A la Progrgmacion
Logica y Diseno
90YCE FARRELL

@ o g

Introduccidn a la
Programacion Ldgica
y Diseno

Introduccion a la
Programacion Ldgica
y Diseno

JOYCE FARRELL

Traductor:
Jorge Alberto Velazquez Arellano

Revision técnica:

Fabiola Ocampo Botello

José Sanchez Juarez

Roberto De Luna Caballero

Profesores de la Escuela Superior de Computo
Instituto Politécnico Nacional

~ ~ CENGAGE
** Learning®

Australia « Brasil « Corea » Espana « Estados Unidos ¢ Japdn « México « Reino Unido « Singapur

;- CENGAGE
Learning®

Introduccién a la Programacion Légica
y Diseiio

7a. Ed.

Joyce Farrell

Presidente de Cengage Learning
Latinoamérica:
Fernando Valenzuela Migoya

Director editorial, de produccién
y de plataformas digitales para
Latinoamérica:

Ricardo H. Rodriguez

Gerente de procesos para Latinoamérica:

Claudia Islas Licona

Gerente de manufactura para
Latinoamérica:
Raul D. Zendejas Espejel

Gerente editorial de contenidos
en espaiol:
Pilar Herndndez Santamarina

Gerente de proyectos especiales:
Luciana Rabuffetti

Coordinador de manufactura:
Rafael Pérez Gonzélez

Editores:
Ivonne Arciniega Torres
Timoteo Eliosa Garcia

Disefio de portada:
Lisa Kuhn/Curio Press, LLC,
Www.curiopress.com

Imagen de portada:
© Leigh Prather/Veer

Composicion tipografica:
Rogelio Raymundo Reyna Reynoso

Impreso en México
1234567151413 12

© D.R. 2013 por Cengage Learning Editores, S.A.
de C.V., una Compaiiia de Cengage Learning, Inc.
Corporativo Santa Fe

Av. Santa Fe nim. 505, piso 12

Col. Cruz Manca, Santa Fe

C.P. 05349, México, D.F.

Cengage Learning® es una marca registrada
usada bajo permiso.

DERECHOS RESERVADOS. Ninguna parte de
este trabajo amparado por la Ley Federal del
Derecho de Autor, podrd ser reproducida,
transmitida, almacenada o utilizada en
cualquier forma o por cualquier medio, ya sea
grafico, electrénico o mecanico, incluyendo,
pero sin limitarse a lo siguiente: fotocopiado,
reproduccion, escaneo, digitalizacion,
grabacién en audio, distribucién en Internet,
distribucion en redes de informacién o
almacenamiento y recopilacién en sistemas
de informacidén a excepcién de lo permitido
en el Capitulo IlI, Articulo 27 de la Ley Federal
del Derecho de Autor, sin el consentimiento
por escrito de la Editorial.

Traducido del libro Programming Logic and Design,
Introductory version

Seventh edition

Joyce Farrell

Publicado en inglés por Course Technology, una
compania de Cengage Learning © 2013

ISBN: 978-1-133-52651-3

Datos para catalogacion bibliografica:

Farrell, Joyce

Introduccién a la Programacion Légica y Disefio,
7a. Ed.

ISBN: 978-607-481-905-2

Visite nuestro sitio en:
http://latinoamerica.cengage.com

Contenido

CAPITULO 1

Prefaciox

Una revision de las computadoras

y la programacion.1
Comprensién de los sistemas de computo 2
Comprension de la légica de programa simple 5
Comprension del ciclo de desarrollo
del programao 7
Entender el problema 8
Planear lalogica. 9
Codificacion del programa 10
Uso de software para traducir el programa al lenguaje
demaquina Lo 10
Prueba del programa. 12
Poner el programa en produccién 13
Mantenimiento del programa 13
Uso de declaraciones en seudocodigo y simbolos
de diagramadeflujo L. 14
Escritura en seudocodigo. L. 15
Trazo de diagramas de flujo 16
Repeticion de las instrucciones 17
Uso de un valor centinela para terminar un programa. . . . 19
Comprension de la programacion y los ambientes
delusuarioo 22
Comprensién de los ambientes de programacion 22
Comprensién de los ambientes de usuario 24
Comprensién de la evolucion de los modelos
de programacion. 25
Resumen del capitulo 27
Términosclaveo L0 28
Preguntas derepaso. 31
Ejercicios.o 33
Encuentre los errores 35
Zonadejuegos oo 35

Para discusién. 36

CONTENIDO

CAPITULO 2

CAPITULO 3

Elementos de los programas de
alta calidad

La declaracion y el uso de variables y constantes . . .

Comprensién de las constantes literales

y sus tiposdedatos
Trabajo convariables
Nombramiento de variables.
Asignacion de valores a las variables
Comprensién de los tipos de datos de las variables. . . .
Declaracion de constantes nombradas.

Realizacion de operaciones aritméticas
Comprension de las ventajas de la modularizacién . . .
La modularizacion proporciona abstraccion

La modularizacion permite que varios programadores

trabajen en un problema
La modularizacién permite que se reutilice el trabajo . . .
Modularizacion de un programa.

Declaracion de variables y constantes dentro

de los moédulos.

Comprensién de la configuracion mas comun

para la légica de linea principal
Creacidén de graficas de jerarquia
Caracteristicas de un buen diseio de programa

Uso de comentarios del programa.
Eleccion de identificadores
Diseno de declaraciones precisas.
Evite cortes de linea confusos
Escritura de indicadores claros y entradas coneco. . . .
Mantener buenos habitos de programacion.
Resumen del capitulo
Términos clave
Preguntas derepaso.
Ejercicios.
Encuentre loserrores
Zonadejuegos
Para discusion

Comprender la estructura

Las desventajas del codigo espagueti no estructurado . . .
Comprensién de las tres estructuras basicas.

Uso de una entrada anticipada para estructurar

UN Programa. v v v v i e e
Comprensién de las razones para la estructura.

.37

38

38
39
41
42
43
44
45
48
49

50
50
51

55

57
61
63
64
66
68
68
69
71
72
73
76
79
81
82
82

CAPITULO 4

CAPITULO 5

Reconocimiento de la estructura 102
Estructuracién y modularizacion de la légica
no estructurada 105
Resumen del capitulo 110
Términos clave 111
Preguntas derepaso. 112
Ejercicios.o 114
Encuentre loserrores 118
Zonade juegoso 118
Para discusién 119
Toma de decisiones 121
Expresiones booleanas y la estructura de seleccién. 122
Uso de operadores de comparacion relacionales 126
Evitar un error comun con los operadores relacionales . .129
Comprensién de lalégica AND 129
Anidar decisiones AND para la eficiencia. 132
Uso del operador AND 134
Evitar errores comunes en una seleccién AND 136
Comprension de lalégicaOR 138
Escritura de decisiones OR para eficiencia. 140
Uso del operador OR. 141
Evitar errores comunes en una seleccibn OR 143
Hacer selecciones dentro de rangos. 148
Evitar errores comunes cuando se usan comprobaciones
derango 150
Comprensién de la precedencia cuando se combinan
operadores ANDYOR 154
Resumen del capitulo 157
Términos clave 158
Preguntasderepaso. 159
Ejercicios.o 162
Encuentre los errores. 167
Zonadejuegos.o 167
Para discusion 168
Creacion de ciclos169
Comprension de las ventajas de crear ciclos. 170
Uso de una variable de control de ciclo 171
Uso de un ciclo definido con un contador 172
Uso de un ciclo indefinido con un valor centinela 173

Comprensién del ciclo en la logica de linea principal
deunprograma 175

vii

CONTENIDO

CAPITULO 6

Ciclos anidados 177
Evitar errores comunes enlos ciclos 183
Error: descuidar la inicializacion de la variable
de controldeciclo. 183
Error: descuidar la alteracién de la variable
de controldeciclo. 185
Error: usar la comparacion erronea con la variable
de controldeciclo 186
Error: incluir dentro del ciclo declaraciones
que pertenecen al exterior del mismo 187
Usodeunciclo for 192
Aplicaciones comunes de los ciclos 194
Uso de un ciclo para acumular totales 194
Uso de un ciclo para validar datos. 198
Limitacién de un ciclo que pide entradas de nuevo200
Validacion de un tipode datos 202
Validacién de la sensatez y consistencia de los datos . . .203
Resumen del capitulo 205
Términos clave 205
Preguntasderepaso. 206
Ejercicios.o 209
Encuentre loserrores. 211
Zonade juegos. Lo 211
Para discusion 212
Arreglos213
Almacenamiento de datos en arreglos. 214
De qué modo los arreglos ocupan la memoria
de lacomputadora 214
Como un arreglo puede reemplazar decisiones anidadas . .216
Uso de constantes con arreglos. 224
Uso de una constante como el tamafno de un arreglo . . .224
Uso de constantes como valores de elemento
delarreglo. 225
Uso de una constante como subindice de un arreglo . . .225
Busqueda de un arreglo para una correspondencia
exactao 226
Uso de arreglos paralelos 230
Mejora de la eficiencia de la busqueda. 234
Busqueda en un arreglo para una correspondencia
derango 237
Permanencia dentro de los limites del arreglo 241
Uso de un ciclo for para procesar arreglos 244

Resumen del capitulo 245

CAPITULO 7

APENDICE A

APENDICE B

APENDICE C

Términos clave 246
Preguntasderepaso. 246
Ejercicios.o 249
Encuentre loserrores 253
Zonadejuegoso 253
Para discusién. 255
Manejo de archivos y aplicaciones 257
Comprensién de los archivos de computadora 258
Organizacion de los archivos 259
Comprensién de la jerarquia de datos 260
Ejecucion de operaciones con archivos 261
Declarar un archivo 261
Abrirunarchivo 262
Leer datos deunarchivo. 262
Escribir datos enun archivo 264
Cerrarunarchivo 264
Un programa que ejecuta operaciones de archivo. 264
Comprension de los archivos secuenciales y la logica
de control de interrupciones 267
Comprensidn de la légica de control de interrupciones . .268
Union de archivos secuenciales. 273
Procesamiento de archivos maestros y de transaccion . . .281
Archivos de acceso aleatorio. 290
Resumen del capitulo 292
Términos clave 293
Preguntas derepaso. 295
Ejercicios. Lo 299
Encuentre los errores 302
Zonadejuegos 302
Para discusion 303

Comprension de los sistemas de
numeracion y los codigos

de computadora 305
El sistema hexadecimal 311
Medicion del almacenamiento. 312
Términos clave 314
Simbolos de diagrama de flujo 315

Estructuras. 316

CONTENIDO

_E

APENDICE D

APENDICE E

APENDICE F

Resolucion de problemas de
estructuracién dificiles

Creacion de graficas impresas

Dos variaciones de las estructuras
basicas: case y do-while .

La estructura case
El ciclo do-while e e
Reconocimiento de las caracteristicas compartidas

por todos los ciclos estructurados.
Reconocimiento de ciclos no estructurados
Términos clave

Glosario .

indice .

. 318

. 328

Prefacio

Introduccion a la Programacion Logica y Disefio, 7a. Ed., brinda al programador principiante
una gufa para desarrollar una légica de programa estructurada. En este libro de texto se
supone que el lector no tiene experiencia con los lenguajes de programacién; su redaccién no
es técnica y enfatiza las buenas précticas de programacion. Los ejemplos se relacionan con los
negocios; no requieren una formacién matemadtica adicional a las matematicas de negocios de
bachillerato. Ademads, los ejemplos ilustran uno o dos puntos importantes; no contienen un
ndmero excesivo de caracteristicas que hagan que los estudiantes se pierdan al seguir los deta-
lles irrelevantes y extrafos.

Los ejemplos se han creado para proporcionar a los estudiantes una formacién sélida en el
area de logica, sin importar cudles lenguajes de programacién usen al final para escribir los
programas. Este libro puede usarse en un curso de logica independiente que los estudiantes
tomen como prerrequisito para otro de programacion, o como un libro complementario para
algin texto de introduccién a la programacién que use cualquier lenguaje de programacién.

Organizacion y cobertura

Introduccion a la Programacion Logica y Diserio, 7a. Ed., presenta a los estudiantes los con-
ceptos de programacién e impone un buen estilo y pensamiento légico. Los conceptos genera-
les de programacion se presentan en el capitulo 1; en el capitulo 2 se expone el uso de los datos
y muestra dos conceptos importantes: la modularizacién y la creacién de programas de alta
calidad. Es importante enfatizar estos temas desde el principio de modo que los estudiantes
comiencen a pensar en una forma modular y se concentren en hacer sus programas mds
eficientes, robustos, féciles de leer y de mantener.

El capitulo 3 cubre los conceptos clave de estructura, entre los que se encuentran qué es,
cdémo reconocerla y, de mayor importancia, las ventajas de escribir programas estructurados;
el contenido de este capitulo es inico entre los textos de programacién. El esbozo inicial de
la estructura que se presenta aqui da a los estudiantes un fundamento sélido para pensar en
forma estructurada.

Los capitulos 4, 5 y 6 exploran las complejidades de la toma de decisiones, la elaboracién de
ciclos y la manipulacién de arreglos. El capitulo 7 proporciona detalles del manejo de archivos
de modo que los estudiantes puedan crear programas que procesen una cantidad considera-
ble de datos.

Los primeros tres apéndices proporcionan a los estudiantes resimenes de los sistemas de
numeracion, simbolos de diagramas de flujo y estructuras; los apéndices adicionales les

PREFACIO

permiten obtener experiencia extra con la estructuracién de programas no estructurados
grandes, crear graficas impresas y entender los ciclos posprueba y las estructuras case.

Introduccion a la Programacion Ldgica y Disefio combina la explicacion en el texto con ejem-
plos de diagramas de flujo y seudocédigo con el objetivo de proporcionar a los estudiantes
medios alternativos para expresar la légica estructurada.

Xii

Numerosos ejercicios detallados de programas completos al final de cada capitulo ilustran los
conceptos que se explican en el capitulo y refuerzan la comprensién y la retenciéon del material
presentado.

Introduccion a la Programacion Logica y Diserio se distingue de otros libros de légica de pro-
gramacion en lo siguiente:

e Estd escrito y diseiado de manera que no sea especifico para ningdn lenguaje. La légica que
se usa en este libro puede aplicarse a cualquier lenguaje de programacion.

e Los ejemplos se relacionan con los negocios cotidianos; no se espera ningin conocimiento
especial de matemadticas, contabilidad u otras disciplinas.

e El concepto de estructura se cubre antes que en muchos otros textos. Los estudiantes se
exponen a la estructura en forma natural, de modo que creen en forma automatica progra-
mas diseniados de manera apropiada.

e La explicacién del texto se intercala con diagramas de flujo y seudocddigo de modo que los
estudiantes se sientan cémodos con estas herramientas de desarrollo légico y compren-
dan su interrelacién. También se incluyen capturas de pantalla de programas en ejecucion,
lo que proporciona a los estudiantes una imagen clara y concreta de la ejecucién de los
programas.

e Se elaboran programas complejos por medio del uso de ejemplos de negocios completos.
Los estudiantes ven cdmo se construye una aplicacién de principio a fin en lugar de estudiar
s6lo segmentos de programas.

Caracteristicas

Este texto se enfoca en ayudar a los estudiantes a convertirse en
mejores programadores y comprender el panorama completo en el
desarrollo de programas por medio de una variedad de caracteristi-
cas clave. Ademads de los Objetivos, Resimenes y Términos clave del
capitulo, estas caracteristicas serdn ttiles para los alumnos sin impor-
tar su estilo de aprendizaje.

(NIRRT Comprender la estructura

Secuencia Seleccion Ciclo

entrada entrada entrada

figuras e ilustraciones pro- _»
porcionan al lector una expe- "
riencia de aprendizaje visual. % ‘ ’ saida

_,_1

salida

salida

Figura 3-11 Las tres estructuras

y salida. Estos son los puntos en los que podria conectar una estructura con otra. Del mismo modo, cuak-
quier estructura completa, desde su punto de entrada hasta el de salida, puede insertarse dentro del sim-
bolo de proceso de cualquier otra estructura.

ﬂ Trate de imaginar que levanta fisicamente cualquiera de las tres estructuras usando las “manijas” de entrada

En resumen, un programa estructurado tiene las siguientes caracteristicas:

Un programa estructurado sélo incluye combinaciones de las tres estructuras basicas:
secuencia, seleccion y ciclo. Cualquier programa estructurado podria contener uno, dos o
los tres tipos de estructuras.

Cada estructura tiene solo un punto de entrada y uno de salida.

Las estructuras pueden apilarse o conectarse entre si sélo en sus puntos de entrada o salida.

Cualquier estructura puede anidarse dentro de otra.

Nunca se requiere que un programa estructurado contenga ejemplos de las tres estructuras. Por ejemplo,
muchos programas sencillos s6lo contienen una secuencia de varias tareas que se ejecutan de principio

a fin sin que se necesite alguna seleccion o ciclo. Como otro ejemplo, un programa podria desplegar una
serie de nimeros usando ciclos, pero nunca tomando alguna decision sobre los nimeros.

proporcionan infor-
macion adicional; por ejem-
plo, otra ubicacion en el libro
que amplia un tema, o un
error comun con el que se
debe tener cuidado.

El uso de diagramas de flujo es excelente. Este es un libro
imprescindible para aprender l6gica de programacion antes
de abordar los diversos lenguajes.

—Lori Selby, University of Arkansas at Monticello

son
cuestionarios breves que aparecen después
de cada seccion del capitulo, en los que se
proporcionan las respuestas. El cuestionario
contiene tres afirmaciones basadas en la sec-
Xiv cion precedente del texto; dos afirmaciones
son verdaderas y una es falsa. Las respues-
tas dan retroalimentacion inmediata sin “reve-
lar” las respuestas a las preguntas de opcion
multiple y a los problemas de programacion
que aparecen al final del capitulo.

Uso de una entrada anti¢ipada para estructurar un programa _

Comprension de las tres estructuras basicas

1. Cada estructura en la programacion estructurada es una secuencia, una selec-
cion o un ciclo.

2. Todos los problemas de logica pueden resolverse usando solo tres estructuras:
secuencia, seleccion y ciclo.

3. Las tres estructuras no pueden combinarse en un solo programa.

*SBULIOJ 9P OHULUI 0JWNU UN UD
as.epiue 0 as.e|ide Uspand SANJINAISA SaJ} SBT “E 0IBLUNU €] SB BS[e) UOIBLLLIYE BT
—

Uso de una entrada anticipada
para estructurar un programa

Recuerde el programa para duplicar nimeros que se mencioné en el capitulo 2; la figura 3-12
muestra un programa similar. El programa da entrada a un nimero y comprueba la condicién
de fin de archivo. Si la condicién no se cumple, entonces el nimero se duplica, la respuesta se
despliega y se introduce el siguiente nimero.

ilustra como
nun celclatedinsner NO hacer algo; por ejemplo, tener una
oo ruta de codigo muerta en un programa.
originalNumber olohaga 5 A 5
Bl e Este icono proporciona una sacudida
visual al estudiante, enfatizando cuéales
figuras particulares NO deben emularse

R y haciendo que sean mas cuidadosos
para reconocer los problemas en un

cc')digo existente.

Figura 3-12 Diagrama de flujo no estructurado de un programa para duplicar nimeros

Evaluacion

El material estd muy bien escrito, presentado
con claridad y actualizado. Todas las explica-
ciones son muy sélidas, y el lenguaje de Farrell

es limpio, contundente y fdcil de seguir.

—Judy Woodruff, Indiana University-Purdue

University Indianapolis

Preguntas de repaso

. Laldgica de programa enredada se llama codigo
a) vibora) cadena

b) espagueti d) retorcido

3

~

@

. Las tres estructy dela

son

a) secuencia, orden y proceso
b) seleccién, ciclo e iteracion

. Una estructura de secuencia puede contener

a) cualquier cantidad de tareas
b) exactamente tres tareas

©) secuencia, seleccion y ciclo
d) if, elsey then

) no mis de tres tareas

d) s6lo una tarea

Los

nidades para practicar los conceptos;
son de dificultad creciente y permiten a
los estudiantes explorar los conceptos
de programacion logica. Cada ejercicio
puede completarse usando diagramas

de flujo, seudocodigo o ambos. Ademas,
los profesores pueden asignarlos como
problemas de programacion que seran
codificados y ejecutados en un lenguaj
de programacion particular.

XV

3

iCuil de los siguientes 10 es otro término para una estructura de seleccién?
a) de decision
b) if-then-else

) if dealternativa dual
d) deciclo

@

. La estructura en la que usted hace una pregunta y, dependiendo de la respuesta,
efectia alguna accion y luego hace la pregunta de nuevo, puede llamarse de todas las
‘maneras siguientes excepto .

a) iteracion
b) ciclo

) repeticién
d) if-then-else

B

La colocacién de una estructura dentro de otra se llama

a) apilarlas) construirlas Ejercicios
b) desenredarlas d) anidarlas

20. Una variable podria valor incorrecto aun cuando

7. Mhir estructuras por sus extremos se llama

: a) eseltipo de datos corre
apilarlas <) construirlas .
. b) esta dentro de un rango fequerido
desenredarlas d) anidarlas
) esuna constante codificada por el programador
8. I declaracion if age >= 65 then seniorDiscount = “si” esun cjemplo d) todos los anteriores
secuencia) seleccion de alternativa dul S
X i i Ejercicios
ciclo d) seleccion de alternativa tn]
) ; i 22
5. b declaracion whiTe temperature se mantenga menor a 66, dejar Sl 1. ;Cudl es la salida para cada uno de los segmentos de seudocsdigo de la figura 5-22
cendido es un ejemplo de
secuencia ©) seleccion de alternativa dul al .1 bl ya c.
ciclo d) seleccion de alternativa tn| b-2 - ot
while a < ¢ while d > f while g < h
1 g=g+1
b=b+c e=e-1 endwhile
endwhile endwhile output g, h
output a, b, ¢ output d, e,
A 5-2 e | j=-2 t]p=2
k=5 [a4
n=9 m=6 while p < q
while j < k n= output “"Adios"
m= while j < k F=1
while m < n while m < n while r < q
output "Adios" output "Hola" output "Adios"
m=m+1 m=m+ 1 r=r+1
endwhile endwhile endwhile
33+ j=ie1 p-p+l
endwhile endwhile endwhile

La S Figura 5-22 Segmentos de seudocddigo para el ejercicio 1

-
prueban la comprension del es 2. Disc g i rogea s décon sl odos o s del 1220,
dlante de Ias |dea5 y t chicas 3. 11‘311:5:2 :1 I:ff;::z;:bll’xg;]a:“n; aue dé como salida todos los nimeros del 1 al 20

p rin c i pa | es prese nta d as. S e in € | u- . Dischilaligis praun progrma g dé como sl todoslos imeros pares 4l 2al
yen 20 preguntas al final de cada 5. Disete I 6gica para un programa que dé como salida ndmeros en orden invertido del
25al 0.
>
C a p Itu |0 . 6. Disefie la logica para un programa que permita a un usuario introducir un nimero.

Despliegue la suma de todos los nimeros desde 1 hasta el nmero introducido.

Se incluyen

en cada capitulo debido a que examinar los
programas en forma critica y minuciosa es una
habilidad crucial de la programacion. Los estu-
diantes pueden descargar estos ejercicios en
www.cengagebrain.com (disponibles sélo para

la version original en inglés). Estos archivos
también estan disponibles para los profesores
por medio del CD de Recursos para el profe-
sor y login.cengage.com. (Nota importante:
Estos ejercicios se encuentran disponibles solo
para la version original en inglés.)

expliquen c6mo gnvolver un regalo. Incluya al menos dos decisiones y dos ciclos.

. Trace un diagraia de fluj escriba un i que
expliquen los pagos que debe seguir el dependiente de una tienda de abarrotes para
cobrarle a un clfefife. Incluya al menos dos decisiones y dos ciclos.

' Encuentre los errores

Sus archivos descargables para el capuulo 3incluyen DEBUGO3-01. txt , B
02.txt y
que describen el problema. Los comentarios son lineas g .

diagonales(/). Después de los comentarios, cada archivo) en
tiene uno o mds errores que debe encontrar y corregir. (]

encuentran disponibles sélo en inglés.). al ﬁnal de Cada Capl’_
%2 Zona de juegos tulo. Los estudiantes pueden crear

Elifa un juego simple para niios y describa su logica, usa

estructurado o un seudocGeigo, Por cjemplo, odta exp juegos como una forma adicional

el “Juego de las sillas”; el juego de naipes “Guerras”; o el j{ .
in".
e entretenida de comprender los con-
14, Elija un programa de concurso de television como Jeopar 5z
describa sus reglas usando un diagrama de flujo estructuf ce pto SC | ave d e programacion
15. Elija un deporte como béisbol o fitbol americano y desc
limitado de juego (como un turno al bate en el béisbol o
americano) usando un diagrama de flujo estructurado o

niimero no sale en los tres lanzamientos, la computadora gana.

18, Cree lalogica para el juego de dados Pig, en el que un jugador puede competir con la
computadora. El objeto del juego es ser el primero en obtener 100 puntos. El usuario y
la computadora toman turnos para “lanzar” un par de dados siguiendo estas reglas:

« Enun turno, cada jugador lanza dos dados. Si no aparece 1, los valores de los dados
se suman a un total acumulado para el turno y el jugador puede elegir si lanza de
nuevo o pasa el turno al otro. Cuando un jugador pasa el total acumulado en el
turno se suma a su total del juego.

« Siaparece 1 en uno de los dados, el total del turno del jugador se convierte en 0; en
otras palabras, no se suma nada mis al total del juego del jugador para ese turno, y
le toca el turno al otro.

« Siaparece 1 en ambos dados, no sslo se acaba el turno del jugador, sino que el total
acumulado entero del jugador se reinicia a 0.

« Cuando la computadora no lanza un 1y puede elegir si lanza de nuevo, genera un
niimero aleatorio de 1 a 2. Entonces la computadora decidiré continuar cuando cl
valor es 1y decidird salir y pasar el turno al jugador cuando el valor no es 1.

q. Para discusion E——

9. Suponga que escribe un programa que usted sospecha que estd en un ciclo infinito

presentan cuestiones personales y

L debid i d e lid: ter Qu

gticas que los programadores deben e oegms st oo o vt o deseaboe e oigon 1l probtomas ¢
1 1 . b dos | lead. d

considerar. Pueden usarse para asig- * i“:;iﬁf;?,::ssei.‘i.“:d‘};.?;ZZ:';‘:’;:;:,Z"e:?;“i?";;f:;;“55222;&2“3:2112

seria ttil para adivinar todas las

nac | ones por esc I’Ito 0 COmMO un pu nto ;Hay alguna clrcunstancia en la que usted deber?la m!ent;;sadjv:'\r;: ¢l nimero de iden-

tificacion de otro empleado?

d e p a rt| d a p ara |a d | SCus Ié nene | 21 Si todos los empleados en una organizacion tuvieran un ntimero de identificacion de

i’ siete digitos, adivinar todas las combinaciones posibles serfa una tarea de programa-
Y |0 n d e Cl ases cion relativamente ficil. ;Como podria alterar el formato de las identificaciones de
- empleados para hacerlas ms dificiles de adivinar?

Otras caracteristicas del texto _

Otras caracteristicas del texto

Esta edicion incluye muchas caracteristicas para ayudar a los estudiantes a convertirse en
mejores programadores y comprender el panorama completo en el desarrollo de programas.
Todas las explicaciones se han revisado con cuidado para proporcionar la instruccién mas
clara posible. El material que antes se inclufa en notas marginales se ha incorporado al texto
principal, dando a las paginas una apariencia mds eficiente. Todos los capitulos en esta edicién
contienen ejercicios de programacién nuevos. Todos los ejercicios de la sexta edicién que

se han reemplazado estdn disponibles en el CD de Recursos para el profesor y por medio de
login.cengage.com de modo que los instructores puedan usarlos como ejercicios asignados adi-
cionales o como temas para las discusiones en clase (disponibles s6lo para la versién original
en inglés).

e Explicaciones claras. El lenguaje y las explicaciones en este libro se han refinado a lo largo
de siete ediciones, proporcionando las explicaciones més claras posibles de los conceptos
dificiles.

o Enfasis en la estructura. Més que sus competidores, este libro enfatiza la estructura. El
capitulo 3 proporciona una imagen inicial de los conceptos importantes de la programacion
estructurada, dando a los estudiantes una visién general de los fundamentos antes de que se
requieran para considerar los detalles de los programas.

o Enfasis en la modularidad. A partir del segundo capitulo se alienta a los estudiantes a
escribir cédigo en mddulos concisos, que es facil manejar y reutilizar. Los profesores han
encontrado que la modularizacién debe fomentarse pronto para instilar hdbitos adecuados
y una comprensién mas clara de la estructura. Esta edicién usa la modularizacién al
principio, usando variables globales en lugar de valores locales pasados y devueltos, y guarda
el paso de los parametros para después cuando el estudiante haya adquirido mas habilidad.

e Métodos como cajas negras. El uso de métodos es consistente con los lenguajes con los
que quizd el estudiante tenga sus primeras experiencias de programacién. En particular,
este libro enfatiza el uso de los métodos como cajas negras, declarando todas las variables
y constantes como locales para los métodos, pasando argumentos y recibiendo valores
devueltos de los métodos segiin sea necesario.

¢ Objetivos. Cada capitulo comienza con una lista de objetivos de modo que los estudiantes
sepan cudles temas se presentardn. Ademads de proporcionar una referencia rapida de los
temas, esta caracteristica proporciona un auxiliar de estudio util.

e Seudocddigo. Este libro incluye numerosos ejemplos de seudocédigo, que ilustran el uso
correcto de los conceptos de légica y disefio de programacién que se explican.

e Restmenes de capitulo. Después de cada capitulo hay un resumen que recapitula los
conceptos y técnicas de programacion que se estudian. Esta caracteristica proporciona un
medio conciso para que los estudiantes repasen y verifiquen su comprensiéon de los puntos
principales en cada capitulo.

e Términos clave. Cada capitulo lista los términos clave y sus definiciones; la lista aparece
en el orden en que se encuentran los términos en el capitulo. Junto con el resumen del capi-
tulo, la lista de términos clave proporciona una visién general instantinea de las ideas prin-
cipales. Un glosario al final del libro lista todos los términos clave en orden alfabético, junto
con sus definiciones basicas.

D opciones de software

Recursos para el instructor

Las siguientes herramientas de ensefianza estan disponibles para el instructor en un CD-ROM
(so6lo para la version original en inglés). Muchas también estdn disponibles para descargarlas a
través de nuestro sitio acompanante del instructor en login.cengage.com.

Manual electrénico del instructor. El Manual del instructor sigue el texto capitulo por
capitulo para asistir en la planeacion y organizacién de un curso efectivo y atractivo. Incluye
objetivos de aprendizaje, esbozos del capitulo, apuntes para clase, ideas para actividades en
el salon de clases y abundantes recursos adicionales. También se encuentra disponible un
plan de estudios del curso de muestra.

Guias PAL. Junto con Introduccién a la Programacion Ldgica y Diserio, estos libros breves,
o Guias PAL, proporcionan una oportunidad excelente para aprender los fundamentos de
la programacién mientras se logra la exposicién a un lenguaje de programacién. Los lecto-
res descubrirdn cémo se comporta el cdédigo real dentro del contexto del curso de légica y
diseno tradicionalmente independiente del lenguaje. Las guias PAL estan disponibles para
C++, Java y Visual Basic; por favor pongase en contacto con su representante de ventas para
mads informacion sobre como agregar las gufas PAL a su curso.

