h" 
/ *  o bien * /  

3.7. TIPOS DE DATOS EN C 

C no soporta un gran número de tipos de datos predefinidos, pero tiene la capacidad para crear sus 
propios tipos de datos. Todos los tipos de datos simples o básicos de C son, esencialmente, números. Los 
tres tipos de datos básicos son: 



92 Programación en C. Metodología, algoritmos y estructura de datos 

enteros; 
números de coma flotante (reales); 

0 caracteres. 

La Tabla 3.1 recoge los principales tipos de datos básicos, sus tamaños en bytes y el rango de valores 
que puede almacenar. 

Tabla 3.1. Tipos de datos simples de C. 

Tipo Ejemplo Tamaño Rango 
en bytes Mínimo..Máximo 

char 'C' I 0. .255 
short -15 2 -128.. 127 
int 1024 2 -32768..32767 
unsigned int 42325 2 0.. 65535 

float 10.5 4 3.4*(10 ) .  .3.4*(10 ) 

double O. 00045 8 1.7*(10 )..1.7*(10 ) 

long double le-8 8 igual que double 

long 262144 4 -2147483648. .2147483637 

Los tipos de datos fundamentales en C son: 

o enteros: (números completos y sus negativos), de tipo int. 
variantes de enteros: tipos short, long y unsigned. 

o reales: números decimales, tipos float, double o long double. 
o caracteres: letras, dígitos, símbolos y signos de puntuación, tipo char. 

char, int , float y double son palabras reservadas, o más específicamente, especificadores de 
tipos. Cada tipo de dato tiene su propia lista de atributos que definen las características del tipo y pueden 
variar de una máquina a otra. Los tipos char, i nt y doubl e tienen variaciones o modijcadores de 
tipos de datos, tales como s h o r t ,  long, signed y unsigned, para permitir un uso más eficiente de 
los tipos de datos. 

Existe el tipo adicional enum (constante de enumeración (Capítulo 9). 

3.7.1. Enteros (int) 

Probablemente el tipo de dato más familiar es el entero, o tipo int. Los enteros son adecuados para 
aplicaciones que trabajen con datos numéricos. Los tipos enteros se almacenan internamente en 2 bytes 
(o  16 bits) de memoria. La Tabla 3.2 resume los tres tipos enteros básicos, junto con el rango de valores 
y el tamaño en bytes usual, dependiendo de cada máquina. 

Tabla 3.2. Tipos de datos enteros. 

Tipo C Rango de valores Uso recomendado 

int -32.768 . .  +32.767 Aritmética de enteros, bucles for, conteo. 
unsigned int 0 . . 65.535 Conteo, bucles for, índices. 
short int -128 . .  +127 Aritmética de enteros, bucles for, conteo. 



El lenguaje C: elementos básicos 93 

Declaración de variables 

La forma más simple de una declaración de variable en C es poner primero el tipo de dato y a continua- 
ción el nombre de la variable. Si se desea dar un valor inicial a la variable, éste se pone a continuación. 
El formato de la declaración es: 

< t i p o  d e  d a t o >  <nombre  d e  v a r i a b l e >  = < v a l o r  i n i c i a l >  

Se pueden también declarar múltiples variables en la misma línea: 

<t ipo-de -da to> <nom-variz, cnom-var2> . . . <nom-varn> 

Así, por ejemplo, 

i n t  l ong i tud ;  i n t  v a l o r  = 9 9 ;  
i n t  v a l o r l ,  va lo r2 ;  
i n t  num-parte = 1 1 4 1 ,  num-items = 4 5 ;  

Los tres modificadores (unsigned, s h o r t ,  i n t )  que funcionan con int (Tabla 3 . 3 )  varían el 
rango de los enteros. 

En aplicaciones generales, las constantes enteras se escriben en decimal o base I O ;  por ejemplo, 
1 0 0, 2 0 0 o 4 5 O. Para escribir una constante sin signo, se añade la letra u (o bien u). Por ejemplo, para 
escribir 4 0 . O 0 0, escriba 4 0 O 0 Ou. 

Si se utiliza C para desarrollar software para sistemas operativos o para hardware de computadora, 
será Útil escribir constantes enteras en octal (base 8) o hexadecimal (base 16). Una constante octal es 
cualquier número que comienza con un O y contiene dígitos en el rango de 1 a 7. Por ejemplo, 0377 es 
un número octal. Una constante hexadecimal comienza con Ox y va seguida de los dígitos O a 9 o las 
letras A a F (o  bien a a f ) .  Por ejemplo, OxFF16 es una constante hexadecimal. 

La Tabla 3.3 muestra ejemplos de constantes enteras representadas en sus notaciones (bases) 
decimal, hexadecimal y octal. 

Cuando el rango de los tipos enteros básicos no es suficientemente grande para sus necesidades, se 
consideran tipos enteros largos. La Tabla 3.4 muestra los dos tipos de datos enteros largos. Ambos tipos 
requieren 4 bytes de memoria (32 bits) de almacenamiento. Un ejemplo de uso de enteros largos es: 

long med idami l ime t ros ;  

unsigned long d i s t a n c i a m e d i a ;  

Tabla 3.3. Constantes enteras en tres bases diferentes. 

Base 10 
De c i m a 1 

Base 16 
Hexadecimal (Hex) 

Base 8 
Octal 

8 
1 0  
1 6  
65536 
24 
1 7  

0x08 
OxOA 
ox10 
Ox100 00 
0x18 
0x11 

O 1 0  
012 
020 
0200000 
030 
0 2 1  

Si se desea forzar al compilador para tratar sus constantes como iong, añada la letra L, (o  bien 1) a 
su constante. Por ejemplo, 

long numeros-grandes = 4 0 0 0 0 L ;  



94 Programación en C. Metodología, algoritmos y estructura de datos 

Tabla 3.4. Tipos de datos enteros largos. 

Tipo C Rango de valores 

long 
unsigned long 

-2147483648 . .  2147483647 
O . .  +4294967295 

3.7.2. Tipos de coma flotante (float/double) 

Los tipos de datos de coma (punto) flotante representan números reales que contienen una coma (un 
punto) decimal, tal como 3.14159, o números muy grandes, tales como 1.85* IO”. 

La declaración de las variables de coma flotante es igual que la de variables enteras. Así, un ejemplo 
es el siguiente: 

float valor; / *  declara und. variable real * /  
float valorl, valor2; / *  declara varias variables de coma flotante * /  
float valor = 99.99; / *  asigna el valor 99.99 a la variable valor * /  

C soporta tres formatos de coma flotante (Tabla 3.5). El tipo float requiere 4 bytes de memoria, 
double requiere 8 bytes y long double requiere 10 bytes (Borland C). 

Tabla 3.5. Tipos de datos en coma flotante (Borland C). 

Tipo C Rango de valores Precisión 

float 3.4 X 10 ”’ . . .  3.4 x 10“ 7 dígitos 
double 1.7 x 10 . . .  1.7 x 10 15 dígitos 
long double 3.4 x 10 ’ . . .  1.1 X 10”’ 19 dígitos 

Ejemplos 

float f; / *  definición de la variable f * /  
f = 1.65; / *  asignación a f * /  
printf (“f: %f\n“, f) ; / *  visualización de f:5.65 * /  
double h; / *  definición de la variable de tipo double h * /  
h = 0.0; / *  asignación de 0.0 a h * /  

3.7.3. Caracteres (char) 

Un carácter es cualquier elemento de un conjunto de caracteres predefinidos o alfabeto. La mayoría de 
las computadoras utilizan el conjunto de caracteres ASCII. 

C procesa datos carácter (tales como texto) utilizando el tipo de dato char. En unión con la 
estructura array, que se verá posteriormente, se puede utilizar para almacenar cadenas de caracteres 
(grupos de caracteres). Se puede definir una variable carácter escribiendo: 

char dato-car; 
char letra = ‘A‘; 
char respuesta = ‘ S I ;  

Internamente, los caracteres se almacenan como números. La letra A, por ejemplo, se almacena 
internamente como el número 65, la letra B es 66, la letra c es 67, etc. El tipo char representa valores 
en el rango -128 a +I27 y se asocian con el código ASCII. 



1 
I 
I 

El lenguaje C: elementos básicos 95 

Dado que el tipo char almacena valores en el rango de -128 a +127, C proporciona el tipo 
unsigned char para representar valores de O a 255 y así representar todos los caracteres ASCII. 

Puesto que los caracteres se almacenan internamente como números, se pueden realizar operaciones 
aritméticas con datos tipo char. Por ejemplo, se puede convertir una letra minúscula a a una letra 
mayúscula A ,  restando 32 del código ASCII. Las sentencias para realizar la conversión: 

char car-uno = 'a'; 

car-uno = car-uno - 32; 

Esto convierte a (código ASCII 97) a A (código ASCII 65). De modo similar, añadiendo 32 convierte 
el carácter de letra mayúscula a minúscula: 

car-uno = car-uno + 32; 
Como los tipos char son subconjuntos de los tipos enteros, se puede asignar un tipo char a un entero. 

int suma = O; 
char valor; 

scanf ("%c", &valor) ; / *  €unción estándar de entrada * /  
suma = suma + valor; / *  operador . . .  * /  

Existen caracteres que tienen un propósito especial y no se pueden escribir utilizando el método 
normal. C proporciona secuencias de escape. Por ejemplo, el literal carácter de un apóstrofe se puede 
escribir como 

Por ejemplo, 

. . .  

' \ "  

y el carácter nueva línea 

\n 

La Tabla 3.7 enumera las diferentes secuencias de escape de C. 

3.8. EL TIPO DE DATO LÓGICO 

Los compiladores de C que siguen la norma ANSI no incorporan el tipo de dato lógico cuyos valores 
son «verdadero» ( t rue)  y «falso» (fialse). El lenguaje C simula este tipo de dato tan importante en la 
estructuras de control ( if , while.. .). Para ello utiliza el tipo de dato int . C interpreta todo valor 
distinto de O como «verdadero» y el valor O como «falso». De esta forma se pueden escribir expresiones 
lógicas de igual forma que en otros lenguajes de programación se utiliza true y false.  Una expresión 
lógica que se evalúa a «O» se considera falsa; una expresión lógica que se evalúa a 1 (o  valor entero 
distinto de O) se considera verdadera. 

Ejemplo 

int bisiesto; 
bisiesto = 1; 

int encontrado, bandera; 

Dadas estas declaraciones, las siguientes sentencias son todas válidas 

if (encontrado) . . .  ( *  sentcncia de selección * /  



96 Programación en C. Metodología, algoritmos y estructura de datos 

indicador = O; / *  indicador toma el valor falso * /  
indicador = suma > 10; / *  indicador toma el valor l(true) si suma es 

mayor que 10, en caso contrario, O * /  

Valor distinto de cero representatrue (verdadero) 
O representa false (falso) 

En C, se puede definir un tipo que asocia valores enteros constantes con identificadores, es el tipo 
enumerado. Para representar los datos lógicos en C, el sistema usual es definir un tipo enumerado 
Boolean con dos identificadores false (valor O) y true (valor I) de la forma siguiente: 

enum Boolean { FALSE, TRUE } ;  

Esta declaración hace a Boolean un tipo definido por el usuario con literales o identificadores 
(valores constantes) TRUE y FALSE. 

* 

Ejercicio 3.1 

Si desea simular el tipo lógico pero al estilo de tipo incorporado propio, se podría conseguir 
construyendo un archí vo. h (boo1 ean) con constantes con nombre TRUE y FALSE, tal como 

/ *  archivo: boo1ean.h * /  
#ifndef BOOLEAN-H 
#define BOOLEAN-H 
typedef int Boolean; 
const int TRUE = 1; 
const int FALSE = O; 
#endif / *  BOOLEAN-H * /  

Entonces, basta con incluir el archivo "boolean. h" y utilizar Boolean como si fuera un tipo de 

Si desea utilizar las letras minúsculas para definir boolean, true y false , se puede utilizar esta 
dato incorporado con los literales TRUE y FALSE como literales lógicos o booleanos. 

versión del archivo de cabecera boolean. h. 

/ *  archivo: boo1ean.h * /  
#ifndef BOOLEAN-H 
#define BOOLEAN-H 
typedef int boolean; 
const int true = 1; 
const int false = O; 
#endif / *  BOLEAN-H * /  

3.8.1. Escritura de valores lógicos 

La mayoría de las expresiones lógicas aparecen en estructuras de control que sirven para determinar la 
secuencia en que se ejecutan las sentencias C. Raramente se tiene la necesidad de leer valores lógicos 
como dato de entrada o de visualizar valores lógicos como resultados de programa. Si es necesario, 
se puede visualizar el valor de la variable lógica utilizando la función para salida print f ( ) . Así, si 
encontrado es false, la sentencia 

printf("E1 valor de encontrado es %d\n",encontrado); 

visualizará 

El valor de encontrado es O 



3.9. CONSTANTES 

En C existen cuatro tipos de constantes: 

o constantes literales, 
o constantes definidas, 
o constantes enumeradas, 
o constantes declaradas. 

El lenguaje C: elementos básicos 97 

I 

\ 

. 
Las constantes literales son las más usuales; toman valores tales como 4 5 .3 2 5 6 4, 2 2 2 o bien 

"Introduzca s u s  datos" que se escriben directamente en el texto del programa. Las constantes 
definidas son identificadores que se asocian con valores literales constantes y que toman determinados 
nombres. Las constantes declaradas son como variables: sus valores se almacenan en memoria, pero no 
se pueden modificar. Las constantes enumeradas permiten asociar un identificador, tal como Color, 
con una secuencia de otros nombres, tales como A z u l ,  Verde, R o j o  y Amari 1 l o .  

3.9.1. Constantes literales 

Las constantes literales o constantes, en general, se clasifican también en cuatro grupos, cada uno de los 
cuales puede ser de cualquiera de los tipos: 

o constantes enteras, 
0 constantes caracteres, 
0 constantes de coma flotante, 
o constantes de cadena. 

Constantes enteras 

La escritura de constantes enteras requiere seguir unas determinadas reglas: 

0 No utilizar nunca comas ni otros signos de puntuación en números enteros o completos. 

123456 en lugar de 123.456 

0 Para forzar un valor al tipo long, terminar con una letra L o 1. Por ejemplo, 

1 O 2 4 es un tipo entero 1 O 2 4 I, es un tipo largo ( long ) 

o Para forzar un valor al tipo unsigned, terminarlo con una letra mayúscula u. Por ejemplo, 4 3 5 2U. 
0 Para representar un entero en octal (base 8), éste debe de estar precedido de O. 

Formato decimal 123 
Formato octal O 7 7'7 (están precedidas de la cifra O )  

o Para representar un entero en hexadecimal (base 16), este debe de estar precedido de Ox. 

Formato hexadecimal OXFF3A (están precedidas de "ox" o bien "ox" ) 
Se pueden combinar sufijos L ( 1 ) , que significa long  (largo), o bien u (u) , que significa 

uns igned  (sin signo). 

3456UL 

Constantes reales 

Una constante flotante representa un número real; siempre tienen signo y representan aproximaciones 
en lugar de valores exactos. 



98 Programación en C. Metodología, algoritmos y estructura de datos 

8 2 . 3 4 7  . 6 3  8 3 .  4 7 e- 4  1.25E7 6l.e+4 

La notación científica se representa con un exponente positivo o negativo. 

2 . 5 E 4  equivale u 
5 .435E-3  equivale a 

Existen tres tipos de constantes: 

float 4 bytes 
double 8 bytes 
long double 10 bytes 

2 5 0 0 0  
O .  0 0 5 4 3 5  

Constantes carácter 

Una constante carácter (char) es un carácter del código ASCII encerrado entre apóstrofes. 

'A' 'b' ' C '  

Además de los caracteres ASCII estándar, una constante carácter soporta caracteres especiales que 
no se pueden representar utilizando su teclado, como, por ejemplo, los códigos ASCII altos y las 
secuencias de escape. (El Apéndice B recoge un listado de todos los caracteres ASCII.) 

Así, por ejemplo, el carácter sigma (C) - c ó d i g o  ASCII 228, hex E4- se representa mediante el 
prefijo \x y el número hexadecimal del código ASCII. Por ejemplo, 

char sigma = ' \ x E 4 ' ;  

Este método se utiliza para almacenar o imprimir cualquier carácter de la tabla ASCII por su número 
hexadecimal. En el ejemplo anterior, la variable sigma no contiene cuatro caracteres sino únicamente el 
símbolo sigma. 

Tabla 3.6. Caracteres secuencias (códigos) de escape. 

Código de escape Significado Códigos ASCII 
Dec Hex 

' \n' 

'\r' 

'\t' 

' \ V I  

'\a' 
'\b' 
'\f$ 

' \ \ I  

' \ "  
I \ I 1  I 

I \ ? '  

' \ 0 0 0 '  

nueva línea 
retorno de carro 
tabulación 
tabulación vertical 
alerta (pitido sonoro) 
retroceso de espacio 
avance de página 
barra inclinada inversa 
comilla simple 
doble comilla 
signo de interrogación 
número octal 

13 10 
13 
9 
I 1  
7 
8 
12 
92 
39 
34 
63 
Todos 

OD OA 
OD 
09 
OB 
07 
O8 
oc 
5 c  
27 
22 
3F 
Todos 

I \xhh' número hexadecimal Todos Todos 

Un carácter que se lee utilizando una barra oblicua (\) se llama secuencia o código de escape. La 
Tabla 3.6 muestra diferentes secuencias de escape y su significado. 



/ *  Programa: Pruebas códigos de escape * I  
#include <stdio.h> 

I 

El lenguaje C: elementos básicos 99 l 

int main0 

char alarma = '\a'; / *  alarma * /  
char bs = '\b'; / *  retroceso de espacio * /  
printf ( "%c %c" , alarma, bs) ; 
return O; 

1 

Aritmética con caracteres C 

Dada la correspondencia entre un carácter y su código ASCII, es posible realizar operaciones aritméticas 
sobre datos de caracteres. Observe el siguiente segmento de código: 

char c; 
c = ' T '  t 5; / *  suma 5 al carácter ASCII * /  

Realmente lo que sucede es almacenar Y en c. El valor ASCII de la letra T es 84, y al sumarle 5 
produce 89, que es el código de la letra Y. A la inversa, se pueden almacenar constantes de carácter en 
variables enteras. Así, 

int j = 'p' 

No pone una letra p en j , sino que asigna el valor 80 -ódigo ASCII de p- a la variable j . 
Observar este pequeño segmento de código: 

int m ;  

Está convirtiendo una letra mayúscula en su correspondiente minúscula. Para lo cual suma el 

m = m + 'aI-'A'; 

desplazamiento de las letras mayúsculas a las minúsculas ( ' a ' - ' A ' ) . 

Constantes cadena 

Una constante cadena (también llamada literal cadena o simplemente cadena) es una secuencia de 
caracteres encerrados entre dobles comillas. Algunos ejemplos de constantes de cadena son: 

"123" 
"12 de octubre 1492" 
"esto es una cadena" 

Se puede escribir una cadena en varias líneas, terminando cada línea con ''Y' 

"esto es una cadena\ 
que tiene dos lineas" 

Se puede concatenar cadenas, escribiendo 

I 

que equivale a 

' ABCDEFGHI JKL" 



100 Programación en C. Metodología, algoritmos y estructura de datos 

En memoria, las cadenas se representan por una serie de caracteres ASCII más un O o nulo. El 
carácter nulo marca el final de la cadena y se inserta automáticamente por el compilador C al final de 
las constantes de cadenas. Para representar valores nulos, C define el símbolo NULL como una constante 
en diversos archivos de cabecera (normalmente STDEF . H ,  STDIO . H, STDLIB . H y STRING. H). Para 
utilizar NULL en un programa, incluya uno o más de estos archivos en lugar de definir NULL con una 
línea tal como 

#define NULL O 

Recuerde que una constante de caracteres se encierra entre comillas simples (apóstrofe), y las 

'Z' "z" 

El primer z es una constante carácter simple con una longitud de I ,  y el segundo "z" es una 
constante de cadena de caracteres también con la longitud 1. La diferencia es que la constante de cadena 
incluye un cero (nulo) al final de la cadena, ya que C necesita conocer dónde termina la cadena, y la 
constante carácter no incluye el nulo ya que se almacena como un entero. Por consiguiente, no puede 
mezclar constantes caracteres y cadenas de caracteres en su programa. 

constantes de cadena encierran caracteres entre dobles comillas. Por ejemplo, 

3.9.2. Constantes definidas (simbólicas) 
! 

I 
Las constantes pueden recibir nombres simbólicos mediante la directiva #define. 

#define NUEVALINEA \n 
#define PI 3.141592 
#define VALOR 54 

C sustituye los valores \n, 3.141592 y 54 cuando se encuentra las constantes simbólicas 
NUEVALINEA, PI y VALOR. Las líneas anteriores no son sentencias y, por ello, no terminan en punto 
y coma. 

printf ("El valor es %dNUEVALINEA", VALOR) ; 

Escribe en pantalla la constante VALOR. Realmente, el compilador lo que hace es sustituir en el 
progama todas las ocurrencias de VALOR por 54,  antes de analizar sintácticamente el programa fuente. 

3.9.3. Constantes enumeradas 

Las constantes enumeradas permiten crear listas de elementos afines. Un ejemplo típico es una constante 
enumerada de lista de colores, que se puede declarar como: 

enum Colores {Rojo, Naranja, Amarillo, Verde, Azul, Violeta}; 

Cuando se procesa esta sentencia, el compilador asigna un valor que comienza en O a cada elemento 
enumerado; así, R o  j o equivale a O, Naranja es 1, etc. El compilador enumera los identificadores por 
usted. Después de declarar un tipo de dato enumerado, se pueden crear variables de ese tipo, como con 
cualquier otro tipo de datos. Así, por ejemplo, se puede definir una variable de tipo enum colores. 

enum Colores Colorfavorito = Verde; 

Otro ejemplo puede ser: 

enum Boolean { False, True 1 ;  

que asignará al elemento False el valor O y a True el valor 1. 



r - --- 

El lenguaje C: elementos básicos 101 

Para crear una variable de tipo lógico declarar: 

enum Boolean Interruptor = True; 

Es posible asignar valores distintos de los que les corresponde en su secuencia natural 

enum LucesTrafico {Verde, Amarillo = 10, Rojo}; 

Al procesar esta sentencia, el compilador asigna el valor O al identificador verde, 1 O al 
i d e n t i f i c a d o r h a r i l l o  y 11 a R o j o .  

3.9.4. Constantes declaradas const y volatile 

El cualificador const permite dar nombres simbólicos a constantes a modo de otros lenguajes, como 
Pascal. El formato general para crear una constante es: 

CQXIS~ tipo nombre = va lor ;  

Si se omite tipo, C utiliza i n t  (entero por defecto) 

const int Meses=12; / *  Meses es constante simbólica de 

const char CARACTER='@'; 
const int OCTALz0233; 
const char CADENA [ ] ="Curso de C" ; 

C soporta el calificador de tipo variable const. Especifica que el valor de una variable no se puede 
modificar durante el programa. Cualquier intento de modificar el valor de la variable definida con 
const  producirá un mensaje de error. 

const int semana = 7; 
const char CADENA [ ] =  "Borland C 3.013.1 Guía de referencia"; 

La palabra reservada voiat iie actúa como const, pero su valor puede ser modificado no sólo por 
el propio programa, sino también por el hardware o por el software del sistema. Las variables volátiles, 
sin embargo, no se pueden guardar en registros, como es el caso de las variables normales. 

Diferencias entre const y #define 

Las definiciones const especifican tipos de datos, terminan con puntos y coma y se inicializan como 
las variables. La directiva #define no especifica tipos de datos, no utilizan el operador de asignación 
(=) y no termina con punto y coma. 

Ventajas de const sobre #define 

En C casi siempre es recomendable el uso de const en lugar de #define. Además de las ventajas ya 
enunciadas se pueden considerar otras: 

0 El compilador, normalmente, genera código más eficiente con constantes const . 
0 Como las definiciones especifican tipos de datos, el compilador puede comprobar inmediatamente 

si las constantes literales en las definiciones de const están en forma correcta. Con #define el 
compilador no puede realizar pruebas similares hasta que una sentencia utiliza el identificador 
constante, por lo que se hace más difícil la detección de errores. 



102 Programación en C. Metodología, algoritmos y estructura de datos 

Desventaja de const sobre #define 

Los valores de los símbolos de const ocupan espacio de datos en tiempo de ejecución, mientras que 
#define sólo existe en el texto del programa y su valor se inserta directamente en el código compilado. 
Los valores const  no se pueden utilizar donde el compilador espera un valor constante, por ejemplo 
en la definición de un array. Por esta razón, algunos programadores de C siguen utilizando #define en 
lugar de const. 

Sintaxis de const 
cons t tipoDato nombreconstan t e = v a l  orCons tan t e; 

const unsigned DiasDeSemana = 7; 
const HorasDelDia = 24; 

3.10. VARIABLES 

En C una variable es una posición con nombre en memoria donde se almacena un valor de un cierto tipo 
de dato. Las variables pueden almacenar todo tipo de datos: cadenas, números y estructuras. Una 
constante, por el contrario, es una variable cuyo valor no puede ser modificado. 

Una variable típicamente tiene un nombre (un identificador) que describe su propósito. Toda variable 
utilizada en un programa debe ser declarada previamente. La definición en C debe situarse al principio 
del bloque, antes de toda sentencia ejecutable. Una definición reserva un espacio de almacenamiento en 
memoria. El procedimiento para definir (crear) una variable es escribir el tipo de dato, el identificador 
o nombre de la variable y, en ocasiones, el valor inicial que tomará. Por ejemplo, 

char Respuesta; 

significa que se reserva espacio en memoria para Respuesta, en este caso, un carácter ocupa un solo 
byte. 

El nombre de una variable ha de ser un identificador válido. Es frecuente, en la actualidad, utilizar 
subrayados en los nombres, bien al principio o en su interior, con objeto de obtener mayor legibilidad 
y una correspondencia mayor con el elemento del mundo real que representa. 

salario dias-de-semana edad-alumno - fax 

3.10.1. Declaración 

Una declaración de una variable es una sentencia que proporciona información de la variable al 
cornpilador C. Su sintaxis es: 

t i p o  var iab l e  

tipo es el nombre de un tipo de dato conocido por el C 
variable es un identificador (nombre) válido en C. 

Ejemplo 
long dNumero; 
double HorasAcumuladas; 
float HorasPorSemana; 
float NotaMedia; 
shor t  Diasemana; 



El lenguaje C: elementos básicos 103 

Es preciso declarar las variables antes de utilizarlas. Se puede declarar una variable al principio de 
un archivo o bloque de código al principio de una función. 

#include <stdio.h> / *  variable al principio del archivo * /  

int MiNumero; 

int main() 
i 
printf (''¿Cuál es su número favorito?') ; 
scanf ("%d", &MiNumero) ; 
return O; 

} 

/*Variable al principio de una función . 
Al principio de la función main()*/ 

. . .  

int main() 
{ 

i n t  i; 
int j; 

/*Variable al principio de un bloque. 
Al principio de un bloque for*/ 

. . .  

int main() 
{ 
int i; 

t 
double suma; 
. . .  

1 
. . .  

} 

En C las declaraciones se han de situar siempre al principio del bloque. Su ámbito es el bloque en 
el que están declaradas. 

~~ ~ 

Ejemplo 

/ *  Distancia a la luna en kilometros * /  

#include <stdio.h> 

int main ( ) 



104 Programación en C. Metodología, algoritmos y estructura de datos 

{ 
const int luna=238857; / *  Distancia en millas * /  
float luna-kilo; 
printf("Distancia a la Luna %d millac\n",luna); 
luna-kilo = luna"1.609; / *  una m i l l a  = 1.609 kilómetros * /  
printf("En kilómetros es %fKm.\n",luna-kilo); 
return O; 

Ejemplo 3.3 

Este ejemplo muestra cómo una variable puede ser declarada al inicio de cualquier bloque de un 
programa C. 

#include <stdio.h> 
/ *  Diferentes declaraciones * /  
int main( ) 
t 
int x, yl; / *  declarar a las variables x e y1 en la función main0 * /  
x = 75; 
y1 = 89; 
if (x > 10) 

int y2 = 50; / *  declarar e inicializa a la variable y2 en el 
bloque if * /  

y1 = yl+y2; 
1 
printf("x = %d, y1 = %d\n",x,yl); 
return O; 

i 

3.10.2. Inicialización de variables 

En algunos programas anteriores, se ha proporcionado un valor denominado valor inicial, a una variable 
cuando se declara. El formato general de una declaración de inicialización es: 

tipo nombre-varíabl e = expresión 

expresión es cualquier expresión válida cuyo valor es del mismo tipo que tipo. 

ia declara y proporciona un valor inicial a una variable. 

Las variables se pueden inicializar a la vez que se declaran, o bien, inicializarse después de la 
declaración. El primer método es probablemente el mejor en la mayoría de los casos, ya que combina 
la definición de la variable con la asignación de su valor inicial. 

char respuesta = 'S'; 
int contador = 1; 
float peso = 156.45; 
int anyo = 1993; 

Estas acciones crean variables respuesta, 
memoria los valores respectivos situados a sy derecha. 

contador, peso y anyo, que almacenan en 
I 



El lenguaje C: elementos básicos 105 

El segundo método consiste en utilizar sentencias de asignación diferentes después de definir la 

char barra; 
barra = ' / I ;  

variable, como en el siguiente caso: 

3.10.3. Declaración o definición 

La diferencia entre declaración y definición es sutil. Una declaración introduce un ombre de una 
variable y asocia un tipo con la variable. Una definición es una declaración que asigna simultáneamente 
memoria a la variable. 

double x; / *  declara el nombre de la variable x de tipo double * /  
char c-var; / *  declara c-var de tipo char * /  
int i; / *  definido pero no inicializado * /  
int i = O ;  / *  definido e inicializado a cero.*/ 

3.1 1. DURACIÓN DE UNA VARIABLE 

Dependiendo del lugar donde se definan las variables de C, éstas se pueden utilizar en la totalidad del 
programa, dentro de una función o pueden existir sólo temporalmente dentro de un bloque de una 
función. La zona de un programa en la que una variable está activa se denomina, normalmente, ámbito 
o alcance («scope»). 

El ámbito (alcance) de una variable se extiende hasta los límites de la definición de su bloque. Los 
tipos básicos de variables en C son: 

variables locales; 
variables globules; 
variables dinámicas. 

3.11.1. Variables locales 

Las variables locales son aquéllas definidas en el interior de una función y son visibles sólo en esa 
función específica. Las reglas por las que se rigen las variables locales son: 

I .  En el interior de una función, una variable local no puede ser modificada por ninguna sentencia 
externa a la función. 

2. Los nombres de las variables locales no han de ser Únicos. Dos, tres o más funciones pueden 
definir variables de nombre Interruptor: Cada variable es distinta y pertenece a la función en que 
está declarada. 

3 .  Las variables locales de las funciones no existen en memoria hasta que se ejecuta la función. 
Esta propiedad permite ahorrar memoria, ya que permite que varias funciones compartan la 
misma memoria para sus variables locales (pero no a la vez). 

Por la razón dada en el punto 3, las variables locales se llaman también automáticas o auto, ya que 
dichas variables se crean automáticamente en la entrada a la función y se liberan también automáticamente 
cuando se termina la e.jecución de la función. 

#include <stdio.h> 

int main() 



106 Programación en C. Metodología, algoritmos y estructura de datos 

i 
int a, b, c, suma, numero; /*vdriables locales * /  

printf ( "Cuantos números a sumar: " )  ; 
scanf ("%d" , &numero) ; 

suma = a + b + c; 

return O; 
. . .  

I 

3.1 1.2. Variables globales 

Las variables globales son variables que se declaran fuera de la función y por defecto (omisión) son 
visibles a cualquier función, incluyendo main ( ) . 

#include <stdio.h> 

int a, b, c; / *  declaración de variables globales * /  

i n t  main() 
i 

int valor; / *  declaración de variable local * /  
print f ("Tres valores : 'I ) ; 
scanf("%d %d %d",&a,&b,&c); / *  d,b,c variables globales * /  
valor = a+b+c; 

Todas las variables locales desaparecen cuando termina su bloque. Una variable global es visible 
desde el punto en que se define hasta el final del programa (archivo fuente). 

La memoria asignada a una variable global permanece asignada a través de la ejecución del 
programa, tomando espacio válido según se utilice. Por esta razón, se debe evitar utilizar muchas 
variables globales dentro de un programa. Otro problema que surge con variables globales es que una 
función puede asignar un valor específico a una variable global. Posteriormente, en otra función, y por 
olvido, se pueden hacer cambios en la misma variable. Estos cambios dificultarán la localización de 
errores. 

3.1 1.3. Variables dinámicas 

Las variables dinbmicns tienen características que en algunos casos son similares tanto a variables 
locales como a globales. AI igual que una variable local, una variable dinámica se crea y libera durante 
la ejecución del programa. La dferenciu entre unu vuriable local y una variable dinámica es que la 
variable dinámica se crea tras su petición (en vez de automáticamente, como las variables locales), es 
decir, a su voluntad, y se libera cuando ya no se necesita. AI igual que una variable global, se pueden 
crear variables dinámicas que son accesibles desde múltiples funciones. Las variables dinámicas se 
examinan en detalle en el capítulo de punteros (Capítulo 1 O ) .  



El lenguaje C: elementos básicos 107 

En el segmento de código C siguiente, Q es una variable global por estar definida fuera de las 
funciones y es accesible desde todas las sentencias. Sin embargo, las definiciones dentro de main, como 
A, son locules a main. Por consiguiente, sólo las sentencias interiores a main pueden utilizar A. 

#include <stdio.hz 
int Q; Alcance o ámbito glohul 

int main() 
i 

Q, variable global 

rnt A; Locul u main 
A, variable local 

A = 124; 
Q = 1; 

{ 
int B; Primer suhnivel en main 

B, variable local 
B = 124; 
A = 457; 
Q = 2; 

i 
int C; Suhnivel más interno de main 

C, variable local 
C = 124; 
B = 457; 
A = 788; 
Q = 3; 

1 

3.12. ENTRADAS Y SALIDAS 

Los programas interactúan con el exterior, a través de datos de entrada o datos de salida. La biblioteca 
C proporciona facilidades para entrada y salida, para lo que todo programa deberá tener el archivo de 
cabecera stdio . h . En C la entrada y salida se lee y escribe de los dispositivos estándar de entrada y 
salida, se denominan s t d i n  y stdout respectivamente. La salida, normalmente, es a pantalla del 
ordenador, la entrada se capta del teclado. 

En el archivo stdio . h están definidas macros, constantes, variables y funciones que permiten 
intercambiar datos con el exterior. A continuación se muestran las más habituales y fáciles de utilizar. 

3.12.1. Salida 

La salida de datos de un programa se puede dirigir a diversos dispositivos, pantalla, impresora, archivos. 
La salida que se trata a continuación va a ser a pantalla, además será formateada. La función 
print f ( ) visualiza en la pantalla datos del programa, transforma los datos, que están en representación 
binaria, a ASCII según los códigos transmitidos. Así, por ejemplo, 

suma = O; 
suma = suma+lO; 
printf ("%s $d" , "Suma = 'I, suma) ; 

Y 



108 Programación en C. Metodología, algoritmos y estructura de datos 

visualiza 
Suma = 1 0  

El número de argumentos de p r i n t  f ( ) es indefinido, por lo que se pueden trasmitir cuantos datos 

1 = 5  j = 12 c = 'A' n = 40.791512 

se desee. Así, suponiendo que 

la sentencia 
p r i n t f  ("%d %d %c % f " ,  I ,  J , c , n )  ; 

visualizará en pantalla 
5 12 A 40.791512 

La forma general que tiene la función printf ( ) 

printf (cadena-de-control, datol, dato2, . . .  ) 
c a d e n a - d e - c o n t r o l  
d a  to1 , d a  t o2 . . . variables, constantes, datos de salida. 

contiene los tipos de los datos y forma de mostrarlos. 

print f ( ) convierte, da forma de salida a los datos y los escribe en pantalla. La cadena de control 
contiene códigos de formato que se asocian uno a uno con los datos. Cada código comienza con el 
carácter %, a continuación puede especificarse el ancho mínimo del dato y termina con el carácter de 
conversión. Así, suponiendo que 

1 = 11 J = 12 c = 'A' n = 40.791512 
p r i n t f  ("%x %3d %c % . 3 f " , i ,  j , c , n ) ;  

visualizará en pantalla 
B 12 A 40.792 

El primer dato es 11 en hexadecimal ( %x ) , el segundo es el número entero 1 2  en un ancho de 3 ,  
le sigue el carácter A y, por Último, el número real n redondeado a 3 cifras decimales ( % . 3 f ) . Un 
signo menos a continuación de % indica que el dato se ajuste a la izquierda en vez del ajuste a la derecha 
por defecto. 

p r i n t f  ("%15s","HOLA LUCAS") ; 
p r i n t f  ("%-15s","HOLA LUCAS") ; 

visualizará en pantalla 
HOLA LUCAS 

HOLA LUCAS 

Los códigos de formato más utilizados y su significado: 
%d 
%O 
% X  

%U 
%C 

%e 

%f 

%g 

% S  

%If 

El dato se convierte a entero decimal. 
El dato entero se convierte a octal. 
El dato entero se convierte a hexadecimal. 
El dato entero se convierte a entero sin signo. 
El dato se considera de tipo carácter. 
El dato se considera de tipo f 1 oat. Se convierte a notación científica, de la forma 
(-}n.mmmmmmE(+I-}dd. 
El dato se considera de tipo float. Se convierte a notación decimal, con parte 
entera y los dígitos de precisión. 
El dato se considera de tipo float. Se convierte según el código %e o %f 
dependiendo de cual sea la representación más corta. 
El dato ha de ser una cadena de caracteres. 
El dato se considera de tipo double. 



El lenguaje C: elementos básicos 109 

C utiliza secuencias de escape para visualizar caracteres que no están representados por símbolos 

Las secuencias de escape proporcionan flexibilidad en las aplicaciones mediante efectos especiales. 

printf("\n Error ~ Pulsar una tecla para continuar \n"); 

tradicionales, tales como \a, \b, etc. Las secuencias de escape clásicas se muestran en la Tabla 3.7. 

printf ("\n") ; / *  salta a una nueva línea * /  

printf('Yo estoy preocupado\n no por el \n sino por ti.\n"); 

la última sentencia visualiza 

Yo estoy preocupado 
no por el 
sino por ti. 

debido a que la secuencia de escape '\n' significa nueva línea o salto de línea. Otros ejemplos: 

printf("\n Tabla de números \n"); / *  uso de \n para nueva línea * /  

printf("\nNuml\t Num2\t Num3\n"); / *  uso de \t para tabulaciones * /  

printf ("%c", '\a') ; / *  uso de \a para alarma sonora * /  

en los que se utilizan los caracteres de secuencias de escape de nueva línea ( \n ) , tabulación ( \ t ) y 
alarma (\a). 

Tabla 3.7. Caracteres secuencias de escape. 

Secuencia de escape Significado 

\a Alarma 
\b Retroceso de espacio 
\f Avance de página 
\n 
\r Retorno de carro 
\t Tabulación 
\ V  Tabulación vertical 
\ \  Barra inclinada 
\ ?  Signo de interrogación 
\ " Dobles comillas 
\o00 Número octal 
\ xhh Número hexadecimal 
\ O  Cero, nulo (ASCII O) 

Retorno de carro y avance de línea 

b 

Ejemplo 3.4 

El listado SECESC. c utiliza secuencias de escape, tales como emitir sonidos (pitidos) en el terminal 
dos veces y a continuación presentar dos retrocesos de espacios en blanco. 

/ *  Programa:SECESC.C 

* /  
Propósito: Mostrar funcionamiento de secuencias de escape 

.A 



1 10 Programación en C. Metodología, algoritmos y estructura de datos 

#include <stdio.h > 

int main0 
i 
char sonidos='\a'; / *  secuencia de escape alarma en sonidos * /  

char bs='\b'; / *  almacena secuencia escape retroceso en bs * /  

printf("%c%c",sonidos,sonidos);/* emite el sonido dos veces * /  
printf ("zz") ; / *  imprime dos caracteres * /  

p r i n t f  ("%c%c",bs,bs) ; / *  mueve el cursor al primer carácter 'Z' * /  

return O ;  
i 

3.12.2. Entrada 

La entrada de datos a un programa puede tener diversas fuentes, teclado, archivos en disco. La entrada 
que consideramos ahora es a través del teclado, asociado al archivo estándar de entrada stdin. La función 
mas utilizada, por su versatilidad, para entrada formateada es scanf ( ) . 

El archivo de cabecera s t d i o  . h de la biblioteca C proporciona la definición (el prototipo) de 
scanf ( ) , así como de otras funciones de entrada o de salida. La forma general que tiene la función 
scanf ( ) 

scanf(cadena-de-control, varl, var2, var3, . . .  ) 

cadena- de- con t r o l  
v a r l ,  var2 . . . variables del tipo de los códigos de control. 

Los códigos de formato más comunes son los ya indicados en la salida. Se pueden añadir, como 
sufijo del código, ciertos modificadores como I o L. El significado es «largo», aplicado a f l o a t  
( % I f )  indica tipo double, aplicado a i n t  (%Id) indicaentero largo. 

contiene los tipos de los datos y si se desea su anchura. 

int n; double x; 
scanf ("%d %lf",&n,&x); 

La entrada tiene que ser de la forma 

134 -1.4E-4 

En este caso la función scanf ( ) devuelve n= 1 3  4 x= - 1 . 4 E  - 4 (en doble precisión). Los 
argumentos varl , var2 . . . de la función scanf ( ) se pasan por dirección o referencia pues van 
a ser modificados por la función para devolver los datos. Por ello necesitan el operador de dirección, el 
prefijo &. Un error frecuente se produce al escribir, por ejemplo, 

double x; 
scanf ("%lf",x) ; 

en vez de 

scanf ("%lf",&x) ; 



- 
El lenguaje C: elementos básicos 11 1 

Las variables que se pasan a scanf ( 1 se transmiten por referencia para poder ser modificadas 
y transmitir los datos de entrada, para ello se hacen preceder de & . 

Un ejemplo típico es el siguiente: 

printf ("introduzca vl y v2: 'I) ; 
scanf("%d %f",&vl,&v2); /*lectura valores vl y v2 * /  

printf ("Precio de venta al público") ; 
scanf ("%f",&Precio-venta) ; 

printf ("Base y altura: " )  ; 
scanf ("%f %f",&b,&h); 

La función scanf ( ) termina cuando ha captado tantos datos como códigos de control se han 
especificado, o cuando un dato no coincide con el código de control especificado. 

~~ 

Ejemplo 3.5 

2 Cuál es la salida del siguiente programa, si se introducen por teclado las letras LJ? 
#include <stdio.h> 
int main() 
{ 
char primero, ultimo; 
printf("1ntroduzca su primera y Última inicial:"); 
scanf ("%c %c", &primero,&ultimo) ; 
printf ("Hola, %c . %c .\n",primero,ultimo) ; 
return O 

I 

3.12.3. Salida de cadenas de caracteres 

Con la función printf ( ) se puede dar salida a cualquier dato, asociándolo el código que le 
corresponde. En particular, para dar salida a una cadena de caracteres se utiliza el código % s. Así, 

char arbol [ I  = "Acebo"; 
printf ("%s\n", arbol) ; 

Para salida de cadenas, la biblioteca C proporciona la función específica puts ( ) . Tiene un solo 
argumento, que es una cadena de caracteres. Escribe la cadena en la salida estándar (pantalla) y añade 
el fin de línea. Así, 

puts (arbol) ; 

muestraen pantalla lo mismo que printf ("%s\n", arbol) ; 

Ejemplo 3.6 

Cuál es la salida del siguiente programa .? 
#include <stdio.h> 
#define T "Tambor de hojalata. I' 
int main() 



112 Programación en C. Metodología, algoritmos y estructura de datos 

i 
char st[21 
puts ( T )  ; 
puts ("Perm 
puts(st) ; 
puts (&st [8 
return O; 

1 

="Todo puede hacerse. 'I 

so para salir en la toto.") ; 

) ;  

3.12.4. Entrada de cadenas de caracteres 

La entrada de una cadena de caracteres se hace con la función más general scanf ( ) y el código %s. 
Así, por ejemplo, 

char 
printf ("Nombre del atleta: ' I )  ; 
scanf ("%s", nombre) ; 
printf("Nombre introducido: %s",nombre); 

nombre [ 51 I ; 

La entrada del nombre podría ser 

Junipero Serra 

La salida 

Nombre introducido: Junipero 

scanf ( ) con el código %s capta palabras, el criterio de terminación es el encontrarse un blanco, o 
bien fin de línea. 

También comentar que nombre no tiene que ir precedido del operador de dirección &. En C el 
identificador de un array, nombre lo es, tiene la dirección del array, por lo que en scanf ( ) se transmite 
la dirección del array nombre. 

La biblioteca de C tiene una función específica para captar una cadena de caracteres, la función 
gets ( ) . Capta del dispositivo estándar de entrada una cadena de caracteres, termina la captación con 
un retorno de carro. El siguiente ejemplo muestra cómo captar una línea de como máximo 80 caracteres. 

char linea [ 81 I ; 
puts ("Nombre y dirección") ; 
gets (linea) ; 

La función ge t s  ( ) tiene un solo argumento, una variable tipo cadena. Capta la cadena de entrada 
y la devuelve en la variable pasada como argumento. 

gets(variab1e-cadena); 

Tanto con scanf ( ) como con gets ( ) , el programa inserta al final de la cadena el carácter que 
indica fin de cadena, el carácter nulo, \ O .  Siempre hay que definir las cadenas con un espacio más del 
previsto como máxima longitud para el carácter fin de cadena. 



El lenguaje C: elementos básicos 113 

3.13. RESUMEN 

do a los componentes 

te, utiliza #include para 
definidas en archivos de 

3.14. EJERCICIOS 

3.1. ¿Cuál es la salida del siguiente programa'? 

#include <stdio.h> 
int main ( ) 
{ 
char pax[] = "Juan Sin Miedo"; 

%s\n",pax,&pax[41) ; 

4 1 ) ;  

1 

3.2. Escribir y ejecutar un programa que imprima su 
nombre y direccibn. 

33. Escribir y ejecutar un 
página de texto con n 
linea. 

3.4. Depurar el programa siguiente: 

tbne un calificador 

mldes/ahomados de tipos (cast) para convertir 
un tipo a otro. El compilador realiza automáti- 

, 

#include <stdio.h> 

void main ( ) 
{ 
print f ('El lenguaje de programa- 

ción C " )  

3.5. Escribir un programa que imprima la letra B 
con asteriscos, 

***** 
* *  
* *  
* *  
***** 
* *  
* *  
* *  
***** 



CAPíTULO 4 

OPERADORES Y EXPRESIONES 

CONTENIDO 

4.1. Operadores y expresiones. 
4.2. Operador de asignación. 
4.3. Operadores aritméticos. 
4.4. Operadores de incrementación 

y decrementación. 
4.5. Operadores relacionales. 
4.6. Operadores lógicos. 
4.7. Operadores de manipulación 

4.8. Operador condicional. 
de bits. 

4.9. Operador corixi.. 
4.10. Operadores especiales,: ( 1 , 

4.11. El operador sizeof. 
4.12. Conversiones de tipos. 
4.13. Prioridad y asociatividad. 
4.14. Resumen. 
4.15. Ejercicios. 
4.16. Problemas. 

El. 

114 



INTRODUCCI~N 
Los programas de computadoras se apoyan esencialmente en la realización de 
numerosas operaciones aritméticas y matemáticas de diferente complejidad. 
Este capítulo muestra como C hace uno de los operadores y expresiones para la 
resolución de operaciones. Los operadores fundamentales que se analizan en el 
capítulo son: 

0 aritméticos, lógicos y relacionales; 
o de manipulación de bits; 
o condicionales; 
o especiales. 

Además se analizarán las conversiones de tipos de datos y las reglas que 
seguirá el compilador cuando concurran en una misma expresión diferentes 
tipos de operadores. Estas reglas se conocen como prioridad y asociatividad. 

CONCEPTOS CLAVE 
Asignación. IncrementaciÓn/decrementaciÓn. 
Asociatividad. 
Conversión explícita. Operador. 
Conversiones de tipos. Operador sizeof. 
Evaluación en cortocircuito. Prioridadprecedencia. 
Expresión. 

Manipulación de bits. 

I 

115 
a d  



1 16 Programación en C. Metodología, algoritmos y estructura de datos 

4.1. OPERADORES Y EXPRESIONES 

Los programas C constan de datos, sentencias de programas y expresiones. Una expresión es, 
normalmente, una ecuación matemática, tal como 3 + 5. En esta expresión, el símbolo más (+) es el 
operador de suma, y los números 3 y 5 se llaman operandos. En síntesis, una expresión es una secuencia 
de operaciones y operandos que especifica un cálculo. 

Cuando se utiliza el + entre números (o variables) se denomina operador binario, debido a que el 
operador + suma dos números. Otro tipo de operador de C es el operador unitario («unario»), que actúa 
sobre un Único valor. Si la variable x contiene el valor 5, -x es el valor -5. El signo menos (-) es el 
operador unitario menos. 

C soporta un conjunto potente de operadores unarios, binarios y de otros tipos. 

Sintaxis 

Var iab le  = expresión 
variable 
expresión 

ador válido C declarado como variable. 
una constante, otra variable a la que se ha asignado p 
o una fórmula que se ha evaluado y cuyo tipo es el 

I 
I rograma que toma un valor. En al 

s o variables simples, 
as con operadores (a++, m==n, l 

s como toupper ( 'b' ) . I 

4.2. OPERADOR DE ASIGNACIÓN 

El operador = asigna el valor de la expresión derecha a la variable situada a su izquierda. 

codigo = 3467; 
fahrenheit = 123.456; 
coordX = 525; 
coordY = 725; 

Este operador es asociativo por la derecha, eso permite realizar asignaciones múltiples. Así, 

a = b = c = 45; 

equivale a 

a = (b = (c = 45)); 

o dicho de otro modo, a las variables a, b y c se asigna el valor 4 5. 
Esta propiedad permite inicializar varias variables con una sola sentencia 

int a, b, c; 
a = b = c = 5; / *  se asigna 5 a las variables a, b y c * /  

Además del operador de asignación =, C proporciona cinco operadores de asignación adicionales. 

Estos operadores de asignación actúan como una notación abreviada para expresiones utilizadas 
En la Tabla 4.1 aparecen los seis operadores de asignación. 

con frecuencia. Así, por ejemplo, si se desea multiplicar 1 O por i, se puede escribir 

i = i * 10; 



Operadores y expresiones 1 17 

Tabla 4.1. Operadores de asignación de C. 
- 

Símbolo uso Descripción 

a = b  
a *=  b Multiplica a por b y  asigna el resultado a la variable d .  

a / = b 

a += b Suma b y  a y io asigna a la variable d .  

a -=  b Resta b de a y asigna el resultado a la variable d .  

Asigna el valor de b a a. 

Divide a entre b y asigna el resultado a la variable a. 
a 9- o- b Fija a al resto de a / b .  

C proporciona un operador abreviado de asignación ( * = ) , que realiza una asignación equivalente 

i * =  10; equivnlea i = i * 10; 

Tabla 4.2. Equivalencia de operadores de asignación. 

Operador Sentencia Sentencia 
abreviada no abreviada 

m t= n 
m -=  n 
m * =  n 
m / =  n 
m 3.- o- n 

m = m + n ;  
m = m - n ;  
m = m * n ;  
m = m / n ;  
m = m % n ;  

Estos operadores de asignación no siempre se utilizan, aunque algunos programadores C se 
acostumbran a su empleo por el ahorro de escritura que suponen. 

4.3. OPERADORES ARITMÉTICOS 

Los operadores aritméticos sirven para realizar operaciones aritméticas básicas. Los operadores 
aritméticos C siguen las reglas algebraicas típicas de jerarquía o prioridad. Estas reglas especifican la 
precedencia de las operaciones aritméticas. 

Considere la expresión 

3 + 5 * 2  

¿Cual es el valor correcto, 1 6 ( 8 * 2 ) o 13 ( 3 + 1 O ) ? De acuerdo a las citadas reglas, la multiplicación 
se realiza antes que la suma. Por consiguiente, la expresión anterior equivale a: 

3 t (5 * 2 )  

En C las expresiones interiores a paréntesis se evalúan primero; a continuación, se realizan los 
operadores unitarios, seguidos por los operadores de multiplicación, división, resto, suma y resta. 

Tabla 4.3. Operadores aritméticos. 

Operador Tipos enteros Tipos reales Ejemplo 

t Suma Suma X + Y  
- Resta Resta b - c  

Producto Producto X * Y  
/ División entera: cociente División en coma flotante b / 5 
, División entera: resto b % 5  

* 



118 Programación en C. Metodología, algoritmos y estructura de datos 

Tabla 4.4. Precedencia de operadores matemáticos básicos. 

Operador Operación Nivel de precedencia 

+ ,  - +25, -6.745 1 

* ,  / ,  % 5 * 5 e s  25 2 
2 5 / 5 es 5 
2 5 % 6 es 1 

+, - 2 +3 es 5 3 
2 - 3 es -1 

Obsérvese que los operadores + y -, cuando se utilizan delante de un operador, actúan como 
operadores unitarios más y menos. 

+ 7 5  / *  7 5  significa que es  positivo * /  
-154 / *  1 5 4  significa que es negativo * /  

Ejemplo 4.1 

I .  iCuÚl es el resultado de la expresión: 6 + 2 * 3 - 4 /2? 

6 + 2 * 3 - 4 / 2  

6 + 6 - 4/2 

6 + 6  - 2 - 
12 - 2  

2. i Cuál es el resultado de la expresión: 5 * 5 ( 5 + ( 6 - 2 ) + 1 ) ? 

5 * (5 + (6-2) + 1) 

5 *  ( 5 +  4 + 1 )  

5 * 10 

5 0  

3. Cuál es el resultado de la e.xpresión: 7 - 6 / 3 + 2 * 3 / 2 - 4 / 2? 

7 - 6/3 i 2*3/2 - 4 / 2  

7 - 2 + 2*3/2 - 4/2 
I_ 

I_ 

- 4/2 - 7 - 2 +  3 

7 - 2  + 3  - 2  

5 + 3  - 2  

8 - 2  



~- ~ 

Operadores y expresiones 119 

4.3.1. Asociatividad 

En una expresión tal como 

3 * 4 + 5  

el compilador realiza primero la multiplicación -por tener el operador * prioridad más alta- y luego 
la suma, por tanto, produce 17. Para forzar un orden en las operaciones se deben utilizar paréntesis 

3 * (4 + 5) 

produce 2 7, ya que 4 + 5 se realiza en primer lugar. 

de izquierda a derecha o de derecha a izquierda. Por ejemplo, 
La asociatividad determina el orden en que se agrupan los operadores de igual prioridad; es decir, 

x ~ y + z se agrupa como (x ~ y )  + z 

ya que - y +, con igual prioridad, tienen asociatividad de izquierda a derecha. Sin embargo, 

x = y = z  

se agrupa como 

x = ( y  = z) 

dado que su asociatividad es de derecha a izquierda. 

Tabla 4.5. Prioridad y asociatividad. 

Prioridad (mayor a menor) Asociatividad 

+ , - (unarios) 
* ,  / ,  % 
+ ,  

izquierda-derecha ( +) 
izquierda-derecha ( +) 
izquierda-derecha ( +) 

Ejemplo 4.2 

Cuál es el resultado de la expresicín: 7 * 1 O -5 % 3 * 4 + 9 .? 

Existen tres operadores de prioridad más alta ( *  , % y * ) 

70 - 5 io 3 * 4 + 9 

La asociatividad es de izquierda a derecha, por consiguiente se ejecuta a continuación 5% 

70 ~ 2 * 4 + 9 

y la segunda multiplicación se realiza a continuación, produciendo 

7 0 - 8 t 9  

Las dos operaciones restantes son de igual prioridad y como la asociatividad es a izquierda, se 
realizará la resta primero y se obtiene el resultado 

62 + 9 

y, por último, se realiza la suma y se obtiene el resultado final de 



120 Programación en C. Metodología, algoritmos y estructura de datos 

4.3.2. Uso de paréntesis 

Los paréntesis se pueden utilizar para cambiar el orden usual de evaluación de una expresión 
determinada por su prioridad y asociatividad. Las subexpresiones entre paréntesis se evalúan en primer 
lugar según el modo estándar y los resultados se combinan para evaluar la expresión completa. Si los 
paréntesis están «anidados» -es decir, un conjunto de paréntesis contenido en otro- se ejecutan en 
primer lugar los paréntesis más internos. Por ejemplo, considérese la expresión 

(7 * ( 1 0  - 5) % 3)* 4 + 9 
La subexpresión (1 O - 5) se evalúa primero, produciendo 

( 7 * 5 % 3 ) * 4 + 9  

A continuación se evalúa de izquierda a derecha la subexpresión (7 * 5 % 3 )  

( 3 5  % 3) * 4 + 9 

seguida de 

2 * 4 + 9  

Se realiza a continuación la multiplicación, obteniendo 

8 + 9  

y la suma produce el resultado final 

1 7  

Precaución 

Se debe tener cuidado en la escritura de expresiones que contengan dos o más operaciones para 
asegurarse que se evaliían en el orden previsto. Incluso aunque no se requieran paréntesis, deben 
utilizarse para clarificar el orden concebido de evaluación y escribir expresiones complicadas en 
términos de expresiones más simples. Es importante, sin embargo, que los paréntesis estén equi- 
librados - c a d a  paréntesis a la izquierda tiene un correspondiente paréntesis a la derecha que apa- 
rece posteriormente en la expresi6n- ya que existen paréntesis desequilibrados se producirá un 
error de compilación. 

ermr de compilación,faLtaparéntesUfiwl a la derecha ( ( 8 - 5 )  + 4 - ( 3 + 7 ) 

4.4. OPERADORES DE INCREMENTACIÓN Y DECREMENTACIÓN 

De las características que incorpora C, una de las más Útiles son los operadores de incremento ++ y 
decremento --. Los operadores ++ y --, denominados de incrementación y decrementación, suman o 
restan 1 a su argumento, respectivamente, cada vez que se aplican a una variable. 

Tabla 4.6. Operadores de incrernentación (++) y decrernentación (- -). 

Incrementación Decrementación 

++n --n 
n += 1 n - =  1 
n = n + l  n = n - 1  



Operadores y expresiones 121 

Por consiguiente, 

a+ t 

es igual que 

a = a+l 

Estos operadores tienen la propiedad de que pueden utilizarse como sufijo o prefijo, el resultado de 

Las sentencias 
la expresón puede ser distinto, dependiendo del contexto. 

++n; 
ni+ ; 

tienen el mismo efecto: así como 

--n; 
n-- ; 

Sin embargo, cuando se utilizan como expresiones tales como 

m = n++; 
printfi" n = %d",n--); 

el resultado es distinto si se utilizan como prefijo. 

m = ++n; 
printf ( "  n = %d", --n) ; 

t+n produce un valor que es mayor en uno que el de n++ , y --n produce un valor que es menor en uno 
que el valor de n--. Supongamos que 

n = 8; 
m = ++n; / *  incrementa n en 1, 9, y lo asigna a m * /  
n = 9; 
printf(" n = %d",--n); /*decrements n en 1, 8, y lo pasa a printf() * /  

n = 8; 
m = n++; / *  asigna n(8) a m, después incrementa n en 1 (9) * /  
n = 9; 
printf(" n = %d',n--); / *  pasa n ( 9 )  a printfo, después decrementa n * /  

En este otro ejemplo, 

int a = 1, b; 
b = a++; / *  b vale 1 y a vale 2 * /  

int a = 1, b; 
b = ++a; / *  b vale 2 y a vale 2 * /  

Si los operadores ++ y -- están de prefijos, la operación de incremento o decremento se efectúa 
antes que la operación de asignación; si los operadores ++ y -- están de sufijos, la asignación 
se efectúa en primer lugar y la incrementación o decrementación a continuación. 



122 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 

int i = 10: 
int j; 
. . .  
j = i++; 

Ejemplo 4.3 

Demostración del funcionamiento de los operadores de incrementc~/d~crement~~. 

#include <stdio.h> 
/ *  Test de operadores ++ y ~~ * /  
void main( ) 
i 
int m = 45, n = 75; 
printf( I' m = %d, n = %d\n",m,n); 
+ +m; 
--ni 
printf( 'I rn = %d, n = %d\n",m,n); 
m++; 
n--; 
printf( I' m = %d, n = %d\n",rn,n); 

1 

Ejecución 

m = 4 5 ,  n = 7 5  
m = 46,  n = 74  
m = 4 7 ,  n = 73  

En este contexto, el orden de los operadores es irrelevante. 

Ejemplo 4.4 

Diferencias entre operadores de preincremento y po.stiricremento. 

#include <stdio.h> 
/ *  Test de operadores ++ y -- * /  
void main( ) 
i 
int rn = 99, n; 
n = ++in; 
printf("m = %d, n = %d\n",m,n); 
n = mi+; 
printf("m = %d, n = %d\n",m,n); 
printf("m = %d \n",m++); 
printf ("m = %d \n",++m) ; 

} 



i 
Operadores y expresiones 123 I 

I 

Ejecución 

m = 100, n = 100 
m = 101, n = 100 
m = 101 
m = 103 

Ejemplo 4.5 

Orden de evaluación no predecihle en expresiones. 

#include <stdio.h> 

void main() 
l 

int n = 5, t; 
t = ++n * --n; 
printf("n = %d, t = %d\n",n,t); 
printf ("%a %d %d\n", ++n, ++n, ++n) ; 

i 

Ejecución 

n = 5, t = 25 
a 7 6  

1 i  

1 

Aunque parece que aparentemente el resultado de t será 3 o, en realidad es 2 5, debido a que en la 
asignación de t ,  n se incrementa a 6 y a continuación se decrementa a 5 antes de que se evalúe el 
operador producto, calculando 5 * 5. Por último, las tres subexpresiones se evalúan de derecha a 
izquierda sera 8 7 6 al contrario de 6 7 8 que parece que aparentemente se producirá. 

4.5. OPERADORES RELACIONALES 

C no tiene tipos de datos lógicos o booleanos, como Pascal, para representar los valores verdadero (true) 
y falso (false). En su lugar se utiliza el tipo i n t  para este propósito, con el valor entero O que representa 
a falso y distinto de cero a verdadero. l 

falso cero 
verdadero distinto de cero 

Operadores tales como >= y == que comprueban una relación entre dos operandos se llaman 
operadores relacionales y se utilizan en expresiones de la forma 



124 Programación en C. Metodología, algoritmos y estructura de datos 

expresión, operador-re1 aci onal expresión 

expresión, y expresión expresiones compatibles C 
operador-re1 acional un operador de la tabla 4.7 

Los operadores relacionales se usan normalmente en sentencias de selección ( i f )  o de iteración 
(while, for), que sirven para comprobar una condición. Utilizando operadores relacionales se realizan 
operaciones de igualdad, desigualdad y diferencias relativas. La Tabla 4.7 muestra los operadores 
relacionales que se pueden aplicar a operandos de cualquier tipo de dato estándar: char, int , 
float, double, etc. 

Cuando se utilizan los operadores en una expresión, el operador relaciona1 produce un O, o un 1, 
dependiendo del resultado de la condición. O se devuelve para una condiciónfalsa, y 1 se devuelve para 
una condición verdadera. Por ejemplo, si se escribe 

c = 3 < 7 ;  

la variable c se pone a 1, dado que como 3 es menor que '1,  entonces la operación < devuelve un valor 
de 1, que se asigna a c. 

Precaucián 
Un error típico, incluso entre programadores experimentales, es confundir el operador de 
asignación (=) con el operador de igualdad (==). 

Tabla 4.7. Operadores relacionales de C. 

Operador Significado Ejemplo 
_ -  _ _  Igual a a == b 
. -  l -  No igual a a ! =  b 
> Mayor que a > b  
< Menor que a < b  
>= Mayor o igual que a >= b 
<= Menor o igual que a <= b 

S i x ,  a ,  by c son de tipo double, numero es i n t  e inicial es de tipo char, las siguientes 
expresiones booleanas son válidas: 
x < 5 . 7 5  
b * b >= 5 . 0  * a * c 
numero == 1 0 0  
inicial ! = '5 ' 

En datos numéricos, los operadores relacionales se utilizan normalmente para comparar. Así, si 
x = 3.1 

la expresión 
x < 7 . 5  

produce el valor 1 (true). De modo similar si 



numero = 27 

la expresión 

numero == 1 0 0  

Operadores y expresiones 125 

produce el valor O (false). 
Los caracteres se comparan utilizando los códigos numéricos (véase Apéndice B, código ASCII) 

'A ' c 'c ' 
'a ' < 'c ' es I ,  verdadera (true): (código 97) y b (código 99). 
'b ' c 'B ' 

Los operadores relacionales tienen menor prioridad que los operadores aritméticos, y asociatividad 
de izquierda a derecha. Por ejemplo, 

m+5 <= 2 * n equivale a (m+5) <= ( 2  * n) 

Los operadores relacionales permiten comparar dos valores. Así, por ejemplo (i f significa si, se 
verá en el capítulo siguiente), 

if (Nota-asignatura < 9) 

comprueba si Nota-asignatura es menor que 9. En caso de desear comprobar si la variable y el 
número son iguales, entonces utilizar la expresión 

if (Nota-asignatura == 9) 

Si, por el contrario, se desea comprobar si la variable y el número no son iguales, entonces utilice 
la expresión 

i f  (Nota-asignatura ! =  9) 

Las cadenas de caracteres no pueden compararse directamente. Por ejemplo, 

char nombre [ 2 6 I ; 

gets (nombre) 
if (nombre < "Marisa") 

El resultado de la comparación es inesperado, no se están comparando alfabéticamente, lo que se 
compara realmente son las direcciones en memoria de ambas cadenas (punteros). Para una 
comparación alfabética entre cadenas se utiliza la función s t r c m p  ( ) de la biblioteca de C 
(string. h). Así, 

es 1 ,  verdadera (true), ya que A es el código 65 y es menor que el código 67 de c. 

es O, falsa valse) ya que b (código 98) no es menor que B (código 66). 

if (strcrnp(nombre, "Marisa") < 0) / *  alfabéticamente nombre es menor * /  

4.6. OPERADORES LÓGICOS 

Además de los operadores matemáticos, C tiene también operadores lógicos. Estos operadores se 
utilizan con expresiones para devolver un valor verdadero (cualquier entero distinto de cero) o un valor 
falso (O). Los operadores lógicos se denominan también operadores hooleanos, en honor de George 
Boole, creador del álgebra de Boole. 

Los operadores lógicos de C son: not  ( ! 1 , and ( & & I  y or ( I I I .  El operador lógico ! (not, no) 
producefalso (cero) si su operando es verdadero (distinto de cero) y viceversa. El operador lógico && 

(and, y )  produce verdadero sólo si ambos operandos son verdadero (no cero); si cualquiera de los ope- 
randos es falso produce falso. El operador lógico I I (or, o)  produce verdadero si cualquiera de los 
operandos es verdadero (distinto de cero) y produce falso sólo si ambos operandos son falsos. La Tabla 
4.8 muestra los operadores lógicos de C .  

1 

! 



126 Programación en C. Metodología, algoritmos y estructura de datos 

Tabla 4.8. Operadores lógicos. 

Operador Operación lógica Ejemplo 

Negación (!) No lógica ! (x >= y )  
Y lógica (&&) operando-l && operando-2 m < n & &  i > j 
O lógica II operando-1 II operando-2 m = 5 I I  n ! =  10 

Tabla 4.9. Tabla de verdad del operador lógico NOT í ! ) .  

Operando (a) NOT a 

Verdadero ( 1 ) 
Falso (O) 

Falso (O) 
Verdadero ( 1 ) 

Tabla 4.10. Tabla de verdad del operador lógico AND. 

Operandos 
a b a && b 

Verdadero ( 1 ) Verdadero ( 1  ) 
Verdadero ( 1 ) Falso (O) 
Falso (O) Verdadero ( 1 ) 
Falso (O) Falso (O) 

Verdadero ( 1 ) 
Falso (O) 
Falso (O) 
Falso (O) 

Tabla 4.11. Tabla de verdad del operador lógico OR ( 1 1 ) .  

Operandos 
a b a I I  b 

Verdadero ( 1 ) 
Verdadero ( 1  ) Falso (O) 
Falso (O) 
Falso (O) Falso (O) 

Verdadero ( 1 ) 

Verdadero ( 1 ) 

Verdadero ( 1 ) 
Verdadero ( 1 ) 
Verdadero ( 1 ) 
Falso (O) 

AI igual que los operadores matemáticos, el valor de una expresión formada con operadores lógicos 
depende de: (u) el operador y ( h )  sus argumentos. Con operadores lógicos existen sólo dos valores 
posibles para expresiones: verdadero y ,falso. La forma más usual de mostrar los resultados de 
operaciones lógicas es mediante las denominadas rubla? de verdud, que muestran como funcionan cada 
uno de los operadores lógicos. 

Ejemplo 

! (x+7 == 5) 
(anum > 5) && (Respuesta == 'S') 
(bnum > 3) I 1  (Respuesta == 'N') 

Los operadores lógicos se utilizan en expresiones condicionales y mediante sentencias 1 f , w h i l e  
o for, que se analizarán en capítulos posteriores. Así, por ejemplo, la sentencia ~f (si la condición es 
verduderdfulsu.. .) se utiliza para evaluar operadores lógicos. 

1. if ((a < b) && (c > d)) 
{ 

1 
puts ("Los resultados no son vc71idos'') ; 



Operadores y expresiones 127 

Si la variable a es menor que h y, al mismo tiempo, c es mayor que d, entonces visualizar el 
mensaje: L o s  resultados no son vál idos. 

2.if ((ventas > 5 0 0 0 0 )  I I  (horas < 100)) 
1 

I 
prima = 100000; 

Si la variable ventas es mayor 5 0 0 0  O o bien la variable horas es menor que 1 0  O ,  entonces 
asignar a la variable prima el valor 1 0 O 0 0 O. 

i 

1 

3.if (!(ventas i 2 5 0 0 ) )  

prima = 1 2 5 0 0 ;  

En este ejemplo, si ventas es mayor que o igual a 2 5 0 0 ,  se inicializará prima al valor 
12500. 

El operador ! tiene prioridad más alta que &&, que a su vez tiene mayor prioridad que t I . La 
asociatividad es de izquierda a derecha. 

La precedencia de los operadores es: los operadores matemáticos tienen precedencia sobre los 
operadores relacionales, y los operadores relacionales tienen precedencia sobre los operadores lógicos. 
La siguiente sentencia: 

if ((ventas < s a l m i n  * 3 && ayos > 1 0  * iva) . . .  
equivale a 

if ((ventas < ( s a l m i n  * 3 ) )  && (ayos > (10 * iva))) . . .  

4.6.1. Evaluación en cortocircuito 

En C los operandos de la izquierda de & &  y t I se evalúan siempre en primer lugar; si el valor del 
operando de la izquierda determina de forma inequívoca el valor de la expresión, el operando derecho 
no se evalúa. Esto significa que si el operando de la izquierda de && es falso o el de t 1 es verdadero, el 
operando de la derecha no se evalúa. Esta propiedad se denomina evaluacio'n en cortocircuito y se debe 
a que si p es falso, la condición p && q es falsa con independencia del valor de q y de este modo C no 
evalúa q. De modo similar si p es verdadera la condición p I I q es verdadera con independencia del 
valor de q y C no evalúa a q. 

Ejemplo 4.6 

Supongamos que se evalúa la expresión 

(x > 0.0) && (log(x) >= 0.5) 

Dado que en una operación lógica Y ( &&  ) si el operando de la izquierda ( x >O. O) es falso ( x  
es negativo o cero), la expresión lógica se evalúa a falso, y en consecuencia, no es necesario evaluar el 
segundo operando. En el ejemplo anterior la expresión evita calcular el logaritmo de números ( x ) 
negativos o cero. 

La evaluación en cortocircuito tiene dos beneficios importantes: 



128 Programación en C. Metodología, algoritmos y estructura de datos 

1. Una expresión booleana se puede utilizar para guardar una operación potencialmente insegura 

2. Se puede ahorrar una considerable cantidad de tiempo en la evaluación de condiciones complejas. 
en una segunda expresión booleana. 

, Ejemplo 4.7 

Los bene$cios anteriores se aprecian en la expresión booleana 

(n ! =  O) && (x < l.O/n) 

ya que no se puede producir un error de división por cero al evaluar esta expresión, pues si n es O ,  
entonces la primera expresión 

n ! =  O 

es falsa y la segunda expresión 

x < 1 . 0 i n  

no se evalúa. 
De modo similar, tampoco se producirá un error de división por cero al evaluar la condición 

(n = = O )  1 1  (x >= 5 . O / n )  

ya que si n es O, la primera expresión 

n == 0 

es verdadera y entonces no se evalúa la segunda expresión 

x >= 5.Oin 

Aplicación 

Dado el test condicional 

if ((7 > 5) / I  (ventas < 30) && ( 3 0  ! =  3 0 ) )  . . .  
C examina sólo la primera condición (7 > 5), ya que como es verdadera, la operación lógica 1 1 í O) 

Otro ejemplo es el siguiente: 

if ( ( 8  < 4) && (edad > 18) && (letra-inicial == ‘ Z ’ ) )  . . .  
En este caso, C examina la primera condición y su valor es falso; por consiguiente, sea cual sea el 

valor que sigue al operador &&, la expresión primitiva será falsa y toda la subexpresión a la derecha de 
(8 < 4)  no se evalúa por C. 

será verdadera, sea cual sea el valor de la expresión que le sigue. 

Por último, en la sentencia 

i f  ( ( 1 0  > 4) I I (num == O)) . . .  
la operación num == O nunca se evaluará. 

4.6.2. Asignaciones booleanas (lógicas) 

Las sentencias de asignación booleanas se pueden escribir de modo que dan como resultado un valor de 
tipo int que será cero o uno. 



Operadores y expresiones 129 

Ejemplo 

int edad, MayorDeEdad, juvenil; 
scanf ( "%d", &edad) ; 
MayorDeEdad = (edad > 18); / *  asigna el valor de edad > 18 MayorDeEdad. 

juvenil = (edad >15) && (edad <= 18); / *  asigna 1 a juvenil si edad está 
Cuando edad es mayor que 18, MayorDeEdad es 1 , sino O * /  

comprendida entre 15(mayor que 15) y 18 (inclusive 18). * /  

Ejemplo 4.8 

L a s  sentencias de asignación siguientes asignan valores cero o uno a los dos tipos de variables int ,  
r a n g o  y e s- l e t r a .  La variable r a n g o  es 1 ( t r u e )  si el valor de n está en el rango -100 a 100; la 
variable e s - l e t r a  es 1 (verdadera) si car es una letra mayúscula o minúscula. 

a. rango = (n > -100) && (n < 100); 
b. es-letra = ( (  'A'<= car) & &  (car <= 'Z ' ) )  I I 

(('a'<= car) && (car <= 'z')); 

La expresión de a es 1 (true) si n cumple las condiciones expresadas (n mayor de -100 y menor 
de 100); en caso contrario es 0 (false ) . La expresión h utiliza los operadores && y I I . La primera 
subexpresión (antes de I 1 ) es 1 (true ) si car es una letra mayúscula; la segunda subexpresión (después 
de 1 I)  es 1 (true) si car es una letra minúscula. En resumen, es-letra es 1 (true) si car es una 
letra, y 0 ( false) en caso contrario. 

4.7. OPERADORES DE MANIPULACIÓN DE BITS 

Una de las razones por las que C se ha hecho tan popular en computadoras personales es que el lenguaje 
ofrece muchos operadores de manipulación de bits a bajo nivel. 

Los operadores de manipulación o tratamiento de bits (binuise) ejecutan operaciones lógicas sobre 
cada uno de los bits de los operandos. Estas operaciones son comparables en eficiencia y en velocidad 
a sus equivalentes en lenguaje ensamblador. 

Cada operador de manipulación de bits realiza una operación lógica bit a bit sobre datos internos. 
Los operadores de manipulación de bits se aplican sólo a variables y constantes char, int y long, y 
no a datos en coma flotante. Dado que los números binarios constan de 1 ,s y 0,s (denominados bits), 
estos 1 y 0 se manipulan para producir el resultado deseado para cada uno de los operadores. 

Las siguientes tablas de verdad describen las acciones que realizan los diversos operadores sobre los 
diversos patrones de bit de un dato int (char o long). 

i 

Tabla 4.12. Operadores lógicos bit a bit. 

Operador Operación 

& Y (AND) lógica bit a bit 
I O (OR) lógica (inclusiva) bit a bit 

A O (XOR) hígica (exclusiva) bit a bit (OR exclusive, XOR) 
I 

<< 
>> 

Complemento a uno (inversión de todos los bits) 
Desplazarniento de bits a izquierda 
Desplazamiento de bits a derecha 



130 Programación en C. Metodología, algoritmos y estructura de datos 

AIB == C -==4 

Ejemplo 

1. Si se aplica el operador & de manipulación de bits a los números 9 y 14, se obtiene un resultado 
de 8. La Figura 4.1 muestra cómo se realiza la operación. 

2. (61) Ox3A6B 
OxOOFO 

= O011 1010 0110 1 0 1 1  
= O000 O000 111 1 O000 

Ox3A6B & OxOOFO = 0000 O000 O110 0000 = 0~0060 

3 .  ( 1 ) 1 5 2  0 x 0 0 9 8  = O000 O000 1001 1000 
5 0 x 0 0 0 5  O000 O000 0 0 0 0  O 1 0 1  

1 5 2  I 5 = 0 0 0 0  0 0 0 0  1 0 0 1  1 1 0 1  = Ox009d 

4. ( ^ )  8 3  0x53 = 0101 o 0 1  1 
204  0 x c c  = 1 1 0 0  1 1 0 0  

8 3 ^ 2 0 4  = 1 0 0 1  1111 = OX9f 

9 decimal equivalea 1 O O 1 binario 

14decimal equivale a 1 1 1 O binario 
= 1 0 O O binario 
- - 8 decimal 

& & & &  

Figura 4.1. Operador & de manipulación de bits. 

4.7.1. Operadores de asignación adicionales 

AI igual que los operadores aritméticos, los operadores de asignación abreviados están disponibles 
también para operadores de manipulación de bits. Estos operadores se muestran en la Tabla 4.13. 

Tabla 4.13. Operadores de asignación adicionales. 

Símbolo uso Descripción 

<<= a <<= b Desplaza a a la izquierda b bits y asigna el resultado a a. 
>>= a >>= b I Desplaza a a la clerecha b bits y asigna el resultado a a. 
&= a &= b Asigna a del valor a&b. 
A-  - a ^ =  b Establece a a a “b. 
I =  a I =  b Establece a a a l b. 



Operadores y expresiones 13 1 

4.7.2. Operadores de desplazamiento de bits (>>, <<) 

Equivalen a la instrucción SHR ( << ) de los microprocesadores 80x86. Efectúa un 
desplazamiento a la derecha (>>) o a la izquierda (<<) de n posiciones de los bits del operando, siendo 
n un número entero. El número de bits desplazados depende del valor a la derecha del operador. Los 
formatos de los operadores de desplazamiento son: 

( >>)  y SHL 

1. valor << numero-de-bi ts; 
2 .  valor >> numero-de-bits; 

El valor puede ser una variable entera o carácter, o una constante. El número-de-hits determina 
cuántos bits se desplazarán. La Figura 4.2 muestra lo que sucede cuando el número 29 (binario 
O001 1101) se desplaza a la izquierda tres bits con un desplazamiento a la izquierda bit a bit (<<). 

O O O 1 1 1 O 1 (29 decimal) 

1 1 1 0 1 0 0 0  

Después de tres desplazamientos 

Figura 4.2. Desplazamiento a la izquierda tres posiciones de los bits del número binario equivalente a 29. 

Supongamos que la variable numl contiene el valor 2 5, si se desplaza tres posiciones (num << 3 ) ,  
se obtiene el nuevo número 2 O O ( 11 O O 1 O O O en binario). 

int numl = 2 5 ;  
int despl, desp2; 

/ *  00011001 binario * /  

despl = numl << 3; / *  11001000 binario * /  

En los siguientes ejemplos se desplazan los bits de una variable a la derecha y a la izquierda. El 
resultado es una división y una multiplicación respectivamente. 

int x ,y,d ; 
x=y= 24; 

d = X > > 2  ; / *  0~18>>2 = O001 1000 >> 2 
= 0000 O110 = 6 ( división por 4 ) * /  

d = y << 2; / *  0~18<<2 = O001 1000 >> 2 
= O110 0000 = 0x60 (96)(multiplicación por 4)*/ 

**4.7.3. Operadores de direcciones 

Son operadores que permiten manipular las direcciones de las variables y registros en general: 

*expresión 
&valorpi (lvalue) 
registro.miembro 
puntero-hacia-registro -> miembro 



132 Programación en C. Metodología, algoritmos y estructura de datos 

Tabla 4.14. Operadores de direcciones. 
~~~ ~ 

Operador Acción
* Lee o modifica el valor apuntado por la expresión. Se corresponde con un puntero y el resultado es del

tipo apuntado.
Devuelve un puntero al objeto utilizado como operando, que debe ser un lvalue (variable dotada de una
dirección de memoria). El resultado es un puntero de tipo idéntico al del operando.
Permite acceder a un miembro de un dato agregado (unión, estructura).

Accede a un miembro de un dato agregado (unión, estructura) apuntado por el operando de la
izquierda.

&

->

4.8. OPERADOR CONDICIONAL

El operador condicional, ? : , es un operador ternario que devuelve un resultado cuyo valor depende de
la condición comprobada. Tiene asociatividad a derechas (derecha a izquierda).

Al ser un operador ternario requiere tres operandos. El operador condicional se utiliza para
reemplazar a la sentencia i f -e 1 se lógica en algunas situaciones. El formato del operador condicional
es:

expresion-c ? expresion-v : expresion-f;

Se evalúa expresion-c y su valor (cero = falso, distinto de cero = verdadero) determina cuál es
la expresión a ejecutar; si la condición es verdadera se ejecuta expresion-v y si es falsa se ejecuta
expres i on- f.

La Figura 4.3 muestra el funcionamiento del operador condicional.

(ventas > 150000) ? comision = 100 comision = O;

si ventas es mayor
que 150.000 se
ejecuta:

si ventas no es
mayor que 150.000 se
ajecuzu:

comision = 100 comision = O

Figura 4.3. Formato de un operador condicional.

Otros ejemplos del uso del operador ? : son:

n >= O ? 1 : -1 /*I si n es positivo, -1 si es negativo * /

m > = n ? m : n / * devuelve el mayor valor de m y n * /

/*escribe x, y escribe el carácter fin de línea(\n) si x%5(resto 5) es
o, en caso contrario un tabulador(\t) * /

printf("%d % c " , x, x%5 ?'\t':'\n');

La precedencia de ? y : es menor que la de cualquier otro operando tratado hasta ese momento.
Su asociatividad es a derechas.

Operadores y expresiones 133

r4.9. OPERADOR COMA

El operador coma permite combinar dos o más expresiones separadas por comas en una sola línea. Se
evalúa primero la expresión de la izquierda y luego las restantes expresiones de izquierda a derecha. La
expresión más a la derecha determina el resultado global. El uso del operador coma es como sigue:

expresión , expresión , expresión , . . . , expresión
Cada expresión se evalúa comenzando desde la izquierda y continuando hacia la derecha. Por

ejemplo, en

int i = 10, j = 25;

dado que el operador coma se asocia de izquierda a derecha, la primera variable está declarada e
inicializada antes que la segunda variable j . Otros ejemplos son:

i++, j++ ; equivale u
i++, j++, k++ ; equivale a

i++; j++;
i++; j++; k++;

El operador coma tiene la menor prioridad de todos los operadores C, y se asocia de izquierda
a derecha.

El resultado de la expresión global se determina por el valor de expresión,,. Por ejemplo,

int i, j, resultado;

resultado = j = 10, i = j, ++i;

El valor de esta expresión y valor asignado a resultado es 11. En primer lugar, a j se asigna el

La técnica del operador coma permite operaciones interesantes

i = 1 0 ;
j = (i = 12, i + 8) ;

Cuando se ejecute la sección de código anterior, j vale 2 O, ya que i vale 1 O en la primera sentencia,

valor 1 o, a continuación a i se asigna el valor de j . Por último, i se incrementa a 1 1 .

en la segunda toma i el valor 1 2 y al sumar i + 8 resulta 2 O .

4.10. OPERADORES ESPECIALES (1 [1

C admite algunos operadores especiales que sirven para propósitos diferentes. Entre ellos se destacan:
o , [I .

4.10.1. El operador (1

El operador () es el operador de llamada a funciones. Sirve para encerrar los argumentos de una
función, efectuar conversiones explícitas de tipo, indicar en el seno de una declaración que un
identificador corresponde a una función, resolver los conflictos de prioridad entre operadores.

4.10.2. El operador 1

Sirve para dimensionar los arrays y designar un elemento de un array.

134 Programación en C. Metodología, algoritmos y estructura de datos

Ejemplos de ello:

double v[201; / * define un ar ray de 20 elementos * /
printf ("v[2] = %e",v[21); / * escribe el elemento 2 de v * /
return vli-INFERIOR]; / * devuelve el elemento i-INFERIOR * /

4.11. EL OPERADOR SIZEOF

Con frecuencia su programa necesita conocer el tamaño en bytes de un tipo de dato o variable. C
proporciona el operador s i zeo f , que toma un argumento, bien un tipo de dato o bien el nombre de una
variable (escalar, array, registro, etc.). El formato del operador es

sizeof (nombre-variabl e)
s i z eo f (t ipo-da t o)
sizeof(expresión)

Ejemplo 4.9

Si se supone que el tipo i n t consta de cuatro bytes y el tipo double consta de ocho bytes, las siguientes
expresiones proporcionarán los valores 1, 4 y 8 respectivamente

s i z e o f (char)
s izeof (unsigned int)
sizeof(doub1e).

El operador sizeof se puede aplicar también a expresiones. Se puede escribir

printf ("La variable k es Xd bytes 'I, sizeof (k));
printf("La expresión a + b ocupa %d bytes ",sizeof (a + b));

El operador si z eo f es un operador unitario, ya que opera sobre un valor Único. Este operador
produce un resultado que es el tamaño, en bytes, del dato o tipo de dato especificados. Debido a que la
mayoría de los tipos de datos y variables requieren diferentes cantidades de almacenamiento interno en
computadores diferentes, el operador si zeo f permite consistencia de programas en diferentes tipos de
computadores.

El operador sizeof se denomina también operador en tiempo de compilación, ya que en tiempo de
compilación, el compilador sustituye cada ocurrencia de si zeof en su programa por un valor entero
sin signo (unsigned). El operador si zeof se utiliza en programación avanzada.

Ejercicio 4.1

Suponga que se desea conocer el tamaño, en bytes, de variables de coma~flotante y de doble precisiátz
de su computadora. El siguiente programa realiza esta tarea:

/ * Imprime el tamaño de valores de coma flotante y double * /

#include <stdio.h>

int main()
i
printf("E1 tamaño de variables de coma flotante es Xd \n",

printf('E1 tamaño de variables de doble precisión es %d \n",
sizeof(f1oat));

sizeof(doub1e)) ;

~ _ _

Operadores y expresiones 135

return O;
}

Este programa producirá diferentes resultados en diferentes clases de computadores. Compilando
este programa bajo C, el programa produce la salida siguiente:

El tamaño de variables de coma flotante es: 4
El tamaño de variables de doble precisión es: 8

4.12. CONVERSIONES DE TIPOS

Con frecuencia, se necesita convertir un valor de un tipo a otro sin cambiar el valor que representa. Las
conversiones de tipos pueden ser implícitus (ejecutadas automáticamente) o explícitas (solicitadas
específicamente por el programador). C hace muchas conversiones de tipos automáticamente:

O C convierte valores cuando se asigna un valor de un tipo a una variable de otro tipo.
O C convierte valores cuando se combinan tipos mixtos en expresiones.
O C convierte valores cuando se pasan argumentos a funciones.

4.12.1. Conversión implícita

Los tipos fundamentales (básicos) pueden ser mezclados libremente en asignaciones y expresiones. Las
conversiones se ejecutan automáticamente: los operandos de tipo más bajo se convierten en los de tipo
más alto.

int i = 12;
double x = 4;
x = xci; /*valor de i se convierte en double antes de la suma * /
x = i/5; / * primero hace una división entera i/5==2, 2 se convierte a

x = 4.0;
x = x/5 / * convierte 5 a tipo double, hace una división real: 0.8 y se

tipo doble: 2.0 y se asigna a x * /

asigna a x * /

4.12.2. Reglas

Si cualquier operando es de tipo char, short o enumerado se convierte en tipo int y si los
operandos tienen diferentes tipos, la siguiente lista determina a qué operación convertirá. Esta operación
se llama promoción integral.

int
unsigned int
long
unsigned long
float
double

El tipo que viene primero en esta lista se convierte en el que viene segundo. Por ejemplo, si los tipos
operandos son int y long, el operando int se convierte en long.

char c = 65; / * 65 se convierte en tipo char permitido * /
char c = 10000; / * permitido, pero resultados impredecibles * /

136 Programación en C. Metodología, algoritmos y estructura de datos

4.12.3. Conversión explícita

C fuerza la conversión explícita de tipos mediante el operador de molde (cast). El operador molde tiene
el formato:

(tiponombre) valor / * convierte va.lor a tiponombre */

(float) i; / * convierte i a float * /
(int) 3 . 4 ; / * convierte 3.4 a entero, 3 * /
(int*) malloc(2*16) ; / * convierte el valor devuelto por malloc: void*

a int*. Es una conversión de punteros. * /

El operador molde (tipo, cast) tiene la misma prioridad que otros operadores unitarios tales como
+ , - Y !

precios = (int)19.99 + (int)11.99;

4.13. PRIORIDAD Y ASOCIATIVIDAD

La prioridad o precedencia de operadores determina el orden en el que se aplican los operadores a un
valor. Los operadores C vienen en una tabla con dieciséis grupos. Los operadores del grupo 1 tienen
mayor prioridad que los del grupo 2, y así sucesivamente:

o Si dos operadores se aplican al mismo operando, el operador con mayor prioridad se aplica

o Todos los operadores del mismo grupo tienen igual prioridad y asociatividad.
o La asociatividad izquierda-derecha significa aplicar el operador más a la izquierda primero, y en

0 Los paréntesis tienen la máxima prioridad.

primero.

la asociatividad derecha-izquierda se aplica primero el operador más a la derecha.

Prioridad Operadores
~~~ 

Asociatividad 

1 x ->  [ I  o I - D  
2 ++ -- - ! - + & * sizeof D- I  
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

16 

&& 

I 1  
? :  (expresión condicional) 

i<= >>= &= / =  
, (operador coma) 

- - *-  ~ / =  % =  += - =  

1 - D : Izquierda - Derecha. 
D - 1 : Derecha - Izquierda. 

I - D  
I - D  
I - D  
I - D  

I - D  
I - D  

I - D  
I - D  
I - D  
I - D  
I - D  
D- I  

D- I  
I - D  



Operadores y expresiones 137 

4.14. RESUMEN 

Este capítulo examina los siguientes temas: 

Concepto de operadores y expresiones. 

Operadores de asignación: básicos y aritméti- 

Operadores aritméticos, incluyendo +, -, *, / y 
% (módulos). 
Operadores de incremento y decremento. Estos 
operadores se aplican en formatos pre (anterior) 
y post (posterior). C permite aplicar estos ope- 
radores a variables que almacenan caracteres, 
enteros e incluso números en coma flotante. 
Operadores relacionales y lógicos que permiten 
construir expresiones lógicas. C no soporta un 
tipo lógico (boolean) predefinido y en su lugar 
considera O (cero) comofalso y cualquier valor 
distinto de cero como verdadero, 

Operadores de manipulación de bits que reali- 
zan operaciones bit a bit (bitwise), AND, OR, 
XOR y NOT. C soporta los operadores de des- 
plazamiento de bits cc y >>. 

cos. 

4.15. EJERCICIOS 

4.1. Determinar el valor de las siguientes expresio- 
nes aritméticas: 

1 5  / 1 2  1 5  % 1 2  
2 4  / 1 2  2 4  % 1 2  
1 2 3  / 1 0 0  1 2 3  % 1 0 0  
2 0 0  / 1 0 0  2 0 0  % 1 0 0  

4.2. ¿Cuál es el valor de cada una de las siguientes 
expresiones? 

b ) - 4 * 5 * 2  
~ ) 1 5  * 1 4  - 3 * 7 

c) ( 2 4  + 2 * 6 )  / 4 

Operadores de asignación de manipulación de 
bits que ofrecen formatos abreviados para 
sentencias simples de manipulación de bits. 
El operador coma, que es un operador muy 
especial, separa expresiones múltiples en las 
mismas sentencias y requiere que el programa 
evalúe totalmente una expresión antes de 
evaluar la siguiente. 

La expresión condicional, que ofrece una forma 
abreviada para la sentencia alternativa simple- 
doble if-else, que se estudiará en el capítulo 
siguiente. 

0 Operadores especiales: (), [I . 
Conversión de tipos (typecasting) o moldeado, 
que permite forzar la conversión de tipos de una 
expresión. 
Reglas de prioridad y asociatividad de los 
diferentes operadores cuando se combinan en 
expresiones. 

El operador cizeof, que devuelve el tamaño en 
bytes de cualquier tipo de dato o una variable. 

d ) a  / a / a * b  
e)  3 + 4 * í 8  * (4 - ( 9  + 3 1 / 6 1 ]  
f i 4 * 3 * 5 + 8 * 4 * 2 - 5  
g ) 4  - 4 0  1 5  
h) ( - 5 )  % ( - 2 )  

4.3. Escribir las siguientes expresiones aritméticas 
como expresiones de computadora: La potencia 
puede hacerse con la función pow(), por ejemplo 
(x + y)'==pow(x+y,2) 

X 
a) - + 1  

Y 
C 

e) (a+ b) - 
d 



138 Programación en C. Metodología, algoritmos y estructura de datos 

X Y  
g)  - 1 - 4 ~  Y 

Z 
c)  x +  - 

Y x +  - z 

b 
4- 

c + d  
i) (x + y)' . (a - b) 

4.4. ¿Cuál de los siguientes identificadores son 
válidos? 
n 
Miproblema 
Mi Juego 
Mi Juego 
write 
m&m 

registro 
A B  

-m-m 

85 Nombre 
AAAAAAAAAA 
Nombre- Apellidos 
Saldo-Actual 
92 
Universidad 
Pontificia 
Set 15 
* 143Edad 

4.5. 

4.6. 

4.7. 

4.8. 

4.9. 

X es una variable entera e Y una variable 
carácter. Qué resultados producirá la sentencia 
scanf ( "%d %d" , & x, & y) si la entrada 
es 
a) 5 c 
b) 5C 

Escribir un programa que lea un entero, lo 
multiplique por 2 y a continuación lo escriba 
de nuevo en la pantalla. 

Escribir las sentencias de asignación que 
permitan intercambiar los contenidos (valores) 
de dos variables. 

Escribir un programa que lea dos enteros en las 
variables x e y, y a continuación obtenga los 
valores de : 1 .  x / y, 2. x % y. Ejecute el 
programa varias veces con diferentes pares de 
enteros como entrada. 

Escribir un programa que solicite al usuario la 
longitud y anchura de una habitación y a 
continuación visualice su superficie con cuatro 
decimales. 

4.10. 

4.11. 

4.12, 

4.13. 

4.14. 

4.15. 

Escribir un programa que convierte un número 
dado de segundos en el equivalente de minutos 
y segundos. 

Escribir un programa que solicite dos números 
decimales y calcule su suma, visualizando la 
suma ajustada a la derecha. Por ejemplo, si los 
números son 57.45 y 425.55, el programa 
visualizará: 
57.45 
425.55 
483.00 

¿Cuáles son los resultados visualizados por el 
siguiente programa, si los datos proporciona- 
dos son 5 y 8? 
#include <stdio.h> 
const int M = 6; 
int main ( ) 
i 
int a, b, c; 
gets("1ntroduce el valor de a 

scanf ("ad %d", &a, &b) ; 
c = 2 * a - b ;  

b = a + c - M; 
a = b * M ;  
printf ("\n a = %d\n",a); 

printf ( "  %6d %ód",b,c); 
return O; 

y de b") ; 

c -= M; 

b = - 1; 

I 

Escriba un programa para calcular la longitud 
de la circunferencia y el área del círculo para 
un radio introducido por el teclado. 

Escribir un programa que visualice valores 
tales como: 
7.1 
7.12 
7.123 
7.1234 
7.12345 
7.123456 

Escribir un programa que lea tres enteros y 
emita un mensaje que indique si están o no en 
orden numérico. 



4.16. Escribir una sentencia lógica (boolean) 
que clasifique un entero x en una de las 
siguientes categorías. 
x < o  obien O I x I 1 0 0  

obien x > 100 

4.17. Escribir un programa que introduzca el número 
de un mes (1 a 12) y visualice el número de 
días de ese mes. 

4.18. Escribir un programa que lea dos números y 
visualice el mayor, utilizar el operador ternario 
? :. 

4.19. El domingo de Pascua es el primer domingo 
después de la primera luna llena posterior al 
equinoccio de primavera, y se determina 
mediante el siguiente cálculo sencillo. 
A = año % 19 

Operadores y expresiones 139 

B = año % 4 
C = año % 7 
D = (19 * A + 2 4 )  % 30  
E =  ( 2  * 3 + 4  * C +  6 * D + 5 )  

N = ( 2 2  + D + E) 
% 7  

donde N indica el número de día del mes de 
marzo (si N es igual o menor que 31) o 
abr i 1 (si es mayor que 3 1). Construir un 
programa que tenga como entrada un año y 
determine la fecha del domingo de Pascua. 
Nota: utilizar el operador ternario ? : para 
seleccionar. 

4.20. Determinar si el carácter asociado a un código 
introducido por teclado corresponde a un 
carácter alfabético, dígito, de puntuación, 
especial o no imprimible. 

4.1 6. PROBLEMAS 

4.1. Escribir un programa que lea dos enteros de tres 
dígitos y calcule e imprima su producto, cocien- 
te y el resto cuando el primero se divide por el 
segundo. La salida será justificada a derecha. 

4.2. Una temperatura Celsius (centígrados) puede ser 
convertida a una temperatura equivalente F de 
acuerdo a la siguiente fórmula: 

f =(y) 9 c32 

4.3. Un sistema de ecuaciones lineales 

a x + b y = c  
d x + e y = f  

se puede resolver con las siguientes fórmulas: 

x =  Y =  
ce - bf 
ae - bd 

af - cd 
ae - bd 

Diseñar un programa que lea dos conjuntos de 
coeficientes (a, b y c ; d, e yfi  y visualice los 
valores de x e y. 

,/ I 

' I  
I 

Escribir un programa que lea la temperatura en 
grados Celsius y la escriba en F. 



140 Programación en C. Metodologia, algoritmos y estructura de datos 

4.4. Escribir un programa que dibuje el rectángulo 
siguiente: 
* * * * * * * * * * * *  
* * 
* * 
* * 
* * 
* * * * * * * * * * * *  

4.5. 

4.6. 

4.7. 

4.8. 

4.9. 

Modificar el programa anterior, de modo que 
se lea una palabra de cinco letras y se imprima 
en el centro del rectángulo. 

Escribir un programa C que lea dos números y 
visualice el mayor. 

Escribir un programa para convertir una 
medida dada en pies a sus equivalentes en : a) 
yardas; b) pulgadas; c)  centímetros, y d) 
metros (1 pie = 12 pulgadas, 1 yarda = 3 pies, 
1 pulgada = 2,54 cm, 1 m = 100 cm). Leer el 
número de pies e imprimir el número de 
yardas, pies, pulgadas, centímetros y metros. 

Teniendo como datos de entrada el radio y la 
altura de un cilindro queremos calcular: el área 
lateral y el volumen del cilindro. 

Calcular el área de un triángulo mediante la 
fórmula: 

Área = (p(p - a)(p - b)(p - c))'" 

donde p es el semiperímetro, p = (a + b + c)n, 
siendo a, b, c los tres lados del triángulo. 

4.10. Escribimos un programa en el que se 
introducen como datos de entrada la longitud 
del perímetro de un terreno, expresada con tres 
números enteros que representan hectómetros, 
decámetros y metros respectivamente. Se ha de 
escribir, con un rótulo representativo, la 
longitud en decímetros. 

4.11. Construir un programa que calcule y escriba el 
producto, cociente entero y resto de dos 
números de tres cifras. 

4.12. Construir un programa para obtener la 
hipotenusa y los ángulos agudos de un 
triángulo rectángulo a partir de las longitudes 
de los catetos. 

4.13. Escribir un programa que desglose cierta 
cantidad de segundos introducida por teclado 
en su equivalente en semanas, días, horas, 
minutos y segundos. 

4.14. Escribir un programa que exprese cierta 
cantidad de pesetas en billetes y monedas de 
curso legal. 

4.15. La fuerza de atracción entre dos masas, m, y 
m, separadas por una distancia d, está dada por 
la fórmula: 

F =  
G *in, *in2 

dz 

donde G es la constante de gravitación 
universal 

G = 6.673 x lo-' cm'/g. seg2 

Escribir un programa que lea la masa de 
dos cuerpos y la distancia entre ellos y a 
continuación obtenga la fuerza gravitacional 
entre ella. La salida debe ser en dinas; un dina 
es igual a g>: cdseg'. 

4.16. La famosa ecuación de Einstein para 
conversión de una masa in en energía viene 
dada por la fórmula 

E = cm' 

Escribir un programa que lea una masa en 
gramos y obtenga la cantidad de energía 
producida cuando la masa se convierte en 
energía. 
Nota: Si la masa se da en gramos, la fórmula 
produce le energía en ergios. 

c es la velocidad de la luz 
c= 2.997925 x 10'"cdsg 

4.17. La relación entre los lados (a,b) de un triángulo 
y la hipotenusa (h) viene dada por la fórmula 

a' + b = h2 



Operadores y expresiones 141 

Escribir un programa que lea la longitud de 
los lados y calcule la hipotenusa. 

4.18. Escribir un programa que lea la hora de un día 
de notación de 24 horas y la respuesta en 
notación de 12 horas. Por ejemplo, si la entrada 
es 13:45, la salida será 

1:45 PM 

El programa pedirá al usuario que introduzca 
exactamente cinco caracteres. Así, por ejem- 
plo, las nueve en punto se introduce como 

o9  : O0 

4.19. Escribir un programa que lea el radio de un 
círculo y a continuación visualice: área del 

círculo, diámetro del círculo y longitud de la 
circunferencia del círculo. 

4.20. Escribir un programa que detemine si un año 
es bisiesto. Un año es bisiesto si es múltiplo 
de 4 (por ejemplo, 1984). Sin embargo, los 
años múltiplos de 100 sólo son bisiestos 
cuando a la vez son múltiples de 400 (por 
ejemplo, 1800 no es bisiesto, mientras que 
2000 si lo será). 

4.21. Construir un programa que indique si un 
número introducido por teclado es positivo, 
igual a cero, o negativo, utilizar para hacer la 
selección el operador ? : . 



CAPíTULO 5 

ESTRUCTURAS DE SELECCIÓN: 
SENTENCIAS IF Y SWITCH 

CONTENIDO 

5.1. Estructuras de control. 
5.2. La sentencia if. 
5.3. Sentencia if de dos alternativas: 

i f  -else. 
5.4. Sentencias if -else anidadas. 
5.5. Sentencia de control switch. 
5.6. Expresiones condicionales: 

cc. 

el operador ? : . 

5.7. Evaluación en cortocircuito 
de expresiones lógicas. 

5.8. Puesta a punto de programas. 
5.9. Errores frecuentes 

de programación. 
5.1 O. Resumen. 
5.10. Ejercicios. 
5.12. Problemas. 

142 



INTRODUCCI~N 
Los programas definidos hasta este punto se ejecutan de modo secuencial, es 
decir, una sentencia después de otra. La ejecución comienza con la primera 
sentencia de la función y prosigue hasta la Última sentencia, cada una de las 
cuales se ejecuta una sola vez. Esta forma de programación es adecuada para 
resolver problemas sencillos. Sin embargo, para la resolución de problemas de 
tipo general se necesita la capacidad de controlar cuáles son las sentencias que 
se ejecutan, en qué momentos. Las estructuras o construcciones de control 
controlan la secuencia o flujo de ejecución de las sentencias. Las estructuras 
de control se dividen en tres grandes categorías en función del flujo de 
ejecución: secuencia, selección y repetición. 

Este capítulo considera las estructuras selectivas o condicionales -sen- 
tencias if y switch- que controlan si una sentencia o lista de sentencias se 
ejecutan en función del cumplimiento o no de una condición. 

