

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

Tabla	de	contenido
Prefacio

Nivel	1:	Problemas,	Soluciones	y	Programas

Objetivos	Pedagógicos

Motivación

Problemas	y	Soluciones

Casos	de	Estudio

Comprensión	y	Especificación	del	Problema

Elementos	de	un	Programa

Diseño	de	la	Solución

Construcción	de	la	Solución

Hojas	de	Trabajo

Nivel	2:	Definición	de	Situaciones	y	Manejo	de	Casos

Objetivos	Pedagógicos

Motivación

El	Primer	Caso	de	Estudio

Nuevos	Elementos	De	Modelado

Expresiones

Clases	y	Objetos

Instrucciones	Condicionales

Responsabilidades	de	una	Clase

Eclipse:	Nuevas	Opciones

Hojas	de	trabajo

Nivel	3:	Manejo	de	Grupos	de	Atributos

Objetivos	Pedagógicos

Motivación

Caso	de	Estudio	Nº	1:	Las	Notas	de	un	Curso

Contenedoras	de	Tamaño	Fijo

Instrucciones	Repetitivas

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

Caso	de	Estudio	Nº	3:	Una	Tienda	de	Libros

2

1.4.8

1.4.9

1.4.10

1.4.11

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.6.9

1.6.10

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.7.7

1.7.8

Contenedoras	de	Tamaño	Variable

Uso	de	Ciclos	en	Otros	Contextos

Creación	de	una	Clase	en	Java

Hojas	de	trabajo

Nivel	4:	Definición	y	Cumplimiento	de	Responsabilidades

Objetivos	Pedagógicos

Motivación

Caso	de	Estudio	Nº	1:	Un	Club	Social

Asignación	de	responsabilidades

Manejo	de	las	Excepciones

Contrato	de	un	Método

Diseño	de	las	Signaturas	de	los	Métodos

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

Hojas	de	trabajo

Nivel	5:	Construcción	de	la	Interfaz	Gráfica

Objetivos	Pedagógicos

Motivación

El	Caso	de	Estudio

Construcción	de	Interfaces	Gráficas

Elementos	Gráficos	Estructurales

Elementos	de	Interacción

Mensajes	al	Usuario	y	Lectura	Simple	de	Datos

Arquitectura	y	Distribución	de	Responsabilidades

Ejecución	de	un	Programa	en	Java

Hojas	de	trabajo

Nivel	6:	Manejo	de	Estructuras	de	dos	Dimensiones	y	Persistencia

Objetivos	Pedagógicos

Motivación

Caso	de	Estudio	Nº	1:	Un	Visor	de	Imágenes

Contenedoras	de	dos	Dimensiones:	Matrices

Caso	de	Estudio	Nº	2:	Campeonato	de	Fútbol

Persistencia	y	Manejo	del	Estado	Inicial

Completar	la	Solución	del	Campeonato

Proceso	de	Construcción	de	un	Programa

3

1.7.9

1.8

1.8.1

1.8.2

1.8.3

Hojas	de	trabajo

Anexos

A.	El	Lenguaje	Java

B.	Resumen	de	Comandos	de	Windows

C.	Tabla	de	Códigos	UNICODE

4

Fundamentos	de	Programación

Prefacio

5

Prefacio

Objetivos
Este	libro	es	uno	de	los	resultados	del	proyecto	Cupi2,	un	proyecto	de	actualización
curricular	de	la	Universidad	de	los	Andes	(Bogotá,	Colombia),	cuyo	principal	propósito	es
encontrar	mejores	formas	de	enseñar/aprender	a	resolver	problemas	usando	como
herramienta	un	lenguaje	de	programación	de	computadores.

Este	libro	tiene	como	objetivo	servir	de	herramienta	fundamental	en	el	proceso	de
enseñaza/aprendizaje	de	un	primer	curso	de	programación,	usando	un	enfoque	novedoso
desde	el	punto	de	vista	pedagógico,	y	moderno	desde	el	punto	de	vista	tecnológico.

Queremos	que	el	libro	sea	una	herramienta	de	trabajo	dentro	de	un	proceso	de	aprendizaje,
en	el	que	el	lector	debe	ser	su	principal	protagonista.	Por	esta	razón,	a	lo	largo	de	los
niveles	que	conforman	el	libro,	se	le	irá	pidiendo	al	lector	que	realice	pequeñas	tareas	a
medida	que	se	presenta	la	teoría	y,	luego,	que	resuelva	problemas	completos	directamente
sobre	el	libro.

El	Público	Destinatario
El	libro	está	dirigido	a	estudiantes	que	toman	por	primera	vez	un	curso	de	programación	de
computadores,	sin	importar	el	programa	de	estudios	que	estén	siguiendo.	Esto	quiere	decir
que	para	utilizar	el	libro	no	se	necesita	ninguna	formación	específica	previa,	y	que	las
competencias	generadas	con	este	texto	se	pueden	enmarcar	fácilmente	dentro	de	cualquier
perfil	profesional.

El	Enfoque	del	Libro
La	estrategia	pedagógica	diseñada	para	este	libro	gira	alrededor	de	cinco	pilares,	los	cuales
se	ilustran	en	la	siguiente	figura.

Prefacio

6

Aprendizaje	activo:	La	participación	activa	del	lector	dentro	del	proceso	de	aprendizaje	es
un	elemento	fundamental	en	este	tema,	puesto	que,	más	que	presentar	un	amplio	conjunto
de	conocimientos,	el	libro	debe	ayudar	a	generar	las	competencias	o	habilidades	necesarias
para	utilizarlos	de	manera	efectiva.	Una	cosa	es	entender	una	idea,	y	otra	muy	distinta
lograr	utilizarla	para	resolver	un	problema.

Desarrollo	incremental	de	habilidades:	Muchas	de	las	competencias	necesarias	para
resolver	un	problema	usando	un	lenguaje	de	programación	se	generan	a	partir	del	uso
reiterado	de	una	técnica	o	metodología.	No	es	suficiente	con	que	el	lector	realice	una	vez
una	tarea	aplicando	los	conceptos	vistos	en	el	curso,	sino	que	debe	ser	capaz	de	utilizarlos
de	distintas	maneras	en	distintos	contextos.

Equilibrio	en	los	ejes	temáticos:	La	solución	de	un	problema	usando	un	lenguaje	de
programación	incluye	un	conjunto	de	conocimientos	y	habilidades	de	varios	dominios.
Dichos	dominios	son	los	que	en	la	siguiente	sección	denominamos	ejes	conceptuales.	Este
curso	intenta	mantener	un	equilibro	entre	dichos	ejes,	mostrando	así	al	lector	que	es	en	el
adecuado	uso	de	las	herramientas	y	técnicas	que	provee	cada	uno	de	los	ejes,	donde	se
encuentra	la	manera	correcta	de	escribir	un	programa	de	computador.

Basado	en	problemas:	El	libro	gira	alrededor	de	24	problemas	completos,	cuya	solución
requiere	el	uso	del	conjunto	de	conceptos	y	técnicas	presentadas	en	el	libro.	La	mitad	de	los
problemas	se	utilizan	como	casos	de	estudio	y	la	otra	mitad,	como	hojas	de	trabajo.

Actualidad	tecnológica:	En	este	libro	se	utilizan	los	elementos	tecnológicos	actuales,	entre
los	cuales	se	encuentran	el	lenguaje	de	programación	Java,	el	lenguaje	de	modelado	UML,
el	ambiente	de	desarrollo	de	programas	Eclipse	y	las	técnicas	de	la	programación	orientada
por	objetos

Prefacio

7

Los	Ejes	Conceptuales	de	la	Programación
Para	resolver	un	problema	utilizando	como	herramienta	un	lenguaje	de	programación,	se
necesitan	conocimientos	y	habilidades	en	siete	dominios	conceptuales	(llamados	también
ejes	temáticos),	los	cuales	se	resumen	en	la	siguiente	figura:

Modelado	y	solución	de	problemas:	Es	la	capacidad	de	abstraer	la	información	de	la
realidad	relevante	para	un	problema,	de	expresar	dicha	realidad	en	términos	de	algún
lenguaje	y	proponer	una	solución	en	términos	de	modificaciones	de	dicha	abstracción.	Se
denomina	"análisis"	al	proceso	de	crear	dicha	abstracción	a	partir	de	la	realidad,	y
"especificación	del	problema"	al	resultado	de	expresar	el	problema	en	términos	de	dicha
abstracción.

Algorítmica:	Es	la	capacidad	de	utilizar	un	conjunto	de	instrucciones	para	expresar	las
modificaciones	que	se	deben	hacer	sobre	la	abstracción	de	la	realidad,	para	llegar	a	un
punto	en	el	cual	el	problema	se	considere	resuelto.	Se	denomina	"diseño	de	un	algoritmo"	al
proceso	de	construcción	de	dicho	conjunto	de	instrucciones.

Tecnología	y	programación:	Son	los	elementos	tecnológicos	necesarios	(lenguaje	de
programación,	lenguaje	de	modelado,	etc.)	para	expresar,	en	un	lenguaje	comprensible	por
una	máquina,	la	abstracción	de	la	realidad	y	el	algoritmo	que	resuelve	un	problema	sobre
dicha	abstracción.	Programar	es	la	habilidad	de	utilizar	dicha	tecnología	para	que	una
máquina	sea	capaz	de	resolver	el	problema.

Prefacio

8

Herramientas	de	programación:	Son	las	herramientas	computacionales	(compiladores,
editores,	depuradores,	gestores	de	proyectos,	etc.)	que	permiten	a	una	persona	desarrollar
un	programa.	Se	pueden	considerar	una	implementación	particular	de	la	tecnología.

Procesos	de	software:	Es	el	soporte	al	proceso	de	programación,	que	permite	dividir	el
trabajo	en	etapas	claras,	identificar	las	entradas	y	las	salidas	de	cada	etapa,	garantizar	la
calidad	de	la	solución,	y	la	capacidad	de	las	personas	involucradas	y	estimar	en	un	futuro	el
esfuerzo	de	desarrollar	un	programa.	Aquí	se	incluye	el	ciclo	de	vida	de	un	programa,	los
formularios,	la	definición	de	los	entregables,	el	estándar	de	documentación	y	codificación,	el
control	de	tiempo,	las	técnicas	de	inspección	de	código,	las	técnicas	de	pruebas	de
programas,	etc.

Técnicas	de	programación	y	metodologías:	Son	las	estrategias	y	guías	que	ayudan	a
una	persona	a	crear	un	programa.	Se	concentran	en	el	cómo	hacer	las	cosas.	Definen	un
vocabulario	sobre	la	manera	de	trabajar	en	cada	una	de	las	facetas	de	un	programa,	y
están	constituidas	por	un	conjunto	de	técnicas,	métricas,	consejos,	patrones,	etc.	para	que
un	programador	sea	capaz	de	pasar	con	éxito	por	todo	el	ciclo	de	vida	de	desarrollo	de	una
aplicación.

Elementos	estructuradores	y	arquitecturas:	Definen	la	estructura	de	la	aplicación
resultante,	en	términos	del	problema	y	de	los	elementos	del	mundo	del	problema.	Se
consideran	elementos	estructuradores	las	funciones,	los	objetos,	los	componentes,	los
servicios,	los	modelos,	etc.	Este	eje	se	concentra	en	la	forma	de	la	solución,	las
responsabilidades	de	cada	uno	de	los	elementos,	la	manera	como	esos	elementos	se
comunican,	etc.

La	Estructura	del	Libro
El	libro	sigue	una	estructura	de	niveles,	en	el	cual	se	introducen	los	conceptos	de	manera
gradual	en	los	distintos	ejes	alrededor	de	los	cuales	gira	la	programación.	Para	hacerlo,	se
utilizan	diversos	casos	de	estudio	o	problemas,	que	le	dan	contexto	a	los	temas	y	permiten
ayudar	a	generar	las	habilidades	necesarias	para	que	el	lector	utilice	de	manera	adecuada
los	conceptos	vistos.

Los	6	niveles	en	los	cuales	se	encuentra	dividido	el	libro	se	muestran	en	la	siguiente	figura:

Prefacio

9

En	cada	uno	de	dichos	niveles,	se	presentan	de	manera	trasversal	los	elementos	de	los
siete	ejes	conceptuales,	dando	lugar	a	una	estructura	como	la	que	se	presenta	a
continuación:

El	contenido	de	cada	uno	de	los	niveles	se	resume	de	la	siguiente	manera:

Nivel	1.	Problemas,	Soluciones	y	Programas:

Prefacio

10

Se	explica	el	proceso	global	de	solución	de	un	problema	con	un	programa	de	computador.
Esto	incluye	las	etapas	que	deben	seguirse	para	resolverlo	y	los	distintos	elementos	que	se
deben	ir	produciendo	a	medida	que	se	construye	la	solución.	Se	analizan	problemas
simples	a	través	de	la	especificación	de	los	servicios	que	el	programa	debe	ofrecer	y	a
través	de	un	modelo	conceptual	del	mundo	del	problema.	Se	explica	la	estructura	de	un
programa	de	computador	y	el	papel	que	desempeña	cada	uno	de	los	elementos	que	lo
componen.	Se	introduce	el	lenguaje	de	programación	Java	y	los	elementos	necesarios	para
que	el	estudiante	complete	un	programa	utilizando	expresiones	simples,	asignaciones	y
llamadas	de	métodos.	Se	utiliza	un	ambiente	de	desarrollo	de	programas	y	un	espacio	de
trabajo	predefinido,	para	completar	una	solución	parcial	a	un	problema.

Nivel	2.	Definiendo	Situaciones	y	Manejando	Casos:

Se	extienden	los	conceptos	de	modelado	de	las	características	de	un	objeto,	utilizando
nuevos	tipos	simples	de	datos	y	la	técnica	de	definir	constantes	para	representar	los	valores
posibles	de	un	atributo.	Se	utilizan	expresiones	como	medio	para	identificar	una	situación
posible	en	el	estado	de	un	objeto	y	para	indicar	la	manera	de	modificar	dicho	estado.	Se
explican	las	instrucciones	condicionales	simples	y	compuestas	como	parte	del	cuerpo	de	un
método,	de	manera	que	sea	posible	considerar	distintos	casos	posibles	en	la	solución	de	un
problema.	Se	presenta	de	manera	informal,	una	forma	para	identificar	los	métodos	de	una
clase,	utilizando	para	esto	la	técnica	de	agrupar	los	métodos	por	tipo	de	responsabilidad
que	tienen:	construir,	modificar	o	calcular.

Nivel	3:	Manejando	Grupos	de	Atributos:

Se	explica	la	forma	de	utilizar	las	estructuras	contenedoras	de	tamaño	fijo	como	elementos
de	modelado	de	una	característica	de	un	elemento	del	mundo,	que	permiten	almacenar	una
secuencia	de	valores	(simples	u	objetos)	y	las	estructuras	contenedoras	de	tamaño	variable
como	elementos	de	modelado	que	permiten	manejar	atributos	cuyo	valor	es	una	secuencia
de	objetos.	Se	introducen	las	instrucciones	repetitivas	en	el	contexto	del	manejo	de
secuencias.	Se	extienden	conceptos	sobre	el	ambiente	de	desarrollo,	en	particular,	se
explica	la	forma	de	crear	una	clase	completa	en	Java	utilizando	Eclipse.	Se	expone	la	forma
de	utilizar	la	documentación	de	un	conjunto	de	clases	escritas	por	otros	y	la	forma	de
servirse	de	dicha	documentación	para	poder	incorporar	y	usar	adecuadamente	dichas
clases	en	un	programa	que	se	está	construyendo.

Nivel	4:	Definición	y	Cumplimiento	de	Responsabilidades:

En	este	nivel	se	hace	énfasis	en	la	asignación	de	responsabilidades	a	las	clases	que
representan	la	solución	de	un	problema,	utilizando	técnicas	simples.	Se	explica	la	técnica
metodológica	de	dividir	y	conquistar	para	resolver	los	requerimientos	funcionales	de	un
problema	y	realizar	la	asignación	de	responsabilidades.	Se	estudia	el	concepto	de	contratos
de	los	métodos	tanto	para	poderlos	definir	como	para	poderlos	utilizar	en	el	momento	de

Prefacio

11

invocar	el	método.	Se	enseña	la	forma	de	utilizar	la	clase	Exception	de	Java	para	manejar
los	problemas	asociados	con	la	violación	de	los	contratos.	Se	presenta	la	forma	de
documentar	los	contratos	de	los	métodos	utilizando	la	sintaxis	definida	por	la	herramienta
javadoc.	Se	profundiza	en	el	manejo	del	ambiente	de	desarrollo	y	el	lenguaje	Java,	con	el
propósito	de	que	el	estudiante	pueda	escribir	una	clase	completa	del	modelo	del	mundo,
siguiendo	una	especificación	dada	en	términos	de	un	conjunto	de	contratos.

Nivel	5:	Construyendo	la	Interfaz	Gráfica:

El	tema	principal	de	este	nivel	es	la	construcción	interfaces	usuario	simples.	Se	presenta	la
importancia	que	tiene	la	interfaz	de	usuario	dentro	de	un	programa	de	computador,	teniendo
en	cuenta	que	es	el	medio	de	comunicación	entre	el	usuario	y	el	modelo	del	mundo.	Se
propone	una	arquitectura	para	un	programa	simple,	repartiendo	de	manera	adecuada	las
responsabilidades	entre	la	interfaz	de	usuario,	el	modelo	del	mundo	y	las	pruebas	unitarias.
Se	enfatiza	la	importancia	de	mantener	separadas	las	clases	de	esos	tres	dominios.

Nivel	6:	Manejo	de	Estructuras	de	dos	Dimensiones	y	Persistencia:

Se	explica	cómo	utilizar	el	concepto	de	matriz	como	elemento	de	modelado	que	permite
agrupar	los	elementos	del	mundo	en	una	estructura	contenedora	de	dos	dimensiones	de
tamaño	fijo.	Se	identifican	los	patrones	de	algoritmo	para	manejo	de	matrices,	dada	la
especificación	de	un	método.	Se	presenta	la	manera	de	utilizar	un	esquema	simple	de
persistencia	para	el	manejo	del	estado	inicial	de	un	problema.	Por	último,	se	resume	el
proceso	de	construcción	de	un	programa	seguido	en	el	libro.

Las	Herramientas	y	Recursos	de	Apoyo
Este	libro	es	un	libro	de	trabajo	para	el	estudiante,	donde	puede	realizar	sus	tareas	y
ejercicios	asociados	con	cada	nivel.	Consideramos	la	página	web	del	curso	como	parte
integral	del	mismo.	Todos	los	casos	de	estudio	que	se	utilizan	en	los	distintos	niveles	están
resueltos	e	incluidos	en	dicho	sitio	web,	así	como	las	hojas	de	trabajo.	Además,	cada	una
de	estas	soluciones	contiene	puntos	de	extensión	para	que	el	profesor	pueda	diseñar
ejercicios	adicionales	con	sus	estudiantes.	Es	importante	que	el	profesor	motive	a	los
estudiantes	a	consultar	la	página	web	al	mismo	tiempo	que	lee	el	libro.

En	la	página	web	se	encuentran	tres	tipos	de	elementos:	(1)	los	programas	de	los	casos	de
estudio,	(2)	los	programas	de	las	hojas	de	trabajo	y	(3)	los	entrenadores	sobre	ciertos
conceptos.	La	página	ha	sido	construida	de	manera	que	sea	fácil	navegar	por	los	elementos
que	lo	constituyen.

Todo	el	contenido	de	apoyo,	lo	mismo	que	otros	materiales	de	apoyo	al	profesor,	se	puede
encontrar	en	el	sitio	web	del	proyecto:	http://cupi2.uniandes.edu.co

Prefacio

12

http://cupi2.uniandes.edu.co

Licencias	de	Uso	y	Marcas	Registradas
A	lo	largo	de	este	libro	hacemos	mención	a	distintas	herramientas	y	productos	comerciales,
todos	los	cuales	tienen	sus	marcas	registradas.	Estos	son:	Microsoft	Windows®,	Microsoft
Word®,	Enterprise	Architect®,	Java®,	Mozilla	Firefox®,	Eclipse®,	JUnit®,	Adobe	Acrobat
Reader®,	Mac	Apple	Inc.®.

Todas	las	herramientas,	programas,	entrenadores	y	demás	materiales	desarrollados	como
soporte	y	complemento	del	libr,	se	distribuyen	bajo	la	licencia	“Academic	Free	License	v.
2.1”	que	se	rige	por	lo	definido	en:	http://opensource.org/licenses/

Agradecimientos
Agradecemos	a	todas	las	personas,	profesores	y	estudiantes,	que	han	ayudado	a	que	este
libro	se	vuelva	una	realidad.	En	particular,	queremos	agradecer	a	Katalina	Marcos	por	su
valiosa	ayuda	y	apoyo	a	todo	lo	largo	del	proceso.

También	queremos	reconocer	el	trabajo	de	Mario	Sánchez	y	Pablo	Bravo,	nuestros
incansables	colaboradores.	Ellos	nos	ayudaron	en	la	construcción	de	muchos	de	los
ejercicios	y	ejemplos	alrededor	de	los	cuales	gira	este	libro.	Gracias	por	su	ayuda	y	su
permanente	buen	humor.
Una	mención	especial	merecen	los	profesores	y	estudiantes	que	durante	el	último	año
participaron	en	las	secciones	de	prueba,	usadas	para	validar	el	enfoque	pedagógico
propuesto,	y	quienes	utilizaron	como	material	de	trabajo	los	primeros	borradores	de	este
libro.	En	particular,	queremos	reconocer	el	trabajo	de	Marcela	Hernández,	quien	participó
activamente	en	la	revisión	del	borrador	del	libro	y	quien	construyó	una	parte	del	material	de
apoyo	a	profesores	que	se	encuentra	disponible	en	el	sitio	WEB	del	proyecto.

Agradecemos	la	ayuda	que	recibimos	de	parte	de	LIDIE	(Laboratorio	de	Investigación	en
Informática	Educativa	de	la	Universidad	de	los	Andes),	en	las	tareas	de	seguimiento,
validación,	diseño	de	las	estrategias	pedagógicas	y	diseño	de	los	iconos	y	figuras	que
ilustran	este	libro.

Sobre	los	Autores
Jorge	A.	Villalobos,	Ph.D

Obtuvo	un	doctorado	en	la	Universidad	Joseph	Fourier	(Francia),	un	Master	en	Informática
en	el	Instituto	Nacional	Politécnico	de	Grenoble	(Francia)	y	el	título	de	Ingeniero	en	la
Universidad	de	los	Andes	(Colombia).	Actualmente	es	profesor	asociado	del	Departamento

Prefacio

13

http://opensource.org/licenses/

de	Ingeniería	de	Sistemas	de	la	Universidad	de	los	Andes,	en	donde	coordina	el	grupo	de
investigación	en	Construcción	de	Software	y	el	proyecto	Cupi2.	Ha	trabajado	como
investigador	visitante	en	varias	universidades	europeas	(España	y	Francia)	y	es	el	autor	de
los	libros	“Diseño	y	Manejo	de	Estructuras	de	Datos	en	C”	(1996)	y	“Estructuras	de	Datos:
Un	Enfoque	desde	Tipos	Abstractos”	(1990).

Rubby	Casallas,	Ph.D

Obtuvo	un	doctorado	en	la	Universidad	Joseph	Fourier	(Francia),	es	Especialista	en
Sistemas	de	Información	en	la	Organización	de	la	Universidad	de	los	Andes	e	Ingeniera	de
Sistemas	de	la	misma	Universidad.	Ha	sido	profesora	de	la	Universidad	del	Valle	y	del
Rochester	Institute	Of	Technology.	Actualmente	trabaja	como	profesora	asociada	del
Departamento	de	Ingeniería	de	Sistemas	de	la	Universidad	de	los	Andes.	Es	coautora	del
libro	“Introducción	a	la	Programación”	(1987).

Dedicatoria
A	Vicky,	por	la	alegría	con	la	que	me	ha	acostumbrado	a	vivir.

-Jorge

A	Irene	y	Jorge	Esteban	por	el	futuro	que	representan.

-Rubby

Prefacio

14

Nivel	1:	Problemas,	Soluciones	y	Programas

15

1.	Objetivos	Pedagógicos
Al	final	de	este	nivel	el	lector	será	capaz	de:

Explicar	el	proceso	global	de	solución	de	un	problema	usando	un	programa	de
computador.	Esto	incluye	las	etapas	que	debe	seguir	para	resolverlo	y	los	distintos
elementos	que	debe	ir	produciendo	a	medida	que	construye	la	solución.
Analizar	un	problema	simple	que	se	va	a	resolver	usando	un	programa	de	computador,
construyendo	un	modelo	con	los	elementos	que	intervienen	en	el	problema	y
especificando	los	servicios	que	el	programa	debe	ofrecer.
Explicar	la	estructura	de	un	programa	de	computador	y	el	papel	que	desempeña	cada
uno	de	los	elementos	que	lo	componen.
Completar	una	solución	parcial	a	un	problema	(un	programa	incompleto	escrito	en	el
lenguaje	Java),	usando	expresiones	simples,	asignaciones	e	invocaciones	a	métodos.
Esto	implica	entender	los	conceptos	de	parámetro	y	de	creación	de	objetos.
Utilizar	un	ambiente	de	desarrollo	de	programas	y	un	espacio	de	trabajo	predefinido,
para	completar	una	solución	parcial	a	un	problema.

Objetivos	Pedagógicos

16

2.	Motivación
La	computación	es	una	disciplina	joven	comparada	con	las	matemáticas,	la	física	o	la
ingeniería	civil.	A	pesar	de	su	juventud,	nuestra	vida	moderna	depende	de	los
computadores.	Desde	la	nevera	de	la	casa,	hasta	el	automóvil	y	el	teléfono	celular,	todos
requieren	de	programas	de	computador	para	funcionar.	Se	ha	preguntado	alguna	vez,
¿cuántas	líneas	de	código	tienen	los	programas	que	permiten	volar	a	un	avión?	La
respuesta	es	varios	millones.

El	computador	es	una	herramienta	de	trabajo,	que	nos	permite	aumentar	nuestra
productividad	y	tener	acceso	a	grandes	volúmenes	de	información.	Es	así	como,	con	un
computador,	podemos	escribir	documentos,	consultar	los	horarios	de	cine,	bajar	música	de
Internet,	jugar	o	ver	películas.	Pero	aún	más	importante	que	el	uso	personal	que	le
podemos	dar	a	un	computador,	es	el	uso	que	hacen	de	él	otras	disciplinas.	Sería	imposible
sin	los	computadores	llegar	al	nivel	de	desarrollo	en	el	que	nos	encontramos	en	disciplinas
como	la	biología	(¿qué	sería	del	estudio	del	genoma	sin	el	computador?),	la	medicina,	la
ingeniería	mecánica	o	la	aeronáutica.	El	computador	nos	ayuda	a	almacenar	grandes
cantidades	de	información	(por	ejemplo,	los	tres	mil	millones	de	pares	de	bases	del	genoma
humano,	o	los	millones	de	píxeles	que	conforman	una	imagen	que	llega	desde	un	satélite)	y
a	manipularla	a	altas	velocidades,	para	poder	así	ejecutar	tareas	que	hasta	hace	sólo
algunos	años	eran	imposibles	para	nosotros.

El	usuario	de	un	programa	de	computador	es	aquél	que,	como	parte	de	su	trabajo	o	de	su
vida	personal,	utiliza	las	aplicaciones	desarrolladas	por	otros	para	resolver	un	problema.
Todos	nosotros	somos	usuarios	de	editores	de	documentos	o	de	navegadores	de	Internet,	y
los	usamos	como	herramientas	para	resolver	problemas.	Un	programador,	por	su	parte,	es
la	persona	que	es	capaz	de	entender	los	problemas	y	necesidades	de	un	usuario	y,	a	partir
de	dicho	conocimiento,	es	capaz	de	construir	un	programa	de	computador	que	los	resuelva
(o	los	ayude	a	resolver).	Vista	de	esta	manera,	la	programación	se	puede	considerar
fundamentalmente	una	actividad	de	servicio	para	otras	disciplinas,	cuyo	objetivo	es	ayudar
a	resolver	problemas,	construyendo	soluciones	que	utilizan	como	herramienta	un
computador.

Cuando	el	problema	es	grande	(como	el	sistema	de	información	de	una	empresa),	complejo
(como	crear	una	visualización	tridimensional	de	un	diseño)	o	crítico	(como	controlar	un
tren),	la	solución	la	construyen	equipos	de	ingenieros	de	software,	entrenados
especialmente	para	asumir	un	reto	de	esa	magnitud.	En	ese	caso	aparecen	también	los
arquitectos	de	software,	capaces	de	proponer	una	estructura	adecuada	para	conectar	los
componentes	del	programa,	y	un	conjunto	de	expertos	en	redes,	en	bases	de	datos,	en	el

Motivación

17

negocio	de	la	compañía,	en	diseño	de	interfaces	gráficas,	etc.	Cuanto	más	grande	es	el
problema,	más	interdisciplinaridad	se	requiere.	Piense	que	en	un	proyecto	grande,	puede
haber	más	de	1000	expertos	trabajando	al	mismo	tiempo	en	el	diseño	y	construcción	de	un
programa,	y	que	ese	programa	puede	valer	varios	miles	de	millones	de	dólares.	No	en
vano,	la	industria	de	construcción	de	software	mueve	billones	de	dólares	al	año.

Independiente	del	tamaño	de	los	programas,	podemos	afirmar	que	la	programación	es	una
actividad	orientada	a	la	solución	de	problemas.	De	allí	surgen	algunos	de	los	interrogantes
que	serán	resueltos	a	lo	largo	de	este	primer	nivel:	¿Cómo	se	define	un	problema?	¿Cómo,
a	partir	del	problema,	se	construye	un	programa	para	resolverlo?	¿De	qué	está	conformado
un	programa?	¿Cómo	se	construyen	sus	partes?	¿Cómo	se	hace	para	que	el	computador
entienda	la	solución?

Bienvenidos,	entonces,	al	mundo	de	la	construcción	de	programas.	Un	mundo	en	constante
evolución,	en	donde	hay	innumerables	áreas	de	aplicación	y	posibilidades	profesionales.

Motivación

18

3.	Problemas	y	Soluciones
Sigamos	el	escenario	planteado	en	la	figura	1.1,	el	cual	resume	el	ciclo	de	vida	de
construcción	de	un	programa	y	nos	va	a	permitir	introducir	la	terminología	básica	que
necesitamos:

Paso	1:	Una	persona	u	organización,	denominada	el	cliente,	tiene	un	problema	y
necesita	la	construcción	de	un	programa	para	resolverlo.	Para	esto	contacta	una
empresa	de	desarrollo	de	software	que	pone	a	su	disposición	un	programador.
Paso	2:	El	programador	sigue	un	conjunto	de	etapas,	denominadas	el	proceso,	para
entender	el	problema	del	cliente	y	construir	de	manera	organizada	una	solución	de
buena	calidad,	de	la	cual	formará	parte	un	programa.
Paso	3:	El	programador	instala	el	programa	que	resuelve	el	problema	en	un
computador	y	deja	que	el	usuario	lo	utilice	para	resolver	el	problema.	Fíjese	que	no	es
necesario	que	el	cliente	y	el	usuario	sean	la	misma	persona.	Piense	por	ejemplo	que	el
cliente	puede	ser	el	gerente	de	producción	de	una	fábrica	y,	el	usuario,	un	operario	de
la	misma.

Fig.	1.1	Proceso	de	solución	de	un	problema

Problemas	y	Soluciones

19

En	la	primera	sección	nos	concentramos	en	la	definición	del	problema,	en	la	segunda
en	el	proceso	de	construcción	de	la	solución	y,	en	la	tercera,	en	el	contenido	y
estructura	de	la	solución	misma.

3.1.	Especificación	de	un	Problema
Partimos	del	hecho	de	que	un	programador	no	puede	resolver	un	problema	que	no
entiende.	Por	esta	razón,	la	primera	etapa	en	todo	proceso	de	construcción	de	software
consiste	en	tratar	de	entender	el	problema	que	tiene	el	cliente,	y	expresar	toda	la
información	que	él	suministre,	de	manera	tal	que	cualquier	otra	persona	del	equipo	de
desarrollo	pueda	entender	sin	dificultad	lo	que	espera	el	cliente	de	la	solución.	Esta	etapa
se	denomina	análisis	y	la	salida	de	esta	etapa	la	llamamos	la	especificación	del	problema.

Para	introducir	los	elementos	de	la	especificación,	vamos	a	hacer	el	paralelo	con	otras
ingenierías,	que	comparten	problemáticas	similares.	Considere	el	caso	de	un	ingeniero	civil
que	se	enfrenta	al	problema	de	construir	una	carretera.	Lo	primero	que	éste	debe	hacer	es
tratar	de	entender	y	especificar	el	problema	que	le	plantean.	Para	eso	debe	tratar	de
identificar	al	menos	tres	aspectos	del	problema:	(1)	los	requerimientos	del	usuario	(entre
qué	puntos	quiere	el	cliente	la	carretera,	cuántos	carriles	debe	tener,	para	qué	tipo	de	tráfico
debe	ser	la	carretera),	(2)	el	mundo	en	el	que	debe	resolverse	el	problema	(el	tipo	de
terreno,	la	cantidad	de	lluvia,	la	temperatura),	y	(3)	las	restricciones	y	condiciones	que
plantea	el	cliente	(el	presupuesto	máximo,	que	las	pendientes	no	sobrepasen	el	5%).	Sería
una	pérdida	de	tiempo	y	de	recursos	para	el	ingeniero	civil,	intentar	construir	la	carretera	si
no	ha	entendido	y	definido	claramente	los	tres	puntos	antes	mencionados.	Y	más	que
tiempo	y	recursos,	habrá	perdido	algo	muy	importante	en	una	profesión	de	servicio	como	es
la	ingeniería,	que	es	la	confianza	del	cliente.

En	general,	todos	los	problemas	se	pueden	dividir	en	estos	tres	aspectos.	Por	una	parte,	se
debe	identificar	lo	que	el	cliente	espera	de	la	solución.	Esto	se	denomina	un	requerimiento
funcional.	En	el	caso	de	la	programación,	un	requerimiento	funcional	hace	referencia	a	un
servicio	que	el	programa	debe	proveer	al	usuario.	El	segundo	aspecto	que	conforma	un
problema	es	el	mundo	o	contexto	en	el	que	ocurre	el	problema.	Si	alguien	va	a	escribir	un
programa	para	una	empresa,	no	le	basta	con	entender	la	funcionalidad	que	éste	debe	tener,
sino	que	debe	entender	algunas	cosas	de	la	estructura	y	funcionamiento	de	la	empresa.	Por
ejemplo,	si	hay	un	requerimiento	funcional	de	calcular	el	salario	de	un	empleado,	la
descripción	del	problema	debe	incluir	las	normas	de	la	empresa	para	calcular	un	salario.	El
tercer	aspecto	que	hay	que	considerar	al	definir	un	problema	son	los	requerimientos	no
funcionales,	que	corresponden	a	las	restricciones	o	condiciones	que	impone	el	cliente	al
programa	que	se	le	va	a	construir.	Fíjese	que	estos	últimos	se	utilizan	para	limitar	las

Problemas	y	Soluciones

20

soluciones	posibles.	En	el	caso	del	programa	de	una	empresa,	una	restricción	podría	ser	el
tiempo	de	entrega	del	programa,	o	la	cantidad	de	usuarios	simultáneos	que	lo	deben	poder
utilizar.	En	la	figura	1.2	se	resumen	los	tres	aspectos	que	conforman	un	problema.

Fig.	1.2	Aspectos	que	hacen	parte	del	análisis	de	un	problema

Analizar	un	problema	es	tratar	de	entenderlo.	Esta	etapa	busca	garantizar	que	no
tratemos	de	resolver	un	problema	diferente	al	que	tiene	el	cliente.
Descomponer	el	problema	en	sus	tres	aspectos	fundamentales,	facilita	la	tarea	de
entenderlo:	en	cada	etapa	nos	podemos	concentrar	en	sólo	uno	de	ellos,	lo	cual
simplifica	el	trabajo.
Esta	descomposición	se	puede	generalizar	para	estudiar	todo	tipo	de	problemas,	no
sólo	se	utiliza	en	problemas	cuya	solución	sea	un	programa	de	computador.
Además	de	entender	el	problema,	debemos	expresar	lo	que	entendemos	siguiendo
algunas	convenciones.
Al	terminar	la	etapa	de	análisis	debemos	generar	un	conjunto	de	documentos	que
contendrán	nuestra	comprensión	del	problema.	Con	dichos	documentos	podemos
validar	nuestro	trabajo,	presentándoselo	al	cliente	y	discutiendo	con	él.

Ejemplo	1

Objetivo:	Identificar	los	aspectos	que	hacen	parte	de	un	problema.

Problemas	y	Soluciones

21

El	problema:	una	empresa	de	aviación	quiere	construir	un	programa	que	le	permita	buscar
una	ruta	para	ir	de	una	ciudad	a	otra,	usando	únicamente	los	vuelos	de	los	que	dispone	la
empresa.	Se	quiere	utilizar	este	programa	desde	todas	las	agencias	de	viaje	del	país.

Cliente La	empresa	de	aviación.

Usuario Las	agencias	de	viaje	del	país.

Requerimiento
funcional

R1:	dadas	dos	ciudades	C1	y	C2,	el	programa	debe	dar	el	itinerario
para	ir	de	C1	a	C2,	usando	los	vuelos	de	la	empresa.	En	este
ejemplo	sólo	hay	un	requerimiento	funcional	explícito.	Sin	embargo,
lo	usual	es	que	en	un	problema	haya	varios	de	ellos.

Mundo	del
problema

En	el	enunciado	no	está	explícito,	pero	para	poder	resolver	el
problema,	es	necesario	conocer	todos	los	vuelos	de	la	empresa	y	la
lista	de	ciudades	a	las	cuales	va.	De	cada	vuelo	es	necesario	tener	la
ciudad	de	la	que	parte,	la	ciudad	a	la	que	llega,	la	hora	de	salida	y	la
duración	del	vuelo.	Aquí	debe	ir	todo	el	conocimiento	que	tenga	la
empresa	que	pueda	ser	necesario	para	resolver	los	requerimientos
funcionales.

Requerimiento
no	funcional

El	único	requerimiento	no	funcional	mencionado	en	el	enunciado	es
el	de	distribución,	ya	que	las	agencias	de	viaje	están
geográficamente	dispersas	y	se	debe	tener	en	cuenta	esta
característica	al	momento	de	construir	el	programa.

Tarea	1:

Objetivo:	Identificar	los	aspectos	que	forman	parte	de	un	problema.

El	problema:	un	banco	quiere	crear	un	programa	para	manejar	sus	cajeros	automáticos.
Dicho	programa	sólo	debe	permitir	retirar	dinero	y	consultar	el	saldo	de	una	cuenta.
Identifique	y	discuta	los	aspectos	que	constituyen	el	problema.	Si	el	enunciado	no	es
explícito	con	respecto	a	algún	punto,	intente	imaginar	la	manera	de	completarlo.

Problemas	y	Soluciones

22

Cliente

Usuario

Requerimiento
funcional

Mundo	del
problema

Requerimiento
no	funcional

Problemas	y	Soluciones

23

Analizar	un	problema	significa	entenderlo	e	identificar	los	tres	aspectos	en	los	cuales
siempre	se	puede	descomponer:	los	requerimientos	funcionales,	el	mundo	del
problema	y	los	requerimientos	no	funcionales.	Esta	división	es	válida	para	problemas
de	cualquier	tamaño.

3.2.	El	Proceso	y	las	Herramientas
Entender	y	especificar	el	problema	que	se	quiere	resolver	es	sólo	la	primera	etapa	dentro
del
proceso	de	desarrollo	de	un	programa.	En	la	figura	1.3	se	hace	un	resumen	de	las
principales	etapas	que	constituyen	el	proceso	de	solución	de	un	problema.	Es	importante
que	el	lector	entienda	que	si	el	problema	no	es	pequeño	(por	ejemplo,	el	sistema	de
información	de	una	empresa),	o	si	los	requerimientos	no	funcionales	son	críticos	(por
ejemplo,	el	sistema	va	a	ser	utilizado	simultáneamente	por	cincuenta	mil	usuarios),	o	si	el
desarrollo	se	hace	en	equipo	(por	ejemplo,	veinte	ingenieros	trabajando	al	mismo	tiempo),
es	necesario	adaptar	las	etapas	y	la	manera	de	trabajar	que	se	plantean	en	este	libro.	En
este	libro	sólo	abordamos	la	problemática	de	construcción	de	programas	de	computador
para	resolver	problemas	pequeños.

Fig.	1.3	Principales	etapas	del	proceso	de	solución	de	problemas

Problemas	y	Soluciones

24

La	primera	etapa	para	resolver	un	problema	es	analizarlo.	Para	facilitar	este	estudio,	se
debe	descomponer	el	problema	en	sus	tres	partes.
Una	vez	que	el	problema	se	ha	entendido	y	se	ha	expresado	en	un	lenguaje	que	se
pueda	entender	sin	ambigüedad,	pasamos	a	la	etapa	de	diseño.	Aquí	debemos
imaginarnos	la	solución	y	definir	las	partes	que	la	van	a	componer.	Es	muy	común
comenzar	esta	etapa	definiendo	una	estrategia.
Cuando	el	diseño	está	terminado,	pasamos	a	construir	la	solución.

El	proceso	debe	ser	entendido	como	un	orden	en	el	cual	se	debe	desarrollar	una	serie	de
actividades	que	van	a	permitir	construir	un	programa.	El	proceso	planteado	tiene	tres	etapas
principales,	todas	ellas	apoyadas	por	herramientas	y	lenguajes	especiales:

Análisis	del	problema:	el	objetivo	de	esta	etapa	es	entender	y	especificar	el	problema
que	se	quiere	resolver.	Al	terminar,	deben	estar	especificados	los	requerimientos
funcionales,	debe	estar	establecida	la	información	del	mundo	del	problema	y	deben
estar	definidos	los	requerimientos	no	funcionales.
Diseño	de	la	solución:	el	objetivo	es	detallar,	usando	algún	lenguaje	(planos,	dibujos,
ecuaciones,	diagramas,	texto,	etc.),	las	características	que	tendrá	la	solución	antes	de
ser	construida.	Los	diseños	nos	van	a	permitir	mostrar	la	solución	antes	de	comenzar	el
proceso	de	fabricación	propiamente	dicho.	Es	importante	destacar	que	dicha

Problemas	y	Soluciones

25

especificación	es	parte	integral	de	la	solución.
Construcción	de	la	solución:	tiene	como	objetivo	implementar	el	programa	a	partir
del	diseño	y	probar	su	correcto	funcionamiento.

Cada	una	de	las	etapas	de	desarrollo	está	apoyada	por	herramientas	y	lenguajes,	que	van
a	permitir	al	programador	expresar	el	producto	de	su	trabajo.	En	la	etapa	de	construcción	de
la	solución	es	conveniente	contar	con	un	ambiente	de	desarrollo	que	ayuda,	entre	otras
cosas,	a	editar	los	programas	y	a	encontrar	los	errores	de	sintaxis	que	puedan	existir.

Las	etapas	iniciales	del	proceso	de	construcción	de	un	programa	son	críticas,	puesto
que	cuanto	más	tarde	se	detecta	un	error,	más	costoso	es	corregirlo.	Un	error	en	la
etapa	de	análisis	(entender	mal	algún	aspecto	del	problema)	puede	implicar	la	pérdida
de	mucho	tiempo	y	dinero	en	un	proyecto.	Es	importante	que	al	finalizar	cada	etapa,
tratemos	de	asegurarnos	de	que	vamos	avanzando	correctamente	en	la	construcción
de	la	solución.

3.3.	La	Solución	a	un	Problema
La	solución	a	un	problema	tiene	varios	componentes,	los	cuales	se	ilustran	en	la	figura	1.4.
El	primero	es	el	diseño	(los	planos	de	la	solución)	que	debe	definir	la	estructura	del
programa	y	facilitar	su	posterior	mantenimiento.	El	segundo	elemento	es	el	código	fuente
del	programa,	escrito	en	algún	lenguaje	de	programación	como	Java,	C,	C#	o	C++.	El
código	fuente	de	un	programa	se	crea	y	edita	usando	el	ambiente	de	desarrollo	mencionado
en	la	sección	anterior.

Problemas	y	Soluciones

26

Fig.	1.4	Elementos	que	forman	parte	de	la	solución	de	un	problema

Existen	muchos	tipos	de	lenguajes	de	programación,	entre	los	cuales	los	más	utilizados	en
la	actualidad	son	los	llamados	lenguajes	de	programación	orientada	a	objetos.	En	este
libro	utilizaremos	Java	que	es	un	lenguaje	orientado	a	objetos	muy	difundido	y	que	iremos
presentando	poco	a	poco,	a	medida	que	vayamos	necesitando	sus	elementos	para	resolver
problemas.

Un	programa	es	la	secuencia	de	instrucciones	(escritas	en	un	lenguaje	de
programación)	que	debe	ejecutar	un	computador	para	resolver	un	problema.

El	tercer	elemento	de	la	solución	son	los	archivos	de	construcción	del	programa.	En	ellos	se
explica	la	manera	de	utilizar	el	código	fuente	para	crear	el	código	ejecutable.	Este	último
es	el	que	se	instala	y	ejecuta	en	el	computador	del	usuario.	El	programa	que	permite
traducir	el	código	fuente	en	código	ejecutable	se	denomina	compilador.	Antes	de	poder
construir	nuestro	primer	programa	en	Java,	por	ejemplo,	tendremos	que	conseguir	el
respectivo	compilador	del	lenguaje.

El	último	elemento	que	forma	parte	de	la	solución	son	las	pruebas.	Allí	se	tiene	un
programa	que	es	capaz	de	probar	que	el	programa	que	fue	entregado	al	cliente	funciona
correctamente.	Dicho	programa	funciona	sobre	un	conjunto	predefinido	de	datos,	y	es

Problemas	y	Soluciones

27

capaz	de	validar	que	para	esos	datos	predefinidos	(y	que	simulan	datos	reales),	el
programa	funciona	bien.

La	solución	de	un	problema	tiene	tres	partes:	(1)	el	diseño,	(2)	el	programa	y	(3)	las
pruebas	de	corrección	del	programa.	Estos	son	los	elementos	que	se	deben	entregar
al	cliente.	Es	común	que,	además	de	los	tres	elementos	citados	anteriormente,	la
solución	incluya	un	manual	del	usuario,	que	explique	el	funcionamiento	del	programa.

Si	por	alguna	razón	el	problema	del	cliente	evoluciona	(por	ejemplo,	si	el	cliente	pide	un
nuevo	requerimiento	funcional),	cualquier	programador	debe	poder	leer	y	entender	el
diseño,	añadirle	la	modificación	pedida,	ajustar	el	programa	y	extender	las	pruebas	para
verificar	la	nueva	extensión.

La	figura	1.5	muestra	dos	mapas	conceptuales	(parte	a	y	parte	b)	que	intentan	resumir	lo
visto	hasta	el	momento	en	este	capítulo.

Fig.	1.5	(a)	Mapa	conceptual	de	la	solución	de	un	problema	con	un	computador

Problemas	y	Soluciones

28

Fig.	1.5	(b)	Mapa	conceptual	de	la	construcción	de	un	programa

Problemas	y	Soluciones

29

4.	Casos	de	Estudio
Los	tres	casos	de	estudio	que	se	presentan	a	continuación	serán	utilizados	en	el	resto	del
capítulo	para	ilustrar	los	conceptos	que	se	vayan	introduciendo.	Puede	encontrar	estos
casos	de	estudio	en	la	página	web.	Se	recomienda	leerlos	detenidamente	antes	de
continuar	y	tratar	de	imaginar	el	funcionamiento	de	los	programas	que	resuelven	los
problemas,	utilizando	para	esto	las	figuras	que	se	muestran.	Al	final	del	capítulo	encontrará
otros	casos	de	estudio	diferentes,	con	las	respectivas	hojas	de	trabajo	para	desarrollarlos.

4.1	Caso	de	Estudio	Nº	1:	Un	Empleado
Para	este	caso	de	estudio	vamos	a	considerar	un	programa	que	administra	la	información
de	un	empleado.

El	empleado	tiene	un	nombre,	un	apellido,	un	género	(masculino	o	femenino),	una	fecha	de
nacimiento	y	una	imagen	asociada	(su	foto).	Además,	tiene	una	fecha	de	ingreso	a	la
empresa	en	la	que	trabaja	y	un	salario	básico	asignado.

Desde	el	programa	se	debe	poder	realizar	las	siguientes	operaciones:	(1)	calcular	la	edad
actual	del	empleado,	(2)	calcular	la	antigüedad	en	la	empresa,	(3)	calcular	las	prestaciones
a	las	que	tiene	derecho	en	la	empresa,	(4)	cambiar	el	salario	del	empleado,	y	(5)	cambiar	el
empleado.

Casos	de	Estudio

30

https://cupi2.virtual.uniandes.edu.co/nivel-1/casos

4.2.	Caso	de	Estudio	Nº	2:	Un	Simulador
Bancario
Una	de	las	actividades	más	comunes	en	el	mundo	financiero	es	la	realización	de
simulaciones	que	permitan	a	los	clientes	saber	el	rendimiento	de	sus	productos	a	través	del
tiempo,	contemplando	diferentes	escenarios	y	posibles	situaciones	que	se	presenten.

Se	quiere	crear	un	programa	que	haga	la	simulación	en	el	tiempo	de	la	cuenta	bancaria	de
un	cliente.	Un	cliente	tiene	un	nombre	y	un	número	de	cédula,	el	cual	identifica	la	cuenta.
Una	cuenta,	por	su	parte,	está	constituida	por	tres	productos	financieros	básicos:	(1)	una
cuenta	de	ahorros,	(2)	una	cuenta	corriente	y	(3)	un	certificado	de	depósito	a	término	(CDT).
Estos	productos	son	independientes	y	tienen	comportamientos	particulares.

El	saldo	total	de	la	cuenta	es	la	suma	de	lo	que	el	cliente	tiene	en	cada	uno	de	dichos
productos.	En	la	cuenta	corriente,	el	cliente	puede	depositar	o	retirar	dinero.	Su	principal
característica	es	que	no	recibe	ningún	interés	por	el	dinero	que	se	encuentre	allí

Casos	de	Estudio

31

depositado.	En	la	cuenta	de	ahorros,	el	cliente	recibe	un	interés	mensual	del	0,6%	sobre	el
saldo.	Cuando	el	cliente	abre	un	CDT,	define	la	cantidad	de	dinero	que	quiere	invertir	y
negocia	con	el	banco	el	interés	mensual	que	va	a	recibir.	A	diferencia	de	la	cuenta	corriente
o	la	cuenta	de	ahorros,	en	un	CDT	no	se	puede	consignar	ni	retirar	dinero.	La	única
operación	posible	es	cerrarlo,	en	cuyo	caso,	el	dinero	y	sus	intereses	pasan	a	la	cuenta
corriente.

Se	quiere	que	el	programa	permita	a	una	persona	simular	el	manejo	de	sus	productos
bancarios,	dándole	las	facilidades	de:	(1)	hacer	las	operaciones	necesarias	sobre	los
productos	que	conforman	la	cuenta,	y	(2)	avanzar	mes	por	mes	en	el	tiempo,	para	que	el
cliente	pueda	ver	el	resultado	de	sus	movimientos	bancarios	y	el	rendimiento	de	sus
inversiones.

Con	el	botón	marcado	como	"Avanzar	mes"	el	usuario	puede	avanzar	un	mes	en	la
simulación	y	ver	los	resultados	de	sus	inversiones.
Con	los	seis	botones	de	la	parte	derecha	de	la	ventana,	el	usuario	puede	simular	el
manejo	que	va	a	hacer	de	los	productos	que	forman	parte	de	su	cuenta	bancaria.

Casos	de	Estudio

32

En	la	parte	media	de	la	ventana,	aparecen	el	saldo	que	tiene	en	cada	producto	y	el
interés	que	está	ganando	en	cada	caso.

4.3.	Caso	de	Estudio	Nº	3:	Un	Triángulo
En	este	caso	se	quiere	construir	un	programa	que	permita	manejar	un	triángulo.	Esta	figura
geométrica	está	definida	por	tres	puntos,	cada	uno	de	los	cuales	tiene	dos	coordenadas	X,
Y.	Un	triángulo	tiene	además	un	color	para	las	líneas	y	un	color	de	relleno.	Un	color	por	su
parte,	está	definido	por	tres	valores	numéricos	entre	0	y	255	(estándar	RGB	por	Red-Green-
Blue).	El	primer	valor	numérico	define	la	intensidad	en	rojo,	el	segundo	en	verde	y	el	tercero
en	azul.	Más	información	sobre	esta	manera	de	representar	los	colores	la	puede	encontrar
por	Internet.	¿Cuál	es	el	código	RGB	del	color	negro?	¿Y	del	color	blanco?

El	programa	debe	permitir:	(1)	visualizar	el	triángulo	en	la	pantalla,	(2)	calcular	el	perímetro
del	triángulo,	(3)	calcular	el	área	del	triángulo,	(4)	calcular	la	altura	del	triángulo,	(5)	cambiar
el	color	del	triángulo	y	(6)	cambiar	las	líneas	del	triángulo.

Con	los	tres	botones	de	la	izquierda,	el	usuario	puede	cambiar	los	puntos	que	definen
el	triángulo,	el	color	de	las	líneas	y	el	color	del	fondo.
En	la	zona	marcada	como	"Medidas	en	pixeles",	el	usuario	puede	ver	el	perímetro,	el

Casos	de	Estudio

33

área	y	la	altura	del	triángulo	(en	píxeles).
En	la	parte	derecha	aparece	dibujado	el	triángulo	descrito	por	sus	tres	puntos.

Casos	de	Estudio

34

5.	Comprensión	y	Especificación	del
Problema
Ya	teniendo	claras	las	definiciones	de	problema	y	sus	distintos	componentes,	en	esta
sección	vamos	a	trabajar	en	la	parte	metodológica	de	la	etapa	de	análisis.	En	particular,
queremos	responder	las	siguientes	preguntas:	¿cómo	especificar	un	requerimiento
funcional?,	¿cómo	saber	si	algo	es	un	requerimiento	funcional?,	¿cómo	describir	el	mundo
del	problema?	Dado	que	el	énfasis	de	este	libro	no	está	en	los	requerimientos	no
funcionales,	sólo	mencionaremos	algunos	ejemplos	sencillos	al	final	de	la	sección.

Es	imposible	resolver	un	problema	que	no	se	entiende.

La	frase	anterior	resume	la	importancia	de	la	etapa	de	análisis	dentro	del	proceso	de
solución	de	problemas.	Si	no	entendemos	bien	el	problema	que	queremos	resolver,	el
riesgo	de	perder	nuestro	tiempo	es	muy	alto.

A	continuación,	vamos	a	dedicar	una	sección	a	cada	uno	de	los	elementos	en	los	cuales
queremos	descomponer	los	problemas,	y	a	utilizar	los	casos	de	estudio	para	dar	ejemplos	y
generar	en	el	lector	la	habilidad	necesaria	para	manejar	los	conceptos	que	hemos	ido
introduciendo.	No	más	teoría	por	ahora	y	manos	a	la	obra.

5.1.	Requerimientos	Funcionales
Un	requerimiento	funcional	es	una	operación	que	el	programa	que	se	va	a	construir	debe
proveer	al	usuario,	y	que	está	directamente	relacionada	con	el	problema	que	se	quiere
resolver.	Un	requerimiento	funcional	se	describe	a	través	de	cuatro	elementos:

Un	identificador	y	un	nombre.
Un	resumen	de	la	operación.
Las	entradas	(datos)	que	debe	dar	el	usuario	para	que	el	programa	pueda	realizar	la
operación.
El	resultado	esperado	de	la	operación.	Hay	tres	tipos	posibles	de	resultado	en	un
requerimiento	funcional:	(1)	una	modificación	de	un	valor	en	el	mundo	del	problema,	(2)
el	cálculo	de	un	valor,	o	(3)	una	mezcla	de	los	dos	anteriores.

Ejemplo	2

Objetivo:	Ilustrar	la	manera	de	documentar	los	requerimientos	funcionales	de	un	problema.

Comprensión	y	Especificación	del	Problema

35

En	este	ejemplo	se	documenta	uno	de	los	requerimientos	funcionales	del	caso	de	estudio
del	empleado.	Para	esto	se	describen	los	cuatro	elementos	que	lo	componen.

Nombre

R1:
Actualizar
el	salario
básico	del
empleado

Es	conveniente	asociar	un	identificador	con	cada
requerimiento,	para	poder	hacer	fácilmente	referencia

a	él.	En	este	caso	el	identificador	es	R1.	Es
aconsejable	que	el	nombre	de	los	requerimientos

corresponda	a	un	verbo	en	infinitivo,	para	dar	una	idea
clara	de	la	acción	asociada	con	la	operación.	En	este
ejemplo	el	verbo	asociado	con	el	requerimiento	es

"actualizar".

Resumen

Permite
modificar
el	salario
básico	del
empleado

El	resumen	es	una	frase	corta	que	explica	sin	mayores
detalles	el	requerimiento	funcional.

Entradas Nuevo
salario

Las	entradas	corresponden	a	los	valores	que	debe
suministrar	el	usuario	al	programa	para	poder	resolver	el
requerimiento.	En	el	requerimiento	del	ejemplo,	si	el
usuario	no	da	como	entrada	el	nuevo	salario	que	quiere
asignar	al	empleado,	el	programa,	no	podrá	hacer	el
cambio.	Un	requerimiento	puede	tener	cero	o	muchas
entradas.	Cada	entrada	debe	tener	un	nombre	que	indique
claramente	su	contenido.	No	es	buena	idea	utilizar	frases
largas	para	definir	una	entrada.

Resultado

El	salario
del
empleado
ha	sido
actualizado
con	el
nuevo
salario

El	resultado	del	requerimiento	funcional	de	este	ejemplo	es
una	modificación	de	un	valor	en	el	mundo	del	problema:	el
salario	del	empleado	cambió.	Un	ejemplo	de	un
requerimiento	que	calcula	un	valor	podría	ser	aquél	que
informa	la	edad	del	empleado.	Fíjese	que	el	hecho	de
calcular	esta	información	no	implica	la	modificación	de
ningún	valor	del	mundo	del	problema.	Un	ejemplo	de	un
requerimiento	que	modifica	y	calcula	a	la	vez,	podría	ser
aquél	que	modifica	el	salario	del	empleado	y	calcula	la
nueva	retención	en	la	fuente.

En	la	etapa	de	análisis,	el	cliente	debe	ayudarle	al	programador	a	concretar	esta
información.	La	responsabilidad	del	programador	es	garantizar	que	la	información	esté
completa	y	que	sea	clara.	Cualquier	persona	que	lea	la	especificación	del	requerimiento
debe	entender	lo	mismo.

Para	determinar	si	algo	es	o	no	un	requerimiento	funcional,	es	conveniente	hacerse	tres
preguntas:

¿Poder	realizar	esta	operación	es	una	de	las	razones	por	las	cuales	el	cliente	necesita
construir	un	programa?	Esto	descarta	todas	las	opciones	que	están	relacionadas	con	el
manejo	de	la	interfaz	("poder	cambiar	el	tamaño	de	la	ventana",	por	ejemplo)	y	todos
los	requerimientos	no	funcionales,	que	no	corresponden	a	operaciones	sino	a

Comprensión	y	Especificación	del	Problema

36

restricciones.
¿La	operación	no	es	ambigua?	La	idea	es	descartar	que	haya	más	de	una
interpretación	posible	de	la	operación.
¿La	operación	tiene	un	comienzo	y	un	fin?	Hay	que	descartar	las	operaciones	que
implican	una	responsabilidad	continua	(por	ejemplo,	"mantener	actualizada	la
información	del	empleado")	y	tratar	de	buscar	operaciones	puntuales	que	correspondan
a	acciones	que	puedan	ser	hechas	por	el	usuario.

Un	requerimiento	funcional	se	puede	ver	como	un	servicio	que	el	programa	le	ofrece	al
usuario	para	resolver	una	parte	del	problema.

Ejemplo	3

Objetivo:	Ilustrar	la	manera	de	documentar	los	requerimientos	funcionales	de	un	problema.

A	continuación	se	presenta	otro	requerimiento	funcional	del	caso	de	estudio	del	empleado,
para	el	cual	se	especifican	los	cuatro	elementos	que	lo	componen.

Comprensión	y	Especificación	del	Problema

37

Nombre R2:	Cambiar
el	empleado

Asociamos	el	identificador	R2	con	el
requerimiento.	En	la	mayoría	de	los	casos	el

identificador	del	requerimiento	se	asigna	siguiendo
alguna	convención	definida	por	la	empresa	de
desarrollo.	Utilizamos	el	verbo	"cambiar"	para
describir	la	operación	que	se	quiere	hacer.

Resumen

Permite	al
usuario
cambiar	la
información	del
empleado:
datos
personales	y
datos	de
vinculación	a
la	empresa.

Describimos	la	operación,	dando	una	idea	global	del
tipo	de	información	que	se	debe	ingresar	y	del
resultado	obtenido.

Entradas

1)	Nombre	del
empleado.	2)
Apellido	del
empleado.	3)
Género	del
empleado.	4)
Fecha	de
nacimiento.	5)
Fecha	de
ingreso	a	la
compañía.	6)
Salario	básico.
6)	Imagen	del
empleado.

En	este	caso	se	necesitan	siete	entradas	para	poder
realizar	el	requerimiento.	Esta	información	la	debe
proveer	el	usuario	al	programa.	Note	que	no	se	define
la	manera	en	que	dicha	información	será	ingresada	por
el	usuario,	puesto	que	eso	va	a	depender	del	diseño
que	se	haga	de	la	interfaz,	y	será	una	decisión	que	se
tomará	más	tarde	en	el	proceso	de	desarrollo.	Fíjese
que	tampoco	se	habla	del	formato	en	el	que	va	a
entrar	la	información.	Por	ahora	sólo	se	necesita
entender,	de	manera	global,	lo	que	el	cliente	quiere
que	el	programa	sea	capaz	de	hacer.

Resultado

La	información
del	empleado
ha	sido
actualizada.

La	operación	corresponde	de	nuevo	a	una
modificación	de	algún	valor	del	mundo,	puesto	que	con
la	información	obtenida	como	entrada	se	quieren
modificar	los	datos	del	empleado.

Tarea	2

Objetivo:	Crear	habilidad	en	la	identificación	y	especificación	de	requerimientos
funcionales.	Para	el	caso	de	estudio	2,	un	simulador	bancario,	identifique	y	especifique	tres
requerimientos	funcionales.

Requerimiento	Funcional	1

Comprensión	y	Especificación	del	Problema

38

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Comprensión	y	Especificación	del	Problema

39

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Comprensión	y	Especificación	del	Problema

40

Nombre

Resumen

Entradas

Resultado

Tarea	3

Objetivo:	Crear	habilidad	en	la	identificación	y	especificación	de	requerimientos
funcionales.

Para	el	caso	de	estudio	3,	un	programa	para	manejar	un	triángulo,	identifique	y	especifique
tres	requerimientos	funcionales.

Requerimiento	Funcional	1

Comprensión	y	Especificación	del	Problema

41

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Comprensión	y	Especificación	del	Problema

42

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Comprensión	y	Especificación	del	Problema

43

Nombre

Resumen

Entradas

Resultado

5.2.	El	Modelo	del	Mundo	del	Problema
En	este	segundo	componente	del	análisis,	el	objetivo	es	entender	el	mundo	en	el	que
ocurre	el	problema	y	recopilar	toda	la	información	necesaria	para	que	el	programador	pueda
escribir	el	programa.	Suponga	por	ejemplo	que	existe	un	requerimiento	de	calcular	los	días
de	vacaciones	a	los	que	tiene	derecho	el	empleado.	Si	durante	la	etapa	de	análisis	no	se
recoge	la	información	de	la	empresa	que	hace	referencia	a	la	manera	de	calcular	el	número
de	días	de	vacaciones	a	los	cuales	un	empleado	tiene	derecho,	cuando	el	programador
trate	de	resolver	el	problema	se	va	a	dar	cuenta	de	que	no	tiene	toda	la	información	que

Comprensión	y	Especificación	del	Problema

44

necesita.	Ya	no	nos	vamos	a	concentrar	en	las	opciones	que	el	cliente	quiere	que	tenga	el
programa,	sino	nos	vamos	a	concentrar	en	entender	cómo	es	el	mundo	en	el	que	ocurre	el
problema.	En	el	caso	de	estudio	del	empleado,	el	objetivo	de	esta	parte	sería	entender	y
especificar	los	aspectos	relevantes	de	la	empresa.

Como	salida	de	esta	actividad,	se	debe	producir	lo	que	se	denomina	un	modelo	del	mundo
del	problema,	en	el	cual	hayamos	identificado	todos	los	elementos	del	mundo	que	participan
en	el	problema,	con	sus	principales	características	y	relaciones.	Este	modelo	será	utilizado
en	la	etapa	de	diseño	para	definir	los	elementos	básicos	del	programa.

Esta	actividad	está	basada	en	un	proceso	de	"observación"	del	mundo	del	problema,	puesto
que	los	elementos	que	allí	aparecen	ya	existen	y	nuestro	objetivo	no	es	opinar	sobre	ellos
(o	proponer	cambiarlos),	sino	simplemente	identificarlos	y	describirlos	para	que	esta
información	sea	utilizada	más	adelante.

En	la	figura	1.6	se	resumen	las	cuatro	actividades	que	debe	realizar	el	programador	para
construir	el	modelo	del	mundo.	En	la	primera,	se	identifica	lo	que	denominamos	las
entidades	del	mundo,	en	la	segunda	se	documentan	las	características	de	cada	una	de
ellas,	en	la	tercera	se	definen	las	relaciones	que	existen	entre	las	distintas	entidades	y,
finalmente,	se	documenta	la	información	adicional	(reglas,	restricciones,	etc.)	que	se	tenga
sobre	las	entidades.

Para	expresar	el	modelo	del	mundo	utilizaremos	la	sintaxis	definida	en	el	diagrama	de
clases	del	lenguaje	de	modelos	UML	(Unified	Modeling	Language).	Dicho	lenguaje	es	un
estándar	definido	por	una	organización	llamada	OMG	(Object	Management	Group)	y
utilizado	por	una	gran	cantidad	de	empresas	en	el	mundo	para	expresar	sus	modelos.

Comprensión	y	Especificación	del	Problema

45

Fig.	1.6	Actividades	en	la	elaboración	del	modelo	del	mundo

5.2.1.	Identificar	las	Entidades

Esta	primera	actividad	tiene	como	objetivo	identificar	los	elementos	del	mundo	que
intervienen	en	el	problema.	Dichos	elementos	pueden	ser	concretos	(una	persona,	un
vehículo)	o	abstractos	(una	cuenta	bancaria).	Por	ahora	únicamente	queremos	identificar
estos	elementos	y	asociarles	un	nombre	significativo.	Una	primera	pista	para	localizarlos	es
buscar	los	sustantivos	del	enunciado	del	problema.	Esto	sirve	en	el	caso	de	problemas
pequeños,	pero	no	es	generalizable	a	problemas	de	mayor	dimensión.

En	programación	orientada	a	objetos,	las	entidades	del	mundo	se	denominan	clases,	y
serán	los	elementos	básicos	del	diseño	y	la	posterior	implementación.

Comprensión	y	Especificación	del	Problema

46

Una	convención	es	una	regla	que	no	es	obligatoria	en	el	lenguaje	de	programación,
pero	que	suelen	respetar	los	programadores	que	utilizan	el	lenguaje.	Por	ejemplo,	por
convención,	los	nombres	de	las	clases	comienzan	por	mayúsculas.

Seguir	las	convenciones	hace	que	sea	más	fácil	entender	los	programas	escritos	por
otras	personas.	También	ayuda	a	construir	programas	más	"elegantes".

Para	el	primer	caso	de	estudio,	hay	dos	entidades	en	el	mundo	del	problema:	la	clase
Empleado	y	la	clase	Fecha.	Esta	última	se	emplea	para	representar	el	concepto	de	fecha	de
nacimiento	y	fecha	de	ingreso	a	la	empresa.	Si	lee	con	detenimiento	el	enunciado	del	caso,
se	podrá	dar	cuenta	de	que	éstos	son	los	únicos	elementos	del	mundo	del	problema	que	se
mencionan.	Lo	demás	corresponde	a	características	de	dichas	entidades	(el	nombre,	el
apellido,	etc.)	o	a	requerimientos	funcionales.

En	el	ejemplo	4	se	identifican	las	entidades	del	caso	de	estudio	del	simulador	bancario	y	se
describe	el	proceso	que	se	siguió	para	identificarlas.

Ejemplo	4

Objetivo:	Ilustrar	la	manera	de	identificar	las	entidades	(llamadas	también	clases)	del
mundo	del	problema.

En	este	ejemplo	se	identifican	las	entidades	que	forman	parte	del	mundo	del	problema	para
el	caso	2	de	este	nivel:	un	simulador	bancario.

Comprensión	y	Especificación	del	Problema

47

Entidad Descripción

SimuladorBancario

Es	la	entidad	más	importante	del	mundo	del	problema,	puesto
que	define	su	frontera	(todo	lo	que	está	por	fuera	de	la	cuenta
bancaria	no	nos	interesa).	Es	buena	práctica	comenzar	la	etapa
de	análisis	tratando	de	identificar	la	clase	más	importante	del
problema.	Cuando	el	nombre	de	la	entidad	es	compuesto,	se	usa
por	convención	una	letra	mayúscula	al	comienzo	de	cada
palabra.	En	otra	época	se	utilizaban	el	carácter	"_"	para	separar
las	palabras	(Cuenta_Bancaria)	pero	eso	está	pasado	de	moda.

CuentaCorriente

Este	es	otro	concepto	que	existe	en	el	mundo	del	problema.
Según	el	enunciado	una	cuenta	corriente	forma	parte	de	una
cuenta	bancaria,	luego	esta	entidad	está	"dentro"	de	la	frontera
que	nos	interesa.	Por	ahora	no	nos	interesan	los	detalles	de	la
cuenta	corriente	(por	ejemplo	si	tiene	un	saldo	o	si	paga
intereses).	En	este	momento	sólo	queremos	identificar	los
elementos	del	mundo	del	problema	que	están	involucrados	en
los	requerimientos	funcionales.

CuentaAhorros

Este	es	el	tercer	concepto	que	aparece	en	el	mundo	del
problema.	De	la	misma	manera	que	en	el	caso	anterior,	una
cuenta	bancaria	"incluye"	una	cuenta	de	ahorros.	Los	nombres
asignados	a	las	clases	deben	ser	significativos	y	dar	una	idea
clara	de	la	entidad	del	mundo	que	representan.	No	se	debe
exagerar	con	la	longitud	del	nombre,	porque	de	lo	contrario	los
programas	pueden	resultar	pesados	de	leer.

CDT

El	nombre	de	esta	clase	se	encuentra	en	mayúsculas,	porque	es
una	sigla.	Otro	nombre	para	esta	clase	habría	podido	ser	el
nombre	completo	del	concepto:	CertificadoDepositoTermino.	En
el	lenguaje	Java	no	es	posible	usar	tildes	en	los	nombres	de	los
clases,	así	que	nunca	veremos	una	clase	llamada
CertificadoDepósitoTérmino.

Tarea	4

Objetivo:	Identificar	las	entidades	del	mundo	para	el	caso	de	estudio	3:	un	programa	que
maneje	un	triángulo.

Lea	el	enunciado	del	caso	y	trate	de	guiarse	por	los	sustantivos	para	identificar	las
entidades	del	mundo	del	problema.

Comprensión	y	Especificación	del	Problema

48

Nombre Descripción

Entidad

Entidad

Entidad

Punto	de	reexión:	¿Qué	pasa	si	no	identificamos	bien	las	entidades	del	mundo?

Comprensión	y	Especificación	del	Problema

49

Punto	de	reexión:	¿Cómo	decidir	si	se	trata	efectivamente	de	una	entidad	y	no
sólo	de	una	característica	de	una	entidad	ya	identificada?

5.2.2.	Modelar	las	Características

Una	vez	que	se	han	identificado	las	entidades	del	mundo	del	problema,	el	siguiente	paso	es
identificar	y	modelar	sus	características.	A	cada	característica	que	vayamos	encontrando,	le
debemos	asociar	(1)	un	nombre	significativo	y	(2)	una	descripción	del	conjunto	de	valores
que	dicha	característica	puede	tomar.

En	programación	orientada	a	objetos,	las	características	se	denominan	atributos	y,	al	igual
que	las	clases,	serán	elementos	fundamentales	tanto	en	el	diseño	como	en	la
implementación.	El	nombre	de	un	atributo	debe	ser	una	cadena	de	caracteres	no	vacía,	que
empiece	con	una	letra	y	que	no	contenga	espacios	en	blanco.

Por	convención,	el	nombre	de	los	atributos	comienza	por	una	letra	minúscula.	Si	es	un
nombre	compuesto,	se	debe	iniciar	cada	palabra	simple	con	mayúscula.

En	el	lenguaje	UML,	una	clase	se	dibuja	como	un	cuadrado	con	tres	zonas	(ver	ejemplo	5):
la	primera	de	ellas	con	el	nombre	de	la	clase	y,	la	segunda,	con	los	atributos	de	la	misma.	El
uso	de	la	tercera	zona	la	veremos	más	adelante,	en	la	etapa	de	diseño.

Ejemplo	5

Objetivo:	Mostrar	la	manera	de	identificar	y	modelar	los	atributos	de	una	clase.

En	este	ejemplo	se	identifican	las	características	de	las	clases	Empleado	y	Fecha	para	el
caso	de	estudio	del	empleado.

Clase:	Empleado

Comprensión	y	Especificación	del	Problema

50

Atributo Valores
Posibles Comentarios

nombre
Cadena
de
caracteres

La	primera	característica	que	aparece	en	el	enunciado	es	el
nombre	del	empleado.	El	valor	de	este	atributo	es	una
cadena	de	caracteres	(por	ejemplo,	"Juan").	Seleccionamos
"nombre"	como	nombre	del	atributo.	Es	importante	que	los
nombres	de	los	atributos	sean	significativos	(deben	dar	una
idea	clara	de	lo	que	una	característica	representa),	para
facilitar	así	la	lectura	y	la	escritura	de	los	programas.

apellido
Cadena
de
caracteres

El	segundo	atributo	es	el	apellido	del	empleado.	Al	igual	que
en	el	caso	anterior,	el	valor	que	puede	tomar	este	atributo	es
una	cadena	de	caracteres	(por	ejemplo,	"Pérez").	Como
nombre	del	atributo	seleccionamos	"apellido".	El	nombre	de
un	atributo	debe	ser	único	dentro	de	la	clase	(no	es	posible
dar	el	mismo	nombre	a	dos	atributos).

género
Masculino
o
Femenino

Esta	característica	puede	tomar	dos	valores:	masculino	o
femenino.	En	esta	etapa	de	análisis	basta	con	identificar	los
valores	posibles.	Es	importante	destacar	que	los	valores
posibles	de	este	atributo	(llamado	"género")	no	son	cadenas
de	caracteres.	No	nos	interesan	las	palabras	en	español	que
pueden	describir	los	valores	posibles	de	esta	característica,
sino	los	valores	en	sí	mismos.

salario
Valores
reales
positivos

El	salario	está	expresado	en	pesos	y	su	valor	es	un	número
real	positivo.

Comprensión	y	Especificación	del	Problema

51

Clase:	Fecha

Atributo Valores
Posibles Comentarios

dia

Valores
enteros
entre	1	y
31

La	primera	característica	de	una	fecha	es	el	día	y	puede
tomar	valores	enteros	entre	1	y	31.	En	los	nombres	de	las
variables	no	puede	haber	tildes,	por	lo	que	debemos
contentarnos	con	el	nombre	"dia"	(sin	tilde)	para	el	atributo.

mes

Valores
enteros
entre	1	y
12

La	segunda	característica	es	el	mes.	Aquí	se	podrían	listar	los
meses	del	año	como	los	valores	posibles	(por	ejemplo,	enero,
febrero,	etc.),	pero	por	simplicidad	vamos	a	decir	que	el	mes
corresponde	a	un	valor	entero	entre	1	y	12.

anio
Valores
enteros
positivos

La	última	característica	es	el	año.	Debe	ser	un	valor	entero
positivo	(por	ejemplo,	2001).	Aquí	nos	encontramos	de	nuevo
con	un	problema	en	español:	los	nombres	de	los	atributos	no
pueden	contener	la	letra	"ñ".	En	este	caso	resolvimos
reemplazar	dicha	letra	y	llamar	el	atributo	"anio"	que	da
aproximadamente	el	mismo	sonido.

Con	las	tres	características	anteriores	queda	completamente	definida	una	fecha.	Esa	es	la
pregunta	que	nos	debemos	hacer	cuando	estamos	en	esta	etapa:	¿es	necesaria	más
información	para	describir	la	entidad	que	estamos	representando?	Si	encontramos	una

Comprensión	y	Especificación	del	Problema

52

característica	cuyos	valores	posibles	no	son	simples,	como	números,	cadenas	de
caracteres,	o	una	lista	de	valores,	nos	debemos	preguntar	si	dicha	característica	no	es	más
bien	otra	entidad	que	no	identificamos	en	la	etapa	anterior.	Si	es	el	caso,	simplemente	la
debemos	agregar.

Es	importante	que	antes	de	agregar	un	atributo	a	una	clase,	verifiquemos	que	dicha
característica	forma	parte	del	problema	que	se	quiere	resolver.	Podríamos	pensar,	por
ejemplo,	que	la	ciudad	en	la	que	nació	el	empleado	es	uno	de	sus	atributos.	¿Cómo
saber	si	lo	debemos	o	no	agregar?	La	respuesta	es	que	hay	que	mirar	los
requerimientos	funcionales	y	ver	si	dicha	característica	es	utilizada	o	referenciada
desde	alguno	de	ellos.

Tarea	5

Para	cada	una	de	las	cuatro	entidades	identificadas	en	el	caso	de	estudio	del	simulador
bancario,	identifique	los	atributos,	sus	valores	posibles,	y	escriba	la	clase	en	UML.	No
incluya	las	relaciones	que	puedan	existir	entre	las	clases,	ya	que	eso	lo	haremos	en	la
siguiente	etapa	del	análisis.	Por	ahora	trate	de	identificar	las	características	de	las
entidades	que	son	importantes	para	los	requerimientos	funcionales.

Clase:	SimuladorBancario

Comprensión	y	Especificación	del	Problema

53

Atributo Valores	Posibles

Diagrama	UML:

Clase:	CuentaCorriente

Comprensión	y	Especificación	del	Problema

54

Atributo Valores	Posibles

Diagrama	UML:

Clase:	CuentaAhorros

Comprensión	y	Especificación	del	Problema

55

Atributo Valores	Posibles

Diagrama	UML:

Clase:	CDT

Comprensión	y	Especificación	del	Problema

56

Atributo Valores	Posibles

Diagrama	UML:

Comprensión	y	Especificación	del	Problema

57

5.2.3.	Las	Relaciones	entre	las	Entidades

En	esta	actividad,	debemos	tratar	de	identificar	las	relaciones	que	existen	entre	las	distintas
entidades	del	mundo	y	asignarles	un	nombre.	Las	relaciones	se	representan	en	UML	como
echas	que	unen	las	cajas	de	las	clases	(ver	figura	1.7)	y	se	denominan	usualmente
asociaciones.	El	diagrama	de	clases	en	el	cual	se	incluye	la	representación	de	todas	las
entidades	y	las	relaciones	que	existen	entre	ellas	se	conoce	como	el	modelo	conceptual,
porque	explica	la	estructura	y	las	relaciones	de	los	elementos	del	mundo	del	problema.

Fig.	1.7	Sintaxis	en	UML	para	mostrar	una	asociación	entre	dos	clases

El	modelo	presentado	en	la	figura	dice	que	hay	dos	entidades	en	el	mundo	(llamadas
Clase1	y	Clase2),	y	que	existe	una	relación	entre	ellas.
También	explica	que	para	la	Clase1,	la	Clase2	representa	algo	que	puede	ser	descrito
con	el	nombre	que	se	coloca	al	final	de	la	asociación.	La	selección	de	dicho	nombre	es
fundamental	para	la	claridad	del	diagrama.

El	nombre	de	la	asociación	sigue	las	mismas	convenciones	del	nombre	de	los	atributos
y	debe	reejar	la	manera	en	que	una	clase	utiliza	a	la	otra	como	parte	de	sus
características.

Es	posible	tener	varias	relaciones	entre	dos	clases,	y	por	eso	es	importante	seleccionar
bien	el	nombre	de	cada	asociación.	En	la	figura	1.8	se	muestran	las	asociaciones	entre	las
clases	del	caso	de	estudio	del	empleado	y	del	caso	de	estudio	del	triángulo.	En	los	dos
casos	existe	más	de	una	asociación	entre	las	clases,	cada	una	de	las	cuales	modela	una
característica	diferente.

Comprensión	y	Especificación	del	Problema

58

Fig.	1.8	Diagrama	de	clases	para	representar	el	modelo	del	mundo

Caso	de	Estudio	del	Empleado:

La	primera	asociación	dice	que	un	empleado	tiene	una	fecha	de	nacimiento	y	que	esta
fecha	es	una	entidad	del	mundo,	representada	por	la	clase	Fecha.
La	segunda	asociación	hace	lo	mismo	con	la	fecha	de	ingreso	del	empleado	a	la
empresa.
La	dirección	de	la	echa	indica	la	entidad	que	"contiene"	a	la	otra.	El	empleado	tiene
una	fecha,	pero	la	fecha	no	tiene	un	empleado.

Caso	de	Estudio	del	Triángulo:

Un	triángulo	tiene	tres	puntos,	cada	uno	de	los	cuales	define	una	de	sus	aristas.	Cada
punto	tiene	un	nombre	distinto	(punto1,	punto2	y	punto3),	el	cual	se	asigna	a	la
asociación.
Note	que	este	diagrama	está	incompleto,	puesto	que	no	aparece	la	clase	Color	(para
representar	el	color	de	las	líneas	y	el	relleno	del	triángulo),	ni	las	asociaciones	hacia
ella.

Comprensión	y	Especificación	del	Problema

59

La	clase	Punto	seguramente	tiene	dos	atributos	para	representar	las	coordenadas	en
cada	uno	de	los	ejes,	pero	eso	no	lo	incluimos	en	el	diagrama	para	simplificarlo.

Volveremos	a	abordar	el	tema	de	las	relaciones	entre	entidades	en	los	niveles	posteriores,
así	que	por	ahora	sólo	es	importante	poder	identificar	las	relaciones	para	casos	muy
simples.	En	el	ejemplo	6	se	muestran	y	explican	las	relaciones	que	existen	entre	las
entidades	del	caso	del	simulador	bancario.

Una	asociación	se	puede	ver	como	una	característica	de	una	entidad	cuyo	valor	está
representado	por	otra	clase.

Ejemplo	6

Objetivo:	Presentar	el	diagrama	de	clases,	como	una	manera	de	mostrar	el	modelo	de	una
realidad.

A	continuación	se	muestra	el	diagrama	de	clases	del	modelo	del	mundo,	para	el	caso	del
simulador
bancario.

La	relación	entre	la	clase	SimuladorBancario	y	la	clase	CuentaCorriente	se	llama

Comprensión	y	Especificación	del	Problema

60

"corriente"	y	reeja	el	hecho	de	que	una	cuenta	bancaria	tiene	una	cuenta	corriente
como	parte	de	ella.
Fíjese	que	las	echas	tienen	una	dirección.	Dicha	dirección	establece	qué	entidad
utiliza	a	la	otra	como	parte	de	sus	características.
Si	lee	de	nuevo	el	enunciado,	se	dará	cuenta	de	que	el	diagrama	de	clases	se	limita	a
expresar	lo	mismo	que	allí	aparece,	pero	usando	una	sintaxis	gráfica,	que	tiene	la
ventaja	de	no	ser	ambigua.

5.3.	Los	Requerimientos	no	Funcionales
En	la	mayoría	de	los	casos,	la	solución	que	se	va	a	construir	debe	tener	en	cuenta	las
restricciones	definidas	por	el	cliente,	que	dependen,	en	gran	medida,	del	contexto	de
utilización	del	programa.	Para	el	caso	del	empleado,	por	ejemplo,	el	cliente	podría	pedir	que
el	programa	se	pueda	usar	a	través	de	un	teléfono	celular,	o	desde	un	navegador	de
Internet,	o	que	el	tiempo	de	respuesta	de	cualquier	consulta	sea	menor	a	0,0001	segundos.

Los	requerimientos	no	funcionales	están	muchas	veces	relacionados	con	restricciones
sobre	la	tecnología	que	se	debe	usar,	el	volumen	de	los	datos	que	se	debe	manejar	o	la
cantidad	de	usuarios.	Para	problemas	grandes,	los	requerimientos	no	funcionales	son	la
base	para	el	diseño	del	programa.	Piense	en	lo	distinto	que	será	un	programa	que	debe
trabajar	con	un	único	usuario,	de	otro	que	debe	funcionar	con	miles	de	ellos
simultáneamente.

En	el	contexto	de	este	libro,	dados	los	objetivos	y	el	tamaño	de	los	problemas,	sólo	vamos	a
considerar	los	requerimientos	no	funcionales	de	interacción	y	visualización,	que	están
ligados	con	la	interfaz	de	los	programas.

En	este	punto	el	lector	debería	ser	capaz	de	leer	el	enunciado	de	un	problema	sencillo
y,	a	partir	de	éste,	(1)	especificar	los	requerimientos	funcionales,	(2)	crear	el	modelo	del
mundo	del	problema	usando	UML	y	(3)	listar	los	requerimientos	no	funcionales.

Comprensión	y	Especificación	del	Problema

61

6.	Elementos	de	un	Programa
En	esta	parte	del	capítulo	presentamos	los	distintos	elementos	que	forman	parte	de	un
programa.	No	pretende	ser	una	exposición	exhaustiva,	pero	sí	es	nuestro	objetivo	dar	una
visión	global	de	los	distintos	aspectos	que	intervienen	en	un	programa.

En	algunos	casos	la	presentación	de	los	conceptos	es	muy	superficial.	Ya	nos	tomaremos	el
tiempo	en	los	niveles	posteriores	de	profundizar	poco	a	poco	en	cada	uno	de	ellos.	Por
ahora	lo	único	importante	es	poderlos	usar	en	casos	limitados.	Esta	manera	de	presentar
los	temas	nos	va	a	permitir	generar	las	habilidades	de	uso	de	manera	incremental,	sin
necesidad	de	estudiar	toda	la	teoría	ligada	a	un	concepto	antes	de	poder	usarlo.

6.1.	Algoritmos	e	Instrucciones
Los	algoritmos	son	uno	de	los	elementos	esenciales	de	un	programa.	Un	algoritmo	se
puede	ver	como	la	solución	de	un	problema	muy	preciso	y	pequeño,	en	el	cual	se	define	la
secuencia	de	instrucciones	que	se	debe	seguir	para	resolverlo.	Imagine,	entonces,	un
programa	como	un	conjunto	de	algoritmos,	cada	uno	responsable	de	una	parte	de	la
solución	del	problema	global.

Un	algoritmo,	en	general,	es	una	secuencia	ordenada	de	pasos	para	realizar	una	actividad.
Suponga,	por	ejemplo,	que	le	vamos	a	explicar	a	alguien	lo	que	debe	hacer	para	viajar	en	el
metro	parisino.	El	siguiente	es	un	algoritmo	de	lo	que	esta	persona	debe	hacer	para	llegar	a
una	dirección	dada:

1.	 Compre	un	tiquete	de	viaje	en	los	puntos	de	venta	que	se	encuentran	a	la	entrada	de
cada	una	de	las	estaciones	del	metro.

2.	 Identifique	en	el	mapa	del	metro	la	estación	donde	está	y	el	punto	adonde	necesita	ir.
3.	 Localice	el	nombre	de	la	estación	de	metro	más	cercana	al	lugar	de	destino.
4.	 Verifique	si,	a	partir	de	donde	está,	hay	alguna	línea	que	pase	por	la	estación	destino.
5.	 Si	encontró	la	línea,	busque	el	nombre	de	la	misma	en	la	dirección	de	destino.
6.	 Suba	al	metro	en	el	andén	de	la	línea	identificada	en	el	paso	anterior	y	bájese	en	la

estación	de	destino.

Tarea	6

Objetivo:	Reflexionar	sobre	el	nivel	de	precisión	que	debe	ser	usado	en	un	algoritmo	para
evitar	ambigüedades.

Elementos	de	un	Programa

62

Suponga	que	usted	es	la	persona	que	va	a	utilizar	el	algoritmo	anterior,	para	moverse	en	el
metro	de	París.	Identifique	qué	problemas	podría	tener	con	las	instrucciones	anteriores.
Piense	por	ejemplo	si	están	completas.

¿Se	prestan	para	que	se	interpreten	de	maneras	distintas?	¿Estamos	suponiendo	que
quién	lo	lee	usa	su	"sentido	común",	o	cualquier	persona	que	lo	use	va	a	resolver	siempre	el
problema	de	la	misma	manera?

Utilice	este	espacio	para	anotar	sus	conclusiones:

Tarea	7

Objetivo:	Entender	la	complejidad	que	tiene	la	tarea	de	escribir	un	algoritmo.

Esta	tarea	es	para	ser	desarrollada	en	parejas:

1.	 En	el	primer	cuadrante	haga	un	dibujo	simple.
2.	 En	el	segundo	cuadrante	escriba	las	instrucciones	para	explicarle	a	la	otra	persona

cómo	hacer	el	dibujo.
3.	 Lea	las	instrucciones	a	la	otra	persona,	quien	debe	intentar	seguirlas	sin	ninguna	ayuda

adicional.
4.	 Compare	el	dibujo	inicial	y	el	dibujo	resultante.

Dibujo: Algoritmo

Elementos	de	un	Programa

63

Haga	una	síntesis	de	los	resultados	obtenidos:

Cuando	es	el	computador	el	que	sigue	un	algoritmo	(en	el	caso	del	computador	se	habla	de
ejecutar),	es	evidente	que	las	instrucciones	que	le	demos	no	pueden	ser	como	las	definidas
en	el	algoritmo	del	metro	de	París.	Dado	que	el	computador	no	tiene	nada	parecido	al
"sentido	común",	las	instrucciones	que	le	definamos	deben	estar	escritas	en	un	lenguaje
que	no	dé	espacio	a	ninguna	ambigüedad	(imaginemos	al	computador	de	una	nave	espacial
diciendo	"es	que	yo	creí	que	eso	era	lo	que	ustedes	querían	que	yo	hiciera").	Por	esta	razón
los	algoritmos	que	constituyen	la	solución	de	un	problema	se	deben	traducir	a	un	lenguaje
increíblemente	restringido	y	limitado	(pero	a	su	vez	poderoso	si	vemos	todo	lo	que	con	él
podemos	hacer),	denominado	un	lenguaje	de	programación.	Todo	lenguaje	de
programación	tiene	su	propio	conjunto	de	reglas	para	decir	las	cosas,	denominado	la
sintaxis	del	lenguaje.

Existen	muchos	lenguajes	de	programación	en	el	mundo,	cada	uno	con	sus	propias
características	y	ventajas.	Como	dijimos	anteriormente,	en	este	libro	utilizaremos	el
lenguaje	de	programación	Java	que	es	un	lenguaje	de	propósito	general	(no	fue	escrito	para
resolver	problemas	en	un	dominio	específico),	muy	utilizado	hoy	en	día	en	el	mundo	entero,
tanto	a	nivel	científico	como	empresarial.

Un	programa	de	computador	está	compuesto	por	un	conjunto	de	algoritmos,	escritos
en	un	lenguaje	de	programación.	Dichos	algoritmos	están	estructurados	de	tal	forma
que,	en	conjunto,	son	capaces	de	resolver	el	problema.

6.2.	Clases	y	Objetos
Las	clases	son	los	elementos	que	definen	la	estructura	de	un	programa.	Tal	como	vimos	en
la	etapa	de	análisis,	las	clases	representan	entidades	del	mundo	del	problema	(más
adelante	veremos	que	también	pueden	pertenecer	a	lo	que	denominaremos	el	mundo	de	la
solución).	Por	ahora,	y	para	que	se	pueda	dar	una	idea	de	lo	que	es	un	programa	completo,

Elementos	de	un	Programa

64

imagine	que	los	algoritmos	están	dentro	de	las	clases,	y	que	son	estas	últimas	las	que
establecen	la	manera	en	que	los	algoritmos	colaboran	para	resolver	el	problema	global	(ver
figura	1.9).	Esta	visión	la	iremos	refinando	a	medida	que	avancemos	en	el	libro,	pero	por
ahora	es	suficiente	para	comenzar	a	trabajar.

Fig.	1.9	Visión	intuitiva	de	la	estructura	de	un	programa

Hasta	ahora	es	claro	que	en	un	programa	hay	una	clase	por	cada	entidad	del	mundo	del
problema.	Pero,	¿qué	pasa	si	hay	varias	"instancias"	(es	decir,	varios	ejemplares)	de	alguna
de	esas	entidades?	Piense	por	ejemplo	que	en	vez	de	crear	un	programa	para	manejar	un
empleado,	como	en	el	primer	caso	de	estudio,	resolvemos	hacer	un	programa	para	manejar
todos	los	empleados	de	una	empresa.	Aunque	todos	los	empleados	tienen	las	mismas
características	(nombre,	apellido,	etc.),	cada	uno	tiene	valores	distintos	para	ellas	(cada	uno
va	a	tener	un	nombre	y	un	apellido	distinto).	Es	aquí	donde	aparece	el	concepto	de	objeto,
la	base	de	toda	la	programación	orientada	a	objetos.	Un	objeto	es	una	instancia	de	una
clase	(la	cual	define	los	atributos	que	debe	tener)	que	tiene	sus	propios	valores	para	cada
uno	de	los	atributos.	El	conjunto	de	valores	de	los	atributos	se	denomina	el	estado	del
objeto.	Para	diferenciar	las	clases	de	los	objetos,	se	puede	decir	que	una	clase	define	un
tipo	de	elemento	del	mundo,	mientras	que	un	objeto	representa	un	elemento	individual.

Piense	por	ejemplo	en	el	caso	del	triángulo.	Cada	uno	de	los	puntos	que	definen	las	aristas
de	la	figura	geométrica	son	objetos	distintos,	todos	pertenecientes	a	la	clase	Punto.	En	la
figura	1.10	se	ilustra	la	diferencia	entre	clase	y	objeto	para	el	caso	del	triángulo.	Fíjese	que
la	clase	Punto	dice	que	todos	los	objetos	de	esa	clase	deben	tener	dos	atributos	(x,	y),	pero
son	sus	instancias	las	que	tienen	los	valores	para	esas	dos	características.

Elementos	de	un	Programa

65

Fig.	1.10a	Diferencia	entre	clases	y	objetos	para	el	caso	de	estudio	del	triángulo

La	clase	Triangulo	tiene	tres	asociaciones	hacia	la	clase	Punto	(punto1	,		punto2		y
	punto3).	Eso	quiere	decir	que	cada	objeto	de	la	clase	Triangulo	tendrá	tres	objetos
asociados,	cada	uno	de	ellos	perteneciente	a	la	clase	Punto.
Lo	mismo	sucede	con	las	dos	asociaciones	hacia	la	clase	Color:	debe	haber	dos
objetos	de	la	clase	Color	por	cada	objeto	de	la	clase	Triangulo.
Cada	triángulo	será	entonces	representado	por	6	objetos	conectados	entre	sí:	uno	de	la
clase	Triangulo,	tres	de	la	clase	Punto	y	dos	de	la	clase	Color.

Elementos	de	un	Programa

66

Fig.	1.10b	Diferencia	entre	clases	y	objetos	para	el	caso	de	estudio	del	triángulo

Cada	uno	de	los	objetos	tiene	asociado	el	nombre	que	se	definió	en	el	diagrama	de
clases.
El	primer	punto	del	triángulo	está	en	las	coordenadas	(10,	10).
El	segundo	punto	del	triángulo	está	en	las	coordenadas	(20,	20).
El	tercer	punto	del	triángulo	está	en	las	coordenadas	(50,	70).
Las	líneas	del	triángulo	son	del	color	definido	por	el	código	RGB	de	valor	(5,	170,	47).
¿A	qué	color	corresponde	ese	código?
Este	es	sólo	un	ejemplo	de	todos	los	triángulos	que	podrían	definirse	a	partir	del
diagrama	de	clases.
En	la	parte	superior	de	cada	objeto	aparece	la	clase	a	la	cual	pertenece.

Para	representar	los	objetos	vamos	a	utilizar	la	sintaxis	propuesta	en	UML	(diagrama	de
objetos),	que	consiste	en	cajas	con	bordes	redondeados,	en	la	cual	hay	un	valor	asociado
con	cada	atributo.	Podemos	pensar	en	un	diagrama	de	objetos	como	un	ejemplo	de	los
objetos	que	se	pueden	construir	a	partir	de	la	definición	de	un	diagrama	de	clases.	En	el
ejemplo	7	se	ilustra	la	manera	de	visualizar	un	conjunto	de	objetos	para	el	caso	del
empleado.

Ejemplo	7

Elementos	de	un	Programa

67

Objetivo:	Ilustrar	utilizando	una	extensión	del	caso	de	estudio	1	la	diferencia	entre	los
conceptos	de	clase	y	objeto.

La	extensión	consiste	en	suponer	que	el	programa	debe	manejar	todos	los	empleados	de
una	empresa,	en	lugar	de	uno	solo	de	ellos.

Cada	objeto	de	la	clase	Empleado	tendrá	un	valor	para	cada	uno	de	sus	atributos	y	un
objeto	para	cada	una	de	sus	asociaciones.
Esta	clase	define	los	atributos	de	todos	los	empleados	de	la	empresa.
De	manera	intuitiva,	una	clase	puede	verse	como	un	molde	a	partir	del	cuál	sus	objetos
son	construidos.
Cada	empleado	será	representado	con	tres	objetos:	uno	de	la	clase	Empleado	y	dos	de
la	clase	Fecha.

Elementos	de	un	Programa

68

Este	es	el	primer	ejemplo	de	un	empleado	de	la	empresa.	Se	llama	Juan	Ruiz,	nació	el
6	de	enero	de	1971,	comenzó	a	trabajar	en	la	empresa	el	1	de	agosto	de	1990	y	su
salario	es	de	dos	millones	de	pesos.
Durante	la	ejecución	de	un	programa	pueden	aparecer	tantos	objetos	como	sean
necesarios,	para	representar	el	mundo	del	problema.	Si	en	la	empresa	hay	500
empleados,	en	la	ejecución	del	programa	habrá	1500	objetos	representándolos	(3
objetos	por	empleado).

Elementos	de	un	Programa

69

Este	grupo	de	objetos	representa	otro	empleado	de	la	empresa.
Note	que	cada	empleado	tiene	sus	propios	valores	para	los	atributos	y	que	lo	único	que
comparten	los	dos	empleados	es	la	clase	a	la	cual	pertenecen,	la	cual	establece	la	lista
de	atributos	que	deben	tener.

6.3.	Java	como	Lenguaje	de	Programación
Existen	muchos	lenguajes	de	programación	en	el	mundo.	Los	hay	de	distintos	tipos,	cada
uno	adaptado	a	resolver	distintos	tipos	de	problemas.	Tenemos	los	lenguajes	funcionales
como	LISP	o	CML,	los	lenguajes	imperativos	como	C,	PASCAL	o	BASIC,	los	lenguajes
lógicos	como	PROLOG	y	los	lenguajes	orientados	a	objetos	como	Java,	C#	y	SMALLTALK.

Java	es	un	lenguaje	creado	por	Sun	Microsystems	en	1995,	muy	utilizado	en	la	actualidad
en	todo	el	mundo,	sobre	todo	gracias	a	su	independencia	de	la	plataforma	en	la	que	se
ejecuta.	Java	es	un	lenguaje	de	propósito	general,	con	el	cual	se	pueden	desarrollar	desde
pequeños	programas	para	resolver	problemas	simples	hasta	grandes	aplicaciones
industriales	o	de	apoyo	a	la	investigación.

Elementos	de	un	Programa

70

En	esta	sección	comenzamos	a	estudiar	la	manera	de	expresar	en	el	lenguaje	Java	los
elementos	identificados	hasta	ahora.	Comenzamos	por	las	clases,	que	son	los	elementos
fundamentales	de	todos	los	lenguajes	orientados	a	objetos.	Lo	primero	que	debemos	decir
es	que	un	programa	en	Java	está	formado	por	un	conjunto	de	clases,	cada	una	de	ellas
descrita	siguiendo	las	reglas	sintácticas	exigidas	por	el	lenguaje.

Cada	clase	se	debe	guardar	en	un	archivo	distinto,	cuyo	nombre	debe	ser	igual	al	nombre
de	la	clase,	y	cuya	extensión	debe	ser	.java.	Por	ejemplo,	la	clase	Empleado	debe	estar	en
el	archivo	Empleado.java	y	la	clase	Fecha	en	la	clase	Fecha.java.

Un	programa	escrito	en	Java	está	formado	por	un	conjunto	de	archivos,	cada	uno	de
los	cuales	contiene	una	clase.	Para	describir	una	clase	en	Java,	se	deben	seguir	de
manera	estricta	las	reglas	sintácticas	del	lenguaje.

Ejemplo	8

Objetivo:	Mostrar	la	sintaxis	básica	del	lenguaje	Java	para	declarar	una	clase.

Utilizamos	el	caso	de	estudio	del	empleado	para	introducir	la	sintaxis	que	se	debe	utilizar
para	declarar	una	clase.

Archivo:	Empleado.java

Clase:	Empleado

public	class	Empleado
{
				//	Aquí	va	la	declaración	de	la	clase	Empleado
}

Archivo:	Fecha.java

Clase:	Fecha

public	class	Fecha
{
				//	Aquí	va	la	declaración	de	la	clase	Fecha
}

En	el	lenguaje	Java,	todo	lo	que	va	entre	dos	corchetes	("{"	y	"}")	se	llama	un	bloque	de
instrucciones.	En	particular,	entre	los	corchetes	de	la	clase	del	ejemplo	8	va	la	declaración
de	la	clase.	Allí	se	deben	hacer	explícitos	tanto	los	atributos	como	los	algoritmos	de	la
clase.	También	es	posible	agregar	comentarios,	que	serán	ignorados	por	el	computador,

Elementos	de	un	Programa

71

pero	que	le	sirven	al	programador	para	indicar	algo	que	considera	importante	dentro	del
código.	En	Java,	una	de	las	maneras	de	introducir	un	comentario	es	con	los	caracteres	//,
tal	como	se	muestra	en	el	ejemplo	8.

El	programa	del	simulador	bancario,	por	ejemplo,	consta	de	16	clases	distribuidas	de	la
siguiente	manera:

4	clases	para	el	modelo	del	mundo,	almacenadas	en	los	archivos
SimuladorBancario.java,	CuentaCorriente.java,	CuentaAhorros.java	y	CDT.java.
8	clases	para	la	interfaz	usuario,	en	8	archivos	.java.
4	clases	para	las	pruebas	del	programa,	en	4	archivos	.java.

Es	aconsejable	en	este	momento	mirar	en	la	sección	8	de	este	capítulo	la	localización	de
dichos	archivos	en	la	página	web.	Vale	la	pena	también	dar	una	mirada	al	contenido	de	los
archivos	que	vamos	mencionando	en	esta	parte.

Puesto	que	un	programa	puede	estar	compuesto	por	miles	de	clases,	Java	tiene	el
concepto	de	paquete,	a	través	del	cual	es	posible	estructurar	las	clases	por	grupos
jerárquicos.	Esto	facilita	su	localización	y	manejo.	En	la	figura	1.11	se	muestra	la	estructura
de	paquetes	del	caso	del	simulador	bancario.

