INTRODUCGIﬂ AA
PROGRAMACION

MANUAL DEL DESARROLLADOR

METODOLOGIAS, ANALISIS
Y DISENO DE UN SISTEMA

DESARROLLO DE APLICACIONES:
CARACTERISTICAS Y OBJETIVOS

PROGRAMACION LOGICA
PARA CUALQUIER LENGUAJE

APLICACIONES PARA ESCRITORIO,
WEB Y MOVIL

N

por JUAN CARLOS CASALE

APRENDA A PROGRAMAR SIN CONOCIMIENTOS PREVIOS ﬁg

// CONECTESE CON LOS MEJORES
%LIBRDS DE COMPUTACION

DOMINE EL

LENBUAJE LIDER ' ENTIENDA EL CAMBIO,
ENAPLICACIONES I

APROVECHESU
CLIENTE-SERVIDOR | POTENCIAL

(:‘-"L'u'1l . P g £ e
off % DESARROLLO / 0)}- DESARROLLO
) 320 PAGINAS B S » 320 PAGINAS
» ISBN 978-987-1773-97-8 N -

» ISBN §78-987-1773-79-4

: 'l"‘
PROGRAMACION wnFE Lk
DESITIOS WEB
PROFESIONALES

LAS MEJORES
PRACTICAS PARA
EL EXITO
PROFESIONAL

LEMRALE
THBLE

JLS el CONFELE VES]

” }} DESARROLLO / g ")) DESARROLLO / MICROSOFT
» 400 PAGINAS M0 2 352 PAGINAS
¥ ISBN 978-987-1713-07-7 . | ¥ ISBN 978-987-1857-38-8

LLEGAMOS A TODO EL MUNDO VIA »oca * Y sz - ‘
MAS INFORMACION / CONTACTENOS YA,

@ usershop.redusers.com ¢,+54 (011) 4110-8700 [-< usershop@redusers.com \1\ _—

#S0L0 VALIDD EN LA REPUBLICA ARGENTINA if **VALIDO EN TODO EL MUNDO EXCEPTO ARGENTINA \ ki

INTRODUCCION A LA
PROGRAMACION

APRENDA A PROGRAMAR SIN
CONOCIMIENTOS PREVIOS

RedUSERS

USERS

TITULO: Introduccion a la programacion
AUTOR: Juan Carlos Casale
COLECCION: ~ Manuales USERS

FORMATO: 17x24cm

PAGINAS: 384

Copyright © MMXII. Es una publicacion de Fox Andina en coedicidn con DALAGA S.A. Hecha el depdsito que marca la ley 11723,
Todos los derechos reservados. Esta publicacion no puede ser reproducida ni en todo ni en parte, por ningun medio actual o
futuro sin el permiso previo y por escrito de Fox Andina S.A. Su infraccion esta penada por las leyes 11723 y 25446, La editorial
no asume responsabilidad alguna por cualquier consecuencia derivada de la fabricacion, funcionamiento y/o utilizacion de los
servicios y productos que se describen y/0 analizan. Todas las marcas mencionadas en este libro son propiedad exclusiva de sus
respectivos duefios. Impreso en Argentina. Libro de edicion argentina. Primera impresion realizada en Sevagraf, Costa Rica 5226,

Grand Bourg, Malvinas Argentinas, Pcia. de Buenos Aires en IX, MMXIL.

ISBN 978-987-1857-69-2

Casale, Juan Carlos
Introduccién a la programacion. - 1a ed. - Buenos Aires : Fox Andina; Dalaga, 2012.
384 p. ; 24x17 cm. - (Manual users; 235)
ISBN 978-987-1857-69-2
1. Informética. |. Titulo
CDD 005.3

ANTES UE CUMPRAR

EN NUESTRO SITIO PUEDE OBTENER, DE FORMA GRATUITA, UN CAPITULO DE CADA UNO DE LOS
LIBROS EN VERSION PDF Y PREVIEW DIGITAL. ADEMAS, PODRA ACCEDER AL SUMARIO COMPLETO,
LIBRO DE UN VISTAZO, IMAGENES AMPLIADAS DE TAPA Y CONTRATAPA Y MATERIAL ADICIONAL.

RedUSERS @ &) redusers.com

Nuestros libros incluyen guias visuales, explicaciones paso a paso, recuadros
complementarios, ejercicios, glosarios, atajos de teclado y todos los elementos
necesarios para asegurar un aprendizaje exitoso y estar conectado con el mundo

de la tecnologia.

DOCA VO 7 7/ B
I #*

I/

4 PRELIMINARES

Juan Carlos Casale

Nacido en Salta capital, norte argentino,
se traslado a Cordoba capital para estudiar
Analisis de Sistemas de Computacion. Alli
concretd sus estudios y continua capacitan-
dose hasta el dia de hoy.

Iniciado en la Informatica por una gran
influencia y motivaciéon de su hermano ma-
yor, crecio avocandose al hardware, a las
metodologias para el manejo de equipos y
al ambito de la programacion en general.

Actualmente, es Analista de Sistemas y Administrador de
Empresas, con aspiraciones a la Licenciatura en Tecnologias de
la Educacion. También es docente de Informatica y coordinador
de area en laboratorios de Informatica del Colegio Universitario
[ES Siglo 21, ubicado en Cérdoba capital. Ademas, ha editado
distintos textos interactivos de estudio para la institucion en
donde se desempeiia.

E-mail: johncasale@hotmail.com

Dedicatoria
A mi hermano mayor, Walter, con quien comparti mi primera
PC, y me brindo6 siempre su apoyo incondicional.

Agradecimientos
A mi amada compafiera de vida, Cecilia, por acompafarme
durante todo el camino de desarrollo de este libro.
A Matias lacono, por confiar en mi y dar mis referencias;
ademas de ser un gran modelo para seguir en la Informatica.
A mi saper editora Belén, con quien formamos un gran equi-
po y mantuvimos siempre el optimismo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

Prologo

Cuando tenia diez anos, mi hermano lleg6 a casa con unas
cajas y yo, sinceramente, no entendia nada de lo que veia.

En ese momento, la computadora no era mas que un “futuro
juguete”; y pensar que hoy constituye mi herramienta de
trabajo y, también, mi juguete...

Después de haber quemado dos fuentes de alimentacion y de
sufrir algunos errores con las maquinas que tuvimos, empeceé
a interesarme mas en su funcionamiento y a pensar gué cosas
realmente productivas podia hacer con estos aparatos. Desde
entonces, tomé la decision de dedicarme a ellos, estudiando y
considerando la Informatica como mi vocacién. De a poco fui
aprendiendo sobre el desarrollo de aplicaciones —por aquellas
épocas, C++-, incursionando y rompiendo cosas del hardware
en varios equipos.

Al recibirme, se abrieron puertas que nunca habia
imaginado. La docencia se presento frente a mi, y desde
entonces, encontré mi nuevo don, que es capacitar. Hasta el dia
de hoy, soy feliz dando clases y aprendiendo de mis alumnos.
Es un gran orgullo verlos crecer y superar obstaculos.

Nunca pensé en ser capacitador, motivador y, mucho
menos, autor de libros. Hay oportunidades en la vida que nos
sorprenden, y esta en nosotros tomarlas o no. Mi consejo: es
preferible alimentar nuestra experiencia de pruebas y errores y
no desmotivarnos si las cosas no salen como lo esperabamos,
ya que el verdadero fracaso seria no haberlo intentado.

A lo largo del desarrollo, nos encontraremos con distintos
inconvenientes que nos dejaran alguna ensefanza para
seguir probando. Espero que esta obra sea una buena base
para iniciarse en el mundo de la programacion. Hoy en dia,
contamos con variada tecnologia y muchos medios a los cuales
podemos dirigirnos; esta en nosotros tomar las oportunidades
que ofrece el libro y continuar instruyéndonos en el desarrollo
de aplicaciones.

Juan Carlos Casale

www.redusers.com

<«

Y USERS | PRELIMINARES

El libro de un vistazo

En este libro encontraremos todas las bases necesarias para iniciarnos
en el desarrollo de programas informaticos vy, asi, crear nuestro primer
software. A lo largo de esta obra, iremos aprendiendo la logica de la
programacion a partir de modelos practicos que facilitaran la visualizacion

y comprension de los temas.

* g

DESARROLLO DE APLICACIONES

Por qué deseamos realizar una aplicacidn

de software y cual es su funcionamiento
interno. En este primer capitulo, conoceremaos
los dmbitos en donde podemos aplicar los
desarrollos de software, qué precisamos tener
en cuenta a la hora de desarrollar y qué hay
detras de las aplicaciones informaticas.

*

INICIO DE UN DESARROLLO

En este capitulo veremos las metodologias
que se utilizan en el mercado del software para
llevar adelante proyectos de programacion.
También trabajaremos sobre el analisis
funcional, el ciclo de vida de un software y el
disefio necesario para iniciar la programacion

de aplicaciones.

%*

INGRESO AL MUNDO DE LA

PROGRAMACION

Empezaremos por la base de la programacion,
constituida por el pseudocddigo, es decir,
el lenguaje humano que nos permite hacer

» www.redusers.com

“pensar” a una maquina. En este capitulo
veremos las nomenclaturas que

se utilizan para escribirlo y, asi,
determinar el funcionamiento interno

de un desarrollo de software.

' A

PRIMER PROYECTO
EN VISUAL BASIC

En este capitulo pondremos en practica lo
aprendido en pseudocddigo, adentrandonos
ya en un lenguaje de programacion que

es reconocido por su facilidad de uso.
Veremos un entorno de desarrollo y las
caracteristicas del lenguaje en si, para asi
comenzar con nuestra primera aplicacién.

bl 0

PRIMER PROYECTO EN C++

"4'4"4

Sumando una experiencia diferente al
lenguaje estudiado en el capitulo anterior,
trabajaremos con C++ en un entorno

de desarrollo diferente. De esta forma,
podremos reconocer las caracteristicas
mas importantes que encierra este
lenguaje y seguiremos confeccionando
pequenas aplicaciones.

INTRODUCCION A LA PROGRAMACION

*

ESTRUCTURA DE DATOS

EN LA PROGRAMACION

En este capitulo veremos algunas de las
estructuras de datos mas utilizadas en la
programacion de cualquier lenguaje. Aqui
repasaremos las nociones de: tipos, listas,

colas y pilas; y trabajaremos en el desarrollo

logico de la programacion.

*

NORMAS GENERALES EN LAS

INTERFACES GRAFICAS

A la hora de utilizar diferentes dispositivos
o medios que nos permitan mostrar nuestro

desarrollo, debemos tener en cuenta ciertas
pautas utiles. Estas nos permitiran la
confeccion y el disefio de una interfaz
funcional y armdnica desde el lenguaje

de programacion Visual Basic.

ALMACENAR INFORMACION
EN ARCHIVOS

Para ir dando un cierre a los temas vistos

a lo largo del libro, aprenderemos a
almacenar datos en un archivo. De esta
forma, cerraremos la generacion de nuestras
primeras aplicaciones en un lenguaje

de programacion.

Alo largo de este manual podra encontrar una serie de recuadros que le brindaran informacion complementaria:
curiosidades, trucos, ideas y consejos sobre los temas tratados. Para que pueda distinguirlos en forma mas sencilla,

cada recuadro esta identificado con diferentes iconos:

—

CURIOSIDADES
E IDEAS

DATOS UTILES
Y NOVEDADES

SITIOS WEB

www.redusers.com &

RedUSERS

MEJORA TU PC

Lared de productos sobre tecnologia mas
importante del mundo de habla hispana

Libros
Desarrollos tematicos en
profundidad

Coleccionables
Cursos intensivos con
gran desarrollo visual

uuuuu

aacxe, Revistas
—=———Z== lLas Ultimas tecnologias
— . explicadas por expertos

b
A
a0

s

RedUSERS

redusers.com
Noticias al dia

downloads, comunidad

PP T ———

Newsletters

El resumen de noticias

gue te mantiene actualizado
Registrate en redusers.com

RedUSERS PREMIUM

prem:um.redusers.cum

Nuestros productos en version digital con
contenido ampliado y a precios increibles

Usershop

usershop.redusers.com

El ecommerce de RedUSERS, revistas, libros
y fasciculos a un clic de distancia. Entregas
a todo el mundo

INTRODUCCION A LA PROGRAMACION

Contenido

Sohreel aibor ..o
Prologooeiemmmssmmmssssssmsssssss s ssssssssns sssasns
El libro de un vistazo........coerrsmeemasnsmsssssssnansens
Informacion complementaria.....commmemmss

INEFOUUCCION v.vvvvesresressrssmrsssssssssssssmsssnasmsssssssnsssasmssrnss

*

Desarrollo de aplicaciones

Desarrollo de aplicaciones.. ... mesmmseremssssnsmssnnrsmens

Propésitos para aprender a desarrollarcoieeee

Tipos de aplicACIONESvvveeerersssssssnsnen

ADICACIONES WED.......cceensressmrsrmnssnssssamsrsnnssasens
Aplicaciones de escritorio.....uemecmeiresserressens
Aplicaciones moOviles ..o ceceeceem e v vaeesaeens

Interpretacion de las aplicacionesc..onmmronsse

Entrada/Proceso/Salida........cuisminmencssmssnssecnss
Primeras tareas de un desarrollador..........ccccccnenveeen
Qué es un algoritmo...ce e
Qué es un lenguaje de programacion ...

Etapas en la resolucion de un problema.......cueeenese

~ o B

12

14
15

.18
18
19
20
20

RESUNME N cisissivissnsinssmnssissssissmsssisiasimmansinsnsinsmati

Retrdades oo it i e

*

Inicio de un desarrollo

Metodologias de desarrollo.......c.ecuiimmmsssemninssennns
Tipos de metodologias......veicieeeceennes
Ciclo de vida de un desarrollo..........coiennincnniann.
Funciones del ciclo de vida.........ccvuermvunermnsssnssnsns 42
Roles profesionales ...
Modelos de ciclo de Vida.......covvinmiimnmnn.
Generalidades sobre metodologiaseeeeveeevveveenes 50
Analisis de SIStEMA ..o e
Relevamientocoe e e,
Disefio de un sistema.....v i s
Diagrama de CAs05 & USD.....ceerevissersrrersmrsssensmrenes
Profotlpes:naiiniiniannndasnaisise
Implementacion del desarrollocceeeiiniienninees
Prueba o testing de aplicaciones.......cceeeeeeeeecenrans
Capacitacion y formacion del usuario

LT | [P VS T Y S R,

ACLIVIHALES ... s s s

*

Ingreso al mundo
de la programacion

La légica de un humano y de una maquina
Pseudocddigo: el lenguaje humanocccoonees
Normas para el pseudocotign.......eeemeermesernenrans
Qué son y cémo se usan las variables.............
Como se utilizan los operadoresooeeveveeceen 80
Todo tiene un orden en la programacion.........
Estructuras de control ... nvnemrunnsnns

Tipos de datos estructurados.......ccveennmnnnnen

www.redusers.com

35
36

38

............ 39

41

43
44

51

............ 53

.57
58
62
65
.65
-1
67
...68

—i]
—
71
L

—

.109

<«

10 PRELIMINARES

Mechor i miasianiuinmnnnicannaldlo Tipos te datos ... emisiossss sossissssssessne 2 U
MaLFiZcooereeeeseeme s sesresnms sesssrssss s s esnssnsnsmsessnee L 1Y Declaracion de variablescoccvccnecnncinee. 204
Utilizar funciones y procedimientos.........ccevee.. 120 Inicializar Variables. ... i vernencrsmsrnenesnssnssens 207
Ambito de las Variableso..ooeueeseeereseresrensens 121 Formas de declarar constantes..........ccceceeecceeeee 211
FUNCIONES susiuiaicemnunnamisiiisimamissinal 2L Como se utilizan los operadores.......ccoveeceenivennnnn 213
ProcedimMientosco e eisamsnsmes essissssssns suss 127 Asignacidn (s k i Gihai i g e 213
RESUMBN ... evrsrrasmssesrsssssasrsssessssssmssssesesssassrsssssssss L2 Operadores aritmeEticos. ... vwreeismnrncsnnssen 214
Actividades ... cicinnisiiusnmnsansssmansm Lol Asignacion compuesta.........cceerrnssecenrsssesieesne 215
Aumentar ¥ disminuir ... ccvnsernisieman e 216

* Operadares relacionales y de igualdad................. 216
Operadores 10giC0S ..uweir e veemersereereessssmrsssesreseas 217

Primer proyecto en Visual Basic Operador Condicional (2)msmermesorens 219

Lenguajes de programacion.........eesmserennns 132 Operador coma) e 20
Tipos de 1engUAJEscuuimemsmsmsmessssmrssmessnesnes L3E

Interfaces graficas........ccceremiseenrmssssenrnssascnssasenens L34
Nomenclatura en pseudocédigo
y lenguajes de programacioncceneeennesns 138

Lenguaje de programacion:

TR g A TAEATE I = - T ————————— . ||
Creacion de Proyectoswemresrserseseressrsneseresers LA0
Qué son y como se usan las variables..................146
Como se utilizan los operadoresccuvereenes 154
Todo tiene un orden en la programacion........... 159

Tipos de datos estructurados.........oeeveeceveirneeenes 168

Uso de controles BASICOS......e.eeeecesseeeresnereeennen LTS Operadores bitwise 0 bit a bit..eeeeecveenreeern s 220

2 (T[] SO SR P E RN PPt | f | Tipo de operador de conversidn explicita.............221
ACHIVIAARS ... ocecessnsrrssaiinareimssiminsonaerissnsrsirvsiresins LD Operador SIZE0F () ..o isissmsrssmmssssserssenss 222
Precedencia de los operadores........uucvnneeeeneas 222

* Interactuar con el USUAKIO ... 228
Cout - salida estandar ... 224

Primer proyecto en C++ Cif — eNLrA0A ESLANGAF .rooor oo rrnr 226
IDE SharpDevelopcoomememssssssmssssessssssssnssssasess LI0 Todo tiene un orden en la programacion..............230
Funcionamiento del entorno de programacion.....192 Estructura condicional..........oucrmecsrssensssmmessssesnsn @l
Lenguaje de programacitin: G4+ e rrerersennsen. 195 Estructuras selectiva (SWitch).....ceceececerecercennee 232
Nombre de BSPACI0S ...coeerevecrrsmsenrersessnrssssnsrnsses 196 Estructuras repetitivas (I00p)eeereeccvnneneeneas 234
Conceptos basicos del COdigo ... vrerrereeresnaeas 199 Salto de declaraCiones.. ... voveeeeemeessssssreres e sanes 239
Primera aplicacion en G4+ meermemmasannn 201 Datos estructurados: arrays ... 093

Manejo de datos en C++ ..ceviversennssmsnninsssssssnsnnnn e 203 Manejo de Arrays ... smrmsmmsimssssenssmsirns 03

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

Sintaxis de inicialiZacionceeveerererseerseoresons
Arrays multidimensionales ...
RECOEVEE AIVANS vovisiisivsiinssinsmcsnsuisissssnriiani sion
RESUMEN ...covvniiicniesnsssssmnssssssssssssssnssasasssss ssnsssssns s

PEEIVIIARS ..o ccnisnmn s s s pe S G A

*

Estructura de datos
en la programacion

Tipos de estructuras......commmemsms
Datos simples y estructurados..oveererrsrrssnrensenes
Estructuras dindmicas y estaticas.....wevmemnn
Estructuras dindmicas y punteros ...

I3

Primera Parte

Dato Sig

1

Dato Sig

3 Mull

244
246
248
249
250

252
253
256
257
268

Segunda Parte

Listasenlazadas < ..iems i iiamiuins s
Listas doblemente enlazadasccvcieiiininnes
Crearund:pila ot
Insertar en una pila (pUsh) ..ooveeeeemsesseenens

Eliminar en una pila (POPl....coceeceerermersvnssseresenns

269
293
312
313
316
318

Listar los elementos de una pilaeeveeecreevennnne
Buscar elementos en una pila..........ccoeeeeeea.
BOla s e
Grear una cola....occe i e ce e
Insertar en una Colaccevceeereennsermisaonsrassssnnnas
Eliminar elementos de una colaccoceeeenna.
Listar los elementos de una cola
Buscar elementos en una colaceveeeenne.

RESUIMEN 1ouveiurnssunsssnssasssnssssmssssssssasass sessnssmsmssnsensssen

Actividadesccouinemninnen

*

Normas generales en las

interfaces graficas

Normas de diseiio de iNterfazccceeveeeeennnnecnen

Interfaces de usuario: evolucion

y estado del arte actUal ... ervevmeeesnsenerenns
Fundamentos del disefio de interfaz
Interfaces de escritorio/web/movilcccceveverveneneee
Componentes UsUalescvvmnsssnncisnsensnn 349
Componentes usuales - visuales
Confeccidn de interfaces en Visual Basic........
L LT T

ACLIVIHALES ... s s s

*

Almacenar informacion en

archivos

Almacenar en archivo de texto (FileSystem)

RESUMEN ..uvvrvansrsssssesss

RCEAES - circnsim st dsiscesic

*

Servicios al lector

Indice 1eMALICO.......comemmecmmssmmemessraasssasemamsassosessmes

www.redusers.com

327

w330

11

320

320
323
325

328

332
333

w334

336
337
345

349

355

2357

365

.366

368

375

376

378

12 O0=F=45 PRELIMINARES

Introduccion

Ante un mundo en constante innovacion y descubrimiento,
es el desarrollo del software el que nos permite gestionar la
tecnologia en hardware. Estos avances nos ofrecen un amplio
abanico de posibilidades, en donde podemos desempenarnos
como desarrolladores, ya sea en la industria de los video
juegos, las aplicaciones web, los sistemas informaticos de
organizaciones, entre otros.

Si hacemos una observacion diez anos atras, veremos los
cambios revolucionarios que ha traido la era digital en sus
avances tecnologicos, y como ellos han afectado en nuestra
comunicacion diaria. Para dominar esta variedad de dispositivos
—-tanto smartphones, computadoras, tablets, Smart TV,
ultranotebooks, etc.—, necesitamos desarrollar programas que
nos permitan interactuar con ellos.

Este libro esta dirigido a todos aquellos que quieran iniciarse
en el mundo de la programacion y conocer las bases necesarias
para crear su primer software. A lo largo de su contenido, nos
plantearemos qué nos impulsa a comenzar un desarrollo de
aplicaciones y qué partes lo constituyen. Cuando conozcamos
el manejo y la confeccion de los programas, empezaremos a
incursionar en la logica misma de la programacion y podremos
movernos en cualquier tipo de lenguaje.

En definitiva, el contenido del libro no se dirige hacia un
unico camino, sino que se propone brindar las herramientas
necesarias para que sea el lector quien elija sobre qué escenario
trabajar: escritorio, web, movil, consola de videojuegos, etc.
Todas estas oportunidades que ofrece la programacion fueron
alimentando la pasion y la experiencia que hoy presento en esta
obra. jQue la disfruten!

» www.redusers.com

ARNRRRRRRRENNNN

4744

Desarrollo de
aplicaciones

Es fundamental conocer y comprender los elementos iniciales
de los procesos que debemos tener en cuenta para incursionar
en el mundo de |la programacion de aplicaciones. En este
capitulo vamos a desplegar varias interfaces de soporte que

utilizaremos en nuestros futuros desarrollos.

v Desarrollo de aplicaciones.......14 v Primeras tareas
Propositos para aprender de un desarrollador..................26
didesarmllar e LD Qué es un algoritmO .eeevecvecerersereress 27

v Tipos de aplicaciones............... 18 v Etapas en la resolucion de un _
Aplicaciones webcoeveeeveeeecvenennne 18 ProBlema .. uieeeaiaessaaseasasanasanians 35 |

Aplicaciones de escritorio ..., 19 '
Aplicaciones moviles........ceueeeeeennn 20 b (1]][] . 1
v Interpretacion de las v Actividades.......conssessssnssnssassassas 30

aplicacionescccceeseesessecsennenns 20

AAA

Servicio de atencion al lector: usershop@redusers.com

14 1. DESARROLLO DE APLICACIONES

Desarrollo de aplicaciones

Como futuros desarrolladores, nos propondremos encontrar
distintas soluciones posibles para resolver una situacion mediante la
confeccion de aplicaciones informaticas. En los siguientes parrafos,
vamos a conocer el significado del desarrollo de aplicaciones, y la
utilidad que nos ofrecen sus diferentes técnicas y herramientas.

En el mundo actual, todos los dias nos encontramos con distintos
desarrollos de aplicaciones, como, por ejemplo, el programa que
controla nuestro teléfono moévil. A su vez, contamaos con programas
que, en tiempo real, nos permiten traducir diferentes idiomas,

conectarnos a Internet, jugar, llevar un listado
de lo que compramos en el supermercado

TODOS LOS registrando su codigo de barras y estimando el
ELEMENTOS costo total, y muchas alternativas mas.

i Podemos notar que algunas aplicaciones son mas
ELECTRONICOS basicas, y otras, mas complejas. Si bien es posible
CONTIENEN considerar el teléfono moévil como un aparato

complejo, el desarrollo de aplicaciones también
impacta en otros elementos de uso cotidiano, tales
como las heladeras inteligentes, el programa del
microondas, las alarmas, y otros. El mundo en su
totalidad se rige por programas desarrollados mediante algun lenguaje
de programacion. Todos los elementos electronicos, en menor 0 mayor
grado, contienen aplicaciones especificas para cumplir su mision.

Una definicion que podemos encontrar en primera instancia sobre el
desarrollo de una aplicacién es: confeccionar, probar y buscar errores
de un programa informatico. Dicho programa va a soluciona una
situacion o problema comunmente llamado “modelo de negocio”, que

APLICACIONES

444

A medida que la tecnologia avanza, vamos incorporado “inteligencia” en distintos dispositives. Es asf que

algunas marcas conocidas fabrican heladeras, aspiradoras, lavadoras y secarropas que incluyen comuni-
cacion por medio de WiFi, y otras, incluso, fienen camaras. Todo esto permite que el usuario controle el
dispositivo por medio de un software instalado en su dispositivo movil.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 15

puede ser, por ejemplo, cuando nuestra empresa necesita llevar un
inventario de productos. Para poder confeccionar un programa
informatico, precisamos emplear un lenguaje de programacion que nos
permita realizar la prueba o busqueda de errores.

> Figura 1. Con
este software,
el sistema de
manejo de los
alimentos permite
a los usuarios
conocer queé hay
en la heladera,
donde esta cada
producto y cual
es su fecha de
caducidad.

Propositos para aprender a desarrollar

Cuando nos proponemos aprender a desarrollar y programar
aplicaciones o sistemas, lo hacemos para cubrir determinadas
necesidades, ya sean personales o de terceros, y asi obtener un
ingreso economico a cambio de nuestro trabajo.

Uno de los pasos fundamentales que debemos efectuar antes
de comenzar es aprender la programacion logica. Esto es
importante porque, si bien los lenguajes de programacion tienen sus
particularidades, las soluciones logicas son analizadas de un solo
modo. De esta manera, conocer este tema claramente nos permitira
migrar a todos los lenguajes que queramos.

www.redusers.com &

16 =4 1. DESARROLLO DE APLICACIONES

Aprender a desarrollar aplicaciones nos ofrece muchas posibilidades,
ya que podremos realizar programas en cualquier plataforma, ya
sea para la Web, Windows, Linux o Macintosh; incluso, para moviles,
television inteligente, etc. El proposito principal es tener la base logica
de programacion, y luego elegir cual es el lenguaje en el que deseamos
poner nuestro mayor esfuerzo. Puede ser el que esté latente en el
mercado, uno especifico de un area (como para los trabajos cientificos) o,
simplemente, aquel en el que nos sintamos mas comodos para trabajar.

Al adquirir estos conocimientos, podremos tomar cualquier modelo
de negocio o problema funcional de una organizacion, y resolverlo
mediante la programacion de una aplicacion.

Resolver problemas: metas y objetivos
Nuestra tarea principal sera realizar una aplicacién para resolver un
problema en particular, o tal vez lo hagamos solo por diversion. Por
ejemplo, podemos crear un programa para llevar en nuestro teléfono
movil una agenda que nos informe los dias de estreno de nuestras
series favoritas de television. También podemos aplicarlo en el trabajo,
para agilizar la toma de decisiones y digitalizar la informacién referida
al desempefio de los empleados. Ambos son modelos de negocios
distintos que plantean un problema, y nosotros debemos encontrar una
solucion. Estas necesidades pueden surgir desde distintos ambitos:
¢ Personal: realizar pequefias o amplias aplicaciones para un fin que
nos beneficie. Por ejemplo: elegir una aplicacion que nos indique
el consumo de Internet en nuestro teléfono movil o programar una
pagina web personal.
e Empresarial: realizar sistemas informaticos, partes o modulos que
tenemos que programar; incluso, arreglar un codigo que haya sido

444

En la actualidad existe una amplia variedad de sitios dedicados a presentar ofertas laborales de modo
freelance, permitiendo establecer contacto con las companias y los recursos humanos. Algunos gjemplos

de ellos son: www.smartise.com, www.trabajofreelance.com, www.mercadoprofesional.com,
www.stratos-ad.com y http://pcmasmas.com.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 17

confeccionado por otro. Por ejemplo: utilizar nuestros conocimientos
para mejorar un sistema de inventario o realizar una pagina web para
una organizacion que cuenta con un moédulo de ventas online.

Tengamos en cuenta que el ambito empresarial es mas duro, ya que
requiere seguir ciertas pautas y criterios que veremos en los proximos
capitulos. En cambio, cuando las metas son personales, podemos
dedicarnos a desarrollar de manera freelance, siendo nosotros
mismos el sustento econémico, y quienes
organizamos las entregas y los horarios de
trabajo. Una meta personal deberia ser aprender EL PLANTEO DE
cada dia mas para acrecentar nuestra experiencia, METAS ES UN PUNTO
v saber que, por medio de errores y pruebas,
iremos optimizando nuestro trabajo.

EXCLUYENTE EN EL

Las metas empresariales son estrictas y, en DESARROLLO DE
general, nos afectan, ya que, por ejemplo, nos
imponen un limite de tiempo especifico que APLICACIONES

debemos cumplir. Dentro del desarrollo de

aplicaciones, una meta empresarial que debe

influir en nuestros objetivos personales es absorber los conocimientos
del grupo de trabajo, para luego aplicarlos a los nuevos desafios que
vayamos afrontando mas adelante.

El planteo de metas es un punto excluyente en el desarrollo de
aplicaciones, porque tener en claro hacia donde queremos llegar nos
motivara a nivel personal a seguir investigando, buscando y probando.
Al mismo tiempo, nos ayudara a plantearnos los objetivos buscados
sobre los desarrollos a realizar. De esta forma, algo que parece
tan sencillo como plantearse una meta y conocer los objetivos nos
permitira organizar y optimizar el desarrollo.

' LENGUAJE BASIC

A

BASIC originalmente fue disenado en 1964 como un medio para facilitar el desarrollo de programas de
computacion a estudiantes y profesores que no se dedicaran especificamente a las ciencias. Su aparicion
como herramienta de ensefianza estaba disenada para la primera computadora personal. Con los anos,

el lenguaje se popularizd e influyd en gran medida en otros, como Visual Basic.

www.redusers.com &

18 [=F=zE 1. DESARROLLO DE APLICACIONES

En resumen, a la hora de desarrollar una aplicacion que resuelva
un modelo de negocio o problema, ya sea personal o empresarial,
debemos tener presentes nuestras metas, evaluar si el alcance del
desarrollo es a corto o largo plazo, y establecer claramente cuales
seran nuestros objetivos a seguir.

Hasta aqui hemos visto como el desarrollo de las aplicaciones nos
servira para crear o modificar aquellos programas que permitiran
realizar una o varias actividades. En los proximos capitulos,
conoceremos como deberia conformarse un equipo de desarrollo, en
funciéon del planteo de soluciones a problemas, metas y objetivos.

Tipos de aplicaciones

En el mercado informatico actual, nos encontramos con diferentes
soportes de hardware que albergan variados tipos de aplicaciones, ya
sea exclusivas de Internet, del sistema operativo o de un aplicativo
en particular. Asi como antes comenzamos a formar el concepto de
desarrollo de una aplicacién, ahora vamos a reforzarlo haciendo un
repaso de las aplicaciones existentes, de modo de tener una idea
grafica de qué podemos considerar para nuestro trabajo.

Aplicaciones web

Las aplicaciones web son herramientas muy comunes en
organizaciones que desean ampliar las fronteras de sus modelos de
negocios o, simplemente, alcanzar la autogestion para empleados,
alumnos, docentes, etcétera.

, 1%
) “QUE ES ELSOFTWARELIBRE

Si bien muchas veces el término software libre se confunde con freeware, es importante tener en cuen-

fa que se trata de conceptos distintos. La diferencia principal reside en que este dltimo no tiene como
condicion ser gratuito. La denominacion de “libre” se debe a que son programas de codigo abierto
{Open Source), y es en ese punto en donde se encuentra la esencia de su libertad.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 19

Algunas paginas web que poseen una programacion agradable son:
e Portal de bancos (todos tienen autogestiones completas, donde se
pueden hacer extracciones, movimientos, pagos, etc.):
- Wwww.macro.com.ar
- www.santanderrio.com
- www.hsbc.com
- www.ichc.com.cn
e Portal educativo (permite registrar usuarios y contrasefias, publicar
contenidos, efectuar busquedas, etc.):
- www.educ.ar
e Portal de juegos (permite registro de usuarios, subir listas de
puntuaciones, compartir comentarios, etc.):
-‘www.armorgames.com

Hay una amplia variedad de sitios web destinados a distintos rubros,
como puede ser el automotriz, en donde es posible personalizar o armar
autos a gusto, elegir colores, definir agregados, etc. Esto nos demuestra la
variedad de trabajo que se puede realizar en los desarrollos para la Web.

Aplicaciones de escritorio

Las aplicaciones de escritorio son aquellas que funcionan sobre
un sistema operativo de PC (computadora personal) o notebook.
Los desarrollos en este ambito también son enormes, y podemos
encontrarnos con algunos muy costosos, utilizados
por grandes empresas; y con otros gratuitos y

utiles que pueden servirnos para diferentes tareas. EXISTEN DISTINTAS
Por ejemplo, podemos dar un vistazo a: VERSIONES DE
¢ www.softpedia.com

¢ www.softonic.com PRUEBA QUE SON

GRATUITAS PARA

Veremos que muchos de estos programas
cuentan con un tipo de distribucion llamado NUESTRO EQUIPO
trial. Se trata de una instalacion de prueba,
generalmente por un maximo de 30 dias a partir
de su instalacion, que suele tener funcionalidades limitadas. Otras
versiones de prueba gratuitas pueden ser shareware o freeware, que
podemos instalar y utilizar en los equipos que queramos.

www.redusers.com &

20

1. DESARROLLO DE APLICACIONES

Debido a la amplia variedad que existe en el mercado, en este libro
vamos a presentar las aplicaciones mas destacadas de este momento. Una
de ellas es Adobe Photoshop, reconocida por sus famosos retoques de
imagenes. Frente a esto, es bueno saber que existen otras alternativas
gratuitas a las que podemos recurrir, como es el caso de GIMP. Para
conocer mas sobre este soft, podemos ingresar en www.gimp.org.

Aplicaciones moviles

Son aplicaciones gue se utilizan en equipos moviles, como teléfonos
celulares o tabletas. Suelen ser muy similares a las de escritorio, ya
que permiten realizar las mismas tareas, aunque el ingreso de datos es
tactil o por voz. Para visualizar algunos ejemplos, podemos visitar la
pagina del mercado de Android, donde hay una infinidad de opciones
gratuitas y pagas: https://play.google.com/store.

Interpretacion
de las aplicaciones

Hasta aqui hemos realizado una introduccion referida a lo que
podemos encontrar en el mercado del software; ahora aprenderemos
como es el funcionamiento interno de un programa y cuales son los
aspectos mas importantes que debemos tener en cuenta, para asi
conocer el trasfondo de lo que vamos a desarrollar.

El proceso de funcionamiento puede ser sencillo si lo trabajamos
con ejemplos, pero se vuelve mas complejo en el proceso légico real.
No obstante, todas las aplicaciones suelen tener la misma estructura de
ejecucion. Para comenzar, no ahondaremos en el hardware implicado,
pero si en la interpretacion de un programa por medio del equipo
informatico. Debemos tener en cuenta la manera en que un sistema
de computos electronico interpreta la informacion y como nosotros,
futuros desarrolladores, la vemos. Todo comienza por los famosos
bits de datos. Un bit representa la unidad de medida mas pequena en
informacién digital, y tiene dos estados: 0 o 1; generalmente, el 0 se
representa como cerrado (o negativo) y el 1 como abierto (o positivo).

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 21

Una aplicacién envia Es procesado

informacion para en lenguaje maquina

modificar una imagen 0101111110110 por Reioma un[esiiado
y pixelarla el microprocesador

» Figura 2. Una forma sencilla de ver el funcionamiento del programa en
la computadora.

En la Figura 2 se muestran diferentes agentes que debemos tener
en cuenta en el uso de un dispositivo informatico y la comunicacién
entre los equipos. Es importante saber que podemos utilizar nuestro
hardware -ya sea una PC, un teléfono mavil o una tableta- gracias a un
software base o aplicacion base llamado sistema operativo. Sobre este
sistema es posible instalar diferentes aplicativos, como: paquetes de
oficina, procesadores de texto, planillas de calculo, juegos,
herramientas de desarrollo, de disefio, y otros. El sistema nos permite
el uso de nuestro hardware y, ademas, actiia como intermediario entre
la aplicacion y los usuarios.

Hasta aqui hemos visto que las aplicaciones se comunican con
nuestro hardware por medio de un protocolo binario (0 y 1), conocido

C es un lenguaje de programacion creado en 1972, orientado a la implementacidn de sistemas operativos,
concretamente, UMIX. Es el lenguaje de programacion mas popular para crear software de sistemas y aprecia
do por la eficiencia de su codigo. Fue desarrollado, originaimente, por programadores para programadores.

www.redusers.com &

22

1. DESARROLLO DE APLICACIONES

como lenguaje de maquina. Para entender la comunicacion cotidiana
que existe entre los usuarios y las aplicaciones, podemos decir que, en
la actualidad, la interaccion se da por medio de interfaces graficas; es
decir, de una manera visual, a través de iconos, colores y formas.

Sin embargo, no podemos limitarnos a decir que la unica interfaz es
la visual, porque existen diferentes aplicaciones que utilizan varios de
nuestros sentidos: tacto, oido e, incluso, olfato.

Aplicaciones

ﬁqnaﬁicenrg Om?ﬂce %9“3[6

E1-|:

SOFTWARE
Sistema operativo
@ Windows
Mac OS q-(, phone
Procesador, memoria, etc.
HARDWARE

Figura 3. Esquema sencillo referido a la comunicacion de los
elementos en un sistema informatico.

Si nos detenemos un momento a revisar qué es en realidad una
interfaz y cuales son sus diferentes significados, encontraremos
que existe una gran variedad que nos involucra como usuarios. A
continuacion, veamos algunos ejemplos.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 23

LOS SENTIDOS

v DESCRIPCION v DISPOSITIVOS

Vista Uno de los sentidos mas involucrados para - Monitores
interactuar con los diferentes dispositivos, - Televisores
en especial, para la salida de informacion. - Webcams

Existen dispositivos especiales para ciertas -Vinchas que reconocen los movimientos ocula-
discapacidades, gue pueden usarse para res: www.youtube.com/watch?v=A92WNMd4 6V
interactuar en las pantallas como puntero

de mouse.

Difato En desarrollo constante, se intenta involucrar ~ No hay nada concreto desarrollado
este senftido en algun dispositivo para perci-
bir aromas por medio de una aplicacion.

Tabla 1. Aqui se pueden ver los sentidos humanos que se involucran en
diferentes componentes tecnologicos.

@ FREEWARE

Podemos considerar freeware a todo aquel programa que se distribuya de manera gratuita, sin ningdn
costo adicional. Uno de los grandes ejemplos en este rubro es la suite de navegador, cliente de correo
y noticias de Mozilla, como asi también el navegador y las herramientas de Google. Una pagina que

podemos visitar al respecto es www.freewarehome.com.

www.redusers.com <«

24 D=4 1. DESARROLLO DE APLICACIONES

> Figura 4. La
botonera de un
ascensor, como
tipo de interfaz
tactil, nos permite
enviar la orden al
dispositivo.

Tomando este tema como una pequeia introduccion acerca de coémo
los sentidos se involucran en distintas interfaces que podemos utilizar,
en este caso nos dedicaremos a interfaces graficas y tactiles, las que
mas utilizamos en nuestra vida cotidiana, al menos por ahora.

! < Figura 5. Otro

EEE ejemplo cotidiano

= de interfaz tactil

: :" es el panel de un

Snw microondas, que

) * utilizamos para
N programar la

coccion.

Para concluir con este tema, podemos decir que la interacciéon
humana con un dispositivo electréonico siempre va a llevarse a cabo por
medio de una interfaz. A su vez, para que esto ocurra, la interfaz debe
contener algun software que interactie con el hardware del dispositivo,
y asi nos permita obtener el resultado deseado.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 25

Figura 6. La
interfaz de la
mesa con tablero
translucido actua
al identificar el
movimiento de los
objetos sobre ella.

Entrada/Proceso/Salida

La entrada es el ingreso o comando de datos que vamos a realizar
sobre un dispositivo, como, por ejemplo: tocar la pantalla, escribir,
mover el puntero del mouse, hacer el movimiento con un joystick, etc.
Por lo tanto, toda entrada se hara por medio de un dispositivo, como
puede ser una pantalla tactil, un teclado, una webcam o un mouse.

El proceso es el trabajo, la interpretacion y el calculo de la
informacion ingresada. Esta informacion puede ser un movimiento
del mouse, una tecla pulsada, datos para calcular enviados, y otros.
Fundamentalmente, en el proceso ya entran en juego el procesador y
la memoria de un dispositivo.

La salida es el resultado de las acciones que se efectiian sobre la
informacion. Por lo tanto, si pulsamos el boton del mouse, se ejecutara
una aplicacién (pulsar el botén Enviar de un correo), se realizara una

Segun la RAE (Real Academia Espafiola, www.rae.es), el término interfaz significa conexién fisica y fun-

cional entre dos aparatos o sistemas independientes, como puede suceder entre una persona y un
dispositivo electronico. Un ejemplo claro de esto se ve en la Figura 4, en donde utilizamos una botonera
como interfaz para indicarle a un ascensor el piso al que queremos ir.

www.redusers.com &

26 == 1. DESARROLLO DE APLICACIONES

accion en un juego (como disparar), se devolvera el resultado de un
calculo, se ejecutara un video, y otras opciones mas.

Este proceso de retroalimentacion nos dara los mismos resultados,
presionando ya sea uno o varios botones del teclado.

L] L

LN] []

L] .

‘ m -—- T“ .
‘ Retroalimentacidn '

» Figura 7. El proceso de retroalimentacion comienza con el ingreso de
la informacion y concluye con la accion emitida por el dispositivo.

Primeras tareas
de un desarrollador

Hasta este punto, hemos visto que la interaccion con dispositivos
electronicos se presenta por medio de interfaces. Estas, a su vez,
cuentan con un software que traduce nuestras acciones a un lenguaje
maquina reconocido por el hardware, con lo cual se obtiene un
resultado. Para lograr esto, como desarrolladores es importante que
conozcamos la manera de darle al equipo informatico las indicaciones
necesarias. En este libro aprenderemos a confeccionarlas por medio
del estudio de la logica de programacion, y a plasmarlas en lineas de
codigo de un software especifico para diagramar y tipear.

A continuacién, desarrollaremos dos conceptos fundamentales
que debemos tener bien en claro durante el desarrollo: algoritmia y
lenguajes de programacion. Una vez que los dominemos, podremos
lograr que el software cumpla con todas nuestras indicaciones.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 27

Qué es un algoritmo

Si bien encontraremos multiples definiciones de lo que es un
algoritmo, nosotros trabajaremos con la genérica que toma la RAE, en la
que se hace referencia a un conjunto ordenado vy finito de operaciones
que permite hallar la soluciéon de un problema.

Nosotros, como seres humanos, tenemos incorporado un
“‘algoritmo” de decisiones. Por ejemplo, si deseamos vestir una remera,
realizamos un proceso de seleccion de cual o tal queremos, y
terminamos por hacer la seleccion deseada. En un conjunto ordenado y
finito de operaciones, podriamos representar, a través de un algoritmao,
este proceso de seleccion y solucion.

Elegir remera
.
” Figura 8.
Proceso de
seleccion de una
Es una remera ' Vestirla remera para vestir.
oancy Se trata de una
representacion

de algoritmos
llamado diagrama

Es una remera Vestirla de flujo.
de color

Comprar
una nueva

De esta manera, podemos definir el algoritmo como una serie
de pasos ordenados que debemos seguir para lograr, finalmente, la
resolucion de una situacion o problema. En el desarrollo, para poder
ejecutar una aplicacién, tenemos que traducir esto a sentencias
ordenadas de codigo que se ejecuten linea a linea.

www.redusers.com &

L]
LN
L

28 D=4 1. DESARROLLO DE APLICACIONES

Qué es un lenguaje de programacion

Anteriormente presentamos la comunicacion que existe entre un
software y el hardware. Ahora vamos a conocer la comunicaciéon que
debemos establecer nosotros, como desarrolladores, frente a nuestro
hardware, para lograr que este ejecute las tareas o procesos que
deseamos. Para este fin, necesitaremos como herramienta primordial
un lenguaje de programacion.

G ‘ Java ' c# | PHP l Visual
Basic
|

Lenguaje humano

Desarrollador
Comunicacion Lenguaje de
entre: programacion

I Lenguaje maquina '
Codigo
binario

> Figura 9. En este cuadro conceptual vemos la representacion de los
distintos lenguajes de programacion.

Existen muchos lenguajes de programacion que nos permiten
desarrollar, por medio de un cédigo (protocolo), sentencias algoritmicas
que luego son traducidas a lenguaje maquina. Estos cumplen la funciéon
de intermediarios entre el desarrollador y el hardware.

Teniendo en cuenta esta diversidad, veremos que hay dos grupos
generales. Por un lado, se encuentran los lenguajes mas proximos a la
arquitectura del hardware, denominados lenguajes de bajo nivel (son

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 29

mas rigidos y complicados de aprender). Por otro lado, estan aquellos
mas cercanos a los programadores y usuarios, denominados lenguajes
de alto nivel (son mas comprensibles para el lenguaje humano). En la
Figura 9 vemos una representacion clara de este concepto.

En distintos escritos se consideran lenguajes de bajo nivel a
algunos como: FORTRAN, ASSEMBLER y C. Como lenguajes de alto
nivel podemos mencionar: Visual Basic, Visual C++ y Python. Si
bien podemos encontrar categorizaciones mas finas al respecto, que
describan diferentes tipos de lenguajes, recordemos que, en términos
generales, siempre se habla de lenguajes de alto nivel y de bajo nivel.

DISTINTOS NIVELES

v LENGUAJE v DESCRIPCION

Bajo nivel Instrucciones que ensamblan los grupos de conmutadores necesarios para expresar una
minima logica aritmética; estan inimamente vinculados al hardware. Estos lenguajes es-
tan orientados a procesos compuestos de tareas, y la cantidad de instrucciones depende
de como haya sido disenada la arquitectura del hardware. Como norma general, estan
disponibles a nivel firnware, CMOS o chipset.

Ver su ejemplo en la Figura 11.

Alto nivel Permiten mayor flexibilidad al desarrollador (a la hora de abstraerse o de ser literal), y un
camino bidireccional entre el lenguaje maquina y una expresion casi oral entre la escritura
del programa y su posterior compilacién. Estos lenguajes estan orientados a objetos.

Ver su ejemplo en la Figura 12.

Tabla 2. Las diferencias basicas entre los lenguajes de programacion.

www.redusers.com <«

30 1. DESARROLLO DE APLICACIONES

Programacién .
de microcontrolador i
COMPUTADORA
Bin.
Memoria 10110011011100
rogram 10010010011100
il g 00110011010101
10111101010100
1011001 1gssast_HEX
INENEAIAREAATR 10110001 2FC23AAT1
11110010 F43E0021A
INEEEANEERENER
IEEEENEAEEREAT DAETRISH
1]olo[tfolool1jof lolojof1]
olofol1]of1f1]1]ofof1]olofx T
1| 1jofoo[tjol ol jolo] 1o Codigo ejecutable
ol 1joftfofol1]1]olof1fof1]o en formates binario
INENENEAENEEAT 5
folofoli{ilol{olTlofi[o y hexadecimal
Ejecucion de programa
Figura 10. Interpretacion general de como se veria la comunicacion de
instrucciones al procesador.
~

1K
§9930 §003M | BTRES
of 3eir

: " Figura 11. El
1 G T codigo fuente
s b e . s de la izquierda

representa el
codigo en lenguaje
C;yeldela
derecha, el codigo
en ASSEMBLER.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 31

En los cuadros que aparecen a continuacion veremos el codigo
fuente de dos lenguajes de programacion muy importantes: C y Basic.
Al principio no debemos asustarnos, se trata solo de ejemplos para ir
conociendo como se veria el desarrollo aplicado en ellos.

En el siguiente codigo veremos en detalle la declaracién de variables
requeridas para el lenguaje C.

C

int main()

{

/* Declaracion de variahles */

int ano,dia;
int mes;
int total;
int i;

int sol;
}

En el lenguaje de programacion de Basic, el codigo que aparece a
continuacion significa: “limpia” la pantalla de cualquier texto, luego
asigna valores a las variables (como el nombre y un niimero) y finaliza
con la impresion en pantalla del resultado.

BASIC

CLS

nombrel$="George Kemeny”
valorl=500
nombre2$="Eugene Kurtz”
valor2=350

PRINT nombrel$

PRINT valorl

PRINT nombre2$

PRINT valor2

www.redusers.com &

32

1. DESARROLLO DE APLICACIONES

B [rnis Crarnlonk LA
Archve [dmmwr W Progece Genew (epurd Buitw Asdbts Mommergs Vesing Ayuds | .e
D&E@ e 1 & § Fretmerinade v I0aR@ J g -
Hecpmierty 0 H| sy e x ERET——TR o
Teids ASCE : 14 (- 2R T
Blogan de dosumentacidn 02 || 2" Cressh por ShatplMvelep. r
_.“A; 3 * Uswwrio: jecasale o |
e 4 * Pecha: Y/BT/HGAE BT e | ...
LT % Wera: 3 poe, B Referoncias 3
Anilln del petapapeies 1l 0 s Syrsbern |
ETq-en-.;u:q T | ; _.rPa-ro casblar estia plantills wie Herrasleniss | Opilones | Codificacids | B B{) CodeDomn |
B amini || |7 uing nesespece System: @A} Colecticrs | §
B Teatobade P <3 Madl | ":' s @ A} Componerthdy &
B Tatwhie(ns0) l.. {lﬂ ma n{arrcaydbrsteon istrlng = “args) @1} Comtigurstion| Il
B jorperong M e Cemsalet eiteline(L Halle Werla™); L4 :; E‘M* |
B Tt 1| e raturn B L]
Tu.vn-d&nmmt-nm: s) -} Meks |
| li%) Miesessh |8
@A) Mat |
| @} Runtime |
B0} Yoy |
-} Tet
B-{} Thissding
| @A} Time
&9 FileSelcliParl 8
| £l ® - FraytelinPun
-2 GertriliePen
: o m— Saw 5P GanaricLiniban
OEsroees | [fy, 0 Adverterscaa | [Lin - GopherStybell
_ X | [posieran] & 94 Hasspann
! Unes Destrpodn Arthivs Futs g Lapinyielnicy
g PirePpetnyiell
o, Bt T ityleLle
12 g Bl niie B
g U .
| . -) "
ClPsoyecten | Tl Hoermmioncas | | (5 Eewooes | 2 Lista de Varas |] Sabot | P Clues | Preciedidin | |
s ni ool el 4

Figura 12. Ejemplo sobre el conjunto de herramientas gue constituyen
un entorno de desarrollo visual en C#.

Dentro de la amplia variedad de lenguajes de programacion que
mencionamos antes, en la Figura 13 podremos observar algunos de los
que se presentan actualmente en el mercado.

A continuacion, veremos un listado que incluye otras fuentes
a las que podemos acceder para conocer los rankings o tener mas
informacion sobre los distintos lenguajes de programacion.

* www.tiobe.com
e http://langpop.com

DIAGRAMA DE FLUJO

Los diagramas de flujo son descripciones graficas de algoritmos que usan simbolos conectados median-
te flechas para indicar la secuencia de instrucciones. Este tipo de diagramas se utilizan para representar
algoritmos pequenos. Su construccidn es laboriosa y son medianamente faciles de leer para personas

que no estan involucradas en la programacidn.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 33

o www.genbetadev.com/desarrolladores/ranking-de-lenguajes-
de-programacion-mas-usados-en-marzo-2011
¢ www.realmagick.com/timeline-of-programming-languages

Hasta aqui, conocimos la comunicacion establecida entre un
software y el hardware, y como debemos actuar para lograr que, por
medio de algoritmos, nuestro sistema realice las tareas que nosotros
deseamos. Esto es posible gracias al lenguaje de programacion que
elijamos, ya sea el que mas nos gusta o aquel que se adapta mejor a las
necesidades del mercado actual.

Mas alla de la decision que tomemos, este libro nos servira como
guia y apoyo para aprender a trabajar sobre cualquier lenguaje, ya que
nos brindara las bases necesarias para comprender y saber aprovechar
mejor sus diferentes caracteristicas.

Posicion | Posicion | Delta en Lenguaje de Valoracion | Delta Estado
Jul 2012| Jul 2011 | la posicién programacion Jul 2012 | Jul 2011
3 o T C 18.331% [+1.05% [A
2 1 Java 16.087 % | -3.16 % A
3 5 25 | Objective-C 9335% [+415% | A
4 3 3 C++ 9.118 % [+0.10 % A
5 3 ¥ CH 6.668% |t045% | A
6 7 4 (Visual) Basic 5695%)|+059% | A
7 5 T [pHP 5012%| -1.17%| A
8 8 Python 4.000 % | +0.42 % A
9 9 Per| 2.053% | -0.28% A
10 12 14 Ruby 1.768 % [+0.44% | A
11 10 ! JavaScript 1454%| -0.79% | A
12 14 1+ 1 pelphi/Object Pascal| 1.157 % [+027% | A
13 13 Lisp 0.997% [+009% | A
14 15 4 Transact-SQL 0.954 % [+0.15% | A
15 25 | TP visual Basic.NET 0917% [+0.43% [A
16 16 Pascal 0.837%|+017% | A
17 19 X3 Ada 0.689 % [+0.14 % A
18 11 iy | Lus 0684%| 089%| A
19 21 4 PL/SQL 0.645 % [+0.10 % A
20 26 P [maTLAB 0.639%|+0.19% | A

Figura 13. Algunos de los lenguajes mas utilizados durante el ano
2012. Fuente: www.tiobe.com

www.redusers.com &

34 1. DESARROLLO DE APLICACIONES

Etapas en la resolucion
de un problema

Ahora que conocemos las herramientas involucradas en el desarrollo
de aplicaciones, es conveniente revisar qué tareas generales debemos
considerar para llevar a cabo esta labor.

Como seres humanos, tenemos incorporada
intuitivamente la resoluciéon de problemas

APLICAREMOS cotidianos gracias a nuestra experiencia,
HERRAMIENTAS y para intentar afrontar un inconveniente,
solemos hacer un proceso rapido de seleccion e
DE UN LENGUAJE intentamos buscar la opcion mas favorable. En
PARA RESOLVER el ambito laboral, y mas atn en el desarrollo de
. aplicaciones, debemos ser cautelosos al momento
LA SITUACION de resolver alguna tarea o proceso. Por eso, nos

sera de gran utilidad aplicar una herramienta
del lenguaje de programacion que nos permita
confeccionar un programa vy, asi, resolver dicha situacion.
Si bien este esquema nos sera Gtil para la resolucion de un
desarrollo sencillo, en caso de trabajar con sistemas amplios,
deberemos incluir ciertas técnicas de ingenieria del software.

b
b

Andlisis

Pseudocddigo .

Disefio b

Caodigo (lenguaje

Test de ejecucidn =
de programacion)

Compilacién

Errores

Errores

Figura 14. En este esquema aparecen las principales etapas que se
encuentran involucradas durante el desarrollo de aplicaciones.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION USERS K

En el proceso que vemos en el grafico de la Figura 14, puede
suceder que debamos retroceder y volver a analizar o replantear
algunas de las acciones. Revisemos los pasos expuestos en el esquema
(v en los proximos capitulos veremos como se desarrolla una aplicacion
basada en él). Los siguientes aspectos son pasos que seguiremos como
desarrolladores para resolver una situacion:

e Analizar el problema que vamos a resolver.

Disefiar una solucion.

Traducir la solucién a pseudocodigo.

Implementar en un lenguaje de programacion todo lo analizado.
Compilar el programa.

Realizar pruebas de ejecucion.

Corregir los errores que haya.

En este capitulo empezamos a conocer el funcionamiento del software y revisamos la comunicacion que

tiene el hardware con los programas intangibles y abstractos. Vimos que esta comunicacion se desarrolla
por medio de un lenguaje maquina, ¥ nosotros nos comunicamos con el equipo electrénico por medio de
interfaces. Gracias al lenguaje de programacion, nosotros, como desarrolladores, podemos indicar las
acciones que deseamos realizar a través de algoritmos.

Por ultimo, vimos la manera en que debemos empezar a encarar la resolucion de los problemas, teniendo
en cuenta el lenguaje y la logica de programacion.

www.redusers.com &«

36 1. DESARROLLO DE APLICACIONES

Actividades

TEST DE AUTOEVALUACION

;Qué es el lenguaje maquina?

;Cuantos niveles de lenguaje de programacion existen?
;Qué es un lenguaje de alto nivel?

iQué es un algoritmo?

{Como se comunica el hardware con el software?

iQué es el codigo binario?

;Cuéntos tipos de aplicaciones podemos encontrar?

;Qué es un lenguaje de programacion?

W 00 N O g B W N =

;Qué representa en el software la entrada/proceso/salida?

-
o

;Cuales pueden ser los propositos para realizar un desarrollo?

» www.redusers.com

ARNRRRRRRRENNNN

4744

Inicio de un
desarrollo

A medida que la tecnologia y la innovacion en la informatica
progresan, algunos profesionales del ambito consideran
que es necesario seguir ciertas pautas predefinidas en el
desarrollo del software, basadas en el comportamiento

metodico y el intenso analisis de sistemas.

v Metodologias de desarrollo.....38 v Prueba o testing *
de aplicaciones.........ccecererrrerenn 65 .
v Ciclo de vida de un desarrollo.41
Funciones del ciclo de vida 42 v Capacitacion y formacion
del USUAFID...cccceeernerneranesaranssn OO .
v Analisis de sistema51 |
A {H T[] | T—————— Y | |
v Diseno de un sistema...........0... 57
v Actividades.......ccceceriinnernniennn. 68

v Implementacidn
del desarrolloccceerrernensassennse. 65

AAA

Servicio de atencion al lector: usershop@redusers.com

38 2. INICIO DE UN DESARROLLO

Metodologias de desarrollo

Debido a las multiples maneras que existen para conceptualizar una
metodologia, es complicado llegar a un acuerdo para definir qué es
una metodologia de desarrollo. Sin embargo, podemos encontrar un
concepto en comun que la define como un framework utilizado para
estructurar, planear y controlar el proceso de desarrollo. De este modo,
las metodologias nos proveeran de una organizacion que aplicaremos a
los diferentes proyectos de programacion.

A la hora de conceptualizar una metodologia, notaremos que existe
una amplia variedad de enfoques a los que podemos recurrir. Para
obtener una definicion clara y asegurarnos de no dejar de lado ninguna
cuestion importante, vamos a crear nuestro propio significado. Para
eso, seleccionaremos los conceptos fundamentales que involucran a
una metodologia y analizaremos sus funciones:
¢ Metodologia: conjunto de procedimientos, técnicas, herramientas

y soporte documental que utilizan los desarrolladores a la hora de

tomar las decisiones sobre el software a realizar.

e Tarea: actividades elementales en las que se dividen los procesos.

¢ Procedimiento: forma que se define para ejecutar la tarea.

¢ Técnica: herramienta utilizada para aplicar un procedimiento; es
posible usar una o varias.

¢ Herramienta: para realizar una técnica, podemos apoyarnos en las
herramientas de software que automatizan su aplicacion.

¢ Producto: resultado de cada etapa.

Ahora que ya hemos comprendido estos conceptos que involucran a
las metodologias de desarrollo, estamos en condiciones de analizar los
distintos tipos de metodologias que existen.

Dentro de la metodologia de desarrollo, el framework es el enfoque del proceso con el que vamos a

contar para realizar o ufilizar un software. Se trata de una fuente de herramientas, modelos y métodos
que podemos tomar y usar para efectuar distintas acciones, como, por ejemplo, dibujar una pantalla.
Ejemplos: AJAX, .NET, Axis, y ofras.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 39

Tarea Procedimiento

Técnica Metodologia Herramienta

Producto

> Figura 1. En la produccion de un producto, cada uno de estos
aspectos influye en forma directa sobre la metodologia.

Tipos de metodologias

Dentro del ambito informatico, existe una gran variedad de
metodologias de desarrollo. En la tabla que aparece a continuacion
vamos a conocer estos tipos, para que mas adelante podamos decidir
correctamente cual se aplica mejor a nuestro proyecto.

METODOLOGIAS

v CLASIFICACION v METODOLOGIAS

Iterativas/Evolutivas Prototipos, Espiral, Espiral WINEWIN, Entrega por etapas, RUP

www.redusers.com «

0 [FEEFEH 2. INICIO DE UN DESARROLLO

Tecnologia Web OOHDM, HDM, RNA, etc.

Otras Orientada a aspectos, Sisternas de tiempo real, Basado en componentes

Tabla 1. Tipos de metodologias en el desarrollo del software.

Dentro de todas estas categorias, nosotros vamos a enfocarnos
en las mas utilizadas por aquellas organizaciones que se dedican al
desarrollo de las aplicaciones informaticas. Pero, a su vez, debido a
la amplia variedad que existe en el ambito informatico, tendremos
que evaluar cuales son las que se aplican mejor a nuestros proyectos,
para asi adaptarlas y ejecutarlas segin nuestras necesidades. En este
analisis sobre qué metodologia utilizar, es importante tener en cuenta
que la eleccion diferira segun el pais, la provincia o, incluso, el centro
de ensefianza al que pertenezcamos. Desde el punto de vista humano,
todos tenemos gustos y pensamientos diferentes acerca de cémo
vemos nuestro entorno; por eso, la elecciéon dependera en gran medida
de cual sea nuestra situacion econémica, politica y social.

Muchas veces se pone el énfasis en que las metodologias deben
planificar, controlar, capturar requisitos, realizar tareas de modelado, y
promover la etapa de analisis y disefio antes de proceder a la
construccion del software. Pero también es importante que seamos
muy detallistas en la documentacion utilizada en cada una de las
etapas. Este tipo de metodologia se denomina tradicional o pesada.

" Figura 2. Junto

con el UML,
constituye la

o :;: metodologia mas
?’, t:u utilizada para
04, %Q) los sistemas
4/ R orientados a
UNIF\ED
objetos.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 41

En contraste con estas metodologias, encontraremos las agiles.
Estas sostienen que el desarrollo del software debe ser considerado
como un modelo incremental, donde las entregas de este sean mas
pequefas, en ciclos mas cortos y rapidos. De
esta manera, se elimina la burocracia de la ,
documentacion que caracteriza a las metodologias LAS METODOLOGIAS
tradicionales. Esto se logra gracias a una AG"_ES APLICAN
forma mas cooperativa entre el cliente y los :
desarrolladores, por medio de una comunicacion ENTREGAS MAS
mas cercana y fluida. En las metodologias agiles, CORTAS Y RAPIDAS
la documentacion mas importante esta constituida
por el codigo fuente. AL SOFTWARE

Ya vimos que, dentro del ambito de la
programacion, existen distintos tipos de
metodologias de desarrollo. También dimos un vistazo al concepto
sobre ellas, y aprendimos que el uso de una u otra dependera de
nuestro entorno, el equipo y los recursos con los que contemos. A
continuacion, vamos a indagar en las cuestiones que debemos tener
en cuenta a nivel profesional acerca de los desarrollos de software.
Podemos ampliar mas sobre las metodologias consultando otro texto
de nuestra editorial: Métodos Agiles, por Sebastian Priolo.

Ciclo de vida de un desarrollo

Una vez que hemos determinado la necesidad de realizar un
software, es importante prestar atencion a su ciclo de vida; es decir, el
conjunto de fases por las cuales pasa la idea inicial, desde que nace
hasta que el software es retirado o reemplazado.

Cuando hablamos del nacimiento de un proyecto, nos referimos a
la idea o problema puntual que se presenta. Luego, esta ira creciendo
gracias a la actualizacion y recaudacion de informacion que surja,
ademas de a su puesta a prueba cotidiana. De esta forma, el desarrollo va
madurando hasta llegar a la muerte o reemplazo del producto.