Presentaciones PowerPoint (disponibles s6lo para la version original en inglés). Este
texto proporciona diapositivas de PowerPoint para acompanar a cada capitulo. Las diaposi-
tivas se incluyen para guiar la presentacion en el salén de clases, para ponerlas a disposicién
de los estudiantes para un repaso del capitulo o imprimirlas como folletos para el salén

de clases. Los profesores pueden personalizar las diapositivas, que incluyen los archivos de
figura completos del texto, para que se adecuen mejor a sus cursos.

Soluciones. Se proporcionan las soluciones a las preguntas de repaso y los ejercicios para
asistirle en la calificacién.

ExamView® (disponible sélo para la versién original en inglés). Este libro de texto es acom-
pafiado por ExamView, un potente paquete de software de exdimenes que permite a los pro-
fesores crear y administrar exdmenes impresos, basados en LAN y por internet. ExamView
incluye cientos de preguntas que corresponden al texto, permitiendo a los estudiantes
generar gufas de estudio detalladas que incluyan referencias de pdgina para un repaso mds

a fondo. Los componentes de prueba basados en computadora y en internet permiten a los
estudiantes presentar exdmenes en sus computadoras, y los componentes le ahorran tiempo
al profesor al calificar cada examen en forma automética. Estos bancos de pruebas también
estdn disponibles en formatos compatibles para Blackboard, WebCt y Angel.

Opciones de software

Tiene la opcion de vincular el software con su texto. Por favor péngase en contacto con su
representante de ventas de Cengage Learning para més informacion.

Microsoft® Office Visio® Professional 2010, version por 60 dias. Visio 2010 es un pro-
grama de diagramacion que permite a los usuarios crear diagramas de flujo y diagramas con
facilidad mientras trabaja a lo largo del texto, permitiéndoles visualizar conceptos y apren-
der de manera mds efectiva.

Reconocimientos [

e Software Visual Logic™. Visual Logic es una herramienta simple pero potente para ense-
far légica y disefo de programacion sin la sintaxis tradicional del lenguaje de programacién
de alto nivel. Usa diagramas de flujo para explicar los conceptos de programacion esencia-
les expuestos en este libro, incluyendo variables, entrada, asignacidn, salida, condiciones,
ciclos, procedimientos, graficas, arreglos y archivos. Visual Logic también interpreta y eje-
cuta diagramas de flujo, proporcionando a los estudiantes una retroalimentaciéon inmediata
y precisa. Visual Logic combina el poder de un lenguaje de alto nivel con la facilidad y sim-
plicidad de los diagramas de flujo.

Xix

Reconocimientos

Me gustaria agradecer a todas las personas que ayudaron a hacer de este libro una realidad,
en especial Dan Seiter. Después de siete ediciones, Dan todavia encuentra formas de mejorar
mis explicaciones de modo que podamos crear un libro de la mayor calidad posible. Gracias
también a Alyssa Pratt; Brandi Shailer; Catherine DiMassa y Green Pen QA. Estoy agradecida
de poder trabajar con tantas personas excelentes que estdn dedicadas a producir materiales
didécticos de calidad.

Estoy en deuda con los muchos revisores que proporcionaron comentarios utiles e intuitivos
durante el desarrollo de este libro, incluyendo Linda Cohen, Forsyth Tech; Andrew Hurd,
Hudson Valley Community College; George Reynolds, Strayer University; Lori Selby, Uni-
versity of Arkansas at Monticello; y Judy Woodruff, Indiana University—Purdue University
Indianapolis.

Gracias, también, a mi esposo, Geoff, y a nuestras hijas, Andrea y Audrey, por su apoyo. Este
libro, como lo fueron todas sus ediciones previas, estd dedicado a ellos.

Joyce Farrell

Una revision de las
computadoras y la
programacion

En este capitulo usted aprendera sobre:

Sistemas de computo

©)

Logica de un programa simple

©)

Los pasos que se siguen en el ciclo de desarrollo del
programa

©)

f[])eclaraciones de seudocddigo y simbolos de diagramas de
ujo

(©)

Usar un valor centinela para terminar un programa

©)

Programacion y ambientes de usuario

©)

La evolucién de los modelos de programacion

o\ AREIE SR Una revision de las computadoras y la programacion

Comprension de los sistemas de computo

Un sistema de computo es una combinacién de todos los componentes que se requieren para
procesar y almacenar datos usando una computadora. Todos los sistemas de coémputo estan
compuestos por multiples piezas de hardware y software.

. 2 e Hardware es el equipo o los dispositivos fisicos asociados con una computadora. Por ejem-
plo, todos los teclados, ratones, altavoces e impresoras son hardware. Los dispositivos se
manufacturan en forma diferente para las computadoras mainframe grandes, las laptops
e incluso para las computadoras mds pequefias que estdn incorporadas en los productos
como automdviles y termostatos, pero los tipos de operaciones que efecttian las compu-
tadoras de distintos tamafos son muy parecidos. Cuando se piensa en una computadora
con frecuencia son sus componentes fisicos los que llegan a la mente, pero para que sea ttil
necesita mas que dispositivos; requiere que se le den instrucciones. Del mismo modo en
que un equipo de sonido no hace mucho hasta que se le incorpora la musica, el hardware de
computadora necesita instrucciones que controlen cémo y cuindo se introducen los datos,
cdmo se procesan y la forma en que se les da salida o se almacenan.

e Software son las instrucciones de la computadora que dicen al hardware qué hacer. El
software son programas o conjuntos de instrucciones escritos por programadores. Usted
puede comprar programas previamente escritos que se han almacenado en un disco o des-
cargarlos de la web. Por ejemplo, en los negocios se utilizan programas de procesamiento
de palabras y de contabilidad y los usuarios ocasionales de computadoras disfrutan los que
reproducen musica y juegos. De manera alternativa, usted puede escribir sus propios pro-
gramas. Cuando escribe las instrucciones de un software se dice que esta programando.
Este libro se enfoca en el proceso de programacién.

El software puede clasificarse en dos extensas categorfas:

e Software de aplicacion, que abarca todos los programas que se aplican para una tarea,
como los procesadores de palabras, las hojas de célculo, los programas de némina e inven-
tarios, e incluso los juegos.

o Software de sistema, que incluye los programas que se usan para manejar una compu-
tadora, entre los que se encuentran los sistemas operativos como Windows, Linux o UNIX.

Este libro se enfoca en la légica que se usa para escribir programas de software de aplicacion,
aunque muchos de los conceptos se aplican a ambos tipos de software.

Juntos, el hardware y el software llevan a cabo tres operaciones importantes en la mayorfa de
los programas:

e Entrada: los elementos de datos entran en el sistema de computo y se colocan en la memo-
ria, donde pueden ser procesados. Los dispositivos de hardware que efectiian operaciones
de entrada incluyen teclados y ratones. Los elementos de datos constan de todo el texto,
los nimeros y otras materias primas que se introducen en una computadora y son procesa-
das por ella. En los negocios, muchos elementos de datos que se usan son los hechos y las
cifras sobre entidades como productos, clientes y personal. Sin embargo, los datos también
pueden incluir imagenes, sonidos y movimientos del ratén que el usuario efectia.

¢ Procesamiento: procesar los elementos de datos implica organizarlos o clasificarlos, com-
probar su precision o realizar calculos con ellos. El componente de hardware que realiza
estas tareas es la unidad central de procesamiento o CPU (siglas del inglés central
processing unit).

Comprension de los sistemas de computo _

e Salida: después de que los elementos de datos se han procesado, la informacién resultante
por lo general se envia a una impresora, un monitor o algin otro dispositivo de salida de
modo que las personas vean, interpreten y usen los resultados. Los profesionales de la
programacién con frecuencia emplean el término datos para los elementos de entrada y el
de informacion para los datos que se han procesado y que han salido. En ocasiones usted
coloca estos datos de salida en dispositivos de almacenamiento, como discos o medios
flash (flash media). Las personas no pueden leer los datos en forma directa desde tales 3 .
dispositivos, pero éstos contienen informacién que puede recuperarse posteriormente.

Cuando se envia una salida a un dispositivo de almacenamiento en ocasiones se usa después
como entrada para otro programa.

Las instrucciones para el ordenador se escriben en un lenguaje de programacion como
Visual Basic, C#, C++ o Java. Del mismo modo en que algunas personas hablan inglés y otras
japonés, los programadores escriben en diferentes lenguajes. Algunos de ellos trabajan de
manera exclusiva en uno de ellos mientras que otros conocen varios y usan aquel que sea mas
adecuado para la tarea que se les presenta.

Las instrucciones que usted escribe usando un lenguaje de programacion constituyen un
codigo de programa; cuando las escribe estd codificando el programa.

Cada lenguaje de programacion tiene reglas que rigen el uso de las palabras y la puntuacién.
Estas reglas se llaman sintaxis del lenguaje. Los errores en el uso de un lenguaje son errores
de sintaxis. Si usted pregunta: “;Cémo otengo forma la guardarlo de?” en espaiol, casi todas
las personas pueden imaginar lo que probablemente usted quiso decir, aun cuando no haya
usado una sintaxis apropiada en espaiiol: ha mezclado el orden de las palabras y ha escrito mal
una de ellas. Sin embargo, las computadoras no son tan inteligentes como la mayoria de las
personas; en este caso, bien podria haber preguntado a la computadora: “;Xpu mxv ort dod
nmcad bf B?” A menos que la sintaxis sea perfecta, la computadora no puede interpretar en
absoluto la instruccién del lenguaje de programacion.

Cuando usted escribe un programa por lo general transmite sus instrucciones usando un
teclado. Cuando lo hace, las instrucciones se almacenan en la memoria de la computadora,
que es un almacenamiento interno temporal. La memoria de acceso aleatorio o RAM es

una forma de memoria interna volatil. Los programas que “corren” (es decir, se ejecutan) en la
actualidad y los elementos de datos que se usan se almacenan en la RAM para que sea posible
tener un acceso rapido a ellos. El almacenamiento interno es volatil, es decir, su contenido se
pierde cuando la computadora se apaga o se interrumpe la energfa. Por lo general, usted desea
recuperar y quizd modificar mas tarde las instrucciones almacenadas, de modo que también
tiene que guardarlas en un dispositivo de almacenamiento permanente, como un disco. Estos
dispositivos se consideran no volatiles, esto es, su contenido es permanente y se conserva aun
cuando la energia se interrumpa. Si usted ha experimentado una interrupcién de la energia
mientras trabajaba en una computadora pero pudo recuperar su informacién cuando aquélla
se restablecid, no se debid a que su trabajo todavia se encontrara en la RAM. Su sistema se ha
configurado para guardar automaticamente su trabajo a intervalos regulares en un dispositivo
de almacenamiento no volatil.

Después de que se ha escrito un programa usando declaraciones de un lenguaje de progra-
macion y se ha almacenado en la memoria, debe traducirse a un lenguaje de maquina que
representa los millones de circuitos encendidos/apagados dentro de la computadora. Sus
declaraciones en lenguaje de programacion se llaman cédigo fuente y las traducidas al len-
guaje de maquina se denominan codigo objeto.

o\ AREIE SR Una revision de las computadoras y la programacion

_ R

Cada lenguaje de programacion usa una pieza de software llamada compilador o intérprete
para traducir su codigo fuente al lenguaje de mdquina. Este ultimo también se llama lenguaje
binario y se representa como una serie de 0 (ceros) y 1 (unos). El compilador o intérprete que
traduce el cédigo indica si cualquier componente del lenguaje de programacién se ha usado
de manera incorrecta. Los errores de sintaxis son relativamente faciles de localizar y corregir
debido a que el compilador o intérprete los resalta. Si usted escribe un programa de compu-
tadora usando un lenguaje como C++ pero deletrea en forma incorrecta una de sus palabras
o invierte el orden apropiado de dos de ellas, el software le hace saber que encontré un error
desplegando un mensaje tan pronto como usted intenta traducir el programa.

es la misma: traducir sus declaraciones de programacion en un codigo que la computadora pueda usar.
Cuando usted usa un compilador, un programa entero se traduce antes de que pueda ejecutarse; cuando
utiliza un intérprete, cada instruccion es traducida justo antes de la ejecucion. Por lo general usted no elige
cual tipo de traduccidn usar, esto depende del lenguaje de programacion. Sin embargo, hay algunos lengua-
jes que disponen tanto de compiladores como de intérpretes.

ﬂ Aunque hay diferencias en la forma en que trabajan los compiladores y los intérpretes, su funcion basica

Después de que el cddigo fuente es traducido con éxito al lenguaje de maquina, la compu-
tadora puede llevar a cabo las instrucciones del programa. Un programa corre o se ejecuta
cuando se realizan las instrucciones. En un programa tipico se aceptara alguna entrada, ocu-
rrird algin procesamiento y se producira alguna salida.

dores usan lenguajes de programacion interpretados (que también se llaman lenguajes de progra-
macion de scripting o lenguajes de script) como Python, Lua, Perl y PHP. Los scripts escritos en estos
lenguajes por lo general pueden mecanografiarse en forma directa desde un teclado y almacenarse como
texto en lugar de como archivos ejecutables binarios. Los lenguajes de script son interpretados linea por
linea cada vez que se ejecuta el programa, en lugar de ser almacenados en forma compilada (binaria). Aun

ﬂ Ademas de los lenguajes de programacion exhaustivos populares como Java y C++, muchos programa-

DOS VERDADES UNA MENTIRA

Comprension de los sistemas de computo

En cada seccion “Dos verdades y una mentira”, dos de las afirmaciones numeradas
son verdaderas y una es falsa. Identifique la que es falsa y explique por qué lo es.

1. El'hardware es el equipo o los dispositivos asociados con una computadora. El
software son las instrucciones.

2. Las reglas gramaticales de un lenguaje de programacion de computadoras
constituyen su sintaxis.

3. Usted escribe programas usando el lenguaje de maquina y el software de tra-
duccion convierte las declaraciones a un lenguaje de programacion.

‘(soun) T A (S0489) O 9p auodwiod as

[end [‘euinbew ap alen3us| Us SSUOIJRIR[IBP SB| B1BIAU0D (9334dIiul O Jopejidwiod
opeLue||) uoidonpeJ} ap eweidoid un A ‘eaer o Jiseg [ensiA OWod ugloeweigoid

ap alengus| un opuesn sewei3oid UsqLIOS? 85 € 0JBWINU | S8 BS|e) UOIoRWLLE BT

Comprension de la logica de programa simple _

asi, con todos los lenguajes de programacién cada instruccion debe traducirse al lenguaje de maquina
antes de que pueda ejecutarse.

Comprension de la logica de programa simple

Un programa con errores de sintaxis no puede traducirse por completo ni ejecutarse. Uno que
no los tenga es traducible y puede ejecutarse, pero todavia podria contener errores logicos y
dar como resultado una salida incorrecta. Para que un programa funcione en forma apropiada
usted debe desarrollar una légica correcta, es decir, escribir las instrucciones en una secuencia
especifica, no dejar fuera ninguna instruccion y no agregar instrucciones ajenas.

Suponga que indica a alguien que haga un pastel de la siguiente manera:

Consiga un tazébn No lo haga
Revuelva iNo hornee un pastel
Agregue dos huevos como éste!

Agregue un 1litro de gasolina
Hornee a 350° por 45 minutos
Agregue tres tazas de harina

cuando se presente en el libro una practica de programacion no recomendada que se usa como ejemplo de

ﬂ Las instrucciones peligrosas para hornear un pastel se muestran con un icono “No lo haga”. Veréa este icono
lo que no debe hacerse.

Aun cuando la sintaxis de las instrucciones para hornear un pastel es correcta en espaiiol,
estan fuera de secuencia; faltan algunas y otras pertenecen a procedimientos distintos que no
tienen nada que ver con hornear un pastel. Si las sigue no hard un pastel que sea posible inge-
rir y quiza termine por ser un desastre. Muchos errores légicos son mds dificiles de localizar
que los de sintaxis; es mas facil determinar si la palabra “huevos” en una receta esta escrita en
forma incorrecta que decir si hay demasiados o si se agregaron demasiado pronto.

Del mismo modo en que las instrucciones para hornear pueden proporcionarse en chino man-
darin, urdu o inglés, la l6gica de programa puede expresarse en forma correcta en cualquier
cantidad de lenguajes de programacién. Debido a que este libro no se enfoca en algtn lenguaje
especifico, los ejemplos de programacion pudieron escribirse en Visual Basic, C++ o Java. Por
conveniencia, jen este libro las instrucciones se han escrito en espariol!

palabras en espanol. Del mismo modo, después de aprender un lenguaje de programacion, es mucho mas

ﬂ Después de aprender francés, usted automaticamente conoce, o puede imaginar con facilidad, muchas
facil entender otros lenguajes.

Los programas de computadora mds sencillos incluyen pasos que ejecutan la entrada, el proce-
samiento y la salida. Suponga que desea escribir un programa para duplicar cualquier nimero
que proporcione. Puede escribirlo en un lenguaje como Visual Basic o Java, pero si lo escri-
biera con declaraciones en inglés, se verfan as:

input myNumber
set myAnswer = myNumber * 2
output myAnswer

K

o\ AREIE SR Una revision de las computadoras y la programacion

El proceso de duplicar el ndmero incluye tres instrucciones:

e Lainstruccién input myNumber es un ejemplo de una operacién de entrada. Cuando la
computadora interpreta esta instruccion sabe que debe buscar un dispositivo de entrada
para obtener un numero. Cuando usted trabaja en un lenguaje de programacion especifico,
escribe instrucciones que indican a la computadora a cudl dispositivo se tiene acceso para

. 6 obtener la entrada. Por ejemplo, cuando un usuario introduce un ndmero como los datos
para un programa podria hacer clic en el nimero con un ratén, mecanografiarlo en un
teclado o hablar en un micréfono. Sin embargo, es 16gico que no importa cudl dispositivo de
hardware se use siempre que la computadora sepa que debe aceptar un nimero. Cuando el
numero se recupera desde un dispositivo de entrada, se coloca en la memoria de la
computadora en una variable llamada myNumber. Una variable es una ubicacién de
memoria nombrada cuyo valor puede variar; por ejemplo, el valor de myNumber podria ser

3 cuando el programa se usa por primera vez y 45 cuando se usa la siguiente vez. En este
libro, los nombres de las variables no llevaran espacios; por ejemplo, se usard myNumber en
lugar de my Number.

Desde una perspectiva logica, cuando usted introduce, procesa o da salida a un valor, el dispositivo de
hardware es irrelevante. Lo mismo sucede en su vida diaria. Si sigue la instruccion “Obtener huevos para el
pastel”, en realidad no importa si los compra en una tienda o los recolecta de sus propias gallinas; usted los
consigue de cualquier forma. Podria haber diferentes consideraciones practicas para obtenerlos, del mismo
modo que las hay para obtener los datos de una base de datos grande en contraposicion a obtenerlos de
un usuario inexperto que trabaja en casa en una laptop. Por ahora, este libro solo se interesa en la légica
de las operaciones, no en detalles menores.

e Lainstruccién set myAnswer = myNumber * 2 es un ejemplo de una operacién de procesa-
miento. En la mayoria de los lenguajes de programacion se usa un asterisco para indicar una
multiplicacion, de modo que esta instruccién significa “Cambiar el valor de la ubicacion de
memoria myAnswer para igualar el valor en la ubicacién de memoria myNumber por dos” Las
operaciones matematicas no son el tnico tipo de operaciones de procesamiento, pero son
tipicas. Como sucede con las operaciones de entrada, el tipo de hardware que se usa para el
procesamiento es irrelevante; después de que usted escribe un programa, éste puede usarse
en computadoras de diferentes marcas, tamafos y velocidades.

e En el programa para duplicar un nimero, la instruccién output myAnswer es un ejemplo
de una operacién de salida. Dentro de un programa particular, esta declaraciéon podria cau-
sar que la salida aparezca en el monitor (digamos, una pantalla plana de plasma o una de
tubo de rayos catddicos), que vaya a una impresora (ldser o de inyeccién de tinta) o que se
escriba en un disco o un DVD. La ldgica del proceso de salida es la misma sin importar qué
dispositivo de hardware se use. Cuando se ejecuta esta instruccion, el valor almacenado en
la memoria en la ubicacién llamada myAnswer se envia a un dispositivo de salida. (El valor
de salida también permanece en la memoria hasta que se almacena algo més en la misma
ubicacion o se interrumpe la energia eléctrica.)

Comprension del ciclo de desarrollo del programa _

La memoria de la computadora consiste en millones de ubicaciones numeradas donde es posible alma-
cenar datos. La ubicacién de memoria de myNumber tiene una ubicaciéon numérica especifica, pero
cuando usted escribe programas rara vez necesita preocuparse por el valor de la direccion de memoria;
en cambio, usa el nombre facil de recordar que creé. Los programadores de computadoras con frecuen-
cia se refieren a las direcciones de memoria usando la notacion hexadecimal, o en base 16. Con este
sistema podrian utilizar un valor como 42FFQ1A para referirse a una direccion de memoria. A pesar del
uso de letras, dicha direccién todavia es un nimero hexadecimal. El apéndice A contiene informacion
sobre este sistema de numeracion.

DOS VERDADES UNA MENTIRA

Comprension de la logica de programa simple
Un programa con errores de sintaxis puede ejecutarse pero podria generar
resultados incorrectos.

Aunque la sintaxis de los lenguajes de programacion difiere, la misma logica de
programa puede expresarse en diferentes lenguajes.

3. Los programas de computadora mas sencillos incluyen pasos que efectian

entrada, procesamiento y salida.

'S0}994100Ul SOPE}NS3J BlIdND
-04d oJad ‘as4endale apand salous ap odiy 81se e3us) ou anb oun ‘8sJendale
apand ou SIXejuIs ap SaJ04J8 uod ewel3oid un T OJBWNU B| S BS|R) UDIdRWILER BT

Comprension del ciclo de desarrollo
del programa

El trabajo de un programador implica escribir instrucciones (como las del programa para
duplicar nimeros en la seccién anterior), pero por lo general un profesional no sélo se sienta
ante un teclado de computadora y comienza a mecanografiar. La figura 1-1 ilustra el ciclo de
desarrollo del programa, que se divide al menos en siete pasos:

1.

2
3.
4

o

Entender el problema.
Planear la logica.
Codificar el programa.

Usar software (un compilador o intérprete) para traducir el programa a lenguaje de
maquina.

Probar el programa.
Poner el programa en produccion.

Mantener el programa.

B

CAPIiTULO 1 Una revision de las computadoras y la programacion

_ K

Entender
/ el problema \
Mantener Planear
el programa la logica
Poner el programa Escribir
en produccion el codigo
Probar el Traducir
programa ‘\/ el codigo

Figura 1-1 El ciclo de desarrollo del programa

Entender el problema

Los programadores profesionales escriben programas para satisfacer las necesidades de
otras personas, llamadas usuarios o usuarios finales. Entre los ejemplos de usuarios finales
estarfa un departamento de recursos humanos que necesita una lista impresa de todos

los empleados, un drea de facturacion que desea un listado de los clientes que se han
retrasado en sus pagos 30 dias o mas, o un departamento de pedidos que requiere un sitio
web para proporcionar a los compradores un carrito de compras en linea. Debido a que los
programadores brindan un servicio a estos usuarios deben comprender primero lo que éstos
desean. Cuando usted corre un programa con frecuencia piensa en la légica como un ciclo de
operaciones de entrada-procesamiento-salida; pero cuando planea un programa piensa
primero en la salida. Después de entender cudl es el resultado deseado puede planear los
pasos de entrada y procesamiento para lograrlo.

Suponga que el director de recursos humanos dice a un programador: “Nuestro departamento
necesita una lista de todos los empleados que han estado aqui por mds de cinco anos, porque
queremos invitarlos a una cena especial de agradecimiento”. En apariencia esta es una solicitud
sencilla. Sin embargo, un programador experimentado sabra que la solicitud estd incompleta.
Por ejemplo, quiza no sepa las respuestas a las siguientes preguntas sobre cudles empleados
incluir:

e ;El director desea una lista sélo de empleados de tiempo completo o de tiempo completo y
de medio tiempo juntos?

e ;Desea incluir personas que han trabajado para la compaiia con una base contractual men-
sual durante los pasados cinco anos o sélo los empleados permanentes regulares?

e ;Los empleados necesitan haber trabajado para la organizacién por cinco anos hasta el dia
de hoy, hasta la fecha de la cena o en alguna otra fecha limite?

e ;Qué pasa con un empleado que trabajo tres anos, tomd una licencia de dos anos y volvié a
trabajar por tres afos?

Comprension del ciclo de desarrollo del programa _

El programador no puede tomar ninguna de estas decisiones; el usuario (en este caso, el direc-
tor de recursos humanos) debe abordar estas preguntas.

Tal vez alin se requiera tomar otras decisiones, por ejemplo:

e ;Qué datos deben incluirse para cada empleado en la lista? ;Es preciso anotar el nombre y
los apellidos? ; Los nimeros de seguro social? ; Nameros telefénicos? ;Direcciones?
¢ ¢ é

e ;Lalista debe estar en orden alfabético? ;Por niumero de identificacién del empleado? ;En
orden de afos de servicio? ;jAlgun otro orden?

e ;Los empleados deberian agruparse con algtn criterio, como nimero de departamento o
afos de servicio?

A menudo se proporcionan algunas piezas de documentacion para ayudar al programador a

entender el problema. La documentacion consiste en todo el papeleo de soporte para un pro-
grama; podria incluir elementos como las solicitudes originales para el programa de los usua-
rios, muestras de salida y descripciones de los elementos de datos disponibles para la entrada.

Entender por completo el problema es uno de los aspectos mas dificiles de la programa-
cién. En cualquier trabajo, la descripcién de lo que el usuario necesita puede ser imprecisa;
peor aun, los usuarios quiza no sepan qué desean en realidad, y los que piensan que saben a
menudo cambian de opinién después de ver una muestra de salida. ;Un buen programador es
en parte consejero y en parte detective!

Planear la l6gica

El corazén del proceso de programacion se encuentra en la planeacién de la légica del pro-
grama. Durante esta fase, el programador planifica los pasos del mismo, decidiendo cuéles
incluir y cémo ordenarlos. Usted puede visualizar la solucién de un problema de muchas
maneras. Las dos herramientas de programaciéon mas comunes son los diagramas de flujo y el
seudocddigo; ambas implican escribir los pasos del programa en inglés, del mismo modo en
que planearia un viaje en papel antes de subirse al automévil o el tema de una fiesta antes de
comprar alimentos y recuerdos.

Quiza usted haya escuchado a los programadores referirse a la planeacién de un programa
como “desarrollar un algoritmo” Un algoritmo es la secuencia de pasos necesarios para resol-
ver cualquier problema.

distintas para desarrollar el programa. Una de ellas es la grafica IPO, que define las tareas de entrada,
procesamiento y salida. Algunos programadores orientados hacia los objetos también usan graficas TOE,
que listan tareas, objetos y eventos.

ﬂ Ademas de los diagramas de flujo y el seudocédigo, los programadores usan una variedad de herramientas

El programador no debe preocuparse por la sintaxis de algiin lenguaje en particular durante
la etapa de planeacion, sino enfocarse en averiguar qué secuencia de eventos llevard desde la
entrada disponible hasta la salida deseada. La planeacion de la logica incluye pensar con

o\ AREIE SR Una revision de las computadoras y la programacion

"

cuidado en todos los valores de datos posibles que un programa podria encontrar y cémo
desea que éste maneje cada escenario. El proceso de recorrer en papel la légica de un pro-
grama antes de escribirlo en realidad se llama prueba de escritorio (desk-checking). Apren-
derd més sobre la planeacion de la légica a lo largo de este libro; de hecho, éste se enfoca casi
de manera exclusiva en este paso crucial.

Codificacion del programa

Sélo después de que se ha desarrollado la légica el programador puede escribir el cddigo
fuente. Hay cientos de lenguajes de programacion disponibles. Los programadores eligen len-
guajes particulares debido a que algunos incorporan capacidades que los hacen maés eficientes
que otros para manejar ciertos tipos de operaciones. A pesar de sus diferencias, los lenguajes
de programacion son bastante parecidos en sus capacidades bésicas; cada uno puede manejar
operaciones de entrada, procesamiento aritmético, operaciones de salida y otras funciones
estandares. La légica que se desarrolla para resolver un problema de programacién puede eje-
cutarse usando cualquier cantidad de lenguajes. S6lo después de elegir alguno el programador
debe preocuparse por la puntuacion y la ortografia correctas de los comandos; en otras pala-
bras, por usar la sintaxis correcta.

Algunos programadores experimentados combinan con éxito en un paso la planeacién de la
légica y la codificacion del programa. Esto funciona para planear y escribir un programa muy
sencillo, del mismo modo en que usted puede planear y escribir una postal para un amigo en
un solo paso. Sin embargo, la redaccién de un buen ensayo semestral o un guién cinematogra-
fico requiere planeacién y lo mismo sucede con la mayor parte de los programas.

;Cudl paso es mas dificil: planear la légica o codificar el programa? Ahora mismo quizd le
parezca que escribir en un lenguaje de programacién es una tarea muy dificil, considerando
todas las reglas de ortografia y sintaxis que debe aprender. Sin embargo, en realidad el paso
de planeacién es mas dificil. ;Qué es mas complicado: pensar en los giros de la trama de una
novela de misterio que es un éxito de ventas o escribir la traduccién del inglés al espariol de
una novela que ya se ha escrito? ;Y quién cree que recibe mas paga, el escritor que crea la
trama o el traductor? (jHaga la prueba pidiendo a algunos amigos que nombren a algin tra-
ductor famoso!)

Uso de software para traducir el programa al lenguaje de maquina

Aun cuando hay muchos lenguajes de programacion, cada computadora conoce sélo uno:

su lenguaje de maquina, que consiste en 1 (unos) y 0 (ceros). Las computadoras entienden el
lenguaje de méquina porque estan formadas por miles de diminutos interruptores eléctricos,
cada uno de los cuales presenta un estado de encendido o apagado, que se representa con

1 00, respectivamente.

Comprension del ciclo de desarrollo del programa _

Lenguajes como Java o Visual Basic estan disponibles para los programadores debido a que
alguien ha escrito un programa traductor (un compilador o intérprete) que cambia el lenguaje
de programacion de alto nivel en inglés del programador en un lenguaje de maquina de
bajo nivel que la computadora entiende. Cuando usted aprende la sintaxis de un lenguaje de
programacién, los comandos funcionan en cualquier maquina en la que el software del len-
guaje se haya instalado. Sin embargo, sus comandos son traducidos entonces al lenguaje de E.
madquina, que es distinto en las distintas marcas y modelos de computadoras.

Si usted escribe en forma incorrecta una declaracién de programacién (por ejemplo, escribe
mal una palabra, usa alguna que no existe o utiliza gramdtica “ilegal”), el programa traductor
no sabe cémo proceder y emite un mensaje al detectar un error de sintaxis. Aunque nunca

es deseable cometerlos, los errores de sintaxis no son una preocupacién importante para los
programadores porque el compilador o intérprete los detecta y muestra un mensaje que les
notifica el problema. La computadora no ejecutard un programa que contenga aunque sea sélo
un error de sintaxis.

Por lo comtn, un programador desarrolla la légica, escribe el cddigo y compila el programa,
recibiendo una lista de errores de sintaxis. Entonces los corrige y compila el programa de
nuevo. La correccién del primer conjunto de errores con frecuencia revela otros nuevos que al
principio no eran evidentes para el compilador. Por ejemplo, si usted usa un compilador

en espanol y envia la declaracion El prro persiguen al gato, el compilador al principio sefialaria
solo un error de sintaxis. La segunda palabra, prro, es ilegal porque no forma parte del espanol.
Sélo después de corregirla a perro el compilador hallaria otro error de sintaxis en la tercera
palabra, persiguen, porque es una forma verbal incorrecta para el sujeto perro. Esto no significa
que persiguen necesariamente sea la palabra equivocada. Quizd perro es incorrecto; tal vez el
sujeto deberfa ser perros, en cuyo caso persiguen seria correcto. Los compiladores no siempre
saben con exactitud qué quiere usted ni cudl deberia ser la correccién apropiada, pero si saben
cuando algo anda mal con su sintaxis.