Fig.	1.11	Ejemplo	de	la	estructura	de	paquetes	del	caso	de	estudio	del	simulador
bancario

Elementos	de	un	Programa

72

Las	dieciséis	clases	del	programa	se	dividen	en	3	paquetes:	uno	con	las	clases	de	la
interfaz	de	usuario	(aquellas	que	implementan	la	ventana	y	los	botones),	uno	con	el
modelo	del	mundo	y	un	último	paquete	con	las	pruebas.
El	nombre	completo	de	una	clase	es	el	nombre	del	paquete	en	el	que	se	encuentra,
seguido	del	nombre	de	la	clase.

Toda	clase	en	Java	debe	comenzar	por	la	definición	del	paquete	en	el	cual	está	situada	la
clase,	como	se	muestra	en	el	siguiente	fragmento	de	programa	del	caso	de	estudio	del
empleado:

package	uniandes.cupi2.empleado;

/**
	*				Esta	clase	representa	un	empleado
	*/
public	class	Empleado
{

}

El	nombre	del	paquete	es	una	secuencia	de	identificadores	separados	por	un	punto.
uniandes.cupi2.empleado.Empleado	es	el	nombre	completo	de	la	clase.
En	el	momento	de	desarrollar	un	programa	se	deben	establecer	los	paquetes	que	se
van	a	utilizar.	En	nuestro	caso,	el	nombre	del	paquete	está	conformado	por	el	nombre
de	la	institución	(uniandes),	seguida	por	el	nombre	del	proyecto	(cupi2)	y	luego	el
nombre	del	ejercicio	del	cual	forma	parte	la	clase	(empleado).
Cada	empresa	de	desarrollo	sigue	sus	propias	convenciones	para	definir	los	nombres
de	los	paquetes.

En	todo	lenguaje	de	programación	existen	las	que	se	denominan	palabras	reservadas.
Dichas	palabras	no	las	podemos	utilizar	para	nombrar	nuestras	clases	o	atributos.	Hasta	el
momento	hemos	visto	las	siguientes	palabras	reservadas:		package	,		public		y		class	.

Un	elemento	de	una	clase	se	declara		public		cuando	queremos	que	sea	visible	desde
otras	clases.

En	el	ejemplo	anterior	se	puede	apreciar	otra	manera	de	incluir	un	comentario	dentro	de	un
programa:	se	utilizan	los	símbolos		/**		para	comenzar	y	los	símbolos		*/		para	terminar.	El
comentario	puede	extenderse	por	varios	renglones	sin	ningún	problema,	a	diferencia	de	los
comentarios	que	comienzan	por	los	símbolos		//		que	terminan	cuando	se	acaba	el
renglón.	Los	comentarios	que	se	introducen	como	aparece	en	el	ejemplo	sirven	para
describir	los	principales	elementos	de	una	clase	y	tienen	un	uso	especial	que	se	verá	más
adelante	en	el	libro.

Elementos	de	un	Programa

73

6.4.	Tipos	de	Datos
Cada	lenguaje	de	programación	cuenta	con	un	conjunto	de	tipos	de	datos	a	través	de	los
cuales	el	programador	puede	representar	los	atributos	de	una	clase.	En	este	nivel	nos
vamos	a	concentrar	en	dos	tipos	simples	de	datos:	los	enteros	(tipo		int),	que	permiten
modelar	características	cuyos	valores	posibles	son	los	valores	numéricos	de	tipo	entero	(por
ejemplo,	el	día	en	la	clase	Fecha),	y	los	reales	(tipo		double),	que	permiten	representar
valores	numéricos	de	tipo	real	(por	ejemplo,	el	interés	de	una	cuenta	de	ahorros).	También
vamos	a	estudiar	un	tipo	de	datos	para	manejar	las	cadenas	de	caracteres	(tipo		String),
que	permite	representar	dentro	de	una	clase	una	característica	como	el	nombre	de	una
persona	o	una	dirección.	En	los	siguientes	niveles,	iremos	introduciendo	nuevos	tipos	de
datos	a	medida	que	los	vayamos	necesitando.

En	Java,	en	el	momento	de	declarar	un	atributo,	es	necesario	declarar	el	tipo	de	datos	al
cual	corresponde,	utilizando	la	sintaxis	que	se	ilustra	en	el	ejemplo	que	se	muestra	a
continuación:

package	uniandes.cupi2.empleado;

/**
*	Esta	clase	representa	un	empleado
*/
public	class	Empleado
{
				//-------------------------------
				//	Atributos
				//-------------------------------
				private	String	nombre;	
				private	String	apellido;	
				private	double	salario;
				...
}

Inicialmente	se	declaran	los	atributos	nombre	y	apellido,	de	tipo		String		(cadenas	de
caracteres).
Los	atributos	se	declaran	como	privados	(private)	para	evitar	su	manipulación	desde
fuera	de	la	clase.
El	atributo	salario	se	declara	de	tipo	double,	puesto	que	es	un	valor	real.
Con	las	tres	declaraciones	que	aparecen	en	el	ejemplo,	el	computador	entiende	que
cualquier	objeto	de	la	clase	Empleado	debe	tener	valores	para	esas	tres
características.
Sólo	quedó	pendiente	por	decidir	el	tipo	del	atributo	genero,	que	no	corresponde	a
ninguno	de	los	tipos	vistos;	eso	lo	haremos	más	adelante.

Elementos	de	un	Programa

74

Para	modelar	el	atributo	"genero",	debemos	utilizar	alguno	de	los	tipos	de	datos	con	los	que
cuenta	el	lenguaje.	Lo	mejor	en	este	caso	es	utilizar	un	atributo	de	tipo	entero	y	usar	la
convención	de	que	si	dicho	atributo	tiene	el	valor	1	se	está	representando	un	empleado	con
género	masculino	y,	si	es	2,	un	empleado	con	género	femenino.	Este	proceso	de	asociar
valores	enteros	y	una	convención	para	interpretarlos	es	algo	que	se	hace	cada	vez	que	los
valores	posibles	de	un	atributo	no	corresponden	directamente	con	los	de	algún	tipo	de
datos.	Fíjese	que	una	cosa	es	el	valor	que	usamos	(que	es	arbitrario)	y	otra	la	interpretación
que	hacemos	de	ese	valor.	Ese	punto	será	profundizado	en	el	nivel	2.

public	class	Empleado
{
				...

				/**	
					*	1	=	masculino,	2	=	femenino
					*/
				private	int	genero;

				...

}

Al	declarar	un	atributo	para	el	cual	se	utilizó	una	convención	especial	para	representar
los	valores	posibles,	es	importante	agregar	un	comentario	en	la	declaración	del	mismo,
explicando	la	interpretación	que	se	debe	dar	a	cada	valor.
En	el	ejemplo,	decidimos	representar	con	un	1	el	valor	masculino,	y	con	un	2	el	valor
femenino.

El	tipo	de	un	atributo	determina	el	conjunto	de	valores	que	éste	puede	tomar	dentro	de
los	objetos	de	la	clase,	lo	mismo	que	las	operaciones	que	se	van	a	poder	hacer	sobre
dicha	característica.

En	el	diagrama	de	clases	de	UML,	por	su	parte,	usamos	una	sintaxis	similar	para	mostrar
los	atributos.	En	la	figura	1.12	aparece	la	manera	en	que	se	incluyen	los	atributos	y	su	tipo
en	el	caso	de	estudio	del	empleado.	Dependiendo	de	la	herramienta	que	se	utilice	para
definir	el	diagrama	de	clases,	es	posible	que	la	sintaxis	varíe	levemente.

Elementos	de	un	Programa

75

Fig.	1.12	Ejemplo	de	la	declaración	en	UML	de	los	atributos	de	la	clase	Empleado

Lo	único	que	nos	falta	incluir	en	el	código	Java	es	la	declaración	de	las	asociaciones.	Para
esto,	vamos	a	utilizar	una	sintaxis	similar	a	la	presentada	anteriormente	utilizando	el	nombre
de	la	asociación	como	nombre	del	atributo	y	el	nombre	de	la	clase	como	su	tipo,	tal	como	se
presenta	en	el	siguiente	fragmento	de	código:

package	uniandes.cupi2.empleado;

public	class	Empleado
{
				//-------------------------------
				//	Atributos
				//-------------------------------
				private	String	nombre;	
				private	String	apellido;	
				private	double	salario;	
				private	int	genero;

				private	Fecha	fechaNacimiento;
				private	Fecha	fechaIngreso;

}

Elementos	de	un	Programa

76

Las	asociaciones	hacia	la	clase	Fecha	las	declaramos	como	hicimos	con	el	resto	de
atributos,	usando	el	nombre	de	la	asociación	como	nombre	del	atributo.
El	tipo	de	la	asociación	es	el	nombre	de	la	clase	hacia	la	cual	está	dirigida	la	flecha	en
el	diagrama	de	clases.
El	orden	de	declaración	de	los	atributos	no	es	importante.

En	la	figura	1.13	aparece	el	diagrama	de	clases	completo	del	caso	de	estudio	del	empleado.

Fig.	1.13	Representación	de	la	clase	Empleado	en	UML

Tarea	8

Objetivo:	Crear	habilidad	en	la	definición	de	los	tipos	de	datos	para	representar	las
características	de	una	clase.

Escriba	en	Java	y	en	UML	las	declaraciones	de	los	atributos	(y	las	asociaciones)	para	las
cinco	clases	del	caso	de	estudio	del	simulador	bancario.

Elementos	de	un	Programa

77

Declaracíon	en
Java Descripción	de	la	clase	en	UML

Declaracíon
en	Java Descripción	de	la	clase	en	UML

Elementos	de	un	Programa

78

Declaracíon
en	Java Descripción	de	la	clase	en	UML

Declaracíon
en	Java Descripción	de	la	clase	en	UML

6.5.	Métodos
Después	de	haber	definido	los	atributos	de	las	clases	en	Java,	sigue	el	turno	para	lo	que
hemos	llamado	hasta	ahora	"los	algoritmos"	de	la	clase.	Cada	uno	de	esos	algoritmos	se
denomina	un	método,	y	pretende	resolver	un	problema	puntual,	dentro	del	contexto	del

Elementos	de	un	Programa

79

problema	global	que	se	quiere	resolver.	También	se	puede	ver	un	método	como	un	servicio
que	la	clase	debe	prestar	a	las	demás	clases	del	modelo	(o	a	ella	misma	si	es	el	caso),	para
que	ellas	puedan	resolver	sus	respectivos	problemas.

Un	método	está	compuesto	por	cuatro	elementos:

Un	nombre	(por	ejemplo,	cambiarSalario,	para	el	caso	de	estudio	del	empleado,	que
serviría	para	modificar	el	salario	del	empleado).
Una	lista	de	parámetros,	que	corresponde	al	conjunto	de	valores	(cada	uno	con	su
tipo)	necesarios	para	poder	resolver	el	problema	puntual	(Si	el	problema	es	cambiar	el
salario	del	empleado,	por	ejemplo,	es	necesario	que	alguien	externo	al	empleado	dé	el
nuevo	salario.	Sin	esa	información	es	imposible	escribir	el	método).	Para	definir	los
parámetros	que	debe	tener	un	método,	debemos	preguntarnos	¿qué	información,	que
no	tenga	ya	el	objeto,	es	indispensable	para	poder	resolver	el	problema	puntual?
Un	tipo	de	respuesta,	que	indica	el	tipo	de	datos	al	que	pertenece	el	resultado	que	va
a	retornar	el	método.	Si	no	hay	una	respuesta,	se	indica	el	tipo		void	.
El	cuerpo	del	método,	que	corresponde	a	la	lista	de	instrucciones	que	representa	el
algoritmo	que	resuelve	el	problema	puntual.

Típicamente,	una	clase	tiene	entre	cinco	y	veinte	métodos	(aunque	hay	casos	en	los	que
tiene	decenas	de	ellos),	cada	uno	capaz	de	resolver	un	problema	puntual	de	la	clase	a	la
cual	pertenece.	Dicho	problema	siempre	está	relacionado	con	la	información	que	contiene
la	clase.	Piense	en	una	clase	como	la	responsable	de	manejar	la	información	que	sus
objetos	tienen	en	sus	atributos,	y	los	métodos	como	el	medio	para	hacerlo.	En	el	cuerpo	de
un	método	se	explica	entonces	la	forma	de	utilizar	los	valores	de	los	atributos	para	calcular
alguna	información	o	la	forma	de	modificarlos	si	es	el	caso.

El	encabezado	del	método	(un	método	sin	el	cuerpo)	se	denomina	su	signatura.

Ejemplo	9

Objetivo:	Mostrar	la	sintaxis	que	se	usa	en	Java	para	declarar	un	método.

Usamos	para	esto	el	caso	de	estudio	del	empleado,	con	tres	métodos	sin	cuerpo,
suponiendo	que	cada	uno	debe	resolver	el	problema	que	ahí	mismo	se	describe.	La
declaración	que	aquí	se	muestra	hace	parte	de	la	declaración	de	la	clase	(los	métodos	van
después	de	la	declaración	de	los	atributos).
Se	deja	un	cuarto	método	al	final	como	tarea	para	el	lector;	en	este	caso,	a	partir	de	la
descripción,	debe	determinar	los	parámetros,	el	retorno	y	la	signatura	del	método.

Elementos	de	un	Programa

80

public	void	cambiarSalario(double	pNuevoSalario)
{
				//	Aquí	va	el	cuerpo	del	método
}

Nombre:	cambiarSalario

Parámetros:	pNuevoSalario	de	tipo	real.	Si	no	se	entrega	este	valor	como	parámetro	es
imposible	cambiar	el	salario	del	empleado.	Note	que	al	definir	un	parámetro	se	debe	dar	un
nombre	al	valor	que	se	espera	y	un	tipo.

Retorno:	ninguno	(void)	puesto	que	el	objetivo	del	método	no	es	calcular	ningún	valor,
sino	modificar	el	valor	de	un	atributo	del	empleado.

Descripción:	cambia	el	salario	del	empleado,	asignándole	el	valor	que	se	entrega	como
parámetro.

public	double	darSalario()
{
				//	Aquí	va	el	cuerpo	del	método
}

Nombre:	darSalario

Parámetros:	ninguno,	puesto	que	con	la	información	que	ya	tienen	los	objetos	de	la	clase
Empleado	es	posible	resolver	el	problema.

Retorno:	el	salario	actual	del	empleado,	de	tipo	real.	En	la	signatura	sólo	se	dice	el	tipo	de
datos	que	se	va	a	retornar,	pero	no	se	dice	cómo	se	retornará.

Descripción:	retorna	el	salario	actual	del	empleado.

public	double	calcularPrestaciones()
{
				//	Aquí	va	el	cuerpo	del	método
}

Nombre:	calcularPrestaciones

Parámetros:	ninguno.	Al	igual	que	en	el	método	anterior,	no	se	necesita	información
externa	al	empleado	para	poder	calcular	sus	prestaciones.

Elementos	de	un	Programa

81

Retorno:	las	prestaciones	anuales	a	las	que	tiene	derecho	el	empleado.	Las	prestaciones,
al	igual	que	el	salario,	son	un	número	real.

Descripción:	retorna	el	valor	de	las	prestaciones	anuales	a	las	que	tiene	derecho	el
empleado.

Nombre:	aumentarSalario

Parámetros:

Retorno:

Descripción:	aumenta	el	salario	del	empleado	en	un	porcentaje	que	corresponde	a	la
inflación	anual	del	país.

¿Cuáles	son	los	métodos	que	se	deben	tener	en	una	clase?	Esa	es	una	pregunta	que	se
contestará	en	niveles	posteriores.	Por	ahora,	supongamos	que	la	clase	tiene	ya	definidos
los	métodos	que	necesita	para	poder	resolver	la	parte	del	problema	que	le	corresponde	y
trabajemos	en	el	cuerpo	de	ellos.	En	el	diagrama	de	clases	de	UML,	se	utiliza	la	tercera
zona	de	la	caja	de	una	clase	para	poner	las	signaturas	de	los	métodos,	tal	como	se	ilustra
en	la	figura	1.14.

Elementos	de	un	Programa

82

Fig.	1.14	Sintaxis	en	UML	para	mostrar	las	signaturas	de	los	métodos	de	una
clase

Tarea	9

Objetivo:	Escribir	y	entender	en	Java	la	signatura	de	algunos	métodos	del	caso	de	estudio
del	simulador	bancario.

Complete	la	siguiente	información,	ya	sea	escribiendo	la	signatura	del	método	que	se
describe,	o	interpretando	la	signatura	que	se	da.	Todos	los	métodos	de	esta	tarea	son	de	la
clase	CuentaAhorros.

public	void	consignarValor(double	pValor)
{

}

Elementos	de	un	Programa

83

Nombre:

Parámetros:

Retorno:

Descripción:

Nombre: darSaldo

Parámetros: ninguno.

Retorno: valor	de	tipo	real.

Descripción: retorna	el	saldo	de	la	cuenta	de	ahorros.

Signatura	del	Método:

Elementos	de	un	Programa

84

Nombre: retirarValor

Parámetros: valor	de	tipo	entero,	que	indica	el	monto	que	se	quiere	retirar	de	la
cuenta	de	ahorros.

Retorno: ninguno.

Descripción: retira	de	la	cuenta	de	ahorros	el	valor	que	se	entrega	como	parámetro.

Signatura	del	Método:

Nombre: darInteresMensual

Parámetros: ninguno.

Retorno: valor	de	tipo	real.

Descripción: retorna	el	interés	mensual	que	paga	una	cuenta	de	ahorros.

Signatura	del	Método:

Elementos	de	un	Programa

85

Nombre: actualizarSaldoPorPasoMes

Parámetros: ninguno.

Retorno: ninguno.

Descripción:
actualiza	el	saldo	de	la	cuenta	de	ahorros	simulando	que	acaba	de
transcurrir	un	mes	y	que	se	deben	agregar	los	correspondientes
intereses	ganados.

Signatura	del	Método:

6.6.	La	Instrucción	de	Retorno
En	el	cuerpo	de	un	método	van	las	instrucciones	que	resuelven	un	problema	puntual	o
prestan	un	servicio	a	otras	clases.	El	computador	obedece	las	instrucciones,	una	después
de	otra,	hasta	llegar	al	final	del	cuerpo	del	método.	Hay	instrucciones	de	diversos	tipos,	la
más	sencilla	de	las	cuales	es	la	instrucción	de	retorno	(return).	Con	esta	instrucción	le
decimos	al	método	cuál	es	el	resultado	que	debe	dar	como	solución	al	problema.	Por
ejemplo,	si	el	problema	es	dar	el	salario	del	empleado,	la	única	instrucción	que	forma	parte
del	cuerpo	de	dicho	método	indica	que	el	valor	se	encuentra	en	el	atributo	"salario".	En	el
siguiente	fragmento	de	programa	se	ilustra	el	uso	de	la	instrucción	de	retorno.

Elementos	de	un	Programa

86

public	class	Empleado
{
				//--------------------------------
				//	Atributos
				//--------------------------------
				private	String	nombre;	
				private	String	apellido;	
				private	double	salario;	
				private	int	genero;
				private	Fecha	fechaNacimiento;
				private	Fecha	fechaIngreso;

				//-------------------------------
				//	Métodos
				//-------------------------------
				public	double	darSalario()
				{
								return	salario;
				}
}

Tal	como	se	había	presentado	antes,	la	declaración	de	la	clase	comienza	con	la
declaración	de	cada	uno	de	sus	atributos	(incluidas	las	asociaciones).	Note	que	no	hay
diferencia	sintáctica	entre	declarar	algo	de	tipo	entero	(genero)	y	una	asociación	hacia
la	clase	Fecha	(fechaIngreso).
Después	de	los	atributos,	viene	la	declaración	de	cada	uno	de	los	métodos	de	la	clase.
Cada	método	tiene	una	signatura	y	un	cuerpo.
Los	métodos	que	van	a	ser	utilizados	por	otras	clases	se	deben	declarar	como
públicos.
En	el	cuerpo	del	método	se	deben	incluir	las	instrucciones	para	resolver	el	problema
puntual	que	se	le	plantea.	El	cuerpo	de	un	método	puede	tener	cualquier	número	de
instrucciones.
En	el	cuerpo	de	un	método	únicamente	se	puede	hacer	referencia	a	los	atributos	del
objeto	para	el	cual	se	está	resolviendo	el	problema	y	a	los	parámetros,	que	representan
la	información	externa	al	objeto	que	se	necesita	para	resolver	el	problema	puntual.
En	el	caso	del	método	cuyo	problema	puntual	consiste	en	calcular	el	salario	del
empleado,	la	solución	consiste	en	retornar	el	valor	que	se	encuentra	en	el	respectivo
atributo.	Fácil,	¿no?
Es	buena	idea	utilizar	comentarios	para	separar	la	"zona"	de	declaración	de	atributos	y
la	"zona"	de	declaración	de	métodos.	Esta	separación	en	zonas	va	a	facilitar	su
posterior	localización.

Todo	método	que	declare	en	su	signatura	que	va	a	devolver	un	resultado	(todos	los
métodos	que	no	son	de	tipo		void)	debe	tener	en	su	cuerpo	una	instrucción	de	retorno.

Elementos	de	un	Programa

87

Cuando	alguien	llama	un	método	sobre	un	objeto,	éste	"busca"	dicho	método	en	la	clase	a
la	cual	pertenece	y	ejecuta	las	instrucciones	que	allí	aparecen,	utilizando	sus	propios
atributos.	Por	esa	razón,	en	el	cuerpo	de	los	métodos	se	puede	hacer	referencia	a	los
atributos	del	objeto	sin	riesgo	de	ambigüedad,	puesto	que	siempre	se	trata	de	los	atributos
del	objeto	al	cual	se	le	invocó	el	método.	En	el	ejemplo	anterior,	si	alguien	invoca	el	método
darSalario()	sobre	un	objeto	de	la	clase	Empleado,	dicho	objeto	va	a	su	clase	para
establecer	lo	que	debe	hacer	y	la	clase	le	explica	que	debe	retornar	el	valor	de	su	propio
atributo	llamado	salario.

6.7.	La	Instrucción	de	Asignación
Los	métodos	que	no	están	hechos	para	calcular	un	valor,	sino	para	modificar	el	estado	del
objeto,	utilizan	la	instrucción	de	asignación	(=)	para	definir	el	nuevo	valor	que	debe	tener
el	atributo.	Si	existiera,	por	ejemplo,	un	método	para	duplicar	el	salario	de	un	empleado,	el
siguiente	sería	el	cuerpo	de	dicho	método:

public	class	Empleado
{
				...

				public	void	duplicarSalario()
				{
								salario	=	salario	*	2;
				}
}

En	la	parte	izquierda	de	la	asignación	va	el	atributo	que	va	a	ser	modificado	(más	adelante
se	extenderá	a	otros	elementos	del	lenguaje,	pero	por	ahora	puede	suponer	que	sólo	se
hacen	asignaciones	sobre	los	atributos).	En	la	parte	derecha	va	una	expresión	que	indica
el	nuevo	valor	que	debe	guardarse	en	el	atributo.	Pueden	formar	parte	de	una	expresión	los
atributos	(incluso	el	que	va	a	ser	modificado),	los	parámetros	y	los	valores	constantes
(como	el	2	en	el	ejemplo	anterior).	Los	elementos	que	forman	parte	de	una	expresión	se
denominan	operandos.	Adicionalmente	en	la	expresión	están	los	operadores,	que	indican
cómo	calcular	el	valor	de	la	expresión.	Los	operadores	aritméticos	son	la	suma	(+),	la
resta	(-),	la	multiplicación	(*)	y	la	división	(/).

En	el	siguiente	fragmento	de	código	vemos	algunos	métodos	de	la	clase	Empleado,	que
dan	una	idea	del	uso	de	la	asignación,	el	retorno	de	valores	y	las	expresiones:

Elementos	de	un	Programa

88

public	class	Empleado
{
				...
				public	void	cambiarSalario(double	pNuevoSalario)
				{
								salario		=		pNuevoSalario;
				}

				public	double	calcularSalarioAnual()
				{
								return		salario		*		12;
				}
}

El	primer	método	cambia	el	salario	del	empleado,	asignándole	el	valor	recibido	como
parámetro.	Recuerde	que	siempre	se	asigna	a	la	variable	que	aparece	en	la	parte
izquierda	el	valor	que	aparece	en	la	parte	derecha.
El	segundo	método	calcula	el	total	al	año	que	recibe	el	empleado	por	concepto	de
salario.

6.8.	La	Instrucción	de	Llamada	de	un	Método
En	algunos	casos,	como	parte	de	la	solución	del	problema,	es	necesario	llamar	un	método
de	un	objeto	con	el	cual	existe	una	asociación.	Suponga	que	un	empleado	necesita	saber	el
año	en	el	que	él	ingresó	a	la	empresa.	Esa	información	la	tiene	el	objeto	de	la	clase	Fecha
que	está	siendo	referenciado	por	su	atributo		fechaIngreso	.	Puesto	que	la	clase	Empleado
no	tiene	acceso	directo	a	los	atributos	de	la	clase	Fecha,	debe	llamar	el	método	de	dicha
clase	que	presta	ese	servicio	(o	que	sabe	resolver	ese	problema	puntual).	La	sintaxis	para
hacerlo	y	el	proceso	de	llamada	(o	invocación)	se	ilustran	a	continuación:

Diagrama	de	objetos	para	ilustrar	la	llamada
del	método:	la	empleada	María	Gómez
ingresó	a	la	empresa	a	trabajar	en	el	año

2005.

Elementos	de	un	Programa

89

public	class	Empleado
{
				...

				public	void	miProblema()
				{
								int	valor	=	fechaIngreso.darAnio();
								...
				}
}

Dentro	de	un	método	de	la	clase	Empleado	se	necesita	saber	el	año	de	ingreso	a	la
empresa.
Invocamos	el	método	darAnio()	sobre	el	objeto	de	la	clase	Fecha	que	representa	la
fecha	de	ingreso.	Ese	método	debe	retornar	2005	si	el	diagrama	de	objetos	es	el
mostrado	en	la	figura	anterior.
Para	pedir	un	servicio	a	través	de	un	método,	debemos	dar	el	nombre	de	la	asociación,
el	nombre	del	método	que	queremos	usar	y	un	valor	para	cada	uno	de	los	parámetros
que	hay	en	su	signatura	(ninguno	en	este	caso).
El	resultado	de	la	llamada	del	método	lo	guardamos	en	una	variable	llamada	valor,	de
tipo	entero.	Un	poco	más	adelante	se	explica	el	uso	de	las	variables.

public	class	Fecha
{
			...

			public	int	darAnio()
			{
							return	anio;
			}
}

El	método	darAnio()	de	la	clase	Fecha	se	contenta	con	retornar	el	valor	que	aparezca
en	el	atributo	"	anio	"	del	objeto	sobre	el	cual	se	hace	la	invocación.

Con	la	referencia	al	objeto	y	el	nombre	del	método,	el	computador	localiza	el	objeto	y	llama
el	método	pedido	pasándole	la	información	para	los	parámetros.	Luego	espera	que	se
ejecuten	todas	las	instrucciones	del	método	y	trae	la	respuesta	en	caso	de	que	haya	una.

De	la	misma	manera	que	un	objeto	puede	invocar	un	método	de	otro	objeto	con	el	cual
tiene	una	asociación,	también	puede,	dentro	de	uno	de	sus	métodos,	invocar	otro	método
de	su	misma	clase.	¿Para	qué	puede	servir	eso?	Suponga	que	tiene	un	método	cuyo
problema	se	vería	simplificado	si	utiliza	la	respuesta	que	calcula	otro	método.	¿Por	qué	no
utilizarlo?	Esta	idea	se	ilustra	en	el	siguiente	fragmento	de	código:

Elementos	de	un	Programa

90

public	class	Empleado
{
				...

				public	double	calcularSalarioAnual()
				{
								return		salario		*		12;
				}

				public	double	calcularImpuesto()
				{
								double	total	=	calcularSalarioAnual();
								return	total	*	19.5	/	100;
				}
}

Suponga	que	queremos	calcular	el	monto	de	los	impuestos	que	debe	pagar	el
empleado	en	un	año.	Los	impuestos	se	calculan	como	el	19,5%	del	total	de	salarios
recibidos	en	un	año.
Si	ya	tenemos	un	método	que	calcula	el	valor	total	del	salario	anual,	¿por	qué	no	lo
utilizamos	como	parte	de	la	solución?	Eso	nos	va	a	permitir	disminuir	la	complejidad	del
problema	puntual	del	método,	porque	nos	podemos	concentrar	en	la	parte	que	"nos
falta"	para	resolverlo.
Para	invocar	un	método	sobre	el	mismo	objeto,	basta	con	utilizar	su	nombre	sin
necesidad	de	explicar	sobre	cuál	objeto	queremos	hacer	la	llamada.	Por	defecto	se
hace	sobre	él	mismo.
Note	que	utilizamos	una	variable	(total)	como	parte	del	cuerpo	del	método.	Una
variable	se	utiliza	para	almacenar	valores	intermedios	dentro	del	cuerpo	de	un	método.
Una	variable	debe	tener	un	nombre	y	un	tipo,	y	sólo	puede	utilizarse	dentro	del	método
dentro	del	cual	fue	declarada.	En	el	siguiente	capítulo	volveremos	a	tratar	el	tema	de
las	variables.

Ejemplo	10

Objetivo:	Ilustrar	la	construcción	de	los	métodos	de	una	clase.

Para	el	caso	de	estudio	del	simulador	bancario,	en	este	ejemplo	se	muestra	el	código	de
algunos	métodos,	en	donde	se	pueden	apreciar	los	distintos	tipos	de	instrucción	que	hemos
visto	hasta	ahora.

Elementos	de	un	Programa

91

package	uniandes.cupi2.simuladorBancario.mundo;

public	class	SimuladorBancario
{
				//-------------------------------------
				//	Atributos
				//-------------------------------------
				private	String	cedula;
				private	String	nombre;

				private	CuentaCorriente	corriente;	
				private	CuentaAhorros	ahorros;	
				private	CDT	inversion;
				private	int	mesActual;
				...
}

Declaración	de	los	atributos	de	la	clase	que	representa	la	cuenta	bancaria.	Note	de
nuevo	la	manera	en	que	se	declaran	las	relaciones	con	otras	clases	(como	atributos,
cuyo	nombre	corresponde	al	nombre	de	la	asociación).

Elementos	de	un	Programa

92

public	void	consignarCuentaCorriente(double	pMonto)
{
				corriente.consignarMonto(pMonto);
}

Para	depositar	en	la	cuenta	corriente	un	valor	que	llega	como	parámetro,	la	cuenta
bancaria	pide	dicho	servicio	al	objeto	que	representa	la	cuenta	corriente,	usando	la
asociación	que	hay	entre	los	dos	y	el	método	consignarMonto()	de	la	clase
CuentaCorriente.

public	double	calcularSaldoTotal()
{
				return		corriente.darSaldo()	+	
												ahorros.darSaldo()	+	
												inversión.calcularValorPresente(pMesActual);
}

Para	calcular	y	retornar	el	saldo	total	de	la	cuenta	bancaria,	el	método	pide	a	cada	uno
de	los	productos	que	la	componen	que	calcule	su	valor	actual.	Luego,	suma	dichos
valores	y	los	retorna	como	el	resultado.	Fíjese	que	una	expresión	puede	estar	separada
en	varias	líneas,	mientras	no	aparezca	el	símbolo	";"	de	final	de	una	instrucción.

Para	calcular	el	valor	presente	del	CDT	se	le	debe	pasar	como	parámetro	el	mes	en	el
que	va	la	simulación.

public	void	pasarAhorroACorriente()
{
				double	temp	=		ahorros.calcularSaldo();
				ahorros.retirar(temp);
				corriente.consignarValor(temp);
}

Este	método	pasa	todo	el	dinero	depositado	en	la	cuenta	de	ahorros	a	la	cuenta
corriente.	Fíjese	que	es	indispensable	utilizar	una	variable	(temp)	para	almacenar	el
valor	temporal	que	se	debe	mover.	¿Se	podría	hacer	sin	esa	variable?	Las	variables	se
declaran	dentro	del	método	que	la	va	a	utilizar	y	se	pueden	usar	dentro	de	las
expresiones	que	van	en	el	cuerpo	del	método.

Si	hay	necesidad	de	convertir	un	valor	real	en	un	valor	entero,	se	puede	usar	el
operador	de	conversión		(int)	.	Dicho	operador	se	utiliza	de	la	siguiente	manera:
	int	respuesta	=	(int)(1000	/	33);	

En	ese	caso,	el	computador	primero	evalúa	la	expresión	y	luego	elimina	las	cifras
decimales.

Elementos	de	un	Programa

93

Tarea	10

Objetivo:	Escribir	el	cuerpo	de	algunos	métodos	simples.

Escriba	el	cuerpo	de	los	métodos	de	la	clase	CuentaBancaria	(caso	de	estudio	2)	cuya
signatura	aparece	a	continuación.	Utilice	los	nombres	de	los	atributos	que	aparecen	en	la
declaración	de	la	clase.	Suponga	que	existen	los	métodos	que	necesite	en	las	clases
CuentaCorriente,	CuentaAhorros	y	CDT.

public	void	ahorrar(double	pMonto)
{

}

Pasa	de	la	cuenta	corriente	a	la	cuenta	de	ahorros	el	valor	que	se	entrega	como	parámetro
(suponiendo	que	hay	suficientes	fondos).

public	void	retirarAhorro(double	pMonto)
{

}

Retira	un	valor	dado	de	la	cuenta	de	ahorros	(suponiendo	que	hay	suficientes	fondos).

public	double	darSaldoCorriente()
{

}

Retorna	el	saldo	que	hay	en	la	cuenta	corriente.	No	olvide	que	éste	es	un	método	de	la
clase	CuentaBancaria.

public	void	retirarTodo()
{

}

Retira	todo	el	dinero	que	hay	en	la	cuenta	corriente	y	en	la	cuenta	de	ahorros.

Elementos	de	un	Programa

94

public	void	duplicarAhorro()
{

}

Duplica	la	cantidad	de	dinero	que	hay	en	la	cuenta	de	ahorros.

public	void	avanzarMesSimulacion()
{

}

Avanza	un	mes	la	simulación	de	la	cuenta	bancaria.

Dentro	de	un	método:

Para	hacer	referencia	a	un	atributo	basta	con	utilizar	su	nombre	(salario).
Para	invocar	un	método	sobre	el	mismo	objeto,	se	debe	dar	únicamente	el	nombre
del	método	y	la	lista	de	valores	para	los	parámetros	(cambiarSalario(2000000)).
Para	invocar	un	método	sobre	un	objeto	con	el	cual	se	tiene	una	asociación,	se
debe	dar	el	nombre	de	la	asociación,	seguido	de	un	punto	y	luego	la	lista	de
valores	para	los	parámetros	(fechaIngreso.darDia()).

6.9.	Llamada	de	Métodos	con	Parámetros
Este	tema	se	profundizará	en	los	capítulos	posteriores.	Por	ahora	sólo	queremos	dar	una
idea	global	del	proceso	de	llamada	de	un	método	con	parámetros.	Para	eso	vamos	a
contestar	siete	preguntas:

¿Cuándo	necesita	parámetros	un	método?	Un	método	necesita	parámetros	cuando	la
información	que	tiene	el	objeto	en	sus	atributos	no	es	suficiente	para	resolver	el
problema	que	le	plantean.
¿Cómo	se	declara	un	parámetro?	En	la	signatura	del	método	se	define	el	tipo	de	dato
del	parámetro	y	se	le	asocia	un	nombre.	Es	conveniente	que	este	nombre	dé	una	idea
clara	del	valor	que	se	va	a	recibir	por	ese	medio.
¿Cómo	se	utiliza	el	valor	del	parámetro?	Basta	con	utilizar	el	nombre	del	parámetro	en
el	cuerpo	del	método,	de	la	misma	manera	en	que	se	utilizan	los	atributos.
¿Se	puede	utilizar	el	parámetro	por	fuera	del	cuerpo	del	método?	No.	En	ningún	caso.
Aquel	que	hace	la	llamada	del	método,	¿cómo	hace	para	definir	los	valores	de	los
parámetros?	En	el	momento	de	hacer	la	llamada,	se	deben	pasar	tantos	valores	como

Elementos	de	un	Programa

95

parámetros	está	esperando	el	método.	Esos	valores	pueden	ser	constantes	(por
ejemplo,	500),	atributos	del	objeto	que	hace	la	llamada	(por	ejemplo,		salario),
parámetros	del	método	desde	el	cual	se	hace	la	llamada	(por	ejemplo,		pNuevoSalario),
o	expresiones	que	mezclen	los	tres	anteriores	(por	ejemplo,		salario	+	pNuevoSalario	*
500).
¿Cómo	se	hace	la	relación	entre	esos	valores	y	los	parámetros?	Los	valores	se	deben
pasar	teniendo	en	cuenta	el	orden	en	el	que	se	declararon	los	parámetros.	Eso	se
ilustra	en	la	figura	1.15.

¿Qué	sucede	si	se	pasan	más	(o	menos)	valores	que	parámetros?	El	compilador
informa	que	hay	un	error	en	la	llamada.	Lo	mismo	sucede	si	los	tipos	de	datos	de	los
valores	no	coinciden	con	los	tipos	de	datos	de	los	parámetros.

Fig.	1.15	Llamada	de	un	método	con	parámetros

Tenemos	una	clase	C1,	con	un	método	m1()	que	tiene	tres	parámetros.
Tenemos	una	clase	C2,	con	un	atributo	de	la	clase	C1.	Desde	allí	vamos	a	llamar	el
método	m1()	de	la	primera	clase.
Debemos	pasarle	3	valores	en	el	momento	de	invocar	el	método.	El	primer	valor	es	el
parámetro	x	del	método	m2().	El	segundo	valor	es	una	expresión	que	incluye	una
constante	y	un	atributo.	El	tercer	valor	es	una	constante	de	tipo	cadena	de	caracteres.

Elementos	de	un	Programa

96

Al	hacer	la	llamada	se	hace	la	correspondencia	uno	a	uno	entre	los	valores	y	los
parámetros.
Después	de	hacer	la	correspondencia	se	calcula	cada	valor	y	se	le	asigna	al	respectivo
parámetro.	Esta	copia	del	valor	se	hace	para	todos	los	tipos	simples	de	datos.
Una	vez	que	se	han	inicializado	los	parámetros	se	inicia	la	ejecución	del	método.

6.10.	Creación	de	Objetos
La	creación	de	objetos	es	un	tema	que	será	abordado	nuevamente	en	el	segundo	nivel.	Sin
embargo	se	explicará	la	creación	de	objetos	porque	es	indispensable	para	entender	la
estructura	de	un	programa	completo.	Para	esto	empezaremos	contestando	algunas
preguntas.

¿Quién	crea	los	objetos	del	modelo	del	mundo?	Típicamente,	el	proceso	lo	inicia	la
interfaz	de	usuario,	creando	una	instancia	de	la	clase	más	importante	del	modelo.	Lo
que	sigue,	depende	del	diseño	que	se	haya	hecho	del	programa.

¿Cómo	se	guarda	un	objeto	que	acaba	de	ser	creado?	Más	que	guardar	un	objeto	se
debe	hablar	de	referenciar.	Una	referencia	a	un	objeto	se	puede	guardar	en	cualquier
atributo	o	variable	del	mismo	tipo.

Un	objeto	se	crea	utilizando	la	instrucción		new		y	dando	el	nombre	de	la	clase	de	la	cual	va
a	ser	una	instancia.	Para	crear	un	empleado,	por	triángulo,	se	usa	la	expresión		new
Triangulo()	.	Al	ejecutar	esta	instrucción,	el	computador	se	encarga	de	buscar	la
declaración	de	la	clase	y	asignar	al	objeto	un	nuevo	espacio	en	memoria	en	donde	pueda
almacenar	los	valores	de	todos	sus	atributos.	Como	no	es	responsabilidad	del	computador
darle	un	valor	inicial	a	los	atributos,	éstos	quedan	en	un	valor	que	se	puede	considerar
indefinido,	tal	como	se	sugiere	en	la	figura	1.16,	en	donde	se	muestra	la	sintaxis	de	la
instrucción		new		y	el	efecto	de	su	uso.

Elementos	de	un	Programa

97

Fig.	1.16	Creación	de	un	objeto	usando	la	instrucción	new

El	resultado	de	ejecutar	la	instrucción	del	ejemplo	es	un	nuevo	objeto,	con	sus	atributos
no	inicializados.
Dicho	objeto	está	"referenciado"	por	p,	que	puede	ser	un	atributo	o	una	variable	de	tipo
Punto.

Para	inicializar	los	valores	de	un	objeto,	las	clases	permiten	la	definición	de	métodos
constructores,	los	cuales	son	invocados	automáticamente	en	el	momento	de	ejecutar	la
instrucción	de	creación.	Un	método	constructor	tiene	dos	reglas	fundamentales:

1.	 Se	debe	llamar	igual	que	la	clase.
2.	 No	puede	tener	ningún	tipo	de	retorno,	puesto	que	su	único	objetivo	es	dar	un	valor

inicial	a	los	atributos.

El	siguiente	es	un	ejemplo	de	un	método	constructor	para	la	clase	Punto:

public	Punto()
{
				x	=	0;
				y	=	0;
}

Elementos	de	un	Programa

98

Un	método	constructor	tiene	el	mismo	nombre	de	la	clase	(así	lo	puede	localizar	el
compilador)	y	no	tiene	ningún	tipo	de	retorno.

El	método	constructor	del	ejemplo	le	asigna	valores	iniciales	por	defecto	a	todos	los
atributos	del	objeto.
Un	método	constructor	no	se	puede	llamar	directamente,	sino	que	es	invocado
automáticamente	cada	vez	que	se	crea	un	nuevo	objeto	de	la	clase.

El	método	constructor	anterior	le	asigna	un	valor	por	defecto	a	cada	uno	de	los	atributos	del
objeto,	evitando	así	tener	valores	indefinidos.	El	hecho	de	incluir	este	método	constructor	en
la	declaración	de	la	clase	hace	que	éste	siempre	se	invoque	como	parte	de	la	respuesta	del
computador	a	la	instrucción		new	.	En	la	figura1.17	se	ilustra	la	creación	de	un	objeto	de	una
clase	que	tiene	un	método	constructor.

Fig.	1.17	Creación	de	un	objeto	cuya	clase	tiene	un	método	constructor.

Puesto	que	en	muchos	casos	los	valores	por	defecto	no	tienen	sentido	(no	todos	los	puntos
pueden	tener	coordenadas	0,0),	es	posible	agregar	parámetros	en	el	constructor,	lo	que
obliga	a	todo	aquel	que	quiera	crear	una	nueva	instancia	de	esa	clase	a	definir	dichos
valores	iniciales.

Elementos	de	un	Programa

99

En	el	siguiente	ejemplo,	se	muestra	un	constructor	que	recibe	por	parámetro	las
coordenadas	que	se	desea	asignar	al	punto	desde	su	creación:

public	Punto(double	pX,	double	pY)
{
				x	=	pX;
				y	=	pY;
}

Este	constructor	exige	2	parámetros,	de	tipo	real,	para	poder	inicializar	los	objetos	de	la
clase	Punto.
En	el	constructor	se	asignan	los	valores	de	los	parámetros	a	los	atributos.

En	la	figura	1.18	se	ilustra	la	creación	de	un	objeto	de	una	clase	que	usa	el	método
constructor	con	parámetros	definido	arriba.

Fig.	1.18	Creación	de	un	objeto	a	partir	de	un	constructor	con	parámetros.

El	objeto	creado	se	ubica	en	alguna	parte	de	la	memoria	del	computador.	Dicho	objeto
es	referenciado	por	el	atributo	o	la	variable	llamada	"	p	".

Debido	a	que	es	necesario	que	el	triángulo	tenga	3	puntos,	su	método	constructor	debe
incluir	la	creación	de	los	3	puntos,	como	se	muestra	a	continuación:

Elementos	de	un	Programa

100

public	Triangulo()
{
				//	Inicializa	los	puntos
				punto1	=	new	Punto(200,	50);
				punto2	=	new	Punto(300,	200);
				punto3	=	new	Punto(100,	200);
}

Tarea	11

Objetivo:	Generar	habilidad	en	el	uso	de	los	constructores	de	las	clases.

Complete	el	constructor	de	la	clase	Color,	de	manera	que	reciba	por	parámetro	los	valores
que	se	desea	asignar	a	cada	uno	de	sus	atributos	y	los	inicialice.

public	Color()
{

}

Complete	el	constructor	de	la	clase	Triangulo	para	que	inicialice	el	color	de	relleno	y	el	color
de	las	líneas,	usando	el	constructor	creado	arriba.	(Tenga	en	cuenta	que	los	valores	de
cada	componente	del	color	se	deben	inicializar	con	un	entero	etre	0	y	255).

public	Triangulo()
{
				//	Inicializa	los	puntos
				punto1	=	new	Punto(200,	50);
				punto2	=	new	Punto(300,	200);
				punto3	=	new	Punto(100,	200);

}

Elementos	de	un	Programa

101

7.	Diseño	de	la	Solución
En	esta	sección	se	da	una	visión	global	de	la	etapa	de	diseño,	la	segunda	etapa	del
proceso	de	desarrollo	de	un	programa.

Si	hacemos	el	paralelo	con	el	trabajo	de	un	arquitecto	que	construye	un	edificio,	podemos
imaginar	que	éste,	una	vez	que	ha	terminado	de	entender	lo	que	el	cliente	quiere,	empieza
la	etapa	de	diseño	del	edificio.	La	figura	1.19	pretende	mostrar	que	la	actividad	de	diseño	se
suele	desarrollar	a	través	de	refinamientos	sucesivos:	el	arquitecto	primero	hace	un
bosquejo	de	lo	que	quiere	construir,	luego	hace	los	cálculos	necesarios	para	verificar	si	esta
solución	es	viable	(debe	por	ejemplo	estimar	los	materiales	y	el	costo	de	mano	de	obra).	Si
llega	a	la	conclusión	de	que	no	cumple	por	alguna	razón	las	restricciones	impuestas	por	el
cliente	(o	se	le	ocurre	una	manera	mejor	de	hacerlo),	realiza	los	ajustes	del	caso	y	repite	de
nuevo	la	etapa	de	cálculos.	La	actividad	termina	cuando	el	arquitecto	decide	que	encontró
una	buena	solución	al	problema.	En	ese	momento	comienza	a	elaborar	un	conjunto	de
planos	que	van	a	ser	utilizados	como	guía	para	la	construcción	del	edificio.

Fig.	1.19	El	diseño	es	una	actividad	iterativa	hasta	encontrar	una	solución

En	el	caso	de	la	construcción	de	un	programa,	la	actividad	de	diseño	sigue	el	mismo
esquema:	nuestro	bosquejo	inicial	es	el	modelo	conceptual	del	mundo	del	problema,
nuestros	cálculos	consisten	en	verificar	los	requerimientos	no	funcionales	y	calcular	el	costo
de	implementación,	y	nuestros	planos	son,	entre	otros,	diagramas	detallados	escritos	en
UML.	En	cada	refinamiento	introducimos	o	ajustamos	algunos	de	los	elementos	del
programa	y	así	nos	vamos	aproximando	a	una	solución	adecuada.

Como	se	muestra	en	la	figura	1.20,	los	documentos	de	diseño	(nuestros	"planos")	deben
hacer	referencia	al	menos	a	tres	aspectos:

1.	 El	diseño	de	la	interfaz	de	usuario.
2.	 La	arquitectura	de	la	solución.
3.	 El	diseño	de	las	clases.

Diseño	de	la	Solución

102

Fig.	1.20	Entradas	y	salidas	de	la	etapa	de	diseño

Como	entrada	tenemos	el	análisis	del	problema,	dividido	en	tres	partes:	requerimientos
funcionales,	mundo	del	problema	y	requerimientos	no	funcionales.
La	salida	es	el	diseño	del	programa,	que	incluye	la	interfaz	de	usuario,	la	arquitectura	y
el	diseño	de	las	clases.

7.1.	La	Interfaz	de	Usuario
La	interfaz	de	usuario	es	la	parte	de	la	solución	que	permite	que	los	usuarios	interactúen
con	el	programa.	A	través	de	la	interfaz,	el	usuario	puede	utilizar	las	operaciones	del
programa	que	implementan	los	requerimientos	funcionales.	La	manera	de	construir	esta
interfaz	será	el	tema	del	nivel	5	de	este	libro.	Hasta	entonces,	todas	las	interfaces	que	se
necesitan	para	completar	los	programas	de	los	casos	de	estudio	serán	dadas.

7.2.	La	Arquitectura	de	la	Solución
En	general,	cuando	se	quiere	resolver	un	problema,	es	bueno	contar	con	mecanismos	que
ayuden	a	dividirlo	en	problemas	más	pequeños.	Estos	problemas	son	menos	complejos	que
el	problema	original	y,	por	lo	tanto,	más	fáciles	de	resolver.

Por	ejemplo,	si	se	quiere	construir	un	aeropuerto,	al	plantear	la	solución,	los	diseñadores
identifican	sus	grandes	partes:	las	pistas	de	aterrizaje,	las	salas	de	llegada	y	salida	de
pasajeros,	la	torre	de	control,	etc.	Luego	tratan	de	diseñar	esas	partes	por	separado,
sabiendo	que	cada	diseño	es	más	sencillo	que	el	diseño	completo	del	aeropuerto.	Lo
importante	es	después	poder	pegar	los	pedazos	de	solución.	Para	eso	es	importante	tener
un	diseño	de	alto	nivel	en	el	que	aparezcan	a	grandes	rasgos	los	elementos	que	conforman
la	solución.	Eso	es	lo	que	en	programación	se	denomina	la	arquitectura	de	la	solución.	En

Diseño	de	la	Solución

103

el	caso	de	los	problemas	que	tratamos	en	este	libro,	dado	que	son	pequeños	y	su
complejidad	es	baja,	nos	vamos	a	contentar	con	identificar	los	paquetes	y	las	clases	que
van	en	cada	uno	de	ellos.	Luego,	nos	dedicaremos	a	trabajar	en	las	clases	de	cada
paquete,	para	finalmente	armar	la	solución	completa.

En	los	problemas	en	los	que	vamos	a	trabajar	a	lo	largo	del	libro,	se	pueden	identificar	3
grandes	grupos	de	clases:

1.	 Las	clases	que	implementan	la	interfaz	de	usuario.
2.	 Las	clases	que	implementan	el	modelo	del	mundo.
3.	 Las	clases	que	implementan	las	pruebas.

Cada	uno	de	estos	grupos	va	a	ir	en	un	paquete	distinto.	Esta	manera	de	separar	la
aplicación	en	estos	tres	paquetes	la	vamos	a	llamar	la	arquitectura	básica	y	la	estaremos
utilizando	en	la	gran	mayoría	de	los	casos	de	estudio	de	este	libro.	La	figura	1.21	ilustra	la
arquitectura	de	la	solución	para	el	caso	de	estudio	del	empleado,	en	la	cual	se	puede
apreciar	que	hay	tres	paquetes,	que	cada	uno	tiene	en	su	interior	un	grupo	de	clases,	y	que
estos	paquetes	están	relacionados	(la	relación	está	indicada	por	las	flechas	punteadas).

Fig.	1.21	Arquitectura	de	paquetes	del	caso	de	estudio	del	empleado

En	el	diagrama	de	paquetes	se	puede	leer	que	alguna	clase	del	paquete

Diseño	de	la	Solución

104

	uniandes.cupi2.empleado.interfaz		utiliza	algún	servicio	de	una	clase	del	paquete
	uniandes.cupi2.empleado.mundo	.	En	este	diagrama	no	se	entra	en	detalles	sobre	cuál
clase	es	la	que	tiene	la	relación.
El	diagrama	de	paquetes	es	muy	útil	para	darse	una	idea	de	la	estructura	del	programa.
En	este	nivel	sólo	estamos	interesados	en	mirar	por	dentro	el	paquete	con	las	clases
del	mundo.	En	niveles	posteriores	nos	interesaremos	por	las	demás	clases.

Sin	entrar	por	ahora	en	mayores	detalles,	podemos	decir	que	en	el	paquete	de	la	interfaz
estarán	las	clases	que	implementan	los	elementos	gráficos	y	de	interacción,	lo	mismo	que
las	clases	que	implementan	los	requerimientos	funcionales	y	las	clases	que	crean	las
instancias	del	modelo	del	mundo.	Es	allí	donde	están	agrupadas	todas	esas
responsabilidades.	Este	es	el	tema	del	nivel	5	de	este	libro.	Por	ahora,	paciencia...

7.3.	El	Diseño	de	las	Clases
El	objetivo	de	esta	parte	de	la	etapa	de	diseño	es	mostrar	los	detalles	de	cada	una	de	las
clases	que	van	a	hacer	parte	del	programa.	Para	esto	vamos	a	utilizar	el	diagrama	de
clases	de	UML,	con	toda	la	información	que	presentamos	en	las	secciones	anteriores
(clases,	atributos	y	signaturas	de	los	métodos).	En	el	nivel	4,	veremos	la	manera	de	precisar
las	responsabilidades	y	compromisos	de	cada	uno	de	los	métodos	(exactamente	qué	debe
hacer	cada	método),	de	manera	que	la	persona	que	vaya	a	implementar	los	métodos	no
deba	guiarse	únicamente	por	los	nombres	de	los	mismos.

Diseño	de	la	Solución

105

8.	Construcción	de	la	Solución

8.1.	Visión	Global
En	la	etapa	de	construcción	de	la	solución	debemos	escribir	todos	los	elementos	que
forman	parte	del	programa	que	fue	diseñado	en	la	etapa	anterior,	y	que	resuelve	el
problema	planteado	por	el	cliente.	Dicho	programa	será	instalado	en	el	computador	del
usuario	y	luego	ejecutado.

En	la	figura	1.22	aparecen	las	entradas	y	las	salidas	de	esta	etapa.	Allí	se	puede	apreciar
que	un	programa	consta	de	un	conjunto	estructurado	de	archivos	de	distintos	tipos	(no	sólo
están	los	archivos	de	las	clases	Java).	La	descripción	de	todos	ellos	se	hará	en	la	sección
8.2.	También	se	puede	ver	que	la	etapa	de	construcción	debe	seguir	ciertas	reglas	de
organización,	las	cuales	varían	de	empresa	a	empresa	de	desarrollo	de	software,	y	que
deben	hacerse	explícitas	antes	de	comenzar	el	trabajo.	Estas	reglas	de	organización	son	el
tema	de	la	sección	8.3.	Al	terminar	la	etapa	de	construcción,	algunos	archivos
empaquetados	y	algunos	archivos	ejecutables	irán	al	computador	del	usuario,	pues	en	ellos
queda	el	programa	listo	para	su	uso.	El	resto	de	los	archivos	se	entregan	al	cliente,	quien
los	podrá	utilizar	en	el	futuro	para	darle	mantenimiento	al	programa,	permitiendo	así	incluir
nuevas	opciones	y	dando	al	cliente	la	oportunidad	de	adaptar	el	programa	a	los	cambios
que	puedan	aparecer	en	el	mundo	del	problema.

Fig.	1.22	Entradas	y	salidas	de	la	etapa	de	construcción	de	la	solución

Construcción	de	la	Solución

106

8.2.	Tipos	de	Archivos
Dentro	de	cada	uno	de	los	proyectos	de	desarrollo	en	Java	incluidos	en	este	libro,	aparecen
nueve	tipos	distintos	de	archivos,	los	cuales	contienen	partes	de	la	solución.	A	continuación
se	describe	cada	uno	de	ellos:

Tipo	de
archivo ¿Qué	contiene? ¿Cómo	se	usa? ¿Cómo	se

construye?

.class

Es	un	archivo	que	contiene
el	código	compilado	de	una
clase	Java.	El	compilador
genera	este	archivo,	que
después	podrá	ser
ejecutado.	En	el	proyecto
habrá	un	archivo	.class	por
cada	archivo	.java.

Lo	usa	el
computador	para
ejecutar	un
programa.

Se	construye
llamando	el
compilador	del
lenguaje,	e
indicándole	el
archivo	.java	que
debe	compilar.

.docx

Es	un	archivo	que	tiene	parte
de	la	especificación	del
problema	(el	enunciado
general	y	los	requerimientos
funcionales).	Tiene	el
formato	usado	por	Microsoft
Word®.

Se	requiere	tener
instalado	en	el
computador	la
aplicación	Microsoft
Word®.	Para	abrirlo
basta	con	hacer
doble	clic	en	el
archivo	desde	el
explorador	de
archivos.

Se	crea	y
modifica	desde	la
aplicación
Microsoft	Word®.

.html

Es	un	archivo	con	la
documentación	de	una	clase,
generada	automáticamente
por	la	utilidad	Javadoc.

Se	requiere	tener
instalado	en	el
computador	un
navegador	de
Internet.	Para
abrirlo	basta	con
hacer	doble	clic	en
el	archivo	desde	el
explorador	de
archivos.

Lo	crea
automáticamente
la	aplicación
Javadoc,	que
extrae	y	organiza
la	documentación
de	una	clase
escrita	en	Java.

.jar

Es	un	archivo	en	el	que
están	empaquetados	todos
los	archivos	.class	de	un
programa.	Su	objetivo	es
facilitar	la	instalación	de	un
programa	en	el	computador
de	un	usuario.	En	lugar	de
tener	que	copiar	cientos	de
archivos	.class	se
empaquetan	todos	ellos	en
un	solo	.jar.

Lo	usa	el
computador	para
ejecutar	un
programa.

Se	construye
utilizando	la
utilidad	jar	que
viene	con	el
compilador	de
Java.

Construcción	de	la	Solución

107

.java
Es	un	archivo	con	la
implementación	de	una	clase
en	Java.

Se	le	pasa	al
compilador	para
que	cree	a	partir	de
él	un	.class,	que
será	posteriormente
ejecutado	por	el
computador.

Desde	cualquier
editor	de	texto.
En	nuestro	caso,
el	ambiente	de
desarrollo	Eclipse
va	a	permitir
editar	este	tipo
de	archivo,
dándonos	ayudas
para	detectar
errores	de
sintaxis.

.eap

Es	un	archivo	con	los
diagramas	de	clases	y	de
arquitectura	del	programa.
Están	escritos	en	el	formato
de	Enterprise	Architect®.

Se	requiere	tener
instalado	en	el
computador	la
aplicación
Enterprise
Architect®.	Para
abrirlo	basta	con
hacer	doble	clic	en
el	explorador	de
archivos.

Se	crea,	modifica
e	imprime	desde
la	aplicación
Enterprise
Architect®.

.jpeg/png

Son	archivos	que
contienenuna	imagen.	Los
usamos	para	mostrar	los
distintos	diagramas	del
programa.	Esto	permite
visualizar	el	diseño	a
aquellos	que	no	cuenten	con
el	programa	Enterprise
Architect®.

Cualquier	programa
de	imágenes
(incluso	los
navegadores	de
Internet)	pueden
leer	estos	archivos.

Se	crean	con
cualquier	editor
de	imágenes.

.zip

Es	un	archivo	que
empaqueta	un	conjunto	de
archivos.	Tiene	la	ventaja	de
que	los	almacena	de	manera
comprimida	y	hace	que
ocupen	menos	espacio.

Muchas
herramientas	en	el
mercado	permiten
manejar	este	tipo	de
archivos.	Si	tiene
alguna	de	ellas
instalada	en	su
computador,	un
doble	clic	desde	el
explorador	de
archivos	iniciará	la
aplicación.

Se	construyen
utilizando	las
mismas
herramientas	que
permiten	extraer
de	allí	los
archivos	que
contienen.

8.3.	Organización	de	los	Elementos	de	Trabajo

Construcción	de	la	Solución

108

Sigamos	con	el	paralelo	que	estábamos	haciendo	con	el	edificio.	Una	vez	terminados	los
planos	debemos	pasar	a	la	etapa	de	construcción.	Antes	de	empezar	a	abrir	el	hueco	para
los	cimientos	y	de	comprar	los	materiales	que	se	necesitan,	es	necesario	fijar	todas	las
normas	de	organización.	Lo	primero	es	decidir	dónde	se	va	a	poner	cada	elemento	para	la
construcción:	dónde	van	los	ladrillos,	dónde	va	el	cemento,	etc.	Luego,	cómo	vamos	a
llamar	las	cosas.	Si	hay	varios	tipos	de	puertas,	por	ejemplo,	nos	debemos	poner	de
acuerdo	en	la	manera	de	etiquetarlas.	Esto	último	es	lo	que	se	denomina	una	convención.
Tanto	la	organización	como	las	convenciones	no	son	universales	y	en	cada	edificio	que	se
va	a	construir	pueden	cambiar.	Lo	importante	es	que	antes	de	iniciar	la	construcción	todo	el
mundo	esté	informado	y	se	comprometa	a	respetar	dichas	normas.

Para	la	construcción	de	un	programa	se	sigue	la	misma	idea:	se	define	una	organización
(siempre	debemos	saber	dónde	buscar	un	elemento	de	la	solución)	y	un	conjunto	de
convenciones	(por	ejemplo,	el	archivo	en	el	que	están	los	requerimientos	funcionales
siempre	se	va	a	llamar	de	la	misma	manera).	Nuestros	elementos	están	siempre	en
archivos,	y	nuestra	estructura	de	organización	de	basa	en	el	sistema	de	directorios.

En	esta	sección	presentamos	la	organización	y	las	convenciones	que	utilizamos	en	los
proyectos	de	construcción	de	los	programas	de	los	casos	de	estudio.	Todos	los
proyectos	de	este	libro	las	siguen	y,	aunque	no	son	universales,	reflejan	las	prácticas
comunes	de	los	equipos	de	desarrollo	de	software.

8.3.1	Proyectos	y	Directorios

Un	proyecto	de	desarrollo	va	siempre	en	un	directorio,	cuyo	nombre	indica	su	contenido.	En
nuestro	caso	el	nombre	del	directorio	comienza	por	el	nivel,	seguido	del	nombre	del	caso	de
estudio	(por	ejemplo,	n1_empleado).

Dentro	del	directorio	principal,	se	encuentran	siete	directorios,	con	el	contenido	que	se
muestra	en	la	figura	1.23.

Construcción	de	la	Solución

109

Fig.	1.23	Estructura	de	directorios	dentro	de	un	proyecto	de	desarrollo

Comencemos	entonces	a	recorrer	cada	uno	de	estos	directorios,	utilizando	para	esto	el
proyecto	de	desarrollo	del	caso	de	estudio	del	empleado.	En	la	tarea	11	se	dan	los	pasos
para	poder	comenzar	este	recorrido.

Tarea	12

Objetivo:	Preparar	la	organización	para	iniciar	el	recorrido	por	los	elementos	de	un
proyecto	de	desarrollo,	utilizando	como	ejemplo	el	caso	de	estudio	del	empleado.

Siga	los	pasos	que	se	enuncian	a	continuación:

1.	 Descargue	de	aquí	al	disco	de	su	computador	el	proyecto	de	nivel	1	llamado
n1_empleado.	Descomprímalo	(está	en	formato	zip)	y	recorra	los	directorios	internos
utilizando	el	explorador	de	archivos.

2.	 Verifique	que	en	su	computador	se	encuentre	instalado	el	compilador	de	Java.	Si	no
está	instalado,	vaya	al	anexo	A	del	libro	y	siga	las	instrucciones	para	instalarlo.
Algunos	programas	del	libro	están	escritos	para	versiones	de	Java	posteriores	a	la
versión	1.4.

3.	 Verifique	que	en	su	computador	se	encuentre	instalado	el	ambiente	de	desarrollo

Construcción	de	la	Solución

110

Eclipse.	Si	no	está	instalado,	vaya	al	anexo	B	del	libro	y	siga	las	instrucciones	para
instalarlo.

8.3.2.	El	Directorio	source

En	este	directorio	encontrará	los	archivos	fuente,	en	los	que	está	la	implementación	en	Java
de	cada	una	de	las	clases.	Cada	clase	está	en	un	archivo	distinto,	dentro	de	un	directorio
que	refleja	la	jerarquía	de	paquetes.	Esta	relación	entre	paquetes	y	directorios	es	la	que
permite	al	compilador	encontrar	las	clases	en	el	espacio	de	trabajo.	En	la	figura	1.24	se
ilustra	esta	relación.

Fig.	1.24	Relación	entre	los	paquetes	y	la	jerarquía	de	directorios

Tarea	13

Objetivo:	Recorrer	los	archivos	fuente	de	un	programa	y	ver	la	relación	entre	la	jerarquía	de
directorios	y	la	estructura	de	paquetes.

Siga	los	pasos	que	se	dan	a	continuación.

1.	 Abra	el	explorador	de	archivos	y	sitúese	en	el	directorio	source	del	proyecto	que	instaló
en	la	tarea	11.

Construcción	de	la	Solución

111

http://cupi2.uniandes.edu.co/sitio/images/cursosCupi2/apo1/ejemplos/codigos/n1_empleado.zip

2.	 Entre	al	directorio	"uniandes".	Dentro	de	éste	entre	al	directorio	"cupi2"	y	luego	al
directorio	"empleado".	Allí	deben	aparecer	los	directorios	"interfaz"	y	"mundo".	Entre	en
cualquiera	de	ellos	y	utilice	el	bloc	de	notas	para	ver	el	contenido	de	un	archivo	.java.
Es	importante	decir	que	si	se	mueve	un	archivo	a	otro	directorio,	o	se	cambia	el
paquete	al	que	pertenece	sin	desplazar	físicamente	el	archivo	al	nuevo	directorio,	el
programa	no	se	va	a	compilar	correctamente.

8.3.3.	El	Directorio	classes

En	este	directorio	están	todos	los	archivos	.class.	Tiene	la	misma	jerarquía	de	directorios
que	se	usa	para	los	archivos	fuente.	No	es	muy	interesante	su	contenido,	porque	para
poder	ver	estos	archivos	por	dentro	se	necesitan	editores	especiales.	Si	intenta	abrir	uno	de
estos	archivos	con	editores	de	texto	normales,	va	a	obtener	unos	caracteres	que
aparentemente	no	tienen	ningún	sentido.

Estos	archivos	tienen	por	dentro	el	bytecode	(código	binario)	producto	de	compilar	la
correspondiente	clase	Java.

8.3.4.	El	Directorio	test

En	este	directorio	están	todos	los	archivos	que	hacen	las	pruebas	automáticas	del
programa.	Por	ahora	lo	único	importante	es	saber	que	en	su	interior	hay	varios	directorios,
con	archivos	.class,	.jar	y	.java.	En	un	nivel	posterior	entraremos	a	mirar	este	directorio.

8.3.5.	El	Directorio	docs

En	este	directorio	hay	dos	subdirectorios:

specs:	contiene	todos	los	documentos	de	diseño.	Allí	encontrará:	(1)	el	archivo
Descripción.docx,	con	el	enunciado	del	caso	de	estudio,	(2)	el	archivo
RequerimientosFuncionales.docx	con	la	especificación	de	los	requerimientos
funcionales,	(3)	el	archivo	Modelo.eap	con	los	diagramas	de	clases	del	diseño	y	(4)	un
conjunto	de	archivos	.jpg	con	las	imágenes	de	los	distintos	diagramas	de	clases.
api:	contiene	los	archivos	de	la	documentación	de	las	clases	del	programa.	Estos
archivos	sólo	se	verán	a	partir	del	nivel	4.

8.3.6.	El	Directorio	lib

En	este	directorio	encontrará	el	archivo	empaquetado	para	instalar	en	el	computador	del
usuario.	En	el	caso	de	estudio	del	empleado	dicho	archivo	se	llama	empleado.jar.	Este
archivo	tiene	la	misma	estructura	interna	de	un	archivo	.zip,	así	que	si	desea	ver	su

Construcción	de	la	Solución

112

contenido	puede	utilizar	cualquiera	de	los	programas	que	permiten	manejar	esos	archivos.
En	su	interior	deberá	encontrar	todos	los	archivos	.class	del	proyecto.

8.3.7	El	Directorio	data

Este	directorio	contiene	archivos	con	información	que	utiliza	el	programa,	ya	sea	para
almacenar	datos	(si	tuviéramos	una	base	de	datos	estaría	en	ese	directorio)	o	para	leerlos
(por	ejemplo,	en	el	caso	de	estudio	del	empleado,	allí	se	guarda	la	foto	en	un	archivo	con
formato	jpeg).

8.4.	Eclipse:	Un	Ambiente	de	Desarrollo
Un	ambiente	(o	entorno)	de	desarrollo	es	una	aplicación	que	facilita	la	construcción	de
programas.	Principalmente,	debe	ayudarnos	a	escribir	el	código,	a	compilarlo	y	a	ejecutarlo.
Eclipse	es	un	ambiente	de	múltiples	usos,	uno	de	los	cuales	es	ayudar	al	desarrollo	de
programas	escritos	en	Java.	Es	una	herramienta	de	uso	gratuito,	muy	flexible	y	adaptable	a
las	necesidades	y	gustos	de	los	programadores.

Tarea	14

Objetivo:	Estudiar	tres	funcionalidades	básicas	del	ambiente	de	desarrollo:

1.	 Cómo	abrir	un	proyecto	que	ya	existe	(como	el	del	caso	de	estudio).
2.	 Cómo	leer	y	modificar	los	archivos	de	las	clases	Java.
3.	 Cómo	ejecutar	el	programa.

Siga	los	pasos	que	se	enuncian	a	continuación.

1.	¿Cómo	abrir	en	Eclipse	el	programa	n1_empleado?	Puede	hacerlo	de	dos	formas:

Opción	1:	Creando	el	proyecto	directamente	en	la	estructura	de	directorios

Descomprima	el	archivo	.zip	que	contiene	el	proyecto	(por	ejemplo	en	C:/temp/).
Cree	un	proyecto	Java	en	Eclipse	(menú	File/New/Java	Project),	con	la	ruta	del
directorio	(C:/temp/n1_empleado)	y	el	nombre	del	proyecto	(n1_empleado).
Puede	aceptar	la	creación	ahora	(botón	"Finish"),	o	navegar	a	la	siguiente	ventana
("Next")	para	ver	las	propiedades	del	proyecto.

Opción	2:	Importando	el	proyecto	de	la	estructura	de	directorios:

Descomprima	el	archivo	.zip	que	contiene	el	proyecto	(por	ejemplo	en	C:/temp/)
Elija	la	opción	de	importación	(menú	File/Import…).	En	el	diálogo	en	el	que	le
preguntan	la	fuente	de	la	importación	seleccione	"Existing	Project	into	Workspace".

Construcción	de	la	Solución

113

Seleccione	la	carpeta	del	proyecto	(C:/temp/n1_empleado)	y	finalice.

2.	¿Cómo	explorar	en	Eclipse	el	contenido	de	un	proyecto	abierto?

Utilice	la	vista	llamada	navegador.	Si	la	vista	no	está	disponible,	búsquela	en	el	menú
Window/Show	View/	Navigator.
Revise	la	estructura	de	directorios	del	proyecto	n1_empleado	y	recuerde	el	contenido
de	cada	uno	de	ellos	(puede	ocurrir	que	algunos	directorios	no	contengan	archivos	en
el	proyecto	que	está	explorando).

3.	¿Cómo	explorar	en	Eclipse	un	proyecto	Java	que	esté	abierto?

Utilice	la	vista	llamada	"Package	Explorer".	Si	la	vista	anterior	no	está	disponible,
búsquela	en	el	menú	Window/	Show	View/Package	Explorer.
Revise	las	propiedades	del	proyecto.	Puede	editar	las	propiedades	haciendo	clic
derecho	sobre	el	proyecto	o	mediante	el	menú	Project/Properties.
Seleccione	de	la	ventana	de	propiedades	(de	las	opciones	que	aparecen	a	la	izquierda)
las	opciones	de	construcción	de	Java	("Java	Build	Path")	y	revise	la	configuración	del
proyecto.
Observe	la	estructura	de	paquetes	del	proyecto.

4.	¿Cómo	editar	una	clase	Java?

Utilizando	la	vista	llamada	"Package	Explorer"	localice	el	directorio	con	los	archivos
fuente	del	proyecto.
Dando	doble	clic	sobre	cualquiera	de	los	archivos	que	allí	se	encuentran
(Empleado.java,	por	ejemplo),	el	editor	lo	abre	y	permite	al	programador	que	lo
modifique.
Agregue	un	comentario	en	algún	punto	de	la	clase	Empleado,	teniendo	cuidado	de	no
afectar	el	contenido	del	archivo,	y	sálvelo	de	nuevo	con	la	opción	del	menú	File/Save.
Cierre	el	archivo	después	de	haberlo	salvado.

5.	¿Cómo	ejecutar	el	programa	en	un	proyecto	abierto	en	Eclipse?

Utilizando	la	vista	llamada	"Package	Explorer"	localice	el	directorio	con	los	archivos
fuente	del	proyecto.
Localice	la	clase	InterfazEmpleado	en	el	paquete	que	contiene	las	clases	de	la	interfaz.
Cada	programa	en	Java	tiene	una	clase	por	la	cual	comienza	la	ejecución.	Siempre	se
debe	localizar	esta	clase	para	poder	iniciar	el	programa.
Elija	el	comando	"Run/Java	Application".	Puede	hacerlo	desde	la	barra	de
herramientas,	el	menú	principal	o	el	menú	emergente	que	aparece	al	hacer	clic	derecho
sobre	la	clase.
Con	este	comando	el	programa	comienza	su	ejecución.	El	programa	y	Eclipse	siguen
funcionando	simultáneamente.	Para	terminar	el	programa,	basta	con	cerrar	su	ventana.

Construcción	de	la	Solución

114

Localice	la	vista	llamada	consola.	Si	la	vista	no	está	disponible,	búsquela	en	el	menú
Window/Show	View/Console.	Allí	pueden	aparecer	algunos	mensajes	de	error	de
ejecución.	En	esa	vista	hay	un	botón	rojo	pequeño,	que	permite	terminar	la	ejecución
del	programa.

Debe	estar	claro	que	el	ambiente	de	desarrollo	es	una	herramienta	para	el
programador,	y	que	lo	normal	es	que	dicho	ambiente	no	esté	instalado	en	el
computador	del	usuario.

Construcción	de	la	Solución

115

9.	Hojas	de	Trabajo

9.1	Hoja	de	Trabajo	Nº	1:	Una	Encuesta
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Analice	la	siguiente	lectura	e	identique	el	mundo	del	problema,	lo	que	se
espera	de	la	aplicación	y	las	restricciones	para	desarrollarla.

Se	quiere	crear	una	aplicación	que	permita	realizar	encuesta	de	opinión	de	un	curso	y
manejar	sus	resultados.	La	encuesta	consiste	en	una	única	pregunta,	en	la	cual	se	le	pide	a
la	persona	que	calique	la	calidad	de	un	curso	dando	un	valor	entre	0	y	10.

Se	desea	poder	conocer	los	resultados	de	la	en	cuenta	para	diferentes	sectores
demográficos.	Para	esto	se	tendrá	en	cuenta	el	rango	el	rango	de	edad	y	el	estado	civil	de
la	persona	que	puede	ser	soltero(a)	o	casado(a).	En	la	encuesta	se	dividieron	las	personas
en	3	rangos	de	edad:	(1)	menores	de	18,	(2)	entre	18	y	54,	y	(3)	con	55	o	más	años.

En	el	momento	de	hacer	la	pregunta,	la	persona	debe	seleccionar	su	rango	de	edad,
informar	si	es	soltera	o	casada	y	agregar	una	nueva	opinión	a	la	encuesta.

El	programa	debe	informar	el	promedio	total	de	la	encuesta.	Esto	es,	debe	promediar	todas
las	notas	dadas	y	presentar	el	resultado	en	pantalla.	También	debe	debe	ser	capaz	de
informar	valores	parciales	de	la	encuesta.	En	ese	caso	se	debe	especicar	un	rango	de
edad	y	un	estado	civil.	El	programa	presenta	por	pantalla	el	promedio	de	las	calicaciones
del	curso	dadas	por	todas	las	personas	que	cumplen	el	perl	pedido.	Puede	suponer	que	en
el	momento	de	calcular	los	resultados	hay	por	lo	menos	una	persona	de	cada	perl.

La	interfaz	de	usuario	de	este	programa	es	la	que	se	muestra	a	continuación:

Hojas	de	Trabajo

116

https://bit.ly/apo1-nivel1-hoja1-pdf-format
https://bit.ly/apo1-nivel1-hoja1-word-format

Hojas	de	Trabajo

117

Hojas	de	Trabajo

118

Hojas	de	Trabajo

119

Requerimientos	funcionales.	Describa	tres	requerimientos	funcionales	de	la	aplicación
que	haya	identicado	en	el	enunciado.

Requerimiento	Funcional	1

Hojas	de	Trabajo

120

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	Trabajo

121

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	Trabajo

122

Nombre

Resumen

Entradas

Resultado

Entidades	del	mundo.	Identique	las	entidades	del	mundo	y	descríbalas	brevemente.

Entidad Descripción

Características	de	las	entidades.	Identique	las	características	de	cada	una	de	las
entidades	y	escriba	la	clase	en	UML	con	el	tipo	de	datos	adecuado.

Entidad	1

Hojas	de	Trabajo

123

Atributo Valores	Posibles

Diagrama	UML

Hojas	de	Trabajo

124

Entidad	2

Atributo Valores	Posibles

Hojas	de	Trabajo

125

Diagrama	UML

Relaciones	entre	entidades.	Dibuje	las	entidades	en	UML	(sin	atributos	ni	métodos)	y	las
relaciones	que	existan	entre	ellas.

Hojas	de	Trabajo

126

Métodos	de	las	entidades.	Lea	las	siguientes	descripciones	de	métodos	y	escriba	su
implementación	en	el	lenguaje	Java.

Método	1

Clase RangoEdad

Nombre darNumeroCasados

Parámetros Ninguno.

Retorno El	número	de	personas	casadas	que	respondieron	la	encuesta,	en	el
rango	de	edad	de	la	clase.

Descripción Retorna	el	número	de	personas	casadas	que	respondieron	la	encuesta,
en	el	rango	de	edad	de	la	clase.

Implementación	en	Java

Método	2

Clase RangoEdad

Nombre darTotalOpinionCasados

Parámetros Ninguno.

Retorno La	suma	de	todas	las	opiniones	de	los	encuestados	casados	en	el	rango
de	edad	de	la	clase.

Descripción Retorna	la	suma	de	todas	las	opiniones	de	los	encuestados	casados	en
el	rango	de	edad	de	la	clase.

Hojas	de	Trabajo

127

Implementación	en	Java

Método	3

Clase RangoEdad

Nombre calcularPromedio

Parámetros Ninguno.

Retorno El	promedio	de	la	encuesta	en	el	rango	de	edad	de	la	clase.

Descripción
Retorna	el	promedio	de	la	encuesta	en	el	rango	de	edad	de	la	clase.
Para	esto	suma	todas	las	opiniones	y	divide	por	el	número	total	de
encuestados.

Implementación	en	Java

Método	4

Hojas	de	Trabajo

128

Clase RangoEdad

Nombre agregarOpinionCasado

Parámetros Opinión	del	encuestado.

Retorno Ninguno.

Descripción Añade	la	opinión	de	una	persona	casada	en	el	rango	de	edad	que
representa	la	clase.

Implementación	en	Java

Método	5

Clase RangoEncuesta

Nombre darPromedioCasados

Parámetros Ninguno.

Retorno El	promedio	de	la	encuesta	en	el	rango	de	edad	de	la	clase
considerando	sólo	los	casados.

Descripción
Retorna	el	promedio	de	la	encuesta	en	el	rango	de	edad	de	la	clase.
Para	esto	suma	todas	las	opiniones	de	los	casados	y	divide	por	el
número	total	de	ellos.

Hojas	de	Trabajo

129

Implementación	en	Java

Método	6

Clase Encuesta

Nombre agregarOpinionRango1Casado

Parámetros Opinión	del	encuestado.

Retorno Ninguno.

Descripción Añade	la	opinión	de	una	persona	casada	en	el	rango	de	edad	1	de	la
encuesta.

Implementación	en	Java

Método	7

Hojas	de	Trabajo

130

Clase Encuesta

Nombre agregarOpinionRango2Soltero

Parámetros (1)	estado	civil,	(2)	opinión.

Retorno Ninguno.

Descripción Añade	la	opinión	de	una	persona	soltera	en	el	rango	de	edad	2	de	la
encuesta.

Implementación	en	Java

Método	8

Clase Encuesta

Nombre calcularPromedio

Parámetros Ninguno.

Retorno El	promedio	de	la	encuesta	en	todos	los	rangos	de	edad.

Descripción
Retorna	el	promedio	de	la	encuesta	en	todos	los	rangos	de	edad.	Para
esto	suma	todas	las	opiniones	y	divide	por	el	número	total	de
encuestados.

Hojas	de	Trabajo

131

Implementación	en	Java

Método	9

Clase Encuesta

Nombre darPromedioCasados

Parámetros Ninguno.

Retorno El	promedio	de	la	encuesta	en	todos	los	rangos	de	edad	de	la	clase,
considerando	sólo	los	casados.

Descripción
Retorna	el	promedio	de	la	encuesta	en	todos	los	rangos	de	edad.	Para
esto	suma	todas	las	opiniones	de	los	casados	y	divide	por	el	número
total	de	ellos.

Implementación	en	Java

Hojas	de	Trabajo

132

9.2	Hoja	de	Trabajo	Nº	2:	Una	Alcancía
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado:	Analice	la	siguiente	lectura	e	identique	el	mundo	del	problema,	lo	que	se
espera	de	la	aplicación	y	las	restricciones	para	desarrollarla.

Se	quiere	construir	un	programa	para	manejar	una	alcancía.	En	la	alcancía	es	posible
guardar	monedas	de	distintas	denominaciones:	$50,	$100,	$200,	$500	y	$1000.	No	se
guardan	billetes	o	monedas	de	otros	valores.

El	programa	debe	dar	las	siguientes	opciones:	(1)	agregar	una	moneda	de	una	de	las
denominaciones	que	maneja,	(2)	informar	cuántas	monedas	tiene	de	cada	denominación,
(3)	calcular	el	total	de	dinero	ahorrado	y	(4)	romper	la	alcancía,	vaciando	su	contenido.

La	interfaz	de	usuario	de	este	programa	es	la	que	se	muestra	a	continuación:

Hojas	de	Trabajo

133

Requerimientos	funcionales.	Describa	tres	requerimientos	funcionales	de	la	aplicación
que	haya	identicado	en	el	enunciado.

Requerimiento	Funcional	1

Hojas	de	Trabajo

134

https://bit.ly/apo1-nivel1-hoja2-pdf-format
https://bit.ly/apo1-nivel1-hoja2-word-format

Nombre R1	–	Guardar	una	moneda	de	$50	en	la	alcancía.

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Nombre R2	–	Contar	el	número	de	monedas	de	$50	que	hay	en	la	alcancía.

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	Trabajo

135

Nombre R3	–	Calcular	el	total	de	dinero	ahorrado	en	la	alcancía.

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Nombre R4	–	Romper	la	alcancía.

Resumen

Entradas

Resultado

Entidades	del	mundo.	Identique	las	entidades	del	mundo	y	descríbalas	brevemente.

Hojas	de	Trabajo

136

Entidad Descripción

Características	de	las	entidades.	Identique	las	características	de	cada	una	de	las
entidades	y	escriba	la	clase	en	UML	con	el	tipo	de	datos	adecuado.

Entidad	1

Hojas	de	Trabajo

137

Atributo Valores	Posibles

Hojas	de	Trabajo

138

Diagrama	UML

Métodos	de	las	entidades.	Complete	las	siguientes	descripciones	de	métodos	y	escriba	su
implementación	en	el	lenguaje	Java.

Método	1

Hojas	de	Trabajo

139

Clase Alcancia

Nombre AgregarMoneda50

Parámetros

Retorno

Descripción

Implementación	en	Java

Método	2

Hojas	de	Trabajo

140

Clase Alcancia

Nombre AgregarMoneda500

Parámetros

Retorno

Descripción

Implementación	en	Java

Método	3

Hojas	de	Trabajo

141

Clase Alcancia

Nombre darTotalDinero

Parámetros

Retorno

Descripción

Implementación	en	Java

Método	4

Hojas	de	Trabajo

142

Clase Alcancia

Nombre darNumeroMonedas100

Parámetros

Retorno

Descripción

Implementación	en	Java

Método	5

Hojas	de	Trabajo

143

Clase Alcancia

Nombre romperAlcancia

Parámetros

Retorno

Descripción

Implementación	en	Java

Hojas	de	Trabajo

144

Nivel	2:	Definición	de	Situaciones	y	Manejo	de	Casos

145

1.	Objetivos	Pedagógicos
Al	final	de	este	nivel	el	lector	será	capaz	de:

Modelar	las	características	de	un	objeto,	utilizando	nuevos	tipos	simples	de	datos	y	la
técnica	de	definir	constantes	y	enumeraciones	para	representar	los	valores	posibles	de
un	atributo.
Utilizar	expresiones	como	medio	para	identificar	una	situación	posible	en	el	estado	de
un	objeto	y	para	indicar	la	manera	de	modificar	dicho	estado.
Utilizar	las	instrucciones	condicionales	simples	y	compuestas	como	parte	del	cuerpo	de
un	método,	para	poder	considerar	distintos	casos	en	la	solución	de	un	problema.
Identificar	de	manera	informal	los	métodos	de	una	clase,	utilizando	para	esto	la	técnica
de	agrupar	los	métodos	por	tipo	de	responsabilidad	que	tienen:	construir,	modificar	o
calcular.

Objetivos	Pedagógicos

146

2.	Motivación
En	el	nivel	anterior	se	introdujo	la	noción	de	un	programa	como	la	solución	a	un	problema
planteado	por	un	cliente.	Para	construir	dicho	programa,	se	presentaron	y	utilizaron	los
elementos	conceptuales,	tecnológicos	y	metodológicos	necesarios	para	enfrentar
problemas	triviales.	A	medida	que	los	problemas	comienzan	a	ser	más	complejos,	es
preciso	ir	extendiendo	dichos	elementos.	En	este	nivel	vamos	a	introducir	nuevos	elementos
en	tres	direcciones:

1.	 Nuevas	maneras	de	modelar	una	característica.
2.	 La	posibilidad	de	considerar	casos	alternativos	en	el	cuerpo	de	un	método.
3.	 Algunas	técnicas	para	identificar	los	métodos	de	una	clase.

En	los	siguientes	párrafos	se	muestra	la	necesidad	de	estas	extensiones	dentro	del	proceso
de	desarrollo	de	programas.

¿Por	qué	necesitamos	nuevas	maneras	de	modelar	una	característica?	Aunque	con	los
tipos	de	datos	para	manejar	enteros,	reales	y	cadenas	de	caracteres	se	puede	cubrir	un
amplio	espectro	de	casos,	en	este	nivel	veremos	nuevos	tipos	de	datos	y	nuevas	técnicas
para	representar	las	características	de	las	clases.	También	aprovecharemos	para
profundizar	en	los	tipos	de	datos	estudiados	en	el	nivel	anterior.

¿Por	qué	es	necesario	poder	considerar	casos	en	el	cuerpo	de	un	método?	Con	las
instrucciones	que	se	presentaron	en	el	nivel	anterior,	sólo	es	posible	asignar	un	valor	a	un
atributo,	pedir	un	servicio	a	un	objeto	con	el	cual	se	tiene	una	asociación,	o	retornar	un
resultado.	Por	ejemplo,	si	en	el	caso	del	empleado	del	nivel	1	existiera	una	norma	de	la
empresa	por	la	que	se	diera	una	bonificación	en	el	salario	a	aquellos	empleados	que	llevan
más	de	10	años	trabajando	con	ellos,	sería	imposible	incluirla	en	el	programa.	No	habría
manera	de	verificar	si	el	empleado	cumple	con	esa	condición	para	sumarle	la	bonificación	al
salario.	Allí	habría	dos	casos	distintos,	cada	uno	con	un	algoritmo	diferente	para	calcular	el
salario.

¿Por	qué	necesitamos	técnicas	para	clasificar	los	métodos	de	una	clase?	Uno	de	los	puntos
críticos	de	la	programación	orientada	por	objetos	es	lo	que	se	denomina	la	asignación	de
responsabilidades.	Dado	que	la	solución	del	problema	se	divide	entre	muchos	algoritmos
repartidos	por	todas	las	clases	(que	pueden	ser	centenares),	es	importante	tener	clara	la
manera	de	definir	quién	debe	hacer	qué.	En	el	nivel	4	nos	concentraremos	en	discutir	en
detalle	este	punto;	por	el	momento,	vamos	a	sentar	las	bases	para	poder	avanzar	en	esa
dirección.

Motivación

147

Además	de	los	nuevos	elementos	antes	mencionados,	en	este	nivel	trataremos	de	reforzar
y	completar	algunas	de	las	habilidades	generadas	en	el	lector	en	el	nivel	anterior.	La
programación,	más	que	una	actividad	basada	en	el	conocimiento	de	enormes	cantidades	de
conceptos	y	definiciones,	es	una	actividad	de	habilidades,	utilizables	en	múltiples	contextos.
Por	eso,	en	la	estructura	de	este	libro,	se	le	da	mucha	importancia	a	las	tareas,	cuyo
objetivo	es	trabajar	en	la	manera	de	usar	los	conceptos	que	se	van	viendo.

Motivación

148

3.	El	Primer	Caso	de	Estudio
En	este	caso,	tenemos	un	programa	que	permite	manejar	el	inventario	de	una	pequeña
tienda,	conocer	cuánto	dinero	hay	en	caja	y	tener	un	control	de	estadísticas	de	venta.

La	tienda	maneja	cuatro	productos,	para	cada	uno	de	los	cuales	se	debe	manejar	la
siguiente	información:

1.	 Nombre.	No	pueden	haber	dos	productos	con	el	mismo	nombre.
2.	 Tipo	(puede	ser	un	producto	de	papelería,	de	supermercado	o	de	droguería).
3.	 Cantidad	actual	del	producto	en	la	tienda	(número	de	unidades	disponibles	para	la

venta	que	hay	en	la	bodega).
4.	 Cantidad	mínima	para	abastecimiento	(número	de	productos	por	debajo	del	cual	se

puede	hacer	un	nuevo	pedido	al	proveedor).
5.	 El	precio	base	de	venta	por	unidad.

Para	calcular	el	precio	final	de	cada	producto,	se	deben	sumar	los	impuestos	que	define	la
ley	(IVA).	Dichos	impuestos	dependen	del	tipo	del	producto,	de	la	siguiente	manera:

Papelería:	16%
Supermercado:	4%
Droguería:	12%.

Eso	quiere	decir	que	si	un	lápiz	tiene	un	precio	base	de	$10,	el	precio	final	será	de	$11,6
considerando	que	un	lápiz	es	un	producto	de	papelería,	y	sobre	estos	se	debe	pagar	el	16%
de	impuestos.

El	programa	de	manejo	de	esta	tienda	debe	permitir	las	siguientes	operaciones:

1.	 Vender	un	producto.
2.	 Abastecer	la	tienda	con	un	producto.
3.	 Cambiar	un	producto.
4.	 Calcular	estadísticas	de	ventas	la	tienda.	Dichas	estadísticas	son:	(a)	el	producto	más

vendido,	(b)	El	producto	menos	vendido,	(c)	la	cantidad	total	de	dinero	obtenido	por	las
ventas	de	la	tienda,	(d)	la	cantidad	de	dinero	promedio	obtenido	por	unidad	de	producto
vendida.

3.1.	Comprensión	del	Problema

El	Primer	Caso	de	Estudio

149

Tal	como	planteamos	en	el	nivel	anterior,	el	primer	paso	para	poder	resolver	un	problema	es
entenderlo.	Este	entendimiento	lo	mostramos	descomponiendo	el	problema	en	tres
aspectos:	los	requerimientos	funcionales,	el	modelo	conceptual	y	los	requerimientos	no
funcionales.	En	la	primera	tarea	de	este	nivel	trabajaremos	los	dos	primeros	puntos.

Tarea	1

Objetivo:	Entender	el	problema	del	caso	de	estudio	de	la	tienda.

1.	 Lea	detenidamente	el	enunciado	del	caso	de	estudio	de	la	tienda.
2.	 Identifique	y	complete	la	documentación	de	los	cuatro	requerimientos	funcionales.
3.	 Construya	un	primer	diagrama	de	clases	con	el	modelo	conceptual,	en	el	que	sólo

aparezcan	las	clases,	las	asociaciones	y	los	atributos	sin	tipo.

Requerimiento	Funcional	1

Nombre R1	–	Vender	un	producto.

Resumen Permite	vender	una	cantidad	dada	de	unidades	de	un	producto.

Entradas (1)	el	nombre	del	producto,	(2)	la	cantidad	de	unidades.

Resultado

Si	había	suficiente	cantidad	de	producto	en	bodega,	se	vende	(disminuye
en	bodega)	la	cantidad	total	pedida	por	el	cliente.	Si	no,	se	vende
(disminuye	en	bodega)	la	cantidad	total	existente	en	bodega.	Se	guarda
en	la	caja	de	la	tienda	el	dinero	resultado	de	la	venta.	Se	informa	al
usuario	la	cantidad	de	unidades	vendidas.

Requerimiento	Funcional	2

El	Primer	Caso	de	Estudio

150

Nombre R2	–	Abastecer	la	tienda	con	un	producto.

Resumen
Se	abastece	la	tienda	con	la	cantidad	de	unidades	indicada	por	el	usuario.
El	abastecimiento	sólo	se	puede	realizar	si	la	cantidad	de	productos	en
bodega	es	menor	que	la	cantidad	mínima	del	producto.

Entradas

Resultado

Requerimiento	Funcional	3

Nombre R3	–	Cambiar	un	producto.

Resumen Permite	cambiar	la	información	de	un	producto	vendido	en	la	tienda.

Entradas 1)	Nombre	actual,	2)Nuevo	nombre,	3)	Tipo,	4)	Valor	unitario,	5)	Cantidad
en	bodega,	6)	Cantidad	mínima.

Resultado Se	actualiza	la	información	del	producto.

Requerimiento	Funcional	4

Nombre R4	–	Calcular	estadísticas	de	ventas.

Resumen

Calcula	y	muestra	las	siguientes	estadísticas:	(a)	el	producto	más
vendido;	(b)	el	producto	menos	vendido;	(c)	la	cantidad	total	de	dinero
obtenido	por	las	ventas	de	la	tienda;	(d)	el	promedio	de	ventas	de	la
tienda.

Entradas Ninguna.

Resultado Se	muestra	la	información	estadística	de	ventas.

Modelo	conceptual:

En	el	enunciado	se	identifican	dos	entidades:	la	tienda	y	el	producto.	Defina	los	atributos	de
cada	una	de	ellas,	sin	especificar	por	ahora	su	tipo.

El	Primer	Caso	de	Estudio

151

Dibuje	las	asociaciones	entre	las	clases	y	asigne	a	cada	asociación	un	nombre	y	una
dirección.

3.2	Definición	de	la	Interfaz	de	Usuario
El	diseño	de	la	interfaz	de	usuario	es	una	de	las	actividades	que	debemos	realizar	como
parte	del	diseño	de	la	solución	al	problema.	En	la	figura	2.1	presentamos	el	diseño	que
decidimos	para	la	interfaz	del	caso	de	estudio.

El	Primer	Caso	de	Estudio

152

Fig.	2.1	Interfaz	de	usuario	para	el	caso	de	estudio	de	la	tienda

La	ventana	del	programa	tiene	dos	zonas:	en	la	primera	aparece	la	información	de	los
productos	de	la	tienda.	Allí	se	tiene	el	nombre	de	cada	producto,	la	cantidad	disponible
en	la	bodega	de	la	tienda,	el	IVA	que	se	debe	pagar	por	el	producto,	su	precio	antes	de
impuestos	y	si	ya	se	debe	hacer	o	no	un	pedido.
En	esta	zona	también	tenemos	tres	botones,	cada	uno	asociado	con	un	requerimiento
funcional.	Desde	allí	podemos	vender	el	producto	a	un	cliente,	abastecer	la	tienda	con
el	producto,	o	modificar	la	información	del	producto.
Cuando	el	usuario	selecciona	las	opciones	Vender	o	Abastecer,	la	aplicación	presenta
un	diálogo	en	el	que	el	usuario	puede	indicar	el	número	de	unidades	deseadas.
Cuando	el	usuario	selecciona	la	opción	Cambiar,	la	aplicación	presenta	un	diálogo	en	el
que	el	usuario	puede	ingresar	la	nueva	información	del	producto.
En	la	última	de	las	zonas	se	encuentran	los	botones	que	permiten	pedir	la	información
estadística	correspondiente	al	último	requerimiento	funcional.

El	Primer	Caso	de	Estudio

153

El	Primer	Caso	de	Estudio

154

4.	Nuevos	Elementos	de	Modelado

4.1.	Tipos	Simples	de	Datos
En	esta	sección	presentamos	dos	nuevos	tipos	simples	de	datos	(boolean		y		char)	y
volvemos	a	estudiar	algunos	aspectos	de	los	tipos	introducidos	en	el	capítulo	anterior.

Comenzamos	con	el	tipo		double	.	Para	facilitar	el	modelado	de	las	características	que
toman	valores	reales,	la	mayoría	de	los	lenguajes	de	programación	proveen	un	tipo	simple
denominado		double	.	En	el	caso	de	estudio	de	la	tienda	usaremos	un	atributo	de	este	tipo
para	modelar	el	precio	de	cada	producto.	Esto	nos	va	a	permitir	tener	un	producto	cuyo
precio	sea,	por	ejemplo,	$23,12	(23	pesos	y	12	centavos).

Se	denomina	literal	de	un	tipo	de	datos	a	un	valor	constante	de	dicho	tipo.	En	la	siguiente
tabla	se	dan	algunos	ejemplos	de	la	manera	de	escribir	literales	para	los	tipos	de	datos
estudiados.	A	medida	que	vayamos	viendo	nuevos	tipos,	iremos	introduciendo	la	sintaxis
que	utilizan.

Tipo	en
Java

Ejemplo
de

literales
Comentarios

entero
(int) 564,	−12

Los	literales	de	tipo	entero	se	expresan	como	una
secuencia	de	dígitos.	Si	el	valor	es	negativo,	dicha
secuencia	va	precedida	del	símbolo	"-".

real
(double)

564.78,	
−98.3

Los	literales	de	tipo	real	se	expresan	como	una	secuencia
de	dígitos.	Para	separar	la	parte	entera	de	la	parte	decimal
se	utiliza	el	símbolo	".".

cadena	de
caracteres
(String	
)

"esta	es
una
cadena","
",	""

Los	literales	de	tipo	cadena	de	caracteres	van	entre
comillas	dobles.	Dos	comillas	dobles	seguidas	indican	una
cadena	de	caracteres	vacía.	Es	distinta	una	cadena	vacía
que	una	cadena	que	sólo	tiene	un	carácter	de	espacio	en
blanco.

En	el	ejemplo	1	se	muestra	la	manera	de	declarar	y	manipular	los	atributos	de	tipo		double	
usando	el	caso	de	estudio	de	la	tienda.	También	se	presenta	la	manera	de	convertir	los
valores	reales	a	valores	enteros.

Ejemplo	1

Objetivo:	Repasar	la	manera	de	manejar	atributos	de	tipo		double		en	el	lenguaje	de
programación	Java,	usando	el	caso	de	estudio	de	la	tienda.

Nuevos	Elementos	De	Modelado

155

public	class	Producto
{
				private		double		valorUnitario;
}

Declaración	del	atributo	valorUnitario	dentro	de	la	clase	Producto,	para	representar	el
precio	del	producto	por	unidad,	antes	de	impuestos	(sin	IVA).
Como	de	costumbre,	el	atributo	lo	declaramos	privado,	para	evitar	que	sea	manipulado
desde	fuera	de	la	clase.

Las	siguientes	instrucciones	pueden	ir	como	parte	de	cualquier	método	de	la	clase
Producto:

valorUnitario	=	23.12;

En	cualquier	método	de	la	clase	se	puede	asignar	un	literal	de	tipo	real	al	atributo.

int	valorPesos	=	(int)	valorUnitario;

Si	en	la	variable	valor	valorPesos	queremos	tener	la	parte	entera	del	precio	del
producto,	utilizamos	el	operador	de	conversión	(int).	Este	operador	permite	convertir
valores	reales	a	enteros.
El	operador	(int)	incluye	los	paréntesis	y	debe	ir	antes	del	valor	que	se	quiere
convertir.
Si	no	se	incluye	el	operador	de	conversión,	el	compilador	va	a	señalar	un	error	("Type
mismatch:	cannot	convert	from	double	to	int").

valorUnitario	=	valorUnitario	/	1.07;

Para	construir	una	expresión	aritmética	de	valor	real,	se	pueden	usar	los	operadores	de
suma(+),	resta	(-),	multiplicación	(*)	y	división	(/).

int	valorPesos	=	17	/	3;

La	división	entre	valores	enteros	da	un	valor	entero.	En	el	caso	del	ejemplo,	después
de	la	asignación,	la	variable	valorPesos	tendrá	el	valor	5.
El	lenguaje	Java	decide	en	cada	caso	(dependiendo	del	tipo	de	los	operandos)	si	utiliza
la	división	entera	o	la	división	real	para	calcular	el	resultado.

Nuevos	Elementos	De	Modelado

156

Un	operador	que	se	utiliza	frecuentemente	en	problemas	aritméticos	es	el	operador	módulo
(%).	Este	operador	calcula	el	residuo	de	la	división	entre	dos	valores,	y	se	puede	utilizar
tanto	en	expresiones	enteras	como	reales.	La	siguiente	tabla	muestra	el	resultado	de	aplicar
dicho	operador	en	varias	expresiones.

Expresión Valor Comentarios

4%4 0
El	residuo	de	dividir	4	por	4	es	cero.	El	resultado	de	este
operador	se	puede	ver	como	lo	que	"sobra"	después	de	hacer
la	división	entera.

14%3 2 El	resultado	de	la	expresión	es	2,	puesto	que	al	dividir	14	por	3
se	obtiene	como	valor	entero	4	y	"sobran"	2.

17%3 2 En	esta	expresión	el	valor	entero	es	5	(5	*	3	es	15)	y	"sobran"
de	nuevo	2.

3%17 3 La	división	entera	entre	3	y	17	es	cero,	así	que	"sobran"	3.

4.5%2.2 0.1 El	operador	%	se	puede	aplicar	también	a	valores	reales.	En	la
expresión	del	ejemplo,	2.2.	está	2	veces	en	4.5	y	"sobra"	0.1.

Otro	tipo	simple	de	datos	que	encontramos	en	los	lenguajes	de	programación	es	el	que
permite	representar	valores	lógicos	(verdadero	o	falso).	El	nombre	de	dicho	tipo	es
	boolean	.	Imagine,	por	ejemplo,	que	en	la	tienda	queremos	modelar	una	característica	de
un	producto	que	dice	si	es	subsidiado	o	no	por	el	gobierno.	De	esta	característica	sólo	nos
interesaría	saber	si	es	verdadera	o	falsa	(los	únicos	valores	posibles),	para	saber	si	hay	que
aplicar	o	no	el	respectivo	descuento.	Este	tipo	de	características	se	podría	modelar	usando
un	entero	y	una	convención	sobre	la	manera	de	interpretar	su	valor	(por	ejemplo,	1	es
verdadero	y	2	es	falso).	Es	tan	frecuente	encontrar	esta	situación	que	muchos	lenguajes
resolvieron	convertirlo	en	un	nuevo	tipo	de	datos	y	evitar	así	tener	que	usar	otros	tipos	para
representarlo.

El	tipo		boolean		sólo	tiene	dos	literales:	true	y	false.	Estos	son	los	únicos	valores
constantes	que	se	le	pueden	asignar	a	los	atributos	o	variables	de	dicho	tipo.

Ejemplo	2

Objetivo:	Mostrar	la	manera	de	manejar	atributos	de	tipo		boolean		en	el	lenguaje	de
programación	Java.