Estas tareas o actividades que debemos desempenar en el ciclo
de vida del software suelen representarse en una serie de grandes
bloques: analisis, diseno, producciony mantenimiento.

www.redusers.com &

42 [E=E 2. INICIO DE UN DESARROLLO

Produccidn Construirlo

Qué herramientas
tomar

Qué hacer
y para qué

Qué aspecto
elegir

Andlisis Mantenimiento

' Cémo
confeccionarlo

= Figura 3. Blogues principales que representan las tareas por
desempenar en el ciclo de vida del software.

Funciones del ciclo de vida

Entre las funciones que debe tener un ciclo de vida, desde que nace
hasta que muere, podemos destacar las siguientes:
Determinar el orden de las fases del proceso de software.
Establecer los criterios de transicion para pasar de una fase a la otra.
Puntualizar las entradas y salidas de cada fase.
Describir los estados por los que pasa el producto.
Especificar las actividades a realizar para transformar el producto.
Definir un esquema que sirva como base para planificar, organizar,
coordinar y desarrollar el proceso.

e @ @ & @ @

Como podemos observar, el ciclo de vida del desarrollo de un software
es complejo si deseamos llevar a cabo todos los pasos que corresponden.
Recordemos que, a la hora de elegir la metodologia adecuada, es
preciso tener en cuenta el ambito donde lo desarrollaremos. Si es en
una organizacion dedicada exclusivamente al desarrollo, es necesario
mantener los estandares de calidad sobre los productos, y es en este
punto donde entran en juego las normas ISO y otros estandares.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 43

Roles profesionales

Dentro de cada fase que vayamos a realizar, hay distintos roles

profesionales involucrados. A continuacion, mencionaremos los mas
importantes y su caracteristica fundamental:

Analista de sistema: generalmente, puede

integrarse en cualquier etapa del ciclo de ES MUY IMPORTANTE
vida de un software, aunque, en esencia, lo LA ELECClle DEL
encontramos en el inicio.

Lider de proyecto: es aquel que lleva a cabo MODELO Y EL ORDEN
la organizacion y el seguimiento de cada fase. ESTABLECIDO PARA
Arquitecto en software / Analista

funcional: son las mentes que llevaran a UN PROYECTO

cabo la maquetacion vy el diseio, ademas de la

documentacion del proyecto.

Desarrollador: se ocupa de codificar los prototipos y esquemas
que le suministren en un lenguaje de programacion.

Soporte / Tester: brinda apovyo al cliente del software y realiza
testing de las aplicaciones, lo que lleva a las pruebas exhaustivas y
documentadas generalmente antes de entregar un producto.
Calidad: revisa la documentacion, para luego presentar los
elementos necesarios a las organizaciones de normalizacion y
calidad de los productos.

Dentro de cada una de las etapas de un modelo de ciclo de vida,

es posible definir una serie de objetivos, tareas y actividades que lo
caractericen, lo que permite llevar un importante proceso administrativo.
El hecho de que existan distintos modelos hace que sea tan importante su
eleccion y el orden establecido para un proyecto determinado.

La Orgarizacion Internacional para la Estandarizacion, 150 por sus siglas en inglés (Infernational Organization

for Standardization) es una federacion mundial que establece un conjunto de reglas referidas a la calidad
y la gestion continua de la norma. Su objetivo es desarrollar estandares internacionales que se apliquen a
cualquier tipo de organizacion o actividad orientada a la produccion de bienes o servicios, coordinando y
unificando los usos para conseguir menores costos y una mayor efectividad.

www.redusers.com &

=== 2. INICIO DE UN DESARROLLO

Concepto : :

Requerimientos Requerimientos

Disefio | Diseno

il

Implementacion Implementacidn

Pruebas . Pruebas

!

Instalacion - Instalacion

it
Ll

Comprobacién | Comprobacidn

Operacidn

Mantenimiento |

Retirada .

Fases del ciclo de vida Fases del ciclo de vida
del Software del proyecto

b Figura 4. En estos esquemas podemos ver las etapas
del ciclo de vida de un proyecto y de un software.

Gl

Modelos de ciclo de vida

Los modelos de ciclo de vida son aquellos que describen las fases
principales del desarrollo del software y sus fases primarias esperadas.
Son de gran utilidad para la administracion del proceso y proveen de
un espacio de trabajo para su definicion.

Modelo en cascada

Es el enfoque metodologico que ordena rigurosamente las etapas del
ciclo de vida del software, de modo que el inicio de cada etapa debe
esperar a la finalizacion de la inmediatamente anterior.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 45

Requisitos

‘ Disefio l—

Implementacion

Pruebas

‘ Mantenimiento '

I Figura 5. Modelo en cascada. Después de cada etapa, se realiza una
revision para comprobar si se puede pasar a la siguiente.

Modelo en V

Se desarrollo con el objeto de solucionar algunos problemas que
ocasionaba el enfoque de cascada tradicional. En ese modelo, los
defectos en el proceso se detectaban demasiado tarde en el ciclo de
vida, ya que las pruebas no se introducian hasta el final del proyecto.
Es por eso que el modelo en V sugiere que las pruebas comiencen a
efectuarse en el ciclo de vida lo mas pronto posible.

_. o “RUP (RATIONAL UNIFIED PROCESS)

Una de las metodologias pesadas mas conocidas y utilizadas es la RUF (Rational Unified Process), que
divide el desarrollo en cuatro fases que definen su ciclo de vida. Ellas son: inicio (su objetivo es determi-
nar la vision del proyecto y definir lo que se desea realizar), elaboracion (etapa en la que se determina la
arquitectura dptima del proyecto), construccion (se obtiene la capacidad operacional inicial) y transmision
(permite obtener el producto acabado y definido).

www.redusers.com &

46 =4 2. INICIO DE UN DESARROLLO

Ingenieria de
requisitos

Validar Validacion
requisitos del sistema

Verificacion
del sistema

Disefio
del sistema

Verificar
disenio

Verificacion
del Software

Codificacidn

» Figura 6. Modelo en V. Es aplicado por muchas companias, debido a
que se encuentra disponible publicamente.

Modelo iterativo

Es un modelo derivado del ciclo de vida en cascada, que busca
reducir el riesgo que pueda surgir entre las necesidades del usuario y
el producto final. Consiste en la iteracion de varios ciclos de vida en
cascada, en donde, al final de cada iteracion, se le entrega al cliente una

444

UML ofrece un estandar para describir un “plano” del sistema (modelo), incluyendo aspectos concep-

fuales tales como: los procesos de negocio, las funciones del sistema y los aspectos concretos. Estos
tltimos serian las expresiones del lenguaje de programacion, los esquemas de bases de datos y los
componentes reutilizables (librerias y clases). Web: www.uml.org

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 47

version mejorada o con mayores funcionalidades del producto. El
cliente es quien después de cada iteracion evalia el resultado y lo
corrige o propone mejoras.

i
=X

Codificacidn

Version 2

Version 1 Version 2

» Figura 7. Modelo iterativo. Estas iteraciones se repiten hasta obtener
un producto que satisfaga las necesidades del cliente.

Modelo de desarrollo incremental

El modelo incremental combina elementos del modelo en cascada
con la filosofia interactiva de construccion de prototipos, basandose
en la incrementacion de las funcionalidades del programa. Aplica
secuencias lineales de manera escalonada, mientras progresa el
tiempo en el calendario, y cada secuencia lineal produce un
incremento del software. El primer incremento es a menudo un
producto esencial que reune solo los requisitos basicos, y se centra en
la entrega de un producto operativo con cada incremento. Los

. i 1%
| O METODOLOGIA VS. CICLO DE VIDA

El ciclo de vida indica qué es lo gue hay que obtener a lo largo del desarrollo del proyecto, pero no
menciona como hacerlo. Es la metodologia la que indica como hay que obtener los distintos productos
parciales y finales. Esta puede seguir uno o varios modelos de ciclo de vida.

www.redusers.com &

48 =4 2. INICIO DE UN DESARROLLO

primeros incrementos son versiones incompletas del producto final,
pero proporcionan al usuario la funcionalidad que precisa y, también,
una plataforma para la evaluacion.

Andlisis Anlisis .

3

Disefio Disefo

e .

Caodificacion

.

Codificacion

» Figura 8. Modelo de desarrollo incremental. A partir de la evaluacion,
se planea el siguiente incremento, y asi sucesivamente.

Modelo de prototipos

La construccion de prototipos comienza con la recoleccion de
requisitos, y es en esa etapa cuando se retinen desarrollador y cliente
para definir los objetivos globales del software. Este modelo se centra
en una representacion de los aspectos del software, que seran visibles
para el usuario/cliente y llevaran a la construccion de un prototipo.
Este evalua al cliente y refina los requisitos del software, de modo de
permitir que el desarrollador comprenda mejor lo que se necesita hacer.

" ’ 444
@ ~METODOLOGIAS PESADAS .

Como representantes de esta escuela, podemos nombrar a Winston Royce (Royce 1970) y Edward

Yourdon (Yourdon 2009), entre ofros. Estas metodologias suelen denominarse tradicionales y se inspira-
ron en otras disciplinas, tales como la ingenieria civil y la ingenieria mecanica. La mas conocida de ellas
es RUP (Rational Unified Process).

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 49

o Construiry A

z revisar
al cliente Lo
la maqueta

El ciente
prueba
la magueta

Figura 9. Modelo de prototipo. El diserio rapido se centra en
representar los aspectos del software que seran visibles para el cliente.

Modelo en espiral

Este modelo combina las caracteristicas del modelo de prototipos y el
modelo en cascada, y fue creado para proyectos largos, complejos y de
costo elevado. Un ejemplo puede ser la creacién de un sistema operativo.

Determinar Evaluar .
objetivos riesgos

: Desarrollar
Planificar y probar

Figura 10. Modelo en espiral. Al terminar una iteracion, se comprueba
el cumplimiento de los requisitos establecidos y su funcionamiento.

www.redusers.com &

50 2. INICIO DE UN DESARROLLO

Hasta aqui hemos visto los diferentes ciclos de vida que existen dentro
del desarrollo de un software, considerados como proyectos que tienen
un inicio y un fin. Si nos referimos a un equipo
de personas que se dedicaran al desarrollo de
EXISTEN DISTINTOS aplicaciones, es importante tener en claro todos
TIPOS DE ACTORES estos procedimientos. Si nuestro objetivo es
, ser desarrollador, debemos tener en cuenta que
QUE REALIZARAN existiran distintos tipos de actores que realizaran
ALGUNA TAREA EN alguna tarea en particular.
Todo lo que explicamos hasta el momento
PARTICULAR esta orientado al desarrollo de aplicaciones
con certificacion de calidad, y nos sera de gran
utilidad a la hora de trabajar en equipo.
A continuacion, veremos las generalidades que podemos encontrar
dentro de las diferentes metodologias aplicables a nuestro proyecto.

Generalidades sobre metodologias

En esta seccion vamos a conocer las diferentes metodologias que
podemos aplicar a nuestro proyecto, qué son y para qué sirven, de
modo de adquirir mas fundamentos en nuestra eleccion final.

Desarrollo convencional (sin metodologia)

e Los resultados finales son impredecibles.

¢ No hay forma de controlar lo que esta sucediendo en el proyecto.

e Los cambios en la organizacion van a afectar en forma negativa al
proceso de desarrollo.

Desarrollo estructurado
e Programacion estructurada

e Disefo estructurado

e Analisis estructurado

e Especificaciones funcionales

e (Graficas

e Particionadas

e Minimamente redundantes

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 51

Desarrollo orientado a objetos
Su esencia es la identificacién y organizacion de conceptos del

dominio de la aplicacion, y no tanto su representacion final en un

lenguaje de programacion.

e Se eliminan fronteras entre fases debido a la naturaleza iterativa del
desarrollo orientado al objeto.

e Aparece una nueva forma de concebir los lenguajes de
programacion y su uso al incorporarse bibliotecas de clases y otros
componentes reutilizables.

e Hay un alto grado de iteracion y solapamiento, lo que lleva a una
forma de trabajo muy dinamica.

e Son interactivas e incrementales.

e Es facil dividir el sistema en varios subsistemas independientes.

e Se fomenta la reutilizacién de componentes.

Con todo lo que hemos analizaddo con respecto a los tipos de
metodologias, ahora podemos seleccionar cual es la mas conveniente
para implementar en nuestros desarrollos de software actuales y futuros.
Para eso, es importante prestar atencion a los siguientes capitulos, que
nos permitiran seguir avanzando en el analisis del ciclo de vida.

Analisis de sistema

Anteriormente vimos los ciclos de vida y las metodologias que
podemos emplear en algunos desarrollos de aplicaciones. Ahora nos
centraremos en el analisis de los sistemas y las etapas fundamentales
en dicho desarrollo. Cada paso es una forma ordenada y correcta de
encarar un nuevo negocio para desarrollar, y a partir de alli, cada

Las metodologias agiles se caracterizan por estar mas orientadas a las personas que al proceso, y por ser
mucho mas sencillas. Esto se debe a que son faciles de aprender y se adaptan muy bien al medio, con lo cual

permiten efectuar cambios de (itimo momento. Una de las metodologias agiles mas utilizadas es SCRUMM.

www.redusers.com &

52 D=4 2. INICIO DE UN DESARROLLO

empresa y programador deberan elegir alguno de estos caminos

posibles. A continuacion,veremos las etapas mas comunes para

el analisis de los sistemas, junto con un ejemplo practico que nos

ayudara a reconocerlas mejor.

Supongamos que una empresa vende espacios publicitarios que

figuran en revistas y diarios. La organizacion siempre llevo el registro
de los pedidos y presupuestos en forma manual,
hasta que un dia, decide implementar alguna

LUEGO DE aplicacion informatica para lograr que el proceso

ESTABLECER EL de ventas resulte mas rapido y fiable.
Imaginemos que si por dia quiere registrar a

FUNCIONAMIENTO, mano diez presupuestos de diferentes revistas,

DEBEMOS REALIZAR tendra que recurrir a pilas de cajas llenas de
papeles y archivos. Es por eso que sera necesario

UN RELEVAMIENTO incorporar alguna herramienta que permita
mejorar las decisiones y el servicio a sus clientes,
para cotejar informacién util acerca de cuales son

los mas activos y qué tipo de publicidades se venden mejor.

Estas tareas pueden variar en el analisis de un sistema. En primera
instancia, tenemos el pedido del cliente, que determinamos como
requisito. Hay una situacién que él desea solucionar o mejorar, y que
desembocara en la planificacion de un proyecto. Al haber aclarado
cual es el funcionamiento o fin de la aplicacién informatica, debemos
realizar, como analistas, un relevamiento de la informacién implicada.
Cuando terminamos dicha tarea, podemos generar un diagnoéstico de
como encontramos los procesos actuales en los que se ve involucrada
la organizacion con respecto a la futura herramienta informatica.

Luego de recolectar la informacion, entramos en la etapa de
prototipado o diseno del sistema, en la que volcamos dicha
recoleccion de datos para dar un “rostro” a las aplicaciones. En esta

444

Al igual que el desarrollo de software, las pruebas también tienen diferentes etapas que es importante
tener en cuenta. Algunas de las mas relevantes son: planificacién y control, andlisis y disefio, implemen-

tacion y ejecucion, evaluacion y cierre.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 53

fase estamos en condiciones de mostrarle a nuestro cliente una
propuesta teodrica acerca de como funcionaria el proyecto.

Una vez que terminamos de documentar y mostrar al cliente los
avances de las etapas de relevamiento y prototipado, va podemos
entregar a los desarrolladores la estructura del software que ellos
crearan por medio de un lenguaje de programacion. Cuando ellos
terminen de desarrollar el software, ya sea en forma parcial o completa,
seguiran las etapas de implementacion y testing del proyecto.

L]
L

Andlisis =

o

» Figura 11. Las etapas del andlisis se dirigen hacia las conclusiones de
efectividad y eficiencia de los sistemas relevados.

El analisis de sistema estard involucrado en cada paso, ya que lleva a
cabo la documentacion y controla todas las tareas necesarias para que el
proyecto funcione correctamente. A continuacion, vamos a desarrollar
en profundidad cada una de estas partes que constituyen el analisis.

Relevamiento

El proceso de relevamiento es fundamental en el disefio y la
confeccion de un software, ya que nos permitira comprender en detalle
qué tareas estan involucradas en el proceso que necesitamos solucionar

www.redusers.com &

54 =4 2. INICIO DE UN DESARROLLO

con nuestra aplicacion informatica. Para concretar este objetivo, vamos
a revisar distintas técnicas de las que podemos valernos.
Cuando hacemos el relevamiento gracias a las visitas al cliente,
debemos seguir algunos pasos, tales como: identificar las fuentes de
informacion, realizar las preguntas apropiadas,
analizar la informacion, confirmar con los

EXISTEN DISTINTAS usuarios y sintetizar los requisitos.
TECNlCAS PARA En la organizacion de nuestro ejemplo, los
, usuarios que mas realizan este proceso de
DETERMINAR QUE presupuesto y venta de espacios publicitarios son
TAREAS ESTAN las personas que trabajan en Ventas y Atencion
al cliente. No obstante, también debemos tener
INVOLUCRADAS en cuenta al personal que integra la Gerencia de

la organizacion, ya que ellos son quienes llevan a
cabo los controles.
Una vez que entramos en los procesos de negocio de un cliente
u organizacion, veremos que no siempre encontraremos las puertas
abiertas para recopilar informacion. Entonces, vamos a ver que existen
varias técnicas que podemos utilizar.

Técnicas para recolectar informacion

e Entrevistas: recorremos la organizacion y logramos un contacto
directo con los actores de los procesos por relevar. Dependiendo
del tipo de preguntas que planteemos, vamos a obtener mas o
menos informacion valiosa. Es importante tener en cuenta a qué
personas entrevistamos, porque si es alguien ajeno al proceso,
puede perjudicar los requisitos iniciales con percepciones
personales referidas al proceso.

"4"4"4
) ESTRUCTURADAS VS. NO ESTRUCTURADAS

Las entrevistas estructuradas se caracterizan por mantener un modelo rigido de preguntas que estan
planeadas de antemano, y no se permiten desviaciones. En cambio, las entrevistas no estructuradas son

aquellas que pueden variar su plan original y admitir algunas variaciones em sus preguntas, en la medida
en que el entrevistador lo considerere conveniente.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION === 55

LAS ENTREVISTAS

v VENTAJAS

Las personas suelen ser mas sinceras cuando Las personas gue seran entrevistadas deben ser
hablan, gue cuando escriben. elegidas cuidadosamente.

Tabla 2. Aqui se ven las ventajas y desventajas principales de las entrevistas.

Antes de iniciar el proceso de la entrevista, deben establecerse
ciertos puntos importantes. Primero, determinar qué informacién
se desea obtener y quién entrevistara sobre la base de los objetivos
planteados, para asi planificar qué preguntas debera hacer. Luego,
hay que realizar una cita por anticipado con los entrevistados, para
indicarles el objetivo de la tarea. Es importante elegir el lugar y el
momento adecuados para la reunion, presentando el tema de la
entrevista y explicando el proyecto sobre el cual se trabajara. Para
finalizar, se resume la informacion recopilada, se revisa que no
hayan quedado dudas y se aclaran los datos faltantes.

e Observacion (directa o indirecta): la ventaja principal de la
observacion es que recopilaremos informacion directamente,
tomando notas que describen las actividades y como estas se
generan. En general, el proposito de la visita del analista debe darse
a conocer a los miembros de la organizacion por medio de los
mandos superiores. El analista no interrumpe a los trabajadores, pero
cuando las personas estan siendo observadas directamente, tienden a
mejorar las funciones que llevan a cabo o, de lo contrario, molestarse
por la presencia del observador. A veces es preciso efectuar varias
visitas para generar confianza en presencia del analista.

La observacion directa nos lleva a participar en algunas actividades
que observamos; en cambio, la indirecta implica observar como
tercero o ajeno a los procesos, y solo relevar la informacion.

www.redusers.com <«

56 [==43 2. INICIO DE UN DESARROLLO

e Estudio de documentacion: una de las tareas principales que
debemos realizar, es revisar aquellos registros que se efectiian en
la organizacion. Mas alla de que se trate de escritos, fotocopias,
documentos o digitales, tendremos que analizar la informacion para
diagnosticar los procesos que se llevan a cabo. A partir de alli, se
evaluara cual es la mejor manera de manejar dicha documentacion o
proponer un cambio de procedimientos, en caso de ser necesario.

e Cuestionarios: herramienta atil, basada en una serie de preguntas
escritas a las que hay que contestar también por escrito.

CUESTIONARIOS

v VENTAJAS

Eliminan cualguier influencia sobre guien contesta. Suelen ocurrir problemas de interpretacidn.

Tabla 3. Ventajas y desventajas de los cuestionarios.

¢ Tormenta de ideas (brainstorming): es una técnica muy utilizada
en distintos ambitos profesionales, por ejemplo, en publicidad. Su
trabajo grupal facilita el surgimiento de nuevas ideas sobre un tema
o problema determinado, en un ambiente relajado. De esta manera,
podemos vincularla a los procesos y a las mejoras de utilidad que se
logran con un sistema informativo.

Es posible utilizar varias herramientas para recopilar informacion,
pero ;jcual es la mas efectiva? Eso dependera del tipo de organizacion
y del proceso que necesitemos relevar. En el caso de nuestro ejemplo,
la aplicacion es concreta y pequeia; entonces, debemos utilizar
herramientas puntuales, como revisar la documentacién y las
entrevistas de los usuarios que llevan a cabo dichas tareas.

Para seguir avanzando, vamos a desarrollar el disefio de un sistema.
En este caso, sera fundamental contar con el proceso del relevamiento.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 57

Diseno de un sistema

A la hora de disenar la aplicacion de software, vamos a dividir el
proceso en dos partes: el disefio de prototipos (las ventanas que
involucra nuestro desarrollo) y el diseno del funcionamiento (el
mecanismo interno de las operaciones de desarrollo). Para efectuar esta
tarea, podemos utilizar herramientas de modelado que nos permitiran
crear una representacion que refleje aspectos de nuestro sistema. Por
ejemplo, podemos trabajar con UML (lenguaje de modelado
unificado), que nos facilitara el disefio del sistema, al permitirnos usar
varios tipos de herramientas.

L'.” :;1 {»a UNIFIED MODELING LANGUAGE ~ ?’ﬂ

WE SET THE STANDARD

» Figura 12. UML se encuentra respaldado por OMG (Object

Management Group). l

Recomendamos visitar la Web y bibliografia sobre UML, ya que sus
herramientas son variadas. En nuestro caso, repasaremos algunas de
ellas, que nos seran de utilidad. Dentro de los programas que pueden
ser practicos para el modelado, se encuentran:

. '4'4'4
0' UML, UNIFIED MODELING LANGUAGE

—

Es el lenguaje de modelado de sistemas de software mas conocido y utilizado. Es un lenguaje grafico
para visualizar, especificar, construir y documentar un sistema. UML ofrece un estandar para describir un

“plano” del sistema (modelo). Web: www.uml.org.

www.redusers.com &

58 =4 2. INICIO DE UN DESARROLLO

UML Tutoriales y Software:
e https://secure.nomagic.com: No Magic - MagicDraw UML
www.borland.com: Borland’s UML TutorialCetus Links - UML Tutorials
www.jeckle.de: Mario Jeckle - UML Tutorials
www.sparxsystems.com: Sparx Systems’ UML 2.0 Tutorial

* o @

Diagrama de casos de uso

Los diagramas de casos de uso son los mas empleados en los
proyectos de desarrollo de sistemas informaticos. A continuacion,
veremos en detalle cuales son sus componentes y, luego, los
aplicaremos a un ejemplo concreto.

Un diagrama de casos de uso es un esquema
de comportamiento que define por medios

EL DIAGRAMA graficos las representaciones de casos de negocio
NOS MUESTRA EL u operaciones de una situacion determinada.
Por ejemplo: podemos utilizarlo para registrar
FUNCIONAMIENTO las ventas, realizar un inventario de productos,
Y LOS ACTORES registrarse en una web, etc.
Los casos de uso sirven para darle al cliente
INVOLUCRADOS una vista general y simple de un proceso de

negocio, ya que suelen estar dirigidos a personas
que no tienen conocimientos sobre programacion.
De esta forma, podemos explicarles el funcionamiento del sistema y los
actores involucrados en la interaccion con él.
Para comprender mejor como estan compuestos los casos de uso,
es importante conocer sus diferentes componentes. En todo caso de
uso siempre hay un actor que inicia y otro actor (puede ser el mismo
de antes o no) que recibe algo por parte del sistema. A continuacion,
veremos las herramientas que nos ofrece.

. - —— 444

Open Source, o cddigo abierto, es el término que se utiliza para los programas distribuidos y desa-
rrollados libremente. El codigo abierto tiene un punto de vista orientado a los beneficios practicos de

compartir el codigo a quien lo desee. Es diferente de las normas que tiene en cuenta el software libre.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 59

Actores

Los casos de uso estan tipicamente

relacionados con los actores, que son
entidades humanas o maquinas que Actor
interactuan con el sistema para llevar a

cabo un trabajo significativo que ayude a

alcanzar una meta. El conjunto de casos
de uso de un actor define su rol global en
el sistema y el alcance de su accion. |

Figura 13. Aqui la herramienta
UML es actor.

Caso de uso (elipse)
En la elipse ubicamos una

funcionalidad o servicio provisto por

el sistema, que va a interactuar con los

actores u otros servicios del sistema.

Por lo general, escribimos algo breve
ue haga referencia a una actividad, " , .
4 £ Figura 14. Aqui la herramienta

como Registrar presupuesto.
& P P UML es caso de uso. _J

Limite del sistema (escenario)

En un recuadro se encierran los casos de uso, y este representa
el limite del sistema. Solo contiene comportamientos generales de
importancia, siendo estos los que utilizan los actores del sistema.

Relaciones
Los casos de uso pueden tener relaciones con otros casos de uso.

Los tres tipos de relaciones mas comunes entre ellos son:

e <<include>> / <<incluir>>: especifica una situacion en la que un
caso de uso tiene lugar dentro de otro caso de uso.

¢ <<extends>> / <<extender>>: especifica que, en ciertas
situaciones o en algiin punto (llamado punto de extension), un caso
de uso sera extendido por otro.

e Generalizacion o herencia: un caso de uso hereda las
caracteristicas del «super» caso de uso, y puede volver a especificar
algunas o todas de una forma similar a las herencias entre clases.

www.redusers.com &

60 2. INICIO DE UN DESARROLLO

Sistema .o

_ @ :
i

Figura 15. En este esquema podemos ver el modelo de un caso

de uso, representado por la elipse. l

En la Figura 15, las dos figuras en los extremos izquierdo y derecho
representan a los actores que intervienen. El actor que inicia se encuentra a la
izquierda del caso de uso, y el que recibe, a la derecha.

1- Actores
2- Caso de uso

3- Relaciones -
4- Limite del sistema S cilksitenass

Limite del sistema

Sistema Cenar ahora Titulo del sistema

Figura 16. Ejemplo de un modelo de un caso de uso, donde vemos
involucradas la mayoria de las herramientas y su forma de declararlas.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

El nombre del actor aparece justo debajo de él, y el del caso de uso
aparece dentro de la elipse o justo debajo de ella. Una linea asociativa
conecta a un actor con el caso de uso, y representa la comunicacion
entre ellos. La linea asociativa es solida, y el rectangulo envuelve a los
casos de uso dentro del sistema.

Los casos de uso son una gran herramienta para representar
modelos de negocios que relevamos antes. Asi, podremos mostrarles
a nuestros clientes, por un medio grafico, como funcionaria el sistema
y quiénes estarian involucrados; y a los desarrolladores, como deberia
funcionar la aplicacion segun la vision de los clientes.

Sobre este modelado hay mucho material gratuito para consultar en
la Web. En las siguientes imagenes mostramos algunos ejemplos que

61

Probar
la comida

podemos encontrar.
Pagar
la comida

®
| I Beber

Critico vino -

Preparar
la comida

" Figura 17. En este restaurante tenemos dos actores y cuatro globos
de procesos que se ven afectados por acciones sobre un sistema.

Continuando con nuestro ejemplo de presupuesto y ventas de
publicaciones en revistas, después del relevamiento realizado,
podemos definir el siguiente caso de uso.

www.redusers.com

<«

62 =4 2. INICIO DE UN DESARROLLO

Confeccion de presupuesto

Solicitud
de presupuesto

Generar
presupuesto

Impresién
comprobante

Figura 18. Ejemplo de Presupuestos. En este caso, los actores se ven
involucrados en un mismo proceso, donde interactuan.

Prototipos

Anteriormente vimos modelos que grafican los procesos de nuestro
desarrollo del sistema, y que sirven para que el cliente conozca, en
teoria, como funcionara la aplicacion que vamos a confeccionar; luego,
lo entregaremos a los desarrolladores. En esta seccion veremos que,
ademas de estos modelos, también podemos confeccionar prototipos
de interfaces graficas que nos demuestren como se veran nuestras
aplicaciones luego de ser desarrolladas.

Los prototipos son un ejemplo o molde en el que “fabricaremos”
una figura u otra. Dentro del desarrollo del software, seria la interfaz
grafica o modelo de funcionamiento grafico que permite mostrarle a un
usuario como sera el aspecto o el funcionamiento del futuro desarrollo.

El uso de prototipos es una poderosa herramienta que nos facilitara
la comunicacion con el usuario de las aplicaciones, junto con sus
reacciones y apreciaciones. De esta forma, veremos que este actua
como maqueta, y no precisamente como producto final.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 63

Podemos conceptualizar dos grupos principales de prototipos: un
prototipo desechable, que sirve como una vasta demostracion de
los requisitos, que luego se desecha y hace un paradigma diferente;
vy un prototipo evolutivo, que emplea el prototipo como primera
evaluacion del sistema terminado.

Objetivo de los prototipos

Al presentar prototipos, estamos muy interesados en las reacciones
de los usuarios y en los comentarios sobre como seria el manejo desde
su punto de vista. Aqui vamos a ver en detalle la manera en que
reaccionan, y como es el ajuste entre sus necesidades y las
caracteristicas del producto.

0 W ppitaen M & Vizud Saudn hdeme ctrsdcr) i . - T™ag
Mithert LBl Vir Preyeite Geadrw Depuid Lywps Dibés Formals Hemioeentas Anjatéchurs Presbi Asakasr Nestand Apuds

il F A @& AR R =2 (0= Z=L0 | 03 A EY tindows Phene imaateniis) - || M 300 8
19| &7 a|ZlBE=nea] 8| DE as==.g ' -
Formd b [Baeio] =

EsaliaSiag

By Pessta de Presupus s o @ 6 Pans vev daten die bnteiaToace,
et nbpiraTEn W et e en
= tio Carts ¢ gl o

Tios 6 Presapoesion

A
B Mis opcicnes

o A condiganctn 6

= N Q@ Oereres | 8 0 sdvertencas | L0
D Aschavs

> Figura 19. En esta pantalla podemos ver un claro ejemplo de
prototipos para presupuesto.

Las reacciones deben recopilarse con las herramientas utilizadas para
el relevamiento vy disefiadas para recoger la opiniéon de cada persona
sobre el prototipo analizado. Evaluando estas perspectivas, podemos

www.redusers.com &

VB USERS | 2. INICIO DE UN DESARROLLO

llegar a percibir si a los usuarios les agrada o no el sistema, e incluso
evaluar si habra dificultades para su posterior venta o implementacion.
En general, para evaluar si una aplicacion es
adecuada para la creacion de prototipos, basta
ANALIZANDO asegurarse de que nos permita crear pantallas
LAS PERSPECTIVAS visuales dinamicas, interactuar intensamente
con la persona, y demandar algoritmos o
PODEMOS EVALUAR

procesamiento de combinaciones en modo
S| EL SISTEMA ES progresivo. Es preciso tener en cuenta que un
prototipo puede ser desechado; por lo tanto,

EL ADECUADO cualquier lenguaje de programacion que nos
permita graficarlo sera suficiente.

Podemos ampliar mas sobre este importantisimo
tema utilizado en el desarrollo de aplicaciones consultando otro libro de
nuestra editorial: UML, por Fernando Asteasuain.

Cliente |/ No Cliente |

Opcion 1 =
2 Costo 1
O 2
pcf{,m M Costo2
Opcion 3 O Costo3

(Registrar X Imprimir)

| » Figura 20. Ejemplo de prototipos con mockingbird.

_J

Sy . 4
) “CONFECCION DE PROTOTIPOS s

Podemos utilizar las facilidades que nos brindan algunos IDE (entorno de desarrollo integrado), por ejem-
plo, el de Visual Studio, para crear formularios con controles. También existen otras aplicaciones de
maquetacion que pueden sernos de utilidad, como: https://gomockingbird.com http: //balsamiq.
com,http://pencil.evolus.vn yMicrosoft Visio.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 65

Implementacion
del desarrollo

El momento de insertar el software, ya sea en el negocio de nuestro
cliente o en el lugar de aplicacion que hayamos elegido, es una etapa
crucial para nuestro trabajo. En caso de ser un
software a pedido de un cliente, tenemos que

asegurarnos de que se hayan aprobado todos EL MOMENTO
los puntos anteriores de analisis. Es decir, que la DE INSERTAR EL
informacion haya sido correctamente recopilada,

que el cliente haya comprendido como funcionara SOFTWARE ES UNA

el sistema y que se hayan aprobado los prototipos ETAPA CRUCIAL PARA
del sistema. Luego de haber desarrollado el

sistema, entramos en la etapa de implementacién. NUESTRO TRABAJO
Tengamos presente que todas estas instancias
deben llevarse de una manera organizada
y comprometida, ya que de esto dependera el correcto analisis y
desarrollo del software.
A continuacion, veremos qué aspectos debemos tener en cuenta al
momento de instalar el sistema.

Prueba o testing
de aplicaciones

Este proceso de testing implica someter un software a ciertas
condiciones para demostrar si es valido o no. De esta forma, podemos
verificar si se ajusta a los requerimientos y validar que las funciones
se implementen correctamente. Al considerar y analizar los resultados
generados, se agrega valor no solo al producto, sino también a todo
el proceso de desarrollo. Los valores de calidad que tienen mayor
relevancia en las aplicaciones son: usabilidad, funcionabilidad,
fiabilidad, seguridad, eficiencia y mantenimiento.

Testear y documentar una aplicaciéon es un paso fundamental para
asegurar la calidad del producto. Para hacerlo, existen herramientas

www.redusers.com &

66 2. INICIO DE UN DESARROLLO

de software para proyectos web, como las que vimos anteriormente.
La tarea de testing no es menor, y es necesario tener un gran cuidado
al momento de la implementacion, ya que es una mision especifica de
un equipo o integrante del desarrollo de software. La ventaja de esos
programas de testing es que, en su mayoria,son open source.

Capacitacion y
formacion del usuario

Para darle cierre al analisis de sistema, llega una de las tareas
particularmente humanitarias: capacitar al usuario para el uso del
sistema informatico. En esta etapa es importante tener en cuenta que
no todos los futuros usuarios se desenvuelven facilmente en el manejo

de los equipos y el software. En este punto,
ademas de armarnos de paciencia para realizar la
ES IMPORTANTE QUE capacitacion, debemos establecer claramente los

LA CAPACITACION objetivos de la tarea, buscar métodos variados
(tedricos, practicos o tedrico-practicos), escoger

SE ENCARE DESDE un lugar adecuado (espacio relajado que no

EL PUNTO DE VISTA distraiga a las personas) y utilizar materiales que

sean comprensibles.

La capacitacion debe encararse desde el
punto de vista de los usuarios. A veces puede
ser util preguntarles, durante la capacitacion,
como hacian antes ciertos procesos o tareas. De esta forma, logramos
involucrarlos en la formacién y mostrarles todas las ventajas que les
ofrece el software en sus procesos cotidianos.

Dependiendo del tipo de actividad que se vaya a desempenar, la
capacitacion puede acompanarse con algunos manuales de usuario; por
ejemplo, si se trata de tareas regulares o especificas de una vez al mes,
como es el caso del cierre de ventas o el reconteo del inventario.

Cerrando con este capitulo de analisis de sistema, podemos ver
lo amplio que es un equipo de desarrollo y las variadas tareas que lo
conforman. También vimos que cada una de ellas no es independiente
del resto, sino que, de algun modo, siempre estan relacionadas.

DEL USUARIO

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 67

Para completar las metodologias y el analisis de sistema, contamos
con el grafico de la Figura 21, que nos permite ver la vinculacion e
inclusion de cada una de las partes.

Equipo de desarrollo de Software g

Procedimientos |

de gestion
Dan informes Cuurdjnan
a la direccién ¥y guian

Metodologia
de desarrollo

Dan una
estructura

Seleccionan
las
visible

herramientas

Soportan

métodos
Soporte
‘ automatizado l Tecnicas l
Determinan

las herramientas
necesarias

> Figura 21. En la integracion de metodologias y equipos de trabajo
vemos los diferentes elementos que entran en juego y sus relaciones.

RESUMEN

Fara comprender que los desarrollos de sistemas o aplicaciones son mas amplios que simples progra-

mas de registros, hemos visto en este capitulo todas las etapas que constituyen su analisis. El proceso
comienza con la necesidad o requerimiento del cliente; luego sigue el relevamiento minucioso de la
informacidn, las propuestas acerca de como funcionaria el sistema, el desarrollo especifico, la puesta a
prueba y, finalmente, la capacitacion de los usuarios. Todo esto, gracias a una metodologia de trabajo
que vamos a utilizar. No olvidemos que, en cualquiera de estas etapas, es posible volver atras, ya sea
para correccion de errores o debido a los requerimientos de cada situacidn en particular.

www.redusers.com &

68 2. INICIO DE UN DESARROLLO

Actividades

TEST DE AUTOEVALUACION

1 Clasifique los tipos de metodologia de desarrollo de software existentes,
indicando brevemente sus caracteristicas principales.

2 ;Qué metodologia utilizaria para realizar una aplicacion que controle el
funcionamiento de un conjunto de robots automatizados en una planta de
ensamble de autos?

3 (Qué metodologia emplearia en caso de realizar una aplicacion que consista en
la gestion y mantenimiento de una gran base de datos?

4 Describa los pasos generales que puede realizar en el analisis de sistema.

5 :Qué rol cumple el desarrollador de software en el andlisis de sistema?

6 :QuéesUML?

7 :Qué es el prototipado?

8 Qué métodos puede utilizar para mostrar a su cliente ejemplos de como

funcionaria el sistema?

9 ;Es correcto decir que solamente con saber qué hay que desarrollar podemos
generar cualquier sistema que nos propongan? ;Por qué?

10 :Es necesario interiorizarse en los procesos de un negocio para realizar un buen
desarrollo?

» www.redusers.com

ARNRRRRRRRENNNN

4744

Ingreso al mundo
de la programacion

En este capitulo veremos por qué maneras podemos optar
para transmitir a los equipos informaticos las indicaciones
de tareas especificas que deseamos realizar. Para lograr que
la interpretacion de estas indicaciones sea correcta, vamos a

analizar los medios necesarios.

i v La légica de un humano v Tipos de datos
| y de una maguina.......coceeeeeranees 70 estructurados........ccecreeeneenness 109
| Nector e s LI ()
| v Pseudocédigo: e |
el lenguaje humano......ccccceennee 71
Qué sony c6mo se usan v Utilizar funciones I
| lasmarahlas s 75 y procedimientoscoereenner. 120

| Cémo se utilizan los operadores....... 80 |
v ReSUMeN.....ccuererenemnessnsssnnsennne s 129

» Todo tiene un orden
en la programacioncueeeeeeen. 94 v Actividades...........cccecneeeemennnen . 130 .

AAA

Servicio de atencion al lector: usershop@redusers.com

70 3. INGRESO AL MUNDO DE LA PROGRAMACION

La logica de un humano
y de una maquina

El pensamiento légico en los humanos es interpretado como el orden
que este debe tener, indicando las operaciones de entendimiento en su
movimiento hacia un objetivo. Anteriormente vimos que el algoritmo
es un conjunto finito ordenado de pasos que nos lleva a la solucion de
un problema u objetivo. A lo largo de este capitulo, entenderemos que
esto no difiere mucho del proceso légico de una computadora.

La historia de la l6gica para la computacion
comienza con la Revolucion Digital, que se inicio

EL PENSAMIENTO con la invencion de la computadora digital y el
Lf]GlCU DE LAS acceso universal a las redes. Alan Turing fue
quien unié la l6gica y la computacioén, antes de
COMPUTADORAS que cualquier computadora fuese inventada.
SE BASA EN UN El fue matematico y légico, pionero en la
teoria de la computacion, y contribuyo con
LENGUAJE BINARIO importantes analisis l6gicos sobre los procesos

computacionales. Las especificaciones para la

computadora abstracta que él ideo, llamada
la maquina de Turing, resulto ser una de sus contribuciones mas
relevantes a la teoria de la computacién. Ademas, probé la posibilidad
de construir una maquina universal que hiciera el trabajo de
cualquiera disefiada para resolver problemas especificos, gracias a
una programacion adecuada. La maquina propuesta por Turing es un
dispositivo relativamente simple, pero capaz de efectuar cualquier
operacién matematica. De esta forma, seria capaz de hacer todo aquello
que fuera posible para el cerebro humano, incluyendo la capacidad
de tener conciencia de si mismo.

Pese a ser considerados formalmente equivalentes, los distintos
modelos de computacion presentan estructuras y comportamientos
internos diferentes. Si bien el pensamiento logico de las computadoras
esta basado en la légica del humano, la forma de procesar esta logica
se basa en un lenguaje binario. Frente a esto, la pregunta seria:
iqué lenguaje podemos utilizar como humanos, para que, luego, las
maquinas interpreten las tareas que les queremos indicar? Es aqui
donde entra en juego el pseudocodigo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 71

Pseudocodigo: el
lenguaje humano

Debido a que no podemos programar rapidamente en lenguaje
magquina (codigo binario), necesitamos adaptar de alguna manera el
lenguaje humano a formas logicas que se acerquen a las tareas que
puede realizar una computadora. En programacion, el lenguaje artificial
e informal, pseudocodigo, es util para desarrolladores en la confeccion
de algoritmos, pero este no es un lenguaje de programacion. El
pseudocodigo describe algoritmos que podemos utilizar como una
mezcla del lenguaje comun (protocolo humano) con instrucciones de
programacion. Su objetivo principal es que el desarrollador se centre
en la solucion logica v, luego, tenga prioridad en la sintaxis de un
lenguaje de programacion por utilizar.

En esencia, el pseudocodigo se puede definir como un lenguaje
de especificaciones de algoritmos que indica, en palabras, los pasos
que debe seguir un algoritmo para dar solucién a un problema
determinado. A continuacion, explicaremos las normas mas
importantes que hay que tener en cuenta para desarrollarlo.

Normas para el pseudocodigo

Como ya mencionamos, el pseudocoédigo es parecido a un lenguaje
de programacion en su escritura y, como tal, contiene un determinado
léxico. Se trata de letras o caracteres que seran validos para escribir las
instrucciones que deseamos transmitir. La sintaxis es la especificacion
de palabras clave en combinacion con otras que usaremos para formar
las oraciones. Por tltimo, la semantica es el significado que les
daremos a dichas frases.

Es la disciplina que se vale de métodos de analisis y razonamiento, utilizando el lenguaje de las matemati-

cas como un lenguaje analitico. La logica matematica nos ayuda a establecer criterios de verdad, y suim-

portancia en la actualidad se debe al destacado papel que tiene en los diversos campos de la Informatica.

www.redusers.com &

3. INGRESO AL MUNDO DE LA PROGRAMACION

Como hemos visto en capitulos anteriores, existen dos modos de
representar algoritmos: graficos con diagramas de flujo o sintaxis como
pseudocodigo. Las ventajas de utilizar un pseudocoédigo, en vez de un
diagrama de flujo, es que ocupa menos espacio en la hoja de papel,
permite representar facilmente operaciones repetitivas complejas,
simplifica el pasaje de un pseudocodigo a un lenguaje de programacion
y permite observar con claridad los niveles que tiene cada operacion.

Una de las normas generales que encontraremos en la mayoria de los
pseudocodigos y codificacion en lenguaje de programacion es la
estructura secuencial. Su definicion es una accién o instruccion que
sigue a otra en secuencia. Las tareas se suceden de tal modo que la
salida de una es la entrada de la siguiente, y asi hasta el fin del
proceso. A continuacion, en la Figura 1, vemos como se representa
una estructura secuencial en pseudocodigo.

Pseudocddigo Diagrama de flujo

Inicio

Inicio
Accion 1

Accion 2
. Accion 2

Accion N

Fin .

Accion N

Fin

Figura 1. Comparacion de pseudocodigo y diagrama de
flujo que nos ayuda a comprender el funcionamiento del
codigo por desarrollar.

www.redusers.com

INTRODUCCION A LA PROGRAMACION 73

Para comprender mas sobre el uso de pseudocodigo y la estructura
secuencial, a continuacion realizaremos un caso practico. En este
ejemplo, lo representaremos con la puesta en marcha de un automovil.

Indicar inicio

Inicio -
y fin del programa -

la llave de ignicion

[Ubicar] el cambio en neutro

Instrucciones

Presionar| el pedal acelerador

la llave de posicidn

de arranque

el motor arranca, la
llave en posicidn “encendido”

| |[Si] el motor no arranca, [Volver]
a girar la llave y ese

paso como maximo 3 veces

no arranca, [Oamar] al

mecanico

Figura 2. En esta figura podemos observar la explicacion de
pseudocodigo para arrancar un automovil.

El diagrama estructurado N-S es una técnica hibrida entre Diagramas de Flujo y Pseudocédigo. Esta

técnica, también conocida como Diagrama de Chapin, utiliza una serie de cajas, similar a los diagramas
de flujos, pero no requiere la utilizacion de flechas, debido a que su flujo siempre es descendente. Las
acciones sucesivas se pueden escribir en cajas sucesivas y es posible escribir diferentes acciones.

www.redusers.com &

74 =4 3. INGRESO AL MUNDO DE LA PROGRAMACION

Para resumir algunas de las normas generales que vemos en el
ejemplo, podemos decir que: la estructura es secuencial, se indica el
INICIO y FIN del programa, en el margen izquierdo se deja un espacio
llamado indentacién para identificar facilmente las estructuras, y cada
instruccion comienza con un verbo.

Tipos de datos

Para representar la informacion o las reglas que permitan cambiar
formulas matematicas a expresiones validas de computacion, es
necesario tener en cuenta los tipos de datos. Las cosas se definen
en la computadora mediante datos y algoritmos que van a operar
sobre esos datos. A nivel de la maquina, estos datos se representan
como una serie de bits (digito 1 o 0) y tienen un tipo asociado en la
programacion. Por ejemplo, un dato puede ser una simple letra (como
“b") 0 un valor numérico (como 35).

v DESCRIPCION v EJEMPLO

Datos Representan valores identificables de forma descriptiva. También Texto
alfanuméricos pueden representar nimeros, pero no es posible hacer operaciones v@lor3s
matematicas con ellos y van entre comillas. texto 12345

Tabla 1. Lista comparativa de datos simples que podemos utilizar
en el desarrollo de cadigo de ejemplo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 75

— Numeéricos

Simples
Alfanumeéricos
Tipos de
datos
Arreglos
— (Vectores,
matrices)
Eswucwrados |] Reeistros
(def. por el
usuario)

Apuntadores

Figura 3. Tipos de datos. La categoria del dato determina la naturaleza
del conjunto de valores que puede tomar una variable.

Qué son y como se usan las variables

Los nombres que representan el valor de un dato, ya sea numérico o
alfanumeérico, son variables. En esencia, una variable es un espacio en

) NORMAS GENERALES PARA CREAR VARIABLES

Para dar nombres a las variables, debemos saber que: pueden tener hasta 40 caracteres, deben empe-
zar obligatoriamente con una letra (a-z 0 A-Z), no pueden contener espacios en blanco, el resto de los
digitos pueden ser nimeros, y es posible incluir caracteres especiales (como el guién o el punto).

www.redusers.com &

76 3. INGRESO AL MUNDO DE LA PROGRAMACION

la memoria de la computadora que permite almacenar temporalmente
un dato durante la ejecucion de un proceso, y cuyo contenido puede
cambiar mientras corre un programa.

Para utilizar una variable, debemos darle un nombre con el
cual identificarla dentro de un algoritmo. Si fuera un lenguaje de
programacion, este nombre apuntaria automaticamente a un espacio de
memoria. Tanto en pseudocodigo como en un programa, es posible crear
tantas variables como sean necesarias. Asi, por ejemplo, podemos crear:
¢ A = 100: Variable tipo numeérica A cuyo valor es 100.

Ciudad = “Cordoba”: Variable alfanumeérica o de tipo caracter
Ciudad, cuyo valor es “Cordoba”
e A = C + B: Variable numeérica A cuyo valor es la suma de los valores

de las variables numéricas C y B. Es una variable calculada.

Como vemos en los
ejemplos, el valor que les
damos a las variables se
llama asignacion. Se trata
del proceso que tendremos
que efectuar cuando
queramos grabar o hacer
una operacion aritmética.
La asignacion consiste en el

> .. p . ; paso de valores a una zona
Figura 4. Aqui el espacio de memoria de _ 4
3 L e la memoria, que pueden
se representa por cajas, y se asignan HREER

valores a las variables (A=5 y B=2). I Seiles VerlaBlcs. Didha

zona sera reconocida con el
nombre de la variable que
recibe el valor, y se puede clasificar de la siguiente forma:
e Simples: consiste en pasar un valor constante a una variable. Dos
ejemplos:a <-15;a=15
e Contador: sirve para verificar el nimero de veces que se realiza un

proceso. Dos ejemplos:a<-a+1;a=a+1

e Acumulador: se utiliza como un sumador en un proceso. Dos
ejemplos:a<-a+b;a=a+b

¢ De trabajo: recibe el resultado de una operacion que involucre
muchas variables. Dos ejemplos: a<--c+b*2/4;a=c+b*2/4

Nota: Por lo general, en el pseudocodigo que escribimos en papel

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 77

se utiliza el simbolo de asignacién <--. También podemos usar
el igual (=) para representar esta accion.

Clasificacion de las variables
Ahora que ya hemos visto lo que significa la asignacion de valores en
variables, pasemos a estudiar a fondo la clasificacion y las

caracteristicas de estas.
— Numéricas ' e
Por su L
contenido Logicas
1 Alfanumeéricas '
Variables
— De trabajo '

Contadores

Por su
uso

Acumuladores

| 2 Figura 5. La clasificacion de las variables se determina
en funcién de su contenido y uso.

En la Tabla 2 vemos las variables que podemos crear por su
contenido, junto con su descripciéon y ejemplo.

1%
E) CONSTANTE

Las constantes son declaraciones de datos a las que se les asigna un espacio en la memoria para su
almacenamiento y no cambian durante la ejecucion del programa. Estas se definen durante el tiempo

de la complilacidn, y pueden ser tanto numéricas como alfanumércas.

www.redusers.com &

78 =4 3. INGRESO AL MUNDO DE LA PROGRAMACION

CONTENIDO

v VARIABLES Y SU CONTENIDO v DESCRIPCION v EJEMPLO

Variables lagicas Solo pueden tener dos valores Habilitado <- 0
(cierto o falso), que representan el Habilitado <- 1
resultado de una comparacion entre
otros datos.

Tabla 2. Lista comparativa de los tipos de variables que existen en funcion
de su contenido.

En la Tabla 3 se muestran las variables que podemos crear por su
uso, junto con su descripcion y ejemplo.

v VARIABLES Y SU USO v DESCRIPCION v EJEMPLO

Contadores Llevan el control del nimero cuando se realiza Contador =

una operacion o se cumple una condicién, con los Contador +1
incrementos generalmente de uno en uno.

Tabla 3. Lista comparativa de los tipos de variables en funcion de su uso.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 79

Normas de escritura
Retomando las normas generales para escribir en pseudocodigo,
debemos tener en cuenta como vamos a crear o declarar estas variables
en nuestro programa. Como dijimos que las expresiones se asemejan al
lenguaje humano, podemos utilizar la palabra “variable” para declarar
una de ellas. Por ejemplo, es posible usar las siguientes formas:
Ejemplo 1:

INICIO
Variable Nombre
Variable Edad
Nombre <-- “Juan”
Edad <-- 20
Mostrar Nombre Y Edad
FIN

Como podemos observar en el ejemplo 1, no solo creamos o
declaramos la variable y le dimos un nombre, sino que también
especificamos qué tipo de dato se puede almacenar en ella y, luego, le
asignamos el valor. El modelo que utilicemos dependera del nivel de
trabajo que queramos realizar. Lo mejor seria dejar todo detallado en el
pseudocodigo, para asi, después, pasarlo al lenguaje de programacion
sin mayores inconvenientes. Por ejemplo, la sintaxis sugerida seria:

Variable Nombre_de_la_variable tipo_de_dato

Ejemplos validos de nombres de variables:
Variable FechaMueva
Variable H123

) INDENTACION

A

Dentro de los lenguajes de programacion que se aplican a las computadoras, la indentacion representa
un tipo de notacion secundaria que se utiliza para mejorar la legibilidad del codigo fuente por parte de
los programadores, teniendo en cuenta que los compiladores o intérpretes raramente consideran los
espacios en blanco entre las sentencias de un programa.

www.redusers.com &

80 [=F=4 3. INGRESO AL MUNDO DE LA PROGRAMACION

Variable cantidad_de_Alumnos
Variable Pedido.Almacen

Ejemplos NO validos de nombres de variables:
Variable 1contador
Variable primer-valor N

Algunos lenguajes de programacion deben tener declaradas las
variables que se van a utilizar en todo el programa. De esta forma, al
comenzar el programa, estaran declarados: nombre, tipo (numérica
o alfanumeérica) y valor inicial. Las variables también pueden
inicializarse dandoles un valor inicial. Por defecto, todas las variables
para las que no especifiquemos un valor inicial valen cero si son de
tipo numeérico y nulo si son de tipo caracter/texto. Cabe destacar
que el tipo de dato nulo no es cero ni espacio en blanco, es nulo (una
traducciéon podria ser vacio).

Es importante conocer como se utilizan las variables y qué
combinaciones de operaciones podemos realizar con ellas. El proximo
tema nos dara una amplia vision sobre este aspecto.

Como se utilizan los operadores

En todos los casos en que precisemos realizar desarrollos para
solucionar algun inconveniente, nos veremos involucrados en la
necesidad de efectuar operaciones de distintos tipos: suma, resta,
concatenacion, procesos logicos, etc. Estos elementos se relacionan de
modo diferente, con valores de una o mas variables y/o constantes.

A continuacién, veremos los operadores que podemos utilizar en el
pseudocodigo para manipular valores.

) “IDENTIFICADORES s

Los identificadores son aquellos que representan los datos de un programa, las constantes, las variables
y los tipos de datos. Se trata de una secuencia de caracteres que se utilizan para identificar una posicion
en la memoria de la computadora y obtener asi el acceso a su contenido. A modo de ejemplo, podemos
mencionar: Nombre; Numero_horas; Calificacion.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 81

Aritmeticos

Los operadores aritméticos permiten realizar operaciones
matematicas con los valores de variables (suma, resta, multiplicacion,
etcétera), y pueden usarse con datos enteros o reales.

Operando Operador Operando

o

» Figura 6. En este esquema podemos ver la representacion de

[una férmula sobre operadores aritméticos. I

ARITMETICOS

v SIGNO v SIGNIFICADO

- Resta

! Division

MOD Resto de la division entera

Tabla 4. En este listado podemos ver los signos aritméticos que podemos
utilizar en programacion, junto a sus respectivos significados.

www.redusers.com «

82 =4 3. INGRESO AL MUNDO DE LA PROGRAMACION

Ejemplos: Expresion Resultado
772 o
4+2*5 14

Es importante tener en cuenta la prioridad de los operadores
aritmeéticos. Todas las expresiones entre paréntesis siempre se
evalian primero. Aquellas con paréntesis anidados se evaltian desde
adentro hacia afuera (el paréntesis mas interno se evaltiia primero).

Dentro de una misma expresion, los operadores se evalilan en el
siguiente orden:

1. A Potenciacion

2. *, /, mod Multiplicacién, division, modulo

3. 4, - Suma vy resta

Los operadores en una misma expresion y con igual nivel de
prioridad se evalilan de izquierda a derecha.

Ejemplos:
4+2*4=12
23*2/5=9.2

3+5*(10-(2+4))=23
2.1 *(1.5+12.3)=2.1*13.8=28.98

Logicos

Los operadores logicos se utilizan para establecer relaciones
entre valores logicos, que pueden ser el resultado de una expresion
relacional. Dentro del pseudocodigo, por lo general pueden tomar dos
valores para indicar su estado:

1 - Verdadero — True

0 - Falso - False

4"44
-- @ ~NULO/NULA

En el camino del desarrollo, nos encontraremos con diferentes tipos de datos que aceptan tener el valor
NULO. Pueden tener referencias como NULL o null, dependiendo del lenguaje. Esto se utiliza para indicar

que el tipo de dato no tiene ningdn valor asignado y, frecuentemente, se aplica en bases de datos.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4S 83

Los tipos de operadores logicos que podemos aplicar a la
programacion son los siguientes:

And -Y

Or-0

Not - Negacion - No

a Figura 7. Aqui
T significa
verdadero, y
F, falso. Las
variables son
a=10, b=20y
g=30

OH®

Podemos ver que tanto la primera expresion como la segunda son
verdaderas y, por eso, el resultado final también lo es. Las posibles
combinaciones logicas que encontraremos con los diferentes
operadores se muestran en las siguientes tablas.

v CONDICION1 v OPERADOR v CONDICION2 v RESULTADO

Verdadero Falso Falso

Falso Falso Falso

Tabla 4. En la aplicacion del operador AND, el hecho de que alguna de las
condiciones sea falsa hara que el resultado también lo sea.

www.redusers.com «

84 [=F=E 3. INGRESO AL MUNDO DE LA PROGRAMACION

Supongamos que creamos las variables EDAD y ALTURA y, en la
primera parte, preguntamos en pseudocodigo si EDAD es mayor que 18
Y su ALTURA es menor que 1.70. Esta expresion devolvera verdadero
solo si ambas son verdaderas. (Edad > 18) Y (Altura < 1.70)

Por ejemplo, veamos qué sucede si las variables toman los
siguientes valores:

Edad == 21 Edad <- 12 Edad <=- 21
El resultado seria verdadero El resultado seria falso El resultado seria falso

El operador OR u 0 se utiliza para preguntar sobre el cumplimiento
de una condicion u otra; el resultado sera verdadero siempre y cuando
alguna expresion también lo sea.

v CONDICION?1 v OPERADOR v CONDICION2 v RESULTADO

Verdadero Falso Verdadero

Tabla 5. En la aplicacion del operador OR, el resultado solo sera falso si ambas
condiciones son falsas.

@ ALGEBRA DE BOOLE

Hace referencia a una estructura algebraica que esquematiza las operaciones légicas Y, O, NO y SI (AND,
OR, NOT, IF), asi como el conjunto de operaciones unién, interseccion y complemento. Encontraremos
que los datos booleanos o légicos influyen de gran manera en la informatica y la electrénica.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4S 85

Supongamos que creamos una variable EstadoCivil y Sueldo y, en la
primera parte, preguntamos en pseudocodigo si el estado civil es igual
a C (entendiéndose que C es casado) o su Sueldo es mayor que 2000.
Esta expresion devolvera verdadero si alguna de las dos es verdadera.

(EstadoCivil =‘C") o (Sueldo > 2000)

EstadoCivil <- ‘C’ EstadoCivil <- ‘S’ EstadoCivil <= ‘S’

El resultado seria verdadero El resultado seria verdadero El resultado seria falso

Como podemos ver en la Tabla 6, el operador Not o NO se utiliza
para preguntas de negacion en las condiciones deseadas.

v CONDICION1 v OPERADOR v RESULTADO

Falso Verdadero

Tabla 6. Con el operador NO el resultado invierte la condicion de la expresion.

Supongamos que creamos una variable sexo y queremos preguntar
por aquellas variables que NO son femenino.
NO (sexo = “Femenino”)

sexo <= “‘Masculing” sexo <- “Femening”

Es un término que proviene del latin y significa “escuadra”. Una norma es una regla que debe ser respeta-

da y que permite ajustar ciertas conductas o actividades. En el &mbito informatico, es lo que aplicamos

en el orden de la programacion, estructuras, declaraciones, funciones, etc.

www.redusers.com <«

86 =4 3. INGRESO AL MUNDO DE LA PROGRAMACION

PRIORIDADES

v OPERADORES LOGICOS v SIGNIFICADO v OPERADORES EN GENERAL

2.And Producto légico (Y)

4. +,-, And

Tabla 7. Prioridades en la resolucion que debemos tener en cuenta para las
operaciones aritméticas

Relacionales

Se utilizan para establecer una relacion entre dos valores. Al comparar
estos valores entre si, se produce un resultado verdadero o falso. Los
operadores relacionales comparan valores del mismo tipo, numéricos o
cadenas. Estos tienen igual nivel de prioridad en su evaluacion.

RELACIONALES

v OPERADOR v COMPLEMENTO v OPERADOR v COMPLEMENTO

<= > Menor o igual gue Mayor gue

>= < Mayor o igual que Menor que

= Distinto de (diferente) Igual que

Tabla 8. Los operadores relacionales tienen menor prioridad que los aritméticos.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4S 87

Resultado

25 <> 25 Falso

50 <= 100 Verdadero

1=6 Falso

Ejemplos no légicos:

a<b<c

10<20 <30

T>5<30

(no es logico porque tienen diferentes operandos)

Cuando se comparan caracteres alfanumeéricos, se lo hace de uno en
uno, de izquierda a derecha. Si las variables son de distinta longitud,
pero exactamente iguales, se considera que la de menor longitud
es menor. Los datos alfanuméricos son iguales si y solo si tienen la
misma longitud y los mismos componentes. Las letras minasculas son
mayores que las mayusculas, y cualquier caracter numérico es menor
que cualquier letra mayuscula o minascula.

Teniendo en cuenta lo explicado anteriormente, a continuacién
trabajaremos con algunos ejemplos que nos ayuden a comprenderlo
mejor. Para eso, es importante tener en cuenta la siguiente sintaxis de
prioridad, que es con la que nosotros trabajaremos:

caracter numeérico < mayusculas < minasculas

Una cadena o string es una sucesion de caracteres gue se encuentran delimitados por comillas (*"). La

longitud de la cadena es la cantidad de caracteres gue la forma, incluyendo los espacios, que son un
caracter mas. Por ejemplo: “Sudameérica, Argentina” es una cadena de longitud 21.

www.redusers.com <«

88 === 3. INGRESO AL MUNDO DE LA PROGRAMACION

Comparacion Resultado

SARRAT > “AAAT Verdadero

SEY <t Verdadero

Asignacion de valores

Como vimos anteriormente, para que las variables tomen un
valor, debemos asignarselo en pseudocédigo por medio de = 0 <--.
La cooperacion de asignacion le permite a la computadora evaluar
una expresion matematica y almacenar el resultado final en una
determinada variable. La sintaxis que podemos utilizar para la
asignacion es la siguiente:

Nombre_de_la_variable <-- expresion o variable

ASIGNACION

v ASIGNACION v ASIGNACION v CARACTERES O CADENA
ARITMETICA LOGICA DE CARACTERES

varl <— 3+4%2 varl <--5<2 car <--'%’

var3 <-- varl / var2 var3 <-- varl o var2

Tabla 9. En la asignacion a variables, el simbolo <-- indica que el valor de la parte
derecha del enunciado se le asigna a la variable de la izquierda.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 89

Para la construccion de un enunciado de asignacion, es preciso
considerar ciertas reglas. En primer lugar, toda variable del lado
derecho debe estar definida y solo la de la izquierda puede cambiar
de valor cuando antes tenia un valor asignado. Las variables del lado
derecho siempre conservan su valor, aunque es importante tener en
cuenta que, si la variable de la parte izquierda esta también en la
derecha, esta cambia de valor por aparecer en la izquierda.

Hasta aqui, hemos visto: el inicio de la codificaciéon en
pseudocodigo, el uso de variables, sus diferentes utilidades y la
asignacion de valores. A continuacion, en la Figura 8, veremos un
esquema que nos ilustrara, mediante un ejemplo sencillo, como se
confeccionaria un pseudocodigo para presentar en un caso concreto.

Encabezado: Empezar con la palabra
ALGORITMO seguida por una descripcion
adecuada al problema a resolver

ALGORITMO Calcular el Area
de un Circulo

INICIO] Inicio del algoritmo: Indicar el inicio
del algoritmo / codigo

constante Pi tiporeal = 3.1416|f | Declaracion de variables y constantes:
transcurso del algoritmo. Definir las
variables que sean necesarias para resolver
el problema, identificandolas con nombre
Radio <- 5 y determinando sus tipos de datos.

Area <- Pi * Radio * Radio

Instrucciones: cada instruccién puede
ser calculos o sentencias para procesar
0 mostrar informacion

MOSTRAR Area
FIN

Figura 8. En este esquema de pseudocodigo, el valor de la variable
Radio se asigna por codigo como 5.

Para capturar un valor que el usuario pueda ingresar, podemos
utilizar las palabras LEER o MOSTRAR. En el caso de LEER,
capturaremos un valor para la aplicacion; mientras que MOSTRAR dara
un resultado. Veamoslo en el ejemplo de la Figura 9.

www.redusers.com &

> | I USERS | 3. INGRESO AL MUNDO DE LA PROGRAMACION

ALGORITMO Calcular area Encabezado: empezar con la palabra}
de un rectdngulo ALGORITMO seguida por una descripcion
adecuada al problema a resolver.

