Universidad de Departamento de Ingenieria

los Andes de Sistemas y Computacion

Facultad de Ingenieria

FUNDAMENTOS
DE PROGRAMACION

APRENDIZAJE ACTIVO BASADO EN CASOS

JORGE A. VILLALOBOS S. / RUBBY CASALLAS G.

Tabla de contenido

Prefacio 1.1
Nivel 1: Problemas, Soluciones y Programas 1.2
Objetivos Pedagogicos 1.2.1
Motivacion 1.2.2
Problemas y Soluciones 1.2.3
Casos de Estudio 1.2.4
Comprension y Especificacion del Problema 1.25
Elementos de un Programa 1.2.6
Disefo de la Solucion 1.2.7
Construccion de la Solucion 1.2.8
Hojas de Trabajo 1.2.9
Nivel 2: Definicion de Situaciones y Manejo de Casos 1.3
Objetivos Pedagogicos 1.3.1
Motivacién 1.3.2
El Primer Caso de Estudio 1.3.3
Nuevos Elementos De Modelado 1.3.4
Expresiones 1.3.5
Clases y Objetos 1.3.6
Instrucciones Condicionales 1.3.7
Responsabilidades de una Clase 1.3.8
Eclipse: Nuevas Opciones 1.3.9
Hojas de trabajo 1.3.10
Nivel 3: Manejo de Grupos de Atributos 14
Objetivos Pedagdgicos 1.4.1
Motivacion 1.4.2
Caso de Estudio N° 1: Las Notas de un Curso 1.4.3
Contenedoras de Tamano Fijo 144
Instrucciones Repetitivas 145
Caso de Estudio N° 2: Reservas en un Vuelo 1.4.6
Caso de Estudio N° 3: Una Tienda de Libros 1.4.7

Contenedoras de Tamano Variable 14.8

Uso de Ciclos en Otros Contextos 1.4.9
Creacion de una Clase en Java 1.4.10
Hojas de trabajo 1.4.11
Nivel 4: Definicion y Cumplimiento de Responsabilidades 1.5
Objetivos Pedagogicos 1.5.1
Motivacion 1.5.2
Caso de Estudio N° 1: Un Club Social 1.5.3
Asignacioén de responsabilidades 1.54
Manejo de las Excepciones 1.5.5
Contrato de un Método 1.5.6
Disefio de las Signaturas de los Métodos 1.5.7
Caso de Estudio N° 2: Un Brazo Mecanico 1.5.8
Hojas de trabajo 1.5.9
Nivel 5: Construccién de la Interfaz Grafica 1.6
Objetivos Pedagogicos 1.6.1
Motivacién 1.6.2
El Caso de Estudio 1.6.3
Construccion de Interfaces Graficas 1.6.4
Elementos Graficos Estructurales 1.6.5
Elementos de Interaccion 1.6.6
Mensajes al Usuario y Lectura Simple de Datos 1.6.7
Arquitectura y Distribucion de Responsabilidades 1.6.8
Ejecuciéon de un Programa en Java 1.6.9
Hojas de trabajo 1.6.10
Nivel 6: Manejo de Estructuras de dos Dimensiones y Persistencia 1.7
Objetivos Pedagdgicos 1.7.1
Motivacion 1.7.2
Caso de Estudio N° 1: Un Visor de Imagenes 1.7.3
Contenedoras de dos Dimensiones: Matrices 1.7.4
Caso de Estudio N° 2: Campeonato de Futbol 1.7.5
Persistencia y Manejo del Estado Inicial 1.7.6
Completar la Solucion del Campeonato 1.7.7
Proceso de Construccion de un Programa 1.7.8

Hojas de trabajo
Anexos
A. El Lenguaje Java
B. Resumen de Comandos de Windows

C. Tabla de Cédigos UNICODE

1.7.9

1.8
1.8.1
1.8.2
1.8.3

Prefacio

Fundamentos de Programacion

Universidad de Departamento de Ingenieria

los Andes de Sistemas y Computacion

Facultad de Ingenieria

FUNDAMENTOS
DE PROGRAMACION

APRENDIZAJE ACTIVO BASADO EN CASOS

JORGE A. VILLALOBOS S. / RUBBY CASALLAS G.

Prefacio

Objetivos

Este libro es uno de los resultados del proyecto Cupi2, un proyecto de actualizacion
curricular de la Universidad de los Andes (Bogota, Colombia), cuyo principal propdsito es
encontrar mejores formas de ensefar/aprender a resolver problemas usando como
herramienta un lenguaje de programacion de computadores.

Este libro tiene como objetivo servir de herramienta fundamental en el proceso de
ensefaza/aprendizaje de un primer curso de programacion, usando un enfoque novedoso
desde el punto de vista pedagdgico, y moderno desde el punto de vista tecnoldgico.

Queremos que el libro sea una herramienta de trabajo dentro de un proceso de aprendizaje,
en el que el lector debe ser su principal protagonista. Por esta razon, a lo largo de los
niveles que conforman el libro, se le ira pidiendo al lector que realice pequefas tareas a
medida que se presenta la teoria y, luego, que resuelva problemas completos directamente
sobre el libro.

El Puablico Destinatario

El libro esta dirigido a estudiantes que toman por primera vez un curso de programacion de
computadores, sin importar el programa de estudios que estén siguiendo. Esto quiere decir
que para utilizar el libro no se necesita ninguna formacién especifica previa, y que las
competencias generadas con este texto se pueden enmarcar facilmente dentro de cualquier
perfil profesional.

El Enfoque del Libro

La estrategia pedagdgica disefiada para este libro gira alrededor de cinco pilares, los cuales
se ilustran en la siguiente figura.

‘ acrerdizajs ssarrolle incrementa
activa de haeilidadas

~
/

e

actualidad .\,,_/_A
‘fec‘1c:|égicc| |

=

S -
‘ sazadao an ﬂ L“w‘q.\ﬁ'ibriﬂ 2n los
/

crealemas zios temeticos
- i

Aprendizaje activo: La participacion activa del lector dentro del proceso de aprendizaje es
un elemento fundamental en este tema, puesto que, mas que presentar un amplio conjunto
de conocimientos, el libro debe ayudar a generar las competencias o habilidades necesarias
para utilizarlos de manera efectiva. Una cosa es entender una idea, y otra muy distinta
lograr utilizarla para resolver un problema.

Desarrollo incremental de habilidades: Muchas de las competencias necesarias para
resolver un problema usando un lenguaje de programacion se generan a partir del uso
reiterado de una técnica o metodologia. No es suficiente con que el lector realice una vez
una tarea aplicando los conceptos vistos en el curso, sino que debe ser capaz de utilizarlos
de distintas maneras en distintos contextos.

Equilibrio en los ejes tematicos: La solucion de un problema usando un lenguaje de
programacion incluye un conjunto de conocimientos y habilidades de varios dominios.
Dichos dominios son los que en la siguiente seccién denominamos ejes conceptuales. Este
curso intenta mantener un equilibro entre dichos ejes, mostrando asi al lector que es en el
adecuado uso de las herramientas y técnicas que provee cada uno de los ejes, donde se
encuentra la manera correcta de escribir un programa de computador.

Basado en problemas: El libro gira alrededor de 24 problemas completos, cuya solucién
requiere el uso del conjunto de conceptos y técnicas presentadas en el libro. La mitad de los
problemas se utilizan como casos de estudio y la otra mitad, como hojas de trabajo.

Actualidad tecnolégica: En este libro se utilizan los elementos tecnoldgicos actuales, entre
los cuales se encuentran el lenguaje de programacion Java, el lenguaje de modelado UML,
el ambiente de desarrollo de programas Eclipse y las técnicas de la programacion orientada
por objetos

Prefacio

Los Ejes Conceptuales de la Programacion

Para resolver un problema utilizando como herramienta un lenguaje de programacion, se
necesitan conocimientos y habilidades en siete dominios conceptuales (llamados también
ejes tematicos), los cuales se resumen en la siguiente figura:

procesos de |-
software

algeritmica

Modelado y solucién de problemas: Es la capacidad de abstraer la informacion de la
realidad relevante para un problema, de expresar dicha realidad en términos de algun
lenguaje y proponer una solucion en términos de modificaciones de dicha abstracciéon. Se
denomina "analisis" al proceso de crear dicha abstraccion a partir de la realidad, y
"especificacion del problema" al resultado de expresar el problema en términos de dicha
abstraccion.

Algoritmica: Es la capacidad de utilizar un conjunto de instrucciones para expresar las
modificaciones que se deben hacer sobre la abstraccion de la realidad, para llegar a un
punto en el cual el problema se considere resuelto. Se denomina "disefio de un algoritmo" al
proceso de construccién de dicho conjunto de instrucciones.

Tecnologia y programacién: Son los elementos tecnoldgicos necesarios (lenguaje de
programacion, lenguaje de modelado, etc.) para expresar, en un lenguaje comprensible por
una maquina, la abstraccién de la realidad y el algoritmo que resuelve un problema sobre
dicha abstraccién. Programar es la habilidad de utilizar dicha tecnologia para que una
maquina sea capaz de resolver el problema.

Herramientas de programacion: Son las herramientas computacionales (compiladores,
editores, depuradores, gestores de proyectos, etc.) que permiten a una persona desarrollar
un programa. Se pueden considerar una implementacion particular de la tecnologia.

Procesos de software: Es el soporte al proceso de programacion, que permite dividir el
trabajo en etapas claras, identificar las entradas y las salidas de cada etapa, garantizar la
calidad de la solucion, y la capacidad de las personas involucradas y estimar en un futuro el
esfuerzo de desarrollar un programa. Aqui se incluye el ciclo de vida de un programa, los
formularios, la definicidon de los entregables, el estandar de documentacién y codificacion, el
control de tiempo, las técnicas de inspeccion de cddigo, las técnicas de pruebas de
programas, etc.

Técnicas de programacion y metodologias: Son las estrategias y guias que ayudan a
una persona a crear un programa. Se concentran en el cdmo hacer las cosas. Definen un
vocabulario sobre la manera de trabajar en cada una de las facetas de un programa, y
estan constituidas por un conjunto de técnicas, métricas, consejos, patrones, etc. para que
un programador sea capaz de pasar con éxito por todo el ciclo de vida de desarrollo de una
aplicacion.

Elementos estructuradores y arquitecturas: Definen la estructura de la aplicacion
resultante, en términos del problema y de los elementos del mundo del problema. Se
consideran elementos estructuradores las funciones, los objetos, los componentes, los
servicios, los modelos, etc. Este eje se concentra en la forma de la solucion, las
responsabilidades de cada uno de los elementos, la manera como esos elementos se
comunican, etc.

La Estructura del Libro

El libro sigue una estructura de niveles, en el cual se introducen los conceptos de manera
gradual en los distintos ejes alrededor de los cuales gira la programacion. Para hacerlo, se
utilizan diversos casos de estudio o problemas, que le dan contexto a los temas y permiten
ayudar a generar las habilidades necesarias para que el lector utilice de manera adecuada
los conceptos vistos.

Los 6 niveles en los cuales se encuentra dividido el libro se muestran en la siguiente figura:

Nivel 1 - Problemas, Soluciones y Programas

Nivel 2 - Definiciéon de Situaciones y Manejo de Casos

Nivel 3 - Manejo de Grupos de Atributos

Nivel 4 - Definicion y Cumplimiento de Responsabilidades

Nivel 5 - Construccién de la Interfaz Gréfica

Nivel 6 - Manejo de Estructuras de dos Dimensiones y Persistencia

En cada uno de dichos niveles, se presentan de manera trasversal los elementos de los

siete ejes conceptuales, dando lugar a una estructura como la que se presenta a
continuacion:

lzerolegia v
programacian

teenizcas de srogramaciér

i Y tenas ogiax
//
Y l.f
iy . zler~zalas esleuszlurasarss

algor’ mica

rmodelaiz v solucisn __

de prozlamas \\\3 ."\\-.,. i ! \f .;"/ /,..-- v arouitecturos
Eje 1 Eje 2 Eje 3 Eje 4 Eje 5 Eje & Eje 7
MNivel 1
Nivel 2
Nivel 3
Nivel 4
Mivel 5
Nivel &

El contenido de cada uno de los niveles se resume de la siguiente manera:

Nivel 1. Problemas, Soluciones y Programas:

Se explica el proceso global de solucion de un problema con un programa de computador.
Esto incluye las etapas que deben seguirse para resolverlo y los distintos elementos que se
deben ir produciendo a medida que se construye la solucién. Se analizan problemas
simples a través de la especificacion de los servicios que el programa debe ofrecery a
través de un modelo conceptual del mundo del problema. Se explica la estructura de un
programa de computador y el papel que desempeia cada uno de los elementos que lo
componen. Se introduce el lenguaje de programacion Java y los elementos necesarios para
que el estudiante complete un programa utilizando expresiones simples, asignaciones y
llamadas de métodos. Se utiliza un ambiente de desarrollo de programas y un espacio de
trabajo predefinido, para completar una solucién parcial a un problema.

Nivel 2. Definiendo Situaciones y Manejando Casos:

Se extienden los conceptos de modelado de las caracteristicas de un objeto, utilizando
nuevos tipos simples de datos y la técnica de definir constantes para representar los valores
posibles de un atributo. Se utilizan expresiones como medio para identificar una situacion
posible en el estado de un objeto y para indicar la manera de modificar dicho estado. Se
explican las instrucciones condicionales simples y compuestas como parte del cuerpo de un
metodo, de manera que sea posible considerar distintos casos posibles en la solucién de un
problema. Se presenta de manera informal, una forma para identificar los métodos de una
clase, utilizando para esto la técnica de agrupar los métodos por tipo de responsabilidad
que tienen: construir, modificar o calcular.

Nivel 3: Manejando Grupos de Atributos:

Se explica la forma de utilizar las estructuras contenedoras de tamafio fijjo como elementos
de modelado de una caracteristica de un elemento del mundo, que permiten almacenar una
secuencia de valores (simples u objetos) y las estructuras contenedoras de tamafio variable
como elementos de modelado que permiten manejar atributos cuyo valor es una secuencia
de objetos. Se introducen las instrucciones repetitivas en el contexto del manejo de
secuencias. Se extienden conceptos sobre el ambiente de desarrollo, en particular, se
explica la forma de crear una clase completa en Java utilizando Eclipse. Se expone la forma
de utilizar la documentacién de un conjunto de clases escritas por otros y la forma de
servirse de dicha documentacién para poder incorporar y usar adecuadamente dichas
clases en un programa que se esta construyendo.

Nivel 4: Definicion y Cumplimiento de Responsabilidades:

En este nivel se hace énfasis en la asignacion de responsabilidades a las clases que
representan la solucion de un problema, utilizando técnicas simples. Se explica la técnica
metodoldgica de dividir y conquistar para resolver los requerimientos funcionales de un
problema y realizar la asignacion de responsabilidades. Se estudia el concepto de contratos
de los métodos tanto para poderlos definir como para poderlos utilizar en el momento de

invocar el método. Se ensefa la forma de utilizar la clase Exception de Java para manejar
los problemas asociados con la violacion de los contratos. Se presenta la forma de
documentar los contratos de los métodos utilizando la sintaxis definida por la herramienta
javadoc. Se profundiza en el manejo del ambiente de desarrollo y el lenguaje Java, con el
proposito de que el estudiante pueda escribir una clase completa del modelo del mundo,
siguiendo una especificacion dada en términos de un conjunto de contratos.

Nivel 5: Construyendo la Interfaz Grafica:

El tema principal de este nivel es la construccién interfaces usuario simples. Se presenta la
importancia que tiene la interfaz de usuario dentro de un programa de computador, teniendo
en cuenta que es el medio de comunicacion entre el usuario y el modelo del mundo. Se
propone una arquitectura para un programa simple, repartiendo de manera adecuada las
responsabilidades entre la interfaz de usuario, el modelo del mundo y las pruebas unitarias.
Se enfatiza la importancia de mantener separadas las clases de esos tres dominios.

Nivel 6: Manejo de Estructuras de dos Dimensiones y Persistencia:

Se explica cédmo utilizar el concepto de matriz como elemento de modelado que permite
agrupar los elementos del mundo en una estructura contenedora de dos dimensiones de
tamano fijo. Se identifican los patrones de algoritmo para manejo de matrices, dada la
especificacion de un método. Se presenta la manera de utilizar un esquema simple de
persistencia para el manejo del estado inicial de un problema. Por ultimo, se resume el
proceso de construccidn de un programa seguido en el libro.

Las Herramientas y Recursos de Apoyo

Este libro es un libro de trabajo para el estudiante, donde puede realizar sus tareas y
ejercicios asociados con cada nivel. Consideramos la pagina web del curso como parte
integral del mismo. Todos los casos de estudio que se utilizan en los distintos niveles estan
resueltos e incluidos en dicho sitio web, asi como las hojas de trabajo. Ademas, cada una
de estas soluciones contiene puntos de extension para que el profesor pueda disefar
ejercicios adicionales con sus estudiantes. Es importante que el profesor motive a los
estudiantes a consultar la pagina web al mismo tiempo que lee el libro.

En la pagina web se encuentran tres tipos de elementos: (1) los programas de los casos de
estudio, (2) los programas de las hojas de trabajo y (3) los entrenadores sobre ciertos
conceptos. La pagina ha sido construida de manera que sea facil navegar por los elementos
que lo constituyen.

Todo el contenido de apoyo, lo mismo que otros materiales de apoyo al profesor, se puede
encontrar en el sitio web del proyecto: hitp://cupi2.uniandes.edu.co

http://cupi2.uniandes.edu.co

Licencias de Uso y Marcas Registradas

Alo largo de este libro hacemos mencion a distintas herramientas y productos comerciales,
todos los cuales tienen sus marcas registradas. Estos son: Microsoft Windows®, Microsoft
Word®, Enterprise Architect®, Java®, Mozilla Firefox®, Eclipse®, JUnit®, Adobe Acrobat
Reader®, Mac Apple Inc.®.

Todas las herramientas, programas, entrenadores y demas materiales desarrollados como
soporte y complemento del libr, se distribuyen bajo la licencia “Academic Free License v.
2.1” que se rige por lo definido en: http://opensource.org/licenses/

Agradecimientos

Agradecemos a todas las personas, profesores y estudiantes, que han ayudado a que este
libro se vuelva una realidad. En particular, queremos agradecer a Katalina Marcos por su
valiosa ayuda y apoyo a todo lo largo del proceso.

También queremos reconocer el trabajo de Mario Sanchez y Pablo Bravo, nuestros
incansables colaboradores. Ellos nos ayudaron en la construccion de muchos de los
ejercicios y ejemplos alrededor de los cuales gira este libro. Gracias por su ayuda y su
permanente buen humor.

Una mencién especial merecen los profesores y estudiantes que durante el ultimo afo
participaron en las secciones de prueba, usadas para validar el enfoque pedagodgico
propuesto, y quienes utilizaron como material de trabajo los primeros borradores de este
libro. En particular, queremos reconocer el trabajo de Marcela Hernandez, quien participd
activamente en la revisién del borrador del libro y quien construy6 una parte del material de
apoyo a profesores que se encuentra disponible en el sitio WEB del proyecto.

Agradecemos la ayuda que recibimos de parte de LIDIE (Laboratorio de Investigacion en
Informatica Educativa de la Universidad de los Andes), en las tareas de seguimiento,
validacién, diseno de las estrategias pedagdgicas y diserio de los iconos y figuras que
ilustran este libro.

Sobre los Autores

Jorge A. Villalobos, Ph.D

Obtuvo un doctorado en la Universidad Joseph Fourier (Francia), un Master en Informatica
en el Instituto Nacional Politécnico de Grenoble (Francia) y el titulo de Ingeniero en la
Universidad de los Andes (Colombia). Actualmente es profesor asociado del Departamento

http://opensource.org/licenses/

de Ingenieria de Sistemas de la Universidad de los Andes, en donde coordina el grupo de
investigacion en Construccion de Software y el proyecto Cupi2. Ha trabajado como
investigador visitante en varias universidades europeas (Espafa y Francia) y es el autor de
los libros “Disefno y Manejo de Estructuras de Datos en C” (1996) y “Estructuras de Datos:
Un Enfoque desde Tipos Abstractos” (1990).

Rubby Casallas, Ph.D

Obtuvo un doctorado en la Universidad Joseph Fourier (Francia), es Especialista en
Sistemas de Informacion en la Organizacion de la Universidad de los Andes e Ingeniera de
Sistemas de la misma Universidad. Ha sido profesora de la Universidad del Valle y del
Rochester Institute Of Technology. Actualmente trabaja como profesora asociada del
Departamento de Ingenieria de Sistemas de la Universidad de los Andes. Es coautora del
libro “Introduccion a la Programacion” (1987).

Dedicatoria

A Vicky, por la alegria con la que me ha acostumbrado a vivir.
-Jorge
A lrene y Jorge Esteban por el futuro que representan.

-Rubby

Nivel 1: Problemas, Soluciones y Programas

PROBLEMAS, SOLUCIONES
Y PROGRAMAS

15

1. Objetivos Pedagodgicos

Al final de este nivel el lector sera capaz de:

e Explicar el proceso global de solucidon de un problema usando un programa de
computador. Esto incluye las etapas que debe seguir para resolverlo y los distintos
elementos que debe ir produciendo a medida que construye la solucion.

¢ Analizar un problema simple que se va a resolver usando un programa de computador,
construyendo un modelo con los elementos que intervienen en el problema y
especificando los servicios que el programa debe ofrecer.

e Explicar la estructura de un programa de computador y el papel que desempefia cada
uno de los elementos que lo componen.

e Completar una solucién parcial a un problema (un programa incompleto escrito en el
lenguaje Java), usando expresiones simples, asignaciones e invocaciones a métodos.
Esto implica entender los conceptos de parametro y de creacidon de objetos.

e Utilizar un ambiente de desarrollo de programas y un espacio de trabajo predefinido,
para completar una solucién parcial a un problema.

2. Motivacion

La computacion es una disciplina joven comparada con las matematicas, la fisica o la
ingenieria civil. A pesar de su juventud, nuestra vida moderna depende de los
computadores. Desde la nevera de la casa, hasta el automovil y el teléfono celular, todos
requieren de programas de computador para funcionar. Se ha preguntado alguna vez,
jcuantas lineas de codigo tienen los programas que permiten volar a un avién? La
respuesta es varios millones.

El computador es una herramienta de trabajo, que nos permite aumentar nuestra
productividad y tener acceso a grandes volumenes de informacion. Es asi como, con un
computador, podemos escribir documentos, consultar los horarios de cine, bajar musica de
Internet, jugar o ver peliculas. Pero aun mas importante que el uso personal que le
podemos dar a un computador, es el uso que hacen de él otras disciplinas. Seria imposible
sin los computadores llegar al nivel de desarrollo en el que nos encontramos en disciplinas
como la biologia (¢,qué seria del estudio del genoma sin el computador?), la medicina, la
ingenieria mecanica o la aeronautica. El computador nos ayuda a almacenar grandes
cantidades de informacioén (por ejemplo, los tres mil millones de pares de bases del genoma
humano, o los millones de pixeles que conforman una imagen que llega desde un satélite) y
a manipularla a altas velocidades, para poder asi ejecutar tareas que hasta hace solo
algunos afios eran imposibles para nosotros.

El usuario de un programa de computador es aquél que, como parte de su trabajo o de su
vida personal, utiliza las aplicaciones desarrolladas por otros para resolver un problema.
Todos nosotros somos usuarios de editores de documentos o de navegadores de Internet, y
los usamos como herramientas para resolver problemas. Un programador, por su parte, es
la persona que es capaz de entender los problemas y necesidades de un usuario y, a partir
de dicho conocimiento, es capaz de construir un programa de computador que los resuelva
(o los ayude a resolver). Vista de esta manera, la programacién se puede considerar
fundamentalmente una actividad de servicio para otras disciplinas, cuyo objetivo es ayudar
a resolver problemas, construyendo soluciones que utilizan como herramienta un
computador.

Cuando el problema es grande (como el sistema de informacion de una empresa), complejo
(como crear una visualizacién tridimensional de un disefio) o critico (como controlar un
tren), la solucion la construyen equipos de ingenieros de software, entrenados
especialmente para asumir un reto de esa magnitud. En ese caso aparecen también los
arquitectos de software, capaces de proponer una estructura adecuada para conectar los
componentes del programa, y un conjunto de expertos en redes, en bases de datos, en el

negocio de la compaifiia, en disefio de interfaces graficas, etc. Cuanto mas grande es el
problema, mas interdisciplinaridad se requiere. Piense que en un proyecto grande, puede
haber mas de 1000 expertos trabajando al mismo tiempo en el disefio y construccion de un
programa, y que ese programa puede valer varios miles de millones de ddélares. No en
vano, la industria de construccién de software mueve billones de ddlares al afio.

Independiente del tamano de los programas, podemos afirmar que la programacion es una
actividad orientada a la solucion de problemas. De alli surgen algunos de los interrogantes
que seran resueltos a lo largo de este primer nivel: ; Como se define un problema? ; Cémo,
a partir del problema, se construye un programa para resolverlo? ;De qué esta conformado
un programa? ; Como se construyen sus partes? ;Como se hace para que el computador
entienda la solucion?

Bienvenidos, entonces, al mundo de la construccidén de programas. Un mundo en constante
evolucion, en donde hay innumerables areas de aplicacién y posibilidades profesionales.

3. Problemas y Soluciones

Sigamos el escenario planteado en la figura 1.1, el cual resume el ciclo de vida de
construccion de un programa y nos va a permitir introducir la terminologia basica que
necesitamos:

e Paso 1: Una persona u organizacion, denominada el cliente, tiene un problema 'y
necesita la construccion de un programa para resolverlo. Para esto contacta una
empresa de desarrollo de software que pone a su disposicion un programador.

e Paso 2: El programador sigue un conjunto de etapas, denominadas el proceso, para
entender el problema del cliente y construir de manera organizada una solucién de
buena calidad, de la cual formara parte un programa.

e Paso 3: El programador instala el programa que resuelve el problema en un
computador y deja que el usuario lo utilice para resolver el problema. Fijese que no es
necesario que el cliente y el usuario sean la misma persona. Piense por ejemplo que el
cliente puede ser el gerente de producciéon de una fabrica y, el usuario, un operario de

la misma.
Fig. 1.1 Proceso de soluciéon de un problema
&l programador gjscuta
el cliente tiens un problema uras tareos en efopas,
dque requiere el use del para resolver el problema
\| cornpulador pora resclverls

% El proceso as |Cl secuUencia

de etapos que debe sequir

el programader
POBLEMA | ——> ‘ _ /

b { PROCESO
5 E PROGRANADOR

CLIZMNTE

an Cﬂdﬂ e‘f'opo se r‘ec:||i20n
ciertos fareas, con
chjetivos especificos

¢ programa se instela en el
cornputader del cliente,
auien lo usa

b g

&——(POGIANA) €—{SOLUCTON

™ I

el progroma de cormputador al final del proceso se tiene
hace parte de la solucien la solucién del problema

USUARID

e En la primera seccidn nos concentramos en la definicion del problema, en la segunda
en el proceso de construccion de la solucién y, en la tercera, en el contenido y
estructura de la soluciéon misma.

3.1. Especificacion de un Problema

Partimos del hecho de que un programador no puede resolver un problema que no
entiende. Por esta razoén, la primera etapa en todo proceso de construccion de software
consiste en tratar de entender el problema que tiene el cliente, y expresar toda la
informacion que él suministre, de manera tal que cualquier otra persona del equipo de
desarrollo pueda entender sin dificultad lo que espera el cliente de la solucién. Esta etapa
se denomina analisis y la salida de esta etapa la llamamos la especificacion del problema.

Para introducir los elementos de la especificacion, vamos a hacer el paralelo con otras
ingenierias, que comparten problematicas similares. Considere el caso de un ingeniero civil
que se enfrenta al problema de construir una carretera. Lo primero que éste debe hacer es
tratar de entender y especificar el problema que le plantean. Para eso debe tratar de
identificar al menos tres aspectos del problema: (1) los requerimientos del usuario (entre
qué puntos quiere el cliente la carretera, cuantos carriles debe tener, para qué tipo de trafico
debe ser la carretera), (2) el mundo en el que debe resolverse el problema (el tipo de
terreno, la cantidad de lluvia, la temperatura), y (3) las restricciones y condiciones que
plantea el cliente (el presupuesto maximo, que las pendientes no sobrepasen el 5%). Seria
una pérdida de tiempo y de recursos para el ingeniero civil, intentar construir la carretera si
no ha entendido y definido claramente los tres puntos antes mencionados. Y mas que
tiempo y recursos, habra perdido algo muy importante en una profesion de servicio como es
la ingenieria, que es la confianza del cliente.

En general, todos los problemas se pueden dividir en estos tres aspectos. Por una parte, se
debe identificar lo que el cliente espera de la solucién. Esto se denomina un requerimiento
funcional. En el caso de la programacion, un requerimiento funcional hace referencia a un
servicio que el programa debe proveer al usuario. El segundo aspecto que conforma un
problema es el mundo o contexto en el que ocurre el problema. Si alguien va a escribir un
programa para una empresa, no le basta con entender la funcionalidad que éste debe tener,
sino que debe entender algunas cosas de la estructura y funcionamiento de la empresa. Por
ejemplo, si hay un requerimiento funcional de calcular el salario de un empleado, la
descripcion del problema debe incluir las normas de la empresa para calcular un salario. El
tercer aspecto que hay que considerar al definir un problema son los requerimientos no
funcionales, que corresponden a las restricciones o condiciones que impone el cliente al
programa que se le va a construir. Fijese que estos ultimos se utilizan para limitar las

soluciones posibles. En el caso del programa de una empresa, una restriccion podria ser el
tiempo de entrega del programa, o la cantidad de usuarios simultaneos que lo deben poder
utilizar. En la figura 1.2 se resumen los tres aspectos que conforman un problema.

Fig. 1.2 Aspectos que hacen parte del analisis de un problema

requerimientos

funcionales
7

mundo del
problema

L

requerimientos

no funcionales
o

CLIENTE PROGRAMADOR

e Analizar un problema es tratar de entenderlo. Esta etapa busca garantizar que no
tratemos de resolver un problema diferente al que tiene el cliente.

e Descomponer el problema en sus tres aspectos fundamentales, facilita la tarea de
entenderlo: en cada etapa nos podemos concentrar en sélo uno de ellos, lo cual
simplifica el trabajo.

e Esta descomposicion se puede generalizar para estudiar todo tipo de problemas, no
sélo se utiliza en problemas cuya solucion sea un programa de computador.

¢ Ademas de entender el problema, debemos expresar lo que entendemos siguiendo
algunas convenciones.

e Al terminar la etapa de analisis debemos generar un conjunto de documentos que
contendran nuestra comprensién del problema. Con dichos documentos podemos
validar nuestro trabajo, presentandoselo al cliente y discutiendo con él.

Ejemplo 1

Objetivo: Identificar los aspectos que hacen parte de un problema.

El problema: una empresa de aviacion quiere construir un programa que le permita buscar
una ruta para ir de una ciudad a otra, usando unicamente los vuelos de los que dispone la
empresa. Se quiere utilizar este programa desde todas las agencias de viaje del pais.

Cliente La empresa de aviacion.
Usuario Las agencias de viaje del pais.

R1: dadas dos ciudades C1y C2, el programa debe dar el itinerario
Requerimiento para ir de C1 a C2, usando los vuelos de la empresa. En este
funcional ejemplo sélo hay un requerimiento funcional explicito. Sin embargo,
lo usual es que en un problema haya varios de ellos.

En el enunciado no esta explicito, pero para poder resolver el
problema, es necesario conocer todos los vuelos de la empresa y la
lista de ciudades a las cuales va. De cada vuelo es necesario tener la
ciudad de la que parte, la ciudad a la que llega, la hora de salida y la
duracion del vuelo. Aqui debe ir todo el conocimiento que tenga la
empresa que pueda ser necesario para resolver los requerimientos
funcionales.

Mundo del
problema

El unico requerimiento no funcional mencionado en el enunciado es
Requerimiento el de distribucion, ya que las agencias de viaje estan
no funcional geograficamente dispersas y se debe tener en cuenta esta
caracteristica al momento de construir el programa.

Tarea 1:

Objetivo: Identificar los aspectos que forman parte de un problema.

El problema: un banco quiere crear un programa para manejar sus cajeros automaticos.
Dicho programa solo debe permitir retirar dinero y consultar el saldo de una cuenta.
Identifique y discuta los aspectos que constituyen el problema. Si el enunciado no es
explicito con respecto a algun punto, intente imaginar la manera de completarlo.

Problemas y Soluciones

Cliente

Usuario

Requerimiento
funcional

Mundo del
problema

Requerimiento
no funcional

23

Analizar un problema significa entenderlo e identificar los tres aspectos en los cuales
siempre se puede descomponer: los requerimientos funcionales, el mundo del
problema y los requerimientos no funcionales. Esta division es valida para problemas
de cualquier tamaino.

3.2. El Proceso y las Herramientas

Entender y especificar el problema que se quiere resolver es solo la primera etapa dentro
del

proceso de desarrollo de un programa. En la figura 1.3 se hace un resumen de las
principales etapas que constituyen el proceso de solucién de un problema. Es importante
que el lector entienda que si el problema no es pequefio (por ejemplo, el sistema de
informacion de una empresa), o si los requerimientos no funcionales son criticos (por
ejemplo, el sistema va a ser utilizado simultaneamente por cincuenta mil usuarios), o si el
desarrollo se hace en equipo (por ejemplo, veinte ingenieros trabajando al mismo tiempo),
es necesario adaptar las etapas y la manera de trabajar que se plantean en este libro. En
este libro sélo abordamos la problematica de construccion de programas de computador
para resolver problemas pequefios.

Fig. 1.3 Principales etapas del proceso de solucion de problemas

l d i
i (PROBLEMA

lengugjes para construir la solucien A\

osoo04d

HE
(R
V)
7
=
=
—
Ml
=
=
o
—<
(.
Ml
=
@
_
=
&
(R
o)

A4

[SOLUCION |

e |a primera etapa para resolver un problema es analizarlo. Para facilitar este estudio, se

PROGRAMADOR

debe descomponer el problema en sus tres partes.

e Una vez que el problema se ha entendido y se ha expresado en un lenguaje que se
pueda entender sin ambigUedad, pasamos a la etapa de disefio. Aqui debemos
imaginarnos la solucion y definir las partes que la van a componer. Es muy comun
comenzar esta etapa definiendo una estrategia.

e Cuando el disefo esta terminado, pasamos a construir la solucién.

El proceso debe ser entendido como un orden en el cual se debe desarrollar una serie de
actividades que van a permitir construir un programa. El proceso planteado tiene tres etapas
principales, todas ellas apoyadas por herramientas y lenguajes especiales:

e Analisis del problema: el objetivo de esta etapa es entender y especificar el problema
que se quiere resolver. Al terminar, deben estar especificados los requerimientos
funcionales, debe estar establecida la informacion del mundo del problema y deben
estar definidos los requerimientos no funcionales.

e Diseno de la solucion: el objetivo es detallar, usando algun lenguaje (planos, dibujos,
ecuaciones, diagramas, texto, etc.), las caracteristicas que tendra la solucién antes de
ser construida. Los disefios nos van a permitir mostrar la solucién antes de comenzar el
proceso de fabricacion propiamente dicho. Es importante destacar que dicha

especificacion es parte integral de la solucién.
e Construccion de la solucion: tiene como objetivo implementar el programa a partir
del disefo y probar su correcto funcionamiento.

Cada una de las etapas de desarrollo esta apoyada por herramientas y lenguajes, que van
a permitir al programador expresar el producto de su trabajo. En la etapa de construcciéon de
la solucion es conveniente contar con un ambiente de desarrollo que ayuda, entre otras
cosas, a editar los programas y a encontrar los errores de sintaxis que puedan existir.

Las etapas iniciales del proceso de construccion de un programa son criticas, puesto
que cuanto mas tarde se detecta un error, mas costoso es corregirlo. Un error en la
etapa de analisis (entender mal algun aspecto del problema) puede implicar la pérdida
de mucho tiempo y dinero en un proyecto. Es importante que al finalizar cada etapa,
tratemos de asegurarnos de que vamos avanzando correctamente en la construccion

de la solucion.

3.3. La Solucion a un Problema

La solucién a un problema tiene varios componentes, los cuales se ilustran en la figura 1.4.
El primero es el disefio (los planos de la solucion) que debe definir la estructura del
programa y facilitar su posterior mantenimiento. El segundo elemento es el codigo fuente
del programa, escrito en algun lenguaje de programacion como Java, C, C# o C++. El
codigo fuente de un programa se crea y edita usando el ambiente de desarrollo mencionado
en la seccién anterior.

Fig. 1.4 Elementos que forman parte de la soluciéon de un problema

und pc:r‘|e impcr|an|e de la solucién es el
dissfio. Alli se muestra lo estructura de
la solucian, sus partes y sus relaciones

esle es el progroma escrito en
un lengugie de programacien

10 DEL PROGRAMA

esto es o que se instalo en
el sornpurador del usuorie

= — — === — =3 >

|
COMPTLAROR et '
|

los archivos de

r\—/ construccion explican lo
manstd de creor &l codigo

gjecutable o portir del

Do e codige fuente

: 5

eslos son los progromos que ayudan a los datos de prusha sirmulan lo

maestrar aue la solucion ss correcty informacion que podria mangjor «f
pf‘cgr‘clmc:l an un Caso r‘eal

Existen muchos tipos de lenguajes de programacion, entre los cuales los mas utilizados en
la actualidad son los llamados lenguajes de programacion orientada a objetos. En este
libro utilizaremos Java que es un lenguaje orientado a objetos muy difundido y que iremos
presentando poco a poco, a medida que vayamos necesitando sus elementos para resolver
problemas.

Un programa es la secuencia de instrucciones (escritas en un lenguaje de
programacion) que debe ejecutar un computador para resolver un problema.

El tercer elemento de la solucion son los archivos de construccion del programa. En ellos se
explica la manera de utilizar el codigo fuente para crear el codigo ejecutable. Este ultimo
es el que se instala y ejecuta en el computador del usuario. El programa que permite
traducir el codigo fuente en codigo ejecutable se denomina compilador. Antes de poder
construir nuestro primer programa en Java, por ejemplo, tendremos que conseguir el
respectivo compilador del lenguaje.

El ultimo elemento que forma parte de la solucién son las pruebas. Alli se tiene un
programa que es capaz de probar que el programa que fue entregado al cliente funciona
correctamente. Dicho programa funciona sobre un conjunto predefinido de datos, y es

capaz de validar que para esos datos predefinidos (y que simulan datos reales), el
programa funciona bien.

La solucién de un problema tiene tres partes: (1) el disefio, (2) el programay (3) las
pruebas de correccion del programa. Estos son los elementos que se deben entregar
al cliente. Es comun que, ademas de los tres elementos citados anteriormente, la
solucidén incluya un manual del usuario, que explique el funcionamiento del programa.

Si por alguna razoén el problema del cliente evoluciona (por ejemplo, si el cliente pide un
nuevo requerimiento funcional), cualquier programador debe poder leer y entender el
diseno, afiadirle la modificacion pedida, ajustar el programa y extender las pruebas para
verificar la nueva extension.

La figura 1.5 muestra dos mapas conceptuales (parte a y parte b) que intentan resumir lo
visto hasta el momento en este capitulo.

Fig. 1.5 (a) Mapa conceptual de la solucion de un problema con un computador

PROBLEMA

TIENE CONSTRUYE :,
”
7

/

s,

PROGRAMA] = = = <

CONTRATA

SIGUE

FROGRAMADOR ’\ USUARIO

CLIENTE PRU[[SU
HAPAS | TIENE

Fig. 1.5 (b) Mapa conceptual de la construccién de un programa

AMBIENTE DE
DESARROLLO

crea

IBnB

tiene

b

[(EDITOR “

traducide

cODIGO
COMPILADOR]:JECUTABLE
enhende
se instala

cred
por

FROGRAMADOR
b 4 daonde
CODIGO LENSUAJE DE
FUENTE PROGRAMACIDN

escrito en

USUARIO

4. Casos de Estudio

Los tres casos de estudio que se presentan a continuacion seran utilizados en el resto del
capitulo para ilustrar los conceptos que se vayan introduciendo. Puede encontrar estos
casos de estudio en la pagina web. Se recomienda leerlos detenidamente antes de
continuar y tratar de imaginar el funcionamiento de los programas que resuelven los
problemas, utilizando para esto las figuras que se muestran. Al final del capitulo encontrara
otros casos de estudio diferentes, con las respectivas hojas de trabajo para desarrollarlos.

4.1 Caso de Estudio N° 1: Un Empleado

Para este caso de estudio vamos a considerar un programa que administra la informacion
de un empleado.

El empleado tiene un nombre, un apellido, un género (masculino o femenino), una fecha de
nacimiento y una imagen asociada (su foto). Ademas, tiene una fecha de ingreso a la
empresa en la que trabaja y un salario basico asignado.

Desde el programa se debe poder realizar las siguientes operaciones: (1) calcular la edad
actual del empleado, (2) calcular la antigiedad en la empresa, (3) calcular las prestaciones
a las que tiene derecho en la empresa, (4) cambiar el salario del empleado, y (5) cambiar el
empleado.

https://cupi2.virtual.uniandes.edu.co/nivel-1/casos

| £ Sistema de un empleado il — >

EL EMPLEADO

Datos
Nombre: FPedrao
Apellido: Matallana
Género: masculing
Fecha de nacimiento: 16-6-1982
Fecha de ingreso: 5-4-2000
Salario: 51.500.000
Modificar salario
Calculos
Calcular edad
Calcular antigiedad
Calcular prestaciones
Opciones
Cambiar empleado Opcion 1 Opcion 2

4.2. Caso de Estudio N° 2: Un Simulador
Bancario

Una de las actividades mas comunes en el mundo financiero es la realizacion de
simulaciones que permitan a los clientes saber el rendimiento de sus productos a través del
tiempo, contemplando diferentes escenarios y posibles situaciones que se presenten.

Se quiere crear un programa que haga la simulacion en el tiempo de la cuenta bancaria de
un cliente. Un cliente tiene un nombre y un numero de cédula, el cual identifica la cuenta.
Una cuenta, por su parte, esta constituida por tres productos financieros basicos: (1) una
cuenta de ahorros, (2) una cuenta corriente y (3) un certificado de depdsito a término (CDT).
Estos productos son independientes y tienen comportamientos particulares.

El saldo total de la cuenta es la suma de lo que el cliente tiene en cada uno de dichos
productos. En la cuenta corriente, el cliente puede depositar o retirar dinero. Su principal
caracteristica es que no recibe ningun interés por el dinero que se encuentre alli

Casos de Estudio

depositado. En la cuenta de ahorros, el cliente recibe un interés mensual del 0,6% sobre el

saldo. Cuando el cliente abre un CDT, define la cantidad de dinero que quiere invertir y

negocia con el banco el interés mensual que va a recibir. A diferencia de la cuenta corriente

o la cuenta de ahorros, en un CDT no se puede consignar ni retirar dinero. La unica
operacion posible es cerrarlo, en cuyo caso, el dinero y sus intereses pasan a la cuenta

corriente.

Se quiere que el programa permita a una persona simular el manejo de sus productos

bancarios, dandole las facilidades de: (1) hacer las operaciones necesarias sobre los
productos que conforman la cuenta, y (2) avanzar mes por mes en el tiempo, para que el
cliente pueda ver el resultado de sus movimientos bancarios y el rendimiento de sus

inversiones.

~

@J Simulador bancario

SIMULADOR
BANCARIO

Datos cliente
Hombre: Sergio Lopez Cedula: 50.152 468
Informacicon Bancaria
Cuenta de ahorros
Saldo ahorros: 50,00 [0.6%] Consignar Retirar
Cuenta corriente
Saldo corriente: 50,00 Consignar Retirar
CDT
Saldo CDT: 50,00 [0.0%] Abrir Cerrar
Mes: 1 Avanzar mes
Total: 50,00
Opciones
Opcion 1 Opcion 2

A

e Con el boton marcado como "Avanzar mes" el usuario puede avanzar un mes en la

simulacioén y ver los resultados de sus inversiones.

e Con los seis botones de la parte derecha de la ventana, el usuario puede simular el

manejo que va a hacer de los productos que forman parte de su cuenta bancaria.

32

Casos de Estudio

e En la parte media de la ventana, aparecen el saldo que tiene en cada producto y el
interés que esta ganando en cada caso.

4.3. Caso de Estudio N° 3: Un Triangulo

En este caso se quiere construir un programa que permita manejar un triangulo. Esta figura
geométrica esta definida por tres puntos, cada uno de los cuales tiene dos coordenadas X,
Y. Un triangulo tiene ademas un color para las lineas y un color de relleno. Un color por su
parte, esta definido por tres valores numéricos entre 0 y 255 (estandar RGB por Red-Green-
Blue). El primer valor numérico define la intensidad en rojo, el segundo en verde y el tercero
en azul. Mas informacion sobre esta manera de representar los colores la puede encontrar
por Internet. ;Cual es el cédigo RGB del color negro? ¢Y del color blanco?

El programa debe permitir: (1) visualizar el triangulo en la pantalla, (2) calcular el perimetro
del triangulo, (3) calcular el area del triangulo, (4) calcular la altura del triangulo, (5) cambiar
el color del triangulo y (6) cambiar las lineas del triangulo.

r ——
|£| Tridngulo =B '

Modificaciones 0 50 100 1450 200 2450 300 360

Cambiar puntos P1
Al

Cambiar lineas

Cambiar color triangulo

100

Medidas en pixeles

Perimetro: 56056 px 5D

Area: 15.000,00 px

Altura: 166,41 px 200 Fa Fe

Opciones

Opcion 1 Opcion 2

L "

e Con los tres botones de la izquierda, el usuario puede cambiar los puntos que definen
el triangulo, el color de las lineas y el color del fondo.
¢ En la zona marcada como "Medidas en pixeles", el usuario puede ver el perimetro, el

33

area y la altura del triangulo (en pixeles).
e En la parte derecha aparece dibujado el triangulo descrito por sus tres puntos.

5. Comprensién y Especificacion del
Problema

Ya teniendo claras las definiciones de problema y sus distintos componentes, en esta
seccidn vamos a trabajar en la parte metodologica de la etapa de analisis. En particular,
queremos responder las siguientes preguntas: ;cémo especificar un requerimiento
funcional?, ¢ cdmo saber si algo es un requerimiento funcional?, ¢ céomo describir el mundo
del problema? Dado que el énfasis de este libro no esta en los requerimientos no
funcionales, s6lo mencionaremos algunos ejemplos sencillos al final de la seccion.

Es imposible resolver un problema que no se entiende.

La frase anterior resume la importancia de la etapa de analisis dentro del proceso de
solucién de problemas. Si no entendemos bien el problema que queremos resolver, el
riesgo de perder nuestro tiempo es muy alto.

A continuacion, vamos a dedicar una seccidn a cada uno de los elementos en los cuales
queremos descomponer los problemas, y a utilizar los casos de estudio para dar ejemplos y
generar en el lector la habilidad necesaria para manejar los conceptos que hemos ido
introduciendo. No mas teoria por ahora y manos a la obra.

5.1. Requerimientos Funcionales

Un requerimiento funcional es una operacioén que el programa que se va a construir debe
proveer al usuario, y que esta directamente relacionada con el problema que se quiere
resolver. Un requerimiento funcional se describe a través de cuatro elementos:

e Un identificador y un nombre.

e Un resumen de la operacion.

e |as entradas (datos) que debe dar el usuario para que el programa pueda realizar la
operacion.

e El resultado esperado de la operacion. Hay tres tipos posibles de resultado en un
requerimiento funcional: (1) una modificacion de un valor en el mundo del problema, (2)
el calculo de un valor, o (3) una mezcla de los dos anteriores.

Ejemplo 2

Objetivo: llustrar la manera de documentar los requerimientos funcionales de un problema.

En este ejemplo se documenta uno de los requerimientos funcionales del caso de estudio

del empleado. Para esto se describen los cuatro elementos que lo componen.

Nombre

Resumen

Entradas

Resultado

R1:
Actualizar
el salario
basico del
empleado

Permite
modificar
el salario
basico del
empleado

Nuevo
salario

El salario
del
empleado
ha sido
actualizado
con el
nuevo
salario

Es conveniente asociar un identificador con cada
requerimiento, para poder hacer facilmente referencia
a él. En este caso el identificador es R1. Es
aconsejable que el nombre de los requerimientos
corresponda a un verbo en infinitivo, para dar una idea
clara de la accién asociada con la operacion. En este
ejemplo el verbo asociado con el requerimiento es
"actualizar".

El resumen es una frase corta que explica sin mayores
detalles el requerimiento funcional.

Las entradas corresponden a los valores que debe
suministrar el usuario al programa para poder resolver el
requerimiento. En el requerimiento del ejemplo, si el
usuario no da como entrada el nuevo salario que quiere
asignar al empleado, el programa, no podra hacer el
cambio. Un requerimiento puede tener cero o muchas
entradas. Cada entrada debe tener un nombre que indique
claramente su contenido. No es buena idea utilizar frases
largas para definir una entrada.

El resultado del requerimiento funcional de este ejemplo es
una modificacion de un valor en el mundo del problema: el
salario del empleado cambié. Un ejemplo de un
requerimiento que calcula un valor podria ser aquél que
informa la edad del empleado. Fijese que el hecho de
calcular esta informacion no implica la modificacion de
ningun valor del mundo del problema. Un ejemplo de un
requerimiento que modifica y calcula a la vez, podria ser
aquél que modifica el salario del empleado y calcula la
nueva retencion en la fuente.

En la etapa de analisis, el cliente debe ayudarle al programador a concretar esta

informacion. La responsabilidad del programador es garantizar que la informacion esté

completa y que sea clara. Cualquier persona que lea la especificacion del requerimiento

debe entender lo mismo.

Para determinar si algo es o no un requerimiento funcional, es conveniente hacerse tres

preguntas:

e ; Poder realizar esta operacion es una de las razones por las cuales el cliente necesita

construir un programa? Esto descarta todas las opciones que estan relacionadas con el

manejo de la interfaz ("poder cambiar el tamafio de la ventana", por ejemplo) y todos

los requerimientos no funcionales, que no corresponden a operaciones sino a

restricciones.

e ;La operacion no es ambigua? La idea es descartar que haya mas de una
interpretacion posible de la operacion.

e ;La operacion tiene un comienzo y un fin? Hay que descartar las operaciones que
implican una responsabilidad continua (por ejemplo, "mantener actualizada la
informacion del empleado") y tratar de buscar operaciones puntuales que correspondan
a acciones que puedan ser hechas por el usuario.

Un requerimiento funcional se puede ver como un servicio que el programa le ofrece al
usuario para resolver una parte del problema.

Ejemplo 3
Objetivo: llustrar la manera de documentar los requerimientos funcionales de un problema.

A continuacion se presenta otro requerimiento funcional del caso de estudio del empleado,
para el cual se especifican los cuatro elementos que lo componen.

Nombre

Resumen

Entradas

Resultado

Tarea 2

R2: Cambiar
el empleado

Permite al
usuario
cambiar la
informacion del
empleado:
datos
personales y
datos de
vinculacién a
la empresa.

1) Nombre del
empleado. 2)
Apellido del
empleado. 3)
Género del
empleado. 4)
Fecha de
nacimiento. 5)
Fecha de
ingreso a la
compania. 6)
Salario basico.
6) Imagen del
empleado.

La informacion
del empleado
ha sido
actualizada.

Asociamos el identificador R2 con el
requerimiento. En la mayoria de los casos el
identificador del requerimiento se asigna siguiendo
alguna convencién definida por la empresa de
desarrollo. Utilizamos el verbo "cambiar" para
describir la operacion que se quiere hacer.

Describimos la operacion, dando una idea global del
tipo de informacion que se debe ingresar y del
resultado obtenido.

En este caso se necesitan siete entradas para poder
realizar el requerimiento. Esta informacion la debe
proveer el usuario al programa. Note que no se define
la manera en que dicha informacion sera ingresada por
el usuario, puesto que eso va a depender del diseno
que se haga de la interfaz, y sera una decision que se
tomara mas tarde en el proceso de desarrollo. Fijese
que tampoco se habla del formato en el que va a
entrar la informacion. Por ahora solo se necesita
entender, de manera global, lo que el cliente quiere
que el programa sea capaz de hacer.

La operacién corresponde de nuevo a una
modificacion de algun valor del mundo, puesto que con
la informacién obtenida como entrada se quieren
modificar los datos del empleado.

Objetivo: Crear habilidad en la identificacion y especificacion de requerimientos

funcionales. Para el caso de estudio 2, un simulador bancario, identifique y especifique tres

requerimientos funcionales.

Requerimiento Funcional 1

Comprension y Especificacion del Problema

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

39

Comprension y Especificacion del Problema

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

40

Comprension y Especificacion del Problema

Nombre

Resumen

Entradas

Resultado

Tarea 3

Objetivo: Crear habilidad en la identificacion y especificacion de requerimientos
funcionales.

Para el caso de estudio 3, un programa para manejar un triangulo, identifique y especifique
tres requerimientos funcionales.

Requerimiento Funcional 1

41

Comprension y Especificacion del Problema

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

42

Comprension y Especificacion del Problema

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

43

Nombre

Resumen

Entradas

Resultado

5.2. El Modelo del Mundo del Problema

En este segundo componente del analisis, el objetivo es entender el mundo en el que
ocurre el problema y recopilar toda la informacién necesaria para que el programador pueda
escribir el programa. Suponga por ejemplo que existe un requerimiento de calcular los dias
de vacaciones a los que tiene derecho el empleado. Si durante la etapa de analisis no se
recoge la informacién de la empresa que hace referencia a la manera de calcular el numero
de dias de vacaciones a los cuales un empleado tiene derecho, cuando el programador
trate de resolver el problema se va a dar cuenta de que no tiene toda la informacién que

necesita. Ya no nos vamos a concentrar en las opciones que el cliente quiere que tenga el
programa, sino nos vamos a concentrar en entender como es el mundo en el que ocurre el
problema. En el caso de estudio del empleado, el objetivo de esta parte seria entender y
especificar los aspectos relevantes de la empresa.

Como salida de esta actividad, se debe producir lo que se denomina un modelo del mundo
del problema, en el cual hayamos identificado todos los elementos del mundo que participan
en el problema, con sus principales caracteristicas y relaciones. Este modelo sera utilizado
en la etapa de diseno para definir los elementos basicos del programa.

Esta actividad esta basada en un proceso de "observacion" del mundo del problema, puesto
que los elementos que alli aparecen ya existen y nuestro objetivo no es opinar sobre ellos
(o proponer cambiarlos), sino simplemente identificarlos y describirlos para que esta
informacion sea utilizada mas adelante.

En la figura 1.6 se resumen las cuatro actividades que debe realizar el programador para
construir el modelo del mundo. En la primera, se identifica lo que denominamos las
entidades del mundo, en la segunda se documentan las caracteristicas de cada una de
ellas, en la tercera se definen las relaciones que existen entre las distintas entidades v,
finalmente, se documenta la informacion adicional (reglas, restricciones, etc.) que se tenga
sobre las entidades.

Para expresar el modelo del mundo utilizaremos la sintaxis definida en el diagrama de
clases del lenguaje de modelos UML (Unified Modeling Language). Dicho lenguaje es un
estandar definido por una organizacién llamada OMG (Object Management Group) y
utilizado por una gran cantidad de empresas en el mundo para expresar sus modelos.

Comprension y Especificacion del Problema

Fig. 1.6 Actividades en la elaboracién del modelo del mundo

dentificar las
entidades

(REAR MODELD
DEL MUNDD

Modelar sus
caracteristicas _

Buscar |as
relaciones

Documentar

PROGRAMADOR

MODELO DEL
MUNDO

5.2.1. Identificar las Entidades

Esta primera actividad tiene como objetivo identificar los elementos del mundo que
intervienen en el problema. Dichos elementos pueden ser concretos (una persona, un
vehiculo) o abstractos (una cuenta bancaria). Por ahora unicamente queremos identificar
estos elementos y asociarles un nombre significativo. Una primera pista para localizarlos es
buscar los sustantivos del enunciado del problema. Esto sirve en el caso de problemas
pequefios, pero no es generalizable a problemas de mayor dimension.

En programacion orientada a objetos, las entidades del mundo se denominan clases, y
seran los elementos basicos del disefio y la posterior implementacion.

46

Una convencion es una regla que no es obligatoria en el lenguaje de programacion,
pero que suelen respetar los programadores que utilizan el lenguaje. Por ejemplo, por
convencion, los nombres de las clases comienzan por mayusculas.

Seguir las convenciones hace que sea mas facil entender los programas escritos por
otras personas. También ayuda a construir programas mas "elegantes".

Para el primer caso de estudio, hay dos entidades en el mundo del problema: la clase
Empleado y la clase Fecha. Esta ultima se emplea para representar el concepto de fecha de
nacimiento y fecha de ingreso a la empresa. Si lee con detenimiento el enunciado del caso,
se podra dar cuenta de que éstos son los unicos elementos del mundo del problema que se
mencionan. Lo demas corresponde a caracteristicas de dichas entidades (el nombre, el
apellido, etc.) o a requerimientos funcionales.

En el ejemplo 4 se identifican las entidades del caso de estudio del simulador bancario y se
describe el proceso que se siguid para identificarlas.

Ejemplo 4

Objetivo: llustrar la manera de identificar las entidades (llamadas también clases) del
mundo del problema.

En este ejemplo se identifican las entidades que forman parte del mundo del problema para
el caso 2 de este nivel: un simulador bancario.

Entidad

SimuladorBancario

CuentaCorriente

CuentaAhorros

CDT

Tarea 4

Descripcion

Es la entidad mas importante del mundo del problema, puesto
que define su frontera (todo lo que esta por fuera de la cuenta
bancaria no nos interesa). Es buena practica comenzar la etapa
de analisis tratando de identificar la clase mas importante del
problema. Cuando el nombre de la entidad es compuesto, se usa
por convencidon una letra mayuscula al comienzo de cada
palabra. En otra época se utilizaban el caracter " " para separar
las palabras (Cuenta_Bancaria) pero eso esta pasado de moda.

Este es otro concepto que existe en el mundo del problema.
Segun el enunciado una cuenta corriente forma parte de una
cuenta bancaria, luego esta entidad esta "dentro" de la frontera
gue nos interesa. Por ahora no nos interesan los detalles de la
cuenta corriente (por ejemplo si tiene un saldo o si paga
intereses). En este momento sélo queremos identificar los
elementos del mundo del problema que estan involucrados en
los requerimientos funcionales.

Este es el tercer concepto que aparece en el mundo del
problema. De la misma manera que en el caso anterior, una
cuenta bancaria "incluye" una cuenta de ahorros. Los nombres
asignados a las clases deben ser significativos y dar una idea
clara de la entidad del mundo que representan. No se debe
exagerar con la longitud del nombre, porque de lo contrario los
programas pueden resultar pesados de leer.

El nombre de esta clase se encuentra en mayusculas, porque es
una sigla. Otro nombre para esta clase habria podido ser el
nombre completo del concepto: CertificadoDepositoTermino. En
el lenguaje Java no es posible usar tildes en los nombres de los
clases, asi que nunca veremos una clase llamada
CertificadoDepdsitoTérmino.

Objetivo: Identificar las entidades del mundo para el caso de estudio 3: un programa que

maneje un triangulo.

Lea el enunciado del caso y trate de guiarse por los sustantivos para identificar las

entidades del mundo del problema.

Comprension y Especificacion del Problema

Nombre Descripcion
Entidad ‘ \
Entidad ‘ \
Entidad ‘ \

Punto de reflexion: ;Qué pasa si no identificamos bien las entidades del mundo?

49

Punto de reflexion: ; Coémo decidir si se trata efectivamente de una entidad y no
soélo de una caracteristica de una entidad ya identificada?

5.2.2. Modelar las Caracteristicas

Una vez que se han identificado las entidades del mundo del problema, el siguiente paso es
identificar y modelar sus caracteristicas. A cada caracteristica que vayamos encontrando, le
debemos asociar (1) un nombre significativo y (2) una descripcion del conjunto de valores
que dicha caracteristica puede tomar.

En programacion orientada a objetos, las caracteristicas se denominan atributos y, al igual
que las clases, seran elementos fundamentales tanto en el disefio como en la
implementacion. EI nombre de un atributo debe ser una cadena de caracteres no vacia, que
empiece con una letra y que no contenga espacios en blanco.

Por convencién, el nombre de los atributos comienza por una letra minuscula. Si es un
nombre compuesto, se debe iniciar cada palabra simple con mayuscula.

En el lenguaje UML, una clase se dibuja como un cuadrado con tres zonas (ver ejemplo 5):
la primera de ellas con el nombre de la clase y, la segunda, con los atributos de la misma. El
uso de la tercera zona la veremos mas adelante, en la etapa de diseno.

Ejemplo 5

Objetivo: Mostrar la manera de identificar y modelar los atributos de una clase.

En este ejemplo se identifican las caracteristicas de las clases Empleado y Fecha para el
caso de estudio del empleado.

Clase: Empleado

Atributo

nombre

apellido

genero

salario

Valores
Posibles

Cadena
de
caracteres

Cadena
de
caracteres

Masculino
o)
Femenino

Valores
reales
positivos

Comentarios

La primera caracteristica que aparece en el enunciado es el
nombre del empleado. El valor de este atributo es una
cadena de caracteres (por ejemplo, "Juan"). Seleccionamos
"nombre" como nombre del atributo. Es importante que los
nombres de los atributos sean significativos (deben dar una
idea clara de lo que una caracteristica representa), para
facilitar asi la lectura y la escritura de los programas.

El segundo atributo es el apellido del empleado. Al igual que
en el caso anterior, el valor que puede tomar este atributo es
una cadena de caracteres (por ejemplo, "Pérez"). Como
nombre del atributo seleccionamos "apellido”. EI nombre de
un atributo debe ser unico dentro de la clase (no es posible
dar el mismo nombre a dos atributos).

Esta caracteristica puede tomar dos valores: masculino o
femenino. En esta etapa de analisis basta con identificar los
valores posibles. Es importante destacar que los valores
posibles de este atributo (Ilamado "género") no son cadenas
de caracteres. No nos interesan las palabras en espanol que
pueden describir los valores posibles de esta caracteristica,
sino los valores en si mismos.

El salario esta expresado en pesos y su valor es un numero
real positivo.

caracteristicas
o afributos

Clase: Fecha

Valores

Atributo Posibles

Valores
enteros
entre 1y
31

dia

Valores
enteros
entre 1y
12

mes

Valores
anio enteros
positivos

nombre de la
entidad o clase

=

Pt

nombre
apellido
genero
salario

Comentarios

La primera caracteristica de una fecha es el dia y puede
tomar valores enteros entre 1y 31. En los nombres de las
variables no puede haber tildes, por lo que debemos
contentarnos con el nombre "dia" (sin tilde) para el atributo.

La segunda caracteristica es el mes. Aqui se podrian listar los
meses del afio como los valores posibles (por ejemplo, enero,
febrero, etc.), pero por simplicidad vamos a decir que el mes
corresponde a un valor entero entre 1y 12.

La ultima caracteristica es el afio. Debe ser un valor entero
positivo (por ejemplo, 2001). Aqui nos encontramos de nuevo
con un problema en espanol: los nombres de los atributos no
pueden contener la letra "ii". En este caso resolvimos
reemplazar dicha letra y llamar el atributo "anio" que da
aproximadamente el mismo sonido.

Con las tres caracteristicas anteriores queda completamente definida una fecha. Esa es la

pregunta que nos debemos hacer cuando estamos en esta etapa: ¢ es necesaria mas

informacion para describir la entidad que estamos representando? Si encontramos una

caracteristica cuyos valores posibles no son simples, como numeros, cadenas de
caracteres, o una lista de valores, nos debemos preguntar si dicha caracteristica no es mas
bien otra entidad que no identificamos en la etapa anterior. Si es el caso, simplemente la
debemos agregar.

nombre de la
entidad o clase

|~

caracteristicas

o atributos dia
A S mes
> anio

Es importante que antes de agregar un atributo a una clase, verifiquemos que dicha
caracteristica forma parte del problema que se quiere resolver. Podriamos pensar, por
ejemplo, que la ciudad en la que naci6 el empleado es uno de sus atributos. ; Como
saber si lo debemos o0 no agregar? La respuesta es que hay que mirar los
requerimientos funcionales y ver si dicha caracteristica es utilizada o referenciada
desde alguno de ellos.

Tarea 5

Para cada una de las cuatro entidades identificadas en el caso de estudio del simulador
bancario, identifique los atributos, sus valores posibles, y escriba la clase en UML. No
incluya las relaciones que puedan existir entre las clases, ya que eso lo haremos en la
siguiente etapa del analisis. Por ahora trate de identificar las caracteristicas de las
entidades que son importantes para los requerimientos funcionales.

Clase: SimuladorBancario

Comprension y Especificacion del Problema

Atributo

L
HEE

Diagrama UML.:

Valores Posibles

Clase: CuentaCorriente

54

Comprension y Especificacion del Problema

Atributo

L
HEE

Diagrama UML.:

Valores Posibles

Clase: CuentaAhorros

55

Comprension y Especificacion del Problema

Atributo

L
HEE

Diagrama UML.:

Valores Posibles

Clase: CDT

56

Comprension y Especificacion del Problema

Atributo

L
HEE

Diagrama UML.:

Valores Posibles

57

5.2.3. Las Relaciones entre las Entidades

En esta actividad, debemos tratar de identificar las relaciones que existen entre las distintas
entidades del mundo y asignarles un nombre. Las relaciones se representan en UML como
flechas que unen las cajas de las clases (ver figura 1.7) y se denominan usualmente
asociaciones. El diagrama de clases en el cual se incluye la representacion de todas las
entidades y las relaciones que existen entre ellas se conoce como el modelo conceptual,
porque explica la estructura y las relaciones de los elementos del mundo del problema.

Fig. 1.7 Sintaxis en UML para mostrar una asociacion entre dos clases

nombre

W

e El modelo presentado en la figura dice que hay dos entidades en el mundo (llamadas
Clase1 y Clase2), y que existe una relacion entre ellas.

e También explica que para la Clase1, la Clase2 representa algo que puede ser descrito
con el nombre que se coloca al final de la asociacion. La seleccién de dicho nombre es
fundamental para la claridad del diagrama.

El nombre de la asociacion sigue las mismas convenciones del nombre de los atributos
y debe reflejar la manera en que una clase utiliza a la otra como parte de sus

caracteristicas.

Es posible tener varias relaciones entre dos clases, y por eso es importante seleccionar
bien el nombre de cada asociacion. En la figura 1.8 se muestran las asociaciones entre las
clases del caso de estudio del empleado y del caso de estudio del triangulo. En los dos
casos existe mas de una asociacion entre las clases, cada una de las cuales modela una
caracteristica diferente.

Fig. 1.8 Diagrama de clases para representar el modelo del mundo

fechaNacimiento

N
7
fechalngreso
S
Fd
CASO DE ESTUDIO DEL EMPLEADO
puntol I
N
7
punto?
N
7
puntod
Al
7

CASO DE ESTUDIO DEL TRIANGULO

Caso de Estudio del Empleado:

e |a primera asociacion dice que un empleado tiene una fecha de nacimiento y que esta
fecha es una entidad del mundo, representada por la clase Fecha.

e |a segunda asociacion hace lo mismo con la fecha de ingreso del empleado a la
empresa.

e La direccion de la flecha indica la entidad que "contiene" a la otra. EI empleado tiene
una fecha, pero la fecha no tiene un empleado.

Caso de Estudio del Triangulo:

e Un triangulo tiene tres puntos, cada uno de los cuales define una de sus aristas. Cada
punto tiene un nombre distinto (punto1, punto2 y punto3d), el cual se asigna a la
asociacion.

¢ Note que este diagrama esta incompleto, puesto que no aparece la clase Color (para
representar el color de las lineas y el relleno del triangulo), ni las asociaciones hacia
ella.

e La clase Punto seguramente tiene dos atributos para representar las coordenadas en
cada uno de los ejes, pero eso no lo incluimos en el diagrama para simplificarlo.

Volveremos a abordar el tema de las relaciones entre entidades en los niveles posteriores,
asi que por ahora sélo es importante poder identificar las relaciones para casos muy
simples. En el ejemplo 6 se muestran y explican las relaciones que existen entre las
entidades del caso del simulador bancario.

Una asociacion se puede ver como una caracteristica de una entidad cuyo valor esta
representado por otra clase.

Ejemplo 6

Objetivo: Presentar el diagrama de clases, como una manera de mostrar el modelo de una
realidad.

A continuacion se muestra el diagrama de clases del modelo del mundo, para el caso del
simulador
bancario.

corriente

ohorros

Inversion

e La relacion entre la clase SimuladorBancario y la clase CuentaCorriente se llama

"corriente" y refleja el hecho de que una cuenta bancaria tiene una cuenta corriente
como parte de ella.

e Fijese que las flechas tienen una direccién. Dicha direccion establece qué entidad
utiliza a la otra como parte de sus caracteristicas.

e Silee de nuevo el enunciado, se dara cuenta de que el diagrama de clases se limita a
expresar lo mismo que alli aparece, pero usando una sintaxis grafica, que tiene la
ventaja de no ser ambigua.

5.3. Los Requerimientos no Funcionales

En la mayoria de los casos, la solucion que se va a construir debe tener en cuenta las
restricciones definidas por el cliente, que dependen, en gran medida, del contexto de
utilizacion del programa. Para el caso del empleado, por ejemplo, el cliente podria pedir que
el programa se pueda usar a través de un teléfono celular, o desde un navegador de
Internet, o que el tiempo de respuesta de cualquier consulta sea menor a 0,0001 segundos.

Los requerimientos no funcionales estan muchas veces relacionados con restricciones
sobre la tecnologia que se debe usar, el volumen de los datos que se debe manejar o la
cantidad de usuarios. Para problemas grandes, los requerimientos no funcionales son la
base para el disefo del programa. Piense en lo distinto que sera un programa que debe
trabajar con un unico usuario, de otro que debe funcionar con miles de ellos
simultdneamente.

En el contexto de este libro, dados los objetivos y el tamaro de los problemas, s6lo vamos a
considerar los requerimientos no funcionales de interaccion y visualizacion, que estan
ligados con la interfaz de los programas.

En este punto el lector deberia ser capaz de leer el enunciado de un problema sencillo
y, a partir de éste, (1) especificar los requerimientos funcionales, (2) crear el modelo del
mundo del problema usando UML y (3) listar los requerimientos no funcionales.

6. Elementos de un Programa

En esta parte del capitulo presentamos los distintos elementos que forman parte de un
programa. No pretende ser una exposicion exhaustiva, pero si es nuestro objetivo dar una
vision global de los distintos aspectos que intervienen en un programa.

En algunos casos la presentacion de los conceptos es muy superficial. Ya nos tomaremos el
tiempo en los niveles posteriores de profundizar poco a poco en cada uno de ellos. Por
ahora lo unico importante es poderlos usar en casos limitados. Esta manera de presentar
los temas nos va a permitir generar las habilidades de uso de manera incremental, sin
necesidad de estudiar toda la teoria ligada a un concepto antes de poder usarlo.

6.1. Algoritmos e Instrucciones

Los algoritmos son uno de los elementos esenciales de un programa. Un algoritmo se
puede ver como la solucién de un problema muy preciso y pequeio, en el cual se define la
secuencia de instrucciones que se debe seguir para resolverlo. Imagine, entonces, un
programa como un conjunto de algoritmos, cada uno responsable de una parte de la
solucion del problema global.

Un algoritmo, en general, es una secuencia ordenada de pasos para realizar una actividad.
Suponga, por ejemplo, que le vamos a explicar a alguien lo que debe hacer para viajar en el
metro parisino. El siguiente es un algoritmo de lo que esta persona debe hacer para llegar a
una direccion dada:

1. Compre un tiquete de viaje en los puntos de venta que se encuentran a la entrada de
cada una de las estaciones del metro.

Identifique en el mapa del metro la estacion donde esta y el punto adonde necesita ir.
Localice el nombre de la estacién de metro mas cercana al lugar de destino.
Verifique si, a partir de donde esta, hay alguna linea que pase por la estacion destino.
Si encontroé la linea, busque el nombre de la misma en la direccién de destino.

o ok~ 0N

Suba al metro en el andén de la linea identificada en el paso anterior y bajese en la
estacion de destino.

Tarea 6

Objetivo: Reflexionar sobre el nivel de precisién que debe ser usado en un algoritmo para
evitar ambigledades.

Suponga que usted es la persona que va a utilizar el algoritmo anterior, para moverse en el
metro de Paris. Identifique qué problemas podria tener con las instrucciones anteriores.
Piense por ejemplo si estan completas.

¢ Se prestan para que se interpreten de maneras distintas? ; Estamos suponiendo que
quién lo lee usa su "sentido comun", o cualquier persona que lo use va a resolver siempre el
problema de la misma manera?

Utilice este espacio para anotar sus conclusiones:

Tarea 7

Objetivo: Entender la complejidad que tiene la tarea de escribir un algoritmo.
Esta tarea es para ser desarrollada en parejas:

1. En el primer cuadrante haga un dibujo simple.

2. En el segundo cuadrante escriba las instrucciones para explicarle a la otra persona
cémo hacer el dibujo.

3. Lea las instrucciones a la otra persona, quien debe intentar seguirlas sin ninguna ayuda
adicional.

4. Compare el dibujo inicial y el dibujo resultante.

Dibujo: Algoritmo

Haga una sintesis de los resultados obtenidos:

Cuando es el computador el que sigue un algoritmo (en el caso del computador se habla de
ejecutar), es evidente que las instrucciones que le demos no pueden ser como las definidas
en el algoritmo del metro de Paris. Dado que el computador no tiene nada parecido al
"sentido comun", las instrucciones que le definamos deben estar escritas en un lenguaje
que no dé espacio a ninguna ambiguedad (imaginemos al computador de una nave espacial
diciendo "es que yo crei que eso era lo que ustedes querian que yo hiciera"). Por esta razon
los algoritmos que constituyen la solucion de un problema se deben traducir a un lenguaje
increiblemente restringido y limitado (pero a su vez poderoso si vemos todo lo que con él
podemos hacer), denominado un lenguaje de programacion. Todo lenguaje de
programacion tiene su propio conjunto de reglas para decir las cosas, denominado la
sintaxis del lenguaje.

Existen muchos lenguajes de programacion en el mundo, cada uno con sus propias
caracteristicas y ventajas. Como dijimos anteriormente, en este libro utilizaremos el
lenguaje de programacion Java que es un lenguaje de propdsito general (no fue escrito para
resolver problemas en un dominio especifico), muy utilizado hoy en dia en el mundo entero,
tanto a nivel cientifico como empresarial.

Un programa de computador esta compuesto por un conjunto de algoritmos, escritos
en un lenguaje de programacion. Dichos algoritmos estan estructurados de tal forma
que, en conjunto, son capaces de resolver el problema.

6.2. Clases y Objetos

Las clases son los elementos que definen la estructura de un programa. Tal como vimos en
la etapa de analisis, las clases representan entidades del mundo del problema (mas

adelante veremos que también pueden pertenecer a lo que denominaremos el mundo de la
solucion). Por ahora, y para que se pueda dar una idea de lo que es un programa completo,

imagine que los algoritmos estan dentro de las clases, y que son estas ultimas las que
establecen la manera en que los algoritmos colaboran para resolver el problema global (ver
figura 1.9). Esta visidn la iremos refinando a medida que avancemos en el libro, pero por
ahora es suficiente para comenzar a trabajar.

Fig. 1.9 Visidn intuitiva de la estructura de un programa

o

PROGRAMA |

b A

r—

— —

[
[
[
[
nambre? narmbral |
[
[
" ' A ' ' . [
algoritmos algoritmos algoritmos |
[

I

Hasta ahora es claro que en un programa hay una clase por cada entidad del mundo del
problema. Pero, ;qué pasa si hay varias "instancias" (es decir, varios ejemplares) de alguna
de esas entidades? Piense por ejemplo que en vez de crear un programa para manejar un
empleado, como en el primer caso de estudio, resolvemos hacer un programa para manejar
todos los empleados de una empresa. Aunque todos los empleados tienen las mismas
caracteristicas (nombre, apellido, etc.), cada uno tiene valores distintos para ellas (cada uno
va a tener un nombre y un apellido distinto). Es aqui donde aparece el concepto de objeto,
la base de toda la programacion orientada a objetos. Un objeto es una instancia de una
clase (la cual define los atributos que debe tener) que tiene sus propios valores para cada
uno de los atributos. El conjunto de valores de los atributos se denomina el estado del
objeto. Para diferenciar las clases de los objetos, se puede decir que una clase define un
tipo de elemento del mundo, mientras que un objeto representa un elemento individual.

Piense por ejemplo en el caso del triangulo. Cada uno de los puntos que definen las aristas
de la figura geométrica son objetos distintos, todos pertenecientes a la clase Punto. En la
figura 1.10 se ilustra la diferencia entre clase y objeto para el caso del triangulo. Fijese que
la clase Punto dice que todos los objetos de esa clase deben tener dos atributos (x, y), pero
son sus instancias las que tienen los valores para esas dos caracteristicas.

Fig. 1.10a Diferencia entre clases y objetos para el caso de estudio del triangulo

untol |
P b |
/

to2

punto X o

7

unto3d
P N\
7

colorRelleno colorlLinea

=Bl A R

¢ La clase Triangulo tiene tres asociaciones hacia la clase Punto (punto1l , punto2 Yy
punto3). Eso quiere decir que cada objeto de la clase Triangulo tendra tres objetos
asociados, cada uno de ellos perteneciente a la clase Punto.
* Lo mismo sucede con las dos asociaciones hacia la clase Color: debe haber dos
objetos de la clase Color por cada objeto de la clase Triangulo.
e Cada triangulo sera entonces representado por 6 objetos conectados entre si: uno de la
clase Triangulo, tres de la clase Punto y dos de la clase Color.

Fig. 1.10b Diferencia entre clases y objetos para el caso de estudio del triangulo

10
10

105
100
240

o
o u

colerRellenc puntel

20
20

colorlinea punfo3

50
70

[e :
" il 1

— Ln

]

=]

I I

I~
=

e Cada uno de los objetos tiene asociado el nombre que se definié en el diagrama de
clases.

e El primer punto del triangulo esta en las coordenadas (10, 10).

e El segundo punto del triangulo esta en las coordenadas (20, 20).

e El tercer punto del triangulo esta en las coordenadas (50, 70).

e |as lineas del triangulo son del color definido por el codigo RGB de valor (5, 170, 47).
¢ A qué color corresponde ese codigo?

e Este es so6lo un ejemplo de todos los triangulos que podrian definirse a partir del
diagrama de clases.

e En la parte superior de cada objeto aparece la clase a la cual pertenece.

Para representar los objetos vamos a utilizar la sintaxis propuesta en UML (diagrama de
objetos), que consiste en cajas con bordes redondeados, en la cual hay un valor asociado
con cada atributo. Podemos pensar en un diagrama de objetos como un ejemplo de los
objetos que se pueden construir a partir de la definicién de un diagrama de clases. En el
ejemplo 7 se ilustra la manera de visualizar un conjunto de objetos para el caso del
empleado.

Ejemplo 7

Objetivo: llustrar utilizando una extension del caso de estudio 1 la diferencia entre los
conceptos de clase y objeto.

La extension consiste en suponer que el programa debe manejar todos los empleados de
una empresa, en lugar de uno solo de ellos.

fechaMacimiento

nombre > dia
i mes
sal';all'io fecholngreso anio

N

e (Cada objeto de la clase Empleado tendra un valor para cada uno de sus atributos y un
objeto para cada una de sus asociaciones.

e Esta clase define los atributos de todos los empleados de la empresa.

¢ De manera intuitiva, una clase puede verse como un molde a partir del cual sus objetos
son construidos.

e Cada empleado sera representado con tres objetos: uno de la clase Empleado y dos de
la clase Fecha.

dia = 6

fechaNacimients

mes = 1
anio = 1971
nombre = "juan”
apellido = “Ruiz"
genera = Masculino
satario = 2,000.000
dia = 1
'FF‘{'] n 25
schalngreso mes = 8
anio = 1990

e Este es el primer ejemplo de un empleado de la empresa. Se llama Juan Ruiz, nacié el
6 de enero de 1971, comenzo a trabajar en la empresa el 1 de agosto de 1990 y su
salario es de dos millones de pesos.

e Durante la ejecucion de un programa pueden aparecer tantos objetos como sean
necesarios, para representar el mundo del problema. Si en la empresa hay 500
empleados, en la ejecucién del programa habra 1500 objetos representandolos (3

objetos por empleado).

fechaMNacimianto

dia = 19
mes = 8
anio = 1974
nombre = "Maria”
apellido = "Gomez"
genero = Femenino
salario = 2,500.000
dia = 1
fechalngress mes = 8
anio = 2005

e Este grupo de objetos representa otro empleado de la empresa.

¢ Note que cada empleado tiene sus propios valores para los atributos y que lo unico que
comparten los dos empleados es la clase a la cual pertenecen, la cual establece la lista
de atributos que deben tener.

6.3. Java como Lenguaje de Programacion

Existen muchos lenguajes de programacion en el mundo. Los hay de distintos tipos, cada
uno adaptado a resolver distintos tipos de problemas. Tenemos los lenguajes funcionales
como LISP o CML, los lenguajes imperativos como C, PASCAL o BASIC, los lenguajes
I6gicos como PROLOG vy los lenguajes orientados a objetos como Java, C#y SMALLTALK.

Java es un lenguaje creado por Sun Microsystems en 1995, muy utilizado en la actualidad
en todo el mundo, sobre todo gracias a su independencia de la plataforma en la que se
ejecuta. Java es un lenguaje de propésito general, con el cual se pueden desarrollar desde
pequefios programas para resolver problemas simples hasta grandes aplicaciones
industriales o de apoyo a la investigacion.

En esta seccion comenzamos a estudiar la manera de expresar en el lenguaje Java los
elementos identificados hasta ahora. Comenzamos por las clases, que son los elementos
fundamentales de todos los lenguajes orientados a objetos. Lo primero que debemos decir
es que un programa en Java esta formado por un conjunto de clases, cada una de ellas
descrita siguiendo las reglas sintacticas exigidas por el lenguaje.