Cuando un programador escribe un programa tal vez necesite recompilar el c6digo varias
veces. Un programa ejecutable sélo se crea cuando el c6digo no tiene errores de sintaxis.
Después de que un programa se ha traducido al lenguaje de mdquina, se guarda y puede ser
ejecutado cualquier nimero de veces sin repetir el paso de traduccion. Usted s6lo necesita
retraducir su cédigo si hace cambios en las declaraciones de su c6digo fuente. La figura 1-2
muestra un diagrama de este proceso en su totalidad.

CAPITULO 1 Una revision de las computadoras y la programacion

0

Datos que usa

el programa
Si no hay errores |
Escribir y corregir el N Compilar el de sintaxis Programa
codigo del programa - programa - ejecutable

A
Sihay errores

de sintaxis

A

Lista de
mensajes
de errores
de sintaxis

Salida del
programa

Figura 1-2 Creacion de un programa ejecutable

Prueba del programa

Un programa que no tiene errores de sintaxis no necesariamente esta libre de errores logicos.
Un error légico resulta cuando se utiliza una declaracién correcta desde el punto de vista
sintdctico pero equivocada para el contexto actual. Por ejemplo, la declaracién en espaiiol

El perro persigue al gato, aunque sintdcticamente es perfecta, no es correcta desde una
perspectiva légica si el perro persigue una pelota o si el gato es el agresor.

Una vez que un programa queda limpio de errores de sintaxis el programador puede probarlo,
es decir, ejecutarlo con algunos datos de muestra para ver si los resultados son ldgicamente
correctos. Recuerde el programa para duplicar un nimero:

input myNumber
set myAnswer = myNumber * 2
output myAnswer

Si usted ejecuta el programa, proporciona el valor 2 como entrada para el mismo y se despliega
la respuesta 4, ha ejecutado una corrida de prueba exitosa del programa.

Sin embargo, si se despliega la respuesta 40, quiza el programa contenga un error logico. Tal
vez usted tecle6 mal la segunda linea del cddigo con un cero extra, de modo que el programa
se lee:

input myNumber
set myAnswer = myNumber * 20
output myAnswer

No lo haga
El programador tecled
20 en lugar de 2.

Escribir 20 en lugar de 2 en la declaracién de multiplicacién causé un error 1égico. Observe
que desde el punto de vista sintactico no hay nada incorrecto en este segundo programa (es

Comprension del ciclo de desarrollo del programa _

igual de razonable multiplicar un nimero por 20 que por 2) pero si el programador sélo pre-
tende duplicar myNumber, entonces ha ocurrido un error légico.

El proceso de hallar y corregir los errores del programa se llama depuracién. Usted depura un
programa al probarlo usando muchos conjuntos de datos. Por ejemplo, si escribe el programa
para duplicar un nimero, luego introduce 2 y obtiene un valor de salida de 4, esto no necesa-

riamente significa que el programa es correcto. Quiza tecled por error este programa: 13 .

input myNumber
set myAnswer = myNumber + 2
output myAnswer

No lo haga
El programador tecled

uxn

“+" en lugar de “*".

Una entrada de 2 da como resultado una respuesta de 4, pero esto no significa que su pro-
grama duplique los nimeros; en realidad sélo les suma 2. Si prueba su programa con datos
adicionales y obtiene la respuesta errdnea; por ejemplo, si introduce 7 y obtiene una respuesta
de 9, sabe que hay un problema con su cddigo.

La seleccién de los datos de prueba es casi un arte en si misma y debe hacerse con cuidado.

Si el departamento de recursos humanos desea una lista de los nombres de los empleados
con antigliedad de cinco afios, serfa un error probar el programa con un pequeno archivo de
muestra que sélo contiene empleados de tiempo indeterminado. Si los empleados mds recien-
tes no son parte de los datos que se usan para probar, en realidad no sabe si el programa los
habria eliminado de la lista de cinco anos. Muchas comparnias no saben que su software tiene
un problema hasta que ocurre una circunstancia extrafa; por ejemplo, la primera vez que un
empleado registra mas de nueve dependientes, la primera vez que un cliente ordena més de
999 articulos al mismo tiempo o cuando a la internet se le agotan las direcciones IP asignadas,
un problema que se conoce como agotamiento IPV4.

Poner el programa en produccion

Una vez que se ha probado y depurado el programa en forma minuciosa, estd listo para que
la organizacién lo use. “Ponerlo en produccién” significaria simplemente ejecutarlo una vez,
si fue escrito para satisfacer una solicitud del usuario para una lista especial. Sin embargo, el
proceso podria llevar meses si el programa se ejecutard en forma regular o si es uno de un gran
sistema de programas que se estan desarrollando. Quiza las personas que introducirdn los
datos deben recibir capacitacién con el fin de preparar las entradas para el nuevo programa,
los usuarios deben recibir instruccién para entender la salida o sea preciso cambiar los datos
existentes en la compaiifa a un formato por completo nuevo para que tengan cabida en dicho
programa. Completar la conversion, el conjunto entero de acciones que debe efectuar una
organizacién para cambiar al uso de un programa o un conjunto de programas nuevos, en
ocasiones puede llevar meses o afos.

Mantenimiento del programa

Después de que los programas se colocan en produccién, la realizacién de los cambios necesa-
rios se denomina mantenimiento. Puede requerirse por diversas razones: por ejemplo, debido
a que se han legislado nuevas tasas de impuestos, se alteré el formato de un archivo de entrada

o\ AREIE SR Una revision de las computadoras y la programacion

I

o el usuario final requiere informacién adicional no incluida en las especificaciones de salida
originales. Con frecuencia, la primera labor de programacion que usted lleve a cabo requerira
dar mantenimiento a los programas escritos de manera previa. Cuando dé mantenimiento a
los programas que otras personas han escrito apreciara el esfuerzo que hicieron para obtener
un cédigo claro, usar nombres de variables razonables y documentar su trabajo. Cuando hace
cambios a los programas existentes repite el ciclo de desarrollo. Es decir, debe entender

los cambios, luego planearlos, codificarlos, traducirlos y probarlos antes de ponerlos en pro-
duccién. Si el programa original requiere una cantidad considerable de modificaciones podria
ser retirado y empezaria el ciclo de desarrollo del programa para uno nuevo.

DOS VERDADES UNA MENTIRA

Comprension del ciclo de desarrollo del programa

1. Entender el problema que debe resolverse puede ser uno de los aspectos mas
dificiles de la programacion.

2. Las dos herramientas mas comunes que se usan en la planeacion de la logica
son los diagramas de flujo y el seudocdédigo.

3. Laelaboracién del diagrama de flujo de un programa es un proceso muy
diferente si se usa un lenguaje de programacion antiguo en lugar de uno mas
reciente.

"salengus| ap pepnued Jainbjena opuesn asJendale apand ugloewesgold ap ewslq
-04d un JaAj0saJ eled opejjoiiesap ey 3s anb eaIZ0| T JepueISe SaU0IoUN SBA0 A
epljes ap sauoloesado ‘0dngLWiLIe 0JUBIWESI04d ‘epeijus ap sauoloelado Jelsuew
apand oun eped ‘seaiseq sapepioeded sns us sopidaled ajueiseq uos ugloewegold
9p salen3ua) So| ‘selouslalip Sns ap Jesad € 0JaWNU B S8 BS|e) UoIoRWLILE BT

Uso de declaraciones en seudocaddigo
y simbolos de diagrama de flujo

Cuando los programadores planean la légica para dar solucién a un problema de programa-
cién con frecuencia usan dos herramientas: seudocédigo o diagramas de flujo.

e Elseudocodigo es una representacion parecida al inglés de los pasos 1dgicos que se requie-
ren para resolver un problema. Seudo es un prefijo que significa falso, y codificar un pro-
grama significa ponerlo en un lenguaje de programacion; por consiguiente, seudocdédigo
simplemente significa cédigo falso, o declaraciones que en apariencia se han escrito en un
lenguaje de programacién pero no necesariamente siguen todas las reglas de sintaxis de
alguno en especifico.

e Un diagrama de flujo es una representacién grafica de lo mismo.

Uso de declaraciones en seudocodigo y simbolos de diagrama de flujo _

Escritura en seudocddigo

Usted ha visto antes en este capitulo ejemplos de declaraciones que representan un seudocé-
digo y no hay nada misterioso en ellas. Las siguientes cinco declaraciones constituyen una
representacion en seudocddigo de un problema para duplicar un nimero:

start 15 .

input myNumber
set myAnswer = myNumber * 2
output myAnswer

stop

Usar un seudocédigo implica escribir todos los pasos que se usardn en un programa. Por

lo general, los programadores introducen su seudocddigo con una declaracién inicial como
start y lo terminan con uno de terminacién como stop. Las declaraciones entre start y stop
estan en inglés y tienen una ligera sangria de modo que destaquen start y stop. La mayo-

ria de los programadores no se preocupan por la puntuacién como los puntos al final de las
declaraciones del seudocddigo, aunque si usted prefiere ese estilo no serfa un error usarlos. Del
mismo modo, no hay necesidad de escribir con mayuscula la primera palabra en una declara-
cién, aunque podria elegir hacerlo. Este libro sigue las convenciones de usar letras minusculas
para los verbos que comienzan las declaraciones en el seudocddigo y omitir los puntos al final
de las mismas.

El seudocddigo es bastante flexible porque es una herramienta de planeacién y no el producto
final. Por consiguiente, por ejemplo, quiza prefiera cualquiera de los siguientes:

e Enlugar de start y stop, algunos desarrolladores de seudocddigo usan otros términos
como beginy end.

e Enlugar de input myNumber algunos escriben get myNumber o read myNumber.

o

e Envez de set myAnswer = myNumber * 2, algunos escribirdn calculate myAnswer =
myNumber times 2 o compute myAnswer as myNumber doubled.

e Enlugar de output myAnswer, muchos desarrolladores escribirdn display myAnswer,
print myAnswer owrite myAnswer.

El punto es que las declaraciones en seudocddigo son instrucciones para recuperar un nimero
original de un dispositivo de entrada y almacenarlo en la memoria, donde puede usarse en un
célculo, para después obtener la respuesta calculada de la memoria y enviarla a un dispositivo
de salida de modo que una persona pueda verlo. Cuando al final usted convierte su seudocé-
digo en un lenguaje de programacion especifico, no tiene esta flexibilidad porque se requerira
una sintaxis determinada. Por ejemplo, si usa el lenguaje de programacién C# y escribe la
declaracién para dar salida a la respuesta en un monitor, codificard lo siguiente:

Console.Write(myAnswer);

El uso exacto de las palabras, las mayusculas y la puntuacién es importante en la declaracion
en C#, pero no en el de seudocddigo.

o\ AREIE SR Una revision de las computadoras y la programacion

0

Trazo de diagramas de flujo

Algunos programadores profesionales prefieren escribir el seudocédigo para trazar los diagra-
mas de flujo debido a que este procedimiento es mds parecido a escribir las declaraciones fina-
les en el lenguaje de programacién. Otros prefieren trazar diagramas de flujo para representar
el flujo légico debido a que éstos les permiten visualizar con mas facilidad cémo se conectaran
las declaraciones del programa. Los diagramas de flujo son una herramienta excelente, en
especial para los programadores principiantes, pues son utiles a visualizar como se interrela-
cionan las declaraciones en un programa.

Usted puede trazar un diagrama de flujo a mano o usar software
como Microsoft Word y Microsoft PowerPoint, que cuentan con
herramientas para elaborarlos. Hay otros programas, como Visio
y Visual Logic, especificamente para crear diagramas de flujo.
Cuando usted crea uno dibuja formas geométricas que contienen
las declaraciones individuales y que se conectan por medio de fle-

input myNumber,

Figura 1-3 Simbolo de

chas. (En el apéndice B hay un resumen de todos los simbolos de entrada

los diagramas de flujo que verd en este libro.) Para representar un

simbolo de entrada se usa un paralelogramo que indica una ope- set myAnswer =
racion de entrada. Se escribe una declaracion de entrada en inglés myNumber * 2
dentro del paralelogramo, como se muestra en la figura 1-3.

Figura 1-4 Simbolo

Las declaraciones de operaciones aritméticas son ejemplos de pro- 4o procesamiento

cesamiento. En un diagrama de flujo, se usa un rectdangulo como el
simbolo de procesamiento que contiene una declaracién de pro-

cesamiento, como se muestra en la ﬁgura 1-4.
output myAnswer
Para representar una declaracion de salida se usa el mismo sim-

bolo que para las de entrada: el simbolo de salida es un para-
lelogramo, como se muestra en la figura 1-5. Debido a que el
paralelogramo se usa tanto para la entrada como para la salida, con
frecuencia se llama simbolo de entrada/salida o simbolo 1/0.

Figura 1-5 Simbolo de
salida

Algunos programas que usan diagramas de flujo (como Visual Logic) utilizan un paralelogramo inclinado
hacia la izquierda para representar la salida. Siempre que el creador y el lector del diagrama de flujo estén
en comunicacion, la forma que se use es irrelevante. En este libro se seguira la convencion estandar de
usar el paralelogramo inclinado hacia la derecha tanto para la entrada como para la salida.

A fin de mostrar la secuencia correcta de estas declaraciones se usan flechas o lineas de flujo
para conectar los pasos. Siempre que sea posible, la mayor parte de un diagrama de flujo debe
leerse de arriba hacia abajo o de izquierda a derecha en una pagina. Esta es la forma en que se
lee el inglés, asi que cuando los diagramas de flujo siguen esta convencion son més faciles de
entender.

Para que un diagrama de flujo esté completo debe incluir dos elementos més: simbolos termi-
nales o de inicio/fin en cada extremo. Con frecuencia usted coloca una palabra como start

0 begin en el primer simbolo terminal y una palabra como end o stop en el otro. Los simbo-
los terminales estdndar tienen forma de pista de carreras; muchos programadores la llaman
“pastilla” porque se parece a la forma del medicamento que se usa para aliviar una garganta
irritada. La figura 1-6 muestra un diagrama de flujo completo para el programa que duplica un

Uso de declaraciones en seudocddigo y simbolos de diagrama de flujo _

numero y el seudocddigo para el mismo problema. Es posible observar que las declaraciones

en el diagrama de flujo y en el seudocddigo son las mismas, s6lo el formato de presentacion es

diferente.

Diagrama de flujo Seudocodigo

input myNumber

l start
input myNumber
set myAnswer = myNumber * 2

set myAnswer =
myNumber * 2

output myAnswer
¢ stop

output myAnswer,

Figura 1-6 Diagrama de flujo y seudocddigo del programa que duplica un nimero

Los programadores rara vez crean un seudocodigo y un diagrama de flujo para el mismo pro-
blema. Por lo general se usa uno u otro. En un programa grande quizd usted prefiera escribir
un seudocddigo para algunas partes y trazar un diagrama de flujo para otras.

Cuando usted indica a un amigo cémo llegar a su casa, podria escribir una serie de instruc-
ciones o hacer un mapa. El seudocddigo se parece a las instrucciones escritas paso a paso; un
diagrama de flujo, como un mapa, es una representacion visual de lo mismo.

Repeticion de las instrucciones

Después de desarrollar el diagrama de flujo o el seudocédigo, el programador sélo necesita:
1) adquirir una computadora, 2) comprar un compilador de lenguaje, 3) aprender un lenguaje
de programacion, 4) codificar el programa, 5) intentar compilarlo, 6) arreglar los errores de
sintaxis, 7) compilarlo de nuevo, 8) probarlo con varios conjuntos de datos y 9) ponerlo en
produccion.

Quiza en este momento usted piense: “{Vaya! jEsto simplemente no vale la pena! ;Todo ese
trabajo para crear un diagrama de flujo o un seudocddigo y luego todos esos otros pasos? ;Por
5 délares puedo comprar una calculadora de bolsillo que duplicara cualquier nimero para mi
en forma instantanea!” Tiene razén. Si éste fuera un programa de computadora real y todo lo
que hiciera fuera duplicar el valor de un ntimero no valdria el esfuerzo. Escribir un programa
tendria caso sélo si requiriera duplicar muchos ndmeros (digamos 10,000) en una cantidad de
tiempo limitada (quizd los préximos dos minutos).

o

CAPITULO 1 Una revision de las computadoras y la programacion

I

Por desgracia, el programa que se representa en la figura 1-6 no duplica 10,000 nimeros; sélo
duplica uno. Podria ejecutarlo 10,000 veces, por supuesto, pero esto requeriria que se sen-
tara frente a la computadora y lo corriera una y otra vez. Se las arreglarfa mejor con uno que
pudiera procesar 10,000 numeros, uno después de otro.

Una solucién es escribir el programa que se muestra en la figura 1-7 y ejecutar los mismos
pasos 10,000 veces. Por supuesto, escribirlo requerirfa mucho tiempo (también podria com-
prar la calculadora).

start
input myNumber
set myAnswer = myNumber * 2
output myAnswer
input myNumber
set myAnswer = myNumber * 2
output myAnswer No lo haga
input myNumber Nunca desearia escribir
set myAnswer = myNumber * 2 unahﬂadgkwﬂucdones
output myAnswer tan repetitiva.
.y asi otras 9,997 veces mas

Figura 1-7 Seudocodigo ineficiente para un programa que duplique 10,000 nimeros

Una mejor solucién es hacer que la computadora ejecute el mismo conjunto de tres instruc-
ciones una y otra vez, como se muestra en la figura 1-8. La repeticién de una serie de pasos

se llama ciclo. Con este enfoque, la computadora obtiene un nimero, lo duplica, despliega

la respuesta y luego comienza de nuevo con la primera instruccién. El mismo punto en la
memoria, llamado myNumber, se reutiliza para el segundo nimero y para cualesquiera nimeros
subsiguientes. El punto en la memoria llamado myAnswer se reutiliza cada vez para almacenar
el resultado de la operacién de multiplicaciéon. Sin embargo, la l6gica que se ilustra en el dia-
grama de flujo de la figura 1-8 presenta un problema importante: la secuencia de instrucciones
nunca termina. Esta situacién se conoce en programacién como ciclo infinito; un flujo repeti-
tivo de légica sin fin. Usted aprendera cémo manejar este problema mas adelante en este
capitulo; estudiard un método mds complejo en el capitulo 3.

Uso de un valor centinela para terminar un programa _

—

input myNumber,

y No lo haga 19 .

set myAnswer = Esta légica ahorra
myNumber * 2 pasos pero tiene un
* defecto grave: nunca
termina.

output myAnswer,

Figura 1-8 Diagrama de flujo de un programa de duplicacién de ndmeros infinito

DOS VERDADES UNA MENTIRA

Uso de declaraciones de seudocodigo y simbolos de
diagrama de flujo

1. Cuando se traza un diagrama de flujo, se usa un paralelogramo para represen-
tar una operacion de entrada.

2. Cuando se traza un diagrama de flujo, se usa un paralelogramo para represen-
tar una operacién de procesamiento.

3. Cuando se traza un diagrama de flujo, se usa un paralelogramo para represen-
tar una operacioén de salida.

‘OjuBIWesa204d ap ugioesado eun Jejuasaldal esed ojndueloal un
esn as ‘oln|} ap eweJgelp un ezeJ) 8S Opuen? "z 0JaWNU el S8 eS|e} uoloewlye e

Uso de un valor centinela para terminar un programa

La légica en el diagrama de flujo para duplicar nimeros, que se muestra en la figura 1-8, tiene
una falla importante: el programa contiene un ciclo infinito. Si, por ejemplo, los nimeros de
entrada se introducen por medio del teclado, el programa seguird aceptando numeros y dando
salida a sus valores duplicados para siempre. Por supuesto, el usuario podria negarse a teclear
mas nimeros; pero el programa no puede avanzar mds mientras esté esperando una entrada;
mientras tanto, ocupa memoria de la computadora e inmoviliza recursos del sistema opera-
tivo. Dejar de introducir mas nimeros no es una solucién practica. Otra forma de terminar el

CAPITULO 1 Una revision de las computadoras y la programacion

"B

programa es simplemente apagar la computadora pero, una vez mds, ésta no es la mejor solu-
cién ni una forma apropiada de hacerlo.

Una mejor forma es establecer un valor predeterminado para myNumber que signifique “/Detén
el programa!”. Por ejemplo, el programador y el usuario podrian acordar que este tltimo nunca
necesitard conocer el doble de 0 (cero), de modo que podria introducir un 0 para detenerlo.

El programa entonces probaria cualquier valor contenido en myNumber que entre y si es O se
detendrfa. Probar un valor también se llama tomar una decision.

En un diagrama de flujo se representa una decision al trazar un simbolo de decision, que tiene
forma de diamante. El diamante por lo general contiene una pregunta cuya respuesta es una de
dos opciones mutuamente excluyentes, con frecuencia si o no. Todas las buenas preguntas

de computacién tienen sélo dos respuestas mutuamente excluyentes, como si y no o verdadero
y falso. Por ejemplo, “;Qué dia es su cumpleanos?” no es una pregunta de computacioén ade-
cuada porque hay 366 respuestas posibles. Sin embargo, “;Su cumplearios es el 24 de junio?” si
lo es porque la respuesta siempre es si o no.

La pregunta para detener el programa de duplicacion deberia ser “;El valor de myNumber que se
acaba de introducir es igual a 0?” o “smyNumber = 0?” para abreviar. El diagrama de flujo com-
pleto se verd entonces como el que se muestra en la figura 1-9.

(start) No lo haga

Esta légica no esta

v estructurada; usted
aprendera sobre
input myNumber estructura en el

* capitulo 3.

myNumber
= 0?

set myAnswer =
myNumber times 2

'

output myAnswer,

]

Figura 1-9 Diagrama de flujo del programa de duplicacién de nimeros con valor centinela de 0

Un inconveniente de usar 0 para detener un programa, por supuesto, es que no funcionard
si el usuario necesita hallar el doble de 0. En este caso, podria seleccionar algtn otro valor de

Uso de un valor centinela para terminar un programa _

entrada de datos que nunca usard, como 999 o —1, para sefialar que el programa debe terminar.
Un valor predeterminado que detiene la ejecucion de un programa con frecuencia se llama
valor comodin porque no representa datos reales, sino sélo una sefial para detener. En ocasio-
nes, dicho valor se llama valor centinela debido a que representa un punto de entrada o salida,
como un centinela que vigila una fortaleza.

No todos los programas dependen de la entrada de datos de un usuario desde un teclado;
muchos leen los datos de un dispositivo de entrada, como un disco. Cuando las organizaciones
guardan datos en un disco u otro dispositivo de almacenamiento en general no usan un valor
comodin para sefialar el final de un archivo. Por una parte, un registro de entrada podria
tener cientos de campos y si almacena un registro comodin en cada archivo desperdiciara

una gran cantidad de almacenamiento en “no datos”. Ademds, con frecuencia es dificil ele-

gir valores centinela para los campos en los archivos de datos de una compania. Cualquier
balanceDue, incluso un cero o un nimero negativo, puede ser un valor legitimo, y cualquier
customer-Name, incluso “ZZ”, podria ser el nombre de alguien. Por suerte, los lenguajes de pro-
gramacion reconocen el fin de los datos en un archivo de manera automética, por medio de un
c6digo que es almacenado en ese punto. Muchos lenguajes de programacién usan el término
eof (por el inglés end of file [final del archivo)) para referirse a este marcador que actia en
forma automdtica como un centinela. Este libro, por consiguiente, usa eof para indicar el final
de los datos siempre que el uso de un valor comodin sea poco practico o inconveniente. En el
diagrama de flujo que se muestra en la figura 1-10, se sombrea la pregunta eof.

(start) No lo haga
Esta légica no esta

estructurada; usted

aprendera sobre la
input myNumber, estructura en el

capitulo 3.

Yes

No

set myAnswer =
myNumber times 2

'

//6Ltput myAnswiP//

]

Figura 1-10 Diagrama de flujo que usa eof

B

o\ AREIE SR Una revision de las computadoras y la programacion

"B

DOS VERDADES UNA MENTIRA

Uso de un valor centinela para terminar un programa

1. Un programa que contiene un ciclo infinito nunca termina.

2. Unvalor predeterminado que detiene la ejecucion de un programa con frecuen-
cia se llama valor comodin o valor centinela.

3. Muchos lenguajes de programacion usan el término fe (por file end [fin de
archivo]) para referirse a un marcador que actlia de manera automatica como
centinela.

"ONIY2Je 9P B[aUNUD UN eJed esn 3s sew anb
OUILLLIRY | S (9] JO pua J4od) J03 OUILLIZ) |J "€ 0JAWNU B SO BS|R} UgIdoRULILe BT

Comprension de la programacion
y los ambientes del usuario

Es posible usar muchos enfoques para escribir y ejecutar un programa de computadora.
Cuando usted planea la l6gica de uno de ellos puede usar un diagrama de flujo, un seudocé-
digo o una combinacién de ambos. Cuando codifica el programa, puede teclear las declara-
ciones en una variedad de editores de texto. Cuando su programa se ejecuta podria aceptar
entradas de un teclado, ratén, micréfono o cualquier otro dispositivo de entrada, y cuando
proporcione la salida podria usar texto, imdgenes o sonido. Esta seccién describe los ambien-
tes mds comunes que encontrard como programador que recién inicia.

Comprension de los ambientes de programacion

Cuando usted planea la l6gica para un programa de computadora puede usar papel y lapiz
para crear un diagrama de flujo o software que le permita manipular las modalidades de
dichos diagramas. Si decide escribir un seudocédigo puede hacerlo a mano o con un programa
de procesamiento de palabras. Para introducir el programa en una computadora de modo que
lo traduzca y ejecute, por lo general usard un teclado para mecanografiar las declaraciones del
programa en un editor. Puede hacerlo en uno de los siguientes:

e Un editor de texto sencillo
e Uno que sea parte de un ambiente de desarrollo integrado

Un editor de texto es un programa que se usa para crear archivos de texto sencillos. Es pare-
cido a un procesador de palabras, pero sin tantas caracteristicas. Usted puede usar alguno
como Notepad, que estd incluido en Microsoft Windows. La figura 1-11 muestra un programa
C# en Notepad que acepta un ndmero y lo duplica. Una ventaja de usar un editor de texto sen-
cillo para mecanografiar y guardar un programa es que el programa completado no requiere
mucho espacio del disco para almacenamiento. Por ejemplo, el archivo que se muestra en la
figura 1-11 sélo ocupa 314 bytes.

Comprension de la programacion y los ambientes del usuario _

7 M Dndshng Program.gs - Habepd [l
File Edi- Foomat Weew Help

;.l'r.i) '\T.l.lilﬂ'. .
public class NumberDaublingProgram

Esta linea contiene un blic static veid maing)

indicador que dice al int EyMumber;
1 A i int AMSWErR §
usuario que lntr(,)duc,lr' Lansole. hT"IE'{ Please enter a nusber »= ")}
Usted aprendera mas mynumber = Conwert. Toint iF{console. ReadLine (]l
ANSWAT = mhar * F;

sobre los indicadores en

el capitulo 2.] }

l—

consolewritel 'Inr[qﬂ.ﬁnf.-r—r};

Figura 1-11 Un programa C# para duplicar nimeros en Notepad

Usted puede usar el editor de un ambiente de desarrollo integrado (IDE, integrated deve-
lopment environment) para introducir su programa. Un IDE es un paquete de software que
proporciona un editor, compilador y otras herramientas de programacion. Por ejemplo, la
figura 1-12 muestra un programa C# en el Microsoft Visual Studio IDE, un ambiente que con-
tiene herramientas dtiles para crear programas en Visual Basic, C++ y C#.

= "
B
[FS———
LT T —— 2l W e
T Hf] H s Vel ety O pr——
sabng byybom)b d jann Gamas iy | BN ["N S—
i g By b Llagy P r—
SN Wb far b P
]
ik b L Pepan.rn
pibia gl i ionghug . L}
1
pemlis mmpir swisd swing)
1
imi ey
[PP
i e o LAl "Flrmur e o meslier 10 Th
i L]
18
I
I
o = [

B veara

Figura 1-12 Un programa C# para duplicar nimeros en Visual Studio

Usar un IDE es util para los programadores porque por lo general proporciona caracteristicas
similares a las que se encuentran en muchos procesadores de palabras. En particular, un editor
de IDE por lo comin tiene caracteristicas como las siguientes:

B

CAPITULO 1 Una revision de las computadoras y la programacion

B3

e Usa diferentes colores para desplegar varios componentes del lenguaje, lo que facilita la
identificacién de elementos como tipos de datos.

e Resalta errores de sintaxis en forma visual para usted.

e Emplea la terminacién automatica de las declaraciones; cuando empieza a teclear una el
IDE sugiere una culminacién probable, que usted puede aceptar con s6lo oprimir una tecla.

e Proporciona herramientas que le permiten seguir paso a paso la ejecucion de una declara-
cién del programa a la vez de modo que puede seguir con més facilidad la l6gica del mismo
y determinar la fuente de cualquier error.

Cuando usa el IDE para crear y guardar un programa ocupa mucho mds espacio en disco que
cuando usa un editor de texto sencillo. Por ejemplo, el programa en la figura 1-12 ocupa mds
de 49,000 bytes de espacio de disco.

Aunque varios ambientes de programacion podrian verse diferentes y ofrecer caracteristicas
distintas, el proceso para usarlos es muy parecido. Cuando usted planea la légica para un
programa usando un seudocédigo o un diagrama de flujo, no importa cudl ambiente de pro-
gramacion utilice para escribir su cddigo, y cuando escribe el cdigo en un lenguaje de progra-
macién, no importa cudl ambiente use para hacerlo.

Comprension de los ambientes de usuario

Un usuario podria ejecutar un programa que usted ha escrito en cualquier cantidad de am-
bientes. Por ejemplo, alguien podria hacerlo para duplicar nimeros desde una linea de
comandos como la que se muestra en la figura 1-13. Una linea de comandos es una ubicacién
en la pantalla de su computadora en la que usted teclea entradas de texto para comunicarse
con el sistema operativo de la computadora. En el programa de la figura 1-13, se pide al usua-
rio un nimero y se despliegan los resultados.

B Cormmand Prompt - NumberDoubsng Program b |2 ﬂ‘

13 doublesd iz Z6

Figura 1-13 Ejecucion de un programa para duplicar nimeros en un ambiente de linea de comandos

Muchos programas no se ejecutan en la linea de comandos en un ambiente de texto, pero lo
hacen usando una interfaz grafica del usuario, o GUI (graphical user interface), que per-
mite a los usuarios interactuar con un programa en un ambiente grafico. Cuando se ejecuta un
programa GUI, el usuario podria teclear entradas en un cuadro de texto o usar un ratén u otro
dispositivo apuntador para seleccionar opciones en la pantalla. La figura 1-14 muestra un pro-
grama para duplicar nimeros que ejecuta exactamente la misma tarea que el de la figura 1-13,
pero con una GUL

Comprension de la evolucion de los modelos de programacion _

P HumberilaublinpPregrem

Pleasn arfer @ number == 14

14 doubded = 28

Figura 1-14 Ejecucion de un programa para duplicar nimeros en un ambiente GUI

Un programa de linea de comandos y uno GUI podrian escribirse en el mismo lenguaje de
programacién. (Por ejemplo, los programas que se muestran en las figuras 1-13 y 1-14 se escri-
bieron con C#.) No obstante, sin importar cudl ambiente se use para escribir o ejecutar un
programa, el proceso légico es el mismo. Los dos programas en las figuras 1-13 y 1-14 aceptan
entradas, ejecutan la multiplicacién y la salida. En este libro, usted no se concentrara en saber
cual ambiente se usa para teclear las declaraciones de un programa ni se preocupard por el
tipo de ambiente que verd el usuario. En cambio, se enfocard en la légica que se aplica a todas
las situaciones de programacién.