INICI0}

Inicio del algoritmo: indicar el inicio
del algoritmo / codigo

constante Pi tipo real = 3.1416
variable Base, Altura, Area tipo real

Declaracion de constantes y variables:
definir los valores que no cambian en el
transcurso del algoritmo y las variables que
sean necesarias para resolver el problema,

identificandolas con un nombre

LEER Base, Altura y determinando sus tipos de datos.

Area <- Base * Altura

Instrucciones: cada instruccion puede
ser calculo o sentencia para procesar
o mostrar informacion.

MOSTRAR Area
FIN

b Figura 9. Esquema de pseudocodigo. Aqui vemos el detalle que podemos
estructurar para nuestros ejemplos de algoritmo o codigo por desarrollar.

Ahora pasemos a un ejemplo mas especifico, donde debamos hacer
un algoritmo que nos permita calcular el sueldo basico de una persona.

Significado

& Concatenacion

Para esto, debemos ingresar la tarifa horaria y las horas trabajadas.

Expresion Resultado

“3" + “4567" “34567"

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 91

Encabezado: Empezar con la palabra
ALGORITMO seguida por una descripcidn
adecuada al problema a resolver

ALGORITMO Calcular Sueldo

INICIO] 1 [Inicio del algoritmo: Indicar el inicio del
algoritmo / cadigo

constante CostoHora tipo real = 9.5 [Bl peoiaracion de variables y consiantes:
variable CantidadHoras, Declaracién de constantes. Definir los valores
Sueldo tipo real que no cambian en el transcurso
del algoritmo. Definir las variables que sean
necesarias para resolver problema,
LEER CantidadHoras identificandolas con un nombre

Sueldo <- CantidadHoras * CostoHora y determinando sus tipos de datos.

MOSTRAR Sueldo
FIN

Instrucciones: cada instruccion puede
ser calculos o sentencias para procesar
o mostrar informacion

I Figura 10. En este esquema de pseudocodigo, la formula del sueldo
es: Sueldo= Costo hora x Cantidad de horas.

Cuando tratamos el tema de las asignaciones, debemos tener en
cuenta los simbolos + e & que utilizaremos para unir o concatenar
datos. Dependiendo del tipo de lenguaje que vayamos a utilizar,
usaremos el simbolo indicado para concatenar. En este ejemplo que
estamos trabajando, usaremos el +.

En estos ejemplos, vemos operaciones simples que podemos
confeccionar en pseudocodigo, v otros casos mas complejos, en los
cuales debemos tener en cuenta las estructuras que podemos utilizar. A
continuacion, vamos a encontrar el desarrollo completo sobre ellas.

, 14
'- @ “ASIGNACION DESTRUCTIVA
-

Cuando decimos que toda asignacion es destructiva, significa que el valor previo que tiene la variable se
pierde, y se reemplaza por el nuevo valor que asignamos. Asi, cuando se ejecuta esta secuencia:

B<- 25;B <- 100; B <- 77, el valor final que toma B serd 77, ya que los valores 25 y 100 son destruidos.

www.redusers.com &

92

3. INGRESO AL MUNDO DE LA PROGRAMACION

Entrada y salida de informacion

Para procesar los datos que vamos a obtener del usuario, debemos
asignarlos a variables. Para esto, utilizamos la instruccion LEER o,
también, INGRESAR. Por ejemplo:

variable varNumero tipo numero
LEER varNumero

Dicha instruccion le pide al usuario que ingrese un valor que luego
sera asignado a la variable varNumero.

variabhle Edad, Peso tipo numero
variable Sexo tipo texto
LEER Edad, Peso, Sexo

Esto representa la lectura de tres valores que se van a almacenar en
las variables Edad, Peso y Sexo.

Con el codigo anterior, hemos capturado informacion para nuestro
programa utilizando pseudocodigo. Cuando deseamos mostrar un
resultado en un mensaje, debemos aplicar la instruccion IMPRIMIR O
MOSTRAR, como vemos en el siguiente ejemplo:

IMPRIMIR “Hola” // MOSTRAR “Hola”

Cuando en pseudocodigo queremos mostrar en pantalla el mensaje
“Hola”, debemos recordar que la palabra tiene que ir entre comillas,
porque pertenece a una cadena de texto.

variable A tipo numero <-- 520
IMPRIMIR A // MOSTRAR A

De esta forma, podemos mostrar en la pantalla el valor que esta
almacenado en la variable A; en este caso: el nimero 520.

variable A, B, Promedio tipo numero
A<- 15

B<-7

Promedio <-- (A+B)/2

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 93

IMPRIMIR “El valor del promedio es:*, Promedio
//MOSTRAR “El valor del promedio es:*, Promedio

Esta instruccion muestra el mensaje que esta entre comillas vy,
luego, el valor de la variable promedio. La coma separa el mensaje de
la variable, y el resultado de promedio es 11. De este modo, lo que se
vera en pantalla sera: El valor del promedio es: 11

Hemos visto dos comandos que vamos a utilizar en nuestros
pseudocodigos: LEER y MOSTRAR / IMPRIMIR.

También tenemos la posibilidad de mostrar un

mensaje cuando le solicitamos algun dato al ES IMPORTANTE
usuario, por medio del comando LEER: DECLARAR
variable edad tipo numero <-- 0 CORRECTAMENTE LAS
LEER “Ingrese su edad”, edad VARIABLES Y TIPOS
El valor de la variable que le pedimos al usuario DE DATOS

se asigna a edad. Esta instruccion se vera de la
siguiente forma en la pantalla:

Ingrese su edad ?

Hasta aqui hemos visto de qué modo debemos actuar para declarar
y utilizar las variables con sus tipos de datos, y como podemos aplicar
los diferentes tipos de operadores. También vimos como deben tomarse
los valores ingresados por los usuarios y qué opciones podemos elegir
para mostrar la informacion. A continuacion, aprenderemos a realizar
la parte “inteligente”, que nos permitira resolver diferentes situaciones
que puedan presentarse en la programacion.

' BENEFICIOS DEL PSEUDOCODIGO

A

En comparacion con los diagramas de flujo, el pseudocddigo permite representar facilmente las opera-
ciones repetitivas complejas, agilizar el pasaje de pseudocddigo a lenguaje de programacion formal, y
mostrar los niveles y estructuras gracias a la indentacion. También mejora la claridad de la solucion de
un problema, ya que da como correcta la opcion mas conveniente.

www.redusers.com &

94 3. INGRESO AL MUNDO DE LA PROGRAMACION

Todo tiene un orden
en la programacion

El funcionamiento del equipo se basa en la ejecucion de los
comandos a medida que va leyendo el archivo (de arriba hacia abajo),
hasta alcanzar un comando que lo dirija hacia una ubicacion especifica
del programa. Para que este trabajo se realice correctamente, es
importante que la informacion esté organizada y estructurada de forma
adecuada. De esta forma, podra obtenerse un rendimiento razonable en
la memorizacion, tratamiento y recuperacion de esa informacion.

Estructuras de control

Las estructuras de operacion de programas constituyen un grupo de
formas de trabajo que, mediante el manejo de variables, nos permiten
realizar ciertos procesos especificos para solucionar los problemas.

Asignacion
Entrada

| salida |
Estructuras _ -

Condicionales _

Ciclicas " Mientras que

Repita hasta

Figura 11. En esta imagen podemos ver que las estructuras de control
se clasifican de acuerdo con su complejidad.

Secuenciales

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 95

Secuencial

Las estructuras secuenciales son todas aquellas estructuras que
estuvimos utilizando en los casos anteriores. Se trata de un nimero
definido de instrucciones que se ubican en un orden especifico y se
suceden una tras otra.

Condicional

En este caso, se compara una variable con otros valores, para que,
sobre la base del resultado, se siga un curso de accién dentro del
programa. Cabe mencionar que la comparacion puede hacerse contra
otra variable o contra una constante, segun sea necesario. Existen tres
tipos basicos: simples, dobles y multiples.

Figura 12. En la decision simple de comer una manzana o una naranja,
la eleccion da como resultado la accion de “comer”.

Simples
Las estructuras condicionales simples se conocen como toma de
decision y tienen la siguiente sintaxis:

www.redusers.com &

96 3. INGRESO AL MUNDO DE LA PROGRAMACION

Si <condicion> entonces
Instruccion/es
Fin Si

Si: indica el comando de comparacion.
Condicién: indica la condicion por evaluar.

Instruccion: son las acciones que van a realizarse cuando se cumple
o no la condicion.

Dentro del pseudocodigo, podemos encontrar el siguiente ejemplo:
debemos preguntar si la edad de una persona es mayor o igual que 18
anos; si esto se cumple, mostramos un mensaje que diga “ES MAYOR".
Veamos el codigo:

INICIO
Variable edad tipo numero
edad <-- 15

//podemos utilizar LEER edad, si deseamos que un usuario ingrese por teclado
el valor
Si edad>=18 entonces
MOSTRAR “Es mayor”
Fin Si
FIN

Nota: por lo general, en las anotaciones en forma de comentario,
tanto en pseudocodigo como en algunos lenguajes de programacion,
podemos encontrar los signos de barras, “ // “.

Si deseamos comparar valores de variables, podemos considerar el
siguiente ejemplo. Contamos con la altura de dos personas: A y B. Si el
mas alto es A, mostramos un mensaje. Veamos el codigo:

INICIO
Variable alturaA, alturaB tipo real
alturaA<--1.5
alturaB<-- 1.9

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 97

//podemos utilizar LEER edad, si deseamos que un usuario ingrese por teclado
los valores

Si alturaA>= alturaB entonces
MOSTRAR “'La persona mas alta es A"
Fin Si
FIN

Otro ejemplo que podemos tomar para un calculo con variables es:
sumamos dos valores vy, si el resultado de la operaciéon es mayor que
50, informamos que “El valor es ALTO". Veamos el codigo:

INICIO
Variable numeroA, numeroB tipo numero
numeroA <-- 15
numeroB <-- 20

/lpodemos utilizar LEER edad, si deseamos que un usuario ingrese por teclado
los valores

Si (numeroA + numeroB) > 50 entonces
MOSTRAR “El valor es ALTO"
Fin Si
FIN

Doble

Las estructuras condicionales dobles permiten elegir entre dos
opciones, en funcion del cumplimiento o no de una determinada
condicion. Tienen la siguiente sintaxis:

Si <condicion> entonces
Instruccion/es
Sino
Instrucciéon/es
Fin Si

www.redusers.com &

98 =4 3. INGRESO AL MUNDO DE LA PROGRAMACION

Si: indica el comando de comparacion.

Condicién: indica la condicion que se va a evaluar.

Entonces: precede a las acciones por realizar cuando se cumple la
condicion.

Instruccion: son las acciones que se realizaran cuando se cumple o no
la condicién.

Sino: precede a las acciones por realizar cuando no se cumple la
condicion. Dependiendo de si la comparacion es cierta o falsa, es
posible realizar una o mas acciones.

A continuacion, utilizaremos los ejemplos anteriores, pero aplicados
a esta estructura. Por ejemplo: si la edad es mayor o igual que 18,
mostraremos: “es mayor de edad”; en caso contrario: “es menor de edad”:

INICIO
Variable edad tipo numero
edad <-- 15

Si edad>=18 entonces
MOSTRAR “Es mayor de edad"”
Sino
MOSTRAR “Es menor de edad”
Fin Si
FIN

Comparando dos valores de variables (por ejemplo: las alturas de los
dos sujetos A y B), si el mas alto es A debemos mostrar: “La persona mas
alta es A", en caso contrario: “La persona mas alta es B". Veamos el codigo:

44
| @ 'MOSTRARYOBTENER

En pseudocddigo, encontramos diferentes palabras que expresan la misma accion. Por ejernplo, para mos-
trar datos podemos utilizar: MOSTRAR, ESCRIBIR, IMPRIMIR o PRINT. En el caso de querer obtener
datos, usamos PEDIR o LEER. Es recomendable emplear una sintaxis homogénea y unificar las palabras.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

INICIO
Variable alturaA, alturaB tipo real
alturaA<-- 1.5
alturaB<-- 1.9

Si alturaA>= alturaB entonces
MOSTRAR “'La persona mas alta es A"
Sino
MOSTRAR “'La persona mas alta es B”
Fin Si
FIN

A veces, cuando realizamos un calculo con variables, debemos
alterar nuestro mensaje en funcion del resultado. Por ejemplo:
sumamos dos valores y, si es mayor que 50, informamos: “El valor es
ALTO"; en caso contrario: “El valor es BAJO". Veamos el codigo:

INICIO
Variable numeroA, numeroB tipo numero
numeroA <-- 15
numeroB <-- 20

/Ipodemos utilizar LEER edad, si deseamos que un usuario ingrese por teclado
los valores

Si (numeroA + numeroB) > 50 entonces
MOSTRAR “El valor es ALTQ"
Sino
MOSTRAR “El valor es BAJO"”
Fin Si
FIN

El siguiente cddigo comprobara que, al introducir un nimero por
teclado, nos diga si es positivo o negativo:

www.redusers.com

<«

100 3. INGRESO AL MUNDO DE LA PROGRAMACION

INICIO
Variable Num tipo numero<-- 0
ESCRIBIR “Escriba un namero: ™
LEER Num
SI Num >=0 ENTONCES
MOSTRAR “Es positivo”
SINO
MOSTRAR “Es negativo”
FINSI
FIN

El siguiente cédigo comprobara que, al introducir un nimero por
teclado, nos diga si es par o impar:

INICIO
Variable Num tipo numero<-- 0
ESCRIBIR “Escriba un namero: ™
LEER Num
SInum=int(num/2)*2 ENTONCES
MOSTRAR “Es par”
SINO
MOSTRAR “Es impar”
FINSI
FIN

Multiples o anidadas
Estas estructuras de comparacion son decisiones especializadas que
nos permiten comparar una variable con distintos resultados posibles,

ejecutando una serie de instrucciones especificas para cada caso. Estas
tienen la siguiente sintaxis:

Si <condicién> entonces
Instruccidn/es
Sino
Si <condicién> entonces
Instruccion/es

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

Sino
Si <condicién> entonces
Instruccién/es
Sino
... y asi sucesivamente...
Fin Si
Fin Si
Fin Si

Necesitamos realizar un algoritmo que pida la altura de una persona.

Para eso, vamos a establecer que: si la altura es menor o igual que
150 cm, mostrara el mensaje: “Persona de altura baja”; si la altura esta
entre 151 y 170, mostrara: “Persona de altura media”; y si la altura es
mayor que 171, mostrar el mensaje: “Persona alta”.

INICIO
Variable Altura tipo numero
ESCRIBIR “;Cual es tu altura?: ”
LEER Altura
Si Altura <=150 entonces
ESCRIBA “Persona de altura baja”
Sino
Si Altura <=170 entonces
ESCRIBA “Persona de altura media”
Sino
Si Altura>170 entonces
ESCRIBA “Persona alta”
Fin Si
Fin Si
Fin Si
FIN

Otra de las estructuras de comparacion multiple es una decision
especializada que nos permita evaluar una variable con distintos
resultados posibles, ejecutando para cada caso una serie de
instrucciones especificas. La sintaxis es la siguiente:

www.redusers.com

101

<«

102 3. INGRESO AL MUNDO DE LA PROGRAMACION

En_Caso_De <condicién> haga
Caso 1: Instruccion/es
Caso 2: Instruccion/es
Caso 3: Instruccion/es
Sino

Instruccion/es
Fin_Caso

También puede suceder que encontremos otra sintaxis para
representar una misma estructura, Por ejemplo, en este caso, la sintaxis
para el pseudocddigo seria la siguiente:

Segun_Sea <condicién> hacer
Caso 1: Instruccién/es
Caso 2: Instruccion/es
Caso 3: Instruccion/es

Sino
Instruccidn/es
Fin_Segun

Para ir cerrando con esta estructura, pademos a realizar un ejemplo
sencillo que nos permita visualizar el concepto. En este caso, vamos
a tener que disefar la estructura necesaria para que el usuario pueda
ingresar un valor numeérico, establecido entre 1 y 5. Como respuesta,
debemos asegurarnos de que el algoritmo muestre el mismo nimero,
pero en formato de texto:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 103

INICIO
Variable num tipo numero

ESCRIBIR “Ingrese un valor entre 1 y 5: "
LEER num
En_Caso_De num haga
Caso 1: MOSTRAR “Uno”
Caso 2: MOSTRAR “Dos”
Caso 3: MOSTRAR “Tres”
Caso 4: MOSTRAR “Cuatro”

Caso 5: MOSTRAR “Cinco”

Sino
MOSTRAR “No ingreso un valor entre 1 y 5”
Fin_Caso

FIN
Otro ejemplo puede ser que el usuario ingrese un numero entre 1 y
7,y el algoritmo deba dar como resultado su correspondiente dia de

la semana. Por ejemplo: 1- Lunes; 2- Martes; 3- Miércoles; 4- Jueves; 5-
Viernes; 6- Sabado; 7- Domingo.

INICIO
Variable num tipo numero

ESCRIBIR “Ingrese un valor entre 1 y 7: %
LEER num

En_Caso_De num haga

Caso 1: MOSTRAR “Lunes”

www.redusers.com &

3. INGRESO AL MUNDO DE LA PROGRAMACION

Caso 2: MOSTRAR “Martes"
Caso 3: MOSTRAR “Miércoles”
Caso 4: MOSTRAR “Jueves”
Caso 5: MOSTRAR "“Viernes”
Caso 6: MOSTRAR “Sabado”
Caso 7: MOSTRAR "“Domingo”

Sino
MOSTRAR “No ingreso un valor entre 1 y 7
Fin_Caso

FIN

Hasta aqui, hemos visto las estructuras de controles utilizadas
para preguntar secuencialmente sobre alguna condiciéon o caso. Es
importante tener en cuenta que podemos utilizar las sentencias
SI - FinSi para condiciones simples de una sola respuesta, y SI-Sino-
FinSi para condiciones dobles con dos posibles respuestas. También
podemos anidar las expresiones SI, una dentro de otra, con el fin de
resolver condiciones complejas o que deben ir cumpliéndose una
dentro de otra. Por tltimo, es posible usar Segun_Sea, siempre que
queramos preguntar por una determinada condicién y, dependiendo de
su valor o estado, realizar cierta accién.

Repetitivas o estructuras ciclicas

Se utilizan estructuras repetitivas o ciclicas en aquellas situaciones
cuya solucion necesita un mismo conjunto de acciones, que se puedan
ejecutar una cantidad especifica de veces. Esta cantidad puede ser fija,
si fuese previamente determinada por el desarrollador; o variable, si
actuara en funciéon de algin dato dentro del programa.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 1056

LN]
LR
L

B Figura 13. Para pintar una pared, debemos repetir una accion hasta
cumplir la condicion: pasar la brocha hasta cubrir la superficie total.

Las estructuras repetitivas o ciclicas se clasifican en:
¢ Ciclos con un numero determinado de iteraciones

Para — hasta — paso - hacer: son aquellos en que el nimero de
iteraciones se conoce antes de ejecutarse el ciclo. La forma de esta
estructura es la siguiente:

Para <variable> <expresiénl> hasta <expresién2> paso <expresion3> hacer
Instruccién/es

Fin_Para

Dado un valor inicial expresionl asignado a la variable, esta se ira
aumentando o disminuyendo de acuerdo con la expresion3 hasta llegar
a la expresion2. En el caso de omitir el paso, eso va a significar que la
variable aumentara de uno en uno.

www.redusers.com L <4

106 3. INGRESO AL MUNDO DE LA PROGRAMACION

Veamos un ejemplo aplicando esta estructura: realizar un algoritmo
que muestre los nimeros de uno en uno hasta 10:

INICIO

Variable contador tipo numero <-- 0
Para contador <-- 1 hasta 10 paso 1 hacer

ESCRIBIR Contador

Fin_Para
FIN

Otro ejemplo similar al anterior, pero esta vez solicitando a un
usuario que ingrese valores, para luego sumarlos:

INICIO
Variable i tipo numero <-- 0

Variable suma tipo numero <-- 0
Variable num tipo numero <-- 0
ESCRIBIR (“Ingrese 10 nimero que desea sumar’)
Para i <-- 1 hasta 10 hacer
ESCRIBIR (“Ingrese un nimero: “)
LEER num
suma <-- suma-+num
Ilen este caso estamos utilizando un acumulador
Fin Para

ESCRIBIR (“EIl resultado es”, suma)
FIN

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 107

En la Tabla 10 vemos como funcionaria internamente este algoritmo
repetitivo. Es importante tener en cuenta que la columna de ejemplo de
ingreso de niumero seria lo que un usuario escribiria.

ALGORITMO

v NUMERO DE VECES - v EJEMPLO DE

. v NUM v SUMA+NUM v SUMA
VALORDEI INGRESO DE NUMERO

2 2 2 542 7

4 1 1 14+1 15

6 5 5 2345 28

8 6 b 3146 37

1 1 41+1 42

Tabla 10. Funcionamiento del algoritmo. Al finalizar este ciclo PARA, el
resultado final que se mostrara en pantalla sera el valor 42.

a’/-h-.
@ PRUEBA DE ESCRITORIO

La prueba de escritorio es la comprobacion légica de un algoritmo de resolucidn y constituye una herra-
rienta util para entender qué hace un determinado algoritmo o verificar que este cumpla con la especifi

cacion dada. Para desarrollarla, se requiere el siguiente procedimiento: con datos de prueba, se seguira
cada uno de los pasos propuestos en el algoritmo de resolucion. Sila prueba genera resultados optimos,

es que posee una logica adecuada; en caso contrario, tendra que ser corregida.

www.redusers.com <«

108 3. INGRESO AL MUNDO DE LA PROGRAMACION

¢ Ciclos con un numero indeterminado de iteraciones

A medida que programemos diferentes algoritmos para resolver
situaciones, necesitaremos utilizar estructuras que repitan un nimero
de iteraciones que no se conoce con exactitud, ya que depende de un
dato dentro del programa.

Mientras Que: esta es una estructura que repetira un proceso durante
“N" veces, siendo “N” fijo o variable. Para hacerlo, la instruccion se
vale de una condicién que es la que debe cumplirse para que se siga
ejecutando; cuando la condiciéon ya no se cumple, el proceso deja de
ejecutarse. La sintaxis de esta estructura es la siguiente:

Mientras Que <condicién> hacer
Instruccién/es 1 — Accidon 1
Instruccién/es N — Accién N

Fin_Mientras

Veamos un ejemplo utilizando la estructura Mientras, aplicando un
algoritmo que escriba los numeros de uno en uno hasta 20:

INICIO

Variable contador tipo numero
contador <-- 1
Mientras Que contador < 21 hacer
ESCRIBIR contador
contador <-- contador + 1
Fin_Mientras
FIN

Repetir-Hasta: esta estructura tiene caracteristicas similares a la anterior,
al repetir el proceso una cierta cantidad de veces; pero a diferencia de
Mientras Que, lo hace hasta que la condicion se cumpla y no mientras se
cumple. Por otra parte, esta estructura permite realizar el proceso cuando
menos una vez, ya que la condicion se evalua al final; en tanto que, con
Mientras Que, puede ser que nunca llegue a entrar si la condicién no se
cumple desde un principio. La forma de esta estructura es la siguiente:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 109

Repetir
Instruccién/es 1 — Accion 1
Instruccién/es N — Accion N
Hasta que <condicién>

Veamos un ejemplo utilizando la estructura Repetir, en donde
realizamos un algoritmo que le pregunta al usuario un nimero
comprendido en el rango de 1 a 5. El algoritmo debe validar el nimero
de manera que no continte la ejecucion del programa hasta que no se
escriba un valor correcto:

INICIO

Variable num tipo numero
ESCRIBIR “Escriba un numero de 1 a 5"
Repetir
LEER num
Instruccion/es N — Accion N
Hasta que (num >=1)Y (num < 5)
FIN

Tipos de datos estructurados

Anteriormente utilizamos datos simples, que representaban
un numero, un caracter o una cadena/texto. No obstante, a veces
necesitamos procesar una coleccion de valores que estén relacionados
entre si por algun método; por ejemplo: una lista de precios, los meses
del ano, cotizaciones a lo largo de una semana, etc.

El procesamiento de estos datos utilizando otros simples es muy
dificil, porque deberiamos crear, por ejemplo, una variable para cada
valor. Por eso, se han definido en la programacion varias estructuras
de datos que son una coleccion caracterizada por alguna organizacion
vy por las operaciones que se definen en ella. La primera estructura que
veremos es el vector.

www.redusers.com &

1[I USERS | 3. INGRESO AL MUNDO DE LA PROGRAMACION

Vector

Un vector es un conjunto de elementos del mismo tipo de dato que
comparten un nombre comun; seria una variable que puede almacenar
mas de un valor al mismo tiempo. Se trata de un conjunto ordenado
por elementos de posicion (de 0 a n) y homogéneo, porque sus
elementos son todos del mismo tipo de dato. Los vectores también
reciben el nombre de tablas, listas o arrays, ya que graficamente se
representa como una tabla.

Un vector de tipo numérico con una dimension de 5 espacios es:

36

o
'
—

Un vector de tipo alfanumérico con una dimension de 5 espacios es:

un valor @unvalor Texto

De igual forma que cualquier variable, un vector debe tener un

nombre:

Los elementos que estan en el vector Ay en el B ocupan una
determinada posicion:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 111

De esta forma, podemos saber la ubicacion de los elementos dentro
del vector. Por ejemplo, si deseamos saber en el vector A el valor 20, y
en el vector B "Unvalor200”, hacemos lo siguiente:

MOSTRAR vecA(2) //nos mostrara el valor 20
MOSTRAR vecB(2) //nos mostrara el valor Unvalor200

Al ver como funciona el vector, necesitamos conocer como se realiza
la declaracion de vectores en pseudocodigo. La sintaxis es la siguiente:

Variable nombreVector (dimension vector) tipo dato

Como podemos observar, la declaracion es igual que la de una
variable, pero debemos tener cuidado de ingresar la dimension del
vector entre paréntesis “ ()" y el tipo de dato que sera este vector. Al
ser una variable, es un tipo de dato creado en memoria y es temporal.

A continuacién, veamos un ejemplo de cémo crear y cargar un vector
con los datos anteriormente vistos en vecA. Por ejemplo, en este caso el
pseudocodigo sera el siguiente:

INICIO
Variable vecA (5) tipo numero
vecA(1)5
vecA(2) €20
vecA(3) 1
vecA(4)€10
vecA(5) €36
FIN

) DIMENSIONAR

A

Mo olvidemos que el vector siempre debe ser dimensionado. Esto significa, indicarle a la computadora
que reserve los espacios de memoria necesarios para los elementos del vector. En algunos lenguajes,
si dejamos el vector sin valores, no podremos hacer uso de él, y eso traera serios inconvenientes. Por
gjemplo: Variable vecX () tipo numero.

www.redusers.com &

112 3. INGRESO AL MUNDO DE LA PROGRAMACION

La asignacion de valores a los elementos de un vector se realiza
indicando el espacio de orden con el signo <- para asignar el valor, de
igual manera que con las variables simples. Es posible realizar la carga
de vectores con datos predeterminados en cédigo con estructuras de

control repetitivas, como Mientras o Hacer-Hasta.
Por ejemplo, si deseamos realizar la carga de 30 valores a un vector,

el pseudocodigo sera el siguiente:

INICIO
Variable vecEjemplo (30) tipo numero
Variable i tipo numero 0
Para i 1 hasta 30 hacer
vecEjemplo(i) i

Fin Para

MOSTRAR “Vector cargado”
FIN

En este ejemplo, la variable i seria “indicador” del espacio en el
vector y, ademas, el valor por asignar. En el ejemplo que se presenta
a continuacion, dejaremos que el usuario determine la dimensiéon del
vector sobre el que quiere trabajar. Por eso, tomaremos un valor de
dimension y se lo asignaremos al vector:

INICIO
Variable i, num tipo numero <-- 0
ESCRIBIR “Ingrese la cantidad de valores: ™, num

Variable vecEjemplo (num) tipo numero
Para i <-- 1 hasta num hacer

vecEjemplo(i) <--i

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 113

Fin Para

MOSTRAR “Vector cargado”
FIN

Hagamos un ejercicio: debemos leer un vector de N componentes, y
hallar la suma y el promedio de sus elementos.

Entonces, se pide la suma y el promedio de los elementos. Sabemos
que el promedio se encuentra dividiendo la suma de todos los
elementos, por la cantidad.

Llamamos a nuestro vector vecCalculo, y tendra una dimension que
serd determinada por el usuario. Siguiendo el esquema que vimos con
anterioridad, tendremos, primeramente: una repetitiva para la carga
del vector, otra para el proceso y otra para mostrar los datos del vector.

INICIO
Variable i, suma, promedio, dimensién, numero tipo numero <-- 0
ESCRIBIR “Escriba la cantidad de valores a calcular: ™, dimensién

Variable vecCalculo(dimension) tipo numero

Hacer i <-- 1 hasta dimensi6n
ESCRIBIR “Ingrese un nimero: *, numero
vecCalculo(i) <-- numero
Fin Hacer
/lcon esta estructura cargamos el vector de valores.

Hacer i <-- 1 hasta dimension
suma<—suma + vecCalculo(i)
Fin Hacer
/lcon esta estructura sumamos todos los valores del vector.
promedio <-- suma / 2

MOSTRAR “'La suma de los elementos del vector es: ™, suma

MOSTRAR “El promedio es: ", promedio
FIN

www.redusers.com &

114 3. INGRESO AL MUNDO DE LA PROGRAMACION

Hasta aqui hemos visto: el uso de un vector en pseudocodigo, el
beneficio que nos ofrece su estructura para trabajar o registrar varios
datos y las distintas operaciones que nos permite realizar.

Matriz

Las matrices son estructuras que contienen datos homogéneos, es
decir, del mismo tipo. Asi como antes utilizamos un indicador o indice
para posicionarnos y almacenar algin valor, en el caso de las matrices,
utilizaremos dos indices que determinaran la posicion de fila y columna.

Columnal Columna2 Columna3 Columnad

Filal
Flla2
Fila3
Filad

Figura 14. En esta representacion tenemos una matriz de
dimension M * N, en donde M es el numero de columnas, y N, el

| numero de filas. |

En el ejemplo anterior,
la dimensién es M=4 y N=4.
Por lo tanto, el nimero

1 2 3 4 total de elementos es 4%4;
; es decir, 16 posiciones para
3 utilizar. Al igual que los
i vectores, una matriz debe
matEjemplo tener un nombre. La sintaxis

es la siguiente:

" Figura 15. En esta representacion de Variable nombreMatriz

(cantidad filas, cantidad

matriz, la sintaxis seria: Variable :
matEjemplo (4, 4) tipo texto. I columnas) tipo dato

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 115

Una vez que le asignamos
datos a la matriz, notaremos

que, para referirnos a 1 Lurlws < 5030 .
alguno de sus elementos, 9

tendremos que conocer, 3 Fuente
precisamente, en qué fila y 4 Ultimo
columna reside este. matEjemplo

Ademas de cargar
los valores de manera
independiente, debemos

tener en cuenta, al igual ver la representacion de datos
que los vectores que l

Figura 16. En esta imagen podemos

correspondientes a la matriz
utilizaremos, las estructuras

repetitivas para recorrer las
matrices. Por ejemplo:

INICIO
Variable ifila, icolumna tipo numero <-- 0

Variable varPalabra tipo texto
Variable matEjemplo (4, 4) tipo texto
Para ifila <-- 1 hasta 4 hacer
Para icolumna <-- 1 hasta 4 hacer
ESCRIBIR “Ingrese un valor: *
matEjemplo(ifila, icolumna) <-- varPalabra
Fin Para

Fin Para

MOSTRAR “Matriz cargada”
FIN

www.redusers.com &

116 3. INGRESO AL MUNDO DE LA PROGRAMACION

En este ejemplo, la
variable fila comienza en el

i : z 3 < valor 1, luego se da inicio a
unes 5000 | -
- la repetitiva con la columna
2 - — ——1—0
3 et PY desde 1 hasta 4. El bucle de
UG _._._______.-—'—'_
4 e Ultimo= las columnas siempre debe

terminar todo su recorrido
para que comience el
siguiente valor de fila.
Una matriz también puede
matriz podemos notar los valores que recorrerse por columnas.
van tomando los indices. I Al programar, no siempre
podremos predefinir el
tamano de la matriz. Es por
eso que necesitamos solicitarle al usuario que ingrese la cantidad de filas
y columnas con las que quiere dimensionarla. Por ejemplo:

matEjemplo

- Figura 17. En el recorrido de esta

INICIO
Variable ifila, icolumna tipo numero <-- 0
Variable varPalabra tipo texto

ESCRIBIR “Ingrese la cantidad de filas: ”, ifila
ESCRIBIR “Ingrese la cantidad de columnas: ”, icolumna

Variable matEjemplo (ifila, icolumna) tipo texto
Para icolumna <-- 1 hasta icolumna hacer
Para ifila <-- 1 hasta ifila hacer
ESCRIBIR “Ingrese un valor: ™
matEjemplo(ifila, icolumna) <-- varPalabra
Fin Para

Fin Para

MOSTRAR “Matriz cargada”
FIN

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 117

De esta manera, podemos experimentar cOmo cargar una matriz
y observar que el recorrido es muy similar al de los vectores. Sin
embargo, hay que tener en cuenta que debemos indicar la fila y la
columna de la posicion de los elementos.

A continuacién, veamos un ejemplo:

INICIO
Variable ifila, icolumna tipo numero <-- 0

Variable matEjemplo (4, 4) tipo texto
Para ifila 1 hasta 4 hacer
Para icolumna <-- 1 hasta 4 hacer

MOSTRAR “El valor es: ", matEjemplo(ifila, icolumna)
Fin Para

Fin Para

FIN

Para seguir avanzando en el manejo de matrices, a continuacion
veremos un caso en donde calcularemos los valores entre matrices.

Por ejemplo: supongamos que debemos hacer una suma entre
matrices, siendo matA y matB dos matrices de igual dimension (MxN):

T 1]

@ “RESOLVER PROBLEMAS

—

La resolucidn de un problema mediante una computadora consiste en el proceso que, a partir de la
descripcion de un problema, expresado habitualmente en lenguaje natural y en términos propios de su
dominio, permite desarrollar un programa que lo resuelva. En nuestro caso, se trata de crear el algoritmo
para crear el programa que resolvera la situacion. Este proceso exige: analizar el problema, disenar el
algoritmo y validacion del programa.

www.redusers.com &

118 3. INGRESO AL MUNDO DE LA PROGRAMACION

Matriz matA Matriz matB
108 3]0 1161 9|69 Figura 18. Como
matA y matB
T3[334 1412256 7 tienen dimension
MxN, podemos
9 15| 71|29 3|5 |81
sumarlas y tener

.) . como resultado
Ay B son de igual dimension,

por lo tanto podemos crear una nueva matriz
una matriz C que las sume llamada matC, que
. conserve la misma
Matriz matC . .
dimension.
11| 14| 13 | 69
21119 89| 52
12 | 20 |151| 30

INICIO
Variable ifila, icolumna tipo numero <-- 0

Variable matA (3, 4) tipo numero
Variable matB (3, 4) tipo numero

Variable matC (3, 4) tipo numero

/lcarga de matriz A
matA(1,1)€10
matA(l,2)<-- 8
matA(1,3) €3
matA(l,4)<0

matA(2,1)<-- 7
matA(2,2)<-- 3

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

f/lcélculo y asignacion a matriz C

matA(2,3) €33
matA(2,4)<-- 45

matA(3,1)<-- 9
matA(3,2) <15
matA(3,3)<-71
matA(3,4) €29

f/carga de matriz B

matB(1,1)<1
matB(1,2)<-- 6
matB(1,3)<--9
matB(1,4)<-- 69

matB(2,1)<14
matB(2,2) €22
matB(2,3)<-- 56
matB(2,4)<--7

matB(3,1)€3
matB(3,2)<-- 5
matB(3,3)<-- 80

matB(3,4) €1

Para ifila <-- 1 hasta 3 hacer

Para icolumna <-- 1 hasta 4 hacer

matC(ifila, icolumna) <-- matA(ifila, icolumna) + matB(ifila, icolumna)

FIN

Fin Para

Fin Para

www.redusers.com

119

<«

120 3. INGRESO AL MUNDO DE LA PROGRAMACION

Hasta aqui hemos visto el uso de las estructuras complejas que se
almacenan en la memoria, los vectores y matrices, que seran utiles
para guardar datos de manera temporal. Con toda esta informacion,
podremos realizar el procesamiento de datos, ya sea por calculo o
manejo de texto. A continuacion, aprenderemos a automatizar algunas
acciones comunes que podemos utilizar en nuestro desarrollo.

Utilizar funciones
y procedimientos

Cuando comencemos a practicar el desarrollo de aplicaciones,
en nuestro algoritmo habra calculos o rutinas que pueden repetirse
varias veces. En los proximos parrafos aprenderemos a simplificar la
repeticion de estos procesos.
En general, un problema complejo puede
PODEMOS RESOLVER resolverse de manera eficiente si se divide en
UN PROBLEMA procesos pequenos. Esto implica que el problema
original sera resuelto por medio de varios
COMPLEJO POR maodulos, cada uno de los cuales se encargara
MEDIO DE MODULOS de solucionar alguna parte determinada.

., Esos modulos se conocen con el nombre de
PEQUENOS subalgoritmos, es decir, algoritmos cuya funcion
es resolver un subproblema. Los subalgoritmos
se escriben solo una vez y, luego, podemos hacer
referencia a ellos desde diferentes puntos de un pseudocédigo. De esta
forma, podemos reutilizar el codigo y evitar la duplicacion de procesos.

Es importante tener en cuenta que los subalgoritmos son
independientes entre si; esto quiere decir que se pueden escribir y
verificar en forma separada. Por eso, sera mas facil localizar un error en
la codificacion que estamos creando y, también, modificarlo, sin tener
que rehacer varias partes de él. Existen dos clases de subalgoritmos:
funciones y procedimientos, que también encontraremos con los
nombres de subrutinas o subprogramas.

Al utilizar procedimientos y funciones veremos que se establece un
limite para el alcance de las variables; algunas tendran efecto y valor

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

solo en el subalgoritmo, y otras, en el algoritmo principal. También
es posible especificar que una variable tenga efecto en el algoritmo
principal y en todos los subalgoritmos. Este tema se conoce como
ambito de las variables, que pueden ser: locales, privadas o publicas.
Los subalgoritmos pueden recibir valores del algoritmo principal,
llamados parametros, trabajar con ellos y devolverle un resultado.
Tambiéen pueden llamar a otros o a sus propios subprogramas; incluso,
puede llamarse a si mismo, lo que se conoce como recursividad.

Ambito de las variables

En programacion, existen dos tipos de variables, las locales y las
globales. Las primeras son aquellas que se encuentran dentro de un
subprograma, ya sea un procedimiento o una funcion, y son distintas
de las que estan en el algoritmo principal. El valor se confina al
subprograma en el que esta declarada. En cambio, las globales son las
que se definen o estan declaradas en el algoritmo principal, y tienen
efecto tanto en él como en cualquiera de sus subprogramas.

Funciones

Desde el punto de vista matematico, una funcion es una expresion
que toma uno o mas valores llamados argumentos y produce un
resultado tnico. Algunos ejemplos de funciones matematicas son: los
logaritmos y las funciones trigonomeétricas (seno, coseno, etc.).

En el ambiente de la programacion de algoritmos, las funciones
tienen exactamente el mismo significado. Se realizan ciertos calculos
con una o mas variables de entrada, y se produce un tnico resultado,
que podra ser un valor numeérico, alfanumeérico o logico. Es decir, una
funcion puede devolver como resultado una cadena, un nimero o un
valor de tipo logico. Esto hace que en los lenguajes de programacion
debamos especificar el tipo de la funcion.

La funcion sera de tipo numérica cuando devuelva un nimero, y
sera alfanumérica cuando devuelva una cadena. En el caso de las
funciones numéricas, existen subdivisiones que estan dadas por los
tipos de datos soportados por algun lenguaje.

Veamos un ejemplo de la funcién matematica sen(x). En este caso,
la funcién se llama sen (seno), vy el argumento o valor que se le pasa

www.redusers.com

121

<«

122

=== 3. INGRESO AL MUNDO DE LA PROGRAMACION

para que lo procese es x. Asi, sen(90°)=1. Este valor, como es unico,
se denomina funcion; es decir, no existe ningun otro numero que la
funcion pueda procesar y devolver 1, mas que 90°.

Cuando utilicemos esta funcion en un pseudocodigo y necesitemos
el valor del sen(90°), debemos asignarlo de la siguiente forma:

variable valor tipo numero 0
valor <-- sen(90)

Aqui, como la variable valor es 1, nuestra funcion es numeérica. Es asi
como se llama a las funciones desde un pseudocodigo, asignandolas
siempre a una variable gque contendra el valor devuelto por la funcién. Si
no hacemos esta asignacion, la funcion no podra ejecutarse, porque no
tendra un espacio o lugar donde descargar el resultado. Por lo tanto, la
llamada a una funcién tendra la siguiente sintaxis:

variable <-- funcion (parametros)

Veamos un ejemplo: si a la funcion MES, que devuelve el nombre del
mes, le pasamos el valor numeérico correspondiente, el resultado sera:

variable nombre_mes tipo texto
nombre_mes <-- MES(2) //festo devolveria “Febrero”

La funcion es de tipo texto, porque devuelve una cadena como
resultado en la variable nombre_mes.

Hasta aqui hemos visto como llamar a una funcion, ahora veremos
como escribirla. Las funciones y los procedimientos no se escriben
en el algoritmo principal, ya que, en programacion, existen espacios
destinados a ellos. Todas las funciones y los procedimientos que utilicen
un algoritmo podran escribirse antes o después del algoritmo principal.

Una funcion se identifica por su nombre, como cuando escribimos un
algoritmo utilizando inicio y fin para indicar donde comienza y donde
termina. A continuacioén, veamos cémo seria la sintaxis:

Funcion nombre_funcion (parametros)
Instruccidn/es
Fin funcion

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 123

Todas las funciones devuelven un solo valor. Siempre debemos
indicar a la funcion, mediante una instruccion, que devuelva el valor al
algoritmo principal; recordemos que la funcion sera llamada desde un
algoritmo. Esto se debe hacer en el cuerpo de la funcion cuando tengamos
el resultado. Tomando como ejemplo la funcion MES, veremos como se
escribe el algoritmo principal, como se llama y se declara la funcion:

INICIO
variable numero_mes tipo numero
variable nombre_mes tipo texto

ESCRIBIR “Ingrese el nimero del mes y le mostraremos el nombre del mes"
ESCRIBIR “Debe ingresar un nimero entre 1 y 12: *, numero_mes
Si numero_mes>12 o numero_mes<l entonces

MOSTRAR “Debe ingresar un valor entre 1 y 12"
Sino
nombre_mes <-- llamar MES(numero_mes)

MOSTRAR “E| mes correspondiente es: ", nombre_mes
FinSi
FIN

FUNCION MES (variable valor tipo numero)
variable nombre tipo texto

Segiin sea valor

Caso 1:

nombre="Enero”
caso 2:

nombre="Febrero”
caso 3:

nombre =“Marzo"”
caso 4:

www.redusers.com &

124 3. INGRESO AL MUNDO DE LA PROGRAMACION

nombre = “Abril”

caso 5:

nombre = “Mayo”
caso 6:

nombre = “"Junio”
caso 7:

nombre ="Julio”
caso 8:

nombre="Agosto”
caso 9:

nombre="Setiembre”
caso 10:

nombre ="0ctubre”
caso 11:

nombre="Noviembre"
caso 12:

nombre="Diciembre”

Fin Seglin

MES <-- nombre //Indicamos a la funcién que devuelva el
resultado al algoritmo principal la variable nombre

FIN FUNCION

Es preciso tener en cuenta como se pasan los valores desde el
algoritmo principal a la funcion. En este caso, cuando se llama a la
funcién, escribimos:

nomhbre_mes <-- MES (numero_mes)

El valor que se envia a la funcion MES de la variable numero_mes toma
un valor comprendido entre 1 y 12. Cuando se llama a la funcion, este
valor debe ser recibido por ella; en este caso, en el cuerpo de la funcién

se coloca entre paréntesis el nombre de la variable que recibira el valor:

Funcion MES (valor)

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 125

Si se pasan varios valores, todos deben ser recibidos en sus
correspondientes variables, o habra un error en la codificacion. La
funcion toma el valor pasado desde el algoritmo y lo guarda en la
variable valor para procesarlo. Luego de que obtiene un resultado, en
este caso el valor de nombre_mes, se le ordena a la funcion que devuelva
ese valor al algoritmo principal:

MES <-- nombre
Sintaxis: nombre_funcion <-- resultado

En la mayoria de los lenguajes de programacion se utiliza una
palabra reservada para devolver valores: return. En el caso de
pseudocodigo, también podemos usar devolver.

En resumen, podemos decir que la funcion devuelve un solo valor,
que para funcionar debe recibir uno o varios valores desde el algoritmo
principal, realizar el proceso y devolver el resultado. La funcion se
escribe de igual manera que cualquier algoritmo; la diferencia consiste
en que, en vez de inicio y fin, escribimos:

Funcion nombre_funcion (parametros)
Instruccidn/es
Fin funcion

Veamos otro ejemplo: disefiar el algoritmo para realizar la raiz
cuadrada de un valor numérico. En este caso, el algoritmo es el siguiente:

INICIO
variable num, resultado tipo numero <-- 0
ESCRIBIR “Ingrese un nimero:”, num

Mientras num <=0
MOSTRAR “Ingrese un nimero positivo”
ESCRIBIR “Ingrese un nimero:”, num
Fin Mientras

resultado <-- RAIZ(nhum)
MOSTRAR “La raiz cuadrada es:”, resultado

www.redusers.com &

126 3. INGRESO AL MUNDO DE LA PROGRAMACION

FUNCION RAIZ (variable valor tipo numero)
variable varRaiz tipo numero
varRaiz <-- valor A 1/2
RAIZ <-- varRaiz

FIN FUNCION

Llamamos RAIZ a la funcion que escribimos, la cual debe obtener un
valor que se pasara desde el algoritmo principal. El nimero del cual
queremos calcular la raiz cuadrada lo elevamos a la potencia 1/2 vy, luego,
devolvemos el resultado al algoritmo principal.

Tomando como referencia esta funcion RAIZ, las variables globales
son num vy resultado, y las locales son: valor y varRaiz. Estas dos ultimas
solo existen en la funcion RAIZ, vy si en el algoritmo principal tratamos de
utilizar estas variables o mostrarlas, no obtendremos nada, ya que para el
algoritmo ellas son locales y no existen.

Las variables num y resultado son globales, es decir que estan
disponibles en el algoritmo principal y, también, en la funcion RAIZ.

Una variable local de un subprograma no tiene ningun significado
en el algoritmo principal y en otros subprogramas. Si un subprograma
asigna un valor a una de sus variables locales, este no sera accesible
a otros subprogramas, es decir que no podran usar este valor. Las
variables globales tienen la ventaja de compartir informacién de
diferentes subprogramas.

Para terminar con el tema de funciones, veremos un ejemplo para
disefiar una funcién que calcule la media de tres niumeros:

INICIO
variable numerol, numero2, numero3 tipo numero <0
variable prom tipo numero <0
ESCRIBIR “Ingrese tres valores: ', numerol, numero2, numero3

prom <-- PROMEDIO(numerol, numero2, numero3)

MOSTRAR “EI promedio es:"”, prom
FIN

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 127

Funcion PROMEDIO(variable valorl, valor2,valor3 tipo numero)
variable promedio tipo numero <-- 0

promedio (valorl + valor2 + valor3) / 3

PROMEDIO <-- promedio
Fin Funcion

Hasta aqui hemos visto que las funciones se utilizan para devolver
como resultado un valor. En ocasiones, necesitaremos devolver mas de
un resultado o, también, ejecutar las mismas lineas de codigo varias
veces en un algoritmo, como una ordenaciéon. En estas situaciones la
funcion no es apropiada, y utilizaremos los procedimientos, también
llamados subrutinas.

Procedimientos

Un procedimiento es un conjunto de sentencias o instrucciones que
realizan una determinada tarea y que pueden ser ejecutados desde mas
de un punto del programa principal. Este tiene una llamada v, cuando
se ejecuta totalmente, vuelve al punto desde donde fue llamado y se
ejecuta la siguiente instruccion.

El procedimiento se escribe como cualquier otro algoritmo, ya que
solo existen diferencias en la parte inicial y final. Para nombrar los
procedimientos, hay que seguir las mismas reglas que para las variables.
El objetivo de los procedimientos es ayudar en la modularidad del
programa y evitar la repeticion de instrucciones, porque estas pueden
escribirse en un procedimiento y, en lugar de repetirlas, podemos llamar
al procedimiento cuantas veces sean necesarias.

Desde el programa principal, es posible pasar valores al
procedimiento, que los utilizara para realizar un determinado proceso.
Los valores se llaman parametros, y la sintaxis para la declaracion de
un procedimiento es la siguiente:

Procedimiento Nombre_procedimiento (parametros)

Instruccidn/es
Fin Procedimiento

www.redusers.com &

128 3. INGRESO AL MUNDO DE LA PROGRAMACION

La llamada a un procedimiento se hace por su nombre:
Nombre_procedimiento(parametros)

También es posible que no se pase ningun parametro al
procedimiento, en cuyo caso la llamada se escribe de la siguiente manera:

Nomhbre_procedimiento()

Cuando no se pasan parametros, se pueden obviar los paréntesis, pero
es una buena forma de escritura algoritmica escribirlos, por ejemplo:

Nombre_procedimiento

Podemos utilizar procedimientos, por ejemplo, para: dibujar
recuadros en la pantalla, mostrar mensajes de error, realizar procesos
con mas de un resultado y colocar en un procedimiento las lineas de
codigo que se repiten varias veces en un algoritmo.

Cuando necesitamos devolver mas de un valor en un procedimiento,
las variables que devuelvan los resultados deben figurar en la lista de
parametros.

Veamos un ejemplo del procedimiento para calcular el cociente y
resto de la division entre dos nimeros:

INICIO
variable numeroA, numeroB tipo numero €0

ESCRIBIR “Ingrese los valores a calcular: *, numeroA, numeroB
DIVISION (numeroA, numeroB, P, Q)

MOSTRAR P, Q
FIN

Procedimiento DIVISION (variable dividendo, divisor, cociente, resto tipo numero)

cociente <-- dividendo / divisor

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 129

resto <-- dividendo - cociente * resto

Fin Procedimiento

Al llamar al procedimiento division en el algoritmo principal,
debemos pasar en su sintaxis los nimeros del dividendo y del divisor,
que estan representados por numeroA y numeroB. También hay que
especificar las variables en las que se devolveran los resultados del
cociente y el resto, que seran P y Q. De esta forma, la sintaxis de la
llamada quedara asi:

DIVISION (numeroA, numeroB, P, Q)

El procedimiento recibe los valores: numeroA en dividendo, numeroB
en divisor, y se colocan las variables en las que se pasaran al programa
principal el cociente y el resto. De esta forma, P recibira el valor de
cociente, y Q, el del resto.

Cuando necesitamos devolver mas de un valor, los parametros del
procedimiento deben ser los valores que se pasen al procedimiento v,
luego, las variables en las que se recibiran los resultados.

Hemos aprendido a crear algoritmos por medio de pseudocddigo, el lenguaje “comun” que podemos
utilizar para cualquier lenguaje de programacion. Recorrimos la creacion de algoritmos, sus variables,
estructuras de control, tipos de datos, funciones y procedimientos. Todas estas herramientas nos permi-

ten trabajar con cierta logica para resolver situaciones especificas y brindar resultados. De esta manera,

lograremos darle vida al funcionamiento de programas que permitan resolver situaciones particulares.

www.redusers.com &

130 3. INGRESO AL MUNDO DE LA PROGRAMACION

Actividades

TEST DE AUTOEVALUACION

1 :Cuél es la forma de razonamiento de un humano y de una computadora?

2 :Como podemos expresarnos para mostrarle a otra persona el funcionamiento
interno de un programa?

w

;Qué normas debemos tener en cuenta en el armado de pseudocadigo?

Ny

;Qué son los tipos de datos? ;Cuales son los mas usuales para los ejemplos de
pseudocodigo?

;Cual es la diferencia entre contador, acumulador y variable?
Cudl es la dif nt ntad lad ble?
;Para qué se usan los operadores aritméticos?

;Cual es la ventaja de utilizar operadores logicos?

;Coémo se emplea la asignacién en pseudocodigo?

0 00 N OO,

En pseudocodigo, ;cuales son las palabras que podemos utilizar para indicar a
los usuarios que escriban algo vy, luego, capturarlo?

10 :Como se usan las estructuras de control simples, dobles y anidadas?

ACTIVIDADES PRACTICAS

1 Haga un pseudocddigo que imprima todos los nimeros naturales que hay, desde
la unidad hasta un valor indicado por teclado. Luego, introduzca las frases que
desee y cuéntelas.

2 Haga un pseudocddigo que permita introducir solo S o N. Luego imprima y
cuente los miiltiplos de 3, desde la unidad hasta un ndmero introducido por
teclado.

3 Imprima diez veces la serie de nimeros del 1 al 10 y haga un pseudocddigo que
cuente las veces que aparece una letra en una frase ingresada por teclado.

4 Escriba un pseudocodigo que imprima los nimeros del O al 100, controlando las
filas y las columnas. Luego simule cien tiradas de dos dados y cuente las veces
que entre los dos suman 10.

B Introduzca dos nimeros por teclado y, mediante un mena, calcule la: suma,
resta, multiplicacion y division entre ellos.

» www.redusers.com

. ‘ IXXXXXRXXXNNNN

4744

Primer proyecto
en Visual Basic

A lo largo de los capitulos anteriores, recorrimos
conceptos, teorias y practicas para el desarrollo de
aplicaciones informaticas. Ahora plasmaremos todo el
conocimiento adquirido sobre pseudocodigo en el codigo
fuente de un lenguaje, empezando con las interfaces

graficas y, luego, con el codigo fuente.

v Lenguajes de Qué son y como se
Programacion.......eeeeescnnas 132 usan las variables.........ccsummussseces 146
Tipos de lenguajes.............eeeerveneee. 132 Como se utilizan los operadores..... 154 '

Todo tiene un orden

v Interfaces graficas.......ccununseee 134 en |2 Programacionssseesss 159 _
Nomenclatura en pseudocddigo Tipos de datos estructurados.......... 168 |
y lenguajes de programacion.......... 138 Uso de controles basicos................ 175 '

v Lenguaje de programacidn: v RESUMENL. .cinicisinssunssnsenasusasasse MOT
Microsoft Visual Basic........... 140
Creacion de proyectos.........oeeevenens 140 v Actividades.........cccveereeneerennee.. 188

— —
AAA

Servicio de atencion al lector: usershop@redusers.com

132 4. PRIMER PROYECTO EN VISUAL BASIC

Lenguajes de programacion

En este capitulo nos adentraremos en algunos lenguajes de
programacion y comenzaremos a aplicarles lo aprendido sobre
pseudocodigo, para dar asi nuestros primeros pasos en un codigo
fuente para el desarrollo de aplicaciones.

Los lenguajes de programacion son definidos como un idioma
artificial disefiado para expresar computos que pueden ser llevados
a cabo por equipos electrénicos, tales como computadoras, tablets,
smartphones, etc. El uso de este lenguaje maquina, que vimos

en capitulos anteriores, nos permitira crear
programas o aplicaciones que controlen el

LAESTRUCTURA comportamiento fisico y logico de un dispositivo

DEFINE EL electronico (expresado en algoritmos de
precision) y, ademas, establecer la comunicacién

SIGNIFICADO DE humano-maquina. Su escritura esta formada

SUS ELEMENTOS por un conjunto de simbolos, reglas sintacticas
y semanticas que definen la estructura y el

Y EXPRESIONES significado de sus elementos y expresiones,

al igual que las reglas ortograficas lo hacen

con el lenguaje humano. Por Gltimo, debemos
tener en cuenta el proceso de programacion por el cual se escribe,
prueba, depura, compila y mantiene el cédigo fuente de un programa
informatico, al que nosotros llamaremos desarrollo.

Tipos de lenguajes

Existen lenguajes solidos, duros, visuales, amigables y especificos
en la programacion de codigo fuente. En la Tabla 1, podemos ver la
variedad que hay y cuales son sus diferencias.

La palabra “bajo” no implica que el lenguaje sea inferior a un lenguaje de alto nivel, sino que se refiere a

la reducida abstraccion entre el lenguaje y el hardware. For ejemplo, estos lenguajes se utilizan para

programar controladores de dispositivos, tales como placas de video, impresoras u otros.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =S 133

LENGUAJES

v DESCRIPCION

Lenguaje Lenguaje o juego de instrucciones codificado al cual es traducido un lenguaje fuente por
objeto medio de un compilador. Es un lenguaje maquina directamente comprensible por una
computadora.

Lenguajes Basandose en los juegos de instrucciones disponibles (chipset), permiten el uso de
de medio funciones a nivel aritmético, pero a nivel logico, dependen de literales en ensamblador.
nivel Estos lenguajes estan orientados a procedimientos. Ejemplos: C y Basic.

Lenguajes No permiten una bidireccionalidad conceptual entre el lenguaje maquina y los lenguajes
de aplica- de alto nivel, ni tampoco la literalidad a la hora de invocar conceptos légicos. Se basan
ciones en librerias creadas en lenguajes de alto nivel. Pueden permitir la creacion de nuevas

librerias, pero propietarias y dependientes de las suministradas por la aplicacion. Estan
orientados a eventos que surgen cuando las propiedades de un objeto interacttan con
otro. Ejemplo: Visual Basic para aplicaciones.

Tabla 1. Clasificacion y detalle sobre los distintos
lenguajes de programacion.

www.redusers.com <«

134 [==23 4. PRIMER PROYECTO EN VISUAL BASIC

Esta tabla nos da un detalle sobre los tipos de lenguajes de
programacion que podemos encontrar en el mercado informatico.
Frente a esto, es importante tener en cuenta que, en general, hablamos
de lenguajes de alto nivel y de bajo nivel, agrupando en ellos todos
los tipos que vimos antes. Para comprender mejor este punto, podemos
generalizar estos conceptos diciendo que el lenguaje de bajo nivel
es el que mas se asemeja al lenguaje maquina (por ejemplo: lenguaje
Assembler), en tanto que el de alto nivel se asemeja al lenguaje
humano vy, por medios visuales, nos permite crear nuestros desarrollos
(por ejemplo: Visual Basic).

Compilador

Como vimos en capitulos anteriores, un lenguaje utilizado
para escribir programas de computacion permite la comunicacion
usuario-maquina. A su vez, existen algunos programas especiales
llamados traductores (compilador, intérprete) que convierten las
instrucciones escritas en codigo fuente a un lenguaje maquina que el
equipo electronico pueda comprender y procesar.

Interfaces graficas

Las interfaces graficas son aquellas que nos permiten comunicarnos
con un dispositivo, y el concepto que podemos encontrar es
comunicacion o interaccion usuario-maquina. Gracias a la
evolucion de las interfaces de comunicacion usuario-maquina,
podemos apreciar medios graficos para la interaccion con los diferentes

'

Graphic User Interface, o interfaz grafica de usuario, abarca un conjunto de formas que hacen posible

la interaccidn usuario-maquina por medio de elementos gréficos e imagenes. Cuando hablamos de ele-
mentos graficos, nos referimos a botones, iconos, ventanas, tipos de letras, etcétera, que representan

funciones, acciones e informacion.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =S 135

componentes de un equipo. Por ejemplo: el manejo de impresora,
mouse, monitor, etc.

En la confeccion de interfaces graficas, debemos tener en cuenta
que hay ciertas normas por cumplir, y que los componentes utilizados
en una interfaz tienen una nomenclatura especifica. Por ejemplo, en la
Tabla 2 se presenta una lista de controles que podemos encontrar en
distintos lenguajes de programacion.

INTERFAZ GRAFICA

v COMPONENTE

Entada/salida de * Casilla de verificacion * Caja de texto (text box)
datos * Lista * GridView (datagrid)
* Lista desplegable (combo box) * Barra de desplazamiento
* Botdn de opcidn (radio button) (scrollbar)

Contenedores = \entana/Form/Forma * Barra de herramientas
* Barra de meni (menu bar) * Acordedn
* Pestaiia (tab) * Ribbon
* Panel * Disclosure widget (expansor o
* Cuadro (frame/fieldset) Combutcon)

www.redusers.com L <4

136 [==F3 4. PRIMER PROYECTO EN VISUAL BASIC

Ventanas espe- * Acerca de (about box) * [nspector Window
ciales * Cuadro de didlogo (dialog box) * Modal Window
+ Cuadro de didlogo de archivos * Ventana de paleta

Tabla 2. Estos son los componentes mas frecuentes que podemos encontrar
dentro de las interfaces graficas.

Cabe destacar que estos controles sirven para aplicaciones tanto de
escritorio como web. En la Figura 1 vemos los controles mas utilizados
en las aplicaciones de Visual Basic.

58 peyl it - Meraaoh Visal Studs [Adminsizrade] B 2 s 0 eatog. =) o
mmumd—-wwm“mu—mm o]
‘J‘JJ Bﬂ‘l‘-ﬂdlﬂ.l S RCR REAF B -Ill‘ u J“u& hﬂt‘mlmriwﬂrl: |ﬂfnﬂiﬂ.ﬂﬂg LA
lCth$;II'.l-rd!—FIEvbﬁ-lwl*&RI5ilﬁ¢ﬂ-rﬂm|*-i“«hlil‘h *
e ; - T
- Teden I8 Darmulasies Wiedtwi Termi o 18 ra) Lo e
@ Certntiel Eemunes o /| = 3 prytjempk
& Pusters & My Project
] Bumea] Fowrd b
F Checike
I3 Chechedtintion o
T Combaiios
T DebeTwmcPuker
A Labd
A Lmidabel
-
N
B AdsckedTemles FormLvh Prepasdases del sachive
T Monthaendar o) e
b Bt de compils Compilsodn
18 Hurerrlipown =] Corpaant wnn ol diwecia Pl copanr
il Peurlox Fipadn de fasrmiiy
B0 Progressiar MPriifarits Bere
B Radolution Hombre dé wichune Fomlat
8 moviosn
i Testfox QD Beneres | g O acvertersine | (1] 0 e
F— TealTig s Ascham Lires Cobarras Pooyeato

b= Figura 1. Controles comunes en el IDE de Visual Studio, donde
podemos destacar Button, Label y TextBox, entre otros.

Antes de determinar las reglas de disefio de las interfaces graficas,
es importante considerar cual es el ambito en el que vamos a trabajar.
Esto se debe a que, dependiendo de si es una aplicacién de escritorio,
movil o web, las reglas no seran iguales, sino que deberan ajustarse

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 137

en funcion del producto que queramos desarrollar. A continuacion,

vamos a ver cuales son las normas generales que podemos utilizar al

incursionar en el disefio de interfaces graficas:

¢ Anticipacion: una buena aplicacion intentara predecir las
necesidades y los deseos de los usuarios.

e Autonomia: el usuario debe verse incentivado a investigar y
sentir que tiene el control de la interfaz. No obstante, hay quienes
se sienten mas comodos en un entorno explorable, que no sea
demasiado grande o restrictivo. Para maximizar el rendimiento de
un negocio, debemos maximizar la eficacia de todos los usuarios, y
no solo de un grupo de ellos.

¢ Coherencia: si queremos que nuestra aplicacion sea coherente, es
preciso realizar varias pruebas con sus futuros usuarios, para asi
asegurarnos de que el diseno sea el indicado.

e Eficiencia: debemos lograr que la aplicacion potencie la experiencia
del usuario y le facilite sus tareas, en vez de buscar la potenciacion
del equipo informatico.

e Aprendizaje: lo ideal seria que el usuario pudiera sentarse delante
del sistema y saber como utilizarlo sin necesidad de aprendizaje.
Sin embargo, esto casi nunca sucede.

¢ Comunicacion: es preciso mantener siempre informado al usuario
sobre el estado del sistema, mediante cuadros de didlogo, etiquetas,
colores e iconos, y escribiendo mensajes de ayuda concisos que
resuelvan los posibles inconvenientes.

Como podemos ver, a lo largo del desarrollo y el disefio de interfaces
graficas podemos encontrar una gran variedad de reglas que debemos
tener en cuenta en funcién de las aplicaciones, el usuario y el tipo de
negocio al que nos estemos dirigiendo.

\ CLI(COMMAND LINE INTERFACE)

La interfaz de linea de comando es un método que les permite a las personas dar instrucciones al pro-
grama informatico por medio de comandos, sin necesitar la intemediacion de interfaces graficas. Por
ejemplo, podemos encontrar sistemas operativos como el antiguo DOS v, en la actualidad, consolas de
administracion en distribuciones de Linux.

www.redusers.com &

138 [==3 4. PRIMER PROYECTO EN VISUAL BASIC

Nomenclatura en pseudocodigo
y lenguajes de programacion

Las nomenclaturas hacen referencia a una lista de nombres de algiin
tipo de objetos. Asi como en quimica se utiliza una nomenclatura
para diferenciar los elementos de la tabla perioddica, en programacion
se la usa para reglamentar abreviaciones que hagan referencia a
componentes y, asi, saber a qué estamos llamando desde el codigo
fuente; por ejemplo, si estamos haciendo referencia a un boton o a una
caja de texto con su nombre particular.