En	este	ejemplo	se	utiliza	una	extensión	del	caso	de	estudio	de	la	tienda,	para	mostrar	la
sintaxis	de	declaración	y	el	uso	de	los	atributos	de	tipo		boolean	.

Nuevos	Elementos	De	Modelado

157

public	class	Producto
{
				private	boolean	subsidiado;
}

Aquí	se	muestra	la	declaración	del	atributo	"subsidiado"	dentro	de	la	clase	Producto.
Dicha	característica	no	forma	parte	del	caso	de	estudio	y	únicamente	se	utiliza	en	este
ejemplo	para	ilustrar	el	uso	del	tipo	de	datos		boolean	.

Las	siguientes	instrucciones	pueden	ir	como	parte	de	cualquier	método	de	la	clase
Producto:

subsidiado	=	true;	
subsidiado	=	false;

Los	únicos	valores	que	se	pueden	asignar	a	los	atributos	de	tipo		boolean		son	true	y
false.	Los	operadores	que	nos	permitirán	crear	expresiones	con	este	tipo	de	valores,
los	veremos	más	adelante.

boolean	valorLogico	=	subsidiado;

Es	posible	tener	variables	de	tipo		boolean	,	a	las	cuales	se	les	puede	asignar	cualquier
valor	de	dicho	tipo.

El	último	tipo	simple	de	dato	que	veremos	en	este	capítulo	es	el	tipo		char	,	que	sirve	para
representar	un	carácter.	En	el	ejemplo	3	se	ilustra	la	manera	de	usarlo	dentro	del	contexto
del	caso	de	estudio.	Un	valor	de	tipo		char		se	representa	internamente	mediante	un	código
numérico	llamado	UNICODE.

Ejemplo	3

Objetivo:	Mostrar	la	manera	de	manejar	atributos	de	tipo		char		en	el	lenguaje	de
programación	Java,	usando	una	extensión	del	caso	de	estudio	de	la	tienda.

Suponga	que	los	productos	de	la	tienda	están	clasificados	en	tres	grupos:	A,	B	y	C,	según
su	calidad.	En	este	ejemplo	se	muestra	una	manera	de	representar	dicha	característica
usando	un	atributo	de	tipo		char	.

public	class	Producto
{
				private	char	calidad;
}

Nuevos	Elementos	De	Modelado

158

Aquí	se	muestra	la	declaración	del	atributo	"calidad"	dentro	de	la	clase	Producto.	Dicha
característica	será	representada	con	un	carácter	que	puede	tomar	como	valores	'A',	'B'
o	'C'.

Las	siguientes	instrucciones	pueden	ir	como	parte	de	cualquier	método	de	la	clase
Producto:

calidad		=		'A';	
calidad		=		'B';

Los	literales	de	tipo		char		se	expresan	entre	comillas	sencillas.	En	eso	se	diferencian
de	los	literales	de	la	clase	String,	que	van	entre	comillas	dobles.

calidad		=		67;

Lo	que	aparece	en	este	ejemplo	es	poco	usual:	es	posible	asignar	directamente	un
código	UNICODE	a	un	atributo	de	tipo		char	.	El	valor	67,	por	ejemplo,	es	el	código
interno	del	carácter	'C'.	El	código	interno	del	carácter	'c'	(minúscula)	es	99.	Cada
carácter	tiene	su	propio	código	interno,	incluso	los	que	tienen	tilde	(el	código	del
carácter	'á'	es	225).

char	valorCaracter	=	calidad;

Es	posible	tener	variables	de	tipo		char	,	a	las	cuales	se	les	puede	asignar	cualquier
valor	de	dicho	tipo.

4.2.	Constantes	para	Representar	Valores
Inmutables
En	muchos	problemas	encontramos	algunos	valores	que	no	van	a	cambiar	durante	la
ejecución	del	programa	(inmutables).	Considere	el	caso	de	la	tienda,	en	el	que	el	valor	del
precio	final	del	producto	depende	de	los	impuestos	definidos	por	la	ley.	Según	lo	que	vimos
en	el	nivel	anterior,	cada	vez	que	necesitemos	el	valor	del	IVA	de	los	productos	de
papelería,	debemos	escribir	su	valor	numérico	(0.16).	Para	facilitar	la	lectura	y	escritura	del
código,	los	lenguajes	de	programación	permiten	asociar	un	nombre	significativo	al	valor,
para	así	reemplazar	el	valor	numérico	dentro	del	código.	Estos	nombres	asociados	se
denominan	constantes.

Nuevos	Elementos	De	Modelado

159

Estas	constantes	pueden	ser	de	cualquier	tipo	de	datos	(por	ejemplo,	puede	haber	una
constante	de	tipo	String	o		double)	y	se	les	debe	fijar	su	valor	desde	la	declaración.	Dicho
valor	no	puede	ser	modificado	en	ningún	punto	del	programa.

El	ejemplo	4	desarrolla	esa	idea	con	el	caso	de	la	tienda	y	muestra	la	sintaxis	en	Java	para
declarar	y	usar	constantes.

Ejemplo	4

Objetivo:	Mostrar	el	uso	de	constantes	para	representar	los	valores	inmutables,	usando	el
caso	de	estudio	de	la	tienda.

En	este	ejemplo	ilustramos	el	uso	de	constantes	para	representar	los	posibles	valores	del
IVA	de	los	productos.

public	class	Producto
{
				//--------------------------------------
				//	Constantes
				//--------------------------------------

				private	final	static	double	IVA_PAPELERIA	=	0.16;
				private	final	static	double	IVA_SUPERMERCADO	=	0.04;
				private	final	static	double	IVA_FARMACIA	=	0.12;
				...
}

Declaramos	tres	constantes	que	tienen	los	valores	posibles	del	IVA	en	el	problema:
16%,	12%	y	4%.	Estas	constantes	se	llaman	IVA_FARMACIA,	IVA_PAPELERIA	e
IVA_SUPERMERCADO.
Son	constantes	de	tipo		double	,	puesto	que	de	ese	tipo	son	los	valores	inmutables	que
queremos	representar.
Las	constantes	se	declaran	privadas	si	no	van	a	ser	usadas	por	fuera	de	la	clase.
Para	inicializar	una	constante,	se	debe	elegir	un	literal	del	mismo	tipo	de	la	constante,	o
una	expresión.
Dentro	de	la	declaración	de	la	clase,	se	agrega	una	zona	para	declarar	las	constantes.
Es	conveniente	situar	esa	zona	antes	de	la	declaración	de	los	atributos.

Las	siguientes	instrucciones	pueden	ir	como	parte	de	cualquier	método	de	la	clase
Producto:

precio	=	valorUnitario	*	(1	+	IVA_SUPERMERCADO);	
precio	=	valorUnitario	*	(1	+	0.04);

Nuevos	Elementos	De	Modelado

160

Las	constantes	sólo	sirven	para	reemplazar	el	valor	que	representan.	Las	dos
instrucciones	del	ejemplo	son	equivalentes	y	permiten	calcular	el	precio	al	consumidor,
aplicándole	un	IVA	del	4%	al	precio	de	base	del	producto.
La	ventaja	de	las	constantes	es	que	cuando	alguien	lee	el	programa	entiende	a	qué
corresponde	el	valor	0.04	(puesto	que	también	podría	corresponder	a	los	intereses	o
algún	otro	tipo	de	impuesto).

Esta	práctica	de	definir	constantes	en	sustitución	de	aquellos	valores	que	no	cambian
durante	la	ejecución	tiene	muchas	ventajas	y	es	muy	apreciada	cuando	hay	necesidad	de
hacer	el	mantenimiento	a	un	programa.	Suponga,	por	ejemplo,	que	el	gobierno	autoriza	un
incremento	en	los	impuestos	y,	ahora,	el	impuesto	sobre	los	productos	de	supermercado
pasa	del	4%	al	6%.	Si	dentro	del	programa	siempre	utilizamos	la	constante
IVA_SUPERMERCADO	para	referirnos	al	valor	del	impuesto	sobre	los	productos	de
supermercado,	lo	único	que	debemos	hacer	es	reemplazar	el	valor	0.04	por	0.06	en	la
declaración	de	la	constante.	Si	por	el	contrario,	en	el	código	del	programa	no	utilizamos	el
nombre	de	la	constante	sino	el	valor,	tendríamos	que	ir	a	buscar	todos	los	lugares	en	el
código	donde	aparece	el	valor	0.04	(que	hace	referencia	al	impuesto	sobre	los	productos	de
supermercado)	y	reemplazarlo	por	0.06.	Si	hacemos	lo	anterior,	fácilmente	podemos	pasar
por	alto	algún	lugar	e	introducir	así	un	error	en	el	programa.

Por	convención,	las	constantes	siempre	van	en	mayúsculas.	Si	el	nombre	de	la
constante	contiene	varias	palabras,	es	usual	separarlas	con	el	carácter	"_".	Por
ejemplo	podríamos	tener	una	constante	llamada	PRECIO_MAXIMO.

Imaginémonos	una	nueva	constante	en	la	clase	producto	que	define	el	precio	máximo	que
puede	tener	un	producto.

public	class	Producto
{
				//--------------------------------------
				//	Constantes
				//--------------------------------------

				public	final	static	double	PRECIO_MAXIMO	=	500000.0;
}

El	siguiente	método	podría	pertenecer	a	la	clase	Tienda:

Nuevos	Elementos	De	Modelado

161

public	class	Tienda
{
				public	double	ejemplo()
				{
								return	Producto.PRECIO_MAXIMO;
				}
}

Por	fuera	de	la	clase	Producto,	las	constantes	pueden	usarse	indicando	la	clase	en	la
cual	fueron	declaradas	(siempre	y	cuando	hayan	sido	declaradas	como		public		en	esa
clase).

4.3.	Enumeraciones	para	Definir	el	Dominio	de
un	Atributo
Considere	el	caso	de	la	tienda,	en	el	que	queremos	modelar	la	característica	de	tipo	de
producto,	el	cual	puede	ser	de	tres	tipos	distintos:	supermercado,	papelería	o	droguería.	En
el	nivel	anterior	vimos	que	es	posible	utilizar	el	tipo	entero	para	representar	esta
característica,	y	asociar	un	número	con	cada	uno	de	los	valores	posibles.	Sin	embargo,
para	estos	casos,	los	lenguajes	de	programación	permiten	agrupar	estos	posibles	valores
de	la	característica,	asignando	solamente	un	nombre	significativo	para	cada	uno	de	ellos,
sin	asignarles	ningún	valor.	Estas	agrupaciones	de	valores	de	datos	se	denominan
enumeraciones.	De	esta	forma,	dentro	de	los	métodos	podemos	usar	los	nombres
existentes	en	una	enumeración.

El	ejemplo	5	desarrolla	esa	idea	con	el	caso	de	la	tienda	y	muestra	la	sintaxis	en	Java	para
declarar	y	usar	enumeraciones.

Ejemplo	5

Objetivo:	Mostrar	el	uso	de	enumeraciones	para	representar	los	valores	posibles	de	alguna
característica.

Usando	el	caso	de	estudio	de	la	tienda,	en	este	ejemplo	se	muestra	una	manera	de	crear
una	enumeración	para	representar	la
característica	de	tipo	de	producto.

Nuevos	Elementos	De	Modelado

162

public	class	Producto
{
				//--------------------------------------
				//	Enumeraciones
				//--------------------------------------
				public	enum	Tipo
				{
								PAPELERIA,
								SUPERMERCADO,
								FARMACIA
				}							

				//--------------------------------------
				//	Atributos
				//--------------------------------------
				private	Tipo	tipo;
				...
}

Se	declara	una	enumeración	llamada	Tipo,	para	modelar	el	conjunto	de	nombres	que
podrán	representar	un	tipo	de	producto.
Dentro	de	la	declaración	del	tipo,	se	agregan	los	nombres	significativos	de	los	tres	tipos
de	producto	existentes:	PAPELERIA,	SUPERMERCADO	y	FARMACIA.
Se	declara	un	atributo	llamado	"tipo"	dentro	de	la	clase	Producto,	para	representar	esa
característica.	El	tipo	asignado	a	este	atributo	es	la	enumeración	que	creamos	arriba.
Dentro	de	la	declaración	de	la	clase,	se	agrega	una	zona	para	declarar	las	constantes.
Es	conveniente	situar	esa	zona	antes	de	la	declaración	de	los	atributos.

Para	poder	usar	una	enumeración,	se	debe	escribir	el	nombre	de	la	enumeración	y	después
llamar	el	valor	que	se	desea	asignar.	Las	siguientes	instrucciones	pueden	ir	como	parte	de
cualquier	método	de	la	clase	Producto:

tipo	=	Tipo.PAPELERIA;	
tipo	=	Tipo.SUPERMERCADO;
tipo	=	Tipo.FARMACIA;

Cualquiera	de	esas	tres	asignaciones	define	el	tipo	de	un	producto	(no	las	tres	a	la	vez,	por
supuesto).	La	ventaja	de	usar	una	enumeración	(PAPELERIA)	en	lugar	de	un	valor
numérico	es	que	el	programa	resultante	es	mucho	más	fácil	de	leer	y	entender.

El	siguiente	método	podría	pertenecer	a	la	clase	Tienda:

Nuevos	Elementos	De	Modelado

163

public	void	ejemplo()
{
				...
				tipoVenta	=	Tipo.PAPELERIA;
				tipoCompra	=	Tipo.SUPERMERCADO;
				...
}

Por	fuera	de	la	clase	Producto,	las	enumeraciones	se	llaman	de	la	misma	manera	que
se	llamaba	dentro	de	la	clase	donde	fueron	declaradas	(siempre	y	cuando	hayan	sido
declaradas	como	public	en	esa	clase).
En	el	ejemplo	estamos	suponiendo	que		tipoVenta		y		tipoCompra		son	atributos	de	la
clase	Tienda.

4.4.	Manejo	de	Asociaciones	Opcionales
Supongamos	que	queremos	modificar	el	enunciado	del	caso	de	la	tienda,	para	que	el
programa	pueda	manejar	1,	2,	3	ó	4	productos.	Lo	primero	que	debemos	hacer	entonces	es
modificar	el	diagrama	de	clases,	para	indicar	que	las	asociaciones	pueden	o	no	existir.	Para
esto	usamos	la	sintaxis	de	UML	que	se	ilustra	en	la	figura	2.2,	y	que	dice	que	las
asociaciones	son	opcionales.	Esta	característica	se	denomina	cardinalidad	de	la
asociación	y	se	verá	más	a	fondo	en	el	nivel	3.	Por	ahora	podemos	decir	que	la	cardinalidad
define	el	número	de	instancias	de	una	clase	que	pueden	manejarse	a	través	de	una
asociación.	En	el	caso	de	una	asociación	opcional,	la	cardinalidad	es	0..1	(para	expresar	la
cardinalidad,	se	usan	dos	números	separados	con	dos	puntos),	puesto	que	a	través	de	la
asociación	puede	manejarse	un	objeto	de	la	otra	clase	o	ningún	objeto.

Nuevos	Elementos	De	Modelado

164

Fig.	2.2	Diagrama	de	clases	con	asociaciones	opcionales

La	cardinalidad	de	la	asociación	llamada	producto1	entre	la	clase	Tienda	y	la	clase
Producto	es	cero	o	uno	(0..1),	para	indicar	que	puede	o	no	existir	el	objeto	que
representa	la	asociación	producto1.	Lo	mismo	sucede	con	cada	una	de	las	demás
asociaciones.
Si	en	el	diagrama	no	aparece	ninguna	cardinalidad	en	una	asociación,	se	interpreta
como	que	ésta	es	1	(existe	exactamente	un	objeto	de	la	otra	clase).
En	la	figura	2.3	aparece	un	ejemplo	de	un	diagrama	de	objetos	para	este	diagrama	de
clases.

Dentro	de	un	método,	para	indicar	que	el	objeto	correspondiente	a	una	asociación	que	no
está	presente	(que	no	hay,	por	ejemplo,	un	objeto	de	la	clase	Producto	para	la	asociación
producto1)	se	utiliza	el	valor	especial		null		(producto1	=	null;).	En	la	figura	2.3	se
muestra	un	ejemplo	de	un	diagrama	de	objetos	para	el	modelo	conceptual	de	la	figura
anterior.

Cuando	se	intenta	llamar	un	método	a	través	de	una	asociación	cuyo	valor	es	null,	el
computador	muestra	el	error:	NullPointerException.

Nuevos	Elementos	De	Modelado

165

Fig.	2.3	Diagrama	de	objetos	con	asociaciones	opcionales

El	ejemplo	anterior	lo	utilizamos	únicamente	para	ilustrar	la	idea	de	una	asociación	opcional.
En	el	resto	del	capítulo	seguiremos	trabajando	con	el	caso	inicial,	en	el	cual	todas	las
asociaciones	entre	la	clase	Tienda	y	la	clase	Producto	tienen	cardinalidad	1,	tal	como	se
muestra	en	el	ejemplo	6.

Ejemplo	6

Objetivo:	Mostrar	las	declaraciones	de	las	clases	Tienda	y	Producto	que	vamos	a	usar	en
el	resto	del	capítulo.

En	este	ejemplo	se	muestra	un	diseño	posible	para	las	clases	del	caso	de	estudio	de	la
tienda.	Se	presenta	tanto	el	diagrama	de	clases	en	UML	como	las	respectivas
declaraciones	en	Java.	En	el	diseño	se	incluyen	los	métodos	de	cada	una	de	las	clases.

Nuevos	Elementos	De	Modelado

166

El	diagrama	de	clases	consta	de	las	clases	Tienda	y
Producto,	con	4	asociaciones	entre	ellos	(todas	de

cardinalidad	1).	Para	cada	clase	se	muestran	los	atributos
que	modelan	las	características	importantes	para	el

problema.	Entre	los	principales	atributos	de	la	clase	Producto
están	su	nombre,	su	tipo,	su	valor	unitario	antes	de

impuestos,	etc.

public	class	Tienda
{
				//---------------------------------
				//	Atributos
				//---------------------------------
				private	Producto	producto1;
				private	Producto	producto2;
				private	Producto	producto3;
				private	Producto	producto4;
				private	double	dineroEnCaja;
				...

				//---
				//Métodos
				//---
				public	Producto	darProducto1()	{	...	}	
				public	Producto	darProducto2()	{	...	}	
				public	Producto	darProducto3()	{	...	}	
				public	Producto	darProducto4()	{	...	}
				public	double	darDineroEnCaja()	{	...	}

}

Se	modelan	los	4	productos,	unidos	a	la	tienda	con	las	asociaciones	llamadas
producto1,	producto2,	producto3	y	producto4.	Fíjese	que	las	asociaciones	y	los
atributos	se	declaran	siguiendo	la	misma	sintaxis.	El	dinero	total	que	hay	en	caja	de	la
tienda	se	modela	con	un	atributo	de	tipo		double	.
Esta	es	la	lista	de	signaturas	de	algunos	de	los	métodos	de	la	clase	Tienda	que
utilizaremos	en	la	siguiente	sección.	Esta	lista	se	irá	completando	poco	a	poco,	a
medida	que	avancemos	en	el	capítulo.

Nuevos	Elementos	De	Modelado

167

public	class	Producto
{
				//---
				//	Enumeraciones
				//---
				/**
					*	Enumeradores	para	los	tipos	de	producto.
					*/
				public	enum	Tipo
				{
								PAPELERIA,
								SUPERMERCADO,
								DROGUERIA
				}
				//---
				//	Constantes
				//---
				private	final	static	double	IVA_PAPELERIA	=	0.16;
				private	final	static	double	IVA_SUPERMERCADO	=	0.04;
				private	final	static	double	IVA_DROGUERIA	=	0.12;

				//---
				//	Atributos
				//---
				private	String	nombre;
				private	Tipo	tipo;
				private	double	valorUnitario;
				private	int	cantidadBodega;
				private	int	cantidadMinima;
				private	int	cantidadUnidadesVendidas;

				//---
				//Métodos
				//---
				public	String	darNombre()	{	...	}
				public	Tipo	darTipo()	{	...	}
				public	double	darValorUnitario()	{	...	}
				public	int	darCantidadBodega()	{	...	}
				public	int	darCantidadMinima()	{	...	}
				public	int	darCantidadUnidadesVendidas()	{	...	}
}

En	la	clase	Producto,	se	declaran	primero	las	constantes	para	representar	los	valores
de	modelado	de	los	atributos.	Luego,	las	constantes	que	representan	valores
inmutables.
En	la	segunda	zona	va	la	declaración	de	los	atributos	de	la	clase.
En	la	tercera	zona	se	observa	la	lista	de	signaturas	de	algunos	de	los	métodos	de	la
clase	Producto	que	utilizaremos	en	la	siguiente	sección.	Esta	lista	se	irá	completando
poco	a	poco,	a	medida	que	avancemos	en	el	capítulo.

Nuevos	Elementos	De	Modelado

168

Nuevos	Elementos	De	Modelado

169

5.	Expresiones

5.1.	Algunas	Definiciones
Una	expresión	es	la	manera	en	que	expresamos	en	un	lenguaje	de	programación	algo
sobre	el	estado	de	un	objeto.	Es	el	medio	que	tenemos	para	decir	en	un	programa	algo
sobre	el	mundo	del	problema.	En	el	nivel	anterior	vimos	las	expresiones	aritméticas,	que
permitían	definir	la	manera	en	que	debía	ser	modificado	el	estado	de	un	elemento	del
mundo,	usando	sumas	y	restas.

Las	expresiones	aparecen	dentro	del	cuerpo	de	los	métodos	y	están	formadas	por
operandos	y	operadores.	Los	operandos	pueden	ser	atributos,	parámetros,	literales,
constantes	o	llamadas	de	métodos,	mientras	que	los	operadores	son	los	que	indican	la
manera	de	calcular	el	valor	de	la	expresión.	Los	operadores	que	se	pueden	utilizar	en	una
expresión	dependen	del	tipo	de	los	datos	de	los	operandos	que	allí	aparezcan.

En	algunos	casos	es	indispensable	utilizar	paréntesis	para	evitar	la	ambigüedad	en	las
expresiones.	Por	ejemplo,	la	expresión	10	–	4	–	2	puede	ser	interpretada	de	dos
maneras,	cada	una	con	un	resultado	distinto:	10	–	(4	–	2)	=	8,	o	también	(10	–	4)	–	2
=	4.	Es	buena	idea	usar	siempre	paréntesis	en	las	expresiones,	para	estar	seguros	de
que	la	interpretación	del	computador	es	la	que	nosotros	necesitamos.

Ejemplo	7

Objetivo:	Ilustrar	la	manera	de	usar	expresiones	aritméticas	para	hablar	del	estado	de	un
objeto.

Suponga	que	estamos	en	un	objeto	de	la	clase	Producto.	Vamos	a	escribir	e	interpretar
algunas	expresiones	aritméticas	simples.

La	expresión... Se	interpreta	como...

	valorUnitario	*	2	 El	doble	del	valor	unitario	del	producto.

	cantidadBodega	-
cantidadMinima	

La	cantidad	del	producto	que	hay	que	vender	antes	de
poder	hacer	un	pedido.

	valorUnitario	*	(1	+	(
IVA_PAPELERIA	/	2))	

El	precio	final	al	consumidor	si	el	producto	debe	pagar	el
IVA	de	los	productos	de	papelería	(16%)	y	sólo	paga	la
mitad	de	éste.

	cantidadUnidadesVendidas
*	1.1	

La	cantidad	de	unidades	vendidas	del	producto,	inflado	en
un	10%.

Expresiones

170

5.2.	Operadores	Relacionales
Los	lenguajes	de	programación	cuentan	siempre	con	operadores	relacionales,	los	cuales
permiten	determinar	un	valor	de	verdad	(verdadero	o	falso)	para	una	situación	del	mundo.
Si	queremos	determinar,	por	ejemplo,	si	el	valor	unitario	antes	de	impuestos	de	un	producto
es	menor	que	$10.000,	podemos	utilizar	(dentro	de	la	clase	Producto)	la	expresión:

	valorUnitario	<	10000	

Los	operadores	relacionales	son	seis,	que	se	resumen	en	la	siguiente	tabla:

Significado Símbolo Ejemplo

Es	igual	que 	==	 	valorUnitario	==	55.75	

Es	diferente	de 	!=	 	tipo	!=	Tipo.PAPELERIA	

Es	menor	que 	<	 	cantidadBodega	<	120	

Es	mayor	que 	>	 	cantidadBodega	>	cantidadMinima	

Es	menor	o	igual	que 	<=	 	valorUnitario	<=	100.0	

Es	mayor	o	igual	que 	>=	 	valorUnitario	>=	100.0	

Ejemplo	8

Objetivo:	Ilustrar	la	manera	de	usar	operadores	relacionales	para	describir	situaciones	de
un	objeto	(algo	que	es	verdadero	o	falso).

Suponga	que	estamos	en	un	objeto	de	la	clase	Producto.	Vamos	a	escribir	e	interpretar
algunas	expresiones	que	usan	operadores	relacionales.

La	expresión... Se	interpreta	como..

	tipo	==	Tipo.DROGUERIA	 ¿El	producto	es	de	droguería?

	cantidadBodega	>	0	 ¿Hay	disponibilidad	del	producto	en	la	bodega?

	totalProductosVendidos	>	0	 ¿Se	ha	vendido	alguna	unidad	del	producto?

	cantidadBodega	<=
cantidadMinima	

¿Ya	es	posible	hacer	un	nuevo	pedido	del
producto?

5.3.	Operadores	Lógicos
Los	operadores	lógicos	nos	permiten	describir	situaciones	más	complejas,	a	partir	de	la
composición	de	varias	expresiones	relacionales	o	de	atributos	de	tipo		boolean	.	Los
operadores	lógicos	son	tres:		&&		(y),		||		(o),		!		(no),	y	el	resultado	de	aplicarlos	se

Expresiones

171

resume	de	la	siguiente	manera:

operando1	&&	operando2	es	cierto,	si	ambos	operandos	son	verdaderos.
operando1	||	operando2	es	cierto,	si	cualquiera	de	los	dos	operandos	es	verdadero.
!operando	es	cierto,	si	el	operando	es	falso.

Los	operadores		&&		y		||		se	comportan	de	manera	un	poco	diferente	a	todos	los
demás.	La	expresión	en	la	que	estén	sólo	se	evalúa	de	izquierda	a	derecha	hasta	que
se	establezca	si	es	verdadera	o	falsa.	El	computador	no	pierde	tiempo	evaluando	el
resto	de	la	expresión	si	ya	sabe	cual	será	su	resultado.

Ejemplo	9

Objetivo:	Ilustrar	la	manera	de	usar	operadores	lógicos	para	describir	situaciones	de	un
objeto	(algo	que	es	cierto	o	falso).

Suponga	que	estamos	en	un	objeto	de	la	clase	Producto.	Vamos	a	escribir	e	interpretar
algunas	expresiones	que	usan	operadores	lógicos.x = y

La	expresión... Se	interpreta	como...

	tipo	==
Tipo.SUPERMERCADO	&&
cantidadUniadesVendidas==
0	

¿El	producto	es	de	supermercado	y	no	se	ha	vendido
ninguna	unidad?	En	este	caso,	si	el	producto	no	es	de
supermercado	o	ya	se	ha	vendido	alguna	unidad,	la
expresión	es	falsa.

	valorUnitario	>=	10000
&&	valorUnitario	<=	20000
&&	tipo	==
Tipo.DROGUERIA	

¿El	producto	vale	entre	$10.000	y	$20.000	y,	además,	es
un	producto	de	droguería?

	!(tipo	==
Tipo.PAPELERIA)	

¿El	producto	no	es	de	papelería?	Note	que	esta	expresión
es	equivalente	a	la	expresión	que	va	en	la	siguiente	línea.
Y	también	es	equivalente	a	(tipo	!=	Tipo.PAPELERIA).

	tipo	==
Tipo.SUPERMERCADO	ǀǀ		tipo
==	Tipo.DROGUERIA	

¿El	producto	es	de	supermercado	o	de	droguería?

Operadores	sobre	Cadenas	de	Caracteres
El	tipo	String	nos	sirve	para	representar	cadenas	de	caracteres.	A	diferencia	de	los	demás
tipos	de	datos	vistos	hasta	ahora,	este	tipo	no	es	simple,	sino	que	se	implementa	mediante
una	clase	especial	en	Java.	Esto	implica	que,	en	algunos	casos,	para	invocar	sus
operaciones	debemos	utilizar	la	sintaxis	de	llamada	de	métodos.

Expresiones

172

Existen	muchas	operaciones	sobre	cadenas	de	caracteres,	pero	en	este	nivel	sólo	nos
vamos	a	interesar	en	el	operador	de	concatenación	(+),	en	el	de	comparación	(equals)	y
en	el	de	extracción	de	un	carácter	(charAt).

El	primer	operador	(+)	sirve	para	pegar	dos	cadenas	de	caracteres,	una	después	de	la
otra.	Por	ejemplo,	si	quisiéramos	tener	un	método	en	la	clase	Producto	que	calculara	el
mensaje	que	se	debe	mostrar	en	la	publicidad	de	la	tienda,	tendría	la	siguiente	forma:

public	String	darPublicidad()
{
				return	"Compre	el	producto	"	+	nombre	+	"	por	solo	$"	+	valorUnitario;
}

Si	alguno	de	los	operandos	no	es	una	cadena	de	caracteres	(como	es	el	caso	del
atributo	de	tipo	real		valorUnitario)	el	compilador	se	encarga	de	convertirlo	a	cadena.
No	es	necesario	hacer	una	conversión	explícita	porque	el	compilador	lo	hace
automáticamente	por	nosotros,	para	todos	los	tipos	simples	de	datos.
Al	ejecutar	este	método,	retornará	una	cadena	con	algo	del	siguiente	estilo:	Compre	el
producto	cuaderno	por	solo	$100.50.

La	segunda	operación	que	nos	interesa	en	este	momento	es	la	comparación	de	cadenas	de
caracteres.	A	diferencia	de	los	tipos	simples,	en	donde	se	utiliza	el	operador		==	,	para
poder	comparar	dos	cadenas	de	caracteres	es	necesario	llamar	el	método		equals		de	la
clase	String.	Por	ejemplo,	si	queremos	tener	un	método	en	la	clase	Producto	que	reciba
como	parámetro	una	cadena	de	caracteres	e	informe	si	el	nombre	del	producto	es	igual	al
valor	recibido	como	parámetro,	éste	sería	más	o	menos	así:

public	boolean	esIgual(String	pBuscado)
{
				return	nombre.equals(pBuscado);
}

Se	usa	la	sintaxis	de	invocación	de	métodos	para	poder	utilizar	el	método	equals.	La
razón	es	que		String		es	una	clase,	y	se	deben	respetar	las	reglas	de	llamada	de	un
método	(int	,		double		y		boolean		no	son	clases,	y	por	esta	razón	se	puede	utilizar	el
operador		==		directamente).
El	retorno	del	método	equals	es	de	tipo	boolean,	razón	por	la	cual	lo	podemos	retornar
directamente	como	respuesta	del	método	que	queremos	construir.
En	el	ejemplo,	el	método	equals	se	invoca	sobre	el	atributo	de	la	clase	Producto
llamado	"nombre"	y	se	le	pasa	como	parámetro	el	valor	recibido	en	"buscado".

Expresiones

173

La	última	operación	que	vamos	a	estudiar	en	este	nivel	nos	permite	"obtener"	un	carácter
de	una	cadena.	Para	esto	debemos	dar	la	posición	dentro	de	la	cadena	del	carácter	que
nos	interesa,	e	invocar	el	método	chatAt	de	la	clase	String,	tal	como	se	muestra	en	los
siguientes	ejemplos.	Nótese	que	el	primer	carácter	de	una	cadena	se	encuentra	en	la
posición	0.

Suponga	que	tenemos	dos	cadenas	de	caracteres,	declaradas	de	la	siguiente	manera:

String	cad1	=	"la	casa	es	roja";	
String	cad2	=	"La	Casa	es	Roja";

La	expresión...
Tiene
el

valor..
Comentarios...

	cad1.equals(cad2)	 false
La	expresión	es	falsa,	porque	la
comparación	se	hace	teniendo	en	cuenta
las	mayúsculas	y	las	minúsculas.

	cad1.equalsIgnoreCase(cad2)	 true

Con	este	método	de	la	clase	String
podemos	comparar	dos	cadenas	de
caracteres,	ignorando	si	son	mayúsculas	o
minúsculas.

	cad1	+	"	y	verde"	

"la
casa
es
roja	y
verde"

Se	debe	prever	un	espacio	en	blanco	entre
las	cadenas,	si	no	queremos	que	queden
pegadas.

	cad1.charAt(1)	 'a' Los	caracteres	de	la	cadena	se	comienzan
a	numerar	desde	cero.

	cad2.charAt(2)	 '	'

El	espacio	en	blanco	es	el	tercer	carácter	de
la	cadena.	Debe	quedar	claro	que	no	es	lo
mismo	el	carácter	'	'	que	la	cadena	de
caracteres	"	".	El	primero	es	un	literal	de	tipo
	char	,	mientras	que	el	segundo	es	un	literal
de	la	clase		String	.

Si	en	una	expresión	aritmética	no	se	usan	paréntesis	para	definir	el	orden	de
evaluación,	Java	aplicará	a	los	operadores	un	orden	por	defecto.	Dicho	orden	está
asociado	con	una	prioridad	que	el	lenguaje	le	asigna	a	cada	operador.
Básicamente,	las	reglas	se	pueden	resumir	de	la	siguiente	manera:

Primero	se	aplican	los	operadores	de	multiplicación	y	división,	de	izquierda	a
derecha.
Después	se	aplican	los	operadores	de	suma	y	resta,	de	izquierda	a	derecha.

Supongamos	que	tenemos	dos	variables	var1	y	var2,	con	valores	10	y	5	respectivamente.

Expresiones

174

La
expresión...

Tiene
el

valor...
Comentarios...

	var1	–	var2
-	10	 -5 Aplica	el	operador	de	resta	de	izquierda	a	derecha.

	var1	–	(
var2	–	10)	 15 Los	paréntesis	le	dan	un	orden	de	evaluación	distinta	a	la

expresión:	10	–	(5	–	10)	=	10	–(-5)	=	10	+	5	=	15.

	var1	*	var2
/	5	 10

En	esta	expresión	se	hace	primero	la	multiplicación	y	luego
la	división:	(10	*	5)	/	5	=	50	/	5	=	10.	Esto	es	así	porque
ambos	operadores	tienen	la	misma	prioridad,	de	modo	que
se	evalúan	de	izquierda	a	derecha.

	var1	*	(
var2	/	10)	 5 Los	paréntesis	le	dan	un	orden	de	evaluación	distinto	a	la

expresión:	10	(5	/	10)	=	10	0.5	=	5.

	var1	-	var2
+	10	 15

En	esta	expresión	se	hace	primero	la	resta	y	después	la
suma	(aplica	los	operadores	suma	y	resta	de	izquierda	a
derecha,	puesto	que	ambos	tienen	la	misma	prioridad).

	var1	+	var2
*	10	 60 En	esta	expresión	se	hace	primero	la	multiplicación,	puesto

que	ese	operador	tiene	más	prioridad	que	la	suma.

	var1	+	var2
*	10	-	5	 55 En	esta	expresión	se	hace	primero	la	multiplicación,	luego	la

suma	y,	finalmente,	la	resta.

	var1	+	var2
*	10	/	5	 20

En	esta	expresión	se	hace	primero	la	multiplicación,	luego	la
división	y,	finalmente,	la	suma.	Debe	ser	clara,	en	este
punto,	la	importancia	de	los	paréntesis	en	las	expresiones.

Llegó	el	momento	de	comenzar	a	trabajar	en	el	caso	de	la	tienda,	así	que	de	nuevo	manos
a	la	obra.

Tarea	2

Objetivo:	Generar	habilidad	en	la	construcción	e	interpretación	de	expresiones,	utilizando	el
caso	de	estudio	de	la	tienda.

Utilizando	las	declaraciones	hechas	en	la	sección	anterior	para	las	clases	Tienda	y
Producto	y	el	escenario	propuesto	a	continuación,	resuelva	los	ejercicios	que	se	plantean
más	adelante.

Escenario:

Suponga	que	en	la	tienda	del	caso	de	estudio	se	tienen	a	la	venta	los	siguientes	productos:

1.	 Libreta	de	apuntes,	producto	de	papelería,	a	$5.500	pesos	la	unidad.
2.	 Leche	en	bolsa	de	1	litro,	producto	de	supermercado,	a	$2.100	pesos.
3.	 Jabón	en	polvo,	producto	de	supermercado,	a	$4.200	el	kilo.
4.	 Aspirina,	producto	de	droguería,	a	$400	la	unidad.

Expresiones

175

Suponga	además,	que	ya	se	han	vendido	en	la	tienda	6	libretas,	25	bolsas	de	leche,	14
bolsas	de	jabón	y	32	aspirinas.

Por	último	tenemos	la	siguiente	tabla	para	resumir	el	inventario	de	unidades	de	la	tienda	y	la
cantidad	por	debajo	de	la	cual	se	puede	hacer	un	abastecimiento.

Producto Cantidad	en	bodega Cantidad	mínima

libreta 44 15

leche 25 10

jabón 36 8

aspirina 13 11

En	el	siguiente	diagrama	de	objetos	puede	ver	el	estado	actual	de	la	tienda.	Complete	la
cantidad	de	dinero	en	caja	que	tiene	la	tienda,	teniendo	en	cuenta	las	ventas	que	ya	se
realizaron.

Parte	I	–	Evaluación	de	Expresiones	(operadores
aritméticos):

Expresiones

176

Para	el
objeto... la	expresión... toma	el

valor...

leche 	cantidadBodega	-	cantidadMinima	 15

aspirina 	valorUnitario	*	cantidadBodega	

jabón 	(cantidadUnidadesVendidas+	cantidadBodega)	*	(
valorUnitario	+	valorUnitario	*	IVA_SUPERMERCADO)	

libreta 	valorUnitario	*	cantidadBodega	/	cantidadUnidadesVendidas
*	valorUnitario	

leche 	valorUnitario	*	cantidadUnidadesVendidas	*
IVA_SUPERMERCADO	

aspirina 	valorUnitario	*	(1	+	IVA_DROGUERIA)	*
cantidadUnidadesVendidas	

la	tienda
	(producto1.darValorUnitario()	+
producto2.darValorUnitario()	+
producto3.darValorUnitario()	+
producto4.darValorUnitario())	/	4	

3050.0

la	tienda
	(producto1.darCantidadBodega()	-
producto1.darCantidadMinima())	*	(
producto1.darValorUnitario()	*	(1	+	producto1.darIVA()
))	

la	tienda 	dineroEnCaja	-	(producto2.darCantidadMinima()	*
producto2.darValorUnitario())	

la	tienda 	producto3.darCantidadUnidadesVendidas()	*	(1	+
producto3.darIVA())	

Parte	II	–	Evaluación	de	Expresiones	(operadores
relacionales):

Expresiones

177

Para	el
objeto... la	expresión... toma	el

valor...

libreta 	tipo	==	Tipo.PAPELERIA	 true

libreta 	tipo	!=	Tipo.DROGUERIA	

leche 	cantidadMinima	>=	cantidadBodega	

jabón 	valorUnitario	<=	10000	

aspirina 	cantidadBodega	-	cantidadMinima	!=
cantidadUnidadesVendidas	

jabón 	cantidadBodega	*	valorUnitario	==	cantidadUnidadesVendidas
*	IVA_PAPELERIA	

la	tienda
	producto1.darCantidadUnidadesVendidas()	+
producto2.darCantidadUnidadesVendidas()	>
producto3.darCantidadUnidadesVendidas()	

true

la	tienda
	dineroEnCaja	<=	producto4.darCantidadUnidadesVendidas()	*
((1	+	producto4.darIVA())	*	producto4.darValorUnitario(
))	

la	tienda
	(producto1.darCantidadBodega()	+
producto2.darCantidadBodega()	+
producto3.darCantidadBodega()	+
producto4.darCantidadBodega())	<=	1000	

la	tienda
	dineroEnCaja	*	producto1.darIVA()	>
producto1.darCantidadUnidadesVendidas()	*
producto1.darValorUnitario()	

Parte	III	–	Evaluación	de	Expresiones	(operadores	lógicos):

Expresiones

178

Para	el
objeto... la	expresión... toma	el

valor...

leche 	!(tipo	==	Tipo.PAPELERIA	ǀǀ		tipo	==	Tipo.DROGUERIA)	 true

jabón 	tipo	==	Tipo.SUPERMERCADO	&&	valorUnitario	<=	10000	

aspirina 	cantidadBodega	>	cantidadMinima	&&	cantidadBodega	<
cantidadUnidadesVendidas	

libreta 	valorUnitario	>=	1000	&&	valorUnitario	<=	5000	

leche 	tipo	!=	Tipo.PAPELERIA	&&	tipo	!=	Tipo.SUPERMERCADO	

aspirina 	tipo	==	Tipo.PAPELERIA	&&	valorUnitario	>	50	&&	!
(cantidadMinima	<	cantidadBodega)	

la	tienda
	producto1.darTipo()	==	Tipo.PAPELERIA	&&	producto2.darTipo()
==	Tipo.SUPERMERCADO	&&	producto3.darTipo()	!=	Tipo.DROGUERIA
&&	producto4.darTipo()	==	Tipo.SUPERMERCADO	

false

la	tienda 	(dineroEnCaja	/	producto1.darValorUnitario())	>=
producto1.darCantidadMinima()	

la	tienda
	((producto2.darCantidadBodega()	+
producto2.darCantidadBodega())/10	<	100)	&&	((
producto2.darCantidadBodega()+producto2.darCantidadBodega())/10
>=	50)	

la	tienda 	dineroEnCaja	*	0.1	<=	producto3.darValorUnitario()	*	(1	+
producto3.darIVA())	

Parte	IV	–	Creación	de	Expresiones	(operadores
aritméticos):

Expresiones

179

En	un
método
de	la
clase...

para	obtener.. se	usa	la
expresión...

Producto Valor	de	venta	de	un	producto	con	IVA	del	16%
	valorUnitario
*	(1	+
IVA_PAPELERIA
)	

Producto Número	de	unidades	que	se	deben	vender	para	alcanzar
la	cantidad	mínima.

Producto Número	de	veces	que	se	ha	vendido	la	cantidad	mínima
del	producto.

Producto Número	de	unidades	sobrantes	si	se	arman	paquetes	de
10	con	lo	disponible	en	bodega.

Tienda Dinero	en	caja	de	la	tienda	incrementado	en	un	25% 	dineroEnCaja
*	1.25	

Tienda Total	del	IVA	a	pagar	por	las	unidades	vendidas	de	todos
los	productos.

Tienda
El	número	de	unidades	del	producto	3	que	se	pueden
pagar	(a	su	valor	unitario)	con	el	dinero	en	caja	de	la
tienda.

Tienda

El	número	de	estantes	de	50	posiciones	que	se
requieren	para	almacenar	las	unidades	en	bodega	de
todos	los	productos	(suponga	que	cada	unidad	de
producto	ocupa	una	posición).

Parte	V	–	Creación	de	Expresiones	(operadores
relacionales):

Expresiones

180

En	un
método
de	la
clase...

para	obtener.. se	usa	la
expresión...

Producto ¿La	cantidad	en	bodega	es	mayor	o	igual	al
doble	de	la	cantidad	mínima?

	cantidadBodega	>=	2
*	cantidadMinima	

Producto ¿El	tipo	no	es	PAPELERIA?

Producto ¿El	total	de	productos	vendidos	es	igual	a	la
cantidad	en	bodega?

Producto ¿El	nombre	del	producto	comienza	por	el
carácter	'a'?

Tienda ¿El	nombre	del	producto	2	es	"aspirina"?
	producto2.darNombre(
).equals(
"aspirina")

Tienda
¿La	cantidad	mínima	del	producto	4	es	una
quinta	parte	de	la	cantidad	de	productos
vendidos?

Tienda
¿El	valor	obtenido	por	los	productos	vendidos
(incluyendo	el	IVA)	es	menor	a	un	tercio	del
dinero	en	caja?

Tienda
¿El	promedio	de	unidades	vendidas	de	todos	los
productos	es	mayor	al	promedio	de	unidades	en
bodega	de	todos	los	productos?

Parte	VI	–	Creación	de	Expresiones	(operadores	lógicos):

En	un
método
de	la
clase...

para	obtener.. se	usa	la	expresión...

Expresiones

181

Producto
¿El	tipo	de	producto	es
SUPERMERCADO	y	su
valor	unitario	es	menor	a
$3.000?

	tipo	==	Tipo.SUPERMERCADO	&&	valorUnitario	<
3000	

Producto

¿En	la	cantidad	en
bodega	o	en	la	cantidad
de	productos	vendidos
está	al	menos	2	veces	la
cantidad	mínima?

Producto

¿El	tipo	no	es
DROGUERIA	y	el	valor
está	entre	1000	y	3500
incluyendo	ambos
valores?

Producto

¿El	tipo	es	PAPELERIA	y
la	cantidad	en	bodega	es
mayor	a	10	y	el	valor
unitario	es	mayor	o	igual
a	$3.000?

Tienda

¿El	tipo	del	producto	1	no
es	ni	DROGUERIA	ni
PAPELERIA	y	el	total	de
unidades	vendidas	de
todos	los	productos	es
menor	a	30?

	producto1.darTipo()	!=	Tipo.DROGUERIA	&&
producto1.darTipo()	!=	Tipo.PAPELERIA	&&	(
producto1.darProductosVendidos()	+
producto2.darProductosVendidos()	+
producto3.darProductosVendidos()	+
producto4.darProductosVendidos())	<	30	

Tienda

¿Con	el	valor	en	caja	de
la	tienda	se	pueden
pagar	500	unidades	del
producto	1	ó	300
unidades	del	producto	3
(al	precio	de	su	valor
unitario)?

Tienda

¿Del	producto	4,	el	tope
mínimo	es	mayor	a	10	y
la	cantidad	en	bodega	es
menor	o	igual	a	25?

Expresiones

182

Tienda

¿El	valor	unitario	de	los
productos	1	y	2	está
entre	200	y	1000	sin
incluir	dichos	valores?

5.5.	Manejo	de	Variables
El	objetivo	de	las	variables	es	permitir	manejar	cálculos	parciales	en	el	interior	de	un
método.	Las	variables	se	deben	declarar	(darles	un	nombre	y	un	tipo)	antes	de	ser
utilizadas	y	siguen	la	misma	convención	de	nombres	de	los	atributos.	Las	variables	se	crean
en	el	momento	en	el	que	se	declaran	y	se	destruyen	automáticamente	al	llegar	al	final	del
método	que	las	contiene.	Por	esta	razón	es	imposible	utilizar	el	valor	de	una	variable	por
fuera	del	método	donde	fue	declarada.

Se	suelen	usar	variables	por	tres	razones	principales:

1.	 Porque	es	necesario	calcular	valores	intermedios.
2.	 Por	eficiencia,	para	no	pedir	dos	veces	el	mismo	servicio	al	mismo	objeto.
3.	 Por	claridad	en	el	código.

A	continuación	se	muestra	un	ejemplo	de	un	método	de	la	clase	Tienda	que	calcula	la
cantidad	disponible	del	primer	producto	y	luego	vende	esa	misma	cantidad	de	todos	los
demás.

public	void	venderDeTodo()
{
				int	cuanto	=	producto1.darCantidadBodega();	
				producto2.vender(cuanto);
				producto3.vender(cuanto);	
				producto4.vender(cuanto);
}

Se	declara	al	comienzo	del	método	una	variable	de	tipo	entero	llamada	"	cuanto	",	y	se
le	asigna	la	cantidad	que	hay	en	bodega	del	producto	1	de	la	tienda.
La	declaración	de	la	variable	y	su	inicialización	se	pueden	hacer	en	instrucciones
separadas	(no	hay	necesidad	de	inicializar	las	variables	en	el	momento	de	declararlas).
La	única	condición	que	verifica	el	compilador	es	que	antes	de	usar	una	variable	ya
haya	sido	inicializada.
En	este	método	se	usa	la	variable	"	cuanto	"	por	eficiencia	y	por	claridad	(no
calculamos	el	mismo	valor	tres	veces	sino	sólo	una).

Expresiones

183

5.6	Otros	Operadores	de	Asignación
El	operador	de	asignación	visto	en	el	nivel	anterior	permite	cambiar	el	valor	de	un	atributo
de	un	objeto,	como	una	manera	de	reejar	un	cambio	en	el	mundo	del	problema.	Vender	5
unidades	de	un	producto,	por	ejemplo,	se	hace	restando	el	valor	5	del	atributo
	cantidadBodega	.

En	este	nivel	vamos	a	introducir	cuatro	nuevos	operadores	de	asignación,	con	la	aclaración
de	que	sólo	es	una	manera	más	corta	de	escribir	las	asignaciones,	las	cuales	siempre	se
pueden	escribir	con	el	operador	del	nivel	anterior.

Operador		++	.	Se	aplica	a	un	atributo	entero,	para	incrementarlo	en	1.	Por	ejemplo,
para	indicar	que	se	agregó	una	unidad	de	un	producto	a	la	bodega	(en	la	clase
Producto),	se	puede	utilizar	cualquiera	de	las	siguientes	versiones	del	mismo	método.

public	void	agregarNuevaUnidadBodega()
{
				cantidadBodega++;
}

El	operador	de	incremento	se	puede	ver	como	un	operador	de	asignación	en	el	cual	se
modifica	el	valor	del	operando	sumándole	el	valor	1.
El	uso	de	este	operador	tiene	la	ventaja	de	generar	expresiones	un	poco	más
compactas.

public	void	agregarNuevaUnidadBodega()
{
				cantidadBodega	=	cantidadBodega	+	1;
}

Esta	segunda	versión	del	método	tiene	la	misma	funcionalidad,	pero	utiliza	el	operador
de	asignación	normal.

Operador		--	.	Se	aplica	a	un	atributo	entero,	para	disminuirlo	en	1.	Se	utiliza	de
manera	análoga	al	operador	de	incremento.

Operador		+=	.	Se	utiliza	para	incrementar	un	atributo	en	cualquier	valor.	Por	ejemplo,
el	método	para	hacer	un	pedido	de	una	cierta	cantidad	de	unidades	para	la	bodega,
puede	escribirse	de	las	dos	maneras	que	se	muestran	a	continuación.	Debe	quedar
claro	que	la	instrucción		var++		es	equivalente	a		var	+=	1	,	y	equivalente	a	su	vez	a
	var	=	var	+	1	.

Expresiones

184

public	void	pedir(int	pNum)
{
				cantidadBodega	+=	pNum;
}

Este	método	de	la	clase	Producto	permite	hacer	un	pedido	de	"pNum"	unidades	y
agregarlas	a	la	bodega.

El	operador		+=		se	puede	ver	como	una	generalización	del	operador		++	,	en	el	cual	el
incremento	puede	ser	de	cualquier	valor	y	no	sólo	igual	a	1.

public	void	pedir(int	pNum)
{
				cantidadBodega	=	cantidadBodega	+	pNum;
}

Esta	segunda	versión	del	método	tiene	la	misma	funcionalidad,	pero	utiliza	el	operador
de	asignación	normal.
La	única	ventaja	de	utilizar	el	operador		+=		es	que	se	obtiene	un	código	un	poco	más
compacto.	Usarlo	o	no	usarlo	es	cuestión	de	estilo	de	cada	programador.

Operador		-=	.	Se	utiliza	para	disminuir	un	atributo	en	cualquier	valor.	Se	utiliza	de
manera	análoga	al	operador		+=	.

Tarea	3

Objetivo:	Generar	habilidad	en	la	utilización	de	las	asignaciones	y	las	expresiones	como	un
medio	para	transformar	el	estado	de	un	objeto.

Para	las	declaraciones	de	las	clases	Tienda	y	Producto	dadas	anteriormente	y,	teniendo	en
cuenta	el	escenario	planteado	más	adelante,	escriba	la	instrucción	o	las	instrucciones
necesarias	para	modificar	el	estado,	siguiendo	la	descripción	que	se	hace	en	cada	caso.

Escenario

Suponga	que	en	la	tienda	del	caso	de	estudio	se	tienen	a	la	venta	los	siguientes	productos:

1.	 Lápiz,	producto	de	papelería,	con	un	valor	base	de	$500	pesos	la	unidad.
2.	 Borrador,	producto	de	papelería,	a	$300	pesos.
3.	 Kilo	de	café,	producto	de	supermercado,	a	$5.600	la	unidad.
4.	 Desinfectante,	producto	de	droguería,	a	$3.200	la	unidad.

Suponga	además,	que	se	han	vendido	15	lápices,	5	borradores,	7	kilos	de	café	y	12	frascos
de	desinfectante,	y	que	en	la	caja	de	la	tienda	hay	en	este	momento	$43.275,50.

Expresiones

185

Por	último	tenemos	la	siguiente	tabla	para	resumir	el	inventario	de	unidades	de	la	tienda	y	el
tope	mínimo	que	se	debe	alcanzar	para	poder	hacer	un	nuevo	pedido:

Producto Cantidad	en	bodega Tope	mínimo

lapiz 30 9

borrador 15 5

café 20 10

desinfectante 12 11

Complete	el	diagrama	de	objetos	que	aparece	a	continuación,	con	la	información	del
escenario:

Signatura	de	los	métodos	de	la	clase	Tienda:

Expresiones

186

		//-----------------------------------
		//	Signaturas	de	métodos
		//-----------------------------------
		public	Producto	darProducto1()
		public	Producto	darProducto2()
		public	Producto	darProducto3()
		public	Producto	darProducto4()
		public	double	darDineroEnCaja()

Signatura	de	los	métodos	de	la	clase	Producto:

		//-----------------------------------
		//	Signaturas	de	métodos
		//-----------------------------------
		public	String	darNombre()
		public	int	darTipo()
		public	double	darValorUnitario()
		public	int	darCantidadBodega()
		public	int	darCantidadMinima()
		public	int	darCantidadUnidadesVendidas()
		public	double	darIVA()
		public	int	vender(int	pCantidad)
		public	void	abastecer(int	pCantidad)

Expresiones

187

En	un
método	de	la

clase...

la	siguiente	modificación	de
estado..

se	logra	con	las
siguientes	instruciones...

Producto
Se	vendieron	5	unidades	del
producto	(suponga	que	hay
suficientes).

	cantidadUnidadesVendidas	+=
5;	cantidadBodega	-=	5;	

Producto El	valor	unitario	se	incrementa	en	un
10%

Producto Se	incrementa	en	uno	la	cantidad
mínima	para	hacer	pedidos.

Producto El	producto	ahora	se	clasifica	como
de	SUPERMERCADO

Producto Se	cambia	el	nombre	del	producto.
Ahora	se	llama	"teléfono".

En	un
método
de	la
clase...

la	siguiente	modificación	de	estado.. se	logra	con	las	siguientes
instruciones...

Tienda
Se	asigna	al	dinero	en	caja	de	la	tienda	la
suma	de	los	valores	unitarios	de	los
cuatro	productos.

	dineroEnCaja	=
producto1.darValorUnitario()
+	producto2.darValorUnitario(
)	+
producto3.darValorUnitario()
+	producto4.darValorUnitario(
);	

Expresiones

188

Tienda Se	venden	4	unidades	del	producto	3
(suponga	que	están	disponibles).

Tienda Se	disminuye	en	un	2%	el	dinero	en	la
caja.

Tienda

Se	abastece	la	tienda	con	la	mitad	de	la
cantidad	mínima	de	cada	producto,
suponiendo	que	la	cantidad	en	bodega
de	todos	los	productos	es	menor	a	la
cantidad	mínima.

Tienda
Se	pone	en	la	caja	el	dinero
correspondiente	a	las	unidades	vendidas
de	todos	los	productos	de	la	tienda.

Una
clase
de	la
interfaz
de
usuario

Se	vende	una	unidad	de	cada	uno	de	los
productos	de	la	tienda.	Recuerde	que
este	método	está	por	fuera	de	la	clase
Tienda,	y	que	por	lo	tanto	no	puede
utilizar	sus	atributos	de	manera	directa.

Antes	de	comenzar	a	escribir	el	cuerpo	de	un	método,	es	importante	tener	en	cuenta	la
clase	en	la	cual	éste	se	encuentra.	No	olvide	que	dependiendo	de	la	clase	en	la	que
uno	se	encuentre,	las	cosas	se	deben	decir	de	una	manera	diferente.	En	unos	casos
los	atributos	se	pueden	manipular	directamente	y,	en	otros,	es	indispensable	llamar	un
método	para	cambiar	el	estado	(para	que	la	modificación	la	realice	el	objeto	al	que
pertenece	el	atributo).

Expresiones

189

6.	Clases	y	Objetos

6.1.	Diferencia	entre	Clases	y	Objetos
Aunque	los	conceptos	de	clase	y	objetos	son	muy	diferentes,	el	hecho	de	usarlos
indistintamente	en	algunos	contextos	hace	que	se	pueda	generar	alguna	confusión	al
respecto.	En	la	figura	2.4a	y	figura	2.4b	se	muestra,	para	el	caso	de	la	tienda,	el
correspondiente	diagrama	de	clases	y	un	ejemplo	de	un	posible	diagrama	de	objetos.	Allí	se
puede	apreciar	que	la	clase	Tienda	describe	todas	las	tiendas	imaginables	que	vendan	4
productos.

Fig.	2.4a	Modelo	de	clases

Diagrama	de	clases	para	el	caso	de	estudio	de	la	tienda.
El	diagrama	sólo	dice,	por	ejemplo,	que	producto1	debe	ser	un	producto.

Clases	y	Objetos

190

Fig.	2.4b	Modelo	de	objetos

Fíjese	como	cada	asociación	del	diagrama	de	clases	debe	tener	su	propio	objeto	en	el
momento	de	la	ejecución.

Una	clase	no	habla	de	un	escenario	particular,	sino	del	caso	general.	Nunca	dice	cuál	es	el
valor	de	un	atributo,	sino	que	se	contenta	con	afirmar	cuáles	son	los	atributos	(nombre	y
tipo)	que	deben	tener	los	objetos	que	son	instancias	de	esa	clase.	Los	objetos,	por	su	parte,
siempre	pertenecen	a	una	clase,	en	el	sentido	de	que	cumplen	con	la	estructura	de
atributos	que	la	clase	exige.	Por	ejemplo,	puede	haber	miles	de	tiendas	diferentes,	cada
una	de	las	cuales	vende	distintos	productos	a	distintos	precios.	Piense	que	cada	vez	que
instalamos	el	programa	del	caso	de	estudio	en	una	tienda	distinta,	el	dueño	va	a	querer	que
los	objetos	que	se	creen	para	representarla	reflejen	el	estado	de	su	propia	tienda.

Los	métodos	de	una	clase,	por	su	parte,	siempre	están	en	ella	y	no	copiados	en	cada	uno
de	sus	objetos.	Por	esta	razón	cada	objeto	debe	saber	a	qué	clase	pertenece,	para	poder
buscar	en	ella	los	métodos	que	puede	ejecutar.	Los	métodos	están	escritos	de	manera	que
se	puedan	utilizar	desde	todos	los	objetos	de	la	clase.	Cuando	un	método	de	la	clase
Tienda	dice		producto1.darNombre()	,	le	está	pidiendo	a	una	tienda	particular	que	busque	en
su	propio	escenario	el	objeto	al	cual	se	llega	a	través	de	la	asociación	producto1,	y	le	pida	a
éste	su	nombre	usando	el	método	que	todos	los	productos	tienen	para	hacerlo.	En	este

Clases	y	Objetos

191

sentido	se	puede	decir	que	los	métodos	son	capaces	de	resolver	los	problemas	en
abstracto,	y	que	cada	objeto	los	aplica	a	su	propio	escenario	para	resolver	su	problema
concreto.

6.2.	Creación	de	Objetos	de	una	Clase
Recordemos	la	creación	de	objetos	visto	en	el	nivel	anterior.	Un	objeto	se	crea	utilizando	la
instrucción		new		y	dando	el	nombre	de	la	clase	de	la	cual	va	a	ser	una	instancia.	Todas	las
clases	tienen	un	método	constructor	por	defecto,	sin	necesidad	de	que	el	programador
tenga	que	crearlo.	Como	no	es	responsabilidad	del	computador	darle	un	valor	inicial	a	los
atributos,	cuando	se	usa	este	constructor,	éstos	quedan	en	un	valor	que	se	puede
considerar	indefinido.	En	la	figura	2.5	se	muestra	el	resultado	del	llamado	a	este
constructor.

Fig.	2.5	Creación	de	un	objeto	usando	la	instrucción	new

El	resultado	de	ejecutar	la	instrucción	del	ejemplo	es	un	nuevo	objeto,	con	sus	atributos
no	inicializados.
Dicho	objeto	está	"referenciado"	por	p,	que	puede	ser	un	atributo	o	una	variable	de	tipo
Producto.

Para	inicializar	los	valores	de	un	objeto,	se	debe	definir	en	la	clase	un	constructor	propio.	En
el	siguiente	ejemplo	trabajaremos	los	conceptos	vistos	en	el	capítulo	anterior,	usando	el
caso	de	la	tienda.

Ejemplo	10

Clases	y	Objetos

192

Se	hace	la	inicialización	de	los	atributos	de	los	objetos	de	la	clase.

En	este	ejemplo	mostramos	los	constructores	de	las	clases	Tienda	y	Producto,	así	como	la
manera	de	pedir	la	creación	de	un	objeto	de	cualquiera	de	esos	dos	tipos.

public	Producto(Tipo	pTipo,	String	pNombre,	double	pValorUnitario,	int	pCantidadBodega
,	int	pCantidadMinima)
{
				tipo	=	pTipo;
				nombre	=	pNombre;
				valorUnitario	=	pValorUnitario;
				cantidadBodega	=	pCantidadBodega;
				cantidadMinima	=	pCantidadMinima;
				cantidadUnidadesVendidas	=	0;
}

El	constructor	exige	5	parámetros	para	poder	inicializar	los	objetos	de	la	clase
Producto.
En	el	constructor	se	asignan	los	valores	de	los	parámetros	a	los	atributos.

Producto	p=new	Producto(Tipo.PAPELERIA,	"lápiz",	500.0,	30,	9);

Este	es	un	ejemplo	de	la	manera	de	crear	un	objeto	cuando	el	constructor	tiene
parámetros.

Clases	y	Objetos

193

Este	es	el	objeto	que	se	crea	con	la	llamada	anterior.
El	objeto	creado	se	ubica	en	alguna	parte	de	la	memoria	del	computador.	Dicho	objeto
es	referenciado	por	el	atributo	o	la	variable	llamada	"	p	".

public	Tienda()
{
				producto1	=	new	Producto(Tipo.PAPELERIA,	"Lapiz",	550.0,	18,	5);
				producto2	=	new	Producto(Tipo.DROGUERIA,	"Aspirina",	109.5,	25,	8);
				producto3	=	new	Producto(Tipo.PAPELERIA,	"Borrador",	207.3,	30,	10);
				producto4	=	new	Producto(Tipo.SUPERMERCADO,	"Pan",	150.0,	15,	20);
				dineroEnCaja	=	0;
}

Puesto	que	es	necesario	que	la	tienda	tenga	4	productos,	su	método	constructor	debe
ser	como	el	que	se	presenta.	Supone	que	en	la	caja	de	la	tienda	no	hay	dinero	al
comenzar	el	programa.

Vamos	a	practicar	la	creación	de	escenarios	usando	los	métodos	constructores	de	las
clases	Tienda	y	Producto.	En	el	programa	del	caso	de	estudio,	la	responsabilidad	de	crear
el	estado	de	la	tienda	sobre	la	cual	se	trabaja	está	en	la	clase	principal	del	mundo	(clase
Tienda).	En	una	situación	real,	dichos	valores	deberían	leerse	de	un	archivo	o	de	una	base

Clases	y	Objetos

194

de	datos,	pero	en	nuestro	caso	se	utilizará	un	escenario	predefinido.	Si	quiere	modificar	los
datos	de	la	tienda	sobre	los	que	trabaja	el	programa,	puede	darle	otros	valores	en	el
momento	de	construir	las	instancias.

Tarea	4

Objetivo:	Generar	habilidad	en	el	uso	de	los	constructores	de	las	clases	para	crear
escenarios

Cree	los	escenarios	que	se	describen	a	continuación,	dando	la	secuencia	de	instrucciones
que	los	construyen.	Suponga	que	dicha	construcción	se	hace	desde	una	clase	externa	a	las
clases	Tienda	y	Producto.

Escenario	1

Una	nueva	tienda	acaba	de	abrir	y	quiere	usar	el	programa	del	caso	de	estudio	con	los
siguientes	productos:

1.	 Frasco	de	jarabe	(para	la	gripe),	producto	de	droguería,	con	un	valor	base	de	$7.200
pesos.

2.	 Botella	de	alcohol,	producto	de	droguería,	a	$2.800	pesos	la	unidad.
3.	 Kilo	de	queso,	producto	de	supermercado,	a	$4.100	la	unidad.
4.	 Resaltador,	producto	de	papelería,	a	$3.500	la	unidad.

La	siguiente	tabla	resume	el	inventario	inicial	de	la	tienda	y	el	tope	mínimo	que	se	debe
alcanzar	para	poder	hacer	un	nuevo	pedido.	Suponga	que	el	valor	inicial	en	caja	es	cero
pesos.

Producto Cantidad	en	bodega Tope	mínimo

jarabe 14 10

alcohol 12 8

queso 10 4

resaltador 20 10

Código

public	Tienda()
{
				producto1	=	new	Producto(Tipo.DROGUERIA,	"jarabe",	7200.0,	14,	10);	
				producto2	=	new	Producto(Tipo.DROGUERIA,	"alcohol",	2800.0,	12,	8);	
				producto3	=	new	Producto(Tipo.SUPERMERCADO,	"queso",	4100.0,	10,	4);	
				producto4	=	new	Producto(Tipo.PAPELERIA,	"resaltador",	3500.0,	20,	10);
}

Clases	y	Objetos

195

Escenario	2

Una	nueva	tienda	acaba	de	abrir	y	quiere	usar	el	programa	del	caso	de	estudio	con	los
siguientes	productos:

1.	 Kilo	de	arroz,	producto	de	supermercado,	con	valor	base	de	$1.200	pesos.
2.	 Caja	de	cereal,	producto	de	supermercado,	a	$7.500	pesos.
3.	 Resma	de	papel,	producto	de	papelería,	a	$20.000	pesos	la	unidad.
4.	 Bolsa	de	algodón,	producto	de	droguería,	a	$4.800	pesos.

La	siguiente	tabla	resume	el	inventario	inicial	de	la	tienda	y	el	tope	mínimo	que	se	debe
alcanzar	para	poder	hacer	un	nuevo	pedido.	Suponga	que	el	valor	inicial	en	caja	es	cero
pesos.

Producto Cantidad	en	bodega Tope	mínimo

arroz 6 7

cereal 5 5

papel 50 2

algodón 12 6

Código

Escenario	3

Una	nueva	tienda	acaba	de	abrir,	y	quiere	usar	el	programa	del	caso	de	estudio	con	los
siguientes	productos:

1.	 Litro	de	aceite,	producto	de	supermercado,	con	un	valor	base	de	$6.500	pesos	la
unidad.

2.	 Crema	dental,	producto	de	supermercado,	a	$5.100	pesos.
3.	 Kilo	de	pollo,	producto	de	supermercado,	a	$13.800	pesos	la	unidad.
4.	 Protector	solar,	producto	de	droguería,	a	$16.000	la	unidad.

Clases	y	Objetos

196

La	siguiente	tabla	resume	el	inventario	inicial	de	la	tienda	y	el	tope	mínimo	que	se	debe
alcanzar	para	poder	hacer	un	nuevo	pedido.	Suponga	que	el	valor	inicial	en	caja	es	cero
pesos.

Producto Cantidad	disponible Tope	mínimo

aceite 13 10

crema	dental 20 15

pollo 6 5

protector	solar 3 3

Código

Clases	y	Objetos

197

7.	Instrucciones	Condicionales

7.1.	Instrucciones	Condicionales	Simples
Una	instrucción	condicional	nos	permite	plantear	la	solución	a	un	problema	considerando
los	distintos	casos	que	se	pueden	presentar.	De	esta	manera,	podemos	utilizar	un	algoritmo
distinto	para	enfrentar	cada	caso	que	pueda	existir	en	el	mundo.	Considere	el	método	de	la
clase	Producto	que	se	encarga	de	vender	una	cierta	cantidad	de	unidades	presentes	en	la
bodega.	Allí,	se	pueden	presentar	dos	casos	posibles,	cada	uno	con	una	solución	distinta:	el
primer	caso	es	cuando	la	cantidad	que	se	quiere	vender	es	mayor	que	la	cantidad
disponible	en	la	bodega	(el	pedido	es	mayor	que	la	disponibilidad)	y	el	segundo	es	cuando
hay	suficientes	unidades	del	producto	en	la	bodega	para	hacer	la	venta.	En	cada	una	de
esas	situaciones	la	solución	es	distinta	y	el	método	debe	tener	un	algoritmo	diferente.

Para	construir	una	instrucción	condicional,	se	deben	identificar	los	casos	y	las	soluciones,
usando	algo	parecido	a	la	tabla	que	se	muestra	a	continuación:

Caso	1:

Expresión	que	describe	el	caso:

cantidad	>	cantidadBodega

Algoritmo	para	resolver	el	problema	en	ese	caso:

//	Vende	todas	las	unidades	disponibles
cantidadUnidadesVendidas	+=	cantidadBodega;	
cantidadBodega	=	0;

Caso	2:

Expresión	que	describe	el	caso:

cantidad	<=	cantidadBodega

Algoritmo	para	resolver	el	problema	en	ese	caso:

//	Vende	lo	pedido	por	el	usuario	
cantidadUnidadesVendidas	+=	cantidad;
cantidadBodega		-=		cantidad;

Instrucciones	Condicionales

198

En	el	primer	caso	la	solución	es	vender	todo	lo	que	hay	en	la	bodega.	En	el	segundo,
vender	lo	pedido	como	parámetro.	En	Java	existe	la	instrucción	condicional		if-else	,	que
permite	expresar	los	casos	dentro	de	un	método.	La	sintaxis	en	Java	de	dicha	instrucción	se
ilustra	en	el	siguiente	fragmento	de	programa:

public	class	Producto
{
				...
				public	void	vender(int	pCantidad)
				{
								if(pCantidad	>	cantidadBodega)
								{
												totalProductosVendidos	+=	cantidadBodega;	
												cantidadBodega		=		0;
								}
								else
								{
												totalProductosVendidos	+=	pCantidad	;	
												cantidadBodega	-=	pCantidad	;
								}
				}
}

En	lugar	de	una	sola	secuencia	de	instrucciones,	se	puede	dar	una	secuencia	para
cada	caso	posible.	El	computador	sólo	va	a	ejecutar	una	de	las	dos	secuencias.
Es	como	si	el	método	escogiera	el	algoritmo	que	debe	utilizar	para	resolver	el	problema
puntual	que	tiene,	identificando	la	situación	en	la	que	se	encuentra	el	objeto.
La	condición	caracteriza	los	dos	casos	que	se	pueden	presentar.	Note	que	con	una
sola	condición	debemos	separar	los	dos	casos.
Los	paréntesis	alrededor	de	la	condición	son	obligatorios.
La	condición	es	una	expresión	lógica,	construida	con	operadores	relacionales	y	lógicos.
La	parte	del	"	else	",	incluida	la	segunda	secuencia	de	instrucciones,	es	opcional.	Si	no
se	incluye,	eso	querría	decir	que	para	resolver	el	segundo	caso	no	hay	que	hacer	nada.

La	instrucción		if-else		tiene	tres	elementos:

1.	 Una	condición	que	corresponde	a	una	expresión	lógica	capaz	de	distinguir	los	dos
casos	(su	evaluación	debe	dar	verdadero	si	se	trata	del	primer	caso	y	falso	si	se	trata
del	segundo).

2.	 La	solución	para	el	primer	caso.
3.	 La	solución	para	el	segundo	caso.	Al	encontrar	una	instrucción	condicional,	el

computador	evalúa	primero	la	condición	y	decide	a	partir	de	su	resultado	cuál	de	las
dos	soluciones	ejecutar.	Nunca	ejecuta	las	dos.

Instrucciones	Condicionales

199

Si	el	algoritmo	que	resuelve	uno	de	los	casos	sólo	tiene	una	instrucción,	es	posible	eliminar
los	corchetes,	como	se	ilustra	en	el	ejemplo	11.	Allí	también	se	puede	apreciar	que	una
instrucción	condicional	es	sólo	una	instrucción	más	dentro	de	la	secuencia	de	instrucciones
que	implementan	un	método.

Ejemplo	11

En	este	ejemplo	se	presentan	algunos	métodos	de	la	clase	Producto,	para	mostrar	la
sintaxis	de	la	instrucción		if-else		de	Java.	Los	métodos	aquí	presentados	no	son
necesariamente	los	que	escribiríamos	para	implementar	los	requerimientos	funcionales	del
caso	de	estudio,	pero	sirven	para	ilustrar	distintos	aspectos	de	las	instrucciones
condicionales.

public	boolean	haySuficiente(int	pCantidad)
{
				boolean	suficiente;
				if(pCantidad	<=	cantidadBodega)	
								suficiente	=	true;
				else
								suficiente	=	false;	
				return	suficiente;
}

Como	la	secuencia	de	instrucciones	de	cada	caso	tiene	una	sola	instrucción,	se
pueden	eliminar	los	corchetes.
Fíjese	que	dejamos	el	resultado	de	cada	caso	en	la	misma	variable,	de	manera	que	al
hacer	el	retorno	del	método	siempre	se	encuentre	allí	el	resultado.	¿Qué	hace	este
método?
Una	instrucción	condicional	se	puede	ver	como	otra	instrucción	más	del	método.	Puede
haber	instrucciones	antes	y	después	de	ella.

public	boolean	haySuficiente(int	pCantidad)
{
						return	pCantidad	<=	cantidadBodega;
}

El	método	anterior	también	se	podría	escribir	de	esta	manera,	un	poco	más	sencilla.
¿Qué	ganamos	escribiéndolo	así?

Instrucciones	Condicionales

200

public	double	darPrecioPapeleria(boolean	conIVA)
{
				double	precioFinal	=	valorUnitario;

				if(conIVA)
								precioFinal	=	precioFinal	*	(1+IVA_PAPELERIA);

				return	precioFinal;
}

Si	en	el	segundo	de	los	casos	de	una	instrucción	condicional	no	es	necesario	hacer
nada,	no	se	debe	escribir	ninguna	instrucción,	tal	como	se	muestra	en	el	ejemplo.
¿Está	claro	el	problema	que	resuelve	el	método?

public	void	ajustarPrecio()
{
				if(totalProductosVendidos	<	100)
				{
								valorUnitario	=	valorUnitario	*	80	/	100;
				}
				else
				{
								valorUnitario	=	valorUnitario	*	1.1;
				}
}

En	este	método,	si	se	han	vendido	menos	de	100	unidades,	se	hace	un	descuento	del
20%	en	el	precio	del	producto.
Si	se	han	vendido	100	o	más	unidades,	se	aumenta	en	un	10%	el	precio.
En	las	instrucciones	condicionales,	incluso	si	sólo	hay	una	instrucción	para	resolver
cada	caso,	es	buena	idea	utilizar	los	corchetes	para	facilitar	la	lectura	del	código,	es
buena	idea	utilizar	los	corchetes.	En	algunos	casos,	incluso,	son	indispensables	para
evitar	ambigüedades.

Tenga	cuidado	de	no	escribir	un	";"	después	de	la	condición,	porque	el	computador	lo
va	a	interpretar	como	si	la	solución	al	caso	fuera	no	hacer	nada	(una	instrucción	vacía).

7.2	Condicionales	en	Cascada
Cuando	el	problema	tiene	más	de	dos	casos,	es	necesario	utilizar	una	cascada	(secuencia)
de	instrucciones		if-else	,	en	donde	cada	condición	debe	indicar	sin	ambigüedad	la
situación	que	se	quiere	considerar.	Suponga	por	ejemplo	que	queremos	calcular	el	IVA	de

Instrucciones	Condicionales

201

un	producto.	Puesto	que	el	valor	que	se	paga	de	impuestos	por	un	producto	depende	de	su
tipo,	es	necesario	considerar	los	tres	casos	siguientes:

Caso	1

Expresión	que	describe	el	caso:

(tipo	==	Tipo.SUPERMERCADO)

Algoritmo	para	resolver	el	problema	en	ese	caso:

return	IVA_SUPERMERCADO;

Caso	2

Expresión	que	describe	el	caso:

(tipo	==	Tipo.DROGUERIA)

Algoritmo	para	resolver	el	problema	en	ese	caso:

return	IVA_DROGUERIA;

Caso	3

Expresión	que	describe	el	caso:

(tipo	==	Tipo.PAPELERIA)

Algoritmo	para	resolver	el	problema	en	ese	caso:

return	IVA_PAPELERIA;

El	método	de	la	clase	Producto	para	determinar	el	IVA	que	hay	que	pagar	sería	de	la
siguiente	forma	(no	es	la	única	solución,	como	veremos	más	adelante):

Instrucciones	Condicionales

202

public	double	darIVA()
{
				if(tipo	==	Tipo.PAPELERIA)
				{
								return	IVA_PAPELERIA;
				}
				else	if(tipo	==	Tipo.SUPERMERCADO)
				{
								return	IVA_SUPERMERCADO;
				}
				else
				{
								return	IVA_DROGUERIA;
				}
}

Para	representar	los	tres	casos	posibles,	utilizamos	una	instrucción	condicional	en	el
"else"	del	primer	caso.	Esa	manera	de	encadenar	las	instrucciones	condicionales	para
poder	considerar	cualquier	número	de	casos	se	denomina	"en	cascada".
Una	instrucción	condicional	puede	ir	en	cualquier	parte	donde	pueda	ir	una	instrucción
del	lenguaje	Java.	Esto	lo	retomaremos	en	capítulos	posteriores.

public	double	darIVA()
{
				double	resp	=	0.0;

				if(tipo	==	Tipo.PAPELERIA)
				{
								resp	=	IVA_PAPELERIA;
				}
				else	if(tipo	==	Tipo.SUPERMERCADO)
				{
								resp	=	IVA_SUPERMERCADO;
				}
				else
				{
								resp	=	IVA_DROGUERIA;
				}

				return	resp;
}

En	esta	segunda	solución	del	método,	en	lugar	de	hacer	un	retorno	en	cada	caso,
guardamos	la	respuesta	en	una	variable	y	luego	la	retornamos	al	final.

Al	usar	varias	instrucciones	if	en	cascada	hay	que	tener	cuidado	con	la	ambigüedad
que	puede	surgir	con	la	parte	else.	Es	mejor	usar	siempre	corchetes	para	asegurarse
de	que	el	computador	lo	va	a	interpretar	de	la	manera	adecuada.

Instrucciones	Condicionales

203

Tarea	5

Objetivo:	Practicar	el	uso	de	las	instrucciones	condicionales	simples	para	expresar	el
cambio	de	estado	que	debe	hacerse	en	un	objeto,	en	cada	uno	de	los	casos	identificados.

Escriba	el	código	de	cada	uno	de	los	métodos	descritos	a	continuación.	Tenga	en	cuenta	la
clase	en	la	cual	está	el	método	y	la	información	que	se	entrega	como	parámetro.

Para	la	clase:	Producto

Aumentar	el	valor	unitario	del	producto,	utilizando	la	siguiente	política:	si	el	producto	cuesta
menos	de	$1000,	aumentar	el	1%.	Si	cuesta	entre	$1000	y	$5000,	aumentar	el	2%.
Si	cuesta	más	de	$5000	aumentar	el	3%.

public	void	subirValorUnitario()
{

}

Recibir	un	pedido,	sólo	si	en	bodega	se	tienen	menos	unidades	de	las	indicadas	en	el	tope
mínimo.	En	caso	contrario	el	método	no	debe	hacer	nada.

public	void	hacerPedido(int	pCantidad)
{

}

Instrucciones	Condicionales

204

Modificar	el	precio	del	producto,	utilizando	la	siguiente	política:	si	el	producto	es	de
droguería
o	papelería	debe	disminuir	un	10%.	Si	es	de	supermercado	debe	aumentar	un	5%.

public	void	cambiarValorUnitario()
{

}

Para	la	clase:	Tienda

Vender	una	cierta	cantidad	del	producto	cuyo	nombre	es	igual	al	recibido	como	parámetro.
El	método	retorna	el	número	de	unidades	efectivamente	vendidas.	Suponga	que	el	nombre
que	se	recibe	como	parámetro	corresponde	a	uno	de	los	productos	de	la	tienda.	Utilice	el
método	vender	de	la	clase	Producto	como	parte	de	su	solución.

public	int	venderProducto(String	pNombreProducto,	int	pCantidad)
{

}

Calcular	el	número	de	productos	de	papelería	que	se	venden	en	la	tienda.

Instrucciones	Condicionales

205

public	int	cuantosPapeleria()
{

}

7.3.	Instrucciones	Condicionales	Compuestas
Una	instrucción	condicional	compuesta	(switch)	es	una	manera	alternativa	de	expresar	la
solución	de	un	problema	para	el	cual	existe	un	conjunto	de	casos,	cada	uno	con	un
algoritmo	distinto	para	resolverlo.	Esta	instrucción	tiene	la	restricción	de	que	cada	caso
debe	estar	identificado	con	un	valor	de	tipo	entero,	String	o	del	tipo	de	una	enumeración.

En	la	instrucción		switch		va	inicialmente	la	expresión	(de	tipo	entero,	String	o	del	tipo	de
una	enumeración)	que	se	desea	evaluar	para	identificar	el	caso	que	se	está	presentando.
Esta	expresión	debe	ir	entre	paréntesis.	Después	de	dicha	expresión,	se	escriben	los
bloques	de	instrucciones	para	cada	uno	de	los	casos	identificados.	Cada	bloque	empieza
con	la	instrucción		case		seguida	del	valor	de	la	constante	que	identifica	el	caso.	Después
se	ponen	las	instrucciones	del	caso	y	al	final	de	estas	se	debe	colocar	la	instrucción
	break	para	indicar	el	fin	del	conjunto	de	instrucciones.	En	la	figura	2.6	se	ilustra	la
estructura	de	una	instrucción	condicional	compuesta.

En	el	ejemplo	12	se	presenta	la	solución	del	método	que	calcula	el	IVA	de	un	producto,
usando	una	instucción	condicional	compuesta.

Instrucciones	Condicionales

206

Fig.	2.6	Estructura	de	la	instrucción	switch	de	Java

Ejemplo	12

Objetivo:	Ilustrar	el	uso	de	instrucciones	condicionales	compuestas.

En	este	ejemplo	se	presenta	el	método	que	calcula	el	IVA	que	debe	pagar	un	producto,
dependiendo	de	su	tipo.

Instrucciones	Condicionales

207

public	double	darIVA()
{
				double	iva	=	0.0;

				switch(tipo)
				{
								case	PAPELERIA:
								{
												iva	=	IVA_PAPELERIA;
												break;
								}
								case	SUPERMERCADO:
								{
												iva	=	IVA_SUPERMERCADO;
												break;
								}
								case	DROGUERIA:
								{
												iva	=	IVA_DROGUERIA;
												break;
								}
				}

				return	iva;
}

Este	método	de	la	clase	Producto	tiene	tres	casos	posibles,	cada	uno	identificado	con
un	valor	de	una	enumeración	(candidato	ideal	para	la	instrucción	switch).
La	expresión	que	va	a	permitir	distinguir	los	casos	se	construye	simplemente	con	el
atributo	"tipo".
Cada	caso	se	introduce	con	la	palabra	reservada	de	Java	"case"	y	se	cierra	con	un
"break".	Después	de	la	instrucción	"case"	va	el	valor	que	identifica	el	caso.	En	nuestro
ejemplo,	el	valor	se	identifica	con	las	constantes	que	representan	los	tres	tipos	posibles
de	productos:	PAPELERIA,	SUPERMERCADO	o	DROGUERIA.

Dado	que	siempre	es	posible	escribir	una	instrucción	condicional	compuesta	como	una
cascada	de	condicionales	simples,	la	pregunta	que	nos	debemos	hacer	es	¿cuándo	usar
una	instrucción	condicional	compuesta?	La	respuesta	es	que	siempre	que	se	pueda	utilizar
la	instrucción		switch		en	lugar	de	una	cascada	de	if		es	conveniente	hacerlo,	por	dos
razones:

1.	 Eficiencia,	ya	que	de	este	modo	sólo	se	evalúa	una	vez	la	expresión	aritmética,
mientras	que	en	la	cascada	se	evalúan	una	a	una	las	condiciones,	descartándolas.

2.	 Claridad	en	el	programa,	porque	es	más	fácil	de	leer	y	mantener	un	programa	escrito
de	esta	manera.

Instrucciones	Condicionales

208

Y	la	segunda	pregunta	es,	¿cuándo	no	intentar	usar	una	instrucción	condicional
compuesta?	La	respuesta	es:	cuando	los	casos	no	están	identificados	por	valores	enteros,
Strings	o	enumeraciones.	Si	se	tienen,	por	ejemplo,	un	valor	real	como	identificadores	de
los	casos,	la	única	opción	es	usar	una	cascada	de	instrucciones		if-else	.

Tarea	6

Objetivo:	Utilizar	instrucciones	condicionales	para	expresar	un	conjunto	de	casos	y
soluciones
asociadas	con	los	mismos.

Escriba	el	código	de	cada	uno	de	los	métodos	descritos	a	continuación.	Tenga	en	cuenta	la
clase	en	la	cual	está	el	método	y	la	información	que	se	entrega	como	parámetro.

Para	la	clase:	Producto

Dar	el	nombre	del	tipo	del	producto.	Por	ejemplo,	si	el	producto	es	de	tipo
SUPERMERCADO,	el	método	debe	retornar	la	cadena:	"El	producto	es	de	supermercado".

public	String	nombreTipoProducto()
{

}

Aumentar	el	precio	del	producto,	siguiendo	esta	regla:	si	es	un	producto	de	droguería	debe
aumentar	el	1%,	si	es	de	supermercado	el	3%	y	si	es	de	papelería	el	2%.

Instrucciones	Condicionales

209

public	void	aumentarValorUnitario()
{

}

Para	la	clase:	Tienda

Retornar	el	precio	final	del	producto	identificado	con	el	número	que	se	entrega	como
parámetro.	Por	ejemplo,	si	pNumeroProducto	es	3,	debe	retornar	el	precio	del	tercer
producto	(producto3).	Suponga	que	el	valor	que	se	entrega	como	parámetro	es	mayor	o
igual	a	1	y	menor	o	igual	a	4.

public	double	darPrecioProducto(int	pNumeroProducto)
{

}

Este	método	debe	hacer	lo	mismo	que	el	anterior,	pero	en	lugar	de	recibir	como	parámetro
el	número	del	producto,	recibe	su	nombre.	Puede	suponer	que	el	nombre	que	se	entrega
como	parámetro	corresponde	a	un	producto	perteneciente	a	la	tienda.

Instrucciones	Condicionales

210

public	double	darPrecioProducto(String	pNombreProducto)
{

}

Instrucciones	Condicionales

211

8.	Responsabilidades	de	una	Clase

8.1.	Tipos	de	Método
Los	métodos	en	una	clase	se	clasifican	en	tres	tipos,	según	la	operación	que	realicen:

Métodos	constructores:	tienen	la	responsabilidad	de	inicializar	los	valores	de	los
atributos	de	un	objeto	durante	su	proceso	de	creación.
Métodos	modificadores:	tienen	la	responsabilidad	de	cambiar	el	estado	de	los	objetos
de	la	clase.	Son	los	responsables	de	"hacer".
Métodos	analizadores:	tienen	la	responsabilidad	de	calcular	información	a	partir	del
estado	de	los	objetos	de	la	clase.	Son	los	responsables	de	"saber".

8.2.	¿Cómo	Identificar	las	Responsabilidades?
En	esta	parte	sólo	veremos	algunas	guías	intuitivas	respecto	de	cómo	identificar	las
responsabilidades	de	una	clase.	Utilizamos	dos	estrategias	complementarias	que	se
pueden	utilizar	en	cualquier	orden	y	que	se	resumen	a	continuación:

Una	clase	es	responsable	de	administrar	la	información	que	hay	en	sus	atributos.	Por
esta	razón	se	debe	tratar	de	buscar	el	conjunto	de	servicios	que	reflejen	las
operaciones	típicas	del	elemento	del	mundo	que	la	clase	representa.

Una	clase	es	responsable	de	ayudar	a	sus	vecinos	del	modelo	del	mundo	y	colaborar
con	ellos	en	la	solución	de	sus	problemas.	En	este	caso	la	pregunta	que	nos	debemos
hacer	es,	¿qué	servicios	necesitan	las	demás	clases	que	les	preste	la	clase	que
estamos	diseñando?	A	partir	de	la	respuesta	a	esta	pregunta,	iremos	agregando
servicios	hasta	que	el	problema	global	tenga	solución.

Para	las	dos	estrategias	es	conveniente	hacer	el	recorrido	por	tipo	de	método,	diseñando
primero	los	constructores,	luego	los	modificadores	y,	finalmente,	los	analizadores.	En	el
nivel	4	de	este	libro	retomaremos	este	problema	de	asignar	responsabilidades	a	las	clases.

Una	vez	que	se	han	definido	los	servicios	que	va	a	prestar	una	clase,	debemos	definir	los
parámetros	y	el	tipo	de	retorno.	Para	definir	los	parámetros	de	un	método,	debemos
preguntarnos	cuál	es	la	información	externa	a	la	clase	que	se	necesita	para	poder	prestar	el
servicio.	Para	definir	el	tipo	de	retorno	debemos	preguntarnos	qué	información	está
esperando	aquél	que	solicitó	el	servicio.

Responsabilidades	de	una	Clase

212

Tarea	7

Objetivo:	Identificar	y	describir	los	métodos	que	representan	las	principales
responsabilidades	de	una	clase.

Para	el	caso	de	estudio	que	se	presenta	a	continuación	construya	el	diagrama	de	clases	e
identifique	los	principales	métodos.

Una	empresa	de	transporte	tiene	3	camiones	para	llevar	carga	de	una	ciudad	a	otra	del
país.	De	cada	camión	se	tiene	su	matrícula	(6	caracteres),	su	capacidad	(en	kilogramos)	y
el	consumo	de	gasolina	por	kilómetro	(un	valor	real	en	litros/kilómetro)	y	la	carga	actual	(en
kilogramos).	Se	quiere	construir	un	programa	que	permita	optimizar	el	uso	de	los	camiones.
Para	esto	debe	tener	una	única	opción	que	determina	cuál	es	el	mejor	camión	para
transportar	una	cierta	carga	entre	dos	ciudades.	El	mejor	camión	es	aquél	que,	siendo
capaz	de	transportar	la	carga,	consume	la	mínima	cantidad	de	gasolina.

Requerimiento	funcional

Responsabilidades	de	una	Clase

213

Nombre

Resumen

Entradas

Resultado

Diagrama	de	clases:

Responsabilidades	de	una	Clase

214

Clase	EmpresaTransporte

Nombre	del	método:

Responsabilidades	de	una	Clase

215

Tipo	de	método

Responsabilidad

Parámetros

Retorno

Nombre	del	método:

Responsabilidades	de	una	Clase

216

Tipo	de	método

Responsabilidad

Parámetros

Retorno

Nombre	del	método:

Responsabilidades	de	una	Clase

217

Tipo	de	método

Responsabilidad

Parámetros

Retorno

Nombre	del	método:

Responsabilidades	de	una	Clase

218

Tipo	de	método

Responsabilidad

Parámetros

Retorno

Clase	Camion

Nombre	del	método:

Responsabilidades	de	una	Clase

219

Tipo	de	método

Responsabilidad

Parámetros

Retorno

Nombre	del	método:

Responsabilidades	de	una	Clase

220

Tipo	de	método

Responsabilidad

Parámetros

Retorno

Nombre	del	método:

Responsabilidades	de	una	Clase

221

Tipo	de	método

Responsabilidad

Parámetros

Retorno

Nombre	del	método:

Responsabilidades	de	una	Clase

222

Tipo	de	método

Responsabilidad

Parámetros

Retorno

Responsabilidades	de	una	Clase

223

9.	Eclipse:	Nuevas	Opciones
En	esta	sección	se	cubren	los	siguientes	temas:

Uso	de	Eclipse	para	formatear	una	clase	(concepto	de	profile).	Se	presentan	las
ventajas	de	mantener	un	correcto	formato	en	los	programas.
Uso	de	Eclipse	para	localizar	una	declaración.
Uso	de	Eclipse	para	localizar	todos	los	clientes	de	un	método	(aquellos	que	lo	usan).
Uso	de	Eclipse	para	cambiar	el	nombre	de	un	atributo,	variable	o	método.	Ventajas	de
hacerlo	de	esta	manera	y	riesgo	si	hay	errores	de	compilación.
La	siguiente	tarea	le	propondrá	una	secuencia	de	acciones,	que	pretenden	mostrarle	la
manera	de	hacer	lo	anteriormente	mencionado	en	el	ambiente	de	desarrollo	Eclipse.

Tarea	8

Objetivo:	Trabajar	en	Eclipse	sobre	la	solución	del	caso	de	estudio,	mostrando	las	nuevas
opciones	del	ambiente	de	desarrollo	que	se	introducen	en	este	nivel.

Localice	en	el	sitio	del	proyecto	Cupi2	la	solución	del	caso	de	estudio	de	este	nivel.	Copie
en	un	directorio	de	trabajo	dicha	solución.	Ejecute	Eclipse	y	cree	un	nuevo	proyecto	que	la
contenga.	Siga	los	pasos	que	se	dan	a	continuación:

Paso	I:	ejecutar	la	aplicación

1.	 La	clase	InterfazTienda	es	la	clase	principal	del	programa.	Localícela	y	selecciónela	en
el	explorador	de	paquetes.	Si	tiene	dificultades	en	esto,	consulte	la	manera	de	hacerlo
en	el	capítulo	anterior.

2.	 Para	ejecutar	la	clase	principal	de	un	programa,	seleccione	el	comando	Run	as	Java
Application.	Puede	hacerlo	desde	la	barra	de	herramientas,	el	menú	principal	o	el	menú
emergente	que	aparece	al	hacer	clic	derecho	sobre	la	clase.

Paso	II:	dar	formato	al	código	fuente

1.	 Localice	el	profile	(perfil)	de	formato	en	el	sitio	del	proyecto	Cupi2.	Puede	encontrarlo
bajo	el	título	"Perfil	Cupi2	para	Eclipse".	El	profile	reúne	un	conjunto	de	preferencias	de
formato	en	el	código	fuente,	tales	como	indentación,	posición	de	los	corchetes,	manejo
de	las	líneas	en	blanco,	comentarios,	etc.

2.	 Instale	el	profile	en	Eclipse.	Para	esto	seleccione	la	opción	Window/Preferences	del
menú	principal.	En	la	ventana	que	aparece	localice	la	zona	Java/Code	Style/Code

Eclipse:	Nuevas	Opciones

224

http://cupi2.uniandes.edu.co/sitio/index.php/cursos/apo1/nivel-2
https://cupitaller.uniandes.edu.co/instaladores/

Formatter.	Utilice	el	botón	Import...	para	cargar	el	archivo	mencionado	en	el	punto
anterior.

3.	 El	hecho	de	cargar	un	profile	no	cambia	automáticamente	el	formato	de	las	clases.
Seleccione	y	abra	la	clase	Producto	en	el	explorador	de	paquetes.	Cambie	el	formato
de	los	métodos.	Elimine	algunos	espacios	en	las	expresiones	o	cambie	la	indentación
de	las	instrucciones.

4.	 Ahora	aplíquele	formato	a	la	clase	Producto	seleccionando	la	opción	Source/Format	en
el	menú	emergente	del	clic	derecho	o	con	ctrl+mayús+F.	El	formato	ayuda	a	organizar
el	código	fuente,	mejorando	su	legibilidad	y	consistencia.	Cuando	se	aplica	formato	a
una	clase,	Eclipse	utiliza	la	información	que	aparece	en	el	profile	que	esté	activo.	Note
cómo	el	programa	recupera	su	estado	inicial.

5.	 Para	darle	formato	a	una	sola	sección	de	la	clase,	seleccione	la	sección	y	aplíquele	el
formato	como	en	el	paso	anterior.	Adquiera	la	buena	práctica	de	aplicar	el	formato	a
todos	sus	proyectos	antes	de	entregarlos.

Paso	III:	localizar	rápidamente	el	código	fuente	de	una
clase	o	método

1.	 Seleccione	y	abra	la	clase	Tienda	en	el	explorador	de	paquetes.	Localice	la	declaración
de	cualquiera	de	los	atributos	de	la	clase	Producto	(producto1,	producto2,	producto3	o
producto4).	Oprima	la	tecla	ctrl	y	al	mismo	tiempo	ubique	el	cursor	sobre	la	palabra
"Producto"	en	la	declaración.	La	palabra	"Producto"	se	resalta	con	un	subrayado.

2.	 Haga	clic	sobre	la	palabra	resaltada:	se	abrirá	la	clase	Producto	para	ser	consultada.
En	general,	es	posible	localizar	la	declaración	de	cualquier	elemento	del	programa
utilizando	esta	misma	interacción.	Basta	con	posicionarse	sobre	el	elemento	cuya
declaración	queremos	consultar	y	con	la	combinación	ctrl+clic	llegamos	a	dicho	punto
del	programa.

3.	 Si	desea	puede	ver	el	video	explicativo	en	el	sitio	del	proyecto.

Paso	IV:	localizar	rápidamente	los	lugares	donde	se	invoca
un	método

1.	 Seleccione	y	abra	la	clase	Producto	en	el	explorador	de	paquetes.	Localice	en	el	editor
la	declaración	de	cualquiera	de	los	métodos	o	atributos	de	esta	clase.

2.	 Busque	todos	los	lugares	del	programa	en	donde	se	invoca	dicho	método,
seleccionando	la	opción	Navigate_/	Open	Call	Hierarchy	_en	el	menú	principal	o	en	el
menú	emergente	que	aparece	al	hacer	clic	derecho	sobre	el	método	o	con	ctrl+alt+h.

3.	 En	la	vista	de	búsqueda	de	Eclipse	se	presentan	todos	los	métodos	en	los	que	existe
un	llamado	al	método	o	atributo	seleccionado.

4.	 Si	selecciona	un	método,	señala	el	lugar	dónde	este	método	fue	llamado.

Eclipse:	Nuevas	Opciones

225

https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Abrir_implementaciones.mp4

5.	 Si	desea	puede	ver	el	video	explicativo	en	el	sitio	del	proyecto.
6.	 Repita	el	procedimiento	anterior	con	el	método	constructor	de	la	clase	Tienda,	para

llegar	hasta	la	clase	de	la	interfaz	de	usuario	que	crea	la	tienda.

7.	 https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Jerarquia_llamad
os.mp4

Paso	V:	cambiar	los	elementos	de	una	clase

1.	 Seleccione	y	abra	la	clase	Producto	en	el	explorador	de	paquetes.	Localice	la
declaración	del	atributo	valorUnitario	en	dicha	clase.

2.	 Cambie	el	nombre	de	este	atributo	a	valorUnidad,	seleccionando	la	opción
Refactor/Rename	en	el	menú	principal	o	en	el	menú	emergente	que	aparece	al	hacer
clic	derecho	sobre	el	atributo.	Esta	operación	realiza	la	modificación	en	todos	los
puntos	del	programa	en	los	cuales	se	utiliza	dicho	atributo.	La	ventaja	de	hacer	de	esta
manera	los	cambios	es	que	el	compilador	ayuda	a	no	cambiar	por	error	otros
elementos	del	programa.

3.	 Localice	el	método	abastecer	en	la	clase	Producto.	Cambie	el	nombre	del	parámetro
pCantidad	a	pNumeroUnidades,	de	la	misma	manera	que	en	el	punto	anterior.	Esta
misma	técnica	sirve	para	cambiar	los	nombres	de	los	métodos.	Si	en	algún	punto	del
programa	hay	errores	de	compilación,	es	un	poco	arriesgado	hacer	los	cambios	de
nombre	mencionados	en	esta	parte,	ya	que	dichos	errores	pueden	confundir	al
compilador	y	llevar	a	Eclipse	a	dejar	de	hacer	algunos	cambios	necesarios.

4.	 Si	desea	puede	ver	el	video	explicativo	en	el	sitio	del	proyecto.

Eclipse:	Nuevas	Opciones

226

https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Jerarquia_llamados.mp4
https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Jerarquia_llamados.mp4
https://sicuaplus.uniandes.edu.co/bbcswebdav/users/cupitaller/Videos/Refactor.mp4

10.	Hojas	de	Trabajo

10.1	Hoja	de	Trabajo	Nº	1:	Un	Estudiante
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Analice	el	siguiente	enunciado	e	identique	el	mundo	del	problema,	lo	que	se
quiere	que	haga	el	programa	y	las	restricciones	para	desarrollarlo.

Se	desea	construir	una	aplicación	para	el	manejo	de	información	de	los	cursos	que	está
tomando	un	estudiante.	El	estudiante	toma	solo	4	cursos	en	el	semestre.	Los	datos
personales	del	estudiante	que	maneja	la	aplicación	son	código,	nombre	y	apellido.

De	cada	curso	se	conoce:

Código.	Es	el	identificador	del	curso	y	no	pueden	haber	dos	cursos	con	el	mismo
código.
Nombre.
Departamento.	Puede	ser	Matemáticas,	Física,	Sistemas	o	Biología.
Cantidad	de	créditos.
Nota	obtenida	en	el	curso.	Este	valor	debe	estar	entre	1.5	y	5.

Para	poder	calcular	el	promedio	del	estudiante,	se	deben	ponderar	las	notas,	teniendo	en
cuenta	la	cantidad	de	créditos	de	las	materias.	Para	esto,	para	cada	curso	se	debe
multiplicar	la	nota	del	curso	con	su	cantidad	de	créditos,	sumar	estos	valores	y	dividir	esta
suma	por	la	cantidad	total	de	créditos	vistos	por	el	estudiante.	Por	ejemplo,	si	el	estudiante
ha	terminado	dos	materias,	“Cálculo	1”	y	“Física	1”,	la	primera	de	4	créditos	y	la	segunda	de
tres,	con	las	siguientes	notas:

Cálculo	1:	4,5
Física	1:	3,5

El	promedio	del	estudiante	es:

(4,5	x	4	+	3,5	x	3)	/	7	=	4,07

Adicionalmente,	se	quiere	poder	saber	si	un	estudiante	está	en	prueba	académica	o	si	es
candidato	para	beca.	Para	esto	se	debe	tener	en	cuenta	las	siguientes	reglas.

Se	considera	que	un	estudiante	está	en	prueba	académica	si	su	promedio	es	inferior	a
3.25.

Hojas	de	trabajo

227

https://bit.ly/apo1-nivel2-hoja2-pdf-format
https://bit.ly/apo1-nivel2-hoja2-word-format

Se	considera	que	un	estudiante	es	candidato	a	beca	si	su	promedio	es	igual	o	superior
a	4.75.

La	aplicación	debe	permitir:	(1)	visualizar	la	información	del	estudiante,	(2)	visualizar	la
información	de	los	cursos,	(3)	modificar	la	información	de	un	curso,	(4)	asignar	una	nota	a
un	curso	(5)	calcular	el	promedio	del	estudiante	(6)	indicar	si	el	estudiante	está	en	prueba
académica,	(7)	indicar	si	el	estudiante	es	candidato	a	beca.

La	interfaz	del	programa	es	la	siguiente:

Requerimientos	funcionales.	Especique	los	siete	requerimientos	funcionales	descritos	en
el	enunciado.

Requerimiento	Funcional	1

Hojas	de	trabajo

228

Nombre R1	–	Visualizar	la	información	del	estudiante.

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Nombre R2	–	Visualizar	la	información	de	los	cursos.

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	trabajo

229

Nombre R3	–	Modificar	la	información	de	un	curso.

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Nombre R4	–	Asignar	una	nota	a	un	curso.