I 

c 
CONCEPTOS CLAVE 

Estructura de control. Sentencia enum. 
Estructura de control selectiva. Sentencia if. 
Sentencia break. Sentencia switch. 
Sentencia compuesta. Tipo lógico en C. 

li 



144 Programación en C. Metodología, algoritmos y estructura de datos 

, 

5.1. ESTRUCTURAS DE CONTROL 

Las estructuras de control controlan el flujo de ejecución de un programa o función. Las estructuras 
de control permiten combinar instrucciones o sentencias individuales en una simple unidad lógica con 
un punto de entrada y un punto de salida. 

Las instrucciones o sentencias se organizan en tres tipos de estructuras de control que sirven para 
controlar el flujo de la ejecución: secuencia, selección (decisión) y repetición. Hasta este momento sólo 
se ha utilizado el flujo secuencial. Una sentencia compuesta es un conjunto de sentencias encerradas 
entre llaves ( {  y 1) que se utiliza para especificar un flujo secuencial. 

{ 
sentencia ; 
sentencia ; 

sentencia ; 
1 

El control fluye de la sentenciu, a la .sentencia2 y así sucesivamente. Sin embargo, existen problemas 
que requieren etapas con dos o más opciones o alternativas a elegir en función del valor de una condición + o expresión. 

5.2. LA SENTENCIA if 

En C, la estructura de control de selección principal es una sentencia if. La sentencia if tiene dos 
alternativas o formatos posibles. El formato más sencillo tiene la sintaxis siguiente: 

i f (Expresión) Acr’ión 

Acción se ejecuta si la expresión 
lógica es verdadera \ 

Expresión lógica que determina 
SI la acción se ha de ejecutar 

La sentencia i f funciona de la siguiente manera. Cuando se alcanza la sentencia if dentro de un 
programa, se evalúa la expresión entre paréntesis que viene a continuación de if. Si Expresión es 
verdadera, se ejecuta Acción; en caso contrario no se ejecuta Acción (en su formato más simple, 
Acción es una sentencia simple y en los restantes formatos es una sentencia compuesta). En cualquier 
caso la ejecución del programa continúa con la siguiente sentencia del programa. La Figura 5.1 muestra 
un diagrama deflujo que indica el flujo de ejecución del programa. 

Otro sistema de representar la sentencia i f es: 

if (condición) sentencia;  

condi ci Ón 
sentencia 

es una expresión entera(1ógica). 
es cualquier sentencia ejecutable, que se ejecutará sólo si la condición toma 
un valor distinto de cero. 



Estructuras de selección: sentencias I f y S W ~  t c.h 145 

verdadera falsa 

Figura 5.1. Diagrama de flujo de una sentencia básica i f 

Ejemplo 5.1 

Prueba de divisibilidad 

#include <stdio.h> 
int main( ) 
i 
int n, d; 
printf ( "Introduzca dos enteros: " )  ; 

scanf ("%d %d", &n, &d) ; 
if (n%d == O )  printf ( "  %d es divisible por %d\n",n,d) ; 
return O; 

1 

In t  enteros: 36 4 
36 r 4  

Este programa lee dos números enteros y comprueba cuál es el valor del resto de la división n entre 
d (n%d). Si el resto es cero, n es divisible por d (en nuestro caso 36 es divisible por 4, ya que 36 : 4 = 9 
y el resto es O). 

Ejemplo 5.2 

Representar la superación de un examen (Nota > = 5, Aprobado). 

verdadera 

Imprimir 
aprobado 

4 
falsa 

i f  (Nota >= 5) 
puts("Aprobad0") ; 



\ '  

d 

146 Programación en C. Metodología, algoritmos y estructura de datos 

#include <stdio.h> 

void main() 
{ 

float numero; 
/ *  comparar número introducido por usuario * /  
printf("1ntroduzca un número positivo o negativo: ' I ) ;  

scanf ('%f",&numero) ; 

/ *  comparar número con cero * /  
if (numero > O) 

printf ("%f es mayor que cero\n" ,numero) ; 
1 

La ejecución de este programa produce 

Introduzca un número positivo o negativo: 10.15 
10.15 es mayor que cero 

Si en lugar de introducir un número positivo se introduce un número negativo ¿Qué sucede?: nada. 
El programa es tan simple que sólo puede comprobar si el número es mayor que cero. 

Ejemplo 5.3 

#include <stdio.h> 

void main() 
{ 
float numero; 

/ *  comparar número introducido por usuario * /  
printf("1ntroduzca un número positivo o negativo: " ) ;  

scanf ("%f",&numero) ; 
/ *  comparar número * /  
if (numero > O) 

if (numero < O) 

if (numero == O) 

printf ("%f es mayor que cero\n",numero) ; 

printf ("%f es menor que cero\n",numero) ; 

printf ("%f es igual a cero\n",numero) ; 
1 

Este programa simplemente añade otra sentencia i f  que comprueba si el número introducido es 
menor que cero. Realmente, una tercera sentencia if se añade también y comprueba si el número es 
igual a cero. 

Ejercicio 5.1 

Visualizar la tarifa de la luz según el gasto de corriente eléctrica. Para un gasto menor de 1.000Kwxh 
la tarifa es 1.2, entre 1.OOOy I.850Kwxh es 1.0 y mayor de 1.XSOKwxh 0.9. 

#include <stdio.h> 
#define TARIFA1 1.2 
#define TARIFA2 1.0 
#define TARIFA3 O. 9 



--in 

Estructuras de selección: sentencias 1 t y c w 1 t c-h 147 

int main() 
i 

float gasto, tasa; 
printf ("\n Gasto de corriente: " )  ; 

scanf ("%f", &gasto) ; 
if (gasto < 1000.0) 
tasa = TARIFA1; 

if (gasto >=lOOO.O && gasto <=1850.0) 
tasa = TARIFA2; 

if (gasto >1850.0) 
tasa = TARIFA3; 

printf("\nTasa que le corresponde a %.lf Kwxh es de %f\n", 

return O ;  
gasto,tasa); 

I 

En el ejercicio se decide entre tres rangos la tasa que le corresponde. Se ha resuelto con tres 
selecciones simples. 

5.3. SENTENCIA if DE DOS ALTERNATIVAS: if -else 

Un segundo formato de la sentencia i f  es la sentencia if -else. Este formato de la sentencia if tiene 
la siguiente sintaxis: 

if (Expresión) 

Expresión lógica que 

Acción 

1 
else Acción 

Acción que se ejecuta 
determina la acción Acción que se realiza si la expresión lógica 
a ejecutar si la expresión lógica 

es verdadera 
es falsa 

En este formato Acción y Acción son individualmente, o bien una Única sentencia que termina 
en un punto y coma (;) o un grupo de sentencias encerrado entre llaves. Cuando se ejecuta la sentencia 
if -else, se evalúa Expresión. Si Expresión es verdadera, se ejecuta Acción y en caso contrario 
se ejecuta Acción . La Figura 5.2 muestra la semántica de la sentencia if -else. 

1 
verdadera 

Acción, 

falsa 

Acción, 

Figura 5.2. Diagrama de flujo de la representación de una sentencia if -else. 



- -~ - ____ _ _  - -_ 
F - -  - -  - =  

148 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplos 

1.if (salario > IOOOOO) 
salario-neto = salario - impuestos; 

salario-neto = salario; 
else 

Si salario es mayor que 100.000 se calcula el salario neto, restándole los impuestos; en caso 
contrario (else) el salario neto es igual al salario (bruto). 

2. if (Nota >= 5) 
puts ("Aprobado') ; 

puts ("suspenso") ; 
else 

Si Nota es mayor o igual que 5 se escribe Aprobado; en caso contrario, Nota menor que 5 ,  se escribe 
Suspenso. 

Formatos 

if 
s en t en c i  a 

( expresi ón-1 ógi ca ) 2. 

3.1 if (expresión- lógica) sentencia I 

if (expresión-lógica) 

else 
sentencia, 

sent encia, 

4. I if (expresión- lógica) sentencia else sentencia I 
Si expresión 1 ógi ca es verdadera se ejecuta sentencia o bien sent encia, , si es falsa (sino, 

en caso contrario) se ejecuta sentencia ,. 

Ejemplos 

1 .  if (x > 0.0) 

2. if (x != 0.0) 
producto = producto * x; 

producto = producto * x; 

/ *  Se ejecuta la sentencia de asignación cuando x no es igual a O. 
en este caso producto se multiplica por x y el nuevo valor se 
guarda en producto reemplazando el valor antiguo. 
Si x es igual a O ,  la multiplicación no se ejecuta. 

* /  

Ejemplo 5.4 

Prueba de divisibilidad (igual que el Ejemplo 5.1, al que se ha añadido la cláusula e l s e )  

#include <stdio.h> 
int main() 



Estructuras de selección: sentencias I f y s w 1  t ch 149 

I 
int n, d; 
print f ( "Introduzca dos enteros : " ) ; 

scanf ("%d %d", &n, &d) ; 
if (n%d ==O) 

else 

return O ;  

printf ("%d es divisible por %d\n',n,d) ; 

printf ("%d no es divisible por %d\n",n,d) ; 

1 

Ejscucián 

Introduzca dos enteros 36 5 

Comentario 
36 no es divisible por 5 ya que 36 dividido entre 5 produce un resto de 1 (n%d == O, es falsa, y se 
ejecuta la cláusula else). 

Ejemplo 5.5 
Calcular el mayor de dos números leídos del teclado y visualizarlo en pantalla. 

#include <stdio.h> 
int main( ) 
i 
int x, y; 
printf ( "Introduzca dos enteros: 'I) ; 

scanf ("%d %d", &x, &y) ; 
if (x > y) 

else 

return O; 

printf ("%6d\n",x) ; 

printf ("%6d\n",y) ; 

1 

Comentario 
La condición es (x > y). Si x es mayor que y, la condición es «verdadera» (true) y se evalúa a 1 ; en caso 
contrario la condición es «falsa» (false) y se evalúa a O. De este modo se imprime x (en un campo de 
ancho 6 ,  %6d) cuando es mayor que y, como en el ejemplo de la ejecución. 



150 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 5.6 
Duda la función.f(x), calcular lu función puru un vulor dudo de x y visualizarlo en pantalla 

x - x para x 5 0 . 0  I -x i 3x para x >O 
f (x) = 

#include <stdio.h> 
#include <rnath.h> 
int main() 
i 
float f,x; 
printf("\n Elige un valor de x: " ) ;  
scanf ( " % f " ,  &x) ; 

if (x <=O.O) 

else  

printf ("f (%.lf) = %.3f",x,f); 
return O ;  

/ *  selección d e l  rango en que se encuentra x * /  

f = pow(x,2) - x; 

f = -pow(x,2) + 3*x; 

i 

1 Ejecución 

Elige un valor de x:-1.5 
f(-1.5)= 3 . 7 5 0  

Comentario 
Una vez introducido x, se evalúa la condición x < = o .  O, si es cierta asigna a f ,  x 
contrario asigna a I, -x + 3x. 

- x; en caso 

5.4. SENTENCIAS if -else ANIDADAS 
Hasta este punto, las sentencias if implementan decisiones que implican una o dos alternativas. En esta 
sección, se mostrará como se puede utilizar la sentencia i f para implementar decisiones que impliquen 
diferentes alternativas. 

Una sentencia i f es anidada cuando la sentencia de la rama verdadera o la rama falsa, es a su vez 
una sentencia if. Una sentencia if anidada se puede utilizar para implementar decisiones con varias 
alternativas o multi-alternativas. 

sentencia 

sentencia 
else if (condición ) 

Sin taxis : 

else if (condición ) 

else 
sentencia 

sen t en ci a, 



Estructuras de selección: sentencias J f y : ;w~ t ~ ‘ 1 1  151 

Ejemplo 5.7 

/ *  incrementar contadores de números positivos, números negativos o 
ceros * /  

if (x > O) 

else 
num-pos = num-pos + 1; 

num-ceros = num-ceros + 1; I 
I J I  

La sentencia if anidada tiene tres alternativas. Se incrementa una de las tres variables (num-pos , 
num-neg y num-ceros) en 1, dependiendo de que x sea mayor que cero, menor que cero o igual a 
cero, respectivamente. Las cajas muestran la estructura lógica de la sentencia if anidada; la segunda 
sentencia if es la acción o tarea falsa (a continuación de else) de la primera sentencia if. 

La ejecución de la sentencia if anidada se realiza como sigue: se comprueba la primera condición 
(x > O); si es verdadera, numjos se incrementa en 1 y se salta el resto de la sentencia if. Si la primera 
condición es falsa, se comprueba la segunda condición (x < O); si es verdadera num-neg se incrementa 
en uno; en caso contrario se incrementa nun]-ceros en uno. Es importante considerar que la segunda 
condición se comprueba sólo si la primera condición es falsa. 

5.4.1. Sangría en las sentencias if anidadas 

El formato muitibifurcación se compone de una serie de sentencias if anidadas, que se pueden escribir 
en cada línea una sentencia if. La sintaxis myltibifurcación anidada es: 

Formato I :  

if (expresión-lógica ) 

else 
s en ten ci a 

if (expresión-lógica ) 
else 

if (expresión-lógica ) 
sen ten ci a 

else 
if (expresión-lógica ) 

sent enci a 
else 
sen ten ci a 

Formato 2: 
if (expresión-lógica ) 

else if (expresión-lógica ) 

else if (expresión-lógica ) 

else if (expresión-lógica ) 

else 

sen ten ci a 

sen t en ci a 

sen t enci a 

sen t enci a 

sent encia 

Ejemplos 

1. if (x > O) 
z = 2*log(x); 

if (y > O )  
else 



152 Programación en C. Metodología, algoritmos y estructura de datos 

z = sqrt(x) + sqrt(y); 

2 .  if (x > O) 
z = 2*log(x) ; 

else if (y > O) 
z = sqrt (x) + sqrt (y) ; 

else 
puts ( "\n * * *  Imposible calcular 2") ; 

Ejemplo 5.8 

El siguiente programa realiza selecciones múltiples con la sentencia compuestas if else. 

#include <stdio.h> 
void main() 

float numero; 
printf( I' introduzca un número positivo o negativo: " ) ;  

scanf ("%f", &numero) ; 
/ *  comparar número con cero * /  
if (numero > O) 
I 

printf ("%.2f %s", numero, "es mayor que cero\n") ; 
puts( "pruebe de nuevo introduciendo un número negativo"); 

I 
else if (numero < O) 
t 

printf ("%.2f %su', numero, 'les menor que cero\n") ; 
puts( "pruebe de nuevo introduciendo un número negativo"); 

I 
else 
{ printf ("%.2f %s", numero, 'les igual a cero\n") ; 

I 
puts ( " ¿por qué no introduce otro número? " ) ;  

1 

5.4.2. Comparación de sentencias if anidadas y secuencias de sentencias if 

Los programadores tienen dos alternativas: 1) usar una secuencia de sentencias if; 2) una Única 
sentencia if anidada. Por ejemplo, la sentencia i f del Ejemplo 5.7 se puede reescribir como la siguiente 
secuencia de sentencias if. 

if (x > O) 

if (x < O) 

if ( x == O) 

numsos = num-pos + 1; 

num-neg = num-neg + 1; 

num-ceros = num-ceros + 1; 



P 

Estructuras de selección: Sentencias i i y s w i  t cti 153 

Aunque la secuencia anterior es lógicamente equivalente a la original, no es tan legible ni eficiente. 
Al contrario que la sentencia i f anidada, la secuencia no muestra claramente cual es la sentencia a 
ejecutar para un valor determinado de x. Con respecto a la eficiencia, la sentencia if anidada se ejecuta 
más rápidamente cuando x es positivo ya que la primera condición (x > o) es verdadera, lo que significa 
que la parte de la sentencia i f a continuación del primer e i s e se salta. En contraste, se comprueban 
siempre las tres condiciones en la secuencia de sentencias if. Si x es negativa, se comprueban dos 
condiciones en las sentencias if anidadas frente a las tres condiciones de las secuencias de sentencias 
if. Una estructura típica if -else anidada permitida es: 

if (numero > O) 
{ 

1 
else 
{ 

. . .  

if ( . . .  ) 
I 

1 
else 
I 

. . .  

1 

if ( . . .  ) 
I 

. . .  
1 

1 
. . .  

1 

Ejercicio 5.9 
Existen diferentes formas de escribir sentencias if anidadas. 

1. if (a > O) if (b > O) ++a; else if ( c  > O) 
if (a < 5) ++b; else if (b < 5) + + c ;  else --a; 
else if (c < 5) --b; else - - c ;  else a = O ;  

2. if (a > O) / *  forma más legible * /  
if (b > O) ++a; 
else 
if ( c  > O) 
if (a < 5) ++b; 
else 
if (b < 5) ++e;  
else --a; 

else 
if ( c  < 5) --b; 
else - -c;  

a = O; 
else 

3. if (a > O) / *  forma más legible * /  



154 Programación en C. Metodología, algoritmos y estructura de datos 

if (b > O) ++a; 
else if (c > O) 

if (a < 5) ++b; 
else if (b < 5) ++c; 
else --a; 

else if (c < 5) --b; 
else --c; 

a = O; 
else 

Ejercicio 5.10 

Calcular el mayor de tres números enteros. 

#include <stdio.h> 
int main0 
i 
int a, b, c, mayor; 
printf ("\nIntroduzca tres enteros : " )  ; 

scanf ("%d %d %d", &a, &b, &c) ; 
if (a > b) 

if (a > c) mayor = a; 
else mayor = c; 

else 
if (b > c) mayor = b; 
else mayor = c; 

return O; 
print f ( "El mayor es %d \n" ,mayor) ; 

i 

Ejecución 

Introduzca tres enteros: 77 54 85 
El mayor es 85 

Análisis 

Al ejecutar el primer if, la condición (a > b) es verdadera, entonces se ejecuta la segunda i f .  En el 
segundo if la condición (a > c) es falsa, en consecuencia el primer else mayor = 85 y se termina 
la sentencia if, a continuación se ejecuta la última línea y se visualiza ~i mayor es 85. 

5.5. SENTENCIA DE CONTROL switch 

La sentencia switch es una sentencia C que se utiliza para seleccionar una de entre múltiples alter- 
nativas. La sentencia switch es especialmente Útil cuando la selección se basa en el valor de una 
variable simple o de una expresión simple denominada expresicín de control o selector. El valor de esta 
expresión puede ser de tipo int o char, pero no de tipo float ni double. 



Estructuras de selección: sentencias I t y S W I  t ch 155 

Sintaxis 

switch (selector) 
t 

case etiqueta, : sentencias,; 
case etiqueta, : sentencias,; 

case etiqueta, : sentencias,; 
default: sentencias,; 

i 

/ *  opcional. * /  

La expresión de control o se1 ec tor  se evalúa y se compara con cada una de las etiquetas de case. 
La expresión se lec tor  debe ser un tipo ordinal (por ejemplo, i n t  , char, pero no float o s t r i n g ) .  
Cada e t iqueta  es un valor Único, constante y cada etiqueta debe tener un valor diferente de los otros. 
Si el valor de la expresión selector es igual a una de las etiquetas case -por ejemplo, e t iqueta  - 
entonces la ejecución comenzará con la primera sentencia de la secuencia sentencia y continuará 
hasta que se encuentra el final de la sentencia de control s w  I t ch ,  o hasta encontrar la sentencia break. 
Es habitual que después de cada bloque de sentencias correspondiente a una secuencia se desee terminar 
la ejecución del switch; para ello se sitúa la sentencia break como Última sentencia del bloque. 
break hace que siga la ejecución en la siguiente sentencia ai switch. 

Sintaxis con break 

switch ( select or )  
{ 

case etiqueta, : sentencias,; 

case etiqueta, : sentencias,; 
breaki 

break ; 

case etiqueta, : sentencias,; 

default: sentencias,; 
break; 

/ *  opcional * /  

El tipo de cada etiqueta debe ser el mismo que la expresión de se1 ector.  Las expresiones están 
permitidas como etiquetas pero sólo si cada operando de la expresión es por sí misma una constante 
-por ejemplo, 4 + 8 o bien m * 15-, siempre que m hubiera sido definido anteriormente como 
constante con nombre. 

Si el valor del selector no está listado en ninguna etiqueta case, no se ejecutará ninguna de las 
opciones a menos que se especifique una acción por defecto (omisión). La omisión de una etiqueta 
default puede crear un error lógico difícil de prever. Aunque la etiqueta default es opcional, se 
recomienda su uso a menos que se esté absolutamente seguro de que todos los valores de sekctor estén 
incluidos en las etiquetas case. 



1 156 Programación en C. Metodología, algoritmos y estructura de datos 

Una sentencia break consta de la palabra reservada break seguida por un punto y coma. Cuando 
la computadora ejecuta las sentencias siguientes a una etiqueta case, continúa hasta que se alcanza una 
sentencia break. Si la computadora encuentra una sentencia break, termina la sentencia switch. Si 
se omiten las sentencias break, después de ejecutar el código de case, la computadora ejecutará el 
código que sigue a la siguiente case. 

! 

Ejemplo 5.1 1 

switch (opcion) 
{ 
case O: 

puts ("Cero!") ; 
break; 

puts ( "Uno ! 'I ) ; 
break; 

puts('Dos!'); 
break; 

puts ("Fuera de rango") ; 

case 1: 

case 2: 

default: 

1 

~~~~ 

Ejemplo 5.12

switch (opcion)
{

case O:
case 1:
case 2:

puts ("Menor de 3 ") ;
break;

puts("Igual a 3 ") ;
break;

puts ("Mayor que 3 ") ;

case 3:

default:

1

Ejemplo 5.13

Comparación de las sentencias if -else-if y swi t ch. Se necesita saber si un determinado carácter
car es una vocal. Solución con if-else-if.

if ((car == 'a') I I (car == 'A'))
printf ("%c es una vocal\n",car) ;

else if ((car == 'e') 1 1 (car == 'E'))
printf ("%c es una vocal\n",car) ;

else if ((car == 'i') 1 1 (car == '1'))
printf ("%c es una vocal\n",car) ;

Estructuras de selección: sentencias if y swi t ch

else if ((car == 'o') I I (car == 'O'))
printf ("%c es una vocal\n", car) ;

else if ((car == 'u') 1 I (car == 'U'))
printf ("%c es una vocal\n", car) ;

else
printf ("%c no es una vocal\n",car) ;

Solución con s w i t ch.

switch (car) {
I , case a

case e
case 'i'
case 'o '
case 'u'
print f
break;

printf

I ,

default

I

-
157

case 'A' :
case 'E ' :
case '1':
case 'O ' :
case 'u':
II o, oc es una vocal\n",car) ;

II o, oc no es una vocal\n", car) ;

Ejemplo 5.15

Dada una nota de un examen mediante un código escribir el literal que le corresponde a la nota.

/ * Programa resuelto con la sentencia switch * /
#include <stdio.h>

int main()
I
char nota;
printf("1ntroduzca calificación (A-F) y pulse Intro:");
scanf (%c", ¬a) ;

switch (nota)
{

case 'A' : puts ("Excelente. Examen superado") ;
break;

case 'B': puts ("Notable. Suficiencia") ;
break;

case 'C ' : puts ("Aprobado") ;
break;

case 'D ' :
case 'F' : puts ("Suspendido") ;

break;
default:

puts ("No es posible esta nota") ;
I
puts ("Final de programa" ;
return O ;

I

Cuando se ejecuta la sentencia switch, se evalúa nota; si el valor de la expresión es igual al valor
de una etiqueta, entonces se transfiere el flujo de control a las sentencias asociadas con la etiqueta

158 Programación en C. Metodología, algoritmos y estructura de datos

correspondiente. Si ninguna etiqueta coincide con el valor de nota se ejecuta la sentencia default y
las sentencias que vienen detrás de ella. Normalmente la última sentencia de las sentencias que vienen
después de una case es una sentencia break. Esta sentencia hace que el flujo de control del programa
salte a la siguiente sentencia de switch. Si no existiera break, se ejecutm'an también las sentencias
restantes de la sentencia switch.

Ejecución de prueba I
Introduzca calificación (A-F) y pulse Intro: A
Excelente. Examen superado
Final de programa

Ejecución de prueba 2
introduzca calificación (A-F) y pulse Intro: B
Notable. Suficiencia
Final de programa

Ejecución de prueba 3
Introduzca calificación (A-F) y pulse Intro: E
No es posible esta nota
Final de programa

Preeaución

Si se olvida break en una sentencia s w i t c h , el compilador no emitirá un mensaje de error
ya que se habrá escrito una sentencia switch correcta sintácticamente pero no realizará las
tareas previstas.

~ _ _ _ _ _ ~

Ejemplo 5.15

Seleccionar un tipo de vehículo según un valor numérico.
int tipo-vehiculo;
printf ("Introduzca tipo de vehiculo: ") ;

scanf ("%di', &tipo-vehículo) ;
switch(tipo-vehículo)
{
case 1:

printf ("turismo\n") ;
peaje = 500;
break;

printf ("autobus\n") ;
peaje = 3000;
break ;

pr in t f ('Irno t oc i c 1 et a \ n ") ;
peaje = 300;
break;
default:
printf ("vehículo no autorizado\n") ;

+ Si se omite esta break el vehículo primero será turismo
case 2: y luego autobús

case 3:

i

Estructuras de selección: sentencias 1 f y s w l t d l 159

r
Cuando la computadora comienza a ejecutar un case no termina la ejecución del switch hasta

que se encuentra, o bien una sentencia break, o bien la Última sentencia del switch.

5.5.1. Caso particular de case

Está permitido tener varias expresiones case en una alternativa dada dentro de la sentencia switch. Por
ejemplo, se puede escribir:

switch(c) {
case '0':case '1': case '2': case '3': case '4':
case '5':case '6': case '7': case '8': case '9':
num-digitos++; /*se incrementa en 1 el valor de num-digitos * /
break;

num-blancos++; /*se incrementa en 1 el valor de num-blancos*/
break;

default:
num-distintos++;

I , case : case '\t': case '\n':

1

5.5.2. Uso de sentencias switch en menús

La sentencia i f -else es más versátil que la sentencia switch y se puede utilizar unas sentencias if -
else anidadas o multidecisión, en cualquier parte que se utiliza una sentencia case. Sin embargo,
normalmente, la sentencia switch es más clara. Por ejemplo, la sentencia switch es idónea para
implementar menús.

Un menú de un restaurante presenta una lista de alternativas para que un cliente elija entre sus
diferentes opciones. Un menú en un programa de computadora hace la misma función: presentar una
lista de alternativas en la pantalla para que el usuario elija una de ellas.

En los capítulos siguientes se volverá a tratar el tema de los menús en programación con ejemplos
prácticos.

5.6. EXPRESIONES CONDICIONALES: EL OPERADOR ? :

Las sentencias de selección (if y switch) consideradas hasta ahora, son similares a las sentencias
previstas en otros lenguajes, tales como Pascal y Fortran 90. C tiene un tercer mecanismo de selección,
una expresión que produce uno de dos valores, resultado de una expresión lógica o booleana (también
denominada condición). Este mecanismo se denomina expresión condicional. Una expresión
condicional tiene el formato C ? A : B y es realmente una operación ternaria (tres operandos) en el
que c , A y B son los tres operandos y ? : es el operador.

Sintaxis

condición ? expresión, : expresión,

condi ci ón
expresión /expresión

es una expresión lógica
son expresiones compatibles de tipos

160 Programación en C. Metodología, algoritmos y estructura de datos

Se evalúa condición, si el valor de condición es verdadera (distinto de cero) entonces se
devuelve como resultado el valor de expresión ; si el valor de condición es falsa (cero) se devuelve
como resultado el valor de expresión .

Uno de los medios más sencillos del operador condicional (? :) es utilizar el operador condicional
y llamar a una de dos funciones.

Ejemplos

1. Selecciona con el operador ? : la ejecución de una función u otra.

a == b ? funcionlo : funcion20;

es equivalente a la siguiente sentencia:

if (a == b)

else
funcionl () ;

funcion2 () ;

2. El operador ? : se utiliza en el siguiente segmento de código para asignar el menor de dos valores
de entrada a menor.

int entradal, entrada2;
int menor;
scanf ("%d %d" , &entradal, &entrada2) ;
menor = entradal <= entrada2 ? entradal : entrada2;

Ejemplo 5.16

Seleccionar el mayor de dos números enteros con la sentencia if -else y con el operador ? :

#include <stdio.h>

void main0
{
float nl, n2;

printf("1ntroduzca dos números positivos o negativos:");
scanf ("%d %d" , &nl, &n2) ;

if (nl > n2)

else

/ * selección con if-else * /

printf ("%d > %d",nl,n2);

printf ("%d <= %d'',nl,n2) ;

/ * operador condicional * /
nl > n2 ? printf("%d > %d",nl,n2): printf("%d <= %d",nl,n2);

1

I
1:

1

I

Estructuras de selección: sentencias 1 r y i w1 t i ti 161

5.7. EVALUACIÓN EN CORTOCIRCUITO DE EXPRESIONES LÓGICAS

Cuando se evalúan expresiones lógicas en C se puede emplear una técnica denominada evaluación en
cortocircuito. Este tipo de evaluación significa que se puede detener la evaluación de una expresión
lógica tan pronto como su valor pueda ser determinado con absoluta certeza. Por ejemplo, si el valor de
(soltero == ’s ’) es falso, la expresión lógica (soltero == ’s’) &&(sexo = ’h’) hh (edad
> 18) && (edad <= 4 5) será falsa con independencia de cual sea el valor de las otras condiciones. La
razón es que una expresión lógica del tipo

falso & & (. . .)

debe ser siempre falsa, cuando uno de los operandos de la operación AND es falso. En consecuencia no
hay necesidad de continuar la evaluación de las otras condiciones cuando (sol tero == ’s’) se evalúa
a falso.

El compilador C utiliza este tipo de evaluación. Es decir, la evaluación de una expresión lógica de
la forma,

C realiza evaluación en cortocircuito con los operadores & & y I 1 , de modo que evalúa primero la
expresión más a la izquierda de las dos expresiones unidas por & & o bien por 1 I . Si de esta evaluación
se deduce la información suficiente para determinar el valor final de la expresión (independiente del
valor de la segunda expresión), el compilador de C no evalúa la segunda expresión.

&& a se detiene si la subexpresión de la izquierda se evalúa a falsa.

Ejemplo 5.17

Si x es negativo, la expresión

(x >= O) && (y > 1)

se evalúa en cortocircuito ya que x >= O será falso y, por tanto, el valor final de la expresión será falso.
En el caso del operador I I se produce una situación similar. Si la primera de las dos expresiones uni-

das por el operador I t es verdadera, entonces la expresión completa es verduderu, con independencia
de que el valor de la segunda expresión sea verdadero o fulso. La razón es que el operador OR produce
resultado verdadero si el primer operando es verdadero.

Otros lenguajes, distintos de C, utilizan evaluación completa. En evaluación completa, cuando dos
expresiones se unen por un símbolo && o 1 1 , se evalúan siempre ambas expresiones y a continuación se
utilizan las tablas de verdad de && o bien I I para obtener el valor de la expresión final.

Ejemplo 5.18

Si x es cero, la condición

if ((x ! = 0.0) & & (y/x > 7 . 5))

es falsa ya que (x ! = O . o) es falsa. Por consiguiente, no hay necesidad de evaluar la expresión (y/.
> 7 .5) cuando x sea cero, de utilizar evaluación completa se produciría un error en tiempo de ejecución.
Sin embargo, si altera el orden de las expresiones, al evaluar el compilador la sentencia if

I f ((y/x > 7 . 5) && (x ! = 0.0))

se produciría un error en tiempo de ejecución de división por cero (“division by zero” 1 .

El orden de las expresiones con operadores && y I I puede ser crítico en determinadas
situaciones.

162 Programación en C. Metodología, algoritmos y estructura de datos

5.8. PUESTA A PUNTO DE PROGRAMAS

Estilo y diseño

1. El estilo de escritura de una sentencia i f e i f -el se es el sangrado de las diferentes líneas en el
formato siguiente:

I

2.

if (expres ión- lógica)

else
sen t enc i a

s en t enc i a

i f (expresión- 1 ógi c a)
i

sen t enc 1 d

s e n t e n c i a
1
else
i

sen t enc i il

sen t enc i d

1

En el caso G , sentencias i f -else - I t utilimdas para implementar una estructura de selección
multialternativa se suele escribir de la siguiente forma:

if (expresión- lógica)

else if (expresión-lógicd)

sen tenc i a

sen ten ci a

else if (expresión- lógica 1

else
sen tenc i a

s en t enc i a

Una construcción de selección múltiple se puede implementar más eficientemente con una
estmctura 1 t-else- 1 f que con una secuentencia de sentencias independientes I f . Por ejemplo:

p r i n t f (' in t roduzca n o t a ") ;
scanf ("%dd", ¬a) ;
i f (n o t a < 0 1 I no ta > 100)
i

p r i n t € (" %d no es una no ta válida.\n",nota);
r e t u r n ' ? ';

i
i f ((n o t a >= 9 0) & & (n o t a <= 100))

i f ((n o t a >= 80) && (n o t a < 90))

i f ((n o t a >=70) && (n o t a < 80))

r e t u r n ' A ' ;

r e t u r n ' B ' ;

Estructuras de selección: sentencias I f y S W I ti-h 163

return 'C';
if ((nota >= 60) && (nota < 70))
return 'D';

if (nota < 60)
return 'F ' ;

Con independencia del valor de nota se ejecutan todas las sentencias if; 5 de las expresiones
lógicas son expresiones compuestas, de modo que se ejecutan 16 operaciones con independencia de
la nota introducida. En contraste, las sentencias i f anidadas reducen considerablemente el número
de operaciones a realizar (3 a 7), todas las expresiones son simples y no se evalúan todas ellas
siempre.

printf ("Introduzca nota") ;
scanf ("%d", ¬a) ;
if (nota < 0 I I nota > 100)
I

printf ("%d no es una nota válida. \n",nota) ;
return ' ? ' ;

I
else if (nota >= 90)

else if (nota >= 80)

else if (nota >= 70)

else if (nota >= 60)

else

return 'A,;

return 'B ' ;

return 'C';

return 'D';

return 'F';

5.9. ERRORES FRECUENTES DE PROGRAMACIÓN

I . Uno de los errores más comunes en una sentencia i f es utilizar un operador de asignación (=)

2. En una sentencia i f anidada, cada cláusula el se se corresponde con la i f precedente más
en lugar de un operador de igualdad (==).

cercana. Por ejemplo, en el segmento de programa siguiente

if (a > O)
if (b > O)
c = a + b ;
else
c = a + abs(b) ;
d = a * b * c ;

¿Cuál es la sentencia i f asociada a el se?
El sistema más fácil para evitar errores es el sangrado o indentación, con lo que ya se aprecia

que la cláusula else se corresponde a la sentencia que contiene la condición b > o
if (a > O)

if (b > O)

else
c = a + b ;

c = a + abs(b) ;
d = a * b * c ;

164 Programación en C. Metodología, algoritmos y estructura de datos

F

3. Las comparaciones con operadores == de cantidades algebraicamente iguales pueden producir
una expresión lógica falsa, debido u que la mayoría de los números reales no se almacenan
exactamente. Por ejemplo, aunque las expresiones reales siguientes son equivalentes:

a * (l / a)
1 . 0

son algebraicamente iguales, la expresión

a * (l / a) == 1 . 0

puede ser falsa debido a que a es real.

4. Cuando en una sentencia s w i tch o en un bloque de sentencias falta una de las llaves ({ , 1)
aparece un mensaje de error tal como:

Error . . . : Cumpound statement missing } in funct-ion

Si no se tiene cuidado con la presentación de la escritura del código, puede ser muy difícil

5. El selector de una sentencia s w l t ch debe ser de tipo entero o compatible entero. Así las

localizar la llave que falta.

constantes reales

2 . 4 , - 4 . 5 , 3 . 1 4 1 6

no pueden ser utilizadas en el selector.

6. Cuando se utiliza una sentencia s w i t ch, asegúrese que el selector de s w i t ch y las etiquetas
case son del mismo tipo (in t , c h a r pero no f 1 o a t) . Si el selector se evalúa a un valor no
listado en ninguna de las etiquetas case, la sentencia s w i t ch no gestionará ninguna acción;
por esta causa se suele poner m a etiqueta d e f d u l t pura resolver este problema.

Múltiples alternativas

5.10. RESUMEN

Sentencia i f
Una alternativa

resultado = a/b;

Dos alternativas

if (a >= O)
f = 5*cos(a*pi/l80.);

f = -2*sin(a*pi/180.) + 0.5;

if (x < O)
{

puts ("Negativo") ;
a b s x = -x;

else if (x == O)
i

puts ("Cero") ;
abs-x = O;

else
{

puts ("positivo") ;
abs-x = x;

1

7
I

Estructuras de selección: sentencias L t y A w l t cii 165

case 'A' : case 'a ' :
puts ("Sobresaliente") ;
break;

puts ("Notable') ;
break;

puts ("Aprobado") ;
break;

puts (BSuspenso'') ;
break;

puts ("nota no válida") ;

case 'B': case 'b':

case 'C ' : case 'c ' :

case 'D': case 'd':

default:

l.

Sentencia switch

I J

5.1 I. EJERCICIOS

5.1. ¿Qué errores de sintaxis tiene la siguiente sen-
tencia?

if x > 25.0

else
y = x

y = z;

5.2. ¿Qué valor se asigna a consumo en la senten-
cia if siguiente si velocidad es 120?

if (velocidad > 80)
consumo = 10.00;

else if (velocidad > 100)
consumo = 12.00;

else if (velocidad > 120)
consumo = 15.00;

5.3. Explique las diferencias entre las sentencias de
la columna de la izquierda y de la columna de la
derecha. Para cada una de ellas deducir el valor
final de x si el valor inicial de x es O.

if (x >= O) if (x >= O)

else if (x >= 1); if (x >= 1)
x++ ; X++ ;

X+= 2; x+= 2;

5.4. ¿Qué salida producirá el código siguiente, cuan-
do se empotra en un programa completo y
primera-opcion vale l?¿Ysiprime-
ra-opcion vale 2?

int primera-opcion;

switch (primera-opcion + 1)
t

case 1:
puts ("Cordero asado") ;
break;

puts ("Chuleta lechal") ;
break;

puts ("Chuletón") ;

puts ("Postre
de Pastel") ;
break;

case 2:

case 3:

case 4:

default:
puts ("Buen apetito") ;

1

- -

166 Programación en C. Metodología, algoritmos y estructura de datos

1

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

LQué salida producirá el siguiente código,
cuando se empotra en un programa completo?

int x = 2;
puts ("Arranque") ;
if (x <= 3)
if (x ! = O)
puts ("Hola desde el segundo

if") ;
else
puts ("Hola desde el else. 'I ;

puts ("Fin\nArranque de nuevo'') ;
if (x > 3)
if (x ! = O)
puts ("Hola desde el segundo

if . ' I) ;
else
puts ("Hola desde el else. ") ;

puts ("De nuevo fin") ;

Escribir una sentencia i f - e 1 se que visualice
la palabra Alta si el valor de la variable nota
es mayor que 100 y Baja si el valor de esa
nota es menor que 100.

¿Qué hay de incorrecto en el siguiente código?

if (x = O) printf("%d = O\n",x);
else printf ("%d != O\n",x) ;

¿Cuál es el error del siguiente código?

if (x < y < z) printf('%d < %d <
%d\n",x,y, z) ;

¿Cuál es el error de este código?

printf ("Introduzca n:") ;
scanf ("%d", &n) ;
if (n < O)

puts('Este número es negati-
vo. Pruebe de nuevo.") ;

scanf ("%d" , &n) ;

printf ("conforme. n =%d\n",n) ;

Escribir un programa que lea tres enteros y
emita un mensaje que indique si están o no en
orden numérico.

else

Escribir una sentencia i f -e 1 se que clasifique
un entero n en una de las siguientes categorías
y escriba un mensaje adecuado:

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

x < O o bien o I x I 100
o bien x > 100

Escribir un programa que introduzca el número
de un mes (1 a 12) y visualice el número de
días de ese mes.

Se trata de escribir un programa que clasifique
enteros leídos del teclado de acuerdo a los
siguientes puntos:

0 si el entero es 30 o mayor, o negativo,
visualizar un mensaje en ese sentido;
en caso contrario, si es un nuevo primo,
potencia de 2, o un número compuesto,
visualizar el mensaje correspondiente;
si son cero o 1, visualizar 'cero'o 'uni-
dad'.

Escribir un programa que determine el mayor
de tres números.

El domingo de Pascua es el primer domingo
después de la primera luna llena posterior al
equinoccio de primavera, y se determina
mediante el siguiente cálculo sencillo:

A = año mod 19
B = año mod 4
C = año mod 7
D = (19 * A + 24) mod 30
E = (2 * B + 4 * C + 6 * D + 5)

N = (22 + D + E)
mod 7

Donde N indica el número de día del mes de
marzo (si N es igual o menor que 3) o abril (si
es mayor que 31). Construir un programa que
determine fechas de domingos de Pascua.

Codificar un programa que escriba la cali-
ficación correspondiente a una nota, de acuerdo
con el siguiente criterio:

O a ~ 5 . 0 Suspenso
5 a ~ 6 . 5 Aprobado
6.5 a c 8.5 Notable
8.5 a c 10 Sobresaliente
10 Matrícula de honor.

Determinar si el carácter asociado a
introducido por teclado corresponde a un
carácter alfabético, dígito, de puntuación,
especial o no impnmible.

T ~

Estructuras de selección: sentencias L t y s w l t ih 167

5.12. PROBLEMAS
5.1.

5.2.

5.3.

5.4.

5.5.

Cuatro enteros entre O y 100 representan las pun-
tuaciones de un estudiante de un curso de infor-
mática. Escribir un programa para encontrar la
media de estas puntuaciones y visualizar una
tabla de notas de acuerdo al siguiente cuadro:

Media Puntuación
90-100
80-89
70-79

0-59
I

Escribir un programa que lea la hora de un día
de notación de 24 horas y la respuesta en
notación de 12 horas. Por ejemplo, si la entrada
es 13:45, la salida será

1:45 PM

El programa pedirá al usuario que intro-
duzca exactamente cinco caracteres. Así, por
ejemplo, las nueve en punto se introduce como

09:oo

Escribir un programa que acepte fechas escri-
tas de modo usual y las visualice como tres
números. Por ejemplo, la entrada

producirá la salida
15, Febrero 1989

15 2 1989

Escribir un programa que acepte un número de
tres dígitos escrito en palabra y a continuación
los visualice como un valor de tipo entero. La
entrada se termina con un punto. por ejemplo,
la entrada

doscientos veinticinco
producirá la salida

225

Escribir un programa que acepte un año escrito
en cifras arábigas y visualice el año escrito en
números romanos, dentro del rango IO00 a 2000.
Nota: Recuerde que V = 5 L = 50

C=100 D=500 M=1000

IV=4 XL=40
MCM = 1900
MCMLX = 1960
MCMLXXXXIX = 1989

X = 10

CM = 900
MCML = 1950
MCMXL = 1940

5.6. Se desea redondear un entero positivo N a la
centena más próxima y visualizar la salida.
Para ello la entrada de datos debe ser los cuatro
dígitos A,E,C,D, del entero N. Por ejemplo, si
A es 2, I3 es 3, C es 6 y D es 2, entonces N será
2362 y el resultado redondeado será 2400. Si N
es 2342, el resultado será 2300, y si N = 2962,
entonces el número será 3000. Diseñar el
programa correspondiente.

Se quiere calcular la edad de un individuo, para
ello se va a tener como entrada dos fechas en el
formato día (1 a 31), mes (1 a 12) y año (entero
de cuatro dígitos), correspondientes a la fecha
de nacimiento y la fecha actual, respec-
tivamente. Escribir un programa que calcule y
visualice la edad del individuo. Si es la fecha
de un bebe (menos de un año de edad), la edad
se debe dar en meses y días; en caso contrario,
la edad se calculará en años.

Escribir un programa que determine si un año
es bisiesto. Un año es bisiesto si es múltiplo de
4 (por ejemplo, 1984). Sin embargo, los años
múltiplos de 100 sólo son bisiestos cuando a la
vez son múltiples de 400 (por ejemplo, 1800 no
es bisiesto, mientras que 2000 sí lo será).

5.9. Escribir un programa que calcule el número de
días de un mes, dados los valores numéricos del
mes y el año.

5.10. Se desea calcular el salario neto semanal de los
trabajadores de una empresa de acuerdo a las
siguientes normas:
* Horas semanales trabajadas < 38 a una tasa

Horas extras (38 o más) a una tasa 50 por

0 Impuestos O por 100, si el salario bruto es

Impuestos 10 por 100, si el salario bruto es

5.11. Determinar el menor número de billetes y
monedas de curso legal equivalentes a cierta
cantidad de pesetas (cambio óptimo).

5.12. Escribir y ejecutar un programa que simule un
calculador simple. Lee dos enteros y un carác-
ter. Si el carácter es un +, se imprime la suma;
si es un-, se imprime la diferencia; si es un *,
se imprime el producto; si es un /, se imprime
el cociente; y si es un % se imprime el resto.
Nota: utilizar la sentencia switch.

5.7.

5.8.

dada.

100 superior a la ordinaria.

menor o igual a 50.000 pesetas.

mayor de 50.000 pesetas.

CAPíTULO 6

ESTRUCTURAS DE CONTROL:
BUCLES

1

11

CONTENlDU

6.1. La sentencia while.

6.3. Precauciones en el uso de for.

6,s. Comparación de bucles while,

6.7. Bucles anidados.
6.8. Resumen.
6.9. Ejercidos.

1 6.4. Repetición: el bucle do-while. 6.10. ProblemaB.

ticion: el bucle for.
1
1

I
6.11. Proyectos de programación.

€or y do-while.
6.6. Diseño de bucles.

INTRODUCCI~N
Una de las características de las computadoras que aumentan considerable-
mente su potencia es su capacidad para ejecutar una tarea muchas (repetidas)
veces con gran velocidad, precisión y fiabilidad. Las tareas repetitivas es algo
que los humanos encontramos difíciles y tediosas de realizar. En este capítulo
se estudian las estructuras de control iterativas o repetitivas que realizan la
repetición o iteración de acciones. C soporta tres tipos de estructuras de control:
los bucles while, f o r y do-while. Estas estructuras de control o sentencias
repetitivas controlan el número de veces que una sentencia o listas de sen-
tencias se ejecutan.

CONCEPTOS CLAVE
Bucle. Sentencia break.
Comparación de while, for y do. Sentencia do-while.
Control de bucles. Sentencia for.
Iteraciódrepetición.
Optimización de bucles.

Sentencia whi 1 e.
Terminación de un bucle.

1 69
A

170 Programación en C. Metodología, algoritmos y estructura de datos

6.1. LA SENTENCIA while

Un bucle (ciclo) es cualquier construcción de programa que repite una sentencia o secuencia de
sentencias un número de veces. La sentencia (o grupo de sentencias) que se repiten en un bloque se
denomina cuerpo del bucle y cada repetición del cuerpo del bucle se llama iteración del bucle. Las dos
principales cuestiones de diseño en la construcción del bucle son: ¿Cuál es el cuerpo del bucle? ¿Cuántas
veces se iterará el cuerpo del bucle?

Un bucle while tiene una condición del bucle (una expresión lógica) que controla la secuencia de
repetición. La posición de esta condición del bucle es delante del cuerpo del bucle y significa que un
bucle while es un bucle pretest de modo que cuando se ejecuta el mismo, se evalúa la condición
antes de que se ejecute el cuerpo del bucle. La Figura 6.1 representa el diagrama del bucle while.

El diagrama indica que la ejecución de la sentencia o sentencias expresadas se repite mientras la
condición del bucle permanece verdadera y termina cuando se hace falsa. También indica el diagrama
anterior que la condición del bucle se evalúa antes de que se ejecute el cuerpo del bucle y, por
consiguiente, si esta condición es inicialmente falsa, el cuerpo del bucle no se ejecutará. En otras
palabras, el cuerpo de un bucle while se ejecutará cero o más veces.

Sintaxis

falsa -7-
T verdadera

sentencia e
$.

Figura 6.1

I while (condición-bucle)
Sentencia; - cuerpo

2 while (condición-bucle)

cuerpo

t
sentencia-1;
sentencia -2 ;

s en ten c i a -n ;
1

while
con d i c i Ón-bu cl e
sentencia

Estructuras de control: bucles 17 1

es una palabra reservada C
es una expresión lógica o booleana
es una sentencia simple o compuesta

El comportamiento ofuncionamiento de una sentencia (bucle) whi i e es:

1. Se evalúa la condición-bucle
2. Si condición-bucle es verdadera (distinto de cero) :

a . La sentencia especificada, denominada el cuerpo del bucle, se

b. Vuelve el control al paso I.
ejecuta.

3. En caso contrario:

sentencia while.
El control se transfiere a la sentencia siguiente al bucle o

Las sentencias del cuerpo del bucle se repiten mientras que la expresión lógica (condición
del bucle) sea verdadera. Cuando se evalúa la expresión lógica y resulta falsa, se termina y se
sale del bucle y se ejecuta la siguiente sentencia de programa después de la sentencia while.

/ * cuenta hasta 10 * /
int x = O;
while (x < 10)

printf ("x: % d " , x + +) ;

Ejemplo
/ * visualizar n asteriscos * /
contador = O; + inicializacicín
while (contador < n) -+ pruebdcondicióti
{
printf (I ' * ") ;

contador++; + ac~tualización (incrementa en 1 contador)
1 / * fin de while * /

La variable que representa la condición del bucle se denomina también variable de control del
bucle debido a que su valor determina si el cuerpo del bucle se repite. La variable de control del bucle
debe ser: 1) inicializada, 2) comprobada, y 3) actualizada para que el cuerpo del bucle se ejecute
adecuadamente. Cada etapa se resume así:

1. Znicialización. Contador se establece a un valor inicial (se inicializa a cero, aunque podría ser

2. Pruebdcondición. Se comprueba el valor de contador antes de que comience la repetición de

3 . Actualización. Contador se actualiza (su valor se incrementa en I , mediante el operador ++)

otro su valor) antes de que se alcance la sentencia whi 1 e.

cada bucle (denominada iteración o pasada).

durante cada iteración.

Si la variable de control no se actualiza el bucle se ejecutará «siempre». Tal bucle se denomina bucle
infinito. En otras palabras un bucle infinito (sin terminación) se producirá cuando la condición del bucle
permanece y no se hace falsa en ninguna iteración.

/ * bucle infinito * /
contador = 1;
while (contador < 100)

172 Programación en C. Metodología, algoritmos y estructura de datos

{
printf ("%d \n',contadorj ;
contador- - ; decrenienta en 1 contudor

I

contador se inicializa a 1 (menor de 100) y como contador-- decrementa en 1 el valor de
contador en cada iteración, el valor del contador nunca llegará a valer 100, valor necesario de
contador para que la condición del bucle sea falsa. Por consiguiente, la condición contador < 1 O O
siempre será verdadera, resultando un bucle infinito, cuya salida será:

1
O

-1
-2
- 3
-4

Ejemplo

/ * Bucle de muestra con while * /

#include <stdio.h>
int main0
{
int contador = O ; / * inicializa la condición * /

while(contador < 5) / * condición de prueba * /
i

contador ++; / * cuerpo del bucle * /
printf ("contador: %d \n",contador) ;

i
printf("Terminado.Contador: %d \n",contadorj;
return O;
I

Ejecución
contador: 1
contador : 2
contador: 3
contador: 4
contador : 5
Terminado.Contador: 5

6.1 . I . Operadores de incremento y decremento (++, - -1

C ofrece los operadores de incremento (+ +) y decremento (- -) que soporta una sintaxis abreviada para
añadir (incrementar) o restar (decrementar) 1 al valor de una variable. Recordemos del Capítulo 4 la
sintaxis de ambos operadores:

Estructuras de control: bucles 173

++nombrevariable
nombrevariable++

--nombrevariable
nombrevariable--

/ *
/ *

/ *
/ *

preincremento * /
postincremento * /

predecremento * /
postdecremento * /

Ejemplo 6.1

Si i es una variable entera cuyo valor es 3, las variables k e i toman los valores sucesivos que se
indican en las sentencias siguientes:

/ * asigna el valor 3 a k y 4 a i * /
/ * asigna el valor 5 a k y 5 a i * /
/ * asigna el va lo r 5 a k y 4 a i * /
/ * asigna el valor 3 a k y 3 a i * /

Ejemplo 6.2

Uso del operador de incremento ++para controlar la iteracicín de un bucle (una de las aplicaciones más
usuales de + +).

/ * programa cálculo de calorías * /
#include <stdio.h>

int main0
i
int num-de-elementos, cuenta,
caloriasgor-alimento, calorias-total;

printf("iCuántos alimentos ha comido hoy? ") ;
scanf ("%d 'I, &num-de-elementos) ;

calorias-total = O ;
cuenta = 1;
printf("1ntroducir el número de calorias de cada uno de los ") ;
printf ("%d %s" , num-elementos, "alimentos tomados : \n") ;

while (cuenta++ <= numero-de-elementos)

scanf ("%d", &calorias_por-alimento) ;
calorias-total += calorias-por-alimento;

i

printf("Las ca lo r i a s totales consumidas hoy son = ") ;
printf ("%a \n", calorias-total) ;
return O ;

1

Ejecución de muestra

¿Cuántos alimentos ha comido hoy? 8
In t roduci re lnÚmerodecalor íasdecadaunodelos8al imentos tomados:
500 50 1400 IO0 10 5 250 100
Las calorías totales consumidas hoy son = 3015

174 Programación en C. Metodología, algoritmos y estructura de datos

6.1.2. Terminaciones anormales de un bucle (ciclo)

Un error típico en el diseño de una sentencia while se produce cuando el bucle sólo tiene una sentencia
en lugar de varias sentencias como se planeó. El código siguiente

contador = 1;
while (contador < 25)

printf ("%d\n", contador) ;
contador++;

visualizará infinitas veces el valor 1. Es decir, entra en un bucle infinito del que nunca sale porque no
se actualiza (modifica) la variable de control contador.

La razón es que el punto y coma al final de la línea printf ("Bd\n", contador) ; hace que el
bucle termine en ese punto y coma, aunque aparentemente el sangrado pueda dar la sensación de que
el cuerpo de while contiene dos sentencias, printf () y contador++ ; El error se hubiera detectado
rápidamente si el bucle se hubiera escrito correctamente

contador = 1;
while (contador < 25)

contador++;

La solución es muy sencilla, utilizar las llaves de la sentencia compuesta:

contador = 1;
while (contador < 25)

printf ('%d\n",contador) ;

1

printf ("%d\n",contador) ;
contador++;

1

6.1.3. Diseño eficiente de bucles

Una cosa es analizar la operación de un bucle y otra diseñar eficientemente sus propios bucles. Los
principios a considerar son: primero, analizar los requisitos de un nuevo bucle con el objetivo de
determinar su inicialización, prueba (condición) y actualización de la variable de control del bucle. El
segundo es desarrollar patrones estructurales de los bucles que se utilizan frecuentemente.

6.1.4. Bucles while con cero iteraciones

El cuerpo de un bucle no se ejecuta nunca si la prueba o condición de repetición del bucle no se cumple,
es falsa (es cero en C), cuando se alcanza while la primera vez.

contador = 10;
while (contador > 100)
{

1

El bucle anterior nunca se ejecutará ya que la condición del bucle (contador > 1 O O) es falsa

. . .

la primera vez que se ejecuta. El cuerpo del bucle nunca se ejecutará.

Estructuras de control: bucles 175

6.1.5. Bucles controlados por centinelas

Normalmente, no se conoce con exactitud cuantos elementos de datos se procesarán antes de comenzar
su ejecución. Esto se produce bien porque hay muchos datos a contar normalmente o porque el número
de datos a procesar depende de cómo prosigue el proceso de cálculo.

Un medio para manejar esta situación es instruir al usuario a introducir un único dato definido y
especificado denominado valor centinela como Último dato. La condición del bucle comprueba cada
dato y termina cuando se lee el valor centinela. El valor centinela se debe seleccionar con mucho cuidado
y debe ser un valor que no pueda producirse como dato. En realidad el centinela es un valor que sirve
para terminar el proceso del bucle.

En el siguiente fragmento de código hay un bucle con centinela; se introducen notas mientras que
ésta sea distinta de centinela.

/ *
entrada de datos numéricos,
centinela -1

* /
const int centinela = -1;
printf ("Introduzca primera nota:") ;
scanf ("%d", ¬a) ;
while (nota != centinela)
{
cuenta++ ;
suma += nota;
printf ("Introduzca la siquiente nota: ") ;
scanf ("%d", ¬a) ;

1 / * fin de while * /
puts ("Final") ;

Ejecución

Si se lee el primer valor de nota, por e j e m p 2 5 y luego se ejecuta, la salida poLía ser ésta:

Introduzca primera nota: 25
Introduzca siguiente nota: 30
Introduzca siguiente nota: 90
Introduzca siguiente nota: -1
Final

/ * valor del centinela * /

6.1.6. Bucles controlados por indicadores (banderas)

En lenguajes, como Pascal, que tienen el tipo boo1 , se utiliza una variable booleana con frecuencia
como indicadores o banderas de estado para controlar la ejecución de un bucle. El valor del indicador
se inicializa (normalmente a falso "false") antes de la entrada al bucle y se redefine (normalmente a
verdadero "true") cuando un suceso específico ocurre dentro del bucle. En C no existe el tipo boolean,
por lo que se utiliza como bandera una variable entera que puede tomar dos valores, 1 o O. Un bucle
controlado por bandera-indicador se ejecuta hasta que se produce el suceso anticipado y se cambia el
valor del indicador.

176 Programación en C. Metodología, algoritmos y estructura de datos

Ejemplo 6.3

Se desea leer diversos datos tipo carácter introducidos por teclado mediante un bucle w h i 1 e y se debe
terminar el bucle cuando se lea un duro tipo dígito (rango 'O á '9').

La variable bandera, digito-leido se utiliza como un indicador que representa cuando un dígito
se ha introducido por teclado.

Variable bandera Significado

digito-leido su valor es falso (cero) antes de entrar en el bucle y mientras el
dato leído sea un carácter y es verdadero cuando el dato leído es
un dígito.

El problema que se desea resolver es la lectura de datos carácter y la lectura debe detenerse cuando
el dato leído sea numérico (un dígito de 'O'a '9'). Por consiguiente. antes de que el bucle se ejecute y
se lean los datos de entrada, la variable digito-le ido se inicializa a falso (cero). Cuando se ejecuta
el bucle, éste debe continuar ejecutándose mientras el dato leído sea un carácter y en consecuencia la
variable digito-leido tiene de valor falso y se debe detener el bucle cuando el dato leído sea un
dígito y en este caso el valor de la variable digito-leido se debe cambiar a verdadero (uno) . En
consecuencia la condición del bucle debe ser !dig i to-leido ya que esta condición es verdadera
cuando digito-leido es falso. El bucle while sera similar a:

digito-leido = O ; / * no se ha leído ningún dato * /
while (!digito-leido)
i

printf ("Introduzca un carácter: ") ;
scanf ("%c",&car) ;
digito-leido = (('O'<= car) & & (cdr <= '9')) ;
. . .

} / * fin de while * /

El bucle funciona de la siguiente forma:

1. Entrada del bucle: la variable digito-leido tiene por valor «falso».
2. La condición del bucle !digito-leido es verdadera, por consiguiente se ejecutan las sentencias

del interior del bucle.
3 . Se introduce por teclado un dato que se almacena en la variable car. Si el dato leído es un

carácter, la variable digi to-leido se mantiene con valor falso (O) ya que ése es el resultado de
la sentencia de asignación.

digito-leido = (('O'<= car) && (car <= '9')) ;

Si el dato leído es un dígito, entonces la variable digi to-leido toma el valor verdadero (I) ,
resultante de la sentencia de asignación anterior.

4. El bucle se termina cuando se lee un dato tipo dígito (' O ' a ' 9 ') ya que la condición del bucle
es falsa.

Modelo de bucle controlado por un indicador

El formato general de un bucle controlado por indicador es el siguiente:

1. Establecer el indicador de control del bucle a «falso» o «verdadero» (a cero o a uno) con
el objeto de que se ejecute el bucle while correctamente la primera vez (normalmente
se suele inicializar a «falso»).

Estructuras de control: bucles 177

2. Mientras la condici6n de control del bucle sea verdadera:
2.1. Realizar las sentencias del cuerpo del bucle.

a la condición de salida (en el ejemplo anterior que el dato
able indicador o) se cambia el valor de

entonces la condición de c k g a faisa y, por '

3. Ejecuci6n de las sentencias siguientes ai bucle.

~~~~ 

Ejemplo 6.4 

Se desea leer un dato numérico x cuyo valor ha de ser mayor que cero para calcular la función f ( x )  = 
x*log(x). 

La variable bandera, x-pos i t ivo se utiliza como un indicador que representa que el dato leído es 
mayor que cero. Por consiguiente, antes de que el bucle se ejecute y se lea el dato de entrada, la variable 
x-pos i t ivo se inicializa a falso (O). Cuando se ejecuta el bucle, éste debe continuar ejecutándose 
mientras el número leído sea negativo o cero y en consecuencia la variable x_pos i t ivo tenga el valor 
falso y se debe detener el bucle cuando el número leído sea mayor que cero y en este caso el valor de la 
variable xgos i t ivo se debe cambiar a verdadero (uno). En consecuencia la condición del bucle debe 
ser !x-posit ivo ya que esta condición es verdadera cuando xjositivo es falso. A la salida del 
bucle se calcula el valor de la función y se escribe: 

#include <stdio.h> 
#include <math.h> 

int main ( ) 

i 
float f,x; 
int xgositivo; 
xjositivo = 0; / *  inicializado a falso * /  
while (!xgositivo) 
{ 
printf ("\n Valor de x: " ) ;  
scanf ("%f",&x) ; 
xgositivo = (x > 0.0); / *  asigna verdadero(1) si cumple la 

condición*/ 
1 
f = x*log(x); 
printf ( "  f (%.If) = %.3e',x,f); 
return O; 

6.1.7. La sentencia break en los bucles 

La sentencia break se utiliza, a veces, para realizar una terminación anormal del bucle. Dicho de otro 
modo, una terminación antes de lo previsto. Su sintaxis es: 

break; 

La sentencia break se utiliza para la salida de un bucle while o do-while, aunque también se puede 
utilizar dentro de una sentencia switch, siendo éste su uso más frecuente. 



178 Programación en C. Metodologia, algoritmos y estructura de datos 

while (condición) 
{ 

i f ( condí cí ón2 ) 
break; 

/ *  sentencias * /  
1 

~ 

Ejemplo 6.5 

El siguiente código extrae y visualiza valores de entrada desde el dispositivo estándar de entrada (stdin) 
hasta que se encuentra un valor especificado 

int clave = -9; 
int entrada; 
while (scanf ("%da', &entrada) ) 
i 

if (entrada !=  clave) 

else 
printf ("%d\n", entrada) ; 

break ; 
1 

;Cómo funciona este bucle while? La función scant ( ) devuelve el número de datos captados de 
dispositivo de entrada o bien cero si se ha introducido fin-de-fichero. Al devolver un valor distinto de 
cero el bucle se ejecutaría indefinidamente, sin embargo, cuando entrada==clave la ejecución sigue 
por else y la sentencia break que hace que la ejecución siga en la sentencia siguiente al bucle while. 

Ejecución 

El uso de break en un bucle no es muy recomendable ya que puede hacer difícil la 
comprensión del comportamiento del programa. En particular, suele hacer muy difícil 
verifícar los invariantes de los bucles. Por otra parte suele ser fácil la reescritura de los bucles 
sin la sentencia break. El bucle del Ejemplo 6.5 escrito sin la escritura de break: 

int clave; 
int entrada; 
while ( (scanf ("%d",&entrada) ) && (entrada != clave) ) 
i 

1 
printf ("%d\n" , entrada) ; 

6.1.8. Bucles while (true) 

La condición que se comprueba en un bucle whi le puede ser cualquier expresión válida C .  Mientras que 
la condición permanezca verdadera (distinto de O ) ,  el bucle while continuará ejecutándose. Se puede 
crear un bucle que nunca termine utilizando el valor 1 (verdadero) para la condición que se comprueba. 

1: /*Listado while (true) * /  

2: #include <stdio.h> 

3: int main0 



Estructuras de control: bucles 179 

4: 1 
5: int flag = 1, contador = O ;  

6 : while (flag) 
I :  { 

8: contador++; 
9: if (contador > 10) 
10: break; 
11: 1 
12 : printf ( "Contador: %d\n" , contador) ; 
13: return O ;  
14: 1 

Salida 
Contador: 11 

Análisis 
En la línea 6, un bucle while se establece con una condición que nunca puede ser falsa. El bucle 
incrementa la variable contador en la línea 8, y a continuación la línea 9 comprueba si el contador es 
mayor que 10. Si no es así el bucle se itera de nuevo. Si contador es mayor que IO, la sentencia break 
de la línea 10 termina el bucle while, y la ejecución del programa pasa a la línea 12. 

Ejercicio 6.1 

Calcular la media de seis números. 

El cálculo típico de una media de valores numéricos es: leer sucesivamente los valores, sumarlos y 
dividir la suma total por el número de valores leídos. El código más simple podría ser: 

float numl; 
float num2; 
float num3; 
float num4; 
float num5; 
float num6; 
float media; 
scanf("%f %f %f % f  %f %f",hnuml,&num2,hnum3,hnum4,&num4,&num5,&num6); 
media = (numl+num2+num3+num4+num5+num6)/6; 

Evidentemente, si en lugar de 6 valores fueran 1 .OOO, la modificación del código no sólo sería de 
longitud enorme sino que la labor repetitiva de escritura sería tediosa. Por ello, la necesidad de utilizar 
un bucle. El algoritmo más simple sería: 

definir número de elementos como constante de valor 6 
Inicializar contador de números 
Inicializar acumulador (sumador) de números 
Mensaje de petición de datos 
mientras no estén leídos todos los datos hacer 

Leer número 
Acumular valor del número a variable acumulador 
Incrementar contador de números 

fin-mientras 
Calcular media (Acumulador/Total número) 
Visualizar valor de la media 
Fin 



180 

I 

I 6.2. 

Programación en C. Metodología, algoritmos y estructura de datos 

El código en C es: 

/ *  Calculo de la media de seis números * /  
#include <stdio.h> 
#include <string.h> 

int main() 
{ 
const int TotalNum = 6; 
int ContadorNum = O ;  
float SumaNum = o ;  
float media; 
printf("1ntroduzca %d nÚmeros\n',TotalNum); 
while (ContadorNum < TotalNum) 
{ 

/ *  valores a procesar * /  
float numero; 
scanf ("%f",&numero) ; / *  leer siguiente número * /  
SumaNum += numero; / *  añadir valor a Acumulador * /  
++ContadorNum; / *  incrementar números leídos * /  

1 
media = SumaNum/ContadorNum; 
print f ( "Media : % .2 f \n" , media) ; 
return O; 

1 

REPETICI~N: EL BUCLE fo r  
El bucle for de C es superior a los bucles for de otros lenguajes de programación tales como BASIC, 
Pascal y Fortran ya que ofrece más control sobre la inicialización y el incremento de las variables de 
control del bucle. 

Además del bucle while, C proporciona otros dos tipos de bucles f o r  y do. El bucle for que se 
estudia en esta sección es el más adecuado para implementar bucles controlados por contador que son 
bucles en los que un conjunto de sentencias se ejecutan una vez por cada valor de un rango especificado, 
de acuerdo al algoritmo: 

por cada valor de una variable-contador de un rango especljcico: ejecutar sentencias 

La sentencia for (bucle for) es un método para ejecutar un bloque de sentencias un número fijo de 
veces. El bucle for se diferencia del bucle while en que las operaciones de control del bucle se sitúan 
en un solo sitio: la cabecera de la sentencia. 

Sintaxis 
(2) Expresión lógica que determina 

si las sentencias se han de ejecutar 
mientras sea verdadera 

( I )  Inicializa la variable 
de control del bucle 

(3) Incrementa o decrementa 
la variable de control del bucle 

4 
for ( Inicial i zaci ón ; Condi ci ÓnI t eraci ón ; Increment o) 

sentencias 

1 ( 4 ) sentencias a ejecutar en cada iteración del bucle 



Estructuras de control: bucles 181 

El bucle for contiene las cuatro partes siguientes: 

o Parte de inicializacicín, que inicializa la variables de control del bucle. Se pueden utilizar variables 
I 

de control del bucle simples o múltiples. 

de las sentencias, mientras que la expresión sea verdadera. 

~ 

I o Parte de condicicín, que contiene una expresión lógica que hace que el bucle realice las iteraciones 

o Parte de incremento, que incrementa o decrernenta la variable o variables de control del bucle. l 
8 

0 Sentencias, acciones o sentencias que se ejecutarán por cada iteración del bucle. 

La sentencia for es equivalente al siguiente código while 

i n i c i a l  i zac ión;  
while ( condi c i  Ónlt eraci ón) 
{ 

sentencias del bucle f o r ;  
i n  cremen t o ;  

1 

Ejemplo 1 

int i; 
/ *  imprimir Hola 10 veces * /  
for (i = O ;  i < 10; i++) 

printf ("Hola!") ; 

Ejemplo 2 
int i; 
for (i = 
{ 
print f 
print f 

1 

O; i < 10; i++) 

"Hola ! \n" ) ; 
"El valor de i es: %d", i ) ; 

Ejemplo 3 
#include <math.h> 
#include <stdio.h> 

#define M 15 
#define f (x) exp(2*x) - x 

int main() 
i 
int i; 
double x; 
for (i = 1; i <= M; i++) 
t 
printf("Va1or de x: " ) ;  
scanf ("%lf",&x) ; 
printf ('If (%.ilf) = %.4g\n",x, f (x) ) ;  

1 
return O; 



182 Programación en C. Metodología, algoritmos y estructura de datos 

En este ejemplo se define la constante simbólica M y una «función en línea» (también llamada una 
macro con argumentos). El bucle se realiza I5 veces; cada iteración pide un valor de x, calcula la función 
y escribe los resultados. El diagrama de sintaxis de la sentencia for es: 

Variable-control = Valor-inicial 

verdadera 

Sentencia 

r-5 Expresión-incremento 

Figura 6.2. Diagrama de sintaxis de un bucle f O L  

Existen dos formas de implementar la sentencia f o r  que se utilizan normalmente para implementx 
bucles de conteo: formato ascendente, en el que la variable de control se incrementa y formato 
descendente, en el que la variable de control se decrementa. 

for (var-control=valor-inicial; var-control<=valor-límite; exp-incremento) 
sentencia ; 

forma to ascendent e forma p e e n d e n  t e 

for (var-control=valor-inicial; var-control>=valor-lfmite; exp-decremento) 
sentencia ; 

Ejemplo de formato ascendente 

int n: 

f o r  (n = 1; n <= 10; n++) 
printf('%d \t %d \n",n, n * n ) ;  

La variable de control es n y su valor inicial es I de tipo entero, el valor límite es 10 y la expresión 
de incremento es n++. Esto significa que el bucle ejecuta la sentencia del cuerpo del bucle una vez por 
cada valor de n en orden ascendente I a 10. En la primera iteración (pasada) n tomará el valor 1; en la 
segunda iteración el valor 2 y así sucesivamente hasta que n toma el valor IO. La salida que se producirá 
al ejecutarse el bucle será: 



Estructuras de control: bucles 183 

1 1  
2 4  
3 9  
4 16 
5 25 
6 36 
7 49 
8 64 
9 81 
10 100 

Ejemplo de formato descendente 
int n; 

for (n = 10; n.> 5; n--) 
printf("%d \t %d \ n " , n ,  n * n ) ;  

La salida de este bucle es: 

10 100 
9 81 
8 64 
7 49 
6 36 

debido a que el valor inicial de la variable de control es 10, y el límite que se ha puesto es n > 5 (es decir, 
verdadera cuando n = 10, 9, 8, 7, 6); la expresión de decremento es el operador de decremento n-- 
que decrementa en 1 el valor de n tras la ejecución de cada iteración. 

Otros intervalos de incremento/derremento 
Los rangos de incremento/decremento de la variable o expresión de control del bucle pueden ser 
cualquier valor y no siempre 1, es decir 5 ,  10, 20,4, ..., dependiendo de los intervalos que se necesiten. 
Así el bucle 

int n; 

for (n = O; n < 100; n +=  20) 
printf("%d \t %d \ n " , n ,  n * n ) ;  

utiliza la expresión de incremento 

n += 20 

que incrementa el valor de n en 2 0, dado que equivale a n = n + 2 0. Así la salida que producirá la 
ejecución del bucle es: 

0 0 
20 400 
40 1600 
60 3600 
80 6400 

Ejemplos 
/ *  ejemplo 1 * /  
int c ;  

for (c = 'A'; c <= ' Z ' ;  c++) 
printf ("Bc ",c); 

/ *  ejemplo 2 * /  



184 Programación en C. Metodología, algoritmos y estructura de datos 

for ( i  = 9; i >= 0; i - = 3) 
printf ("%d 'I, ( i * i)) ; 

/ *  ejemplo 3 * /  
for (i = 1; i < 100; i*=2) 

/ *  ejemplo 4 * /  
#define MAX 25 
int i, j; 
for ( i  = O ,  j = MAX; i < j; i++,  j--) 

El primer ejemplo inicializa la variable de control del bucle c al carácter 'A', equivale a inicializar 
al entero 65 (ASCII de A), e itera mientras que el valor de la variable c es menor o igual que el ordinal 
del carácter z l .  La parte de incremento del bucle incrementa el valor de la variable en 1.  Por 
consiguiente, el bucle se realiza tantas veces como letras mayúsculas. 

El segundo ejemplo muestra un bucle descendente que inicializa la variable de control a 9. El bucle 
se realiza mientras que i no sea negativo, como la variable se decrementa en 3,  el bucle se ejecuta cuatro 
veces con el valor de la variable de control i , 9,6, 3 y O. 

El ejemplo 3 ,  la variable de control i se inicializa a 1 y se incrementa en múltiplos de 2, por 
consiguiente, i toma valores de 1, 2 ,4  ,8, 16, 32,64 y el siguiente 128 no cumple la condición, termina 
el bucle. 

El ejemplo 4, declara dos variables de control i y j y las inicializa a O y a la constante MAX. El bucle 
se ejecutará mientras i seamenor que j. Las variable de control i se incrementa en 1, y a la 
vez j se decrementa en 1. 

printf ("%d ",i); 

printf("%d ",(i + 2 * j)); 

Ejemplo 6.6 
Suma de los 1 O primeros números pares 

#include <stdio.h> 

int main() 

int n, suma = O ;  
f o r  (n = 1; n <= 10; n++) 
suma += 2*n; 

printf('La suma de los 10 primeros números pares: %d",suma); 
return O; 

1 

El bucle lo podríamos haber diseñado con un incremento de 2: 

for (n = 2; n <= 20; n+=2) 
suma += n; 

6.2.1. Diferentes usos de bucles fo r  
El lenguaje C permite: 

El valor de la variable de control se puede modificar en valores diferentes de 1. 
Se puedan utilizar más de una variable de control. 

Ejemplos de incrementos/decrementos con variables de control diferentes 
Lds variableh de control se pueden incrementar o decrementar en valores de tipo int, pero también es 
posible en valores de tipo float o double y en consecuencia se incrementm'a o decrementaría en una 
cantidad decimal 



Estructuras de control: bucles 185 

int n; 
for ( n = 1; n <= 10; n = n + 2) 
printf("n es ahora igual a %d I' ,n) ; 

int n,v=9; 
for (n = v; n >= 100; n = n ~ 5) 
printf ("n es ahora igual a %d ",n); 

double p; 
for (p= 0.75; p<= 5; p+= 0.25) 

La expresión de incremento en ANSI C no necesita incluso ser una suma o una resta. Tampoco se 
requiere que la inicialización de una variable de control sea igual a una constante. Se puede inicializar 
y cambiar una variable de control del bucle en cualquier cantidad que se desee. Naturalmente cuando la 
variable de control no sea de tipo int, se tendrán menos garantías de precisión. Por ejemplo, el siguiente 
código muestra un medio más para arrancar un bucle for. 

printf('Perímetr0 es ahora igual a %.21f ",p); 

double x; 
for (x = pow(y,3.0); x > 2.0; x = sqrt(x)) 
printf ("x es ahora igual a % .  5e",x) ; 

6.3. PRECAUCIONES EN EL USO DE for 

Un bucle for se debe construir con gran precaución, asegurándose que la expresión de inicialización, 
la condición del bucle y la expresión de incremento harán que la condición del bucle se convierta en 
false en algún momento. En particular: «si el cuerpo de un bucle de conteo modijica los valores de 
cualquier variable implicada en la condición del bucle, entonces el número de repeticiones se puede 
modificar». 

Esta regla anterior es importante, ya que su aplicación se considera una mala práctica de 
programación. Es decir, no es recomendable modificar el valor de cualquier variable de la condición 
del bucle dentro del cuerpo de un bucle for, ya que se pueden producir resultados imprevistos. Por 
ejemplo, la ejecución de 

int i,limite = 11; 
for (i = O; i <= limite; i++) 
i 

print f ( "%d\n" , i ) ; 
I imi t e++ ; 

I 

produce una secuencia infinita de enteros (puede terminar si el compilador tiene constantes MAXINT, 
con máximos valores enteros, entonces la ejecución terminará cuando i sea MAXINT y limite sea 
MAXINT+1 = MININT). 

O 
I 
2 
3 

ya que a cada iteración, la expresión 1 imite+ + incrementa 1 imite en 1, antes de que i + + incremente 
i. A consecuencia de ello, la condición del bucle i < = 1 imite siempre es cierta. 

Otro ejemplo de bucle mal programado: 



186 Programación en C. Metodología, algoritmos y estructura de datos 

int i,limite = 1; 

f o r  (i = O ;  i <= limite; i++) 
I 

print f ("%d\n" , 
I--; 

i) ; 

i 
que producirá infinitos ceros 

O 
O 
O 

ya que en este caso la expresión i-- del cuerpo del bucle decrementa i en 1 antes de que se incremente 
la expresión i + + de la cabecera del bucle en 1 .  Como resultado i es siempre O cuando el bucle se 

, comprueba. En este ejemplo la condición para terminar el bucle depende de la entrada, el bucle está I mal programado: 

i 

#define LIM 50 
int iter, tope; 
f o r  (iter = O ;  tope <= LIM; iter++) 
i 
printf ("%d\n", iter) ; 
scanf ("%d", &tope) ; 

I 

6.3.1. Bucles infinitos 

El uso principal de un bucle for es implementar bucles de conteo en el que el número de repeticiones 
se conoce por anticipado. Por ejemplo, la suma de enteros de 1 a n. Sin embargo, existen muchos 
problemas en los que el número de repeticiones no se pueden determinar por anticipado. Para estas 
situaciones algunos lenguajes modernos tienen sentencias específicas tales como las sentencias LOOP de 
Modula-2 y Modula-3, el bucle DO de FORTRAN 90 o el bucle loop de Ada. C no soporta una sentencia 
que realice esa tarea, pero existe una variante de la sintaxis de for que permite implementar bucles 
infinitos que son aquellos bucles que, en principio, no tienen fin. 

Sintaxis 

f o r  ( ; ; )  
sentencia ; 

La sentencia se ejecuta indefinidamente a menos que se utilice una sentencia return o break 
(normalmente una combinación i f  -break o 1 f -return). 

La razón de que el bucle se ejecute indefinidamente es que se ha eliminado la expresión de 
inicialización, la condición del bucle y la expresión de incremento; al no existir una condición de bucle 
que especifique cual es la condición para terminar la repetición de sentencias, asume que la condición 
es verdadera ( 1 )  y éstas se ejecutarán indefinidamente. Así, el bucle 

f o r  ( ; ; )  
printf("Siempre así, te llamamos siempre dsí . . .  \n"); 



P 

Estructuras de control: bucles 187 

producirá la salida 

Siempre así, te llamamos siempre así . . .  
Siempre así, te llamamos siempre así . . .  
. . .  

un número ilimitado de veces, a menos que el usuario interrumpa la ejecución (normalmente pulsando 
las teclas Ctrl y c en ambientes PC). 

Para evitar esta situación, se requiere el diseño del bucle for de la forma siguiente: 

1. El cuerpo del bucle ha de contener todas las sentencias que se desean ejecutar repetidamente. 
2. Una sentencia terminará la ejecución del bucle cuando se cumpla una determinada condición. 

La sentencia de terminación suele ser if -break con la sintaxis 

i f  (condición) break; 

condi ci ón 
break 

es una expresión lógica 
termina la ejecución del bucle y transfiere el control a la sentencia 
siguiente al bucle 

y la sintaxis completa 

f o r  ( ; ; I  / *  bucle * /  
i 

1 i s t a-s en t en ci as, 
if (condición-terminación) break; 
1 is t a-sent enci as, 

1 / *  f i n  del  bucle * /  

1 i s t a-sen ten ci as puede ser vacía, simple o compuesta. 

Ejemplo 6.7 
#define CLAVE -999 
f o r  ( ; ; )  
i 
printf("1ntroduzca un número, (%d) para terminar",CLAVE); 
scanf ("%d 'I, &num) ; 
if (num == CLAVE) break; 
. . .  

6.3.2. Los bucles f o r  vacíos 

Tenga cuidado de situar un punto y coma después del paréntesis inicial del bucle for. Es decir, el bucle 

for (i = 1; i <= 10; i++); p r o b  i errid 

puts ("Sierra Magina") ; 

no se ejecuta correctamente, ni se visualiza la frase "Sierra Magina" 10 veces como era de esperar, 
ni se produce un mensaje de error por parte del compilador. 



188 Programación en C. Metodología, algoritmos y estructura de datos 

En realidad lo que sucede es que se visualiza una vez la frase "Sierra Magina" ya que la sentencia 
for es una sentencia vacía al terminar con un punto y coma (;). Sucede que la sentencia for no hace 
absolutamente nada durante 10 iteraciones y, por tanto, después de que el bucle for haya terminado, se 
ejecuta la siguiente sentencia puts y se escribe "Sierra Magina". 

El bucle f o r  con cuerpos vacfos puede tener algunas aplicaciones, especialmente cuando se 
requieren ralentizaciones o temporizaciones de tiempo. 

6.3.3. Sentencias nulas en bucles for 

Cualquiera o todas las sentencias de un bucle for pueden ser nulas. Para ejecutar esta acción, se utiliza 
el punto y coma (;) para marcar la sentencia vacía. Si se desea crear un bucle for que actúe exactamente 
como un bucle while, se deben incluir las primeras y terceras sentencias vacías. 

1: / *  Listado 
2: bucles for con sentencias nulas 
3: * /  
4: #include <stdio.h> 
5: 
6: int main() 
7: { 
8: int contador = 0; 
9: 
10: for (;contador < 5;) 
11: { 
12 : contador++; 
13 : printf (";Bucle!") ; 
14: 1 
15 : 
16: printf ("\n Contador: %d \n", Contador) ; 
17: return O ;  
18: 1 

Salida 
;Bucle! ;Bucle! ;Bucle! ;Bucle! ;Bucle! 
Contador: 5 

Análisis 
En la línea 8 se inicializa la variable del contador. La sentencia for en la línea 10 no inicializa ningún 
valor, pero incluye una prueba de contador < 5. No existe ninguna sentencia de incrementación, de 
modo que el bucle se comporta exactamente como la sentencia siguiente. 

while(contador < 5) 
t 
contador++; 
printf (";Bucle!") ; 

6.3.4. Sentencias break y continue 

La sentencia break termina la ejecución de un bucle, de una sentencia switch, en general de cualquier 
sentencia. 



. 
Estructuras de control: bucles 189 

/ *  

* /  
#include <stdio.h> 

Ejemplo de utilización de break 

int main ( ) 

int contador = O ;  / *  inicialización * /  
int max; 
printf ("Cuantos holas? " )  ; 
scanf ("%d", &max) ; 
for ( ; ; )  / *  bucle for que no termina nunca * /  
i 
if(contador < max) / *  test * /  
i 
puts("Hola!') ; 
contador++; 

1 
else 
break; 

1 
return O; 

1 

/ *  incremento * /  

Salida 
Cuantos holas? 3 
Hola! 
Hola! 
Hola! 

La sentencia continue hace que la ejecución de un bucle vuelva a la cabecera del bucle. 

#include <stdio.h> 
int main() 
{ 
int clave,¡; 
puts ("Introduce -9 para acabar. " )  ; 
clave = 1; 
for ( i  = O ;  i < 8; i++) { 

if (clave ==-9) continue; 
scanf ("%d", &clave) ; 
printf ("clave %d\n",clave) ; 

1 
printf('VAL0RES FINALES i = %d clave = %d",i,clave); 
return O; 

1 

9 para acabar 
4 
clave 4 



190 Programación en C. Metodología, algoritmos y estructura de datos 

Sentencia 

7 
clave 7 
-9 
VALORES FINALES i = 8 Clave = -9  

sa, se termina el bucle y se ejecuta la 

La sentencia continue ha hecho que la ejecución vuelva a la cabecera del bucle f o r ,  como no se 
vuelve a cambiar el valor de clave, realiza el resto de las iteraciones hasta que i vale 8. 

6.4. REPETICIÓN: EL BUCLE do. . .while 
La sentencia do-while se utiliza para especificar un bucle condicional que se ejecuta al menos una 
vez. Esta situación se suele dar en algunas circunstancias en las que se ha de tener la seguridad de que 
una determinada acción se ejecutará una o varias veces, pero al menos una vez. 

Sintaxis 

1. 

2. 

Acción (sentencia) a ejecutar 
al menos una vez 

Expresión lógica que 
determina si la acción 
se repite / 

do sentencia while (expresión) 

do 
sen ten ci a 

while (expresión) 

La construcción do comienza ejecutando sen tencia. Se evalúa a continuación expresión. Si 
expresión es verdadera, entonces se repite la ejecución de sentencia. Este proceso continúa hasta que 
expresión es falsa. La semántica del bucle do se representa gráficamente en la Figura 6.3. 

I 
Figura 6.3. Diagrama de flujo de la sentencia do. 



Estructuras de control: bucles 191 

I 

6.4.1. Diferencias entre while y do-while ! ,  I ,  

Ejemplo 6.8 

Bucle para introducir un dígito. 
do 
i 

printf ("Introduzca un dígito (0-9) : " )  ; 
scanf ("%c", &digito) ; 

1 while ((digito < 'O') I I ('9'< digito)); 

Este bucle se realiza mientras se introduzcan dígitos y se termina cuando se introduzca un carácter 
que no sea un dígito de 'O'a '9'. 

Ejercicio 6.2 

Aplicación simple de un bucle while: seleccionar una opción de saludo al usuario dentro de un 
programa. 

#include <stdio.h> 
int main() 
{ 
char opcion; 
do 
i 
puts ("Hola") ; 
puts ("¿Desea otro tipo de saludo?") ; 
puts("Pu1se s para si y n para no, " )  ; 
printf ("y a continuación pulse intro: ' I )  ; 
scanf ("%c", &opcion) ; 

} while (opcion == 's' 1 ! opcion == 'S') ; 
puts ("Adiós") ; 
return O; 

1 

Salida de muestra 
Hola 
¿Desea otro tipo de saludo? 
Pulse s para si y n para no, 
y a continuación pulse intro: S 
Hola 
¿Desea otro tipo de saludo? 
Pulse s para si y n para no, 
y a continuación pulse intro: N 
Adiós 

Una sentencia do-while es similar a una sentencia while excepto que el cuerpo del bucle se ejecuta 
siempre al menos una vez 



192 Programación en C. Metodología, algoritmos y estructura de datos 

Sintaxis 
Sentencia compuesta 

do 

i 

I 

sen ten ci a-1 ; sentencia-1; 
sentencia-2; sent enci a-2 ; 
. . .  
sent enci a-n ; 

1 

. . .  
sentencia-n; 

} while (expresion-lógica) 

while (Expresión-lógica) do 
sen t enci a sen t enci a 

iie (expresión-lógica) 

\ 
Sentencia simple 

I 

Ejemplo 1 

/ *  

* /  
int x = O; 
do 

print ( “X: %d“ , x++) ; 
while (x < 10); 

cuenta de O a lO(sin incluir el 10) 

Ejemplo 2 

/ *  

* /  
char car = ’a’; 
do 
{ 

Bucle para imprimir las letras minúsculas del alfabeto 

print f ( “%d I t ,  car) ; 
car++ ; 

}while (car <= ’z’); 

~ 

Ejemplo 6.9 

Visualizar las potencias de 2 cuyos valores estén en el rango I a 1.000. 
/ *  Realizado con while * /  
potencia = 1; 
while (potencia < 1000) 

printf (“%d \n”,potencia) ; 
potencia * = 2 ; 

} / *  €in de while * /  

/ *  Realizado con do-while * /  
potencia = 1; 
do 
t 
printf (“%d \n”,potencia) ; 
potencia * = 2; 

} while (potencia < 1000); 



--- 
Estructuras de control: bucles 193 

6.5. COMPARACIÓN DE BUCLES while, f o r  Y do-while 

C proporciona tres sentencias para el control de bucles: while, for y do-while. El bucle while se 
repite mientras su condición de repetición del bucle es verdadero; el bucle for se utiliza normalmente 
cuando el conteo esté implicado, o bien el número de iteraciones requeridas se pueda determinar al 
principio de la ejecución del bucle, o simplemente cuando exista una necesidad de seguir el número de 
veces que un suceso particular tiene lugar. El bucle do-whi 1 e se ejecuta de un modo similar a whi l-e 
excepto que las sentencias del cuerpo del bucle se ejecutan siempre al menos una vez. 

La Tabla 6.1 describe cuando se usa cada uno de los tres bucles. En C, el bucle for es el más 
frecuentemente utilizado de los tres. Es relativamente fácil reescribir un bucle do-whi le como un bucle 
while, insertando una asignación inicial de la variable condicional. Sin embargo, no todos los bucles 
whlle se pueden expresar de modo adecuado como bucles do-wh I le, ya que un bucle do-while se 
ejecutará siempre al menos una vez y el bucle while puede no ejecutarse. Por esta razón un bucle 
whlle suele preferirse a un bucle do-whi 1 e, a menos que esté claro que se debe ejecutar una iteración 
como mínimo. 

Tabla 6.1. Formatos de los bucles. 
~ ~~ - 

while El uso más frecuente es cuando la repetición no está controlada por contador; el test de 
condición precede a cada repetición del bucle; el cuerpo del bucle puede no ser ejecutado. Se 
debe utilizar cuando se desea saltar el bucle si la condición es falsa. 

Bucle de conteo, cuando el número de repeticiones se conoce por anticipado y puede ser 
controlado por un contador; también es adecuado para bucles que implican control no contable 
del bucle con simples etapas de inicialización y de actualización; el test de la condición precede 
a la ejecución del cuerpo del bucle. 

Es adecuada para asegurar que al menos se ejecuta el bucle una vez. 

for 

do-whi le 

Comparación de tres bucles 
cuenta = valor-inicial; 
while (cuenta < valor-parada) 
i 

. . .  
cuenta+ + ; 

} / *  fin de while * /  

for (cuenta = valor-inicial; cuenta < valor-parada; cuenta++) 
I 

} / *  fin de for * /  

cuenta = valor-inicial; 
if (valor-inicial i valor-parada) 
do 

. . .  
cuenta++ ; 

}while (cuenta < valor-parada); 

6.6. DISENO DE BUCLES 

El diseño de un bucle necesita tres puntos a considerar: 

i 



194 Programación en C. Metodología, algoritmos y estructura de datos 

I .  El cuerpo del bucle. 
2. Las sentencias de inicialización. 
3. Las condiciones para la terminacicín del bucle. 

6.6.1. Bucles para diseño de sumas y productos 

Muchas tareas frecuentes implican la lectura de una lista de números y calculan su suma. Si se conoce 
cuántos números habrá, tal tarea se puede ejecutar fácilmente por el siguiente pseudocódigo. El valor de 
la variable total es el número de valores que se suman. La suma se acumula en la variable suma. 

1 

suma = O; 
repetir lo siguiente total veces: 

leer(siguiente); 
suma = suma + siguiente; 

f in-bucle 

Este código se implementa fácilmente con un bucle for 

int cuenta, suma = O ;  
for (cuenta = 1; cuenta <= total; cuenta++) 
{ 
scanf ("%d 'I, &siguiente) ; 
suma = suma + siguiente; 

i 
Obsérvese que la variable suma se espera tome un valor cuando se ejecuta la siguiente sentencia 
suma = suma + siguiente; 
Dado que suma debe tener un valor la primera vez que la sentencia se ejecuta, suma debe estar ini- 

cializada a algún valor antes de que se ejecute el bucle. Con el objeto de determinar el valor correcto de 
inicialización de suma se debe pensar sobre qué sucede después de una iteración del bucle. Después de 
añadir el primer número, el valor de suma debe ser ese número. Esto es, la primera vez que se ejecute 
el bucle el valor de suma + siguiente será igual a si qui ente. Para hacer esta operación, el valor 
de suma debe ser inicializado a O. Si en lugar de suma, se desea realizar productos de una lista de núme- 
ros, la técnica a utilizar es: 

int cuenta,producto; 
f o r  (cuenta = producto = 1; cuenta <= total; cuenta++) 
{ 
scanf ("%d", &siguiente) ; 
producto = producto * siguiente; 

1 

La variable producto debe tener un valor inicial, se inicializa junto a cuenta en la expresión de 
inicialización a I .  No se debe suponer que todas las variables se deben inicializar a cero. Si producto 
se inicializa a cero, seguiría siendo cero después de que el bucle anterior terminara. 

6.6.2. Final de un bucle 

Existen cuatro métodos utilizados normalmente para terminar un bucle de entrada. Estos cuatro métodos 
son: 

1. Alcanzar el tamaño de la secuencia de entrada. 
2. Preguntar antes de la iteración. 
3. Secuencia de entrada terminada con un valor centinela. 
4. Agotamiento de la entrada. 



Estructuras de control: bucles 195 

Tamaño de la secuencia de entrada 
Si su programa puede determinar el tamaño de la secuencia de entrada por anticipado, bien preguntando 
al usuario o por algún otro método, se puede utilizar un bucle «repetir n veces» para leer la entrada 
exactamente n veces, en donde n es el tamaño de la secuencia. 

Preguntar antes de la iteración 

El segundo método para la terminación de un bucle de entrada es preguntar, simplemente al usuario, 
después de cada iteración del bucle, si el bucle debe ser o no iterado de nuevo. Por ejemplo: 

int numero, suma = O ;  
char resp = 'S'; 
while ((resp == ' S ' l  I (resp == ' S ' ) )  

printf ( "Introduzca un número : " ) ; 
scanf ("%d", &numero) ; ; 
suma += numero; 
printf("¿Existen más nÚmeros?(S pdra Si, N para No): " ) ;  
scan€ ("%d", hresp) ; 

1 
Este método es muy tedioso para listas grandes de números. Cuando se lea una lista larga es 

preferible incluir una Única señal de parada, como se incluye en el método siguiente. 

Valor centinela 
El método más práctico y eficiente para terminar un bucle que lee una lista de valores del teclado es 
con un valor centinela. Un valor centinela es aquel que es totalmente distinto de todos los valores 
posibles de la lista que se está leyendo y de este modo indica el final de la lista. Un ejemplo típico se 
presenta cuando se lee una lista de números positivos; un número negativo se puede utilizar como un 
valor centinela para indicar el final de la lista. 

/ *  ejemplo de valor centinela (número negativo) * /  

puts("1ntroduzca una lista de enteros positivos"); 
puts ("Termine la lista con un número negativo') ; 
suma = O ;  
scanf ("%d" , &numero) ; 
while (numero >= O) 
t 

suma += numero; 
scanf ( "%d", &numero) ; 

I 
printf ("La suma es: %d\n", suma) ; 

Si al ejecutar el segmento de programa anterior se introduce la lista 

4 8 1 5  -99 

el valor de la suma será 27. Es decir, -99, Último número de la entrada de datos no se añade a suma. 
-99 es el último dato de la lista que actúa como centinela y no forma parte de la lista de entrada de 
números. 

Agotamiento de la entrada 
Cuando se leen entradas de un archivo, se puede utilizar un valor centinela, aunque el método más 
frecuente es comprobar simplemente si todas las entradas del archivo han sido procesadas y se alcanza 
el final del bucle cuando no hay más entradas a leer. Éste es el método usual en la lectura de archivos, 



196 Programación en C. Metodología, algoritmos y estructura de datos 

que se suele utilizar una marca al final de archivo, eof. En el capítulo de archivos se dedicará una 
atención especial a la lectura de archivos con una marca de final de archivo. 

6.6.3. Otras técnicas de terminación de bucle 

Las técnicas más usuales para la terminación de bucles de cualquier tipo son: 

1. Bucles controlados por contador. 
2. Preguntar antes de iterar. 
3 .  Salir con una condición bandera. 

Un bucle controlado por contador es cualquier bucle que determina el número de iteraciones antes 
de que el bucle comience y a continuación repite (itera) el cuerpo del bucle esas iteraciones. La técnica 
de la secuencia de entrada precedida por su tamaño es un ejemplo de un bucle controlado por contador. 

La técnica de preguntar antes de iterar se puede utilizar para bucles distintos de los bucles de 
entrada, pero el uso más común de esta técnica es para procesar la entrada. La técnica del valor centinela 
es una técnica conocida también como salida con una condición bandera o señalizadora. Una variable 
que cambia su valor para indicar que algún suceso o evento ha tenido lugar, se denomina normalmente 
bandera o indicador. En el ejemplo anterior de suma de números, la variable bandera es numero de 
modo que cuando toma un valor negativo significa que indica que la lista de entrada ha terminado. 

6.6.4. Bucles for vacíos 

La sentencia nula ( ; ) es una sentencia que está en el cuerpo del bucle y no hace nada. Un bucle for 
se considera vacío si consta de la cabecera y de la sentencia nula ( ; ) . 

Ejemplo 

Muestra los valores del contador, de O a 4. 

1: 
2: 
3: 
4: 
5: 
6: 
7 :  
8: 
9: 
10: 

Sulida 
i: O 
i: 1 
i: 2 
i: 3 
i: 4 

/ *  

* /  
#include <stdio.h> 
int main0 

Ejemplo de Id sentencia nula en for. 

i 
int i; 
for (i = O ;  i < 5; printf("i: %d\n",i++)) ; 
return O ;  

i 

Análisis 
El bucle for de la línea 8 incluye tres sentencias: la sentencia de i n i c i a l  i z a c i  ón establece el valor 
inicial del contador i a O. La sentencias de condición comprueba i < 5, y la sentencia acción 
imprime el valor de i y lo incrementa. 



Estructuras de control: bucles 197 

Ejercicio 6.3 

Escribir un programa que visualice e1,factorial de un entero comprendido entre 2 y 20. 

El factorial de un entero n se calcula con un bucle for desde 2 hasta n, teniendo en cuenta que factorial 
de 1 es 1 ( l !  = 1) y que n! = n*(n-l)! . Así, por ejemplo, 

4! = 4*3! = 4*3 2! = 4*3*2*1! = 4*3*2*1 = 24 
En el programa se escribe un bucle do-whi 1 e para validar la entrada de n, entre 2 y 20. Otro bucle 

for para calcular el factorial. El bucle f o r  va a ser vacío, en la expresión de incremento se va a 
calcular los n productos, para ello se utiliza el operador *=junto al de decremento (- -). 

#include <stdio.h> 
int main0 

long int n,m,fact; 
do 

printf ("\nFactorial de número n, entre 2 y 20: " ) ;  
scanf ("%ld" , &n) ; 

}while ((n <2) I I (n > 20)); 

for (m=n,fact=l; n > l ;  fact * =  n--) ; 

printf ("%ld! = %ld",m, fact) ; 
return 0; 

6.7. BUCLES ANIDADOS 

Es posible anidar bucles. Los bucles anidados constan de un  bucle externo con uno o más bucles 
internos. Cada vez que se repite el bucle externo, los bucles internos se repiten, se vuelven a evaluar los 
componentes de control y se ejecutan todas las iteraciones requeridas. 

Ejemplo 6.10 

El segmento de programa siguiente visualiza una tabla de multiplicación por cálculo y visualización 
de productos de la forma x * y para cada x en el rango de 1 ci xu1 t i m o  y desde cada y en el 
rango 1 a ~ u i  t i m o  (donde xu1 t imo, y Y u l  t imo son enteros prefijados). La Tabla que .se desea 
obtener es 

1 * 1 = 1  
1 * 2 = 2  
1 * 3 = 3  
1 * 4 = 4  
1 * 5 = 5  
2 * 1 = 2  
2 * 2 = 4  
2 * 3 = 6  
2 * 4 = 8  
2 * 5 = 1 0  



198 Programación en C. Metodología, algoritmos y estructura de datos 

for (x = 1; x <= Xultimo; x++) 
I 

for (y = 1; y <= Yultimo; y++) 
i 

int producto; 

I I  l l  producto = x * y; 
printfí" %d * %d = %d\n", x,y,producto); 

bucle externo \ bucle interno 

El bucle que tiene x como variable de control se denomina bucle externo y el bucle que tiene y 
como variable de control se denomina bucle interno. 

Ejemplo 6.1 1 

/ *  

Escribe las variables de control de dos bucles anidados 
* /  

#include <stdio.h> 

void main0 
r 
int i, j; 
/ *  cabecera de la salida * /  
printf ("\n\t\t i \t j\n"); 
for (i= O; i < 4; i++) 

printf ("Externo\t %d\n", i) ; 
for (j = O ;  j < i; j++) 
printf ("Interno\t\t %d \n", j) ; 

1 / *  fin del bucle externo * /  
1 

La salida del programa es 

Externo 
Externo 
Interno 
Externo 
Interno 
Interno 
Externo 
Interno 
Interno 
Interno 

i j 
O 
I 

O 

O 
2 

I 

3 
O 
1 
2 

L 



Estructuras de control: bucles 199 

Ejercicio 6.4 

Escribir un programa que visualice un triángulo isósceles. 
* 

* * * 
* * * * * 

* * * * * * * 
* * * * * * * * * 

El triángulo isósceles se realiza mediante un bucle externo y dos bucles internos. Cada vez que se 
repite el bucle externo se ejecutan los dos bucles internos. El bucle externo se repite cinco veces (cinco 
filas); el número de repeticiones realizadas por los bucles internos se basan en el valor de la variable 
f i l a  . El primer bucle interno visualiza los espacios en blanco no significativos; el segundo bucle 
interno visualiza uno o más asteriscos. 

#include <stdio.h> 
/ *  constantes globales * /  
const int num-lineas = 5; 
const char blanco = "; 
const char asterisco = ' * ' ;  
void main() 
{ 
int fila, blancos, cuenta-as; 

puts(" " ) ;  / *  Deja una línea de separación * /  
/ *  bucle externo: dibuja cada línea * /  
for (fila = 1; fila <= num-lineas; fila++) 
i 
putchar('\t'); 
/*primer bucle interno: escribe espacios * /  
for (blancos = num-lineas-fila; blancos > O; blancos--) 
putchar (blanco) ; 

putchar(asterisc0); 
for (cuenta-as = 1; cuenta-as i 2 * tila; cuentd-as++) 

/ *  terminar línea * /  

} / *  fin del bucle externo * /  
puts i "  " )  ; 

1 

El bucle externo se repite cinco veces, uno por línea o fila; el número de repeticiones ejecutadas 
por los bucles internos se basa en el valor de fila. La primera fila consta de un asterisco y cuatro 
blancos, la fila 2 consta de tres blancos y tres asteriscos, y así sucesivamente; la fila 5 tendrá 9 asteriscos 
(2 x 5 - 1). En este ejercicio se ha utilizado para salida de un carácter la función putchar ( ) . Esta 
función escribe un argumento de tipo carácter en la pantalla. 

Ejercicio 6.5 

Ejecutar el programa siguiente que imprime una tabla de mJilas por n columnas y un carácter de entrada. 
1: #include <stdio.h: 
2: 
3: int main0 
4: { 

I 



200 Programación en C. Metodología, algoritmos y estructura de datos 

5: 
6: 
7 :  
8: 
9: 
10: 
11 : 
12 : 
13 : 
14 : 
15: 
16: 
17: 
1.8: 
19 : 
20: 
21 : 

int tilas, columnas; 
int i, j; 
char elCar; 
printf ("¿Cuántas tilas?: " )  ; 
scanf ("&d',&filas) ; 
printf ("¿Cuántas columnas?: ' I ) ;  

scanf ( "%d" , &col umnas) ; 
print€ ("¿Qué carácter?: " )  ; 
scanf ("\n&c',&elCar) ; 
tor (i = 0; i < filas; i++) 
i 

f o r  (j = O; j < columncls; i t + )  

putchar('\n'); 
putchar (elcar) ; 

i 
return O ;  

i 

Análisis 

El usuario solicita el número de filas y de columnas y un carácter a imprimir. Merece la pena comentar, que 
para leer el carácter a escribir es necesario saltarse el carácter fin de línea (scanf ( "\n&c" , &elcar) ) que se 
encuentra en el buffer de entrada, debido a la petición anterior del número de columnas. El primer bucle for 
de la línea 14 inicializa un contador (i) a O y a continuación se ejecuta el cuerpo del bucle for externo. 