DOS VERDADES UNA MENTIRA

Comprension de la programacion y los ambientes de usuario

1. Puede teclear un programa en un editor que es parte de un ambiente de desa-
rrollo integrado, pero usar un editor de texto sencillo le proporciona mas ayuda
en la programacion.

2. Cuando un programa corre o se ejecuta desde la linea de comandos, un usua-
rio teclea el texto para proporcionar la entrada.

3. Aunque los ambientes GUI y de linea de comandos se ven diferentes, la légica
de entrada, procesamiento y salida se aplica a ambos tipos de programa.

"0][1oUas 01xa) ap J0}IPa un anb ugioeweJ3old ap epnAe sew euoId
-J0do.d opeJ3a}ul 0]|041eSap 9P AUIIGLLE UM "T 0JBLNU B| SO BS|e} uoldewlye e

Comprension de la evolucion de los modelos
de programacion

Las personas han escrito programas de computadora modernos desde la década de 1940. Los
lenguajes de programacién mds antiguos requerian que los programadores trabajaran con
direcciones de memoria y que memorizaran cédigos incémodos asociados con los lenguajes
de maquina. Los lenguajes de programacién mads recientes se parecen mucho mas al len-
guaje natural y son mas faciles de usar, en parte debido a que permiten a los programadores
nombrar variables en lugar de usar direcciones de memoria poco manejables. Ademas, los

CAPITULO 1 Una revision de las computadoras y la programacion

lenguajes de programaciéon mas novedosos permiten crear médulos o segmentos de programa
auténomos que pueden armarse en diversas formas. Los programas de computadora mds anti-
guos se escribfan en una pieza, de principio a fin, pero los modernos rara vez se escriben asf;
son creados por equipos de programadores, y cada equipo desarrolla procedimientos de pro-
grama reutilizables y conectables. Escribir varios médulos pequefios es mas fécil que escribir
. un programa grande, y la mayor parte de las tareas grandes son mds féciles cuando usted las
26 divide para trabajar en unidades y hacer que otros colegas ayuden con algunas de ellas.

Ada Byron Lovelace predijo el desarrollo del software en 1843; con frecuencia se considera como la
primera programadora. Las bases para la mayor parte del software moderno fueron propuestas por Alan
Turing en 1935.

En la actualidad, los programadores usan dos modelos o paradigmas principales para desarro-
llar programas y sus procedimientos:

e La programacion procedimental se enfoca en los procedimientos que crean los progra-
madores. Es decir, los programadores procedimentales se centran en las acciones que se
llevan a cabo; por ejemplo, obtener datos de entrada para un empleado y escribir los
célculos necesarios para generar un cheque de pago a partir de los datos. Los programado-
res procedimentales enfocarfan la generacion del cheque dividiendo el proceso en subtareas
manejables.

e Laprogramacion orientada hacia los objetos se enfoca en los objetos o “cosas” y des-
cribe sus caracteristicas (también llamadas atributos) y comportamientos. Por ejemplo,
los programadores orientados hacia los objetos podrian disefiar una aplicacién de némina
pensando en los empleados y cheques de pago, y describiendo sus atributos. Los empleados
tienen nombres y numeros de seguro social y los cheques de pago contienen los nombres y
las cantidades del cheque. Luego los programadores pensaran en los comportamientos de
los empleados y los cheques de pago, como que los empleados obtienen aumentos y agregan
dependientes y los cheques de pago son calculados y producidos. Los programadores orien-
tados hacia los objetos construirdan entonces aplicaciones a partir de estas entidades.

Con cualquier enfoque, procedimental u orientado hacia los objetos, usted puede generar un
cheque de pago correcto y ambos modelos emplean médulos de programa reutilizables. La
diferencia principal estd en el enfoque que adopta el programador durante las primeras etapas
de la planeacion de un proyecto. Por ahora, este libro se enfoca en las técnicas de programa-
cién procedimental. Las habilidades que obtenga al aplicar este tipo de programacién (declarar
variables, aceptar entradas, tomar decisiones, producir salidas, etc.) le servirdn en gran medida
ya sea que al final escriba los programas con un enfoque procedimental, uno orientado hacia
los objetos, o ambos. El lenguaje de programacién en el que escriba su cédigo fuente podria
determinar su enfoque. Puede escribir un programa procedimental en cualquier lenguaje que
soporte orientacién a objetos, pero lo opuesto no siempre es cierto.

Resumen del capitulo [

DOS VERDADES UNA MENTIRA

Comprension de la evolucion de los modelos de programacion

1. Los programas de computadora mas antiguos se escribian en muchos modu- 27 .
los separados.

2. Los programadores procedimentales se enfocan en las acciones que un pro-
grama lleva a cabo.

3. Los programadores orientados hacia los objetos se centran en los objetos de
un programa y sus atributos y comportamientos.

"SOINPOW U USPIAIP S S9)UBI03J Sew so| ‘ezaid ejos eun
Us UeJqLIOSa as songiue sew seweigoid SO T 0JaWNU B SO BS|e} UQIdRULILE B

Resumen del capitulo

Juntos, el hardware (dispositivos fisicos) y el software (instrucciones) realizan tres opera-
ciones importantes: entrada, procesamiento y salida. Las instrucciones para la computadora
se escriben en un lenguaje de programacién que requiere una sintaxis especifica; un compi-
lador o intérprete traduce las instrucciones al lenguaje de maquina. Cuando la sintaxis y la
logica de un programa son correctas, usted puede correr o ejecutar el programa para obte-
ner los resultados deseados.

Para que un programa funcione en forma apropiada, usted debe desarrollar una logica
correcta. Es mucho mas dificil localizar los errores logicos que los de sintaxis.

La labor de un programador implica entender el problema, planear la légica, codificar el
programa, traducirlo a lenguaje de maquina, probarlo, ponerlo en produccién y mantenerlo.

Cuando los programadores planean la l6gica de una solucion para un problema de pro-
gramacién con frecuencia usan diagramas de flujo o seudocédigo. Cuando usted traza un
diagrama de flujo usa paralelogramos para representar las operaciones de entrada y salida, y
rectangulos para representar el procesamiento. Los programadores también toman decisio-
nes para controlar la repeticion de los conjuntos de instrucciones.

Para evitar la creacién de un ciclo infinito cuando usted repite las instrucciones puede
probar un valor centinela. Se representa una decisiéon en un diagrama de flujo al dibujar un
simbolo en forma de diamante que contiene una pregunta cuya respuesta es s o no.

Usted puede teclear un programa en un editor de texto sencillo o uno que sea parte de un
ambiente de desarrollo integrado. Cuando los valores de datos de un programa se introdu-
cen desde un teclado, pueden ingresarse en la linea de comandos en un ambiente de texto o
en una GUL De cualquier forma, la l6gica es similar.

CAPITULO 1 Una revision de las computadoras y la programacion

B

e Los programadores procedimentales y orientados hacia los objetos enfocan los problemas
de manera diferente. Los procedimentales se concentran en las acciones que se ejecutan con
los datos. Los orientados hacia los objetos se enfocan en los objetos, sus comportamientos y
atributos.

Términos clave

Un sistema de computo es una combinacién de todos los componentes que se requieren para
procesar y almacenar datos usando una computadora.

El hardware es el conjunto de dispositivos fisicos que componen un sistema de cémputo.
El software consiste en los programas que indican a la computadora qué debe hacer.

Los programas son los conjuntos de instrucciones para una computadora.

La programacion es el acto de desarrollar y escribir programas.

El software de aplicacion comprende todos los programas que usted aplica a una tarea.

El software de sistema comprende los programas que usted usa para manejar su
computadora.

La entrada describe la introduccién de elementos de datos en la memoria de la computadora
por medio de los dispositivos de hardware como teclados y ratones.

Los elementos de datos incluyen todo el texto, los nimeros y otra informacién procesada por
una computadora.

El procesamiento de elementos de datos implica organizarlos, comprobar su precisién o reali-
zar operaciones matematicas en ellos.

La unidad central de procesamiento, o CPU, es el componente de hardware que procesa los
datos.

La salida describe la accién de recuperar informacién de la memoria y enviarla a un disposi-
tivo, como un monitor o impresora, de modo que las personas puedan ver, interpretar y traba-
jar con los resultados.

Informacion son los datos procesados.

Los dispositivos de almacenamiento son los tipos de equipo de hardware, como discos, que
contienen informacién para su recuperacién posterior.

Los lenguajes de programacion, como Visual Basic, C#, C++, Java o COBOL, se usan para
escribir los programas.

El codigo de programa es el conjunto de instrucciones que un programador escribe en un
lenguaje de programacion.

Codificar el programa es la accién de escribir instrucciones en lenguaje de programacion.
La sintaxis de un lenguaje son sus reglas gramaticales.

Un error de sintaxis es un error en el lenguaje o la gramatica.

La memoria de la computadora es el almacenamiento interno temporal dentro de una
computadora.

Terminos clave [

La memoria de acceso aleatorio (RAM) es el almacenamiento interno temporal de la
computadora.

El término volatil describe el almacenamiento cuyo contenido se pierde cuando la energia
eléctrica se interrumpe.

El término no volatil describe el almacenamiento cuyo contenido se conserva cuando la ener-
gia eléctrica se interrumpe. 29 .

El lenguaje de maquina es un lenguaje de circuiteria encendido/apagado de una
computadora.

El codigo fuente son las declaraciones que un programador escribe en un lenguaje de
programacion.

Cadigo objeto es lenguaje de maquina traducido.

Un compilador o intérprete traduce un lenguaje de alto nivel a uno de méquina e indica si ha
usado en forma incorrecta un lenguaje de programacion.

El lenguaje binario se representa usando una serie de 0 (ceros) y 1 (unos).
Correr o ejecutar un programa significa que se llevan a cabo sus instrucciones.

Los lenguajes de programacion interpretados (también llamados lenguajes de programa-
cion de scripting o lenguajes de script) como Python, Lua, Perl y PHP se usan para escribir
programas que se introducen en forma directa desde un teclado. Los lenguajes de programa-
cién interpretados se almacenan como texto y no como archivos ejecutables binarios.

Un error légico ocurre cuando se ejecutan instrucciones incorrectas, o cuando éstas se efec-
tdan en el orden incorrecto.

Usted desarrolla la légica del programa de computadora cuando da instrucciones a la compu-
tadora en una secuencia especifica, sin omitir alguna instruccién ni agregar instrucciones
superfluas.

Una variable es una ubicacién de memoria nombrada cuyo valor puede variar.

El ciclo de desarrollo del programa consiste en los pasos que se siguen durante la vida de un
programa.

Los usuarios (o usuarios finales) son personas que emplean los programas de computadora y
obtienen beneficios de ellos.

La documentacion consiste en todo el papeleo de soporte para un programa.
Un algoritmo es la secuencia de pasos necesarios para resolver cualquier problema.

Una grafica IPO es una herramienta de desarrollo de programas que define las tareas de
entrada, procesamiento y salida.

Una grafica TOE es una herramienta de desarrollo de programas que lista tareas, objetos y
eventos.

Prueba de escritorio es el proceso de recorrer la solucién de un programa en papel.
Un lenguaje de programacion de alto nivel soporta sintaxis en inglés.

Un lenguaje de maquina de bajo nivel estd formado por 1 (unos) y 0 (ceros) y no usa nom-
bres de variables que se interpretan con facilidad.

Depuracion es el proceso de hallar y corregir errores del programa.

CAPITULO 1 Una revision de las computadoras y la programacion

"B

Conversion es el conjunto entero de acciones que debe emprender una organizacién para
cambiar al uso de un programa o conjunto de programas nuevos.

El mantenimiento consiste en todas las mejoras y correcciones hechas a un programa después
de que esté en produccion.

El seudocodigo es una representacion en inglés de los pasos légicos que se requieren para
resolver un problema.

Un simbolo de entrada indica una operacion de entrada y en los diagramas de flujo se repre-
senta con un paralelogramo.

Un simbolo de procesamiento indica una operacién de procesamiento y en los diagramas de
flujo se representa con un rectangulo.

Un simbolo de salida indica una operacién de salida y en los diagramas de flujo se representa
con un paralelogramo.

Un simbolo de entrada/salida o simbolo 1/0 en los diagramas de flujo se representa con un
paralelogramo.

Las lineas de flujo, o flechas, conectan los pasos en un diagrama de flujo.

Un simbolo terminal indica el inicio o el fin de un segmento de diagrama de flujo y se repre-
senta con una pastilla.

Un ciclo es una repeticién de una serie de pasos.
Un ciclo infinito ocurre cuando la légica que se repite no puede terminar.
Tomar una decision es el acto de probar un valor.

Un simbolo de decision tiene forma de diamante y en los diagramas de flujo se usa para
representar una decision.

Un valor comodin es un valor predeterminado que detiene la ejecucion de un programa.
Un valor centinela es un valor predeterminado que detiene la ejecucién de un programa.
El término eof significa fin del archivo.

Un editor de texto es un programa que se usa para crear archivos de texto sencillos; es pare-
cido a un procesador de palabras, pero sin tantas caracteristicas.

Un ambiente de desarrollo integrado (IDE) es un paquete de software que proporciona un
editor, un compilador y otras herramientas de programacién.

Microsoft Visual Studio IDE es un paquete de software que contiene herramientas ttiles para
crear programas en Visual Basic, C++ y C#.

Una linea de comandos es una ubicacion en la pantalla de su computadora en la que teclea
entradas de texto para comunicarse con el sistema operativo de la computadora.

Una interfaz grafica del usuario, o GUI, permite a los usuarios interactuar con un programa
en un ambiente gréfico.

La programacion procedimental es un modelo de programacién que se enfoca en los proce-
dimientos que crean los programadores.

La programacion orientada hacia los objetos es un modelo de programacién que se
enfoca en objetos, o “cosas’, y describe sus caracteristicas (también llamadas atributos) y
comportamientos.

Preguntas de repaso [

Preguntas de repaso

1.

Los programas de computadora también se conocen como

a) hardware ¢) datos

b) software d) informacién 31 .

Las operaciones principales de computadora incluyen

a) hardware y software
b) entrada, procesamiento y salida
c) secuenciay ciclo

d) hojas de célculo, procesamiento de palabras y comunicaciones de datos

Visual Basic, C++ y Java son ejemplos de de computadora.
a) sistemas operativos ¢) lenguajes de maquina
b) hardware d) lenguajes de programacién

Las reglas de un lenguaje de programacion son su(s)
a) sintaxis ¢) formato

b) légica d) opciones

La tarea mds importante de un compilador o intérprete es
a) crear las reglas para un lenguaje de programacién
b) traducir las declaraciones en inglés a un lenguaje como Java

¢) traducir las declaraciones que estan en lenguaje de programacién al lenguaje de
maquina

d) ejecutar programas en lenguaje de maquina para realizar tareas ttiles
;Cudl de las opciones siguientes constituye almacenamiento interno temporal?

a) CPU ¢) teclado

b) disco duro d) memoria

;Cual de los siguientes pares de pasos en el proceso de programacion esta en el orden
correcto?

a) codificar el programa, planear la 16gica
b) probar el programa, traducirlo a lenguaje de maquina
c) poner el programa en produccion, entender el problema

d) codificar el programa, traducirlo a lenguaje de maquina

CAPITULO 1 Una revision de las computadoras y la programacion

"B

8.

10.

11.

12.

13.

14.

La tarea mds importante de un programador antes de planear la légica de un programa
es

a) decidir cudl es el lenguaje de programacion que va a usar
b) codificar el problema
c) capacitar a los usuarios del programa

d) entender el problema

Las dos herramientas que mas se utilizan para planear la l6gica de un programa son

a) diagramas de flujo y seudocddigo
b) ASCIIy EBCDIC
c) Javay Visual Basic

d) procesadores de palabras y hojas de calculo

Escribir un programa en un lenguaje como C++ o Java se conoce como el
programa.

a) traducir c) interpretar

b) codificar d) compilar

Un lenguaje de programacion en inglés como Java o Visual Basic es un lenguaje de pro-
gramacion

a) de nivel de maquina ¢) de alto nivel

b) de bajo nivel d) de nivel binario

¢Cual de los siguientes es un ejemplo de un error de sintaxis?
a) producir la salida antes de aceptar la entrada

b) restar cuando quiere sumar

c) escribir mal una palabra del lenguaje de programacién

d) todos los anteriores

¢Cual de los siguientes es un ejemplo de un error 16gico?

a) ejecutar la aritmética con un valor antes de introducirlo

b) aceptar dos valores de entrada cuando un programa sélo requiere uno
c) dividir entre 3 cuando se quiere dividir entre 30

d) todos los anteriores

El paralelogramo es el simbolo de diagrama de flujo que representa
a) laentrada ¢) tantoacomob

b) lasalida d) ninguno de los anteriores

Ejercicios.

15. En un diagrama de flujo, un rectangulo representa
a) laentrada C) una pregunta
b) un centinela d) el procesamiento

16. Enlos diagramas de flujo, el simbolo de decisién es .
a) un paralelogramo ¢) una pastilla 33 .
b) un rectdngulo d) un diamante

17. Eltérmino eof representa
a) un dispositivo de entrada estdndar
b) un valor centinela genérico
c) una condicién en la cual no hay mas memoria disponible para el almacenamiento
d) el flujo légico en un programa

18. Cuando se usa un IDE en lugar de un editor de texto simple para desarrollar un pro-
grama,
a) laldgica es mas complicada ¢) lasintaxis es diferente
b) laldgica es mas sencilla d) se proporciona alguna ayuda

19. Cuando se escribe un programa que correrd en un ambiente GUI en contraposicién a
un ambiente de linea de comandos,
a) laldgica es muy diferente ¢) no necesita planear la logica
b) alguna sintaxis es diferente d) los usuarios se confunden mas

20. En comparacién con la programacion procedimental, con la programacion orientada a
objetos,
a) el enfoque del programador difiere
b) no pueden usarse algunos lenguajes, como Java
€) no se aceptan entradas
d) no se codifican célculos; ellos se crean en forma automatica

Ejercicios
1. Relacione la definicién con el término apropiado.

1. Dispositivos del sistema de cémputo a) compilador
2. Otra palabra para programas b) sintaxis
3. Reglas del lenguaje c) légica
4. Orden de las instrucciones d) hardware
5. Traductor de lenguaje e) software

2. En sus propias palabras, describa los pasos para escribir un programa de computadora.

CAPITULO 1 Una revision de las computadoras y la programacion

B

3.

Relacione el término con la forma apropiada (véase la figura 1-15).

1. Entrada A.

2. Procesamiento B. E
3. Salida C.

4. Decision D.

5. Terminal E. Q

Figura 1-15 Identificacion de formas

Trace un diagrama de flujo o escriba un seudocddigo para representar la légica de un
programa que permita al usuario introducir un valor. El programa divide el valor
entre 2 y da salida al resultado.

Trace un diagrama de flujo o escriba un seudocddigo para representar la légica de

un programa que permita al usuario introducir un valor para una arista de un cubo.
El programa calcula el area de la superficie de un lado del cubo, el area de la superficie
del cubo y su volumen. El programa da salida a todos los resultados.

Trace un diagrama de flujo o escriba un seudocddigo para representar la légica de
un programa que permite al usuario introducir dos valores. El programa da salida al
producto de los dos valores.

a) Trace un diagrama de flujo o escriba un seudocddigo para representar la légica
de un programa que permita al usuario introducir valores para el ancho y el largo
del piso de un salén en metros. El programa da salida al drea del piso en metros
cuadrados.

b) Modifique el programa que calcula el drea del piso para que calcule y dé salida al
ndmero de mosaicos de 30 centimetros cuadrados que se necesitan para cubrir el
piso.

Ejercicios.

8. a) Trace un diagrama de flujo o escriba un seudocédigo para representar la légica de
un programa que permita al usuario introducir valores para el ancho y el largo
de una pared en metros. El programa da salida al drea de la pared en
metros cuadrados.

b) Modifique el programa que calcula el drea de la pared para permitir al usuario
introducir el precio de 1 galén de pintura. Suponga que 1 galén de pintura cubre 35 .
35 metros cuadrados de una pared. El programa da salida al numero de galones
necesarios y al costo del trabajo. (Para este ejercicio suponga que no necesita
tomar en cuenta las ventanas o puertas y que puede comprar galones de pintura en
partes.)

9. Investigue las tasas actuales de cambio monetario. Trace un diagrama de flujo o escriba
un seudocodigo para representar la légica de un programa que permita al usuario
introducir un nimero de délares y convertirlos en euros y en yenes japoneses.

10. Trace un diagrama de flujo o escriba un seudocédigo para representar la logica de
un programa que permita al usuario introducir valores para el salario base, las ventas
totales y la tasa de comisién de un vendedor. El programa calcula y da salida al pago
del vendedor agregando el salario base al producto de las ventas totales y la tasa de
comision.

* Encuentre los errores

Desde los primeros dias de la programacién de computadoras, a los errores de pro-
grama se les ha llamado bugs (insectos). Se dice con frecuencia que el término se
originé por una polilla real que se descubrié atrapada en los circuitos de una compu-
tadora en la Universidad de Harvard en 1945. En realidad, el término bug se usaba
antes de 1945 para referirse a los problemas con cualquier aparato eléctrico; incluso
durante la vida de Thomas Edison significaba un defecto industrial. Sin embargo, el
término depuracién (debugging) se asocia mds con la correccién de errores de sintaxis
y légicos de un programa que con cualquier otro tipo de problema.

Sus archivos descargables para el capitulo 1 incluyen DEBUGO01-01.txt, DEBUGO01-02.
txt y DEBUGO1-03.txt. Cada archivo comienza con algunos comentarios (lineas que
comienzan con dos barras oblicuas) que describen el programa. Examine el seudocé-
digo que sigue a los comentarios introductorios, luego halle y corrija todos los erro-
res. (NOTA: Estos archivos se encuentran disponibles sélo para la version original en
inglés.)

%’8 Zona de juegos

12. En 1952, A. S. Douglas escribi6 su disertacién para el doctorado en la Universidad
de Cambridge sobre la interaccién humano-computadora y creé el primer juego gra-
fico de computadora, una version de Tic-Tac-Toe. El juego fue programado en una
computadora mainframe EDSAC de tubo de vacio. Por lo general se supone que el

CAPITULO 1 Una revision de las computadoras y la programacion

"3

primer juego de computadora fue Spacewar!, que se cre6 en 1962 en el MIT; el primer
videojuego disponible en forma comercial fue Pong, introducido por Atari en 1972.
En 1980, Asteroids y Lunar Lander, de Atari, se convirtieron en los primeros videojue-
gos que se registraron en la U. S. Copyright Office. A lo largo de la década de 1980,

las personas pasaron horas con juegos que ahora parecen muy simples y sin glamour;
srecuerda haber jugado Adventure, Oregon Trail, Where in the World Is Carmen San-
diego? o Myst?

En la actualidad, los juegos de computadora comerciales son mucho més complejos; su
desarrollo requiere muchos programadores, artistas graficos y probadores, y se nece-
sita mucho personal administrativo y de mercadotecnia para promoverlos. Desarrollar
y comercializar un juego podria costar muchos millones de ddlares, pero uno que sea
exitoso podria ganar cientos de millones de délares. Obviamente, con la breve intro-
duccién a la programacioén que tuvo en este capitulo no espere crear un juego muy
complejo. Sin embargo, puede empezar.

Mad Libs® es un juego para nifios en el que los participantes proporcionan algunas
palabras que luego son incorporadas en una historia ridicula. El juego ayuda a los nifios
a entender diferentes partes del habla porque se les pide que proporcionen tipos espe-
cificos de palabras. Por ejemplo, podria pedir a un nino un sustantivo, otro sustantivo,
un adjetivo y un verbo en tiempo pasado. El nifio responderia con palabras como mesa,
libro, ridiculo y estudié. Un Mad Lib recién creado podria ser:

Maria tenfa una pequefa mesa

Su libro era ridiculo como la nieve

Y en todas partes que Maria estudié

La mesa de seguro la acompané.

Cree la 16gica para un programa Mad Lib que acepte cinco palabras de entrada, luego
cree y despliegue una historia breve o un verso infantil que las use.

g Para discusion

13.

14.

¢Cudl es la mejor herramienta para aprender programacion: los diagramas de flujo o
un seudocddigo? Cite cualquier investigacion educativa que pueda encontrar.

¢Cudl es la imagen del programador de computadoras en la cultura popular? ;Es dife-
rente en los libros que en los programas de television y las peliculas? ;Le gustaria tener
esa imagen?

Elementos de los
programas de
alta calidad

En este capitulo usted aprendera sobre:

©@ ©@ © ® © ©

La declaracion y el uso de variables y constantes
La realizacion de operaciones aritméticas

Las ventajas de la modularizacion

Modularizar un programa

Las graficas de jerarquia

Las caracteristicas de un buen diseno de programa

o N AREIER 2 Elementos de los programas de alta calidad

"3

La declaracion y el uso de variables y constantes

Como aprendi6 en el capitulo 1, los elementos de datos incluyen todo el texto, los nimeros

y otra informacién que son procesados por una computadora. Cuando usted introduce los
elementos de datos en un ordenador, éstos se almacenan en variables en la memoria, donde se
procesan y se convierten en informacién de salida.

Cuando usted escribe programas trabaja con los datos en tres formas diferentes: literales (o
constantes no nombradas), variables y constantes nombradas.

Comprension de las constantes literales
y sus tipos de datos

Todos los lenguajes de programacién soportan dos amplios tipos de datos: el numérico
describe los datos que consisten en nimeros y la cadena los que no son numéricos. La
mayoria de los lenguajes de programacién soportan varios tipos de datos adicionales, incluidos
los tipos multiples para valores numéricos de diferentes tamanos y con y sin lugares decimales.
Los lenguajes como C++, C#, Visual Basic y Java distinguen entre las variables numéricas
enteras (numero entero) y las variables numéricas de punto flotante (fraccionarias) que
tienen un punto decimal. (Los numeros de punto flotante también se conocen como niimeros
reales.) Por tanto, en algunos lenguajes los valores 4 y 4.3 se almacenarian en tipos diferentes
de variables numéricas. Ademds, muchos lenguajes permiten la distincién entre los valores
mds pequenos y mds grandes que ocupan diferentes cantidades de bytes en la memoria.

Usted aprenderd mds sobre estos tipos de datos especializados cuando estudie un lenguaje de
programacion, pero este libro usa los dos mas amplios: numérico y cadena.

Cuando usted usa un valor numeérico especifico, como 43, en un programa, lo escribe usando
los digitos y sin comillas. Un valor numérico especifico con frecuencia se llama constante
numérica (o constante numérica literal) debido a que no cambia; un 43 siempre tiene el
valor 43. Cuando se almacena un valor numérico en la memoria de la computadora no se
introducen o almacenan caracteres adicionales como signos de pesos y comas. Esos caracteres
pueden agregarse a la salida con fines de legibilidad, pero no son parte del
numero.

Un valor de texto especifico, o cadena de caracteres, como “Amanda”, es una constante

de cadena (o constante de cadena literal). Las constantes de cadena, a diferencia de las
constantes numeéricas, aparecen entre comillas en los programas. Los valores de cadena
también se llaman valores alfanuméricos porque pueden contener caracteres alfabéticos

al igual que nuumeros y otros caracteres. Por ejemplo, “$3,215.99 U.S.”, incluido el signo de
ddlares, la coma, el punto, las letras y los ndmeros, es una cadena. Aunque las cadenas pueden
contener numeros, los valores numéricos no contienen caracteres alfabéticos. La constante
numérica 43 y la constante de cadena “Amanda” son ejemplos de constantes literales, no
tienen identificadores como las variables.

La declaracion y el uso de variables y constantes _

Trabajo con variables

Las variables son ubicaciones de memoria nombradas cuyo contenido varfa o difiere con el
tiempo. Por ejemplo, en el programa para duplicar nimeros en la figura 2-1, myNumber y
myAnswer son variables. En cualquier momento en el tiempo, una variable s6lo contiene un
valor. En ocasiones, myNumber contiene 2 y myAnswer contiene 4; otras veces, myNumber
contiene 6 y myAnswer 12. La capacidad de las variables de memoria para cambiar de valor
es lo que hace que las computadoras y la programacion sean valiosas. Debido a que una
ubicacién de memoria puede usarse en repetidas ocasiones con diferentes valores, es posible
escribir las instrucciones del programa una vez y luego usarlas para miles de célculos separa-
dos. Un conjunto de instrucciones de némina en su empresa genera el cheque de pago de
cada empleado y un conjunto de instrucciones en su compaiiia eléctrica resulta en la factura
de cada hogar.

input myNumber

¢ start
set myAnswer = input myNumber
= %
myNumber * 2 set myAnswer = myNumber 2
¢ output myAnswer
stop

output myAnswer

Figura 2-1 Diagrama de flujo y seudocddigo para el programa para duplicar nimeros

En la mayoria de los lenguajes de programacion, antes de que usted pueda usar alguna variable
debe incluir una declaracién para ello. Una declaracion es un enunciado que proporciona

el tipo de datos y un identificador para una variable. Un identificador es el nombre de un
componente del programa. El tipo de datos de un elemento de datos es una clasificaciéon que
describe lo siguiente:

e Qué valores puede contener el elemento
e Como se almacena el elemento en la memoria de la computadora
e Qué operaciones pueden ejecutarse en el elemento de datos

Como se menciond antes, casi todos los lenguajes de programacién soportan varios tipos de
datos, pero en este libro sélo se usaran dos tipos: numy string.

B

o N AREIER 2 Elementos de los programas de alta calidad

N -

Cuando usted declara una variable proporciona tanto un tipo de datos como un identificador.
De manera opcional, puede declarar un valor inicial para cualquier variable y hacer esto es
inicializar la variable. Por ejemplo, cada una de las siguientes declaraciones es vélida. Dos de
ellas incluyen inicializaciones y dos no:

num mySalary

num yourSalary = 14.55
string myName

string yourName = “Juanita”

La figura 2-2 muestra el programa para duplicar nimeros de la figura 2-1 con las declaraciones
agregadas sombreadas. Las variables deben declararse antes de que se usen por primera vez

en un programa. Algunos lenguajes requieren que todas se declaren al principio del programa;
otros permiten que esto se haga en cualquier parte con tal de que sea antes de su primer uso.
Este libro seguird la convencién de declarar todas las variables juntas.

Declarations
num myNumber
num myAnswer

start
Declarations
input myNumber num myNumber
num myAnswer
l input myNumber
set myAnswer = set myAnswer = myNumber * 2
myNumber * 2 output myAnswer
* stop

output myAnswer

'

Figura 2-2 Diagrama de flujo y seudocddigo del programa para duplicar nimeros con declaraciones
de variables

En muchos lenguajes de programacion, si se declara una variable y no se inicializa, ésta
contendra un valor desconocido hasta que se le asigne uno. El valor desconocido de una
variable por lo comun se llama basura. Aunque algunos lenguajes usan un valor por defecto
para algunas variables (como asignar 0 a cualquier variable numérica no asignada), en este
libro se supondrd que una no asignada contiene basura. En muchos lenguajes es ilegal usar una
variable que contenga basura en una declaracién aritmética o desplegarla como salida. Aun

si usted trabaja con un lenguaje que le permita desplegar basura, esto no sirve para ningin
propdsito y constituye un error légico.

La declaracion y el uso de variables y constantes _

Cuando usted crea una variable sin asignarle un valor inicial (como con myNumber y myAnswer
en la figura 2-2), su intencién es asignarlo después; por ejemplo, al recibir uno como entrada o
colocar ahi el resultado de un calculo.