Resumen

Entradas

Resultado

Requerimiento	Funcional	5

Hojas	de	trabajo

230

Nombre R5	–	Calcular	el	promedio	del	estudiante.

Resumen

Entradas

Resultado

Requerimiento	Funcional	6

Nombre R6	–	Indicar	si	el	estudiante	está	en	prueba	académica.

Resumen

Entradas

Resultado

Requerimiento	Funcional	7

Hojas	de	trabajo

231

Nombre R7	–	Indicar	si	el	estudiante	es	candidato	a	beca.

Resumen

Entradas

Resultado

Modelo	conceptual.	Estudie	el	siguiente	modelo	conceptual

Hojas	de	trabajo

232

Declaración	de	las	clases.	Complete	las	declaraciones	de	las	siguientes	clases.

Hojas	de	trabajo

233

public	class	Estudiante
{
				//	---
				//	Atributos
				//	---

}

public	class	Curso
{
				//	---
				//	Atributos
				//	---

}

Creación	de	Expresiones.	Para	cada	uno	de	los	siguientes	enunciados,	escriba	la
expresión	que	lo	representa.	Tenga	en	cuenta	la	clase	dada	para	determinar	los	elementos
disponibles.

Hojas	de	trabajo

234

Curso ¿El	nombre	del	curso
es	“Cálculo	1”?

Curso ¿El	curso	ya	tiene	una
nota	asignada?

Curso ¿El	curso	tiene	más	de
tres	créditos?

Curso ¿El	curso	fue
aprobado?

Estudiante ¿El	código	del
estudiante	es	"1234"?

Estudiante ¿El	primer	curso	tiene
una	nota	asignada?

Estudiante

¿El	segundo	curso
pertenece	al
departamento	de
matemáticas?

Estudiante ¿Cuál	es	el	promedio
del	estudiante?

Desarrollo	de	métodos.	Escriba	el	código	de	los	métodos	indicados.

Hojas	de	trabajo

235

Método	1

Clase:	Curso

Descipción:	Retorna	el	código	del	curso.

public	String	darCodigo()
{

}

Método	2

Clase:	Curso

Descipción:	Indica	si	el	curso	ya	fue	calicado	(tiene	una	nota	distinta	de	cero).

public	boolean	estaCalificado()
{

}

Método	3

Clase:	Estudiante

Descipción:	Retorna	el	nombre	del	estudiante.

public	String	darNombre()
{

}

Método	4

Clase:	Estudiante

Hojas	de	trabajo

236

Descipción:	Indica	si	el	estudiante	ya	tiene	los	cuatro	cursos	pertenecen	al	mismo
departamento.

public	boolean	pertenecenMismoDepartamento()
{

}

Método	5

Clase:	Estudiante

Descipción:	Calcula	el	promedio	de	los	cursos	que	ya	tienen	nota.	Si	ningún	curso	tiene
nota	asignada,	retorna	cero.

public	double	calcularPromedioEstudiante()
{

}

Método	6

Hojas	de	trabajo

237

Clase:	Estudiante

Descipción:	Busca	y	retorna	el	curso	que	tiene	el	código	que	se	recibe	como	parámetro.	Si
ningún	curso	tiene	dicho	código,	el	método	retorna	null.

public	Curso	buscarCurso(String	pCodigoCurso)
{

}

Método	7

Clase:	Estudiante

Descipción:	Indica	si	el	estudiante	se	encuentra	en	prueba	académica.	Retorna	verdadero	si
está	en	prueba	académica,	false	de	lo	contrario.

public	boolean	estaEnPrueba()
{

}

Hojas	de	trabajo

238

Hojas	de	trabajo

239

Nivel	3:	Manejo	de	Grupos	de	Atributos

240

1.	Objetivos	Pedagógicos
Al	final	de	este	nivel	el	lector	será	capaz	de:

Utilizar	las	estructuras	contenedoras	de	tamaño	fijo	como	elementos	para	modelar	una
característica	de	un	elemento	del	mundo	que	permiten	almacenar	una	secuencia	de
valores	(simples	u	objetos).
Utilizar	las	estructuras	contenedoras	de	tamaño	variable	como	elementos	de	modelado
que	permiten	manejar	atributos	cuyo	valor	es	una	secuencia	de	objetos.
Utilizar	las	instrucciones	iterativas	para	manipular	estructuras	contenedoras	y	entender
que	dichas	instrucciones	se	pueden	utilizar	en	otro	tipo	de	problemas.
Crear	una	clase	completa	en	Java	utilizando	el	ambiente	de	desarrollo	Eclipse.
Entender	la	documentación	de	un	conjunto	de	clases	escritas	por	otros	y	utilizar	dicha
documentación	para	poder	incorporar	y	usar	adecuadamente	dichas	clases	en	un
programa	que	se	está	construyendo.

Objetivos	Pedagógicos

241

2.	Motivación
Cuando	nos	enfrentamos	a	la	construcción	del	modelo	conceptual	del	mundo	del	problema,
en	muchas	ocasiones	nos	encontramos	con	el	concepto	de	colección	o	grupo	de	cosas	de
la	misma	clase.	Por	ejemplo,	si	retomamos	el	caso	de	estudio	del	empleado	presentado	en
el	nivel	1	y	lo	generalizamos	a	la	administración	de	todos	los	empleados	de	la	universidad,
es	claro	que	en	alguna	parte	del	diagrama	de	clases	debe	aparecer	el	concepto	de	grupo	de
empleados.	Además,	cuando	planteemos	la	solución,	tendremos	que	definir	un	método	en
alguna	clase	para	añadir	un	nuevo	elemento	a	ese	grupo	(ingresó	un	nuevo	empleado	a	la
universidad)	o	un	método	para	buscar	un	empleado	de	la	universidad	(por	ejemplo,	quién	es
el	empleado	que	tiene	mayor	salario).	De	manera	similar,	si	retomamos	el	caso	de	estudio
del	nivel	2	sobre	la	tienda,	lo	natural	es	que	una	tienda	manipule	un	número	arbitrario	de
productos,	y	no	sólo	cuatro	de	ellos	como	se	definió	en	el	ejemplo.	En	ese	caso,	la	tienda
debe	poder	agregar	un	nuevo	producto	al	grupo	de	los	que	ya	vende,	buscar	un	producto
en	su	catálogo,	etc.

En	este	capítulo	vamos	a	introducir	dos	conceptos	fundamentales	de	la	programación:

1.	 Las	estructuras	contenedoras,	que	nos	permiten	manejar	atributos	cuyo	valor
corresponde	a	una	secuencia	de	elementos.

2.	 Las	instrucciones	repetitivas,	que	son	instrucciones	que	nos	permiten	manipular	los
elementos	contenidos	en	dichas	secuencias.

Además,	en	este	nivel	estudiaremos	la	manera	de	crear	objetos	y	agregarlos	a	una
contenedora,	la	manera	de	crear	una	clase	completa	en	Java	y	la	forma	de	leer	la
descripción	de	un	conjunto	de	clases	desarrolladas	por	otros,	para	ser	capaces	de	utilizarlas
en	nuestros	programas.

Vamos	a	trabajar	sobre	varios	casos	de	estudio	que	iremos	introduciendo	a	lo	largo	del
nivel.

Motivación

242

3.	Caso	de	Estudio	Nº	1:	Las	Notas	de	un
Curso
Considere	el	problema	de	administrar	las	calificaciones	de	los	alumnos	de	un	curso,	en	el
cual	hay	doce	estudiantes,	de	cada	uno	de	los	cuales	se	tiene	la	nota	definitiva	que	obtuvo
(un	valor	entre	0,0	y	5,0).

Se	quiere	construir	un	programa	que	permita:

1.	 Cambiar	la	nota	de	un	estudiante.
2.	 Calcular	el	promedio	del	curso.
3.	 Establecer	el	número	de	estudiantes	que	está	por	encima	de	dicho	promedio.

En	la	figura	3.1	aparece	la	interfaz	de	usuario	que	se	quiere	que	tenga	el	programa.

Fig.	3.1	Interfaz	de	usuario	del	programa	del	primer	caso	de	estudio

En	la	ventana	del	programa	aparece	la	nota	de	cada	uno	de	los	doce	estudiantes	del

Caso	de	Estudio	Nº	1:	Las	Notas	de	un	Curso

243

curso.	La	nota	con	la	que	comienzan	es	siempre	cero.
Con	el	respectivo	botón	es	posible	modificar	la	nota.	Al	oprimirlo,	aparece	una	ventana
de	diálogo	en	la	que	se	pide	la	nueva	nota.
En	la	parte	de	abajo	de	la	ventana	se	encuentran	los	botones	que	implementan	los
requerimientos	funcionales:	calcular	el	promedio	e	indicar	el	número	de	estudiantes	que
están	por	encima	de	dicha	nota.

3.1.	Comprensión	de	los	Requerimientos
Requerimiento	funcional	1

Nombre R1	–	Cambiar	nota.

Resumen Cambia	la	nota	de	uno	de	los	estudiantes	que	pertenece	a	la	lista	del
curso.

Entradas (1)	Número	del	estudiante,	(2)	nota	del	estudiante

Resultado
Se	muestra	la	nueva	nota	del	estudiante.	En	caso	de	que	no	cumpla	el
formato	de	número	decimal	con	punto	como	separador,	se	muestra	un
mensaje	de	error.

Requerimiento	funcional	2

Nombre R2	–	Calcular	promedio	de	notas.

Resumen Calcula	el	promedio	de	notas	de	la	lista	de	estudiantes.

Entradas Ninguna.

Resultado Se	muestra	un	mensaje	con	el	promedio	calculado.

Requerimiento	funcional	3

Nombre R3	–	Calcular	la	cantidad	de	estudiantes	por	encima	del	promedio.

Resumen Calcula	la	cantidad	de	estudiantes	que	tienen	una	nota	registrada	mayor
al	promedio	calculado.

Entradas Ninguna.

Resultado Se	muestra	un	mensaje	con	la	cantidad	de	estudiantes	por	encima	del
promedio.

3.2.	Comprensión	del	Mundo	del	Problema

Caso	de	Estudio	Nº	1:	Las	Notas	de	un	Curso

244

Dado	el	enunciado	del	problema,	el	modelo	conceptual	se	puede	definir	con	una	clase
llamada	Curso,	la	cual	tendría	doce	atributos	de	tipo		double		para	representar	las	notas	de
cada	uno	de	los	estudiantes,	tal	como	se	muestra	en	la	figura	3.2.

Fig.	3.2	Modelo	conceptual	de	las	calificaciones	de	los	estudiantes

Caso	de	Estudio	Nº	1:	Las	Notas	de	un	Curso

245

Caso	de	Estudio	Nº	1:	Las	Notas	de	un	Curso

246

Aunque	este	modelado	es	correcto,	los	métodos	necesarios	para	resolver	el	problema
resultarían	excesivamente	largos	y	dispendiosos.	Cada	expresión	aritmética	para	calcular
cualquier	valor	del	curso	tomaría	muchas	líneas	de	código.	Además,	imagine	si	en	vez	de
12	notas	tuviéramos	que	manejar	50	ó	100.	Terminaríamos	con	algoritmos	imposibles	de
leer	y	de	mantener.	Necesitamos	una	manera	mejor	de	hacer	este	modelado	y	ésta	es	la
motivación	de	introducir	el	concepto	de	estructura	contenedora.

Caso	de	Estudio	Nº	1:	Las	Notas	de	un	Curso

247

4.	Contenedoras	de	Tamaño	Fijo
Lo	ideal,	en	el	caso	de	estudio,	sería	tener	un	sólo	atributo	(llamado	por	ejemplo	notas),	en
donde	pudiéramos	referirnos	a	uno	de	los	valores	individuales	por	un	número	que
corresponda	a	su	posición	en	el	grupo	(por	ejemplo,	la	quinta	nota).	Ese	tipo	de	atributos
que	son	capaces	de	agrupar	una	secuencia	de	valores	se	denominan	contenedoras	y	la
idea	se	ilustra	en	la	figura	3.3.	Vale	la	pena	aclarar	que	la	sintaxis	usada	en	la	figura	no
corresponde	a	la	sintaxis	de	UML,	sino	que	solamente	la	usamos	para	ilustrar	la	idea	de
una	estructura	contenedora.

Fig.	3.3	Modelo	conceptual	de	las	calificaciones	con	una	contenedora

Contenedoras	de	Tamaño	Fijo

248

En	lugar	de	tener	12	atributos	de	tipo	real,	vamos	a	tener	un	sólo	atributo	llamado
"notas"	el	cual	contendrá	en	su	interior	las	12	notas	que	queremos	representar.
Cada	uno	de	los	elementos	del	atributo	"notas"	se	puede	referenciar	utilizando	la
sintaxis	notas[x],	donde	x	es	el	número	del	estudiante	a	quien	corresponde	la	nota
(comenzando	en	0).
Con	esta	representación	podemos	manejar	de	manera	más	simple	y	general	el	grupo
de	notas	de	los	estudiantes.

Contenedoras	de	Tamaño	Fijo

249

Un	objeto	de	la	clase	Curso	se	vería	como	aparece	en	la	figura	3.4.	Allí	se	puede	apreciar
que	las	posiciones	dentro	de	una	contenedora	se	comienzan	a	numerar	a	partir	del	valor	0	y
que	los	elementos	individuales	se	referencian	a	través	de	su	posición.	Cada	nota	va	en	una
posición	distinta	de	la	contenedora	de	tipo		double		llamada	notas.

Fig.	3.4	–	Representación	gráfica	de	un	arreglo

En	las	secciones	que	siguen	veremos	la	manera	de	declarar	(en	UML	y	en	Java)	un	atributo
que	corresponda	a	una	contenedora,	y	a	manipular	los	valores	allí	incluidos.

4.1	Declaración	de	un	Arreglo
En	Java,	las	estructuras	contenedoras	de	tamaño	fijo	se	denominan	arreglos	(arrays	en
inglés),	y	se	declaran	como	se	muestra	en	el	ejemplo	1.	Los	arreglos	se	utilizan	para
modelar	una	característica	de	una	clase	que	corresponde	a	un	grupo	de	elementos,	de	los
cuales	se	conoce	su	número.	Si	no	supiéramos,	por	ejemplo,	el	número	de	estudiantes	del
curso	en	el	caso	de	estudio,	deberíamos	utilizar	una	contenedora	de	tamaño	variable,	que
es	el	tema	de	una	sección	posterior	de	este	capítulo.

Ejemplo	1

Objetivo:	Mostrar	la	sintaxis	usada	en	Java	para	declarar	un	arreglo.

Contenedoras	de	Tamaño	Fijo

250

En	este	ejemplo	se	hace	la	declaración	del	arreglo	de	notas,	como	parte	de	la	clase	Curso
del	caso	de	estudio.

public	class	Curso
{
				//-----------------------------------
				//	Constantes
				//-----------------------------------
				public	final	static	int	TOTAL_EST	=	12;

				//-----------------------------------
				//	Atributos
				//-----------------------------------
				private	double[]	notas;
				...
}

Es	conveniente	declarar	el	número	de	posiciones	del	arreglo	como	una	constante
(TOTAL_EST).	Eso	facilita	realizar	más	tarde	modificaciones	al	programa.	Si	en	vez	de
12	hay	que	manejar	15	estudiantes,	bastaría	con	cambiar	dicho	valor.
En	el	momento	de	declarar	el	atributo	"	notas	",	usamos	la	sintaxis	"	[]	"	para	indicar
que	va	a	contener	un	grupo	de	valores.
El	tamaño	del	arreglo	será	determinado	en	el	momento	de	la	inicialización	del	arreglo,
en	el	método	constructor.	Por	ahora	no	hay	que	decir	nada	al	respecto.
En	la	declaración	le	decimos	al	compilador	que	todos	los	elementos	del	arreglo	son	de
tipo		double	.
Recuerde	que	los	elementos	de	un	arreglo	se	comienzan	a	referenciar	a	partir	de	la
posición	0.

4.2	Inicialización	de	un	Arreglo
Al	igual	que	con	cualquier	otro	atributo	de	una	clase,	es	necesario	inicializar	los	arreglos	en
el	método	constructor	antes	de	poderlos	utilizar.	Para	hacerlo,	se	debe	definir	el	tamaño	del
arreglo,	es	decir	el	número	de	elementos	que	va	a	contener.	Esta	inicialización	es
obligatoria,	puesto	que	es	en	ese	momento	que	le	decimos	al	computador	cuántos	valores
debe	manejar	en	el	arreglo,	lo	que	corresponde	al	espacio	en	memoria	que	debe	reservar.
Veamos	en	el	ejemplo	2	cómo	se	hace	esto	para	el	caso	de	estudio.

Si	tratamos	de	acceder	a	un	elemento	de	un	arreglo	que	no	ha	sido	inicializado,	vamos
a	obtener	el	error	de	ejecución:	java.lang.NullPointerException

Ejemplo	2

Contenedoras	de	Tamaño	Fijo

251

Objetivo:	Mostrar	la	manera	de	inicializar	un	arreglo	en	Java.

En	este	ejemplo	mostramos,	en	el	contexto	del	caso	de	estudio,	la	manera	de	inicializar	el
arreglo	de	notas	dentro	del	constructor	de	la	clase	Curso.

public	Curso()
{
				notas	=	new	double[TOTAL_EST]	;
}

Se	utiliza	la	instrucción		new		como	con	cualquier	otro	objeto,	pero	se	le	especifica	el
número	de	valores	que	debe	contener	el	arreglo	(TOTAL_EST,	que	es	una	constante
de	valor	12).
Esta	construcción	reserva	el	espacio	para	el	arreglo,	pero	el	valor	de	cada	uno	de	los
elementos	del	arreglo	sigue	siendo	indefinido.	Esto	lo	arreglaremos	más	adelante.

El	lenguaje	Java	provee	un	operador	especial	(length)	para	los	arreglos,	que	permite
consultar	el	número	de	elementos	que	éstos	contienen.	En	el	caso	de	estudio,	la	expresión
	notas.length		debe	dar	el	valor	12,	independientemente	de	si	los	valores	individuales	ya
han	sido	o	no	inicializados,	puesto	que	en	el	método	constructor	de	la	clase	se	reservó
dicho	espacio	de	memoria.

4.3.	Acceso	a	los	Elementos	del	Arreglo
Un	índice	es	un	valor	entero	que	nos	sirve	para	indicar	la	posición	de	un	elemento	en	un
arreglo.	Los	índices	van	desde	0	hasta	el	número	de	elementos	menos	1.	En	el	caso	de
estudio,	la	primera	nota	tiene	el	índice	0	y	la	última,	el	índice	11.	Para	tomar	o	modificar	el
valor	de	un	elemento	particular	de	un	arreglo	necesitamos	dar	su	índice,	usando	la	sintaxis
que	aparece	en	el	siguiente	método	de	la	clase	Curso	y	que,	en	el	caso	general,	se	puede
resumir	como		<arreglo>[<índice>]	.

Contenedoras	de	Tamaño	Fijo

252

public	void	noHaceNadaUtil(double	valor)
{
				int	indice	=	10;	
				notas[0]	=	3.5;
				if(valor	<	2.5	&&	notas.length	==	TOTAL_EST)
				{
								notas[indice]	=	notas[0];	
								notas[0]	=	valor	+	1.0;
				}
				else
				{
								notas[indice]	=	notas[0]	-	valor;
				}
}

Este	método	sólo	lo	utilizamos	para	ilustrar	la	sintaxis	que	se	utiliza	en	Java	para
manipular	los	elementos	de	un	arreglo.
Para	asignar	un	valor	a	una	casilla	del	arreglo,	usamos	la	sintaxis		notas[x]	=	valor	,
donde	x	es	el	índice	que	nos	indica	una	posición.
Para	obtener	el	valor	de	una	casilla,	usamos	la	misma	sintaxis	(notas[x])	y	para
conocer	el	número	de	casillas	del	arreglo	usamos		notas.length		.

De	esta	manera	podemos	asignar	cualquier	valor	de	tipo		double		a	cualquiera	de	las
casillas	del	arreglo,	o	tomar	el	valor	que	allí	se	encuentra.

Cuando	dentro	de	un	método	tratamos	de	acceder	una	casilla	con	un	índice	no	válido
(menor	que	0	o	mayor	o	igual	que	el	número	de	casillas),	obtenemos	el	error	de
ejecución:	java.lang.ArrayIndexOutOfBoundsException

Es	importante	destacar	que,	hasta	este	momento,	lo	único	que	hemos	ganado	con	la
introducción	de	los	arreglos	es	no	tener	que	usar	atributos	individuales	para	representar	una
característica	que	incluye	un	grupo	de	elementos.	Es	más	cómodo	tener	un	sólo	atributo
con	todos	esos	elementos	en	su	interior.	Las	verdaderas	ventajas	de	usar	arreglos	las
veremos	a	continuación,	al	introducir	las	instrucciones	repetitivas.

Contenedoras	de	Tamaño	Fijo

253

5.	Instrucciones	Repetitivas

5.1.	Introducción
En	muchos	problemas	notamos	una	regularidad	que	sugiere	que	su	solución	puede	lograrse
repitiendo	un	paso	que	vaya	transformando	gradualmente	el	estado	del	mundo	modelado	y
acercándose	a	la	solución.	Instintivamente	es	lo	que	hacemos	cuando	subimos	unas
escaleras:	repetimos	el	paso	de	subir	un	escalón	hasta	que	llegamos	al	final.	Otro	ejemplo
posible	es	si	suponemos	que	tenemos	en	una	hoja	de	papel	una	lista	de	palabras	sin	ningún
orden	y	nos	piden	buscar	si	la	palabra	"casa"	está	en	la	lista.	El	algoritmo	que	seguimos
para	realizar	está	tarea	puede	ser	descrito	de	la	siguiente	manera:

1.	 Verifique	si	la	primera	palabra	es	igual	a	"casa".
2.	 Si	lo	es,	no	busque	más.	Si	no	lo	es,	busque	la	segunda	palabra.
3.	 Verifique	si	la	segunda	palabra	es	igual	a	"casa".
4.	 Si	lo	es,	no	busque	más.	Si	no	lo	es,	busque	la	tercera	palabra.
5.	 Repita	el	procedimiento	palabra	por	palabra,	hasta	que	la	encuentre	o	hasta	que	no

haya	más	palabras	para	buscar.

Tarea	1

Objetivo:	Explicar	el	significado	de	la	instrucción	repetitiva	y	usarla	para	definir	un	algoritmo
que	resuelva	un	problema	simple.

Suponga	que	en	el	ejemplo	anterior,	ya	no	queremos	buscar	una	palabra	sino	contar	el
número	total	de	letras	que	hay	en	todas	las	palabras	de	la	hoja.

Escriba	el	algoritmo	para	resolver	el	problema:

Instrucciones	Repetitivas

254

5.2.	Calcular	el	Promedio	de	las	Notas
Para	resolver	el	segundo	requerimiento	del	caso	de	estudio	(R2	-	calcular	el	promedio	de
las	notas),	debemos	calcular	la	suma	de	todas	las	notas	del	curso	para	luego	dividirlo	por	el
número	de	estudiantes.	Esto	se	puede	hacer	con	el	método	que	se	muestra	a	continuación:

public	double	promedio()
{
				double	suma	=	notas[0]	+	notas[1]	+	notas[2]	+	
																		notas[3]	+	notas[4]	+	notas[5]	+	
																		notas[6]	+	notas[7]	+	notas[8]	+	
																		notas[9]	+	notas[10]	+	notas[11];
				return	suma	/	TOTAL_EST;
}

Primero	sumamos	las	notas	de	todos	los	estudiantes	y	guardamos	el	valor	en	la
variable	suma.
El	promedio	corresponde	a	dividir	dicho	valor	por	el	número	de	estudiantes,
representado	con	la	constante		TOTAL_EST	.

Si	planteamos	el	problema	de	manera	iterativa,	podemos	escribir	el	mismo	método	de	la
siguiente	manera,	en	la	cual,	en	cada	paso,	acumulamos	el	valor	del	siguiente	elemento:

Instrucciones	Repetitivas

255

public	double	promedio()
{	
				double	suma	=	0.0;
				int	indice	=	0;

				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];	
				indice++;
				suma	+=	notas[indice];

				return	suma	/	TOTAL_EST;
}

Esta	solución	también	calcula	el	promedio	del	curso,	pero	en	lugar	de	hacer	referencia
directa	a	las	doce	casillas	del	arreglo,	utiliza	un	índice	que	va	desplazando	desde	0
hasta	11.
Por	supuesto	que	es	más	clara	la	solución	anterior,	pero	queremos	utilizar	este	ejemplo
para	introducir	las	instrucciones	iterativas,	que	expresan	esta	misma	idea	de
"desplazar"	un	índice,	pero	usando	una	sintaxis	mucho	más	compacta.
Lo	primero	que	debemos	notar	es	que	vamos	a	ejecutar	12	veces	(TOTAL_EST		veces
para	ser	exactos)	un	grupo	de	instrucciones.
Ese	grupo	de	instrucciones	es:		suma	+=	notas[indice];	indice++	;
Después	de	ejecutar	12	veces	esas	dos	instrucciones,	en	la	variable	suma	tendremos
el	valor	total,	listo	para	dividirlo	por	el	número	de	estudiantes.
El	índice	comienza	teniendo	el	valor	0	y	termina	teniendo	el	valor	11.	De	esta	manera,
cada	vez	que	hacemos	referencia	al	elemento		notas[indice]	,	estamos	hablando	de
una	casilla	distinta	del	arreglo.

Instrucciones	Repetitivas

256

Allí	repetimos	12	veces	una	pareja	de	instrucciones,	una	vez	por	cada	elemento	del	arreglo.
Basta	un	poco	de	reflexión	para	ver	que	lo	que	necesitamos	es	poder	decir	que	esas	dos
instrucciones	se	deben	repetir	tantas	veces	como	notas	haya	en	el	arreglo.	Las
instrucciones	repetitivas	nos	permiten	hacer	eso	de	manera	sencilla.	En	el	siguiente	método
se	ilustra	el	uso	de	la	instrucción		while		para	el	mismo	problema	del	cálculo	del	promedio.

public	double	promedio()
{
				double	suma	=	0.0;
				int	indice	=	0;
				while(indice	<	TOTAL_EST)
				{
								suma	+=	notas[indice];	
								indice++;
				}
				return	suma	/	TOTAL_EST;
}

La	estructura	del	método	sigue	siendo	la	misma,	con	la	única	diferencia	de	que	en	lugar
de	repetir	12	veces	la	pareja	de	instrucciones,	las	incluimos	dentro	de	la	instrucción
	while	,	que	se	encarga	de	ejecutar	repetidamente	las	instrucciones	que	tiene	en	su
interior.
La	instrucción		while		sirve	para	decirle	al	computador	que	"mientras	que"	una
condición	se	cumpla,	siga	ejecutando	las	instrucciones	que	están	por	dentro.
La	condición	en	el	ejemplo	es		indice	<	TOTAL_EST	,	que	equivale	a	decirle	que
"mientras	que"	el	índice	no	llegue	a	12,	vuelva	a	ejecutar	la	pareja	de	instrucciones	que
tiene	asociadas.

Ahora	veremos	las	partes	de	las	instrucciones	repetitivas	y	su	significado.

5.3.	Componentes	de	una	Instrucción
Repetitiva
La	figura	3.5	ilustra	la	manera	en	que	se	ejecuta	una	instrucción	repetitiva.	Primero,	y	por
una	sola	vez,	se	ejecutan	las	instrucciones	que	vamos	a	llamar	de	inicio	o	preparación	del
ciclo.	Allí	se	le	da	el	valor	inicial	al	índice	y	a	las	variables	en	las	que	queremos	acumular
los	valores	durante	el	recorrido.	Luego,	se	evalúa	la	condición	del	ciclo.	Si	es	falsa,	se
ejecutan	las	instrucciones	que	se	encuentran	después	del	ciclo.	Si	es	verdadera,	se
ejecutan	las	instrucciones	del	cuerpo	del	ciclo	para	finalmente	volver	a	repetir	el	mismo
proceso.	Cada	repetición,	que	incluye	la	evaluación	de	la	condición	y	la	ejecución	del
cuerpo	del	ciclo,	recibe	el	nombre	de	iteración	o	bucle.

Instrucciones	Repetitivas

257

Fig.	3.5	Ejecución	de	una	instrucción	repetitiva

Usualmente	en	un	lenguaje	de	programación	hay	varias	formas	de	escribir	una	instrucción
repetitiva.	En	Java	existen	varias	formas,	pero	en	este	libro	sólo	vamos	a	presentar	dos	de
ellas:	la	instrucción		for		y	la	instrucción		while	.

5.3.1.	Las	Instrucciones	for	y	while

Una	instrucción	repetitiva	con	la	instrucción		while		se	escribe	de	la	siguiente	manera:

<inicio>
while(<condición>)
{
				<cuerpo>
				<avance>
}

Las	instrucciones	de	preparación	del	ciclo	van	antes	de	la	instrucción	repetitiva.
La	condición	que	establece	si	se	debe	repetir	de	nuevo	el	ciclo	va	siempre	entre
paréntesis.
El	avance	del	ciclo	es	una	parte	opcional,	en	la	cual	se	modifican	los	valores	de
algunos	de	los	elementos	que	controlan	la	salida	del	ciclo	(avanzar	el	índice	con	el	que

Instrucciones	Repetitivas

258

se	recorre	un	arreglo	sería	parte	de	esta	sección).

Una	instrucción	repetitiva	con	la	instrucción		for		se	escribe	de	la	siguiente	manera:

<inicio1>
for(<inicio2>;	<condición>;	<avance>)
{
				<cuerpo>
}

El	inicio	va	separado	en	dos	partes:	en	la	primera,	va	la	declaración	y	la	inicialización
de	las	variables	que	van	a	ser	utilizadas	después	de	terminado	el	ciclo	(la	variable
	suma	,	por	ejemplo,	en	el	método	del	promedio).	En	la	segunda	parte	de	la	zona	de
inicio	van	las	variables	que	serán	utilizadas	únicamente	dentro	de	la	instrucción
repetitiva	(la	variable		índice	,	por	ejemplo,	que	sólo	sirve	para	desplazarse	recorriendo
las	casillas	del	arreglo).
La	segunda	parte	del	inicio,	lo	mismo	que	el	avance	del	ciclo,	se	escriben	en	el
encabezado	de	la	instrucción		for	.

Ejemplo	3

Objetivo:	Mostrar	la	manera	de	utilizar	la	instrucción	iterativa		for	.

En	este	ejemplo	se	presenta	una	implementación	del	método	que	calcula	el	promedio	de
notas	del	caso	de	estudio,	en	la	cual	se	utiliza	la	instrucción		for	.

public	double	promedio()
{
				double	suma	=	0.0;
				for(int	indice	=	0;	indice	<	TOTAL_EST;	indice++)
				{
								suma	+=	notas[indice];
				}
				return	suma	/	TOTAL_EST;
}

Puesto	que	la	variable	"	suma	"	será	utilizada	por	fuera	del	cuerpo	del	ciclo,	es
necesario	declararla	antes	del	for.
La	variable	"	indice	"	es	interna	al	ciclo,	por	eso	se	declara	dentro	del	encabezado.
El	avance	del	ciclo	consiste	en	incrementar	el	valor	del	"	indice	".
En	este	ejemplo,	los	corchetes	del		for		son	opcionales,	porque	sólo	hay	una
instrucción	dentro	del	cuerpo	del	ciclo.

Instrucciones	Repetitivas

259

Vamos	a	ver	en	más	detalle	cada	una	de	las	partes	de	la	instrucción	y	las	ilustraremos	con
algunos	ejemplos.

5.3.2.	El	Inicio	del	Ciclo

El	objetivo	de	las	instrucciones	de	inicio	o	preparación	del	ciclo	es	asegurarnos	de	que
vamos	a	empezar	el	proceso	repetitivo	con	las	variables	de	trabajo	en	los	valores	correctos.
En	nuestro	caso,	una	variable	de	trabajo	la	utilizamos	como	índice	para	movernos	por	el
arreglo	y	la	otra	para	acumular	la	suma	de	las	notas:

La	suma	antes	de	empezar	el	ciclo	debe	ser	cero:		double	suma	=	0.0;	
El	índice	a	partir	del	cual	vamos	a	iterar	debe	ser	cero:	int	indice	=	0;	

5.3.3.	La	Condición	para	Continuar

El	objetivo	de	la	condición	del	ciclo	es	identificar	el	caso	en	el	cual	se	debe	volver	a	hacer
una	nueva	iteración.	Esta	condición	puede	ser	cualquier	expresión	lógica:	si	su	evaluación
da	verdadero,	significa	que	se	deben	ejecutar	de	nuevo	las	instrucciones	del	ciclo.	Si	es
falsa,	el	ciclo	termina	y	se	continúa	con	la	instrucción	que	sigue	después	de	la	instrucción
repetitiva.

Típicamente,	cuando	se	está	recorriendo	un	arreglo	con	un	índice,	la	condición	del	ciclo
dice	que	se	debe	volver	a	iterar	mientras	el	índice	sea	menor	que	el	número	total	de
elementos	del	arreglo.	Para	indicar	este	número,	se	puede	utilizar	la	constante	que	define
su	tamaño	(TOTAL_EST)	o	el	operador	que	calcula	el	número	de	elementos	de	un	arreglo
(notas.length).

Dado	que	los	arreglos	comienzan	en	0,	la	condición	del	ciclo	debe	usar	el	operador		<	
y	el	número	de	elementos	del	arreglo.	Son	errores	comunes	comenzar	los	ciclos	con	el
índice	en	1	o	tratar	de	terminar	con	la	condición		indice	<=	notas.length	.

5.3.4.	El	Cuerpo	del	Ciclo
El	cuerpo	del	ciclo	contiene	las	instrucciones	que	se	van	a	repetir	en	cada	iteración.	Estas
instrucciones	indican:

La	manera	de	modificar	algunas	de	las	variables	de	trabajo	para	ir	acercándose	a	la
solución	del	problema.	Por	ejemplo,	si	el	problema	es	encontrar	la	suma	de	las	notas
de	todos	los	estudiantes	del	curso,	con	la	instrucción		suma	+=	notas[indice]	
agregamos	un	nuevo	valor	al	acumulado.
La	manera	de	modificar	los	elementos	del	arreglo,	a	medida	que	el	índice	pasa	por
cada	casilla.	Por	ejemplo,	si	queremos	sumar	una	décima	a	todas	las	notas,	lo

Instrucciones	Repetitivas

260

hacemos	con	la	instrucción		notas[indice]	+=	0.1	.

5.3.5.	El	Avance	del	Ciclo
Cuando	se	recorre	un	arreglo,	es	necesario	mover	el	índice	que	indica	la	posición	en	la	que
estamos	en	un	momento	dado	(indice++).	En	algún	punto	(en	el	avance	o	en	el	cuerpo)
debe	haber	una	instrucción	que	cambie	el	valor	de	la	condición	para	que	finalmente	ésta
sea	falsa	y	se	detenga	así	la	ejecución	de	la	instrucción	iterativa.	Si	esto	no	sucede,	el
programa	se	quedará	en	un	ciclo	infinito.

Si	construimos	un	ciclo	en	el	que	la	condición	nunca	sea	falsa	(por	ejemplo,	si
olvidamos	escribir	las	instrucciones	de	avance	del	ciclo),	el	programa	dará	la	sensación
de	que	está	bloqueado	en	algún	lado,	o	podemos	llegar	al	error:
java.lang.OutOfMemoryError

Tarea	2

Objetivo:	Practicar	el	desarrollo	de	métodos	que	tengan	instrucciones	repetitivas.

Para	el	caso	de	estudio	de	las	notas	de	los	estudiantes	escriba	los	métodos	de	la	clase
Curso	que	resuelven	los	problemas	planteados.

Calcular	el	número	de	estudiantes	que	sacaron	una	nota	entre	3,0	y	5,0:

public	int	calcularCantidadAprobados()
{

}

Calcular	la	mayor	nota	del	curso:

Instrucciones	Repetitivas

261

public	double	calcularMayorNota()
{

}

Contar	el	número	de	estudiantes	que	sacaron	una	nota	inferior	a	la	del	estudiante	que	está
en	la	posición	del	arreglo	que	se	entrega	como	parámetro.	Suponga	que	el	parámetro
	pPosEst		tiene	un	valor	comprendido	entre		0		y		TOTAL_EST	–	1	.

public	int	calcularCantidadNotasInferioresA(int	pPosEst)
{

}********

Aumentar	el	5%	todas	las	notas	del	curso,	sin	que	ninguna	de	ellas	sobrepase	el	valor	5,0:

public	void	hacerCurva()
{

}

Instrucciones	Repetitivas

262

5.4.	Patrones	de	Algoritmo	para	Instrucciones
Repetitivas
Cuando	trabajamos	con	estructuras	contenedoras,	las	soluciones	de	muchos	de	los
problemas	que	debemos	resolver	son	similares	y	obedecen	a	ciertos	esquemas	ya
conocidos	(¿cuántas	personas	no	habrán	resuelto	ya	los	mismos	problemas	que	estamos
aquí	resolviendo?).	En	esta	sección	pretendemos	identificar	tres	de	los	patrones	que	más
se	repiten	en	el	momento	de	escribir	un	ciclo,	y	con	los	cuales	se	pueden	resolver	todos	los
problemas	del	caso	de	estudio	planteados	hasta	ahora.	Lo	ideal	sería	que,	al	leer	un
problema	que	debemos	resolver	(el	método	que	debemos	escribir),	pudiéramos	identificar	el
patrón	al	cual	corresponde	y	utilizar	las	guías	que	existen	para	resolverlo.	Eso	simplificaría
enormemente	la	tarea	de	escribir	los	métodos	que	tienen	ciclos.

Un	patrón	de	algoritmo	se	puede	ver	como	una	solución	genérica	para	un	tipo	de
problemas,	en	la	cual	el	programador	sólo	debe	resolver	los	detalles	particulares	de	su
problema	específico.

En	esta	sección	vamos	a	introducir	tres	patrones	que	se	diferencian	por	el	tipo	de	recorrido
que	hacemos	sobre	la	secuencia.

5.4.1.	Patrón	de	Recorrido	Total

En	muchas	ocasiones,	para	resolver	un	problema	que	involucra	una	secuencia,
necesitamos	recorrer	todos	los	elementos	que	ésta	contiene	para	lograr	la	solución.	En	el
caso	de	estudio	de	las	notas	tenemos	varios	ejemplos	de	esto:

Calcular	la	suma	de	todas	las	notas.
Contar	cuántos	en	el	curso	obtuvieron	la	nota	3,5.
Contar	cuántos	estudiantes	aprobaron	el	curso.
Contar	cuántos	en	el	curso	están	por	debajo	del	promedio	(conociendo	este	valor).
Aumentar	en	10%	todas	las	notas	inferiores	a	2,0.

¿Qué	tienen	en	común	los	algoritmos	que	resuelven	esos	problemas?	La	respuesta	es	que
la	solución	requiere	siempre	un	recorrido	de	todo	el	arreglo	para	poder	cumplir	el	objetivo
que	se	está	buscando:	debemos	pasar	una	vez	por	cada	una	de	las	casillas	del	arreglo.
Esto	significa:

1.	 Que	el	índice	para	iniciar	el	ciclo	debe	empezar	en	cero.
2.	 Que	la	condición	para	continuar	es	que	el	índice	sea	menor	que	la	longitud	del	arreglo.
3.	 Que	el	avance	consiste	en	sumarle	uno	al	índice.

Instrucciones	Repetitivas

263

Esa	estructura	que	se	repite	en	todos	los	algoritmos	que	necesitan	un	recorrido	total	es	lo
que	denominamos	el	esqueleto	del	patrón,	el	cual	se	puede	resumir	con	el	siguiente
fragmento	de	código:

for(int	indice	=	0;	indice	<	arreglo.length;	indice++)
{
				<cuerpo>
}

Es	común	que	en	lugar	de	la	variable	"	indice	"	se	utilice	una	variable	llamada	"	i	".
Esto	hace	el	código	un	poco	más	compacto.
En	lugar	del	operador	"	length	",	se	puede	utilizar	también	la	constante	que	indica	el
número	de	elementos	del	arreglo.
Los	corchetes	del	"	for	"	sólo	son	necesarios	si	el	cuerpo	tiene	más	de	una	instrucción.

Lo	que	cambia	en	cada	caso	es	lo	que	se	quiere	hacer	en	el	cuerpo	del	ciclo.	Aquí	hay	dos
variantes	principales.	En	la	primera,	algunos	de	los	elementos	del	arreglo	van	a	ser
modificados	siguiendo	una	regla	(por	ejemplo,	aumentar	en	10%	todas	las	notas	inferiores	a
2,0).	Lo	único	que	se	hace	en	ese	caso	es	reemplazar	el	del	esqueleto	por	las	instrucciones
que	hacen	la	modificación	pedida	a	un	elemento	del	arreglo	(el	que	se	encuentra	en	la
posición	indice).	Esa	variante	se	ilustra	en	el	ejemplo	4.

Ejemplo	4

Objetivo:	Mostrar	la	primera	variante	del	patrón	de	recorrido	total.

En	este	ejemplo	se	presenta	la	implementación	del	método	de	la	clase	Curso	que	aumenta
en	10%	todas	las	notas	inferiores	a	2,0.

public	void	hacerCurva()
{
				for(int	i	=	0;	i	<	notas.length;	i++)
				{
								if(notas[i]	<	2.0)
								{
												notas[i]	=	notas[i]	*	1.1;
								}		
				}
}

El	esqueleto	del	patrón	de	algoritmo	de	recorrido	total	se	copia	dentro	del	cuerpo	del
método.
Se	reemplaza	el	cuerpo	del	patrón	por	la	instrucción	condicional	que	hace	la
modificación	pedida.

Instrucciones	Repetitivas

264

En	el	cuerpo	se	indica	la	modificación	que	debe	sufrir	el	elemento	que	está	siendo
referenciado	por	el	índice	con	el	que	se	recorre	el	arreglo.

La	segunda	variante	corresponde	a	calcular	alguna	propiedad	sobre	el	conjunto	de
elementos	del	arreglo	(por	ejemplo,	contar	cuántos	estudiantes	aprobaron	el	curso).	Esta
variante	implica	cuatro	decisiones	que	definen	la	manera	de	completar	el	esqueleto	del
patrón:

1.	 Cómo	acumular	la	información	que	se	va	llevando	a	medida	que	avanza	el	ciclo.
2.	 Cómo	inicializar	dicha	información.
3.	 Cuál	es	la	condición	para	modificar	dicho	acumulado	en	el	punto	actual	del	ciclo.
4.	 Cómo	modificar	el	acumulado.

En	el	ejemplo	5	se	ilustra	esta	variante.

Ejemplo	5

Objetivo:	Mostrar	la	segunda	variante	del	patrón	de	recorrido	total.

En	este	ejemplo	se	presenta	la	aplicación	del	patrón	de	algoritmo	de	recorrido	total,	para	el
problema	de	contar	el	número	de	estudiantes	que	aprobaron	el	curso.

¿Cómo	acumular	información?

Vamos	a	utilizar	una	variable	de	tipo	entero	llamada		vanAprobando	,	que	va	llevando	durante
el	ciclo	el	número	de	estudiantes	que	aprobaron	el	curso.

¿Cómo	inicializar	el	acumulado?

La	variable		vanAprobando		se	debe	inicializar	en	0,	puesto	que	inicialmente	no	hemos
encontrado	todavía	ningún	estudiante	que	haya	pasado	el	curso.

¿Condición	para	cambiar	el	acumulado?

Cuando		notas[indice]		sea	mayor	o	igual	a	3,0,	porque	quiere	decir	que	hemos
encontrado	otro	estudiante	que	pasó	el	curso.

¿Cómo	modificar	el	acumulado?

El	acumulado	se	modifica	incrementándolo	en	1.

Instrucciones	Repetitivas

265

public	int	darCantidadAprobados()
{	
				int	vanAprobando	=	0;
				for(int	i	=	0;	i	<	notas.length;	i++)
				{
								if(notas[i]	>=	3.0)
								{
												vanAprobando++;
								}				
				}	
				return	vanAprobando;
}

Las	cuatro	decisiones	tomadas	anteriormente	van	a	definir	la	manera	de	completar	el
esqueleto	del	algoritmo	definido	por	el	patrón.
Las	decisiones	1	y	2	definen	el	inicio	del	ciclo.
Las	decisiones	3	y	4	ayudan	a	construir	el	cuerpo	del	mismo.

A	continuación	se	muestra	cómo	sería	el	método	anterior	utilizando	la	instrucción	for-each.

public	int	darCantidadAprobados()
{
				int	vanAprobando	=	0;
				for(Double	nota:	notas)
				{
								if(nota	>=	3.0)
								{
												vanAprobando++;
								}
				}
				return	vanAprobando;
}

En	resumen,	si	el	problema	planteado	corresponde	al	patrón	de	recorrido	total,	se	debe
identificar	la	variante	y	luego	tomar	las	decisiones	que	definen	la	manera	de	completar
el	esqueleto.

Tarea	3

Objetivo:	Generar	habilidad	en	el	uso	del	patrón	de	algoritmo	de	recorrido	total.

Escriba	los	métodos	de	la	clase	Curso	que	resuelven	los	siguientes	problemas,	los	cuales
corresponden	a	las	dos	variantes	del	patrón	de	algoritmo	de	recorrido	total.

Instrucciones	Repetitivas

266

Escriba	un	método	para	modificar	las	notas	de	los	estudiantes	de	la	siguiente	manera:	a
todos	los	que	obtuvieron	más	de	4,0,	les	quita	0,5.	A	todos	los	que	obtuvieron	menos	de
2,0,	les	aumenta	0,5.	A	todos	los	demás,	les	deja	la	nota	sin	modificar:

public	void	cambiarNotas()
{

}

Escriba	un	método	que	retorne	la	menor	nota	del	curso:

public	double	darMenorNota	()
{

}

Escriba	un	método	que	indique	en	cuál	rango	se	encuentra	la	mayoría	de	las	notas	del
curso.	Los	rangos	están	definidos	de	la	siguiente	manera:	rango	1	de	0,0	a	1,99,	rango	2	de
2,0	a	3,49,	rango	3	de	3,5	a	5,0.	El	método	debe	retornar	el	número	del	rango.

Instrucciones	Repetitivas

267

public	int	darRangoConMasNotas()
{

}

5.4.2.	Patrón	de	Recorrido	Parcial

En	algunos	problemas	de	manejo	de	secuencias	no	es	necesario	recorrer	todos	los
elementos	para	lograr	el	objetivo	propuesto.	Piense	en	la	solución	de	los	siguientes
problemas:

Informar	si	algún	estudiante	obtuvo	la	nota	5,0.
Buscar	el	primer	estudiante	con	nota	igual	a	cero.
Indicar	si	más	de	3	estudiantes	perdieron	el	curso.
Aumentar	el	10%	en	la	nota	del	primer	estudiante	que	haya	sacado	más	de	4,0.

En	todos	esos	casos	hacemos	un	recorrido	del	arreglo,	pero	éste	debe	terminar	tan	pronto
hayamos	resuelto	el	problema.	Por	ejemplo,	el	método	que	informa	si	algún	estudiante
obtuvo	cinco	en	la	nota	del	curso	debe	salir	del	proceso	iterativo	tan	pronto	localice	el
primer	estudiante	con	esa	nota.	Sólo	si	no	lo	encuentra,	va	a	llegar	hasta	el	final	de	la
secuencia.

Un	recorrido	parcial	se	caracteriza	porque	existe	una	condición	que	debemos	verificar	en
cada	iteración	para	saber	si	debemos	detener	el	ciclo	o	volver	a	repetirlo.

En	este	patrón,	debemos	adaptar	el	esqueleto	del	patrón	anterior	para	que	tenga	en	cuenta
la	condición	de	salida,	de	la	siguiente	manera:

Instrucciones	Repetitivas

268

boolean	termino	=	false;

for(int	i	=	0;	i	<	arreglo.length	&&	!termino;	i++)
{
				<cuerpo>

				if(<ya	se	cumplió	el	objetivo>)	
				{
								termino	=	true;
				}			
}

Primero,	declaramos	una	variable	de	tipo		boolean		para	controlar	la	salida	del	ciclo,	y	la
inicializamos	en	false.
Segundo,	en	la	condición	del	ciclo	usamos	el	valor	de	la	variable	que	acabamos	de
definir:	si	su	valor	es	verdadero,	no	debe	volver	a	iterar.
Tercero,	en	algún	punto	del	ciclo	verificamos	si	el	problema	ya	ha	sido	resuelto	(si	ya	se
cumplió	el	objetivo).	Si	ése	es	el	caso,	cambiamos	el	valor	de	la	variable	a	verdadero.

for(int	i	=	0;	i	<	arreglo.length	&&	!<condición>;	i++)
{
				<cuerpo>
}

Este	patrón	de	esqueleto	es	más	simple	que	el	anterior,	pero	sólo	se	debe	usar	si	la
expresión	que	indica	que	ya	se	cumplió	el	objetivo	del	ciclo	es	sencilla.

Cuando	se	aplica	el	patrón	de	recorrido	parcial,	el	primer	paso	que	se	debe	seguir	es
identificar	la	condición	que	indica	que	el	problema	ya	fue	resuelto.	Con	esa	información
se	puede	tomar	la	decisión	de	cuál	esqueleto	de	algoritmo	es	mejor	usar.

Ejemplo	6

Objetivo:	Mostrar	el	uso	del	patrón	de	recorrido	parcial	para	resolver	un	problema.

En	este	ejemplo	se	presentan	tres	soluciones	posibles	al	problema	de	decidir	si	algún
estudiante	obtuvo	cinco	en	la	nota	del	curso.

Instrucciones	Repetitivas

269

public	boolean	hayAlguienConCinco()
{
				boolean	termino	=	false;

				for(int	i	=	0;	i	<	notas.length	&&	!termino;	i++)
				{
								if(notas[i]	==	5.0)	
								{
												termino	=	true;
								}				
				}

				return	termino;
}

La	condición	para	no	seguir	iterando	es	que	se	encuentre	una	nota	igual	a	5,0	en	la
posición		i	.
Al	final	del	método,	se	retorna	el	valor	de	la	variable	"	termino	",	que	indica	si	el	objetivo
se	cumplió.	Esto	funciona	en	este	caso	particular,	porque	dicha	variable	dice	que	en	el
arreglo	se	encontró	una	nota	igual	al	valor	buscado.

public	boolean	hayAlguienConCinco()
{
				int	i	=	0;
				while(i	<	notas.length	&&	notas[i]	!=	5.0)
				{
								i++;
				}
				return	i	<	notas.length;
}

Esta	es	la	segunda	solución	posible,	y	evita	el	uso	de	la	variable	"	termino	",	pero	tiene
varias	consecuencias	sobre	la	instrucción	iterativa.
En	lugar	de	la	instrucción		for		es	más	conveniente	usar	la	instrucción	while	.
La	condición	de	continuación	en	el	ciclo	es	que	la	i-ésima	nota	sea	diferente	de	5,0.
El	método	debe	retornar	verdadero	si	la	variable		i		no	llegó	hasta	el	final	del	arreglo,
porque	esto	querría	decir	que	encontró	en	dicha	posición	una	nota	igual	a	cinco.

Instrucciones	Repetitivas

270

public	boolean	hayAlguienConCinco()
{
				for(int	i	=	0;	i	<	notas.length;	i++)
				{
								if(notas[i]	==	5.0)
								{
												return	true;
								}				
				}
				return	false;
}

Esta	es	la	tercera	solución	posible.	Si	dentro	del	ciclo	ya	tenemos	la	respuesta	del
método,	en	lugar	de	utilizar	la	condición	para	salir	del	ciclo,	la	usamos	para	salir	de
todo	el	método.
En	la	última	instrucción	retorna	falso,	porque	si	llega	a	ese	punto	quiere	decir	que	no
encontró	ninguna	nota	con	el	valor	buscado.
Esta	manera	de	salir	de	un	ciclo,	terminando	la	ejecución	del	método	en	el	que	éste	se
encuentra,	se	debe	usar	con	algún	cuidado,	puesto	que	se	puede	producir	código	difícil
de	entender.

Hay	muchas	soluciones	posibles	para	resolver	un	problema.	Un	patrón	de	algoritmo
sólo	es	una	guía	que	se	debe	adaptar	al	problema	específico	y	al	estilo	preferido	del
programador.

Para	el	patrón	de	recorrido	parcial	aparecen	las	mismas	dos	variantes	que	para	el	patrón	de
recorrido	total	(ver	ejemplo	7):

En	la	primera	variante	se	modifican	los	elementos	del	arreglo	hasta	que	una	condición
se	cumpla	(por	ejemplo,	encontrar	las	tres	primeras	notas	con	1,5	y	asignarles	2,5).	En
ese	caso,	en	el	cuerpo	del	método	va	la	modificación	que	hay	que	hacerle	al	elemento
que	se	encuentra	en	el	índice	actual,	pero	se	debe	controlar	que	cuando	haya	llegado	a
la	tercera	modificación	termine	el	ciclo.
En	la	segunda	variante,	se	deben	tomar	las	mismas	cuatro	decisiones	que	se	tomaban
con	el	patrón	de	recorrido	total,	respecto	de	la	manera	de	acumular	la	información	para
calcular	la	respuesta	que	está	buscando	el	método.

Ejemplo	7

Objetivo:	Mostrar	el	uso	del	patrón	de	recorrido	parcial,	en	sus	dos	variantes.

En	este	ejemplo	se	presentan	dos	métodos	de	la	clase	Curso,	en	cada	uno	de	los	cuales	se
ilustra	una	de	las	variantes	del	patrón	de	recorrido	parcial.

Instrucciones	Repetitivas

271

Encontrar	las	primeras	tres	notas	iguales	a	1,5	y	asignarles	2,5:

public	void	subirNotas()
{
				int	numNotas		=		0;				
				for(int	i	=		0;	i	<		notas.length	&&		numNotas		<		3;	i++)				
				{				
								if(notas[i]	==	1,5)
								{
												numNotas++;
												notas[i]	=		2,5;				
								}
				}
}

Este	método	corresponde	a	la	primera	variante,	porque	hace	una	modificación	de	los
elementos	del	arreglo	hasta	que	una	condición	se	cumpla.	En	el	método	del	ejemplo,
debemos	contar	el	número	de	modificaciones	que	hacemos,	para	detenernos	al	llegar	a	la
tercera.

Retornar	la	posición	en	la	secuencia	de	la	tercera	nota	con	valor	5,0.	Si	dicha	nota	no
aparece	al	menos	3	veces,	el	método	debe	retornar	el	valor	–1:

public	int	darTercerCinco()
{
				int	cuantosCincos	=	0;
				int	posicion	=	-1;
				for(int	i	=		0;	i	<	notas.length	&&	posicion	==	-1;	i++)
				{
								if(notas[i]	==	5,0)
								{
												cuantosCincos++;
												if(cuantosCincos	==	3)
												{
																posicion	=	i;
												}
								}
				}
				return	posicion;
}

¿Cómo	acumular	información?	En	este	caso	necesitamos	dos	variables	para	acumular
la	información:	la	primera	para	llevar	el	número	de	notas	iguales	a	5,0	que	han
aparecido	(cuantosCincos),	la	segunda	para	indicar	la	posición	de	la	tercera	nota	5,0
(posicion).
¿Cómo	inicializar	el	acumulado?	La	variable		cuantosCincos		debe	comenzar	en	0.	La
variable		posicion		debe	comenzar	en	menos	1.

Instrucciones	Repetitivas

272

¿Condición	para	cambiar	el	acumulado?	Si	la	nota	actual	es	5,0	debemos	cambiar
nuestro	acumulado.
¿Cómo	modificar	el	acumulado?	Debe	cambiar	la	variable		cuantosCincos	,
incrementándose	en	1.	Si	es	el	tercer	5,0	de	la	secuencia,	la	variable		posicion		debe
cambiar	su	valor,	tomando	el	valor	del	índice	actual.

Tarea	4

Objetivo:	Generar	habilidad	en	el	uso	del	patrón	de	algoritmo	de	recorrido	parcial.

Escriba	los	métodos	de	la	clase	Curso	que	resuelven	los	siguientes	problemas,	los	cuales
corresponden	a	las	dos	variantes	del	patrón	de	algoritmo	de	recorrido	parcial.

Reemplazar	todas	las	notas	del	curso	por	0,0,	hasta	que	aparezca	la	primera	nota	superior
a	3,0.

public	void	cambiarNotasACero()
{

}

Calcular	el	número	mínimo	de	notas	del	curso	necesarias	para	que	la	suma	supere	el	valor
30,	recorriéndolas	desde	la	posición	0	en	adelante.	Si	al	sumar	todas	las	notas	no	se	llega	a
ese	valor,	el	método	debe	retornar	–1.

public	int	sumadasDanTreinta()
{

}

Instrucciones	Repetitivas

273

5.4.3.	Patrón	de	Doble	Recorrido

El	último	de	los	patrones	que	vamos	a	ver	en	este	capítulo	es	el	de	doble	recorrido.	Este
patrón	se	utiliza	como	solución	de	aquellos	problemas	en	los	cuales,	por	cada	elemento	de
la	secuencia,	se	debe	hacer	un	recorrido	completo.	Piense	en	el	problema	de	encontrar	la
nota	que	aparece	un	mayor	número	de	veces	en	el	curso.	La	solución	evidente	es	tomar	la
primera	nota	y	hacer	un	recorrido	completo	del	arreglo	contando	el	número	de	veces	que
ésta	vuelve	a	aparecer.	Luego,	haríamos	lo	mismo	con	los	demás	elementos	del	arreglo	y
escogeríamos	al	final	aquélla	que	aparezca	un	mayor	número	de	veces.

El	esqueleto	básico	del	algoritmo	con	el	que	se	resuelven	los	problemas	que	siguen	este
patrón	es	el	siguiente:

for(int	indice1	=	0;	indice1	<	arreglo.length;	indice1++)
{
				for(int	indice2	=	0;	indice2	<	arreglo.length;	indice2++)
				{
								<cuerpo	del	ciclo	interno>
				}

				<cuerpo	del	ciclo	externo>
}

El	ciclo	de	afuera	está	controlado	por	la	variable	"	indice1	",	mientras	que	el	ciclo
interno	utiliza	la	variable	"	indice2	".
Dentro	del	cuerpo	del	ciclo	interno	se	puede	hacer	referencia	a	la	variable	"	indice1	".

Las	variantes	y	las	decisiones	son	las	mismas	que	identificamos	en	los	patrones	anteriores.
La	estrategia	de	solución	consiste	en	considerar	el	problema	como	dos	problemas
independientes,	y	aplicar	los	patrones	antes	vistos,	tal	como	se	muestra	en	el	ejemplo	8.

Ejemplo	8

Objetivo:	Mostrar	el	uso	del	patrón	de	algoritmo	de	recorrido	total	con	doble	recorrido.

En	este	ejemplo	se	muestra	el	método	de	la	clase	Curso	que	retorna	la	nota	que	aparece	un
mayor	número	de	veces.	Para	escribirlo	procederemos	por	etapas,	las	cuales	se	describen
en	la	parte	derecha.

Instrucciones	Repetitivas

274

public	double	darNotaMasRecurrente()
{
				double	notaMasRecurrente	=	0.0;

				for(int	i	=	0;	i	<	notas.length;	i++)
				{
								for(int	j	=	0;	j	<	notas.length;	j++)
								{

												//Por	completar

								}
				}

				return	notaMasRecurrente	;
}

Primera	etapa:	armar	la	estructura	del	método	a	partir	del	esqueleto	del	patrón.
Utilizamos	las	variables		i		y		j		para	llevar	los	índices	en	cada	uno	de	los	ciclos.
Decidimos	que	el	resultado	lo	vamos	a	dejar	en	una	variable	llamada
	notaMasRecurrente	,	la	cual	retornamos	al	final	del	método.
Una	vez	construida	la	base	del	método,	identificamos	los	dos	problemas	que	debemos
resolver	en	su	interior:	(1)	contar	el	número	de	veces	que	aparece	en	el	arreglo	el	valor
que	está	en	la	casilla	i;	(2)	encontrar	el	mayor	valor	entre	los	que	son	calculados	por	el
primer	problema.

public	double	darNotaMasRecurrente()
{
				double	notaMasRecurrente	=	0.0;

				for(int	i	=	0;	i	<	notas.length;	i++)
				{
								double	notaBuscada	=	notas[i];	
								int	contador	=	0;

								for(int	j	=	0;	j	<	notas.length;	j++)
								{
												if(notas[j]	==	notaBuscada)	
												{
																contador++;
												}				
								}

								//Por	completar
				}
				return	notaMasRecurrente	;
}

Instrucciones	Repetitivas

275

Segunda	etapa:	Resolvemos	el	primero	de	los	problemas	identificados,	usando	para
eso	el	ciclo	interno.
Para	facilitar	el	trabajo,	vamos	a	dejar	en	la	variable		notaBuscada	,	la	nota	para	la	cual
queremos	contar	el	número	de	ocurrencias.	Dicha	variable	la	inicializamos	con	la	nota
de	la	casilla	i.
Usamos	una	segunda	variable	llamada		contador		para	acumular	allí	el	número	de
veces	que	aparezca	el	valor	buscado	dentro	del	arreglo.	Dicho	valor	será	incrementado
cuando		notaBuscada	==	notas[j]	.
Al	final	del	ciclo,	en	la	variable	contador	quedará	el	número	de	veces	que	el	valor	de	la
casilla	i	aparece	en	todo	el	arreglo.

public	double	darNotaMasRecurrente()
{

				double	notaMasRecurrente	=	0.0;
				int	cantidadOcurrencias=	0;

				for(int	i	=	0;	i	<	notas.length;	i++)
				{
								double	notaBuscada	=	notas[i];
								int	contador	=	0;

								for(int	j	=	0;	j	<	notas.length;	j++)
								{
												if(notas[j]	==	notaBuscada)
												{
																contador++;
												}				
								}

								if(contador	>	cantidadOcurrencias)
								{
												notaMasRecurrente	=	notaBuscada;
												cantidadOcurrencias=	contador;
								}
				}

				return	notaMasRecurrente	;

}

Tercera	etapa:	Usamos	el	ciclo	externo	para	encontrar	la	nota	que	más	veces	aparece.
Usamos	para	eso	dos	variables:		notaMasRecurrente		que	indica	la	nota	que	hasta	el
momento	más	veces	aparece,	y		cantidadOcurrencias		para	saber	cuántas	veces
aparece	dicha	nota.
Luego	definimos	el	caso	en	el	cual	debemos	cambiar	el	acumulado:	si	encontramos	un
valor	que	aparezca	más	veces	que	el	que	teníamos	hasta	el	momento	(contador	>

Instrucciones	Repetitivas

276

cantidadOcurrencias)	debemos	actualizar	los	valores	de	nuestras	variables.

En	general,	este	patrón	dice	que	para	resolver	un	problema	que	implique	un	doble	recorrido,
primero	debemos	identificar	los	dos	problemas	que	queremos	resolver	(uno	con	cada	ciclo)
y,	luego,	debemos	tratar	de	resolverlos	independientemente,	usando	los	patrones	de
recorrido	total	o	parcial.

Si	para	resolver	un	problema	se	necesita	un	tercer	ciclo	anidado,	debemos	escribir	métodos
separados	que	ayuden	a	resolver	cada	problema	individualmente,	tal	como	se	plantea	en	el
nivel	4,	porque	la	solución	directa	es	muy	compleja	y	propensa	a	errores.

Tarea	5

Objetivo:	Generar	habilidad	en	el	uso	del	patrón	de	algoritmo	de	doble	recorrido.

Escriba	el	método	de	la	clase	Curso	que	resuelve	el	siguiente	problema,	que	corresponde	al
patrón	de	algoritmo	de	doble	recorrido.

Calcular	una	nota	del	curso	(si	hay	varias	que	lo	cumplan	puede	retornar	cualquiera)	tal	que
la	mitad	de	las	notas	sean	menores	o	iguales	a	ella.

public	double	notaMediana()
{

}

Instrucciones	Repetitivas

277

6.	Caso	de	Estudio	Nº	2:	Reservas	en	un
Vuelo
Un	cliente	quiere	que	construyamos	un	programa	para	manejar	las	reservas	de	un	vuelo.	Se
sabe	que	el	avión	tiene	50	sillas,	de	las	cuales	8	son	de	clase	ejecutiva	y	las	demás	de
clase	económica.	Las	sillas	ejecutivas	se	acomodan	en	filas	de	cuatro,	separadas	en	el
medio	por	el	corredor.	Las	sillas	económicas	se	acomodan	en	filas	de	seis,	tres	a	cada	lado
del	corredor.

Cuando	un	pasajero	llega	a	solicitar	una	silla,	indica	sus	datos	personales	y	sus
preferencias	con	respecto	a	la	posición	de	la	silla	en	el	avión.	Los	datos	del	pasajero	que	le
interesan	a	la	aerolínea	son	el	nombre	y	la	cédula.	Para	dar	la	ubicación	deseada,	el
pasajero	indica	la	clase	y	la	ubicación	de	la	silla.	Esta	puede	ser,	en	el	caso	de	las
ejecutivas,	ventana	y	pasillo,	y	en	el	de	las	económicas,	ventana,	pasillo	y	centro.	La
asignación	de	la	silla	en	el	avión	se	hace	en	orden	de	llegada,	tomando	en	cuenta	las
preferencias	anteriores	y	las	disponibilidades.

La	interfaz	de	usuario	del	programa	a	la	que	se	llegó	después	de	negociar	con	el	cliente	se
muestra	en	la	figura	3.6.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

278

Fig.	3.6	Interfaz	de	usuario	para	el	caso	de	estudio	del	avión

En	la	parte	superior	del	avión	aparecen	las	8	sillas	ejecutivas.
En	la	parte	inferior,	aparecen	las	42	sillas	económicas,	con	un	corredor	en	la	mitad.
Se	ofrecen	las	distintas	opciones	del	programa	a	través	de	los	botones	que	se	pueden
observar	en	la	parte	superior	de	la	ventana.
Cuando	una	silla	está	ocupada,	ésta	aparecerá	indicada	en	el	dibujo	del	avión	con	un
color	especial.
Cada	silla	tiene	asignado	un	número	que	es	único.	La	silla	7,	por	ejemplo,	está	en
primera	clase,	en	el	corredor	de	la	segunda	fila.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

279

6.1.	Comprensión	de	los	Requerimientos
Nos	vamos	a	concentrar	en	el	siguiente	requerimiento	funcional:

Nombre R1	-	Asignar	una	silla	a	un	pasajero.

Resumen Asigna	una	silla	a	un	pasajero	según	sus	preferencias.	Estas	son	clase
(Ejecutiva	o	Económica)	y	ubicación	(Ventana,	Centro	o	Pasillo).

Entradas (1)	nombre	del	pasajero,	(2)	cédula	del	pasajero,	(3)	clase	de	la	silla,	(4)
ubicación	de	la	silla.

Resultados
Se	marca	como	asignada	una	de	las	sillas	disponibles	en	el	avión,
dependiendo	de	la	clase	y	ubicación	elegida.	En	caso	de	que	todas	las
sillas	estén	asignadas,	se	muestra	un	mensaje	de	error.

6.2.	Comprensión	del	Mundo	del	Problema
Podemos	identificar	tres	entidades	distintas	en	el	mundo:	avión,	silla	y	pasajero.	Lo	cual	nos
lleva	al	diagrama	de	clases	que	se	muestra	en	la	figura	3.7.

Fig.	3.7	Diagrama	de	clases	para	el	caso	de	estudio	del	avión

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

280

En	este	diagrama	se	puede	leer	lo	siguiente:

Una	silla	puede	ser	ejecutiva	o	económica	(un	enumerador	con	las	dos	constantes
definidas	para	la	posible	clase	de	la	Silla),	puede	estar	localizada	en	pasillo,	corredor	o
centro	(un	enumerador	con	tres	constantes	definidas	para	la	posible	ubicación	de	la
Silla),	y	tiene	un	identificador	único	que	es	un	valor	numérico.
Entre	Silla	y	Pasajero	hay	una	asociación	opcional	(0..1).	Si	la	asociación	está	presente
se	interpreta	como	que	la	silla	está	ocupada	y	se	conoce	el	pasajero	que	allí	se
encuentra.	Si	no	está	presente	(vale	null)	se	interpreta	como	que	la	silla	está
disponible.
Un	pasajero	se	identifica	con	la	cédula	y	tiene	un	nombre.
Un	avión	tiene	8	sillas	ejecutivas	(constante	SILLAS_EJECUTIVAS	de	la	clase	Avion)	y
42	sillas	económicas	(constante	SILLAS_ECONOMICAS	de	la	clase	Avion).	Fíjese
cómo	se	expresa	la	cardinalidad	de	una	asociación	en	UML.

6.3.	Diseño	de	la	Solución
Vamos	a	dividir	el	proyecto	en	3	paquetes,	siguiendo	la	arquitectura	planteada	en	el	primer
nivel	del	libro.	Los	paquetes	son:

uniandes.cupi2.avion.interfaz	
uniandes.cupi2.avion.test	
uniandes.cupi2.avion.mundo

La	principal	decisión	de	diseño	del	programa	se	refiere	a	la	manera	de	representar	el	grupo
de	sillas	del	avión.	Para	esto	vamos	a	manejar	dos	arreglos	de	objetos.	Uno	con	8
posiciones	que	tendrá	los	objetos	de	la	clase	Silla	que	representan	las	sillas	de	la	clase
ejecutiva,	y	otro	arreglo	de	42	posiciones	con	los	objetos	para	representar	las	sillas
económicas.

En	las	secciones	que	siguen	presentaremos	las	distintas	clases	del	modelo	del	mundo	que
constituyen	la	solución.	Comenzamos	por	la	clase	más	sencilla	(la	clase	Pasajero)	y
terminamos	por	la	clase	que	tiene	la	responsabilidad	de	manejar	los	grupos	de	atributos	(la
clase	Avion),	en	donde	tendremos	la	oportunidad	de	utilizar	los	patrones	de	algoritmo	vistos
en	las	secciones	anteriores.

6.4.	La	Clase	Pasajero
Tarea	6

Objetivo:	Hacer	la	declaración	en	Java	de	la	clase	Pasajero.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

281

Complete	la	declaración	de	la	clase	Pasajero,	incluyendo	sus	atributos,	el	constructor	y	los
métodos	que	retornan	la	cédula	y	el	nombre.	Puede	guiarse	por	el	diagrama	de	clases	que
aparece	en	la	figura	3.7.

public	class	Pasajero
{

				//-----------------------------------
				//	Atributos
				//-----------------------------------

				//-----------------------------------
				//	Constructor
				//-----------------------------------
				public	Pasajero(String	pCedula,	String	pNombre)
				{

				}

				//-----------------------------------
				//	Métodos
				//-----------------------------------
				public	String	darCedula()
				{

				}
				public	String	darNombre()
				{

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

282

				}
}

6.5.	La	Clase	Silla

Tarea	7

Objetivo:	Completar	la	declaración	de	la	clase	Silla.

Complete	las	declaraciones	de	los	atributos	y	las	enumeraciones	de	la	clase	Silla	y
desarrolle	los	métodos	que	se	le	piden	para	esta	clase.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

283

public	class	Silla
{
				//---
				//	Enumeraciones
				//---

				/**
						*	Enumeradores	para	las	clases	de	silla.
						*/
					public	enum	Clase	
					{
								/**
										*	Representa	la	clase	ejecutiva.
										*/
										EJECUTIVA,

										/**
											*	Representa	la	clase	económica.
											*/
										ECONOMICA
				}		

				/**
						*	Enumeradores	para	las	ubicaciones	de	las	sillas.
						*/
					public	enum	Ubicacion	
					{
								/**
										*	Representa	la	ubicación	ventana.
										*/
									VENTANA,

									/**
										*	Representa	la	ubicación	centro.
										*/

									/**
										*	Representa	la	ubicación	pasillo.
										*/

				}

				...
}

Se	declara	un	enumerador	con	dos	constantes	para	el	atributo	clase	de	la	silla
(EJECUTIVA,	ECONOMICA).
Se	declara	un	enumerador	con	tres	constantes	para	representar	las	tres	ubicaciones
posibles	de	una	silla	(VENTANA,	CENTRAL,	PASILLO).

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

284

public	class	Silla
{
				...

				//---
				//	Atributos
				//---
				private	int	numero;
				private	Clase	clase;
				private	Ubicacion	ubicacion;
				private	Pasajero	pasajero;

				...
}

Se	declaran	en	la	clase	cuatro	atributos:	(1)	el	número	de	la	silla,	(2)	la	clase	de	la	silla,
(3)	su	ubicación	y	(4)	el	pasajero	que	opcionalmente	puede	ocupar	la	silla.
El	atributo	"	pasajero	"	debe	tener	el	valor		null		si	no	hay	ningún	pasajero	asignado	a
la	silla.

public	Silla(int	pNumero,	Clase	pClase,	Ubicacion	pUbicacion)
{
				numero	=	pNumero;
				clase	=	pClase;
				ubicacion	=	pUbicacion;
				pasajero	=	null;
}

En	el	constructor	se	inicializan	los	atributos	a	partir	de	los	valores	que	se	reciben	como
parámetro.
Se	inicializa	el	atributo		pasajero		en		null	,	para	indicar	que	la	silla	se	encuentra	vacía.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

285

public	class	Silla
{
				...
				public	void	asignarPasajero(Pasajero	pPasajero)
				{

				}
				...
}

Asigna	la	silla	al	pasajero	"pPasajero".

public	class	Silla
{
				...
				public	void	desasignarSilla	()
				{

				}
				...
}

Quita	al	pasajero	que	se	encuentra	en	la	silla,	dejándola	desocupada.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

286

public	class	Silla
{
				...
				public	boolean	sillaAsignada()
				{

				}
				...
}

Informa	si	la	silla	está	ocupada.

public	class	Silla
{
				...
				public	int	darNumero()
				{

				}
				...
}

Retorna	el	número	de	la	silla.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

287

public	class	Silla
{
				...
				public	Clase	darClase()
				{

				}
				...
}

Retorna	la	clase	de	la	silla.

public	class	Silla
{
				...
				public	Ubicacion	darUbicacion()
				{

				}
				...
}

Retorna	la	ubicación	de	la	silla.

public	class	Silla
{
				...
				public	Pasajero	darPasajero()
				{

				}
				...
}

Retorna	el	pasajero	de	la	silla.

6.6.	La	Clase	Avion

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

288

Ejemplo	9

Objetivo:	Mostrar	las	declaraciones	y	el	constructor	de	la	clase	Avion.

En	este	ejemplo	se	presentan	las	declaraciones	de	los	atributos	y	las	constantes	de	la	clase
Avion,	lo	mismo	que	su	método	constructor.

public	class	Avion
{
				//--
				//	Constantes
				//--
				public	final	static	int	SILLAS_EJECUTIVAS	=	8;
				public	final	static	int	SILLAS_ECONOMICAS	=	42;
				...

}

Con	dos	constantes	representamos	el	número	de	sillas	de	cada	una	de	las	clases.

public	class	Avion
{
				...
				//--
				//	Atributos
				//--
				private	Silla[]	sillasEjecutivas;
				private	Silla[]	sillasEconomicas;

				...
}

La	clase	Avion	tiene	dos	contenedoras	de	tamaño	fijo	de	sillas:	una,	de	42	posiciones,
con	las	sillas	de	clase	económica,	y	otra,	de	8	posiciones,	con	las	sillas	de	clase
ejecutiva.
Se	declaran	los	dos	arreglos,	utilizando	la	misma	sintaxis	que	utilizamos	en	el	caso	de
las	notas	del	curso.
La	única	diferencia	es	que,	en	lugar	de	contener	valores	de	tipo	simple,	van	a	contener
objetos	de	la	clase	Silla.

A	continuación	aparece	un	fragmento	del	constructor	de	la	clase.	En	las	primeras	dos
instrucciones	del	constructor,	creamos	los	arreglos,	informando	el	número	de	casillas	que
deben	contener.	Para	eso	usamos	las	constantes	definidas	en	la	clase.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

289

Después	de	haber	reservado	el	espacio	para	los	dos	arreglos,	procedemos	a	crear	los
objetos	que	representan	cada	una	de	las	sillas	del	avión	y	los	vamos	poniendo	en	la
respectiva	casilla.

Esta	inicialización	se	podría	haber	hecho	con	varios	ciclos,	pero	el	código	resultaría	un	poco
difícil	de	explicar.

public	Avion()
{
				sillasEjecutivas	=	new	Silla[SILLAS_EJECUTIVAS];	
				sillasEconomicas	=	new	Silla[SILLAS_ECONOMICAS];

				//	Creación	de	las	sillas	de	clase	ejecutiva
				sillasEjecutivas[0]	=	new	Silla(1,	Clase.EJECUTIVA,	Ubicacion.VENTANA);	
				sillasEjecutivas[1]	=	new	Silla(2,	Clase.EJECUTIVA,	Ubicacion.PASILLO);	
				sillasEjecutivas[2]	=	new	Silla(3,	Clase.EJECUTIVA,	Ubicacion.PASILLO);	
				sillasEjecutivas[3]	=	new	Silla(4,	Clase.EJECUTIVA,	Ubicacion.VENTANA);	
				sillasEjecutivas[4]	=	new	Silla(5,	Clase.EJECUTIVA,	Ubicacion.VENTANA);	
				sillasEjecutivas[5]	=	new	Silla(6,	Clase.EJECUTIVA,	Ubicacion.PASILLO);	
				sillasEjecutivas[6]	=	new	Silla(7,	Clase.EJECUTIVA,	Ubicacion.PASILLO);	
				sillasEjecutivas[7]	=	new	Silla(8,	Clase.EJECUTIVA,	Ubicacion.VENTANA);

				//	Creación	de	las	sillas	de	clase	económica
				sillasEconomicas[0]	=	new	Silla(9,	Clase.ECONOMICA,	Ubicacion.VENTANA);	
				sillasEconomicas[1]	=	new	Silla(10,	Clase.ECONOMICA,	Ubicacion.CENTRAL);	
				sillasEconomicas[2]	=	new	Silla(11,	Clase.ECONOMICA,	Ubicacion.PASILLO);
				...
}

Ya	con	las	declaraciones	hechas	y	con	el	constructor	implementado,	estamos	listos	para
comenzar	a	desarrollar	los	distintos	métodos	de	la	clase.	Pero	antes	de	empezar,	queremos
hablar	un	poco	de	las	diferencias	que	existen	entre	un	arreglo	de	valores	de	tipo	simple
(como	el	del	caso	de	estudio	de	las	notas)	y	un	arreglo	de	objetos	(como	el	del	caso	del
avión).

Para	empezar,	en	la	figura	3.8a	se	muestra	una	instancia	de	la	clase	Silla	ocupada	por	un
pasajero.	En	la	figura	3.8b	se	muestra	un	objeto	de	la	clase	Silla	que	se	encuentra	vacía.	En
la	figura	3.8c	se	ilustra	un	posible	contenido	del	arreglo	de	sillas	ejecutivas	(usando	un
diagrama	de	objetos).

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

290

Fig.	3.8	Ejemplo	del	contenido	del	arreglo	de	sillas	ejecutivas

Figura	3.8a:	en	la	silla	de	primera	clase	número	6,	situada	en	el	corredor,	está	sentado
el	Sr.	José	Sánchez	con	cédula	No.	1234.
Figura	3.8b:	la	silla	de	clase	económica	número	10,	situada	en	el	centro,	está
desocupada.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

291

Figura	3.8c:	cada	casilla	del	arreglo	tiene	un	objeto	de	la	clase	Silla	(incluso	si	la	silla
está	desocupada).
Las	sillas	ocupadas	tienen	una	asociación	con	el	objeto	que	representa	al	pasajero	que
la	ocupa.	*	En	los	arreglos	de	objetos	se	almacenan	referencias	a	los	objetos,	en	lugar
de	los	objetos	mismos.
Con	la	sintaxis		sillasEjecutivas[x]		podemos	hacer	referencia	al	objeto	de	la	clase
Silla	que	se	encuentra	en	la	casilla	x.
Si	queremos	llegar	hasta	el	pasajero	que	se	encuentra	en	alguna	parte	del	avión,
debemos	siempre	pasar	por	la	silla	que	ocupa.	No	hay	otra	manera	de	"navegar"	hasta
él.

Ya	teniendo	una	visualización	del	diagrama	de	objetos	del	caso	de	estudio,	es	más	fácil
contestar	las	siguientes	preguntas:

¿Cómo	se
llama	un

método	de	un
objeto	que
está	en	un
arreglo?

Por	ejemplo,	dentro	de	la	clase	Avion,	para	preguntar	si	la	silla
que	está	en	la	posición	0	del	arreglo	de	sillas	ejecutivas	está

ocupada,	se	utiliza	la	sintaxis:		sillasEjecutivas[0].sillaAsignada(
)	.Esta	sintaxis	es	sólo	una	extensión	de	la	sintaxis	que	ya

veníamos	utilizando.	Lo	único	que	se	debe	tener	en	cuenta	es
que	cada	vez	que	hacemos	referencia	a	una	casilla,	estamos

hablando	de	un	objeto,	más	que	de	un	valor	simple.

¿Los	objetos
que	están	en
un	arreglo	se
pueden
guardar	en
una	variable?

Tanto	las	variables	como	las	casillas	de	los	arreglos	guardan
únicamente	referencias	a	los	objetos.	Si	se	hace	la	siguiente
asignación:		Silla	sillaTemporal	=	sillasEjecutivas[0];		tanto	la
variable		sillaTemporal		como	la	casilla	0	del	arreglo	estarán
haciendo	referencia	al	mismo	objeto.	Debe	quedar	claro	que	el
objeto	no	se	duplica,	sino	que	ambos	nombres	hacen	referencia	al
mismo	objeto.

¿Qué	pasa
con	el	objeto
que	está
siendo
referenciado
desde	una
casilla	si
asigno		null		a
esa	posición
del	arreglo?

Si	guardó	una	referencia	a	ese	objeto	en	algún	otro	lado,	puede
seguir	usando	el	objeto	a	través	de	dicha	referencia.	Si	no	guardó
una	referencia	en	ningún	lado,	el	recolector	de	basura	de	Java
detecta	que	ya	no	lo	está	usando	y	recupera	la	memoria	que	el
objeto	estaba	utilizando.	¡Adiós	objeto!

Ejemplo	10

Objetivo:	Mostrar	la	sintaxis	que	se	usa	para	manipular	arreglos	de	objetos.

En	este	ejemplo	se	muestra	el	código	de	un	método	de	la	clase	Avion	que	permite	eliminar
todas	las	reservas	del	avión.	No	forma	parte	de	los	requerimientos	funcionales,	pero	nos	va
a	permitir	mostrar	una	aplicación	del	patrón	de	recorrido	total.

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

292

public	void	eliminarReservas()
{
				for(int	i	=	0;	i	<	SILLAS_EJECUTIVAS;	i++)
				{
								sillasEjecutivas[i].desasignarSilla();
				}

				for(int	i	=	0;	indice	<	SILLAS_ECONOMICAS;	i++)
				{
								sillasEconomicas[i].desasignarSilla();
				}
}

Este	método	elimina	todas	las	reservas	que	hay	en	el	avión.
Note	que	podemos	utilizar	la	misma	variable	como	índice	en	los	dos	ciclos.	La	razón	es
que	en	la	instrucción		for	,	al	terminar	de	ejecutar	el	ciclo,	se	destruyen	las	variables
declaradas	dentro	de	él	y,	por	esta	razón,	podemos	volver	a	utilizar	el	mismo	nombre
para	la	variable	del	segundo	ciclo.
El	método	utiliza	el	patrón	de	recorrido	total	dos	veces,	una	por	cada	uno	de	los
arreglos	del	avión.

Ya	vimos	toda	la	teoría	concerniente	al	manejo	de	los	arreglos	(estructuras	contenedoras	de
tamaño	fijo).	Lo	que	sigue	es	aplicar	los	patrones	de	algoritmo	que	vimos	unas	secciones
atrás,	para	implementar	los	métodos	de	la	clase	Avion.

Tarea	8

Objetivo:	Desarrollar	los	métodos	de	la	clase	Avión	que	nos	permitan	implementar	los
requerimientos	funcionales	del	caso	de	estudio.

Para	cada	uno	de	los	problemas	que	se	plantean	a	continuación,	escriba	el	método	que	lo
resuelve.	No	olvide	identificar	primero	el	patrón	de	algoritmo	que	se	necesita	y	usar	las
guías	que	se	dieron	en	secciones	anteriores.

Calcular	el	número	de	sillas	ejecutivas	ocupadas	en	el	avión:

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

293

public	int	contarSillasEjecutivasOcupadas()
{

}

Localizar	la	silla	en	la	que	se	encuentra	el	pasajero	identificado	con	la	cédula	que	se
entrega	como	parámetro.	Si	no	hay	ningún	pasajero	en	clase	ejecutiva	con	esa	cédula,	el
método	retorna		null	.

public	Silla	buscarPasajeroEjecutivo(String	pCedula)
{

}

Localizar	una	silla	económica	disponible,	en	una	localización	dada	(ventana,	centro	o
pasillo).	Si	no	existe	ninguna,	el	método	retorna		null	:

public	Silla	buscarSillaEconomicaLibre(Ubicacion	pUbicacion)
{

}

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

294

Asignar	al	pasajero	que	se	recibe	como	parámetro	una	silla	en	clase	económica	que	esté
libre	(en	la	ubicación	pedida).	Si	el	proceso	tiene	éxito,	el	método	retorna	verdadero.	En
caso	contrario,	retorna	falso:

public	boolean	asignarSillaEconomica(Ubicacion	pUbicacion,	Pasajero	pPasajero)
{

}

Anular	la	reserva	en	clase	ejecutiva	que	tenía	el	pasajero	con	la	cédula	dada.	Retorna
verdadero
si	el	proceso	tiene	éxito:

public	boolean	anularReservaEjecutivo(String	pCedula)
{

}

Contar	el	número	de	puestos	disponibles	en	una	ventana,	en	la	zona	económica	del	avión:

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

295

public	int	contarVentanasEconomica()
{

}

Informar	si	en	la	zona	económica	del	avión	hay	dos	personas	que	se	llamen	igual.	Patrón	de
doble
recorrido:

public	boolean	hayDosHomonimosEconomica()
{

}

6.7.	La	instrucción	for-each
El	esqueleto	del	patrón	de	recorrido	total	también	puede	definirse	con	la	instrucción	for-
each,	la	cual	es	una	variación	de	la	instrucción	for	que	se	puede	resumir	en	el	siguiente
fragmento	de	código:

for(NombreClase	elemento:	arreglo)
{
				<cuerpo>
}

La	instrucción	for-each	permite	recorrer	todos	los	elementos	de	un	arreglo.	De	esta	manera,
para	cada	objeto	existente	en	el	arreglo,	se	ejecutan	las	instrucciones	que	se	encuentran	en
el	cuerpo	del	ciclo.	En	cada	iteración,	la	variable	elemento	va	a	referenciar	al	objeto	actual,

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

296

permitiendo	que	se	hagan	las	operaciones	necesarias	sobre	este.	Cabe	resaltar	que	en	el
for-each	no	es	necesario	utilizar	un	índice,	ya	que	la	instrucción	se	encarga	de	pasar	por
cada	uno	de	los	elementos	de	forma	automática.	Es	por	esto	que	la	instrucción	for-each	se
utiliza	principalmente	en	problemas	que	requieran	un	recorrido	sobre	todos	los	elementos
del	arreglo	(recorrido	total).

Ejemplo	11

Objetivo:	Mostrar	la	sintaxis	que	se	usa	para	la	instrucción	for-each.

En	este	ejemplo	se	muestra	el	código	de	un	método	de	la	clase	Avion,	el	cual	permite
contar	la	cantidad	de	sillas	económicas	ocupadas,	con	el	fin	mostrar	una	aplicación	del
patrón	de	recorrido	total	utilizando	la	instrucción	for-each.	Si	no	hay	ninguna	silla	económica
ocupada,	el	método	retorna	cero.

A	continuación	se	muestra	el	método	utilizando	la	instrucción	for:

public	int	contarSillasEconomicasOcupadas()
{
				int	contador	=	0;
				Silla	silla	=	null;
				for(int	i	=	0;	i	<	SILLAS_ECONOMICAS;	i++)
				{
								silla	=	sillasEconomicas[i];
								if(silla.sillaAsignada())
								{
												contador++;
								}
				}
				return	contador;
}

La	implementación	del	método	utilizando	la	instrucción	for-each	es	la	siguiente:

public	int	contarSillasEconomicasOcupadas()
{
				int	contador	=	0;
				for(Silla	sillaEconomica	:	sillasEconomicas)
				{
								if(sillaEconomica.sillaAsignada())
								{
												contador++;
								}
				}
				return	contador;
}

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

297

Tarea	9

Objetivo:	Desarrollar	los	métodos	de	la	clase	Avión	que	nos	permitan	implementar	los
requerimientos	funcionales	del	caso	de	estudio	utilizando	la	instrucción	for-each.

Para	cada	uno	de	los	problemas	que	se	plantean	a	continuación,	escriba	el	método	que	lo
resuelve.	En	todos	los	casos	son	problemas	que	requieren	un	recorrido	total	y	que	se	deben
resolver	utilizando	la	instrucción	for-each.

Calcular	el	número	de	sillas	económicas	libres	en	el	avión:

public	int	contarSillasEconomicasLibres()
{

}

Contar	el	número	de	puestos	disponibles	en	el	pasillo,	en	la	zona	ejecutiva	del	avión:

public	int	contarPasilloEjecutivas()
{

}

Desocupar	avión.	Se	encarga	de	desocupar	todas	las	sillas	del	avíon:

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

298

public	void	desocuparAvion()
{

}

Caso	de	Estudio	Nº	2:	Reservas	en	un	Vuelo

299

7.	Caso	de	Estudio	Nº	3:	Tienda	de	Libros
Se	quiere	construir	una	aplicación	que	permita	administrar	una	tienda	de	libros.	La	tienda
tiene	un	catálogo	de	libros,	que	son	los	libros	que	desea	poner	a	la	venta.	La	aplicación
permite	abastecer	la	tienda	con	ejemplares	de	los	libros	del	catálogo	y	venderlos.
Adicionalmente	permite	saber	cuánto	dinero	se	tiene	en	caja,	empezando	con	una	inversión
inicial	de	$1.000.000.

De	cada	libro	se	conoce:

ISBN.	Identificador	del	libro.	No	pueden	existir	dos	libros	en	la	tienda	con	el	mismo
ISBN.
Título.	El	nombre	del	libro.
Imagen.	La	imagen	del	libro.
Precio	de	compra:	Valor	pagado	por	la	compra	de	cada	ejemplar	en	la	tienda.
Precio	de	venta:	Valor	por	el	cual	se	vende	cada	ejemplar	del	libro.
Cantidad	actual.	Cantidad	actual	de	ejemplares	que	tiene	la	tienda.	Solo	puede	ser
modificada	mediante	la	venta	o	el	abastecimiento.

Adicionalmente,	de	cada	libro	se	conocen	todas	las	transacciones	que	se	han	realizado
sobre	él.	De	cada	transacción	se	conoce:

El	tipo	de	transacción.	Puede	ser	venta	o	abastecimiento.
La	fecha	de	realización.
La	cantidad	de	ejemplares	incluidos	en	la	transacción.

El	abastecimiento	de	libros	permite	aumentar	la	cantidad	actual	de	ejemplares	del	libro	y
registrar	una	transacción	de	tipo	abastecimiento.

La	venta	de	libros	permite	disminuir	la	cantidad	actual	de	ejemplares	del	libro	y	registrar	una
transacción	de	venta.	Esta	transacción	solo	se	podrá	realizar	si	la	cantidad	actual	de
ejemplares	es	mayor	a	la	cantidad	que	se	quiere	vender.

En	la	figura	3.9	aparece	la	interfaz	de	usuario	que	se	tiene	prevista	para	el	programa	que	se
va	a	construir.

Caso	de	Estudio	Nº	3:	Una	Tienda	de	Libros

300

Fig.	3.9	Interfaz	de	usuario	de	la	tienda	de	libros

La	interfaz	está	dividida	en	cuatro	zonas:	una	para	mostrar	el	dinero	que	hay	en	la	caja,
una	para	que	el	usuario	pueda	ver	el	listado	de	libros	disponibles	en	el	catálogo	(donde
también	puede	registrar	nuevos	libros),	una	para	mostrar	la	información	de	un	libro	del
catálogo,	y	una	para	las	búsquedas	y	consultas	realizadas	sobre	el	catálogo	de	libros.
En	la	imagen	del	ejemplo,	aparecen	tres	libros	en	el	catálogo.	Para	agregar	libros	a	la
tienda,	se	usa	el	botón	Registrar.
Al	abastecimiento	de	libro	se	hace	a	través	del	botón	Abastecer,	la	venta	de	libros	a
través	del	botón	Vender	y	la	eliminación	de	un	libro	a	través	del	botón	Eliminar.
En	la	zona	de	consultas	y	búsquedas	se	puede	buscar	un	libro	por	ISBN	o	título,	y
consultar	el	libro	más	económico,	el	más	costoso	y	el	más	vendido.

7.1.	Comprensión	de	los	Requerimientos
Los	requerimientos	funcionales	de	este	caso	de	estudio	son	10:

Caso	de	Estudio	Nº	3:	Una	Tienda	de	Libros

301

1.	 Registrar	un	libro	en	el	catálogo.
2.	 Eliminar	un	libro	del	catálogo.
3.	 Buscar	un	libro	por	título.
4.	 Buscar	un	libro	por	ISBN.
5.	 Abastecer	ejemplares	de	un	libro.
6.	 Vender	ejemplares	de	un	libro.
7.	 Calcular	la	cantidad	de	transacciones	de	abastecimiento	de	un	libro	particular.
8.	 Buscar	el	libro	más	costoso.
9.	 Buscar	el	libro	menos	costoso.
10.	 Buscar	el	libro	más	vendido.

Tarea	10

Objetivo:	Entender	el	problema	del	caso	de	estudio.

Lea	detenidamente	el	enunciado	del	caso	de	estudio	y	complete	la	documentación	de	los
primeros	tres	requerimientos	funcionales.

Requerimiento	funcional	1

Nombre R1	-	Registrar	un	libro	en	el	catálogo.

Resumen

Registra	un	libro	en	el	catálogo	con	su	título,	código	ISBN,	precio	de
compra	y	precio	de	venta.	La	cantidad	actual	de	ejemplares	en	el
momento	de	registro	es	cero	y	el	libro	se	crea	sin	transacciones
registradas.	El	resultado	es	el	nuevo	libro	creado	en	caso	de	que	si	se
haya	podido	registrar,	en	caso	contrario,	el	resultado	debe	ser	es	nulo.

Entradas (1)	título	del	libro,	(2)	ISBN	del	libro,	(3)	precio	de	compra	del	libro,	(4)
precio	de	venta	del	libro,(5)	imagen	del	libro.

Resultado El	catálogo	ha	sido	actualizado	y	contiene	el	nuevo	libro.

Requerimiento	funcional	2

Caso	de	Estudio	Nº	3:	Una	Tienda	de	Libros

302

Nombre

Resumen

Entradas

Resultado

Requerimiento	funcional	3

Caso	de	Estudio	Nº	3:	Una	Tienda	de	Libros

303

Nombre

Resumen

Entradas

Resultado

7.2.	Comprensión	del	Mundo	del	Problema
En	el	mundo	del	problema	podemos	identificar	tres	entidades	(ver	figura	3.10):

La	tienda	de	libros	(clase	TiendaDeLibros)
Un	libro	(clase	Libro)
Una	transacción	(clase	Transaccion)

Todas	las	características	de	las	entidades	identificadas	en	el	modelo	conceptual	se	pueden
modelar	con	los	elementos	que	hemos	visto	hasta	ahora	en	el	libro,	con	excepción	del
grupo	de	libros	del	catálogo	y	el	listado	de	transacciones	de	un	libro.	La	dificultad	que
tenemos	es	que	no	podemos	predecir	la	cardinalidad	de	dicho	grupo	de	elementos	y,	por
esta	razón,	el	modelado	con	arreglos	puede	no	ser	el	más	adecuado.

Caso	de	Estudio	Nº	3:	Una	Tienda	de	Libros

304

¿En	qué	se	diferencia	del	caso	del	avión?	La	diferencia	radica	en	que	el	avión	tiene	unas
dimensiones	predefinidas	(42	sillas	en	clase	económica	y	8	en	clase	ejecutiva)	que	no	van	a
cambiar	durante	la	ejecución	del	programa	(no	existe	un	requerimiento	de	agregar	una	silla
al	avión).	En	el	caso	de	la	tienda	de	libros,	se	plantea	que	el	catálogo	puede	tener	cualquier
cantidad	de	libros	y	que	un	libro	puede	tener	cualquier	cantidad	de	transacciones.	Si
usáramos	arreglos	para	representar	dicha	información,	¿de	qué	dimensión	deberíamos
crearlos?	¿Qué	hacemos	si	se	llena	el	arreglo	de	libros	del	catálogo?

Fig.	3.10	Modelo	conceptual	para	el	caso	de	estudio	de	la	tienda	de	libros

La	solución	a	ese	problema	será	el	tema	de	esta	parte	final	del	nivel,	en	la	cual
presentamos	las	contenedoras	de	tamaño	variable,	la	manera	en	que	se	usan	a	nivel	de
modelado	del	mundo	y	la	forma	en	que	se	incorporan	en	los	programas	escritos	en	Java.

Por	ahora	démosle	una	mirada	al	diagrama	de	clases	de	la	figura	3.10	y	recorramos	cada
una	de	las	entidades	identificadas:

Una	tienda	de	libros	tiene	un	catálogo	(así	se	llama	la	asociación),	que	corresponde	a
un	grupo	de	longitud	indefinida	de	libros	(representado	por	el	*).
Un	libro	tiene	cinco	atributos:	un	título,	un	ISBN,	un	precio	de	compra,	un	precio	de
venta	y	una	imagen.
Un	libro	tiene	un	grupo	de	transacciones	(así	se	llama	la	asociación)	de	longitud

Caso	de	Estudio	Nº	3:	Una	Tienda	de	Libros

305

indefinida.	Cada	transacción	es	de	tipo	abastecimiento	o	venta.
Cada	transacción	tiene	el	tipo	(abastecimiento	o	venta),	la	cantidad	de	ejemplares	y	la
fecha.

Caso	de	Estudio	Nº	3:	Una	Tienda	de	Libros

306

8.	Contenedoras	de	Tamaño	Variable
En	muchos	problemas	necesitamos	representar	grupos	de	atributos	para	los	cuales	no
conocemos	su	tamaño	máximo.	En	el	caso	de	la	tienda	de	libros,	por	ejemplo,	el	catálogo
podría	tener	100	ó	10.000	libros	distintos.	Para	poder	representar	y	manejar	ese	tipo	de
características,	tenemos	las	contenedoras	de	tamaño	variable.

En	el	diagrama	de	clases	de	UML,	las	asociaciones	que	tienen	dicha	característica	se
representan	con	una	cardinalidad	indefinida,	usando	los	símbolos	*	o	0..N,	tal	como	se
mostró	en	la	figura	3.10.

Para	implementarlas	en	Java,	no	existen	elementos	en	el	lenguaje	como	los	arreglos,	sino
que	es	necesario	utilizar	algunas	clases	que	fueron	construidas	con	este	fin.

¿Cuál	es	la	diferencia?	La	principal	diferencia	es	que	para	manipular	las	contenedoras	de
tamaño	variable	debemos	utilizar	la	misma	sintaxis	que	utilizamos	para	manejar	cualquier
otra	clase.	No	hay	una	sintaxis	especial	para	obtener	un	elemento	(como		[]		en	los
arreglos),	ni	contamos	con	operadores	especiales	(length).

En	Java	existen	varias	clases	que	nos	permiten	manejar	contenedoras	de	tamaño	variable,
todas	ellas	disponibles	en	el	paquete	llamado		java.util	.	En	este	libro	vamos	a	utilizar	la
clase	ArrayList,	que	es	eficiente	e	incluye	toda	la	funcionalidad	necesaria	para	manipular
grupos	de	objetos.	La	mayor	restricción	que	vamos	a	encontrar	es	que	no	permite	manejar
grupos	de	atributos	de	tipo	simple,	sino	únicamente	grupos	de	objetos.	En	este	nivel	vamos
a	estudiar	únicamente	los	principales	métodos	de	esa	clase,	aquéllos	que	ofrecen	las
funcionalidades	típicas	para	manejar	esta	clase	de	estructuras.	Si	desea	conocer	la
descripción	de	todos	los	métodos	disponibles,	lo	invitamos	a	consultar	la	documentación
que	aparece	en	el	sitio	web	del	lenguaje	Java.

Por	simplicidad,	vamos	a	llamar	vector	a	cualquier	implementación	de	una	estructura
contenedora	de	tamaño	variable.

Al	igual	que	con	los	arreglos,	comenzamos	ahora	el	recorrido	para	estudiar	la	manera	de
declarar	un	atributo	de	la	clase	ArrayList,	la	manera	de	tener	acceso	a	sus	elementos,	la
forma	de	modificarlo,	etc.	Para	esto	utilizaremos	el	caso	de	estudio	de	la	tienda	de	libros.

8.1.	Declaración	de	un	Vector

Contenedoras	de	Tamaño	Variable

307

Puesto	que	un	vector	es	una	clase	común	y	corriente	de	Java,	la	sintaxis	para	declararlo	es
la	misma	que	hemos	utilizado	en	los	niveles	anteriores.	En	el	ejemplo	11	se	explican	las
declaraciones	de	las	clases	TiendaLibros	y	Libro.

Ejemplo	12

Objetivo:	Mostrar	la	sintaxis	usada	en	Java	para	declarar	un	vector.

En	este	ejemplo	se	muestran	las	declaraciones	de	las	clases	TiendaLibros	y	Libro,	las
cuales	contienen	atributos	de	tipo	vector.

package	uniandes.cupi2.tiendadelibros.mundo;

import	java.util.*;

public	class	TiendaDeLibros
{
				//----------------------------------
				//	Atributos
				//----------------------------------
				private	ArrayList<Libro>	catalogo;
				private	double	caja;
				...
}

Para	poder	usar	la	clase	ArrayList	es	necesario	importar	su	declaración,	indicando	el
paquete	en	el	que	ésta	se	encuentra	(java.util).	Esto	se	hace	con	la	instrucción
	import		de	Java.
Dicha	instrucción	va	después	de	la	declaración	del	paquete	de	la	clase	y	antes	de	su
encabezado.
En	la	clase	TiendaDeLibros	se	declaran	dos	atributos:	el	catálogo,	que	es	un	vector,	y
el	dinero	que	hay	en	la	caja,	que	es	de	tipo	double.
Al	declarar	un	vector,	se	indica	el	tipo	de	objetos	que	se	van	a	guardar	en	él,	usando	la
sintáxis		<NombreDeLaClase>	.	En	el	caso	del	catálogo,	se	indica	que	el	catálogo	es	un
vector	de	libros.

Contenedoras	de	Tamaño	Variable

308

package	uniandes.cupi2.tiendadelibros.mundo;

import	java.util.*;

public	class	Libro
{
				//----------------------------------
				//	Atributos
				//----------------------------------
				private	ArrayList<Transaccion>	transacciones;
				...
}

En	la	clase	Libro	se	declara	el	grupo	de	transacciones	como	un	vector.
Se	debe	de	nuevo	importar	el	paquete	en	donde	se	encuentra	la	clase	ArrayList,
usando	la	instrucción		import	.
Fíjese	que	la	declaración	de	un	vector	utiliza	la	misma	sintaxis	que	se	usa	para	declarar
cualquier	otro	atributo	de	la	clase.