En la línea 16 se inicializa otro bucle for y un segundo contador j se inicializa a O y se ejecuta el 
cuerpo del bucle interno. En la línea 17 se imprime el carácter elcar (*). Se evalúa la condición ( j  < 
columnas) y si se evalúa a true (verdadero), j se incrementa y se imprime el siguiente carácter. Esta 
acción se repite hasta que j sea igual al número de columnas. 

El bucle interno imprime doce caracteres asterisco en una misma fila y el bucle externo repite cuatro 
veces (número de filas) la fila de caracteres. 

Ejercicio 6.6 

Escribir en pantalla el factorial de n, entre los  vulores 1 u IO.  
Con dos bucles f o r  se solucion el problema. El bucle externo determina el número y1 cuyo factorial se 
calcula en el bucle interno. 

#include <stdio.h> 
#define S 10 
int main0 
i 
long int n,m,fact; 
for (n = 1, n <= S; n + + )  
i 

fact = 1; 
for (m=n ; m > l ;  m--) 

printf ("\t %Id! = &Id \n",n, fact) ; 
fact * =  m; 

1 
return O ;  

i 



Estructuras de control: bucles 201 

8. RE 

era del bucle whi - 
que se repite puede 

también comprueban 

I 

I 
I 

6.9. EJERCICIOS 

c 

1 

for ( ;  n > O ;  n 
B double n = 2 ;  

> O ;  n = n-2) 

I, 

, 



- 

202 Programación en C. Metodología, algoritmos y estructura de datos 

6.3. 

6.4. 

6.5. 

6.6. 

6.7. 

6.8. 

int i = 1; 
while (i <= 

++i; 
1 

intf("%d \n",i); 
1 

&r- 

a) ¿Cuái es la salida si n es O? 
b) ¿Cuál es la salida si n es l? 
c) ¿Cuál es la salida si n es 3? 

¿Cuál es la salida de los siguientes bucles? 

int n, m; 
for ( n = 1; n c= 10; n++) 
for (m = 10; m >= 1; m--) 
printf ("%dveces %d= %d \n", n, 

m, n*m); 

a que calcule y visualice 

donde n e8 un valor de un dato. 

suma = O; 
while (suma c 1001 

printf C n  %d \n", suma) ; 
sum 5 ;  

visualice todas 

A €or (i = O ;  i < n; i++) 
i 

i; j++) 

1 

B for (i = n; i > O; i - - 1  
c 
for (j = m; j > O; j--) 

putchar('\n'); 
putchar('*'); 

1 

6.12. ¿Cuál es La salida de los siguientes bucles? 

A f o r  (i = O; i < 10; it+) 
printf ( "  2 *  %d \nu, i, 
2 * i); 

printfc" %d ",2 * i + 1); 
putchar ( ' \n' 1 ; 

B for (i = O; i <= 5 ;  i++) 

C f o r  (i = 1; i < 4; i++) 
{ 

1 



Estructuras de control: bucles 203 

s, los salarios 
aumentar según su 

Aumento % 6.2. 

20 
10 
5 
O 

La constante pi (3.14 
en matemáticas. Un m 
lar su valor es: 

pi = 4 * (+) * (+) * ($) * (+) . . . 



204 Programación en C. Metodología, algoritmos y estructura de datos 

I. 

I, 

8 1 6 
3 5 7 
4 9 2 

Un método de constsucción del cuadrado 
consiste en situar el número 1 en el centro de 
la primera línea, el número siguiente en ía 
casilla situada encima y a la derecha, y así 
sucesivamente. Es preciso considerar que el 
cuadrado se cierra sobre sí mismo: la línea 

s pares y los tres pri- 

pegecto es un entero positivo, que 

6.9. El matemátic 

6.10. Para encontrar el m 
de dos números s 
Euclides, que se pu 
enteros a y b (a > b), se divide a por b, 
obteniendo el cociente ql  y el resto rl .  
Si r 1 < > O, se divide r por b 1, Obteniendo el 
cociente (12 y el resto r-2. Si r2 < > O, se divide rl 
por r2, para obtener q3 y r3, y así suce- 
sivamente. Se continúa el p e s o  hasta que se 
obtiene un resto O. El resto anterior es entonces 
el mcd de los números a y b. Escribir un 
programa que calcule el mcd de dos números. 

6.11. Escribir un programa que encuentre el primer 

. . . + l/Ndonde 
introduce por teclado. 

6.13. Calcular la suma de los 

1/2 + 2/2’ P 3 / 2 3  + . - .  + n/2” 

6.14. Un número aquel número que es 
sus divisiones excepto 

perfecto es 6, ya 



Estructuras de control: bucles 205 

e 6.24. Calcular 1 

6.15. 625. Contar el número 
cidos en una línea. 

6.26. Visualizar en pan 
siguiente 

6.16. 

*** 
Y*** 

***** 
6.17. Caicular el factorial de un número entero leido 

desde el teclado utilizando las sentencias 
while, repeat y for .  

siendo variable el número de líneas que se 
pueden introducir. 

6.27. Escribir un programa para mostrar, mediante 
bucles, los código ascii de la letras mayúsculas 6.18. Encontrar el número mayor de una serie de 

números. y minúscula. 

6.19. Calcular la media de las notas introducidas por 
nteractivo semejante al 

6.2S* EhCOn&x el &mero natural N más Pequeño 
que la suma de los N primeros números exceda 
de una cantidad introducida por el teclado. 

teclado con un áiáio 
siguiente: 

Nota 2: 6.40 
Nota 3: 4.20 
Nota 4: 8.50 

Nota 20: 9.50 
Media de estas 20: 7.475 

... 

6.20. Determinar si un número dado leído del 
teclado es primo o no. 

cular la suma de la serie 1 /1 i 1 / 2  i 
1 / N  donde N es un número entero que se 
determina condición que 1 / N  sea 
menor que #on prefijado (por ejemplo 
1. IO6). 

6.22. Escribir un programa que calcule Ia suma de 
los 50 primeros números enteros. 

6.23. Calcular la suma de una serie de números 
leídos del teclado. 

6.29. Diseñar un programa que produzca la siguiente 
salida: 

ZYXWVTSRQPONMLHJIHGFEDCBA 
YXWVTSRQPONMLKJIHGFEDCBA 
XWVTSRQPONMLKJIHGFEDCBA 
WVTSRQPONMLKJIHGFEDCBA 
VTSRQPONMLKJIHGFEDCBA 
TSRQPONMLKJIHGFEDCBA 
SRQPONMLKJIHGFEDCBA 
RQPONMLKJIHGFEDCBA 
QPONMLKJIHGFEDCBA 
PONMLKJIHGFEDCBA 
ONMLKJIHGFEDCBA 
NMLKJIHGFEDCBA 
MLKJIHGFEDCBA 
LKJIHGFEDCBA 
KJIHGFEDCBA 
JIHGFEDCBA 
IHGFEDCBA 
HGFEDCBA 
GFEDCBA 



206 Programación en C. Metodología, algoritmos y estructura de datos 

\ 
Y 

6.11. PR DE P MACI~N 

6.1. 

6.2. 

6.3. 

6.4. 

6.5, 

6.6. 

5.7. 

6.8. 

1 



Estructuras de control: bucles 207 

6.9. Escribir un programa que lea el radio de una 
a y su volumen 

6.10. Escribir 

mitximo común divi 



CONTENIDO 

7.1. Concepto de función. 
7,s. Estructura de una función. 
7.5. Prototipos de las funciones. 
7.4. Parámetros de una función. 
7.s. Funciones en Enea: macros. 
7.6. Ambit0 (alcance). (register). 

7.7. Clases de almacenamiento. 
7.8. Concepto y uso de funciones 

7.9. Funciones de carácter. 

7.10. Funciones numéricas. 
7.11. Funciones de fecha y hora. 
7.1s. Funciones 
7.13. Visibilidad de una función. 
7.14. ión separada. 
7.16. Vaxiables redstPo 

7.16. Recursividad. 
7.17. Resumen. 

de biblioteca. 7.18. Ejerciciosr. 
7.19. Problemas. 

208 



INTRODUCCIÓN 

del manual de biblioteca de 

ionadas por la bib 
iiadores de C. 

CON CUVE 
0 Biblioteca de funciones, Pasarpar 019 por valor. 

CoxnpilacirSn independiente. 
h c i ó n .  Recursividad. 

* M o d ~ i z a c i ó n .  Sentencia return. 
Pm4xnetros de una mción. Subpmpama. 

Paso por referencia. 

209 



21 0 Programación en C. Metodología, algoritmos y estructura de datos 

7.1. CONCEPTO DE FUNCIÓN 

C fue diseñado como un lenguaje de programación estructurado, también llamado programación 
modular. Por esta razón, para escribir un programa se divide éste en varios módulos, en lugar de uno solo 
largo. El programa se divide en muchos módulos (rutinas pequeñas denominadas funciones), que 
producen muchos beneficios: aislar mejor los problemas, escribir programas correctos más rápido y 
producir programas que son mucho más fáciles de mantener. 

Así pues, un programa C se compone de varias funciones, cada una de las cuales realiza una tarea 
principal. Por ejemplo, si está escribiendo un programa que obtenga una lista de caracteres del teclado, 
los ordene alfabéticamente y los visualice a continuación en la pantalla, se pueden escribir todas estas 
tareas en un único gran programa (función main ( ) ). 

int main() 
{ 

/ *  Código C para obtener una lista de caracteres * /  

/ *  Código C para alfabetizar los caracteres * /  

/ *  Código C para visualizar la lista por orden alfabético * /  

return O 

. . .  

. . .  

. . .  

1 

Sin embargo, este método no es correcto. El mejor medio para escribir un programa es escribir 
funciones independientes para cada tarea que haga el programa. El mejor medio para escribir el citado 
programa sería el siguiente: 

int main0 
{ 
obtenercaractereso; / *  Llamada a una función que obtiene los 

alfabetizar ( )  ; / *  Llamada a la función que ordena 

verletras ( )  ; / *  Llamada a la función que visualiza 

return O; / *  retorno al sistema * /  

números * /  

alfabéticamente las letras * /  

letras en la pantalla * /  

1 
int obtenercaractereso 
I 

/ *  

* /  
return (O ) ; / *  Retorno a main ( ) * /  

Código de C para obtener una lista de caracteres 

1 
int alfabetizar0 
I 

/ * .  . . 
Código de C para alfabetizar los caracteres 

* /  
return(0) ; / *  Retorno a main() * /  

1 

. 

void verletras ( )  

/ * .  . . 



Funciones 21 1 

Código de C para visualizar lista alfabetizada 
* /  

return / *  Retorno a main0 * /  
1 

Cada función realiza una determinada tarea y cuando se ejecuta return se retorna al punto en que 
fue llamada por el programa o función principal. 

Una buena regía para detenninar la longitud de una función (número de líneas que contiene) es que 
no ocupe más longitud que el equivalente a una pantalla. 

7.2. ESTRUCTURA DE UNA FUNCIÓN 

Una función es, sencillamente, un conjunto de shtencias que se pueden llamar desde cualquier parte de 
un programa. Las funciones permiten al programador un grado de abstracción en la resolución de un 
problema. 

Las funciones en C no se pueden anidar. Esto significa que una función no se puede declarar dentro 
de otra función. La razón para esto es permitir un acceso muy eficiente a los datos. En C todas las 
funciones son externas o globales, es decir, pueden ser llamadas desde cualquier punto del programa. 

La estructura de una función en C se muestra en la Figura 7.1. 

tipo-de-re torno nombreFunci Ón ( 1 is taDeParáme tros) 
{ 

cuerpo de la función 
return expresión 

I 
tipo-de-retorno Tipo de valor devuelto por la función o la palabra 

reservada void si la función no devuelve ningún vi.3r. 
Identificador o nombre de la función. 

valor que devuelve la función. 

nombreFunciÓn 
1 i s t aDeParáme tros Lista de declaraciones de los parámetros de la función separados por comas. 
expresión 

7 Lista de parámetros 1 Tipo de resultado 

float r e s p ;  
resp 7 r i i i rn l  + riii1ri2 ; 

Declaración 
de variables 

Valor 
~ devyeito 

I r e t u r n  rpc;p);  

'I 

Figura 7.1. Estructura de una función. 

'. i. 



212 Programación en C. Metodología, algoritmos y estructura de datos 

Los aspectos más sobresalientes en el diseño de una función son: 

o Tipo de resultado. Es el tipo de dato que devuelve la función C y aparece antes del nombre de la 

Lista de parúmetros. Es una lista de parámetros tipificados (con tipos) que utilizan el formato 
función. 

siguiente: 

tipo1 parámetrol, tipo2 parámetro2, . . . 
Cuerpo de lafunción. Se encierra entre llaves de apertura ( { )  y cierre ( )). No hay punto y coma 

o Paso de parámetros. Posteriormente se verá que el paso de parámetros en C se hace siempre por 

o No se pueden declararfunciones anidadas. 
o Declaración local. Las constantes, tipos de datos y variables declaradas dentro de la función son 

Valor devuelto por lafunción. Mediante la palabra reservada return se devuelve el valor de la 

Una llamada a la función produce la ejecución de las sentencias del cuerpo de la función y un 
retorno a la unidad de programa llamadora después que la ejecución de la función se ha terminado, 
normalmente cuando se encuentra una sentencia return. 

después de la llave de cierre. 

valor. 

locales a la misma y no perduran fuera de ella. 

función. 

Ejemplo 7.1 

Las funciones cuadrado () y suma () muestran dos ejemplos típicos de ellas. 

/ *  función que calcule los cuadrados de números enteros 
sucesivos a partir de un número dado (n), parámetro 
de la función y hasta obtener un cuadrado que sea 
mayor de 1000 

* /  

void cuadrado(int n) 
{ 
int cuadrado=O, q=O; 
while ( q  <= 1000) /*el cu3drado ha de ser menor de 1000 * /  
i 
q = n*n; 
printf("E1 cuadrado de: %d es %d \n",n,q); 
n++ ; 

return; 
I 

i 
/ *  

Calcula la suma de un número dado (parámetro) de elementos leídos de la 
entrada estándar(tec1ado). 

* /  
float suma (int num-elementos) 
i 
int indice; 
float total = 0.0; 

printf("\n \t Introduce %d números reales\n",num-elementos); 
for (indice = 0; indice < num-elementos; indice++) 
i 

float x; 
scanf ("%f 'I; &x) ; 



vv 

Funciones 2 13 

total += x; 

return total; 
1 

} 

7.2.1. Nombre de una función 

Un nombre de una función comienza con una letra o un subrayado (-) y puede contener tantas letras, 
números o subrayados como desee. El compilador ignora, sin embargo, a partir de una cantidad dada (32 
en BorlandInprise C, 248 en Microsoft). C es sensible a mayúsculas, lo que significa que las letras 
mayúsculas y minúsculas son distintas a efectos del nombre de la función. 

int max (int x, int y) ; / *  nombre de la función max * /  
double media (double xl, double x2); / *  nombre de la función media * /  
double MAX (int* m, int n); / *  nombre de función MAX, 

distinta de max * /  

7.2.2. Tipo de dato de retorno 

Si la función no devuelve un valor int, se debe especificar el tipo de dato devuelto (de retorno) por la 
función; cuando devuelve un valor int, se puede omitir ya que por defecto el C asume que todas las 
funciones son enteras, a pesar de ello siempre conviene especificar el tipo aun siendo de tipo int, para 
mejor legibilidad. El tipo debe ser uno de los tipos simples de C, tales como int, char o float, o un 
puntero a cualquier tipo C, o un tipo s t ruc t. 

int max(int x, int y) / *  devuelve un tipo int * /  
double media(doub1e xl, double x2) / *  devuelve un tipo double * /  
float func00 { . . . I  / *  devuelve un float * /  
char funcl() { . . . }  / *  devuelve un dato char * /  
int *func3 ( )  { .  . . }  / *  devuelve un puntero a int * /  
char *func4() { .  . . I  / *  devuelve un puntero a char * /  
int func5 ( 1  I . .  . }  / *  devuelve un int (es opcional)*/ 

Si una función no devuelve un resultado, se puede utilizar el tipo void, que se considera como un 
tipo de dato especial. Algunas declaraciones de funciones que devuelven distintos tipos de resultados 
son: 

int calculo-kilometraje(int litros, int kilometros); 
char mayusculas(char car); 
float DesvEst (void) ; 
struct Infopersona BuscarRegistro(int num-registro); 

Muchas funciones no devuelven resultados. La razón es que se utilizan como subrutinas para 
realizar una tarea concreta. Una función que no devuelve un resultado, a veces se denomina 
procedimiento. Para indicar al compilador que una función no devuelve resultado, se utiliza el tipo de 
retorno void, como en este ejemplo: 

void VisualizarResultados(f1oat Total, int num-elementos); 

Si se omite un tipo de retorno para una función, como en 

VerResultados(f1oat Total, int longitud); 

el compilador supone que el tipo de dato devuelto es int. Aunque el uso de int es opcional, por razones 
de claridad y consistencia se recomienda su uso. Así, la función anterior se puede declarar también: 

int VerResultados(f1oat Total, int longitud); 



214 Programación en C. Metodología, algoritmos y estructura de datos 

7.2.3. Resultados de una función 

Una función puede devolver un Único valor. El resultado se muestra con una sentencia return cuya 
sintaxis es: 

r e t u r n  (expresión) 

r e t u r n ;  

El valor devuelto (expresión) puede ser cualquier tipo de dato excepto una función o un array. Se 
pueden devolver valores múltiples devolviendo un puntero o una estructura. El valor de retorno debe 
seguir las mismas reglas que se aplican a un operador de asignación. Por ejemplo, no se puede devolver 
un valor int, si el tipo de retorno es un puntero. Sin embargo, si se devuelve un int y el tipo de retorno 
es un float, se realiza la conversión automáticamente. 

Una función puede tener cualquier número de sentencias return. Tan pronto como el programa 
encuentra cualquiera de las sentencias return, devuelve control a la sentencia llamadora. La ejecución 
de la función termina si no se encuentra ninguna sentencia return; en este caso, la ejecución continúa 
hasta la llave final del cuerpo de la función. 

Si el tipo de retorno es void, la sentencia return se puede escribir como return; sin ninguna 
expresión de retorno, o bien, de modo alternativo se puede omitir la sentencia return. 

void funcl(void) 
{ 

1 

El valor devuelto se suele encerrar entre paréntesis, pero su uso es opcional. En algunos sistemas 
operativos, como DOS, se puede devolver un resultado al entorno llamador. Normalmente el valor O, se 
suele devolver en estos casos. 

puts ("Esta función no devuelve valores") ; 

int main ( ) 
{ 
puts('Prueba de un programa C, devuelve O al sistema " ) ;  
return O ;  

1 

Consejo 
Aunque no es obligatorio el uso de la sentencia r e t u r n  en la Última Linea, 
ya que ayuda a recordar el retorno en ese punto a la función llamadora. 

omienda su uso, 

Precaución 

Un error típico de programación es olvidar incluk la sentencia ret urn 
sección de código que no se ejecute. Si ninguna sentencia return se ejecuta, 
que devuelve la función es impredecible y puede originar que su prog 
resultados incorrectos. Por ejemplo, suponga que se sitúa la sentencia return dentro de una sección 
de código que se ejecuta condicionalmente, tal como: 



Funciones 21 5 

/ 

if (Total >= 0.0) 
return Total; 

Si Total es menor que cero, no se ejecuta la sentencia return y el resultado de la función es 
un valor aleatorio (C puede generar el mensaje de advertencia "Function should return a 
value", que le ayudará a detectar este posible error). 

I 

7.2.4. Llamada a una función 
I 

Las funciones, para poder ser ejecutadas, han de ser llamadas o invocadas. Cualquier expresión puede 
contener una llamada a una función que redirigirá el control del programa a la función nombrada. 
Normalmente la llamada a una función se realizará desde la función principal main ( ), aunque 
naturalmente también podrá ser desde otra función. 

Nota 

La función que llama a otra función se denominafuncidn llamadora y la funci6n controlada se 
denomina futtcidn Elurnada. 

La función llamada que recibe el control del programa se ejecuta desde el principio y cuando 
termina (se alcanza la sentencia r e t u r n ,  o la llave de cierre (1)  si se omite return) el control del 
programa vuelve y retorna a la función main ( ) o a la función llamadora si no es main. 

funcl O ;  
func2 O ;  

ret.rirn O; 
. . .  

1 

void funcl 0 

void tunc2 O 4- 
i 

. . .  
re t u r n  : 

I 

Figura 7.2. Traza de llamadas de funciones. 



216 Programación en C. Metodología, algoritmos y estructura de datos 

En el siguiente ejemplo se declaran dos funciones y se llaman desde la función m a i n  ( ) . 
#include <stdio.h> 

void funcl (void) 
i 
puts ("Segunda función") ; 
return; 

1 

void func2 (void) 
i 
puts ("Tercera función") ; 
re turn ; 

1 
int main() 
{ 
puts("Primera función llamada main()"); 
funcl ( 1  ; / *  Segunda función llamada * /  
func2 ( )  ; / *  Tercera función llamada * /  
puts ("main se termina") ; 

return O; / *  Devuelve control al sistema * /  
1 

La salida de este programa es: 

Primera función llamada main ( ) 
Segunda función 
Tercera función 
main se termina 

Se puede llamar a una función y no utilizar el valor que se devuelve. En esta llamada a función: 
func ( ) ; el valor de retorno no se considera. El formato f unc ( ) sin argumentos es el más simple. Para 
indicar que la llamada a una función no tiene argumentos se sitúa una palabra reservada void entre 
paréntesis en la declaración de la función y posteriormente en lo que se denominará prototipo; también, 
con paréntesis vacíos. 

int main() 

func ( )  ; 
. . .  

1 

void func (void) 

/ *  Llamada a la función * /  

/ *  Declaración de la función * /  
t 

i 
printf ("Función sin argumentos \n") ; 

dentro de otra. Todo código 



Funciones 21 7 

Ejemplo 7.2 

La función m a x  devuelve el número mayor de dos enteros. 

#include <stdio.h> 
int max(int x, int y) 
t 

if (x < y) 

else 
return y; 

return x; 
i 
int main() 
{ 
int m, n; 
do I 

scanf ("%d %d", &m, &n) ; 
printf('Maximo de %d,%d es %d\n",max(m, n)); /*llamada a max*/ 

}while (m ! = O )  ; 
return O; 

Ejemplo 7.3 

Calcular la media aritmética de dos números reales. 

#include <stdio.h> 
double media(doub1e xl, double x2) 
{ 

1 
int main() 
i 

return(x1 + x2)/2; 

double numl, num2, med; 
printf("1ntroducir dos números reales:"); 
scanf ("%lf %1f",&numl,&num2) ; 
med = media(num1, num2); 
printf ("El valor medio es %.41f \n", med) ; 
return O ;  

1 

7.3. PROTOTIPOS DE LAS FUNCIONES 

La declaración de una función se denomina prototipo. Los prototipos de una función contienen la 
cabecera de la función, con la diferencia de que los prototipos terminan con un punto y coma. 
Específicamente un prototipo consta de los siguientes elementos: nombre de la función, una lista de 
argumentos encerrados entre paréntesis y un punto y coma. En C no es estrictamente necesario que una 
función se declare o defina antes de su uso, no es necesario incluir el prototipo aunque si es 
recomendable para que el compilador pueda hacer chequeos en las llamadas a las funciones. Los 
prototipos de las funciones llamadas en un programa se incluyen en la cabecera del programa para que 
así sean reconocidas en todo el programa. 



218 Programación en C. Metodología, algoritmos y estructura de datos 

1 
C recomienda que se declare una función si se llama a la función antes de que se defina. * 

Sintaxis 

t i p o- r e  t orno nombre- f u n c i  Ó n  ( 1 i s t a-de-decl  a r a  ci Ó n s a r á m e  t ros ) ; 
t i p o- r e  torno 

nombre- f un  ci Ó n  

1 i s t a - d e c l  a rac ión_parárne  t ros  

Tipo del valor devuelto por la función o palabra reservada void 
si no devuelve un valor. 
Nombre de la función. 
Lista de declaración de los parámetros de la función, separados 
por comas (los nombres de los párametros son opcionales, pero 
es buena práctica incluirlos para indicar lo que representan). 

Un prototipo declara una función y proporciona una información suficiente al compilador para 
verificar que la función está siendo llamada correctamente, con respecto al número y tipo de los 
parámetros y el tipo devuelto por la función. Es obligatorio poner un punto y coma al final del prototipo 
de la función con el objeto de convertirlo en una sentencia. 

double FahrACelsius(doub1e tempFahr); 
int max(int x, int y); 
int longitud(int h, int a); 
struct persona entrad(void); 
char* concatenar(char* cl, char* c2); 
double intensidad(double, double); 

Los prototipos se sitúan normalmente al principio de un programa, antes de la definición de la fun- 
ción main ( ) . El compilador utiliza los prototipos para validar que el número y los tipos de datos de 
los argumentos reales de la llamada a la función son los mismos que el número y tipo de argumentos for- 
males en la función llamada. Si se detecta una inconsistencia, se visualiza un mensaje de error. Sin pro- 
totipos, un error puede ocurrir si un argumento con un tipo de dato incorrecto se pasa a una función. En 
programas complejos, este tipo de errores son difíciles de detectar. 

En C, la diferencia entre los conceptos declaración y dejnición es preciso tenerla clara. Cuando 
una entidad se declara, se proporciona un nombre y se listan sus características. Una definición 
proporciona un nombre de entidad y reserva espacio de memoria para esa entidad. Una definición indica 
que existe un lugar en un programa donde «existe» realmente la entidad definida, mientras que una 
declaración es sólo una indicación de que algo existe en alguna posición. 

Una declaración de la función contiene sólo la cabecera de la función y una vez declarada la 
función, la definición completa de la función debe existir en algún lugar del programa, antes o después 
de main ( ) . 

En el siguiente ejemplo se escribe una función area ( ) de rectángulo. En la función main ( ) se 
llama a entrada ( ) para pedir la base y la altura; a continuación se llama a la función area ( ) . 

#include <stdio.h> 

/ *  prototipos válidos * /  

float area-rectangulo(f1oat b, float a);/* declaración * /  
float entrada(); / *  prototipo o declaración * /  

int main ( ) 
{ 

float b, h; 
printf ("\n Base del rectangulo: " )  ; 
b = entrada() ; 
printf ("\n Altura del rectangulo: " )  ; 
h = entrada() ; 
printf("\n Area del rectangulo: %.2f',area_rectangulo(b,h)); 

0 



Funciones 219 

return O; 
i 
/ *  devuelve número positivo * /  
float entrada ( ) 
i 
float m; 
do i 
scan f ( I' / % f I' , &m) ; 

j while (m ~ ~ 0 . 0 ) ;  
return m; 

1 
/ *  calcula el area de un rectángulo * /  

float area-rectangulo(f1oat b, float a) 
{ 

1 

En este otro ejemplo se declara la función media 

#include <stdio.h> 
double media (duble xl, double x2); 

int main() 
{ 

return (b*a) ; 

. . .  
med = media(num1, num2); 

. 

/*declaración de media*/ 

. . .  
1 

double media(doub1e xl, double x2) / *  definición * /  
i 

1 
return (xl + x2)/2; 

o Declaraciones de una función 

o Antes de que una función pueda ser invocada, debe ser declarada. 
6n contiene s610 la cabecera de la función (llamado también 

char* copiar (char * buffer, i n t  n ) ;  

La comprobación de tipos es una acción realizada por el compilador. El compilador conoce cuales 
son los tipos de argumentos que se han pasado una vez que se ha procesado un prototipo. Cuando se 
encuentra una sentencia de llamada a una función, el compilador confirma que el tipo de argumento en 
la llamada a la función es el mismo tipo que el del argumento correspondiente del prototipo. Si no son 
los mismos, el compilador genera un mensaje de error. Un ejemplo de prototipo: 

int procesar(int a, char b, float c, double d, char *e); 

El compilador utiliza sólo la información de los tipos de datos. Los nombres de los argumentos, 
aunque se aconsejan, no tienen significado; el propósito de los nombres es hacer la declaración de tipo3 
más fácil para leer y escribir. La sentencia precedente se puede escribir también así: 



1 

220 Programación en C. Metodologia, algoritmos y estructura de datos 

0 

int procesar(int, char, float, double, char * ) ;  

Si una función no tiene argumentos, se ha de utilizar la palabra reservada void como lista de 

int muestra(void); 

argumentos del prototipo (también se puede escribir paréntesis vacíos). 

Ejemplos 

l./* prototipo de la función cuadrado *I 
double cuadrado(doub1e); 

int main() 
{ 
double x=11.5; 
printf("%6.2lf al cuadrado = %8.41f \n",x,cuadrado(x)); 
return O ;  

1 

double cuadrado(doub1e n) 
I 

return n*n; 
1 
2. / *  prototipo de visualizar-nombre * /  
void visualizar-nombre(char*); 

void main() 
i 
visualizar-nombre ("Lucas El Fuerte") ; 

1 

void visualizar-nombre(char* nom) 
{ 

1 
printf ("Hola %s \n",nom) ; 

7.3.1. Prototipos con un número no especificado de parametros 

Un formato especial de prototipo es aquel que tiene un número no especificado de argumentos, que se 
representa por puntos suspensivos (...). Por ejemplo, 

int muestras(int a, . . . )  ; 
int printf(conct char *formato, . . .  ) ;  
int scanf(const char *formato, . . .  ) ;  

Para implementar una función con lista variable de parámetros es necesario utilizar unas macros 
(especie de funciones en línea) que están definidas en el archivo de cabecera ctdarg.h, por 
consiguiente lo primero que hay que hacer es incluir dicho archivo. 

#include <stdarg,.h> 

En el archivo está declarado el tipo va-1 i s  t , un puntero para manejar la lista de datos pasada a la 

val-list puntero; 

función. 



Funciones 221 

La función va-start ( ) inicializa puntero, de tal forma que referencia al primer parámetro 

void v a- s t a r t  ( v a - l i s t  p u n t e r o ,  u1 t i m o f i j o )  ; 

El segundo argumento es el Último argumento fijo de la función que se está implementando. Así 

va-start (puntero, a) ; 

Con la función va-arg ( ) se obtienen, consecutivamente, los sucesivos argumentos de la lista 

tipo va-arg(va-list puntero, tipo); 

Donde tipo es el tipo del argumento variable que es captado en ese momento, a su vez es el tipo 
de dato que devuelve va-arg ( ) . Para la función muestras ( ) si los argumentos variables son de tipo 
int: 

w 

variable. El prototipo que tiene: 

para lafunciónmuest ras( in t  a, . . . ) ;  

variable. El prototipo que tiene 

int m; 
m = va-arg(punter0,int); 

La Última llamada que hay que hacer en la implementación de estas funciones es a va-end ( ) . De 
esta forma se queda el puntero preparado para siguientes llamadas. El prototipo que tiene va-end ( ) : 

void va-end(va-list puntero). 

Ejercicio 7.1 

calcula el máximo de n argumentos de tipo double, donde n es el argumento fijo que se utiliza. 
. Una aplicación completa de una función con lista de argumentos variables es maximo(int, ...), que 

#include <stdio.h> 
#include istdarg.h> 

void maximo(int n, . . .  ) ;  

int main (void) 
{ 

puts("\t\tPRIMERA BUSQUEDA DEL MAXIMO\n'); 
maximo(6,3.0,4.0,-12.5,1.2,4.5,6.4); 
puts ("\n\t\tNUEVA BUSQUEDA DEL MAXIMO\n") ; 
maximo(4,5.4,17.8,5.9,-17.99) ; 
return O; 

1 
void maximo(int n, . . .  ) 
{ 
double mx,actual; 
va-list puntero; 
int i; 
va-start(punter0,n); 
mx = actual = va-arg(punter0,double); 
printf("\t\tArgumento actual: %.2lf\n",actual); 
for (i=2; i<=n; i++) 
t 

actual = va-arg(punter0,double); 
printf("\t\tArgumento actual: %.2lf\n",actual); 
if (actual > mx) 
t 



222 Programación en C. Metodología, algoritmos y estructura de datos 

m x  = actual; 
1 

1 
printf("\t\tMáximo de la lista de %d números es %.2lf\n",n,mx); 
va-end(punter0); 

7.4. PARÁMETROS DE UNA FUNCIÓN 

C siempre utiliza el método de parámetros por valor para pasar variables a funciones. Para que una 
función devuelva un valor a través de un argumento hay que pasar la dirección de la variable, y que el 
argumento correspondiente de la función sea un puntero, es la forma de conseguir en C un paso de 
parámetro por referencia. Esta sección examina el mecanismo que C utiliza para pasar parámetros a 
funciones y cómo optimizar el paso de parámetros, dependiendo del tipo de dato que se utiliza. 
Suponiendo que se tenga la declaración de una función circulo con tres argumentos 

void circulo(int x, int y, int didmetro); 

Cuando se llama a circulo se deben pasar tres parámetros a esta función. En el punto de llamada 
cada parámetro puede ser una constante, una variable o una expresión, como en el siguiente ejemplo: 

circulo(25, 40, vueltas*4); 

I 7.4.1. Paso de parámetros por valor 

Pasopor valor (también llamadopaso por copia) significa que cuando C compila la función y el código 
que llama a la función, la función recibe una copia de los valores de los parámetros. Si se cambia el 
valor de un parámetro variable local, el cambio sólo afecta a la función y no tiene efecto fuera de ella. 

La Figura 7.3 muestra la acción de pasar un argumento por valor. La variable real i no se pasa, pero 
el valor de i, 6, se pasa a la función receptora. 

En la técnica de paso de parámetro por valor, la modificación de la variable (parámetro pasado) en 
la función receptora no afecta al parámetro argumento en la función llamadora. 

main 0 
i 

i r i t  i 7 6; 
t u n c  ( i ) ;  ~ 

return O; 
1 

*6 I 6 

p r i n t f  ("8d" , ii , 
l i t ;  

Figura 7.3. Paso de la variable i por valor. 



Funciones 223 

Nota 

El método por defecto de pasar parámetros es por valor, a menos que se pasen arrays. Los arrays 
se pasan siempre por dirección. 

El siguiente programa muestra el mecanismo de paso de parámetros por valor. 
/ *  

Muestra el paso de parámetros por valor 
Se puede cambiar la variable del parámetro en la función 
pero su modificación no puede salir al exterior 

* /  
#include istdio.h> 
void DemoLocal(int valor); 
void main (void) 
i 
int n = 10; 
printf("Antes de llamar a DemoLocal, n = %d\n",n); 
DemoLocal(n); 
printf('Despu6s de llamada a DemoLocal, n = %d\n",n); 

1 
void DemoLocal(int valor) 
{ 
printf ( "Dentro de DemoLocal, valor = %d\n" , valor) ; 
valor = 999; 
printf ("Dentro de DemoLocal, valor = %d\n" , valor) ; 

1 
Al ejecutar este programa se visualiza la salida: 
Antes de llamar a DemoLocal, n = 10 
Dentro de DemoLocal, valor = 10 
Dentro de DemoLocal, valor = 999 
Después de llamar a DemoLocal, n = 10 

7.4.2. Paso de parámetros por referencia 
Cuando una función debe modificar el valor del parámetro pasado y devolver este valor modificado a la 
función llamadora, se ha de utilizar el método de paso de parámetro por referencia o dirección. 

En este método el compilador pasa la dirección de memoria del valor del parámetro a la función. 
Cuando se modifica el valor del parámetro (la variable local), este valor queda almacenado en la misma 
dirección de memoria, por lo que al retornar a la función llamadora la dirección de la memoria donde 
se almacenó el parámetro contendrá el valor modificado. Para pasar una variable por referencia, el 
símbolo & debe preceder al nombre de la variable y el parámetro variable correspondiente de la función 
debe declararse como puntero. 

float x; 
int y; 
entrada(&x,&y); 

void entrada(float* x, int* y) 

C permite utilizar punteros para implementar parámetros por referencia, ya que por defecto en C el 

. . .  

paso de parámetros es por valor. 



224 Programación en C. Metodología, algoritmos y estructura de datos 

/ *  método de paso por referencia, mediante punteros * /  

void intercambio(int* a, int* b) 
i 
int aux = *a; 

*b = aux; 
*a = *b; 

1 

En la llamada siguiente, la función intercambio ( ) utiliza las expresiones *a y *b para acceder 

int i = 3, j = 50; 
printf("i = %d y j = %d \n", i,j); 
intercambio (&i, & j ) ; 
printf ("i = %d y j = %d \n", i,j) ; 

La llamada a la función intercambio ( ) debe pasar las direcciones de las variables intercambiadas. 

a los enteros referenciados por las direcciones de las variables i y j : 

El operador & delante de una variable significa «dame la direccion de la variable». 
double x; 
&x ; / *  dirección en memoria de x * /  

Una variable, o parámetro puntero se declara poniendo el asterisco ( * ) antes del nombre de la 
variable. Las variables p, r y q son punteros a distintos tipos. 

char* p; / *  variable puntero a char * /  
int * r; / *  variable puntero a int * /  
double* q; / *  variable puntero a double * /  

7.4.3. Diferencias entre paso de variables por valor y por referencia 

Las reglas que se han de seguir cuando se transmiten variables por valor y por referencia son las 
siguientes: 

O los parámetros valor reciben copias de los valores de los argumentos que se les pasan; 
O la asignación a parámetros valor de una función nunca cambian el valor del argumento original 

O los parámetros para el paso por referencia (declarados con * , punteros) reciben la dirección de 

O en una función, las asignaciones a parámetros referencia (punteros) cambian los valores de los 

Por ejemplo, la escritura de una función potrat ( ) para cambiar los contenidos de dos variables, 

Paso por valor 
float a, b; float a, b; 

potratl(f1oat x,float y) potrat2(float* x,float* y) 
I { 

pasado a los parámetros; 

los argumentos pasados; a estos les debe de preceder del operador &, excepto los arrays; 

argumentos originales. 

requiere que los datos puedan ser modificados. 

Paso par referencia 

1 I 

Sólo en el caso de potrat2 los valores de a y b se cambiarán. Veamos una aplicación completa de 
ambas funciones: 

#include <stdio.h> 
#include <math.h> 



Funciones 225 

void potratl(float, float); 
void potrat2(float*, float*) 
void main() 
{ 
float a, b; 
a = 5.0; b = 1.0e2; 
potratl (a, b) ; 
printf("\n a = %.1f b = %.lt",a,b); 
potrat2 (a, b) ; 
Printf("\n a = %.lf b = %.lf',a,b); 

i 
void potratl(f1oat x, float y) 
t 
x = x*x; 
Y = sqrt(y); 

I 

void potrat2(float* x, float* y) 
1 

* X  = (*x)*(*x); 
*y = sqrt (*y) ; 

} 

La ejecución del programa producirá: 
a = 5.0 b = 100.0 
a = 25.0 b = 10.0 

Nota 

Todos los parámetros en G se pasan por valor. C no tiene parhetros por referencia, hay que 
hacerlo con punteros y el operador &. 

Se puede observar en el programa cómo se accede a los punteros, el operador * precediendo al 
parámetro puntero devuelve el contenido. 

i 
I#  , I  

7.4.4. Parámetros const de una función 
Con el objeto de añadir seguridad adicional a las funciones, se puede añadir a una descripción de un 
parámetro el especificador const, que indica al compilador que sólo es de lectura en el interior de la 
función. Si se intenta escribir en este parámetro se producirá un mensaje de error de compilación. 

void fl(const int, const int*); 
void f2(int, int const"); 
void fl(const int x, const i.nt* y) 
t 
x = 10; / *  error por cambiar un objeto constante*/ 
*y = 11; / *  error por cambiar un objeto constante*/ 
y = &x; / *  correcto * /  

1 
void f2(int x, int const* y) 
J 

x = 10; / *  correcto * /  
*y = 11; / *  error * /  
y = &x; / *  correcto * /  

i 



-1 
226 Programación en C. Metodología, algoritmos y estructura de datos 

La Tabla 7.1 muestra un resumen del comportamiento de los diferentes tipos de parámetros. 

Tabla 7.1. Paso de parámetros en C. 

Parámetro especificado como: Item pasado por Cambia item dentro Modifica parámetros 
de la función al exterior 

int item valor Si NO 
const int item valor N O  No 

c o n s t  int* item por direccirín No su contenido NO 
int* item por dirección Si Si 

7.5. FUNCIONES EN LINEA, MACROS CON ARGUMENTOS 

Una función normal es un bloque de código que se llama desde otra función. El compilador genera 
código para situar la dirección de retorno en la pila. La dirección de retorno es la dirección de la 
sentencia que sigue a la instrucción que llama a la función. A continuación, el compilador genera código 
que sitúa cualquier argumento de la función en la pila a medida que se requiera. Por último, el 
compilador genera una instrucción de llamada que transfiere el control a la función. 

float fesp(f1oat x) 
i 

1 
return ( X * X  + 2 * ~  -1); 

Las funciones en línea sirven para aumentar la velocidad de su programa. Su uso es conveniente 
cuando la función es una expresión, su código es pequeño y se utiliza muchas veces en el programa. 
Realmente no son funciones, el preprocesador expande o sustituye la expresión cada vez que es llamada. 
Así la anterior función puede sustituirse: 

#define f e s p ( x )  (x*x + 2*x -1) 

En este programa se realizan cálculos de la función para valores de x en un intervalo. 

#include istdio.h> 
#define fesp(x) (x*x + 2*x -1) 

void main() 
i 

float x; 
for (x = 0.0; x <=6.5; x += 0.3) 
printf ("\t f (%.lf) = %6.2f ",x, fesp(x)) ; 

1 

Antes de que el compilador construya el código ejecutable de este programa, el preprocesador 
sustituye toda llamada a f exp ( x) por la expresión asociada. Realmente es como si hubiéramos escrito 

printf("\t f(%.if) = R6.2f " , x ,  (x*x + 2*x -1)); 

Para una macro ton argumentos Vunción en línea), el compilador inserta realmente el código en el 
punto en que se llama, esta acción hace que el programa se ejecute más rápidamente, ya que no ha de 
ejecutar el código asociado con la llamada a la función. 

Sin embargo, cada invocación a una macro puede requerir tanta memoria como se requiera para 
contener la expresión completa que representa. Por esta razón, el programa incrementa su tamaño, 
aunque es mucho más rápido en su ejecución. Si se llama a una macro diez veces en un programa, el 
compilador inserta diez copias de ella en el programa. Si la macrofunción ocupa O. lK, el tamaño de su 
programa se incrementa en I K (1024 bytes). Por el contrario, si se llama diez veces a la misma función 



Funciones 227 

. . .  

argumentos (función 
en línea) se inserta 
directamente 

Sentencias 

Sentencias 

Funciones 
comunes se llaman -7 normalmente 

Figura 7.4. Código generado por una función fuera de línea. 

con una función normal, y el código de llamada suplementario es 25 bytes por cada llamada, el tamaño 
se incrementa en una cantidad insignificante. 

La Figura 7.5 ilustra la sintaxis general de una macro con argumentos. 

#define NombreMacso(pardmetros sin tipos) expresión-texto 

REGLA: La definición de una macro sólo puede ocupar una línea. Se puede prolongar la línea 
con el caracter \ ai find de la línea. 

Figura 7.5. Código de una macro con argumentos. 

La Tabla 7.2 resume las ventajas y desventajas de situar un código de una función en una macro o 
fuera de línea (función normal): 

Tabla 7.2. Ventajas y desventajas de macros. 

Ventajas Desventajas 

Macros (funciones en línea) 
Funciones fuera de línea 

Rápida de ejecutar. 
Pequeño tamaño de código. 

Tamaño de código grande. 
Lenta de ejecución. 

7.5.1. Creación de macros con argumentos 

Para crear una macro con argumentos utilizar la sintaxis: 

#define NombreMacro(par2hetro.s sin tipos) expresión-texto 

La definición ocupará sólo una línea, aunque si se necesitan más texto, situar una barra invertida ( \ ) al 
final de la primera línea y continuar en la siguiente, en caso de ser necesarias más líneas proceder de 
igual forma; de esa forma se puede formar una expresión más compleja. Entre el nombre de la macro y 
los paréntesis de la lista de argumentos no puede haber espacios en blanco. Por ejemplo, la función 
media de tres valores se puede escribir: 

#define MEDIA3(x,y,z) ((x) + ( y )  + (z))/3.0 



228 Programación en C. Metodología, algoritmos y estructura de datos 

En este segmento de código se invoca a MEDIA3 
double a = 2.9; 
printf("\t %If ' I ,  MEDIA3(a,4.5,7)); 

En esta llamada a MEDIA3 se pasan argumentos de tipo distinto. Es importante tener en cuenta que 
en las macros con argumentos no hay comprobación de tipos. Para evitar problemas de prioridad de 
operadores, es conveniente encerrar entre paréntesis cada argumento en la expresión de definición e 
incluso encerrar entre paréntesis toda la expresión. 

En la siguiente macro, la definición de la expresión ocupa más de una línea. 

#define FUNCION3 ( x )  { \ 
if í (x) e 1 . 0  ) \ 

( -  (x) * (x) + 3 )  ; \ 
else if ((x)<=l) \ 

(2* (x) +5) ; \ 
else \ 

( (x) * (x) -5) ; \ 
1 

Al tener la macro más de una sentencia, encerrarla entre llaves hace que sea una sola sentencia, 
aunque sea compuesta. 

Ejercicio 7.2 

Una aplicación completa de una macro con argumentos es Volcono ( 1 ,  que calcula el volumen de la 
figura geométrica Cono. 

1 
(V = - d h)  

3 
#include <stdio.h> 
#define Pi 3.141592 

#define VOLCONO(radio,altura) ((Pi*(radio*radio)*altura)/3.0) 

int main() 
i 
float radio, altura, volumen; 

printf ("\nIntroduzca radio del cono: " 1  ; 
scanf ( "%f", &radio) ; 
printf ("Introduzca altura del cono: " )  ; 
scanf ("%f", &altura) ; 
volumen = VOLCONO(radio, altura); 
printf("\nEl volumen del cono es: %.Lt",volumen); 
return O ;  

1 

7.6. ÁMBITO (ALCANCE) 

El ámbito o alcance de una variable determina cuáles son las funciones que reconocen ciertas variables. 
Si una función reconoce una variable, la variable es visible en esa función. El ámbito es la zona de un 
programa en la que es visible una variable. Existen cuatro tipos de ámbitos: programa, archivofiente, 
función y bloque. Se puede designar una variable para que esté asociada a uno de estos ámbitos. Tal 
variable es invisible fuera de su ámbito y sólo se puede acceder a ella en su ámbito. 



T 

Funciones 229 

Normalmente la posición de la sentencia en el programa determina el ámbito. Los especificadores 
auto y register, pueden afectar al ámbito. El de clases de almacenamiento, static, 

siguiente fragmento de progranla ilustra cada tipo de ámbito: 
extern, 

int i; / *  Ámbito de programa * /  
static int j; / *  Ámbito de archivo * /  
float func(int k) / *  k, ámbito de función * /  
i 

int m; / *  Ámbito de bloque * /  

7.6.1. Ámbito del programa 

Las variables que tienen ámbito de progrumu pueden ser referenciadas por cualquier función en el 
programa completo; tales variables se llaman variahles globules. Para hacer una variable global, 
declárela simplemente al principio de un programa, fuera de cualquier función. 

int g, h; / *  variables globales * /  
main ( ) 

i 

I 

Una variable global es visible («se conocen) desde su punto de definición en el archivo fuente. Es 
decir, si se define una variable global, cualquier línea del resto del programa, no importa cuantas 
funciones y líneas de código le sigan, podrá utilizar esa variable. 

. . .  

#include cstdio.h> 
#include cmath.h> 

float ventas, beneficios; / *  variables globales * /  
void f3 (void) 

1 
void f 1 (void) 
i 
. . .  
1 

void main() 
{ 

Consejo 
Declare todas las variables en la parte superior de su programa. Aunque se pueden definir tales 
variables entre dos funciones, podría realizar cualquier cambio en su programa de modo más 
rápido, si sitúa las variables globales al principio del programa. 



230 Programación en C. Metodología, algoritmos y estructura de datos 

7.6.2. Ámbito del archivo fuente 

Una variable que se declara fuera de cualquier función y cuya declaración contiene la palabra reservada 
static tiene ámbito de archivofuente. Las variables con este ámbito se pueden referencia desde el 
punto del programa en que están declaradas hasta el final del archivo fuente. Si un archivo fuente tiene 
más de una función, todas las funciones que siguen a la declaración de la variable pueden referenciarla. 
En el ejemplo siguiente, i tiene ámbito de archivo fuente: 

static int i; 
void func (void) 
{ 

7.6.3. Ámbito de una función 

Una variable que tiene ámbito de una función se puede referenciar desde cualquier parte de la función. 
Las variables declaradas dentro del cuerpo de la función se dice que son locales a la función. Las 
variables locales no se pueden utilizar fuera del ámbito de la función en que están definidas. 

I void calculo(void) 
I 

{ 
double x, r, t ; / *  Ámbito de la función * /  
. . .  

1 

7.6.4. Ámbito de bloque 

Una variable declarada en un bloque tiene ámbito de bloque y puede ser referenciada en cualquier parte 
del bloque, desde el punto en que está declarada hasta el final del bloque. Las variables locales 
declaradas dentro de una función tienen ámbito de bloque de la función; no son visibles fuera del bloque. 
En el siguiente ejemplo, i es una variable local: 

void funcl (int x) 
t 
int i; 
for (i = x; i < x+10; it+) 
printf ("i = %d \n",i*i) ; 

1 

Una variable local declarada en un bloque anidado sólo es visible en el interior de ese bloque. 

float func (int j ) 
i 
if (j > 3) 
I 

int i; 
for (i = O ;  i < 20; i++) 

funcl (i) ; 
1 

/ *  aquí  ya no es visible i * /  
1 ;  



7.6.5. Variables locales 

Además de tener un ámbito restringido, las variables locales son especiales por otra razón: existen en 
memoria sólo cuando la función está activa (es decir, mientras se ejecutan las sentencias de la función). 
Cuando la función no se está ejecutando, sus variables locales no ocupan espacio en memoria, ya que 
no existen. Algunas reglas que siguen las variables locales son: 

Los nombres de las variables locales no son únicos. Dos o más funciones pueden definir la misma 
variable test. Cada variable es distinta y pertenece a su función específica. 

o Las variables locales de las funciones no existen en tnemoria hasta que se ejecute la función. Por 
esta razón, múltiples funciones pueden compartir la misma memoria para sus variables locales 
(pero no al mismo tiempo). 

7.7. CLASES DE ALMACENAMIENTO 

Los especificadores de clases (tipos) de almacenamiento permiten modificar el ámbito de una variable. 
Los especificadores pueden ser uno de los siguientes: auto, extern, register, static y 
typedef. 

7.7.1. Variables automáticas 

Las variables que se declaran dentro de una función se dice que son automáticas (auto), significando 
que se les asigna espacio en memoria automáticamente a la entrada de la función y se les libera el 
espacio tan pronto se sale de dicha función. La palabra reservada auto es opcional. 

auto int Total; es igual que int Total; 

Normalmente no se especifica la palabra auto. 

7.7.2. Variables externas 

A veces se presenta el problema de que una función necesita utilizar una variable que otra función 
inicializa. Como las variables locales sólo existen temporalmente mientras se está ejecutando su función, 
no pueden resolver el problema. ¿Cómo se puede resolver entonces el problema? En esencia, de lo que 
se trata es de que una función de un archivo de código fuente utilice una variable definida en otro 
archivo. Una solución es declarar la variable local con la palabra reservada extern. Cuando una variable 
se declara externa, se indica al compilador que el espacio de la variable está definida en otro lugar. 

/ *  variables externas: parte 1 * /  
/ *  archivo fuente exter1.c * /  
#include <stdio.h> 

extern void leerReal(void);/* función definida en otro archivo; en este 
caso no es necesario extern * /  

float f; 

int main() 
i 

leerReal ( ) ; 
printf ("Valor de f = %f", f) ; 
return O ;  

i 



232 Programación en C. Metodología, algoritmos y estructura de datos 

/*variables externas: parte 2 * /  
/ *  archivo fuente exter2.c * /  
#include istdio.h> 

void leerReal(void) 
1 

i 
extern float f ;  

printf("1ntroduzca valor en coma flotante: " ) ;  
scanf ("%f",&f); 

1 
En el archivo EXTERS . c la declaración externa de ,f indica al compilador que ,f se ha definido en 

otra parte (archivo). Posteriormente, cuando estos archivos se enlacen, las declaraciones se combinan de 
modo que se referirán a las mismas posiciones de memoria. 

7.7.3. Variables registro 

Otro tipo de variable C es la variable registro. Precediendo a la declaración de una variable con la 
palabra reservada register, se sugiere al compilador que la variable se almacene en uno de los 
registros hardware del microprocesador. La palabra register es una sugerencia al compilador y no una 
orden. La familia de microprocesadores 80x86 no tiene muchos registros hardware de reserva, por lo que 
el compilador puede decidir ignorar sus sugerencias. Para declarar una variable registro, utilice una 
declaración similar a: 

register int k; 

Una variable registro debe ser local a una función, nunca puede ser global al programa completo. 
El uso de la variable register no garantiza que un valor se almacene en un registro. Esto sólo 

sucederá si existe un registro disponible. Si no existen registros suficientes, C ignora la palabra reservada 
register y crea la variable localmente como ya se conoce. 

Una aplicación típica de una variable registro es como variable de control de un bucle. Guardando 
la variable de control de un bucle en un registro, se reduce el tiempo que la CPU requiere para buscar 
el valor de la variable de la memoria. Por ejemplo, 

register int indice; 
for (indice = O ;  indice < 1000; indice++) . . .  

7.7.4. Variables estáticas 

Las variables estáticas son opuestas, en su significado, a las variables automáticas. Las variables 
estáticas no se borran (no se pierde su valor) cuando la función termina y, en consecuencia, retienen 
sus valores entre llamadas a una función. Al contrario que las variables locales normales, una variable 
static se inicializa sólo una vez. Se declaran precediendo a la declaración de la variable con la palabra 
reservada static. 

f unc-uno ( ) 

{ 
int i; 
static int j = 25; /*j, k variables estjticas * /  
static int k = 100; 
. . .  

1 

Las variables estáticas se utilizan normalmente para mantener valores entre llamadas a funciones. 



Funciones 233 

float ResultadosTotales(f1oat valor) 
i 
static float suma; 

suma = suma + valor; 
return suma; 

I 

En la función anterior se utiliza suma para acumular sumas a través de sucesivas llamadas a 
R e s  u 1 t ado s So t a 1 e s . 

Ejercicio 7.3 

Una aplicación de una variable static en una,funrión es la que nos permite obtener la serie de niimeros 
de.fibonacci. El ejercicio lo plantearnos: dado un entero n, obtener los n primeros números de la serie 
de jhonacci. 

Análisis 
La secuencia de números de fibonacci: O, I ,  I ,  2, 3 , 5 ,  8, 13. .  . , se obtiene partiendo de los números O, 
1 y a partir de ellos cada número se obtiene sumando los dos anteriores: 

a,, = % I  + ( 4 2  

La función fibonacci tiene dos variables estáticas, x e y . Se inicializan x a O e y a 1 ; a partir de esos 
valores se calcula el valor actual, y, se deja preparado x para la siguiente llamada. Al ser variables 
estáticas mantienen el valor entre llamada y llamada. 

#include <stdio.h> 
long int fibonaccio; 
int main() 
{ 
int n,i; 
printf ("\nCuantos numeros de fibonacci ? :  " )  ; 
scanf ( "%d" , &n) ; 
printf ("\nSecuencia de f ibonacci : O, 1") ; 
f o r  (i=2; i<n; i++) 

return O ;  
printf (",%ld",fibonacci()); 

i 
long int fibonaccio 
i 
static int x = O ;  
static int y = 1; 
y = y + x ;  
x = y -  x; 
return y; 

i 

Ejecución 

Cuantos numeros de fibonacci ? 14 
Secuencia de fibonacci: 0 ,1 ,1 ,2 ,3 ,5 ,8 ,13 ,21 ,34 ,55 ,89 ,144 ,233  



234 Programación en C. Metodología, algoritmos y estructura de datos 

7.8. CONCEPTO Y USO DE FUNCIONES DE BIBLIOTECA 

Todas las versiones del lenguaje C ofrecen con una biblioteca estándar de funciones en tiempo de 
ejecución que proporcionan soporte para operaciones utilizadas con más frecuencia. Estas funciones 
permiten realizar una operación con sólo una llamada a la función (sin necesidad de escribir su código 
fuente). 

Las funciones estúnúur o preúefinidus, como así se denominan las funciones pertenecientes a la 
biblioteca estándar, se dividen en grupos; todas las funciones que pertenecen al mismo grupo se declaran 
en el mismo archivo de cabecera. 

Los nombres de los archivos de cabecera estándar utilizados en nuestro programa se muestran a 
continuación encerrados entre corchetes tipo ángulo: 

<assert.h> <ctype. h> 
<1 imi ts . h> 
<stdarg.h> <stdef.h> 
<time. h> 

<ma th . h> 
e r rno . h 
-..setjmp.h> 
<s tdio. h> 

<float. h> 
<signal. h> 
<string. h> 

En los módulos de programa se pueden incluir líneas #include con los archivos de cabecera 
correspondientes en cualquier orden, y estas líneas pueden aparecer más de una vez. 

Para utilizar una función o un macro, se debe conocer su número de argumentos, sus tipos y el tipo 
de sus valores de retorno. Esta información se proporcionará en los prototipos de la función. La 
sentencia #include mezcla el archivo de cabecera en su programa. 

Algunos de los grupos de funciones de biblioteca más usuales son: 

O E/S estándar (para operaciones de EntraddSalida); 
O matemáticas (para operaciones matemáticas); 
O rutinas estándar (para operaciones estándar de programas); 
O visualizar ventana de texto; 
O de conversión (rutinas de conversión de caracteres y cadenas); 
O de diagnóstico (proporcionan rutinas de depuración incorporada); 
O de manipulación de memoria; 
O control del proceso; 
O clasificación (ordenación); 
O directorios; 
O fecha y hora; 
O de interfaz; 
O diversas; 
O búsqueda; 
O manipulación de cadenas; 
O gráficos. 

Se pueden incluir tantos archivos de cabecera como sean necesarios en sus archivos de programa, 

En este capítulo se estudiarán las funciones más sobresalientes y más utilizadas en programación. 
incluyendo sus propios archivos de cabecera que definen sus propias funciones. 

7.9. FUNCIONES DE CARÁCTER 

El archivo de cabecera <CTYPE . H> define un grupo de funciones/macros de manipulación de caracteres. 
Todas las funciones devuelven un resultado de valor verdadero (distinto de cero) o falso (cero). 

Para utilizar cualquiera de las funciones (Tabla 7.3) no se olvide incluir el archivo de cabecera 
CTYPE . H en la parte superior de cualquier programa que haga uso de esas funciones. 



Funciones 235 

Tabla 7.3. Funciones de caracteres. 

Función Prueba (test) de 

int isalpha(int c) Letra mayúscula o minúscula. 

int isdigit (int c) Dígito decimal. 

int isupper(int c) Letra mayúscula (A- Z). 

int islower (int c) Letra minúscula (a- z). 

int isalnum(int c) letra o dígito; isalpha(c) I lisdigit(c) 
int iscntrl(int c) Carácter de control. 

int isxdigit(int c) Dígito hexadecimal. 

int isprint(int c) Carácter imprimible incluyendo ESPACIO. 

int isgraph(int c) Carácter imprimible excepto ESPACIO. 

int isspace(int c) ESPACIO, AVANCE DE PÁGINA, NUEVA LINEA, RETORNO DE 

int ispunct(int c) Carácter imprimible no espacio, dígito o letra. 

int toupper(int c) Convierte a letras mayúsculas. 

int tolower(int c) Convierte a letras minúsculas. 

CARRO, TAB ULAC IÓN , TABULACI~N VERTICAL. 

7.9.1. Comprobación alfabética y de dígitos 

Existen varias funciones que sirven para comprobar condiciones alfabéticas: 

0 isalpha(c) 
Devuelve verdadero (distinto de cero) si c es una letra mayúscula o minúscula. Se devuelve un 
valor falso si se pasa un carácter distinto de letra a esta función. 

Devuelve verdadero (distinto de cero) si c es una letra minúscula. Se devuelve un valor falso (O), 
si se pasa un carácter distinto de una minúscula. 

Devuelve verdadero (distinto de cero) si c es una letra mayúscula, falso con cualquier otro 
carácter. 

0 islower(c) 

0 isupper (c) 

Las siguientes funciones comprueban caracteres numéricos: 

o isdigit(c) 
Comprueba si c es un dígito de O a 9, devolviendo verdadero (distinto de cero) en ese caso, y 
falso en caso contrario. 

Devuelve verdadero si c es cualquier dígito hexadecimal ( O  a 9, A a F, o bien a a f ) y falso en 
cualquier otro caso. 

0 isxdigit (c) 

Las siguientes funciones comprueban argumentos numéricos o alfabéticos: 

0 isalnum(c) 
Devuelve un valor verdadero, si c es un dígito de O a 9 o un carácter alfabético (bien mayúscula 
o minúscula) y falso en cualquier otro caso. 



236 Programación en C. Metodología, algoritmos y estructura de datos 

~~ 

Ejemplo 7.4 

Leer un carácter del teclado y comprobar si es una letra. 
/ *  

* /  
#include <stdio.h> 
#include <ctype.h> 
int main0 
t 

Solicita iniciales y comprueba que es alfabética 

char inicial; 
printf("¿Cuál es su primer carácter inicial?: " ) ;  
scanf ( "%c" , &inicial) ; 
while (!isalpha(inicial)) 
t 
puts ("Carácter no alfabético ' I )  ; 
printf ("¿Cuál es su siguiente inicial?: " )  ; 
scanf ("%c", &inicial) ; 

1 
puts (";Terminado!") ; 
return O ;  

I 

7.9.2. Funciones de prueba de caracteres especiales 

Algunas funciones incorporadas a la biblioteca de funciones comprueban caracteres especiales, 
principalmente a efectos de legibilidad. Estas funciones son las siguientes: 

iscntrl(c) 
Devuelve verdadero si c es un carácter de control (códigos ASCII O a 31) y falso en caso 
contrario. 
isgraph(c) 
Devuelve verdadero si c es un carácter imprimible (no de control) excepto espacio; en caso 
contrario, se devuelve falso. 

Devuelve verdadero si c es un  carácter imprimible (código ASCII 32 a 127) incluyendo un 
espacio; en caso contrario, se devuelve falso. 

Devuelve verdadero si c es cualquier carácter de puntuación (un carácter imprimible distinto de 
espacio, letra o dígito); falso, en caso contrario. 

Devuelve verdadero si c es carácter un espacio, nueva línea ( \n) , retorno de carro ( \r), 
tabulación ( \ t) o tabulación vertical ( \ v). 

isprint(c) 

0 ispunct(c) 

isspace(c) 

7.9.3. Funciones de conversión de caracteres 

Existen funciones que sirven para cambiar caracteres mayúsculas a minúsculas o viceversa. 

tolower (c) 

toupper(c) 
Convierte el carácter c a minúscula, si ya no lo es. 

Convierte el carácter c a mayúscula, si ya no lo es. 



Funciones 237 

Ejemplo 7.5 
El programa MAYMINl . c comprueba si la entrudu es una v o una H. 

#include <stdio.h> 
#include <ctype.h> 

int main() 
i 
char resp; / *  respuesta del usuario * /  
char c; 

printf ("¿Es un varón o una hembra (V/H)?: " )  ; 
scanf ("%c", &resp) ; 
resp=toupper(resp); 
switch (resp) 
i 
case 'VI: 
puts ("Es un enfermero") ; 
break; 

case 'HI: 
puts ("Es una maestra") ; 
break; 

default: 
puts("No es ni enfermero ni maestra") ; 
break; 

1 
return O; 

1 

7.10. FUNCIONES NUMÉRICAS 

Virtualmente cualquier operación aritmética es posible en un programa C. Las funciones matemáticas 
disponibles son las siguientes: 

O matemáticas; 
O trigonométricas; 
O logm'tmicas; 
O exponenciales; 
O aleatorias. 

La mayoría de las funciones numéricas están en el archivo de cabecera MATH. H; las funciones abs 
y labs están definidas en MATH. H y STDLIB. H ,  y las rutinas div y ldiv en S T D L I B .  H. 

7.10.1. Funciones matemáticas 

Las funciones matemáticas usuales en la biblioteca estándar son: 

O ceil(x) 

O fabs(x) 

O floor(x) 

Redondea al entero más cercano. 

Devuelve el valor absoluto de x (un valor positivo). 

Redondea por defecto al entero más próximo. 



238 Programación en C. Metodología, algoritmos y estructura de datos 

0 fmod(x, y) 
Calcula el restof en coma flotante para la división x/v ,  de modo que x = i*y+f, donde i es un 
entero,ftiene el mismo signo que x y el valor absoluto de f es menor que el valor absoluto de y. 

Calcula x elevado a la potencia y (x’). Si x es menor que o igual a cero, y debe ser un entero. Si x 
es igual a cero, y no puede ser negativo. 

Calcula 10 elevado a la potencia x (IO); x debe ser de tipo entero. 

Devuelve la raíz cuadrada de x; x debe ser mayor o igual a cero. 

0 POW(X, Y) 

0 powlO(x) 

0 sqrt(x) 

7.10.2. Funciones trigonométricas 

La biblioteca de C incluye una serie de funciones que sirven para realizar cálculos trigonométricos. Es 
necesario incluir en su programa el archivo de cabecera MATH. I I  para utilizar cualquier función. 

0 acos(x) 

0 asin(x) 

0 atan(x) 

o atan2(x,y) 

0 cos(x) 

0 sin(x) 

o tan(x) 

Calcula el arco coseno del argumento x. El argumento x debe estar entre -1 y 1. 

Calcula el arco seno del argumento x. El argumento x debe estar entre -1 y 1. 

Calcula el arco tangente del argumento x. 

Calcula el arco tangente de x dividido por y. 

Calcula el coseno del ángulo x ; x se expresa en radianes. 

Calcula el seno del ángulo x; x se expresa en radianes. 

Devuelve la tangente del ángulo x ; x se expresa en radianes. 

Regla 

Si necesita pasar un ángulo expresado en grados a radianes, para poder utilizarlo con las funciones 
trigonom&ieas, multiplique los grados por pi/180, donde pi = 3.14159. 

7.10.3. Funciones logarítmicas y exponenciales 
/ 

Las funciones logarítmicas y exponenciales suelen ser utilizadas con frecuencia no sólo en matemáticas, 
sino también en el mundo de la empresa y los negocios. Estas funciones requieren también el archivo 
de inclusión MATH. H. 

exp(x1, expl(x) 
Calcula el exponencial e , donde e es la base de logaritmos naturales de valor 2.7 18282. 
va lor  = exp ( 5 .  O )  ; 

Una variante de esta función es expl ,  que calcula e utilizando un valor long double (largo 
doble). 



7 

Funciones 239 

log(x), logl(x) 
La función log calcula el logaritmo natural del argumento x y log1 (x) calcula el citado 
logaritmo natural del argumento x de valor lonq double (largo doble). 

Calcula el logaritmo decimal del argumento x, de valor real double en 1 ogl 0 ( X I  y de valor real 
long double en log] O1 (x) ; x ha de ser positivo. 

0 loglO(x), loglOl(x) 

7.10.4. Funciones aleatorias 
Los números aleatorios son de gran utilidad en numerosas aplicaciones y requieren un trato especial en 
cualquier lenguaje de programación. C no es una excepción y la mayoría de los compiladores incorporan 
funciones que generan números aleatorios. Las funciones usuales de la biblioteca estándar de C son: 
rand, random, randomize y srand. Estas funciones se encuentra en el archivo S T U L T H .  t i .  

0 rand(void) 

La función rand genera un número aleatorio. El número calculado por rand varía en el rango 
entero de O a RAND-MAX. La constante RAND-MAX se define en el archivo STDL,IB.  11 en forma 
hexadecimal (por ejemplo, 7FFF). En consecuencia, asegúrese incluir dicho archivo en la parte superior 
de su programa. 

Cada vez que se llama a rand ( ) en el mismo programa, se obtiene un número entero diferente. Sin 
embargo, si el programa se ejecuta una y otra vez, se devuelven el mismo conjunto de números 
aleatorios. Un método para obtener un conjunto diferente de números aleatorios es llamar a la función 
srand( ) o a la macro randomize. 

La llamada a la función rand( ) se puede asignar a una variable o situar en la función de salida 
printf ( ) .  

test = rand() ; 
printf ("Este es un número dl edtor io %d\n", r a n d ( )  ) ; 

0 randomize(void) 

La macro random i ze inicializa el generador de números aleatorios con una semilla aleatoria 
obtenida a partir de una llamada a la función time. Dado que esta macro llama a la función time, el 
archivo de cabecera TI ME.  H se incluirá en el programa. No devuelve ningún valor. 

/ *  progrma para generar 10 números aledtorioc * /  
#include <stdio.h> 
#include <stdlib.h> 
#include <ti.me. h> 
#include <conio.h> 

fnt main (void) 
i 
int i; 

clrscro; / *  limpia la pantalld * /  
randomize ( ) ; 
for (i=l; i<=10; i++) 
pr i.nt t ("8d 'I, rand ( ) ) ; 

return 0; 
} 

0 srand(semil1a) 

La función srand inicializa el generador de números aleatorios. Se utiliza para fijar el punto de 
comienzo para la generación de series de números aleatorios; este valor se denomina semi 1 1 d. 



240 Programación en C. Metodología, algoritmos y estructura de datos 

Si el valor de semi 11 a es 1, se reinicializa el generador de números aleatorios. Cuando se llama 
a la función rand antes de hacer una llamada a la función srand, se genera la misma secuencia 
que si se hubiese llamado a la función srand con el argumento semi 1 la tomando el valor 1. 
random (num) 

La macro random genera un número aleatorio dentro de un rango especificado (O y el límite 
superior especificado por el argumento num). Devuelve un número entero entre O y num-1. 

/ *  
programa para generar encontrar el mayor de 10 números aleatorios 
entre O y 1000 

" /  
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <conio.h> 
#define TOPE 1000 
#define MAX(x,y) ( (x)>(y)? (x) : (y) ) 

int main (void) 
i 
int mx,i; 

clrscr ( )  ; 
randomize ( ) ; 
mx = random(T0PE) ; 
for (i=2; i<=10; i++) 
i 
int y; 
y = random(T0PE); 
mx = MAX(mx,y); 

I 
printf("E1 mayor número aleatorio generado: %d", mx); 
return O ;  

1 

En este otro ejemplo de generación de números aleatorios, se fija la semilla en 50 y se genera un 
número aleatorio. 

#include <stdio.h> 
#include <stdlib.hi 
#include <conio.h> 
int main (void) 
i 
clrscr ( ) ; 
srand(50); 
printf("Este es un número aleatorio: %d",randO ) ;  
return O; 

} 

7.11. FUNCIONES DE FECHA Y HORA 

La familia de microprocesadores 80x86 tiene un sistema de reloj que se utiliza principalmente para 
controlar el microprocesador, pero se utiliza también para calcular la fecha y la hora. 

El archivo de cabecera TIME. H define estructuras, macros y funciones para manipulación de fechas 
y horas. La fecha se guarda de acuerdo con el calendario gregoriano. 



7 

Funciones 241 

Las funciones time, clock, -strdate y -strtime devuelven la hora actual como el número de 
segundos transcurridos desde la medianoche del 1 de enero de 1970 (hora universal, GMT), el tiempo 
de CPU empleado por el proceso invocante, la fecha y hora actual, respectivamente. 

La estructura de tiempo utilizada incluye los miembros siguientes: 

struct tm 
I 

int tm-sec; 
int tm-min; 
int tm-hour; 
int tm-mday; 
int tmmon; 
int tmjear; 
int tm-wday; 
int tmjday; 
int tm-isdt; 

I ;  

/ *  segundos * /  
/ *  minutos * /  
/ *  horas * /  
/ *  día del mes 1 a 31 * /  
/ *  mes, 0 para Ene, 1 para Feb, . . .  * /  
/ *  año desde 1900 * /  
/ *  días de la semana desde domingo (0-6) * /  
/ *  día del año desde el 1 de Ene(0-365) * /  
/ *  siempre O para gmtime * /  

0 clock (void) 
La función clock determina el tiempo de procesador, en unidades de click, transcurrido desde el 
principio de la ejecución del programa. Si no se puede devolver el tiempo de procesador se 
devuelve -I. 

inicio = clock(); 
fin = clock(); 

0 time (hora ) 
La función time obtiene la hora actual; devuelve el número de segundos transcurridos desde la 
medianoche (0O:OO:OO) del 1 de enero de 1970. Este valor de tiempo se almacena entonces en la 
posición apuntada por el argumento hora. Si hora es un puntero nulo, el valor no se almacena. El 
prototipo de la función es: 

time-t time (time-t *hora) ; 

El tipo t ime-h está definido como tipo long en t i m e  . h. 
o localtime(hora) 

Convierte la fecha y hora en una estructura de tipo tm . Su prototipo es 

struct tm *localtime(const time-t "tptr); 

0 mktime(t) 
Convierte la fecha en formato de calendario. Toma la información del argumento y determina 
los valores del día de la semana (tm-wday ) y del día respecto al inicio del año, también conocido 
como fecha juliana (tmjday). Su prototipo es 

time-t mktime(struct tm *tptr) 

La función devuelve -1 en caso de producirse un error. 
En este ejercicio se pide el año, mes y día; escribe el día de la semana y los días pasados 

desde el 1 de enero del año leído. Es utilizado un array de cadenas de caracteres, su estudio se hace 
en capítulos posteriores. 

#include <stdio.h> 
#include <time.h> 

char *dias [ I  = { 'I 'I, "Lunes", 'I Mart es 'I , "Mi e L' c o 1 es I' , 
"Jueves", "Viernes", "Cabado", "Domingo"} ; 

int main (void) 
1 

Y 



242 Programación en C. Metodología, algoritmos y estructura de datos 

struct tm fecha; 
int anyo, mes, dia; 

/ *  Entrada: año, mes y dia * /  
printf ("Año: " )  ; 
scanf ("%d", &anyo) ; 
print f ( "Mes : I' ) ; 
scanf ("%d" , &mes) ; 

scanf ("%d", &dia) ; 
print f ( "Dia : 'I 1 ;  

/ *  Asigna fecha a la estructura fecha, en formato establecido * /  

fecha.tm_year = anyo - 1900; 
fecha.tm-mon = mes - 1; 
fecha.tm-mday = dia; 
fecha.tm-hour = O ;  
fecha.tm-min = O ;  
fecha.tm-sec = 1; 
fecha.tm-isdst = -1; 

/ *  mktime encuentra el día de la semana y el día del año. 

* /  
Devuelve -1 si error. 

if (mktime (&fecha) == -1) 
i 
puts ( "  Error en la fecha. " )  ; 
exit (-1) ; 

1 
/ *  El domingo, la función le considera dia O * /  

if (fecha.tmwday == O) 
fecha.tm-wday = 7; 

printf('\nDia de la semana: %d; dia del año:  %d", 
fecha.tm-wday, fecha.Lm_yday+l) ; 

/ *  Escribe el d í a  de la semana * /  
printf("\nEs el dia de la semana, & s \ n " ,  dias[€echa.tmwday]); 
return O ;  

I 

Ejercicio 7.4 

Una aplicación de clock ( ) para determinar el tiempo de proceso de un programa que calcula el 
factorial de un número. 

El factorial de n! = n*(n-I)*(n-2) ... 2*1. La variable que vaya a calcular el factorhi, se define de 
tipo long para poder contener un valor elevado. El número, arbitrariamente, va a estar comprendido 
entre 3 y 15. El tiempo de proceso va a incluir el tiempo de entrada de datos. La función clock ( ) 

devuelve el tiempo en unidades de click, cada CLK-TCK es un segundo. El programa escribe el tiempo 
en ambas unidades. 

/ *  
En este ejercicio se determind el tiempo del procesddor para 
calcular el factorial de un número requerido, entre 3 y 15. 

* /  

#include <time.h> 
#include <stdio.h> 



Funciones 243 

int main (void) 
i 
float inicio, fin; 
int n, x; 
long int fact; 

inicio = clock() ; 
do i 
printf ( "  Factorial de (3 <x< 15) : " ) ;  
scanf ("%d", hx) ; 

}while (x<=3 / I  x>=15); 

for (n=x,fact=l; x; x--1 
fact *=x; 

fin = clock() ; 

printf ("\n Factorial de %d! = %ld",n, fact) ; 
printf("\n Unidades de tiempo de proceso: %f,\t En segundos: %f", 

(fin-inicio), (fin-inicio) /CLK-TCK); 

return O ;  
1 

7.12. FUNCIONES DE UTILIDAD 

C incluyen una serie de funciones de utilidad que se encuentran en el archivo de cabecera STDLIB. H 
y que se listan a continuación. 

0 abs(n), labs(n) 

int abs (int n) 
long labs(1ong n) 

devuelven el valor absoluto de n. 

div(num, denom) 

div-t div(int num, i n t  denom) 

Calcula el cociente y el resto de num, dividido por denom y almacena el resultado en q u o t  y rem, 
miembros int de la estructura div-t. 

typedef struct 
i 
int quot; / *  cociente * /  
int rem; / *  resto * /  

} div-t; 

El siguiente ejemplo calcula y visualiza el cociente y el resto de la división de dos enteros. 

#include <stdlib.h> 
#include <stdio.h> 

int main (void) 
i 
div-t resultado; 

resultado = div(l6, 4); 
print f ( "Cociente %d" , resultado. quot ) ; 
printf ("Resto ad", resultado. rem) ; 
return O ;  

1 



244 Programación en C. Metodología, algoritmos y estructura de datos 

ldiv (nun, denom) 

Calcula el cociente y resto de num dividido por denom, y almacena los resultados de quot y rem, 
miembros long de la estructura ldiv-t. 

typedef struct 
i 
long int quot; / *  cociente * /  
long int rem; / *  resto * /  

} ldiv-t; 

resultado = ldiv(1600L, 40L); 

7.13. VISIBILIDAD DE UNA FUNCIÓN 

El ámbito de un elemento es su visibilidad desde otras partes del programa y la duración de un elemento 
es su tiempo de vida, lo que implica no sólo cuánto tiempo existe la variable, sino cuando se crea y 
cuando se hace disponible. El ámbito de un elemento en C depende de donde se sitúe la definición y de 
los modificadores que le acompañan. En resumen, se puede decir que un elemento definido dentro de 
una función tiene ámbito local (alcance local), o si se define fuera de cualquier función, se dice que 
tiene un ámbito global. La Figura 7.6 resume el modo en que se ve afectado el ámbito por la posición 
en el archivo fuente. 

Existen dos tipos de clases de almacenamiento en C: auto y static. Una variable auto es aquella 
que tiene una duración automática. No existe cuando el programa comienza la ejecución, se crea en 
algún punto durante la ejecución y desaparece en algún punto antes de que el programa termine la 
ejecución. Una variable static es aquella que tiene una duración$ja. El espacio para el elemento de 
programación se establece en tiempo de compilación; existe en tiempo de ejecución y se elimina sólo 
cuando el programa desaparece de memoria en tiempo de ejecución. 

Las variables con ámbito global se denominan variables globales y son las definidas externamente 
a la función (declaración externa). Las variables globales tienen el siguiente comportamiento y atributos: 

prog-demo. c 

Las variables globales declaradas 
en este nivel tienen ámbito global. 
Son válidas para todas las funcio- 
nes de este archivo fuente. Dispo- 
nible en otros archivos fuente a 
menos que se utilice la palabra 
reservada static. 

Function-a í 1 

Las variables declaradas en este 
nivel son locales y tienen clase de 
almacenamiento auto al salir de la 
función, a menos que se utilice la 
palabla reservada static. Visible 
sólo a esta función. 

Ámbito 
global 

Ámbito I 

Figura 7.6. Ámbito de variable local y global. 



Funciones 245 

Las variables globales tienen duración estática por defecto. El almacenamiento se realiza en 
tiempo de compilación y nunca desaparece. Por definición, una variable global no puede ser una 
variable auto. 

e Las variables globales son visibles globalmente en el archivo fuente. Se pueden referenciar por 
cualquier función, a continuación del punto de definición. 
Las variables globules están disponibles, por defecto, a otros archivos&ente. Esta operación se 
denomina enlace externo. 

7.13.1. Variables locales frente a variables globales 

Además de las variables globales, es preciso considerar las variables locales. Una variable local está 
definida solamente dentro del bloque o cuerpo de la función y no tiene significado (vida) fuera de la 
función respectiva. Por consiguiente, si una función define una variable como local, el ámbito de la 
variable está protegido. La variable no se puede utilizar, cambiar o borrar desde cualquier otra función 
sin una programación específica mediante el paso de valores (parámetros). 

Una variable locd es una variable que se define dentro de una función. 

es una variable que puede ser uti s funciones de un 

Para construir variables globales en C, se deben definir fuera de la función main ( ) . Para ilustrar el 
uso de variables locales y globales, examine la estructura de bloques de la Figura 7.7. Aquí la variable 
global es xo y la variable local es xi. La función puede realizar operaciones sobre xo y XI. Sin embargo, 
main() sólo puede operar con xo, ya que xl no está definida fuera del bloque de la función 
funcionl( 1. Cualquier intento de utilizar XI fuera de funcionl( ) producirá un error. 

int x0 ; / *  v < i r i d h l c  y l o b ~ i l  * /  
f u n c i o r i l  ( .  . . )  / *  protot- ipo f u n c i o n a l  * /  

int main 
{ 

. . .  

. . .  

. . .  
i 

func io r i l  ( .  . . ) 
i 

i n t  x l  / *  v c i r i a b L e  l o c a l  * /  
. . .  

Figura 7.7. x0 es global al programa completo, mientras que x i  es local a la función fur ic ioni  ( 1 .  



I 

246 Programación en C. Metodologia, algoritmos y estructura de datos 

Exainine ahora la Figura 7.8. Esta vez existen dos funciones, ambas definen XI como variable local. 
Nuevamente xo es una variable global. La variable XI sólo se puede utilizar dentro de las dos funciones. 
Sin embargo, cualquier operación sobre XI dentro de funcioni ( ) no afecta al valor de xl en 
funcion2( y viceversa. En otras palabras, la variable xl de funcioni ( ) se considera una variable 
independiente de xl en funciona ( ). 

Al contrario que las variables, las .funciones son externas por defecto. Es preciso considerar la 
diferencia entre definición de una función y declaracih. Si una declaración de variable comienza con 
la palabra reservada extern, no se considera definición de variable. Sin esta palabra reservada es una 
definición. Cada definición de variable es al mismo tiempo una declaración de variable. Se puede utilizar 
una variable sólo después de que ha sido declarada (en el mismo archivo). Únicamente las definiciones 
de variables asignan memoria y pueden, por consiguiente, contener inicializaciones. Una variable sólo 
se define una vez, pero se puede declarur tantas veces como se desee. Una declaración de variable al 
nivel global (externa a las funciones) es válida desde esa declaración hasta el final del archivo; una 
declaración en el interior de una función es válida sólo en esa función. En este punto, considérese que 
las definiciones y declaraciones de variables globales son similares a las funciones; la diferencia 
principal es que se puede escribir la palabra reservada extern en declaraciones de función. 

int x0 ; 

float. f uncion 1 ( ) ; / *  p r o t o t i p o  f i i r i c i o r i l  * i l  
float. tuncionl() ; / *  p r o t o t i p o  f u n c i u n 2  * /  

int main0 
i 

. . .  

float funcionl ( )  

int xl ; 

. . .  

- 
f l o a t  f u n c i o r i i  ( 1  
i 

i r i t  xl ; / * vCj r i <i Ir) I e 1 o( 'd  1 * / 

Figura 7.8. x0 es global al programa completo, xl es local tanto f LII~( o r 1  1 ( ) como a f u r i c  I on? ( ) , pero 
se tratan como variables independientes. 

La palabra reservada extern se puede utilizar para notificar al compilador que la declaración del 
resto de la línea no está definida en el archivo fuente actual, pero está localizada en otra parte, en otro 
archivo. El siguiente ejemplo utiliza extern: 



7” 

Funciones 247 

/ *  archivo con la funcion main(): pr0grama.c * /  

int total ; 
extern int suma; 
extern void f (void) ; 
void main (void) 

/ *  

* /  
int suma; 
void f(void) 

archivo con la definición de funciones y variable: modu1o.c 

. . .  

Utilizando la palabra reservada extern se puede acceder a símbolos externos definidos en otros 
módulos. suma y la función f ( 1 se declaran externas. 

Las funciones son externas por defecto, ai contrario que las variables. 

7.13.2. Variables estáticas y automáticas 

Los valores asignados a las variables locales de una función se destruyen cuando se termina la ejecución 
de la función y no se puede recuperar su valor para ejecuciones posteriores de la función. Las variables 
locales se denominan variables automáticas, significando que se pierden cuando termina la función. 
Se puede utilizar auto para declarar una variable 

a u t o  int ventas; 

aunque las variables locales se declaran automáticas por defecto y, por consiguiente, el uso de auto es 
opcional y, de hecho, no se utiliza. 

Las variables estáticas (static), por otra parte, mantienen su valor después que una función se ha 
terminado. Una variable de una función, declarada como estática, mantiene un valor a través de 
ejecuciones posteriores de la misma función. Haciendo una variable local estática, su valor se retiene de 
una llamada a la siguiente de la función en que está definida. Se declaran las variables estáticas situando 
la palabra reservada static delante de la variable. Por ejemplo, 

static int ventas = 10000; 
static int dias = 500; 

Este valor se almacena en la variable estática, sólo la primera vez que se ejecuta la función. Si su 

El siguiente programa ilustra el concepto estático de una variable: 

#include <stdio.h> 
/ *  prototipo de la función * /  
void Ejemplo-estatica(int); 

void main() 
{ 

valor no está definido, el compilador almacena un cero en una variable estática por defecto. 

Ejemplo-estatica(1) ; 
E j emplo-es t at ica ( 2 ) ; 
Ejemplo-estatica(3); 

} 

/ *  Ejemplo del uso de una variable estática * /  



248 Programación en C. Metodología, algoritmos y estructura de datos 

void Ejemplo-estatica(int Llamada) 
i 
static int Cuenta; 
if (Llamada =: 1) 

Cuenta = 1; 
printf("\n El valor de Cuenta en llamada n? %d es: %d", 

++Cuenta ; 
Llamada,Cuenta); 

1 

Al ejecutar el programa se visualiza: 

E l  valor de Cuenta en llamada ne 1 es: 1 
El valor de Cuenta en llamada ne 2 es: 2 
El valor de Cuenta en llamada ne 3 es: 3 

Si quita la palabra reservada static de la declaración de Cuenta, el resultado será: 

E l  valor de Cuenta en llamada nG 1 es: 1 
El valor de Cuenta en llamada nQ 2 es: 1046 

no se puede predecir cuál es el valor de Cuenta en llamadas posteriores a la primera. 

Las variables globales se pueden ocultar de otros urchivos ,fuente utilizando el especijicador de 
almacenamiento de clase s t a t  i c. 

Para hacer una variable global privada al archivo fuente (y, por consiguiente, no Útil a otros módulos 
de código) se le hace preceder por la palabra s tat i c. Por ejemplo, las siguientes variables se declaran 
fuera de las funciones de un archivo fuente: 

static int m = 25; 
static char linea_texto[80] ; 
static int indice-linea; 
static char bufer[MAXLOGBUFl; 
static char *pBuffer; 

Las variables anteriores son privadas al archivo fuente. Observe este ejemplo: 

#define OFF O 
#define ON 1 

static unsigned char maestro = OFF; 
. . .  

. . .  

main ( ) 

. . .  
1 
i 1 

funcion-a ( ) 
I 

. . .  
1 

! maestro se puede utilizar tanto en funcion-a ( ) como en main ( ) , en este archivo fuente, pero no se 
puede declarar como extern a otro archivo fuente. 

Se puede hacer también una declaración de función static. Por defecto, todas las funciones tienen 
enlace externo y son visibles a otros módulos de programa. Cuando se sitúa la palabra reservada static 
delante de la declaración de la función, el compilador hace privada la función al archivb fuente. Se 
puede, entonces, reutilizar el nombre de la función en otros módulos fuente del programa. 



1 

7.14. COMPILACIÓN SEPARADA 

Funciones 249 

I 

Hasta este momento, casi todos los ejemplos que se han expuesto en el capítulo se encontraban en un 
sólo archivo fuente. Los programas grandes son más fáciles de gestionar si se dividen en varios archivos 
fuente, también llamados módulos, cada uno de los cuales puede contener una o más funciones. Estos 
módulos se compilan y enlazan por separado posteriormente con un enlaador, o bien con la herramienta 
correspondiente del entorno de programación. Cuando se divide un programa grande en pequeños, los 
únicos archivos que se recompilan son los que se han modificado. El tiempo de compilación se reduce, 
dado que pequeños archivos fuente se compilan más rápido que los grandes. Los archivos grandes son 
difíciles de mantener y editar, ya que su impresión es un proceso lento que utilizará cantidades excesivas 
de papel. 

La Figura 7.9 muestra cómo el enlazador puede construir un programa ejecutable, utilizando 
módulos objetos, cada uno de los cuales se obtiene compilando un módulo fuente. 

1 

1 

i 

I 

Compilador 

... 

1 

i 

+ 
Enlazador Programa ejecutable 

Figura 7.9. Compilación separada. 

Cuando se tiene más de un archivo fuente, se puede referenciar una función en un archivo fuente 
desde una función de otro archivo fuente. Al contrario que las variables, las funciones son externas por 
defecto. Si desea, por razones de legibilidad -no recomendable-, puede utilizar la palabra reservada 
ex t e rn  con un prototipo de función y en la cabecera. 

Se puede desear restringir la visibilidad de una función, haciéndola visible sólo a otras funciones en 
un archivo fuente. Una razón para hacer esto es tener la posibilidad de tener dos funciones con el mismo 
nombre en diferentes archivos. Otra razón es reducir el número de referencias externas y aumentar la 
velocidad del proceso de enlace. 

Se puede hacer una función no visible al exterior de un archivo fuente utilizando la palabra reservada 
static con la cabecera de la función y la sentencia del prototipo de función. Se escribe la palabra 
static antes del tipo de valor devuelto por la función. Tales funciones no serán públicas al enlazador, 
de modo que otros módulos no tendrán acceso a ellas. La palabra reservada static,  tanto para variables 
globales como para funciones, es Útil para evitar conflictos de nombres y prevenir el uso accidental de 
ellos. Por ejemplo, imaginemos un programa muy grande que consta de muchos módulos, en el que se 
busca un error producido poi una variable global; si la variable es estática, se puede restringir su 
búsqueda al módulo en que está definida; si no es así, se extiende nuestra investigación a los restantes 
módulos en que está declarada (con la palabra reservada extern). 

4 



250 Programación en C. Metodología, algoritmos y estructura de datos 

Como regla general, son preferibles las variables locales a las globales. Si realmente es necesario 
o deseable y e  alguna variable sea global, es preferible hacerla estática, lo que significa que será 

en que está definida. 

Ejemplo 7.6 

Supongamos dos módulos: MODULO1 y MODULOL. En el primero .se escribe la función main(), hace 
referencia a funciones y variables globales definidas en el segundo módulo. 

/ *  MODULO1.C * /  
#include <stdio.h> 

void main( ) 
I 
void f(int i), g(void); 
extern int n; / *  Declaración de n (no definición) * /  
f ( 8 ) ;  
n t + ;  
90; 
puts ("Fin de programa. ' I ;  

1 
/ *  MODUL02.C * /  

#include <stdio.h> 
int n = 100; 

static int m = 7; 

void f (int i) 
I 
n += (i+m) ; 

1 
void g(void) 

/ *  Definición de n (también declaración) * /  

I 

printf ("n = %d\n",n) ; 
1 

f y g se definen en el módulo 2 y se declaran en el módulo 1. Si se ejecuta el programa, se produce la 
salida 

n = 116 
Fin de programa. 

Se puede hacer una función invisible fuera de un archivo fuente utilizando la palabra reservada 
static con la cabecera y el prototipo de la función. 

7.15. VARIABLES REGISTRO (register) 

Una variable registro (register) es similar a una variable local, pero en lugar de ser almacenada en 
la pila, se almacena directamente en un registro del procesador (tal como ay o bx). Dado que el número 



Funciones 251 

de registros es limitado y adetnás están limitados en tamaño, el número de variables registro que un 
programa puede crear simultáneamente es muy restringido. 

Para declarar una variable registro, se hace preceder a la misma con la palabra reservada 
register ; 

register int k; 

La ventaja de las variables registro es su mayor rapidez de manipulación. Esto se debe a que las 
operaciones sobre valores situados en los registros son normalmente más rápidas que cuando se realizan 
sobre valores almacenados en memoria. Su uso se suele restringir a segmentos de código mucha veces 
ejecutados. Las variables registro pueden ayudar a optimizar el rendimiento de un programa 
proporcionando acceso directo de la CPU a los valores claves del programa. 

Una variable registro debe ser local a una función; nunca puede ser global al programa completo. El 
uso de la palabra reservada register no garantiza que un valor sea almacenado en un registro. Esto 
sólo sucederá si un registro está disponible (libre). Si no existen registros disponibles, C crea la variable 
como si fuera una variable local normal. 

Una aplicación usual de las variables registro es como variable de control de bucles for o en la 
expresión condicional de una sentencia while, que se deben ejecutar a alta velocidad. 

void usoregistro(void) 
i 
register int k; 
puts("\n Contar con una variable registro.'); 
for (k = 1; k <= 100; k++) 
printf ("%8d",k); 

i 

7.16. RECURSIVIDAD 

Unafinción recursiva es una función que se llama a sí misma directa o indirectamente. La recursividad 
o recursión directa es el proceso por el que una función se llama a sí misma desde el propio cuerpo de 
la función. La recursividad o recursión indirecta implica más de una función. 

La recursividad indirecta implica, por ejemplo, la existencia de dos funciones: uno ( ) y dos ( ) . 
Suponga que main ( ) llama a uno ( ) , y a continuación uno ( ) llama a dos ( ) . En alguna parte del 
proceso, dos ( ) llama a uno ( ) -una segunda llamada a uno ( ) - . Esta acción es recursión indirecta, 
pero es recursiva, ya que uno ( ) ha sido llamada dos veces, sin retornar nunca a su llamadora. 

Un proceso recursivo debe tener una condición de terminación, ya que si no puede continuar 
indefinidamente. 

Un algoritmo típico que conduce a una implementación recursiva es el cálculo del factorial de un 
número. El factorial de n (n ! ). 

n! = n * (n-1) * (n-2) * _. .  * 3 * 2 * I 

En consecuencia, el factorial de 4 es igual a 4*3*2* 1 ,  el factorial de 3 es igual a 3*2* I .  Así pues, 
el factorial de 4 es igual a 4 veces el factorial de 3. La Figura 7.10 muestra la secuencia de sucesivas 
invocaciones a la función factorial. 



252 Programación en C. Metodología, algoritmos y estructura de datos 

i 

factorial (5) = 120 
5*4*3*2*1 

n - =  4 

I 
re t ,o rno  ri 

t 
t 
t 
f 

i’ i , t  o r  no ri  

r e t o r n o  11 

r-et.orno 11 

* factorial (4); 

* f d c t o r i a l  (-3); 

* iac t .or ia1 (2); 

* factorial (1); 

ri == 1 

_____I 
Figura 7.10. Llamadas a funciones recursivas para f a c  t o r i a l  (5). 

r e t o r ~ n o  I ;  

c 

Ejemplo 7.7 

Realizar el algoritmo de la fclnción factorial. 

La implementación de la función recursiva factorial es: 

double factorial(int numero) 
i 

if (numero > 1) 

return 1; 
return numero * factorial(numero-1); 

1 

Ejemplo 7.8 

Contar valores de 1 a 10 de modo recursivo. 

#include <stdio.h> 

void contar(int cima); 

int main0 
{ 
contar(l0); 
return O; 

1 
void contar(int cima) 
i 
if (cima > 1) 
contar(cima-1); 

printf (“%d ‘ I ,  cima) ; 



Funciones 253 

Ejemplo 7.9 

Determinar si un número entero positivo es par o impar; con dos funciones que se llaman mutuamente: 
recursividad indirecta. 

#include <stdio.h> 

int par(int n) ; 
int impar(int n); 

int main (void) 
{ 

int n; 

do i 
/ *  Entrada: entero > O * /  

printf ("\nEntero > O: " ) ;  
scanf ("%d", &n) ; 

} while (n<=O); 

/ *  Llamda a la funciCn par() * /  
if (par(n) 1 

else 

return O; 

print f ( "El numero %d es par. 'I, n) ; 

print f ( "El numero %d es impar. ' I ,  n) ; 

1 
int par(int n) 
I 
if (n == O) 

else 
return 1; / *  es par * /  

return impar(n-1); 
1 
int impar(int n) 
{ 

if (n == O) 

else 
return O; / *  es impar * /  

return par(n-1); 
1 
La función par ( ) llama a la función i m p a r  ( ) , ésta a su vez llama a la función par  ( ) . La 

condición para terminar de hacer llamadas es que n sea cero; el cero se considera par. 



254 Programación en C. Metodología, algoritmos y estructura de datos 

7.17. RESUMEN 

Las funciones son la base de la construcción de 
programas en C. Se utilizan funciones para subdividir 
problemas grandes en tareas más pequeñas. El 
encapsuiamiento de las características en funciones, 
hace los programas más fáciles de mantener. El uso de 
funciones ayuda al programador a reducir el tamaño 
de su programa, ya que se puede llamar repetidamente 
y reutilizar el código dentro de una función. 

En este capftulo habrá aprendido lo siguiente: 

0 el concepto, declaración, definición y uso de una 
función; 
las funciones que devuelven un resultado lo 
hacen a través de la sentencia return; 
los parámetros d es se pasan por valor, 
para un paso por a se utilizan punteros; 
el modificador e utiliza cuando se 
desea que los parámetros de la función sean 
valores de sólo lectura; 
el concepto y uso de prototipos, cuyo uso es 
recomendable en C; 
la ventaja de utilizar macros con argumentos, 
para aumentar la velocidad de ejecución; 
el concepto de ámbito o alcance y visibilidad, 
junto con el de variable global y local; 

0 clases de almacenamiento de variables en 
memoria: auto, extern, register y 
static. 

La biblioteca estándar C de funciones en tiempo 
de ejecución incluye gran cantidad de funciones. Se 
agrupan por categorías, entre las que destacan: 

0 manipulación de caracteres; 
numéricas; 
tiempo y hora; 
conversión de datos; 

0 bcísqueda y ode  
etc. 

Tenga cuidado de incluir el archivo de cabecera 
correspondiente cuando desee incluir funciones de 
biblioteca en sus programas. 

Una de las características más sobresalientes de C 
que aumentan considerablemente la potencia de los 
programas es la posibilidad de manejar las funciones 
de modo eficiente, apoyándose en la propiedad que 
les perm.ite ser compiladas por separado. 

Otros temas tratados han sido: 

Ambit0 o las reglas de visibilidad de funciones 
y variables. 

En entorno de un programa tiene cuatro tipos de 
ámbito: de programa, archivo fuente, función y 
bloque. Una variable está asociada a uno de esos 
ámbitos y es invisible (no accesible) desde otros 
ámbitos. 

O Las variables globules se declaran fuera de 
cualquier función y son visibles a todas las 
funciones. Las variables locales se declaran 
dentro de una función y s610 pueden ser 
utilizadas por esa función. 

int i; / *  variable global, 
ámbito de programa 
* /  

* /  
static int j / *  ámbito de archivo 

main ( 
t 
int d, e; / *  variable local, 

ámbito de función * /  
. . .  

1 

func (int j) 
t 
if (j z 3 )  
{ 
int i; / *  ámbitode bloque * /  
for (i = O; i < 20; i++) 

func2 íi) ; 
1 
/ *  i ya no es visible * /  
1 

Variables automáticas son las variables, por 
defecto, declaradas localmente en una función. 
Variables estdticas mantienen su información, 
incluso después que la función ha terminado. 

Cuando se llama de nuevo la función, la variable 
se pone al valor que tenía cuando se llamó anterior- 
mente. 

0 Funciones recursivas son aquellas que se pue- 
den llamar a sí mismas. 
Las variables registro se pueden utilizar cuando 
se desea aumentar la velocidad de procesamien- 
to de ciertas variables. 



Funciones 255 

7.19. PROBLEM 

7.2. Escribir una función que reciba una cadena de 
caracteres y la devueiva en forma inversa (ñola’ 
se convierte en ’doh’). 

7.3. Escribir una función que determine si una 
cadena de caracteres es un palíndromo (un 
palíndrorno es un texto que se lee igual en 
sentido directo y en inverso: radar). 

7.4. Escribir un programa m n que 
acepte un número de Y 10 
visuaiice en el formato 

dd/mm/aa 
Por ejemplo, los 
visualizan como 

8/10/46 

s 8, 10 y 1946 se 

7.5. Escribir un progr utilice una función 
para convertir coordenadas pokes  a rectan- 
gulares. 

PfX, Y )  
x = r cos8 
y = r sine 

eje x 



256 Programación en C. Metodología, algoritmos y estructura de datos 



c 

Funciones 257 



CONTENIDO 

8.1. 

8.8. 

8.3. 

8.4. 

8.5. 

Arrays. 
InicializaciÓn de un array. 
Arrays de caracteres 
y cadenas de texto. 

multidiniensiona- 

ión de arrays como 
paráníetms. 

8.6. Ordenación de listas. 
8.7. Búsqueda en listas. 

8.8. Resumen. 

8.9. Ejerciicios. 

8.10. Problemas. 

li 258 



se han descrito 

s elementos del rriisrno tipo, tales como veinte 

un solo carhter; 
e contenga un gr 

CONCEPTOS CLAVE 
Declasación de un array. 

259 
Iyy 



260 Programación en C. Metodología, algoritmos y estructura de datos 

25.1 34.2 5.25 7.45 6.09 a 

8.1. ARRAYS 

7.54 

Un array (lista o tabla) es una secuencia de datos del mismo tipo. Los datos se llaman elementos del 
array y se numeran consecutivamente O, 1 ,2 ,3 ,  etc. El tipo de elementos almacenados en el array puede 
ser cualquier tipo de dato de C, incluyendo estructuras definidas por el usuario, como se describirá más 
tarte. Normalmente el array se utiliza para almacenar tipos tales como char, int o float. 

Un array puede contener, por ejemplo, la edad de los alumnos de una clase, las temperaturas de 
cada día de un mes en una ciudad determinada, o el número de personas que residen en cada una de las 
diecisiete comunidades autónomas españolas. Cada item del array se denomina elemento. 

Los elementos de un array se numeran, como ya se ha comentado, consecutivamente O, I ,  2, 3,  ... 
Estos números se denominan valores índice o subindice del array. El término «subíndice» se utiliza ya 
que se especifica igual que en matemáticas, como una secuencia tal como ql, a, ,  a2... Estos números 
localizan la posición del elemento dentro del array, proporcionando acceso directo al array. 

Si el nombre del array es a, entonces a [ 0 1 es el nombre del elemento que está en la posición O ,  
a [ 11 es el nombre del elemento que está en la posición 1, etc. En general, el elemento i-ésimo esta en 
la posición i- l .  De modo que si el array tiene n elementos, sus nombres son a [ O I , a [ 1 I , . . . , a [n- 1 I . 
Gráficamente se representa así el array a con seis elementos. 

Figura 8.1. Array de seis elementos. 

El array a tiene 6 elementos: a [O 1 contiene 25.1. a [ 1 I contiene 34.2, a [ 2 1 contiene 5.25, a [ 3 1 
contiene 7.45, a [ 4 ] contiene 6.09 y a [ 5 1 contiene 7.54. El diagrama de la Figura 8.1 representa 
realmente una región de la memoria de la computadora, ya que un array se almacena siempre con sus 
elementos en una secuencia de posiciones de memoria contigua. 

En C los índices de un array siempre tienen como límite inferior O, como índice superior el tamaño 
del array menos 1.  

8.1.1. Declaración de un array 

Al igual que con cualquier tipo de variable, se debe declarar un array antes de utilizarlo. Un array se 
declara de modo similar a otros tipos de datos, excepto que se debe indicar al compilador el tamaRo o 
longitud del array. Para indicar al compilador el tamaño o longitud del array se debe hacer seguir al 
nombre, el tamaño encerrado entre corchetes. La sintaxis para declarar un array de una dimensión 
determinada es: 

tipo nornbreArray [numeroDeEl ernen t os 1 ; 
Por ejemplo, paracrear un array (lista) de diez variables enteras, se escribe: 

int numeros [ 10 I ; 
Esta declaración hace que el compilador reserve espacio suficiente para contener diez valores 

enteros. En C los enteros ocupan, normalmente, 2 bytes, de modo que un array de diez enteros ocupa 20 
bytes de memoria. La Figura 8.2 muestra el esquema de un array de diez elementos; cada elemento 
puede tener su propio valor. 