Cada clase se debe guardar en un archivo distinto, cuyo nombre debe ser igual al nombre
de la clase, y cuya extension debe ser .java. Por ejemplo, la clase Empleado debe estar en
el archivo Empleado.java y la clase Fecha en la clase Fecha.java.

Un programa escrito en Java esta formado por un conjunto de archivos, cada uno de
los cuales contiene una clase. Para describir una clase en Java, se deben seguir de
manera estricta las reglas sintacticas del lenguaje.

Ejemplo 8
Objetivo: Mostrar la sintaxis basica del lenguaje Java para declarar una clase.

Utilizamos el caso de estudio del empleado para introducir la sintaxis que se debe utilizar
para declarar una clase.

Archivo: Empleado.java

Clase: Empleado

public class Empleado

{

// Aqui va la declaracion de la clase Empleado

Archivo: Fecha.java

Clase: Fecha

public class Fecha

{

// Aqui va la declaracidén de la clase Fecha

En el lenguaje Java, todo lo que va entre dos corchetes ("{" y "}") se llama un bloque de
instrucciones. En particular, entre los corchetes de la clase del ejemplo 8 va la declaracion
de la clase. Alli se deben hacer explicitos tanto los atributos como los algoritmos de la
clase. También es posible agregar comentarios, que seran ignorados por el computador,

pero que le sirven al programador para indicar algo que considera importante dentro del
cédigo. En Java, una de las maneras de introducir un comentario es con los caracteres //,

tal como se muestra en el ejemplo 8.

El programa del simulador bancario, por ejemplo, consta de 16 clases distribuidas de la

siguiente manera:

e 4 clases para el modelo del mundo, almacenadas en los archivos
SimuladorBancario.java, CuentaCorriente.java, CuentaAhorros.java y CDT.java.

e 8 clases para la interfaz usuario, en 8 archivos .java.

e 4 clases para las pruebas del programa, en 4 archivos .java.

Es aconsejable en este momento mirar en la seccion 8 de este capitulo la localizacién de
dichos archivos en la pagina web. Vale la pena también dar una mirada al contenido de los
archivos que vamos mencionando en esta parte.

Puesto que un programa puede estar compuesto por miles de clases, Java tiene el
concepto de paquete, a través del cual es posible estructurar las clases por grupos
jerarquicos. Esto facilita su localizacién y manejo. En la figura 1.11 se muestra la estructura
de paquetes del caso del simulador bancario.

Fig. 1.11 Ejemplo de la estructura de paquetes del caso de estudio del simulador

bancario
| uniandes
| d
esto close esta en el poguele |
unicrndes.cupi? simuladerBancario.inter foz N
cupi2
-
|
W
st simuladorBancario | _______
| T =
I i
I i
b _ U
interfaz mundo test
InterfazSimulador SimuladorBancario SimuladorBancarioTest
PanelDatosCliente CuentaCorriente CuentaCorrienteTest
PanelAhorros CuentaAhorros CuentaAhorrosTest
PanelCDT CDT CDTTest

PanelCorriente
Panelimagen
PanelOpciones
PanelSaldos

e |as dieciséis clases del programa se dividen en 3 paquetes: uno con las clases de la
interfaz de usuario (aquellas que implementan la ventana y los botones), uno con el
modelo del mundo y un ultimo paquete con las pruebas.

¢ El nombre completo de una clase es el nombre del paquete en el que se encuentra,
seguido del nombre de la clase.

Toda clase en Java debe comenzar por la definicion del paquete en el cual esta situada la
clase, como se muestra en el siguiente fragmento de programa del caso de estudio del

empleado:

package uniandes.cupi2.empleado;

public class

{

e El nombre del paquete es una secuencia de identificadores separados por un punto.

¢ uniandes.cupi2.empleado.Empleado es el nombre completo de la clase.

e En el momento de desarrollar un programa se deben establecer los paquetes que se
van a utilizar. En nuestro caso, el nombre del paquete esta conformado por el nombre
de la institucion (uniandes), seguida por el nombre del proyecto (cupi2) y luego el
nombre del ejercicio del cual forma parte la clase (empleado).

e Cada empresa de desarrollo sigue sus propias convenciones para definir los nombres
de los paquetes.

En todo lenguaje de programacion existen las que se denominan palabras reservadas.
Dichas palabras no las podemos utilizar para nombrar nuestras clases o atributos. Hasta el
momento hemos visto las siguientes palabras reservadas: package , public Y class .

Un elemento de una clase se declara public cuando queremos que sea visible desde

otras clases.

En el ejemplo anterior se puede apreciar otra manera de incluir un comentario dentro de un
programa: se utilizan los simbolos /** para comenzary los simbolos */ para terminar. El
comentario puede extenderse por varios renglones sin ningun problema, a diferencia de los
comentarios que comienzan por los simbolos // que terminan cuando se acaba el
renglon. Los comentarios que se introducen como aparece en el ejemplo sirven para
describir los principales elementos de una clase y tienen un uso especial que se vera mas

adelante en el libro.

6.4. Tipos de Datos

Cada lenguaje de programacion cuenta con un conjunto de tipos de datos a través de los
cuales el programador puede representar los atributos de una clase. En este nivel nos
vamos a concentrar en dos tipos simples de datos: los enteros (tipo int), que permiten
modelar caracteristicas cuyos valores posibles son los valores numéricos de tipo entero (por
ejemplo, el dia en la clase Fecha), y los reales (tipo double), que permiten representar
valores numéricos de tipo real (por ejemplo, el interés de una cuenta de ahorros). También
vamos a estudiar un tipo de datos para manejar las cadenas de caracteres (tipo string),
que permite representar dentro de una clase una caracteristica como el nombre de una
persona o una direccidn. En los siguientes niveles, iremos introduciendo nuevos tipos de
datos a medida que los vayamos necesitando.

En Java, en el momento de declarar un atributo, es necesario declarar el tipo de datos al
cual corresponde, utilizando la sintaxis que se ilustra en el ejemplo que se muestra a
continuacion:

package uniandes.cupi2.empleado;

public class

{
private String nombre;
private String apellido;
private double salario;
}

¢ |nicialmente se declaran los atributos nombre y apellido, de tipo string (cadenas de
caracteres).

e | os atributos se declaran como privados (private) para evitar su manipulacién desde
fuera de la clase.

e El atributo salario se declara de tipo double, puesto que es un valor real.

e Con las tres declaraciones que aparecen en el ejemplo, el computador entiende que
cualquier objeto de la clase Empleado debe tener valores para esas tres
caracteristicas.

e Sélo quedo pendiente por decidir el tipo del atributo genero, que no corresponde a
ninguno de los tipos vistos; eso lo haremos mas adelante.

Para modelar el atributo "genero", debemos utilizar alguno de los tipos de datos con los que
cuenta el lenguaje. Lo mejor en este caso es utilizar un atributo de tipo entero y usar la
convencion de que si dicho atributo tiene el valor 1 se esta representando un empleado con
género masculino y, si es 2, un empleado con género femenino. Este proceso de asociar
valores enteros y una convencion para interpretarlos es algo que se hace cada vez que los
valores posibles de un atributo no corresponden directamente con los de algun tipo de
datos. Fijese que una cosa es el valor que usamos (que es arbitrario) y otra la interpretacion
que hacemos de ese valor. Ese punto sera profundizado en el nivel 2.

public class Empleado

/**
* 1 = masculino, 2 = femenino
*/

private int genero;

e Al declarar un atributo para el cual se utilizé una convencién especial para representar
los valores posibles, es importante agregar un comentario en la declaracién del mismo,
explicando la interpretacién que se debe dar a cada valor.

¢ En el ejemplo, decidimos representar con un 1 el valor masculino, y con un 2 el valor
femenino.

El tipo de un atributo determina el conjunto de valores que éste puede tomar dentro de
los objetos de la clase, lo mismo que las operaciones que se van a poder hacer sobre
dicha caracteristica.

En el diagrama de clases de UML, por su parte, usamos una sintaxis similar para mostrar
los atributos. En la figura 1.12 aparece la manera en que se incluyen los atributos y su tipo
en el caso de estudio del empleado. Dependiendo de la herramienta que se utilice para
definir el diagrama de clases, es posible que la sintaxis varie levemente.

Fig. 1.12 Ejemplo de la declaracién en UML de los atributos de la clase Empleado

String nombre;
String apellido;
int salario;
int genero;

Lo unico que nos falta incluir en el codigo Java es la declaracién de las asociaciones. Para
esto, vamos a utilizar una sintaxis similar a la presentada anteriormente utilizando el nombre
de la asociacion como nombre del atributo y el nombre de la clase como su tipo, tal como se
presenta en el siguiente fragmento de cédigo:

package uniandes.cupi2.empleado;

public class Empleado

{

private String nombre;
private String apellido;
private double salario;
private int genero;

private Fecha fechaNacimiento;
private Fecha fechalngreso;

¢ Las asociaciones hacia la clase Fecha las declaramos como hicimos con el resto de
atributos, usando el nombre de la asociacion como nombre del atributo.

e Eltipo de la asociacion es el nombre de la clase hacia la cual esta dirigida la flecha en
el diagrama de clases.

¢ El orden de declaraciéon de los atributos no es importante.

En la figura 1.13 aparece el diagrama de clases completo del caso de estudio del empleado.

Fig. 1.13 Representacion de la clase Empleado en UML

fechaNacimiento

String nombre 3 int dia
;ttrll'ug apellido int mes
int genera SRR S) .
int salario fechalngreso int anio

N

Tarea 8

Objetivo: Crear habilidad en la definicion de los tipos de datos para representar las
caracteristicas de una clase.

Escriba en Java y en UML las declaraciones de los atributos (y las asociaciones) para las
cinco clases del caso de estudio del simulador bancario.

Elementos de un Programa

Declaracion en
Java

Declaracion
en Java

Descripcion de la clase en UML

SimuladorBancario

Descripcion de la clase en UML

CuentaCorriente

78

Elementos de un Programa

Declaracion Descripcion de la clase en UML
en Java
CuentaAhorros
Declaracion Descripcion de la clase en UML
en Java

CDT

6.5. Métodos

Después de haber definido los atributos de las clases en Java, sigue el turno para lo que
hemos llamado hasta ahora "los algoritmos" de la clase. Cada uno de esos algoritmos se
denomina un método, y pretende resolver un problema puntual, dentro del contexto del

79

problema global que se quiere resolver. También se puede ver un metodo como un servicio
que la clase debe prestar a las demas clases del modelo (o a ella misma si es el caso), para
que ellas puedan resolver sus respectivos problemas.

Un metodo esta compuesto por cuatro elementos:

¢ Un nombre (por ejemplo, cambiarSalario, para el caso de estudio del empleado, que
serviria para modificar el salario del empleado).

¢ Una lista de parametros, que corresponde al conjunto de valores (cada uno con su
tipo) necesarios para poder resolver el problema puntual (Si el problema es cambiar el
salario del empleado, por ejemplo, es necesario que alguien externo al empleado dé el
nuevo salario. Sin esa informacion es imposible escribir el método). Para definir los
parametros que debe tener un método, debemos preguntarnos ¢,qué informacion, que
no tenga ya el objeto, es indispensable para poder resolver el problema puntual?

e Un tipo de respuesta, que indica el tipo de datos al que pertenece el resultado que va
a retornar el metodo. Si no hay una respuesta, se indica el tipo void .

¢ El cuerpo del método, que corresponde a la lista de instrucciones que representa el
algoritmo que resuelve el problema puntual.

Tipicamente, una clase tiene entre cinco y veinte métodos (aunque hay casos en los que
tiene decenas de ellos), cada uno capaz de resolver un problema puntual de la clase a la
cual pertenece. Dicho problema siempre esta relacionado con la informacidén que contiene
la clase. Piense en una clase como la responsable de manejar la informacién que sus
objetos tienen en sus atributos, y los métodos como el medio para hacerlo. En el cuerpo de
un método se explica entonces la forma de utilizar los valores de los atributos para calcular
alguna informacion o la forma de modificarlos si es el caso.

El encabezado del método (un método sin el cuerpo) se denomina su signatura.

Ejemplo 9
Objetivo: Mostrar la sintaxis que se usa en Java para declarar un metodo.

Usamos para esto el caso de estudio del empleado, con tres métodos sin cuerpo,
suponiendo que cada uno debe resolver el problema que ahi mismo se describe. La
declaracién que aqui se muestra hace parte de la declaracion de la clase (los métodos van
después de la declaracion de los atributos).

Se deja un cuarto método al final como tarea para el lector; en este caso, a partir de la
descripcion, debe determinar los parametros, el retorno y la signatura del método.

public void double
{

Nombre: cambiarSalario

Parametros: pNuevoSalario de tipo real. Si no se entrega este valor como parametro es
imposible cambiar el salario del empleado. Note que al definir un parametro se debe dar un
nombre al valor que se espera y un tipo.

Retorno: ninguno (void) puesto que el objetivo del método no es calcular ningun valor,
sino modificar el valor de un atributo del empleado.

Descripcion: cambia el salario del empleado, asignandole el valor que se entrega como
parametro.

public double
{

Nombre: darSalario

Parametros: ninguno, puesto que con la informacion que ya tienen los objetos de la clase
Empleado es posible resolver el problema.

Retorno: el salario actual del empleado, de tipo real. En la signatura sélo se dice el tipo de
datos que se va a retornar, pero no se dice como se retornara.

Descripcion: retorna el salario actual del empleado.

public double
{

Nombre: calcularPrestaciones

Parametros: ninguno. Al igual que en el método anterior, no se necesita informacion
externa al empleado para poder calcular sus prestaciones.

Retorno: las prestaciones anuales a las que tiene derecho el empleado. Las prestaciones,
al igual que el salario, son un numero real.

Descripcion: retorna el valor de las prestaciones anuales a las que tiene derecho el
empleado.

Nombre: aumentarSalario

Parametros:

Retorno:

Descripcion: aumenta el salario del empleado en un porcentaje que corresponde a la
inflacién anual del pais.

¢ Cuales son los métodos que se deben tener en una clase? Esa es una pregunta que se
contestara en niveles posteriores. Por ahora, supongamos que la clase tiene ya definidos
los métodos que necesita para poder resolver la parte del problema que le corresponde y
trabajemos en el cuerpo de ellos. En el diagrama de clases de UML, se utiliza la tercera
zona de la caja de una clase para poner las signaturas de los métodos, tal como se ilustra
en la figura 1.14.

Fig. 1.14 Sintaxis en UML para mostrar las signaturas de los métodos de una
clase

fechaNacimiento |

; ; 5 ; .
String nombre rd int dia
String apellido int mes
int genero , int anio
E i 'FE'C}‘-GII"!QFE}BO

nt salario LN

=

int darDia(}

void cambiarSalario {int nuevoSalario)
int darSalariof)
int calcularPresentaciones()

int darMes()
int darAnio()

Tarea 9

Objetivo: Escribir y entender en Java la signatura de algunos métodos del caso de estudio
del simulador bancario.

Complete la siguiente informacion, ya sea escribiendo la signatura del método que se
describe, o interpretando la signatura que se da. Todos los métodos de esta tarea son de la
clase CuentaAhorros.

public void consignarValor(double

{

Elementos de un Programa

Nombre:

Parametros:

Retorno:

Descripcion:

Nombre:
Parametros:
Retorno:

Descripcion:

Signatura del Método:

T

darSaldo
ninguno.
valor de tipo real.

retorna el saldo de la cuenta de ahorros.

84

Nombre: retirarValor

. . valor de tipo entero, que indica el monto que se quiere retirar de la
Parametros:
cuenta de ahorros.

Retorno: ninguno.

Descripcion: retira de la cuenta de ahorros el valor que se entrega como parametro.

Signatura del Método:

Nombre: darinteresMensual
Parametros: ninguno.
Retorno: valor de tipo real.
Descripcion: retorna el interés mensual que paga una cuenta de ahorros.

Signatura del Método:

Nombre: actualizarSaldoPorPasoMes
Parametros: ninguno.
Retorno: ninguno.

actualiza el saldo de la cuenta de ahorros simulando que acaba de
Descripcion: transcurrir un mes y que se deben agregar los correspondientes
intereses ganados.

Signatura del Método:

6.6. La Instruccion de Retorno

En el cuerpo de un método van las instrucciones que resuelven un problema puntual o
prestan un servicio a otras clases. El computador obedece las instrucciones, una después
de otra, hasta llegar al final del cuerpo del metodo. Hay instrucciones de diversos tipos, la
mas sencilla de las cuales es la instruccidén de retorno (return). Con esta instruccion le
decimos al método cual es el resultado que debe dar como solucion al problema. Por
ejemplo, si el problema es dar el salario del empleado, la Unica instruccién que forma parte
del cuerpo de dicho método indica que el valor se encuentra en el atributo "salario". En el
siguiente fragmento de programa se ilustra el uso de la instruccion de retorno.

public class

{

private String nombre;

private String apellido;
private double salario;
private int genero;

private Fecha fechaNacimiento;
private Fecha fechaIngreso;

public double
{

return salario;

¢ Tal como se habia presentado antes, la declaracion de la clase comienza con la
declaracion de cada uno de sus atributos (incluidas las asociaciones). Note que no hay
diferencia sintactica entre declarar algo de tipo entero (genero) y una asociacion hacia
la clase Fecha (fechalngreso).

e Después de los atributos, viene la declaracion de cada uno de los métodos de la clase.
Cada método tiene una signatura y un cuerpo.

¢ Los métodos que van a ser utilizados por otras clases se deben declarar como
publicos.

e En el cuerpo del método se deben incluir las instrucciones para resolver el problema
puntual que se le plantea. El cuerpo de un método puede tener cualquier niumero de
instrucciones.

e En el cuerpo de un metodo unicamente se puede hacer referencia a los atributos del
objeto para el cual se esta resolviendo el problema y a los parametros, que representan
la informacién externa al objeto que se necesita para resolver el problema puntual.

e En el caso del método cuyo problema puntual consiste en calcular el salario del
empleado, la solucion consiste en retornar el valor que se encuentra en el respectivo
atributo. Facil, ¢no?

e Es buena idea utilizar comentarios para separar la "zona" de declaracion de atributos y
la "zona" de declaracion de métodos. Esta separacién en zonas va a facilitar su
posterior localizacion.

Todo méetodo que declare en su signatura que va a devolver un resultado (todos los
meétodos que no son de tipo void) debe tener en su cuerpo una instruccion de retorno.

Cuando alguien llama un método sobre un objeto, éste "busca" dicho metodo en la clase a
la cual pertenece y ejecuta las instrucciones que alli aparecen, utilizando sus propios
atributos. Por esa razon, en el cuerpo de los métodos se puede hacer referencia a los
atributos del objeto sin riesgo de ambigledad, puesto que siempre se trata de los atributos
del objeto al cual se le invoco el metodo. En el ejemplo anterior, si alguien invoca el metodo
darSalario() sobre un objeto de la clase Empleado, dicho objeto va a su clase para
establecer lo que debe hacer y la clase le explica que debe retornar el valor de su propio
atributo llamado salario.

6.7. La Instruccion de Asignacion

Los métodos que no estan hechos para calcular un valor, sino para modificar el estado del
objeto, utilizan la instruccion de asignacion (=) para definir el nuevo valor que debe tener
el atributo. Si existiera, por ejemplo, un metodo para duplicar el salario de un empleado, el
siguiente seria el cuerpo de dicho méetodo:

public class

{
public void
{
salario = salario * 2;
}
}

En la parte izquierda de la asignacion va el atributo que va a ser modificado (mas adelante
se extendera a otros elementos del lenguaje, pero por ahora puede suponer que solo se
hacen asignaciones sobre los atributos). En la parte derecha va una expresion que indica
el nuevo valor que debe guardarse en el atributo. Pueden formar parte de una expresion los
atributos (incluso el que va a ser modificado), los parametros y los valores constantes
(como el 2 en el ejemplo anterior). Los elementos que forman parte de una expresion se
denominan operandos. Adicionalmente en la expresion estan los operadores, que indican
cémo calcular el valor de la expresion. Los operadores aritméticos son la suma (+), la
resta (-), la multiplicacion (*)y la division (7).

En el siguiente fragmento de cédigo vemos algunos métodos de la clase Empleado, que
dan una idea del uso de la asignacion, el retorno de valores y las expresiones:

public class

{
public void double
{
salario = pNuevoSalario;
}
public double
{
return salario * ;
}
3

e El primer método cambia el salario del empleado, asignandole el valor recibido como
parametro. Recuerde que siempre se asigna a la variable que aparece en la parte
izquierda el valor que aparece en la parte derecha.

¢ El segundo método calcula el total al afio que recibe el empleado por concepto de
salario.

6.8. La Instruccidon de Llamada de un Método

En algunos casos, como parte de la solucion del problema, es necesario llamar un metodo
de un objeto con el cual existe una asociacion. Suponga que un empleado necesita saber el
ano en el que él ingreso a la empresa. Esa informacion la tiene el objeto de la clase Fecha
que esta siendo referenciado por su atributo fechaingreso . Puesto que la clase Empleado
no tiene acceso directo a los atributos de la clase Fecha, debe llamar el método de dicha
clase que presta ese servicio (0 que sabe resolver ese problema puntual). La sintaxis para
hacerlo y el proceso de llamada (o invocacion) se ilustran a continuacion:

Diagrama de objetos para ilustrar la llamada
del método: la empleada Maria Gomez
. ingreso6 a la empresa a trabajar en el ano
o1 2005.

public class Empleado

{
public void miProblema
{
int valor = fechaIngreso.darAnio();
}
}

¢ Dentro de un metodo de la clase Empleado se necesita saber el afio de ingreso a la
empresa.

¢ |nvocamos el método darAnio() sobre el objeto de la clase Fecha que representa la
fecha de ingreso. Ese método debe retornar 2005 si el diagrama de objetos es el
mostrado en la figura anterior.

e Para pedir un servicio a través de un metodo, debemos dar el nombre de la asociacion,
el nombre del metodo que queremos usar y un valor para cada uno de los parametros
que hay en su signatura (ninguno en este caso).

e Elresultado de la llamada del método lo guardamos en una variable llamada valor, de
tipo entero. Un poco mas adelante se explica el uso de las variables.

public class Fecha

{
public int darAnio
{
return anio;
}
}

e E|l método darAnio() de la clase Fecha se contenta con retornar el valor que aparezca
en el atributo " anio " del objeto sobre el cual se hace la invocacion.

Con la referencia al objeto y el nombre del metodo, el computador localiza el objeto y llama
el método pedido pasandole la informacion para los parametros. Luego espera que se
ejecuten todas las instrucciones del método y trae la respuesta en caso de que haya una.

De la misma manera que un objeto puede invocar un método de otro objeto con el cual
tiene una asociacion, también puede, dentro de uno de sus métodos, invocar otro método
de su misma clase. ¢ Para qué puede servir eso? Suponga que tiene un metodo cuyo
problema se veria simplificado si utiliza la respuesta que calcula otro método. ¢Por qué no
utilizarlo? Esta idea se ilustra en el siguiente fragmento de cédigo:

public class

{
public double
{
return salario * ;
}
public double
{
double total = calcularSalarioAnual();
return total * / ;
}
3

e Suponga que queremos calcular el monto de los impuestos que debe pagar el
empleado en un afio. Los impuestos se calculan como el 19,5% del total de salarios
recibidos en un afno.

¢ Siyatenemos un método que calcula el valor total del salario anual, ¢ por qué no lo
utilizamos como parte de la solucion? Eso nos va a permitir disminuir la complejidad del
problema puntual del método, porque nos podemos concentrar en la parte que "nos
falta" para resolverlo.

e Para invocar un método sobre el mismo objeto, basta con utilizar su nombre sin
necesidad de explicar sobre cual objeto queremos hacer la llamada. Por defecto se
hace sobre él mismo.

¢ Note que utilizamos una variable (total) como parte del cuerpo del metodo. Una
variable se utiliza para almacenar valores intermedios dentro del cuerpo de un método.
Una variable debe tener un nombre y un tipo, y solo puede utilizarse dentro del método
dentro del cual fue declarada. En el siguiente capitulo volveremos a tratar el tema de
las variables.

Ejemplo 10
Objetivo: llustrar la construccion de los métodos de una clase.

Para el caso de estudio del simulador bancario, en este ejemplo se muestra el cédigo de
algunos métodos, en donde se pueden apreciar los distintos tipos de instruccién que hemos
visto hasta ahora.

Elementos de un Programa

package uniandes.cupi2.simuladorBancario.mundo;

public class SimuladorBancario

{

private String cedula;
private String nombre;

private CuentaCorriente corriente;
private CuentaAhorros ahorros;
private CDT inversion;

private int mesActual;

Declaracion de los atributos de la clase que representa la cuenta bancaria. Note de

nuevo la manera en que se declaran las relaciones con otras clases (como atributos,

cuyo nombre corresponde al nombre de la asociacion).

SimuladorBancario

void consignarCuentaCorriente (double pMonto)
double calcularSaltoTotal()
void pasarAhorroACorriente()

carriente

anorras

N

inversion

CuentaCorriente

CuentaAhorros

92

public void consignarCuentaCorriente(double

{

corriente.consignarMonto(pMonto);

e Para depositar en la cuenta corriente un valor que llega como parametro, la cuenta
bancaria pide dicho servicio al objeto que representa la cuenta corriente, usando la
asociacion que hay entre los dos y el método consignarMonto() de la clase
CuentaCorriente.

public double calcularSaldoTotal

{
return corriente.darSaldo() +
ahorros.darSaldo() +
inversidn.calcularValorPresente(pMesActual);
}

e Para calcular y retornar el saldo total de la cuenta bancaria, el método pide a cada uno
de los productos que la componen que calcule su valor actual. Luego, suma dichos
valores y los retorna como el resultado. Fijese que una expresion puede estar separada
en varias lineas, mientras no aparezca el simbolo ";" de final de una instruccion.

e Para calcular el valor presente del CDT se le debe pasar como parametro el mes en el

que va la simulacion.

public void pasarAhorroACorriente

{
double temp = ahorros.calcularSaldo();
ahorros.retirar(temp);
corriente.consignarValor(temp);

}

e Este método pasa todo el dinero depositado en la cuenta de ahorros a la cuenta
corriente. Fijese que es indispensable utilizar una variable (temp) para almacenar el
valor temporal que se debe mover. ¢ Se podria hacer sin esa variable? Las variables se
declaran dentro del método que la va a utilizar y se pueden usar dentro de las
expresiones que van en el cuerpo del método.

Si hay necesidad de convertir un valor real en un valor entero, se puede usar el

operador de conversion (int) . Dicho operador se utiliza de la siguiente manera:
int respuesta = (int)(1000 / 33);

En ese caso, el computador primero evalua la expresién y luego elimina las cifras

decimales.

Tarea 10

Objetivo: Escribir el cuerpo de algunos métodos simples.

Escriba el cuerpo de los métodos de la clase CuentaBancaria (caso de estudio 2) cuya
signatura aparece a continuacion. Utilice los nombres de los atributos que aparecen en la
declaracion de la clase. Suponga que existen los métodos que necesite en las clases
CuentaCorriente, CuentaAhorros y CDT.

public void double
{

Pasa de la cuenta corriente a la cuenta de ahorros el valor que se entrega como parametro
(suponiendo que hay suficientes fondos).

public void double
{

Retira un valor dado de la cuenta de ahorros (suponiendo que hay suficientes fondos).

public double
{

Retorna el saldo que hay en la cuenta corriente. No olvide que éste es un método de la
clase CuentaBancaria.

public void

{

Retira todo el dinero que hay en la cuenta corriente y en la cuenta de ahorros.

public void duplicarAhorro

{

Duplica la cantidad de dinero que hay en la cuenta de ahorros.

public void avanzarMesSimulacion

{

Avanza un mes la simulacién de la cuenta bancaria.
Dentro de un método:

e Para hacer referencia a un atributo basta con utilizar su nombre (salario).

e Para invocar un método sobre el mismo objeto, se debe dar unicamente el nombre
del método y la lista de valores para los parametros (cambiarSalario(2000000)).

e Para invocar un método sobre un objeto con el cual se tiene una asociacién, se
debe dar el nombre de la asociacion, seguido de un punto y luego la lista de
valores para los parametros (fechalngreso.darDia()).

6.9. Llamada de Métodos con Parametros

Este tema se profundizara en los capitulos posteriores. Por ahora s6lo queremos dar una
idea global del proceso de llamada de un método con parametros. Para eso vamos a
contestar siete preguntas:

e ;Cuando necesita parametros un método? Un método necesita parametros cuando la
informacion que tiene el objeto en sus atributos no es suficiente para resolver el
problema que le plantean.

e ;Como se declara un parametro? En la signatura del método se define el tipo de dato
del parametro y se le asocia un nombre. Es conveniente que este nombre dé una idea
clara del valor que se va a recibir por ese medio.

e ;Como se utiliza el valor del parametro? Basta con utilizar el nombre del parametro en
el cuerpo del méetodo, de la misma manera en que se utilizan los atributos.

e ; Se puede utilizar el parametro por fuera del cuerpo del método? No. En ningun caso.

e Aquel que hace la llamada del metodo, ¢,como hace para definir los valores de los
parametros? En el momento de hacer la llamada, se deben pasar tantos valores como

parametros esta esperando el método. Esos valores pueden ser constantes (por
ejemplo, 500), atributos del objeto que hace la llamada (por ejemplo, salario),
parametros del metodo desde el cual se hace la llamada (por ejemplo, pNuevoSalario),
0 expresiones que mezclen los tres anteriores (por ejemplo, salario + pNuevoSalario *
500).

e ;Como se hace la relacidn entre esos valores y los parametros? Los valores se deben
pasar teniendo en cuenta el orden en el que se declararon los parametros. Eso se
ilustra en la figura 1.15.

¢ ;Qué sucede si se pasan mas (0 menos) valores que parametros? El compilador
informa que hay un error en la llamada. Lo mismo sucede si los tipos de datos de los
valores no coinciden con los tipos de datos de los parametros.

Fig. 1.15 Llamada de un método con parametros

public class C?

{
private int atrl;
private Cl obij;

public wvoid mZ? (int x }
{

public class C1

{
public void ml {{int a Jint bfString c

e Tenemos una clase C1, con un metodo m1() que tiene tres parametros.

e Tenemos una clase C2, con un atributo de la clase C1. Desde alli vamos a llamar el
metodo m1() de la primera clase.

e Debemos pasarle 3 valores en el momento de invocar el método. El primer valor es el
parametro x del método m2(). El segundo valor es una expresion que incluye una
constante y un atributo. El tercer valor es una constante de tipo cadena de caracteres.

¢ Al hacer la llamada se hace la correspondencia uno a uno entre los valores y los
parametros.

e Después de hacer la correspondencia se calcula cada valor y se le asigna al respectivo
parametro. Esta copia del valor se hace para todos los tipos simples de datos.

¢ Una vez que se han inicializado los parametros se inicia la ejecucion del metodo.

6.10. Creacion de Objetos

La creacion de objetos es un tema que sera abordado nuevamente en el segundo nivel. Sin
embargo se explicara la creacion de objetos porque es indispensable para entender la
estructura de un programa completo. Para esto empezaremos contestando algunas
preguntas.

¢ ;Quién crea los objetos del modelo del mundo? Tipicamente, el proceso lo inicia la
interfaz de usuario, creando una instancia de la clase mas importante del modelo. Lo
que sigue, depende del diseiio que se haya hecho del programa.

e ;Como se guarda un objeto que acaba de ser creado? Mas que guardar un objeto se
debe hablar de referenciar. Una referencia a un objeto se puede guardar en cualquier
atributo o variable del mismo tipo.

Un objeto se crea utilizando la instruccion new y dando el nombre de la clase de la cual va
a ser una instancia. Para crear un empleado, por triangulo, se usa la expresion new
Triangulo() . Al ejecutar esta instruccion, el computador se encarga de buscar la
declaracién de la clase y asignar al objeto un nuevo espacio en memoria en donde pueda
almacenar los valores de todos sus atributos. Como no es responsabilidad del computador
darle un valor inicial a los atributos, éstos quedan en un valor que se puede considerar
indefinido, tal como se sugiere en la figura 1.16, en donde se muestra la sintaxis de la
instruccion new Y el efecto de su uso.

Fig. 1.16 Creacion de un objeto usando la instruccién new

Punto p= new Punto (); o

¢ Elresultado de ejecutar la instruccién del ejemplo es un nuevo objeto, con sus atributos
no inicializados.

¢ Dicho objeto esta "referenciado” por p, que puede ser un atributo o una variable de tipo
Punto.

Para inicializar los valores de un objeto, las clases permiten la definicién de métodos
constructores, los cuales son invocados automaticamente en el momento de ejecutar la
instruccion de creacion. Un método constructor tiene dos reglas fundamentales:

1. Se debe llamar igual que la clase.
2. No puede tener ningun tipo de retorno, puesto que su unico objetivo es dar un valor
inicial a los atributos.

El siguiente es un ejemplo de un método constructor para la clase Punto:

public
{

Un metodo constructor tiene el mismo nombre de la clase (asi lo puede localizar el

compilador) y no tiene ningun tipo de retorno.

e El método constructor del ejemplo le asigna valores iniciales por defecto a todos los
atributos del objeto.

¢ Un metodo constructor no se puede llamar directamente, sino que es invocado
automaticamente cada vez que se crea un nuevo objeto de la clase.

El método constructor anterior le asigna un valor por defecto a cada uno de los atributos del
objeto, evitando asi tener valores indefinidos. El hecho de incluir este método constructor en
la declaracion de la clase hace que éste siempre se invoque como parte de la respuesta del
computador a la instruccion new . En la figura1.17 se ilustra la creacién de un objeto de una
clase que tiene un metodo constructor.

Fig. 1.17 Creacién de un objeto cuya clase tiene un método constructor.

Punto p= new Punto ();

Puesto que en muchos casos los valores por defecto no tienen sentido (no todos los puntos
pueden tener coordenadas 0,0), es posible agregar parametros en el constructor, lo que
obliga a todo aquel que quiera crear una nueva instancia de esa clase a definir dichos
valores iniciales.

En el siguiente ejemplo, se muestra un constructor que recibe por parametro las
coordenadas que se desea asignar al punto desde su creacion:

public double double
{

= pX;

= pY;
}

e Este constructor exige 2 parametros, de tipo real, para poder inicializar los objetos de la
clase Punto.
¢ En el constructor se asignan los valores de los parametros a los atributos.

En la figura 1.18 se ilustra la creacién de un objeto de una clase que usa el método
constructor con parametros definido arriba.

Fig. 1.18 Creacion de un objeto a partir de un constructor con parametros.

x=200

Punto p= new Punto (200,50); y=50

e E| objeto creado se ubica en alguna parte de la memoria del computador. Dicho objeto
es referenciado por el atributo o la variable llamada " p ".

Debido a que es necesario que el triangulo tenga 3 puntos, su método constructor debe
incluir la creacion de los 3 puntos, como se muestra a continuacion:

public

{
puntol = new Punto(0)5
punto2 = new Punto(.);
punto3 = new Punto(0);
}
Tarea 11

Objetivo: Generar habilidad en el uso de los constructores de las clases.

Complete el constructor de la clase Color, de manera que reciba por parametro los valores
que se desea asignar a cada uno de sus atributos y los inicialice.

public
{

Complete el constructor de la clase Triangulo para que inicialice el color de relleno y el color
de las lineas, usando el constructor creado arriba. (Tenga en cuenta que los valores de
cada componente del color se deben inicializar con un entero etre 0 y 255).

public

{
puntol = new Punto(7);
punto2 = new Punto(7);
punto3 = new Punto(,);

7. Diseno de la Solucion

En esta seccidn se da una vision global de la etapa de diseno, la segunda etapa del
proceso de desarrollo de un programa.

Si hacemos el paralelo con el trabajo de un arquitecto que construye un edificio, podemos
imaginar que éste, una vez que ha terminado de entender lo que el cliente quiere, empieza
la etapa de diseno del edificio. La figura 1.19 pretende mostrar que la actividad de disefo se
suele desarrollar a través de refinamientos sucesivos: el arquitecto primero hace un
bosquejo de lo que quiere construir, luego hace los calculos necesarios para verificar si esta
solucion es viable (debe por ejemplo estimar los materiales y el costo de mano de obra). Si
llega a la conclusion de que no cumple por alguna razon las restricciones impuestas por el
cliente (o se le ocurre una manera mejor de hacerlo), realiza los ajustes del caso y repite de
nuevo la etapa de calculos. La actividad termina cuando el arquitecto decide que encontro
una buena solucion al problema. En ese momento comienza a elaborar un conjunto de
planos que van a ser utilizados como guia para la construccion del edificio.

Fig. 1.19 El disefo es una actividad iterativa hasta encontrar una solucién

220 LMAR CENTD
Q am T -~

ARQULICE © JUSGULEL T CALCLOS PoAMDS

En el caso de la construccion de un programa, la actividad de disefo sigue el mismo
esquema: nuestro bosquejo inicial es el modelo conceptual del mundo del problema,
nuestros calculos consisten en verificar los requerimientos no funcionales y calcular el costo
de implementacion, y nuestros planos son, entre otros, diagramas detallados escritos en
UML. En cada refinamiento introducimos o ajustamos algunos de los elementos del
programa y asi nos vamos aproximando a una solucién adecuada.

Como se muestra en la figura 1.20, los documentos de disefio (nuestros "planos") deben
hacer referencia al menos a tres aspectos:

1. El diseno de la interfaz de usuario.
2. La arquitectura de la solucion.
3. El diseno de las clases.

Fig. 1.20 Entradas y salidas de la etapa de diseio

Requerimientos _
. 2 Interfaz usuario

funcionales \ p
N ’
p y
\ /
» /
N /
Mundo del \ pr Arquitectura
s sis \ 3 e 2 T .
problema - - eno de |¢ o solucion
P i
/s f
” ~
Fd by
v
s s b G g
Requerimientos @ = Disefio de las
no funcionales clases

e Como entrada tenemos el analisis del problema, dividido en tres partes: requerimientos
funcionales, mundo del problema y requerimientos no funcionales.

¢ La salida es el diseno del programa, que incluye la interfaz de usuario, la arquitectura y
el disefio de las clases.

7.1. La Interfaz de Usuario

La interfaz de usuario es la parte de la solucion que permite que los usuarios interactuen
con el programa. A través de la interfaz, el usuario puede utilizar las operaciones del
programa que implementan los requerimientos funcionales. La manera de construir esta
interfaz sera el tema del nivel 5 de este libro. Hasta entonces, todas las interfaces que se
necesitan para completar los programas de los casos de estudio seran dadas.

7.2. La Arquitectura de la Solucién

En general, cuando se quiere resolver un problema, es bueno contar con mecanismos que
ayuden a dividirlo en problemas mas pequefos. Estos problemas son menos complejos que
el problema original y, por lo tanto, mas faciles de resolver.

Por ejemplo, si se quiere construir un aeropuerto, al plantear la solucion, los disefiadores
identifican sus grandes partes: las pistas de aterrizaje, las salas de llegada y salida de
pasajeros, la torre de control, etc. Luego tratan de disefar esas partes por separado,
sabiendo que cada diseno es mas sencillo que el disefio completo del aeropuerto. Lo
importante es después poder pegar los pedazos de solucion. Para eso es importante tener
un diseno de alto nivel en el que aparezcan a grandes rasgos los elementos que conforman
la solucion. Eso es lo que en programacion se denomina la arquitectura de la solucién. En

el caso de los problemas que tratamos en este libro, dado que son pequefios y su
complejidad es baja, nos vamos a contentar con identificar los paquetes y las clases que
van en cada uno de ellos. Luego, nos dedicaremos a trabajar en las clases de cada
paquete, para finalmente armar la solucién completa.

En los problemas en los que vamos a trabajar a lo largo del libro, se pueden identificar 3
grandes grupos de clases:

1. Las clases que implementan la interfaz de usuario.
2. Las clases que implementan el modelo del mundo.
3. Las clases que implementan las pruebas.

Cada uno de estos grupos va a ir en un paquete distinto. Esta manera de separar la
aplicacion en estos tres paquetes la vamos a llamar la arquitectura basica y la estaremos
utilizando en la gran mayoria de los casos de estudio de este libro. La figura 1.21 ilustra la
arquitectura de la solucion para el caso de estudio del empleado, en la cual se puede
apreciar que hay tres paquetes, que cada uno tiene en su interior un grupo de clases, y que
estos paquetes estan relacionados (la relacion esta indicada por las flechas punteadas).

Fig. 1.21 Arquitectura de paquetes del caso de estudio del empleado

InterfazEmpleado
PanelConsultas

PanelDatos

PanelOpciones

Panellmagen | P, >

DialogoCambiarEmpleado Empleado
A Fecha

EmpleadoTest .
FechaTest b

e En el diagrama de paquetes se puede leer que alguna clase del paquete

uniandes.cupi2.empleado.interfaz utiliza algun servicio de una clase del paquete
uniandes.cupi2.empleado.mundo . En este diagrama no se entra en detalles sobre cual
clase es la que tiene la relacion.
e El diagrama de paquetes es muy util para darse una idea de la estructura del programa.
En este nivel sélo estamos interesados en mirar por dentro el paquete con las clases
del mundo. En niveles posteriores nos interesaremos por las demas clases.

Sin entrar por ahora en mayores detalles, podemos decir que en el paquete de la interfaz
estaran las clases que implementan los elementos graficos y de interaccion, lo mismo que
las clases que implementan los requerimientos funcionales y las clases que crean las
instancias del modelo del mundo. Es alli donde estan agrupadas todas esas
responsabilidades. Este es el tema del nivel 5 de este libro. Por ahora, paciencia...

7.3. El Diseno de las Clases

El objetivo de esta parte de la etapa de disefio es mostrar los detalles de cada una de las
clases que van a hacer parte del programa. Para esto vamos a utilizar el diagrama de
clases de UML, con toda la informacion que presentamos en las secciones anteriores
(clases, atributos y signaturas de los métodos). En el nivel 4, veremos la manera de precisar
las responsabilidades y compromisos de cada uno de los métodos (exactamente qué debe
hacer cada méetodo), de manera que la persona que vaya a implementar los métodos no
deba guiarse unicamente por los nombres de los mismos.

8. Construccion de la Solucion

8.1. Vision Global

En la etapa de construccion de la solucion debemos escribir todos los elementos que
forman parte del programa que fue disefiado en la etapa anterior, y que resuelve el
problema planteado por el cliente. Dicho programa sera instalado en el computador del
usuario y luego ejecutado.

En la figura 1.22 aparecen las entradas y las salidas de esta etapa. Alli se puede apreciar
que un programa consta de un conjunto estructurado de archivos de distintos tipos (no sélo
estan los archivos de las clases Java). La descripcion de todos ellos se hara en la secciéon
8.2. También se puede ver que la etapa de construccion debe seguir ciertas reglas de
organizacion, las cuales varian de empresa a empresa de desarrollo de software, y que
deben hacerse explicitas antes de comenzar el trabajo. Estas reglas de organizacion son el
tema de la seccidén 8.3. Al terminar la etapa de construccion, algunos archivos
empaquetados y algunos archivos ejecutables iran al computador del usuario, pues en ellos
queda el programa listo para su uso. El resto de los archivos se entregan al cliente, quien
los podra utilizar en el futuro para darle mantenimiento al programa, permitiendo asi incluir
nuevas opciones y dando al cliente la oportunidad de adaptar el programa a los cambios
que puedan aparecer en el mundo del problema.

Fig. 1.22 Entradas y salidas de la etapa de construccién de la solucién

A : -
Archivos Tueate

Cjrren)

A .
bl via] L Rwt-

cerpliades

Archives de

docurnznlac or

CLIENIE
%

Srckivaz

srrpoaLe sdes

Arcaivos

| !

zzoutables

JELARIC

_—

8.2. Tipos de Archivos

Dentro de cada uno de los proyectos de desarrollo en Java incluidos en este libro, aparecen
nueve tipos distintos de archivos, los cuales contienen partes de la solucidn. A continuacién

se describe cada uno de ellos:

Tipo de . . . ;,Como se
PO ¢ Qué contiene? ¢Coémo se usa? ¢
archivo construye?
Es un archivo que contiene
. 1 , Se construye
el codigo compilado de una
, llamando el
clase Java. El compilador Lo usa el .
. compilador del
genera este archivo, que computador para .
.class \ ,) lenguaje, e
después podra ser ejecutar un o
, indicandole el
ejecutado. En el proyecto programa. T
] . archivo .java que
habra un archivo .class por :
T debe compilar.
cada archivo .java.
Se requiere tener
: : instalado en el
Es un archivo que tiene parte
e computador la
de la especificacion del T .
problema (el enunciado aplicacion Microsoft Secreay
o Word®. Para abrirlo modifica desde la
.docx general y los requerimientos o
. : basta con hacer aplicacion
funcionales). Tiene el . .
. doble clic en el Microsoft Word®.
formato usado por Microsoft .
archivo desde el
Word®.
explorador de
archivos.
Se requiere tener
instalado en el Lo crea
computador un automaticamente
Es un archivo con la navegador de la aplicacion
html documentacion de una clase, Internet. Para Javadoc, que
) generada automaticamente abrirlo basta con extrae y organiza
por la utilidad Javadoc. hacer doble clic en la documentacion
el archivo desde el de una clase
explorador de escrita en Java.
archivos.
Es un archivo en el que
estan empaquetados todos
los archivos .class de un
» Se construye
programa. Su objetivo es i
v . - Lo usa el utilizando la
facilitar la instalacion de un - :
. computador para utilidad jar que
Jjar programa en el computador . .
ejecutar un viene con el

de un usuario. En lugar de
tener que copiar cientos de
archivos .class se
empaquetan todos ellos en
un solo .jar.

programa.

compilador de
Java.

Jjava

.eap

jpeg/png

.Zip

Es un archivo con la
implementacion de una clase
en Java.

Es un archivo con los
diagramas de clases y de
arquitectura del programa.
Estan escritos en el formato
de Enterprise Architect®.

Son archivos que
contienenuna imagen. Los
usamos para mostrar los
distintos diagramas del
programa. Esto permite
visualizar el disefo a
aquellos que no cuenten con
el programa Enterprise
Architect®.

Es un archivo que
empaqueta un conjunto de
archivos. Tiene la ventaja de
gue los almacena de manera
comprimida y hace que
ocupen menos espacio.

Se le pasa al
compilador para
que cree a partir de
el un .class, que
sera posteriormente
ejecutado por el
computador.

Se requiere tener
instalado en el
computador la
aplicacion
Enterprise
Architect®. Para
abrirlo basta con
hacer doble clic en
el explorador de
archivos.

Cualquier programa
de imagenes
(incluso los
navegadores de
Internet) pueden
leer estos archivos.

Muchas
herramientas en el
mercado permiten
manejar este tipo de
archivos. Si tiene
alguna de ellas
instalada en su
computador, un
doble clic desde el
explorador de
archivos iniciara la
aplicacion.

Desde cualquier
editor de texto.
En nuestro caso,
el ambiente de
desarrollo Eclipse
va a permitir
editar este tipo
de archivo,
dandonos ayudas
para detectar
errores de
sintaxis.

Se crea, modifica
e imprime desde
la aplicacién
Enterprise
Architect®.

Se crean con
cualquier editor
de imagenes.

Se construyen
utilizando las
mismas
herramientas que
permiten extraer
de alli los
archivos que
contienen.

8.3. Organizacion de los Elementos de Trabajo

Sigamos con el paralelo que estdbamos haciendo con el edificio. Una vez terminados los
planos debemos pasar a la etapa de construccion. Antes de empezar a abrir el hueco para
los cimientos y de comprar los materiales que se necesitan, es necesario fijar todas las
normas de organizacion. Lo primero es decidir donde se va a poner cada elemento para la
construccion: dénde van los ladrillos, donde va el cemento, etc. Luego, como vamos a
llamar las cosas. Si hay varios tipos de puertas, por ejemplo, nos debemos poner de
acuerdo en la manera de etiquetarlas. Esto ultimo es lo que se denomina una convencion.
Tanto la organizacion como las convenciones no son universales y en cada edificio que se
va a construir pueden cambiar. Lo importante es que antes de iniciar la construccién todo el
mundo esté informado y se comprometa a respetar dichas normas.

Para la construccion de un programa se sigue la misma idea: se define una organizacion
(siempre debemos saber donde buscar un elemento de la solucion) y un conjunto de
convenciones (por ejemplo, el archivo en el que estan los requerimientos funcionales
siempre se va a llamar de la misma manera). Nuestros elementos estan siempre en
archivos, y nuestra estructura de organizacion de basa en el sistema de directorios.

En esta seccidén presentamos la organizacion y las convenciones que utilizamos en los
proyectos de construccion de los programas de los casos de estudio. Todos los
proyectos de este libro las siguen y, aunque no son universales, reflejan las practicas
comunes de los equipos de desarrollo de software.

8.3.1 Proyectos y Directorios

Un proyecto de desarrollo va siempre en un directorio, cuyo nombre indica su contenido. En
nuestro caso el nombre del directorio comienza por el nivel, seguido del nombre del caso de
estudio (por ejemplo, n1_empleado).

Dentro del directorio principal, se encuentran siete directorios, con el contenido que se
muestra en la figura 1.23.

Fig. 1.23 Estructura de directorios dentro de un proyecto de desarrollo

= [n1_empleado

Cedigo — (o

comgi!ddo » @ | classes N
m (== rchivo
) data de datos

Documentacion (e

especificacion Y < _.Jl docs -
8 (@ source ——— A

Pruebas del pey

programa E) test

Comencemos entonces a recorrer cada uno de estos directorios, utilizando para esto el
proyecto de desarrollo del caso de estudio del empleado. En la tarea 11 se dan los pasos
para poder comenzar este recorrido.

Tarea 12

Objetivo: Preparar la organizacién para iniciar el recorrido por los elementos de un
proyecto de desarrollo, utilizando como ejemplo el caso de estudio del empleado.

Siga los pasos que se enuncian a continuacion:

1. Descargue de aqui al disco de su computador el proyecto de nivel 1 llamado
n1_empleado. Descomprimalo (esta en formato zip) y recorra los directorios internos
utilizando el explorador de archivos.

2. Verifique que en su computador se encuentre instalado el compilador de Java. Si no
estd instalado, vaya al anexo A del libro y siga las instrucciones para instalarlo.
Algunos programas del libro estan escritos para versiones de Java posteriores a la
version 1.4,

3. Verifique que en su computador se encuentre instalado el ambiente de desarrollo

Eclipse. Si no esta instalado, vaya al anexo B del libro y siga las instrucciones para
instalarlo.

8.3.2. El Directorio source

En este directorio encontrara los archivos fuente, en los que esta la implementacion en Java
de cada una de las clases. Cada clase esta en un archivo distinto, dentro de un directorio
que refleja la jerarquia de paquetes. Esta relacion entre paquetes y directorios es la que
permite al compilador encontrar las clases en el espacio de trabajo. En la figura 1.24 se
ilustra esta relacion.

Fig. 1.24 Relacioén entre los paquetes y la jerarquia de directorios

=) n1_empleado
|} classes
® i) data
@ () docs
=) SOUrce
= | uniandes
= () cupi2
= |J) empleado
3 =) interfaz |- ---~--~=~4
B Emundo |. - - - -y
B) test .

Tarea 13

Objetivo: Recorrer los archivos fuente de un programa y ver la relacién entre la jerarquia de
directorios y la estructura de paquetes.

Siga los pasos que se dan a continuacion.

1. Abra el explorador de archivos y situese en el directorio source del proyecto que instalé
en la tarea 11.

http://cupi2.uniandes.edu.co/sitio/images/cursosCupi2/apo1/ejemplos/codigos/n1_empleado.zip

2. Entre al directorio "uniandes". Dentro de éste entre al directorio "cupi2" y luego al
directorio "empleado". Alli deben aparecer los directorios "interfaz" y "mundo". Entre en
cualquiera de ellos y utilice el bloc de notas para ver el contenido de un archivo .java.
Es importante decir que si se mueve un archivo a otro directorio, o se cambia el
paquete al que pertenece sin desplazar fisicamente el archivo al nuevo directorio, el
programa no se va a compilar correctamente.

8.3.3. El Directorio classes

En este directorio estan todos los archivos .class. Tiene la misma jerarquia de directorios
que se usa para los archivos fuente. No es muy interesante su contenido, porque para
poder ver estos archivos por dentro se necesitan editores especiales. Si intenta abrir uno de
estos archivos con editores de texto normales, va a obtener unos caracteres que
aparentemente no tienen ningun sentido.

Estos archivos tienen por dentro el bytecode (cédigo binario) producto de compilar la
correspondiente clase Java.

8.3.4. El Directorio test

En este directorio estan todos los archivos que hacen las pruebas automaticas del
programa. Por ahora lo unico importante es saber que en su interior hay varios directorios,
con archivos .class, .jar y .java. En un nivel posterior entraremos a mirar este directorio.

8.3.5. El Directorio docs

En este directorio hay dos subdirectorios:

e specs: contiene todos los documentos de diseno. Alli encontrara: (1) el archivo
Descripcion.docx, con el enunciado del caso de estudio, (2) el archivo
RequerimientosFuncionales.docx con la especificacion de los requerimientos
funcionales, (3) el archivo Modelo.eap con los diagramas de clases del disefio y (4) un
conjunto de archivos .jpg con las imagenes de los distintos diagramas de clases.

e api: contiene los archivos de la documentacién de las clases del programa. Estos
archivos solo se veran a partir del nivel 4.

8.3.6. El Directorio lib

En este directorio encontrara el archivo empaquetado para instalar en el computador del
usuario. En el caso de estudio del empleado dicho archivo se llama empleado.jar. Este
archivo tiene la misma estructura interna de un archivo .zip, asi que si desea ver su

contenido puede utilizar cualquiera de los programas que permiten manejar esos archivos.
En su interior debera encontrar todos los archivos .class del proyecto.

8.3.7 El Directorio data

Este directorio contiene archivos con informacion que utiliza el programa, ya sea para
almacenar datos (si tuviéramos una base de datos estaria en ese directorio) o para leerlos
(por ejemplo, en el caso de estudio del empleado, alli se guarda la foto en un archivo con
formato jpeg).

8.4. Eclipse: Un Ambiente de Desarrollo

Un ambiente (o entorno) de desarrollo es una aplicacion que facilita la construccion de
programas. Principalmente, debe ayudarnos a escribir el codigo, a compilarlo y a ejecutarlo.
Eclipse es un ambiente de multiples usos, uno de los cuales es ayudar al desarrollo de
programas escritos en Java. Es una herramienta de uso gratuito, muy flexible y adaptable a
las necesidades y gustos de los programadores.

Tarea 14

Objetivo: Estudiar tres funcionalidades basicas del ambiente de desarrollo:

1. Cémo abrir un proyecto que ya existe (como el del caso de estudio).
2. Cémo leer y modificar los archivos de las clases Java.
3. Cémo ejecutar el programa.

Siga los pasos que se enuncian a continuacion.
1. ¢, Cémo abrir en Eclipse el programa n1_empleado? Puede hacerlo de dos formas:
Opcidén 1: Creando el proyecto directamente en la estructura de directorios

e Descomprima el archivo .zip que contiene el proyecto (por ejemplo en C:/temp/).

e Cree un proyecto Java en Eclipse (menu File/New/Java Project), con la ruta del
directorio (C:/temp/n1_empleado) y el nombre del proyecto (n1_empleado).

e Puede aceptar la creacion ahora (boton "Finish"), o navegar a la siguiente ventana
("Next") para ver las propiedades del proyecto.

Opcidén 2: Importando el proyecto de la estructura de directorios:

e Descomprima el archivo .zip que contiene el proyecto (por ejemplo en C:/temp/)
¢ Elija la opcion de importacién (menu File/Import...). En el didlogo en el que le
preguntan la fuente de la importacion seleccione "Existing Project into Workspace".

e Seleccione la carpeta del proyecto (C:/temp/n1_empleado) y finalice.
2. ;Como explorar en Eclipse el contenido de un proyecto abierto?

e Utilice la vista llamada navegador. Si la vista no esta disponible, busquela en el menu
Window/Show View/ Navigator.

¢ Revise la estructura de directorios del proyecto n1_empleado y recuerde el contenido
de cada uno de ellos (puede ocurrir que algunos directorios no contengan archivos en
el proyecto que esta explorando).

3. ¢Como explorar en Eclipse un proyecto Java que esté abierto?

e Utilice la vista llamada "Package Explorer". Si la vista anterior no esta disponible,
busquela en el menu Window/ Show View/Package Explorer.

¢ Revise las propiedades del proyecto. Puede editar las propiedades haciendo clic
derecho sobre el proyecto o mediante el menu Project/Properties.

e Seleccione de la ventana de propiedades (de las opciones que aparecen a la izquierda)
las opciones de construccion de Java ("Java Build Path") y revise la configuracion del
proyecto.

e Observe la estructura de paquetes del proyecto.

4. ;Como editar una clase Java?

e Utilizando la vista llamada "Package Explorer" localice el directorio con los archivos
fuente del proyecto.

¢ Dando doble clic sobre cualquiera de los archivos que alli se encuentran
(Empleado.java, por ejemplo), el editor lo abre y permite al programador que lo
modifique.

e Agregue un comentario en algun punto de la clase Empleado, teniendo cuidado de no
afectar el contenido del archivo, y salvelo de nuevo con la opcion del menu File/Save.

e Cierre el archivo después de haberlo salvado.

5. ¢ Como ejecutar el programa en un proyecto abierto en Eclipse?

e Utilizando la vista llamada "Package Explorer" localice el directorio con los archivos
fuente del proyecto.

e Localice la clase InterfazEmpleado en el paquete que contiene las clases de la interfaz.
Cada programa en Java tiene una clase por la cual comienza la ejecucion. Siempre se
debe localizar esta clase para poder iniciar el programa.

¢ Elija el comando "Run/Java Application". Puede hacerlo desde la barra de
herramientas, el menu principal o el menu emergente que aparece al hacer clic derecho
sobre la clase.

e Con este comando el programa comienza su ejecucion. El programa y Eclipse siguen
funcionando simultaneamente. Para terminar el programa, basta con cerrar su ventana.

Localice la vista llamada consola. Si la vista no esta disponible, busquela en el menu
Window/Show View/Console. Alli pueden aparecer algunos mensajes de error de
ejecucion. En esa vista hay un botdn rojo pequefio, que permite terminar la ejecucion

del programa.

Debe estar claro que el ambiente de desarrollo es una herramienta para el
programador, y que lo normal es que dicho ambiente no esté instalado en el

computador del usuario.

9. Hojas de Trabajo

9.1 Hoja de Trabajo N° 1: Una Encuesta

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Analice la siguiente lectura e identifique el mundo del problema, lo que se
espera de la aplicacion y las restricciones para desarrollarla.

Se quiere crear una aplicacién que permita realizar encuesta de opinién de un curso y
manejar sus resultados. La encuesta consiste en una unica pregunta, en la cual se le pide a
la persona que califique la calidad de un curso dando un valor entre 0 y 10.

Se desea poder conocer los resultados de la en cuenta para diferentes sectores
demograficos. Para esto se tendra en cuenta el rango el rango de edad y el estado civil de
la persona que puede ser soltero(a) o casado(a). En la encuesta se dividieron las personas
en 3 rangos de edad: (1) menores de 18, (2) entre 18 y 54, y (3) con 55 0 mas afos.

En el momento de hacer la pregunta, la persona debe seleccionar su rango de edad,
informar si es soltera o casada y agregar una nueva opinion a la encuesta.

El programa debe informar el promedio total de la encuesta. Esto es, debe promediar todas
las notas dadas y presentar el resultado en pantalla. También debe debe ser capaz de
informar valores parciales de la encuesta. En ese caso se debe especificar un rango de
edad y un estado civil. El programa presenta por pantalla el promedio de las calificaciones
del curso dadas por todas las personas que cumplen el perfil pedido. Puede suponer que en
el momento de calcular los resultados hay por lo menos una persona de cada perfil.

La interfaz de usuario de este programa es la que se muestra a continuacion:

https://bit.ly/apo1-nivel1-hoja1-pdf-format
https://bit.ly/apo1-nivel1-hoja1-word-format

Hojas de Trabajo

Encuesta del curso o = | bt

LA ENCUESTA

FQIFT\"

Bienvenido(a) a nuestra encuesta!

Por favor, seleccione su rango de edad: 0-17 afios - >

;Mmgm’npiﬁiﬁhammmsm

117

Hojas de Trabajo

Encuesta del curso b =

| Agregar opinién a encuesta

Bienvenido(a) a nuestra encuesta!

2

Opciones

Su estado civil es: Casado(a) -

b

118

Hojas de Trabajo

@ Encuesta del curso =k a2y 1 Y

LA ENCUESTA

=

-"i:i ; ;
C—

Agregar opinion a encuesta

Bienvenido(a) a nuestra encuesta!

== Califique de 0 a 10 el curso: Enviar

Opciones

119

Hojas de Trabajo

@ Encuesta del curso b — El >

LA ENCUESTA

el
-i;‘-\

ot
Agregar opinidn a encuesta

Bienvenido(a) a nuestra encuesta!

Consulta por sector demografico

Rango de edad 017 afios w | Estado civil Casado(a) - Consultar !
Estadisticas generales
Nimero total de opiniones: 3
Promedio total encuesta: 4,00
Calificacion casados Calificacion solteros
4 | 3
el | o
53 5
] @
£ i =
=] =]
= =
aly | o
0
Sector demografico Sector demografico
B 0-17 arfios M 18-54 afios © 55 o mas | W 0-17 afios M@ 18-54 afios ¥ 55 o mas
Responder nuevamente
- Opciones

Requerimientos funcionales. Describa tres requerimientos funcionales de la aplicacién
que haya identificado en el enunciado.

Requerimiento Funcional 1

120

Hojas de Trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

121

Hojas de Trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

122

Hojas de Trabajo

Nombre

Resumen

Entradas

Resultado

Entidades del mundo. Identifique las entidades del mundo y describalas brevemente.

Entidad Descripcion

Caracteristicas de las entidades. Identifique las caracteristicas de cada una de las
entidades y escriba la clase en UML con el tipo de datos adecuado.

Entidad 1

123

Hojas de Trabajo

Atributo Valores Posibles

Diagrama UML

124

NN

Hojas de Trabajo

Entidad 2

Atributo Valores Posibles

HEE
HEE

125

Hojas de Trabajo

Diagrama UML

Relaciones entre entidades. Dibuje las entidades en UML (sin atributos ni métodos) y las
relaciones que existan entre ellas.

126

Métodos de las entidades. Lea las siguientes descripciones de métodos y escriba su

implementacion en el lenguaje Java.

Método 1

Clase
Nombre

Parametros

Retorno

Descripcion

Método 2

Clase
Nombre

Parametros

Retorno

Descripcion

RangoEdad
darNumeroCasados
Ninguno.

El numero de personas casadas que respondieron la encuesta, en el
rango de edad de la clase.

Retorna el numero de personas casadas que respondieron la encuesta,
en el rango de edad de la clase.

Implementacion en Java

RangoEdad
darTotalOpinionCasados
Ninguno.

La suma de todas las opiniones de los encuestados casados en el rango
de edad de la clase.

Retorna la suma de todas las opiniones de los encuestados casados en
el rango de edad de la clase.

Hojas de Trabajo

Implementacion en Java

Método 3
Clase RangoEdad
Nombre calcularPromedio

Parametros Ninguno.
Retorno El promedio de la encuesta en el rango de edad de la clase.

Retorna el promedio de la encuesta en el rango de edad de la clase.
Descripcion Para esto suma todas las opiniones y divide por el numero total de
encuestados.

Implementacion en Java

Método 4

128

Clase RangoEdad
Nombre agregarOpinionCasado

Parametros Opinidn del encuestado.

Retorno Ninguno.
D L Anade la opinién de una persona casada en el rango de edad que
escripcion
representa la clase.
Implementacion en Java

Método 5

Clase RangoEncuesta

Nombre darPromedioCasados

Parametros Ninguno.

El promedio de la encuesta en el rango de edad de la clase

Retorno) ,
considerando solo los casados.

Retorna el promedio de la encuesta en el rango de edad de la clase.
Descripcion Para esto suma todas las opiniones de los casados y divide por el
numero total de ellos.

Hojas de Trabajo

Implementacion en Java

Método 6
Clase Encuesta
Nombre agregarOpinionRango1Casado

Parametros Opinién del encuestado.
Retorno Ninguno.

Anade la opinidon de una persona casada en el rango de edad 1 de la

Descripcion
encuesta.

Implementacion en Java

Método 7

130

Clase
Nombre
Parametros

Retorno

Descripcion

Método 8

Clase
Nombre
Parametros

Retorno

Descripcion

Encuesta

agregarOpinionRango2Soltero

(1) estado civil, (2) opinion.

Ninguno.

Anade la opinidén de una persona soltera en el rango de edad 2 de la

encuesta.

Implementacion en Java

Encuesta

calcularPromedio

Ninguno.

El promedio de la encuesta en todos los rangos de edad.

Retorna el promedio de la encuesta en todos los rangos de edad. Para
esto suma todas las opiniones y divide por el numero total de
encuestados.

Hojas de Trabajo

Implementacion en Java

Método 9
Clase Encuesta
Nombre darPromedioCasados

Parametros Ninguno.

El promedio de la encuesta en todos los rangos de edad de la clase,

Retorno) ,
considerando solo los casados.

Retorna el promedio de la encuesta en todos los rangos de edad. Para
Descripcion esto suma todas las opiniones de los casados y divide por el numero
total de ellos.

Implementacion en Java

132

9.2 Hoja de Trabajo N° 2: Una Alcancia

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado: Analice la siguiente lectura e identifique el mundo del problema, lo que se
espera de la aplicacion y las restricciones para desarrollarla.

Se quiere construir un programa para manejar una alcancia. En la alcancia es posible
guardar monedas de distintas denominaciones: $50, $100, $200, $500 y $1000. No se
guardan billetes 0 monedas de otros valores.

El programa debe dar las siguientes opciones: (1) agregar una moneda de una de las
denominaciones que maneja, (2) informar cuantas monedas tiene de cada denominacion,
(3) calcular el total de dinero ahorrado y (4) romper la alcancia, vaciando su contenido.

La interfaz de usuario de este programa es la que se muestra a continuacion:

| £ Alcancia = — v

LA ALCANCIA

‘Agregar moneda

Alcancia Romper alcancia

Se agregaron 51000 3 & alencia.
En la alcancia hay $5050 pesos.

Mueva alcancia Opcion 1 Opcion 2

Requerimientos funcionales. Describa tres requerimientos funcionales de la aplicacién
que haya identificado en el enunciado.

Requerimiento Funcional 1

https://bit.ly/apo1-nivel1-hoja2-pdf-format
https://bit.ly/apo1-nivel1-hoja2-word-format

Hojas de Trabajo

Nombre R1 — Guardar una moneda de $50 en la alcancia.

Resumen

Entradas

Resultado

Requerimiento Funcional 2

Nombre R2 - Contar el numero de monedas de $50 que hay en la alcancia.

Resumen

Entradas

Resultado

Requerimiento Funcional 3

135

Hojas de Trabajo

Nombre R3 — Calcular el total de dinero ahorrado en la alcancia.

Resumen

Entradas

Resultado

Requerimiento Funcional 4

Nombre R4 — Romper la alcancia.

Resumen

Entradas

Resultado

Entidades del mundo. Identifique las entidades del mundo y describalas brevemente.

136

Entidad Descripcion

Caracteristicas de las entidades. Identifique las caracteristicas de cada una de las
entidades y escriba la clase en UML con el tipo de datos adecuado.

Entidad 1

Hojas de Trabajo

Atributo Valores Posibles

HRNENE
HRNENE

138

Hojas de Trabajo

Diagrama UML

Métodos de las entidades. Complete las siguientes descripciones de métodos y escriba su
implementacion en el lenguaje Java.

Método 1

139

Hojas de Trabajo

Clase Alcancia

Nombre AgregarMoneda50

Parametros

Retorno

Descripcion

Implementacion en Java

Método 2

140

Hojas de Trabajo

Clase Alcancia

Nombre AgregarMoneda500
Parametros

Retorno

Descripcion

Implementacion en Java

Método 3

141

Hojas de Trabajo

Clase Alcancia

Nombre darTotalDinero

Parametros

Retorno

Descripcion

Implementacion en Java

Método 4

142

Hojas de Trabajo

Clase Alcancia

Nombre darNumeroMonedas100

Parametros

Retorno

Descripcion

Implementacion en Java

Método 5

143

Hojas de Trabajo

Clase Alcancia
Nombre romperAlcancia
Parametros

Retorno

Descripcion

Implementacion en Java

144

Nivel 2: Definicién de Situaciones y Manejo de Casos

DEFINICION DE SITUACIONES
Y MANEJO DE CASOS

145

1. Objetivos Pedagodgicos

Al final de este nivel el lector sera capaz de:

* Modelar las caracteristicas de un objeto, utilizando nuevos tipos simples de datos y la
técnica de definir constantes y enumeraciones para representar los valores posibles de
un atributo.

e Utilizar expresiones como medio para identificar una situacion posible en el estado de
un objeto y para indicar la manera de modificar dicho estado.

e Utilizar las instrucciones condicionales simples y compuestas como parte del cuerpo de
un método, para poder considerar distintos casos en la solucién de un problema.

¢ |dentificar de manera informal los métodos de una clase, utilizando para esto la técnica
de agrupar los métodos por tipo de responsabilidad que tienen: construir, modificar o
calcular.

2. Motivacion

En el nivel anterior se introdujo la nocién de un programa como la solucion a un problema
planteado por un cliente. Para construir dicho programa, se presentaron y utilizaron los
elementos conceptuales, tecnoldgicos y metodoldgicos necesarios para enfrentar
problemas triviales. A medida que los problemas comienzan a ser mas complejos, es
preciso ir extendiendo dichos elementos. En este nivel vamos a introducir nuevos elementos
en tres direcciones:

1. Nuevas maneras de modelar una caracteristica.
2. La posibilidad de considerar casos alternativos en el cuerpo de un metodo.
3. Algunas técnicas para identificar los métodos de una clase.

En los siguientes parrafos se muestra la necesidad de estas extensiones dentro del proceso
de desarrollo de programas.

¢ Por qué necesitamos nuevas maneras de modelar una caracteristica? Aunque con los
tipos de datos para manejar enteros, reales y cadenas de caracteres se puede cubrir un
amplio espectro de casos, en este nivel veremos nuevos tipos de datos y nuevas técnicas
para representar las caracteristicas de las clases. También aprovecharemos para
profundizar en los tipos de datos estudiados en el nivel anterior.

¢ Por qué es necesario poder considerar casos en el cuerpo de un metodo? Con las
instrucciones que se presentaron en el nivel anterior, sélo es posible asignar un valor a un
atributo, pedir un servicio a un objeto con el cual se tiene una asociacion, o retornar un
resultado. Por ejemplo, si en el caso del empleado del nivel 1 existiera una norma de la
empresa por la que se diera una bonificacidén en el salario a aquellos empleados que llevan
mas de 10 afos trabajando con ellos, seria imposible incluirla en el programa. No habria
manera de verificar si el empleado cumple con esa condicion para sumarle la bonificacion al
salario. Alli habria dos casos distintos, cada uno con un algoritmo diferente para calcular el
salario.

¢ Por qué necesitamos técnicas para clasificar los métodos de una clase? Uno de los puntos
criticos de la programacion orientada por objetos es lo que se denomina la asignacion de
responsabilidades. Dado que la solucién del problema se divide entre muchos algoritmos
repartidos por todas las clases (que pueden ser centenares), es importante tener clara la
manera de definir quién debe hacer qué. En el nivel 4 nos concentraremos en discutir en
detalle este punto; por el momento, vamos a sentar las bases para poder avanzar en esa
direccion.

Ademas de los nuevos elementos antes mencionados, en este nivel trataremos de reforzar
y completar algunas de las habilidades generadas en el lector en el nivel anterior. La
programacion, mas que una actividad basada en el conocimiento de enormes cantidades de
conceptos y definiciones, es una actividad de habilidades, utilizables en multiples contextos.
Por eso, en la estructura de este libro, se le da mucha importancia a las tareas, cuyo
objetivo es trabajar en la manera de usar los conceptos que se van viendo.

3. El Primer Caso de Estudio

En este caso, tenemos un programa que permite manejar el inventario de una pequefa
tienda, conocer cuanto dinero hay en caja y tener un control de estadisticas de venta.

La tienda maneja cuatro productos, para cada uno de los cuales se debe manejar la
siguiente informacion:

1. Nombre. No pueden haber dos productos con el mismo nombre.

2. Tipo (puede ser un producto de papeleria, de supermercado o de drogueria).

3. Cantidad actual del producto en la tienda (numero de unidades disponibles para la
venta que hay en la bodega).

4. Cantidad minima para abastecimiento (numero de productos por debajo del cual se
puede hacer un nuevo pedido al proveedor).

5. El precio base de venta por unidad.

Para calcular el precio final de cada producto, se deben sumar los impuestos que define la
ley (IVA). Dichos impuestos dependen del tipo del producto, de la siguiente manera:

e Papeleria: 16%
e Supermercado: 4%
e Drogueria: 12%.

Eso quiere decir que si un lapiz tiene un precio base de $10, el precio final sera de $11,6
considerando que un lapiz es un producto de papeleria, y sobre estos se debe pagar el 16%
de impuestos.

El programa de manejo de esta tienda debe permitir las siguientes operaciones:

Vender un producto.

Abastecer la tienda con un producto.

Cambiar un producto.

Calcular estadisticas de ventas la tienda. Dichas estadisticas son: (a) el producto mas

Ao DN~

vendido, (b) El producto menos vendido, (c) la cantidad total de dinero obtenido por las
ventas de la tienda, (d) la cantidad de dinero promedio obtenido por unidad de producto
vendida.

3.1. Comprension del Problema

Tal como planteamos en el nivel anterior, el primer paso para poder resolver un problema es
entenderlo. Este entendimiento lo mostramos descomponiendo el problema en tres
aspectos: los requerimientos funcionales, el modelo conceptual y los requerimientos no
funcionales. En la primera tarea de este nivel trabajaremos los dos primeros puntos.

Tarea 1

Objetivo: Entender el problema del caso de estudio de la tienda.

1. Lea detenidamente el enunciado del caso de estudio de la tienda.

2. ldentifique y complete la documentacion de los cuatro requerimientos funcionales.

3. Construya un primer diagrama de clases con el modelo conceptual, en el que sélo
aparezcan las clases, las asociaciones y los atributos sin tipo.

Requerimiento Funcional 1

Nombre R1 - Vender un producto.
Resumen Permite vender una cantidad dada de unidades de un producto.
Entradas (1) el nombre del producto, (2) la cantidad de unidades.

Si habia suficiente cantidad de producto en bodega, se vende (disminuye
en bodega) la cantidad total pedida por el cliente. Si no, se vende

Resultado (disminuye en bodega) la cantidad total existente en bodega. Se guarda
en la caja de la tienda el dinero resultado de la venta. Se informa al
usuario la cantidad de unidades vendidas.

Requerimiento Funcional 2

Nombre R2 - Abastecer la tienda con un producto.

Se abastece la tienda con la cantidad de unidades indicada por el usuario.
Resumen El abastecimiento s6lo se puede realizar si la cantidad de productos en
bodega es menor que la cantidad minima del producto.

Entradas

Resultado

Requerimiento Funcional 3

Nombre R3 — Cambiar un producto.
Resumen Permite cambiar la informacion de un producto vendido en la tienda.

1) Nombre actual, 2)Nuevo nombre, 3) Tipo, 4) Valor unitario, 5) Cantidad

EMEREE en bodega, 6) Cantidad minima.

Resultado Se actualiza la informacion del producto.

Requerimiento Funcional 4

Nombre R4 — Calcular estadisticas de ventas.

Calcula y muestra las siguientes estadisticas: (a) el producto mas
vendido; (b) el producto menos vendido; (c) la cantidad total de dinero

Resumen 1 tenido por las ventas de la tienda; (d) el promedio de ventas de la
tienda.
Entradas Ninguna.

Resultado Se muestra la informacion estadistica de ventas.

Modelo conceptual:

En el enunciado se identifican dos entidades: la tienda y el producto. Defina los atributos de
cada una de ellas, sin especificar por ahora su tipo.

Dibuje las asociaciones entre las clases y asigne a cada asociacion un nombre y una

direccion.

3.2 Definicidon de la Interfaz de Usuario

El diseno de la interfaz de usuario es una de las actividades que debemos realizar como
parte del disefio de la solucion al problema. En la figura 2.1 presentamos el disefo que
decidimos para la interfaz del caso de estudio.

Fig. 2.1 Interfaz de usuario para el caso de estudio de la tienda

|| Tienda Cupi2 R >

Aspirina
Tipo: Papeleria Tipo: Drogueria
Cantidad bodega: 18 Cantidad bodega: 25
Valor unitario: 550.0% Valor unitario: 109.5%
Cantidad vendidas: 0 Cantidad vendidas: 0

Cantidad minima: 5 Cantidad minima:]

Abastecer Vender Cambiar ‘ ‘ Abastecer Vender Cambiar

Borrador Pan

Tipo: Papeleria Tipo: Supermercado

Cantidad bodega: 30 Cantidad bodega: 15
Valor unitario: 2073 % Valor unitario: 1500 §

Cantidad vendidas: 0O Cantidad vendidas: 0

Cantidad minima: 10 Cantidad minima: 20

Abastecer Vender Cambiar ‘ ‘ Abastecer Vender Cambiar
Opciones
Producto mas vendido Producto menos vendido Promedio ventas
Dinero en caja Opcidn 1 Opcion 2

La ventana del programa tiene dos zonas: en la primera aparece la informacion de los
productos de la tienda. Alli se tiene el nombre de cada producto, la cantidad disponible
en la bodega de la tienda, el IVA que se debe pagar por el producto, su precio antes de
impuestos y si ya se debe hacer o no un pedido.

En esta zona también tenemos tres botones, cada uno asociado con un requerimiento
funcional. Desde alli podemos vender el producto a un cliente, abastecer la tienda con
el producto, o modificar la informacion del producto.

Cuando el usuario selecciona las opciones Vender o Abastecer, la aplicacion presenta
un diadlogo en el que el usuario puede indicar el numero de unidades deseadas.
Cuando el usuario selecciona la opcién Cambiar, la aplicacion presenta un didlogo en el
que el usuario puede ingresar la nueva informacion del producto.

En la ultima de las zonas se encuentran los botones que permiten pedir la informacién
estadistica correspondiente al ultimo requerimiento funcional.

El Primer Caso de Estudio

154

4. Nuevos Elementos de Modelado

4.1. Tipos Simples de Datos

En esta seccion presentamos dos nuevos tipos simples de datos (boolean Yy char)Yy
volvemos a estudiar algunos aspectos de los tipos introducidos en el capitulo anterior.

Comenzamos con el tipo double . Para facilitar el modelado de las caracteristicas que
toman valores reales, la mayoria de los lenguajes de programacién proveen un tipo simple
denominado double . En el caso de estudio de la tienda usaremos un atributo de este tipo
para modelar el precio de cada producto. Esto nos va a permitir tener un producto cuyo
precio sea, por ejemplo, $23,12 (23 pesos y 12 centavos).

Se denomina literal de un tipo de datos a un valor constante de dicho tipo. En la siguiente
tabla se dan algunos ejemplos de la manera de escribir literales para los tipos de datos
estudiados. A medida que vayamos viendo nuevos tipos, iremos introduciendo la sintaxis

que utilizan.
. Ejemplo
Tipo en de Comentarios
Java .
literales
Los literales de tipo entero se expresan como una
entero : L) : .
_ 564, —12 secuencia de digitos. Si el valor es negativo, dicha
(int) . . . nn
secuencia va precedida del simbolo "-".
Los literales de tipo real se expresan como una secuencia
real 564.78, de digitos. Para separar la parte entera de la parte decimal
(double) _98-3 g) pll n p p

se utiliza el simbolo ".".

" Los literales de tipo cadena de caracteres van entre
cadena de esta es : . : .
comillas dobles. Dos comillas dobles seguidas indican una

caracteres una , . .

_ «w cadena de caracteres vacia. Es distinta una cadena vacia
(string cadena", o e .)
) w o gue una cadena que sélo tiene un caracter de espacio en

’ blanco.

En el ejemplo 1 se muestra la manera de declarar y manipular los atributos de tipo double
usando el caso de estudio de la tienda. También se presenta la manera de convertir los
valores reales a valores enteros.

Ejemplo 1

Objetivo: Repasar la manera de manejar atributos de tipo double en el lenguaje de
programacion Java, usando el caso de estudio de la tienda.

public class

{

private double wvalorUnitario;

e Declaracion del atributo valorUnitario dentro de la clase Producto, para representar el
precio del producto por unidad, antes de impuestos (sin IVA).
e Como de costumbre, el atributo lo declaramos privado, para evitar que sea manipulado

desde fuera de la clase.

Las siguientes instrucciones pueden ir como parte de cualquier metodo de la clase
Producto:

valorUnitario = ;

¢ En cualquier método de la clase se puede asignar un literal de tipo real al atributo.

int valorPesos = (int) valorUnitario;

e Sien la variable valor valorPesos queremos tener la parte entera del precio del
producto, utilizamos el operador de conversion (int). Este operador permite convertir

valores reales a enteros.
e El operador (int) incluye los paréntesis y debe ir antes del valor que se quiere

convertir.
e Sino se incluye el operador de conversion, el compilador va a sefialar un error ("Type

mismatch: cannot convert from double to int").

valorUnitario = valorUnitario / ;

Para construir una expresion aritmética de valor real, se pueden usar los operadores de
suma(+), resta (-), multiplicacién (*)y divisién (7).

int valorPesos = / 3

e |a divisién entre valores enteros da un valor entero. En el caso del ejemplo, después
de la asignacion, la variable valorPesos tendra el valor 5.

¢ Ellenguaje Java decide en cada caso (dependiendo del tipo de los operandos) si utiliza
la division entera o la divisién real para calcular el resultado.

Un operador que se utiliza frecuentemente en problemas aritméticos es el operador médulo
(%). Este operador calcula el residuo de la division entre dos valores, y se puede utilizar
tanto en expresiones enteras como reales. La siguiente tabla muestra el resultado de aplicar
dicho operador en varias expresiones.

Expresion Valor Comentarios

El residuo de dividir 4 por 4 es cero. El resultado de este
4%4 0 operador se puede ver como lo que "sobra" después de hacer
la division entera.