8.2	Inicialización	y	Tamaño	de	un	Vector
En	el	constructor	es	necesario	inicializar	los	vectores,	al	igual	que	hacemos	con	todos	los
demás	atributos	de	una	clase.	Hay	dos	diferencias	entre	crear	un	arreglo	y	crear	un	vector:

En	los	vectores	se	utiliza	la	misma	sintaxis	de	creación	de	cualquier	otro	objeto	(new
ArrayList<NombreDeLaClase>())	teniendo	que	agregar	el	nombre	de	las	clase	a	la	que
pertenecen	los	objetos	que	se	van	a	agregar	al	vector,	mientras	que	los	arreglos
utilizan	los		[]		para	indicar	el	tamaño	(new	NombreDeLaClase[TAMANIO]).
En	los	vectores	no	es	necesario	definir	el	número	de	elementos	que	va	a	tener,
mientras	que	en	los	arreglos	es	indispensable	hacerlo.

Ejemplo	13

Objetivo:	Mostrar	la	manera	de	inicializar	un	vector.

En	este	ejemplo	se	muestran	los	métodos	constructores	de	las	clases	TiendaLibros	y	Libro,
las	cuales	contienen	atributos	de	tipo	vector.

public	TiendaDeLibros()
{
				catalogo	=	new	ArrayList<Libro>();
}

Contenedoras	de	Tamaño	Variable

309

No	hay	necesidad	de	especificar	el	número	de	elementos	que	el	vector	va	a	contener.

public	Libro()
{
				transacciones	=	new	ArrayList<Transaccion>();
}

Al	crear	un	vector	se	reserva	un	espacio	variable	para	almacenar	los	elementos	que
vayan	apareciendo.	Inicialmente	hay	0	objetos	en	él.

Dos	métodos	de	la	clase	ArrayList	nos	permiten	conocer	el	número	de	elementos	que	en	un
momento	dado	hay	en	un	vector:

	isEmpty()	:	es	un	método	que	retorna	verdadero	si	el	vector	no	tiene	elementos	y
falso	en	caso	contrario.	Por	ejemplo,	en	la	clase	Libro,	después	de	llamar	el
constructor,	la	invocación	del	método		transacciones.isEmpty()		retorna	verdadero.
	size()	:	es	un	método	que	retorna	el	número	de	elementos	que	hay	en	el	vector.
Para	el	mismo	caso	planteado	anteriormente,		transacciones.size()		es	igual	a	0.

Si	adaptamos	el	esqueleto	de	los	patrones	de	algoritmo	para	el	manejo	de	vectores,	lo
único	que	va	a	cambiar	es	la	condición	para	continuar	en	el	ciclo.	En	lugar	de	usar	la
operación		length		de	los	arreglos,	debemos	utilizar	el	método	size()	de	los	vectores,	tal
como	se	muestra	en	el	siguiente	fragmento	de	método	de	la	clase	TiendaDeLibros.

public	void	esqueleto()
{
				for(int	i	=	0;	i	<	catalogo.size();	i++)
				{
								//	cuerpo	del	ciclo
				}
}

Las	instrucción	for-each	para	los	vectores	funciona	de	forma	similar	que	para	los	arreglos
como	se	muestra	en	el	siguiente	fragmento	de	código.

public	void	esqueleto()
{
				for(Libro	libro:	catalogo)
				{
								//	cuerpo	del	ciclo
				}
}

Las	posiciones	en	los	vectores,	al	igual	que	en	los	arreglos,	comienzan	en	0.

Contenedoras	de	Tamaño	Variable

310

La	condición	para	continuar	en	el	ciclo	se	escribe	utilizando	el	método		size()		de	la	clase
ArrayList,	en	lugar	del	operador		length		de	los	arreglos.	Note	que	los	paréntesis	son
necesarios.

La	siguiente	tabla	ilustra	el	uso	de	los	métodos	de	manejo	del	tamaño	de	un	vector	en	el
caso	de	estudio:

Clase Expresión Interpretación

TiendaDeLibros 	catalogo.size()	 Número	de	libros	disponibles	en	el
catálogo.

TiendaDeLibros 	catalogo.size()	==
10	 ¿Hay	10	libros	en	el	catálogo?

TiendaDeLibros 	catalogo.isEmpty()	 ¿Está	vacío	el	catálogo?

Libro 	transacciones.size(
)	 Número	de	transacciones	del	libro.

8.3.	Acceso	a	los	Elementos	de	un	Vector
Los	elementos	de	un	vector	se	referencian	por	su	posición	en	la	estructura,	comenzando	en
la	posición	cero.	Para	esto	se	utiliza	el	método	get(pos),	que	recibe	como	parámetro	la
posición	del	elemento	que	queremos	recuperar	y	nos	retorna	el	objeto	que	allí	se	encuentra.

Ejemplo	14

Objetivo:	Ilustrar	el	uso	del	método	que	nos	permite	recuperar	un	objeto	de	un	vector.

En	este	ejemplo	se	ilustra	el	uso	del	método	de	acceso	a	los	elementos	de	un	vector.
Vamos	a	suponer	que	en	la	clase	Libro	existe	el	método	darPrecioVenta(),	que	retorna	el
precio	de	venta	del	libro.	Este	método	suma	el	precio	de	venta	de	todos	los	libros	del
catálogo.

public	int	inventario()
{
				int	sumaPrecios	=	0;
				for(int	i	=	0;	i	<	catalogo.size();	i++)
				{
								Libro	libro	=	catalogo.get(i);
								sumaPrecios	+=	libro.darPrecioVenta();
				}
				return	sumaPrecios;
}

Contenedoras	de	Tamaño	Variable

311

Con	la	instrucción		get(i)	de	los	vectores	se	puede	acceder	a	la	referencia	del	objeto
del	vector	que	se	encuentra	en	la	posición	i.

Es	una	buena	idea	guardar	siempre	en	una	variable	temporal	la	referencia	al	objeto
recuperado,	para	simplificar	el	código.

Cuando	dentro	de	un	método	tratamos	de	acceder	una	posición	en	un	vector	con	un
índice	no	válido	(menor	que	0	o	mayor	o	igual	que	el	número	de	objetos	que	en	ese
momento	se	encuentren	en	el	vector),	obtenemos	el	error	de	ejecución:
java.lang.IndexOutOfBoundsException.

Recuerde	que	al	utilizar	el	método	get(pos),	lo	único	que	estamos	obteniendo	es	una
referencia	al	objeto	que	se	encuentra	referenciado	desde	la	posición	pos	del	vector.	No	se
hace	ninguna	copia	del	objeto,	ni	desplaza	el	objeto	a	ningún	lado.

8.4.	Agregar	Elementos	a	un	Vector
Los	elementos	de	un	vector	se	pueden	agregar	al	final	del	mismo	o	insertar	en	una	posición
específica.	Los	métodos	para	hacerlo	son	los	siguientes:

add(objeto):	es	un	método	que	permite	agregar	al	final	del	vector	el	objeto	que	se	pasa
como	parámetro.	No	importa	cuántos	elementos	haya	en	el	vector,	el	método	siempre
sabe	cómo	buscar	espacio	para	agregar	uno	más.

add(indice,	objeto):	es	un	método	que	permite	insertar	un	objeto	en	la	posición
indicada	por	el	índice	especificado	como	parámetro.	Esta	operación	hace	que	el
elemento	que	se	encontraba	en	esa	posición	se	desplace	hacia	la	posición	siguiente,	lo
mismo	que	el	resto	de	los	objetos	en	la	estructura.

Ejemplo	15

Objetivo:	Mostrar	el	uso	del	método	que	agrega	objetos	a	un	vector.

En	este	ejemplo	se	ilustra	el	uso	de	los	métodos	que	permiten	agregar	elementos	a	un
vector.	El	siguiente	es	un	método	de	la	clase	TiendaDeLibros	que	añade	tres	libros	al
catálogo.

Contenedoras	de	Tamaño	Variable

312

public	void	agregarTresLibros()
{
				Libro	lb1	=	new	Libro("título1",	"0011",	1000,	1200,	"Ruta	Imagen	1");	
				Libro	lb2	=	new	Libro("título2",	"0012",	2000,	2400,	"Ruta	Imagen	2");	
				Libro	lb3	=	new	Libro("título3",	"0013",	3000,	3600,	"Ruta	Imagen	3");

				catalogo.add(lb2);	
				catalogo.add(lb3);	
				catalogo.add(0,	lb1);
}

En	el	método	se	crean	inicialmente	los	tres	libros.	Luego	se	agrega	el	segundo	de	los
libros	(lb2).	Como	el	vector	estaba	vacío,	el	nuevo	elemento	queda	en	la	posición	0
del	catálogo.	Después	se	añade	el	tercer	libro	(lb3),	que	queda	en	la	posición	1.
Finalmente	se	inserta	el	primer	libro	(lb1)	en	la	posición	0,	lo	que	desplaza	el	libro	2	a
la	posición	1	y	el	libro	3	a	la	posición	2.

En	este	diagrama	de	objetos	se	puede	apreciar	el	estado	del	catálogo	después	de
ejecutar	este	método.
Si	usamos	el	método	size()	para	el	catálogo,	debe	responder	3.

Contenedoras	de	Tamaño	Variable

313

En	el	dibujo	dejamos	en	gris	las	casillas	posteriores	a	la	2,	para	indicar	que	el	vector	las
puede	ocupar	cuando	las	necesite.

8.5.	Reemplazar	un	Elemento	en	un	Vector
Cuando	se	quiere	reemplazar	un	objeto	por	otro	en	un	vector,	se	utiliza	el	método	set(),	que
recibe	como	parámetros	el	índice	del	elemento	que	se	debe	reemplazar	y	el	objeto	que
debe	tomar	ahora	esa	posición.

Este	método	es	muy	útil	para	ordenar	un	vector	o	para	clasificar	bajo	algún	concepto	los
elementos	que	allí	se	encuentran.	En	el	ejemplo	15	aparece	un	método	de	la	clase
TiendaDeLibros	que	permite	intercambiar	dos	libros	del	catálogo,	dadas	sus	posiciones	en
el	vector	que	los	contiene.

Ejemplo	16

Objetivo:	Mostrar	la	manera	de	reemplazar	un	objeto	en	un	vector.

En	este	ejemplo	se	ilustra	el	uso	del	método	que	reemplaza	un	objeto	por	otro	en	un	vector.
El	método	de	la	clase	TiendaLibros	recibe	las	posiciones	en	el	catálogo	de	los	libros	que
debe	intercambiar.

public	void	intercambiar(int	pPosicion1,	int	pPosicion2)
{
				Libro	libro1	=	catalogo.get(pPosicion1);	
				Libro	libro2	=	catalogo.get(pPosicion2);

				catalogo.set(pPosicion1	,	libro2);	
				catalogo.set(pPosicion2	,	libro1);
}

Cuando	se	intercambian	los	elementos	en	cualquier	estructura	es	indispensable	guardar	al
menos	uno	de	ellos	en	una	variable	temporal.	En	este	método	decidimos	usar	dos	variables
por	claridad.
En	este	método	suponemos	que	las	dos	posiciones	dadas	son	válidas	(que	son	posiciones
entre	0	y		catalogo.size()	-1).

El	método	set()	no	hace	sino	reemplazar	la	referencia	al	objeto	que	se	encuentra
almacenada	en	la	casilla.	Se	puede	ver	simplemente	como	la	manera	de	asignar	un	nuevo
valor	a	una	casilla.
La	referencia	que	allí	se	encontraba	se	pierde,	a	menos	que	haya	sido	guardada	en	algún
otro	lugar.

Contenedoras	de	Tamaño	Variable

314

8.6.	Eliminar	un	Elemento	de	un	Vector
De	la	misma	manera	que	es	posible	agregar	elementos	a	un	vector,	también	es	posible
eliminarlos.	Piense	en	el	caso	de	la	tienda	de	libros.	Si	el	usuario	decidiera	eliminar	un	libro
del	catálogo	la	tienda,	nosotros	en	el	programa	debemos	quitarlo	del	respectivo	vector	el
objeto	que	lo	representaba.	Después	de	eliminada	la	referencia	a	un	objeto,	esta	posición
es	ocupada	por	el	elemento	que	se	encontraba	después	de	él	en	el	vector.

El	método	de	la	clase	ArrayList	que	se	usa	para	eliminar	un	elemento	se	llama	remove()	y
recibe	como	parámetro	la	posición	del	elemento	que	se	quiere	eliminar	(un	valor	entre	0	y	el
número	de	elementos	menos	1).	Al	usar	esta	operación,	se	debe	tener	en	cuenta	que	el
tamaño	de	la	estructura	disminuye	en	1,	por	lo	que	se	debe	tener	cuidado	en	el	momento	de
definir	la	condición	de	continuación	de	los	ciclos.

Es	importante	recalcar	que	el	hecho	de	quitar	un	objeto	de	un	vector	no	implica
necesariamente	su	destrucción.	Lo	único	que	estamos	haciendo	es	eliminando	una
referencia	al	objeto.	Si	queremos	mantenerlo	vivo,	basta	con	guardar	su	referencia	en	otro
lado,	por	ejemplo	en	una	variable.

Ejemplo	17

Objetivo:	Mostrar	la	manera	de	utilizar	el	método	que	elimina	un	objeto	de	un	vector.

En	este	ejemplo	presentamos	un	método	de	la	clase	TiendaDeLibros	que	elimina	el	primer
libro	del	catálogo.	Ilustramos	el	resultado	usando	el	diagrama	de	objetos	del	ejemplo	14.

public	void	eliminarPrimerLibro()
{
				catalogo.remove(0);
}

Este	método	elimina	del	catálogo	la	referencia	al	primer	libro	de	la	tienda.	Después	de	su
ejecución,	todos	los	libros	se	mueven	una	posición	hacia	la	izquierda	en	el	catálogo.

Contenedoras	de	Tamaño	Variable

315

Si	ejecutamos	este	método	sobre	el	diagrama	de	objetos	del	ejemplo	14,	obtenemos	el
diagrama	que	aparece	en	esta	figura.
El	libro	que	estaba	en	la	posición	1	pasa	a	la	posición	0,	y	el	libro	de	la	posición	2	pasa
a	la	posición	1.
Ahora		catalogo.size()		es	igual	a	2.

Ya	que	hemos	terminado	de	ver	los	principales	métodos	con	los	que	contamos	para
manejar	los	elementos	de	un	vector,	vamos	a	comenzar	a	escribir	los	métodos	de	la	clase
del	caso	de	estudio.	Comenzamos	con	las	declaraciones	de	las	clases	simples	y	seguimos
con	los	métodos	que	manejan	los	vectores.

8.7.	Construcción	del	Programa	del	Caso	de
Estudio

8.7.1.	La	Clase	Libro

La	clase	Libro	es	responsable	de	manejar	sus	seis	atributos,	abastecer	ejemplares,	vender
ejemplares	y	retornar	el	listado	de	transacciones.	Para	esto	cuenta	con	un	método
constructor,	cinco	métodos	analizadores	y	dos	métodos	modificadores:

Contenedoras	de	Tamaño	Variable

316

	Libro(String	pTitulo,	String	pISBN,	double	pPrecioCompra,
double	pPrecioVenta,	String	pRutaImagen)	 Método	constructor.

	String	darTitulo()	 Retorna	el	título	del
libro.

	String	darIsbn()	 Retorna	el	ISBN	del
libro.

	double	darPrecioCompra()	 Retorna	el	precio	de
compra	del	libro.

	double	darPrecioVenta()	 Retorna	el	precio	de
venta	del	libro.

	String	darCantidadActual()	 Retorna	la	cantidad	de
ejemplares	del	libro.

	String	darRutaImagen()	 Retorna	la	ruta	de	la
imagen	del	libro.

	void	vender(int	pCantidad,	String	pFecha)	 Vende	ejemplares	del
libro.

	void	abastecer(int	pCantidad,	String	pFecha)	 Abastece	ejemplares
del	libro.

	ArrayList<Transaccion>	darTransacciones()	 Retorna	las
transacciones	del	libro.

La	clase	libro	es	responsable	de	abastecer	y	vender	ejemplares	del	libro	así	como	de
registrar	una	transacción	por	cada	abastecimiento	o	venta	que	realice	el	usuario.

Al	igual	que	en	el	caso	de	los	arreglos,	si	antes	de	usar	un	vector	no	lo	hemos	creado
adecuadamente,	se	va	a	generar	el	error	de	ejecución:	java.lang.NullPointerException.

8.7.2.	La	Clase	Transaccion

Cada	objeto	de	la	clase	Transaccion	tiene	el	tipo	de	transacción,	la	cantidad	de	ejemplares
y	la	fecha	en	que	se	realizó	la	transacción.	Aquí	es	importante	resaltar	que	los	objetos	de	la
clase	Libro	tendrán	varias	transacciones,	como	se	ilustra	en	el	diagrama	de	objetos	de	la
figura	3.11.

Los	métodos	de	esta	clase	se	resumen	en	la	siguiente	tabla:

Contenedoras	de	Tamaño	Variable

317

	Transaccion(Tipo	pTipo,	int	pCantidad,	String
pFecha)	 Método	constructor.

	Tipo	darTipo()	 Retorna	el	tipo	de	transacción.

	int	darCantidad()	 Retorna	la	cantidad	de	las
transacción.

	String	darFecha()	 Retorna	la	fecha	de	la
transacción.

Fig.	3.11	Diagrama	de	objetos	para	ilustrar	el	caso	de	la	tienda	de	libros

En	la	figura	3.11	se	puede	apreciar	el	caso	en	el	que	el	usuario	tiene	en	su	catalogo	dos
libros.	El	primer	libro	tiene	una	transacción	y	el	segundo	libro	tiene	dos	transacciones.	En
este	diagrama	decidimos	mostrar	los	vectores	como	objetos	externos	a	las	clases	que	los
usan.	Esta	representación	se	ajusta	más	a	la	realidad	que	la	que	usamos	en	ejemplos
anteriores,	aunque	es	menos	simple.	Ambas	maneras	de	mostrar	el	diagrama	de	objetos
son	válidas.	Observe,	por	ejemplo,	que	el	objeto	llamado	catalogo	es	una	asociación	hacia
un	objeto	de	la	clase	ArrayList,	que	mantiene	las	referencias	a	los	objetos	que	representan
los	libros.

Contenedoras	de	Tamaño	Variable

318

8.7.3.	La	Clase	TiendaDeLibros

En	la	tarea	10	vamos	a	desarrollar	algunos	de	los	métodos	de	la	clase	TiendaDeLibros.	Sus
principales	responsabilidades	se	resumen	en	la	siguiente	tabla:

	TiendaLibros()	 Método	constructor.

	ArrayList<Libro>	darCatalogo()	 Retorna	el	catálogo	de	libros.

	double	darCaja()	 Retorna	el	saldo	de	la	caja.

	void	cambiarCaja(double	pCaja)	 Cambia	el	saldo	de	la	caja.
	Libro	registrarLibro(String	pTitulo,
String	pIsbn,	double	pPrecioVenta,
double	pPrecioCompra,	String
pRutaImagen)	

Añade	un	nuevo	libro	al	catálogo	a	partir	de
los	parámetros	recibidos.	Si	el	libro	ya	está
en	el	catálogo,	el	método	no	hace	nada.

	Libro	buscarLibroPorISBN(String	pIsbn
)	

Localiza	un	libro	del	catálogo	dado	su	ISBN.
Si	no	lo	encuentra	retorna		null	.

	Libro	buscarLibroPorTitulo(String
pTitulo)	

Localiza	un	libro	del	catálogo	dado	su	título.
Si	no	lo	encuentra	retorna		null	.

	boolean	eliminarLibro(String	pIsbn)	 Elimina	un	libro	del	catálogo	dado	su	ISBN.
Si	no	lo	encuentra	retorna	false.

	boolean	abastecer(String	pIsbn,	int
pCantidad,	String	pFecha)	

Abastece	ejemplares	de	un	libro	dado	su
ISBN.	Si	no	puede	abastecer	los	ejemplares
del	libro	retorna		false	.

	boolean	vender(String	pIsbn,	int
pCantidad,	String	pFecha)	

Vende	ejemplares	de	un	libro	dado	su	ISBN.
Si	no	puede	vender	los	ejemplares	del	libro
retorna	false.

	Libro	darLibroMasCostoso()	
Retorna	el	libro	con	el	precio	de	venta
mayor.	Si	no	hay	libros	en	el	catálogo
retorna		null	.

	Libro	darLibroMasEconomico()	
Retorna	el	libro	con	el	precio	de	venta
menor.	Si	no	hay	libros	en	el	catálogo
retorna		null	.

	Libro	darLibroMasVendido()	
Retorna	el	libro	del	cuál	se	han	vendido	más
ejemplares.	Si	no	hay	libros	en	el	catálogo
retorna		null	.

	int
darCantidadTransaccionesAbastecimiento(
String	pIsbn)	

Retorna	el	número	de	transacciones	de	tipo
abastecimiento	que	se	han	realizado	al	libro
con	el	ISBN	recibido	como	parámetro.	En
caso	de	que	no	encuentre	el	libro	o	que	el
libro	no	tenga	transacciones,	retorna	cero.

Tarea	11

Contenedoras	de	Tamaño	Variable

319

Objetivo:	Desarrollar	los	métodos	de	la	clase	TiendaDeLibros	que	nos	permiten
implementar	los	requerimientos	funcionales	del	caso	de	estudio.

Para	cada	uno	de	los	problemas	que	se	plantean	a	continuación,	escriba	el	método	que	lo
resuelve.	No	olvide	identificar	primero	el	patrón	de	algoritmo	que	se	necesita	y	usar	las
guías	que	se	dieron	en	secciones	anteriores.

Localizar	un	libro	en	el	catálogo,	dado	su	ISBN.	Si	no	lo	encuentra,	el	método	debe	retornar
	null	:

public	Libro	buscarLibroPorISBN(String	pIsbn)
{

}

Eliminar	un	libro	en	el	catálogo	dado	su	ISBN.	Si	el	libro	no	existe	o	si	la	cantidad	actual	de
ejemplares	es	mayor	a	cero	retorna		false	.	Utilice	el	método	anterior:

public	boolean	eliminarLibro(String	pIsbn)
{

}

Agregar	un	libro	en	el	catálogo,	si	no	existe	ya	un	libro	con	ese	ISBN.	Utilice	el	método
	buscarLibroPorISBN	:

Contenedoras	de	Tamaño	Variable

320

public	Libro	registrarLibro(String	pTitulo,	String	pIsbn,	double	pPrecioVenta,	double
	pPrecioCompra,	String	pRutaImagen)
{

}

Buscar	el	libro	más	costoso	del	catálogo,	si	el	catálogo	está	vacío	retorna		null	:

public	Libro	darLibroMasCostoso()
{

}

Buscar	el	libro	del	cuál	se	han	vendido	más	ejemplares.	Si	no	hay	libros	en	el	catálogo,
retorna		null:	

public	Libro	darLibroMasVendido()
{

}

Contenedoras	de	Tamaño	Variable

321

Retorna	el	número	de	transacciones	de	tipo	abastecimiento	que	se	le	han	realizado	al	libro
con	el	ISBN	recibido	como	parámetro.	En	caso	de	que	no	encuentre	el	libro	o	que	el	libro	no
tenga	transacciones,	retorna	cero.

public	int	darCantidadTransaccionesAbastecimiento(String	pIsbn)
{

}

Tarea	12

Objetivo:	Desarrollar	los	métodos	de	la	clase	Libro.

Para	cada	uno	de	los	problemas	que	se	plantean	a	continuación,	escriba	el	método	que	lo
resuelve.

Vender	la	cantidad	de	ejemplares	del	libro	recibida	como	parámetro	siempre	y	cuando	la
cantidad	de	ejemplares	actual	sea	menor	o	igual	a	la	cantidad	a	vender.	La	venta	implica
decrementar	el	número	de	ejemplares	del	libro.	Adicionalmente	agrega	una	nueva
transacción	de	tipo	venta	al	listado	de	transacciones	del	libro:

public	boolean	vender(int	pCantidad,	String	pFecha)
{

}

Abastecer	la	cantidad	de	ejemplares	del	libro	recibida	como	parámetro.	El	abastecimiento
implica	incrementar	el	número	de	ejemplares	del	libro.	Adicionalmente	agrega	una	nueva
transacción	de	tipo	abastecimiento	al	listado	de	transacciones	del	libro:

Contenedoras	de	Tamaño	Variable

322

public	void	abastecer(int	pCantidad,	String	pFecha)
{

}

Contenedoras	de	Tamaño	Variable

323

9.	Uso	de	Ciclos	en	Otros	Contextos
Aunque	hasta	este	momento	sólo	hemos	mostrado	las	instrucciones	iterativas	como	una
manera	de	manejar	información	que	se	encuentra	en	estructuras	contenedoras,	dichas
instrucciones	también	se	usan	muy	comúnmente	en	otros	contextos.	En	el	ejemplo	17
mostramos	su	uso	para	calcular	el	valor	de	una	función	aritmética.

Ejemplo	18

Objetivo:	Mostrar	el	uso	de	las	instrucciones	iterativas	en	un	contexto	diferente	al	de
manipulación	de	estructuras	contenedoras.

En	este	ejemplo	presentamos	la	manera	de	escribir	un	método	para	calcular	el	factorial	de
un	número.	La	función	factorial	aplicada	a	un	número	entero	n	(en	matemáticas	a	ese	valor
se	le	representa	como	n!)	se	define	como	el	producto	de	todos	los	valores	enteros	positivos
menores	o	iguales	al	valor	en	cuestión.	Planteado	de	otra	manera,	tenemos	que:

factorial(0)	es	igual	a	1.
factorial(1)	es	igual	a	1.
factorial(n)	=	n	*	factorial(n	–	1).

Por	ejemplo,	factorial(5)	=	5	*	4	*	3	*	2	*	1	=	120

Si	queremos	construir	un	método	capaz	de	calcular	dicho	valor,	podemos	utilizar	una
instrucción	iterativa,	como	se	muestra	a	continuación.

package		uniandes.cupi2.matematicas;
public	class	Matematica
{
				public		static	int	factorial(int	pNum)
				{
								int	acum	=	1;

								if(pNum	>	0)
								{			
												for(int	i	=	1;	i	<=	num;	i++)
												{
																acum	=	acum	*	i;
												}
								}								
				}
				return	acum;				
}

Uso	de	Ciclos	en	Otros	Contextos

324

El	método	lo	declaramos	de	manera	especial	(static)	y	su	modo	de	uso	es	como	aparece
más
abajo	en	este	mismo	ejemplo.

El	primer	caso	que	tenemos	es	que	el	valor	del	parámetro	sea	0.	La	respuesta	en	ese	caso
es	1.
Hasta	ahí	es	fácil.

En	el	caso	general,	debemos	multiplicar	todos	los	valores	desde	1	hasta	el	valor	que
recibimos
como	parámetro	e	ir	acumulando	el	resultado	en	una	variable	llamada	"	acum	".	Al	final	el
método	retorna	dicho	valor.

Esta	solución	no	es	otra	que	el	patrón	de	recorrido	total	aplicado	a	la	secuencia	de
números.	Aunque	no	estén	almacenados	en	un	arreglo,	se	pueden	imaginar	uno	después
del	otro,	con	el	índice	recorriéndolos	de	izquierda	a	derecha.	Este	uso	de	las	instrucciones
iterativas	no	tiene	una	teoría	distinta	a	la	vista	en	este	capítulo.

int	fact	=	Matematica.factorial(i);

La	llamada	del	método	se	hace	utilizando	esta	sintaxis.	Como	es	una	función	aritmética	que
no
está	asociada	con	ningún	elemento	del	mundo,	debemos	usar	el	nombre	de	la	clase	para
hacer	la	invocación.

Uso	de	Ciclos	en	Otros	Contextos

325

Creación	de	una	Clase	en	Java

Tarea	13

Objetivo:	Agregar	una	nueva	clase	en	un	programa	escrito	en	Java.

En	esta	tarea	vamos	a	extender	el	caso	de	estudio	de	la	tienda	de	libros,	agregando	dos
clases	nuevas,	en	un	paquete	distinto	a	los	ya	definidos.	Siga	los	pasos	que	se	detallan	a
continuación:

Este	es	el	diagrama	de	clases	que	queremos	construir.	Hay	dos	clases	adicionales:	una
para	modelar	los	clientes	de	la	tienda	de	libros	y	otra	con	comentarios	que	se	hacen
opcionalmente	sobre	cada	libro.	Tome	nota	de	las	nuevas	asociaciones	que	aparecen.

1.	 Ejecute	Eclipse	y	abra	el	proyecto	de	la	tienda	de	libros.	Localice	el	directorio	en	el	cual
se	guardan	los	programas	fuente.

2.	 Vamos	a	crear	los	archivos	de	las	clases	Comentario	y	Cliente	en	un	nuevo	paquete
llamado		uniandes.cupi2.tiendadelibros.extension	.	Para	esto,	debemos	crear	primero
el	paquete.	Para	crear	un	paquete	en	Java,	seleccione	la	opción	File/New/Package	del

Creación	de	una	Clase	en	Java

326

http://cupi2.uniandes.edu.co/sitio/index.php/cursos/apo1/nivel-3/tienda-de-libros

menú	principal	o	la	opción	New/Package	del	menú	emergente	que	aparece	al	hacer	clic
derecho	sobre	el	directorio	de	fuentes.

3.	 Una	vez	creado	el	paquete,	podemos	crear	la	clase	allí	dentro,	seleccionando	la	opción
File/New/Class	del	menú	principal	o	la	opción	New/Class	del	menú	emergente	que
aparece	al	hacer	clic	derecho	sobre	el	paquete	de	clases	elegido.	En	la	ventana	que
abre	el	asistente	de	creación	de	clases,	podemos	ver	el	directorio	de	fuentes	y	el
paquete	donde	se	ubicará	la	clase.	Allí	debemos	teclear	el	nombre	de	la	clase.	Al
oprimir	el	botón	Finish,	el	editor	abrirá	la	clase	y	le	permitirá	completarla	con	sus
atributos	y	métodos.	Siguiendo	el	proceso	antes	mencionado,	cree	las	clases	Cliente	y
Comentario	incluyendo	sus	atributos.

4.	 El	siguiente	paso	es	agregar	los	atributos	que	van	a	representar	las	asociaciones	hacia
esas	clases.	Abra	para	esto	la	clase	Libro.	Agregue	el	atributo	de	tipo	vector	que
representa	la	asociación	hacia	la	clase	Comentario	tal	como	se	describe	en	el	diagrama
de	clases.	¿Por	qué	el	compilador	no	reconoce	la	nueva	clase?	Sencillamente	porque
está	en	otro	paquete,	el	cual	debemos	importar.	Añada	la	instrucción	para	importar	las
clases	del	nuevo	paquete.	Esta	importación	puede	hacerla	manualmente	o	utilizando	el
comando	Control+Mayús+O	para	que	el	editor	agregue	automáticamente	todas	las
importaciones	que	necesite.

5.	 Agregue	el	atributo	clientes	a	la	clase	TiendaDeLibros,	representándolo	como	un
vector.	Es	necesario	que	importe	la	clase	Cliente	al	momento	de	declarar	el	vector
puesto	que	es	la	primera	vez	que	hacemos	referencia	directa	a	esta	clase.

6.	 En	el	constructor	de	la	clase	TiendaDeLibros,	inicialice	el	vector	de	clientes.
7.	 En	el	constructor	de	la	clase	Libro,	inicialice	el	vector	de	comentarios.
8.	 Las	clases	antes	mencionadas	también	se	habrían	podido	crear	desde	cualquier	editor

de	texto	simple	(por	ejemplo,	el	bloc	de	notas).	Basta	con	crear	el	archivo,	salvarlo	en
el	directorio	que	representa	el	paquete	y,	luego,	entrar	a	Eclipse	y	utilizar	la	opción
Refresh	del	menú	emergente	que	aparece	al	hacer	clic	derecho	sobre	el	proyecto.

9.	 En	la	clase	Comentario	agregue	el	constructor	que	recibe	como	parámetros	el
contenido,	la	calificación	y	el	objeto	del	cliente	que	realizó	el	comentario.	Agregue	tres
métodos	para	recuperar	el	contenido	del	comentario,	la	calificación	otorgada	y	el
cliente.

10.	 En	la	clase	Cliente	escriba	el	constructor	que	recibe	como	parámetros	la	cédula,	los
nombres	y	los	apellidos.	Agregue	tres	métodos	para	recuperar	la	cédula,	los	nombres	y
los	apellidos.

11.	 En	la	clase	Libro,	añada	un	método	que	agregue	un	comentario	al	libro	y	otro	que
retorne	el	vector	con	todos	los	comentarios	del	libro.

12.	 En	la	clase	TiendaDeLibros,	añada	los	siguientes	métodos:	(a)	un	método	para	agregar
un	nuevo	cliente,	(b)	un	método	para	buscar	un	cliente	dado	su	número	de	cédula,	(c)
un	método	para	calcular	la	calificación	promedio	de	un	libro	dado	su	ISBN,	(d)	un
método	que	calcule	el	número	total	de	libros	del	catálogo	que	tienen	al	menos

Creación	de	una	Clase	en	Java

327

comentario,	y	(e)	un	método	que	agregue	un	nuevo	comentario	a	un	libro.	Este	último
método	recibe	como	parámetros	el	ISBN	del	libro,	la	cédula	del	cliente,	y	el	contenido	y
la	calificación	del	comentario.

Creación	de	una	Clase	en	Java

328

10.	Hojas	de	Trabajo

10.1.	Hoja	de	Trabajo	Nº	1:	Un	Parqueadero
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Analice	el	siguiente	enunciado	e	identique	el	mundo	del	problema,	lo	que	se
quiere	que	haga	el	programa	y	las	restricciones	para	desarrollarlo.

Se	quiere	construir	una	aplicación	para	administrar	un	parqueadero	(lugar	de
estacionamiento	para	carros).	Dicho	parqueadero	tiene	40	puestos,	numerados	del	1	al	40.
En	cada	puesto	se	puede	parquear	un	sólo	carro	(que	representaremos	con	una	clase
llamada	Carro),	el	cual	se	identica	por	su	placa.	El	parqueadero	tiene	una	tarifa	por	hora	o
fracción	de	hora,	puede	ser	cambiada	por	el	administrador.

De	cada	vehículo	aparcado	se	debe	conocer	la	hora	en	la	que	entró,	que	corresponde	a	un
valor	entre	6	y	21,	dado	que	el	parqueadero	está	abierto	entre	6	de	la	mañana	y	9	de	la
noche.

Se	espera	que	la	aplicación	que	se	quiere	construir	permita	hacer	lo	siguiente:

1.	 Ingresar	un	carro	al	parqueadero.	Se	debe	indicar	el	puesto	en	el	que	se	debe	parquear
(si	hay	cupo).

2.	 Dar	salida	a	un	carro	del	parqueadero.	Se	debe	indicar	cuánto	debe	pagar.

3.	 Informar	los	ingresos	del	parqueadero.

4.	 Consultar	la	cantidad	de	puestos	disponibles.

5.	 Avanzar	una	hora	en	el	reloj	del	parqueadero.

6.	 Cambiar	la	tarifa	del	parqueadero.

La	siguiente	es	la	interfaz	de	usuario	propuesta	para	el	programa,	donde	los	puestos
ocupados	deben	aparecen	con	un	vehículo.

Hojas	de	trabajo

329

https://bit.ly/apo1-nivel3-hoja1-pdf-format
https://bit.ly/apo1-nivel3-hoja1-word-format

Requerimientos	funcionales.	Describa	los	seis	requerimientos	funcionales	de	la	aplicación
que	haya	identicado	en	el	enunciado.

Requerimiento	Funcional	1

Hojas	de	trabajo

330

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	trabajo

331

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	trabajo

332

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Hojas	de	trabajo

333

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	5

Hojas	de	trabajo

334

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	6

Hojas	de	trabajo

335

Nombre

Resumen

Entradas

Resultado

Modelo	del	mundo.	Complete	el	diagrama	de	clases	con	los	atributos,	las	constantes	y	las
asociaciones.

Hojas	de	trabajo

336

Diagrama	UML:	Parqueadero

Diagrama	UML:	Puesto

Hojas	de	trabajo

337

Diagrama	UML:	Carro

Declaración	de	arreglos.	Para	las	siguientes	clases,	escriba	la	declaración	de	los	atributos
indicados	en	el	comentario	(como	contenedoras	del	tipo	dado),	así	como	las	constantes
necesarias	para	manejarlos.

public	class	Parqueadero
{
				//--
				//	Constantes
				//--
				/**	
					*	Indica	el	número	de	puestos	en	el	parqueadero	
					*/

				//--
				//	Atributos
				//--
				/**	
					*	Arreglo	de	puestos	
					*/

}

Hojas	de	trabajo

338

Inicialización	de	arreglos.	Escriba	el	constructor	de	la	clase	para	inicializar	las
contenedoras	declaradas	en	el	punto	anterior.

public	Parqueadero()
{

}

Patrones	de	algoritmos.	Desarrolle	los	siguientes	métodos	de	la	clase	Parqueadero,
identicando	el	tipo	de	patrón	de	algoritmo	al	que	pertenece	y	siguiendo	las	respectivas
guías

Método	1

Contar	y	retornar	el	número	total	de	puestos	ocupados.

public	int	darTotalPuestosOcupados()
{

}

Método	2

Informar	si	en	el	parqueadero	hay	un	carro	cuya	placa	comience	con	la	letra	dada	como
parámetro.

Hojas	de	trabajo

339

public	boolean	existePlacaIniciaCon(char	pLetra)
{

}

Método	3

Retornar	el	número	de	carros	en	el	parqueadero	que	llegaron	antes	del	mediodía.

public	int	darTotalCarrosIngresoManana()
{

}

Método	4

Retornar	el	último	carro	en	ingresar	al	parqueadero.	Si	el	parqueadero	está	vacío,	retorna
null.

public	Carro	darCarroLlegadaMasReciente()
{

}

Hojas	de	trabajo

340

Método	5

Informar	si	en	algún	lugar	del	parqueadero	hay	dos	puestos	libres	consecutivos.	Esto	se
hace	cuando	el	vehículo	que	se	quiere	aparcar	es	muy	grande.

public	boolean	hayDosPuestosLibresConsecutivos()
{

}

Método	6

Informar	si	hay	dos	carros	en	el	parqueadero	con	la	misma	placa.

public	boolean	hayPlacasRepetidas()
{

}

Hojas	de	trabajo

341

10.2	Hoja	de	Trabajo	Nº	2:	Lista	de	Contactos
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Analice	el	siguiente	enunciado	e	identique	el	mundo	del	problema,	lo	que	se
quiere	que	haga	el	programa	y	las	restricciones	para	desarrollarlo.

Se	quiere	construir	un	programa	para	manejar	la	lista	de	contactos	de	una	persona.	Un
contacto	tiene	nombre,	apellido,	una	dirección,	un	correo	electrónico,	varios	teléfonos	y	un
conjunto	de	palabras	clave	que	se	utilizan	para	facilitar	su	búsqueda.	El	nombre	completo
(nombre	+	apellido)	de	cada	contacto	debe	ser	único.	Tanto	el	nombre	como	el	apellido	se
usan	como	palabras	clave	para	las	búsquedas.

En	el	programa	de	contactos	se	debe	poder:

1.	 Agregar	un	nuevo	contacto.
2.	 Eliminar	un	contacto	ya	existente.
3.	 Ver	la	información	detallada	de	un	contacto.
4.	 Modicar	la	información	de	un	contacto.
5.	 Buscar	contactos	usando	las	palabras	clave.

La	siguiente	es	la	interfaz	de	usuario	propuesta	para	el	programa	de	la	lista	de	contactos.

Hojas	de	trabajo

342

Requerimientos	funcionales.	Describa	los	cinco	requerimientos	funcionales	de	la
aplicación	que	haya	identicado	en	el	enunciado.

Requerimiento	Funcional	1

Hojas	de	trabajo

343

https://bit.ly/apo1-nivel3-hoja2-pdf-format
https://bit.ly/apo1-nivel3-hoja2-word-format

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	trabajo

344

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	trabajo

345

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Hojas	de	trabajo

346

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	5

Hojas	de	trabajo

347

Nombre

Resumen

Entradas

Resultado

Modelo	del	mundo.	Complete	el	diagrama	de	clases	con	los	atributos,	las	constantes	y	las
asociaciones.

Hojas	de	trabajo

348

Diagrama	UML:	ListaDeContactos

Diagrama	UML:	Contacto

Hojas	de	trabajo

349

Declaración	de	arreglos.	Para	las	siguientes	clases,	escriba	la	declaración	de	los	atributos
indicados	en	el	comentario	(como	contenedoras	del	tipo	dado).

public	class	Contacto
{
				//--
				//	Atributos
				//--
				private	String	nombre;
				private	String	apellido;
				private	String	direccion;	
				private	String	correo;

				/**	
					*	Lista	de	teléfonos	del	contacto.	
					*/

				/**	
					*	Lista	de	palabras	clave	del	contacto.	
					*/

}

public	class	ListaDeContactos
{
				//--
				//	Atributos
				//--
				/**	
					*	Lista	de	contactos.
					*/

}

Inicialización	de	arreglos.	Escriba	el	constructor	de	las	clases	dadas.

Hojas	de	trabajo

350

public	Contacto	()
{

}

public	ListaDeContactos	()
{

}

Patrones	de	algoritmos.	Desarrolle	los	siguientes	métodos	de	la	clase	indicada,
identicando	el	tipo	de	patrón	de	algoritmo	al	que	pertenece	y	siguiendo	las	respectivas
guías.

Metodo

Clase:	Contacto

Contar	el	número	de	palabras	clave	que	empiezan	por	la	letra	dada	como	parámetro.

Hojas	de	trabajo

351

public	int	darTotalPalabrasInicianCon(char	pLetra)
{

}

Metodo	2

Clase:	Contacto

Informar	si	el	contacto	tiene	algún	teléfono	que	comienza	por	el	prejo	dado	como
parámetro.

Hojas	de	trabajo

352

public	boolean	existeTelefonoIniciaCon(String	pPrefijo)
{

}

Metodo	3

Clase:	Contacto

Retornar	la	primera	palabra	clave	que	termina	con	la	cadena	dada.

public	String	darPalabraTerminaCon(String	pCadena)
{

}

Metodo	4

Clase:	Contacto

Contar	el	número	de	palabras	clave	que	son	prejo	(parte	inicial)	de	otras	palabras	clave.

Hojas	de	trabajo

353

public	int	darTotalPalabrasPrefijo()
{

}

Metodo	5

Clase:	ListaDeContacto

Contar	el	número	de	contactos	cuyo	nombre	es	igual	al	recibido	como	parámetro.

public	int	darTotalContactosConNombre(String	pNombre)
{

}

Metodo	6

Clase:	ListadeContactos

Hojas	de	trabajo

354

Informar	si	hay	dos	contactos	en	la	lista	con	la	misma	dirección	de	correo	electrónico.

public	boolean	hayCorreosRepetidos()
{

}

Metodo	7

Clase:	ListadeContactos

Retornar	el	contacto	con	el	mayor	número	de	palabras	clave.

Hojas	de	trabajo

355

public	Contacto	darContactoConMasPalabras()
{

}

Hojas	de	trabajo

356

Nivel	4:	Definición	y	Cumplimiento	de	Responsabilidades

357

1.	Objetivos	Pedagógicos
Al	final	de	este	nivel	el	lector	será	capaz	de:

Utilizar	la	definición	de	un	contrato	para	construir	un	método.
Utilizar	la	definición	del	contrato	de	un	método	para	invocarlo	de	manera	correcta.
Utilizar	algunas	técnicas	simples	para	realizar	la	asignación	de	responsabilidades	a	las
clases.
Utilizar	la	técnica	metodológica	de	dividir	y	conquistar	para	resolver	los	requerimientos
funcionales	de	un	problema.
Escribir	una	clase	completa	del	modelo	del	mundo,	siguiendo	una	especificación	dada
en	términos	de	un	conjunto	de	contratos.
Documentar	los	contratos	de	los	métodos	utilizando	la	sintaxis	definida	por	la
herramienta	Javadoc.
Utilizar	la	clase	Exception	de	Java	para	manejar	los	problemas	asociados	con	la
violación	de	los	contratos.
Entender	la	documentación	de	un	conjunto	de	clases	escritas	por	otros	y	utilizar	dicha
documentación	para	poder	incorporar	y	usar	adecuadamente	dichas	clases	en	un
programa	que	se	está	construyendo.

Objetivos	Pedagógicos

358

2.	Motivación
En	el	nivel	3	presentamos	un	caso	de	estudio	relacionado	con	una	tienda	de	libros.	En	dicho
ejemplo	definimos	el	método	registrarLibro	de	la	clase	TiendaDeLibros,	que	nos	permitía
agregar	un	libro	nuevo	al	catálogo	de	la	tienda.	Dicho	método	recibía	como	parámetro	las
características	del	libro	que	se	quería	añadir,	y	tenía	la	siguiente	signatura:

Libro	registrarLibro(String	pTitulo,	String	pIsbn,	double	pPrecioVenta,	double	pPrecio
Compra,	String	pRutaImagen)

Si	alguien	nos	pidiera	que	implementáramos	dicho	método,	sería	indispensable	que	nos
contestara	antes	las	siguientes	preguntas:

¿Las	características	del	libro	que	se	va	a	registrar	son	válidas,	es	decir,	su	título,	su
ISBN,	su	precio	de	compra,	su	precio	de	venta	y	su	imagen	tienen	un	valor	definido	y
correcto?	¿Debemos	verificar	que	los	precios	sean	un	número	positivo	antes	de
adicionarlo	al	catálogo?	¿Ya	alguien	verificó	eso	y	es	una	pérdida	de	tiempo	volverlo	a
hacer?
¿Ya	se	verificó	que	el	libro	que	se	desea	registrar	no	esté	incluido	en	el	catálogo?
¿Debemos	verificar	si	existe	ya	un	libro	con	ese	ISBN	antes	de	agregarlo	al	catálogo?
¿Ya	está	creado	el	vector	que	representa	el	catálogo	de	la	tienda	de	libros?	Tal	vez	en
el	constructor	de	la	clase	se	les	olvidó	crear	un	objeto	de	la	clase	ArrayList	para
almacenar	los	libros	del	catálogo.	¿Debo	hacer	esta	verificación	al	comienzo	del
método?
Fíjese	que	aunque	la	signatura	de	un	método	y	su	descripción	informal	pueden	dar	una
idea	general	del	servicio	que	un	método	debe	prestar,	esto	no	es	suficiente,	en	la
mayoría	de	los	casos,	para	definir	con	precisión	el	código	que	se	debe	escribir.	Debe
ser	claro	que	la	implementación	del	método	puede	cambiar	radicalmente,	dependiendo
de	la	respuesta	que	se	dé	a	las	preguntas	que	se	plantearon	anteriormente.	Por
ejemplo,	si	hacemos	la	suposición	de	que	no	hay	en	el	catálogo	otro	libro	con	el	mismo
ISBN	del	libro	que	se	va	a	añadir,	el	cuerpo	del	método	sería	el	siguiente:

public	Libro	registrarLibro(String	pTitulo,	String	pIsbn,	double	pPrecioVenta,	double
	pPrecioCompra,	String	pRutaImagen)
{
		Libro	nuevo	=	new	Libro(pTitulo,	pIsbn,	pPrecioVenta,	pPrecioCompra,	pRutaImagen);
		catalogo.add(nuevo);
		return	nuevo;
}

Motivación

359

En	esta	versión,	simplemente	creamos	el	nuevo	libro	y	lo	agregamos	al	catálogo.
Estamos	suponiendo	que	alguien	ya	verificó	que	no	hay	otro	libro	con	el	mismo	ISBN.

El	asunto	es	que	si	nuestra	suposición	no	es	válida,	vamos	a	crear	dos	libros	en	el	catálogo
con	el	mismo	ISBN,	lo	cual	introduce	una	inconsistencia	en	la	información	y	puede	generar
problemas	en	el	programa.	Esta	clase	de	errores	son	de	extrema	gravedad,	puesto	que
permiten	llegar	a	un	estado	en	el	modelo	del	mundo	que	no	corresponde	a	una	situación
válida	de	la	realidad.	La	solución	más	simple	parecería,	entonces,	hacer	siempre	todas	las
verificaciones,	como	se	muestra	en	la	siguiente	implementación	del	método:

public	Libro	registrarLibro(String	pTitulo,	String	pIsbn,	double	pPrecioVenta,	double
	pPrecioCompra,	String	pRutaImagen)
{
		Libro	nuevo	=	null;

		if(pTitulo	!=	null	&&	!pTitulo.equals("	")	&&	
						pIsbn	!=	null	&&!pIsbn.equals("	")	&&
						pPrecioVenta	>	0	&&	pPrecioCompra	>	0	&&
						pRutaImagen	!=	null	&&!pRutaImagen.equals("	"))	
		{

				Libro	buscado	=	buscarLibroPorISBN(pIsbn);

				if(buscado	==	null)
				{
						nuevo	=	new	Libro(pTitulo,	pIsbn,	pPrecioVenta,	pPrecioCompra,	pRutaImagen);
						catalogo.add(nuevo);
				}
		}
		return	nuevo;
}

En	esta	versión	verificamos	primero	que	la	información	del	libro	esté	correcta.
Luego	buscamos	en	el	catálogo	otro	libro	con	el	mismo	ISBN.
Si	no	lo	encontramos,	entonces	sí	lo	agregamos	al	catálogo.
Lo	único	que	no	verificamos	es	que	el	vector	de	libros	ya	esté	creado.

Este	otro	extremo	parece	un	poco	exagerado,	puesto	que	algunas	verificaciones	pueden
tomar	mucho	tiempo,	ser	costosas	e	inútiles.	¿Cómo	tomar	entonces	la	decisión	de	qué
validar	y	qué	suponer?	La	respuesta	es	que	lo	importante	no	es	cuál	de	las	soluciones
tomemos.	Lo	importante	es	que	aquello	que	decidamos	sea	claro	para	todos	y	que	exista	un
acuerdo	explícito	entre	quien	utiliza	el	método	y	quien	lo	desarrolla.	Si	nosotros	decidimos
que	dentro	del	método	no	vamos	a	verificar	que	el	ISBN	exista	en	el	catálogo,	aquél	que
llama	el	método	deberá	saber	que	es	su	obligación	verificar	esto	antes	de	hacer	la	llamada.

De	esta	discusión	podemos	sacar	dos	conclusiones:

Motivación

360

Quien	escribe	el	cuerpo	de	un	método	puede	hacer	ciertas	suposiciones	sobre	los
parámetros	o	sobre	los	atributos,	y	esto	puede	afectar	en	algunos	casos	el	resultado.	El
problema	es	que	dichas	suposiciones	sólo	quedan	expresadas	como	parte	de	las
instrucciones	del	método,	y	no	son	necesariamente	visibles	por	el	programador	que	va
a	utilizarlo.	Sería	muy	dispendioso	para	un	programador	tener	que	leer	el	código	de
todos	los	métodos	que	utiliza.
Quien	llama	un	método	necesita	saber	cuáles	son	las	suposiciones	que	hizo	quien	lo
construyó,	sin	necesidad	de	entrar	a	estudiar	la	implementación.	Si	no	tiene	en	cuenta
estas	suposiciones,	puede	obtener	resultados	inesperados	(por	ejemplo,	dos	libros	con
el	mismo	ISBN).

La	solución	a	este	problema	es	establecer	claramente	un	contrato	en	cada	método,	en	el
que	sean	claros	sus	compromisos	y	sus	suposiciones,	tal	como	se	ilustra	en	la	figura	4.1.

Fig.	4.1	Contrato	entre	dos	sujetos:	el	que	lo	implementa	y	el	que	lo	usa

Un	contrato	se	establece	entre	dos	sujetos:	el	que	implementa	un	método	y	el	que	lo	usa.	El
primero	se	compromete	a	escribir	un	método	que	permita	conseguir	un	resultado	si	se
cumplen	ciertas	condiciones	o	suposiciones,	las	cuales	se	hacen	explícitas	como	parte	del
contrato	(por	ejemplo,	adquiere	el	compromiso	de	añadir	un	libro,	si	no	hay	ningún	otro	libro
con	el	mismo	ISBN).	El	segundo	sujeto	puede	usar	el	servicio	que	implementó	el	primero	y

Motivación

361

se	compromete	a	cumplir	las	condiciones	de	uso.	Esto	puede	implicar	hacer	verificaciones
sobre	la	información	que	pasa	como	parámetro	o	garantizar	algún	aspecto	del	estado	del
mundo.

En	este	capítulo	vamos	a	concentrarnos	en	la	manera	de	definir	los	contratos	de	los
métodos.	Este	tema	está	estrechamente	relacionado	con	el	proceso	de	asignar
responsabilidades	a	las	clases,	algo	crítico,	puesto	que	es	allí	donde	tomamos	las
decisiones	de	quién	es	el	responsable	de	hacer	qué.	Esta	suma	de	suposiciones	y
compromisos	son	las	que	se	integran	en	los	contratos,	de	manera	que	debemos	aprender	a
documentarlas,	a	leerlas	y	a	manejar	los	errores	que	se	pueden	producir	cuando	estos
contratos	no	se	cumplen.

Motivación

362

3.	Caso	de	Estudio	Nº	1:	Un	Club	Social
Se	quiere	construir	una	aplicación	para	manejar	la	información	de	socios	de	un	club.	El	club
maneja	dos	tipos	de	suscripciones	de	socios:	Regular	o	VIP.	El	número	máximo	de	socios
VIP	que	maneja	el	club	es	3.	Además	de	los	socios,	al	club	pueden	ingresar	personas
autorizadas	por	éstos,	que	hayan	sido	registradas	con	anterioridad.	Tanto	los	socios	como
las	personas	autorizadas	pueden	realizar	consumos	en	los	restaurantes	del	club.	Cada
socio	está	identificado	con	su	nombre	y	su	cédula.	No	puede	haber	dos	socios	con	la	misma
cédula.	Cuando	un	socio	se	afilia	al	club	debe	hacerlo	con	un	fondo	inicial	(para	pagar	sus
propios	consumos	y	los	de	sus	personas	autorizadas)	según	el	tipo	de	suscripción	que
tenga.	Los	socios	regulares	deben	afiliarse	con	un	fondo	inicial	de	$50.000	y	los	socios	VIP
con	$100.000.	Los	socios	pueden	aumentar	sus	fondos	en	cualquier	momento,	pero	tienen
una	restricción	máxima,	que	también	depende	de	su	tipo	de	suscripción,	de	la	siguiente
manera:	regulares	$1´000.000	y	VIP	$5´000.000.	Para	que	un	socio	pueda	añadir	personas
autorizadas	a	su	lista,	debe	contar	con	fondos.

Una	persona	autorizada	por	un	socio	se	identifica	únicamente	por	su	nombre.	Cuando	un
socio	(o	una	persona	autorizada	por	él)	realiza	un	consumo	en	el	club,	se	crea	una	factura
que	es	cargada	a	la	cuenta	del	socio.	Cada	factura	tiene	un	concepto	que	describe	el
consumo,	el	valor	de	lo	consumido	y	el	nombre	de	quien	lo	hizo.	Para	hacer	un	consumo,	el
socio	debe	contar	con	fondos	suficientes	para	pagarlo.	El	club	guarda	las	facturas	y	permite
que	en	cualquier	momento	el	socio	vaya	y	cancele	cualquiera	de	ellas.	Una	factura	sólo
puede	ser	pagada	si	el	socio	cuenta	con	fondos	suficientes	para	hacerlo.	Al	pagar	la	factura,
esta	es	eliminada	de	la	lista	de	facturas	por	pagar	del	socio	y	se	descuenta	el	valor	de	los
fondos	del	socio.

La	interfaz	de	usuario	que	se	diseñó	para	este	ejemplo	se	muestra	en	la	figura	4.2.	Esta
interfaz	tiene	varios	botones	para	que	el	usuario	pueda	seleccionar	los	distintos	servicios	de
la	aplicación.

Caso	de	Estudio	Nº	1:	Un	Club	Social

363

Fig.	4.2	Diseño	de	la	interfaz	de	usuario	para	el	caso	de	estudio	del	club

El	botón	"Afiliar	socio"	permite	afiliar	a	un	nuevo	socio	al	club.
El	botón	"Agregar	autorizado"	permite	registrar	las	personas	autorizadas	por	un	socio.
El	botón	"Registrar	consumo"	permite	crear	una	nueva	factura	para	un	socio.
A	la	derecha	de	la	ventana	aparece	la	lista	de	todas	las	facturas	pendientes	por	pagar
que	tiene	el	socio.	Para	cada	factura	se	indica	el	concepto	del	consumo,	el	valor	y	la
persona	que	lo	realizó.
Seleccionando	una	de	las	facturas	de	la	lista	y	oprimiendo	el	botón	"Pagar	factura",
ésta	se	da	por	cancelada.

3.1.	Comprensión	de	los	Requerimientos
La	primera	tarea	de	este	nivel	consiste	en	la	identificación	y	especificación	de	los
requerimientos	funcionales	del	problema.

Tarea	1

Objetivo:	Describir	los	requerimientos	funcionales	del	caso	de	estudio.

Para	el	caso	de	estudio	del	club,	complete	la	siguiente	tabla	con	la	especificación	de	los
requerimientos	funcionales.

Requerimiento	funcional	1

Caso	de	Estudio	Nº	1:	Un	Club	Social

364

Nombre R1	-	Agregar	una	persona	autorizada	por	un	socio.

Resumen
Agrega	un	autorizado	a	la	lista	de	autorizados	de	un	socio.	Una	persona
autorizada	puede	ingresar	al	club	y	realizar	consumos	en	sus
restaurantes.

Entradas (1)	socio:	cédula	del	socio	al	que	se	registrará	el	autorizado.	(2)nombre:
nombre	de	la	persona	autorizada	por	el	socio.

Resultado

Se	agrega	el	autorizado	a	la	lista	de	autorizados	del	socio.	Si	el	nombre
del	socio	es	igual	al	nombre	del	autorizado,	no	se	agrega	el	autorizado	y
se	muestra	un	mensaje	al	usuario	indicándolo.	Si	el	autorizado	ya	existe
en	la	lista,	no	se	agrega	el	autorizado	y	se	muestra	un	mensaje	al	usuario
indicándolo.	Si	el	socio	no	tiene	fondos	para	financiar	un	nuevo
autorizado,	se	muestra	un	mensaje	al	usuario	indicándolo.

Requerimiento	funcional	2

Nombre R2	-	Pagar	una	factura.

Resumen Paga	una	factura	de	la	lista	de	facturas	pendientes	de	un	socio.

Entradas (1)	socio:	cédula	del	socio	que	pagará	la	factura.	(2)	factura:	la	factura	que
quiere	pagar	el	socio,	de	su	lista	de	facturas	pendientes.

Resultado

Se	elimina	la	factura	de	la	lista	de	facturas	pendientes	de	un	socio	y	se
disminuyen	los	fondos	disponibles	por	el	valor	del	consumo.	Si	el	socio	no
tiene	fondos	suficientes	para	pagar	la	factura,	no	se	elimina	la	factura	y	se
muestra	un	mensaje	al	usuario	indicándolo.

Requerimiento	funcional	3

Caso	de	Estudio	Nº	1:	Un	Club	Social

365

Nombre R3	-	Afiliar	un	socio	al	club.

Resumen

Entradas

Resultado

Requerimiento	funcional	4

Caso	de	Estudio	Nº	1:	Un	Club	Social

366

Nombre R4	-	Registrar	un	consumo.

Resumen

Entradas

Resultado

Requerimiento	funcional	5

Caso	de	Estudio	Nº	1:	Un	Club	Social

367

Nombre R5	-	Aumentar	los	fondos	de	la	cuenta	de	un	socio.

Resumen

Entradas

Resultado

3.2.	Comprensión	del	Mundo	del	Problema
En	la	figura	4.3	aparece	el	modelo	conceptual	del	caso	de	estudio.	Allí	podemos	identificar
las	entidades	del	problema:

El	club	social.
Los	socios	afiliados	al	club.
Las	personas	autorizadas	por	el	socio.
Las	facturas	de	los	consumos	de	un	socio	y	de	sus	autorizados.

Caso	de	Estudio	Nº	1:	Un	Club	Social

368

Fig.	4.3	Modelo	conceptual	del	caso	de	estudio	del	club

3.3.	Definición	de	la	Arquitectura
La	solución	de	este	caso	de	estudio	la	dividimos	en	tres	subproblemas,	de	acuerdo	con	la
arquitectura	presentada	en	el	nivel	1.	La	solución	de	cada	uno	de	los	componentes	del
programa	(modelo	del	mundo,	interfaz	de	usuario	y	pruebas)	va	expresada	como	un
conjunto	de	clases,	en	un	paquete	distinto,	tal	como	se	muestra	en	la	figura	4.4.

Caso	de	Estudio	Nº	1:	Un	Club	Social

369

Fig.	4.4	Arquitectura	de	paquetes	para	el	caso	del	club

En	este	nivel	vamos	a	trabajar	únicamente	en	las	clases	que	corresponden	al	paquete	que
implementa	el	modelo	del	mundo.	En	el	nivel	5,	veremos	la	manera	de	construir	las	clases
del	paquete	que	implementa	la	interfaz	de	usuario.

3.4.	Declaración	de	las	Clases
En	esta	sección	presentamos	las	principales	decisiones	de	modelado	de	los	atributos	y	las
asociaciones,	mostrando	las	declaraciones	en	Java	de	las	tres	clases	del	modelo	del	mundo
(Club,	Socio,	Factura).	La	definición	de	los	métodos	se	hará	a	lo	largo	del	nivel,	ya	que	éste
es	el	tema	central	de	esta	parte	del	libro.

Caso	de	Estudio	Nº	1:	Un	Club	Social

370

public	class	Club
{

				//	---
				//	Constantes
				//	---

				/**
					*	Cantidad	máxima	de	socios	VIP	que	acepta	el	club.
					*/
				public	final	static	int	MAXIMO_VIP	=	3;

				//	---
				//	Atributos
				//	---
				/**
					*	Lista	de	socios	del	club.
					*/
				private	ArrayList<Socio>	socios;
}

A	partir	del	diagrama	de	clases,	vemos	que	hay	una	asociación	de	cardinalidad	variable
entre	la	clase	Club	y	la	clase	Socio.
Esta	asociación	representa	el	grupo	de	socios	afiliados	al	club,	que	modelaremos	como
un	vector	(una	contenedora	de	tamaño	variable).

public	class	Socio
{
				//	---
				//	Enumeraciones
				//	---

				/**
					*	Enumeraciones	para	los	tipos	de	suscripción.
					*/
				public	enum	Tipo
				{
								/**
									*	Representa	el	socio	VIP.
									*/
								VIP,
								/**
									*	Representa	el	socio	regular.
									*/
								REGULAR
				}
				//	---
				//	Constantes
				//	---

Caso	de	Estudio	Nº	1:	Un	Club	Social

371

				/**
					*	Dinero	base	con	el	que	empiezan	todos	los	socios	regulares.
					*/
				public	final	static	double	FONDOS_INICIALES_REGULARES	=	50000;

				/**
					*	Dinero	base	con	el	que	empiezan	todos	los	socios	VIP.
					*/
				public	final	static	double	FONDOS_INICIALES_VIP	=	100000;

				/**
					*	Dinero	máximo	que	puede	tener	un	socio	regular	en	sus	fondos.
					*/
				public	final	static	double	MONTO_MAXIMO_REGULARES	=	1000000;

				/**
					*	Dinero	máximo	que	puede	tener	un	socio	VIP	en	sus	fondos.
					*/
				public	final	static	double	MONTO_MAXIMO_VIP	=	5000000;

				//	---
				//	Atributos
				//	---

				/**
					*	Cédula	del	socio.
					*/
				private	String	cedula;

				/**
					*	Nombre	del	socio.
					*/
				private	String	nombre;

				/**
					*	Dinero	que	el	socio	tiene	disponible.
					*/
				private	double	fondos;

				/**
					*	Tipo	de	subscripción	del	socio.
					*/
				private	Tipo	tipoSubscripcion;

				/**
					*	Facturas	que	tiene	por	pagar	el	socio.
					*/
				private	ArrayList<Factura>	facturas;

				/**
					*	Nombres	de	las	personas	autorizadas	para	este	socio.
					*/
				private	ArrayList<String>	autorizados;

Caso	de	Estudio	Nº	1:	Un	Club	Social

372

}

Un	socio	tiene	una	cédula	y	un	nombre,	los	cuales	se	declaran	como	atributos	de	la
clase	String.
El	dinero	disponible	que	tiene	un	socio	para	pagar	sus	consumos	se	declara	mediante
el	atributo	fondos	de	tipo	double.
Los	posibles	valores	que	puede	tomar	el	tipo	de	suscripción	se	modela	a	través	de	una
enumeración	llamada	Tipo,	cuyos	posibles	valores	son	VIP	o	REGULAR.
Para	representar	las	personas	autorizadas	por	el	socio,	utilizaremos	un	vector	de
cadenas	de	caracteres	(autorizados),	en	donde	almacenaremos	únicamente	sus
nombres.
Para	guardar	las	facturas	pendientes	del	socio,	tendremos	un	segundo	vector
(facturas),	cuyos	elementos	serán	objetos	de	la	clase	Factura.

public	class	Factura
{
				//	---
				//	Atributos
				//	---
				/**
					*	Es	la	descripción	del	consumo	que	generó	esta	factura.
					*/
				private	String	concepto;

				/**
					*	Es	el	valor	del	consumo	que	generó	la	factura.
					*/
				private	double	valor;

				/**
					*	Nombre	de	la	persona	que	hizo	el	consumo	que	generó	la	factura.
					*/
				private	String	nombre;
}

Caso	de	Estudio	Nº	1:	Un	Club	Social

373

4.	Asignación	de	Responsabilidades

4.1.	La	Técnica	del	Experto
La	primera	técnica	de	asignación	de	responsabilidades	que	vamos	a	utilizar	se	llama	el
experto.	Esta	técnica	establece	que	el	dueño	de	la	información	es	el	responsable	de	ella,	y
que	debe	permitir	que	otros	tengan	acceso	y	puedan	pedir	que	se	cambie	su	valor.	Esta
técnica	la	hemos	venido	utilizando	de	manera	intuitiva	desde	el	nivel	1.	Por	ejemplo,	en	el
caso	de	estudio	del	empleado,	dado	que	la	clase	Empleado	tiene	un	atributo	llamado
salario,	esta	técnica	nos	dice	que	debemos	definir	en	esa	clase	algunos	métodos	para
consultar	y	modificar	esta	información.

Esto	no	quiere	decir	que	se	deban	definir	siempre	dos	métodos	por	atributo,	uno	para
retornar	el	valor	y	el	otro	para	modificarlo.	Hay	casos	en	los	cuales	la	modificación	debe
seguir	reglas	distintas	a	la	simple	asignación	de	un	valor.	Siguiendo	con	el	caso	del
empleado,	en	la	empresa	se	puede	establecer	que	los	cambios	de	salario	siempre	se	hacen
como	aumentos	porcentuales.	Al	usar	la	técnica	del	experto	se	debe	tener	en	cuenta	que
las	modificaciones	deben	reflejar	las	reglas	del	mundo	en	donde	se	mueve	la	clase,	y	que
son	estos	dos	criterios	los	que	definen	las	responsabilidades	y	las	signaturas	de	los
métodos	que	se	deben	incluir.	Para	el	ejemplo	que	venimos	desarrollando,	en	lugar	de	un
método	con	signatura	cambiarSalario(nuevoSalario)	deberíamos	incluir	un	método	que
cambie	los	salarios	por	aumento	aumentarSalario(porcentaje).	Esta	misma	idea	vale	para
los	métodos	que	son	responsables	de	dar	información.	Suponga	por	ejemplo	que	se	guarda
como	parte	de	la	información	del	empleado	la	palabra	clave	con	la	cual	tiene	acceso	al
sistema	de	información	de	la	empresa.	En	ese	caso,	en	lugar	de	un	método	que	retorne
dicha	información	(darPalabraClave())	deberíamos,	por	razones	de	seguridad,	incluir	un
método	que	informe	si	la	cadena	que	tecleó	el	usuario	es	su	palabra	clave
(esValida(entrada)).

La	técnica	del	experto	define	quién	es	responsable	de	hacer	algo,	pero	son	las	reglas
del	mundo	las	que	nos	dicen	cómo	cumplir	con	dicha	responsabilidad.

Pasemos	ahora	al	caso	de	estudio	del	club.	Como	consecuencia	del	requerimiento	funcional
de	afiliar	un	socio,	nos	tenemos	que	preguntar	¿quién	es	el	responsable	de	agregar	un
nuevo	socio	al	club?	Si	aplicamos	la	técnica	del	experto,	la	respuesta	es	que	la
responsabilidad	debe	recaer	en	la	clase	dueña	de	la	lista	de	socios.	Esto	nos	lleva	a	decidir
que,	dado	que	el	club	es	el	dueño	de	la	lista	de	socios,	es	él	quien	tiene	la	responsabilidad
de	agregar	un	socio	al	club.	Hablando	en	términos	de	métodos,	esa	decisión	nos	dice	que

Asignación	de	responsabilidades

374

no	debemos	tener	un	método	que	retorne	el	vector	de	socios	para	que	otro	pueda	agregar
allí	al	nuevo,	sino	que	debemos	tener	un	método	para	afiliar	un	socio,	en	la	clase	Club,	que
se	encargue	de	esta	tarea.

Siguiendo	con	el	caso	del	club,	suponga	que	debemos	decidir	cuál	es	la	clase	responsable
de	registrar	una	persona	autorizada	por	un	socio.	Si	aplicamos	la	técnica	del	experto,	la
respuesta	es	que	debe	hacerlo	el	dueño	de	la	lista	de	autorizados,	o	sea,	la	clase	Socio.	En
ese	caso	la	signatura	del	método	sería	void	agregarAutorizado(String	nombre)	(ver	figura
4.5).

Fig.	4.5	Asignación	inicial	de	responsabilidades	a	las	clases	del	caso	de	estudio

Para	usar	la	técnica	del	experto	debemos	recorrer	todos	los	atributos	y	asociaciones	del
diagrama	de	clases	y	definir	los	métodos	con	los	cuales	vamos	a	manejar	dicha
información.	Veremos	más	ejemplos	de	la	utilización	de	esta	técnica	en	las	secciones
siguientes.

4.2.	La	Técnica	de	Descomposición	de	los
Requerimientos

Asignación	de	responsabilidades

375

Muchos	de	los	requerimientos	funcionales	requieren	realizar	más	de	un	paso	para
satisfacerlos.	Puesto	que	cada	paso	corresponde	a	una	invocación	de	un	método	sobre
algún	objeto	existente	del	programa,	podemos	utilizar	esta	secuencia	de	pasos	como	guía
para	definir	los	métodos	necesarios	y,	luego,	asignar	esa	responsabilidad	a	alguna	clase.
Esta	técnica	se	denomina	descomposición	de	los	requerimientos	funcionales.

La	manera	más	sencilla	de	hacer	la	identificación	es	tratar	de	descomponer	los
requerimientos	funcionales	en	los	subproblemas	que	debemos	resolver	para	poder
satisfacer	el	requerimiento	completo.	Por	ejemplo,	para	el	requerimiento	de	pagar	una
factura,	podemos	imaginar	que	necesitamos	realizar	tres	pasos,	que	sugieren	la	necesidad
de	tres	métodos:

Buscar	si	el	socio	que	quiere	pagar	la	factura	existe	(buscarSocio).
Si	el	socio	existe,	obtener	todas	sus	facturas	pendientes	(darFacturas).
Pagar	la	factura	seleccionada	(pagarFactura).

Para	el	requerimiento	de	registrar	una	persona	autorizada	de	un	socio,	podemos	concluir
que	necesitamos	también	tres	pasos,	cada	uno	con	un	método	asociado:

Buscar	si	existe	el	socio	a	quien	se	le	va	a	agregar	una	persona	autorizada
(buscarSocio).
Dado	el	nombre	de	una	persona,	verificar	si	esa	persona	ya	pertenece	al	grupo	de	los
autorizados	del	socio	(existeAutorizado).
Asociar	con	el	socio	una	nueva	persona	autorizada	(agregarAutorizado).

Tarea	2

Objetivo:	Hacer	la	descomposición	en	pasos	de	un	requerimiento	funcional.

Haga	la	descomposición	en	pasos	del	requerimiento	funcional	de	realizar	un	consumo	en	el
club.

Asignación	de	responsabilidades

376

Una	vez	identificados	los	servicios	que	nuestra	aplicación	debe	proveer,	podemos	utilizar	la
técnica	del	experto	para	decidir	la	manera	de	distribuir	las	responsabilidades	entre	las
clases.	Continuando	con	nuestro	ejemplo	anterior,	podemos	hacer	la	siguiente	distribución
de	responsabilidades:

El	servicio	buscarSocio	debe	ser	responsabilidad	de	la	clase	Club,	porque	es	el	club
quien	tiene	la	información	de	la	lista	de	socios.
El	servicio	darFacturas	debe	ser	responsabilidad	de	la	clase	Socio,	porque	cada	socio
tiene	la	información	de	la	lista	de	sus	facturas	pendientes.
El	servicio	existeAutorizado	debe	ser	responsabilidad	de	la	clase	Socio,	porque	cada
socio	tiene	la	información	de	la	lista	de	sus	autorizados.
El	servicio	agregarAutorizado	debe	ser	res-	ponsabilidad	de	la	clase	Socio,	porque
cada	socio	tiene	la	información	de	la	lista	de	sus	autorizados.

En	la	figura	4.6	se	ilustra	una	parte	del	proceso	de	asignación	de	responsabilidades	para	el
caso	del	club.

Fig.	4.6	Proceso	de	asignación	de	responsabilidades	para	el	caso	de	estudio

Tarea	3

Objetivo:	Asignar	responsabilidades	a	las	clases.

Decida	a	qué	clase	corresponde	la	responsabilidad	de	cada	uno	de	los	pasos	definidos	en
la	tarea	anterior	y	justifique	su	decisión.

Asignación	de	responsabilidades

377

Asignación	de	responsabilidades

378

5.	Manejo	de	las	Excepciones
Una	excepción	es	la	indicación	de	que	se	produjo	un	error	en	el	programa.	Las
excepciones,	como	su	nombre	lo	indica,	se	producen	cuando	la	ejecución	de	un	método	no
termina	correctamente,	sino	que	termina	de	manera	excepcional	como	consecuencia	de
una	situación	no	esperada.

Cuando	se	produce	una	situación	anormal	durante	la	ejecución	de	un	programa	(por
ejemplo	se	accede	a	un	objeto	que	no	ha	sido	inicializado	o	tratamos	de	acceder	a	una
posición	inválida	en	un	vector),	si	no	manejamos	de	manera	adecuada	el	error	que	se
produce,	el	programa	va	a	terminar	abruptamente	su	ejecución.	Decimos	que	el	programa
deja	de	funcionar	y	es	muy	probable	que	el	usuario	que	lo	estaba	utilizando	ni	siquiera	sepa
qué	fue	lo	que	pasó.

Cuando	durante	la	ejecución	de	un	método	el	computador	detecta	un	error,	crea	un	objeto
de	una	clase	especial	para	representarlo	(de	la	clase	Exception	en	Java),	el	cual	incluye
toda	la	información	del	problema,	tal	como	el	punto	del	programa	donde	se	produjo,	la
causa	del	error,	etc.	Luego,	"dispara"	o	"lanza"	dicho	objeto	(throw	en	inglés),	con	la
esperanza	de	que	alguien	lo	atrape	y	decida	como	recuperarse	del	error.	Si	nadie	lo	atrapa,
el	programa	termina,	y	en	la	consola	de	ejecución	aparecerá	toda	la	información	contenida
en	el	objeto	que	representaba	el	error.	Este	objeto	se	conoce	como	una	excepción.	En	el
ejemplo	1	se	ilustra	esta	idea.

Ejemplo	1

Objetivo:	Dar	una	idea	global	del	concepto	de	excepción.

Este	ejemplo	ilustra	el	caso	en	el	cual	durante	la	ejecución	de	un	método	se	produce	un
error	y	el	computador	crea	un	objeto	para	representarlo	y	permitir	que	en	alguna	parte	del
programa	alguien	lo	atrape	y	lo	use	para	evitar	que	el	programa	deje	de	funcionar.

public	class	C1
{
		private	C2	atr;

		public	void	m1()
		{
				atr.m2();
		}
}

Manejo	de	las	Excepciones

379

Suponga	que	tenemos	una	clase	C1,	en	la	cual	hay	un	método	llamado	m1(),	que	es
llamado	desde	las	clases	de	la	interfaz	del	programa.
Los	objetos	de	la	clase	C1	tienen	un	atributo	de	la	clase	C2,	llamado		atr	.
Suponga	además	que	dentro	del	método	m1()	se	invoca	el	método	m2()	de	la	clase	C2
sobre	el	atributo	llamado		atr	.

public		class		C2
{
		public	void	m2()
		{
				instr1;	
				instr2;	
				instr3;
		}
}

Dentro	de	la	clase	C2	hay	un	método	llamado	m2()	que	tiene	3	instrucciones,	que	aquí
mostramos	como	instr1,	instr2,	instr3.	Dichas	instrucciones	pueden	ser	de	cualquier
tipo.
Suponga	que	se	está	ejecutando	la	instrucción	instr2	del	método	m2()	y	se	produce	un
error.	En	ese	momento,	a	causa	del	problema	el	computador	decide	que	no	puede
seguir	con	la	ejecución	del	método	(instr3	no	se	va	a	ejecutar).
Crea	entonces	un	objeto	de	la	clase	Exception	que	dice	que	el	error	sucedió	en	la
instrucción	instr2	del	método	m2()	y	explica	la	razón	del	problema.
Luego,	pasa	dicho	objeto	al	método	m1()	de	la	clase	C1,	que	fue	quien	hizo	la	llamada.
Si	él	lo	atrapa	(ya	veremos	más	adelante	cómo),	el	computador	continúa	la	ejecución
en	el	punto	que	dicho	método	indique.
Si	el	método	m1()	no	atrapa	la	excepción,	este	objeto	pasa	a	la	clase	de	la	interfaz	que
hizo	la	llamada.	Este	proceso	se	repite	hasta	que	alguien	atrape	la	excepción	o	hasta
que	el	programa	completo	se	detenga.	Entendemos	por	manejar	una	excepción	el
hecho	de	poderla	identificar,	atraparla	antes	de	que	el	programa	deje	de	funcionar	y
realizar	una	acción	para	recuperarse	del	error	(por	lo	menos,	para	informarle	al	usuario
lo	sucedido	de	manera	amigable	y	no	con	un	mensaje	poco	comprensible	del
computador).

En	el	resto	de	esta	sección	mostraremos	cómo	se	hace	todo	el	proceso	anteriormente
descrito,	en	el	lenguaje	de	programación	Java.

5.1.	Anunciar	que	Puede	Producirse	una
Excepción

Manejo	de	las	Excepciones

380

Cuando	en	un	método	queremos	indicar	que	éste	puede	disparar	una	excepción	en	caso	de
que	detecte	una	situación	que	considera	anormal,	esta	indicación	debe	formar	parte	de	la
signatura	del	método.	En	el	ejemplo	2	se	muestra	la	manera	de	hacer	dicha	declaración.

Ejemplo	2

Objetivo:	Declarar	que	un	método	puede	lanzar	una	excepción.

Este	ejemplo	muestra	la	manera	de	declarar	en	la	signatura	de	un	método	que	es	posible
que	éste	lance	una	excepción	en	caso	de	error.	El	método	que	se	presenta	forma	parte	de
la	clase	Club	y	es	responsable	de	afiliar	un	socio.

public	void	afiliarSocio(String	pCedula,	String	pNombre,	Tipo	pTipo)	throws	Exceptio
n
{
		...
}

Con	esta	declaración	el	método	advierte	a	todos	aquellos	que	lo	usan	de	que	puede
producirse	una	excepción	al	invocarlo.	Los	métodos	que	hacen	la	invocación	pueden
decidir	atraparla	o	dejarla	pasar.
No	es	necesario	hacer	un		import		de	la	clase	Exception,	puesto	que	esta	clase	está	en
un	paquete	que	siempre	se	importa	automáticamente	(java.lang).

Al	informar	que	un	método	lanza	una	excepción,	estamos	agrupando	dos	casos
posibles:	Caso	1:	la	excepción	va	a	ser	creada	y	lanzada	por	el	mismo	método	que	la
declara.	Esto	quiere	decir	que	es	el	mismo	método	el	que	se	encarga	de	detectar	el
problema,	de	crear	la	instancia	de	la	clase	Exception	y	de	lanzarla.	Caso	2:	la
excepción	fue	producida	por	alguna	instrucción	en	el	cuerpo	del	método	que	hace	la
declaración,	el	cual	decide	no	atraparla	sino	dejarla	seguir.	Este	"dejarla	seguir"	se
informa	también	con	la	misma	cláusula	throws.

5.2.	La	Instrucción	try-catch
La	instrucción	try-catch	de	Java	tiene	la	estructura	que	se	muestra	en	la	figura	4.7	y	la
sintaxis	que	se	utiliza	en	el	ejemplo	3.

Manejo	de	las	Excepciones

381

Fig.	4.7	Estructura	básica	de	la	instrucción	try-catch

En	la	instrucción	try-catch	hay	dos	bloques	de	instrucciones,	con	los	siguientes	objetivos:

Delimitar	la	porción	de	código	dentro	de	un	método	en	el	que	necesitamos	desviar	el
control	si	una	excepción	ocurre	allí	(la	parte		try).	Si	se	dispara	una	excepción	en
alguna	de	las	instrucciones	del	bloque	try,	la	ejecución	del	programa	pasa
inmediatamente	a	las	instrucciones	del	bloque	catch.	Si	no	se	dispara	ninguna
excepción	en	las	instrucciones	del	bloque	try,	la	ejecución	continúa	después	del	bloque
catch.
Definir	el	código	que	manejará	el	error	o	atrapará	la	excepción	(la	parte		catch).

Ejemplo	3

Objetivo:	Mostrar	el	uso	de	la	instrucción	try-catch	de	Java.

Este	método	forma	parte	de	alguna	de	las	clases	de	la	interfaz,	en	la	cual	existe	una
referencia	hacia	el	modelo	del	mundo	llamada	club.	La	estructura	y	contenido	de	las	clases
que	implementan	la	interfaz	de	usuario	son	el	tema	del	siguiente	nivel.

Manejo	de	las	Excepciones

382

public	void	ejemplo(String	pCedula,	String	pNombre,	Tipo	pTipo)
{
		try
		{
				club.afiliarSocio(pCedula,	pNombre,	pTipo);	
				totalSocios++;
		}
		catch(Exception	e)
		{
				String	ms	=	e.getMessage();	
				JOptionPane.showMessageDialog(this,	ms);
		}
}

Si	en	la	llamada	del	método	afiliarSocio	se	produce	una	excepción,	ésta	es	atrapada	y
la	ejecución	del	programa	continúa	en	la	primera	instrucción	del	bloque		catch	.	Note
que	en	ese	caso,	la	instrucción	que	incrementa	el	atributo		totalSocios		no	se	ejecuta.
La	primera	instrucción	del	bloque	catch	pide	al	objeto	que	representa	la	excepción	el
mensaje	que	explica	el	problema.	Fíjese	cómo	utilizamos	la	variable		e	.
La	segunda	instrucción	del	bloque		catch		despliega	una	pequeña	ventana	de	diálogo
con	el	mensaje	que	traía	el	objeto		e		de	la	clase	Exception.	En	este	ejemplo,	la
intención	es	comunicarle	al	usuario	que	hubo	un	problema	y	que	no	se	pudo	realizar	la
afiliación	del	socio	al	club.

No	todos	los	errores	que	se	pueden	producir	en	un	método	se	atrapan	con	la
instrucción	catch(Exception).	Existen	los	que	se	denominan	errores	de	ejecución
(dividir	por	cero,	por	ejemplo)	que	se	manejan	de	una	manera	un	poco	diferente.

5.3.	La	Construcción	de	un	Objeto	Exception	y
la	Instrucción	throw
Cuando	necesitamos	disparar	una	excepción	dentro	de	un	método	utilizamos	la	instrucción
throw	del	lenguaje	Java.	Esta	instrucción	recibe	como	parámetro	un	objeto	de	la	clase
Exception,	el	cual	es	lanzado	o	disparado	al	método	que	corresponda,	siguiendo	el
esquema	planteado	anteriormente.	Lo	primero	que	debemos	hacer,	entonces,	es	crear	el
objeto	que	representa	la	excepción,	tal	como	se	muestra	en	el	ejemplo	que	aparece	a
continuación.

Ejemplo	4

Objetivo:	Mostrar	la	manera	de	lanzar	una	excepción	desde	un	método.

Manejo	de	las	Excepciones

383

En	este	ejemplo	aparece	la	implementación	del	método	de	la	clase	Club	que	permite	afiliar
un	socio.	En	este	método,	si	ya	existe	un	socio	con	la	misma	cédula,	se	lanza	una
excepción,	para	indicar	que	se	detectó	una	situación	anormal.

public	void	afiliarSocio(String	pCedula,	String	pNombre,	Tipo	pTipo)	throws	Exceptio
n
{

		//	En	caso	de	que	el	tipo	de	suscripción	del	nuevo	socio	sea	VIP,	es	necesario
		//	revisar	que	no	se	haya	alcanzado	el	límite	de	suscripciones	VIP	que	maneja	el	club

		if(pTipo	==	Tipo.VIP	&&	contarSociosVIP()	==	MAXIMO_VIP)
		{
				//	Si	ya	se	alcanzó	el	número	máximo	de	suscripciones	VIP,	se	lanza	una	excepción
				throw	new	Exception("El	club	en	el	momento	no	acepta	más	socios	VIP");
		}

		//	Revisar	que	no	haya	ya	un	socio	con	la	misma	cédula	en	el	club
		Socio	s	=	buscarSocio(pCedula);														

		if(s	==	null)
		{
				//	Se	crea	el	objeto	del	nuevo	socio	(todavía	no	se	ha	agregado	al	club)
				Socio	nuevoSocio	=	new	Socio(pCedula,	pNombre,	pTipo);

				//	Se	agrega	el	nuevo	socio	al	club
				socios.add(nuevoSocio);
		}
		else
		{
				//	Si	ya	existía	un	socio	con	la	misma	cédula,	se	lanza	una	excepción
				throw	new	Exception("El	socio	ya	existe");
		}
}

Este	método	lanza	una	excepción	a	aquél	que	lo	llama,	si	le	pasan	como	parámetro	la
información	de	un	socio	que	ya	existe	o	si	el	socio	que	se	desea	afiliar	tiene	suscripción
VIP	y	ya	se	alcanzó	el	máximo	número	de	suscripciones	VIP	que	maneja	el	club.
El	constructor	de	la	clase	Exception	recibe	como	parámetro	una	cadena	de	caracteres
que	describe	el	problema	detectado.
Cuando	un	método	atrape	esta	excepción	y	le	pida	su	mensaje	(getMessage()),	el
objeto	va	a	responder	con	el	mensaje	que	le	dieron	en	el	constructor.
En	este	ejemplo,	cuando	se	detecta	el	problema	se	crea	el	objeto	que	representa	el
error	y	se	lo	lanza,	todo	de	una	sola	vez.	Pero	podríamos	haber	hecho	lo	mismo	en	dos
instrucciones	separadas.

Manejo	de	las	Excepciones

384

La	clase	Exception	es	una	clase	de	Java	que	ofrece	múltiples	servicios,	que	se	pueden
consultar	en	la	documentación.	Los	más	usados	son	getMessage(),	que	retorna	el	mensaje
con	el	que	fue	creada	la	excepción,	y	printStackTrace(),	que	imprime	en	la	consola	de
ejecución	la	traza	incluida	en	el	objeto	(la	secuencia	anidada	de	invocaciones	de	métodos
que	dio	lugar	al	error),	tratando	de	informar	al	usuario	respecto	de	la	posición	y	la	causa	del
error.

Si	utilizamos	las	siguientes	instrucciones	después	de	atrapar	la	excepción	del	método
afiliarSocio()	en	caso	de	que	ya	exista	un	socio	con	la	misma	cédula,	presentado	en	el
ejemplo	4:

...
catch(Exception	e)
{
		JOptionPane.showMessageDialog(this,	e.getMessage());
}

Obtendremos	la	ventana	de	advertencia	al	usuario	que	aparece	en	la	figura	4.8.

Fig.	4.8	Despliegue	de	un	mensaje	de	error	como	consecuencia	de	una	excepción
en	el	programa

5.4.	Recuperación	de	una	Situación	Anormal
Cuando	se	está	ejecutando	un	método,	puede	pasar	que	desde	su	interior	se	invoque	otro
método	y,	desde	el	interior	de	éste,	otro	y	así	sucesivamente.	En	la	figura	4.9	mostramos	un
ejemplo	de	la	ejecución	de	un	método	m1()	que	invoca	un	método	m2(),	el	cual	llama	a	m3()
y	este	último	a	m4().

Manejo	de	las	Excepciones

385

Fig.	4.9	Invocación	en	cascada	de	métodos

Supongamos	ahora	que	durante	la	ejecución	del	método	m4()	se	dispara	una	excepción.	Es
parte	de	nuestras	decisiones	de	diseño	decidir	quién	será	el	responsable	de	atraparla	y
manejarla.	Una	posibilidad	es	que	el	mismo	método	m4()	la	atrape	y	la	procese.	Otra
posibilidad	es	que	la	responsabilidad	se	delegue	hacia	arriba,	dejando	que	sea	el	método
m3()	o	el	método	m2()	o	el	método	m1()	quien	se	encargue	de	atrapar	la	excepción.	En	la
figura	4.10	ilustramos	la	situación	en	que	es	el	método	m1()	el	responsable	de	hacerse
cargo	de	la	excepción.

Fig.	4.10	Flujo	de	control	en	el	manejo	de	excepciones

El	método	encargado	de	atrapar	una	excepción	utiliza	la	instrucción	try-catch,	mientras	que
los	métodos	que	sólo	la	dejan	pasar	lo	declaran	en	su	signatura	(throws	Exception).

Manejo	de	las	Excepciones

386

6.	Contrato	de	un	Método
El	contrato	de	un	método	establece	bajo	qué	condiciones	el	método	tendrá	éxito	y	cuál	será
el	resultado	una	vez	que	se	termine	su	ejecución.	Por	ejemplo,	para	el	método:

public	void	afiliarSocio(String	pCedula,	String	pNombre,	Tipo	pTipo)	throws	Exceptio
n

Podemos	establecer	que	las	suposiciones	antes	de	ejecutar	el	método	son:

La	lista	de	socios	ya	fue	creada.
La	cédula	no	es	null	ni	vacía.
No	se	ha	verificado	si	ya	existe	un	socio	con	esa	cédula.
El	nombre	no	es	null	ni	vacío.
El	tipo	de	suscripción	no	es	null.

Después	de	ejecutar	el	método,	el	resultado	debe	ser	uno	de	los	siguientes:

Todo	funcionó	bien	y	el	socio	se	afilió	al	club.
Se	produjo	un	error	y	se	informó	del	problema	con	una	excepción.	El	socio	no	quedó
afiliado	al	club.

6.1.	Precondiciones	y	Postcondiciones
La	precondición	es	aquello	que	exigimos	para	poder	resolver	el	problema	planteado	a	un
método.	Es	un	conjunto	de	suposiciones,	expresadas	como	condiciones	que	deben	ser
verdaderas	para	que	el	método	se	ejecute	con	éxito.	Estas	precondiciones	pueden	referirse
a:

El	estado	del	objeto	que	va	a	ejecutar	el	método	(el	valor	de	sus	atributos).
El	estado	de	algún	elemento	del	mundo	con	el	cual	el	objeto	tenga	una	asociación.
Condiciones	sobre	los	parámetros	de	entrada	entregados	al	método.

Tarea	4

Objetivo:	Identificar	la	precondición	de	un	método.

Identifique	la	precondición	del	método	de	la	clase	Socio	que	permite	registrar	un	consumo,
el	cual	tiene	la	siguiente	signatura:

Contrato	de	un	Método

387

public	void	registrarConsumo(String	pNombre,	String	pConcepto,	double	pValor)	throws
	Exception

Suposiciones	sobre	el	parámetro		pNombre	.

Suposiciones	sobre	el	parámetro		pConcepto	.

Suposiciones	sobre	el	parámetro		pValor	.

Suposiciones	sobre	el	estado	del	objeto	que	va	a	ejecutar	este
método.

Suposiciones	sobre	el	estado	de	alguno	de	los	objetos	con	los
cuales	existe	una	asociación.

La	descripción	del	resultado	obtenido	después	de	ejecutar	un	método	la	llamamos	su
postcondición.	Esta	se	expresa	en	términos	de	un	conjunto	de	condiciones	que	deben	ser
verdaderas	después	de	que	el	método	ha	sido	ejecutado,	siempre	y	cuando	no	se	haya
lanzado	una	excepción.	Estas	postcondiciones	hacen	referencia	a:

Una	descripción	del	valor	de	retorno.
Una	descripción	del	estado	del	objeto	después	de	haber	ejecutado	el	método.

La	precondición	se	puede	ver	entonces	como	el	conjunto	de	condiciones	que	impone	aquél
que	desarrolla	el	método	y	la	postcondición	como	los	compromisos	que	asume.	En	otras
palabras,	el	contrato	queda	establecido	de	la	siguiente	manera:	"si	todas	las	condiciones	de
la	precondición	se	cumplen	antes	de	llamar	el	método,	éste	asume	el	compromiso	de	llegar
a	cumplir	todas	las	condiciones	incluidas	en	la	postcondición".

El	contrato	es	total,	en	el	sentido	de	que	si	alguna	de	las	precondiciones	no	se	cumple,
el	método	deja	de	estar	obligado	a	cumplir	la	postcondición.

Contrato	de	un	Método

388

Tarea	5

Objetivo:	Identificar	las	postcondiciones	de	algunos	métodos.

Describa	en	términos	de	condiciones	la	situación	del	objeto	y	el	resultado,	después	de
haber	ejecutado	los	siguientes	métodos	de	la	clase	Socio.

public	void	registrarConsumo(String	pNombre,	String	pConcepto,	double	pValor)	throws
	Exception

public	boolean	existeAutorizado(String	pNombreAutorizado)

Vamos	a	contestar	a	continuación	algunas	de	las	preguntas	típicas	que	surgen	en	el
momento	de	definir	un	contrato	y	de	implementar	un	método	que	lo	cumpla.

¿Un	método	debe	verificar	en	algún	punto	las	condiciones	que	hacen	parte	de	la
precondición?	La	respuesta	es	no.	Lo	que	aparece	en	la	precondición	se	debe	suponer

Contrato	de	un	Método

389

como	cierto	y	se	debe	utilizar	como	si	lo	fuera.	Si	algo	falla	en	la	ejecución	por	culpa	de
eso,	es	el	problema	de	aquél	que	hizo	la	llamada	sin	cumplir	el	contrato.
¿Qué	lugar	ocupan	las	excepciones	en	los	contratos?	Un	contrato	sólo	debe	decir	que
lanza	una	excepción	cuando,	aún	cumpliéndose	todo	lo	pedido	en	la	precondición,	es
imposible	llegar	a	cumplir	la	postcondición.	Eso	quiere	decir	que	ninguna	excepción
puede	asociarse	con	el	incumplimiento	de	una	precondición.
¿Qué	incluir	entonces	en	la	precondición?	En	la	precondición	sólo	se	deben	incluir
condiciones	que	resulten	fáciles	de	garantizar	por	parte	de	aquél	que	utiliza	el	método.
Si	le	impongo	verificaciones	cuya	verificación	previa	a	la	invocación	del	método	le
demandará	un	gran	costo	en	tiempo,	terminaremos	construyendo	programas
ineficientes.	Si	quiero	asegurarme	de	algo	así	en	la	ejecución	del	método,	pues	basta
con	eliminarlo	de	la	precondición	y	lanzar	una	excepción	si	no	se	cumple.	*¿Por	qué	es
inconveniente	verificar	todo	dentro	del	método	invocado?	Por	eficiencia.	Es	mucho
mejor	repartir	las	responsabilidades	de	verificar	las	cosas	entre	el	que	hace	el	llamado
y	el	que	hace	el	método.	Si	en	el	contrato	queda	claro	quién	se	encarga	de	qué,	es	más
fácil	y	eficiente	resolver	los	problemas.

6.2.	Documentación	de	los	Contratos	con
Javadoc
En	este	libro	expresamos	los	contratos	en	lenguaje	natural	y	los	incluimos	dentro	del	código
como	parte	de	la	documentación	de	los	métodos.	Para	esto	aprovechamos	las
convenciones	y	la	herramienta	de	generación	automática	de	documentación	que	viene	con
el	lenguaje	Java	y	que	se	llama	Javadoc.	Dicha	herramienta	busca	dentro	de	las	clases
comentarios	delimitados	por	los	caracteres		/**	...	*/		y	genera	a	partir	de	ellos	un
conjunto	de	archivos	con	formato	html,	que	permiten	documentar	el	contenido	de	las	clases.

Veamos	cómo	podemos	utilizar	algunas	etiquetas	(tags)	de	Javadoc	para	documentar
uniformemente	los	contratos,	de	tal	forma	que,	al	ser	generada	la	documentación	del
programa,	sea	claro	para	el	lector	de	esa	documentación	cuáles	son	las	suposiciones	y	los
compromisos	de	los	métodos	que	él	va	a	utilizar.

Las	convenciones	que	utilizamos	para	documentar	los	contratos	de	los	métodos	son	las
siguientes,	que	iremos	ilustrando	con	el	contrato	del	método	de	la	clase	Club	que	permite
afiliar	un	nuevo	socio:

Un	contrato	se	expresa	como	un	comentario	Javadoc,	delimitado	con	los	caracteres
	/**	...	*/	.	Dicho	comentario	debe	ir	inmediatamente	antes	del	método.
El	contrato	comienza	con	una	descripción	general	del	método.	Esta	descripción	debe
dar	una	idea	general	del	servicio	que	éste	presta.

Contrato	de	un	Método

390

/**
*	Este	método	afilia	un	nuevo	socio	al	club.

Luego	vienen	las	precondiciones	relacionadas	con	el	estado	del	objeto	que	ejecuta	el
método.	Allí	se	incluyen	únicamente	las	restricciones	y	las	relaciones	que	deben
cumplir	los	atributos	y	los	objetos	con	los	cuales	tiene	una	asociación.

*	pre:	La	lista	de	socios	está	inicializada	(no	es	null).

Los	elementos				y				sólo	sirven	para	que	cuando	se	genere	la	documentación	en
formato	html,	la	palabra	encerrada	entre	estos	elementos	aparezca	en	negrita.	El	elemento
	
		inserta	un	cambio	de	renglón	en	ese	lugar	del	archivo	de	documentación.

En	el	ejemplo	anterior,	la	condición	hace	referencia	a	la	asociación	que	existe	entre	la	clase
Club	y	la	clase	Socio,	y	dice	que	el	vector	que	contiene	los	socios	está	inicializado.	Dicha
condición	se	da	por	cierta,	lo	que	implica	que	en	la	implementación	del	método	no	se	hará
ninguna	verificación	en	ese	sentido	y	se	utilizará	como	un	hecho.

Después	aparecen	las	postcondiciones	que	hacen	referencia	al	estado	del	objeto
después	de	la	eje-	cución	del	método.	Allí	se	debe	describir	la	modificación	de	los
atributos	y	objetos	asociados	que	puede	esperarse	luego	de	su	invocación.

*	post:	Se	ha	afiliado	un	nuevo	socio	en	el	club	con	los	datos	dados.

La	siguiente	parte	describe	los	parámetros	de	entrada	y	las	precondiciones	asociadas
con	ellos.	Por	cada	uno	de	los	parámetros	se	debe	usar	la	etiqueta	@param	seguida
del	nombre	del	parámetro,	una	descripción	y	las	suposiciones	que	el	método	hace
sobre	él.

*	@param	pCedula	Cédula	del	socio	a	afiliar.	pCedula	!=	null	&&	pCedula	!=	"".
*	@param	pNombre	Nombre	del	socio	a	afiliar.	pNombre	!=	null	&&	pNombre	!=	"".
*	@param	pTipo	Es	el	tipo	de	subscripción	del	socio.	pTipo	!=	null.

Al	decir	en	el	contrato	que	el	parámetro	que	trae	la	cédula	del	nuevo	socio	no	tiene	el	valor
	null		ni	es	una	cadena	vacía,	estamos	afirmando	que	el	método	no	va	a	hacer	ninguna
verificación	al	respecto	y	que	aquél	que	haga	la	llamada	debe	garantizarlo.

Como	parte	del	contrato	no	es	necesario	hablar	del	tipo	de	los	parámetros,	porque	esto	va
en	la	signatura	del	método,	la	cual	es	parte	integral	del	mismo.	Esto	quiere	decir,	por
ejemplo,	que	no	vale	la	pena	incluir	en	la	precondición	del	atributo	nombre	algo	para	indicar
que	es	de	tipo	String.

Contrato	de	un	Método

391

Tampoco	es	buena	idea	incluir	en	una	precondición	información	sobre	lo	que	no	se	supone
en	el	método.	Debe	quedar	claro	que	todo	lo	que	no	aparece	explícitamente	como	una
suposición,	no	se	puede	suponer.

Luego	viene	la	parte	de	la	postcondición	que	describe	el	retorno	del	método.	Esta	sólo
aparece	en	el	contrato	si	el	método	devuelve	algún	valor	(es	decir,	no	es		void).	Se
indica	con	la	etiqueta	@return	seguido	de	una	descripción	de	lo	que	el	método
devuelve	y	las	condiciones	que	este	valor	cumple.

En	el	ejemplo	que	venimos	desarrollando,	como	el	método	es	de	tipo		void	,	no	hay
necesidad	de	agregar	nada	al	contrato.

Para	poder	expresar	de	manera	más	sencilla	las	condiciones	sobre	el	valor	que	el	método
devuelve,	es	común	darle	un	nombre	al	retorno	del	método	(como	si	fuera	una	variable)	y
luego	usar	dicho	nombre	como	parte	de	las	condiciones.	Esto	se	ilustra	más	adelante.

Por	último,	aparecen	las	excepciones	que	el	método	dispara.	Para	hacer	esto,	se	utiliza
la	etiqueta	@throws	seguida	del	tipo	de	la	excepción	y	una	descripción	de	la	situación
en	la	que	puede	ser	disparada.

*	@throws	Exception	

*									1.	Si	un	socio	con	la	misma	cédula	ya	estaba	afiliado	al	club.	

*									2.	Si	el	socio	a	registrar	desea	una	subscripción	VIP	pero	el	club	ha	alcanz
ado	el	límite.

Es	conveniente	que	la	descripción	se	haga	usando	una	frase	en	la	que	sea	clara	la
condición	para	que	la	excepción	se	lance	(p.ej.,	"si	un	socio	con	la	misma	cédula	ya	estaba
afiliado	al	club"),	lo	mismo	que	las	consecuencias	de	la	excepción	(p.ej.	"la	nueva	afiliación
no	se	pudo	llevar	a	cabo").

Cuando	un	método	puede	lanzar	varias	excepciones,	cada	una	de	ellas	por	una	razón
diferente,	se	debe	usar	la	etiqueta	@throws	para	cada	caso	de	manera	independiente.

Ejemplo	5

Objetivo:	Mostrar	un	contrato	completo	y	la	página	html	generada	por	la	herramienta
Javadoc.

En	este	ejemplo	se	presenta	el	contrato	del	método	de	la	clase	Club	que	afilia	un	nuevo
socio.	En	la	parte	de	abajo	aparece	la	visualización	del	archivo	html	generado
automáticamente	por	la	herramienta	Javadoc.

Contrato	de	un	Método

392

/**
*	Afilia	un	nuevo	socio	al	club.	

*	pre:		La	lista	de	socios	está	inicializada.	

*	post:		Se	ha	afiliado	un	nuevo	socio	en	el	club	con	los	datos	dados.
*	@param	pCedula	Cédula	del	socio	a	afiliar.	pCedula	!=	null	&&	pCedula	!=	"".
*	@param	pNombre	Nombre	del	socio	a	afiliar.	pNombre	!=	null	&&	pNombre	!=	"".
*	@param	pTipo	Es	el	tipo	de	subscripción	del	socio.	pTipo	!=	null.
*	@throws	Exception	

*									1.	Si	un	socio	con	la	misma	cédula	ya	estaba	afiliado	al	club.	