Arrays (listas y tablas) 261 

Array de datos enteros: a 

Un array de enteros se almacena en bytes consecutivos de memoria. Cada elemento 
utiliza dos bytes. Se accede a cada elemento de array mediante un índice que 
comienza en cero. Así, el elemento quinto (a [ 4 1 ) del array ocupa los bytes 9" y 10". 

Figura 8.2. Almacenamiento de un array en memoria. 

Se puede acceder a cada elemento del array utilizando un índice en el nombre del array. Por ejemplo, 

printf ("%d \n",numeros [4] ) ; 

visualiza el valor del elemento 5 del array. Los arrays siempre comienzan en el elemento O. Así pues, el 
array numeros contiene los siguientes elementos individuales: 

numeros [O ] numeros [ 1 ] numeros [ 2 ] numeros [ 3 ] 
numeros [ 4 ] numeros [ 7 ] 
numeros [ 8 ] 

Si por ejemplo, se quiere crear un array de números reales y su tamaño es una constante represen- 

numeros [ 5 1 
numeros [ 9 1 

numeros [ 6 ] 

tada por un parámetro 

#define N 20 
float vector[N]; 

Para acceder al elemento 3 y leer un valor de entrada: 

scanf ( "%f 'I, &vector [ 2 1 ) ; 

Precaución 

C no comprueba que los índices del array están dentro del rango definido. Así, por ejemplo, se 
puede intentar acceder a numeros [ 1 2  1 y el compilador no producirá ningún error, lo que puede 
producir un fallo en su programa, dependiendo del contexto en que se encuentre el error. 

8.1.2. Subíndices de un array 

El índice de un array se denomina, con frecuencia, suhindice del arruy. El término procede de las 
matemáticas, en las que un subíndice se utiliza para representar un elemento determinado. 

numero s equivale a 
numeros equivule a 

numeros [O I 
numeros I3 I 

El método de numeración del elemento i-ésimo con el índice o subíndice i-l se denomina indexución 
husada en cero. Su uso tiene el efecto de que el índice de un elemento del array es siempre el mismo que 
el número de <<pasos>> desde el elemento inicial a I O I a ese elemento. Por ejemplo, a [ 3 I está a 3 pasos 
o posiciones del elemento a 1 O 1 . La ventaja de este método se verá de modo más evidente al tratar las 
relaciones entre arrays y punteros. 



- 

262 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplos 

int edad[5] ; Array edad  contiene 5 elementos: el primero, edad [ O 1 y 
el último, edad [ 4 1 . 

Declara 2 arrays de enteros. 

Declara un array de 25 elementos float. 

Declara un array de 50 elementos double. 

int pesos [25] , longitudes [loo] ; 

float salarios [25] ; 

double temperaturas[501; 

char letras [15] ; Declara un array de caracteres. 

#define M X  120 
charrbuffer[MX+l]; Declara un array de caracteres de tamaño MX+l, 

el primer elemento es buffer[O] y el último buffer[MX]. 

En los programas se pueden referenciar elementos del array utilizando fórmulas para los subíndices. 
Mientras que el subíndice puede evaluar a un entero, se puede utilizar una constante, una variable o una 
expresión para el subíndice. Así, algunas referencias individuales a elementos son: 

edad [ 4 I 
ventas [total+5 1 
bonos [mes 1 
salario [mes [il*5] 

8.1.3. Almacenamiento en memoria de los arrays 

Los elementos de los arrays se almacenan en bloques contiguos. Así, por 

int edades [ 5 1 ; 
char codigos [ 5 I ; 

se representan gráficamente en memoria en la Figura 8.3. 

Edades 

I mplo, los arrays 

Figura 8.3. Almacenamiento en memoria de arrays. 



Arrays (listas y tablas) 263 

Nota 
Todos los subíndices de los arrays comienzan con O. 

Precaución 

C permite asignar valores fuera de rango a los subíndices. Se debe tener cuidado no hacer esta 
acción, debido a que se sobreescribirían datos o código. 

Los arrays de caracteres funcionan de igual forma que los arrays numéricos, partiendo de la base de 
que cada carácter ocupa normalmente un byte. Así, por ejemplo, un array llamado nombre se puede 
representar en la Figura 8.4. 

F c h a r  n o r n h r e  [ ] = " ( ' azor  Id" 

P- 

I 
Figura 8.4. Almacenamiento de un arrays de caracteres en memoria. 

A tener en cuenta, en las cadenas de caracteres el sistema siempre inserta un Último carácter (nulo) 
para indicar fin de cadena. 

8.1.4. El tamaño de los arrays 

El operador sizeof devuelve el número de bytes necesarios para contener su argumento. Si se usa 
sizeof para solicitar el tamaño de un array, esta función devuelve el número de bytes reservados para 
el array completo. 

Por ejemplo, supongamos que se declara un array de enteros de 100 elementos denominado edades; 
si se desea conocer el tamaño del array, se puede utilizar una sentencia similar a: 

n = sizeof(edades); 



L 

264 Programación en C. Metodología, algoritmos y estructura de datos 

donde n tomará el valor 200. Si se desea solicitar el tamaño de un elemento individual del array, tal 
como 

n = sizeof(edades[6]); 

n almacenará el valor 2 (número de bytes que contienen un entero). 

8.1.5. Verificación del rango del índice de un array 

C, al contrario que otros lenguajes de programación -por ejemplo, Pascal-, no verifica el valor del 
índice de la variable que representa al array. Así, por ejemplo, en Pascal si se define un array a con 
índices O a 5 ,  entonces a [ 6 1 hará que el programa se «rompa» en tiempo de ejecución. 

Ejemplo 8.1 

Protección frente a errores en el intervalo (rango) de valores de una variable de índice que representa 
un array. 

double suma(const double a[], const int n) 
t 
double S = 0.0; 
if (n * sizeof(doub1e) > sizeof(a)) 

for (int i = 0; i < n; i + + )  

return S; 

return 0; 

S += a[il; 

1 

8.2. INICIALIZACIÓN DE UN ARRAY 

Se deben asignar valores a los elementos del array antes de utilizarlos, tal como se asignan valores a 
variables. Para asignar valores a cada elemento del array de enteros precios, se puede escribir: 

precios[0] = 10; 
precios[l] = 20; 
preciosl31 = 30; 
precios[4] = 40; 
. . .  

La primera sentencia fija precios [ 0 1 al valor 10, precios [ 11 al valor 20, etc. Sin embargo, este 
método no es práctico cuando el array contiene muchos elementos. El método utilizado, normalmente, 
es inicializar el array completo en una sola sentencia. 

Cuando se inicializa un array, el tamaño del array se puede determinar automáticamente por las 
constantes de inicialización. Estas constantes se separan por comas y se encierran entre llaves, como 
en los siguientes ejemplos: 

int numeros[ól = 110, 20, 30, 40, 50, 601; 
int n[l = {3, 4, 51 / *  Declara un array de 3 elementos * /  
char c[] = {’L’,‘u’,’i’,’s’}; / *  Declara un array de 4 elementos * /  

El array numeros tiene 6 elementos, n tiene 3 elementos y el array c tiene 4 elementos. 



Arrays (listas y tablas) 265 

En C los arrays de caracteres, las cadenas, se caracterizan por tener un carácter final que indica el 
fin de la cadena, es el carácter nulo. Lo habitual es inicializar un array de caracteres (una variable 
cadena) con una constante cadena. 

char s[] = "Puesta del Sol"; 

Nota 

c pued 

i n t  cuenta!] = (15, 2 5 ,  -45, O ,  501; 

rchetes vacíos, sólo cuando se asignan vdores al 

El compilador asigna automáticamente cinco elementos a cuenta 

El método de inicializar arrays mediante valores constantes después de su definición es adecuado 
cuando el número de elementos del array es pequeño. Por ejemplo, para inicializar un array (lista) de I O 
enteros a los valores 10 a I ,  y a continuación visualizar dichos valores en un orden inverso, se puede 
escribir: 

int cuenta[lOl = { l o ,  9, 8 ,  7 ,  6, 5, 4, 3, 2, l } ;  
for (i = 9; i >= O; i--) 
printf ("\n cuenta descendente %d = %d',i,cuenta[i]); 

Se pueden asignar constantes simbólicas como valores numéricos, de modo que las sentencias 
siguientes son válidas: 

#define ENE 31 
I #define FER 28 
#define MAR 31 

int meses[l2] = {ENE, FEB, MAR, ABR,  MAY, JUN, 

Pueden asignarse valores a un array utilizando un bucle for o while/do-while, y éste suele ser 
el sistema más empleado normalmente. Por ejemplo, para inicializar todos los valores del array 
numeros al valor O, se puede utilizar la siguiente sentencia: 

. . .  

JUL, AGO, SEP, OCT, NOV, DIC}; 

for (i = O; i <= 5; i++) 
numeros[il = O ;  

debido a que el valor del subíndice i vm'a de O a 5 ,  cada elemento del array numeros se inicializa y 
establece a cero. 

Ejemplo 8.2 

El programa I N I C I A L I .  C lee ocho enteros; a continuación visualiza el total de los números. 

#include <stdio.h> 

#define NUM 8 

int main() 
I 
int nums [NUM] ; 
int i; 
int total = O; 



266 Programación en C. Metodología, algoritmos y estructura de datos 

f o r  (i = O; i < NUM; i++) 
i 
printf('Por favor, introduzca el número: ' I ) ;  

scanf ("%d", &nums [ i I ) ; 
} 
print f ("\nLista de números : I' ) ; 
for (i = O ;  i < NUM; i++) 
{ 
printf ("%d ",nums [il ) ; 
total += nums [ i l  ; 

1 
printf('\nLa suma de los números es %d",total); 
return O; 

i 

Las variables globales que representan arrays se inicializan a O por defecto. Por ello, la ejecución del 
siguiente programa visualiza O para los 1 O valores del array: 

int lista[lOl; 
int main0 
i 

int j; 
for (j = O ;  j <= 9; j++) 
printf("\n lista[%d] = %d",j,lista[jl); 

return O ;  

A Así, por ejemplo, en 

int Notas [ 5 1 ; 
void main() 
i 
static char Nombres [ 5 l  ; 

Si se define un array globalmente o un array estático y no se proporciona ningún valor de 
inicialización, el cornpilador inicializará el array con un valor por defecto (cero para arrays 
de elementos enteros y reales --coma flotante- y carácter nulo para arrays de caracteres). 

el array de enteros se ha definido globalmente y el array de caracteres se ha definido como un array 
local estático de main ( ) . Si se ejecuta ese segmento de programa, se obtendrán las siguientes 
asignaciones a los elementos de los arrays: 

Nombres 
101 '\O' 
[ll '\O' 
[21 '\O' 
[31 ' \ O '  
[ 4 1  '\O' 

8.3. ARRAYS DE CARACTERES Y CADENAS DE TEXTO 

Una cadena de texto es un conjunto de caracteres, tales como «ABCDEFG». C soporta cadenas de texto 
utilizando un array de caracteres que contenga una secuencia de caracteres: 

I 



char cadena [ ] = "ABCDEFG" ; 

Es importante comprender la diferencia entre un array de caracter 
cadenas contienen un carácter nulo al final del array de caracteres. 

Cadena 

Arrays (listas y tablas) 267 

A B C D E F \O 

r una cadena de caracteres. Las 

Las cadenas se deben almacenar en arrays de caracteres, pero no todos los arrays de caracteres 
contienen cadenas. 

Examine la Figura 8.5. donde se muestra una cadena de caracteres y un array de caracteres. 

I ,  

U 

P 

1 

d 

r 

Figura 8.5. (a)  Array de caracteres; (b )  cadena. 

I 

, 



268 Programación en C. Metodología, algoritmos y estructura de datos 

Cadena[31 = 'D'; 
Cadena[41 = 'E'; 
Cadena[5] = IF'; 
Cadena[bl = '\O'; 

Sin embargo, no se puede asignar una cadena a un array del siguiente modo: 

Cadena = "ABCDEF" ; 

Para copiar una constante cadena o copiar una variable de cadena a otra variable de cadena se debe 
utilizar la función de la biblioteca estándar -posteriormente se estudiará- strcpy ( ) («copiar cade- 
nas»). strcpy ( ) permite copiar una constante de cadena en una cadena. Para copiar el nombre "Abra- 
cadabra" en el array nombre, se puede escribir 

s trcpy (nombre, "Abracadabra" ) ; /*Copia Abracadabra en nombre * /  

strcpy ( ) añade un carácter nulo al final de la cadena. A fin de que no se produzcan errores en la 
sentencia anterior, se debe asegurar que el array de caracteres nombre tenga elementos suficientes para 
contener la cadena situada a su derecha. 

Ejemplo 8.3 

Rellenar los elementos de un array con números reales positivos procedentes del teclado. 

#include <stdio.h> 

/ *  Constantes y variables globalcs * /  

#define MAX 10 
float muestra[MAXl; 
void main0 

int i; 
printf("\nIntroduzca una lista de Bd elementos positivos.\n",MAX); 
for (i = O ;  i < MAX; muestra[i]>O?++i:i) 
scanf ('%f",&muestra[i] ) ; 

1 

En el bucle principal, sólo se incrementa i si muestra [ i 1 es positivo: muestra [ i 1 > 0 ? + + i : i. 
Con este incremento condicional se consigue que todos los valores almacenados sean positivos. 

Ejemplo 8.4 

Visualizar el array muestra después de introducir datos en el mismo, separándolos con el tabulador: 

#include <stdio.h> 
#define MAX 10 
float muestra[MAXl; 

void main0 
{ 
int i; 
printf("\nIntroduzca una lista de ad elementos positivos.\n",MAX); 
for (i = O ;  i < MAX; muestra[i]>O?++i:i) 
scanf ("%f",&muestra[i]); 

printf ("\nDatos leidos del teclado: " )  ; 
for ( i = O ,  i < MAX; ++i) 
printf ('%f\t',muestra[i]) ; 

I 



Arrays (listas y tablas) 269 

8.4. ARRAYS MULTIDIMENSIONALES 

Los arrays vistos anteriormente se conocen como arrays unidimensionales (una sola dimensión) y se 
caracterizan por tener un solo subíndice. Estos arrays se conocen también por el término listas. Los 
arrays multidimensionales son aquellos que tienen más de una dimensión y, en consecuencia, más de un 
índice. Los arrays más usuales son los de dos dimensiones, conocidos también por el nombre de tablas 
o matrices. Sin embargo, es posible crear arrays de tantas dimensiones como requieran sus aplicaciones, 
esto es, tres, cuatro o más dimensiones. 

Un array de dos dimensiones equivale a una tabla con múltiples filas y múltiples columnas (Fig. 
8.6). 

O 1 2 3 n 

I 1 I I 
mL u 

Figura 8.6. Estructura de un array de dos dimensiones. 

Obsérvese que en el array bidimensional de la Figura 8.6, si las filas se etiquetan de O a m y las 
columnas de O a n, el número de elementos que tendrá el array será el resultado del producto (m+ 1 ) x 
(n+l). El sistema de localizar un elemento será por las coordenadas representadas por su número de fila 
y su número de columna (a, b). La sintaxis para la declaración de un array de dos dimensiones es: 

<tipo de datoElemento> <nombre array> [<NúmeroDeFilas<] [<NÚmeroDeColumnas>] 
L 

Algunos ejemplos de declaración de tablas: 

char PantallaL251 [80] ; 
int puestos [61 [81  ; 
int equipos [ 4 I [ 3 O 1 ; 
int matriz[4] [21 ; 

Atención 

Al contrario que otros lenguajes, C requiere que cada dimensi6n esté encerrada entre corchetes. La 
sentencia 

int equipoc[4, 301 

no es válida. 



270 Programación en C. Metodología, algoritmos y estructura de datos 

Un array de dos dimensiones en realidad es un array de arrays. Es decir, es un array unidimensional, 
y cada elemento no es un valor entero, o de coma flotante o carácter, sino que cada elemento es otro 
array. 

Los elementos de los arrays se almacenan en memoria de modo que el subíndice más próximo al 
nombre del array es la fila y el otro subíndice, la columna. En la Tabla 8.1 se representan todos los 
elementos y sus posiciones relativas en memoria del array, int tabla [ 4 I [ 2 1 ; suponiendo que cada 
entero ocupa 2 bytes. 

Tabla 8.1. Un array bidimensional. 

Elemento Posición relativa de memoria 
~ 

tablaL01 [O1 
tabla[Ol [l] 
tabla[ll [O1 
tabla[ll [l] 
tabla[2] [O] 
tabla[21 [l] 
tablaL31 [ O 1  
tabla[31 [ll 

O 
2 
4 
6 
8 
10 
12 
14 

8.4.1. Inicialización de arrays multidimensionales 

Los arrays multidimensionales se pueden inicializar, al igual que los de una dimensión, cuando se 
declaran. La inicialización consta de una lista de constantes separadas por comas y encerradas entre 
llaves, como en los ejemplos siguientes: 

1. int tabla[2] [ 3 ]  = (51, 52, 53, 54, 55, 56); 

o bien en los formatos mas amigables: 

int tabla[2] [ 3 1 =  { 151, 52, 531, 

int tabla[2] [ 3 ] =  {{Sl, 52, 531, 154, 55, 1611; 
int tabla[2] [31= 1 

{54, 55, 56) i ;  

{51, 52, 531, 
(54, 55, 561 

1 ;  

O 1 2 3 Columna 

F i l d  

Figura 8.7. Tablas de dos dimensiones. 



Arrays (listas y tablas) 271 

2. int tabla:! [31 [ 4 1  = { 

1 1 ,  3 ,  3, 41, 
15, 6, ' 1 ,  8 1 ,  
1 9 ,  10, 11, 1 2 1  

1 ;  

Consejo 

Los arrays multidimensionales (a menos que sean globales) no se inicializan a valores específicos 
a menos que se les asignen valores en el momento de la declaración o en el programa. Si se 
inicializan uno o más elementos, pero no todos, G rellena el resto con ceros o valores nulos 
( ' \ 0 ' ) . Si se desea inicializar a cero un array multidimensional, utilice una sentencia tal como 
ésta: 

' 

float ventasE31 [ 4 1  = { O . , O .  ,O. ,O., O. ,O. , O . , O . ,  O .  ,O. , O . , O .  1 ;  

t ah I <i 

Figura 8.8. Almacenamiento en memoria de tabla i31 141. 

8.4.2. Acceso a los elementos de los arrays bidimensionales 

Se puede acceder a los elementos de arrays bidimensionales de igual forma que a los elementos de un 
array unidimensional. La diferencia reside en que en los elementos bidimensionales deben especificarse 
los índices de la fila y la columna. 

El formato general para asignación directa de valores a los elementos es: 

inserción de elementos 
<nombre array>[indice fila][indice columnal=valor elemento; 



272 Programación en C. Metodología, algoritmos y estructura de datos 

extracción de elementos 
<variable> = <nombre array> [indice fila] [indice columna]; 

Algunos ejemplos de inserciones: 

Tabla[2] [31 = 4.5; 
Resistencias[LI [41 = 50; 
AsientosLibres [5] [12] = 5; 

y de extracción de valores: 

Ventas = Tabla[ll [ll ; 
Dia = Semana[31 [ 6 1 ;  

8.4.3. Lectura y escritura de elementos de arrays bidimensionales 

Las funciones de entrada o salida se aplican de igual forma a los elementos de un array bidimensional. 
Por ejemplo, 

int tablar31 [ 4 1 ;  
double resistencias [4] [51 ; 

scanf ("%d',&tabla[21 [31 1 ;  
printf ("%4d",tabla[l] [l]); 
scanf ("%lf",&resistencias[21 [41 1 ;  

if (asientosLibres [3] [11 ) 

else 
puts ( "VERDADERO" ) ; 

puts ( "FALSO" ) ; 

8.4.4. Acceso a elementos mediante bucles 

Se puede acceder a los elementos de arrays bidimensionales mediante bucles anidados. Su sintaxis es: 

int IndiceFila, IndiceCol; 

for (IndiceFila = O; IndiceFila < N u m F i l a s ;  ++IndiceFila) 
for (IndiceCol = O ;  IndiceCol < NumCol; ++IndiceCol) 
Procesar elemento[IndiceFilal [IndiceColl; 

Ejemplo 8.9 

Dejine una tabla de discos, rellena la tabla con datos de entrada y se muestran por pantalla. 

float discos C21 [41  ; 
int fila, col; 

for (fila = O ;  fila < 2; fila++) 
i 
for (col = O ;  col < 4; col++) 
i 

1 
scanf ("%f",&discos[fila] [col] ) ; 

i 

/ *  Visualizar la tabla * /  



Arrays (listas y tablas) 273 

for (fila = O; fila < 2; fila++) 
t 
for (col = O; col < 4; col++) 
I 

I 
printf ("\n Pts %.lf \n",discos [fila] [col] ) ; 

Ejercicio 8.1 

Lectura y visualización de un array de dos dimensiones. 

La función leer ( ) lee un array (una tabla) de dos dimensiones y la función visualizar ( ) 

presenta la tabla en la pantalla. 

#include <stdio.h> 
/ *  prototipos * /  
void leer(int a[l [5]); 
void visualizar(const int all [51); 

int main ( ) 
{ 
int a[3] [5]; 
leer (a) ; 
visualizar(a); 
return O; 

I 
void leer (int a [ I [51 
I 
int i, j; 

puts("1ntroduzca 15 números enteros, 3 por fila"); 
for (i = O; i < 3; i++) 
{ 
printf ("Fila %d: ' I ,  i) ; 
for (j = O; j < 5; j++) 
scanf ("&d",&a[il ljl 1 ;  

I 
I 
void visualizar (const int a[] 151) 
I 
int i, j; 
for (i = O; i < 3; i++) 
I 

r fila 

h 



274 Programación en C. Metodología, algoritmos y estructura de datos 

Fila O: 45 75 25 10 
Fila 1: 20  14 36 15 
Fila 2: 2 1  15 37 16 
45 75 25 10 40 
20 14 36 15 26 
21 15 37 16 27 

8.4.5. Arrays de más de dos dimensiones 

~ 

40 
26 
27 

C proporciona la posibilidad de almacenar varias dimensiones, aunque raramente los datos del mundo 
real requieren más de dos o tres dimensiones. El medio más fácil de dibujar un array de tres dimensiones 
es imaginar un cubo tal como se muestra en la Figura 8.10. 

Un array tridimensional se puede considerar como un conjunto de arrays bidimensionales 
combinados juntos para formar, en profundidad, una tercera dimensión. El cubo se construye con filas 
(dimensión vertical), columnas (dimensión horizontal) y planos (dimensión en profundidad). Por 
consiguiente, un elemento dado se localiza especificando su plano, fila y columna. Una definición de un 
array tridimensional equipos es: 

int equipos[31 [151 [lo1 ; 

Un ejemplo típico de un array de tres dimensiones es el modelo libro, en el que cada página del 
libro es un array bidimensional construido por filas y columnas. Así, por ejemplo, cada página tiene 
cuarenta y cinco líneas que forman las filas del array y ochenta caracteres por línea, que forman las 
columnas del array. Por consiguiente, si el libro tiene quinientas páginas, existirán quinientos planos y 
el número de elementos será 500 x 80 x 45 = 1.800.000. 

4 

5 

Figura 8.10. Un arrayde tres dimensiones ( 4  x 5 x 3). 

8.4.6. Una aplicación práctica 

El array l i b r o  tiene tres dimensiones [PAGINAS] [ LINEAS] [COLUMNAS] , que definen el tamaño 
del array. El tipo de datos del array es char, ya que los elementos son caracteres. 

h 

I 
i I 



Arrays (listas y tablas) 275 

¿Cómo se puede acceder a la información del libro? El método más fácil es mediante bucles 
anidados. Dado que el libro se compone de un conjunto de páginas, el bucle más externo será el bucle 
de página; y el bucle de columnas el bucle más interno. Esto significa que el bucle de filas se insertará 
entre los bucles página y columna. El código siguiente permite procesar el array l 

int pagina, linea, columna; 

for (pagina = O; pagina < PAGINAS; ++pagina) 
for (linea = O ;  linea < LINEAS; ++linea) 
for (columna = O ;  columna < COLUMNAS; ++columna) 
<procesar Libro [pagina] [ lineal [columna] > 

Ejercicio 8.2 

Comprobar si una matriz de números enteros es simétrica respecto a la diagonal principal. 

La matriz se genera internamente, con la función random ( y argumento N(8) para que la matriz 
tenga valores de O a 7. El tamaño de la matriz se pide como dato de entrada. La función s ime t r ica ( ) 

determina si la matriz es simétrica. La función main ( genera matrices hasta encontrar una que sea 
simétrica y la escribe en pantalla. 

/ *  
Determina si una matriz es simétrica. La matriz se genera con números 
aleatorios de O a 7. El programa itera hasta encontrar una matriz 
simétrica. 

* /  

#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#define N 8 

void genmat (int a[] [NI , int n) ; 
int simetrica(int a[] [NI, int n) ; 
void escribemat (int a[] [NI, int n) ; 

int main (void) 
t 
int a[N][N]; / *  define matriz de tamaño máximo N * /  
int n, i, j ; 
int es-sim; 

randomize ( )  ; 
do i 
printf("\nTamaño de cada dimensión de la matriz, máximo %d: ",N); 
scanf ("%d" , &n) ; 

}while (n<2 1 I n>N); 

do i 
gen-mat (a, n) ; 
es-sim = simetrica(a,n); 

if (es-sim) 
i 
puts ("\n\Encontrada matriz simétrica. \n") ; 
escribe-mat(a,n); 

1 
} while ( !es-sim) ; 

return O ;  



276 Programación en C. Metodología, algoritmos y estructura de datos 

1 
void genmat (int a [ ] [NI , int n) 
i 
int i,j; 

for (i=0; i<n; it+) 
for (j=O; j<n; j++) 
a[i] [jl= random(N); 

I 

int simetrica(int a[] [NI, int n) 
i 
int i, j; 
int es-simetrica; 

for (es-símetrica=l,i=O; i<n-i && es-simetrica; i++) 
{ 
for (j=i+l; jcn && es-simetrica; j++) 

if (a[i] [jl ! =  a[jl [il) 
es-simetrica= O; 

1 
return es-simetrica; 

1 
void escribemat (int a[] [NI, int n) 
{ 
int i, j; 
puts ("\tMatriz analizada") ; 

for (izo; i m ;  i++) 
{ putchar('\t'); 

\n") ; puts ("\t-- - ___- - - -~ -  

f o r  (j=0; j<n; j++) 
printf ("%d %c",a[i] [j], (j==n-l ?'\n ' : '  ' 1 ) ;  

1 
I 

8.5. UTILIZACI~N DE ARRAYS COMO PARÁMETROS 

En C todos los arrays se pasan por referencia (dirección). Esto significa que cuando se llama a una 
función y se utiliza un array como parámetro, se debe tener cuidado de no modificar los arrays en 
una función llamada. C trata automáticamente la llamada a la función como si hubiera situado el ope- 
rador de dirección & delante del nombre del array. La Figura 8.1 1 ayuda a comprender el mecanismo. 
Dadas las declaraciones 

#define MAX 100 
double datos[MAXl; 

se puede declarar una función que acepte un array de valores double como parámetro. La función 
SumaDeDatos ( ) puede tener ei prototipo: 

double SumaDeDatos(doub1e datos[MAXl); 

Incluso mejor si se dejan los corchetes en blanco y se añade un segundo parámetro que indica el 

double SumaDeDatos(doub1e datos[], int n); 

tamaño del array: 

k 



int main0 
t 

char 
palabra [ 4 I ="AB(:"; 
cambiar- í pa labra ; 
puts(pa1abra); 
r e t u r n  O; 

7 ~ ~ ~ - -  

Arrays (listas y tablas) 277 

I 

vo id  

Figura 8.11. Paso de un array por dirección. 

A la función SumaDeDatos se pueden entonces pasar argumentos de tipo array junto con un entero 
n, que informa a la función sobre cuantos valores contiene el array. Por ejemplo, esta sentencia visualiza 
la suma de valores de los datos del array: 

printf ("\nSuma = %If",SumaDeDatos (datos, MAX) ) ; 

La función SumaDeDatos no es difícil de escribir. Un simple bucle for suma los elementos del 
array y una sentencia return devuelve el resultado de nuevo al llamador: 

double SumaDeDatos(doub1e datosi], int n) 
I 
double suma = O ;  

while (n > O) 
suma += datos[--nl; 

return suma; 
1 

El código que se utiliza para pasar un array a una función incluye el tipo de elemento del array y su 
nombre. El siguiente ejemplo incluye dos funciones que procesan arrays. En ambas listas de parámetros, 
el array a [ 1 se declara en la lista de parámetros tal como 

double a[l 

El número real de elementos se pasa mediante una variable entera independiente. Cuando se pasa un 
array a una función, se pasa realmente sólo la dirección de la celda de memoria donde comienza el 
array. Este valor se representa por el nombre del array a. La función puede cambiar entonces el 
contenido del array accediendo directamente a las celdas de memoria en donde se almacenan los 
elementos del array. Así, aunque el nombre del array se pasa por valor, sus elementos se pueden cambiar 
como si se hubieran pasado por referencia. 

Ejemplo 8.5 

Paso de arrays a funciones. En el ejemplo se lee un array y se escribe. 

El array tiene un tamaño máximo, L, aunque el número real de elementos es determinado en la 
función leerArray ( ) . El segundo argumento es, por tanto, un puntero para así poder transmitir por 
referencia y obtener dicho dato de la función. 



278 Programación en C. Metodología, algoritmos y estructura de datos 

#include <stdio.h> 
#define L 100 
void leerArray(doub1e a[], int* ) ;  

void imprimirArray (const double [ I ,  int); 

int main() 
i 
double a[L] ; 
int n; 

1eerArray (a, &n) ; 
printf("E1 array a tiene %d elementos, estos son\n ",n); 
imprimirArray (a, n) ; 

return O; 
1 

void leerArray(doub1e a[], int* num) 
i 
int n = 0; 
puts("1ntroduzca datos. Para terminar pulsar O.\n"); 
for ( ;  n < L; n++) 
i 
printf ("%d: ",n); 
scanf ("%lf",&a[n]); 
if (a[n] == O) break; 

I ;  
*num = n; 

1 

void imprimirArray(const double a[l,int n) 
t 
int i = 0; 
for ( ;  i < n; i++) 
printf ("\t%d: %lf\n",i,a[i]); 

1: 15.25 
2: 44.77 
3: O 

El array tiene tres elementos, éstos son: 
O: 31.31 
1: 15 - 2 5  
2: 44.77 

k 



Arrays (listas y tablas) 279 

Ejercicio 8.2 

Escribir una función que calcule el máximo de los primeros n elementos de un array especificado. 
double maximo(const double a[l,int n) 

double mx; 
int i; 
mx = a[Ol; 
for (i = 1; i < n; i++) 

m~ = (a[i]>mx ? a[il: mx); 

return mx; 
I 

8.5.1. Precauciones 

Cuando se utiliza una variable array como argumento, la función receptora puede no conocer cuántos 
elementos existen en el array. Sin su conocimiento una función no puede utilizar el array. Aunque la 
variable array puede apuntar al comienzo de él, no proporciona ninguna indicación de donde termina el 
array. 

La función SumaDeEnteros ( ) suma los valores de todos los elementos de un array y devuelve el 
total. 

{ 

1 
int main( ) 
{ 

int SumaDeEnteros(int "ArrayEnteros) 

. . .  

int lista[i] = {lo, 11, 12, 13, 141; 
SumaDeEnteros (lista); 
. . .  

1 

Aunque SumaDeEnteros ( ) conoce donde comienza el array, no conoce cuántos elementos hay en 
el array; en consecuencia, no sabe cuántos elementos hay que sumar. 

Se pueden utilizar dos métodos alternativos para permitir que una función conozca el número 
de argumentos asociados con un array que se pasa como argumento de una función: 

situar un valor de señal al final del array, que indique a la función que se ha de detener 
el proceso en ese momento; 

un segundo argumento que indica el número de elementos del array. 

Todas las cadenas utilizan el primer método ya que terminan en nulo. Una segunda alternativa es 
pasar el número de elementos del array siempre que se pasa el array como un argumento. El array y el 
número de elementos se convierten entonces en una pareja de argumentos que se asocian con la función 
llamada. La función SumaDeEnteros ( 1 ,  por ejemplo, se puede actualizar así: 

I int SumaDeEnteros(int ArrayEnteros[], int NoElementos) 
i 

1 
. . .  



280 Programación en C. Metodología, algoritmos y estructura de datos 

El segundo argumento, NoElementos, es un valor entero que indica a la función SumaDeEnteros ( ) 

cuantos elementos se procesarán en el array ArrayEnteros . Este método suele ser el utilizado para 
arrays de elementos que no son caracteres. 

Ejemplo 8.6 

Este programa introduce una lista de I O números enteros y calcula su suma y el valor máximo. 

#include <stdio.h> 
int SumaDeEnteros(const int ArrayEnteros[], int NoElementos); 
int maximo(const int ArrayEnteros[], int NoElementos); 

int main0 
{ 
int items [lo] ; 
int Total, i; 

puts('1ntroduzca 10 números, seguidos por return"); 
for (i = O; i < 10; i++) 
scanf ("%d",&Items[il) ; 

printf('Tota1 = %d \n',SumaDeEnteros(Items,lO)); 
printf("Va1or máximo: %d \n",maximo(Items,lO) 1 ;  
return O; 

1 

int SumaDeEnteros(cons int ArrayEnteros[l, int NoElementos) 
i 
int i, Total = O ;  
for (i = 0; i < NoElementos; i++) 
Total += ArrayEnteros[i]; 

return Total; 
1 

i 
int maximo(const int ArrayEnteros[], int NoElementos) 

int mx; 
int i; 

mx = ArrayEnteros [ 0 I ; 
for (i = 1; i < NoElementos; i++) 
mx = (ArrayEnteros [i] >mx ? ArrayEnteros [i] : mx) ; 

return mx; 
1 

El siguiente programa muestra cómo se pasa un array de enteros a una función de ordenación, 

#include <stdio.h> 
void ordenar(int[l,int); / *  prototipo de ordenar * /  

int main ( ) 

ordenar ( ) . 

t 
int ListaEnt[ ] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 101; 
int i; 
int LongLista = sizeof(ListaEnt) / sizeof(int); 

ordenar(ListaEnt,LongLista); 



1 

Arrays (listas y tablas) 281 

for (i = O; i < LongLista; i++) 

return O; 
printf ("%d ",ListaEnt [il ) ; 

1 
void ordenar(int lista[l,int numElementos) 
{ 
/ *  cuerpo de la función ordenar el array * /  
1 

Como C trata las cadenas como arrays de caracteres, las reglas para pasar arrays como argumentos 
a funciones se aplican también a cadenas. El siguiente ejemplo de una función de cadena que convierte 
los caracteres de sus argumentos a mayúsculas, muestra el paso de parámetros tipo cadena. 

void conviertemayus(char cad[]) 
i 

int i = O; 
int intervalo = 'a'-'A ' ;  
while (cad[il) 
{ 
cad[i] = (cad[i]>='a' && cad[il<='z') ? cad[il -intervalo: cad[il ; 
i++; 

1 
1 

La función conviertemayus ( recibe una cadena, un array de caracteres cuyo último carácter es 
el nulo (O). El bucle termina cuando se alcance el fin de cadena (nulo, condiciónfulse). La condición del 
operador ternario determina si el carácter es minúscula, en cuyo caso resta a dicho carácter el intervalo 
que hay entre las minúsculas y las mayúsculas. 

8.5.2. Paso de cadenas como parámetros 

La técnica de pasar arrays como parámetros se utiliza para pasar cadenas de caracteres a funciones. Las 
cadenas terminadas en nulo utilizan el primer método dado anteriormente para controlar el tamaño de 
un array. Las cadenas son arrays de caracteres. Cuando una cadena se pasa a una función, tal como 
s t r 1 en ( ) (véase capítulo de tratamiento de cadenas), la función conoce que se ha almacenado el final 
del array cuando ve un valor de O en un elemento del array. 

Las cadenas utilizan siempre un O para indicar que es el Último elemento del array de caracteres. Este 
O es el carácter nulo del código de caracteres ASCII. 

Considérese estas declaraciones de una constante y una función que acepta un parámetro cadena y 
un valor de su longitud. 

#define MAXLON 1 2 8  
void FuncDemo(char s[l,int long); 

El parámetro s es un array de caracteres de longitud no especificada. El parámetro long indica a la 
función cuántos bytes ocupa (que puede ser diferente del número de caracteres almacenados en s). 
Dadas las declaraciones siguientes: 

char presidente [MAXLON] = "Manuel Martinez"; 
FuncDemo(presidente, MAXLON); 

la primera línea declara e inicializa un array de caracteres llamado presidente, capaz de almacenar 
hasta MAXLON- 1 caracteres más un byte de terminación, carácter nulo. La segunda línea, pasa la cadena 
a la función. 



282 Programación en C. Metodología, algoritmos y estructura de datos 

8.6. ORDENACIÓN DE LISTAS 

La ordenación de arrays es otra de las tareas usuales en la mayoría de los programas. La ordenación o 
clasificación es el procedimiento mediante el cual se disponen los elementos del array en un orden 
especificado, tal como orden alfabético u orden numérico. 

18 

14 

Lista 
desordenada 

Lista ordenada 
(ascendente) 

Lista ordenada 
(descendente) 

Figura 8.12. Lista de números desordenada y ordenada en orden ascendente y en orden descendente. 

Un diccionario es un ejemplo de una lista ordenada alfabéticamente, y una agenda telefónica o lista 
de cuentas de un banco es un ejemplo de una lista ordenada numéricamente. El orden de clasificación 
u ordenación puede ser ascendente o descendente. 

Existen numerosos algoritmos de ordenación de arrays: inserción, burbuja, selección, rápido (quick 
sort), fusión (merge), montículo (heap), shell, etc. 

8.6.1. Algoritmo de la burbuja 

La ordenación por burbuja es uno de los métodos más fáciles de ordenación. El método (algoritmo) de 
ordenación es muy simple. Se compara cada elemento del array con el siguiente (por parejas), si no 
están en el orden correcto, se intercambian entre sí sus valores. El valor más pequeñoflota hasta la parte 
superior del array como si fuera una burbuja en un vaso de refresco con gas. 

La Figura 8.13 muestra una lista de números, antes, durante las sucesivas comparaciones y a la 
terminación del algoritmo de la burbuja. Se van realizando diferentes pasadas hasta que la lista se 
encuentra ordenada totalmente en orden ascendente. 

Lista desordenada: 6 4 10 2 8 

Primera pasada 6 4 4 4 
4 6 6 6 
10 10 2 2 
2 2 10 8 
8 8 8 10 

Segunda pasada 4 4 
6 2 
2 6 
8 8 
10 10 



Arrays (listas y tablas) 283 

Tercera pasada 4 2 
2 4 
6 6 
8 8 
10 10 

Cuarta pasada 2 
4 
6 
8 
10 

Figura 8.13. Secuencias de ordenación. 

La ordenación de arrays requiere siempre un intercambio de valores, cuando éstos no se encuentran 
en el orden previsto. Si, por ejemplo, en la primera pasada 6 y 4 no están ordenados se han de 
intercambiar sus valores. Suponiendo que el array se denomina lista: 

lista [O I 6 
lista[l] 4 
lista [ 2 1 10 
lista[3] 2 
lista[4] 8 

para intercambiar dos valores, se necesita utilizar una tercera variable auxiliar que contenga el resultado 
inmediato. Así, por ejemplo, si las dos variables son 1 i s t a [ O I y 1 1 s t a [ 1 1 , el siguiente código realiza 

I /  
E '  

el intercambio de dos variables: 

Ejemplo 8.7 

La función intercambio intercambia los valores de dos variables x e y 

El algoritmo de intercambio utiliza una variable auxiliar 

aux = x; 
x = y;  
y = aux; 

La función intercambio sirve para intercambiar dos elementos x e y que se pasan a ella. Al tener 
que pasar por referencia, los argumentos de la función son punteros. 

void intercambio(float* x ,  float" y) 
i 

f l o a t  aux;  
aux = *x; 
*x = * y ;  
*y = aux; 

I 

Una llamada a esta función: 
float r, v; 

intercambio(&r,&v) ; 



284 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 8.8 

El programa siguiente ordena una lista de números reales y a continuación los imprime. 

#include <stdio.h> 
/ *  prototipos * /  
void imprimir(f1oat a[], int n); 
void intercambio(float* x, float* y); 

void ordenar (float a[], int n) ; 

int main( ) 

float a[10]={25.5,34.1,27.6,15.24. 3.27, 5.14, 6.21,7.57,4.61, 5.41; 

imprimir(a,lO); 
ordenar (a, 1 O ) ; 
imprimir(a,lO); 
return O; 

1 
void imprimir(f1oat a[], int n) 
i 
int i = O; 

for ( ;  i < n-1; i++) { 

1 
printf ("%f \n",a[n-11); 

printf ("%f,%c",a[i], ((i+1)%10==0 ? '\n' : ' ' )  1 ;  

1 
void intercambio(float* x, float* y) 
{ 
float aux; 
aux = *x; 
*x = *y; 
*y = aux; 

1 
/ *  ordenar burbuja * /  

void ordenar (float a[], int n) 
{ 
int i, j; 
for (i = n-1; i>O; i--) 
for (j = , O ;  j < i; j++) 
if (a[]] > a[j+ll) 
intercambio(&a[jl ,&a[j+ll 1 ;  

1 

8.7. BÚSQUEDA EN LISTAS 

Los arrays (listas y tablas) son uno de los medios principales por los cuales se almacenan los datos en 
programas C .  Debido a esta causa, existen operaciones fundamentales cuyo tratamiento es imprescin- 
dible conocer. Estas operaciones esenciales son: la búsqueda de elementos y la ordenación o clasifica- 
ción de las listas. 

La búsqueda de un elemento dado en un array (lista o tabla) es una aplicación muy usual en el 
desarrollo de programas en C .  Dos algoritmos típicos que realizan esta tarea son la búsqueda secuencial 



1 

Arrays (listas y tablas) 285 

o en serie y la búsqueda binaria o dicotómica. La búsqueda secuencial es el método utilizado para 
listas no ordenadas, mientras que la búsqueda binaria se utiliza en arrays que ya están ordenados. 

8.7.1. Búsqueda secuencial 

Este algoritmo busca el elemento dado, recorriendo secuencialmente el array desde un elemento al 
siguiente, comenzando en la primera posición del array y se detiene cuando se encuentra el elemento 
buscado o bien se alcanza el final del array. 

Por consiguiente, el algoritmo debe comprobar primero el elemento almacenado en la primera 
posición del array, a continuación el segundo elemento y así sucesivamente, hasta que se encuentra el 
elemento buscado o se termina el recorrido del array. Esta tarea repetitiva se realizará con bucles, en 
nuestro caso con el bucle while. 

Algoritmo BusquedaSec 

Se utiliza una variable lógica, en C tipo int, denominada E n c o n t r a d o ,  que indica si el elemento se 
encontró en la búsqueda. La variable Encontrado se inicializa a fulso(0) y se activa a verdudero(1) 
cuando se encuentra el elemento. Se utiliza un operador and ( en c && ) , que permita evaluar las dos 
condiciones de terminación de la búsqueda: elemento encontrado o no haya más elementos (índice del 
array excede al último valor válido del mismo). 

Cuando el bucle se termina, el elemento o bien se ha encontrado, o bien no se ha encontrado. Si el 
elemento se ha encontrado, el valor de E n c o n t r a d o  será verdadero y el valor del índice será la posición 
del array (índice del elemento encontrado). Si el elemento no se ha encontrado, el valor de E n c o n t r a d o  
seráfalso y se devuelve el valor - I  ai programa llamador. 

BusquedaSec 
inicio 
Poner Encontrado = falso 
Poner Indice = primer indice del array 
mientras (Elemento no Encontrado) y (Indice < Ultimo) hacer 

si (A[indice] = Elemento) entonces 

si no 
Poner Encontrado a Verdadero 

Incrementar Indice 
fin-mientras 

si (Encontrado) entonces 
retorno ( Indice) 
si no 
retorno (-1) 

fin-si 
€in 

El algoritmo anterior implementado como una función para un array Lista es: 

enum {FALSE, TRUE}; 

int BusquedaSec(int Lista[MAX], int Elemento) 
i 
int Encontrado = FALSE; 
int i = O ;  

/ *  Búsqueda en la lista hasta que se encuentra el elemento 

* /  
o se alcanza el final de la lista. 



286 Programación en C. Metodología, algoritmos y estructura de datos 

while ((!Encontrado) && (i <= MAX-1)) 
i 

1 
/*Si se encuentra el elemento se devuelve la posición en la lista. * /  
if (Encontrado) 

return (i) ; 
else 

return (-1) ; 
1 

En el bucle while se ha utilizado el operado condicional ? : para asignar TRUE si se encuentra el 

Encontrado = ((A[i] == Elemento)?TRUE:i++); 

elemento, o bien incrementar el índice i. 

Ejemplo 8.9 

El siguiente programa busca todas las ocurrencias de un elemento y la posición que ocupa en una 
matriz. La posición viene dada porJila y columna; la matriz se genera con números aleatorios de O 
a 49. 

La función de búsqueda devuelve O si no encuentra al elemento, 1 si lo encuentra. Tiene el 
argumento de la matriz y dos parámetros para devolver la fila y columna, por lo que tendrán que ser de 
tipo puntero para poder devolver dicha información. La búsqueda se hará a partir de la fila y columna 
de la última coincidencia. 

#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#define F 8 
#define C 10 
#define N 50 

void escribemat (int a [ I [Cl ) ; 
void genmat (int a [ I [Cl ) ; 
int buscar(int a[] [C],int* fila,int* co1,int elemento); 

int main() 
i 

int a[Fl [Cl ; 
int item, nf ,nc, esta; 
int veces = O ;  

randomize ( )  ; 
genmat (a) ; 
printf ("\n Elemento a buscar: " )  ; 
scanf ("%d", &item) ; 

do i 
esta = buscar(a,&nf,&nc,item); 
if (esta) 
i 
veces = veces+l; 
printf ("\n coincidencia %d: Fila %d, Co1.umna %d\n",veces,nf ,nc) ; 

1 
}while (esta) ; 
escribe-mat(a); 
printf("\nNÚmero de coincidencias del elemento %d : %d", 



item,veces); 
return O ;  

I 

Arrays (listas y tablas) 287 

I' 

/ *  Busqueda lineal en toda la matriz * /  
int buscar(int a[] [Cl,int* fila,int* co1,int elemento) 

static int x = O ,  y = -1; 
int i,j,encontrado; 

/ *  avanza al siguiente elemento(fila,columna) * /  

if (y == C-1) / *  ultima columna * /  
I 
y = o; 
x = x+l; 

I 
else 
y = y + l ;  

encontrado = O; 
while (!encontrado && ( x < F ) )  
{ 
encontrado = (a[xl [ y ]  == elemento) ; 
if (!encontrado) / *  avanza a siguiente elemento * /  

if (y == C-1) 
i 
y = o ;  
x = x+l; 

I 
else 
y = y+l; 

i 
/ *  ultimo valor de x e y * /  
* f i l a  = x; 
*col = y; 
return encontrado; 

} 

void gen-mat (int a[] [Cl ) 
i 
int i, j; 

for ( i = O ;  i<F; i++) 
for ( j = O ;  j<C; j + + )  
a[i] [j]= random(N); 

I 
void escribemat (int a [ I [Cl ) 
I 
int i,j; 
puts ("\t\tMatriz analizada") ; 

for (izo; k F ;  i++) 
{ putchar('\t'); 

\n" 1 ; puts ("\t\t-- - 

for ( j = O ;  j<C; j++) 
printf("%d %c",a[il [j],(j==C-i ?'\n ' : I  I ) ) ;  

1 
I 



288 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 8.10 

En este programa se quiere buscar la fila de una matriz real que tiene la máxima suma de sus elementos 
en valor absoluto, La matriz se genera con números aleatorios, las dimensiones de la matriz se 
establecen con una constante predejinida. 

Para determinar la suma de una fila se define la función sumar ( ) , se la pasa la dirección del primer 
elemento de la fila para tratar cada fila como una array unidimensional. Para generar números aleatorios 
de tipo real, se divide el número que devuelve la función rand ( ) entre 100.0. 

#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#define F 6 
#define C 10 
#define V 100.0 

void escribe-mat (float mt [ I [Cl ) ; 
void gen-mat (float mt [ 1 [Cl ) ; 
float sumar(f1oat v[l); 
int maximo(f1oat mt [I [Cl ) ; 

int main ( ) 
t 

float mat [Fl [C] ; 
int fila; 

randomize ( ) ; 
gen-mat (mat) ; 
escribemat(mat) ; 

fila = maximo(mat); 
printf("\n\nFila cuya suma de elementos es mayor: %d",fila); 

return O; 
1 
void gen-mat (float mat [ 1 [Cl 
{ 
int i, j; 

for (i=O; i<F; i++) 
for (j=O; j<C; j++) 
mat[il [jl= randO/V; 

1 
void escribemat(f1oat mat[l[Cl) 
{ 
int i, j; 
puts ( I' \n\ t \ tMatriz anal i zada\n" ) ; 

\n"); puts(ll\t\t-- - ___ -- - -- -  

for (i=O; i<F; i++) 
{ 
for (j=O; j<C; j++) 
printf("%.2f%c",mat[i] [jl, (j==C-l ?'\n I : '  ' ) I ;  

I 
1 
float sumar (float v [ I ) 

{ 
int i; 
float s; 



Arrays (listas y tablas) 289 

for (s=O.O,i=O; i d ;  i++) 

return s; 
s += v[i]; 

I 
int maxirno(f1oat mt [I [Cl ) 
{ 
float mx; 
int i, f; 

mx = sumar(&mt[O][O]); / *  dirección de primera fila * /  
printf ("\nSuma fila %d %.2f",O,mx); 
for (f=O,i=l; i<F; i++) 
i 
float t ; 
t = sumar(&rnt [il [O] ) ; 
printf ("\nSuma fila %d %.Lf",i,t); 
if (t > rnx) 
{ 
mx = t; 
f = i; 

I 
I 
return f; 

1 



290 Programación en C. Metodología, algoritmos y estructura de datos 

8.9. EJERCICIOS 

Para los Ejercicios 8.1 a 8.5, suponga las declaracio- 
nes: 

int i, j,k; 
int Primero [21], Segundo [211; 
int TerceroL61 [I21 ; 

Determinar la salida de cada segmento de progra- 
ma (en los casos que se necesite, se indica debajo el 
archivo de datos de entrada correspondiente). 

8.1. for (i=l; i<=6; i++) 
scanf ('%d"&Primero[il) ; 
for(i= 3; i>O; i--) 
printf ("%4d", ~rimero[2*i] ) ; 

. ................ 
3 7 4 - 1 0 6  

8.2. scanf ("%d", &k)  ; 
for(i=3; i<=k; ) 

j= 4; 
printf ("%d %d\n" 
,Segundo[kl ,Segundo[j+ll) ; 

6 3 0 1 9  

scanf ("Bd",&Segundo[i++] ) ; 

. . . . . . . . . . . . .  

8.3. for(i= O; i<lO;i++) 
Primero[i] = i + 3; 

scanf ( "%d %d" , & j  , &k) ; 
for(i= j; i<=k;) 
printf ('%d\n",Primero[i++l) ; 

............ 
7 2 3 9  

8.4, for(i=O, i<12; i++) 
scanf("%d",&Primero [il ) ; 

Segundo [ j ] =Primero [ 2  * j I + j ; 

printf ("%d %d \nl' 
Primero [k+ll,Segundo [k-11); 

for(j=O; j<6; j++) 

for (k=3; k<=7, k++)  

........... 
2 7 3 4 9 - 4  
6 -5 O 5 -8 1 

8.5. for(j= O; j<7; 1 
scanf ("%d",&Primero[j++I) ; 

i = O; 
j = 1; 
while ( (j< 6) && (Primero[j-11 
<Primero [ j I ) ) 

i 

1 
for(k= -1; k<j+2;) 

i++, j++; 

printf ("%di', Primero [++kl ) ; 
. . . . . . . . . .  

20 60 70 10 O 40 
30 90 

8.6. for(i= O; i<: 3; i++) 
for(j= O; j<12; j++) 

for(i= O; i< 3;i++) 
{ 

TerceroLi.1 [jl = i+j+l; 

j = 2; 
while ( j  < 12) 
{ 

printf ( "%id %d %d \ni ' ,  i, j , 
Tercero [il Ejl ) ; 
j +=3 ; 

8.7. Escribir un programa que lea el array 

4 7 1 3 5  
2 0 6 9 7  
3 1 2 6 4  

y lo escriba como 

4 2 3  
7 0 1  
1 6 2  
3 9 6  
5 7 4  

8.8. Dado el array 

4 7 - 5 4 9  
O 3 -2 6 -2 
1 2 4 1 1  
6 1 0 3 - 4  

escribir un programa que encuentre la suma de 
todos los elementos que no pertenecen a la 
diagonal principal. 

8.9. Escribir una funci6n que. intercambie la fila 
i-ésima por la j-ésima de un array de dos 
dimensiones, mxn. 



Arrays (listas y tablas) 291 

8.1. 

8.2. 

8.3. 

8.4. 

85. 

8.6. 

nvierta un número 

número arábigo. 

Reglas de conversión 

M 1000 
D 500 
c 100 
L 50 
X 10 
V 5 
1 1 

Escribir un programa que permita visualizar el 
triángulo de Pascal: 

1 2 1  
1 3 3 1  8.7. 

1 4 6 4 1  
1 5  10 1 0 5  1 

1 6 15 20 15 6 1 

En el triángulo de Pascal cada número es la 
suma de los dos números situados encima de 
él. Este problema se debe resolver utilizando 
un array de una sola dimensión. 

Escribir una función que invierta el contenido 
de n números enteros. El primero se vuelve el 
último; el segundo, el penúltimo, etc. 

Escribir una función a la cual se le proporcione 
una fecha (día, mes, año), así como un número 
de días a añadir a esta fecha. La función 
calcula la nueva fecha y se visualiza. 

- 8.8. 

8.9. 

Un número entero es primo si ningún otro 
número primo más pequeño que él es divisor 
suyo. A continuación escribir 
rellene una tabla con los 80 primeros números 
primos y los visualice. 

Escribir un programa que visualice un cuadra- 
do mágico de orden impar n comprendido 
entre 3 y I 1 ; el usuario debe elegir el valor de 

Ejemplo 

8 1 6 
3 5 7 

rado caiga en una 
casilla situada 
de ser situado. 

letras individuales. Diseñar un programa para 
jugar al ahorcado. Sugemncia: almacenar una 
lista de palabras en un array y seleccionar pala- 
bras aleatoriamente. 

Escribir un programa que lea las dimensiones 
de una matriz, lea y visualice la matriz y a 
continuación encuentre el mayor y menor 
elemento de la matriz y sus posiciones. 

Si x representa la media de los niimeros xi ,  
xz, ..A,,, entonces la varianza es la media de los 
cuadrados de las desviaciones de los números 
de la media. 

Y la desviación esbandar es la raíz cuadra- 

continuación calcule e imprima su media, 
varianza y desviación estándar. Utilizar fun- 
ciones para calcular la media, vananZa y des- 
viacibn estándar. 



292 Programación en C. Metodología, algoritmos y estructura de datos 

tro un vector que puede contener elementos 
duplicados. La función debe sustituir cada 
valor repetido por -5 y devolver ai punto don- 
de fue llamado el vector modificado y el 
número de entradas modificadas. 

8.12. Los resultados de las Últimas elecciones a 
alcalde en el pueblo x han sido los siguientes: 

Distrito Cdidato Candidato Candidato Candidaio 
A 3 c D 

1 1 94 48 206 45 
2 180 20 16 
3 221 90 20 
4 432 50 82 1 14 
5 820 61 946 18 

Escribir un a que haga las siguien- 
tes tareas: 

a) Imprimir la tabla anterior con cabeceras 
incluidas. 

mbre de los dos candidatos 

necesita saber cuál es el vendedor que más 
coches ha vendido. 

1 
2 
3 

10 

1 2 3 4... 15 

4 8 1  4 
12 4 25 14 
15 3 4 7 

8.15. Diseñar un programa que determine la fre- 

.E tante. 

8.18. Escribir un programa que lea una frase y a con- 
abra de la frase en thuaci6n visuaii 

820. Escribir u lea una linea de 



Arrays (listas y tablas) 293 

8.22. Escribir una serie de 
cadenas, e si la cadena 
es un ide la sintaxis de 
C. Sugerencias: utilizar las siguientes funcio- 

&o del identifícador en el 
primero (determinar si el 

nombre comienza con un símbolo permitido); 
restantes (comprueba si los restantes son 
cartícteres permitidos). 

8.23. Escriba una funci6n sort que ordene un con- 
junto de n cadenas en orden alfaóético. 

8.24. Diseñar un programa que determine la media 
del número de horas trabajadas durante todos 
los días de la semana. para cada uno de los 
empleados de la Universidad. 

8.25. Escriba una función que ordene en sentido des- 
cendente los n primeros elementos de un array 
de cadenas basado en las longitudes de las cade- 
nas. Por ejemplo, 'bibi' vendrá antes que 'Ana'. 

8.26. Se introduce una frase por teclado. Se desea 
imprimir cada palabra de la frase en líneas 
diferentes y consecutivas. 

837. Escribir un programa que determine si una fra- 

número de veces que se encuentra la palabra 
en las n lineas. 

839. Se dice que una matriz tiene un punto de silla 
si alguna posición de la matriz es el menor 
valor de su fila, y a la 
columna. Escribir un 
como entrada una 
calcule la posició 
que existe). 

z de numeros reales, y 
punto de silla (si es 

trar el vector original y el vector con la distri- 
bución indicada. 

' I  





Este capítulo examina estructuras, uniones, enumeraciones y tipos definidos 
por el usuario que permite a un programador crear nuevos tipos de datos. La 
capacidad para crear nuevos tipos es una característica importante y potente de 
C y libera a un programador de restringirse al uso de los tipos ofrecidos por el 
lenguaje. Una estructura contiene múltiples variables, que pueden ser de tipos 
diferentes. La estructura es importante para la creación de programm potentes, 
tales como bases de datos u otras aplicaciones que requieran grandes 
cantidades de datos. Por otra parte, se analizará el concepto de unión, otro tipo 
de dato no tan importante como las estructuras array y estructura, pero si 
necesarias en algunos casos. 

Un tipo de dato enumerado es una colección de miembros con nombre que 
tienen valores enteros equivalentes. Un typedef es de hecho no un nuevo tipo 
de dato sino simplemente un sinónimo de un tipo existente. 

' I  

CONCEPTOS CLAVE 
Estructura. 

0 Estructuras anidadas. 
o Selector de campos. 
e struct. 

o sizeof. 
o union. 
o typedef. 
0 Operadores de bits, 

295 



296 Programación en C. Metodología, algoritmos y estructura de datos 

9.1. ESTRUCTURAS 

Los arrays son estructuras de datos que contienen un número determinado de elementos (su tamaño) y 
todos los elementos han de ser del mismo tipo de datos; es una estructura de datos homogénea. Esta 
característica supone una gran limitación cuando se requieren grupos de elementos con tipos diferentes 
de datos cada uno. Por ejemplo, si se dispone de una lista de temperaturas, es muy Útil un array; sin 
embargo, si se necesita una lista de información de clientes que contengan elementos tales como el 
nombre, la edad, la dirección, el número de la cuenta, etc., los arrays no son adecuados. La solución a 
este problema es utilizar un tipo de dato registro, en C llamado estructura. 

Los componentes individuales de una estructura se llaman miembros. Cada miembro (elemento) de 
una estructura puede contener datos de un tipo diferente de otros miembros. Por ejemplo, se puede 
utilizar una estructura para almacenar diferentes tipos de información sobre una persona, tal como 
nombre, estado civil, edad y fecha de nacimiento. Cada uno de estos elementos se denominan nombre 
del miembro. 

miembros, 

Una estructura puede contener cualquier número de miembros, cada uno de los cuales tiene un 
nombre único, denominado nombre del miembro. Supongamos que se desea almacenar los datos de una 
colección de discos compactos (CD) de música. Estos datos pueden ser: 

o Título. 
O Artista. 
O Número de canciones. 
O Precio. 
O Fecha de compra. 

La estructura CD contiene cinco miembros. Tras decidir los miembros, se debe decidir cuáles son 
los tipos de datos para utilizar por los miembros. Esta información se representa en la tabla siguiente: 

~~ 

Nombre miembro Tipo de dato 

Título 
Artista 
Número de canciones Entero. 
Precio Coma flotante. 
Fecha de compra 

Array de caracteres de tamaño 30. 
Array de caracteres de tamaño 25. 

Array de caracteres de tamaño 8. 

La Figura 9.1 contiene la estructura CD, mostrando gráficamente los tipos de datos dentro de la 
estructura. Obsérvese que cada miembro es un tipo de dato diferente. 

I 

Título 
Artista 
Número de canciones 
Precio 
Fecha de compra 

Ay, ay,  ay ,  cómo se a l e j a  el sol. 
NO me pises  la sandalias. 
10 
2222.25 
8-10-1999 

~~ ~ 

Figura 9.1. Representación gráfica de  una estructura CD. 



IC- 

Estructuras y uniones 297 

9.1.1. Declaración de una estructura 

Una estructura es un tipo de dato definido por el usuario, que se debe declarar antes de que se pueda 
utilizar. El formato de la declaración es: 

struct <nombre de la estructura> 
i 
<tipo de dato miembro > <nombre miembro> 
<tipo de dato miembro> <nombre miembro> 

<tipo de dato miembro> <nombre miembro> 
. . .  

1 ;  
La declaración de la estructura CD es 

struct coleccion-CD 
i 
char titulo[30] ; 
char artista[25] ; 
int num-canciones; 
float precio; 
char f echa-compra [ 8 1 ; 

i 

Ejemplo 
struct complejo 
{ 

1 ;  

En este otro ejemplo se declara el tipo estructura venta ; 

struct venta 
i 

float parte-real, parte-imaginaria; 

char vededor [ 3 O I ; 
unsigned int codigo; 
int inids-articulos; 
float precio-unit; 

1 ;  

t i  

, 

9.1.2. Definición de variables de estructuras 

AI igual que a los tipos de datos enumerados, a una estructura se accede utilizando una variable o 1 

variables que se deben definir después de la declaración de la estructura. Del mismo modo que sucede 
en otras situaciones, en C existen dos conceptos similares a considerar, declaración y dejnición. La 
diferencia técnica es la siguiente, una declaración especifica simplemente el nombre y el formato de la 
estructura de datos, pero no reserva almacenamiento en memoria; la declaración especifica un nuevo 
tipo de dato: struct <nombre-estructura>. Por consiguiente, cada definición de variable para una 
estructura dada crea un área en memoria en donde los datos se almacenan de acuerdo al formato 
estructurado declarado. 

Las variables de estructuras se pueden definir de dos formas: 1) listándolas inmediatamente después 
de la llave de cierre de la declaración de la estructura, o 2) listando el tipo de la estructura creado seguida 
por las variables correspondientes en cualquier lugar del programa antes de utilizarlas. La definición y 
declaración de la estructura colecciones-CD se puede hacer por cualquiera de los dos métodos: 

I 



F 

298 Programación en C. Metodología, algoritmos y estructura de datos 

1. struct colecciones-CD 
i 
char titulo[301 ; 
char artistar251 ; 
int num-canciones; 
float precio; 
char fecha_compra[8]; 

} cdl, cd2, cd3; 

2. struct colecciones-CD c d l ,  cd2, cd3; 

Otros ejemplos de definición/declaración 
Considérese un programa que gestione libros y procese los siguientes datos: título del libro, nombre del 
autor, editorial y año de publicación. Una estructura info-libro podría ser: 

struct info-libro 
{ 
char titulo[60] ; 
char autor [ 3 O I ; 
char editorial [30] ; 
int anyo; 

i ;  

La definición de la estructura se puede hacer así: 

1.struct info-libro 
t 
char titulo[601; 
char autor [301 ; 
char editorial [301 ; 
int anyo ; 

} librol, llbro2, libro3; 

2.struct info-libro librol, libro2, libro3; 

Ahora se nos plantea una aplicación de control de los participantes en una carrera popular, cada 
participante se representa por los datos: nombre, edad, sexo, categoría, club y tiempo. El registro se 
representa con la estructura corredor : 

struct corredor 
i 
char nombre [ 40 I ; 
int edad; 
char sexo; 
char categoria[201 ; 
char clubL261 ; 
float tiempo; 

1 ;  

La definición de variables estructura se puede hacer así: 

struct corredor vl, sl, cl; 

9.1.3. Uso de estructuras en asignaciones 
Como una estructura es un tipo de dato similar a un int o un char, se puede asignar una estructura a 
otra. Por ejemplo, se puede hacer que libro3, libro4 y libro5 tengan los mismos valores en sus 
miembros que 1 ibrol. Por consiguiente, seda necesario realizar las siguientes sentencias: 



7 

Estructuras y uniones 299 

I- 

libro3 = librol; 
libro4 = librol; 
libro5 = librol; 

De modo alternativo se puede escribir 

libro4 = libro5 = libro6 = librol; 

9.1.4. Inicialización de una declaración de estructuras 

Se puede inicializar una estructura de dos formas. Se puede inicializar una estructura dentro de la sección 
de código de su programa, o bien se puede inicializar la estructura como parte de la definición. Cuando 
se inicializa una estructura como parte de la definición, se especifican los valores iniciales, entre llaves, 
después de la definición de variables estructura. El formato general en este caso: 

struct <tipo> <nombre vdriable estructura> = 
{ valor miembro, 
valor miembro , 

val or miembro 
. . .  

I ;  
struct info-libro 
t 
char titulo[bOl ; 
char auto[30]; 
char editorial [30] ; 
int anyo; 

} librol = {"Maravilla del saber ",l'Lucas Garcia", "McGraw-Hill", 1999); 

Otro ejemplo podría ser: 

struct coleccion-CD 
i 
char titulo[30] ; 
char artista[25]; 
int num-canciones; 
float precio; 
char fecha-compra[8]; 

} cdl = { 
"El humo nubla tus o j o s " ,  
"col Porter", 
15, 
2545, 
" O 2 / 6 / 9 9 I' 
1 ;  

Otro ejemplo con la estructura corredor: 

struct corredor vl = i 
"Salvador Rapido" , 
29, 
'V' , 
I' sen i or 'I , 
'Independiente', 
0.0 

1 ;  



300 Programación en C. Metodología, algoritmos y estructura de datos 

b 

9.1.5. El tamaño de una estructura 

El operador sizeof se aplica sobre un tipo de datos, o bien sobre una variable. Se puede aplicar para 
determinar el tamaño que ocupa en memoria una estructura. El siguiente programa ilustra el uso del 
operador s izeof para determinar el tamaño de una estructura: 

#include <stdio.h> 

/ *  declarar una estructura Persona * /  
struct persona 
i 
char nombre [30 I ; 
int edad; 
float altura; 
float peso; 

I ;  
void main( ) 
i 
struct persona mar; 
printf ("Sizeof (persona) : %d \n", sizeof (mar) ) ; 

1 

Al ejecutar el programa se produce la salida: 

Sizeof (persona) : 40 

El resultado se obtiene determinando el número de bytes que ocupa la estructura 

Persona Miembros dato Tamaño (bytes) 

nombre [ 3 0 1 char(1) 30 
edad int (2) 2 
altura float (4) 4 
peso float ( 4) 4 
Total 40 

9.2. ACCESO A ESTRUCTURAS 

Cuando se accede a una estructura, o bien se almacena información en la estructura o se recupera la 
información de la estructura. Se puede acceder a los miembros de una estructura de una de estas dos 
formas: 1)  utilizando el operador punto (.), o bien 2) utilizando el operador puntero ->. 

9.2.1. Almacenamiento de información en estructuras 

Se puede almacenar información en una estructura mediante inicialización, asignación directa o lectura 
del teclado. El proceso de inicialización ya se ha examinado, veamos ahora la asignación directa y la 
lectura del teclado. 

Acceso a una estructura de datos mediante el operador punto 
La asignación de datos a los miembros de una variable estructura se hace mediante el operador punto. 
La sintaxis en C es: 

<nombre variable estructura> . <nombre miembro> = datos; 



m 

Estructuras y uniones 301 

Algunos ejemplos: 

strcpy(cd1. titulo,"Granada") ; 
cdl.precio = 3450.75; 
cdl.num-canciones = 7; 

El operador punto proporciona el camino directo al miembro correspondiente. Los datos que se 
almacenan en un miembro dado deben ser del mismo tipo que el tipo declarado para ese miembro. En 
el siguiente ejemplo se lee del teclado los datos de una variable estructura corredor: 

struct corredor cr; 

printf ("Nombre: " )  ; 
gets(cr.nombre); 
printf ("edad: " )  ; 
scanf ( "%d" , &cr . edad) ; 
printf ("Sexo: " )  ; 
scanf ( "%c" , &cr. sexo) ; 
printf ("Club: " )  ; 
gets(cr.club) ; 
if (cr.edad <= 18) 

elseif (cr.edad <= 40) 

else 

cr .categoria = "Juvenil"; 

cr. categoria = "Senior"; 

cr. categoria = 'Veterano"; 

Acceso a una estructura de datos mediante el operadorpuntero 

El operador puntero, ->, sirve para acceder a los datos de la estructura a partir de un puntero. Para 
utilizar este operador se debe definir primero una variable puntero para apuntar a la estructura. A 
continuación, utilice simplemente el operador puntero para apuntar a un miembro dado. 

La asignación de datos a estructuras utilizando el operador puntero tiene el formato: 

<puntero estructura> -> <nombre miembro> = datos; 

Así, por ejemplo, una estructura estudiante 

struct estudiante 
i 
char Nombre [ 4 1 I ; 
int Num-Estudiante; 
int Anyo-de-matricula; 
float Nota; 

I ;  

Se puede definir ptr-est como un puntero a la estructura 

struct estudiante *ptr-est; 
struct estudiante mejor; 

A los miembros de la estructura estudiante se pueden asignar datos como sigue (siempre y 
cuando la estructura ya tenga creado su espacio de almacenamiento, por ejemplo, con malloc ( ) ; o 
bien, tenga la dirección de una variable estructura). 

ptr-est = &mejor; / *  ptr-est tiene la direcciÓn(apunta a) mejor * /  
strcpy(ptr-est->Nombre, "Pepe alomdra") ; 
ptr-est -> Num-Estudiante = 3425; 
ptr-est -> Nota = 8.5; 



302 Programación en C. Metodología, algoritmos y estructura de datos 

Nota 

Previamente habría que crear espacio de almacenamiento en memoria; por ejemplo, con la función 
malloc ( 1 .  

9.2.2. Lectura de información de una estructura 

Si ahora se desea introducir la información en la estructura basta con acceder a los miembros de la 
estructura con el operador punto o flecha (puntero). Se puede introducir la información desde el teclado 
o desde un archivo, o asignar valores calculados. 

Así, si z es una variable de tipo estructura complejo, se lee parte real, parte imaginaria y se calcula 
el módulo: 

s t ruc t comple j o 
i 
float pr; 
float pi; 
float modulo; 

I ;  
struct complejo z; 

printf ("\nParte real: " )  ; 
scanf ("%í",&z.pr); 
printf ("\nParte imaginaria: " )  ; 
scanf ("%f",&z.pi); 
/ *  calculo del módulo * /  
z.modulo = sqrt(z.pr*z.pr + z.pi*z.pi); 

9.2.3. Recuperación de información de una estructura 

Se recupera información de una estructura utilizando el operador de asignación o una sentencia de salida 
(printf ( ) , puts ( ) , ...). Igual que antes, se puede emplear el operador punto o el operador flecha 
(puntero). El formato general toma uno de estos formatos: 

1. <nombre variable> = 
<nombre variable estructura>.<nombre miembro>; 

o bien 

<nombre variable> = 
<puntero de estructura> -> <nombre miembro>; 

2 . para salida: 

o bien 

printf(" ",<nombre variable estructura>.<nombre miembro>); 

printf(" ",<puntero de estructura>-> <nombre miembro>); 

Algunos ejemplos del uso de la estructura complejo: 

float x , y ;  
struct complejo z; 
struct complejo *pz; 



Estructuras y uniones 303 

pz = &z; 

x = z.pr; 
y = z.pi; 
. . .  
printf("\nNÚmero complejo (%.lf,%.lf), módulo: %.2f", 

pz->pr,pz->pi,pz->modulo) ; 

9.3. ESTRUCTURAS ANIDADAS 

Una estructura puede contener otras estructuras llamadas estructuras anidadas. Las estructuras anidadas 
ahorran tiempo en la escritura de programas que utilizan estructuras similares. Se han de definir los 
miembros comunes sólo una vez en su propia estructura y a continuación utilizar esa estructura como 
un miembro de otra estructura. Consideremos las siguientes dos definiciones de estructuras: 

struct empleado 
{ 
char nombre-emp [ 3 O I ; 
char direccion [25] ; 
char ciudad [ 2 O I ; 
char provincia [2O] ; 
long int cod-postal; 
double salario; 

i ;  

struct clientes 

char nombre_cliente[30]; 
char direccion [ 2 5 I ; 
char ciudad[20]; 
char provincia[201; 
long int cod-postal; 
double saldo; 

} ;  

Estas estructuras contienen muchos datos diferentes, aunque hay datos que están solapados. Así, se 

struct info-dir 

podría disponer de una estructura, inf o-dir, que contuviera los miembros comunes. 

char direccion[25] ; 
char ciudadL201; 
char provincia [2O] ; 
long int cod-postal; 

1 ;  

Esta estructura se puede utilizar como un miembro de las otras estructuras, es decir, anidarse. 

struct empleado 
{ 
char nombre-emp [ 3 O ] ; 
struct info-dir direccion-emp; 
double salario; 

I ;  

struct clientes 
i 

Y 



304 Programación en C. Metodología, algoritmos y estructura de datos 

char nombre_cliente[30]; 
struct info-dir direccion-clien; 
double saldo; 

I ;  

Gráficamente se podrían mostrar estructuras anidadas en la Figura 9.2. 

empleado: cliente: 
nombre-emp nombre-cliente 

direccion 
ciudad 
provincia I c od-po s t a 1 direccion 

ciudad 
provincia 
cod-postal 

i n f o-di r I saldo 

in f o-di r 

salario 

Figura 9.2. Estructuras anidadas. 

9.3.1. Ejemplo de estructuras anidadas 

Se desea diseñar una estructura que contenga información de operaciones financieras. Esta estructura 
debe constar de un número de cuenta, una cantidad de dinero, el tipo de operación (depósito=O, retirada 
de fondos=l, puesta al día=2 o estado de la cuenta=3) y la fecha y hora en que la operación se ha 
realizado. A fin de realizar el acceso correcto a los campos día, mes y año, así como el tiempo (la hora 
y minutos) en que se efectuó la operación, se define una estructura fecha y una estructura tiempo. La 
estructura registro-operac ion tiene como miembros una variable (un campo) de tipo fecha, otra 
variable del tipo tiempo y otras variables para representar los otros campos. La representación del tipo 
de operación se hace con una variable entera, aunque el tipo apropiado es un tipo enumerado (descrito 
en siguientes apartados). A continuación se declara estos tipos, se escribe una función que lee una 
operación financiera y devuelve la operación leída. La fecha y hora es captada del sistema. 

#include <stdio.h> 
#include <dos.h> 

struct registro-operation entrada(); 
struct fecha 
{ 

I ;  
struct tiempo 
{ 

1 ;  
struct registro-operacion 

unsigned int mes, dia, anyo; 

unsigned int horas, minutos; 

I 

long numero-cuenta; 
float cantidad; 
int tipo-operacion; 
struct fecha f; 
struct tiempo t; 

1 ;  
int main() 
{ 

struct registro-operacion w; 



Estructuras y uniones 305 

w = entrada() ; 

printf ("\n\n OperaciCn realizada\n " )  ; 
print f ( 'I \ t % 1 d\ n" , w . numero-cuen t a ) ; 
printf("\t%d-%d-%d\n",w.f.dia,w.f.mes,w.f.anyo) ; 

printf ( " \  t%d: %d\n", w. t. horas, w. t. minutos ) ; 

return O ;  
1 

struct registro-operacion entrada0 
I 
struct time t; 
struct date d; 
struct registro-operacion una; 
printf ("\nNÚmero de cuenta: " )  ; 
scanf ("%ld", &una.numero-cuenta) ; 
puts ("\n\tTipo de operación") ; 
puts("Deposito(0)") ; 
puts ("Retirada de fondos (1) " )  ; 
puts('Puesta al dia(2)"); 
puts ("Estado de la cuenta ( 3  ) I' ) ; 
scanf ( "%d" , &una. t ipo-operacion) ; 

/ *  Fecha y tiempo del sistema * /  
gettime (&t) ; 
una.t.horas = t.ti-hour; 
una.t.minutos = t.timin; 

getdate (&d) ; 
una.f.anyo = d.dajear; 
una.f.mes = d.darnon; 
una.f.dia = d.da-day; 
return una; 

1 

Ejercicio 9.1 

Se desea registrar una estructura PersonaEmpl eado que contenga como miembros los datos de una 
persona empleado que a su vez tenga los datos de la fecha de nacimiento. En un programa se muestra 
el uso de la estructura, se define una función para dar entrada a los datos de la estructura y otra finción 
para dar salida a los datos de una estructura persona. A la función de entrada se transmite por 
dirección (&p)  la variable estructura, por lo que el argumento correspondiente tiene que ser un 

I puntero( *p) y el acceso a los campos se hace con el selector -> 

I persona-Empleado I 

I fecha I 
#include <stdio.h> 

struct fecha 
I 

1 ;  
unsigned int dia, mes, anyo; 



- [i- - 7 ! 

306 Programación en C. Metodología, algoritmos y estructura de datos 

struct persona i 
char nombre [ 2 O 1 ; 
unsigned int edad; 
int altura; 
int peso; 
struct fecha fec; 

I ;  
struct persona-empleado 
i 

struct persona unapersona; 
unsigned int salario; 
unsigned int horas_por-semana; 

I ;  
/ *  prototipos de funciones * /  

void entrada(struct persona-empleado *p); 
void muestra(struct persona-empleado up); 

void main() 

i 
/ *  define una variable persona-empleado * /  
struct persona-empleado p; 

/ *  llamada a entrada() transmitiendo la direccion * /  
entrada(&p); 

/ *  salida de los datos almacenados * /  

i 
void entrada(struct persona-empleado *p) 
{ 

muestra(p) ; 

printf ("\nIntroduzca su nombre: " )  ; 
gets(p->unapersona.nombre); 
printf ("introduzca su edad: " 1  ; 
scanf ("%d" , &p->unapersona. edad) ; 
printf ("Introduzca su altura: " )  ; 
scanf ( "%d" , &p->unapersona. altura) ; 
printf ('Introduzca su peso: " )  ; 
scanf ( "%d" , &p->unapersona .peso) ; 
printf("1ntroduzca su fecha de nacimiento: " ) ;  
scanf ( "%d %d %d" , &p->unapersona. fec. dia, 

&p->unapersona.fec.mes, 
&p->unapersona.fec.anyo); 

printf ("Introduzca su salario:") ; 
scanf ("%d", &p->salario) ; 
printf ("introduzca numero de horas:") ; 
scanf ( "%d" , &p->horas-por-semana) ; 

1 
void muestra(struct persona-empleado up) 
i 
puts ( "\n\n\ tDatos de un empleado" ) ; 

print€("Nombre: %s \n",up.unapersona.nombre); 
printf("Edad: %d \n",up.unapersona.edad); 
printf("fecha de nacimiento: %d-%d-&d\n", 

puts ("\n\n\t " ) ;  



P- '. 

Estructuras y uniones 307 

up.unapersona.fec.dia, 
up.unapersona.tec.mes, 
up.unapersona.fec.anyo); 

printf("A1tura: %d \ n " , u p . u n a p e r s o n a . a I t u r d ) ;  
printf("Peso: %d \n",up.unapersona.peso); 
printf("Numero de horas: %d \n",up.horas-por-semana); 

1 

El acceso a miembros dato de estructuras anidadas requiere el uso de múitiples operadores punto. 
Ejemplo: acceso ai áía del mes de la fecha de nacimiento de un e 

up.unapercona.Eec.dka 

Las estructuras se pueden anidar a cualquier grado. También es posible inicializar estructuras 
anidadas en la definición. El siguiente ejemplo inicializa una variable Luis de tipo struct persona. 

struct persona Luis { "Lu is "  , 25, 1940, 40, (12, 1, 701); 

9.4. ARRAYS DE ESTRUCTURAS 

Se puede crear un array de estructuras tal como se crea un array de otros tipos. Los arrays de estructuras 
son idóneos para almacenar un archivo completo de empleados, un archivo de inventario, o cualquier 
otro conjunto de datos que se adapte a un formato de estructura. Mientras que los arrays proporcionan 
un medio práctico de almacenar diversos valores del mismo tipo, los arrays de estructuras le permiten 
almacenar juntos diversos valores de diferentes tipos, agrupados como estructuras. 

Muchos programadores de C utilizan arrays de estructuras como un método para almacenar datos 
en un archivo de disco. Se pueden introducir y calcular sus datos de disco en arrays de estructuras y a 
continuación almacenar esas estructuras en memoria. Los arrays de estructuras proporcionan también un 
medio de guardar datos que se leen del disco. 

La declaración de un array de estructuras info-libro se puede hacer de un modo similar a 
cualquier array, es decir, 

struct info-libro libros[100]; 

asigna un array de 100 elementos denominado libros. Para acceder a los miembros de cada uno de los 
elementos estructura se utiliza una notación de array. Para inicializar el primer elemento de 1 ibros, por 
ejemplo, su código debe hacer referencia a los miembros de libros [ O I de la forma siguiente: 

strcpy(libros[O] .titulo, "C++ a su alcance"); 
strcpy(1ibros [O] .autor, "Luis Joyanes") ; 
strcpy(1ibros [O] .editorial, "McGrdw-Hill') ; 
libros[O] .anyo = 1999; 

También puede inicializarse un array de estructuras en el punto de la declaración encerrando la lista 

struct info-libro libros[3] = { "C++ a su alcance", "Luis Joyanes", 
'McGraw-Hill", 1999, "Estructura de datos", "Luis Joyanes", 
"McGraw-Hill", 1999, "Problemas en Pascal", "Angel Hermoso", 
"McGraw-Hill", 19971 ; 

de inicializadores entre llaves, ( }. Por ejemplo, 

En el siguiente ejemplo se declara una estructura que representa a un número racional, un array de 
números racionales es inicializado con valores al azar. 



308 Programación en C. Metodología, algoritmos y estructura de datos 

struct racional 
{ 
int N, 
int D; 

1 ;  
struct racinal rs[4] = { 1,2, 2 , 3 ,  -4,7, O,l}; 

9.4.1. Arrays como miembros 

Los miembros de las estructuras puede ser asimismo arrays. En este caso, será preciso extremar las 
precauciones cuando se accede a los elementos individuales del array. 

Considérese la siguiente definición de estructura. Esta sentencia declara un array de 1 O 0  estructuras, 
cada estructura contiene información de datos de empleados de una compañía. 

struct nomina 
I 

char nombre [ 3 O 1 ; 
int dependientes; 
char departamento [ 10 1 ; 
float horas_dias[71; / *  array de tipo float * /  
float salario; 

} empleado [lo01 ; / *  Un array de 100 empleados * /  

Ejemplo 9.1 

Una librería desea cafalogar su inventario de libros. El siguiente programa crea un array de 100 
estructuras, donde cada estructura contiene diversos tipos de variables, incluyendo arrays. 

#include <stdio.h> 
#include <ctype.h> 
#include <stdlib.h> 

struct inventario 
i 
char titulo [25] ; 
char €echasub [ 2 O 1 ; 
char autor [301  ; 
int num; 
int pedido; 
€loat precio-venta; 

I ;  
int main ( ) 

{ 
struct inventario libro[1001; 
int total = O ;  
char resp, b[211 ; 

do { 
printf ("Total libros %d \n", (total+l)) ; 
printf ("¿Cuál es el título?: " 1  ; 
gets(libro[totall .titulo) ; 

printf("iCuá1 es la fecha de publicación?: " ) ;  
gets ( libro [total I . f echagub) ; 



Estructuras y uniones 

-- 

309 

printf ("¿Quién es el autor?") ; 
gets(libro[total] .autor) ; 

printf ("¿Cuántos libros existen?: " )  ; 
scanf ( "%d" , &libro [total I . num) ; 
printf("¿Cuántos ejemplares existen pedidos?: " 1 ;  
scanf ('%d",&libro[total] .pedido) ; 

printf("¿Cuál es el precio de venta?: " ) ;  

gets (b) ; 
libro[total].precio-venta = atof(b); / *  conversión a real * /  
f f lush (stdin) ; 

printf ("\n ¿ H a y  más libros? (S/N)") ; 
scanf ("%e", &resp) ; 
f f lush (stdin) ; 
resp = toupper(resp); / *  convierte a mayúsculas * /  
if (resp == 'S') 
i 
total++; 
continue ; 

1 
} while (resp == 'S'); 
return O ;  

9.5. UTILIZACIÓN DE ESTRUCTURAS COMO PARÁMETROS 

C permite pasar estructuras a funciones, bien por valor o bien por referencia utilizando el operador &. 
Si la estructura es grande, el tiempo necesario para copiar un parámetro struct a la pila puede ser 
prohibitivo. En tales casos, se debe considerar el método de pasar la dirección de la estructura. 

El listado siguiente muestra un programa que pasa la dirección de una estructura a una función para 
entrada de datos. La misma variable estructura la pasa por valor a otra función para salida de los campos. 

#include <stdio.h> 

/ *  Define el tipo estructura infogersona * /  

struct info-persona { 
char nombre [ 2 O I ; 
char calle[30]; 
char ciudadL251; 
char provincia[25] ; 
char codiqopostal[ól; 

1 ;  
/ *  prototipos de funciones * /  

void entrad_pna(struct infogersona* pp); 
void ver-info(struct infogersona p); 

void main (void) 
{ 
struct info-persona reg-dat; 
/ *  Pasa por referencia la variable * /  
entradgna(&reg-dat); 
/ *  Pasa por valor * /  
ver-info(reg-dat); 



310 Programación en C. Metodología, algoritmos y estructura de datos 

printt( "\nPulsa cualquier carácter para continuar\n"); 
getchar ( )  ; 

} 

void entrad_pna(struct infogersona" pp) 
i 

puts("\n Entrada de los datos de una persona\n"); 

printf ("Nombre: 'I) ; gets (pp->nombre) ; 
printf ("Calle: " )  ; gets (pp->calle) ; 
printf ("Ciudad: " )  ; gets (pp->ciudad) ; 
printf ("Provincia: " )  ; gets (pp->provincia) ; 
printf ("Código postal: " )  ; gets (pp->codigopostal) ; 

/ *  Para aceder a los campos se utiliza el selector -> * /  

1 
void ver-info(struct into-persona p )  
i 

puts('\n\tInformación realativa a la persona"); 
puts (p. nombre) ; 
puts ( p .  calle) ; 
puts ( p .  ciudad) ; 
puts (p.provincia) ; 
puts (p.codigoposta1) ; 

i 

Si se desea pasar la estructura por referencia, necesita situar un operador de referencia & antes 
de reg-dat en la llamada a la función e n t r a d a s n a  ( ) . El parhetro 
de ser tipo puntero s t r u c t  i n f o q e r s o n a *  pp . El acceso a miembro 
a partir de un puntero requiere el uso del selector ->. 

9.6. UNIONES 

Las uniones son similares a las estructuras en cuanto que agrupa a una serie de variables, pero la forma 
de almacenamiento es diferente y, por consiguiente, efectos diferentes. Una estructura (s truct) permite 
almacenar variables relacionadas juntas y almacenadas en posiciones contiguas en memoria. Las 
uniones, declaradas con la palabra reservada union, almacenan también miembros múltiples en un 
paquete; sin embargo, en lugar de situar sus miembros unos detrás de otros, en una unión, todos los 
miembros se solapan entre sí en la misma posición. El tamaño ocupado por una unión se determina así: 
es analizado el tamaño de cada variable de la unión, el mayor tamaño de variable será el tamaño de la 
unión. La sintaxis de una unión es la siguiente: 

union n o m b r e  { 
t i p o l  m i  e m b r o l  ; 
t ipo2  mi enibro2; 
. . .  

1 ;  

Un ejemplo: 

union Pruebaünion 
{ 
float Iteml; 
int Item2; 



Estructuras y uniones 31 1 

La cantidad de memoria reservada para una unión es igual a la anchura de la variable más grande. 
En el tipo union, cada uno de los miembros dato comparten memoria con los otros miembros de la 
unión. La cantidad total de memoria utilizada por la unión comparte es de 8 bytes, ya que el elemento 
double es el miembro dato mayor de la unión. 

union comparte 
{ 
char letra; 
int elemento; 
float precio; 
double z; 

1 ;  

Una razón para utilizar una unión es ahorrar memoria. En muchos programas se deben tener varias 
variables, pero no necesitan utilizarse todas al mismo tiempo. Considérese la situación en que se 
necesitan tener diversas cadenas de caracteres de entrada. Se pueden crear varios arrays de cadenas de 
caracteres, tales como las siguientes: 

char linea_ordenes[80]; 
char mensaje-error [ 80 I ; 
char ayuda [ 80 I ; 
Estas tres variables ocupan 240 bytes de memoria. Sin embargo, si su programa no necesita utilizar 

las tres variables simultáneamente, ¿por qué no permitirle compartir la memoria utilizando una unión? 
Cuando se combinan en el tipo union frases, estas variables ocupan un total de sólo 80 bytes. 

union frases { 
char linea_ordenes[80] ; 
char mensaje_error[80]; 
char ayuda [80] ; 

} cadenas, *pc; 

Para referirse a los miembros de una unión, se utiliza el operador punto (.), o bien el operador -> si 
se hace desde un puntero a unión. Así: 

cadenas.ayuda; 
cadenas.mensaje-error; 
pc -> mensaje-error; 

9.7. ENUMERACIONES 

Un enum es un tipo definido por el usuario con constantes de nombre de tipo entero. En la declaración 
de un tipo enum se escribe una lista de identificadores que internamente se asocian con las constantes 
enteras O, 1, 2, etc. 

Formato 

1. enum 
{ 

I ;  

i 

1 ;  

enumerador , enumerador , . . .  enumerador 

2. enum nombre 

enumerador , enumerador , . . .  enumerador 

Y 



-7 
312 Programación en C. Metodología, algoritmos y estructura de datos 

En la declaración del tipo enum pueden asociarse a los identificadores valores constantes en vez de 

3. enum nombre 
la asociación que por defecto se hace (O, 1, 2, etc.). Para ello se utiliza este formato: 

{ 
enumeradorl = expresiÓn-constantel, 
enumerador = expresión-constante , 

enumerador, = exprsesión-constante, 
. . .  

I ;  

Ejemplo 9.2 

Usos tipicos de enUm 

enum Interruptor 
{ 
ENCENDIDO, 
APAGADO 

I ;  
enum Boolean 
{ 
FALSE, 
TRUE 

I ;  

Ejemplo 
enum 
I 

1 ;  
ROJO, VERDE, AZUL 

define tres constantes ROJO, VERDE y AZUL de valores iguales a O, 1 y 2, respectivamente. Los 
miembros datos de un enum se llaman enumeradores y la constante entera por defecto del primer 
enumerador de la lista de los miembros datos es igual a O. Obsérvese que, al contrario que struct y 
union, los miembros de un tipo enum se separan por el operador coma. El ejemplo anterior es 
equivalente a la definición de las tres constantes, ROJO, VERDE y AZUL, tal como: 

const int ROJO = O; 
const int VERDE = 1; 
const int AZUL = 2; 

En la siguiente declaración de tipo enumerado se le da un nombre al tipo 

enum dias-semana 
{ 

1 ;  

Una variable de tipo enum dias-semana puede tomar los valores especificados en la declaración 

enum dias-semana dia; 

for (dia = LUNES; dia <= DOMINGO; dia++) 

LUNES, MARTES, MIERCOLES, JUEVES, VIERNES, SABADO, DOMINGO 

del tipo. El siguiente bucle está controlado por una variable del tipo enumerado. 

1 

. . .  



n 

1 

Estructuras y uniones 313 

printf ("%d ",dia) ; 
1 

La ejecución del bucle escribiría en pantalla: O 1 2 3 4 5 6. 
A los enumeradores se pueden asignar valores constantes o expresiones constantes durante la 

enum Hexaedro 
i 

declaración: 

VERTICES = 8, 
LADOS = 12, 
CARAS = 6  

1 

Ejercicio 9.2 

El siguiente programa muestra el uso de la enumeracidn boo1 ean . El programa lee un texto y cuenta 
las vocales leídas. La función vocal ( ) devuelve TRUE si el carácter de entrada es vocal. 

#include <stdio.h> 
#include <ctype.h> 

enum boolean 
i 

1 ;  
enum boolean vocal(char c); 

void main() 
{ 

FALSE, TRUE 

char car; 
int numvocal = O; 

puts("\nIntroduce un texto. Para 
while ( (car = getchar ( )  ) ! = '  \n' ) 
i 

if (vocal (tolower (car) ) ) 
numvocal++; 

1 

terminar: INTRO 

printf("\n Total de vocales leidas: %d\n",numvocal); 
1 
enum boolean vocal(char c) 

switch (c) 
{ 
case 'a': 
case 'e': 
case 'ir: 
case ' o ' :  
case 'u': 

default: 
return TRUE; 

return FALSE; 
I 

i 



31 4 Programación en C. Metodología, algoritmos y estructura de datos 

9.7.1. sizeof de tipos de datos estructurados 

El tamaño en bytes de una estructura, de una unión o de un tipo enumerado se puede determinar con el 
operador sizeof. 

El siguiente programa extrae el tamaño de una estructura (struct), de una unión (union) con 
miembros dato idénticos, y de un tipo enumerado. 

/ *  declara una union */ 
union tipo-union 
i 
char c; 
int i; 
float f ; 
double d; 

I ;  

/ *  declara una estructura */ 
struct tipo-estructura 
i 
char c; 
int i; 
float f; 
double d; 

I ;  

/ *  declara un tipo enumerado */ 
enum monedas 
{ 

PESETA, 
DURO, 
CINCODUROS, 
CIEN 

I ;  
. . .  

printf ("\nsizeof (tipo-estructura) : %d\n", 

printf ("\nsizeof (tipo-union) : Bd\n", 

printf ("\nsizeof (monedas) : %d\n", 

sizeof(struct tipo-estructura) 1 ;  

sizeof(union tipo-union)); 

sizeof(enum monedas)); 

La salida que se genera con estos datos: 

sizeof(tipo_estructura):15 
sizeof(tipo-union): 8 
sizeof(monedas): 2 

9.7.2. typedef 

Un typedef permite a un programador crear un sinónimo de un tipo de dato definido por el usuario o 
de un tipo ya existente. 



Estructuras y uniones 315 

Ejemplo 

Uso de typedef para declarar un nuevo nombre, Longi t u d ,  de tipo de dato double. 
. . .  

typedef double Longitud; 

Longitud Distancia (const struct Pto* p, const struct Pto* p2) 
{ 

. . .  

. . .  
Longitud longitud = sqrt(r-cua); 
return longitud; 

I 

Otros ejemplos: 

typedef char* String; 

typedef const char* string; 

Puede declararse un tipo estructura o un tipo unión y a continuación asociar el tipo estructrura a un 
nombre con typedef. 

Ejemplo 

Declaración del tipo de dato complejo y asociación a complex. 

struct complejo 
{ 

1 ;  
typedef struct complejo complex; 

/ *  definición de un array de complejos * /  
complex v[121; 

float x,y; 

La ventaja de typedef es que permite dar nombres L; tipos LV datos más acordes con lo que 
representan en una determinada aplicación. 

9.8. CAMPOS DE BIT 
El lenguaje c permite realizar operaciones con los bits de una palabra. Ya se han estudiado los 
operadores de manejo de bits: >>, <<, . . . Con los campos de bits, C permite acceder a un número de 
bits de una palabra entera. Un campo de bits es un conjunto de bits adyacentes dentro de una palabra 
entera. La sintaxis para declarar campos de bits se basa en la declaración de estructuras. El formato 
general: 

struct identificador-campo { 
tipo nombrel: longitudl; 
tipo nombre2: longitud2; 
tipo nombre3: longitud3; 

tipo nombren: longitudn; 
i ;  



t 

Programación en C. Metodología, algoritmos y estructura de datos 

tipo ha de ser entero, int; generalmente unsigned int 
longitud es el número de bits consecutivos que se toman 

Ejemplo 9.3 

En este ejemplo se declara un campo de bits para representar en formato comprimido el día, mes aiio 
(los dos últimos dígitos) y si el año es bisiesto. 

struct fecha { 
unsigned dia: 5; 
unsigned mes: 4; 
unsigned año: 7; 
unsigned bisiesto: 1; 

I ;  

Ejemplo 9.4 

El siguiente ejemplo muestra cómo puede utilizarse campos de bits para representar .si están o no 
conectados diversos componentes eléctricos. Cada componente se representa con un pag, con un bit; 
cuando esté puesto a cero es que no está conectado, cuando esté puesto a uno está conectado. 

struct componentes { 
unsigned diodo: 1; 
unsigned resistencia: 1; 
unsigned amperimetro: 1; 
unsigned transistor: 1; 
unsigned condensador: 1; 
unsigned inductancia: 1; 

1 ;  

Los campos individuales se referencian como cualquier otro miembro de una estructura: selector 
punto ( . ). Por ejemplo, 

struct componentes ct; 
ct.diodo = 1; 
if (ct.amperimetro) 
i 
1 

Al declarar campos de bits, la suma de los bits declarados puede exceder el tamaño de un entero; en 
ese caso se emplea la siguiente posición de almacenamiento entero. No está permitido que un campo de 
bits solape los límites entre dos int. 

Al declarar una estructura puede haber miembros que sean variables y otros campos de bits. La 
siguiente estructura tiene esta característica: 

struct reg-estudiante{ 
char nombre [ 3 3 1 ;  
char ape111 [ 3 3 1 ;  
char ape112 [331 ; 
unsigned masculino: 1; 
unsigned femenino: 1; 
unsigned curso: 3; 

1 ;  



Estructuras y uniones 31 7 

Los campos de bits se utilizan para rutinas de encriptación de datos y fundamentalmente para ciertos 
interfaces de dispositivos externos. Presentan ciertas restricciones. Así, no se puede tomas la dirección 
de una variable campo de bits; no puede haber arrays de campos de bits; no se puede solapar fronteras 
de int. Depende del procesador que los campos de bits se alineen de izquierda a derecha o de derecha 
a izquierda (conviene hacer una comprobación para cada procesador, utilizando para ello un union con 
variable entera y campos de bits). 

Ejemplo 9.5 
Se tiene la función pet icion-acceso í 1 capaz de direccionar una posición de memoria de 8 bits si 
recibe como argumento una variable llamada ochobit s. Con esta variable controla a través de cada 
bit las peticiones de acceso a cada uno de los ocho periféricos distintos con que trabaja; eventos 
externos son los que se encargan de cargar la variable ochobit s. 

Se quiere escribir una función que determine cuantos accesos se producen por cada periférico en un 
bucle de 1000 llamadas a la función peticion-acceso ( ) . Se supone que cada llamada sólo activa 
un periférico. 

Análisis 

El tipo de la variable ochobits va a ser una estructura de campos de bits, cada campo con longitud 1; 
por lo que puede tener dos estados, O o 1, para indicar no acceso o sí acceso. Un array de 8 elementos, 
tantos como periféricos se utiliza para contar los accesos a cada periférico. 

/ *  Tipo estructura de campos de bits * /  

struct perifericos{ 
unsigned perfl: 1; 
unsigned perf2: 1; 
unsigned perf3: 1; 
unsigned perf4: 1; 
unsigned perf5: 1; 
unsigned perfó: 1; 
unsigned perf7: 1; 
unsigned perf8: 1; 

I ;  
/ *  Prototipo de función peticion-acceso0 * /  
void petition-acceso (const struct perifericos ochobits); 

/ *  Función que contabiliza los accesos a cada periférico. * /  

void accesosgerf(int acceper[]) 
l 

int i; 
const struct perifericos ochobits; 
const neventos=1000; 
for (izo; i<8; ) 
accper [i++l= 0; 

/ *  Bucle principal de 1000 llamadas * /  
for (¡=O; i<neventos; i++) 
{ 



318 Programación en C. Metodología, algoritmos y estructura de datos 

petition-acceso(ochobits); 
if (ochobits.perf1) 

elseif (ocho.bits.perf2); 

elseif (ocho.bits.perf3); 

elseif (ocho.bits.perf4); 

elseif (ocho.bits.perf5); 

elseif (ocho.bits.perf6); 

elseif (ocho.bits.perf7); 

elseif (ocho.bits.perf8); 

++acceper [O I ; 

++acceper [ 13 ; 

++acceper [2] ; 

++acceper [ 3 I ; 

++acceper [ 4 3 ; 

++acceper [ 51 ; 

++acceper [ 61 ; 

++acceper [7] ; 

Ejemplo 9.6 
Haciendo uso de una estructura de campo de bits y de una union, en este ejercicio se escribe un 
programa para visualizar la decodijkación en bits de cualquier carácter leído por teclado. 

Análisis 

Se declara un tipo estructura campo de bits, con tantos campos como bits tiene un byte, que a su vez es 
el almacenamiento de un carácter. La decodificación es inmediata declarando una union entre una 
variable carácter y una variable campo de bits del tipo indicado. 

#include <stdio.h> 
#include <conio.h> 

#define mayus (ch) ((ch>=’a’ && ch<=‘z’) ? (ch+’A’-’a‘) : ch) 

stuct byte { 

unsigned int a: 1; 
unsigned int b: 1; 
unsigned int c: 1; 
unsigned int d: 1; 
unsigned int e: 1; 
unsigned int f: 1; 
unsigned int g: 1; 
unsigned int h: 1; 

I ;  
union charbits{ 

char ch; 
struct byte bits; 

Icaracter; 
void decodifica (struct byte b); 



Estructuras y uniones 31 9 

void main() 
t 
puts ('Teclea caracteres. Para salir carácter XI); 
do { 
caracter.ch = getcheo; 
printf ( ' I  : " )  ; 
decodifica(caracter.bits); 

)while mayusc(caracter.ch) !='X'); 
1 
void decodifica(struct byte b) 

/ *  Los campos de bits se alinean de derecha a izquierda, por esa razón se 
escriben los campos en orden inverso * /  
print f ( " % 2 u % 2 u % 2 ~ % 2 ~ % 2 u % 2 ~ % 2 U % 2 u % ~ u  \nu', 

b.h, b.g, b.f, b.e, b.d, b.c, b.b, b.a); 

9.9. RES N 

Para crear una variable estnictura se escribe 

struct empleado pepe; sinónimo de un tipo existente. 

typedef struct empleado 
regempleado; 



I 320 Programación en C. Metodología, algoritmos y estructura de datos 

9.10. EJERCICIOS 



9.11. PROBLEMAS 

9.1. cular el número de 
as; declarar fecha 

92. Escribe un programa de facturación de clientes. 
Los clientes tienen un nombre, el número de 
unidades solicitadas, el precio de cada unidad y 

se encuentra: motoso, atrasado, 
ama debe generar a los diversos 

de facturación de clien- 
tes de tal modo que se puedan obtener los 
siguientes listados. 

* Clientes en estado moroso. 
Clientes en estado pagado con fachira mayor 

9.4. Escribe un programa que permita hacer las ope- 
raciones de suma, resta, multiplicación y divi- 
sión de números complejos. El tipo complejo ha 
de definirse como una estructura, 

9.5. Un número racional se caracteriza por el nume- 
rador y denominador. Escribe un programa para 

93. Modifique el pro 

de una determinada cantidad. 

número racional. 

información: 

Estructuras y uniones 321 

Número de perdidas de balón. 
4 Número de rebotes cogidos. 
* Nombre del mejor anotador de triples. 

Número de triples del mejor triplisia 

de futbol aiiadir la información: 

información para todos los equipos integrantes 
en ambas ligas. 

9.7. Modificar el programa 9.6 para obtener los 
siguientes informes o datos. 

Listado de los mejores triplistas de cada 

Máximo goleador 
equipo. 

la distancia entre 

Dados dos puntos 

Dados tres 



CAPíTULO 10 

PUNTEROS 
(APUNTADORES) 

CONTENIDO 

10.1. Direcciones en memoria. 
10.8. Concepto de puntero 

10.9. Punteros null y void. 
10.4. Punteros a punteros. 
10.6. Punteros a arrays. 
10.6. Arrays de punteros. 
10.7. Punteros a cadenas. 
10.8. Aritmética de punteros. 