El resultado de la expresion es 2, puesto que al dividir 14 por 3

14%3
7 2 se obtiene como valor entero 4 y "sobran" 2.
17%3 > En esta expresion el valor enteroes 5 (5 *3 es 15) y "sobran"
de nuevo 2.
3%17 3 La division entera entre 3 y 17 es cero, asi que "sobran" 3.
o , .
4.5%2.2 0.1 El operador % se puede aplicar también a valores reales. En la

expresion del ejemplo, 2.2. esta 2 veces en 4.5y "sobra" 0.1.

Otro tipo simple de datos que encontramos en los lenguajes de programacion es el que
permite representar valores légicos (verdadero o falso). El nombre de dicho tipo es

boolean . Imagine, por ejemplo, que en la tienda queremos modelar una caracteristica de
un producto que dice si es subsidiado o no por el gobierno. De esta caracteristica sélo nos
interesaria saber si es verdadera o falsa (los unicos valores posibles), para saber si hay que
aplicar o no el respectivo descuento. Este tipo de caracteristicas se podria modelar usando
un entero y una convencion sobre la manera de interpretar su valor (por ejemplo, 1 es
verdadero y 2 es falso). Es tan frecuente encontrar esta situacion que muchos lenguajes
resolvieron convertirlo en un nuevo tipo de datos y evitar asi tener que usar otros tipos para
representarlo.

El tipo boolean sélo tiene dos literales: true y false. Estos son los Unicos valores
constantes que se le pueden asignar a los atributos o variables de dicho tipo.

Ejemplo 2

Objetivo: Mostrar la manera de manejar atributos de tipo boolean en el lenguaje de
programacion Java.

En este ejemplo se utiliza una extension del caso de estudio de la tienda, para mostrar la
sintaxis de declaracion y el uso de los atributos de tipo boolean .

public class

{

private boolean subsidiado;

e Aqui se muestra la declaracion del atributo "subsidiado" dentro de la clase Producto.
¢ Dicha caracteristica no forma parte del caso de estudio y Unicamente se utiliza en este
ejemplo para ilustrar el uso del tipo de datos boolean .

Las siguientes instrucciones pueden ir como parte de cualquier metodo de la clase
Producto:

subsidiado = true;
subsidiado = false;

¢ Los unicos valores que se pueden asignar a los atributos de tipo boolean son truey
false. Los operadores que nos permitiran crear expresiones con este tipo de valores,
los veremos mas adelante.

boolean valorLogico = subsidiado;

e Es posible tener variables de tipo boolean , alas cuales se les puede asignar cualquier
valor de dicho tipo.

El ultimo tipo simple de dato que veremos en este capitulo es el tipo char , que sirve para
representar un caracter. En el ejemplo 3 se ilustra la manera de usarlo dentro del contexto
del caso de estudio. Un valor de tipo char se representa internamente mediante un codigo
numeérico llamado UNICODE.

Ejemplo 3

Objetivo: Mostrar la manera de manejar atributos de tipo char en el lenguaje de
programacion Java, usando una extension del caso de estudio de la tienda.

Suponga que los productos de la tienda estan clasificados en tres grupos: A, By C, segun
su calidad. En este ejemplo se muestra una manera de representar dicha caracteristica
usando un atributo de tipo char .

public class

{

private char calidad;

e Aqui se muestra la declaracion del atributo "calidad" dentro de la clase Producto. Dicha
caracteristica sera representada con un caracter que puede tomar como valores 'A’, 'B'
o'C'.

Las siguientes instrucciones pueden ir como parte de cualquier metodo de la clase

Producto:
calidad = 'A';
calidad = 'B';

e Los literales de tipo char se expresan entre comillas sencillas. En eso se diferencian
de los literales de la clase String, que van entre comillas dobles.

calidad = ;

* Lo que aparece en este ejemplo es poco usual: es posible asignar directamente un
codigo UNICODE a un atributo de tipo char . El valor 67, por ejemplo, es el codigo
interno del caracter 'C'. El cédigo interno del caracter 'c' (minuscula) es 99. Cada
caracter tiene su propio coédigo interno, incluso los que tienen tilde (el codigo del
caracter 'a' es 225).

char valorCaracter = calidad;

e Es posible tener variables de tipo char , a las cuales se les puede asignar cualquier
valor de dicho tipo.

4.2. Constantes para Representar Valores
Inmutables

En muchos problemas encontramos algunos valores que no van a cambiar durante la
ejecucion del programa (inmutables). Considere el caso de la tienda, en el que el valor del
precio final del producto depende de los impuestos definidos por la ley. Segun lo que vimos
en el nivel anterior, cada vez que necesitemos el valor del IVA de los productos de
papeleria, debemos escribir su valor numérico (0.16). Para facilitar la lectura y escritura del
cbdigo, los lenguajes de programacion permiten asociar un nombre significativo al valor,
para asi reemplazar el valor numérico dentro del codigo. Estos nombres asociados se
denominan constantes.

Estas constantes pueden ser de cualquier tipo de datos (por ejemplo, puede haber una
constante de tipo String 0 double)y se les debe fijar su valor desde la declaracion. Dicho
valor no puede ser modificado en ningun punto del programa.

El ejemplo 4 desarrolla esa idea con el caso de la tienda y muestra la sintaxis en Java para
declarar y usar constantes.
Ejemplo 4

Objetivo: Mostrar el uso de constantes para representar los valores inmutables, usando el
caso de estudio de la tienda.

En este ejemplo ilustramos el uso de constantes para representar los posibles valores del
IVA de los productos.

public class

{
private final static double IVA_PAPELERIA = ;
private final static double IVA_SUPERMERCADO = ;
private final static double IVA_FARMACIA = ;

}

e Declaramos tres constantes que tienen los valores posibles del IVA en el problema:
16%, 12% y 4%. Estas constantes se llaman IVA_FARMACIA, IVA_PAPELERIA e
IVA_SUPERMERCADO.

e Son constantes de tipo double , puesto que de ese tipo son los valores inmutables que
queremos representar.

e Las constantes se declaran privadas si no van a ser usadas por fuera de la clase.

e Para inicializar una constante, se debe elegir un literal del mismo tipo de la constante, o
una expresion.

e Dentro de la declaracion de la clase, se agrega una zona para declarar las constantes.
Es conveniente situar esa zona antes de la declaracion de los atributos.

Las siguientes instrucciones pueden ir como parte de cualquier método de la clase
Producto:

precio = valorUnitario * (+ IVA_SUPERMERCADO);
precio = valorUnitario * (+);

e |as constantes solo sirven para reemplazar el valor que representan. Las dos
instrucciones del ejemplo son equivalentes y permiten calcular el precio al consumidor,
aplicandole un IVA del 4% al precio de base del producto.

¢ La ventaja de las constantes es que cuando alguien lee el programa entiende a qué
corresponde el valor 0.04 (puesto que también podria corresponder a los intereses o
algun otro tipo de impuesto).

Esta practica de definir constantes en sustitucion de aquellos valores que no cambian
durante la ejecucion tiene muchas ventajas y es muy apreciada cuando hay necesidad de
hacer el mantenimiento a un programa. Suponga, por ejemplo, que el gobierno autoriza un
incremento en los impuestos y, ahora, el impuesto sobre los productos de supermercado
pasa del 4% al 6%. Si dentro del programa siempre utilizamos la constante
IVA_SUPERMERCADO para referirnos al valor del impuesto sobre los productos de
supermercado, lo unico que debemos hacer es reemplazar el valor 0.04 por 0.06 en la
declaracion de la constante. Si por el contrario, en el cédigo del programa no utilizamos el
nombre de la constante sino el valor, tendriamos que ir a buscar todos los lugares en el
codigo donde aparece el valor 0.04 (que hace referencia al impuesto sobre los productos de
supermercado) y reemplazarlo por 0.06. Si hacemos lo anterior, facilmente podemos pasar
por alto algun lugar e introducir asi un error en el programa.

Por convencion, las constantes siempre van en mayusculas. Si el nombre de la

constante contiene varias palabras, es usual separarlas con el caracter " _". Por

ejemplo podriamos tener una constante llamada PRECIO_MAXIMO.

Imaginémonos una nueva constante en la clase producto que define el precio maximo que
puede tener un producto.

public class Producto

{

F R e

// Constantes

F R e

public final static double PRECIO_MAXIMO = P
}

El siguiente metodo podria pertenecer a la clase Tienda:

public class

{
public double
{
return Producto.PRECIO_MAXIMO;
}
}

e Por fuera de la clase Producto, las constantes pueden usarse indicando la clase en la
cual fueron declaradas (siempre y cuando hayan sido declaradas como public en esa
clase).

4.3. Enumeraciones para Definir el Dominio de
un Atributo

Considere el caso de la tienda, en el que queremos modelar la caracteristica de tipo de
producto, el cual puede ser de tres tipos distintos: supermercado, papeleria o drogueria. En
el nivel anterior vimos que es posible utilizar el tipo entero para representar esta
caracteristica, y asociar un numero con cada uno de los valores posibles. Sin embargo,
para estos casos, los lenguajes de programacion permiten agrupar estos posibles valores
de la caracteristica, asignando solamente un nombre significativo para cada uno de ellos,
sin asignarles ningun valor. Estas agrupaciones de valores de datos se denominan
enumeraciones. De esta forma, dentro de los métodos podemos usar los nombres
existentes en una enumeracion.

El ejemplo 5 desarrolla esa idea con el caso de la tienda y muestra la sintaxis en Java para
declarar y usar enumeraciones.

Ejemplo 5

Objetivo: Mostrar el uso de enumeraciones para representar los valores posibles de alguna
caracteristica.

Usando el caso de estudio de la tienda, en este ejemplo se muestra una manera de crear
una enumeracion para representar la
caracteristica de tipo de producto.

public class

{
public enum Tipo
{
PAPELERIA,
SUPERMERCADO,
FARMACIA
}
private Tipo tipo;
}

e Se declara una enumeracion llamada Tipo, para modelar el conjunto de nombres que
podran representar un tipo de producto.

e Dentro de la declaracion del tipo, se agregan los nombres significativos de los tres tipos
de producto existentes: PAPELERIA, SUPERMERCADO y FARMACIA.

e Se declara un atributo llamado "tipo" dentro de la clase Producto, para representar esa
caracteristica. El tipo asignado a este atributo es la enumeracién que creamos arriba.

¢ Dentro de la declaracion de la clase, se agrega una zona para declarar las constantes.
Es conveniente situar esa zona antes de la declaracion de los atributos.

Para poder usar una enumeracion, se debe escribir el nombre de la enumeracién y después
llamar el valor que se desea asignar. Las siguientes instrucciones pueden ir como parte de
cualquier método de la clase Producto:

tipo = Tipo.PAPELERIA;
tipo = Tipo.SUPERMERCADO;
tipo = Tipo.FARMACIA;

Cualquiera de esas tres asignaciones define el tipo de un producto (no las tres a la vez, por
supuesto). La ventaja de usar una enumeracion (PAPELERIA) en lugar de un valor
numeérico es que el programa resultante es mucho mas facil de leer y entender.

El siguiente método podria pertenecer a la clase Tienda:

public void

{

tipoVenta = Tipo.PAPELERIA;
tipoCompra = Tipo.SUPERMERCADO;

e Por fuera de la clase Producto, las enumeraciones se llaman de la misma manera que
se llamaba dentro de la clase donde fueron declaradas (siempre y cuando hayan sido
declaradas como public en esa clase).

¢ En el ejemplo estamos suponiendo que tipoventa Yy tipoCompra son atributos de la
clase Tienda.

4.4. Manejo de Asociaciones Opcionales

Supongamos que queremos modificar el enunciado del caso de la tienda, para que el
programa pueda manejar 1, 2, 3 6 4 productos. Lo primero que debemos hacer entonces es
modificar el diagrama de clases, para indicar que las asociaciones pueden o no existir. Para
esto usamos la sintaxis de UML que se ilustra en la figura 2.2, y que dice que las
asociaciones son opcionales. Esta caracteristica se denomina cardinalidad de la
asociacion y se vera mas a fondo en el nivel 3. Por ahora podemos decir que la cardinalidad
define el numero de instancias de una clase que pueden manejarse a través de una
asociacion. En el caso de una asociacion opcional, la cardinalidad es 0..1 (para expresar la
cardinalidad, se usan dos numeros separados con dos puntos), puesto que a través de la
asociacion puede manejarse un objeto de la otra clase o ningun objeto.

Fig. 2.2 Diagrama de clases con asociaciones opcionales

| prf}ductm.\[e .
13 | > | Prodiicto

- [!

| producto . |
| 7 |

Q..

| productod 4 |
. > |

Q..

! productod |
| rdl

0.1 |

¢ |a cardinalidad de la asociacion llamada producto1 entre la clase Tienda y la clase
Producto es cero o uno (0..1), para indicar que puede o no existir el objeto que
representa la asociacion producto1. Lo mismo sucede con cada una de las demas
asociaciones.

e Si en el diagrama no aparece ninguna cardinalidad en una asociacion, se interpreta
como que ésta es 1 (existe exactamente un objeto de la otra clase).

e Enla figura 2.3 aparece un ejemplo de un diagrama de objetos para este diagrama de
clases.

Dentro de un método, para indicar que el objeto correspondiente a una asociacion que no
esta presente (que no hay, por ejemplo, un objeto de la clase Producto para la asociacion
producto1) se utiliza el valor especial null (producto1l = null;). Enlafigura 2.3 se
muestra un ejemplo de un diagrama de objetos para el modelo conceptual de la figura
anterior.

Cuando se intenta llamar un método a través de una asociacion cuyo valor es null, el

computador muestra el error: NullPointerException.

Fig. 2.3 Diagrama de objetos con asociaciones opcionales

producto |

null
null

I

producto2
producto3

I

producto4

El ejemplo anterior lo utilizamos unicamente para ilustrar la idea de una asociacion opcional.
En el resto del capitulo seguiremos trabajando con el caso inicial, en el cual todas las
asociaciones entre la clase Tienda y la clase Producto tienen cardinalidad 1, tal como se
muestra en el ejemplo 6.

Ejemplo 6

Objetivo: Mostrar las declaraciones de las clases Tienda y Producto que vamos a usar en
el resto del capitulo.

En este ejemplo se muestra un disefio posible para las clases del caso de estudio de la
tienda. Se presenta tanto el diagrama de clases en UML como las respectivas
declaraciones en Java. En el diseno se incluyen los métodos de cada una de las clases.

public clas

{

private
private
private
private
private

public
public
public
public
public

El diagrama de clases consta de las clases Tienda y
Producto, con 4 asociaciones entre ellos (todas de
cardinalidad 1). Para cada clase se muestran los atributos
que modelan las caracteristicas importantes para el
problema. Entre los principales atributos de la clase Producto
estan su nombre, su tipo, su valor unitario antes de
impuestos, etc.

S|

Producto productol;
Producto producto2;
Producto producto3;
Producto producto4;
double dineroEnCaja;

Producto { ...}
Producto { ...}
Producto { ...}
Producto { ...}
double { ...}

e Se modelan los 4 productos, unidos a la tienda con las asociaciones llamadas

producto
atributos

1, producto2, producto3 y producto4. Fijese que las asociaciones y los
se declaran siguiendo la misma sintaxis. El dinero total que hay en caja de la

tienda se modela con un atributo de tipo double .

e Esta es la lista de signaturas de algunos de los métodos de la clase Tienda que

utilizaremos en la siguiente seccién. Esta lista se ira completando poco a poco, a

medida que avancemos en el capitulo.

public class Producto

{

/**
* Enumeradores para los tipos de producto.
*/
public enum Tipo
{
PAPELERIA,
SUPERMERCADO,
DROGUERIA

private final static double IVA_PAPELERIA = ;
private final static double IVA_SUPERMERCADO = 7
private final static double IVA_DROGUERIA = F

private String nombre;

private Tipo tipo;

private double valorUnitario;

private int cantidadBodega;

private int cantidadMinima;

private int cantidadUnidadesVendidas;

Y e
//Métodos
e
public String darNombre { ...}

public Tipo darTipo {...}

public double darValorUnitario {...}

public int darCantidadBodega { ...}

public int darCantidadMinima { ...}

public int darCantidadUnidadesVendidas {...}

En la clase Producto, se declaran primero las constantes para representar los valores
de modelado de los atributos. Luego, las constantes que representan valores
inmutables.

En la segunda zona va la declaracion de los atributos de la clase.

En la tercera zona se observa la lista de signaturas de algunos de los métodos de la
clase Producto que utilizaremos en la siguiente seccion. Esta lista se ira completando
poco a poco, a medida que avancemos en el capitulo.

Nuevos Elementos De Modelado

169

5. Expresiones

5.1. Algunas Definiciones

Una expresion es la manera en que expresamos en un lenguaje de programacion algo
sobre el estado de un objeto. Es el medio que tenemos para decir en un programa algo
sobre el mundo del problema. En el nivel anterior vimos las expresiones aritméticas, que
permitian definir la manera en que debia ser modificado el estado de un elemento del
mundo, usando sumas y restas.

Las expresiones aparecen dentro del cuerpo de los métodos y estan formadas por
operandos y operadores. Los operandos pueden ser atributos, parametros, literales,
constantes o llamadas de métodos, mientras que los operadores son los que indican la
manera de calcular el valor de la expresion. Los operadores que se pueden utilizar en una
expresion dependen del tipo de los datos de los operandos que alli aparezcan.

En algunos casos es indispensable utilizar paréntesis para evitar la ambiguedad en las
expresiones. Por ejemplo, la expresidén 10 — 4 — 2 puede ser interpretada de dos
maneras, cada una con un resultado distinto: 10— (4 -2) =8, otambién (10-4)—-2
= 4. Es buena idea usar siempre paréntesis en las expresiones, para estar seguros de
que la interpretacion del computador es la que nosotros necesitamos.

Ejemplo 7

Objetivo: llustrar la manera de usar expresiones aritméticas para hablar del estado de un
objeto.

Suponga que estamos en un objeto de la clase Producto. Vamos a escribir e interpretar
algunas expresiones aritméticas simples.

La expresion... Se interpreta como...
valorUnitario * 2 El doble del valor unitario del producto.
cantidadBodega - La cantidad del producto que hay que vender antes de
cantidadMinima poder hacer un pedido.

S El precio final al consumidor si el producto debe pagar el
IVA_PAPELERIA / 2)) IVA de los productos de papeleria (16%) y sélo paga la
mitad de éste.

cantidadunidadesvendidas La cantidad de unidades vendidas del producto, inflado en
* 1.1 0
un 10%.

5.2. Operadores Relacionales

Los lenguajes de programacion cuentan siempre con operadores relacionales, los cuales
permiten determinar un valor de verdad (verdadero o falso) para una situacién del mundo.
Si queremos determinar, por ejemplo, si el valor unitario antes de impuestos de un producto
es menor que $10.000, podemos utilizar (dentro de la clase Producto) la expresion:

valorUnitario < 10000

Los operadores relacionales son seis, que se resumen en la siguiente tabla:

Significado Simbolo Ejemplo

Es igual que == valorUnitario == 55.75

Es diferente de = tipo != Tipo.PAPELERIA

Es menor que < cantidadBodega < 120

Es mayor que > cantidadBodega > cantidadMinima
Es menor o igual que <= valorUnitario <= 100.0

Es mayor o igual que >= valorUnitario >= 100.0

Ejemplo 8

Objetivo: llustrar la manera de usar operadores relacionales para describir situaciones de
un objeto (algo que es verdadero o falso).

Suponga que estamos en un objeto de la clase Producto. Vamos a escribir e interpretar
algunas expresiones que usan operadores relacionales.

La expresion... Se interpreta como..
tipo == Tipo.DROGUERIA ¢ El producto es de drogueria?
cantidadBodega > © ¢ Hay disponibilidad del producto en la bodega?
totalProductosvendidos > © ¢ Se ha vendido alguna unidad del producto?
cantidadBodega <= ¢ Ya es posible hacer un nuevo pedido del
cantidadMinima producto?

5.3. Operadores Logicos

Los operadores légicos nos permiten describir situaciones mas complejas, a partir de la
composicién de varias expresiones relacionales o de atributos de tipo boolean . Los
operadores légicos son tres: && (y), || (0), ' (no),y el resultado de aplicarlos se

resume de la siguiente manera:

e operando1 && operando?2 es cierto, si ambos operandos son verdaderos.
e operando1 || operando2 es cierto, si cualquiera de los dos operandos es verdadero.
e loperando es cierto, si el operando es falso.

Los operadores && y || se comportan de manera un poco diferente a todos los
demas. La expresién en la que estén sdlo se evalua de izquierda a derecha hasta que
se establezca si es verdadera o falsa. El computador no pierde tiempo evaluando el

resto de la expresion si ya sabe cual sera su resultado.

Ejemplo 9

Objetivo: llustrar la manera de usar operadores légicos para describir situaciones de un
objeto (algo que es cierto o falso).

Suponga que estamos en un objeto de la clase Producto. Vamos a escribir e interpretar
algunas expresiones que usan operadores l6gicos.x = y

La expresion...

tipo ==
Tipo.SUPERMERCADO &&
cantidadUniadesVendidas==
(0]

valorUnitario >= 10000
&& valorUnitario <= 20000
&& tipo ==
Tipo.DROGUERIA

I'(tipo ==
Tipo.PAPELERIA)

tipo ==

Tipo.SUPERMERCADO || tipo
== Tipo.DROGUERIA

Se interpreta como...

¢ El producto es de supermercado y no se ha vendido
ninguna unidad? En este caso, si el producto no es de
supermercado o ya se ha vendido alguna unidad, la
expresion es falsa.

¢ El producto vale entre $10.000 y $20.000 y, ademas, es
un producto de drogueria?

¢ El producto no es de papeleria? Note que esta expresion
es equivalente a la expresion que va en la siguiente linea.
Y también es equivalente a (tipo != Tipo.PAPELERIA).

¢ El producto es de supermercado o de drogueria?

Operadores sobre Cadenas de Caracteres

El tipo String nos sirve para representar cadenas de caracteres. A diferencia de los demas
tipos de datos vistos hasta ahora, este tipo no es simple, sino que se implementa mediante
una clase especial en Java. Esto implica que, en algunos casos, para invocar sus
operaciones debemos utilizar la sintaxis de llamada de métodos.

Existen muchas operaciones sobre cadenas de caracteres, pero en este nivel sélo nos
vamos a interesar en el operador de concatenacion (+), en el de comparacion (equals)y

en el de extraccion de un caracter (charat).

El primer operador (+) sirve para pegar dos cadenas de caracteres, una después de la
otra. Por ejemplo, si quisiéramos tener un metodo en la clase Producto que calculara el
mensaje que se debe mostrar en la publicidad de la tienda, tendria la siguiente forma:

public String
{

return "Compre el producto " + nombre + " por solo $" + valorUnitario;

e Sialguno de los operandos no es una cadena de caracteres (como es el caso del
atributo de tipo real valorunitario) el compilador se encarga de convertirlo a cadena.
No es necesario hacer una conversion explicita porque el compilador lo hace
automaticamente por nosotros, para todos los tipos simples de datos.

e Al ejecutar este método, retornara una cadena con algo del siguiente estilo: Compre el
producto cuaderno por solo $100.50.

La segunda operacion que nos interesa en este momento es la comparacion de cadenas de
caracteres. A diferencia de los tipos simples, en donde se utiliza el operador ==, para
poder comparar dos cadenas de caracteres es necesario llamar el método equals de la
clase String. Por ejemplo, si queremos tener un método en la clase Producto que reciba
como parametro una cadena de caracteres e informe si el nombre del producto es igual al
valor recibido como parametro, éste seria mas o menos asi:

public boolean

{

return nombre.equals(pBuscado);

e Se usa la sintaxis de invocacion de métodos para poder utilizar el método equals. La
razon es que string €s una clase, y se deben respetar las reglas de llamada de un
metodo (int , double Y boolean NO son clases, y por esta razon se puede utilizar el
operador == directamente).

e El retorno del método equals es de tipo boolean, razén por la cual lo podemos retornar
directamente como respuesta del método que queremos construir.

e En el ejemplo, el método equals se invoca sobre el atributo de la clase Producto
llamado "nombre" y se le pasa como parametro el valor recibido en "buscado”.

La ultima operacion que vamos a estudiar en este nivel nos permite "obtener" un caracter

de una cadena. Para esto debemos dar la posicion dentro de la cadena del caracter que

nos interesa, e invocar el méetodo chatAt de la clase String, tal como se muestra en los

siguientes ejemplos. Notese que el primer caracter de una cadena se encuentra en la

posicion 0.

Suponga que tenemos dos cadenas de caracteres, declaradas de la siguiente manera:

String cadl = "la casa es roja";
String cad2 = "La Casa es Roja'";

La expresion...

cadl.equals(cad2)

cadl.equalsIgnoreCase(cad2)

cadl + " y verde"

cadl.charAt(1)

cad2.charAt(2)

Tiene
el
valor..

false

true

"la
casa
es
rojay
verde

Comentarios...

La expresion es falsa, porque la
comparacion se hace teniendo en cuenta
las mayusculas y las minusculas.

Con este método de la clase String
podemos comparar dos cadenas de
caracteres, ignorando si son mayusculas o
minusculas.

Se debe prever un espacio en blanco entre
las cadenas, si no queremos que queden
pegadas.

Los caracteres de la cadena se comienzan
a numerar desde cero.

El espacio en blanco es el tercer caracter de
la cadena. Debe quedar claro que no es lo
mismo el caracter'' que la cadena de
caracteres " ". El primero es un literal de tipo

char , mientras que el segundo es un literal
de la clase string .

Si en una expresién aritmética no se usan paréntesis para definir el orden de

evaluacion, Java aplicara a los operadores un orden por defecto. Dicho orden esta

asociado con una prioridad que el lenguaje le asigna a cada operador.

Basicamente, las reglas se pueden resumir de la siguiente manera:

e Primero se aplican los operadores de multiplicacion y division, de izquierda a

derecha.

e Después se aplican los operadores de suma y resta, de izquierda a derecha.

Supongamos que tenemos dos variables var1 y var2, con valores 10 y 5 respectivamente.

La .
- el Comentarios...
expresion...
valor..
VAt ovarz g Aplica el operador de resta de izquierda a derecha.
varl - (15 Los paréntesis le dan un orden de evaluacion distinta a la
varz - 10) expresion: 10— (5-10)=10—(-5) =10 + 5 = 15.
En esta expresion se hace primero la multiplicacién y luego
varl * var2 10 la divisiéon: (10*5)/5=50/5 =10. Esto es asi porque
/ 5
ambos operadores tienen la misma prioridad, de modo que
se evaluan de izquierda a derecha.
varl * (5 Los paréntesis le dan un orden de evaluacion distinto a la
varz / 10) expresion: 10 (6/10) = 100.5 = 5.

vari - var2 En esta expresion se hace primero la resta y después la
+ 10 15 suma (aplica los operadores suma y resta de izquierda a
derecha, puesto que ambos tienen la misma prioridad).

varl + var2 60 En esta expresion se hace primero la multiplicacién, puesto
* 10 que ese operador tiene mas prioridad que la suma.

varl + var2 55 En esta expresion se hace primero la multiplicacion, luego la
* 18 -5 suma y, finalmente, la resta.

vari + var2 En esta expresion se hace primero la multiplicacion, luego la
x40 / 5 20 division y, finalmente, la suma. Debe ser clara, en este
punto, la importancia de los paréntesis en las expresiones.

Lleg6 el momento de comenzar a trabajar en el caso de la tienda, asi que de nuevo manos
a la obra.

Tarea 2

Objetivo: Generar habilidad en la construccion e interpretacién de expresiones, utilizando el
caso de estudio de la tienda.

Utilizando las declaraciones hechas en la seccidén anterior para las clases Tienda y
Producto y el escenario propuesto a continuacion, resuelva los ejercicios que se plantean
mas adelante.

Escenario:
Suponga que en la tienda del caso de estudio se tienen a la venta los siguientes productos:

Libreta de apuntes, producto de papeleria, a $5.500 pesos la unidad.
Leche en bolsa de 1 litro, producto de supermercado, a $2.100 pesos.
Jabon en polvo, producto de supermercado, a $4.200 el kilo.

o DN~

Aspirina, producto de drogueria, a $400 la unidad.

Suponga ademas, que ya se han vendido en la tienda 6 libretas, 25 bolsas de leche, 14
bolsas de jabdn y 32 aspirinas.

Por ultimo tenemos la siguiente tabla para resumir el inventario de unidades de la tienda y la
cantidad por debajo de la cual se puede hacer un abastecimiento.

Producto Cantidad en bodega Cantidad minima
libreta 44 15
leche 25 10
jabdn 36 8
aspirina 13 11

En el siguiente diagrama de objetos puede ver el estado actual de la tienda. Complete la
cantidad de dinero en caja que tiene la tienda, teniendo en cuenta las ventas que ya se
realizaron.

nombre="jabdn”
tipo=Tipo.SUPERMERCADO

nambra="librata”
tipo=Tipo.PAPELERIA

valorUnitario=4200 producto3 productol valorUnitario=5500
cantidadBodega=36 cantida
cantidadMinima=8 cantidadMinim
cantidadlinidadesvendidas=14 cantidadUnidadesVendidas=6
| dinercEnCaja=

nambre="aspirina® + nambra=*lecha"

} roductod S
tipo=Tipo DROGUERIA P praoducte tipo=Tipa.SUPERMERCADO

valerUnitario=400

cantidadlinidadesvendidas=32

valorUnitario=2104
cantida 5
cantida
cantidadUnidadesVendidas=25

Parte | — Evaluacion de Expresiones (operadores
aritméticos):

Para el

objeto...

leche

aspirina

jabon

libreta

leche

aspirina

la tienda

la tienda

la tienda

la tienda

Parte Il — Evaluacion de Expresiones (operadores

la expresion...

cantidadBodega - cantidadMinima

valorUnitario * cantidadBodega

(cantidadUnidadesVendidas+ cantidadBodega) * (
valorUnitario + valorUnitario * IVA_SUPERMERCADO)

valorUnitario * cantidadBodega / cantidadUnidadesVendidas
* valorUnitario

valorUnitario * cantidadUnidadesVendidas *
IVA_SUPERMERCADO

valorUnitario * (1 + IVA_DROGUERIA) *
cantidadUnidadesVendidas

(productol.darValorUnitario() +
producto2.darVvValorUnitario() +
producto3.darValorUnitario() +
producto4.darValorUnitario()) / 4

(productol.darCantidadBodega() -
productol.darCantidadMinima()) * (
productol.darvValorUnitario() * (1 + productol.darIVA()
))

dineroEnCaja - (producto2.darCantidadMinima() *
producto2.darValorUnitario())

producto3.darCantidadUnidadesvVendidas() * (1 +
producto3.darIVA())

relacionales):

toma el
valor...

15

3050.0

Para el - toma el
la expresion...

objeto... valor...
libreta tipo == Tipo.PAPELERIA true
libreta tipo != Tipo.DROGUERIA
leche cantidadMinima >= cantidadBodega
jabén valorUnitario <= 10000
.. cantidadBodega - cantidadMinima !=
aspirina cantidadUnidadesvendidas
. , cantidadBodega * valorUnitario == cantidadUnidadesVendidas
jabon * TVA_PAPELERIA

productol.darCantidadUnidadesVendidas() +
la tienda producto2.darCantidadUnidadesVendidas() > true
producto3.darCantidadUnidadesVendidas()

dineroEnCaja <= producto4.darCantidadUnidadesVendidas() *
la tienda ((1 + producto4.darIVA()) * producto4.darValorUnitario(

))

(productol.darCantidadBodega() +
producto2.darCantidadBodega() +
producto3.darCantidadBodega() +
producto4.darCantidadBodega()) <= 1000

la tienda

dineroEnCaja * productol.darIVA() >
la tienda productol.darCantidadunidadesvVendidas() *
productol.darValorUnitario()

Parte lll — Evaluacién de Expresiones (operadores légicos):

Para el

objeto...

leche

jabon

aspirina

libreta

leche

aspirina

la tienda

la tienda

la tienda

la tienda

la expresion...

I(tipo == Tipo.PAPELERIA || tipo == Tipo.DROGUERIA)

tipo == Tipo.SUPERMERCADO && valorUnitario <= 10000

cantidadBodega > cantidadMinima && cantidadBodega <
cantidadUnidadesVendidas

valorUnitario >= 1000 && valorUnitario <= 5000

tipo != Tipo.PAPELERIA && tipo != Tipo.SUPERMERCADO

tipo == Tipo.PAPELERIA && valorUnitario > 50 && !
(cantidadMinima < cantidadBodega)

productol.darTipo() == Tipo.PAPELERIA && producto2.darTipo()
== Tipo.SUPERMERCADO && producto3.darTipo() !'= Tipo.DROGUERIA
&& producto4d.darTipo() == Tipo.SUPERMERCADO

(dineroEnCaja / productol.darValorUnitario()) >=
productol.darCantidadMinima()

((producto2.darCantidadBodega() +
producto2.darCantidadBodega())/10 < 100) && ((
producto2.darCantidadBodega()+producto2.darCantidadBodega())/10
>= 50)

dineroEnCaja * 0.1 <= producto3.darValorUnitario() * (1 +
producto3.darIVA())

Parte IV — Creacién de Expresiones (operadores
aritméticos):

toma el
valor...

true

false

En un
método
de la
clase...

Producto

Producto

Producto

Producto

Tienda

Tienda

Tienda

Tienda

Parte V — Creacion de Expresiones (operadores

para obtener..

Valor de venta de un producto con IVA del 16%

Numero de unidades que se deben vender para alcanzar
la cantidad minima.

Numero de veces que se ha vendido la cantidad minima
del producto.

Numero de unidades sobrantes si se arman paquetes de
10 con lo disponible en bodega.

Dinero en caja de la tienda incrementado en un 25%

Total del IVA a pagar por las unidades vendidas de todos
los productos.

El numero de unidades del producto 3 que se pueden
pagar (a su valor unitario) con el dinero en caja de la
tienda.

El numero de estantes de 50 posiciones que se
requieren para almacenar las unidades en bodega de
todos los productos (suponga que cada unidad de
producto ocupa una posicion).

relacionales):

se usala
expresion...

valorUnitario
* (1 +
IVA_PAPELERIA
)

dineroEnCaja
* 1.25

En un

método se usala
para obtener..

de la expresion...
clase...
Producto ¢La cantidad en bodega es mayor o igual al cantidadBodega >= 2
doble de la cantidad minima? * cantidadMinima

Producto ¢ El tipo no es PAPELERIA?

¢ El total de productos vendidos es igual a la

Producto cantidad en bodega?

¢ El nombre del producto comienza por el

Producto R -
caracter 'a'?

producto2.darNombre (

Tienda ¢ El nombre del producto 2 es "aspirina"?) -equals(
"aspirina")

¢ La cantidad minima del producto 4 es una
Tienda quinta parte de la cantidad de productos
vendidos?

¢ El valor obtenido por los productos vendidos
Tienda (incluyendo el IVA) es menor a un tercio del
dinero en caja?

¢ El promedio de unidades vendidas de todos los
Tienda productos es mayor al promedio de unidades en
bodega de todos los productos?

Parte VI — Creacion de Expresiones (operadores légicos):

En un
método
de la
clase...

para obtener.. se usa la expresion...

Producto

Producto

Producto

Producto

Tienda

Tienda

Tienda

¢ El tipo de producto es
SUPERMERCADO y su
valor unitario es menor a
$3.0007?

¢En la cantidad en
bodega o en la cantidad
de productos vendidos
esta al menos 2 veces la
cantidad minima?

¢Eltipo no es
DROGUERIAYy el valor
esta entre 1000 y 3500
incluyendo ambos
valores?

¢El tipo es PAPELERIA Y
la cantidad en bodega es
mayor a 10 y el valor
unitario es mayor o igual
a $3.0007?

¢ El tipo del producto 1 no
es ni DROGUERIA ni
PAPELERIAY el total de
unidades vendidas de
todos los productos es
menor a 307?

¢, Con el valor en caja de
la tienda se pueden
pagar 500 unidades del
producto 1 6 300
unidades del producto 3
(al precio de su valor
unitario)?

¢ Del producto 4, el tope
minimo es mayor a 10 y
la cantidad en bodega es
menor o igual a 257

tipo == Tipo.SUPERMERCADO && valorUnitario <

BN

productol.darTipo() != Tipo.DROGUERIA &&
productol.darTipo() != Tipo.PAPELERIA && (
productol.darProductosVendidos() +
producto2.darProductosVendidos() +
producto3.darProductosVendidos() +
producto4.darProductosvVendidos()) < 30

iR

¢ El valor unitario de los
productos 1y 2 esta
entre 200 y 1000 sin
incluir dichos valores?

Tienda

5.5. Manejo de Variables

El objetivo de las variables es permitir manejar calculos parciales en el interior de un
metodo. Las variables se deben declarar (darles un nombre y un tipo) antes de ser
utilizadas y siguen la misma convencion de nombres de los atributos. Las variables se crean
en el momento en el que se declaran y se destruyen automaticamente al llegar al final del
metodo que las contiene. Por esta razon es imposible utilizar el valor de una variable por
fuera del metodo donde fue declarada.

Se suelen usar variables por tres razones principales:

1. Porque es necesario calcular valores intermedios.
2. Por eficiencia, para no pedir dos veces el mismo servicio al mismo objeto.
3. Por claridad en el cédigo.

A continuacion se muestra un ejemplo de un método de la clase Tienda que calcula la
cantidad disponible del primer producto y luego vende esa misma cantidad de todos los
demas.

public void

{
int cuanto = productol.darCantidadBodega();
producto2.vender(cuanto);
producto3.vender(cuanto);
producto4.vender(cuanto);

}

e Se declara al comienzo del método una variable de tipo entero llamada " cuanto ", y se
le asigna la cantidad que hay en bodega del producto 1 de la tienda.

e |a declaracion de la variable y su inicializacion se pueden hacer en instrucciones
separadas (no hay necesidad de inicializar las variables en el momento de declararlas).
La unica condicion que verifica el compilador es que antes de usar una variable ya
haya sido inicializada.

e En este método se usa la variable " cuanto " por eficiencia y por claridad (no

calculamos el mismo valor tres veces sino solo una).

5.6 Otros Operadores de Asignacion

El operador de asignacion visto en el nivel anterior permite cambiar el valor de un atributo
de un objeto, como una manera de reflejar un cambio en el mundo del problema. Vender 5
unidades de un producto, por ejemplo, se hace restando el valor 5 del atributo

cantidadBodega

En este nivel vamos a introducir cuatro nuevos operadores de asignacion, con la aclaracion
de que sélo es una manera mas corta de escribir las asignaciones, las cuales siempre se
pueden escribir con el operador del nivel anterior.

e Operador ++ . Se aplica a un atributo entero, para incrementarlo en 1. Por ejemplo,
para indicar que se agreg6 una unidad de un producto a la bodega (en la clase
Producto), se puede utilizar cualquiera de las siguientes versiones del mismo méetodo.

public void

{

cantidadBodega++;

e El operador de incremento se puede ver como un operador de asignacion en el cual se
modifica el valor del operando sumandole el valor 1.

e E| uso de este operador tiene la ventaja de generar expresiones un poco mas
compactas.

public void

{

cantidadBodega = cantidadBodega + 1;

e Esta segunda version del método tiene la misma funcionalidad, pero utiliza el operador
de asignacion normal.

e Operador -- .Se aplica a un atributo entero, para disminuirlo en 1. Se utiliza de
manera analoga al operador de incremento.

e Operador += . Se utiliza para incrementar un atributo en cualquier valor. Por ejemplo,
el método para hacer un pedido de una cierta cantidad de unidades para la bodega,
puede escribirse de las dos maneras que se muestran a continuacién. Debe quedar
claro que la instruccion var++ es equivalente a var += 1 , y equivalente a su vez a

var = var + 1

public void int

{

cantidadBodega += pNum;

e Este metodo de la clase Producto permite hacer un pedido de "pNum" unidades y
agregarlas a la bodega.

e El|operador += se puede ver como una generalizacion del operador ++ , en el cual el
incremento puede ser de cualquier valor y no solo igual a 1.

public void int

{

cantidadBodega = cantidadBodega + pNum;

3

e Esta segunda version del método tiene la misma funcionalidad, pero utiliza el operador
de asignacion normal.

e |a unica ventaja de utilizar el operador += es que se obtiene un cddigo un poco mas
compacto. Usarlo o no usarlo es cuestion de estilo de cada programador.

e Operador -= . Se utiliza para disminuir un atributo en cualquier valor. Se utiliza de
manera analoga al operador += .

Tarea 3

Objetivo: Generar habilidad en la utilizacién de las asignaciones y las expresiones como un
medio para transformar el estado de un objeto.

Para las declaraciones de las clases Tienda y Producto dadas anteriormente y, teniendo en
cuenta el escenario planteado mas adelante, escriba la instruccién o las instrucciones
necesarias para modificar el estado, siguiendo la descripcion que se hace en cada caso.

Escenario
Suponga que en la tienda del caso de estudio se tienen a la venta los siguientes productos:

Lapiz, producto de papeleria, con un valor base de $500 pesos la unidad.
Borrador, producto de papeleria, a $300 pesos.
Kilo de café, producto de supermercado, a $5.600 la unidad.

H w0 DN~

Desinfectante, producto de drogueria, a $3.200 la unidad.

Suponga ademas, que se han vendido 15 lapices, 5 borradores, 7 kilos de café y 12 frascos
de desinfectante, y que en la caja de la tienda hay en este momento $43.275,50.

Por ultimo tenemos la siguiente tabla para resumir el inventario de unidades de la tienda y el
tope minimo que se debe alcanzar para poder hacer un nuevo pedido:

Producto Cantidad en bodega Tope minimo
lapiz 30 9
borrador 15 5
café 20 10
desinfectante 12 11

Complete el diagrama de objetos que aparece a continuacién, con la informacion del
escenario:

nombre="linreta"
tipo=Tipo. PAPELERIA
productol valorunitario=500
cantidadBodega=
cantidadMinima=

cantidadnidadesyendldas=

|producto3

dineroEnCaja=43275,50

nambre="desinfecrania” |

tipe=Tipo RIA |productod producto2
valprunitario=3300 |

cantidadBadega:

cantidadiinima

cantidadUnidadesVendidas=

Signatura de los métodos de la clase Tienda:

Expresiones

public Producto darProductol()
public Producto darProducto2()
public Producto darProducto3()
public Producto darProducto4()
public double darDineroEnCaja()

Signatura de los métodos de la clase Producto:

public String darNombre()

public int darTipo()

public double darValorUnitario()

public int darCantidadBodega()

public int darCantidadMinima()

public int darCantidadUnidadesVendidas()
public double darIVA()

public int vender(int pCantidad)

public void abastecer(int pCantidad)

187

En un

método de la la siguiente modificacion de

estado..
clase...

Se vendieron 5 unidades del
Producto producto (suponga que hay

suficientes).

El valor unitario se incrementa en un
Producto

10%

Se incrementa en uno la cantidad
Producto . .

minima para hacer pedidos.
Producto El producto ahora se clasifica como

de SUPERMERCADO

Se cambia el nombre del producto.
Producto W] "

Ahora se llama "teléfono".

En un

mde;olgo la siguiente modificacién de estado..
clase...

Se asigna al dinero en caja de la tienda la
Tienda suma de los valores unitarios de los
cuatro productos.

se logra con las
siguientes instruciones...

cantidadUnidadesVendidas +=
5, cantidadBodega -= 5;

se logra con las siguientes
instruciones...

dineroEnCaja =
productol.darValorUnitario()
+ producto2.darValorUnitario(
) +
producto3.darValorUnitario()
+ producto4.darValorUnitario(

D

Expresiones

Tienda

Tienda

Tienda

Tienda

Una
clase
de la
interfaz
de
usuario

Se venden 4 unidades del producto 3
(suponga que estan disponibles).

Se disminuye en un 2% el dinero en la
caja.

Se abastece la tienda con la mitad de la
cantidad minima de cada producto,
suponiendo que la cantidad en bodega
de todos los productos es menor a la
cantidad minima.

Se pone en la caja el dinero
correspondiente a las unidades vendidas
de todos los productos de la tienda.

Se vende una unidad de cada uno de los
productos de la tienda. Recuerde que
este metodo esta por fuera de la clase
Tienda, y que por lo tanto no puede
utilizar sus atributos de manera directa.

HREEN

Antes de comenzar a escribir el cuerpo de un método, es importante tener en cuenta la

clase en la cual éste se encuentra. No olvide que dependiendo de la clase en la que

uno se encuentre, las cosas se deben decir de una manera diferente. En unos casos

los atributos se pueden manipular directamente y, en otros, es indispensable llamar un

método para cambiar el estado (para que la modificacién la realice el objeto al que

pertenece el atributo).

189

6. Clases y Objetos

6.1. Diferencia entre Clases y Objetos

Aunque los conceptos de clase y objetos son muy diferentes, el hecho de usarlos
indistintamente en algunos contextos hace que se pueda generar alguna confusion al
respecto. En la figura 2.4a y figura 2.4b se muestra, para el caso de la tienda, el
correspondiente diagrama de clases y un ejemplo de un posible diagrama de objetos. Alli se
puede apreciar que la clase Tienda describe todas las tiendas imaginables que vendan 4

productos.
Fig. 2.4a Modelo de clases
producto’
b
Fa
String nombre
double dineroEnCaja productoE} Tipo tipo
double valorUnitario
producto3 o int cantidadBodega
< int cantidadMinima
productod int cantidadUnidadesVendidas
b

>

e Diagrama de clases para el caso de estudio de la tienda.
e El diagrama sdlo dice, por ejemplo, que producto1 debe ser un producto.

Fig. 2.4b Modelo de objetos

nambre="jaban” nombre="libreta"
4 tipo=Tipa,PAFELERIA
roductol valorUnitario=5500
productoB D .':IE!-.,III.I] (411}
| cantidadBoe 44
cantidadMinima=8 cantidadMinima=15
cantidadlnidadesVendidas=14 cantidadUnidadesVendidas=6
dineroEnCaja=0
nambre="aspirina® nombre="lechea"
tipo=Tipe.DROGUERIA productod producto2 tipo=Ti IPERMERCADD
valorUnitario=400 valorUnitario=21
cantidadl 1
cantidadMinima=11 cantidadMinima=10
cantidadlnidadesVendidas=7 cantidadUnidadesVendidas=35

¢ Fijese como cada asociacion del diagrama de clases debe tener su propio objeto en el
momento de la ejecucion.

Una clase no habla de un escenario particular, sino del caso general. Nunca dice cual es el
valor de un atributo, sino que se contenta con afirmar cuales son los atributos (nombre y
tipo) que deben tener los objetos que son instancias de esa clase. Los objetos, por su parte,
siempre pertenecen a una clase, en el sentido de que cumplen con la estructura de
atributos que la clase exige. Por ejemplo, puede haber miles de tiendas diferentes, cada
una de las cuales vende distintos productos a distintos precios. Piense que cada vez que
instalamos el programa del caso de estudio en una tienda distinta, el duefio va a querer que
los objetos que se creen para representarla reflejen el estado de su propia tienda.

Los métodos de una clase, por su parte, siempre estan en ella y no copiados en cada uno
de sus objetos. Por esta razdn cada objeto debe saber a qué clase pertenece, para poder
buscar en ella los métodos que puede ejecutar. Los métodos estan escritos de manera que
se puedan utilizar desde todos los objetos de la clase. Cuando un método de la clase
Tienda dice productoi.darNombre() , le esta pidiendo a una tienda particular que busque en
su propio escenario el objeto al cual se llega a través de la asociacion producto1, y le pida a
éste su nombre usando el método que todos los productos tienen para hacerlo. En este

sentido se puede decir que los métodos son capaces de resolver los problemas en
abstracto, y que cada objeto los aplica a su propio escenario para resolver su problema
concreto.

6.2. Creacion de Objetos de una Clase

Recordemos la creacion de objetos visto en el nivel anterior. Un objeto se crea utilizando la
instruccion new Yy dando el nombre de la clase de la cual va a ser una instancia. Todas las
clases tienen un método constructor por defecto, sin necesidad de que el programador
tenga que crearlo. Como no es responsabilidad del computador darle un valor inicial a los
atributos, cuando se usa este constructor, éstos quedan en un valor que se puede
considerar indefinido. En la figura 2.5 se muestra el resultado del llamado a este
constructor.

Fig. 2.5 Creaciéon de un objeto usando la instrucciéon new

Producto p = new Producto(); nombre=
tipo=
valorUnitario=
cantidadBodega=
cantidadMinima=
totalProductosVendidos=

¢ Elresultado de ejecutar la instruccién del ejemplo es un nuevo objeto, con sus atributos
no inicializados.

¢ Dicho objeto esta "referenciado" por p, que puede ser un atributo o una variable de tipo
Producto.

Para inicializar los valores de un objeto, se debe definir en la clase un constructor propio. En
el siguiente ejemplo trabajaremos los conceptos vistos en el capitulo anterior, usando el
caso de la tienda.

Ejemplo 10

Se hace la inicializacion de los atributos de los objetos de la clase.

En este ejemplo mostramos los constructores de las clases Tienda y Producto, asi como la
manera de pedir la creacidon de un objeto de cualquiera de esos dos tipos.

public double int

int

tipo = pTipo;

nombre = pNombre;

valorUnitario = pValorUnitario;
cantidadBodega = pCantidadBodega;
cantidadMinima = pCantidadMinima;
cantidadUnidadesVendidas = 0;

¢ El constructor exige 5 parametros para poder inicializar los objetos de la clase

Producto.
e En el constructor se asignan los valores de los parametros a los atributos.

Producto p=new Producto(Tipo.PAPELERIA, "lapiz", , , 9);

e Este es un ejemplo de la manera de crear un objeto cuando el constructor tiene
parametros.

nombre="lapiz”
tipo=Tipo.PAPELERIA
valorUnitario=500.0
cantidadBodega=30
cantidadMinima=9
cantidadUnidadesVendidas=0

e Este es el objeto que se crea con la llamada anterior.
e E| objeto creado se ubica en alguna parte de la memoria del computador. Dicho objeto
es referenciado por el atributo o la variable llamada " p ".

public Tienda

{
productol = new Producto(Tipo.PAPELERIA, "Lapiz", , ,);
producto2 = new Producto(Tipo.DROGUERIA, "Aspirina', , ,);
producto3 = new Producto(Tipo.PAPELERIA, "Borrador", , ,);
producto4 = new Producto(Tipo.SUPERMERCADO, "Pan', , ,);
dineroEnCaja = 0;

}

e Puesto que es necesario que la tienda tenga 4 productos, su metodo constructor debe
ser como el que se presenta. Supone que en la caja de la tienda no hay dinero al
comenzar el programa.

Vamos a practicar la creacion de escenarios usando los métodos constructores de las
clases Tienda y Producto. En el programa del caso de estudio, la responsabilidad de crear
el estado de la tienda sobre la cual se trabaja esta en la clase principal del mundo (clase
Tienda). En una situacion real, dichos valores deberian leerse de un archivo o de una base

de datos, pero en nuestro caso se utilizara un escenario predefinido. Si quiere modificar los
datos de la tienda sobre los que trabaja el programa, puede darle otros valores en el
momento de construir las instancias.

Tarea 4

Objetivo: Generar habilidad en el uso de los constructores de las clases para crear
escenarios

Cree los escenarios que se describen a continuacién, dando la secuencia de instrucciones
que los construyen. Suponga que dicha construccion se hace desde una clase externa a las
clases Tienda y Producto.

Escenario 1

Una nueva tienda acaba de abrir y quiere usar el programa del caso de estudio con los
siguientes productos:

1. Frasco de jarabe (para la gripe), producto de drogueria, con un valor base de $7.200
pesos.

2. Botella de alcohol, producto de drogueria, a $2.800 pesos la unidad.

3. Kilo de queso, producto de supermercado, a $4.100 la unidad.

4. Resaltador, producto de papeleria, a $3.500 la unidad.

La siguiente tabla resume el inventario inicial de la tienda y el tope minimo que se debe
alcanzar para poder hacer un nuevo pedido. Suponga que el valor inicial en caja es cero
pesos.

Producto Cantidad en bodega Tope minimo

jarabe 14 10

alcohol 12 8

queso 10 4

resaltador 20 10

Caédigo

public

{
productol = new Producto(Tipo.DROGUERIA, "jarabe", , ,);
producto2 = new Producto(Tipo.DROGUERIA, "alcohol", , ,);
producto3 = new Producto(Tipo.SUPERMERCADO, '"queso", g g);
producto4 = new Producto(Tipo.PAPELERIA, "resaltador", , ,);

Escenario 2

Una nueva tienda acaba de abrir y quiere usar el programa del caso de estudio con los

siguientes productos:

>N~

Kilo de arroz, producto de supermercado, con valor base de $1.200 pesos.
Caja de cereal, producto de supermercado, a $7.500 pesos.

Resma de papel, producto de papeleria, a $20.000 pesos la unidad.

Bolsa de algodon, producto de drogueria, a $4.800 pesos.

La siguiente tabla resume el inventario inicial de la tienda y el tope minimo que se debe

alcanzar para poder hacer un nuevo pedido. Suponga que el valor inicial en caja es cero

pesos.
Producto Cantidad en bodega Tope minimo
arroz 6 7
cereal 5 5
papel 50 2
algodén 12 6
Caodigo
Escenario 3

Una nueva tienda acaba de abrir, y quiere usar el programa del caso de estudio con los

siguientes productos:

1.

Litro de aceite, producto de supermercado, con un valor base de $6.500 pesos la
unidad.

Crema dental, producto de supermercado, a $5.100 pesos.

Kilo de pollo, producto de supermercado, a $13.800 pesos la unidad.

Protector solar, producto de drogueria, a $16.000 la unidad.

La siguiente tabla resume el inventario inicial de la tienda y el tope minimo que se debe
alcanzar para poder hacer un nuevo pedido. Suponga que el valor inicial en caja es cero

pesos.
Producto Cantidad disponible Tope minimo
aceite 13 10
crema dental 20 15
pollo 6 5
protector solar 3 3

Cédigo

7. Instrucciones Condicionales

7.1. Instrucciones Condicionales Simples

Una instruccion condicional nos permite plantear la solucion a un problema considerando
los distintos casos que se pueden presentar. De esta manera, podemos utilizar un algoritmo
distinto para enfrentar cada caso que pueda existir en el mundo. Considere el método de la
clase Producto que se encarga de vender una cierta cantidad de unidades presentes en la
bodega. Alli, se pueden presentar dos casos posibles, cada uno con una solucion distinta: el
primer caso es cuando la cantidad que se quiere vender es mayor que la cantidad
disponible en la bodega (el pedido es mayor que la disponibilidad) y el segundo es cuando
hay suficientes unidades del producto en la bodega para hacer la venta. En cada una de
esas situaciones la solucion es distinta y el método debe tener un algoritmo diferente.

Para construir una instruccion condicional, se deben identificar los casos y las soluciones,
usando algo parecido a la tabla que se muestra a continuacion:

Caso 1:

Expresion que describe el caso:

cantidad > cantidadBodega

Algoritmo para resolver el problema en ese caso:

cantidadUnidadesVendidas += cantidadBodega;
cantidadBodega = 0;

Caso 2:

Expresion que describe el caso:

cantidad <= cantidadBodega

Algoritmo para resolver el problema en ese caso:

cantidadUnidadesVendidas += cantidad;
cantidadBodega -= cantidad;

En el primer caso la solucién es vender todo lo que hay en la bodega. En el segundo,
vender lo pedido como parametro. En Java existe la instruccion condicional if-else , que
permite expresar los casos dentro de un método. La sintaxis en Java de dicha instruccion se
ilustra en el siguiente fragmento de programa:

public class

{
public void int
{
if(pCantidad > cantidadBodega)
{
totalProductosVendidos += cantidadBodega;
cantidadBodega = 2
}
else
{
totalProductosVendidos += pCantidad ;
cantidadBodega -= pCantidad ;
3
}
}

¢ En lugar de una sola secuencia de instrucciones, se puede dar una secuencia para
cada caso posible. El computador sélo va a ejecutar una de las dos secuencias.

e Es como si el método escogiera el algoritmo que debe utilizar para resolver el problema
puntual que tiene, identificando la situacién en la que se encuentra el objeto.

e La condicion caracteriza los dos casos que se pueden presentar. Note que con una
sola condicion debemos separar los dos casos.

e |os paréntesis alrededor de la condicion son obligatorios.

e |a condicion es una expresion légica, construida con operadores relacionales y l6gicos.

e |aparte del" else ", incluida la segunda secuencia de instrucciones, es opcional. Si no
se incluye, eso querria decir que para resolver el segundo caso no hay que hacer nada.

La instruccion if-else tiene tres elementos:

1. Una condicion que corresponde a una expresion logica capaz de distinguir los dos
casos (su evaluacién debe dar verdadero si se trata del primer caso y falso si se trata
del segundo).

2. La solucion para el primer caso.

3. La solucién para el segundo caso. Al encontrar una instruccion condicional, el
computador evalua primero la condicion y decide a partir de su resultado cual de las
dos soluciones ejecutar. Nunca ejecuta las dos.

Si el algoritmo que resuelve uno de los casos sélo tiene una instruccién, es posible eliminar
los corchetes, como se ilustra en el ejemplo 11. Alli también se puede apreciar que una
instruccion condicional es sélo una instruccion mas dentro de la secuencia de instrucciones
que implementan un metodo.

Ejemplo 11

En este ejemplo se presentan algunos meétodos de la clase Producto, para mostrar la
sintaxis de la instruccion if-else de Java. Los métodos aqui presentados no son
necesariamente los que escribiriamos para implementar los requerimientos funcionales del
caso de estudio, pero sirven para ilustrar distintos aspectos de las instrucciones
condicionales.

public boolean int

{

boolean suficiente;

if(pCantidad <= cantidadBodega)
suficiente = true;

else
suficiente = false;

return suficiente;

e Como la secuencia de instrucciones de cada caso tiene una sola instruccion, se
pueden eliminar los corchetes.

¢ Fijese que dejamos el resultado de cada caso en la misma variable, de manera que al
hacer el retorno del método siempre se encuentre alli el resultado. ;Qué hace este
método?

e Una instruccion condicional se puede ver como otra instruccion mas del método. Puede
haber instrucciones antes y después de ella.

public boolean int

{

return pCantidad <= cantidadBodega;

e El método anterior también se podria escribir de esta manera, un poco mas sencilla.
¢, Qué ganamos escribiéndolo asi?

public double darPrecioPapeleria(boolean

{
double precioFinal = valorUnitario;
if(conIVA)
precioFinal = precioFinal * (1+IVA_PAPELERIA);
return precioFinal;
}

e Sien el segundo de los casos de una instruccion condicional no es necesario hacer
nada, no se debe escribir ninguna instruccion, tal como se muestra en el ejemplo.
e ; Esta claro el problema que resuelve el método?

public void ajustarPrecio

{
if(totalProductosVendidos <)
{
valorUnitario = valorUnitario * / ;
}
else
{
valorUnitario = valorUnitario * ;
}
}

e En este metodo, si se han vendido menos de 100 unidades, se hace un descuento del
20% en el precio del producto.

¢ Si se han vendido 100 o mas unidades, se aumenta en un 10% el precio.

¢ En las instrucciones condicionales, incluso si sélo hay una instruccién para resolver
cada caso, es buena idea utilizar los corchetes para facilitar la lectura del codigo, es
buena idea utilizar los corchetes. En algunos casos, incluso, son indispensables para
evitar ambigledades.

Tenga cuidado de no escribir un ";" después de la condicién, porque el computador lo
va a interpretar como si la solucion al caso fuera no hacer nada (una instruccion vacia).

7.2 Condicionales en Cascada

Cuando el problema tiene mas de dos casos, es necesario utilizar una cascada (secuencia)
de instrucciones if-else , en donde cada condicion debe indicar sin ambigledad la
situacion que se quiere considerar. Suponga por ejemplo que queremos calcular el IVA de

un producto. Puesto que el valor que se paga de impuestos por un producto depende de su
tipo, es necesario considerar los tres casos siguientes:

Caso 1

Expresion que describe el caso:

(tipo == Tipo.SUPERMERCADO)

Algoritmo para resolver el problema en ese caso:

return IVA_SUPERMERCADO;

Caso 2

Expresion que describe el caso:

(tipo == Tipo.DROGUERIA)

Algoritmo para resolver el problema en ese caso:

return IVA_DROGUERIA;

Caso 3

Expresion que describe el caso:

(tipo == Tipo.PAPELERIA)

Algoritmo para resolver el problema en ese caso:

return IVA_PAPELERIA;

El método de la clase Producto para determinar el IVA que hay que pagar seria de la
siguiente forma (no es la unica solucién, como veremos mas adelante):

public double darIVA

{
if(tipo == Tipo.PAPELERIA)
{
return IVA_PAPELERIA;
}
else if(tipo == Tipo.SUPERMERCADO)
{
return IVA_SUPERMERCADO;
}
else
{
return IVA_DROGUERIA;
}
}

e Para representar los tres casos posibles, utilizamos una instruccion condicional en el
"else" del primer caso. Esa manera de encadenar las instrucciones condicionales para
poder considerar cualquier numero de casos se denomina "en cascada".

e Una instruccion condicional puede ir en cualquier parte donde pueda ir una instruccion
del lenguaje Java. Esto lo retomaremos en capitulos posteriores.

public double darIVA

{
double resp = 2
if(tipo == Tipo.PAPELERIA)
{
resp = IVA_PAPELERIA;
}
else if(tipo == Tipo.SUPERMERCADO)
{
resp = IVA_SUPERMERCADO;
}
else
{
resp = IVA_DROGUERIA;
}
return resp;
}

En esta segunda solucion del método, en lugar de hacer un retorno en cada caso,
guardamos la respuesta en una variable y luego la retornamos al final.

Al usar varias instrucciones if en cascada hay que tener cuidado con la ambigtiedad
que puede surgir con la parte else. Es mejor usar siempre corchetes para asegurarse
de que el computador lo va a interpretar de la manera adecuada.

Tarea 5

Objetivo: Practicar el uso de las instrucciones condicionales simples para expresar el
cambio de estado que debe hacerse en un objeto, en cada uno de los casos identificados.

Escriba el codigo de cada uno de los métodos descritos a continuacion. Tenga en cuenta la
clase en la cual esta el método y la informacion que se entrega como parametro.

Para la clase: Producto

Aumentar el valor unitario del producto, utilizando la siguiente politica: si el producto cuesta
menos de $1000, aumentar el 1%. Si cuesta entre $1000 y $5000, aumentar el 2%.
Si cuesta mas de $5000 aumentar el 3%.

public void

{

Recibir un pedido, sélo si en bodega se tienen menos unidades de las indicadas en el tope
minimo. En caso contrario el método no debe hacer nada.

public void int

{

Modificar el precio del producto, utilizando la siguiente politica: si el producto es de

drogueria
o papeleria debe disminuir un 10%. Si es de supermercado debe aumentar un 5%.

public void

{

Para la clase: Tienda

Vender una cierta cantidad del producto cuyo nombre es igual al recibido como parametro.
El método retorna el numero de unidades efectivamente vendidas. Suponga que el nombre
que se recibe como parametro corresponde a uno de los productos de la tienda. Utilice el
meétodo vender de la clase Producto como parte de su solucién.

public int int

{

Calcular el numero de productos de papeleria que se venden en la tienda.

public int

{

7.3. Instrucciones Condicionales Compuestas

Una instruccion condicional compuesta (switch) €s una manera alternativa de expresar la
solucion de un problema para el cual existe un conjunto de casos, cada uno con un
algoritmo distinto para resolverlo. Esta instruccion tiene la restriccion de que cada caso
debe estar identificado con un valor de tipo entero, String o del tipo de una enumeracion.

En la instruccion switch va inicialmente la expresion (de tipo entero, String o del tipo de
una enumeracion) que se desea evaluar para identificar el caso que se esta presentando.
Esta expresion debe ir entre paréntesis. Después de dicha expresion, se escriben los
bloques de instrucciones para cada uno de los casos identificados. Cada bloque empieza
con la instruccion case seguida del valor de la constante que identifica el caso. Después
se ponen las instrucciones del caso y al final de estas se debe colocar la instruccion

break para indicar el fin del conjunto de instrucciones. En la figura 2.6 se ilustra la
estructura de una instruccion condicional compuesta.

En el ejemplo 12 se presenta la solucién del método que calcula el IVA de un producto,
usando una instuccion condicional compuesta.

Instrucciones Condicionales

Fig. 2.6 Estructura de la instrucciéon switch de Java

expresidn para
identificor lo solucion

constante
vilor constante pora
identificar el case | ™| solucidn
del ~ oalgoritre que resuelve
el problema en el caso |
caso 1
break;
case constante
solucion
yalor comstante pora dlgoritme gue resuslve
identificor &l case 2 del el problema en &l case?
— caso 2
break;
LR rrarca 2l final de

un coso

Ejemplo 12
Objetivo: llustrar el uso de instrucciones condicionales compuestas.

En este ejemplo se presenta el método que calcula el IVA que debe pagar un producto,

dependiendo de su tipo.

207

public double
{

double iva = ;

switch(tipo)

{
case PAPELERIA:

{
iva = IVA_PAPELERIA;

break;

}
case SUPERMERCADO:

{
iva = IVA_SUPERMERCADO;

break;

}
case DROGUERIA:

{
iva = IVA_DROGUERIA;

break;

return iva;

e Este método de la clase Producto tiene tres casos posibles, cada uno identificado con
un valor de una enumeracion (candidato ideal para la instruccion switch).

e La expresion que va a permitir distinguir los casos se construye simplemente con el
atributo "tipo".

e Cada caso se introduce con la palabra reservada de Java "case" y se cierra con un
"break". Después de la instruccion "case" va el valor que identifica el caso. En nuestro
ejemplo, el valor se identifica con las constantes que representan los tres tipos posibles
de productos: PAPELERIA, SUPERMERCADO o DROGUERIA.

Dado que siempre es posible escribir una instruccion condicional compuesta como una
cascada de condicionales simples, la pregunta que nos debemos hacer es ¢ cuando usar
una instruccion condicional compuesta? La respuesta es que siempre que se pueda utilizar
la instruccion switch en lugar de una cascada de if es conveniente hacerlo, por dos
razones:

1. Eficiencia, ya que de este modo solo se evalua una vez la expresion aritmética,
mientras que en la cascada se evaluan una a una las condiciones, descartandolas.

2. Claridad en el programa, porque es mas facil de leer y mantener un programa escrito
de esta manera.

Y la segunda pregunta es, ¢, cuando no intentar usar una instruccion condicional
compuesta? La respuesta es: cuando los casos no estan identificados por valores enteros,
Strings 0 enumeraciones. Si se tienen, por ejemplo, un valor real como identificadores de
los casos, la unica opcidn es usar una cascada de instrucciones if-else .

Tarea 6

Objetivo: Utilizar instrucciones condicionales para expresar un conjunto de casos y
soluciones
asociadas con los mismos.

Escriba el codigo de cada uno de los métodos descritos a continuacion. Tenga en cuenta la
clase en la cual esta el método y la informacion que se entrega como parametro.

Para la clase: Producto

Dar el nombre del tipo del producto. Por ejemplo, si el producto es de tipo
SUPERMERCADO, el método debe retornar la cadena: "El producto es de supermercado”.

public String
{

Aumentar el precio del producto, siguiendo esta regla: si es un producto de drogueria debe
aumentar el 1%, si es de supermercado el 3% y si es de papeleria el 2%.

public void

{

Para la clase: Tienda

Retornar el precio final del producto identificado con el nimero que se entrega como
parametro. Por ejemplo, si pNumeroProducto es 3, debe retornar el precio del tercer
producto (producto3). Suponga que el valor que se entrega como parametro es mayor o
igual a 1 y menor o igual a 4.

public double int
{

Este método debe hacer lo mismo que el anterior, pero en lugar de recibir como parametro
el numero del producto, recibe su nombre. Puede suponer que el nombre que se entrega
como parametro corresponde a un producto perteneciente a la tienda.

Instrucciones Condicionales

public double darPrecioProducto(String pNombreProducto)

{

211

8. Responsabilidades de una Clase

8.1. Tipos de Método

Los métodos en una clase se clasifican en tres tipos, segun la operacion que realicen:

e Métodos constructores: tienen la responsabilidad de inicializar los valores de los
atributos de un objeto durante su proceso de creacion.

e Métodos modificadores: tienen la responsabilidad de cambiar el estado de los objetos
de la clase. Son los responsables de "hacer".

e Métodos analizadores: tienen la responsabilidad de calcular informacion a partir del
estado de los objetos de la clase. Son los responsables de "saber".

8.2. ;Como Identificar las Responsabilidades?

En esta parte s6lo veremos algunas guias intuitivas respecto de como identificar las
responsabilidades de una clase. Utilizamos dos estrategias complementarias que se
pueden utilizar en cualquier orden y que se resumen a continuacion:

e Una clase es responsable de administrar la informacién que hay en sus atributos. Por
esta razon se debe tratar de buscar el conjunto de servicios que reflejen las
operaciones tipicas del elemento del mundo que la clase representa.

e Una clase es responsable de ayudar a sus vecinos del modelo del mundo y colaborar
con ellos en la solucidn de sus problemas. En este caso la pregunta que nos debemos
hacer es, ¢ qué servicios necesitan las demas clases que les preste la clase que
estamos disefiando? A partir de la respuesta a esta pregunta, iremos agregando
servicios hasta que el problema global tenga solucién.

Para las dos estrategias es conveniente hacer el recorrido por tipo de méetodo, disefiando
primero los constructores, luego los modificadores y, finalmente, los analizadores. En el
nivel 4 de este libro retomaremos este problema de asignar responsabilidades a las clases.

Una vez que se han definido los servicios que va a prestar una clase, debemos definir los
parametros y el tipo de retorno. Para definir los parametros de un método, debemos
preguntarnos cual es la informacion externa a la clase que se necesita para poder prestar el
servicio. Para definir el tipo de retorno debemos preguntarnos qué informacién esta
esperando aquél que solicitd el servicio.

Tarea 7

Objetivo: Identificar y describir los métodos que representan las principales
responsabilidades de una clase.

Para el caso de estudio que se presenta a continuacion construya el diagrama de clases e
identifique los principales métodos.

Una empresa de transporte tiene 3 camiones para llevar carga de una ciudad a otra del
pais. De cada camion se tiene su matricula (6 caracteres), su capacidad (en kilogramos) y
el consumo de gasolina por kildbmetro (un valor real en litros/kilometro) y la carga actual (en
kilogramos). Se quiere construir un programa que permita optimizar el uso de los camiones.
Para esto debe tener una unica opcidén que determina cual es el mejor camidén para
transportar una cierta carga entre dos ciudades. El mejor camion es aquél que, siendo
capaz de transportar la carga, consume la minima cantidad de gasolina.

Requerimiento funcional

Responsabilidades de una Clase

Nombre

Resumen

Entradas

Resultado

ERED

Diagrama de clases:

214

Responsabilidades de una Clase

Clase EmpresaTransporte

Nombre del método:

215

Responsabilidades de una Clase

Tipo de método

Responsabilidad

Parametros

Retorno

T

Nombre del método:

216

Responsabilidades de una Clase

Tipo de método

Responsabilidad

Parametros

Retorno

T

Nombre del método:

217

Responsabilidades de una Clase

Tipo de método

Responsabilidad

Parametros

Retorno

T

Nombre del método:

218

Responsabilidades de una Clase

Tipo de método

Responsabilidad

Parametros

Retorno

T

Clase Camion

Nombre del método:

219

Responsabilidades de una Clase

Tipo de método

Responsabilidad

Parametros

Retorno

T

Nombre del método:

220

Responsabilidades de una Clase

Tipo de método

Responsabilidad

Parametros

Retorno

T

Nombre del método:

221

Responsabilidades de una Clase

Tipo de método

Responsabilidad

Parametros

Retorno

T

Nombre del método:

222

Responsabilidades de una Clase

Tipo de método

Responsabilidad

Parametros

Retorno

T

223

9. Eclipse: Nuevas Opciones

En esta seccidn se cubren los siguientes temas:

e Uso de Eclipse para formatear una clase (concepto de profile). Se presentan las

ventajas de mantener un correcto formato en los programas.

Uso de Eclipse para localizar una declaracion.

Uso de Eclipse para localizar todos los clientes de un método (aquellos que lo usan).
Uso de Eclipse para cambiar el nombre de un atributo, variable o método. Ventajas de
hacerlo de esta manera y riesgo si hay errores de compilacién.

La siguiente tarea le propondra una secuencia de acciones, que pretenden mostrarle la
manera de hacer lo anteriormente mencionado en el ambiente de desarrollo Eclipse.

Tarea 8

Objetivo: Trabajar en Eclipse sobre la solucién del caso de estudio, mostrando las nuevas

opciones del ambiente de desarrollo que se introducen en este nivel.

Localice en el sitio del proyecto Cupi2 la solucion del caso de estudio de este nivel. Copie

en un directorio de trabajo dicha solucion. Ejecute Eclipse y cree un nuevo proyecto que la

contenga. Siga los pasos que se dan a continuacion:

Paso I: ejecutar la aplicacion

1.

La clase InterfazTienda es la clase principal del programa. Localicela y seleccionela en
el explorador de paquetes. Si tiene dificultades en esto, consulte la manera de hacerlo
en el capitulo anterior.

Para ejecutar la clase principal de un programa, seleccione el comando Run as Java
Application. Puede hacerlo desde la barra de herramientas, el menu principal o el menu
emergente que aparece al hacer clic derecho sobre la clase.

Paso Il: dar formato al cédigo fuente

1.

Localice el profile (perfil) de formato en el sitio del proyecto Cupi2. Puede encontrarlo
bajo el titulo "Perfil Cupi2 para Eclipse". El profile reine un conjunto de preferencias de
formato en el codigo fuente, tales como indentacion, posicién de los corchetes, manejo
de las lineas en blanco, comentarios, etc.

Instale el profile en Eclipse. Para esto seleccione la opcion Window/Preferences del
menu principal. En la ventana que aparece localice la zona Java/Code Style/Code

http://cupi2.uniandes.edu.co/sitio/index.php/cursos/apo1/nivel-2
https://cupitaller.uniandes.edu.co/instaladores/

Formatter. Utilice el boton Import... para cargar el archivo mencionado en el punto
anterior.

El hecho de cargar un profile no cambia automaticamente el formato de las clases.
Seleccione y abra la clase Producto en el explorador de paquetes. Cambie el formato
de los métodos. Elimine algunos espacios en las expresiones o cambie la indentacion
de las instrucciones.

4. Ahora apliquele formato a la clase Producto seleccionando la opcién Source/Format en

el menu emergente del clic derecho o con ctrl+mayus+F. El formato ayuda a organizar
el codigo fuente, mejorando su legibilidad y consistencia. Cuando se aplica formato a
una clase, Eclipse utiliza la informacién que aparece en el profile que esté activo. Note
como el programa recupera su estado inicial.

Para darle formato a una sola seccion de la clase, seleccione la seccién y apliquele el
formato como en el paso anterior. Adquiera la buena practica de aplicar el formato a
todos sus proyectos antes de entregarlos.

Paso lll: localizar rapidamente el cédigo fuente de una
clase o método

1.

Seleccione y abra la clase Tienda en el explorador de paquetes. Localice la declaracion
de cualquiera de los atributos de la clase Producto (producto1, producto2, producto3 o
producto4). Oprima la tecla ctrl y al mismo tiempo ubique el cursor sobre la palabra
"Producto” en la declaracion. La palabra "Producto” se resalta con un subrayado.

Haga clic sobre la palabra resaltada: se abrira la clase Producto para ser consultada.
En general, es posible localizar la declaracion de cualquier elemento del programa
utilizando esta misma interaccion. Basta con posicionarse sobre el elemento cuya
declaracién queremos consultar y con la combinacion ctri+clic llegamos a dicho punto
del programa.

3. Sidesea puede ver el video explicativo en el sitio del proyecto.

Paso IV: localizar rapidamente los lugares donde se invoca
un método

. Seleccione y abra la clase Producto en el explorador de paquetes. Localice en el editor

la declaracion de cualquiera de los métodos o atributos de esta clase.

Busque todos los lugares del programa en donde se invoca dicho método,
seleccionando la opcion Navigate_/ Open Call Hierarchy _en el menu principal o en el
menu emergente que aparece al hacer clic derecho sobre el método o con ctrl+alt+h.
En la vista de busqueda de Eclipse se presentan todos los métodos en los que existe
un llamado al método o atributo seleccionado.

Si selecciona un método, senala el lugar donde este metodo fue llamado.

https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Abrir_implementaciones.mp4

5. Sidesea puede ver el video explicativo en el sitio del proyecto.
6. Repita el procedimiento anterior con el metodo constructor de la clase Tienda, para
llegar hasta la clase de la interfaz de usuario que crea la tienda.

7. https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Jerarquia_llamad
0s.mp4

Paso V: cambiar los elementos de una clase

1. Seleccione y abra la clase Producto en el explorador de paquetes. Localice la
declaracién del atributo valorUnitario en dicha clase.

2. Cambie el nombre de este atributo a valorUnidad, seleccionando la opcion
Refactor/Rename en el menu principal o en el menu emergente que aparece al hacer
clic derecho sobre el atributo. Esta operacion realiza la modificacion en todos los
puntos del programa en los cuales se utiliza dicho atributo. La ventaja de hacer de esta
manera los cambios es que el compilador ayuda a no cambiar por error otros
elementos del programa.

3. Localice el método abastecer en la clase Producto. Cambie el nombre del parametro
pCantidad a pNumeroUnidades, de la misma manera que en el punto anterior. Esta
misma técnica sirve para cambiar los nombres de los métodos. Si en algun punto del
programa hay errores de compilacion, es un poco arriesgado hacer los cambios de
nombre mencionados en esta parte, ya que dichos errores pueden confundir al
compilador vy llevar a Eclipse a dejar de hacer algunos cambios necesarios.

4. Sidesea puede ver el video explicativo en el sitio del proyecto.

https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Jerarquia_llamados.mp4
https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Jerarquia_llamados.mp4
https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Refactor.mp4

10. Hojas de Trabajo

10.1 Hoja de Trabajo N° 1: Un Estudiante

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Analice el siguiente enunciado e identifique el mundo del problema, lo que se
quiere que haga el programa y las restricciones para desarrollarlo.

Se desea construir una aplicacion para el manejo de informacion de los cursos que esta
tomando un estudiante. El estudiante toma solo 4 cursos en el semestre. Los datos
personales del estudiante que maneja la aplicacién son cédigo, nombre y apellido.

De cada curso se conoce:

e Codigo. Es el identificador del curso y no pueden haber dos cursos con el mismo
codigo.

Nombre.
Departamento. Puede ser Matematicas, Fisica, Sistemas o Biologia.

Cantidad de créditos.
Nota obtenida en el curso. Este valor debe estar entre 1.5y 5.

Para poder calcular el promedio del estudiante, se deben ponderar las notas, teniendo en
cuenta la cantidad de créditos de las materias. Para esto, para cada curso se debe
multiplicar la nota del curso con su cantidad de créditos, sumar estos valores y dividir esta
suma por la cantidad total de créditos vistos por el estudiante. Por ejemplo, si el estudiante
ha terminado dos materias, “Calculo 1” y “Fisica 17, la primera de 4 créditos y la segunda de
tres, con las siguientes notas:

e Calculo1: 4,5
e Fisica1:3,5

El promedio del estudiante es:
e (45x4+35x3)/7=4,07

Adicionalmente, se quiere poder saber si un estudiante esta en prueba académica o si es
candidato para beca. Para esto se debe tener en cuenta las siguientes reglas.

e Se considera que un estudiante esta en prueba académica si su promedio es inferior a
3.25.

https://bit.ly/apo1-nivel2-hoja2-pdf-format
https://bit.ly/apo1-nivel2-hoja2-word-format

Hojas de trabajo

e Se considera que un estudiante es candidato a beca si su promedio es igual o superior
a4.75.

La aplicacion debe permitir: (1) visualizar la informacién del estudiante, (2) visualizar la
informacion de los cursos, (3) modificar la informacion de un curso, (4) asignar una nota a
un curso (5) calcular el promedio del estudiante (6) indicar si el estudiante esta en prueba
académica, (7) indicar si el estudiante es candidato a beca.

La interfaz del programa es la siguiente:

|é| Estudiante had - b d

ESTUDIANTE

Informacion del estudiante
Codigo: 201612345
Nombre: Juliana
Apellido: Ramirez
Promedio:] .
15151204 MATE1203
Nombre: APD Nombre: Caleulo diferencial
Departamento: Ing. Sistemas Departamento: Matermatica
Créditos: 3 Créditos: ic
MNota: 0.o Mota: 0.0
Cambiar curso || Asignar nota | Cambiar curso || Asignar nota
FISI1100 BIOL 1405
Nombre: Figica 1 Nombre: ‘Biologia celular
Departamento: Fisica Departamento: Binlogia
Créditos: 4 Créditos: 4
Nota: 0.0 Hota: 0.0
| Cambiar curso || Asignar nota | Cambiar curso || Asignar nota
Opciones
‘ Candidato beca H Prueba académica ” Opcidn 1 H Opcidn 2

Requerimientos funcionales. Especifique los siete requerimientos funcionales descritos en

el enunciado.

Requerimiento Funcional 1

Hojas de trabajo

Nombre R1 - Visualizar la informacion del estudiante.

Resumen

Entradas

Resultado

Requerimiento Funcional 2

Nombre R2 - Visualizar la informacion de los cursos.

Resumen

Entradas

Resultado

Requerimiento Funcional 3

229

Hojas de trabajo

Nombre R3 — Modificar la informacion de un curso.

Resumen

Entradas

Resultado

Requerimiento Funcional 4

Nombre R4 - Asignar una nota a un curso.

Resumen

Entradas

Resultado

Requerimiento Funcional 5

230

Hojas de trabajo

Nombre R5 - Calcular el promedio del estudiante.

Resumen

Entradas

Resultado

Requerimiento Funcional 6

Nombre R6 - Indicar si el estudiante esta en prueba académica.

Resumen

Entradas

Resultado

Requerimiento Funcional 7

231

Hojas de trabajo

Nombre R7 — Indicar si el estudiante es candidato a beca.