En la Tabla 3 veremos la nomenclatura que suele emplearse para
representar algunos controles comunes de los lenguajes, y también una
breve resena acerca de su aplicacion.

NOMENCLATURA

w TIPO DE CONTROL v NOMENCLATURA

Casilla de verificacion / chk Presenta una opcidn de tipo Ver-
CheckBox dadero o Falso.

Etiqueta / Label Ibl Presenta texto con el cual el
usuario no puede interactuar ni

modificar.

Caja de imagen / pic Presenta mapas de bits, iconos

PictureBox o metarchivos de Windows, y
ofros tipos de archivos graficos
compatibles. También ofrece texto
0 actua como contenedor visual
para ofros controles.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 139

Caja de texto / TextBox xt Proporciona un area para escribir o
presentar texto.

Tabla 3. Nomenclatura de controles comunes.

Como podemos ver en la tabla anterior, las nomenclaturas que
utilizamos en los controles suelen ser abreviaturas de sus nombres
originales. En general, utilizando ese nombre que esta en inglés,
podremos identificar facilmente a qué control nos estamos refiriendo.
Por ejemplo, si el control se llamara Grilla / GridView, la posible
nomenclatura seria grd, en referencia a GRID.

Para evitar confusiones, es bueno consensuar con un equipo de
desarrollo la forma que se adoptara para nombrar controles en el
codigo fuente que vamos a desarrollar.

Las interfaces graficas son elementos fundamentales para poder
representar una aplicacion adecuada e intuitiva vy, asi, lograr que el
usuario se sienta comodo al transitarla. En el caso de la confeccion
de interfaces graficas, debemos conocer los diferentes controles que
podemos emplear, ademas de tener en claro la nomenclatura implicada
en cada uno de ellos para el codigo fuente.

CARACTERISTICAS DE LOS CONTROLES

Las Propiedades son las caracteristicas que definen los rasgos de un control, tales como su color, texto,
tamanio, efc.; y los Métodos son aquellos procesos que puede llevar a cabo un control por si mismo.

En cambio, cuando hablamos de Eventos, nos referimos a las acciones que se realizan sobre un control,
generalmente, por medio de la interaccion del usuario.

www.redusers.com <«

140 4. PRIMER PROYECTO EN VISUAL BASIC

Lenguaje de programacion:
Microsoft Visual Basic

En esta parte vamos a aplicar los conocimientos vistos,
plasmandolos en el legendario lenguaje de programacion Visual Basic.
Utilizaremos el entorno de desarrollo IDE (Integrated Development
Environment) de Visual Studio 2010 versiéon Visual Basic Express.

Otros tipos de IDE:

e Eric: http://eric-ide.python-projects.org

e Mono: www.monodevelop.com

e Wingware: www.wingware.com

e NetBeans: http://netbeans.org/community/releases/61
e Visual Studio: http://www.microsoft.com/visualstudio

Para instalar esta version, podemos hacerlo desde la pagina oficial
de Microsoft: www.microsoft.com/visualstudio/latam. También
podemos encontrar diferentes videos sobre la instalacion, tanto en
paginas de Microsoft como en YouTube.

Creacion de proyectos

Para comenzar a utilizar el lenguaje de programacion, debemos
conocer qué es un proyecto o solucion en Visual Basic. Un proyecto
esta compuesto por un conjunto de carpetas y archivos que nos
permitiran armar una aplicacion, en donde se almacenan codigos
fuente, librerias, interfaces, etc.

Para crear un proyecto debemos tener en cuenta el siguiente
instructivo, que tomaremos como etapa principal para todos los paso a
paso que presentaremos a lo largo del capitulo.

MetBeans es un proyecto de codigo abierto con una gran base de usuarios, una comunidad en constante

crecimiento y cerca de 100 socios en todo el mundo. Sun MicroSystems fundd el proyecto de cédigo
abierto NetBeans en junio de 2000, y hoy continda siendo su patrocinador principal,

» www.redusers.com

INTRODUCCION A LA PROGRAMACION USERS BT

Ejecute Visual Studio y, desde el mend Archive, haga clic en Nuevo proyecto.
También puede hacerlo desde la interfaz principal o utilizando las teclas CTRL+N.

Cedoh Ui u sty
Mz alifral

Hurw prevele de egegss,
Hugvo srchivd. .

ik i S dior 2010 Professional

Ak 5 1heo b [EE R T

Comedtanal pooyecta de e quipe

L Indormm Acihn Oriantativa
arvdutign Sesver § TR

Carn -l bat

AT pren ot

Litmas naticing

Comenear
CeA + M. =5
[== #

L Pantala de blervenida
Control de ¢ Sabego Fuente * Windows ¥ivh
Cinliiarar phain Mube Offce
PR 7 i FharePoint Datos
Imprmiz il of
Aoy recmnbe v b a

argan e prinyex S i
Frogeectod y pohucionm redsente > H
Talu At eFd

_

Dentro de Visual Basic, seleccione Aplicacion de Windows Forms para crear una
aplicacion con Windows y haga clic en Aceptar.

T

Tode kot oy A — P >
b e I et ¢~ | Oudrcpoe Pracurminde = | (] 2o B
ok Flair i wntaladas
:'ii Aphencabe do Wanderws Fommi Wil Blaas: T ViosalBuoic
a Winaal Basic . Proredte prn credn wne aphcaciin con
Wi dman —y Ly e aT e e e o
Wl @ | Aphcaoin WPl Wil Blase:
Dffue
Cloud m Aplicytidn de comaly Wiyl Basit
Pregks
Reparting E [ey p— Viniasl Baint
- T
e ‘-‘ At acrbn de explosidod WPF Vil Baa
s Sabwregth Fon Warldiren Phone
: wes @8] Gibkotecs de controles de usuai. Vil Bassc
Wiorkflow —
il &N’.ﬂ-j"w; f"h Bblesbeey die cenirabey peesanal. . Vinusl Base
Cirnct (rtrers tipars de proyectns :
THER Baie de datan)
i Prmpectos de prusbs L N
) TN 7| e ox woon: Vb
E ibdmstec de Controhes de Ward. Wil Braia
Newrbee: Whrdandppie abond

www.redusers.com <«

142 =23 4. PRIMER PROYECTO EN VISUAL BASIC

Aparece un nuevo formulario y se agregan los archivos necesarios. Si es el primer
proyecto que crea, recibira el nombre de “WindowsApplicationl”. Al momento de
guardarlo, elija el nombre y haga clic en Guardar. La nomenclatura adecuada seria
PRY, que proviene de proyecto. Por ejemplo, pryPrimeraAplicacion.

Cuindie o hevaivmentai = 3 ¥ fFoenivh [Doefo] =
o Tindod v Forvriplinriy) Wiad
.k. s i g Foernl
ol BachgrousdiWerdier
f BmdengMimagator
LY BndingSource
= Futren
Fl Chediden
13 Crrcoedus) Guardaproyecto
B Colaadaly
B Combehed Hombre: prPrene ol sicef
B Comtethe icarion CPairm W Provt ot - Exnraniia
A Gni
H Datatet Homibee do b schuchles proPremenaiphosnos 4] Crear ghrnchons pars Iy sobutssn
B DotaTiweed) Agreger ol control de cddege futrbe
Tl Duectoryd
1 Dineosny Guawdar || Canreim
B Dol
D EworPrivader Adorn de(oﬂ'ld.l(.-ir :-Olﬂ'l-lll[l‘r\
& Fwrdog Copinr n ¢l drectons ¢ Mo coplu
8 Pyt . Erpacio do nembng o5
= Flowd ppeatPaned Hemarme s personalo
= | [T - —— Henbenduwthors Formlvb
a1 Feralsalog
™ Goouplion
B Helphrovider

Una vez que hayamos concluido con este paso a paso, obtendremos
como resultado nuestro primer proyecto. Desde aqui, podremos ver
diferentes herramientas en el IDE que nos permitiran realizar las tareas
y administrar el proyecto.

Para reforzar este concepto, a continuacion desarrollaremos en
detalle las caracteristicas generales del IDE, representadas en la
siguiente guia visual. Aqui podremos ver: el cuadro de herramientas,
el disefiador de formularios, el editor de codigo, el explorador de
soluciones y las propiedades.

Un IDE es un entorno de programacion que ha sido empaquetado como un programa de aplicacidn.

Consiste en un editor de codigo, compilador, depurador y constructor de interfaz grafica (GUI).
Los IDEs pueden ser aplicaciones por si solas o formar parte de aplicaciones existentes. Por ejemplo:
Visual Studio, Proyecto Mono, etc.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 143

ol vt [vc] 30 [r—— - %
Tadrh vk o mussbrrs eraderers Formm, = w1 | o e S
& ragaien. ormumey B = |y
& Foerml = = = o2l pryfjrempla

- B S ey Praject
E wres el ot
[Chpiifien .
1% <nesiedtivies 3
W Combobem
B Datalwwalick
A Labe
A Lieilased P Laplermd
Bl Lnike

C
o] MaskedT ofion [T —— P
el TP TR -
o] Accsin de compla Compdacion
11 Musreiciilown = Copnr on o drech Mo <opiar
dl FiomeeBos Espic s bt camibied .

Sepgrrsiar Hstanatila getiic
@ PadieBution T N Y
81 FackindSon
ol Techos [s L L:wm j_:lﬂ-“'“,
R Tocilep D | dchive Lincs TR —
m o Tiewew
Bl WebBrow
 crtrran ey
N Mot itk e compriion

- Clrus o reliona ol mchivo con len prod s
S5 omprlpan Tl

CUADRO DE HERRAMIENTAS: proporciona las herramientas disponibles durante el di-
sefio para colocar controles en un formulario. Ademas del disefio predeterminado, permite
crear un disefio personalizado seleccionando Agregar Ficha en el meni contextual y afia-
diendo los controles a la ficha resultante.

SOLAPA DISENADOR DE FORMULARIOS: personaliza el disefio de la interfaz, al per-
mitir el agregado de controles, graficos e imagenes a un formulario. Cada formulario de la
aplicacion tiene su propia solapa Disefiador de formulario.

VENTANA EDITOR DE CODIGO: funciona como editor para escribir el codigo de la aplica-
cion. Para cada formulario o clase de codigo se crea una ventana diferente.

VENTANA EXPLORADOR DE SOLUCIONES: permite acceder a los formularios, compo-
nentes, clases, etc. Desde ella se puede ver el disefio grafico de dichos formularios (botén Ver
Disenador) y editar el cédigo que contienen (botén Ver Cédigo). Existen otras funciones,
como: Actualizar y Diseiador de clases, entre otras.

VENTANA PROPIEDADES: enumera las propiedades del objeto seleccionado y su correspon-
diente valor. Ademas, muestra el significado de la propiedad mediante una breve descripcion.
Permite agrupar las propiedades de acuerdo con un tipo y ordenarlas alfabéticamente. Con el
botdn Rayo podemos visualizar los eventos correspondientes al objeto seleccionado.

—

www.redusers.com &

144 =3 4. PRIMER PROYECTO EN VISUAL BASIC

Teniendo en cuenta estas caracteristicas, podremos administrar
mejor nuestro desarrollo, ubicando facilmente las diferentes
herramientas y ventanas, tanto al momento de disefar la interfaz,
como en la escritura del codigo fuente.

ARCHIVOS

v EXTENSION DE ARCHIVO v DESCRIPCION

Se utiliza para archivos de solucion que enlazan uno o0 mas proyectos;
almacena informacion global. Los archivos .SLN son similares a los
archivos de grupo Visual Basic (.vb), que aparecen en versiones anteri-

ores de Visual Basic.

VEPRO.J Proyecto en Visual Basic.

Archivo con codigo Visual Basic.

Libreria de cadigo.

Tabla 4. Archivos generados por cada solucion o proyecto gue
vayamos a generar en Visual Studio

.-”f__.
/ @ WINDOWS API

La interfaz de programacion de aplicaciones de Windows es un conjunto de funciones residentes en
bibliotecas (generalmente dindmicas, también llamadas DLL) que facilita el intercambio de mensajes
o datos entre dos aplicaciones. De esta forma, permite que las aplicacioens trabajen al mismo tiempo

-como podria ser un procesador de texto y una hoja de calculo-, se comuniquen e intercambien datos.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION (V734 145

Capmil §v2.80¢ [MSOS 8F fempInbidia] - Mredon Wesd o/@] By

Dando S papna Beidasial Coeipiedests Bedsi Vet Complimisbii Brusnaimafs Mltesdsite N]

o Rhat J T}

SA L e ®

]

iy Ui de B0 AV () |
£ Mers Soout |
i Red
W Panal du contrad
Papthess de v lese
b 1_HARDHART
b Andiosd
L eon

L pryPremerahpls aceon

'llp-\uu.n Palitan L4 M | B Ripaisl ligertes i Eig 2 . s (=) vl wy

|

> Figura 2. Al guardar, esta es la estructura de almacenamiento de
archivos y carpetas de la solucion o proyecto que se crea.

Podemos observar que cada proyecto es una tnica aplicacion
almacenada en su propia carpeta. Dentro de ella se encuentra el
archivo de configuracion del proyecto y los archivos reales XML, que
contienen las referencias a todos los elementos, formularios y clases,
ademas de las opciones de compilacion.

Tenemos que considerar que en Visual Studio cada objeto o
componente tiene propiedades, métodos y eventos. Por ejemplo, el
contenedor por defecto en los proyectos Windows Form (que son para

Microsoft Virtual Academy es una plataforma de estudio creada por Microsoft que busca generar una ex-

periencia de actualizacion y entrenamiento constante a todas aquellas personas interesadas en aprender
sobre informatica y tecnologia. Su intencién es maximizar el potencial de los interesados, simulando una

academia virtual que permite seleccionar carreras y acceder a mucha informacion.

www.redusers.com «

146 == 4. PRIMER PROYECTO EN VISUAL BASIC

aplicaciones de escritorio) posee las siguientes propiedades destacadas:

¢ Name: nombre que asignaremos al objeto o componente, por
ejemplo, pryPrincipal.

e Text: texto que aparecera en dicho componente.

En todos los controles encontraremos la propiedad NAME, que es
muy importante debido a que en ella asignamos el nombre del control,
en donde se recomienda aplicar la nomenclatura para él. Por ejemplo,
si agregamos un control TextBox, en su propiedad name podriamos
asignarle txtEjemplo. A medida que vayamos desarrollando los temas
del lenguaje de programacion, iremos conociendo las propiedades
principales de los controles que utilicemos.

Podemos encontrar muchisima informacion gratuita en el MSDN de
Microsoft o en la pagina MVA. También es altamente recomendable el
curso de desarrollador 5 estrellas que ofrecen las siguientes paginas.

MVA: www.microsoftvirtualacademy.com

MSDN: http://msdn.microsoft.com

Qué son y como se usan las variables

Las variables son uno de los elementos mas importantes en el
desarrollo de programas y reciben el nombre de identificadores.
Pueden ser constantes, variables, procedimientos y funciones.
Antes de continuar con su declaracion, debemos conocer cuales son los

tipos de datos que podemos utilizar en aplicaciones de Visual Basic.

v TIPODEDATO v DESCRIPCION v INTERVALO DE VALORES

Boolean Valores logicos True o False

Long Numeros enteros 9.223.372.036.854.775.808 2 9.223.372.036.854.775.807
(9,2...E+18 1) (con signo)

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 147

Double (punto Numeros deck -1,79769313486231570E+308 a
flotante de males -4,94065645841246544E-324 1 para los valores negativos;
precisidn doble) 4,94065645841246544E-324 a

1,79769313486231570E+308 t para los valores positivos

Date Fechas y horas 0:00:00 (medianoche) del 1 de enero de 0001 a
11:59:59 p.m. del 31 de diciembre de 9999.

Tabla 5. Tipos de datos en Visual Basic.

En el enlace de MSDN se muestran todos los tipos de datos
que podemos encontrar: http://msdn.microsoft.com/es-es/
library/47zceaw7(v=vs.100).aspx.

Ahora crearemos un nuevo proyecto en donde aplicaremos las
distintas variables que estuvimos estudiando. En funcién del paso a
paso anterior, en donde comenzamos con la creaciéon del proyecto, aqui
vamos a trabajar con algunas propiedades de la interfaz y el codigo
fuente correspondiente a este lenguaje.

Para hacerlo, abrimos el proyecto pryPrimeraAplicacion
y realizamos lo siguiente en la interfaz grafica, asignando las
propiedades del Form que aparecen a continuacion:

a. Propiedad NAME = frmPrincipal
b. Propiedad Text = Ejemplo de Variables

% TIEMPOS EN LA PROGRAMACION

En la programacion existen tres tiempos fundamentales. Primero, el tiempo de ejecucion, momento en
el que se ejecuta la aplicacion y se llevan a cabo acciones sobre ella; segundo, el tiempo de disefio, en
el cual el desarrollador asigna controles o formatos sobre la interfaz grafica; y por dltimo, el tiempo de

codigo, cuando el desarrollador esta trabajando en el codigo fuente.

www.redusers.com <«

148 [==3 4. PRIMER PROYECTO EN VISUAL BASIC

Agregue dos botones y asigneles: al control Buttonl, btnConstante (en Name) y
Constante (en Text); y al control Button2, btnVariable (en Name) y Variable (en Text).

Formlvb [DiseRo]* + Explorador de soluciones

& = FEGIEEE
v Ejernplo de Variables E 2 pryPrimersAplicacion

24 My Project

0] Formlvb

-} -]
(!
(4
[
[!
i
< i
E |
% H
i
I
It
i
(4
i
o=g=h—

;ﬂ Explorador...

btrWariable Syitern Windows For

B =
b Padding 0: 0:0;

Seleccione el frmPrincipal y presione la tecla F7, 0 haga doble clic sobre él y entrara
a tiempo de cédigo (todo lo que hizo antes era en tiempo de disefio). De esta forma,
vera que ha ingresado en un evento llamado Forml_Load.

{frmPrincipal eventeos) =| ¥ Load - ’\nﬂl (] | | B e | &
Public Class frePrincipal |40 = pryPrimerafplicacion
- Sl My Project
E Private Sub Forml Lond(ByVal sender &s System.Objsct, Bywal 3“’"“"1"‘"
End Sub
_End Class

» www.redusers.com

INTRODUCCION A LA PROGRAMACION USERS RV

Dentro de este mismo cédigo, cree las variables necesarias para el proyecto que se
ven en la siguiente imagen.

¥ (Forml eventos) l ¥ Load - |
SPublic Class Forml q.- EpryE_]e
= ad My
= Private Sub Forml_Load{sender As System.Object, e As System.Cventfrgs) Handles Myl [7] Faw
Dim conIVA Az Decimal = @.21
Dim varvalor A3 int
S | Ry,) o~ Datelntercal =
hl&g:l z a]ntegh‘ ¢ [m k
Representa um entero de 32 bits con signe. |32 Interaction -
1 o ¥ IntPar L
{} PropetyGrdinternal s
5| Ulnteger L4
% UlntPtr 5 3l |
Comiin Todo | -

Lista de ermores

Vaya al modo de disefio, haga doble clic sobre el botén de comando de constante

. - btnConstante, y acceda al tiempo de disefio de dicho botén. Por defecto, se mostrara
el evento btnConstante_Click cuando el usuario lo ejecute. Para utilizar las variables
en toda la aplicacion, declarelas en el sector Declaraciones.

Formlab® X
5 {Formil eventos) -] F Load - E' i
HPublic Class Forel ¥ Load < | A prytie
bim conIVA A5 Decimal # LocationChanged E ::.
| Dim varValer As Integer ¥ LostFocus
El Private Sub Forml_Load{sender As Systt # MaomizedBoundsChanged
l conlVA = .21 # MasimumsizeChanged
varvaler = 8
End Sub # MdiChildActivate
End €lass # MenuComplete B
MenuStant
MinimumSizeChanged
MouseCaptureChanged
MouseClick &
¥ MouseDoubleClick | - i
|
0% -+ m | '
>

www.redusers.com &

150 [=F=FE 4. PRIMER PROYECTO EN VISUAL BASIC

En el area para escribir cédigo de btnConstante_Click, codifique un MessageBox
para mostrar el valor de la constante. Al terminar de codificar, para probar la
aplicacion, presione F5 o vaya al mend Depurar/Iniciar Depuraciéon, o haga clic en
el botén Inicio.

perar Depurar Equipo Dates Hemsmientes Arquitecturs Prueba Analizar Ventans Ayuds
LT 2|9 - - -0 ¥ i 3 5503 2| windows Phone Emulatoes) || RS B D 0.
flE o TR 8 S8 e |FHE|G S| Z.

Al Explorador de soluciones
LlaalEa s
3 pryfjemplo

2 My Project
] Forml vhb

ris =

&3] Bxplorad...
Fropiedades
Forml.wb Propiadades dal srchive
=

Accion de compila Compilacidn
Copier en o directt Mo copiar

Para concluir con el proceso, haga clic sobre el botén Constante y vera el siguiente
resultado.

T= 1AL []
WSERS » Capituled » pryPrmeniplicacion » pryPrimerasplicacion » bin » Debug - |{v, | Buscar Diebug pel
Abrir Compartir con = Comeo electranico Grabar Mueva carpeta = [e
Nombre 5 Fecha de modifica... Tipo Tamaric
= e FRFaseT— (= CljEE _| pryPrimeradiplicacion e 16052013 0445 a.. ApBcacidn 3 KB
—————— B pryPrimeraAplicacion.pdb I6/05/2012 0445 2. Progeam Debug D.. KB
[] " pryPrimeradiplicaconsihosiee 16/03/2012 0451 & Apkcacion L2 EE
pryPrimerafiplicacon.xml 16052012 45 a.. Documento XML 1KE
| WindewsApplicationl.eoe 16/08/2002 0357 a.. Apkeacién 22 KB
WindowsApphcationl pdb 16052012 03:57 a.. Program Debug D &6 KB
" WindewsApplicaticnl vshost.eve 16/05/2002 04:16 a... ApBcacién 12 KB
Bagnar J WindowsApplication] vshostecemanifest 31082003 1240 s drchiva MANIFEST 1KB
| WindewsApplication] 16052012 03:57 &.. Dogusnento XML 1KEE
La constante tiene o valor: 0,21
= [acep]
o]
S0 D

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 151

o Voo g g e - S el e kel P Y
froves Qe Ve Pogece Cosew Dapew gups Driss eswwsis Prase Vesses Apwds
5] Mure proyeie Ende bl e gl= e & Y Frues 3 A2 E 30,
‘. Phps ot e Mepin el SR
A Mot e e e — — AT
J eres anbeen 3 e
e TR (e & ed aa] L5 Perpaen
B ke b e MplnApely 7 8 Duteg) ooyt
T CoRata e g s + Formi_omd{Byval veder a1 dyvies — e By
[TSP, = b
®
b o
[
. 1 Msems et Clbrk el dembee ds pate vl Syutem,) Fam
) Comw prymcin e B "L et ¥l] malars = & conTHl
[e (LA
Casarige Pl b orvms
L b [T TP Y
iporim pigeniis
[e i
U Comtapas gy
b (N)

Ao e

-
By 1 5 L simom, vy " 3 Cnplee b
e M-

B> Figura 3. Seleccionando Guardar todo nos aseguramos de salvar
todos los archivos que hayamos agregado al proyecto.

Al finalizar el ejemplo, desearemos guardar el proyecto. Sin
embargo, para futuros proyectos es recomendable ir haciendo varias
grabaciones parciales en forma constante, para asegurarnos de no
perder ninguno de los cambios realizados.

Al momento de almacenar, podemos hacerlo desde el menu Archivo/
Guardar todo, seleccionando el icono desde la barra de herramientas o
pulsando las teclas CTRL+MAYUS+S.

Ahora veamos como asignar valores a una variable, con el ejemplo
pryPrimeraAplicacion. En el botén btnVariable hacemos doble clic con el
boton izquierdo del mouse, y se nos enviara al codigo fuente en el
evento Click. Alli escribimos lo siguiente:

varValor=150

MessageBox.Show("“E! valor de la variable es: ™ & varValor)

www.redusers.com &

152 [==3 4. PRIMER PROYECTO EN VISUAL BASIC

B8 EAFr ARl L0 - MRS Vil Shids [l mermreder] = @3] B
Archive Edtar Ve Proyecie Gesers Depursr Ggwpo Dates Mensmoeotas Aquitechors Prosta Analase Vestins Ayuds L
i*JiJJ-UH'& DAIR] =29 -0 ZI-T0 K ud A0 windew Frene batein - SRR R 0. e
e s d|F e a|FUEE R § 386G EHE| %] - =,
Cosdrodehers. = § 3 [TRETERUEEIENCRERY ;. a0 dn objet
+ Tonchors o Poormeslas . =
{urtioh Comanes
Kk Pustern
® Humon
B CheciBen
10 Checioedtme. ™
Wl Co
% oo -—
A Lakd e ——
A lasidab
'-" Linion Coilary snale Deitog
I_‘ :-::.;:! Momibre de la vobecitn: pryPrnseradplscesd ¥ ¢ reae dhrectoria pars L solacion
T Monehl Agreger al contyol de cidigo fwpnie
= o
He
o
9
84 mienTenSen Lr
wi Tt D Oemeses |) Oadvertencion | L]0 mertiges
R Teamip Bty ~ perTES
LY Trow'we
B Wetlrowse
& L orlenedoney
LI
= Powlayed?. =
E o Cande., oo o o pis de comngel..

b Figura 4. Al guardar, debemos controlar la ubicacion y marcar Crear
directorio para la solucion para agrupar todo.

Para continuar con el ejemplo, asignaremos diferentes valores en
tiempo de ejecucion, es decir que el usuario pondra un valor que
cargaremos a varValor. Para esto, agregaremos en el proyecto:

1. Un control caja de texto (TextBox), al que le asignaremos la siguiente
propiedad:

a. Name: txtCarga
2. Al lado de txtCarga, un botén de comando (Button) con las siguientes

propiedades:

a. Name: btnAsignar b. Text: Asignar

v
@ PROPIEDAD TEXT

Una de las propiedades mas frecuentes en los controles de Visual Studio es TEXT. Con ella podemos
especificar o determinar el texto mostrado en un control, en especial, los de tipo Label y TextBox. Asi
también, en los Form de Windows Forms determina la barra de titulo correspondiente.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

3. El codigo que aparece a continuacion nos servira para asignar

valores a la variable:

Private Sub btnAsignar_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnAsignar.Click

varValor = txtCarga.Text
txtCarga.Text = "
Message Box.Show("Se asigné el valor: ** & varValor)

End Sub

4. De esta forma, el funcionamiento sera el siguiente: primero ingresar
un dato numérico en txtCarga y, luego, hacer clic en btnAsignar,
donde se muestra el valor que tiene varValor y blanquea cualquier

dato que esté en txtCarga.

o gy perrpe Deparandal - Moo Vil §haio Admmiradon)

153

:i Aed ~dd| s 2Bz 2|9 -0 L-T|F
AL d AT e a| Al | e R
Feralovk = |

2 A ee o0 B a4y |t .

Archéve [oaw W Proyeas. Gerere Owpun Dgeipe Omed Memmisotis Ampuiectan Presbe Ansicw Viertsra Ay
JQ’:“] wirnaows Prone Ermlate

oL

QRNALE G0 e

7 (Foremll pormton)

A RS Wi

Public Class

Ole coalvl A3 Decleal

Oie varvalor d: Tnteger

Frivete Sub Forml Losd{sender As Systes.(bject, o As System. Lvent
c2AIVA = 0.1
warvalor = "a"

rgt) Mandles MySsce.losd

T Mose controkd lavalldCastExce ption
La cemwnnaton de Lo cadema "s" oe ol bpe Trdeger’ no e wilade.

End Sub
End Claue

SRR AT pubird endurien de probldemag
Lpnids FRERED B COTVRTRN O U UPSRIT,) WY 0504 IRT T TGS Mengd g efireap

comvortn am o bpe de dasbag

www.redusers.com

B Todis s 2| Tadors bwa 1.2

) Dot acdionr: Prineipic dé la
4 Emcepaia: T predups TLa
H Fxcepaitn: S detedls La

- "La
Ed
- ¥]

o la

Figura 5. El error de conversion aparece cuando ingresamos un valor
que no sea numerico o dejamos la caja de texto en blanco.

<«

154 [==3 4. PRIMER PROYECTO EN VISUAL BASIC

Este error indica que estamos intentado grabar

EL CARTEL DE un tipo de dato que no corresponde a la variable
ERROR SENALA declarada, en este caso, un texto en una variable
de tipo numérico.

QUE EL DATO NO Revisando el ejemplo que utilizamos, podemos

CORRESPONDE A LA determinar como es la sintaxis en Visual Basic

para la declaracion de variables:

VARIABLE INDICADA

[Public | Private] Const Nombre [As Tipo] = Expresion
[Public | Private] Dim Nombre [As Tipo]

e Public es opcional, e indica que la constante es publica y esta
disponible en todos los médulos.

e Private es opcional, e indica que la constante es privada y esta
disponible en el médulo donde se declaro.

Como podemos apreciar, Visual Basic tiene una palabra reservada
para las constantes, que es Const. En este caso, debemos modificar
la declaracion de la constante de nuestro primer proyecto. Asi,
deberiamos escribir el siguiente codigo en la zona de declaraciones:

Const conIVA As Decimal = 0.21

Como se utilizan los operadores

Aritmeéticos

Como vimos en capitulos anteriores, los operadores aritméticos se
utilizan para calculos matematicos, y van acompafnados de variables y
constantes para formar expresiones que retornan un valor. Por ejemplo,
sumar el sueldo base con la remuneracion y restarle los aportes.

La instruccion MessageBox como clase —es decir, que podemos utilizar en cualquier lenguaje que emplee

el framework .NET- muestra un cuadro de mensaje que puede contener texto, botones y simbolos, para
informar e instruir al usuario de una aplicacion.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 155

ARITMETICOS

v OPERACION v OPERANDO

Resta -

Divisién 4

Médulo Mod (resto de la division)

Tabla 6. Estos son los operadores aritméticos que se utilizan en Visual Basic
para realizar muchas de las operaciones aritméticas habituales que implican
el calculo de valores numeéricos.

Utilizando el ejemplo, ahora veamos como deberia ser el codigo en
Visual Basic para realizar un céalculo determinado.

En este caso, nuestro objetivo sera calcular un sueldo base, que es
$4000 (cuyo valor puede variar); un aporte del 13% del sueldo base
(este valor sera fijo) y, finalmente, una remuneracion por $500 (este
valor puede variar).

Dim varSueldoBase As Integer = 4000
Const conAporte As Decimal = 0.13
Dim varRemuneracion As Integer = 500
Dim varSueldoNeto As Integer = 0

varSueldoNeto = varSueldoBase + varRemuneracion - (varSueldoBase
* conAporte)

MessageBox.Show(“E| sueldo neto es: " & varSueldoNeto)

www.redusers.com <«

156 [==3 4. PRIMER PROYECTO EN VISUAL BASIC

b pryljerrplo - Mirasoft Viewsl Studic [Ademinirador] o/@ B
i -l DAl A2 -0 F 0 3 SIS winsow brose ooty - | A% B 50,

1R AT el OB B R R & E 0 FH s, .
Fomlak =

L] 7 Do certonl <] 7 owd i Bl
J:Hdo-m "ublic Class formi ? @:ﬁ!

B Oymemschalicines & Eemplon de variatles y Cperadores o] # m#
';:.'wm I Everoks d spmdoers plmilicns @ As Systes.Lvestargs) Wandles Hyl

e | Boncia o4 cibonst Su s]

« ATl

a Gerenal

k Pusters

[T

Qveneces | B D acvertencus | 11)0 menjes] _ _
[= Brchern Lings: Colurea Peoyecho

0 Cubdiv ¢ Momar..

4 Figura 6. Interfaz y resultado del ejemplo, donde se muestra, en una
ventana de dialogo, el codigo que generamos.

Logicos

Al igual que los ejemplos de capitulos anteriores, los operadores
logicos permiten en el lenguaje conectar expresiones y determinar su
veracidad o falsedad. Producen resultados de tipo verdadero o falso.

LOGICOS

v OPERACION v DESCRIPCION

Or Disyuncion logica

Tabla 7. Operadores logicos en Visual Basic.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 157

En el ejemplo que veremos a continuacion, vamos a comparar
variables booleanas (que almacenan Verdadero o Falso) y utilizar las
operaciones logicas para ver los resultados que podemos obtener.

Dim varD1, varD2, varD3 As Boolean

varD1l = True
varD2 = True

varD3 = varD1 And varD2

MessageBox.Show(“EI resultado es: VERDADERO")

Recordemos que en el operador AND (como lo vimos en
pseudocodigo) deben cumplirse todas las condiciones para que su
resultado sea verdadero. En el préoximo ejemplo veamos el uso de OR:

Dim varD1, varD2, varD3 As Boolean

varDl = True
varD2 = False

varD3 = varD1 Or varD2

MessageBox.Show(“E| resultado es: VERDADERO")

Podemos revisar en el capitulo anterior, dentro de los operadores
logicos, la tabla donde comparamos las diferentes posibilidades y sus
resultados. En el caso de Visual Basic, el uso es igual.

Relacionales

En el lenguaje, los operadores de comparacion son utilizados para
realizar comparaciones entre expresiones. A continuacion, detallamos
los operadores provistos por el lenguaje.

www.redusers.com &

158 [==3 4. PRIMER PROYECTO EN VISUAL BASIC

RELACIONALES

v OPERACION v DESCRIPCION

<> Desigualdad

> Mayor que

>= Mayor o igual que

Tabla 8. Operadores relacionales.

Los operadores de comparacion son utilizados en las estructuras
de control de un programa y los veremos en el préximo tema
a desarrollar; pero antes, es importante conocer los signos de
concatenacion. Si recordamos, antes definimos concatenar como la
accion de unir dos expresiones alfanumeéricas en un solo elemento.
Por ejemplo, en Visual Basic utilizaremos:

Variablel =“Juan” +“ " + “Carlos”
Variable 2 = “"XYZ" & 666

En el primer caso, a Variablel se le asignan las cadenas "Juan” espacio
“Carlos”. En el segundo caso, a la Variahle2 se le asigna la cadena “XYZ" y
el valor entero 666.

Otro operador utilizado en el lenguaje es el operador punto, que
sirve para conectar objetos con propiedades y métodos, recuperar
y almacenar datos en variables creadas a partir de tipos de datos
definidos por el usuario.

Ejemplos:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 159

TxtDomicilio.Text = “*BUENOS AIRES”
Persona.Edad = 30

En el lenguaje, el operador “=" se emplea para comparar y asignar.
Ejemplos:

If a=bThen
End If

d=e+47

Todo tiene un orden
en la programacion

Como vimos en pseudocodigo, para realizar un algoritmo debemos
utilizar estructuras de control que nos permitan preguntar por una
condicion o realizar acciones repetidas veces. A continuacion, veremos
como debe ser su aplicacion en el codigo fuente:

Estructuras de control

Las estructuras de operaciéon de programas constituyen un grupo de
formas de trabajo que, mediante el manejo de variables, nos permiten
realizar ciertos procesos especificos para solucionar los problemas.

e Estructura condicional: las estructuras condicionales comparan
una variable con otros valores para que, sobre la base del resultado

Las DLL (Dynamic-Link Library, o biblioteca de enlace dinamico) son archivos que tienen en su estructura

un codigo ejecutable cargado bajo la demanda de un programa informético por parte del sistema opera-
tivo. Por ejemplo, el caso de Microsoft Windows.

www.redusers.com &

160 [==F235 4. PRIMER PROYECTO EN VISUAL BASIC

de esta comparacion, se siga un curso de accion dentro del programa.
En Visual Basic vamos a utilizar las siguientes palabras reservadas
para estructuras condicionales: If-Then-End If y Select Case.

e Simple: la estructura If-then-End If permite ejecutar instrucciones en
forma condicional, donde tendremos una condicion que se puede
cumplir o no, y el resultado sera verdadero o falso. Dependiendo de
esto, tendremos que realizar una o varias instrucciones de codigo. A
continuacion, compararemos la sintaxis en pseudocodigo con la de
Visual Basic, para tomar como ejemplo.

Pseudocoddigo Visual Basic

If condicion then
Instruccion/es
End If

If: indica el comando de comparacion.
Condicion: es una expresion que se analiza

y, en caso de ser verdadera, se ejecuta el
bloque de instrucciones comprendido entre las
palabras If y End if.

Ahora compararemos los ejemplos que teniamos en pseudocoédigo,
transformandolo a cédigo de Visual Basic.

Ejemplo: Contamos con la variable Edad, en la cual el usuario
ingresara un valor, y nosotros debemos preguntar si este es mayor o
igual que 18. Si el resultado es verdadero, debe aparecer un mensaje
que indique “Mayor de edad”.

TECLAS RAPIDAS

Para ir experimentando las teclas rapidas, revisemos un listado que nos sera muy util en programacion:
F2: examinador de objetos F5: ejecuta el proyecto

F8: ejecuta paso a paso (sentencia a sentencia) F9: punto de depuracion
CTRL+ENTER: detiene la ejecucion de un programa

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 161

Para el siguiente ejemplo, asignaremos el valor 19 a la variable Edad:

Pseudocodigo Visual Basic

Dim Edad as Integer
Edad=19

If Edad>=18 then
Message Box.Show(**Mayor
de edad”)
End If

Como podemos observar, las estructuras en si son muy parecidas;
solo debemos estar atentos a la nomenclatura del lenguaje que
utilicemos para nombrar sus condicionales simples. Cabe destacar que
cuando escribimos IF en Visual Basic y presionamos dos veces la tecla
TAB, automaticamente se completa todo el bloque IF-THEN-END IF sin
necesidad de escribirlo. De esta forma, aparecera el siguiente texto:

If True Then

End If

Vemos que escribe automaticamente True, en donde debemos
ingresar la condicion que deseamos corroborar.

¢ Doble: las estructuras condicionales dobles permiten elegir entre
dos opciones, en funciéon del cumplimiento o no de una determinada
condicion. En Visual Basic tienen la siguiente sintaxis:

If condicion Then
Instruccién/es
Else
Instruccion/es
End If

www.redusers.com <«

162

==

4. PRIMER PROYECTO EN VISUAL BASIC

De esta forma, podemos realizar acciones si las opciones de

Pseudocddigo

resultado son verdaderas o falsas. Continuando con el ejemplo anterior,
indicaremos cuando la variable Edad es mayor que 18 y cuando no.

Visual Basic

Dim Edad as Integer
Edad=19

If Edad>=18 then
MessageBox.Show (" Mayor de
edad”)

Else
MessageBox.Show("“Menor de
edad”)

End If

¢ Miultiples o anidadas: las estructuras de comparacion multiples o

anidadas son decisiones especializadas que nos permiten comparar
una variable y sus posibles valores. Dependiendo de estos valores,
se ejecutara el bloque de instrucciones apropiado. La sintaxis de
estas estructuras es la siguiente:

If condicién then
Instruccién/es
Else
If condicion then
Instruccion/es
Else

If condicién then
Instruccion/es
Else
Instruccion/es
End If
End If
End If

» www.redusers.com

INTRODUCCION A LA PROGRAMACION ==

Por ejemplo: deseamos saber si la variable varIntervalo esta
comprendida entre ciertos valores. Dependiendo de esto, indicaremos
que si varIntervalo esta entre 0 a 20, es un valor “bajo”; entre 21 y 50
es “medio”; entre 51 y 80 es “alto”; y entre 81 a 100 es “excesivo”. A
continuacion, veamos la codificacion correspondiente, suponiendo que
el usuario ingresa el valor 66:

varIntervalo = 66

If varIntervalo >=0 AND varIntervalo <=20 then
MessageBox.Show(“Valor Bajo™)

Else
If varIntervalo >=21 AND varIntervalo <=50 then
MessageBox.Show(“Valor Medio”)
Else
If varIntervalo >=51 AND varIntervalo <=80 then
MessageBox.Show(*Valor Alto”)
Else
MessageBox.Show("Valor Excesivo”)
End If
End If
End If

Otras de las estructuras que podemos utilizar para realizar este tipo
de condicionales multiples es el select case, que en pseudocodigo vimos
como segun sea. Veamos la sintaxis en ambos:

Pseudocodigo Visual Basic

Select Case Variable
Case Constantel
Instruccionl()
Case Constante2
Instruccion2()
Case Else
InstruccionN()
End Select

www.redusers.com

163

164 4. PRIMER PROYECTO EN VISUAL BASIC

Apliquemos esta instruccion para resolver el ejemplo anterior:

Dim varNumero As Integer
varNumero = 66

Select Case varNumero
Case Is <= 21
MessageBox.Show(“El valor es Bajo™)
Case Is <=51
MessageBox.Show(“EIl valor es Medio™)
Case Is <= 81
MessageBox.Show(“El valor es Alto”)
Case Else
MessageBox.Show(“El valor es Excesivo”)
End Select

Podemos decir que la estructura condicional multiple Select Case es
un If anidado mas desenvuelto, desde el punto de vista de la claridad
del cédigo que escribimos. Para este ejemplo, también podemos
utilizar la siguiente forma de comparacion:

Select Case varNumero
Case Is < 21
Message Box.Show("El valor es Bajo™)
Case 21 to 50
MessageBox.Show(“El valor es Medio")
Case 51 to 80
MessageBox.Show(*El valor es Alto”)
Case Else
MessageBox.Show(“El valor es Excesivo”)
End Select

Hasta aqui revisamos las estructuras de control utilizadas para
preguntar secuencialmente sobre alguna condicién o caso. En este
lenguaje de programacion utilizaremos If-Else-End If para condiciones

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 165

simples o multiples, vy la estructura Select Case, que es muy util para
algunos tipos de condiciones multiples.

¢ Repetitivas o estructuras ciclicas: desde el lenguaje de
programacion, vamos a repasar como podemos repetir partes de
un programa mientras cierta condicion se cumpla o sea verdadera,
y conoceremos las distintas estructuras que podemos utilizar.
La estructura de control repetitiva Do Loop le permite a nuestro
desarrollo reiterar la ejecucion de un bloque de instrucciones hasta
gue se cumpla cierta condicion. La sintaxis tiene dos variantes:

Do While condicion
Instrucciones()
Loop

En este caso se analiza la condicion. Si es verdadera, se ejecutara
el bloque de instrucciones delimitado entre Do y Loop, y el proceso se
repetira otra vez, siempre que el resultado de la condicion sea verdadero.

Do
Instrucciones ()
Loop While Condicidon

Como podemos ver, esta ultima estructura
es muy similar a la anterior, solo que cambia la LA DIFERENCIA
ejecucion de las instrucciones. En el bucle anterior DEPENDERA DEL
primero PREGUNTA sobre la condiciéon dada y luego
HACE; en cambio, en esta estructura, primero HACE ORDEN QUE EXISTA
y luego PREGUNTA. En pseudocodigo equivaldria a EN LOS BLOQUES
la sintaxis Mientras gque — Fin mientras. :

La diferencia que existe entre estas estructuras DE INSTRUCCION
es el orden en el que se ejecutan los bloques de
instrucciones algoritmicas. En un caso se analiza
la condicion y luego se ejecuta el bloque de instrucciones, y en el otro
se ejecuta el bloque de instrucciones vy, luego, se analiza la condicién.
Otras estructuras repetitivas que podemos encontrar son:

www.redusers.com &

166 =235 4. PRIMER PROYECTO EN VISUAL BASIC

Do Until Condicion
Instrucciones()
Loop

En esta estructura se analiza la condicion. Si es falsa, se ejecuta el
bloque de instrucciones y el proceso se repite hasta que la condicion se
vuelva verdadera.

Do
Instrucciones()
Loop Until Condicién

Para esta instruccion repetitiva, primero se ejecuta el bloque de
instrucciones y, luego, se analiza la condicion. Si se trata de una
condicion falsa, el proceso se repetira otra vez hasta lograr que la
condicion sea verdadera.

Veamos ahora una estructura repetitiva que nos resultara muy util,
que en pseudocodigo equivaldria a la sintaxis Hacer-Hasta. En el caso de
este lenguaje, se utiliza For o For Each.

La instruccion For-Next ejecutara en un determinado nimero de
veces un bloque de codigo. Veamos la sintaxis:

For Variable = Valorl To Valor2 Step Incremento
Instrucciones()
Next

El bloque de instrucciones que se repite esta delimitado por las
instrucciones For y Next. La sintaxis Variable es una variable de tipo
numeérico que toma valores entre Valorl y Valor2. Por cada vez que
el bloque se ejecuta, el valor de Variahle se incrementa en el valor
especificado en Incremento, que puede ser positivo o negativo.

A continuacién, veamos un ejemplo que nos demuestre como sumar
de un numero 5 veces:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION USERS IR .Y/

Dim i, respuesta As Integer

Fori=1To5
respuesta =i +i
Next

En este ejemplo, la repetitiva ejecutara 5 veces desde i=1 hasta 5y
acumulara la suma en la variable respuesta. Si la variable i iniciara en 0,
entonces se ejecutaria 6 veces.

Revisando estas estructuras, podemos ver que las repetitivas se
aplican para realizar una accion, siendo necesario o no cumplir una
condiciéon determinada. A continuacion, veamos las diferencias.

REPETITIVAS

v ESTRUCTURA v DESCRIPCION DE USO

Do Primero ejecutara el bloque de instrucciones y luego
Instrucciones () evaluara la condicidn.
Loop While Condicidn

Do Primero ejecutara el bloque de instrucciones y luego
Instrucciones() evaluara la condicién.
Loop Until Condicion

Tabla 9. Comparacion y descripcion de las estructuras repetitivas.

www.redusers.com <«

168 4. PRIMER PROYECTO EN VISUAL BASIC

Como vimos hasta aqui, podemos bosquejar un

algoritmo en

pseudocodigo vy, luego, volcarlo en la sintaxis del lenguaje de

programacion. Ahora revisaremos el uso de vectores y matrices.

Tipos de datos estructurados

Los tipos de datos estructurados son espacios en memoria que
seran utilizados mientras la aplicacion sea ejecutada y se borraran de
memoria al momento de finalizar el programa. Los vectores y matrices
son las estructuras que utilizaremos para almacenar informacion de

manera temporal y manipular estos datos.

Matriz

Las estructuras que se consideran una matriz son aquellas que
tienen un conjunto de elementos relacionados logicamente entre si. Sus
elementos deben ser referidos mediante un solo nombre y un nimero
llamado indice, para asi poder distinguirlos. Los elementos son
seguidos desde el indice cero hasta el indice de valor superior. En la

Figura 7 vemos un ejemplo.

g N
B B we By owm oAy
a 21 a:ez o 2 a?n
A=
a, a, a, a,
\ a mi a m2 d mj a min /

Figura 7. En esta
matriz tedrica
podemos ver

el elemento A
compuesto por
innumerables
valores.

Cada uno de los nimeros que integran la matriz se denomina

elemento, y se distingue de los demas por la posicién que ocupa;
es decir, la fila y la columna a la que pertenece. Este tema lo
desarrollamos en el capitulo dedicado al pseudocédigo; ahora veremos

algunos ejemplos en el lenguaje de programacion.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 169

Declaramos una matriz para almacenar la cantidad de horas
trabajadas por dia de lunes a viernes:

Dim Dias(5) As Integer

Esta matriz tiene seis elementos, y los indices estan en el rango de cero
a cinco. Su declaracion es mas simple y util que declarar seis variables
diferentes, es decir, seis espacios en memoria donde se pueda asignar un
valor numérico. La sintaxis para declarar una matriz es la siguiente:

Dim Vector(5) As Integer

Esta seria la sintaxis para declarar lo que conocemos como un
vector, es decir, una matriz de una sola dimension o unidimensional; es
lo que usualmente llamamos Vector.

Dim Matriz(5, 5) As Integer

Esta seria la sintaxis para declarar una matriz de dos dimensiones o
bidimensional:

Dim Matriz(5, 5, 3) As Integer

Esta seria la sintaxis para declarar una matriz de tres dimensiones,
que son mas complejas para manejar en codigo; se llaman
tridimensionales.

El QBASIC, originado por contraccion del nombre del producto QuickBasic que se traduce a BASIC, es
una variante del lenguaje de programacion BASIC. Provee de un IDE avanzado, incluyendo un depurador
con caracteristicas tales como evaluacion de expresiones y modificacion de codigo.

www.redusers.com &

170 4. PRIMER PROYECTO EN VISUAL BASIC

Para asignar valores a una matriz, tan solo debemos indicar el
espacio que deseamos utilizar, por ejemplo:

Dias(0) =6

Esto quiere decir que en la posicion 0 de Dias se almacenara el valor 6.
Cuando estamos manejando estas estructuras, también podemos
asignar valores al declararlas, por ejemplo:

Dim Personas() As String = {*Marcio”, “Cesar”, “John”, “Agustina”}

La cantidad de elementos asignados determina el tamano de la
estructura, que, seglin esta declaracion, seria una matriz de una
dimensién o un vector, que cuenta con 4 posiciones.

Nombre de Matriz: Personas
Posicion 0 1 & 3

Dato Marcio Cesar John Agustina

Figura 8. Declaracion de una matriz simple; contiene 4 datos que son
texto, y la posicion inicia en 0.

¢ Dimension: dentro de una matriz hacemos referencia a un indice
que nos indica la direccion especifica de elementos dentro de ella.
Supongamos que tenemos una matriz que contiene el total de horas
trabajadas por dia. En este caso, crearemos una estructura que tenga
como dimension la cantidad de dias, donde se guarden las horas
trabajadas. Por otro lado, si tenemos la necesidad de guardar el total
de horas trabajadas por empleado, debemos utilizar una matriz
que tenga dos dimensiones de almacenamiento: los nombres de las
personas y su total de horas trabajadas. A continuacién, veamos los
ejemplos pasados a codigo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 171

Ejemplo 1:

Dim HorasTrabajadas(n) As Integer

Ejemplo 2:

Dim TotalHorasTrabajadas(n, n) As Integer

N hace referencia a una cantidad que se especificara en la
programacion.

Matriz unidimensional

@|mMl @] 6| @

Matriz bidimensional

(0,0) (0.4)
(1,0)

(3,0)

Matriz tridimensional

Figura 9. Dimensiones de una matriz. Diferentes

| representaciones de las matrices en la memoria de un equipo. |

www.redusers.com &

172

4. PRIMER PROYECTO EN VISUAL BASIC

Si queremos utilizar mas de tres dimensiones, esta solo podra tener
un maximo de 32 dimensiones. Es importante que estemos atentos
al agregar estas dimensiones, ya que el espacio total necesario ira
aumentando de manera considerable.

Almacenamiento de informacion

Podemos crear matrices que no contengan informacioén, o cargar
informacioén sobre ellas. Veamos como se crea una matriz sin
elementos, declarando una de sus dimensiones en -1:

Dim matDosDimensiones (-1, 3) As Integer

A continuacién, analizaremos algunas circunstancias en las cuales
nos seria atil crear matrices de longitud cero:

¢ Deseamos que el codigo utilizado sea mas sencillo, sin tener que
comprobar Nothing como caso especial.

e El codigo interactua con una interfaz de programacion de
aplicaciones (API) que exige pasar de una matriz de longitud cero a
uno o mas procedimientos, o devuelve una matriz de longitud cero
desde uno o mas procedimientos.

Conociendo las matrices de longitud cero, veamos como podemos
rellenar una matriz con valores iniciales que antes utilizamos, pero
aplicando ahora un literal de matriz. Este se encuentra formado por una
lista de valores separados por comas que se encierran entre llaves ({}).

Cuando se crea una matriz utilizando un literal de matriz, se puede
proporcionar el tipo de la matriz o usar la inferencia de tipos para
determinarlo. Ambas opciones se muestran en el codigo siguiente:

Dim matNumeros = New Integer() {1, 2, 4, 8}
Dim matValores = {"a”, “valor”, “'b”, “texto"}

Cabe destacar que el tipo de dato que se infiere por defecto es el
Object; por lo tanto, si se declara una variable sin referenciar su tipo de
dato, este tomara el tipo Object.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 173

Las declaraciones explicitas del tipo de los elementos se crean
utilizando un literal de matriz y los valores se deben ampliar. En el
siguiente ejemplo de cédigo podemos ver como se crea una matriz de
tipo Double a partir de una lista de enteros:

Dim matDatos As Double() = {1, 2, 3, 4, 5, 6}

Hasta aqui hemos visto la asignacion de valores en la declaracion
de estructuras; ahora veremos como recorrer una matriz y guardar
informacion en ella. Vamos a utilizar el ejemplo del capitulo anterior,
aplicado en pseudocoédigo para el manejo de vectores:

Pseudocodigo Visual Basic

Dim vecEjemplo(30) As Integer

Dim indice As Integer =0
For indice =1 To 30
vecEjemplo(indice) = indice

Next

MessageBox.Show("Vector Cargado”)

En el ejemplo de Visual Basic creamos un vector ejemplo con 31
posiciones y cargamos los valores de la variable indice, con lo cual
quedan cargados valores del 1 al 30. Para asignar valores en un sector
especifico de este ejemplo, podriamos realizar lo siguiente:

vecEjemplo(10) = 150

En el codigo anterior indicamos que, en la posicion 10 de vecEjemplo,
vamos a grabar 150. Veamos como mostrar esta posicion u otra:

MessageBox.Show("EI valor en la posicién es: ** & vecEjemplo(10))

www.redusers.com <«

174 =3 4. PRIMER PROYECTO EN VISUAL BASIC

Recorrido de informacion

Para ver la informacion secuencial de una estructura, ya sea
unidimensional (vector) o de varias dimensiones, debemos realizar la
siguiente codificacion, que aqui compararemos con el pseudocodigo
visto en el capitulo anterior:

Pseudocddigo Visual Basic

matEjemplo(1,1) B “Lunes” matEjemplo(1,1) ="“Lunes”
matEjemplo(1,3) B “Fuente” matEjemplo(1,3) = “Fuente”
matEjemplo(3,2) B 5000 matEjemplo(3,2) = 5000
matEjemplo(4,4) B “Ultimo” matEjemplo(4,4) ="Ultimo”

Cabe destacar que estaremos mostrando mensajes por la cantidad
de veces que entremos dentro de los datos de la matriz. En este
caso, encontraremos que son 4 filas y 4 columnas, que nos daran un
resultado de 16 espacios, constituyendo asi 16 ventanas. Para evitar
esto, podemos aplicar el codigo de ejemplo que aparece a continuacion

y, asi, mostrar solo los espacios que contienen valor:

Forifla=1To 4
For icolumna=1To 4

If matEjemplo(ifila, icolumna) <> Nothing Then
MessageBox.Show(matEjemplo(ifila, icolumna))

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 175

End If

Next
MNext

En el codigo anterior vimos solo los espacios que contenian valores
distintos a nada (Nothing). De esta forma, tanto en pseudocodigo como
en codigo del lenguaje, el recorrido de la informacién almacenada en
una estructura debe iniciarse con un indice. Si la dimension de dicha
matriz fuese 3, podriamos crear indices X, Y y Z para recorrerlos.

Uso de controles basicos

La referencia que hacemos a controles basicos no es porque sean los
mas sencillos, sino por ser los mas utilizados. En la Figura 10 vemos
como ejemplo los mas frecuentes.

A Label I Label1 | -: TextBo I .
Propiedades Propiedades - X
Labell SysternWindews Forms.Label - TextBoxl System.Windows Forms, TedBox -
e = M =
Lecetion 13: 119 & PasswerdChar -
Lecked Falie ReadOnly Falie
hiargin 3030 RightTol eft Hy
» MoomumSiee 0:0 SerellBsis Hane
MinimumSize 00 ShortcutiEnabled True
Modifiers Friend b Size 104; 20
» Padding Q=0 O Tablndes 3
RightTalLeft Mo TabStop Teue
b Size %13 Tag
Tablndéx 1 Text
Tag Textlign Leht
Teat Labell = UseSystemPasswordCh. False
Textilign Tepleht UszeWaitCursor Falze =
UseCompatibleTestRen False Visible True
Uselnemonic True E Wordirep True
UseWaitCursor False = =
Text Text
Teste asaciada al contral. Tedto ssovrade ol control.

» Figura 10. Controles comunes Label/TextBox, los mas utilizados para
mostrar e ingresar informacion en una aplicacion.

www.redusers.com &

176

o pry e Lo Vel S [Admmntrador]

4. PRIMER PROYECTO EN VISUAL BASIC

. NG

_i..ﬂi.J_l'di! & sl _'; gl I RO RO LA B .|'!l|’,l=; Wmdrny Eipne Dmniaben [
(ol & A7

s g

* Todog lop omaclanas 'Winaews Fermg

JDNMABeE 50,

fae e B | & B0 Btec [2l St

o Lontroles Conanes (=, v{;r_-‘;ﬁj'
k Punte i Forrnl -] L)
(=) Buren
F Cmecbon
10 omememess AL R e e
B Combolios
T DoTmaPicn Farmn] Byrtaen Windons Farms Eorm
s P P =
.ﬁ. :::::‘. Fginbbenultnp Inmgane]
] S = o
' ListView = 0
== MabaciToa e Ehmemeton Troe
P Monthtslendar Minimumbice 8.4
= Hetifyleon Craacity 0%
15 HNumenicUpDewn o] Fdedery 8,868
ol PutureBex BightTel eh Me
S0 Progresdiie mc::w ::-:
5 Radobumion
% hovene [ErE——
A Bere 00, 0
o TetBea D0 arerr | 3 sdvatoncias | L) 0 i Saelipliple P
B TeslTs T — Lisen Colymng Proyectn R tion Wamrw Dl sl oo
T TieeView Tag
B viebbrowme Test Fouenl
Comanediie Taphou (1™
k Pusten Text
= FlowlayoutPanc - Tt aieciades ol doorel
L4 B - Crasdro de hormame <

Figura 11. Forma por defecto que es representada en Visual Basic y
tomada de Windows.Forms.

Gracias a estos controles, los usuarios pueden operar y obtener los
resultados necesarios de una aplicacion. De esta manera, se pueden
afadir controles a un formulario, seleccionando la herramienta
adecuada del cuadro correspondiente.

En funcion a los pasos que hemos vistos anteriormente, ahora es
el momento de crear un nuevo proyecto. Este nos permitira ver en
detalle el funcionamiento y algunas de las caracteristicas principales
correspondientes al form (forma o formulario).

“INFERENCIA DE TIPOS

Dicha inferencia es un proceso por el cual el compilador puede determinar el tipo de dato en una variable
local, la que ha sido declarada sin explicitar su tipo. De esta forma, el tipo de dato es inferido a partir del
valor inicial provisto a la variable. Por ejemplo, en Visual Basic se infiere el tipo Object si se declara una
variable sin tipo de dato.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 177

v PROPIEDADES DE UN FORM

i sl e St s - e e
Wt Qe Hacpwcida [l ivigar tme: o
a3 0GR = 7 | el B e dowe Fare oes - L -f R
;|..r.ﬂ'_‘.3'*-—=:'_ 31 O Sl 00 o S
b [1 R :
m - kel g} Legunge i |
1 pmal 1 Frivaipel | Raaliatie Halie
& Garvpk ¢ | A copthman . Ledation 1
I s Ledken Faine
AT | A ey s Arirvgret
— Arraail bakals Paduack r |th..u.u-uhn. Toce I
Adpwiira Fafie My i [3]
ST piektecte Ferd [ttr i i Tous 1
BupsTersd Faite W e [.
S red AL 1] ety e
Ao o vl B L4 43 ny LSS
Aumsliz F FeghTatai s
At [FghTalatlipiat Fal
SRR N PR KA T] Tous
m 16 b [| Comtech et Tasl b T
{ Esctgrousdmege || inerguns | Sen LS m
Eerr grovedmegeieys Tix fere vy lnte dare
m | Canceitiman (regpara)] [mabasmen [T e P |
[P T Temt: s o
Cimaiontiy gl T e & s
[b Tea Tugnazie Fand @
Cumide Dt Tanganciey]
Oranelvsend Fuiie LULL vt Wyt
Eoniad Toum W dm i L
LI Bl g LA by
Teat et
Tirencs v indls @l romred Trmn awrintn sl gorard,

| Eare— L m

(NAME): nombre del control para identificar en el codigo. Por defecto veremas “Form1”.

ACCEPTBUTTON: si establecemos esta propiedad con un boton de comando, este se
“activa” cuando se presiona la tecla ENTER.

BACKCOLOR: permite asignar el color de fondo del form.

BACKGROUNDIMAGE: permite asignar una imagen de fondo del form.

CANCELBUTTON: si establecemos esta propiedad con un botén de comando, este se
“activa” cuando se presiona la tecla ESC.

MAXIMIZEBOX: si asignamos el valor de esta propiedad en Falso, no aparecera en el
form.

MINIMIZEBOX: si asignamos el valor de esta propiedad en Falso, no aparecera en el
form.

STARTPOSITION: indica la posicidn del form en la pantalla del usuario. Por ejemplo:

cada vez que se ejecute el programa, la propiedad CenterScreen ubicara el form en el
centro de la pantalla del usuario.

EEEBEEEBEB

TEXT: en el caso del form, es para mostrar texto en la barra de titulos.

www.redusers.com &

178 [==F3 4. PRIMER PROYECTO EN VISUAL BASIC

Continuando con el paso a paso anterior, ahora es el momento
de desarrollar un caso practico mas complejo. La finalidad de este
proyecto es que podamos comprender mejor como es la utilizacion
correcta de estas herramientas vy, asi, poder integrar todo lo que hemos
visto a través de la aplicacion de las variables.

Para desarrollar este instructivo, asignemos las propiedades del
Forml de la siguiente manera:

a. (Name): frmPrincipal

b. StartPosition: CenterScreen
c. Text: Pantalla Principal

d. MaximizeBox: False

e. MinimizeBox: False

‘v PASO A PASO: COMPORTAMIENTO DE LA INTERFAZ

Para insertar dos botones de comando en el form por defecto, selecciénelos del
cuadro de herramientas y utilice el botdén izquierdo del mouse. Luego, asigneles las
siguientes propiedades: al control Buttonl, btnAceptar (en Name) y Aceptar (en
Text); y al control Button2, btnCancelar (en Name) y Cancelar (en Text).

e— —— = e

| & & 8o | LA e | b

gl s d|Fealzilfeg|=XER

Cuidira e herrarmaenty MR Forrnlah [Disefal® X
o Tiedors b Fovereal i Whoed

agkrador de soluimne
Bl2ElaE &

3. Betere 2 Pasial Principal (===} 5 pipenme anpme arion
5 Bachjrourdwadon My Projer
EE Ereinglinagsts 7] Farrmdlubs
1P Emeegieune
& Butten
B Chechiles
B Chechedlufion
Bl Coladiiatog -3
W Comboles
A CompahiynaD C
P R A DR
o Damdat
T Owie TimePicier == | Eeer |
Bl Direcrordioey e
Bl DirechoryTeanther frmPrinaipal Byrtors Windos) Fomma Fomn
5 Domsediploen =Bl s
D DroPrivder CpaERy 100%
— i T g
&) FieSypitemWatcher . RigheTol oft He
"= Foad ppoutPuna Lo Falre
A Felavbrmmarinte i Tinee
@ FomDislog ThowdnTaiibar Trae
e oy, T
1 Grouple Scalipiyle T
] Hejpundder StantPodition Centerforecn
B MIzealifar = Ty E
“ rli i = o - _ Test Parvtalls Prindiasl

» www.redusers.com

INTRODUCCION A LA PROGRAMACION USERSEERVL)

0).

Luego dirijase a las propiedades del Form AcceptButton y asigne btnAceptar, y a
CancelButton: btnCancelar.

ﬂ ST O I Tear Explorer BB Vista de clases

j Propiedades * X
Forml System.Windows.Forms.Form -
1 THE =
: h tﬁ;ﬁlicaticns.eﬂings] a
I+ (DataBindings)
(Name) Form1
: 4 E
(ninguno) ||
AccessibleDescription
i AccessibleMame btnficeptar
T AccessibleRole btnCancelar

AllowDrop
AutoScaleMode
AutoScroll

b AutoscroliMargin

o b AutoScroliMinSize
0 advertencias i) 0 mensajes Bt e

Falze

En el disefio visual en btnAceptar haga doble clic con el botdn izquierdo del mouse o
presione el botén F7 para ingresar a tiempo de cédigo. Ubiquese en el evento Click
de btnAceptar y escriba el cédigo.

Formlwb® > QRS HINEET Examinador de objetos 2
-}-' btnAceptar -I 7 Click = L::I
ElPublic Class froPrincipal = -El
EF
hto

B Private Sub btnAceptar_Click(Byval sender As System.Object, Byval e As Syst
MessageBox.Show("Presionc el beotdn Aceptar™)|
End Sub
[End Class

m

www.redusers.com &

180 [=F=F45 4. PRIMER PROYECTO EN VISUAL BASIC

Ingrese en el evento Click del btnCancelar y escriba el cédigo End, palabra
reservada de Visual que cerrara y descargard la aplicacién de memoria. Luego
compile presionando F5 o desde el men(Depurar, y pruebe la aplicacion.