*									2.	Si	el	socio	a	registrar	desea	una	subscripción	VIP	pero	el	club	ha	alcanz
ado	el	límite.
*/
public	void	afiliarSocio(String	pCedula,	String	pNombre,	Tipo	pTipo)	throws	Exceptio
n
{
}

Tarea	6

Objetivo:	Revisar	los	contratos	de	los	métodos	del	caso	de	estudio.

Genere	la	documentación	del	ejemplo	del	club,	utilizando	la	herramienta	Javadoc.
Revise	la	documentación	generada	a	partir	del	índice	que	encuentra	en:
n4_club/docs/api/index.html	En	particular,	estudie	la	definición	de	los	contratos	de	los
métodos	de	las	clases	Club,	Socio	y
Factura,	y	conteste	las	siguientes	preguntas:

Contrato	de	un	Método

393

http://cupi2.uniandes.edu.co/sitio/images/cursosCupi2/apo1/ejemplos/codigos/n4_club.zip

¿Qué	pasa	si	el	método	buscarSocio	de	la	clase	Club	no	encuentra
el	socio	cuya	cédula	recibió	como	parámetro?

¿Qué	precondición	exige	el	método	buscarSocio	de	la	clase	Club
respecto	del	atributo	que	representa	la	cédula?

¿Qué	retorna	el	método	darConcepto	de	la	clase	Factura?	¿Qué
condiciones	cumple	dicho	valor?	¿Qué	nombre	se	usó	en	el	contrato
para	representar	el	valor	de	retorno?

¿Cuál	es	la	precondición	sobre	el	parámetro	pValor	en	el	método
registrarConsumo	de	la	clase	Socio?

¿Cuál	es	la	postcondición	del	método	pagarFactura	de	la	clase	Socio?

¿En	cuántos	casos	lanza	una	excepción	el	método	agregarAutorizado
de	la	clase	Socio?

¿Qué	sucede	si	en	el	método	agregarAutorizado	de	la	clase	Socio,	el
parámetro	de	entrada	corresponde	al	nombre	del	socio?

Contrato	de	un	Método

394

7.	Diseño	de	las	Signaturas	de	los
Métodos
Una	vez	distribuidas	las	responsabilidades	entre	las	clases,	debemos	continuar	con	el
diseño	de	los	métodos.	Por	un	lado,	debemos	decidir	cuáles	serán	los	parámetros	del
método,	cuál	será	su	valor	de	retorno,	qué	excepciones	puede	disparar	y,	finalmente,
debemos	precisar	su	contrato,	es	decir,	definir	las	condiciones	sobre	todos	esos	elementos.
‰

De	manera	general,	podemos	decir	que	la	información	que	tenemos	para	diseñar	la
signatura	de	los	métodos	viene	de	dos	fuentes	distintas:	por	una	parte,	de	la	identificación
de	las	entradas	y	salidas	de	los	requerimientos	funcionales.	Por	otra	parte,	de	los	tipos	de
los	atributos	utilizados	en	el	modelado	del	mundo	del	problema.	Por	ejemplo,	para	el
requerimiento	funcional	de	afiliar	un	socio,	los	datos	de	entrada	son	la	cédula	del	socio,	su
nombre	y	su	tipo	de	subscripción.	Esto	sugiere	que	ésa	es	la	información	que	debe	recibir	el
método	de	la	clase	Club	que	tiene	esa	responsabilidad.

public	void	afiliarSocio(String	pCedula,	String	pNombre,	Tipo	pTipo)	throws	Exceptio
n

En	el	caso	general,	es	conveniente	tratar	de	contestar	dos	preguntas:

¿Qué	información	externa	al	objeto	se	necesita	para	resolver	el	problema	que	se
plantea	en	el	método?	Esto	nos	va	a	dar	pistas	sobre	los	parámetros	que	se	deben
incluir.

¿Cómo	se	modeló	esa	información	dentro	del	objeto?	Piense,	por	ejemplo,	que	si	se
definieron	constantes	para	representar	los	valores	posibles	de	una	característica,	y	la
información	externa	está	relacionada	con	ella,	los	parámetros	deben	reejar	eso.	En	el
caso	de	estudio	de	la	tienda	presentado	en	el	nivel	2,	si	queremos	pasar	como
parámetro	el	tipo	del	producto	(recuerde	que	puede	ser	de	papelería,	droguería	o
supermercado),	el	parámetro	debe	ser	una	enumeración	y	no	de	tipo	cadena	de
caracteres.

Tarea	7

Objetivo:	Revisar	el	diseño	de	los	métodos	del	caso	de	estudio	y	justificar	las	signaturas
utilizadas.

Diseño	de	las	Signaturas	de	los	Métodos

395

Para	la	clase	Socio,	estudie	la	signatura	de	los	siguientes	métodos	y	trate	de	escribir	la
justificación	de	cada	una	de	las	decisiones	de	diseño.	¿Por	qué	esos	parámetros?	¿Por	qué
esas	excepciones?	¿Por	qué	ese	tipo	de	retorno?

boolean	existeAutorizado(String	pNombreAutorizado)

void	eliminarAutorizado(String	pNombreAutorizado)	throws	Exception

void	agregarAutorizado(String	pNombreAutorizado)	throws	Exception

Diseño	de	las	Signaturas	de	los	Métodos

396

void	pagarFactura(int	pIndiceFactura)	throws	Exception

void	registrarConsumo(String	pNombre,	String	pConcepto,	double	pValor)	throws	Except
ion

Diseño	de	las	Signaturas	de	los	Métodos

397

Diseño	de	las	Signaturas	de	los	Métodos

398

8.	Caso	de	Estudio	Nº	2:	Un	Brazo
Mecánico
En	esta	aplicación	se	modela	una	bodega	que	tiene	cubos	apilados	en	ciertas	posiciones	y
un	brazo	mecánico	que	puede	mover	estos	cubos.	La	bodega	tiene	unas	dimensiones
definidas	y	ni	el	brazo	ni	los	cubos	pueden	estar	por	fuera	de	esos	límites.	La	bodega	se
puede	organizar	como	una	cuadrícula	en	la	cual	las	coordenadas	X	corresponden	a	las
columnas	y	las	Y	corresponden	a	la	altura	medida	desde	el	piso,	tal	como	se	sugiere	en	la
figura	4.11.

Fig.	4.11	Convenciones	en	el	caso	de	estudio

Todos	los	cubos	tienen	las	mismas	dimensiones,	pero	pueden	tener	colores	diferentes	y	se
pueden	poner	uno	encima	del	otro	o	sobre	el	piso,	mientras	sus	posiciones	coincidan	con	la
cuadrícula	de	la	bodega.	Un	cubo	no	puede	estar	suspendido	en	el	aire:	debe	estar	sobre
otro	cubo	o	sobre	el	piso.

El	brazo	mecánico	está	suspendido	del	techo	de	la	bodega	y	puede	moverse	a	lo	largo	de
las	columnas,	al	igual	que	puede	subir	y	bajar.	El	brazo	puede	cargar	un	cubo	a	la	vez	y
solamente	puede	tomarlo	si	se	coloca	en	la	misma	posición	del	cubo	que	quiere	agarrar.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

399

Únicamente	se	pueden	recoger	cubos	que	están	en	el	tope	de	una	columna.	Para	soltar	un
cubo	el	brazo	debe	ubicarse	justo	encima	del	tope	de	una	columna	o	sobre	el	piso	y	luego
dejar	el	cubo	en	esa	posición.	¡No	pueden	dejarse	caer	los	cubos!

Hay	algunas	restricciones	al	movimiento	del	brazo.	Mientras	el	brazo	está	cargando	un	cubo
no	puede	llegar	a	una	posición	ocupada	por	otro	cubo.	Además	el	brazo	solamente	puede
llegar	a	una	posición	donde	hay	un	cubo	si	éste	se	encuentra	en	el	tope	de	una	columna.

La	interfaz	de	la	aplicación	del	brazo	mecánico	se	presenta	en	la	figura	4.12.

Fig.	4.12	Interfaz	de	usuario	del	brazo	mecánico

En	la	gráfica	mostrada,	el	brazo	mecánico	aparece	en	la	posición	2,	1.
La	bodega	tiene	7	columnas	y	un	máximo	de	6	cubos	en	cada	una.
Con	los	cinco	botones	del	panel	inferior,	se	puede	mover	el	robot	en	cada	una	de	las
cuatro	direcciones	posibles.	El	botón	de	la	mitad	sirve	para	agarrar	o	soltar	un	cubo.
En	la	parte	inferior	derecha,	la	interfaz	indica	que	aunque	el	brazo	está	sobre	un	cubo,
no	lo	ha	sujetado.
Con	el	menú	que	aparece	en	la	parte	de	arriba,	es	posible	cargar	una	nueva	bodega	a
partir	de	la	información	contenida	en	un	archivo.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

400

Vamos	a	utilizar	este	caso	de	estudio	para	generar	habilidad	en	el	uso	de	las	nociones	de
asignación	de	responsabilidades,	contratos	y	excepciones.	Primero,	vamos	a	explicar	la
manera	en	que	diseñamos	e	implementamos	el	mundo	del	brazo	mecánico	y	luego	vamos	a
resolver	algunos	problemas	en	ese	mundo.

Este	caso	también	lo	vamos	a	utilizar	para	introducir	la	técnica	de	dividir	y	conquistar,	como
una	manera	natural	de	resolver	problemas	complejos.

8.1.	Comprensión	y	Construcción	del	Mundo
en	Java
En	el	mundo	del	brazo	mecánico	existen	tres	entidades	básicas:	la	bodega,	el	brazo	y	los
cubos.	En	la	figura	4.13	se	muestra	el	diagrama	de	clases,	que	nos	resume	el	diseño	que
hicimos	para	este	problema.	Debe	ser	claro	que	existen	muchos	otros	diseños	posibles,
pero	éste	lo	construimos	de	manera	particular	para	poder	mostrar	todos	los	aspectos
interesantes	de	este	capítulo.

Fig.	4.13	Modelo	conceptual	del	mundo	del	brazo	mecánico

A	continuación	mostramos	la	declaración	de	las	constantes	y	atributos	de	cada	una	de	las
clases	involucradas:

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

401

import		java.awt.Color;

public	class	Cubo
{
		//------------------------------
		//	Atributos
		//------------------------------
		private	Color	color;
}

La	declaración	de	la	clase	Cubo	es	la	más	sencilla	del	diagrama	de	clases.	Cada	cubo
tiene	únicamente	un	color	como	atributo.
Usamos	la	clase	Color	del	paquete		java.awt		para	modelar	esta	característica.

public	class	BrazoMecanico
{

		//-------------------------------
		//	Constantes
		//-------------------------------
		public	static	final	int	ARRIBA	=	1;	
		public	static	final	int	ABAJO	=	2;	
		public	static	final	int	IZQUIERDA	=	3;	
		public	static	final	int	DERECHA	=	4;

		//-------------------------------
		//	Atributos
		//-------------------------------
		private	int	posX;
		private	int	posY;
		private	Cubo	cuboCargado;
		private	Bodega	bodega;

}

La	clase	BrazoMecanico	define	cuatro	constantes	para	identificar	los	cuatro
movimientos	posibles	que	puede	hacer	dentro	de	la	bodega.
Con	los	atributos		posX		y		posY		el	brazo	mecánico	conoce	su	posición	dentro	de	la
bodega.	El	valor		posX		define	la	columna	en	la	que	se	encuentra	y	el	valor		posY		la
altura.
Si	el	brazo	lleva	agarrado	un	cubo,	en	el	atributo		cuboCargado		se	encuentra	el	objeto
que	representa	el	cubo.	Si	no	lleva	ningún	cubo	agarrado,	este	atributo	tiene	el	valor
	null	.
El	último	atributo	es	la	bodega	en	la	cual	se	encuentra	el	brazo	mecánico.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