Resumen

Entradas

Resultado

Modelo conceptual. Estudie el siguiente modelo conceptual

232

Hojas de trabajo

Estudiante()

int darCodigol)
String darNombre()
string darApellido()
Curso darCursol()
Curso darCurso2{ |
Curso darCurso3()
Cui arCursod()

String nombre
Departamento departamento
int creditos

double nota

Declaracion de las clases. Complete las declaraciones de las siguientes clases.

233

public class Estudiante

{
VA T
// Atributos
VA T i
3

public class Curso

{
F A e
// Atributos
F A e e
}

Creacion de Expresiones. Para cada uno de los siguientes enunciados, escriba la
expresion que lo representa. Tenga en cuenta la clase dada para determinar los elementos
disponibles.

¢El nombre del curso

Curso .
es “Calculo 17?

¢ El curso ya tiene una

Curso .
nota asignada?

¢ El curso tiene mas de

Curso o
tres créditos?

¢ El curso fue

Curso aprobado?

¢ El codigo del

Estudiante estudiante es "1234"?

¢ El primer curso tiene

Estudiante una nota asignada?

¢ El segundo curso
pertenece al
departamento de
matematicas?

Estudiante

¢, Cual es el promedio

Estudiante del estudiante?

Desarrollo de métodos. Escriba el cédigo de los métodos indicados.

Método 1

Clase: Curso

Descipcion: Retorna el codigo del curso.

public String
{

Método 2

Clase: Curso

Descipcion: Indica si el curso ya fue calificado (tiene una nota distinta de cero).

public boolean

{

Método 3

Clase: Estudiante

Descipcién: Retorna el nombre del estudiante.

public String

{

Método 4

Clase: Estudiante

Descipcion: Indica si el estudiante ya tiene los cuatro cursos pertenecen al mismo
departamento.

public boolean

{

Método 5

Clase: Estudiante

Descipcion: Calcula el promedio de los cursos que ya tienen nota. Si ningun curso tiene
nota asignada, retorna cero.

public double
{

Método 6

Clase: Estudiante
Descipcion: Busca y retorna el curso que tiene el cédigo que se recibe como parametro. Si

ningun curso tiene dicho cédigo, el meétodo retorna null.

public Curso

{

Método 7

Clase: Estudiante
Descipcién: Indica si el estudiante se encuentra en prueba académica. Retorna verdadero si

esta en prueba académica, false de lo contrario.

public boolean

{

Hojas de trabajo

239

Nivel 3: Manejo de Grupos de Atributos

MANEJO DE GRUPOS
DE ATRIBUTOS

vVVvVVV VWV

240

1. Objetivos Pedagodgicos

Al final de este nivel el lector sera capaz de:

e Utilizar las estructuras contenedoras de tamano fijo como elementos para modelar una
caracteristica de un elemento del mundo que permiten almacenar una secuencia de
valores (simples u objetos).

e Utilizar las estructuras contenedoras de tamafo variable como elementos de modelado
que permiten manejar atributos cuyo valor es una secuencia de objetos.

e Utilizar las instrucciones iterativas para manipular estructuras contenedoras y entender
que dichas instrucciones se pueden utilizar en otro tipo de problemas.

e Crear una clase completa en Java utilizando el ambiente de desarrollo Eclipse.

¢ Entender la documentacion de un conjunto de clases escritas por otros y utilizar dicha
documentacion para poder incorporar y usar adecuadamente dichas clases en un
programa que se esta construyendo.

2. Motivacion

Cuando nos enfrentamos a la construccion del modelo conceptual del mundo del problema,
en muchas ocasiones nos encontramos con el concepto de coleccion o grupo de cosas de
la misma clase. Por ejemplo, si retomamos el caso de estudio del empleado presentado en
el nivel 1y lo generalizamos a la administracion de todos los empleados de la universidad,
es claro que en alguna parte del diagrama de clases debe aparecer el concepto de grupo de
empleados. Ademas, cuando planteemos la solucion, tendremos que definir un método en
alguna clase para afadir un nuevo elemento a ese grupo (ingres6 un nuevo empleado a la
universidad) o un método para buscar un empleado de la universidad (por ejemplo, quién es
el empleado que tiene mayor salario). De manera similar, si retomamos el caso de estudio
del nivel 2 sobre la tienda, lo natural es que una tienda manipule un numero arbitrario de
productos, y no sélo cuatro de ellos como se definié en el ejemplo. En ese caso, la tienda
debe poder agregar un nuevo producto al grupo de los que ya vende, buscar un producto
en su catalogo, etc.

En este capitulo vamos a introducir dos conceptos fundamentales de la programacion:

1. Las estructuras contenedoras, que nos permiten manejar atributos cuyo valor
corresponde a una secuencia de elementos.

2. Las instrucciones repetitivas, que son instrucciones que nos permiten manipular los
elementos contenidos en dichas secuencias.

Ademas, en este nivel estudiaremos la manera de crear objetos y agregarlos a una
contenedora, la manera de crear una clase completa en Java y la forma de leer la
descripcion de un conjunto de clases desarrolladas por otros, para ser capaces de utilizarlas
en nuestros programas.

Vamos a trabajar sobre varios casos de estudio que iremos introduciendo a lo largo del
nivel.

Caso de Estudio N° 1: Las Notas de un Curso

3. Caso de Estudio N° 1: Las Notas de un
Curso

Considere el problema de administrar las calificaciones de los alumnos de un curso, en el

cual hay doce estudiantes, de cada uno de los cuales se tiene la nota definitiva que obtuvo

(un valor entre 0,0 y 5,0).
Se quiere construir un programa que permita:

1. Cambiar la nota de un estudiante.
2. Calcular el promedio del curso.
3. Establecer el numero de estudiantes que esta por encima de dicho promedio.

En la figura 3.1 aparece la interfaz de usuario que se quiere que tenga el programa.

Fig. 3.1 Interfaz de usuario del programa del primer caso de estudio

|£)| Sisterna de Manejo de MNotas = .

NOTAS DE CURS(C

Notas
Estudiante 1: 45
Estudiante 2: 37
Estudiante 3: 15
Estudiante 4: 36
Estudiante 5: 5.0
Estudiante 6: 43
Estudiante 7: 0.8
Estudiante : 43
Estudiante 9: 4.1
Estudiante 10: 25
Estudiante 11: 46
Estudiante 12: 40
‘ Promedio | # Mayor al promedio | Opcion 1 Opcion 2 |

e En la ventana del programa aparece la nota de cada uno de los doce estudiantes del

N

43

curso. La nota con la que comienzan es siempre cero.

e Con el respectivo boton es posible modificar la nota. Al oprimirlo, aparece una ventana
de dialogo en la que se pide la nueva nota.

e En la parte de abajo de la ventana se encuentran los botones que implementan los
requerimientos funcionales: calcular el promedio e indicar el numero de estudiantes que
estan por encima de dicha nota.

3.1. Comprension de los Requerimientos

Requerimiento funcional 1

Nombre R1 — Cambiar nota.
R Cambia la nota de uno de los estudiantes que pertenece a la lista del
esumen
Ccurso.
Entradas (1) Numero del estudiante, (2) nota del estudiante

Se muestra la nueva nota del estudiante. En caso de que no cumpla el
Resultado formato de niumero decimal con punto como separador, se muestra un
mensaje de error.

Requerimiento funcional 2

Nombre R2 - Calcular promedio de notas.
Resumen Calcula el promedio de notas de la lista de estudiantes.
Entradas Ninguna.

Resultado Se muestra un mensaje con el promedio calculado.

Requerimiento funcional 3

Nombre R3 — Calcular la cantidad de estudiantes por encima del promedio.
R Calcula la cantidad de estudiantes que tienen una nota registrada mayor
esumen .
al promedio calculado.
Entradas Ninguna.
Se muestra un mensaje con la cantidad de estudiantes por encima del
Resultado

promedio.

3.2. Comprension del Mundo del Problema

Dado el enunciado del problema, el modelo conceptual se puede definir con una clase
llamada Curso, la cual tendria doce atributos de tipo double para representar las notas de
cada uno de los estudiantes, tal como se muestra en la figura 3.2.

Fig. 3.2 Modelo conceptual de las calificaciones de los estudiantes

Caso de Estudio N° 1: Las Notas de un Curso

curso

double
double
double
double
double
double
double
double
double
double
double
double

notaf
notaz2
nota3
notad
notab
nota6
nota/
nota8
nota9
notalO
notali
notal?2

246

Aunque este modelado es correcto, los métodos necesarios para resolver el problema
resultarian excesivamente largos y dispendiosos. Cada expresion aritmética para calcular
cualquier valor del curso tomaria muchas lineas de codigo. Ademas, imagine si en vez de
12 notas tuviéramos que manejar 50 6 100. Terminariamos con algoritmos imposibles de
leer y de mantener. Necesitamos una manera mejor de hacer este modelado y ésta es la
motivacion de introducir el concepto de estructura contenedora.

4. Contenedoras de Tamano Fijo

Lo ideal, en el caso de estudio, seria tener un sélo atributo (lamado por ejemplo notas), en
donde pudiéramos referirnos a uno de los valores individuales por un nimero que
corresponda a su posicion en el grupo (por ejemplo, la quinta nota). Ese tipo de atributos
que son capaces de agrupar una secuencia de valores se denominan contenedoras y la
idea se ilustra en la figura 3.3. Vale la pena aclarar que la sintaxis usada en la figura no
corresponde a la sintaxis de UML, sino que solamente la usamos para ilustrar la idea de
una estructura contenedora.

Fig. 3.3 Modelo conceptual de las calificaciones con una contenedora

Contenedoras de Tamario Fijo

Curso

double nota =

— | = OINOO|UT|DIWIN|—|O

e En lugar de tener 12 atributos de tipo real, vamos a tener un sélo atributo llamado
"notas" el cual contendra en su interior las 12 notas que queremos representar.

e Cada uno de los elementos del atributo "notas" se puede referenciar utilizando la
sintaxis notas[x], donde x es el numero del estudiante a quien corresponde la nota

(comenzando en 0).

e Con esta representaciéon podemos manejar de manera mas simple y general el grupo

de notas de los estudiantes.

249

Un objeto de la clase Curso se veria como aparece en la figura 3.4. Alli se puede apreciar
que las posiciones dentro de una contenedora se comienzan a numerar a partir del valor 0 y
que los elementos individuales se referencian a través de su posicion. Cada nota va en una
posicion distinta de la contenedora de tipo double llamada notas.

Fig. 3.4 — Representacion grafica de un arreglo

la primera posicién .
es la cero el 11 es el Ultimo elemento de la

confenedora de |2 posiciones

1 2
notas= 35| 50| 45| 25| 45 | ... | 50 | 50
notas [2]

En las secciones que siguen veremos la manera de declarar (en UML y en Java) un atributo
que corresponda a una contenedora, y a manipular los valores alli incluidos.

4.1 Declaracion de un Arreglo

En Java, las estructuras contenedoras de tamafo fijo se denominan arreglos (arrays en
inglés), y se declaran como se muestra en el ejemplo 1. Los arreglos se utilizan para
modelar una caracteristica de una clase que corresponde a un grupo de elementos, de los
cuales se conoce su numero. Si no supiéramos, por ejemplo, el numero de estudiantes del
curso en el caso de estudio, deberiamos utilizar una contenedora de tamano variable, que
es el tema de una seccidén posterior de este capitulo.

Ejemplo 1

Objetivo: Mostrar la sintaxis usada en Java para declarar un arreglo.

En este ejemplo se hace la declaracion del arreglo de notas, como parte de la clase Curso

del caso de estudio.

public class Curso

{

public final static int TOTAL_EST = ;

private double[] notas;

Es conveniente declarar el numero de posiciones del arreglo como una constante
(TotaL_EsT). Eso facilita realizar mas tarde modificaciones al programa. Si en vez de
12 hay que manejar 15 estudiantes, bastaria con cambiar dicho valor.

En el momento de declarar el atributo " notas ", usamos la sintaxis " [] " para indicar
que va a contener un grupo de valores.

El tamario del arreglo sera determinado en el momento de la inicializacién del arreglo,
en el método constructor. Por ahora no hay que decir nada al respecto.

En la declaracion le decimos al compilador que todos los elementos del arreglo son de
tipo double .

Recuerde que los elementos de un arreglo se comienzan a referenciar a partir de la

posicion 0.

4.2 Inicializacién de un Arreglo

Al igual que con cualquier otro atributo de una clase, es necesario inicializar los arreglos en

el método constructor antes de poderlos utilizar. Para hacerlo, se debe definir el tamario del

arreglo, es decir el numero de elementos que va a contener. Esta inicializacién es

obligatoria, puesto que es en ese momento que le decimos al computador cuantos valores

debe manejar en el arreglo, lo que corresponde al espacio en memoria que debe reservar.

Veamos en el ejemplo 2 cdmo se hace esto para el caso de estudio.

Si tratamos de acceder a un elemento de un arreglo que no ha sido inicializado, vamos

a obtener el error de ejecucion: java.lang.NullPointerException

Ejemplo 2

Objetivo: Mostrar la manera de inicializar un arreglo en Java.

En este ejemplo mostramos, en el contexto del caso de estudio, la manera de inicializar el
arreglo de notas dentro del constructor de la clase Curso.

public

{
notas = new double[TOTAL_EST] ;

e Se utiliza la instruccidon new como con cualquier otro objeto, pero se le especifica el
numero de valores que debe contener el arreglo (TOTAL_EST, que es una constante
de valor 12).

e Esta construccion reserva el espacio para el arreglo, pero el valor de cada uno de los
elementos del arreglo sigue siendo indefinido. Esto lo arreglaremos mas adelante.

El lenguaje Java provee un operador especial (length) para los arreglos, que permite
consultar el numero de elementos que éstos contienen. En el caso de estudio, la expresion

notas.length debe dar el valor 12, independientemente de si los valores individuales ya
han sido o no inicializados, puesto que en el método constructor de la clase se reservd
dicho espacio de memoria.

4.3. Acceso a los Elementos del Arreglo

Un indice es un valor entero que nos sirve para indicar la posicion de un elemento en un
arreglo. Los indices van desde 0 hasta el numero de elementos menos 1. En el caso de
estudio, la primera nota tiene el indice 0 y la ultima, el indice 11. Para tomar o modificar el
valor de un elemento particular de un arreglo necesitamos dar su indice, usando la sintaxis
que aparece en el siguiente método de la clase Curso y que, en el caso general, se puede
resumir como <arreglo>[<indice>] .

public void noHaceNadaUtil(double

{
int indice = ;
notas| 1= ;
if(valor < && notas.length == TOTAL_EST)
{
notas[indice] = notas] 1;
notas|] = valor + ;
}
else
{
notas[indice] = notas[] - valor;
}
}

e Este metodo sdlo lo utilizamos para ilustrar la sintaxis que se utiliza en Java para
manipular los elementos de un arreglo.

e Para asignar un valor a una casilla del arreglo, usamos la sintaxis notas[x] = valor ,
donde x es el indice que nos indica una posicion.

e Para obtener el valor de una casilla, usamos la misma sintaxis (notas[x])Yy para
conocer el numero de casillas del arreglo usamos notas. length

De esta manera podemos asignar cualquier valor de tipo double a cualquiera de las
casillas del arreglo, o tomar el valor que alli se encuentra.

Cuando dentro de un método tratamos de acceder una casilla con un indice no valido
(menor que 0 o mayor o igual que el numero de casillas), obtenemos el error de
ejecucion: java.lang.ArraylndexOutOfBoundsException

Es importante destacar que, hasta este momento, lo unico que hemos ganado con la
introduccion de los arreglos es no tener que usar atributos individuales para representar una
caracteristica que incluye un grupo de elementos. Es mas comodo tener un sélo atributo
con todos esos elementos en su interior. Las verdaderas ventajas de usar arreglos las
veremos a continuacion, al introducir las instrucciones repetitivas.

5. Instrucciones Repetitivas

5.1. Introducciodn

En muchos problemas notamos una regularidad que sugiere que su solucion puede lograrse
repitiendo un paso que vaya transformando gradualmente el estado del mundo modelado y
acercandose a la solucion. Instintivamente es lo que hacemos cuando subimos unas
escaleras: repetimos el paso de subir un escalén hasta que llegamos al final. Otro ejemplo
posible es si suponemos que tenemos en una hoja de papel una lista de palabras sin ningun
orden y nos piden buscar si la palabra "casa" esta en la lista. El algoritmo que seguimos
para realizar esta tarea puede ser descrito de la siguiente manera:

Verifique si la primera palabra es igual a "casa".

Si lo es, no busque mas. Si no lo es, busque la segunda palabra.
Verifique si la segunda palabra es igual a "casa".

Si lo es, no busque mas. Si no lo es, busque la tercera palabra.

o 0N~

Repita el procedimiento palabra por palabra, hasta que la encuentre o hasta que no
haya mas palabras para buscar.

Tarea 1

Objetivo: Explicar el significado de la instruccion repetitiva y usarla para definir un algoritmo
qgue resuelva un problema simple.

Suponga que en el ejemplo anterior, ya no queremos buscar una palabra sino contar el
numero total de letras que hay en todas las palabras de la hoja.

Escriba el algoritmo para resolver el problema:

5.2. Calcular el Promedio de las Notas

Para resolver el segundo requerimiento del caso de estudio (R2 - calcular el promedio de
las notas), debemos calcular la suma de todas las notas del curso para luego dividirlo por el
numero de estudiantes. Esto se puede hacer con el método que se muestra a continuacion:

public double promedio

{
double suma = notas[] + notas[] + notas[1+
notas[] + notas[] + notas[1+
notas[] + notas[] + notas[1+
notas[] + notas[] + notas[1;
return suma / TOTAL_EST;
}

¢ Primero sumamos las notas de todos los estudiantes y guardamos el valor en la
variable suma.

e El promedio corresponde a dividir dicho valor por el numero de estudiantes,
representado con la constante TOTAL_EST .

Si planteamos el problema de manera iterativa, podemos escribir el mismo método de la
siguiente manera, en la cual, en cada paso, acumulamos el valor del siguiente elemento:

public double

{
double suma = ;
int indice = 0;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];
indice++;

suma += notas[indice];

return suma / TOTAL_EST;

e Esta solucion también calcula el promedio del curso, pero en lugar de hacer referencia
directa a las doce casillas del arreglo, utiliza un indice que va desplazando desde O
hasta 11.

e Por supuesto que es mas clara la solucion anterior, pero queremos utilizar este ejemplo
para introducir las instrucciones iterativas, que expresan esta misma idea de
"desplazar" un indice, pero usando una sintaxis mucho mas compacta.

e Lo primero que debemos notar es que vamos a ejecutar 12 veces (TOTAL_EST veces
para ser exactos) un grupo de instrucciones.

e Ese grupo de instrucciones es: suma += notas[indice]; indice++ ;

e Después de ejecutar 12 veces esas dos instrucciones, en la variable suma tendremos
el valor total, listo para dividirlo por el niumero de estudiantes.

e El indice comienza teniendo el valor 0 y termina teniendo el valor 11. De esta manera,
cada vez que hacemos referencia al elemento notas[indice] , estamos hablando de
una casilla distinta del arreglo.

Alli repetimos 12 veces una pareja de instrucciones, una vez por cada elemento del arreglo.
Basta un poco de reflexion para ver que lo que necesitamos es poder decir que esas dos
instrucciones se deben repetir tantas veces como notas haya en el arreglo. Las
instrucciones repetitivas nos permiten hacer eso de manera sencilla. En el siguiente metodo
se ilustra el uso de la instruccion while para el mismo problema del calculo del promedio.

public double
{

double suma = ;

int indice = 0;

while(indice < TOTAL_EST)

{
suma += notas[indice];
indice++;

}

return suma / TOTAL_EST;

e |a estructura del método sigue siendo la misma, con la unica diferencia de que en lugar

de repetir 12 veces la pareja de instrucciones, las incluimos dentro de la instruccion
while , que se encarga de ejecutar repetidamente las instrucciones que tiene en su

interior.

e Lainstruccién while sirve para decirle al computador que "mientras que" una
condicion se cumpla, siga ejecutando las instrucciones que estan por dentro.

e La condicion en el ejemplo es indice < TOTAL_EST , que equivale a decirle que
"mientras que" el indice no llegue a 12, vuelva a ejecutar la pareja de instrucciones que
tiene asociadas.

Ahora veremos las partes de las instrucciones repetitivas y su significado.

5.3. Componentes de una Instruccién
Repetitiva

La figura 3.5 ilustra la manera en que se ejecuta una instruccion repetitiva. Primero, y por
una sola vez, se ejecutan las instrucciones que vamos a llamar de inicio o preparacién del
ciclo. Alli se le da el valor inicial al indice y a las variables en las que queremos acumular
los valores durante el recorrido. Luego, se evalua la condicion del ciclo. Si es falsa, se
ejecutan las instrucciones que se encuentran después del ciclo. Si es verdadera, se
ejecutan las instrucciones del cuerpo del ciclo para finalmente volver a repetir el mismo
proceso. Cada repeticidn, que incluye la evaluacion de la condicion y la ejecucion del
cuerpo del ciclo, recibe el nombre de iteracion o bucle.

Instrucciones Repetitivas

Fig. 3.5 Ejecucion de una instruccion repetitiva

Inlcio preparacion

'9 del ciclo

la condicion
es verdadera?
no
N\
?

termina
el ciclo

ejecuta las
instrucciones
del cuerpo
del ciclo

Usualmente en un lenguaje de programacion hay varias formas de escribir una instruccion
repetitiva. En Java existen varias formas, pero en este libro s6lo vamos a presentar dos de
ellas: la instruccion for Yy la instruccion while .

5.3.1. Las Instrucciones for y while

Una instruccion repetitiva con la instruccion while se escribe de la siguiente manera:

<inicio>
while(<condicidén>)

<cuerpo>
<avance>

e Las instrucciones de preparacion del ciclo van antes de la instruccion repetitiva.

e |a condicion que establece si se debe repetir de nuevo el ciclo va siempre entre
paréntesis.

e El avance del ciclo es una parte opcional, en la cual se modifican los valores de
algunos de los elementos que controlan la salida del ciclo (avanzar el indice con el que

258

se recorre un arreglo seria parte de esta seccion).

Una instruccion repetitiva con la instruccidn for se escribe de la siguiente manera:

<inicioil>
for(<inicio2>; <condicidén>; <avance>)

{

<cuerpo>

¢ Elinicio va separado en dos partes: en la primera, va la declaracion y la inicializacion

de las variables que van a ser utilizadas después de terminado el ciclo (la variable
suma , por ejemplo, en el método del promedio). En la segunda parte de la zona de

inicio van las variables que seran utilizadas unicamente dentro de la instruccion
repetitiva (la variable indice , por ejemplo, que solo sirve para desplazarse recorriendo
las casillas del arreglo).

e La segunda parte del inicio, lo mismo que el avance del ciclo, se escriben en el
encabezado de la instruccién for .

Ejemplo 3
Objetivo: Mostrar la manera de utilizar la instruccion iterativa for .

En este ejemplo se presenta una implementacion del método que calcula el promedio de
notas del caso de estudio, en la cual se utiliza la instruccion for .

public double

{
double suma = 2
for(int indice = 0; indice < TOTAL_EST; indice++)
{
suma += notas[indice];
}
return suma / TOTAL_EST;
}

e Puesto que la variable " suma " sera utilizada por fuera del cuerpo del ciclo, es
necesario declararla antes del for.

e Lavariable " indice " es interna al ciclo, por eso se declara dentro del encabezado.

e El| avance del ciclo consiste en incrementar el valor del " indice "

e En este ejemplo, los corchetes del for son opcionales, porque so6lo hay una

instruccién dentro del cuerpo del ciclo.

Vamos a ver en mas detalle cada una de las partes de la instruccion y las ilustraremos con
algunos ejemplos.

5.3.2. El Inicio del Ciclo

El objetivo de las instrucciones de inicio o preparacion del ciclo es asegurarnos de que
vamos a empezar el proceso repetitivo con las variables de trabajo en los valores correctos.
En nuestro caso, una variable de trabajo la utilizamos como indice para movernos por el
arreglo y la otra para acumular la suma de las notas:

e La suma antes de empezar el ciclo debe ser cero: double suma = 0.0;
e El indice a partir del cual vamos a iterar debe ser cero: int indice = o;

5.3.3. La Condicién para Continuar

El objetivo de la condicion del ciclo es identificar el caso en el cual se debe volver a hacer
una nueva iteracion. Esta condicion puede ser cualquier expresion logica: si su evaluacion
da verdadero, significa que se deben ejecutar de nuevo las instrucciones del ciclo. Si es
falsa, el ciclo termina y se continua con la instruccion que sigue después de la instruccion
repetitiva.

Tipicamente, cuando se esta recorriendo un arreglo con un indice, la condicion del ciclo
dice que se debe volver a iterar mientras el indice sea menor que el numero total de
elementos del arreglo. Para indicar este niUmero, se puede utilizar la constante que define
su tamano (ToTAL_EST) 0 el operador que calcula el numero de elementos de un arreglo
(notas.length).

Dado que los arreglos comienzan en 0, la condicién del ciclo debe usar el operador <
y el numero de elementos del arreglo. Son errores comunes comenzar los ciclos con el

indice en 1 o tratar de terminar con la condicién indice <= notas.length .

5.3.4. El Cuerpo del Ciclo

El cuerpo del ciclo contiene las instrucciones que se van a repetir en cada iteracion. Estas
instrucciones indican:

¢ |La manera de modificar algunas de las variables de trabajo para ir acercandose a la
solucion del problema. Por ejemplo, si el problema es encontrar la suma de las notas
de todos los estudiantes del curso, con la instruccidon suma += notas[indice]
agregamos un nuevo valor al acumulado.

¢ |a manera de modificar los elementos del arreglo, a medida que el indice pasa por
cada casilla. Por ejemplo, si queremos sumar una décima a todas las notas, lo

hacemos con la instruccidn notas[indice] += 0.1 .

5.3.5. El Avance del Ciclo

Cuando se recorre un arreglo, es necesario mover el indice que indica la posicién en la que
estamos en un momento dado (indice++). En algun punto (en el avance o en el cuerpo)
debe haber una instruccion que cambie el valor de la condicion para que finalmente ésta
sea falsa y se detenga asi la ejecucién de la instruccion iterativa. Si esto no sucede, el
programa se quedara en un ciclo infinito.

Si construimos un ciclo en el que la condicion nunca sea falsa (por ejemplo, si
olvidamos escribir las instrucciones de avance del ciclo), el programa dara la sensacion
de que esta bloqueado en algun lado, o podemos llegar al error:
Java.lang.OutOfMemoryError

Tarea 2

Objetivo: Practicar el desarrollo de métodos que tengan instrucciones repetitivas.

Para el caso de estudio de las notas de los estudiantes escriba los métodos de la clase
Curso que resuelven los problemas planteados.

Calcular el numero de estudiantes que sacaron una nota entre 3,0 y 5,0:

public int calcularCantidadAprobados

{

Calcular la mayor nota del curso:

public double calcularMayorNota

{

Contar el numero de estudiantes que sacaron una nota inferior a la del estudiante que esta
en la posicién del arreglo que se entrega como parametro. Suponga que el parametro
pposEst tiene un valor comprendido entre o y TOTAL_EST - 1 .

public int calcularCantidadNotasInferioresA(int

{

}********

Aumentar el 5% todas las notas del curso, sin que ninguna de ellas sobrepase el valor 5,0:

public void hacerCurva

{

5.4. Patrones de Algoritmo para Instrucciones
Repetitivas

Cuando trabajamos con estructuras contenedoras, las soluciones de muchos de los
problemas que debemos resolver son similares y obedecen a ciertos esquemas ya
conocidos (¢,cuantas personas no habran resuelto ya los mismos problemas que estamos
aqui resolviendo?). En esta seccion pretendemos identificar tres de los patrones que mas
se repiten en el momento de escribir un ciclo, y con los cuales se pueden resolver todos los
problemas del caso de estudio planteados hasta ahora. Lo ideal seria que, al leer un
problema que debemos resolver (el método que debemos escribir), pudiéramos identificar el
patrén al cual corresponde vy utilizar las guias que existen para resolverlo. Eso simplificaria
enormemente la tarea de escribir los métodos que tienen ciclos.

Un patrén de algoritmo se puede ver como una solucion genérica para un tipo de
problemas, en la cual el programador sélo debe resolver los detalles particulares de su
problema especifico.

En esta seccién vamos a introducir tres patrones que se diferencian por el tipo de recorrido
que hacemos sobre la secuencia.

5.4.1. Patron de Recorrido Total

En muchas ocasiones, para resolver un problema que involucra una secuencia,
necesitamos recorrer todos los elementos que ésta contiene para lograr la solucién. En el
caso de estudio de las notas tenemos varios ejemplos de esto:

e Calcular la suma de todas las notas.

Contar cuantos en el curso obtuvieron la nota 3,5.

Contar cuantos estudiantes aprobaron el curso.

Contar cuantos en el curso estan por debajo del promedio (conociendo este valor).

Aumentar en 10% todas las notas inferiores a 2,0.

¢ Qué tienen en comun los algoritmos que resuelven esos problemas? La respuesta es que
la solucion requiere siempre un recorrido de todo el arreglo para poder cumplir el objetivo
que se esta buscando: debemos pasar una vez por cada una de las casillas del arreglo.
Esto significa:

1. Que el indice para iniciar el ciclo debe empezar en cero.
2. Que la condicion para continuar es que el indice sea menor que la longitud del arreglo.
3. Que el avance consiste en sumarle uno al indice.

Esa estructura que se repite en todos los algoritmos que necesitan un recorrido total es lo
qgue denominamos el esqueleto del patrén, el cual se puede resumir con el siguiente
fragmento de coédigo:

for(int indice = 0; indice < arreglo.length; indice++)
{

<cuerpo>
}

e Es comun que en lugar de la variable " indice " se utilice una variable llamada " i ".
Esto hace el codigo un poco mas compacto.

e Enlugar del operador" 1ength ", se puede utilizar también la constante que indica el
numero de elementos del arreglo.

e Los corchetes del " for " s6lo son necesarios si el cuerpo tiene mas de una instruccion.

Lo que cambia en cada caso es lo que se quiere hacer en el cuerpo del ciclo. Aqui hay dos
variantes principales. En la primera, algunos de los elementos del arreglo van a ser
modificados siguiendo una regla (por ejemplo, aumentar en 10% todas las notas inferiores a
2,0). Lo unico que se hace en ese caso es reemplazar el del esqueleto por las instrucciones
que hacen la modificacién pedida a un elemento del arreglo (el que se encuentra en la
posicion indice). Esa variante se ilustra en el ejemplo 4.

Ejemplo 4
Objetivo: Mostrar la primera variante del patron de recorrido total.

En este ejemplo se presenta la implementacion del método de la clase Curso que aumenta
en 10% todas las notas inferiores a 2,0.

public void

{
for(int i = 0; i < notas.length; i++)
{
if(notas[i] <)
{
notas[i] = notas[1] * ;
}
}
}

e El esqueleto del patron de algoritmo de recorrido total se copia dentro del cuerpo del
metodo.

e Se reemplaza el cuerpo del patrén por la instruccion condicional que hace la
modificacion pedida.

e En el cuerpo se indica la modificacion que debe sufrir el elemento que esta siendo
referenciado por el indice con el que se recorre el arreglo.

La segunda variante corresponde a calcular alguna propiedad sobre el conjunto de
elementos del arreglo (por ejemplo, contar cuantos estudiantes aprobaron el curso). Esta
variante implica cuatro decisiones que definen la manera de completar el esqueleto del
patron:

Cbémo acumular la informacién que se va llevando a medida que avanza el ciclo.
Cdmo inicializar dicha informacion.
Cual es la condicion para modificar dicho acumulado en el punto actual del ciclo.

>N -

Como modificar el acumulado.

En el ejemplo 5 se ilustra esta variante.

Ejemplo 5
Objetivo: Mostrar la segunda variante del patrén de recorrido total.

En este ejemplo se presenta la aplicacion del patron de algoritmo de recorrido total, para el
problema de contar el numero de estudiantes que aprobaron el curso.

e ;Como acumular informacion?

Vamos a utilizar una variable de tipo entero llamada vanaprobando , que va llevando durante
el ciclo el numero de estudiantes que aprobaron el curso.

e ;Como inicializar el acumulado?

La variable vanaprobando se debe inicializar en 0, puesto que inicialmente no hemos
encontrado todavia ningun estudiante que haya pasado el curso.

e ,;Condicion para cambiar el acumulado?

Cuando notas[indice] Sea mayor o igual a 3,0, porque quiere decir que hemos
encontrado otro estudiante que paso el curso.

e ;Como modificar el acumulado?

El acumulado se modifica incrementandolo en 1.

public int darCantidadAprobados

{
int vanAprobando = 0;
for(int 1 = 0; i < notas.length; i++)
{
if(notas[1] >=)
{
vanAprobando++;
}
}
return vanAprobando;
}

Las cuatro decisiones tomadas anteriormente van a definir la manera de completar el
esqueleto del algoritmo definido por el patrén.

Las decisiones 1y 2 definen el inicio del ciclo.

Las decisiones 3 y 4 ayudan a construir el cuerpo del mismo.

A continuacion se muestra como seria el método anterior utilizando la instruccion for-each.

public int darCantidadAprobados

{
int vanAprobando = 0;
for(Double nota: notas)
{
if(nota >=)
{
vanAprobando++;
}
}
return vanAprobando;
}

En resumen, si el problema planteado corresponde al patrén de recorrido total, se debe
identificar la variante y luego tomar las decisiones que definen la manera de completar
el esqueleto.

Tarea 3

Objetivo: Generar habilidad en el uso del patrén de algoritmo de recorrido total.

Escriba los métodos de la clase Curso que resuelven los siguientes problemas, los cuales
corresponden a las dos variantes del patron de algoritmo de recorrido total.

Escriba un metodo para modificar las notas de los estudiantes de la siguiente manera: a
todos los que obtuvieron mas de 4,0, les quita 0,5. A todos los que obtuvieron menos de
2,0, les aumenta 0,5. A todos los demas, les deja la nota sin modificar:

public void

{

Escriba un método que retorne la menor nota del curso:

public double
{

Escriba un método que indique en cual rango se encuentra la mayoria de las notas del
curso. Los rangos estan definidos de la siguiente manera: rango 1 de 0,0 a 1,99, rango 2 de
2,0 a 3,49, rango 3 de 3,5 a 5,0. El método debe retornar el numero del rango.

public int
{

5.4.2. Patron de Recorrido Parcial

En algunos problemas de manejo de secuencias no es necesario recorrer todos los
elementos para lograr el objetivo propuesto. Piense en la solucién de los siguientes
problemas:

Informar si algun estudiante obtuvo la nota 5,0.

Buscar el primer estudiante con nota igual a cero.

Indicar si mas de 3 estudiantes perdieron el curso.
Aumentar el 10% en la nota del primer estudiante que haya sacado mas de 4,0.

En todos esos casos hacemos un recorrido del arreglo, pero éste debe terminar tan pronto
hayamos resuelto el problema. Por ejemplo, el método que informa si algun estudiante
obtuvo cinco en la nota del curso debe salir del proceso iterativo tan pronto localice el
primer estudiante con esa nota. Solo si no lo encuentra, va a llegar hasta el final de la
secuencia.

Un recorrido parcial se caracteriza porque existe una condicion que debemos verificar en
cada iteracion para saber si debemos detener el ciclo o volver a repetirlo.

En este patron, debemos adaptar el esqueleto del patrén anterior para que tenga en cuenta
la condicion de salida, de la siguiente manera:

boolean termino = false;

for(int 1 = 0; 1 < arreglo.length && !termino; i++)

{

<cuerpo>

if(<ya se cumplié el objetivo>)

{

termino = true;

¢ Primero, declaramos una variable de tipo boolean para controlar la salida del ciclo, y la
inicializamos en false.

e Segundo, en la condicion del ciclo usamos el valor de la variable que acabamos de
definir: si su valor es verdadero, no debe volver a iterar.

e Tercero, en algun punto del ciclo verificamos si el problema ya ha sido resuelto (si ya se
cumplié el objetivo). Si ése es el caso, cambiamos el valor de la variable a verdadero.

for(int 1 = 0; i < arreglo.length && !<condicién>; i++)
{

<cuerpo>
}

Este patron de esqueleto es mas simple que el anterior, pero sélo se debe usar si la
expresion que indica que ya se cumplio el objetivo del ciclo es sencilla.

Cuando se aplica el patron de recorrido parcial, el primer paso que se debe seguir es
identificar la condicién que indica que el problema ya fue resuelto. Con esa informacion
se puede tomar la decision de cual esqueleto de algoritmo es mejor usar.

Ejemplo 6
Objetivo: Mostrar el uso del patron de recorrido parcial para resolver un problema.

En este ejemplo se presentan tres soluciones posibles al problema de decidir si algun
estudiante obtuvo cinco en la nota del curso.

public boolean hayAlguienConCinco

{

boolean termino = false;

for(int 1 = 0; i1 < notas.length && !termino; i++)

{

if(notas[1 ==)

{

termino = true;

return termino;

La condicion para no seguir iterando es que se encuentre una nota igual a 5,0 en la

posicion i .

¢ Al final del método, se retorna el valor de la variable " termino ", que indica si el objetivo

se cumplio. Esto funciona en este caso particular, porque dicha variable dice que en el
arreglo se encontré una nota igual al valor buscado.

public boolean hayAlguienConCinco

{

int i = 0;
while(i < notas.length && notas[i] !=)
{

i++;
}

return i < notas.length;

Esta es la segunda solucién posible, y evita el uso de la variable " termino ", pero tiene
varias consecuencias sobre la instruccién iterativa.

En lugar de la instruccidn for es mas conveniente usar la instruccion while .

La condicion de continuacion en el ciclo es que la i-ésima nota sea diferente de 5,0.

El método debe retornar verdadero si la variable i no llego hasta el final del arreglo,

porque esto querria decir que encontré en dicha posicidon una nota igual a cinco.

public boolean hayAlguienConCinco

{
for(int 1 = 0; i < notas.length; i++)
{
if(notas[1] ==)
{
return true;
}
}
return false;
}

e Esta es la tercera solucién posible. Si dentro del ciclo ya tenemos la respuesta del
metodo, en lugar de utilizar la condicion para salir del ciclo, la usamos para salir de
todo el metodo.

¢ En la ultima instruccion retorna falso, porque si llega a ese punto quiere decir que no
encontrd ninguna nota con el valor buscado.

e Esta manera de salir de un ciclo, terminando la ejecucion del metodo en el que éste se
encuentra, se debe usar con algun cuidado, puesto que se puede producir cédigo dificil
de entender.

Hay muchas soluciones posibles para resolver un problema. Un patrén de algoritmo
s6lo es una guia que se debe adaptar al problema especifico y al estilo preferido del
programador.

Para el patron de recorrido parcial aparecen las mismas dos variantes que para el patron de
recorrido total (ver ejemplo 7):

e En la primera variante se modifican los elementos del arreglo hasta que una condicion
se cumpla (por ejemplo, encontrar las tres primeras notas con 1,5 y asignarles 2,5). En
ese caso, en el cuerpo del método va la modificacion que hay que hacerle al elemento
que se encuentra en el indice actual, pero se debe controlar que cuando haya llegado a
la tercera modificacién termine el ciclo.

¢ En la segunda variante, se deben tomar las mismas cuatro decisiones que se tomaban
con el patrén de recorrido total, respecto de la manera de acumular la informacion para
calcular la respuesta que esta buscando el método.

Ejemplo 7
Objetivo: Mostrar el uso del patron de recorrido parcial, en sus dos variantes.

En este ejemplo se presentan dos métodos de la clase Curso, en cada uno de los cuales se
ilustra una de las variantes del patrén de recorrido parcial.

Encontrar las primeras tres notas iguales a 1,5 y asignarles 2,5:

public void

{
int numNotas = ;
for(int i = ; 1 < notas.length & numNotas < ;oi++)
{
if(notas[1 == 1,5)
{
numNotas++;
notas[1] = 053
}
3
3

Este método corresponde a la primera variante, porque hace una modificacion de los
elementos del arreglo hasta que una condicion se cumpla. En el método del ejemplo,
debemos contar el numero de modificaciones que hacemos, para detenernos al llegar a la
tercera.

Retornar la posicion en la secuencia de la tercera nota con valor 5,0. Si dicha nota no
aparece al menos 3 veces, el metodo debe retornar el valor —1:

public int

{

int cuantosCincos = 0;
int posicion = -1;
for(int i = ; 1 < notas.length && posicion == -1; i++)

{

if(notas[1] == 5,0)

{

cuantosCincos++;
if(cuantosCincos ==)

{

posicion = i;

}

return posicion;

e ;Como acumular informacién? En este caso necesitamos dos variables para acumular
la informacién: la primera para llevar el numero de notas iguales a 5,0 que han
aparecido (cuantoscincos), la segunda para indicar la posicién de la tercera nota 5,0
(posicion).

e ;Como inicializar el acumulado? La variable cuantoscincos debe comenzar en 0. La
variable posicion debe comenzar en menos 1.

e ,;Condicion para cambiar el acumulado? Si la nota actual es 5,0 debemos cambiar
nuestro acumulado.

e ;Como modificar el acumulado? Debe cambiar la variable cuantoscincos
incrementandose en 1. Si es el tercer 5,0 de la secuencia, la variable posicion debe
cambiar su valor, tomando el valor del indice actual.

Tarea 4

Objetivo: Generar habilidad en el uso del patrén de algoritmo de recorrido parcial.

Escriba los métodos de la clase Curso que resuelven los siguientes problemas, los cuales
corresponden a las dos variantes del patron de algoritmo de recorrido parcial.

Reemplazar todas las notas del curso por 0,0, hasta que aparezca la primera nota superior
a 3,0.

public void

{

Calcular el numero minimo de notas del curso necesarias para que la suma supere el valor
30, recorriéndolas desde la posicion 0 en adelante. Si al sumar todas las notas no se llega a
ese valor, el método debe retornar —1.

public int

{

5.4.3. Patron de Doble Recorrido

El ultimo de los patrones que vamos a ver en este capitulo es el de doble recorrido. Este
patron se utiliza como solucion de aquellos problemas en los cuales, por cada elemento de
la secuencia, se debe hacer un recorrido completo. Piense en el problema de encontrar la
nota que aparece un mayor numero de veces en el curso. La solucion evidente es tomar la
primera nota y hacer un recorrido completo del arreglo contando el numero de veces que
ésta vuelve a aparecer. Luego, hariamos lo mismo con los demas elementos del arreglo y
escogeriamos al final aquélla que aparezca un mayor numero de veces.

El esqueleto basico del algoritmo con el que se resuelven los problemas que siguen este
patrén es el siguiente:

for(int indicel = 0; indicel < arreglo.length; indicel++)

{

for(int indice2 = 0; indice2 < arreglo.length; indice2++)

{

<cuerpo del ciclo interno>

<cuerpo del ciclo externo>

¢ El ciclo de afuera esta controlado por la variable " indice1 ", mientras que el ciclo
interno utiliza la variable " indice2 ".
e Dentro del cuerpo del ciclo interno se puede hacer referencia a la variable " indice1 ".

Las variantes y las decisiones son las mismas que identificamos en los patrones anteriores.
La estrategia de solucion consiste en considerar el problema como dos problemas
independientes, y aplicar los patrones antes vistos, tal como se muestra en el ejemplo 8.

Ejemplo 8

Objetivo: Mostrar el uso del patron de algoritmo de recorrido total con doble recorrido.

En este ejemplo se muestra el método de la clase Curso que retorna la nota que aparece un
mayor numero de veces. Para escribirlo procederemos por etapas, las cuales se describen
en la parte derecha.

public double

{
double notaMasRecurrente = ;
for(int 1 = 0; i < notas.length; i++)
{
for(int j = 0; j < notas.length; j++)
{
}
}
return notaMasRecurrente ;
}

¢ Primera etapa: armar la estructura del metodo a partir del esqueleto del patron.

e Utilizamos las variables i y j para llevar los indices en cada uno de los ciclos.

¢ Decidimos que el resultado lo vamos a dejar en una variable llamada

notaMasRecurrente , la cual retornamos al final del metodo.

¢ Una vez construida la base del metodo, identificamos los dos problemas que debemos
resolver en su interior: (1) contar el nUmero de veces que aparece en el arreglo el valor
que esta en la casilla i; (2) encontrar el mayor valor entre los que son calculados por el
primer problema.

public double

{
double notaMasRecurrente = g
for(int i = 0; i < notas.length; i++)
{
double notaBuscada = notas[1];
int contador = 0;
for(int j = 0; j < notas.length; j++)
{
if(notas[j] == notaBuscada)
{
contador++;
}
}

}

return notaMasRecurrente ;

Segunda etapa: Resolvemos el primero de los problemas identificados, usando para
eso el ciclo interno.

Para facilitar el trabajo, vamos a dejar en la variable notaBuscada , la nota para la cual
queremos contar el numero de ocurrencias. Dicha variable la inicializamos con la nota
de la casilla i.

Usamos una segunda variable llamada contador para acumular alli el numero de
veces que aparezca el valor buscado dentro del arreglo. Dicho valor sera incrementado
cuando notaBuscada == notas[j] .

Al final del ciclo, en la variable contador quedara el numero de veces que el valor de la
casilla i aparece en todo el arreglo.

public double

{

double notaMasRecurrente = P
int cantidadOcurrencias= 0;

for(int i = 0; i < notas.length; i++)
{
double notaBuscada = notas[i];
int contador = 0;

for(int j = 0; j < notas.length; j++)
{
if(notas[j] == notaBuscada)
{
contador++;
}
}
if(contador > cantidadOcurrencias)
{
notaMasRecurrente = notaBuscada;
cantidadOcurrencias= contador;
}

return notaMasRecurrente ;

Tercera etapa: Usamos el ciclo externo para encontrar la nota que mas veces aparece.
Usamos para eso dos variables: notaMasRecurrente que indica la nota que hasta el
momento mas veces aparece, y cantidadocurrencias para saber cuantas veces
aparece dicha nota.

Luego definimos el caso en el cual debemos cambiar el acumulado: si encontramos un
valor que aparezca mas veces que el que teniamos hasta el momento (contador >

cantidadocurrencias) debemos actualizar los valores de nuestras variables.

En general, este patrén dice que para resolver un problema que implique un doble recorrido,
primero debemos identificar los dos problemas que queremos resolver (uno con cada ciclo)
y, luego, debemos tratar de resolverlos independientemente, usando los patrones de
recorrido total o parcial.

Si para resolver un problema se necesita un tercer ciclo anidado, debemos escribir métodos
separados que ayuden a resolver cada problema individualmente, tal como se plantea en el
nivel 4, porque la solucién directa es muy compleja y propensa a errores.

Tarea 5

Objetivo: Generar habilidad en el uso del patron de algoritmo de doble recorrido.

Escriba el método de la clase Curso que resuelve el siguiente problema, que corresponde al
patron de algoritmo de doble recorrido.

Calcular una nota del curso (si hay varias que lo cumplan puede retornar cualquiera) tal que
la mitad de las notas sean menores o iguales a ella.

public double
{

6. Caso de Estudio N° 2: Reservas en un
Vuelo

Un cliente quiere que construyamos un programa para manejar las reservas de un vuelo. Se
sabe que el avidn tiene 50 sillas, de las cuales 8 son de clase ejecutiva y las demas de
clase econdmica. Las sillas ejecutivas se acomodan en filas de cuatro, separadas en el
medio por el corredor. Las sillas econémicas se acomodan en filas de seis, tres a cada lado
del corredor.

Cuando un pasajero llega a solicitar una silla, indica sus datos personales y sus
preferencias con respecto a la posicion de la silla en el avion. Los datos del pasajero que le
interesan a la aerolinea son el nombre y la cédula. Para dar la ubicaciéon deseada, el
pasajero indica la clase y la ubicacion de la silla. Esta puede ser, en el caso de las
ejecutivas, ventana y pasillo, y en el de las econdémicas, ventana, pasillo y centro. La
asignacion de la silla en el avion se hace en orden de llegada, tomando en cuenta las
preferencias anteriores y las disponibilidades.

La interfaz de usuario del programa a la que se llego después de negociar con el cliente se
muestra en la figura 3.6.

Caso de Estudio N° 2: Reservas en un Vuelo

Fig. 3.6 Interfaz de usuario para el caso de estudio del avién

| & El Avién — X

§

4
B

13014
19§20
25§26
ofs1fs2

w

1 2

e

Lo Jiof1
1516 17|
2122 23|
27 28] 20!

ash
Pad

—
[=+]

Pad
=

Ll

33 34§35 [N 36 157 | 36

HFm|m
48 J 40 50!

Eliminar Pasajero Buscar Pasajero

Registrar Pasajero

Porcentaje Ocupacion Opcion 1 Opcion 2

e En la parte superior del avién aparecen las 8 sillas ejecutivas.

e En la parte inferior, aparecen las 42 sillas econdmicas, con un corredor en la mitad.

e Se ofrecen las distintas opciones del programa a través de los botones que se pueden
observar en la parte superior de la ventana.

e Cuando una silla estd ocupada, ésta aparecera indicada en el dibujo del aviéon con un
color especial.

e Cada silla tiene asignado un numero que es unico. La silla 7, por ejemplo, esta en
primera clase, en el corredor de la segunda fila.

279

6.1. Comprension de los Requerimientos

Nos vamos a concentrar en el siguiente requerimiento funcional:

Nombre R1 - Asignar una silla a un pasajero.

Asigna una silla a un pasajero segun sus preferencias. Estas son clase

Resumen (Ejecutiva o Econémica) y ubicacion (Ventana, Centro o Pasillo).

(1) nombre del pasajero, (2) cédula del pasajero, (3) clase de la silla, (4)

Entradas : . .
ubicacion de la silla.

Se marca como asignada una de las sillas disponibles en el avién,
Resultados dependiendo de la clase y ubicacion elegida. En caso de que todas las
sillas estén asignadas, se muestra un mensaje de error.

6.2. Comprension del Mundo del Problema

Podemos identificar tres entidades distintas en el mundo: avion, silla y pasajero. Lo cual nos
lleva al diagrama de clases que se muestra en la figura 3.7.

Fig. 3.7 Diagrama de clases para el caso de estudio del avién

Constantes

Arregle con SILLAS_EJECUTIVAS w—

H2 sillos SILLAS_ECONDMICAS

Arreglo con

8 sillas
E = 3 = ; Fgina
sillasEconomicas 42 8 sillasEjecutivas F—/ s

Clase.EJECUTIVA
Clase.ECONOMICA 0..1

Ubicacion. VENTANA
Ubicacion.CENTRAL pasdjeroc

Ubicacion.PASILLO

Ernumenadores

v

String cedula
String nombre

Int numero
Clase clase
Ubicacion ubicacion

asociacion

opcional

En este diagrama se puede leer lo siguiente:

¢ Una silla puede ser ejecutiva o econdmica (un enumerador con las dos constantes
definidas para la posible clase de la Silla), puede estar localizada en pasillo, corredor o
centro (un enumerador con tres constantes definidas para la posible ubicacién de la
Silla), y tiene un identificador Unico que es un valor numérico.

e Entre Silla y Pasajero hay una asociacion opcional (0..1). Si la asociacion esta presente
se interpreta como que la silla esta ocupada y se conoce el pasajero que alli se
encuentra. Si no esta presente (vale null) se interpreta como que la silla esta
disponible.

e Un pasajero se identifica con la cédula y tiene un nombre.

e Un avion tiene 8 sillas ejecutivas (constante SILLAS_EJECUTIVAS de la clase Avion) y
42 sillas econdmicas (constante SILLAS_ECONOMICAS de la clase Avion). Fijese
como se expresa la cardinalidad de una asociacion en UML.

6.3. Diseno de la Solucion

Vamos a dividir el proyecto en 3 paquetes, siguiendo la arquitectura planteada en el primer
nivel del libro. Los paquetes son:

uniandes.cupi2.avion.interfaz
uniandes.cupi2.avion.test
uniandes.cupi2.avion.mundo

La principal decision de disefo del programa se refiere a la manera de representar el grupo
de sillas del avion. Para esto vamos a manejar dos arreglos de objetos. Uno con 8
posiciones que tendra los objetos de la clase Silla que representan las sillas de la clase
ejecutiva, y otro arreglo de 42 posiciones con los objetos para representar las sillas
econdémicas.

En las secciones que siguen presentaremos las distintas clases del modelo del mundo que
constituyen la solucion. Comenzamos por la clase mas sencilla (la clase Pasajero) y
terminamos por la clase que tiene la responsabilidad de manejar los grupos de atributos (la
clase Avion), en donde tendremos la oportunidad de utilizar los patrones de algoritmo vistos
en las secciones anteriores.

6.4. La Clase Pasajero

Tarea 6

Objetivo: Hacer la declaracion en Java de la clase Pasajero.

Complete la declaracion de la clase Pasajero, incluyendo sus atributos, el constructor y los
métodos que retornan la cédula y el nombre. Puede guiarse por el diagrama de clases que
aparece en la figura 3.7.

public class Pasajero

{

public Pasajero

{

public String darcCedula

{

}

public String darNombre

{

6.5. La Clase Silla

Tarea 7

Objetivo: Completar la declaracion de la clase Silla.

Complete las declaraciones de los atributos y las enumeraciones de la clase Silla'y
desarrolle los métodos que se le piden para esta clase.

public class Silla
{

/**
* Enumeradores para las clases de silla.
*/
public enum Clase
{
/**
* Representa la clase ejecutiva.
*/
EJECUTIVA,

/**

* Representa la clase econdmica.
*/

ECONOMICA

/**
* Enumeradores para las ubicaciones de las sillas.
*/
public enum Ubicacion

{
/**
* Representa la ubicacién ventana.
*/
VENTANA,

/**
* Representa la ubicacidn centro.
*/

/**
* Representa la ubicacidn pasillo.
*
/

e Se declara un enumerador con dos constantes para el atributo clase de la silla
(EJECUTIVA, ECONOMICA).

e Se declara un enumerador con tres constantes para representar las tres ubicaciones
posibles de una silla (VENTANA, CENTRAL, PASILLO).

public class Silla
{

private int numero;

private Clase clase;

private Ubicacion ubicacion;
private Pasajero pasajero;

e Se declaran en la clase cuatro atributos: (1) el numero de la silla, (2) la clase de la silla,
(3) su ubicacién y (4) el pasajero que opcionalmente puede ocupar la silla.

e El atributo " pasajero " debe tener el valor null si no hay ningun pasajero asignado a
la silla.

public Silla(int

{
numero = pNumero;
clase = pClase;
ubicacion = pUbicacion;
pasajero = null;

}

e En el constructor se inicializan los atributos a partir de los valores que se reciben como
parametro.
e Se inicializa el atributo pasajero en null , para indicar que la silla se encuentra vacia.

public class Silla

{
public void asignarPasajero
{
}

}

¢ Asigna la silla al pasajero "pPasajero".

public class Silla

{
public void desasignarSilla
{
}

}

¢ Quita al pasajero que se encuentra en la silla, dejandola desocupada.

public class Silla

{
public boolean sillaAsignada()
{
}

}

¢ |nforma si la silla esta ocupada.

public class Silla

{
public int darNumero()
{
}

}

e Retorna el niumero de la silla.

public class Silla

{
public Clase darClase
{
}

}

e Retorna la clase de la silla.

public class Silla

{
public Ubicacion darUbicacion
{
}

}

e Retorna la ubicacioén de la silla.

public class Silla

{
public Pasajero darPasajero
{
}

}

e Retorna el pasajero de la silla.

6.6. La Clase Avion

Ejemplo 9
Objetivo: Mostrar las declaraciones y el constructor de la clase Avion.

En este ejemplo se presentan las declaraciones de los atributos y las constantes de la clase
Avion, lo mismo que su metodo constructor.

public class

{

public final static int SILLAS_EJECUTIVAS ;
public final static int SILLAS_ECONOMICAS ;

e Con dos constantes representamos el numero de sillas de cada una de las clases.

public class

{

private Silla[] sillasEjecutivas;
private Silla[] sillasEconomicas;

e |a clase Avion tiene dos contenedoras de tamano fijo de sillas: una, de 42 posiciones,
con las sillas de clase econdémica, y otra, de 8 posiciones, con las sillas de clase
ejecutiva.

e Se declaran los dos arreglos, utilizando la misma sintaxis que utilizamos en el caso de

las notas del curso.
¢ |a unica diferencia es que, en lugar de contener valores de tipo simple, van a contener

objetos de la clase Silla.

A continuacion aparece un fragmento del constructor de la clase. En las primeras dos
instrucciones del constructor, creamos los arreglos, informando el nimero de casillas que
deben contener. Para eso usamos las constantes definidas en la clase.

Después de haber reservado el espacio para los dos arreglos, procedemos a crear los
objetos que representan cada una de las sillas del avion y los vamos poniendo en la
respectiva casilla.

Esta inicializacion se podria haber hecho con varios ciclos, pero el cédigo resultaria un poco
dificil de explicar.

public

{
sillasEjecutivas = new Silla[SILLAS_EJECUTIVAS];
sillasEconomicas = new Silla[SILLAS_ECONOMICAS];

sillasEjecutivas[] = new Silla(1, Clase.EJECUTIVA, Ubicacion.VENTANA);
sillasEjecutivas[] = new Silla(2, Clase.EJECUTIVA, Ubicacion.PASILLO);
sillasEjecutivas[] = new Silla(3, Clase.EJECUTIVA, Ubicacion.PASILLO);
sillasEjecutivas[] = new Silla(4, Clase.EJECUTIVA, Ubicacion.VENTANA);
sillasEjecutivas[] = new Silla(5, Clase.EJECUTIVA, Ubicacion.VENTANA);
sillasEjecutivas|[] = new Silla(6, Clase.EJECUTIVA, Ubicacion.PASILLO);
sillasEjecutivas|[] = new Silla(7, Clase.EJECUTIVA, Ubicacion.PASILLO);
sillasEjecutivas[] = new Silla(8, Clase.EJECUTIVA, Ubicacion.VENTANA);

sillasEconomicas[] = new Silla(9, Clase.ECONOMICA, Ubicacion.VENTANA);
sillasEconomicas[] = new Silla(, Clase.ECONOMICA, Ubicacion.CENTRAL);
sillasEconomicas[] = new Silla(, Clase.ECONOMICA, Ubicacion.PASILLO);

Ya con las declaraciones hechas y con el constructor implementado, estamos listos para
comenzar a desarrollar los distintos métodos de la clase. Pero antes de empezar, queremos
hablar un poco de las diferencias que existen entre un arreglo de valores de tipo simple
(como el del caso de estudio de las notas) y un arreglo de objetos (como el del caso del
avion).

Para empezar, en la figura 3.8a se muestra una instancia de la clase Silla ocupada por un
pasajero. En la figura 3.8b se muestra un objeto de la clase Silla que se encuentra vacia. En
la figura 3.8c se ilustra un posible contenido del arreglo de sillas ejecutivas (usando un
diagrama de objetos).

Caso de Estudio N° 2: Reservas en un Vuelo

Fig. 3.8 Ejemplo del contenido del arreglo de sillas ejecutivas

(:Silla

({Pasajero W
cedula ="1234"
nombre ="José Sanchez"

a clase = EJECUTIVA
numero =
ubicacion = PASILLO

numero =
ubicacion = CENTRAL
pasajero = null

w
|

b tclase = ECONOMICA

[sila] [:sila }

sillasEjecutivas=

¢ Figura 3.8a: en la silla de primera clase numero 6, situada en el corredor, esta sentado
el Sr. José Sanchez con cédula No. 1234.

¢ Figura 3.8b: |a silla de clase economica numero 10, situada en el centro, esta
desocupada.

291

e Figura 3.8c: cada casilla del arreglo tiene un objeto de la clase Silla (incluso si la silla
esta desocupada).

e |as sillas ocupadas tienen una asociacion con el objeto que representa al pasajero que
la ocupa. * En los arreglos de objetos se almacenan referencias a los objetos, en lugar
de los objetos mismos.

e Con la sintaxis sillasEjecutivas[x] podemos hacer referencia al objeto de la clase
Silla que se encuentra en la casilla x.

¢ Si queremos llegar hasta el pasajero que se encuentra en alguna parte del avion,
debemos siempre pasar por la silla que ocupa. No hay otra manera de "navegar" hasta

él.

Ya teniendo una visualizacién del diagrama de objetos del caso de estudio, es mas facil
contestar las siguientes preguntas:

Por ejemplo, dentro de la clase Avion, para preguntar si la silla

C,II(;.::nn;ou?‘e que esta en Ia_l _posicic'?n 0 c!el arreglo de sillas ejecutivas esta
método de un ocupada, s:_e ut|I|_za la s!ntams: sillas_E’jecutivas [_e] .si.llaAsignada(
objeto que) .'Esta smt_a_X|s es solo’ur?a extension de la sintaxis que ya
esta en un veniamos utilizando. Lo unico que se debe tener_en cuenta es
arreglo? que cada vez que hacemos referencia a una casilla, estamos

hablando de un objeto, mas que de un valor simple.

Tanto las variables como las casillas de los arreglos guardan
unicamente referencias a los objetos. Si se hace la siguiente
asignacion: silla sillaTemporal = sillasEjecutivas[0]; tanto la
variable sillaTemporal como la casilla 0 del arreglo estaran
haciendo referencia al mismo objeto. Debe quedar claro que el
objeto no se duplica, sino que ambos nombres hacen referencia al
mismo objeto.

¢ Los objetos
que estan en
un arreglo se
pueden
guardar en
una variable?

¢ Qué pasa
con el objeto
ue esta . . . : .
giendo Si guardd una referencia a ese objeto en algun otro lado, puede
. seguir usando el objeto a través de dicha referencia. Si no guardé

referenciado . L
desde una una referencia en ningun lado, el recolector de basura de Java

. : detecta que ya no lo esta usando y recupera la memoria que el
casilla si . - A 4ix :

. objeto estaba utilizando. jAdiés objeto!

asigno null a
esa posicién
del arreglo?

Ejemplo 10
Objetivo: Mostrar la sintaxis que se usa para manipular arreglos de objetos.

En este ejemplo se muestra el codigo de un metodo de la clase Avion que permite eliminar
todas las reservas del avion. No forma parte de los requerimientos funcionales, pero nos va
a permitir mostrar una aplicacién del patrén de recorrido total.

public void

{
for(int 1 = 0; 1 < SILLAS_EJECUTIVAS; i++)
{
sillasEjecutivas|[i].desasignarSilla();
}
for(int i = 0; indice < SILLAS_ECONOMICAS; i++)
{
sillasEconomicas[i].desasignarSilla();
}
}

e Este metodo elimina todas las reservas que hay en el avion.

¢ Note que podemos utilizar la misma variable como indice en los dos ciclos. La razon es
que en la instruccidon for , al terminar de ejecutar el ciclo, se destruyen las variables
declaradas dentro de él y, por esta razon, podemos volver a utilizar el mismo nombre
para la variable del segundo ciclo.

e El metodo utiliza el patron de recorrido total dos veces, una por cada uno de los
arreglos del avion.

Ya vimos toda la teoria concerniente al manejo de los arreglos (estructuras contenedoras de
tamano fijo). Lo que sigue es aplicar los patrones de algoritmo que vimos unas secciones
atras, para implementar los métodos de la clase Avion.

Tarea 8

Objetivo: Desarrollar los métodos de la clase Avidn que nos permitan implementar los
requerimientos funcionales del caso de estudio.

Para cada uno de los problemas que se plantean a continuacion, escriba el método que lo
resuelve. No olvide identificar primero el patrén de algoritmo que se necesita y usar las
guias que se dieron en secciones anteriores.

Calcular el numero de sillas ejecutivas ocupadas en el avion:

public int contarSillasEjecutivasOcupadas

{

Localizar la silla en la que se encuentra el pasajero identificado con la cédula que se
entrega como parametro. Si no hay ningun pasajero en clase ejecutiva con esa cédula, el
metodo retorna null .

public Silla buscarPasajeroEjecutivo

{

Localizar una silla econémica disponible, en una localizacién dada (ventana, centro o
pasillo). Si no existe ninguna, el método retorna null :

public Silla buscarSillaEconomicalibre

{

Asignar al pasajero que se recibe como parametro una silla en clase econdmica que esté
libre (en la ubicacién pedida). Si el proceso tiene éxito, el método retorna verdadero. En
caso contrario, retorna falso:

public boolean

{

Anular la reserva en clase ejecutiva que tenia el pasajero con la cédula dada. Retorna
verdadero
si el proceso tiene éxito:

public boolean

{

Contar el numero de puestos disponibles en una ventana, en la zona econémica del avion:

public int
{

Informar si en la zona econémica del avion hay dos personas que se llamen igual. Patron de

doble
recorrido:

public boolean

{

6.7. La instruccion for-each

El esqueleto del patrén de recorrido total también puede definirse con la instruccion for-
each, la cual es una variacion de la instruccion for que se puede resumir en el siguiente

fragmento de codigo:

for(NombreClase elemento: arreglo)

{

<cuerpo>

La instruccién for-each permite recorrer todos los elementos de un arreglo. De esta manera,
para cada objeto existente en el arreglo, se ejecutan las instrucciones que se encuentran en
el cuerpo del ciclo. En cada iteracion, la variable elemento va a referenciar al objeto actual,

permitiendo que se hagan las operaciones necesarias sobre este. Cabe resaltar que en el
for-each no es necesario utilizar un indice, ya que la instruccion se encarga de pasar por
cada uno de los elementos de forma automatica. Es por esto que la instruccion for-each se
utiliza principalmente en problemas que requieran un recorrido sobre todos los elementos
del arreglo (recorrido total).

Ejemplo 11
Objetivo: Mostrar la sintaxis que se usa para la instruccion for-each.

En este ejemplo se muestra el codigo de un metodo de la clase Avion, el cual permite
contar la cantidad de sillas econdmicas ocupadas, con el fin mostrar una aplicacién del
patron de recorrido total utilizando la instruccion for-each. Si no hay ninguna silla econémica
ocupada, el método retorna cero.

A continuacion se muestra el método utilizando la instruccion for:

public int
{

int contador = 0;
Silla silla = null;
for(int i = 0; i < SILLAS_ECONOMICAS; i++)
{
silla = sillaskEconomicas[i];
if(silla.sillaAsignada())

{

contador++;

}

return contador;

La implementacion del método utilizando la instruccién for-each es la siguiente:

public int
{
int contador = 0;
for(Silla sillaEconomica : sillasEconomicas)

{
if(sillaEconomica.sillaAsignada())
{
contador++;
}
}

return contador;

Tarea 9

Objetivo: Desarrollar los métodos de la clase Avidon que nos permitan implementar los
requerimientos funcionales del caso de estudio utilizando la instruccion for-each.

Para cada uno de los problemas que se plantean a continuacion, escriba el metodo que lo
resuelve. En todos los casos son problemas que requieren un recorrido total y que se deben
resolver utilizando la instruccion for-each.

Calcular el numero de sillas econdmicas libres en el avion:

public int
{

Contar el numero de puestos disponibles en el pasillo, en la zona ejecutiva del avion:

public int

{

Desocupar avion. Se encarga de desocupar todas las sillas del avion:

Caso de Estudio N° 2: Reservas en un Vuelo

public void desocuparAvion()

{

299

7. Caso de Estudio N° 3: Tienda de Libros

Se quiere construir una aplicacién que permita administrar una tienda de libros. La tienda
tiene un catalogo de libros, que son los libros que desea poner a la venta. La aplicacion
permite abastecer la tienda con ejemplares de los libros del catalogo y venderlos.
Adicionalmente permite saber cuanto dinero se tiene en caja, empezando con una inversion
inicial de $1.000.000.

De cada libro se conoce:

¢ |SBN. Identificador del libro. No pueden existir dos libros en la tienda con el mismo
ISBN.

e Titulo. EI nombre del libro.

¢ |Imagen. La imagen del libro.

¢ Precio de compra: Valor pagado por la compra de cada ejemplar en la tienda.

¢ Precio de venta: Valor por el cual se vende cada ejemplar del libro.

¢ Cantidad actual. Cantidad actual de ejemplares que tiene la tienda. Solo puede ser
modificada mediante la venta o el abastecimiento.

Adicionalmente, de cada libro se conocen todas las transacciones que se han realizado
sobre él. De cada transaccién se conoce:

¢ Eltipo de transaccion. Puede ser venta o abastecimiento.
¢ |a fecha de realizacion.
e | a cantidad de ejemplares incluidos en la transaccion.

El abastecimiento de libros permite aumentar la cantidad actual de ejemplares del libro y
registrar una transaccion de tipo abastecimiento.

La venta de libros permite disminuir la cantidad actual de ejemplares del libro y registrar una
transaccion de venta. Esta transaccion solo se podra realizar si la cantidad actual de
ejemplares es mayor a la cantidad que se quiere vender.

En la figura 3.9 aparece la interfaz de usuario que se tiene prevista para el programa que se
va a construir.

Fig. 3.9 Interfaz de usuario de la tienda de libros

| £ Tienda de Libros - ot
Tienda de Libros
Caja: §721.000
Bodega de la tienda
Cien Afios de Soledad (123-876-653) = || Libro Actual)
La Cenicienta (345.980-343) S
.) ISBN: 123-876-653
Las Mil y Una Noches (908-654-873) :
Titulo: Cien Afios de Soledad
Precic Compra: 545 000
e Precio Venta: $57.000
Unidades: 7
=]
‘ Abastecer Vender Eliminar
Reqistrar
Consultas
Buscar Por ISBN Transacciones del libro —
0201717-04 12:17:51 - ABASTECIMIENTO: 10| =~/
Buscar Por Tititlo ISBH: 123-876-653 02017-17-04 12:17:55 - VENTA: 1
Titulo: CienAfins deSotedad 020171704 1217:58 - VENTA: 2
Libro Mas Econdmico
Precio de Compra: 545000
Llio Mas Costaso Precio de Venta: $57.000 —
Libro Mas Vendido [4] D]
Panel Extension
| Opcion 1 | Opcion 2 |

e La interfaz esta dividida en cuatro zonas: una para mostrar el dinero que hay en la caja,
una para que el usuario pueda ver el listado de libros disponibles en el catalogo (donde
también puede registrar nuevos libros), una para mostrar la informacién de un libro del
catalogo, y una para las busquedas y consultas realizadas sobre el catalogo de libros.

e En laimagen del ejemplo, aparecen tres libros en el catadlogo. Para agregar libros a la
tienda, se usa el botén Registrar.

e Al abastecimiento de libro se hace a través del boton Abastecer, la venta de libros a
través del botén Vender y la eliminacion de un libro a través del boton Eliminar.

e Enla zona de consultas y busquedas se puede buscar un libro por ISBN o titulo, y
consultar el libro mas econémico, el mas costoso y el mas vendido.

7.1. Comprension de los Requerimientos

Los requerimientos funcionales de este caso de estudio son 10:

Registrar un libro en el catalogo.

Eliminar un libro del catalogo.

Buscar un libro por titulo.

Buscar un libro por ISBN.

Abastecer ejemplares de un libro.

Vender ejemplares de un libro.

Calcular la cantidad de transacciones de abastecimiento de un libro particular.
Buscar el libro mas costoso.

Buscar el libro menos costoso.

© © o N OO~

—_—

Buscar el libro mas vendido.

Tarea 10

Objetivo: Entender el problema del caso de estudio.

Lea detenidamente el enunciado del caso de estudio y complete la documentacién de los
primeros tres requerimientos funcionales.

Requerimiento funcional 1

Nombre R1 - Registrar un libro en el catalogo.

Registra un libro en el catalogo con su titulo, codigo ISBN, precio de
compra y precio de venta. La cantidad actual de ejemplares en el
Resumen momento de registro es cero y el libro se crea sin transacciones
registradas. El resultado es el nuevo libro creado en caso de que si se
haya podido registrar, en caso contrario, el resultado debe ser es nulo.

(1) titulo del libro, (2) ISBN del libro, (3) precio de compra del libro, (4)

SEeEE precio de venta del libro,(5) imagen del libro.

Resultado El catalogo ha sido actualizado y contiene el nuevo libro.

Requerimiento funcional 2

Caso de Estudio N° 3: Una Tienda de Libros

Nombre

Resumen

Entradas

Resultado

T

Requerimiento funcional 3

303

Nombre ‘ \
Resumen ‘ \
Entradas ‘ \
Resultado ‘ \

7.2. Comprension del Mundo del Problema

En el mundo del problema podemos identificar tres entidades (ver figura 3.10):

e |atienda de libros (clase TiendaDeLibros)
e Un libro (clase Libro)
e Una transaccion (clase Transaccion)

Todas las caracteristicas de las entidades identificadas en el modelo conceptual se pueden
modelar con los elementos que hemos visto hasta ahora en el libro, con excepcion del
grupo de libros del catalogo y el listado de transacciones de un libro. La dificultad que
tenemos es que no podemos predecir la cardinalidad de dicho grupo de elementos y, por
esta razon, el modelado con arreglos puede no ser el mas adecuado.

¢ En qué se diferencia del caso del avién? La diferencia radica en que el avion tiene unas
dimensiones predefinidas (42 sillas en clase econdmica y 8 en clase ejecutiva) que no van a
cambiar durante la ejecucion del programa (no existe un requerimiento de agregar una silla
al avién). En el caso de la tienda de libros, se plantea que el catalogo puede tener cualquier
cantidad de libros y que un libro puede tener cualquier cantidad de transacciones. Si
usaramos arreglos para representar dicha informacion, ¢de qué dimensién deberiamos
crearlos? s Qué hacemos si se llena el arreglo de libros del catalogo?

Fig. 3.10 Modelo conceptual para el caso de estudio de la tienda de libros

String isbn
String titulo
sareloge double precioVenta
double precioCompra e g
int cantidadActual
String rutalmagen

doubie caja

Tipo tipo
int cantidad
string fecha

La solucién a ese problema sera el tema de esta parte final del nivel, en la cual
presentamos las contenedoras de tamafio variable, la manera en que se usan a nivel de
modelado del mundo y la forma en que se incorporan en los programas escritos en Java.

Por ahora démosle una mirada al diagrama de clases de la figura 3.10 y recorramos cada
una de las entidades identificadas:

e Una tienda de libros tiene un catalogo (asi se llama la asociacion), que corresponde a
un grupo de longitud indefinida de libros (representado por el *).

e Un libro tiene cinco atributos: un titulo, un ISBN, un precio de compra, un precio de
venta y una imagen.

e Un libro tiene un grupo de transacciones (asi se llama la asociacion) de longitud

indefinida. Cada transaccion es de tipo abastecimiento o venta.
e Cada transaccion tiene el tipo (abastecimiento o venta), la cantidad de ejemplares y la
fecha.

8. Contenedoras de Tamano Variable

En muchos problemas necesitamos representar grupos de atributos para los cuales no
conocemos su tamafio maximo. En el caso de la tienda de libros, por ejemplo, el catalogo
podria tener 100 6 10.000 libros distintos. Para poder representar y manejar ese tipo de
caracteristicas, tenemos las contenedoras de tamafio variable.

En el diagrama de clases de UML, las asociaciones que tienen dicha caracteristica se
representan con una cardinalidad indefinida, usando los simbolos * 0 0..N, tal como se
mostré en la figura 3.10.

Para implementarlas en Java, no existen elementos en el lenguaje como los arreglos, sino
que es necesario utilizar algunas clases que fueron construidas con este fin.

¢, Cual es la diferencia? La principal diferencia es que para manipular las contenedoras de
tamano variable debemos utilizar la misma sintaxis que utilizamos para manejar cualquier
otra clase. No hay una sintaxis especial para obtener un elemento (como [] enlos
arreglos), ni contamos con operadores especiales (length).

En Java existen varias clases que nos permiten manejar contenedoras de tamafio variable,
todas ellas disponibles en el paguete llamado java.util . En este libro vamos a utilizar la
clase ArrayList, que es eficiente e incluye toda la funcionalidad necesaria para manipular
grupos de objetos. La mayor restriccion que vamos a encontrar es que no permite manejar
grupos de atributos de tipo simple, sino unicamente grupos de objetos. En este nivel vamos
a estudiar unicamente los principales métodos de esa clase, aquéllos que ofrecen las
funcionalidades tipicas para manejar esta clase de estructuras. Si desea conocer la
descripcion de todos los métodos disponibles, lo invitamos a consultar la documentacion
que aparece en el sitio web del lenguaje Java.

Por simplicidad, vamos a llamar vector a cualquier implementacién de una estructura
contenedora de tamano variable.

Al igual que con los arreglos, comenzamos ahora el recorrido para estudiar la manera de
declarar un atributo de la clase ArrayList, la manera de tener acceso a sus elementos, la
forma de modificarlo, etc. Para esto utilizaremos el caso de estudio de la tienda de libros.

8.1. Declaracion de un Vector

Puesto que un vector es una clase comun y corriente de Java, la sintaxis para declararlo es
la misma que hemos utilizado en los niveles anteriores. En el ejemplo 11 se explican las
declaraciones de las clases TiendaLibros y Libro.

Ejemplo 12
Objetivo: Mostrar la sintaxis usada en Java para declarar un vector.

En este ejemplo se muestran las declaraciones de las clases TiendaLibros y Libro, las
cuales contienen atributos de tipo vector.

package uniandes.cupi2.tiendadelibros.mundo;
import java.util.*;

public class

{

private ArrayList<Libro> catalogo;
private double caja;

e Para poder usar la clase ArrayList es necesario importar su declaracion, indicando el

paquete en el que ésta se encuentra (java.util). Esto se hace con la instruccion
import de Java.

e Dicha instruccion va después de la declaracién del paquete de la clase y antes de su
encabezado.

e En la clase TiendaDelLibros se declaran dos atributos: el catalogo, que es un vector, y
el dinero que hay en la caja, que es de tipo double.

e Al declarar un vector, se indica el tipo de objetos que se van a guardar en él, usando la
sintaxis <NombrebeLaclase> . En el caso del catalogo, se indica que el catalogo es un

vector de libros.

package uniandes.cupi2.tiendadelibros.mundo;
import java.util.*;

public class

{

private ArraylList<Transaccion> transacciones;

e Enlaclase Libro se declara el grupo de transacciones como un vector.

e Se debe de nuevo importar el paquete en donde se encuentra la clase ArrayList,
usando la instruccién import .

¢ Fijese que la declaracion de un vector utiliza la misma sintaxis que se usa para declarar
cualquier otro atributo de la clase.

8.2 Inicializacién y Tamano de un Vector

En el constructor es necesario inicializar los vectores, al igual que hacemos con todos los
demas atributos de una clase. Hay dos diferencias entre crear un arreglo y crear un vector:

* En los vectores se utiliza la misma sintaxis de creacion de cualquier otro objeto (new
ArrayList<NombreDeLaClase>()) teniendo que agregar el nombre de las clase a la que
pertenecen los objetos que se van a agregar al vector, mientras que los arreglos
utilizan los [] para indicar el tamafo (new NombreDeLaClase[TAMANIO]).

e En los vectores no es necesario definir el numero de elementos que va a tener,
mientras que en los arreglos es indispensable hacerlo.

Ejemplo 13
Objetivo: Mostrar la manera de inicializar un vector.

En este ejemplo se muestran los métodos constructores de las clases Tiendalibros y Libro,
las cuales contienen atributos de tipo vector.

public
{

catalogo = new ArraylList<Libro>();

¢ No hay necesidad de especificar el numero de elementos que el vector va a contener.

public
{

transacciones = new ArrayList<Transaccion>();

e Al crear un vector se reserva un espacio variable para almacenar los elementos que
vayan apareciendo. Inicialmente hay O objetos en él.

Dos métodos de la clase ArrayList nos permiten conocer el numero de elementos que en un
momento dado hay en un vector:

e isempty() :es un metodo que retorna verdadero si el vector no tiene elementos y
falso en caso contrario. Por ejemplo, en la clase Libro, después de llamar el
constructor, la invocacion del método transacciones.isEmpty() retorna verdadero.

e size() :esun metodo que retorna el numero de elementos que hay en el vector.
Para el mismo caso planteado anteriormente, transacciones.size() esigual a 0.

Si adaptamos el esqueleto de los patrones de algoritmo para el manejo de vectores, lo
unico que va a cambiar es la condicion para continuar en el ciclo. En lugar de usar la
operacion length de los arreglos, debemos utilizar el método size() de los vectores, tal
como se muestra en el siguiente fragmento de metodo de la clase TiendaDelLibros.

public void

{
for(int i = 0; i < catalogo.size(); i++)
{
}

}

Las instruccion for-each para los vectores funciona de forma similar que para los arreglos
como se muestra en el siguiente fragmento de cddigo.

public void

{
for(Libro libro: catalogo)
{
}

}

Las posiciones en los vectores, al igual que en los arreglos, comienzan en 0.

La condicion para continuar en el ciclo se escribe utilizando el metodo size() delaclase
ArrayList, en lugar del operador 1ength de los arreglos. Note que los paréntesis son
necesarios.

La siguiente tabla ilustra el uso de los métodos de manejo del tamafo de un vector en el
caso de estudio:

Clase Expresion Interpretacion

TiendaDeLibros catalogo.size() Numero de libros disponibles en el

catalogo.
TiendaDeLibros 1gatalog°'Size() = ;Hay 10 libros en el catalogo?
TiendaDeLibros catalogo.isEmpty() ¢ Esta vacio el catalogo?
Libro)transaCCiones'Size(Numero de transacciones del libro.

8.3. Acceso a los Elementos de un Vector

Los elementos de un vector se referencian por su posicion en la estructura, comenzando en
la posicidn cero. Para esto se utiliza el metodo get(pos), que recibe como parametro la
posicion del elemento que queremos recuperar y nos retorna el objeto que alli se encuentra.

Ejemplo 14
Objetivo: llustrar el uso del método que nos permite recuperar un objeto de un vector.

En este ejemplo se ilustra el uso del método de acceso a los elementos de un vector.
Vamos a suponer que en la clase Libro existe el método darPrecioVenta(), que retorna el
precio de venta del libro. Este método suma el precio de venta de todos los libros del
catalogo.

public int
{
int sumaPrecios = 0;
for(int i = 0; i < catalogo.size(); i++)
{
Libro libro = catalogo.get(i);
sumaPrecios += libro.darPrecioVenta();

}

return sumaPrecios;

e Con lainstruccion get(i) de los vectores se puede acceder a la referencia del objeto
del vector que se encuentra en la posicion i.

e Es una buena idea guardar siempre en una variable temporal la referencia al objeto
recuperado, para simplificar el codigo.