¥ btnCancelar -I # Click
FlPublic Class froPrincipal

= Private Sub btnAceptar_Click{ByVal sender As System.Object, ByWVal e As Syst
MessageBox.Show("Presiono el botdn Aceptar™)
End Sub

B Private Sub btnCancelar_Click(ByVal sender As System.Object, ByVal e As Sys
| End

| End Sub

| End Class

Para cargar datos en un vector y asi grabar el DNI y nombre de una persona, dibuje
dos etiquetas (Label) y dos cajas de texto, luego asigneles: a Labell, IbIDNI (en
Name) y DNI (en Text); a Label2, IbINombre (en Name) y Nombre (en Text); a
TextBox1, txtDNI (en Name); y a TextBox2, txtNombre (en Name).

B~ MicrasateNizual Sudis (aminEdon
Broyecto Gererar Depurat Equipe Datoy Formato Hewamiertss Prusbs Venbna fnuda
& | & =3 .ﬁ,l il e | Lo i .‘J'..é.l | TR qclﬁ = Wird ows Phone T Emulston® - ﬂj‘ﬂﬂﬁ{‘ﬂ:

ioor i |3 B ot o x| 33 Bl FHEE| G |
=R Formlwvb® Formlah [Disedal* o [SETTETEEETIES » Exploradorde soluciones = § X
L R = a
R —— e 2ISDIDDE
a=f Pantalla Principsl ﬁt 3 pryPrimerafplicacion
Sl Pty Project
DHi] Forrnlub
F Hemiie
lie
i
]
arie I=
(OB | | DR
ninar - 7] frmPrincipal Ztem Windawst =
el Bl =
Ploacie, AN A

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 181

Ingrese al cédigo del proyecto y en la zona de Declaraciones cree un vector de 4
espacios, de tipo cadena de texto.

Fa] = =1 7 - | F N & = =
Formlwb”™ % REliasr i -"'ll'l]" Ezaminador de aobjetos

“i5 frmPrincipal -| £/ Declaraciones)

EIPublic Class fraPrincipal

Dim vecPersona(3) As String

Private Sub btnAceptar_Click(ByVal sender As System.0bject, ByVal e As Syst
MessageBox.Show("Presiono el botdn Aceptar™)
End Sub

Private Sub btnCancelar_Click(Byval sender As System.Object, ByVal e As Sys=

End

| End Sub
| End Class

Para corroborar que el usuario cargue todos los datos requeridos en
los controles TextBox, es importante que realicemos los controles de
acceso correspondientes.
¢ Deshabilitamos la caja de texto txtNombre y el boton btnAceptar.

e (Cuando ingresemos datos en txtDNI, se habilitara txtNombre.
e (Cuando ingresemos datos en txtNombre, se habilitara btnAceptar.

Veamos como debemos actuar para construir el codigo:

| @ PROPIEDAD ENABLED

Con la propiedad Enabled podemos habilitar o deshabilitar controles en tiempo de ejecucién. Su aplica-
cién nos permite deshabilitar un control para restringir su uso. True activa el formato condicional y False
desactiva el formato condicional. El valor predeterminado es True. Cuando la propiedad Enabled tiene el
valor True, el formato condicional puede mostrarse en el cuadro de dialogo Formato condicional.

Por ejemplo, puede deshabilitarse un boton para evitar que el usuario haga clic sobre él.

www.redusers.com &

182 [==3 4. PRIMER PROYECTO EN VISUAL BASIC

a. Seleccionamos en tiempo de diseno el boton txtNembre en su
propiedad Enabled igual a False (el control estara inhabilitado).

b. Seleccionamos el btnAceptar y pasamos a realizar el punto anterior.
Una vez que hayamos corroborado la carga correcta de los usuarios,

hacemos doble clic con el boton izquierdo del mouse sobre txtDNI para

acceder al evento TextChanged.

o8 pryfrmersiplosienl [acannds) - Meoasoh Visusl Duda Administador) =@ 8

ek [deac Yo Bropects Geness Dupast Epdes Outoy Forte Hemswientu dgpotectws Pchs Moalp Vegtina yuds "

| de 3 @ 8 Al =29 -0 -0-5] 0 8 & T30 %5 Wedow Prow bnuewity - || 0 E 300 9 ¢ .o
et AT GBS R RS F oo FRE A, .

IneliTraee -]
EUECnY
Pass v dafos SeledelTrace,

dalbe meerrumpar by gecoridn
TR T A —

W Itwrrarger Radas

> Figura 12. Controles inhabilitados que aparecen al ejecutar la
aplicacion y restringir el acceso inadecuado del usuario.

Para controlar el acceso de datos a la caja de texto, podemos
ingresar en el evento el siguiente codigo:

My es una de las nuevas caracteristicas que presenta Visual Basic, que nos proporciona acceso a la

informacion y a las instancias de objeto predeterminadas relacionadas con una aplicacion y su entorno en

tiempo de ejecucion. Para conocer mas: hitp://msdn.microsoft.com/es-es/library /SbtzfSyk.aspx.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 183

[f txtDNI.Text <> Nothing Then
txtNombre.Enabled = True
End If

Al ejecutar la aplicacion e intentar cargar datos en DNI, notaremos
que, cuando borramos la informacion dentro de la caja txtDNI,
txtNombre quedara habilitado. Para solucionar este problema, solo
debemos agregar un “sino” (else) en la estructura condicional:

If txtDNI.Text <> Nothing Then
txtNombre.Enabled = True
Else
txtNombre.Enabled = False
End If

Si aun quedara alguna parte que necesitemos codificar, ingresamos
un dato en txtNombre y habilitamos el boton btnAceptar. De esta forma,
el codigo final seria:

If txtNombre.Text <> Nothing Then
btnAceptar.Enabled = True
Else
btnAceptar.Enabled = False
End If

Cuando utilizamos un proyecto de Windows Form en el IDE de Visual Studio, se introduce por defecto una

interfaz FORM1. Este FORM es referenciado en diferentes textos como “Forma”, “Ventana” o “Formula-

rio”. Su principal objetivo es contener o agrupar controles para el uso de aplicaciones.

www.redusers.com &

184 [==4 4. PRIMER PROYECTO EN VISUAL BASIC

ey r_'; T e "TNE vy = 'u “ L]
Srveve s Yar Brewicte Gostrie Dupenr Bowies Oaten Homeiet Proade Yetsa At L
e Z o lrd@ B aAl RS20 D0y a aA0Yy Wardown Fhene 1 Emed il =l e o .0
L]
formlb X
S “itemPrincipal <[L) Dectu scicne) Jel2aiaasa
; Fl 5 P g et
“‘:x::':;":‘:::;l:; Priuate Sub EXIDNT TextChanged(ByVal tender a5 Syitem.0bfect, Myval e &u S * Sl Py Pragect
& ah Reke ageiguila ol] Fermlak

If onONI. Tewt «» Mothing Then
tnticabre. Capbled = Troe
Cire
tklcabre . Laghled = False
End IF

Enadl Sl

Pricste fub tethosbrs TestChangsd(Byval sender Ac Syites Objsct, Byval = iy
IF twtlhosbrs.Text < Nothlag Thea
brniceptar Fashled = Troe
ERze
brndceptar Easbled = False gl
End IF
End S
End Class

cuwndry gt PrerrurRienoLL

=il

o Cunalno de 00 Vierstans Brrsedista

Figura 13. Codigo fuente referido a como se utiliza el evento que se
ejecuta cuando ingresamos datos en una caja de texto.usuario.

Hasta aqui hemos logrado controlar el ingreso de datos sobre el
form; ahora necesitaremos desplazarnos por los distintos espacios del
vector que hemos creado. El cédigo sera el que se ha desarrollado en el
capitulo correspondiente a matrices.

En la seccion de declaraciones de variables vamos a tener que
escribir lo siguiente:

Dim indice As Integer =0

Y en btnAceptar_Click ingresaremos este codigo:

vecPersonal(0) = txtDNI.Text & -* & txtNombre.Text
indice = indice + 1

MessageBox.Show(vecPersona(indice))

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 185

Formluvh X
'ﬁfrmPr'n:ipal - | L lDeclaraciones) .

5 Private Sub txtDNI_TextChanged(ByVal sender As System.Object, ByVal e As Sy *

If txtDNI.Text <> Nothing Then
txtHombre.Enabled = True
Else
txtNombre.Enabled = False
End If

End SuH

= Private Sub txtNombre_TextChanged(ByVal sender As System.Cbject, ByVal e As
If txtHombre.Text <> Nothing Then
btnAceptar.Enabled = True
Else
btnAceptar.Enabled = False
End If
_ End Sub
| End Class

100% = 4 1]]

Figura 14. Codigo fuente del uso de matrices en Visual Basic, con las
estructuras condicionales apropiadas.

De esta forma, vamos a garantizar que se carguen todos los espacios
del vector. Para eso, es importante controlar la cantidad de datos
ingresados; de lo contrario, aparecera el siguiente error: “El indice esta
fuera de los limites del arreglo”. Para que esto no suceda, debemos
contar la cantidad de veces que se cargaron datos en el vector y, una
vez que se completen todos, detener la aplicacion e informar al usuario
que ya no puede grabar mas informacién. Por ejemplo:

If indice <= 3 Then
‘Cargar datos en un Vector
vecPersona(indice) = txtDNIL.Text & ™ - " & txtNombre.Text
Message Box.Show(vecPersona(indice))
‘Limpiar los controles
txtDNI. Text ="
txtDNI.Focus()
txtNombre.Text =*"

www.redusers.com &

186 4. PRIMER PROYECTO EN VISUAL BASIC

txtNombre.Enabled = False
btnAceptar.Enabled = False
indice = indice + 1

Else
MessageBox.Show("Vector Completo™)

txtDNIL.Text ="

txtDNI.Enabled = False

txtNombre.Text ="

txtNombre.Enabled = False

btnAceptar.Enabled = False
End If

También hay que tener en cuenta que, al cargar un dato, todos ellos
quedaran cargados en el form. Por eso, es bueno “limpiar” la interfaz
cada vez que entremos al evento click del botén. Por ejemplo:

Fermlvbh X
“EirmPrincipal '| L IDedaraciones) -
Private Sub btnCancelar Click{Byval sender As System.Object, ByvVal € As Sys .
‘End
txtDNI. Text = “*
ExtDNI. Facus() =
txtHombre. Text = "™ —
txtMombre. Enabled = Falie
btnaceptar.Enabled = False
End Sub
i - < i L]

| FE I E T T e I
- Figura 15. Codigo fuente donde encontramos las sentencias
l para limpiar los controles de la interfaz. l

Ahora bien, si nos preguntamos como podemos mostrar la
informacion, veremos que hay varias maneras de hacerlo. Por ahora,
nosotros lo haremos agregando una caja de texto y asignandole a
TextBox3 las siguientes propiedades: (Name)=txtMostrar y Multiline=True.

Es bueno tener en cuenta que la propiedad multiline nos permitira
ampliar el tamaiio de la caja de texto en horizontal.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 187

r)
L

g Pantzlla Principal &3 =
DMl % ®
Nombre Figura 16.

o a o Interfaz grafica
donde podemos
li;J o

| ver la insercion de
Qe un control en el
que cambiamos
sus propledades a
multiline.

([Cmeon) (o

Luego, para mostrar la informacién del vector, ingresamos el
siguiente codigo:

txtMostrar. Text = txtMostrar. Text & - ** & vecPersona(indice) & Chr(13) & Chr(10)

De esta forma, hemos conocido los controles mas usuales, que son
el TextBox (caja de texto) y el Label (etiqueta). Ademas, aprendimos las
propiedades para habilitar controles, como mostrar la informacion
de un vector en un control y de qué manera utilizar los botones de
comando en conjunto con propiedades del formulario.

| e ~RESUMEN

A lo largo del capitulo, hemos aprendido como se utiliza el lenguaje de programacion Visual Basic para la

creacion de proyectos y como se aplican las variables en el codigo fuente. Luego, conocimos la manera
de aplicar matrices y comparamos la sintaxis del lenguaje con pseudocodigo. También tuvimaos una intro-
duccion basica a tres controles: TextBox, Label y Button, que utilizamos en conjunto con algunos opera-
dores y estructuras de datos, para lograr la confeccion de algoritmos. Con todo lo aprendido hasta aqui,
ya estamos en condiciones de comenzar a realizar los proyectos iniciales del procesamiento de datos.

www.redusers.com &

188 4. PRIMER PROYECTO EN VISUAL BASIC

Actividades

g & W N =

o 00 N O

10

TEST DE AUTOEVALUACION

;Qué utilidad tiene el compilador en un lenguaje de programacion?

;Cual es la utilidad de un framework?

;Existen solamente lenguajes de programacion de alto nivel?

Defina las caracteristicas distintivas entre lenguajes de bajo nivel y de alto nivel.

;Como se realiza |a asignacion de valores a las variables en el caso de Visual
Basic?

¢Cudl es la forma de identificar controles en el codigo fuente?
iComo es la sintaxis para declarar una variable booleana?
:Como es la sintaxis para declarar un vector en Visual Basic?

¢Es correcto afirmar que en Visual Basic se declara una estructura de dato como
Vector al utilizar el siguiente codigo: = Dim vector(2,2) As Integer?

;Las dimensiones de las matrices bidireccionales necesitan un solo indice para
recorrerlas?

» www.redusers.com

ARNRRRRRRRENNNN

4744

Primer proyecto

en C++

En este capitulo continuamos avanzando en los lenguajes de

programacion, para introducirnos en el desarrollo de codigo

fuente que tiene el reconocido lenguaje C++. Conoceremos

un IDE gratuito para aplicar los conocimientos adquiridos

anteriormente y realizaremos algunos desarrollos.

v Lenguaje de

v Como se utilizan

v IDE SharpDevelop.......ccceureens

programacion: C++....ccunsarens

v Manejo de datos en C++

los operadores. ... inniannns

190

195

203

213

v Interactuar con el usuario..... 224 *

v Todo tiene un orden en la
Programacion.....s e 230

v Datos estructurados: arrays...243 |

S (01T] . L |

v Actividades.........ccceemrererasananen. 250

AAA

Servicio de atencion al lector: usershop@redusers.com

190 [==F245 5. PRIMER PROYECTO EN C++

IDE SharpDevelop

Como vimos antes, el IDE (entorno de desarrollo integrado) nos
permitira utilizar diferentes herramientas que faciliten el manejo de
uno o varios lenguajes de programacion. En el caso de SharpDevelop,
nos encontramos con un entorno gratuito que puede utilizar los
frameworks de Java, Microsoft y otros, y que nos permite aplicar
multiples lenguajes de programacion.

Develop (abreviatura de SharpDevelop) es un entorno de desarrollo
integrado libre para C #, VB.NET, Boo y proyectos en Microsoft .NET. Es
de cédigo abierto, integra distintas plantillas de codigos de programas
ya creados, vy se puede descargar desde www.icsharpcode.net (la
version de estas imagenes es SharpDevelop 4.2).

il SharpDeveiop i1~ L e
Mo [otw e Geees Depumi Buids AMdbce Memiwoets Vet Ageds [.
D&FD a5 T Perdatrrmenado = J - _; .
Hetrauntas i x Fibgitia 3¢ e = ® A Chased o x
Moy Bprramasntin daponeddes 1 - .
pors al deocmardo sotusl %) — |

Fal
L hbsddiznds Wsgazitn,
[T €4 L anale® B urmennt vl arnpevriop Broges i\ lpemphotfjpang
) L SO s Dty L g Dt P o o e gl
enlemals 310N L 7 et e il 3, i e Ptngt ' o el oy
ani] DT L Wstrr’ pasat Do tumits' SPanpdestbap Propects prasb v greck e
Erens -3 x
bn Errenes | 0,8 Asvemensus | U8 Mersaes |
! Lieves Descripcida Machivg Puta
0] v
[Preyecios| Teesentss | | Dimonrs | o Lists de Taesas | JSalid| i Curnes, | P Propedades
Lt &

>~ Figura 1. Interfaz grafica del IDE, donde podemos apreciar algunas
similitudes con el que utilizamos en Visual Studio.

Algunas de las caracteristicas de este entorno es tener un conjunto

de lenguajes variado, por ejemplo:
e Boo (finalizacion de codigo, disenador de Windows Forms)

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 191

e C # (finalizacion de cadigo, disefiador de Windows Forms)

L

o F#

e Python (conversion de codigo, disefiador de Windows Forms,
completado de codigo parcial)

e Ruby (conversion de codigo, disefiador de Windows Forms)

e VB.NET (finalizaciéon de codigo, disenador de Windows Forms)

im =R ™
Archive G Voo Gonwrsr Depwesr Bwscer Andlisis Horsesontas Weomans Aywda o,
DA -] = = Predeiemnado J i L
arrimiarty: L Prigins da inicic = x |Clsem rix

Mt by Mervarvenlas Sapanbles

pare ¢ dodurerin potul.

Un prevecis ue crea una aclcacidn de corscla

tiombre:
Ubcwada: = bty Doty Sl levekie Fraseety
Maphen dalls Solucda 14 Conar grecinen para s sciuodr
eormbre 38 preveidy bepdl o rmbre Ol ey el Cimerae LN uhg W

[T — P [e | H e | et
Liste

ES Figura 2. En esta imagen podemos ver la ventana que aparece al crear
un nuevo proyecto de desarrollo en el IDE.

Python es un lenguaje de programacion de alto nivel, cuya filosofia hace hincapié en una sintaxis muy

limpia y que favorezca un cédigo legible. Se trata de un lenguaje de programacion multiparadigma, ya que
soporta orientacion a objetos, programacion imperativa y, en menor medida, programacion funcional.
Es un lenguaje interpretado, usa tipado dindmico, es fuertemente tipado y multiplataforma. Podemos
visitar la pagina oficial desde www.python.org.

www.redusers.com «

192 [==23 5. PRIMER PROYECTO EN C++

Funcionamiento del entorno
de programacion

Al momento de instalar una aplicacion, notaremos que por defecto la
configuracion del idioma estara en inglés. Sin embargo, podemos
modificarla por el idioma que queramos. Para hacerlo, debemos
dirigirnos al menti TOOLS/OPTIONS y seleccionar Spanish, como
podemos apreciar en la Figura 3.

= = L]
£ Optons I . e >
[ExGeneral N
= Ul Language UI Laﬂg“aga
Appeasrance
Load/Save
Task list
Output Window Pelish Partuguese
Projects and Solutions
File Format Associations
Usage Data Collector i E E
[dCoding Russian Spanish Spanish (Mexico)
[dDebugging
[dPackage Management
[AText Editor
[@Tools Turkish
CAWindows Forms Designer

Current Ul language: Spanish (Mexico)

Click on an icon to choose language.

I Figura 3. Con las opciones de configuracion, obtenemos el entorno en
espanol y podemos acceder facilmente a sus funciones.

SINTAXISEN CH# Y C++

Si analizamos la sintaxis de C# y de C++, notaremos que son muy similares entre si, ya que ambas

ofrecen generalmente las mismas instrucciones de flujo de control, y la semantica es practicamente la
misma en ambos lenguajes. Sin embargo, si deseamos migrar a C#, es importante que nos informemos

sobre las diferencias menores que aparecieron en su actualizacidn.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 193

A la hora de iniciar un desarrollo dentro de SharpDevelop, podemos
crear diferentes tipos de archivos, como clases, archivos vacios,
interfases, estructura, templates, etc.

trarslntien = = e Lo) i,
o | Ddese Vo Gendasi Depasst Butcw Aailisi Hesswodlss Vestsas Ayuds -.e
Hueo w1} Aschern. Cie b - - H *e
Abse 3 . oM s .3 x .
Cemr o | [fehetita. Cu-ma-n SRR
L=l
Recangar sschive CurdeShiftu L)
H
b skl Pacd mpote Srarplwatiop ene futurn. e guitaria sabr qur Cmactmiting
e
7] Bor heche o iy e [puesE pirtener esta imAcImBOdn Y eI JADIDCRTEnDE. [
[Bitmipnr - attintr y s dees 4t it
- tartzige
g
et
A bt Rt »
Frtyes it Pt menties o
L Mod#isda UhsLaae
4] TRl T Keslk Doournontsi BhapDeslep Progecti [mpls L e
- ada2 (VU i Db ol i S o et P B’ il
mlerple TLOSO012 TR e wsale Dt st SharpDevalop Progectel gy Gemplal ooy
o =T
thh:_\hiddn:r'.ﬁn?l_\klﬂwl
! Une Denpote Aschavn Futy
Tlproyectes | THeramientss | | (b fivcees | ol Usta de Toreas | T5atds | ¥ cinees | Prececde
= J

[Figura 4. Desde el menu Archivo podemos crear diferentes archivos
0 soluciones.

La creaciéon de soluciones contiene uno o varios proyectos, como
utilizabamos en Visual Studio. A la hora de trabajar con SharpDevelop,
primero se crea una solucién vy, luego, se pueden ir agregando tantos
proyectos como sean necesarios.

MULTIPLATAFORMA

MonoDevelop funciona en Linux, Microsoft Windows, MacOS X, BSD, Sun Solaris, Nintendo Wii, Sony
PlayStation 3 y Apple iPhone. También funciona en arquitecturas x86, x86-64, IA64, PowerPC, SPARC
(32), ARM, Alpha, 390, s390x (32 y 64 bits) y muchas mas. Como podemos ver, desarrollar una aplica-

cion con Mono nos permite un gran abanico de posibilidades.

www.redusers.com «

1949 [5. PRIMER PROYECTO EN C++

& e Saplrerop =
o T prr— T
ISP &] '] e L | ol &5
— g u —r—l .)fl!-n -5
F 2D g . a9

e

T T Iy v ——
Usss Cumirgets Ly s

T r T Bbremr ol Dty e Tornm | lads Y T Propamdade:

Bl Dl el d =] @ ala i

04

BOTONES DE DEPURACION. Incluyen el botén INICIO, que compila el proyecto;
PAUSA, que detiene la compilaciéon o ejecucion del programa; y DETENER EL
PROGRAMA, que lo descarga de memoria.

=

ENTORNO DE CODIGO. En caso de ser proyectos con disefio, se incluye el entorno de
desarrollo.

CUADRO DE CLASES, PROPIEDADES, CONTENEDOR 0 AYUDA. Abarca las clases
involucradas en el proyecto, las propiedades que tienen los distintos elementos que
vayamos utilizando y un buscador de elementos de ayuda.

CUADRO DE ERRORES, TAREAS Y SALIDA DE DATOS. Errores que pueden
encontrarse en las sentencias del codigo fuente. Aqui también podemos configurar el
seguimiento de tareas y ver las salidas de datos por medio del IDE.

CUADRO DE PROYECTOSY HERRAMIENTAS. Aqui estan los archivos involucrados en
el proyecto y aguellos controles que podemos insertar dependiendo del tipo de programa
que estermos disefiando.

—

» www.redusers.com

E BE BBEB

INTRODUCCION A LA PROGRAMACION 195

Cada uno de estos cuadros puede configurarse como cualquier IDE, y
es posible ubicarlos en diferentes lugares. La imagen que muestra la Guia
visual 1 corresponde a la manera en que veremos el entorno por defecto.

Si conocemos basicamente el uso de este entorno, comenzaremos
a introducirnos en el lenguaje de programacion de este capitulo. Es
importante tener en cuenta que existen otros entornos gratuitos, como
Mono Develop, cuya pagina de descarga es: http://monodevelop.com.

Lenguaje de
programacion: C++

Como vimos en capitulos anteriores, podemos utilizar un lenguaje
de programacion muy didactico y que nos permita dibujar el disefno
de las interfaces que se comunican con el usuario. En este caso, nos
encontramos con un lenguaje mas “duro”, que no
posee un entorno grafico, sino que se caracteriza
por tener un entorno de texto o CLI (Command ACTUALMENTE
Line Interface, o interfaz de comando de linea). PODEMOS ADAPTAR
Antes de iniciar un programa, repasaremos
algunas cuestiones importantes para tener en

C++ ADIFERENTES

cuenta al utilizar C++. En principio, debemos METUDULUG‘AS DE
conocer el espacio de nombres que nos permite
usar sentencias de entrada y salida de datos. DESARROLLO

Por otro lado, explicaremos lo fundamental que

debemos escribir (que es main) y veremos que C++

esta orientado a una programacion en eventos, aunque, actualmente,
podamos adaptarlo a diferentes metodologias de desarrollo.

Se trata de un IDE disefiado principalmente para C# y otros lenguajes .NET, que permite a los desa

rrolladores escribir aplicaciones de escritorio y web ASP.NET en Linux, Windows y Mac 0S. Facilita la

existencia de una base de codigo Unico para todas las plataformas.

www.redusers.com &

196 5. PRIMER PROYECTO EN C++

2] Microach Dice 201D

Bachwe fdwsin ¥ev
ol s geecton. i B

233

Figura 5. Interfaz de comando de linea; en este caso, entramos en la
aplicacion de consola de Windows.

Espacios de nombre

La instruccion using namespace especifica que los miembros de un
namespace seran utilizados frecuentemente en un programa por
desarrollar. Esto permite al desarrollador tener acceso a todos los
miembros del namespace y escribir instrucciones mas concisas. Por
ejemplo, veamos a qué hacen referencia los espacios de nombre que
utilizamos en C++ por defecto y cémo seria si no lo usaramos.

= 747474

Es un lenguaje de programacion diseniado a mediados de los anos 1980 por Bjarne Stroustrup, cuya
intencion fue extender el exitoso lenguaje de programacion C con mecanismos que permitieran la
manipulacion de objetos. En ese sentido, desde el punto de vista de los lenguajes orientados a objetos, el
C++ es considerado un lenguaje hibrido. El nombre C++ fue propuesto por Rick Mascitti en el afio 1983.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 197

#include <iostream>

int main ()

{

std::cout <<"hola mundo”<<std::endl;
return 0;

}

Sin utilizar el espacio de nombre std

#include <iostream>

using namespace std;

int main ()

{

/fal usar el namespace ya no hace falta escribir std::
cout <<"”hola mundo”<<end|;

return 0;

}

Utilizando el espacio de nombre std

A continuacion, veremos qué quiere decir cada sintaxis del codigo
que escribimos anteriormente. La idea principal es conocer como
se escribiria el codigo en C++ utilizando espacios de nombres que
simplificaran la codificacion de manera notable.

Nosotros podemos codificar nuestros propios espacios de nombres,
por ejemplo: en C++ crearemos uno llamado “calcular” y le agregaremos
variables varX, varY y varF. Veamos el codigo:

namespace calcular {
int varX, vary;
float varF(int a) {
e
}
}

Con este espacio de nombre, para utilizar la variable “varX" que esta
en el namespace “calcular”, el desarrollador debera codificar lo siguiente:

www.redusers.com &

198 [==F35 5. PRIMER PROYECTO EN C++

calcular::varX = calcular::varF(5);

Si utilizaramos de esta forma la sintaxis, deberiamos escribir
reiteradas veces la palabra “calcular”. En cambio, si usamos el espacio
de nombre, quedaria de la siguiente forma:

using namespace calcular;

varX = varF(5);

Veamos como desarrollamos la codificacion si usamos dos espacios
de nombres:

// namespaces
#include <iostream>
using namespace std;

namespace primero
{

intvar = 5;
}

namespace segundo
{

double var = 3.1416;
}

@ “ESPACIO DE NOMBRE

Asi como en Visual Basic podemos utilizar namespace, el contenido de este nos permite agrupar o utilizar
un conjunto de clases a nivel global, los objetos v / o funciones que le confieren un nombre. For ejemplo,

el espacio de nombre que se debe utilizar en C++ es std, con la sintaxis using.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 199

int main () {
cout << primero::var << endl;
cout << seqgundo::var << endl;
return O;

}

Creando dos espacios de nombre

Como podemos observar, cada espacio de nombre es propietario de
su variable, y en la codificacion podemos utilizar estas como queramos.

Conceptos basicos del codigo

Es recomendable repasar la Tabla 1, donde encontraremos la
estructura basica que podemos realizar en el codigo de C++. De esta
forma, podremos comprender o manejar mejor aquellas palabras y
signos que nos facilitan la programacion.

ESTRUCTURA

v DESCRIPCION

#include Las lineas que comienzan con un numeral (#) son directivas para el preprocesador. En este
caso, la directiva #include indica al preprocesador incluir el archivo iostream estandar.

using Todos los elementos basicos de las bibliotecas en C++ se declaran dentro de lo que
namespace std; se llama un espacio de nombres. Por eso, si queremos acceder a su funcionalidad,
declaramos con esta expresion para poder utilizarla. Esta linea es muy frecuente en C++

para que los programas utilicen las bibliotecas estandar.

www.redusers.com <«

200 [=F=4H 5. PRIMER PROYECTO EN C++

Cout<<"Usando

C++!";

Cout es la secuencia de salida estandar en C++. El significado de toda la declaracion es
insertar una secuencia de caracteres (en este caso, “Usando C++!").
Cout se declara en iostream, que es el estandar de archivos en el espacio de nombres.

Por eso, debemos incluir esa referencia especifica y declarar que vamos a utilizar ese
espacio de nombres a principio del cédigo. Es importante no olvidar el puntoy coma (;)
que aparece al final de la sentencia.

Return 0;

La sentencia return hace que la funcién principal llegue a su fin, y puede estar seguida

por un cadigo (el cédigo de retorno devuelve un valor cero). En el cédigo de retorno de
0 para el main de la funcién se interpreta que el programa funciond como se esperaba,
sin ningun error durante su ejecucion. Esta es la manera mas habitual de poner fin a un

programa en C++.

Tabla 1. En esta tabla podemos ver la estructura basica de C++ que
utilizaremos en nuestros proyectos de programacion.

Inmediatamente después de estos paréntesis, se encuentra el cuerpo
de la funcion principal que va a ir encerrada entre llaves {J. Esto es lo
que hace la funciéon al momento de ejecutarse.

Ahora que conocemos en detalle la estructura de la programacion
en C++, podemos reconocer cuales son las diferentes sentencias y
qué sectores seran importantes en el desarrollo del lenguaje. En los
proximos parrafos, iremos viendo la aplicacién de nuestro primer
desarrollo en C++ con el IDE SharpDevelop.

o~
| @ NAMESPACE STD

En C++ hay codigo estandar en el namespace std. Podemos utilizarlo nombrandolo en el encabezado

del proyecto de la siguiente forma: using namespace std, o bien podemos utilizar en nuestro codigo

constantemente std:: y realizar las llamadas a las funciones que necesitemos. Todas las librerias estan-

dar de C++, formadas por la I1SO para implementar operaciones comunes, estan incorporadas en std.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 201

Primera aplicacion en C++

En esta seccion vamos a empezar a utilizar el entorno de
SharpDevelop y crear nuestra primera aplicacion en C++ para consola
(CLI). Para eso, vamos a ejecutar SharpDevelop.

Desde el menu Archivo, hacemos clic en Nuevo y seleccionamos
Solucién. Cuando aparece el cuadro de dialogo Nuevo proyecto,
seleccionamos el lenguaje de programacion C++ vy, en el cuadro
contiguo, Aplicacién de consola. En el cuadro nombre escribimos
pryPrimeraAplicacion. A continuacion, veremos una interfaz grafica
parecida a la de la Figura 5. Veamos un ejemplo en el siguiente cédigo:

"l'*

* Creado por SharpDevelop.

* Para cambiar esta plantilla use Herramientas | Opciones | Codificacion |
Editar Encabezados Estandar

b |

using namespace System;

int main(array<System::String A> Margs)
{

Console::WriteLine(L" Hello World");
return 0;

}

Creando dos espacios de nombre

Para seguir en nuestro proyecto, debemos compilar este codigo
presionando F5 o hacer clic sobre el botdn Inicio de depuracion;

La palabra main es seguida en el codigo por un par de parentesis (). Esto es asi porque se trata de una

declaracion de la funcion: en C++, lo que diferencia a una declaracién de la funcién de otros tipos de
expresiones son estos paréntesis gue siguen a su nombre. Opcionalmente, estos podran adjuntar una
lista de parametros dentro de ellos.

www.redusers.com &

202

»

5. PRIMER PROYECTO EN C++

veremos como resultado una ventana de consola que muestra
“Hello Word” y se cierra. Luego modificamos este codigo, agregando
el espacio de nombre std, para poder ingresar y mostrar datos, y
también la libreria iostream.

using namespace std;
#include <iostream:=

Ahora vamos a utilizar las estructuras basicas que vimos antes para ver el
mensaje en pantalla, y reemplazamos el cddigo que hay en main por el
siguiente.
/I Mostramos por salida estandar un mensaje personalizado
cout << “Mi primera aplicaciéon en C++!\n”;
return 0;

Para poder apreciar la aplicacion, agregaremos una palabra
reservada de C++ que es getchar(), de modo que, al presionar la tecla
ENTER, cerrara la ventana de consola. El codigo es:

getchar();

Hasta aqui hemos visto como utilizar el entorno de SharpDevelop
y crear nuestra primera aplicacion en C++ para consola, desde el IDE
que estamos viendo en este capitulo. A continuacion, vamos a seguir
trabajando con el mismo ejemplo, para reforzar el concepto.

:TE RESULTA UTIL?

Lo que estas leyendo es al fruto del trabajo de cientos de
personas que ponen todo de si para lograr un mejor producto,
Utilizar versiones "pirata” desalienta la inversion y da lugar a

publicaciones de menor calidad.

NO ATENTES CONT LA LECTURA. NO ATENTES
CONTRA TI. COMPRA SOLO PRODUCTOS ORIGINALES.

Nueslras publicaciones se comercializan en kioscos o pu s de
Vooe res; librer & rad T 5 @ intemet
-\' (usershop.redusers. \ b duda, come

saber mas, puedes conlactamos p de usershupia?l-edu

www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 203

Manejo de datos en C++

Continuaremos con nuestra primera aplicacion de C++, pero esta vez
agregaremos la declaracion de variables y muestra de informacion en
ventana, y veremos queé tipos de datos podemos utilizar.

Como ya hemos visto, al crear una variable, disponemos de un
espacio de memoria donde podemos almacenar cierta informacion,
pero debemos indicar qué tipo de informacion sera. Por ejemplo,
almacenar una letra, un namero entero o un booleano.

Tipos de datos
Veamos en la Tabla 2 cuales son los tipos de datos fundamentales
en C++ y el rango de valores que se pueden representar.

v NOMBRE v DESCRIPCION v TAMANO v RANGO

short Entero corto 2 bytes signed: -32768 to 32767
int(short) unsigned: 0 to 65535

long int Entero largo 4 bytes signed: -2147483648 to 2147483647
(long) unsigned: 0 to 4294967295

o SENSIBILIDAD

El lenguaje C++ es “case sensitive”. Esto significa que un identificador escrito en letras mayisculas no es
equivalente a otro con el mismo nombre escrito en minusculas. Asi, por ejemplo, la variable RESULTADO

no sera lo mismo que resultado o Resultado. Se trata de tres identificadores de variables diferentes. EI

caso contrario seria case insensitive, en donde el uso de variables es totalmente indiferente.

www.redusers.com <«

204 [=F=4H 5. PRIMER PROYECTO EN C++

Float Punto flotante 4 bytes +/- 3.4e +/- 38 (~7 digitos)

long doublé Doble largo de precision de 8 bytes +/- 1.7e +/- 308 (~15 digitos)
punto flotante

Tabla 2. En esta tabla podemos ver los diferentes tipos de datos en
C++ que podemos utilizar en el desarrollo de aplicaciones.

Los valores de las columnas Tamafo y Rango van a depender
del sistema en donde se compile el programa, y son los que se
encuentran en la mayoria de los sistemas de 32 bits. A continuacion,
desarrollaremos la declaracion de variables necesaria para aplicar a
nuestro primer proyecto de C++.

Declaracion de variables

Para utilizar una variable en C++, primero se debe declarar qué tipo
de datos deseamos vy, luego, sus respectivos nombres. En la sintaxis
para declarar una nueva variable se escribe la especificacion del tipo
de datos (int, bool, float, etc.), seguido de un identificador de variable
valido. Por ejemplo:

int varX;

float varP;

char caracter;
char cadenal10];

También podemos realizar, como en Visual Basic, la declaracién
consecutiva de variables:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 205

int varX, varY, varZ;

Veremos que en C++ podemos asignar o no signos positivos o
negativos en la declaracion de variables. Los tipos de datos char,
short, long e int pueden ser con o sin signo (positivo o negativo) en
funcion del rango de nimeros necesarios para ser representado. Las
declaraciones con signo pueden representar los valores tanto positivos
como negativos, mientras que los tipos sin signo solo representan
valores positivos hasta el cero. Por ejemplo:

unsigned short int varNumeroDeVeces;
signed int varMiSaldo;

En caso de que declaremos una variable sin especificar signed o
unsigned, C++ por defecto especificara la primera. Por lo tanto, en el caso
de la variable varMiSaldo, podriamos haberlo hecho de la siguiente forma:

int varMiSaldo;

Continuando con nuestra primera aplicacion en C++, vamos
a utilizar algunas variables que nos permitan realizar una tarea
matematica y mostrarlo en pantalla:

using namespace std;
#include <iostream>

) ENMASCARAMIENTO DE VARIABLES

-‘-’

Por lo general resulta dificil o innecesario declarar dos variables con el mismo nombre. Sin embargo, hay
condiciones bajo las cuales es posible hacerlo. Para eso, se puede declarar una variable global con un
nombre determinado y declarar otra (del mismo tipo o de otro diferente) de forma local en una funcion,

usando el mismo nombre.

www.redusers.com &

2060 [=F=4H 5. PRIMER PROYECTO EN C++

int main()

{
/l declarar variables:
int varA, varB;
int resultado;

/f instrucciones:

varA =7,

varB = 2;

varA =varA + 1;
resultado = varA - varB;

/f mostramos el resultado:
cout << resultado;

/f terminamos el programa:
getchar();
return 0;

De esta forma, veremos el resultado en una ventana de consola,
que es 6. Al igual que en Visual Basic, las variables tienen un ambito
donde pueden operar: seran globales o locales dependiendo del lugar
en donde se declaren. Mirando el grafico de la Figura 6 podremos
visualizar claramente este concepto.

Como vimos antes, las variables globales pueden llamarse desde
cualquier lugar del proyecto, mientras que las locales solo pueden
llamarse cuando los bloques de codigo estén comprendidos por llaves, {.

3 444
') VARIABLES ENC#Y

d

Si analizamos las definiciones de variables de C# y de C++ notaremos que son muy similares entre si. En
ambos lenguajes las variables pueden ser declaradas solo localmente en un método o como miembros

de una clase. En el caso de C#, no se ofrecen equivalentes a las variables globales o estaticas de C++.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 207

& ermepisn - Basbeees = . W 9 L b o i,
Aachive Edte Ve Proyecto Geoerer Depws Buice Andlin Beumvenlss Yeolaaa Apuda
JEAHG 4 D B E s> ! = Furdeternsde = 4T E0asa; E
Froyecios R L pp” = x Clee o bl
_.'!' PR S | wning ramrupace Syvtem; .) © G- .
] Svhte pryfrean g 1d winclude <lsstraaes

P K

= [pryPamerszieseen

int unEaters; :ﬂmﬁwlln-(-m
4ol Refpvenaums Lhar unk erss e = il Fefereniars
| +ppronfg 18 chas Cadenal 0]
- KT 1
!Anurih!ﬂn.[" int sadn[acrayiSystes:sSbring “» "anga)
= racpn k
3 Mfdeclarer verisbles:
1 Ant vard, warl:
int resultsds; E
[instruce lomes:
i werdsT;
¢ warssl;
26 warAsvardsi;
resultada-vani vard |
49 [fevatrases el rewwllade:
1 esutddreSultads;
2 fierminamss vl prograss
EElchar 1;
4 revern @)
|
Erromm X
N0 Errones | | g 9 Adearmencins | | L0 Mensas
r 1
! Lirss Descripcion Hevhive Ruta |
|
; & | |
Eeoyeato: | TRHemwmients: B veees | o Linta de Taews | T1%abds B e | T Progmedides
Lrste n1S ol cwrd

" Figura 6. En esta imagen podemos observar el ambito de las variables
que son declaradas antes del main.

Inicializar variables

A la hora de declarar las variables locales, es importante tener en
cuenta que si no asignamos un valor al momento de crearlas, estas
tendran un valor indeterminado.

Desde C++, veremos dos maneras posibles de almacenar un valor
concreto al momento de declararlas:

e La primera, conocida como inicializacion c-like, se logra anadiendo
un signo igual (=) seguido del valor que deseamos inicializar:

identificador de tipo de dato = valor inicial;

Por ejemplo, si queremos declarar una variable int inicializado con el
valor 0 en el momento que lo declaramos, podriamos escribir:

int varA = 0;

www.redusers.com &

208 5. PRIMER PROYECTO EN C++

e La segunda implica inicializar las variables como constructor de
inicializacion y encerrar el valor inicial entre paréntesis, ().

Identificador de tipo de dato (valor inicial);

Por ejemplo:

int vara (0);

Ambas formas de inicializacion son validas en C++. Teniéndolas en
cuenta, ahora las aplicaremos en el ejemplo anterior de nuestro primer
proyecto. De esta forma podremos ahorrarnos un par de lineas de
codigo y asi agilizar nuestro trabajo.

using namespace std;
#include <iostream=

int main()
{
/f declarar variables:
intvarA=17;
int varB(2);
int resultado;

/I instrucciones:
varA = varA + 1;
resultado = varA - varB;

/f mostramos el resultado:
cout << resultado;

/f terminamos el programa:

getchar();
return 0;

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 209

Para practicar en C++ lo que vimos en estos parrafos, vamos a
codificar un nuevo ejemplo que muestre el tamafo en bytes de cada
tipo de dato. Una vez ejecutado el SharpDevelop, desde el menu
Archivo, hacemos clic en Nuevo y seleccionamos Solucién. Aparecera el
cuadro de dialogo Nuevo proyecto, donde seleccionamos el lenguaje
de programacion C++ vy, en el cuadro contiguo, Aplicacion de consola.
En nombre escribimos pryTipoDeDatos. A continuacion, en el cuadro de
codigo realizamos lo siguiente:

using namespace std;
#include <iostream>

int main()
{

// Sacamos el tamario de cada tipo

cout << “EIl tamano del int es:\t\t” << sizeof(int) << bytes.\n";

cout << “EIl tamaio del short es:\t"” << sizeof(short) << bytes\n”;
cout << “EIl tamafio del long es:\t"” << sizeof(long) << ™ bytes.\n”;
cout << “El tamafio del char es:\t\t” << sizeof(char) << ™ bytes.\n”;
cout << “EIl tamaiio del float es:\t\t” << sizeof(float) << ™ bytes.\n”;
cout << “El tamaiio del double es:\t" << sizeof(double) << bytes.\n";
// Sacamos por salida estandar un mensaje

cout << “"Termino el programa\n”;

getchar();
return O;

Si analizamos los significados y sintaxis de C# y de C++ notaremos que son muy similares entre si. Los

operadaores que tiene por defecto C# repesentan la misma sintaxis y semantica que en C++. Si bien el uso

de (), 0 v, (comas) cumple el mismo efecto, debemos tener cuidado con: Asignacion (=), new y this.

www.redusers.com &

210 5. PRIMER PROYECTO EN C++

Si queremos ver el resultado final, podemos hacerlo compilando con
F5 o haciendo clic en Iniciar depuracion.

1 | CAUsers\jeasalel Documents\Sharp Develop ProjectstprPrimerafplicacion\DebugipryPrimemiplic | ="P08 x|

Figura 7. Resultado del ejemplo que codificamos antes,

l mostrando el espacio que ocupa cada tipo de dato. |

Cabe destacar que existen ciertas palabras reservadas, como sizeoff,
cout y bhytes, que provienen de las librerias base de C4++. Mas adelante
veremos que uso darle a cada una de ellas.

Ademas del uso de variables y la asignacion de su tipo de dato,
también podemos declarar constantes si agregamos al proyecto
anterior las siguientes lineas de codigo, antes del getchar():

using namespace std;
#include <iostream=

#define FINAL 25

int main()

{

/l... todas las instrucciones anteriores
inty=0;

/! Definimos el valor constante

const float PI = 3.1416;
cout << “La constante PI contiene:™ << PI << endl;

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 211

/l Sacamos por salida estandar un mensaje

cout << ™nTermino el programa : * << FINAL << endl;
getchar();
return 0;

}

)

1 Clsersycesale\Documents\SharpDevelop PropectspryPrimerad plicecion\DebughpryPrimeradplec _,_'—".ﬁl

La conztante Pl contienc: 2.1416

Terning el programa @ 25

Figura 8. Resultado del ejemplo donde estamos utilizando una

l constante con punto flotante. l

Podemos observar que, a la hora de declarar, existen dos
posibilidades: una antes del main con la palabra #define, y otra con la
palabra const. A continuaciéon, vamos a trabajar con mayor
detenimiento en cada una de estas declaraciones.

Formas de declarar constantes

En C++ las constantes se declaran y no van precedidas por ninguna
palabra reservada que indique la seccion.

Literales

Son las constantes mas frecuentes y se utilizan para expresar valores
particulares dentro del cédigo fuente de un programa. Las hemos
utilizado previamente cuando les dabamos valores a las variables o
cuando expresabamos los mensajes que queriamos mostrar en los
programas. Por ejemplo, cuando escribimos:

www.redusers.com &

212 5. PRIMER PROYECTO EN C++

varA = 3;

El 3 en esta instruccion de cédigo fue una constante literal. Es
bueno tener en cuenta que las constantes literales pueden dividirse en:
numeros enteros, numeros de punto Botante, caracteres, cadenas de
texto y valores booleanos.

Constantes definidas (# define)

En este lenguaje podemos declarar nombres de constantes con el
comando #define, sin tener que declararlas dentro de una funcion.
Podemos utilizarlas en el encabezado del programa y llamarlas desde
cualquier proceso.

Su sintaxis es la siguiente:

#define valor del identificador

Por ejemplo:

#define PI 3.14159
#define cabecera “Empresa”;

Constantes declarados (const)

Al igual que vimos en Visual Basic, encontraremos que la sintaxis
const representa la declaracion de constantes con un tipo especifico, de
la misma manera en que lo haria con una variable:

const int varCantHojas = 100;
const char varLetra ="x’;

Como vimos en capitulos anteriores, podemos tratar a las constantes
del mismo modo que lo haciamos con las variables normales. La tinica
diferencia se encuentra en sus valores, ya que estos no podran ser
modificados luego de su definicion.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 213

Como se utilizan
los operadores

Si bien hasta el momento vimos como se utilizan los operadores
en Visual Basic, ahora podremos practicarlos en C++ considerando su
importante diferencia en cuanto a codificacion y manejo de librerias. A
continuaciéon, haremos un recorrido por los distintos operadores que
encontramos en C++ y ejemplos practicos que nos permitan conocer
mejor su funcionamiento.

Asignacion (=)
El operador de asignacion se ocupa de cargar un dato a una variable.

Si quisiéramos establecer que la variable A contenga el valor 3, su
sentencia de codigo seria:

varA = 3;

La parte de la izquierda del operador de asignacion (=) se conoce
como el Ivalue (valor de la izquierda), vy la derecha, como el rvalue (valor
derecho). El valor izquierdo tiene que ser una variable, mientras que
el derecho puede ser una constante, una variable, el resultado de una
operacion o cualquier combinacion de ellos.

Debemos recordar que las asignaciones se realizan de derecha a
izquierda, y nunca al reves. Veamos el siguiente ejemplo:

int varA, varB; { [varA: , varB:
varA = 10; /! varA: 10, varB:
varB = 4; //varA: 10, varB: 4
varA = varB; /[varA: 4, varB: 4
varB = 7; /[varA: 4, varB: 7

En el codigo anterior, el resultado puede mostrar que varA es igual a
4, y varB es igual a 7. Notemos que las variables no se vieron afectadas
por la modificacion al final de varB, a pesar de que se declaro varA =

www.redusers.com &

214 [=F=4 5. PRIMER PROYECTO EN C++

varB, es decir, debido a la regla de la asignacion de derecha a izquierda.
De pronto, si buscamos por la Web algunos ejemplos, podremos
encontrarnos con una asignacion del siguiente tipo:

varA =varB =varC=7;

Operadores aritméticos

Ya hemos usado la mayoria de los operadores en otro lenguaje vy,
en el caso de C++, notaremos que su forma de aplicacion no cambia.
Revisemos en la Tabla 3 cuales son los operadores que podemos utilizar.

ARITMETICOS

v SIGNO v OPERACION

- Resta
/ Division

Tabla 3. Aqui podemos observar los distintos operadores aritméticos que
utilizaremos para realizar operaciones matematicas o logicas.

Antes de pasar a algunos ejemplos, veamos de qué se trata el
operador modulo (%). Cuando hablamos de médulo nos referimos a la

operacion que presenta el resultado de una division de dos valores. Por
ejemplo, si escribimos:

int varA =11 % 3;

En este caso, el resultado que obtendremos es 2, ya que 2 es el
residuo obtenido de la division de 11 en 3.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 2156

Asignacion compuesta

Cuando queremos modificar el valor de una variable mediante la
realizacion de una operacion, podemos utilizar operadores de asignacion
compuestos. Veamos la Tabla 4, que detalla cada uno de ellos.

COMPUESTA

v EXPRESION

precio *= unidad + 1; precio = precio " (unidad + 1);

Tabla 4. En esta tabla podemos observar los operadores de asignacion
compuesta, propios del lenguaje de programacion.

También podemos encontrarnos con mas operadores, tales como: +=,
-=, ¥z, =, %=, 5>, <<=, &=, A=y |=

A continuaciéon, veamos un modelo en codigo en el cual debemos
generar una aplicacion de ejemplo y codificar lo siguiente:

using namespace std;
#include <iostream>

int main()
{
int varA, varB=3;
varA = varB;
varA+=2; /l equivale a=a+2
cout << varh;
getchar();
return 0;

www.redusers.com <«

216 [=F=4H 5. PRIMER PROYECTO EN C++

Aumentar y disminuir

En varios lenguajes de programacion encontraremos signos o
conjuntos de signos que nos seran utiles para realizar acciones
determinadas. Algunas de las expresiones, como la de incremento (++)
y el operador de disminucion (--), nos permiten aumentar o disminuir
en uno el valor almacenado de una variable. Sus equivalentes serian:
a+=1/h-=1. A continuacion, veamos un ejemplo que nos demuestre
la forma en que pueden escribirse los equivalentes:

Cd+;

c+=1;

c=c +1;

En este caso, las tres lineas de codigo realizan la misma accion:
incrementar el valor en 1.

Operadores relacionales y de igualdad

Como vimos anteriormente, para hacer una comparacion entre dos
expresiones podemos utilizar operadores relacionales o de igualdad.

El resultado de una operacion relacional es un valor booleano que
solo puede ser verdadero o falso. Quiza necesitemos comparar dos
expresiones para saber si son iguales o si una es mayor que otra.

RELACIONALES

v EXPRESION v ES EQUIVALENTE A

I= No es igual a

< Menor que

<= Menor o igual a

Tabla 5. Estos son los operadores relaciones y de igualdad que se pueden utilizar en C++.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 217

Ejemplos de codigo:

(4==7) //se evaltia como falso.
(8>1) //se evaliia como verdadera.
(9!=2) //se evaliia como verdadera.
(7>=7) //se evalta como verdadera.
(b<6) //se evalia como falsa.

Desde luego, en vez de utilizar valores constantes, podemos recurrir
a expresiones, variables u otro tipo de operaciones que deseemos
comparar. Por ejemplo:

A=2:
B=3;
E=la

(A==5)//se evallla como falso ya que no es igual a 5.

(A*B>=C) // se evalla como cierto, ya que (2 * 3> = 6) es verdadera.
(4+B>A*C) //se evalia como falso desde (3 +4> 2 * 6) es falsa.
((B=2)==A)// se evalla como verdadera.

Operadores logicos

Al igual que vimos en otro lenguaje, el operador légico nos devuelve
dos posibles resultados: verdadero o falso.

Nosotros comenzaremos con uno de ellos, el operador ! (signo
de admiracion), que nos devolvera el valor booleano opuesto a la
evaluacion de su operando. Por ejemplo:

: 14
) ASIBNACION

El operador = (signo igual) no es el mismo que el operador == (doble signo igual). Mientras que el primero
es un operador de asignacion (establece el valor en su derecha a la variable en su izquierda), el segundo

es el operador de igualdad, que compara si ambas expresiones de sus extremos son iguales entre si.

www.redusers.com &

218 [=F=4 5. PRIMER PROYECTO EN C++

! (5==5) /I se evalia como falso porque la expresion en su derecho
(5==5) es cierto.

I (6<=4) /I se evaliia como verdadera, porque (6 <= 4) seria falsa.

! true // se evaltia como falso

! false // se evaliia como verdadera.

Otros operadores logicos que podemos utilizar en el lenguaje son
&& (and) y || (or), que se usan en la evaluacion de dos expresiones para
obtener un resultado relacional Ginico. El operador && se corresponde
con la operacion logica booleana AND, que da como resultado true si
ambos operandos son verdaderos, y false en caso contrario.

LOGICOS

Tabla 6. En este listado podemos ver una muestra de resultados para el
operador &&, que evalla la expresion A, B && : operador &&.

El operador || se corresponde con la operacion logica OR booleana,
y da como resultado verdadero si cualquiera de sus dos operandos es
cierto, y falso solo cuando ambos operandos también lo son.

444

MEMORIA

La memoria en las computadoras se organiza en bytes. Un byte es la cantidad minima de memoria que

podemos manejar en C++ y puede almacenar una cantidad relativamente pequena de datos: un solo
caracter o un entero pequefio (generalmente, un nimero entero enfre 0 y 255).

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 219

LOGICOS

Tabla 7. Dentro de los operadores logicos, en este listado podemos ver los
resultados posiblesde A || B : operador ||.

Ambos operadores ya fueron utilizados por ejemplos de otro
lenguaje, y es bueno tenerlos bien presentes, ya que nos serviran
cuando empecemos a utilizar condiciones o estructuras repetitivas.

Operador condicional (?)

Este operador de C++ es aquel que evalia una expresion y luego
devuelve un valor. Si la expresion es considerada verdadera, devolvera
un valor, y si es falsa, el valor sera distinto. Su formato es:

Condicion ? resultadol: resultado2

Si la condicién es cierta, la expresion devolvera resultadol; en caso
contrario, resultado2.

1==372:4 [/ devuelve 4,1 no es igual a 3.
7==5+274:3 [/ devuelve 4, 7 es igual a 5+2.

427 a:b // devuelve el valor de a, 4 es mayor que 2.
a>h?a:bh [/ devuelve el que sea mayor,a o b.

Por ejemplo, en C++ podemos escribir lo siguiente:

www.redusers.com <«

220

5. PRIMER PROYECTO EN C++

#include <iostream>
using namespace std;

int main ()
{
int varA varB,varC;

varA=2;
varB=7;
varC = (varA>varB) 7 varA : varB;

cout << varC;

getchar();
return 0;

Operador coma (,)

Este operador se utiliza para separar dos o mas expresiones que se
incluyen en un mismo lugar.®8 uando el conjunto de expresiones tiene
que ser evaluado por un valor, solo se considerara la expresion ubicada
mas a la derecha.®or ejemplo, veamos el codigo siguiente:

varA = (varB=3, varB+2),;

Primero se asigna el valor 3 a varB, y luego varB+2 a la variable varA.
Finalmente, la variable varA contendria el valor 5, y varB, el valor 3.

Operadores bitwise o bit a bit

Este operador se aplica en trabajos de lenguajes de bajo nivel, ya que
trabaja a nivel de bit. Los operadores bit a bit modifican las variables
teniendo en cuenta los patrones de bits que representan los valores
almacenados. En la siguiente tabla veremos sus representaciones.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION = 221

BITWISE

v OPERADOR v EQUIVALENTEA v DESCRIPCION

| CR Bitwise Inclusive OR

~ NOT Unary complement (bit inversion)

>> SHR Shift Right - mover a la derecha

Tabla 8. Estos son los operadores b1itwise de los que disponemos para
activar o desactivar bits dentro de un entero.

Debemos considerar que una operacion bit a bit o bhitwise opera
sobre numeros binarios a nivel de sus bits individuales. Es una accion
primitiva rapida, soportada directamente por los procesadores.

Tipo de operador
de conversion explicita

Asi como en otros lenguajes contamos con funciones que nos permiten
convertir algunas variables a otro tipo de datos, en el caso de C++
utilizaremos los paréntesis (()) que encierran una expresion, por ejemplo:

int varA;
float varF = 3,14;
varA = (int) varF;

Con este codigo de ejemplo convertimos el nimero float 3,14 a un
valor int que seria 3. Los decimales se pierden, ya que el operador entre
paréntesis (int) es entero y comprende nimeros de esa indole. Otra
forma de hacer lo mismo en C++ es utilizando la notacion funcional

www.redusers.com <«

222 D=4 5. PRIMER PROYECTO EN C++

que precede a la expresion que se convierte por el tipo, y encierra entre
paréntesis a dicha expresion, por ejemplo:

varA = int (varF);

Operador sizeof ()

Este operador ya fue utilizado en codigo de ejemplos anteriores;
acepta un parametro (que puede ser un tipo o una misma variable) y
devuelve el tamafio en bytes de ese tipo u objeto:

varA = sizeof(char);

En el ejemplo, Char es un tipo largo de un byte, por lo que
asignamos el valor 1 a varA, y la informacién que devolvera sizeof es
una constante que se determinara antes de la ejecucion del programa.
Recordemos que, anteriormente, lo aplicamos a un ejemplo para
establecer el tamafo de los tipos de datos, por ejemplo:

cout << “El tamaiio del int es:\t\t"” << sizeof(int) <<" bytes.\n”;
cout << “El tamafio del short es:\t"” << sizeof(short) <<™ bytes.\n"”;

Precedencia de los operadores

Si debemos codificar expresiones extensas, podemos dudar acerca
de qué sector de nuestra sintaxis tiene que evaluarse primero. En la
Tabla 9 se hace un repaso de todos los operadores vistos.

En procesadores simples de bajo costo, las operaciones de bit a bit, junto con las de adicién y sustrac-

cién, son tipica y sustancialmente mas rapidas que la multiplicacion y la divisian; mientras que en los

procesadores de alto rendimiento las operaciones suelen realizarse a la misma velocidad.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION == 223

OPERADORES

v NIVEL v OPERADOR v DESCRIPCION v AGRUPACION

2 (00 .-> ++ - dynamic_cast Alcance / ambito Left-to-right
static_cast reinterpret_cast
const_cast typeid

4 *& Unary (prefijo)

(=

(type) Operador unary

/% Puntero a member Left-to-right

=t
=

<< >> Agregar Left-to-right

[
¥
i
i
i

‘ .

Relacionar Left-to-right

=t
=
>

bitwise AND Left-to-right

&

bitwise OR Leftto-right

=
[--]

="'z /= Y= 4= -= 3= Iﬂgical (031 RIEM"tﬂ'IEﬂ

o= &: "'\2 I:

Tabla 9. Aqui podemos observar los distintos tipos de operadores y el orden
en el que C++ prioriza cada uno de ellos.

www.redusers.com L <4

224 5. PRIMER PROYECTO EN C++

La agrupacion define el orden de precedencia

LA AGRUPACION en el que los operadores deben evaluarse, en caso

DEFINE EL ORDEN de que, en una misma expresion, haya varios
operadores del mismo nivel. Todos estos niveles

EN EL QUE LOS de precedencia pueden manipularse o hacerse

OPERADORES DEBEN mas legibles, eliminando posibles ambigliedades
en el uso de paréntesis.

EVALUARSE Hasta aqui hemos visto las declaraciones de
variables, constantes y el uso de operadores, lo
cual nos brindara las herramientas necesarias

para empezar a desarrollar aplicaciones de distinta envergadura. A
continuacion, veremos las estructuras que podemos utilizar para darles
sustento a nuestros algoritmos en C++.

Interactuar con el usuario

Hasta este punto, el codigo de ejemplo que hemos visto no realiza
ninguna interaccién con el usuario, salvo presionar la tecla ENTER.
Es por eso que, para enriquecer nuestras aplicaciones, es importante
conocer cuales son los métodos de entrada y salida basicos que
ofrecen las librerias de C++.

Estas librerias estan incluidas en el archivo iostream, que
declaramos en el encabezado de los desarrollos.

Cout - salida estandar

La palabra reservada cout es utilizada por C++ para definir
que deseamos dar salida de informaciéon por pantalla. Se utiliza
conjuntamente con el operador de insercion, que se escribe como <<
(dos signos “menor que”).

#include <iostream>
using namespace std;

int main ()

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 225

{

int varA=0;

cout << “La sentencia de salida es: " ; //muestra La sentencia de salida, en
la pantalla

cout << 120; // muestra el nimero 120 en la pantalla

cout << varA; // muestra el contenido de varA en la pantalla;

getchar();

return O;

}

B diilumne\Docurnentsh Sharp Develop Progects\prPnmersdinlic acion\Debug\prfinmeratiplicacion,... | -=

(Lo sentencia de salida es: 1200

Figura 9. Resultado del ejemplo anterior, donde vemos que

l podemos mostrar informacion en pantalla desde una variable. l

Como podemos ver y probar en codigo, la sintaxis << es la que nos
da la posibilidad de introducir datos. Es importante tener cuidado
cuando utilizamos cadenas de caracteres, es decir, un texto que
deseemos mostrar en pantalla, porque debemos encerrar siempre ese
texto entre comillas “”. Por ejemplo:

cout << “Prueba”;

cout << Prueba;

De esta forma, en la primera sentencia veremos que la pantalla
muestra la palabra Prueba; vy en la segunda se reconocera Prueba
como variable y se mostrara su contenido.

www.redusers.com &

226 [==4 5. PRIMER PROYECTO EN C++

Teniendo en cuenta que para los textos debemos aplicar comillas
dobles, ahora veremos que podemos utilizar el operador de insercion
<< mas de una vez en una sola sentencia, por ejemplo:

cout << «Estoy» << «juntando» << «varias cadenas»;

Frente a este proceso que vimos anteriormente como concatenar (unir
varias palabras en una sola), notaremos que ahora el procedimiento no
nos sera util si deseamos utilizar variables y textos. Veamos el ejemplo:

int varAltura=180;
int varPeso=90;
cout <<“La altura es: ** << varAltura << ™. El peso es: " << varPeso;

El resultado seria: La altura es 180. El peso es: 90.

Debemos tener en cuenta que cout no agrega un salto de linea
después de su salida, a menos que lo indiquemos expresamente. De
esta forma, los ejemplos serian:

cout << “Esta es una sentencia.” ;
cout << “Esta es otra frase.” ;

Si deseamos realizar el salto de linea por medio de cadigo, debemos
saber que en C++ un caracter de nueva linea se puede especificar con
\n (barra invertida, n). En este caso, el codigo sera el siguiente:

cout << “Primera sentencia \n.” ;
cout << “Segunda sentencia \n Tercera sentencia.”;

El resultado sera una oracion por renglon. Para ver mejor este
ejemplo, debemos codificarlo en C++.

En este sistema también podemos encontrar la palabra reservada
endl, que permite realizar el salto de linea. Si tomamos el ejemplo
anterior, el codigo nos quedaria:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 227

cout << “Primera sentencia” << endl;
cout << “Segunda sentencia* << endl;
cout << “'Tercera sentencia ™ << endl;

B | CAUsers\jcasale\Documents\SharpDevelop Projects\pryPrimerafplicacion\Debugh\pryPrimeraplic - | o 0

Figura 10. Resultado de todos los ejemplos; podemos

diferenciar el manejo de cadenas y concatenacion. I

Hemos repasado las opciones que tenemos para mostrar informacion
en pantalla desde C++; ahora continuaremos con el ingreso de datos
por medio de una aplicacién.

Cin - entrada estandar

El ingreso de datos estandar se da por medio del teclado, y la norma
para realizar su expresion es la palabra reservada cin y los simbolos >>.
A continuacién, veamos un ejemplo:

int edad;
cin >> edad;

La funcion de estas sentencias es solucitarle al usuario el ingreso de
un dato, en este caso la edad. Una vez que el dato haya sido ingresado,
el sistema lo cargara directamente en la variable. Es importante tener
en cuenta que cin tomara los valores ingresados por teclado, siempre
que el usuario haya presionado la tecla ENTER.

www.redusers.com &

228 D=4 5. PRIMER PROYECTO EN C++

Recordando los tipos de variables, si utilizamos un tipo entero con
cin, solicitando en este caso un numero, lo que debemos ingresar es un
valor numeérico. Si ingresamos otro tipo de valor, es probable que nos
aparezca alguan error de conversion o desbordamiento de variable.

Es por eso que debemos prestar mucha atencion en el tipo de variable
que vayamos a utilizar para la aplicacion. Veamos el siguiente ejemplo:

int i;

cout << “'Por favor, introduzca un valor entero:” ;
cin>>1i;

cout << “El valor que ha introducido es” << i;
cout << "y su doble es” << i * 2 <<™\n".;

También podemos utilizar cin para solicitarle al usuario dos datos,
escribiendo esta sentencia en una tnica linea, por ejemplo:

cin >>varA >> varB;

El programa le solicitara al usuario un valor para la primera variable
y, luego, otro para la siguiente.