(apuntador). 

10.9. Punteros constantes frente 
a punteros a constantes. 

10.10. Punteros como argumento 
de funciones. 

10.11. Punteros a funciones. 
10.12. Punteros a estructuras. 
10.13. Resumen. 
10.14. Ejercicios. 
10.15. Problemas. 



1 
Los punteros en C tienen la fama, en el mundo de la programación, de 
dificultad, tanto en el aprendizaje como en su uso. En este capítulo se tratara de 
mostrar que los punteros no son más difíciles de aprender que cualquier otra 
herramienta de programación ya examinada o por examinar a lo largo de este 
libro. El puntero, no es más que una herramienta muy potente que puede 
utilizar en sus programas para hacerlos más eficientw y flexibles. Los punteros 
son, sin género de dudas, una de las razones fundamentales para qye el 
lenguaje C sea tan potente y tan utilizado. 

Una vaziabiepmtem (opmtero, como se iiarna nonnahnente) es una variable 
que contiene direcciones de otras variables. 'ibdas las variables vistas hasta este 
momento contienen valores de datos, por el contrario las variables punteros 
contienen valores que son direcciones de memoria donde se almacenan datos. En 
resumen, un puntero es una variable que contiene una dirección de memoria, y 
utilizando punteros su programa puede realizar muchas tareas que no sería 
posible utiliwtndo tipos de datos estándar. 

En este capítulo se estudiarán los diferentes aspectos de los punteros: 

* 

0 punteros; 
0 utilización de punteros; 
0 asignación dinámica de memoria; 
0 aritmética de punteros; 
0 arrays de punteros; 
0 punteros a punteros, funciones y estructuras. 

CONCEPTOS CLAVE 
Puntero (apuntador). 
Direcciones. 
Referencias. 
Palabra reservada null. 
Palabra reservada void. 

Arrays de punteros. 
Aritmética de punteros. 
Punteros versus arrays. 
Tipos de punteros. 
Palabra reservada const. 

323 



324 Programación en C. Metodología, algoritmos y estructura de datos 

n 

10.1. DIRECCIONES EN MEMORIA 

75 

Cuando una variable se declara, se asocian tres atributos fundamentales con la misma: su nombre, su tipo 
y su dirección en memoria. 

Ejemplo 

int n; / *  asocia al nombre n, el tipo int y la dirección 
de alguna posición de memoria donde se almacena 
el valor de n 

* /  
Ox4f f fd34 

n- 
int 

Esta caja representa la posición de almacenamiento en memoria. El nombre de la variable está a la 
izquierda de la caja, la dirección de variable está encima de la caja y el tipo de variable está debajo en 
la caja. Si el valor de la variable se conoce, se representa en el interior de la caja 

int 

Al valor de una variable se accede por medio de su nombre. Por ejemplo, se puede imprimir el valor 
de n con la sentencia: 

printf ("%d",n) ; 

A la dirección de la variable se accede por medio del operador de dirección &. Por ejemplo, se 
puede imprimir la dirección de n con la sentencia: 

printf ("%p", &n) ; 

El operador de dirección " & "  «opera» (se aplica) sobre el nombre de la variable para obtener sus 
direcciones. Tiene precedencia de nivel 15 con el mismo nivel que el operador lógico NOT ( ! ) y el 
operador de preincremento + +. (Véase Capítulo 4.) 

Ejemplo 10.1 

Obtener el valor y la dirección de una variable. 

#include <stdio.h> 
void main() 
t 
int n = 75; 
print f ( "n = %d\n" , n) ; / *  visualiza el valor de n * /  
printf ("&n = %p\n", &n) ; / *  visualiza dirección de n * /  

1 



Punteros (apuntadores) 325 

Ejecución 
n = 4 5  
&n = Ox4fffd34 

Nota: 0x4 f f f d3 4 es una dirección en código hexadecimal. 
If Ox" es el prefijo correspondiente al código hexadecimal. 

10.2. CONCEPTO DE PUNTERO (APUNTADOR)' 

Cada vez que se declara una variable C, el compilador establece un área de memoria para almacenar el 
contenido de la variable. Cuando se declara una variable i n t  (entera), por ejemplo, el compilador asigna 
dos bytes de memoria. El espacio para esa variable se sitúa en una posición específica de la memoria, 
conocida como dirección de memoria. Cuando se referencia (se hace uso) al valor de la variable, el 
compilador de C accede automáticamente a la dirección de memoria donde se almacena el entero. Se 
puede ganar en eficacia en el acceso a esta dirección de memoria utilizando un puntero. 

Cada variable que se declara en C tiene una dirección asociada con ella. Un puntero es una dirección 
de memoria. El concepto de punteros tiene correspondencia en la vida diaria. Cuando se envía una carta 
por correo, su información se entrega basada en un puntero que es la dirección de esa carta. Cuando se 
telefonea a una persona, se utiliza un puntero (el número de teléfono que se marca). Así pues, una 
dirección de correos y un número de teléfono tienen en común que ambos indican dónde encontrar algo. 
Son punteros a edificios y teléfonos, respectivamente. Un puntero en C también indica dónde encontrar 
algo, ¿,dónde encontrar los datos que están asociados con una variable? Un puntero C es la dirección de 
una Variable. Los punteros se rigen por estas reglas básicas: 

un puntero es una variable como cualquier otra; 
una variable puntero contiene una dirección que apunta a otra posición en memoria; 
en esa posición se almacenan los datos a los que apunta el puntero; 
un puntero apunta a una variable de memoria. 

El valor de un puntero es 
una dirección. La dirección 
depende del estado de la 
computadora en la cual se 
ejecuta el programa. 

Direccion de 
memoria alta 

1 O01 

999 
p + 1000 p contiene el valor 100, que 

es la dirección de ai f ii 

*p es el valor del elemento 
al que apunta p Por consi- 
guiente, *p  toma el valor 
'A' 

1 o1 
alia + 100 

99 

Dirección de 
memoria baja 

Figura 10.1. Relaciones entre *p y el valor de p (dirección de al fa). 

' En Latinoamérica es usual emplear el término u/xuttuúor. 



326 Programación en C. Metodología, algoritmos y estructura de datos 

I , 
1 

El tipo de variable que almacena una dirección se denomina puntero. 

Ejemplo 10.2 
#include <stdio.h> 
void main() 
i 
int n = 75; 
int* p = &n; / *  p variable puntero, tiene dirección de n*/ 
printf("n = %d, &n = %p,  p = %p\n",n,&n,p); 
printf ("&p = %p\n",&p); 

1 

Ejecución 
n = 75, &n = Ox4fffd34, p = Ox4fffd34 

Ox4fffd34 

&p = 0~4fffd30 

Ox4 f € f d30 

p I0x4fffd34I n 

i n t *  i n t  

La variable p se denomina «puntero» debido a que su valor «apunta» a la posición de otro valor. Es 
un puntero int cuando el valor al que apunta es de tipo int como en el ejemplo anterior. 

10.2.1. Declaración de punteros 

Al igual que cualquier variable, las variables punteros han de ser declaradas antes de utilizarlas. La 
declaración de una variable puntero debe indicar al compilador el tipo de dato al que apunta el puntero; 
para ello se hace preceder a su nombre con un asterisco (*), mediante el siguiente formato: 

<tipo de dato apuntado> *<identificador de puntero> 

Algunos ejemplos de variables punteros: 

int* ptrl; / *  Puntero a un tipo de dato entero (int)*/ 
long* ptr2; / *  Puntero a un tipo de dato entero largo (long int)*/ 
char* ptr3; / *  Puntero a un tipo de dato char * /  
float *f; / *  Puntero a un tipo de dato float * /  

Un operador * en una declaración indica que la variable declarada almacenará una dirección de un 
tipo de dato especificado. La variable p trl almacenará la dirección de un entero, la variable p t r 2  
almacenará la dirección de un dato tipo long, etc. 

Siempre que aparezca un asterisco ( * ) en una definición de una variable, ésta es una variable 
puntero. 



10.2.2. Inicialización* (iniciación) de punteros 

Punteros (apuntadores) 7 - 7  
AI igual que otras variables, C no inicializa los punteros cuando se declaran y es preciso inicializarlos 
antes de su uso. La inicialización de un  puntero proporciona a ese puntero la dirección del dato 
correspondiente. Después de la inicialización, se puede utilizar el puntero para referenciar los datos 
direccionados. Para asignar una dirección de memoria a un puntero se utiliza el operador de referencia 
&. Así, por ejemplo, 

&valor 

significa «la dirección de valor». Por consiguiente, el método de inicialización (iniciación), también 
denominado estático, requiere: 

Asignar memoria (estáticamente) definiendo una variable y a continuación hacer que el puntero 
apunte al valor de la variable. 

int i; 
int *p; 
p = &i; 

/ *  define una variable i * /  
/ *  define un puntero a un entero p*/  
/ *  asLgnd la dirección de i a p * /  

Asignar un valor a la dirección de memoria. 

*p = 50; 

Cuando ya se ha definido un puntero, el asterisco delante de la variable puntero indica «e/ contenido 
den de la memoria apuntada por el puntero y será del tipo dado. 

Este tipo de inicialización es estática, ya que la asignación de memoria utilizada para almacenar el 
valor es fijo y no puede desaparecer. Una vez que la variable se define, el compilador establece suficiente 
memoria para almacenar un valor del tipo de dato dado. La memoria permanece reservada para esta 
variable y no se puede utilizar para otra cosa durante la ejecución del programa. En otras palabras, no 
se puede liberar la memoria reservada para una variable. El puntero a esa variable se puede cambiar, 
pero permanecerá la cantidad de memoria reservada. 

El operador & devuelve la dirección de la variable a la cual se aplica, 

Otros ejemplos de inicialización estáticos: 

1. int edad = 50; /*define una variable edad de valor 50 * /  
int *p-edad = &edad; /*define un puntero de enteros inicializándolo 

con la dirección de edad * /  

2. char *p; /*Fi.gura 10.1 * /  
char alfa = 'A'; 
p = &alfa; 

3. char cd[] = "Compacto'; 
char *c; 
. C  = cd; /*c tiene la dirección de Id cadena cd * /  

Es un error asignar un valor, a un contenido de una variable puntero si previamente no se ha 
inicializado con la dirección de una variable, o bien se le ha asignado dinámicamente memoria. Por 
ejemplo: 

float* px; 
*px = 23.5; 

/ *  puntero a float * /  
/ *  error, px no contiene dirección * /  

' El diccionario de la Real Academia dc la Lengua Española s d o  acepta el término iniciar y el término inicial. El empleo 
de iniridircir sólo se.justifica por el extenso uso de dicho término en .jerga informática. 



328 Programación en C. Metodología, algoritmos y estructura de datos 

t- 

Existe un segundo método para inicializar un puntero, es mediante asignación dinámica de 
memoria. Este método utiliza las funciones de asignación de memoria malloc ( ) , calloc ( ) , 
reallot ( ) y free ( 1 ,  y se analizará más adelante en el capítulo siguiente. 

10.2.3. Indirección de punteros 

Después de definir una variable puntero, el siguiente paso es inicializar el puntero y utilizarlo para 
direccionar algún dato específico en memoria. El uso de un  puntero para obtener el valor al que apunta, 
es decir, su dato apuntado se denomina indireccionar el puntero («desreferencia- el puntero»); para ello, 
se utiliza el operador de indirección * . 

int edad; 
int* p-edad; 
p-edad= &edad; 
*p-edad= 50; 

Las dos sentencias anteriores se describen en la Figura 10.2. Si se desea imprimir el valor de edad, 

printf ("%d",edad) ; / *  imprime el valor de edad * /  

También se puede imprimir el valor de edad dereferenciando el puntero a edad: 

printf ( "%da', *p-edad) ; /*indirecciona p-edad * /  

se puede utilizar la siguiente sentencia: 

memoria 

direcciones 

~ d x l  en 
120.000 

p-edad en 
350.420 

línea de memoria 

a- 

- 

Figura 10.2. p-rdad contiene la dirección de ( d d ( i ,  i)-cTti,iri apunta a la variable edad 

El listado del siguiente programa muestra el concepto de creación, inicialización e indirección de 
una variable puntero. 

#include <stdio.h> 
char c; / *  variable global de tipo carácter*/ 
int main0 

char *pc; / *  un puntero a una variable carácter*/ 
pc = &c; 
for (c = 'A'; c <= ' Z ' ;  e++); 

return O; 
printf ("%e" I *pc) ; 

1 



Punteros (apuntadores) 329 

La ejecución de este programa visualiza el alfabeto. La variable puntero pc es un puntero a una 
variable carácter. La línea pc = &c asigna a pc la dirección de la variable c (&c) . El bucle for 
almacena en c las letras del alfabeto y la sentencia print f ( "%c" , *pc ) ; visualiza el contenido de la 
variable apuntada por pc; c y pc se refieren a la misma posición en memoria. Si la variable c , que se 
almacena en cualquier parte de la memoria, y pc , que apunta a esa misma posición, se refiere a los 
mismos datos, de modo que el cambio de una variable debe afectar a la otra; pc y c se dice que son 
alias, debido a que pc actúa como otro nombre de c. , 

Valor de dirección del 
puntero 

Dircccione5 O0 0 1  0 2  03 04 05 06 07 
Memoria 

Figura 10.3. pc' y c direccionan la misma posición de memoria. 

La Tabla 1 O. 1 resume los operadores de punteros. 

Tabla 10.1. Operadores de punteros. 
~~ 

Operador Propósito 

& Obtiene la dirección de una variable. 
* 
* 

Define una variable como puntero. 
Obtiene el contenido de una variable puntero. 

Nota 

Son variables punteros aquellas que apuntan a la posición en donde otrds variablels de programa 
se almacenan. 

I 10.2.4. Punteros y verificación de tipos I 

Los punteros se enlazan a tipos de datos específicos, de modo que C verificará si se asigna la dirección 
de un tipo de dato al tipo correcto de puntero. Así, por ejemplo, si se define un puntero a float, no se 
le puede asignar la dirección de un carácter o un entero. Por ejemplo, este segmento de código no 
funcionará: 

I 

I 

float * f p ;  
char c; 
fp = &c; / *  no es válido * /  

C no permite la asignación de la dirección de c a f p, ya que f p es una variable puntero que apunta 
a datos de tipo real, float. 

C requiere que las variables puntero direccionen realmente variables del mismo tipo de dato que 
está ligado a los punteros en sus declaraciones. 



330 Programación en C. Metodología, algoritmos y estructura de datos 

10.3. PUNTEROS null Y void 
Normalmente un puntero inicializado adecuadamente apunta a alguna posición específica de la memoria. 
Sin embargo, un puntero no inicializado, como cualquier variable, tiene un valor aleatorio hasta que se 
inicializa el puntero. En consecuencia, será preciso asegurarse que las variables puntero utilicen 
direcciones de memoria válida. 

Existen dos tipos de punteros especiales muy utilizados en el tratamiento de sus programas: los 
punteros void y null (nulo). 

Un puntero nulo no apunta a ninguna parte -dato válido- en particular, es decir, «un puntero nulo 
no direcciona ningún dato válido en memoria». Un puntero nulo se utiliza para proporcionar a un  
programa un medio de conocer cuando una variable puntero no direcciona a un dato válido. Para declarar 
un puntero nulo se utiliza la macro NULL, definida en los archivos de cabecera STDEF . H, S T DI O.  H, 
STDLIB. H y STRING. H .  Se debe incluir uno o más de estos archivos de cabecera antes de que se pueda 
utilizar la macro NULL. Ahora bien, se puede definir NULL en la parte superior de su programa (o  en un 
archivo de cabecera personal) con la línea: 

#define NULL O 

Un sistema de inicializar una variable puntero a nulo es: 
char *p = NULL; 

Algunas funciones C también devuelven el valor NUL,L si se encuentra un error. Se pueden añadir test 

char *p;  
p = malloc(l2l*sizeof(char)); 

para el valor NULL comparando el puntero con NULL: 

~f ( p  == N U L L )  

puts ("Error de asignación de memoria") ; 
I 

o bien 
if (p ! =  NULL)  . . . 

if ( p )  . _ _  
/ *  este if es equivalente a : * /  

Otra forma de declarar un puntero nulo es asignar un valor de O. Por ejemplo, 

int *ptr = (int * )  O; / *  ptr es un puntero nulo * /  

El modelo (casting) anterior ( int * 1 ,  no es necesario, hay una conversión estándar de O a una 
variable puntero. 

int *ptr = O; 

Nunca se utiliza un puntero nulo para referenciar un valor. Como antes se ha comentado, los 
punteros nulos se utilizan en un test condicional para determinar si un puntero se ha inicializado. En el 
ejemplo 

i f  (ptr) i 
printf("Va1or de la variable apuntada por ptr es: Xd\n",*ptr); i 

se imprime un valor si el puntero es válido y no es un puntero nulo. 
Los punteros nulos se utilizan con frecuencia en programas con arrays de punteros. Cada posición 

del array se inicializa a NULL; después se reserva memoria dinámicamente y se asigna a la posición 
correspondiente del array, la dirección de la memoria. 

En C se puede declarar un puntero de modo que apunte a cualquier tipo de dato, es decir, no se 
asigna a un tipo de dato específico. El método es declarar el puntero como un puntero vold *, 
denominado puntero genérico. 



Punteros (apuntadores) 331 

void *ptr; / *  declara un puntero void, punLero genérico * /  

El puntero p t r  puede direccionar cualquier posición en memoria, pero el puntero no está unido a 
un tipo de dato específico. De modo similar, los punteros void pueden direccionar una variable 
float, una char ,  o una posición arbitraria o una cadena. 

Nota 

No confundir punteros void y NULL. Un puntero nulo no direcciona ningiín dato válido. Un 
puntero void direcciona datos de un tipo no especificado. Un puntero void se puede igualar a 
nulo si no se direcciona ningún dato válido. Nulo es un valor; void es un tipo de dato. 

10.4. PUNTEROS A PUNTEROS 

Un puntero puede apuntar a otra variable puntero. Este concepto se utiliza con mucha frecuencia en 
programas complejos de C. Para declarar un puntero a un puntero se hace preceder a la variable con 
dos asteriscos ( * * ) . 

En el ejemplo siguiente ptr5 es un puntero a un puntero. 

int valor-e = 100; 
i n t  *ptrl = &valor-e; 
int **ptr5 = &ptrl; 

ptri y ptr5 son punteros. ptrl apunta a la variable valor-e de tipo i n t .  ptr5 contiene la 

Se puede asignar valores a valor-e con cualquiera de las sentencias siguientes: 
dirección de p t r 1. En la Figura 10.4 se muestran las declaraciones anteriores. 

valor-e = 95; 
*pt.rl= 105; 
**ptr5 = 99; 

ptrl 8080 

8081 

ptri 8082 

8083 

/ *  Asigna 105 d valor-c * /  
/ *  Asignd 99 a valor-e * /  

8000 

8080 

va 1 o r-e 8 
Figura 10.4. Un puntero a un puntero. 

Ejemplo 
char c = 'z'; 
char* pc = &c; 
char** ppc = &pc; 
char*** pppc = &ppc; 
* * *  pppc = 'm'; / *  cambia el valor de c a 'm' * /  

Y 



332 Programación en C. Metodologia, algoritmos y estructura de datos 

10.5. PUNTEROS Y ARRAYS 

Los arrays y punteros están fuertemente relacionados en el lenguaje C .  Se pueden direccionar arrays 
como si fueran punteros y punteros como si fueran arrays. La posibilidad de almacenar y acceder a 
punteros y arrays, implica que se pueden almacenar cadenas de datos en elementos de arrays. Sin 
punteros eso no es posible, ya que no existe el tipo de dato cadena (string) en C .  No existen 
variables de cadena. Únicamente constantes de cadena. 

10.5.1. Nombres de arrays como punteros 

Un nombre de un array es simplemente un puntero. Supongamos que se tiene la siguiente declaración 
de un array: 

int lista[5] = 110, 20, 3 0 ,  40, 5 0 1 ;  

M i m o r  i u 

LO 

L O  

3 0  

40 

Figura 10.5. Un array almacenado en memoria. 

Si se manda visualizar i i s t a [ O 1 se verá 1 O . Pero, ¿qué sucederá si se manda visualizar * 1 i s  ta? 
Como un nombre de un array es un puntero, también se verá 1 O . Esto significa que 

lista + O apunta a lista[Ol 
lista + 1 apunta a lista[ll 
lista + 2 apunta a lista [2 I 
lista + 3 apunta a lista [3] 
lista + 4 apunta a lista[4] 



-- 

Punteros (apuntadores) 333 

Por consiguiente, para imprimir (visualizar), almacenar o calcular un elemento de un array, se puede 
utilizar notación de subíndices o notación de punteros. Dado que un nombre de un array contiene la 
dirección del primer elemento del array, se debe indireccionar el puntero para obtener el valor del 
elemento. 

El nombre de un array es un puntero, contiene la dirección en memoria de comienzo de la secuencia 
de elementos que forma el array. Es un puntero constante ya que no se puede modificar, sólo se puede 
acceder para indexar a los elementos del array. En el ejemplo se pone de manifiesto operaciones 
correctas y erróneas con nombres de array. 

float v[101; 
float *p; 
floa x = 100.5; 
int j; 

/ *  se indexa a partir de v * /  
for (j= 0; j<10; j++) 
*(v+j) = j"10.0; 

p = v+4; / *  se asigna la dirección del quinto elemento * /  
v = &x; / *  error: intento de modificar un puntero constante * /  

10.5.2. Ventajas de los punteros 

Un nombre de un array es una constante puntero, no una variable puntero. No se puede cambiar el valor 
de un nombre de array, como no se pueden cambiar constantes. Esto explica por qué no se pueden 
asignar valores nuevos a un array durante una ejecución de un programa. Por ejemplo, si cnombre es 
un array de caracteres, la siguiente sentencia no es válida en C: 

cnombre = "Hermanos DaltÓn"; 

Se pueden asignar valores al nombre de un array sólo en el momento de la declaración, o bien 
utilizando funciones, tales como (ya se ha hecho anteriormente) strcpy ( ) . 

Se pueden cambiar punteros para hacerlos apuntar a valores diferentes en memoria. El siguiente 
programa muestra como cambiar punteros. El programa define dos valores de coma flotante. Un puntero 
de coma flotante apunta a la primera variable VI y se utiliza en printf ( ) . El puntero se cambia 
entonces, de modo que apunta a la segunda variable de coma flotante v2. 

#include <stdio.h> 

int main() 
t 
float vl = 756.423; 
lloat v2 = 900.545; 
lloat *p-v; 

p-v = 6,vl; 
printf ("El primer valor es %f \n", *p-v) ; /*se imprime 756.423 * /  

p-v = &v2; 
printI("E1 segundo valor es %I \n", *p-v) ; /*se imprime 900.545 * /  
return 0; 

I 

Por esta facilidad para cambiar punteros, la mayoría de los programadores de C utilizan punteros en 
lugar de arrays. Como los arrays son fáciles de declarar, los programadores declaran arrays y a 
continuación utilizan punteros para referencia a los elementos de dichos arrays. 



c 

334 Programación en C. Metodología, algoritmos y estructura de datos 

10.6. ARRAYS DE PUNTEROS 

Si se necesita reservar muchos punteros a muchos valores diferentes, se puede declarar un arrup de 
punteros. Un array de punteros es un array que contiene como elementos punteros, cada uno de los 
cuales apunta a un tipo de dato específico. La línea siguiente reserva un array de diez variables puntero 
a enteros: 

int *ptr[lOl; / *  reserva un array de 10 punteros a enteros * /  

La Figura 10.6 muestra cómo C organiza este array. Cada elemento contiene una dirección que 
apunta a otros valores de la memoria. Cada valor apuntado debe ser un entero. Se puede asignar a un 
elemento de ptr una dirección, tal como para variables puntero no arrays. Así, por ejemplo, 

ptr[5] = &edad; / *  ptr[5] apunta u. la dirección de edad * /  
ptr[4] = NULL; / *  ptr[4] no contiene dirección alguna * /  

Otro ejemplo de arrays de punteros, en este caso de caracteres es: 

char *puntos 1251 ; / *  array de 25 punteros a carácter * /  

De igual forma, se podría declarar un puntero a un array de punteros a enteros. 

int * (*ptrlO) [ I ; 

y las operaciones paso a paso son: 

(*ptrlO) es un puntero, ptrl0 P S  un nombre de variable. 
(*ptrlO) [ 1 es un puntero a un array 
*(*ptrlO) [ I  es un puntero u. un a r r a y  de punteros 
int *(*ptrlO)[] es un puntero un array de punteros de variables int 

Una matriz de número enteros, o reales, puede verse como un array de punteros; de tantos elementos 
como filas tenga la matriz, apuntando cada elemento del array a un array de enteros o reales, de tantos 
elementos como columnas. 

Cada elemento puede apuntar a un  entero 
memoria 

í41 

Figura 10.6. Un array de 10 punteros a enteros. 



Punteros (apuntadores) 335 

10.6.1. Inicialización de un array de punteros a cadenas 

La inicialización de un array de punteros a cadenas se puede realizar con una declaración similar a ésta: 

char *nombres-meses [12 1 = { "Enero", "Febrero", "Marzo", 
"Abri 1 I' , "Mayo" , "Junio" , 
" Ju 1 io" , 
"Octubre", "Noviembre", 
"Diciembre" } ; 

"Ago s t 0'' , I' S ep t i embr e " , 

10.7. PUNTEROS DE CADENAS 

Los punteros se pueden utilizar en lugar de índices de arrays. Considérese la siguiente declaración de un 
array de caracteres que contiene las veintiséis letras del alfabeto internacional (no se considera la f i ) .  

char alfabeto [27] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 

Declaremos ahora p un puntero a char 

char *p; 

Se establece que P apunta al primer carácter de alfabeto escribiendo 

p = &alfabeto[Ol; / *  o también p = alfabeto * /  

de modo que si escribe la sentencia 

p r i n t f  ("%c \ n " , * p )  ; 

se visualiza la letra A, ya que p apunta al primer elemento de la cadena. Se puede hacer también 

p = halfabetotl51; 

de modo que p apuntará al carácter 16" (la letra Q). Sin embargo, no se puede hacer 

p = &alfabeto; 

ya que alfabeto es un array cuyos elementos son de tipo char, y se produciría un error al compilar 
(tipo de asignación es incompatible). 

______L 
A B C D E F G H I J K L M  

Figura 10.7. Un puntero a i i l f . i h = t  o I 1 ',I . 

Es posible, entonces, considerar dos tipos de definiciones de cadena: 

char cadenal[]='Hola viejo mundo"; / *  array contiene una cadena * /  
char *cptr = "C a su alcance"; / *  puntero a cadena, el sistema 

reserva memoria para la cadena*/ 

10.7.1. Punteros versus arrays 

El siguiente programa implementa una función para contar el número de caracteres de una cadena. En 
el primer programa, la cadena se describe utilizando un array, y en el segundo, se describe utilizando un 
puntero. 

. I  



336 Programación en C. Metodología, algoritmos y estructura de datos 

/ *  Implementación con un array * /  
#include <stdio.h> 
int longitud(const char cad[] 1 ;  
void main() 
t 
static char cad[ I = "Universidad Pont i.ficid"; 
printf("La longitud de %s es %d caracteres\n", 

cad, longitud(cad1 ) ; 
1 
int longitud(const char cad[]) 
i 
int posicion = O ;  
while (cad[posicion] ! =  '\O') 
{ 

1 
return posicion; 

posícion++; 

1 
El segundo programa utiliza un puntero para la función que cuenta los caracteres de la cadena. 

Además, utiliza la aritmética de punteros para indexar los caracteres. El bucle termina cuando llega al 
último carácter, que es el delimitador de una cadena: \ O. 

/ *  Implementación con un puntero * /  

#include istdio.h> 
int longitud(const char*); 
void main() 
{ 
static char cad[] = "Universidad Pontificia"; 
print€ ("La longitud de %s es %d cdracteres\n", 

cad, longitud (cad) ) ; 
1 
int longitud(const char* cad) 
{ 
int cuenta = O; 
while (*cad++) cuenta++; 
return cuenta; 

1 
En ambos casos se imprimirá: 
L a  longitud de Universidad Pontificia es 22 caracteres 

Comparaciones entre punteros y arrays de punteros 
int *ptrl[ 1 ; / *  Array de punteros a int * /  
int (*ptr2 1 [ 1 ; / *  Puntero a un array de elementos int * /  
int * (*ptr3) [ I  ; / *  Puntero a un array de punteros a int * /  

10.8. ARITMÉTICA DE PUNTEROS 

Al contrario que un nombre de array, que es un puntero constante y no se puede modificar, un puntero 
es una variable que se puede modificar. Como consecuencia, se pueden realizar ciertas operaciones 
aritméticas sobre punteros. 



Punteros (apuntadores) 337 

A un puntero se le puede sumar o restar un entero n; esto hace que apunte n posiciones adelante, o 
atrás de la actual. Una variable puntero puede modificarse para que contenga una dirección de memoria 
n posiciones adelante o atrás. Observe el siguiente fragmento: 

int v[ lO]  ; 
int *p; 
p = v; 
(v+4); / *  apunta al 5" elemento * /  
p = p+6; / *  contiene la dirección del 7: elemento * /  

A una variable puntero se le puede aplicar el operador ++, o el operador - - . Esto hace que contenga 

float m[201; 
float *r; 
r = m; 
r++; / *  contiene la dirección del elemento siguiente * /  

Recuérdese que un puntero es una dirección, por consiguiente, sólo aquellas operaciones de «sentido 

la dirección del siguiente, o anterior elemento. Por ejemplo: 

común» son legales. No tiene sentido, por ejemplo, sumar o restar una constante de coma flotante. 

Operaciones no vadas con punteros 
No se pueden sumar dos punteros. 
No se pueden multiplicar dos punteros. 
No se pueden dividir dos punteros. 

Ejemplo 10.3 

Si p apunta a la letra A en alfabeto, si se escribe 
9 

p = p+l; 

entonces p apunta a la letra B. 
Se puede utilizar esta técnica para explorar cada elemento de al f abeto sin utilizar una variable de 

índice. Un ejemplo puede ser 
p = &alfabeto[Ol; 
for (i = O ;  i < strlen(a1fabeto); i++) 
i 
printf ("%c", *p)  ; 
p = p+l; 

I ;  

Las sentencias del interior del bucle se pueden sustituir por 

printf ("%cc", *p++)  ; 

El ejemplo anterior con el bucle for puede ser abreviado, haciendo uso de la característica de 
terminador nulo al final de la cadena. Utilizando la sentencia while para realizar el bucle y poniendo 
la condición de terminación de nulo o byte cero al final de la cadena. Esto elimina la necesidad del bucle 
for y su variable de control. El bucle for se puede sustituir por 

while (*p) printf ("%c", * p + + )  ; 

mientras que *p toma un valor de carácter distinto de cero, el bucle while se ejecuta, el carácter se 
imprime y p se incrementa para apuntar al siguiente carácter. Al alcanzar el byte cero al final de la 
cadena, *p toma el valor de I \ O o cero. El valor cero hace que el bucle termine. 



338 Programación en C. Metodología, algoritmos y estructura de datos 

10.8.1. Una aplicación de punteros: conversión de caracteres 

El siguiente programa muestra un puntero que recorre una cadena de caracteres y convierte cualquier 
carácter en minúsculas a caracteres mayúsculas. 

/ *  Utiliza un puntero como índice de un array de caracteres 

* /  
#include istdio.h> 
#include <conio.h> 
void main() 

y convierte caracteres miniísculas a mayúsculas 

I 

char *p; 
char CadenaTextoí811; 

puts ("Introduzca cadena a convertir : " )  ; 
gets(CadenaTexto); 

/ *  p apunta al primer carácter de la cadena * /  
p = &CadenaTexto[OJ; / *  equivale a p = CadenaTexto * /  

/ *  Repetir mientras *p no sea cero * /  
while (*p) 
i 

/ *  restar 32, constante de código ASCII * /  
i f  ( ( * p  >= 'a') && (*p <= 'Z')) 

else 
*p++ = "p-32; 

p + + ;  
1 
puts ( "La cadena conver t idd es : 'I ) ; 
puts(CadenaText0); 

puts ("\nPulse íntro (Enter) pard  continudr") ; 
getch( ) ; 

i 

Obsérvese que si el carácter leído está en el rango entre ii y z ; es decir, es una letra minúscula, 
la asignación 

*p++ = *p-32; 

se ejecutará, y restar 32 del código ASCII de una letra minúscula convierte a esta letra en mayúscula). 

C A R C H E L E J O  

putchar(*p); 
p + + ;  
putchar(*p); 
p+ t ;  

putchar í *p)  ; 
p + + ;  
putchar ( * p )  ; 

Figura 10.8. *p  I i se utiliza para acceder de modo incremental en la cadena 



Punteros (apuntadores) 339 

10.9. PUNTEROS CONSTANTES FRENTE A PUNTEROS A CONSTANTES 

Ya está familiarizado con punteros constantes, como es el caso de un nombre de un array. Un puntero 
constante es un puntero que no se puede cambiar, pero que los datos apuntados por el puntero pueden 
ser cambiados. Por otra parte, un puntero a una constante se puede modificar para apuntar a una 
constante diferente, pero los datos apuntados por el puntero no se pueden cambiar. 

10.9.1. Punteros constantes 

Para crear un puntero constante diferente de un nombre de un array, se debe utilizar el siguiente formato: 

<tipo de dato > *const <nombre puntero> = <dirección de variable >; 

Como ejemplo de una definición de punteros de constantes, considérense las siguientes sentencias: 

int x; 
int y; 
int *const pl = &x; 

pl es un puntero de constantes que apunta a x, por lo que p l  es una constante, pero *pl es una variable. 
Por consiguiente, se puede cambiar el valor de *pl , pero no pl . 

Por ejemplo, la siguiente asignación es legal, dado que se cambia el contenido de memoria a donde 
apunta PI, pero no el puntero en sí. 

"PI = y; 

Por otra parte, la siguiente asignación no es legal, ya que se intenta cambiar el valor del puntero 

pl = &y; 

El sistema para crear un puntero de constante a una cadena es: 

char  *const nombre = "Luis"; 

nombre no se puede modificar para apuntar a una cadena diferente en memoria. Por consiguiente, 

*nombre = 'C'; 

es legal, ya que se modifica el dato apuntado por nombre (cambia el primer carácter). Sin embargo, no 
es legal: 

nombre = &Otra-Cadena; 

dado que se intenta modificar el propio puntero 

10.9.2. Punteros a constantes 

El formato para definir un puntero a una constante es: 

const <tipo de dato elemento> *<nombre puntero> = 

Algunos ejemplos: 

const int x = 25; 
const int y = 50; 
const int *pl = &x; 

<dirección de constante >; 



340 Programación en C. Metodología, algoritmos y estructura de datos 

en los que pl se define como un puntero a la constante x. Los datos son constantes y no el puntero; en 
consecuencia, se puede hacer que pl apunte a otra constante. 

p l  = & y ;  

Sin embargo, cualquier intento de cambiar el contenido almacenado en la posición de memoria a 
donde apunta pl creará un error de compilación. Así, la siguiente sentencia no se compilará 
correctamente: 

" p l  = 15; 

Nota 

Una definición de un puntero constante tiene la palabra reservada const delante del nombre del 
puntero, mientras que el puntero a una definición constante requiere que la palabra reservada 
COA&& se sitúe antes del tipo de dato. Así, la definición en el pnmer caso se puede leer como 
«punteros constante o de constante», mientras que en el segundo caso la definición se lee «puntero 
a tipo constante de dato». 

La creación de un puntero a una constante cadena se puede hacer del modo siguiente: 

const char *apellido = "Remirez"; 

En el prototipo de la siguiente función se declara el argumento como puntero a una constante: 

float cargo (const float "v) ; 

10.9.3. Punteros constantes a constantes 

El último caso a considerar es crear punteros constantes a constantes utilizando el formato siguiente: 

const <tipo de dato elemento> *const <nombre puntero> = 

Esta definición se puede leer como <<un tipo constante de dato y un puntero constanten. Un ejemplo 

c o n s t  int x = 25; 
const int "const pl = &x; 

<dirección de constante >; 

puede ser: 

que indica: «PI es un puntero constante que apunta a la constante entera x». Cualquier intento de 
modificar pl o bien *pl producirá un error de compilación. 

Regla 

Si sabe que un puntero siempre apuntará a la misma posición y nunca necesita ser reubicado 

Si sabe que el dato apuntado por el puntero nunca necesitará cambiar, defina el puntero como 
(recolocado), defínalo como un puntero constante. 

un puntero a una constante. 



Punteros (apuntadores) 7 6" 

I 

I 

Ejemplo 10.4 

Un puntero a una constante es diferente de un puntero constante. El siguiente ejemplo muestra las 
diferencias. 

/ *  
Este trozo de código define cuatro variables: 
un puntero p; un puntero constante cp; un puntero pc a una 
constante y un puntero constdnte cpc a una constante 

* /  
int *p; 
++ (*P) ; 
++p;  
int *const cp; 
++ (*CP) ; 
++cp; 
const int * pc; 
++ (*pc) ; 
++pc ; 

/ *  puntero a un int * /  
/ *  incremento del entero *p * I  
/ *  incrementa un puntero p * /  
/ *  puntero constante a un int * /  
/ *  incrementa el entero *cp * /  
/ *  no válido: puntero cp es constante * /  
/ *  puntero a una constante int * /  
/ *  no válido: int * pc es constante * /  
/ *  incrementa puntero pc * /  

const int * const cpc; / *  puntero constante a constante i n t  * /  
++ (*cpc) ; / *  no válido: int *cpc es constante * /  
++cpc; / *  no válido: puntero cpc es constante * /  

Regla 
o en blanco no es significativo en la declaracidn de punteros. L 

son equivalentes: 
int* p; 
int * p; 
int *p; 

10.10. PUNTEROS COMO ARGUMENTOS DE FUNCIONES 

Con frecuencia se desea que una función calcule y devuelva más de un valor, o bien se desea que una 
función modifique las variables que se pasan como argumentos. Cuando se pasa una variable a una 
función @aso por valor) no se puede cambiar el valor de esa variable. Sin embargo, si se pasa un puntero 
a una variable a una función (paso por direccicín) se puede cambiar el valor de la variable. 

Cuando una variable es local a una función, se puede hacer la variable visible a otra función 
pasándola como argumento. Se puede pasar un puntero a una variable local como argumento y cambiar 
la variable en la otra función. 

Considere la siguiente definición de la función ~ncrernentar~ ( 

void Incrementari(int *i) 
i 

i 

La llamada a esta función se realiza pasando una dirección que 

int i; 
i = 10; 
Incrementar5 (&i) ; 

*i += 5; 

para llamar a la función 1ncrementar5 ( ) utilice: 

, que incrementa un entero en 5:  

itilice esa función. Por ejemplo, 



342 Programación en C. Metodología, algoritmos y estructura de datos 

Es posible mezclar paso por referencia y por valor. Por ejemplo, la función f uncl definida como 

void funcl(int *s, int t) 
{ 

* S  = 6; 
t = 25; 

} 

y la invocación a la función podría ser: 

int i,  j; 
i =  5; 
j = 7; 
funcl (&i, j) ; /*llamada a funcl * /  

Cuando se retorna de la función tunc1 tras su ejecución, i será igual a 6 y j seguirá siendo 7, ya 
que se pasó por valor. El paso de un nombre de array a una función es lo mismo que pasar un puntero 
al array. Se pueden cambiar cualquiera de los elementos del array. Cuando se pasa un elemento a una 
función, sin embargo, el elemento se pasa por valor. En el ejemplo 

int lista[] = {l, 2, 31; 
func(lista[l], listaL21) ; 

ambos elementos se pasan por valor. 

En C ,  por defecto, el paso de parámetros se hace por valor. C no tiene parhetros por referencia, 
hay que emularlo mediante el paso de la dirección de una variable, utilizando punteros en los 
argumentos de la función. 

En el siguiente ejemplo, se crea una estructura para apuntar las temperaturas más alta y más baja de 

struct temperatura { 

un día determinado. 

float alta; 
float ba j a ; 

1 ;  

Un caso típico podría ser almacenar las lecturas de un termómetro conectado de algún modo posible 
a una computadora. Una función clave del programa lee la temperatura actual y modifica el miembro 
adecuado, alta o baja, en una estructura temperatura de la que se pasa la dirección del argumento 
a un parámetro puntero. 

void registrotemp(struct temperatura *t) 
i 
float actual ; 

leertempactual(actud1); 
if (actual > t ->  alta) 

else if (actual < t ->  baja) 
t -> alta = actual; 

t -> baja = actual; 
i 

La llamada a la función se puede hacer con estas sentencias: 

struct temperatura tmp; 
registrotemp(&tmp); 



Punteros (apuntadores) 343 

10.1 1. PUNTEROS A FUNCIONES 

Hasta este momento se han analizado punteros a datos. Es posible declarar punteros a cualquier tipo de 
variables, estructura o array. De igual modo, las funciones pueden declarar parámetros punteros para 
permitir que sentencias pasen las direcciones de los argumentos a esas funciones. 

Es posible también crear punteros que apunten a funciones. En lugar de direccionar datos, los 
punteros de funciones apuntan a código ejecutable. Al igual que los datos, las funciones se almacenan 
en memoria y tienen direcciones iniciales. En C se pueden asignar las direcciones iniciales de funciones 
a punteros. Tales funciones se pueden llamar en un modo indirecto, es decir, mediante un puntero cuyo 
valor es igual a la dirección inicial de la función en cuestión. 

La sintaxis general para la declaración de un puntero a una función es: 

Tipo-de-retorno (*PunteroFuncion) (<lista de parámetros>); 

Este formato indica al cornpilador que P u n t  eroFunci  on es un puntero a una función que devuelve 
el tipo Tipo-de-retorno y tiene una lista de parámetros. 

Un puntero a una función es simplemente un puntero cuyo valor es la dirección del nombre de la 
función. Dado que el nombre es, en sí mismo, un puntero; un puntero a una función es un puntero a un 
puntero constante. 

Figura 10.9. Puntero a función. 
Por ejemplo: 

int f(int); / *  declara la función f * /  
int ( * p f )  (int) ; / *  define puntero pf o. función int con argumento 

int * /  
pf = f; / *  as igno .  la dirección de f a pf * /  

Ejemplo 10.5 
double ( * f p )  (int n); 
float (*p) (int i, int j); 
void (*sort) (int* ArrayEnt, unsigned n); 
unsigned ("search) (int BuscarClave,int* ArrayEnt,unsigned n); 

El primer identificador, f p , apunta a una función que devuelve un tipo double y tiene un Único 
parámetro de tipo int . El segundo puntero, p , apunta a una función que devuelve un tipo float y 
acepta dos parámetros de tipo int . El tercer puntero, sort, es un puntero a una función que 
devuelve un tipo void y toma dos parámetros: un puntero a int y un  tipo unsigned. Por Último, 
search es un puntero a una función que devuelve un tipo unsigned y tiene tres parámetros: un int , 
un puntero a int y un unsigned. 

10.11.1. Inicialización de un puntero a una función 

La sintaxis general para inicializar un  puntero a una función es: 



344 Programación en C. Metodología, algoritmos y estructura de datos 

PunteroFuncion = unaFuncion 

La función asignada debe tener el mismo tipo de retorno y lista de parámetros que el puntero a 
función; en caso contrario, se producirá un error de compilación. Así, por ejemplo, un puntero qf a una 
función double: 

double calculo (int* v; unsigned n); / *  prototipo de función * /  

double (*qf) (int*, unsigned); / *  puntero a función * /  
int r[ll] = {3,5,6,7,1,7,3,34,5,11,44}; 
double x; 
qf = calculo; / *  asigna dirección de la función * /  

x = qf(r,ll); / *  llamada a la función con el puntero a función * /  

Algunas de las funciones de la biblioteca, tales como qsort ( 1, requiere pasar un argumento que 
consta de un puntero a una función. Se debe pasar a qsort un puntero de función que apunta a una 
función. 

Ejemplo 10.6 

Se desea ordenar un array de números reales, la ordenación se va a realizar con lafincicín qsort ( I  . 

Esta función tiene un parámetro que es un puntero a función del tipo int ( * ) (const void", const 
void* 1 .  Se necesita un función de comparación, que devuelva negativo si primer argumento es menor 
que el segundo, O si son iguales y positivo si es mayor. A continuación se escribe el programa: 

#include <stdio.h> 
#include <stdlib.h> 

int compara-float(const void* a, const void* b); / *  prototipo de función 
de comparación * /  

float v[]= {34.5, -12.3, 4.5, 9.1, -2.5, 18.0, lo., 5.5); 

int main( ) 
t 
int j, n; 
int (*pf)(const void*,const void*); / *  puntero a función * /  

n = sizeof(v)/sizeof(v[O]); / *  numero de elementos * /  
printf ( "\n Numero de elementos : %d\n" , n) ; 

pf = compara-float; 
qsort( (void*)v,n,sizeof (v[O]) ,pf) ; / *  Llamada a función de 

for (j = O; j < n; j++) 
printf('%.2f 'I, vlj]); 
puts("\n Pulsa cualquier tecla para continuar. . . . "  ) ;  
j = getchar() ; 
return O ;  

biblioteca. * /  

I 

int compara-float(const void *a, const void *b) 
{ float *x, *y; 

x = (float*)a; y = (float*)b; 
return(*x - *y); 



Punteros (apuntadores) 345 

Ejemplo 10.7 

Supongamos un puntero p a una función tul como 

íloat (*p) (int i, int j) ; 

a continuación se puede asignar la dirección de la función ejemplo: 

float ejemplo(int i, int j) 
{ 

I 
return 3.14159 * i * i + j; 

al puntero p escribiendo 

p = ejemplo; 

Después de esta asignación se puede escribir la siguiente llamada a la función: 

(*P) (12,45) 

Su efecto es el mismo que 

e j emplo ( 12,4 5 ) 

También se puede omitir el asterisco (así como los paréntesis) en la llamada ( *p)  ( 12,4 5 ) : 

p (12,45) 

convirtiéndose en esta otra llamada. 

La utilidad de lasfunciones a punteros se ve más claramente si se imagina un programa grande, al 
principio del cual se desea elegir una entre varias funciones, de modo que la función elegida se llama, 
entonces, muchas veces. Mediante un puntero, la elección sólo se hace una vez: después de asignar (la 
dirección de) la función seleccionada a un puntero y a continuación se puede llamar a través de ese 
puntero. 

Los punteros a funciones también permiten pasar una funcicín como un argumento a otra función. 
Para pasar el nombre de una función como un argumento función, se especifica el nombre de la función 
como argumento. Supongamos que se desea pasar la función m i  f unc ( ) a la función suf unc ( ) . El 
código siguiente realiza las tareas anteriores: 

void sufunc(int (*f) 0) ; / *  prototipo de sufunc * /  
int mifunc(int i); / *  prototipo de mifunc * /  
void main0 
i 

sufunc (mifunc) ; 
1 

int mifunc(int i) 

return 5*i; 
1 
En la función llamada se declara la función pasada como un puntero función. 
void sufunc(int (*f) 0) 
{ 

. . .  
j = f(5); 
. . .  

1 



346 Programación en C. Metodología, algoritmos y estructura de datos 

Como ejemplo practico veamos cómo escribir una función general que calcule la suma de algunos 
valores, es decir, 

f(1) + f(2) + . . .  + f ( n )  

para cualquier función f que devuelva el tipo double y con un argumento int . Diseñaremos una 
función funcsuma que tiene dos argumentos: n,  el número de términos de la suma, yf ,  la función 
utilizada. Así pues, la función funcsuma se va a llamar dos veces, y va a calcular la suma de 

inversos(k) = 1.0/k 
cuadrados(k1 = k 

{para k = 1, 2, 3, 4, 5) 
{para k = 1, 2, 3} 

El programa siguiente muestra la función funcsuma, que utiliza la función f en un caso para 
inversos y en otro para cuadrados. 

#include <stdio.h> 
/ *  prototipos de funciones * /  
double inversos (int k) ; 
double cuadrados(int k); 
double funcsuma(int n, double (*f)(int k) ) ;  

int main( ) 

printf("Suma de cinco inversos: % . 3 1 f  \n",funcsuma(5,inversos)); 
printf("Suma de tres cuadrados: 8.31f \n",funcsuma(3,cuadrados)); 
return O; 

i 

double funcsuma(int n, double (*f) (int k)) 

double s = O ;  
int i; 
for (i = 1; i <= n; i++) 

return s; 
s += f(i); 

1 

double inversos (int k) 
1 

return 1.0/k; 
} 

double cuadrados (int k) 

return (doub1e)k * k; 
} 

El programa anterior calcula las sumas de 

a l  1.0 1.0 1.0 1.0 
1+ ~ + -  + -  + -  

2 3 4 5 
bl 1.0 + 4.0 + 9.0 

y su salida será: 

Suma de cinco inversos: 2.283 
Suma de t r e s  ciiadrcidos: 14.000 



Punteros (apuntadores) 347 

10.1 1.2. Aplicación de punteros a función para ordenación 

Algunas de las funciones de la biblioteca, tal como qsort ( ) o bsearch( ) , requieren pasar un 
argumento que consta de un puntero a una función. Se debe pasar a ambas, qsort ( ) y bsearch ( ) , un 
puntero de función que apunta hacia una función que se debe definir. qsort ( ) utiliza el algoritmo de 
ordenación rápida (quicksort) para ordenar un array de cualquier tipo de dato. bsearch ( ) utiliza la 
búsqueda binaria para determinar si un elemento está en un array. La función que debe de proporcionarse 
es para realizar comparaciones de elementos de array. En el programa siguiente, la función comparar ( ) 
se pasa a qsort ( y a bsearch ( ) . La función comparar ( ) compara entradas del array tabla y 
devuelve (retorna) un número negativo si argl es menor que arg2, devuelve cero si son iguales, o un 
número positivo si argl es mayor que arg2 . 

El programa siguiente ordena un array de números enteros y busca si existe un valor clave. 

#include <stdio.h> 
#include <search.h> 
#include <stdlib.h> 
#include <time.h> 

int comparar(const void *argl, const void *arg2); 

void main ( ) 

irit i, x; 
int tablaLl51; 
int *b; 

randomize ( 1  ; 
/ *  genera tabla de elementos aleatorios de 1 a 100 * /  
f o r  (i = O; ii15; i++) 

printf ("\n\nLista original : " )  ; 
for (i = O; i < 15; i++) 

printf ("%d ' I ,  tabla[il) ; 

tabla[i] = random(100)+1; 

/ *  Ordena tabla utilizando el algoritmo quicksort * /  
qsort((void *)tabla, (size_t)l5,sixeot(int),comparar); 

printf ("\nLista ordenada: " )  ; 
for (i = O ;  i < 15; i++) 

printf ("%d ",tabla[il 1 ;  

printf ("\n\nClave a buscar: " )  ; 
scanf ("%d", &x) ; 
/ *  Realiza una búsqueda binaria en el vector ordenado * /  
b = bsearch(&x,(void *)tabla,(size-t)15,sizeof(int),cornparar); 

if (b) 
/ *  clave encontrada * /  

printf("\nEl elemento %d está en la  tabla',^); 

printf("\nEl elemento %d no está en la  tabla",^); 
else 

printf("\nPulsd cualquier tech para continuar " ) ;  
1 = getch() ; 

1 



348 Programación en C. Metodología, algoritmos y estructura de datos 

/ *  Comparar dos elementos de la lista * /  
int comparar(const void *argl, const void *arg2) 
{ 

I 
return *(int * )  argl - *(int * )  arq2; 

Recuerde 

Los padmetros de la función q s o r t  ( ) y bsea rch  ( ) son: 
&X Dirección de la clave a buscar. 
(void * tabla Array que contiene valores a ordenar. 

0 ( s i z e - t ) l S  Número de elementos del army. 
s i zeof  ( i n t )  
comparar ( 

Tamaño en bytes de cada elemento del array. 
Nombre de la función que compara dos elementos del array. 

10.1 1.3. Arrays de punteros de funciones 

Ciertas aplicaciones requieren disponer de numerosas funciones, basadas en el cumplimiento de ciertas 
condiciones. Un método para implementar tal aplicación es utilizar una sentencia switch con muchos 
selectores case. Otra solución es utilizar un array de punteros de función. Se puede seleccionar una 
función de la lista y llamarla. 

La sintaxis general de un array de punteros de función es: 

tipoRetorno(*PunteroFunc[LongArray]) (<Lista de parámetros>); 

I. 

Ejemplo 10.8 
double ( * f p [ 3 ] )  (int n); 
void (*ordenar [MAX-ORD] ) (int* ArrdyF:nt, unsigned n) ; 

f p  apunta a un array de funciones; cada miembro devuelve un valor double y tiene un único parametro 
de tipo int . ordenar es un puntero a un array de funciones; cada miembro devuelve un tipo void y 
toma dos parámetros: un puntero a int y un uns i gned . 

Recuerde 

f unc , nombre de un elemento. 
func [ 1 es un array. 
( * f unc E I 
( * f unc [ 1 ) ( ) es un array de punteros a funciones. 
i n t  ( *func [ 1 ) ( ) es un array de punteros a funciones que devuelven valores i n t  . 

es un array de punteros. 

Se puede asignar la dirección de las funciones al array, proporcionando las funciones que ya han sido 

int funcl(int i ,  int j); 
int func2(int i, int j); 
int ( * f u n c [ ] )  (int,int) = {funcl, f u n c 2 ) ;  

declaradas. Un ejemplo es 



Punteros (apuntadores) 349 

10.1 1.4. Una aplicación de punteros de funciones 

El listado siguiente, CALCULA. c , es un programa que simula calculador que puede sumar, restar, 
multiplicar o dividir números. Se escribe una expresión simple por teclado y el programa visualiza la 
respuesta. 

El programa define cuatros funciones: sumar ( ) , restar ( ) , mult ( ) y div( ) , y un array de 
punteros a función que se inicializa a cada una de las funciones. Se pide la operación a realizar, se 
busca el índice del puntero a función que le corresponde (dependiendo del operador) y se realiza la 
llamada a la función con su puntero. 

#include <stdio.h> 
/ *  prototipos de funciones * /  
float sumar(f1oat x, float y); 
float restar(f1oat x, float y); 
float mult(f1oat x, float y); 
float div(f1oat x, float y); 

void main( ) 
i 
char signo, operadores[] = { ' + I ,  I - ' ,  ' * '  I ' / ' I ;  
float(*func[])(float, float) = {sumar, restar, mult, div}; 
int i; 
unsigned char t; 
float x, y; 

puts ("\nCalculador de expresiones") ; 
do i 
printf ("\nExpresiÓn: 'I) ; 
scanf ("%f %c %f",&x,&signo,&y); 

for (i = O; i < 4; i++) 
{ 

/ *  búsqueda del operador * /  

if (signo == operadores [ i I ) 
{ 

I 
printf("\n%.lf %c %.If = %.2f", x,signo,y,func[i] (x,y)); 

I 
printf ("\nOtra expresion?: " )  ; 
scanf ("%*c%c" ,&t);t=tolower(t); 

}while (t=='s'); 
i 

float sumar(f1oat x, float y) 
i 

i 
float restar(f1oat x, float y) 

return x + y; 

t 

I 
return x ~ y; 

float mult(f1oat x, float y) 
i 

1 
return x * y; 



350 Programación en C. Metodología, algoritmos y estructura de datos 

float div(f1odt x, float y) 

return x / y; 
i 

10.12. PUNTEROS A ESTRUCTURAS 

Un puntero también puede apuntar a una estructura. Se puede declarar un puntero a una estructura tal 
como se declara un puntero a cualquier otro objeto y se declara un puntero estructura tal como se declara 
cualquier otra variable estructura: especificando un puntero en lugar del nombre de la variable estructura. 

struct persona 
{ 
char nombre [30 I ; 
int edad; 
int altura; 
int peso; 

1 ;  
struct persona empleado = {"Amigo, Pepe", 47, 182, 85); 

struct persona *p; / *  se crea un puntero de estructura * /  
p = &empleado; 

Cuando se referencia un miembro de la estructura utilizando el nombre de la estructura, se especifica 
la estructura y el nombre del miembro separado por un  punto (.). Para referenciar el nombre de una 
persona, utilice empleado. nombre. Se referencia una estructura utilizando el puntero estructura. Se 
utiliza el operador -> para acceder a un miembro de ella. 

Ejemplo 10.9 

En este ejemplo se declara el tipo estructura t-persona, que se asocia con el tipo persona para 
facilidad de escritura. Un array de esta estructura se iniciali7a con campos al azar y se muestran por 
pantalla. 

#include <stdio.h> 

struct tsersona 
i 
char nombre [ 3 0 1  ; 
int edad; 
int altura; 
i n t  peso; 

1 ;  
typedef struct tsersona persona; 

void mostrar_persona(persona *ptr 
void main() 
i 
int i; 
persona empleados [ ] = { { "Mort i er, Pepe", 47, 182, 851, 

{"García, L u i s " ,  39, 170, 75}, 
{"Jiménez, Tom&s",18, 175, 801 } ;  

persona *p; / *  puntero a estructura * /  
p = empleados; 



for (i = O; i < 3; i++, p + + )  
mostrar_persona(p); 

1 

void mostrar_persona(persona *ptr) 
{ 
printf ("\nNombre : %s",ptr ->  nombre) ; 
printf ("\tEdad: %d 'l,ptr - >  edad); 
printf ("\tAltura: %d ",ptr -> altura) ; 
printf ("\tPeso: %d\n",ptr -> peso); 

} 

Al ejecutar este programa se visualiza la salida siguiente: 

Nombre: Mortimer, Pepe Edad: 47 Altura: 180 Peso: 85 
Nombre: Garcia, Luis Edad: 39 Altura: 170 Peso: 75 
Nombre: Jiménez, Tomás Edad: 18 Altura: 175 Peso: 80 

10.13. RESUMEN 

Los punteros son una de las herramientas más efi- 
cientes para realizar aplicaciones en C. Aunque su 
práctica puede resultar difícil y tediosa es, sin lugar a 
dudas, una necesidad vital su aprendizaje si desea 
obtener el máximo rendimiento de sus programas. 

En este capítulo habrá aprendido los siguientes 
conceptos: 

0 Un puntero es una variable que contiene la 
dirección de una posición en memoria. 
Para declarar un puntero se sitúa un asterisco 
entre el tipo de dato y el nombre de la variable, 
como en i n t  *p. 
Para obtener el valor almacenado en la direc- 
ción utilizada por el puntero, se utiliza el ope- 
rador de indirección ( * ) . El valor de p es una 
dirección de memoria y el valor de *p es el 
dato entero almacenado en esa dirección de 
memoria. 

Para obtener la dirección de una variable 
existente, se utiliza el operador de dirección 
( & ) .  

Se debe declarar un puntero antes de su uso. 
Un puntero void es un puntero que no se asig- 
na a un tipo de dato especifico y puede, por 
consiguiente, utilizarse para apuntar a tipos de 
datos diferentes en diversos lugares de su pro- 
grama. 

0 Para inicializar un puntero que no apunta a 
nada, se utiliza la constante NULL. 
Estableciendo un puntero a la dirección del pri- 
mer elemento de un array, se puede utilizar el 
puntero para acceder a cada elemento del array 
de modo secuencial. 

Asi mismo, se han estudiado los conceptos de 
aritmética de punteros, punteros a funciones, punteros 
a estructuras y arrays de punteros. 



352 Programación en C. Metodología, algoritmos y estructura de datos 

10.14. EJERCICIOS 

10.1, 

10.2. 

10.3. 

10.4. 

10.5. 

10.5. 

Encuentsa los errores en la siguiente declara- 
ción de punteros: 

int x, *p, I m, double k) 
char* b= "Cadena larga" ; { 
char* c= IC,; 
float xi 
void* r = &x; 

Dada la siguiente declaración, escribir una 

y muestre por pantalla los 

10.7. Dada la siguiente función: 

double* gorta(double* v, int 

como asgumento un punte- 1 
o 

campos. 

struct boton 
{ 
char* rotulo; 
int codigo; 

1; 

¿Qué diferencias se pueden encontrar entre un 
puntero a constante y m a  constante puntero? 

Un array unidimensional se puede indexar con 
la aritmética de punteros. ¿Qué tipo de punte- 
ro habrfa que definir para indexar un array 

o 

¿Way e r r a s  en la codificación? ¿De qué 

Dadas las siguientes definiciones: 

double w[151, x, Z ;  
void *r; 

¿Es correcta la siguiente llamada a la 
función?: 

r = gortaíw,l0,12.3); 

¿Y estas otras llamadas?: 

printf ("%if", *gorta (w, 15,lO. 5) )  ; 
z = gorta(w,15,12.3); 

tipo? 

bidirnensional? 

. .  
for  
I 

?: 

10.9. estruc- 
x de la 

struct fecha* r; 
1 t; 





CAPíTULO 11 

ASIG NACIÓN DINÁMICA 
DE MEMORIA 

CONTENIDO 

11.1. Gestión didmica de la 
memoria. 

11,s. Funcion de 
memoria m a l  

11.8. La función free ( ) . 
11.4. Funciones de asignacion 

11.6. Asignrtx<ión dintimica para 

calloc ( ) y realloc ( ) . 

arrays. 

11.6. Arrays dinámicos. 

11.7. Regias de funcionamiento 
de funciones de asignación 
dinámica. 

11.8. Resumen. 

11.8. Ejercicios. 

11.10. Problexnw. 

i 354 



Los programas pueden crear variables globales o locales. Las variables 
declaradas globales en sus programas se almacenan en posiciones fijas de 
memoria, en la zona conocida como segmento de datos del programa, y todas 
las funciones pueden utilizar estas variables. Las variables locales se almacenan 
en la pila (stack) y existen sólo mientras están activas las funciones que están 
declaradas. Es posible, también, crear variables static (similares a las globales) 
que se almacenan en posiciones fijas de memoria, pero sólo están disponibles en 
el módulo (es decir, el archivo de texto) o función en que se declaran; su espacio 
de almacenamiento es el segmento de datos. 

Tbdas estas clases de variables comparten una característica común: se defi- 
nen cuando se compila el programa. Esto significa que el cornpilador reserva 
(define) espacio para almacenar valores de los tipos de datos declarados. Es 
decir, en el caso de las variables globales y locales se ha de indicar al compila- 
dor exactamente cuántas y de qué tipo son las variables a asignar. O sea, el 
espacio de almacenamiento se reserva en el momento de la CompilaciÓn. 

Sin embargo, no siempre es posible conocer con antelación a la ejecución 
cuanta memoria se debe reservar al programa. En C, se asigna memoria en el 
momento de la ejecución en el montículo o montón (heap), mediante las 
funciones mallo@( ), realloo( ), calloa( ) y free( ), que asignan y liberan la 
memoria de una zona denominada almacén libre. 

I 

CONCEPTOS CLAVE 
O Arraydinámico. 0 Función malloc. 
O Array estático. 
O Desbordamiento de memoria. 
O Función free. 

O Gestión dinámica. 
O puritero gen4rico. 
O Variable apunhda. 

355 



356 Programación en C. Metodología, algoritmos y estructura de datos 

11.1. GESTIÓN DINÁMICA DE LA MEMORIA 

Consideremos un programa que evalúe las calificaciones de los estudiantes de una asignatura. El 
programa almacena cada una de las calificaciones en los elementos de una lista o tabla (array) y el 
tamaño del array debe ser lo suficientemente grande para contener el total de alumnos matriculados en 
la asignatura. Por ejemplo, la sentencia 

int asignatura [ 4 0 1  ; n 
reserva 40 enteros, un número fijo de elementos. Los arrays son un método muy eficaz cuando se conoce 
su longitud o tamaño en el momento de escribir el programa. Sin embargo, presentan un grave 
inconveniente si el tamaño del array sólo se conoce en el momento de la ejecución. Las sentencias 
siguientes producirían un error durante la compilación: 

scanf ("%da' , &num-estudiantes) ; 
int asignatura[num-estudiantes] ; 

ya que el compilador requiere que el tamaño del array sea constante. Sin embargo, en numerosas 
ocasiones no se conoce la memoria necesaria hasta el momento de la ejecución. Por ejemplo, si se desea 
almacenar una cadena de caracteres tecleada por el usuario, no se puede prever, a priori, el tamaño del 
array necesario, a menos que se reserve un array de gran dimensión y se malgaste memoria cuando no 
se utilice. En el ejemplo anterior, si el número de alumnos de la clase aumenta, se debe variar la longitud 
del array y volver a compilar el programa. El método para resolver este inconveniente es recurrir a 
punteros y a técnicas de asignación dinámica de memoria. 

El espacio de la variable asignada dinámicamente se crea durante la ejecución del programa, al 
contrario que en el caso de una variable local cuyo espacio se asigna en tiempo de compilación. La 
asignación dinámica de memoria proporciona control directo sobre los requisitos de memoria de su 
programa. El programa puede crear o destruir la asignación dinámica en cualquier momento durante la 
ejecución. Se puede determinar la cantidad de memoria necesaria en el momento en que se haga la 
asignación. Dependiendo del modelo de memoria en uso, se pueden crear variables mayores de 64 K. 

El código del programa compilado se sitúa en segmentos de memoria denominados segmentos de 
código. Los datos del programa, tales como variables globales, se sitúan en un área denominada 
segmento de datos. Las variables locales y la información de control del programa se sitúan en un área 
denominada pila. La memoria que queda se denomina memoria del montículo o almacén libre. Cuando 
el programa solicita memoria para una variable dinámica, se asigna el espacio de memoria deseado 
desde el montículo. 



7 

Asignación dinámica de memoria 357 

11.1.1. Almacén libre (free storel 

El mapa de memoria del modelo de un programa grande es muy similar al mostrado en la Figura I 1.1. 
El diseño exacto dependerá del modelo de programa que se utilice. Para grandes modelos de datos, el 
almacén libre (heap) se refiere al área de memoria que existe dentro de la pila del programa. Y el 
almacén libre es, esencialmente, toda la memoria que queda libre después de que se carga el programa. 

Memoria 
alta 

SP - 
ss * 
DS _____) 

cs - 
Memoria baja 

El montículo (almacén libre) 

Toda la memoria que queda libre está 
disponible en asignaciones dinámicas 
de memoria. 

Segmento de Pila 

La pila crece hacia abajo en memoria. 

Datos no inicializados. 

Datos inicializados. 

Segmento de código #n. 

Segmento de código #2. 

Segmento de código # 1 

Cada segmento dato, código o pila 
se limita a 64 K. 

Figura 11.1. Mapa de memoria de un programa. 

En C las funciones maiioc ( ) , reaiioc ( ) , caiioc ( ) y free ( asignan y liberan memoria de 
un bloque de memoria denominado el montículo del sistema. Las funciones rnalloc ( ) , cal loc ( ) y 
real loc ( ) asignan memoria utilizando asignación dinámica debido a que puede gestionar la memoria 
durante la ejecución de un programa; estas funciones requieren, generalmente, moldeado (conversión de 
tipos). 

I I .2. FUNCIÓN maiioc ( 

La forma más habitual de C para obtener bloques de memoria es mediante la llamada a la función 
rnalloc ( ) . La función asigna un bloque de memoria que es el número de bytes pasados como 
argumento. malloc ( ) devuelve un puntero, que es la dirección del bloque asignado de memoria. El 
puntero se utiliza para referenciar el bloque de memoria y devuelve un puntero del tipo void*. La forma 
de llamar a la función malloc ( ) es: 

puntero = malloc(tamaño en bytes); 

Generalmente se hará una conversión al tipo del puntero: 

tipo *puntero; 

puntero =(tipo *)malloc(tamaño en bytes); 



358 Programación en C. Metodología, algoritmos y estructura de datos 

Por ejemplo: 

long* p ;  
p = (long") malloc(32); 

El operador unario sizeof se utiliza con mucha frecuencia en las funciones de asignación de 
memoria. El operador se aplica a un tipo de dato (o una variable), el valor resultante es el número de 
bytes que ocupa. Así, si se quiere reservar memoria para un buffer de 10 enteros: 

int *r; 
r = (int*) rnalloc(lO*sizeof(int) ) ;  

Al llamar a la función mailoc ( ) puede ocurrir que no haya memoria disponible, en ese caso 
malloc ( ) devuelve NULL. 

Sintaxis de llamada a meilloc ( ) 

tipo *puntero; 

puntero = (tipo*)malloc (tamaño) ; 

devuelve es void*. 

Prototipo que incluye malloc ( 1 

void* malloc(size-t n ) ;  

La función devuelve la dirección de la variable asignada dinánhicarnente, el tipo que 

Figura 10.2. Sintaxis (formato) de la función ma 1 1 o r  í ) . 

En la sintaxis de llamada, puntero es el nombre de la variable puntero a la que se asigna la dirección 
del objeto dato, o se le asigna la dirección de memoria de un bloque lo suficientemente grande para 
contener un array de n elementos, o NULL, si falla la operación de asignación de memoria. El siguiente 
código utiliza malloc ( ) para asignar espacio para un valor entero: 

int *pEnt; 

pEnt = ( i n t * )  rnalloc(sizeof(int)); 

La llamada a malloc ( ) asigna espacio para un int (entero) y almacena la dirección de la 
asignación en pEnt . pEnt apunta ahora a la posición en el almacén libre (montículo) donde se 
establece la memoria. La Figura 10.3 muestra como pEnt apunta a la asignación del almacén libre. Así, 
por ejemplo, para reservar memoria para un array de 1 00 números reales: 

. . .  

float "BloqueMem; 
BloqueMern = (float") rnalloc(100*sizeof(float)); 

En el ejemplo se declara un puntero denominado BloqueMern y lo inicializan a la dirección devuelta 
por malloc ( ) . Si un bloque del tamaño solicitado está disponible, malloc ( ) devuelve un puntero al 
principio de un bloque de memoria del tamaño especificado. Si no hay bastante espacio de 
almacenamiento dinámico para cumplir la petición, malloc ( ) devuelve cero o NULL. La reserva de n 
caracteres se puede declarar así: 

int n; 
char *s; 

scanf ( "%d" , &n) ; 
s = (char*) rnalloc(n*sizeof(char)); 



Asignación dinámica de memoria 359 

La función mal I oc ( ) está declarada en el archivo de cabecera stdl ib . h. 

Montículo 
(almacén libre) 

I valor i r i t  I -  

plht  -b Dirección de I r i  t 

I Código de programa I 
Figura 11.3. Después de mdl ~ O C  ( ) ,  con el tamaño de un entero, pt'rit apunta a la posición del montículo 

donde se ha asignado espacio para el entero. 

Ejemplo 11.1 

En el siguiente ejemplo se lee una línea de caracteres, se reserva memoria para un buffer de tantos 
caracteres como los leídos y se copia en el buffer la cadena. 

#include <stdio.h> 
#include <string.h> / *  por el uso de strcpyo * /  

void main() 
{ 
char cad[l21], *ptr; 
int lon; 

puts ("\nIntroduce una linea de texto\n") ; 
gets (cad) ; 

lon = strlen(cad) ; 
ptr = (char*) malloc ( (lon+l) "sizeof (char) ) ; 

strcpy (ptr, cad) ; / *  copia cad a nueva área de memoria 

printf ("ptr = %s",ptr) ; / *  cad está ahora en ptr * /  
free (ptr) ; / *  libera memoria de ptr * /  

apuntada por ptr * /  

1 

La expresión 

ptr = (char*) malloc((lon+l)*sizeof(char)); 

devuelve un puntero que apunta a una sección de memoria capaz de contener la cadena de longitud 
strlen ( ) más un byte extra por el carácter I \ O al final de la cadena. 



r - - -  
1 

360 Programación en C. Metodología, algoritmos y estructura de datos 

8 %  , I 

Figura 11.4. Memoria obtenida por función malloc í ) . 

Precaución 

El almacenamiento libre no es una fuente inagotable de memoria. Si la función malloc ( ) se 
ejecuta con falta de memoria, se devuelve un puntero NULL. Es responsabilidad del programador 
comprobar siempre el puntero para asegurar que es válido, antes de que se asigne un valor al 
puntero. Supongamos, por ejemplo, que se desea asignar un array de 1.000 números reales en 
doble precisión: 

#define TOPE 1999 
double *ptr-lista; 
int i; 
ptr-lista = (double*)malloc(lOOO*sizeof(double)); 
if (ptr-lista == NULL) 
c 

puts ("Error en la asignación de memoria") ; 
return -1; / *  intentar recuperar memoria * /  

} 

for (i = O; i < 1000; i++) 
ptr-lista[i] = (double)*random(TOPE); 

Si no existe espacio de almacenamiento suficiente, la función malloc ( ) devuelve NULL. La 
escritura de un programa totalmente seguro, exige comprobar el valor devuelto por malloc í ) 
para asegurar que no es NULL. NULL es una constante predefinida en G .  Se debe incluir los 
archivos de cabecera <stdlib. h> para obtener la definición de NULL. 



Asignación dinámica de memoria 361 

Ejemplo 11.2 

El programa TESTMEM comprueba la cantidad de memoria que se puede asignar dinúmicamente (estú 
disponible). Para ello se llama a malloc ( ) , solicitando en cada llamada 1.000 bytes de memoria. 

/ *  

* /  
#include <stdio.h> 

int main() 

TESTMEM: programa para determinar memoria libre. 

I 
void *p;  
int i; 
long m = 0; 
for (i = I; ; i++) 
i 
p = malloc(1000); 
if (p == NULL) break; 
m += 1000; 

I 
printf ("\nTotal de memoria asignada %d\n",m) ; 
return O ;  

I 

Se asigna repetidamente 1 kB (Kilobytes) hasta que falla la asignación de memoria y el bucle se 
termina. 

11 2.1. Asignación de memoria de un tamaño desconocido 

Se puede invocar a la función malloc ( ) para obtener memoria para un array, incluso si no se conoce 
con antelación cuanta memoria requieren los elementos del array. Todo lo que se ha de hacer es invocar 
a malloc ( ) en tiempo de ejecución, pasando como argumento el número de elementos del array 
multiplicado por el tamaño del tipo del array. El número de elementos se puede solicitar al usuario y 
leerse en tiempo de ejecución. Por ejemplo, este segmento de código asigna memoria para un array de 
n elementos de tipo double, el valor de n se conoce en tiempo de ejecución: 

double *ad; 
int n; 
printf ("Número de elementos del array: ' I )  ; 
scanf ("%d" , &n) ; 
ad = (double*)malloc(n*sizeof(double)); 

En este otro ejemplo se declara un tipo de dato complejo, se solicita cuántos números complejos se 
van a utilizar, se reserva memoria para ellos y se comprueba que existe memoria suficiente. Al final, 
se leen los n números complejos. 

struct complejo 
i 

I ;  
int n, j; 
struct complejo *p; 

printf ("Cuantos números complejos: " )  ; 
scanf ( "%d" , &n) ; 

float x, y; 



-1 

362 Programación en C. Metodologia, algoritmos y estructura de datos 

p = (struct complejo*) malloc(n*sizeof(struct complejo)); 
if ( p  == NULL) 
i 
puts("Fin de ejecución. Error de asignación de memoria."); 
exit (-1) ; 

1 
for (j = O; jcn; j + + , p + + )  
i 
printf("Parte real e imaginaria del complejo %d : ",j); 
scanf ( " % f  %f",&p->x,&p->y) ; 

i 

11.2.2. Uso de malioc ( ) para arrays multidimensionales 

Un array bidimensional es, en realidad, un array cuyos elementos son arrays. Al ser el nombre de un 
array unidimensional un puntero constante, un array bidimensinal será un puntero a puntero constante 
(tipo **). Para asignar memoria a un array multidimensional, se indica cada dimensión del array de 
igual forma que se declara un array unidimensional. En el Ejemplo 1 1.3 se reserva memoria en tiempo 
de ejecución para una matriz de n filas y para cada fila m elementos. 

Enel ejemplo, lasentencia p = (int**) malloc (n*sizeof (int*) ) ; reservamemoriapara 
un array de n elementos, cada elemento es un puntero a entero ( int * ) . Cada iteración del bucle for 
externo requiere por teclado, el número de elementos de la fila (m);  reserva memoria para esos m 
elementos con la sentencia p [ i 1 = ( int * ) mal loc (m* s i zeof ( int ) ) ; a continuación lee los datos 
de la fila. 

Ejemplo 11.3 

/ *  matriz de n filas y cada fila de un número variable de elementos * /  
#include <stdio.hi 
#include cstdlib.h> 
int main() 
1 

int **p ; 
int n,m,i; 

do i 
printf ("\n Numero de filas: ' I ) ;  scanf ("%d",&n); 

} while (n<=O); 
p = (int**) malloc(n*sizeof(int*)); 
for (i = O; icn; i++) 
{ 
int j; 
printf ("Número de elementos de fila %d 'I, i+l) ; 
scanf ( "%da', &m) ; 
p[i] = (int*)malloc(m*sizeof (int)); 
for (j = O; j<m; j + + )  
scanf ("%d",&p[il [ j l ) ;  

1 

return 1; 



___ 

Asignación dinámica de memoria 

11.3. LIBERACIÓN DE MEMORIA, FUNCIÓN free ( ) 

Cuando se ha terminado de utilizar un bloque de memoria previamente asignado por mal loc  ( ) , u otras 
funciones de asignación, se puede liberar el espacio de memoria y dejarlo disponible para otros usos, 
mediante una llamada a la función free ( ) . El bloque de memoria suprimido se devuelve al espacio de 
almacenamiento libre, de modo que habrá más memoria disponible para asignar otros bloques de 
memoria. El formato de la llamada es 

free (puntero) 

Así, por ejemplo, para las declaraciones 

1. int *ad; 
ad = (int*)malloc(sizeof(int)); 

2. char *adc; 
adc = (char*) malloc (lOO*sizeof (char) ) ; 

el espacio asignado se puede liberar con las sentencias 

free(ad); 

Y 
free (adc) ; 

Sintaxis de Wads a free ( 1 

tipo *puntero; 

free (puntero) ; 

La variable puntero puede apuntar a una dirección de memoria de cuaiquier tipo. 
Prototipo que incluye free ( 1 

void free(void * ) ;  

. . .  

Figura 11.5. Sintaxis (formato) de la función Free ( ) .  

Ejemplo 11.4 

En este ejemplo se reserva memoria para un array de 10 estructuras; después se libera la memoria 
reservada. 

struct gato *pgato; / *  declara puntero a la estructura gato * /  

pgato = (struct gato*)malloc(lO*sizeof(struct gato)); 
if (pgato == NULL) 

else 
i 

puts ("Memoria agotada") ; 

. . .  
free (pgato) ; / *  Liberar memoria asignada a pgato * /  

1 



364 Programación en C. Metodología, algoritmos y estructura de datos 

11.4. FUNCIONES DE ASIGNACIÓN DE MEMORIA calloc ( ) y realloc ( ) 

Además de la función malloc ( ) para obtener bloques de memoria, hay otras dos funciones que 
permiten obtener memoria libre en tiempo de ejecución, éstas son calloc ( ) y  real loc ( ) . Con ambas 
se puede asignar memoria, como con mal loc ( ) , cambia la forma de transmitir el número de bytes de 
memoria requeridos. Ambas devuelven un puntero al bloque asignado de memoria. El puntero se utiliza 
para referenciar el bloque de memoria. El puntero que devuelven es del tipo void* . 

11.4.1. Función calloc ( ) 

La forma de llamar a la función calloc ( ) es: 
puntero = calloc(nÚmero elementos,tamaño de cada elemento); 

Generalmente se hará una conversión al tipo del puntero: 

tipo *puntero; 

puntero =(tipo*)calloc(numero elernentos,tamaño de cada elemento); 

El tamaño de cada elemento se expresa en bytes, se utiliza para obtenerlo el operador s i z e o f .  Por 
ejemplo, se quiere reservar memoria para 5 datos de tipo double: 

#define N 5 
double* pd; 

pd = (double*) calloc(N,sizeof(double) ) ;  

En este otro ejemplo se reserva memoria para una cadena variable: 

char *c, B[121]; 
puts('1ntroduce una línea de caracteres."); 
gets (B) ; 
/ *  Se reserva memoria para el número de caracteres + 1 para el carácter 

* /  
c = (char*) calloc(strlen(B)+l,sizeof (char)) ; 
strcpy(c,B); 

calloc ( ) devuelve NULL.  

fin de cadena. 

Al llamar a la función calloc ( ) puede ocurrir que no haya memoria disponible, en ese caso 

Sintaxis de llamada a caiioc ( ) 
tipo *puntero; 

' intnumelementos; 
... 
puntero = (tipo*)calloc (numelementoc,tamaño de tipo); 

devuelve es void*. 
La función devuelve la dirección de la variable asignada dinániicamente, el tipo que 

tiene caiioc ( ) 
void* calloc(size-t n,size-t t); 

Figura 11.6. Sintaxis (formato) de la función calloc í i 



-- 

Asignación dinámica de memoria 365 

En la sintaxis de llamada, puntero es el nombre de la variable puntero al que se asigna la dirección 
de memoria de un bloque de numelementos, o NULL si falla la operación de asignación de memoria. 

La función calloc ( ) está declarada en el archivo de cabecera st dl ib. h, por lo que será necesario 
incluir ese archivo de cabecera en todo programa que llame a la función. Se puede reservar memoria 
dinámicamente para cualquier tipo de dato, incluyendo char, float, arrays, estructuras e 
identificadores de typede f. 

En el siguiente programa se considera una secuencia de números reales, con una variable puntero a 
float se procesa un array de longitud variable, de modo que se puede ajustar la cantidad de memoria 
necesaria para el número de valores durante la ejecución del programa. 

int , 

#include <stdlib.h> 
#include <stdio.h> 

int main (void) 
t 

float *pf = NULL; 
int num, i; 

do { 
printf("NÚmero de elementos del vector: " ) ;  
scanf ( "%d" , &num) ; 

}while (num < 1); 

/ *  Asigna memoria: num*tamaño bytes * /  

pf = (float * )  calloc(num, sizeof(f1oat)); 
if (pf == NULL) 
i 
puts('Error en la asignación de memoria."); 
return 1; 

1 
printf ("\Introduce %d valores ",num) ; 
for (izo; i<num; i++) 
scanf ( " % f " , & p f  [i] ) ; 

/ *  proceso del vector * /  

/ *  liberación de la memoria ocupada * /  

free(pf); 
return O ;  

} 

11.4.2. Función realloc ( ) 

Esta función también es para asignar un bloque de memoria libre. Tiene una variación respecto a 
malloc ( ) y calloc ( ) , permite ampliar un bloque de memoria reservado anteriormente. La forma de 
llamar a la función realloc ( es: 

puntero = realloc (puntero a bloque, tamaño total de nuevo bloque) ; 

Generalmente se hará una conversión al tipo del puntero: 

tipo *puntero; 

puntero =(tipo*)realloc(puntero a bloque,tamaño total nuevo bloque); 

El tamaño del bloque se expresa en bytes. El puntero a bloque referencia a un bloque de memoria 
reservado previamente con malloc ( ) , calloc ( ) o la propia realloc ( ) . 



366 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 11.5 

Reservar memoria para una cadena y a continuación, ampliar para otra cadena más larga. 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

int main( ) 
i 

char *cadena; 
int tam; 
tam = (strlen("Primavera") +l) "sizeof (char) ; 
cadena = (char*)malloc(tam); 

strcpy (cadena, "Primavera') ; 
puts (cadena) ; 

/ *  Amplia el bloque de memoria * /  

tam += (strlen(" en Lupiana\n") +1) "sizeof (char) ; 
cadena = (char * ) realloc (cadena, tam) ; 
strcat (cadena, 'I en Lupiana\n") ; 
puts(cadena); 

/ *  liberación de memoria * /  
free (cadena) ; 
return O ;  

1 

El segundo argumento de realloc ( ) , es el tamaño total que va a tener el bloque de memoria libre. 
Si se pasa cero (O) como tamaño se libera el bloque de memoria al que está apuntando el puntero primer 
argumento, y la función devuelve NULL. En el siguiente ejemplo se reserva memoria con calloc ( ) y 
después se libera con realloc ( ) . 

#define N 10 
long* pl; 

pl = (long*) calloc (N, sizeof (long) ) ; 

pl = realloc (pl, O) ; 

El puntero del primer argumento de realloc ( ) puede tener el valor de NULL, en este caso la 
función realloc ( ) reserva tanta memoria como la indicada por el segundo argumento, en definitiva, 
actúa como malloc ( ) . 

. . .  

Ejemplo 11.6 

En este ejemplo se leen dos cadenas de caracteres; si la segunda cadena comienza por COPIA .se añade 
a la primera. La memoria se reserva con r e a l  1 oc ( ) . 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

int main( ) 
{ 

char *Cl=NULL,*C2=NULL, B[121]; 
char *clave ="COPIA"; 



Asignación dinámica de memoria 367 

int tam; 

puts ("\n\t Primera cadena I' ) ; 

gets (B) ; 
tam = (strlen(B)+l)*sizeof(char); 
C1 = (char*) realloc (Cl, tam) ; 
strcpy(C1,B); 

puts ("\n\t Segunda cadena " ) ; 
gets (B) ; 
tam = (strlen(B)+l)*sizeof(char); 
C2 = (char*) realloc (C2, tam) ; 
strcpy (C2, B) ; 

/ *  Compara los primeros caracteres de C2 con clave. 
La comparación se realiza con la función strcmpo * /  

if (strlen(c1ave) <= strlen(C2)) 
{ 
int j; 
char *R = NULL; 
R = realloc (R, (strlen(c1ave) +I ) *sizeof (char) ) ; 

for ( j = O ;  j<strlen(clave);j++) 

*(R+j) = '\O'; 

if (strcmp(clave,R)=:O) 

/ *  copia los strlen(c1ave) primeros caracteres * /  

*(R+j) = * ( C ~ + J ' ) ;  

/ *  compara con clave * /  

I 

/ *  amplia el bloque de memoria * /  
tam = (strlen(Cl)+strlen(C2)+l)*sizeof(char); 
C1 = realloc(C1,tam); 
strcat(Cl,C2) ; 

I 
1 

printf ("\nCadena primera: %s",Cl) ; 
printf ("\nCadena segunda: %s",C2) ; 
return 1; I 

I 
I 

1 

Al llamar a la función realloc ( para ampliar el bloque de memoria puede ocurrir que no haya I 

I memoria disponible; en ese caso real loc ( ) devuelve NULL. 

Sintaxis de ilamada a rsaiioc ( 

tipo *puntero; 
puntero = (tipo*) realloc (puntero, tamaño del bloque de memoria); 

La función devuelve la dirección de la variable asignada dinámicamente, el tipo que 
devuelve es void*. 

Pro&ipo que tiene realioc ( ) 
void* realloc(void* puntero,size-t t); 

Figura 11.7. Sintaxis (formato) de la función rpalloc ( 1 .  



? 

, 

368 Programación en C. Metodología, algoritmos y estructura de datos 

Hay que tener en cuenta que la expansión de memoria que realiza realloc ( ) puede hacerla en 
otra dirección de memoria de la que contiene la variable puntero transmitida como primer argumento. 
En cualquier caso, realloc ( ) copia los datos referenciados por puntero en la memoria expandida. 

La función real ioc ( ) , al igual que las demás funciones de asignación de memoria, está declarada 
en el archivo de cabecera stdlib. h. 

11.5. ASIGNACIÓN DE MEMORIA PARA ARRAYS 

La gestión de listas y tablas mediante arrays es una de las operaciones más usuales en cualquier 
programa. La asignación de memoria para arrays es, en consecuencia, una de las tareas que es preciso 
conocer en profundidad. 

para asignar 
memoria a un array de cadenas de longitud variable. 

El listado de ASIGCADS . c muestra cómo se puede utilizar la función malloc ( 

~~ ~ 

Ejemplo 11.7 

El programa ASIGCADS . c lee n líneas de texto, reserva memoria según la longitud de la línea leída, 
cuenta las vocales de cada línea e imprime cada línea y el número de vocales que tiene. 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 
#define N 10 

void salida(char*[l, int*); 
void entrada(char*[l); 
int vocales (char*) ; 

int main ( ) 
{ 
char *cad[Nl; 
int j, voc[Nl ; 

entrada (cad) ; 
/ *  Cuenta de vocales por cada linea * /  
for (j = O ;  j<N; j++) 
voc[j] = vocales(cad[jl); 

salida(cad, voc) ; 
return O; 

1 
void entrada(char* cd[l) 
i 
char B[121]; 
int j, tam; 

printf("\n\tEscribe %d lineas de texto\n",N); 
for (j = 0; j<N; j++) 
i 
gets ( € 3 )  ; 
tam = (strlen(B)+l)*sizeofíchar); 
cd[j] = (char*)malloc(tam) ; 
strcpy(cd[jl ,B); 

1 



} 

int vocales (char* c) 
i 
int k, j; 

for (j=k = O; jistrlen(c); j t t )  
/ *  Cuenta vocales de la cadena c * /  

switch (tolower(*(c+j))) 
i 
case 'a' : ; 
case 'e':; 
case 'i' :; 
case 'o':; 
case 'u': k + t ;  

i 
return k; 

1 
void sallda(char* cd[l, int* v )  

Asignación dinámica de memoria -1 369 E 

int j; 

puts ("\n\tSalida de las lineas junto dl numero de vocales") ; 
for (j = O ;  jiN; j + + )  
i 

1 
printf ("%s : %2d\n",cd[jl , v [ j l ) ;  

El programa declara char *cad IN] como array de punteros a char, de tal forma que en la función 
entrada ( ) se reserva memoria, con mailoc ( ) , para cada línea de texto. 

11.5.1. Asignación de memoria interactivamente 
El programa ASIGMEM. c muestra cómo se puede invocar a calloc í ) para asignar memoria para un 
array. Cuando se ejecuta el programa, se pide al usuario teclear el tamaño de un array, y si se contesta 
adecuadamente el programa genera un array de números enteros aleatorios. A su vez, genera otro array 
con los mismos valores pero sin duplicidades; este segundo array se crea dinámicamente con la función 
realloc ( ) . La estrategia para reservar memoria es llamar a redlloc ( ) para expandir el array cada 10 
valores; es decir, primero se asigna memoria para 10 valores y cuando se ha completado se asignan 
otros 10 y así sucesivamente. 

#include istdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define S 10 
#define NUM 99 

struct array 
i 
int *v; / *  puntero al array * /  
int n; / *  numero de elementos del iirrdy * /  

1 ;  
typedef struct array vector ' ;  / *  dcclaracion del nuevo tipo: vector * /  
void gen-array(vector* inic); / *  q e n e r c i  drray con n valores * /  
void nuevo-array(vector inic, vector* nd); / *  genera nuevo 

vcctor sin diipli.cados * /  



370 Programación en C. Metodología, algoritmos y estructura de datos 

void escribe-array(vector w); 

int main0 
i 
vector prim, dest; 

do i 
printf("\nNumero de elementos del array: " ) ;  
scanf ("%d", &prim.n) ; 

}while (prim.n<l) ; 
randomize ( ) ; 

gen-array(&prim); 
escribe-array (prim) ; 

nuevo-array(prim,hdest); 
escribe-array(dest) ; 

return O ;  

void gen-array(vector* inic) 
i 
int k; 
inic->v = (int*)calloc(inic->n,sizeof(int)); /*reserva memoria * /  
f o r  (k = O ;  k< inic->n; k++) 
inic->v[kl = random(NUM)+l; / *  genera valores enteros de 1 a NUM * /  

1 

void escribe-array(vector w) 
i 
int k; 
printf("\n\t Valores que contiene el vector\n"); 
for (k = O ;  k< w.n; k++) 
printf('%d%c',~.v[k],(ktl)&19==0 ?'\n':' ');/*cada 19 enteros salta 

de linea*/ 
1 

void nuevo-array(vector inic, vector* nd) 
i 
int k, tam; 

/ *  Reserva inicial de memoria para 10 valores * /  

nd->v = NULL; 
tam = sizeof(int)*S; 
nd->v = (int*) realloc (nd->v, tam) ; 

/ *  copia el primer elemento * /  
nd->v[O] = inic.v[O]; 
nd->n = 1; 

/ *  copia los demas elementos si no estan ya en el array. 
Cuenta los elementos copiados para reservar memoria * /  

f o r  (k = 1; k< inic.n; k t + )  

int j , dup; 
j=dup= O; 
while ( (j<nd->n) &si !dup) 
i 

i 
dup = inic.v[kl~=nd->v[j++l; 

I 



-. - 

Asignación dinámica de memoria 371 

if ( !dup) 
i 
if (nd->nBS == O) / *  amplid memoria * /  
I 

tarn += sizeof(int)*S; 
nd->v =(int*)realloc(nd->v,tam); 

/ *  
asigna el elemento. Los indices en C estan en el rango de O a n-1, por 
esa raion se dsiqna y despues se incrementa. 

* /  

nd->v[nd->n++l = i n i c . v [ k l ;  
i 

11.5.2. Asignación de memoria para un array de estructuras 

El programa ASIGNA ES.^ define varios modelos de estructuras para representar un  curso de 
perfeccionamiento, al que asisten varios alumnos de diversos departamentos de una empresa. Se declara 
una estructura persona, una estructura alumno, otra profesor y la estructura curso. Un alumno es 
una persona y los campos depdrtamento y nivel. El profesor es una persona y el campo expe 
años de experiencia. El curso consta de N alumnos y un profesor, además del número de días de 
duración y la descripción del curso. El programa utiliza funciones de asignación de memoria dinámica 
para asignar memoria que contenga las cadenas de caracteres y un array de N estructuras al umno; define 
una función que recibe una cadena y reserva memoria para contener la cadena; la función de biblioteca 
strcpy( ) se utiliza para copiar una constante de cadena en la memoria reservada. El programa da 
entrada a los datos referidos anteriormente y visualiza el contenido del curso. 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

typedef struct persona 
I 

char* nom; 
int edad; 
char* dir; 

i PERSONA; 

typedef struct dlumno 

PERSONA p; 
char* depar; 
short nivel; 

}ALUMNO ; 

typedef struct profesor 
i 
PERSONA p; 
s h o r t  expe; 

} PROFESOR; 

struct curso 



372 Programación en C. Metodología, algoritmos y estructura de datos 

ALUMNO* ptral; 
PROFESOR* pf; 
char* descrip; 
short dias; 
short n; / *  Numero de dlumnos del curso * /  

I ;  
char* asigcad(void) ; 
PERSONA* asigper(void); 
PROFESOR* asigprof(void); 
ALUMNO* asigalms(short n); 

int main() 
t 
struct curso dom; 
int J ;  

printf("\n\tCurso de perfeccionamiento.\nDescripcion del curso: " ) ;  
dom.descrip = asigcado; 
printf ("Dias lectivos del curso: " )  ; 
scanf ("%d%*c", &dom.dias) ; 

printf("\t Datos del profesor del curso.\n"); 
dom.pf = asigprof(); 

printf('\t Numero de alumnos del curso: " ) ;  
scanf ("%d%*c",&dom.n) ; 

dom.ptra1 = asigalms(dom.n); 

/ *  Mustra de los datos del curso * /  

printf ("\n\n\t\t Curso: %s\n",dom.descrip) ; 

print f ( " \  t Prof esor : 
printf('\tRelacion de asistentes al curso\n"); 
for (j = O; j<dom.n; I++) 
i 

1 
return O ;  

puts ("\t\t -- " )  ; 
%s \n" , dorn. pf ->p .  nom) ; 

printf ("\t\t%s\n", (dom.ptral+j) ->p.nom) ; 

1 

char* asigcad ( ) 
i 
char b[1211, *cd; 
gets (b) ; 
cd = (char*) malloc ( (strlen(b) +1) *sizeof (char) ) ; 
if (cd == NULL) 
í 
puts("\n\t!! Error de dsignacion de memoria, fin de ejecucion.! ! " ) ;  
exit(-1); 

I 
strcpy (cd, b) ; 
return cd; 

i 
PERSONA" asigpero 
i 
PERSONA* p; 

p = (PERSONA*)malloc(sizeof (PERSONA) ) ; 



11.6. 

~- 

Asignación dinámica de memoria 

printf ("\nNombre: " )  ; p->nom = asigcado ; 
printf ("Edad: " )  ; scanf ("%d%*c", &p->edad) ; 
printf ("Direccion: " )  ; p->dir = asigcad() ; 
return p; 

1 

PROFESOR* asigprofo 
i 
PROFESOR* t; 
t =(PROFESOR*)malloc(sizeof(PERSONA)); 
t ->p = *asigper(); 
printf ( " \ n A f i o s  de experiencia: " )  ; 
scanf ("%d%*c" , &t->expe) ; 
return t ; 

i 

ALUMNO* asigalms(short n) 
{ 
int j; 
ALUMNO* a; 
a = (ALUMNO*)calloc(n,sizeof(ALUMNO)); 
if (a == NULL) 
{ 
puts('\n\t! !Error de asignacion de memoria, fin de ejecucion.!!'); 
exit (-1) ; 

/ *  Entrada de datos de cada alumno * /  
1 

for ( j = O ;  j<n; j++) 
t 
(a+j)->p = *asigper(); 
printf("Departamento al que pertenece: " ) ;  
(a+j)->depar = asigcado; 
printf ("Nivel en que se encuentra: " )  ; 
scanf ("%d%*c",&(a+j) ->nivel) ; 

i 
return a; 

} 

ARRAYS DINÁMICOS 

Un nombre de un array es realmente un puntero constante que se asigna en tiempo de compilación: 

float m[30]; / *  m es un puntero constante a un bloque de 30 €loat*/ 
float" const p = ( f l o a t * ) m ~ l l o c ( 3 0 * s i z e o f o ) ;  

m y p son punteros constantes a bloques de 30 números reales (float). La declaración de m se denomina 
ligadura estática debido a que se asigna en tiempo de compilación; el símbolo se enlaza a la memoria 
asignada aunque el array no se utiliza nunca durante la ejecución del programa. 

Por el contrario, se puede utilizar un puntero no constante para posponer la asignación de memoria 
hasta que el programa se esté ejecutando. Este tipo de enlace o ligadura se denomina ligadura dinámica 
o ligadura en tiempo de ejecución 

float" p = (float*)rnal~oc(3Oxsizeof(float)); 

Un array que se declara de este modo se denomina array dinámico. 



374 Programación en C. Metodología, algoritmos y estructura de datos 

Comparar los dos métodos de definición de un array 

0 float m[301; / *  array estático * /  
float* p=(float*)malloc(30*sizeof(flo,=it)); / *  array dinámico*/ 

El array estático m se crea en tiempo de compilación; su memoria permanece asignada durante 
toda la ejecución del programa. El arrav dinámico se crea en tiempo de ejecución; su memoria se asigna 
sólo cuando se ejecuta su declaración. No obstante, la memoria asignada al array p se libera tan pronto 
como se invoca a la función free ( ) , de este modo 

free (p) ; 

11.7. REGLAS DE FUNCIONAMIENTO DE LA ASlGNAClÓN DE MEMORIA 

Como ya se ha comentado se puede asignar espacio para cualquier objeto dato de C. Las reglas para 
utilizar las funciones malloc ( ) , cal 1 oc ( ) , realloc ( ) y free ( ) como medio para obtenerAiberar 
espacio libre de memoria son las siguientes: 

1. El prototipo de las funciones esta en stdl ib. h. 

#include <stdlib.h= 
int* datos; 

datos = (int*)malloc(sizeof(int)); 
. . .  

2. Las funciones malloc ( )  , calloc í ) , rcdlloc ( ) devuelven el tipo void*, lo cual exige 
hacer una conversión al tipo del puntero. 

#include <stdlib.h> 

void main ( ) 
i 
double* vec; 
int n; 

vec = (double*)calloc(n,sizeof(doiible)); 
i 

3. Las funciones de asignación tienen como argumento el número de bytes a reservar. 

4. El operador sizeof permite calcular el tamaño de un tipo de objeto para el que está asignando 
memoria. 

struct punto 
{ 

I ;  
struct punto*p = (struct punto*)malloc(sizeof(struct punto)); 

float x , y , z ;  

5. La función realloc ( ) permite expandir memoria reservada. 

#include <stdlib.h> 

int *v=NULL;; 
int n; 
scanf ("%d", &n) ; 
v = (int*)realloc(v,n); 

v = (int*)realloc(v,?*n); 



Asignación dinámica de memoria 375 

I 

6. Las funciones de asignación de memoria devuelven NULL si no han podido reservar la memoria 
requerida. 

double" v; 
v = malloc(l000*sizeof(double)); 
if (v == NULL) 
i 
puts ("Error de asignación de memoria. " )  ; 
exit(-1); 

} 

7. Se puede utilizar cualquier función de asignación de memoria para reservar espacio de objetos 
más complejos, tales como estructuras, arrays, en el almacenamiento libre. 

#include <stdlib.h> 
struct complejo 

float x,y; 
1 ;  

void main() 
I 

struct complejo* pz; 
int n; 
scanf /"%d", &n) ; 

/ *  Puntero a estructura complejo * /  

/ *  Asigna memoria para un array de tipo complejo * /  
pz = (struct complejo *)calloc(n,sizeof(struct complejo)); 
if (pz == NULL) 
i 
puts ("Error de asignación de memoria.") ; 
exit(-1); 

1 

8. Se pueden crear arrays multidimensionales de objetos con las funciones de asignación de 
memoria. Para un array bidimensional n x m, se asigna en primer lugar memoria para un array de 
punteros (de IZ elementos), y después se asigna memoria para cada fila ( m  elementos) con un 
bucle desde O a n- 1. 

#include <stdlib.h> 

double **mat; 
int n,m,i; 

mat = (double**)malloc(n*sizeof(double*));/* array de punteros * /  
for (i=O; i<n; i++) 
{ 

1 
mat[il=(double*)malloc(m*sizeof(double));/*fila de m elementos * /  

9. Toda memoria reservada con alguna de las funciones de asignación de memoria se puede liberar 
con la función free ( ) . Para liberar la memoria de la matriz dinámica mat: 

double **mat; 

for (i=O; i<n; i++) 
i 

} 

free(mat [il ) ; 



376 Programación en C. Metodología, algoritmos y estructura de datos 

11 -8. RESUMEN 

La asignación dinámica de memoria permite utilizar 
tanta memoria como se necesite. Se puede asignar 
espacio a una variable en el almacenamiento libre 
cuando se necesite y se libera la memoria cuando se 
desee. 

En C se utilizan las funciones malloc ( ) , 
calloc ( ) , realloc ( ) y free( ) para asignar 
y liberar memoria. Las funciones malloc ( 1 ,  
calloc ( ) , realloc ( f permiten asignar memo- 
ria para cuaIquier tipo de dato especificado (un int, 
un float, una estructura, un array o cualquier otro 
tipo de dato). 

Cuando se termina de utilizar un bloque de 
memoria, se puede liberar con la función free ( ) . La 
memoria libre se devuelve al almacenamiento libre, 
de modo que quedará más memoria disponible para 
asignar otros bloques de memoria. 

El siguiente ejemplo asigna un array y llama a la 
función free ( ) que libera el espacio ocupado en 
memoria: 

11.9. EJERCICIOS 

11.1. Encuentre los errores en las siguientes declara- 
ciones y sentencias. 

int n, *p; 
char** dob= "Cadena de dos 

p = n*malloc(sizeof(int)); 
punteros" ; 

11.2. Dada la siguiente declaración, definir un pun- 
tero b a la estructura, reservar memoria diná- 
micamente para una estructura asignando su 
dirección a b. 

struct boton 
1. 
char* rotulo; 
int codigo; 

1 ;  

11.3. Una vez asignada memoria al puntero b del 
Ejercicio 1 1.2 escribir sentencias para leer los 
campos rotulo y codigo. 

I 

typedef struct animal 
t I . . .  
)ANIMAL: 
ANIMAL* pperro; 
pperro 5 

(mIw*)malloc (5*sizeof (ANIMAL) ) ; 
if (pperro == NULL) 

else 
{ 

I 

puts(''jFa1ta memoria!") ; 

1 

/ *  uso de pperro * /  

I. 

free(pperr0); / *  libera espacio 
de pperro * /  

1 
I 

11.4. Un array unidimensional puede considerarse 
una constante puntero. ¿Cómo puede conside- 
rarse un array bidimensional?, ¿y un array de 
tres dimensiones? 

11.5. Declara una estructura para representar un 
punto en el espacio tridimensional. Declara un 
puntero a la estructura para que tenga la 
dirección de un array dinámico de n estructuras 
punto. Utiliza la función calloc ( ) para 
asignar memoria al array y comprueba que se 
ha podido asignar la memoria requerida. 

11.6. ¿Qué diferencias existen entre las funciones 

11.7. Dada la declaración de la estructura punto 
(Ejercicio 11.5) escribe una función que 
devuelva la dirección de un array dinámico de 
n puntos en el espacio tridimensional. Los 
valores de los datos se leen del dispositivo de 
entrada (teclado). 

malloc ( ) , calloc ( ) y realloc ( ) ? 

t 

k 

c 

L 



P- 

Asignación dinámica de memoria 377 

11.8. 

11.9. 

Dada la declaración del array de punteros: 

#define N 4 
char *[NI ; 

Escriba las sentencias de código para leer 
N lineas de caracteres y asignar cada línea a 
un elemento del array. 