Cuando dentro de un método tratamos de acceder una posicién en un vector con un
indice no valido (menor que 0 o mayor o igual que el numero de objetos que en ese
momento se encuentren en el vector), obtenemos el error de ejecucion:
Java.lang.IndexOutOfBoundsException.

Recuerde que al utilizar el método get(pos), lo unico que estamos obteniendo es una
referencia al objeto que se encuentra referenciado desde la posicidn pos del vector. No se
hace ninguna copia del objeto, ni desplaza el objeto a ningun lado.

8.4. Agregar Elementos a un Vector

Los elementos de un vector se pueden agregar al final del mismo o insertar en una posicion
especifica. Los métodos para hacerlo son los siguientes:

e add(objeto): es un metodo que permite agregar al final del vector el objeto que se pasa
como parametro. No importa cuantos elementos haya en el vector, el método siempre
sabe como buscar espacio para agregar uno mas.

¢ add(indice, objeto): es un metodo que permite insertar un objeto en la posicion
indicada por el indice especificado como parametro. Esta operacién hace que el
elemento que se encontraba en esa posicion se desplace hacia la posicion siguiente, lo
mismo que el resto de los objetos en la estructura.

Ejemplo 15

Objetivo: Mostrar el uso del método que agrega objetos a un vector.

En este ejemplo se ilustra el uso de los métodos que permiten agregar elementos a un
vector. El siguiente es un método de la clase TiendaDelLibros que afade tres libros al
catalogo.

Contenedoras de Tamano Variable

public void agregarTresLibros()

{
Libro 1bl1 = new Libro("titulo1", "e011", 1000, 1200, "Ruta Imagen 1");
Libro 1b2 = new Libro("titulo2", "e012", 2000, 2400, "Ruta Imagen 2");
Libro 1b3 = new Libro("titulo3", "e013", 3000, 3600, "Ruta Imagen 3");
catalogo.add(1b2);
catalogo.add(1b3);
catalogo.add(0, 1lb1);

}

e En el método se crean inicialmente los tres libros. Luego se agrega el segundo de los
libros (1b2). Como el vector estaba vacio, el nuevo elemento queda en la posicién 0
del catalogo. Después se afade el tercer libro (1b3), que queda en la posicion 1.
Finalmente se inserta el primer libro (1b1) en la posicidn 0, lo que desplaza el libro 2 a
la posicion 1y el libro 3 a la posicion 2.

4 ‘Libro ki

titulo = “titulo2”

isbn = "0012"
precioCompra = 35000
precioVenta = 45000
_canndadAnual=5 2

_
\ :TiendaDelibros
0\1

catalogo= \

\ / ,J
{ :Libro L { :Libro ﬂ\

titulo = “titulol” titulo = “titulo3”

ishn = "0011" isbn = "0013"

precicCompra = 60000 precicCompra = 50000

precioVenta = 75000 precioVenta = 65000
i cantidadActual = 10 g N cantidadActual = 8 3

e En este diagrama de objetos se puede apreciar el estado del catadlogo después de
ejecutar este metodo.
e Siusamos el método size() para el catalogo, debe responder 3.

313

¢ En el dibujo dejamos en gris las casillas posteriores a la 2, para indicar que el vector las
puede ocupar cuando las necesite.

8.5. Reemplazar un Elemento en un Vector

Cuando se quiere reemplazar un objeto por otro en un vector, se utiliza el método set(), que
recibe como parametros el indice del elemento que se debe reemplazar y el objeto que
debe tomar ahora esa posicion.

Este método es muy util para ordenar un vector o para clasificar bajo algun concepto los
elementos que alli se encuentran. En el ejemplo 15 aparece un metodo de la clase
TiendaDeLibros que permite intercambiar dos libros del catalogo, dadas sus posiciones en
el vector que los contiene.

Ejemplo 16
Objetivo: Mostrar la manera de reemplazar un objeto en un vector.

En este ejemplo se ilustra el uso del método que reemplaza un objeto por otro en un vector.
El método de la clase TiendaLibros recibe las posiciones en el catalogo de los libros que
debe intercambiar.

public void int int

{

Libro librol = catalogo.get(pPosicionl);
Libro libro2 = catalogo.get(pPosicion2);

catalogo.set(pPosicionl , libro2);
catalogo.set(pPosicion2 , libro1);

Cuando se intercambian los elementos en cualquier estructura es indispensable guardar al
menos uno de ellos en una variable temporal. En este método decidimos usar dos variables
por claridad.

En este método suponemos que las dos posiciones dadas son validas (que son posiciones
entre 0 y catalogo.size() -1).

El método set() no hace sino reemplazar la referencia al objeto que se encuentra
almacenada en la casilla. Se puede ver simplemente como la manera de asignar un nuevo
valor a una casilla.

La referencia que alli se encontraba se pierde, a menos que haya sido guardada en algun
otro lugar.

8.6. Eliminar un Elemento de un Vector

De la misma manera que es posible agregar elementos a un vector, también es posible
eliminarlos. Piense en el caso de la tienda de libros. Si el usuario decidiera eliminar un libro
del catalogo la tienda, nosotros en el programa debemos quitarlo del respectivo vector el
objeto que lo representaba. Después de eliminada la referencia a un objeto, esta posiciéon
es ocupada por el elemento que se encontraba después de él en el vector.

El método de la clase ArrayList que se usa para eliminar un elemento se llama remove() y
recibe como parametro la posicion del elemento que se quiere eliminar (un valor entre 0 y el
numero de elementos menos 1). Al usar esta operacion, se debe tener en cuenta que el
tamano de la estructura disminuye en 1, por lo que se debe tener cuidado en el momento de
definir la condicion de continuacion de los ciclos.

Es importante recalcar que el hecho de quitar un objeto de un vector no implica
necesariamente su destruccion. Lo unico que estamos haciendo es eliminando una
referencia al objeto. Si queremos mantenerlo vivo, basta con guardar su referencia en otro
lado, por ejemplo en una variable.

Ejemplo 17

Objetivo: Mostrar la manera de utilizar el método que elimina un objeto de un vector.

En este ejemplo presentamos un méetodo de la clase TiendaDeLibros que elimina el primer
libro del catalogo. llustramos el resultado usando el diagrama de objetos del ejemplo 14.

public void

{

catalogo.remove(M

Este método elimina del catalogo la referencia al primer libro de la tienda. Después de su
ejecucion, todos los libros se mueven una posicion hacia la izquierda en el catalogo.

titulo = “titulo2”

isbn = "0012"
precioCompra = 35000
precioVenta = 45000
cantidadActual =5

4 : : y
‘TiendaDelLibros

catalogo=

titulo = “titulo3”

isbn = “0013"
preciocCompra = 50000
precioVenta = 65000

_ cantidadActual = 8

e Si ejecutamos este metodo sobre el diagrama de objetos del ejemplo 14, obtenemos el
diagrama que aparece en esta figura.

e Ellibro que estaba en la posicidén 1 pasa a la posicidn 0, y el libro de la posicion 2 pasa
a la posicién 1.

e Ahora catalogo.size() esigual a 2.

Ya que hemos terminado de ver los principales métodos con los que contamos para
manejar los elementos de un vector, vamos a comenzar a escribir los métodos de la clase
del caso de estudio. Comenzamos con las declaraciones de las clases simples y seguimos
con los métodos que manejan los vectores.

8.7. Construccion del Programa del Caso de
Estudio

8.7.1. La Clase Libro

La clase Libro es responsable de manejar sus seis atributos, abastecer ejemplares, vender
ejemplares y retornar el listado de transacciones. Para esto cuenta con un método
constructor, cinco métodos analizadores y dos métodos modificadores:

Libro(String pTitulo, String pISBN, double pPrecioCompra,

double pPrecioVenta, String pRutaImagen) Método constructor.

Retorna el titulo del

String darTitulo() lib
10ro.

Retorna el ISBN del

String darIsbn() lib
10ro.

Retorna el precio de

double darPrecioCompra() del lib
compra del libro.

Retorna el precio de

double darPrecioventa() ta del lib
venta ael lipro.

Retorna la cantidad de

String darCantidadActual() . .
ejemplares del libro.

Retorna la ruta de la

String darRutaImagen() imagen a2l [0

Vende ejemplares del

void vender(int pCantidad, String pFecha) lib
10ro.

Abastece ejemplares
del libro.

void abastecer(int pCantidad, String pFecha)

Retorna las

ArrayList<Transaccion> darTransacciones() t . del lib
ransacciones qael libro.

La clase libro es responsable de abastecer y vender ejemplares del libro asi como de
registrar una transaccion por cada abastecimiento o venta que realice el usuario.

Al igual que en el caso de los arreglos, si antes de usar un vector no lo hemos creado
adecuadamente, se va a generar el error de ejecucion: java.lang.NullPointerException.

8.7.2. La Clase Transaccion

Cada objeto de la clase Transaccion tiene el tipo de transaccion, la cantidad de ejemplares
y la fecha en que se realizé la transaccion. Aqui es importante resaltar que los objetos de la
clase Libro tendran varias transacciones, como se ilustra en el diagrama de objetos de la
figura 3.11.

Los métodos de esta clase se resumen en la siguiente tabla:

Transaccion(Tipo pTipo, int pCantidad, String

pFecha) Meétodo constructor.

Tipo darTipo() Retorna el tipo de transaccion.

Retorna la cantidad de las

int darCantidad() t .
ransaccion.

Retorna la fecha de la

String darFecha() transaccion

Fig. 3.11 Diagrama de objetos para ilustrar el caso de la tienda de libros

catalogo

| Y
caja = 400000 4

transacciones

1 2
&

nombre = “UML"

ishn = "2345423"
precioCompra = 50000
precioVenta = 70000

nombre = "Objetos”
isbn = “9023823"
precioCompra = 60000
precioVenta = 100000
cantidadActual = B

cantidadActual = 4

oo = ABASTECIMIENTO +I"C1P|SCICCiOﬁBS
cantidad = 4
fecha = 20170715

Tipo = VENTA
cantidad = 2
fecha = 2017-07-17

lipe = ABASTECIMIENTO
cantidad = 10
fecha = 2017-07-16

En la figura 3.11 se puede apreciar el caso en el que el usuario tiene en su catalogo dos
libros. El primer libro tiene una transaccion y el segundo libro tiene dos transacciones. En
este diagrama decidimos mostrar los vectores como objetos externos a las clases que los
usan. Esta representacion se ajusta mas a la realidad que la que usamos en ejemplos
anteriores, aunque es menos simple. Ambas maneras de mostrar el diagrama de objetos
son validas. Observe, por ejemplo, que el objeto llamado catalogo es una asociacion hacia
un objeto de la clase ArrayList, que mantiene las referencias a los objetos que representan
los libros.

8.7.3. La Clase TiendaDeLibros

En la tarea 10 vamos a desarrollar algunos de los métodos de la clase TiendaDeLibros. Sus

principales responsabilidades se resumen en la siguiente tabla:

TiendaLibros()
ArraylList<Libro> darCatalogo()
double darCaja()
void cambiarCaja(double pCaja)

Libro registrarLibro(String pTitulo,
String pIsbn, double pPrecioVenta,
double pPrecioCompra, String
pRutaImagen)

Libro buscarLibroPorISBN(String pIsbn

)

Libro buscarLibroPorTitulo(String
pTitulo)

boolean eliminarLibro(String pIsbn)

boolean abastecer(String pIsbn, int
pCantidad, String pFecha)

boolean vender(String pIsbn, int
pCantidad, String pFecha)

Libro darLibroMasCostoso()

Libro darLibroMasEconomico()

Libro darLibroMasVendido()

int
darCantidadTransaccionesAbastecimiento(
String pIsbn)

Tarea 11

Método constructor.
Retorna el catalogo de libros.
Retorna el saldo de la caja.
Cambia el saldo de la caja.

Anade un nuevo libro al catalogo a partir de
los parametros recibidos. Si el libro ya esta
en el catalogo, el metodo no hace nada.

Localiza un libro del catalogo dado su ISBN.
Si no lo encuentra retorna nuill .

Localiza un libro del catalogo dado su titulo.
Si no lo encuentra retorna nuili .

Elimina un libro del catalogo dado su ISBN.
Si no lo encuentra retorna false.

Abastece ejemplares de un libro dado su
ISBN. Si no puede abastecer los ejemplares
del libro retorna false .

Vende ejemplares de un libro dado su ISBN.
Si no puede vender los ejemplares del libro
retorna false.

Retorna el libro con el precio de venta
mayor. Si no hay libros en el catalogo
retorna null .

Retorna el libro con el precio de venta
menor. Si no hay libros en el catalogo
retorna null .

Retorna el libro del cual se han vendido mas
ejemplares. Si no hay libros en el catalogo
retorna null .

Retorna el numero de transacciones de tipo
abastecimiento que se han realizado al libro
con el ISBN recibido como parametro. En
caso de que no encuentre el libro o que el
libro no tenga transacciones, retorna cero.

Objetivo: Desarrollar los métodos de la clase TiendaDeLibros que nos permiten
implementar los requerimientos funcionales del caso de estudio.

Para cada uno de los problemas que se plantean a continuacion, escriba el metodo que lo
resuelve. No olvide identificar primero el patrén de algoritmo que se necesita y usar las
guias que se dieron en secciones anteriores.

Localizar un libro en el catalogo, dado su ISBN. Si no lo encuentra, el metodo debe retornar
null :

public Libro

{

Eliminar un libro en el catalogo dado su ISBN. Si el libro no existe o si la cantidad actual de
ejemplares es mayor a cero retorna false . Utilice el método anterior:

public boolean

{

Agregar un libro en el catalogo, si no existe ya un libro con ese ISBN. Utilice el método

buscarLibroPorISBN

public Libro registrarLibro double double

Buscar el libro mas costoso del catalogo, si el catalogo esta vacio retorna null :

public Libro darLibroMasCostoso

{

Buscar el libro del cual se han vendido mas ejemplares. Si no hay libros en el catalogo,
retorna null:

public Libro darLibroMasVendido

{

Retorna el numero de transacciones de tipo abastecimiento que se le han realizado al libro
con el ISBN recibido como parametro. En caso de que no encuentre el libro o que el libro no
tenga transacciones, retorna cero.

public int

{

Tarea 12

Objetivo: Desarrollar los métodos de la clase Libro.

Para cada uno de los problemas que se plantean a continuacion, escriba el método que lo
resuelve.

Vender la cantidad de ejemplares del libro recibida como parametro siempre y cuando la
cantidad de ejemplares actual sea menor o igual a la cantidad a vender. La venta implica
decrementar el numero de ejemplares del libro. Adicionalmente agrega una nueva
transaccion de tipo venta al listado de transacciones del libro:

public boolean int

{

Abastecer la cantidad de ejemplares del libro recibida como parametro. El abastecimiento
implica incrementar el numero de ejemplares del libro. Adicionalmente agrega una nueva
transaccion de tipo abastecimiento al listado de transacciones del libro:

Contenedoras de Tamano Variable

public void abastecer(int pCantidad, String pFecha)

{

323

9. Uso de Ciclos en Otros Contextos

Aungue hasta este momento sélo hemos mostrado las instrucciones iterativas como una
manera de manejar informacion que se encuentra en estructuras contenedoras, dichas
instrucciones también se usan muy comunmente en otros contextos. En el ejemplo 17
mostramos su uso para calcular el valor de una funcion aritmética.

Ejemplo 18

Objetivo: Mostrar el uso de las instrucciones iterativas en un contexto diferente al de
manipulacion de estructuras contenedoras.

En este ejemplo presentamos la manera de escribir un metodo para calcular el factorial de
un numero. La funcion factorial aplicada a un numero entero n (en matematicas a ese valor
se le representa como n!) se define como el producto de todos los valores enteros positivos
menores o iguales al valor en cuestion. Planteado de otra manera, tenemos que:

e factorial(0) esigual a 1.
e factorial(1) esiguala 1.
e factorial(n) =n * factorial(n—1).

Por ejemplo, factorial(5)=5*4*3*2*1=120

Si queremos construir un metodo capaz de calcular dicho valor, podemos utilizar una
instruccién iterativa, como se muestra a continuacion.

package uniandes.cupi2.matematicas;
public class

{
public static int int
{
int acum = 1;
if(pNum >)
{
for(int i = 1; i <= num; i++)
{

acum = acum * i;

}

return acum;

El método lo declaramos de manera especial (static) y su modo de uso es como aparece
mas

abajo en este mismo ejemplo.

El primer caso que tenemos es que el valor del parametro sea 0. La respuesta en ese caso

es 1.
Hasta ahi es facil.

En el caso general, debemos multiplicar todos los valores desde 1 hasta el valor que
recibimos

como parametro e ir acumulando el resultado en una variable llamada " acum ". Al final el
método retorna dicho valor.

Esta solucion no es otra que el patron de recorrido total aplicado a la secuencia de
numeros. Aunque no estén almacenados en un arreglo, se pueden imaginar uno después
del otro, con el indice recorriéndolos de izquierda a derecha. Este uso de las instrucciones
iterativas no tiene una teoria distinta a la vista en este capitulo.

int fact = Matematica.factorial(i);

La llamada del método se hace utilizando esta sintaxis. Como es una funcién aritmética que
no

esta asociada con ningun elemento del mundo, debemos usar el nombre de la clase para
hacer la invocacion.

Creacion de una Clase en Java

Tarea 13

Objetivo: Agregar una nueva clase en un programa escrito en Java.

En esta tarea vamos a extender el caso de estudio de la tienda de libros, agregando dos
clases nuevas, en un paquete distinto a los ya definidos. Siga los pasos que se detallan a

continuacion:

* *
* | string “isbn String contenido
double Caja catalogo String titulo smentarios int calificacion

double precioVenta

double precioCompra

int cantidadActual

string rutalmagen

* dnsac f

* lenTe

Tipo tipo
String cedula int cantidad
String nombres string fecha

String apellidos

Este es el diagrama de clases que queremos construir. Hay dos clases adicionales: una
para modelar los clientes de la tienda de libros y otra con comentarios que se hacen
opcionalmente sobre cada libro. Tome nota de las nuevas asociaciones que aparecen.

1. Ejecute Eclipse y abra el proyecto de la tienda de libros. Localice el directorio en el cual
se guardan los programas fuente.

2. Vamos a crear los archivos de las clases Comentario y Cliente en un nuevo paquete
llamado uniandes.cupi2.tiendadelibros.extension . Para esto, debemos crear primero
el paquete. Para crear un paquete en Java, seleccione la opcién File/New/Package del

http://cupi2.uniandes.edu.co/sitio/index.php/cursos/apo1/nivel-3/tienda-de-libros

10.

1.

12.

menu principal o la opcion New/Package del menu emergente que aparece al hacer clic
derecho sobre el directorio de fuentes.

Una vez creado el paquete, podemos crear la clase alli dentro, seleccionando la opcion
File/New/Class del menu principal o la opcion New/Class del menu emergente que
aparece al hacer clic derecho sobre el paquete de clases elegido. En la ventana que
abre el asistente de creacion de clases, podemos ver el directorio de fuentes y el
paguete donde se ubicara la clase. Alli debemos teclear el nombre de la clase. Al
oprimir el boton Finish, el editor abrira la clase y le permitira completarla con sus
atributos y métodos. Siguiendo el proceso antes mencionado, cree las clases Cliente y
Comentario incluyendo sus atributos.

El siguiente paso es agregar los atributos que van a representar las asociaciones hacia
esas clases. Abra para esto la clase Libro. Agregue el atributo de tipo vector que
representa la asociacion hacia la clase Comentario tal como se describe en el diagrama
de clases. j,Por qué el compilador no reconoce la nueva clase? Sencillamente porque
esta en otro paquete, el cual debemos importar. Afiada la instruccion para importar las
clases del nuevo paquete. Esta importacion puede hacerla manualmente o utilizando el
comando Control+Mayus+0O para que el editor agregue automaticamente todas las
importaciones que necesite.

Agregue el atributo clientes a la clase TiendaDeLibros, representandolo como un
vector. Es necesario que importe la clase Cliente al momento de declarar el vector
puesto que es la primera vez que hacemos referencia directa a esta clase.

En el constructor de la clase TiendaDeLibros, inicialice el vector de clientes.

En el constructor de la clase Libro, inicialice el vector de comentarios.

Las clases antes mencionadas también se habrian podido crear desde cualquier editor
de texto simple (por ejemplo, el bloc de notas). Basta con crear el archivo, salvarlo en
el directorio que representa el paquete y, luego, entrar a Eclipse y utilizar la opcién
Refresh del menu emergente que aparece al hacer clic derecho sobre el proyecto.

En la clase Comentario agregue el constructor que recibe como parametros el
contenido, la calificacion y el objeto del cliente que realizé el comentario. Agregue tres
meétodos para recuperar el contenido del comentario, la calificacion otorgada y el
cliente.

En la clase Cliente escriba el constructor que recibe como parametros la cédula, los
nombres y los apellidos. Agregue tres métodos para recuperar la cédula, los nombres y
los apellidos.

En la clase Libro, afilada un método que agregue un comentario al libro y otro que
retorne el vector con todos los comentarios del libro.

En la clase TiendaDelibros, afiada los siguientes métodos: (a) un metodo para agregar
un nuevo cliente, (b) un método para buscar un cliente dado su numero de cédula, (c)
un método para calcular la calificacion promedio de un libro dado su ISBN, (d) un
metodo que calcule el numero total de libros del catadlogo que tienen al menos

comentario, y (e) un metodo que agregue un nuevo comentario a un libro. Este ultimo
meétodo recibe como parametros el ISBN del libro, la cédula del cliente, y el contenido y
la calificaciéon del comentario.

10. Hojas de Trabajo

10.1. Hoja de Trabajo N° 1: Un Parqueadero

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Analice el siguiente enunciado e identifique el mundo del problema, lo que se
quiere que haga el programa y las restricciones para desarrollarlo.

Se quiere construir una aplicacion para administrar un parqueadero (lugar de
estacionamiento para carros). Dicho parqueadero tiene 40 puestos, numerados del 1 al 40.
En cada puesto se puede parquear un soélo carro (que representaremos con una clase
llamada Carro), el cual se identifica por su placa. El parqueadero tiene una tarifa por hora o
fraccion de hora, puede ser cambiada por el administrador.

De cada vehiculo aparcado se debe conocer la hora en la que entrd, que corresponde a un
valor entre 6 y 21, dado que el parqueadero esta abierto entre 6 de la mafana y 9 de la
noche.

Se espera que la aplicacion que se quiere construir permita hacer lo siguiente:

1. Ingresar un carro al parqueadero. Se debe indicar el puesto en el que se debe parquear
(si hay cupo).

2. Dar salida a un carro del parqueadero. Se debe indicar cuanto debe pagar.
3. Informar los ingresos del parqueadero.

4. Consultar la cantidad de puestos disponibles.

5. Avanzar una hora en el reloj del parqueadero.

6. Cambiar la tarifa del parqueadero.

La siguiente es la interfaz de usuario propuesta para el programa, donde los puestos
ocupados deben aparecen con un vehiculo.

https://bit.ly/apo1-nivel3-hoja1-pdf-format
https://bit.ly/apo1-nivel3-hoja1-word-format

|£| Parqueadero - = -

PARQUEADERO

* N &

Pargqueadero

Hora actual: 8:00 Avanzar
Tarifa: F1200 Cambiar
Ingresar Carro Sacar Carro
Informacion
Valor en Caja: $ 12000 Puestos Vacios: 31 Opcidn 1 Opcidn 2

Requerimientos funcionales. Describa los seis requerimientos funcionales de la aplicacion
que haya identificado en el enunciado.

Requerimiento Funcional 1

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

331

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

332

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 4

333

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 5

334

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 6

335

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Modelo del mundo. Complete el diagrama de clases con los atributos, las constantes y las
asociaciones.

336

Hojas de trabajo

Diagrama UML: Parqueadero

Diagrama UML: Puesto

337

Hojas de trabajo

Diagrama UML: Carro

Declaracion de arreglos. Para las siguientes clases, escriba la declaracién de los atributos
indicados en el comentario (como contenedoras del tipo dado), asi como las constantes
necesarias para manejarlos.

public class Parqueadero

{

/**
* Indica el numero de puestos en el parqueadero
*/

/**
* Arreglo de puestos
*/

338

Inicializacién de arreglos. Escriba el constructor de la clase para inicializar las
contenedoras declaradas en el punto anterior.

public
{

Patrones de algoritmos. Desarrolle los siguientes métodos de la clase Parqueadero,
identificando el tipo de patrén de algoritmo al que pertenece y siguiendo las respectivas
guias

Método 1

Contar y retornar el nimero total de puestos ocupados.

public int

{

Método 2

Informar si en el parqueadero hay un carro cuya placa comience con la letra dada como
parametro.

public boolean char

{

Método 3
Retornar el numero de carros en el parqueadero que llegaron antes del mediodia.

public int
{

Método 4

Retornar el ultimo carro en ingresar al parqueadero. Si el parqueadero esta vacio, retorna
null.

public Carro

{

Método 5

Informar si en algun lugar del parqueadero hay dos puestos libres consecutivos. Esto se
hace cuando el vehiculo que se quiere aparcar es muy grande.

public boolean

{

Método 6

Informar si hay dos carros en el parqueadero con la misma placa.

public boolean

{

10.2 Hoja de Trabajo N° 2: Lista de Contactos

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Analice el siguiente enunciado e identifique el mundo del problema, lo que se
quiere que haga el programa y las restricciones para desarrollarlo.

Se quiere construir un programa para manejar la lista de contactos de una persona. Un
contacto tiene nombre, apellido, una direccién, un correo electronico, varios teléfonos y un
conjunto de palabras clave que se utilizan para facilitar su busqueda. El nombre completo
(nombre + apellido) de cada contacto debe ser unico. Tanto el nombre como el apellido se
usan como palabras clave para las busquedas.

En el programa de contactos se debe poder:

Agregar un nuevo contacto.

Eliminar un contacto ya existente.

Ver la informacion detallada de un contacto.
Modificar la informacioén de un contacto.

o DN~

Buscar contactos usando las palabras clave.

La siguiente es la interfaz de usuario propuesta para el programa de la lista de contactos.

Hojas de trabajo

|i‘£’| Lista de Contactos — i 4

Lista de Contactos
Jhon Jairo Jaramillo =~
T | Ver Todos los contactos
Pedro Pérez
Carolina Correa Buscar por palabra clave
Ver
— Eliminar
Datos Personales del Contacto
Teléfonos
Nombre Pedro 3102345678 = |Agregar
2346424
Apellido FPérez « | Eliminar
: Palabras Clave
Direccion Calle 26 # 45-11 =
Pedro | Agregar
. Pérez
Correo Electronico pperezi@agmail.com
'« | Eliminar
Aagregar Contacto Modificar Contacto Limpiar
Extensiones
Opciont Opcion2

Requerimientos funcionales. Describa los cinco requerimientos funcionales de la
aplicaciéon que haya identificado en el enunciado.

Requerimiento Funcional 1

343

https://bit.ly/apo1-nivel3-hoja2-pdf-format
https://bit.ly/apo1-nivel3-hoja2-word-format

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

344

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

345

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 4

346

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 5

347

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Modelo del mundo. Complete el diagrama de clases con los atributos, las constantes y las
asociaciones.

348

Hojas de trabajo

Diagrama UML: ListaDeContactos

Diagrama UML: Contacto

349

Declaracion de arreglos. Para las siguientes clases, escriba la declaracién de los atributos
indicados en el comentario (como contenedoras del tipo dado).

public class Contacto

{
Y e e
// Atributos
YR e e et
private String nombre;
private String apellido;
private String direccion;
private String correo;
/~k~k
* Lista de teléfonos del contacto.
*/
/**
* Lista de palabras clave del contacto.
*/
}

public class ListaDeContactos

{

/**
* Lista de contactos.
*/

Inicializacién de arreglos. Escriba el constructor de las clases dadas.

public

public

Patrones de algoritmos. Desarrolle los siguientes métodos de la clase indicada,
identificando el tipo de patrén de algoritmo al que pertenece y siguiendo las respectivas
guias.

Metodo

Clase: Contacto

Contar el numero de palabras clave que empiezan por la letra dada como parametro.

public int darTotalPalabrasInicianCon(char

{

Metodo 2

Clase: Contacto

Informar si el contacto tiene algun teléfono que comienza por el prefijo dado como
parametro.

public boolean

{

Metodo 3

Clase: Contacto

Retornar la primera palabra clave que termina con la cadena dada.

public String
{

Metodo 4

Clase: Contacto

Contar el numero de palabras clave que son prefijo (parte inicial) de otras palabras clave.

public int darTotalPalabrasPrefijo

{

Metodo 5

Clase: ListaDeContacto

Contar el numero de contactos cuyo nombre es igual al recibido como parametro.

public int darTotalContactosConNombre

{

Metodo 6

Clase: ListadeContactos

Informar si hay dos contactos en la lista con la misma direccion de correo electronico.

public boolean

{

Metodo 7

Clase: ListadeContactos

Retornar el contacto con el mayor numero de palabras clave.

Hojas de trabajo

356

Nivel 4: Definicién y Cumplimiento de Responsabilidades

OLI DEFINICION Y CUMPLIMIENTO

DE RESPONSABILIDADES

357

1. Objetivos Pedagodgicos

Al final de este nivel el lector sera capaz de:

e Utilizar la definicion de un contrato para construir un metodo.

e Ultilizar la definicion del contrato de un metodo para invocarlo de manera correcta.

e Utilizar algunas técnicas simples para realizar la asignacion de responsabilidades a las
clases.

e Utilizar la técnica metodoldgica de dividir y conquistar para resolver los requerimientos
funcionales de un problema.

e Escribir una clase completa del modelo del mundo, siguiendo una especificacion dada
en términos de un conjunto de contratos.

e Documentar los contratos de los métodos utilizando la sintaxis definida por la
herramienta Javadoc.

e Utilizar la clase Exception de Java para manejar los problemas asociados con la
violacién de los contratos.

e Entender la documentacidon de un conjunto de clases escritas por otros y utilizar dicha
documentacion para poder incorporar y usar adecuadamente dichas clases en un
programa que se esta construyendo.

2. Motivacion

En el nivel 3 presentamos un caso de estudio relacionado con una tienda de libros. En dicho
ejemplo definimos el método registrarLibro de la clase TiendaDeLibros, que nos permitia
agregar un libro nuevo al catalogo de la tienda. Dicho metodo recibia como parametro las
caracteristicas del libro que se queria afadir, y tenia la siguiente signatura:

Libro double double

Si alguien nos pidiera que implementaramos dicho método, seria indispensable que nos
contestara antes las siguientes preguntas:

e ;Las caracteristicas del libro que se va a registrar son validas, es decir, su titulo, su
ISBN, su precio de compra, su precio de venta y su imagen tienen un valor definido y
correcto? ; Debemos verificar que los precios sean un niumero positivo antes de
adicionarlo al catalogo? ¢, Ya alguien verific eso y es una pérdida de tiempo volverlo a
hacer?

e . Ya se verifico que el libro que se desea registrar no esté incluido en el catalogo?
¢ Debemos verificar si existe ya un libro con ese ISBN antes de agregarlo al catalogo?

* ;Ya esta creado el vector que representa el catalogo de la tienda de libros? Tal vez en
el constructor de la clase se les olvido crear un objeto de la clase ArrayList para
almacenar los libros del catalogo. ¢ Debo hacer esta verificacion al comienzo del
método?

¢ Fijese que aunque la signatura de un méetodo y su descripcién informal pueden dar una
idea general del servicio que un méetodo debe prestar, esto no es suficiente, en la
mayoria de los casos, para definir con precisiéon el cdédigo que se debe escribir. Debe
ser claro que la implementacion del método puede cambiar radicalmente, dependiendo
de la respuesta que se dé a las preguntas que se plantearon anteriormente. Por
ejemplo, si hacemos la suposicion de que no hay en el catalogo otro libro con el mismo
ISBN del libro que se va a afadir, el cuerpo del méetodo seria el siguiente:

public Libro double double

Libro nuevo = new Libro(pTitulo, pIsbn, pPrecioVenta, pPrecioCompra, pRutaImagen);
catalogo.add(nuevo);
return nuevo;

e En esta version, simplemente creamos el nuevo libro y lo agregamos al catalogo.
Estamos suponiendo que alguien ya verificd que no hay otro libro con el mismo ISBN.

El asunto es que si nuestra suposicion no es valida, vamos a crear dos libros en el catalogo
con el mismo ISBN, lo cual introduce una inconsistencia en la informacién y puede generar
problemas en el programa. Esta clase de errores son de extrema gravedad, puesto que
permiten llegar a un estado en el modelo del mundo que no corresponde a una situacion
valida de la realidad. La solucién mas simple pareceria, entonces, hacer siempre todas las
verificaciones, como se muestra en la siguiente implementacion del méetodo:

public Libro double double

Libro nuevo = null;

if(pTitulo != null && !pTitulo.equals(" ") &&
pIsbn != null &&!pIsbn.equals(" ") &&
pPrecioVenta > 0 && pPrecioCompra > 0 &&
pRutaImagen != null &&!pRutaImagen.equals(" "))
{
Libro buscado = buscarLibroPorISBN(pIsbn);
if(buscado == null)
{
nuevo = new Libro(pTitulo, pIsbn, pPrecioVenta, pPrecioCompra, pRutaImagen);
catalogo.add(nuevo);
}
}
return nuevo;

En esta versidn verificamos primero que la informacion del libro esté correcta.

Luego buscamos en el catalogo otro libro con el mismo ISBN.

Si no lo encontramos, entonces si lo agregamos al catalogo.

Lo unico que no verificamos es que el vector de libros ya esté creado.

Este otro extremo parece un poco exagerado, puesto que algunas verificaciones pueden
tomar mucho tiempo, ser costosas e inutiles. ; Cémo tomar entonces la decisién de qué
validar y qué suponer? La respuesta es que lo importante no es cual de las soluciones
tomemos. Lo importante es que aquello que decidamos sea claro para todos y que exista un
acuerdo explicito entre quien utiliza el método y quien lo desarrolla. Si nosotros decidimos
que dentro del metodo no vamos a verificar que el ISBN exista en el catalogo, aquél que
llama el método debera saber que es su obligacion verificar esto antes de hacer la llamada.

De esta discusion podemos sacar dos conclusiones:

¢ Quien escribe el cuerpo de un método puede hacer ciertas suposiciones sobre los
parametros o sobre los atributos, y esto puede afectar en algunos casos el resultado. El
problema es que dichas suposiciones sélo quedan expresadas como parte de las
instrucciones del metodo, y no son necesariamente visibles por el programador que va
a utilizarlo. Seria muy dispendioso para un programador tener que leer el codigo de
todos los métodos que utiliza.

¢ Quien llama un método necesita saber cuales son las suposiciones que hizo quien lo
construyd, sin necesidad de entrar a estudiar la implementacion. Si no tiene en cuenta
estas suposiciones, puede obtener resultados inesperados (por ejemplo, dos libros con
el mismo ISBN).

La solucién a este problema es establecer claramente un contrato en cada método, en el
que sean claros sus compromisos y sus suposiciones, tal como se ilustra en la figura 4.1.

Fig. 4.1 Contrato entre dos sujetos: el que lo implementa y el que lo usa

Necesito que rme adicione
este libro al catélogo.
No he verificado & ya

existe ahi. Este libro esta

en buen estado.

Ok. Yo lo adiciono si no esta

en mi catalogo. Si ya esta,
le informo para que usted
decida qué hacer.

Un contrato se establece entre dos sujetos: el que implementa un método y el que lo usa. El
primero se compromete a escribir un metodo que permita conseguir un resultado si se
cumplen ciertas condiciones o suposiciones, las cuales se hacen explicitas como parte del
contrato (por ejemplo, adquiere el compromiso de afiadir un libro, si no hay ningun otro libro
con el mismo ISBN). El segundo sujeto puede usar el servicio que implemento el primero y

se compromete a cumplir las condiciones de uso. Esto puede implicar hacer verificaciones
sobre la informacion que pasa como parametro o garantizar algun aspecto del estado del
mundo.

En este capitulo vamos a concentrarnos en la manera de definir los contratos de los
meétodos. Este tema esta estrechamente relacionado con el proceso de asignar
responsabilidades a las clases, algo critico, puesto que es alli donde tomamos las
decisiones de quién es el responsable de hacer qué. Esta suma de suposiciones y
compromisos son las que se integran en los contratos, de manera que debemos aprender a
documentarlas, a leerlas y a manejar los errores que se pueden producir cuando estos
contratos no se cumplen.

3. Caso de Estudio N° 1: Un Club Social

Se quiere construir una aplicaciéon para manejar la informacion de socios de un club. El club
maneja dos tipos de suscripciones de socios: Regular o VIP. El numero maximo de socios
VIP que maneja el club es 3. Ademas de los socios, al club pueden ingresar personas
autorizadas por éstos, que hayan sido registradas con anterioridad. Tanto los socios como
las personas autorizadas pueden realizar consumos en los restaurantes del club. Cada
socio esta identificado con su nombre y su cédula. No puede haber dos socios con la misma
cédula. Cuando un socio se afilia al club debe hacerlo con un fondo inicial (para pagar sus
propios consumos Y los de sus personas autorizadas) segun el tipo de suscripcion que
tenga. Los socios regulares deben afiliarse con un fondo inicial de $50.000 y los socios VIP
con $100.000. Los socios pueden aumentar sus fondos en cualquier momento, pero tienen
una restriccidn maxima, que también depende de su tipo de suscripcidn, de la siguiente
manera: regulares $1°000.000 y VIP $5°000.000. Para que un socio pueda afadir personas
autorizadas a su lista, debe contar con fondos.

Una persona autorizada por un socio se identifica Gnicamente por su nombre. Cuando un
socio (0 una persona autorizada por él) realiza un consumo en el club, se crea una factura
que es cargada a la cuenta del socio. Cada factura tiene un concepto que describe el
consumo, el valor de lo consumido y el nombre de quien lo hizo. Para hacer un consumo, el
socio debe contar con fondos suficientes para pagarlo. El club guarda las facturas y permite
que en cualquier momento el socio vaya y cancele cualquiera de ellas. Una factura solo
puede ser pagada si el socio cuenta con fondos suficientes para hacerlo. Al pagar la factura,
esta es eliminada de la lista de facturas por pagar del socio y se descuenta el valor de los
fondos del socio.

La interfaz de usuario que se disefié para este ejemplo se muestra en la figura 4.2. Esta
interfaz tiene varios botones para que el usuario pueda seleccionar los distintos servicios de
la aplicacién.

Fig. 4.2 Diseno de la interfaz de usuario para el caso de estudio del club

." e o R S s e e |

Socios Datos socio
345764 - Liliana Cruz
65389 - Matezo Castro Cédula: 9876
9876 - Raiil Contreras
4812998 - Linda Hoff

| »

987235 - Ana Melendez Nombre: Raul Contreras
Fondos disponibles: $350.000
Tipo suscripcion: Regular

(=B &l

Facturas

Sandwich Club $2500.0 (Radul Contreras) |~ |
Agua en botella $1500.0 (Radl Contreras)
Pastel Gloria $3500.0 (Melinda Rialto)
ICroissant de queso $7000.0 (Radl Contrer
Copa de vino $12000.0 {Radl Contreras)

Reqgistrar consumo

[4]

Aumentar fondos

Afiliar socio

q] [[
Pagar factura

Autorizados

Raiil Contreras]

Melinda Rialto

Carmen Lizarazo
lgnacio Marques

4

Agregar autorizado |

Opciones

| Opcién 1 |

Opcion 2 |

e El botdon "Afiliar socio" permite afiliar a un nuevo socio al club.

e El boton "Agregar autorizado" permite registrar las personas autorizadas por un socio.

e El botdn "Registrar consumo" permite crear una nueva factura para un socio.
e Ala derecha de la ventana aparece la lista de todas las facturas pendientes por pagar
que tiene el socio. Para cada factura se indica el concepto del consumo, el valor y la

persona que lo realizé.

e Seleccionando una de las facturas de la lista y oprimiendo el boton "Pagar factura",

ésta se da por cancelada.

3.1. Comprension de los Requerimientos

La primera tarea de este nivel consiste en la identificacion y especificacion de los

requerimientos funcionales del problema.

Tarea 1

Objetivo: Describir los requerimientos funcionales del caso de estudio.

Para el caso de estudio del club, complete la siguiente tabla con la especificacion de los

requerimientos funcionales.

Requerimiento funcional 1

Nombre

Resumen

Entradas

Resultado

R1 - Agregar una persona autorizada por un socio.

Agrega un autorizado a la lista de autorizados de un socio. Una persona
autorizada puede ingresar al club y realizar consumos en sus
restaurantes.

(1) socio: cédula del socio al que se registrara el autorizado. (2)nombre:
nombre de la persona autorizada por el socio.

Se agrega el autorizado a la lista de autorizados del socio. Si el nombre
del socio es igual al nombre del autorizado, no se agrega el autorizado y
se muestra un mensaje al usuario indicandolo. Si el autorizado ya existe
en la lista, no se agrega el autorizado y se muestra un mensaje al usuario
indicandolo. Si el socio no tiene fondos para financiar un nuevo
autorizado, se muestra un mensaje al usuario indicandolo.

Requerimiento funcional 2

Nombre

Resumen

Entradas

Resultado

R2 - Pagar una factura.
Paga una factura de la lista de facturas pendientes de un socio.

(1) socio: cédula del socio que pagara la factura. (2) factura: la factura que
quiere pagar el socio, de su lista de facturas pendientes.

Se elimina la factura de la lista de facturas pendientes de un socio y se
disminuyen los fondos disponibles por el valor del consumo. Si el socio no
tiene fondos suficientes para pagar la factura, no se elimina la factura y se
muestra un mensaje al usuario indicandolo.

Requerimiento funcional 3

Caso de Estudio N° 1: Un Club Social

Nombre R3 - Afiliar un socio al club.

Resumen

Entradas

Resultado

Requerimiento funcional 4

366

Caso de Estudio N° 1: Un Club Social

Nombre R4 - Registrar un consumo.

Resumen

Entradas

Resultado

Requerimiento funcional 5

367

Nombre R5 - Aumentar los fondos de la cuenta de un socio.

Resumen

Entradas

Resultado

3.2. Comprension del Mundo del Problema

En la figura 4.3 aparece el modelo conceptual del caso de estudio. Alli podemos identificar
las entidades del problema:

e El club social.

e | os socios afiliados al club.

e Las personas autorizadas por el socio.

e |as facturas de los consumos de un socio y de sus autorizados.

Fig. 4.3 Modelo conceptual del caso de estudio del club

MAXIMO_VIP
como s8lo necesitamos
m 9 el normbre de lo persona
la podemaos presentor
el club tiene /—\ﬂ corfia un String
MUCNos S0Cios ¥ s0Cios l

FOMDOS_INICIALES_REGULARES |
FONDOS_INICIALES VIP
MONTO_MAXIMO_REGULARES auterizodos
MONTO_MAXIMO_VIP
String cedula :
String nombre "
double fondas

Tipo tipoSubscripcion

b

un socio puede
tener muchos

personas autorizadas

facturas
un socio pusde /7
; *
Tener mucnaos
facturos pendisntes
<< gnumeration>>
| T Tipo

— 1 una tactura Tiens

§tr!ng concepio «— un cencepto, un valar VIP

String nombre

y un nambra
double valor REGULAR

3.3. Definicion de la Arquitectura

La solucién de este caso de estudio la dividimos en tres subproblemas, de acuerdo con la
arquitectura presentada en el nivel 1. La soluciéon de cada uno de los componentes del
programa (modelo del mundo, interfaz de usuario y pruebas) va expresada como un
conjunto de clases, en un paquete distinto, tal como se muestra en la figura 4.4.

Fig. 4.4 Arquitectura de paquetes para el caso del club

ClubTest
FacturaTest
SocioTest
InterfazClub ;
PanelAutorizados :
PanellListaSocios i
: v
PanelSocio
PanelFacturas .
PanelOpciones |t ==-==-=-- > —
Socio
Factura

En este nivel vamos a trabajar unicamente en las clases que corresponden al paquete que
implementa el modelo del mundo. En el nivel 5, veremos la manera de construir las clases
del paquete que implementa la interfaz de usuario.

3.4. Declaracion de las Clases

En esta seccion presentamos las principales decisiones de modelado de los atributos y las
asociaciones, mostrando las declaraciones en Java de las tres clases del modelo del mundo
(Club, Socio, Factura). La definicion de los métodos se hara a lo largo del nivel, ya que éste
es el tema central de esta parte del libro.

Caso de Estudio N° 1: Un Club Social

public class Club
{

/**
* Cantidad maxima de socios VIP que acepta el club.
*/

public final static int MAXIMO_VIP = 3;

/**
* Lista de socios del club.
*/
private ArraylList<Socio> socios;

e A partir del diagrama de clases, vemos que hay una asociacion de cardinalidad variable
entre la clase Club y la clase Socio.

e Esta asociacion representa el grupo de socios afiliados al club, que modelaremos como
un vector (una contenedora de tamafo variable).

public class Socio

{

/**
* Enumeraciones para los tipos de suscripcion.
*/
public enum Tipo
{
/**
* Representa el socio VIP.
*/
VIP,
/**
* Representa el socio regular.
*/
REGULAR

371

Caso de Estudio N° 1: Un Club Social

/**
* Dinero base con el que empiezan todos los socios regulares.
*/

public final static double FONDOS_INICIALES_REGULARES = 50000;

/**
* Dinero base con el que empiezan todos los socios VIP.
*/

public final static double FONDOS_INICIALES_VIP = 100000;

/**

* Dinero maximo que puede tener un socio regular en sus fondos.
*/

public final static double MONTO_MAXIMO_REGULARES = 1000000;

/**
* Dinero maximo que puede tener un socio VIP en sus fondos.
*/

public final static double MONTO_MAXIMO_VIP = 5000000;

/**
* Cédula del socio.
*/

private String cedula;

/**
* Nombre del socio.
*/

private String nombre;

/**
* Dinero que el socio tiene disponible.
*/

private double fondos;

/**
* Tipo de subscripcién del socio.
*/

private Tipo tipoSubscripcion;

/**
* Facturas que tiene por pagar el socio.
*/

private ArraylList<Factura> facturas;

/**
* Nombres de las personas autorizadas para este socio.
*/

private ArraylList<String> autorizados;

372

e Un socio tiene una cédula y un nombre, los cuales se declaran como atributos de la
clase String.

¢ El dinero disponible que tiene un socio para pagar sus consumos se declara mediante
el atributo fondos de tipo double.

¢ Los posibles valores que puede tomar el tipo de suscripcién se modela a través de una
enumeracion llamada Tipo, cuyos posibles valores son VIP o REGULAR.

e Para representar las personas autorizadas por el socio, utilizaremos un vector de
cadenas de caracteres (autorizados), en donde almacenaremos Unicamente sus
nombres.

e Para guardar las facturas pendientes del socio, tendremos un segundo vector
(facturas), cuyos elementos seran objetos de la clase Factura.

public class

{

private String concepto;

private double valor;

private String nombre;

4. Asignacion de Responsabilidades

4.1. La Técnica del Experto

La primera técnica de asignacion de responsabilidades que vamos a utilizar se llama el
experto. Esta técnica establece que el duefo de la informacién es el responsable de ella, y
que debe permitir que otros tengan acceso y puedan pedir que se cambie su valor. Esta
técnica la hemos venido utilizando de manera intuitiva desde el nivel 1. Por ejemplo, en el
caso de estudio del empleado, dado que la clase Empleado tiene un atributo llamado
salario, esta técnica nos dice que debemos definir en esa clase algunos métodos para
consultar y modificar esta informacion.

Esto no quiere decir que se deban definir siempre dos métodos por atributo, uno para
retornar el valor y el otro para modificarlo. Hay casos en los cuales la modificacion debe
seguir reglas distintas a la simple asignacion de un valor. Siguiendo con el caso del
empleado, en la empresa se puede establecer que los cambios de salario siempre se hacen
como aumentos porcentuales. Al usar la técnica del experto se debe tener en cuenta que
las modificaciones deben reflejar las reglas del mundo en donde se mueve la clase, y que
son estos dos criterios los que definen las responsabilidades y las signaturas de los
meétodos que se deben incluir. Para el ejemplo que venimos desarrollando, en lugar de un
metodo con signatura cambiarSalario(nuevoSalario) deberiamos incluir un método que
cambie los salarios por aumento aumentarSalario(porcentaje). Esta misma idea vale para
los métodos que son responsables de dar informacién. Suponga por ejemplo que se guarda
como parte de la informacién del empleado la palabra clave con la cual tiene acceso al
sistema de informacién de la empresa. En ese caso, en lugar de un metodo que retorne
dicha informacion (darPalabraClave()) deberiamos, por razones de seguridad, incluir un
meétodo que informe si la cadena que tecle6 el usuario es su palabra clave
(esValida(entrada)).

La técnica del experto define quién es responsable de hacer algo, pero son las reglas
del mundo las que nos dicen cdmo cumplir con dicha responsabilidad.

Pasemos ahora al caso de estudio del club. Como consecuencia del requerimiento funcional
de afiliar un socio, nos tenemos que preguntar ¢ quién es el responsable de agregar un
nuevo socio al club? Si aplicamos la técnica del experto, la respuesta es que la
responsabilidad debe recaer en la clase duena de la lista de socios. Esto nos lleva a decidir
que, dado que el club es el dueno de la lista de socios, es él quien tiene la responsabilidad
de agregar un socio al club. Hablando en términos de métodos, esa decisién nos dice que

no debemos tener un méetodo que retorne el vector de socios para que otro pueda agregar
alli al nuevo, sino que debemos tener un metodo para afiliar un socio, en la clase Club, que
se encargue de esta tarea.

Siguiendo con el caso del club, suponga que debemos decidir cual es la clase responsable
de registrar una persona autorizada por un socio. Si aplicamos la técnica del experto, la
respuesta es que debe hacerlo el duefio de la lista de autorizados, o sea, la clase Socio. En
ese caso la signatura del metodo seria void agregarAutorizado(String nombre) (ver figura
4.5).

Fig. 4.5 Asignacion inicial de responsabilidades a las clases del caso de estudio

MAXIMO_VIP

iclong un NUayo
chjet su vect
_/ d‘.’l r\!:”:\i‘j:-‘

FONDOS_INICIALES_REGULARES
FONDOS_INICIALES_VIP
MONTO_MAXIMO_REGULARES
MONTO_MAXIMO_VIP

String cedula

String nembre

double fondos

Tipo tipoSubscripcion

void agregarAutorizado(String pNombreAutorizado)

Para usar la técnica del experto debemos recorrer todos los atributos y asociaciones del
diagrama de clases y definir los métodos con los cuales vamos a manejar dicha
informacion. Veremos mas ejemplos de la utilizacion de esta técnica en las secciones
siguientes.

4.2. La Técnica de Descomposicién de los
Requerimientos

Muchos de los requerimientos funcionales requieren realizar mas de un paso para
satisfacerlos. Puesto que cada paso corresponde a una invocacion de un método sobre
algun objeto existente del programa, podemos utilizar esta secuencia de pasos como guia
para definir los métodos necesarios y, luego, asignar esa responsabilidad a alguna clase.
Esta técnica se denomina descomposicion de los requerimientos funcionales.

La manera mas sencilla de hacer la identificacion es tratar de descomponer los
requerimientos funcionales en los subproblemas que debemos resolver para poder
satisfacer el requerimiento completo. Por ejemplo, para el requerimiento de pagar una
factura, podemos imaginar que necesitamos realizar tres pasos, que sugieren la necesidad
de tres métodos:

e Buscar si el socio que quiere pagar la factura existe (buscarSocio).
e Si el socio existe, obtener todas sus facturas pendientes (darFacturas).
e Pagar la factura seleccionada (pagarFactura).

Para el requerimiento de registrar una persona autorizada de un socio, podemos concluir
gue necesitamos también tres pasos, cada uno con un método asociado:

e Buscar si existe el socio a quien se le va a agregar una persona autorizada
(buscarSocio).

e Dado el nombre de una persona, verificar si esa persona ya pertenece al grupo de los
autorizados del socio (existeAutorizado).

e Asociar con el socio una nueva persona autorizada (agregarAutorizado).

Tarea 2

Objetivo: Hacer la descomposicidon en pasos de un requerimiento funcional.

Haga la descomposicion en pasos del requerimiento funcional de realizar un consumo en el
club.

Una vez identificados los servicios que nuestra aplicacion debe proveer, podemos utilizar la
tecnica del experto para decidir la manera de distribuir las responsabilidades entre las
clases. Continuando con nuestro ejemplo anterior, podemos hacer la siguiente distribucion
de responsabilidades:

e El servicio buscarSocio debe ser responsabilidad de la clase Club, porque es el club
quien tiene la informacién de la lista de socios.

e El servicio darFacturas debe ser responsabilidad de la clase Socio, porque cada socio
tiene la informacion de la lista de sus facturas pendientes.

e El servicio existeAutorizado debe ser responsabilidad de la clase Socio, porque cada
socio tiene la informacién de la lista de sus autorizados.

e El servicio agregarAutorizado debe ser res- ponsabilidad de la clase Socio, porque
cada socio tiene la informacion de la lista de sus autorizados.

En la figura 4.6 se ilustra una parte del proceso de asignacion de responsabilidades para el
caso del club.

Fig. 4.6 Proceso de asignacion de responsabilidades para el caso de estudio

Paso | _,/-_A MAKIMO_VIP
oealizar el secie -—} busecarSecio (]

W w

. FONDOS_|NICIALES, REGULARES
— existeAuterizade (1 — FONDOS_INICIALES VIP
MAXIMO_REGULARES
MAXIMO V(P

sregar al socio el 7
nombre de la pecono -__% ogregar Autorizads [,_______,_,/

autcrizads

Tarea 3

Objetivo: Asignar responsabilidades a las clases.

Decida a qué clase corresponde la responsabilidad de cada uno de los pasos definidos en
la tarea anterior y justifique su decision.

Asignacion de responsabilidades

378

5. Manejo de las Excepciones

Una excepcion es la indicacion de que se produjo un error en el programa. Las
excepciones, como su hombre lo indica, se producen cuando la ejecucidn de un méetodo no
termina correctamente, sino que termina de manera excepcional como consecuencia de
una situacion no esperada.

Cuando se produce una situaciéon anormal durante la ejecuciéon de un programa (por
ejemplo se accede a un objeto que no ha sido inicializado o tratamos de acceder a una
posicion invalida en un vector), si no manejamos de manera adecuada el error que se
produce, el programa va a terminar abruptamente su ejecucion. Decimos que el programa
deja de funcionar y es muy probable que el usuario que lo estaba utilizando ni siquiera sepa
qué fue lo que pasb.

Cuando durante la ejecucion de un método el computador detecta un error, crea un objeto
de una clase especial para representarlo (de la clase Exception en Java), el cual incluye
toda la informacién del problema, tal como el punto del programa donde se produjo, la
causa del error, etc. Luego, "dispara" o "lanza" dicho objeto (throw en inglés), con la
esperanza de que alguien lo atrape y decida como recuperarse del error. Si nadie lo atrapa,
el programa termina, y en la consola de ejecucién aparecera toda la informacion contenida
en el objeto que representaba el error. Este objeto se conoce como una excepcion. En el
ejemplo 1 se ilustra esta idea.

Ejemplo 1
Objetivo: Dar una idea global del concepto de excepcion.

Este ejemplo ilustra el caso en el cual durante la ejecucidén de un método se produce un
error y el computador crea un objeto para representarlo y permitir que en alguna parte del
programa alguien lo atrape y lo use para evitar que el programa deje de funcionar.

public class

{

private C2 atr;

public void

{
atr.m2();

e Suponga que tenemos una clase C1, en la cual hay un método llamado m1(), que es
llamado desde las clases de la interfaz del programa.

e Los objetos de la clase C1 tienen un atributo de la clase C2, llamado atr .

e Suponga ademas que dentro del método m1() se invoca el metodo m2() de la clase C2
sobre el atributo llamado atr .

public class

{

public void

{

instri;
instr2;
instr3;

b
b

e Dentro de la clase C2 hay un método llamado m2() que tiene 3 instrucciones, que aqui
mostramos como instr1, instr2, instr3. Dichas instrucciones pueden ser de cualquier
tipo.

e Suponga que se esta ejecutando la instruccion instr2 del método m2() y se produce un
error. En ese momento, a causa del problema el computador decide que no puede
seguir con la ejecucion del método (instr3 no se va a ejecutar).

e Crea entonces un objeto de la clase Exception que dice que el error sucedio en la
instruccion instr2 del metodo m2() y explica la razén del problema.

® Luego, pasa dicho objeto al método m1() de la clase C1, que fue quien hizo la llamada.
Si él lo atrapa (ya veremos mas adelante como), el computador continua la ejecucion
en el punto que dicho méetodo indique.

e Si el método m1() no atrapa la excepcion, este objeto pasa a la clase de la interfaz que
hizo la llamada. Este proceso se repite hasta que alguien atrape la excepcion o hasta
que el programa completo se detenga. Entendemos por manejar una excepcion el
hecho de poderla identificar, atraparla antes de que el programa deje de funcionar y
realizar una accion para recuperarse del error (por lo menos, para informarle al usuario
lo sucedido de manera amigable y no con un mensaje poco comprensible del
computador).

En el resto de esta seccion mostraremos como se hace todo el proceso anteriormente
descrito, en el lenguaje de programacion Java.

5.1. Anunciar que Puede Producirse una
Excepcion

Cuando en un método queremos indicar que éste puede disparar una excepcion en caso de
que detecte una situacion que considera anormal, esta indicacion debe formar parte de la
signatura del metodo. En el ejemplo 2 se muestra la manera de hacer dicha declaracion.

Ejemplo 2
Objetivo: Declarar que un método puede lanzar una excepcion.

Este ejemplo muestra la manera de declarar en la signatura de un metodo que es posible
que éste lance una excepcion en caso de error. El método que se presenta forma parte de
la clase Club y es responsable de afiliar un socio.

public void afiliarSocio(String pCedula, String pNombre, Tipo pTipo) throws Exceptio
n

{

e Con esta declaracion el metodo advierte a todos aquellos que lo usan de que puede
producirse una excepcion al invocarlo. Los métodos que hacen la invocacion pueden
decidir atraparla o dejarla pasar.

* No es necesario hacer un import de la clase Exception, puesto que esta clase esta en
un paquete que siempre se importa automaticamente (java.lang).

Al informar que un método lanza una excepcién, estamos agrupando dos casos
posibles: Caso 1: la excepcidn va a ser creada y lanzada por el mismo método que la
declara. Esto quiere decir que es el mismo método el que se encarga de detectar el
problema, de crear la instancia de la clase Exception y de lanzarla. Caso 2: |la
excepcion fue producida por alguna instruccion en el cuerpo del método que hace la
declaracién, el cual decide no atraparla sino dejarla seguir. Este "dejarla seguir" se
informa también con la misma clausula throws.

5.2. La Instruccién try-catch

La instruccién try-catch de Java tiene la estructura que se muestra en la figura 4.7 y la
sintaxis que se utiliza en el ejemplo 3.

Fig. 4.7 Estructura basica de la instruccion try-catch

bloque try: si fodo funciona bien,

try no se ejecuta ninguna de las
{ instrucciones de bloque catch
instrl;
InSEr2;
. asi se dice que cualquier
inste3d; excepcién que se altrape
lo vamos asignar a la variable
} de tipo Exception llamada e
P .
catch | (Exception e)

instr4; bloque catch: aqui podemos
} usar la variable e para pedirle
informacion sobre el error

En la instruccion try-catch hay dos bloques de instrucciones, con los siguientes objetivos:

e Delimitar la porcion de cédigo dentro de un metodo en el que necesitamos desviar el
control si una excepcion ocurre alli (la parte try). Si se dispara una excepcion en
alguna de las instrucciones del bloque try, la ejecucion del programa pasa
inmediatamente a las instrucciones del bloque catch. Si no se dispara ninguna
excepcion en las instrucciones del bloque try, la ejecucion continua después del bloque
catch.

e Definir el cdédigo que manejara el error o atrapara la excepcion (la parte catch).

Ejemplo 3

Objetivo: Mostrar el uso de la instruccion try-catch de Java.

Este método forma parte de alguna de las clases de la interfaz, en la cual existe una
referencia hacia el modelo del mundo llamada club. La estructura y contenido de las clases
que implementan la interfaz de usuario son el tema del siguiente nivel.

public void ejemplo

{
try

{
club.afiliarSocio(pCedula, pNombre, pTipo);

totalSocios++;

}

catch(Exception e)

{
String ms = e.getMessage();
JOptionPane.showMessageDialog(this, ms);

e Sien lallamada del método afiliarSocio se produce una excepcion, ésta es atrapada y
la ejecucion del programa continua en la primera instruccion del bloque catch . Note
gue en ese caso, la instruccidn que incrementa el atributo totalsocios NO se ejecuta.

¢ La primera instruccion del bloque catch pide al objeto que representa la excepcion el
mensaje que explica el problema. Fijese cdmo utilizamos la variable e .

e | a segunda instruccion del bloque catch despliega una pequefia ventana de dialogo
con el mensaje que traia el objeto e de la clase Exception. En este ejemplo, la
intencion es comunicarle al usuario que hubo un problema y que no se pudo realizar la
afiliacion del socio al club.

No todos los errores que se pueden producir en un método se atrapan con la
instruccidn catch(Exception). Existen los que se denominan errores de ejecucion
(dividir por cero, por ejemplo) que se manejan de una manera un poco diferente.

5.3. La Construccion de un Objeto Exception y
la Instruccion throw

Cuando necesitamos disparar una excepcion dentro de un método utilizamos la instruccion
throw del lenguaje Java. Esta instruccion recibe como parametro un objeto de la clase
Exception, el cual es lanzado o disparado al método que corresponda, siguiendo el
esquema planteado anteriormente. Lo primero que debemos hacer, entonces, es crear el
objeto que representa la excepcion, tal como se muestra en el ejemplo que aparece a
continuacion.

Ejemplo 4

Objetivo: Mostrar la manera de lanzar una excepcion desde un méetodo.

En este ejemplo aparece la implementacion del método de la clase Club que permite afiliar
un socio. En este método, si ya existe un socio con la misma cédula, se lanza una
excepcion, para indicar que se detectd una situacion anormal.

public void afiliarSocio throws Exceptio
n

{

// En caso de que el tipo de suscripcion del nuevo socio sea VIP, es necesario
// revisar que no se haya alcanzado el limite de suscripciones VIP que maneja el club

if(pTipo == Tipo.VIP && contarSociosVIP() == MAXIMO_VIP)
{

// Si ya se alcanzd el numero maximo de suscripciones VIP, se lanza una excepcioén
throw new Exception("E1 club en el momento no acepta mds socios VIP");

// Revisar que no haya ya un socio con la misma cédula en el club
Socio s = buscarSocio(pCedula);

if(s == null)

{
// Se crea el objeto del nuevo socio (todavia no se ha agregado al club)
Socio nuevoSocio = new Socio(pCedula, pNombre, pTipo);
// Se agrega el nuevo socio al club
socios.add(nuevoSocio);

}

else

{
// Si ya existia un socio con la misma cédula, se lanza una excepcion
throw new Exception("E1l socio ya existe");

}

}
J E—

e Este método lanza una excepcion a aquél que lo llama, si le pasan como parametro la
informacion de un socio que ya existe o si el socio que se desea afiliar tiene suscripcion
VIP y ya se alcanzé el maximo numero de suscripciones VIP que maneja el club.

e El constructor de la clase Exception recibe como parametro una cadena de caracteres
que describe el problema detectado.

e Cuando un metodo atrape esta excepcion y le pida su mensaje (getMessage()), el
objeto va a responder con el mensaje que le dieron en el constructor.

e En este ejemplo, cuando se detecta el problema se crea el objeto que representa el
error y se lo lanza, todo de una sola vez. Pero podriamos haber hecho o mismo en dos
instrucciones separadas.

La clase Exception es una clase de Java que ofrece multiples servicios, que se pueden
consultar en la documentacion. Los mas usados son getMessage(), que retorna el mensaje
con el que fue creada la excepcion, y printStackTrace(), que imprime en la consola de
ejecucion la traza incluida en el objeto (la secuencia anidada de invocaciones de métodos
que dio lugar al error), tratando de informar al usuario respecto de la posicion y la causa del
error.

Si utilizamos las siguientes instrucciones después de atrapar la excepcion del método
afiliarSocio() en caso de que ya exista un socio con la misma cédula, presentado en el
ejemplo 4:

catch(Exception e)

{

JOoptionPane.showMessageDialog(this, e.getMessage());

Obtendremos la ventana de advertencia al usuario que aparece en la figura 4.8.

Fig. 4.8 Despliegue de un mensaje de error como consecuencia de una excepcion
en el programa

[Mensaje &11

=
\I) Elsocioya existe

I Aceptar

5.4. Recuperacion de una Situacion Anormal

Cuando se esta ejecutando un método, puede pasar que desde su interior se invoque otro
metodo y, desde el interior de éste, otro y asi sucesivamente. En la figura 4.9 mostramos un
ejemplo de la ejecucién de un metodo m1() que invoca un metodo m2(), el cual llama a m3()
y este ultimo a m4().

Fig. 4.9 Invocacion en cascada de métodos

void ml ()

=
ol.m2 [)/:

void niZ ()

i

e
!

1 wvoid m3 ()

I e T

Supongamos ahora que durante la ejecucion del método m4() se dispara una excepcion. Es
parte de nuestras decisiones de diseno decidir quién sera el responsable de atraparla 'y
manejarla. Una posibilidad es que el mismo metodo m4() la atrape y la procese. Otra
posibilidad es que la responsabilidad se delegue hacia arriba, dejando que sea el metodo
m3() o el metodo m2() o el método m1() quien se encargue de atrapar la excepcion. En la
figura 4.10 ilustramos la situacion en que es el metodo m1() el responsable de hacerse
cargo de la excepcion.

Fig. 4.10 Flujo de control en el manejo de excepciones

otraps o excapeion N dejan poasar
¥ 58 racupara Iz excapcion

lanza lo excepsidn |

El método encargado de atrapar una excepcion utiliza la instruccion try-catch, mientras que
los métodos que solo la dejan pasar lo declaran en su signatura (throws Exception).

6. Contrato de un Método

El contrato de un méetodo establece bajo qué condiciones el metodo tendra éxito y cual sera
el resultado una vez que se termine su ejecucion. Por ejemplo, para el metodo:

public void throws Exceptio
n

Podemos establecer que las suposiciones antes de ejecutar el metodo son:

e |La lista de socios ya fue creada.

La cédula no es null ni vacia.

No se ha verificado si ya existe un socio con esa cédula.

El nombre no es null ni vacio.

El tipo de suscripcion no es null.
Después de ejecutar el metodo, el resultado debe ser uno de los siguientes:

e Todo funcioné bien y el socio se afilio al club.
e Se produjo un error y se informo del problema con una excepcion. El socio no quedo
afiliado al club.

6.1. Precondiciones y Postcondiciones

La precondicion es aquello que exigimos para poder resolver el problema planteado a un
metodo. Es un conjunto de suposiciones, expresadas como condiciones que deben ser
verdaderas para que el método se ejecute con éxito. Estas precondiciones pueden referirse
a:

e El estado del objeto que va a ejecutar el método (el valor de sus atributos).
e E| estado de algun elemento del mundo con el cual el objeto tenga una asociacion.
e Condiciones sobre los parametros de entrada entregados al metodo.

Tarea 4

Objetivo: Identificar la precondicion de un método.

Identifique la precondicion del método de la clase Socio que permite registrar un consumo,
el cual tiene la siguiente signatura:

public void registrarConsumo(String pNombre, String pConcepto, double pValor) throws
Exception

Suposiciones sobre el parametro pnombre .

Suposiciones sobre el parametro pconcepto .

Suposiciones sobre el parametro pvalor .

Suposiciones sobre el estado del objeto que va a ejecutar este
método.

Suposiciones sobre el estado de alguno de los objetos con los
cuales existe una asociacion.

La descripcién del resultado obtenido después de ejecutar un metodo la llamamos su
postcondicion. Esta se expresa en términos de un conjunto de condiciones que deben ser
verdaderas después de que el método ha sido ejecutado, siempre y cuando no se haya
lanzado una excepcion. Estas postcondiciones hacen referencia a:

e Una descripcién del valor de retorno.
e Una descripcion del estado del objeto después de haber ejecutado el método.

La precondicion se puede ver entonces como el conjunto de condiciones que impone aquél
que desarrolla el método y la postcondicion como los compromisos que asume. En otras
palabras, el contrato queda establecido de la siguiente manera: "si todas las condiciones de
la precondicion se cumplen antes de llamar el método, éste asume el compromiso de llegar
a cumplir todas las condiciones incluidas en la postcondicion".

El contrato es total, en el sentido de que si alguna de las precondiciones no se cumple,
el método deja de estar obligado a cumplir la postcondicion.

Tarea 5

Objetivo: Identificar las postcondiciones de algunos métodos.

Describa en términos de condiciones la situacion del objeto y el resultado, después de
haber ejecutado los siguientes métodos de la clase Socio.

public void registrarConsumo(String pNombre, String pConcepto, double pValor) throws
Exception

public boolean existeAutorizado(String pNombreAutorizado)

Vamos a contestar a continuacion algunas de las preguntas tipicas que surgen en el
momento de definir un contrato y de implementar un metodo que lo cumpla.

e ;Un metodo debe verificar en algun punto las condiciones que hacen parte de la
precondicion? La respuesta es no. Lo que aparece en la precondicion se debe suponer

como cierto y se debe utilizar como si lo fuera. Si algo falla en la ejecucién por culpa de
eso, es el problema de aquél que hizo la llamada sin cumplir el contrato.

e ;Qué lugar ocupan las excepciones en los contratos? Un contrato sélo debe decir que
lanza una excepcion cuando, aun cumpliéndose todo lo pedido en la precondicion, es
imposible llegar a cumplir la postcondicion. Eso quiere decir que ninguna excepcion
puede asociarse con el incumplimiento de una precondicion.

e ; Qué incluir entonces en la precondicion? En la precondicion sélo se deben incluir
condiciones que resulten faciles de garantizar por parte de aquél que utiliza el método.
Si le impongo verificaciones cuya verificacion previa a la invocacion del método le
demandara un gran costo en tiempo, terminaremos construyendo programas
ineficientes. Si quiero asegurarme de algo asi en la ejecuciéon del método, pues basta
con eliminarlo de la precondicion y lanzar una excepcion si no se cumple. *;Por qué es
inconveniente verificar todo dentro del metodo invocado? Por eficiencia. Es mucho
mejor repartir las responsabilidades de verificar las cosas entre el que hace el llamado
y el que hace el método. Si en el contrato queda claro quién se encarga de qué, es mas
facil y eficiente resolver los problemas.

6.2. Documentacion de los Contratos con
Javadoc

En este libro expresamos los contratos en lenguaje natural y los incluimos dentro del codigo
como parte de la documentacién de los métodos. Para esto aprovechamos las
convenciones y la herramienta de generacion automatica de documentacion que viene con
el lenguaje Java y que se llama Javadoc. Dicha herramienta busca dentro de las clases
comentarios delimitados por los caracteres /** ... */ y genera a partir de ellos un
conjunto de archivos con formato html, que permiten documentar el contenido de las clases.

Veamos como podemos utilizar algunas etiquetas (tags) de Javadoc para documentar
uniformemente los contratos, de tal forma que, al ser generada la documentacion del
programa, sea claro para el lector de esa documentacion cuales son las suposiciones y los
compromisos de los métodos que él va a utilizar.

Las convenciones que utilizamos para documentar los contratos de los métodos son las
siguientes, que iremos ilustrando con el contrato del método de la clase Club que permite
afiliar un nuevo socio:

e Un contrato se expresa como un comentario Javadoc, delimitado con los caracteres
/** ... */ . Dicho comentario debe ir inmediatamente antes del méetodo.
e El contrato comienza con una descripcion general del método. Esta descripcion debe
dar una idea general del servicio que éste presta.

¢ Luego vienen las precondiciones relacionadas con el estado del objeto que ejecuta el
metodo. Alli se incluyen unicamente las restricciones y las relaciones que deben
cumplir los atributos y los objetos con los cuales tiene una asociacion.

* pre: La lista de socios estd inicializada (no es null).

Los elementos y solo sirven para que cuando se genere la documentacion en
formato html, la palabra encerrada entre estos elementos aparezca en negrita. El elemento

 inserta un cambio de renglon en ese lugar del archivo de documentacion.

En el ejemplo anterior, la condicion hace referencia a la asociacion que existe entre la clase
Club y la clase Socio, y dice que el vector que contiene los socios esta inicializado. Dicha
condicion se da por cierta, lo que implica que en la implementacion del metodo no se hara
ninguna verificacion en ese sentido y se utilizara como un hecho.

e Después aparecen las postcondiciones que hacen referencia al estado del objeto
después de la eje- cucion del metodo. Alli se debe describir la modificacion de los
atributos y objetos asociados que puede esperarse luego de su invocacion.

* post: Se ha afiliado un nuevo socio en el club con los datos dados.

e |a siguiente parte describe los parametros de entrada y las precondiciones asociadas
con ellos. Por cada uno de los parametros se debe usar la etiqueta @param seguida
del nombre del parametro, una descripcion y las suposiciones que el método hace
sobre él.

* @param pCedula Cédula del socio a afiliar. pCedula != null && pCedula != "",.
* @param pNombre Nombre del socio a afiliar. pNombre != null && pNombre != "",
* @param pTipo Es el tipo de subscripcioén del socio. pTipo != null.

Al decir en el contrato que el parametro que trae la cédula del nuevo socio no tiene el valor
null ni es una cadena vacia, estamos afirmando que el método no va a hacer ninguna
verificacion al respecto y que aquél que haga la llamada debe garantizarlo.

Como parte del contrato no es necesario hablar del tipo de los parametros, porque esto va
en la signatura del metodo, la cual es parte integral del mismo. Esto quiere decir, por
ejemplo, que no vale la pena incluir en la precondicion del atributo nombre algo para indicar
que es de tipo String.

Tampoco es buena idea incluir en una precondicion informacion sobre lo que no se supone
en el metodo. Debe quedar claro que todo lo que no aparece explicitamente como una
suposicidn, no se puede suponer.

¢ Luego viene la parte de la postcondicion que describe el retorno del metodo. Esta sélo
aparece en el contrato si el método devuelve algun valor (es decir, no es void). Se
indica con la etiqueta @return seguido de una descripcién de lo que el método
devuelve y las condiciones que este valor cumple.

En el ejemplo que venimos desarrollando, como el método es de tipo void , no hay
necesidad de agregar nada al contrato.

Para poder expresar de manera mas sencilla las condiciones sobre el valor que el metodo
devuelve, es comun darle un nombre al retorno del método (como si fuera una variable) y
luego usar dicho nombre como parte de las condiciones. Esto se ilustra mas adelante.

e Por ultimo, aparecen las excepciones que el metodo dispara. Para hacer esto, se utiliza
la etiqueta @throws seguida del tipo de la excepcion y una descripcion de la situacion
en la que puede ser disparada.

* @throws Exception

* . Si un socio con la misma cédula ya estaba afiliado al club.

* . Si el socio a registrar desea una subscripcién VIP pero el club ha alcanz
ado el limite.

Es conveniente que la descripcidon se haga usando una frase en la que sea clara la
condicion para que la excepcion se lance (p.ej., "si un socio con la misma cédula ya estaba
afiliado al club"), lo mismo que las consecuencias de la excepcion (p.ej. "la nueva afiliacion
no se pudo llevar a cabo").

Cuando un método puede lanzar varias excepciones, cada una de ellas por una razéon
diferente, se debe usar la etiqueta @throws para cada caso de manera independiente.

Ejemplo 5

Objetivo: Mostrar un contrato completo y la pagina html generada por la herramienta
Javadoc.

En este ejemplo se presenta el contrato del método de la clase Club que afilia un nuevo
socio. En la parte de abajo aparece la visualizacion del archivo html generado
automaticamente por la herramienta Javadoc.

/**

* Afilia un nuevo socio al club.

* pre: La lista de socios esta inicializada.

* post: Se ha afiliado un nuevo socio en el club con los datos dados.

* @param pCedula Cédula del socio a afiliar. pCedula != null && pCedula != "".
* @param pNombre Nombre del socio a afiliar. pNombre != null && pNombre != "",
* @param pTipo Es el tipo de subscripcién del socio. pTipo != null.

* @throws Exception

* 1. Si un socio con la misma cédula ya estaba afiliado al club.

2. Si el socio a registrar desea una subscripcién VIP pero el club ha alcanz
ado el limite.

*/

public void afiliarSocio(String pCedula, String pNombre, Tipo pTipo) throws Exceptio

n
pubelic pevd, BLal, Arrdylis LS00 LR dersoroal]
£l Sz
Heloma los g0t aflados &l db,
Packages
Returns:
miandes rizil? b At L
niardrs penid cank mundn |ista ke sorins
afiliarSocio

public void afilisrsacialjava. lang. String praduls,

v\g st mg atinrhre,
Ahka U mayo

pre: La sl 5
POSL: 5€ ha 3HIFd0 un ruevd S0l or \.I cluz con s datos dados

Parameters:
pradila - Céaduia del socia a =it aCedula 1= rall A% pletula =
phorbre - Nomire del o0 a afiliar, gHombre 1= null &% phomtee 1= ™7,
oTipe- Ee el lpo-de subscapoan del 0cio: plipo 1= nul

Throws:

e Jang: Facepeian -
3. 5wt sacic con fa misnia caduls ya sslaba stiade ol
2 Siesoios registra’ desea Lna sabstips lan e u-n: =I o i3 3l anzsde &l i

buscarSocio
public Socio buscarSocicijave, lang.String pleduleSocial

Rednema el spcn con lacedida dada
pra: La lista de soclos asta inicializada.

Parameters:
pCedulasacia - Codula del seole buscade. pCedulaSesls 1= null &4 padulaSocis 1= =
Returns:

El socio buscade, null 5i el socic buscado no existe.

Tarea 6

Objetivo: Revisar los contratos de los métodos del caso de estudio.

Genere la documentacion del ejemplo del club, utilizando la herramienta Javadoc.
Revise la documentacion generada a partir del indice que encuentra en:

n4 _club/docs/api/index.html En particular, estudie la definicion de los contratos de los
métodos de las clases Club, Socio y

Factura, y conteste las siguientes preguntas:

http://cupi2.uniandes.edu.co/sitio/images/cursosCupi2/apo1/ejemplos/codigos/n4_club.zip

¢ Qué pasa si el método buscarSocio de la clase Club no encuentra
el socio cuya cédula recibié como parametro?

¢, Qué precondicion exige el metodo buscarSocio de la clase Club
respecto del atributo que representa la cédula?

¢ Qué retorna el metodo darConcepto de la clase Factura? ;Qué
condiciones cumple dicho valor? ; Qué nombre se usé en el contrato
para representar el valor de retorno?

¢, Cual es la precondicion sobre el parametro pValor en el método
registrarConsumo de la clase Socio?

¢, Cual es la postcondicion del método pagarFactura de la clase Socio?

¢ En cuantos casos lanza una excepcion el método agregarAutorizado
de la clase Socio?

¢ Qué sucede si en el metodo agregarAutorizado de la clase Socio, el
parametro de entrada corresponde al nombre del socio?

7. Diseno de las Signaturas de los
Metodos

Una vez distribuidas las responsabilidades entre las clases, debemos continuar con el
diseno de los métodos. Por un lado, debemos decidir cuales seran los parametros del
metodo, cual sera su valor de retorno, qué excepciones puede disparar y, finalmente,
debemos precisar su contrato, es decir, definir las condiciones sobre todos esos elementos.

%o

De manera general, podemos decir que la informacién que tenemos para disenar la
signatura de los métodos viene de dos fuentes distintas: por una parte, de la identificacion
de las entradas y salidas de los requerimientos funcionales. Por otra parte, de los tipos de
los atributos utilizados en el modelado del mundo del problema. Por ejemplo, para el
requerimiento funcional de afiliar un socio, los datos de entrada son la cédula del socio, su
nombre y su tipo de subscripcion. Esto sugiere que ésa es la informacion que debe recibir el
metodo de la clase Club que tiene esa responsabilidad.

public void throws Exceptio
n

En el caso general, es conveniente tratar de contestar dos preguntas:

e ;Qué informacién externa al objeto se necesita para resolver el problema que se
plantea en el método? Esto nos va a dar pistas sobre los parametros que se deben
incluir.

e ;Como se modelo esa informacién dentro del objeto? Piense, por ejemplo, que si se
definieron constantes para representar los valores posibles de una caracteristica, y la
informacion externa esta relacionada con ella, los parametros deben reflejar eso. En el
caso de estudio de la tienda presentado en el nivel 2, si queremos pasar como
parametro el tipo del producto (recuerde que puede ser de papeleria, drogueria o
supermercado), el parametro debe ser una enumeracion y no de tipo cadena de
caracteres.

Tarea 7

Objetivo: Revisar el disefio de los métodos del caso de estudio y justificar las signaturas
utilizadas.

Diseno de las Signaturas de los Métodos

Para la clase Socio, estudie la signatura de los siguientes métodos y trate de escribir la
justificacion de cada una de las decisiones de diseno. ¢ Por qué esos parametros? ;Por qué
esas excepciones? jPor qué ese tipo de retorno?

boolean existeAutorizado(String pNombreAutorizado)

void eliminarAutorizado(String pNombreAutorizado) throws Exception

void agregarAutorizado(String pNombreAutorizado) throws Exception

396

Disefio de las Signaturas de los Métodos

void pagarFactura(int pIndiceFactura) throws Exception

void registrarConsumo(String pNombre, String pConcepto, double pVvalor) throws Except

ion

397

Disefio de las Signaturas de los Métodos

398

8. Caso de Estudio N° 2: Un Brazo
Mecanico

En esta aplicacion se modela una bodega que tiene cubos apilados en ciertas posiciones y
un brazo mecanico que puede mover estos cubos. La bodega tiene unas dimensiones
definidas y ni el brazo ni los cubos pueden estar por fuera de esos limites. La bodega se
puede organizar como una cuadricula en la cual las coordenadas X corresponden a las
columnas y las Y corresponden a la altura medida desde el piso, tal como se sugiere en la
figura 4.11.