Operaciones con cadenas de texto

Para obtener por pantalla lo que el usuario ingresa, podemos utilizar
la funcién cin. En este caso, es importante tener en cuenta que esta
solo reconocera lo escrito hasta que aparezca un espacio. Debido a
las complicaciones que esto trae en las cadenas extensas de texto, se
recomienda utilizar la funcion getline(), que permite capturar mayor

cantidad de texto. Veamos un ejemplo:

444

Este operador solo tiene un operando; esto quiere decir que puede contener un objeto, variable u ope-

rando especifico del lenguaje. Por ejemplo: Sizeof() / New() / Delete() / (type)f ++ /= /~/1/ + /-
Ejemplo: Sizeof(short) / (int) variable / variable++ / --variahle.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

#include <iostream>
#include <string>
using namespace std;
int main ()

{

string mystring;

cout << “Cual es tu nombre? *';

getline (cin, mystring);

cout << “Hola™ << mystring <<™\n";

cout << “Cuadl es tu equipo favorito de futbol? ™;

getline (cin, mystring);

cout << “Yo soy fanatico de " << mystring <<™ también!\n"’;
getchar();

return 0;

® . CAllsers\jeasaleiDocuments\SharpDevelop ProjectsipryPrimeradplicacion\DebugipryPrimera&plic

Cual enhre? Juan

ita do futhal? Boca
e Doca tanbien!

Figura 11. Siingresamos en la pantalla los datos requeridos, el

l resultado del ejemplo es el que vemos en la imagen. l

Podemos ver que getline requiere dos parametros: uno es la
instruccion cin y otro es la variable donde guardamos la informacion.

Ahora que ya hemos visto el funcionamiento de todas estas
sentencias de entrada y salida de informacion estandar en C++,
podemos avanzar en las instrucciones que nos seran utiles para
realizar algoritmos mas complejos.

www.redusers.com

229

<«

230 5. PRIMER PROYECTO EN C++

Todo tiene un orden
en la programacion

Ya sabemos como se pueden utilizar los datos en C++, ahora vamos
a ver como se pueden realizar diferentes acciones o tomar distintos
rumbos en un algoritmo de programacion. Para hacerlo, vamos a
usar sentencias parecidas a las que estudiamos anteriormente en las
estructuras de control, y conoceremos las estructuras secuenciales
y repetitivas. Es importante considerar que en C++ no siempre se
trabajara de manera secuencial, por lo que debemos diferenciar los
bloques de codigo con llaves { }. A continuacion, veamos coOmo se aplica
este concepto en las siguientes estructuras.

Estructura condicional

La estructura condicional if se usa para ejecutar una condicion si la
expresion se cumple. Por ejemplo:

if (varX == 100)
cout << “'varX es 100”;

La estructura es muy parecida a otros condicionales que vimos
anteriormente, y su sintaxis es sencilla:

If (condicion)

Instrucciones...

Si necesitamos realizar mas de una instruccion para que se ejecute,
debemos especificar un bloque con las llaves {}, por ejemplo:

if (varX == 100)
{
cout << “varX es;

cout << varX;
}

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

Para conocer la veracidad o no de una condicion y tomar medidas si
esta es verdadera o falsa, utilizamos la siguiente sintaxis:

if (condicion)
Instrucciones...
else
Instrucciones...

Veamos un ejemplo:

if (varX == 100)

cout << “varX es 100”;
else

cout << “varX no es 100”;

Para concatenar o anidar las estructuras if, primero debemos ver
como es la estructura:

if (condicion)
Instrucciones...
elseif

Instrucciones...
else

Instrucciones...

#include <iostream>
#include <string>
using namespace std;

int main ()
{

int varX=0;
varX=7;

if (varX > 0)
cout << “‘varX es positivo”;

www.redusers.com

231

<«

232

5. PRIMER PROYECTO EN C++

else if (varX < Q)

cout << “varX es negativo”;
else

cout << “'varX es 0”;

getchar();

B | ChUsers\jeasale\Doouments\SharpDevalop Projects\pryPrimeradplicacion\DebughpryPrimerafplic.]M

Figura 12. Resultado del ejemplo si el valor de varX es igual a

7y luego es comparado en la estructura 1 f.]

Si vamos a realizar mas sentencias de instrucciones, es importante
recordar que tenemos que encerrarlas entre llaves {}.

Estructuras selectivas (switch)

Esta estructura selectiva se usa para valorar una condicion v,
dependiendo de su resultado, se pueden dar distintos casos y
resoluciones. Su sintaxis es la siguiente:

switch (condicién)
{
case constante:
instrucciones...;

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =S 233

break;

case constante:
instrucciones...;
break;

default:
default instrucciones...

En este caso, notaremos que la estructura utiliza la palabra
reservada break, que indica el fin de las instrucciones del case. A
continuacion, veamos un ejemplo para comparar ambas.

Switch If-else

== 1
cout <<“xes 1”;
}
else if (x==2) {
cout << “x es2";
}
else fa
cout << " El valor de x es
desconocido”;
}

Tabla 10. Comparacion de sintaxis y funcionalidad de estructuras
condicionales en el lenguaje.

7EN
@ SWITCHEN C# Y C++

En C# lainstruccion switch cumple el mismo proposito que en C++. Sin embargo, en C# es mas potente,
ya que, a diferencia de C++, nos permite utilizar una cadena como variable de seleccion. En la sintaxis de

ambos lenguajes debemos indicar una salida explicita del control de flujo del switch.

www.redusers.com <«

234

5. PRIMER PROYECTO EN C++

Estructuras repetitivas (loop)

Recordemos que estas estructuras son las que utilizamos para
repetir acciones hasta lograr que se cumpla una determinada
condicion. A continuacién, veamos cuales son:

While / Loop

La sintaxis es:
while (expresion) instrucciones

Su funcioén es repetir la declaracion, siempre y cuando la condicion
establecida en la expresion sea verdadera. Por ejemplo, vamos a hacer
un programa de la cuenta regresiva mediante un bucle while:

#include <iostream>
using namespace std;

int main ()
{
int n;
cout << “Ingrese un nimero de inicio >";

cin >> n;

while (n>0)

{
cout <<n<<™“;
=h

}

cout <<™SE TERMINO!\n”;
return 0;
}

Al momento de iniciar el programa, se le pide al usuario que
introduzca un namero de inicio para la cuenta regresiva, y asi se da
comienzo al tiempo de bucle. Si aquel valor especificado por el usuario
cumple la condicion n > 0 (donde n es mayor que cero), el bloque que

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

sigue a la condicion se ejecutara y se repetira, siempre y cuando la
condicion (n > 0) continte siendo verdadera.

Cuando se crea un bucle while, este debe terminar en algin momento.
Para eso, tenemos que escribir alguna instrucciéon o método que
determine la condiciéon como falsa; de lo contrario, el bucle se convertira
en lo que se conoce como “bucle infinito’, es decir, girara dentro de él
para siempre. En este caso hemos incluido -n para disminuir el valor de
la variable que esta siendo evaluada en la condicion. De esta forma,
eventualmente haremos que la condicion (n > 0) llegue a ser falsa
después de un cierto numero de iteraciones en el bucle.

1 | Chlisersyycasale\Documenis\SharpDevelop Projects\pryPrimerafiplicaciont Debug'\oryPrimera®plic.. -_J.';qél

T al

e inicio » 15
1. 1B. 9, 8. 7. 6. 5. 4, 3. Z. 1. 8E TERHIHGO?

Figura 13. Resultado del ejemplo donde se realiza una cuenta

l atras gracias a la estructura repetitiva. |

For / Loop

La sintaxis de esta estructura repetitiva es:
for(inicializacion; condicién; incremento) instrucciones;

Su principal funcion es repetir las instrucciones mientras que
la condicion se cumpla (como lo hacia el while/loop), y ademas,
proporcionar lugares especificos para contener una inicializacion y un
incremento. Este bucle esta especialmente disefiado para realizar una
accion repetitiva, utilizando un contador que se declara e inicializa en
la estructura e incrementa su valor en cada iteraciéon. Repasemos qué
significa cada parte de esta sintaxis:

www.redusers.com

235

<«

236 5. PRIMER PROYECTO EN C++

¢ Inicializacion: ajuste de valor inicial para una variable de contador,
que se ejecuta solo una vez.

e Condicion: se chequea a medida que el bucle se produce: si es
verdadera, el bucle continua; si es falsa, se termina.

¢ Instrucciones: se ejecutan en cada entrada al bucle; puede ser una
sola sentencia o un bloque entre llaves {3.

¢ Incremento: cada vez que chequea la condicion, se lleva a cabo lo
que especifiquemos en el incremento o decremento de una variable.

A continuacién, veamos como seria en codigo, haciendo referencia a
la condicion del ejemplo anterior:

#include <iostream>
using namespace std;
int main ()
{
for (int n=10; n>0; n--)

{
cout << n<<™™;

}
cout <<“"CUENTA FINALIZADA!\n";
return 0;

}

Tengamos en cuenta que tanto la inicializacion como el incremento
son opcionales; por lo tanto, no es necesario declararlos para el uso
de la estructura For. Dicha estructura también nos permite utilizar mas
de una expresion dentro de los paréntesis que siguen al For, gracias al
uso de comas. A continuacion, veamos un ejemplo en el cual podemos
inicializar mas de una variable:

for (n=0, i=100 ; n!=i ; n++, i-)

{
cout << n<<™,";

}

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 237

Hay que tener cuidado al utilizar las comas, y punto y coma, ya que
estos ultimos dividen la expresion.

for (n=0, i=100 ; n!=i ; n++, i--)
{

Instrucciones...

}

En la figura anterior vimos como estaria dividida la expresion con
comas, y punto y coma. Esta condicion pregunta si n es distinto de i; en
el caso de ser iguales, el bucle se detendra.

Ejercitacion de entrada/salida de datos y uso de for
En el caso practico que aparece a continuaciéon, pondremos a prueba
lo que venimos aprendiendo. Para esto, vamos a usar el operador XOR
y la funcion getline() para encriptar un texto que haya ingresado el
usuario (incluyendo los espacios).
1. Creamos un proyecto en SharpDevelop, con el nombre
EjemploFOR.
2. Codificamos lo siguiente:

#include <iostream>
#include <string>

using namespace std;

int main()

{

int longitud;

const int NUMERO=120; //nimero maximo de caracteres.
char textolNUMERO], key;

cout << “Ingrese una oracién:”;
cin.getline(texto,120); /ftoma el rengldn del texto.
cout << “'Ingrese la clave para encriptar (un digito):”;
cin >> key;

www.redusers.com &

238 =4 5. PRIMER PROYECTO EN C++

longitud=strlen(texto);
cout << "\n\t*** Texto Encriptado ***\n";

for (int i=0;i<longitud;i++)
{
textolil = textolil » key; //XOR

cout << texto << endl;
cout << "™\n\t*** Texto DeCodificado ***\n”;

for (int i=0;i<longitud;i++)
{
textoli] = textoli] A key;

cout << texto << end|;

system(“pause”);
}

Antes de continuar con otras estructuras, revisemos lo que
utilizamos en este codigo de ejemplo:

a. Utilizamos variables y constantes. Recordemos que podemos
abreviar las variables en el caso de los ejemplos que vimos. En
general, contienen un nombre completo, pero no es necesario que
sea extenso; eso dependera del criterio de cada desarrollador.

Y

Para la salida de informacion en pantalla, podemos utilizar la funcion printf, usando una cadena dentro

de esta funcion de la siguiente forma:
printf(“Primera cadena' “Segunda cadena”);
printf(“Primera cadena texto en medio “Segunda cadena’);

printf(“Esto es \"extrafio\"");

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 239

b. Aplicamos sentencias de entrada y salida de datos. Dentro de
estas ultimas, contamos con una libreria llamada string, nos permite
utilizar la funcion strlen().

c. Utilizamos una funcion ciclica o bucle: el for. Nos permite
recorrer todo el texto y encriptarlo.

d. Aplicamos una nueva palabra reservada system(“pause”). Nos
muestra un texto en la consola que dice “presione cualquier tecla
para continuar” y, asi, nos permite ver el resultado de este ejemplo.
De esta forma, el ejemplo quedaria como se observa en la Figura 14.

e

Figura 14. Resultado del ejercicio, donde podemos ver la forma

l en que se encripta un texto con C++. |

Salto de declaraciones

Los saltos de declaraciones son utiles al momento de realizar algunas
instrucciones que consideramos importantes, y que no necesitemos que
continle preguntandonos por una condicién en un bucle.

Sentencia break

Utilizando la palabra break podemos terminar un bucle cuando
una variable tome un determinado valor aun si la condicion no ha
finalizado. Es decir, podemos utilizarlo para poner fin a un bucle
infinito, o para forzarlo a terminar antes de su fin natural.

En el siguiente ejemplo, vamos a ver como se detiene una cuenta
regresiva antes de que llegue su fin natural:

www.redusers.com &

240 5. PRIMER PROYECTO EN C++

#include <iostream=
using namespace std;

int main ()
{
int n;
for (n=10; n>0; n--)
{
cout << n<<™ ™
if (n==3)
{
cout << “cuenta regresiva abortada!”’;
break;
}
}
getchar();
return 0;
}

| Chlsers\jeasale\DocumentshSharpDevelop Projects\pryPrimeradplicacion\Debug\pryPrimerafplic.. l =) B |“-;H

J. cusnta regresiva ahortadat 7

Figura 15. Resultado del ejercicio cortando o deteniendo un
proceso repetitivo con una estructura condicional.

Es bueno tener en cuenta que podemos utilizar un break en cualquier
punto del codigo dentro de un bucle (o repetitiva). Recordemos que
saldra del bloque de cédigo donde es utilizado, v continuara con las
sentencias que le siguen a la estructura repetitiva.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 241

Sentencia continue

La instruccion continue realiza un “salto” en el bloque de codigo que
nos llevara al extremo de las instrucciones. Se utiliza en estructuras
repetitivas para “saltar” algunos procesos que especifiquemos vy,
asi, continuar con las iteraciones. En el ejemplo que aparece a
continuacion, vamos a saltar el numero 2 en la cuenta regresiva:

#include <iostream>
using namespace std;

int main ()
{
for (int n=10; n>0; n--) {
if (n==2) continue;

WO,

cout<<n<<™, "
}
cout << “FINALIZADO\n";
return 0;
}

Si pusiéramos a prueba este codigo, el resultado seria el siguiente:
10,9, 8,7,6, 5, 4, 3, 1, FINALIZADO!

Sentencia goto

Esta sentencia podemos utilizarla para realizar un salto a un sector
del algoritmo que estemos desarrollando. Antes de ejecutarla, es
importante ser cuidadosos con ella, porque puede hacer el salto y
ejecutar tipos incondicionales.

) CONTROLDEFLUJOENCHYC++

A

En el control de flujo de la programacion de estos lenguajes hay algunas diferencias sintacticas en las
instrucciones if, while, do/while y switch. A su vez, existen otras compartidas por ambos lenguajes,

como son: for, return, goto, break y continue. En C# encontraremos la adicional foreach.

www.redusers.com &

242 =4 5. PRIMER PROYECTO EN C++

El punto de destino siempre sera rotulado por un texto seguido de
dos puntos (:). En el siguiente ejemplo, vamos a ver un bucle “cuenta
atras” utilizando la sentencia goto:

#include <iostream=
using namespace std;

int main ()

{
int n=10;
loop:
cout<<n<<™";
n--;

if (n>0) goto loop;
cout << “FINALIZO"\n";
return 0;

}

Para tener en cuenta, esta instrucciéon no posee ningun uso concreto
en la programacion orientada a objetos o estructurada.

Funcion Exit

Esta funcion puede encontrarse en otros lenguajes y tiene como
objetivo finalizar el programa. Esta en la libreria cstdlib de C++, y su
estructura es la siguiente:

void exit (int exitcode);

444

. @ ~UTILIZAR 6OTO

3 4

Las sentencias goto no deben usarse cuando se resuelven problemas mediante programacion estruc-
turada. Existen mecanismos suficientes para hacer de otro modo todo aquello que pueda efectuarse

mediante goto. La metodologia de programacion actual nos lleva a utilizar otras herramientas de saltos.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 243

Datos estructurados: arrays

En esta seccion aprenderemos a manejar arrays, estructuras que
nos sera muy Utiles para utilizar y almacenar informacion en memoria,
durante un periodo de tiempo necesario en el desarrollo de nuestros
programas. Este tipo de estructuras permiten definir vectores, matrices,
tablas y estructuras multidimensionales.

Manejo de arrays

Un array es una serie de elementos homogéneos que se grabaran
en espacios continuos de memoria, a los cuales podemos acceder en
forma individual gracias a un indice. Su modo de representacion se
observa en la Figura 16.

Matriz unidimensional

@@ | @3] @

Figura 16. En este ejemplo podemos
ver la forma correcta de representar
un array de cinco posiciones.]

Cada ubicaciéon en blanco representa un elemento en el array vy, si
no le definimos ningun valor, este tomara por defecto el que indica el
lenguaje. Recordemos que todos los elementos seran del mismo tipo de
dato (de alli su caracteristica de homogéneo).

El indice en C++ inicia en 0 a n; por eso, en el array que vimos en la
imagen es 0 a 4, porque se obtienen 5 espacios para grabar datos.

A continuacion, veamos como se declaran los arrays:

tipo nombre [elementos];

www.redusers.com &

244 [=F=4 5. PRIMER PROYECTO EN C++

Como podemos notar, la declaracion es como una variable que
usualmente utilizamos en C++. Veamos coémo se conforma su sintaxis:
e tipo: se refiere a un tipo valido (int , float, char...)
¢ nombre: es un identificador valido.
¢ elementos: son espacios que se declaran en el array y siempre

aparecen entre corchetes[1.

Veamos una declaracion en C++:

int miArray [5];

El elemento de campo encerrado entre corchetes [] representa el
namero de elementos de la matriz y debe ser un valor constante, ya
que las matrices son blogques de memoria no dindmica, cuyo tamafio
tiene que ser determinado antes de la ejecucion.

Sintaxis de inicializacion

Dentro de las funciones, como puede ser el main(), podemos declarar
arrays locales. Estos no tendran un valor definido si no se inicializan
por codigo, por lo tanto, su contenido sera indefinido hasta que le
almacenemos un valor.

En el caso de las matrices globales y estaticas, los elementos se
inicializan automaticamente con valores por defecto; esto significa
que estaran llenos de ceros. En ambos casos, local y global, cuando se
declara una matriz, podemos asignar valores iniciales a cada uno de
sus elementos por los valores que encierra entre las llaves {}.

Veamos un ejemplo:

Boo es un lenguaje de programacion orientado a objetos de tipo estaticos para la Common Language

Infrastructure, con una sintaxis inspirada en Python y el énfasis puesto en la extensibilidad del lenguaje
y su compilador. Se integra sin fisuras con Microsoft.NET y Mono y destacamos que es de cédigo libre.
Podemaos visitar su pagina oficial en http://boo.codehaus.org.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 245

int miArray[5] = {1999, 64, 180, 201, 5138};

Para no provocar desbordamientos en el array, no debemos agregar
mas elementos entre {} de los que hay declarados en[].

Es util tener en cuenta que podemos declarar arrays sin especificar
su tamano y asignar valores, que a su vez tomaran el tamano de la
cantidad de elementos agregados, por ejemplo:

int miArrayl] = {1999, 64, 180, 201, 5138};

Como podemos ver, en esta declaracion quedaria entonces el array
en un tamano de 5 espacios.

Acceder a valores

El acceso a estas estructuras es muy similar a lo que vimos en otro
lenguaje: debemos especificar el indice donde esta almacenado el valor.

Podemos acceder al array de forma individual y, entonces, leer o
modificar los valores que queramos. La sintaxis es sencilla:

nombre [indice]

Por lo tanto, si deseamos grabar el valor 2012 en el inicio del array,
la declaracion seria la siguiente:

miArrayl0] = 2012;

Ruby es un lenguaje de programacion dinamico y de codigo abierto enfocado en la simplicidad y la

productividad. Su creador, Yukihiro Matsumoto, mezclé partes de sus lenguajes favoritos para formar
un nuevo lenguaje que incorporara tanto la programacion funcional como la programacion imperativa.
Podemos visitar la pagina oficial en www.ruby-lang.org/es.

www.redusers.com &

246 [=T=4 5. PRIMER PROYECTO EN C++

Y si precisamos obtener un valor del array, debemos asignarlo a una
variable que sea del tipo de dato correspondiente a la estructura.

varA = miArray[0];

Como podemos ver, los corchetes [] representan dos tareas
diferentes que no debemos confundir: por un lado, especifican el
tamafio de las matrices que hayan sido declaradas; y por el otro,
definen los indices de elementos de la matriz de hormigoén.

int miArray[51; /f declaracién de un array
miArray[2] = 180; // acceso a un dato/espacio del array

A continuacion veremos cuales son las sintaxis vdlidas para trabajar
con arrays en C++:

miArray[0] = varA;

miArraylvarAl = 75;

varB = miArraylvarA+2];
miArraylmiArraylvarAll = miArray[2] + 5;

Arrays multidimensionales

Los arrays de arrays, o también conocidos como multidimensionales,
son estructuras bidimensionales muy parecidas a las hojas de calculo.
Veamos en la Figura 17 como podria ser su apariencia.

444

) CYELDESARROLLO

Este lenguaje ha sido estrechamente ligado al sistema operativo UNIX, puesto que fueron desarrollados
conjuntamente. Sin embargo, no esta ligado a ningun sistema operativo ni maguina en particular. Se lo
suele llamar lenguaje de programacion de sistemas debido a su utilidad para escribir compiladores y
sisternas operativos, aunque de igual modo se puede desarrollar cualguier tipo de aplicacion.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 247

Matriz bidimensional
(0,0) (0,4)
(1,0)

(3.0

>

> Figura 17. En este ejemplo podemos
ver la forma correcta de representar
un array de 2 dimensiones. I
El array que vemos en la imagen representa una estructura de 4 por

5 (4 filas y 5 columnas). Para declararlo, deberiamos escribir:

int miArray[41[5];

Si queremos hacer referencia a un espacio dentro de este array,
debemos codificar lo siguiente:

miArray[21[1];

Si bien los arrays multidimensionales pueden tener mas de un
indice, debemos tener cuidado, ya que si tienen mas dimensiones y
espacios, mayor sera la cantidad de memoria requerida. Por ejemplo:

@ “LIBRERIAS

Una libreria es un conjunto de recursos (algoritmos) prefabricados, que pueden ser utilizados por el de-

sarrollador para realizar determinadas operaciones. Las declaraciones de las funciones usadas en ellas,
junto con algunas macros y constantes predefinidas que facilitan su manejo, se agrupan en ficheros de
nombres conocidos que suelen encontrarse en sitios predefinidos.

www.redusers.com &

248 D=4 5. PRIMER PROYECTO EN C++

int miArray[10010501(25](10];

Recorrer arrays

Es importante pasar por cada espacio de dato que hayamos
declarado; al ser esta una tarea repetitiva, podemos utilizar cualquiera
de las estructuras de bucle que ya conocemos. En el ejemplo que
aparece a continuaciéon, cargaremos datos en un array de 3x5:

#include <iostream>
using namespace std;

#define COLUMNA 5
#define FILA 3

int miArray [FILAIICOLUMNAJI;
int n,m;

int main ()
{
for (n=0;n<COLUMNA;n++)
for (m=0;m<FILA; m++)
{
miArraylnllml=(n+1)*(m+1);

cout<<”Fila: “<<n <<™ /™;
cout<<”Columna: “<<m <<™ /";
cout<<”Dato: “<<miArraylnllm];

Es un lenguaje de programacion de propadsito general que ofrece economia sintactica, control de flujo,

estructuras sencillas y un buen conjunto de operadores. Al no estar especializado en ningun tipo de
aplicacion, se convierte en un lenguaje potente sin limites en su campo de aplicacion. Fue creado en la
misma época de UNIX.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 249

cout<<endl;
}
getchar();
return O;
}

B CAUzars\jensslst\ DesumentsiShars Develap Prajects\pryPrimarafplicasion’ Debug\peyPrirmerafalic... S=2 ey x|

d. cuenta regresiva abortadal

Figura 18. Recorrido y carga de un array con estructuras

l repetitivas, mostrando los resultados en pantalla. |

444

En el transcurso de este capitulo, nos encontramos con un lenguaje mas “duro”, pero que, en esencia de

programacion, es similar a otros. Iniciamos utilizando un IDE gratuito, donde se pueden crear proyectos
de consola y practicar la declaracion de variables, junto con el uso de operadores en C++. Luego apren-
dimos a capturar informacion desde |a consola y a realizar todo el proceso de informacion necesario para
devolverle al usuario los mensajes correspondientes. Finalmente, hicimos uso de las estructuras array
que nos permiten almacenar y manipular gran cantidad de datos en memoria.

Después de todo, es bueno tener en cuenta que la base del desarrollo siempre estara en nuestra logica,

que luego sera bajada al lenguaje de programacidn.

www.redusers.com &

250 5. PRIMER PROYECTO EN C++

Actividades

W 00 N O g B W N =

-
o

TEST DE AUTOEVALUACION

;Qué ventajas se obtienen al utilizar C++ sobre otros lenguajes?
;Qué entorno grafico utiliza el lenguaje C++7?

iQué es SharpDevelop y Mono Project?

;Como se declaran variables y constantes en C++7

;Qué significa el “encabezado” en el archivo que se crea de C++7
;Qué significan #include y using?

Describa lo que es un literal en las declaraciones de variables.
Nombre los tipos de datos mas frecuentes en programas de C++.
;Qué es un operador Bitwise?

;Cémo es posible convertir tipos de datos en C++7?

ACTIVIDADES PRACTICAS

Realice un programa de consola con SharpDevelop que le permita al usuario
acceder a datos, para realizar sumas y restas, mostrando el resultado
mientras se generan los célculos.

Efectue una aplicacion que genere una serie de nimeros aleatorios entre

0y 100 por cada letra que ingrese el usuario en la consola. Use la funcion
rand(), que genera un nimero entero aleatorio entre 0 y 32767. La funcion se
encuentra en math.h, y debe incluirla en el programa.

Con la funcion atei(char *), que se encuentra en la libreria stdlib.h, convierta
sobre el mismo proyecto una cadena de caracteres en un numero entero. No
olvide que la directiva #include incluira tanto las librerias math.h como stdlib.h.

Realice una aplicacion para la simulacion de dados de 6 caras, donde debera
mostrarse el valor del dado cada vez que el usuario ingrese la palabra “tirar”.

Realice una aplicacion estilo “el ahorcado” donde se muestren los espacios de
una palabra (a su eleccion). Si el usuario ingresa mal una letra, se mostrara
su error y el programa le pedira que lo vuelva a escribir. Si ingresa “ver” debe
mostrarse el historial de intentos, y con “fin”, terminar el programa.

» www.redusers.com

. . ARNRRRRRRRENNNN

4744

Estructuras de datos
en la programacion

En este capitulo comenzamos a profundizar en la algoritmia
de la programacion de mano del potente lenguaje C++. Al
analizar el funcionamiento interno de los datos, vamos a
conocer el lado mas rigido de este proceso. De esta forma,
nos dirigimos hacia un nivel avanzado que constituye la base

fundamental del desarrollo.

i v Tipos de estructuras..............252 Eliminar en una pila (pop) 318
| Datos simples y estructurados........ 253 Buscar elementos en una pila 320
i Estructuras dindmicas y estaticas .. 256

| Estructuras dindmicas y punteros... 257 L 1] L L |
Crear Una COla ..oveevreesrsresnenersosonense 325

= 1) T, | Eliminar elementos de una cola..... 328 |

| Listas enlazadas......ccoveuceeeveeeececece 269 Buscar elementos en una cola........ 332 .

!

| Listas doblemente enlazadas 293 |
v Resumen.........cccooe e 333
v PIla i s S 12
Crear una pila. v eeeeeeecenene 313 v Actividades.........cccueernnncemnnnees . 338 .

AAA

Servicio de atencion al lector: usershop@redusers.com

252 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Tipos de estructuras

En capitulos anteriores hemos utilizado distintos tipos de estructuras
de datos, pero no conociamos su categorizacion en profundidad. En la
imagen de la Figura 1, veremos como se dividen estas estructuras.

Datos simples
Entero (integer) Homogéneas
Estindar Real (real) Homogeneas
Caracter (char) Homogéneas
Légico (boolean) Homogéneas
Definido por Subrango (subrange) Homogéneas
el usuario Enumerativo (enumerated) | Homogéneas
Datos estructurados
Arreglo Vector Homogéneas
Arreglo Matriz Homogéneas
Estaticos Registro Heterogéneas
Conjunto Heterogéneas
Cadena Heterogéneas
Cadena Heterogéneas
Lista (pila / cola) Heterogéneas
o Lista enlazada Heterogéneas
Dinamicos -
Arbol Heterogéneas
Grafo Heterogéneas

Figura 1. Estas son las estructuras de datos mas frecuentes utilizadas
en los diferentes lenguajes de programacion.

Hemos utilizado los datos simples en los capitulos en que tratamos
el pseudocodigo, Visual Basic y C++, practicando continuamente
la declaracion de variables. En este capitulo utilizaremos los datos

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 253

que nos falta estudiar, los estructurados. A la hora de definir su
concepto, podemos decir que la estructura de datos es una coleccion
(normalmente de tipo simple) que se distingue por tener ciertas
relaciones entre los datos que la constituyen.

Datos simples y estructurados

Los datos de tipo simple tienen una representacion conocida en
términos de espacio de memoria. Sin embargo, cuando nos referimos a
datos estructurados, esta correspondencia puede no ser tan directa.
Por eso, vamos a hacer una primera clasificacion de los datos
estructurados en: contiguos y enlazados.

Direccion Datos en
absoluta | celdas
Direccion — 1 te Instrucciones
abstracta

| I Procesador

Registros

dHTH(E

Figura 2. En esta imagen vemos el proceso involucrado en el
almacenamiento de una variable en memoaria.

Estructuras contiguas o fisicas

Son aquellas que, al representarse en el hardware de la
computadora, lo hacen situando sus datos en areas adyacentes de
memoria. Un dato en una estructura contigua se localiza directamente
calculando su posicion relativa al principio del area de memoria que
lo contiene. Los datos se relacionan por su vecindad o por su posiciéon
relativa dentro de la estructura.

www.redusers.com &

254 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Matriz OFICIO
1 | Explorador
2 | Guerrero
3 Mago
4 Ranger

Figura 3. En el almacenamiento
de una matriz, la informacion esta

ordenada y adyacente. I

Estructuras enlazadas

Son estructuras cuyos datos no tienen por qué situarse de forma
consecutiva en la memoria; estos se relacionan unos con otros
mediante punteros. Es un tipo de dato que sirve para apuntar hacia
otro dato y, asi, determinar cual es el siguiente de la estructura.

Memoria

Figura 4. La localizacion de un dato no es inmediata, sino que

| se produce por la relacion de datos que establece el puntero. |

Ahora que sabemos categorizar algunas estructuras, al momento de
desarrollar, debemos considerar cual es la identificacion de los datos
que vamos a necesitar y, luego, crear la estructura que emplearemos.

Por ejemplo: si desarrollamos una aplicacion para crear usuarios
de un videojuego, tendremos que almacenar céodigo, nombre y
contrasena, dentro de una estructura que llamaremos usuario.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 255

Etructura R€Presentacion grafica Cddigo Nombre Contrasefia Siguiente
uctu

USUARIO gl S— I [
| int char char usuario

I
NODO

Cadigo
Nombre

Contrasefia

» Figura 5. Este ejemplo demuestra la y representacion de una
estructura de datos simple.

Como podemos observar en la Figura 5, la representacion grafica es
un esquema que podemos crear de la estructura. Esta representacion
no afecta a la programacion, sino que es muy util para simular los
datos de la estructura que vamos a crear. Por ejemplo, otra manera de
graficar es la que se muestra en la Figura 6.

Cadigo Nombre Contrasefia

I l

Siguiente

— B

» Figura 6. Este ejemplo muestra otra forma de representar

| graficamente un nodo. l

=) DEFINICION DE TAD

A

Un Tipo Abstracto de Datos es un conjunto de valores y de operaciones definidas mediante una especifi-
cacion independiente de cualquier representacion. Es importante tener en cuenta gue la manipulacion de

un TAD solo depende de su especificacion, nunca de su implementacion.

www.redusers.com &

256 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Estructuras dinamicas y estaticas

A lo largo de nuestro trabajo, hemos utilizado estructuras estaticas
que representan un espacio fisico de la memoria principal (variables
y arreglos); aunque no estuviesen utilizadas, estan ocupando un
espacio “vacio” hasta que carguemos informacion sobre ellas.

También debemos tener en cuenta que, si una estructura estatica se
completa, no podremos redimensionar su tamano para agregarle mas
informacion. Esto sucede a partir del tamafio maximo de las estructuras
que hayamos establecido previamente.

Por el contrario, las estructuras dinamicas nos permiten ir
utilizando la memoria principal a medida que la vayamos necesitando.
De esta forma, podemos ir creando todas las estructuras que
precisemos sin tener que especificar un tamafio determinado.

Memoria
Estatica Dinamica
0 1 2 3 Codigo Siguiente Codigo Siguiente
Explorador| Guerrero | Mago Ranger 101 o= 23

Figura 7. A la 1izquierda se representa una estructura estatica
secuencial, y a la derecha, una estructura dinamica que puede crecer.

Como podemos ver en la Figura 7, el vector es aguel que nos
permite almacenar cuatro elementos, de modo que no podremos
almacenar un quinto. Es la memoria dinamica la que, por su parte,
puede ir aumentando la cantidad de nodos, siempre y cuando haya
espacio suficiente en ella.

También debemos destacar que no es posible quitar elementos
definidos previamente de la memoria estatica. En cambio, en el caso de
la memoria dinamica, si podemos deshacernos de todos aquellos nodos
gue no sean necesarios.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION O=Z=4E 257

Retomando las caracteristicas de las estructuras complejas, en la
Tabla 1 encontramos la siguiente categorizacion, que ampliaremos en
detalle mas adelante.

COMPLEJAS

v LINEALES v NOLINEALES

Pila Grafo

Tabla 1. Estructuras complejas.

Estructuras dinamicas y punteros

Hasta aqui hemos trabajado con variables simbolicas que poseen
una relacion directa entre su nombre y ubicacion durante toda la
ejecucion del desarrollo. Cabe destacar que el contenido de una
posicion de memoria asociada con una variable puede cambiar durante
la ejecucion, y modificar asi el valor asignado.

Definimos las estructuras dinamicas como aquellas que nos
permiten adquirir posiciones de memoria adicionales, a medida que
lo vayamos necesitando en el desarrollo, y liberando dichos espacios
cuando no sean requeridos. Las mismas se representan con la ayuda de
un tipo de dato llamado puntero, que indica la posicion de memoria
ocupada por otro dato. Podriamos representarlo como una flecha que
sefiale al dato en cuestion.

fé DINAMISMO

En las estructuras complejas, la longitud no es fija en memoria, sino que va aumentando o decreciendo
durante la ejecucion del programa, de acuerdo con los datos que se anaden o eliminan. Esto nos permite

asignar y liberar dinamicamente la memoria principal.

www.redusers.com <«

258 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

varC = “Edad” £

varA = “Juan”

Figura 8. Representacion de como se crean nodos en memoria RAM,
viendo su nombre y asignacion.

Como podemos ver en la Figura 8, aqui hemos creado tres nuevos
elementos en memoria: Juan, 30 y Edad. Si queremos identificar cual es
su posicion fisica exacta, debemos crear variables de referencia que
estén asociadas al dato que nosotros vamos a almacenar.

En pseudocodigo, la sintaxis para la creacion de estas referencias es:
Variable varA tipo nodo
Variable varB tipo nodo
Variable varC tipo nodo

Las estructuras complejas no poseen un operador constructor, es decir, no se definen previamente.

Permiten manejar los datos, tales como: cola, pila, lista enlazada, arbol o grafo, en funcion de las carac-

teristicas particulares de cada una y de las necesidades del desarrollo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 259

Como podemos ver, lo que definimos como objeto para identificar
los elementos y asociarlos es de tipo nodo. Para relacionar la
informacion que grabamos en memoria de manera dinamica o
enlazarlos, debemos tener un espacio o apuntador que nos indique
donde se esta grabando el proximo dato de la estructura. Para eso, hay
que tener una estructura heterogénea que almacene la informacion.

En este caso, deseamos almacenar: “Juan”, “Edad” y “30". Veamos
como deberia ser su relacion en la Figura 9.

AuxPri =90

Figura 9. Representacion de como seria una relacion de nodos en
direcciones de memoria RAM.

Como podemos observar, es necesario saber donde estara almacenado
el primer nodo. Para hacerlo, crearemos una variable auxiliar “AuxPri”,
que guarda la direccion de memoria donde esta almacenado. Es

Los punteros proporcionan los enlaces entre los elementos, permitiendo que, durante la ejecucion del

programa, las estructuras dinamicas cambien sus tamanos. Los encontramos en los nodos, ya gue

forman parte de su estructura de al menos dos campos.

www.redusers.com &

260 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

: importante tener en cuenta que las direcciones de
EL ULTIMO memoria son mas complejas, por eso en el grafico
ELEMENTO DE NODOS vemos un ejemplo metaforico.
i Con AuxPri podemos ubicarnos sobre el
NOS INDICARA primer nodo, donde tenemos “Juan”; a su vez,
EL FINAL DE LA este nos indica la direccion del siguiente dato
con su puntero, que es de valor 101 y nos lleva
ESTRUCTURA a “30". Este, por su parte, nos indica a “Edad”,
que es donde terminaria nuestro recorrido de
nodos debido a que su puntero es Null. Cuando
lleguemos al ultimo elemento de nodos, su contenido sera Null en el
puntero, y esto nos indicara el final de la estructura.
Veamos la definicion de un nodo en pseudocodigo, donde
almacenaremos una lista de valores numeéricos:
Estructura Nodo
Variable Dato tipo numérica
Variable Siguiente tipo nodo
Fin estructura

Variable Primero tipo nodo
Variable Ultimo tipo nodo

Veamos la definicion de nodo en C++:

struct Nodo
{
int Dato;
struct Nodo *sig;
Y
* (Asterisco) nos indica que es una variable para guardar una direccion de
memoria.
void main()
{
struct Nodo *primero, *ultimo;
Y

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 261

La estructura de Nodo se encuentra integrada por dos variables: una
donde se almacena el dato, y otra donde se guarda la direccion fisica
de memoria para el proximo dato.

Todas las estructuras dinamicas necesitan, por lo menos, un puntero
auxiliar que indique donde esta almacenado el primer nodo; también
podemos definir un auxiliar que nos indique el ultimo nodo.

Al terminar la declaracién, el lenguaje que estemos utilizando
asignara Null a las declaraciones, y quedara de la siguiente manera:

Primero = Null
Ultimo = Null

Nodo.Dato =0
Nodo.Siguiente = Null

Crear y eliminar nodos

Para la creacion de nodos, podemos emplear en C++ un operador
llamado new. A su vez, este puede retornar dos valores distintos:
Null 0 una direccion de memoria. El operador retornara Null cuando
el operador intente crear el nodo en un espacio de memoria y no
encuentre el lugar suficiente donde hacerlo; de lo contrario, devolvera
la direccion de memoria donde sera almacenado.

Por ejemplo, continuando con la codificacion anterior, veamos el
siguiente codigo fuente:

struct Nodo *nuevo;
nuevo = new Nodo;

/lse recomienda corroborar que el nodo se haya creado en memoria, para ello:

If(nuevo==Null)
cout<<"No hay espacio en memoria”;
else
{
Hlinstrucciones que vayamos a trabajar en el nodo.
}

www.redusers.com &

262 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

El operador delete sirve para quitar un nodo de la memoria. En ese
caso, debemos indicar el puntero del nodo que deseamos eliminar.
Por ejemplo:

delete primero;

Cuando creamos un nodo desde nuevo, este almacenara la direccion
asignada para la estructura, pero no hara referencia a los campos que
contiene. En la Figura 10, vemos un ejemplo.

Estructura: Nodo

Dato Sig

Figura 10. Representacion de como seria la declaracién de un nodo
nuevo en memoria RAM.

Continuando con el cédigo anterior, veamos ahora como podemos
asignar datos a los campos del nodo dentro del else de nuestro
condicional. Para eso escribiremos:

else
{

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 263

nuevo -> dato = 3;
nuevo -> sig = Null;

Trabajar con punteros

Ahora analicemos qué sucede si deseamos ordenar nodos o
intercambiar sus espacios de memoria. Para eso, primero revisemos los
siguientes ejemplos:

Null

Figura 11. Representacion de cdmo estarian declarados los nodos
sueltos en memoria.

Ejemplo 1:
e Punteros:a,byc
e Nodos: 2
e Le pedimos que ordene los valores de mayor a menor y en memoria.

Si necesitamos cambiar el espacio de memoria del nodo con el valor
24, en lugar de 12 y viceversa, debemos hacer lo siguiente:

www.redusers.com &

264 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

struct Nodo *a;
struct Nodo *h;
struct Nodo *c;
lfdeclaracion de los punteros a utilizar

Propuesta 1: Asignar el valor del puntero a al b.

b=a;

Y ahora debemos asignar la direccion del nodo con el valor 24. Pero
perdimos el espacio de memoria que nos indicaba la posicion de dicho
nodo, ya que b tiene el valor de a.

Por lo tanto, esta propuesta no es util.

Propuesta 1 oo
Dato Sig
12 Null
a
b=a
b
Nos quedamos sin
apuntador a este nodo
Null

Figura 12. Representacion si ejecutamos la Propuesta 1, relacionando
los punteros y nodos.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 265

Propuesta 2: Utilicemos el puntero que tiene valor nulo. Por ejemplo:

c=h;

De esta manera, considerando que el espacio de memoria del
nodo correspondiente al valor 24 esta almacenado en el apuntador c,
podemos realizar las siguientes asignaciones:

b=a;
a=c;

El ejemplo quedaria como se observa en la Figura 13.

Propuesta 2

Primera Parte Segunda Parte

Dato
12

[~

Dato Sig

24 Null

Figura 13. Representacion si ejecutamos la Propuesta 2, relacionando
los punteros y nodos.

www.redusers.com &

266 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Como podemos observar en las imagenes, la propuesta 1 no nos
sera util para intercambiar los espacios de memoria entre los nodos. En
cambio, la 2 muestra la forma apropiada de hacer uso de los punteros
y realizar la tarea de intercambio.

Ejemplo 2:

e Nodos: 3

e Punteros: ay c.

¢ El nodo con el valor 1 (puntero “a”) tiene un apuntador al nodo con
el valor 2.

e El nodo con el valor 3 (puntero “c”) no tiene ningin enlace.

Primera Parte

a b
Dato Sig Dato Sig
2 Null
c
Dato Sig
3 Null ¢ -> Sig = Null;
Segunda Parte
c
Dato Sig
3 — c->Sig=c;

Figura 14. Representacion y codigo fuente de como utilizamos
punteros para operar nodos.

En la primera parte vemos que el puntero ¢ indica el elemento
Sig y le asigna nulo. En la segunda, vemos que el puntero ¢ indica al
elemento Sig la posicion de c. Esto quiere decir que guarda la direccion

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 267

de memoria de ¢, y si revisamos lo que es recursividad, encontraremos
una similitud en esta asignacion a dicho concepto.

Estas asignaciones se pueden leer de diferentes formas y todas son
correctas:

c->Sig=NULL;

e Al apuntador ¢ en el campo Sig asignamos nulo.
e En el campo Sig del apuntador ¢ asignamos nulo.
e En el apuntador ¢ hay un campo llamado Sig, donde asignamos nulo.

Ahora, si deseamos que el nodo del puntero ¢ en su campo Sig se
enlace con el nodo del puntero a, el codigo debera ser el siguiente:

c->Sig=a;

Por ultimo, también podemos tomar campos del nodo y asignarlos al
puntero de la siguiente manera:

¢->Sig=a->Sig;

Veamos el grafico de la Figura 15 para entender estos ejemplos.

De esta manera, hemos visto una breve representacion de como se
enlazan los datos en memoria y qué es importante tener en cuenta para
ir aplicando las estructuras dinamicas. A continuacién, distinguiremos
las formas de manejar la memoria dinamica con respecto a las
estructuras complejas que estudiaremos a lo largo del capitulo.

TS

| @ RECURSIVIDAD

.

Las estructuras complejas son consideradas recursivas, a partir de dos aspectos:
-Algoritmia: por la complejidad de la estructura, requiere de algoritmos recursivos.

Definicion: cada nodo tiene definido un dato simple en el que guarda la referencia a un nodo.

www.redusers.com &

268 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Tercera Parte
a
Dato Sig
1
C
Dato Sig
3 c-> Sig = a;
Cuarta Parte

a b
Dato Sig i
1
[
Dato Sig
= 7 ¢ -> Sig = a -> Sig;

Figura 15. Representacion de como seria asignar punteros de un nodo
a otro.

Lista

Si tuviésemos que dar una definicion amplia acerca de qué significa
una lista dentro de una estructura de datos, diriamos que se trata de
un conjunto de datos de un mismo tipo (simple o estructurado), donde
cada elemento tiene un unico predecesor (excepto el primero) y un
unico sucesor (excepto el ultimo). También seria importante agregar
que el numero de elementos es siempre variable.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 269

LISTA g

Primero Cddigo Siguiente Codigo Siguiente Codigo Siguiente

L ==t == 1 =1 1 |

Figura 16. Representacion de como seria una lista y la asociacion
entre sus nodos.

Se distinguen dos tipos de listas: contiguas y lineales. Las
primeras son estructuras intermedias entre las estaticas y las
dindmicas, ya que sus datos se almacenan en la memoria en posiciones
sucesivas y se procesan como arreglos (vectores/matrices). Lo bueno
de trabajar con esta disposicién secuencial, el acceso a cualquier
elemento de la lista y la adicion de nuevos elementos es sencillo,
siempre que haya espacio suficiente para hacerlo.

Para que una lista contigua pueda variar de tamafo (y, por lo tanto,
de la impresion de una estructura dinamica), es necesario definir un
arreglo dimensionado por tamafio suficiente para que pueda contener
todos los posibles elementos de la lista. Cuando hablamos de una lista
contigua, nos referimos a un arreglo que tiene posiciones libres por
delante y detras, y cuyo indice hace de puntero.

Por otro lado, tenemos las listas lineales -llamados lista, pila y cola-,
que son las que veremos en los siguientes parrafos.

Listas enlazadas

Estas listas se forman por conjuntos de nodos, en donde cada
elemento contiene un puntero con la posicion o direccion del siguiente
elemento de la lista, es decir, su enlace. Como vimos anteriormente,
los nodos estan compuesto por dos campos: uno donde se almacena
informacioén y otro donde estara la posicion del siguiente nodo. Con
esta organizacion de datos, es evidente que no sera necesario que

www.redusers.com &

270

=== 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

los elementos de la lista estén almacenados en posiciones fisicas
adyacentes para estar relacionados entre si, ya que el puntero indica
la posicion del dato siguiente en la lista. En la Figura 9 podremos
observar un claro ejemplo de esto.

En resumen, podemos destacar que una lista enlazada es aquella que
esta definida por una estructura de tipo nodo y un puntero que indica
el primer elemento, a partir del cual se puede acceder a cualquier otro
elemento de la agrupacion.

Veamos en la Figura 17 otro ejemplo acerca de como quedaria
enlazada una lista con los nimeros 1, 3, 5, 7.

1 3 b 7 J—h NADA

» Figura 17. Representacion de una lista enlazada, que muestra sus
punteros y contiene datos de tipo numeros.

Primero seria el puntero el que sefala el primer elemento de la
lista. Mediante el puntero situado en cada uno de los nodos, se puede
acceder al siguiente elemento desde cualquiera de ellos. La ventaja
del uso de nodos es que podemos agregar y retirar informacion en
cualquier ubicacién de la lista.

Antes de avanzar a la creacion de listas enlazadas, veamos otros
ejemplos sobre ellas, en la Figura 18.

Las listas enlazadas fueron desarrolladas en 1955-56 por Cliff Shaw y Herbert Simon en RAND Corpora-

tion, como la principal estructura de datos para su lenguaje de procesamiento de la informacion (IPL). IPL

fue usado para desarrollar varios programas relacionados con la inteligencia artificial.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 271

Inicio

: —= Puntero o enlace al nodo 2
Primero

— |nformacién del nodo 1

A B C D Null

Inicio
Primero

» Figura 18. Aqui podemos ver dos listas enlazadas y la forma de
representar el valor nulo.

Como podemos ver, también podemos simbolizar el final de la lista
con una barra cruzada "V'.

Creacion

Para implementar listas enlazadas, debemos tener en cuenta el
lenguaje de programacion que utilizamos, ya que no todos soportan
el puntero como tipo de dato. En este caso, en que empleamos C++ y
Visual Basic, podemos utilizarlos tranquilamente.

La alternativa al uso de punteros es recurrir a vectores paralelos en
los que se almacenan los datos correspondientes a los campos utilizados
en un nodo. Con una variable que apunte al indice que contiene la
cabecera de la lista (que nosotros utilizamos como puntero primero),
podemos imaginar un esquema como se muestra en la Figura 19.

Lisp es una familia de lenguajes de programacion de computadora de tipo multiparadigma con una

sintaxis completamente entre paréntesis. Fue creado en 1958 y considerado el principal procesador de
listas. Una de las mayores estructuras de datos de LISP es la lista enlazada.

www.redusers.com &

272 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Primero — Sig

8
1 Dato Sig Dato Sig Dato Sig
2 - - .
3
i
5
6
7

— 5

, 9
10

- Figura 19. Representacion de un esquema de estructuras que
podemos utilizar con la creacion de tipos de datos diferentes.

En la imagen vemos una estructura de vector en la parte izquierda, y
una de nodos en la derecha.

Una vez definida la estructura de nodos, para crear una lista
necesitamos llenar un primer nodo con informacioén que corresponda al
tipo de elemento y que el enlace de este contenga el valor nulo. No nos
olvidemos de definir un puntero externo con el valor de la direccion del
nodo inicial. A partir de él, primero, la lista puede modificarse, crecer
o disminuir, incluir mas nodos y borrar otros.

La abstraccion es la operacidon mediante la cual formamos conocimiento conceptual comiin a un

conjunto de entidades, separando de ellos los datos contingentes e individuales para atender a
lo que los constituye esencialmente. En definitiva, se frata de aislar mentalmente o considerar por se-

parado las cualidades de un objeto. Esta es una de las tareas que llevaremos a cabo para crear datos.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 273

Tengamos en cuenta que podemos utilizar un estandar para la
sintaxis algoritmica, por ejemplo:

Primero: se trata de un puntero externo correspondiente al primer
nodo de una lista enlazada.

P: es un puntero a un nodo cualquiera de la lista.

P->Nodo: el nodo apuntado por P.

p->Dato: campo de datos del nodo apuntado por P.

p->Sig: campo puntero del nodo apuntado por P (que generalmente
apuntara al nodo siguiente).

Recorrido

Para recorrer estructuras estaticas como los arreglos (vector/matriz)
utilizabamos una repetitiva que recorria de inicio a fin. En el caso de
las listas, al no contar con un indice ordenado o datos sucesivos,
podemos pensar que no es sencillo acceder de manera directa o
aleatoria a los nodos. Esto se debe a que tenemos que acceder al
primero mediante un puntero externo, al segundo, etc. Para resolver
esta situacion, debemos utilizar una variable puntero auxiliar, que
generalmente denominamos X. Su funcién sera apuntar en cada
momento al nodo procesado, simplemente, asignando: x = x->Sig, y esto
guardara en x el campo puntero del nodo.

Dato Sig Dato Sig Dato Sig Dato Sig

Figura 20. Representacion del ejemplo anterior, donde utilizamos la
asignacion del puntero x=s1ig.

www.redusers.com &

274 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Veamos un ejemplo en pseudocodigo vy en C++, teniendo en cuenta
que el recorrido de una lista es posible si utilizamos el puntero
temporal P. Esto nos permitira leer la lista completa:

PSEUDOCODIGO C++

void main()

{

ffaqui debe ir las instrucciones
para crear la lista y punteros

P = primero;

while P!=NULL

{
cout << P->Sig;
p = p->Sig;

El puntero P contiene el valor del primer elemento de la lista. En el
bucle recorremos toda la lista (de inicio a fin) hasta que encuentre un
nodo cuyo dato siguiente sea nulo. De esta forma, nos daremos cuenta
de que corresponde al ltimo nodo de la lista, y sale del bucle.

Veamos otro ejemplo donde tengamos una lista de valores
numeéricos con extension indefinida. Para eso, debemos contar todos
los elementos existentes en la lista. Veamos el codigo fuente:

PSEUDOCODIGO

void main()
{

ffaqui debe ir las instrucciones
para crear la lista, punteros y vari-
ables

contador=0;
P = primero;

while P!=NULL

» www.redusers.com

INTRODUCCION A LA PROGRAMACION ==

contador++;

p = p->Sig;
}
cout<< “Cantidad de elementos **
+ contador
}

De esta manera, podremos recorrer sin problemas las listas
enlazadas de inicio a fin. Ahora observemos las Figuras 16, 17 y 18
para destacar como seria el recorrido de las listas.

Busqueda

La busqueda en una lista enlazada debe hacerse mediante un

recorrido elemento por elemento, hasta encontrar el deseado o llegar al

final de la lista (sea nulo). También es importante tener en cuenta que
podemos encontrar listas ordenadas y desordenadas; por lo tanto, la
busqueda se puede modificar dependiendo de este aspecto. Teniendo
en cuenta esto, veamos los siguientes ejemplos:

Nos encontramos con una lista enlazada cuyo primer nodo esta
apuntado por PRIMERO, el siguiente procedimiento busca un elemento
X obteniendo un puntero POS (posicion) que lo apunta.

PSEUDOCODIGO

Procedimiento BusquedaDesordenada(Primero, datoBuscado, POS)

//en el procedimiento tenemos los parametros del puntero del
primer nodo, el valor buscado y el lugar del puntero que ocupa POS.

Inicio
P<--Primero
POS<--NULO

Mientras P<=Nulo hacer

www.redusers.com

275

276 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Si datoBuscado=Pdato entonces
POS <--P

P<--NULO
Sino

P<--P.Sig
Fin si
Fin Mientras
Si POS=NULO entonces

Escribir “*No se encontrd el dato buscado”
Fin si
Fin

C++

void BusquedaDesordenada(Primero, datoBuscado, POS)
{
P=Primero;
POS=NULL;

while(P!=NULL)

{
if(datoBuscado=P->Dato)
{

POS=P;

€) ENcapsuLADO

El concepto encapsulado deriva de un proceso de abstraccion y consiste en ocultar la implementacion de
las operaciones que manipulan los objetos, ofreciendo Unicamente una interfaz que permita realizar ope-
raciones, funciones de acceso y variables de entrada/salida. Un ejemplo de ello seria la representacion
de enteros en diferentes notaciones int, int32 o Long.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

P=NULL;
}
else
{
P=P->Sig;
}
}
if(POS==NULL)
{

cout<<"No se encontré el dato buscado”;

Ahora, suponiendo que estamos trabajando en una lista ordenada
en forma ascendente, vamos a revisar la codificacion para el siguiente

algoritmo de recorrido:

PSEUDOCODIGO

Procedimiento BusquedaOrdenada(Primero, datoBuscado, POS)
//el procedimiento tenemos los parametros del puntero del primer
nodo, el valor buscado y el lugar del puntero que ocupa POS.

Inicio
P<--Primero
P0OS<--NULO

Mientras P<>Nulo hacer
Si Pdato<datoBuscado entonces
P<--PSig

Sino

si datoBuscado = Pdato entonces

POS <--P

www.redusers.com

277

<«

278 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

P<--NULO
Fin si
Fin si
Fin Mientras
Si POS=NULO entonces

Escribir “No se encontrd el dato buscado”
Fin si
Fin

Podemos destacar la diferencia entre este coédigo BusquedaOrdenada
y el anterior, en la sentencia condicional Si Pdato<datoBuscado entonces,
ya que al estar ordenados sus elemento y ser numéricos, podemos
preguntar si el dato en la lista es menor al dato que estamos buscando.

Insercion de elementos

Cuando necesitamos insertar o borrar un nodo de una lista, es
importante tener en cuenta si esta se encuentra ordenada o no. La tarea
principal sera, simplemente, modificar los punteros de esta estructura.
Si debemos insertar un nuevo nodo, este puede ubicarse al inicio o a
continuacion de un nodo especifico.

Cualquiera sea el tipo de inserciéon, siempre sera necesario contar
con un nodo vacio en donde almacenaremos informacion.

A continuacion, veamos en la Figura 21 un ejemplo sencillo de esta
situacion y el codigo fuente que podemos insertar en una lista.

En la programacion encontraremos distintos métodos de bisqueda, basados en algoritmos disenados

para localizar un elemento con ciertas propiedades dentro de una estructura de datos.

Por ejemplo, ubicar el registro correspondiente a cierta persona en una base de datos, o el mejor mo-
vimiento en una partida de ajedrez. Dentro de los tipos de bisquedas, podemos encontrar secuencial,
secuencial indexada, binaria, de cadenas, interpolacion, etc.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 279

Primero g

MNuevo

» Figura 21. Representacion grafica de como seria la insercion en el
primer nodo de la lista.

A continuacion, utilizaremos como ejemplo una lista con la
estructura que venimos manejando, en donde el contenido de la
informacion sera 2, 6, 7. Veremos tres escenarios de insercion:
¢ Nodo menor al primero.

e Nodo mayor al altimo.
¢ Nodo mayor al primero y menor al ultimo.

Utilizaremos un auxiliar llamado Disponible, que obtiene un nuevo
nodo si es posible; en caso contrario, dara el valor nulo. También
usaremos una variable Nvalnfo para representar el dato que deseamos
insertar en la lista.

PSEUDOCODIGO: Nodo menor al primero

@ B
__4

La funcion de la modularidad es descomponer un programa en un pequeno nimero de abstracciones. Es-
tas partes tienen la caracteristica de ser independientes unas de otras, pero faciles de conectar entre si.
Un mddulo se caracteriza principalmente por su implementacion, y su programacion sigue un criterio
de ocultacion de la informacidn. Gracias a este modelo, el sistema se asegura de mostrar solo aquella

informacion que sea necesario presentar.

www.redusers.com &

280 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Inicio

NUEVO0<--Disponible
Si NUEVO=NULO entonces

Escribir “*Desbordamiento de memoria”
Sino

NUEVO.dato<--Nvalnfo
NUEVO.sig<--Primero
Primero<--NUEVO //el nuevo nodo es la cabecera de la lista

Fin si
Fin

Primera Parte

primero

/

nuevo [

Segunda Parte

primero

i 3

h
b
nuevo f Nia

Figura 22. Aqui se representa si el valor que se ingresa es menor que
el primer nodo, y como seria la asignacion del puntero.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 281

En caso de tener que insertar un valor entre nodos, necesitaremos
utilizar los apuntadores auxiliares; como podemos apreciarlo en la Figura
23. Los nodos a insertar pueden haber sido creados, pueden existir ya
en el mismo documento o se pueden importar de otro documento. En el
pseudocodigo que vemos a continuacion, recordemos los auxiliares P y
otro nuevo Q, y 5 es el valor que queremos grabar en un nuevo nodo.

PSEUDOCODIGO: Nodo mayor que el primero y menor que el altimo

Inicio

NUEVO<--Disponible

Si NUEVO=NULO entonces
Escribir “Deshordamiento de memoria”
Sino

NUEVO.dato<--Nvalnfo

Q<--PSig
PSig<--NUEVO
NUEVO.sig<--Q
Fin si
Fin

@ “RUNNING TIME
__4

El running time de un algoritmo representa el nimero de operaciones primitivas o de pasos a seguir gue
deben ejecutarse. Este va a depender de la magnitud del tamano que tenga la entrada de informacion.

Se frata del tiempo que tarda en ejecutarse un programa, momento en el cual el sistema operativo
comienza a ejecutar sus instrucciones. Al conocer el factor de crecimiento del running time, se puede

predecir cuanto tiempo tardara el algoritmo con una entrada mayor.

www.redusers.com &

282 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Primera Parte

Dato Sig
nuevo—+= 5 | Null |
primero
» 1 2 6 7
P
Segunda Parte
nuevo
primero
1 2 ’ 6 7 | Null
P Q
Tercera Parte
nuevo Dato Sig
5
primero
’ 4
- 1 2 6 7 | Nul
P Q

Figura 23. Representacién en tres partes de como funciona la
insercion entre nodos.

Por ultimo, en caso de tener que insertar un nodo al final de la lista,
podriamos utilizar un apuntador llamado dltimo, que nos permitira
conocer cual es el ultimo nodo en ella.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 283

PSEUDOCODIGO: Nodo mayor que el altimo

Inicio
NUEVO0<--Disponible
Si NUEVO=NULO entonces

Escribir “Desbordamiento de memoria®
Sino

Si ultimo.dato < Nvolnfo entonces
Ultimo.sig=NUEVO

NUEVO.sig<--NULL

ultimo<--NUEVO
Fin si
Fin si
Fin

primero lltimo

1

L

primero i

15

Figura 24. Representacion de la insercion de un nodo después

| del Ultimo, y asignacion de punteros. |

www.redusers.com &

284 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Hasta aqui hemos visto diferentes formas de desenvolvernos en una
lista enlazada a la hora de insertar nodos. Sin embargo, debemos tener
en cuenta que si deseamos hacer una insercion en la lista, debemos
preguntar por cada opcion de las revisadas.

Veamos el codigo completo:

PSEUDOCODIGO: Insertar un nodo con valor desconocido

Variable primero, ultimo, P, Q, NUEVO tipo nodo

Inicio
NUEV0<--Disponible
Si NUEVO=NULO entonces
Escribir “Deshordamiento de memoria”
Sino
Si NUEVO.dato>primero.dato entonces
NUEVO0.dato<--Nvalnfo
NUEVO.sig<--Primero
Primero<--NUEVO
Sino
Si NUEVO0.dato<ultimo.dato entonces

Ultimo.sig=NUEVO

NUEVO.sig<--NULL

) ALGORITMOS DEORDENACION

En la algoritmia se pueden encontrar diferentes técnicas que permiten realizar tareas de ordenacidn,
de forma mucho mas rapida y sencilla que otras técnicas. Algunas de ellas son: Insert-Sort, Shell-Sort,
Merge-Sort v Quick-Sort. Entre ellas, se puede destacar a Quick-Sort, que es es actualmente el mas
eficiente y veloz de los métodos de ordenacion de datos. Este también es conocido con el nombre de

“metodo rapido” u “ordenamiento por particion”.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 285

ultimo<--NUEVQ
Sino
NUEVO.dato<--Nvalnfo

Q<--PSig
PSig<--NUEVO

NUEVO.sig<--Q
Fin si
Fin si
Fin si
Fin

Eliminacion de elementos

En el caso de la eliminaciéon de nodos, debemos hacer que el nodo
anterior a aquel que quiere eliminarse se enlace con el posterior a él,
para que, asi, el que queremos sacar quede fuera de la lista. Veamos
como seria el algoritmo para esta operacion:

PSEUDOCODIGO: Eliminar un nodo

QBPSig //En la figura el paso 2
PSigBQ.Sig //En la figura el paso 3
LiberarNodo(Q) //En la figura el paso 4

@ “EL'ESTUDIO DE'LAS ESTRUCTURAS s

_Z

El estudio de las estructuras de datos nos permitira acceder a una parte fundamental dentro de nuestros

desarrollos, que es el DER. Se trata de un Diagrama de Entidad Relacion que se utiliza para realizar el
correcto disefio de las estructuras de una base de datos, en la cual luego desarrollaremos las consultas
y registros de informacion. En un DER, cada entidad se representa mediante un rectangulo, cada relacidn

mediante un rombo y cada dominio mediante un circulo.

www.redusers.com &

286 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

1 primero
P
| l
1 2 6 7
2 primero
P
| 1 !
1 2 6 7
3 primero
P Q
N Ve v |
1 2 6 o
4 primero
P
| l
1 - 2 — 7

Figura 25. Representacion de cémo se elimina un nodo y qué sucede
con los punteros.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 287

Tengamos en cuenta que el proceso de borrado nos dara un lugar
para nodos libres o disponibles. Dicho espacio de memoria puede ser
reutilizado si codificamos aquel apuntador llamado Disponible.

A continuacion, veamos cuales son los distintos escenarios posibles
después de la eliminacion:

e Eliminar un tnico nodo.
e Eliminar el primer nodo.
e Eliminar el altimo nodo.
e Eliminar un nodo en medio de otros.

primero (ltimo primero Gltimo

\ / Eliminar (primero) e /

: & L,
10 Ii’ru-nero Null ><
Ultimo = Null

Figura 26. Esta imagen nos muestra lo que sucede si eliminamos un
nodo unico.