Nombramiento de variables
El ejemplo de la duplicacién de nimeros en la figura 2-2 requiere dos variables: myNumber y 41 .

myAnswer. De manera alternativa, éstas podrfan nombrarse userEntry y programSolution,
o inputValuey twiceTheValue. Como programador usted elige nombres razonables y
descriptivos para sus variables. El intérprete del lenguaje asocia luego los nombres que usted
elija con direcciones de memoria especificas.

Cada lenguaje de programacién tiene su propio conjunto de reglas para crear identificadores.
Casi todos los lenguajes permiten letras y digitos en los identificadores; algunos aceptan
guiones en los nombres de las variables, como hourly-wage, y otros permiten subrayados,
como en hourly_wage. Unos aceptan signos de délar u otros caracteres especiales (por
ejemplo, hourly$); otros permiten caracteres de alfabetos extranjeros, como m u Q2. Cada
lenguaje tiene algunas (quizé de 100 a 200) palabras clave reservadas que no se permite usar
como nombres de variables porque son parte de la sintaxis del lenguaje. Cuando usted aprenda
un lenguaje de programacién conocera su lista de palabras clave.

Los lenguajes diferentes ponen limites distintos sobre la extension de los nombres de las
variables aunque, en general, la de los identificadores en lenguajes més recientes es casi
ilimitada. En muchos lenguajes los identificadores son sensibles al uso de maytsculas y
minusculas, asi HoUrLyWaGe, hourTlywage y hourlyWage son tres nombres de variables
separados. Los programadores usan numerosas convenciones para nombrar variables, con
frecuencia dependiendo del lenguaje de programacion o de los estdndares implementados por
sus patrones. Las convenciones comunes incluyen las siguientes:

e La notacion de camello: la variable empieza con una letra minuscula y cualquier palabra
subsiguiente comienza con una mayuscula, como hourlyWage. Para los nombres de las
variables en este libro se usa la notacion de camello.

e La caja de Pascal: la primera letra del nombre de una variable es maytscula, como en
HourlyWage.

e La notacion hungara: el tipo de datos de una variable es parte del identificador; por ejem-
plo, numHourlyWage o stringLastName.

Adoptar una convencién para nombrar variables y usarla en forma consistente le ayudard para
que su programa sea mds facil de leer y entender.

Aun cuando cada lenguaje tiene sus propias reglas para nombrar variables usted no debe
preocuparse por la sintaxis especifica de alguno en particular cuando diseiie la légica de un
programa. La logica, después de todo, funciona con cualquier lenguaje. Los nombres de las
variables que se usan a lo largo de este libro sélo siguen tres reglas:

1. Los nombres de las variables deben constar de una palabra. Pueden contener letras,
digitos, guiones, subrayados o cualquier otro caracter que elija, con excepcién de
espacios. Por consiguiente, r es un nombre de variable legal, lo mismo que rate e
interestRate. El nombre interest rate no se permite debido al espacio.

o N AREIER 2 Elementos de los programas de alta calidad

N -

2. Los nombres de las variables deben comenzar con una letra. Algunos lenguajes de
programacién permiten que los nombres comiencen con un cardcter no alfabético,
como un subrayado. Casi todos los lenguajes no aceptan que los nombres de las varia-
bles inicien con un digito. Este libro sigue la convencién mas comun de empezar los
nombres de las variables con una letra.

ﬁ Cuando usted escribe un programa usando un editor que viene en paquete con un compilador en un IDE,

el compilador puede desplegar los nombres de las variables en un color diferente del resto del programa.
Esta ayuda visual distingue los nombres de las variables de las palabras que son parte del lenguaje de
programacion.

3. Los nombres de las variables deben tener algiin significado apropiado. Esta no es una
regla formal de los lenguajes de programacién. Cuando se calcula una tasa de interés
en un programa, a la computadora no le interesa si usted llama a la variable g, u84 o
fred. En tanto que el resultado numérico se coloque en la variable, su nombre real no
importa. Sin embargo, es mucho mas facil seguir la l6gica de una declaracién como
set interestEarned = initialInvestment * interestRate que de una como
set f=1 * roset someBanana = j89 * myFriendLinda. Cuando un programa
requiere cambios, que podrian hacerse meses o afnos después de que se escribi6 la
versién original, usted y sus colegas programadores apreciaran los nombres descrip-
tivos claros en lugar de los identificadores confusos. En este capitulo usted aprendera
mds sobre la seleccion de identificadores adecuados.

Note que el diagrama de flujo en la figura 2-2 sigue las reglas anteriores: ambos nombres,
myNumber y myAnswer, son palabras nicas sin espacios y tienen significados apropiados.
Algunos programadores nombran a las variables en honor a sus amigos o crean juegos
de palabras con ellos, pero los profesionales de la computacién consideran dicho
comportamiento poco profesional y serio.

Asignacion de valores a las variables

Cuando deba crear un diagrama de flujo o un seudocddigo para un programa que duplique
ntmeros puede incluir una declaracién como la siguiente:

set myAnswer = myNumber * 2

Esta es una declaracion de asignacion e incorpora dos acciones. Primera, la computadora
calcula el valor aritmético de myNumber * 2. Segunda, el valor calculado se almacena en la
ubicacién de memoria myAnswer.

El signo de igual es el operador de asignacion. Este es un ejemplo de operador binario,

lo que significa que requiere dos operandos, uno en cada lado. El operador de asignacién
siempre opera de derecha a izquierda, es decir, tiene asociatividad derecha o asociatividad
de derecha a izquierda. Esto significa que se evalta primero el valor de una expresién a

la derecha del operador de asignacion, y luego el resultado se asigna al operando de la
izquierda. El operando a la derecha de un operador de asignacion puede ser un valor, una
férmula, una constante nombrada o una variable. El operando a la izquierda debe ser un
nombre que represente una direccién de memoria, el de la ubicacién donde se almacenar4 el
resultado.

La declaracion y el uso de variables y constantes _

Por ejemplo, si usted ha declarado dos variables numéricas llamadas someNumber y
someOtherNumber, entonces cada una de las siguientes es una declaracién de asignacién vélida:

set someNumber = 2
set someNumber 3 +7
set someOtherNumber = someNumber

set someOtherNumber = someNumber * 5 43 .

En cada caso, la expresién a la derecha del operador de asignacion se evalta y almacena en la

ubicacion referenciada en el lado izquierdo. El resultado a la izquierda de un operador de asig-
nacion se llama un Ivalue. La / es por izquierda en inglés. Los Ivalues siempre son identificado-
res de una direccién de memoria.

No lo haga
Sin embargo, las siguientes declaraciones no son validas: EIRSE NI 0

de un operador de

asignacion debe representar
set someOtherNumber * 10 = someNumber una direccién de memoria.

set 2 + 4 = someNumber

En cada uno de estos casos, el valor a la izquierda de un operador de asignacion no es una
direccién de memoria, de modo que las declaraciones no son vélidas.

Cuando usted escriba un seudocédigo o trace un diagrama de flujo seria util que en las decla-
raciones de asignacion usara la palabra set, como se muestra en estos ejemplos, para enfatizar
que se establece el valor del lado izquierdo. Sin embargo, en la mayoria de los lenguajes de
programacién no se usa la palabra set y las declaraciones de asignaciéon adoptan la siguiente
forma mas sencilla:

someNumber = 2
someOtherNumber = someNumber

Debido a que las asignaciones en la mayoria de los lenguajes aparecen en la forma abreviada,
asf se usa en el resto de este libro.

Comprension de los tipos de datos de las variables

Las computadoras manejan los datos de cadena de manera diferente de lo que lo hacen con
los datos numéricos. Usted tal vez se ha percatado de estas diferencias si ha usado software
de aplicacién, como hojas de célculo o bases de datos. Por ejemplo, en una hoja de célculo
no puede sumar una columna de palabras. Del mismo modo, cada lenguaje de programacion
requiere que especifique el tipo correcto para cada variable y que use cada tipo de manera
apropiada.

e Una variable numérica es aquella que puede contener digitos y operaciones matematicas
que se efectiian en ellos. En este libro todas las variables numéricas pueden contener un
punto decimal y un signo que indica positivo o negativo; algunos lenguajes de programa-
cién proporcionan tipos numeéricos especializados para estas opciones. En la declaracion
myAnswer = myNumber * 2, tanto myAnswer como myNumber son variables numéricas; es
decir, su contenido previsto son valores numéricos, como 6y 3, 14.8y 7.4 0 —18 y -9.

e Una variable de cadena puede contener texto, como las letras del alfabeto y otros caracte-
res especiales, como los signos de puntuacién. Si un programa en funcionamiento contiene
la declaracién TastName = “Lincoln”, entonces lastName es una variable de cadena. Una

CAPITULO 2 Elementos de los programas de alta calidad

N

variable de cadena también puede contener digitos ya sea con o sin otros caracteres. Por
ejemplo, tanto “235 Main Street” como “86” son cadenas. Una cadena como “86” se alma-
cena de manera diferente que el valor numérico 86 y usted no puede realizar aritmética con
la cadena.

La seguridad del tipo es la caracteristica de los lenguajes de programacién que impide asignar
valores de un tipo de datos incorrecto. Usted puede asignar datos a una variable sélo si son del
tipo correcto. Si usted declara taxRate como una variable numeérica e inventoryItem como
una cadena, entonces las siguientes declaraciones son vdlidas:

taxRate = 2.5
inventoryItem = “monitor”

Las siguientes no son validas debido a que el tipo de datos que se asigna no corresponden al
tipo de la variable:
No lo haga

13 ” . o .
taxRate = “2.5 Si taxRate es numérico e inventoryltem
inventoryIltem = 2.5 es una cadena, entonces estas asigna-
ciones no son validas.

Declaracion de constantes nombradas

Ademas de las variables, casi todos los lenguajes de programacién permiten la creaciéon de cons-
tantes nombradas. Una constante nombrada es similar a una variable, excepto que se le puede
asignar un valor sélo una vez. Se usa cuando se desea asignar un nombre Util para un valor que
nunca cambiard durante la ejecucién de un programa. El uso de constantes nombradas hace
que sus programas sean mds faciles de entender al eliminar nimeros mégicos. Un nimero
magico es una constante literal, como 0.06, cuyo propdsito no es evidente de inmediato.

Por ejemplo, si un programa usa una tasa de impuesto sobre las ventas de 6%, quizé desee
declarar una constante nombrada como sigue:

num SALES_TAX_RATE = 0.06
Ya que se ha declarado SALES_TAX_RATE, las siguientes declaraciones tienen significado
idéntico:

taxAmount price * 0.06
taxAmount = price * SALES_TAX_RATE

La forma en que se declaran las constantes nombradas difiere entre los lenguajes de progra-
macién. Este libro sigue la convencién de usar sélo letras mayusculas en los identificadores de
las constantes y subrayados para separar las palabras por legibilidad. Estas normas facilitan el
reconocimiento de las constantes nombradas. En muchos lenguajes debe asignarse un valor

a una constante cuando se declara, pero en otros es posible hacerlo después. Sin embargo, en
ningdn caso es posible cambiar el valor de una constante después de la primera asignacion.
Aqui se inicializan todas las constantes cuando se declaran.

Cuando usted declara una constante nombrada, el mantenimiento del programa se vuelve
mas fécil. Por ejemplo, si el valor del impuesto sobre las ventas cambia de 0.06 a 0.07 en el
futuro, y usted ha declarado una constante llamada SALES_TAX_RATE, sélo necesita cambiar el
valor asignado a la constante nombrada al principio del programa, luego retraducir éste

Realizacion de operaciones aritméticas _

al lenguaje de maquina y todas las referencias a SALES_TAX_RATE se actualizan en forma
automatica. Si en su lugar usa la constante literal 0.06, tendria que buscar cada caso del valor
y reemplazarlo con el nuevo. Ademads, si la literal 0.06 se usé en otros calculos dentro del
programa (por ejemplo, como tasa de descuento), tendria que seleccionar con cuidado cuéles
casos del valor se alterardn y quiza cometa un error.

En ocasiones, el uso de constantes literales es apropiado en un programa, en especial si su significado es 45 .
ﬂ claro para la mayoria de los lectores. Por ejemplo, en un programa que calcula la mitad de un valor dividién-

dolo entre dos, podria elegir la constante literal 2 en lugar de incurrir en el tiempo y los costos de memoria
adicionales de crear una constante nombrada HALF y asignarle 2. Los costos adicionales que resulten de
agregar variables o instrucciones al programa se conocen como carga adicional.

DOS VERDADES UNA MENTIRA

Declaracion y uso de variables y constantes

1. Eltipo de datos de una variable describe la clase de valores que ésta puede
contener y los tipos de operaciones que es posible efectuar con ellos.

2. Siname es una variable de cadena, entonces la declaracion set name = “Ed”
es valida.

3. Eloperando a la derecha de un operador de asignacion debe ser un nombre
que represente una direccion de memoria.

"3]UBISUOD BUN O (3|qeren

BUN) BLIOWAW 9P UQIDJ3JIP eun Jas apand ugloeugise ap Jopesado un ap eyoaiap
e| e opueJado Jainbjen) “opeyNsal @ eJeusdew(e as apuop UQIdRIIGN B| ap 8iGLIOU
[0 ‘eLIoWaW ap UQIDIBJIP BUN dUBSaIdaJ anb diqUIOU UN J3s 3gap ugloeugise ap
Jopesado un ap episinbzi | & opuesado [J °€ 0JBWINU B| S8 BS[e) UIoRWLILE BT

Realizacion de operaciones aritméticas

La mayoria de los lenguajes de programacién usan los siguientes operadores aritméticos
estandar:

+ (signo de suma): adicién

— (signo de resta): sustraccion
* (asterisco): multiplicacién

/ (diagonal): divisién

Muchos lenguajes también soportan operadores adicionales que calculan el residuo después
de la divisién, elevan un nimero a una potencia mayor, manipulan bits individuales almacena-
dos dentro de un valor y efecttian otras operaciones.

o N AREIER 2 Elementos de los programas de alta calidad

N -

Cada uno de los operadores aritméticos estdndar es un operador binario; es decir, que requiere
una expresion en ambos lados. Por ejemplo, la siguiente declaracién suma dos puntuaciones
de examen y asigna la suma a una variable llamada totalScore:

totalScore = testl + test2
La siguiente suma 10 a totalScore y almacena el resultado en totalScore:
totalScore = totalScore + 10

En otras palabras, este ejemplo aumenta el valor de totalScore. Este tltimo ejemplo se ve
extrafio en dlgebra porque pareceria que el valor de totalScore y el de totalScore mas 10 son
equivalentes. Debe recordar que el signo de igual es el operador de asignacion y que la declara-
cién en realidad toma el valor original de totalScore, sumandole 10 y asignando el resultado a
la direccién de memoria a la izquierda del operador, que es totalScore.

En los lenguajes de programacién usted puede combinar declaraciones aritméticas. Cuando
lo hace, cada operador sigue las reglas de precedencia (también llamadas orden de las ope-
raciones) que dictan el orden en que se realizan las operaciones en la misma declaracion. Las
reglas de precedencia para las declaraciones aritméticas bésicas son las siguientes:

e Las expresiones entre paréntesis se evalian primero. Si hay varios conjuntos de paréntesis,
la expresién dentro del més interior se evaltia primero.

e La multiplicacién y la divisién se evaltan a continuacién, de izquierda a derecha.
e Lasumay laresta se evalian después, de izquierda a derecha.

El operador de asignacion tiene poca precedencia. Por consiguiente, en una declaracién como
d = e * f + g, las operaciones a la derecha del operador de asignacion siempre se efectian
antes de la asignacion final a la variable en la izquierda.

en él. Muchos libros sobre el tema contienen una tabla que especifica la precedencia relativa de todos los

ﬂ Cuando usted aprenda un lenguaje de programacién especifico, conocera todos los operadores que se usan
operadores que se usan en el lenguaje.

Por ejemplo, considere las siguientes dos declaraciones aritméticas:

firstAnswer = 2 + 3 * 4
secondAnswer = (2 + 3) * 4

Después de que se ejecutan estas declaraciones, el valor de firstAnswer es 14. De acuerdo con
las reglas de precedencia, la multiplicacidn se efecttia antes que la suma, asf que 3 se multiplica
por 4y resulta 12, y luego se suman 2 y 12, y se asigna 14 a firstAnswer. Sin embargo, el valor
de secondAnswer es 20, porque el paréntesis obliga a que se efectte primero la operacién de

suma que contiene. Se suman 2 y 3, lo que resulta 5, y luego 5 se multiplica por 4, lo que da 20.

El olvido de las reglas de precedencia aritmética o de afiadir los paréntesis cuando se necesitan
puede generar errores légicos que son dificiles de encontrar en los programas. Por ejemplo, la
siguiente declaracién parecerfa promediar dos puntuaciones de examen:

average = scorel + score2 / 2

Realizacion de operaciones aritméticas _

Sin embargo, no es asi. Debido a que la division tiene una precedencia mayor que la suma, la
declaracién anterior indica que se obtiene la mitad de score2, se suma a scorel y el resultado
se almacena en average. La declaracién correcta es:

average = (scorel + score2) / 2

Usted es libre de agregar paréntesis aun cuando no los necesite para forzar un orden diferente
de operaciones; en ocasiones se usan s6lo para hacer més claras sus intenciones. Por ejemplo, 47 .
las siguientes declaraciones operan en forma idéntica:

totalPriceWithTax = price + price * TAX_RATE
totalPriceWithTax price + (price * TAX_RATE)

En ambos casos, price se multiplica primero por TAX_RATE, luego este resultado se suma
apricey lo que se obtiene al final se almacena en totalPriceWithTax. Debido a que la
multiplicacion ocurre antes de la suma en el lado derecho del operador de asignacién, ambas
declaraciones son iguales. Sin embargo, si usted piensa que la declaracién con paréntesis hace
mds claras sus intenciones para alguien que lea su programa, entonces debe usarlos.

Todos los operadores aritméticos tienen asociatividad de izquierda a derecha. Esto significa
que las operaciones con la misma precedencia tienen lugar de izquierda a derecha. Considere
la siguiente declaracion:

answer =a +b +c*d/e-f

La multiplicacién y la divisidn tienen una precedencia mayor que la suma o la resta, asi que se
llevan a cabo de izquierda a derecha como sigue:

c se multiplica por d, y el resultado se divide entre e, lo que da un resultado nuevo.
Por tanto, la declaracién queda:

answer = a + b + (resultado temporal que ya se ha calculado) - f
Entonces se efectiian la suma y la resta de izquierda a derecha como sigue:

Se suman a y b, se suma el resultado temporal, y luego se resta f. El resultado final se asigna
entonces a answer.

Otra forma de decirlo es que las siguientes dos declaraciones son equivalentes:

answer = a +b+c*d/e-f
answer = a + b + ((c *d) /e) - f

El cuadro 2-1 resume la precedencia y asociatividad de los cinco operadores que se usan con
mayor frecuencia.

Simbolo del Nombre del Precedencia (comparada con

operador operador otros operadores en este cuadro) Asociatividad

= Asignacion Mas baja Derecha a izquierda
+ Suma Media Izquierda a derecha
- Resta Media Izquierda a derecha
* Multiplicacion Mas alta Izquierda a derecha
/ Division Mas alta Izquierda a derecha

(oIET (37288 Precedencia y asociatividad de cinco operadores comunes

o N AREIER 2 Elementos de los programas de alta calidad

N

DOS VERDADES UNA MENTIRA

Realizacion de operaciones aritméticas

1. Los paréntesis tienen mayor precedencia que cualquiera de los operadores arit-
méticos comunes.

2. Las operaciones en declaraciones aritméticas ocurren de izquierda a derecha
en el orden en que aparecen.

3. La siguiente suma 5 a una variable nombrada points:

points = points + 5

‘owin |e uadey as e1sal g A ewns e| A ‘UoIoeNUIIUOD B UBNID8LS 8S UOISIAIP

e| A ugioediynw e| ‘osswiid uezijeas as SISajuaed aJ1us ULJUBNIUS 8S anb
SauoloeJado se| 04ad ‘eydaiap e epJainbzi ap Uen}asye 9S BIILINIE UQIoRIR|I3P
BUN U3 erouspadald [endi ap Sauoioesado SeT g 0Jawnu | S eS|e} UgloewlLe e

Comprension de las ventajas
de la modularizacion

Los programadores rara vez escriben los programas como una larga serie de pasos. En cambio,
dividen sus problemas de programacion en unidades més pequenas y abordan una tarea cohe-
siva a la vez. Estas unidades mds pequeiias son médulos. Los programadores también se refie-
ren a ellos como subrutinas, procedimientos, funciones o métodos; el nombre por lo general
refleja el lenguaje de programacién que se esté usando. Por ejemplo, los programadores en
Visual Basic usan procedimiento (o subprocedimiento). En C y C++ los médulos se llaman fun-
ciones, mientras que en C#, Java y otros lenguajes orientados hacia los objetos es més probable
que se conozcan como método. En COBOL, RPG y BASIC (lenguajes mas antiguos) en general
se denominan subrutinas.

Un programa principal ejecuta un médulo al llamarlo. Llamar a un médulo quiere decir que
se usa su nombre para atraerlo, causando que se ejecute. Cuando las tareas del médulo estdn
completas, el control regresa al punto desde el que se llamé en el programa principal. Cuando
usted entra a un mddulo, la accion es parecida a la de poner en pausa un reproductor de DVD:
abandona su accién primaria (ver un video), se ocupa de alguna otra tarea (por ejemplo, hacer
un emparedado) y luego regresa a la tarea principal exactamente donde la dejé.

La modularizacion es el proceso de descomponer un programa extenso en moédulos; los cien-
tificos en computacién también la llaman descomposicion funcional. Nunca se requiere que

modularice un programa extenso para que corra en una computadora, pero hay al menos tres
razones para hacerlo:

Comprension de las ventajas de la modularizacion _

e La modularizacién proporciona abstraccion.
e Permite que muchos programadores trabajen en un problema.

e Hace posible reutilizar el trabajo con mas facilidad.

La modularizacion proporciona abstraccion

Una razén para que sea mds facil entender los programas modularizados es que permiten a
un programador ver “todo el panorama” La abstraccion es el proceso de poner atencién en
las propiedades importantes mientras se ignoran los detalles no esenciales. La abstraccion es
ignorancia selectiva; la vida serfa tediosa sin ella. Por ejemplo, usted puede crear una lista de
cosas que hara hoy:

Lavar ropa
Llamar a Ta tia Nan
Empezar el ensayo semestral

Sin abstraccidn, la lista de quehaceres comenzaria asf:

Levantar el cesto de ropa sucia

Poner el cesto de ropa sucia en el automévil

Conducir hasta Ta Tlavanderia

Salir del automévil con el cesto

Entrar a la lavanderia

Bajar el cesto

Encontrar monedas para la maquina lavadora
etcétera.

Usted podria enumerar una docena de pasos mds antes de terminar de lavar la ropa y pasar
a la segunda labor en su lista original. Si tuviera que considerar todos los detalles pequefios
de bajo nivel de cada tarea en su dia es probable que nunca saliera de la cama por la mafana.
Cuando usa una lista mas abstracta de nivel superior hace su dia mas manejable. La abstrac-
cién hace que las tareas complejas se vean mas sencillas.

Los artistas abstractos crean pinturas en las que sélo se ve el panorama general (color y forma) y se igno-
ran los detalles. La abstraccion tiene un significado similar entre los programadores.

Del mismo modo, ocurre algiin nivel de abstraccion en cada programa de computadora. Hace
50 afios un programador tenfa que entender las instrucciones de circuiterfa de bajo nivel que la
maquina usaba, pero ahora los lenguajes de programacién de alto nivel mas recientes permiten
el uso de vocabulario en inglés en el que una declaraciéon amplia corresponde a docenas de
instrucciones. Sin importar cudl lenguaje de programacion de alto nivel use, cuando usted des-
pliega un mensaje en el monitor nunca se le pide que entienda cémo funciona éste para crear
cada pixel en la pantalla. Usted escribe una instruccién como output message y el sistema
operativo maneja los detalles de las operaciones de hardware para usted.

B

o N AREIER 2 Elementos de los programas de alta calidad

"

Los médulos brindan otra opcidn para lograr la abstraccién. Por ejemplo, un programa de
némina puede llamar a un médulo que se ha nombrado computeFederalWithholdingTax().
Cuando usted lo llama desde su programa usa una declaracién; el médulo en si podria
contener docenas de declaraciones. Usted puede escribir los detalles mateméticos del médulo
después, alguien mds puede hacerlo o puede adquirirlos de una fuente externa. Cuando usted
planea su programa de némina principal, su Ginica preocupacién es que tendrd que calcularse
la retencién de un impuesto federal; guarde los detalles para mas tarde.

La modularizacion permite que varios
programadores trabajen en un problema

Cuando usted disecciona cualquier tarea grande en médulos, tiene la capacidad de dividir con
mas facilidad la tarea entre varias personas. Rara vez un solo programador escribe un pro-
grama comercial que se pueda comprar. Considere cualquier procesador de palabras, hoja de
célculo o base de datos que haya usado. Cada programa tiene tantas opciones y responde a las
selecciones del usuario en tantas formas posibles, que tomaria afios que un solo programador
escribiera todas las instrucciones. Los desarrolladores de software profesionales pueden escri-
bir programas nuevos en semanas o meses, en lugar de afos, si dividen los programas extensos
en médulos y asignan cada uno a un programador individual o un equipo.

LLa modularizacion permite que se reutilice el trabajo

Si un modulo es til y estd bien escrito quiza usted desee usarlo mas de una vez en ese pro-
grama o en otros. Por ejemplo, una rutina que verifica la validez de las fechas es tutil en muchos
programas escritos para un negocio. (Por ejemplo, un valor de mes es valido si no es menor
que 1 o mayor que 12, un valor de dia es vélido si no es menor que 1 o mayor que 31 si el mes
es 1, etc.). Si un archivo de personal computarizado contiene las fechas de nacimiento, de
contratacién, del dltimo ascenso y de renuncia de cada empleado, el médulo de validacién

de fechas puede usarse cuatro veces con cada registro de empleado. Otros programas en una
organizacién también pueden usar el médulo; podrian embarcar pedidos del cliente, planear
fiestas de cumpleanos de los empleados o calcular cudndo deben hacerse los pagos de un
préstamo. Si usted escribe las instrucciones de comprobacién de las fechas de modo que estén
entremezcladas con otras declaraciones en un programa, extraerlas y reutilizarlas sera dificil.
Por otra parte, si coloca las instrucciones en su propio médulo, sera ficil usar y transportar la
unidad a otras aplicaciones. La caracteristica de los programas modulares que permite usar
moédulos individuales en una variedad de aplicaciones es la reutilizacion.

Es posible encontrar muchos ejemplos de reutilizacién en el mundo real. Cuando alguien
construye una casa no inventa la plomeria y los sistemas de calefaccion; incorpora sistemas
con disefios probados. Esto reduce con seguridad el tiempo y el esfuerzo que se requieren para
construirla. Los sistemas de plomeria y eléctricos que se elijan estdn en servicio en otras casas,
asi que han sido probados en diversas circunstancias, lo que aumenta su confiabilidad. La con-
fiabilidad es la caracteristica de los programas que asegura que un médulo funciona en forma
correcta. El software confiable ahorra tiempo y dinero. Si usted crea los componentes funcio-
nales de sus programas como mddulos independientes y los prueba en sus programas actuales,
gran parte del trabajo estara hecho cuando use los médulos en aplicaciones futuras.

Modularizacion de un programa

DOS VERDADES UNA MENTIRA

Comprension de las ventajas de la modularizacion
1. La modularizacion elimina la abstraccion, una caracteristica que hace que los
programas sean confusos.

2. La modularizacién hace mas facil que muchos programadores trabajen en un
problema.

3. La modularizacion permite reutilizar el trabajo con mas facilidad.

‘lesauad eweloued |9 JoA aywaad anb
0] ‘u0IddeJISqE B| d}iWJd UQIORZLIRINPOW BT “T 0J9WNU B S8 BS|e) UQIoeLLIye e

Modularizacion de un programa

La mayoria de los programas consiste en un programa principal, que contiene los pasos bési-
cos, o la légica de linea principal del programa. Entonces el programa principal entra en los

modulos que proporcionan detalles mas refinados.

Cuando se crea un médulo se incluye lo siguiente:

e Un encabezado: el encabezado del médulo incluye el identificador del mismo y posible-

mente otra informacién de identificacién necesaria.

e Un cuerpo: El cuerpo del moédulo contiene todas las declaraciones en el mismo.

e Una declaracién return: La declaracion return del médulo marca el final de éste e iden-
tifica el punto en que el control regresa al programa o mddulo que llamé al otro. En casi
todos los lenguajes de programacidn, si no se incluye una declaracién return al final de un
médulo, la légica todavia regresara. Sin embargo, este libro sigue la norma de incluir en

forma explicita una declaracién return con cada médulo.

Nombrar un médulo es algo similar a nombrar una variable. Las reglas para hacerlo son lige-
ramente diferentes en cada lenguaje de programacion, pero en este texto los nombres de los
moddulos siguen las mismas reglas generales que se usan para los identificadores de variables:

e Los nombres de los médulos deben constar de una palabra y comenzar con una letra.

e Los nombres de los médulos deben tener algin significado.

0

o N AREIER 2 Elementos de los programas de alta calidad

"3

Aungue no es un requisito en los lenguajes de programacion, con frecuencia tiene sentido usar un verbo
como nombre o parte del nombre de un médulo, debido a que los mddulos realizan alguna accién. Los
nombres tipicos de los mddulos comienzan con palabras de accion como get, calculatey display.
Cuando usted programa en lenguajes visuales que usan componentes de pantalla como botones y cuadros
de texto, los nombres de los modulos con frecuencia contienen verbos que representan las acciones del
usuario, como c1ick o drag.

Ademas, en este texto una serie de paréntesis sigue a los nombres de los mddulos. Esto le ayu-
dara a distinguir los nombres de médulo de los nombres de variable. Este estilo corresponde

a la forma en que los médulos se nombran en muchos lenguajes de programacién, como Java,
C++y C#.

Conforme aprenda méas sobre modulos en lenguajes de programacion especificos, encontrara que en oca-
siones coloca los nombres de variable dentro de los paréntesis de los nombres de médulo. Cualquier varia-
ble que se encierre en los paréntesis contiene informacion que usted desea enviar al mddulo. Por ahora, los
paréntesis al final de los nombres de mddulo estaran vacios en este libro.

Cuando un programa principal desea usar un médulo, lo llama. Un médulo puede llamar a
otro, y éste puede llamar a otro. Sélo la cantidad de memoria disponible en su computadora
limita el nimero de llamadas encadenadas. En este libro, el simbolo de diagrama de flujo que
se usa para llamar a un médulo es un rectangulo con una barra a lo largo de la parte superior.
Dentro del rectangulo se coloca el nombre del médulo que se llama.

Algunos programadores usan un rectangulo con franjas a cada lado para representar un médulo en un dia-
grama de flujo, y en este libro se usa esta norma si un modulo es externo a un programa. Por ejemplo, los
moddulos preescritos incorporados que generan niimeros aleatorios, calculan las funciones trigonométricas
estandar y clasifican los valores que con frecuencia son externos a sus programas. Sin embargo, si el
mddulo se crea como parte del programa, en este libro se usa un rectangulo con una sola franja a lo largo
de la parte superior.