Fig. 4.11 Convenciones en el caso de estudio

el brazo mecanico
astd sobre la columnag
| de la bedega

en esta bodegc: _Duede.

haoer méaxime 6 cubos >
por columna
. I este cubo astd en las
este cubo esta en las /- coordenadas 5.0 de
coordenadas 0,3 de \ la bedega

la bodega — \ /__H \—/
2

en la colurmna O |
hay & cubos

“'I
r

esta es la columna k esta bodega fiene 7

de la bedega columnas, numeradas

del o al &

Todos los cubos tienen las mismas dimensiones, pero pueden tener colores diferentes y se
pueden poner uno encima del otro o sobre el piso, mientras sus posiciones coincidan con la
cuadricula de la bodega. Un cubo no puede estar suspendido en el aire: debe estar sobre
otro cubo o sobre el piso.

El brazo mecanico esta suspendido del techo de la bodega y puede moverse a lo largo de
las columnas, al igual que puede subir y bajar. El brazo puede cargar un cubo a la vez y
solamente puede tomarlo si se coloca en la misma posicién del cubo que quiere agarrar.

Unicamente se pueden recoger cubos que estan en el tope de una columna. Para soltar un
cubo el brazo debe ubicarse justo encima del tope de una columna o sobre el piso y luego
dejar el cubo en esa posicion. jNo pueden dejarse caer los cubos!

Hay algunas restricciones al movimiento del brazo. Mientras el brazo esta cargando un cubo
no puede llegar a una posicion ocupada por otro cubo. Ademas el brazo solamente puede
llegar a una posicion donde hay un cubo si éste se encuentra en el tope de una columna.

La interfaz de la aplicacion del brazo mecanico se presenta en la figura 4.12.

Fig. 4.12 Interfaz de usuario del brazo mecanico

l’ié‘l Brazo Mecanico | = | = %lﬁ

Bodega

"

<

Opcién 1 | Opcidn 2
. |

40>

| ||2.1 ||h|-:r hay cubo

¢ En la grafica mostrada, el brazo mecanico aparece en la posicion 2, 1.

e |La bodega tiene 7 columnas y un maximo de 6 cubos en cada una.

e Con los cinco botones del panel inferior, se puede mover el robot en cada una de las
cuatro direcciones posibles. El boton de la mitad sirve para agarrar o soltar un cubo.

e En la parte inferior derecha, la interfaz indica que aunque el brazo esta sobre un cubo,
no lo ha sujetado.

e Con el menu que aparece en la parte de arriba, es posible cargar una nueva bodega a
partir de la informacioén contenida en un archivo.

Vamos a utilizar este caso de estudio para generar habilidad en el uso de las nociones de
asignacion de responsabilidades, contratos y excepciones. Primero, vamos a explicar la
manera en que disefiamos e implementamos el mundo del brazo mecanico y luego vamos a
resolver algunos problemas en ese mundo.

Este caso también lo vamos a utilizar para introducir la técnica de dividir y conquistar, como
una manera natural de resolver problemas complejos.

8.1. Comprension y Construccion del Mundo
en Java

En el mundo del brazo mecanico existen tres entidades basicas: la bodega, el brazo y los
cubos. En la figura 4.13 se muestra el diagrama de clases, que nos resume el disefio que
hicimos para este problema. Debe ser claro que existen muchos otros disefios posibles,
pero éste lo construimos de manera particular para poder mostrar todos los aspectos
interesantes de este capitulo.

Fig. 4.13 Modelo conceptual del mundo del brazo mecanico

si @ brazz lewa un cubs
aavl va 2l zge = qua

|z repraserts
eon e surtssds
represerlaTes aaz
zepzrdenz a arlrz dos clases
czaslarlas pars reprezerlzr -
laz cua ro zirzccicres F o /
panboas da rovieients ARRIBA Cul 2
\-,_.___,__—-) ABAIC 0.1 | =
IZGUJIERDA | .

_ Colar color RS RS R
DERECEA | [1
vabelargiee :

i i int posX
atrisuss paraind sa- { ¥ l
as coorderadss oo .Jc|ef nilpesy l
de! rozet :
I
I
i
1 heeage)
i
i
alrizv o5 zara indisa- ok | 1 4
az drmzazicres de "\] Nt maxk 5 TEEEEE— |
It barreags int maxy 1
| ceuruE
UL FRa N el e ek s5mh raneegartann
cads oo urnnag s cukios o L vanTEr de suos

an u veclor

A continuacion mostramos la declaracién de las constantes y atributos de cada una de las
clases involucradas:

import java.awt.Color;

public class Cubo

{

private Color color;

e La declaracion de la clase Cubo es la mas sencilla del diagrama de clases. Cada cubo
tiene unicamente un color como atributo.
e Usamos la clase Color del paquete java.awt para modelar esta caracteristica.

public class BrazoMecanico

{

public static final int ARRIBA = 1;
public static final int ABAJO = 2;
public static final int IZQUIERDA = 3;
public static final int DERECHA = 4;

private int posX;

private int posY;

private Cubo cuboCargado;
private Bodega bodega;

La clase BrazoMecanico define cuatro constantes para identificar los cuatro
movimientos posibles que puede hacer dentro de la bodega.

Con los atributos posx y posy el brazo mecanico conoce su posicién dentro de la
bodega. El valor posx define la columna en la que se encuentra y el valor posy la
altura.

Si el brazo lleva agarrado un cubo, en el atributo cubocargado Se encuentra el objeto
que representa el cubo. Si no lleva ningun cubo agarrado, este atributo tiene el valor
null .

El ultimo atributo es la bodega en la cual se encuentra el brazo mecanico.

public class Bodega

{

private int maxX;
private int maxy;
private ArrayList columnas;

e Los atributos maxx y maxy se utilizan para representar las dimensiones de la bodega:
el primero dice el numero de columnas y el segundo el numero maximo de cubos por
columna.

e En el atributo "columnas" almacenamos las columnas de la bodega. En la posicidn x de
este vector, estara la columna x de la bodega. Cada columna a su vez estara
representada por un vector de cubos. En la figura 4.14 se ilustra esta estructura usando
un diagrama de objetos.

Fig. 4.14 Ejemplo de un diagrama de objetos para representar una bodega

s maxx = 2
2 8 i 2 maxy¥ = 3

g ‘l f
!
8 - — columnas= ./
. ; E
L & S — _BEN———

En la representacion que escogimos, es importante sefalar que cada columna es a su vez
un vector de cubos. En dicho vector, en la posicién 0 estara el cubo que se encuentra sobre
el piso (si existe alguno) y de ahi en adelante apareceran los demas cubos, siguiendo su
orden dentro de la columna.

8.2. Comprender la Asignacion de
Responsabilidades y los Contratos

En esta parte vamos a describir las responsabilidades asignadas a las clases:

e La clase Cubo tiene un atributo color y es responsable de dar la informacién de su
color. Como no esta previsto que los cubos cambien de color, no existe un método para
cambiar ese valor. Este es un ejemplo de un caso en el que puede imaginarse un
servicio que no hace falta prestar en relacion con un atributo.

e La clase Bodega es responsable de manejar sus columnas en donde se apilan los
cubos. Sabe construir una bodega a partir de unos datos de entrada y sabe responder
a las preguntas: ¢ hay un cubo en una posicion dada? y 4 cual es el tamafio de la
bodega?

La clase Bodega también sabe ubicar y eliminar un cubo de una posicion dada. Note que el
objeto Bodega trabaja en estrecha colaboracién con el BrazoMecanico. La figura 4.15
muestra la clase con los métodos que implementan las principales responsabilidades.

Fig. 4.15 Responsabilidades principales de la clase Bodega

métodos . .
constructores 7 { Bodega (int x, inty)
int darMaxX{)
int darMaxY()
métodos Cubo darCubo {int x, int y}

analizaderes ?

boolean hayCubofint x, int y)
boolean puedeDejarCubo (int x, int y)
int darFilaTopeColumna (int columna)

void agregarCubo (int x, int y, Cubo cubo)
void dejarCubo {int x, int y, Cubo cubo) throws Exception

modificadores

metodos Cubo recogerCubo (int x, int y) throws Exception
e

Para la clase BrazoMecanico tenemos lo siguiente:

e Ubicacion: el brazo sabe donde se encuentra ubicado dentro de la bodega (posx ,
posy). Por esta razon, tiene la responsabilidad de informar sobre su posicién:
darPosX() , darPosY() .

e Relacién con un cubo: tiene una asociacion de cardinalidad opcional con un cubo,
que representa la posibilidad de llevar agarrado un cubo. El brazo sabe si tiene 0 no un
cubo en la pinza, dependiendo de si la asociacion existe. Por esta razon, tiene la
responsabilidad de implementar un método que devuelva el cubo 0 null sino lleva

ninguno.

e Sensores: los sensores del brazo han sido modelados a través de servicios que el
cubo le solicita a la bodega. Por ejemplo, si el brazo necesita saber si en una posicion
de su vecindad inmediata (arriba, abajo, derecha o izquierda) hay un cubo, le solicita a
la bodega que haga la verificacion, dandole la posicion requerida para que ella
determine si hay o no un cubo ahi.

En la figura 4.16 se muestran las responsabilidades del brazo mecanico anteriormente
mencionadas, en términos de sus métodos analizadores y sus métodos modificadores.

Fig. 4.16 Responsabilidades principales del BrazoMecanico

con??:jjfﬁsres) { BrazoMecanico{Bodega miBodega)
int darPosX{}
int darPosY({)
métodos Cubo darCuboCargado ()

andlizadores E boolean tieneCubo()

boolean puedeMaverse {int direccion}
boolean detectarCubo {int direccion)

modificadores void agarrarCubo () throws Exception

métodas void mover {int direccion) throws Exception
—
void soltarCubo {} throws Exception

Tarea 8

Objetivo: Estudiar los contratos de los métodos disefiados para el caso del brazo
mecanico.

Genere la documentacion del proyecto n4 brazoMecanico y estudie los contratos de los
métodos de las clases Bodega, BrazoMecanico y Cubo. Responda las siguientes preguntas:

Explique cuales son los compromisos del método mover() de la clase BrazoMecanico.
¢ Qué pasa si tratamos de mover el brazo mecanico en alguna direccion y ésta no es
valida?

http://cupi2.uniandes.edu.co/sitio/images/cursosCupi2/apo1/ejemplos/codigos/n4_brazoMecanico.zip

Caso de Estudio N° 2: Un Brazo Mecanico

Explique cuales son los compromisos del método agarrarCubo() de la clase
BrazoMecanico. ;,Qué pasa si el brazo mecanico trata de agarrar un cubo (en la posicién
donde esta) y alli no hay ningun cubo?

Explique cuales son los compromisos del método dejarCubo() de la clase Bodega. ¢ Qué
pasa si se Intenta dejar un cubo en una posicion de la bodega y ésta no es valida?

406

Caso de Estudio N° 2: Un Brazo Mecanico

Explique cuales son las suposiciones del método puedeMoverse() de la clase
BrazoMecanico.

Explique cuales son las suposiciones del metodo darFilaTopeColumna() de la clase Bodega.

Explique cuales son las suposiciones del metodo puedeDejarCubo() de la clase Bodega.

407

Explique cuales son las responsabilidades del método detectarCubo() de la clase
BrazoMecanico.

¢, Cual es la diferencia entre el método recogerCubo() de la clase Bodega y el método
agarrarCubo() de la clase BrazoMecanico? ;Cual es exactamente la responsabilidad de
cada uno de ellos?

8.3. La Técnica de Dividir y Conquistar

Ahora que ya entendemos el mundo del brazo mecanico y que tenemos a la mano los
contratos de todos los métodos que ofrecen sus clases Cubo, BrazoMecanico y Bodega,
vamos a utilizarlos para resolver algunos problemas.

8.3.1. Reto 1

Suponga que el brazo mecanico se encuentra en la parte superior izquierda de la bodega, y
que en ella, en alguna posicién, hay un unico cubo. La tarea que debemos resolver es
lograr que el brazo mecanico lo encuentre y luego lo lleve a la columna 0 en la posicion del
piso. En la figura 4.17 aparece un ejemplo de una posible situacién inicial del problemay su
correspondiente situacion final.

Para enfrentar este reto, lo primero que debemos hacer es definir un plan de solucion. El
objetivo del plan de solucidon es descomponer el problema en problemas mas pequefios.
Una guia para hacerlo es identificar metas intermedias que nos vayan acercando a la
solucién completa. Nuestro plan para el primer reto puede ser:

e Meta 1: El brazo debe bajar hasta el piso.

e Meta 2: El brazo debe avanzar hacia la derecha y encontrar y agarrar el cubo que hay
en la bodega.

e Meta 3: El brazo debe llevar el cubo a la posicion 0, 0 de la bodega y dejarlo alli.

Fig. 4.17 Ejemplo de una situacion inicial y una situacion final para el reto 1

T | i r\
2 Beazo Mechnico e || (5] Brazo Mecirico =B]

Bordega | | Bodega |

{)

| !

K] B

A A
A A
‘°—|. opoién1 | [opeionz ‘|°|’ opoont || opeiinz |
| v
Mundo cargadal |os | e oy cube. | pa o hay cubo ||
J L =

Identificadas las metas intermedias, podemos resolver de manera aislada cada uno de los
subproblemas asociados vy, luego, reunir las soluciones que obtengamos. Si lamamos
bajarARecoger(), encontrarUnicoCubo() y volverAPosicion0() a los métodos que resuelven
cada uno de los subproblemas planteados anteriormente, la solucion global del reto 1
tendria la siguiente estructura:

public class

{

public void

{
bajarARecoger();
encontraruUnicoCubo();
volverAPosicion@();

e Construimos la solucion al problema a partir de la solucién de los métodos que nos van
a ayudar a cumplir cada una de las metas. La ventaja es que los métodos resultantes
son mas sencillos de construir, si cada uno se encarga unicamente de una parte del
problema.

Los tres métodos planteados deberian declararse como métodos privados, dado que no
esperamos que alguien externo los utilice.

Mientras no definamos los contratos exactos de los métodos, no podemos estar seguros de
que el metodo solucionReto1() esta terminado, pero por lo menos tenemos un borrador para
comenzar a trabajar.

Fijese que la precondicion del segundo de los métodos debe asegurarse en la
postcondicion del primero de ellos.

Por ahora, comencemos definiendo el contrato del método que resuelve el problema
completo.

¢ Qué iria en la precondicion? Una aproximacién es suponer que el robot efectivamente se
encuentra en donde dice el enunciado y suponer también que hay un unico cubo en la
bodega. Para evitar que el programa falle en caso de que esas suposiciones no sean
ciertas, vamos a dejar la precondicion vacia, y vamos a lanzar una excepcion si el estado
de la bodega no es exactamente como lo plantea el enunciado del reto. Esto nos lleva al
siguiente contrato:

/**
* Este método sirve para que el brazo mecanico localice el Unico cubo que hay en la
* bodega y lo lleve a la posicion de origen (coordenadas 0, 0).

* post: El brazo esta en la posicion de origen, al igual que el unico cubo
* de la bodega. E1 brazo no esta sujetando el cubo.

* @throws Exception Lanza una excepcion si el robot se choca en cualquier momento
* mientras trata de resolver el problema, debido a que el estado
* de la bodega no corresponde al enunciado.

* @throws Exception Lanza una excepcion si encuentra algun obstaculo para agarrar el
* cubo (por ejemplo, un segundo cubo sobre él).

*

/

public void solucionRetol throws Exception
{1

Comencemos ahora a construir los métodos para lograr cada una de las metas y, a medida
que los vayamos escribiendo, iremos refinando la solucion planteada anteriormente (si es
necesario).

Meta 1: Para lograr la meta 1, debemos mover el brazo hasta que su posicion en el eje Y
sea igual a 0 (es decir, el piso). Esto lo podemos lograr con una instruccion repetitiva para la
que podemos utilizar el patron de recorrido total.

private void throws Exception

{

for(int 1 = 0; 1 < bodega.darMaxY(); i++)

{
mover (ABAJO);

¢ |nicializamos la variable i en 0 e iteramos hasta llegar al numero maximo de cubos
de la bodega.

¢ Repetimos la instruccion de mover hacia abajo, incrementando en cada iteracion el
valor de la variable i .

e Puesto que el metodo mover() de la clase BrazoMecanico puede lanzar una excepcion
si se produce un choque, decidimos no atraparla y dejarla pasar al metodo principal. Es
la unica opcidn para evitar que el segundo metodo comience en un estado que no
cumple su precondicion. Ademas no habria en este método ninguna manera para
recuperarse del error.

La descripcién del reto dice que solo hay un cubo en la bodega en alguna posicion del piso.
Supongamos que quien invoca el metodo solucionReto1() no verifica que esto sea cierto y
que el estado inicial es algo como el mostrado en la figura 4.18. En ese caso, cuando el
brazo llega sobre el primer cubo y trata de seguir hacia abajo, el metodo mover(ABAJO) se
da cuenta que no puede hacerlo y dispara una excepcion. Al suceder el disparo de la
excepcion, se detiene la ejecucion del metodo y el control deberia llegar hasta una clase en
la interfaz de usuario, que deberia atraparla y desplegar un mensaje de error, como el que
se muestra en la figura 4.18.

Fig. 4.18 Error al tratar de mover el brazo sobre un cubo

4, Brazn Mesiriza SR | I e —m— =& 2 |

Bodega _|_\ [Bodega
(-

A | A
‘@. |_opoons || ovinz I‘l°i.|| opcién1 || opatinz
v v

Bundo cargato! 05 1N hay eubo |Fuago cargasol ks | o hay cube

Mensaie ==

L) mnmevimiento no se puede reaizar

Aceptar

Meta 2:

Para poder cumplir con la segunda meta, vamos a desarrollar el metodo
encontrarUnicoCubo(), el cual implementa el siguiente contrato:

Precondicion:

e El brazo esta en la posicion 0,0 de la bodega (aqui lo dejé la solucion a la meta 1).
Fijese que aqui lo podemos poner como una suposicion, ya que en nuestro metodo
vamos a utilizar esta informacion (sin necesidad de verificar que sea cierta).

Postcondicion:

e El brazo esta en la posicién donde se encuentra el cubo.
e El brazo ha agarrado el cubo.

El método va a disparar una excepcion si no puede cumplir con la postcondicion, debido a
que el estado de la bodega no es como se suponia. Note que las excepciones no
representan en ningun momento errores en el programa (no es que no podamos cumplir la
postcondicion porque el metodo esté mal escrito), sino situaciones anormales que estan
fuera del control del méetodo.

La implementacion del segundo método es la siguiente:

/**
* Busca y agarra el unico cubo que hay en el mundo.

* pre: E1 brazo esta en la posicion 0,0 de la bodega.
* <p>post: E1 brazo estd en la posicioén donde
* se encuentra el cubo y lo esta agarrando

* @throws Exception Si no encontrd un cubo o si el brazo se
* estrelldé contra una pila de cubos,

* dispara una excepcidn y detiene el brazo

*/

private void encontrarUnicoCubo throws Exception

{

boolean encontro = false;
Cubo cubo = null;

for(int i = 0; i <= bodega.darMaxX() && !encontro; i++)

{

cubo = bodega.darCubo(1,);

if(cubo != null)
{

encontro = true;,

}
else if(i < bodega.darMaxX())

{
try

{
mover (DERECHA);

}

catch(Exception e)

{

throw new Exception("Hay una pila de cubos");

if(encontro)
agarrarCubo();
else
throw new Exception("No hay ningun cubo");

e | a estrategia para resolver este problema es recorrer la posicion 0 de cada una de las
columnas hasta encontrar el cubo. Este problema corresponde a los que resuelve el
patrén de algoritmo de recorrido parcial sobre una secuencia.

e |a postcondicion afirma que el brazo queda en la posicion donde esta el cubo y lo tiene
agarrado. Por esta razon, si al final del recorrido sobre la bodega vemos que no habia
ningun cubo o el brazo se estrell6 contra una pila de cubos y que, por tanto, no

podemos cumplir con el contrato, disparamos una excepcion para informar del
problema.

e Cuando termina el ciclo, el brazo esta en la posicién donde se encuentra el cubo y lo
puede agarrar para cumplir asi con la meta 2.

¢ Note que si hay mas de un cubo en la bodega, el método termina satisfactoriamente
apenas encuentra el primer cubo sobre el piso y lo lleva a la posicion original.

e Si al tratar de mover el brazo a la derecha, el método mover(DERECHA) lanza una
excepcion, la atrapamos y la volvemos a lanzar con un mensaje mas significativo ("Hay
una pila de cubos").

Al final de la ejecucién de este méetodo pueden suceder tres cosas, las cuales se ilustran en
la figura 4.19. En el primer caso todo funciona y se cumple la postcondicion. En el segundo

caso se lanza una excepcion con el mensaje "Hay una pila de cubos" y el brazo queda en la
posicion que se muestra. En el tercer caso se lanza una excepcion con el mensaje "No hay

ningun cubo".

Fig. 4.19 Ejemplos de situaciones finales posibles

Caso de Estudio N° 2: Un Brazo Mecanico

Meta 3: La meta 3 dice que el cubo ha sido agarrado por el brazo y éste debe llevarlo a la
posicion 0,0.

El contrato que debe cumplir se resume de la siguiente manera: %o
Precondicién:

e El brazo esta agarrando un cubo y se encuentra a nivel del piso. Entre el punto en el
que esta el brazo y el origen de la bodega (coordenadas 0,0) no hay ningun cubo. Esto

415

lo podemos asegurar porque los métodos anteriores ya lo verificaron.
Postcondicién:

e El brazo esta en la posicion 0, 0.
¢ El unico cubo de la bodega esta en la posicidon 0, 0 de la bodega.
e El brazo no esta sosteniendo el cubo.

private void

{
try

{
for(int i = posX; i > 0; i--)
{
mover (IZQUIERDA);

}
soltarCubo();

3

catch(Exception e)

{

¢ La solucién corresponde de nuevo a una instruccion repetitiva donde se puede aplicar
el patron de recorrido total.

e Dado que el método exige en su precondicion que el camino hasta el origen esté
despejado y que el cubo esté efectivamente agarrado por el brazo, no existe ninguna
posibilidad de que se lance una excepcion.

e Pero como, de todos modos, la signatura del metodo mover() declara que éste puede
lanzar excepciones, el metodo volverAPosicion0() debe utilizar la instruccion try-catch
para atraparlas, aunque sabemos que nunca van a aparecer.

e Si no usamos la instruccion try-catch el compilador de Java va a mostrar un error,
advirtiéendonos que hay excepciones potenciales que no estamos atrapando.

8.3.2. Reto 2

El nuevo reto consiste en apilar los cubos que hay en la bodega en las primeras columnas
de la misma. En la figura 4.20 aparece un ejemplo del problema que se espera resolver. En
la parte izquierda aparece una posible situacién inicial y, en la parte derecha, el estado de la
bodega después de que el problema haya sido resuelto.

Antes de intentar escribir una linea de cddigo, debemos definir nuestro plan de soluciéon. Lo
mas facil es pensar que vamos a ir apilando los cubos en orden. Es decir, primero llenamos
la columna 0, luego, si aun quedan cubos, llenamos la columna 1 y asi sucesivamente
mientras haya cubos en el mundo para apilar. Entonces, nuestro plan global de solucién es
una instruccion repetitiva en la que hemos identificado una meta en cada ciclo que
corresponde a haber apilado cubos en una columna. Fijese que este caso es diferente al
anterior, en el sentido de que las tareas identificadas no son secuenciales sino anidadas.

Fig. 4.20 Ejemplo de situacion inicial y final para el reto 2

2] Braza Mecinic E— & Braza Mecénico
Rodega Bodega
; e
i ;
\ /!
i !
|. E— T |
| . . |
| ‘|°| .| | Solucionarrafo] || SocionarretoZ | ‘|°| .| i Solucionar rets 1 Sudmcionar reo 2
Mt cargadal | [H by cuber 1L 1ha o hay cubo_
» =

El siguiente fragmento de programa muestra el plan global de solucién, en términos de las
llamadas de los métodos que resuelven cada parte del problema.

class

{

public void throws Exception

{
boolean hayCubosPorApilar = true;
int i = 0;

while(i < bodega.darMaxX() && hayCubosPorApilar)
{

hayCubosPorApilar = apileEnColumna(i);

e Segun el plan de solucién, debemos desarrollar un método que llene una columna con
los cubos de las columnas posteriores.

e Con el plan de solucion cambiamos un problema complejo por uno un poco mas
sencillo.

e Este proceso lo podemos repetir tantas veces como queramos, hasta llegar a un
problema suficientemente simple para resolverlo directamente. En algunos casos la
descomposicion la hacemos en tareas secuenciales y en otros, en tareas que se
ejecutan dentro de un ciclo.

Con este plan de solucion, ahora debemos preocuparnos por el subproblema de apilar
cubos en una columna dada. Debemos hacer explicitos los supuestos que estamos
haciendo sobre este metodo y asi obtendremos su contrato.

private boolean int throws Exception

... 1

Para este subproblema, también podemos definir un plan de solucién. Lo primero que
debemos conocer para resolver el problema es cuantos espacios libres hay en la columna
para apilar cubos. Una vez que sabemos esto, podemos intentar apilar los cubos (si los hay)
de las columnas vecinas (en orden, a partir de la columna situada a la derecha de la
objetivo) sobre el tope de la columna objetivo.

Esta ultima estrategia es, de nuevo, una instruccion repetitiva y podemos aplicar el patrén
de recorrido parcial, donde la condicion del ciclo esta dada por una condicion que tiene en
cuenta si aun hay espacio libre para dejar cubos y si aun hay cubos en la bodega por apilar.

Tarea 9

Objetivo: Formalizar el plan de solucién del segundo reto y escribir los métodos que lo
implementan. Siga los pasos que se detallan a continuacién para resolver el segundo reto.

Caso de Estudio N° 2: Un Brazo Mecanico

Defina informalmente el plan de solucién para el método que apila cubos en una columna:

Escriba el método apileEnColumna en términos de otros métodos mas sencillos:

Escriba el cddigo del primero de los métodos que utilizo en el punto anterior. No olvide
definir explicitamente el contrato que debe cumplir:

419

Caso de Estudio N° 2: Un Brazo Mecanico

Escriba el cddigo del segundo de los métodos que utilizé en el punto anterior. No olvide
definir explicitamente el contrato que debe cumplir:

420

9. Hojas de Trabajo

9.1 Hoja de Trabajo N° 1: Venta de Boletas en
una Sala de Cine

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Analice el siguiente enunciado e identifique el mundo del problema, lo que se
espera de la aplicacion y las restricciones para desarrollarla.

Se quiere construir una aplicacidon que permita administrar una sala de cine. Esta aplicacién
permite hacer reservas y registrar sus pagos. La sala de cine tiene 220 sillas. De cada silla
se conoce:

¢ Fila a la que pertenece, representada por un valor entre Ay K.
e Numero de la silla, valor entre 1y 20.

e Tipo. Puede ser general o preferencial.

e Estado de la silla. Puede ser disponible, reservada o vendida.

El costo de boleta se determina segun el tipo de la silla, y esta a su vez se determina segun
su numero, de la siguiente manera:

e General: sillas en las filas A— H. Costo por boleta de $8,000.
e Preferencial: sillas en las filas | — K. Costo por boleta de $11,000.

Para poder adquirir una boleta, el cliente debe primero hacer una reserva. Cada cliente
puede reservar hasta 8 sillas. De cada reserva se conoce:

e Cédula de la persona que hizo la reserva.
e Sillas que hacen parte de la reserva. Estado de pago de la reserva.

El cliente puede pagar sus reservas en efectivo o utilizando la tarjeta CINEMAS. Esta tarjeta
le otorga a su duefio un descuento del 10% en sus boletas. De cada tarjeta se conoce:

e Ceédula del duefio de la tarjeta. No pueden existir dos tarjetas con la misma cédula.
e Saldo de la tarjeta: Cantidad de dinero disponible para pagar reservas.

Cuando se adquiere una tarjeta, el cliente debe cargar la tarjeta con un valor inicial de
$70,000. Cada tarjeta puede ser recargada una cantidad ilimitada de veces, sin embargo,
cada recarga se debe hacer por un monto de $50,000.

https://bit.ly/apo1-nivel4-hoja1-pdf-format
https://bit.ly/apo1-nivel4-hoja1-word-format

| & Sala de Cine

Informacion general

Dinera en caja: 0 PANTALLA bt |
Sillas disponibles: 220 Agregar reserva
Slilas vendidas: U RaservaActual
Tarjetas de Clientes Cédula;
Tarjetas Registradas ant | Aoz |anz | aes) aos| aos | ao7 lace | aoe | a0) at1d | A1z |ats | ate | ass] aqe | a7 | Aate |Ate | azo ExTatio P
E g1 |E12 |B12 |Bia| 15| Bre| B17 | B1e |B1g | 220 Eliminar reserva

Slilas reservadas

¥ Foz T F F F
) g 15
N“Wataljﬂtﬂ 1 } Hi4 i W | H1 H F A

Tarjeta Actual

Cédula: ol I R YR R [tes | et 5 1

Saldo: o Mo | i Jua | Jos 0y J0 JIE =00 a1 I I |Jik 1314 1 JIE 1 id neﬂ;s{m' rago

: Pagn en efectivo Pago con tarieta |

| Recargar Tarjeta Ko [woa | el | Kot | KOs | KOs | waT koS [Ke=] Kin] Kt | R | R KIS] K6 | KA IKAR | K2 | Kio

Opciones |
| Opcion 1 Opcion 2 |

La aplicacion debe permitir:

Crear una nueva tarjeta.

Recargar una tarjeta.

Crear una reserva.

Eliminar la reserva actual.

Pagar una reserva en efectivo.

Pagar la reserva con tarjeta CINEMAS.
Visualizar las sillas del cine.

© N o g~ wbd=

Visualizar el dinero en caja.

Requerimientos funcionales.Especifique los principales requerimientos funcionales que
haya identificado en el enunciado.

Requerimiento Funcional 1

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

423

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

424

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 4

425

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 5

426

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 6

427

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 7

428

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 8

429

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Modelo del mundo.Complete el modelo conceptual con los atributos y constantes de cada
clase, lo mismo que las asociaciones entre ellas.

430

Hojas de trabajo

Diagrama UML: Cine

Diagrama UML: Tarjeta

431

Hojas de trabajo

Diagrama UML: Silla

Diagrama UML: Reserva

432

Asignacion de responsabilidades. Decida, utilizando la técnica del experto, quién debe
encargarse de:

¢ Quién es el responsable de
crear una tarjeta CINEMAS?

¢ Quién es el responsable de
indicar si una silla esta
ocupada?

¢ Quién es el responsable de
decir las sillas que estan en una
reserva?

¢ Quién es el responsable de
saber el saldo de una tarjeta
CINEMAS?

¢ Quién es el responsable de
calcular el valor total de compra
de unas boletas?

Descomposicion de requerimientos funcionales. Indique los pasos necesarios para
resolver los siguientes requerimientos y sefale, al finalizar cada paso, quién deberia ser el
responsable de hacerlo.

Incrementar el saldo
de la tarjeta
CINEMAS.

1. Buscar la tarjeta CINEMAS por su coédigo (Cine).
2. Aumentar el valor de saldo de la tarjeta (Tarjeta).

Reservar un conjunto
de sillas.

Comprar boletas.

Cancelar una reserva.

Identificacion de excepciones. Segun los siguientes enunciados, indique qué posibles
excepciones se deben manejar. Para ello no haga ninguna suposicion sobre los datos de

entrada.
Dado un valor numérico, a. La tarjeta es nula
incrementar el saldo de b. El valor numérico es negativo.
una tarjeta. c. El valor numérico no es igual a $50.000.

Cambiar el estado de una
silla a ocupada.

Agregar una silla a una
reserva.

Elaboracion de contratos. Para los siguientes métodos, establezca su contrato. Tenga en

cuenta la clase en la que se encuentra el metodo.

Clase: Cine
Signatura

Precondicion sobre el
objeto:

Precondicion sobre los
parametros:

Postcondicion sobre el
objeto:

Postcondicion sobre el
retorno:

Método: Buscar una tarjeta dado su cédigo.

Tarjeta buscarTarjeta(String pCodigo)
El vector de tarjetas ha sido inicializado.

pCodigo debe ser diferente de null, pCodigo debe ser
diferente de la cadena vacia.

Ninguna.

Retorna la tarjeta que tiene el codigo pedido o null si dicho
codigo no existe.

Excepciones: Ninguna
Clase: Cine Método: Crear una tarjeta.
Signatura

Precondicion
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicion
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

Hojas de trabajo

Clase: Cine Meétodo: Calcular el porcentaje de boletas vendidas.

Signatura

Precondicion
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicion
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

Clase: Tarjeta Método: Incrementar el valor del saldo de la tarjeta.

Signatura

Precondicién
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicion
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

436

Hojas de trabajo

Clase: Tarjeta

Signatura

Precondicion
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicion
sobre el objeto:

Postcondicion

sobre el retorno:

Excepciones:

Clase: Reserva

Signatura

Precondicién
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicion
sobre el objeto:

Postcondicion

sobre el retorno:

Excepciones:

Método: Disminuir el valor del saldo de la tarjeta.

Método: Agregar una silla dada a la reserva.

437

Hojas de trabajo

Clase: Reserva

Signatura

Precondicion
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicion
sobre el objeto:

Postcondicion

sobre el retorno:

Excepciones:

Clase: Silla

Signatura

Precondicién
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicion
sobre el objeto:

Postcondicion

sobre el retorno:

Excepciones:

Método: Contar el numero de sillas en la reserva.

Meétodo: Cambiar el estado de la silla a ocupada.

438

9.2 Hoja de Trabajo N° 2: Un Sistema de
Préstamos

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Analice el siguiente enunciado e identifique el mundo del problema, lo que se
espera de la aplicacion y las restricciones para desarrollarla.

Se quiere construir una aplicacién para la Central de Préstamos de la Universidad, la cual
se encarga de manejar el préstamo de todos los recursos que la universidad ofrece a sus
estudiantes.

Los recursos pueden ser de cualquier naturaleza, se identifican con un codigo y tienen

ademas un nombre. Los cédigos son unicos, pero los nombres pueden repetirse. Cada
recurso que se quiera prestar a los estudiantes debe ser registrado en la aplicacién. Un
recurso se puede prestar sélo si esta disponible, es decir que no se ha prestado a otro

estudiante.

Un estudiante se identifica por su cédigo, que también es unico, y tiene un nombre que
eventualmente otro estudiante también podria tener. Para que un estudiante pueda prestar
algun recurso debe registrarse. Si el estudiante no esta registrado no se le prestara ningun
recurso.

Un estudiante se identifica por su cédigo, que también es unico, y tiene un nombre que
eventualmente otro estudiante también podria tener. Para que un estudiante pueda prestar
algun recurso, debe registrarse. Si el estudiante no esta registrado, no se le prestara ningun
recurso.

La aplicacion debe permitir:

Agregar un recurso

Agregar un estudiante

Prestar un recurso disponible

Consultar los préstamos de un estudiante
Consultar la informacion de un préstamo

o ok~ DN~

Devolver un recurso prestado

Hojas de trabajo

|2 Central de Préstamos Uniandes = s

Recursos
Disponibles
H67-Libro el
Agregar
Prestar
Prestados
7F89-Ragqueta — Devohver
Consultar
Estudiantes
Registrados
201224652-Maria]
Agregar
Consultar

[4]

Opcidn 1 Opcion 2

Requerimientos funcionales. Especifique los principales requerimientos funcionales que
haya identificado en el enunciado

Requerimiento Funcional 1

440

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

441

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

442

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 4

443

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 5

444

https://bit.ly/apo1-nivel4-hoja2-pdf-format
https://bit.ly/apo1-nivel4-hoja2-word-format

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 6

445

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Modelo del mundo. Complete el modelo conceptual con los atributos y constantes de cada
clase, lo mismo que las asociaciones entre ellas.

446

Hojas de trabajo

Diagrama UML:CentralPrestamos

Diagrama UML: Estudiante

447

Hojas de trabajo

Diagrama UML: Recurso

Asignacion de responsabilidades. Decida, utilizando la técnica del experto, quién debe
encargarse de:

448

¢Quién es el responsable de
registrar un nuevo recurso para
prestar?

¢ Quién es el responsable de
registrar a un nuevo estudiante para
que pueda pedir recursos?

¢ Quién es el responsable de
registrar el préstamo de un recurso
a un estudiante?

¢ Quién es el responsable de
registrar la devolucion de un recurso
prestado?

¢ Quién es el responsable de decir
si un recurso esta disponible o no?

Descomposicion de requerimientos funcionales. Indique los pasos necesarios para
resolver los siguientes requerimientos y sefale, luego de cada paso, quién deberia ser el
responsable de hacerlo.

1. Buscar el recurso que se va a prestar.

(CentralPrestamos)

2. Validar si el recurso esta disponible. (Recurso)
Prestar un recurso a un 3. Buscar al estudiante a quién se le prestara el
estudiante. recurso. (CentralPrestamos)

4. Asignar el recurso al estudiante. (Recurso)

5. Agregar el recurso a los recursos prestados al

estudiante. (Estudiante)

Registrar un nuevo
estudiante en la central de
préstamos.

Buscar un recurso en la
central de préstamos.

Registrar la devolucion de
un recurso prestado.

Identificacion de excepciones. Segun los siguientes enunciados, indique qué posibles
excepciones se deben manejar. Para ello no haga ninguna suposicion sobre los datos de
entrada.

a. El cédigo del recurso es invalido.
Registrar un nuevo recurso b. El nombre del recurso es nulo o es una cadena
en la central de préstamos. vacia

c. El cédigo del recurso ya ha sido registrado

Retirar un recurso de la lista
de re- cursos prestados a un
estudiante.

Elaboracion de contratos. Para los siguientes métodos, establezca su contrato. Tenga en
cuenta la clase en la que se encuentra el méetodo.

Clase:
CentralPrestamos

Signatura

Precondicion sobre
el objeto:

Precondicion sobre
los parametros:

Postcondicion
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

Clase:
Estudiante

Signatura

Precondicion
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicién
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

Método: Registrar un estudiante en la central de préstamos
a partir de su nombre y cédigo.

void agregarEstudiante(String pNombre, int pCodigo) throws
Exception

El vector de estudiantes ha sido inicializado.

pNombre debe ser diferente de null, pNombre debe ser diferente
de la cadena vacia. pCodigo debe ser un codigo valido.

Un nuevo estudiante se agrega a la lista de estudiantes de la
central con el nombre y el cédigo dados.

Ninguna.

Si el codigo ya esta registrado en el vector de estudiantes.

Método: Dado el cédigo del recurso, retirar el recurso de la
lista de préstamos del estudiante.

Hojas de trabajo

Clase: Recurso Método: Prestarse a un estudiante dado.

Signatura

Precondicion
sobre el objeto:

Precondicion
sobre los
parametros:

Postcondicion
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

452

Hojas de trabajo

Clase: Meétodo: Registrar un nuevo recurso en la central de
CentralPrestamos préstamos a partir de su nombre y cédigo.

Signatura

Precondicion sobre
el objeto:

Precondicion sobre
los parametros:

Postcondicion
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

453

Hojas de trabajo

Clase: Método: Buscar y retornar un recurso de la central de
CentralPrestamos préstamos a partir de su codigo.

Signatura

Precondicion sobre
el objeto:

Precondicion sobre
los parametros:

Postcondicion
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

454

Hojas de trabajo

Clase: Método: Prestar un recurso a un estudiante, a partir de
CentralPrestamos los codigos del estudiante y del recurso.

Signatura

Precondicion sobre
el objeto:

Precondicion sobre
los parametros:

Postcondicion
sobre el objeto:

Postcondicion
sobre el retorno:

Excepciones:

455

CONSTRUCCION DE LA
INTERFAZ GRAFICA

e
w

iPhone Format

Monitor Format

o do s tompor iy

suif o 08 commads corsedquat

Written by John Doe

1. Objetivos Pedagodgicos

Al final de este nivel el lector sera capaz de:

e Explicar la importancia de la interfaz de usuario dentro de un programa de computador,
teniendo en cuenta que es el medio de comunicacion entre el usuario y el modelo del
mundo.

¢ Proponer una arquitectura para un programa simple, repartiendo de manera adecuada
las responsabilidades entre la interfaz de usuario, el modelo del mundo y las pruebas
unitarias. El lector debera poder explicar la importancia de mantener separadas las
clases de esos tres dominios.

e Construir las clases que implementan una interfaz de usuario sencilla e integrarlas con
las clases que implementan el modelo del mundo del problema.

2. Motivacion

La interfaz de usuario es el medio de comunicacién entre el usuario y el modelo del mundo,
tal como se sugiere en la figura 5.1. Através de la interfaz, el usuario expresa las
operaciones que desea realizar sobre el modelo del mundo y, por medio de la misma
interfaz, el usuario puede apreciar el resultado de sus acciones. Es un medio que permite la
comunicacién en los dos sentidos. La interfaz de usuario ideal es aquella en la que la
persona siente que esta visualizando e interactuando directamente con los elementos del
modelo del mundo, y que esto se hace a través de un proceso sencillo y natural.

Fig. 5.1 La interfaz de usuario como medio de comunicacién

. El usuario oprime 2. Se genera 3. Recibe el evento
un botén un evento y lo traduce en llamadas
// de métodos
5
INTERFAZ
USUARTO

H. Llama el métede sobre

R_/ algin ohjefo del mundo
modelo del

roundo

rangosimpuesto

5
= i

Siempre que utilizamos un programa de computador, esperamos que sea agradable y facil
de utilizar. Aunque es dificil dar una definicion precisa de lo que significa agradable, hay
condiciones minimas que influyen en esta percepcion, que se relacionan con la
combinacion de colores, la organizacion de los elementos en las ventanas, los graficos, los

tipos de letra, etc. La propiedad de facilidad de uso, por su parte, esta mas relacionada con
el hecho de que los elementos de interaccion se comporten de forma intuitiva (por ejemplo,
si existe un botdén con la etiqueta "cancelar" se espera que aquello que se esta realizando
se suspenda al oprimir este boton) y también, con la cantidad de conocimiento que el
usuario debe tener para utilizar el programa.

e Lainterfaz es el medio para que el usuario pueda interactuar con el modelo del mundo.

e Estambién una ventana para que el usuario pueda visualizar el estado del mundo.

e Lainterfaz debe ser amigable y facil de usar, de manera que el usuario se sienta
comodo utilizando el programa y no cometa errores debido a cuestiones que no son
claras para él.

e Lainterfaz debe ser capaz de interpretar las acciones de los usuarios (expresadas
como eventos) y llamar los métodos que ejecutan lo que él pide.

La razdén de darle importancia a este aspecto es muy sencilla: si el usuario no se siente
comodo con el programa, no lo va a utilizar o lo va a utilizar de manera incorrecta. En la
mayoria de los proyectos, se dedica igual cantidad de esfuerzo a la construccion de la
interfaz que al desarrollo del modelo del mundo.

Hay dos aspectos de gran importancia en el disefo de la interfaz: el primer aspecto tiene
que ver con el disefno funcional y grafico (los colores que se deben usar, la distribuciéon de
los elementos graficos, etc.). En eso debe participar la mayoria de las veces un disefiador
grafico y es un tema que esta por fuera del alcance de este libro.

El segundo aspecto es la parte de la organizacién de las clases que van a conformar la
interfaz y, de nuevo, este aspecto tiene que ver con la asignacion de responsabilidades que
discutimos en el nivel anterior.

Hay muchas formas distintas de estructurar una interfaz grafica. Podriamos, por ejemplo,
construir una sola clase con todos los elementos que el usuario va a ver en la pantalla 'y
todo el cédigo relacionado con los servicios para recibir informacion, presentar informacion,
etc. El problema de esta solucion es que seria muy dificil de construir y de mantener. Un
buen diseno en este caso se refiere a una estructura clara, facil de mantener y que sigue
reglas que facilitan localizar los elementos que en ella participan. Esa es la principal
preocupacion de este nivel: como estructurar la interfaz de usuario y como comunicarla con
las clases del modelo del mundo, sin mezclar en ningun momento las responsabilidades de
esos dos componentes de un programa. De algun modo las acciones del usuario se deben
convertir en eventos, los cuales deben ser interpretados por algun elemento de la interfaz y
traducidos en llamadas a métodos de los objetos del modelo del mundo (ver figura 5.1).

Para la construccion de las interfaces de usuario, los lenguajes de programacién proveen
un conjunto de clases y mecanismos ya implementados, que van a facilitar, en gran medida,
el trabajo del programador. Dicho conjunto se denomina un framework o, también, biblioteca

grafica. Construir una interfaz de usuario se convierte entonces en el uso adecuado y en la
especializacion de los elementos que alli aparecen disponibles. Nosotros trabajaremos en
este nivel sobre swing y awt, el framework sobre el que se basan la mayoria de las
interfaces graficas escritas en Java.

3. El Caso de Estudio

En este caso de estudio queremos construir un programa que permita a una persona
calcular el valor de los impuestos que debe pagar por un automovil. Para esto, el programa
debe tener en cuenta el valor del vehiculo y los descuentos que contempla la ley.

Un vehiculo se caracteriza por una marca (por ejemplo, Peugeot, Mazda), una linea (por
ejemplo, 206, 307, Allegro), un modelo, que corresponde al afio de fabricacion (por ejemplo,
2016, 2017), y un precio.

Para calcular el valor de los impuestos se establecen ciertos rangos, donde cada uno tiene
asociado un porcentaje que se aplica sobre el valor del vehiculo. Por ejemplo, si se tiene
que los vehiculos con precio entre 0 y 30 millones deben pagar el 1,5% del valor del
vehiculo como impuesto anual, un automovil avaluado en 10 millones debe pagar $150.000
al ano. La siguiente tabla resume el porcentaje de impuestos para los cuatro rangos de
valores en que han sido divididos los automoviles.

e Entre 0y 30 millones, pagan el 1,5% de impuesto.

e Mas de 30 millones y hasta 70 millones, pagan el 2,0% de impuesto.
* Mas de 70 millones y hasta 200 millones, pagan el 2,5% de impuesto.
e Mas de 200 millones, pagan el 4% de impuesto.

Esta tabla se debe poder cambiar sin necesidad de modificar el programa, lo cual implica
que pueden aparecer nuevos rangos, modificarse los limites o cambiar los porcentajes.

En el caso que queremos trabajar, estan definidos tres tipos de descuentos:

1. Descuento por pronto pago (10% de descuento en el valor del impuesto si se paga
antes del 31 de marzo).

2. Descuento para vehiculos de servicio publico ($50.000 de descuento en el impuesto
anual).

3. Descuento por traslado del registro de un automdvil a una nueva ciudad (5% de
descuento en el pago).

Estos descuentos se aplican en el orden en el que acabamos de presentarlos. Por ejemplo,
si el vehiculo debe pagar $150.000 de impuestos, pero tiene derecho a los tres descuentos,
deberia pagar $80.750, calculados de la siguiente manera:

e 150.000 — 15.000 = 135.000 (Primer descuento: 150.000 * 10% = 15.000)
e 135.000 - 50.000 = 85.000 (Segundo descuento: 50.000)
e 85.000 — 4.250 = 80.750 (Tercer descuento: 85.000 * 5% = 4.250)

El disefo de la interfaz de la aplicacion (figura 5.2) trata de organizar los elementos del
problema en zonas de trabajo faciles de entender y utilizar por el usuario. Como se puede
ver, después de la la imagen con el nombre de la aplicacion hay una zona que tiene como
objetivo mostrar la informacién sobre un vehiculo y permite navegar por los vehiculos
existentes en la aplicacion. Después, hay una zona que permite buscar un vehiculo por
linea o marca y encontrar el vehiculo mas caro. Luego hay una zona que permite
seleccionar los descuentos que se desean aplicar. Finalmente, en la parte inferior se tiene

una zona donde se ofrece la opcion de calcular el impuesto a pagar por el vehiculo actual,
asi como 2 opciones adicionales.

Fig. 5.2 Disefio de la interfaz de usuario del caso de estudio

|£| Célculo impuestas i — >

CALCULADOR

IMPUESTOS

Datos del vehiculo

Marca Ford

Linea Taurus

Modelo 2016

Yalor F 136,340,000

e < Y LA
Bisguedas
| Buscar por linea
| Buscar por marca
Buscar vehiculo mas Caro

Descuentos
[] Pronto pago [] Traslado de cuenta

[] Servicio piblico

Opciones

Calcular Opcion 1 Opcion 2

e La ventana del programa esta dividida en cinco zonas: en la primera esta la imagen con
el titulo, en la segunda los datos del vehiculo, en la tercera las opciones de busqueda,
en la cuarta la seleccidén de descuentos, y en la quinta las opciones que provee la
aplicacion.

e El botdon << permite visualizar el primer vehiculo de la lista.

e El boton < permite visualizar el vehiculo anterior.

¢ El boton > permite visualizar el vehiculo siguiente.

e El boton >> permite visualizar el ultimo vehiculo de la lista.

e El boton Buscar por linea permite visualizar el primer vehiculo que encuentre con la
linea ingresada por el usuario.

e El boton Buscar por marca permite visualizar el primer vehiculo que encuentre con la
marca ingresada por el usuario.

¢ El boton Buscar vehiculo mas caro permite visualizar el vehiculo con mayor valor.

¢ En la zona de descuentos, el usuario debe seleccionar los descuentos que quiere
aplicar.

¢ El boton calcular muestra un mensaje con el valor total que debe pagar el usuario por el
vehiculo mostrado actualmente, incluyendo los descuentos seleccionados.

e Los botones Opcion 1y Opcion 2 todavia no tienen una funcionalidad asignada.

Fijese que cada zona (menos la primera) tiene un borde y un titulo.

Si el usuario intenta hacer hacer una busqueda sin haber dado la informacién necesaria, el
programa debe informarle del problema utilizando una ventana de didlogo, como se muestra
en la figura 5.3.

Fig. 5.3 Mensaje de la interfaz al usuario

Buscar por linea # || |Buscar por rmarca b4

|é\| Debe ingresar una linea. |é\| Debe ingresar una marca.

Aceptar Aceptar

Si el usuario trata de navegar una consulta sobre un vehiculo cuya informacion no esta
registrada en el programa, se debe presentar la advertencia que aparece en la figura 5.4.

Fig. 5.4 — Mensaje de la interfaz al usuario

Wer primer wehiculo >

A ¥a se encuentra en el primer vehiculo.

Aceptar

Wer dltimo wehiculo = IWerwehiculo anterior oo

A Ya se encuentra en el Gitimo vehiculo. A Se encuentra en el primer vehiculo.

Aceptar Aceptar

Werwehiculo siguiente -

A Se encuentra en el (ltimo vehiculo.

Aceptar

Cuando el usuario selecciona la opcion calcular, se debe presentar un mensaje con el valor
a pagar, como se muestra en la figura 5.5.

Fig. 5.5 — Mensaje de la interfaz al usuario

Calcular impuestos b4

e

"\l_) El valor a pagar es: $ 3,067,650

Aceptar

3.1. Comprension de los requerimientos

A partir de la descripcion del caso de estudio, podemos identificar al menos seis
requerimientos funcionales:

1. Navegar entre vehiculos.

2. Buscar un vehiculo por linea.

3. Buscar un vehiculo por marca.

4. Buscar el vehiculo mas caro.

5. Calcular el impuesto de un carro.

6. Visualizar la informacion de un vehiculo.

El Caso de Estudio

Tarea 1

Objetivo: Entender los requerimientos funcionales del caso de estudio.

Lea detenidamente el enunciado del caso de estudio, identifique los seis requerimientos
funcionales y complete su documentacion.

Requerimiento funcional 1

Nombre

Resumen

Entradas

Resultado

ERED

Requerimiento funcional 2

465

El Caso de Estudio

Nombre

Resumen

Entradas

Resultado

ERED

Requerimiento funcional 3

466

El Caso de Estudio

Nombre

Resumen

Entradas

Resultado

ERED

Requerimiento funcional 4

467

El Caso de Estudio

Nombre

Resumen

Entradas

Resultado

ERED

Requerimiento funcional 5

468

El Caso de Estudio

Nombre

Resumen

Entradas

Resultado

ERED

Requerimiento funcional 6

469

Nombre

Resumen

Entradas

Resultado

ERED

3.2. Comprension del Mundo del Problema

En el modelo conceptual aparecen tres entidades con la estructura que se muestra en la
figura 5.6. Dichas entidades son:

1. El calculador de impuestos (clase Calculadorimpuestos).

2. El vehiculo (claseVenhiculo).

3. Un rango de precios al que se le asocia un porcentaje de impuestos (clase
Rangolmpuesto).

Fig. 5.6 Diagrama de clases del caso de estudio

Constantes pora

representor los

porcentajes de
descuento

\\{

PORC_DESC PRONTO_PAGO
VALOR DESC_SERVICIQ_PUBLICQ
PORC OFSC TRASLADO CUENTA

Hay rangos distintos
de impuestos, cada
una con un pDFCFn'I'ﬂJP
asignade

%
\x“~=+;

rangesimpuesto

Tarea 2

Objetivo: Entender la estructura y las entidades del modelo conceptual del caso de estudio.

string linaa
Siring marca
string anlo
double pracio

Para el rango definido
por los atributos
“inicio® y 'fin*, se

define el por‘cen‘i‘nje
que deben pagar los
vehiculos

Rangt
double {nicro |
dowhie fin ‘
double parcemtsfe

Lea de nuevo el enunciado del problema y estudie el diagrama de clases de UML que

aparece en la figura 5.6. Para cada clase describa las constantes, los atributos y las

asociaciones que aparecen en el diagrama.

Clase Calculadorimpuestos:

Constantes:

Asociaciones:

El Caso de Estudio

Clase Vehiculo:

Atributos:

Clase Rangolmpuesto:

Atributos:

472

3.3. Definicion de los Contratos

Describimos a continuacién los contratos de los principales métodos de la clase
Calculadorimpuestos. Estos son los métodos que invocaremos desde la interfaz para pedir
los servicios que solicite el usuario, pasandoles como parametros la informacion que éste
ingrese.

Meétodo constructor:

L
* Crea un calculador de impuestos, cargando la informacion de dos archivos.

* post: Se inicializaron los arreglos de vehiculos y rangos.

* Se cargaron los datos correctamente a partir de los archivos.

* @throws Exception Si hay algun error al tratar de leer los archivos.

*/

public CalculadorImpuestos throws Exception

{ ...}

Leyendo este contrato podemos deducir tres cosas: el constructor sabe dénde encontrar
sus archivos para leerlos (no es nuestro problema definir su localizacion), el contenido de
dichos archivos debe ser correcto (el meétodo no va a hacer ninguna verificacion interna) y si
hay algun error fisico de lectura de los archivos, va a lanzar una excepcion que debera
atrapar quien llame al constructor.

En algun punto de la interfaz de usuario, con la instruccion que aparece a continuacion,
vamos a construir un objeto que representara el modelo del mundo. Dicha instruccién debe
encontrarse dentro de un try-catch que nos permita atrapar la excepcion que puede
generarse.

CalculadorImpuestos calculador = new CalculadorImpuestos();

Calcular pago de impuesto:

/**

*

*

*/

Calcula el pago de impuesto que debe hacer el vehiculo actual.

pre: Las listas de rangos y vehiculos estan inicializadas.

@param pDescProntoPago Indica si aplica el descuento por pronto pago.

@param pDescServicioPublico Indica si aplica el descuento por servicio publico.
@param pDescTrasladoCuenta Indica si aplica el descuento por traslado de cuenta.
@return Valor por pagar de acuerdo con las caracteristicas del vehiculo y los
descuentos que se pueden aplicar. Si no encuentra un rango para el modelo devuelve 0

double calcularPago(boolean pDescProntoPago, boolean pDescServicioPublico, boolean pD

escTrasladoCuenta)

...

}

Este caso esta orientado a la construccion de la interfaz del programa, por lo que

suponemos que ya se han implementado el modelo conceptual y las pruebas unitarias del

mismo.

En las préximas secciones vamos a estudiar:

1.
2.
3.

Cbémo se organizan los elementos graficos de la interfaz de usuario en clases Java.
Cbémo se asignan las responsabilidades.
Cbomo se maneja la interaccion con el usuario.

Todo esto se ilustrara con el programa del caso de estudio, el cual construiremos paso a

paso, dando respuesta a los tres puntos planteados anteriormente.

4. Construccion de Interfaces Graficas

En este nivel vamos a estudiar una manera de construir interfaces de usuario para
problemas pequenos. El diseno grafico de estas interfaces incluye una ventana en la que
aparece un formulario sencillo, el cual cuenta con algunos campos de edicion y algunos
botones para activar los requerimientos funcionales. Muchos de los elementos que se
necesitan para crear una interfaz un poco mas completa estan por fuera del tema de este
libro. El objetivo es estudiar unicamente lo indispensable para hacer una interfaz de usuario
elemental. En particular, quedan por fuera todos los elementos de visualizacién e
interaccion que permiten manejar grupos de valores, de manera que, en algunos de los
casos de estudio del libro, la interaccién puede parecer un poco artificial.

Existen herramientas que permiten crear parcialmente el cédigo en Java de la interfaz a
partir de una descripcion de la misma que se crea usando un editor grafico. Pero en este
nivel vamos a construir manualmente todos los elementos, puesto que es el unico medio
que tenemos de explorar a fondo la arquitectura del programa.

La buena noticia es que en la interfaz de usuario vamos a trabajar usando los mismos
elementos e ideas que hemos utilizado hasta ahora. Alli vamos a encontrar clases,
meétodos, asociaciones, instrucciones iterativas, etc., y los vamos a expresar por medio de
los mismos formalismos que hemos venido utilizando. El diagrama de clases de la interfaz,
por ejemplo, se expresara en UML. La diferencia es que en lugar de trabajar con las
entidades del mundo del problema, vamos a trabajar con las entidades del mundo grafico y
de interaccién. En vez de tener conceptos como estudiante, tienda y banco, vamos a tener
entidades como ventana, botdn, campo de texto, etc. Por lo demas, es aplicar lo que ya
hemos aprendido a un mundo con otro tipo de elementos.

Nuestra estrategia de disefo consiste en identificar los elementos de la interfaz que tienen
un propdésito comun y, para cada grupo de elementos, crear una clase. Si revisamos el
diseno grafico de la interfaz en la figura 5.2 podemos ver que ésta estara compuesta de seis
clases principales: una que represente la ventana principal, otra que represente la zona de
informacion del vehiculo, una zona para la navegacion, una zona para las busquedas, una
zona de descuentos y la ultima para la zona de las opciones. En la figura 5.7 aparece el
diagrama de clases de la interfaz de usuario del caso de estudio. En esa figura se muestra
la asociacion que existe entre una clase de la interfaz (la clase InterfazimpuestosCarro) y
una clase del mundo del problema (la clase Calculadorimpuestos). Es usando dicha
asociacion que vamos a hacer las llamadas hacia el modelo del mundo.

Fig. 5.7 Diagrama de clases de la interfaz de usuario para el caso de estudio

El objetivo de este nivel es explicar la manera de construir el diagrama de clases de la
interfaz de usuario y, posteriormente, implementarlo en Java usando swing y awt.

Hay dos aspectos practicos que debemos tratar antes de seguir adelante: el primero es que
las clases del framework swing estan en el paquete javax.swing Yy en el paquete

java.awt. Esto significa que estos paquetes o alguno de sus subpaquetes deben ser
importados cada vez que se quiera incluir un elemento grafico. El segundo aspecto es que
algunas de las clases de swing han ido cambiando segun la version del lenguaje. Lo que
aparece en este libro vale para las versiones posteriores a Java 5. En todo caso, la
adaptacion a las versiones anteriores es trivial, y en la mayoria de los casos se reduce a
una simple transformacién en las llamadas de los métodos.

Comencemos con la tarea 3, en la que el lector debe tratar de identificar las entidades del
mundo de la interfaz.

Tarea 3

Objetivo: Identificar intuitivamente las entidades, los atributos, las asociaciones y los
meétodos que forman parte de una interfaz grafica.

1. Enumere al menos 8 elementos graficos que pueden aparecer en una interfaz grafica
cualquiera (piense en elementos como ventana, boton, etiqueta, etc.).

2. Dibuje el diagrama de clases relacionando los elementos antes identificados por medio
de asociaciones.

3. Complete la descripcion de cada clase con los principales atributos que deberia tener.

4. Agregue al diagrama de clases las signaturas de los métodos que reflejen las
principales responsabilidades de cada uno de ellos.

Construccion de Interfaces Graficas

Identifique al menos 8 elementos de una interfaz de usuario. Piense en los elementos que
forman parte de la interfaz de un programa:

Para la clase que representa la ventana principal del programa, trate de identificar sus
atributos. Guiese por las caracteristicas que debe tener.

Dibuje el diagrama de clases con los elementos de una interfaz de usuario cualquiera:

477

Construccion de Interfaces Graficas

Puede usar el siguiente diagrama como guia:

Ventana

478

5. Elementos Graficos Estructurales

5.1. Creacidn de la Ventana Principal

La ventana principal de la interfaz de usuario es la encargada de contener todos los
elementos de visualizacion e interaccion, por medio de los cuales el usuario va a utilizar el
programa. Su unica funcién es servir como marco para los demas elementos de la interfaz.
Tipicamente, la ventana tiene en la parte superior derecha los controles para cerrar el
programa, minimizar y cambiar de tamafo. Cuenta también con una zona para presentar un

titulo, como se ilustra en la figura 5.8.

Fig. 5.8 Visualizacion de la ventana principal

|£| Célculo impuestas + i >

Una ventana es el primer ejemplo de lo que se denomina un contenedor grafico. Al igual
que con las estructuras contenedoras que manejabamos en el modelo del mundo, un
contenedor grafico esta hecho para incluir dentro de él otros elementos graficos mas
sencillos: es un medio para agrupar y estructurar componentes de visualizacion e
interaccion. De alguna manera, dentro de una ventana, vamos a poder incluir las zonas de
texto, los menus, los iconos, etc.

Una ventana es un objeto de una clase que se ha declarado de una manera particular
(clase InterfazimpuestosCarro en el caso de estudio). Esta ventana principal va a contener
la imagen con el titulo y cuatro de las zonas de trabajo que mencionamos antes y sus
responsabilidades principales estan relacionadas con la creacion y organizacion visual de
las zonas de trabajo.

La clase que representa la ventana principal (InterfazimpuestosCarro en nuestro ejemplo),
al igual que cualquier clase del modelo del mundo, debe estar declarada en su propio
archivo Java, siguiendo las mismas reglas definidas en los niveles anteriores. La unica
diferencia es que, como la clase pertenece a otro mundo distinto (el mundo grafico), la
vamos a situar en otro paquete. En el caso de estudio, por ejemplo, todas las clases de la
interfaz van a estar en el paquete uniandes.cupi2.impuestosCarro.interfaz .

Para que la ventana principal tenga el comportamiento estandar de una ventana, como
minimizarse, cerrarse o moverse cuando el usuario la arrastra, debemos indicar que nuestra
clase es una extension de una clase de un tipo particular llamado JFrame. Esta es una
clase predefinida del framework swing, que tiene ya implementados los métodos para que la
ventana se comporte de la manera esperada y no nos toca a nosotros, cada vez que
hacemos una ventana, escribir el codigo para que se pueda mover, cerrar, etc.

Ejemplo 1
Objetivo: Presentar la manera de declarar en Java la clase que implementa la ventana de
una interfaz de usuario.

En este ejemplo presentamos la declaracién de la clase InterfazlmpuestosCarro, la cual va
a implementar la ventana de la interfaz para el caso de estudio. El codigo que se presenta
en este ejemplo debe ir dentro del archivo InterfazimpuestosCarro.java, el cual se ira
completando en los ejemplos de las secciones siguientes.

Al final del ejemplo estudiamos la representacion de la clase en UML.

package uniandes.cupi2.impuestosCarro.interfaz;

import java.awt.*;
import javax.swing.*;

import uniandes.cupi2.impuestosCarro.mundo.*;

public class extends

{

e La clase se declara dentro del paquete de las clases de la interfaz de usuario.
e Se importan las clases swing de los dos paquetes indicados (swing y awt).
e Se importan las clases del modelo del mundo. Debido a que estan en un paquete

distinto, es indispensable especificar su posicion.

e La clase se declara con la misma sintaxis de las clases del modelo del mundo. La unica
diferencia es que se agrega en la declaracion el término extends JFrame para indicar
que es una ventana.

e JFrame es la clase en swing que implementa las ventanas.

e En UML vamos a utilizar lo que se denominan estereotipos para representar las clases
de la interfaz. Eso quiere decir que, en cada clase, se hace explicita la clase del
framework swing que esa clase esta extendiendo.

¢ Al extender la clase JFrame, tenemos derecho a utilizar dentro de nuestra clase todos
sus meétodos.

Las preguntas ahora son dos: cémo hacemos para poner los elementos graficos dentro de
una ventana? y cémo hacemos para modificar sus caracteristicas? La respuesta a estas
dos preguntas es la misma: tenemos un conjunto de métodos implementados en la clase
JFrame, que podemos utilizar para cambiar el estado de la ventana. Con estos métodos,
vamos a poder cambiar el titulo de la ventana, su tamafo o agregar en su interior otros
componentes graficos.

Algunos de los principales métodos que podemos usar con una ventana son los siguientes
(la lista completa se puede encontrar en la documentacion de la clase JFrame):

¢ setSize(ancho, alto): este método permite cambiar el alto y el ancho de la ventana.
Los valores de los parametros se expresan en pixeles.

¢ setResizable(cambiable): indica si el usuario puede o0 no cambiar el tamario de la
ventana.

e setTitle(titulo): cambia el titulo que se muestra en la parte superior de la ventana.

¢ setDefaultCloseOperation(EXIT_ON_CLOSE): indica que la aplicacién debe terminar
su ejecuciéon en el momento en el que se cierre la ventana. EXIT_ON_CLOSE €S una
constante de la clase.

e setVisible(esVisible): hace aparecer o desaparecer la ventana de la pantalla,

dependiendo del valor I6gico que se le pase como parametro.

¢ add(componente): permite agregar un componente grafico a la ventana. En la
siguiente seccion abordaremos el tema de cémo explicarle a la ventana la "posicion”
dentro de ella donde queremos afadir el componente.

La configuracion de las caracteristicas de la ventana (tamafio, zonas, etc.) se debe hacer en
el metodo constructor de la clase, tal como se muestra en el ejemplo 2. Lo unico que nos
falta en la ventana es agregar una asociacion con las clases del modelo del mundo, de tal
forma que sea posible traducir los eventos que genere el usuario en llamadas a los métodos
que manipulan los objetos del mundo. Esto lo hacemos agregando una asociacion en la
ventana hacia uno o mas objetos del mundo del problema.

Ejemplo 2

Objetivo: Mostrar la manera de definir la configuracion basica de una ventana.

En este ejemplo se muestra parte del método constructor de la clase que implementa la
ventana, lo mismo que la manera de declarar un atributo para representar la asociacion con
el modelo del mundo.

public class extends
{
private CalculadorImpuestos calculador;
public
{

setTitle("Calculo impuestos");

setSize(,);

setResizable(false);
setDefaultCloseOperation(EXIT_ON_CLOSE);

e En el método constructor de la clase de la ventana definimos su configuracion: titulo,
tamano, evitamos que el usuario la cambie de tamario y definimos que cuando el
usuario cierre la ventana el programa debe terminar.

e Lallamada de los métodos se hace como si fueran de nuestra propia clase, puesto que
pertenecen a la clase JFrame y nuestra clase la extiende.

e Sise incluye en la clase InterfazlmpuestosCarro el constructor que aparece en este
ejemplo y se ejecuta el programa, veremos aparecer en la pantalla la imagen que se
muestra mas abajo.

|£| Célculo impuestas + i >

e |Laimagen corresponde a una ventana que tiene 600 pixeles de ancho y 700 pixeles de
alto.

e Por ahora no agregamos los componentes internos de la ventana, hasta que no
tratemos el tema de distribucion grafica.

e Como atributo de la ventana definimos una asociacion a un objeto de la clase
Calculadorimpuestos. Ya veremos mas adelante cdmo se inicializa y como lo utilizamos
para implementar los requerimientos funcionales.

5.2. Distribucion Grafica de los Elementos

El siguiente problema que debemos enfrentar en la construccion de la ventana es la
distribucion de los componentes graficos que va a tener en su interior. Para manejar esto,
Java incluye el concepto de distribuidor grafico (layout), que es un objeto que se encarga de
hacer esa tarea por nosotros. Lo que hacemos entonces en la ventana, o en cualquier otro
contenedor grafico que tengamos, es crear y asociarle un objeto que se encargue de hacer
este proceso; es decir que nosotros nos contentamos con agregar los componentes y
dejamos que este objeto que creamos se encargue de situarlos en alguna parte de la
ventana.

En el framework swing existe ya un conjunto de distribuidores graficos listos para utilizar. En
este nivel veremos dos de los mas simples que existen, los cuales estan implementados en
las clases BorderLayout y GridLayout. Para asociar uno de estos distribuidores con
cualquier contenedor grafico, se utiliza el método setLayout(), al cual se le debe pasar
como parametro una instancia de la clase que queremos que maneje la presentacion
grafica de los elementos que contiene. En el caso de estudio, basta con agregarle al
constructor de la ventana la siguiente llamada:

setLayout(new BorderLayout());

e Siagregamos esta instruccion dentro del constructor de la ventana que vimos en el
ejemplo 2, cada vez que agreguemos en ella un componente grafico, sera la instancia
de la clase BorderLayout que acabamos de crear la que se encargue de situar el nuevo
elemento dentro de la ventana.

5.2.1. Distribuidor en los Bordes

El distribuidor en los bordes (BorderLayout) divide el espacio del contenedor grafico en
cinco zonas, tal como muestra la figura 5.9. Cada una de ellas se identifica con una
constante definida dentro de la clase (NORTH , CENTER , SOUTH , WEST , EAST).

Fig. 5.9 Distribuidor en los bordes (BorderLayout)

NORTH

WEST CENTER EAST

SOUTH

Si asociamos este distribuidor con un contenedor grafico, cuando agreguemos un elemento
deberemos pasar como parametro la zona que queremos que éste ocupe. Por ejemplo, si
quisiéramos situar un componente grafico llamado panelVehiculo en la zona norte de la
ventana del caso de estudio, deberiamos agregar en el constructor de la clase la siguiente
instruccion:

add(panelVehiculo, BorderLayout.NORTH);

e Con esta instruccién agregamos un componente grafico llamado panelVehiculo en la
zona norte de un contenedor grafico que tiene asociado un distribuidor en los bordes.
¢ Fijese como se referencia la constante norTH de la clase BorderLayout.

Es importante resaltar que este distribuidor utiliza el tamafio definido por cada uno de los
componentes que va a albergar (cada uno tiene un ancho y un alto en pixeles) para
reservarles espacio en el contenedor grafico, y asigna todo el espacio sobrante para el
componente que se encuentre en la zona del centro. Nosotros usaremos este distribuidor
grafico para construir la interfaz de usuario del caso de estudio, de manera que esto ultimo
lo veremos en detalle mas adelante.

5.2.2. Distribuidor en Malla

Para usar el distribuidor en malla, se debe indicar en su constructor el numero de filas y de
columnas que va a tener, las cuales van a establecer las zonas en las que estara dividido el
contenedor grafico, tal como se muestra en la figura 5.10 para un distribuidor de 4 filas y 3
columnas.

Fig. 5.10 Distribuidor en malla (GridLayout) con orden de llenado

fila 1 1 2 3

fila 2 4 5 6

fila 3 7/ 3 9

fila 4 10 11 12

e Ademas de definir una estructura en filas y columnas, el distribuidor en malla define un
orden de llenado.

e La primera zona que se va a ocupar es la que se encuentra en la primera columna de
la primera fila (arriba a la izquierda de la ventana).

e | os componentes deben agregarse secuencialmente, siguiendo el orden de llenado del
distribuidor.

Para asociar un distribuidor con un componente grafico se utiliza la siguiente instruccion,
siguiendo con el ejemplo de 4 filas y 3 columnas:

setLayout(new GridLayout(4, 3));

e Si esta instruccién se coloca en el constructor de un contenedor grafico, todos los

elementos que se le agreguen ocuparan en orden cada una de las 12 zonas en las que
esta dividido.

A diferencia del distribuidor en los bordes, cuando se utiliza un distribuidor en malla no es
necesario definir la posicion que va a ocupar el componente que se va a incluir, porque
estas posiciones son asignadas en orden de llegada: se llena primero toda la fila 1, luego la
fila 2 y asi sucesivamente. Este distribuidor ignora el tamafio definido para cada
componente, ya que hace una distribucion uniforme del espacio. En la préxima seccién
veremos un ejemplo de uso de este distribuidor grafico.

5.3. Divisiones y Paneles

Dentro de la ventana principal aparecen las divisiones (0 paneles), encargadas de agrupar
los elementos graficos por contenido y uso, de tal manera que sea sencillo para el usuario
localizarlos y usarlos. Esta manera de estructurar la visualizacidon del programa es muy
importante, puesto que de ella depende en gran medida lo facil e intuitivo que resulte
utilizarlo. En la interfaz del caso de estudio (figura 5.2), por ejemplo, tenemos cuatro
divisiones dentro de la ventana: en la primera van los datos del vehiculo, en la segunda las
opciones del busqueda, en la tercera los descuentos y, en la cuarta, los botones con las
opciones.

Cada division se implementa como una clase aparte en el modelo (en nuestro caso, con las
clases PanelDescuentos, PanelBusquedas, PanelResultados y PanelVehiculo) y, al igual
que la ventana, cada una de ellas es un contenedor grafico al cual hay que asociarle su
propio distribuidor (layout) y al cual se le pueden agregar en su interior otros componentes
graficos. En el caso del panel Vehiculo, se puede observar que contiene adicionalmente el
PanelNavegacion. En el constructor de la ventana se debe crear una instancia de cada una
de las divisiones o paneles y luego agregarlas a la ventana. Este proceso se ilustra en el
ejemplo 3.

Ejemplo 3
Objetivo: Mostrar la manera de agregar paneles a una ventana.

En este ejemplo se muestra el método constructor de la clase InterfazimpuestosCarro, en
donde se crean las instancias de los cuatro paneles y luego se agregan a la ventana en una
de las zonas del distribuidor en los bordes. Aqui se debe suponer que las clases que
implementan cada una de las divisiones ya fueron creadas y sus nombres son:
PanelBusqueda, PanelDescuentos, PanelOpciones y PanelVehiculo. Note que las
asociaciones con los paneles se declaran como cualquier otra asociacion en Java.

public class extends

{

private CalculadorImpuestos calculador;

private PanelVehiculo panelVehiculo;
private PanelBusquedas panelBusquedas;
private PanelDescuentos panelDescuentos;
private PanelOpciones panelOpciones;

public
{

setTitle("Calculo impuestos");

setSize(5);

setResizable(false);
setDefaultCloseOperation(EXIT_ON_CLOSE);
setLayout(new BorderLayout());

JPanel centro = new JPanel();
centro.setLayout(new BorderLayout());
add(centro, BorderLayout.CENTER);

panelVehiculo = new PanelVehiculo(this);
centro.add(panelVehiculo, BorderLayout.CENTER);

panelBusquedas= new PanelBusquedas(this);
centro.add(panelBusquedas, BorderLayout.SOUTH);

JPanel sur = new JPanel();
sur.setLayout(new BorderLayout());
add(sur, BorderLayout.SOUTH);

panelDescuentos = new PanelDescuentos();
sur.add(panelDescuentos, BorderLayout.CENTER);

panelOpciones = new PanelOpciones(this);
sur.add(panelOpciones, BorderLayout.SOUTH);

e Enla ventana se declara un atributo por cada una de las divisiones o paneles.

e En el constructor se asocia con la ventana un distribuidor en los bordes.

e Esta es una versién provisional del constructores, que después cambiaremos
levemente a medida que vayamos conociendo nuevos elementos.

e Se crea una instancia de cada una de las divisiones y se agrega en una posicion de las
definidas en el distribuidor en los bordes.

e Por el momento no agregaremos nada en el norte, debido a que este espacio se
reservara para la imagen con el titulo de la aplicacién.

e Debido a que hay mas paneles que divisiones disponibles, se crean dos paneles
auxiliares llamados centro y sur.

e El panel con la informacién del vehiculo va en el centro del panel centro.

e El panel para las busquedas va en el sur del panel centro.

e El panel con la informacién de los descuentos va en el centro del panel sur.

e El panel con las opciones va en el sur del panel sur.

e Las zonas este y oeste quedan sin ningun componente en ellas, por lo que el
distribuidor no les asigna ningun espacio en la ventana.

panelVehiculo

panelBusquedas

| panelOpciones

e Con el método constructor definido hasta el momento, hemos creado las asociaciones
que se muestran en el diagrama de clases de la figura.

e Se omite la asociacion hacia el modelo del mundo para concentrarnos unicamente en
los elementos graficos.

Para la construccion de las clases que representan las divisiones, se sigue un proceso muy
similar al que seguimos con la ventana, ya que todas comparten el hecho de ser
contenedores graficos. Ahora, en lugar de la clase JFrame, que representa las ventanas en
swing, vamos a utilizar la clase JPanel, que representa las divisiones o paneles.

Una diferencia importante es que ahora usamos el método setPreferredSize(dimension)
para definir el tamano de las divisiones (en el ejemplo 4 se explica su utilizacion en mas
detalle). Esta informacién es facultativa; el distribuidor grafico decide si hace uso de ella, si
solo la utiliza parcialmente o si sencillamente la ignora.

Ejemplo 4
Objetivo: Mostrar la manera de declarar los paneles de una ventana.

En este ejemplo se muestra la declaracion en Java de las clases que implementan los
paneles de la ventana principal de la interfaz de usuario en el caso de estudio.

public class PanelBusquedas extends JPanel

{
public PanelBusquedas
{
setLayout(new GridLayout(3,2));
setPreferredSize(new Dimension(0,))
}
}

100

El panel con las opciones de busqueda estara dividido en 6 zonas (3 filas y 2 columnas en
cada una).

En el momento de definir la dimensién del panel es importante declarar el alto que
queremos que tenga (100 pixeles), puesto que este valor es utilizado por el distribuidor en
los bordes para reservarle espacio al panel, y ése es el distribuidor que usamos en la
ventana principal para situar este panel en la ventana. Fijese como se utiliza la clase
Dimension para definir el tamano del panel.

Al definir la dimensién del panel, pasamos 0 pixeles como ancho. Alli habriamos podido
escribir cualquier valor, porque de todas maneras el distribuidor lo ignorara y le asignara
como ancho todo el espacio disponible en la ventana, descontando el espacio necesario
para los componentes del este y del oeste.

Elementos Graficos Estructurales

public class PanelDescuentos extends JPanel

{
public PanelDescuentos()
{
setLayout(new GridLayout(2,2));
}
3

El panel con la informacién de los descuentos estara dividido en cuatro zonas (dos filas y
dos columnas en cada una). Aqui no es importante definir la dimension del panel, porque el
distribuidor de la ventana en la cual va a estar situado le asignara todo el espacio disponible
después de haber colocado los otros paneles.

public class PanelOpciones JPanel

{
public PanelOpciones ()
{
setLayout(new GridLayout(1, 3));
}
}

El panel con las opciones del programa estara dividido en 3 zonas(una fila y tres
columnas). Aqui tampoco se debe definir la dimension del panel.

492

public class PanelVehiculo extends JPanel

{

public class PanelVehiculo

{

setLayout(new BorderLayout());

JPanel informacion = new JPanel();
informacion.setlLayout(new GridLayout(4, 2, ,)),
add(informacion, BorderLayout.CENTER);

PanelNavegacion panelNavegacion = new PanelNavegacion();
add(panelNavegacion, BorderLayout.SOUTH);

El panel con la informacion del vehiculo es mas complejo que los paneles anteriores. Por
esta razdn, se deben utilizar nuevamente paneles auxiliares que permitan ajustar todos los
elementos en esa distribucion. Como podemos ver en la imagen anterior, se divide el panel
en 3 zonas, una con la imagen del vehiculo, otra con los datos del vehiculo y otra con las
opciones de navegacion.

Taurus

5 136.240.000

e Se usa un BorderLayout para la distribucion general del panel.

e Por ahora no agregaremos nada en el oeste, debido a que este espacio se reservara
para la imagen del vehiculo.

e Se crea un panel auxiliar para llamado informacién para poner la informacién del
vehiculo, y se ubica en el centro del panel.

e El panel informacion usa un GridLayout, con 4 filas y 2 columnas. Se agregan 3
parametros adicionales al constructor del distribuidor grafico, para indicar los espacios,
en pixeles, entre cada uno de sus zonas. En este caso, se deja un espacio de 10
pixeles entre las columnas y un espacio de 5 pixeles entre las filas.

e Para el panel de navegacidon, vamos a crear una nueva clase, llamada
PanelNavegacion, debido a que tiene funciones diferentes que veremos mas adelante.

¢ Las zonas este y norte quedan sin ningun componente en ellas, por lo que el
distribuidor no les asigna ningun espacio en la ventana.

public class PanelNavegacion extends JPanel

{
public PanelNavegacion()
{
setLayout(new GridLayout(1, 4));
}
}

El panel con las opciones de navegacion del programa estara dividido en 4 zonas(una fila y
4 columnas).

[T T T]

Con esta clase completamos seis clases en el paquete de la interfaz: una para la ventana,
cuatro para los paneles en los cuales la ventana esta dividida y una para el panel de
navegacion.

La clase JPanel dispone de una amplia variedad de métodos para manejar sus
propiedades. Si quiere modificar el color, por ejemplo, pruebe alguna de las siguientes
instrucciones dentro del respectivo método constructor. En la documentacién de la clase
encontrara la lista de servicios que ofrece dicha clase.

setForeground(Color.RED);
setBackground(Color.WHITE);

Para facilitar la identificacién de las divisiones dentro de la ventana, tenemos el concepto de
borde, que se maneja como un objeto que se asocia con el panel. La creacidén de los bordes
se hace de manera de la misma manera como se crean otros objetos (se utiliza el método

new)Yy la asociacion con el panel se realiza de la manera que se muestra en el ejemplo 5.

Ejemplo 5
Objetivo: Mostrar la manera de crear un borde en un panel.

En este ejemplo se muestra la creacion de los bordes para las tres divisiones del programa
del caso de estudio. De todos los tipos de borde disponibles en swing, vamos a utilizar el
borde con titulo, el cual permite que, ademas de marcar las divisiones, podamos asociar
una cadena de caracteres que indique el contenido de cada uno de los paneles.