Escriba una funci6n que reciba el array diná- 
mico creado en el Ejercicio 11.7 y amplíe el 
array en otros m puntos del espacio. 

1 1 .I O. PROBLEMAS 

En todos los problemas, utilice siempre que sea 
posible punteros para acceder a los elementos de los 
arrays, tanto numéricos como cadenas de caracteres. 

11.1. Escriba un programa para leer n cadenas de 
caracteres. Cada cadena tiene una longitud 
variable y está formada por cualquier carácter. 
La memoria que ocupa cada cadena se ha de 
ajustar al tamaño que tiene. Una vez leídas las 
cadenas se debe de realizar un proceso que 
consiste en eliminar todos los blancos, siempre 
manteniendo el espacio ocupado ajustado al 
número de caracteres. El programa debe 
mostrar las cadenas leídas y las cadenas 
transformadas. 

11.2, Se desea escribir un programa para leer 
números grandes (de tantos dígitos que no 
entran en variables long) y obtener la suma 
de ellos. El almacenamiento de un número 
grande se ha de hacer en una estructura que 
tenga un array dinámico y otro campo con el 
número de dígitos. La suma de dos números 
grandes dará como resultado otro número 
grande representado en su correspondiente 
estructura. 

11.3. En una competición de ciclismo se presentan n 
ciclistas. Cada participante se representa por el 
nombre, club, los puntos obtenidos y prueba en 
que participará en la competición. La competi- 

11.10. Escriba una función que reciba las N líneas 

declaraciones?: 

char *c[15] ; 
char **c, 
char c[15J 1121; 

ción es por eliminación. Hay prueba de dos 

e elimina. En la de 
velocidad participan 4 ciclistas, el más rápido 
obtiene 4 puntos el segundo 1 y el cuarto se eli- 
mina. Las pruebas se van alternando, empe- 
zando por velocidad. Los ciclistas participan- 
tes en una prueba se eligen al azar entre los que 
en menos pruebas han participado. El juego 
termina cuando no quedan ciclistas para alguna 
de las dos pruebas. Se ha de mantener arrays 
dinámicos con los ciclistas participantes y los 
eliminados. El ciclista ganador será el que más 
puntos tenga. 

11.4. Se tiene una matriz de 20x20 elementos ente- 
ros. En la matriz hay un elemento repetido 
muchas veces. Se quiere generar otra matriz de 
20 filas y que en cada fila estén ~610 los ele- 
mentos no repetidos. Escribir un programa que 
tenga como entrada la matriz de 20x20, genere 
la matriz dinámica pedida y se muestre en pan- 
talla. 

11.5. Escriba un programa para generar una matriz 
simétrica con nítmeros aleatorios de 1 a 9. El 
usuario introduce el tamaño de cada dimensión 
de la matriz y el programa reserva memoria 
libre para el tamaño requerido. 



CAPíTULO 12 

CADENAS 

CONTENIDO 

12.1. Concepto de cadena. 
12.2. Lectura de cadenas. 
12.3. La biblioteca string. h. 
12.4. Arrays y cadenas como 

parámetros de funciones. 
12.5. Asignación de cadenas. 
12.6. Longitud y concatenación 

12.7. Comparación de cadenas. 
de cadenas. 

18.8. Inversión de cadenas. 
12.9. Conversión de cadenas. 

12.10. Conversión de cadenas a 

12.1 1. Búsqueda de caracteres y 

12.12. Resumen. 
12.13. Ejercicios. 
12.14. Problemas. 

números. 

cadenas. 

378 



1 
INTRODWCCI~N I 

El lenguaje C no tiene datos predefinidos tipo cadena (string). En su lugar 6, 
manipula cadenas mediante arrays de caracteres que terminan con el carhter 
nulo ASCII (W’). Una cadena se considera como un array unidimensional de 
tipo char o unsigned char. En este capítulo se estudiarán temas tales como: 

O cadenasenC; 
O lectura y salida de cadenas; 
O uso de funciones de cadena de la biblioteca estándar; 
O asignación de cadenas; 
O operaciones diversas de cadena (longitud, concatenación, comparación y 

conversión); 
O localización de caracteres y subcadenas; 
O inversión de los caracteres de una cadena. 

CONCEPTOS CLAVE 
O Asigmación. O Comparación. 
O Biblioteca string..h. O Conversión. 
O Cadena. O F’unciones de cadena. 
O Cadenavacía. O Inversión. 
O Carácter nulo (NULL, ’ \ O  ’ ) . O String. 

379 I 



380 Programación en C. Metodología, algoritmos y estructura de datos 

12.1. CONCEPTO DE CADENA 

Una cadena (también llamada constante de cadena o literal de cadena) es un tipo de dato compuesto, 
un array de caracteres (char), terminado por un carácter nulo ( ' \ O ' ), NULL (Fig. 12.1). Un ejemplo es 
" ABC " . 

Cuando la cadena aparece dentro de un programa se verá como si se almacenarán cuatro elementos: 
I A ' , ' B ' , ' c I y ' \ O ' . En consecuencia, se considerará que la cadena "ABC" es un array de cuatro 
elementos de tipo char. El valor real de esta cadena es la dirección de su primer carácter y su tipo es 
un puntero a char. Aplicando el operador * a un puntero a char  se obtiene el carácter que forma su 
contenido; es posible también utilizar aritmética de direcciones con cadenas: 

* "ABC 11 es i g u a l  a ' A '  
* ( "ABC" + 1) es i g u a l  a ' B '  
* ("ABC" + 2 )  es  i g u a l  a ' C '  
* ( "ABC" + 3 )  es  i g u a l  a ' \ O '  

De igual forma, utilizando el subíndice del array se puede escribir: 

es i g u a l  a 
es i g u a l  a 
es  i g u a l  a 
es i g u a l  a 

'A' 
'B' 
IC' 
#\O' 

(a) L a  c a d e n a  d e  t e s t  

(b L a  c a d e n a  d e  t e s t \ o  

Figura 12.1. (a) array de caracteres; (b) cadena de caracteres. 

de una cadena en C es siempre i la longitud de la cadena 

Ejemplos 

1. char cad [ ] = "Lupiana" ; 
y '\O' cad tiene ocho caracteres; 'L', 'u', ' p ' ,  'i', 'a', l n , ,  'a' 

2. printf ("%s", cad) ; 
el sistema copiará caracteres de cad a stdout (pantalla) hasta que el carácter NULL, ' \ O  ' , se 
encuentre. 

3. scanf ( ' '%SI ' ,  cad) ; 
el sistema copiará caracteres desde stdin (teclado) a cad hasta que se encuentre un carácter 
espacio en blanco o fin de línea. El usuario ha de asegurarse que el buffer cad esté definido como 
una cadena de caracteres lo suficiente grande para contener la entrada. 



Cadenas 381 

Las funciones declaradas en el archivo de cabecera a t r i n g .  h> se utilizan para manipular 
cadenas. 

12.1.1. Declaración de variables de cadena 

Las cadenas se declaran como los restantes tipos de arrays. El operador postfijo [ 1 contiene el tamaño 
máximo del objeto. El tipo base, naturalmente, es char, o bien unsigned char: 

char texto [ 811 ; / *  una línea de caracteres de texto * /  
char orden [ 4 O ] ; / *  cadena utilizada para recibir una orden del 

unsigned char datos; / *  puede contener cualquier carácter ASCII * /  

El tipo unsigned char puede ser de interés en aquellos casos en que los caracteres especiales 
presentes puedan tener el bit de orden alto activado. Si el carácter se considera con signo, el bit de mayor 
peso (orden alto) se interpreta como hit de signo y se puede propagar a l a  posición de mayor orden 
(peso) del nuevo tipo. 

Observe que el tamaño de la cadena ha de incluir el carácter I \ 0 . En consecuencia, para definir un 
array de caracteres que contenga la cadena "ARCDEF" , escriba 

char UnaCadena [ 7 ] ; 

teclado * /  

encontrar una declaración como ésta: 

s. Es un puntero a un car&%er (el de una 
asignada, 

12.1.2. Inicialización de variables de cadena 

Todos los tipos de arrays requieren una inicialización (iniciación) que consiste en una lista de valores 
separados por comas y encerrados entre llaves. 

char texto[81] = " E s t o  es una cadend."; 
char textodemo[255] = "Esta es una cadena muy larga"; 
char cadenatest[] = "¿Cuál es la longitud de esta cadena?"; 

Las cadenas texto y textodemo pueden contener 80 y 254 caracteres respectivamente más el 
carácter nulo. La tercera cadena, cadenatest, se declara con una especificación de tipo incompleta y 
se completa sólo con el inicializador. Dado que en el literal hay 36 caracteres y el compilador añade el 
carácter I \O', un total de 37 caracteres se asignarán a cadenatest. 

Ahora bien, una cadena no se puede inicializar fuera de la declaración. Por ejemplo, si trata de hacer 

Unacadena = "ABC" ; 

C le dará un error al compilar. La razón es que un identificador de cadena, como cualquier 
identificador de array se trata como un valor de dirección, como un puntero constante. Cómo se puede 
inicializar una cadena fuera de la decluración? Más adelante se verá, pero podemos indicar que será 
necesario utilizar una función de cadena denominada strcpy ( ) . 



382 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 12.1 

Las cadenas terminan con el carácter nulo. Así en el siguiente programa se muestra que el carácter 
NULL ( ' \ 0 'I se añade a la cadena: 

#include <stdio.h> 
int main( ) 
{ 
char S [ 1 = "ABCD";  
for (int i = O; i < 5; i++) 
print f ( "S [ %dl = %c \n" , i , S [ i 1 ) ; 

return O; 
i 

Ej ecu c i Ón 

S [ O ]  = A 
S[1] = B 
S[21 = C 

S [ 4 ]  = 
S [ 3 ]  = D 

Comentario: Cuando el carácter NUL,L se mdndd imprimir, no escribe nada. 

12.2. LECTURA DE CADENAS 

La lectura usual de datos se realiza con la función scanf ( ) , cuando se aplica a datos cadena el código 
de formato es %s. La función da por terminada la cadena cuando encuentra un espacio (un blanco) o fin 
de línea. Esto puede producir anomalías al no poder captar cadenas con blancos entre caracteres. Así, por 
ejemplo, trate de ejecutar el siguiente programa: 

/ *  Este programa muestra cómo scanfolee datos cadena * /  

#include <stdio.h> 

void main() 
i 
char nombre [ 301 ; / *  Define array de caracteres * /  

scanf ("%s", nombre) ; 
print f ( "%s \n" , nombre) ; 

i 

/ *  Leer la cadena * /  
/ *  Escribir la cadena nombre * /  

El programa define nombre como un array de caracteres de 30 elementos. Suponga que introduce 
la entrada Pepe Margolles, cuando ejecuta el programa se visualizará en pantalla Pepe. Es decir, la 
palabra Margolles no se ha asignado a la variable cadena nombre. La razón es que la función 
scanf ( ) termina la operación de lectura siempre que se encuentra un espacio en blanco o fin de línea. 

Así pues, ¿,cuál será la mejor forma para lectura de cadenas, cuando estas cadenas contienen más de 
una palabra (caso muy usual)? El método recomendado será utilizar una función denominada gets ( 1. 
La función gets ( )permitirá leer la cadena completa, incluyendo cualquier espacio en blanco, termina 
al leer el carácter de fin de línea. 

El prototipo de la función está en el archivo st d L O .  h . La función asigna la cadena al argumento 
transmitido a la función, que será un array de caracteres o un puntero (char*) a memoria libre, con un 
número de elementos suficiente para guardar la cadena leída. Si ha habido un error en la lectura de la 
cadena, devuelve NULL. i 

1 

I / *  Lectura de caracteres hastd fin de líned * /  

! 



Cadenas 383 

char b[81] ; 
gets (b) ; 

Ejemplo 12.2 

Entrada y salida de cadenas. Lectura de palabrus de 79 curucteres de rncúcima longitud en una memoria 
intermedia (bufer) de 80 caracteres. 

#include <stdio.h> 
void main ( 1  
I 
char palabra[80]; 
do i 
scanf ("%SI ' ,  palabra) ; 
i f  ( ! feof  (stdin) ) 
print f ( I' \ t \ 'I %s \ 'I \ n" , pal abr a ) ; 

1 while (!feof(stdin)); 
1 

Al ejecutar este programa el número de veces que se repite el bucle while dependerá del número 
de palabras introducidas, incluido el carácter de control que termina el bucle control -z. 

Ejecución 
Hoy es 1 de Enero del 2000. 

It Hoy 'I 
"es" 
1 

I' de I' 
I' Enero" 
'I de 1 'I 
"2000 .  

"Mañana" 
II e II 

"Domingo. I' 

Mañana es Domingo. 

El bucle anterior se ejecuta I1 veces, una vez por cada palabra introducida (incluyendo Control- 
z que detiene el bucle). Cada palabra de la entrada (stdin) hace eco en la salida (stdout). El flujo de 
salida no «se limpia» hasta que el flujo de entrada encuentra el final de la línea. 

Cada cadena se imprime encerrada entre comillas. No será fin de archivo (f eof ( ) distinto de cero) 
mientras que no se pulse Control-Z (en Windows/DOS), que envía el carácter final de archivo del 
flujo estándar de entrada stdin. 

Advertencia 

Los signos de puntuación, apóstrofes, comas, puntos, etc., se incluyen en las cadenas, pero no así 
los caracteres espacios en blanco (blancos, tabulaciones, nuevas líneas, etc.). 



Y. 

384 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 12.3 

El siguiente programa solicita introducir un nombre, comprueba la operación y lo escribe en pantalla. 

#include <stdio.h> 
int main() 

char nombre[80]; 
printf ("\nIntroduzca su nombre: " )  ; 
if (gets (nombre) ! = NULL) 

return O; 
printf ("Hola %s ¿cómo esth usted?",nombre) ; 

i 

si al ejecutarlo se introduce ia cadena M a d  Mar tind, el array nombre almacenará los caracteres 
siguientes: 

nombre 

M a r a  M a r t i n = i . ' \ o  

Ejemplo 11.4 

El siguiente programa lee y escribe el nombre, dirección y teléfono de un usuario. 

#include <stdio.h> 

void main() 
{ 
char Nombre [ 32 ] ; 
char Calle [32] ; 
char Ciudad[271; 
char Provincia[27]; 
char CodigoPostal151 ; 
char Telefono[lO] ; 

print f 
print f 
printf 
printf 
print f 
print f 

/ *  vis 

'\nNombre: " )  ; gets (Nombre) ; 
"\nCalle: " )  ; gets (Calle) ; 
"\nCiudad: " )  ; gets (Ciudad) ; 
"\nProvincid: " )  ; gets (Provincia) ; 
"\nCodigo Postal: " ) ;  gets(CodigoPostd1); 
"\nTelefono: " )  ; gets ('relefono) ; 

alizar cadenas * /  

printf ("\n\n%s \t Bs\n",Nombre,Calle) ; 
printf ("%s \t %s\n",Ciudad, Provincid) ; 
printf ( " B s  \L %s\n",CodigoPoctal,Tel~f~no); 

1 

O La llamada get c ( cad) lee todos los caracteres hasta encontrar el carácter fin de línea, \ n  I ,  

que en la cadena cad se sustituye por ' \ O I .  



Cadenas 385 

12.2.1. Función getchar ( ) 

La función getchar ( ) se utiliza para leer carácter a carácter. La llamada a getchar ( ) devuelve el 
carácter siguiente del flujo de entrada stdin. En caso de error, o de encontrar el fin de archivo, devuelve 
EOF (macro definida en stdio. h). 

Ejemplo 12.5 

El siguiente programa cuenta las ocurrencias de la letra ' t ' delflujo de entrada. Se diseña un bucle 
while que continúa ejecutándose mientras que la.finci6n getchar ( ) lee caracteres y se asignan a car. 

#include <stdio.h> 
int main() 
{ 
int car; 
int cuenta = O; 
while ( (car = getchar ( ) ) ! =EOF) 

if (car == 't') ++cuenta; 
printf ("\n %d letras t \n", cuenta) ; 
return O ;  

1 

Nota 
La salida del bucle es con Control - z. 

12.2.2. Función putchar ( ) 

La función opuesta de getchar ( ) es putchar ( ) . La función putchar ( se utiliza para escribir en la 
salida (stdout) carácter a carácter. El carácter que se escribe es el transmitido como argumento. Esta 
función (realmente es una macro definida en s t d i o  . h) tiene como prototipo: 

int putchar(int ch); 

Ejercicio 12.1 

El siguiente programa hace «eco>> delpujo de entrada y convierte las palabras en palabras iguales que 
comienzan con letra mayúscula. Es decir, si la entrada es "poblado de peñas rubias" se ha de 
convertir en "Poblado De Peñas Rubias". Para realizar esa operación se recurre a la función 
toupper (car) que devuelve el equivalente mayúscula de car si car es una letra minúscula. El archivo 
de cabecera necesario para poder utilizar la función toupper (car) es <ctype . h>. 

#include <stdio.h> 
#include <ctype.h> 
int main() 
i 
char car, pre = I\n'; 
while ( (carzgetchar ( ) ) ! =EOF) 
{ 

/ I  pre == ' \ n ' )  if (pre == ' ' 

else 
putchar(toupper(car)); 



386 Programación en C. Metodología, algoritmos y estructura de datos 

putchar (car) ; 
pre = car; 

1 
return O ;  
J 

Ejeciución 
poblado de peñas rubias con capital en Lupiana 
Poblado De Peñas Rubias Con Capital En Lupiana 

Análisis 
La variable pre contiene el carácter leído anteriormente. El algoritmo se basa en el hecho de que si pre 
es un blanco o el carácter nueva línea, entonces el carácter siguiente car será el primer carácter de la 
siguiente palabra. En consecuencia, car, se reemplaza por su carácter mayúscula equivalente: car + 
'A' - 'a'. 

I 
12.2.3. Función puts ( ) 

La función puts ( ) escribe en la salida una cadena de caracteres, incluyendo el carácter fin de línea 
por los que situa el puntero de salida en la siguiente línea. Es la función recíproca de gets ( ) ; si 
ge t s  ( ) capta una cadena hasta fin de línea, puts ( escribe una cadena y el fin de línea. El prototipo 
de la función se encuentra en stdio : 

int puts(const char *s); 

Ejercicio 12.2 

El programa siguiente lee una frase y escribe en pantalla tantas líneas como palabras tiene la frase; 
cada línea que escribe, a partir de la primera, sin la última palabra de la línea anterior: 

Análisis 
La función sgtepal ( ) explora los caracteres pasados en p hasta que encuentra el primer blanco 
(separador de palabras). La exploración se realiza de derecha a izquierda, en la posición del blanco 
asigna \O para indicar fin de cadena. I 

#include <stdio.h> 
#include <string.h> 
void sgtepal(char* p); 

void main() 
i 
char linea [ 811 ; 
printf("\n\tIntroduce una linea de caracteres.\n"); 
gets (linea) ; 
while (*linea) 
i 
puts (linea) ; 
sgtepal (linea) ; 

1 
1 
void sgtepal(char* p) 
{ 



i n t  j ;  
j = strlen(p)-1; 
while(j>O && p [ j ] ! = ’  I )  

p [ j l  = ‘ \ O ’ ;  
I--; 

Cadenas 387 

i 

Ejecu cíón 
Introduce una linea de caracteres. 
Erase una vez la Mancha 
Erase una vez la Mancha 
Erase una vez La 
Erase una vez 
Erase una 
Erase 

i 12.2.4. Funciones getch( ) y getche ( ) 

i n t  J ;  
j = strlen(p)-1; 
while(j>O && p [ j ] ! = ’  ’ )  

p[11 = ‘ \ O ’ ;  
I--; 

Introduce una linea de caracteres. 
Erase una vez la Mancha 
Erase una vez la Mancha 
Erase una vez La 
Erase una vez 
Erase una 
Erase 

12.2.4. Funciones getch ( ) y getche ( ) 

Estas dos funciones no pertenecen a ANSI C, sin embargo, se incorporan por estar en casi todos los 
compiladores de C. Ambas funciones leen un carácter tecleado sin esperar el retorno de carro. La 
diferencia entre ellas reside en que con getch ( ) el carácter tecleado no se visualiza en pantalla (no 
hace eco en la pantalla), y con getche ( si hay eco en la pantalla. La llamada a cada una de ellas: 

car = getch() ; 
car = getche() ; 

Estas dos funciones no pertenecen a ANSI C, sin embargo, se incorporan por estar en casi todos los 
compiladores de C. Ambas funciones leen un carácter tecleado sin esperar el retorno de carro. La 
diferencia entre ellas reside en que con getch ( ) el carácter tecleado no se visualiza en pantalla (no 
hace eco en la pantalla), y con getche ( ) si hay eco en la pantalla. La llamada a cada una de ellas: 

car = getch() ; 
car = getche() ; 

El prototipo de ambas funciones se encuentra en al archivo conio . h 
i n t  getch(void); 
i n t  getche (void) ; 

Ejemplo 12.6 

La siguiente funcicín devuelve el carácter s o N : 
I 
: #include <conio.h> 

#include <ctype.h> i 

int respuesta ( ) 
i 
char car; 
do 

while (car ! =  ’S‘ && car !=’NI); 
return car; 

car = toupper(getche0 1 ;  

12.3. LA BIBLIOTECA STRING. H 

La biblioteca estándar de C contiene la biblioteca de cadena STRING. 11, que incorpora las funciones de 
manipulación de cadenas utilizadas más frecuentemente. El archivo de cabecera STDIO. H también 

a 



388 Programación en C. Metodología, algoritmos y estructura de datos 

soporta E/S de cadenas. Algunos fabricantes de C también incorporan otras bibliotecas para manipular 
cadenas, pero como no son estándur no se considerarán en esta sección. Las funciones de cadena tienen 
argumentos declarados de forma similar a: 

char *SI; o bien, const char *s1; 

Esto significa que la función espera una cadena que puede o no modificarse. Cuando se utiliza la 
función, se puede usar un puntero a char o se puede especificar el nombre de una variable array char. 
Cuando se pasa un array a una función, C pasa automáticamente la dirección del array char. La Tabla 
12.1 resume algunas de las funciones de cadena más usuales. 

Tabla 12.1. Funciones de .cct r i n g .  h>. 

Cabecera de la función y prototipo Función 

memcpy ( 1 

strcat 

strchr ( ) 

strcmp ( ) 

strcmpi ( ) 

strcpy ( 1 

strcspn() 

strlen ( ) 

strncat ( ) 

s t rncmp 

st rnset 

strpbrk ( ) 

void* memcpy(void* sl, const void* s2, size-t n); 
Reemplaza los primeros n bytes de * s 1 con los primeros n bytes de * s 2. Devuelve s 1. 

char *strcat (char *des t ino ,  const char * f u e n t e )  ; 
Añade la cadena fuente al final de destino. concatena. Devuelve la cadena destino. 

char* strchr(char* SI, int ch); 
Devuelve un puntero a la primera ocurrencia de ch en s l .  Devuelve NULL si ch no está en 
s l .  

int strcmp(const char *sí, const char *s2); 
Compara alfabéticamente la cadena s í  a s 2  y devuelve: 
O si  s l  = s2 
<O s i  sl < s2 
>O si sl > s2 

int strcmpi(const char *s1, const char *s2); 
Igual que strcmp ( ) , pero sin distinguir entre mayúsculas y minúsculas. 

char *strcpy(char *des t ino ,  const char * f u e n t e ) ;  
Copia la cadena,fuente a la cadena destino. Devuelve la cadena destino. 

size-t strcspn(const char* SI, const char* s2); 
Devuelve la longitud de la subcadena más larga de s 1 que comienza con el carácter s 1 [ O ] 
y no contiene ninguno de los caracteres de la cadena s 2. 

size-t strlen (const char *s) 
Devuelve la longitud de la cadena s. 

char* strncat(char* SI, const c h a r " s 2 ,  size-t n); 
Añade los primeros n caracteres de s 2 a s 1. Devuelve s 1. Si n >= s t r 1 en ( s 2 ) , 
entonces strncat (SI ,  s2, n) tiene el mismo efecto que strcat (SI, s2) . 

int strncmp(const char* SI ,  const char* s2, size-t n); 
Compara s 1 con la subcadena formada por los primeros n caracteres de s 2 .  Devuelve un 
entero negativo, cero o un entero positivo, según que sl lexicográficamente sea menor, igual 
omayorquelasubcadenas2.Sin 2 s t r l e n ( s 2 ) , e n t o n c e s  strncmp(s1, s 2 ,  n) 
y strcmp (sl, s2 ) tienen el mismo efecto. 

char *strnset(char *s, int ch, size-t n); 
Copia n veces el carácter ch  en la cadena s a partir de la posición inicial de s (s [ O ] ). El 
máximo de caracteres que copia es la longitud de s . 
char* strpbrk(const char* sl, const char* s2); 
Devuelve la dirección de la primera ocurrencia en s 1 de cualquiera de los caracteres de s 2, 
Devuelve NULL si ninguno de los caracteres de s 2  aparece en s l .  



Cadenas 389 

strrchr ( 

strspn() 

strstr ( ) 

strtok ( ) 

char* strrchr(const char* s, int c); 
Devuelve un puntero a la Última ocurrencia de c en s. Devuelve NULL si c no está en s. La 
búsqueda la hace en sentido inverso, desde el final de la cadena al pnmer carácter, hasta que 
encuentra el carácter c. 

size-t strspn(const char* sl, const char* s2); 
Devuelve la longitud de la subcadena izquierda ( s l  [ O ] ) . . . ) más larga de s l  que 
contiene únicamente caracteres de la cadena s2. 

char *strstr(const char *s1, const char *s2); 
Busca la cadena s2 en si y devuelve un puntero a los caracteres donde se encuentra s2 

char* strtok(char* sl, const char* s2); 
Analiza la cadena s 1 en tokens (componentes léxicos), éstos delimitados por caracteres de 
la cadena s2. La llamada inicial a s t rtok ( s 1, s2 ) devuelve la dirección del primer 
token y sitúa NULL al final del token. Después de la llamada inicial, cada llamada sucesiva 
a strtok (NULL, s2 ) devuelve un puntero al siguiente token encontrado en s l .  Estas 
llamadas cambian la cadena s l ,  reemplazando cada separador con el carácter NULL. 

12.3.1. La palabra reservada const 

Las funciones de cadena declaradas en <string . h> , recogidas en la Tabla 12.1 y algunas otras, 
incluyen la palabra reservada const. La ventaja de esta palabra reservada es que se puede ver 
rápidamente la diferencia entre los parámetros de entrada y salida. Por ejemplo, el segundo parámetro 
fuente de s t rcpy representa el área fuente; se utiliza sólo para copiar caracteres de ella, de modo que 
este área no se modificará. La palabra reservada const se utiliza para esta tarea. Se considera un 
parámetro de entrada, ya que la función recibe datos a través de ella. En contraste, el primer parámetro 
destino de s t rcpy es el área de destino, la cual se sobreescribirá y, por consiguiente, no se debe utilizar 
const para ello. En este caso, el parámetro correspondiente se denomina parárnetro de salida, ya que 
los datos se escriben en el área de destino. 

12.4. ARRAYS Y CADENAS COMO PARÁMETROS DE FUNCIONES 

En los arrays y cadenas siempre se pasa la dirección del objeto, un puntero al primer elemento del array. 
En la función, las referencias a los elementos individuales se hacen por indirección de la dirección del 
objeto. Considérese el programa PASARRAY. C, que impíementa una función Longitud( 1 que calcula 
la longitud de una cadena terminada en nulo. El parámetro cad se declara como un array de caracteres 
de tamaño desconocido. 

/ *  PASAl3RAY.C * /  

#include <stdio.h> 
#include <conio.h> 
int longitud(char cad[] ) ;  

void main (void) 
i 
char* cd = "Cualquier momento es bueno para la felicidad"; 
printf ("\nLongitud de la cadena \"%s\": %d\n",cd, longitud(cd) ) ; 
puts ("Pulse cualquier tecla para continuar " )  ; 

getch( 1 ; 
1 
int longitud(char cad[]) 
t 
int cuenta = O ;  



390 Programación en C. Metodología, algoritmos y estructura de datos 

! 

while (cad[cuenta++] ! =  '\O'); 
return cuenta; 

1 

En la función main ( ) se reserva memoria para la constante cadena cd, a la función longitud ( ) se 
transmite la dirección de la cadena. El cuerpo del bucle while dentro de la función cuenta los caracteres 
no nulos y termina cuando se encuentra el byte nulo al final de la cadena. 

Ejercicio 12.3 

EL programa siguiente extrae n caracteres de una cadena introducida por el usuario. 

Análisis 
La extracción de caracteres se realiza en una función que tiene como primer argumento la subcadena a 
extraer, como segundo argumento la cadena fuente y el tercero el número de caracteres a extraer. Se 
utilizan los punteros para pasar arrays a la función. 

I 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <conio.h> 
int extraer(char *dest, const char *fuente, int num-cars); 
void main (void) 
{ 
char s1[811; 
char* s2; 
int n; 
printf ("\n\tCadena a analizar ? : " )  ; 
gets (sl) ; 
do i 
printf("Numero de caracteres a extraer: " ) ;  
scanf ( "%d" , &n) ; 

}while(nil I 1  n>strlen(sl) ) ;  

s2 = malloc ( (n+l) *sizeof (char) ) ; 
extraer(s2,sl,n); 
printf ("Cadena extraida \"%s\"", s2) ; 
puts ("\nPulse intro para continuar") ; 
getch ( 1  ; 

1 
int extraer(char *dest, const char *fuente, int num-cars) 
t 
int cuenta; 

*dest++ = *fuente++; 
*dest = '\O'; 

I 

Observe que en las declaraciones de parámetros, ninguno está definido como array, sino como 

*dest++ = *fuente++; 

punteros de tipo char. En la línea 

los punteros se utilizan para acceder a las cadenas fuente y destino, respectivamente. En la llamada a la 
función extraer ( se pasa la dirección de las cat 



Cadenas 391 

DE CADENAS 

C soporta dos métodos para asignar cadenas. Uno de ellos ya se ha visto anteriormente cuando se 
inicializaban las variables de cadena. La sintaxis utilizada: 

char VarCadena [LongCadena]  = C o n s t a n t e C d d e n a ;  

Ejemplo 12.7 

Inicializa dos arrays de caracteres con cadenas constantes. 

char Cadena[81] = "C maneja eficientemente las cadenas"; 
char nombre[] = "Luis Martin Cebo"; 

El segundo método para asignación de una cadena a otra es utilizar la función strcpy ( ) . La 
función strcpy ( ) copia los caracteres de la cadena fuente a la cadena destino. La función supone que 
la cadena destino tiene espacio suficiente para contener toda la cadena fuente. El prototipo de la función: 

char* strcpy(char* destino, const char* fuente); 

Ejemplo 12.8 

Una vez definido un array de caracteres, se le asigna una cadena constante. 

char nombre [ 411 ; 
strcpy(nombre, "Cadena a copiar") ; 

La función strcpy( ) copia "Cadena a copiar" en la cadena nombre y añade un carácter nulo 

#include <stdio.h> 
#include <string.h> 

void main (void) 
i 

al final de la cadena resultante. El siguiente programa muestra una aplicación de s t rcpy ( ) . 

char s [loo] = "Buenos días Mr. Palacios", t [loo] ; 
strcw(t, s); 
strcpy (t+12, "Mr. C") ; 
printf ("\n%s\n%s",s, t) ; 

1 

Al ejecutarse el programa produce la salida: 

Buenos días Mr. Palacios 
Buenos días Mr. C 

La expresión t+12 obtiene la dirección de la cadena t en Mr . Palacios. En esa dirección copia 
Mr . C y añade el carácter nulo ( ' \ O ' ). 

12.5.1. La función strncpy ( ) 

El prototipo de la función strncpy es 

char* strncpy(char* d e s t i n o ,  const char* f u e n t e ,  size-t n u m ) ;  

y su propósito es copiar num caracteres de la cadena fuente a la cadena destino. La función realiza 
truncamiento o rellenado de caracteres si es necesario. 



'! 
li 

392 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 12.9 

Estas sentencias copia 4 caracteres de una cadena en otra. 

char cadl [ I  = "Pascal"; 
char cad2 [ I  = "Hola mundo"; 
strncpy(cad1, cad2, 4); 

La variable cadl contiene ahora la cadena "Hola" . 

Consdqjo 

Los punteros pueden manipular las partes posteriores de una cadena, asignando la dirección 
del primer carácter a manipular, 

G "Hola mundo" ; 

char* p = c a d l ;  

p += 5; / *  p apun ta  a l a  cadena "mundo" * /  
strcpy (cada ,  p) ; 
p u t s  (cad21 ; 

La sentencia de salida visualiza la cadena "mundo". 

12.6. LONGITUD Y CONCATENACIÓN DE CADENAS 

Muchas operaciones de cadena requieren conocer el número de caracteres de una cadena (longitud), así 
como la unión (concatenación) de cadenas. 

12.6.1. La función strlen ( 1 

La función strien ( ) calcula el número de caracteres del parámetro cadena, excluyendo el carácter 
nulo de terminación de la cadena. El prototipo de la función es 

size-t strlen(const char* c a d e n a )  

El tipo de resultado size-t representa un tipo entero general. 

char cad[] = ''1234567890"; 
unsigned i; 
i = strlen(cad) ; 

Estas sentencias asignan 1 O a la variable i. 

Ejemplo 

Este programa muestra por pantalla la longitud de varias cadenas. 

#include <string.h> 
#include <stdio.h> 
void main (void) 
1 

char s[] = "IJKLMN"; 
char buf er [ 81 I ; 



Cadenas 393 

printf("strlen(%s) = %d\n",s,strlen(s)) ; 
printf ("strlen(\"\") = %d\n",strlen("") ) ; 
printf ("Introduzca una cadend: ' I )  ; 

gets (bufer) ; 
printf ("strlen(%s) = %d",buter,strlen(bufer) ) ; 

1 

Ejecución 
strlen(1JKLMN) = 6 
strlen("") = O 
Introduzca una cadena: Sierra de Horche 
strlen(Sierra de Horche) = 16 

12.6.2. Las funciones s t rca t  ( ) y strncat ( ) 

En muchas ocasiones se necesita construir una cadena, añadiendo una cadena a otra cadena, operación 
que se conoce como concatenacicín. Las funciones strcat ( ) y strncat ( ) realizan operaciones de 
concatenación. strcat ( ) añade el contenido de la cadena fuente a la cadena destino, devolviendo un 
puntero a la cadena destino. Su prototipo es: 

char* strcat (char" d e s t i n o ,  const chdr* f u e n t e )  ; 

Ejemplo 12.10 

Copia una constante cadena y a continuacicín concatena con otru cadena. 

char cadena [ 81 I ; 
strcpy (cadena, "Borland") ; 
strcat (cadena, "C") ; 

La variable cadena contiene ahora  "Rorland C". 

Es posible limitar el número de caracteres a concatenar utilizando la función strncat ( ) . La 
función strncat ( ) añade num caracteres de la cadena fuente a la cadena destino y devuelve el puntero 
a la cadena destino. Su prototipo es 

char* strncat(char* d e s t i n o ,  const char* f u e n t e ,  size-t num) 

y cuando se invoca con una llamada tal como 

strncat(t, s, n);  

n representa los primeros n caracteres de s que se van a unir a t, a menos que se encuentre un carácter 
nulo, en cuyo momento se termina el proceso. 

Ejemplo 12.1 1 

Concatenar 4 caracteres. 

char cadl[81] = "Hola soy yo 'I; 

char cad2[41] = "Luis Merino"; 
strncat(cad1, cad2, 4); 



394 Programación en C. Metodología, algoritmos y estructura de datos 

\ 

La variable C d d l  contiene ahora "Hola soy  yo  1 , u i s ' l .  

para la cadena resultante. Por ejemplo: 
Ni la función s t L cat ( ) , ni s t rncd t ( coinprueba que la cadena destino tenga suficiente espacio 

char sll] = "ABCDREGH";  / *  reservci espdclo pard 8+1 cdracteres * /  
char s2 [ ] = "XYZ"; / *  reserva espdc io  para 3+1 cdrdcteres * /  
strcdt (sl,s2) ; / *  produce resultddo extraños por no haber espdcio 

para la concatendción sl con s2 * /  

Ejercicio 12.4 

El programa añade la cadena s2 al final de la cadena si. Reserva memoria dinámicamente, en tiempo 
de ejecución. 

#include <stdio.h> 
#include <string.h> 
#include <malloc.h> 
void main (void) 
I 

char* sl = "ABCDEFGH"; 
char s2 [ ] = "XYZ"; 

printf ("\nAntes de strcat (sl, sa) : \n") ; 
printf("\tsl = L"ó-1, longitud = %d\n",sl,strlcn(sl)); 
printf("\ts2 = [ % S I ,  longit-ud = %d\n",s2,strlen(s2)); 

sl = realloc(s1, (strlen(sl)tstrlen(s2)+1)*size~~(char)); 
printf ("\tsl = [ % S I ,  longitud = 'Od (amp1 i d  memoria) \n", 

/ *  amplia memorid pdrd la cadend resultante de la concatenación * /  

s l , s t . r l e n ( s i ) ) ;  
strccit (sl, s2 ) ; 
puts ("Despues de strcat (s3, s2) " )  ; 
printf ("\tsl = [ % S I ,  l o n q i i - u d  = Xd\n',sl,strlen 
printf ("\ts2 = [ % S I ,  long i t - i id  7 ' k d \ n " ,  s%,strien 

i 

Ejecución 

Antes de strcat(sl,s2): 
sl = [ABCDEFGH], longitud = 8 
s2 = [XYZ], longitud = 3 
sl = [ABCDEFGH], longitud = 8 (amplia memoria) 

sl = [ABCDFEGHXYZ], longitud = 11 
s2 = [XYZ], longitud = 3 

Despues de strcat(sl,s2) 

12.7. COMPARACI~N DE CADENAS 

Dado que las cadenas son arrays de caracteres, la biblioteca STK I DIG. H proporciona un conjunto de 
funciones que comparan cadenas. Estas funciones comparan los caracteres de dos cadenas utilizando 
el valor ASCII de cada carácter. Las funciones son strcmp(1 , stricmp( ) ,  strncmp() y 
strnicmp ( )-. 



Cadenas 395 

12.7.1. La función strcmp ( ) 

Si se desea determinar si una cadena es igual a otra, mayor o menor que otra, se debe utilizar la función 
strcmp ( ) . La comparación siempre es alfabética. strcmp ( ) compara su primer parámetro con su 
segundo, y devuelve O si las dos cadenas son idénticas; un valor menor que cero si la cadena 1 es menor 
que la cadena 2; o un valor mayor que cero si la cadena 1 es mayor que la cadena 2 (los términos «mayor 
que» y «menor que» se refieren a la ordenación alfabética de las cadenas). Por ejemplo, Alicante es 
menor que Sevilla. Así, la letra A es menor que la letra a,  la letra Z es menor que la letra a. El prototipo 
de la función strcmp ( ) es 

int strcmp(const char* c d d i ,  const chdr* c a d 2 )  ; 

La función compara las cadenas cadl y cad2. El resultado entero es: 

< O si cadl 
= O si cadl 
> O si cadl 

es menor que 
es igual u 
es mayor que 

cad2 
cad2 
cad2 

Ejemplo 12.12 

Resultados de realizar comparaciones de cadenas. 
char cadl [ ] = "Microsoft C"; 
char cad2 [ I  = "Microsoft Visiial C" 
int i; 

i = strcmp(cad1, cad2); / *  i, toma un valor negativo * /  

strcmp ("Waterloo", "Windows") < O {Devuelve un valor negativo} 
strcmp ("Mortimer', "Mortim") > O {Devuelve un valor positivo} 
strcmp ("Jertru", "Jertru") = o  {Devuelve cero) 

La comparación se realiza examinando los primeros caracteres de cadl y cad2; a continuación los 

se encuentran dos caracteres distintos del mismo orden: cddl 1 i I y cad2 [ i J ; 
0 se encuentra el carácter nulo en cad I i I o cad2 [ i 1 

siguientes caracteres y así sucesivamente. Este proceso termina cuando: 

Water loo es menor que Windows 
Mort imer es mayor que Mortim-carácter nulo 
Jertru es igual que Jertru 

12.7.2. La función stricmp ( ) 

La función stricmp ( ) compara las cadenas cadl y cdd2 sin hacer distinción entre mayúsculas y 
minúsculas. El prototipo es 

int stricmp (const char* c - a d l ,  const char* c a d 2 )  ; 

Ejemplo 12.13 

Comparucicín de dos cadenas. con indeperidtmciu de que sean letras mayúsculas o minúsculas. 

char cadl [ I  = "Turbo C"; 
char cad2 [ I  = "TURBO C"; 
int i; 

i = stricmp(cad1, c a d 2 ) ;  



I -  - 
396 Programación en C. Metodología, algoritmos y estructura de datos 

! 
1 

Asigna O a la variable i ya que al no distinguir entre mayúsculas y minúsculas las dos cadenas son 
iguales. 

12.7.3. La función strncrnp ( ) 

La función strncmp ( 1 compara los num caracteres mas a la izquierda de las dos cadenas cad1 y cad2. 
El prototipo es 

int strncmp(const char* c a d l ,  const char* c a d 2 ,  size-t n u m )  ; 

y el resultado de la comparación será (considerando los num primeros caracteres): 

< O si 
= O si 
> O si 

cad1 es menor que cad2 
cadl es igual que cad2 
cadl es mayor que cad2 

Ejemplo 12.14 

Comparar los 7 primeros caracteres de dos cadenas. 
char cadena1 [ ] = "Turbo C"; 
char cadena2 [ ] = "Turbo Prolog" 
int i; 

i = strncmp(cadena1, cadena2, 7); 

Esta sentencia asigna un número negativo a la variable i, ya que "Turbo C" es menor que "Turbo 
En el caso de comparar los 5 primeros caracteres: 

i = strncmp(cadena1, cadena2, 5); 

esta sentencia asigna un cero a la variable i, ya que "Turbo" es igual que "Turbo" . 

12.7.4. La función strnicrnp ( ) 

La función strnicmp ( 1 compara los caracteres nurn a la izquierda en las dos cadenas, cadl y cad2, 
sin distinguir entre mayúsculas y minúsculas. El prototipo es 

int strnicmp(const char* c a d l ,  const char* c a d 2 ,  size-t n u m )  ; 

El resultado será (considerando num primeros caracteres): 

< O  si cadl es menor que cad2 
= O si cadl es igual que cad2 
> o  si cadl es mayor que cad2 

Ejemplo 12.15 

Comparación de los 5 primeros caracteres. sin distincicín entre mayúsculas y minúsculas 

char cadena1 [ I = "Turbo C"; 
char cadena2 [ I  = "TURBO C"; 
int i; 
i = strnicmp(cadena1, cadena2, 5); 

Esta sentencia asigna O a la variable i ,  ya que las cadenas "Turbo" y "TURBO" difieren sólo en que 
son mayúsculas o minúsculas. 



Cadenas 397 

12.8. INVERSIÓN DE CADENAS 

La biblioteca STRING. H incluye la función strrev ( ) que sirve para invertir los caracteres de una 
cadena. Su prototipo es: 

char *strrev(char *s); 

strrev( ) invierte el orden de los caracteres de la cadena especificada en el argumento s; devuelve un 
puntero a la cadena resultante. 

Ejemplo 12.16 

Muestra de inversión de cadenas. 

char cadena[] = "Hola"; 
strrev (cadena) ; 
puts (cadena) ; / *  visualizd l l d10H ' l  * /  

El programa siguiente invierte el orden de la cadena  ola mundo 

#include <stdio.h> 
#include <string.h> 

int main (void) 
{ 
char *cadena = "Hola mundo"; 
strrev (cadena) ; 
printf("\nCadena inversa: %s\n", cadena); 
return O ;  

I 

Estas dos sentencias 

strrev (cadena) ; 
printf("\nCadena inversa: Xs\n", cadena); 

se podrían haber sustituido por 

printf ("\nCadena inversa: %s\n", strrev(cadena) ) ; 

12.9. CONVERSIÓN DE CADENAS 

La biblioteca STRING. H de la mayoría de los compiladores C suele incluir funciones para convertir los 
caracteres de una cadena a letras mayúsculas y minúsculas respectivamente. Estas funciones se llaman 
striwr ( ) y strupr ( ) en compiladores de AT&T y Borland, mientras que en Microsoft se denominan 
-strlwr ( ) y -strupr ( 1. 

12.9.1. Función strupr ( ) 

La función strupr ( convierte las letras minúsculas de una cadena a mayúsculas. Su prototipo es: 

char *strupr(char * S I ;  



398 Programación en C. Metodología, algoritmos y estructura de datos 

Ejemplo 12.17 

Este programa convierte los caracteres en minúsculas de una cadena a mayúsculas; se escribe la cadena 
por pantalla. 

#include <stdio.h> 
#include <string.h: 

int main (void) 
i 
char *cadena = "abcdefg"; 

strupr(cadena); 
printf ("La cadend convertidd es: % c \ n " ,  cadena) ; 
return O ;  

i 

12.9.2. Función striwr ( ) 

La,función striwr () convierte las letras mayúsculas de una cadena a letras minúsculas. Su prototipo 
es : 

char *strlwr (char *s) ; 

Ejemplo 12.18 

Una cadena formada por caracteres en mayúsculas se convierten en minúsculas. 

#include <stdio.h> 
#include <string.h> 

int main (void) 
i 

char *cadena = "ABCDEE'G"; 

strlwr (cadena) ; 
printf('La cadena convertida es: %s\n",cadena); 
return O ;  

1 

Ejercicio 12.5 

Se desea encontrar una cadena que sea palíndromo. El programa lee cadenas hasta encontrar un 
palíndromo. 

Análisis 
La cadena se lee con gets ( ) , se transforman todos los caracteres a mayúsculas con la función 
strupr ( ) , se obtiene la cadena inversa con strrev ( ) y se comparan con strcmp ( ) . 

No hubiera hecho falta convertir a mayúsculas si la comparación de cadenas se hubiera hecho con 
stricmp ( ) .  

# include 
#include 

int main 
i 

<stdio. h> 
<string.h> 

void) 

Y 



- 
Cadenas 399 

char ctr[81], ictr [Ul]; 
puts ("\n\tintroducir und frase h,istci ~ I J C  sea capicud.") ; 
do i 

gets (ctr) ; 
strupr (ctr) ; / *  Todos I os cdrC1cteres e n  mayúsculas * /  
strcpy (ictr, ctr) ; 
strrev(ctr); / *  Invierte Id ccidena * /  

1 while (strcmp(ctr,ictr)); /*termina el bucle cuando son iguales * /  
printf ("\nCadena %s es palíndromo", ictr) ; 
return O ;  

1 

12.10. CONVERSIÓN DE CADENAS A NÚMEROS 

Es muy frecuente tener que convertir números almacenados en cadenas de caracteres a tipos de datos 
numéricos. C proporciona las funciones atoi ( ) , atof ( ) y ato1 ( ) ,  que realizan estas conversiones. 
Estas tres funciones se incluyen en la biblioteca STriI, I R. H ,  por lo que ha de incluir en su programa la 
directiva 

#include <stdlib.h> 

12.10.1. Función atoi ( ) 

La función atoi ( ) convierte una cadena a un valor entero. Su prototipo es: 

int atoi(const char "cad); 

atoi ( ) convierte la cadena apuntada por cad a un  valor entero. La cadena debe tener la repreuentación 
de un valor entero y el formato siguiente: 

[espacio en b l a n c o 1  [ s i q n o l  i d d d l  

[espacio en b l a r i c o ]  = r a d ~ r i a  oyc  iondl de t ~ ~ b u l d c i o n e s  y espdcios 
[ s i g n o 1  = u n  signo opcional  para el v a l o r  
idddl ~ Iu c;idcrid de dígilos 

Una cadena que se puede convertir a un  entero e\: 
" 12 3 2 I' 

Sin embargo, la cadena siguiente no se puede convertir a un  valor entero: 

"-1234596.495" 

La cadena anterior se puede convertir a un número de coma flotante con la función atof ( ) . 

Si la cadena no se puede convertir, atoi ( ) devuelve cero. 

Ejemplo 12.19 

Convierte los dígitos de una cadena en un valor entero. 

char *cadena = "453423"; 
int valor; 
vdlor = atoi(cadend); 



400 Programación en C. Metodología, algoritmos y estructura de datos 

12.10.2. Función atof ( ) 

La función atof ( ) convierte una cadena a un valor de coma flotante. Su prototipo es: 

double atof(const char *cad); 

atof ( ) convierte la cadena apuntada por cad a un valor double en coma flotante. La cadena de 
caracteres debe tener una representación de caracteres de un número de coma flotante. La conversión 
termina cuando se encuentre un carácter no reconocido. Su formato es: 

[ e s p a c i o  en b l a n c o ]  [ s i g n o ]  [ddd] [.I [ d d d l  [ e / E l  [ s i g n o ]  [ d d d l  

Ejemplo 12.20 

Convierte los dígitos de una cadena a un número de tipo d o u b l e .  

char *cadena = "545.7345"; 
double valor; 
valor = atof(cadena); 

12.10.3. Función ato1 ( ) 

La función ato1 ( ) convierte una cadena a un valor largo ( long).  Su prototipo es: 

long atol(const char *cad); 

La cadena a convertir debe tener un formato de valor entero largo: 

[espacio en b l a n c o ]  [ s i g n o ]  [dddl 

Ejemplo 12.21 

Una cadena que tiene dígitos consecutivos se convierte en entero largo. 

char *cadena = "45743212''; 
long valor; 
valor = atol(cadena); 

12.10.4. Entrada de números y cadenas 

Un programa puede necesitar una entrada que consista en un  valor numérico y a continuación una 
cadena de caracteres. La entrada del valor numérico se puede hacer con scanf ( y la cadena con 
gets ( ) .  

Ejemplo 12.22 

Lectura de un entero largo y a continuacicín una cadena. 

long i n t  k; 
char cad[811; 

p r i n t f  ("Metros cuadrados: " )  ; scanf ("%ld",&k) ; 



Cadenas 401 

printf ("Nombre de la finca: ' I )  ; gets (cad) ; 

Al ejecutarse este fragmento de código, en pantalla sale 

Metros cuadrados: 1980756 
Nombre de la finca: 

No se puede introducir el nombre de la finca, el programa le asigna la cadena vacía. ¿Por qué?: al 
teclear 19 8 O 7 5 6 y retorno de carro se asigna la cantidad a k y queda en el buffer interno el carácter fin 
de línea, que es el carácter en que termina la captación de una cadena por gets í 1 ,  por lo que no se le 
asigna ningún carácter a cad. Para solucionar este problema tenemos dos alternativas, la primera: 

printf ("Metros cuadrados: " )  ; scanf ("%ld%*c',hk) ; 
printf ("Nombre de la finca: " )  ; gets (cad) ; 

Después de captar el número,%*c , hace que se lea el siguiente carácter y no se asigne, así se queda 
el buffer de entrada vacío y gets (cad) puede captar la cadena que se teclee. La segunda alternativa es 
leer el valor numérico como una cadena de dígitos y después transformarlo con atol (cad) a entero 
largo. 

printf ("Metros cuadrados: ' I )  ; gets (cad) ; 
k = atol (cad) ; 
printf ("Nombre de la finca: " )  ; gets (cad) ; 

12.11. BÚSQUEDA DE CARACTERES Y CADENAS 

La biblioteca S T R I N G .  H contiene un número de funciones que permiten localizar caracteres en cadenas 
y subcadenas en cadenas. 

Funciones de búsqueda strchr strrchr 
de caracteres s trc spn s t rpbrk 

Funciones de búsqueda strstr strtok 
de cadenas 

strspn 

12.11.1. La función strchr() 

El prototipo de la función strchr ( ) es 

char *strchr(const char *s, int c); 

s t r ch r  ( 1 permite buscar caracteres y patrones de caracteres en cadenas; localiza la primera 
ocurrencia de un carácter c en una cadena s .  La búsqueda termina en la primera ocurrencia de un carácter 
coincidente. 

Ejemplo 12.23 

Búsqueda del carácter ' v ' en una cadena. 

char cad[81] = "C lenguaje de medio nivel"; 
char *cadPtr; 
cadPtr = strchr(cad, 'v'); 



P 
1 

402 Programación en C. Metodología, algoritmos y estructura de datos 

12.11.2. La función s t r rchr  ( ) 

La función strrchr ( ) localiza la Última ocurrencia del patrón c en la cadena s .  La búsqueda se realiza 
en sentido inverso, desde el último carácter de la cadena al primero; termina con la primera ocurrencia 
de un carácter coincidente. Si no se encuentra el carácter c en la cadena s, la función produce un  
resultado NULL. Su prototipo es 

char *strrchr(const char *s, int c ) ;  

I 
carúcter buscado 

cudtma de búsquedu 

Ejemplo 12.24 

Búsqueda en orden inverso del curúcter 'x' en un m a  cadena y escribe la cadena que evtá a 
continuación. 

#include <stdio. h> 
#include <strinq. h> 

int mdin (void) 
i 

char *cadena = 'I-x-"; 
char * resiu 1 Lado ; 

resultado = strrchrícadend, 'x'); 
printf ("Cadena devuelta: %s\n", resultado) ; 
return O ;  

} 

12.11.3. La función s t r s p n ( )  

La función strspn( devuelve el número de caracteres de la parte iLquierda de una cadena S I  que 
coincide con cualquier carácter de la cadena patrcín s2. El prototipo de strspn ( ) es 

size-t strspn(const char * c 1 ,  c o r i s t  ch,ir " ~ 2 ) ;  

Ejemplo 12.25 

El siguiente ejeniplo busca el segmento de (udenal yue tiene un subconjunto de cddena2 . 

#include <stdio.h> 
#include <string.h> 

int main (void) 
i 
char *cadena1 = "3c~1293456"; 
char *cadena2 "abcl23"; 
int longitud; 

longitud = ctrspn (cadenal, ccidena2 ) ; 
printf ('Longitud = %d", 1 oriq i i iid) ; 
return O ;  



Cadenas 403 

Ejecución 

Longitud = 4 

Este resultado se obtiene porque el primer carácter de cadena1 es 3 y pertenece a cadena2, los 
tres caracteres siguientes a12 pertenecen a cadena2. 

12.11.4. La función strcspn( ) 

La función strcspn( ) encuentra el índice del primer carácter de la primera cadena sl que está en el 
conjunto de caracteres especificado en la segunda cadena s?. El prototipo de strcspn es: 

size-t strcspn (const c h a r  *sl, c o n s t  char  *s?) ; 

Ejemplo 12.26 

Búsqueda de la primera posición del carácter I d I o I w en uiia cadeiia. 

char cadena [ ] = "Los mano1 os de Cdrchelejo"; 
int i; 
1 = strcspn(cadena, "dw") ; 

El ejemplo anterior asigna 12 (posición del carácter d en cadend) a la variable i. 
1 

12.1 1.5. La función strpbrk ( ) 

La función strpbrk ( ) recorre una cadena buscando caracteres pertenecientes a un conjunto de 
caracteres especificado. El prototipo es 

char *strpbrk(const char *sl, const char *s2); 

Esta función devuelve un puntero a la primera ocurrencia de cualquier carácter de s2 en SI. Si las 
dos cadenas no tienen caracteres comunes se devuelve NULL.  

Ejemplo 12.27 

Encuentra la dirección en cad del primer carácter eiicontrado que pertenezca a subcad. 

char *cad = "Hello Dolly, hey Julio"; 
char "subcad = "hy"; 
char * p t r ;  

ptr = strpbrk(cad, subcad); 
printf ("\n%s\n",ptr) ; 

El segmento de programa visualiza ' ' y ,  hey J u l i o "  , ya que encuentra "y'' en la cadena antes 
que la "h" . 



! 

404 Programación en C. Metodología, algoritmos y estructura de datos 

12.11.6. La función strstr( ) 

La biblioteca STRING. H contiene las funciones strstr ( ) y strtok ( ) , que permiten localizar una 
subcadena en una cadena o bien romper una cadena en subcadenas. La función strstr ( ) busca una 
cadena dentro de otra cadena. El prototipo de la función es 

char *strstr(const char *sl, const char " ~ 2 ) ;  

La función devuelve un puntero al primer carácter de la cadena s 1 que coincide con la cadena s 2. Si la 
subcadena s2 no está en la cadena SI, la función devuelve N U I ~ L .  

Ejemplo 12.28 

Búsqueda de la cadena I' 4 i 6 " en c ad1 . 
char *cad1 = "123456789"; 
chdr *cad2 = "456"; 
char *resultado; 

resultado = strstr(cad1, c d d 2 ) ;  
p r  intf ("\n&s\n", resultado) ; 

El segmento de programa anterior visualiza 4 5 6'1 8 9 

12.1 1.7. La función s t r t o k  ( ) 

La función strtok( ) permite romper una cadena en subcadenas, basada en un conjunto especificado 
de caracteres de separación. Su prototipo es 

char *strtok(char *sZ, const char *s3); 

strtok ( ) lee la cadena SI como una serie de cero o inás símbolos y la cadena s2 como el conjunto de 
caracteres que se utilizan como separadores de los símbolos de la cadena s 1. Los símbolos en la cadena 
SI pueden encontrarse separados por un carácter o más del conjunto de caracteres separadores de la 
cadena s2. La segunda y posteriores llamadas a strtok() ha de hacerse con el primer argumento a 
NULL cuando devuelva N U L ~ T ,  . 

Ejercicio 11.6 

Este programa rompe una cadena en subcadenas y se imprime cada una de ellas. 
#include <stdio.h> 
#include <string.h> 

int main0 
i 

char *cad = "Pepe Luis + Canovds * M d r ~ c o s I I ;  
char "separador = ' I + * " ;  

char *ptr = cad; 

printf ("\n%s\n", cad) ; 
ptr = strtok(cad, separador); 

/ *  Anterior llamada, devuelve dirección d primer 
carácter y sitúa un NULL en el p r - i m e r  carácter 
coincidente con algún c d r á c t . e r  de c2 



Cadenas 405 

* /  
printf ("\tSe rompe en tres subcadenas") ; 
while (ptr) 
i 
print f ( 'I \ n % s I' , p t r ) ; 
ptr = strtok(NULL, separador); 

/*Devuelve dirección primer carácter 
(a partir de subcadena anterior) y situa NULL en 
primer carácter coincidente con alguno de s2 * /  

i 

return O ;  

Al ejecutar este programa se visualiza: 

Pepe Luis + Canovas * Marcos 
Se rompe en tres subcadenas 

Pepe Luis 
Canovas 
Marcos 

12.12. RESUMEN 

En este capítulo se han examinado las funciones de strcmp ( y strfcmp ( ) realizan una com- 
manipulación de cadenas incluidas en el archivo de paración de dos cadenas, sin tener en cuen- 
cabecera STRING.  H. Los temas tratados han sido: ta mayúsculas y minúsculas. La función 

strncmp0 es una variante de la función 
strcmp ( 1, que utiliza un número especificado 
de caracteres al comparar las cadenas. La fun- 
ción strnicmp ( ) es una versión de la función 
strncmp ( 1 que realiza una versión con inde- 
pendencia del tamaño de las letras. 
Las funciones strlwr ( ) y strupr ( ) con- 
vierte los caracteres de una cadena en letras 
minúsculas y mayúsculas respectivamente. 
La función strrev ( 1 invierte el orden de 
caracteres en una cadena. 
Las funciones strchr ( ) , strspn ( ) , 
strcspn ( y strpbrk ( ) permiten buscar 
caracteres y patrones de caracteres en cadenas. 
La función strstr ( busca una cadena en otra 
cadena. La función strtok ( ) rompe (divide) 
una cadena en cadenas más pequeñas (subcade- 
nas) que se separan por caracteres separadores 
especificados. 

0 Las cadenas en C son mays de caracteres que 
terminan con el carácter nulo (el carácter O de 
ASCII). 
La entrada de cadenas requiere el uso de la fun- 
ción gets ( ). 

* La biblioteca S T R I N G .  H contiene numerosas 
funciones de manipulación de cadenas; entre 
ellas, se destacan las funciones que soportan 
asignación, concatenación, conversión, inversión 
y búsqueda. 
C soporta dos métodos de asignación de cade- 
nas. El primer método, asigna una cadena a otra, 
cuando se declara esta Última. El segundo méto- 
do, utiliza la función strcpy ( 1, que puede 
asignar una cadena a otra en cualquier etapa del 
programa. 
La función strlen( ) devuelve la longitud de 
una cadena. 
Las funciones strcat ( ) y strncat ( ) per- 
miten concatenar dos cadenas. La función 
strncat ( ) permite especificar el número de 
caracteres a concatenar. 

strncmp ( ) y strnicmp ( ) permiten realizar 
diversos tipos de comparaciones. Las funciones 

Asimismo, se han descrito las funciones de con- 
versión de cadenas de tipo numérico a datos de tipo 
numérico. C proporciona las siguientes funciones de 

Las funciones strcmp0, stricrnp0, conversión: atoi(s), atoi(s) yatof(s), 
que convierten el argumento s (cadena) a enteros, 
enteros largos y reales de coma flotante. 



406 Programación en C. Metodologia, algoritmos y estructura de datos 

12.13. EJERCICIOS 

12.1. Teniendo en cuenta el siguiente segmento de 
código, indicar los errores y la forma de corre- 
girlos. 

char *b = "Descanso activo"; 
char *p = b; 
char c [ ] = "Para recuperar"; 
char* cd; 

cd = "Asigna cadena"; 
cd = C; 

12.2. Se quiere leer del dispositivo estándar de entra- 
da las n códigos de asignaturas de la carrera de 
Sociología. Escribe un segmento de código 
para realizar este proceso. 

12.3. Para entrada de cadenas de caracteres, qué 
diferencia existe entre s canf ( 'I % s I' , 
cadena) y gets (cadena). ¿En qÚe casos 
será mejor utilizar una u otra? 

12.4. En el siguiente código C se lee un número real 
y una cadena de caracteres. ¿Qué problemas 
surgen y por qué? ¿Cómo resolverlo? 

float x; 
char nom[ól] ; 
printf ('Distancia en Km: " )  ; 
scanf ("%f",&x); 
print f ( "Nombre del pueblo: I' ) ; 
gets (nom) ; 

12.5. Define un array de cadenas de caracteres para 
poder leer un texto compuesto por un máximo 
de 80 líneas. Escribe una función para leer el 
texto; la función debe de tener dos argumentos, 
uno el texto y el segundo el número de líneas. 

12.6. Escribir una función que tenga como entrada 
una cadena y devuelva el número de vocales, 
de consonantes y de dígitos de la cadena. 

12.7. ¿Qué diferencias y analogías existen entre las 
variables c 1, c 2, c 3 ? La declaración es: 

char **c1; 
char *c2 [lo1 ; 
char *c3 [lo] [211 ; 

12.8. Escribe una función que obtenga una cadena 
del dispositivo de entrada, de igual forma que 
char* gets (char*). Utilizar para ello 
getchar ( ) .  

12.9. Escribir una función que obtenga una cadena 
del dispositivo estándar de entrada. La cadena 
termina con el carácter de fin de línea, o bien 
cuando se han leído n caracteres. La función 
devuelve un puntero a la cadena leída, o EOF 
si se alcanzó el fin de fichero. El prototipo de 
la función debe de ser: 

char*lee-linea(char*c,int n); 

12.10. La función atoi ( ) transforma una cadena 
formada por dígitos decimales en el equiva- 
lente número entero. Escribir una función que 
transforme una cadena formada por dígitos 
hexadecimales en un entero largo. 

12.11. Escribir una función para tranformar un 
número entero en una cadena de caracteres 
formada por los dígitos del número entero. 

12.12. Escribir una función para tranformar un 
número real en una cadena de caracteres que 
sea la representación decimal del número real. 



1 

Cadenas 407 

12.14. PROBLEMAS 

12.1. Escribir un programa que lea un texto de como 
máximo 60 líneas, cada línea con un máximo 
de 80 caracteres. Una vez leído el texto inter- 
cambiar la línea de mayor longitud por la línea 
de menor longitud. 

12.2. Escribir un programa que lea una línea de tex- 
to y escriba en pantalla las palabras de que 
consta la línea. Utilizar las funciones de 
string-h. 

12.3. Se tiene un texto formado por un máximo de 
30 líneas, del cual se quiere saber el número de 
apariciones de la palabra CLAVE. Escribir un 
programa que lea el texto y la palabra CLAVE, 
determine el número de apariciones de CLAVE 
en el texto. 

12.4. Se tiene un texto de 40 líneas. Las líneas tienen 
un número de caracteres variable. Escribir un 
programa para almacenar el texto en una 
matriz de líneas, ajustada la longitud de cada 
línea al número de caracteres. El programa 
debe de leer el texto, almacenarlo en la estruc- 
tura matricial y escribir por pantalla las líneas 
en orden creciente de su longitud. 

12.5. Escribir un programa que lea líneas de texto, 
obtenga las palabras de cada línea y las escriba 
en pantalla en orden alfabético. Se puede con- 
siderar que el máximo número de palabras por 
línea es 28. 

12.6. Se quiere leer un texto de como máximo 30 
líneas. Se quiere que el texto se muestre de tal 
forma que aparezcan las líneas en orden aífa- 
bético. 

12.7. Se sabe que en las líneas de que forma un tex- 
to hay valores numéricos enteros, representan 

los Kg de patatas recogidos en una finca. Los 
valores numéricos están separados de las 
palabras por un blanco, o el carácter fin de 
línea. Escribir un programa que lea el texto y 
obtenga la suma de los valores numéricos. 

12.8. Escribir un programa que lea una cadena cla- 
ve y un texto de como máximo 50 líneas. El 
programa debe de eliminar las líneas que con- 
tengan la clave. 

12.9. Se quiere sumar números grandes, tan gran- 
des que no pueden almacenarse en variables 
de tipo long. Por lo que se ha pensado en 
introducir cada número como una cadena de 
caracteres y realizar la suma extrayendo los 
dígitos de ambas cadenas. Hay que tener en 
cuenta que la cadena suma puede tener un 
carácter más que la máxima longitud de los 
sumandos. 

12.10. Un texto está formado por líneas de longitud 
variable. La máxima longitud es de 80 carac- 
teres. Se quiere que todas las líneas tengan la 
misma longitud, la de la cadena más larga. 
Para ello se debe de cargar con blancos por la 
derecha las líneas hasta completar la longitud 
requerida. Escribir un programa para leer un 
texto de líneas de longitud variable y forma- 
tear el texto para que todas las líneas tengan 
la longitud de la máxima línea. 

12.11. Escribir un programa que encuentre dos cade- 
nas introducidas por teclado que sean anagra- 
mas. Se considera que dos cadenas son ana- 
gramas si contienen exactamente los mismos 
caracteres en el mismo o en diferente orden. 
Hay que ignorar los blancos y considerar que 
las mayúsculas y las minúsculas son iguales. 



P A R T E  I 1 1  

ESTRUCTURA DE DATOS 



CAPíTULO 13 

ENTRADAS Y SALIDAS 
POR ARCHIVOS 

CONTENIDO 

13.1. Flujos. 
13.2. Puntero FILE. 

13.3. Apertura de un archivo. 
13.4. Creación de archivo 

13.5. Archivos binarios en C. 
secuencial. 

13.6. Funciones para acceso 
aleatorio. 

13.7. Argumentos de main ( 1 .  

1 3.8. Resumen. 
13.9. Ejercicios. 
13.10. Problemas. 

41 O 



IMTRODUCCI~N 
Hasta este momento se han realizado las operaciones básicas de entrada y 
salida. La operación de introducir (leer) datos en el sistema se denomina leatura 
y la generación de datos del sistema se denomina esctritura. La lectura de datos 
se realiza desde su teclado e incluso desde su unidad de disco, y la escritura de 
datos se realiza en el monitor y en la impresora de su sistema. 

Las funciones de entradaísalida no están definidas en el propio lenguaje C, 
sino que están incorporadas en cada compilador de C bajo la forma de biblioteca 
de ejecución. En C existe la biblioteca stdi0.h estandarizada por ANSI; esta 
biblioteca proporciona tipos de datos, macros y funciones para acceder a los 
archivos. El manejo de archivos en C se hace mediante el concepto de flujo 
(streams) o canal, o también denominado secuencia. Los flujos pueden estar 
abiertos o cerrados, conducen los datos entre el programa y los dispositivos 
externos. Con las funciones proporcionadas por la biblioteca se pueden tratar 
archivos secuenciales, de acceso directo, archivos indexados, etc. 

En este capítulo aprenderá a utilizar las características típicas de E/S para 
archivos en C, así como las funciones de acceso más utilizadas. 

CONCEPTOS CLAVE 
Acceso aleatorio. Archivos indexados. 
Acceso secuencial. Colisiones de claves. 
Apertura y cierre de un archivo. Flujos. 
Archivos binarios . Registro lógico. 
Archivos de caracteres. Transformación de claves. 

41 1 
1 



412 Programación en C. Metodología, algoritmos y estructura de datos 

13.1. FLUJOS 

Un flujo (stream) es una abstracción que se refiere a unflujo o corriente de datos que fluyen entre un 
origen o fuente (productor) y un destino o sumidero (consumidor). Entre el origen y el destino debe 
existir una conexión o canal (<<pipe.) por la que circulen los datos. La apertura de un archivo supone 
establecer la conexión del programa con el dispositivo que contiene al archivo, por el canal que 
comunica el archivo con el programa van a fluir las secuencias de datos. Hay tres flujos o canales 
abiertos automáticamente: 

extern FILE *stdin; 
extern FILE *stdout; 
extern FILE *stderr; 

Estas tres variables se inicializan al comenzar la ejecución del programa para admitir secuencias de 

stdin 
stdout 
stderr 

Así cuando se ejecuta printf ("Calle Mayor 2. ' I )  ; se escribe en stdout, en pantalla; si se 
desea leer una variable entera con s c a n f  ("%d", &x) ; se captan los dígitos de la secuencia de entrada 
stdin. 

El acceso a los archivos se hace con un bufet- intermedio. Se puede pensar en el buffer como un 
array donde se van almacenando los datos dirigidos al archivo, o desde el archivo; el hufSer se vuelca 
cuando de una forma u otra se da la orden de vaciarlo. Por ejemplo, cuando se llama a una función para 
leer del archivo una cadena, la función lee tantos caracteres como quepan en el bufet-. A continuación 
se obtiene la cadena del bufSer; una posterior llamada a la función obtendrá la siguiente cadena del buffer 
y así sucesivamente hasta que se quede vacío y se llene con una llamada posterior a la función de lectura. 

El lenguaje C trabaja con archivos con bufer, y está diseñado para acceder a una amplia gama de 
dispositivos, de tal forma que trata cada dispositivo como una secuencia, pudiendo haber secuencias de 
caracteres y secuencias binarias. Con las secuencias se simplifica el manejo de archivo en C. 

caracteres, en modo texto. Su cometido es el siguiente: 

asocia la entrada estándar (teclado) con el programa. 
asocia la salida estándar (pantalla) con el programa. 
asocia la salida de mensajes de error (pantalla) con el programa. 

13.2. Puntero FILE 

Los archivos se ubican en dispositivos externos como cintas, cartuchos, discos, disco compactos, etc. 
y tienen un nombre y unas características. En el programa el archivo tiene un nombre interno que es un 
puntero a una estructura predefinida (puntero a archivo). Esta estructura contiene información sobre el 
archivo, tal como la dirección del buffer que utiliza, el modo de apertura del archivo, el último carácter 
leído del buffer y otros detalles que generalmente el usuario no necesita saber. El identificador del tipo 
de la estructura es FILE y esta declarada en el archivo de cabecera stdio. h :  

typedef struct{ 
short level; 
unsigned flags;/*estado del archivo: lectura, binario . . .  * /  
char fd; 
unsigned char hold; 
short bsize; 
unsigned char *buffer, *curp; 
unsigned istemp; 
short token; 

}FILE; 

El detalle de los campos del tipo FILE puede cambiar de un compilador a otro. Al programador le 
interesa saber que existe el tipo FILE y que es necesario definir un puntero a FILE por cada archivo a 



Entradas y salidas por archivos 413 

procesar. Muchas de las funciones para procesar archivos son del tipo FILE *, y tienen argumento(s) 
de ese tipo. 

Ejemplo 13.1 

Se declara un puntero a FILE; se escribe el prototipo de una funcicjn de tipo puntero a FTI,E y con un 
argumento del mismo tipo. 

FILE* pf; 
I FILE* mostrar(FILE*); / *  Prototipo de una función definida por el 

proqramador" / 

Cabe recordar que la entrada estándar al igual que la salida están asociadas a variables puntero a 

FILE *stdin, *stdout; 

, 
FILE: 

13.3. Apertura de un archivo 

Para procesar un archivo en C (y en todos los lenguajes de programación) la primera operación que hay 
que realizar es abrir el archivo. La apertura del archivo supone conectar el archivo externo con el 
programa, e indicar cómo va a ser tratado el archivo: binario, de caracteres, etc. El programa accede a 
los archivos a través de un puntero a la estructura FILF, la función de apertura devuelve dicho puntero. 
La función para abrir un archivo es f open ( ) y el formato de llamada es: 

fopen(nombre-archivo, modo); 

nombre = cadena 
modo = cadena 

Contiene el identljicador externo del archivo. 
Contiene el modo en que se vu u tratar el archivo. 

La función devuelve un puntero a FILE, a través de dicho puntero el programa hace referencia al 
archivo. La llamada a f open ( ) se debe de hacer de tal forma que el valor que devuelve se asigne a una 
variable puntero a FILE, para así después referirse a dicha variable. 

Ejemplo 13.2 

Declara una variable de tipo puntero a FILE. A continuarión escribir una sentencia de apertura de un 
archivo. 

FILE* pf; 
pf = fopen(nombre-archivo, modo); 

La función puede detectar un error al abrir el archivo, por ejemplo que el archivo no exista y se quiera 
leer, entonces devuelve NULL. 

Ejemplo 13.3 

Se desea abrir un archivo de nombre LICENCTA . ES?' para obtener ciertos datos. 

#include <stdio.h> 
#include istdlib.h> 

FILE *pf; 
char nm[l = 'C:\LICENCIA.EST"; 



41 4 Programación en C. Metodología, algoritmos y estructura de datos 

,, 
I 

pf = fopen(nm, "r"); 
~f (p f  == NULL) 
i 
puts("Error al abrir el archivo."); 
e x i t  (1) ; 

i 

Ejemplo 13.4 

En este ejemplo se ubre el archivo de texto J A r i U l N E S  . UAT pura escribir en él l o s  dutos de un progrumu. 

En la misma línea en que se ejecuta f open ( ) se comprueba que la operación ha sido correcta, en caso 
contrario termina la ejecución. 

# i n c l u d e  < s t d i o . h >  
#include < s t d l  Lb.h> 

FILE *ff; 
char* a r c h  = "C: \ A M U I E N T E \ J n K o l N E S . u n T " ;  

i f  ((ff = fopen(nm, "w") ) = = N U L L )  
i 

puts ("Error al abrir el archivo pdrd  escribir . " )  ; 
e x i t  (-1)  ; 

1 

El prototipo de f open ( ) se encuentra en el archivo s t d i  o. h, es el siguiente: 

F I L E *  fopen (const char* nombre-archivo, const char* modo) ; 

13.3.1. Modos de apertura de un archivo 

Al abrir el archivo f open ( ) se espera como segundo argumento el modo de tratar el archivo. Funda- 
mentalmente se establece si el archivo es de lectura, escritura o añadido; y si es de texto o binario. Los 
modos básicos se expresan en esta tabla: 

~~ 

Modo Significado 

"r" Abre para lectura. 
WII 

I' a I' 
r + I'  

"w+" 
"a+" 

Abre para crear nuevo archivo (si ya existe se pierden sus datos). 
Abre para añadir al final. 
Abre archivo ya existente para modificar (leer/escribir). 
Crea un archivo para escribidleer (si ya existe se pierden los datos). 
Abre el archivo para modificar (exribidleer) al final. Si no existe es como w+. 

En estos modos no se ha establecido el tipo del archivo, de texto o binario. Siempre hay una opción 
por defecto y aunque depende del coinpilador utilizado, suele ser modo texto. Para no depender del 
entorno es mejor indicar si es de texto o binario. Se utiliza la letra t para modo texto, la b para 
modo binario como Último carácter de la cadena modo (también se puede escribir como carácter 
intermedio). Por consiguiente, los modos de abrir un archivo de texto: 

" a t  'I , II rt II , l l w t  II , I' r + t I' , IIw t t I' , " a t t " . 
Y los modos de abrir un archivo binario: 



-7 

Entradas y salidas por archivos 41 5 

"r+b" , "w+b" , "d+b" . H r b l I ,  l l w b l 1  , I l a b "  , 

Ejemplo 13.5 

Se dispone archivo de texto L l C E N C l n .  EST, se quiere leerlo para realizar un cierto proceso y escribir 
datos resultantes en al archivo hinario KESLJMEN . REC. Lris operaciones de apertura son: 

#include <stdio.h> 
# i n c l u d e  <stdl¿b.h> 

FILE " p f l ,  * p f 2 ;  
char erg[] = "C:\LlCENCIA.EC'I''; 
chdr dst 1 = "C : \KESUML,N.  REC'" ; 

pfl = fopcn(orq, "rt") ; 
p f 2  = fopen(dst,"wb"); 
if (pfl == NULL I 1  p f 2  == NULL) 

puts ( " E r r o r  al abrir los archivos. ) ; 
exit (1) ; 

1 

13.3.2. NULL y EOF 

Las funciones de biblioteca que devuelven un puntero ( strcpy ( ) , f open ( ) . . . ) especifican que si 
no pueden realizar la operación (generalmente si hay un  error) devuelven NULL. Esta es una macro 
definida en varios archivos de cabecera, entre los que se encuentran s t d i o  . h y stdlib. h . 

Las funciones de librería de E/S de archivos, generalmente empiezan por f de file, tienen 
especificado que son de tipo entero de tal forma que si la operación falla devuelven EOF, también 
devuelven EOF para indicar que se ha leído el fin de archivo. Esta macro está definida en stdio . h . 

Ejemplo 13.6 

El siguiente segmento de ccídigo lee de1,flujo estándur de entrada hasta fin de archivo: 

i 

13.3.3. Cierre de archivos 

Los archivos en C trabajan con una memoria intermedia, son con hufer. La entrada y salida de datos se 
almacena en ese buffer, volcándose cuando está lleno. Al terminar la ejecución del programa podrá 
ocurrir que haya datos en el hgfer. si no se volcasen en el archivo quedaría este sin las últimas 
actualizaciones. Siempre que se termina de procesar un archivo y siempre que se termine la ejecución 
del programa los archivos abiertos hay que cerrarlos para que entre otras acciones se vuelque el bz&fer. 



41 6 Programación en C. Metodología, algoritmos y estructura de datos 

La función €close (puntero-f ile) cierra el archivo asociado al puntero-f ile, devuelve EOF si ha 
habido un error al cerrar. El prototipo de la función se encuentra en stdio . h y es: 

int fclose(FILE* pf); 

Ejemplo 13.7 

Abrir dos archivos de texto, después se cierra cada uno de ellos. 

#include <stdio.h> 
FILE *pfl, * p f 2 ;  

pfl = ~~~~~('C:\DATOS.DAT","~+") ; 
pf2 = fopen("C:\TEMPS.RET","b+") ; 

fclose(pf1); 
fclose(pf2); 

13.4. CREACIÓN DE UN ARCHIVO SECUENCIAL 

Una vez abierto un archivo para escribir datos hay que grabar los datos en el archivo. La biblioteca C 
proporciona diversas funciones para escribir datos en el archivo a través del puntero a FILE asociado. 

Las funciones de entrada y de salida de archivos tienen mucho parecido con las funciones utilizadas 
para entrada y salida para los flujos stdin (teclado) y stdout (pantalla): printf í ) ,  scanf í ) ,  
getchar ( ) , putchar ( ) , gets ( ) y puts ( ) . Todas tienen una versión para archivos que empieza por 
la letra f, así se tiene fprintf ( ) ,  fscanf ( ) ,  fputs ( ) ,  fgets ( )  ; la mayoría de las funciones 
específicas de archivos empiezan porf. 

13.4.1. Funciones putc ( ) y fputc ( 1 

Ambas funciones son idénticas, putc ( ) está definida como macro. Escriben un carácter en el archivo 
asociado con el puntero a FILE. Devuelven el carácter escrito, o bien EOF si no puede ser escrito. El 
formato de llamada: 

putc(c, puntero-archivo); 
fputc(c, puntero-archivo); 

siendo c el carácter a escribir. 

Ejercicio 13.1 

Se desea crear un archivo SALIDA. PTA con los caracteres introúucidos por teclado. 

Análisis 
Una vez abierto el archivo, un bucle mientras (while) no sea fin de archivo (macro EOF) lee carácter a 
carácter y se escribe en el archivo asociado al puntero FILE. 

#include <stdio.h> 
int main() 
{ 
int c; 
FILE* pf; 
char *salida = "#SALIDA.&%@"; 



Entradas y salidas por archivos 417 

if ((pf = fopen(salida,"wt"))== NULL) 
i 

puts ("ERROR EN LA OPERACLON DE APERTURA') ; 
return 1; 

} 

fclose (pf) ; 
return O; 

} 

En el Ejercicio 13. I en vez de putc (c, pf) se puede utilizar fputc (c, pf) . El prototipo de ambas 
funciones se encuentra en stdio. h , es el siguiente: 

int putc(int c, FLLE* pf); 
int fputc( int c, FILE* p f )  ; 

13.4.2. Funciones getc ( ) y fgetc ( ) 

Estas dos funciones son iguales, igual formato e igual funcionalidad; pueden considerarse que son 
recíprocas de putc ( ) y fputc ( ) . Éstas, getc ( ) y fgetc ( ) , leen un carácter (el siguiente carácter) 
del archivo asociado al puntero a FILE. Devuelven el carácter leído o EOF si es fin de archivo (o si ha 
habido un error). El formato de llamada es: I 

getc (puntero-archivo) ; 
fgetc(punter0-archivo); 

Ejercicio 13.2 

El archivo SALIDA. PTA, creado en el Problema 13.1, se desea leer para mostrarlo por pantalla y 
contar las líneas que tiene. 

Análisis 
Una vez abierto el archivo de texto en modo lectura, un bucle mientras no sea fin de archivo (macro 
EOF) lee carácter a carácter y se escribe en pantalla. En el caso de leer el carácter de fin de línea se debe 
saltar a la línea siguiente y contabilizar una línea más. 

#include <stdio.h> 
int main() 
i 
int c, n=O; 
FILE* pf; 
char *nombre = "\\\SALIDA.TXT"; 

if ((pf = fopen(nombre,"rt")) == NULL) 
{ 

puts ("ERROR EN LA OPERACION DE APERTURA") ; 
return 1; 

1 



418 Programación en C. Metodología, algoritmos y estructura de datos 

if (c == '\no 
{ 

1 
else 

n++; printf ("\n") ; 

putchar (c) ; 
I 

printf ("\nNÚmero de líneds del a r c h i v o :  %d",n) ; 
fclose (pf) ; 
return O ;  

i 

El prototipo de ambas funciones se encuentra en stdio . h y es el siguiente: 

int getc(FILE* p f ) ;  
int fgetc (FILE* p f )  ; 

13.4.3. Funciones fputs  ( )  y f g e t s  ( )  

Estas funciones escriben/leen una cadena de caracteres en el archivo asociado. La función f put s í ) 

escribe una cadena de caracteres. La función devuelve I:OF si no ha podido escribir la cadena, un  valor 
no negativo si la escritura es correcta; el formato de llamada es: 

fputs(cadena, puntero-archivo) ; 

La función fget s ( ) lee una cadena de caracteres del archivo. Termina la captación de la cadena cuando 
lee el carácter de tin de línea, o bien cuando ha leído n-1 caracteres, siendo n un argumento entero de 
la función. La función devuelve un puntero a la cadena devuelta, o NUL,I, si ha habido un error. El 
formato de llamada es: 

fgets(cadena, n, puntero-drchivo); 

Ejemplo 13.8 

Lectura de un múximo de 80 caracteres de un archivo: 

#define T 81 
char cad['rl ; 
FILE *f; 

fgets(cad, T ,  f); 

Ejercicio 13.3 

El archivo CARTAS. DAT contiene un texto al que se le deseu aíiudir nuevas líneas, de longitud mínima 
30 caracteres, desúe el archivo PRIMERO.  DA?: 

Análisis 
El problema se resuelve abriendo el primer archivo en modo añadir ( 'la" ) , el segundo archivo en modo 
lectura ('Ir"). Las líneas se leen con fgets ( 1 ,  si cumplen la condición de longitud se escriben en el 



Entradas y salidas por archivos 419 

archivo CARTAS. Al tener que realizar un proceso completo del archivo, se realizan iteraciones 
mientras no fin de archivo. 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#define MX 121 
#define MN 30 

int main0 
i 
FILE *in, *out; 
char nom1 [ ] = I' \ \CARTAS.  DAT" ; 
char nom2 [ ] = " \ \PRIMERO. DAT" ; 
char cad[MXl; 

in = f open ( nom2, "rt " ) ; 
out= fopen(nom1,"at') ; 
if (in==NULL I 1  out==NULL) 
{ 
puts ("Error al 
exit (-1) ; 

1 

while (fgets (cad 
1 
if (strlen(cad 
fputs (cad, out 

else 
puts (cad) ; 

I 
fclose(in); 
f c l o s e  (out) ; 
return O ;  

abrir archivos. " 1  ; 

MX,in)) /*itera hasta que devuelve puntero NULL*/ 

>= MN) 

El prototipo de ambas funciones está en stdio . h, es el siguiente: 

int fputs(char* cad, FILE* p t ) ;  
char* fgets(char* cad, int n, FILE* p f ) ;  

13.4.4. Funciones f p r i n t f  ( ) y f scanf ( ) 

Las funciones printf ( ) y scant ( ) permiten escribir o leer variables cualquier tipo de dato estándar, 
los códigos de formato (%d, % f ...) indican a C la transformación que debe de realizar con la secuencia 
de caracteres (conversión a entero.. .). La misma funcionalidad tiene fprint f ( ) y f scanf ( ) con los 
flujos (archivos asociados) a que se aplican. Estas dos funciones tienen como primer argumento el 
puntero a file asociado al archivo de texto. 

Ejercicio 13.4 

Se desea crear el archivo de texto PERSONAS. DAT de tal forma que cada línea contenga un registro con 
los datos de una persona que contenga los campos nombre, fecha de nacimiento (dia(nn), mes(nn), 
uño(nnnn) y mes en ASCII). 



420 Programación en C. Metodologia, algoritmos y estructura de datos 

Análisis 
En la estructura persona se declaran los campos correspondientes. Se define una función que devuelve 
una estructura persona leída del teclado. El mes en ASCII se obtiene de una función que tiene como 
entrada el número de mes y devuelve una cadena con el mes en ASCII. Los campos de la estructura son 
escritos en el archivo con fprint f í ) . 

#include <malloc.h> 
#include <stdio.h> 
#include <string.h> 
#include <ctype.h> 
/ *  declaración de tipo global estructura * /  
typedef struct { 

char* nm; 
int dia; 
int ms; 
int aa; 
char mes [ll] ; 

} PERSONA; 

void entrada(PERSONA* p 
char* mes-asci(short n) 

int main0 

FILE *pff; 
char nf [ ] = " \  \PERSONS 
char r = ' S I ;  

DAT " : 

if ((pff = fopen(nf,"wt") )==NULL) 
i 
puts ("Error al abrir archivos. " )  ; 
exit (-1) ; 

1 
while (toupper (r) == 'S' ) 
I 

PERSONA pt; 
entrada(&pt) ; 
printf("%s %d-%d-%d %s\n",pt.nm,pt.dia,pt.ms,pt.aa,pt.mes); 
fprintf(pff,"%s %d-%d-%d %s\n",pt.nm,pt.dia,pt.ms,pt.aa,pt.mes); 
printf ("otro registro?: " )  ; scanf ("%c%*cII,&r) ; 

fclose (pf f) ; 
return O; 

1 
void entrada(PERS0NA" p )  
{ char bf[81]; 
printf ("Nombre: " ) ;  gets(bf) ; 
p->nm =(char*)malloc((strlen(bf)+l)*sizeof(char)); 
strcpy (p->nm, bf) ; 
printf("Fecha de nacimiento(dd mm aaaa): " ) ;  
scanf ("%d %d %d%*c", &p->dia, &p->ms, &p->aa) ; 
printf ("\n %s\n",mes-asci (p->ms) ) ; 
strcpy(p->mes,mes-asci(p->ms)) ; 

1 
char* mes-asci(short n) 



1 

Entradas y salidas por archivos 421 

{ 
static char *mes[l2]= { 

"Enero", "Febrero", "Marzo", "Abril", 
"Mayo" , "Junio" , " J u l  i 0'' , "Agosto" , 
'I S ep t i embr e " , I' Nov i embr e 'I , " O c t ubre I' , I' Di c i embr e I' } ; 

if (n r= l  && n <= 12) 

else 
return mesln-11; 

return "Error mes"; 
1 

El prototipo de ambas funciones esta en stdio . h, y es el siguiente: 

int fprintf(FILE* pf,const char* formato,. . . ) ;  
int fscanf(FILE* pf,const char* formato,. . . ) ;  

13.4.5. Función f eof ( ) 

Diversas funciones de lectura de caracteres devuelven EOE' cuando leen el carácter de fin de archivo. 
Con dicho valor, que es una macro definida en stdio . h, ha sido posible formar bucles para leer un 
archivo completo. La función feof ( ) realiza el cometido anterior, devuelve un valor distinto de O 
(true) cuando se lee el carácter de fin de archivo, en caso contrario devuelve O (false). 

Ejemplo 13.9 

El siguiente ejemplo transforma el bucle del ejercicio 13.2, utilizando la.funcidn feof ( )  

int c, n=O; 
FILE* pf; 
char *nombre = "\\SALIDA.TXT"; 

. . .  
while (!feof(pf)) 
i 
c=getc (pf) ; 
if (c == '\n') 
{ 

1 
n++; printf ("\n") ; 

El prototipo de la función está en stdio . h, es el siguiente: 

int feof(FILE* pf); 

13.4.6. Función rewind ( ) 

Una vez que se alcanza el fin de un archivo, nuevas llamadas a f eof ( ) siguen devolviendo un valor 
distinto de cero (true). Con la función L ewind ( ) se sitúa el puntero del archivo al inicio de éste. El 
formato de llamada es 

rewind(punter0-archivo). 



I- - 

c 

422 Programación en C. Metodología, algoritmos y estructura de datos 

El prototipo de la función se encuentra en stdio . h: 

void rewind(FILE*pf); 

Ejemplo 13.10 

Este ejemplo lee un archivo de texto, cuenta el número de líneas que contiene y a continuación sitúa el 
puntero del archivo al inicio para una lectura posterior. 

#include <stdio.h> 
#include <string.h> 

FILE* pg; 
char nom [ ] = " P L W I O .  DAT" ; 
char buf [1211 ; 
int nl = O ;  

if ((pg = fopen(nom,"rt") )==NULL) 
t 
puts ( "Error al abrir el archivo. I' ) ; 
exit (-1) ; 

i 
while (!feof (pg) ) 
{ 

1 
rewind(pg); 

while (!feof (pg) ) 

fgets (buf, 121,pg) ; nl++; 

/ *  De nuevo puede procesarse el archivo * /  

I 

13.5. Archivos binarios en C 

Para abrir un archivo en modo binario hay que especificar la opción b en el modo. Los archivos binarios 
son secuencias de 0,s y 1,s. Una de las características de los archivos binarios es que optimizan la 
memoria ocupada por un archivo, sobre todo con campos numéricos. Así, almacenar en modo binario 
un entero supone una ocupación de 2 bytes o 4 bytes (depende del sistema), y un número real 4 bytes o 
8 bytes; en modo texto primero se convierte el valor numérico en una cadena de dígitos (%6d, 
% 8 .2 f . . . ) y después se escribe en el archivo. La mayor eficiencia de los archivos binarios se 
contrapone con el hecho de que su lectura se tiene que hacer en modo binario y que sólo se pueden 
visualizar desde el entorno de un programa C. Los modos para abrir un archivo binario son los mismos 
que para abrir un archivo de texto, sustituyendo la t por b: 

"r+b" , "w+b" , Ild+b" 
llrb", Ilwb", "ab" , 

Ejemplo 13.1 1 

En este ejemplo se declaran 3 punteros a FILE. A continuación se abren tres archivos en modo binario. 

FILE *pfl, *pf2, " p f 3 ;  
pfl = fopen("gorjal.arr", "rb") ; /*Lectura de archivo binario * /  
p f 2  = fopen ("tempes. feb", "w+b") ; /*lccr/escribir archivo binarlo*/ 



Entradas y salidas por archivos 423 

p f 3  = fopen("te1con. tff","ab") ; /*dñadir d archivo binario*/ 

La biblioteca de C proporciona dos funciones especialmente dirigidas al proceso de entrada y salida 
de archivos binarios con buffer, son f read ( ) y fwr i te ( ) . 

13.5.1. Función de salida fwrite ( ) 

La función fwri t e  ( ) escribe un bgffer de cualquier tipo de dato en un archivo binario. El formato de 
llamada es: 

fwrite ( direction-bu f fe r ,  tdniafio, nuni-e? emen t os, purl  t e r o - d r c h i  vo) ; 

Ejemplo 13.12 

En el ejemplo se abre un archivo en modo binario para escritura. Se escriben números reales en doble 
precisión en el bucle for. El buffer es la variable x, el tamaño lo devuelve el operador s i /cof. 

FILE *fd; 
double x; 

fd = fopen("reales.num', "wb") ; 
f o r  (x=O. 5; x>O. 01; ) 

fwrite(hx, sizeof (double), 1, fd) ; 
x = pow(x,2.); 

El prototipo de la función está en stdlo. h: 

size-t fwrite(const vo id  *ptr,size-t t ~ r n , s i z e - t  n,FILE *pi); 

Eltipo size-t estádefinidoen s t d i o . h y e s u n t i p o  i n t .  

<;I 

Ejercicio 13.5 

Se dispone de una muestra de las coordenadas de puntos de un plano representada por pares de 
números enteros (x, y ) ,  tales que 1 1  x 17 00 e 11 y 1100. Se deseu guarúur en un urchivo binario 
todos los puntos disponibles. 

Análisis 
El nombre del archivo es PUNTOS. DAT.  Según se lee un punto se comprueba la validez del punto y se 
escribe en el archivo con una llamada a la función fwr i t e  ( ) . La condición de terminación del bucle es 
la lectura del punto ( o ,  O ) . 

# i n c l u d e  <stdio.h> 
struct punto 

i n t  x , y ;  
I ;  
t ypede t  struct punto PUNTO; 

i n t  main0 
I 

PUNTO p ;  
char *nom ="C:\ ,PUFITOS.L)AT"; 



424 Programación en C. Metodologia, algoritmos y estructura de datos 

FILE "pp; 

if ((pp = fopen(nom,"wb') )==NULL) 
i 
puts("\nError en ld operación de abrir archivo.") ; 
return -1; 

puts("\nIntroduce coordenadas de puntos, para acabar: (0,O)"); 
do i 

scanf ("%d %d",&p.x,&p.y); 
while (p.x<O I I p.y<O) 

printf ("Coordenas deben ser >=O : " )  ; 
scanf í"%d %d",&p.x,&p.y); 

i 
if (p.x>O I I p.y>O) 
i 

1 
fwrite(&p, sizeoE(PUNTO), 1, pp); 

} while (p.x>O I 1  p.y>O); 

fclose (pp) ; 
return O; 

1 

Los archivos binarios están indicados especialmente para guardar registros, estructuras en C. El 
método habitual es la escritura sucesiva de estructuras en el archivo asociado al puntero, la lectura de 
estos archivos es similar. 

'* E 13.5.2. Función de lectura f read ( ) 
Esta función lee de un archivo n bloques de bytes y los almacena en un buffer. El número de bytes de 
cada bloque ( tamaño ) se pasa como parámetro, al igual que el número n de bloques y la dirección del 
buffer (o variable) donde se almacena. El formato de llamada: 

fread(direccion-buffer,tamaño,n,puntero-archivo) ; 

La función devuelve el número de bloques que lee y debe de coincidir con n. El prototipo de la 

size-t fread(void *ptr,size-t tdm,size-t n,FILE *pf); 

función está en stdlo. h: 

Ejemplo 13.13 

En el ejemplo se abre un archivo en modo binario para lectura. El archivo se lee hasta el final del 
archivo; cada lectura de un número real se acumula en la variable s. 

FILE *fd; 
double x,s=O.O; 

if ((fd = fopen("reales.num","rb") )==NULL) 

while (!eof (fd) ) 
i 

exit (-1) ; 

fread(&x, sizeof(double), 1, fd); 
s+= x; 

1 



Entradas y salidas por archivos 425 

Ejercicio 13.6 

En el Ejercicio 13.5 se ha creado un archivo hinario de puntos en el plano. Se desea escribir un 
programa para determinar los siguientes valores: 

n,, número de veces que aparece un punto dado ( i j )  en el archivo. 
Dado un valor dej ,  obtener la media de i para los puntos que contienen a j .  

~~ . I = I  
1, = 2 n,, 

I =  I 

Análisis 
La primera instrucción es abrir el archivo binario para lectura. A continuación se solicita el punto donde 
se cuentan las ocurrencias en el archivo. En la función cuenta-pto í ) se determina dicho número; 
para lo cual hay que leer todo el archivo. Para ejecutar el segundo apartado, se solicita el valor de j .  Con 
un bucle desde i=l  hasta 10 O se cuenta las ocurrencias de cada punto ( i j )  llamando a la función 
cuentagto ( ) ; antes de cada llamada hay que situar el puntero del archivo al inicio, llamando para ello 
a la función rewind ( ) . 

#include <stdio.h> 
struct punto 
i 
int 1, j; 

1 .  
I ,  

typedef struct punto PUNTO; 
FILE *pp; 
int cuenta-pto(PUNT0 w); 

int main() 
i 
PUNTO p; 
char *nom ="C : \PUNTOS. DAT" ; 
float media, nmd, dnm; 

if ((pp = fopen(nom,'rb") )==NULL) 
i 

puts("\nError al abrir archivo pdra lecturo."); 
return -1; 

J 

printf ("\nIntroduce coordenadas de punto a buscar:  " )  ; 
scanf ( "%d %d" , &p. I, &p. J ) ; 
printf ("\nKepeticiones del punto (%d, %d) : %d\n", 

P.I,P.J ,cuenta-pto(p) ) ;  

/ *  Cálculo de la media i para un valor J * /  

printf ("Valor de J :  " )  ; scanf ("%d",&p. J )  ; 
media=nmd=dnm= 0.0; 



426 Programación en C. Metodologia, algoritmos y estructura de datos 

for ( p . 1 ~ 1 ;  p.i<= 10; p . i + + )  
i 

int st; 
rewind(pp); 
st = cuenta-pto(p) ; 
n m d  += (float)st*p.i; 
dnm += (f1oat)st; 

if (dnm >O.O) 

printf ("\nMediCi de los valores de i pdr-a %d 
return O ;  

medi a = r i m d / d i i m ;  

i 

int cuenta-pto (PUNTO w) 
i 
PUNTO p ;  
irit c ;  
r = O ;  
while 
{ 

( ! feof ( p p )  ) 

fread(&p,sizeof (PUN' I 'O)  ,l,pp) ; 
if (p.i==w.i && p .  j==w. j) r++; 

i 
return r; 

} 

&.%f",p.j,media); 

13.6. Funciones para acceso aleatorio 
fl I* 

El acceso directo -aleatorio- a los datos de un archivo se hace mediante su posición, es decir, el lugar 
relativo que ocupan. Tiene la ventaja de que se pueden leer y escribir registros en cualquier orden y 
posición. Son muy rápidos de acceso a la información que contienen. El principal inconveniente que 
tiene la organización directa es que necesita programar la relación existente entre el contenido de un 
registro y la posición que ocupan. 

Las funciones f seek ( ) y f te1 i ( ) se usan principalmente para el acceso directo a archivos en C. 
Éstas consideran el archivo como una secuencia de bytes; el número de byte es el índice del archivo. 
Según se va leyendo o escribiendo registros o datos en el archivo, el programa mantiene a través de un 
puntero la posición actual. Con la llamada a la función f t e  1 i ( ) se obtiene el valor de dicha posición. 
La llamada a f s e e k  ( ) permite cambiar la posición del puntero al archivo a una dirección determinada. 

13.6.1. Función f seek  ( ) 
Con la función f s e e k  ( ) se puede tratar un archivo en C como un array que es una estructura de datos 
de acceso aleatorio. f seek ( ) sitúa el puntero del archivo en una posición aleatoria, dependiendo del 
desplazamiento y el origen relativo que se pasan como argumentos. En el Ejemplo 13.14 se supone que 
existe un archivo de productos, se pide el número de producto y se sitúa el puntero del archivo para leer 
el registro en una operación de lectura posterior. 

Ejemplo 13.14 

Declarar una estructura (registro) PRODUCTO, y abr i r  un arcliivo para lectura. Se desea leer un registro 
cuyo número (posición) se pide por  teclado. 



Entradas y salidas por archivos 427 

typedef struct 
i 
char nombre 1411 ; 
int unidades; 
float precio; 
int pedidos; 

} PRODUCTO; 
PRODUCTO uno; 
int n, stat; 
FILE* pfp; 

if ( (pfp = fopen("conservas.dat","r")) ==NULL) 
i 
puts ("No se puede abrir el archivo.") ; 
exit (-1) ; 

1 
/ *  Se pide el número de registro * /  

printf ("Número de registro: " )  ; scanf ("%d",&n) ; 
/ *  Sitúa el puntero del archivo * /  

stat = fseek(pfp, n*sizeoE(PRODUCTO),O); 
/ *  Comprueba que no ha habido error * /  

if (stat != O) 
i 
puts("Error, puntero del archivo movido fuera de este"); 
exit (-1) : 

/ *  Lee el registro * /  
i 

fread(&uno, sizeof(PRODUCTO), 1, pfp); 
. . .  

El segundo argumento de f seek ( ) es el desplazamiento, el tercero es el origen del desplazamiento, 

El formato para llamar a f seek ( ) : 
el O indica que empiece a contar desde el principio del archivo. 

fseek(punter0-archivo, despldzdmicnto, origen); 

desplazamiento : es el número de bytes a mover; tienen que ser de tipo long. 
origen : es la posición desde la que se cuenta el número de bytes a mover. Puede tener 

tres valores, que son: 
O : Cuenta desde el inicio del archivo. 
1 : Cuenta desde la posición actual del puntero al archivo. 
2 : Cuenta desde el final del archivo. 

Estos tres valores están representados por tres identificadores (macros): 
0 : SEEK-SET 
1 : SEEK-CUR 
2 : SEEK-END 

La función f seek ( ) devuelve un valor entero, distinto de cero si se comete un error en su ejecución; 
cero si no hay error. El prototipo se encuentra en st dlo . h : 

int fseek(F1LE *pf,long dsplz,int origen); 

Ejercicio 13.7 

Para celebrar las fiestas patronales de un pueblo se celebra una carrera popular de 9 Km. Se establecen 
las categorías masculina (M) y femenina (F), y por cada una de ellas, senior y veterano. Los nacidos 



428 Programación en C. Metodología, algoritmos y estructura de datos 

L- A 

antes de 1954 son veteranos (tanto para hombres como para mujeres) y el resto seniors. Según se 
realizan inscripciones se crea el archivo binario CARRERA. POP, de tal forma que el número de dorsal es 
la posición que ocupa el registro en el archivo. La carrera se celebra; según llegan los corredores se 
toman los tiempos realizados y los números de dorsales. 

Se desea escribir un programa para crear el archivo CARRERA. POP y un segundo programa que 
actualice cada registro, según el número de dorsal, con el tiempo realizado en la carrera. 

Análisis 
En una estructura se agrupan los campos necesarios para cada participante: nombre, año de nacimiento, 
sexo, categoría, tiempo empleado (minutos, segundos), número de dorsal y puesto ocupado. El primer 
programa abre el archivo en modo binario para escribir los registros correspondientes a los participantes 
en la posición del número de dorsal. Los números de dorsal se asignan según la categoría, para las 
mujeres veteranas del 51 al 100; para mujeres senior de 101 al 200. Para hombres veteranos de 251 al 
500, y para senior del 501 al 1000. 

El programa, en primer lugar inicializa los nombres de los registros del archivo a blancos. Los 
dorsales se asignan aleatoriamente, comprobando que no estén previamente asignados. El segundo 
programa abre el archivo en modo modificación, accede a un registro, según dorsal y escribe el tiempo 
y puesto. Los tipos de datos que se crean para la aplicación, estructura fecha, estructura tiempo, 
estructura atleta, se incluyen en el archivo atleta . h. 