402

public	class	Bodega
{
		//-------------------------------
		//	Atributos
		//-------------------------------
		private	int	maxX;
		private	int	maxY;
		private	ArrayList	columnas;
}
```

Los	atributos		maxX		y		maxY		se	utilizan	para	representar	las	dimensiones	de	la	bodega:
el	primero	dice	el	número	de	columnas	y	el	segundo	el	número	máximo	de	cubos	por
columna.
En	el	atributo	"columnas"	almacenamos	las	columnas	de	la	bodega.	En	la	posición	x	de
este	vector,	estará	la	columna	x	de	la	bodega.	Cada	columna	a	su	vez	estará
representada	por	un	vector	de	cubos.	En	la	figura	4.14	se	ilustra	esta	estructura	usando
un	diagrama	de	objetos.

Fig.	4.14	Ejemplo	de	un	diagrama	de	objetos	para	representar	una	bodega

En	la	representación	que	escogimos,	es	importante	señalar	que	cada	columna	es	a	su	vez
un	vector	de	cubos.	En	dicho	vector,	en	la	posición	0	estará	el	cubo	que	se	encuentra	sobre
el	piso	(si	existe	alguno)	y	de	ahí	en	adelante	aparecerán	los	demás	cubos,	siguiendo	su
orden	dentro	de	la	columna.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

403



8.2.	Comprender	la	Asignación	de
Responsabilidades	y	los	Contratos
En	esta	parte	vamos	a	describir	las	responsabilidades	asignadas	a	las	clases:

La	clase	Cubo	tiene	un	atributo	color	y	es	responsable	de	dar	la	información	de	su
color.	Como	no	está	previsto	que	los	cubos	cambien	de	color,	no	existe	un	método	para
cambiar	ese	valor.	Este	es	un	ejemplo	de	un	caso	en	el	que	puede	imaginarse	un
servicio	que	no	hace	falta	prestar	en	relación	con	un	atributo.
La	clase	Bodega	es	responsable	de	manejar	sus	columnas	en	donde	se	apilan	los
cubos.	Sabe	construir	una	bodega	a	partir	de	unos	datos	de	entrada	y	sabe	responder
a	las	preguntas:	¿hay	un	cubo	en	una	posición	dada?	y	¿cuál	es	el	tamaño	de	la
bodega?

La	clase	Bodega	también	sabe	ubicar	y	eliminar	un	cubo	de	una	posición	dada.	Note	que	el
objeto	Bodega	trabaja	en	estrecha	colaboración	con	el	BrazoMecanico.	La	figura	4.15
muestra	la	clase	con	los	métodos	que	implementan	las	principales	responsabilidades.

Fig.	4.15	Responsabilidades	principales	de	la	clase	Bodega

Para	la	clase	BrazoMecanico	tenemos	lo	siguiente:

Ubicación:	el	brazo	sabe	dónde	se	encuentra	ubicado	dentro	de	la	bodega	(	posX	,
	posY	).	Por	esta	razón,	tiene	la	responsabilidad	de	informar	sobre	su	posición:
	darPosX()	,		darPosY()	.
Relación	con	un	cubo:	tiene	una	asociación	de	cardinalidad	opcional	con	un	cubo,
que	representa	la	posibilidad	de	llevar	agarrado	un	cubo.	El	brazo	sabe	si	tiene	o	no	un
cubo	en	la	pinza,	dependiendo	de	si	la	asociación	existe.	Por	esta	razón,	tiene	la
responsabilidad	de	implementar	un	método	que	devuelva	el	cubo	o		null		si	no	lleva

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

404



ninguno.
Sensores:	los	sensores	del	brazo	han	sido	modelados	a	través	de	servicios	que	el
cubo	le	solicita	a	la	bodega.	Por	ejemplo,	si	el	brazo	necesita	saber	si	en	una	posición
de	su	vecindad	inmediata	(arriba,	abajo,	derecha	o	izquierda)	hay	un	cubo,	le	solicita	a
la	bodega	que	haga	la	verificación,	dándole	la	posición	requerida	para	que	ella
determine	si	hay	o	no	un	cubo	ahí.

En	la	figura	4.16	se	muestran	las	responsabilidades	del	brazo	mecánico	anteriormente
mencionadas,	en	términos	de	sus	métodos	analizadores	y	sus	métodos	modificadores.

Fig.	4.16	Responsabilidades	principales	del	BrazoMecanico

Tarea	8

Objetivo:	Estudiar	los	contratos	de	los	métodos	diseñados	para	el	caso	del	brazo
mecánico.

Genere	la	documentación	del	proyecto	n4_brazoMecanico	y	estudie	los	contratos	de	los
métodos	de	las	clases	Bodega,	BrazoMecanico	y	Cubo.	Responda	las	siguientes	preguntas:

Explique	cuáles	son	los	compromisos	del	método	mover(	)	de	la	clase	BrazoMecanico.
¿Qué	pasa	si	tratamos	de	mover	el	brazo	mecánico	en	alguna	dirección	y	ésta	no	es
válida?

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

405

http://cupi2.uniandes.edu.co/sitio/images/cursosCupi2/apo1/ejemplos/codigos/n4_brazoMecanico.zip


Explique	cuáles	son	los	compromisos	del	método	agarrarCubo(	)	de	la	clase
BrazoMecanico.	¿Qué	pasa	si	el	brazo	mecánico	trata	de	agarrar	un	cubo	(en	la	posición
donde	está)	y	allí	no	hay	ningún	cubo?

Explique	cuáles	son	los	compromisos	del	método	dejarCubo()	de	la	clase	Bodega.	¿Qué
pasa	si	se	Intenta	dejar	un	cubo	en	una	posición	de	la	bodega	y	ésta	no	es	válida?

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

406



Explique	cuáles	son	las	suposiciones	del	método	puedeMoverse(	)	de	la	clase
BrazoMecanico.	

Explique	cuáles	son	las	suposiciones	del	método	darFilaTopeColumna()	de	la	clase	Bodega.

Explique	cuáles	son	las	suposiciones	del	método	puedeDejarCubo(	)	de	la	clase	Bodega.	

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

407



Explique	cuáles	son	las	responsabilidades	del	método	detectarCubo(	)	de	la	clase
BrazoMecanico.

¿Cuál	es	la	diferencia	entre	el	método	recogerCubo(	)	de	la	clase	Bodega	y	el	método
agarrarCubo(	)	de	la	clase	BrazoMecanico?	¿Cuál	es	exactamente	la	responsabilidad	de
cada	uno	de	ellos?	

8.3.	La	Técnica	de	Dividir	y	Conquistar
Ahora	que	ya	entendemos	el	mundo	del	brazo	mecánico	y	que	tenemos	a	la	mano	los
contratos	de	todos	los	métodos	que	ofrecen	sus	clases	Cubo,	BrazoMecanico	y	Bodega,
vamos	a	utilizarlos	para	resolver	algunos	problemas.

8.3.1.	Reto	1

Suponga	que	el	brazo	mecánico	se	encuentra	en	la	parte	superior	izquierda	de	la	bodega,	y
que	en	ella,	en	alguna	posición,	hay	un	único	cubo.	La	tarea	que	debemos	resolver	es
lograr	que	el	brazo	mecánico	lo	encuentre	y	luego	lo	lleve	a	la	columna	0	en	la	posición	del
piso.	En	la	figura	4.17	aparece	un	ejemplo	de	una	posible	situación	inicial	del	problema	y	su
correspondiente	situación	final.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

408



Para	enfrentar	este	reto,	lo	primero	que	debemos	hacer	es	definir	un	plan	de	solución.	El
objetivo	del	plan	de	solución	es	descomponer	el	problema	en	problemas	más	pequeños.
Una	guía	para	hacerlo	es	identificar	metas	intermedias	que	nos	vayan	acercando	a	la
solución	completa.	Nuestro	plan	para	el	primer	reto	puede	ser:

Meta	1:	El	brazo	debe	bajar	hasta	el	piso.
Meta	2:	El	brazo	debe	avanzar	hacia	la	derecha	y	encontrar	y	agarrar	el	cubo	que	hay
en	la	bodega.
Meta	3:	El	brazo	debe	llevar	el	cubo	a	la	posición	0,	0	de	la	bodega	y	dejarlo	allí.

Fig.	4.17	Ejemplo	de	una	situación	inicial	y	una	situación	final	para	el	reto	1

Identificadas	las	metas	intermedias,	podemos	resolver	de	manera	aislada	cada	uno	de	los
subproblemas	asociados	y,	luego,	reunir	las	soluciones	que	obtengamos.	Si	llamamos
bajarARecoger(),	encontrarUnicoCubo()	y	volverAPosicion0()	a	los	métodos	que	resuelven
cada	uno	de	los	subproblemas	planteados	anteriormente,	la	solución	global	del	reto	1
tendría	la	siguiente	estructura:

public	class	BrazoMecanico
{
		public	void	solucionReto1(	)
		{
				bajarARecoger(	);
				encontrarUnicoCubo(	);	
				volverAPosicion0(	);
		}
}

Construimos	la	solución	al	problema	a	partir	de	la	solución	de	los	métodos	que	nos	van
a	ayudar	a	cumplir	cada	una	de	las	metas.	La	ventaja	es	que	los	métodos	resultantes
son	más	sencillos	de	construir,	si	cada	uno	se	encarga	únicamente	de	una	parte	del
problema.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

409



Los	tres	métodos	planteados	deberían	declararse	como	métodos	privados,	dado	que	no
esperamos	que	alguien	externo	los	utilice.

Mientras	no	definamos	los	contratos	exactos	de	los	métodos,	no	podemos	estar	seguros	de
que	el	método	solucionReto1()	está	terminado,	pero	por	lo	menos	tenemos	un	borrador	para
comenzar	a	trabajar.

Fíjese	que	la	precondición	del	segundo	de	los	métodos	debe	asegurarse	en	la
postcondición	del	primero	de	ellos.

Por	ahora,	comencemos	definiendo	el	contrato	del	método	que	resuelve	el	problema
completo.

¿Qué	iría	en	la	precondición?	Una	aproximación	es	suponer	que	el	robot	efectivamente	se
encuentra	en	donde	dice	el	enunciado	y	suponer	también	que	hay	un	único	cubo	en	la
bodega.	Para	evitar	que	el	programa	falle	en	caso	de	que	esas	suposiciones	no	sean
ciertas,	vamos	a	dejar	la	precondición	vacía,	y	vamos	a	lanzar	una	excepción	si	el	estado
de	la	bodega	no	es	exactamente	como	lo	plantea	el	enunciado	del	reto.	Esto	nos	lleva	al
siguiente	contrato:

/**
*	Este	método	sirve	para	que	el	brazo	mecánico	localice	el	único	cubo	que	hay	en	la
*	bodega	y	lo	lleve	a	la	posición	de	origen	(coordenadas	0,	0).
*
*	<b>post:	</b>	El	brazo	está	en	la	posición	de	origen,	al	igual	que	el	único	cubo
*	de	la	bodega.	El	brazo	no	está	sujetando	el	cubo.
*
*	@throws	Exception	Lanza	una	excepción	si	el	robot	se	choca	en	cualquier	momento
*	mientras	trata	de	resolver	el	problema,	debido	a	que	el	estado
*	de	la	bodega	no	corresponde	al	enunciado.
*
*	@throws	Exception	Lanza	una	excepción	si	encuentra	algún	obstáculo	para	agarrar	el
*	cubo	(por	ejemplo,	un	segundo	cubo	sobre	él).
*/
public	void	solucionReto1(	)	throws	Exception
{	…		}

Comencemos	ahora	a	construir	los	métodos	para	lograr	cada	una	de	las	metas	y,	a	medida
que	los	vayamos	escribiendo,	iremos	refinando	la	solución	planteada	anteriormente	(si	es
necesario).

Meta	1:	Para	lograr	la	meta	1,	debemos	mover	el	brazo	hasta	que	su	posición	en	el	eje	Y
sea	igual	a	0	(es	decir,	el	piso).	Esto	lo	podemos	lograr	con	una	instrucción	repetitiva	para	la
que	podemos	utilizar	el	patrón	de	recorrido	total.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

410



private	void	bajarARecoger(	)	throws	Exception
{
		for(	int	i	=	0;	i	<	bodega.darMaxY(	);	i++	)
		{
				mover(	ABAJO	);
		}
}

Inicializamos	la	variable		i		en	0	e	iteramos	hasta	llegar	al	número	máximo	de	cubos
de	la	bodega.
Repetimos	la	instrucción	de	mover	hacia	abajo,	incrementando	en	cada	iteración	el
valor	de	la	variable		i	.
Puesto	que	el	método	mover()	de	la	clase	BrazoMecanico	puede	lanzar	una	excepción
si	se	produce	un	choque,	decidimos	no	atraparla	y	dejarla	pasar	al	método	principal.	Es
la	única	opción	para	evitar	que	el	segundo	método	comience	en	un	estado	que	no
cumple	su	precondición.	Además	no	habría	en	este	método	ninguna	manera	para
recuperarse	del	error.

La	descripción	del	reto	dice	que	sólo	hay	un	cubo	en	la	bodega	en	alguna	posición	del	piso.
Supongamos	que	quien	invoca	el	método	solucionReto1()	no	verifica	que	esto	sea	cierto	y
que	el	estado	inicial	es	algo	como	el	mostrado	en	la	figura	4.18.	En	ese	caso,	cuando	el
brazo	llega	sobre	el	primer	cubo	y	trata	de	seguir	hacia	abajo,	el	método	mover(ABAJO)	se
da	cuenta	que	no	puede	hacerlo	y	dispara	una	excepción.	Al	suceder	el	disparo	de	la
excepción,	se	detiene	la	ejecución	del	método	y	el	control	debería	llegar	hasta	una	clase	en
la	interfaz	de	usuario,	que	debería	atraparla	y	desplegar	un	mensaje	de	error,	como	el	que
se	muestra	en	la	figura	4.18.

Fig.	4.18	Error	al	tratar	de	mover	el	brazo	sobre	un	cubo

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

411



Meta	2:

Para	poder	cumplir	con	la	segunda	meta,	vamos	a	desarrollar	el	método
encontrarUnicoCubo(),	el	cual	implementa	el	siguiente	contrato:

Precondición:

El	brazo	está	en	la	posición	0,0	de	la	bodega	(aquí	lo	dejó	la	solución	a	la	meta	1).
Fíjese	que	aquí	lo	podemos	poner	como	una	suposición,	ya	que	en	nuestro	método
vamos	a	utilizar	esta	información	(sin	necesidad	de	verificar	que	sea	cierta).

Postcondición:

El	brazo	está	en	la	posición	donde	se	encuentra	el	cubo.
El	brazo	ha	agarrado	el	cubo.

El	método	va	a	disparar	una	excepción	si	no	puede	cumplir	con	la	postcondición,	debido	a
que	el	estado	de	la	bodega	no	es	como	se	suponía.	Note	que	las	excepciones	no
representan	en	ningún	momento	errores	en	el	programa	(no	es	que	no	podamos	cumplir	la
postcondición	porque	el	método	esté	mal	escrito),	sino	situaciones	anormales	que	están
fuera	del	control	del	método.

La	implementación	del	segundo	método	es	la	siguiente:

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

412



/**
*	Busca	y	agarra	el	único	cubo	que	hay	en	el	mundo.
*
*	<b>pre:</b>	El	brazo	está	en	la	posición	0,0	de	la	bodega.
*	<b>post:</b>	El	brazo	está	en	la	posición	donde
*	se	encuentra	el	cubo	y	lo	está	agarrando
*
*	@throws	Exception	Si	no	encontró	un	cubo	o	si	el	brazo	se
*	estrelló	contra	una	pila	de	cubos,
*	dispara	una	excepción	y	detiene	el	brazo
*/
private	void	encontrarUnicoCubo(	)	throws	Exception
{
		boolean	encontro	=	false;
		Cubo	cubo	=	null;

		for(	int	i	=	0;	i	<=	bodega.darMaxX(	)	&&	!encontro;	i++	)
		{
				cubo	=	bodega.darCubo(	i,	0	);

				if(	cubo	!=	null	)
				{
						encontro	=	true;
				}
				else	if(	i	<	bodega.darMaxX(	)	)
				{
						try
						{
								mover(	DERECHA	);
						}
						catch(	Exception	e	)
						{
								throw	new	Exception(	"Hay	una	pila	de	cubos"	);
						}
				}
		}

		if(	encontro	)	
				agarrarCubo(	);
		else
				throw	new	Exception(	"No	hay	ningún	cubo"	);
}

La	estrategia	para	resolver	este	problema	es	recorrer	la	posición	0	de	cada	una	de	las
columnas	hasta	encontrar	el	cubo.	Este	problema	corresponde	a	los	que	resuelve	el
patrón	de	algoritmo	de	recorrido	parcial	sobre	una	secuencia.
La	postcondición	afirma	que	el	brazo	queda	en	la	posición	donde	está	el	cubo	y	lo	tiene
agarrado.	Por	esta	razón,	si	al	final	del	recorrido	sobre	la	bodega	vemos	que	no	había
ningún	cubo	o	el	brazo	se	estrelló	contra	una	pila	de	cubos	y	que,	por	tanto,	no

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

413



podemos	cumplir	con	el	contrato,	disparamos	una	excepción	para	informar	del
problema.
Cuando	termina	el	ciclo,	el	brazo	está	en	la	posición	donde	se	encuentra	el	cubo	y	lo
puede	agarrar	para	cumplir	así	con	la	meta	2.
Note	que	si	hay	más	de	un	cubo	en	la	bodega,	el	método	termina	satisfactoriamente
apenas	encuentra	el	primer	cubo	sobre	el	piso	y	lo	lleva	a	la	posición	original.
Si	al	tratar	de	mover	el	brazo	a	la	derecha,	el	método	mover(DERECHA)	lanza	una
excepción,	la	atrapamos	y	la	volvemos	a	lanzar	con	un	mensaje	más	significativo	("Hay
una	pila	de	cubos").

Al	final	de	la	ejecución	de	este	método	pueden	suceder	tres	cosas,	las	cuales	se	ilustran	en
la	figura	4.19.	En	el	primer	caso	todo	funciona	y	se	cumple	la	postcondición.	En	el	segundo
caso	se	lanza	una	excepción	con	el	mensaje	"Hay	una	pila	de	cubos"	y	el	brazo	queda	en	la
posición	que	se	muestra.	En	el	tercer	caso	se	lanza	una	excepción	con	el	mensaje	"No	hay
ningún	cubo".

Fig.	4.19	Ejemplos	de	situaciones	finales	posibles

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

414



Meta	3:	La	meta	3	dice	que	el	cubo	ha	sido	agarrado	por	el	brazo	y	éste	debe	llevarlo	a	la
posición	0,0.

El	contrato	que	debe	cumplir	se	resume	de	la	siguiente	manera:	‰

Precondición:

El	brazo	está	agarrando	un	cubo	y	se	encuentra	a	nivel	del	piso.	Entre	el	punto	en	el
que	está	el	brazo	y	el	origen	de	la	bodega	(coordenadas	0,0)	no	hay	ningún	cubo.	Esto

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

415



lo	podemos	asegurar	porque	los	métodos	anteriores	ya	lo	verificaron.

Postcondición:

El	brazo	está	en	la	posición	0,	0.
El	único	cubo	de	la	bodega	está	en	la	posición	0,	0	de	la	bodega.
El	brazo	no	está	sosteniendo	el	cubo.

private	void	volverAPosicion0(	)
{
		try
		{
				for(	int	i	=	posX;	i	>	0;	i--	)
				{
						mover(	IZQUIERDA	);
				}
				soltarCubo(	);
		}
		catch(	Exception	e	)
		{
				//	No	debe	hacer	nada,	porque	nunca	puede
				//	ocurrir	esta	excepción
		}
}

La	solución	corresponde	de	nuevo	a	una	instrucción	repetitiva	donde	se	puede	aplicar
el	patrón	de	recorrido	total.
Dado	que	el	método	exige	en	su	precondición	que	el	camino	hasta	el	origen	esté
despejado	y	que	el	cubo	esté	efectivamente	agarrado	por	el	brazo,	no	existe	ninguna
posibilidad	de	que	se	lance	una	excepción.
Pero	como,	de	todos	modos,	la	signatura	del	método	mover()	declara	que	éste	puede
lanzar	excepciones,	el	método	volverAPosicion0()	debe	utilizar	la	instrucción	try-catch
para	atraparlas,	aunque	sabemos	que	nunca	van	a	aparecer.
Si	no	usamos	la	instrucción	try-catch	el	compilador	de	Java	va	a	mostrar	un	error,
advirtiéndonos	que	hay	excepciones	potenciales	que	no	estamos	atrapando.

8.3.2.	Reto	2

El	nuevo	reto	consiste	en	apilar	los	cubos	que	hay	en	la	bodega	en	las	primeras	columnas
de	la	misma.	En	la	figura	4.20	aparece	un	ejemplo	del	problema	que	se	espera	resolver.	En
la	parte	izquierda	aparece	una	posible	situación	inicial	y,	en	la	parte	derecha,	el	estado	de	la
bodega	después	de	que	el	problema	haya	sido	resuelto.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

416



Antes	de	intentar	escribir	una	línea	de	código,	debemos	definir	nuestro	plan	de	solución.	Lo
más	fácil	es	pensar	que	vamos	a	ir	apilando	los	cubos	en	orden.	Es	decir,	primero	llenamos
la	columna	0,	luego,	si	aún	quedan	cubos,	llenamos	la	columna	1	y	así	sucesivamente
mientras	haya	cubos	en	el	mundo	para	apilar.	Entonces,	nuestro	plan	global	de	solución	es
una	instrucción	repetitiva	en	la	que	hemos	identificado	una	meta	en	cada	ciclo	que
corresponde	a	haber	apilado	cubos	en	una	columna.	Fíjese	que	este	caso	es	diferente	al
anterior,	en	el	sentido	de	que	las	tareas	identificadas	no	son	secuenciales	sino	anidadas.

Fig.	4.20	Ejemplo	de	situación	inicial	y	final	para	el	reto	2

El	siguiente	fragmento	de	programa	muestra	el	plan	global	de	solución,	en	términos	de	las
llamadas	de	los	métodos	que	resuelven	cada	parte	del	problema.

class	BrazoMecanico
{
		/**
		*	Apilar	los	cubos	que	hay	en	la	bodega	en	las
		*	primeras	columnas
		*/
		public	void	solucionReto2(	)	throws	Exception
		{
				boolean	hayCubosPorApilar	=	true;
				int	i	=	0;

				while(	i	<	bodega.darMaxX()	&&	hayCubosPorApilar	)
				{
						hayCubosPorApilar	=	apileEnColumna(	i	);
						i++;
				}
		}
}

Según	el	plan	de	solución,	debemos	desarrollar	un	método	que	llene	una	columna	con
los	cubos	de	las	columnas	posteriores.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

417



Con	el	plan	de	solución	cambiamos	un	problema	complejo	por	uno	un	poco	más
sencillo.
Este	proceso	lo	podemos	repetir	tantas	veces	como	queramos,	hasta	llegar	a	un
problema	suficientemente	simple	para	resolverlo	directamente.	En	algunos	casos	la
descomposición	la	hacemos	en	tareas	secuenciales	y	en	otros,	en	tareas	que	se
ejecutan	dentro	de	un	ciclo.

Con	este	plan	de	solución,	ahora	debemos	preocuparnos	por	el	subproblema	de	apilar
cubos	en	una	columna	dada.	Debemos	hacer	explícitos	los	supuestos	que	estamos
haciendo	sobre	este	método	y	así	obtendremos	su	contrato.

/**
*	@param	col	es	el	número	de	la	columna	en	la	bodega	donde	se	van	a	apilar	los	cubos.
*	col	es	una	columna	válida.
*
*	@return	verdadero	si	aún	quedan	cubos	en	la	bodega	para	apilar,	falso	en	caso
*	contrario.
*
*	@throws	Exception	No	realiza	ningún	disparo	de	excepción	explícitamente	pero	utiliza
*	métodos	que	sí	pueden	hacerlo.	Delega	en	su	invocador	el	manejo	de
*	la	excepción.
*/
private	boolean	apileEnColumna(	int	col	)	throws	Exception
{	...		}

Para	este	subproblema,	también	podemos	definir	un	plan	de	solución.	Lo	primero	que
debemos	conocer	para	resolver	el	problema	es	cuántos	espacios	libres	hay	en	la	columna
para	apilar	cubos.	Una	vez	que	sabemos	esto,	podemos	intentar	apilar	los	cubos	(si	los	hay)
de	las	columnas	vecinas	(en	orden,	a	partir	de	la	columna	situada	a	la	derecha	de	la
objetivo)	sobre	el	tope	de	la	columna	objetivo.

Esta	última	estrategia	es,	de	nuevo,	una	instrucción	repetitiva	y	podemos	aplicar	el	patrón
de	recorrido	parcial,	donde	la	condición	del	ciclo	está	dada	por	una	condición	que	tiene	en
cuenta	si	aún	hay	espacio	libre	para	dejar	cubos	y	si	aún	hay	cubos	en	la	bodega	por	apilar.

Tarea	9

Objetivo:	Formalizar	el	plan	de	solución	del	segundo	reto	y	escribir	los	métodos	que	lo
implementan.	Siga	los	pasos	que	se	detallan	a	continuación	para	resolver	el	segundo	reto.

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

418



Defina	informalmente	el	plan	de	solución	para	el	método	que	apila	cubos	en	una	columna:	

Escriba	el	método	apileEnColumna	en	términos	de	otros	métodos	más	sencillos:	

Escriba	el	código	del	primero	de	los	métodos	que	utilizó	en	el	punto	anterior.	No	olvide
definir	explícitamente	el	contrato	que	debe	cumplir:	

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

419



Escriba	el	código	del	segundo	de	los	métodos	que	utilizó	en	el	punto	anterior.	No	olvide
definir	explícitamente	el	contrato	que	debe	cumplir:	

Caso	de	Estudio	Nº	2:	Un	Brazo	Mecánico

420



9.	Hojas	de	Trabajo

9.1	Hoja	de	Trabajo	Nº	1:	Venta	de	Boletas	en
una	Sala	de	Cine
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Analice	el	siguiente	enunciado	e	identique	el	mundo	del	problema,	lo	que	se
espera	de	la	aplicación	y	las	restricciones	para	desarrollarla.

Se	quiere	construir	una	aplicación	que	permita	administrar	una	sala	de	cine.	Esta	aplicación
permite	hacer	reservas	y	registrar	sus	pagos.	La	sala	de	cine	tiene	220	sillas.	De	cada	silla
se	conoce:

Fila	a	la	que	pertenece,	representada	por	un	valor	entre	A	y	K.
Número	de	la	silla,	valor	entre	1	y	20.
Tipo.	Puede	ser	general	o	preferencial.
Estado	de	la	silla.	Puede	ser	disponible,	reservada	o	vendida.

El	costo	de	boleta	se	determina	según	el	tipo	de	la	silla,	y	esta	a	su	vez	se	determina	según
su	número,	de	la	siguiente	manera:

General:	sillas	en	las	filas	A	–	H.	Costo	por	boleta	de	$8,000.
Preferencial:	sillas	en	las	filas	I	–	K.	Costo	por	boleta	de	$11,000.

Para	poder	adquirir	una	boleta,	el	cliente	debe	primero	hacer	una	reserva.	Cada	cliente
puede	reservar	hasta	8	sillas.	De	cada	reserva	se	conoce:

Cédula	de	la	persona	que	hizo	la	reserva.
Sillas	que	hacen	parte	de	la	reserva.	Estado	de	pago	de	la	reserva.

El	cliente	puede	pagar	sus	reservas	en	efectivo	o	utilizando	la	tarjeta	CINEMAS.	Esta	tarjeta
le	otorga	a	su	dueño	un	descuento	del	10%	en	sus	boletas.	De	cada	tarjeta	se	conoce:

Cédula	del	dueño	de	la	tarjeta.	No	pueden	existir	dos	tarjetas	con	la	misma	cédula.
Saldo	de	la	tarjeta:	Cantidad	de	dinero	disponible	para	pagar	reservas.

Cuando	se	adquiere	una	tarjeta,	el	cliente	debe	cargar	la	tarjeta	con	un	valor	inicial	de
$70,000.	Cada	tarjeta	puede	ser	recargada	una	cantidad	ilimitada	de	veces,	sin	embargo,
cada	recarga	se	debe	hacer	por	un	monto	de	$50,000.

Hojas	de	trabajo

421

https://bit.ly/apo1-nivel4-hoja1-pdf-format
https://bit.ly/apo1-nivel4-hoja1-word-format


La	aplicación	debe	permitir:

1.	 Crear	una	nueva	tarjeta.
2.	 Recargar	una	tarjeta.
3.	 Crear	una	reserva.
4.	 Eliminar	la	reserva	actual.
5.	 Pagar	una	reserva	en	efectivo.
6.	 Pagar	la	reserva	con	tarjeta	CINEMAS.
7.	 Visualizar	las	sillas	del	cine.
8.	 Visualizar	el	dinero	en	caja.

Requerimientos	funcionales.Especique	los	principales	requerimientos	funcionales	que
haya	identicado	en	el	enunciado.

Requerimiento	Funcional	1

Hojas	de	trabajo

422



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	trabajo

423



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	trabajo

424



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Hojas	de	trabajo

425



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	5

Hojas	de	trabajo

426



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	6

Hojas	de	trabajo

427



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	7

Hojas	de	trabajo

428



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	8

Hojas	de	trabajo

429



Nombre

Resumen

Entradas

Resultado

Modelo	del	mundo.Complete	el	modelo	conceptual	con	los	atributos	y	constantes	de	cada
clase,	lo	mismo	que	las	asociaciones	entre	ellas.

Hojas	de	trabajo

430



Diagrama	UML:	Cine

Diagrama	UML:	Tarjeta

Hojas	de	trabajo

431



Diagrama	UML:	Silla

Diagrama	UML:	Reserva

Hojas	de	trabajo

432



Asignación	de	responsabilidades.	Decida,	utilizando	la	técnica	del	experto,	quién	debe
encargarse	de:

¿Quién	es	el	responsable	de
crear	una	tarjeta	CINEMAS?

¿Quién	es	el	responsable	de
indicar	si	una	silla	está
ocupada?

¿Quién	es	el	responsable	de
decir	las	sillas	que	están	en	una
reserva?

¿Quién	es	el	responsable	de
saber	el	saldo	de	una	tarjeta
CINEMAS?

¿Quién	es	el	responsable	de
calcular	el	valor	total	de	compra
de	unas	boletas?

Descomposición	de	requerimientos	funcionales.	Indique	los	pasos	necesarios	para
resolver	los	siguientes	requerimientos	y	señale,	al	nalizar	cada	paso,	quién	debería	ser	el
responsable	de	hacerlo.

Hojas	de	trabajo

433



Incrementar	el	saldo
de	la	tarjeta
CINEMAS.

1.	Buscar	la	tarjeta	CINEMAS	por	su	código	(Cine).
2.	Aumentar	el	valor	de	saldo	de	la	tarjeta	(Tarjeta).

Reservar	un	conjunto
de	sillas.

Comprar	boletas.

Cancelar	una	reserva.

Identicación	de	excepciones.	Según	los	siguientes	enunciados,	indique	qué	posibles
excepciones	se	deben	manejar.	Para	ello	no	haga	ninguna	suposición	sobre	los	datos	de
entrada.

Dado	un	valor	numérico,
incrementar	el	saldo	de
una	tarjeta.

a.	La	tarjeta	es	nula	
b.	El	valor	numérico	es	negativo.
c.	El	valor	numérico	no	es	igual	a	$50.000.

Cambiar	el	estado	de	una
silla	a	ocupada.

Agregar	una	silla	a	una
reserva.

Hojas	de	trabajo

434



Elaboración	de	contratos.	Para	los	siguientes	métodos,	establezca	su	contrato.	Tenga	en
cuenta	la	clase	en	la	que	se	encuentra	el	método.

Clase:	Cine Método:	Buscar	una	tarjeta	dado	su	código.

Signatura Tarjeta	buscarTarjeta(	String	pCodigo	)

Precondición	sobre	el
objeto: El	vector	de	tarjetas	ha	sido	inicializado.

Precondición	sobre	los
parámetros:

pCodigo	debe	ser	diferente	de	null,	pCodigo	debe	ser
diferente	de	la	cadena	vacía.

Postcondición	sobre	el
objeto: Ninguna.

Postcondición	sobre	el
retorno:

Retorna	la	tarjeta	que	tiene	el	código	pedido	o	null	si	dicho
código	no	existe.

Excepciones: Ninguna

Clase:	Cine Método:	Crear	una	tarjeta.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

435



Clase:	Cine Método:	Calcular	el	porcentaje	de	boletas	vendidas.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Clase:	Tarjeta Método:	Incrementar	el	valor	del	saldo	de	la	tarjeta.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

436



Clase:	Tarjeta Método:	Disminuir	el	valor	del	saldo	de	la	tarjeta.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Clase:	Reserva Método:	Agregar	una	silla	dada	a	la	reserva.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

437



Clase:	Reserva Método:	Contar	el	número	de	sillas	en	la	reserva.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Clase:	Silla Método:	Cambiar	el	estado	de	la	silla	a	ocupada.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

438



9.2	Hoja	de	Trabajo	Nº	2:	Un	Sistema	de
Préstamos
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Analice	el	siguiente	enunciado	e	identique	el	mundo	del	problema,	lo	que	se
espera	de	la	aplicación	y	las	restricciones	para	desarrollarla.

Se	quiere	construir	una	aplicación	para	la	Central	de	Préstamos	de	la	Universidad,	la	cual
se	encarga	de	manejar	el	préstamo	de	todos	los	recursos	que	la	universidad	ofrece	a	sus
estudiantes.

Los	recursos	pueden	ser	de	cualquier	naturaleza,	se	identifican	con	un	código	y	tienen
además	un	nombre.	Los	códigos	son	únicos,	pero	los	nombres	pueden	repetirse.	Cada
recurso	que	se	quiera	prestar	a	los	estudiantes	debe	ser	registrado	en	la	aplicación.	Un
recurso	se	puede	prestar	sólo	si	está	disponible,	es	decir	que	no	se	ha	prestado	a	otro
estudiante.

Un	estudiante	se	identifica	por	su	código,	que	también	es	único,	y	tiene	un	nombre	que
eventualmente	otro	estudiante	también	podría	tener.	Para	que	un	estudiante	pueda	prestar
algún	recurso	debe	registrarse.	Si	el	estudiante	no	está	registrado	no	se	le	prestará	ningún
recurso.

Un	estudiante	se	identica	por	su	código,	que	también	es	único,	y	tiene	un	nombre	que
eventualmente	otro	estudiante	también	podría	tener.	Para	que	un	estudiante	pueda	prestar
algún	recurso,	debe	registrarse.	Si	el	estudiante	no	está	registrado,	no	se	le	prestará	ningún
recurso.

La	aplicación	debe	permitir:

1.	 Agregar	un	recurso
2.	 Agregar	un	estudiante
3.	 Prestar	un	recurso	disponible
4.	 Consultar	los	préstamos	de	un	estudiante
5.	 Consultar	la	información	de	un	préstamo
6.	 Devolver	un	recurso	prestado

Hojas	de	trabajo

439



Requerimientos	funcionales.	Especique	los	principales	requerimientos	funcionales	que
haya	identicado	en	el	enunciado

Requerimiento	Funcional	1

Hojas	de	trabajo

440



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	trabajo

441



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	trabajo

442



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Hojas	de	trabajo

443



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	5

Hojas	de	trabajo

444

https://bit.ly/apo1-nivel4-hoja2-pdf-format
https://bit.ly/apo1-nivel4-hoja2-word-format


Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	6

Hojas	de	trabajo

445



Nombre

Resumen

Entradas

Resultado

Modelo	del	mundo.	Complete	el	modelo	conceptual	con	los	atributos	y	constantes	de	cada
clase,	lo	mismo	que	las	asociaciones	entre	ellas.

Hojas	de	trabajo

446



Diagrama	UML:CentralPrestamos

Diagrama	UML:	Estudiante

Hojas	de	trabajo

447



Diagrama	UML:	Recurso

Asignación	de	responsabilidades.	Decida,	utilizando	la	técnica	del	experto,	quién	debe
encargarse	de:

Hojas	de	trabajo

448



¿Quién	es	el	responsable	de
registrar	un	nuevo	recurso	para
prestar?

¿Quién	es	el	responsable	de
registrar	a	un	nuevo	estudiante	para
que	pueda	pedir	recursos?

¿Quién	es	el	responsable	de
registrar	el	préstamo	de	un	recurso
a	un	estudiante?

¿Quién	es	el	responsable	de
registrar	la	devolución	de	un	recurso
prestado?

¿Quién	es	el	responsable	de	decir
si	un	recurso	está	disponible	o	no?

Descomposición	de	requerimientos	funcionales.	Indique	los	pasos	necesarios	para
resolver	los	siguientes	requerimientos	y	señale,	luego	de	cada	paso,	quién	debería	ser	el
responsable	de	hacerlo.

Hojas	de	trabajo

449



Prestar	un	recurso	a	un
estudiante.

1.	Buscar	el	recurso	que	se	va	a	prestar.
(CentralPrestamos)
2.	Validar	si	el	recurso	está	disponible.	(Recurso)
3.	Buscar	al	estudiante	a	quién	se	le	prestará	el
recurso.	(CentralPrestamos)
4.	Asignar	el	recurso	al	estudiante.	(Recurso)
5.	Agregar	el	recurso	a	los	recursos	prestados	al
estudiante.	(Estudiante)

Registrar	un	nuevo
estudiante	en	la	central	de
préstamos.

Buscar	un	recurso	en	la
central	de	préstamos.

Registrar	la	devolución	de
un	recurso	prestado.

Identicación	de	excepciones.	Según	los	siguientes	enunciados,	indique	qué	posibles
excepciones	se	deben	manejar.	Para	ello	no	haga	ninguna	suposición	sobre	los	datos	de
entrada.

Registrar	un	nuevo	recurso
en	la	central	de	préstamos.

a.	El	código	del	recurso	es	inválido.
b.	El	nombre	del	recurso	es	nulo	o	es	una	cadena
vacía
c.	El	código	del	recurso	ya	ha	sido	registrado

Retirar	un	recurso	de	la	lista
de	re-	cursos	prestados	a	un
estudiante.

Elaboración	de	contratos.	Para	los	siguientes	métodos,	establezca	su	contrato.	Tenga	en
cuenta	la	clase	en	la	que	se	encuentra	el	método.

Hojas	de	trabajo

450



Clase:
CentralPrestamos

Método:	Registrar	un	estudiante	en	la	central	de	préstamos
a	partir	de	su	nombre	y	código.

Signatura void	agregarEstudiante(String	pNombre,	int	pCodigo)	throws
Exception

Precondición	sobre
el	objeto: El	vector	de	estudiantes	ha	sido	inicializado.

Precondición	sobre
los	parámetros:

pNombre	debe	ser	diferente	de	null,	pNombre	debe	ser	diferente
de	la	cadena	vacía.	pCodigo	debe	ser	un	código	válido.

Postcondición
sobre	el	objeto:

Un	nuevo	estudiante	se	agrega	a	la	lista	de	estudiantes	de	la
central	con	el	nombre	y	el	código	dados.

Postcondición
sobre	el	retorno: Ninguna.

Excepciones: Si	el	código	ya	está	registrado	en	el	vector	de	estudiantes.

Clase:
Estudiante

Método:	Dado	el	código	del	recurso,	retirar	el	recurso	de	la
lista	de	préstamos	del	estudiante.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

451



Clase:	Recurso Método:	Prestarse	a	un	estudiante	dado.

Signatura

Precondición
sobre	el	objeto:

Precondición
sobre	los
parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

452



Clase:
CentralPrestamos

Método:	Registrar	un	nuevo	recurso	en	la	central	de
préstamos	a	partir	de	su	nombre	y	código.

Signatura

Precondición	sobre
el	objeto:

Precondición	sobre
los	parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

453



Clase:
CentralPrestamos

Método:	Buscar	y	retornar	un	recurso	de	la	central	de
préstamos	a	partir	de	su	código.

Signatura

Precondición	sobre
el	objeto:

Precondición	sobre
los	parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

454



Clase:
CentralPrestamos

Método:	Prestar	un	recurso	a	un	estudiante,	a	partir	de
los	códigos	del	estudiante	y	del	recurso.

Signatura

Precondición	sobre
el	objeto:

Precondición	sobre
los	parámetros:

Postcondición
sobre	el	objeto:

Postcondición
sobre	el	retorno:

Excepciones:

Hojas	de	trabajo

455



Nivel	5:	Construcción	de	la	Interfaz	Gráfica

456



1.	Objetivos	Pedagógicos
Al	final	de	este	nivel	el	lector	será	capaz	de:

Explicar	la	importancia	de	la	interfaz	de	usuario	dentro	de	un	programa	de	computador,
teniendo	en	cuenta	que	es	el	medio	de	comunicación	entre	el	usuario	y	el	modelo	del
mundo.
Proponer	una	arquitectura	para	un	programa	simple,	repartiendo	de	manera	adecuada
las	responsabilidades	entre	la	interfaz	de	usuario,	el	modelo	del	mundo	y	las	pruebas
unitarias.	El	lector	deberá	poder	explicar	la	importancia	de	mantener	separadas	las
clases	de	esos	tres	dominios.
Construir	las	clases	que	implementan	una	interfaz	de	usuario	sencilla	e	integrarlas	con
las	clases	que	implementan	el	modelo	del	mundo	del	problema.

Objetivos	Pedagógicos

457



2.	Motivación
La	interfaz	de	usuario	es	el	medio	de	comunicación	entre	el	usuario	y	el	modelo	del	mundo,
tal	como	se	sugiere	en	la	figura	5.1.	A	través	de	la	interfaz,	el	usuario	expresa	las
operaciones	que	desea	realizar	sobre	el	modelo	del	mundo	y,	por	medio	de	la	misma
interfaz,	el	usuario	puede	apreciar	el	resultado	de	sus	acciones.	Es	un	medio	que	permite	la
comunicación	en	los	dos	sentidos.	La	interfaz	de	usuario	ideal	es	aquella	en	la	que	la
persona	siente	que	está	visualizando	e	interactuando	directamente	con	los	elementos	del
modelo	del	mundo,	y	que	esto	se	hace	a	través	de	un	proceso	sencillo	y	natural.

Fig.	5.1	La	interfaz	de	usuario	como	medio	de	comunicación

Siempre	que	utilizamos	un	programa	de	computador,	esperamos	que	sea	agradable	y	fácil
de	utilizar.	Aunque	es	difícil	dar	una	definición	precisa	de	lo	que	significa	agradable,	hay
condiciones	mínimas	que	influyen	en	esta	percepción,	que	se	relacionan	con	la
combinación	de	colores,	la	organización	de	los	elementos	en	las	ventanas,	los	gráficos,	los

Motivación

458



tipos	de	letra,	etc.	La	propiedad	de	facilidad	de	uso,	por	su	parte,	está	más	relacionada	con
el	hecho	de	que	los	elementos	de	interacción	se	comporten	de	forma	intuitiva	(por	ejemplo,
si	existe	un	botón	con	la	etiqueta	"cancelar"	se	espera	que	aquello	que	se	está	realizando
se	suspenda	al	oprimir	este	botón)	y	también,	con	la	cantidad	de	conocimiento	que	el
usuario	debe	tener	para	utilizar	el	programa.

La	interfaz	es	el	medio	para	que	el	usuario	pueda	interactuar	con	el	modelo	del	mundo.
Es	también	una	ventana	para	que	el	usuario	pueda	visualizar	el	estado	del	mundo.
La	interfaz	debe	ser	amigable	y	fácil	de	usar,	de	manera	que	el	usuario	se	sienta
cómodo	utilizando	el	programa	y	no	cometa	errores	debido	a	cuestiones	que	no	son
claras	para	él.
La	interfaz	debe	ser	capaz	de	interpretar	las	acciones	de	los	usuarios	(expresadas
como	eventos)	y	llamar	los	métodos	que	ejecutan	lo	que	él	pide.

La	razón	de	darle	importancia	a	este	aspecto	es	muy	sencilla:	si	el	usuario	no	se	siente
cómodo	con	el	programa,	no	lo	va	a	utilizar	o	lo	va	a	utilizar	de	manera	incorrecta.	En	la
mayoría	de	los	proyectos,	se	dedica	igual	cantidad	de	esfuerzo	a	la	construcción	de	la
interfaz	que	al	desarrollo	del	modelo	del	mundo.

Hay	dos	aspectos	de	gran	importancia	en	el	diseño	de	la	interfaz:	el	primer	aspecto	tiene
que	ver	con	el	diseño	funcional	y	gráfico	(los	colores	que	se	deben	usar,	la	distribución	de
los	elementos	gráficos,	etc.).	En	eso	debe	participar	la	mayoría	de	las	veces	un	diseñador
gráfico	y	es	un	tema	que	está	por	fuera	del	alcance	de	este	libro.

El	segundo	aspecto	es	la	parte	de	la	organización	de	las	clases	que	van	a	conformar	la
interfaz	y,	de	nuevo,	este	aspecto	tiene	que	ver	con	la	asignación	de	responsabilidades	que
discutimos	en	el	nivel	anterior.

Hay	muchas	formas	distintas	de	estructurar	una	interfaz	gráfica.	Podríamos,	por	ejemplo,
construir	una	sola	clase	con	todos	los	elementos	que	el	usuario	va	a	ver	en	la	pantalla	y
todo	el	código	relacionado	con	los	servicios	para	recibir	información,	presentar	información,
etc.	El	problema	de	esta	solución	es	que	sería	muy	difícil	de	construir	y	de	mantener.	Un
buen	diseño	en	este	caso	se	refiere	a	una	estructura	clara,	fácil	de	mantener	y	que	sigue
reglas	que	facilitan	localizar	los	elementos	que	en	ella	participan.	Esa	es	la	principal
preocupación	de	este	nivel:	cómo	estructurar	la	interfaz	de	usuario	y	cómo	comunicarla	con
las	clases	del	modelo	del	mundo,	sin	mezclar	en	ningún	momento	las	responsabilidades	de
esos	dos	componentes	de	un	programa.	De	algún	modo	las	acciones	del	usuario	se	deben
convertir	en	eventos,	los	cuales	deben	ser	interpretados	por	algún	elemento	de	la	interfaz	y
traducidos	en	llamadas	a	métodos	de	los	objetos	del	modelo	del	mundo	(ver	figura	5.1).

Para	la	construcción	de	las	interfaces	de	usuario,	los	lenguajes	de	programación	proveen
un	conjunto	de	clases	y	mecanismos	ya	implementados,	que	van	a	facilitar,	en	gran	medida,
el	trabajo	del	programador.	Dicho	conjunto	se	denomina	un	framework	o,	también,	biblioteca

Motivación

459



gráfica.	Construir	una	interfaz	de	usuario	se	convierte	entonces	en	el	uso	adecuado	y	en	la
especialización	de	los	elementos	que	allí	aparecen	disponibles.	Nosotros	trabajaremos	en
este	nivel	sobre	swing	y	awt,	el	framework	sobre	el	que	se	basan	la	mayoría	de	las
interfaces	gráficas	escritas	en	Java.

Motivación

460



3.	El	Caso	de	Estudio
En	este	caso	de	estudio	queremos	construir	un	programa	que	permita	a	una	persona
calcular	el	valor	de	los	impuestos	que	debe	pagar	por	un	automóvil.	Para	esto,	el	programa
debe	tener	en	cuenta	el	valor	del	vehículo	y	los	descuentos	que	contempla	la	ley.

Un	vehículo	se	caracteriza	por	una	marca	(por	ejemplo,	Peugeot,	Mazda),	una	línea	(por
ejemplo,	206,	307,	Allegro),	un	modelo,	que	corresponde	al	año	de	fabricación	(por	ejemplo,
2016,	2017),	y	un	precio.

Para	calcular	el	valor	de	los	impuestos	se	establecen	ciertos	rangos,	donde	cada	uno	tiene
asociado	un	porcentaje	que	se	aplica	sobre	el	valor	del	vehículo.	Por	ejemplo,	si	se	tiene
que	los	vehículos	con	precio	entre	0	y	30	millones	deben	pagar	el	1,5%	del	valor	del
vehículo	como	impuesto	anual,	un	automóvil	avaluado	en	10	millones	debe	pagar	$150.000
al	año.	La	siguiente	tabla	resume	el	porcentaje	de	impuestos	para	los	cuatro	rangos	de
valores	en	que	han	sido	divididos	los	automóviles.

Entre	0	y	30	millones,	pagan	el	1,5%	de	impuesto.
Más	de	30	millones	y	hasta	70	millones,	pagan	el	2,0%	de	impuesto.
Más	de	70	millones	y	hasta	200	millones,	pagan	el	2,5%	de	impuesto.
Más	de	200	millones,	pagan	el	4%	de	impuesto.

Esta	tabla	se	debe	poder	cambiar	sin	necesidad	de	modificar	el	programa,	lo	cual	implica
que	pueden	aparecer	nuevos	rangos,	modificarse	los	límites	o	cambiar	los	porcentajes.

En	el	caso	que	queremos	trabajar,	están	definidos	tres	tipos	de	descuentos:

1.	 Descuento	por	pronto	pago	(10%	de	descuento	en	el	valor	del	impuesto	si	se	paga
antes	del	31	de	marzo).

2.	 Descuento	para	vehículos	de	servicio	público	($50.000	de	descuento	en	el	impuesto
anual).

3.	 Descuento	por	traslado	del	registro	de	un	automóvil	a	una	nueva	ciudad	(5%	de
descuento	en	el	pago).

Estos	descuentos	se	aplican	en	el	orden	en	el	que	acabamos	de	presentarlos.	Por	ejemplo,
si	el	vehículo	debe	pagar	$150.000	de	impuestos,	pero	tiene	derecho	a	los	tres	descuentos,
debería	pagar	$80.750,	calculados	de	la	siguiente	manera:

150.000	–	15.000	=	135.000	(Primer	descuento:	150.000	*	10%	=	15.000	)
135.000	–	50.000	=	85.000	(Segundo	descuento:	50.000)
85.000	–	4.250	=	80.750	(Tercer	descuento:	85.000	*	5%	=	4.250)

El	Caso	de	Estudio

461



El	diseño	de	la	interfaz	de	la	aplicación	(figura	5.2)	trata	de	organizar	los	elementos	del
problema	en	zonas	de	trabajo	fáciles	de	entender	y	utilizar	por	el	usuario.	Como	se	puede
ver,	después	de	la	la	imagen	con	el	nombre	de	la	aplicación	hay	una	zona	que	tiene	como
objetivo	mostrar	la	información	sobre	un	vehículo	y	permite	navegar	por	los	vehículos
existentes	en	la	aplicación.	Después,	hay	una	zona	que	permite	buscar	un	vehículo	por
línea	o	marca	y	encontrar	el	vehículo	más	caro.	Luego	hay	una	zona	que	permite
seleccionar	los	descuentos	que	se	desean	aplicar.	Finalmente,	en	la	parte	inferior	se	tiene
una	zona	donde	se	ofrece	la	opción	de	calcular	el	impuesto	a	pagar	por	el	vehículo	actual,
así	como	2	opciones	adicionales.

Fig.	5.2	Diseño	de	la	interfaz	de	usuario	del	caso	de	estudio

El	Caso	de	Estudio

462



La	ventana	del	programa	está	dividida	en	cinco	zonas:	en	la	primera	está	la	imagen	con
el	título,	en	la	segunda	los	datos	del	vehículo,	en	la	tercera	las	opciones	de	búsqueda,
en	la	cuarta	la	selección	de	descuentos,	y	en	la	quinta	las	opciones	que	provee	la
aplicación.
El	botón	<<	permite	visualizar	el	primer	vehículo	de	la	lista.
El	botón	<	permite	visualizar	el	vehículo	anterior.
El	boton	>	permite	visualizar	el	vehículo	siguiente.
El	botón	>>	permite	visualizar	el	último	vehículo	de	la	lista.
El	botón	Buscar	por	línea	permite	visualizar	el	primer	vehículo	que	encuentre	con	la
línea	ingresada	por	el	usuario.
El	botón	Buscar	por	marca	permite	visualizar	el	primer	vehículo	que	encuentre	con	la
marca	ingresada	por	el	usuario.
El	botón	Buscar	vehículo	más	caro	permite	visualizar	el	vehículo	con	mayor	valor.
En	la	zona	de	descuentos,	el	usuario	debe	seleccionar	los	descuentos	que	quiere
aplicar.
El	botón	calcular	muestra	un	mensaje	con	el	valor	total	que	debe	pagar	el	usuario	por	el
vehículo	mostrado	actualmente,	incluyendo	los	descuentos	seleccionados.
Los	botones	Opción	1	y	Opción	2	todavía	no	tienen	una	funcionalidad	asignada.
Fíjese	que	cada	zona	(menos	la	primera)	tiene	un	borde	y	un	título.

Si	el	usuario	intenta	hacer	hacer	una	búsqueda	sin	haber	dado	la	información	necesaria,	el
programa	debe	informarle	del	problema	utilizando	una	ventana	de	diálogo,	como	se	muestra
en	la	figura	5.3.

Fig.	5.3	Mensaje	de	la	interfaz	al	usuario

	

Si	el	usuario	trata	de	navegar	una	consulta	sobre	un	vehículo	cuya	información	no	está
registrada	en	el	programa,	se	debe	presentar	la	advertencia	que	aparece	en	la	figura	5.4.

El	Caso	de	Estudio

463



Fig.	5.4	–	Mensaje	de	la	interfaz	al	usuario

Cuando	el	usuario	selecciona	la	opción	calcular,	se	debe	presentar	un	mensaje	con	el	valor
a	pagar,	como	se	muestra	en	la	figura	5.5.

Fig.	5.5	–	Mensaje	de	la	interfaz	al	usuario

3.1.	Comprensión	de	los	requerimientos
A	partir	de	la	descripción	del	caso	de	estudio,	podemos	identificar	al	menos	seis
requerimientos	funcionales:

1.	 Navegar	entre	vehículos.

2.	 Buscar	un	vehículo	por	línea.

3.	 Buscar	un	vehículo	por	marca.

4.	 Buscar	el	vehículo	más	caro.

5.	 Calcular	el	impuesto	de	un	carro.

6.	 Visualizar	la	información	de	un	vehículo.

El	Caso	de	Estudio

464



Tarea	1
Objetivo:	Entender	los	requerimientos	funcionales	del	caso	de	estudio.

Lea	detenidamente	el	enunciado	del	caso	de	estudio,	identifique	los	seis	requerimientos
funcionales	y	complete	su	documentación.

Requerimiento	funcional	1

Nombre

Resumen

Entradas

Resultado

Requerimiento	funcional	2

El	Caso	de	Estudio

465



Nombre

Resumen

Entradas

Resultado

Requerimiento	funcional	3

El	Caso	de	Estudio

466



Nombre

Resumen

Entradas

Resultado

Requerimiento	funcional	4

El	Caso	de	Estudio

467



Nombre

Resumen

Entradas

Resultado

Requerimiento	funcional	5

El	Caso	de	Estudio

468



Nombre

Resumen

Entradas

Resultado

Requerimiento	funcional	6

El	Caso	de	Estudio

469



Nombre

Resumen

Entradas

Resultado

3.2.	Comprensión	del	Mundo	del	Problema
En	el	modelo	conceptual	aparecen	tres	entidades	con	la	estructura	que	se	muestra	en	la
figura	5.6.	Dichas	entidades	son:

1.	 El	calculador	de	impuestos	(clase	CalculadorImpuestos).
2.	 El	vehículo	(claseVehiculo).
3.	 Un	rango	de	precios	al	que	se	le	asocia	un	porcentaje	de	impuestos	(clase

RangoImpuesto).

El	Caso	de	Estudio

470



Fig.	5.6	Diagrama	de	clases	del	caso	de	estudio

Tarea	2

Objetivo:	Entender	la	estructura	y	las	entidades	del	modelo	conceptual	del	caso	de	estudio.

Lea	de	nuevo	el	enunciado	del	problema	y	estudie	el	diagrama	de	clases	de	UML	que
aparece	en	la	figura	5.6.	Para	cada	clase	describa	las	constantes,	los	atributos	y	las
asociaciones	que	aparecen	en	el	diagrama.

Clase	CalculadorImpuestos:

Constantes:

Asociaciones:

El	Caso	de	Estudio

471



Clase	Vehículo:

Atributos:

Clase	RangoImpuesto:

Atributos:

El	Caso	de	Estudio

472



3.3.	Definición	de	los	Contratos
Describimos	a	continuación	los	contratos	de	los	principales	métodos	de	la	clase
CalculadorImpuestos.	Estos	son	los	métodos	que	invocaremos	desde	la	interfaz	para	pedir
los	servicios	que	solicite	el	usuario,	pasándoles	como	parámetros	la	información	que	éste
ingrese.

Método	constructor:

/**
*	Crea	un	calculador	de	impuestos,	cargando	la	información	de	dos	archivos.<br>
*	<b>post:	</b>	Se	inicializaron	los	arreglos	de	vehículos	y	rangos.<br>
*															Se	cargaron	los	datos	correctamente	a	partir	de	los	archivos.<br>
*	@throws	Exception	Si	hay	algún	error	al	tratar	de	leer	los	archivos.
*/
public	CalculadorImpuestos(	)	throws	Exception
{	...	}

Leyendo	este	contrato	podemos	deducir	tres	cosas:	el	constructor	sabe	dónde	encontrar
sus	archivos	para	leerlos	(no	es	nuestro	problema	definir	su	localización),	el	contenido	de
dichos	archivos	debe	ser	correcto	(el	método	no	va	a	hacer	ninguna	verificación	interna)	y	si
hay	algún	error	físico	de	lectura	de	los	archivos,	va	a	lanzar	una	excepción	que	deberá
atrapar	quien	llame	al	constructor.

En	algún	punto	de	la	interfaz	de	usuario,	con	la	instrucción	que	aparece	a	continuación,
vamos	a	construir	un	objeto	que	representará	el	modelo	del	mundo.	Dicha	instrucción	debe
encontrarse	dentro	de	un	try-catch	que	nos	permita	atrapar	la	excepción	que	puede
generarse.

El	Caso	de	Estudio

473



CalculadorImpuestos	calculador	=	new	CalculadorImpuestos(	);

Calcular	pago	de	impuesto:

/**
*	Calcula	el	pago	de	impuesto	que	debe	hacer	el	vehículo	actual.
*	<b>pre:</b>	Las	listas	de	rangos	y	vehículos	están	inicializadas.				
*	@param	pDescProntoPago		Indica		si	aplica		el	descuento		por		pronto		pago.
*	@param	pDescServicioPublico	Indica	si	aplica	el	descuento	por	servicio	público.
*	@param	pDescTrasladoCuenta	Indica	si	aplica	el	descuento	por	traslado	de	cuenta.
*	@return	Valor	por	pagar	de	acuerdo	con	las	características	del	vehículo	y	los
*	descuentos	que	se	pueden	aplicar.	Si	no	encuentra	un	rango	para	el	modelo	devuelve	0
.
*/
double	calcularPago(	boolean	pDescProntoPago,	boolean	pDescServicioPublico,	boolean	pD
escTrasladoCuenta	)	
{	...	}

Este	caso	está	orientado	a	la	construcción	de	la	interfaz	del	programa,	por	lo	que
suponemos	que	ya	se	han	implementado	el	modelo	conceptual	y	las	pruebas	unitarias	del
mismo.

En	las	próximas	secciones	vamos	a	estudiar:

1.	 Cómo	se	organizan	los	elementos	gráficos	de	la	interfaz	de	usuario	en	clases	Java.
2.	 Cómo	se	asignan	las	responsabilidades.
3.	 Cómo	se	maneja	la	interacción	con	el	usuario.

Todo	esto	se	ilustrará	con	el	programa	del	caso	de	estudio,	el	cual	construiremos	paso	a
paso,	dando	respuesta	a	los	tres	puntos	planteados	anteriormente.

El	Caso	de	Estudio

474



4.	Construcción	de	Interfaces	Gráficas
En	este	nivel	vamos	a	estudiar	una	manera	de	construir	interfaces	de	usuario	para
problemas	pequeños.	El	diseño	gráfico	de	estas	interfaces	incluye	una	ventana	en	la	que
aparece	un	formulario	sencillo,	el	cual	cuenta	con	algunos	campos	de	edición	y	algunos
botones	para	activar	los	requerimientos	funcionales.	Muchos	de	los	elementos	que	se
necesitan	para	crear	una	interfaz	un	poco	más	completa	están	por	fuera	del	tema	de	este
libro.	El	objetivo	es	estudiar	únicamente	lo	indispensable	para	hacer	una	interfaz	de	usuario
elemental.	En	particular,	quedan	por	fuera	todos	los	elementos	de	visualización	e
interacción	que	permiten	manejar	grupos	de	valores,	de	manera	que,	en	algunos	de	los
casos	de	estudio	del	libro,	la	interacción	puede	parecer	un	poco	artificial.

Existen	herramientas	que	permiten	crear	parcialmente	el	código	en	Java	de	la	interfaz	a
partir	de	una	descripción	de	la	misma	que	se	crea	usando	un	editor	gráfico.	Pero	en	este
nivel	vamos	a	construir	manualmente	todos	los	elementos,	puesto	que	es	el	único	medio
que	tenemos	de	explorar	a	fondo	la	arquitectura	del	programa.

La	buena	noticia	es	que	en	la	interfaz	de	usuario	vamos	a	trabajar	usando	los	mismos
elementos	e	ideas	que	hemos	utilizado	hasta	ahora.	Allí	vamos	a	encontrar	clases,
métodos,	asociaciones,	instrucciones	iterativas,	etc.,	y	los	vamos	a	expresar	por	medio	de
los	mismos	formalismos	que	hemos	venido	utilizando.	El	diagrama	de	clases	de	la	interfaz,
por	ejemplo,	se	expresará	en	UML.	La	diferencia	es	que	en	lugar	de	trabajar	con	las
entidades	del	mundo	del	problema,	vamos	a	trabajar	con	las	entidades	del	mundo	gráfico	y
de	interacción.	En	vez	de	tener	conceptos	como	estudiante,	tienda	y	banco,	vamos	a	tener
entidades	como	ventana,	botón,	campo	de	texto,	etc.	Por	lo	demás,	es	aplicar	lo	que	ya
hemos	aprendido	a	un	mundo	con	otro	tipo	de	elementos.

Nuestra	estrategia	de	diseño	consiste	en	identificar	los	elementos	de	la	interfaz	que	tienen
un	propósito	común	y,	para	cada	grupo	de	elementos,	crear	una	clase.	Si	revisamos	el
diseño	gráfico	de	la	interfaz	en	la	figura	5.2	podemos	ver	que	ésta	estará	compuesta	de	seis
clases	principales:	una	que	represente	la	ventana	principal,	otra	que	represente	la	zona	de
información	del	vehículo,	una	zona	para	la	navegación,	una	zona	para	las	búsquedas,	una
zona	de	descuentos	y	la	última	para	la	zona	de	las	opciones.	En	la	figura	5.7	aparece	el
diagrama	de	clases	de	la	interfaz	de	usuario	del	caso	de	estudio.	En	esa	figura	se	muestra
la	asociación	que	existe	entre	una	clase	de	la	interfaz	(la	clase	InterfazImpuestosCarro)	y
una	clase	del	mundo	del	problema	(la	clase	CalculadorImpuestos).	Es	usando	dicha
asociación	que	vamos	a	hacer	las	llamadas	hacia	el	modelo	del	mundo.

Construcción	de	Interfaces	Gráficas

475



Fig.	5.7	Diagrama	de	clases	de	la	interfaz	de	usuario	para	el	caso	de	estudio

El	objetivo	de	este	nivel	es	explicar	la	manera	de	construir	el	diagrama	de	clases	de	la
interfaz	de	usuario	y,	posteriormente,	implementarlo	en	Java	usando	swing	y	awt.

Hay	dos	aspectos	prácticos	que	debemos	tratar	antes	de	seguir	adelante:	el	primero	es	que
las	clases	del	framework	swing	están	en	el	paquete		javax.swing		y	en	el	paquete
	java.awt.	Esto	significa	que	estos	paquetes	o	alguno	de	sus	subpaquetes	deben	ser
importados	cada	vez	que	se	quiera	incluir	un	elemento	gráfico.	El	segundo	aspecto	es	que
algunas	de	las	clases	de	swing	han	ido	cambiando	según	la	versión	del	lenguaje.	Lo	que
aparece	en	este	libro	vale	para	las	versiones	posteriores	a	Java	5.	En	todo	caso,	la
adaptación	a	las	versiones	anteriores	es	trivial,	y	en	la	mayoría	de	los	casos	se	reduce	a
una	simple	transformación	en	las	llamadas	de	los	métodos.

Comencemos	con	la	tarea	3,	en	la	que	el	lector	debe	tratar	de	identificar	las	entidades	del
mundo	de	la	interfaz.

Tarea	3

Objetivo:	Identificar	intuitivamente	las	entidades,	los	atributos,	las	asociaciones	y	los
métodos	que	forman	parte	de	una	interfaz	gráfica.

1.	 Enumere	al	menos	8	elementos	gráficos	que	pueden	aparecer	en	una	interfaz	gráfica
cualquiera	(piense	en	elementos	como	ventana,	botón,	etiqueta,	etc.).

2.	 Dibuje	el	diagrama	de	clases	relacionando	los	elementos	antes	identificados	por	medio
de	asociaciones.

3.	 Complete	la	descripción	de	cada	clase	con	los	principales	atributos	que	debería	tener.
4.	 Agregue	al	diagrama	de	clases	las	signaturas	de	los	métodos	que	reejen	las

principales	responsabilidades	de	cada	uno	de	ellos.

Construcción	de	Interfaces	Gráficas

476



Identifique	al	menos	8	elementos	de	una	interfaz	de	usuario.	Piense	en	los	elementos	que
forman	parte	de	la	interfaz	de	un	programa:

Para	la	clase	que	representa	la	ventana	principal	del	programa,	trate	de	identificar	sus
atributos.	Guíese	por	las	características	que	debe	tener.

Dibuje	el	diagrama	de	clases	con	los	elementos	de	una	interfaz	de	usuario	cualquiera:

Construcción	de	Interfaces	Gráficas

477



Puede	usar	el	siguiente	diagrama	como	guía:

Construcción	de	Interfaces	Gráficas

478



5.	Elementos	Gráficos	Estructurales

5.1.	Creación	de	la	Ventana	Principal
La	ventana	principal	de	la	interfaz	de	usuario	es	la	encargada	de	contener	todos	los
elementos	de	visualización	e	interacción,	por	medio	de	los	cuales	el	usuario	va	a	utilizar	el
programa.	Su	única	función	es	servir	como	marco	para	los	demás	elementos	de	la	interfaz.
Típicamente,	la	ventana	tiene	en	la	parte	superior	derecha	los	controles	para	cerrar	el
programa,	minimizar	y	cambiar	de	tamaño.	Cuenta	también	con	una	zona	para	presentar	un
título,	como	se	ilustra	en	la	figura	5.8.

Fig.	5.8	Visualización	de	la	ventana	principal

Elementos	Gráficos	Estructurales

479



Una	ventana	es	el	primer	ejemplo	de	lo	que	se	denomina	un	contenedor	gráfico.	Al	igual
que	con	las	estructuras	contenedoras	que	manejábamos	en	el	modelo	del	mundo,	un
contenedor	gráfico	está	hecho	para	incluir	dentro	de	él	otros	elementos	gráficos	más
sencillos:	es	un	medio	para	agrupar	y	estructurar	componentes	de	visualización	e
interacción.	De	alguna	manera,	dentro	de	una	ventana,	vamos	a	poder	incluir	las	zonas	de
texto,	los	menús,	los	iconos,	etc.

Una	ventana	es	un	objeto	de	una	clase	que	se	ha	declarado	de	una	manera	particular
(clase	InterfazImpuestosCarro	en	el	caso	de	estudio).	Esta	ventana	principal	va	a	contener
la	imagen	con	el	título	y	cuatro	de	las	zonas	de	trabajo	que	mencionamos	antes	y	sus
responsabilidades	principales	están	relacionadas	con	la	creación	y	organización	visual	de
las	zonas	de	trabajo.

Elementos	Gráficos	Estructurales

480



La	clase	que	representa	la	ventana	principal	(InterfazImpuestosCarro	en	nuestro	ejemplo),
al	igual	que	cualquier	clase	del	modelo	del	mundo,	debe	estar	declarada	en	su	propio
archivo	Java,	siguiendo	las	mismas	reglas	definidas	en	los	niveles	anteriores.	La	única
diferencia	es	que,	como	la	clase	pertenece	a	otro	mundo	distinto	(el	mundo	gráfico),	la
vamos	a	situar	en	otro	paquete.	En	el	caso	de	estudio,	por	ejemplo,	todas	las	clases	de	la
interfaz	van	a	estar	en	el	paquete		uniandes.cupi2.impuestosCarro.interfaz	.

Para	que	la	ventana	principal	tenga	el	comportamiento	estándar	de	una	ventana,	como
minimizarse,	cerrarse	o	moverse	cuando	el	usuario	la	arrastra,	debemos	indicar	que	nuestra
clase	es	una	extensión	de	una	clase	de	un	tipo	particular	llamado	JFrame.	Esta	es	una
clase	predefinida	del	framework	swing,	que	tiene	ya	implementados	los	métodos	para	que	la
ventana	se	comporte	de	la	manera	esperada	y	no	nos	toca	a	nosotros,	cada	vez	que
hacemos	una	ventana,	escribir	el	código	para	que	se	pueda	mover,	cerrar,	etc.

Ejemplo	1
Objetivo:	Presentar	la	manera	de	declarar	en	Java	la	clase	que	implementa	la	ventana	de
una	interfaz	de	usuario.

En	este	ejemplo	presentamos	la	declaración	de	la	clase	InterfazImpuestosCarro,	la	cual	va
a	implementar	la	ventana	de	la	interfaz	para	el	caso	de	estudio.	El	código	que	se	presenta
en	este	ejemplo	debe	ir	dentro	del	archivo	InterfazImpuestosCarro.java,	el	cual	se	irá
completando	en	los	ejemplos	de	las	secciones	siguientes.

Al	final	del	ejemplo	estudiamos	la	representación	de	la	clase	en	UML.

package	uniandes.cupi2.impuestosCarro.interfaz;

import	java.awt.*;
import	javax.swing.*;

import	uniandes.cupi2.impuestosCarro.mundo.*;

/**
*	Interfaz	de	cálculo	de	impuestos	de	vehículos
*/
public	class	InterfazImpuestosCarro	extends	JFrame
{
		...
}

La	clase	se	declara	dentro	del	paquete	de	las	clases	de	la	interfaz	de	usuario.
Se	importan	las	clases	swing	de	los	dos	paquetes	indicados	(swing	y	awt).
Se	importan	las	clases	del	modelo	del	mundo.	Debido	a	que	están	en	un	paquete

Elementos	Gráficos	Estructurales

481



distinto,	es	indispensable	especificar	su	posición.
La	clase	se	declara	con	la	misma	sintaxis	de	las	clases	del	modelo	del	mundo.	La	única
diferencia	es	que	se	agrega	en	la	declaración	el	término	extends	JFrame	para	indicar
que	es	una	ventana.
JFrame	es	la	clase	en	swing	que	implementa	las	ventanas.

En	UML	vamos	a	utilizar	lo	que	se	denominan	estereotipos	para	representar	las	clases
de	la	interfaz.	Eso	quiere	decir	que,	en	cada	clase,	se	hace	explícita	la	clase	del
framework	swing	que	esa	clase	está	extendiendo.
Al	extender	la	clase	JFrame,	tenemos	derecho	a	utilizar	dentro	de	nuestra	clase	todos
sus	métodos.

Las	preguntas	ahora	son	dos:	¿cómo	hacemos	para	poner	los	elementos	gráficos	dentro	de
una	ventana?	y	¿cómo	hacemos	para	modificar	sus	características?	La	respuesta	a	estas
dos	preguntas	es	la	misma:	tenemos	un	conjunto	de	métodos	implementados	en	la	clase
JFrame,	que	podemos	utilizar	para	cambiar	el	estado	de	la	ventana.	Con	estos	métodos,
vamos	a	poder	cambiar	el	título	de	la	ventana,	su	tamaño	o	agregar	en	su	interior	otros
componentes	gráficos.

Algunos	de	los	principales	métodos	que	podemos	usar	con	una	ventana	son	los	siguientes
(la	lista	completa	se	puede	encontrar	en	la	documentación	de	la	clase	JFrame):

setSize(ancho,	alto):	este	método	permite	cambiar	el	alto	y	el	ancho	de	la	ventana.
Los	valores	de	los	parámetros	se	expresan	en	píxeles.
setResizable(cambiable):	indica	si	el	usuario	puede	o	no	cambiar	el	tamaño	de	la
ventana.
setTitle(titulo):	cambia	el	título	que	se	muestra	en	la	parte	superior	de	la	ventana.
setDefaultCloseOperation(EXIT_ON_CLOSE):	indica	que	la	aplicación	debe	terminar
su	ejecución	en	el	momento	en	el	que	se	cierre	la	ventana.		EXIT_ON_CLOSE		es	una
constante	de	la	clase.
setVisible(esVisible):	hace	aparecer	o	desaparecer	la	ventana	de	la	pantalla,

Elementos	Gráficos	Estructurales

482



dependiendo	del	valor	lógico	que	se	le	pase	como	parámetro.
add(componente):	permite	agregar	un	componente	gráfico	a	la	ventana.	En	la
siguiente	sección	abordaremos	el	tema	de	cómo	explicarle	a	la	ventana	la	"posición"
dentro	de	ella	donde	queremos	añadir	el	componente.

La	configuración	de	las	características	de	la	ventana	(tamaño,	zonas,	etc.)	se	debe	hacer	en
el	método	constructor	de	la	clase,	tal	como	se	muestra	en	el	ejemplo	2.	Lo	único	que	nos
falta	en	la	ventana	es	agregar	una	asociación	con	las	clases	del	modelo	del	mundo,	de	tal
forma	que	sea	posible	traducir	los	eventos	que	genere	el	usuario	en	llamadas	a	los	métodos
que	manipulan	los	objetos	del	mundo.	Esto	lo	hacemos	agregando	una	asociación	en	la
ventana	hacia	uno	o	más	objetos	del	mundo	del	problema.

Ejemplo	2

Objetivo:	Mostrar	la	manera	de	definir	la	configuración	básica	de	una	ventana.

En	este	ejemplo	se	muestra	parte	del	método	constructor	de	la	clase	que	implementa	la
ventana,	lo	mismo	que	la	manera	de	declarar	un	atributo	para	representar	la	asociación	con
el	modelo	del	mundo.

public	class	InterfazImpuestosCarro	extends	JFrame
{
		private	CalculadorImpuestos	calculador;

		public	InterfazImpuestosCarro(	)
		{
				setTitle(	"Cálculo	impuestos"	);	
				setSize(	600,	700	);	
				setResizable(	false	);
				setDefaultCloseOperation(	EXIT_ON_CLOSE	);
				...
		}
}

En	el	método	constructor	de	la	clase	de	la	ventana	definimos	su	configuración:	título,
tamaño,	evitamos	que	el	usuario	la	cambie	de	tamaño	y	definimos	que	cuando	el
usuario	cierre	la	ventana	el	programa	debe	terminar.
La	llamada	de	los	métodos	se	hace	como	si	fueran	de	nuestra	propia	clase,	puesto	que
pertenecen	a	la	clase	JFrame	y	nuestra	clase	la	extiende.
Si	se	incluye	en	la	clase	InterfazImpuestosCarro	el	constructor	que	aparece	en	este
ejemplo	y	se	ejecuta	el	programa,	veremos	aparecer	en	la	pantalla	la	imagen	que	se
muestra	más	abajo.

Elementos	Gráficos	Estructurales

483



La	imagen	corresponde	a	una	ventana	que	tiene	600	píxeles	de	ancho	y	700	píxeles	de
alto.
Por	ahora	no	agregamos	los	componentes	internos	de	la	ventana,	hasta	que	no
tratemos	el	tema	de	distribución	gráfica.
Como	atributo	de	la	ventana	definimos	una	asociación	a	un	objeto	de	la	clase
CalculadorImpuestos.	Ya	veremos	más	adelante	cómo	se	inicializa	y	cómo	lo	utilizamos
para	implementar	los	requerimientos	funcionales.

5.2.	Distribución	Gráfica	de	los	Elementos

Elementos	Gráficos	Estructurales

484



El	siguiente	problema	que	debemos	enfrentar	en	la	construcción	de	la	ventana	es	la
distribución	de	los	componentes	gráficos	que	va	a	tener	en	su	interior.	Para	manejar	esto,
Java	incluye	el	concepto	de	distribuidor	gráfico	(layout),	que	es	un	objeto	que	se	encarga	de
hacer	esa	tarea	por	nosotros.	Lo	que	hacemos	entonces	en	la	ventana,	o	en	cualquier	otro
contenedor	gráfico	que	tengamos,	es	crear	y	asociarle	un	objeto	que	se	encargue	de	hacer
este	proceso;	es	decir	que	nosotros	nos	contentamos	con	agregar	los	componentes	y
dejamos	que	este	objeto	que	creamos	se	encargue	de	situarlos	en	alguna	parte	de	la
ventana.

En	el	framework	swing	existe	ya	un	conjunto	de	distribuidores	gráficos	listos	para	utilizar.	En
este	nivel	veremos	dos	de	los	más	simples	que	existen,	los	cuales	están	implementados	en
las	clases	BorderLayout	y	GridLayout.	Para	asociar	uno	de	estos	distribuidores	con
cualquier	contenedor	gráfico,	se	utiliza	el	método	setLayout(	),	al	cual	se	le	debe	pasar
como	parámetro	una	instancia	de	la	clase	que	queremos	que	maneje	la	presentación
gráfica	de	los	elementos	que	contiene.	En	el	caso	de	estudio,	basta	con	agregarle	al
constructor	de	la	ventana	la	siguiente	llamada:

setLayout(	new	BorderLayout(	)	);

Si	agregamos	esta	instrucción	dentro	del	constructor	de	la	ventana	que	vimos	en	el
ejemplo	2,	cada	vez	que	agreguemos	en	ella	un	componente	gráfico,	será	la	instancia
de	la	clase	BorderLayout	que	acabamos	de	crear	la	que	se	encargue	de	situar	el	nuevo
elemento	dentro	de	la	ventana.

5.2.1.	Distribuidor	en	los	Bordes

El	distribuidor	en	los	bordes	(BorderLayout)	divide	el	espacio	del	contenedor	gráfico	en
cinco	zonas,	tal	como	muestra	la	figura	5.9.	Cada	una	de	ellas	se	identifica	con	una
constante	definida	dentro	de	la	clase	(	NORTH	,		CENTER	,		SOUTH	,		WEST	,		EAST	).

Elementos	Gráficos	Estructurales

485



Fig.	5.9	Distribuidor	en	los	bordes	(BorderLayout)

Si	asociamos	este	distribuidor	con	un	contenedor	gráfico,	cuando	agreguemos	un	elemento
deberemos	pasar	como	parámetro	la	zona	que	queremos	que	éste	ocupe.	Por	ejemplo,	si
quisiéramos	situar	un	componente	gráfico	llamado	panelVehiculo	en	la	zona	norte	de	la
ventana	del	caso	de	estudio,	deberíamos	agregar	en	el	constructor	de	la	clase	la	siguiente
instrucción:

add(	panelVehiculo,	BorderLayout.NORTH	);

Con	esta	instrucción	agregamos	un	componente	gráfico	llamado	panelVehiculo	en	la
zona	norte	de	un	contenedor	gráfico	que	tiene	asociado	un	distribuidor	en	los	bordes.
Fíjese	cómo	se	referencia	la	constante		NORTH		de	la	clase	BorderLayout.

Es	importante	resaltar	que	este	distribuidor	utiliza	el	tamaño	definido	por	cada	uno	de	los
componentes	que	va	a	albergar	(cada	uno	tiene	un	ancho	y	un	alto	en	pixeles)	para
reservarles	espacio	en	el	contenedor	gráfico,	y	asigna	todo	el	espacio	sobrante	para	el
componente	que	se	encuentre	en	la	zona	del	centro.	Nosotros	usaremos	este	distribuidor
gráfico	para	construir	la	interfaz	de	usuario	del	caso	de	estudio,	de	manera	que	esto	último
lo	veremos	en	detalle	más	adelante.

Elementos	Gráficos	Estructurales

486



5.2.2.	Distribuidor	en	Malla

Para	usar	el	distribuidor	en	malla,	se	debe	indicar	en	su	constructor	el	número	de	filas	y	de
columnas	que	va	a	tener,	las	cuales	van	a	establecer	las	zonas	en	las	que	estará	dividido	el
contenedor	gráfico,	tal	como	se	muestra	en	la	figura	5.10	para	un	distribuidor	de	4	filas	y	3
columnas.

Fig.	5.10	Distribuidor	en	malla	(GridLayout)	con	orden	de	llenado

Además	de	definir	una	estructura	en	filas	y	columnas,	el	distribuidor	en	malla	define	un
orden	de	llenado.
La	primera	zona	que	se	va	a	ocupar	es	la	que	se	encuentra	en	la	primera	columna	de
la	primera	fila	(arriba	a	la	izquierda	de	la	ventana).
Los	componentes	deben	agregarse	secuencialmente,	siguiendo	el	orden	de	llenado	del
distribuidor.

Para	asociar	un	distribuidor	con	un	componente	gráfico	se	utiliza	la	siguiente	instrucción,
siguiendo	con	el	ejemplo	de	4	filas	y	3	columnas:

setLayout(	new	GridLayout(	4,	3	)	);

Si	esta	instrucción	se	coloca	en	el	constructor	de	un	contenedor	gráfico,	todos	los

Elementos	Gráficos	Estructurales

487



elementos	que	se	le	agreguen	ocuparán	en	orden	cada	una	de	las	12	zonas	en	las	que
está	dividido.

A	diferencia	del	distribuidor	en	los	bordes,	cuando	se	utiliza	un	distribuidor	en	malla	no	es
necesario	definir	la	posición	que	va	a	ocupar	el	componente	que	se	va	a	incluir,	porque
estas	posiciones	son	asignadas	en	orden	de	llegada:	se	llena	primero	toda	la	fila	1,	luego	la
fila	2	y	así	sucesivamente.	Este	distribuidor	ignora	el	tamaño	definido	para	cada
componente,	ya	que	hace	una	distribución	uniforme	del	espacio.	En	la	próxima	sección
veremos	un	ejemplo	de	uso	de	este	distribuidor	gráfico.

5.3.	Divisiones	y	Paneles
Dentro	de	la	ventana	principal	aparecen	las	divisiones	(o	paneles),	encargadas	de	agrupar
los	elementos	gráficos	por	contenido	y	uso,	de	tal	manera	que	sea	sencillo	para	el	usuario
localizarlos	y	usarlos.	Esta	manera	de	estructurar	la	visualización	del	programa	es	muy
importante,	puesto	que	de	ella	depende	en	gran	medida	lo	fácil	e	intuitivo	que	resulte
utilizarlo.	En	la	interfaz	del	caso	de	estudio	(figura	5.2),	por	ejemplo,	tenemos	cuatro
divisiones	dentro	de	la	ventana:	en	la	primera	van	los	datos	del	vehículo,	en	la	segunda	las
opciones	del	búsqueda,	en	la	tercera	los	descuentos	y,	en	la	cuarta,	los	botones	con	las
opciones.

Cada	división	se	implementa	como	una	clase	aparte	en	el	modelo	(en	nuestro	caso,	con	las
clases	PanelDescuentos,	PanelBusquedas,	PanelResultados	y	PanelVehiculo)	y,	al	igual
que	la	ventana,	cada	una	de	ellas	es	un	contenedor	gráfico	al	cual	hay	que	asociarle	su
propio	distribuidor	(layout)	y	al	cual	se	le	pueden	agregar	en	su	interior	otros	componentes
gráficos.	En	el	caso	del	panel	Vehículo,	se	puede	observar	que	contiene	adicionalmente	el
PanelNavegacion.	En	el	constructor	de	la	ventana	se	debe	crear	una	instancia	de	cada	una
de	las	divisiones	o	paneles	y	luego	agregarlas	a	la	ventana.	Este	proceso	se	ilustra	en	el
ejemplo	3.

Ejemplo	3

Objetivo:	Mostrar	la	manera	de	agregar	paneles	a	una	ventana.

En	este	ejemplo	se	muestra	el	método	constructor	de	la	clase	InterfazImpuestosCarro,	en
donde	se	crean	las	instancias	de	los	cuatro	paneles	y	luego	se	agregan	a	la	ventana	en	una
de	las	zonas	del	distribuidor	en	los	bordes.	Aquí	se	debe	suponer	que	las	clases	que
implementan	cada	una	de	las	divisiones	ya	fueron	creadas	y	sus	nombres	son:
PanelBusqueda,	PanelDescuentos,	PanelOpciones	y	PanelVehiculo.	Note	que	las
asociaciones	con	los	paneles	se	declaran	como	cualquier	otra	asociación	en	Java.

Elementos	Gráficos	Estructurales

488



public	class	InterfazImpuestosCarro	extends	JFrame
{
				private	CalculadorImpuestos	calculador;

				private	PanelVehiculo	panelVehiculo;	
				private	PanelBusquedas	panelBusquedas;
				private	PanelDescuentos	panelDescuentos;	
				private	PanelOpciones	panelOpciones;

				public	InterfazImpuestosCarro(	)
				{
								setTitle(	"Cálculo	impuestos"	);
								setSize(	290,	300	);
								setResizable(	false	);
								setDefaultCloseOperation(	EXIT_ON_CLOSE	);
								setLayout(	new	BorderLayout(	)	);	

								JPanel	centro	=	new	JPanel(	);
								centro.setLayout(	new	BorderLayout(	)	);
								add(	centro,	BorderLayout.CENTER	);

								panelVehiculo	=	new	PanelVehiculo(	this	);
								centro.add(	panelVehiculo,	BorderLayout.CENTER	);

								panelBusquedas=	new	PanelBusquedas(	this	);
								centro.add(	panelBusquedas,	BorderLayout.SOUTH	);

								JPanel	sur	=	new	JPanel(	);
								sur.setLayout(	new	BorderLayout(	)	);
								add(	sur,	BorderLayout.SOUTH	);

								panelDescuentos	=	new	PanelDescuentos(	);
								sur.add(	panelDescuentos,	BorderLayout.CENTER	);

								panelOpciones	=	new	PanelOpciones(	this	);
								sur.add(	panelOpciones,	BorderLayout.SOUTH	);

				}
}

En	la	ventana	se	declara	un	atributo	por	cada	una	de	las	divisiones	o	paneles.
En	el	constructor	se	asocia	con	la	ventana	un	distribuidor	en	los	bordes.
Esta	es	una	versión	provisional	del	constructores,	que	después	cambiaremos
levemente	a	medida	que	vayamos	conociendo	nuevos	elementos.
Se	crea	una	instancia	de	cada	una	de	las	divisiones	y	se	agrega	en	una	posición	de	las
definidas	en	el	distribuidor	en	los	bordes.
Por	el	momento	no	agregaremos	nada	en	el	norte,	debido	a	que	este	espacio	se
reservará	para	la	imagen	con	el	título	de	la	aplicación.

Elementos	Gráficos	Estructurales

489



Debido	a	que	hay	más	paneles	que	divisiones	disponibles,	se	crean	dos	paneles
auxiliares	llamados	centro	y	sur.
El	panel	con	la	información	del	vehículo	va	en	el	centro	del	panel	centro.
El	panel	para	las	búsquedas	va	en	el	sur	del	panel	centro.
El	panel	con	la	información	de	los	descuentos	va	en	el	centro	del	panel	sur.
El	panel	con	las	opciones	va	en	el	sur	del	panel	sur.
Las	zonas	este	y	oeste	quedan	sin	ningún	componente	en	ellas,	por	lo	que	el
distribuidor	no	les	asigna	ningún	espacio	en	la	ventana.

Con	el	método	constructor	definido	hasta	el	momento,	hemos	creado	las	asociaciones
que	se	muestran	en	el	diagrama	de	clases	de	la	figura.
Se	omite	la	asociación	hacia	el	modelo	del	mundo	para	concentrarnos	únicamente	en
los	elementos	gráficos.

Para	la	construcción	de	las	clases	que	representan	las	divisiones,	se	sigue	un	proceso	muy
similar	al	que	seguimos	con	la	ventana,	ya	que	todas	comparten	el	hecho	de	ser
contenedores	gráficos.	Ahora,	en	lugar	de	la	clase	JFrame,	que	representa	las	ventanas	en
swing,	vamos	a	utilizar	la	clase	JPanel,	que	representa	las	divisiones	o	paneles.

Elementos	Gráficos	Estructurales

490



Una	diferencia	importante	es	que	ahora	usamos	el	método	setPreferredSize(dimension)
para	definir	el	tamaño	de	las	divisiones	(en	el	ejemplo	4	se	explica	su	utilización	en	más
detalle).	Esta	información	es	facultativa;	el	distribuidor	gráfico	decide	si	hace	uso	de	ella,	si
sólo	la	utiliza	parcialmente	o	si	sencillamente	la	ignora.

Ejemplo	4

Objetivo:	Mostrar	la	manera	de	declarar	los	paneles	de	una	ventana.

En	este	ejemplo	se	muestra	la	declaración	en	Java	de	las	clases	que	implementan	los
paneles	de	la	ventana	principal	de	la	interfaz	de	usuario	en	el	caso	de	estudio.

public	class	PanelBusquedas	extends	JPanel
{
				public	PanelBusquedas(	)
				{
								setLayout(	new	GridLayout(3,2)	);								
								setPreferredSize(	new	Dimension(	0,	100)	);
				}
}

El	panel	con	las	opciones	de	búsqueda	estará	dividido	en	6	zonas	(3	filas	y	2	columnas	en
cada	una).

En	el	momento	de	definir	la	dimensión	del	panel	es	importante	declarar	el	alto	que
queremos	que	tenga	(100	píxeles),	puesto	que	este	valor	es	utilizado	por	el	distribuidor	en
los	bordes	para	reservarle	espacio	al	panel,	y	ése	es	el	distribuidor	que	usamos	en	la
ventana	principal	para	situar	este	panel	en	la	ventana.	Fíjese	cómo	se	utiliza	la	clase
Dimension	para	definir	el	tamaño	del	panel.

Al	definir	la	dimensión	del	panel,	pasamos	0	píxeles	como	ancho.	Allí	habríamos	podido
escribir	cualquier	valor,	porque	de	todas	maneras	el	distribuidor	lo	ignorará	y	le	asignará
como	ancho	todo	el	espacio	disponible	en	la	ventana,	descontando	el	espacio	necesario
para	los	componentes	del	este	y	del	oeste.

Elementos	Gráficos	Estructurales

491



public	class	PanelDescuentos	extends	JPanel
{
				public	PanelDescuentos(	)
				{
								setLayout(	new	GridLayout(	2,2	)	);
				}
}

El	panel	con	la	información	de	los	descuentos	estará	dividido	en	cuatro	zonas	(dos	filas	y
dos	columnas	en	cada	una).	Aquí	no	es	importante	definir	la	dimensión	del	panel,	porque	el
distribuidor	de	la	ventana	en	la	cual	va	a	estar	situado	le	asignará	todo	el	espacio	disponible
después	de	haber	colocado	los	otros	paneles.

public	class	PanelOpciones	JPanel
{
				public	PanelOpciones	(	)
				{
								setLayout(	new	GridLayout(	1,	3	)	);
				}
}

El	panel	con	las	opciones	del	programa	estará	dividido	en	3	zonas(	una	fila	y	tres
columnas).	Aquí	tampoco	se	debe	definir	la	dimensión	del	panel.

Elementos	Gráficos	Estructurales

492



public		class	PanelVehiculo(		)	extends	JPanel
{
				public		class	PanelVehiculo(		)
				{
								setLayout(	new	BorderLayout(	)	);

								JPanel	informacion	=	new	JPanel(	);
								informacion.setLayout(	new	GridLayout(	4,	2,	10,	5	)	);
								add(	informacion,	BorderLayout.CENTER	);

								PanelNavegacion	panelNavegacion	=	new	PanelNavegacion(	);
								add(	panelNavegacion,	BorderLayout.SOUTH	);
				}
}

El	panel	con	la	información	del	vehículo	es	más	complejo	que	los	paneles	anteriores.	Por
esta	razón,	se	deben	utilizar	nuevamente	paneles	auxiliares	que	permitan	ajustar	todos	los
elementos	en	esa	distribución.	Como	podemos	ver	en	la	imagen	anterior,	se	divide	el	panel
en	3	zonas,	una	con	la	imagen	del	vehículo,	otra	con	los	datos	del	vehículo	y	otra	con	las
opciones	de	navegación.

Se	usa	un	BorderLayout	para	la	distribución	general	del	panel.
Por	ahora	no	agregaremos	nada	en	el	oeste,	debido	a	que	este	espacio	se	reservará
para	la	imagen	del	vehículo.
Se	crea	un	panel	auxiliar	para	llamado	información	para	poner	la	información	del
vehículo,	y	se	ubica	en	el	centro	del	panel.
El	panel	informacion	usa	un	GridLayout,	con	4	filas	y	2	columnas.	Se	agregan	3
parámetros	adicionales	al	constructor	del	distribuidor	gráfico,	para	indicar	los	espacios,
en	pixeles,	entre	cada	uno	de	sus	zonas.	En	este	caso,	se	deja	un	espacio	de	10
pixeles	entre	las	columnas	y	un	espacio	de	5	pixeles	entre	las	filas.

Elementos	Gráficos	Estructurales

493



Para	el	panel	de	navegación,	vamos	a	crear	una	nueva	clase,	llamada
PanelNavegacion,	debido	a	que	tiene	funciones	diferentes	que	veremos	más	adelante.

Las	zonas	este	y	norte	quedan	sin	ningún	componente	en	ellas,	por	lo	que	el
distribuidor	no	les	asigna	ningún	espacio	en	la	ventana.

public	class	PanelNavegacion	extends	JPanel	
{
				public	PanelNavegacion(	)
				{
								setLayout(	new	GridLayout(	1,	4	)	);
				}
}

El	panel	con	las	opciones	de	navegación	del	programa	estará	dividido	en	4	zonas(	una	fila	y
4	columnas).

Con	esta	clase	completamos	seis	clases	en	el	paquete	de	la	interfaz:	una	para	la	ventana,
cuatro	para	los	paneles	en	los	cuales	la	ventana	está	dividida	y	una	para	el	panel	de
navegación.

La	clase	JPanel	dispone	de	una	amplia	variedad	de	métodos	para	manejar	sus
propiedades.	Si	quiere	modificar	el	color,	por	ejemplo,	pruebe	alguna	de	las	siguientes
instrucciones	dentro	del	respectivo	método	constructor.	En	la	documentación	de	la	clase
encontrará	la	lista	de	servicios	que	ofrece	dicha	clase.

setForeground(	Color.RED	);	
setBackground(	Color.WHITE	);

Para	facilitar	la	identificación	de	las	divisiones	dentro	de	la	ventana,	tenemos	el	concepto	de
borde,	que	se	maneja	como	un	objeto	que	se	asocia	con	el	panel.	La	creación	de	los	bordes
se	hace	de	manera	de	la	misma	manera	como	se	crean	otros	objetos	(se	utiliza	el	método

Elementos	Gráficos	Estructurales

494



	new	)	y	la	asociación	con	el	panel	se	realiza	de	la	manera	que	se	muestra	en	el	ejemplo	5.

Ejemplo	5

Objetivo:	Mostrar	la	manera	de	crear	un	borde	en	un	panel.

En	este	ejemplo	se	muestra	la	creación	de	los	bordes	para	las	tres	divisiones	del	programa
del	caso	de	estudio.	De	todos	los	tipos	de	borde	disponibles	en	swing,	vamos	a	utilizar	el
borde	con	título,	el	cual	permite	que,	además	de	marcar	las	divisiones,	podamos	asociar
una	cadena	de	caracteres	que	indique	el	contenido	de	cada	uno	de	los	paneles.

A	continuación	se	presentan	las	instrucciones	que	se	deben	agregar	a	los	métodos
constructores	de	los	paneles	para	asociarles	los	bordes	necesarios.	Al	final	se	muestra	la
imagen	de	la	interfaz	que	se	ha	construido	hasta	el	momento.

public	PanelVehiculo(	)
{
		...
		TitledBorder	border	=	new	TitledBorder(	"Datos	del	vehículo"	);	
		border.setTitleColor(	Color.BLUE	);
		setBorder(	border	);
}

public	PanelBusquedas(	)
{
		...
		TitledBorder	border	=	new	TitledBorder(	"Búsquedas"	);
		border.setTitleColor(	Color.BLUE	);
		setBorder(	border	);
}

public	PanelDescuentos(	)
{
		...
		TitledBorder	border	=	new	TitledBorder(	"Descuentos"	);
		border.setTitleColor(	Color.BLUE	);
		setBorder(	border	);
}

public	PanelOpciones(	)
{
		...
		TitledBorder	border	=	new	TitledBorder(	"Opciones"	);	
		border.setTitleColor(	Color.BLUE	);
		setBorder(	border	);
}

Elementos	Gráficos	Estructurales

495



Es	conveniente	utilizar	alguna	convención	clara	para	nombrar	las	clases	de	los
componentes	gráficos.	En	este	libro	las	clases	que	implementan	las	divisiones	de	las
ventanas	comenzarán	por	la	cadena	"Panel",	seguidas	de	una	descripción	de	su	contenido.
Con	esta	convención	podemos	fácilmente	localizar	las	clases	involucradas	en	algún	aspecto
de	la	interfaz.

Como	lo	vimos	anteriormente,	cuando	en	una	ventana	necesitamos	cuatro	o	más	divisiones
en	sentido	vertical	y	horizontal	y	queremos	utilizar	el	distribuidor	en	bordes,	lo	único	que
debemos	hacer	es	agregar	divisiones	adicionales	dentro	de	uno	de	los	paneles,
aprovechando	que	éstos	son	contenedores	gráficos	y	pueden	contener	en	su	interior
cualquier	tipo	de	componente	gráfico.

Elementos	Gráficos	Estructurales

496



En	este	punto	ya	se	tienen	los	conceptos	indispensables	para	comenzar	a	utilizar	los
entrenadores	de	construcción	de	interfaces	de	usuario,	uno	de	los	cuales	permite	manipular
interactivamente	los	distribuidores	gráficos	vistos	en	este	capítulo.

5.4.	Etiquetas	y	Zonas	de	Texto
Una	vez	que	hemos	terminado	de	estructurar	las	divisiones	y	hemos	asociado	con	cada	una
de	ellas	un	distribuidor	gráfico,	podemos	comenzar	a	agregar	los	elementos	gráficos	y	de
interacción.	Vamos	a	empezar	por	dos	de	los	componentes	gráficos	más	simples,	que
permiten	una	comunicación	básica	con	el	usuario:	las	etiquetas	y	las	zonas	de	texto.

Las	etiquetas	permiten	agregar	un	texto	corto	o	imágenes	como	parte	de	la	interfaz,	la
mayor	parte	de	las	veces	con	el	fin	de	explicar	algún	elemento	de	interacción,	por	ejemplo
una	zona	de	texto.	Las	etiquetas	(labels)	son	objetos	de	la	clase	JLabel	en	swing,	que	se
crean	pasando	en	el	constructor	el	texto	que	deben	contener.	Dicha	clase	cuenta	con
diversos	métodos,	entre	los	cuales	tenemos	los	siguientes:

setText(etiqueta):	permite	cambiar	el	texto	de	la	etiqueta.

setForeground(color):	permite	cambiar	el	color	de	la	etiqueta.	Como	color	se	puede
pasar	cualquiera	de	las	constantes	de	la	clase	Color	(	BLACK	,		RED	,		GREEN	,		BLUE	,
etc.),	o	definir	un	nuevo	color	utilizando	los	tres	índices	ROJO-VERDE-AZUL	del
estándar	RGB.

Para	agregar	una	etiqueta	a	un	panel,	se	siguen	cuatro	pasos:

1.	 Declarar	en	el	panel	un	atributo	de	la	clase	JLabel.
2.	 Agregar	la	instrucción	de	creación	de	la	etiqueta	(	new	).
3.	 Utilizar	los	métodos	de	la	clase	para	configurar	los	detalles	de	visualización	deseados.
4.	 Utilizar	la	instrucción		add		del	panel	para	agregarla	en	la	zona	que	le	corresponda.

Estos	cuatro	pasos	son	los	mismos	para	cualquier	componente	gráfico	que	se	quiera
incorporar	a	una	división.	En	el	ejemplo	6	aparece	el	código	necesario	para	crear	todas	las
etiquetas	de	la	interfaz	del	caso	de	estudio.

También	es	importante	definir	una	convención	de	nombres	para	los	atributos,	que	permita
distinguir	el	tipo	de	componente	gráfico	al	que	corresponde.	Nuestra	convención	es	que	el
nombre	de	los	atributos	que	representan	las	etiquetas	comienza	por	la	cadena	"lab",
mientras	que	aquellos	que	representan	una	zona	de	texto	comienzan	por	"txt".

Las	zonas	de	texto	(objetos	de	la	clase	JTextField)	cumplen	dos	funciones	en	una	interfaz.
Por	una	parte,	permiten	al	usuario	ingresar	la	información	correspondiente	a	las	entradas	de
los	requerimientos	funcionales	(por	ejemplo,	la	marca	del	vehículo)	y,	por	otra,	obtener	las

Elementos	Gráficos	Estructurales

497



respuestas	calculadas	por	el	programa	(por	ejemplo,	el	monto	que	se	debe	pagar	por
impuestos).	Los	siguientes	métodos	permiten	configurar	y	manipular	las	zonas	de	texto:

getText(	):	retorna	la	cadena	de	caracteres	ingresada	por	el	usuario	dentro	de	la	zona
de	texto.	Independientemente	de	si	el	usuario	ingresó	un	valor	numérico	o	una
secuencia	de	letras,	todo	lo	que	el	usuario	ingresa	se	maneja	y	retorna	como	una
cadena	de	caracteres.	Más	adelante	veremos	cómo	convertirla	a	un	número	cuando	así
lo	necesitemos.
setText(texto):	presenta	en	la	zona	de	texto	la	cadena	que	se	pasa	como	parámetro.
Este	método	se	usa	frecuentemente	para	mostrar	los	resultados	de	un	cálculo	hecho
por	el	programa.
setEditable(editable):	indica	si	el	contenido	de	la	zona	de	texto	puede	ser	modificado
por	el	usuario.	En	el	caso	de	las	zonas	de	texto	utilizadas	para	mostrar	resultados,	es
común	impedir	que	el	usuario	modifique	el	valor	allí	contenido.
setForeground(color):	define	el	color	de	los	caracteres	que	aparecen	en	la	zona	de
texto.	De	la	misma	manera	que	con	las	etiquetas,	aquí	se	pueden	usar	las	constantes
de	la	clase	Color	o	crear	otro	color	distinto.
setBackground(color):	define	el	color	del	fondo	de	la	zona	de	texto.

Ejemplo	6

Objetivo:	Mostrar	la	manera	de	agregar	componentes	gráficos	simples	a	un	panel.

Este	ejemplo	muestra	la	manera	de	añadir	los	componentes	gráficos	al	primer	panel	de	la
interfaz	del	caso	de	estudio.	Inicialmente,	se	presenta	el	contenido	final	esperado.	Luego	se
muestran	las	instrucciones	que	se	deben	agregar	al	método	constructor	del	primer	panel
para	lograr	el	objetivo.	Lo	único	que	no	se	agrega	en	este	momento	es	el	panel	con	los
botones	de	navegación,	que	es	tema	de	una	sección	posterior.

Elementos	Gráficos	Estructurales

498



public	class	PanelVehiculo	extends	JPanel
{
				//--------------------------------------
				//	Atributos
				//--------------------------------------
				private	JTextField	txtMarca;
				private	JTextField	txtLinea;
				private	JTextField	txtModelo;
				private	JTextField	txtValor;
				private	JLabel	labImagen;
}

Paso	1:	se	declara	un	atributo	en	la	clase	por	cada	componente	gráfico	cuyo	valor	cambiará
después	de	creado,	que	se	quiera	incluir	en	el	panel.

Si	vemos	la	imagen	anterior,	podemos	ver	que	tendremos	4	etiquetas	(Marca,	Línea,
Modelo	y	Valor)	con	texto,	4	zonas	de	texto	asociadas	y	,	una	etiqueta	con	la	imagen	del
vehículo.	Como	el	valor	de	las	etiquetas	nunca	cambia,	no	la	agregamos	como	atributo.

Es	conveniente	asociar	parejas	de	nombres	para	indicar	que	los	componentes	están
relacionados	entre	sí.	Por	ejemplo	los	nombres		txtMarca		y		labMarca		indican	que	se	trata
de	dos	componentes	relacionados	con	el	mismo	concepto	(la	marca	del	vehículo).

public	PanelVehiculo(	)
{
				...
				labImagen	=	new	JLabel(	);

				JLabel	labMarca	=	new	JLabel(	"Marca"	);
				txtMarca	=	new	JTextField(	);

				JLabel	labLinea	=	new	JLabel(	"Línea"	);
				txtLinea	=	new	JTextField(	);

				JLabel	labModelo	=	new	JLabel(	"Modelo"	);
				txtModelo	=	new	JTextField(	);	

				JLabel	labValor	=	new	JLabel(	"Valor"	);								
				txtValor	=	new	JTextField(	);
				...

Note	que	las	campos	de	texto	y	la	etiqueta	con	la	imagen	todavía	no	tienen	ningún	valor,
porque	este	depende	del	vehículo	que	se	quiera	visualizar.

Paso	2:	en	el	constructor	del	panel	se	crean	los	objetos	que	representan	cada	uno	de	los
componentes	gráficos.

Elementos	Gráficos	Estructurales

499



En	los	constructores	de	algunos	elementos	gráficos	es	posible	configurar	algunas	de	las
características	que	queremos	que	tenga.	Estas	instrucciones	se	escriben	después	de	las
instrucciones	de	definición	del	distribuidor	gráfico	y	del	borde.

				txtValor.setEditable(	false	);	
				txtValor.setForeground(	Color.BLUE	);	
				txtValor.setBackground(	Color.WHITE	);

En	este	caso,	se	indica	el	campo	de	texto		txtValor		no	puede	ser	editado	por	el	usuario,
que	el	color	del	texto	de	la	etiqueta	es	azul	y	el	color	de	fondo	blanco.

Paso	3:	utilizando	los	métodos	de	cada	clase	se	configura	el	componente.

Aquí	sólo	van	las	características	que	no	hayan	podido	ser	definidas	en	la	creación	del
objeto.

				add(	labImagen,	BorderLayout.WEST	);

				informacion.add(	labMarca	);								
				informacion.add(	txtMarca	);	
				informacion.add(	labLinea	);	
				informacion.add(	txtLinea	);	
				informacion.add(	labModelo	);	
				informacion.add(	txtModelo	);	
				informacion.add(	labValor	);	
				informacion.add(	txtValor		);
}

Paso	4:	se	añaden	al	panel	los	componentes	gráficos	creados.	La	imagen	del	vehículo	se
agrega	en	el	oeste	del	panel,	que	es	la	zona	que	se	había	reservado	para	esto.	El	resto	de
las	etiquetas	y	los	campos	de	texto	se	agregan	en	el	panel	de	información,	se	teniendo
cuidado	de	agregarlos	en	el	orden	utilizado	por	el	distribuidor	gráfico	(de	izquierda	a
derecha	y	de	arriba	a	abajo).

5.5.	Formateo	de	Datos	Numéricos
En	algunas	ocasiones,	es	importante	formatear	de	manera	adecuada	los	valores	numéricos
en	el	momento	de	presentárselos	al	usuario.	Si	el	valor	de	los	impuestos	del	vehículo	actual
es	1615500,120023883,	debemos	buscar	la	manera	de	que	en	la	zona	de	texto	aparezca
algo	del	estilo	"$	1.615.500,00".	Esto	se	logra	con	el	código	que	se	presenta	a	continuación,
en	el	cual	suponemos	que	en	la	variable	precio,	de	tipo	real,	está	el	valor	que	queremos
presentar	y	que	la	zona	de	texto	en	donde	debe	aparecer	se	llama	txtValor:

Elementos	Gráficos	Estructurales

500



DecimalFormat	df	=	(DecimalFormat)	NumberFormat.getInstance(		);

df.applyPattern(	"$	###.###,##"	);	
String	strPrecio=	df.format(	precio);	
txtValor.setText(	strPrecio);

DecimalFormat	es	una	clase	que	hace	este	tipo	de	formateo.	Se	encuentra	en	el
paquete	java.text.
En	la	primera	línea	se	obtiene	una	instancia	de	dicha	clase.
En	la	segunda	línea	se	define	el	formato	que	queremos	utilizar.	Marcamos	con	#	los
espacios	ocupados	por	los	dígitos	que	forman	parte	del	número.
En	la	tercera	línea	aplicamos	el	formato	al	valor	que	se	encuentra	en	la	variable
llamada	"precio".
En	la	última	línea	colocamos	la	respuesta	en	la	zona	de	texto	llamada	txtValor,
utilizando	el	método	setText().

5.6.	Selección	de	Opciones
El	framework	swing	provee	un	componente	gráfico	que	permite	al	usuario	seleccionar	o	no
una	opción.	En	el	caso	de	estudio	lo	utilizamos	para	que	el	usuario	seleccione	los
descuentos	a	los	que	tiene	derecho.	Con	estos	controles	el	usuario	sólo	puede	decir	"sí"	o
"no".	El	manejo	de	estos	componentes	gráficos	sigue	las	mismas	reglas	explicadas	en	la
sección	anterior,	tal	como	se	muestra	en	el	ejemplo	7.

Estos	componentes	son	manejados	por	la	clase	JCheckBox,	cuyos	principales	métodos	son
los	siguientes:

isSelected():	retorna	un	valor	lógico	que	indica	si	el	usuario	seleccionó	la	opción
(verdadero	si	la	opción	fue	escogida	y	falso	en	caso	contrario).
setSelected(seleccionado):	marca	como	seleccionado	o	no	el	control,	dependiendo
del	valor	lógico	del	parámetro.

Por	convención	utilizaremos	el	prefijo	"cb"	para	los	nombres	de	los	atributos	que
representen	este	tipo	de	componentes	gráficos	(JCheckBox).

Ejemplo	7

Objetivo:	Mostrar	el	manejo	de	los	componentes	de	selección	de	opciones.

Este	ejemplo	muestra	el	manejo	del	componente	JCheckBox	en	el	contexto	del	caso	de
estudio.	Vamos	a	utilizar	tres	objetos	de	esa	clase	en	el	segundo	de	los	paneles,	para	que
el	usuario	pueda	escoger	los	descuentos	a	los	que	tiene	derecho.	Comenzamos	mostrando

Elementos	Gráficos	Estructurales

501



la	imagen	esperada	en	la	interfaz	y	el	distribuidor	gráfico	instalado	sobre	la	división,	de
manera	que	sea	claro	el	orden	en	el	que	los	componentes	se	deben	agregar.

public	class	PanelDescuentos	extends	JPanel
{
				private	JCheckBox	cbPPago;
				private	JCheckBox	cbSPublico;
				private	JCheckBox	cbTCuenta;
				...
}

Declaración	como	atributos	de	los	tres	componentes	gráficos	de	selección	de	opciones.

public	PanelDescuentos(	)
{
				...

				cbPPago	=	new	JCheckBox(	"Pronto	pago"	);
				cbSPublico	=	new	JCheckBox(	"Servicio	público"	);
				cbTCuenta	=	new	JCheckBox(	"Traslado	de	cuenta"	);

				add(	cbPPago	);	
				add(	cbTCuenta	);	
				add(	cbSPublico	);

}

En	el	constructor	de	la	clase	se	crean	inicialmente	los	objetos,	pasando	como	parámetro	el
nombre	que	se	debe	asociar	con	cada	opción.

Luego	se	agregan	los	objetos	al	panel,	siguiendo	el	orden	pedido	por	el	distribuidor	(por
filas,	de	arriba	hacia	abajo	y	de	izquierda	a	derecha).

Elementos	Gráficos	Estructurales

502



6.	Elementos	de	Interacción
Existen	muchos	mecanismos	de	interacción	mediante	los	cuales	el	usuario	puede	expresar
sus	órdenes	a	la	interfaz.	Desde	hacer	clic	en	algún	punto	de	la	ventana,	hasta	arrastrar	un
icono	de	una	zona	a	otra	de	un	panel.	Todas	estas	acciones	del	usuario	son	convertidas	en
eventos	en	Java	y	son	manipuladas	mediante	objetos.	Esto	quiere	decir	que	cada	vez	que
el	usuario	hace	algo	sobre	la	ventana	del	programa,	esta	acción	se	convierte	en	un	objeto
(llamado	un	evento)	que	contiene	toda	la	información	para	describir	lo	que	el	usuario	hizo.
De	esta	manera,	podemos	tomar	dicho	objeto,	estudiar	su	contenido	y	hacer	que	el
programa	reaccione	como	se	supone	debe	hacerlo,	de	acuerdo	con	la	acción	del	usuario.
Por	ejemplo.	si	en	el	evento	aparece	que	el	usuario	oprimió	un	botón,	debemos	ejecutar	la
respectiva	reacción,	que	puede	incluir	cambiar	o	consultar	algo	en	el	modelo	del	mundo.	La
figura	5.11	ilustra	la	idea	anterior.

Fig.	5.11	Relación	entre	un	evento	y	la	llamada	de	un	método

En	este	libro	únicamente	estudiamos	la	interacción	usando	botones,	posiblemente	el
mecanismo	más	simple	que	existe	para	que	el	usuario	exprese	sus	órdenes.	Dichos
botones	son	componentes	gráficos	que	pertenecen	a	la	clase	JButton.	Estos	componentes
se	declaran	y	agregan	a	los	paneles	como	cualquier	otro,	tal	como	se	muestra	en	el	ejemplo
8.

Ejemplo	8

Objetivo:	Mostrar	la	manera	de	agregar	botones	a	un	panel.

Elementos	de	Interacción

503



En	este	ejemplo	se	presenta	la	manera	de	declarar	y	agregar	los	botones	panel	del	caso	de
estudio	usado	para	las	búsquedas.	Una	vez	instalado	como	aparece	en	el	ejemplo,	los
botones	se	pueden	oprimir,	pero	no	reaccionan	de	ninguna	manera.

Ese	es	el	tema	que	sigue:	¿cómo	asociar	una	reacción	con	un	evento	de	un	botón?	En	la
imagen	que	se	presenta	a	continuación	aparece	la	visualización	esperada	del	panel.

Elementos	de	Interacción

504



public	class	PanelBusquedas	extends	JPanel
{
				//--------------------------------------
				//	Atributos
				//--------------------------------------
				private	JTextField	txtLinea;

				/**
					*	Campo	de	texto	para	la	marca.
					*/
				private	JTextField	txtMarca;
				private	JButton	btnBuscarLinea;
				private	JButton	btnBuscarMarca;
				private	JButton	btnBuscarCaro;

				//--------------------------------------
				//	Constructor
				//--------------------------------------
				public	PanelBusquedas	(	)
				{
								...

								txtLinea	=	new	JTextField(	);
								add(	txtLinea	);

								btnBuscarLinea	=	new	JButton(	BUSCAR_POR_LINEA	);
								add(	btnBuscarLinea	);

								txtMarca	=	new	JTextField(	);
								add(	txtMarca	);

								btnBuscarMarca	=	new	JButton(	BUSCAR_POR_MARCA	);
								add(	btnBuscarMarca	);

								add(	new	JLabel(	)	);

								btnBuscarCaro	=	new	JButton(	BUSCAR_MAS_CARO	);
								add(	btnBuscarCaro	);
				}
}

Se	declara	un	atributo	por	cada	componente	botón:	dos	zona	de	texto	para	ingresar	lo
que	se	desea	buscar	y	tres	botones.
El	prefijo	utilizado	para	los	botones	en	este	ejemplo	es	"btn".
Las	instrucciones	que	aquí	se	muestran	deben	venir	después	de	aquellas	que	asocian
el	distribuidor	gráfico	y	el	borde.
Se	crean	los	objetos	que	implementan	los	componentes	gráficos	y	se	inicializan.
Al	crear	un	botón,	se	define	la	etiqueta	que	va	a	aparecer	sobre	él.
Fíjese	que	agregamos	una	etiqueta	"vacía"	para	obtener	la	visualización	deseada.

Elementos	de	Interacción

505



Hay	tres	pasos	que	se	deben	seguir	para	decidir	la	manera	de	manejar	un	evento	con	un
botón	de	la	interfaz,	los	cuales	se	explican	a	continuación:

Decidir	el	nombre	del	evento.	A	los	eventos	de	los	botones	se	les	asocia	un	nombre	por
medio	del	cual	se	van	a	poder	identificar	más	adelante.	El	nombre	es	una	cadena	de
caracteres	y	es	muy	conveniente	definir	dicha	cadena	como	una	constante.	Para	el
caso	de	estudio,	los	nombres	de	los	eventos	se	asocian	de	la	siguiente	manera	con	los
dos	botones:

public	class	PanelBusquedas	extends	JPanel
{
				//--------------------------------------
				//	Constantes
				//--------------------------------------
				public	final	static	String	BUSCAR_POR_LINEA	=	"Buscar	por	línea";
				public	final	static	String	BUSCAR_POR_MARCA	=	"Buscar	por	marca";
				public	final	static	String	BUSCAR_MAS_CARO	=	"Buscar	vehículo	más	Caro";

				public	PanelBusquedas	(	)
				{
								...
								btnBuscarLinea.setActionCommand(	BUSCAR_POR_LINEA	);
								btnBuscarMarca.setActionCommand(	BUSCAR_POR_MARCA	);
								btnBuscarCaro.setActionCommand(	BUSCAR_MAS_CARO	);
				}
}

Implementar	el	método	que	va	a	atender	el	evento.	Para	atender	el	evento,	el	panel
que	contiene	el	botón	debe	agregar	una	declaración	en	el	encabezado	de	la	clase
(	implements	ActionListener	)	e	implementar	un	método	especial	llamado
actionPerformed,	que	recibe	como	parámetro	el	evento	ocurrido	en	el	panel.	Dicho
evento	es	un	objeto	de	la	clase	ActionEvent.	Estos	puntos	se	ilustran	en	el	siguiente
código,	en	el	cual	se	muestra	también	la	manera	de	obtener	el	nom-	bre	del	evento
ocurrido,	a	partir	del	objeto	que	lo	representa.

Elementos	de	Interacción

506



public	class	PanelBusquedas	extends	JPanel	implements	ActionListener
{

				public	void	actionPerformed(	ActionEvent	pEvento	)
				{
								String	comando	=	evento.getActionCommand(	);

								if(	comando.equals(	BUSCAR_MAS_CARO	)	)
								{	
												//	Reacción	al	evento	de	BUSCAR_MAS_CARO	
								}
								else	if(	comando.equals(	BUSCAR_POR_LINEA	)	)
								{
												//	Reacción	al	evento	de	BUSCAR_POR_LINEA	
								}
								else	if(	comando.equals(	BUSCAR_POR_MARCA	)	)
								{
												//	Reacción	al	evento	de	BUSCAR_POR_MARCA	

								}
				}
}

La	clase	del	panel	debe	incluir	en	su	encabezado	la	declaración	implements
ActionListener.
Esa	misma	clase	debe	implementar	un	método	con	la	signatura	planteada	en	el
ejemplo.
Con	el	método	getActionCommand	podemos	saber	el	nombre	del	evento	ocurrido.

Cada	vez	que	el	usuario	oprime	un	botón	en	un	panel,	se	ejecuta	su	método
actionPerformed.	El	contenido	exacto	de	dicho	método	se	estudiará	en	una	sección
posterior,	puesto	que	hay	decisiones	de	nivel	de	arquitectura	que	todavía	no	hemos	tomado.
Pero	a	grandes	rasgos	se	puede	decir	que	ese	método	debe	utilizar	el	nombre	del	evento
ocurrido	para	decidir	la	acción	que	debe	tomar.

Declarar	que	el	panel	es	el	responsable	de	atender	los	eventos	de	sus	botones.	Para
esto	se	utiliza	el	método	addActionListener,	pasando	como	referencia	el	panel.	Puesto
que	esto	se	debe	ejecutar	en	el	constructor	del	mismo	panel,	utilizamos	la	variable	this
que	provee	el	lenguaje	Java	para	hacer	referencia	al	objeto	que	está	ejecutando	un
método.	De	esta	manera	podemos	decir	dentro	del	constructor	del	panel	que	quien	va	a
atender	los	eventos	del	botón	es	el	panel	mismo.	El	código	es	el	siguiente:

Elementos	de	Interacción

507



public	class	PanelBusquedas	extends	JPanel	implements	ActionListener
{
				public	PanelResultados(	)
				{
								...

								btnBuscarLinea.addActionListener(	this	);	
								btnBuscarMarca.addActionListener(	this	);
								btnBuscarCaro.addActionListener(	this	);
				}
}

Con	el	método	addActionListener,	el	botón	declara	que	es	el	panel	quien	va	a	atender
sus	eventos.
La	variable	this	siempre	referencia	al	objeto	que	está	ejecutando	un	método.

Con	eso	completamos	el	manejo	de	eventos	relacionados	con	los	botones	y	sólo	queda
pendiente	el	cuerpo	exacto	del	método	que	atiende	los	eventos.

A	continuación	mostramos	el	contenido	completo	de	la	clase	PanelBusquedas	,	para	dar
una	visión	global	de	su	contenido:

public	class	PanelBusquedas	extends	JPanel	implements	ActionListener
{
				//	-----------------------------------------------------------------
				//	Constantes
				//	-----------------------------------------------------------------
				public	final	static	String	BUSCAR_POR_LINEA	=	"Buscar	por	línea";
				public	final	static	String	BUSCAR_POR_MARCA	=	"Buscar	por	marca";
				public	final	static	String	BUSCAR_MAS_CARO	=	"Buscar	vehículo	más	Caro";

				//	-----------------------------------------------------------------
				//	Atributos	de	la	interfaz
				//	-----------------------------------------------------------------

				private	JTextField	txtLinea;
				private	JTextField	txtMarca;
				private	JButton	btnBuscarLinea;
				private	JButton	btnBuscarMarca;
				private	JButton	btnBuscarCaro;

				//	-----------------------------------------------------------------
				//	Constructores
				//	-----------------------------------------------------------------

				public	PanelBusquedas(	InterfazImpuestosCarro	pPrincipal	)
				{
								principal	=	pPrincipal;
								setLayout(	new	GridLayout(	3,	2	)	);
								TitledBorder	border	=		new	TitledBorder(	"Búsquedas"	);

Elementos	de	Interacción

508



								border.setTitleColor(	Color.BLUE	);
								setBorder(	border	);
								setBorder(	border);

								txtLinea	=	new	JTextField(	);
								add(	txtLinea	);

								btnBuscarLinea	=	new	JButton(	BUSCAR_POR_LINEA	);
								btnBuscarLinea.addActionListener(	this	);
								btnBuscarLinea.setActionCommand(	BUSCAR_POR_LINEA	);
								add(	btnBuscarLinea	);

								txtMarca	=	new	JTextField(	);
								add(	txtMarca	);

								btnBuscarMarca	=	new	JButton(	BUSCAR_POR_MARCA	);
								btnBuscarMarca.addActionListener(	this	);
								btnBuscarMarca.setActionCommand(	BUSCAR_POR_MARCA	);
								add(	btnBuscarMarca	);

								add(	new	JLabel(	)	);

								btnBuscarCaro	=	new	JButton(	BUSCAR_MAS_CARO	);
								btnBuscarCaro.addActionListener(	this	);
								btnBuscarCaro.setActionCommand(	BUSCAR_MAS_CARO	);
								add(	btnBuscarCaro	);

				}

				public	void	actionPerformed(	ActionEvent	pEvento	)
				{
								String	comando	=	pEvento.getActionCommand(	);

								if(	comando.equals(	BUSCAR_MAS_CARO	)	)
								{
												//	Por	definir

								}
								else	if(	comando.equals(	BUSCAR_POR_LINEA	)	)
								{
												//	Por	definir

								}
								else	if(comando.equals(	BUSCAR_POR_MARCA	)	)
								{
												//	Por	definir
								}
				}		
}

Elementos	de	Interacción

509



Si	una	clase	incluye	la	declaración	implements	ActionListener	y	no	implementa	el	método
actionPerformed	(o	si	lo	implementa	con	otra	signatura),	se	obtiene	el	siguiente	error	de
compilación:

Class	must	implement	the	inherited	abstract	method	ActionListener.
actionPerformed(ActionEvent)

Elementos	de	Interacción

510



7.	Mensajes	al	Usuario	y	Lectura	Simple	de
Datos

7.1.	Mensajes	en	la	Consola
Para	presentar	un	mensaje	en	la	ventana	de	comandos	del	sistema	operativo,	se	utiliza	la
instrucción		System.out.println(cadena)	.	Es	poco	usual	enviarle	mensajes	al	usuario	a	esa
ventana,	pero	en	algunos	casos	(errores	fatales,	por	ejemplo),	esto	es	indispensable.

Si	el	programa	se	está	ejecutando	en	un	ambiente	de	desarrollo	como	Eclipse,	los
mensajes	aparecerán	en	una	ventana	especial	llamada	consola.

System.out.println(	"Hola	mundo..."	);

Se	puede	utilizar	esta	instrucción,	en	cualquier	clase	de	la	interfaz,	para	enviar	un	mensaje
al	usuario	a	la	ventana	de	comandos	del	sistema	operativo.

Si	durante	la	ejecución	de	un	programa	se	lanza	una	excepción	que	no	es	atrapada	por
ninguna	clase	de	la	interfaz,	la	acción	por	defecto	es	generar	una	secuencia	de	mensajes
en	la	ventana	de	comandos,	con	información	relativa	al	error.

7.2.	Mensajes	en	una	Ventana
El	paquete	swing	incluye	una	clase	JOptionPane	que,	entre	sus	múltiples	usos,	tiene	un
método	para	enviarle	mensajes	al	usuario	en	una	pequeña	ventana	emergente.	Esto	es
muy	útil	en	caso	de	error	en	las	entradas	del	usuario	o	con	el	fin	de	mostrarle	un	resultado
puntual	de	una	consulta.	La	sintaxis	de	uso	es	la	que	se	muestra	en	el	ejemplo	9.

Ejemplo	9

Objetivo:	Mostrar	la	manera	de	presentar	un	mensaje	a	un	usuario,	usando	una	ventana
simple	de	diálogo.

Mensajes	al	Usuario	y	Lectura	Simple	de	Datos

511



Este	ejemplo	muestra	la	manera	de	enviarle	mensajes	al	usuario,	abriendo	una	nueva
ventana	y	esperando	hasta	que	el	usuario	oprima	el	botón	para	continuar.	En	cada	imagen
aparece	la	ventana	que	se	va	a	mostrar	al	usuario	y,	debajo,	la	instrucción	que	ordena
hacerlo.	Esta	instrucción	debe	ir	dentro	de	un	método	de	un	panel.

Mensaje	de	error:

JOptionPane.showMessageDialog(	principal,	"Debe	ingresar	una	línea.",	"Buscar	por	líne
a",	JOptionPane.ERROR_MESSAGE	);

Mensaje	de	advertencia:

JOptionPane.showMessageDialog(	this	,	"Ya	se	encuentra	en	el	último	vehículo.",	"Ver	ú
ltimo	vehículo"	,	JOptionPane.WARNING_MESSAGE	);

Mensaje	de	información:

JOptionPane.showMessageDialog(	this	,	"El	valor	a	pagar	es:	$3.675.000"	,	"Cálculo	de	
Impuestos"	,	JOptionPane.INFORMATION_MESSAGE	);

7.3.	Pedir	Información	al	Usuario

Mensajes	al	Usuario	y	Lectura	Simple	de	Datos

512



Cuando	la	información	que	se	necesita	como	entrada	de	un	requerimiento	funcional	es	muy
sencilla	(un	nombre	o	un	valor	numérico),	se	puede	utilizar	un	método	de	la	clase
JOptionPane	que	abre	una	ventana	de	diálogo	y	luego	retorna	la	cadena	tecleada	por	el
usuario.	Su	uso	se	ilustra	en	el	ejemplo	10.	Si	la	información	que	se	necesita	de	parte	del
usuario	es	más	compleja,	se	debe	utilizar	un	cuadro	de	diálogo	más	elaborado,	en	el	cual
irían	los	componentes	gráficos	necesarios	para	recoger	la	información.

Ejemplo	10

Objetivo:	Mostrar	la	manera	de	pedir	información	simple	al	usuario.

Este	ejemplo	muestra	la	manera	de	pedir	al	usuario	que	teclee	alguna	información	en	una
nueva	ventana	de	diálogo.	Al	igual	que	en	el	ejemplo	anterior,	en	cada	imagen	aparece	la
visualización	de	la	ventana	y,	debajo,	el	código	en	Java	que	la	presenta	y	que	recupera	el
valor	tecleado.	Esta	instrucción	debe	ir	dentro	de	un	método	de	un	panel	o	ventana.

String	strModelo	=	JOptionPane.showInputDialog(	this	,	"Introduzca	el	modelo	buscado:"
,	"Buscar	modelo",	JOptionPane.QUESTION_MESSAGE	);

if(	strModelo	!=	null	)
{
		//	el	usuario	tecleó	algo
}

int	resp	=	JOptionPane.showConfirmDialog(	this	,	"Está	seguro	que	desea	cerrar?"	,	"Co
nfirmación"	,	JOptionPane.YES_NO_OPTION	);	);

if(	resp	==	JOptionPane.YES_OPTION	)
{
		//	el	usuario	seleccionó	Sí
}

Mensajes	al	Usuario	y	Lectura	Simple	de	Datos

513



7.4.	Validación	y	formateo	de	datos
Cuando	el	usuario	ingresa	alguna	información,	la	interfaz	tiene	muchas	veces	la
responsabilidad	de	convertirla	al	formato	y	al	tipo	adecuados	para	poder	manipularla	(por
ejemplo,	convertir	una	cadena	en	una	variable	de	tipo	entero	o	pasar	una	cadena	a
minúsculas).	De	la	misma	manera,	si	el	usuario	tecleó	un	contenido	que	no	corresponde	a
lo	esperado	(ingresó	una	letra	cuando	se	esperaba	un	número),	la	interfaz	debe	advertir	al
usuario	de	su	error.	Vamos	entonces	por	partes	para	ver	cómo	manejar	cada	uno	de	los
casos.

Para	convertir	una	cadena	de	caracteres	(que	sólo	contenga	dígitos)	en	un	número,	se
utiliza	el	método	de	la	clase	Integer	llamado	parseInt,	usando	la	sintaxis	que	se	muestra	a
continuación.	Dicho	método	lanza	una	excepción	cuando	la	cadena	que	se	pasa	como
parámetro	no	se	puede	convertir	en	un	valor	entero.	En	la	sección	de	recuperación	de	la
excepción	(sección	catch)	podría	incluirse	un	mensaje	al	usuario.

String	strModelo	=	JOptionPane.showInputDialog(	this	,	"Introduzca	el	modelo	buscado:"
,	"Buscar	por	modelo",	JOptionPane.QUESTION_MESSAGE	);

if(	strModelo	!=	null	)
{
				try
				{
								int	nModelo	=	Integer.parseInt(	strModelo	);
				}
				catch(	Exception	e	)
				{
								JOptionPane.showMessageDialog(	principal,	"Debe	ingresar	un	valor	numérico.",	
"Buscar	por	modelo",	JOptionPane.ERROR_MESSAGE	);
				}
}

Suponga	que	queremos	convertir	el	modelo	del	vehículo	que	ingresó	el	usuario	en	el
valor	entero	correspondiente	(si	ingresó	la	cadena	"2016",	queremos	obtener	el	valor
entero	2016).
Lo	primero	que	hacemos	es	tomar	la	cadena	de	caracteres	ingresada	por	el	usuario	en
el	JInputDialog.
Luego	intentamos	convertir	dicha	cadena	en	el	valor	entero	correspondiente.
En	este	ejemplo,	si	se	produce	una	excepción,	le	presentamos	un	mensaje	al	usuario
indicándolo	.
Este	esquema	de	conversión	es	típico	de	las	interfaces	gráficas,	puesto	que	no
estamos	seguros	del	tipo	de	datos	de	lo	que	ingresó	el	usuario	y,	en	algunos	casos,	es
conveniente	verificarlo	antes	de	continuar.

Mensajes	al	Usuario	y	Lectura	Simple	de	Datos

514



La	clase	String,	por	su	parte,	nos	ofrece	los	siguientes	métodos	para	transformar	la	cadena
tecleada	por	el	usuario:

toLowerCase(	):	convierte	todos	los	elementos	de	una	cadena	de	caracteres	a
minúsculas.
toUpperCase(	):	convierte	todos	los	elementos	de	una	cadena	de	caracteres	a
mayúsculas.
trim(	):	elimina	todos	los	caracteres	en	blanco	del	comienzo	y	el	final	de	la	cadena.

En	la	siguiente	tabla	se	muestran	algunos	ejemplos	del	uso	de	los	métodos	anteriores:

String	ejemplo	=	"	La	Casa	"; //	valor	inicial	de	la	cadena

String	minusculas	=	ejemplo.toLowerCase(	); minusculas.equals("	la	casa	"	)

String	mayusculas	=	ejemplo.toUpperCase(	); mayusculas.equals("	LA	CASA	"	)

String	sinBlancos	=	ejemplo.trim(	); sinBlancos.equals("La	Casa"	)

Mensajes	al	Usuario	y	Lectura	Simple	de	Datos

515



8.	Arquitectura	y	Distribución	de
Responsabilidades

8.1.	¿Por	dónde	Comienza	la	Ejecución	de	un
Programa?
Un	método	que	no	hemos	mencionado	hasta	ahora	y	que,	sin	embargo,	es	el	punto	por
donde	comienza	siempre	la	ejecución	de	un	programa,	es	el	método	main().	Este	método	se
implementa	en	la	clase	de	la	ventana	principal	del	programa	y	tiene	la	sintaxis	que	se
muestra	a	continuación.	Su	principal	tarea	es	crear	una	instancia	de	la	ventana	y	hacerla
visible	en	la	pantalla.

//---------------------------------------------------
//	Programa	principal
//---------------------------------------------------
public	static	void	main(	String[]	args	)
{
				try
				{
								InterfazImpuestosCarro	vent	=	new	InterfazImpuestosCarro(	);
								vent.setVisible(	true	);
				}
				catch(	Exception	e	)
				{
								JOptionPane.showMessageDialog(	null,	e.getMessage(),	"Calculador	impuestos",	J
OptionPane.ERROR_MESSAGE);
				}			
}

Este	método	debe	ir	en	la	clase	que	implementa	la	ventana	principal.	Su	objetivo	es
establecer	la	manera	de	comenzar	la	ejecución	del	programa,	creando	una	instancia	de
la	ventana	y	haciéndola	visible.
La	signatura	del	método	debe	ser	idéntica	a	la	que	aparece	en	el	ejemplo.

8.2.	¿Quién	Crea	el	Modelo	del	Mundo?
La	responsabilidad	de	crear	el	modelo	del	mundo	(los	objetos	que	lo	van	a	representar)	es
de	la	interfaz.	En	la	arquitectura	que	presentamos	en	este	libro,	nosotros	asignamos	esta
responsabilidad	al	constructor	de	la	ventana	principal.	Allí	se	deben	realizar	todas	las

Arquitectura	y	Distribución	de	Responsabilidades

516



acciones	necesarias	para	que	los	objetos	del	modelo	del	mundo	(uno	o	varios)	sean
creados,	inicializados	y	almacenados	en	atributos	de	dicha	clase.	A	continuación	se
muestra,	para	el	caso	de	estudio,	la	creación	del	objeto	que	representa	el	calculador	de
impuestos.

public	class	InterfazImpuestosCarro	extends	JFrame
{
				//---------------------------------------------
				//	Atributos
				//---------------------------------------------
				private	CalculadorImpuestos	calculador;

				private	PanelVehiculo	panelVehiculo;	
				private	PanelDescuentos	panelDescuentos;	
				private	PanelOpciones	panelOpciones;
				private	PanelBusquedas	panelConsultas;

				//---------------------------------------------
				//	Constructor
				//---------------------------------------------
				public	InterfazImpuestosCarro(	)	throws	Exception
				{
								calculador	=	new	CalculadorImpuestos(	);
								...
				}
}

En	este	caso	la	creación	es	simple,	pues	el	constructor	del	calculador	de	impuestos
tiene	la	responsabilidad	de	abrir	los	archivos	con	la	información	y	crear	los	objetos
necesarios	para	representarla.
Definimos	un	atributo	de	la	clase	CalculadorImpuestos,	y	allí	guardamos	la	asociación
que	nos	va	a	permitir	"hablar"	con	el	modelo	del	mundo	(ver	diagrama	de	clases).
En	el	constructor	dejamos	pasar	las	excepciones	generadas	en	la	construcción	del
modelo	del	mundo.	Dejamos	al	programa	principal	la	responsabilidad	de	atraparlas	y
enviarle	el	mensaje	respectivo	al	usuario.
No	poder	construir	el	modelo	del	mundo	(p.ej.	no	poder	abrir	los	archivos	con	los
valores	que	utiliza	la	calculadora)	lo	consideramos	un	error	fatal,	y	por	esa	razón	no
existe	ninguna	manera	de	recuperarse.
Se	puede	ver	la	ventana	principal	como	la	clase	que	va	a	coordinar	el	trabajo	entre	los
paneles	y	el	modelo	del	mundo.

8.3.	¿Qué	Métodos	Debe	Tener	un	Panel?

Arquitectura	y	Distribución	de	Responsabilidades

517



Una	pregunta	que	debemos	responder	en	este	punto	es	cuáles	son	los	métodos	que	debe
tener	un	panel,	ya	que	hasta	este	momento	sólo	tenemos	un	método	constructor	y	un
método	para	atender	los	eventos.	La	respuesta	es	que	los	paneles	tienen	dos	grandes
responsabilidades	además	de	las	ya	estudiadas:

1.	 Proveer	los	métodos	indispensables	para	permitir	el	acceso	a	la	información	tecleada
por	el	usuario.	Considere	la	interfaz	de	usuario	del	caso	de	estudio,	en	la	cual	en	el
primer	panel	está	la	información	del	vehículo.	Puesto	que	el	tercer	panel	va	a	necesitar
esta	información	para	poder	calcular	los	impuestos,	es	responsabilidad	del	panel	que
tiene	la	información	proveer	un	conjunto	de	métodos	que	garantice	que	aquellos	que
requieran	la	información	puedan	tener	acceso	a	ella.	Eso	no	quiere	decir	que	haya	que
construir	un	método	por	cada	zona	de	texto.	Lo	que	quiere	decir	es	que	se	debe
establecer	qué	información	se	necesita	manejar	desde	fuera	del	panel	y	crear	los
métodos	respectivos.	El	programador	debe	decidir	si	estos	métodos	son	responsables
de	hacer	las	conversiones	o	si	esta	labor	se	deja	a	aquellos	que	van	a	utilizar	la
información.

2.	 Proveer	los	métodos	para	refrescar	la	información	presentada	en	el	panel.	Si	en	un
panel	se	presenta	información	que	depende	del	estado	del	modelo	del	mundo,
debemos	implementar	los	servicios	necesarios	para	poder	actualizarla.	Por	ejemplo,	en
el	panel	de	información	del	vehículo,	debemos	tener	un	método	que	pueda	modificar	la
información	del	vehículo	actual.	Estos	métodos	se	denominan	de	refresco	y	su	objetivo
es	permitir	actualizar	el	contenido	de	los	componentes	gráficos	del	panel.	El	ejemplo	11
ilustra	esta	responsabilidad.

Ejemplo	11

Objetivo:	Mostrar	los	métodos	que	debe	implementar	un	panel,	para	prestar	servicios	a	los
demás	elementos	de	la	interfaz.

Este	ejemplo	muestra	los	métodos	de	acceso	a	la	información	y	de	refresco	para	la	clase
que	implementa	el	panel	con	la	información	del	vehículo.

Arquitectura	y	Distribución	de	Responsabilidades

518



public	class	PanelVehiculo	extends	JPanel	implements	ActionListener
{
				//---------------------------------------------
				//	Métodos	de	refresco
				//---------------------------------------------
				public	void	actualizar(	String	pMarca,	String	pLinea,	String	pAnio,	double	pPrecio
,	String	pRutaImagen)
				{
								txtMarca.setText(	pMarca	);
								txtLinea.setText(	pLinea	);
								txtModelo.setText(	pAnio	);
								DecimalFormat	df	=	(	DecimalFormat	)NumberFormat.getInstance(	);
								df.applyPattern(	"$	###,###.##"	);
								txtValor.setText(	df.format(	pPrecio	)	);
								labImagen.setIcon(	new	ImageIcon(	new	ImageIcon(	"./data/imagenes/"	+	pRutaIma
gen	).getImage(	).getScaledInstance(	280,	170,	Image.SCALE_DEFAULT	)	)	);
				}
}

La	clase	tiene	un	método	de	refresco	que	permite	cambiar	la	información	del	vehículo.	De
esta	manera,	utilizando	el	método		setText()		actualiza	la	información	de	los	campos	de
texto	y	con	el	método		setIcon()	cambia	la	imagen	mostrada	en	la	etiqueta	labImagen.

8.4.	¿Quién	se	Encarga	de	Hacer	Qué?
Si	recapitulamos	lo	que	llevamos	hasta	este	momento,	podemos	decir	que	ya	sabemos:

Crear	la	ventana	de	la	interfaz,	con	sus	paneles	y	sus	componentes	gráficos.
Obtener	de	los	componentes	gráficos	la	información	suministrada	por	el	usuario.
Asociar	un	nombre	con	el	evento	que	genera	cada	botón	y	escribir	el	método	que	lo
atiende.
Convertir	la	información	que	teclea	el	usuario	a	otros	tipos	de	datos.
Presentar	al	usuario	mensajes	con	información	simple.
Escribir	el	método	que	inicia	la	ejecución	del	programa.
Crear	el	modelo	del	mundo	en	el	constructor	de	la	ventana	y	guardar	una	asociación
hacia	él.
Escribir	en	los	paneles	los	métodos	de	servicio	(refresco	y	acceso	a	la	información).

Lo	único	que	nos	falta	en	este	momento	es	definir	la	manera	de	utilizar	todo	lo	anterior	para
implementar	los	requerimientos	funcionales.	Para	esto,	debemos	definir	las
responsabilidades	y	compromisos	de	cada	uno	de	los	participantes,	de	manera	que	siempre
sepamos	quién	debe	hacer	qué,	y	en	qué	orden.	A	esto	lo	denominaremos	el	protocolo	de
la	arquitectura.	Sobre	este	punto	debemos	decir	que	hay	muchas	soluciones	posibles	y	que
la	arquitectura	que	utilizamos	a	lo	largo	de	este	libro	es	sólo	una	manera	de	estructurar	y

Arquitectura	y	Distribución	de	Responsabilidades

519



repartir	las	responsabilidades.	Tiene	la	ventaja	de	facilitar	la	localización	de	cada	uno	de	los
componentes	del	programa,	aumentando	su	claridad	y	simplificando	su	mantenimiento,	dos
puntos	fundamentales	a	la	hora	de	escribir	un	programa	de	computador.

La	arquitectura	que	usamos	se	basa	en	la	idea	de	que	los	requerimientos	funcionales	se
implementan	en	la	ventana	principal	(un	método	por	requerimiento)	y	que	es	allí	donde	se
coordinan	todas	las	acciones,	tanto	de	los	elementos	que	se	encuentran	en	los	paneles
como	de	los	elementos	del	modelo	del	mundo.	En	la	figura	5.11	aparece	el	protocolo	con	los
seis	pasos	básicos	para	reaccionar	a	un	evento	generado	por	el	usuario.

Fig.	5.11	Los	seis	pasos	del	protocolo	de	la	arquitectura	de	un	programa

Veamos	ahora	paso	por	paso	el	protocolo,	para	explicar	la	figura	anterior.	Los	números
asociados	con	las	echas	indican	el	orden	en	el	que	las	acciones	se	llevan	a	cabo.

Paso	1:	el	usuario	genera	un	evento	oprimiendo	un	botón	en	uno	de	los	paneles	de	la
interfaz.	Dicho	evento	se	convierte	en	un	objeto	que	lleva	toda	la	información	relacionada
con	la	acción	del	usuario.

Debe	reaccionar	el	panel	que	contiene	el	botón.

Paso	2:	el	panel	reacciona	al	evento	con	su	método	actionPerformed,	el	cual	debe	solicitar
a	la	ventana	principal	que	ejecute	el	requerimiento	funcional	pedido	por	el	usuario.

El	panel	debe	pasarle	toda	la	información	que	tiene	en	su	interior	y	que	se	necesita
como	entrada	del	requerimiento	funcional.
Si	hay	necesidad	de	convertir	la	información	ingresada	por	el	usuario	a	un	tipo
específico	de	datos,	es	responsabilidad	del	panel	hacerlo.
Un	requerimiento	funcional	se	implementa	como	un	método	en	la	ventana.

Arquitectura	y	Distribución	de	Responsabilidades

520



Paso	3:	la	ventana	principal	completa	la	información	necesaria	para	poder	cumplir	con	el
requerimiento	funcional,	pidiéndola	a	los	demás	paneles.

Puesto	que	el	método	que	implementa	el	requerimiento	funcional	es	responsable	de
que	se	cumplan	las	precondiciones	de	los	métodos	del	modelo	del	mundo,	en	este
punto	debe	hacer	todas	las	verificaciones	necesarias	y,	en	caso	de	que	surja	un
problema,	puede	cancelar	la	reacción	y	notificar	al	usuario	de	lo	sucedido.
Para	realizar	este	paso,	desde	el	método	que	implementa	el	requerimiento	funcional	se
invocan	los	métodos	de	acceso	a	la	información	de	los	demás	paneles.

Paso	4:	se	pide	al	modelo	del	mundo	que	haga	una	modificación	(basada	en	los	valores
ingresados	por	el	usuario)	o	que	calcule	algún	valor.

Se	utiliza	en	este	paso	la	asociación	(o	las	asociaciones)	que	tiene	la	interfaz	hacia	el
modelo	del	mundo,	para	invocar	el	o	los	métodos	que	van	a	ayudar	a	implementar	el
requerimiento	funcional.	Cualquier	excepción	lanzada	por	los	métodos	del	modelo	del
mundo	debería	ser	atrapada	en	este	punto.
Si	sólo	se	está	pidiendo	al	modelo	del	mundo	que	calcule	un	valor	(por	ejemplo,
calcular	el	avalúo	del	vehículo),	al	final	de	este	paso	ya	se	tiene	toda	la	información
necesaria	para	iniciar	el	proceso	de	refresco.
Si	se	pidió	una	modificación	del	modelo	del	mundo,	se	debe	ejecutar	el	paso	5.

Paso	5:	si	en	el	paso	anterior	se	pidió	una	modificación	al	modelo	del	mundo,	se	llaman
aquí	los	métodos	que	retornan	los	nuevos	valores	que	se	deben	presentar.

Para	saber	qué	métodos	invocar,	se	debe	establecer	qué	partes	de	la	información	mostrada
al	usuario	deben	ser	recalculadas.

Paso	6:	se	pide	a	todos	los	paneles	que	tienen	información	que	pudo	haber	cambiado	que
actualicen	sus	valores.

Para	eso	se	utilizan	los	métodos	de	refresco	implementados	por	los	paneles.
Hay	muchos	modelos	distintos	para	mantener	la	información	de	la	interfaz	sincronizada	con
el	estado	del	modelo	del	mundo.	El	que	se	plantea	aquí	puede	ser	muy	ineficiente	en
problemas	grandes,	por	lo	que	insistimos	en	que	esta	arquitectura	sólo	debe	ser	utilizada	en
problemas	pequeños.

Arquitectura	y	Distribución	de	Responsabilidades

521



8.5.	¿Cómo	Hacer	que	los	Paneles	Conozcan	la
Ventana?
De	acuerdo	con	el	protocolo	antes	mencionado,	todos	los	paneles	que	tengan	botones
(llamados	paneles	activos)	deben	tener	una	asociación	hacia	la	ventana	principal,	de
manera	que	sea	posible	ejecutar	los	métodos	que	implementan	los	requerimientos
funcionales.	Esto	hace	que	los	constructores	de	los	paneles	que	tienen	botones	deban
modificar	un	poco	su	estructura,	tal	como	se	muestra	en	el	ejemplo	12.