A continuacion se presentan las instrucciones que se deben agregar a los métodos
constructores de los paneles para asociarles los bordes necesarios. Al final se muestra la
imagen de la interfaz que se ha construido hasta el momento.

public
{

TitledBorder border = new TitledBorder("Datos del vehiculo");
border.setTitleColor(Color.BLUE);
setBorder(border);

public
{

TitledBorder border = new TitledBorder("Busquedas");
border.setTitleColor(Color.BLUE);
setBorder(border);

public

TitledBorder border = new TitledBorder("Descuentos");
border.setTitleColor(Color.BLUE);
setBorder(border);

public
{

TitledBorder border = new TitledBorder("Opciones");
border.setTitleColor(Color.BLUE);
setBorder(border);

Es conveniente utilizar alguna convencion clara para nombrar las clases de los
componentes graficos. En este libro las clases que implementan las divisiones de las
ventanas comenzaran por la cadena "Panel", seguidas de una descripcion de su contenido.
Con esta convencion podemos facilmente localizar las clases involucradas en algun aspecto
de la interfaz.

Como lo vimos anteriormente, cuando en una ventana necesitamos cuatro o mas divisiones
en sentido vertical y horizontal y queremos utilizar el distribuidor en bordes, lo Unico que
debemos hacer es agregar divisiones adicionales dentro de uno de los paneles,
aprovechando que éstos son contenedores graficos y pueden contener en su interior
cualquier tipo de componente grafico.

En este punto ya se tienen los conceptos indispensables para comenzar a utilizar los
entrenadores de construccion de interfaces de usuario, uno de los cuales permite manipular
interactivamente los distribuidores graficos vistos en este capitulo.

5.4. Etiquetas y Zonas de Texto

Una vez que hemos terminado de estructurar las divisiones y hemos asociado con cada una
de ellas un distribuidor grafico, podemos comenzar a agregar los elementos graficos y de
interaccion. Vamos a empezar por dos de los componentes graficos mas simples, que
permiten una comunicacion basica con el usuario: las etiquetas y las zonas de texto.

Las etiquetas permiten agregar un texto corto o imagenes como parte de la interfaz, la
mayor parte de las veces con el fin de explicar algun elemento de interaccion, por ejemplo
una zona de texto. Las etiquetas (labels) son objetos de la clase JLabel en swing, que se
crean pasando en el constructor el texto que deben contener. Dicha clase cuenta con
diversos métodos, entre los cuales tenemos los siguientes:

e setText(etiqueta): permite cambiar el texto de la etiqueta.

e setForeground(color): permite cambiar el color de la etiqueta. Como color se puede
pasar cualquiera de las constantes de la clase Color (BLACK , RED , GREEN , BLUE ,
etc.), o definir un nuevo color utilizando los tres indices ROJO-VERDE-AZUL del
estandar RGB.

Para agregar una etiqueta a un panel, se siguen cuatro pasos:

Declarar en el panel un atributo de la clase JLabel.
Agregar la instruccion de creacion de la etiqueta (new).
Utilizar los métodos de la clase para configurar los detalles de visualizacion deseados.

H WO DN~

Utilizar la instruccion add del panel para agregarla en la zona que le corresponda.

Estos cuatro pasos son los mismos para cualquier componente grafico que se quiera
incorporar a una division. En el ejemplo 6 aparece el codigo necesario para crear todas las
etiquetas de la interfaz del caso de estudio.

También es importante definir una convenciéon de nombres para los atributos, que permita
distinguir el tipo de componente grafico al que corresponde. Nuestra convencién es que el
nombre de los atributos que representan las etiquetas comienza por la cadena "lab",
mientras que aquellos que representan una zona de texto comienzan por "txt".

Las zonas de texto (objetos de la clase JTextField) cumplen dos funciones en una interfaz.
Por una parte, permiten al usuario ingresar la informacién correspondiente a las entradas de
los requerimientos funcionales (por ejemplo, la marca del vehiculo) y, por otra, obtener las

respuestas calculadas por el programa (por ejemplo, el monto que se debe pagar por
impuestos). Los siguientes métodos permiten configurar y manipular las zonas de texto:

e getText(): retorna la cadena de caracteres ingresada por el usuario dentro de la zona
de texto. Independientemente de si el usuario ingres6 un valor numeérico o una
secuencia de letras, todo lo que el usuario ingresa se maneja y retorna como una
cadena de caracteres. Mas adelante veremos como convertirla a un numero cuando asi
lo necesitemos.

e setText(texto): presenta en la zona de texto la cadena que se pasa como parametro.
Este método se usa frecuentemente para mostrar los resultados de un calculo hecho
por el programa.

¢ setEditable(editable): indica si el contenido de la zona de texto puede ser modificado
por el usuario. En el caso de las zonas de texto utilizadas para mostrar resultados, es
comun impedir que el usuario modifique el valor alli contenido.

e setForeground(color): define el color de los caracteres que aparecen en la zona de
texto. De la misma manera que con las etiquetas, aqui se pueden usar las constantes
de la clase Color o crear otro color distinto.

e setBackground(color): define el color del fondo de la zona de texto.

Ejemplo 6
Objetivo: Mostrar la manera de agregar componentes graficos simples a un panel.

Este ejemplo muestra la manera de anadir los componentes graficos al primer panel de la
interfaz del caso de estudio. Inicialmente, se presenta el contenido final esperado. Luego se
muestran las instrucciones que se deben agregar al metodo constructor del primer panel
para lograr el objetivo. Lo unico que no se agrega en este momento es el panel con los
botones de navegacion, que es tema de una seccidn posterior.

Datos del vehiculo
Marca Ford
Linea Taurus
Modelo 2016
Valor & 136.340.000
i 2 < = =

public class extends

{
private JTextField txtMarca;
private JTextField txtLinea;
private JTextField txtModelo;
private JTextField txtValor;
private JLabel labImagen;

}

Paso 1: se declara un atributo en la clase por cada componente grafico cuyo valor cambiara
después de creado, que se quiera incluir en el panel.

Si vemos la imagen anterior, podemos ver que tendremos 4 etiquetas (Marca, Linea,
Modelo y Valor) con texto, 4 zonas de texto asociadas y , una etiqueta con la imagen del
vehiculo. Como el valor de las etiquetas nunca cambia, no la agregamos como atributo.

Es conveniente asociar parejas de nombres para indicar que los componentes estan
relacionados entre si. Por ejemplo los nombres txtMarca Yy labMarca indican que se trata
de dos componentes relacionados con el mismo concepto (la marca del vehiculo).

public
{

labImagen = new JLabel();

JLabel labMarca = new JLabel("Marca");
txtMarca = new JTextField();

JLabel labLinea = new JLabel("Linea");
txtLinea = new JTextField();

JLabel labModelo = new JLabel("Modelo");
txtModelo = new JTextField();

JLabel labvalor = new JLabel("valor");
txtvalor = new JTextField();

Note que las campos de texto y la etiqueta con la imagen todavia no tienen ningun valor,
porque este depende del vehiculo que se quiera visualizar.

Paso 2: en el constructor del panel se crean los objetos que representan cada uno de los
componentes graficos.

En los constructores de algunos elementos graficos es posible configurar algunas de las
caracteristicas que queremos que tenga. Estas instrucciones se escriben después de las
instrucciones de definicion del distribuidor grafico y del borde.

txtValor.setEditable(false);
txtValor.setForeground(Color.BLUE);
txtvalor.setBackground(Color.WHITE);

En este caso, se indica el campo de texto txtvalor no puede ser editado por el usuario,
que el color del texto de la etiqueta es azul y el color de fondo blanco.

Paso 3: utilizando los métodos de cada clase se configura el componente.

Aqui solo van las caracteristicas que no hayan podido ser definidas en la creacion del
objeto.

add(labImagen, BorderLayout.WEST);

informacion.add(labMarca);
informacion.add(txtMarca);
informacion.add(labLinea);
informacion.add(txtLinea);
informacion.add(labModelo);
informacion.add(txtModelo);
informacion.add(labvalor);
informacion.add(txtvalor);

Paso 4: se anaden al panel los componentes graficos creados. La imagen del vehiculo se
agrega en el oeste del panel, que es la zona que se habia reservado para esto. El resto de
las etiquetas y los campos de texto se agregan en el panel de informacion, se teniendo
cuidado de agregarlos en el orden utilizado por el distribuidor grafico (de izquierda a
derecha y de arriba a abajo).

5.5. Formateo de Datos Numeéricos

En algunas ocasiones, es importante formatear de manera adecuada los valores numéricos
en el momento de presentarselos al usuario. Si el valor de los impuestos del vehiculo actual
es 1615500,120023883, debemos buscar la manera de que en la zona de texto aparezca
algo del estilo "$ 1.615.500,00". Esto se logra con el cédigo que se presenta a continuacion,
en el cual suponemos que en la variable precio, de tipo real, esta el valor que queremos
presentar y que la zona de texto en donde debe aparecer se llama txtValor:

DecimalFormat df = (DecimalFormat) NumberFormat.getInstance();

df .applyPattern("$ ###.###, #4#"),
String strPrecio= df.format(precio);
txtValor.setText(strPrecio);

e DecimalFormat es una clase que hace este tipo de formateo. Se encuentra en el
paguete java.text.

e En la primera linea se obtiene una instancia de dicha clase.

e En la segunda linea se define el formato que queremos utilizar. Marcamos con # los
espacios ocupados por los digitos que forman parte del nimero.

e En la tercera linea aplicamos el formato al valor que se encuentra en la variable
llamada "precio"”.

¢ En la ultima linea colocamos la respuesta en la zona de texto llamada txtValor,
utilizando el método setText().

5.6. Seleccion de Opciones

El framework swing provee un componente grafico que permite al usuario seleccionar o no
una opciodn. En el caso de estudio lo utilizamos para que el usuario seleccione los
descuentos a los que tiene derecho. Con estos controles el usuario sélo puede decir "si" o
"no". El manejo de estos componentes graficos sigue las mismas reglas explicadas en la

seccion anterior, tal como se muestra en el ejemplo 7.

Estos componentes son manejados por la clase JCheckBox, cuyos principales métodos son
los siguientes:

¢ isSelected(): retorna un valor I6gico que indica si el usuario seleccion6 la opcién
(verdadero si la opcién fue escogida y falso en caso contrario).

¢ setSelected(seleccionado): marca como seleccionado o no el control, dependiendo
del valor légico del parametro.

Por convencién utilizaremos el prefijo "cb" para los nombres de los atributos que
representen este tipo de componentes graficos (JCheckBox).

Ejemplo 7
Objetivo: Mostrar el manejo de los componentes de seleccidon de opciones.

Este ejemplo muestra el manejo del componente JCheckBox en el contexto del caso de
estudio. Vamos a utilizar tres objetos de esa clase en el segundo de los paneles, para que
el usuario pueda escoger los descuentos a los que tiene derecho. Comenzamos mostrando

la imagen esperada en la interfaz y el distribuidor grafico instalado sobre la division, de
manera que sea claro el orden en el que los componentes se deben agregar.

Descuentos Descusentos

[] Pronto pago [] Traslado de cuenta

_| Servicio piublico

public class PanelDescuentos extends JPanel

{
private JCheckBox cbPPago;
private JCheckBox cbSPublico;
private JCheckBox cbTCuenta;
}

e Declaracién como atributos de los tres componentes graficos de seleccion de opciones.

public PanelDescuentos

{
cbPPago = new JCheckBox("Pronto pago");
cbSPublico = new JCheckBox("Servicio publico");
cbTCuenta = new JCheckBox("Traslado de cuenta");
add(cbPPago);
add(cbTCuenta);
add(cbSPublico);

}

En el constructor de la clase se crean inicialmente los objetos, pasando como parametro el
nombre que se debe asociar con cada opcidn.

Luego se agregan los objetos al panel, siguiendo el orden pedido por el distribuidor (por
filas, de arriba hacia abajo y de izquierda a derecha).

6. Elementos de Interaccion

Existen muchos mecanismos de interacciéon mediante los cuales el usuario puede expresar
sus ordenes a la interfaz. Desde hacer clic en algun punto de la ventana, hasta arrastrar un
icono de una zona a otra de un panel. Todas estas acciones del usuario son convertidas en
eventos en Java y son manipuladas mediante objetos. Esto quiere decir que cada vez que
el usuario hace algo sobre la ventana del programa, esta accion se convierte en un objeto
(Ilamado un evento) que contiene toda la informacion para describir lo que el usuario hizo.
De esta manera, podemos tomar dicho objeto, estudiar su contenido y hacer que el
programa reaccione como se supone debe hacerlo, de acuerdo con la accién del usuario.
Por ejemplo. si en el evento aparece que el usuario oprimio un boton, debemos ejecutar la
respectiva reaccion, que puede incluir cambiar o consultar algo en el modelo del mundo. La
figura 5.11 ilustra la idea anterior.

Fig. 5.11 Relacién entre un evento y la llamada de un método

- El usuario redliza 2. Se crea un objeto 3. Una close de la inferfaz recibe
accién sobre la interfaz cen tada la infermasian el ohjeto, mira su centenido v
de |a inferaccién de usuario decide lo que se dehe hacer

é/f«//

EVENTO I

1 k
USUARLC
a sste ohjeto 2= le pusden

pregur\‘l‘cr log detalles
de la oczien del usuario

En este libro Unicamente estudiamos la interaccion usando botones, posiblemente el
mecanismo mas simple que existe para que el usuario exprese sus érdenes. Dichos
botones son componentes graficos que pertenecen a la clase JButton. Estos componentes
se declaran y agregan a los paneles como cualquier otro, tal como se muestra en el ejemplo
8.

Ejemplo 8

Objetivo: Mostrar la manera de agregar botones a un panel.

En este ejemplo se presenta la manera de declarar y agregar los botones panel del caso de
estudio usado para las busquedas. Una vez instalado como aparece en el ejemplo, los
botones se pueden oprimir, pero no reaccionan de ninguna manera.

Ese es el tema que sigue: ¢ cdmo asociar una reaccion con un evento de un botén? En la
imagen que se presenta a continuacion aparece la visualizacion esperada del panel.

Bisguedas

Buscar por linea

Buscar por marca

Buscar vehiculo mas Caro

public class extends

{

private JTextField txtLinea;

private JTextField txtMarca;

private JButton btnBuscarLinea;

private JButton btnBuscarMarca;

private JButton btnBuscarCaro;

public

{
txtLinea = new JTextField();
add(txtLinea);
btnBuscarLinea = new JButton(BUSCAR_POR_LINEA);
add(btnBuscarLinea);
txtMarca = new JTextField();
add(txtMarca);
btnBuscarMarca = new JButton(BUSCAR_POR_MARCA);
add(btnBuscarMarca);
add(new JLabel());
btnBuscarCaro = new JButton(BUSCAR_MAS_CARO);
add(btnBuscarCaro);

}

}

e Se declara un atributo por cada componente botén: dos zona de texto para ingresar lo
que se desea buscar y tres botones.

e E| prefijo utilizado para los botones en este ejemplo es "btn".

e Las instrucciones que aqui se muestran deben venir después de aquellas que asocian
el distribuidor grafico y el borde.

e Se crean los objetos que implementan los componentes graficos y se inicializan.

e Al crear un botdn, se define la etiqueta que va a aparecer sobre él.

¢ Fijese que agregamos una etiqueta "vacia" para obtener la visualizacion deseada.

Hay tres pasos que se deben seguir para decidir la manera de manejar un evento con un
botdn de la interfaz, los cuales se explican a continuacion:

¢ Decidir el nombre del evento. A los eventos de los botones se les asocia un nombre por
medio del cual se van a poder identificar mas adelante. El nombre es una cadena de
caracteres y es muy conveniente definir dicha cadena como una constante. Para el
caso de estudio, los nombres de los eventos se asocian de la siguiente manera con los
dos botones:

public class PanelBusquedas extends JPanel

{
F R e R
// Constantes
F R e T
public final static String BUSCAR_POR_LINEA = "Buscar por linea";
public final static String BUSCAR_POR_MARCA = "Buscar por marca";
public final static String BUSCAR_MAS_CARO = "Buscar vehiculo mas Caro";
public PanelBusquedas
{
btnBuscarLinea.setActionCommand(BUSCAR_POR_LINEA);
btnBuscarMarca.setActionCommand(BUSCAR_POR_MARCA);
btnBuscarCaro.setActionCommand(BUSCAR_MAS_CARO);
}
}

¢ Implementar el método que va a atender el evento. Para atender el evento, el panel
que contiene el botdn debe agregar una declaracion en el encabezado de la clase
(implements ActionListener)€ implementar un metodo especial lamado
actionPerformed, que recibe como parametro el evento ocurrido en el panel. Dicho
evento es un objeto de la clase ActionEvent. Estos puntos se ilustran en el siguiente
cbdigo, en el cual se muestra también la manera de obtener el nom- bre del evento
ocurrido, a partir del objeto que lo representa.

public class PanelBusquedas extends JPanel implements ActionListener

{

public void actionPerformed

{
String comando = evento.getActionCommand();
if(comando.equals(BUSCAR_MAS_CARO))
{
// Reaccidon al evento de BUSCAR_MAS_CARO
}
else if(comando.equals(BUSCAR_POR_LINEA))
{
// Reaccidén al evento de BUSCAR_POR_LINEA
}
else if(comando.equals(BUSCAR_POR_MARCA))
{
// Reaccidén al evento de BUSCAR_POR_MARCA
}
}

La clase del panel debe incluir en su encabezado la declaracion implements
ActionListener.

Esa misma clase debe implementar un método con la signatura planteada en el
ejemplo.

Con el método getActionCommand podemos saber el nombre del evento ocurrido.

Cada vez que el usuario oprime un boton en un panel, se ejecuta su metodo
actionPerformed. El contenido exacto de dicho método se estudiara en una seccion
posterior, puesto que hay decisiones de nivel de arquitectura que todavia no hemos tomado.
Pero a grandes rasgos se puede decir que ese metodo debe utilizar el nombre del evento
ocurrido para decidir la accién que debe tomar.

e Declarar que el panel es el responsable de atender los eventos de sus botones. Para
esto se utiliza el método addActionListener, pasando como referencia el panel. Puesto
que esto se debe ejecutar en el constructor del mismo panel, utilizamos la variable this
que provee el lenguaje Java para hacer referencia al objeto que esta ejecutando un
meétodo. De esta manera podemos decir dentro del constructor del panel que quien va a
atender los eventos del botén es el panel mismo. El codigo es el siguiente:

public class PanelBusquedas extends JPanel implements ActionListener

{

public PanelResultados

{

btnBuscarlLinea.addActionListener(this);

btnBuscarMarca.addActionListener(this);

btnBuscarCaro.addActionListener(this);

e Con el método addActionListener, el botdn declara que es el panel quien va a atender

sus eventos.

e La variable this siempre referencia al objeto que esta ejecutando un método.

Con eso completamos el manejo de eventos relacionados con los botones y sélo queda

pendiente el cuerpo exacto del metodo que atiende los eventos.

A continuacion mostramos el contenido completo de la clase PanelBusquedas , para dar

una vision global de su contenido:

public class PanelBusquedas extends JPanel implements ActionListener

{

// Constantes

s

public final
public final
public final

static String BUSCAR_POR_LINEA = "Buscar por linea";
static String BUSCAR_POR_MARCA = "Buscar por marca';
static String BUSCAR_MAS_CARO = "Buscar vehiculo mas

private JTextField txtLinea;

private JTextField txtMarca;

private JButton btnBuscarLinea;

private JButton btnBuscarMarca;

private JButton btnBuscarCaro;

public PanelBusquedas

{

principal = pPrincipal;
setLayout(new GridLayout(3,)),
TitledBorder border = new TitledBorder("Busquedas");

border.setTitleColor(Color.BLUE);
setBorder(border);
setBorder(border);

txtLinea = new JTextField();
add(txtLinea);

btnBuscarLinea = new JButton(BUSCAR_POR_LINEA);
btnBuscarlLinea.addActionListener(this);
btnBuscarlLinea.setActionCommand(BUSCAR_POR_LINEA
add(btnBuscarLinea);

txtMarca = new JTextField();
add(txtMarca);

btnBuscarMarca = new JButton(BUSCAR_POR_MARCA);
btnBuscarMarca.addActionListener(this);
btnBuscarMarca.setActionCommand(BUSCAR_POR_MARCA
add(btnBuscarMarca);

add(new JLabel());

btnBuscarCaro = new JButton(BUSCAR_MAS_CARO);
btnBuscarCaro.addActionListener(this);
btnBuscarCaro.setActionCommand(BUSCAR_MAS_CARO);
add(btnBuscarCaro);

public void

{

String comando = pEvento.getActionCommand();

if(comando.equals(BUSCAR_MAS_CARO))
{

}
else if(comando.equals(BUSCAR_POR_LINEA))

{

}
else if(comando.equals(BUSCAR_POR_MARCA))

{

):

);

Si una clase incluye la declaracion implements ActionListener y no implementa el metodo
actionPerformed (o si lo implementa con otra signatura), se obtiene el siguiente error de
compilacion:

Class must implement the inherited abstract method ActionListener.
actionPerformed(ActionEvent)

7. Mensajes al Usuario y Lectura Simple de
Datos

7.1. Mensajes en la Consola

Para presentar un mensaje en la ventana de comandos del sistema operativo, se utiliza la
instruccidn system.out.println(cadena) . ES poco usual enviarle mensajes al usuario a esa
ventana, pero en algunos casos (errores fatales, por ejemplo), esto es indispensable.

Si el programa se esta ejecutando en un ambiente de desarrollo como Eclipse, los
mensajes apareceran en una ventana especial llamada consola.

System.out.println("Hola mundo...");
Bl ChWindows\system32\cmd exe [E=E 5 L Preblem: [Dechration | & Censole 32 = | ScpiE S 4B === O

InterazHiotel (1) Uava Apaiication] CAProgram Files (8N avaljdil 8011 DNoirkjavaese (Dt 15 2017, 114351 AM)
Hola mundo...

Se puede utilizar esta instruccion, en cualquier clase de la interfaz, para enviar un mensaje
al usuario a la ventana de comandos del sistema operativo.

Si durante la ejecucién de un programa se lanza una excepcion que no es atrapada por
ninguna clase de la interfaz, la accion por defecto es generar una secuencia de mensajes
en la ventana de comandos, con informacion relativa al error.

7.2. Mensajes en una Ventana

El paquete swing incluye una clase JOptionPane que, entre sus multiples usos, tiene un
metodo para enviarle mensajes al usuario en una pequefa ventana emergente. Esto es
muy util en caso de error en las entradas del usuario o con el fin de mostrarle un resultado
puntual de una consulta. La sintaxis de uso es la que se muestra en el ejemplo 9.

Ejemplo 9

Objetivo: Mostrar la manera de presentar un mensaje a un usuario, usando una ventana
simple de dialogo.

Este ejemplo muestra la manera de enviarle mensajes al usuario, abriendo una nueva
ventana y esperando hasta que el usuario oprima el boton para continuar. En cada imagen
aparece la ventana que se va a mostrar al usuario y, debajo, la instruccion que ordena
hacerlo. Esta instruccion debe ir dentro de un metodo de un panel.

Mensaje de error:

JoptionPane.showMessageDialog(principal, "Debe ingresar una linea.'", "Buscar por line
a", JOoptionPane.ERROR_MESSAGE);

Buscar por linea b4

® Debe ingresar una linea.

Aceptar

Mensaje de advertencia:

JoptionPane.showMessageDialog(this , "Ya se encuentra en el ultimo vehiculo.", "Ver
1timo vehiculo" , JOptionPane.WARNING_MESSAGE);

Ver dltimo vehiculo .

A Ya se encuentra en el dlitimo vehiculo.

Aceptar

Mensaje de informacién:

JoptionPane.showMessageDialog(this , "El valor a pagar es: $3.675.000" , "Calculo de
Impuestos" , JOptionPane.INFORMATION_MESSAGE);

Calcular impuestos b4

@ El valor a pagar es: $ 3.675.000

Aceptar

7.3. Pedir Informacion al Usuario

Cuando la informacién que se necesita como entrada de un requerimiento funcional es muy
sencilla (un nombre o un valor numérico), se puede utilizar un método de la clase
JOptionPane que abre una ventana de dialogo y luego retorna la cadena tecleada por el
usuario. Su uso se ilustra en el ejemplo 10. Si la informacién que se necesita de parte del
usuario es mas compleja, se debe utilizar un cuadro de dialogo mas elaborado, en el cual
irian los componentes graficos necesarios para recoger la informacion.

Ejemplo 10
Objetivo: Mostrar la manera de pedir informacién simple al usuario.

Este ejemplo muestra la manera de pedir al usuario que teclee alguna informacion en una
nueva ventana de didlogo. Al igual que en el ejemplo anterior, en cada imagen aparece la
visualizacion de la ventana y, debajo, el codigo en Java que la presenta y que recupera el
valor tecleado. Esta instruccidon debe ir dentro de un méeétodo de un panel o ventana.

String strModelo = JOptionPane.showInputDialog(this , "Introduzca el modelo buscado:"
"Buscar modelo", JOptionPane.QUESTION_MESSAGE);

’

if(strModelo != null)

{
// el usuario tecled algo
}
Buscar modelo x
-5 Introduzca el modelo buscado:
- | |
| Aceptar Cancelar
int resp = JOptionPane.showConfirmbialog(this , "Esta seguro que desea cerrar?" , "Co
nfirmacion" , JOptionPane.YES_NO_OPTION););

if(resp == JOptionPane.YES_OPTION)
{

// el usuario selecciond Si

Confirmacion b

H Esta seguro que desea cerrar?

5 No

7.4. Validacion y formateo de datos

Cuando el usuario ingresa alguna informacion, la interfaz tiene muchas veces la
responsabilidad de convertirla al formato y al tipo adecuados para poder manipularla (por
ejemplo, convertir una cadena en una variable de tipo entero o pasar una cadena a
minusculas). De la misma manera, si el usuario tecled un contenido que no corresponde a
lo esperado (ingreso una letra cuando se esperaba un numero), la interfaz debe advertir al
usuario de su error. Vamos entonces por partes para ver como manejar cada uno de los
casos.

Para convertir una cadena de caracteres (que solo contenga digitos) en un numero, se
utiliza el metodo de la clase Integer llamado parselnt, usando la sintaxis que se muestra a
continuacion. Dicho méetodo lanza una excepcion cuando la cadena que se pasa como
parametro no se puede convertir en un valor entero. En la seccidén de recuperacion de la
excepcion (seccién catch) podria incluirse un mensaje al usuario.

String strModelo = JOptionPane.showInputDialog(this , "Introduzca el modelo buscado:"
, "Buscar por modelo", JOptionPane.QUESTION_MESSAGE);

if(strModelo != null)

{
try
{
int nModelo = Integer.parseInt(strModelo);
}
catch(Exception e)
{

JOoptionPane.showMessageDialog(principal, "Debe ingresar un valor numérico.",
"Buscar por modelo", JOptionPane.ERROR_MESSAGE);

}

e Suponga que queremos convertir el modelo del vehiculo que ingresé el usuario en el
valor entero correspondiente (si ingresé la cadena "2016", queremos obtener el valor
entero 2016).

e Lo primero que hacemos es tomar la cadena de caracteres ingresada por el usuario en
el JInputDialog.

e |uego intentamos convertir dicha cadena en el valor entero correspondiente.

e En este ejemplo, si se produce una excepcion, le presentamos un mensaje al usuario
indicandolo .

e Este esquema de conversion es tipico de las interfaces graficas, puesto que no
estamos seguros del tipo de datos de lo que ingresoé el usuario y, en algunos casos, es
conveniente verificarlo antes de continuar.

La clase String, por su parte, nos ofrece los siguientes métodos para transformar la cadena
tecleada por el usuario:

¢ toLowerCase(): convierte todos los elementos de una cadena de caracteres a
minusculas.

¢ toUpperCase(): convierte todos los elementos de una cadena de caracteres a
mayusculas.

e trim(): elimina todos los caracteres en blanco del comienzo y el final de la cadena.

En la siguiente tabla se muestran algunos ejemplos del uso de los métodos anteriores:

String ejemplo =" La Casa "; Il valor inicial de la cadena
String minusculas = ejemplo.toLowerCase(); minusculas.equals(" la casa ")
String mayusculas = ejemplo.toUpperCase(); mayusculas.equals(" LA CASA")

String sinBlancos = ejemplo.trim(); sinBlancos.equals("La Casa")

8. Arquitectura y Distribucion de
Responsabilidades

8.1. ¢ Por donde Comienza la Ejecucion de un
Programa?

Un metodo que no hemos mencionado hasta ahora y que, sin embargo, es el punto por
donde comienza siempre la ejecucion de un programa, es el método main(). Este método se
implementa en la clase de la ventana principal del programa y tiene la sintaxis que se
muestra a continuacion. Su principal tarea es crear una instancia de la ventana y hacerla

visible en la pantalla.

public static void

{
try

{

InterfazImpuestosCarro vent = new InterfazImpuestosCarro();
vent.setVisible(true);

}

catch(Exception e)

{

JOptionPane.showMessageDialog(null, e.getMessage(), "Calculador impuestos", J
OptionPane.ERROR_MESSAGE);

3
3

e Este método debe ir en la clase que implementa la ventana principal. Su objetivo es
establecer la manera de comenzar la ejecucién del programa, creando una instancia de
la ventana y haciéndola visible.

e La signatura del método debe ser idéntica a la que aparece en el ejemplo.

8.2. ;Quién Crea el Modelo del Mundo?

La responsabilidad de crear el modelo del mundo (los objetos que lo van a representar) es
de la interfaz. En la arquitectura que presentamos en este libro, nosotros asignamos esta
responsabilidad al constructor de la ventana principal. Alli se deben realizar todas las

acciones necesarias para que los objetos del modelo del mundo (uno o varios) sean
creados, inicializados y almacenados en atributos de dicha clase. A continuacion se
muestra, para el caso de estudio, la creacion del objeto que representa el calculador de
impuestos.

public class extends

{

private CalculadorImpuestos calculador;

private PanelVehiculo panelVehiculo;
private PanelDescuentos panelDescuentos;
private PanelOpciones panelOpciones;
private PanelBusquedas panelConsultas;

public throws Exception

{

calculador = new CalculadorImpuestos();

e En este caso la creacion es simple, pues el constructor del calculador de impuestos
tiene la responsabilidad de abrir los archivos con la informacién y crear los objetos
necesarios para representarla.

e Definimos un atributo de la clase Calculadorimpuestos, y alli guardamos la asociacion
que nos va a permitir "hablar" con el modelo del mundo (ver diagrama de clases).

¢ En el constructor dejamos pasar las excepciones generadas en la construccion del
modelo del mundo. Dejamos al programa principal la responsabilidad de atraparlas y
enviarle el mensaje respectivo al usuario.

¢ No poder construir el modelo del mundo (p.ej. no poder abrir los archivos con los
valores que utiliza la calculadora) lo consideramos un error fatal, y por esa razén no
existe ninguna manera de recuperarse.

e Se puede ver la ventana principal como la clase que va a coordinar el trabajo entre los
paneles y el modelo del mundo.

8.3. ¢ Qué Métodos Debe Tener un Panel?

Una pregunta que debemos responder en este punto es cudles son los métodos que debe

tener un panel, ya que hasta este momento sé6lo tenemos un método constructor y un

metodo para atender los eventos. La respuesta es que los paneles tienen dos grandes

responsabilidades ademas de las ya estudiadas:

1.

Proveer los métodos indispensables para permitir el acceso a la informacién tecleada
por el usuario. Considere la interfaz de usuario del caso de estudio, en la cual en el
primer panel esta la informacion del vehiculo. Puesto que el tercer panel va a necesitar
esta informacién para poder calcular los impuestos, es responsabilidad del panel que
tiene la informacién proveer un conjunto de métodos que garantice que aquellos que
requieran la informacién puedan tener acceso a ella. Eso no quiere decir que haya que
construir un metodo por cada zona de texto. Lo que quiere decir es que se debe
establecer qué informacion se necesita manejar desde fuera del panel y crear los
meétodos respectivos. El programador debe decidir si estos métodos son responsables
de hacer las conversiones o si esta labor se deja a aquellos que van a utilizar la
informacion.

Proveer los métodos para refrescar la informacion presentada en el panel. Si en un
panel se presenta informacién que depende del estado del modelo del mundo,
debemos implementar los servicios necesarios para poder actualizarla. Por ejemplo, en
el panel de informacién del vehiculo, debemos tener un método que pueda modificar la
informacion del vehiculo actual. Estos métodos se denominan de refresco y su objetivo
es permitir actualizar el contenido de los componentes graficos del panel. El ejemplo 11
ilustra esta responsabilidad.

Ejemplo 11

Objetivo: Mostrar los métodos que debe implementar un panel, para prestar servicios a los

demas elementos de la interfaz.

Este ejemplo muestra los métodos de acceso a la informacion y de refresco para la clase

que implementa el panel con la informacién del vehiculo.

public class extends implements

{

public void double

txtMarca.setText(pMarca);

txtLinea.setText(pLinea);

txtModelo.setText(pAnio);

DecimalFormat df = (DecimalFormat)NumberFormat.getInstance();

df.applyPattern("$ ###, ### . ##"),

txtValor.setText(df.format(pPrecio));

labImagen.setIcon(new ImageIcon(new ImageIcon("./data/imagenes/" + pRutaIma
gen).getImage().getScaledInstance(7 , Image.SCALE_DEFAULT)));

}

La clase tiene un méetodo de refresco que permite cambiar la informacién del vehiculo. De
esta manera, utilizando el método setText() actualiza la informaciéon de los campos de
texto y con el método seticon() cambia la imagen mostrada en la etiqueta lablmagen.

8.4. ; Quién se Encarga de Hacer Qué?

Si recapitulamos lo que llevamos hasta este momento, podemos decir que ya sabemos:

e Crear la ventana de la interfaz, con sus paneles y sus componentes graficos.

e Obtener de los componentes graficos la informacion suministrada por el usuario.

e Asociar un nombre con el evento que genera cada botdén y escribir el método que lo
atiende.

e Convertir la informacion que teclea el usuario a otros tipos de datos.

e Presentar al usuario mensajes con informacién simple.

e Escribir el método que inicia la ejecucion del programa.

e Crear el modelo del mundo en el constructor de la ventana y guardar una asociacion
hacia él.

e Escribir en los paneles los métodos de servicio (refresco y acceso a la informacion).

Lo unico que nos falta en este momento es definir la manera de utilizar todo lo anterior para
implementar los requerimientos funcionales. Para esto, debemos definir las
responsabilidades y compromisos de cada uno de los participantes, de manera que siempre
sepamos quién debe hacer qué, y en qué orden. A esto lo denominaremos el protocolo de
la arquitectura. Sobre este punto debemos decir que hay muchas soluciones posibles y que
la arquitectura que utilizamos a lo largo de este libro es s6lo una manera de estructurar y

repartir las responsabilidades. Tiene la ventaja de facilitar la localizacion de cada uno de los
componentes del programa, aumentando su claridad y simplificando su mantenimiento, dos
puntos fundamentales a la hora de escribir un programa de computador.

La arquitectura que usamos se basa en la idea de que los requerimientos funcionales se
implementan en la ventana principal (un metodo por requerimiento) y que es alli donde se
coordinan todas las acciones, tanto de los elementos que se encuentran en los paneles
como de los elementos del modelo del mundo. En la figura 5.11 aparece el protocolo con los
seis pasos basicos para reaccionar a un evento generado por el usuario.

Fig. 5.11 Los seis pasos del protocolo de la arquitectura de un programa

- El usuario redliza 2. Se crea un objeto 3. Una close de la inferfaz recibe
accién sobre la interfaz cen tada la infermasian el ohjeto, mira su centenido v
de |a inferaccién de usuario decide lo que se dehe hacer

é/f«//

EVENTO

L - s
USUARLC
a sste ohjeto 2= le pusden

pregur\‘l‘cr log detalles
de la oczien del usuario

Veamos ahora paso por paso el protocolo, para explicar la figura anterior. Los numeros
asociados con las flechas indican el orden en el que las acciones se llevan a cabo.

Paso 1: el usuario genera un evento oprimiendo un botén en uno de los paneles de la
interfaz. Dicho evento se convierte en un objeto que lleva toda la informacion relacionada
con la accién del usuario.

e Debe reaccionar el panel que contiene el botén.

Paso 2: el panel reacciona al evento con su méetodo actionPerformed, el cual debe solicitar
a la ventana principal que ejecute el requerimiento funcional pedido por el usuario.

e El panel debe pasarle toda la informacion que tiene en su interior y que se necesita
como entrada del requerimiento funcional.

e Si hay necesidad de convertir la informacion ingresada por el usuario a un tipo
especifico de datos, es responsabilidad del panel hacerlo.

e Un requerimiento funcional se implementa como un método en la ventana.

Paso 3: la ventana principal completa la informacion necesaria para poder cumplir con el
requerimiento funcional, pidiéndola a los demas paneles.

e Puesto que el metodo que implementa el requerimiento funcional es responsable de
que se cumplan las precondiciones de los métodos del modelo del mundo, en este
punto debe hacer todas las verificaciones necesarias y, en caso de que surja un
problema, puede cancelar la reaccion y notificar al usuario de lo sucedido.

e Para realizar este paso, desde el metodo que implementa el requerimiento funcional se
invocan los métodos de acceso a la informacion de los demas paneles.

Paso 4: se pide al modelo del mundo que haga una modificacion (basada en los valores
ingresados por el usuario) o que calcule algun valor.

e Se utiliza en este paso la asociacion (o las asociaciones) que tiene la interfaz hacia el
modelo del mundo, para invocar el o los métodos que van a ayudar a implementar el
requerimiento funcional. Cualquier excepcion lanzada por los métodos del modelo del
mundo deberia ser atrapada en este punto.

e Si solo se esta pidiendo al modelo del mundo que calcule un valor (por ejemplo,
calcular el avaluo del vehiculo), al final de este paso ya se tiene toda la informacion
necesaria para iniciar el proceso de refresco.

e Si se pidié una modificacion del modelo del mundo, se debe ejecutar el paso 5.

Paso 5: si en el paso anterior se pidié una modificacién al modelo del mundo, se llaman
aqui los métodos que retornan los nuevos valores que se deben presentar.

Para saber qué métodos invocar, se debe establecer qué partes de la informaciéon mostrada
al usuario deben ser recalculadas.

Paso 6: se pide a todos los paneles que tienen informacion que pudo haber cambiado que
actualicen sus valores.

Para eso se utilizan los métodos de refresco implementados por los paneles.

Hay muchos modelos distintos para mantener la informacion de la interfaz sincronizada con
el estado del modelo del mundo. El que se plantea aqui puede ser muy ineficiente en
problemas grandes, por lo que insistimos en que esta arquitectura solo debe ser utilizada en
problemas pequefos.

8.5. ; Como Hacer que los Paneles Conozcan la
Ventana?

De acuerdo con el protocolo antes mencionado, todos los paneles que tengan botones
(Ilamados paneles activos) deben tener una asociacion hacia la ventana principal, de
manera que sea posible ejecutar los métodos que implementan los requerimientos
funcionales. Esto hace que los constructores de los paneles que tienen botones deban
modificar un poco su estructura, tal como se muestra en el ejemplo 12.

public class extends implements
{

private InterfazImpuestosCarro principal;

public

{

principal = pPrincipal;

¢ Modificacion de la clase que implementa el panel de busquedas, para incluir una
asociacion a la ventana principal.

e En el atributo llamado "principal" almacenamos la referencia a la ventana principal,
recibida como parametro.

public class extends implements
{

private InterfazImpuestosCarro principal;

public

{

principal = pPrincipal;

¢ Modificacion de la clase que implementa el panel de busquedas para incluir una
asociacion a la ventana principal.

e En el constructor de la ventana, cuando se cree este panel, se debe pasar como
parametro una referencia a la ventana de la interfaz.

public class PanelNavegacion extends JPanel implements ActionListener

{

private InterfazImpuestosCarro principal;

public PanelNavegacion

{

principal = pPrincipal;

¢ Modificacion de la clase que implementa el panel de navegacién para incluir una
asociacion a la ventana principal.

¢ En el constructor de PanelVehiculo, cuando se cree este panel, se debe pasar como
parametro una referencia a la ventana de la interfaz.

public class PanelVehiculo extends JPanel implements ActionListener

{

public PanelVehiculo

{
add(new PanelNavegacion(pPrincipal), BorderLayout.SOUTH);

¢ Modificacion de la clase que implementa panel con la informacién del vehiculo, para
incluir una asociacion a la ventana principal.

e En este caso no se crea el atributo llamado "principal" porque la referencia a la ventana
principal sélo se utiliza para crear el panel de navegacion.

8.6. ¢, Como Implementar los Requerimientos
Funcionales?

Lo unico que nos hace falta ahora es implementar los métodos de los requerimientos
funcionales. Estos métodos deben formar parte de la clase de la ventana principal de la
interfaz, y tienen como objetivo coordinar los paneles y el modelo del mundo para lograr lo
pedido por el cliente. En el ejemplo 13 se muestra la estructura de dichos métodos.

Ejemplo 13
Objetivo: llustrar la construccién de los métodos que implementan los requerimientos
funcionales.

En este ejemplo se muestran los dos métodos de la clase InterfazlmpuestosCarro que
implementan los requerimientos funcionales del caso de estudio.

public void buscarPorLinea

{
// 1
Vehiculo respuesta = calculador.buscarVehiculoPorLinea(pLinea);
if(respuesta == null)
{
// 2

JOptionPane.showMessageDialog(this, "No se encontrd ningun vehiculo de esta
linea", "Buscar por linea", JOptionPane.ERROR_MESSAGE);

}

else

{
/7 3

panelVehiculo.actualizar(respuesta.darMarca(), respuesta.darLinea(), respu
esta.darAnio(), respuesta.darPrecio(), respuesta.darRutaImagen());

}

e MMetodo de la ventana principal que atiende el requerimiento funcional de mostrar el
vehiculo con la linea dada.

e En el paso 1 se le pide al modelo del mundo que busque el vehiculo con la linea dada.

® Sino se encontrd un vehiculo de la linea dada (respuesta == null), se muestra un
mensaje al usuario indicandolo.

e En caso contrario, se actualiza la informacién del PanelVehiculo con la del vehiculo
encontrado, usando el méetodo actualizar de este panel.

public void calcularImpuestos
{
// 1
boolean descProntoPago = panelDescuentos.hayDescuentoProntoPago();
boolean descServicioPublico = panelDescuentos.hayDescuentoServicioPublico();
boolean descTrasladoCuenta = panelDescuentos.hayDescuentoTrasladoCuenta();

// 2
double pago = calculador.calcularPago(descProntoPago, descServicioPublico, desc

TrasladoCuenta);

// 3
DecimalFormat df = (DecimalFormat)NumberFormat.getInstance();
df.applyPattern("$ ###, ### . ##"),

// 4
JOptionPane.showMessageDialog(this, "E1l valor a pagar es: " + df.format(pago)
, "Calcular impuestos'", JOptionPane.INFORMATION_MESSAGE);

}

e |eétodo de la ventana principal que atiende el requerimiento funcional de calcular el
valor que se debe pagar de impuestos.

En el paso 1 se pide toda la informacion de los descuentos que se requiere para
calcular el pago.

En el paso 2 se pide al modelo del mundo que calcule el valor que se debe pagar de
impuestos.

En el paso 3 se crea el formato en el cual se desea visualizar la informacion.

En al paso 4 se muestra un mensaje al usuario con la el valor que se debe pagar por
los impuestos del vehiculo actual.

9. Ejecucion de un Programa en Java

Para ejecutar un programa en Java es necesario especificar desde la ventana de comandos
del sistema operativo el nombre del archivo jar que contiene el cdédigo compilado del
programa y el nombre completo de la clase principal por la cual debe comenzar la ejecucion
(la clase que tiene el método main). (Si el programa no esta empaquetado en un archivo jar,
hay que dar solamente el nombre de la clase principal.) Para el caso de estudio, el
comando de ejecucion es el siguiente (en una sola linea):

java -classpath ./lib/impuestosCarro.jar uniandes.cupi2.impuestosCarro.interfaz.Inte
rfazImpuestosCarro

Si el computador no encuentra el archivo jar, o si dentro de éste no encuentra la clase
qgue se le especifico en el comando de ejecucion, aparece en la ventana de comandos
del sistema operativo el error: java.lang.NoClassDefFoundError.

10. Hojas de Trabajo

10.1 Hoja de Trabajo N° 1: Granja de
traducciones

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Lea detenidamente el siguiente enunciado sobre el cual se desarrollara la
presente hoja de trabajo.

Se quiere crear una aplicacién que ayude a aprender los nombres de los animales de la
granja en inglés. Cada vez que se inicia una nueva jugada, aparece el nombre de un animal
en inglés, y el usuario debe seleccionar la imagen del animal. Posteriormente, la aplicacion
muestra cual era la respuesta correcta. Por cada respuesta correcta, el usuario obtiene 20
puntos.

Se espera que la aplicacion permita: (1) iniciar una jugada, (2) seleccionar un animal, (3)
visualizar la traduccion correcta, (4) visualizar el puntaje del jugador.

La siguiente es la interfaz de usuario que se quiere construir, en la cual se identifican tres

Zonas:

https://bit.ly/apo1-nivel5-hoja1-pdf-format
https://bit.ly/apo1-nivel5-hoja1-word-format

Hojas de trabajo

|4+ Granfa de traduccicnes - &

En esta zona va la imagen
con el nombre de la aplicacien

En esta zona van los botones ¢
con las imagenes de los animales

¥ i Juaga actual

En esta zona va la informacion oo = AT

sobre el jusgo actual Tratuceion Correcta:

E _|_ | b Resuliado: Punios Obtenidos:
n esta zona va la sobre Y
Ej ES+OdO Clel Juego Estado: Juego ain empazar
En esta zona van los botones Purtaie:tuawor . uovn Animal
con las opciones adicionales [D
Opeion 1 Opcin 2

Requerimientos funcionales. Identifique y especifique los cuatro requerimientos
funcionales de la aplicacion.

Requerimiento Funcional 1

529

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

530

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

531

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 4

532

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Modelo del mundo. Estudie el diagrama de clases que implementa el modelo del mundo y

los métodos de cada una de las clases.

ze tigne una referencia al animal

GranjaTraducciones

double puntaje
Estado estadojuego

GranjaTraducciones(|
ArrayList garanimales()
double darPuntajel |
Eztago darEstadojuegol)
Animal darAnimalActusi])

boolean verificarjugada (String pAnimal |

String darNusyoanimall

que estd an juego actudlmente ﬁ

animal Actual -

anirnales

Animal

= &
String traduccidn =

String nombre

<<enumeration>>
Estado

SIN_EMPEZAR
EN_ESPERA
JUGADA

agul van los animales que

ﬁ-ﬂnv-—: lo granja de frodusciones

Enumeracitn para
reprasentar los posibles
astados de juege

cado troduccitn consta del nombre

String rutalmagen

Animall String pNombre, String pTraduccion, String pRutalmagen)
String darNombre| |

String darTraduccion])
String darRutaimagen)

del anirmal; su traduscién v la ruta

da la Imagan que se desea mostrar

533

Hojas de trabajo

Nombre método Descripcion

GranjaTraducciones() Crea una granja con sus traducciones.
Animal darAnimales() Retorna la lista de animales de la granja.
double darPuntaje() Retorna el puntaje del animal actual.

Sl ekSsnennege| Retorna el estado actual del juego.

)

Animal darAnimalActual(,

) Retorna el animal actual.

boolean verificarJugada(Verifica si la traduccién del animal ingresado corresponde
String pAnimal) con la traduccion del animal actual.

Retorna el nombre del nuevo animal seleccionado

String darNuevoAnimal() aleatoriamente

Interfaz por construir. Observe la estructura de la interfaz que se desea construir y los
nombres de las clases que se deben asociar con sus partes.

//_ InterfazGranjaTraducciones

4+ Granja de traducciones - = e

| ‘(—/ PanelBotones

Cduegomctial

Animial Cat Tradsecion Jugador: PC]T'\E!JUEQO
Traduccion Cormecta: ! {_/

Resuliado: Pantos Obtenidos:
TN R I AN AR NN NN RN IR I ENENTEAENEEE IR RN TR R RN ESIEERTNEETIAT AR L
LR : PanelEstado
Estmdo: Juego ain empazar I K'_‘/
Puntaje Jugador: | HNuewo Animal I

Pane! Extensidaa r—/ POﬂElE){+EﬁSiOﬁ
Oipeion 1 Dpcitn 2

534

Arquitectura de la interfaz. Dibuje en UML el diagrama de las clases (sin atributos ni
métodos) que conformaran la interfaz. Utilice los estereotipos para indicar si es un JFrame o
JPanel. Dibuje también las clases del mundo con las que se relacionan.

Diagrama UML

Construccion de la interfaz. Siga los siguientes pasos para construir la interfaz dada.

Cree el paquete para las clases de la interfaz
(uniandes.cupi2.granjaTraducciones.interfaz).

Cree la clase InterfazGranjaTraducciones como extension de JFrame. Escriba
el meétodo main(), encargado de iniciar la ejecucion del programa. Incluya los
atributos para representar el modelo del mundo, la imagen del titulo y los paneles
qgue lo conforman. Defina el tamafio de la ventana como 565x 700. Asocie con la
ventana un distribuidor en los bordes. Cree cada uno de los paneles y afiadalos
adecuadamente a la ventana.

Cree la clase PanelBotones como una extension de la clase JPanel que
implementa ActionListener. Declare como atributo una contenedora de botones.
Implemente un constructor que reciba como parametro una referencia a la

3 ventana del programa y la lista de animales. Asocie con el panel un distribuidor
en malla de 3 x 4. Cree todos los botones, asociando como comando el nombre
del animal, y asignado la imagen asociada al animal. Escriba el esqueleto del
metodo actionPerformed().

Cree la clase PanelJuego como extension de JPanel. Declare los atributos para
manejar los componentes graficos que se encuentran en su interior. Deshabilite la
posibilidad de escribir en las zonas de texto. Asocie con el panel un distribuidor
en malla de 4 x 4.

10

Cree la clase PanelEstado como una extensién de la clase JPanel que
implementa ActionListener. Declare una constante para identificar el evento que
va a generar el boton del panel. Declare los atributos para manejar los
componentes graficos que se encuentran en su interior. Implemete un constructor
que reciba como parametro una referencia a la venatana del programa. Asocie
con el panel un distribuidor en malla de 3 x 3. Escriba el esqueleto del metodo
actionPerformed().

Cree la clase PanelExtension como una extension de la clase JPanel que
implementa ActionListener. Declare una constante para identificar los eventos
que van a generar los botones del panel. Declare los atributos para manejar los
componentes graficos que se encuentran en su interior. Implemete un constructor
que reciba como parametro una referencia a la venatana del programa. Asocie
con el panel un distribuidor en malla de 1 x 2. Escriba el esqueleto del metodo
actionPerformed().

En las clases de los paneles, escriba los métodos de refresco de la informacion.
Incluya en los métodos de refresco el servicio de “borrar” el contenido de los
campos una vez que se haya ejecutado una operacion

En la clase InterfazGranjaTraducciones, escriba un método por cada uno de los
requerimientos funcionales. Defina la signatura de manera que reciba como
parametro toda la informacion de la que dispone el panel que va a hacer la
invocacion.

Complete el método actionPerformed() en las clases PanelBotones,
PanelEstado y PanelExtension, haciendo las llamadas respectivas a los
métodos de la ventana principal que implementan los requerimientos funcionales.

Complete todos los detalles que falten en la interfaz, para obtener la visualizacién
y el funcionamiento descritos en el enunciado. Pruebe cada una de las opciones
del programa.

10.2 Hoja de Trabajo N° 2: Examen

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Lea detenidamente el siguiente enunciado sobre el cual se desarrollara la
presente hoja de trabajo.

Se quiere construir una aplicacion que permita simular un examen de geografia, donde se
preguntan las capitales de diferentes paises. El examen tiene 8 preguntas. De cada
pregunta se muestra el numero de la pregunta, el enunciado, la bandera del pais cuya
capital se esta preguntando y las 4 posibles respuestas. Cuando se elige una respuesta, se
muestra la respuesta seleccionada por el usuario, la respuesta correcta y los puntos
obtenidos.

La aplicacion carga la informacion de los paises desde un archivo, y selecciona
aleatoriamente las preguntas del examen y sus posibles respuestas (el programa no
implementa la forma de modificarlas). Esto quiere decir que cada vez que se inicia un nuevo
examen, las preguntas seran diferentes.

La aplicacion debe permitir: navegar entre las preguntas del examen, visualizar la
informacion de una pregunta, responder una pregunta, terminar un examen, iniciar un nuevo
examen y visualizar el progreso de las preguntas.

La siguiente es la interfaz de usuario que se quiere construir, en la cual se identifican cuatro
zonas:

https://bit.ly/apo1-nivel5-hoja2-pdf-format
https://bit.ly/apo1-nivel5-hoja2-word-format

Hojas de trabajo

En esta zona va la imagen
cen gl nombre de la oplicacion

En esta zona va la informacion
dz la pregunte aztual

En zsto zona va lo informacion
sobre el progreso del examen

En esta zona von los botones
con los opsiones adicienales

\

[
[

[& Viesitidn Resutado;
Respuesta Usuano: Sinrespondsr
|| b. pamasco
< Respuests Correcta: >
|| Lisboa
Puntaje Obtenido:
|| 8. varsovia Guardar | |
Resumen Estado Pregunias
1 2 3 4 5 & T 8
Opciones
| Teimminar Huevo examen Opcitn 1 | Opcion 2

Los siguientes son los mensajes que hay que presentar al usuario, como resultado de su

interaccion con el programa:

Este mensaje aparece cuando el usuario oprime el boton para retroceder en la lista de

preguntas y esta situado en el primero:

Retroceder

Ya se encuentra en la primera pregunta.

b4

Este mensaje aparece cuando el usuario oprime el boton para avanzar en la lista de

preguntas y esta situado en el ultimo:

Avanzar

Ya se encuentra en la ditima pregunta.

=

Aceptar

*

Este mensaje aparece cuando el usuario intenta terminar el examen, pero no ha respondido

Iniciar nuevo examen

Ho ha terminado el examen.
Preguntas faltantes: &

b4

Aceptar

todas las preguntas.

538

Este mensaje aparece cuando el usuario termina un examen, cuyas respuestas fueron

Iniciar nuevo examen i

® Su puntaje es; 75 sobre 100 puntos.

ﬁoepta P

respondidas en su totalidad.

Este mensaje de confirmacion aparece cuando intenta iniciar un nuevo examen, pero no ha

Iniciar nuevo examen b

"-z No ha terminado el examen.
L = mti
e ;Esta sequro que desea iniciar otro examen?

S& Ho

respondido todas las preguntas.

Requerimientos funcionales. Identifique y especifique los requerimientos funcionales de la
aplicacion.

Requerimiento Funcional 1

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

540

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 4

541

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 5

542

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 6

543

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Modelo del mundo. Estudie el diagrama de clases que implementa el modelo del mundo y
los métodos de cada una de las clases.

544

Examen ool van todes los palses

aue puaden salir en el examen

CANTIDAD_PREGUNTAS =8

Examen() Pais

void iniclarExamen(| int darPuntajel String nambre

Pregunta d ntaActual() String caplta

Pregunta darPreguntaSiguientel) P String rutaBandera

Pregunta darPreguntaAnterior() Pals(String pNombre, String pCapital, String pRuta)|

int darCantdadPreguntasFaltantes () String darNombrel |

vold guardarRespuestal String pRespuesta) String darCapital{)

String darRutaBandera

a la respus OuE s a
moestrande actualmente A
preguntaictual] preguntas

Pregunta aqui van todas las

prequntos del exarmen

Int numera

String testo

String rutalmagen
String[] respuestas
Strin

g respuestaCorrecta

staseleccionada

Int puntaje

Preguntal int pNumera, Arraylist<Pais> paises)

Numerol |

String darTextol |

tring darRutalmagen()

String Arraylist<String> darRespuestss{)
Int darPuntaje()

String darRespuestaCorrectal |

String darResplestaSeleccionadal)

void guardar()

booiean gusdadadal)

String derResuitadol)

boolean respuestalorrects(}

Nombre método Descripcion

Crea el examen, cargando la informacion de los
Examen() paises de un archivo. Si hay algun problema en el
momento de leer el archivo, lanza una excepcion.

Genera preguntas con sus respuestas

void iniciarExamen) . . .
0 seleccionando paises de la lista aleatoriamente.

int darPuntaje() Retorna el puntaje de la pregunta actual.

Pregunta darPreguntaActual() Retorna la pregunta actual.

Retorna la pregunta anterior y actualiza la nueva
Pregunta darPreguntaAnterior() pregunta actual. Si ya se encuentra en la primera
pregunta, lanza una excepcion.

Retorna la pregunta siguiente y actualiza la nueva
pregunta actual. Si ya se encuentra en la ultima
pregunta, lanza una excepcion.

Pregunta darPreguntaSiguiente(

)

int
darCantidadPreguntasFaltantes(Retorna la cantidad de preguntas sin responder.

)

void guardarRespuesta(String Guarda la respuesta seleccionada por el usuario en
pRespuesta) la pregunta actual.

Hojas de trabajo

Interfaz por construir. Observe la estructura de la interfaz que se desea construir y los
nombres de las clases que se deben asociar con sus partes.

ﬁ InterfazE xamen

Cual es la capital de Portugal?
2 E ParelPreguntas

[] . Vientian Resufado:

= Respuesta Usuarko: 'Sin respendar
[C] b. Damasco

e Respuesta Correcta: >
[l c. Lisboa _ i
Puntaje Oblenide: i PanelProgreso
[d: Varsovia Guardar | i
::!-ﬁﬁiiéﬁia:ﬁé&:ﬂi:ﬂ:;:::'.:::::::::::::::;:::::::::::::::::'—:::;:::;::::::;:;.‘::::::::::::;:::m."_ g .
: 1 2 3 4 5 5 7 8 d PanelOpciones

Arquitectura de la interfaz. Dibuje en UML el diagrama de clases (sin atributos ni

métodos) que conformaran la interfaz. Utilice los estereotipos para indicar si es un JFrame o

JPanel. Dibuje también las clases del mundo con las que se relacionan.

546

Hojas de trabajo

Diagrama UML

Construccion de la interfaz. Siga los siguientes pasos para construir la interfaz dada.

547

Cree el paquete para las clases de la interfaz
(uniandes.cupi2.sinonimos.interfaz).

Cree la clase InterfazExamen como extension de JFrame. Escriba el método
main(), encargado de iniciar la ejecucién del programa. Incluya los atributos para
representar el modelo del mundo, asi como los elementos y los paneles que lo
conforman. Defina el tamafio de la ventana como 400 x 180. Asocie con la ventana
un distribuidor en los bordes. Cree cada uno de los paneles y anadalos
adecuadamente a la ventana.

Cree la clase PanelPregunta como una extension de la clase JPanel que
implementa ActionListener. Declare las constantes para identificar los eventos
que van a generar los botones del panel. Declare los atributos para manejar los
componentes graficos que se encuentran en su interior. Implemente un constructor
que reciba como parametro una referencia a la ventana del programa. Asocie con
el panel un distribuidor en los bordes. Cree los paneles auxiliares necesarios para
poder distribuir los elementos de la forma esperada. Tenga en cuenta que los
elementos de tipo JCheckBox también deben llamar al método actionPerformed(
), y por ende también deben tener un comando asociado. Escriba el esqueleto del
método actionPerformed().

Cree la clase PanelProgreso como una extension de JPanel que implementa
ActionListener. Declare los atributos para manejar los componentes graficos que
se encuentran en su interior. Deshabilite la posibilidad de escribir en las zonas de
texto. Asocie con el panel un distribuidor en grilla. Escriba el esqueleto del método
actionPerformed(). En dicho méetodo no vamos a llamar ningun método de la
ventana.

Cree la clase PanelOpciones como una extension de la clase JPanel que
implementa ActionListener. Declare las constantes para identificar los eventos de
los botones. Declare los atributos para manejar los componentes graficos que se
encuentran en su interior. Implemente un constructor que reciba como parametro
una referencia a la ventana del programa. Asocie con el panel un distribuidor en
malla. Escriba el esqueleto del meétodo actionPerformed().

En las clases de los tres paneles, escriba los métodos de refresco de la
informacion y los métodos de acceso a la informacion.

En la clase InterfazExamen, escriba un método para implementar cada
requerimiento funcional. Asegurese de validar los datos y manejar las excepciones
de manera que presente los mensajes descritos en el enunciado.

Complete el metodo actionPerformed() en las clases PanelPregunta y
PanelOpciones, de modo que haga la llamada a los método de la ventana
principal correspondientes. Recuerde que en este método también se deben
ejecutar las acciones necesarias para que cuando un usuario seleccione un
CheckBox, no haya ninguna otra casilla seleccionada.

Complete todos los detalles que falten en la interfaz, para obtener la visualizaciéon y
el funcionamiento descritos en el enunciado. Pruebe cada una de las opciones del
programa.

Hojas de trabajo

549

Nivel 6: Manejo de Estructuras de dos Dimensiones y Persistencia

O 6 MANEJO DE ESTRUCTURAS DE DOS
- DIMENSIONES Y PERSISTENCIA

550

1.

Objetivos Pedagogicos

Al final de este nivel el lector sera capaz de:

Utilizar el concepto de matriz como elemento de modelado para agrupar los elementos
del mundo en una estructura contenedora de dos dimensiones de tamano fijo.
Identificar los patrones de algoritmo para manejo de matrices, dada la especificacion de
un metodo.

Utilizar el esqueleto del patron de algoritmo y los pasos asociados como medio para
escribir un algoritmo para manipular una matriz.

Utilizar un esquema simple de persistencia para manejar el estado inicial de un
problema.

Desarrollar un programa completo, teniendo una vision global de las etapas del proceso
que se debe seguir para resolver un problema usando un computador.

2. Motivacion

Si fuésemos a disefar un programa para simular un juego de ajedrez, podemos imaginar el
tablero de juego en la forma de una cuadricula compuesta por 8 filas y 8 columnas. En ese
escenario, quisieramos tener una estructura que nos permitiera hacer la manipulacion de
las diferentes fichas del tablero de juego, utilizando la posicion de la fila y la posicion de la
columna en el que esta ubicada cada ficha como en el plano cartesiano que se muestra en
la figura. 6.1. Una estructura que nos permitiera referirnos directamente a una ficha por sus
coordenadas: la ficha que se encuentra en la posicioén (fila, columna).

Fig. 6.1 Plano cartesiano y una estructura matricial

filg 0 —>
/ posicion (X, Y)
fila X T2 1
fila X+l —>
columna O columno Y

Hay muchos otros casos en donde esta idea de tener una estructura contenedora de dos
dimensiones es muy util y representa, de manera natural, un grupo de elementos del mundo
del problema. Supongamos, por ejemplo, que queremos manipular imagenes fotograficas.
Una imagen fotografica puede entenderse como una colecciéon de puntos en un plano
cartesiano. Cada punto representa un pixel de la imagen. Si necesitamos construir un
programa para manipular imagenes fotograficas, que sea capaz de cambiar los colores,

aplicar un filtro, etc. seria muy conveniente poder contar con una estructura de modelado
que nos permitiera manipular los puntos de la imagen como en el plano cartesiano: el pixel
que esta en las coordenadas (X, y).

En este nivel vamos a estudiar la manera de definir, crear y manipular estructuras
contenedoras de dos dimensiones. Estas estructuras se llaman matrices. Utilizaremos
inicialmente un caso de estudio que corresponde a la construccion de un programa que
permite hacer manipulaciones simples sobre imagenes fotograficas. Veremos también la
forma de adaptar los patrones de algoritmo para el caso de las matrices, de tal manera que
podamos guiarnos para su construccion por las ideas presentadas en el nivel 3.

Después estudiaremos y plantearemos una solucion al problema de como predefinir el
estado inicial de un programa. En muchos de nuestros programas, quisiéramos que la
informacion que define el estado inicial pudiera ser leida desde un archivo, creado con
herramientas externas a nuestro programa (como un editor de texto). Por ejemplo, en el
caso de la tienda de libros que presentamos en el nivel 2, la configuracion inicial del
catalogo de libros se podria leer desde un archivo. Esto facilitaria adaptar el programa a
distintos contextos de la tienda sin necesidad de cambiar el funcionamiento del mismo.

Finalizaremos este nivel dando una vision global del proceso que se debe seguir para
resolver un problema usando un computador. Alli veremos de manera esquematica las
etapas que se deben seguir y los puntos mas importantes que se deben tener en cuenta en
cada una de ellas.

3. Caso de Estudio N° 1: Un Visor de
Imagenes

Se quiere construir una aplicacion que permita la visualizacion de imagenes en formato
BMP (BitMaP) de diferentes dimensiones. El formato BMP es probablemente el formato de
imagenes mas simple que existe y consiste en guardar la informacién del color de cada
pixel o punto que conforma la imagen. El color de un pixel se expresa en el sistema RGB
(Red-Green-Blue), donde el color se forma mediante la combinacién de tres componentes
(rojo, verde y azul) cada uno de los cuales es representado por un nimero que indica la
proporcion del color del componente en el color resultante.

Ademas de mostrar la imagen, el programa debe ofrecer servicios de transformacion de la
imagen. Por ejemplo, debe poder transformar la imagen en su negativa, polarizar o aplicar
un filtro sobre la imagen, invertir la imagen, rotarla, etc. La interfaz de usuario que
utilizaremos para este problema se muestra en la figura 6.2.

Fig. 6.2 Interfaz de usuario para el visor de imagenes

| £ Visor de lmagenes — >

Cargar Imagen
Ruta de la Imagen: Cargar
Opciones
Negativo Reflejar Binarizacion Pixeles
Escala de Grises Convolucion Extension 1 Extension 2

3.1. Comprension del Mundo del Problema

Si estudiamos el mundo del problema, el Unico elemento que encontramos es la imagen.
Una imagen contiene una coleccion de pixeles. Esta coleccion esta organizada en forma de
una matriz de dos dimensiones donde cada posicion contiene la informacion sobre el color
del pixel. El tamafio de la imagen esta limitado a un numero de alto x ancho pixeles.

La figura 6.3 muestra el modelo conceptual del problema. Nétese que estamos modelando
una asociacion llamada bitmap que representa una estructura unica que nos permite
modelar la matriz de colores.

Caso de Estudio N° 1: Un Visor de Imagenes

Fig. 6.3 Modelo conceptual del caso de visor de imagenes

Imagen

int ancho
int alto

bitmaop

nombre de la matriz

Color

descripcion del color

as! vamos a sefialar en UML
aue se frata de una contenedora
de dos dimensicnes

(n]

[m]

int red
int green
int blue

T~

/ con el indice RGE

sabemos que es una matriz,
pero las dimensiones sxactas
solo las conoceremos en =l
momento de leer el archivo

556

4. Contenedoras de dos Dimensiones:
Matrices

Una matriz es una estructura contenedora de dos dimensiones, de tamafo fijo, cuyos
elementos son referenciados utilizando dos indices: el indice de la fila y el indice de la
columna. Este tipo de estructuras se utiliza cuando en el mundo del problema hay
caracteristicas que se adaptan a esta representacion bidimensional. Para hacer el paralelo
con la visualizacién que usamos en el nivel 3 para mostrar la idea de un arreglo, en la figura
6.4 presentamos una manera de imaginar una clase que tiene un atributo que corresponde
a una maitriz.

Fig. 6.4 Visualizacion de una matriz como un atributo de una clase

matriz de 5 x 8 llamada bitmap

Color bitmap = o 1 2 3 4 5 6 7

En las secciones que siguen, veremos la manera de declarar, crear y manipular
contenedoras de dos dimensiones de tamano fijo en el lenguaje de programacion Java.

4.1. Declaracion de una Matriz

En Java, las estructuras contenedoras de dos dimensiones de tamafio fijo se denominan
matrices y se declaran como se muestra en el ejemplo 1.

Ejemplo 1
Objetivo: Mostrar la manera de declarar una matriz en Java.

En este ejemplo se presenta la declaracion en Java de la matriz que representa la imagen
en el caso de estudio.

public class

{
private int ancho;
private int alto;
private Color[][] bitmap;
}

Es conveniente declarar el numero de columnas (ancho) y el numero de filas (ancho) como
atributos. Esto va a facilitar realizar posteriores modificaciones al programa.

La declaracioén del atributo bitmap indica que es una matriz de dos dimensiones de tamafio
fijo (el valor exacto del tamafo sera determinado en el momento de la inicializacion de la
matriz) y cuyos elementos son todos de tipo Color.

La clase Color es una clase predefinida de Java que permite manejar colores en formato
RGB. Esta clase de encuentra en el paquete java.awt . En nuestros ejemplos utilizamos
algunos de los servicios que ofrece esa clase.

4.2. Inicializacion de una Matriz

Al igual que con cualquier otro atributo de una clase, es necesario inicializar la matriz antes
de poderla utilizar. Para hacerlo, se deben definir las dimensiones de la matriz. Esta
inicializacion es obligatoria, puesto que es entonces cuando le decimos al computador
cuantos valores se van a manejar en la matriz, lo que corresponde al espacio en memoria
que debe reservar. Veamos en el ejemplo 2 como se hace esto para el caso de estudio.

Ejemplo 2

Objetivo: Mostrar la manera de crear una matriz en Java.
En este ejemplo se presenta el constructor de la clase Imagen, que tiene la responsabilidad
de crear la matriz que va a contener los pixeles.

public

{
ancho = ;
alto = ;

bitmap = new Color[alto][ancho];

e Se utiliza la instruccion new , pero en este caso se indican dos dimensiones de la
matriz, en nuestro caso de ejemplo 300 filas (alto) cada una con 400 columnas (ancho).

* Aunque el espacio ya queda reservado con la instruccion new , el valor de cada uno de
los elementos del arreglo sigue siendo indefinido. Esto lo arreglaremos mas adelante.
Recuerde que siempre van primero las filas y luego las columnas.

El lenguaje Java provee un operador especial (length), que permite consultar el nUmero
de filas que tiene una matriz. En el caso de ejemplo, la expresion bitmap.length debe dar
el valor 300 que corresponde al numero de filas, independientemente de si las casillas
individuales ya han sido o no inicializadas. De la misma manera el operador length nos
permite preguntar el numero de columnas de la matriz. La expresion bitmap[e].length
debe dar el valor 400, que corresponde al nimero de columnas en la fila 0. Como en
nuestro caso todas las filas tienen el mismo numero de columnas, esa expresion nos puede
servir para establecer la segunda dimension de la matriz.

4.3. Acceso a los Elementos de una Matriz

Para acceder a una posicién de una matriz necesitamos dos indices, uno para indicar la fila
y el otro para indicar la columna (por ejemplo, con la sintaxis bitmap[5][6] hacemos
referencia al elemento de la casilla que esta en la fila 5 en la columna 6). Recuerde que un
indice es un valor entero y sus valores van desde 0 hasta el numero de elementos de la
dimensién correspondiente menos 1. Para tomar o modificar el valor de un elemento
particular de una matriz necesitamos dar los dos indices. El siguiente ejemplo inicializa
todos los elementos de bitmap en la clase Imagen con el color azul.

public void imagenAzul

{
for(int 1 = 0; i < alto; i++)
{
for(int j = 0; j < ancho; j++)
{
bitmap[1][j] = new Color(0, 0O,);
}
}
}

e Este método recorre la matriz inicializando las casillas con objetos de la clase Color
cuyo valor representa el azul.
¢ Debemos saber que el color azul en el formato RGB se representa por los valores 0, 0,

255.

e Con lasintaxis bitmap[i][j 1 hacemos referencia a la casilla que se encuentra en
la fila i columna j.

¢ Fijese que en cada casilla queda una referencia a un objeto distinto de la clase Color
(120.000 objetos distintos, si la imagen es de 300 x 400).

En la figura 6.5 se muestra el diagrama de objetos después de haber ejecutado el método
anterior, suponiendo que la imagen es de 3 x 3.

Fig. 6.5 Diagrama de objetos para una imagen completamente azul de 3 x 3

Contenedoras de dos Dimensiones: Matrices

‘Color :Color | :Color |

:Color

. \ Imagen 1 I l
Color bitmap = 0 \ 1 2
0 \. & ./ | :Color |
oy pe = i
2
(. ? .\\».‘ | :Color |
_ \ \ j\—) | I

| ‘Color | ‘Color] ‘Color

Note que en el metodo del ejemplo anterior con el primer ciclo recorremos las filas
empezando por la correspondiente al indice cero y terminando en la fila alto-1 (vamos de
arriba hacia abajo recorriendo las filas, como se muestra en la figura 6.6). Una vez que se
fija una fila, el segundo ciclo nos permite recorrer las columnas de esa fila. Este recorrido se
hace desde la columna 0 hasta la columna ancho-1 . Note que cada vez que se termina con
una fila, el ciclo interior vuelve a ejecutarse desde el principio e inicializa la columna en
cero.

561

Fig. 6.6 Recorrido de la matriz con la imagen

columnas
imagen [1] [0] ?
0 1 399
0
1
imagen [299] [399]
filas
299
L' 8

El algoritmo anterior también se podria escribir utilizando la instruccion while , como se

presenta a continuacion:

public void imagenAzul()

{
int i = 0;
while(i < alto)
{
int j = 0;
while(j < ancho)
{
bitmap[i J[j] = new Color(0, 0, 255);
J++;
}
i++;
}
}

e Este metodo hace la misma inicializacion del ejemplo anterior, pero utiliza la instruccién
while en lugar de la instruccion for .
e Con el indice i recorremos las filas, mientras que con el indice j recorremos las

columnas.
e Dentro del ciclo interno, recorremos todas las columnas de la fila i (alli j va cambiando
para pasar por todas las columnas de la matriz).

e En la condicion del primer ciclo podria remplazarse el atributo alto por bitmap.length .
Ambas expresiones hacen referencia al numero de filas de la matriz.

En la sintaxis de acceso a un elemento se pasa primero la fila en la que se encuentra'y
después la columna. Tanto las filas como las columnas se comienzan a numerar desde
cero.

Cuando dentro de un método tratamos de acceder a una casilla con un par de indices
no validos (al menos uno de ellos es menor que 0 0 mayor que el maximo indice
permitido para la dimension correspondiente), obtenemos el error de ejecucion:
Java.lang.ArraylndexOutOfBoundsException

4.4. Comparar los Elementos de una Matriz

Si los elementos de una matriz son de un tipo simple (enteros, reales, etc.), se comparan
utilizando el operador == que estudiamos en el segundo nivel. Después de todo, el estar
almacenados en una matriz no cambia el hecho de que sean valores simples, y por lo tanto
se deben seguir manipulando de la misma manera que hemos venido utilizando hasta
ahora.

Cuando se trata de referencias a objetos hay que tener un poco mas de cuidado. Si
utilizamos el operador == estamos preguntando si las dos referencias senalan al mismo
objeto fisico y, a veces, no es eso lo que queremos saber. Para establecer si son iguales,
aunque no estén referenciando el mismo objeto, se utiliza el método equals : piense por
ejemplo que dos objetos pueden representar el color azul sin necesidad de ser el mismo
objeto. Esta idea se ilustra en ejemplo 3. Si miramos un poco hacia atras, esa es la razén
por la cual siempre hemos comparado las cadenas de caracteres utilizando dicho método,
en lugar del operador == . No nos importa que estén referenciando el mismo objeto, sino
que contengan la misma cadena de caracteres.

Ejemplo 3

Objetivo: Mostrar la manera de comparar los elementos de una matriz, cuando dichos
elementos son objetos.

En este ejemplo se muestra la diferencia entre comparar dos referencias a objetos
utilizando el operador == y el método equals . También se ilustra la consecuencia de
asignar a una variable una referencia a un objeto que ya esta en una casilla de una matriz.

| e |) s | [o |
[255,0,0 J L 255,0,0 J 255,0,0
i
(\ :Hmagen 1

Color bitmapx 0
0 [Ne

g
—
N

e | @

&

[:Color | [:Color | [:Color |
L 00,255 J L 00,255 J L 0,0,255 J

Comenzamos este ejemplo mostrando un diagrama de objetos con una imagen de 2 x

3, cuya primera fila esta coloreada de rojo (255,0,0) y la segunda de azul (0,0,255).
Cada casilla tiene un objeto diferente que representa el color que alli aparece.

La expresion bitmap[e][e] == bitmap[@][1] es falsa. Ambas referencias llevan a
objetos que representan el color rojo, pero son objetos distintos.

La expresion bitmap[0][0].equals(bitmap[@][1]) €S verdadera. Ambas referencias
llevan a objetos que representan el color rojo y el método no tiene en cuenta que sean
instancias distintas.

La expresion bitmap[e][0].equals(bitmap[1][0]) es falsa. El primer objeto representa
el color rojo, mientras que el segundo representa el color azul.

Si hacemos la siguiente asignacion: color temp = bitmap[0][6] , tenemos que tanto la
variable temp como la casilla de coordenadas 0,0 referencian el mismo objeto. En ese
caso la comparacién temp == bitmap[e][@] es verdadera, [o mismo que la

expresion temp.equals(bitmap[0][0]) .

El método equals() no esta definido de manera adecuada en todas las clases. Algunas
como String o Color si lo tienen. Otras (como por ejemplo las que hemos desarrollado
a lo largo de este libro), no lo tienen bien definido y si vamos a usar el método con
esas clases nos tocaria implementarlo.

En este punto podemos retomar de nuevo la discusion planteada en la seccion 4.3 sobre la
imagen completamente azul: en vez de los miles de objetos para representar los pixeles
(todos de color azul), ¢ es posible utilizar un solo objeto con dicho fin? ¢ Es posible que las
120.000 casillas de la matriz referencien todas el mismo objeto? La respuesta es que en
este caso es posible, pero que dicha aproximacion no se puede generalizar. En este caso lo
podemos hacer porque la clase Color no tiene ningun método que permita a sus instancias
modificar su valor. Si alguien quiere cambiar el color de un pixel debe crear un nuevo objeto
de esa clase para representarlo. Esto tiene como consecuencia que, en el caso de estudio,
si podemos compartir el objeto azul de la clase Color desde todos los puntos de la imagen,
ya que nadie puede cambiarlo. Si existiera un método en dicha clase que permitiera, por
ejemplo, hacer mas rojo un color, el hecho de utilizar un solo objeto compartido por todos
haria que al cambiar de color un solo pixel, el cambio se traslade a todos los otros pixeles
de la imagen que estan siendo representados por el mismo objeto.

Tarea 1

Objetivo: llustrar la manera de escribir un algoritmo para manipular una matriz.

Complete el siguiente método de la clase Imagen. No olvide que para preguntar si dos
colores son iguales, se debe utilizar el metodo equals de la clase Color.

L
* Devuelve el numero de pixeles en la imagen cuyo color es el dado como parametro.

* @param pColorBuscado Objeto por el que se quiere preguntar. pColorBuscado != null.
* @return Numero de puntos en la matriz cuyo color es igual al dado.

*/

public int cuantosPixelColor

{

4.5. Patrones de Algoritmo para Recorrido de
Matrices

Las soluciones de muchos de los problemas que debemos resolver sobre matrices son
similares entre si y obedecen a ciertos esquemas ya conocidos. En esta seccion
pretendemos adaptar algunos de los patrones que estudiamos en el nivel 3 al caso de las
matrices. De nuevo, lo ideal es que al leer un problema que debemos resolver (el método
que debemos escribir), podamos identificar el patron al cual corresponde y utilizar las guias
que existen para resolverlo. Eso simplificaria enormemente la tarea de escribir los métodos
que tienen ciclos y que trabajan sobre estructuras de matrices.

4.5.1. Patron de Recorrido Total

Este patron se aplica en las situaciones donde debemos recorrer todos los elementos que
contiene la matriz para lograr la solucion. En el caso de estudio de la imagen tenemos
varios ejemplos de esto:

e Contar cuantos puntos en la imagen son de color rojo.

e Cambiar el color de todos los puntos en la imagen haciéndolos mas oscuros.

e Cambiar cada color de la imagen por su negativo.

e Contar cuantos puntos en la imagen tienen la componente roja distinta de cero.

Para la solucion de cada uno de esos problemas, se requiere siempre un recorrido de toda
la matriz para poder cumplir el objetivo que se esta buscando. Un primer ciclo para recorrer
las filas y, luego, un ciclo por cada una de ellas para recorrer sus columnas.

Para lograr el recorrido total, tenemos que:

El indice para iniciar el primer ciclo debe empezar en cero.

2. La condicion para continuar es que el indice sea menor que el numero de filas de la
matriz.

3. El avance consiste en sumarle uno al indice.

4. El cuerpo del segundo ciclo contiene el recorrido de las columnas y debe ser tal que (a)
el indice debe comenzar en cero, (b) la condicion para continuar es que el indice sea
menor que el numero de columnas de la matriz, (c) el avance consiste en sumarle uno
al indice. Esa estructura que se repite en todos los algoritmos que necesitan un
recorrido total es lo que denominamos el esqueleto del patrén, el cual se puede
resumir con el siguiente fragmento de codigo:

for(int 1 = 0; 1 < NUM_FILAS; i++)

{
for(int j = 0; j < NUM_COLUMNAS; j++)
{
<cuerpo del ciclo>
}
}

¢ El patrén consiste en dos ciclos anidados: el primero para recorrer las filas, el segundo
para recorrer las columnas de cada fila.

Lo que cambia en cada caso es lo que se quiere hacer en el cuerpo del ciclo. Aqui hay dos
variantes principales. En la primera, todos los elementos de la matriz van a ser modifiados
siguiendo alguna regla (por ejemplo, oscurecer el color de todos los puntos). Lo Unico que
se hace en ese caso es remplazar el cuerpo del ciclo en el esqueleto por las instrucciones
que hacen la modificacién pedida para un elemento de la matriz. Damos un ejemplo de
aplicacion en el siguiente cédigo (metodo de la clase Imagen), que oscurece una imagen:

for(int 1 = 0; i < alto; i++)

{

for(int j = 0; j < ancho; j++)

{
bitmap[1][j] = bitmap[i][j].darker();

e Partimos del esqueleto del patron. Sélo cambiamos el cuerpo del segundo ciclo, para
explicar la manera de modificar cada una de las casillas de la matriz.

e Toda modificacion que hagamos alli para la casilla de coordenadas i, j, la estaremos
haciendo para cada uno de los elementos de la estructura.

e El método darker() crea una nueva instancia de la clase Color, mas oscura que el
objeto que recibe la llamada.