PSEUDOCODIGO: Eliminar el primero nodo

Inicio

Si primero=NULO entonces

Escribir “No hay elementos para eliminar”
Sino

//Si existe sélo un elemento y es el que se debe eliminar

Si (primero.sig=NULO) y (Nvalnfo=primero.dato) entonces

Eliminar(primero) //libera memoria, elimina el nodo

www.redusers.com &

288 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Primero=NULO
Ultimo=NULO
Sino
//Si existe mas de un elemento

Si (Nvalnfo=primero.dato) entonces
P=primero //guarda la direccion del primer nodo.
Primero=P.Sig //guarda la direccion del segundo nodo.
Eliminar(P) //libera memoria, elimina el nodo
Sino
.../{continua con otras instrucciones
Fin si

Fin si
Fin si
Fin

A continuacion, veremos destacado el siguiente codigo que se utiliza
para quitar el primer nodo de una lista:

P=primero

Primero=P.Sig

Eliminar(P)

primero

S

Nt S

>< 2 6 7

2T N
P

Figura 27. Esta imagen nos muestra lo que sucede si eliminamos el
primer nodo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 289

PSEUDOCODIGO: Eliminar el ultimo nodo

Inicio
Si primero=NULO entonces

Escribir “No hay elementos para eliminar”
Sino
//Si existe s6lo un elemento y es el que se debe eliminar

Si (primero.sig=NULO) y (Nvalnfo=primero.dato) entonces

Eliminar(primero) //libera memoria, elimina el nodo
Primero=NULO
Ultimo=NULO
Sino
/ISi existe mas de un elemento

Si (Nvalnfo=primero.dato) entonces
P=primero
Primero=P.Sig
Eliminar(P)

Sino
P=primero
Q=primero
Mientras (Nvalnfo<>Pdato) y (P<>NULO)
Q=P
P=PSig
Fin Mientras

Si (P<>NULO) //si encontré el valor...
Si (Nvalnfo=ultimo.dato)
Q.Sig=NULO
ultimo=Q
eliminar(ultimo)
Fin si
Finsi

www.redusers.com &

290 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

.../lcontinua con otras instrucciones
Fin si

Fin si
Fin si
Fin

A continuacién, veremos destacado el siguiente cédigo que se utiliza
para quitar el altimo nodo:

Q.Sig=NULO

ultimo=0Q

eliminar(ultimo)

Figura 28. Esta imagen nos muestra lo que sucede si eliminamos el
ultimo nodo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 291

PSEUDOCODIGO: Eliminar un nodo entre otros

Inicio
Si primero=NULO entonces

Escribir “No hay elementos para eliminar”
Sino
//Si existe s6lo un elemento y es el que se debe eliminar

Si (primero.sig=NULO) y (Nvalnfo=primero.dato) entonces

Eliminar(primero) //libera memoria, elimina el nodo
Primero=NULO
Ultimo=NULO
Sino
/ISi existe mas de un elemento

Si (Nvalnfo=primero.dato) entonces
P=primero
Primero=P.Sig
Eliminar(P)

Sino
P=primero
Q=primero
Mientras (Nvalnfo<>Pdato) y (P<>NULOQ)
Q=P
P=PSig
Fin Mientras

Si (P<>NULOQ) /fsi encontré el valor...
Si (Nvalnfo=ultimo.dato)
Q.Sig=NULO
ultimo=Q
eliminar(ultimo)
sino
Q.sig=Psig
Eliminar(P)

www.redusers.com &

292 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Fin si
Fin si
Fin si

Fin si
Fin si
Fin

Destacamos el codigo que se utiliza para quitar un nodo de entre
medio de otros; también lo veremos en la Figura 29:

Q.sig=P.sig
Eliminar(P)
primero :
Q
| 1 N/ |
bl

1 . 2 ./IG \\/_ 7

P l]ltirInu

Figura 29. Esta imagen nos muestra lo que sucede si eliminamos un
nodo entre otros.

Como podemos observar, debemos enlazar el nodo anterior con el
posterior al dato que vamos a eliminar. En este caso, eliminamos el
nodo 6 y enlazamos el nodo 2 con el 7.

Hasta aqui hemos visualizado y ejercitado las diferentes operaciones
que podemos realizar sobre las estructuras de datos lista enlazada:
insertar, eliminar, buscar y recorrer.

A continuacién, vamos a desarrollar otro tipo de estructura, que esta
estrechamente relacionada con la lista.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 293

Listas doblemente enlazadas

Esta estructura deriva directamente del tipo de lista y es lineal, ya que
cada nodo tiene dos enlaces: uno al nodo siguiente, y otro al anterior.

Las listas doblemente enlazadas no necesitan un nodo especial para
acceder a ellas, sino que pueden recorrerse en ambos sentidos a partir
de cualquier nodo hasta llegar a uno de los extremos.

PSEUDOCODIGO C++

struct nodo

{

int dato;

struct nodo *siguiente;
struct nodo *anterior;
}

» - * = Null

DATO DATO DATO Null

» Figura 30. Representacion de una lista doblemente enlazada, donde
podemos observar como funcionan los punteros.

A continuaciéon, vamos a revisar las mismas acciones que hicimos
con las listas enlazadas simples. En este caso, precisaremos dos
variables auxiliares: una que almacene la posicién del primer nodo, vy
otra que almacene la posicion del altimo.

www.redusers.com «

294 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Dato © sig Ant .
: =] 3 . -
. Dato Sig Ant

L]
i
L]
]
(]
(]
i
[y

Primerg « = =

-
n 5
' s Dato Sig Ant
M : =
: -l 2 i
Dato Sig Ant
Ly - 4
+—— |JItimo

Figura 31. En la imagen vemos un ejemplo de lista doblemente
enlazada, y las relaciones que pueden llegar a tener los punteros.

Creacion

Asi como antes vimos la creacion de estructuras de listas enlazadas,
ahora veremos los diferentes escenarios que pueden presentarse en el
caso de las doblemente enlazadas.

PSEUDOCODIGO

Algoritmo Crear Lista Doble

Inicio
Variable Nuevo, Primero, ultimo tipo nodo
Variable AuxDato tipo numérico

Si Primero=nulo /Y para almacenar el dato se controla si no existen

elementos.
Nuevo = Disponible

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 295

Si Nuevo <> nulo // Se controla que haya memoria, si no
devolvera Null.
Leer AuxDato //traera la informacion a almacenar

Nuevo.dato = AuxDato
Nuevo.sig=NULO
Nuevo.ant = NULQ

Primero = Nuevo
Ultimo = Nuevo
Sino
Escribir “No hay memoria suficiente’
Fin Si
Si no
Escribir “La lista ya esta creada”
Fin Si
Fin

Insercion de elementos
La insercion se debe hacer a la izquierda del nodo apuntado por
la posicion ofrecida a la funciéon insertar. Esto implica que al insertar
un nodo, el puntero utilizado sigue apuntando al mismo elemento.
A continuacién, veamos los diferentes escenarios que podemos
encontrar dentro de una lista doble.
e Sila lista esta vacia: En este caso, supongamos que queremos
insertar un nodo, cuyo puntero que define la lista vale nulo.

) LISTACIRCULAR

4

Una lista circular es una lista lineal en la que el ultimo nodo apunta al primero. Las listas circulares evitan
excepciones en las operaciones que se realicen sobre ellas. Cada nodo siempre tiene uno anterior y uno
siguiente. En algunas se anade un nodo especial de cabecera, de modo que se evita la Gnica excepcion

posible: que la lista esté vacia.

www.redusers.com &

29 D[4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Lista Null Lista ———— g
nodo nodo
pato | 7] DATO | T Hul
Null
Insercidn en lista vacia

» Figura 32. Representacion de la lista doblemente enlazada, pero
estando vacia.

Observamos el ejemplo en la Figura 32. Debemos considerar que:
1. Lista apunta a nodo.
2. Lista.siguiente y lista.anterior son igual a nule.

//Lista seria una variable de tipo puntero.

e Sidebemos insertar un nodo en la primera posicion de la lista:
Tomaremos una lista que no esté vacia. Consideraremos que lista
apunta al primer nodo, veamos la Figura 33.

Para este ejemplo, usaremos una lista que no esta vacia. En la
Figura 33 notaremos lo que sucede en una lista doblemente enlazada,
en donde la Lista apunta al primer nodo.

Un arbol es una estructura no lineal en la que cada nodo puede apuntar a uno o varios nodos. También

se suele dar una definicion recursiva: un arbol es una estructura compuesta por un dato y varios arbaoles.
Los arboles tienen otra caracteristica importante: cada nodo solo puede ser apuntado por otro nodo, es
decir, cada nodo tendra un dnico padre. Esto hace que estos arboles estén fuertemente jerarquizados, vy

es lo que en realidad les da la apariencia de arboles.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 297

Figura 33. Representacion de lo que sucede en una lista doblemente
enlazada al ejecutar los pasos vistos antes.

Observemos la lista que se detalla en el punto 2 de la figura y leamos
los pasos siguientes:
1. El puntero nodo.siguiente debe apuntar a Lista.
2. El puntero nodo.anterior apuntara a Lista.anterior.
3. Lista.anterior debe apuntar a nodo.

Recordemos que el puntero Lista no necesariamente apunta a

un miembro concreto de la lista doble, ya que cualquier elemento

apuntador es valido como referencia.

e Si debemos insertar un nodo en la altima posicion de la lista:
Iniciaremos el ejemplo con el apuntador Lista haciendo referencia al
ultimo elemento que se encuentra en la lista doble.

www.redusers.com &

298 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Figura 34. Representacion de lo que sucede en una lista doblemente
enlazada al insertar un nodo en la dltima posicién.

Observando la lista del punto 2, leamos los siguientes pasos:
1. nodo.siguiente debe apuntar a Lista.siguiente, que tiene el valor nulo.
2. Lista.siguiente debe apuntar a nodo.
3. nodo.anterior apuntara a Lista.

Existen otras estructuras que se utilizan para distintas tareas, como Arboles AVL, con estructuras mas

optimizadas que permiten reducir los tiempos de busqueda, y Arboles B, sostenidos por estructuras mas

complejas que optimizan ain mas los resultados.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 299

o 5Si debemos insertar un nodo entre otros nodos de la lista: En caso
de tener que insertar un nodo en cualquier parte de una lista ya
constituida, lo que debemos realizar es lo que nos indica la
representacion grafica que aparece en la Figura 35.

Figura 35. Representacion de lo que sucede en una lista doblemente
enlazada al insertar un nodo entre otros nodos de la lista.

Observemos la lista que se detalla en el punto 2 de la figura y leamos
los pasos siguientes:
1. Primero nodo.siguiente apunta a lista.siguiente.
2. Luego Lista.siguiente apunta a nodo.
3. nodo.anterior apunta a lista.
4. Y por ultimo, nodo.siguiente.anterior apunta a nodo.

Aqui trabajamos como si tuviéramos dos listas enlazadas: primero

insertamos elementos en una lista abierta; y luego, realizamos lo
mismo con la lista que enlaza los nodos en sentido contrario.

www.redusers.com &

300 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

En el ultimo paso tenemos un puntero auxiliar llamado p que, antes
de empezar a insertar, apunta al nodo que contintia en la lista de
elementos. La sintaxis para hacer esta indicacion es p = Lista.siguiente.

Cerrando un poco el tema de las listas doblemente enlazadas, al
momento de programarlas debemos tener en cuenta lo siguiente:

INSERCION

v DESCRIPCION DE PASOS v UTILIDAD

Si la lista no esta vacia, hacemos gue nodo.siguien- Insertar dentro de una lista en un sentido
te apunte a Lista.siguiente

Hacemos gue nodo.anterior apunte a Lista Insertar dentro de una lista en sentido contrario

Tabla 2. Insercion en listas dobles.

Para completar la insercién de elementos en listas dobles enlazadas,
veamos como seria la codificaciéon del pseudocédigo para las diferentes
situaciones que vimos anteriormente:

Algoritmo Insertar
Variable Nuevo, Primero, Ultimo tipo nodo
Variable P tipo nodo //puntero auxiliar para recorrer
Variable AuxDato tipo numérico entero

Inicio
Si Primero <> nulo
Nuevo = Disponible

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 301

Si Nuevo <= nulo
Leer AuxDato
Nuevo.Dato = AuxDato

Si AuxDato < primero.Dato
Nuevo.ant = nulo
Nuevo.sig = primero
primero.ant = nuevo
primero = nuevo

Sino

Si AuxDato > ultimo.Dato
ultimo.sig = Nuevo
Nuevo.sig = null del nuevo dato, null
ultimo = Nuevo
Nuevo.ant = ultimo
Sino
P = primero

Mientras AuxDato > Pdato
P = Psig
Fin mientras

Nuevo.ant = Pant
Nuevo.sig= P
Pant.sig = nuevo
Pant = nuevo
Fin Si
Fin Si

Si no
Escribir “No existe memoria”

Fin Si

Si no
Escribir “'La lista no existe”

Fin si

www.redusers.com &

302 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Recorrido

Podemos recorrer la informacion de la lista doble en dos sentidos:
ascendente, comenzando por el primer nodo; o descendente,
empezando en el tltimo. El algoritmo es similar al de las listas simples.

PSEUDOCODIGO
Algoritmo Recorrer ascendente
Variable P tipo nodo

Inicio
P = primero
Mientras (P <> nulo)
Escribir Pdato
P = Psig
Fin mientras
Fin

PSEUDOCODIGO
Algoritmo Recorrer descendente
Variable P tipo nodo

Inicio
P = ultimo
Mientras (P <> nulo)
Escribir Pdato
P = Pant
Fin mientras
Fin

La tabla hash es una estructura de datos que asocia llaves o claves con valores. La operacion principal

que soporta de manera eficiente es la busqueda: permite el acceso a los elementos (por ejemplo, telé-

fono y direccion) a partir de una clave generada (por ejemple, usando el nombre o nimero de cuenta).

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 303

Eliminacion de elementos
A continuacion, veamos cuales son los diferentes escenarios
posibles en el manejo de una lista doble enlazada.
e Eliminar el Ginico nodo en una lista doblemente enlazada: En este
caso, el nodo sera apuntado por Lista. El proceso es simple:
1. Eliminamos el nodo.
2. Hacemos que Lista apunte a NULO.

» Figura 36. Imagen que muestra como se elimina el
unico nodo en una lista doblemente enlazada.

e Eliminar el primer nodo de una lista doblemente enlazada: Puede
suceder que el nodo por borrar esté apuntado por Lista o no. Si lo
esta, simplemente hacemos que Lista sea Lista.siguiente.

) LASESTRUCTURASYC/Cw+

Las estructuras basicas disponibles en C y C++ (structs y arrays) tienen una importante limitacion: no
pueden cambiar de tamano durante la ejecucién. Los arrays estan compuestos por un determinado ni-

mero de elementos que se decide en la fase de disefio, antes de que el programa ejecutable sea creado.

www.redusers.com &

304 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Figura 37. Representacion de lo que sucede al eliminar el primer nodo
de una lista doblemente enlazada.

1. Si nodo apunta a Lista, hacemos que Lista apunte a Lista.siguiente.
2. Hacemos que nodo.siguiente.anterior apunte a NULO.
3. Borramos el nodo apuntado por nodo.

El paso 2 separa el nodo a borrar del resto de la lista,
independientemente del nodo al que apunte Lista.

Veamos a continuacién un pseudocodigo que nos permita borrar el
primer nodo.

PSEUDOCODIGO

Algoritmo Eliminar lista doble

Var auxDato tipo numeérica

Var P tipo ejemplo

Inicio
Si Primero=null
Escribir “No hay elementos para eliminar”
Sino
Leer AuxDato

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 305

Si (primero.sig = nulo) y (auxDato = primero.dato)
Eliminar (primero)
primero = nulo
ultimo = nulo

Si no
Si (auxDato = primero.dato)
P= primero
primero = primero.sig
primero.ant = NULO
LiberarMemoria(P)
Si no
.../fotras instrucciones
Fin si
.../lotras instrucciones
Fin si
Fin

e Eliminar el altimo nodo de una lista doblemente enlazada:

Nuevamente tenemos los dos casos posibles: que el nodo por borrar
esté apuntado por Lista o que no lo esté. Si lo esta, simplemente

hacemos que Lista sea Lista.anterior.

1. Si nodo apunta a Lista, hacemos que Lista apunte a Lista.anterior.

2. Hacemos que nodo.anterior.siguiente apunte a NULO.
3. Borramos el nodo apuntado por nodo.

El paso 2 depara el nodo a borrar del resto de la lista,
independientemente del nodo al que apunte Lista.

IR

| @ "LISTA CIRCULAR SIMPLE

Cada nodo tiene un enlace similar al de las listas enlazadas simples, excepto que el siguiente nodo del

tltimo apunta al primero. Esto nos permite rapidas inserciones al principio y accesos al primer nodo

desde el puntero del dltimo nodo.

www.redusers.com

300 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

» Figura 38. Imagen que muestra lo que sucede al eliminar el ultimo
nodo de una lista doblemente enlazada.

PSEUDOCODIGO

Algoritmo Eliminar lista doble
Var auxDato tipo numérica
Var P tipo ejemplo

Inicio
Si Primero=null
Escribir “No hay elementos para eliminar”
Sino
Leer AuxDato

Si (primero.sig = nulo) y (auxDato = primero.dato)

Eliminar (primero)

Es un lenguaje funcional y un dialecto de Lisp. Fue desarrollado por Guy L. Steele y Gerald Jay Sussman

en la década del 70 e introducido en el mundo académico a través de una serie de articulos conocidos

como los Lambda Papers de Sussman y Steele.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 307

primero = nulo
ultimo = nulo
Si no
Si (auxDato = primero.dato)
P= primero
primero = primero.sig
primero.ant = NULO
LiberarMemoria(P)
Si no
Si (auxDato = ultimo.dato)
ultimo = ultimo.ant
ultimo.sig = NULO
LiberarMemoria(P)
Sino
...[lotras instrucciones
Fin si
.../lotras instrucciones
Finsi
...//otras instrucciones
Fin si
.../fotras instrucciones
Fin si
Fin

e Eliminar un nodo intermedio de una lista doblemente enlazada:
Una vez mas, nos enfrentamos con dos casos posibles: que el nodo
por borrar esté apuntado por Lista, o que no lo esté. Si lo esta,
simplemente hacemos que Lista sea Lista.anterior o Lista.siguiente. Se
trata de un caso mas general que los dos anteriores.

IR

| @ NODO CENTINELA

-

A veces, las listas enlazadas tienen un nodo centinela (también llamado falso nodo o nodo ficticio) al
principio o al final, el cual no es usado para guardar datos. Su propésito es simplificar o agilizar las

operaciones, asegurando que cualquier nodo tenga otro anterior o posterior.

www.redusers.com &

308 D[E=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

» Figura 39. Representacion de lo que sucede al eliminar un nodo
intermedio de una lista doblemente enlazada.

1. Si nodo apunta a Lista, hacemos que Lista apunte a Lista.anterior (o
Lista.siguiente).

2. Hacemos que nodo.anterior.siguiente apunte a nodo.siguiente.

3. Hacemos que nodo.siguiente.anterior apunte a nodo.anterior.

4. Borramos el nodo apuntado por nodo.

Cuando eliminamos un nodo intermedio, primero y Gltimo no se
modifican; pero si cambiaran los punteros sig del nodo menor y el ant.
del nodo mayor. Es bueno recordar que podemos utilizar la variable
auxiliar P para recorrer la lista, la cual apuntara al dato por eliminar.

Las listas doblemente enlazadas requieren mas espacio por nodo, y sus operaciones basicas resultan

mas costosas pero ofrecen una mayor facilidad para manipular, ya que permiten el acceso secuencial
ala lista en ambas direcciones. Es posible insertar o borrar un nodo en un nimero fijo de operaciones
dando Unicamente la direccion de dicho nodo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 309

PSEUDOCODIGO

Algoritmo Eliminar lista doble
Var auxDato tipo numeérica
Var P tipo ejemplo

Inicio
Si Primero=null
Escribir "No hay elementos para eliminar”
Sino
Leer AuxDato
Si (primero.sig = nulo) y (auxDato = primero.dato)
Eliminar (primero)
primero = nulo
ultimo = nulo
Sino
Si (auxDato = primero.dato)
P= primero
primero = primero.sig
primero.ant = NULO
LiberarMemoria(P)
Sino
Si (auxDato = ultimo.dato)
ultimo = ultimo.ant
ultimo.sig = NULO
LiberarMemoria(P)
Sino
P = primero
Mientras (AuxDato <> Pdato) y (P<> null)
P = Psig
Fin mientras

Si P <> nulo
Psig.ant = Pant
LiberarMemoria(P) // Elimina el nodo.
Sino
Escribir “EI dato a eliminar no se encuentra
Fin Si

Iy

www.redusers.com &

310 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Fin si
Fin si
Fin si
Fin si
Fin

Concluyendo con las estructuras de datos que hemos estudiado a lo
largo del capitulo, podemos hacer hincapié en el manejo de memoria
dinamica con listas enlazadas (simples y dinamicas).

Ahora veamos qué aplicaciones podemos dar a las listas enlazadas.
Por ejemplo, antes mencionamos que suelen utilizarse para el
desarrollo en el area de inteligencia artificial. Sin irnos tan lejos,
podemos observar que los actuales juegos de ocio que encontramos en
Internet suelen basarse en alguna estructura muy similar.

Veamos un caso en la Figura 40.

* Figura 40. Juego que utiliza una lista de acciones que podemos
considerar una cola de objetos o valores.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 311

Como vemos en la Figura 40, el juego presentado se llama
PALADOG (http://armorgames.com/play/13262 /paladog) y nos
muestra el funcionamiento de una lista enlazada. Si nos ubicamos
como jugadores, notaremos que las acciones se van cargando en la lista
y, si hacemos clic sobre ellas, se iran “eliminando”, al mismo tiempo
que las restantes se van reordenando.

Tambien podemos pensarlo desde un ejemplo mas sencillo, como
puede ser el juego de ajedrez. En caso de que el contrincante sea
una computadora, esta contara con muchos
movimientos posibles en una lista, que ira
rtf.-dum?ndo en funcion fie nuestras jugadas. LA ESTRUCTURA
Si analizamos las ventajas que puede tener la
computadora, debemos considerar que: existen 20 DINAMICA SE
primeros movimientos posibles para las blancas, CONVIERTE EN LA
y otros tantos para las negras; por lo tanto, se
pueden formar 400 posiciones distintas tras la INTELIGENCIA DE LA
prlm‘ere.x jugada de cada bando. F’ara ‘e’l segundo COMPUTADORA
movimiento de las blancas, la situacion se
complica: hay 5.362 posiciones posibles cuando
las blancas hacen su segunda jugada.

De esta forma, podemos visualizar cémo una estructura dinamica
como la lista enlazada puede convertirse en una estructura factible
para trabajar en la “inteligencia” de la computadora, gracias a la
posibilidad que tiene de guardar todas las combinaciones posibles.

Otro ejemplo sencillo puede ser el clasico solitario, donde iremos
acomodando las cartas en distintas “listas”. Si deseamos dirigirnos
hacia un ambito mas profesional, necesitaremos cargar diferentes
tareas en un listado en donde se pueda ir resolviendo cada una de
ellas, de modo tal que no necesite un orden especifico. Por ejemplo:

Debido a que en esta lista de tareas es posible ir agregando o
reduciendo el nimero de tareas, necesitaremos una estructura
dinamica que se adapte al espacio en memoria.

www.redusers.com <«

312 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Pila

Dentro de esta estructura, la accion mas apropiada es apilar objetos/
elementos. Por ejemplo: apilar un naipe sobre otro, apilar un plato
sobre otro, apilar recibos, etc.

Cuando realizamos estas acciones de apilar, creamos una pila
de objetos/elementos. Si volcamos esto a las estructuras de datos,
veremos el tipo de dato abstracto llamado Pila y sus utilidades en la
programacion. Un ejemplo de estas pilas de acciones sobre un programa
puede ser la accion de deshacer de procesadores de textos y planillas de
calculo, o el historial de acciones de software editor de imagenes.

Para utilizar este tipo de estructura, debemos tener en cuenta
definirla de la siguiente forma:

PSEUDOCODIGO

struct LIFO
{

int Dato;

struct LIFO *sig;

En la programacion, este tipo de estructuras es conocido como
LIFO (Last In First Out), que significa “iltimo en entrar y primero en
salir”. Como podemos observar en el codigo del ejemplo anterior, la
definicion es idéntica a la
creacion de un nodo.

Esta representacion
puede verse claramente en
la Figura 41.

Ahora que conocemos
como declarar una pila, es
importante que repasemos
las diferentes operaciones
» Figura 41. Representacion de una que podemos llevar a cabo

pila tomandola como una estructura sobre ellas, para luego

declarada en memoria. I aplicarlas a un ejemplo

practico:

LIFO

Dato Sig

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 313

OPERACIONES

v ACCION v UTILIDAD

PilaVacia Motifica si hay o no elementos en la pila.
Pop Permite retirar elementos de la pila.

Tabla 3. Operaciones en una pila.

Aunque el proceso de armado y manejo de una pila parezca
sencillo, debemos prestarle mucha atencién a su forma algoritmica de
desarrollarlo. Para esto, a continuacion veremos las operaciones que
podemos realizar en dicha estructura.

Crear una pila

Si la estructura no esta declarada o esta vacia, no podremos hacer
uso de ella hasta desarrollar lo siguiente:

PSEUDOCODIGO C++

struct LIFO
{
int Dato;
struct LIFO *sig;
%
Struct LIFO *tope;
Struct LIFO *hase;

Struct LIFO *nuevo;
varAux int;
void CrearPila()

www.redusers.com <«

314 =4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

{
if(tope==NULL)

{

nuevo = new LIFO;

if(nuevo!=NULL)

{
Cin=>varAux;
Nuevo->dato=varAux;
Nueve->siguiente=tope;
tope=nuevo;
base=nuevo;

}

}

else

{
cout<< "“La pila esta creada, debe

insertar un dato”;

}
}

Teniendo en cuenta que la palabra new crearda un nodo en memoria,
veamos un ejemplo de coOmo iniciaria nuestra pila, en la Figura 42.

444

MEMORIA RAM

La memoria RAM (Random Access Memory) es considerada la memoria principal de un equipo informati-
co. Esto se debe a que es la encargada de brindar el soporte para la carga de software y ayudar a todo
el procesamiento de informacion, por parte del microprocesador.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

315

struct LIFO
(LIFO
it dato; LI Sig Pila
struct LIFO *sig; NULO
3
pri
struct LIFO *tope; NULO
struct LIFO *base;
ult
struct LIFO *nuevo; NULO
varAux int;
nuevo
| Ingresa el valor 5 ' Dato Sig
0 NULO
void CrearPila() nuevo
[Dato Sig
7 (tope == NULL) 0 NULO Pila
{
nuevo = new LIFO; Se cea el valor
if (nuevo != NULL) en memoria
{
Cin >> varAux; nuevo
Nuevo -> dato=varAux; Dato Sig
Nuevo -> siguiente=tope;
5 NULO
tope = nuevo; tope
base = nuevo; - D Tuevg
| ato ig
} bese x-w 5 | NULO
else =
{
cout << “La pila esté creada, |5e crea el pr‘imer'
debe insertar un dato” nodo de la pila
}

Figura 42. En este esquema podemos ver la representacion de como
se crea una pila en codigo C++ y como se veria graficamente.

www.redusers.com &

316 [E=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Insertar en una pila (push)

Para insertar datos en una pila, es importante tener en cuenta a la
variable apuntadora tope, es decir que la pila puede moverse solo por
uno de sus extremos.

L]
L]
L]

nuevy s

NUevo
Dato Sig

9 NULGl

4 Figura 43. Representacion grafica de lo que sucede al insertar y
eliminar en una pila.

PSEUDOCODIGO

void Push()

{
if(base!=NULL)

{

nuevo = new LIFQ;

if(nuevol=NULL)

{

» www.redusers.com

INTRODUCCION A LA PROGRAMACION ==4

317

[Figura 44. En esta imagen podemos ver la representacion grafica de
lo que sucede en la insercion de una pila.

www.redusers.com

<«

318

6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Eliminar en una pila (pop)

Para suprimir un nodo debemos utilizar un apuntador auxiliar (por
ejemplo P) que guarde la direccion del tope de la pila, y otro auxiliar
que almacene el dato que contiene el nodo a eliminar. El apuntador tope
debera indicar la direccion del nodo anterior al que va a ser eliminado.
Luego, para eliminar el nodo, utilizamos la funcion delete e indicamos
qué valor se quita de la pila. Veamos el codigo:

PSEUDOCODIGO

» www.redusers.com

C++

struct LIFO *P;
void Pop()
{
if(base==NULL)
{
cout<< “La pila no tiene elementos”;

if(tope==NULL) and (base!=NULL)
{
delete(base);

VarAux=tope.Dato;
tope=PSig;

delete(P);

cout<< "“El dato que acaba de salir de la pila
es: "+ VarAux

INTRODUCCION A LA PROGRAMACION 319

L
L
LI

P
tope
Si (tope = nulo)
base <> nulo
y) varAux |0
base
P
tope
P = tope
VarAux = tope.Dato | | varAux |9
tope = PAnterior
hase
P
tope
Eliminar {P) varAux |9
hase

Figura 45. En esta imagen podemos ver la representacion grafica de
lo que sucede al eliminar un nodo de una pila.

www.redusers.com &

320

=== 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Listar los elementos de una pila

El listado de los elementos se realiza en forma secuencial, desde el
ultimo hasta el primero, utilizando siempre una variable auxiliar que es
la que va leyendo cada uno de los nodos.

PSEUDOCODIGO C++

void Listar()
{
if(base!=NULL)

P=tope;
While(P!=NULL)
{

cout<< P.Dato;
P=Psig;
%

Buscar elementos en una pila

Para buscar un elemento dentro de una pila, necesitamos utilizar
un algoritmo muy similar al que aplicamos antes para listar los
elementos. En este codigo, es importante que agreguemos un segmento
condicional dentro de la repetitiva.

Hasta aqui hemos repasado las diferentes operaciones que podemos
realizar sobre una estructura de dato PILA. A continuacién vamos
a trabajar en el empleo de una de ellas, aplicado a lo que se conoce
como maquina postfija. Para darnos una idea mas clara, podemos
relacionarlo con las operaciones aritméticas de una calculadora.

Vector en donde tendremos datos cargados:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 321

PSEUDOCODIGO C++

void Buscar()

£
cin==VarAux
if(base!l=NULL)

{

P=tape;

While(P!=NULL)and(VarAux!=Pdato)

{

P=Psig;

%

if(P<=NULL)

{

cout<< “Dato no encontrado®

}

else

{

cout<< “Encontramos el dato!!!

La tarea del algoritmo es recorrer el vector, tomar los valores que
son numéricos y cargarlos en una pila determinada. De esta forma, se
constituye el paso 1 que podemos observar en la Figura 46.

www.redusers.com <«

322 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Paso 1
P Figura 46.
Pila Representacion de
la pila y sus datos,
" utilizada para la
maquina postfija -
2 paso 1.
4
3
Resultado:

Una vez que hayamos cargado la pila con los valores numeéricos,
debemos recorrer el vector y comenzar a ejecutar los operadores
aritméticos, como + - * / A. Luego debemos tomar de la pila dos valores
numeéricos para ejecutar dicho operador y asi llegar al paso 2.

Como podemos ver en la Figura 47, los dos valores que estan

al tope de la pila son tomados para llevar a cabo la operacion: 4 A 2.
El resultado se almacena en la pila, y se siguen tomando dos valores
numeéricos continuando con la siguiente operacion en el paso 3. Asi
sucesivamente, el resultado del paso 3 es almacenado en la pila y se
ejecutan los resultados, para dar el resultado final en el paso 4.

=) " —
! @ ~ARBOL BINARIO '

El arbol binario de blisqueda con su estructura en arbol permite que cada nodo apunte a otros dos: uno

que lo precede en la lista y otro que lo sigue. Los nodos apuntados pueden ser cualesquiera de la lista,
siempre que satisfagan esta regla basica: el de la izquierda contiene un valor mas pequeno que el nodo
que lo apunta, y el nodo de la derecha contiene un valor mas grande.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 323

Paso 2 Paso 3 Paso 4
Pila Pila
64
3 67

Resultado: Resultado: Resultado: Resultado:

4172=16 16 *4-64 64 +3 =67 67

Figura 47. Representacion de lo que esta sucediendo internamente en
la maquina postfija — pasos 2, 3y 4.

Cola

Esta estructura de datos representa la agrupacion de elementos que
quedan en espera hasta ser utilizados en un orden determinado. Si lo
llevamos a nuestra vida cotidiana, podemos ver ejemplos muy claros,
como cuando hacemos la fila para pagar en el supermercado o sacar
una entrada para ir al cine.

Bajando estos ejemplos a la informatica, veremos que nuestras
aplicaciones utilizan a diario esta estructura. Por ejemplo, la cola
de impresion en el spooler (memoria) que se genera en el envio de
multiples archivos por imprimir. El primer archivo es el que sale
impreso vy, luego, salen los siguientes.

www.redusers.com &

324 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Para conocer en detalle como funciona internamente este concepto,
debemos tener en cuenta que este tipo de estructura de lista también
es conocida como lista FIFO (First In First Out): el primero en entrar es
el primero en salir.

Para utilizar este tipo de estructura, definimos un nodo de la misma
forma en que venimos trabajando:

PSEUDOCODIGO

struct FIFO
{

int Dato;

struct FIFO *sig;
%
struct FIFO *primero;
struct FIFO *ultimo;

A continuacion, veamos un ejemplo grafico que nos indique las
variables primero y qltimo, teniendo en cuenta que su funcionamiento se
da por orden de entrada.

- LN
Primero en Ultimo en .

entrar entrar .
nulo

B> Figura 48. Representacion del funcionamiento de una cola y los
diferentes elementos que debemos tener en cuenta.

La cola es una de las estructuras dinamicas que se caracterizan por
su estructura lineal y porque el primer dato ingresado sera el primero
en salir. Tenemos dos apuntadores en la figura anterior, que se llaman

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 325

primero y ultimo. Las flechas indican por donde entran y salen de FIFO.
Debemos tener en cuenta que si la estructura cola no existe o esta
vacia, esta no existira. Esto debe controlarse por codigo.

Crear una cola

Como vimos anteriormente, si una cola esta vacia, es necesario
crearla para poder ingresar los datos. Para hacerlo, debemos realizar el
algoritmo que veremos a continuacion.

Primero —— nulo

Ultimo ——— nulo

Cola (vacia)

E= Figura 49. Representacion de una cola vacia y el estado en que esta
cada elemento que la compone.

Cuando no se ingresan datos en la estructura, las variables auxiliares
primero v ultimo (que almacenan la direccion de memoria del primero y
ultimo nodo) no tienen ninguna direccién, por lo que su valor es nulo.

PSEUDOCODIGO

void CrearCola()
{
struct Nodo *Nuevo;
int VarAux;
if(primero!=NULL)
{
nuevo = new FIFQ;

www.redusers.com «

326 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Revisemos lo que acabamos de hacer en el cédigo:

LR
LR]
L]

> Figura 50.
Representacion
de lo que sucede
en la cola vacia al
ejecutar el codigo
anterior.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION USERS Y|

1. Tomamos FIF0.siguiente y hacemos que apunte a nulo.
2. Indicamos que el puntero primero apunte a FIFO.
3. Indicamos que el puntero altimo también apunte a FIFO.

Insertar en una cola

Asi como venimos trabajando en la insercion de nodos en
estructuras, en este caso el algoritmo es similar y solo debemos tener
en cuenta que se insertara al final de ella.

Iniciaremos con: un nodo por insertar, un puntero que apunte a él y
una cola no vacia (donde los punteros primero y ultimo no seran nulos).

Ahora veamos el algoritmo y una figura representativa en la Figura 51.

PSEUDOCODIGO C++

void InsertarCola()
{
struct Nodo *Nuevo;
int VarAux;
nuevo = new FIFO;
if(nueve!=NULL)
£

Cin>>VarAux;
Nuevo->dato=varAux;
Nuevo->siguiente=NULL;
Ultimo.sig=Nuevo;

ultimo=Nuevo;

www.redusers.com <«

328 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

cout<< “No hay memoria suficiente”;
}
H

Revisemos lo que acabamos de hacer en el codigo:

Primero Nt

1 —t+— nulo

Q

Uitimo

r
= @

Cola

Figura 51. Representacion de lo que sucede al insertar un elemento en
la estructura.

1. Hacemos que Nuevo.siguiente apunte a nulo.
2. Luego que ultimo.siguiente apunte a Nuevo.
3. Y actualizamos ultimo, haciendo que apunte a Nuevo.

Eliminar elementos de una cola

Hay dos escenarios que podemos considerar para eliminar un
elemento de la cola: que haya un solo elemento o que haya varios.

Es importante tener en cuenta que, para eliminar un elemento, este
debe ser el primero que entré en la cola.

PSEUDOCODIGO C++

Algoritme Eliminar void Eliminar()

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 329

Variable AuxNodo tipo FIFO
Inicio

Si Primero =nulo

Escribir “No hay elementos para eliminar
Sino

Si (Primero = Ultimo)
Eliminar (Primero)

Primero = nulo

Ultime = nulo

Sino

AuxNodo = primero.Siguiente
Eliminar (Primero)

Primero = AuxNodo

Fin Si

Finsi

Fin

www.redusers.com L {4

330 D=4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

En el grafico de la Figura 52 podemos ver la representacion de
como seria el proceso del codigo anterior.

Primero Ultimo s

N\ nulo

@ 1 5 12 @

B Figura 52. Representacion de lo que sucede cuando se elimina un
elemento de la estructura.

Revisemos algunas partes del coédigo anterior:

El primer condicional SI (Primero = Ultimo) controla si la cola tiene un
solo elemento y, de ser asi, lo elimina. Contintia con el SI anterior; en
caso de entrar, asignamos a AuxNodo la direcciéon del segundo nodo de
la pila: primero.siguiente. Liberamos la memoria asignada al primer nodo,
el que queremos eliminar, indicando el apuntador primero y, por altimo,
asignamos a primero la direccion que quedo6 almacenada en AuxNodo.

Listar los elementos de una cola

En caso de tener que listar los elementos de una cola, debemos saber
que los elementos no son secuenciales, sino que debemos trabajar como
en los algoritmos de recorrido anteriores. Vamos a necesitar un valor
auxiliar que almacene la posicion de los nodos que vamos visitando.

14
‘€) coLAvs.PtA T

A

La diferencia en estas estructuras radica, principalmente, en cual elemento sale primero. En las colas, el
primero en entrar es el primero en salir. En las pilas, los primeros elementos que entran son los dltimos

que salen; también los elementos que se insertan y eliminan pertenecen al mismo extremo.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 331

PSEUDOCODIGO C++

void Listar()
{
struct Nodo *AuxNodo;
if(primero!=NULL)
{

Cout<<"Lista de COLA: “;

while(AuxNodo<>NULL)

Cout<<AuxNodo.Dato;
AuxNodo=AuxNodo.Sig;
}
}
else
{
Cout<<"No hay elementos";
3
}

ESTRUCTURA GRAFO

Esta estructura consiste en un conjunto de nodos, también llamados vértices, y un conjunto de arcos o
aristas que establecen relaciones entre los nodos. El concepto de este tipo de datos abstracto desciende
directamente del concepto matemético de grafo. Por ejemplo: una lista lineal puede ser vista como un
grafo, donde cada nodo esta relacionado con otro nodo distinto de él.

www.redusers.com <«

332 [==4 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Como podemos ver en los ejemplos de codigo, la variable auxiliar
jugara un papel fundamental, ya que ira moviendo su puntero por cada
nodo y mostrando la informacion que haya en ellos.

Buscar elementos en una cola

Aprovechando el codigo anterior de ejemplo, solo debemos ajustar
con una condicion el recorrido de los elementos en una estructura cola.
Veamos como seria el algoritmo:

PSEUDOCODIGO C++

void Buscar()
{
struct Nodo *AuxNodo;
int Aux;
if(primerol=NULL)
{
cin==Aux;

AuxNodo=primero;

while(AuxNodo<>NULL)and
(AuxNodo.dato<=Aux)

AuxNodo=AuxNodo.Sig;

if(AuxNodo=NULL)

cout<<"MNo se encontro el

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 333

elemento buscado”;
}

else
{

cout<<"Encontramos el elemento

buscado!!";
)
i
else
{
Cout<<"No hay elementos”;
}
}

Como podemos ver, el uso de colas de espera puede reconocerse
en distintos tipos de negocios. Por ejemplo: se utiliza cola cuando los
bancos imprimen tickets con los nimeros de atencion, para que los
clientes sean llamados por medio de un monitor.

También podemos utilizar una cola para la espera de diferentes
tareas que deben ser ejecutadas, por ejemplo, tareas de mantenimiento
en un sistema operativo: 1-limpieza de RAM, 2-Limpieza archivos
temporales, etc.

RESUMEN

Mas alla de las estructuras estaticas de arreglos (vector/matriz), ahora hemos conocido otras estructu-

ras dinamicas de almacenamiento en memoria y analizado cuales son sus diferentes usos. También vimos
las primeras estructuras dinamicas de lista manipuladas a través de distintas acciones, tales como: crear,
insertar, eliminar y recorrer. En todos los casos, conocimos la forma de la sintaxis y los algoritmos por
utilizar, concluyendo con algunas posibles implementaciones sobre dichas estructuras. Desde las listas
se puede comprender mejor el uso de: listas enlazadas, doblemente enlazadas, pilas y colas, estructuras

que ahora podemos diferenciar en el uso del software cotidiano.

www.redusers.com <«

334 6. ESTRUCTURAS DE DATOS EN LA PROGRAMACION

Actividades

W 00 N O g B W N =

-
o

TEST DE AUTOEVALUACION

;Qué son las estructuras dinamicas y cudles son las caracteristicas de una lista?
;Qué es un nodo y cdmo sabemos si tenemos memoria para crearlo?

Compare una lista enlazada simple con una doblemente enlazada.

;Por qué el recorrido de la lista no se hace en forma secuencial?

;Como identificar el inicio o final de una lista?

;Qué algoritmo se utiliza para borrar un nodo ubicado en medio otros?

;Qué operaciones se pueden realizar en una pila?

:Es posible listar el contenido completo de una pila?

A qué se llama LIFO y FIFO?

¢Es posible eliminar el dltimo elemento de una cola?

ACTIVIDADES PRACTICAS

Desarrolle una funcién que recibe una lista de enteros L y un nimero entero n,
de forma que borre todos los elementos gue tengan este valor.

Cree los valores de dos listas de enteros ordenados de menor a mayor y
desarrolle una funcion Mezcla2 para obtener una nueva lista, también ordenada.

Desarrolle en codigo (pseudocddigo o C++) una funcién llamada
encontrarGrande que encuentre el mayor nimero en una lista simple. Usted debe
crear los valores que contiene la lista.

Desarrolle un programa en C++ que cree una estructura para generar una lista
doblemente enlazada y crear las funciones para: agregar, eliminar e imprimir los
elementos de la lista.

Desarrolle un programa que pueda crear un arreglo de 10 elementos de listas
enlazadas, para guardar numeros enteros entre 1 y 100.

En la posicion O del arreglo iran todos los nimeros ingresados menores a 10; en
la posicion 1, todos los nimeros ingresados mayores o iguales a 10 y menores
que 20; en la posicion 2, todos los niumeros mayores o iguales a 20 pero
menores que 30, etc.

» www.redusers.com

ARNRRRRRRRENNNN

4744

Normas generales en
las interfaces graficas

Luego de haber conocido en el capitulo anterior otras
estructuras dinamicas de almacenamiento en memoria y
analizado cuales son sus diferentes usos, en esta seccion,
trabajaremos con las normas necesarias para adentrarnos
en el diseno y la confeccion de interfaces graficas desde el

lenguaje de programacion Visual Basic.

! v Normas de disefio Componentes usuales - visuales 355
| de interfaz......cccccenrennsnnssnnnnnns 336
' Interfaces de usuario: evolucion v Confeccidn de interfaces
y estado del arte actual.................. 337 en Visual BasiC ...cocermnsnsssenennss 357
Fundamentos del disefio '
| o TR o oo 345 b 1)]| PRS-
!
v Interfaces de v Actividades........ceerernernnennnen. 366 |
escritorio/web/movil 349

AAA

Servicio de atencion al lector: usershop@redusers.com

336

USERS|

Normas de diseno

de interfaz

Cuando confeccionamos interfaces graficas, debemos considerar un
conjunto de normas que pueden ser estructuradas o no, dependiendo

del tipo de sistemas que queramos generar.

7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

IMAGEN B

IMAGEN A

5 Repere de dates de bz predusts: de poveadere: oo

‘/Mm: * rpeveir impamir Tode. @

Ma g
[s bisarvo | Pora Grwar
Nerrbre St

| Predacts
| Wosirar an pantals
|| oo Irgeisi e hajss

g5 Admanistrar Productos

= (=] 2B

NNLSHdS & @@

entornos o dispositivos.

) AGREGAR CONTROLE

Cada tipo de control tiene su propio conjunto de propiedades, métodos y eventos que lo hacen adecuado
para un proposito en particular. Cuando debemos agregar repefidas veces confroles del mismo tipo,
podemos realizar una accion que nos facilitara este proceso: primero presionamos la tecla CTRL y la
mantenemos asi, luego seleccionamos con el botdn izquierdo el control y lo agregamos en el Form las

veces que deseamnos; al finalizar, soltamos la tecla CTRL.

» www.redusers.com

e Figura 1. Interfaces graficas que podemos encontrar en distintos

INTRODUCCION A LA PROGRAMACION 337

El conjunto de normas que veremos en los siguientes parrafos
corresponde a una serie de generalidades para la buena confeccion
de interfaces graficas y recomendaciones que nos permitiran tener
precaucion al momento de disefiarlas. Podemos conceptualizar que
el estudio y desarrollo del disefio de interfaz prioriza el trabajo de
varias disciplinas en funcion de un mismo objetivo, que es comunicar y
transmitir a través de un medio electronico.
El disefio de interfaces graficas (GUI) es un
factor muy importante en el desarrollo del
software, ya que es el medio que nos permitira NUESTRO OBJETIVO
comunicarnos con todos los usuarios que ES LOGRAR QUE LOS
interactuen con nuestros desarrollos. Nuestro
objetivo principal es buscar la forma en que ellos USUARIOS PUEDAN

puedan comunicarse con el programa de manera INTERACTUAR DE
efectiva, obteniendo asi un disefio de la interfaz
confortable que no requiera esfuerzo para su MANERA EFECTIVA

comprension. A continuacion, veamos ejemplos
de interfaces de aplicaciones de escritorio.

Como podemos observar en la imagen A de la Figura 1, hay cierto
desorden en la interfaz grafica a simple vista; en contraste con la
imagen B, que es armonica y aparenta ser organizada. Es importante
tener en cuenta que esto dependera de coémo sea el funcionamiento de
la interfaz. En el caso de esta figura, podemos suponer que se trata de
administrar o cargar productos en un sistema.

A continuacion, veremos diferentes interfaces que podemos
encontrar en el entorno actual.

Interfaces de usuario:
evolucion y estado del arte actual

A lo largo de los anos, los medios de comunicacion han ido
evolucionando de forma impresionante; por ejemplo, desde aquellos
grandes equipos utilizados con tarjetas de perforacion, hasta los
dispositivos actuales que toman nuestro cuerpo y voz como medio de
interaccion con equipos electronicos.

Repasemos ahora cuadles son los tipos de interfaces que podemos
encontrar en la actualidad.

www.redusers.com &

338 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Figura 2. Interfaz de escritorio: MAC OS, sistema operativo utilizado
para los dispositivos de la empresa Apple.

En la Figura 2 podemos ver el ejemplo de una interfaz grafica de
escritorio, en este caso aplicada al sistema operativo MAC OS. En la
Figura 3, podemos ver el modelo habitual de una interfaz de consola.

W Adewsitmi © W ptenFomle - dskgan e
PICKIMEL > dis

Figura 3. Interfaz
de consola: MS
DOS, sistema
operativo
empleado en

| modo texto.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 339

Gganbg 1060 PR & f-.w;:y-c-l_m-mm-u | "@l!h--h-.--;mu.mu 2 Hotmad .J_;ﬁ;_* PR USRS | Woticies « \;- | i,
* € O wwwredusers.oom ar A :
M5 () Scltmass Corber B Mucioooft Viehasl A, % Miscoo OnLine [Lsboastors d Balor Rutiogeibin Docnnde =] Oteos marcadoncy -

S NIH AT

SELINS I Us=* AHORAYWTAMBIEN, &
neD~a <=4 EN\VERSION|DIGITAL

Il a [FARGwREE | COLULARTS | GADOETS | WTEAWET | wibtos | tooas |

TEMAS CALENTES EMCURSTAS | MODELE | UODDMG | SAARTPHONES | CHICAS REDUSERD | GALANY 58 | MEGALFLOAD | WINDOWS @

HOTICIA DESTACADA

Apple: Samsung dife que el iPhane “era

PRCLETTAT
Lieil de coplar”™ Frsmtas {Cos e
L prinens semans onreenss ol jene seire Spple e,
SamEun) er EFLBSDE LUTaOed, DETO L) SOOI Ba BB
TERISAN PrLert

=
[

Figura 4. Interfaz web: informacion en linea que se presenta a través
de un portal de noticias y ofertas.

En las Figuras 4 y 5, veremos dos ejemplos de interfaces web
que le permiten al usuario acceder a los contenidos, realizar tareas y
comprender las funcionalidades.

We make great games
and we love it!

S
iy wrrg op Riohoge) g v | . =
BiaciMase Drsgn Woe are wmad_ sk 4 @
[P 3
o] AL) "y
] serime s " r “iailn s =5

Aot from crrang our pmn iz, wr y "iob =3

e by Lol e e e e 8, Fy

- LU 5
x

» Figura 5. Interfaz web: sitio atractivo que ofrece servicios de

diseno para diferentes tipos de actividades.]

www.redusers.com &

340 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Figura 6. Interfaz tactil: diferentes sistemas en los smartphones que
nos permiten interactuar con los teléfonos.

En la Figura 6 podemos ver distintos sistemas de interfaces tactiles.
En el caso de la Figura 7, tenemos otro ejemplo de interfaz, esta vez
aplicado a las consolas de videojuegos.

sin hacer nada &n la interfaz

Figura 7. Interfaz
de movimiento:
Xbox 360

nos permite
personalizar y
utilizar diferentes
dispositivos para
esta interfaz.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION USERSHEEKT)]

Durante los primeros anos de los equipos informaticos, los medios
de interaccion existian a través de tarjetas perforadas. Para darnos una
idea mas clara, observemos la imagen de la Figura 8.

JEQEl T @ugen ool iaN b bt Bl ¥ M. & " ol oy P Y

APORRRRON EOROOO0 B0 SONBROONOONONRERANORRRRRODNOCONODODRRRONRDER HER D AORDRRONAS
PN R BN AR INGR PRI RAN IRV ARI PN VIR N EN BV PO RV NAT BN AU AN
L R R R R RN R RN R N A N R R N R R NN R RN AN NN AN RN NNNERY
P ORRTRTLATRITIRDITINRIDINNIINNNNNY 1M1 rnnrnnnnaannnnnnnnn
FIRAN0DR3FL 00330 FNIIINAIAININNNNNNT N NNANNNARNNNNININNINNIANNNNNNNANNNNAININ
AL R s R BRI
338 BAEES B B RS SSSRESSSSINNNIINAINIANNNNY AN 9N 355 SRINRINISNNNNG 8
GG FGEREREECEGUERERECEEREECECEECEERE _ CEEEEESFEEEEE65 GHEFEGEGHG SEEREE5 6 GREGH
I ”HI”I”IH”FHIFH'J'ili'I'HIHH‘iHHH;JrHH prer_garnreaveenares areg verarr A
BONBEERRNEE PR R BRI RE AR PR R r AR RSO ER BB BN NN EAD BERIRENEEERRRNERL. BN
SISRESROAYAED 9959 80 590995909 300000000008 9000 0500000000008 900080099393133)

VEL & iqll-l.“i l-i‘:" E e L AR R R L P P D T P PP T T PR P ey

= Figura 8. Tarjeta perforada binaria que se usaba hace décadas para
gestionar los datos que se necesitaban procesar.

Imaginemos afios atras, cuando la forma de interactuar con los
equipos informaticos era por medio de estas tarjetas, y los usuarios
debian tener el conocimiento para poder “leerlas” y ver sus resultados.
Es impresionante ver como se inicio el almacenamiento de datos,

| @ TARJETA PERFORADA

La tarjeta perforada es una lamina hecha de cartulina que contiene informacidn a modo de perforaciones
segun un codigo binario. Fueron los primeros medios utilizados para ingresar informacion e instrucciones
en una computadora en los anos 1960 y 1970. Las tarjetas perforadas fueron usadas por Joseph Marie
Jacquard en los telares que inventd.

www.redusers.com &

342 D=4 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

utilizado muchas veces por bancos cuyos equipos de computos solian
ocupar salones completos.

Continuando con equipos personales, se utilizaron interfaces
de consola donde se escribia solo texto. Como podemos ver en la
Figura 3, los sistemas operativos se cargaban en memoria, como
DOS, y se manejaban por medio de comandos escritos con el teclado.
Para ejecutar lo que deseabamos, era necesario conocer el listado de
operaciones posibles.

A continuacién, veamos otro ejemplo de los afios 80.

XEROX 8010 Star Information System

St peeldes inbegradid tev i end graphio, & vaslety of e 1ines an stples raay be med,

T AOACEHUg a

VERERR O
D) @ Varmpowmry titie page L 1000 1

[A 2eppright and abavaa = Pagi 10 112
O W frcat matier A Fagey 1GfMe 308
[haptacs 1 Faged 100 N5
[0 thagierd 5P LD 238
Oy Chagaerd Eals) TN TR
[y chagters 6P TR 2047
[} Chopters 15 Fage 1M VA5
0 Chagters 7 Fages A 803
[ohagrer? 1IFsge TEIEs 2ze
[} Meferenies FPagei 1001 205
O Styles 5 Pages Rl DL+
=i — [i—

= Figura 9. Xerox 8010 Star (1981) fue una de las primeras interfaces
graficas en el sistema operativo.

o
/ @ XEROX 8010 STAR

Fue el primer sistema gue combinaba una computadora de escritorio con una serie de aplicaciones e
interfaz grafica de usuario (GUI). Se lo conocié originalmente como Xerox Star, aunque luego sufrio dos

cambios en su nombre: primero a ViewPoint y, mas tarde, a GlobalView.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 343

Podemos destacar que la evolucion de colores en las interfaces fue
una revolucién en la interaccion usuario/maquina. Esto se pone de
manifiesto en la Figura 10.

Aniga Workbench, Version 1.8, 47528 free nenory e
[=|Horkbenehis i) .
3

=\

Denos Clock
=1

Utilities

Systen

[E=m=]|

Figura 10. Amiga Workbench 1.0 (1985) fue una de las primeras
interfaces en color que salié al mercado.

La evolucién de interfaces sobresale en la aparicion de Windows 95,
un sistema operativo cuya interfaz grafica amigable lo convirtio en uno
de los mas instalados en computadoras personales. Debido a ello, la
mayoria de las empresas fabricantes de hardware y software tienden a
desarrollar sus aplicaciones basadas en dicho sistema.

Sistema operativo del Amiga, cuya interfaz grafica fue adelantada para su tiempo, ya que ofrecia cuatro

colores (negro, blanco, azul y naranja), multitarea preventiva (adoptada recién 10 afos después por otros

sistemas), sonido estéreo e iconos multiestado (seleccionados y no seleccionados).

www.redusers.com &

344 D=4 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

= IE! ’E!‘I!a]! &Iﬂall "!I X'ﬂfl

- nts
M ezqbbothocd -l j. My Computer | l
G i Plopey 1) MS-DOS My Ciodut
v ¥ & 5% Flopey (B —
- = (C) :
Recycle Bin) ﬁ MSDMed? (D) Mew Device Found
% & Sides onPreser
& 3 B e @ Megshertz 02144 . 325iz POMCIA Modem
| 2 Transfer on‘Tod =
4] Fonts
5] Control Fanel
(] Priters
B Helwork Neighborhc

Recyels Bin =
| »

[122M8E

‘windows i nstaling suppodt for the hardware shown above.

b Figura 11. Windows 95 (1995) es el sistema operativo con el que
Microsoft logro posicionarse en el mercado mundial.

En el transcurso del afio 2000, podemos encontrar varias

revoluciones de interfaces graficas muy estéticas y faciles de utilizar,
como Windows XP, Linux y MAC OS.

Si lo pensamos en la actualidad, descubrimos interfaces muy
simpaticas y amenas que utilizan diferentes medios para interactuar,
como vimos en las Figuras 4, 5, 6 y 7. A continuacion, veamos cuales
son los sistemas operativos mas frecuentes del momento.

444

WINDOWS 95

En Windows 95 se aplicd una nueva interfaz de usuario que fue compatible con nombres de archivo

largos de hasta 250 caracteres, capaz de detectar automaticamente y configurar el hardware instalado.
En esta version se incluyeron numerosas mejoras, entre ellas: se ofrecieron varios estados a los iconos,
aparecio por primera vez el famoso botén de Inicio, y surgieron otros conceptos relacionados con el
aspecto visual que se conservan hasta el dia de hoy.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =S 345

SISTEMAS

v EMPRESAS v VERSIONES v DISPOSITIVOS

Apple MAC 0S X Mountain Lion Computadora de escritorio/laptop
www.apple.com/osx

Linux Varias versiones Computadora de escritorio/laptop
WwWw.linux.org Equipos portatiles (smartphone)

Tabla 1. Sistemas operativos utilizados tanto en dispositivos moviles como
en equipos de escritorio.

Fundamentos del diseno de interfaz

Existen varios factores que influyen en la toma de decisiones sobre
el disefio de interfaz; por eso, podemos considerar las siguientes
preguntas que nos ayudaran a encaminar nuestra perspectiva.

v PREGUNTA v DESCRIPCION

iPara quién? Lo que vamos a disenar puede ser para una persona o un grupo, para una tarea
genérica o especifica, para automatizar procesos, etc. Por eso, es fundamental
saber al sector al que nos dirigimos, conocer sus habilidades y experiencias. Otro
aspecto importante es el género en donde sera utilizado el desarrollo: gerente

general, técnico, cientifico, etc.

www.redusers.com <«

L (Y USERS | 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Tabla 2. Estos son algunos de los fundamentos importantes de diseno que
debemos tener en cuenta a la hora de programar.

Estas preguntas importantes nos serviran para fundamentar
nuestros disefios graficos, darles sentido y funcionalidad. Como
veiamos antes, el disefio de la interfaz debe garantizar un sentimiento
de seguridad que guie y condicione al usuario, para asi brindar un
control total sobre ella. Para generar estas condiciones, debemos
considerar distintos recursos multimedia, imagenes, sonidos,
animaciones, videos, etc., aplicindolos en su medida justa para lograr
la integridad del disefio. Por ejemplo, debemos evitar caer en
inadecuadas aplicaciones de los pedidos de usuario.

L]
L]
L

Jﬂm * imprinic | Imprimit Todo | (E3)
Uno Nuevo | Para Emrar|

Nombre Imprimi 2kgo
Producto

() Mostrar en pantalla
Cédgo ') Imprinit en hojas

P> Figura 12. Una mala aplicacion de concepto puede ser incluir en la
interfaz gustos peculiares, como un cuadro de futbol.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 347

No debemos tomar todos los gustos individuales de una persona que
utilizara el desarrollo, como veiamos en la Figura 12. Es importante
tener un cierto discernimiento para saber seleccionar adecuadamente
las caracteristicas personalizadas.

A continuacion, veamos algunos fundamentos que debemos tener en
cuenta en el disefio de una interfaz grafica.

1. Sencillez: evitar la saturacion e inclusion innecesaria de elementos,
ya que su funcién es acompaifar y guiar al usuario.

2. Claridad: la informacion debe ser facil de
localizar. Para eso, es necesario establecer

una organizacion, ya sea de manera logica, ES IMPORTANTE QUE

jerarquica o tematica. Esto es fundamental LOS ELEMENTOS

porque, cuanta mas informacion ubiquemos

en la pantalla, mayor sera la distraccion o UTILIZADOS

confusion para el usuario. CORRESPONDAN
3. Predecibilidad: para acciones iguales,

resultados iguales. AL CONTENIDO

4. Flexibilidad: el disefio de la interfaz debe
ser claro y predecible en cuanto a la mayor
cantidad posible de plataformas.

5. Consistencia: lograr una semejanza entre las diferentes interfaces
del sistema, estableciendo una organizacion segun la funcion de los
elementos. Para el usuario, es importante que la interfaz sea similar
en las distintas aplicaciones. Por ejemplo, en una aplicacion web, la
ubicacion del listado de contenido suele estar del lado izquierdo.

6. Intuicion: el usuario debe poder sentirse seguro y no tener
que adivinar ni pensar como ejecutar las acciones. Por eso, es
importante que la aplicaciéon lo “guie” para realizar su cometido, sin
necesidad de recurrir a un mapa de ruta.

- TABCONTROL

El control TabControl contiene paginas de fichas representadas por objetos TabPage, que se agregan me-
diante la propiedad TabPages. El orden de las paginas de fichas refleja el orden en que las fichas aparecen
en el control. Es una herramienta muy (til para ordenar controles o informacion, ya que el usuario puede
cambiar el objeto TabPage actual haciendo clic en una de las fichas del control.

www.redusers.com &

348

=== 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

a. Disminuir las interacciones: es importante reducir y
simplificar la interaccion del usuario, ya que su fin es el resultado
que le brinda el sistema.

Por ejemplo: cuando el usuario utiliza Google, no lo hace por el
gusto de hacer clic en “Buscar” ni por el atractivo de su logo. Por
eso, cualquier interaccion que Google incluya va a interponerse en
la necesidad del usuario. Actualmente, se ha reducido la interaccion
gracias a la busqueda inteligente, porque a medida que el usuario
escribe sobre el buscador, van apareciendo los resultados posibles.
b. Orden y presentacion: la informacion debe mostrarse en forma
logica, agrupando todos los campos que sean similares entre si.

Por ejemplo: en la carga de datos personales, debemos agrupar los
datos del domicilio por un lado (direccion, codigo postal, ciudad,
etc.) y los niveles educativos alcanzados por el otro.

Coherencia: todos los elementos utilizados (textos, graficos,
colores, etc.) deben corresponder al contenido de la publicacion.
Buen uso de controles: en disefo, es fundamental el uso correcto
de componentes visuales, tales como: etiquetas de texto, campos de
texto, listas desplegables, casillas de opcion, botones de opcion y
grillas de resultados. Cada componente tiene un comportamiento y
una utilidad que se deben alterar, para asi no confundir al usuario.
a. Tamaio de los componentes: debemos cuidar el aspecto de los
componentes, ya que si modificamos su tamario, estamos afectando
su grado de atencion e importancia en relacion al resto.

b. Cantidad necesaria: es importante mantener un estandar

de componentes, de modo de no confundir al usuario que visita
nuestro programa.. Si deseamos implementar alguno que se
diferencie con un funcionamiento nuevo, es preciso primero educar
a los usuarios sobre el manejo correspondiente.

c. Valores predeterminados: para agilizar la carga de

datos regulares, podemos configurar sus valores de manera
predeterminada.

Como podemos observar, el hecho de realizar una buena interfaz

que se adecue a las necesidades del usuario es una tarea que nos
demandara un tiempo considerable.

A continuacién, vamos a conocer como se trabaja la confeccion de

interfaces graficas a partir de Visual Basic.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 349

Interfaces de escritorio/
web/movil

En esta seccion vamos a repasar aquellos controles mas usuales que
utilizaremos en los distintos desarrollos y los compararemos en tres
ambitos posibles: la aplicacion de escritorio, las publicaciones web y
los dispositivos moviles.

Componentes usuales

Antes detallamos como usuales a los controles
etiqueta, caja de texto, casillas de verificacion,

botdén de opcion, lista desplegable y grilla de LOS CONTROLES
datos. Es importante tener en cuenta que los VARIAN SEGUN
diferentes controles que vamos a utilizar tienen

caracteristicas particulares, y dependeran del EL LENGUAJE, EL IDE
lenguaje de programacion, el IDE y la plataforma Y LA PLATAFORMA
que empleemos. En los siguientes parrafos

veremos una breve presentacion de cada control A UTILIZAR

en tres ambitos diferentes.

Etiqueta - Label

El control etigueta tiene un uso informativo, ya que se utiliza para
presentar informacion en pantalla. Puede ser para titular la carga de
algun control o para dejar avisos en las interfaces. Es posible modificar
su contenido para mostrar un resultado, pero en general, se utilizan
para etiquetar otros componentes.

A continuacién, veamos como deben aplicarse las etiquetas en
funcion a los lenguajes de escritorio, Web y movil.

Escritorio

www.redusers.com <«

350 D=4 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

5B Wirdmwhopatonl Mo o Vs St fdretde =R, °°
Buihivr dmae Van Bnects Guvars Depan Equgpn Detag Baevaty Pemmeiitsn Prebs Veptvid Apudy LR
i So-ddsoBlAZ2|o-m- -0 u a®a(3% Wl Phasce 7 Ermastis? - || S kel e B o .
igies algsalaiBa|lswegl i o|BEIGs@ai=. .
Cmdre de hramaertes Rl Fornlod [Duedc = [Sn e dehiel - Emplersderde solucionas
& PretDocument Y [p— FEE——— al 2 @63 H
A FreDre s orti a Famal e E o Wbl st
e [e . b Projact
W Frece T farmlub
B Frogreniar G
W Proparhyand et
@ RadecButton
BN BichTambos o
iy ESETEE
& SeralPot
Wl SersoeCormioter
M Siene
= Saalvg
TubCornrsl "
i Tebhbinuthioal b] Farml, JystoonMirntom FormesForm &
i Teathos :'_“ it J
B Timw Dy [1 .
B r T o
E TeslStiglonturnes " :pj::o'.: : 'l:
o £ vt Falug
?.-. ':, : ;U‘k:'ﬂ i 'F\ll
. b Shinadnr T aiieh, Teu
pgeiy o B,
B Vieecdlw Terwepinde Auts
i: Wb Browser mnsitsn WindeaiDetiitiociton 5
o Corlynle) pomuned . Tag

Tt Forml

£ Venbena Innaedists

> Figura 13. Uso de Tabel o etiqueta en diferentes ambitos y
entornos visuales.