/ *  Archivo at1eta.h * /  

typedef struct fecha 
1 

int d, in, a; 
}FECHA; 
typedef struct tiempo 
{ 

}TIEMPO; 
struct atleta 
i 

int h, m, s; 

char nombre [ 2 8 I ; 
FECHA f; 
char sx; / *  Sexo * /  
char cat; / *  Categoria * /  
TIEMPO t ; 
unsigned int dorsal; 
unsigned short puesto; 

typedef struct atleta ADTA; 
#define desplz (n) (n-1) *sizeor (ADTA) 

1 ;  

/ *  Programa para dar entrada en el archivo de atletas. * /  

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <string.h> 
#include <ctype.h> 
#include "atleta. h" 

void inicializar(FILE*); 
void unatleta(ADTA* at,FILE*); 
unsigned numdorsal(char s, chdr cat, FILE* p f ) ;  

int main() 



Entradas y salidas por archivos 429 

FILE * p f ;  
ADTA a; 
char *archivo= "C: \CARRERA. POL"; 
randomize ( ) ; 

if ( (pf=fopen(archivo, "wb+") )==NULL) 
{ 

printf("\nError al abrir el drchivo as, fin del proceso.\n'j; 
return -1; 

1 
inicializar (pf j ; 

/ *  Se introducen registros hdstü teclear como nombre: FIN * /  
unatleta(&a,pfj; 
do { 

fseek(pf,desplz(a.dorsal) ,SEEK-SET) ; 
fwrite(&a,sizeof(ADTAj,l,pf); 
unatleta(&a,pf); 

}while (strcmpi (a.nombre, "FIN") ) ; 

fclose (pf) ; 
return 0; 

1 
void unatleta(ADTA* at, FILE*pf) 
i 
print f ( "Nombre : 
i f 
i 

" )  ;gets (dt->nombre) ; 
( s t r cmp i ( at - >nombre, 'I f in I' j ) 

printf ("Fecha de nacimiento: " )  ; 
scanf ("%d %d %d%*c", &at->f .d, &at->f .m, &at->f .a) ; 
if (at->f.a<1954) 
at->cat = 'VI; 
else 
at->cat = I S ' ;  

print f ( "Sexo : 
at->sx=(char)toupper(at->sx); 

at->t.h = 0; at->t.m = 0; at->t.s = O ;  
at->dorsal = numdorsal(at->sx,at->cat,pf); 
printf("Dorsa1 asignado: %u\n",at->dorsal); 

" )  ;scanf ("%c%*c",&at->sx) ; 

1 
1 
unsigned numdorsal(char s, char cat, FILE* pfj 
i 
unsigned base, tope, d; 
ADTA a; 

if (s=='M' && cat=='V') 
i 

base = 251; tope = 500; 

base = 501; tope = 1000; 
I 



430 Programación en C. Metodología, algoritmos y estructura de datos 

1 
d = (unsigned) random(tope+l-base)+base; 

f s e e k ( p f , d e s p l a ( d ) , S E E K _ S E T ) ;  
fread(&a,sizeof(ADTA),l,p~); 

if ( !  (*a.nombre)) / *  Cadend nula: es tá  vacío * /  

else 
return d; 

return numdorsal(s,cat,Pf); 
1 

void inicializar(FILE*pf) 
{ 
int k; 
ADTA a: 

a.nombre[Ol = '\O'; 

for ( k = l ;  k<=1000; k++) 
fwrite(&d,sizeof(ADTA) ,l,pf); 

/ *  Programa para dar entrada a los tiempos de los atletas. Primero, dado 
un numero de dorsal se visualiza el registro del atleta, a continuación 
se introduce los minutos y segundos realizados por el atleta. 

* /  

#include <stdio.h> 
#include <string.h> 
#include "atleta. h" 

void datosatleta(ADTA aL); 

int main() 

FILE * p f ;  
ADTA d; 
TIEMPO h={O,O,O}; 
char *archivo= "C: \CARRERA. POL";  
unsigned dorsal=l; 

if ( (pf=fopen(archivo, "rbt") ) -=NUL,L) 

printf ( " \ n E r r o r  dl dbrir el drc l i i vo  %s, fin del proceso.\n') ; 
return -1; 

i 

/ *  El proceso iterative t e rn i i nd  con  el dorcdl O * /  
printf ( " \ n  Dorsal del atlela: " )  ; scanf ('%u",&dorsal) ; 
for ( ; dorsal ; ) 



Entradas y salidas por archivos 431 

/ *  SP situd el puntero en e l  r e y i s t r o  * /  
fceek (pf, desplz ( d o r s d l )  , SEEK-CFT) ; 

fredd(ha,sizeof(ADTA),l,pf) ; 

if (*d.nombre) 
I 

datosdtleta(a); 

printf ("\n Tiempo r e a l i z a d o  en minii t .os y s e q i i n d o s :  " )  ; 
scant ("%a %d",&h.m,&h.s) ; 
ii.t = h; 

t seck (p f  , despl z (dorsal) , Sb:i-:ti-SKT) ; 
fwrite(&a,sizeof(AD'TA),l,pf); 

i 
else 
printf ( " E s t e  dorsal no est& rey i ~ L r d d o .  \n") ; 

printf ("\n D o r s a l  del dt.let<l: " j  ; : ; ~ ~ ~ i - i f  ("Ru",&dorcal); 
i 

f c l  ose (pf  ) ; 
return O ;  

pr int f ( "Nombre 
printf("Fecha de ndcimiento:%d-%d-%d:\n",dt.f.d,dt.f.m,at.f.a) ; 
p r I n t t ( "Cat egor I a 
if (at.t.m>O) 

: % c \ 11 " , d t . nombre ) ; 

:Bc\tDorsdl: %u\n',dL.cdt,dt.dorsdl); 

printf ("Tiempo de cdrrera :Ud rnin %d s e g \ r i " , a t  .t.m,at.t.s); 
1 

13.6.2. Función f t e l l (  ) 

La posición actual del archivo se puede obtener llamando a la función f tell ( ) y pasando un puntero 
al archivo como argumento. La función devuelve la posición coino número de bytes (en entero largo: 
long irzt) desde el inicio del archivo (byte O). 

Ejemplo 13.15 

En este ejemplo ~e puede observar ccímo .\e desplaza el puntero rlel archivo según se escriben &to.\ en 
él. 

#include istdio.h> 
~ n t  ma I n (void) 

FILE * p i ;  
float x = 123.5; 
pf = f open ( "CARTAS. TXT"  , llwll) : 
printf ("Posición i n i c i c i l  : &ld\n", ftcll ( p f ) )  ; / * r n u e s t r d  O*/ 
fprintf (pf, "Caractere4 de p r u e b a " )  : 
printf ("Posición actudl: % l d \ n " ,  f t r l l  ( p i )  j ; /*muestrci ?O*/ 
fwrite(&x,s~zeof(float),l,pf): 

i 



432 Programación en C. Metodología, algoritmos y estructura de datos 

printf('Posición actual: &ld\n",ftell(pf));/*muestra 24*/ 
fclose(pf); 
return O; 

Para llamar a la función se pasa como argumento el puntero a FIL,E. El prototipo se encuentra en 
stdi0.h: 

long int ftell(F1LE *pf); 

13.7. DATOS EXTERNOS AL PROGRAMA CON ARGUMENTOS DE main ( ) 

La línea de comandos o de órdenes es una línea de texto desde la que se puede ejecutar un programa. Por 
ejemplo, si se ha escrito el programa matrices. c , una vez compilado da lugar a matrices. exe . Su 
ejecución desde la línea de órdenes: 

C:>matrices 

La línea de órdenes puede ser una fuente de datos al programa, así se podría pasar las dimensiones de 
la matriz: 

C:>matrices 4 5 

Para que un programa C pueda captar datos, información en la línea de órdenes, la función main ( 
tiene dos argumentos opcionales: el primero es un argumento entero que contiene el número de 
parámetros transmitidos al programa (incluyendo el mismo número de programa). El segundo 
argumento contiene los parámetros transmitidos, en forma de cadenas de caracteres; por lo que el tipo 
de este argumento es un array de punteros a char. Puede haber un tercer argumento que contiene las 
variables de entorno, definido también como array de punteros a carácter que no se va a utilizar. Un 
prototipo válido de la función main ( ) : 

int main (int argc, char*argv [ I ) ; 

También puede ser 

int main(int argc, char**arqv); 

Los nombres de los argumentos pueden cambiarse, tradicionalmente siempre se pone argc , argv. 

Ejemplo 13.16 

En este ejemplo se escribe un programa que muestra en pantalla los argumentos escritos en la línea de 
círdenes. 

#include <stdio.h> 

int main(int argc, char *arqv[l) 
i 
int i; 

printf ("Número de argumentos 8d \ n \ n " ,  arqc) ; 
printf('Argumentos de la línea de ordenes pasados ci main:\n\n"); 

for (i = O ;  i i argc; i++) 

return O; 
printf ( ' I  argv[%d] : %s\n\n", i ,  drgvlil); 



Entradas y salidas por archivos 433 

En el supuesto que el nombre del programa ejecutable sea ARGMTOS . EXE, y que esté en la unidad 
de disco C:, la ejecución se realiza con esta instrucción: 

C:\ARGMTOS Buenas palabras "el amigo agradece" 6 7 Adios. 

Los argumentos se separan por un blanco. Para que el blanco forme parte del argumento se debe de 

Numero de argumentos 7 

Argumentos de la linea de ordenes pasados a main: 

encerrar entre dobles comillas. La salida de la ejecución de ARGMTOS (ARGMTOS . EXE) : 

argv[O]: C:\ARGMTOS.EXE 
argv [ 11 : Buenas 
argv [ 2 ] : palabras 
argv[3] : el amigo agradece 
argv[41: 6 
argv[i]: 7 
argv [ 61 : Adios. 

Ejercicio 13.8 

Se desea escribir un programa para concatenar archivos. Los nombres de los archivos han de estur en 
la línea de órdenes, el nuevo archivo resultante de la concatenación ha de ser el último argumento de 
la línea de órdenes. 

Análisis 
El número mínimo de argumentos de la línea de Órdenes ha de ser 3 ,  nombre del programa ejecutable, 
primer archivo, segundo archivo, etc. y el archivo nuevo. El programa debe de comprobar este hecho. 
Para copiar un archivo se utiliza la función f get s ( ) que lee una línea del archivo de entrada, y la 

realiza la operación de copia, que se llamará tantas veces como archivos de entrada se introduzcan desde 
la línea de órdenes. 

función fputs ( ) que escribe la línea en el archivo de salida. En una función, copia-archivo ( ) , se I 

#include <stdio.h> 
#define MAX-LIN 120 
void copia-archivo(FILE*, FILE*); 

int main (int argc, char *argv[l) 
{ 
FILE *pfe, *pfw; 
int i; 

if (argc < 3) 
i 
puts("Error en la línea de ordenes, archivos insuficientes."); 
return -2; 

/ *  El Último archivo es donde se realiza la concatenación * /  
I 

if ((pfw = fopen(argv[argc-11 ,"w") ) = =  NULL ) 
{ 
printf ("Error al abrir el archivo %s ",argv[argc-11 ) ; 
return -3; 

I 
for (i=l; i<argc-1; i++) 
1 

if ((pfe = fopen(argv[i] , " r " )  ) = =  NULL) 



434 Programación en C. Metodología, algoritmos y estructura de datos 

i 
printf ("Error dl abrir el ax-chivo %s " , a r . g v [ i ]  ) ; 
return -1; 

1 
copia-archivo (pfe, pfw) ; 
fclose (pfe) ; 

i 
fclose ( p f w )  ; 
return O ;  

1 

/ *  E'unción copiu  un r icher -o  en o t r o  fichcro * /  
/ *  utiliza fputs0 y fgetso * /  

void copia_drchivo(~ILE*fl,E'ILE* f2) 
I 

char cad[MAX-LINI; 

while ( !  feof (f1) ) 
i 
fgets(cad, MAX-LIN, f1) ; 
if (!feof(fl)) fputs(cad, f ? ) ;  

1 
} 

13.8. RESUMEN 

Este capítulo explora las operaciones fundamentales 
de la biblioteca estándar de entrada y salida para el 
tratamiento y manejo de archivos externos. 

El lenguaje C, además de las funciones básicas de 
US, contiene un conjunto completo de funciones de 
manipulación de archivos, de tipos y macros, que se 
encuentran en el archivo s t d i o  . h . Estas funciones 
se identifican porque empiezan todas por f de file, 
excepto aquellas que proceden de versiones anteriores 
de C. Las funciones más utilizadas: 

fopen ( )  y f c l o s e  ( )  abren o cierran el 
archivo. 
f p u t c  ( )  , f g e t c  ( ) para acceder ai archivo 
carácter a carácter(byte a byte). 
f pu t  s ( ) , f ge t s ( ) para acceder al archivo 
de caracteres línea a línea. 
f r e a d ( )  y f w r i t e o  paraleeryescribirpor 
bloques, generalmente por registros. 
f t e l l  ( ) y f seek ( ) para desplazar el punte- 
ro a una posición dada (en bytes). 

Con estas funciones y otras que están disponibles 
se puede hacer cualquier tratamiento de un archivo, 

modo texto o modo binario; modo secuencia1 o modo 
directo. 

Para asociar un archivo externo con un flujo, o 
también podríamos decir con el nombre interno en el 
programa (puntero a FILE) se utiliza f open ( ) . La 
función f c l o s e  ( ) termina la asociación y vuelca el 
buffer del archivo; los archivos que se han manejado 
son todos con buffer intermedio para aumentar la 
efectividad. 

Un archivo de texto almacena toda la información 
en formato carácter. Por ejemplo, los valores numé- 
ricos se convierten en caracteres (dígitos) que son la 
representación numérica. Se indica el modo texto en 
el segundo argumento de f open ( ) , con una t. Las 
funciones más usuales con los archivos de texto son 
f p u t c  ( ) ,  f g e t c  ( ) ,  f p u t s  ( ) ,  f g e t s  ( ) ,  
f scanf  ( )  y f p r i n t f  ( 1 .  

Un archivo binario almacena toda la información 
utilizando la misma representación binaria que la 
computadora utiliza internamente. Los archivos bina- 
rios son más eficientes, no hay conversión entre la 
representación en la computadora y la representación 
en el archivo; también ocupan menos espacio. Sin 



Entradas y salidas por archivos 435 

embargo son menos transportables que los archivos 
de texto. Se indica el modo binario en el segundo 
argumento de f open ( ) , con una b. Las funciones 
fputc ( ) , fgetc ( ) y sobre todo f read ( y 
fwrite ( ) son las que soportan entrada y salida 
binaria. indexados. 

Para proporcionar un acceso aleatorio se dispone 
de las funciones f tell ( ) y f seek ( ) . También 

hay otras funciones como f setpos ( ) y f get - 
pos ( 1.  

Con las funciones expuestas se puede hacer todo 
tipo de tratamiento de archivos, sobre todo archivos 
con direccionamiento hash, archivos secuenciales 

13.9. EJERCICIOS 

13.1. Escribir las sentencias necesarias para abrir un 
archivo de caracteres cuyo nombre y acceso se 
introduce por teclado en modo lectura; en el 
caso de que el resultado de la operación sea 
erróneo, abrir el archivo en modo escritura. 

13.2. Señalen los errores del siguiente programa: 

#include <stdio.h> 
int main ( ) 

t 
FILE* pf; 
pf = fopen('almacen.dat") ; 

fputs ("Datos de los almacenes 
TIESO", pf) ; 

fclose (pf) ; 
return O; 

1 

13.3. Se tiene un archivo de caracteres de nombre 
"SALAS. DATO'. Escribir un programa para 
crear el archivo "SALAS. B I N "  con el conte- 
nido del primer archivo pero en modo binario. 

13.4. La función rewind ( ) sitúa el puntero del 
archivo en el inicio del archivo. Escribir una 
sentencia, con la función f seek ( ) que reali- 
ce el mismo cometido. 

13.5. Utiliza los argumentos de la función main ( 
para dar entrada a dos cadenas; la primera 
representa una máscara, la segunda el nombre 
de un archivo de caracteres. El programa tiene 
que localizar las veces que ocurre la máscara 
en el archivo. 

13.6. Las funciones fgetpos ( ) y f setpos ( ) 
devuelven la posición actual del puntero 
del archivo, y establecen el puntero en 
una posición dada. Escribir las funciones 
pos-actual ( ) y moverjos ( ) ,  con los 
prototipos: 

int pos-actual (FILE* pf, long* p) ; 
int movergos (FILE* pf, const long" p )  ; 

La primera función devuelve en p la posi- 
ción actual del archivo. La segunda función 
establece el puntero del archivo en la posición 

13.7. Un archivo contiene enteros positivos y nega- 
tivos. Utiliza la función f scanf ( ) para leer 
el archivo y determinar el número de enteros 
negativos. 

, 

13.8. Un archivo de caracteres quiere escribirse en la 
pantalla. Escribir un programa para escribir el 
archivo, cuyo nombre viene dado en la línea de 
órdenes, en pantalla. 

13.9. Escribir una función que devuelva una cadena 
de caracteres de longitud n, del archivo cuyo 
puntero se pasa como argumento. La función 
termina cuando se han leído los n caracteres o 
es fin de archivo. Utilizar la función f getc ( ) . 

El prototipo de la función solicitada: 

char* leer-cadena (FILE* pf, int n) ; 

13.10. Se quiere concatenar archivos de texto en un 
nuevo archivo. La separación entre archivo y 



436 Programación en C. Metodologia, algoritmos y estructura de datos 

archivo ha de ser una línea con el nombre del 
archivo que se acaba de procesar. Escribir el 
programa correspondiente de tal forma que 
los nombres de los archivos se encuentren en 
la línea de órdenes. 

13.11. Escribir una función que tenga como argu- 
mentos: un puntero de un archivo de texto, un 

13.10. PROBLEMAS 

13.1. Escribir un programa que compare dos archi- 
vos de texto. El programa ha de mostrar las 
diferencias entre el primer archivo y el segun- 
do, precedidas del número de línea y de colum- 
na. 

13.2. Un atleta utiliza un pulsómetro para sus entre- 
namientos. El pulsómetro almacena las pulsa- 
ciones cada 15 segundos, durante un tiempo 
máximo de 2 horas. Escribir un programa para 
almacenar en un archivo los datos del pulsó- 
metro del atleta, de tal forma que el primer 
registro contenga la fecha, hora y tiempo en 
minutos de entrenamiento, a continuación los 
datos del pulsómetro por parejas: tiempo, pul- 
saciones. 

133. Se desea obtener una estadística de un archivo 
de caracteres. Escribir un programa para con- 
tar el número de palabras de que consta un 
archivo, así como una estadística de cada lon- 
gitud de palabra. 

13.4. En un archivo binario se encuentran pares de 
valores que representan la intensidad en 
miliamperios y el correspondiente voltaje en 
voltios para un diodo. Por ejemplo: 

0.5 0 . 3 5  
1.0 0.45 
2 .0  0 . 5 5  
2 . 5  0 . 5 8  

número de línea inicial y otro número de línea 
final. La función debe de mostrar las líneas 
del archivo comprendidas entre los límites 
indicados. 

13.12. Escribir un programa que escriba por pantalla 
las líneas de texto de un archivo, numerando 
cada línea del mismo. 

Nuestro problema es que dado un valor del 
voltaje v, comprendido entre el mínimo valor 
y el máximo encontrar el correspondiente valor 
de la intensidad. Para ello el programa debe 
leer el archivo, formar una tabla y aplicar un 
mdtodo de interpolación, por ejemplo el méto- 
do de polinomios de Lagrange. Una vez calcu- 
lada la intensidad, el programa debe de escribir 
e1 par de valores en el archivo. 

13.5. Un profesor tiene 30 estudiantes y cada estu- 
diante tiene tres calificaciones en el primer 
parcial. Almacenar los datos en un archivo, 
dejando espacio para dos notas más y la nota 
final. Incluir un menlí de opciones, para añadir 
más estudiantes, visualizar datos de un estu- 
diante, introducir nuevas notas y calcular nota 
final. 

13.6. Se desea escribir una carta de felicitación navi- 
deña a los empleados de un centro sanitario. El 
texto de la carta se encuentra en el archivo 
CARTA. TXT . El nombre y dirección de los 
empleados se encuentra en el archivo binario 
EMPLA . DAT, como una secuencia de registros 
con los campos nombre, dirección, etc. Escri- 
bir un programa que genere un archivo de tex- 
to por cada empleado, la primera línea contie- 
nen el nombre, la segunda está en blanco, la 
tercera la dirección y en la quinta empieza el 
texto CARTA. TXT. . . .  



Entradas y salidas por archivos 437 

13.7. Se desea crear un archivo binario formado por 
registros que representan productos de perfu- 
mería. Los campos de cada registro son código 
de producto, descripción, precio y número de 
unidades. La dirección de cada registro viene 
dada por una función hash que toma como 
campo clave el código del producto(tres dígi- 
tos): 

hash(c1ave) = (clave modulo97) +1 

El número máximo de productos distintos es 
100. Las colisiones, de producirse, se situarán 
secuencialmente a partir del registro número 
120. 

13.8. Escribir un programa para listar el contenido 
de un determinado subdirectorio, pasado 
como parámetro a la función main ( ) . 

13.9. Modificar el Problema 13.2 para añadir un 
menú con opciones de añadir al archivo nue- 
vos entrenamientos, obtener el tiempo que se 
está por encima del umbral aeróbico (data 
pedido por teclado) para un día determinado 
y media de las pulsaciones. 

13.10. Un archivo de texto consta en cada línea de 
dos cadenas de enteros separadas por el ope- 
rador +, o -, . Se desea formar un archivo 
binario con los resultados de la operación que 
se encuentra en el archivo de texto. 



CAPíTULO 14 

LISTAS ENLAZADAS 

CONTENIDO 

14.1. Fundamentos teóricos. 
14.2. Clasificación de las listas 

14.3. Operaciones en listas enla- 
enlazadas. 

zadas. 
14.4. Listas doblemente enlaza- 

das. 

438 

14.5. Ljstaa circulares. 
14.6. Resumen. 
14.7. Ejercicios. 
14.8. Problemas. 



INTRODUCCI~N 
En este capítulo se comienza el estudio de las estructuras de datos dinámicas. 
Al contrario que las estructuras de datos estáticas (arrays -listas, vectores y 
tablas- y estructuras) en las que su tamaño en memoria se establece durante 
la compilación y permanece inalterable durante la ejecución del programa, las 
estructuras de datos dinámicas crecen y se contraen a medida que se ejecuta el 
programa. 

La estructura de datos que se estudiará en este capítulo es la lista enlaza- 
da (ligada o encadenada, ((linked List))) que es una colección de elementos (deno- 
minados nodos) dispuestos uno a continuación de otro, cada uno de ellos conec- 
tado al siguiente elemento por un ((enlace» o ((puntero)). Las listas enlazadas 
son estructuras muy flexibles y con numerosas aplicaciones en el mundo de la 
programación. 

CONCEPTOS CLAVE 
Búsqueda de un nodo en una 
lista enlazada. Fundamentos teóricos de listas 
Lista doblemente enlazada. enlazadas. 
Estructura de una lista enlazada. 
Operaciones en listas enlazadas. 
Eliminación de nodos en una Lista circular. 

Recorrido de una lista. 

Variables puntero y variables 
apuntadas. 

lista enlazada. 

439 



r 

e, 

440 Programación en C. Metodología, algoritmos y estructura de datos 

e2 

, 
I 

14.1. FUNDAMENTOS TEÓRICOS 

En capítulos anteriores se han estudiado estructuras lineales de elementos homogéneos (listas, tablas, 
vectores) y se utilizaban arrays para implementar tales estructuras. Esta técnica obliga a fijar por 
adelantado el espacio a ocupar en memoria, de modo que cuando se desea añadir un nuevo elemento que 
rebase el tamaño prefijado del array, no es posible realizar la operación sin que se produzca un error en 
tiempo de ejecución. Ello se debe a que los arrays hacen un uso ineficiente de la memoria. Gracias a la 
asignación dinámica de variables, se pueden implementar listas de modo que la memoria física utilizada 
se corresponda con el número de elementos de la tabla. Para ello se recurre a los punteros (apuntadores) 
que hacen un uso más eficiente de la memoria como ya se ha visto con anterioridad. 

Una lista enlazada es una colección o secuencia de elementos dispuestos uno detrás de otro, en la 
que cada elemento se conecta al siguiente elemento por un «enlace» o «puntero». La idea básica consiste 
en construir una lista cuyos elementos llamados nodos se componen de dos partes o campos: la primera 
parte o campo contiene la información y es, por consiguiente, un valor de un tipo genérico (denominado 
Dato, TipoElemento, Znfo, etc.) y la segunda parte o campo es un puntero (denominado enlace o sgte) 
que apunta al siguiente elemento de la lista. 

p z - p w r i r  
puntero puntero 

Figura 14.1. Lista enlazada (representación simple). 

La representación gráfica más extendida es aquella que utiliza una caja (un rectángulo) con dos 
secciones en su interior. En la primera sección se escribe el elemento o valor del dato y en la segunda 
sección, el enlace o puntero mediante una flecha que sale de la caja y apunta al nodo siguiente. 

Una lista enlazada consta de un número de elementos y cada elemento tiene dos componentes 
(campos), un puntero ai siguiente elemento de la lista y un valor, que puede ser de cualquier 
tipo. 

Los enlaces se representan por flechas para facilitar la comprensión de la conexión entre dos nodos; 
ello indica que el enlace tiene la dirección en memoria del siguiente nodo. Los enlaces también sitúan 
los nodos en una secuencia. En la Figura 14.2 los nodos forman una secuencia desde el primer elemento 
( e , )  al último elemento (erz).  El primer nodo se enlaza al segundo nodo, el segundo nodo se enlaza al 
tercero y así sucesivamente hasta llegar al último nodo. El nodo último ha de ser representado de forma 
diferente para significar que este nodo no se enlaza a ningún otro. La Figura 14.3 muestra diferentes 
representaciones gráficas que se utilizan para dibujar el campo enlace del último nodo. 



Listas enlazadas 441 

Figura 14.3. Diferentes representaciones gráficas del nodo Último 

14.2. CLASIFICACIÓN DE LAS LISTAS ENLAZADAS 

Las listas se pueden dividir en cuatro categorías : 

Listas simplemente enlazadas. Cada nodo (elemento) contiene un único enlace que conecta ese 
nodo al nodo siguiente o nodo sucesor. La lista es eficiente en recorridos directos ((<adelante»). 
Listas doblemente enlazadas. Cada nodo contiene dos enlaces, uno a su nodo predecesor y el 
otro a su nodo sucesor. La lista es eficiente tanto en recorrido directo («adelante») como en 
recorrido inverso («atrás»). 
Lista circular simplemente enlazada. Una lista enlazada simplemente en la que el último 
elemento (cola) se enlaza al primer elemento (cabeza) de tal modo que la lista puede ser recorrida 
de modo circular («en anillo»). 
Lista circular dohlenzente enlazada. Una lista doblemente enlazada en la que el último elemento 
se enlaza al primer elemento y viceversa. Esta lista se puede recorrer de modo circular (en anillo) 
tanto en dirección directa («adelante») como inversa («atrás»). 

Por cada uno de estos cuatro tipos de estructuras de listas, se puede elegir una implementación 
basada en arrays o una implementación basada en punteros. Como ya se ha comentado estas 
implementaciones difieren en el modo en que asigna la memoria para los datos de los elementos, cómo 
se enlazan juntos los elementos y cómo se accede a dichos elementos. De forma más específica, las 
implementaciones pueden hacerse con cualquiera de éstas: 

Asignaciónfija, o estática, de memoria mediante array. 
Asignación dinámica de memoria mediante punteros. 

Dado que la asignación fija de memoria mediante arrays es más ineficiente, utilizaremos en este 
capítulo y siguientes, la asignación de memoria mediante punteros, dejando como ejercicio al lector la 
implementación mediante arrays. 

Conceptos básicos sobre listas 

Una lista enlazada consta de un conjunto de nodos. Un nodo consta de un campo dato y un puntero 
que apunta al «siguiente» elemento de la lista. 

dato siguiente dato siguiente 

4 
cola 

4 
Ptr actual 

4 
cabeza 

I 



442 Programación en C. Metodología, algoritmos y estructura de datos 

El primer nodo, frente, es el nodo apuntado por cabeza. La lista encadena nodos juntos desde el 
frente al final (cola) de la lista. El final se identifica como el nodo cuyo campo puntero tiene el valor 
NULL = O .  La lista se recorre desde el primero al Último nodo; en cualquier punto del recorrido la 
posición actual se referencia por el puntero Ptr-actual. En el caso en que la lista no contiene ningún 
nodo (está vacía), el puntero cabeza es nulo. 

cabeza -, 

14.3. OPERACIONES EN LISTAS ENLAZADAS 

Una lista enlazada requiere unos controles para la gestión de los elementos contenidos en ellas. Estos 
controles se manifiestan en forma de operaciones que tendrán las siguientes funciones: 

Declaración de los tipos nodo y puntero a nodo. 
Iniciulización o creación. 
Insertar elementos en una lista. 
Eliminar elementos de una lista. 
Buscar elementos de una lisfa (comprobar la existencia de elementos en una lista). 
Recorrer una lista enlazada (visitar cada nodo de la lista). 
Comprobar si la lista está vacía. 

14.3.1. Declaración de un nodo 

Una lista enlazada se compone de una serie de nodos enlazados mediante punteros. Cada nodo es una 
combinación de dos partes: un tipo de dato (entero, real, doble, carácter o tipo predefinido) y un enlace 
(puntero) al siguiente nodo. En C, se puede declarar un nuevo tipo de dato por un nodo mediante las 
palabras reservadas s t ruc t que contiene las dos partes citadas. 

struct Nodo 
1 
int dato; 
struct Nodo* enlace; 

I ;  

typedef struct Nodo 
i 

int d a t o ;  
struct Nodo "enlace; 

1 NODO ; 

La declaración utiliza el tipo struct que permite agrupar campos de diferentes tipos, el campo 
dato y el campo enlace. Con typedef se puede declarar a la vez un nuevo identificador de struct 
Nodo, en el caso anterior se ha elegido NODO. 

Dado que los tipos de datos que se puede incluir en una lista pueden ser de cualquier tipo (enteros, 
dobles, caracteres o incluso cadenas), con el objeto de que el tipo de dato de cada nodo se pueda cambiar 
con facilidad, se suele utilizar una sentencia Lypedcf para declarar el nombre de Elemento como un 
sinónimo del tipo de dato de cada campo. El tipo Elernento se utiliza entonces dentro de la estructura 
nodo, como se muestra a continuación: 

typedef double Elemento; 
sLruct nodo 
i 
Elemento dato; 



Listas enlazadas 443 

ctruct nodo *enlace; 
1 ;  

Entonces, si se necesita cambiar el tipo de elemento en los nodos, sólo tendrá que cambiar la 
sentencia de declaración de tipos que afecta a ~1 emento. Siempre que una función necesite referirse al 
tipo del dato del nodo, puede utilizar el nombre t.,l ernento. 

Ejemplo 14.1 

En este ejemplo se declara un  tipo denominado P ~ J N T O  que representa un punto en el plano con su 
coordenada x e y. También se declara el tipo NODO con el campo dato del tipo PUNTO. Por Último, se 
define un puntero a NODO. 

#include <stdlib.h> 

typedef struct punto 

float x, y; 
} PUNTO; 

typedef struct Nodo 
i 

PUNTO dato; 
struct Nodo* enlace; 

1 NODO; 

NODO* cabecera; 
cabecera = NULL;  

14.3.2. Puntero de cabecera y cola 

Normalmente, los programas no declaran realmente variables de nodos. En su lugar, cuando se construye 
y manipula una lista enlazada, a la lista se accede a través de uno o más punfevos a los nodos. El acceso 
más frecuente a una lista enlazada es a través del primer nodo de la lista que se llama cabeza o cabecera 
de la lista. Un puntero al primer nodo se llama puntero cabeza. En ocasiones, se mantiene también un 
puntero al último nodo de una lista enlazada. El último nodo es la cola de la lista, y un puntero al último 
nodo es el puntero cola. También se pueden mantener punteros otros nodos de una lista enlazada. 

0 23.5 40.7 

Declaración del nodo Definición de punteros 

( e'rrii r i t  o t L i  t o ; t 1 1 1 ~  t r oric *pi I -C ( 1 1  < I ;  

i t  I i c  t :iodo *i r i  I <i(  c > ;  
1 ;  

Figura 14.4. Declaraciones de tipo en lista enlazada 



444 Programación en C. Metodologia, algoritmos y estructura de datos 

Cada puntero a un nodo debe ser declarado como una variable puntero. Por ejemplo, si se mantiene 
una lista enlazada con un puntero de cabecera y otro de cola, se deben declarar dos variables puntero: 

struct nodo *ptr -cabeza; 
struct nodo *ptr-cola; 

El tipo struct nodo a veces se simplifica utilizando la declaración typedef . Así podemos escribir: 

typedef struct nodo NODO; 
typedef struct nodo* ptrnodo; 
ptrnodo ptr-cabeya; 
ptrnodo ptr-cola; 

La construcción y manipulación de una lista enlazada requiere el acceso a los nodos de la 
lista a través de uno o más punteros a nodos. Normalmente, un programa incluye un puntero 
ai primer nodo (cabeza) y un puntero al Último nodo (cola). 

En cualquier forma, el último elemento de la lista contiene un valor de O, esto es, un puntero 
nulo (NULL) que señala el final de la lista. 

14.3.3. El puntero nulo 

La Figura 14.4 muestra una lista con un puntero cabeza y un puntero nulo al final de la lista sobre el que 
se ha escrito la palabra NULL. La palabra N U L I ,  representa el puntero nulo, que es una constante 
especial de C. Se puede utilizar el puntero nulo para cualquier valor de puntero que no apunte a ningún 
sitio. El puntero nulo se utiliza, normalmente, en dos situaciones: 

Usar el puntero nulo en el campo enlace o siguiente del nodo final de una lista enlazada. 
O Cuando una lista enlazada no tiene ningún nodo, se utiliza el puntero NULL como puntero de 

En un programa, el puntero nulo se puede escribir coino NULL, que es una constante de la biblioteca 
estándar stdlib. h'. El puntero nulo se puede asignar a una variable puntero con una sentencia de 
asignación ordinaria. Por ejemplo: 

cabeza y de cola. Tal lista se denomina lista vacía. 

p? r -c dk>c , / a  

Figura 14.5. Puntero NIJLL  

El puntero de cabeza y de cola en una lista enlazada puede ser NULL, lo que indicará que la lista 
es vacía (no tiene nodos). Éste suele ser un método usual para construir una lista. Cualquier 
función que se escribe para manipular listas enlazadas debe poder manejar un puntero de 
cabeza y un puntero de cola nulos. 

' A ~ e c e s  algunos programadores escriben el puntero nulo coiiio O, pero pensarnos es un estilo i d s  claro escribirlo como birri ,L 



Listas enlazadas 445 

14.3.4. El operador - >  de selección de un miembro 

Si p es un puntero a una estructura y m es un miembro de la estructura, entonces p - >  m accede al 
miembro m de la estructura apuntada por P. 

El símbolo "->" se considera como un operador simple (en vez de compuesto, al constar de dos 
símbolos independientes "-" y ">". Se denomina operudor de seleccicín de miembro o también operador 
de selección de componente. De modo visual el operador P -> m recuerda a una flecha que apunta del 
puntero p al objeto que contiene al miembro m. 

Suponiendo que un programa ha de construir una lista enlazada y crear un puntero de cabecera 
ptr-cabeza a un nodo N o d o ,  el operador * de indirección aplicado a una variable puntero representa 
el contenido del nodo apuntado por ptr-cabeza. Es decir, *pt r-cabeza es un tipo de dato ~odo. 

Al igual que con cualquier objeto, se puede acceder a los dos miembros de *ptr-cabeza en la 
Figura 14.5. Por ejemplo, la sentencia siguiente escribe los datos del nodo cabecera. 

p r  intf ("%lf", (*ptr-cdbezd) .dato) ; 
(*ptr-cabeza) miembro d a t o  del nodo dpuntddo por ptr-cabeza 

Precaución 
Los paréntesis son necesarios alrededor de la primera parte de la expresión ( "ptr-cabeza) ya 
que los operadores unitarios que aparecen a la derecha tienen prioridad más alta que los operadores 
unitarios que aparecen en el lado izquierdo (el asterisco de indirección). 

Sin los paréntesis, el significado de pt r-cabe La producirá un error de sintaxis, al intentar evaluar 
ptr-cabeza. dato antes de la indirección o desreferencia. 

I P -> m significa lo mismo que ( * p )  . m I 
Utilizando el operador de selección ->  se pueden imprimir los datos del primer nodo de la lista 

printf ("%lf" , ptr-cabeza->dato) ; 

Error 

Uno de los errores típicos en el tratamiento de punteros es escribir la expresión *p o bien p-> 
cuando el valor del puntero p es el puntero nulo, ya que como se sabe el puntero nulo no apunta 
a nada. 

14.3.5. Construcción de una lista 

Un algoritmo para la creación de una lista enlazada entraña los siguientes pasos: 
Paso I .  
Puso 2. 

Declarar el tipo de dato y el puntero de cabeLa o primero. 
Asignar memoria para un elemento del tipo definido anteriormente utilizando alguna de 
las funciones de asignación de memoria (mdiloc ( )  , calioc ( ) ,  realioc ( ) )  y un cast 
para la conversión de void* al tipo puntero a nodo; la dirección del nuevo elemento es 
p t  r-nuevo. 



446 Programación en C. Metodología, algoritmos y estructura de datos 

1 

Sib,' 

Paso 3. 

Puso 4. 

Crear iterativamente el primer elemento (cabeza) y los elementos sucesivos de una lista 
enlazada simplemente. 
Repetir hasta que no haya más entrada para el elemento. 

Ejemplo 14.2 

Crear una listu enlazada de elementos que almuccwen datos de tipo entero. 

Un elemento de la lista se puede definir con la ayuda de la estructura siguiente: 

struct Elemento 
i 
int dato; 
struct Elemento * siguiente; 

I ;  
typedef struct Elemento Nodo; 

En la estructura Elemento hay dos miembros, dato y si.guiente que es un puntero al siguiente 
nodo y dato que contiene el valor del elemento de la lista. También se declara un nuevo tipo: Nodo 
que es sinónimo de struct Elemento. El siguiente paso para construir la lista es declarar la variable 
Primero que apuntará al primer elemento de la lista: 

Nodo "Primero = NULL / *  o bien = O * /  

El puntero Primero (también se puede llamar Cabeza) se ha inicializado a un valor nulo, lo que 
implica que la lista está vacía (no tiene elementos). Ahora se crea un elemento de la lista, para ello hay 
que reservar memoria, tanta como tamaño tiene cada nodo, y asignar la dirección de la memoria 
reservada al puntero Primero: 

Primero = (Nodo*)malloc(sizeof (Nodo)); 

Con el operador sizeoí se obtiene el tamaño de cada nodo de la lista, la función maiioc ( ) 

devuelve un puntero genérico (voi a*), por lo que se convierte a Nodo*. Ahora se puede asignar un 
valor al campo dato: 

Primero - >  dato = 11; 
Primero -> siguient.e = NLJT,L,; 

Primero 

El puntero Primero apunta al nuevo elemento, que se inicializa a I I .  El campo siguiente del 
nuevo elemento toma el valor nulo, por no haber un nodo siguiente. La operación de crear un nodo se 
puede hacer en una función a la que se pasa el valor del campo dato y del campo siguiente. La 
función devuelve un puntero al nodo creado: 

Nodo* Crearnodo(1nt x, Nodo* enlace) 
{ 

Nodo *p; 
p = (Nodo*)malloc(sizeof(Nodo)); 
p->dato = x; 
p->siquiente = enlace; 
return p; 



r- 

e 6 

Listas enlazadas 447 

e 1 1  NI J L 1  I , 

La lainada a la función Crearnodo ( ) para crear el primer nodo de la lista: 

Primero = Crearnodo(l1, NULL); 

Si ahora se desea añadir un nuevo elemento con un valor 6 ,  y situarlo en el primer lugar de la lista se 
escribe simplemente: 

Primero = Crearnodo(6,Primero); 

Por Último para obtener una lista compuesta de 4 , 6 ,  11 se habría de ejecutar: 
Primero = Crearnodo(4,Primero); 

14.3.6. Insertar un elemento en una lista 

El algoritmo empleado para añadir o insertar un elernento en una lista enlazada varía dependiendo de la 
posición en que se desea insertar el elemento. La posición de inserción puede ser: 

O En la cabeza (elemento primero) de la lista. 
O En el final de la lista (elemento último). 
O Antes de un elemento especificado. 
O Después de un elemento especificado. 

Insertar un nuevo elemento en la cabeza de una lista 
Aunque normalmente se insertan nuevos datos al final de una estructura de datos, es más fácil y más 
eficiente insertar un elemento nuevo en la cabeza de una lista. El proceso de inserción se puede resumir 
en este algoritmo: 

1. Asignar un nuevo nodo apuntado por n u e v o  que es una variable puntero local que apunta al 

2. Situar el nuevo elemento en el campo dato (Info) del nuevo nodo. 
3. Hacer que el campo enlace siguiente del nuevo nodo apunte a la cabeza (primer nodo) de la 

4. Hacer que cabeza (puntero cabeza) apunte al nuevo nodo que se ha creado. 

nuevo nodo que se va a insertar en la lista. 

lista original. 

Ejemplo 14.3 

Uiiu lista enlazada contiene tres elementos, 10, 25 y 40. Imertar un iiuevo elemento, 4, en cabeza dr la 



448 Programación en C. Metodología, algoritmos y estructura de datos 

4 

Código C 

10 25 NULL 

typedef int Item; 
typedf struct tipo-nodo 
i 
Item dato; 
struct tipo-nodo* siguiente; 

} Nodo; / *  declaración del tipo Nodo * /  

Nodo* nuevo; 
nuevo = (Nodo*)malloc(sizeof(Nodo));/* se asigna un nuevo nodo * /  
nuevo -> dato = e n t r a d a ;  

Paso 3 
El campo enlace (siguiente) del nuevo nodo apunta a la cabeza actual de la lista 

Código C 
nuevo -> siguiente = cabeza; 

25 NTJLL 
cabeza  

Paso 4 
Se cambia el puntero de cabeza para apuntar al nuevo nodo creado: es decir, el puntero de cabeza apunta 
al mismo sitio que apunte nuevo 

Código C 

cabeza = nuevo; 

rabei:i< = nuevo;  

EE-+--7 
nuevo 



Listas enlazadas 449 

0 4 

En este momento, la función de insertar un elemento en la lista termina su ejecución y la variable 
local nuevo desaparece y sólo permanece el puntero de cabeza cabeza que apunta a la nueva lista 
enlazada 

10 25 N U I , I ,  

El código fuente de la función InsertarCabezaLista: 

void InsertarCabezaLista(Nodo** cabeza, Item entrada) 

Nodo *nuevo ; 
nuevo = (Nodo*)malloc(sizeof(Nodo)); / *  asigna nuevo nodo * /  
nuevo ->  dato = entrada; / *  pone elemento en nuevo * /  
nuevo -> siguiente = *cabeza; / *  enlaza nuevo nodo al frente de 

*cabeza = nuevo; / *  mueve puntero cabeza y apuntd 
la lista * /  

al nuevo nodo * /  

Caso particular 
La función InsertarCabezaLista actúa también correctamente si se trata el caso de añadir un primer 
nodo o elemento a una lista vacía. En este caso, y como ya se ha comentado cabeza apunta a NULL y 
termina apuntando al nuevo nodo de la lista enlazada. 

Ejercicio 14.1 

Crear una lista de números aleatorios e insertar los nuevos nodos por la cabeza de la lista. Un vez 
creada la lista, .se ha de recorrer los nodos pura mostrar los números pares. 

Análisis 
La función InsertarCabezaLista ( ) añade un nodo a la lista, siempre como nodo cabeza. El priiner 
argumento es un puntero a puntero porque tiene que modificar la variable cabeza, que es a su vez un 
puntero a Nodo. La función NuevoNodo ( ) reserva memoria para un nodo, asigna el campo dato y 
devuelve la dirección del nodo creado. 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MX 99 
typedef int item; 
typedef struct Elemento 
{ 
Item dato; 
struct Elemento* siguiente; 

}Nodo ; 

void InsertarCabezaLista(Nodo** cabeza, Item entrada); 
Nodo* NuevoNodo(1tem x); 
void main ( ) 



450 Programación en C. Metodología, algoritmos y estructura de datos 

{ 
Item d; 
Nodo *cabeza,*Ptr; 
i n t  k ;  

cabeza = NULI,; / *  In i c id l  lid c-dbezd lisid vacía * /  
randomize ( ) ; 

for (u=random(MX); d; ) 
/ *  El bucle t e rmind  cudndo se yenerd e l  número aleatorLo O * /  

i 
ZnsertarCabezaListd (&cabeza, d) ; 
d = random(MX) ; 

1 
/ *  Ahora se recorre la l i s i d  para e s c r i b i r  los pares * /  

f o r  (k=O,ptr=cabeza; pt . r ;  
i 

if (ptr->dato%2 == O) 
i 

p r i n t f  ("ad ",ptr-idato) ; 
k + + ;  
printf("%c", (k%12?' ':'\n')); /*ccrdd. 12 datos sa1t.a de línea * /  

i 
p t r  = p t r - > s i ~ g i i i  ente; 

p r i n t f  ("\n\n") ; 

i 
void l n se r t a rCabezaL<j  sta (Nodo** cabeza, Item e n t r a d a )  
{ 
Nodo *nuevo ; 
nuevo = NuevoNodo(entr3dd); 
nuevo ->  s i g u i e n t e  = *cabeza; / *  e n l a z a  nuevo nodo al 

*cabeza = n u e v o ;  / *  mueve puntero cabeza y dp i ln td  al nuev 
f r e n t e  de Ic1 l i s t a  * /  

nodo * /  
i 

Nodo* NuevoNodo (Item x) 
i 

Nodo *a ; 
a = ( N o d o * ) m a l l o c ( s i z e o t ( N o d o ) ) ;  / *  asiqna nuevo nodo * /  
a -> dato = x; 
a ->  siguiente = T K J I J , ;  
return a; 

i 

Inserción de un nuevo nodo que no esta en la cabeza de lista 
La inserción de un nuevo nodo n o  siempre se realiza al principio (en cabeza) de la lista. Se puede inserta 
en el centro o al final de la lista. 

Ejemplo 14.4 

Se desea insertar un nuevo elemento 75 entre cl elemento 25 y el elernento 40 en la lista enlu~ada I 
25, 40. 4 



Listas enlazadas 451 

El algoritmo de la nueva operación insertar requiere las siguientes etapas: 

1. Asignar el nuevo nodo apuntado por el puntero nuevo. 
2. Situar el nuevo elemento en el campo dutn (Info) del nuevo nodo. 
3. Hacer que el campo enlace siguiente del nuevo nodo apunte al nodo que va después de la 

posición del nuevo nodo (o bien a NULL si no hay ningún nodo después de la nueva posición). 
4. En la variable puntero anterior tener la dirección del nodo que está antes de la posición 

deseada'para el nuevo nodo. Hacer que anterior -> siguiente apunte al nuevo nodo que se 
acaba de crear. 

Etapas I y 2 
Se crea un nuevo nodo que contiene a 75 

Código C 
nuevo = (Nodo*)malloc (sizeof (Nodo) ) ; 
nuevo ->  dato = entrada ; 

Etapa 3 



F 

452 Programación en C. Metodología, algoritmos y estructura de datos 

Código C 
nuevo -> siguiente = anterior ->  siguiente 

Etapa 4 

452 Programación en C. Metodología, algoritmos y estructura de datos 

Código C 
nuevo -> siguiente = anterior ->  siguiente 

Etapa 4 

a n t r r  l o r  

nuevo 

J nuevo 

NU I.> L 

Después de ejecutar todas las sentencias de las sucesivas etapas, la nueva lista comenzaría en el nodo 10, 
seguiría 25, 75 y, por Último, 40. 

Código C 
void InsertarLista(Nodo* anterior,Item entrada) 
i 
Nodo *nuevo; 

nuevo = (Nodo*)malloc(sizeof(Nodo)); 
nuevo -> dato = entrada; 
nuevo -> siguiente = anterior -> siguiente; 
anterior -> siguiente = nuevo; 

i 

Inserción al final de la lista 
La inserción al final de la lista es menos eficiente debido a que, normalmente, no se tiene un puntero al 
Último elemento de la lista y entonces se ha de seguir la traza desde la cabeza de la lista hasta el último 
nodo de la lista y a continuación realizar la inserción. Cuando ultimo es una variable puntero que 
apunta al Último nodo de la lista, las sentencias siguientes insertan un nodo al final de la lista. 

ultimo -> siguiente = (Nodo*)malloc(sizeof(Nodo)); 
ultimo ->  siguiente ->  dato = entrada; 
ultimo -> siguiente -> siguiente = NULL; 
ultimo = ultimo ->  siguiente; 

La primera sentencia asigna un nuevo nodo que está apuntado por el campo siguiente al último 
nodo de la lista (antes de la inserción) de modo que el nuevo nodo ahora es el último nodo de la lista. 
La segunda sentencia establece el campo dato del nuevo Último nodo al valor de entrada. La tercera 
sentencia establece el campo siguiente del nuevo Último nodo a NULL. La última sentencia pone la 
variable ui t imo al nuevo último nodo de la lista. 



T 

Listas enlazadas 453 

5.75 

I 14.3.7. Búsqueda de un elemento 

41 .7'> 101.43 

Dado que una función en C puede devolver un puntero, el algoritmo que sirva para localizar un elemento 
en una lista enlazada puede devolver un puntero a ese elemento. I 

La función BuscarLista utiliza una variable puntero denominada indice que va recorriendo la 
lista nodo a nodo. Mediante un bucle, Indice apunta a los nodos de la lista de modo que si se encuentra 
el nodo buscado, se devuelve un puntero al nodo buscado con la sentencia de retorno (return); en el 
caso de no encontrarse el nodo buscado la función debe devolver NULL (return NULL) 

Código C 
Nodo* BuscarLista (Nodo" cabeza, item destino) 
/ *  cabeza: puntero de cabeza de una lista enlazada. 

destino: dato que se busca en la lista. 
indice: valor de retorno, puntero que apunta al primer 

nodo que contiene el destino (elemento buscado); 
si no existe el nodo, se devuelve puntero nulo. 

* /  
i 
Nodo "indice; 

for (indice = cabeza; indice ! =  NULL; indice = indice -> 
siguiente) 

if (destino == índice -> dato) 
return indice; 

Ejemplo 14.5 

En este ejemplo se escribe unaJcuncicín para encontrar la dirección de un nodo dada su posición en 
una lista enlazada. 

Análisis I 
El nodo o elemento se especifica por su posición en la lista; para ello se considera posición 1,  la 

correspondiente al nodo de cabeza, posición 2, la correspondiente al siguiente nodo, y así sucesivamente. 
El algoritmo de búsqueda del elemento comienza con el recorrido de la lista mediante un puntero 
indice que comienza apuntando al nodo cabeza de la lista. Un bucle mueve el indice hacia adelante 
el número correcto de sitios (lugares). A cada iteración del bucle se mueve el puntero indice un nodo 
hacia adelante. El bucle termina cuando se alcanza la posición deseada e indice apunta al nodo 
correcto. El bucle también se puede terminar si indice apunta a NULL, lo que indicará que la posición 
solicitada era más grande que el número de nodos de la lista. 

Código C 
Nodo* BuscarPosicion(Nodo "cabeza, size-t posicion) 
/ *  El programa que llame a esta función ha de incluir 

biblioteca std1ib.h (para implementar tipo size-t) 
* /  
{ 
Nodo "indice; 



454 Programación en C. Metodología, algoritmos y estructura de datos 

size-t i; 
if ( O  < posicion) / *  posición ha de ser mayor que O * /  

indice = cabeza; 
for (i = 1 ;(i < posición) && (indice ! =  NULL) ; i++) 

return indice; 

return NULL; 

indice = indice ->  siguiente; 

I 

14.3.8. Supresión de un nodo en una lista 1 
La operación de eliminar un nodo de una lista enlazada supone enlazar el nodo anterior con el nodo 
siguiente al que se desea eliminar y liberar la memoria que ocupa. El algoritmo para eliminar un nodo 
que contiene un dato se puede expresar en estos pasos: 

1. Búsqueda del nodo que contiene el dato. Se ha de tener la dirección del nodo a eliminar y la 

2. El puntero siguiente del nodo anterior ha de apuntar al siguiente del nodo a eliminar. 
3. En caso de que el nodo a eliminar sea el primero, cabeza, se modifica cabeza para que tenga 

4. Por último, se libera la memoria ocupada por el nodo. 

A continuación se escribe una función que recibe la cabeza de la lista y el dato del nodo que se 

dirección del anterior. 

la dirección del nodo siguiente. 

quiere borrar. 

void eliminar (Nodo** cabeza, item entrada) 
i 
Nodo* actual, "anterior; 
int encontrado = O ;  

actual = *cabeza; anterior = NULL; 

while ((actual!=NULL) && (!encontrado)) 
i 

/ *  Bucle de búsqueda * /  

encontrado = (actual->dato = = entrada); 
if (!encontrado) 
{ 
anterior = actual; 
actual = actual - >  siguiente; 

1 
I 

if (actual ! =  NULL) 
/ *  Enlace de nodo anterior con siguiente * /  

i , 
/ *  Se distingue entre que el nodo sea el cabecera o del 

resto de la lista * /  
if (actual == *cabeza) 

"cabeza = actual->siguiente; 
I 
else { 

anterior ->  siguiente = actual ->siguiente 

free(actua1); 
1 



Listas enlazadas 455 

Ejercicio 14.2 

Se desea crear una lista enlazada de números enteros ordenada. La lista va estar organizada de tal 
forma que el nodo cabecera tenga el melior elemento, y así en orden creciente los demás nodos. Una ve: 
creada la lista, se recorre p a m  escribir los datos por pantalla. 

Análisis 
La función Insertaorden ( ) añade los nuevos elementos. Inicialmente la lista se crea con el primer 
valor. El segundo elemento se ha de insertar antes del primero o después, dependiendo de que sea menor 
o mayor. Así, en general, para insertar un nuevo elemento, primero se busca la posición de inserción en 
la lista actual, que en todo momento está ordenada, del nodo a partir del cual se ha de enlazar el nuevo 
nodo para que la lista siga ordenada. La función I ecorrer ( ) avanza por cada uno de los nodos de la 
lista con la finalidad de escribir el campo dato. 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MX 101 
typedef int Item; 
typedef struct Elemento 
I 

Item dato; 
struct Elernento* siguiente; 

i Nodo ; 
void InsertaOrden(Nodo** cabeza, ltcm entradü); 
Nodo* NuevoNodo(1tem x); 
void recorrer(Nodo* cabeza) 

void müin() 
{ 
Item d; 
Nodo* cabeza; 

cabetd = NULL; / *  Inicid 
r andomi Le ( ) ; 

i d a  cabeza a l i s t a  vacía * /  

/ *  El bucle termind cuando se qeriera el número a l e a t o r i o  O * /  
f o r  (d=random(MX); d; ) 

i 
InsertaOrden(&cabe/d,d); 
d = random(MX) ; 

1 

recorrer(ciibeza); 
I 

void InsertaOrden(Nodo** cdbezd ,  Item e r i t r d d d )  
t 
Nodo *nuevo; 

nuevo = NuevoNodo(entrada); 

if ("cabeza == NULI,) 

else if (entrada < (*cübeza)->ddto) 
i 

"cabeza = nuevo; 

nuevo - >  siguiente = *cabeza; 
*cabeza = nuevo; 



456 Programación en C. Metodología, algoritmos y estructura de datos 

i 
else / *  búsqueda del nodo anterior a partir del que 

se debe insertar * /  
I 

Nodo* anter-ior, *p; 
anterior = p = "cabeza; 

while ((p->siguiente ! =  NULL,) & &  (entrada > p->dato)) 
{ 
anterior = p; 
p = p->siguiente; 

1 

if (entrada > p->dato) / *  se inserta después del Último nodo * /  
anterior = p; 

/ *  Se procede al enlace del nuevo nodo * /  
nuevo -> siguiente = anterior -> siguiente; 
anterior ->  siguiente = nuevo; 

Nodo* NuevoNodo(item x) 
t 
Nodo *a ; 
a = (Nodo*)malloc(sizeof(Nodo)); / *  asigna nuevo nodo * /  
a -> dato = x; / *  pone elemento en nuevo * /  
a -> siguiente = NULL; 
return a; 

1 

void recorrer(Nodo* cabeza) 
i 
int k; 
printf ("\n\t\t Lista Ordendda \n") ; 
for (k=O; cabeza; cabezazcabeza->siguiente) 
i 
printf ("%d ",cabeza->dato) ; 
k++; 
printf("%c", (k%15 ? '  .:'\n')); 

! 
1 
printf ("\n\n") ; 

i 

14.4. LISTA DOBLEMENTE ENLAZADA 

Hasta ahora el recorrido de una lista se realizaba en sentido directo (adelante) o, en algunos casos, en 
sentido inverso (hacia atrás). Sin embargo, existen numerosas aplicaciones en las que es conveniente 
poder acceder a los elementos o nodos de una lista en cualquier orden. En este caso se recomienda el 
uso de una lista doblemente enlazada. En tal lista, cada elemento contiene dos punteros, aparte del 
valor almacenado en el elemento. Un puntero apunta al siguiente elemento de la lista y el otro puntero 
apunta al elemento anterior. La Figura 14.6 muestra una lista doblemente enlazada y un nodo de dicha 
lista. 



Listas enlazadas 

D I 

< I  

457 

cabeza 
i a) 

í b) 

Figura 14.6. Lista doblemente enlazada. (a )  Lista con tres nodos; (b)  nodo. 

Existe una operación de insertur y eliminar (borrar) en cada dirección. La Figura 14.7 muestra el 
problema de insertar un nodo p a la derecha del nodo actual. Deben asignarse cuatro nuevos enlaces 

Nodo actual 

iiiii; 
Figura 14.7. Inserción de un nodo en una lista doblemente enlazada 

En el caso de eliminar (borrar) un nodo de una lista doblemente enlazada es preciso cambiar dos 
punteros. 

Figura 14.8. Eliminación de un nodo en una lista doblemente enlazada. 

14.4.1. Declaración de una lista doblemente enlazada 

Una lista doblemente enlazada con valores de tipo int necesita dos punteros y el valor del campo datos. 
En una estructura se agrupan estos datos del modo siguiente: 

typedef i n t  Item; 
struct unnodo 
I 

Item dato; 
struct unnodo *adelante; 



458 Programación en C. Metodología, algoritmos y estructura de datos 

struct unnodo *atras; 
I ;  
t-ypedef struct unnodo Nodo; 

14.4.2. Insertar un elemento en una lista doblemente enlazada 

El algoritmo empleado para añadir o insertar un elemento en una lista doble varía dependiendo de la 
posición en que se desea insertar el elemento. La posición de inserción puede ser: 

O En la cabeza (elemento primero) de la lista. 
O En el final de la lista (elemento Último). 
O Antes de un elemento especificado. 
O Después de un elemento especificado. 

Insertar un nuevo elemento en la cabeza de una lista doble 
El proceso de inserción se puede resumir en este algoritmo: 

1. Asignar un nuevo nodo apuntado por nuevo que es una variable puntero local que apunta al 

2. Situar el nuevo elemento en el campo dci to ( ~nfo) del nuevo nodo. 
3. Hacer que el campo enlace adelante del nuevo nodo apunte a la cabeza (primer nodo) de la lista 

4. Hacer que cabeza (puntero cabeza) apunte al nuevo nodo que se ha creado. 

nuevo nodo que se va a insertar en la lista doble. 

original, y que el campo enlace at-ras del nodo cabeza apunte al nuevo nodo. 

Chdigo C 
typedet int Item; 
typedf struct tipo-nodo 
i 
Item dato; 
struct tipo-nodo* adelante; 
struct tipopnodo* atras; 

}Nodo ; 

Nodo* nuevo; 

nuevo = (Nodo*)rnalloc(sizeof ( N o d o ) ) ;  
nuevo - >  dato = e n t r a d a  
nuevo - >  adelante = cabezd; 
nuevo - >  atras = NUT,T,; 
cabeza ->  atras = nuevo; 
cabeza = nuevo; 

En este momento, la función de insertar un elemento en la lista termina su ejecución y la variable 
local nuevo desaparece y sólo permanece el puntero de cabeza cabeza que apunta a la nueva lista 
doblemente enlazada. 

Inserción de un nuevo nodo que no esta en la cabeza de lista 
La inserción de un nuevo nodo en una lista doblemente enlazada se puede realizar en un nodo intermedio 
de ella. El algoritmo de la nueva operación insertar requiere las siguientes etapas: 

1. Asignar el nuevo nodo apuntado por el puntero nuevo. 
2. Situar el nuevo elemento en el campo dato (lnfo) del nuevo nodo. 
3. Hacer que el campo enlace adelante del nuevo nodo apunte al nodo que va después de la 

posición del nuevo nodo (o  bien a NU1,L si no hay ningún nodo después de la nueva posición). El 
campo atras del nodo siguiente al nuevo tiene que apuntar a nuevo. 



Listas enlazadas 459 

4. La dirección del nodo que está antes de la posición deseada para el nuevo nodo está en la variable 
puntero anterior. Hacer que anterior -> adelante apunte al nuevo nodo. El enlace atrds 
del nuevo nodo debe de apuntar a ant er lor . 

Chdigo C 
nuevo = (Nodo*)malloc (sizeof (Nodo) ) ; 
nuevo ->  dato = entrada ; 
nuevo -> adelante = anterior -> adelante; 
anterior -> adelante - >  atras = nuevo; / *  campo atras del siguiente 

apunta al nodo nuevo creado * /  
anterior -> adelante = nuevo; 
nuevo -> atras = anterior; 

14.4.3. Supresión de un elemento en una lista doblemente enlazada 

La operación de eliminar un nodo de una lista doble supone realizar el enlace de dos punteros, el nodo 
anterior con el nodo siguiente al que se desea eliminar con el puntero adelante y el nodo siguiente con 
el anterior con el puntero atras y liberar la memoria que ocupa. 

El algoritmo para eliminar un nodo que contiene un dato es similar al algoritmo de borrado para 
una lista simple. Ahora la dirección del nodo anterior se encuentra en el puntero atras del nodo a 
borrar. Los pasos a seguir: 

1. Búsqueda del nodo que contiene el dato. Se ha de tener la dirección del nodo a eliminar y la 

2. El puntero adelante del nodo anterior tiene que apuntar al puntero adelante del nodo a 

3. El puntero atras del nodo siguiente a borrar tiene que apuntar al puntero atras del nodo a 

4. En caso de que el nodo a eliminar sea el primero, cabeza, se modifica cabeza para que tenga 

5. Por último, se libera la memoria ocupada por el nodo. 

La codificación se presenta en la siguiente función: 

void eliminar (Nodo** cabeza, item entrada) 

dirección del anterior. 

eliminar, esto en el caso de no ser el nodo cabecera. 

eliminar, esto en el caso de no ser el nodo último. 

la dirección del nodo siguiente. 

Nodo* actual; 
int encontrado = O; 

i c t u a l  - *cabeza; 

while ((actual!=NULL) & &  (!encontrado)) 
/ *  ~ u c i e  de búsqueda * /  

encontrado = (actual->dato =-  entrada); 
if (!encontrado) 
actual = actual -> adeldritc; 

I 

/ *  Enlace de nodo anterior con s i q i i i ~ n t e  * /  
if (actual ! =  NULL) 
i 

/ *  Se distinque entre que el nodo sed el cabecera o del 
resto de la lista * /  

if (actual == "cabezd) 
i 
"cabeza = actual->adelante; 



460 Programación en C. Metodologia, algoritmos y estructura de datos 

if (actual->adelante ! =  NULL) 
actual->adelante->atras = NULL; 

1 
else if (actual->adelante ! =  NULL) / *  No es el iiltimo nodo * /  
{ 
actual -> atras ->adelante = actual ->  adelante; 
actual ->  adelante - >  atrds = actual - >  atras; 

i 
else { / *  último nodo * /  
actual ->  atras -> adelante = NULL; 

free(actua1); 
i 

Ejercicio 14.3 

Se va a crear una lista doblemente enlazada con números enteros obtenidos aleatoriamente. Una vez 
creada la lista se desea eliminarse los nodos que estén fuera de un rango determinado. 

Análisis 
La inserción de elementos en la lista se hace por el nodo cabecera. El número de elementos de la lista 
se pide para ser introducido por teclado. También se pide por teclado el rango de valores que deben de 
estar en la lista. Para eliminar los elementos se recorre la lista, los nodos que no están dentro del rango 
se borran de la lista. Para borrar los nodos se utiliza la función el iminar ( ) , teniendo en cuenta que la 
dirección del nodo a suprimir ya se tiene. 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

typedef int Item; 
typedef struct Elemento 
i 
Item dato; 
struct Elemento" adelante; 
struct Elemento* atras; 

1 Nodo ; 
void InsertarCabezaLista(Nodo** cabeza, Item entrada); 
Nodo* NuevoNodo(1tem x); 
void eliminar(Nodo** cabeza, Nodo* actual); 
void recorrer(Nodo* ptr); 

void main( ) 
{ 
Nodo* cabeza,*ptr; 
int x,y; 

cabeza = NULL; / *  Inicializa cabeza d lista vacía * /  
randomize ( ) ; 
printf("\n Número de elementos a generar: " ) ;  
scanf ( "%d" , &x) ; 

for ( ; x--; ) 
i 

/ *  Se genera la lista doble * /  

InsertarCabezaLista(&cabeza,rand() ) ;  
I 



Listas enlazadas 461 

recor re r  (cabeza) ; 

printf("\nRango de los valores que  va a tener la lista: " ) ;  
scanf ("%d %d", &x, &y) ; 

/ *  Recorre la lista para el irnincir nodos que no están en 
el rango de valores * /  

printf ("\n\tNodos climinados\n") ; 
for (ptr=cabeza; ptr; ) 

if ((ptr->dato<x) I I (ptr -dat o > y )  ) 
i 
Nodo* t ; 
t = ptr->adelante; / *  Guarda el nodo por el que seguir * /  
printf ("%-d ",ptr->dato) ; 
eliminar(&cabeza,ptr); 
ptr = t; 

I 
else 

pkr = ptr->adelante; 
I 
/ *  Recorre la l i s t a  para mostrar sus clementos * /  

recorrer(cabeza); 

void eliminar (Nodo** cabeza, Nodo* actual) 
1 

/ *  Elimina el nodo de dir-eccion actual. 
Se distingue entre que el nodo sea el cabecera o del 
resto de la lista. 

* /  
if (actual == *cabeza) 
i 
*cabeza = actual->adelante; 
if (actual->adelante ! =  NULL) 
actual->adelante->atras = NULL; 

1 
else if (actual->adelante ! =  NULL) / *  No es el Último nodo * /  
{ 
actual ->  atras ->adelante = actual ->  adelante; 
actual ->  adelante ->  atras = actual - >  atras; 

else { / *  Último nodo * /  

I 
free(actua1) ; 

actual -> atras - >  adelante = NULL; 

i 
void recorrer(Nodo* ptr) 
t 
int k = O ;  

printf ("\n\n\t Elementos de la lista\n") ; 

for ( ; ptr ; ) 

i 
k++ ; 
printf ('I%-5d",ptr -> dato) ; 
printf ("%c", (k%12==O?'\n' : ' ' )  ) ; 



462 Programación en C. Metodologia, algoritmos y estructura de datos 

ptr = ptr - >  adcldnte; 
i 

1 

vclld insertarCabezaLi sta (Nodo** i d b e z c r ,  Item entrdda) 
i 
Nodo* nuevo; 

nuevo = NuevoNodo(entrdda1; 
nuevo -> adelante = *cCibead; 
nuevo -> atrds = NULL; 
if (*cabeza ! =  NULL) 

*cabeza = nuevo; 
("cabeza) -> a t r a s  = n u c v o ;  

i 

Nodo* NuevoNodo(1tern x) 
i 
Nodo *a ; 
a = (Nodo*)malloc 
a -> dato = x; 
a - >  adeldnte = d 
r e t u r n  a ;  

i 

14.5. LISTAS CIRCULARES 

En las listas lineales simples o en las dobles siempre hay un primer nodo y un último nodo que tiene el 
campo de enlace a nulo. Una iistu circular, por propia nuturule~u no tiene ni principio ni,fin. Sin 
embargo, resulta Útil establecer un nodo a partir del cual se acceda a la lista y así poder acceder a sus 
nodos. La Figura 14.9 muestra una lista circular con enlace simple; podría considerarse como una lista 
lineal, de tal manera que el último nodo apunta al primero. 

I 

Figura 14.9. Lista circular. 

Las operaciones que se realizan sobre una lista circular son similares a las operaciones sobre listas 
lineales, teniendo en cuenta que el 61 t.irrio nodo no apunta a nulo sino al pr imero .  La creación de una 
lista circular se puede hacer con un enlace simple o un enlace doble. Consideramos que la lista circular 
se enlaza con un solo enlace, la realización con enlace adeluntc y utrús es similar (se puede consultar 
el Apartado 14.4). 

14.5.1. Insertar un elemento en una lista circular 

El algoritmo empleado para añadir o insertar un  elemento en una lista circular varía dependiendo de la 
posición en que se desea insertar el elemento. La posición de inserción puede variar, consideramos que 



Listas enlazadas 463 

se hace coino nodo anterior al del nodo de acceso a la lista LL., y que I,(-. tiene la dirección del último 
nodo insertado. A continuación se escribe la declaración de un nodo, una función que crea un nodo y la 
función que inserta el nodo en la lista circular. 

I.ypedef char* Item; 
typedcf s t r u c t  E:] ement .o  
i 
Item d a t o ;  
s t ruc t Elemento" s i gu i erit.e ; 

1 Nodo ; 

Nodo* NuevoNodo ( T t . e m  x 
i 

Nodo *a ; 
a (Nodo*)malloc(s 

d - >  siyuiente : u; 
r e t -u rn  a; 

->  dato = X ;  

} 

vo i d T n s e r - t  aC i r - c  11 1 a r ( Nodo * * 
i 

Nodo* nuevo ; 

nuevo = NuevoNodo (entr ddii 
if (*Le ! =  NIJLI,) / *  I 

nuevo > siguiente = ( *  

I 
*Lc = nuevo;  

14.5.2. Supresión de un elemento en una lista circular 

La operación de eliminar un  nodo de una lista circular sigue los mismos pasos que los dados para 
eliminar un nodo en una lista lineal. Hay que enlazar el nodo anterior con el nodo siguiente al que se 
desea eliminar y liberar la memoria que ocupa. El algoritmo para eliminar un  nodo de una lista circular: 

1. Búsqueda del nodo que contiene el dato. 
2. Se enlaza el nodo anterior con el siguiente. 
3. En caso de que el nodo a eliminar sea el referenciado por el puntero de acceso a la lista, I,(:, se 

4. Por último, se libera la mernoria ocupada por el nodo. 

En la función de eliminar hay que tener en cuenta la característica de lista circular, así para detectar 

[,e == L,c->s igu i  ente si esta expresión es cierta la lista consta de un solo nodo. 
A continuación se escribe el código de la función eliminar para una lista circular. Para ello recorre 

la lista con un puntero al nodo anterior, por esa razón se accede al dato con la sentencia 
a c tu c~ 1 - > s i yu i ente - >dato. 

Esto permite, en el caso de encontrarse el nodo, tener en d r t u d  1 el nodo anterior. Después del bucle 
es necesario volver a preguntar por el campo dato, ya que no se comparó el nodo LC y el bucle puede 
haber terminado sin encontrar el nodo: 

modifica LC para que tenga la dirección del nodo anterior. 

si la lista es de un solo nodo ocurre que se apunta a él mismo. 



464 Programación en C. Metodología, algoritmos y estructura de datos 

Código C 
void eliminar (Nodo** Lc, Item entrada) 
i 
Nodo* actual ; 
int encontrado = O; 

actual = *Lc; 

while ((actual->siguiente ! =  *Lc) && (!encontrado)) 
/ *  Bucle de búsqueda * /  

i 
encontrado = ( a c t u d l - > c i g u i c n t c - ; d ü t o  == e n t r a d a ) ;  
if (!encontrado) 
{ 

1 
actual = actual ->  siguiente; 

1 
encontrado = (actual->siyui~ente->dato == entrada); 

/ *  Enlace de nodo anterior con s i g i i i e n t e  * /  

if (encontrado) 
{ 
Nodo* p; 
p = actual->siguiente; / *  Nodo il eliminar * /  
if (*Lc == (*Lc)->siguiente) / *  Lista con un solo nodo * /  

else { 
if ( p  == *Lc) 
i 

*Lc = NULL; 

*Lc = actual; / *  Se borra  el elemento referenciado por Lc; 

} 
actual->siguiente = p->siquiente; 

el nuevo acceso a Id lista es el anterior * /  

i 
f r e e  (PI ; 