La segunda variante del patron es cuando se quiere calcular alguna propiedad sobre el
conjunto de elementos de la matriz (por ejemplo, contar cuantos puntos tienen el
componente rojo igual a cero). Como vimos en el nivel 3, esta variante implica cuatro
decisiones que definen la manera de completar el esqueleto del patrén:

1. Como acumular la informacion que se va llevando a medida que avanza el segundo
ciclo.

2. Cdémo inicializar dicha informacién.

3. Cual es la condicion para modificar dicho acumulado en el punto actual del ciclo.

4. Cémo modificar el acumulado. Veamos esos puntos para resolver el problema de
contar cuantos puntos tienen el componente rojo igual a cero.

¢ Coémo acumular informaciéon? Vamos a utilizar una variable de tipo entero llamada
cuantosRojocero que va llevando el numero de puntos que tienen el componente rojo en

cero.

¢ Como inicializar el acumulado? La variable cuantosrRojocero se debe inicializar en 0,
antes de la primera iteracion del ciclo exterior.

¢ Condicion para cambiar el acumulado? Cuando el método getred() del objeto Color
que se encuentra en bitmap[i][j] Sea igual a 0.

¢, Como modificar el acumulado? El acumulado se modifica incrementandolo en 1.

El método resultante es el siguiente:

public int
{
int cuantosRojoCero = 0;
for(int 1 = 0; i < alto; i++)
{
for(int j = 0; j < ancho; j++)
{
if(bitmap[i][j].getRed(==)
{
cuantosRojoCero++;
}
}
}

return cuantosRojoCero;

e Este metodo de la clase Imagen permite calcular el numero de pixeles de la imagen
cuyo componente rojo es cero.

e El método getred() de la clase Color retorna el indice de rojo que tiene el objeto
sobre el que se invoca el método. En este caso corresponde al color del objeto que se
encuentra referenciado en la casilla (i,j).

e Sidicho método retorna el valor 0, debemos incrementar la variable en la que vamos
acumulando el resultado.

Tarea 2

Objetivo: Generar habilidad en el uso del patrén de recorrido total para escribir un método
que manipula una matriz.

Escriba los métodos de la clase Imagen que resuelven los siguientes problemas, que
corresponden a las dos variantes del patrén de algoritmo de recorrido total.

Escriba un metodo que modifique los puntos de la matriz convirtiéndolos en sus negativos.
El negativo se calcula restandole 255 a cada componente RGB del color y tomando el valor

absoluto del resultado.

public void

{

Escriba un método que indique cual es la tendencia de color de la imagen. Esto se calcula
de la siguiente manera: un pixel tiene un color de tendencia roja, si su indice es mayor que
los otros dos. Lo mismo sucede con los demas colores. Este método retorna 0 si la imagen
no tiene ninguna tendencia, 1 si la tendencia es roja, 2 si la tendencia es verde y 3 si la
tendencia es azul.

public int

{

4.5.2. Patron de Recorrido Parcial

Como vimos con los arreglos y con los vectores, algunos problemas de manejo de
estructuras contenedoras no exigen recorrer todos los elementos para lograr el objetivo
propuesto. Piense por ejemplo en el problema de saber si hay algun punto negro (0, 0, 0) en
la imagen. En ese caso hacemos un recorrido que puede terminar cuando encontremos el
primer punto negro o cuando lleguemos al final de la matriz sin haberlo encontrado. Un
recorrido parcial se caracteriza porque existe una condicion que debemos verificar en cada
iteracion para saber si debemos detener el ciclo o volverlo a repetir.

En este patron debemos tener en cuenta la condicion de salida de la siguiente manera:

boolean termino = false;

for(int 1 = 0; i < NUM_FILAS && !termino; i++)
{

for(int j = 0; j < NUM_COLUMNAS && !termino; j++)
{

<cuerpo del ciclo>

if(<problema terminado>)

{

termino = true;

¢ Este esqueleto es una variante del que utilizamos en el caso de los arreglos, con la
diferencia de que utilizamos la variable termino para hacerlo salir de los dos ciclos a
la vez.

e Tal como vimos en el nivel 3, la variable termino se puede reemplazar por cualquier
condicion que indique el punto en el que el problema ya ha sido resuelto.

Hay casos en los cuales se deben utilizar dos variables distintas para controlar la salida de
cadauno de los ciclos de manera independiente. En ese caso se trata simplemente de
aplicar el patron de recorrido parcial de los arreglos de manera anidada, tal como se
muestra en el siguiente esqueleto de algoritmo:

boolean terminol = false;

for(int 1 = 0; 1 < NUM_FILAS && !terminol; i++)
{

boolean termino2 = false;
for(int j = 0; j < NUM_COLUMNAS && !termino2; j++)
{

<cuerpo del ciclo>

if(<problema interno terminado>)

{
termino2 = true;

}
}
if(<problema externo terminado>)
{

terminol = true;
}

e Con la variable termino1 manejamos el recorrido parcial del ciclo externo. Cuando el
problema que se quiere resolver con ese ciclo se da por resuelto, la variable cambia de
valor y termina la instruccion repetitiva.

e Con la variable termino2 hacemos lo mismo con el ciclo interno.

e De nuevo, las variables termino1 Yy termino2 Se pueden reemplazar por expresiones
I6gicas que determinen si el objetivo de cada ciclo ya ha sido alcanzado.

En el ejemplo 4 se ilustra el uso de los dos esqueletos de algoritmo para resolver problemas
de manipulacién de matrices.

Ejemplo 4

Objetivo: Mostrar dos problemas de matrices que se resuelven utilizando los dos
esqueletos planteados anteriormente.

En este ejemplo se presentan dos métodos de la clase Imagen cuya solucion sigue el
patron de recorrido parcial de matrices.

public boolean

{
boolean termino = false;
for(int 1 = 0; i < alto && !'termino; i++)
{
for(int j = 0; j < ancho && !termino; j++)
{
if(bitmap[1][j].equals(Color.BLACK))
{
termino = true;
}
}
}
return termino;
}

e Este metodo nos permite saber si hay al menos un punto negro en la imagen.

e En este método, la condicion para dar por resuelto el problema es que se encuentre en
la casilla actual (i,j) un pixel negro. Ahi sabemos que la respuesta es verdadera, y
queremos salir del ciclo interno y del ciclo externo a la vez.

e Sial llegar al final de todo el recorrido no hemos encontrado ningun pixel negro,

debemos retornar falso.

public boolean

{
boolean terminol = false;
int numFilas = 0;
for(int 1 = 0; 1 < alto && !'terminol; i++)
{
boolean termino2 = false;
for(int j = 0; j < ancho && !termino2; j++)
{
if(bitmap[i1][j].equals(Color.BLACK))
{
numFilas++;
termino2 = true;
}
}
if(numFilas >)
{
terminol = true;
}
}
return terminol;
}

e Este método indica si hay mas de 50 filas en la imagen con un pixel negro.

¢ E| objetivo del ciclo exterior se cumple si se encuentran mas de 50 filas con un pixel
negro. La variable termino1 debe cambiar de valor en ese caso y hacer que se
termine la iteracion.

¢ E| objetivo del ciclo interior es encontrar un pixel negro en la fila i. Tan pronto lo
encuentre, debe usar la variable termino2 para dejar de iterar.

e Puesto que el problema planteado a cada ciclo termina en un momento distinto, no
podemos utilizar una sola variable como habiamos hecho en el método anterior.

e En lugar de retornar el valor de la variable termino1 , habriamos podido retornar la

expresion numFilas > 50 .

Tarea 3

Objetivo: Escribir algunos métodos para manipular matrices.

Desarrolle los métodos de la clase Imagen que resuelven los siguientes problemas. En cada
caso, identifique el patrén de algoritmo que va a utilizar.

En el proceso de adquisicion de una imagen, ésta puede quedar con una serie de errores
los cuales hacen que se vea de mala calidad. Para corregir estos errores existe un
algoritmo de filtrado, que se basa en calcular un nuevo valor para cada pixel de la imagen.
Este valor se calcula como el promedio de los 8 vecinos del pixel en la imagen original,
sobre cada uno de los componentes RGB. En este proceso no se incluyen los bordes de la
imagen, puesto que no tienen los 8 vecinos necesarios. Este metodo de la clase Imagen
debe retornar una matriz con una copia de la imagen filtrada.

vecing 2
vecino 3
vecino 1 /
\._________9 é——-'/ vecino i_|
b
vecino 8 I .
Gomme oo
\‘______/ vecino B

\ debe terminar con un color que
vecino 7 _—"] seq el premedio de leg coleres de

log vecines en o irmagen criginal

vecing 6

public Color[][] imagenFiltrada()
{

En algunos contextos (en robdtica, por ejemplo), en lugar del color exacto de cada pixel nos
interesa solamente distinguir el fondo de la imagen (en blanco) de otros elementos que
puedan aparecer (un obstaculo para el robot, por ejemplo). Escriba un metodo de la clase
Imagen que modifique la matriz de pixeles de la siguiente manera: si la suma de los tres
componentes RGB de un pixel es menor que 100, lo debe reemplazar por el color blanco
(255,255,255). En caso contrario lo reemplaza por el color negro (0,0,0).

public void

{

Escriba un metodo de la clase Imagen que sea capaz de rotarla 90 grados a la derecha.

public void

{

4.5.3. Otros Algoritmos de Recorrido

En el ejemplo 5 mostramos la manera de adaptar los patrones que hemos visto a algunos
problemas tipicos de manejo de matrices.

Ejemplo 5

Objetivo: Mostrar algunos problemas de matrices que pueden ser resueltos adaptando los
patrones que hemos visto.

En este ejemplo se presentan tres métodos de la clase Imagen, cuya solucién puede ser
explicada a través de la adaptacion de alguno de los patrones que hemos visto en este
libro.

public int int

{
int numVerdes = 0;
for(int 1 = 0; i < ancho; i++)
{
if(bitmap[pNumFila][i].getGreen() ==)
{
numVerdes++;
}
}
return numVerdes;
}

e En este método vamos a contar el numero de pixeles de la fila pnumFila cuyo
componente verde es el maximo posible.

e En este ejemplo queremos recorrer una fila de la matriz, cuyo indice se recibe como
parametro. El hecho de utilizar una sola fila hace que pasemos al contexto de las
contenedoras de una sola dimensién y que apliquemos los patrones estudiados en el
nivel 3.

e Aplicamos entonces el patron de recorrido total sobre el arreglo representado por la fila
dada. La unica diferencia es que para indicar un elemento debemos usar la sintaxis

bitmap[pNumFila][i] .

public int int

{

int acumAzul = 0;

for(int i = 0; i < alto; i++)

{

acumAzul += bitmap[i][pNumColumna].getBlue();

}

return acumAzul;

e Este método calcula la suma del valor azul de todos los pixeles de la columna que
recibe como parametro.

e Basta con ver la columna numero pnmcolumna como un arreglo de longitud alto (el
numero de filas).

e Cada elemento se debe referenciar con la sintaxis bitmap[i][pNumColumna] .

public boolean

{
for(int 1 = 0; 1 < alto & i < ancho; i++)
{
if(bitmap[i][1].equals(Color.BLACK))
{
return true;
}
}
return false;
}

e Este metodo indica si hay un pixel negro sobre la diagonal de la imagen que comienza
en el punto (0,0).

e Para este problema, vamos a imaginar el arreglo compuesto por los elementos de la
diagonal: (0,0), (1,1), (2,2), etc.

® Luego, aplicamos el patron de recorrido parcial de los arreglos. La unica diferencia es
que, al avanzar, debemos hacerlo a la vez sobre las dos dimensiones, de manera que

nos movamos por la diagonal.

5. Caso de Estudio N° 2: Campeonato de
Futbol

En este caso se quiere construir una aplicacion para manejar los resultados de los partidos
en un campeonato de futbol. En el campeonato hay varios equipos y cada uno de ellos
puede jugar contra cada uno de los otros equipos una sola vez.

La informacion de los equipos que participan del campeonato esta definida en un archivo
que la aplicacion debe leer para construir el estado inicial. El formato de dicho archivo se
explicara mas adelante.

En el programa se debe permitir registrar el resultado de cualquier partido del campeonato
y, con base en esa informacion, se debe mostrar la tabla de resultados, en la que se indique
cuantos goles le hizo cada equipo a cada uno de los otros con los que ha jugado. También
se debe mostrar la tabla de posiciones, indicando para cada equipo el numero de puntos
(Puntos), los partidos jugados (Jugados), los partidos ganados (Ganados), los partidos
empatados (Empatados), los partidos perdidos (Perdidos), los goles a favor (Goles a Favor)
y los goles en contra (En Contra).

La interfaz de usuario que hemos disefiado para esta aplicacion es la que se muestra en la
figura 6.7.

Fig. 6.7 Interfaz de usuario del caso de estudio del campeonato de futbol

=]

| £ Tabla de Resultades

7

Tabla de Goles

A.C. Milan

Inter

Juventus

Roma

Lazio

Tabla de Posiciones

Equipo

A.C. Milan

Inter

Juventus

Roma

Lazio

CA EO .TO

= x

Puntos Jugados Ganados Empatados Perdidos
0 0 0 0]
0 0 0 0 0
0 0 0 0 0
0 o 0 0 1]
Li] o L] a i)
A.C. Milan Inter Juventus Roma
X -
X
X
- - X
| Cargar Equipos | ‘ -ﬁegis(rar P_artidé, ‘ ‘ Opcion 1 ‘ | Opcicn 2 |

Goles a Favor En Contra

o

0

Lazio

En esta interfaz se muestra permanentemente la tabla de goles y la tabla de posiciones de
los equipos. Usando el boton Registrar Partido se ingresa el resultado de alguno de los
partidos del campeonato. Con el boton Cargar Equipos se permite al usuario leer de un

archivo los nombres de los equipos inscritos en el campeonato. El programa debe funcionar

para cualquier numero de equipos, pero una vez que se haya leido el archivo con los
nombres, éstos no se pueden cambiar.

5.1. Comprension de los Requerimientos

Los requerimientos funcionales de este caso de estudio son los siguientes:

H> w0 DN~

Cargar equipos.

Registrar un resultado.
Mostrar tabla de goles.
Mostrar tabla de posiciones.

Requerimiento funcional 1

Nombre:

Resumen:

Entradas:

Resultado:

R1 - Cargar equipos.

Carga los equipos que van a tomar parte en el campeonato a través de
un archivo de propiedades. La tabla de posiciones y tabla de goles se
reinician.

Archivo de propiedades con los datos de los equipos.

Se muestran los equipos cargados y las tablas de goles y posiciones
reiniciadas.

Requerimiento funcional 2

Nombre:

Resumen:

Entradas:

Resultado:

R2 - Registrar un resultado.

Registra el resultado de un partido en la tabla de goles y de posiciones.
Si los equipos del partido ya tienen registrado un resultado para el mismo
o si es un partido invalido (un equipo contra si mismo) no se hace el
registro de datos.

(1) equipo 1, (2) equipo 2, (3) goles del equipo 1 (4) goles del equipo 2.

Se actualiza la tabla de goles con los goles efectuados por los dos
equipos Y la tabla de posiciones con el partido jugado.

Requerimiento funcional 3

Nombre:

Resumen:

Entradas:

Resultado:

R3 - Mostrar tabla de goles.

Muestra la tabla de goles: para cada equipo se muestra el numero de
goles que le hizo a cada uno de los otros equipos.

Ninguna.

Se muestra la tabla de goles con los partidos registrados.

Requerimiento funcional 4

Nombre:

Resumen:

Entradas:

Resultado:

R4 - Mostrar tabla de posiciones.

Muestra la tabla de posiciones del campeonato. Para cada equipo se
muestra el numero de puntos, los partidos jugados, ganados, empatados
y perdidos y el numero de goles a favor y en contra.

Ninguna.

Se muestra la tabla de posiciones con los partidos registrados.

5.2. Comprension del Mundo del Problema

En el mundo del problema podemos identificar dos entidades (ver figura 6.8): el
campeonato y los equipos. La tabla de resultados la vamos a representar como una matriz
de enteros, en la cual en la casilla (X, Y) esta el numero de goles que le hizo el equipo X al
equipo Y. Si no han jugado, en dicha casilla almacenamos la constante sin_JueAr . Enla
diagonal ponemos el valor 1nvALIDO para indicar que un equipo no puede jugar contra si
mismo. El campeonato tiene un arreglo de equipos, cada uno de los cuales almacena su
nombre.

Fig. 6.8 Modelo conceptual del campeonato de futbol

canstantes: una para
indicar que 2l partide he
s ha jugado y ofra para
porer en la diagonal de
la matriz de goles

_/%{ | SIN _ JUGAR

INVALIDO aguipos
- : —> | String nombre
int maxEquipos 5

/’ﬂ{ int[1[] tablaGoles

un atributo con el nomero
de equipos vy atro con una
matriz de erteras con los

g(‘JlFS de |05 pm‘]‘idos sabemos dues 85 un 0r‘reg|0; pero

la dirmensidn exacta ssle ld concceremaos
en gl momento de leer el archive

5.3. Diseno de las Clases

5.3.1. Declaracion de los Atributos y las
Asociaciones

A continuacion mostramos la manera de declarar en Java las clases involucradas en el
problema, con una explicacion de cdmo se representa la informacion. De los métodos sdlo
mostramos algunas de las signaturas que utilizaremos mas adelante.

public class

{
private String nombre;
public {...}
public String {...}
public String {...}
3

¢ La clase Equipo tiene un unico atributo que contiene su nombre.

e La clase cuenta con un constructor, que recibe como parametro el nombre del equipo, y
dos métodos: uno que retorna el nombre del equipo y otro que retorna un texto para
representar el equipo como una cadena de caracteres.

public class

{
public static final int SIN_JUGAR = -1;
public static final int INVALIDO = -2;
private int maxEquipos;
private int[][] tablaGoles;
private Equipo[] equipos;

}

¢ Una decision importante que debemos tomar al disefar la clase es la manera de
representar los equipos y la tabla de goles. Dado que el numero de equipos que
participan en el campeonato no cambia y que ésta es una informacion que vamos a
leer del archivo de entrada, podemos modelar los equipos como un arreglo de tamano
fijo (equipos).

e |a tabla de goles es una estructura de dos dimensiones en donde el numero de
columnas es igual al numero de filas, y este valor corresponde al numero de equipos
que estan participando en el campeonato. Dado que la informacion de los goles es un
valor numérico los elementos seran de tipo entero.

¢ |nterpretaremos la tabla de la siguiente manera: (a) tablaGoles[equipol][equipo2]
indicara el numero de goles que el equipo1 le hizo al equipo2; (b) tablaGoles[equipo2]

[equipo1l] indicara el numero de goles que el equipo?2 le hizo al equipo1.

e Laconstante sIN_JueArR indica que el partido no se ha jugado todavia.

e La constante INVALIDO solo se usa en la diagonal de la matriz (un equipo no puede
jugar contra si mismo).

e En el atributo maxeEquipos almacenamos el numero de equipos inscritos en el

campeonato.

Dicho valor no debe cambiar después de ser cargado del archivo.

5.3.2. Asignacion de Responsabilidades

Dado que la clase Campeonato contiene la informacién de los equipos y de los goles de los
partidos jugados, esta clase es responsable de:

1. Dar la informacion sobre los equipos.
2. Dar la informacion sobre la tabla de goles.
3. Dar la informacion sobre la tabla de posiciones.

4. Cargar de un archivo la informacién del campeonato y guardarla en el arreglo de
equipos.

5. Registrar el resultado de un partido.

Las cinco responsabilidades anteriores nos van a guiar en la definicion de los métodos de la
clase Campeonato. En la siguiente secciéon nos vamos a concentrar en el problema de
cargar los datos del campeonato a partir de la informacion registrada en un archivo. Esto
nos va a permitir que siempre que ejecutemos el programa encontremos el mismo estado
inicial. El problema general de la persistencia, o sea, el hecho de guardar en un archivo los
cambios hechos en el estado del modelo del mundo (el campeonato en nuestro caso) esta
fuera del alcance de este libro. En la siguiente seccion estudiaremos un mecanismo simple
de lectura de la informacion inicial de un programa desde un tipo especial de archivos en
Java llamados archivos de propiedades (properties).

6. Persistencia y Manejo del Estado Inicial

En varios de los casos de estudio de este libro, hemos utilizado archivos de datos para
configurar el estado inicial de la aplicaciéon. Por ejemplo, en el caso de estudio del empleado
(nivel 1) teniamos en un archivo su fotografia. En el caso de estudio de la tienda (nivel 2)
teniamos en un archivo la imagen de cada producto. En este nivel, el visor de imagenes
utiliza un archivo para leer la imagen que sera manipulada por la aplicacion. Todos esos
ejemplos tienen en comun que la informacién del archivo se emplea para inicializar el
estado de la aplicacidon. En ningun caso hemos guardado resultados del programa en un
archivo para hacerlos persistentes cuando la aplicacion termine. Este problema de hacer
persistir los cambios que hagamos en el estado del mundo esta fuera del alcance de este
libro.

En esta seccion estudiaremos una forma sencilla de leer datos de un archivo, con el
proposito de configurar el estado inicial de los elementos del modelo del mundo. Vamos a
estudiar los conceptos basicos y luego resolveremos el requerimiento funcional de cargar la
informacion del campeonato desde un archivo.

6.1. El Concepto de Archivo

El concepto de archivo no es nuevo para nosotros. Desde el primer caso de estudio de este
libro hemos utilizado archivos: archivos de texto como los que contienen el codigo Java,
archivos html como los que contienen la documentacion del programa, archivos mdl con los
diagramas de clases, etc. Los directorios en donde guardamos los archivos con los datos y
todos los de- mas directorios que manejamos en los proyectos son a su vez archivos.

De manera general, podemos definir un archivo como una entidad que contiene
informacion que puede ser almacenada en la memoria secundaria del computador (el disco
duro o un CD). Todo archivo tiene un nombre que permite identificarlo de manera unica
dentro del computador, el cual esta compuesto por dos partes: la ruta (path) y el nombre
corto. La ruta describe la estructura de directorios dentro de los cuales se encuentra el
archivo, empezando por el nombre de alguno de los discos duros del computador. Veamos
en la siguiente tabla un ejemplo que ilustre lo anterior:

Nombre completo: c:/dev/uniandes/cupi2/empleado/mundo/Empleado.java
Nombre corto: Empleado.java
Extension o apellido: Jjava

Ruta o camino: c:/dev/uniandes/cupi2/empleado/mundo/

El caracter '/' es llamado el separador de nombres de archivos (file separator). Este
separador depende del sistema operativo en el que estemos trabajando. Por ejemplo, en
Windows se suele utilizar como separador el caracter '\' (backslash) mientras que en Unix y
Linux se utiliza el caracter '/' (slash).

La extension que opcionalmente acompana el nombre del archivo es una convencion para
indicar el tipo de informacién que hay dentro del archivo. El tipo de informacion dentro del
archivo determina el programa con el que el archivo puede ser manipulado. Por ejemplo, los
archivos de texto pueden ser manipulados por editores de texto, los archivos con extension
Xls deben ser manipulados por el programa Microsoft Excel, etc.

Desde nuestros programas en Java podemos acceder y leer informacién de los archivos del
disco, siempre y cuando conozcamos su nhombre para poder localizarlo y, ademas,
conozcamos el tipo de informacion que el archivo contiene para poderla leer. Los archivos
gue manejaremos en nuestros programas tienen un formato especial que llamamos de
propiedades (properties). Apoyandonos en algunas clases de utilidad que Java nos ofrece,
vamos a poder leer informacion desde estos archivos de una manera muy sencilla.

Las clases Java que permiten manejar archivos desde un programa se encuentran definidas
en el paquete java.io , mientras que la clase que maneja las propiedades esta en el
paquete java.util .

6.2. Leer Datos como Propiedades

Una propiedad se define como una pareja nombre = valor. Por ejemplo, para expresar en un
archivo que la propiedad llamada campeonato.equipos tiene el valor 5, se usa la sintaxis:

campeonato.equipos = 5

En Java existe una clase llamada Properties que representa un conjunto de propiedades
persistentes. Por persistentes queremos decir que estas propiedades pueden ser
almacenadas en un archivo en memoria secundaria y leidas a la memoria del programa
desde un archivo que ha sido escrito siguiendo las convenciones de nombre = valor. En la
figura 6.9 se ilustra la correspondencia que queremos hacer entre un archivo llamado
equipos.properties y un objeto de la clase Properties en memoria principal.

Fig. 6.9 Asociacion entre un archivo y el objeto Properties en memoria principal

este es un ohjeto de la la informacien del archive llega

clase Properties, que tiene en los atributos del objeto
la informacian leida del archivo /\

es un archivo de fexto,
con € lineas

campeanato.equlpos 5

Lo : campeonato.nombred AL Milan
Memoria Secundaria

-- >

campeonato.nombrel Inter

campeonato.nombre Juventus

campeonato.nombred Roma

campeonato.equipos=5
campeonato.nombred=A.C.Milan

campeonato.nombred | Lazio

campeonate.nombrel=inter

e e T S AT

campeonato.no E I M |
| Memoria principa
campeonato.nombred=Lazia — i la princit

cargar del archive, significa
&l nombre de este archive es crear el objeto en memoria principal
que tiene la informacién

Ci/nb_compeonate/dota/equipos propertias

El archivo es un archivo de texto que contiene una lista de propiedades. Cada propiedad es
una linea del archivo y esta definida por un nombre, el operador = y el valor de la
propiedad (sin necesidad de comillas). Si en nuestro programa, el objeto de la clase
Properties esta referenciado desde una variable llamada ppatos , una vez leido el archivo
en memoria, podemos utilizar los métodos de dicha clase para obtener el valor de los
elementos. Por ejemplo, si queremos saber el valor de la propiedad campeonato.nombre0,
podemos utilizar el siguiente método, cuya respuesta sera la cadena "A.C.Milan".

String nombre = pDatos.getProperty ('"campeonato.nombre®");

Para completar el ejemplo, necesitamos aprender varias cosas. Primero necesitamos saber
cémo localizar el archivo en el disco, luego hacer la asociacion entre el archivo fisico y un
objeto en el programa que lo represente, y después, leer o cargar el contenido del archivo
en el objeto Properties de nuestro programa. En las siguientes secciones veremos en
detalle cada uno de estos pasos.

Por convencion, para los nombres de las propiedades utilizamos una secuencia de
palabras en minusculas, separadas por un punto.

6.3. Escoger un Archivo desde el Programa

Como explicamos en la seccioén de definicién de un archivo, el nombre fisico de un archivo
depende del sistema operativo en el que nuestro programa esté trabajando, en particular
porque el caracter de separacion de directorios puede cambiar entre los diferentes sistemas

operativos. Por esta razon, para no depender del sistema operativo, en Java se puede
hacer una abstraccion de este nombre especifico y convertirlo en un nombre independiente
utilizando la clase File.

Para crear un objeto de la clase File que contenga la representacion abstracta del archivo
fisico, debemos crear una instancia de dicha clase, usando la sintaxis que se muestra a
continuacion:

File archivoDatos = new File("C:\n6_campeonato\data\equipos.properties");

Si invocamos el constructor de la clase File con una cadena vacia (null), se
disparara la excepcion: java.lang.NullPointerException

La clase File nos ofrece varios servicios muy utiles, como métodos para saber si el archivo
existe, preguntar por las caracteristicas del archivo, crear un archivo vacio, renombrar un
archivo y muchas otras mas. En este nivel no las vamos a estudiar en detalle pero el lector
interesado puede consultar la documentacion de la clase.

Con la instruccion del ejemplo anterior, obtenemos una variable llamada archivobatos que
esta haciendo referencia a un objeto de la clase File que representa en abstracto el archivo
que queremos leer. Lo anterior es suficiente si conocemos con anticipacién el nombre del
archivo de donde queremos cargar la informacion. Pero si, como en el caso de estudio,
queremos que sea el cliente quien seleccione el archivo que quiere abrir, debemos utilizar
otra manera de construir dicho objeto. Esto se ilustra en el ejemplo 6.

Ejemplo 6

Objetivo: Mostrar la manera de permitir al usuario escoger un archivo de manera
interactiva.

En este ejemplo se presenta el codigo que permite a un programa preguntarle al usuario el
archivo a partir del cual quiere leer alguna informacion.

public class InterfazCampeonato extends JFrame

{
public void cargarEquipos
{
}

}

e El método cargarequipos() de la clase InterfazCampeonato es responsable de
preguntar al usuario el archivo del cual quiere cargar la informacién del campeonato.

e \eamos paso a paso la construccion de dicho método, comenzando por la manera de
presentar la ventana de archivos disponibles en el computador y, luego, recuperar la
seleccion que haya hecho el usuario.

[£: Abrir archivo de campeonato *

Buscaren: |[]data v| @ E

Jimagenes

E‘| equipos.properties

Nombre de archivo: |

Archivos de tipo; |Todos los Archivos -

Abrir Cancelar

public class InterfazCampeonato extends JFrame

{
public void cargarEquipos()
{
JFileChooser fc = new JFileChooser("./data");
fc.setDialogTitle("Abrir archivo de campeonato");
}
}

e Lo primero que debemos hacer en el método es utilizar la clase FileChooser, que
permite seleccionar un archivo. Creamos una instancia de dicha clase, pasandole en el
constructor el directorio por el cual queremos comenzar la busqueda de los archivos.
En nuestro caso, indicamos que es el directorio llamado data.

¢ En la segunda instruccién de esta parte, cambiamos el titulo de la ventana.

public class extends

{
public void
{
File archivoCampeonato = null;
int resultado = fc.showOpenDialog(this);
if(resultado == JFileChooser.APPROVE_OPTION)
{
archivoCampeonato = fc.getSelectedFile();
}
}
}

e Con el método showopenbialog hacemos que la ventana de seleccion de archivos se
abra.

¢ Mientras el usuario no seleccione un archivo o cancele la operacién, el metodo queda
bloqueado en ese punto.

e El método showopenbialog retorna un valor entero que describe el resultado de la
operacion.

e Con el método getselectedrile obtenemos el objeto de la clase File que describe el
archivo escogido por el usuario (sdlo si el usuario no cancel6 la operacion).

El cddigo del ejemplo 6 esta incompleto, porque hasta ahora sélo hemos obtenido un objeto
de la clase File que representa el archivo que el usuario quiere cargar en memoria. En la
proxima seccién veremos como realizar la lectura propiamente dicha.

6.4. Inicializacién del Estado de la Aplicacién

Para cargar el estado inicial del campeonato, debemos leer del archivo de propiedades la
informacion sobre el numero de equipos que van a participar (propiedad llamada
"campeonato.equipos") y el nombre de los equipos (propiedades llamadas
"campeonato.equipo” seguido de un indice que comienza en cero). Con dicha informacion
podremos inicializar nuestro arreglo de equipos y, también, la matriz que representa la tabla
de goles. El constructor de la clase Campeonato sera el encargado de hacer esta
inicializacion, que vamos a dividir en tres subproblemas para los que hemos identificado
tres metas intermedias:

e Meta 1: Cargar la informacién del archivo en un objeto Properties.

e Meta 2: Inicializar el arreglo de equipos con base en la informacion leida.

e Meta 3: Inicializar la matriz que representa la tabla de goles.

e La primera de estas metas se logra con los métodos explicados en el ejemplo 7.

Ejemplo 7

Objetivo: Mostrar la manera de crear un objeto de la clase Properties a partir de la

informacion de un archivo.

En este ejemplo se muestra el codigo del constructor de la clase Campeonato, en términos

de los métodos que resuelven cada una de las metas intermedias. Luego se muestra el

metodo privado que logra la primera de ellas. Los demas métodos seran presentados mas

adelante.

public class Campeonato

{

private int maxEquipos;
private int[][] tablaGoles;
private Equipo[] equipos;

public Campeonato throws Exception

{

Properties datos = cargarInfoCampeonato(pArchivo);
inicializarEquipos(datos);
inicializarTablaGoles();

El constructor recibe como parametro el objeto de la clase File que describe el archivo
con la informacion.

Dicho objeto viene desde la interfaz del programa (obtenido con el méetodo del ejemplo
6).

El constructor lanza una excepcion si encuentra un problema al leer el archivo o si el
formato interno del mismo es invalido.

El primer método carga la informacion del archivo en un objeto llamado datos.

El segundo método recibe dicho objeto e inicializa el arreglo de equipos.

El tercer método aprovecha la informacién dejada en los atributos, para crear la matriz
con la tabla de goles.

private Properties cargarInfoCampeonato throws Exception

{

Properties datos = new Properties();
FileInputStream in = new FileInputStream(pArchivo);

try

{
datos.load(in);
in.close();

}
catch(Exception e)
{
throw new Exception("Formato invalido");
}

return datos;

Este metodo recibe un objeto de la clase File.

Lo primero que hacemos es crear un objeto de la clase Properties (llamado datos) en
el cual vamos a dejar el resultado del método.

Luego creamos un objeto de la clase FilelnputStream que nos ayuda a hacer la
conexion entre la memoria secundaria y el programa.

La clase FilelnputStream sirve para crear una especie de "canal" por donde los datos
seran transmitidos. Para construir este objeto y asociarlo con el archivo seleccionado
por el usuario, usamos el objeto de la clase File que recibimos como parametro.

Si el archivo referenciado por parchivo no existe al tratar de crear la instancia de la
clase FilelnputStream se lanza una excepcion.

Luego, usamos el método 1load de la clase Properties, pasandole como parametro el
"canal de lectura". Dicho método lanza una excepcion si encuentra que el formato del
archivo no es el esperado (no esta formado por parejas de la forma nombre = valor).
Alli atrapamos la excepcion y la volvemos a lanzar con un mensaje signifucativo para
nuestro programa.

Finalmente cerramos el "canal de lectura" con el método close.

private void

{
tablaGoles = new int[maxEquipos][maxEquipos];
for(int 1 = 0; i1 < maxEquipos; i++)
{
for(int j = 0; j < maxEquipos; j++)
{
if(1i!=3)
{
tablaGoles[i][j] = SIN_JUGAR;
}
else
{
tablaGoles[i][j] = INVALIDO;
}
}
}
}

e Este es el metodo que logra la tercera meta planteada en el constructor.

e Crea inicialmente una matriz que tiene una fila y una columna por cada equipo en el
campeonato (es una matriz cuadrada).

® Luego inicializa cada una de las casillas de la matriz de enteros (patron de recorrido
total), usando para esto las constantes definidas en la clase.

e En la diagonal deja el valor INVALIDO.

6.5. Manejo de los Objetos de la Clase
Properties

Para resolver la segunda meta, debemos implementar el método inicializarEquipos cuyo
objetivo es inicializar el arreglo de equipos a partir de la informacion que recibe como
parametro de entrada. Para hacer esto necesitamos acceder al valor de las propiedades
individuales que vienen en el objeto Properties. Esto se hace usando el método getProperty
de la clase Properties, pasando como parametro el nombre de la propiedad que queremos
obtener (por ejemplo,"campeonato.equipos"). Veamos el cédigo en el siguiente ejemplo.

Ejemplo 8

Objetivo: Mostrar la manera de acceder a las propiedades que forman parte de un objeto
de la clase Properties.

En este ejemplo se muestra el codigo del método que implementa la segunda meta

intermedia del constructor de la clase Campeonato.

private void

{

String strNumeroEquipos = pDatos.getProperty('"campeonato.equipos");
maxEquipos = Integer.parseInt(strNumeroEquipos);
equipos = new Equipo[maxEquipos];

for(int i = 0; i < maxEquipos; i++)

{

String nombreEquipo = datos.getProperty("campeonato.nombre" + i);
equipos[i]= new Equipo(nombreEquipo);

Comenzamos obteniendo la propiedad que define el nimero de equipos del
campeonato (llamada "campeonato.equipos"). El valor de una propiedad siempre es
una cadena de caracteres.

Luego, convertimos la respuesta que obtenemos en un entero, usando el metodo
parselnt. Por ejemplo, convertimos la cadena "5" en el entero de valor 5. Note que
dejamos el resultado en el atributo maxequipos previsto para tal fin.

Creamos después el arreglo de equipos, reservando suficiente espacio para almacenar
los objetos de la clase Equipo que van a representar cada uno de ellos.

En un ciclo recuperamos los nombres de los equipos (a partir de las propiedades), y
con esa informacién vamos creando los objetos de la clase Equipo que los representan
y los vamos guardando secuencialmente en las casillas del arreglo.

Los nombres de los equipos vienen en las propiedades "campeonato. nombreQ",
"campeonato.nombre1", etc., razén por la cual calculamos dicho nombre dentro del
ciclo, agregando al final el indice en el que va la iteracion.

7. Completar la Solucion del Campeonato

En esta seccion vamos a mostrar los métodos que nos van a permitir implementar los
requerimientos funcionales no cubiertos hasta ahora, y vamos a trabajar en la construccion
de algunos métodos que, aunque no forman parte de los requerimientos, ayudaran al lector
a generar habilidad en el uso de los patrones de algoritmo.

7.1. Registrar el Resultado de un Partido

Retomando las clases y sus responsabilidades, hemos establecido que la clase
Campeonato tiene la informacion sobre los equipos que estan jugando y sobre la tabla de
goles. Veamos como podemos resolver el requerimiento de registrar el resultado de un
partido. Este método se compromete en su contrato a realizar la actualizacidn de la tabla de
goles o a disparar una excepcion si los datos entregados no son validos. El cédigo de la
solucion se muestra en el ejemplo 9.

Ejemplo 9

Objetivo: Mostrar el método que implementa el requerimiento funcional de registrar el
resultado de un nuevo partido.

En este ejemplo se muestra el método de la clase Campeonato encargado de incluir el
resultado del partido jugado por dos equipos Si los datos de entrada son invalidos, el
meétodo lanza una excepcion.

public void int int int int thr
ows Exception

{
if(pEquipol < | | pEquipol >= maxEquipos || pEquipo2 < | | pEquipo2 >= maxEquip
0s)

throw new Exception("Equipos incorrectos");

if(pEquipol == pEquipo2)

{
throw new Exception("Son el mismo equipo");
}
if(pGoll < || pGol2 <)
{
throw new Exception("Numero de goles invalido");
}

if(tablaGoles[pEquipol][pEquipo2] != SIN_JUGAR || tablaGoles[pEquipo2][PpEq
uipol] !'= SIN_JUGAR)

throw new Exception("Partido ya jugado");

tablaGoles[pEquipol][pEquipo2] = pGol1i;
tablaGoles[pEquipo2][pEquipol] = pGol2;

e El método supone que la matriz de goles ya fue inicializada (esto forma parte del
contrato, en la parte de precondicion).

® peEquipol es el indice dentro de la matriz que identifica el primer equipo.

® peEquipo2 es el indice dentro de la matriz que identifica el segundo equipo.

® pcol1i es el numero de goles marcados por el primer equipo (pEquipol).

e pGol2 es el numero de goles marcados por el segundo equipo (pEquipo2).

e |La mayor parte del método se dedica a validar la informacion recibida en los
parametros de entrada.

e Cuando los valores de los parametros han sido validados, debemos actualizar las
posiciones de la matriz que representan el partido entre los equipos pequipol Yy

pEquipo2 .

7.2. Construir la Tabla de Posiciones

De acuerdo con la definicién de la tabla de posiciones, por cada equipo del campeonato
debemos informar sus partidos jugados, partidos ganados, partidos empatados, partidos
perdidos, goles a favor y goles en contra. Todos estos datos se pueden calcular a partir de
la matriz que tiene la tabla de resultados, y eso es lo que haremos en esta seccion.

En la figura 6.10 se muestra un escenario posible del campeonato: se han jugado dos
partidos, en los cuales A.C. Milan perdi6 contra el Inter por un marcador de 1 a 2, y también
perdié contra el Juventus recibiendo dos goles y no marcando ninguno. jMal inicio de
temporada para el A.C. Milan! En dicho escenario, el indice del A.C. Milan es el cero,
mientras que el indice del Juventus es el 2.

Fig. 6.10 Tabla de goles del campeonato italiano

el equipo O le huzo
un gzl al squipa |
0] 1 2 3 4

let surna de la fila

/_ da sl total de goles
AC Milan 0 1 O marcados oor el =quipe
Inter ! 2
f
Juventus 2 2
Roma 3
Lazio 4
\ la surno de la celurnna
=l aquipo 2 la hizo do el total de gcles

das ga|r>n al couipa o recibidos oor ol nouipa

En la siguiente tabla se resumen algunas de las caracteristicas de la tabla:

tablaGoles[2

1[oe]>
tablaGoles[0][2]

tablaGoles[2][0] ==
tablaGoles[0][2]

La suma de todas las
casillas de la fila 0

La suma de todas las
casillas de la columna 0

tablaGoles[i][1] ==
INVALIDO

Si tablaGoles[2][©] ==
SIN_JUGAR |,

entonces tablaGoles[@][
2] == SIN_JUGAR

Tarea 4

Indica que el equipo con indice 2 le gané el partido al
equipo con indice 0.

Indica que los equipos 0 y 2 empataron en el partido que
jugaron.

Indica el numero total de goles marcados por el equipo 0
en todo el campeonato.

Indica el numero total de goles recibidos por el equipo 0
en todo el campeonato.

Las casillas de la diagonal siempre van a tener el valor
INVALIDO. Dichas casillas se deben ignorar en el
momento de calcular los valores mencionados
anteriormente.

Sien la casilla (i, j) no hay un resultado, en la casilla
simétrica (j, i) tampoco puede haberlo.

Objetivo: Construir los métodos que nos van a permitir calcular la informacion de los

equipos.

Escriba los métodos de la clase Campeonato que resuelven los problemas que se

mencionan a continuacion. ldentifique el patrén de algoritmo que se debe aplicar en cada

Caso.

Calcular el numero total de partidos ganados por el equipo que se recibe como parametro.

public int

{

int

Calcular el numero total de partidos empatados por el equipo que se recibe como

parametro.

public int int

{

Calcular el numero total de partidos jugados por el equipo que se recibe como parametro.

public int int

{

Calcular el numero total de goles marcados por el equipo que se recibe como parametro.

public int int

{

Calcular el numero total de puntos del equipo que se recibe como parametro. Tenga en
cuenta que un equipo recibe 3 puntos por cada partido ganado y un punto por cada partido
empatado.

public int int

{

7.3 Implementacién de otros Métodos sobre
Matrices

Tarea 5

Objetivo: Construir algunos métodos adicionales al caso de estudio, que ayuden a generar
habilidad en la construccion de algoritmos para manejar matrices.

Escriba los métodos de la clase Campeonato que se describen a continuacion. Identifique
en cada caso el patréon de algoritmo que debe utilizar.

Retornar el indice del equipo que va ganando el campeonato. Si hay dos equipos con el
mismo numero de puntos, gana aquél cuya diferencia de goles (goles anotados menos
goles recibidos) sea mayor.

public int

{

Calcular el numero de partidos que faltan por jugar en el campeonato.

public int
{

Calcular el mayor numero de goles marcados en un partido del campeonato (sumando los
goles de los dos equipos).

public int
{

Calcular el numero de partidos del campeonato cuyo marcador fue cero a cero.

public int

{

8. Proceso de Construccion de un
Programa

Vamos a terminar este nivel con un resumen del proceso de construccion de un programa.
Las actividades que se necesitan para construir un programa las hemos venido definiendo y
practicando a lo largo de todo el libro. En los distintos niveles, dependiendo del tema
tratado, hemos hecho énfasis en algunas de las tareas. Es importante recordar que este
proceso de construccidn de programas esta pensado para construir programas pequefios
(pocos requerimientos, pocas clases e interfaces graficas simples) que, basicamente,
pueden ser resueltos por un soélo desarrollador. Para programas mas grandes en donde sea
necesario que participen mas desarrolladores, se requieren procesos distintos y actividades
extra, relacionadas con la coordinacion y sincronizacién del trabajo y, en general, con el
manejo de la complejidad adicional que resulta de una mayor cantidad de requerimientos y
del elevado numero de clases necesarias para conformar la solucion final.

El proceso de construccion de un programa es el conjunto de actividades que debemos
seguir para terminar con éxito nuestra tarea. Exito significa que al final tenemos un
programa que funciona correctamente de acuerdo con los requerimientos, tiene su
documentacién completa (modelo del mundo, disefo de la interfaz, etc.) y, ademas, el
cbdigo esta documentado con los contratos y con los comentarios adicionales que
permitiran a cualquier persona, mas adelante, entenderlo y darle mantenimiento.

El proceso que hemos seguido se compone de tres actividades principales: analisis del
problema, disefo de la solucién y construccion de la solucion. Lo importante de estas
actividades es comprender cual es su objetivo y qué artefactos debemos producir en cada
una de ellas. Veamos una rapida sintesis de esas actividades.

8.1. Analisis del Problema

Objetivo:

e Entender el problema y poder explicar a otros nuestro entendimiento, siguiendo un
conjunto de convenciones.

Resultados:

e |os requerimientos funcionales quedan consignados en un documento donde se
identifican los servicios que el programa debe ofrecer al usuario. Cada uno de ellos
debe tener una pequefia descripcion que resuma el objetivo, la informacion de entrada

(suministrada por el usuario) y el resultado (producido por el programa).

¢ El modelo conceptual del mundo del problema es una simplificacién de la realidad en la
cual ocurre el problema. Este modelo lo expresamos en un diagrama de clases escrito
en el lenguaje UML. En un diagrama de clases aparecen las entidades del mundo que
participan en el problema, los atributos que permiten expresar su estado y las
relaciones (llamadas asociaciones) existentes entre las entidades. Las asociaciones
pueden tener un nombre y una cardinalidad. Esta ultima expresa el numero de
instancias involucradas en la relacion entre las entidades.

e Los requerimientos no funcionales son las restricciones y condiciones que impone el
cliente sobre el programa que se va a construir. Casi siempre hacen referencia al tipo
de persistencia de la informacioén, a las caracteristicas de la interfaz de usuario, al
manejo de la seguridad, etc. En este libro no tocamos este tema, dado que los
problemas sobre los cuales trabajamos son pequefios, y los requerimientos no
funcionales no influyen sobre la arquitectura de la solucion.

8.2. Diseno de la Solucion

Objetivo:

e Detallar las caracteristicas que tendra la solucion, antes de ser construida. Los disefios
nos van a permitir mostrar la solucién antes de comenzar el proceso de fabricacién
propiamente dicho.

Resultados:

e Lainterfaz de usuario es la parte de la solucion que permite que el usuario interactue
con el programa. Disefiarla significa que debemos producir dos artefactos: la
visualizacion y el modelo conceptual de las clases que la van a componer (expresado
en UML).

e La arquitectura nos ayuda a descomponer la solucion en partes y a identificar sus
relaciones. En los ejemplos de este libro, hemos utilizado un diagrama de paquetes
para mostrar los tres componentes de la aplicacion: la interfaz de usuario, el mundo y
las pruebas.

e El diseno de las clases involucra la actividad mas dificil de todas las que hemos visto
en este libro. Esta actividad es la de asignacion de responsabilidades. Como guia en la
asignacion de responsabilidades podemos utilizar los requerimientos funcionales para
identificar los servicios esperados de cada clase. Tratamos de descomponer los
requerimientos en servicios puntuales y, luego, de acuerdo con la técnica basica del
experto, decidimos qué clases deben resolver cada uno de los métodos identificados.
Al interior de cada clase disefiamos luego sus métodos, definiendo su contrato y su
signatura.

8.3. Construccion de la Solucion

Objetivo:

e Escribir el codigo en el lenguaje de programacion (en nuestro caso Java), que
implementa el disefio que definimos en la etapa anterior.

Resultados:

¢ El codigo de todas las clases, con sus contratos y comentarios.

e Para saber si hemos terminado nuestra tarea de construccion del programa, debemos
probarlo. Ademas de las pruebas manuales que podemos realizar sobre él es
importante contar con pruebas automaticas. Dichas pruebas son también clases Java
que se encuentran definidas en el paquete de pruebas.

8.4. Una Vision Grafica del Proceso

En esta parte resumimos graficamente las principales tareas que constituyen el proceso de
desarrollo de un programa. La idea es que a partir del enunciado del problema, el lector
pueda seguirlo paso por paso. Todas estas tareas estdan enmarcadas dentro de las tres
grandes etapas mencionadas anteriormente.

Proceso de Construccion de un Programa

entender 2| contaxtc del
problema v el propasite
de o aplicacisn

definir normbre, resurnen. entradas
v resultade de sada requerimisnto
y llenar el formato de esoecificacion

« para los atributes, definir
ur tipe y un nombre

« para las constantes,

asociar un nombre significative
definir tipa, nermbra y valar

con cada entidod inentificada

o parg |as- aseciaciones,
dafinir un nerrbre
una cardinalidad

usar log requerirmientos
funcionales para identifizar
les servisios esperados de
cada slase

definir un rembre, un tipo ds
ratorne, una lista de paramotros
y las cxeopoioncs que lanza

agregor ¢l diagrama de clazas
las signaturas de les f‘né‘f{:dpt‘-:.
defirir la pracordisién,

la posteordicion, laz cordicionas
sohre parametres v referno

vy los casos en los que

Re |Gn£ﬂn sxceocionss

inicializar los atributes y craar
. laz astructuras confencdoras

definir la visualizocien del

programd vy la in+e‘rc:cc|<§_n con

el usuaric. Ldertificar los elemertos

graticos, las relacicnes entre ellos

y con los elemertos del munde

foxtondor® la claze J=rame, o
inzhair un pr‘o_grc:mci pr“lnciocﬂ que
zree la vertona y la haga visible

604

Proceso de Construccion de un Programa

definir los pareles cemre
atributos v crearios. Jefinir

un diztribuidar gr“c‘rrir:o (Icyou‘f’)
y asaciarla. Deflinic el Titulo de
ler vertana, sus dimensiones ¥ Gy
operacién ds cerror come
salida del programa

definir la manera de establecer
desde la claze de lo ventona el
astads inicial del modele del rmunda

eseribir en la vertana las
matodos aue coordinan

al pefrasco de la in‘f’:‘:riﬂoz
llarnande ks matedos da
FEFFSSCO de |DF Pﬂrleles

medificar el mateds
actionPerformed de las
paneles actives para aue
llarmen al respectivo
métode del reauerimients

*extender” la close JPonsl
Si el nanel tiene vatones debe
imolemertar Action_istener y

definir el metado actionPerformed.

Craar los elerrentos graficos,
definir un distribuidor grafico
{layout) v adicionarios,

adicionar a la clasa de lo
ventana un atributo que haga
referencid al modsle dal rmundo
del problema (s hucé parts

de Iz urq_ui‘f‘ec‘f’urc:)

zserikir los métodos que
permitan ala ventara tener
acceso o la informacion de
los oaneles

escribir los rnétodos gque
per‘rni‘f_en g un 'pc:nel
actualizar su corteride,

a partir dal estado del runds

ezcribir un matodo en la
ventana por cada uno de los
requerimientos Turcionales

del pregrama. Estos metedos
utilizan les meétades de aceaso
a la infarmasién v de rafrozco

ezcribir log archivos bat para

la cormpilacien, construccion vy
generalizacisn de la docurrentacian
del proyacte

605

9. Hojas de Trabajo

9.1. Hoja de Trabajo N° 1: Sopa de Letras

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Analice el siguiente enunciado e identifique el mundo del problema, lo que se
quiere de la aplicacion y las restricciones para desarrollarla.

Se quiere construir un programa para el juego de la sopa de letras. En este juego hay un
tablero que tiene una serie de letras organizadas en filas y columnas. Algunas de estas
letras forman palabras que el jugador debe encontrar. Las palabras pueden estar dispuestas
en modo horizontal, vertical o diagonal y pueden escribirse también en sentido contrario al
normal (de derecha a izquierda o de abajo hacia arriba). Para cada sopa de letras hay una
serie de palabras que deben buscarse. Cuando el jugador las encuentra todas, hay que
avisarle que gano el juego. La interfaz de usuario del programa es la que aparece en la
siguiente figura. Las letras que forman parte de las palabras ya encontradas deben
aparecer en otro color.

https://bit.ly/apo1-nivel6-hoja1-pdf-format
https://bit.ly/apo1-nivel6-hoja1-word-format

Hojas de trabajo

@ Sopa de Letras — >
AlCIDIAICIDIINCIB|IE(NIY |Z|5|D SUPA DE LETRAS
clalwlGlA[W][GIA[S|R[A]F [G]A[L
T{ILFAT{INFEATIE|IF|S|J|F[P{I|A ”
JIVIP[T v [INIVIPIHIVIPIS[VP
S KIC[SK[O[S IVIA|S|E|C
Ol GIE|Y[E[U[P DS | E
VIP]s [VIP[G [V][Z[S]x]P]G
ol alv]olaly aAlvlolalv
PIIIB[GIH|T CIU|P[I[P 5
CIE|E|[W|DIE |5 |E|R|L [M
Ll B|{H DIT |A|BIS|VIB|Z F

M A E|K M DIME LA
— e —— - '
Sopa de Letras
1 2 3 4 5 i} 7 8
1 M (0] N | T (0] R w
2 A G H E N T X F
3 U M (8] U 5 E B Cc
4 D (0] H L | C E D
5 | A P M N L M R
6 s M | F (0] A E (0]
7 C 5 G N Cc D E M
8 (0] A H B (0] (0] E H
9 E R E F | H T M
10 J w U v N R A N
Cargan Opcion 1 Opcidn 2

Tanto las dimensiones de la sopa de letras como las palabras que contiene se deben cargar

desde un archivo de propiedades (seleccionado por el usuario durante la ejecucion del

programa), con las siguientes caracteristicas:

La propiedad sopaDeletras.columnas define el numero de columnas.

La propiedad sopaDel etras.filas define el numero de filas.

La propiedad sopaDeletras.numPalabras define el nimero de palabras presentes en la
sopa.

La propiedad sopaDeletras.palabra1 define la primera palabra que aparece en la sopa.
La propiedad sopaDeletras.fila1 define el contenido de la primera fila de la sopa.

607

El siguiente es un ejemplo de un posible archivo para describir la situacion inicial del juego.
En este tipo de archivos las lineas que comienzan por el simbolo # se interpretan como
comentarios.

#letras

sopaDeletras.columnas=38
sopaDeletras.filas=10
sopaDelLetras.filal=M ONITORW
sopaDeletras.fila2=AGHENT X F
sopaDeletras.fila3=UMOUSEBC
sopaDeletras.fila4=DOHLICED
sopaDeletras.fila5=l APMNLMR
sopaDeletras.fila6=S M| F O AE O
sopaDeletras.fila7=CSGNCDEM
sopaDeletras.filaB=O AHBOOEH
sopaDeletras.fila9=EREFIHTM
sopaDeletras.fila1l0=J WUV NR AN
#palabras
sopaDeletras.numPalabras=7
sopaDeletras.palabra1=MONITOR
sopaDeletras.palabra2=MOUSE
sopaDeletras.palabra3=DISCO
sopaDeletras.palabra4=TECLADO
sopaDel etras.palabra5=CDROM
sopaDeletras.palabra6=MODEM
sopaDeletras.palabra7=WEBCAM

Requerimientos funcionales. Describa los dos requerimientos funcionales de la
aplicacion.

Hojas de trabajo

Requerimiento Funcional 1

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

609

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Modelo del mundo. Estudie y complete el modelo con los atributos, constantes,
asociaciones entre las clases y principales métodos.

palabras que ya han

sido encontradas
Palabra

e

SopaDeletras

encontradas

®

—
-

diceionario

secuencia de letras

palabras que no h:m due L:(:Jnf-oﬂ'n:m |q
sido encontradas J palabra

letras

Letra

letras

char letra
(111 beoeolean marcada

en esta matriz estd almacenada
la sopa de letras

Declaracion de clases. Para las siguientes clases, escriba en Java la declaracion de sus
atributos y sus asociaciones.

610

public class SopaDeletras

{

public class Palabra

{

public class Letra

{

Inicializaciéon de matrices. Escriba el constructor de la clase SopaDelLetras, que carga la
informacion de un archivo de propiedades, cuya representacion abstracta se entrega como
parametro. Si hay problemas en el proceso, lanza una excepcion.

public throws Exception

Desarrollo de métodos. Desarrolle los siguientes métodos de la clase SopaDeletras,
identificando el patron de algoritmo al que corresponde cada uno.

Metodo 1

Retornar el numero de palabras que ya se han encontrado en la sopa de letras.

public int
{

Metodo 2

Contar el numero de vocales que hay en la sopa de letras.

public int
{

Metodo 3

Retornar la cadena con los caracteres que se encuentran entre dos columnas (pColumna1l 'y
pColumna2) de una misma fila (pFila). Puede suponer que los valores que se entregan
como parametros son todos validos. Puede suponer que pColumna2 es mayor que

pColumna1.

public String int int int

{

Metodo 4

Retornar la cadena con los caracteres que se encuentran entre dos filas (pFila1 y pFila2) de
una misma columna (pColumna). Puede suponer que los valores que se entregan como
parametros son todos validos. Puede suponer que pFila2 es mayor que pFila1.

public String int int int

{

Metodo 5

Retornar la cadena con los caracteres que se encuentran en diagonal entre dos filas (pFila1
y pFila2). La diagonal comienza en la columna que se recibe como parametro y desciende
de izquierda a derecha. Puede suponer que los valores que se entregan como parametros
son todos validos. Puede suponer que pFila2 es mayor que pFila1.

public String int int int

{

Metodo 6

Retornar una cadena de caracteres formada con todas las letras que no forman parte de las
palabras encontradas. Las letras se deben agregar a la respuesta de izquierda a derecha,
de arriba abajo.

public String
{

9.2 Hoja de Trabajo N° 2: Asignacion de Tareas

Descargue esta hoja de trabajo a través de los siguientes enlaces: Descargar PDF |
Descargar Word.

Enunciado. Analice el siguiente enunciado e identifique el mundo del problema, lo que se
espera de la aplicacion y las restricciones para desarrollarla.

En todo proceso es importante la asignacion de tareas, actividad en la cual se definen los
recursos (en particular personas) que necesita cada tarea para poderse llevar a cabo. Se
quiere construir una aplicacion que permita manejar la asignacion de tareas para organizar
una fiesta, de forma similar a una planilla (en las columnas estan las tareas que se deben
realizar y en las filas las personas disponibles para hacerlo). Las tareas y las personas ya
estan definidas desde el comienzo del programa (se cargan de un archivo de propiedades).
En cada casilla de la planilla va el numero de horas que dicha persona debe dedicarle a la
respectiva tarea, como se muestra en la siguiente figura:

tarea O del proceso '\ l3 suma de esta fila

0 2 3 i I éa el t‘c_ﬁcai de‘horg\s que
tiene asignadas persona O
1 0

la persona 2 debe trabajar

2
7 horas en |3 tarea O del 1
proceso _\ﬁ 7 5
3
4
persona 4 del proceso s la suma de |3 columna

S~ 4 el total de hors planeadas

para una tarea
La aplicacion debe permitir que se asigne un determinado numero de horas de trabajo de
una tarea a una persona. Si a una persona ya se le ha asignado un numero de horas en
una tarea, es posible reasignar (cambiar) ese tiempo. Ademas, a partir de esta asignacion,
se quieren realizar algunos calculos:

Para cada tarea es importante saber:

e El numero de personas asignadas (las que tienen mas de 0 horas asignadas para la
tarea

e E| total de horas asignadas.

e |a persona con mas horas asignadas a la tarea.

e El promedio de horas por persona.

e El porcentaje de trabajo que representa una tarea respecto del total de tareas.

https://bit.ly/apo1-nivel6-hoja2-pdf-format
https://bit.ly/apo1-nivel6-hoja2-word-format

Para cada persona es importante saber:

e El numero de tareas asignadas (aquellas para las que la persona tiene mas de 0 horas
asignadas).

¢ El total de horas asignadas.

e |atarea para la que tiene el mayor numero de horas asignadas.

e Si es la persona con el mayor numero de horas asignadas.

e El promedio de horas por tarea.

La interfaz de usuario del programa de asignacion de tareas es la que aparece en la
siguiente figura:

|i-€;| Planilla de Asignacion de Tareas

PLHNIFICAI]I]R

" 'FIESTAS _

Tareas Personas

0 horas asignadas

=< | Prepararlatorta > e e nting nm
Nimero de personas asignadas: Mimero de tareas asignadas:
1 2
Total de Horas Asignadas: Total de Horas Asignadas:
iy 10
Persona con mas horas: Tarea con mas horas:
Juan Decorar la sala
Promedio de horas por persona; :Es la persona con mas horas asignadas?:
iy Si
Porcentaje de trabajo que representa la tarea; Promedio de horas por tarea;
2% h

Asignacion de Tareas

Tarea: Preparar la torta
Persona: Caralina Asignar Tarea
Horas: 2

Opcion 1 Opcion 2

La informacion de tareas y personas de la aplicacion esta consignada en el archivo de
propiedades llamado data/datosPlanilla.dat. Un ejemplo de dicho archivo es el siguiente:

#tareas

tareas.numero=6

tareas.tarea1.nombre=Inflar globos
tareas.tarea2.nombre=Preparar la torta
tareas.tarea3.nombre=Repartir las invitaciones
tareas.tarea4.nombre=Hacer el playlist de musica
tareas.tarea5.nombre=Decorar la sala
tareas.tarea6.nombre=Instalar equipo de sonido
#personas

personas.numero=4
personas.personal.nombre=Pedro
personas.persona2.nombre=Juan
personas.persona3.nombre=Carolina
personas.persona4.nombre=Andrés

En la propiedad tareas.numero se indica el numero de tareas que manejara la aplicacion.
Luego, para nombrar las tareas, deben aparecer tantas propiedades como este numero
indica. Estas propiedades son de la forma tareas.tarea<contador>.nombre, donde el
contador es un numero que va desde uno hasta el numero de tareas indicado.

En la propiedad personas.numero se indica el numero de personas que manejara la
aplicacion. Luego, para nombrar a las personas, deben aparecer tantas propiedades como
este numero indica. Estas propiedades son de la forma
personas.persona<contador>.nombre, donde el contador es un niumero que va desde uno
hasta el numero de personas indicado.

Requerimientos funcionales. Describa algunos de los mas importantes requerimientos
funcionales.

Requerimiento Funcional 1

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 2

619

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 3

620

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Requerimiento Funcional 4

621

Hojas de trabajo

Nombre

Resumen

Entradas

Resultado

Modelo el mundo. Estudie y complete el modelo con los atributos, constantes,
asociaciones entre las clases y principales métodos.

vector con los hombres de las
tareas. En la posicién x aparece el
nombre de |3 tarea x del proceso

PlanillaTareas String
int[][] plinillaHoras i
tareas
*
personas

\

matriz de asignacion de tareas: en la
casilla (x, y) aparece el ndmero de horas
que la persona x debe dedicar a la tarea y

vector con los nombres de las
personas. En la posicion x aparece el
hombre de la persona x.

Declaracion de las clases.Para la siguiente clase escriba en Java la declaracion de sus
atributos y sus asociaciones.

622

public class

{

Inicializaciéon de matrices. Escriba el constructor de la clase PlanillaTareas, que carga la
informacion de un archivo de propiedades, cuyo nombre completo se entrega como
parametro, y arma la matriz que representa la planilla. Si hay problemas en el proceso,

lanza una excepcion.

public throws Exception

{

Desarrollo de métodos. Desarrolle los siguientes métodos de la clase PlanillaTareas,
identificando el patron de algoritmo al que corresponde cada uno.

Metodo 1

Contar el total de tareas que no tienen ninguna asignada.

public int
{

Metodo 2

Contar el numero de tareas en las que participa la persona cuyo nombre se da como
parametro.

public int

{

Metodo 3

Decir si existe al menos una tarea en la que participen todas las personas.

public boolean

{

Metodo 4

Retornar el nombre de la persona que mas tiempo tiene asignado en la tarea que se da
como parametro.

public String
{

Metodo 5

Retornar el nombre de la tarea en la que mas tiempo tiene asignado la persona cuyo
nombre se da como parametro.

public String
{

Metodo 6

Retornar la suma de horas asignadas que tienen las personas que se encuentran en un
rango de filas descrito por los indices recibidos como parametros.

public int int int

{

Metodo 7

Calcular el promedio de horas asignadas a todas las personas.

Hojas de trabajo

public double darPromedioTiempoAsignadoPersonas()

{

627

AAAAAA

ANE XOS

el

A. El Lenguaje Java

1. Instalacion de las Herramientas

1.1. ¢ Qué se Necesita para Empezar?

Hay dos herramientas basicas que el lector debe instalar en su computador, antes de
empezar a crear el ambiente de desarrollo necesario para construir programas. Estas
herramientas son:

1. Un navegador de Internet.
2. Un programa que permita extraer el contenido de un archivo con formato zip.

Antes de continuar, asegurese de que cuenta en su computador con un navegador de
Internet y con un programa para extraer el contenido de un archivo con formato zip.

1.2. ;Donde Encontrar los Instaladores de las
Herramientas?

Para crear el ambiente de desarrollo se necesitan algunas herramientas, las cuales se
pueden obtener en:

El sitio web del proyecto CUPI2:
En la direccion http://cupi2.uniandes.edu.co.
El sitio web de los fabricantes de los programas:

En las siguientes direcciones de Internet puede encontrar las ultimas versiones de los
instaladores:

e |enguaje Java: http://java.sun.com/
e Ambiente de desarrollo Eclipse: http://www.eclipse.org/

En el primer enlace busque el instalador de la herramienta llamada "Java 2 Platform,
Standard Edition (J2SE)".

http://cupi2.uniandes.edu.co
http://java.sun.com/
http://www.eclipse.org/

Verifique que ha localizado el instalador de Java. Este viene en un archivo .exe que
permite hacer la instalacion de la maquina virtual y del compilador (jdk-1_5 0-rc-
windows-i586.exe) y en un archivo .zip que trae la documentacion (jdk-1_5 0-rc-
doc.zip). Los nombres exactos de dichos archivos pueden variar dependiendo de las

versiones.

Verifique que ha localizado el instalador de Eclipse. Este instalador viene en un archivo
.Zip (eclipse-SDK-3.0-win32.zip). El nombre exacto de dicho archivo puede variar,
dependiendo de la versidn que vaya a instalar.

1.3. ¢ Como Instalar las Herramientas?

Java 2 Standard Edition (J2SE)

¢ Ejecute el instalador y responda a las preguntas que éste hace durante el proceso. En
particular, debe escoger un directorio en el disco duro para instalar las herramientas del
lenguaje.

e Extraiga el contenido del archivo .zip que trae la documentacion de Java, utilizando la
herramienta que tenga disponible para tal fin.

e Modifique la variable de ambiente del sistema operativo llamada PATH, para que
incluya el subdirectorio bin del directorio en el cual quedaron instaladas las
herramientas del lenguaje.

Eclipse SDK

e Extraiga el contenido del archivo .zip en el directorio en el que quiera que quede
instalado el ambiente de desarrollo Eclipse.

Busque en el directorio en el que instalé el ambiente Eclipse un archivo llamado eclipse.exe.
Ejecutelo para iniciar dicha aplicacién.

Abra una ventana de comandos del sistema operativo. Ejecute el comando

java -version

La maquina virtual de Java debe contestar algo parecido al siguiente mensaje:

java version "1.5.0"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-b64) Java HotSpot(TM) Cl
ient VM (build 1.5.0-b64, mixed mode)

Abra una ventana de comandos del sistema operativo. Ejecute el comando

javac

El compilador del lenguaje Java debe contestar algo parecido al siguiente mensaje:

javac: no source files
Usage: javac <options> <source files>

Abra una ventana de comandos del sistema operativo. Ejecute el comando

javac -version

El compilador del lenguaje Java debe contestar algo parecido al siguiente mensaje:

javac 1.5.0-rc

Si las tres acciones anteriores funcionan correctamente, quiere decir que tanto Java como
el ambiente de desarrollo Eclipse quedaron instalados correctamente en su computador. Si
tiene algun problema en el proceso de instalacion, le recomendamos buscar en el sitio web
del proyecto los tutoriales respectivos.

2. Diagramas de Sintaxis del Lenguaje
Java

La sintaxis resumida en este anexo corresponde unicamente al subconjunto del lenguaje
Java estudiado en este libro, junto con ciertas buenas practicas de programacion. En
algunos casos se hicieron algunas simplificaciones en la sintaxis, de manera que mas que
una especificacion formal del lenguaje debe tomarse como una guia informal de uso.

Unidad de compilacién

L pqckagejf <r\0mbre poquei‘e> —B—[impor‘l‘ H Cnombr‘e pqque‘I‘e;v .* H ;

http://cupi2.uniandes.edu.co/sitio/

A. El Lenguaje Java

Declaracion de clase

—{ sublic H class }—

<nombre clase>

mmm Cuerpo de clase

Cuerpo de clase

Declaracion de método

{ Declaracién de constante } —>

Declaraciéon de atributo

Declaracién de constructor

Declaraciéon de constante

private I

-s‘l'c‘l"roh\ﬂ—w—‘ <nombre constante> % <valor> D

Declaracion de atributo

Gzay -

|

-

<nombre atributo> j—)

e

632

A. El Lenguaje Java

Declaracion de constructor

—w— <nombre clase> Declaroeion de paramefros

Declaracion de método

throws]— Exception J

<nombre méetodo>

Declaracion de paramefras

4
;.|

L‘?hr*ows H Exception }J

i Blu:l-gj.Je de instrucciones

Declaracion de parametros

=]

Declaracién de variable

Declaracion de variable

<nombre variable> —

633

A. El Lenguaje Java

Instruccion

Instruccién expresion

Ihstruccion break

Instrucciéon try-catch

Bloque de instrucciones

A

]

A

b 4

634

A. El Lenguaje Java

Instruccién Expresion

Declaracion de variable | ;,

Asignacion

Invocaciéon de método

 Declorocion de vorioble
— T —
— TR
—ECETN—

Instruccion if

j—m— Instruccion

w

Instruccion

3]

Instruccioén switch

oin

Expr“ESI-:'jn

Inatruceisn

"

Instruccion while:

e -) |-

635

A. El Lenguaje Java

Instruccion for:

Expresion Expresian Expresion Trstruceion

Instruccion break

4{ break J—)

' 4

Instruccién try-catch

Blogue de instricciones

Instrucciéon throw

636

A. El Lenguaje Java

Instruccion return

] R
return J B

Bloque de instrucciones

—L Sian

— I

N

637

A. El Lenguaje Java

Expresion

Expresion aritmética

W

Expresion de comparacién

— R
IR ——
— I
— IR —

Instruccion légica

Expresién de cadenas

Creacién de objefo

<nombre atributo>

<nombre variable>

null

()

638

A. El Lenguaje Java

Asignacion

—[<nombre variable>
<nombre otribute>

Invocacién de método

<nombre método> Lista de cl'r‘gum.en‘i‘os

Expresion

Lista de argumentos

SRR ——
—) —
— —
Expresion
()
/ ¢
—

639

A. El Lenguaje Java

Expresion aritmética

—
- Expresion
e

h 4

S
—
++
/
——
Expresion %
———
+ +
SR
SE—
S
—
+=
— 3
=
—/
———
*
S
3
/
%
S

640

A. El Lenguaje Java

Expresion légica

—
true
=’J"

7=

false
—

-
|
——
F\
N Eama N
—

N

Creacion de objeto

new <nombre clase> Lista de argumentos —
- 0

<nombre clase>

5

- .

Expresion de cadenas

Expresion E xpresion

641

A. El Lenguaje Java

Expresion de comparacion

—
E

Conversion

- (HE-) HEEE

642

Literal

<numero entero>

<numero decimal>

ﬁ— <cadena de caracteres>

(-]

4m— <caracter> 4[%

W

Tipo

73 B

inT

N

p- -

ol

N
~ /

[bodeonJ

,?

char

\ J

a ™
String
\)

<nombre clase>

N

C. Resumen de Comandos de Windows

1. Comandos Ejecutables de Windows

A continuacion encontrara un subconjunto de los comandos de Windows que se pueden
ejecutar en la consola o intérprete de comandos del sistema operativo. Varios de estos
comandos son utilizados en los archivos ejecutables (archivos.bat) de los ejemplos que se
desarrollan a lo largo de este libro.

Para obtener la lista completa de los comandos validos utilice el comando help y, para
obtener mayor informaciéon de un comando en particular, utilice

help <comando>

Comando:

CD o CHDIR

Muestra el nombre del directorio actual o permite cambiar de directorio.
CD

Muestra el nombre del directorio actual.

CD

Cambia el directorio actual.

Comando:

CLS

Limpia el contenido de la pantalla.

CLS

Comando:

CMD

Inicia una nueva ventana del intérprete de comandos.
CMD

Inicia un nuevo intérprete.

CMD /C

Inicia un nuevo intérprete, ejecuta el comando y termina.
CMD /K

Inicia un nuevo intérprete, ejecuta el comando y permanece activo.

Comando:

COPY

Copia un archivo a un directorio de destino.
COPY

Copia el archivo origen en el destino. puede ser el nombre de un directorio o de un archivo.

Comando:

DATE

Muestra o cambia la fecha del sistema.
DATE /T

Muestra la fecha del sistema.

DATE

Muestra la fecha del sistema y permite cambiarla.

Comando:

DEL o ERASE

Borra uno o mas archivos.
DEL
Borra cada uno de los archivos especificados en la lista de nombres.

puede incluir nombres de directorios y comodines para borrar varios archivos.

Comando:

DIR

Muestra el contenido (archivos y subdirectorios) de un directorio.
DIR

Muestra el contenido del directorio actual.

DIR

Muestra el contenido del directorio indicado.

Comando:

ECHO

Muestra un mensaje y permite activar y desactivar la salida del mismo comando ECHO.
ECHO ON

Activa la salida de mensajes del comando.

ECHO OFF

Desactiva la salida de mensajes del comando.

ECHO

Muestra el mensaje en la consola.

Comando:

EXIT

Termina el intérprete de comandos, o un programa de comandos (archivo .bat).

EXIT
Sale de la ventana del intérprete de comandos.
EXIT /B

Sale de un programa de comandos (archivo .bat) sin salir de la ventana del intérprete.

Comando:

FIND

Busca una cadena de texto en uno o mas archivos del sistema.
FIND "
Busca la cadena dada en los archivos especificados por

. puede contener comodines para especificar mas facilmente los archivos y directorios en
los que se quiere hacer la busqueda.

Comando:

HELP

Brinda la informacién de ayuda para los comandos de Windows.
HELP

Lista todos los comandos junto con una descripcion abreviada.
HELP

Muestra la ayuda detallada de un comando en particular.

Comando:

MD o MKDIR

Crea un directorio o una ruta de directorios.
MD

Crea el directorio o la ruta de directorios indicada en . Si para ello hace falta crear
directorios intermedios, este comando se encargara de ello.

Comando:

MORE

Muestra por partes en la pantalla el contenido de un archivo o la salida de un comando.
MORE

Muestra los archivos incluidos en la lista haciendo una pausa cada vez que se llena la
pantalla.

comando | MORE

Muestra la salida del comando haciendo una pausa cada vez que se llena la pantalla.

Comando:

MOVE

Mueve archivos y cambia el nombre de archivos y directorios.
MOVE

Cambia de nombre el archivo o el directorio.

MOVE

Mueve el archivo al destino indicado.

Comando:

PATH

Muestra o establece la ruta de busqueda de los archivos ejecutables.
PATH

Muestra la ruta de busqueda de los archivos ejecutables.

PATH

Establece las rutas de busqueda. Diferentes rutas pueden separarse con el caracter ;.
Puede utilizar la variable %PATH% para agregar las nuevas rutas a las establecidas con
anterioridad.

PATH ;

Borra todas las rutas de busqueda establecidas.

Comando:

PAUSE

Suspende la ejecucion de un programa de comandos y espera que el usuario oprima una
tecla para continuar.

PAUSE

Suspende el proceso actual del programa y presenta el mensaje "Presione una tecla para
continuar...".

Comando:

PROMPT

Cambia el simbolo del sistema que se muestra en el intérprete de comandos.
PROMPT

Cambia el simbolo del sistema al texto indicado. Existen codigos para incluir caracteres
especiales.

Comando:

RD o RMDIR

Elimina un directorio.

RD

Elimina el directorio si esta vacio.

RD /S

Elimina el arbol de directorios cuya raiz es .
RD /S /Q

Elimina el arbol de directorios cuya raiz es sin pedir confirmacion.

Comando:

REM

Inicia un comentario en los archivos de programas de comandos (archivos .bat).
REM

Introduce el comentario indicado.

Comando:

REN o RENAME

Cambia el nombre de un archivo.
REN

Cambia el nombre del archivo.

Comando:

SET

Muestra, cambia o elimina las variables de entorno del intérprete de comandos.
SET

Lista todas las variables del entorno y los valores que tienen asignados.

SET

Muestra el valor asignado a .

SET =

Establece la cadena dada como valor de la variable indicada.

Comando:

START

Inicia una nueva ventana del intérprete de comandos.

START

Abre una nueva ventana sin ejecutar ningun programa o comando.
START

Abre una nueva ventana y ejecuta el comando indicado.

START

Abre una nueva ventana y ejecuta el archivo ejecutable indicado.

Comando:

TIME

Muestra o cambia la hora del sistema.
TIME /T

Muestra la hora del sistema.

TIME

Muestra la hora del sistema y permite cambiarla.

Comando:

TITLE

Establece el titulo de la ventana del intérprete de comandos.
TITLE

Cambia el titulo de la ventana al indicado.

Comando:

TYPE

Muestra el contenido de uno o mas archivos de texto.
TYPE

Muestra el contenido de los archivos incluidos en la lista.

Comando:

VER

Muestra la version del sistema operativo Windows.
VER

Muestra la version de Windows.

Comando:

XCOPY

Copia arboles de archivos y directorios.
XCOPY

Copia los archivos incluidos en el directorio de origen al directorio de destino.

XCOPY /S

Copia todo el contenido (directorios y archivos) del directorio de origen al directorio de
destino.

D. Tabla de Cédigos UNICODE

La siguiente tabla muestra los principales caracteres UNICODE usados en Java, con su

respectivo valor numérico.

33:
38:
43:
48:
53:
58:
63:
68:
73:
78:
83:
88:
93:
98:

103:
108:
113:
118:
123:
162:
167:
172:
177:
182:
187:
192:

X »w Zz -

—

w e ™

+

»

34:
39:
44.
49:
54:
59:
64:
69:
74:
79:
84:
89:
94:
99:

104:
109:
114:
119:
124:
163:
168:
173:
178:
183:
188:
193:

Ya

35:
40:
45:
50:
55:
60:
65:
70:
75:
80:
85:
90:
95:

100:
105:
110:
115:
120:
125:
164:
169:
174:
179:
184:
189:
194:

N Cc T X T >» ~

——

@ © =

w

36:
41:
46:
51:
56:
61:
66:
71:
76:
81:
86:
91:
96:

101:
106:
111:
116:
121:
126:
165:
170:
175:
180:
185:
190:
195:

(oe]

< O @ W u

—

%

pi

37:
42:
47:
52:
57:
62:
67:
72:
77:
82:
87:
92:
97:

102:
107:
112:
117:
122:
161:
166:
171:
176:
181:
186:
191:
196:

%

E) Z T O \" [(e] A

—

201:

200:

199:

198:

197:

206:

205:

204:

203:

1w

202:

211:

210:

209:

208:

207:

216:

215:

214:

212:

221:

220:

()

219:

218:

217:

226:

225:

224:

223:

222:

231:

230:

229:

228:

227:

236:

235:

234:

233:

232:

241:

240:

239:

238:

237:

246:

244:

243:

242:

251:

250:

249:

248:

247:

338:

255:

254:

253:

252:

N

381:

376:

353:

)

352:

339:

	Prefacio
	Nivel 1: Problemas, Soluciones y Programas
	Objetivos Pedagógicos
	Motivación
	Problemas y Soluciones
	Casos de Estudio
	Comprensión y Especificación del Problema
	Elementos de un Programa
	Diseño de la Solución
	Construcción de la Solución
	Hojas de Trabajo

	Nivel 2: Definición de Situaciones y Manejo de Casos
	Objetivos Pedagógicos
	Motivación
	El Primer Caso de Estudio
	Nuevos Elementos De Modelado
	Expresiones
	Clases y Objetos
	Instrucciones Condicionales
	Responsabilidades de una Clase
	Eclipse: Nuevas Opciones
	Hojas de trabajo

	Nivel 3: Manejo de Grupos de Atributos
	Objetivos Pedagógicos
	Motivación
	Caso de Estudio Nº 1: Las Notas de un Curso
	Contenedoras de Tamaño Fijo
	Instrucciones Repetitivas
	Caso de Estudio Nº 2: Reservas en un Vuelo
	Caso de Estudio Nº 3: Una Tienda de Libros
	Contenedoras de Tamaño Variable
	Uso de Ciclos en Otros Contextos
	Creación de una Clase en Java
	Hojas de trabajo

	Nivel 4: Definición y Cumplimiento de Responsabilidades
	Objetivos Pedagógicos
	Motivación
	Caso de Estudio Nº 1: Un Club Social
	Asignación de responsabilidades
	Manejo de las Excepciones
	Contrato de un Método
	Diseño de las Signaturas de los Métodos
	Caso de Estudio Nº 2: Un Brazo Mecánico
	Hojas de trabajo

	Nivel 5: Construcción de la Interfaz Gráfica
	Objetivos Pedagógicos
	Motivación
	El Caso de Estudio
	Construcción de Interfaces Gráficas
	Elementos Gráficos Estructurales
	Elementos de Interacción
	Mensajes al Usuario y Lectura Simple de Datos
	Arquitectura y Distribución de Responsabilidades
	Ejecución de un Programa en Java
	Hojas de trabajo

	Nivel 6: Manejo de Estructuras de dos Dimensiones y Persistencia
	Objetivos Pedagógicos
	Motivación
	Caso de Estudio Nº 1: Un Visor de Imágenes
	Contenedoras de dos Dimensiones: Matrices
	Caso de Estudio Nº 2: Campeonato de Fútbol
	Persistencia y Manejo del Estado Inicial
	Completar la Solución del Campeonato
	Proceso de Construcción de un Programa
	Hojas de trabajo

	Anexos
	A. El Lenguaje Java
	B. Resumen de Comandos de Windows
	C. Tabla de Códigos UNICODE