public	class	PanelBusquedas	extends	JPanel	implements	ActionListener
{
				private	InterfazImpuestosCarro	principal;

				public	PanelBusquedas(	InterfazImpuestosCarro	pPrincipal	)
				{
								principal	=	pPrincipal;
								...
				}
}

Modificación	de	la	clase	que	implementa	el	panel	de	búsquedas,	para	incluir	una
asociación	a	la	ventana	principal.
En	el	atributo	llamado	"principal"	almacenamos	la	referencia	a	la	ventana	principal,
recibida	como	parámetro.

public	class	PanelOpciones	extends	JPanel	implements	ActionListener
{
				private	InterfazImpuestosCarro	principal;

				public	PanelOpciones	(	InterfazImpuestosCarro	pPrincipal	)
				{
								principal	=	pPrincipal;
								...
				}
}

Modificación	de	la	clase	que	implementa	el	panel	de	búsquedas	para	incluir	una
asociación	a	la	ventana	principal.
En	el	constructor	de	la	ventana,	cuando	se	cree	este	panel,	se	debe	pasar	como
parámetro	una	referencia	a	la	ventana	de	la	interfaz.

Arquitectura	y	Distribución	de	Responsabilidades

522



public	class	PanelNavegacion	extends	JPanel	implements	ActionListener
{
				private	InterfazImpuestosCarro	principal;

				public	PanelNavegacion	(	InterfazImpuestosCarro	pPrincipal	)
				{
								principal	=	pPrincipal;
								...
				}
}

Modificación	de	la	clase	que	implementa	el	panel	de	navegación	para	incluir	una
asociación	a	la	ventana	principal.
En	el	constructor	de	PanelVehiculo,	cuando	se	cree	este	panel,	se	debe	pasar	como
parámetro	una	referencia	a	la	ventana	de	la	interfaz.

public	class	PanelVehiculo	extends	JPanel	implements		ActionListener
{
				public	PanelVehiculo(	InterfazImpuestosCarro	pPrincipal	)
				{
								add(	new	PanelNavegacion(	pPrincipal	),	BorderLayout.SOUTH	);
								...
				}
}

Modificación	de	la	clase	que	implementa	panel	con	la	información	del	vehículo,	para
incluir	una	asociación	a	la	ventana	principal.
En	este	caso	no	se	crea	el	atributo	llamado	"principal"	porque	la	referencia	a	la	ventana
principal	sólo	se	utiliza	para	crear	el	panel	de	navegación.

Arquitectura	y	Distribución	de	Responsabilidades

523



8.6.	¿Cómo	Implementar	los	Requerimientos
Funcionales?
Lo	único	que	nos	hace	falta	ahora	es	implementar	los	métodos	de	los	requerimientos
funcionales.	Estos	métodos	deben	formar	parte	de	la	clase	de	la	ventana	principal	de	la
interfaz,	y	tienen	como	objetivo	coordinar	los	paneles	y	el	modelo	del	mundo	para	lograr	lo
pedido	por	el	cliente.	En	el	ejemplo	13	se	muestra	la	estructura	de	dichos	métodos.

Ejemplo	13
Objetivo:	Ilustrar	la	construcción	de	los	métodos	que	implementan	los	requerimientos
funcionales.

En	este	ejemplo	se	muestran	los	dos	métodos	de	la	clase	InterfazImpuestosCarro	que
implementan	los	requerimientos	funcionales	del	caso	de	estudio.

Arquitectura	y	Distribución	de	Responsabilidades

524



	public	void	buscarPorLinea(	String	pLinea	)
	{
					//	1
					Vehiculo	respuesta	=	calculador.buscarVehiculoPorLinea(	pLinea	);
					if(	respuesta	==	null	)
					{
									//	2
									JOptionPane.showMessageDialog(	this,	"No	se	encontró	ningún	vehículo	de	esta	
línea",	"Buscar	por	línea",	JOptionPane.ERROR_MESSAGE	);
					}
					else
					{
									//	3
									panelVehiculo.actualizar(	respuesta.darMarca(	),	respuesta.darLinea(	),	respu
esta.darAnio(	),	respuesta.darPrecio(	),	respuesta.darRutaImagen(	)	);
					}
}

Método	de	la	ventana	principal	que	atiende	el	requerimiento	funcional	de	mostrar	el
vehículo	con	la	línea	dada.
En	el	paso	1	se	le	pide	al	modelo	del	mundo	que	busque	el	vehículo	con	la	línea	dada.
Si	no	se	encontró	un	vehículo	de	la	línea	dada	(respuesta	==	null),	se	muestra	un
mensaje	al	usuario	indicándolo.
En	caso	contrario,	se	actualiza	la	información	del	PanelVehiculo	con	la	del	vehículo
encontrado,	usando	el	método	actualizar	de	este	panel.

		public	void	calcularImpuestos(	)
		{
						//	1
						boolean	descProntoPago	=	panelDescuentos.hayDescuentoProntoPago(	);
						boolean	descServicioPublico	=	panelDescuentos.hayDescuentoServicioPublico(	);
						boolean	descTrasladoCuenta	=	panelDescuentos.hayDescuentoTrasladoCuenta(	);

						//	2
						double	pago	=	calculador.calcularPago(	descProntoPago,	descServicioPublico,	desc
TrasladoCuenta	);

						//	3
						DecimalFormat	df	=	(	DecimalFormat	)NumberFormat.getInstance(	);
						df.applyPattern(	"$	###,###.##"	);

						//	4
						JOptionPane.showMessageDialog(	this,	"El	valor	a	pagar	es:	"	+	df.format(	pago	)
,	"Cálcular	impuestos",	JOptionPane.INFORMATION_MESSAGE	);
		}

Método	de	la	ventana	principal	que	atiende	el	requerimiento	funcional	de	calcular	el
valor	que	se	debe	pagar	de	impuestos.

Arquitectura	y	Distribución	de	Responsabilidades

525



En	el	paso	1	se	pide	toda	la	información	de	los	descuentos	que	se	requiere	para
calcular	el	pago.
En	el	paso	2	se	pide	al	modelo	del	mundo	que	calcule	el	valor	que	se	debe	pagar	de
impuestos.
En	el	paso	3	se	crea	el	formato	en	el	cual	se	desea	visualizar	la	información.
En	al	paso	4	se	muestra	un	mensaje	al	usuario	con	la	el	valor	que	se	debe	pagar	por
los	impuestos	del	vehículo	actual.

Arquitectura	y	Distribución	de	Responsabilidades

526



9.	Ejecución	de	un	Programa	en	Java
Para	ejecutar	un	programa	en	Java	es	necesario	especificar	desde	la	ventana	de	comandos
del	sistema	operativo	el	nombre	del	archivo	jar	que	contiene	el	código	compilado	del
programa	y	el	nombre	completo	de	la	clase	principal	por	la	cual	debe	comenzar	la	ejecución
(la	clase	que	tiene	el	método	main).	(Si	el	programa	no	está	empaquetado	en	un	archivo	jar,
hay	que	dar	solamente	el	nombre	de	la	clase	principal.)	Para	el	caso	de	estudio,	el
comando	de	ejecución	es	el	siguiente	(en	una	sola	línea):

java		-classpath		./lib/impuestosCarro.jar	uniandes.cupi2.impuestosCarro.interfaz.Inte
rfazImpuestosCarro

Si	el	computador	no	encuentra	el	archivo	jar,	o	si	dentro	de	éste	no	encuentra	la	clase
que	se	le	especificó	en	el	comando	de	ejecución,	aparece	en	la	ventana	de	comandos
del	sistema	operativo	el	error:	java.lang.NoClassDefFoundError.

Ejecución	de	un	Programa	en	Java

527



10.	Hojas	de	Trabajo

10.1	Hoja	de	Trabajo	Nº	1:	Granja	de
traducciones
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Lea	detenidamente	el	siguiente	enunciado	sobre	el	cual	se	desarrollará	la
presente	hoja	de	trabajo.

Se	quiere	crear	una	aplicación	que	ayude	a	aprender	los	nombres	de	los	animales	de	la
granja	en	inglés.	Cada	vez	que	se	inicia	una	nueva	jugada,	aparece	el	nombre	de	un	animal
en	inglés,	y	el	usuario	debe	seleccionar	la	imagen	del	animal.	Posteriormente,	la	aplicación
muestra	cuál	era	la	respuesta	correcta.	Por	cada	respuesta	correcta,	el	usuario	obtiene	20
puntos.

Se	espera	que	la	aplicación	permita:	(1)	iniciar	una	jugada,	(2)	seleccionar	un	animal,	(3)
visualizar	la	traducción	correcta,	(4)	visualizar	el	puntaje	del	jugador.

La	siguiente	es	la	interfaz	de	usuario	que	se	quiere	construir,	en	la	cual	se	identican	tres
zonas:

Hojas	de	trabajo

528

https://bit.ly/apo1-nivel5-hoja1-pdf-format
https://bit.ly/apo1-nivel5-hoja1-word-format


Requerimientos	funcionales.	Identique	y	especique	los	cuatro	requerimientos
funcionales	de	la	aplicación.

Requerimiento	Funcional	1

Hojas	de	trabajo

529



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	trabajo

530



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	trabajo

531



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Hojas	de	trabajo

532



Nombre

Resumen

Entradas

Resultado

Modelo	del	mundo.	Estudie	el	diagrama	de	clases	que	implementa	el	modelo	del	mundo	y
los	métodos	de	cada	una	de	las	clases.

Hojas	de	trabajo

533



Nombre	método Descripción

GranjaTraducciones() Crea	una	granja	con	sus	traducciones.

Animal	darAnimales(	) Retorna	la	lista	de	animales	de	la	granja.

double	darPuntaje(	) Retorna	el	puntaje	del	animal	actual.

Estado	darEstadoJuego(
) Retorna	el	estado	actual	del	juego.

Animal	darAnimalActual(
) Retorna	el	animal	actual.

boolean	verificarJugada(
String	pAnimal	)

Verifica	si	la	traducción	del	animal	ingresado	corresponde
con	la	traducción	del	animal	actual.

String	darNuevoAnimal() Retorna	el	nombre	del	nuevo	animal	seleccionado
aleatoriamente.

Interfaz	por	construir.	Observe	la	estructura	de	la	interfaz	que	se	desea	construir	y	los
nombres	de	las	clases	que	se	deben	asociar	con	sus	partes.

Hojas	de	trabajo

534



Arquitectura	de	la	interfaz.	Dibuje	en	UML	el	diagrama	de	las	clases	(sin	atributos	ni
métodos)	que	conformarán	la	interfaz.	Utilice	los	estereotipos	para	indicar	sí	es	un	JFrame	o
JPanel.	Dibuje	también	las	clases	del	mundo	con	las	que	se	relacionan.

Diagrama	UML

Construcción	de	la	interfaz.	Siga	los	siguientes	pasos	para	construir	la	interfaz	dada.

1 Cree	el	paquete	para	las	clases	de	la	interfaz
(uniandes.cupi2.granjaTraducciones.interfaz).

2

Cree	la	clase	InterfazGranjaTraducciones	como	extensión	de	JFrame.	Escriba
el	método	main(),	encargado	de	iniciar	la	ejecución	del	programa.	Incluya	los
atributos	para	representar	el	modelo	del	mundo,	la	imagen	del	título	y	los	paneles
que	lo	conforman.	Dena	el	tamaño	de	la	ventana	como	565x	700.	Asocie	con	la
ventana	un	distribuidor	en	los	bordes.	Cree	cada	uno	de	los	paneles	y	añádalos
adecuadamente	a	la	ventana.

3

Cree	la	clase	PanelBotones	como	una	extensión	de	la	clase	JPanel	que
implementa	ActionListener.	Declare	como	atributo	una	contenedora	de	botones.
Implemente	un	constructor	que	reciba	como	parámetro	una	referencia	a	la
ventana	del	programa	y	la	lista	de	animales.	Asocie	con	el	panel	un	distribuidor
en	malla	de	3	x	4.	Cree	todos	los	botones,	asociando	como	comando	el	nombre
del	animal,	y	asignado	la	imagen	asociada	al	animal.	Escriba	el	esqueleto	del
método	actionPerformed().

4

Cree	la	clase	PanelJuego	como	extensión	de	JPanel.	Declare	los	atributos	para
manejar	los	componentes	grácos	que	se	encuentran	en	su	interior.	Deshabilite	la
posibilidad	de	escribir	en	las	zonas	de	texto.	Asocie	con	el	panel	un	distribuidor
en	malla	de	4	x	4.

Hojas	de	trabajo

535



5

Cree	la	clase	PanelEstado	como	una	extensión	de	la	clase	JPanel	que
implementa	ActionListener.	Declare	una	constante	para	identicar	el	evento	que
va	a	generar	el	botón	del	panel.	Declare	los	atributos	para	manejar	los
componentes	graficos	que	se	encuentran	en	su	interior.	Implemete	un	constructor
que	reciba	como	parámetro	una	referencia	a	la	venatana	del	programa.	Asocie
con	el	panel	un	distribuidor	en	malla	de	3	x	3.	Escriba	el	esqueleto	del	método
actionPerformed().

6

Cree	la	clase	PanelExtension	como	una	extensión	de	la	clase	JPanel	que
implementa	ActionListener.	Declare	una	constante	para	identicar	los	eventos
que	van	a	generar	los	botones	del	panel.	Declare	los	atributos	para	manejar	los
componentes	graficos	que	se	encuentran	en	su	interior.	Implemete	un	constructor
que	reciba	como	parámetro	una	referencia	a	la	venatana	del	programa.	Asocie
con	el	panel	un	distribuidor	en	malla	de	1	x	2.	Escriba	el	esqueleto	del	método
actionPerformed().

7
En	las	clases	de	los	paneles,	escriba	los	métodos	de	refresco	de	la	información.
Incluya	en	los	métodos	de	refresco	el	servicio	de	“borrar”	el	contenido	de	los
campos	una	vez	que	se	haya	ejecutado	una	operación

8

En	la	clase	InterfazGranjaTraducciones,	escriba	un	método	por	cada	uno	de	los
requerimientos	funcionales.	Dena	la	signatura	de	manera	que	reciba	como
parámetro	toda	la	información	de	la	que	dispone	el	panel	que	va	a	hacer	la
invocación.

9
Complete	el	método	actionPerformed()	en	las	clases	PanelBotones,
PanelEstado	y	PanelExtension,	haciendo	las	llamadas	respectivas	a	los
métodos	de	la	ventana	principal	que	implementan	los	requerimientos	funcionales.

10
Complete	todos	los	detalles	que	falten	en	la	interfaz,	para	obtener	la	visualización
y	el	funcionamiento	descritos	en	el	enunciado.	Pruebe	cada	una	de	las	opciones
del	programa.

Hojas	de	trabajo

536



10.2	Hoja	de	Trabajo	Nº	2:	Examen
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Lea	detenidamente	el	siguiente	enunciado	sobre	el	cual	se	desarrollará	la
presente	hoja	de	trabajo.

Se	quiere	construir	una	aplicación	que	permita	simular	un	examen	de	geografía,	donde	se
preguntan	las	capitales	de	diferentes	países.	El	examen	tiene	8	preguntas.	De	cada
pregunta	se	muestra	el	número	de	la	pregunta,	el	enunciado,	la	bandera	del	país	cuya
capital	se	está	preguntando	y	las	4	posibles	respuestas.	Cuando	se	elige	una	respuesta,	se
muestra	la	respuesta	seleccionada	por	el	usuario,	la	respuesta	correcta	y	los	puntos
obtenidos.

La	aplicación	carga	la	información	de	los	países	desde	un	archivo,	y	selecciona
aleatoriamente	las	preguntas	del	examen	y	sus	posibles	respuestas	(el	programa	no
implementa	la	forma	de	modicarlas).	Esto	quiere	decir	que	cada	vez	que	se	inicia	un	nuevo
examen,	las	preguntas	serán	diferentes.

La	aplicación	debe	permitir:	navegar	entre	las	preguntas	del	examen,	visualizar	la
información	de	una	pregunta,	responder	una	pregunta,	terminar	un	examen,	iniciar	un	nuevo
examen	y	visualizar	el	progreso	de	las	preguntas.

La	siguiente	es	la	interfaz	de	usuario	que	se	quiere	construir,	en	la	cual	se	identican	cuatro
zonas:

Hojas	de	trabajo

537

https://bit.ly/apo1-nivel5-hoja2-pdf-format
https://bit.ly/apo1-nivel5-hoja2-word-format


Los	siguientes	son	los	mensajes	que	hay	que	presentar	al	usuario,	como	resultado	de	su
interacción	con	el	programa:

Este	mensaje	aparece	cuando	el	usuario	oprime	el	botón	para	retroceder	en	la	lista	de

preguntas	y	está	situado	en	el	primero:	

Este	mensaje	aparece	cuando	el	usuario	oprime	el	botón	para	avanzar	en	la	lista	de

preguntas	y	está	situado	en	el	último:	

Este	mensaje	aparece	cuando	el	usuario	intenta	terminar	el	examen,	pero	no	ha	respondido

todas	las	preguntas.	

Hojas	de	trabajo

538



Este	mensaje	aparece	cuando	el	usuario	termina	un	examen,	cuyas	respuestas	fueron

respondidas	en	su	totalidad.	

Este	mensaje	de	confirmación	aparece	cuando	intenta	iniciar	un	nuevo	examen,	pero	no	ha

respondido	todas	las	preguntas.	

Requerimientos	funcionales.	Identique	y	especique	los	requerimientos	funcionales	de	la
aplicación.

Requerimiento	Funcional	1

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	trabajo

539



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	trabajo

540



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Hojas	de	trabajo

541



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	5

Hojas	de	trabajo

542



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	6

Hojas	de	trabajo

543



Nombre

Resumen

Entradas

Resultado

Modelo	del	mundo.	Estudie	el	diagrama	de	clases	que	implementa	el	modelo	del	mundo	y
los	métodos	de	cada	una	de	las	clases.

Hojas	de	trabajo

544



Nombre	método Descripción

Examen()
Crea	el	examen,	cargando	la	información	de	los
países	de	un	archivo.	Si	hay	algún	problema	en	el
momento	de	leer	el	archivo,	lanza	una	excepción.

void	iniciarExamen(	) Genera	preguntas	con	sus	respuestas
seleccionando	países	de	la	lista	aleatoriamente.

int	darPuntaje(	) Retorna	el	puntaje	de	la	pregunta	actual.

Pregunta	darPreguntaActual(	) Retorna	la	pregunta	actual.

Pregunta	darPreguntaAnterior(	)
Retorna	la	pregunta	anterior	y	actualiza	la	nueva
pregunta	actual.	Si	ya	se	encuentra	en	la	primera
pregunta,	lanza	una	excepción.

Pregunta	darPreguntaSiguiente(
)

Retorna	la	pregunta	siguiente	y	actualiza	la	nueva
pregunta	actual.	Si	ya	se	encuentra	en	la	última
pregunta,	lanza	una	excepción.

int
darCantidadPreguntasFaltantes(
)

Retorna	la	cantidad	de	preguntas	sin	responder.

void	guardarRespuesta(	String
pRespuesta	)

Guarda	la	respuesta	seleccionada	por	el	usuario	en
la	pregunta	actual.

Hojas	de	trabajo

545



Interfaz	por	construir.	Observe	la	estructura	de	la	interfaz	que	se	desea	construir	y	los
nombres	de	las	clases	que	se	deben	asociar	con	sus	partes.

Arquitectura	de	la	interfaz.	Dibuje	en	UML	el	diagrama	de	clases	(sin	atributos	ni
métodos)	que	conformarán	la	interfaz.	Utilice	los	estereotipos	para	indicar	sí	es	un	JFrame	o
JPanel.	Dibuje	también	las	clases	del	mundo	con	las	que	se	relacionan.

Hojas	de	trabajo

546



Diagrama	UML

Construcción	de	la	interfaz.	Siga	los	siguientes	pasos	para	construir	la	interfaz	dada.

Hojas	de	trabajo

547



1 Cree	el	paquete	para	las	clases	de	la	interfaz
(uniandes.cupi2.sinonimos.interfaz).

2

Cree	la	clase	InterfazExamen	como	extensión	de	JFrame.	Escriba	el	método
main(),	encargado	de	iniciar	la	ejecución	del	programa.	Incluya	los	atributos	para
representar	el	modelo	del	mundo,	así	como	los	elementos	y	los	paneles	que	lo
conforman.	Dena	el	tamaño	de	la	ventana	como	400	x	180.	Asocie	con	la	ventana
un	distribuidor	en	los	bordes.	Cree	cada	uno	de	los	paneles	y	añádalos
adecuadamente	a	la	ventana.

3

Cree	la	clase	PanelPregunta	como	una	extensión	de	la	clase	JPanel	que
implementa	ActionListener.	Declare	las	constantes	para	identicar	los	eventos
que	van	a	generar	los	botones	del	panel.	Declare	los	atributos	para	manejar	los
componentes	grácos	que	se	encuentran	en	su	interior.	Implemente	un	constructor
que	reciba	como	parámetro	una	referencia	a	la	ventana	del	programa.	Asocie	con
el	panel	un	distribuidor	en	los	bordes.	Cree	los	paneles	auxiliares	necesarios	para
poder	distribuir	los	elementos	de	la	forma	esperada.	Tenga	en	cuenta	que	los
elementos	de	tipo	JCheckBox	también	deben	llamar	al	método	actionPerformed(
),	y	por	ende	también	deben	tener	un	comando	asociado.	Escriba	el	esqueleto	del
método	actionPerformed().

4

Cree	la	clase	PanelProgreso	como	una	extensión	de	JPanel	que	implementa
ActionListener.	Declare	los	atributos	para	manejar	los	componentes	grácos	que
se	encuentran	en	su	interior.	Deshabilite	la	posibilidad	de	escribir	en	las	zonas	de
texto.	Asocie	con	el	panel	un	distribuidor	en	grilla.	Escriba	el	esqueleto	del	método
actionPerformed().	En	dicho	método	no	vamos	a	llamar	ningún	método	de	la
ventana.

5

Cree	la	clase	PanelOpciones	como	una	extensión	de	la	clase	JPanel	que
implementa	ActionListener.	Declare	las	constantes	para	identicar	los	eventos	de
los	botones.	Declare	los	atributos	para	manejar	los	componentes	grácos	que	se
encuentran	en	su	interior.	Implemente	un	constructor	que	reciba	como	parámetro
una	referencia	a	la	ventana	del	programa.	Asocie	con	el	panel	un	distribuidor	en
malla.	Escriba	el	esqueleto	del	método	actionPerformed().

6 En	las	clases	de	los	tres	paneles,	escriba	los	métodos	de	refresco	de	la
información	y	los	métodos	de	acceso	a	la	información.

7
En	la	clase	InterfazExamen,	escriba	un	método	para	implementar	cada
requerimiento	funcional.	Asegúrese	de	validar	los	datos	y	manejar	las	excepciones
de	manera	que	presente	los	mensajes	descritos	en	el	enunciado.

8

Complete	el	método	actionPerformed()	en	las	clases	PanelPregunta	y
PanelOpciones,	de	modo	que	haga	la	llamada	a	los	método	de	la	ventana
principal	correspondientes.	Recuerde	que	en	este	método	también	se	deben
ejecutar	las	acciones	necesarias	para	que	cuando	un	usuario	seleccione	un
CheckBox,	no	haya	ninguna	otra	casilla	seleccionada.

9
Complete	todos	los	detalles	que	falten	en	la	interfaz,	para	obtener	la	visualización	y
el	funcionamiento	descritos	en	el	enunciado.	Pruebe	cada	una	de	las	opciones	del
programa.

Hojas	de	trabajo

548



Hojas	de	trabajo

549



Nivel	6:	Manejo	de	Estructuras	de	dos	Dimensiones	y	Persistencia

550



1.	Objetivos	Pedagógicos
Al	final	de	este	nivel	el	lector	será	capaz	de:

Utilizar	el	concepto	de	matriz	como	elemento	de	modelado	para	agrupar	los	elementos
del	mundo	en	una	estructura	contenedora	de	dos	dimensiones	de	tamaño	fijo.
Identificar	los	patrones	de	algoritmo	para	manejo	de	matrices,	dada	la	especificación	de
un	método.
Utilizar	el	esqueleto	del	patrón	de	algoritmo	y	los	pasos	asociados	como	medio	para
escribir	un	algoritmo	para	manipular	una	matriz.
Utilizar	un	esquema	simple	de	persistencia	para	manejar	el	estado	inicial	de	un
problema.
Desarrollar	un	programa	completo,	teniendo	una	visión	global	de	las	etapas	del	proceso
que	se	debe	seguir	para	resolver	un	problema	usando	un	computador.

Objetivos	Pedagógicos

551



2.	Motivación
Si	fuésemos	a	diseñar	un	programa	para	simular	un	juego	de	ajedrez,	podemos	imaginar	el
tablero	de	juego	en	la	forma	de	una	cuadrícula	compuesta	por	8	filas	y	8	columnas.	En	ese
escenario,	quisiéramos	tener	una	estructura	que	nos	permitiera	hacer	la	manipulación	de
las	diferentes	fichas	del	tablero	de	juego,	utilizando	la	posición	de	la	fila	y	la	posición	de	la
columna	en	el	que	está	ubicada	cada	ficha	como	en	el	plano	cartesiano	que	se	muestra	en
la	figura.	6.1.	Una	estructura	que	nos	permitiera	referirnos	directamente	a	una	ficha	por	sus
coordenadas:	la	ficha	que	se	encuentra	en	la	posición	(fila,	columna).

Fig.	6.1	Plano	cartesiano	y	una	estructura	matricial

Hay	muchos	otros	casos	en	donde	esta	idea	de	tener	una	estructura	contenedora	de	dos
dimensiones	es	muy	útil	y	representa,	de	manera	natural,	un	grupo	de	elementos	del	mundo
del	problema.	Supongamos,	por	ejemplo,	que	queremos	manipular	imágenes	fotográficas.
Una	imagen	fotográfica	puede	entenderse	como	una	colección	de	puntos	en	un	plano
cartesiano.	Cada	punto	representa	un	píxel	de	la	imagen.	Si	necesitamos	construir	un
programa	para	manipular	imágenes	fotográficas,	que	sea	capaz	de	cambiar	los	colores,

Motivación

552



aplicar	un	filtro,	etc.	sería	muy	conveniente	poder	contar	con	una	estructura	de	modelado
que	nos	permitiera	manipular	los	puntos	de	la	imagen	como	en	el	plano	cartesiano:	el	píxel
que	está	en	las	coordenadas	(x,	y).

En	este	nivel	vamos	a	estudiar	la	manera	de	definir,	crear	y	manipular	estructuras
contenedoras	de	dos	dimensiones.	Estas	estructuras	se	llaman	matrices.	Utilizaremos
inicialmente	un	caso	de	estudio	que	corresponde	a	la	construcción	de	un	programa	que
permite	hacer	manipulaciones	simples	sobre	imágenes	fotográficas.	Veremos	también	la
forma	de	adaptar	los	patrones	de	algoritmo	para	el	caso	de	las	matrices,	de	tal	manera	que
podamos	guiarnos	para	su	construcción	por	las	ideas	presentadas	en	el	nivel	3.

Después	estudiaremos	y	plantearemos	una	solución	al	problema	de	cómo	predefinir	el
estado	inicial	de	un	programa.	En	muchos	de	nuestros	programas,	quisiéramos	que	la
información	que	define	el	estado	inicial	pudiera	ser	leída	desde	un	archivo,	creado	con
herramientas	externas	a	nuestro	programa	(como	un	editor	de	texto).	Por	ejemplo,	en	el
caso	de	la	tienda	de	libros	que	presentamos	en	el	nivel	2,	la	configuración	inicial	del
catálogo	de	libros	se	podría	leer	desde	un	archivo.	Esto	facilitaría	adaptar	el	programa	a
distintos	contextos	de	la	tienda	sin	necesidad	de	cambiar	el	funcionamiento	del	mismo.

Finalizaremos	este	nivel	dando	una	visión	global	del	proceso	que	se	debe	seguir	para
resolver	un	problema	usando	un	computador.	Allí	veremos	de	manera	esquemática	las
etapas	que	se	deben	seguir	y	los	puntos	más	importantes	que	se	deben	tener	en	cuenta	en
cada	una	de	ellas.

Motivación

553



3.	Caso	de	Estudio	Nº	1:	Un	Visor	de
Imágenes
Se	quiere	construir	una	aplicación	que	permita	la	visualización	de	imágenes	en	formato
BMP	(BitMaP)	de	diferentes	dimensiones.	El	formato	BMP	es	probablemente	el	formato	de
imágenes	más	simple	que	existe	y	consiste	en	guardar	la	información	del	color	de	cada
píxel	o	punto	que	conforma	la	imagen.	El	color	de	un	píxel	se	expresa	en	el	sistema	RGB
(Red-Green-Blue),	donde	el	color	se	forma	mediante	la	combinación	de	tres	componentes
(rojo,	verde	y	azul)	cada	uno	de	los	cuales	es	representado	por	un	número	que	indica	la
proporción	del	color	del	componente	en	el	color	resultante.

Además	de	mostrar	la	imagen,	el	programa	debe	ofrecer	servicios	de	transformación	de	la
imagen.	Por	ejemplo,	debe	poder	transformar	la	imagen	en	su	negativa,	polarizar	o	aplicar
un	filtro	sobre	la	imagen,	invertir	la	imagen,	rotarla,	etc.	La	interfaz	de	usuario	que
utilizaremos	para	este	problema	se	muestra	en	la	figura	6.2.

Fig.	6.2	Interfaz	de	usuario	para	el	visor	de	imágenes

Caso	de	Estudio	Nº	1:	Un	Visor	de	Imágenes

554



3.1.	Comprensión	del	Mundo	del	Problema
Si	estudiamos	el	mundo	del	problema,	el	único	elemento	que	encontramos	es	la	imagen.
Una	imagen	contiene	una	colección	de	píxeles.	Esta	colección	está	organizada	en	forma	de
una	matriz	de	dos	dimensiones	donde	cada	posición	contiene	la	información	sobre	el	color
del	píxel.	El	tamaño	de	la	imagen	está	limitado	a	un	número	de	alto	x	ancho	pixeles.

La	figura	6.3	muestra	el	modelo	conceptual	del	problema.	Nótese	que	estamos	modelando
una	asociación	llamada	bitmap	que	representa	una	estructura	única	que	nos	permite
modelar	la	matriz	de	colores.

Caso	de	Estudio	Nº	1:	Un	Visor	de	Imágenes

555



Fig.	6.3	Modelo	conceptual	del	caso	de	visor	de	imágenes

Caso	de	Estudio	Nº	1:	Un	Visor	de	Imágenes

556



4.	Contenedoras	de	dos	Dimensiones:
Matrices
Una	matriz	es	una	estructura	contenedora	de	dos	dimensiones,	de	tamaño	fijo,	cuyos
elementos	son	referenciados	utilizando	dos	índices:	el	índice	de	la	fila	y	el	índice	de	la
columna.	Este	tipo	de	estructuras	se	utiliza	cuando	en	el	mundo	del	problema	hay
características	que	se	adaptan	a	esta	representación	bidimensional.	Para	hacer	el	paralelo
con	la	visualización	que	usamos	en	el	nivel	3	para	mostrar	la	idea	de	un	arreglo,	en	la	figura
6.4	presentamos	una	manera	de	imaginar	una	clase	que	tiene	un	atributo	que	corresponde
a	una	matriz.

Fig.	6.4	Visualización	de	una	matriz	como	un	atributo	de	una	clase

En	las	secciones	que	siguen,	veremos	la	manera	de	declarar,	crear	y	manipular
contenedoras	de	dos	dimensiones	de	tamaño	fijo	en	el	lenguaje	de	programación	Java.

4.1.	Declaración	de	una	Matriz

Contenedoras	de	dos	Dimensiones:	Matrices

557



En	Java,	las	estructuras	contenedoras	de	dos	dimensiones	de	tamaño	fijo	se	denominan
matrices	y	se	declaran	como	se	muestra	en	el	ejemplo	1.

Ejemplo	1

Objetivo:	Mostrar	la	manera	de	declarar	una	matriz	en	Java.

En	este	ejemplo	se	presenta	la	declaración	en	Java	de	la	matriz	que	representa	la	imagen
en	el	caso	de	estudio.

public	class	Imagen
{
				//--------------------------------------
				//	Atributos
				//--------------------------------------

				private	int	ancho;

				private	int	alto;

				private	Color[][]	bitmap;
}

Es	conveniente	declarar	el	número	de	columnas	(ancho)	y	el	número	de	filas	(ancho)	como
atributos.	Esto	va	a	facilitar	realizar	posteriores	modificaciones	al	programa.

La	declaración	del	atributo		bitmap		indica	que	es	una	matriz	de	dos	dimensiones	de	tamaño
fijo	(el	valor	exacto	del	tamaño	será	determinado	en	el	momento	de	la	inicialización	de	la
matriz)	y	cuyos	elementos	son	todos	de	tipo	Color.

La	clase	Color	es	una	clase	predefinida	de	Java	que	permite	manejar	colores	en	formato
RGB.	Esta	clase	de	encuentra	en	el	paquete		java.awt	.	En	nuestros	ejemplos	utilizamos
algunos	de	los	servicios	que	ofrece	esa	clase.

4.2.	Inicialización	de	una	Matriz
Al	igual	que	con	cualquier	otro	atributo	de	una	clase,	es	necesario	inicializar	la	matriz	antes
de	poderla	utilizar.	Para	hacerlo,	se	deben	definir	las	dimensiones	de	la	matriz.	Esta
inicialización	es	obligatoria,	puesto	que	es	entonces	cuando	le	decimos	al	computador
cuántos	valores	se	van	a	manejar	en	la	matriz,	lo	que	corresponde	al	espacio	en	memoria
que	debe	reservar.	Veamos	en	el	ejemplo	2	cómo	se	hace	esto	para	el	caso	de	estudio.

Ejemplo	2

Contenedoras	de	dos	Dimensiones:	Matrices

558



Objetivo:	Mostrar	la	manera	de	crear	una	matriz	en	Java.
En	este	ejemplo	se	presenta	el	constructor	de	la	clase	Imagen,	que	tiene	la	responsabilidad
de	crear	la	matriz	que	va	a	contener	los	píxeles.

//	Constructor				
//--------------------------------------				
public	Imagen(	)				
{
				ancho	=	400;
				alto	=	300;
				bitmap	=	new	Color[	alto	][	ancho	];
}

Se	utiliza	la	instrucción		new	,	pero	en	este	caso	se	indican	dos	dimensiones	de	la
matriz,	en	nuestro	caso	de	ejemplo	300	filas	(alto)	cada	una	con	400	columnas	(ancho).
Aunque	el	espacio	ya	queda	reservado	con	la	instrucción		new	,	el	valor	de	cada	uno	de
los	elementos	del	arreglo	sigue	siendo	indefinido.	Esto	lo	arreglaremos	más	adelante.
Recuerde	que	siempre	van	primero	las	filas	y	luego	las	columnas.

El	lenguaje	Java	provee	un	operador	especial	(	length	),	que	permite	consultar	el	número
de	filas	que	tiene	una	matriz.	En	el	caso	de	ejemplo,	la	expresión		bitmap.length		debe	dar
el	valor	300	que	corresponde	al	número	de	filas,	independientemente	de	si	las	casillas
individuales	ya	han	sido	o	no	inicializadas.	De	la	misma	manera	el	operador		length		nos
permite	preguntar	el	número	de	columnas	de	la	matriz.	La	expresión		bitmap[0].length	
debe	dar	el	valor	400,	que	corresponde	al	número	de	columnas	en	la	fila	0.	Como	en
nuestro	caso	todas	las	filas	tienen	el	mismo	número	de	columnas,	esa	expresión	nos	puede
servir	para	establecer	la	segunda	dimensión	de	la	matriz.

4.3.	Acceso	a	los	Elementos	de	una	Matriz
Para	acceder	a	una	posición	de	una	matriz	necesitamos	dos	índices,	uno	para	indicar	la	fila
y	el	otro	para	indicar	la	columna	(por	ejemplo,	con	la	sintaxis		bitmap[5][6]		hacemos
referencia	al	elemento	de	la	casilla	que	está	en	la	fila	5	en	la	columna	6).	Recuerde	que	un
índice	es	un	valor	entero	y	sus	valores	van	desde	0	hasta	el	número	de	elementos	de	la
dimensión	correspondiente	menos	1.	Para	tomar	o	modificar	el	valor	de	un	elemento
particular	de	una	matriz	necesitamos	dar	los	dos	índices.	El	siguiente	ejemplo	inicializa
todos	los	elementos	de	bitmap	en	la	clase	Imagen	con	el	color	azul.

Contenedoras	de	dos	Dimensiones:	Matrices

559



public	void	imagenAzul(	)
{
				for(	int	i	=	0;	i	<	alto;	i++	)
				{
								for(	int	j	=	0;	j	<	ancho;	j++	)
								{
												bitmap[	i	][	j	]	=	new	Color(	0,	0,	255	);
								}
				}
}

Este	método	recorre	la	matriz	inicializando	las	casillas	con	objetos	de	la	clase	Color
cuyo	valor	representa	el	azul.
Debemos	saber	que	el	color	azul	en	el	formato	RGB	se	representa	por	los	valores	0,	0,
255.
Con	la	sintaxis		bitmap[	i	][	j	]		hacemos	referencia	a	la	casilla	que	se	encuentra	en
la	fila	i	columna	j.
Fíjese	que	en	cada	casilla	queda	una	referencia	a	un	objeto	distinto	de	la	clase	Color
(120.000	objetos	distintos,	si	la	imagen	es	de	300	x	400).

En	la	figura	6.5	se	muestra	el	diagrama	de	objetos	después	de	haber	ejecutado	el	método
anterior,	suponiendo	que	la	imagen	es	de	3	x	3.

Fig.	6.5	Diagrama	de	objetos	para	una	imagen	completamente	azul	de	3	x	3

Contenedoras	de	dos	Dimensiones:	Matrices

560



Note	que	en	el	método	del	ejemplo	anterior	con	el	primer	ciclo	recorremos	las	filas
empezando	por	la	correspondiente	al	índice	cero	y	terminando	en	la	fila		alto-1		(vamos	de
arriba	hacia	abajo	recorriendo	las	filas,	como	se	muestra	en	la	figura	6.6).	Una	vez	que	se
fija	una	fila,	el	segundo	ciclo	nos	permite	recorrer	las	columnas	de	esa	fila.	Este	recorrido	se
hace	desde	la	columna	0	hasta	la	columna		ancho-1	.	Note	que	cada	vez	que	se	termina	con
una	fila,	el	ciclo	interior	vuelve	a	ejecutarse	desde	el	principio	e	inicializa	la	columna	en
cero.

Contenedoras	de	dos	Dimensiones:	Matrices

561



Fig.	6.6	Recorrido	de	la	matriz	con	la	imagen

El	algoritmo	anterior	también	se	podría	escribir	utilizando	la	instrucción		while	,	como	se
presenta	a	continuación:

public	void	imagenAzul(	)
{
				int	i	=	0;

				while(	i	<	alto	)
				{
								int	j	=	0;

								while(	j	<	ancho	)
								{
												bitmap[	i	][	j	]	=	new	Color(	0,	0,	255	);	
												j++;
								}

								i++;
				}
}

Este	método	hace	la	misma	inicialización	del	ejemplo	anterior,	pero	utiliza	la	instrucción
while	en	lugar	de	la	instrucción		for	.
Con	el	índice	i	recorremos	las	filas,	mientras	que	con	el	índice	j	recorremos	las
columnas.
Dentro	del	ciclo	interno,	recorremos	todas	las	columnas	de	la	fila	i	(allí	j	va	cambiando
para	pasar	por	todas	las	columnas	de	la	matriz).

Contenedoras	de	dos	Dimensiones:	Matrices

562



En	la	condición	del	primer	ciclo	podría	remplazarse	el	atributo	alto	por		bitmap.length	.
Ambas	expresiones	hacen	referencia	al	número	de	filas	de	la	matriz.

En	la	sintaxis	de	acceso	a	un	elemento	se	pasa	primero	la	fila	en	la	que	se	encuentra	y
después	la	columna.	Tanto	las	filas	como	las	columnas	se	comienzan	a	numerar	desde
cero.

Cuando	dentro	de	un	método	tratamos	de	acceder	a	una	casilla	con	un	par	de	índices
no	válidos	(al	menos	uno	de	ellos	es	menor	que	0	o	mayor	que	el	máximo	índice
permitido	para	la	dimensión	correspondiente),	obtenemos	el	error	de	ejecución:
java.lang.ArrayIndexOutOfBoundsException

4.4.	Comparar	los	Elementos	de	una	Matriz
Si	los	elementos	de	una	matriz	son	de	un	tipo	simple	(enteros,	reales,	etc.),	se	comparan
utilizando	el	operador		==		que	estudiamos	en	el	segundo	nivel.	Después	de	todo,	el	estar
almacenados	en	una	matriz	no	cambia	el	hecho	de	que	sean	valores	simples,	y	por	lo	tanto
se	deben	seguir	manipulando	de	la	misma	manera	que	hemos	venido	utilizando	hasta
ahora.

Cuando	se	trata	de	referencias	a	objetos	hay	que	tener	un	poco	más	de	cuidado.	Si
utilizamos	el	operador		==		estamos	preguntando	si	las	dos	referencias	señalan	al	mismo
objeto	físico	y,	a	veces,	no	es	eso	lo	que	queremos	saber.	Para	establecer	si	son	iguales,
aunque	no	estén	referenciando	el	mismo	objeto,	se	utiliza	el	método		equals	:	piense	por
ejemplo	que	dos	objetos	pueden	representar	el	color	azul	sin	necesidad	de	ser	el	mismo
objeto.	Esta	idea	se	ilustra	en	ejemplo	3.	Si	miramos	un	poco	hacia	atrás,	esa	es	la	razón
por	la	cual	siempre	hemos	comparado	las	cadenas	de	caracteres	utilizando	dicho	método,
en	lugar	del	operador		==	.	No	nos	importa	que	estén	referenciando	el	mismo	objeto,	sino
que	contengan	la	misma	cadena	de	caracteres.

Ejemplo	3

Objetivo:	Mostrar	la	manera	de	comparar	los	elementos	de	una	matriz,	cuando	dichos
elementos	son	objetos.

En	este	ejemplo	se	muestra	la	diferencia	entre	comparar	dos	referencias	a	objetos
utilizando	el	operador		==		y	el	método		equals	.	También	se	ilustra	la	consecuencia	de
asignar	a	una	variable	una	referencia	a	un	objeto	que	ya	está	en	una	casilla	de	una	matriz.

Contenedoras	de	dos	Dimensiones:	Matrices

563



Comenzamos	este	ejemplo	mostrando	un	diagrama	de	objetos	con	una	imagen	de	2	x
3,	cuya	primera	fila	está	coloreada	de	rojo	(255,0,0)	y	la	segunda	de	azul	(0,0,255).
Cada	casilla	tiene	un	objeto	diferente	que	representa	el	color	que	allí	aparece.
La	expresión		bitmap[0][0]	==	bitmap[0][1]		es	falsa.	Ambas	referencias	llevan	a
objetos	que	representan	el	color	rojo,	pero	son	objetos	distintos.
La	expresión		bitmap[0][0].equals(bitmap[0][1])		es	verdadera.	Ambas	referencias
llevan	a	objetos	que	representan	el	color	rojo	y	el	método	no	tiene	en	cuenta	que	sean
instancias	distintas.
La	expresión		bitmap[0][0].equals(bitmap[1][0])		es	falsa.	El	primer	objeto	representa
el	color	rojo,	mientras	que	el	segundo	representa	el	color	azul.
Si	hacemos	la	siguiente	asignación:		Color	temp	=	bitmap[0][0]	,	tenemos	que	tanto	la
variable	temp	como	la	casilla	de	coordenadas	0,0	referencian	el	mismo	objeto.	En	ese
caso	la	comparación		temp	==	bitmap[0][0]		es	verdadera,	lo	mismo	que	la
expresión	temp.equals(bitmap[0][0])	.

Contenedoras	de	dos	Dimensiones:	Matrices

564



El	método	equals()	no	está	definido	de	manera	adecuada	en	todas	las	clases.	Algunas
como	String	o	Color	sí	lo	tienen.	Otras	(como	por	ejemplo	las	que	hemos	desarrollado
a	lo	largo	de	este	libro),	no	lo	tienen	bien	definido	y	si	vamos	a	usar	el	método	con
esas	clases	nos	tocaría	implementarlo.

En	este	punto	podemos	retomar	de	nuevo	la	discusión	planteada	en	la	sección	4.3	sobre	la
imagen	completamente	azul:	en	vez	de	los	miles	de	objetos	para	representar	los	píxeles
(todos	de	color	azul),	¿es	posible	utilizar	un	solo	objeto	con	dicho	fin?	¿Es	posible	que	las
120.000	casillas	de	la	matriz	referencien	todas	el	mismo	objeto?	La	respuesta	es	que	en
este	caso	es	posible,	pero	que	dicha	aproximación	no	se	puede	generalizar.	En	este	caso	lo
podemos	hacer	porque	la	clase	Color	no	tiene	ningún	método	que	permita	a	sus	instancias
modificar	su	valor.	Si	alguien	quiere	cambiar	el	color	de	un	píxel	debe	crear	un	nuevo	objeto
de	esa	clase	para	representarlo.	Esto	tiene	como	consecuencia	que,	en	el	caso	de	estudio,
sí	podemos	compartir	el	objeto	azul	de	la	clase	Color	desde	todos	los	puntos	de	la	imagen,
ya	que	nadie	puede	cambiarlo.	Si	existiera	un	método	en	dicha	clase	que	permitiera,	por
ejemplo,	hacer	más	rojo	un	color,	el	hecho	de	utilizar	un	solo	objeto	compartido	por	todos
haría	que	al	cambiar	de	color	un	solo	píxel,	el	cambio	se	traslade	a	todos	los	otros	píxeles
de	la	imagen	que	están	siendo	representados	por	el	mismo	objeto.

Tarea	1

Objetivo:	Ilustrar	la	manera	de	escribir	un	algoritmo	para	manipular	una	matriz.

Complete	el	siguiente	método	de	la	clase	Imagen.	No	olvide	que	para	preguntar	si	dos
colores	son	iguales,	se	debe	utilizar	el	método	equals	de	la	clase	Color.

/**	
*			Devuelve	el	número	de	píxeles	en	la	imagen	cuyo	color	es	el	dado	como	parámetro.
*			@param	pColorBuscado	Objeto	por	el	que	se	quiere	preguntar.	pColorBuscado	!=	null.
*			@return	Número	de	puntos	en	la	matriz	cuyo	color	es	igual	al	dado.
*/
public	int	cuantosPixelColor(	Color	pColorBuscado	)
{

}

Contenedoras	de	dos	Dimensiones:	Matrices

565



4.5.	Patrones	de	Algoritmo	para	Recorrido	de
Matrices
Las	soluciones	de	muchos	de	los	problemas	que	debemos	resolver	sobre	matrices	son
similares	entre	sí	y	obedecen	a	ciertos	esquemas	ya	conocidos.	En	esta	sección
pretendemos	adaptar	algunos	de	los	patrones	que	estudiamos	en	el	nivel	3	al	caso	de	las
matrices.	De	nuevo,	lo	ideal	es	que	al	leer	un	problema	que	debemos	resolver	(el	método
que	debemos	escribir),	podamos	identificar	el	patrón	al	cual	corresponde	y	utilizar	las	guías
que	existen	para	resolverlo.	Eso	simplificaría	enormemente	la	tarea	de	escribir	los	métodos
que	tienen	ciclos	y	que	trabajan	sobre	estructuras	de	matrices.

4.5.1.	Patrón	de	Recorrido	Total

Este	patrón	se	aplica	en	las	situaciones	donde	debemos	recorrer	todos	los	elementos	que
contiene	la	matriz	para	lograr	la	solución.	En	el	caso	de	estudio	de	la	imagen	tenemos
varios	ejemplos	de	esto:

Contar	cuántos	puntos	en	la	imagen	son	de	color	rojo.
Cambiar	el	color	de	todos	los	puntos	en	la	imagen	haciéndolos	más	oscuros.
Cambiar	cada	color	de	la	imagen	por	su	negativo.
Contar	cuántos	puntos	en	la	imagen	tienen	la	componente	roja	distinta	de	cero.

Para	la	solución	de	cada	uno	de	esos	problemas,	se	requiere	siempre	un	recorrido	de	toda
la	matriz	para	poder	cumplir	el	objetivo	que	se	está	buscando.	Un	primer	ciclo	para	recorrer
las	filas	y,	luego,	un	ciclo	por	cada	una	de	ellas	para	recorrer	sus	columnas.

Para	lograr	el	recorrido	total,	tenemos	que:

1.	 El	índice	para	iniciar	el	primer	ciclo	debe	empezar	en	cero.
2.	 La	condición	para	continuar	es	que	el	índice	sea	menor	que	el	número	de	filas	de	la

matriz.
3.	 El	avance	consiste	en	sumarle	uno	al	índice.
4.	 El	cuerpo	del	segundo	ciclo	contiene	el	recorrido	de	las	columnas	y	debe	ser	tal	que	(a)

el	índice	debe	comenzar	en	cero,	(b)	la	condición	para	continuar	es	que	el	índice	sea
menor	que	el	número	de	columnas	de	la	matriz,	(c)	el	avance	consiste	en	sumarle	uno
al	índice.	Esa	estructura	que	se	repite	en	todos	los	algoritmos	que	necesitan	un
recorrido	total	es	lo	que	denominamos	el	esqueleto	del	patrón,	el	cual	se	puede
resumir	con	el	siguiente	fragmento	de	código:

Contenedoras	de	dos	Dimensiones:	Matrices

566



for(	int	i	=	0;	i	<	NUM_FILAS;	i++	)
{
				for(	int	j	=	0;	j	<	NUM_COLUMNAS;	j++	)
				{
								<cuerpo	del	ciclo>
				}
}

El	patrón	consiste	en	dos	ciclos	anidados:	el	primero	para	recorrer	las	filas,	el	segundo
para	recorrer	las	columnas	de	cada	fila.

Lo	que	cambia	en	cada	caso	es	lo	que	se	quiere	hacer	en	el	cuerpo	del	ciclo.	Aquí	hay	dos
variantes	principales.	En	la	primera,	todos	los	elementos	de	la	matriz	van	a	ser	modifiados
siguiendo	alguna	regla	(por	ejemplo,	oscurecer	el	color	de	todos	los	puntos).	Lo	único	que
se	hace	en	ese	caso	es	remplazar	el	cuerpo	del	ciclo	en	el	esqueleto	por	las	instrucciones
que	hacen	la	modificación	pedida	para	un	elemento	de	la	matriz.	Damos	un	ejemplo	de
aplicación	en	el	siguiente	código	(método	de	la	clase	Imagen),	que	oscurece	una	imagen:

for(	int	i	=	0;	i	<	alto;	i++	)
{
				for(	int	j	=	0;	j	<	ancho;	j++	)
				{
								bitmap[	i	][	j	]	=	bitmap[	i	][	j	].darker();
				}
}

Partimos	del	esqueleto	del	patrón.	Sólo	cambiamos	el	cuerpo	del	segundo	ciclo,	para
explicar	la	manera	de	modificar	cada	una	de	las	casillas	de	la	matriz.
Toda	modificación	que	hagamos	allí	para	la	casilla	de	coordenadas	i,	j,	la	estaremos
haciendo	para	cada	uno	de	los	elementos	de	la	estructura.
El	método	darker()	crea	una	nueva	instancia	de	la	clase	Color,	más	oscura	que	el
objeto	que	recibe	la	llamada.

La	segunda	variante	del	patrón	es	cuando	se	quiere	calcular	alguna	propiedad	sobre	el
conjunto	de	elementos	de	la	matriz	(por	ejemplo,	contar	cuántos	puntos	tienen	el
componente	rojo	igual	a	cero).	Como	vimos	en	el	nivel	3,	esta	variante	implica	cuatro
decisiones	que	definen	la	manera	de	completar	el	esqueleto	del	patrón:

1.	 Cómo	acumular	la	información	que	se	va	llevando	a	medida	que	avanza	el	segundo
ciclo.

2.	 Cómo	inicializar	dicha	información.
3.	 Cuál	es	la	condición	para	modificar	dicho	acumulado	en	el	punto	actual	del	ciclo.
4.	 Cómo	modificar	el	acumulado.	Veamos	esos	puntos	para	resolver	el	problema	de

contar	cuántos	puntos	tienen	el	componente	rojo	igual	a	cero.

Contenedoras	de	dos	Dimensiones:	Matrices

567



¿Cómo	acumular	información?	Vamos	a	utilizar	una	variable	de	tipo	entero	llamada
	cuantosRojoCero		que	va	llevando	el	número	de	puntos	que	tienen	el	componente	rojo	en
cero.

¿Cómo	inicializar	el	acumulado?	La	variable		cuantosRojoCero		se	debe	inicializar	en	0,
antes	de	la	primera	iteración	del	ciclo	exterior.

¿Condición	para	cambiar	el	acumulado?	Cuando	el	método		getRed()		del	objeto	Color
que	se	encuentra	en		bitmap[i][j]		sea	igual	a	0.

¿Cómo	modificar	el	acumulado?	El	acumulado	se	modifica	incrementándolo	en	1.

El	método	resultante	es	el	siguiente:

public	int	rojoCero(	)
{
				int	cuantosRojoCero	=	0;

				for(	int	i	=	0;	i	<	alto;	i++	)
				{
								for(	int	j	=	0;	j	<	ancho;	j++	)
								{
												if(	bitmap[	i	][	j	].getRed(	)	==	0	)
												{
																cuantosRojoCero++;
												}
								}
				}

				return	cuantosRojoCero;
}

Este	método	de	la	clase	Imagen	permite	calcular	el	número	de	píxeles	de	la	imagen
cuyo	componente	rojo	es	cero.
El	método		getRed()		de	la	clase	Color	retorna	el	índice	de	rojo	que	tiene	el	objeto
sobre	el	que	se	invoca	el	método.	En	este	caso	corresponde	al	color	del	objeto	que	se
encuentra	referenciado	en	la	casilla	(i,j).
Si	dicho	método	retorna	el	valor	0,	debemos	incrementar	la	variable	en	la	que	vamos
acumulando	el	resultado.

Tarea	2

Objetivo:	Generar	habilidad	en	el	uso	del	patrón	de	recorrido	total	para	escribir	un	método
que	manipula	una	matriz.

Contenedoras	de	dos	Dimensiones:	Matrices

568



Escriba	los	métodos	de	la	clase	Imagen	que	resuelven	los	siguientes	problemas,	que
corresponden	a	las	dos	variantes	del	patrón	de	algoritmo	de	recorrido	total.

Escriba	un	método	que	modifique	los	puntos	de	la	matriz	convirtiéndolos	en	sus	negativos.
El	negativo	se	calcula	restándole	255	a	cada	componente	RGB	del	color	y	tomando	el	valor
absoluto	del	resultado.

public	void	negativoImagen(	)
{

}

Escriba	un	método	que	indique	cuál	es	la	tendencia	de	color	de	la	imagen.	Esto	se	calcula
de	la	siguiente	manera:	un	píxel	tiene	un	color	de	tendencia	roja,	si	su	índice	es	mayor	que
los	otros	dos.	Lo	mismo	sucede	con	los	demás	colores.	Este	método	retorna	0	si	la	imagen
no	tiene	ninguna	tendencia,	1	si	la	tendencia	es	roja,	2	si	la	tendencia	es	verde	y	3	si	la
tendencia	es	azul.

public	int	calcularTendencia(	)
{

}

4.5.2.	Patrón	de	Recorrido	Parcial

Contenedoras	de	dos	Dimensiones:	Matrices

569



Como	vimos	con	los	arreglos	y	con	los	vectores,	algunos	problemas	de	manejo	de
estructuras	contenedoras	no	exigen	recorrer	todos	los	elementos	para	lograr	el	objetivo
propuesto.	Piense	por	ejemplo	en	el	problema	de	saber	si	hay	algún	punto	negro	(0,	0,	0)	en
la	imagen.	En	ese	caso	hacemos	un	recorrido	que	puede	terminar	cuando	encontremos	el
primer	punto	negro	o	cuando	lleguemos	al	final	de	la	matriz	sin	haberlo	encontrado.	Un
recorrido	parcial	se	caracteriza	porque	existe	una	condición	que	debemos	verificar	en	cada
iteración	para	saber	si	debemos	detener	el	ciclo	o	volverlo	a	repetir.

En	este	patrón	debemos	tener	en	cuenta	la	condición	de	salida	de	la	siguiente	manera:

boolean	termino	=	false;

for(	int	i	=	0;	i	<	NUM_FILAS	&&	!termino;	i++	)
{

				for(	int	j	=	0;	j	<	NUM_COLUMNAS	&&	!termino;	j++	)
				{
								<cuerpo	del	ciclo>

								if(	<problema	terminado>	)	
								{
												termino	=	true;
								}			
				}
}

Este	esqueleto	es	una	variante	del	que	utilizamos	en	el	caso	de	los	arreglos,	con	la
diferencia	de	que	utilizamos	la	variable		termino		para	hacerlo	salir	de	los	dos	ciclos	a
la	vez.
Tal	como	vimos	en	el	nivel	3,	la	variable	termino	se	puede	reemplazar	por	cualquier
condición	que	indique	el	punto	en	el	que	el	problema	ya	ha	sido	resuelto.

Hay	casos	en	los	cuales	se	deben	utilizar	dos	variables	distintas	para	controlar	la	salida	de
cadauno	de	los	ciclos	de	manera	independiente.	En	ese	caso	se	trata	simplemente	de
aplicar	el	patrón	de	recorrido	parcial	de	los	arreglos	de	manera	anidada,	tal	como	se
muestra	en	el	siguiente	esqueleto	de	algoritmo:

Contenedoras	de	dos	Dimensiones:	Matrices

570



boolean	termino1	=	false;

for(	int	i	=	0;	i	<	NUM_FILAS	&&	!termino1;	i++	)
{

				boolean	termino2	=	false;

				for(	int	j	=	0;	j	<	NUM_COLUMNAS	&&	!termino2;	j++	)
				{
								<cuerpo	del	ciclo>

								if(	<problema	interno	terminado>	)	
								{
												termino2	=	true;
								}				
				}

				if(	<problema	externo	terminado>	)	
				{
								termino1	=	true;
				}				
}

Con	la	variable		termino1		manejamos	el	recorrido	parcial	del	ciclo	externo.	Cuando	el
problema	que	se	quiere	resolver	con	ese	ciclo	se	da	por	resuelto,	la	variable	cambia	de
valor	y	termina	la	instrucción	repetitiva.
Con	la	variable		termino2		hacemos	lo	mismo	con	el	ciclo	interno.
De	nuevo,	las	variables		termino1		y		termino2		se	pueden	reemplazar	por	expresiones
lógicas	que	determinen	si	el	objetivo	de	cada	ciclo	ya	ha	sido	alcanzado.

En	el	ejemplo	4	se	ilustra	el	uso	de	los	dos	esqueletos	de	algoritmo	para	resolver	problemas
de	manipulación	de	matrices.

Ejemplo	4

Objetivo:	Mostrar	dos	problemas	de	matrices	que	se	resuelven	utilizando	los	dos
esqueletos	planteados	anteriormente.

En	este	ejemplo	se	presentan	dos	métodos	de	la	clase	Imagen	cuya	solución	sigue	el
patrón	de	recorrido	parcial	de	matrices.

Contenedoras	de	dos	Dimensiones:	Matrices

571



public	boolean	hayPuntoNegro(	)
{
				boolean	termino	=	false;

				for(	int	i	=	0;	i	<	alto	&&	!termino;	i++	)
				{
								for(	int	j	=	0;	j	<	ancho	&&	!termino;	j++	)
								{
												if(	bitmap[	i	][	j	].equals(	Color.BLACK	)	)
												{
																termino	=	true;
												}
								}
				}

				return	termino;
}

Este	método	nos	permite	saber	si	hay	al	menos	un	punto	negro	en	la	imagen.
En	este	método,	la	condición	para	dar	por	resuelto	el	problema	es	que	se	encuentre	en
la	casilla	actual	(i,j)	un	píxel	negro.	Ahí	sabemos	que	la	respuesta	es	verdadera,	y
queremos	salir	del	ciclo	interno	y	del	ciclo	externo	a	la	vez.
Si	al	llegar	al	final	de	todo	el	recorrido	no	hemos	encontrado	ningún	píxel	negro,
debemos	retornar	falso.

Contenedoras	de	dos	Dimensiones:	Matrices

572



public	boolean	muchasFilasConPixelNegro(	)
{
				boolean	termino1	=	false;
				int	numFilas	=	0;

				for(	int	i	=	0;	i	<	alto	&&	!termino1;	i++	)
				{
								boolean	termino2	=	false;

								for(	int	j	=	0;	j	<	ancho	&&	!termino2;	j++	)
								{
												if(	bitmap[	i	][	j	].equals(	Color.BLACK	)	)
												{
																numFilas++;
																termino2	=	true;
												}
								}

								if(	numFilas	>	50	)	
								{
												termino1	=	true;
								}		
				}

				return	termino1;
}

Este	método	indica	si	hay	más	de	50	filas	en	la	imagen	con	un	píxel	negro.
El	objetivo	del	ciclo	exterior	se	cumple	si	se	encuentran	más	de	50	filas	con	un	píxel
negro.	La	variable		termino1		debe	cambiar	de	valor	en	ese	caso	y	hacer	que	se
termine	la	iteración.
El	objetivo	del	ciclo	interior	es	encontrar	un	píxel	negro	en	la	fila	i.	Tan	pronto	lo
encuentre,	debe	usar	la	variable		termino2		para	dejar	de	iterar.
Puesto	que	el	problema	planteado	a	cada	ciclo	termina	en	un	momento	distinto,	no
podemos	utilizar	una	sola	variable	como	habíamos	hecho	en	el	método	anterior.
En	lugar	de	retornar	el	valor	de	la	variable		termino1	,	habríamos	podido	retornar	la
expresión		numFilas	>	50	.

Tarea	3

Objetivo:	Escribir	algunos	métodos	para	manipular	matrices.

Desarrolle	los	métodos	de	la	clase	Imagen	que	resuelven	los	siguientes	problemas.	En	cada
caso,	identifique	el	patrón	de	algoritmo	que	va	a	utilizar.

Contenedoras	de	dos	Dimensiones:	Matrices

573



En	el	proceso	de	adquisición	de	una	imagen,	ésta	puede	quedar	con	una	serie	de	errores
los	cuales	hacen	que	se	vea	de	mala	calidad.	Para	corregir	estos	errores	existe	un
algoritmo	de	filtrado,	que	se	basa	en	cálcular	un	nuevo	valor	para	cada	píxel	de	la	imagen.
Este	valor	se	calcula	como	el	promedio	de	los	8	vecinos	del	píxel	en	la	imagen	original,
sobre	cada	uno	de	los	componentes	RGB.	En	este	proceso	no	se	incluyen	los	bordes	de	la
imagen,	puesto	que	no	tienen	los	8	vecinos	necesarios.	Este	método	de	la	clase	Imagen
debe	retornar	una	matriz	con	una	copia	de	la	imagen	filtrada.

public	Color[][]	imagenFiltrada(	)
{

}

En	algunos	contextos	(en	robótica,	por	ejemplo),	en	lugar	del	color	exacto	de	cada	píxel	nos
interesa	solamente	distinguir	el	fondo	de	la	imagen	(en	blanco)	de	otros	elementos	que
puedan	aparecer	(un	obstáculo	para	el	robot,	por	ejemplo).	Escriba	un	método	de	la	clase
Imagen	que	modifique	la	matriz	de	píxeles	de	la	siguiente	manera:	si	la	suma	de	los	tres
componentes	RGB	de	un	píxel	es	menor	que	100,	lo	debe	reemplazar	por	el	color	blanco
(255,255,255).	En	caso	contrario	lo	reemplaza	por	el	color	negro	(0,0,0).

Contenedoras	de	dos	Dimensiones:	Matrices

574



public	void	binarizar(	)
{

}

Escriba	un	método	de	la	clase	Imagen	que	sea	capaz	de	rotarla	90	grados	a	la	derecha.

public	void	rotar90AlaDerecha(	)
{

}

4.5.3.	Otros	Algoritmos	de	Recorrido

En	el	ejemplo	5	mostramos	la	manera	de	adaptar	los	patrones	que	hemos	visto	a	algunos
problemas	típicos	de	manejo	de	matrices.

Ejemplo	5

Objetivo:	Mostrar	algunos	problemas	de	matrices	que	pueden	ser	resueltos	adaptando	los
patrones	que	hemos	visto.

En	este	ejemplo	se	presentan	tres	métodos	de	la	clase	Imagen,	cuya	solución	puede	ser
explicada	a	través	de	la	adaptación	de	alguno	de	los	patrones	que	hemos	visto	en	este
libro.

Contenedoras	de	dos	Dimensiones:	Matrices

575



public	int	contarVerdes(	int	pNumFila	)
{
				int	numVerdes	=	0;

				for(	int	i	=	0;	i	<	ancho;	i++	)
				{
								if(	bitmap[pNumFila][i].getGreen()	==	255	)
								{
												numVerdes++;
								}				
				}

				return	numVerdes;
}

En	este	método	vamos	a	contar	el	número	de	píxeles	de	la	fila		pNumFila		cuyo
componente	verde	es	el	máximo	posible.
En	este	ejemplo	queremos	recorrer	una	fila	de	la	matriz,	cuyo	índice	se	recibe	como
parámetro.	El	hecho	de	utilizar	una	sola	fila	hace	que	pasemos	al	contexto	de	las
contenedoras	de	una	sola	dimensión	y	que	apliquemos	los	patrones	estudiados	en	el
nivel	3.
Aplicamos	entonces	el	patrón	de	recorrido	total	sobre	el	arreglo	representado	por	la	fila
dada.	La	única	diferencia	es	que	para	indicar	un	elemento	debemos	usar	la	sintaxis
	bitmap[pNumFila][i]	.

public	int	darSumaAzulColumna(	int	pNumColumna	)
{
				int	acumAzul	=	0;

				for(	int	i	=	0;	i	<	alto;	i++	)
				{
								acumAzul	+=	bitmap[i][pNumColumna].getBlue();
				}
				return	acumAzul;
}

Este	método	calcula	la	suma	del	valor	azul	de	todos	los	píxeles	de	la	columna	que
recibe	como	parámetro.
Basta	con	ver	la	columna	número		pNmColumna		como	un	arreglo	de	longitud	alto	(el
número	de	filas).
Cada	elemento	se	debe	referenciar	con	la	sintaxis		bitmap[i][pNumColumna]	.

Contenedoras	de	dos	Dimensiones:	Matrices

576



public	boolean	negroEnDiagonal(	)
{
				for(	int	i	=	0;	i	<	alto	&&	i	<	ancho;	i++	)
				{
								if(	bitmap[	i	][	i	].equals(	Color.BLACK	)	)
								{
												return	true;
								}		
				}
				return	false;
}

Este	método	indica	si	hay	un	píxel	negro	sobre	la	diagonal	de	la	imagen	que	comienza
en	el	punto	(0,0).
Para	este	problema,	vamos	a	imaginar	el	arreglo	compuesto	por	los	elementos	de	la
diagonal:	(0,0),	(1,1),	(2,2),	etc.
Luego,	aplicamos	el	patrón	de	recorrido	parcial	de	los	arreglos.	La	única	diferencia	es
que,	al	avanzar,	debemos	hacerlo	a	la	vez	sobre	las	dos	dimensiones,	de	manera	que
nos	movamos	por	la	diagonal.

Contenedoras	de	dos	Dimensiones:	Matrices

577



5.	Caso	de	Estudio	Nº	2:	Campeonato	de
Fútbol
En	este	caso	se	quiere	construir	una	aplicación	para	manejar	los	resultados	de	los	partidos
en	un	campeonato	de	fútbol.	En	el	campeonato	hay	varios	equipos	y	cada	uno	de	ellos
puede	jugar	contra	cada	uno	de	los	otros	equipos	una	sola	vez.

La	información	de	los	equipos	que	participan	del	campeonato	está	definida	en	un	archivo
que	la	aplicación	debe	leer	para	construir	el	estado	inicial.	El	formato	de	dicho	archivo	se
explicará	más	adelante.

En	el	programa	se	debe	permitir	registrar	el	resultado	de	cualquier	partido	del	campeonato
y,	con	base	en	esa	información,	se	debe	mostrar	la	tabla	de	resultados,	en	la	que	se	indique
cuántos	goles	le	hizo	cada	equipo	a	cada	uno	de	los	otros	con	los	que	ha	jugado.	También
se	debe	mostrar	la	tabla	de	posiciones,	indicando	para	cada	equipo	el	número	de	puntos
(Puntos),	los	partidos	jugados	(Jugados),	los	partidos	ganados	(Ganados),	los	partidos
empatados	(Empatados),	los	partidos	perdidos	(Perdidos),	los	goles	a	favor	(Goles	a	Favor)
y	los	goles	en	contra	(En	Contra).

La	interfaz	de	usuario	que	hemos	diseñado	para	esta	aplicación	es	la	que	se	muestra	en	la
figura	6.7.

Caso	de	Estudio	Nº	2:	Campeonato	de	Fútbol

578



Fig.	6.7	Interfaz	de	usuario	del	caso	de	estudio	del	campeonato	de	fútbol

En	esta	interfaz	se	muestra	permanentemente	la	tabla	de	goles	y	la	tabla	de	posiciones	de
los	equipos.	Usando	el	botón	Registrar	Partido	se	ingresa	el	resultado	de	alguno	de	los
partidos	del	campeonato.	Con	el	botón	Cargar	Equipos	se	permite	al	usuario	leer	de	un
archivo	los	nombres	de	los	equipos	inscritos	en	el	campeonato.	El	programa	debe	funcionar
para	cualquier	número	de	equipos,	pero	una	vez	que	se	haya	leído	el	archivo	con	los
nombres,	éstos	no	se	pueden	cambiar.

5.1.	Comprensión	de	los	Requerimientos
Los	requerimientos	funcionales	de	este	caso	de	estudio	son	los	siguientes:

1.	 Cargar	equipos.
2.	 Registrar	un	resultado.
3.	 Mostrar	tabla	de	goles.
4.	 Mostrar	tabla	de	posiciones.

Caso	de	Estudio	Nº	2:	Campeonato	de	Fútbol

579



Requerimiento	funcional	1

Nombre: R1	-	Cargar	equipos.

Resumen:
Carga	los	equipos	que	van	a	tomar	parte	en	el	campeonato	a	través	de
un	archivo	de	propiedades.	La	tabla	de	posiciones	y	tabla	de	goles	se
reinician.

Entradas: Archivo	de	propiedades	con	los	datos	de	los	equipos.

Resultado: Se	muestran	los	equipos	cargados	y	las	tablas	de	goles	y	posiciones
reiniciadas.

Requerimiento	funcional	2

Nombre: R2	-	Registrar	un	resultado.

Resumen:

Registra	el	resultado	de	un	partido	en	la	tabla	de	goles	y	de	posiciones.
Si	los	equipos	del	partido	ya	tienen	registrado	un	resultado	para	el	mismo
o	si	es	un	partido	inválido	(un	equipo	contra	sí	mismo)	no	se	hace	el
registro	de	datos.

Entradas: (1)	equipo	1,	(2)	equipo	2,	(3)	goles	del	equipo	1	(4)	goles	del	equipo	2.

Resultado: Se	actualiza	la	tabla	de	goles	con	los	goles	efectuados	por	los	dos
equipos	y	la	tabla	de	posiciones	con	el	partido	jugado.

Requerimiento	funcional	3

Nombre: R3	-	Mostrar	tabla	de	goles.

Resumen: Muestra	la	tabla	de	goles:	para	cada	equipo	se	muestra	el	número	de
goles	que	le	hizo	a	cada	uno	de	los	otros	equipos.

Entradas: Ninguna.

Resultado: Se	muestra	la	tabla	de	goles	con	los	partidos	registrados.

Requerimiento	funcional	4

Nombre: R4	-	Mostrar	tabla	de	posiciones.

Resumen:
Muestra	la	tabla	de	posiciones	del	campeonato.	Para	cada	equipo	se
muestra	el	número	de	puntos,	los	partidos	jugados,	ganados,	empatados
y	perdidos	y	el	número	de	goles	a	favor	y	en	contra.

Entradas: Ninguna.

Resultado: Se	muestra	la	tabla	de	posiciones	con	los	partidos	registrados.

5.2.	Comprensión	del	Mundo	del	Problema

Caso	de	Estudio	Nº	2:	Campeonato	de	Fútbol

580



En	el	mundo	del	problema	podemos	identificar	dos	entidades	(ver	figura	6.8):	el
campeonato	y	los	equipos.	La	tabla	de	resultados	la	vamos	a	representar	como	una	matriz
de	enteros,	en	la	cual	en	la	casilla	(X,	Y)	está	el	número	de	goles	que	le	hizo	el	equipo	X	al
equipo	Y.	Si	no	han	jugado,	en	dicha	casilla	almacenamos	la	constante		SIN_JUGAR	.	En	la
diagonal	ponemos	el	valor		INVALIDO		para	indicar	que	un	equipo	no	puede	jugar	contra	sí
mismo.	El	campeonato	tiene	un	arreglo	de	equipos,	cada	uno	de	los	cuales	almacena	su
nombre.

Fig.	6.8	Modelo	conceptual	del	campeonato	de	fútbol

5.3.	Diseño	de	las	Clases

5.3.1.	Declaración	de	los	Atributos	y	las
Asociaciones
A	continuación	mostramos	la	manera	de	declarar	en	Java	las	clases	involucradas	en	el
problema,	con	una	explicación	de	cómo	se	representa	la	información.	De	los	métodos	sólo
mostramos	algunas	de	las	signaturas	que	utilizaremos	más	adelante.

Caso	de	Estudio	Nº	2:	Campeonato	de	Fútbol

581



public	class	Equipo
{
				//---------------------------------------
				//	Atributos
				//---------------------------------------
				private	String	nombre;
				//---------------------------------------
				//	Metodos
				//---------------------------------------
				public	Equipo(	String	nombreEquipo	)	{...}
				public	String	darNombre(	)	{...}
				public	String	toString(	)	{...}
}

La	clase	Equipo	tiene	un	único	atributo	que	contiene	su	nombre.
La	clase	cuenta	con	un	constructor,	que	recibe	como	parámetro	el	nombre	del	equipo,	y
dos	métodos:	uno	que	retorna	el	nombre	del	equipo	y	otro	que	retorna	un	texto	para
representar	el	equipo	como	una	cadena	de	caracteres.

public	class	Campeonato
{
				//---------------------------------------
				//	Constantes
				//---------------------------------------
				public	static	final	int	SIN_JUGAR	=	-1;
				public	static	final	int	INVALIDO	=	-2;

				//---------------------------------------
				//	Atributos
				//---------------------------------------
				private	int	maxEquipos;
				private	int[][]	tablaGoles;
				private	Equipo[]	equipos;
}

Una	decisión	importante	que	debemos	tomar	al	diseñar	la	clase	es	la	manera	de
representar	los	equipos	y	la	tabla	de	goles.	Dado	que	el	número	de	equipos	que
participan	en	el	campeonato	no	cambia	y	que	ésta	es	una	información	que	vamos	a
leer	del	archivo	de	entrada,	podemos	modelar	los	equipos	como	un	arreglo	de	tamaño
fijo	(equipos).
La	tabla	de	goles	es	una	estructura	de	dos	dimensiones	en	donde	el	número	de
columnas	es	igual	al	número	de	filas,	y	este	valor	corresponde	al	número	de	equipos
que	están	participando	en	el	campeonato.	Dado	que	la	información	de	los	goles	es	un
valor	numérico	los	elementos	serán	de	tipo	entero.
Interpretaremos	la	tabla	de	la	siguiente	manera:	(a)		tablaGoles[equipo1][equipo2]	
indicará	el	número	de	goles	que	el	equipo1	le	hizo	al	equipo2;	(b)		tablaGoles[equipo2]

Caso	de	Estudio	Nº	2:	Campeonato	de	Fútbol

582



[equipo1]		indicará	el	número	de	goles	que	el	equipo2	le	hizo	al	equipo1.
La	constante		SIN_JUGAR		indica	que	el	partido	no	se	ha	jugado	todavía.
La	constante	INVALIDO	sólo	se	usa	en	la	diagonal	de	la	matriz	(un	equipo	no	puede
jugar	contra	sí	mismo).
En	el	atributo		maxEquipos		almacenamos	el	número	de	equipos	inscritos	en	el
campeonato.

Dicho	valor	no	debe	cambiar	después	de	ser	cargado	del	archivo.

5.3.2.	Asignación	de	Responsabilidades

Dado	que	la	clase	Campeonato	contiene	la	información	de	los	equipos	y	de	los	goles	de	los
partidos	jugados,	esta	clase	es	responsable	de:

1.	 Dar	la	información	sobre	los	equipos.

2.	 Dar	la	información	sobre	la	tabla	de	goles.

3.	 Dar	la	información	sobre	la	tabla	de	posiciones.

4.	 Cargar	de	un	archivo	la	información	del	campeonato	y	guardarla	en	el	arreglo	de
equipos.

5.	 Registrar	el	resultado	de	un	partido.

Las	cinco	responsabilidades	anteriores	nos	van	a	guiar	en	la	definición	de	los	métodos	de	la
clase	Campeonato.	En	la	siguiente	sección	nos	vamos	a	concentrar	en	el	problema	de
cargar	los	datos	del	campeonato	a	partir	de	la	información	registrada	en	un	archivo.	Esto
nos	va	a	permitir	que	siempre	que	ejecutemos	el	programa	encontremos	el	mismo	estado
inicial.	El	problema	general	de	la	persistencia,	o	sea,	el	hecho	de	guardar	en	un	archivo	los
cambios	hechos	en	el	estado	del	modelo	del	mundo	(el	campeonato	en	nuestro	caso)	está
fuera	del	alcance	de	este	libro.	En	la	siguiente	sección	estudiaremos	un	mecanismo	simple
de	lectura	de	la	información	inicial	de	un	programa	desde	un	tipo	especial	de	archivos	en
Java	llamados	archivos	de	propiedades	(properties).

Caso	de	Estudio	Nº	2:	Campeonato	de	Fútbol

583



6.	Persistencia	y	Manejo	del	Estado	Inicial
En	varios	de	los	casos	de	estudio	de	este	libro,	hemos	utilizado	archivos	de	datos	para
configurar	el	estado	inicial	de	la	aplicación.	Por	ejemplo,	en	el	caso	de	estudio	del	empleado
(nivel	1)	teníamos	en	un	archivo	su	fotografía.	En	el	caso	de	estudio	de	la	tienda	(nivel	2)
teníamos	en	un	archivo	la	imagen	de	cada	producto.	En	este	nivel,	el	visor	de	imágenes
utiliza	un	archivo	para	leer	la	imagen	que	será	manipulada	por	la	aplicación.	Todos	esos
ejemplos	tienen	en	común	que	la	información	del	archivo	se	emplea	para	inicializar	el
estado	de	la	aplicación.	En	ningún	caso	hemos	guardado	resultados	del	programa	en	un
archivo	para	hacerlos	persistentes	cuando	la	aplicación	termine.	Este	problema	de	hacer
persistir	los	cambios	que	hagamos	en	el	estado	del	mundo	está	fuera	del	alcance	de	este
libro.

En	esta	sección	estudiaremos	una	forma	sencilla	de	leer	datos	de	un	archivo,	con	el
propósito	de	configurar	el	estado	inicial	de	los	elementos	del	modelo	del	mundo.	Vamos	a
estudiar	los	conceptos	básicos	y	luego	resolveremos	el	requerimiento	funcional	de	cargar	la
información	del	campeonato	desde	un	archivo.

6.1.	El	Concepto	de	Archivo
El	concepto	de	archivo	no	es	nuevo	para	nosotros.	Desde	el	primer	caso	de	estudio	de	este
libro	hemos	utilizado	archivos:	archivos	de	texto	como	los	que	contienen	el	código	Java,
archivos	html	como	los	que	contienen	la	documentación	del	programa,	archivos	mdl	con	los
diagramas	de	clases,	etc.	Los	directorios	en	donde	guardamos	los	archivos	con	los	datos	y
todos	los	de-	más	directorios	que	manejamos	en	los	proyectos	son	a	su	vez	archivos.

De	manera	general,	podemos	definir	un	archivo	como	una	entidad	que	contiene
información	que	puede	ser	almacenada	en	la	memoria	secundaria	del	computador	(el	disco
duro	o	un	CD).	Todo	archivo	tiene	un	nombre	que	permite	identificarlo	de	manera	única
dentro	del	computador,	el	cual	está	compuesto	por	dos	partes:	la	ruta	(path)	y	el	nombre
corto.	La	ruta	describe	la	estructura	de	directorios	dentro	de	los	cuales	se	encuentra	el
archivo,	empezando	por	el	nombre	de	alguno	de	los	discos	duros	del	computador.	Veamos
en	la	siguiente	tabla	un	ejemplo	que	ilustre	lo	anterior:

Nombre	completo: c:/dev/uniandes/cupi2/empleado/mundo/Empleado.java

Nombre	corto: Empleado.java

Extensión	o	apellido: .java

Ruta	o	camino: c:/dev/uniandes/cupi2/empleado/mundo/

Persistencia	y	Manejo	del	Estado	Inicial

584



El	carácter	'/'	es	llamado	el	separador	de	nombres	de	archivos	(file	separator).	Este
separador	depende	del	sistema	operativo	en	el	que	estemos	trabajando.	Por	ejemplo,	en
Windows	se	suele	utilizar	como	separador	el	carácter	'\'	(backslash)	mientras	que	en	Unix	y
Linux	se	utiliza	el	carácter	'/'	(slash).

La	extensión	que	opcionalmente	acompaña	el	nombre	del	archivo	es	una	convención	para
indicar	el	tipo	de	información	que	hay	dentro	del	archivo.	El	tipo	de	información	dentro	del
archivo	determina	el	programa	con	el	que	el	archivo	puede	ser	manipulado.	Por	ejemplo,	los
archivos	de	texto	pueden	ser	manipulados	por	editores	de	texto,	los	archivos	con	extensión
.xls	deben	ser	manipulados	por	el	programa	Microsoft	Excel,	etc.

Desde	nuestros	programas	en	Java	podemos	acceder	y	leer	información	de	los	archivos	del
disco,	siempre	y	cuando	conozcamos	su	nombre	para	poder	localizarlo	y,	además,
conozcamos	el	tipo	de	información	que	el	archivo	contiene	para	poderla	leer.	Los	archivos
que	manejaremos	en	nuestros	programas	tienen	un	formato	especial	que	llamamos	de
propiedades	(properties).	Apoyándonos	en	algunas	clases	de	utilidad	que	Java	nos	ofrece,
vamos	a	poder	leer	información	desde	estos	archivos	de	una	manera	muy	sencilla.

Las	clases	Java	que	permiten	manejar	archivos	desde	un	programa	se	encuentran	definidas
en	el	paquete		java.io	,	mientras	que	la	clase	que	maneja	las	propiedades	está	en	el
paquete		java.util	.

6.2.	Leer	Datos	como	Propiedades
Una	propiedad	se	define	como	una	pareja	nombre	=	valor.	Por	ejemplo,	para	expresar	en	un
archivo	que	la	propiedad	llamada	campeonato.equipos	tiene	el	valor	5,	se	usa	la	sintaxis:

	campeonato.equipos	=	5	

En	Java	existe	una	clase	llamada	Properties	que	representa	un	conjunto	de	propiedades
persistentes.	Por	persistentes	queremos	decir	que	estas	propiedades	pueden	ser
almacenadas	en	un	archivo	en	memoria	secundaria	y	leídas	a	la	memoria	del	programa
desde	un	archivo	que	ha	sido	escrito	siguiendo	las	convenciones	de	nombre	=	valor.	En	la
figura	6.9	se	ilustra	la	correspondencia	que	queremos	hacer	entre	un	archivo	llamado
equipos.properties	y	un	objeto	de	la	clase	Properties	en	memoria	principal.

Persistencia	y	Manejo	del	Estado	Inicial

585



Fig.	6.9	Asociación	entre	un	archivo	y	el	objeto	Properties	en	memoria	principal

El	archivo	es	un	archivo	de	texto	que	contiene	una	lista	de	propiedades.	Cada	propiedad	es
una	línea	del	archivo	y	está	definida	por	un	nombre,	el	operador		=		y	el	valor	de	la
propiedad	(sin	necesidad	de	comillas).	Si	en	nuestro	programa,	el	objeto	de	la	clase
Properties	está	referenciado	desde	una	variable	llamada		pDatos	,	una	vez	leído	el	archivo
en	memoria,	podemos	utilizar	los	métodos	de	dicha	clase	para	obtener	el	valor	de	los
elementos.	Por	ejemplo,	si	queremos	saber	el	valor	de	la	propiedad	campeonato.nombre0,
podemos	utilizar	el	siguiente	método,	cuya	respuesta	será	la	cadena	"A.C.Milan".

String	nombre	=	pDatos.getProperty	(	"campeonato.nombre0"	);

Para	completar	el	ejemplo,	necesitamos	aprender	varias	cosas.	Primero	necesitamos	saber
cómo	localizar	el	archivo	en	el	disco,	luego	hacer	la	asociación	entre	el	archivo	físico	y	un
objeto	en	el	programa	que	lo	represente,	y	después,	leer	o	cargar	el	contenido	del	archivo
en	el	objeto	Properties	de	nuestro	programa.	En	las	siguientes	secciones	veremos	en
detalle	cada	uno	de	estos	pasos.

Por	convención,	para	los	nombres	de	las	propiedades	utilizamos	una	secuencia	de
palabras	en	minúsculas,	separadas	por	un	punto.

6.3.	Escoger	un	Archivo	desde	el	Programa
Como	explicamos	en	la	sección	de	definición	de	un	archivo,	el	nombre	físico	de	un	archivo
depende	del	sistema	operativo	en	el	que	nuestro	programa	esté	trabajando,	en	particular
porque	el	carácter	de	separación	de	directorios	puede	cambiar	entre	los	diferentes	sistemas

Persistencia	y	Manejo	del	Estado	Inicial

586



operativos.	Por	esta	razón,	para	no	depender	del	sistema	operativo,	en	Java	se	puede
hacer	una	abstracción	de	este	nombre	específico	y	convertirlo	en	un	nombre	independiente
utilizando	la	clase	File.

Para	crear	un	objeto	de	la	clase	File	que	contenga	la	representación	abstracta	del	archivo
físico,	debemos	crear	una	instancia	de	dicha	clase,	usando	la	sintaxis	que	se	muestra	a
continuación:

File	archivoDatos	=	new	File(	"C:\n6_campeonato\data\equipos.properties"	);

Si	invocamos	el	constructor	de	la	clase	File	con	una	cadena	vacía	(	null	),	se
disparará	la	excepción:	java.lang.NullPointerException

La	clase	File	nos	ofrece	varios	servicios	muy	útiles,	como	métodos	para	saber	si	el	archivo
existe,	preguntar	por	las	características	del	archivo,	crear	un	archivo	vacío,	renombrar	un
archivo	y	muchas	otras	más.	En	este	nivel	no	las	vamos	a	estudiar	en	detalle	pero	el	lector
interesado	puede	consultar	la	documentación	de	la	clase.

Con	la	instrucción	del	ejemplo	anterior,	obtenemos	una	variable	llamada	archivoDatos		que
está	haciendo	referencia	a	un	objeto	de	la	clase	File	que	representa	en	abstracto	el	archivo
que	queremos	leer.	Lo	anterior	es	suficiente	si	conocemos	con	anticipación	el	nombre	del
archivo	de	donde	queremos	cargar	la	información.	Pero	si,	como	en	el	caso	de	estudio,
queremos	que	sea	el	cliente	quien	seleccione	el	archivo	que	quiere	abrir,	debemos	utilizar
otra	manera	de	construir	dicho	objeto.	Esto	se	ilustra	en	el	ejemplo	6.

Ejemplo	6

Objetivo:	Mostrar	la	manera	de	permitir	al	usuario	escoger	un	archivo	de	manera
interactiva.

En	este	ejemplo	se	presenta	el	código	que	permite	a	un	programa	preguntarle	al	usuario	el
archivo	a	partir	del	cual	quiere	leer	alguna	información.

public	class	InterfazCampeonato	extends	JFrame
{
				public	void	cargarEquipos(	)
				{
								...
				}
}

El	método		cargarEquipos()		de	la	clase	InterfazCampeonato	es	responsable	de
preguntar	al	usuario	el	archivo	del	cual	quiere	cargar	la	información	del	campeonato.

Persistencia	y	Manejo	del	Estado	Inicial

587



Veamos	paso	a	paso	la	construcción	de	dicho	método,	comenzando	por	la	manera	de
presentar	la	ventana	de	archivos	disponibles	en	el	computador	y,	luego,	recuperar	la
selección	que	haya	hecho	el	usuario.

public	class	InterfazCampeonato	extends	JFrame
{
				public	void	cargarEquipos(	)
				{
								...

								JFileChooser	fc	=	new	JFileChooser(	"./data"	);	
								fc.setDialogTitle("Abrir	archivo	de	campeonato");
								...
				}
				...
}

Lo	primero	que	debemos	hacer	en	el	método	es	utilizar	la	clase	FileChooser,	que
permite	seleccionar	un	archivo.	Creamos	una	instancia	de	dicha	clase,	pasándole	en	el
constructor	el	directorio	por	el	cual	queremos	comenzar	la	búsqueda	de	los	archivos.
En	nuestro	caso,	indicamos	que	es	el	directorio	llamado	data.
En	la	segunda	instrucción	de	esta	parte,	cambiamos	el	título	de	la	ventana.

Persistencia	y	Manejo	del	Estado	Inicial

588



public	class	InterfazCampeonato	extends	JFrame
{
				public	void	cargarEquipos(	)
				{
								...

								File	archivoCampeonato	=	null;
								int	resultado	=	fc.showOpenDialog(	this	);

								if(	resultado	==	JFileChooser.APPROVE_OPTION	)
								{
												archivoCampeonato	=	fc.getSelectedFile(	);
								}

								...
								//	Aquí	debe	ir	la	lectura	del	archivo
				}
}

Con	el	método		showOpenDialog		hacemos	que	la	ventana	de	selección	de	archivos	se
abra.
Mientras	el	usuario	no	seleccione	un	archivo	o	cancele	la	operación,	el	método	queda
bloqueado	en	ese	punto.
El	método		showOpenDialog		retorna	un	valor	entero	que	describe	el	resultado	de	la
operación.
Con	el	método		getSelectedFile		obtenemos	el	objeto	de	la	clase	File	que	describe	el
archivo	escogido	por	el	usuario	(sólo	si	el	usuario	no	canceló	la	operación).

El	código	del	ejemplo	6	está	incompleto,	porque	hasta	ahora	sólo	hemos	obtenido	un	objeto
de	la	clase	File	que	representa	el	archivo	que	el	usuario	quiere	cargar	en	memoria.	En	la
próxima	sección	veremos	cómo	realizar	la	lectura	propiamente	dicha.

6.4.	Inicialización	del	Estado	de	la	Aplicación
Para	cargar	el	estado	inicial	del	campeonato,	debemos	leer	del	archivo	de	propiedades	la
información	sobre	el	número	de	equipos	que	van	a	participar	(propiedad	llamada
"campeonato.equipos")	y	el	nombre	de	los	equipos	(propiedades	llamadas
"campeonato.equipo"	seguido	de	un	índice	que	comienza	en	cero).	Con	dicha	información
podremos	inicializar	nuestro	arreglo	de	equipos	y,	también,	la	matriz	que	representa	la	tabla
de	goles.	El	constructor	de	la	clase	Campeonato	será	el	encargado	de	hacer	esta
inicialización,	que	vamos	a	dividir	en	tres	subproblemas	para	los	que	hemos	identificado
tres	metas	intermedias:

Meta	1:	Cargar	la	información	del	archivo	en	un	objeto	Properties.

Persistencia	y	Manejo	del	Estado	Inicial

589



Meta	2:	Inicializar	el	arreglo	de	equipos	con	base	en	la	información	leída.
Meta	3:	Inicializar	la	matriz	que	representa	la	tabla	de	goles.
La	primera	de	estas	metas	se	logra	con	los	métodos	explicados	en	el	ejemplo	7.

Ejemplo	7

Objetivo:	Mostrar	la	manera	de	crear	un	objeto	de	la	clase	Properties	a	partir	de	la
información	de	un	archivo.

En	este	ejemplo	se	muestra	el	código	del	constructor	de	la	clase	Campeonato,	en	términos
de	los	métodos	que	resuelven	cada	una	de	las	metas	intermedias.	Luego	se	muestra	el
método	privado	que	logra	la	primera	de	ellas.	Los	demás	métodos	serán	presentados	más
adelante.

public	class	Campeonato
{
				//---------------------------------------
				//	Atributos
				//---------------------------------------
				private	int	maxEquipos;
				private	int[][]	tablaGoles;
				private	Equipo[]	equipos;

				//---------------------------------------
				//	Constructor
				//---------------------------------------
				public	Campeonato(	File	pArchivo	)	throws	Exception
				{
								Properties	datos	=	cargarInfoCampeonato(	pArchivo	);
								inicializarEquipos(	datos	);	
								inicializarTablaGoles(	);
				}
}

El	constructor	recibe	como	parámetro	el	objeto	de	la	clase	File	que	describe	el	archivo
con	la	información.
Dicho	objeto	viene	desde	la	interfaz	del	programa	(obtenido	con	el	método	del	ejemplo
6).
El	constructor	lanza	una	excepción	si	encuentra	un	problema	al	leer	el	archivo	o	si	el
formato	interno	del	mismo	es	inválido.
El	primer	método	carga	la	información	del	archivo	en	un	objeto	llamado	datos.
El	segundo	método	recibe	dicho	objeto	e	inicializa	el	arreglo	de	equipos.
El	tercer	método	aprovecha	la	información	dejada	en	los	atributos,	para	crear	la	matriz
con	la	tabla	de	goles.

Persistencia	y	Manejo	del	Estado	Inicial

590



private	Properties	cargarInfoCampeonato(	File	pArchivo	)	throws	Exception
{
				Properties	datos	=	new	Properties(	);	
				FileInputStream	in	=	new	FileInputStream(	pArchivo	);

				try
				{
								datos.load(	in	);	
								in.close(	);
				}
				catch(	Exception	e	)
				{
								throw	new	Exception(	"Formato	inválido"	);
				}

				return	datos;
}
`

Este	método	recibe	un	objeto	de	la	clase	File.
Lo	primero	que	hacemos	es	crear	un	objeto	de	la	clase	Properties	(llamado		datos	)	en
el	cual	vamos	a	dejar	el	resultado	del	método.
Luego	creamos	un	objeto	de	la	clase	FileInputStream	que	nos	ayuda	a	hacer	la
conexión	entre	la	memoria	secundaria	y	el	programa.
La	clase	FileInputStream	sirve	para	crear	una	especie	de	"canal"	por	donde	los	datos
serán	transmitidos.	Para	construir	este	objeto	y	asociarlo	con	el	archivo	seleccionado
por	el	usuario,	usamos	el	objeto	de	la	clase	File	que	recibimos	como	parámetro.
Si	el	archivo	referenciado	por		pArchivo		no	existe	al	tratar	de	crear	la	instancia	de	la
clase	FileInputStream	se	lanza	una	excepción.
Luego,	usamos	el	método		load		de	la	clase	Properties,	pasándole	como	parámetro	el
"canal	de	lectura".	Dicho	método	lanza	una	excepción	si	encuentra	que	el	formato	del
archivo	no	es	el	esperado	(no	está	formado	por	parejas	de	la	forma	nombre	=	valor).
Allí	atrapamos	la	excepción	y	la	volvemos	a	lanzar	con	un	mensaje	signifucativo	para
nuestro	programa.
Finalmente	cerramos	el	"canal	de	lectura"	con	el	método	close.

Persistencia	y	Manejo	del	Estado	Inicial

591



private	void	inicializarTablaGoles(	)
{
				tablaGoles	=	new	int[	maxEquipos	][	maxEquipos	];

				for(	int	i	=	0;	i	<	maxEquipos;	i++	)
				{
								for(	int	j	=	0;	j	<	maxEquipos;	j++	)
								{
												if(	i	!=	j	)
												{
																tablaGoles[	i	][	j	]	=	SIN_JUGAR;
												}		
												else
												{
																tablaGoles[	i	][	j	]	=	INVALIDO;
												}		
								}
				}
}

Este	es	el	método	que	logra	la	tercera	meta	planteada	en	el	constructor.
Crea	inicialmente	una	matriz	que	tiene	una	fila	y	una	columna	por	cada	equipo	en	el
campeonato	(es	una	matriz	cuadrada).
Luego	inicializa	cada	una	de	las	casillas	de	la	matriz	de	enteros	(patrón	de	recorrido
total),	usando	para	esto	las	constantes	definidas	en	la	clase.
En	la	diagonal	deja	el	valor	INVALIDO.

6.5.	Manejo	de	los	Objetos	de	la	Clase
Properties
Para	resolver	la	segunda	meta,	debemos	implementar	el	método	inicializarEquipos	cuyo
objetivo	es	inicializar	el	arreglo	de	equipos	a	partir	de	la	información	que	recibe	como
parámetro	de	entrada.	Para	hacer	esto	necesitamos	acceder	al	valor	de	las	propiedades
individuales	que	vienen	en	el	objeto	Properties.	Esto	se	hace	usando	el	método	getProperty
de	la	clase	Properties,	pasando	como	parámetro	el	nombre	de	la	propiedad	que	queremos
obtener	(por	ejemplo,"campeonato.equipos").	Veamos	el	código	en	el	siguiente	ejemplo.

Ejemplo	8

Objetivo:	Mostrar	la	manera	de	acceder	a	las	propiedades	que	forman	parte	de	un	objeto
de	la	clase	Properties.

Persistencia	y	Manejo	del	Estado	Inicial

592



En	este	ejemplo	se	muestra	el	código	del	método	que	implementa	la	segunda	meta
intermedia	del	constructor	de	la	clase	Campeonato.

private	void	inicializarEquipos(	Properties	pDatos	)
{
				String	strNumeroEquipos	=	pDatos.getProperty(	"campeonato.equipos"	);	
				maxEquipos	=	Integer.parseInt(	strNumeroEquipos	);	
				equipos	=	new	Equipo[	maxEquipos	];

				for(	int	i	=	0;	i	<	maxEquipos;	i++	)
				{
								String	nombreEquipo	=	datos.getProperty(	"campeonato.nombre"	+	i);
								equipos[	i	]=	new	Equipo(	nombreEquipo	);
				}
}

Comenzamos	obteniendo	la	propiedad	que	define	el	número	de	equipos	del
campeonato	(llamada	"campeonato.equipos").	El	valor	de	una	propiedad	siempre	es
una	cadena	de	caracteres.
Luego,	convertimos	la	respuesta	que	obtenemos	en	un	entero,	usando	el	método
parseInt.	Por	ejemplo,	convertimos	la	cadena	"5"	en	el	entero	de	valor	5.	Note	que
dejamos	el	resultado	en	el	atributo		maxEquipos		previsto	para	tal	fin.
Creamos	después	el	arreglo	de	equipos,	reservando	suficiente	espacio	para	almacenar
los	objetos	de	la	clase	Equipo	que	van	a	representar	cada	uno	de	ellos.
En	un	ciclo	recuperamos	los	nombres	de	los	equipos	(a	partir	de	las	propiedades),	y
con	esa	información	vamos	creando	los	objetos	de	la	clase	Equipo	que	los	representan
y	los	vamos	guardando	secuencialmente	en	las	casillas	del	arreglo.
Los	nombres	de	los	equipos	vienen	en	las	propiedades	"campeonato.	nombre0",
"campeonato.nombre1",	etc.,	razón	por	la	cual	calculamos	dicho	nombre	dentro	del
ciclo,	agregando	al	final	el	índice	en	el	que	va	la	iteración.

Persistencia	y	Manejo	del	Estado	Inicial

593



7.	Completar	la	Solución	del	Campeonato
En	esta	sección	vamos	a	mostrar	los	métodos	que	nos	van	a	permitir	implementar	los
requerimientos	funcionales	no	cubiertos	hasta	ahora,	y	vamos	a	trabajar	en	la	construcción
de	algunos	métodos	que,	aunque	no	forman	parte	de	los	requerimientos,	ayudarán	al	lector
a	generar	habilidad	en	el	uso	de	los	patrones	de	algoritmo.

7.1.	Registrar	el	Resultado	de	un	Partido
Retomando	las	clases	y	sus	responsabilidades,	hemos	establecido	que	la	clase
Campeonato	tiene	la	información	sobre	los	equipos	que	están	jugando	y	sobre	la	tabla	de
goles.	Veamos	cómo	podemos	resolver	el	requerimiento	de	registrar	el	resultado	de	un
partido.	Este	método	se	compromete	en	su	contrato	a	realizar	la	actualización	de	la	tabla	de
goles	o	a	disparar	una	excepción	si	los	datos	entregados	no	son	válidos.	El	código	de	la
solución	se	muestra	en	el	ejemplo	9.

Ejemplo	9

Objetivo:	Mostrar	el	método	que	implementa	el	requerimiento	funcional	de	registrar	el
resultado	de	un	nuevo	partido.

En	este	ejemplo	se	muestra	el	método	de	la	clase	Campeonato	encargado	de	incluir	el
resultado	del	partido	jugado	por	dos	equipos	Si	los	datos	de	entrada	son	inválidos,	el
método	lanza	una	excepción.

Completar	la	Solución	del	Campeonato

594



public	void	registrarResultado(	int	pEquipo1,	int	pEquipo2,	int	pGol1,	int	pGol2	)	thr
ows	Exception
{
				if(	pEquipo1	<	0	||	pEquipo1	>=	maxEquipos	||	pEquipo2	<	0	||	pEquipo2	>=	maxEquip
os	)
				{
								throw	new	Exception(	"Equipos	incorrectos"	);
				}

				if(	pEquipo1	==	pEquipo2	)
				{
								throw	new	Exception(	"Son	el	mismo	equipo"	);
				}

				if(	pGol1	<	0	||	pGol2	<	0	)
				{
								throw	new	Exception(	"Número	de	goles	inválido"	);
				}

				if(	tablaGoles[	pEquipo1	][	pEquipo2	]	!=	SIN_JUGAR	||	tablaGoles[	pEquipo2	][	pEq
uipo1	]	!=	SIN_JUGAR	)
				{
								throw	new	Exception(	"Partido	ya	jugado"	);
				}

				tablaGoles[	pEquipo1	][	pEquipo2	]	=	pGol1;	
				tablaGoles[	pEquipo2	][	pEquipo1	]	=	pGol2;
}

El	método	supone	que	la	matriz	de	goles	ya	fue	inicializada	(esto	forma	parte	del
contrato,	en	la	parte	de	precondición).
	pEquipo1		es	el	índice	dentro	de	la	matriz	que	identifica	el	primer	equipo.
	pEquipo2		es	el	índice	dentro	de	la	matriz	que	identifica	el	segundo	equipo.
	pGol1		es	el	número	de	goles	marcados	por	el	primer	equipo	(	pEquipo1	).
	pGol2		es	el	número	de	goles	marcados	por	el	segundo	equipo	(	pEquipo2	).
La	mayor	parte	del	método	se	dedica	a	validar	la	información	recibida	en	los
parámetros	de	entrada.
Cuando	los	valores	de	los	parámetros	han	sido	validados,	debemos	actualizar	las
posiciones	de	la	matriz	que	representan	el	partido	entre	los	equipos		pEquipo1		y
	pEquipo2	.

7.2.	Construir	la	Tabla	de	Posiciones

Completar	la	Solución	del	Campeonato

595



De	acuerdo	con	la	definición	de	la	tabla	de	posiciones,	por	cada	equipo	del	campeonato
debemos	informar	sus	partidos	jugados,	partidos	ganados,	partidos	empatados,	partidos
perdidos,	goles	a	favor	y	goles	en	contra.	Todos	estos	datos	se	pueden	calcular	a	partir	de
la	matriz	que	tiene	la	tabla	de	resultados,	y	eso	es	lo	que	haremos	en	esta	sección.

En	la	figura	6.10	se	muestra	un	escenario	posible	del	campeonato:	se	han	jugado	dos
partidos,	en	los	cuales	A.C.	Milán	perdió	contra	el	Inter	por	un	marcador	de	1	a	2,	y	también
perdió	contra	el	Juventus	recibiendo	dos	goles	y	no	marcando	ninguno.	¡Mal	inicio	de
temporada	para	el	A.C.	Milán!	En	dicho	escenario,	el	índice	del	A.C.	Milán	es	el	cero,
mientras	que	el	índice	del	Juventus	es	el	2.

Fig.	6.10	Tabla	de	goles	del	campeonato	italiano

En	la	siguiente	tabla	se	resumen	algunas	de	las	características	de	la	tabla:

Completar	la	Solución	del	Campeonato

596



	tablaGoles[	2	][	0	]	>
tablaGoles[	0	][	2	]	

Indica	que	el	equipo	con	índice	2	le	ganó	el	partido	al
equipo	con	índice	0.

	tablaGoles[	2	][	0	]	==
tablaGoles[	0	][	2	]	

Indica	que	los	equipos	0	y	2	empataron	en	el	partido	que
jugaron.

La	suma	de	todas	las
casillas	de	la	fila	0

Indica	el	número	total	de	goles	marcados	por	el	equipo	0
en	todo	el	campeonato.

La	suma	de	todas	las
casillas	de	la	columna	0

Indica	el	número	total	de	goles	recibidos	por	el	equipo	0
en	todo	el	campeonato.

	tablaGoles[	i	][	i	]	==
INVALIDO	

Las	casillas	de	la	diagonal	siempre	van	a	tener	el	valor
INVALIDO.	Dichas	casillas	se	deben	ignorar	en	el
momento	de	calcular	los	valores	mencionados
anteriormente.

Si		tablaGoles[	2	][	0	]	==
SIN_JUGAR	,
entonces	tablaGoles[	0	][
2	]	==	SIN_JUGAR	

Si	en	la	casilla	(	i,	j	)	no	hay	un	resultado,	en	la	casilla
simétrica	(	j,	i	)	tampoco	puede	haberlo.

Tarea	4

Objetivo:	Construir	los	métodos	que	nos	van	a	permitir	calcular	la	información	de	los
equipos.

Escriba	los	métodos	de	la	clase	Campeonato	que	resuelven	los	problemas	que	se
mencionan	a	continuación.	Identifique	el	patrón	de	algoritmo	que	se	debe	aplicar	en	cada
caso.

Calcular	el	número	total	de	partidos	ganados	por	el	equipo	que	se	recibe	como	parámetro.

public	int	partidosGanados(	int	pEquipo	)
{

}

Calcular	el	número	total	de	partidos	empatados	por	el	equipo	que	se	recibe	como
parámetro.

Completar	la	Solución	del	Campeonato

597



public	int	partidosEmpatados(	int	pEquipo	)
{

}

Calcular	el	número	total	de	partidos	jugados	por	el	equipo	que	se	recibe	como	parámetro.

public	int	partidosJugados(	int	pEquipo	)
{

}

Calcular	el	número	total	de	goles	marcados	por	el	equipo	que	se	recibe	como	parámetro.

public	int	golesAFavor(	int	pEquipo	)
{

}

Calcular	el	número	total	de	puntos	del	equipo	que	se	recibe	como	parámetro.	Tenga	en
cuenta	que	un	equipo	recibe	3	puntos	por	cada	partido	ganado	y	un	punto	por	cada	partido
empatado.

Completar	la	Solución	del	Campeonato

598



public	int	calcularTotalPuntos(	int	pEquipo	)
{

}

7.3	Implementación	de	otros	Métodos	sobre
Matrices

Tarea	5

Objetivo:	Construir	algunos	métodos	adicionales	al	caso	de	estudio,	que	ayuden	a	generar
habilidad	en	la	construcción	de	algoritmos	para	manejar	matrices.

Escriba	los	métodos	de	la	clase	Campeonato	que	se	describen	a	continuación.	Identifique
en	cada	caso	el	patrón	de	algoritmo	que	debe	utilizar.

Retornar	el	índice	del	equipo	que	va	ganando	el	campeonato.	Si	hay	dos	equipos	con	el
mismo	número	de	puntos,	gana	aquél	cuya	diferencia	de	goles	(goles	anotados	menos
goles	recibidos)	sea	mayor.

public	int	calcularGanador(	)
{

}

Calcular	el	número	de	partidos	que	faltan	por	jugar	en	el	campeonato.

Completar	la	Solución	del	Campeonato

599



public	int	calcularPorJugar(	)
{

}

Calcular	el	mayor	número	de	goles	marcados	en	un	partido	del	campeonato	(sumando	los
goles	de	los	dos	equipos).

public	int	calcularTotalGoles(	)
{

}

Calcular	el	número	de	partidos	del	campeonato	cuyo	marcador	fue	cero	a	cero.

public	int	calcularTotalCeroACero(	)
{

}

Completar	la	Solución	del	Campeonato

600



8.	Proceso	de	Construcción	de	un
Programa
Vamos	a	terminar	este	nivel	con	un	resumen	del	proceso	de	construcción	de	un	programa.
Las	actividades	que	se	necesitan	para	construir	un	programa	las	hemos	venido	definiendo	y
practicando	a	lo	largo	de	todo	el	libro.	En	los	distintos	niveles,	dependiendo	del	tema
tratado,	hemos	hecho	énfasis	en	algunas	de	las	tareas.	Es	importante	recordar	que	este
proceso	de	construcción	de	programas	está	pensado	para	construir	programas	pequeños
(pocos	requerimientos,	pocas	clases	e	interfaces	gráficas	simples)	que,	básicamente,
pueden	ser	resueltos	por	un	sólo	desarrollador.	Para	programas	más	grandes	en	donde	sea
necesario	que	participen	más	desarrolladores,	se	requieren	procesos	distintos	y	actividades
extra,	relacionadas	con	la	coordinación	y	sincronización	del	trabajo	y,	en	general,	con	el
manejo	de	la	complejidad	adicional	que	resulta	de	una	mayor	cantidad	de	requerimientos	y
del	elevado	número	de	clases	necesarias	para	conformar	la	solución	final.

El	proceso	de	construcción	de	un	programa	es	el	conjunto	de	actividades	que	debemos
seguir	para	terminar	con	éxito	nuestra	tarea.	Éxito	significa	que	al	final	tenemos	un
programa	que	funciona	correctamente	de	acuerdo	con	los	requerimientos,	tiene	su
documentación	completa	(modelo	del	mundo,	diseño	de	la	interfaz,	etc.)	y,	además,	el
código	está	documentado	con	los	contratos	y	con	los	comentarios	adicionales	que
permitirán	a	cualquier	persona,	más	adelante,	entenderlo	y	darle	mantenimiento.

El	proceso	que	hemos	seguido	se	compone	de	tres	actividades	principales:	análisis	del
problema,	diseño	de	la	solución	y	construcción	de	la	solución.	Lo	importante	de	estas
actividades	es	comprender	cuál	es	su	objetivo	y	qué	artefactos	debemos	producir	en	cada
una	de	ellas.	Veamos	una	rápida	síntesis	de	esas	actividades.

8.1.	Análisis	del	Problema
Objetivo:

Entender	el	problema	y	poder	explicar	a	otros	nuestro	entendimiento,	siguiendo	un
conjunto	de	convenciones.

Resultados:

Los	requerimientos	funcionales	quedan	consignados	en	un	documento	donde	se
identifican	los	servicios	que	el	programa	debe	ofrecer	al	usuario.	Cada	uno	de	ellos
debe	tener	una	pequeña	descripción	que	resuma	el	objetivo,	la	información	de	entrada

Proceso	de	Construcción	de	un	Programa

601



(suministrada	por	el	usuario)	y	el	resultado	(producido	por	el	programa).
El	modelo	conceptual	del	mundo	del	problema	es	una	simplificación	de	la	realidad	en	la
cual	ocurre	el	problema.	Este	modelo	lo	expresamos	en	un	diagrama	de	clases	escrito
en	el	lenguaje	UML.	En	un	diagrama	de	clases	aparecen	las	entidades	del	mundo	que
participan	en	el	problema,	los	atributos	que	permiten	expresar	su	estado	y	las
relaciones	(llamadas	asociaciones)	existentes	entre	las	entidades.	Las	asociaciones
pueden	tener	un	nombre	y	una	cardinalidad.	Esta	última	expresa	el	número	de
instancias	involucradas	en	la	relación	entre	las	entidades.
Los	requerimientos	no	funcionales	son	las	restricciones	y	condiciones	que	impone	el
cliente	sobre	el	programa	que	se	va	a	construir.	Casi	siempre	hacen	referencia	al	tipo
de	persistencia	de	la	información,	a	las	características	de	la	interfaz	de	usuario,	al
manejo	de	la	seguridad,	etc.	En	este	libro	no	tocamos	este	tema,	dado	que	los
problemas	sobre	los	cuales	trabajamos	son	pequeños,	y	los	requerimientos	no
funcionales	no	inuyen	sobre	la	arquitectura	de	la	solución.

8.2.	Diseño	de	la	Solución
Objetivo:

Detallar	las	características	que	tendrá	la	solución,	antes	de	ser	construida.	Los	diseños
nos	van	a	permitir	mostrar	la	solución	antes	de	comenzar	el	proceso	de	fabricación
propiamente	dicho.

Resultados:

La	interfaz	de	usuario	es	la	parte	de	la	solución	que	permite	que	el	usuario	interactúe
con	el	programa.	Diseñarla	significa	que	debemos	producir	dos	artefactos:	la
visualización	y	el	modelo	conceptual	de	las	clases	que	la	van	a	componer	(expresado
en	UML).
La	arquitectura	nos	ayuda	a	descomponer	la	solución	en	partes	y	a	identificar	sus
relaciones.	En	los	ejemplos	de	este	libro,	hemos	utilizado	un	diagrama	de	paquetes
para	mostrar	los	tres	componentes	de	la	aplicación:	la	interfaz	de	usuario,	el	mundo	y
las	pruebas.
El	diseño	de	las	clases	involucra	la	actividad	más	difícil	de	todas	las	que	hemos	visto
en	este	libro.	Esta	actividad	es	la	de	asignación	de	responsabilidades.	Como	guía	en	la
asignación	de	responsabilidades	podemos	utilizar	los	requerimientos	funcionales	para
identificar	los	servicios	esperados	de	cada	clase.	Tratamos	de	descomponer	los
requerimientos	en	servicios	puntuales	y,	luego,	de	acuerdo	con	la	técnica	básica	del
experto,	decidimos	qué	clases	deben	resolver	cada	uno	de	los	métodos	identificados.
Al	interior	de	cada	clase	diseñamos	luego	sus	métodos,	definiendo	su	contrato	y	su
signatura.

Proceso	de	Construcción	de	un	Programa

602



8.3.	Construcción	de	la	Solución
Objetivo:

Escribir	el	código	en	el	lenguaje	de	programación	(en	nuestro	caso	Java),	que
implementa	el	diseño	que	definimos	en	la	etapa	anterior.

Resultados:

El	código	de	todas	las	clases,	con	sus	contratos	y	comentarios.
Para	saber	si	hemos	terminado	nuestra	tarea	de	construcción	del	programa,	debemos
probarlo.	Además	de	las	pruebas	manuales	que	podemos	realizar	sobre	él	es
importante	contar	con	pruebas	automáticas.	Dichas	pruebas	son	también	clases	Java
que	se	encuentran	definidas	en	el	paquete	de	pruebas.

8.4.	Una	Visión	Gráfica	del	Proceso
En	esta	parte	resumimos	gráficamente	las	principales	tareas	que	constituyen	el	proceso	de
desarrollo	de	un	programa.	La	idea	es	que	a	partir	del	enunciado	del	problema,	el	lector
pueda	seguirlo	paso	por	paso.	Todas	estas	tareas	están	enmarcadas	dentro	de	las	tres
grandes	etapas	mencionadas	anteriormente.

Proceso	de	Construcción	de	un	Programa

603



Proceso	de	Construcción	de	un	Programa

604



Proceso	de	Construcción	de	un	Programa

605



9.	Hojas	de	Trabajo

9.1.	Hoja	de	Trabajo	Nº	1:	Sopa	de	Letras
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Analice	el	siguiente	enunciado	e	identique	el	mundo	del	problema,	lo	que	se
quiere	de	la	aplicación	y	las	restricciones	para	desarrollarla.

Se	quiere	construir	un	programa	para	el	juego	de	la	sopa	de	letras.	En	este	juego	hay	un
tablero	que	tiene	una	serie	de	letras	organizadas	en	las	y	columnas.	Algunas	de	estas
letras	forman	palabras	que	el	jugador	debe	encontrar.	Las	palabras	pueden	estar	dispuestas
en	modo	horizontal,	vertical	o	diagonal	y	pueden	escribirse	también	en	sentido	contrario	al
normal	(de	derecha	a	izquierda	o	de	abajo	hacia	arriba).	Para	cada	sopa	de	letras	hay	una
serie	de	palabras	que	deben	buscarse.	Cuando	el	jugador	las	encuentra	todas,	hay	que
avisarle	que	ganó	el	juego.	La	interfaz	de	usuario	del	programa	es	la	que	aparece	en	la
siguiente	gura.	Las	letras	que	forman	parte	de	las	palabras	ya	encontradas	deben
aparecer	en	otro	color.

Hojas	de	trabajo

606

https://bit.ly/apo1-nivel6-hoja1-pdf-format
https://bit.ly/apo1-nivel6-hoja1-word-format


Tanto	las	dimensiones	de	la	sopa	de	letras	como	las	palabras	que	contiene	se	deben	cargar
desde	un	archivo	de	propiedades	(seleccionado	por	el	usuario	durante	la	ejecución	del
programa),	con	las	siguientes	características:

La	propiedad	sopaDeLetras.columnas	dene	el	número	de	columnas.
La	propiedad	sopaDeLetras.filas	dene	el	número	de	las.
La	propiedad	sopaDeLetras.numPalabras	dene	el	número	de	palabras	presentes	en	la
sopa.
La	propiedad	sopaDeLetras.palabra1	dene	la	primera	palabra	que	aparece	en	la	sopa.
La	propiedad	sopaDeLetras.fila1	dene	el	contenido	de	la	primera	la	de	la	sopa.

Hojas	de	trabajo

607



El	siguiente	es	un	ejemplo	de	un	posible	archivo	para	describir	la	situación	inicial	del	juego.
En	este	tipo	de	archivos	las	líneas	que	comienzan	por	el	símbolo	#	se	interpretan	como
comentarios.

#letras

sopaDeLetras.columnas=8

sopaDeLetras.filas=10

sopaDeLetras.fila1=M	O	N	I	T	O	R	W

sopaDeLetras.fila2=A	G	H	E	N	T	X	F

sopaDeLetras.fila3=U	M	O	U	S	E	B	C

sopaDeLetras.fila4=D	O	H	L	I	C	E	D

sopaDeLetras.fila5=I	A	P	M	N	L	M	R

sopaDeLetras.fila6=S	M	I	F	O	A	E	O

sopaDeLetras.fila7=C	S	G	N	C	D	E	M

sopaDeLetras.fila8=O	A	H	B	O	O	E	H

sopaDeLetras.fila9=E	R	E	F	I	H	T	M

sopaDeLetras.fila10=J	W	U	V	N	R	A	N

#palabras

sopaDeLetras.numPalabras=7

sopaDeLetras.palabra1=MONITOR

sopaDeLetras.palabra2=MOUSE

sopaDeLetras.palabra3=DISCO

sopaDeLetras.palabra4=TECLADO

sopaDeLetras.palabra5=CDROM

sopaDeLetras.palabra6=MODEM

sopaDeLetras.palabra7=WEBCAM

Requerimientos	funcionales.	Describa	los	dos	requerimientos	funcionales	de	la
aplicación.

Hojas	de	trabajo

608



Requerimiento	Funcional	1

Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	trabajo

609



Nombre

Resumen

Entradas

Resultado

Modelo	del	mundo.	Estudie	y	complete	el	modelo	con	los	atributos,	constantes,
asociaciones	entre	las	clases	y	principales	métodos.

Declaración	de	clases.	Para	las	siguientes	clases,	escriba	en	Java	la	declaración	de	sus
atributos	y	sus	asociaciones.

Hojas	de	trabajo

610



public	class	SopaDeLetras
{

}

public	class	Palabra
{

}

public	class	Letra
{

}

Inicialización	de	matrices.	Escriba	el	constructor	de	la	clase	SopaDeLetras,	que	carga	la
información	de	un	archivo	de	propiedades,	cuya	representación	abstracta	se	entrega	como
parámetro.	Si	hay	problemas	en	el	proceso,	lanza	una	excepción.

Hojas	de	trabajo

611



public	SopaDeLetras(	File	pArchivoSopa	)	throws	Exception
{

}

Desarrollo	de	métodos.	Desarrolle	los	siguientes	métodos	de	la	clase	SopaDeLetras,
identicando	el	patrón	de	algoritmo	al	que	corresponde	cada	uno.

Metodo	1

Retornar	el	número	de	palabras	que	ya	se	han	encontrado	en	la	sopa	de	letras.

Hojas	de	trabajo

612



public	int	darPalabrasEncontradas(	)
{

}

Metodo	2

Contar	el	número	de	vocales	que	hay	en	la	sopa	de	letras.

public	int	totalVocales(	)
{

}

Metodo	3

Retornar	la	cadena	con	los	caracteres	que	se	encuentran	entre	dos	columnas	(pColumna1	y
pColumna2)	de	una	misma	la	(pFila).	Puede	suponer	que	los	valores	que	se	entregan
como	parámetros	son	todos	válidos.	Puede	suponer	que	pColumna2	es	mayor	que
pColumna1.

public	String	darPalabraEnFila(	int	pFila,	int	pColumna1,	int	pColumna2	)
{

}

Metodo	4

Retornar	la	cadena	con	los	caracteres	que	se	encuentran	entre	dos	las	(pFila1	y	pFila2)	de
una	misma	columna	(pColumna).	Puede	suponer	que	los	valores	que	se	entregan	como
parámetros	son	todos	válidos.	Puede	suponer	que	pFila2	es	mayor	que	pFila1.

Hojas	de	trabajo

613



public	String	darPalabraEnColumna(	int	pColumna,	int	pFila1,	int	pFila2	)
{

}

Metodo	5

Retornar	la	cadena	con	los	caracteres	que	se	encuentran	en	diagonal	entre	dos	las	(pFila1
y	pFila2).	La	diagonal	comienza	en	la	columna	que	se	recibe	como	parámetro	y	desciende
de	izquierda	a	derecha.	Puede	suponer	que	los	valores	que	se	entregan	como	parámetros
son	todos	válidos.	Puede	suponer	que	pFila2	es	mayor	que	pFila1.

public	String	darPalabraEnDiagonal(int	pColumna,	int	pFila1,	int	pFila2	)
{

}

Metodo	6

Hojas	de	trabajo

614



Retornar	una	cadena	de	caracteres	formada	con	todas	las	letras	que	no	forman	parte	de	las
palabras	encontradas.	Las	letras	se	deben	agregar	a	la	respuesta	de	izquierda	a	derecha,
de	arriba	abajo.

public	String	darMensajeSecreto(	)
{

}

Hojas	de	trabajo

615



9.2	Hoja	de	Trabajo	Nº	2:	Asignación	de	Tareas
Descargue	esta	hoja	de	trabajo	a	través	de	los	siguientes	enlaces:	Descargar	PDF	|
Descargar	Word.

Enunciado.	Analice	el	siguiente	enunciado	e	identique	el	mundo	del	problema,	lo	que	se
espera	de	la	aplicación	y	las	restricciones	para	desarrollarla.

En	todo	proceso	es	importante	la	asignación	de	tareas,	actividad	en	la	cual	se	denen	los
recursos	(en	particular	personas)	que	necesita	cada	tarea	para	poderse	llevar	a	cabo.	Se
quiere	construir	una	aplicación	que	permita	manejar	la	asignación	de	tareas	para	organizar
una	fiesta,	de	forma	similar	a	una	planilla	(en	las	columnas	están	las	tareas	que	se	deben
realizar	y	en	las	las	las	personas	disponibles	para	hacerlo).	Las	tareas	y	las	personas	ya
están	denidas	desde	el	comienzo	del	programa	(se	cargan	de	un	archivo	de	propiedades).
En	cada	casilla	de	la	planilla	va	el	número	de	horas	que	dicha	persona	debe	dedicarle	a	la
respectiva	tarea,	como	se	muestra	en	la	siguiente	gura:

La	aplicación	debe	permitir	que	se	asigne	un	determinado	número	de	horas	de	trabajo	de
una	tarea	a	una	persona.	Si	a	una	persona	ya	se	le	ha	asignado	un	número	de	horas	en
una	tarea,	es	posible	reasignar	(cambiar)	ese	tiempo.	Además,	a	partir	de	esta	asignación,
se	quieren	realizar	algunos	cálculos:

Para	cada	tarea	es	importante	saber:

El	número	de	personas	asignadas	(las	que	tienen	más	de	0	horas	asignadas	para	la
tarea
El	total	de	horas	asignadas.
La	persona	con	más	horas	asignadas	a	la	tarea.
El	promedio	de	horas	por	persona.
El	porcentaje	de	trabajo	que	representa	una	tarea	respecto	del	total	de	tareas.

Hojas	de	trabajo

616

https://bit.ly/apo1-nivel6-hoja2-pdf-format
https://bit.ly/apo1-nivel6-hoja2-word-format


Para	cada	persona	es	importante	saber:

El	número	de	tareas	asignadas	(aquellas	para	las	que	la	persona	tiene	más	de	0	horas
asignadas).
El	total	de	horas	asignadas.
La	tarea	para	la	que	tiene	el	mayor	número	de	horas	asignadas.
Si	es	la	persona	con	el	mayor	número	de	horas	asignadas.
El	promedio	de	horas	por	tarea.

La	interfaz	de	usuario	del	programa	de	asignación	de	tareas	es	la	que	aparece	en	la
siguiente	gura:

Hojas	de	trabajo

617



La	información	de	tareas	y	personas	de	la	aplicación	está	consignada	en	el	archivo	de
propiedades	llamado	data/datosPlanilla.dat.	Un	ejemplo	de	dicho	archivo	es	el	siguiente:

#tareas

tareas.numero=6

tareas.tarea1.nombre=Inflar	globos

tareas.tarea2.nombre=Preparar	la	torta

tareas.tarea3.nombre=Repartir	las	invitaciones

tareas.tarea4.nombre=Hacer	el	playlist	de	música

tareas.tarea5.nombre=Decorar	la	sala

tareas.tarea6.nombre=Instalar	equipo	de	sonido

#personas

personas.numero=4

personas.persona1.nombre=Pedro

personas.persona2.nombre=Juan

personas.persona3.nombre=Carolina

personas.persona4.nombre=Andrés

En	la	propiedad	tareas.numero	se	indica	el	número	de	tareas	que	manejará	la	aplicación.
Luego,	para	nombrar	las	tareas,	deben	aparecer	tantas	propiedades	como	este	número
indica.	Estas	propiedades	son	de	la	forma	tareas.tarea<contador>.nombre,	donde	el
contador	es	un	número	que	va	desde	uno	hasta	el	número	de	tareas	indicado.

En	la	propiedad	personas.numero	se	indica	el	número	de	personas	que	manejará	la
aplicación.	Luego,	para	nombrar	a	las	personas,	deben	aparecer	tantas	propiedades	como
este	número	indica.	Estas	propiedades	son	de	la	forma
personas.persona<contador>.nombre,	donde	el	contador	es	un	número	que	va	desde	uno
hasta	el	número	de	personas	indicado.

Requerimientos	funcionales.	Describa	algunos	de	los	más	importantes	requerimientos
funcionales.

Requerimiento	Funcional	1

Hojas	de	trabajo

618



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	2

Hojas	de	trabajo

619



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	3

Hojas	de	trabajo

620



Nombre

Resumen

Entradas

Resultado

Requerimiento	Funcional	4

Hojas	de	trabajo

621



Nombre

Resumen

Entradas

Resultado

Modelo	el	mundo.	Estudie	y	complete	el	modelo	con	los	atributos,	constantes,
asociaciones	entre	las	clases	y	principales	métodos.

Declaración	de	las	clases.Para	la	siguiente	clase	escriba	en	Java	la	declaración	de	sus
atributos	y	sus	asociaciones.

Hojas	de	trabajo

622



public	class	PlanillaTareas
{

}

Inicialización	de	matrices.	Escriba	el	constructor	de	la	clase	PlanillaTareas,	que	carga	la
información	de	un	archivo	de	propiedades,	cuyo	nombre	completo	se	entrega	como
parámetro,	y	arma	la	matriz	que	representa	la	planilla.	Si	hay	problemas	en	el	proceso,
lanza	una	excepción.

public	PlanillaTareas(	String	pArchivo	)	throws	Exception
{

}

Desarrollo	de	métodos.	Desarrolle	los	siguientes	métodos	de	la	clase	PlanillaTareas,
identicando	el	patrón	de	algoritmo	al	que	corresponde	cada	uno.

Hojas	de	trabajo

623



Metodo	1

Contar	el	total	de	tareas	que	no	tienen	ninguna	asignada.

public	int	totalTareasSinAsignar(	)
{

}

Metodo	2

Contar	el	número	de	tareas	en	las	que	participa	la	persona	cuyo	nombre	se	da	como
parámetro.

public	int	totalTareasParticipa(	String	pNombre	)
{

}

Metodo	3

Decir	si	existe	al	menos	una	tarea	en	la	que	participen	todas	las	personas.

Hojas	de	trabajo

624



public	boolean	existeTareaTodosParticipan(	)
{

}

Metodo	4

Retornar	el	nombre	de	la	persona	que	más	tiempo	tiene	asignado	en	la	tarea	que	se	da
como	parámetro.

public	String	personaMasParticipa(	String	pTarea	)
{

}

Metodo	5

Retornar	el	nombre	de	la	tarea	en	la	que	más	tiempo	tiene	asignado	la	persona	cuyo
nombre	se	da	como	parámetro.

Hojas	de	trabajo

625



public	String	tareaMasParticipa(	String	pNombre	)
{

}

Metodo	6

Retornar	la	suma	de	horas	asignadas	que	tienen	las	personas	que	se	encuentran	en	un
rango	de	las	descrito	por	los	índices	recibidos	como	parámetros.

public	int	sumarHorasPersonasEntre(	int	pIndiceInicial,	int	pIndiceFinal	)
{

}

Metodo	7

Calcular	el	promedio	de	horas	asignadas	a	todas	las	personas.

Hojas	de	trabajo

626



public	double	darPromedioTiempoAsignadoPersonas(	)
{

}

Hojas	de	trabajo

627



Anexos

628



A.	El	Lenguaje	Java

1.	Instalación	de	las	Herramientas

1.1.	¿Qué	se	Necesita	para	Empezar?
Hay	dos	herramientas	básicas	que	el	lector	debe	instalar	en	su	computador,	antes	de
empezar	a	crear	el	ambiente	de	desarrollo	necesario	para	construir	programas.	Estas
herramientas	son:

1.	 Un	navegador	de	Internet.
2.	 Un	programa	que	permita	extraer	el	contenido	de	un	archivo	con	formato	zip.

Antes	de	continuar,	asegúrese	de	que	cuenta	en	su	computador	con	un	navegador	de
Internet	y	con	un	programa	para	extraer	el	contenido	de	un	archivo	con	formato	zip.

1.2.	¿Dónde	Encontrar	los	Instaladores	de	las
Herramientas?
Para	crear	el	ambiente	de	desarrollo	se	necesitan	algunas	herramientas,	las	cuales	se
pueden	obtener	en:

El	sitio	web	del	proyecto	CUPI2:

En	la	dirección	http://cupi2.uniandes.edu.co.

El	sitio	web	de	los	fabricantes	de	los	programas:

En	las	siguientes	direcciones	de	Internet	puede	encontrar	las	últimas	versiones	de	los
instaladores:

Lenguaje	Java:	http://java.sun.com/
Ambiente	de	desarrollo	Eclipse:	http://www.eclipse.org/

En	el	primer	enlace	busque	el	instalador	de	la	herramienta	llamada	"Java	2	Platform,
Standard	Edition	(J2SE)".

A.	El	Lenguaje	Java

629

http://cupi2.uniandes.edu.co
http://java.sun.com/
http://www.eclipse.org/


Verifique	que	ha	localizado	el	instalador	de	Java.	Este	viene	en	un	archivo	.exe	que
permite	hacer	la	instalación	de	la	máquina	virtual	y	del	compilador	(jdk-1_5_0-rc-
windows-i586.exe)	y	en	un	archivo	.zip	que	trae	la	documentación	(jdk-1_5_0-rc-
doc.zip).	Los	nombres	exactos	de	dichos	archivos	pueden	variar	dependiendo	de	las
versiones.

Verifique	que	ha	localizado	el	instalador	de	Eclipse.	Este	instalador	viene	en	un	archivo
.zip	(eclipse-SDK-3.0-win32.zip).	El	nombre	exacto	de	dicho	archivo	puede	variar,
dependiendo	de	la	versión	que	vaya	a	instalar.

1.3.	¿Cómo	Instalar	las	Herramientas?
Java	2	Standard	Edition	(J2SE)

Ejecute	el	instalador	y	responda	a	las	preguntas	que	éste	hace	durante	el	proceso.	En
particular,	debe	escoger	un	directorio	en	el	disco	duro	para	instalar	las	herramientas	del
lenguaje.
Extraiga	el	contenido	del	archivo	.zip	que	trae	la	documentación	de	Java,	utilizando	la
herramienta	que	tenga	disponible	para	tal	fin.
Modifique	la	variable	de	ambiente	del	sistema	operativo	llamada	PATH,	para	que
incluya	el	subdirectorio	bin	del	directorio	en	el	cual	quedaron	instaladas	las
herramientas	del	lenguaje.

Eclipse	SDK

Extraiga	el	contenido	del	archivo	.zip	en	el	directorio	en	el	que	quiera	que	quede
instalado	el	ambiente	de	desarrollo	Eclipse.

Busque	en	el	directorio	en	el	que	instaló	el	ambiente	Eclipse	un	archivo	llamado	eclipse.exe.
Ejecútelo	para	iniciar	dicha	aplicación.

Abra	una	ventana	de	comandos	del	sistema	operativo.	Ejecute	el	comando

java	–version

La	máquina	virtual	de	Java	debe	contestar	algo	parecido	al	siguiente	mensaje:

java	version	"1.5.0"
Java(TM)	2	Runtime	Environment,	Standard	Edition	(build	1.5.0-b64)	Java	HotSpot(TM)	Cl
ient	VM		(build	1.5.0-b64,	mixed	mode)

Abra	una	ventana	de	comandos	del	sistema	operativo.	Ejecute	el	comando

A.	El	Lenguaje	Java

630



javac

El	compilador	del	lenguaje	Java	debe	contestar	algo	parecido	al	siguiente	mensaje:

javac:	no	source	files
Usage:	javac	<options>	<source	files>

Abra	una	ventana	de	comandos	del	sistema	operativo.	Ejecute	el	comando

javac	-version

El	compilador	del	lenguaje	Java	debe	contestar	algo	parecido	al	siguiente	mensaje:

javac	1.5.0-rc

Si	las	tres	acciones	anteriores	funcionan	correctamente,	quiere	decir	que	tanto	Java	como
el	ambiente	de	desarrollo	Eclipse	quedaron	instalados	correctamente	en	su	computador.	Si
tiene	algún	problema	en	el	proceso	de	instalación,	le	recomendamos	buscar	en	el	sitio	web
del	proyecto	los	tutoriales	respectivos.

2.	Diagramas	de	Sintaxis	del	Lenguaje
Java
La	sintaxis	resumida	en	este	anexo	corresponde	únicamente	al	subconjunto	del	lenguaje
Java	estudiado	en	este	libro,	junto	con	ciertas	buenas	prácticas	de	programación.	En
algunos	casos	se	hicieron	algunas	simplificaciones	en	la	sintaxis,	de	manera	que	más	que
una	especificación	formal	del	lenguaje	debe	tomarse	como	una	guía	informal	de	uso.

Unidad	de	compilación

A.	El	Lenguaje	Java

631

http://cupi2.uniandes.edu.co/sitio/


Declaración	de	clase

Cuerpo	de	clase

Declaración	de	constante

Declaración	de	atributo

A.	El	Lenguaje	Java

632



Declaración	de	constructor

Declaración	de	método

Declaración	de	parámetros

Declaración	de	variable

A.	El	Lenguaje	Java

633



Instrucción

A.	El	Lenguaje	Java

634



Instrucción	Expresión

Instrucción	if

Instrucción	switch

Instrucción	while:

A.	El	Lenguaje	Java

635



Instrucción	for:

Instrucción	break

Instrucción	try-catch

Instrucción	throw

A.	El	Lenguaje	Java

636



Instrucción	return

Bloque	de	instrucciones

A.	El	Lenguaje	Java

637



Expresión

A.	El	Lenguaje	Java

638



Asignación

Invocación	de	método

Lista	de	argumentos

A.	El	Lenguaje	Java

639



Expresión	aritmética

A.	El	Lenguaje	Java

640



Expresión	lógica

Creación	de	objeto

Expresión	de	cadenas

A.	El	Lenguaje	Java

641



Expresión	de	comparación

Conversión

A.	El	Lenguaje	Java

642



Literal

A.	El	Lenguaje	Java

643



Tipo

A.	El	Lenguaje	Java

644



C.	Resumen	de	Comandos	de	Windows

1.	Comandos	Ejecutables	de	Windows
A	continuación	encontrará	un	subconjunto	de	los	comandos	de	Windows	que	se	pueden
ejecutar	en	la	consola	o	intérprete	de	comandos	del	sistema	operativo.	Varios	de	estos
comandos	son	utilizados	en	los	archivos	ejecutables	(archivos.bat)	de	los	ejemplos	que	se
desarrollan	a	lo	largo	de	este	libro.

Para	obtener	la	lista	completa	de	los	comandos	válidos	utilice	el	comando	help	y,	para
obtener	mayor	información	de	un	comando	en	particular,	utilice

help		<comando>

Comando:

CD	o	CHDIR

Muestra	el	nombre	del	directorio	actual	o	permite	cambiar	de	directorio.

CD

Muestra	el	nombre	del	directorio	actual.

CD

Cambia	el	directorio	actual.

Comando:

	CLS

Limpia	el	contenido	de	la	pantalla.

CLS

B.	Resumen	de	Comandos	de	Windows

645



Comando:

	CMD

Inicia	una	nueva	ventana	del	intérprete	de	comandos.

CMD

Inicia	un	nuevo	intérprete.

CMD	/C

Inicia	un	nuevo	intérprete,	ejecuta	el	comando	y	termina.

CMD	/K

Inicia	un	nuevo	intérprete,	ejecuta	el	comando	y	permanece	activo.

Comando:

	COPY

Copia	un	archivo	a	un	directorio	de	destino.

COPY

Copia	el	archivo	origen	en	el	destino.	puede	ser	el	nombre	de	un	directorio	o	de	un	archivo.

Comando:

	DATE

Muestra	o	cambia	la	fecha	del	sistema.

DATE	/T

Muestra	la	fecha	del	sistema.

DATE

Muestra	la	fecha	del	sistema	y	permite	cambiarla.

B.	Resumen	de	Comandos	de	Windows

646



Comando:

	DEL	o	ERASE

Borra	uno	o	más	archivos.

DEL

Borra	cada	uno	de	los	archivos	especificados	en	la	lista	de	nombres.

puede	incluir	nombres	de	directorios	y	comodines	para	borrar	varios	archivos.

Comando:

	DIR

Muestra	el	contenido	(archivos	y	subdirectorios)	de	un	directorio.

DIR

Muestra	el	contenido	del	directorio	actual.

DIR

Muestra	el	contenido	del	directorio	indicado.

Comando:

	ECHO

Muestra	un	mensaje	y	permite	activar	y	desactivar	la	salida	del	mismo	comando	ECHO.

ECHO	ON

Activa	la	salida	de	mensajes	del	comando.

ECHO	OFF

Desactiva	la	salida	de	mensajes	del	comando.

ECHO

Muestra	el	mensaje	en	la	consola.

B.	Resumen	de	Comandos	de	Windows

647



Comando:

	EXIT

Termina	el	intérprete	de	comandos,	o	un	programa	de	comandos	(archivo	.bat).

EXIT

Sale	de	la	ventana	del	intérprete	de	comandos.

EXIT	/B

Sale	de	un	programa	de	comandos	(archivo	.bat)	sin	salir	de	la	ventana	del	intérprete.

Comando:

	FIND

Busca	una	cadena	de	texto	en	uno	o	más	archivos	del	sistema.

FIND	""

Busca	la	cadena	dada	en	los	archivos	especificados	por

.	puede	contener	comodines	para	especificar	más	fácilmente	los	archivos	y	directorios	en
los	que	se	quiere	hacer	la	búsqueda.

Comando:

	HELP

Brinda	la	información	de	ayuda	para	los	comandos	de	Windows.

HELP

Lista	todos	los	comandos	junto	con	una	descripción	abreviada.

HELP

Muestra	la	ayuda	detallada	de	un	comando	en	particular.

B.	Resumen	de	Comandos	de	Windows

648



Comando:

	MD	o	MKDIR

Crea	un	directorio	o	una	ruta	de	directorios.

MD

Crea	el	directorio	o	la	ruta	de	directorios	indicada	en	.	Si	para	ello	hace	falta	crear
directorios	intermedios,	este	comando	se	encargará	de	ello.

Comando:

	MORE

Muestra	por	partes	en	la	pantalla	el	contenido	de	un	archivo	o	la	salida	de	un	comando.

MORE

Muestra	los	archivos	incluidos	en	la	lista	haciendo	una	pausa	cada	vez	que	se	llena	la
pantalla.

comando	|	MORE

Muestra	la	salida	del	comando	haciendo	una	pausa	cada	vez	que	se	llena	la	pantalla.

Comando:

	MOVE

Mueve	archivos	y	cambia	el	nombre	de	archivos	y	directorios.

MOVE

Cambia	de	nombre	el	archivo	o	el	directorio.

MOVE

Mueve	el	archivo	al	destino	indicado.

Comando:

B.	Resumen	de	Comandos	de	Windows

649



	PATH

Muestra	o	establece	la	ruta	de	búsqueda	de	los	archivos	ejecutables.

PATH

Muestra	la	ruta	de	búsqueda	de	los	archivos	ejecutables.

PATH

Establece	las	rutas	de	búsqueda.	Diferentes	rutas	pueden	separarse	con	el	carácter	‘;’.
Puede	utilizar	la	variable	%PATH%	para	agregar	las	nuevas	rutas	a	las	establecidas	con
anterioridad.

PATH	;

Borra	todas	las	rutas	de	búsqueda	establecidas.

Comando:

	PAUSE

Suspende	la	ejecución	de	un	programa	de	comandos	y	espera	que	el	usuario	oprima	una
tecla	para	continuar.

PAUSE

Suspende	el	proceso	actual	del	programa	y	presenta	el	mensaje	"Presione	una	tecla	para
continuar...".

Comando:

	PROMPT

Cambia	el	símbolo	del	sistema	que	se	muestra	en	el	intérprete	de	comandos.

PROMPT

Cambia	el	símbolo	del	sistema	al	texto	indicado.	Existen	códigos	para	incluir	caracteres
especiales.

B.	Resumen	de	Comandos	de	Windows

650



Comando:

	RD	o	RMDIR

Elimina	un	directorio.

RD

Elimina	el	directorio	si	está	vacío.

RD	/S

Elimina	el	árbol	de	directorios	cuya	raíz	es	.

RD	/S	/Q

Elimina	el	árbol	de	directorios	cuya	raíz	es	sin	pedir	confirmación.

Comando:

	REM

Inicia	un	comentario	en	los	archivos	de	programas	de	comandos	(archivos	.bat).

REM

Introduce	el	comentario	indicado.

Comando:

	REN	o	RENAME

Cambia	el	nombre	de	un	archivo.

REN

Cambia	el	nombre	del	archivo.

Comando:

	SET

B.	Resumen	de	Comandos	de	Windows

651



Muestra,	cambia	o	elimina	las	variables	de	entorno	del	intérprete	de	comandos.

SET

Lista	todas	las	variables	del	entorno	y	los	valores	que	tienen	asignados.

SET

Muestra	el	valor	asignado	a	.

SET	=

Establece	la	cadena	dada	como	valor	de	la	variable	indicada.

Comando:

	START

Inicia	una	nueva	ventana	del	intérprete	de	comandos.

START

Abre	una	nueva	ventana	sin	ejecutar	ningún	programa	o	comando.

START

Abre	una	nueva	ventana	y	ejecuta	el	comando	indicado.

START

Abre	una	nueva	ventana	y	ejecuta	el	archivo	ejecutable	indicado.

Comando:

	TIME

Muestra	o	cambia	la	hora	del	sistema.

TIME	/T

Muestra	la	hora	del	sistema.

TIME

Muestra	la	hora	del	sistema	y	permite	cambiarla.

B.	Resumen	de	Comandos	de	Windows

652



Comando:

	TITLE

Establece	el	título	de	la	ventana	del	intérprete	de	comandos.

TITLE

Cambia	el	título	de	la	ventana	al	indicado.

Comando:

	TYPE

Muestra	el	contenido	de	uno	o	más	archivos	de	texto.

TYPE

Muestra	el	contenido	de	los	archivos	incluidos	en	la	lista.

Comando:

	VER

Muestra	la	versión	del	sistema	operativo	Windows.

VER

Muestra	la	versión	de	Windows.

Comando:

	XCOPY

Copia	árboles	de	archivos	y	directorios.

XCOPY

Copia	los	archivos	incluidos	en	el	directorio	de	origen	al	directorio	de	destino.

B.	Resumen	de	Comandos	de	Windows

653



XCOPY	/S

Copia	todo	el	contenido	(directorios	y	archivos)	del	directorio	de	origen	al	directorio	de
destino.

B.	Resumen	de	Comandos	de	Windows

654



D.	Tabla	de	Códigos	UNICODE
La	siguiente	tabla	muestra	los	principales	caracteres	UNICODE	usados	en	Java,	con	su
respectivo	valor	numérico.

33: ! 34: " 35: # 36: $ 37: %

38: & 39: ' 40: ( 41: ) 42: *

43: + 44: , 45: 46: . 47: /

48: 0 49: 1 50: 2 51: 3 52: 4

53: 5 54: 6 55: 7 56: 8 57: 9

58: : 59: ; 60: < 61: = 62: >

63: ? 64: @ 65: A 66: B 67: C

68: D 69: E 70: F 71: G 72: H

73: I 74: J 75: K 76: L 77: M

78: N 79: O 80: P 81: Q 82: R

83: S 84: T 85: U 86: V 87: W

88: X 89: Y 90: Z 91: [ 92: \

93: ] 94: ^ 95: _ 96: ` 97: a

98: b 99: c 100: d 101: e 102: f

103: g 104: h 105: i 106: j 107: k

108: l 109: m 110: n 111: o 112: p

113: q 114: r 115: s 116: t 117: u

118: v 119: w 120: x 121: y 122: z

123: { 124: | 125: } 126: ~ 161: ¡

162: ¢ 163: £ 164: ¤ 165: ¥ 166: ¦

167: § 168: ¨ 169: © 170: ª 171: «

172: ¬ 173: 174: ® 175: ¯ 176: °

177: ± 178: ² 179: ³ 180: ´ 181: µ

182: ¶ 183: · 184: ¸ 185: ¹ 186: º

187: » 188: ¼ 189: ½ 190: ¾ 191: ¿

192: À 193: Á 194: Â 195: Ã 196: Ä

C.	Tabla	de	Códigos	UNICODE

655



197: Å 198: Æ 199: Ç 200: È 201: É

202: Ê 203: Ë 204: Ì 205: Í 206: Î

207: Ï 208: Ð 209: Ñ 210: Ò 211: Ó

212: Ô 213: Õ 214: Ö 215: × 216: Ø

217: Ù 218: Ú 219: Û 220: Ü 221: Ý

222: Þ 223: ß 224: à 225: á 226: â

227: ã 228: ä 229: å 230: æ 231: ç

232: è 233: é 234: ê 235: ë 236: ì

237: í 238: î 239: ï 240: ð 241: ñ

242: ò 243: ó 244: ô 245: õ 246: ö

247: ÷ 248: ø 249: ù 250: ú 251: û

252: ü 253: ý 254: þ 255: ÿ 338: Œ

339: œ 352: Š 353: š 376: Ÿ 381: Ž

C.	Tabla	de	Códigos	UNICODE

656


	Prefacio
	Nivel 1: Problemas, Soluciones y Programas
	Objetivos Pedagógicos
	Motivación
	Problemas y Soluciones
	Casos de Estudio
	Comprensión y Especificación del Problema
	Elementos de un Programa
	Diseño de la Solución
	Construcción de la Solución
	Hojas de Trabajo

	Nivel 2: Definición de Situaciones y Manejo de Casos
	Objetivos Pedagógicos
	Motivación
	El Primer Caso de Estudio
	Nuevos Elementos De Modelado
	Expresiones
	Clases y Objetos
	Instrucciones Condicionales
	Responsabilidades de una Clase
	Eclipse: Nuevas Opciones
	Hojas de trabajo

	Nivel 3: Manejo de Grupos de Atributos
	Objetivos Pedagógicos
	Motivación
	Caso de Estudio Nº 1: Las Notas de un Curso
	Contenedoras de Tamaño Fijo
	Instrucciones Repetitivas
	Caso de Estudio Nº 2: Reservas en un Vuelo
	Caso de Estudio Nº 3: Una Tienda de Libros
	Contenedoras de Tamaño Variable
	Uso de Ciclos en Otros Contextos
	Creación de una Clase en Java
	Hojas de trabajo

	Nivel 4: Definición y Cumplimiento de Responsabilidades
	Objetivos Pedagógicos
	Motivación
	Caso de Estudio Nº 1: Un Club Social
	Asignación de responsabilidades
	Manejo de las Excepciones
	Contrato de un Método
	Diseño de las Signaturas de los Métodos
	Caso de Estudio Nº 2: Un Brazo Mecánico
	Hojas de trabajo

	Nivel 5: Construcción de la Interfaz Gráfica
	Objetivos Pedagógicos
	Motivación
	El Caso de Estudio
	Construcción de Interfaces Gráficas
	Elementos Gráficos Estructurales
	Elementos de Interacción
	Mensajes al Usuario y Lectura Simple de Datos
	Arquitectura y Distribución de Responsabilidades
	Ejecución de un Programa en Java
	Hojas de trabajo

	Nivel 6: Manejo de Estructuras de dos Dimensiones y Persistencia
	Objetivos Pedagógicos
	Motivación
	Caso de Estudio Nº 1: Un Visor de Imágenes
	Contenedoras de dos Dimensiones: Matrices
	Caso de Estudio Nº 2: Campeonato de Fútbol
	Persistencia y Manejo del Estado Inicial
	Completar la Solución del Campeonato
	Proceso de Construcción de un Programa
	Hojas de trabajo

	Anexos
	A. El Lenguaje Java
	B. Resumen de Comandos de Windows
	C. Tabla de Códigos UNICODE