i 

~~~ 

Ejercicio 14.4

Este ejercicio crea una lista circular con paluhras leídas del teclado. El programa debe tener un
conjunto de opciones para:

a) Mostrar las cadenas yue,forman la lista;
h) Borrar una palabra dada;
c) Al terminar la ejecución, recorrer la lista eliminando los nodos.

Análisis
Los nodos de la lista tienen como campo dato un puntero a una cadena que es la palabra. Desde el
teclado se lee la palabra en un buffer suficientemente amplio; se ha de reservar memoria para tantos
caracteres como longitud (s t r 1 en ()) tenga la cadena leída y asignar su dirección al puntero del nodo.
a continuación se copia el buffer a la memoria reservada (campo dato del nodo). El nodo se inserta
llamando a la función insertacirculdr () . Para borrar una palabra se llama a la funcih
eliminar () .

#include <stdio.h>
#include <string.h>

Listas enlazadas 465

typedef char* Item;
typedef struct Elemento
{
Item dato;
struct Elemento* siguiente;

}Nodo ;

Nodo* NuevoNodo(1tem x);
void InsertaCircular(Nodo** Lc, Item entrada);
void eliminar(Nodo** Lc, Item entrada);
void recorrer(Nodo* Lc);
void borrarlista(Nodo** Lc);

int main ()

char cadena [81 I ;
Nodo *Lc; int opc;

printf ("\n\n Entrada de Nombres. Termina con ^Z.\n");
while (gets (cadena))
{

I
recorrer (L c) ;

puts("\n\n\t Opciones para manejar la lista");

LC = NULL;

Insertacircular (&Lc,cadend);

do {
puts("\n 1. Elimar una palabra de la lista circular.\n");
puts("\n 2. Mostrar todos los elementos de la lista.\n");
puts("\n 3. Salir y eliminar los nodos de la lista.\n");
do {

}while (opc<l I / opci3);

switch (opc) {
case 1: printf ("Palabra a eliminar: ") ;

scanf ("%d%*c" I LoPC) ;

case 2

case 3
1

} while

gets (cadena) ;
eliminar(&Lc,cadena);
break;
printf("\nPalabras que continen la Lista:\n');
recorrer(Lc);
break;
puts("E1iminaciÓn de los nodos de la lista.");

opc ! = 3);

return O;
1

{
Nodo* NuevoNodo(1tem x)

Nodo *a ;
a = (Nodo*)malloc(sizeof(Nodo));

a -> dato = (char*) malloc((strlen(x)+l) *sizeof (char)) ;
strcpy(a-id ato,^) ;
a -> siguiente = a; / * apunta así mismo, es un nodo circular * /
return a;

/ * Se reserva memoria para la cadena * /

,

466 Programación en C. Metodologia, algoritmos y estructura de datos

}

vo id InsertaCirculdr (N o d o * * L(., I t e m erit rcidd)

Nodo* nuevo;

nuevo = NuevoNodo (e2ni.r ada) ;
if (*Lc ! = NULL) / * i i s L , i ~ i r c i i l ~ i ~ . 110 vacía * /
i

nuevc -> siguiente = (*k) -> s i g i i i e r i l . ~ ;
(*Lc) -> siguient-e = n u e v o ;

i
*Lc = nuevo;

1

void eliminar (N o d o * * L c , I L i m c~nt . rddci)
I

N o d o * actual;
int encontrddo = O ;

actual = *Lc;

while ((actudL->sigulente ! - *Lc) hh (!encontrado))
i

/ * Bucle de búsqueda * /

encontrado = strcmp (d c t u d l - ~siyuicnte->dato, entrada) == O ;
if (! encontr ddo)
i

i
actual = actual -> siqiiiente;

i
encontrddo = s t r c m p (~ i c t u d 1 ->siguirntc--ddt o, en t r ada) = = O ;

/ * Enlace de nodo dntcrior con siquiente * /
if (encontrddo 1
t
Nodo* p;
yrintf("\nNodo de la pci ldbrd \ " Bs \ " encon t rado . \n",entrada) ;
p = actual->siguiente; / * Nodo c i eliminar * /
if (*Lc == (* L c) - > s i y u i e n t . e) / * L i s t - i i con un solo nodo * /

else i
*Lc = NULL;

if (p == *Le)
i
*Lc = actual; / * Se borra el elemento referenciado por Lc:;

el nuevo acceso < I la l i s ~ d e:; el anterior * /
1
actual->siguient e : p-~>siyuicnte;

void recorrer-(Nodo" Lc)

Nodo* p ;
if (Lc ! = N U L L)
{

Listas enlazadas 467

p = Lc->siguiente; / * Lc tiene el último nodo, el siguiente es

do {

el primero que se insertó * /

print f (I' \ t \ t % s I' , p - >dato) ;
p = p->siguiente;

}while(p ! = Lc->siguiente);

else
printf ("\n\t Lista vacía. \n") ;

void borrarlista(Nodo** L,c)
I
Nodo* p;

if (Lc ! = NULL)
{
p = *Lc;
do I
Nodo* t ;
t = p; p = p->siguiente;
free(t);

}while (p ! = *Lc) ;
1
else
printf ("\n\t Lista vacía. \n") ;

*Lc = NULL;

14.6. RESUMEN

La estructura de datos lista se puede implementar,
bien como un array, bien como una lista enlazada.

Una lista enlazada es una estructura de datos diná-
mica en la que sus componentes están ordenados lógi-
camente por sus campos punteros en vez de ordena-
dos físicamente como están en un array. El final de la
lista se señala mediante una constante o puntero espe-
cial llamado NULL.

La gran ventaja de una lista enlazada sobre un
array es que la lista enlazada puede crecer y decrecer
en tamaño, ajustándose al número de elementos.

Una lista simplemente enlazada contiene sólo un
enlace a un sucesor único, a menos que sea el último,
en cuyo caso no se enlaza con ningún otro nodo.

Cuando se inserta un elemento en una lista enlaza-
da, se deben considerar cuatro casos: añadir a una lis-
ta vacía, añadir al principio de la lista, añadir en el
interior y añadir al final de la lista.

Para borrar un elemento, primero hay que buscar
el nodo que lo contiene y considerar dos casos: borrar
el primer nodo y borrar cualquier otro de la lista.

El recorrido de una lista enlazada significa pasar
por cada nodo (visitar) y procesarlo. El proceso pue-
de ser escribir su contenido, modificar el campo de
datos.

Una lista doblemente enlazada es aquella en la
que cada nodo tiene un puntero a su sucesor y otro a
su predecesor.

Las listas doblemente enlazadas se pueden reco-
rrer en ambos sentidos. Las operaciones básicas son
inserción, borrado y recorrer la lista; similares a las
listas simples.

Una lista enlazada circulamente por propia
naturaleza no tiene primero ni Último nodo. Las listas
circulares pueden ser de enlace simple o doble.

r ~

468 Programación en C. Metodología, algoritmos y estructura de datos

14.7. EJERCICIOS

14.1. Escribir una función que devuelva cierto (# O)
si la lista está vacía.

14.2. Escribir una función entera que devuelva el
número de nodos de una lista enlazada.

14.3. En una lista enlazada de números enteros se
desea añadir un nodo entre dos nodos consecu-
tivos con campos dato de distinto signo; el
valor del campo dato del nuevo nodo que sea la
diferencia en valor absoluto.

14.4. Escribir una función que elimine el nodo que
ocupa la posición i, siendo el nodo cabecera el
que ocupa la posición O.

14.5. Escribir una función que tenga como argumen-
to el puntero cabeza ai primer nodo de una
lista enlazada. La función debe de devolver un
puntero a una lista doble con los mismos cam-
pos dato pero en orden inverso.

14.6. Se tiene una lista simplemente enlazada de
números reales. Escribir una función para obte-
ner una lista doble ordenada respecto al campo
dato, con los valores reales de la lista simple.

14.7. Escribir una función para crear una lista doble-
mente enlazada de palabras introducidas por
teclado. La función debe tener un argumento

14.8. PROBLEMAS

14.1. Escribir un programa o funciones individuales
que realicen las siguientes tareas:
o Crear una lista enlazada de números enteros

positivos al azar, la inserción se realiza por
el último nodo.

O Recorrer la lista para mostrar los elementos
por pantalla.

o Eliminar todos los nodos que superen un
valor dado.

puntero Ld en el que se devuelva la dirección
del nodo que está en la posición intermedia.

14.8. Se tiene que L c es una lista circular de pala-
bras. Escribir una función que cuente el
número de veces que una palabra dada se
encuentra en la lista.

14.9. Escribir una función entera que tenga como
argumento una lista circular de números ente-
ros. La función debe de devolver el dato del
nodo con mayor valor.

14.10. Se tiene una lista de simple enlace, el campo
dato es un registro (estructura) con los cam-
pos de un alumno: nombre, edad, sexo. Escri-
bir una función para transformar la lista de tal
forma que si el primer nodo es de un alumno
de sexo masculino el siguiente sea de sexo
femenino.

14.11. Una lista circular de cadenas está ordenada
alfabéticamente. El puntero Lc tiene la direc-
ción del nodo alfabéticamente mayor, apunta
al nodo alfabéticamente menor. Escribir una
función para añadir una nueva palabra, en el
orden que le corresponda, a la lista.

14.12. Dada la lista del Ejercicio 14.11 escribir una
función que elimine una palabra dada.

14.2. Se tiene un archivo de texto de palabras sepa-
radas por un blanco o el carácter de tin de línea.
Escribir un programa para formar una lista
enlazada con las palabras del archivo. Una vez
formada la lista se pueden añadir nuevas pala-
bras o borrar alguna de ellas. AI finalizar el pro-
grama escribir las palabras de la lista en el
archivo.

1

Listas enlazadas 469

11

143. Un polinomio se puede representar como una
lista enlazada. El primer nodo de la lista repre-

como campo dato el coeficiente del término y
el exponente.

o

senta el primer término del polinomio, el
segundo nodo al segundo término del polino-
mio y así sucesivamente. Cada nodo tiene

Por ejemplo, el polinomio 3x4 - 4x2 + 11
se representa

Escribir un programa que permita dar
entrada a polinomios en x, representándolos
con una lista enlazada simple. A continuación
obtener una tabla de valores del polinomio
para valores de x = 0.0,0.5, 1.0, 1.5, ... ,5.0.

14.4. Teniendo en cuenta la representación de un
polinomio propuesta en el Problema 14.3,
hacer los cambios necesarios para que la lista
enlazada sea circular. El puntero de acceso
debe de tener la dirección del Último término
del polinomio, el cual apuntará al primer tér-
mino.

14.5. Según la representación de un polinomio pro-
puesta en el Problema 14.4, escibir un progra-
ma para realizar las siguientes operaciones:

o Obtener la lista circular suma de dos poli-
nomios.

o Obtener el polinomio derivada.
o Obtener una lista circular que sea el pro-

ducto de dos polinomios.

14.6. Escribir un programa para obtener una lista
doblemente enlazada con los caracteres de una
cadena leída desde el teclado. Cada nodo de la
lista tendrá un carácter.

Una vez que se tiene la lista ordenarla alfa-
béticamente y escribirla por pantalla.

14.7. Un conjunto es una secuencia de elementos
todos del mismo tipo, sin duplicidades. Escri-
bir un programa para representar un conjunto
de enteros mediante una lista enlazada. El pro-
grama debe contemplar las operaciones:

o Cardinal del conjunto.
o Pertenencia de un elemento al conjunto.
o Añadir un elemento al conjunto.
o Escribir en pantalla los elementos del con-

junto.

14.8. Con la representación propuesta en el Proble-
ma 14.7, añadir las operaciones básicas de
conjuntos:

o Unión de dos conjuntos.
o Intersección de dos conjuntos.
o Diferencia de dos conjuntos.
o Inclusión de un conjunto en otro.

14.9. Escribir un programa en el que dados dos
archivos F1, F2 formados por palabras sepa-
radas por un blanco o tin de línea, se creen
dos conjuntos con las palabras de F1 y F2,
respectivamente. Posteriormente encontrar las
palabras comunes y mostrarías por pantalla.

14.10. Utilizar una lista doblemente enlazada para
controlar una lista de pasajeros de una línea
aérea . El programa principal debe ser contro-
lado por menú y permitir al usuario visualizar
íos datos de un pasajero determinado, insertar
un nodo (siempre por el final), eliminar un
pasajero de la lista. A la lista se accede por un
puntero ai primer nodo y otro al último nodo.

14.11. Para representar un entero largo, de más de 30
dígitos, utilizar una lista circular teniendo el
campo dato de cada nodo un dígito del entero
largo. Escribir un programa en el que se intro-
duzcan dos enteros largos y se obtenga su
suma.

14.12. Un vector disperso es aquel que tiene muchos
elementos que son cero. Escribir un programa
que permita representar mediante listas enla-
zadas un vector disperso. Los nodos de la lis-
ta son los elementos de la lista distintos de
cero; en cada nodo se representa el valor del
elemento y el índice (posición del vector). El
programa ha de realizar las operaciones:
sumar dos vectores de igual dimensión y
hallar el producto escalar.

CAPíTULO 15

PILAS Y COLAS

CONTENIDO

470

15.1. Concepto de pila.
15.a. El tipo pila implementado

con arrays.

15.5. R e a l b a c i Ó n de una cola con
una lista enlazada.

15.6. Resumen.
15.3. Concepto de cola.
15.4. Colas implementadas con

15.7. Ejercicios.
15.8. Problemas.

arrays.

3

En este capítulo se estudian en detalle las estructuras de datos pilas y colas gue
son probablemente las utilizadas mas frecuentemente en los programas más
usuales. Son estructuras de datos que almacenan y recuperan sus elementos
atendiendo a un estricto orden. Las pilas se conocen también como estructuras
LIFO (Last-in, first-out, último en entrar-primero en salir) y las colas como
estructuras FIFO (nirSt-in, First-out, primero en entrm-primero en salir). Entre
las numerosas aplicaciones de las pilas destaca la evaluación de expresiones
algebraicas, así como la organización de la memoria. Las colas tienen numero-
sas aplicaciones en el mundo de la computación: colas de mensajes, colas de
tareas a realizar por una impresora, colas de prioridades.

CONCEPTOS CLAVE
Concepto de tipo abstracto de
datos. Listas enlazadas.
Concepto de una cola.

Concepto de una pila.

47 1

472 Programación en C. Metodología, algoritmos y estructura de datos

15.1. CONCEPTO DE PILA

Una pila (stack) es una colección ordenada de elementos a los que sólo se puede acceder por un único
lugar o extremo de la pila. Los elementos de la pila se añaden o quitan (borran) de la misma sólo por su
parte superior (cima) de la pila. Éste es el caso de una pila de platos, una pila de libros, etc.

de entradas ordenadas tales que
cima.

Cuando se dice que la pila está ordenada, lo que se quiere decir es que hay un elemento al que se
puede acceder primero (el que está encima de la pila), otro elemento al que se puede acceder en segundo
lugar (justo el elemento que está debajo de la cima), un tercero, etc. No se requiere que las entradas se
puedan comparar utilizando el operador «menor que» (<) y pueden ser de cualquier tipo.

Las entradas de la pila deben ser eliminadas en el orden inverso al que se situaron en la misma. Por
ejemplo, se puede crear una pila de libros, situando primero un diccionario, encima de él una
enciclopedia y encima de ambos una novela de modo que la pila tendrá la novela en la parte superior.

Novela

Enciclopedia

Diccionario

Figura 15.1. Pila de libros.

Cuando se quitan los libros de la pila, primero debe quitarse la novela, luego la enciclopedia y,
por último, el diccionario. Debido a su propiedad específica «último en entra6 primero en salir» se
conoce a las pilas como estructura de datos LIFO (last-in, first-out). Las operaciones usuales en la
pila son Insertar y Quitar. La operación Insertar (push) añade un elemento en la cima de la pila y la
operación Quitar (pop) elimina o saca un elemento de la pila. La Figura 15.3 muestra una secuencia
de operaciones Insertar y Quitar. El último elemento añadido a la pila es el primero que se quita de la
pila.

Insertar M Insertar A

Entrada: MAC

Insertar C

M

Quitar C

1
A

M

Quitar A

i^
M

Salida: CAM

Figura 15.2. Poner y quitar elementos de la pila.

Quitar M r

Pilas ycolas 473

La operación Insertar (push) sitúa un elemento dato en la cima de la pila y Quitar (pop)
elimina o quita el elemento de la pila.

Insertar I 1 Quitar

Cima ---Y

+-- Fondo

Figura 15.3. Operaciones básicas de una pila.

La pila se puede implementar mediante arrays en cuyo caso su dimensión o longitud es fija, y
mediante punteros o listas enlazadas en cuyo caso se utiliza memoria dinámica y no existe limitación en
su tamaño.

Una pila puede estar vacía (no tiene elementos) o llena (en el caso de tener tamaño fijo, si no cabe
más elementos en la pila). Si un programa intenta sacar un elemento de una pila vacía, se producirá un
error debido a que esa operación es imposible; esta situación se denomina desbordamiento negativo
(underflow). Por el contrario, si un programa intenta poner un elemento en una pila se produce un error
llamado desbordamiento (overflow) o rehosamiento. Pata evitar estas situaciones se diseña funciones,
que comprueban si la pila está llena o vacía.

15.1.1. Especificaciones de una pila

Las operaciones que sirven para definir una pila y poder manipular su contenido son las siguientes (no
todas ellas se implementan al definir una pila).

Tipo de dato
Insertar (push)
Quitar (pop)
Pila vacía
Pila llena
Limpiar pila
Tamaño de la pila
Cima

Dato que se almacena en la pila.
Insertar un dato en la pila.
Sacar (quitar) un dato de la pila.
Comprobar si la pila no tiene elementos.
Comprobar si la pila está llena de elementos.
Quitar todos sus elementos y dejar la pila vacía.
Número de elementos máximo que puede contener la pila.
Obtiene el elemento cima de la pila.

15.2. EL TIPO PILA IMPLEMENTADO CON ARRAYS

Una pila se puede implementar mediante armys o mediante listas enlazadas. Una implementación
estática se realiza utilizando un array de tamaño fijo y una implementación dinámica mediante una lista
enlazada.

474 Programación en C. Metodología, algoritmos y estructura de datos

En C para definir una pila con arrays se utiliza una estructura. Los miembros de la estructura pila
incluyen una lista (array) y un índice o puntero a la cima de la pila; además una constante con el máximo
número de elementos. El tipo pila junto al conjunto de operaciones de la pila se pueden encerrar en un
archivo de inclusión (pi la. h) . AI utilizar un array para contener los elementos de la pila hay que tener
en cuenta que el tamaño de la pila no puede exceder el número de elementos del array y la condición pila
llena será significativa para el diseño.

El método usual de introducir elementos en una pila es definir elfondo de la pila en la posición O del
array y sin ningún elemento en su interior, es decir, definir una pila vacia; a continuación, se van
introduciendo elementos en el array (en la pila) de modo que el primer elemento añadido se introduce
en una pila vacía y en la posición O, el segundo elemento en la posición 1 , el siguiente en la posición 2
y así sucesivamente. Con estas operaciones el puntero (apuntador) que apunta a la cima de la pila se va
incrementando en 1 cada vez que se añade un nuevo elemento; es decir, el puntero de la pila almacena
el índice del array que se está utilizando como cima de la pila. Los algoritmos de introducir «insertar»
@ush) y quitar «sacar» (pop) datos de la pila utilizan el índice del array como puntero de la pila son:

Insertar (p u s h)
1.verificar si la pila no e s t á llena.
2.Incrementar en 1 el puntero de la pila.
?.Almacenar elemento en la posición del puntero de la pila.

Quitar (pop)
1.si la pila no está vacía.
2.Leer el elemento de la posición del puntero de la pila.
3.Decrementar en 1 el puntero de la pila.

En el caso de que el array que define la pila tenga TamanioPila elementos, las posiciones del
array, es decir, el índice o puntero de la pila, estarán comprendidas en el rango O a TamanioPila-1
elementos, de modo que en una pila llena el puntero de la pila apunta a TamanioPila- 1 y en una pila
vaciu el puntero de la pila apunta a - 1 , ya que O, teóricamente, será el índice del primer elemento.

Ejemplo 15.1

Una pila de 7 elementos se puede representar gráfi~~amente así:

Cima

1
A 0 1 2 3 4 5 6 A

t
Pila vacía
puntero de la pila = -1

Pila llena
puntero de la pila = 6

puntero de la pila

Si se almacenan los datos A , B , c , ... en la pila se puede representar gráficamente por alguno de estos
métodos

Pilas y coias 475

A
*

Cima = 2 H (' ...

*
lndice

Veamos ahora como queda la pila en función de diferentes situaciones de un posible programa.

15.2.1. Especificación del tipo pila

La declaración de una pila incluye los datos y operaciones ya citados anteriormente.

1 . Datos de la pila (tipo T i pouat-a, que es conveniente definirlo mediante typedef).
2. Verificar que la pila no está llena antes de intentar insertar o poner (<<push») un elemento en la

pila ; verificar que una pila no está vacía antes de intentar quitar sacar (q m p ~) un elemento de
la pila. Si estas precondiciones no se cumplen se debe visualizar un mensaje de error y el
programa debe terminar.

3 . r' i 1 =ivac fa devuelve I (verdadero) si la pila está vacía y O (falso) en caso contrario.
4. P i i d l l c n d devuelve 1 (verdadero) si la pila está llena y O (falso) en caso contrario. Estas

5 . L, i m p i a r ' ~ i 1 a. Se lirnpia o vacía la pila, dejándola sin elementos y disponible para otras tareas.
6. ~ i r n ~ , ~ , devuelve el valor situado en la cima de la pila, pero no se decrernenta el puntero de la

funciones se utilizan para verificar las operaciones del párrafo 2.

pila, ya que la pila queda intacta.

476 Programación en C. Metodologia, algoritmos y estructura de datos

I

*I

' ,

Decluración
/ * a r c h i v o pi1asrray.h * /

i r i c l u d e ~stdio.h>
include i c t d l i b. h>

#dcf I ne M d x ' l ' d m a P i l d 1 O0

typedef s t r u c t

i n t r 'ilaVcicia(PilLi P I ;
int. P i l c i i l l e n a (P i l a P);

Antes de incluir el archivo pi 1 c i d ~ . r c ~ y . h debe de declararse el ' ; ' i pxiL)at-o. Así si se quiere una pila
de enteros:

typede f i n t T i poila to ;
il i nc lude I'p i I ad r r-ay . 'ri"

En el caso de que la pila fuera de números complejos:

typedef st r u c t

IlOdt x,y;
}Tjpo»ato;
i n c 1 u d e " p i 1 a ci I' I' a y . h "

Ejemplo 15.2

Escribir un programu que nzunipule una i 1 d de enteros, C O F ~ el tipo definido unteriormrnte e
introduzcu un dato de tipo entero.

El programa crea una pila de números enteros, inserta en la pila un dato leído del teclado y visualiza el
elemento cimu.

typcde f i n t T i poDdto ;
i n c 1 u d e " p i 1 a a r r ay . h I' ;
i riclude < s t d i o . h>
v o i d ma in0
i
Pila P;
i r i t x;
CrearPi La (&P) ; / * Crea iini.3 p i 1 u vric í a * /
scanf ("%d" , hx) ;

Pilas ycoias 477

Insertar (hP,x) ; / * inserta x en la pila P * /
printf ("Bd \n",Cirna(P)); / * visud izd el Último elernento * /

/ * Elimina el element-o cima (x) y deja la pila vacía * /
if

printf ("%d \ n " , a i ix) ;
1 , imp ia r i) i ld (& I 1) ; / * 1 imp ia la p i l d , qucdd .Jdcí<.i * ,

(! Pilavacia (P))
aux = QUiLdr(&P);

i

15.2.2. Implementación de las operaciones sobre pilas

Las operaciones de la pila definidas en la especificación se implementan en el archivo p i 1,ia r r dy. (7
para después formar un proyecto con otros módulos y la función principal.

/ * circhivo pi l d c i r r c i y . < ' * /

#include "pildarray . i-1"

/ * Inicializa Id pilei <I p i l < i v r i r í i i * /
void C r e a r P i l < i (Pilei* P)

p -> cima = -1;

Y
c

Las otras operaciones de la pila declaradas en el archivo p i 1 a a r L ay. 11 son: lnsi'r tdr , uiLi t ar
Cima. La operación Lnser tci r y oii i tLi r , insertan y eliminan un elemento de la pila; la operación
ima permite a un cliente recuperar los datos de la cima de la pila sin quitar realmente el elemento de

la misma.
La operación de Tnsertdr u n elemento en la pila incrementa el puntero de la pila (cima) en I y

asigna el nuevo elemento a la lista de la pila. Cualquier intento de añadir un elemento en una pila llena
produce un mensaje de error «Desbor dami ento pi la>> y debe terminar el programa.

/ * poner un elemento en la pila * /

void Insertar(Pila* P , c o n s t T L p u U i i t o i- lemerito)

/ * si l a p i l a est5 l l c n , i , L e r m i r i c i el p r o g r d m d * /
if (P->cima == MaxTarndPi l , i - I)
i
puts ("Desborddmiento pi I d ") ;
exit (1);

i
/ * incremenLdr p u r i L e r o c i r n C \ y copidr- elernento en I~isLdpila * /
P->cima++;
p- > 1 i s t ap i 1 a >c i ma 1 = e 1 emen t - o ;

i

Antes de 01 I I , I I

I I I I I I

I I I elernento I l l
I I I I I I

t
(' i 1 7 1 , l

Despues de (- 1 1 I 1 I t

=
se devuelve

1 I 1
t

(I I I r 1 1 7 1 1 I

478 Programación en C. Metodología, algoritmos y estructura de datos

i

d

La operación Quitar- elimina un elemento de la pila copiando primero el valor de la cima de la pila
en una variable local aux y a continuación decrementa el puntero de la pila en 1 . La variable aux se
devuelve en la ejecución de la operación Quitar. Si se intenta eliminar o borrar un elemento en una pila
vacía se debe producir un mensaje de error y el programa debe terminar.

/ * Quitar un elemento de la p i i d * /

TipoDato Quitar(Pila* P)
{
TipoDato aux;

if (P->cima == -1)
i

/ * si la pila está vacía, termina el programa * /

puts("Se intenta sacar un elemento en pila vacía");
exit (1);

I
/ * guardar elemento de la cima * /

aux = P->listapilaiP->cim~];

/ * decrementar cima y devolver vulor del elemento * /
P->cima--;
return aux;

1

15.2.3. Operaciones de verificación del estado de la pila

Se debe proteger la integridad de la pila, para lo cual el tipo P i 1 a ha de proporcionar operaciones que
comprueben el estado de la pila: pila vacia o pila llenu. Asimismo se ha de definir una operación que
restaure la condición inicial de la pila, que fue determinada por el constructor CrearPi la (cima de la
pila a - I) , Limpiarpila.

La función Pilavacia comprueba (verifica) si la cima de la pila es -1. En ese caso, la pila está
vacía y se devuelve un 1 (verdadero); en caso contrario, se devuelve O (falso).

/ * verificar pila vacía * /

int PilaVacid(P11d P)
{ /*devuelve el valor lógico rrsultdnte de expresibn cima == - 1 * /
return P.cima == - 1 ;

i

La función PilaLlena comprueba (verifica) si la cima es MaxTamaPila-I. En ese caso, la pila

/ * verificar si la pila está l l e n c i * /

int PilaLlena (Pila P)
i

está llena y se devuelve un 1 (verdadero); en caso contrario, se devuelve O (falso).

/ * devuelve valor l b q i c o de Id exp rec ió r i cimd == MaxTdrndPila-1 * /
return P.cima == MaxTamaPila-1;

1

Por último la operación Limpiar g'i 1 ~ ~ 1 reinicializa la cima a su valor inicial con la pila vacía (-1).

/ * quitar todos los elementos di? la pi la * /
void LimpiarPila(Pila* P)
{
P->cima = -1;

Pilas v coias 479

Ejercicio 15.1

Escribir un progranza que utilice la clase i J i 1 d para comprobar s i una determinada ,frase/paluhru
(cadena de caracteres) es un palíndromo. Nota. Una palabra ofrase es un palíndromo r u m i o la Irctmm
directa e indirecta de la niisma tiene igual valor: alila, es un palíndromo; cara (arac) no e s un
palíndromo.

Análisis
La palabra se lee carácter a carácter, de tal forma que a la vez que se añade a un str-inq se inserta en
una pila de caracteres. Una vez leída la palabra, se compara el primer carácter del string con el carácter
que se extrae de la pila, si son iguales sigue la comparación con siguiente carácter del string y de la
pila; así hasta que la pila se queda vacía o hay un carácter no coincidente.

Al guardar los caracteres de la palabra en la pila se garantiza que las comparaciones son entre
caracteres que están en orden inverso: primero con Último.. .

La codificación consta de tres archivos, el archivo pi lar-ray . h con las declaraciones de la pila; el
archivo pilarray . c con la implementación de las operaciones de la pila y el archivo pdi t i r omo. c
para leer la palabra y comprobar con ayuda de la pila si es palíndromo.

/ * Archivo pi1array.h * /

#include <stdio.h>
#include <stdlib.h>

#define MaxTarnaE’ila 100

typedef struct
i

TipoDato listapila[MaxTamaPila];
int cima;

} Pila;

/ * Operaciones sobre la Pila * /

void CrearPila(Pila* P);
void Insertar(P¡la* P,const TipoDat.0 elemento);
TipoDato Quitar(Pila* P);
void LimpiarPila(Pila* P);

/ * Operación de acceso P i l d * /

TipoDato Cima(Pi1a P);

/ * verificación estado de la P i l d * /
I

int Pilavacia (Pila il) ;
int PilaLlena(Pi1a P);

/ * Archivo pi1array.c

* /

typedef char TipoDato;

i nc I ude “pi 1 ar ray . h“

lmplementación de operacioncs sobre pilas

/ * Inicializa la pila a pila vdcía * /
void CrearPila(Pila* P)
i

1

/ * poner iiri elemento en lCi pila * /

P - > cima = -1; I

480 Programación en C. Metodología, algoritmos y estructura de datos

void Insertar(Pila* P,const TipoDato elemento)
i

/ * si la pila está llena, termina el programa * /
if (PilaLlena (*PI)
{
puts ("Desbordamiento p i l a ") ;
exit (1);

1
/ * incrementar puntero cima y copiar elemento en listapila * /
P->cima++;
P->listapila[P->cimal = elemento;

1

/ * Quitar un elemento de la pila * /

TipoDato Quitar (Pila" P)
I

TipoDato Aux;
/ * si la pila está vacía, termina el programa * /
if (Pilavacia (*E?))
i
puts("Se intenta sacar un elemento en pila vacía");
exit (1);

1

/ * guardar elemento de la cima * /
Aux = P->listapila[P->cima];

P->cima--;
return Aux;

/ * decrementar cima y devolver valor del elemento * /

I
/ * verificar pila vacía * /

int Pilavacia (Pila P)
{ /*devuelve el valor lógico resultante de expresión cima == -1 * /

1
return P.cima == -1;

/ * verificar si la pila está llena * /

i n t PilaLlena (Pila P)
i

1
/ * quitar todos los elementos de la pila * /
void LimpiarPila(Pila* P)
i

1
TipoDato Cima (Pila P)
i

i f (P.cima == -1)
i

return P.cima == MaxTamaPila-1;

P->cima = -1;

puts("Se intenta sacar un elemento en pila vacía");
exit (1);

1
return P.listapila[P.cim& ;

I
/ * Archivo pa1dromo.c

typedef char TipoDato;

#include 'pilarray. h"
#include <ctype.h>

Pilas y coias 481

* /

15.3.

int main()
i
char palabra[lOOl, ch;
Pila P;
int j, palmo;
Crearpila (&P) ;

do i
/ * Lee la palabra * /

puts("\n Palabra a comprobar si es palíndromo");
for (j = O ; (ch=getchar())!='\n'; j
t
palabra[j++l = ch;
Insertar(&P,ch); / * pone en la pila * /

I
palabra[jl = '\O';

/ * comprueba si es palíndromo * /
palmo = 1;
for (j=O; palmo && !PilaVacia(P);)
{

I
LimpiarPila(&P);
if (palmo)

else

palmo = palabra[j++l == Quitar(&P);

printf("\n La palabra %s es un palíndromo \n",palabra);

printf("\n La palabra %s no es un palíndromo \n',palabraj;

printf ("\n ¿ Otra palabra ? : " j ; scanf ("%c%*c" , &chj ;
}while (tolower(chj == 's'j;

return O ;
I

COLAS

Una cola es una estructura de datos que almacena elementos en una lista y permite acceder a los datos
por uno de los dos extremos de la lista (Fig. 15.4). Un elemento se inserta en la cola (parte final) de la
lista y se suprime o elimina por la frente (parte inicial, cabeza) de la lista. Las aplicaciones utilizan una
cola para almacenar elementos en su orden de aparición o concurrencia

1" 2" 3" 4" Ultimo

t t
Frente Final

Figura 15.4. Una cola.

482 Programación en C. Metodología, algoritmos y estructura de datos

Los elementos se eliminan (se quitan) de la cola en el mismo orden en que se almacenan y, por
consiguiente, una cola es una estructura de tipo FIFO (first-iidfirs-out, primero en ciitrar//?rimero en
salir o bien primero en llegar/primero en ser servido). El servicio de atención a clientes en un almacén
es un ejemplo típico de cola. La acción de gestión de memoria intermedia (hufering) de trabajos o tareas
de impresora en un distribuidor de impresoras (spooler) es otro ejemplo típico de cola'. Dado que la
impresión es una tarea (un trabajo) que requiere más tiempo que el proceso de la transmisión real de los
datos desde la computadora a la impresora, se organiza una cola de trabajos de modo que los trabajos
se imprimen en el mismo orden en que se recibieron por la impresora. Este sistema tiene el gran
inconveniente de que si su trabajo personal consta de una Única página para imprimir y delante de su
petición de impresión existe otra petición para imprimir un informe de 300 páginas. deberá esperar a la
impresión de esas 300 páginas antes de que se imprima su página.

Desde el punto de vista de estructura de datos, una cola es similar a una pila, en donde los datos se
almacenan de un modo lineal y el acceso a los datos sólo está permitido en los extremos de la cola. Las
acciones que están permitidas en una cola son:

O Creación de una cola vacía.
O Verificación de que una cola estd vacía.
O Añadir un dato al final de una cola.
O Eliminación de los datos de la cabeza de la cola.

frente final

frente final

frente final

frente final

frente final

Figura 15.5. Operaciones de , 1 1 > (> : + < I I y (,)II ! i I en una Cola

Pilas y colas 483

15.4. EL TIPO COLA IMPLEMENTADA CON ARRAYS

AI igual que las pilas, las colas se pueden implementar utilizando arrays o listas enlazadas. En esta
sección se considera la iinplementación utilizando arrays.

La definición de una cold ha de contener un array para almacenar los elementos de la cola, y dos
marcadores o punteros (variables) que mantienen las posiciones frente y final de la cola ; es decir, un
marcador apuntando a la posición de la cabeza de la cola y el otro al primer espacio vacío que sigue al
final de la cola. Cuando un elemento se añade a la cola, se verifica si el inarcador final apunta a una
posición válida, entonces se añade el elemento a la cola y se incrementa el marcador final en 1. Cuando
un elemento se elimina de la cola, se hace una prueba para ver si la cola está vacía y, si no es así, se
recupera el elemento de la posición apuntada por el marcador (puntero) de cabeza y éste se incrementa
en 1. Este procedimiento funciona bien hasta la primera vez que el puntero de cabeza o cabecera alcanza
el extremo del array y el array queda o bien vacío o bien lleno.

15.4.1. Definición de la especificación de una cola

Una cola debe manejar diferentes tipos de datos; por esta circunstancia, se define en primer lugar el
tipo genérico TipoDato. La clase Cola contiene una lista (listaQ) cuyo máximo tamaño se determina
por la constante MaxTamQ. Se definen dos tipos de variables puntero o marcadores, frente y f i.nd1.
Éstas son los punteros de cabecera y cola o final respectivamente.

Las operaciones típicas de la cola son: InsertarQ, EliminarQ, Qvacia, Ql lena, y Frenteu.
InsertarQ toma un elernento del tipo TipoDato y 10 inserta en el final de la cola. EliminarQ elimina
(quita) y devuelve el elemento de la cabeza o frente de la cola. La operación FrenteQ devuelve el valor
del elemento en el frente de la cola, sin eliminar el elemento y, por tanto, no modifica la cola.

La operación Qvacia comprueba si la cola está vacía, es necesario esta comprobación antes de
eliminar un elemento. llena comprueba si la pila esta llena, esta comprobación se realiza antes de
insertar un nuevo miembro. Si las precondiciones para InsertarQ y EliminarQ se violan, el programa
debe imprimir un mensaje de error y terminar.

15.4.2. Especificación del tipo cola

La declaración del tipo de dato Cola y los prototipos de las operaciones de la cola se almacena en un
archivo de cabecera "colaarray. h".

#include <stdio.h>
#include <stdlib.h>

#define Max'i'amQ 1 O O
typedef struct
i
int frente;
int final;
TipoDato listaQ[MaxTamQ];

}Cola;

/ * Operaciones del t i p o de datos C o l a * /

/ * operaciones de modiíicación dc la cola * /
void CrearCola(Cola* Q) ; / * inicializa la cola como v a c i d * /
void InsertarQ(Cola* Q,TipoDaLo elemento);
TipoDato EliminarQ(Cola* Q) ;
void Borrarcola (Cola* Q) ;

v-
,
I

484 Programación en C. Metodología, algoritmos y estructura de datos

/ * acceso a Id cola * /
TipoDato FrenteQ(Co1a Q) ;

/ * métodos de verificación del estado de la cola * /
in1 LongitudQ(Co1a Q) ;
in1 Qvacia(Co1a Q) ;
int Qllena(Co1a Q);

15.4.3. Implementación del tipo cola

La declaración que se ha hecho del tipo Cola contiene un array para el almacenamiento de los elementos
de la cola y dos marcadores o punteros: uno apuntando a la posición de la cabeza o cabecera de la cola
y la otra al primer espacio vacío a continuación del final de la cola. Cuando un elemento se añade a la
cola, se hace un test (prueba) para ver si el marcador final apunta a una posición válida, a continuación
se añade el elemento a la cola y el marcador final se incrementa en 1. Cuando se quita (elimina) un
elemento de la cola, se realiza un test (prueba) para ver si la cola está vacía, y si no es así, se recupera
el elemento que se encuentra en la posición apuntada por el marcador de cabeza y el marcador de cabeza
se incrementa en 1.

Este procedimiento funciona bien hasta la primera vez que el marcador final alcanza el final del
array. Si durante este tiempo se han producido eliminaciones, habrá espacio vacío al principio del array.
Sin embargo, puesto que el marcador final apunta al extremo del array, implicará que la cola está llena
y ningún dato más se añadirá. Se pueden desplazar los datos de modo que la cabeza de la cola vuelve
al principio del array cada vez que esto sucede, pero el desplazamiento de datos es costoso en términos
de tiempo de computadora, especialmente si los datos almacenados en el array son estructuras de datos
grandes.

El medio más eficiente, sin embargo, para almacenar una cola en un array, es utilizar un tipo especial
de array que junte el extremo final de la cola con su extremo cabeza. Tal array se denomina array
circular y permite que el array completo se utilizará para almacenar elementos de la cola sin necesidad
de que ningún dato se desplace. Un array circular con n elementos se visualiza en la Figura 15.6.

Figura 15.6. Un array circular.

El array se almacena de modo natural en la memoria tal como un bloque lineal de n elementos. Se
necesitan dos marcadores (punteros) cabeza y,finaZ para indicar la posición del elemento que precede a
la cabeza y la posición del final, donde se almacenó el Último elemento añadido. Una cola vacía se
representa por la condición cabeza = final.

Pilas ycolas 485

a cabeza

final

Figura 15.7. Una cola vacía.

La variable frente o cabeza es siempre la posición del elemento que precede al primero de la cola y
se avanza en el sentido de las agujas del reloj. La variable final es la posición en donde se hizo la
última inserción. Después que se ha producido una inserción, final se mueve circularmente a la
derecha. La implementación del movimiento circular se realiza utilizando la t e d a de los restos:

(final + 1) R MaxTdmQ
(frente i 1) 'o MdxTamQ

- Mover final adelante -
Mover cabeza adelante - -

cabeza

Figura 15.8. Una cola que contiene un elemento

Los algoritmos que formalizan la gestión de colas en un array circular han de incluir al menos las

Creación de una cola vacía: cabeza = final = O.
Comprobar si una cola está vacía:

Comprobar si una cola está llena:

Añadir un elemento a la cola: si la cola no está llena, añadir un elemento en la posición siguiente

siguientes tareas:

escabeza == findl ?

(final + 1) R MaxTamQ == cabeza ?

a final y se establece:
final = (final + 1) % MaxTamQ (%operadorresto)

Eliminación de un elemento de una cola: si la cola no está vacía, eliminarlo de la posición
siguiente a cabeza y establecer cabeza = (cabeza + 1) % MaxTamQ.

486 Programación en C. Metodología, algoritmos y estructura de datos

15.4.4. Operaciones de la cola

Una cola permite un conjunto limitado de operaciones, para inicializar la cola, para añadir un nuevo
elemento (InsertarQ) o quitar/eliminar un elemento (EliminarQ) . El tipo Cola proporciona
también f renteQ, que permite «ver» el primer elemento de la cola. Para esta implementación, con
array circular, el tipo cola es el siguiente:

#define MaxTamQ 100
typedef struct

int frente;
int final;
TipoDato listaQ[MaxTamQ];

}Cola;

Crearcola
La primera operación que se realiza sobre una cola es inicializarla para que a continuación puedan
añadirse elementos a la cola.

void CrearCola(Cola* Q)
i
Q->frente = O ;
Q->final = O ;

1

InsertarQ
Antes de que comience el proceso de inserción, el índice final apunta al Último elemento insertado. El
nuevo elemento se sitúa en la posición siguiente. El cálculo de las posiciones sucesivas se consigue
mediante el operador resto (%) . Después de situar el elemento de la lista, el índice final se debe
actualizar para apuntar en la siguiente posición.

/ * insertar elemento en la cola * /

void InsertarQ(Cola* QITipoDato elemento)
{ / * terminar si la cola est& llena * /

if (Qllena(Q))
i
puts ("desbordamiento cold") ;
exit (1);

I

/ * asignar elemento d listdQ y a c t u d l i z a r final * /
Q->tinal = (Q->final + 1)& MdxTdmQ;
Q->listdQ [Q->f inall = elemento;

EliminarQ
La operación ~l iminarQ borra o elimina un elemento del frente de la cola, una posición que se referen-
cia por el índice f r ente. Comienza el proceso de eliminación avanzando frente ya que se estableció
que referencia al anterior elemento.

frente = (frent-e + 1)% MaxTamQ;

En el modelo circular, la cabeza se debe volver a posicionar en el siguiente elemento de la lista
utilizando el operador resto (&) . El código fuente es:

/ * borrar elemento del frente de Id cold y devuelve su valor * /
TipoDato EliminarQ(Cola* Q)

Pilas ycolas 487

i
T i p o m t o d u x ;

/*si listaQ está vacía, tcrminar eL programa * /
if (Uvacid (I>))
{
puts("C1iminu.ción de unci cold vacía") ;
exit (1);

1
/ * dvdnzu.1 frente y devolvcr primero d e l frente * /

Q->frente = (Q->t ren tc + 1) % Mdx'IdmO;
aux = Q->l~ct~Q[Q->frentc];
ieturn aux;

J

FrenteQ
La operación E'renteQ obtiene el elemento del frente de la cola, una posición que se referencia por el
índice frente.

TipoDato FrenteQ(Co1a Q)
i

T i p o h t o aux;

/*si la cola es t& vcicíci, tprminiir el programa * /
if (Qvacia ((1))

puts ("Elemento €rente de und co ld v a c í u . ") ;
exit (1);

Qvacia
Las operaciones que preguntan por el estado de la cola pueden implementarse preguntando por los
campos frente y f inu.1. La operación ovacia. prueba si la cola no tiene elementos.

int Qvacia(Co1a O)
I

return (Q. f r e n t e == O. f L t ' k i l) ;

i

Qllena
La operación 01 I end prueba si la cola no puede contener mas elementos.

int Qllena(Co1d Q)
i

1
return (Q.frente =: (C).fiiiu.l+l)RMax'ramC));

15.5. REALIZACIÓN DE UNA COLA CON UNA LISTA ENLAZADA

La realización de una cola mediante una lista enlazada permite ajustarse exactamente al número de
elementos de la cola. Esta implementación utiliza dos punteros para acceder a la lista. El puntero
Frente y el puntero i7i nu. 1.

I 488 Programación en C. Metodología, algoritmos y estructura de datos

e,

Frente Final

e,

Figura 15.9. Cola con lista enlazada (representación gráfica típica)

El puntero Frente referencia al primer elemento de la cola, el primero en ser retirado de la cola. El
puntero Final referencia al último elemento en ser añadido, el último que será retirado.

Con esta representación no tiene sentido la operación que prueba si la cola está llena. Al ser una
estructura dinámica puede crecer y decrecer según las necesidades (el límite está en la memoria libre del
computador).

15.5.1. Declaración del tipo cola con listas

Para esta representación se declara una estructura que represente al nodo de la lista enlazada, un puntero
a esta estructura y la estructura cola con los punteros Frente y Final. Las operaciones son las mismas,
excepto la operación Qllena que no es necesaria al ser una estructura dinámica. La declaración se
almacenaenelarchivo cola1ist.h.

#include <stdio.h>
#include <stdlib.h>

struct nodo
{
TipoDato elemento;
struct nodo* siguiente;

1 ;

typedef struct nodo Nodo;
typedef struct
i
Nodo* Frente;
Nodo* Final;

}Cola;

/ * Los prototipos de l a s operaciones * /

void CrearCola(Cola* Q); / * Tnicializa la cola como vacía * /
void InsertarQ(Cola* Q,Tipo»dto elemento);
TipoDato EliminarQ(Cola* Q);
void BorrarCola(Cola* Q) ;

/ * acceso a la cola * /
TipoDato FrenteQ(Co1a Q);

/ * métodos de verificación del estado de la cola * /
int Qvacia(Co1a Q) ;

L

Pilas y colas 489

15.5.2. Codificación de las operaciones del tipo cola con listas

Estas operaciones se van a almacenar en el archivo fuente co ia l i st . c. En primer lugar hay que incluir
el archivo colal i st. h y declarar el tipo de dato de los elementos de la cola.

La inicialización de la cola, al ser una implementación con punteros, consiste en asignar el puntero
nulo a Frente y ~ ~ n d l . La operación de insertar se realiza creando un nuevo nodo (función auxiliar
credrnodo ()) y enlazándolo a partir del nodo final. La operación de eliminar se realiza sobre el otro
extremo.

Codificación de las operaciones.
typedef char TipoLUto;
#include "colal I st. h"

void CrearCola(Cola* 0)
1

i

Nodo* crearnodo (TipoDdto elernento)

Q->Frente = Q->Findl = NULL;

i
Nodo" t ;
t = (Nodo*)rnalloc(sizeof(Nodo) 1 ;
t->elemento = el emento;
t->siguiente = NUT,T,;
return t;

i

int Qvacia(Co1a Q)
i

i

void InsertarQ (Cola* Q,'I ' ipoDato elemento)
i

return (Q.Frente == NULL);

Nodo* a;
a = crearnodo(e¡emento);
if (Qvacia (*Q))
i

i
else

Q->Frente = d;

i

i
Q->Final = a;

Q->Final->siguiente = a;

1

TipoDato E¡imindrQ(Cola* 0)
i
TipoDato d u x ;
if (!Qvacia(*Q))

Nodo" d;
a = Q->Frente;
aux = Q->Frente->elcrnento;
Q->Frente = Q->Frcnte->siquiente;
free (a) ;

i

490 Programación en C. Metodologia, algoritmos y estructura de datos

else / * e r r o r : e l i m i r i d r dc urid cold vdcía * /
I

r e t u r n d u x ;
}

'1' .poIlcito I'renteQ (C o l a Q)

puts ("Frror: cold vdrídl') ;
ex1t (1);

}
ret u r n (Q . Fr ent-e - >c 1 e m c r i i (3) ;

void BorrdrCola (Col a* 0)
i

/ * Elimina y libera t.ocios l o s riodos dc L c i c o l c i * /

f o r (; O->Frente! = N U L L ;)

í
Nodo* n;
n = Q->Frent.e;
0- > F r e n t e = O->I s ' r e r i t e - - , s i y i i i c n t e;
free (n) ;

}
i

Ejercicio 15.2

Una vuriacicín de1,famoso problema maternútico llarnado «problema de José» permite generar niirneros
de la suerte. Se parte de una lista inicial de n números, c>,sta listu se va reduciendo siguiendo el siguiente
algoritmo:

1. Se genera un número aleatorio n, .
2. Si P I , > n fin del algoritmo.
3. Si n , <= n se quitan de la lista los números que ocupan las posiciones I , I + n,, /+2*n,, . . . t i

4. Se vuelve al paso I .
toma el valor del número de elementos que quedan en la lista.

Análisis
El problema se va a resolver utilizando la estructura Cola. En primer lugar, se genera una lista de n
números aleatorios que se almacena en una cola. A continuación, se siguen los pasos del algoritmo, en
cada pasada se mueven los elementos de la cola a otra cola excepto aquellos que están en las pouicio-
nes (m ú l t z p l o s de ni i +l. Estas posiciones I se pueden expresar matemáticamente:

1 modulo nl = 1

El tipo cola y las operaciones sobre colas se agrupan en el archivo de inclusión co1a.h
implementado con estructuras dinámicas. Además, se añade la operación de m o s t r arcoiu. para escribir
los números que quedan en la lista.

Pilas ycolas 491

Archivo con el tipo cola y prototipos de las operaciones
#include <stdio.h>
#include <stdlib.h>
struct nodo
1

TipoDato elemento;
struct nodo* siguiente;

I ;
typedef struct nodo Nodo;
typedef struct
1

Nodo* Frente;
Nodo* Final;

1 Cola;
/ * Los prototipos de las operaciones * /

void CrearCola(Cola* u) ; / * Inicializa la cola como vdcía * /
void InsertarQ(Cola* Q,TipoDato elemento);
TipoDato EliminarQ(Cola* Q);
void BorrarCola(Cola* Q);
/ * acceso a la cola * /
TipoDato FrenteQ (C o l a Q) ;
/ * métodos de verificación del estado de la cola * /
int Qvacia(Co1a Q);

Archivo con la implementaciÓn* de las operaciones
/ * co1alist.c * /

typedef int TipoDato;
#include "colalist .h"

Archivo con el algoritmo para obtener números de la suerte
typedef int TipoDato;
#include "colalist. h"
#include <time.h>
void MostrarCola(Cola* Q);
int main()

.
i
Cola Q;
int n, nl, n2, n3, i;
randomize () ;

ri = 1 + random(50);
Crearcola (& Q) ;

for (i=l; i<=n; i++)

nl = l+random(ll);
while (nl <= n)
1

/ * Número de elementos de Id lista * /

/ * Se generan n números dleatorios * /

InsertarQ(hQ,l+random(lOOl));

printf ("\n Se quitan elementos a distancia 'Od ",nl) ;

L a irripleiiicntación está en el Apartado I S.S.2

492 Programación en C. Metodología, algoritmos y estructura de datos

n2 = O; / * Contador de elementos que quedan * /
for (i=l; i<=n; i++)
i
n3 = EliminarQ(&Q); / * retira el celemento f r e n t e * /
if (i%nl == 1)
I

printf ("\t Bd se quitci.",n3) ;
1
else
i
InsertarQ(&Q,n3); / * se viiclve a metcr en Id cola * /
n2++;

I

n = n2;
nl = l+random(ll);

i
printf ("\n Los números de lu. s u e r t p : ") ;
MostrarCola(&Q);

return 1;
1
void MostrarCold(Coha* 0)

while (!Qvacia(*Q))

printf ("%d ",EliminarQ(Q));
i

i

15.6. RESUMEN

Una pila es una estructura de datos tipo LIFO (lust
infirst out, último en entradprimero en salir) en la
que los datos (todos del mismo tipo) se añaden y
eliminan por el mismo extremo, denominado cima
de la pila.
Se definen las siguientes operaciones básicas sobre
pilas:crear, insertar, cima, eliminar,
pilavacia, pilallenayliberarpila.
crear, inicializa la pila como pila vacía.
insertar, añade un elemento en la cima de la pila.
Debe de haber espacio en la pila.
cima , devuelve el elemento que está en la cima,
sin extraerlo.
eliminar , extrae de la pila el elemento cima de
la pila.
pi lavacia, determina si el estado de la pila es
vacía, en su caso devuelve el valor lógico true.

pilallena, determina si existe espacio en la pila
para añadir un nuevo elemento. De no haber espa-
cio devuelve true. Esta operación se aplica en la
representación de la pila mediante array.

liberarpila, el espacio asignado a la pila se
libera, queda disponible.

Una cola es una lista lineal en la que los datos se
insertan por un extremo (final) y se extraen por el
otro extremo (frente). Es una estructura FIFO
(first in first out, primero en entradprimero en
salir).

Las operaciones básicas que se aplican sobre colas:
crear, qvacia, qllena, insertarq,
frenteq, eliminarq.

crear, inicializa a una cola sin elementos.

Pilas y colas 493

qvac ia , determina si una cola tiene o no ele-
mentos. Devuelve hue si no tiene elementos.
ql lena , determina si no se pueden almacenar
más elementos en una cola. Se aplica esta opera-
ción cuando se utiliza un array para guardar los ele-
mentos de la cola.
insertarq, añade un nuevo elemento a la cola,
por el extremo final.
f rent eq , devuelve el elemento que está en el
extremo frente sin sacarlo de la cola.

15.7. EJERCICIOS

15.1. ¿Cuál es la salida de este segmento de código,
teniendo en cuenta que el tipo de dato de la pila
es int?

Pila P;
int x=4, y;

CrearPila(&P);
Insertar (&P, x) ;
printf ("\n%d ",Cima(P)) ;
y = Quitar(&P) ;
Insertar(&P,32);
Insertar (&P,Quitar (&PI) ;
do {

).while (!PilaVacia(P));
printf ("\n%d',Quitar(&P)) ;

15.2. Escribir en el archivo pila. h los tipos de
datos y los prototipos de las operaciones bási-
cas sobre pilas con estructuras dinámicas.

15.3. Escribir la función MostrarPila () para
escribir los elementos de una pila de cadenas
de caracteres, utilizando sólo las operaciones
básicas y una pila auxiliar.

15.4. Obtener una secuencia de 10 elementos reales,
guardarlos en un array y ponerlos en una pila.
Imprimir la secuencia original y, a continua-
ción, imprimir la pila extrayendo los elementos.

15.5. Considerar una cola de nombres representada
por una array circular con 6 posiciones, el cam-

* el iminarq, extrae el elemento frente de la cola.

Numerosos modelos de sistemas del mundo real
son de tipo cola: cola de impresión en un servidor
de impresoras, programas de simulación, colas de
prioridades en organización de viajes. Una cola es
la estructura típica que se suele utilizar como alma-
cenamiento de datos, cuando se envían datos desde
un componente rápido de una computadora a un
componente lento @or ejemplo, una impresora).

PO frente con el valor: Frente = 2. Y los
elementos de la Cola: Mar, Sella, Cen-
turión.

Escribir los elementos de la cola y los cam-
pos Frente y Final según se realizan estas
operaciones :

kladir Gloria y Generosa a la cola.
Eliminar de la cola.
Añadir Positivo.

* Añadir Horche a la cola.
Eliminar todos los elementos de la cola.

15.6. Una bicola es una estructura de datos lineal en
la que la inserción y borrado se pueden hacer
tanto por el extremo frente como por el
extremo final. Suponer que se ha elegido
una representación dinámica, con punteros, y
que los extremos de la lista se denominan
frente y final. Escribir la implementación
de las operaciones: InsertarFrente () ,
InsertarFinalO, EliminarFren-
te () y EliminarFinal() .

15.7. Considere una bicola de caracteres, representa-
da en un array circular. El array consta de 9
posiciones. Los extremos actuales y los ele-
mentos de la bicola:

frente = 5 final = 7
Bicola: A,C,E

bicola según se realizan estas operaciones:
Escribir los extremos y los elementos de la

494 Programación en C. Metodología, algoritmos y estructura de datos

Añadir los elementos F y K por el final de

Añadir los elementos R, W y V por el f r en-

Añadir el elemento M por el final de la

Eliminar dos caracteres por el frente.
Añadir los elementos K y L por el final de

Añadir el elemento S por el frente de la

15.8. Se tiene una pila de enteros positivos. Con las
operaciones básicas de pilas y colas escribir un
fragmento de código para poner todos los ele-
mentos que son par de la pila en la cola.

la bicola. bicola. -

te de la bicola.

bicola.

la bicola.

15.8. PROBLEMAS

15.1. Escribir una función, copiarpila, que copie
el contenido de una pila en otra. La función ten-
drá dos argumentos de tipo pila, uno para la pila
fuente y otro para la pila destino. Utilizar las
operaciones definidas sobre el tipo de datos pila.

153. Con un archivo de texto se quieren realizar las
siguientes acciones: formar una lista de colas,
de tal forma que en cada nodo de la lista tenga
la dirección de una cola que tiene todas las
palabras del archivo que empiezan por una
misma letra. Visualizar las palabras del archi-
vo, empezando por la cola que contiene las
palabras que comienzan por a, a continuación
las de la letra b, y así sucesivamente.

15.3. Escribir una función para determinar si una
secuencia de caracteres de entrada es de la for-
ma:

X & Y

donde x es una cadena de caracteres e Y es la
cadena inversa. El carácter & es el separador.

15.4. Escribir un programa que haciendo uso del tipo
Pila de caracteres, procese cada uno de los
caracteres de una expresión que viene dada en
una línea de caracteres. La finalidad es verifi-
car el equilibrio de par&ntesis, llaves y corche-
tes.
Por ejemplo, la siguiente expresión tiene un
número de paréntesis equilibrado:

((a+b)*5) - 7

A esta otra expresión le falta un corchete:

2*[(a+b)/2.5 + x - 7 * y

15.5. Se tiene un archivo de texto del cual se quiere
determinar las frases que son palíndromo. Para
lo cual se ha de seguir la siguiente estrategia:

Considerar cada línea del texto una frase.
Añadir cada carácter de la frase a una pila y
a la vez a una cola.
Extraer carácter a carácter, y simultánea-
mente de la pila y de la cola. Su compara-
ción determina si es palíndromo o no.

Escribir un programa en C que lea cada línea
del archivo y determine si es paiíndromo.

15.6. Escribir un programa en el que se generen 100
números aleatonos en el rango - 2 5 . . + 2 5
y se guarden en una cola implementada
mediante un array considerado circular. Una
vez creada la cola, el usuario puede pedir que
se forme otra cola con los números negativos
que tiene la cola original.

15.7. Escribir una función que tenga como argumen-
tos dos colas del mismo tipo. Devuelva cierto
si las dos colas son idénticas.

15.8. Escribir un programa en el que se manejen un
totalden=5pilas: P,, P,, P,, P, y P,. La
entrada de datos será pares de enteros (i , j 1

Pilas y colas 495

tal que ,I< abs (i 1 < n. De tal forma que el
criterio de seleccidn de pila:

Si i es positivo, debe de insertarse el
elementoj en la pila P,.
Si i es negativo, debe de eliminarse el
elementoj de la pila P,.
Si i es cero, fin del proceso de entrada.

Los datos de entrada se introducen por
teclado. Cuando termina el proceso el progra-
ma debe de escribir el contenido de la n pilas
en pantalla.

15.9. Modificar el Problema 15.8 para que la entra-
da sean triplas de números enteros (i , j , k) ,
donde i , j tienen el mismo significado que
en 15.8, y k es un número entero que puede
tomar los valores - 1 , 0 con este significado:

- 1, hay que borrar todos los elementos de
la pila.

O, el proceso es el indicado en 15.8 con i
y j .

15.10. Un pequeño supermercado dispone en la
salida de tres cajas de pago. En el local hay
25 carritos de compra. Escribir un programa
que simule el funcionamiento, siguiendo las
siguientes reglas:

Si cuando llega un cliente no hay ningún
carrito disponible, espera a que lo haya.
Ningún cliente se impacienta y abandona el
supermercado sin pasar por alguna de las
colas de las cajas.
Cuando un cliente finaliza su compra, se
coloca en la cola de la caja que hay menos
gente, y no se cambia de cola.
En el momento en que un cliente paga en la
caja, el carro de la compra que tiene queda
disponible.

Representar la lista de carritos de la compra y
las cajas de salida mediante colas.

CAPíTULO 16

ÁRBOLES

CONTENIDO

16.1. Arboles generales.
16.B. Resumen de definiciones.
16.3. Arboles binarios.
16.4. Estructura de un árbol

16.6. Operaciones en árboles

16.6. Arbol de expresiones.
16.7. Recorrido de un árbol.

binario.

binarios .

16.8. Arbol binario de búsqueda.
16.9. Operaciones en árboles

binarios de búsqueda.
16.10. Aplicaciones de árboles en

algoritmos de exploración.
16.11. Resumen.
16.1% Ejercicios.
16.13. Problemw.
16.14. Referencia8 bibliográficas.

I

496

El árbol es una, estructura de datos muy importante en informática y en cien-
cias de la computación. Los árboles son estructuras no lineales al contrario que
los arrays y las listas enlazadas que constituyen estructuras lineales.

Los árboles son muy utilizados en informática para representar fórmulas
algebraicas como un método eficiente para búsquedas grandes y complejas, lis
tas dinámicas y aplicaciones diversas tales como inteligencia artificial o algo-
ritmos de cifrado. Casi todos los sistemas operativos almacenan sus archivos
en árboles o estructuras similares a árboles. Además de las aplicaciones cita-
das, los árboles se utilizan en diseño de compiladores, proceso de texto y algo-
ritmos de búsqueda.

En el capítulo se estudiara el concepto de árbol general y los tipos de árbo-
les más usuales, binario y binario de búsqueda. Asimismo se estudiarán algu-
nas aplicaciones típicas del diseño y construcción de árboles.

CONCEPTOS CLAVE
Enorden.

Preorden.
Postorden.
Recorrido de un árbol.
Subárbol.

* &bol binario . Nodo.
Árbol binario de búsqueda.
Conceptos teóricos (nívei,
profundidad, raíz, hoja,

497

498 Programación en C. Metodologia, algoritmos y estructura de datos

Director
general

16.1. ÁRBOLES GENERALES

Director de Director de Director de Director
marketing humanos informática financiero

recursos

Intuitivamente el concepto de árbol implica una estructura en la que los datos se organizan de modo
que los elementos de información están relacionados entre sí a través de ramas. El árbol genealógico es
el ejemplo típico más representativo del concepto de árbol general. La Figura 16.1 representa dos
ejemplos de árboles generales.

Luis
(bisabuelo)

Micaela
(hermana) *I $q (hermana)

Juana María
(hija)

p k - - -pq f i (hija) (hija) (hijo)

Figura 16.1. Árbol genealógico (bisabuelo-bisnietos).

Director de Director de Director red
software intranet

Ingeniero de 1 I Analista 1 I Programador 1 1 software

Figura 16.2. Estructura jerárquica tipo árbol.

Árboles 499

Un árbol consta de un conjunto finito de elementos, denominados nodos y un conjunto finito de
líneas dirigidas, denominadas ramas, que conectan los nodos. El número de ramas asociado con un
nodo es el grado del nodo.

Definición 1: Un árbol consta de un conjunto finito de elementos, llamados nodos y un conjunto
finito de líneas dirigidas, llamadas ramas, que conectan los nodos.

Definición 2: Un árbol es un conjunto de uno o más nodos tales que:
1. Hay un nodo diseñado especialmente llamado raíz.
2. Los nodos restantes se dividen en n2o conjuntos disjuntos tales que T, ... T,,, en

donde cada uno de estos conjuntos es un árbol. A T,, T?, ... T,, se les denomina
subárboles del raíz.

Si un árbol no está vacío, entonces el primer nodo se llama raíz. Obsérvese en la definición 2 que
el árbol ha sido definido de modo recursivo ya que los subárboles se definen como árboles. La Figura
16.3 muestra un árbol.

Figura 16.3. Árbol.

Terminología
Además del raíz exif :n muchos términos utilizados en la descripción de los atributos de un árbol. En
la Figura 16.4, el nodo A es el raíz. Utilizando el concepto de árboles genealógicos, un nodo puede ser
considerado como padre si tiene nodos sucesores.

Figura 16.4. Árbol general.

500 Programación en C. Metodología, algoritmos y estructura de datos

Estos nodos sucesores se llaman hijos. Por ejemplo, el nodo B es el padre de los hijos E y F. El
padre de H es el nodo D. Un árbol puede representar diversas generaciones en la familia. Los hijos de
un nodo y los hijos de estos hijos se llaman descendientes y el padre y abuelos de un nodo son sus
ascendientes. Por ejemplo, los nodos E, F, I y J son descendientes de B. Cada nodo no raíz tiene un
único padre y cada padre tiene cero o más nodos hijos. Dos o más nodos con el mismo padre se llaman
hermanos. Un nodo sin hijos, tales como E, I, J, G y H se llaman nodos hoja.

El nivel de un nodo es su distancia al raíz. El raíz tiene una distancia cero de sí misma, por lo que
se dice que el raíz está en el nivel O. Los hijos del raíz están en el nivel I , sus hijos están en el nivel 2 y
así sucesivamente. Una cosa importante que se aprecia entre los niveles de nodos es la relación entre
niveles y hermanos. Los hermanos están siempre al mismo nivel, pero no todos los nodos de un mismo
nivel son necesariamente hermanos. Por ejemplo, en el nivel 2 (Fig. 16.5), C y D son hermanos, al igual
que lo son G, H e I, pero D y G no son hermanos ya que ellos tienen diferentes padres.

Nivel

Nivel

Nivel

0 -

1 -

2 -

Rama FI

padre: A, B, F

hijos: B, E, F, C, D, G, H, I
hermanos:{B, E, F), {C, D}, {G, H, I}

hojas: C, D, E, G, H, I

Figura 16.5. Terminología de árboles.

Existen varias formas de dibujar los atributos de los árboles y sus nodos. Un camino es una
secuencia de nodos en los que cada nodo es adyacente al siguiente. Cada nodo del árbol puede ser
alcanzado (se llega a él) siguiendo un único camino que comienza en el raíz. En la Figura 16.5, el
camino desde el raíz a la hoja I, se representa por AFI. Incluye dos ramas distintas AF y FI.

La altura o profundidad de un árbol es el nivel de la hoja del camino más largo desde la raíz más uno.
Por definición' la altura de un árbol vacío es O. La Figura 16.5 contiene nodos en tres niveles : O, 1 y 2.
Su altura es 3 .

Definición

El nivel de un nodo es su distancia desde el raíz. La altura de un árbol es el nivel de la hoja del
camino más largo desde el raíz más uno.

' También se suele definir la profundidad dc u n irbol con10 el nivel i i i i x i i n o dc c;idn nodo. En consecuencia. la prolundidad del
nodo raír es O, la de $11 hi,jo 1, etc. Las do\ ieriiiiiiologías son accptadas.

Árboles 501

(a) Profundidad 4 (b) Profundidad 4

(c) Profundidad 5

Figura 16.6. Árboles de profundidades diferentes.

Un árbol se divide en subárboles. Un subárbol es cualquier estructura conectada por debajo del
raíz. Cada nodo de un árbol es la raíz de un subárbol que se define por el nodo y todos los descendientes
del nodo. El primer nodo de un subárbol se conoce como el raíz del subárbol y se utiliza para nombrar
el subárbol. Además, los subárboles se pueden subdividir en subárboles. En la Figura 16.5, BCD es un
subárbol al igual que E y FGHI. Obsérvese que por esta definición, un nodo simple es un subárbol. Por
consiguiente, el subárbol B se puede dividir en subárboles C y D mientras que el subárbol F contiene los
subárboles G, H e I. Se dice que G, H, I , C y D son subárboles sin descendientes. El concepto de
subárbol conduce a una definición recursiva de un árbol. Un árbol es un conjunto de nodos que:

t

1. O bien es vacío, o bien
2. Tiene un nodo determinado llamado raíz del que jerárquicamente descienden cero o mh\

Un árbol está equilibrado cuando, dado un número máximo de k hijos para cada nodo y la altura
del árbol h, cada nodo de nivel 1 < h - 1 tiene exactamente k hijos. El árbol está equilibrado
perfectamente cuando cada nodo de nivel 1 < h tiene exactamente k hijos.

subárboles, que son también árboles.

502 Programación en C. Metodología, algoritmos y estructura de datos

n
502 Programación en C. Metodología, algoritmos y estructura de datos

(b)

Figura 16.7. (a) Un árbol equilibrado; (b) Un árbol perfectamente equilibrado.

16.1 . I . Representación de un árbol

Aunque un árbol se implementa en un lenguaje de programación como C mediante punteros, cuando se
ha de representar en papel, existen tres formas diferentes de representación. La primera es el diagrama
o carta de organización utilizada hasta ahora en las diferentes figuras. El término que se utiliza para esta
notación es el de árbol general.

Representación en niveles de profundidad
Este tipo de representación es el utilizado para representar sistemas jerárquicos en modo texto o número
en situaciones tales como facturación, gestión de stocks en almacenes, etc.

Por ejemplo, en las Figuras 16.8 y 16.9 se aprecia una descomposición de una computadora en sus
diversos componentes en una estructura árbol. Otro ejemplo podría ser una distribución en árbol de las
piezas de una tienda de recambios de automóviles distribuidas en niveles de profundidad según los
números de parte o códigos de cada repuesto (motor, bujía, batería, piloto, faro, embellecedor, etc.).

1

Árboles 503

Figura 16.8. Árbol general (computadora).

Número código Descripción

50 1
501-1 1

501-21
...

501-21 1
501 -212
...
501-219

501 -3 1
...

501-41
501-41 1
501-41 2

501-51
501-51 1
501-51 2
501-5 13

Computadora
Monitor

CPU
Controlador
ALU

ROM
...

Teclado
...
Periféricos

Escáner
impresora

Discos
CD-ROM
CD-RW
DVD

Figura 16.9. Árbol en nivel de profundidad (computadora).

Representación de lista
Otro formato utilizado para representar un árbol es la lista entre paréntesis. Ésta es la notación utilizada
con expresiones algebraicas. En esta representación, cada paréntesis abierto indica el comienzo de un
nuevo nivel; cada paréntesis cerrado completa un nivel y se mueve hacia arriba un nivel en el irbol. La
notación en paréntesis de la Figura 16.3 es: A (a (c , D) , E, F , (G , H, I)) .

Ejemplo 16.1

Convertir el Urbol geneml siguiente en repre.sentuc.icín en listu.
I

504 Programación en C. Metodología, algoritmos y estructura de datos

l'! I
16.2. RESUMEN DE DEFINICIONES

1. Dado un conjunto E de elementos:

0 Un árbol puede estar vacio; es decir, no contiene ningún elemento,
0 Un árbol no vacío puede constar de un único elemento e E E denominado un nodo, o bien

Un árbol consta de un nodo e t' E, conectado por arcos directos a un número finito de otros
árboles.

2. Definiciones:

O El primer nodo de un árbol, normalmente dibujado en la posición superior, se denomina raíz

O Las flechas que conectan un nodo a otro se llaman arcos o ramas.
Los nodos terminales, esto es, nodos de los cuales no se deduce ningún nodo, se denominan

O Los nodos que no son hojas se denominan nodos internos o nodos no terminales.
En un árbol una rama va de un nodo n , a un nodo n2, se dice que n, es el padre de n2 y que n2

O T I , se llama ascendiente de nL si n, es el padre de nL o si n, es el padre de un ascendiente de n2.
O 11: se llama descendiente de n, si n, es un ascendiente de n2.
O Un camino de n, a n2 es una secuencia de arcos contiguos que van de n, a n2.
O La longitud de un camino es el número de arcos que contiene (en otras palabras el número de

El nivel de un nodo es la longitud del camino que lo conecta al raíz.
O La profundidad o altura de un árbol es la longitud del camino más largo que conecta el raíz

del árbol.

hojas.

es un hijo de n,.

nodos - 1) .

a una hoja.

Árboles 505

16.3. ÁRBOLES BlNARlOS

Un árbol binario es un árbol en el que ningún nodo puede tener más de dos subárboles.
binario, cada nodo puede tener, cero, uno o dos hijos (subárboles). Se conoce el nodo de
como hijo izquierdo y el nodo de la derecha como hijo derecho.

Un subárbol de un árbol es un subconjunto de nodos del árbol, conectados por ramas del
propio árbol, esto es a su vez un árbol.

O Sea S un subárbol de un árbol A: si para cada nodo n de SA, SA contiene también todos los
descendientes de n en A. SA se llama un subárbol completo de A.
Un árbol está equilibrado cuando, dado un número máximo K de hijos de cada nodo y la
altura del árbol h, cada nodo de nivel k < h-1 tiene exactamente K hijos. El árbol está
equilibrado perfectamente entre cada nodo de nivel I<h tiene exactamente K hijos.

e5 y ascendiente de e5,
e6, e8 y e9)

e4, e5, e8 y e9
junto con los
arcos que les
conectan, son
un subárbol del
árbol principal

m

En un árbol
la izquierda

506 Programación en C. Metodología, algoritmos y estructura de datos

I

(9) (h)

Figura 16.10. Árboles binarios.

Nota

Un árbol binario no puede tener más de dos subárboles.

Un árbol binario es una estructura recursiva. Cada nodo es el raíz de su propio subárbol y tiene
hijos, que son raíces de árboles llamados los subárboles derecho e izquierdo del nodo, respectivamente.
Un árbol binario se divide en tres subconjuntos disjuntos:

{R) Nodo ruíz
{I, I , . . . I,> Suhárbol izquierdo de R
{D, D , . . . D } Suhdrhol derecho de R

Árboles 507

Subárbol izquierdo

Figura 16.11. Árbol binario.

En cualquier nivel n, un árbol binario puede contener de 1 a 2 nodos. El número de nodos por nivel
contribuye a la densidad del árbol.

(a) (b)

Figura 16.12. Árboles binarios: (a) profundidad 4; (b) profundidad 5.

En la Figura 16. I2 (u) el árbol A contiene 8 nodos en una profundidad de 4, mientras que el árbol
16. I2 (h) contiene 5 nodos y una profundidad 5. Este último caso es una forma especial, denominado
árbol degenerado, en el que existe un solo nodo hoja (E) y cada nodo no hoja sólo tiene un hijo. Un
árbol degenerado es equivalente a una lista enlazada.

16.3.1. Equilibrio

La distancia de un nodo al raíz determina la eficiencia con la que puede ser localizado. Por ejemplo,
dado cualquier nodo de un árbol, a sus hijos se puede acceder siguiendo sólo un camino de bifurcación

508 Programación en C. Metodología, algoritmos y estructura de datos

o de ramas, el que conduce al nodo deseado. De modo similar, los nodos a nivel 2 de un árbol sólo
pueden ser accedidos siguiendo sólo dos ramas del árbol.

La característica anterior nos conduce a una característica muy importante de un árbol binario, su
balance o equilibrio. Para determinar si un árbol está equilibrado, se calcula su factor de equilibrio. El
factor de equilibrio de un árbol binario es la diferencia en altura entre los subárboles derecho e
izquierdo. Si definimos la altura del subárbol itquierdo como H , y la altura del subárbol derecho como
H,,, entonces el factor de equilibrio del árbol B se determina por la siguiente fórmula: B = H - H .

Utilizando esta fórmula el equilibrio del nodo raíz los ocho árboles de la Figura 16.10 son (u) O (h)
O, (c) O por definición, (4 - I , (e) 4, (f> - 1 , (g) I , (h) 2.

Un árbol está perfectamente equilibrado si su equilibrio o balance es cero y sus subárboles son
también perfectamente equilibrados. Dado que esta definición ocurre raramente se aplica una definición
alternativa. Un árbol binario está equilibrado si la altura de sus subárboles difiere en no más de uno (su
factor de equilibrio es - 1 , O, + I) y sus subárboles son también equilibrados.

16.3.2. Árboles binarios completos

Un árbol binario completo de profundidad n es un árbol en el que para cada nivel, del O al nivel n-1
tiene un conjunto lleno de nodos y todos los nodos hoja a nivel n ocupan las posiciones más a la
izquierda del árbol.

Un árbol binario completo que contiene 2" nodos a nivel n es un árbol lleno. Un árbol lleno es un
árbol binario que tiene el máximo número de entradas para su altura. Esto sucede cuando el Último nivel
está lleno. La Figura 16. I3 muestra un árbol binario completo; el árbol de la Figura 16.14 (6) se
corresponde con uno lleno.

Figura 16.13. Árbol completo (profundidad 4).

Árbol degenerado
(profundidad 5)

(4
Figura 16.14. Clasificación de árboles binarios: (a) degenerado; (b) lleno.

Árbol lleno
(profundidad 3)

(b)

F-
Árboles 509

El Último caso de árbol es un tipo especial denominado árbol degenerado en el que hay un solo
nodo hoja (E) y cada nodo no hoja sólo tiene un hijo. Un árbol degenerado es equivalente a una lista
enlazada. En la Figura 16.15 se muestran árboles llenos y completos.

m

Figura 16.15. (a) Árboles llenos (en niveles O, 1 y 2); (b),(c) y (d) árboles completos (en nivel 2).

Los árboles binarios y llenos de profundidad ki 1 proporcionan algunos datos matemáticos que es
necesario comentar. En cada caso, existe un nodo (2") al nivel O (raíz), dos nodos (2 ') a nivel 1 , cuatro
nodos (2') a nivel 2, etc. A través de los primeros k-I niveles hay 2'-I nodos.

1 + 2 + 4 + ... + 2h ' = 2"l

510 Programación en C. Metodología, algoritmos y estructura de datos

A nivel k, el número de nodos adicionados para un árbol completo está en el rango de un mínimo
de 1 a un máximo de 2L (lleno). Con un árbol lleno, el número de nodos es

1 + 2 + 4 + ... + 2k ' + 2L = 2k+' -1

El número de nodos n en un árbol binario completo de profundidad k + l (O a k niveles) cumple la
inigualdad

2k I n I 2'+' -1 < 2'+'

Aplicando logaritmos a la ecuación con desigualdad anterior

k I logz (n) < k + 1

Se deduce que la altura o profundidad de un árbol binario completo de n nodos es:

h = /log, 11 + 1 I (parte entera de log,n + I)
Por ejemplo, un árbol lleno de profundidad 4 (niveles O a 3) tiene 2' -1= 15 nodos

Ejemplo 16.2

Calcular la profundidad máxima y mínima de un árbol con 5 nodos.

La profundidad máxima de un árbol con 5 nodos es 5

La profundidad mínima n (número de niveles más uno) de un árbol con 5 nodos es

kglog? (5) < k + I
logz (5) = 2.32 y la profundidad n = 3

Ejemplo 16.3

La prqfindidad de un árbol degenerado con n nodos es n, dudo que es la longitud del camino más largo
(rak a nodo) más I .

En el árbol binario completo con n nodos, la profundidad del árbol es el valor entero de log, n + 1,
que es a su vez la distancia del camino más largo desde el raíz a un nodo más uno.

Suponiendo que el árbol tiene n = 10.000 elementos, el camino más largo es

int (log 10000) + 1 = int (13.28) + 1 = 14

Árboles 511

16.4. ESTRUCTURA DE UN ÁRBOL BINAR10

La estructura de un árbol binario se construye con nodos. Cada nodo debe contener el campo dato (datos
a almacenar) y dos campos punteros, uno ai subárbol izquierdo y otro al suhárbol derecho, que se cono-
cen como puntero izquierdo (izquierdo, izdo) y puntero derecho (derecho, dcho) respectivamente.
Un valor NULL indica un árbol vacío.

hoja-izquierda hoja-derecha 1 izquierdo datos derecho 1 izquierdo datos derecho

El algoritmo correspondiente a la estructura de un árbol es el siguiente:

Nodo
subarbolIzquierdo
datos
subarbolDerecho

Fin Nodo

< puntero a Nodo>
< Tipodato >
< puntero a Nodo>

La Figura 16.16 muestra un árbol binario y su estructura en nodos:

lzdo B Dch

~

-

lzdo D Dch

~

-

lzdo G Dch

lzdo A Dch

I

lzdo C Dch

/ \ / \ (a) Árbol

I

.;.‘;.;.I
(b) Estructura

Figura 16.16. Árbol binario y su estructura en nodos

512 Programación en C. Metodología, algoritmos y estructura de datos

Ejemplo 16.4

Representar la estructura en nodos de los dos árboles binarios de raíz A:

Nivel O

Nivel 1

Nivel 2

Nivel 3

Nivel 4

La representación enlazada de estos dos árboles binarios es:

I I I

I 7 NUL G NULL

16.4.1. Diferentes tipos de representaciones en C

Los nodos pueden ser representados con la estructura s t ruc t. Suponiendo que el nodo tiene los campo
Datos, Izquierdo y Derecho.

Representacicín I

typedef struct nodo "puntero-arbol;
typedef struct nodo {

int datos;
puntero-arbol hijo-izdo, hijo-dcho;

I ;

Árboles 513

datos

hijo-izdo A hijo-dc ho

hijo-izdo datos hijo-dcho

Representación 2
typedef int TipoElemento; / * Puede ser cualquier tipo * /

struct Nodo {
TipoElemento Info;
struct Nodo *hijo-izdo, *hijo-dcho;

1 ;
typedef struct Nodo Elemento»eArbolBin;
typedef ElementoUeArbolHin "ArbolBinario;

Para crear un nodo de un árbol binario, con la representación 2, se reserva memoria para el nodo, se

ArbolBinario CrearNodo(TipoE1emento x)
i

asigna el dato al campo i n f o y se inicializa los punteros hi jo-izdo, hij o-dcho a NULI, .

ArbolBinario a;
a = (ArbolBinario) mdlloc(si7eot (ElementoDeArbolBin) 1 ;
a -> Info = x;
a-> hijo-dcho = a -> hijo-izdo = NUI,T,;
return a;

i

Si por ejemplo se desea crear un árbol binario de raíz 9, rama izquierda 7 y rama derecha 1 1 :

ArbolBinario rdiz;
raiz = CrearNodo(9);
raiz -> hijo-izdo = CrearNodo(7);
raiz -> hijo-dcho = CrearNodo(l1);

16.5. OPERACIONES EN ÁRBOLES BlNARlOS

Una vez que se tiene creado un árbol binario, se pueden realizar diversas operaciones sobre él. El hacer
uso de una operación u otra dependerá de la aplicación que se le quiera dar al árbol. Algunas de las
operaciones típicas que se realizan en árboles binarios son:

O Determinar su altura.
O Determinar su número de elementos.
O Hacer una copia.
O Visualizar el árbol binario en pantalla o en impresora.
O Determinar si dos árboles binarios son idénticos.
O Borrar (eliminar el árbol).
O Si es un árbol de expresión', evaluar la expresión.
O Si es un árbol de expresión, obtener la forma de paréntesis de la expresión.
Todas estas operaciones se pueden realizar recorriendo el árbol binario de un modo sistemático. El

' En c l apartado siguiente se estudia e l importante concepto de rírbol rlr, erpre.vicín.

514 Programación en C. Metodologia, algoritmos y estructura de datos

recorrido de un árbol es la operación de visita al árbol, o lo que es lo mismo, la visita a cada nodo del
árbol una vez y sólo una. La visita de un árbol es necesaria en muchas ocasiones, por ejemplo, si se
desea imprimir la información contenida en cada nodo. Existen diferentes formas de visitar o recorrer
un árbol que se estudiarán más tarde.

16.6. ÁRBOLES DE EXPRESIÓN

Una aplicación muy importante de los árboles binarios son los árbn1c.s de expresión. Una expresión es
una secuencia de tokens (componentes de léxicos que siguen unas reglas prescritas). Un token puede ser
o bien un operando o bien un operador.

La Figura 16.17 representa la expresión infija d * (b+c) td y su árbol de expresión. En una primera

D a * (b + c) + d

Figura 16.17. Una expresión infija y su árbol de expresión.

observación vemos que los paréntesis no aparecen en el árbol.
Un árbol de expresión es un árbol binario con las siguientes propiedades:

1. Cada hoja es un operando.
2. Los nodos raíz e internos son operadores.
3. Los subárboles son subexpresiones en las que el nodo raíz es un operador.

Los árboles binarios se utilizan para representar expresiones en memoria; esencialmente, en
compiladores de lenguaje de programación. La Figura 16. I8 muestra un árbol binario de expresiones
para la expresión aritmética (3. + b) * c.

Obsérvese que los paréntesis no se almacenan en el árbol pero están implicados en la forma del

Figura 16.18. Árbol binario de expresiones que representa (c ~ t I)) *<..

Árboles 515

árbol. Si se supone que todos los operadores tienen dos operandos, se puede representar una expresión
por un árbol binario cuya raíz contiene un operador y cuyos subárboles izquierdo y derecho son los
operandos izquierdo y derecho respectivamente. Cada operando puede ser una letra (x, y , a , b ,
etc.) o una subexpresión representada como un subárbol. En la Figura 16.19 se puede ver como el
operador que está en la raíz es *, su subárbol izquierdo representa la subexpresión (x + y) y su
subárbol derecho representa la subexpresión (a -b) . El nodo raíz del subárbol izquierdo contiene el
operador (+) de la subexpresión izquierda y el nodo raíz del subárbol derecho contiene el operador (-)
de la subexpresión derecha. Todos los operandos letras se almacenan en nodos hojas.

Utilizando el razonamiento anterior, se puede escribir la expresión almacenada en la Figura 16.20
como

Figura 16.19. Árbol de expresión (x t y) * (1))

(x" (y - z)) + (a-b)

en donde se han insertado paréntesis alrededor de subexpresiones del árbol (la operación y - Z ,
subexpresión inás interna, tiene el nivel de prioridad mayor).

Figura 16.20. Árbol de expresión (x* (y - /)) + (a - 1)) .

516 Programación en C. Metodología, algoritmos y estructura de datos

Ejemplo 16.5

Deducir las expresiones que representan l o s siguientes árboles binarios.

Soluciones
(a) X*(Y/-Z)
(b) A + (B*- (c+D))
(c) (A* (X+Y)) *C

Ejemplo 16.6

Dibujar la representación en árbol binario de cada una de las siguientes expresiones.

(a) X*Y/ (A+B) *C
(6) X*Y/A+B*C

Soluciones

16.6.1. Reglas para la construcción de árboles de expresión

Los árboles de expresiones se utilizan en las coinputadoras para evaluar expresiones usadas en
programas. El algoritmo más sencillo para construir un árbol de expresión es uno que lee una expresión
completa que contiene paréiitesis en la misma. Una expresión con paréntesis es aquella en que

F-
~ ~-~

1

Árboles 517

1. La prioridad se determina sólo por paréntesis.
2. La expresión completa se sitúa entre paréntesis.

Por consiguiente (4 t (5 * 6)) es un ejemplo de una expresión completa entre paréntesis. Su valor es
3 4. Si se desean cambiar las prioridades, se escribe ((4 t 5) * 6) , su valor es 5 4. A fin de ver la prioridad
en las expresiones, considérese la expresión

(4*5) + 6/7 - (8+9)

Los operadores con prioridad más alta son * y /: es decir,

(4*5) + (6/7) ~ (8+9)

El orden de los operadores aquí es + y -. Por consiguiente, se puede escribir

((4*5) + (6/7)) - (8+9)

Por último la expresión completa entre paréntesis será

(((4*5) t (6/7)) - (8+9))

El algoritmo para la construcción de un árbol de expresión es:

1. La primera vez que se encuentra un paréntesis a izquierda, crea un nodo y lo hace en el raíz. Se
llama a éste, el nodo actual y se sitúa su puntero en una pila.

2. Cada vez que se encuentre un nuevo paréntesis a izquierda, crear un nuevo nodo. Si el nodo
actual no tiene un hijo izquierdo, hacer el nuevo nodo el hijo izquierdo; en caso contrario, hacerlo
el hijo derecho. Hacer el nuevo nodo el nodo actual y situar su puntero en una pila.

3. Cuando se encuentra un operando, crear un nuevo nodo y asignar el operando a su campo de
datos. Si el nodo actual no tiene un hijo izquierdo, hacer el nuevo nodo el hijo izquierdo; en caso
contrario, hacerlo el hijo derecho.

4. Cuando se encuentra un operador, sacar un puntero de la pila y situar el operador en el campo
datos del nodo del puntero.

5. Ignorar paréntesis derecho y blancos.

Ejemplo 16.7

Calcular las expresiones correspondientes de los árboles de expresión.

51 8 Programación en C. Metodología, algoritmos y estructura de datos

Las soluciones correspondientes son:

b. ((a + b) + c) + d
U. (a * b) + (c / d) c* ((-d) + (X + y)) / ((+b) * (C * d))

Ejercicio 16.1 (a realizar por el lector)

Dibujar los árboles hinarios de expresión c.orre.si~ondiente a cada una de las siguientes expresiones:

(U) (a + b) / (c - d * e) + e + 9 * h/a
(h) -x -y * z + (a + b + c / d * e)
(c) ((a + b) > (c - e)) I I a < f & & (x < y I I y > z)

16.7. RECORRIDO DE UN ÁRBOL
Para visualizar o consultar los datos almacenados en un árbol se necesita recorrer el árbol o visitar los
nodos del mismo. Al contrario que las listas enlazadas, los árboles binarios no tienen realmente un
primer valor, un segundo valor, tercer valor, etc. Se puede afirmar que el raíz viene el primero, pero
¿,quién viene a continuación? Existen diferentes métodos de recorrido de árbol ya que la mayoría de las
aplicaciones binarias son bastante sensibles al orden en el que se visitan los nodos, de forma que será
preciso elegir cuidadosamente el tipo de recorrido.

Un recorrido de un árbol binario requiere que cada nodo del árbol sea procesado (visitado) una
vez y sólo una en una secuencia predeterminada. Existen dos enfoques generales para la secuencia de
recorrido, profundidad y anchura.

En el recorrido en profundidad, el proceso exige un camino desde el raíz a través de un hijo, al
descendiente más lejano del primer hijo antes de proseguir a un segundo hijo. En otras palabras, en el
recorrido en profundidad, todos los descendientes de un hijo se procesan antes del siguiente hijo.

En el recorrido en anchura, el proceso se realiza horizontalmente desde el raíz a todos sus hijos,
a continuación a los hijos de sus hijos y así sucesivamente hasta que todos los nodos han sido
procesados. En otras palabras, en el recorrido en anchura, cada nivel se procesa totalmente antes de que
comience el siguiente nivel.

El recorrido de un árbol supone visitar cada nodo sólo una vez.

Dado un árbol binario que consta de un raíz, un subárbol izquierdo y un subárbol derecho se pueden
definir tres tipos de secuencia de recorrido en profundidad. Estos recorridos estándar se muestran en la
Figura 16.2 1.

Su bárbol Subárbol Su bárbol Su bárbol Subárbol Subárbol
izquierdo derecho izquierdo derecho izquierdo derecho

(a) Recorrido preorden (b) Recorrido en orden (c) Recorrido postorden

Figura 16.21. Recorridos de árboles binarios

Árboles 519

La designación tradicional de los recorridos utiliza un nombre para el nodo raíz (N), para el subárbol

Según sea la estrategia a seguir, los recorridos se conocen como enorden (inorder), preorden

Preorden (nodo-izquierdo-derecho) (NID)
Enorden (izquierdo-nodo-derecho) (IND)
Postorden (izquierdo-derecho-nodo) (IDN)

izquierdo (I) y para el subárbol derecho (DI.

@reorder) y postorden (postorder)

16.7.1. Recorrido preorden

El recorrido preorden' (NID) conlleva los siguientes pasos, en los que el raíz va antes que los subárboles:

1. Recorrer el raíL (N).
2. Recorrer el subárbol izquierdo (I) en preorden.
3. Recorrer el subárbol derecho (D) en preorden.

Dado las características recursivas de los árboles, el algoritmo de recorrido tiene naturaleza
recursiva. Primero, se procesa la raíz, a continuación el subárbol izquierdo y a continuación el subárbol
derecho. Para procesar el subárbol izquierdo, se hace una llamada recursiva al procedimiento preorden
y luego se hace lo mismo con el subárbol derecho. El algoritmo recursivo correspondiente para un árbol
T es:

si T no es vacio entonces
inicio

ver los datos en el r a i / de T
Preorden (subarbol i/quierdo del r r i l z de T)
Preorden (subarbol derecho del r d i L de T)

fin

Regla

En el recorrido preorden, el raíz se procesa antes que los subárboles izquierdo y derecho.

Si utilizamos el recorrido preorden del árbol de la Figura 16.22 se visita primero el raíz (nodo A).
A continuación se visita el subárbol izquierdo de A, que consta de los nodos B, D y E. Dado que el
subárbol es a su vez un árbol, se visitan los nodos utilizando el orden N I D . Por consiguiente, se visita
primero el nodo B, después D (izquierdo) y, por último, E (derecho).

Camino A, 6, 0, E, C, F, G A

3 4 6 7

Figura 16.22. Recorrido preorden de un árbol binario.

' El noiribrc prwrúr / i . viene del prefijo latino prc qiic signilica (<ir antes»

520 Programación en C. Metodología, algoritmos y estructura de datos

A continuación se visita el subárbol derecho de A, que es un árbol que contiene los nodos c , F y
G. De nuevo siguiendo el orden NID, se visita primero el nodo C, a continuación F (izquierdo) y, por
Último, G (derecho). En consecuencia el orden del recorrido preorden para el árbol de la Figura 16.22 es
A-B-D-E-C-F-G.

Un refinamiento del algoritmo es:

algoritmo preOrden (val rai7 <puntero nodos>)
Recorrer un arbol binario en secuencia nodo-izdo-dcho
Pre raiz es el nodo de entrada del árbol o subárbol
Post cada nodo se procesa en orden
1 si (raiz no es nulo)

1 procesar (raiz)
2 preOrden (raiz -> cubarbolTzdo)
3 preOrden (raiz -> subarbolDcho

2 return

La función preorden muestra el código fuente en C del algoritmo ya citado anteriormente. El tipo j

de los datos es entero.

typedef int TipoElemento;
struct nodo {
TipoElemento datos;
struct nodo *hijo-izdo, *hijo-dcho;

} ;
typedef struct nodo Nodo;

void preorden (Nodo * p)
I

if (P)
i
printf ("%d " , p -> ddtos) ;
PreOrden(p -> hijo-izdo);
PreOrden(p -> hijo-dcho);

1
1

Gráficas de las llamadas recursivas de preorden
El recorrido recursivo de un árbol se puede mostrar gráficamente por dos métodos distintos: 1) paseo
preorden del árbol; 2) recorrido algorítmico.

Un medio gráfico para visualizar el recorrido de un árbol es imaginar que se está dando un «paseo»
alrededor del árbol comenzando por la raíz y siguiendo el sentido contrario a las agujas del reloj, un
nodo a continuación de otro sin pasar dos veces por el mismo nodo. El camino señalado por una línea
continua que comienza en el nodo 1 (Fig. 16.2 1) muestra el recorrido preorden completo. En el caso de
la Figura 16.22 el recorrido es A H D E C F G.

El otro medio gráfico de mostrar el recorrido algorítmico recursivo es similar a las diferentes etapas
del algoritmo. Así la primera llamada procesa la raíz del árbol A. A continuación se llama recursivamente
a procesar subárbol izquierdo, procesa el nodo B. La tercera llamada procesa el nodo D, que es un
subárbol formado por un único nodo. En ese punto, se llama en preorden, con un puntero nulo, que
produce un retorno inmediato al subárbol U para procesar a su subárbol derecho. Debido a que el
subárbol derecho de D es también nulo, se vuelve al nodo B de modo que va a procesar (visitar) su
subárbol derecho, E. Después de procesar el nodo E, se hacen dos llamadas más, una con el puntero
izquierdo null de E y otra con su puntero derecho null. Como el subárbol R ha sido totalmente procesado,
se vuelve a la raíz del árbol y se procesa su subárbol derecho, C. Después de procesar C, llama para
procesar su subárbol izquierdo F'. Se hacen dos llamadas con null, vuelve al nivel donde está el nodo c
para procesar su rama derecha G. Aún se realizan dos llamadas más, una al subárbol izquierdo null y otra
al subárbol derecho. Entonces se retorna en el árbol, se concluye el recorrido del árbol.

Árboles 521

16.7.2. Recorrido enorden

El recorrido en orden (inorder) procesa primero el subárbol izquierdo, después el raíz y a continuación
el subárbol derecho. El signiticado de in es que la raíz se procesa entre los subárboles. Si el árbol no está
vacío, el método implica los siguientes pasos:

1. Recorrer el subjrbol izquierdo (1)en inorden.
2. Visitar el nodo raíz (N).
3. Recorrer el subárbol derecho (I)) en inorden.

El algoritmo correspondiente es:

Enorden(A)

si el arbol no esta vacio e n t o n c e s

Recorrer el subarbol i z q u i erdo
Visitar el nodo r a i z
Recorrer el subarbol derecho

inicio

fin

Un refinamiento del algoritmo es:

algoritmo enorden (vdl rai z < p u r i L e r o ci nodos>)
Recorrer un &,bol binario en la secuencia izquierdo-nodo-derecho

pre raíz en el nodo de entradd de un árbol o subárbol
post cada nodo se ha de pr-ocesdr en orden

1 si (raíz no es n u l o)
1 enorden (rai z -> subarbol Izyi i i erdo)
2 procesar (raiz)
3 enorden (rd i z~-siibiirbolDerecho)

2 r e t o r n o
f i n enorden

En el árbol de la Figura 16.23, los nodos se han numerado en el orden en que son visitados durante
el recorrido enorden. El primer subárbol recorrido es el subárbol izquierdo del nodo raíz (árbol cuyo
nodo contiene la letra 5. Este subárbol consta de los nodos 5, D y E y es a su vez otro árbol con el nodo
B como raíz, por lo que siguiendo el orden IND, se visita primero D, a continuación B (nodo raíz) y,
por último, E (derecha). Después de la visita a este subárbol izquierdo se visita el nodo raíz A y, por
Último, se visita el subárbol derecho que consta de los nodos c , F y G. A continuación, siguiendo el
orden IND para el subárbol derecho, se visita primero F, después c (nodo raíz) y, por Último, G. Por
consiguiente, el orden del recorrido inorden de la Figura 16.23 es D-B-E-A-F-C-G.

i

1 3 5 7

Figura 16.23. Recorrido enorden de un árbol binario.

522 Programación en C. Metodología, algoritmos y estructura de datos

La siguiente función visita y escribe el contenido de los nodos de un árbol binario de acuerdo al
recorrido EnOrden. La función tiene como parámetro un puntero al nodo raíz del árbol.

void enorden (Nodo *p)
I

if (P)
1

enorden(p -> hijo-izqdo);
printf ("%d ",p -> datos) ;
enorden (p -> hijo-dcho);

/ * recorrer subárbol izquierdo * /
/ * visitar la raíz * /
/ * recorrer subárbol derecho * /

16.7.3. Recorrido postorden

El recorrido postorden (IDN) procesa el nodo raíz (post) después de que los subárboles izquierdo y
derecho se han procesado. Se comienza situándose en la hoja más a la izquierda y se procesa. A
continuación se procesa su subárbol derecho. Por último se procesa el nodo raíz. Las etapas del
algoritmo son:

1. Recorrer el subárbol izquierdo (I) en postorden.
2. Recorrer el subárbol derecho (D) en postorden.
3. Visitar el nodo raíz (N).

El algoritmo recursivo para un árbol A es:

si A no esta vacio entonces
inicio
Postorden (subarbol izquierdo del r a í z d e A)
Postorden (s u b a r b o l derecho del r a í z de A)
Visitar la raíz de A

fin

El refinamiento del algoritmo es:

algoritmo postorden (val raiz <puntero a nodo>)

Recorrer un árbol binario en secuencia izquierda-derecha-nodo
pre raíz es el nodo de entrada de un árbol a un subárbol
post cada nodo ha sido procesado en orden

í Si (raíznoesnulo)
IpostOrden (raíz -> SubarbolIzdo)
2postOrden (raíz -> SubarbolDcho)
3procesar (raiz)

2 retorno
fin postorden

Si se utiliza el recorrido postorden del árbol de la Figura 16.24, se visita primero el subárbol
izquierdo A. Este subárbol consta de los nodos B , D y E y siguiendo el orden IDN, se visitará primero D
(izquierdo), luego E (derecho) y, por Último, B (nodo). A continuación, se visita el subárbol derecho A
que consta de los nodos c , F y G. Siguiendo el orden IDN para este árbol, se visita primero F (izquierdo),
después G (derecho) y, por Último, c (nodo). Finalmente se visita el raíz A (nodo). Así el orden del
recorrido postorden del árbol de la Figura 16.24 es D-E-B-F-G-C-A.

Árboles 523

1 2 4 5

Figura 16.24. Recorrido postorden de un árbol binario.

La función postorden que implementa en C el código fuente del algoritmo correspondiente

void postorden (Nodo *p)
{

if (P)
t
postorden (p -> hijo-izqdo);
postorden (p -> hijo-dcho);
printf ("%d ",p -> datos) ;

1
1

524 Programación en C. Metodología, algoritmos y estructura de datos

(4

Figura 16.25. Árboles de expresión.

Ejercicio 16.2

Si la,función visitar (1 se reemplaza por la .sentencia.

printf ("%d ",t -> dato) ;

deducir los elementos de los árboles binarios siguientes en cada uno de los tres recorridos
fundamentales.
Los elementos de los árboles binarios listados en preorden, enorden y postorden.

I Árbola Árbol 15 Árbol c

P r e O r d e n +*ab/cd +++abcd / + - a + xy * +b * cd
En O r d e n a*c+c/d a+b+c+d - a + x + y / + b * c * d
P o s torden ab*cd/ + ab+c+d+ a - xy ++ b + cd * * /

16.7.4. Profundidad de un árbol binario

La profundidad de un árbol binario es una característica que se necesita conocer con frecuencia durante
el desarrollo de una aplicación con árboles. La función Prof undidad evalúa la profundidad de un árbol
binario. Para ello tiene un parámetro que es un puntero a la raíz del árbol.

El caso más sencillo de cálculo de la profundidad es cuando el árbol está vacío en cuyo caso la
profundidad es O. Si el árbol no está vacío, cada subárbol debe tener su propia profundidad, por lo que
se necesita evaluar cada una por separado. Las variables profundidad1, profundidadD almacenarán
las profundidades de los subárboles izquierdo y derecho respectivamente.

El método de cálculo de la profundidad de los subárboles utiliza llamadas recursivas a la función
Profundidad con punteros a los respectivos subárboles como parámetros de la misma. La fun-

Árboles 525

ción Profundidad devuelve como resultado la profundidad del subárbol mas profundo más I (la mis-
ma del raíz).

int Profundidad (Nodo *p)
{

if (!p)

else
return O ;

i
int profundidad1 = Profundiddd (p - > hijo-izqdo);
int profundidadD = Profundidad (p -> hijo-dcho) ;
if (profundidad1 ’> profimdidadD)

else
return profundidad1 + 1;

return profundidadD + 1;
1

i

16.8. ÁRBOL BINAR10 DE BÚSQUEDA
Los árboles vistos hasta ahora no tienen un orden definido; sin embargo, los árboles binarios ordenados
tienen sentido. Estos árboles se denominan árboles binarios de búsqueda, debido a que se pueden buscar
en ellos un término utilizando un algoritmo de búsqueda binaria similar al empleado en arrays.

Un árbol binario de búsqueda es aquel que dado un nodo, todos los datos del subárbol izquierdo
son menores que los datos de ese nodo, mientras que todos los datos del subárbol derecho son mayores
que sus propios datos. El árbol binario del Ejemplo 16.8 es de búsqueda.

Ejemplo 16.8

Árbol binario de búsqueda.

30 menor que 55
41 mayor que 30
75 mayor que 55
85 mayor que 75

4 menor que 30

16.8.1. Creación de un árbol binario de búsqueda
Supongamos que se desea almacenar los números 8 3 1 20 10 5 4 en un árbol binario de búsqueda.
Siguiendo la regla, dado un nodo en el árbol todos los datos a su izquierda deben ser menores que todos
los datos del nodo actual, mientras que todos los datos a la derecha deben ser mayores que los datos.
Inicialmente el árbol está vacío y se desea insertar el 8. La única elección es almacenar el 8 en el raíz:

526 Programación en C. Metodología, algoritmos y estructura de datos

A continuación viene el 3. Ya que 3 es menor que 8, el 3 debe ir en el subárbol izquierdo.

A continuación se ha de insertar 1 que es menor que 8 y que 3, por consiguiente irá a la izquierda
y debajo de 3.

El siguiente número es 20, mayor que 8, lo que implica debe ir a la derecha de 8.

Cada nuevo elemento se inserta como una hoja del árbol. Los restantes elementos se pueden situar
fácilmente.

Una propiedad de los árboles binarios de búsqueda es que no son únicos para los mismos datos.

L

Árboles 527

Ejemplo 16.9

Construir un árbol binario para almacenar los datos 12, 8, 7, 16 y 14.

Solución

Ejemplo 16.1 O

Construir un árbol binario de búsqueda que corresponda a un recorrido enorden cuyos elementos
son: 1, 3, 4, 5, 6, 7, 8, 9 y 10.

16.8.2. Implementación de un nodo de un árbol binario de búsqueda

Un árbol binario de búsqueda se puede utilizar cuando se necesita que la información se encuentre
rápidamente. Estudiemos un ejemplo de árbol binario en el que cada nodo contiene información relativa
a una persona. Cada nodo almacena un nombre de una persona y el número de matrícula en su
universidad (dato entero).

Declaración de tipos
Nombre
Matrícula

Tipo de dato cadena (string)
Tipo entero

struct nodo {
int nummat;
char nombre [3 O 1 ;

Nombre

nummat

A
struct nodo *izda, *dcha;

1 ;
typedef struct nodo Nodo;

528 Programación en C. Metodología, algoritmos y estructura de datos

Creación de un nodo
La función tiene como entrada un dato entero que representa un número de matrícula y el nombre.
Devuelve un puntero al nodo creado.

Nodo* CredrNodo (int id, char* n)

Nodo* t ;
L = (Nodo*) malloc(si/eoí (Nodo));
t --, nummdt = ,id;
ctrcpy(t->nombre,n) ;
t ->izdd = t - > dchd = NULL;
r e t u r n t;

I

16.9. OPERACIONES EN ÁRBOLES BlNARlOS DE BÚSQUEDA

De lo expuesto se deduce que los árboles binarios tienen naturaleza recursiva y en consecuencia las
operaciones sobre los árboles son recursivas, si bien siempre tenemos la opción de realizarlas de form?
iterativa. Estas operaciones son:

O Búsquedu de un nodo.
Inserción de un nodo.
Kecorriúo de un árbol.
Borrudo de un nodo.

16.9.1. Búsqueda

La búsqueda de un nodo comienza en el nodo raíz y sigue estos pasos:

1. La clave buscada se compara con la clave del nodo raíz.
2. Si las claves son iguales, la búsqueda se detiene.
3. Si la clave buscada es mayor que la clave raíz, la búsqueda se reanuda en el subárbol derecha. Si

la clave buscada es menor que la clave raíz, la búsqueda se reanuda con el subárbol izquierdo.

Buscar una información específica
Si se desea encontrar un nodo en el árbol que contenga la información sobre una persona específica. La
función buscar tiene dos parámetros, un puntero al árbol y un número de inatrícula para la persona
requerida. Como resultado, la función devuelve un puntero al nodo en el que se almacena la información
sobre esa persona; en el caso de que la información sobre la persona no se encuentra se devuelve el
valor O. El algoritmo de búsqueda es el siguiente:

1. Comprobar si el árbol está vacío.
En caso afirmativo se devuelve O.
Si la raíz contiene la persona, la tarea es fácil: el resultado es, simplemente, un puntero a la raíz.

2. Si el árbol no está vacío, el subárbol específico depende de que el número de matrícula requerido
es más pequeño o mayor que el número de matrícula del nodo raíz.

3. La función de búsqueda se consigue llamando recursivamente a la función buscar con un
puntero al subárbol izquierdo o derecho como paráinetro.

El código C de la función buscar . es:

Nodo* buscar (Nodo* p , int buscddo)
i

P-

i

Árboles 529

if (! p)

else if (buscado == p - > nummdt)

else if (buscado < p -> nummdt)

else /

return O ;

return p;

return buscar (p - > i z d i i , buscado);

return buscar (p - > dcha, buscado);

16.9.2. Insertar un nodo

Una característica fundamental que debe poseer el algoritmo de inserción es que el árbol resultante de
una inserción en un árbol de búsqueda ha de ser también de búsqueda. En esencia, el algoritmo de
inserción se apoya en la localización de un elemento, de modo que si se encuentra el elemento (cluve)
buscado, no es necesario hacer nada; en caso contrario, se inserta el nuevo elemento justo en el lugar
donde ha acabado la búsqueda (es decir, en el lugar donde habría estado en el caso de existir).

Antes de insertar 8 Después de insertar 8

Figura 16.26. Inserción en un árbol binario de búsqueda.

Por ejemplo, considérese el caso de añadir el nodo 8 al árbol de la Figura 16.26. Se comienza el
recorrido en el nodo raíz 25; la posición 8 debe estar en el subárbol izquierdo de 25 (8 < 25). En el nodo
10, la posición de 8 debe estar en el subárbol izquierdo de 10, que está actualmente vacío. El nodo 8 se
introduce como un hijo izquierdo del nodo 1 O.

Ejemplo 16.1 1

Insertar un elemento con clave 80 en el árbol hinario de húsquedu siguiente:

530 Programación en C. Metodología, algoritmos y estructura de datos

A continuación insertar un elemento con clave 36 en el árbol binario de búsqueda resultante.

Solución

(a) Inserción de 80 (a) Inserción de 36

16.9.3. Función insertar ()

La función insertar que pone nuevos nodos es sencilla. Se deben declarar tres argumentos: un puntero
al raíz del árbol, el nuevo nombre y número de matrícula de la persona. La función creará un nuevo
nodo para la nueva persona y lo inserta en el lugar correcto en el árbol de modo que el árbol permanezca
como binario de búsqueda.

La operación de inserción de un nodo es una extensión de la operación de búsqueda. Los pasos a
seguir son:

1. Asignar memoria para una nueva estructura nodo.
2. Buscar en el árbol para encontrar la posición de inserción del nuevo nodo, que se colocará como

nodo hoja.
3. Enlazar el nuevo nodo al árbol.

El código C de la función:

void insertar (Nodo** raiz, int nuevomat, char *nuevo-nombre)
i

if (! (*raiz))

else if (nuevomat i (*raiz) -> nummat)

else

*raiz = CrearNodo(nuevo-mat, nuevo-nombre) ;

insertar (&((*raiz) -> izda), nuevomat, nuevo-nombre);

insertar (& ((*raiz) -> dcha), nuevomat, nuevo-nombre);
1

Si el árbol está vacío, es fácil insertar la entrada en el lugar correcto. El nuevo nodo es la raíz del
árbol y el puntero raiz se pone apuntando a ese nodo. El parámetro raiz debe ser un parámetro
referencia ya que debe ser leído y actualizado, por esa razón se declara puntero a puntero (Nodo * *) . Si
el árbol no está vacío, se debe elegir entre insertar el nuevo nodo en el subárbol izquierdo o derecho,
dependiendo de que el número de matrícula de 12 nueva persona sea más pequeño o mayor que el
número de matrícula en la raíz del árbol.

Árboles 531

16.9.4. Eliminación

El árbol resultante es:

La operación de eliminación de un nodo es también una extensión de la operación de búsqueda, si bien
más compleja que la inserción debido a que el nodo a suprimir puede ser cualquiera y la operación de
supresión debe mantener la estructura de árbol binario de búsqueda después de la eliminación de datos.
Los pasos a seguir son:

1. Buscar en el árbol para encontrar la posición de nodo a eliminar.
2. Reajustar los punteros de sus antecesores si el nodo a suprimir tiene menos de 2 hijos, o subir a

la posición que éste ocupa el nodo más próximo en clave (inmediatamente superior o
inmediatamente inferior) con objeto de mantener la estructura de árbol binario.

Ejemplo 16.12

Suprimir el elemento de clave 36 del siguiente árbol binario de búsqueda:

~~ ~

532 Programación en C. Metodología, algoritmos y estructura de datos

Ejemplo 16.13
Borrar el elemento de clave 60 del siguientc árbol:

i$o,

d
Se reemplaza 60 bien con el elemento mayor (5.5) en su subárbol izquierdo o el elemento más

pequeño (70) en su subárbol derecho. Si se opta por reemplazar con el elemento mayor del subárbol
izquierdo. Se mueve el 5.5 al raíz del subárbol y se reajusta el árbol.

Se reemplaza 60 bien con el elemento mayor (5.5) en su subárbol izquierdo o el elemento más
pequeño (70) en su subárbol derecho. Si se opta por reemplazar con el elemento mayor del subárbol
izquierdo. Se mueve el 5.5 al raíz del subárbol y se reajusta el árbol.

Ejercicio 16.3

Con los registros de estudiantes formar un úrbol hinario de búsqueda, ordenado respecto al campo
clave numma t. El programa debe de tener las opciones de mostrar los registros ordenados y eliminar
un registro dando el número de matrícula.

Análisis
Cada registro tiene sólo dos campos de información: nombre y nummat. Además los campos de enlace
con el subárbol izquierdo y derecho.

Árboles 533

Las operaciones que se van a implementar son las de insertar, eliminar, buscdr y
visual izar el árbol. Los algoritmos de las tres primeras operaciones ya están descritos anteriormente.
La operación de visual izar va a consistir en un recorrido en inorden, cada vez que se visite el nodo
raíz se escribe los datos del estudiante.

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

struct nodo {
int nummat;
char nombre [3 O I ;
struct nodo *izda, *dcha;

I ;
typedef struct nodo Nodo;
Nodo* CrearNodo(int id, char* n) ;
Nodo* buscar (Nodo* p, int buscado);
void insertar (Nodo** raiz, int nuevo-mat, chdr *nuevo-nombre);
void eliminar (Nodo** r, int mat);
void visualizar (Nodo* r);

int main()
i
int nm;
char nom[30] ;
Nodo* R = O ;

/ * Crea el árbol * /
do I
printf ("Numero de matricula (O - > Fin) : ") ; scanf ("%d%*c" , &nm) ;
if (nm)
i
printf ("Nombre: ") ; gets (nom) ;
insertar(&R,nm,nom);

I

/ * Opciones de escribir el árbol o borrar una registro * /
}while (nmj;

clrscr () ;
do {
puts(" 1. Mostrar el árboi\n") ;
puts (' I 2. Eliminar un registro\n");

do scanf("%d%*c", &nm); while(nm<l I 1 nmi3);
if (nm == 1) {

puts (" 3 . Salir\n ' I) ;

printf("\n\t Registros ordenados por número de matrícula:\n");
visualizar (R) ;

I
else if (nm == 2){
int cl;
printf ("Clave: ") ; scanf ("%d",&cl);
eliminar(&R,cl);

1
}while (nm ! = 3) ;

return 1;
I
Nodo* CrearNodo(int id, char* n)
{

534 Programación en C. Metodología, algoritmos y estructura de datos

Nodo * t ;
t = (Nodo") malloc(sizeof(Nodo));
t -> nummat = id;
strcpy(t->nombre,n);
t -> izda = t-> dcha = NU1,L;
return t ;

i

Nodo* buscar (Nodo* p, int buscado)

if (! p)

else if (buscado == p -> nummat)

else if (buscado < p -> nummat)

else

return O;

return p;

return buscar (p -> izda, buscado);

return buscar (p -> dcha, buscado);
i

void insertar (Nodo** raiz, int nuevomat, char *nuevo-nombre)
i
if (! ("raiz))

else if (nuevomat i (*raiz) - > nummat)

else

*raiz = CrearNodo(nuevomat, nuevo-nombre);

insertar (&((*raiz) -> izda), nuevomat, nuevo-nombre);

insertar (&((*raiz) -> dcha), nuevo-mat, nuevo-nombre);
I

void visualizar (Nodo" r)
{
if (r)
i
visualizar(r -> izda);
printf('Matricu1a %d \t %s \n",r->nummat,r->nombre);
visualizar(r -> dcha);

void eliminar (Nodo** r, int mat)

if (! (*r))
printf("!! Registro con clave %d no se encuentra ! ! . \n",mat);

else if (mat i (*r)->nummat)
eliminar (& (*r) ->i.zda, mat) ;

else if (mat > (*r)->numat)
eliminar(&(*r)->dcha,mat);

else / * Matricula encontrada * /
i
Nodo* q; / * puntero al nodo a suprimir * /
q = (*y);
if (q->izda == NULL)

else if (q->dcha == NULL)

else

(*r) = q->dcha;

(*r) = q->izda;

Árboles 535

{ / * tiene rama izda y dcha. Se reemplaza por el mayor
de los menores * /

Nodo* a, *p;
P = q;
a = q->izda;
while (a->dcha) {
p = a;
a = a->dcha;

1
q->nummat = a->nummat;
strcpy(q->nombre,a->nombre);
if (p == q)

else

q = a;
1
free(q) ;

p->izda = a->izda;

p->dcha = a-iizda;

1
1

16.9.5. Recorridos de un árbol

Existen dos tipos de recorrido de los nodos de un árbol: el recorrido en anchura y el recorrido en
profundidad. En el recorrido en anchura se visitan los nodos por niveles. Para ello se utiliza una
estructura auxiliar tipo cola en la que después de mostrar el contenido de un nodo, empezando por el
nodo raíz, se almacenan los punteros correspondientes a sus hijos izquierdo y derecho. De esta forma si
recorremos los nodos de un nivel, mientras mostramos su contenido, almacenamos en la cola los
punteros a todos los nodos del nivel siguiente.

El recorrido en profundidad se realiza por uno de tres métodos recursivos: preorden, inorden y
postorden. El primer método consiste en visitar el nodo raíz, su árbol izquierdo y su árbol derecho, por
este orden. El recorrido inorden visita el árbol izquierdo, a continuación el nodo raíz y finalmente el
árbol derecho. El recorrido postorden consiste en visitar primero el árbol izquierdo, a continuación el
derecho y finalmente el raíz.

preorden Raíz I zdo D c h o
en orden Izdo Raíz D c h o
postorden I zdo D c h o Raíz

16.9.6. Determinación de la altura de un árbol

La alturu de un árbol dependerá del criterio que se siga para definir dicho concepto. Así, si en el caso de
un árbol que tiene nodo raíz, se considera que su altura es 1, la altura del árbol es 2, y la altura del árbol

1

536 Programación en C. Metodología, algoritmos y estructura de datos

es 4. Por último, si la altura de un árbol con un nodo es 1 , la altura de un árbol vacío (el puntero es
NULL) es O.

\

Nota

La altura de un árbol es 1 más que la mayor de las alturas de sus subárboles izquierdo y derecho.

A continuación, en el Ejemplo 16.14 se escribe una función entera que devuelve la altura de un
árbol.

Ejemplo 16.14

Fuiicicín que determina la altura de un árbol binario de maneru recursiva. Se considera que la altura
de un árbol vacío es O; si no está vacío. la ulturu es I + múximo entre las alturas de rama izquierda y
derecha.

int altura(Nodo* r)
J

if (r == NULL)

else
return O;

return (1 + max(alturd(r-zizda),altura(r>dcha))));

16.10. APLICACIONES DE ÁRBOLES EN ALGORITMOS DE EXPLORACIÓN

Los algoritmos recursivos de recorridos de árboles son el fundamento de muchas aplicaciones de
árboles. Proporcionan un acceso ordenado y metódico a los nodos y a sus datos. Vamos a considerar en
esta sección una serie de algoritmos de recorrido usuales en numerosos problemas de programación,
tales como: contar el número de nodos hoja, calcular la profundidad de un árbol, imprimir un árbol o
copiar y eliminar árboles.

Árboles 537

16.10.1. Visita a los nodos de un árbol

En muchas aplicaciones se desea explorar (recorrer) los nodos de un árbol pero sin tener en cuenta un
orden de recorrido preestablecido. En esos casos, el cliente o usuario es libre para utilizar el algoritmo
oportuno.

La función ContarHoj as recorre el árbol y cuenta el número de nodos hoja. Para realizar esta
operación se ha de visitar cada nodo comprobando si es un nodo hoja. El recorrido utilizado será el
postorden.

/ * Función ContarHojas
la función utiliza recorrido postorden
en cada visita se comprueba si el nodo es un nodo hoja
(no tiene descendientes)

* /

void contarhojas (Nodo" r, int* nh)
{

if (r ! = NULL)
I
contarhojas (r -> izda, nh) ;
contarhojas (r -> dcha, nh) ;

if (r->izda==NULL && r->dcha==NULL) (*nh)++;
/ * procesar raíz: determinar si es hoja * /

1
I

La función eliminarbol utiliza un recorrido postorden para liberar todos los nodos del árbol
binario. Este recorrido asegura la liberación de la memoria ocupada por un nodo después de haber
liberado su rama izquierda y derecha.

/ * Función eliminarbol
Recorre en postorden el árbol. Procesar la raíz, en esta
función es liberar el nodo con free().

* /
void eliminarbol (Nodo" r)
{

if (r ! = NULL)
i
eliminarbol(r -> izda);
eliminarbol(r -> dcha);
printf ("\tNodo borrado: %d ",r->numat) ;
free(r);

I
1

16.11. RESUMEN

En este capítulo se introdujo y desarrolló la estructura
de datos dinámica árbol. Esta estructura, muy potente,
se puede utilizar en una gran variedad de aplicaciones

La estructura árbol más utilizada normalmente es
el drbol binario. Un árbol binario es un árbol en el
que cada nodo tiene como máximo dos hijos, llama-

' de programación. dos subá&ol izquierdo y subárbol derecho.

1
538 Programación en C. Metodología, algoritmos y estructura de datos

antecesor o

tambi6n como profindi-

A A

A A
B C c B

25 equilibrado equitibrado

A
55

no equilibrado
totalmente

Los árboles binarios presentan dos tipos caracte-
risticos: árboles binanos de búsqueda y árboles bina-
nos de expresiones. Los &boles binarios de búsqueda
se utilizan fundamentalmente para mantener una
colección ordenada de datos y los árboles binarios de
expresiones para almacenar expresiones.

Árboles 539

arios que representan las

Lis& los hijos del nodo R .
Listar los sucesores del nodo R .

16.6, El recorrído preorden de un cierto &bol binario
produce.

540 Programación en C. Metodologia, algoritmos y estructura de datos

ADFGHKLPQRWZ

y en recorrido enorden produce

GFHKDLAWRQPZ

Dibujar el árbol binario.

16.7. Escribir una función no recursiva que cuente
las hojas de un árbol binario.

16.8. Escribir un programa que procese un árbol
binario cuyos nodos contengan caracteres y a
partir del siguiente menú de opciones:

I (seguido de un carácter): Insertar un carácter
B (seguido de un carácter): Buscar un carácter
RE : Recorrido en orden
RP : Recorrido en preorden
RT : Recorrido postorden
SA : Salir

16.13. PROBLEMAS

16.1. Crear un archivo de datos en el que cada lima
contenga la siguiente información

Columnas 1-20 Nombre
21-31 Número de la Seguridad

32-78 Mcc ión
Social

Escribir un programa que lea cada regisíro
de datos de un &bol, de modo que CUaRdo el
áibol se mmra utili recamdo en orden,
los ntfmeros de la seguridad social se ordenen
em orden ascendente. Imprimir una cabecera
"DATOS DE EMPLEaDOS ORDE-NADOS
POR hTUlvERO SECURXDAD SOCIAL". A
continuación se han de imprimir los tres datos
utilizando el siguiente formato de salida.

Columnas 1- 11 Número de la Seguridad
Social

25-44 Nombre
58-104 Dirección

163. Escribir un programa que lea un texto de lon-
gitud indeterminada y que produzca como
resultado la lista de todas las palabras diferen-

16.9. Escribir una función que tome un árbol como
entrada y devuelva el número de hijos del
árbol.

16.10. Escribir una función booleana a la que se le
pase un puntero a un árbol binario y devuelva
verdadero (true) si el árbol es completo y fal-
se en caso contrario.

16.11. Diseñar una función recursiva de búsqueda,
que devuelva un puntero a un elemento en un
árbol binario de búsqueda; si no está el ele-
mento, devuelva NULL.

16.12. Diseñar una función iterativa que encuentre el
número de nodos hoja en un árbol binario.

tes contenidas en e$ texto, así como su frecuen-
cia de aparicibn.

Hacer uso de la estructura árbol binario de
búsqueda, cada nodo del árbol que tenga una
palabra y su frecuencia.

163. Se dispone de un árbol binario de elementos de
tip entero. Escribir funciones que calculen:

a) La suma de sus elementos
b) La suma de sus elementos que son múlti-

plos de 3.

16.4. Escribir una func-ión boogeana IDENTICOS
que -ita decir si dos árboles binarios son
iguales.

16.5. Disefiar un programa interactivo que permita
etc., en un árbol b i b 0

16.6. Construir un procedimiento recursivo para
escribir todos los nodos de un &bol binario de
búsqueda cuyo campo clave sea mayor que un
valor dado (el campo clave es de tipo entero).

de búsqueda

Árboles 541

16.7. Escribir una función que,determine la altura
de un nodo. Escribir un programa que cree
un árbol binario con números generados ale-
atoriamente y muestre por pantalla:

La altura de cada nodo del árbol.
La diferencia de altura entre rama izquier-
da y derecha de cada nodo.

16.8. Diseñar procedimientos no recursivos que
listen los nodos de un árbol en inorden, pre-
orden y postorden.

16.9. Dados dos árboles binarios de búsqueda
indicar mediante un programa si los árboles
tienen o no elementos comunes.

16.10. Dado un árbol binario de búsqueda cons-
truir su árbol espejo. (&bol espejo es el
que se construye a partir de uno dado, con-
virtiendo el subárbol izquierdo en subárbol
derecho y viceversa.)

16.11. Un árbol binario de búsqueda puede impie-
mentarse con un array. La representación no
enlazada correspondiente consiste en que para
cualquier nodo del árbol almacenado en la
posición I del array, su hijo izquierdo se
encuentra en la posición 2*1 y su hijo derecho
en la posición 21 + 1. Diseñar a partir de esta
representación los correspondientes procedi-
mientos y funciones para gestionar inte-
ractivamente un árbol de números enteros.
(Comente el inconveniente de esta represen-
tación de cara al máximo y mínimo número
de nodos que pueden almacenarse.)

16.12. Una matriz de N elementos almacena cadenas
de caracteres. Utilizando un árbol binario de
búsqueda como estructura auxiliar ordene
ascendentemente la cadena de caracteres.

16.13. Dado un árbol binario de búsqueda diseñe un
procedimiento que liste los nodos del árbol
ordenados descendentemente.

	Prólogo
	Capítulo 1 Introducción a la ciencia de la computación y a la programación
	1.1 ¿Qué es una computadora?
	1.2 Organización física de una computadora (hardware)
	1.2.1 Dispositivos de EntradafSalida (E/S)
	1.2.2 La memoria central (interna)
	1.2.3 La Unidad Central de Proceso (UCP)
	1.2.4 El microprocesador
	1.2.5 Memoria auxiliar (externa)
	1.2.6 Proceso de ejecución de un programa
	1.2.7 Comunicaciones: módems redes telefonía RDSI y ADSL
	1.2.8 La computadora personal multimedia ideal para

	1.3 Concepto de algoritmo
	1.3.1 Características de los algoritmos

	1.4 El software (los programas)
	1.5 Los lenguajes de programación
	1.5.4 Lenguajes de alto nivel

	1.6 El lenguaje C: historia y características
	1.6.1 Ventajas de C
	1.6.2 Características
	1.6.3 Versiones actu

	Capítulo 2 Fundamentos de programación
	2.1 Fases en la resolución de problemas
	2.1.1 Análisis del problema
	2.1.2 Diseño del algoritmo
	2.1.3 Herramientas de la programación
	2.1.4 Codificación de un programa
	3.6.5 Signos de puntuación y separadores
	3.6.6 Archivos de cabecera

	3.7 Tipos de datos en C
	3.7.1 Enteros(int)

	3.8.1 Escritura de valores lógicos
	3.9.2 Constantes definidas (simbólicas)
	3.10.1 Declaracion
	3.10.2 Inicialización de variables
	3.10.3 Declaración o definición
	3.11 Duracióndeunavariable
	3.11.1 Variables locales
	3.11.2 Variables globales
	3.11.3 Variables dinámicas
	3.12.2 Entrada
	3.12.3 Salida de cadenas de caracteres
	3.12.4 Entrada de cadenas de caracteres

	3.13 Resumen
	3.14 Ejercicios

	Capítulo 4 Operadores y expresiones
	4.1 Operadores y expresiones
	4.2 Operador de asignación
	4.3 Operadores aritméticos
	4.3.1 Asociatividad
	4.3.2 Uso de paréntesis

	4.6 Operadores lógicos
	4.6.1 Evaluación en cortocircuito
	4.6.2 Asignaciones booleatias (lógicas)
	4.7 Operadores de manipulación de bits
	4.7.1 Operadores de asignación adic
	4.7.2 Operadores de desplazamiento de bits », «)
	4.7.3 Operadores de direcciones

	4.8 Operador condicional
	4.12.3 Conversión explícita

	4.13 Prioridad y asociatividad
	4.14 Resumen
	4.15 Ejercicios
	4.16 Problemas

	Capítulo 5 Estructuras de selección: sentencias if y switch
	5.1 Estructuras de control
	5.4 Sentencias i f - el se anidadas
	5.5 Sentencia de control switch
	5.5.1 Caso particular de case

	5.7 Evaluación en cortocircuito de expresiones lógicas
	5.10 Resumen
	5.12 Problemas
	6.1.2 Terminaciones anormales de un ciclo
	6.1.4 Bucles while con cero iteraciones
	6.1.5 Bucles controlados por centinelas
	6.1.8 Bucles while (true)
	6.2.1 Diferentes usos de bucles for
	6.3 Precauciones en el uso de for
	6.3.3 Sentencias nulas en bucles for
	6.3.4 Sentencias break y continue

	6.4 Repetición: el bucle do whi le
	6.4.1 Diferencias entre while y do-while
	6.6.2 Fin de un bucle
	6.6.3 Otras técnicas d
	6.6.4 Bucles for vacíos

	6.7 Bucles anidados
	6.10 Problemas
	6.11 Proyectos d

	Capítulo7 Funciones
	7.1 Conceptodefunción
	7.2 Estructuradeunafunción
	7.2.1 Nombre de una función
	7.6.1 Ambito del programa
	7.6.2 Ambito del archivo fuente
	7.6.3 Ambito de una función
	7.6.4 Ambito de bloque
	7.6.5 Variables locales

	7.7 Clases de almacenamiento
	7.7.1 Variables automáticas
	7.7.2 Variables externas
	7.7.3 Variables registro
	7.7.4 Variables estáticas

	7.8 Concepto y uso de funcione a
	7.9 Funciones de carácter
	7.9.1 Comprobación alfabética y de dígitos
	7.9.2 Funciones de prueba de caracteres espe
	7.9.3 Funciones de conversión de caracteres

	7.10 Funciones numéricas

	7.10.1 Funciones matemáticas
	7.10.2 Funciones trigonométricas
	7.10.3 Funciones logm?tmicas y exponenciales
	7.10.4 Funciones

	7.10.4 Funciones aleatorias
	7.13 Visibilidad de una función
	7.13.1 Variables locales fren
	7.13.2 Variables estáticas y automáticas

	7.14 Compilación separada
	7.17 Resumen
	Capítulo 8 Arrays (listas y tablas)
	8.1.2 Subíndices de un array
	arrays
	8.1.4 El tamaño de los arrays
	8.1.5 Verificación del rango
	8.2 Iniciaiización de un array
	8.3 Arrays de caracteres y cadenas de
	8.4 Arrays multidimensionales
	8.4.1 Inicialización de arrays mu

	8.4.2 Acceso a los elementos de los arrays bidimensionales
	8.4.3 Lectura y escritura de arrays bidimensionales
	8.4.5 Arrays de más de dos dimensiones
	8.4.6 Una aplicación práctica
	8.5 Utilización de arrays como parámetros
	8.6 Ordenación de listas
	8.6.1 Algoritmo de la burbuja

	8.7 Búsqueda en listas
	8.10 Problemas

	Capítulo 9 Estructuras y uniones
	9.1 Estructuras
	una estructura
	9.1.2 Definición de variables de estructuras
	9.1.3 Uso de estructuras en asignaciones
	9.1.4 Inicialización de una declaración de estructuras
	9.1.5 El tamaño de una estructura

	9.2 Acceso a estructuras
	9.3.1 Ejemplo de estructuras anidadas

	9.4 Arrays de estructuras
	9.6 Uniones
	9.7 Enumeraciones
	9.8 Campos de bit
	9.9 Resumen

	Capítulo 10 Punteros (apuntadores)
	10.1 Direcciones en memoria
	10.2.2 Inicialización (iniciación
	10.4 Punteros a punteros
	10.5 Punteros y arrays
	nteros
	10.8 Aritmética de punteros
	10.8.1 Una aplicación de ón de caracteres

	10.9 Punteros constantes frente a punteros a constantes
	10.9.1 Punteros constantes
	10.9.2 Punteros a constantes
	10.11.1 Inicialización de u

	10.14 Ejercicios

	Capítulo 11 Asignación dinámica de memoria
	11.1 Gestión dinámica de la memoria
	11.1.1 Almacén libre (free store)

	11.2 Función malloc ()
	11.2.1 Asignación de memoria de un tamaño desconocido

	11.4 Funciones de asignación de memoria call í)y realloc í)
	11.4.1 Función calloc ()
	11.4.2 Función realloc ()

	11.5 Asignación de memoria para array
	11.5.1 Asignación de memoria interactivamente
	11.5.2 Asignación de memoria para un array de estructuras

	11.8 Resumen
	11.9 Ejercicios
	11.10 Problemas

	Capítulo 12 Cadenas
	12.1 Conceptodecadena
	12.2.2 Función putchar ()

	12.5 Asignación de cadenas
	12.5.1 La función s t
	adenas

	12.6.2 Las funciones strcat ()y strncat ()
	12.7.3 La función strncmp ()

	12.10 Conversión de cadenas a números
	12.10.1 Función atoi ()
	12.10.3 Función ato1
	12.11.2 Función strrchr ()
	12.11.4 Función strcspn ()
	12.11.5 Función strpbrk ()

	12.12 Resumen

	Capítulo 13 Entradas y salidas por archivos
	13.1 Flujos
	13.2 Puntero FILE
	13.3 Apertura de un
	13.3.1 Modos de apertura de un archivo
	13.3.2 NULL y EOF
	13.3.3 Cierre de archivos

	13.4 Creación de un archivo secuencia1
	13.5.2 Función de lectura f read ()

	13.6 Funciones para acceso aleatorio
	13.6.2 Función ftell ()

	13.8 Resumen
	13.10 Problemas

	Capítulo 14 Listas enlazadas
	14.1 Fundamentos teóricos
	14.2 Clasificación de las listas enlazadas
	14.3 Operaciones en listas enlazadas
	14.3.1 Declaración de un nodo
	14.3.2 Puntero de cabecera y cola
	14.3.3 El puntero nulo
	14.3.4 El operador - > de selecció
	14.3.5 Construcción de una lista
	14.3.6 Insertar un elemento en una lista
	14.3.7 Búsqueda de un elemento
	14.3.8 Supresión de un nodo en una lista

	14.4 Lista doblemente enlazada
	14.4.3 Supresión de un elemento en una lista doblemente enlazada

	14.5 Listas circulares
	14.5.1 Insertar un elem en una lista circular
	14.5.2 Supresión de un elemento en una lista circular

	14.6 Resumen
	14.7 Ejercicios
	14.8 Problemas

	Capítulo 15 Pilas y colas
	15.1 Concepto de pila
	15.1.1 Especificaciones de una

	15.2 El tipo pila implementado con arrays
	15.2.1 Especificación del tipo pi 1 a
	15.2.3 Operaciones de verificación del estado de la pila

	15.3 Colas
	15.4 El tipo cola implementada con arrays
	15.4.1 Definición de la especificación de una cola
	15.4.2 Especificación del tipo cola
	15.4.3 Implementación del tipo cola
	15.4.4 Operaciones de la cola

	15.5 Realización de una cola con una lista enlazada
	15.5.1 Declaración del tipo cola con listas
	15.5.2 Codificación de
	eraciones del tipo c o 1 a con listas

	15.6 Resumen
	15.7 Ejercicios
	15.8 Problemas
	16.4 Estructura de un árbol binario
	16.7.3 Recomdo postorden

	16.9.1 Búsqueda
	16.9.5 Recorridos de un árbol
	16.13 Problemas