En un diagrama de flujo se traza cada mdédulo de manera separada con sus propios simbolos
centinela. El centinela del principio contiene el nombre del médulo. Este nombre debe ser
idéntico al que se usa en el programa que llama. El centinela del final contiene return, lo cual
indica que cuando el médulo termina, la progresion légica de las declaraciones saldra del
mismo y regresard al programa que lo llamd. Del mismo modo, en un seudocddigo, empieza
cada mddulo con su nombre y termina con una declaracién return; el nombre del médulo y
las declaraciones return se alinean en forma vertical y todas las declaraciones del médulo tie-
nen sangria entre ellas.

Por ejemplo, considere el programa de la figura 2-3, que no contiene ningtin médulo.

Acepta el nombre de un cliente y el saldo deudor como entradas y genera una factura. En la
parte superior de la factura se despliega el nombre y la direccién de la compania en tres

lineas, seguidas por el nombre del cliente y el saldo deudor. Para desplegar el nombre y la
direccién de la compaiia, sélo puede incluir tres declaraciones output en la logica de linea
principal de un programa, como se muestra en la figura 2-3, o modularizar el programa
creando tanto la 16gica de linea principal y un médulo displayAddressInfo(), como se mues-
tra en la figura 2-4.

Declarations
string name
num balance

:

input name,
balance

En un programa interactivo

usted puede agregar indicadores
como Por favor introduzca
nombre y Por favor introduzca
saldo. Aqui se han omitido

para que el ejemplo sea breve.
Aprendera mas sobre indicadores
al avanzar en este capitulo.

output "ABC
Manufacturing"

output "47 Park
Lane"

:

output "Omro,
WI 54963"

|

output "Cliente:

name
"

output "Total: ",
balance

A}
\
\

start \

Dec]arations\\

string name\\

num balance '\
input name, balance
output "ABC Manufacturing'
output "47 Park Lane"
output "Omro, WI 54963"

output "Cliente: ", name
output "Total: ", balance
stop

Modularizacion de un programa

Figura 2-3 Programa que genera una factura usando sélo un programa principal

B

AR Elementos de los programas de alta calidad

N -

Declarations
string name
num balance

input name, —»(Ch spl ayAddressInfo()>

balance l
¢ output "ABC
Manufacturing"
displayAddressInfo()
¥
output ar
B "47 Park
output "Cliente: ", Lane"
name
* ¥
output "Omro, WI
output "Total: ", 54963"
balance ¢
start
Declarations

string name
num balance
input name, balance

displayAddressInfo()
- OUtpUt "Cliente: ", name
output "Total: ", balance
stop

displayAddressInfo() sl

output "ABC Manufacturing"
output "47 Park Lane"

output "Omro, WI 54963"
return

Figura 2-4 Programa que genera una factura usando un programa principal que llama al médulo
displayAddressInfo()

Cuando se llama el médulo displayAddressInfo() en la figura 2-4, la légica se transfiere del
programa principal al médulo displayAddressInfo(), como se muestra con la flecha azul
larga tanto en el diagrama de flujo como en el seudocéddigo. Ahi, cada declaracién del médulo
se ejecuta una a la vez antes de que el control légico sea transferido de vuelta al programa

Modularizacion de un programa

principal, donde contintda con la declaracién que sigue a la llamada al médulo, como lo mues-
tra la flecha gris larga. Los programadores dicen que las declaraciones que estan contenidas en
un médulo han sido encapsuladas.

Ninguno de los programas en las figuras 2-3 y 2-4 es superior al otro desde el punto de vista
de la funcionalidad; ambos realizan exactamente las mismas tareas en el mismo orden. Sin

embargo, usted quiza prefiera la versién modularizada del programa al menos por dos razones:

e Primera, el programa principal se mantiene breve y facil de seguir porque contiene sélo una
declaracién para llamar al médulo, en lugar de tres declaraciones output separadas para
realizar el trabajo de un médulo.

e Segunda, un médulo es ficilmente reutilizable. Después de que usted crea el médulo de
informacién de direccién, puede usarlo en cualquier aplicacién que necesite el nombre y
direccién de la compaifa. En otras palabras, usted hace el trabajo una vez y luego puede
usar el médulo muchas veces.

computadora sigue la pista a la direccién de memoria correcta a la que debe regresar después de ejecutar
un modulo grabandola en una ubicacion conocida como pila. Este proceso requiere una pequena cantidad
de tiempo y recursos de la computadora. En la mayoria de los casos, la ventaja de crear modulos supera
con mucho la pequena cantidad de carga adicional que se requiere.

ﬂ Una desventaja potencial de crear modulos y moverse entre ellos es la carga adicional en que se incurre. La

La determinacién de cudndo modularizar un programa no depende de una serie de reglas fijas;
requiere experiencia y perspicacia. Los programadores siguen algunos lineamientos cuando
deciden cudnto dividir en mddulos o cudnto poner en cada uno. Algunas compaiifas tienen
reglas arbitrarias, como “las instrucciones de un mdédulo nunca deberdn ocupar mas de una
pégina” o “un mddulo nunca debe tener mas de 30 declaraciones” o “nunca tenga un médulo
con una sola declaracién” En lugar de usar esas reglas arbitrarias, una mejor politica consiste
en colocar juntas las declaraciones que contribuyen a una tarea especifica. Entre mas contri-
buyan las declaraciones a la misma tarea, la cohesion funcional del médulo sera mayor. Un
modulo que verifique la validez del valor de una variable de fecha o uno que pida a un usuario
un valor y lo acepte como entrada se consideran cohesivos. Un médulo que verifique la validez
de la fecha, deduzca primas de seguro y calcule la retenciéon de impuestos federales para un
empleado serfa menos cohesivo.

Declaracion de variables y constantes
dentro de los modulos

Usted puede colocar cualquier declaracién dentro de los médulos, incluyendo declaraciones
de entrada, de procesamiento y de salida; incluso declaraciones variables y constantes. Por
ejemplo, quiza decida modificar el programa de facturacion de la figura 2-4 de modo que

se parezca al de la figura 2-5. En esta version del programa, tres constantes nombradas

que contienen las tres lineas de datos de la compania se declaran dentro del médulo
displayAddressInfo(). (Véase el sombreado.)

B

B3

AR Elementos de los programas de alta calidad

Cd'isp'l ayAddressInfo()>

Declarations Declarations
string name string LINE1 = "ABC Manufacturing"
num balance .
string LINE2 = "47 Park Lane"
¢ string LINE3 = "Omro, WI 54963"
input name,
balance
i output LINEL
displayAddressInfo() l
¢ output LINE2
output "Cliente: ", l
name

output LINE3

i "

output "Total: ",

balance
stop start
Declarations

string name

num balance
input name, balance
displayAddressInfo()

output "Cliente: ", name

output "Total: ", balance
stop

displayAddressInfo()
Declarations
string LINEL = "ABC Manufacturing
string LINE2 = "47 Park Lane"
string LINE3 = "Omro, WI 54963"
output LINE1
output LINE2
output LINE3
return

Figura 2-5 El programa de facturacién con constantes declaradas dentro del médulo

Modularizacion de un programa

Las variables y constantes que se declaran en un mddulo son utilizables sélo dentro del mismo.
Los programadores dicen que los elementos de datos son visibles sélo dentro del médulo en

el que se declaran; esto significa que el programa sélo las reconoce ahi. También dicen que

las variables y constantes que se declaran en un médulo estdn en ambito sélo dentro de él.
Ademds, mencionan que las variables y las constantes son locales para el médulo en el que se
declaran. En otras palabras, cuando las cadenas LINE1, LINE2 y LINE3 se declaran en el médulo
displayAddressInfo() en la figura 2-5, el programa principal no las reconoce y no puede
usarlas.

Una de las motivaciones para crear médulos es que los que estdn separados se reutilizan con
facilidad en diversos programas. Si varios programas de la organizacién usardn el médulo
displayAddressInfo(), tiene sentido que las definiciones para sus variables y constantes
deban venir con él. Esto hace que los médulos sean més portatiles; es decir, son unidades
auténomas que se transportan sin problemas.

Ademads de las variables y constantes locales, usted puede crear variables y constantes glo-
bales. Estas se conocen para el programa entero; se dice que se declaran en el nivel de
programa. Esto significa que son visibles y utilizables en todos los mdédulos que llama el pro-
grama. Lo contrario es falso: las variables y constantes que se declaran dentro de un médulo
no se utilizan en cualquier parte; sélo son visibles para ese médulo. (Por ejemplo, en la figura
2-5 las variables del programa principal name y balance son globales, aunque en este caso no
se usan en los médulos.) En casi todo este libro se utilizaran sélo variables y constantes glo-
bales de modo que sea més facil seguir los ejemplos y usted pueda concentrarse en la 16gica
principal.

Muchos programadores no aprueban el uso de variables y constantes globales. Aqui se usan de modo que
usted comprenda con mayor facilidad la modularizacion antes de aprender las técnicas para enviar variables
locales de un mddulo a otro.

Comprension de la configuracion mas comun
para la logica de linea principal

En el capitulo 1 usted aprendié que un programa procedimental contiene pasos que se suce-
den en una secuencia. La légica de linea principal de casi todos los programas procedimenta-
les puede seguir una estructura general que consta de tres partes:

1. Lastareas de administracion incluyen todos los pasos que usted debe efectuar al
principio de un programa a fin de estar listo para el resto del mismo. Aqui se encuen-
tran las declaraciones de variables y constantes, el despliegue de las instrucciones para
los usuarios y de los encabezados de los informes, la apertura de todos los archivos que
el programa requiera y la introduccién de las primeras piezas de datos.

tulo 3 usted aprendera la teoria que hay detrés de esta practica. En el capitulo 7 se trata el manejo de archi-

ﬂ Elingreso de los primeros elementos de datos siempre es parte del modulo de administracién. En el capi-

vos, incluyendo lo que significa abrirlos y cerrarlos.

o

o N AREIER 2 Elementos de los programas de alta calidad

B

2. Lastareas de ciclo detallado hacen el trabajo central del programa. Cuando éste pro-
cesa muchos registros, las tareas de ciclo detallado se ejecutan de manera repetida para
cada conjunto de datos de entrada hasta que ya no hay mas. Por ejemplo, en un pro-
grama de némina, el mismo conjunto de calculos se ejecuta muchas veces hasta que se
genera un cheque para cada empleado.

3. Lastareas de fin de trabajo son los pasos que usted sigue al final del programa para
terminar la aplicacién; puede llamarlas tareas de culminacién o de limpieza. Incluye
el despliegue de totales u otros mensajes finales y el cierre de todos los archivos

abiertos.

La figura 2-6 muestra la relacion de estas tres partes tipicas de un programa. Note coémo las
tareas housekeeping() y end0fJob() se ejecutan sélo una vez, pero las detailLoop() se
repiten todo el tiempo mientras no se haya cumplido la condicién eof. En el diagrama se usa
una linea de flujo para mostrar cémo se repite el médulo detaiTLoop(); el seudocddigo

usa las palabras while y endwhile para contener las declaraciones que se ejecutan en un
ciclo. Aprendera mas sobre los términos while y endwhile en los capitulos siguientes; por

ahora comprenda que son una forma de expresar acciones repetidas.

(start ’

A

Declarations

A

housekeeping()

end0fJob()

Si

detaillLoop()

start
Declarations
housekeeping()
while not eof

detaillLoop()

endwhile
end0flob()

stop

Figura 2-6 Diagrama de flujo y seudocddigo de logica de linea principal para un programa

procedimental tipico

Modularizacion de un programa

Muchas tareas cotidianas siguen el formato de tres médulos que se acaba de describir. Por
ejemplo, una fdbrica de dulces abre por la manana y las maquinas se encienden y se llenan con
ingredientes. Estas tareas de administracién ocurren s6lo una vez al inicio del dia. Luego, repe-
tidamente durante la jornada se fabrican dulces; este proceso requiere muchos pasos y cada
uno de ellos ocurre muchas veces. Estos conforman el ciclo detallado. Luego, al final del dia,

las mdquinas se limpian y apagan; son las tareas de fin de trabajo. 59 .

No todos los programas adoptan el formato de la légica que se muestra en la figura 2-6, pero
muchos lo hacen. Tenga presente esta configuracién general mientras piensa como organi-
zarfa muchos de ellos. Por ejemplo, en la figura 2-7 se presenta la muestra de un informe de
némina para una compania pequeiia. Un usuario introduce los nombres de los empleados
hasta que ya no hay més; en este punto ingresa XXX. En tanto el nombre no sea XXX, el
usuario introduce el pago bruto semanal del empleado. Las deducciones se calculan como 25%
fijo del pago bruto y se da salida a las estadisticas para cada empleado. El usuario introduce
otro nombre, y mientras no sea XXX el proceso continda. Examine la légica en la figura 2-8
para identificar los componentes en las tareas administrativas, de ciclo detallado y de fin del
trabajo. Aprendera mas sobre el programa de informe de némina en los siguientes capitulos.
Por ahora, concéntrese en todo el panorama de cémo funciona una aplicacién tipica.

Informe de némina

Nombre Bruto Deducciones Neto
Andrews 1000.00 250.00 750.00
Brown 1400.00 350.00 1050.00
Carter 1275.00 318.75 956.25
Young 1100.00 275.00 825.00

***Fin del informe \7

Figura 2-7 Muestra de informe de némina

AR Elementos de los programas de alta calidad

N -

Declarations
string name
num gross
num deduct
num net
num RATE = 0.25
string QUIT = "XXX"
string REPORT_HEADING = "Informe de némina"
string COLUMN_HEADING = "Nombre Bruto
Deducciones Neto"
string END_LINE = "#***Fin del informe"

'

housekeeping()

Si

name <> QUIT? detailLoop()

detaillLoop()

endOfJob()

deduct =
gross * RATE

!

net =
gross - deduct

!

housekeeping()

output
REPORT_HEADING

!

output
COLUMN_HEADING

return

Algunos programadores no se molestarian en
crear un médulo que sélo contenga una o dos
declaraciones. En cambio, mantendrian éstas
en la légica de linea principal. EI modulo se
muestra aqui de modo que usted vea mejor
el panorama general de como funciona la
légica de linea principal usando tareas
iniciales, repetidas y de culminacién.

end0fJob()

output END_LINE

return

output name,

gross, deduct, net

return

Figura 2-8 Ldgica para el informe de némina

Creacion de graficas de jerarquia _

DOS VERDADES UNA MENTIRA

Modularizacion de un programa

1. Un programa de llamada es el que llama al modulo cuando desea usarlo. 61 .

2. Siempre que un programa principal llama a un médulo la l6gica se transfiere a
éste; cuando el mddulo termina, el programa finaliza.

3. Las tareas de administracion incluyen todos los pasos que deben efectuarse
una vez al principio del programa a fin de estar listo para el resto del mismo.

‘opanb as apuop epnueal 8s A owe|| anb |edioulid ewel30.d |e e}anA ap aJaysueJ}
95 00130] olnyy |9 ‘eullIa} OJNPOW UN OpUeNY) ‘¢ 0JaWNU B| SO BS|e} ugioewlye e

Creacion de graficas de jerarquia

Quiza usted haya visto graficas de jerarquia para las organizaciones, como la de la figura 2-9.
La grafica muestra quién reporta a quién, no cuando o qué tan a menudo le reportan.

Director
ejecutivo
I
I 1
Vp de mercadotecnia Vp de informacion
I I
[| [|
Gerente de ventas Gerente de ventas Gerente de Gerente de
de oriente de occidente operaciones programacion
I
[I] |
Rep. Rep. Rep. Rep. Rep. Operadpr Programador | | Programador
de ventas de ventas de ventas de ventas de ventas vespertino

Figura 2-9 Una gréfica de jerarquia organizacional

Cuando un programa tiene varios médulos que llaman a otros, los programadores con fre-
cuencia usan una grafica de jerarquia del programa que funciona de manera parecida para
mostrar el panorama general de la forma en que los mddulos se relacionan entre si. Una gra-
fica de jerarquia no le dice qué tareas se ejecutardn dentro de un médulo, cudndo se llaman
los médulos, cémo se ejecuta un médulo o por qué se llaman (esta informacion esta en el
diagrama de flujo o en el seudocédigo). Sélo le indica cudles médulos existen dentro de un
programa y cudles llaman a otros. La gréfica de jerarquia en la figura 2-8 se ve como la

o N AREIER 2 Elementos de los programas de alta calidad

figura 2-10. Muestra que el médulo principal llama a otros tres: housekeeping(Q,
detaillLoop() y end0fJob().

. 62 main program

housekeeping() detaillLoop() end0fJob()

Figura 2-10 Gréfica de jerarquia del programa de informe de ndémina de la figura 2-8

La figura 2-11 muestra el ejemplo de una gréfica de jerarquia para el programa de facturaciéon
de una compaiifa de pedidos por correo. La gréfica es para un programa mds complicado, pero
como la del informe de némina en la figura 2-10, proporciona los nombres de los médulos y
una vision general de las tareas que se realizardn, sin especificar detalles.

main program

receiveOrder()| [processOrder()| |billCustomer()

E— R E—

confirm() | [checkAvailability() calculateBill() calculateTax() printBill()

printCustomerData(q printitemData() printCustomerData(} printRestOfBIill()

Figura 2-11 Gréfica de jerarquia del programa de facturacion

Debido a que los médulos del programa son reutilizables, un médulo especifico puede
llamarse desde varias ubicaciones dentro de un programa. Por ejemplo, en la gréfica de
jerarquia del programa de facturacién en la figura 2-11 usted puede ver que el médulo
printCustomerData() se usa dos veces. Por convencion, se oscurece una esquina de cada
cuadro que representa un médulo que se usa mas de una vez. Esta accion alerta a los
lectores acerca de que cualquier cambio en ese mdédulo tendria consecuencias en multiples
ubicaciones.

Caracteristicas de un buen diseno de programa _

Una gréfica de jerarquia es una herramienta de planeacion para desarrollar la relacién general
de los médulos del programa antes de escribirlos y una de documentacién para ayudar a
otros a ver cdmo se relacionan los médulos después de que se escribe un programa. Por
ejemplo, si cambia una ley fiscal, podria pedirse a un programador que reescriba el médulo
calculateTax() en el diagrama del programa de facturacion de la figura 2-11. Cuando el pro-
gramador cambia el médulo calculateTax(), la gréfica de jerarquia muestra otros médulos E.
dependientes que resultarfan afectados. Una grafica de jerarquia es ttil para obtener el pano-

rama general en un programa complejo.

Las gréficas de jerarquia se usan en la programacion procedimental, pero con frecuencia se utilizan otros
tipos de diagramas en los ambientes orientados hacia los objetos.

DOS VERDADES UNA MENTIRA

Creacién de graficas de jerarquia

1. Usted puede usar una grafica de jerarquia para ilustrar las relaciones de los
modulos.

2. Una grafica de jerarquia le dice cuales tareas se realizaran dentro de un
modulo.

3. Una grafica de jerarquia solo le indica cuales madulos llaman a otros modulos.

‘IS 9J4JUS SOINPOW SO
UeUOIOR[2] 9S OWOI 3LIISAP 0]OS ‘OjNPOW UN dp 0JUSP UezI|eas 3s anb seale) S|
91g0S epeu ealpul 3| ou einbiessl ap BOYRIS BUN "Z 0JaWNU B| S BS|e) UoIoRLLILeR BT

Caracteristicas de un buen disefio de programa

Conforme sus programas se vuelven mds extensos y complicados, aumenta la necesidad de la
planeacién y el diseno adecuados. Piense en una aplicaciéon que use, como un procesador de
palabras o una hoja de célculo. El nimero y la variedad de opciones de usuario son asombro-
sos. No sélo serfa imposible que un solo programador escribiera una aplicacion asf sino que
ademds, si faltaran una planeacion y un disefio minuciosos, los componentes nunca trabajarfan
juntos en forma apropiada. De manera ideal, cada médulo del programa que disefia necesita
funcionar bien como componente auténomo y como elemento de sistemas mds grandes.

Igual que una casa con una plomeria deficiente o un automévil con frenos que fallan estan
fatalmente defectuosos, una aplicaciéon basada en la computadora puede ser funcional sélo si
cada componente estd bien disefiado. Recorrer la 16gica de su programa en papel (lo que

se conoce como prueba de escritorio, como aprendié en el capitulo 1) es un paso importante
para disefiar programas superiores. Asimismo, usted puede implementar varias caracteristicas
de disefio mientras crea programas que son mds faciles de escribir y mantener. Para crear pro-
gramas adecuados deberd hacer lo siguiente:

o N AREIER 2 Elementos de los programas de alta calidad

£

e Usar comentarios al programa donde sea apropiado.

o Elegir los identificadores de manera minuciosa.

e Esforzarse por disefiar declaraciones precisas en sus programas y médulos.
e Escribir indicadores y entradas con eco claros.

e Conservar los habitos adecuados conforme mejora sus habilidades de programacién.

Uso de comentarios del programa

Cuando usted escribe programas quizd desea insertar comentarios en ellos. Los comentarios
del programa son explicaciones escritas que no forman parte de la légica del mismo pero
que sirven como documentacion para los lectores. En otras palabras, son declaraciones que
no se ejecutan y que ayudan a los lectores a entender las declaraciones de programacién. Los
lectores podrian ser usuarios que le ayudan a probar el programa u otros programadores que
tal vez tengan que modificarlo en el futuro. Incluso usted, como autor del mismo, apreciara
los comentarios cuando haga modificaciones y olvide por qué construyé de cierta manera una
declaracién.

La sintaxis que se usa para crear los comentarios del programa difiere entre los lenguajes de
programacién. En este libro los comentarios en seudocddigo comienzan con dos diagonales
frontales. Por ejemplo, la figura 2-12 contiene comentarios que explican los origenes y propé-
sitos de las variables en un programa de bienes raices.

documentos de soporte fuera del programa, que se conocen como documentacion externa. El apén-

ﬂ Los comentarios del programa son un tipo de documentacion interna. Este término los distingue de los
dice D explica otros tipos de documentacion.

Declarations
num sqFeet
//sqFeet es una estimacion proporcionada por el vendedor de 1a propiedad
num pricePerFoot
// pricePerFoot To determinan Tas condiciones actuales del mercado
num TotPremium
// lotPremium depende de servicios tales como si el Tote es costero

Figura 2-12 Seudocodigo que declara variables e incluye comentarios

En un diagrama de flujo usted puede usar un simbolo de anotacién que contenga informacién
que amplia lo que se almacena dentro de otro simbolo del diagrama de flujo. Un simbolo de
anotacion casi siempre se representa con un cuadro de tres lados unido con una linea pun-
teada al paso al que hace referencia. Los simbolos de anotacién se usan para incluir comen-
tarios o en ocasiones declaraciones que por ser demasiado largas no caben en un simbolo del
diagrama de flujo. Por ejemplo, la figura 2-13 muestra como un programador usarfa algunos
simbolos de anotacién en un diagrama de flujo para un programa de némina.

Caracteristicas de un buen diseno de programa _

‘ start ’

\

Declarations
string PROMPT = "Introduzca Tlas horas | ____ Nota: se espera que RATE se
num hours trabajadas " incremente el 1 de enero.
num RATE = 13.00
num pay

\i

////;utput PROMPT////

\i

/'input hours/
E1 programa supone que todos

pay = hours * RATE r---- Tos empleados cobran la misma
tarifa por hora estandar.

A

/ output pay /

\i

(stop)

Figura 2-13 Diagrama de flujo que incluye simbolos de anotacion

usa en el seudocodigo o los diagramas de flujo. Por una parte, los diagramas de flujo y el seudocédigo
son mas parecidos al inglés que el codigo en algunos lenguajes, asi que sus declaraciones serian menos
confusas. Ademas, sus comentarios permaneceran en el programa como parte de la documentacion del
mismo, pero es probable que sus herramientas de planeacion se desechen una vez que el programa entra
en produccion.

ﬂ Es probable que usted use comentarios en sus programas codificados con mayor frecuencia de lo que los

No es necesario incluir comentarios para crear un programa que sea funcional, pero pueden
ayudarle a recordar el propésito de las variables o explicar calculos complicados. A algunos
estudiantes no les gusta incluir comentarios porque teclearlos toma tiempo y no son parte del
programa “real” Pero es probable que los programas que usted escriba en el futuro los requie-
ran. Cuando reciba su primer trabajo de programacién y modifique un programa que alguien
mds haya escrito apreciard los comentarios bien colocados que expliquen las secciones compli-
cadas del cédigo.

-

o N AREIER 2 Elementos de los programas de alta calidad

ﬂ Una desventaja de los comentarios es que deben actualizarse conforme el programa se modifica. Los

N -

comentarios obsoletos pueden aportar informacion enganosa sobre el estado del programa.

Eleccion de identificadores

La seleccién de identificadores adecuados es un paso que con frecuencia se pasa por alto en el
disefio del programa. Cuando usted escribe programas, elige identificadores para las variables,
las constantes y los médulos. Antes en este capitulo usted aprendi6 las reglas para nombrar
variables y mdédulos: cada uno debe ser una sola palabra sin espacios y debe comenzar con una
letra. Estas sencillas reglas brindan gran libertad de accién para nombrar los elementos del
programa, pero no todos los identificadores son igual de buenos. La eleccion de los que si lo
son simplifica su labor de programacion y facilita que otras personas entiendan su trabajo.

Algunos lineamientos generales son los siguientes:

Aunque no es necesario en todos los lenguajes de programacion, por lo general tiene sen-
tido dar a una variable o constante un nombre que sea un sustantivo (o una combinacién de
un adjetivo y un sustantivo) debido a que representa una cosa. Del mismo modo, tiene sen-
tido dar a un médulo un identificador que sea un verbo, o un verbo y un sustantivo combi-
nados, debido a que un médulo emprende una accién.

Use nombres significativos. Crear un elemento de datos que se ha nombrado someData

o un médulo llamado firstModule() hace que un programa sea confuso. No sélo otras
personas encontraran dificil la lectura de los programas que usted haya escrito, sino que
ademads usted podria olvidar el propdsito de haber incluido estos identificadores. Todos

los programadores usan nombres breves no descriptivos como x o temp en un programa
rdpido; sin embargo, en la mayoria de los casos, los nombres de los datos y el médulo deben
ser significativos. Los programadores se refieren a los programas que contienen nombres
significativos como autodocumentados. Esto significa que, aun sin informacién adicional,
el cédigo se explica por si solo a los lectores.

Use nombres pronunciables. Un nombre de variable como pzf no es pronunciable ni
significativo; uno que parezca significativo cuando usted lo escribe podria no serlo cuando
alguien mas lo lea; por ejemplo, preparead() quizd signifique “Prepare ad" (Preparar
anuncio) para usted, pero “Prep a read" (Preparar una lectura) para otras personas.
Observe sus nombres en forma critica para asegurarse de que es posible pronunciarlos.
Las abreviaturas estdndar no tienen que ser pronunciables. Por ejemplo, la mayoria de las
personas de negocios interpretarian isr como impuesto sobre la renta.

No olvide que no todos los programadores comparten su cultura. Una abreviatura cuyo
significado parezca obvio para usted podria ser confusa para alguna persona en una parte
distinta del mundo, o incluso de su pais. Por ejemplo, usted podria nombrar roi a una
variable a fin de que contenga un valor para el rendimiento sobre la inversion, pero alguien
que hable francés interpretaria el significado como rey.

Sea juicioso cuando use abreviaturas. Usted puede ahorrar algunos golpes de tecla cuando
cree un médulo llamado getStat () pero, jel propdsito del médulo es encontrar el estado
en el que se localiza una ciudad, introducir algunas estadisticas o determinar el estado de
algunas variables? Del mismo modo, ;una variable que se ha nombrado fn pretende
contener un primer nombre, un ndmero de archivo o algo mas? Las abreviaturas también

Caracteristicas de un buen diseno de programa _

pueden confundir a las personas que se encuentran en diferentes lineas de trabajo: AKA
podria sugerir una hermandad femenina (Alpha Kappa Alpha) para un administrador
universitario, un registro (American Kennel Association) para un criador de perros o un
alias (also known as [también conocido como]) para un detective de policia.

Para ahorrar tiempo en la mecanografia cuando desarrolle un programa, usted puede usar un nombre

breve como efn. Una vez que el programa opera correctamente, puede usar las herramientas Buscar 67 .
y Reemplazar de un editor de textos para cambiar su nombre codificado por otro mas significativo como

employeeFirstName.

Muchos IDE soportan una caracteristica para completar declaraciones en forma automatica que

ahorra tiempo de mecanografia. Después de la primera vez que usted usa un nombre como
employeeFirstName, sdlo necesita teclear las primeras letras antes de que el editor del compilador
le muestre una lista de nombres disponibles entre los que puede elegir. La lista se conforma con todos los
nombres que ha usado y que empiecen con los mismos caracteres.

e En general, evite los digitos. Los ceros se confunden con la letra O, y la letra / mintscu-
la con el ndmero 1. Por supuesto, use su juicio: budgetFor2014 probablemente no se
malinterpretara.

e Use el sistema que su lenguaje permita para separar las palabras en los nombres de variables
largos que contengan muchas. Por ejemplo, si el lenguaje de programacion que utiliza acep-
ta guiones o subrayados, entonces use un nombre de médulo como initialize-data()
oinitialize_data(), lo cual es més facil de leer que initializedata(). Otra opcién es
usar la notacién de camello para crear un identificador como initializeData(). Si utiliza
un lenguaje que es sensible a las mayusculas y mindscu-las, es legal pero confuso usar nom-
bres de variables que sé6lo difieran en las maytsculas y mintsculas. Por ejemplo, si un solo
programa contiene empName, EmpName y Empname, de seguro habra confusién.

e Considere incluir una forma del verbo to be, como is o are, en los nombres para las varia-
bles que se espera que contengan un estado. Por ejemplo, use isFinished como una
variable de cadena que contiene una Y o N para indicar si un archivo estd agotado. Hay mds
probabilidades de que el nombre mas breve, finished, se confunda con un médulo que se
ejecuta cuando acaba un programa. (Muchos lenguajes soportan un tipo de datos booleano,
que se asigna a las variables que se espera que contengan sélo verdadero o falso. Es apro-
piado usar una forma de to be en los identificadores para las variables booleanas.)

e Muchos programadores siguen la convencién de nombrar constantes usando sélo letras
mayusculas, insertando subrayados entre palabras para mejor legibilidad. En este capitulo
vio ejemplos como SALES_TAX_RATE.

e Las organizaciones a veces imponen diferentes reglas para que los programadores las sigan
cuando nombran los componentes del programa. Es su responsabilidad averiguar las con-
venciones que se utilizan en su organizacién y apegarse a ellas.

Los programadores en ocasiones crean un diccionario de datos, que es una lista de todos los nombres
de variables que se han usado en un programa, junto con su tipo, tamafo y descripcién. Cuando se crea
este diccionario se vuelve parte de la documentacion del programa.

Cuando usted comience a escribir programas, quizd la determinacién de cuales variables de
datos, constantes y mdédulos necesita y cémo nombrarlos le parezca abrumador. Sin embargo,
el proceso de disefio es crucial. Cuando reciba su primera asignacién de programacién pro-
fesional, el disefio bien podria haberse completado ya. Lo mds probable es que su primera

o N AREIER 2 Elementos de los programas de alta calidad

0

asignacion serd escribir o modificar un pequeino médulo que forma parte de una aplicacion
mucho mds grande. Entre mds se apeguen los programadores originales a los lineamientos
para nombrar, serd mejor el disefio original y mas fécil su labor de modificacién.

Diseno de declaraciones precisas

Ademaés de usar comentarios del programa y seleccionar buenos identificadores, usted puede
aplicar las siguientes tdcticas para contribuir a la precisién de las declaraciones dentro de sus
programas:

e Evite cortes de linea confusos.

e Use variables temporales para aclarar declaraciones largas.