Caja de texto - TextBox

La caja de texto se emplea para ingresar valores a una aplicacion
o solicitar el ingreso de datos a los usuarios. Es el componente mas
frecuente para datos tales como: nombre, apellido, busquedas, etc.

En algunos lenguajes de programacion, podemos editar varios de sus
aspectos, tales como: su tamafio de caracteres, el texto en mayuscula o
minuscula, su visualizacion en forma de contrasena, etc.

A continuacién, veamos algunos ejemplos:

\ CUADRO DE DIALOGO

En .NET contamos con varios cuadros de didlogo comunes que se pueden utilizar para mejorar la interfaz
de usuario. De esta forma, se obtiene una mayor coherencia a la hora de abrir y guardar archivos, mani-

pular la fuente y el color del texto o, incluso, imprimir.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 351

Escritorio

Veamos el resultado visual en la Figura 14.

L]
Escritorio Web Mavil
Cadiga andy
Mookl Caja de Texte :::f
= Andy Rubin
Mﬂhb T Mokile «)-850-558-1234

»

» Figura 14. Uso de TextBox/Text/Caja de texto en diferentes
ambitos y entornos visuales.

GROUPBOX

Los controles GroupBox muestran un marco alrededor de un grupo de controles con o sin titulo. Utiliza-
mos GroupBox para agrupar de forma logica una coleccion de controles en un formulario. El cuadro de
grupo es un control contenedor que puede ufilizarse para definir grupos de controles.

www.redusers.com L <4

352 =4 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Casilla de verificacion — CheckBox

Este componente brinda un conjunto de opciones para que el
usuario elija. Por lo general, lo encontramos como CheckBox, y la
propiedad que tiene es chequeado o no chequeado. La falta de marca
implica la negacion de la afirmacion.

Las casillas de verificacion funcionan independientemente una de
otra. Gracias a este componente, el usuario puede activar varias casillas
al mismo tiempo, o ninguna.

Escritorio

Veamos el resultado visual:

Escritorio Web Movil

Neqiita ty
Ceg" Una opcidn
= Cursi %
gk Otra opcion
Subrayado e

= O
= -
£l
=]

CHECHED T

b Figura 15. Uso de CheckBox/Casilla de verificacionen
diferentes ambitos y entornos visuales.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION === 353

Boton de opcion — OptionButton/RadioButton
Con los botones de opcion podemos presentar a los usuarios un
conjunto de dos o mas opciones. Pero, a diferencia de las casillas de
verificacion, los botones de opcion deben funcionar siempre como
parte de un grupo; es decir, al activar un boton, los otros no podran
seleccionarse. Adyacente a cada botén de opcion, normalmente se
muestra un texto que describe la opcidén que este representa.

Escritorio

Veamos el resultado visual:

L]
L]
L]

Escritorio Web Mavil

O Werdadero |) W azculine
1 Falso) Femenino

O

unchecker O

o
CHECKED - = ® . 0

> Figura 16. Utilizacion de OptionButton/Boton de opcion en
diferentes ambitos y entornos visuales.

www.redusers.com «

354 [OE=E35

Lista desplegable - ComboBox/ListBox

7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Las listas desplegables permiten anadir elementos en forma de lista
y también seleccionar elementos de la misma para trabajar los datos.
Pueden tener diferentes configuraciones. En algunos casos, podemos

establecer valores predeterminados (por ejemplo, el nombre de paises

para su seleccion); en otros, podemos ingresar texto, ya sea para
buscar dentro de la lista o para agregar un valor a ella.

Escritorio

Veamos el resultado visual:

Escritorio

Web

Movil

Combo Box

| Diniﬂn 1 .

List Box - Una Seleccidn

Opeidn 2|z
Opcign3'

;| |Opcidn4 -

jay@gmail.com

Home

Home

Work

Other

Custom

F

» www.redusers.com

> Figura 17. Uso de Tista desplegable/ListBox/List en
diferentes ambitos y entornos visuales.

L]
L]
L]

INTRODUCCION A LA PROGRAMACION =Z=EH 355

Grilla de datos - Grid

Los controles de grillas son avanzados, y se utilizan para desplegar
informacioén en pantalla. En el caso de algunas interfaces, son
utilizados para disponer otros componentes. Tienen varias propiedades
y su configuraciéon es amplia.

Escritorio

Veamos el resultado visual en la Figura 18.

ae
LN]
LR]
]
Web Mavil
Homibre Apelinde Fecha de Hacamsesic

: 1 Lucas Fonching 00E-01-24

2 Jorge Sols 051007

: 3 Jaier Figuerca 1987-05-07

>

> Figura 18. Uso de grilla/Grid/GridView en diferentes ambitos
y entornos visuales.

Botones de comando

Este componente se usa para darle ordenes particulares al sistema.
Esa orden debe estar claramente indicada en el botoén, ya sea por su
titulo de texto o por su icono.

Componentes usuales - visuales

Ademas de los componentes basicos, debemos tener en cuenta otros
tipos de objetos que nos serviran para ayudar al usuario con el uso de
la aplicacion. A continuacion, veamos cada uno de ellos.

www.redusers.com «

356 D[4 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Iconos

Los iconos son la representacion grafica de diferentes dimensiones,
en el rango de 16x16 pixeles a 128x128. Por lo general, caracterizan
una accion o un evento que deseamos ejemplificar. Por ejemplo: el
icono de imprimir, el de un explorador de Internet, etc. A la hora de
seleccionar los iconos que representen las tareas de nuestro desarrollo,
debemos asegurarnos de que el usuario los reconozca. Para eso,
tendremos que evaluar su impacto a través de un test de usuarios.

Imagenes

Debemos estar atentos en la seleccion de imagenes, ya que estas
deben ayudar a la comprension y uso de la aplicacion. Por eso hay que
evitar el uso de gustos particulares, como veiamos en el ejemplo en
donde se aplicaba el escudo de un equipo deportivo.

Ventanas

Las aplicaciones de escritorio utilizan ventanas o formas (form)
que contienen otros controles. Estas pueden tener diferentes formas,
colores y estilos. Por ejemplo, la del Explorador de Windows tiene una
caracteristica, y la de Winamp, otra.

Contenedores

Hay componentes que nos permiten contener otros componentes,
por ejemplo: las fichas (tabs), cuadros o marcos y cuadros de grupo
(groupbox). Se los utiliza para organizar, ordenar o seccionar una tarea
con componentes de otras.

Panel es un control que contiene otros controles. Se puede utilizar para agrupar colecciones de contro-
les, como un grupo de controles RadieButton. Al igual que sucede con otros controles contenedores

{como GroupBox), si la propiedad Enabled del control Panel esta establecida en false, los controles conte-

nidos dentro de Panel también se deshabilitaran.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 357

Figura 19. Distintas ventanas de interfaces graficas en entornos de
tematicas diferentes.

Confeccion de interfaces
en Visual Basic

Ahora comencemos a aplicar los conocimientos adquiridos en este
capitulo, suponiendo que vamos a generar una aplicacion en la que

Actualmente podemos encontrar diferentes IDEs de desarrollo que ofrecen una gran ayuda a la hora de con-

feccionar las interfaces gréficas. La evolucion en el disefio es cada vez més asistido, para evitar errores en la
normalizacidn gréafica. De esta forma, contamos con distintas herramientas guias que ayudan en la correcta

separacion y alineacion de los controles, e incluso nos sugieren formas para cargar o mostrar la informacion.

www.redusers.com &

358 D=4 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

nos encomiendan crear la interfaz grafica y el comportamiento de un

desarrollo. Para eso, nos solicitan lo siguiente:

e Aplicacion de escritorio: Windows Form.

e Situacion para representar: el sistema es para una veterinaria,
cuya interfaz debe almacenar la siguiente informacion: nombre de
mascota, edad, raza, color, nombre y apellido del duefio, domicilio,
teléfono (celular o fijo), vacunas e historial médico.

Iniciemos el proyecto como ya hemos practicado anteriormente.
Ejecutamos Visual Studio. Luego en el menu Archivo, hacemaos clic en
Nuevo y seleccionamos de Visual Basic Windows Forms. Grabamos el
proyecto como pryVeterinaria. Tendremos el formulario por defecto
Forml, en el cual disefiaremos los controles que sean necesarios para
este programa. Veamos el paso a paso de la configuracion:

‘v PASO A PASO: CREACION DE PRYVETERINARIA |

Seleccione el Forml y asigne las siguientes propiedades: frmVeterinaria (en Name),

Carga de Mascotas (en Text) y CenterScreen (en StarPosition).

ol F-rrietarmanind D]

v Daploradar de ialetiand

- WD E0 5
Erintiresmalinieg 5 Carge de Mpscotes =l B3 B pyVetrinals
Peasaas 1 My Project

PawritlPseamad antacl

[1ofcn Clerts T i tomala
Homtrs T freternmiasd
Aguledn
Ooarvids

"nh:'norw;.m|u

Propied vden
[P — demideierinarls Srverm b nd sn Bosma Fomn

el | w i)

: fize AT

M Toolluip Sirelirig Ble .

T TooiMnpCorwine T F I ———
k. ToolTp Tag

TewckBiur N carga de Mascate

UL Teredlew TopMiam Falis

B Wierclu Tanspannodey]

B WebBrowser o o Vs eiituint urper Falig
@ ORI SOt Text

- Truto wioxcisdo sl control.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

[PrinkProscnConts
O PrintPredesdisleg
& Precens
B Preguesin
5 Propedylad
& Redubyiion
B BchTeibon
i, [QETO Y .
F oot
J el andvallor
[Splitontume
o Zplierr
k= Sumueluip
Tl gmened
[TabbebrpdPunel
Tl

Ll
G Yoo
i
O

Toakiang
1 TostanpCertamer
b, TeaTe
g TrackBw
T Treeview
5 Vool
T Wbk

o Conlraley comuane s

il frerietennarads [Doefa]” o

5 e de Mispostas
Lratoe (i

Dratos Mawiots

e o
)

359

Para ordenar la informacién que serd cargada en la ventana agregue dos GroupBox
a la interfaz. Al primero asignele los siguientes valores: gbDatosCliente (en Name)
y Datos Cliente (en Text). Y al segundo, agregar: gbDatosMascota (en Name) y Datos
Mascota (en Text).

FIEGFE
Bl gy Vetesmuia

i My Project

T fibhatenalad

T hrietzrnains

demererinals Seotem s e Boormn F o

ol e s
Thasadron True =
i Taidbr True
fare A2
Lastng e Fut
St aamen CemledSetoen
Tag
Tt Carga de Maveotes
Taphtad Falis =
Teat

Gl frrvetarina sk [Diefel” =

Agregue tres etiquetas y tres cajas de texto a la interfaz.

A PrckProeaontrel 2l A EEE
i T _ —
g :'*’“Wﬁ! w Cargs de Museotas - 3-1':::::
TECHEE e b
B Progresie D thes Clarde [ferelistannt v
B Propetylid Hoantee 30 Fmeveennanacet
3E Redilution e
B RhTesieo =
B SeveldeDiaiag
& LenaiPor
“d SenactConsrelir B
M gl sncaine:
o Spitter
¢t i
Lo fesmualers 5 bptomo:
TanConteel Frope-5id
B4 TablelmoatPane Diates Masccls Py bl s Syt Wer i F s Fosmm
wel TeaBac :Z: ﬂ r - | ¥
GO Timr Sarwli or True -
iE Toolep Srarwdal ackbar Teus
T Tookleplonbumss b Sae o]
., TooMmp e GrigTyle L)
B Trachite Sarfoitics Cemberfonren
T Trediew Tag
B vieremse Tant T gy ol Mo b i
.’3 W bl Tephioit Falie
Controles comunes Taart
SR T e

www.redusers.com

<«

360 D=4 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Una vez creado el proyecto y ordenadas las categorias para el ingreso
de datos, vamos a confeccionar los controles para almacenar los datos
correspondientes a nuestros clientes. Para eso, dentro de ghDatosCliente
gue generamos antes, vamos a asignar los siguientes valores:

e Para el nombre: IbINombre (en Label - Name), Nombre (en Text),
txtNombre (en TextBox — Name) y 50 (en MaxLength).

e Para el apellido: IblApellido (en Label - Name), Apellido (en Text),
txtApellido (en TextBox — Name) y 50 (en MaxLength).

e Para el domicilio: IbiDomicilio (en Label - Name), Domicilio (en Text),
txtDomicilio (en TextBox — Name), 250 (en MaxLength), True (en Multiline)

v 175; 41 (en Size).

Luego agregaremos un control llamado Tab Control para trabajar los
contactos referidos al cliente.

v PASO A PASO: DATOS DE CLIENTES

Asigne tabContacto (en TabControl - Name). Luego haga clic en TahPages: Coleccio-
nes... y agregue una TabPage. Cambie las propiedades Text y Name, por: Teleféno
(Fijo); Celular; Mail..

SR EIEE . S AL T E R EYE I T

Gl I-rivetrrmanad [Doefo®

HES 3 =0 N R T

v Daploradar de jabatiandt
Pu isaConbral |* - . : G E &
Evintiradeslinieg w7 Cange de Mucotes ! c,...; =3 a E ey Veteimais
Prarass = = a & My Praject
BroaniiBie *ﬁlf-‘hﬂ! T frrnib oot
T freternmiasd

B Prapemping Homtre
= Ricxutton Bgwldy
b b

Sovedeliadog
Saninioat < L)
A TeeeConnatier £

by

2

e "nh:'norw;.m|u
M spitCortemer - e
e

=

Tplater
b Shep P igiends. [CIETTEEES

Tk entral

Propied e

nosllenie fyoen Wi dows Foery Grpuplon =

[T e i = o

Nk SN =

3 e Miiers Frbend

oo e Bacdéing 11

T ToolfnpContne RugheToiL et o

b Ty e L

9 Tencilyr Tabbeden "

UL Teredlew Ty

= Vierclu T Do Cllente

B WebBrowser Veel erpunidyTeafo Fals
Text

@ oproles COmuRE I
- wate wisCisdo ol control

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 361

Agregue un TextBox en cada pestafia para su respectivo contacto. En este caso, utili-
ce un solo ingreso de dato para cada tipo de comunicacién, teniendo en cuenta que
puede ser mas de un mail, celular o teléfono fijo. Luego asigne el nombre de cada
TextBox: txtFijo; txtCelular; txtMail.

frmietarinann vt [Deseha]
Domscio o Corgade Mt (=@ =5 Ewldddd
Outes Chote :.:J:;.':':;;
Toimhidrns] ¢M|lhl i Feomive apk
| 1 e 0 P
‘ st i ppoonrs
| i L3 gt &
1 'hﬂ — = T l i i:e-" l"-lluil
Teiebives Fio] | Cobuder | Mad o o 7
; Daton Mawinta
_!
|
clumey Proypecto
w, Carga de Masrns w @ R e ::
- 2
T Aeibds % .
ok | Figura 20.
o Resultado de
P — . la pantalla que
1 . disenaremos
| Hremmees sobre Datos de
Cliente que seran
e :
ingresados.
el g Pogryucte

Siguiendo con la misma logica aplicada en el ingreso de datos de
cliente, confeccionaremos los controles de carga para las mascotas.
Para hacerlo, dentro de ghDatosMascota que generamos antes, vamos a
disenar lo que vemos en la Figura 21.

www.redusers.com &

362 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

B prfdenennans (Tacumnds) - Wizrsod Wiousl Sruds Admsrsdon e B OR
PG @ s aB|h =29 o] P a T A bese e sty || DRI 50 it
e EadTen|ciiBetren] 8o EE - - = . A e —— o

ace

aisd
Pazn ver datos de inteikimce
et arfeanurrys ln epes et
i i mpheacaln

B Fdteurngm Todes

M opcionet

Figura 21. Estos son algunos de los controles que nos seran utiles
para la carga de mascota.

Agregaremos cuatro etiquetas, tres cajas de texto, una lista

desplegable y un botén de comando. Luego asignaremos:

e Para el nombre de la mascota: IbINombre (en Label - Name), Nombre (en
Text), txtNombreMascota (en TextBox — Name) v 50 (en MaxLength).

e Para la edad: IblEdad (en Label — Name), Edad (en Text), txtEdad (en
TextBox — Name) y 2 (en MaxLength).

e Para el tipo: IhiTipo (en Label - Name), Tipo (en Text) y choTipo (en
ComhoBox — Name).

Es importante considerar las necesidades del cliente a la hora de determinar el manejo y la presentacion de

la Informacidn, pero también podemos sugerir nuevos controles. Recordemos que como programadores
podemos desarrollar estructuradamente sobre los controles usuales o fortalecer el diseno y funcionalidad
a partir de determinados controles que no se sean utilizados con frecuencia en las aplicaciones habituales.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 363

Para la propiedad correspondiente a items: colecciones... agregaremos
los siguientes tipos: Canino, Felino.
e Para el color o rasgo: lbiColor (en Label — Name), Color o Rasgo (en Text),
False (en AutoSize). En este caso, reasignamos el tamafio para que el
texto se ajuste al diseno.

B0 pryveteninang Tac s . e Vicusd Snde 1] 2 | (=8 A

Artevs Edtar Ve Priveits Geaerw Duswa Gowse Dier Homamiths Arsulectes Prosbs Asilas Yenbos dudi -
P F - @ 0B8R2 |20 =000 F 0 d W™ vrdom Proreimanvits -/ | B9 RAXE 301+
13 s AT alZABal=Ee @8 & 5o | EEalal=,] : :

wy Canga de Maootai
Pars wor 30863 deltelTinie
[Cisfion Dieriie debe Prernames b gecunsa
R P p—

Hawbrr
Aol B Frrerurna todos

Mg epoenes:

Figura 22. Pantalla de carga completa de informacion, incluyendo los
datos de clientes y mascotas.

Por altimo, para agregar los botones de comando que se encuentran
en la parte inferior de la pantalla, asignaremos:
o Boton Grabar: btnGrabar (en Button — Name) y Grabar (en Text).
e Boton Cancelar: btnCancelar (en Button — Name) y Cancelar (en Text).
e Boton Salir: btnSalir (en Button — Name) y Salir (en Text).

Una vez ingresados todos los datos de las mascotas, vamos a
generar un nuevo espacio para cargar informacion sobre el historial
meédico. Para eso, agregamos el boton asignando btnHistorial (en Button
— Name) y Carga Historial (en Text). Luego, vamos a agregar una
WindowsForm para confeccionar la ventana de carga de datos del

www.redusers.com &

364 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Historial de la mascota y asignar frmHistorial (en Name). En él vamos a
agregar un GroupBox y asignarle los controles que podemos observar en
la imagen que aparece a continuacion.

48 peyetriacs (obaands) Warsioft Vidusl Shaths (drecmitrader]
Aechies ik, Vi Prnpecio Gamirss Dopars Lpipes. Diion_ Hersemsentsd, Mgelechen Pstbs Anakass Ventaas Apuda :
ol S - B AR SR e -0 b i@ WO s Frow [rsdstali SHRAACE a0 v

(R aDecalzilBaoea| & EE]wwat,]

3 brripeicrdn 1

Figura 23. Interfaz grafica para la pantalla de Historial que nos
mostrara en detalle la informacion cargada.

A continuacion, veamos cual es la asignacion correcta que debemos

realizar sobre los diferentes controles.

e Para Vacunas: optVacuna (en RadioButton — Name) y Vacuna (en Text).

e Para Desparasitacion: optDesparacitacion (en RadioButton — Name) y
Desparasitacion (en Text).

e Para Enfermedad: optEnfermedad (en RadioButton — Name) y Enfermedad
(en Text).

e Para Tratamiento: optTratamiento (en RadioButton — Name) y Tratamiento
(en Text).

Si deseamos incluir mas informacion que pueda ser util en el

historial, tendremos que agregar ghDetalle (en GroupBox). Luego
dibujaremos los controles y asignaremos lo siguiente:

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 365

e Para fecha: IbIFecha (en Label - Name) y Fecha (en Text). En la caja de
texto: txtFecha (TextBox — Name).

e Para detalle: IbiDetalle (en Label — Name), Detalle (en Label - Text). En la
caja de texto: txtDetalle (TextBox - Name) y en la propiedad Multiline
asignamos True.

Por ultimo, para agregar los botones de comando y la lista donde
veremos los resultados, realizamos la siguiente configuracion:
e Boton Agregar: btnAgregar (en Button — Name) y Agregar (en Text).
e Boton Cancelar: btnCancelar (en Button — Name) y Cancelar (en Text).
e [Fllistado de resultado: IstHistorial (enListBox - Name).

Siguiendo dichas especificaciones, podremos confeccionar una
interfaz grafica que permita cargar toda la informacion necesaria
sobre los clientes y sus mascotas. Recordemos que la funcionalidad
de los controles, el orden de la carga, el tamafo de los caracteres y los
listados predeterminados siempre van a estar disefiados en funciéon al
manejo de los usuarios y sus necesidades.

En este capitulo hemos recorrido las normas bésicas que debemos tener en cuenta al momento de
confeccionar una interfaz grafica, evaluando la importancia de lo visual en la interaccién con los usuarios.
Luego repasamos los controles mas usuales que podemos encontrar en los tres ambientes: web, mowvil
y de escritorio. Finalmente, confeccionamos una interfaz grafica de escritorio, en funcion de un caso
practico de carga de datos. Es importante tener en cuenta que la confeccion y el disefio de una interfaz
grafica siempre dependeran del modelo de negocio con el que estemos trabajando.

www.redusers.com &

366 7. NORMAS GENERALES EN LAS INTERFACES GRAFICAS

Actividades

TEST DE AUTOEVALUACION

;Cuales son las caracteristicas de las interfaces de escritorio?
;Cuales son los controles mas frecuentes en la Web?

;La interaccion con el usuario es solo grafica?

;Qué es una interfaz grafica?

;Cuéles son los controles mas frecuentes en moviles?

;Qué utilidad tienen los ComboBox?

;Qué utilidad tienen las grillas?

;Cuando es util un boton de opcion?

W 00 N O g B W N =

;Cuando es util una casilla de verificacion?

-
o

iCuales son los medios graficos que podemos utilizar para comunicarnos con el
usuario?

» www.redusers.com

ARNRRRRRRRENNNN

4744

Almacenar informacion
en archivos

En casi cualquier desarrollo o aplicaciéon que vayamos a crear,
en alguna medida tendremos que realizar el resguardo y el
almacenamiento de informacion. Por eso, en este capitulo
veremos algunas opciones atiles y simples para iniciar esta

accion con los datos.

v Almacenar en archivo v ReSUMEN....cocccreeeeeresssssnnanaease 31D

de texto (FileSystem)............ 368
v ACtividades. oo eeneermrererererens 376 ||

AAA

Servicio de atencion al lector: usershop@redusers.com

368 T4 8. ALMACENAR INFORMACION EN ARCHIVOS

Almacenar en archivo
de texto (FileSystem)

En el caso de Visual Studio, vamos a encontrar herramientas que
nos proveen de su framework .NET para manejar archivos de entrada y
salida. Existe un espacio de nombre llamado FileSystem.

Esta clase se encuentra ubicada por defecto dentro del miembro de
Microsoft.VisualBasic; por lo tanto, podremos utilizarla desde cualquier
proyecto sin necesidad de agregar referencias.

00 peyfielpztem - Micraeoh Vil hudi (Admn serador) =1l i =
Gt [t Yo Depets Geserm Repwe Dqwp D) Bemostss Aguileches Proge Anaiga Veglns Apgds s
B E md @l s 0l =20 -0 -L-TF 0 3 A oo P bmunriis) |G Z % B 50 - .
e s AT e a|G Bt | § & e EEE] G 6, .

Famminac: | Todn ko s cmpanesie. e || B
Faedyem
21 WbarasePrisa lasicF deil FubeGyshim - % CompnatPeshiBA ol Sorng ByVel Sinngl As finey
=5 hbgroeh i asBadic FiledD FilaSymun ¥ CopyDirectonBy'vial Srieg, BylWal Seeag]
1 Mherosoh Ve Basic FleSystem % CopyDirecron(Bydal Streg, By¥sl Sising, Byt Boolear)
a2 Mharosol Ve B FleSytern % CopyDwectan Byl e Byal Thang, ByVal Merosstt VrsBaie FlelD LIption) 5
A Seysboim. W F i st onmpliteTonsc e Fillefydem % CopyBwixtony(Dyal Srarwy Dy'dal Shevvngy, By Vol Il irncifh Wi s o F o D LB O, Byl Msciics
“1 Flerm) FeeiyrtemienL i % CopFieliyVal Snng Byl Snngd
“3 Fyetem e Fiadystemd ventangs % Copyfile(ly¥all faring, Dy'val Sering, Dyl Bocbean)
i System 18 Fefytemd veniHarufan & CopyFile(ByVel Siing, Bytal Sting, Aytfel Macrcnoft Vinelfla: Fied0) UiGpsce
4 Syvtem 0 FdeSympemi centbiandian % CopyFilel® Vel Taring, By'fal Saring. Byl Microaoft VeualBasie PO UTOpson, ByVal Microseitli
4 ystom O Fenfystomind o % CreateDars ooy Byl sl rng.
A1 Satem r:t.ui.'w.n b o (uuur_:-qrq.r}.m Stwway
5 Fruvem) FieSyvtemindo % DefetaDines Loeg(By'dal S Byl Migronof L Vitusl B FiaiQ. DeleteDe o Cptoon)
2 Gyshern)0 FlleSystem Wt cher % DeleteDines toary(ByVal St By'al Micncesolt Visualflatac kel UNDpecn, BiyViel Microsolt VisusBis
5 Sysborm 0 FSystemWistcher % DeletxDnstory(Byval Siorg ByWel Micaosolt VipwalBaiat Fic LI00mon, ByVel Mo s soft ViousBe
“3 Syriem Secarty Locessiontrol Fldbriemi e i W Dwletekie(lyVal Hinng)
“5 ypaberm Sevrty o mad ontrol FleSytemd.: nenBule bl chi Byhal Sty Byl b roaoft Winsae blell UROptnn, ByYel Msresolt Vosste o Focop et
1 Systom by Accoisl ontrol Febyemd o Bule 2 U Deketel Bl Val erarg, Ty Va0 Tohace o 700 e BT S B LR iy, Ty ¥ B Lo b ol Wecuslii a1 0
4y Svitbmobicanty Ad et entrolF MGy iimAadefule ¥ DvettiniofiBdal Sl Al Bodhin
& System. Securty ArcesControl FlebymemPights 5 Dreves da Syriem. Collectong Obpectiiodel ReadOnhC ollactioni0d Syriem 30 Dricalnda)
& fymem ety Ar e emreL Rt g @ Equateiaial Duiecy A3 Beclian
A1 System Serurty Socesd ontrod Flebasemiecunty 1 B
4§ Sysem Seounly b crnlConirol FleSylsmSacunty byl Cans AleSystem
& Sl indee oAt Cemgiete e e F iy emi e PotiirRE i 8F W EPEEtL Y us IBas g Fileli
' hbgreech Vit Basie Devicnt Sercarl emputer Filatyemem Az b
= Mharosof VensBlasic Bevices ServerTnenpute FileSystern ds b | Resuman:
' Gysterm Securty AscenControl FlehmemAscenfule Filgtyste | Proporcions las propsedaces i ios métodos pars trabasjer con unidades, archros y directonos
T western. Securite e el ontrol Blebememasreifuie Silehote ©
3 - v

[T ——

"

RS) P ST

[Figura 1. Caracteristicas de FileSytem que encontramos en el
examinador de objetos de Visual Studio.

La clase FileSystem contiene todos los procedimientos necesarios
para realizar operaciones con archivos, carpetas y procedimientos del
sistema. Si vamos a grabar informacion en un archivo de texto, con
extension TXT, cabe destacar que con FileSystem podemos manipular
cualquier tipo de archivo. Ahora vamos a crear un proyecto de Visual
Basic y aplicar la practica de FileSystem. Para hacerlo, ejecutamos

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

Visual Studio, nos dirigimos al menu Archive y hacemos clic en Nuevo
proyecto, o desde la interfaz principal seleccionamos la misma opcion.
Luego elegimos Aplicacion de Windows Forms, hacemos clic en Aceptar y
grabamos el proyecto como pryFileSystem.

Trabajamos sobre el FORM y accedemos al LOAD del formulario,
haciendo doble clic sobre el FORM, y aplicamos el siguiente codigo:

FileSystem.FileOpen(1, “ejemploDeArchivo.txt”, OpenMode.Append)

FileSystem.Write(1, “Grabando datos en archivo!")
FileSystem.FileClose(1)

MessageBox.Show("Grabe texto :D”, “Escribir”, Message BoxButtons.0K)

Finalmente, compilamos el proyecto y observamos el resultado que
muestra la Figura 2.

@uvl b Wy Droplea ¢ Lo GRS 3 Copduda B 0 prfilefoiiem b prblebpler b b b Debeag w | by B Bomcar Debg e

Caganizar = LT Comparti ton = g rm e whectitnec s e abar Hiren € arpeta - = i ® |

W Fawceiice T

8 Descargas B R BAT bt K3
£ Sticy reciertes. & wchivolllLa L&}
i Dropbem o permpirlonC ontroeta Lt}
b Carpets Magce & tpemghlahncheeetil =1 L]
B Boviinon [0 [7 —" -
B g eyt el Prioagsims Duibirg KD
M Escrioee B prif Sy tam vehoot e SLEA N2 5 Achcain 1268
i T trmplclennrivotet Gox ée retes B =
Y Docomanisa | E———m= .
Archies EMCOn Formite Wer
"': x“ Forabanda damos en archive!”, “erabando datos en archive!”, crabando datos en ar .
e 5
H videns
wl} Grups o hoga
B posle
LI
K Dicos ol 01}
o Dheco logal)
all Ursced che OV AW)
_'1 Hevo Scosd
Wi e
) ol da corerel
£ Papecleca du reciclage
b 1 _HARDWAR
B Andred
b owen
b sjemploDeArchevotet Fechs de moddica_ 2200/2012 1020 pm. Fecha secnescibne Z200/2002 08:34 am.
Diorurnents de fedo Tarrafo: M1 byt

- Figura 2. Resultado del ejercicio en un archivo de texto con el nombre
ejemploDeArchivo. txt.

www.redusers.com &

370 [==4H 8. ALMACENAR INFORMACION EN ARCHIVOS

Si buscamos dentro de la carpeta del proyecto en el directorio BIN,
veremos el archivo de texto que se cred con el proyecto.

Luego analizaremos el codigo que utilizamos antes, aplicando
FileOpen, Write y FileClose. Para seguir avanzando en el tema, veremos
en la siguiente tabla el funcionamiento de cada uno de ellos y otras
funciones que pueden sernos utiles en la programacion.

FUNCIONES

v FUNCION v DESCRIPCION

OpenMode Abre los archivos para cumplir distintas funciones:

Append: agregar dafos
Binary: acceso binario
Input: lectura

Output: escritura
Random: acceso aleatorio

v CODIGO

Se abre un archivo para lectura:
FileOpen(1, “ejemploDeArchivo.
TXT", OpenMode.Input)

Se abre un archivo para escritura:
FileOpen(1, “ejemploDeArchivo.
TXT", OpenMode.Qutput)

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 371

Write Graba datos en un archivo secuencial que se leen con FileSystem. Write(1, “Grabando
la funcion Input. datos en archivo!”)
Tiene dos parametros: el primero es el nimero de
archivo, y el segundo es una 0 mas expresiones de-

limitadas por una coma, que van a ser grabadas en el

archivo.

Input Lee datos de un archivo secuencial abierto y les asigna Dim varTexto As String
una variable. La funcién recibe dos parametros: el FileOpen(1, “ejemnploDeArchivo.txt”,
primero es el nimero de archivo, y el segundo es la FileMode.Input)
variable en la que se almacenan los datos. Input(1, varTexto)
FileClose(1)

Tabla 1: Conjunto de funciones que podemos aplicar en la programacion.

Tomando estas funciones, ahora vamos a retomar el proyecto de
FileSystem que veniamos trabajando en el paso a paso anterior. Para
hacerlo, vamos a agregar una caja de texto y un botéon de comando
llamado Grabar desde caja de texto, aplicando el siguiente codigo:

FILESYSTEM - VISUAL BASIC

El modulo FileSystem contiene los procedimientos empleados para realizar operaciones de archivo, de

directorio o carpeta y de sistema. La caracteristica My proporciona mayor productividad y rendimiento en

las operaciones de entrada y salida de archivos que si se utilizara el médulo FileSystem.

www.redusers.com <«

372 [E=4 8. ALMACENAR INFORMACION EN ARCHIVOS

FileOpen(1, “EjemploConControles.txt”, OpenMode.Append)

Write(1, TextBox1.Text)

FileClose(1)

MessageBox.Show("'Grabe texto :D”, “Escribir”, MessageBoxButtons.0K)

Luego debemos compilar y comprobar los resultados. Es importante
no olvidarnos de revisar la carpeta BIN del proyecto.

L]
']
.
.
=Public Claas Poral [
Oim varTewta At String | Dt T b = Comgsaiten d0i v M
Frivate Sub Formi_iesd{iyval sender As Systes.Cojefl e ik
Fhlesyaten FALEOMEALL, eSespladencehiventat il L = Homb
- {
letyerem,rita(l, “Srebsnds dstos sn archi | i Casaiged B ancherollAT bt
Byatem FlleClase(1) L Saice mecintes g ascharsDlL N
P sagetion. Shal "Srabe Lexto 0%, "Eicribie, i Daphan S Bunsii-mCnalat
End Sub Jo Canpeta Miggca & epenplolicecieen
1 Sk 1Lek; 1 o]
Private gurtand Clhek(ppal seader As :-mo- 2 da%, ko
Tllctpen(l, “Eiemplecontontreles, txe”, ¢ Bl Pyt gt
M-ltw(d, TextBoxl Text) M Erorieds B prytetymter vabedt o
Flletlose (1) | -4 Divhotecar g & prleiystemashei s et
essagelon. Showl “Grabe texte 07, “Lacribic”, T Desumestas e e
ind Sk =
= 7 =FIEE e i
g Tesbajar con FileSytem i & Misica
r .'ﬂ'dms
bt g0 aeic Uk deache L
Take # Grupoan dhoge
i —_— B sl
L i " [quipc
& Discolocal iC) |
e a Disca bocal i)
e o Unided de DVD RW 6]
) Mers Soent
B P
) Panel de contral - .
R EPIATR AN [l de s OL/DR012 1108 e
Daxurrende de lexls Tt J30 nted

I Figura 3. Resultado del ejercicio en donde podemos observar el
cadigo de fondo, la aplicacion y los archivos generados.

Para continuar, agregaremos otra caja de texto y un boton de comando
llamado Leer un dato. Dentro de él aplicaremos el siguiente codigo:

FileOpen(1, “EjemploConControles.txt”, OpenMode.Input)
Input(1, varTexto)

TextBox2.Text = varTexto

» www.redusers.com

INTRODUCCION A LA PROGRAMACION 373

FileClose(1)

Una vez ingresado el cédigo, debemos compilar y comprobar los
resultados en la interfaz grafica. Luego agregaremos otra caja de
texto y un boton de comando llamado Recorrer un archivo, en donde

aplicaremos el siguiente codigo:
FileSystem.FileOpen(1, *EjemploConControles.txt”, OpenMode.Input)

Do While Not EOF(1)
FileSystem.Input(1, varTexto)

TextBox3.Text = varTexto
Loop

FileSystem.FileClose(1)

Es fundamental tener en cuenta que este mismo codigo nos sera util
cuando tengamos un archivo con saltos de lineas.

Para concluir con nuestro proyecto, agregaremos dos botones de
opcion y un boton de comando que diga Escribir archivo, en donde

aplicaremos el siguiente codigo:

If optBAT.Checked = True Then
FileOpen(1, “archivoDLL.dIl”, OpenMode.Append)
Write(1, “Creo un archivo de sistema’’)
FileClose(1)
MessageBox.Show(“'Grabe :D”, “Escribir”, Message BoxButtons.0K)
Else
FileOpen(1, “archivoBAT.bat"”, OpenMode.Append)
Write(1, “Creo un archivo de sistema”)
FileClose(1)
MessageBox.Show(“Grabe :D”, “Escribir”, Message BoxButtons.0K)

End If

www.redusers.com &

374 =4 8. ALMACENAR INFORMACION EN ARCHIVOS

Anbevo Edtae Ve Froyeon Geoerer Deporsr Egaipe Dates Formale Hemamweotss Aeguetecion Pruske Anslusr Venbnd Ayuds

:':.,.']i.."i;l*hlii b AR ZE -0 -0 F i WY o Phore ety - ([SR B 30 . -

T A AT @G a3 2§ 886 k] A aalall,
I Form] b |Drefia) X

» Dplomndor dé tohuiors
| dra | { s 1
E pfactpten
3l My P
] Feamd.vbe

B> Figura 4. Interfaz grafica completa con todos los controles necesarios
para la ejercitacion.

Como podemos observar, en el ejemplo anterior de cédigo hemos
logrado grabar, leer e incluso reemplazar distintos archivos con las
lineas provistas por FileSystem que nos permitieron almacenar
informacion en este primer paso.

El siguiente paso que debemos seguir en la programacion es el
almacenamiento en base de datos que podemos encontrar en titulos
especificos de algiin lenguaje de programacion.

Para obtener informacion mas detallada sobre el resguardo y el
almacenamiento de datos en el sistema, podemaos ingresar al sitio web

-- @ ARCHIVO - EXTENSION

Cuando vemos .EXE, .DLL, .BAT, etc., debemos saber que se refiere a la extension de un archivo. Esta

es una manera de reconocer el tipo de programa que se necesita para abrir el archivo. Mo ofrece certi-

dumbre respecto al tipo de archivo, ya gue cuando se modifica la extensidn, el tipo de archivo no cambia.

» www.redusers.com

INTRODUCCION A LA PROGRAMACION =4 375

de la editorial www.redusers.com, o también consultar otro de los
libros publicados por la editorial: Acceso de datos con ADO.NET, escrito
por Fernando Riberi.

0 BoFiintem - Miiraefl Vs Stuis dmrnuat] =@ 8 e
(Butee jotm e Prevede Gees Degws Geeps Do feemtc emamenls fpgstbos Pruehe fesiar Velms Agds i
R = - I I (e e - BT R e ey e g Lo e o ol = L

Tl & 1T ¢ o B e M Bl E B 0N e *

K= b = o USERS + Copuko B+ pofieSynem o poyfisbynbem o bin + Deug
Qrganizar = o Aber Compartic con = Comes dectrbnics Conbat Musvn campete E-0 9 |
T * Nombet g Techa de meditics_. Tipo Temate
& Descagn G5 sechivelial ban ZIOI002 1008 . Archive potlote 1K
4 T e recientes & wchaveLL N O AAE Esuiatn e b sl LB
i3 Deophes & Epemple ent sanreiet 0 2072012 1041 Disdwnants 34 s [
4 L Corpeta Magica o Gbmplelutntheobl L e Dodwminto ¢ 1 iKE
I Escrene B peFlefystomes Aphcaciin X
™ pryfdedymem pok Frogrsm Debug b ol k2
BB Erortesia 5B eefitymemyimenen Aobcaciin A2 KB
i Babkctecs & | prfleutemvsormemaniien At WARIFEST LEE
| Decurmsontss & peyFieSystemun Dotemento XML 1K
- Fruigene
J‘ Mugica
B visees
) Goupo én dl hogin |
B prase
b T
Bl Discs lacal (G
- Disca local (B
ol Urizad S DND RO 0G)
& hlevo Scout
7 Hemamas CHSCO0RAT0E Frcha de madifeca LUOTOLT 100 pome Fecha e crmmcsbn: JRAT/2003 BsM o
- (N e
= — —

[Figura 5. Creacion de archivos de diferentes extensiones.

En este capitulo, hemos conocido algunas opciones simples y dtiles para iniciar el almacenamiento de

informacion en archivos. A lo largo de nuestra practica en Visual Basic, aprendimos como se realiza el
manejo basico para un archivo de texto y vimos que podemos manipular diferentes tipos de archivos.
Ahora que tenemos en claro estas herramientas, podemos encarar pequenas aplicaciones que requieran
almacenar cualquier tipo de informacion.

www.redusers.com «

376 8. ALMACENAR INFORMACION EN ARCHIVOS

Actividades

TEST DE AUTOEVALUACION

;Qué es FileSystem?

:Qué es un archivo?

;Qué formas de apertura de archivo existen?
iQué puede hacer con FileOpen?

;Qué caracteristicas tiene WriteLine?

;Qué caracteristicas tiene Write?

;Como funcionan Open y Close’?

;Es posible abrir cualquier tipo de archivo?

W 00 N O g B W N =

¢Es posible crear cualquier tipo de archivo?

—
o

iQué es un Input?

» www.redusers.com

ARNRRRRRRRENNNN

vV
S] .
En esta seccion nos encargaremos de presentar un util indice
tematico para que podamos encontrar en forma sencilla los
términos que necesitamos.
v indice tematico......cc.ceeuernrenne 378

AAA

Servicio de atencion al lector: usershop@redusers.com

378 == SERVICIOS AL LECTOR

Indice tematico

ACROPES i b i u BOe0 C Componentes usuales 349/355

Algebra de Boole c.o.eeeeeveeeeeeeeeeeeeeeeeneenens 84 Comportamiento de la interfaz.............. 178
AlGOHtMO i i s sissisiianissisenns 2TJLOF Conceptos basicos del codigococeeeeeennn 199
Almacenamiento de informacion............ 172 Confeccion de prototiposccccevveevernns 64
Ambito de las variables................. 121/207 Constantes declarados.......ccoceeceeneen. 212
N T PSRRI 1 i | Constantes definidas......coceneiievneennnns 212
Andlisis de sistema.......cccereeririneecriiaenens 51 Constantes literales.....ccceevvvercvinnenne 211
Aplicaciones de escritorio.....ccccovveeeeeeeee. 19 Creacion de proyectosccvveveeeceeecennes 140
Aplicaciones MOVIlescocmmieimseassanrasaes 20 CHBSHIONATIOS ;s sassssasiassossvss ressuniassarsisiass 56
ApliCAcIONes WEDcoverereremssnierssnensansenns 18
AFIEMELICOS vuvvsvnsnnsessessnsssessnnennss 817154214 Datos estructurados........cooununn 109/168/253
AFFAYS.eeeeeirrerer e errnssns oo ennnens 203 286/248 Datos Ssimples......ooeeeveeereseseernns 75/95/252
ASIGNACION ceveereeeeereeeees v, 882137215 Declaracion de variablesocoeeene. 204
Asignacion COmMpPUESEA vvuuverreniirirnerenene 215 Desarrollo convencional e vervsseenaes 50
Asignacion de valores.......n. 88 Desarrollo de aplicaciones.......iinnn 14
Asignacion destructivaccceeiiiiiiinninn. 91 Desarrollo estructurado.......c.oevevinnniiiinns 50
Aumentar ¥ diSmMinuir......eeeeereirevaerenssns 216 Desarrollo orientado a objetos......cvvvuene 51
DiagnOEtC0:: cssssissiivimiinmsmienuasisaiss 52/53
Beneficios del pseudocodigocveeee.n. 93 Diagrama de casos de Uso.......cccceeevveerneen. 58
Botdn de opeioncoeevevvevennneicvierennnn, 353 Diagrama de flujo......cccevneiiien 27132172
Botones de comando................ 355/363/365 Diagrama N=5...nnnnaimminiiii 73
Brainstorming ... cceseeeeree e reernnnn e 56 Disefio de un sistema.....c.eeeeeeeuvcieveenns 34/57
Disefio de interfaz.........eininns 336/345
Cajadetexto.osniiinnniaiuau 350
Capacitacion y formacion del usuario....... 66 Entrada y salida de informacion 92/239
Casilla de verificacion 135/138/352 Espacios de nombrecccevvenee. 196/198
Caso de USO..eewereveeeinrseeeerseesnssnesenene 3960 Estructura secuencial ...oveevvvreeeennns 95/72
Ciclo de vidac.covvirenevirrennanns 91/42/48/487 Estructuras condicionales.......... 95/159/230
Clasificacion de las variables.........cceve. 77 Estructuras contiguas......cevevcevarinienns 253
1 P T L. Estructuras de control 94/159/230
COHIgn ... 24148 Estructuras dinamicas
71 - OO PPOS. - .. Y StALICAS. .o ecreerenrennenenn 2062571273
Cdmo se utilizan Estructuras dinamicas
los operadores....cneneenenn .80/154/213 Y PUNLEFOS vovrennescevnnncsrasnesennnn. 2042577259
Compilador:.c. i 34/1324 Estructuras dobles.....ccccvumienieiccinnins 97/161

» www.redusers.com

INTRODUCCION A LA PROGRAMACION

L

Estructuras enlazadasccooeverecnieinns 254
Estructuras maltiplescoeeeeeeennee 1007162
Estructuras repetitivas...... 104/165/167/234
Estructuras selectivas........oeeveeeveueeneen. 232
Estructuras simples.............. 94/95/160/253
Estudio de documentacion..........ccccveenees 56
Etapas en la resolucién

de un problema ... e eeeee e 34/117
ELiQUeta ovvvecesreee s crsesneenennnne. 138/187/349

Fases del desarrolloeunennen.e..... 41/42/44

EOH 00D conssnnsimananisnsmsssssasin 235
Formas de declarar constantes.............. 211
FEAMBWOTK .« cocsnismssississsssississansansasia 381190
Freewareoccoveeeeerveeeesnnnnnnn. 18/19/23/38
Funcion EXiteeeeveeeeeeeieeeeeeceeeeeeeeeenes 242
Funcionesccccvenruernneen. 42/120/121/370
Funciones del ciclo de vida........cceueene 42/44
Generalidades sobre metodologias........... 50
atillacde datos: s niminmnms 355
QU Lcmannsnnansnmmininisei 134

IDE .ocociiiiniiniisiisinsnennen 14271431194

IDE Sharp Develop ..oeeveennee. 190/193/201
Identificadores.......ccererecveeeereneenes 80/146
Implementacién del desarrollo................ 65
Inicializar variables.......ccovveeeeeercecennene
Interactuar con el usuarioeeeeceeeenenn
Interfaces de USUAFID...coeeverereieieereene
Interfaces en Visual Basiccuveiivnisisnne
Interfaces graficas 134/135/336/357

Interpretacion de aplicaciones

Lenguaje BasiC ... vooeeereemsinmns som smsommnnsnns
Lenguaje:G s
Lenguaje de alto niveleeenieveeeens

Lenguaje de aplicaciones.....ccccccceeveevennnnn 29

379

Lenguaje de bajo nivel 29/132/133
Lenguaje de medio nivel........ce....... 29/133
Lenguaje de programacion 28/132/140
Lenguaje de redes.. o eeeceveeeeeeeieeeenne 133
Lenguaje maguina........eeeee.. 22/29/70/132
Lenguaje objetoocvmiimimncciicineens 133
]] T - A u————— 159/247
Limite del Sistema.....overeeveeerereneerrnnn 59/60
LiSta eussieerreerenssressensnsnssssseasssnsnnans 110/268
Listas doblemente enlazadas........... 293/308
Listas enlazadas......coccceeveeeercnnenen. 269/271
Losisentidos cimnmnnnnuninasiaa 23
Manejo de datos en C4++ .oovvcivccvnnnnisionnes 203
Mathtiz oo assnnmnsinsme 114/168
MESSAgEhOK .evveeeeeeee e 150/154
Metodologias agilescccvvrversrererinene 39/51
Metodologias de desarrollo 38/39/67
Metodologias iterativas........ccvviviennens 39
Metodologias pesadasceeev... 39/45/48
Metodologias tradicionales.........cvvurw 39/40
Modelo de desarrollo incremental 47/48
Modelo de prototipos .eveceveveeenens 48/49
Modelo en cascada......cccoevevcceceeerceen 44/45
Modelo en espiralcoeeeverevemeecereriersennenn 49
MOUEID 8NV cereereriersnssnissississassnssnsinsan 45/46
Maodelo iterativecoerereersemserarinens 46/47
Modelos de ciclo de vidaccoeevvevenencen. 44
MUltiplataforma.. ... ecerniinrmessressaronsne 193
MVA . e e sr e ee e s s 145
NOAOS ..ooverevrerieresrersrsessee s 255/259/261
NOMENCIAtUraveeeveereereeeesrereanens 138/139
Normas de disefio de interfaz ... 336
Normas de escritura.....cccoceceeeeeceeerennennnns 79
Normas 1805 niiansnianniaigas: 43
Normas para el pseudocodigo ...eiveernnne 71
Nuevos dispositivos ...eviivememrisiiersersens 14

www.redusers.com &

380

==

Objetivo de los prototipos

OBSEFVACION cvvveveeeeereee e eecre e eeeseeeesnae s
OIFite: i misisss s
0pEN SOUFCE «.emeeeececeeeeeae e eacaeeeaeas
Operador COMA...ceuueeueriicreennenns
Operador condicional.......cceveeeveecvrcvennnns
Operador sizeof......cocevvveriivanns
Operadores aritméticos
Operadores BitWise....ovveerreenns
Operadores de asignacion........
Operadores 10gic0S ..ooeeeeereveeeee.

Operadores relacionales

¥y de igualdad......ccccoieeeerierensonsss

Orden en la programacionc.c.... 94/159

N
Portal de bancos ... e siesmsincns s
Portal de juegos....c..ceervennee.
Partal eduCatiVe. i s
Precedencia de los operadores
Primera aplicacién en C++
Primeros pasos en el codigoccceerneenne

Procedimientos ... veeeceecm e ceeaeen

23
i DB
ceee 2201236
219
cessenienes 222
154/155/214
220/221/223
213/215/217
. 82/156/217

venes 1571216

312

Programacion 16gica........ccceecevneiveeneees 15
Propiedad Enabled.......c.ccccuvemnne.... 1811182
Propiedades de un FORM.....c..cccveervennns 177
Propdsitos para aprender a desarrollar.... 15
Prototipo desechable.........eeceeveeceeeerreeennn. 63
Prototipo evolutivo.......ceveeceeveereesersesrsnns B3
Prototipos.. e eaens B2
Pseudocddigo........oovvvviniinmsniinnnnnn. 3471
Punteros.......cceevvvvinvnnnninnn. 257/259/263
Recolectar informacioncccoceniinnns 54
Recorrido de informacion..........cccceeeeee.. 174
Relacionales.........ccccoievcicninnnenne.. 59/86
—L Y
sansarsasiins DEIDS

Relacionesccevvecereneecanns

Relevamiento......covenierienn

» www.redusers.com

SERVICIOS AL LECTOR

Resolver problemas.......c.ccueennen. 16/34/117
Retroalimentacioncocoveeeeeeereenrnnns 26
Roles profesionales........cccvvvevreeereenrnens 43
Salto de declaracionesc.ceeceeiernenns 239
Sentencla Dreak ...uuassmssemimsasmosins 239
Sentencia continue.....u e eeereecce e 241
Sentencia goto .. 241/242
Sistemas operativos ... ceeceveveececececeenes 345

Software libre.... .o 18

SUbaIGOFIEM0S i raimusm ssasaisi 120
Tareas de un desarrolladorccccvvvrienns 26
Teclas FANTHAS i iirmmmisiimim s insisin 160
Tecnologia Web ..o 40
Test de eleeucldn. .o 34
L= 1] 11 TR 52/65
Tiempos en la programacion.................. 147
Tipos de aplicacionesouvmrreserrarssrersanss 18
THPOS O tatios i s s s s 74
Tipos de datos estructurados.................. 109
Tipos de estructuras .o eecevcveececeeeceenes 252
Tipos de lenguajes........ccevevueeeneee.. 1321133
Tipos de metodologias......eueeveviereereeranes 39
Tipos de Variablescccevveereesmanmrsnsrenes 78
Tormenta de ideas.....com oo 56
Trabajo Freelanceocoeeeeeveeceeeevvnnnns 16/ 17
1 R 19
| e e P 46/57
Uso de controles basicos.......ooevrenaeres 175
Utilizar funciones y procedimientos....... 120

NAKIABIES . coscosssivmasiansissasums sinsasints
L[] PP e P e R 110
NISE AL, .o e cssinessnnsvasinsms sisnmsnss apssnns s sanss sl
Visual BasiC....comrmrmmmmienmnmmnsmmsnsinmnn 140

@ usershop.redusers.com -

DEL
USUARID

| ="NGLs

| =—= 0

AN L 0T AT TN MACRATNTE 7 LA EL_I

Una obra ideal para aprender todas las
ventajas y senicios integrados que ofrece
Office 365 para optimizar nuestro trabajo.

- 320 paginas/ ISBN 978-987-1857-65-4

| USERS

. TECNICAS DE

' FOTOGRAFIA
: PROFESIONAL

¢ IDEAS DE TRABAJO Y NEGOCIO
¢ PARA SER UN Fmﬂ}i

Este libro se dirige a fotografos amateurs,
aficionados v a todos aquellos que quie-
ran perfeccionarse en la fotografia digital

—» 320 paginas / ISBN 978-987-1857-48-7

Este libro nos introduce en el apasio-
nante mundo del disefio y desarrollo
web con Flash y AS3.

Esta obra presenta las mejores aplicacio-
nes y servicios en linea para aprovechar
al méximo su PC y dispositivos multimedia.

Llegamos a todo el mundo »oca EE

DE UN SISTEMA PARA
SEGURIDAD

IMPLEMENTACKON
LA GESTION DE LA

TTRCTFTR W LSRN -
Y WDNGAS
T R
e e
el s s, L
en——

s Arem
SO~ b

Esta obra va dirigida a todos aquellos que
quieran conocer o profundizar sobre las
técnicas y hemramientas de los hackers.

—» 320 paginas [ISBN 978-987-1857-61-6

En este libro encontraremos una completa
guia aplicada a la instalacion y configu-
racion de redes pequefias y medianas.

—» 320 paginas / ISBN 978-987-1857-63-0

. PROYECTOS CON

ACCESS

% BASES DE DATOS PARA EL HOBAR,
~ LADFICINAY EL COMERCID

BALAD] EM CALDY REALET

Esta obra esta dirigida a todos aquellos que
buscan ampliar sus conocimientos sobre
Access mediante la prictica cotidiana.

~» 320 paginas / ISBN 978-987-1857-40-1

R + 54 (011) 4110-8700

—» 320 paginas / ISBN 978-987-1857-46-3

SRR FAAFEA FNNTE A TE

Esta obra presenta un completo recorido

através de los principales conceptos sobre
las TICsy su aplicacion en la actividad diaria.

—» 320 paginas / ISBN 978-987-1857-45-6

VB SRLEE EMEI PAPED = vanes s v s s &

o

Este libro esta dirigido tanto a los que se
inician con el overclocking, como a ague-
llos que buscan ampliar sus experiencias.

~> 320 paginas / ISBN 978-987-1857-41-8

— 320 paginas / ISBN 978-987-1857-30-2

usershop@redusers.com

@ usershop.redusers.com @

, NEULY

WIRELESS

IR LS

CONMERTASE EN UN DXPERTD [N REDE

Este manual Gnico nos introduce en el
fascinante y complejo mundo de las redes
inalambricas.

-3 320 paginas/ ISBN 978-987-1773-98-5

Un libro clave para adquinr las herra-
mientas y técnicas necesarias para
crear un sitio sin conocimientos previos.

—» 320 paginas / ISBN 978-987-1773-99-2

FAAER TS

AUNVIINGS TROOENN (0 RE S

Esta obra presenta todos los fundamentos
y las pricticas necesarios para montar
redes en pequefias y medianas empresas.

—>» 320 paginas / ISBN 978-987-1773-80-0

& + 54 (011) 4110-8700

USERS |

TRUCOS &
SECRETOS

PARA APROVECHAR EN EL HOGAR,
LA ESCUELA Y LA DRCINA

TRUCOS & SECRETOS P

Esta increible obra esta dirigida a los entu-
siastas de latecnologia que quieran apren-
der los mejores trucos de los expertes.

Obtenga informacion detallada

DESARROLLO
PROFESIONAL

ELASS LN SARKRTNL G PRENE S NAL

Esta obra se encuentra destinada a todos
los desarrolladores que necesitan avan-
zaren el uso de la plataforma Adobe Flash.

—» 320 paginas / ISBN 978-987-1857-01-2

JAVA ZTTTIITTE

DESARROLLD PROFESIDNAL MULTIPLATAFORMA

Una obra para aprender a programar en
Javay asiinsertarse en el creciente mer-
cado laboral del desarrollo de software.

—» 320 paginas / ISBN 978-987-1857-00-5

& o4 AVANSTADNET FEEELER T

Este libro presenta un nuevo recorido
por el maximo nivel de C# con el objeti-
vo de lograr un desarrollo mas eficiente.

- 352 paginas / ISBN 978-987-1773-97-8

| USERS

HTML

M TNTL

A N W LT DRI WM W T W
BRI TP S TR RN BoERTL - h S

Una obra (nica para aprender sobre el
nuevo estandar y como aplicarlo a nues-
tros proyectos.

—» 320 paginas / ISBN 978-987-1773-79-4

—» 320 paginas / ISBN 978-987-1773-96-1

VA EL EXTD PROFESIONAL

Un libro imprescindible para aprender
como programar en VB.NET y asilograr
el éxito profesional.

—» 352 paginas / ISBN 978-987-1773-57-2

usershop@redusers.com

Descargue un capitulo gratuito Compre los libros desde su casa
Entérese de novedades y lanzamientos ' y con descuentos

Ig PHOTOS

¥ RCANCE UN NUEVD MAVIELEN L L

Una obra para aprender los fundamentos Un manual anico para aprender a desa- Un manual imperdible para aprender
de los microconiroladores y llevar adelante rrollar aplicaciones de escritorio y para a utilizar Photoshop desde la teoria hasta
proyectos propios. laWeb con la Gltima version de C#. las técnicas avanzadas.

-» 320 paginas [ISBN 978-987-1773-56-5 —» 352 paginas [ISBM 978-987-1773-26-8 > 320 paginas / ISBN 978-987-1773-25-1

| USERS

' WINDOWS 7
TRUCOS Y SECRETOS

» MAS DE 100 CONSEIQS E IDEAS

, (TILES ¥ SORPRENDEN

= MRAENER A OFR
-4 1 H

ACTUAL CPACON, MANTIMAENTD, RELPALD

Una obra imprescindible para quienes Un libro nico para ingresar en el apa- Esta obra permite sacar el maximo provecho
guieran conseguir un nuevo nivel de sionante mundo de la administracidn de Windows 7, las redes sociales y los
profesionalismo en sus blogs. y virtualizacion de servidores. dispositivos ultraportatiles del momento.
—» 352 paginas / I1SBN 978-987-1773-18-3 —» 352 paginas / ISBN 978-987-1773-19-0 > 352 paginas / ISBN 978-987-1773-17-6

ZEED F R ACLARALLE R 8 AT SR

TECNIED HARDWARE Saniassms

EECE

RECENTE ¥ CONFARILL DE EXCEL

Este libro presenta la fusién de las dos Este manualva dirigido tanto a principiantes Esta guia ensefia como realizar un comrecto
herramientas més populares en el desa- COMO a usuarios que quieran conocer diagndstico y determinar la solucion para
rrollo deaplicacionesweb: PHPyMySQL las nuevas herramientas de Excel 2010. los problemas de hardware de la PC.

—» 432 paginas / ISBN 978-987-1773-16-9 —» 352 paginas / ISBN 578-987-1773-15-2 —» 320 paginas / ISBN 978-987-1773-14-5

ﬁj + 54 (011) 4110-8700 »<| usershop@redusers.com

@ usershop.redusers.com v Llegamos a todo el mundo »oca E2

CURSOS
INTENSIVOS LAg0RAL

Los temas mas importantes del universo de la tecnologia, desarrollados con
la mayor profundidad y con un despliegue visual de alto impacto:
explicaciones tedricas, procedimientos paso a paso,
videotutoriales, infografias y muchos recursos mas.

» 75 Fasciculos Curso para dominar las principales herramientas del paquete Adobe CS3y
» 600 Paginas conocer los mejores secretos para disefiar de manera profesional. Ideal para
» 2DVDs/ 2 Libros quienes se desempefian en disefio, publicidad, productos graficos o sitios web.

|

users |

!'E EU":| IPﬂPTFimDUEEmNIUUh CI0N
Lauaio/ aljalia

gﬁnb# E,:;m’! ;IJ“

Obra tedrica y practica que brinda las habilidades necesarias para = 25 Fasciculos

convertirse en un profesional en composicidn, animacion y VFX » 600 Paginas und.amen

(efectos especiales). »2CDs/10VD/1Libro ; g C‘“'-'“"’mg'
- F —

e

aficos

» 25 Fasciculos Obra ideal para ingresar en el apasionante universo del disefio web y utilizar
= 600 Paginas Internet para una profesion rentable. Elaborada por los maximos referentes
= 4CDs en el area, con infografias y explicaciones muy didacticas.

Brinda las habilidades necesarias para planificar, instalary administrar ~ » 25Fasciculos
redes de computadoras de forma profesional. Basada principalmente en » 600 Paginas
tecnologias Cisco, busca cubrir la creciente necesidad de profesionales. » 3CDs/ 1 Libros

ﬁj + 54 (011) 4110-8700 usershop@redusers.com

'CONECTESE CON LOS MEJORES
~ LIBROS DE COMPUTACION

Este libro esta dirigido a
todos aquellos que quieran
iniciarse en el desarrollo bajo
lenguajes Microsoft. A traves
de los capitulos del manual,
aprenderemos sobre POQ, la
programacion con tecnologias
.NET y de gue manera se
desenvuelven con otras
tecnologias existentes.

» DESARROLLO
» 352 PAGINAS
» ISBN 978-987-1773-26-8

N
S
N
N
N
N
\
2%

LLEGAMOS A TODO EL MUNDO VIA »oca * Y E=yz7am+
MAS INFORMACION / CONTACTENOS
@ usershop.redusers.com ¢ +54 (011) 4110-8700 [< usershop@redusers.com

#S0L0 VALIDD EN LA REPUBLICA ARGENTINA if **VALIDO EN TODO EL MUNDO EXCEPTO ARGENTINA

USERS
INTRODUCCION A LA PROGRAMACION B2

Presentamos un libro ideal para todos aquellos que quieran iniciarse en el mundo de la programacién y conocer las bases necesarias para
generar su primer software. A lo largo de su contenido, analizaremos el contexto que impulsa el desarrollo de aplicaciones y las partes que
lo constituyen. Una vez adquiridos estos conocimientos, aprenderemos la importancia del pseudocddigo, que nos permitira trabajar con
cualquier lenguaje de programacion. A continuacion, repasaremos la estructuracidn de datos para entender como funciona su légica y, asi,
armar los prototipos de aplicaciones, ya sean de escritorio, web o moviles.

A través de explicaciones sencillas, guias visuales y procedimientos paso a paso, el lector descubrird una obra imperdible para adquirir bases
sdlidas en el desarrollo de aplicaciones y aprender a programar de manera eficiente.

Conociendo el manejo y la confeccion de los programas,
podremos comprender la logica propia de la programacion
y trabajar en cualquier tipo de lenguaje.

EN ESTE LIBRO APRENDERA:

} Desarrollo de aplicaciones informaticas: cuales son los propasitos para "
aprender a desarrollar software y en qué ambitos podemos aplicarlos.

} Introduccion a la programacion: metodologias y ciclo de vida de un desarrollo. Andli-
sis, disefio & implementacion del sistema. Pseudocddigo y estructuras de control.

'y

b» Primer proyecto en Visual Basic y C++: caracteristicas mas importantes que
encierra cada lenguaje y como funciona su interaccion con los usuarios.

2> SOBRE EL AUTOR
Juan Carlos Casale es Analista
de Sistemas y Administrador de
Empresas, y da clases de Informatica
en el Colegio Universitario IES Siglo
21, ubicado en Cordoba capital,
Argentina. Alli también edita textos
interactivos de estudioy trabaja
como coordinador de drea en los
laboratorios de Informatica.

b Estructuras de datos: un vistazo a las estructuras de datos mas utilizadas en
la programacion de cualquier lenguaje v su desarrollo logico.

} Normas en la confeccidn de interfaces: pautas (tiles a tener en cuenta para
lograr una interfaz funcional y arménica.

> NIVEL DE USUARIO
e e T e Basico / Intermedio
[T ,
e >> CATEGORIA
e Desarrollo
SHNNNEE —] ISBN 978-987-1857-69-2
[Sueag al-iCIC]L [—)
REDUSERS.com PROFESOR EN LINEA
En nuestro sitio podré encontrar noticias Ante Eqalquier consulta técnica relacionada
relacionadas y también participar de la comunidad con el libro, puede contactarse con nuestros 9 1789871857692/ >

RedUSERS

de tecnologia mas importante de América Latina,

expertos: profesor@redusers.com.