Evite cortes de linea confusos

Algunos lenguajes de programacion antiguos requieren que las declaraciones se coloquen

en columnas especificas. La mayor parte de los lenguajes modernos son de estilo libre; usted
puede ordenar sus lineas de c6digo en cualquier forma que considere adecuada. Como en la
vida real, con la libertad viene la responsabilidad; cuando tiene flexibilidad para ordenar sus
lineas de cédigo debe asegurarse de que su significado sea claro. Con el cédigo de estilo libre
se permite a los programadores colocar dos o tres declaraciones en una linea o, a la inversa,
extender una sola declaracién a lo largo de multiples lineas. Ambos casos hacen que sea mds
dificil leer los programas. Todos los ejemplos de seudocddigo en este libro usan un espaciado
y cortes de linea claros y apropiados.

Use variables temporales para clarificar las declaraciones largas

Cuando necesite varias operaciones matematicas para determinar un resultado considere

la utilizacién de una serie de variables temporales para contener los resultados intermedios.
Una variable temporal (o una variable de trabajo) no se usa para la entrada o salida,

sino que es s6lo una variable funcional que se emplea durante la ejecucién de un programa.
Por ejemplo, la figura 2-14 muestra dos formas de calcular un valor para una variable
salespersonCommission de bienes raices. Cada médulo obtiene el mismo resultado: la
comisién de la persona se basa en los pies cuadrados multiplicados por el precio por pie cua-
drado, més cualquier prima por un lote con caracteristicas especiales, como uno arbolado o
costero. Sin embargo, el segundo ejemplo usa dos variables temporales: basePropertyPricey
totalSalePrice. Cuando el cdlculo se divide en pasos individuales menos complicados es mas
facil ver como se calcula el precio total. En calculos que tienen atin més pasos, la realizacion de
la aritmética en etapas se volvera cada vez mads util.

// Usar una sola declaracion para calcular la comision

o

salespersonCommission = (sqFeet * pricePerFoot + lotPremium) * commissionRate

// Usar mOltiples declaraciones para calcular la comision
basePropertyPrice = sqFeet * pricePerFoot
totalSalePrice = basePropertyPrice + TotPremium

salespersonCommission = totalSalePrice * commissionRate

Figura 2-14 Dos formas de lograr el mismo resultado salespersonCommission

Caracteristicas de un buen diseno de programa _

figura 2-14, es barato. Cuando se ejecuta una declaracion aritmética larga, aun si no se nombran explicita-
mente las variables temporales, el compilador del lenguaje de programacion las crea tras bambalinas (aun-
que sin nombres descriptivos), asi que declararlas usted mismo no cuesta mucho en términos del tiempo de
ejecucion del programa.

ﬂ Los programadores quizd mencionen que el uso de variables temporales, como el segundo ejemplo en la

Escritura de indicadores claros y entradas con eco

Cuando la entrada para el programa debe recuperarse de un usuario, usted casi siempre
deseard proporcionar un indicador para este tltimo. Un indicador es un mensaje que

se despliega en el monitor para pedir al usuario una respuesta y quizé explicar cémo ésta se
formateard. Los indicadores se usan tanto en los programas de linea de comandos como en los
GUI interactivos.

Por ejemplo, suponga que un programa pide a un usuario que introduzca un nimero de
catdlogo para un articulo que estd ordenando. El siguiente indicador no es muy atil:

Por favor introduzca un nimero.

El siguiente indicador es mas adecuado:

Por favor introduzca un nimero de pedido por catalogo de cinco digitos.
El siguiente indicador es atin mas apropiado:

ET1 nimero de pedido por catdlogo de cinco digitos aparece a la derecha de Ta
imagen del articulo en el catdlogo. Por favor introdizcalo ahora.

Cuando la entrada para el programa viene de un archivo almacenado y no de un usuario, no se
necesitan indicadores. Sin embargo, cuando un programa espera una respuesta del usuario los
indicadores son valiosos. Por ejemplo, la figura 2-15 muestra el diagrama de flujo y el seudocé-
digo para el inicio del programa generador de facturas que se mostré antes en este capitulo.
Sila entrada proviene de un archivo de datos no se requerirdn indicadores y la 16gica se veria
como la que se muestra en la figura 2-15.

start
Declarations
Declarations string name
string name num balance

num balance

:

input name,
balance

:

Figura 2-15 Inicio de un programa que acepta un nombre y saldo como entrada

input name, balance

o

o N AREIER 2 Elementos de los programas de alta calidad

-

Sin embargo, si la entrada provino de un usuario serfa util incluir indicadores. Usted podria
suministrar un solo indicador como Por favor introduzca un nombre de cliente y saldo deudor,
pero insertar mds solicitudes en un indicador por lo general hace menos probable que el
usuario recuerde que debe introducir todas las partes o que tiene que hacerlo en el orden
correcto. Casi siempre es mejor incluir un indicador independiente para cada elemento que se
introducird. La figura 2-16 muestra un ejemplo.

Declarations
string name
num balance

l start

Declarations

string name

output "Por favor
introduzca el
nombre del cliente num balance

l output "Por favor introduzca el nombre
del cliente "

input name
output "Por favor introduzca saldo deudor
i input balance

input name

output "Por favor
introduzca saldo
deudor "

:

input balance

:

Figura 2-16 Inicio de un programa que acepta un nombre y saldo como entrada y usa un indicador
independiente para cada elemento

También es ttil para los usuarios que usted haga eco a su entrada. La entrada con eco es la
accién de repetir la entrada al usuario, ya sea en un indicador subsiguiente o en la salida. Por
ejemplo, la figura 2-17 muestra cémo el segundo indicador en la figura 2-16 puede mejorarse
haciendo eco a la primera pieza de datos de entrada del usuario en el segundo indicador.
Cuando un usuario corre el programa que se inicia en la figura 2-17 e introduce Green en el
nombre del cliente, el segundo indicador no serd Por favor introduzca el saldo deudor sino
Por favor introduzca el saldo deudor de Green. Digamos, si un empleado estuviera a punto de
introducir el saldo del cliente equivocado, la mencién de Green seria suficiente para alertarlo
de un error potencial.

Caracteristicas de un buen diseno de programa _

Declarations
string name

num balance
l start

Declarations
string name

output "Por favor
introduzca el

nombre del cliente num balance
output "Por favor introduzca el nombre del
cliente "
input name
output "Por favor introduzca el saldo
deudor para ", name

- input balance
output “Por favor
introduzca el saldo

deudor para ", name

input balance

Figura 2-17 Inicio de un programa que acepta el nombre de un cliente y lo usa en el segundo
indicador

Note el espacio que hay antes de las comillas en el indicador que pide al usuario un saldo deudor. El espa-
cio aparecera entre paray el apellido.

Mantener buenos habitos de programacion

Cuando usted aprende un lenguaje de programacién y comienza a escribir las lineas de cédigo
de un programa es facil que olvide los principios que ha aprendido en este texto. Tener algiin
conocimiento de programacion y un teclado en sus manos puede animarle a escribir dichas
lineas antes de pensarlo con cuidado; pero serd mejor si antes planea el cédigo de cada pro-
grama. Mantener el hébito de trazar primero los diagramas de flujo o escribir el seudocddigo,
como ha aprendido aqui, hard que sus proyectos de programacién futuros marchen sin com-
plicaciones. Si hace su prueba de escritorio en papel para conocer la logica antes de codificar
las declaraciones en un lenguaje de programacion, sus programas se ejecutaran en forma
correcta mds rapido. Si piensa con cuidado en los nombres de las variables y los médulos que
elija y disena declaraciones que sean ficiles de leer y usar, serd mds sencillo desarrollar y man-
tener sus programas.

0

o N AREIER 2 Elementos de los programas de alta calidad

B

DOS VERDADES UNA MENTIRA

Caracteristicas de un diseno de programa apropiado

1. Un comentario del programa es un mensaje que se despliega en un monitor
para pedir al usuario una respuesta y quiza explica cémo debera formatearse
la respuesta.

2. Por lo general tiene sentido dar a cada variable un nombre que contenga un
sustantivo y a cada médulo uno que contenga un verbo.

3. Laentrada con eco puede ayudar al usuario a confirmar que los elementos de
datos se introdujeron en forma correcta.

"Je9)ewlo)

9S 1S9 0wW0d anbidxs ezinb A eysandsal eun ouensn [e Jipad eJed Jouuow 9

ua e3aljdsap as anb alesusw un S JOpeaIpul Un ‘ues| 0] Sauainb eled ugloe}
-UBWnNI0p 0wWo9d aMIS anb o0Jad owsiw [ap ea130| e ap alJed ewJo} Ou anb e}I0Sa
uoloel|dxa eun s eweJ304d [9p OLIRIUBLIOD UM *T OJaWNU B[S BS[E) UoldewWL.ILe e

Resumen del capitulo

e Los programas contienen datos en tres formas diferentes: literales (o constantes literales),

variables y constantes nombradas; cada uno de estos tipos puede ser numérico o de cadena.
Las variables son ubicaciones de memoria nombradas cuyo contenido puede variar. Una
declaracion de variable incluye un tipo de datos y un identificador, y de manera opcional
también una inicializacién. Cada lenguaje de programacion tiene su propio conjunto de
reglas para nombrar variables; sin embargo, todos los nombres deben escribirse como una
palabra sin espacios y tener un significado apropiado. Una constante nombrada es similar a
una variable, excepto que sélo es posible asignarle un valor una vez.

La mayoria de los lenguajes de programacién usan +, —, * y / como los cuatro operadores
aritméticos estdndar. Cada operador sigue reglas de precedencia que dictan el orden en que
se realizan las operaciones en la misma declaracion; la multiplicacién y la divisién siempre
tienen precedencia sobre la suma y la resta. Estas reglas de precedencia pueden anularse
usando paréntesis.

Los programadores dividen los problemas en unidades cohesivas mds pequefias llamadas
modulos, subrutinas, procedimientos, funciones o métodos. Para ejecutar un médulo, se

le llama desde otro programa o médulo. Cualquier programa puede contener un nimero
ilimitado de ellos y cada uno puede llamarse un ndmero ilimitado de veces. La modulariza-
cién proporciona abstraccion, permite que varios programadores trabajen en un problema y
facilita la reutilizacion de su trabajo.

e Cuando usted crea un mddulo le asigna un encabezado, un cuerpo y una declaracion
return. Un programa o mddulo llama al nombre de un médulo para ejecutarlo. Usted
puede colocar cualquier declaracién dentro de los médulos, incluyendo las que son locales
para ellos. Las variables y constantes globales son aquellas que se conocen para el programa
entero. La légica de linea principal de casi todos los programas procedimentales puede
seguir una estructura general que consiste en tres partes distintas: tareas de administracion, E-
de ciclo detallado y de fin de trabajo.

e Una grafica de jerarquia ilustra los médulos y sus relaciones; indica cudles existen dentro de
un programa y cudles llaman a otros.

e Conforme los programas se vuelven mas extensos y complicados aumenta la necesidad de
una planeacién y un diseno adecuados. Usted debe usar comentarios del programa donde
se requieran. Elija identificadores de manera sensata, esfuércese por disefiar declaracio-
nes precisas en sus programas y médulos, escriba indicadores y entradas con eco claras
y conserve los buenos habitos de programacién conforme desarrolle sus habilidades de
programacion.

Términos clave

El término numeérico describe los datos que consisten en niumeros.

La palabra cadena se refiere a los datos que no son numéricos.

Un entero es un nimero entero.

Un nimero de punto flotante es un nimero con lugares decimales.

Los numeros reales son nimeros de punto flotante.

Una constante numérica (o constante numeérica literal) es un valor numérico especifico.

Una constante de cadena (o constante de cadena literal) es un grupo especifico de caracte-
res encerrados entre comillas.

Los valores alfanuméricos pueden contener caracteres alfabéticos, nimeros y signos de
puntuacién.

Una constante literal es un valor numérico o de cadena literal.

Una declaracion es un enunciado que proporciona un tipo de datos y un identificador para
una variable.

Un identificador es el nombre de un componente del programa.

El tipo de datos de un elemento de datos es una clasificacién que describe qué valores pueden
asignarse, como se almacena el elemento y qué tipos de operaciones es posible realizar con el
elemento.

Inicializar una variable es la asignacién de su primer valor, con frecuencia al mismo tiempo
que se crea la variable.

Basura es el valor desconocido almacenado en una variable no asignada.

Las palabras clave comprenden el conjunto limitado de palabras que se reservan en un
lenguaje.

o N AREIER 2 Elementos de los programas de alta calidad

N

La notacion de camello es una convencién para nombrar variables en la que la letra inicial
es mindscula, los nombres de variable con multiples palabras se escriben juntos y cada nueva
palabra dentro del nombre de la variable comienza con una letra mayuscula.

La caja de Pascal es una convencion para nombrar variables en la que la letra inicial es
mayuscula, los nombres con multiples palabras se escriben juntos y cada nueva palabra del
nombre comienza con letra maytscula.

La notacién hilingara es una convencion para nombrar variables en la que el tipo de datos de
las mismas u otra informacién se almacenan como parte de su nombre.

Una declaracion de asignacion asigna un valor desde la derecha de un operador de asigna-
cién hacia la variable o constante a la izquierda de dicho operador.

El operador de asignacion es el signo de igual; se usa para asignar un valor a la variable o
constante a su izquierda.

Un operador binario es aquel que requiere dos operandos, uno de cada lado.

La asociatividad derecha y la asociatividad de derecha a izquierda describen operadores
que evaldan primero la expresién de la derecha.

Un Ivalue es el identificador de la direccién de memoria a la izquierda de un operador de
asignacion.

Una variable numérica es aquella que puede contener digitos, hacer que se realicen opera-
ciones matematicas en ella y por lo general contener un punto decimal y un signo que indique
positivo o negativo.

Una variable de cadena puede contener texto que incluya letras, digitos y caracteres especia-
les como signos de puntuacion.

Seguridad de tipo es la caracteristica de los lenguajes de programacién que previene la asig-
nacion de valores de un tipo de datos incorrecto.

Una constante nombrada es similar a una variable, con excepcién de que su valor no puede
cambiar después de la primera asignacion.

Un nimero magico es una constante literal cuyo propdsito no es evidente de inmediato.
El término carga adicional describe los recursos extra que una tarea requiere.

Las reglas de precedencia dictan el orden en que se realizan las operaciones en la misma
declaracion.

El orden de las operaciones describe las reglas de precedencia.

La asociatividad de izquierda a derecha describe operadores que evaltan primero la expre-
sion de la izquierda.

Los médulos son unidades pequefias que pueden usarse juntas para hacer un programa. Los
programadores también se refieren a ellos como subrutinas, procedimientos, funciones o
métodos.

Llamar a un moédulo es usar el nombre del mismo para atraerlo, causando que se ejecute.

La modularizacion es el proceso de dividir un programa en médulos.

La descomposicion funcional es la reduccién de un programa grande en médulos mas
manejables.

La abstraccion es el proceso de poner atencién a las propiedades importantes mientras se
ignoran los detalles no esenciales.

La reutilizacion es la caracteristica de los programas modulares que permite que los médulos
individuales se usen en diversas aplicaciones. 75

La confiabilidad es la caracteristica de los programas modulares que asegura que un médulo
se ha probado y funciona en forma correcta.

Un programa principal corre de principio a fin y llama a otros médulos.

La légica de linea principal es la que aparece en el médulo principal de un programa; llama a
otros médulos.

El encabezado del mddulo incluye el identificador del mismo y quizd otra informacién de
identificacién necesaria.

El cuerpo del médulo contiene todas las declaraciones en este ultimo.

La declaracion return del médulo marca el final del mismo e identifica el punto en que el
control regresa al programa o médulo que lo llamé.

El encapsulamiento es la accién de contener las instrucciones de una tarea en un médulo.

Una pila es una ubicacién de memoria en la que la computadora sigue el rastro a la direccién
de memoria correcta a la que debera regresar después de ejecutar un médulo.

La cohesion funcional de un médulo es una medida del grado en que todas las declaraciones
de éste contribuyen a la misma tarea.

La palabra visible describe el estado de los elementos de datos cuando un médulo puede
reconocerlos.

El término en ambito designa el estado de los datos que son visibles.

La palabra local se refiere a las variables que se declaran en el médulo que las usa.

Un médulo portatil es aquel que puede reutilizarse con mas facilidad en multiples programas.
El término global describe las variables que un programa entero conoce.

Las variables globales se declaran en el nivel de programa.

Las tareas de administracion incluyen los pasos que usted debe efectuar al inicio de un pro-
grama a fin de estar listo para el resto del mismo.

Las tareas de ciclo detallado incluyen los pasos que se repiten para cada conjunto de datos de
entrada.

Las tareas de fin de trabajo son los pasos que usted sigue al final del programa para terminar
la aplicacién.

Una grafica de jerarquia es un diagrama que ilustra las relaciones reciprocas entre los
modulos.

Los comentarios del programa son explicaciones escritas que no forman parte de la légica
del programa pero que sirven como documentacion para quienes lo lean.

o N AREIER 2 Elementos de los programas de alta calidad

0

La documentacion interna es la que estd dentro de un programa codificado.
La documentacion externa es la que esta fuera de un programa codificado.

Un simbolo de anotacion contiene informacién que amplia lo que aparece en otro simbolo
del diagrama de flujo; con mayor frecuencia se representa con un cuadro abierto con tres lados
que esta conectado al paso al que hace referencia con una linea punteada.

Los programas con autodocumentacion son aquellos que contienen datos significativos y
nombres de médulos que describen su propésito.

Un diccionario de datos es una lista de los nombres de todas las variables que se usan en un
programa, junto con su tipo, tamafo y descripcion.

Una variable temporal (o variable de trabajo) es una variable activa que se usa para contener
resultados intermedios durante la ejecucién de un programa.

Un indicador es un mensaje que se despliega en un monitor para pedir al usuario una res-
puesta y quizé explicar cémo ésta debe formatearse.

La entrada con eco es la accidn de repetir la entrada a un usuario ya sea en un indicador sub-
siguiente o en una salida.

Preguntas de repaso

1. ¢Qué proporciona una declaracién a una variable?
a) un nombre ¢) los dos anteriores

b) un tipo de datos d) ninguno de los anteriores

2. Eltipo de datos de una variable describe todo lo siguiente excepto
a) qué valores puede contener ésta
b) cémo se almacena en la memoria
c) qué operaciones pueden realizarse con ella

d) el &mbito de la misma

3. El valor almacenado en una variable no inicializada es
a) basura ¢) abono

b) nulo d) su identificador

4. Elvalor 3 es una
a) variable numérica ¢) variable de cadena

b) constante numérica d) constante de cadena

5. El operador de asignacion
a) esun operador binario

b) tiene asociatividad de izquierda a derecha

10.

11.

12.

Preguntas de repaso |

¢) con mds frecuencia se representa con dos puntos

d) dos de los anteriores

¢Cual de los siguientes términos es verdadero respecto a la precedencia aritmética?

a) La multiplicacion tiene una precedencia mayor que la division.
77 .
b) Los operadores con menor precedencia siempre tienen asociatividad de izquierda a
derecha.

¢) La division tiene mayor precedencia que la resta.

d) Todas las anteriores.

;Cudl de los siguientes es un término que se usa como sinénimo para médulo en algu-
nos lenguajes de programacion?

a) método ¢) ambos

b) procedimiento d) ninguno de éstos

¢Cual de las siguientes es una razén para usar la modularizacién?

a) Que evita la abstraccién.

b) Que reduce la carga adicional.

¢) Que permite reutilizar el trabajo con mayor facilidad.

d) Que elimina la necesidad de sintaxis.

¢Cudl es el nombre para el proceso de poner atencién a las propiedades importantes
mientras se ignoran los detalles no esenciales?

a) abstraccion ¢) extincion

b) extracciéon d) modularizacién

Todos los médulos tienen todo lo siguiente excepto

a) un encabezado C) un cuerpo
b) wvariables locales d) una declaracién return
Los programadores dicen que un médulo puede a otro, lo que significa

que el primero causa que el segundo se ejecute.

a) declarar ¢) promulgar

b) definir d) llamar

Entre més contribuyen las declaraciones de un médulo a una misma labor, es mayor
del médulo.

a) laestructura ¢) la cohesién funcional

b) la modularidad d) el tamafo

o N AREIER 2 Elementos de los programas de alta calidad

0

13.

14.

15.

16.

17.

18.

19.

20.

En la mayoria de los lenguajes de programacién, una variable o constante que se

declara en un médulo es en el mismo.

a) global ¢) en ambito

b) invisible d) indefinida

¢Cuadl de las siguientes 70 es una tarea de administracién tipica?

a) desplegar instrucciones ¢) abrir archivos

b) imprimir resimenes d) desplegar encabezados de informes

¢Cudl médulo en un programa tipico se ejecutard mds veces?
a) el de administraciéon c) el de fin de trabajo

b) el de ciclo detallado d) esdiferente en cada programa

Una gréfica de jerarquia indica

a) qué tareas se ejecutan dentro de cada médulo del programa

b) cudndo se ejecuta un médulo

¢) cudles rutinas llaman a cudles otras

d) todo lo anterior

¢Qué son las declaraciones que no se ejecutan, que los programadores colocan dentro
del codigo para explicar las declaraciones del programa en inglés?

a) comentarios c) trivia

b) seudocddigo d) documentacion del usuario

Los comentarios del programa

a) serequieren para crear un programa que corra
b) son una forma de documentacién externa

¢) las dos anteriores
d)

ninguna de las anteriores

;Cual de los siguientes es un consejo valido para nombrar variables?

a) Para ahorrar tiempo en la mecanografia, haga la mayor parte de los nombres de
variables de una o dos letras.

b) Para evitar un conflicto con los nombres que otras personas usan, use algunos que
sean poco comunes o impronunciables.

c) Para hacer que sea més facil leer los nombres, separe los que sean largos usando
subrayados o maytscula al inicio de cada nueva palabra.

d) Para mantener su independencia, rechace las convenciones de su organizacién.

Un mensaje que pide al usuario una entrada es
a) un comentario C) uneco

b) un indicador d) una declaracion

Ejercicios |

Ejercicios

1.

Explique por qué cada uno de los siguientes puede ser o no un nombre de variable
adecuado para usted.

a) d
79
b) dsctamt .

¢) discountAmount

d) discount Amount

e) discount

f) discountAmountForEachNewCustomer

g) discountYear2013

h) 2013Discountyear

Si productCost y productPrice son variables numéricas y productName es una varia-

ble de cadena, ;cudles de las siguientes declaraciones son asignaciones validas? Si una
declaracién no lo es, explique por qué no.

a) productCost = 100

b) productPrice = productCost

¢) productPrice productName

d) productPrice = “24.95”

e) 15.67 = productCost

f) productCost = $1,345.52

g) productCost = productPrice - 10
h) productName = “tapete para ratén”
i) productCost + 20 = productPrice
j) productName = 3-inch nails

k) productName = 43

1) productName = “44”

m) “99” = productName

productName = brush

battery = productName

)
)

p) productPrice = productPrice
)

productName = productCost

o N AREIER 2 Elementos de los programas de alta calidad

3. Suponga que income = 8y expense = 6.;Cudl es el valor de cada una de las siguien-
tes expresiones?

a) income + expense * 2
b) dincome + 4 - expense / 2

. 80 ¢) (income + expense) * 2

d) income - 3 * 2 + expense

e) 4 * ((income - expense) + 2) + 10

4. Trace una grafica de jerarquia tipica para un programa que genera una factura mensual
para un cliente de telefonia celular. Trate de pensar al menos en 10 médulos separados
que se incluirfan. Por ejemplo, uno de ellos podria calcular el cargo por minutos diur-
nos que se han usado.

5. a) Trace la grifica de jerarquia y luego planee la logica para un programa que el
gerente de ventas de The Henry User Car Dealership necesita. El programa deter-
minard la ganancia sobre cualquier automévil vendido; la entrada incluye el precio
de venta y el de compra real para un vehiculo. La salida es la ganancia, que es el
precio de venta menos el precio de compra. Use tres médulos. El programa prin-
cipal declara variables globales y llama a médulos de administracién, detallado y
de fin de trabajo; el mdédulo de administracién pide y acepta un precio de venta; el
detallado pide y acepta el precio de compra, calcula la ganancia y despliega el resul-
tado, y el de fin de trabajo despliega el mensaje Gracias por usar este programa.

b) Revise el programa que determina la ganancia de modo que corra en forma conti-
nua para cualquier cantidad de automdviles. El ciclo detallado se ejecuta en forma
continua mientras el precio de venta no sea 0; ademds de calcular la ganancia, pide
al usuario el siguiente precio de venta y lo obtiene. El médulo de fin de trabajo se
ejecuta después de que se introduce 0 para el precio de venta.

6. a) Trace la grafica de jerarquia y luego planee la légica para un programa que calcule
el indice de masa corporal (IMC) de una persona. El IMC es una medida estadis-
tica que compara el peso y la estatura. El programa usa tres mddulos; el primero
pide al usuario su estatura en pulgadas y la acepta; el segundo médulo acepta el
peso del usuario en libras y convierte su estatura en metros y el peso en kilogra-
mos. Luego, calcula el IMC como el peso en kilogramos por la estatura en metros
al cuadrado y despliega los resultados. Hay 2.54 centimetros en una pulgada, 100
centimetros en un metro, 453.59 gramos en una libra y 1,000 gramos en un kilo-
gramo. Use constantes nombradas siempre que las considere apropiadas. El tltimo
moddulo despliega el mensaje Fin del trabajo.

b) Revise el programa que determina el IMC para que se ejecute en forma continua
hasta que el usuario introduzca 0 para la estatura en pulgadas.

7. Trace la grifica de jerarquia y disene la 16gica para un programa que calcule los cargos
por servicio de Hazel’'s Housecleaning. El programa contiene médulos de adminis-
tracion, de ciclo detallado y de fin de trabajo. El programa principal declara cualquier
variable y constante globales necesarias y llama a los otros médulos. El médulo de

Fjercicios |

administracién despliega un indicador y acepta el apellido de un cliente. Mientras

el usuario no introduzca ZZZZ para el nombre, el ciclo detallado acepta el nimero

de bafios y el de otras habitaciones que se limpiaran. El cargo por servicio se calcula
como $40 mas $15 por cada bafio y $10 por cada una de las otras habitaciones. El ciclo
detallado también despliega el cargo por servicio y luego pide al usuario el nombre del
siguiente cliente. El médulo fin de trabajo, que se ejecuta después de que el usuario E.
introduce el valor centinela para el nombre, despliega un mensaje que indica que el

programa esta completo.

8. Trace la grafica de jerarquia y disefie la logica para un programa que calcule el costo
proyectado de un viaje en automdvil. Suponga que el vehiculo del usuario viaja a 8 kil6-
metros por litro de gasolina. Disefie un programa que pida al usuario el nimero
de kilémetros recorridos y el costo actual por litro. El programa calcula y despliega el
costo del viaje al igual que el costo si los precios de la gasolina aumentan 10%; acepta
datos en forma continua hasta que se introduce 0 para el nimero de kilémetros. Use
los médulos apropiados, incluyendo uno que despliegue Fin del programa cuando éste
termine.

9. a) Trace la grafica de jerarquia y disefe la l6gica para un programa que necesita
el gerente del equipo de softball del condado Stengel, quien desea calcular los
porcentajes de slugging para sus jugadores. Un porcentaje de slugging es el total
de bases alcanzadas dividido entre el nimero de turnos al bate del jugador. Disefie
un programa que pida al usuario el nimero de camiseta de un jugador, el de bases
alcanzadas y el de turnos al bate y luego despliegue todos los datos, incluyendo el
promedio de slugging calculado. El programa acepta jugadores en forma continua
hasta que se introduce 0 para el nimero de camiseta. Use médulos apropiados,
incluyendo uno que despliegue Fin de trabajo después de que se introduce el
centinela para el nimero de camiseta.

b) Modifique el programa de porcentaje de slugging para calcular también el porcen-
taje de veces que se embasa un jugador. Un porcentaje de veces que se embasa se
calcula sumando los hits y bases por bolas de un jugador y luego se divide entre la
suma de turnos al bate, bases por bolas y elevados de sacrificio. Pida al usuario con
un indicador todos los datos adicionales necesarios y despliegue todos los datos
para cada jugador.

¢) Modifique el programa de softball de modo que también calcule un promedio de
produccién bruta (GPA, gross production average) para cada jugador. Un GPA se
calcula multiplicando el porcentaje de veces que cada uno se embasa por 1.8, luego
sumando el porcentaje de slugging del jugador y luego dividiendo entre cuatro.

" Encuentre los errores

Sus archivos descargables para el capitulo 2 incluyen DEBUG02-01.txt, DEBUG02-02.
txt y DEBUG02-03.txt. Cada archivo empieza con algunos comentarios que describen
el problema. Los comentarios son lineas que comienzan con dos diagonales (//).
Después de los comentarios, cada archivo contiene seudocédigo que tiene uno o mas
errores que usted debe encontrar y corregir. (NOTA: Estos archivos se encuentran
disponibles s6lo para la versién original en inglés.)

o N AREIER 2 Elementos de los programas de alta calidad

%’e Zona de juegos

3

Para que los juegos mantengan su interés, casi siempre incluyen algiin comportamiento
aleatorio impredecible. Por ejemplo, uno en el que dispara a los asteroides pierde algo
de su diversidn si éstos siguen la misma trayectoria predecible cada vez que juega.

Por consiguiente, generar valores aleatorios es un componente clave en la creacién de
juegos de computadora mds interesantes. En muchos lenguajes de programacion se

ha incorporado un médulo que usted puede usar para generar nimeros aleatorios. La
sintaxis varfa en cada lenguaje, pero en general es algo como esto:

myRandomNumber = random(10)

En esta declaracién, myRandomNumber es una variable numérica que usted ha declarado
y la expresion random(10) significa “llamar a un método que genere y devuelva un
numero aleatorio entre 1y 10”. Por convencion, en un diagrama de flujo colocarfa una
declaracién como ésta en un simbolo de procesamiento con dos franjas verticales en
los bordes, como se muestra a continuacion.

myRandomNumber =
random(10)

Cree un diagrama de flujo o un seudocddigo que muestre la légica para un programa que
genere un numero aleatorio, luego pida al usuario que piense en un ntmero entre 1y 10.

Después despliegue el nimero generado aleatoriamente de modo que el usuario vea si su
hipétesis fue correcta. (En capitulos futuros, mejorara este juego de modo que el usuario

pueda introducir una suposicion y el programa determine si estuvo en lo correcto.)

(Para discusion

12.

13.
14.

15.

16.

En la web se publican muchas guias de estilo de programacién que sugieren buenos
identificadores, explican las reglas de sangrado estdndar e identifican cuestiones de
estilo en lenguajes de programacién especificos. Encuentre guias de estilo para al
menos dos lenguajes (por ejemplo, C++, Java, Visual Basic o C#) y enumere cualquier
diferencia que note.

¢Qué ventajas hay en requerir que las variables tengan un tipo de datos?

Como se menciona en este capitulo, algunos lenguajes de programacién requieren que
a las constantes nombradas se les asigne un valor cuando se declaran; otros permiten
que el valor de una constante se asigne mds adelante en un programa. ;Cudl requisito
piensa que es mejor? ;Por qué?

¢Preferirfa escribir un programa extenso por si solo o trabajar en un equipo en el que
cada programador elabora uno o mas médulos? ;Por qué?

La programacién extrema es un sistema para desarrollar software con rapidez. Uno de
sus principios es que todo el cddigo de produccion sea escrito por dos programadores
sentados frente a una maquina. ;Esto es buena idea? ; Trabajar asi es atractivo para
usted como programador? ;Por qué si o por qué no?

Comprender la
estructura

En este capitulo usted aprendera sobre:

©@ © © ® © ©

Las desventajas del codigo espagueti no estructurado
Las tres estructuras basicas: secuencia, seleccion y ciclo
Usar una entrada anticipada para estructurar un programa
La necesidad de estructura

Reconocer la estructura

Estructurar y modularizar logica no estructurada

AR <2 Comprender la estructura

N

Las desventajas del codigo espagueti no estructurado

Las aplicaciones de negocios profesionales por lo general son mucho mas complejas que los
ejemplos que ha visto hasta ahora en los capitulos 1 y 2. Imagine la cantidad de instrucciones
en los programas que guian el vuelo de un avién o auditan una devolucién del impuesto sobre
la renta. Incluso el que genera el cheque de su salario en el trabajo contiene muchas, muchas
instrucciones. Disenar la légica para un programa as{ puede ser una tarea que requiere tiempo.
Cuando usted agrega varios miles de instrucciones a un programa, incluyendo varios cientos
de decisiones, es ficil crear un desorden. El nombre comtn con que se designa a las declara-
ciones que se encuentran enmarafiadas desde el punto de vista légico es codigo espagueti,
porque es dificil seguir la 16gica, tal como ocurre con un espagueti en un plato de pasta. No
solo el cddigo espagueti es confuso, los programas que lo contienen son propensos al error, es
dificil reutilizarlos y usarlos como bloques para aplicaciones mas grandes. Los programas no
estructurados usan el codigo espagueti; es decir, no siguen las reglas de la légica estructurada
que aprendera en este capitulo. Los programas estructurados siguen esas reglas y eliminan
los problemas causados por el cédigo espagueti.

Por ejemplo, suponga que empieza un trabajo como banador de perros y recibe las
instrucciones que se muestran en la figura 3-1. Este diagrama de flujo es un ejemplo del

c6digo espagueti no estructurado. Un programa de computadora que esté estructurado de
manera similar podria “funcionar”; es decir, produciria resultados correctos, pero su lectura, su
mantenimiento y el seguimiento de su légica serfan dificiles.

Las desventajas del codigo espagueti no estructurado _

No lo haga
Este ejemplo no usa un
buen estilo de programacion.

(start) AI’ﬁnaI del capitulo sabra
como estructurarlo, lo que lo

hara menos confuso.

Atrapar al perro

JET perro
escap6?

JE1 perro
tiene champl?

Abrir el agua

|

JET perro
escap6?

No _l—> Cerrar el agua

Mojar al perro y
aplicarle champd

Atrapar al perro

¢E1 perro Si
escapo6?

No

Enjuagar al perro

(stop)

Figura 3-1 Lobgica de codigo espagueti para banar a un perro

Podria seguir la l6gica del procedimiento para banar perros de la figura 3-1 por dos razones:
e Es probable que ya sepa como bafar a un perro.
e El diagrama de flujo contiene un nimero limitado de pasos.

Sin embargo, imagine que no estuviera familiarizado con el bafiado de perros o que el proceso
fuera mucho mds complicado (imagine que debe baiiar 100 perros al mismo tiempo mientras
les aplica medicamento contra pulgas y garrapatas, haciéndoles cortes de pelo e investigando
su genealogia). Describir una légica mas complicada en una forma no estructurada serfa

AR <2 Comprender la estructura

3

engorroso. Al finalizar el estudio de este capitulo entendera cémo hacer que el proceso no
estructurado de la figura 3-1 sea mds claro y menos propenso a errores.

que uno cuyo codigo es estructurado. Esto significa que los programas que usan codigo espagueti existen
por menos tiempo como programas de produccion en una organizacion. Modificarlos es tan dificil que
cuando se requieren mejoras los desarrolladores con frecuencia encuentran mas facil abandonar los ya
existentes y empezar desde cero. Esto requiere tiempo extra y cuesta mas dinero.

ﬂ Los creadores de software dicen que un programa que contiene codigo espagueti tiene una vida mas breve

DOS VERDADES UNA MENTIRA

Las desventajas del cddigo espagueti no estructurado

1. El'nombre comin para las declaraciones de un programa que desde el punto
de vista logico se encuentran enmaranadas es codigo espagueti.

2. Los programas escritos que usan codigo espagueti no pueden producir resulta-
dos correctos.

3. Los programas escritos que usan codigo espagueti son mas dificiles de seguir
que otros programas.

'SepeJn}onJisa Sedluda} uesn anb soj anb Jsusjuew
A Japuajua ap S9|IolIp Sew uos 0Jad ‘S03}994100 sopeynsal Jionposd uspand 13anb
-edsa 031pQd uesn anb S0}140Sa Sewel304d SOT "Z 0JawWnu e[S BS|e) ugloew.Le e

Comprension de las tres estructuras basicas

A mediados de la década de 1960, los matematicos demostraron que cualquier programa, sin
importar cuan complicado sea, puede construirse usando una o mds de sélo tres estructuras.
Una estructura es una unidad bésica de 16gica de programacion; cada estructura es una de las
siguientes:

® secuencia
e seleccion
e ciclo

Con sélo estas tres estructuras usted puede diagramar cualquier tarea, desde duplicar un
numero hasta realizar una cirugfa cerebral. Puede diagramar cada estructura con una configu-
racion especifica de simbolos de diagrama de flujo.

La primera de estas tres estructuras basicas es una secuencia, como se muestra en la figura 3-2.
Con una estructura de secuencia, se ejecuta una accién o tarea, y luego se realiza la siguiente
accion, en orden. Una secuencia puede contener cualquier cantidad de tareas, pero no hay
opcién de ramificar y saltarse alguna de éstas. Una vez que comienza una serie de acciones en
una secuencia, debe continuar paso a paso hasta que la secuencia termina.

Comprension de las tres estructuras basicas _

Como ejemplo, las instrucciones para conducir con fre-
cuencia se listan como una secuencia. Para decir a un l
amigo cémo llegar a la casa de usted desde la escuela,

podria proporcionar la siguiente secuencia, en la que un
paso sigue al otro y no pueden saltarse: l

ve al norte sobre First Avenue por 3 kilémetros 87 .
da vuelta a Tla izquierda en Washington Boulevard i

ve al oeste sobre Washington por 2 kilémetros
detente en el 634 de Washington

Como se muestra en la figura 3-3 la segunda de las tres es i
una estructura de seleccion o estructura de decision.
Con ella, usted hace una pregunta y dependiendo de la Figura 3-2 Estructura de secuencia

respuesta toma un curso de accién. Luego, sin importar
cudl ruta siga, continda con la siguiente tarea. (En otras
palabras, un diagrama de flujo que describe una estruc-
tura de seleccion debe comenzar con un simbolo de deci- No Sq
sion, y las ramas de la decision deben unirse en la parte
inferior de la estructura. El seudocddigo que describe una
estructura de seleccién debe empezar con if. El seudo-

cédigo usa la declaracion de fin de estructura endif I:’:I I:'j

para mostrar con claridad dénde termina la estructura.) l

Algunas personas llaman a la estructura de seleccién una
if-then-else debido a que concuerda con la siguiente
declaracién:

Figura 3-3 Estructura de
seleccion
if someCondition is true then
do oneProcess
else
do theOtherProcess
endif

Por ejemplo, usted podria proporcionar parte de las instrucciones para llegar a su casa como
sigue:

if hay trafico en Washington Boulevard then
continda 1 cuadra sobre First Avenue y da vuelta a la izquierda en Adams
Lane

else
da vuelta a la izquierda en Washington Boulevard

endif

Del mismo modo, un programa de némina podria incluir una declaracién como ésta:

if hoursWorked es mayor que 40 then
calculate regularPay y overtimePay
else
calculate regularPay
endif

AR <2 Comprender la estructura

0

Estos ejemplos if-else también pueden llamarse if de alternativa dual (o selecciones de
alternativa dual), porque contienen dos opciones: la accién emprendida cuando la condicién
probada es verdadera y la accién emprendida cuando esta ultima es falsa. Note que es perfec-
tamente correcto que una rama de la seleccién sea “do nothing” (“no hacer nada”). En cada
uno de los ejemplos siguientes s6lo se emprende una accién cuando la condicién probada es
verdadera:

if estd 1loviendo then
usar una sombrilla
endif
if el empleado participa en un
programa dental then l

deducir $40 de su sueldo base

endif
No Si
Los ejemplos anteriores sin clausulas

else son if de alternativa unica (o
selecciones de alternativa tnica); en
la figura 3-4 se muestra un diagrama de
su estructura. En estos casos, usted no
emprende alguna accién especial si no l
esté lloviendo o si el empleado no perte-

nece al plan dental. El caso en el que
no se hace nada con frecuencia se llama Figura 3-4 Estructura de seleccion de alternativa Unica
caso nulo.

La dltima de las tres estructuras basicas, que se muestra en la figura 3-5, es un ciclo. En una
estructura en ciclo, usted contintia repitiendo las acciones mientras una condicion sigue
siendo verdadera. La accidn o acciones que ocurren dentro del ciclo son el cuerpo del ciclo.
En el tipo méas comun de ciclo se evalta una condicién;
si la respuesta es verdadera, se ejecuta el cuerpo del
ciclo y se evalda de nuevo la condicion. Si ésta todavia ,
es verdadera, se ejecuta de nuevo el cuerpo del ciclo y
luego se reevalia la condicion original. Esto continda
hasta que la condicidn se vuelve falsa y entonces sale de
la estructura. (En otras palabras, un diagrama de flujo
que describe una estructura de ciclo siempre comienza
con un simbolo de decisién que tiene una rama que
regresa a un punto anterior a la decisién. El seudocddigo
que describe un ciclo empieza con while y termina con la
declaracién de fin de estructura endwhile.) Usted quizd escuche a los programadores referirse
a los ciclos como repeticion o iteracion.

Si

No

Figura 3-5 Estructura en ciclo

Algunos programadores llaman a esta estructura while...do, o simplemente, ciclo while,
debido a que concuerda con la siguiente declaracion:

while testCondition continue to be true
do someProcess
endwhile

Comprension de las tres estructuras basicas _

Cuando usted proporciona las instrucciones para llegar a su casa, algunas de ellas podrian ser:

while Ta direccién de las casas que va pasando sean menores que 634
siga su recorrido hasta la siguiente casa
vea la direcciéon de la casa

endwhile

Se encuentran ejemplos de ciclos todos los dias, como en los siguientes: 89 .

while continlde teniendo hambre
tome otro bocado de alimento
determine si todavia siente hambre
endwhile
while queden paginas sin leer en la tarea de lectura
lea otra pagina que no ha Teido
determine si ya no hay mas paginas por leer
endwhile

Todos los problemas légicos pueden resolverse usando solo estas tres estructuras: secuen-
cia, seleccién y ciclo. Las estructuras pueden combinarse en un nimero infinito de formas.
Por ejemplo, usted puede tener una secuencia de tareas seguida por una seleccion, o un ciclo
seguido por una secuencia. Las estructuras unidas por sus extremos se llaman estructuras
apiladas. Por ejemplo, la figura 3-6 muestra un diagrama de flujo estructurado que se logra
apilando estructuras y muestra el seudocddigo que sigue la légica del diagrama de flyjo.

stepA

stepB

if conditionC is true then
stepD

] else

secuencia stepkE

endif

stepB while conditionF is true
stepG

endwhile

stepA

No Si
conditionC?

seleccién
stepE stepD

Si]
ciclo <<§§EEEEEEEEE:>————— stepG

No

Figura 3-6 Diagrama de flujo estructurado y seudocodigo con tres estructuras apiladas

AR <2 Comprender la estructura

"3

siguientes pares para representar los resultados de la decision: Yesy No (Si'y No) o true y false (verdadero
y falso). Este libro sigue la convencion de usar Si'y No en los diagramas de flujo y verdadero y falso en el
seudocadigo.

ﬂ Ya sea que usted trace un diagrama de flujo o escriba un seudocodigo, puede usar cualquiera de los

El seudocddigo en la figura 3-6 muestra una secuencia, seguida por una seleccién y después
por un ciclo. Primero stepAy stepB se ejecutan en secuencia. Entonces inicia una estructura
de seleccidn con la prueba de conditionC. La instruccién que sigue a la cldusula if (stepD)
ocurre cuando su condicién probada es verdadera, la instruccién que sigue a else (stepE) se
presenta cuando la condicion probada es falsa, y cualesquiera instrucciones que siguen a endif
ocurren en cualquier caso. En otras palabras, las declaraciones mas alld de la declaracién
endif estdn “fuera” de la estructura de decision. Del mismo modo, la declaracién endwhile
muestra dénde termina la estructura de ciclo. En la figura 3-6, mientras conditionF sigue
siendo verdadera, stepG continta ejecutandose. Si cualesquiera declaraciones siguen a la
declaracién endwhi e, estarian fuera del ciclo y no serfan parte de él.

Ademds de apilar estructuras, usted puede reemplazar todos los pasos individuales en un
diagrama de flujo estructurado o un seudocddigo con estructuras adicionales. En otras
palabras, cualquier secuencia, seleccion o ciclo puede contener otras secuencias, selecciones
o ciclos. Por ejemplo, usted puede tener una secuencia de tres tareas en un lado de una
seleccién, como se muestra en la figura 3-7. Si se coloca una estructura dentro de otra el
conjunto se llama estructuras anidadas.

if conditionH is true then

step]
stepK
conditionH? steplL
endif

step]

stepK

stepL

|

Figura 3-7 Diagrama de flujo y seudocddigo que muestran estructuras anidadas: una secuencia
anidada dentro de una seleccion

En el seudocddigo para la 1dgica que se muestra en la figura 3-7, la sangria representa que las
tres declaraciones (stepJ, stepK y stepL) deben ejecutarse si conditionH es verdadera.

Las tres declaraciones constituyen un bloque, o un grupo de declaraciones que se ejecuta
como una unidad.

Comprension de las tres estructuras basicas _

En lugar de uno de los pasos en la secuencia de la figura 3-7, usted puede insertar otra estruc-
tura. En la figura 3-8, el proceso cuyo nombre es stepK se ha reemplazado por una estructura
de ciclo que comienza con una prueba de la condicién llamada conditionM.

if conditionH is true then 91
step]

while conditionM is true
stepN

endwhile

steplL

step] endif

stepN J

conditionM?

steplL

Figura 3-8 Diagrama de flujo y seudocddigo que muestran estructuras anidadas: un ciclo anidado
dentro de una secuencia, anidada dentro de una seleccion

En el seudocédigo de la figura 3-8, note que if y endi f estdn alineadas verticalmente. Esto
muestra que estdn “en el mismo nivel” Del mismo modo, stepJ, while, endwhile y stepL
estan alineadas y tienen la misma sangria. En el diagrama de flujo de la figura 3-8, usted podria
trazar una linea vertical a lo largo de los simbolos que contienen stepJ, los puntos de entrada
y salida del ciclo while y stepL. El diagrama de flujo y el seudocddigo representan exacta-
mente la misma légica.

Cuando usted anide estructuras, las declaraciones que empiezan y terminan una estructura
siempre estan en el mismo nivel y en pares. Las estructuras no pueden superponerse. Por
ejemplo, si tiene un if que contiene un while, entonces la declaracién endwhile vendrd antes
de endif. Por otra parte, si tiene un while que contiene un if, entonces la declaracién endif
vendrd antes de endwhile.

No hay limite para el nimero de niveles que puede crear cuando anide y apile estructuras. Por
ejemplo, la figura 3-9 muestra légica que se ha hecho mas complicada al reemplazar stepN con
una seleccion. La estructura que ejecuta stepP o stepQ con base en el resultado de condition0
estd anidada dentro del ciclo que es controlado por conditionM. En el seudocddigo de la figura
3-9 note cémo los if, else y endif que describen la condicién de seleccidon estan alineados
entre si y dentro de la estructura while, que es controlada por conditionM. Como antes, la
sangria que se usa en el seudocddigo refleja la logica trazada graficamente en el diagrama de
flyjo.

o VAR =E Comprender la estructura

step]

if conditionH is true then
step]
while conditionM is true
if conditionO is true then
stepP
else
stepQ
endif
endwhile
steplL
endif

No L Si
condition0?

stepQ

stepP

Figura 3-9 Diagrama de flujo y seudocddigo para una seleccion en el interior de un ciclo dentro de

una secuencia contenida en una seleccion

Muchos de los ejemplos precedentes son genéricos de modo que usted puede enfocarse en las
relaciones de las formas sin preocuparse por lo que hacen. Tenga en cuenta que las instruccio-
nes genéricas como stepA y las condiciones genéricas como conditionC representan cualquier
cosa. Por ejemplo, la figura 3-10 muestra el proceso de comprar y plantar flores al aire libre

en la primavera después de que paso el peligro de las heladas. Las estructuras del diagrama de
flujo y el seudocddigo son idénticas a las de la figura 3-9. En los ejercicios al final de este capi-

tulo, se le pedird que desarrolle més escenarios que se ajusten al mismo patréon.

Comprension de las tres estructuras basicas _

iPlantaremos
flores este afo?

comprar flores
en macetas

if ¢splantaremos flores este afo? then
comprar flores en macetas
while se predice tiempo frio
if la temperatura es superior a 50 °F then
poner las flores al aire libre durante el dia
else

mantener las flores de las macetas cubiertas durante el dia

endif
endwhile
plantar flores en el suelo
endif

ise predice
tiempo frio
esta noche?

plantar
flores en
el suelo

mantener las flores de
Tas macetas cubiertas
durante el dia

poner las flores
al aire Tlibre
durante el dia

W

|

Figura 3-10 El proceso de comprar y plantar flores en la primavera

Las combinaciones posibles de las estructuras logicas son infinitas, pero cada segmento de
un programa estructurado es una secuencia, una seleccién o un ciclo. Las tres estructuras se
muestran juntas en la figura 3-11. Note que cada estructura tiene un punto de entrada y un

punto de salida. Una estructura sélo puede unirse a otra en uno de estos puntos.

B

o VAR =E Comprender la estructura

Secuencia Seleccion Ciclo

entrada entrada entrada
! I

_ E3
No Si Si

No

¢ salida

salida

salida

Figura 3-11 Las tres estructuras

Trate de imaginar que levanta fisicamente cualquiera de las tres estructuras usando las “manijas” de entrada
y salida. Estos son los puntos en los que podria conectar una estructura con otra. Del mismo modo, cual-
quier estructura completa, desde su punto de entrada hasta el de salida, puede insertarse dentro del sim-
bolo de proceso de cualquier otra estructura.

En resumen, un programa estructurado tiene las siguientes caracteristicas:

e Un programa estructurado sélo incluye combinaciones de las tres estructuras bésicas:
secuencia, seleccion y ciclo. Cualquier programa estructurado podria contener uno, dos o
los tres tipos de estructuras.

e (Cada estructura tiene s6lo un punto de entrada y uno de salida.
e Las estructuras pueden apilarse o conectarse entre si sélo en sus puntos de entrada o salida.

e Cualquier estructura puede anidarse dentro de otra.

Nunca se requiere que un programa estructurado contenga ejemplos de las tres estructuras. Por ejemplo,
muchos programas sencillos sélo contienen una secuencia de varias tareas que se ejecutan de principio
a fin sin que se necesite alguna seleccion o ciclo. Como otro ejemplo, un programa podria desplegar una
serie de nimeros usando ciclos, pero nunca tomando alguna decision sobre los nimeros.

Uso de una entrada anticipada para estructurar un programa _

DOS VERDADES UNA MENTIRA

Comprension de las tres estructuras basicas

1. Cada estructura en la programacion estructurada es una secuencia, una selec- 95
cién o un ciclo. .

2. Todos los problemas de légica pueden resolverse usando solo tres estructuras:
secuencia, seleccion y ciclo.

3. Las tres estructuras no pueden combinarse en un solo programa.

"SeWJ0} 9p OHULUI 0JBWNU UN U
9s.epiue 0 asJejide uspand Sedn}oNJISe S8} SB *S 0JBWINU] S BS[e) UQIDBLWILR BT

Uso de una entrada anticipada
para estructurar un programa

Recuerde el programa para duplicar nimeros que se mencioné en el capitulo 2; la figura 3-12
muestra un programa similar. El programa da entrada a un ndmero y comprueba la condicién
de fin de archivo. Si la condicién no se cumple, entonces el namero se duplica, la respuesta se
despliega y se introduce el siguiente niumero.

Declarations
num originalNumber
num calculatedAnswer

>

input

originalNumber No lo haga

Esta légica no esta estructurada.

N
:

Si

calculatedAnswer
originalNumber *

'

output
calculatedAnswer

Figura 3-12 Diagrama de flujo no estructurado de un programa para duplicar nimeros

2

AR <2 Comprender la estructura

Recuerde del capitulo 1 que este libro usa eof para representar una condicion genérica de fin de datos
cuando los parametros exactos probados no son importantes para la exposicion. En este ejemplo, la prueba
es para not eof?, porque el procesamiento continuara mientras no se haya alcanzado el fin de los datos.

¢El programa representado por la figura 3-12 esta estructu-

. 96 rado? Al principio quiza sea dificil decirlo. Las tres estruc- @
turas permitidas se ilustraron en la figura 3-11 y el diagrama
de flujo en la figura 3-12 no se ve exactamente como
cualquiera de esas tres figuras. Sin embargo, debido a que _

. . - Declarations

usted puede apilar y anidar estructuras mientras conserva num originalNumber
la estructura general, podria ser complicado determinar si num calculatedAnswer
un diagrama de flujo en conjunto estd estructurado. Es mds
facil analizar el diagrama de flujo en la figura 3-12 un paso
a la vez. El inicio del diagrama se ve como la figura 3-13. input
¢Esta porcion del diagrama de flujo estd estructurada? Si, es originalNumber
una secuencia de dos eventos.

La adicién de la siguiente pieza del diagrama de flujo se ve
como la figura 3-14. La secuencia termina; empieza ya sea Figura 3-13 Inicio de un diagra-
una seleccion o un ciclo. Quizd usted no sepa cudl, pero
sabe que la secuencia no continda porque las secuencias no
pueden contener preguntas. Con una secuencia, cada tarea
o paso debe seguir sin ninguna oportunidad de ramificarse.
Asi, ;cudl tipo de estructura comienza con la pregunta en la
figura 3-14? ;Es una seleccién o un ciclo?

s . . . start
Las estructuras de seleccion y de ciclo difieren como sigue: ()

e En una estructura de seleccidn, la 16gica va en una direc-

ma de flujo para duplicar un
nimero

cién después de la pregunta, y luego el flujo regresa y se Declarations

une; la pregunta no se hace por segunda vez dentro de la num originalNumber

estructura. num calculatedAnswer
e Enun ciclo, si la respuesta a la pregunta da como resul-

tado que el ciclo se introduzca y se ejecuten sus declara- input

ciones, luego la logica regresa a la pregunta que inicié
el ciclo. Cuando se ejecuta el cuerpo de un ciclo, la
pregunta que controla al ciclo siempre se hace de

originalNumber

nuevo.
not eof? No
Si la condicién fin de archivo no se cumple en el problema)
de duplicar un nimero en la figura 3-12 original, enton-
Si

ces el resultado se calcula y se le da salida, se obtiene un
numero nuevo y la légica regresa a la pregunta que prueba
el final del archivo. En otras palabras, mientras la respuesta
a la pregunta not eof? continte siendo S7, un conjunto de
declaraciones sigue ejecutandose. Por consiguiente, la pre-
gunta not eof? inicia una estructura que es mds como un
ciclo que como una seleccion.

Figura 3-14 Continuacién del
diagrama de flujo para duplicar
numeros

Uso de una entrada anticipada para estructurar un programa _

El problema para duplicar nimeros contiene un ciclo, pero no es un ciclo estructurado. En un
ciclo estructurado, las reglas son:

1. Usted hace una pregunta.

2. Silarespuesta le indica que debe ejecutar el cuerpo del ciclo, entonces lo hace. :.
97

3. Siejecuta el cuerpo del ciclo, entonces debe ir directo a repetir la pregunta.

El diagrama de flujo en la figura 3-12 hace una pregunta. Si la respuesta es Si (es decir, mien-
tras not eof? sea verdadera), entonces el programa realiza dos tareas en el cuerpo del ciclo:
hace la aritmética y despliega los resultados. Hacer dos cosas es aceptable porque dos tareas
sin ramificacién posible constituyen una secuencia, y estd bien anidar una estructura dentro de
otra. Sin embargo, cuando la secuencia termina la l6gica no fluye de vuelta a la pregunta que
controla el ciclo. En cambio, va arriba de la pregunta para obtener otro nimero. Para que el
ciclo en la figura 3-12 sea estructurado, la légica debe regresar a la pregunta not eof? cuando
termina la secuencia incrustada.

El diagrama de flujo en la figura 3-15 muestra el flujo de la légica que regresa a la pregunta
not eof?inmediatamente después de la secuencia. La figura 3-15 muestra un diagrama de
flujo estructurado, pero tiene un defecto importante, el diagrama de flujo no hace el trabajo
de duplicar en forma continua diferentes nimeros.

Declarations No lo haga
num originalNumber . .g
num calculatedAnswer Esta légica es estructurada,

pero el programa nunca
acepta valores de entrada

input subsiguientes.
originalNumber

Si

not eof?

y
calculatedAnswer =
originalNumber * 2

output
calculatedAnswer

Figura 3-15 Diagrama de flujo estructurado, pero no funcional, del problema para duplicar nimeros

o VAR =E Comprender la estructura

3

Siga el diagrama de flujo a lo largo de una corrida tipica del programa, suponiendo que la con-
dicion eof es un valor de entrada de 0. Suponga que cuando el programa empieza, el usuario
introduce un 9 para el valor de originalNumber. Este no es eof, asi que el nimero se multi-
plica por 2y se despliega 18 como el valor de calculatedAnswer. Entonces se hace de nuevo
la pregunta not eof?. La condicién not eof? debe ser verdadera todavia porque no puede
introducirse un valor nuevo que represente el valor centinela (final). La l6gica nunca regresa a
la tarea input originalNumber, asi que el valor de originalNumber nunca cambia. Por con-
siguiente, se duplica de nuevo 9y la respuesta 18 se despliega de nuevo. El resultado de not
eof? todavia es verdadero, asi que se repiten los mismos pasos. Esto continta por siempre, y
la respuesta 18 es la salida de manera repetida. La légica del programa que se muestra en la
figura 3-15 es estructurada, pero no funciona como se pretende. A la inversa, el programa en
la figura 3-16 funciona pero no es estructurado porque después de que las tareas se ejecutan
dentro de un ciclo estructurado, el flujo de la l6gica debe regresar en forma directa a la pre-
gunta que controla el ciclo. En la figura 3-16, la l6gica no regresa a esta pregunta; en cambio,
va “demasiado alto” fuera del ciclo para repetir la tarea input originalNumber.

Declarations
num originalNumber
num calculatedAnswer

No lo haga

Esta l6gica no esta estructurada.

<
<€

input
originalNumber

Si

not eof?

/
calculatedAnswer =
originalNumber * 2

output
calculatedAnswer

Figura 3-16 Diagrama de flujo funcional pero no estructurado

¢Como puede el problema para duplicar ndmeros estar estructurado y funcionar como se
pretende? Con frecuencia, para que un programa sea estructurado, usted debe agregarle
algo extra. En este caso, es un paso de entrada anticipada. Una entrada anticipada o lec-
tura anticipada es una declaracién agregada que obtiene el valor de la primera entrada en

Uso de una entrada anticipada para estructurar un programa _

un programa. Por ejemplo, si un programa recibird 100 valores de datos como entrada, usted
introduce el primer valor en una declaracién que esté separada de las otras 99. Debe hacer esto
para mantener estructurado el programa.

Considere la solucién en la figura 3-17; estd estructurada y hace lo que se supone que debe
hacer. Contiene una declaracién adicional input originalNumber sombreada. La légica del
programa contiene una secuencia y un ciclo. El ciclo contiene otra secuencia. 99 .

Declarations
num originalNumber
num calculatedAnswer

input /" Estaeslaentrada
originalNumber anticipada.

Si

\
calculatedAnswer =
originalNumber * 2

'

output
calculatedAnswer

Este paso obtieng tqdas ______ input
las entradas subsiguientes. originalNumber

I

Figura 3-17 Diagrama de flujo estructurado y funcional para el problema de duplicar nimeros

El paso adicional input originalNumber que se muestra en la figura 3-17 es tipico en los
programas estructurados. El primero de los dos pasos de entrada es la entrada anticipada. El
término anticipada proviene del hecho de que se lee primero (inicia el proceso). El propésito
del paso de entrada anticipada es controlar el ciclo préximo que comienza con la pregunta not
eof? El dltimo elemento del ciclo estructurado obtiene el siguiente valor de entrada y todos los
subsiguientes. Esto también es tipico en los ciclos estructurados: el dltimo paso que se ejecuta
dentro del ciclo altera la condicién probada en la pregunta que los inicia, que en este caso es
not eof?

AR R Comprender la estructura

100

trabajo principal de un programa se llama seccion de administracion. La lectura anticipada es un ejemplo de

ﬂ En el capitulo 2 usted aprendié que el conjunto de tareas preliminares que establece el escenario para el
una tarea de administracion.

La figura 3-18 muestra otra forma en la que usted podria trazar la légica del programa para
duplicar nimeros. A primera vista parecerfa que la figura muestra una solucién aceptable para
el problema: es estructurada, contiene sélo un ciclo con una secuencia de tres pasos dentro de
€l y parece eliminar la necesidad de la declaracién de entrada anticipada. Cuando el programa
empieza, se plantea la pregunta not eof? y si no es el final de los datos de entrada, entonces
el programa obtiene un niimero de entrada, lo duplica y lo despliega. Luego, si la condicién
not eof? sigue siendo verdadera, el programa obtiene otro niimero, lo duplica y lo despliega.
El programa podria continuar mientras se introducen muchos nimeros. La tltima vez que se
ejecuta la declaraciéon input originalNumber, encuentra eof, pero el programa no se detiene;
en cambio, calcula y despliega un resultado una tltima vez. Dependiendo del lenguaje y del
tipo de entrada que usted use, podria recibir un mensaje de error o dar basura como salida.
En cualquier caso, esta tltima salida es extrafa: no se debera duplicar ningtin valor ni darle
salida después de que se encuentra la condicién eof. Como regla general, una prueba de fin
de archivo debe ir siempre inmediatamente después de una declaracién de entrada porque

la condicién de fin de archivo se encontrard en la entrada. Por tanto, la mejor solucion al
problema de duplicar numeros sigue siendo la que se muestra en la figura 3-17, la que
contiene la declaraciéon de entrada anticipada.

No lo haga

Esta légica esta estructurada,

pero es defectuosa. Cuando el
start o

usuario introduce el valor eof, se

duplicara y se le dara salida en
forma incorrecta.

Declarations
num originalNumber
num calculatedAnswer

€

Si

input
originalNumber

calculatedAnswer

o

originalNumber * 2
output
calculatedAnswer

Figura 3-18 Solucién estructurada pero incorrecta para el problema de duplicar nimeros

Comprension de las razones para la estructura _

DOS VERDADES UNA MENTIRA

Uso de una entrada anticipada para estructurar un programa

1. Una entrada anticipada es la declaracion que obtiene de manera repetida todos

los datos que son la entrada en un programa. 1o1

2. Un programa estructurado en ocasiones es mas largo que uno no estructurado.

3. Un programa puede estar estructurado pero aun asi ser incorrecto.

"epeJud
eJownid e| ausnqo epedioljue epeJius BUM T 0JIWNU B[SO BS|e} UQIDRULILE B

Comprension de las razones para la estructura

En este punto, usted quiza diga: “Me gustaba el programa original para duplicar numeros de la
figura 3-12. Podia seguirlo. Adema4s, tenia un paso menos, asi que era menos trabajo. ;A quién
le importa si un programa estd estructurado?”.

Hasta que tenga alguna experiencia en programacion, es dificil apreciar las razones para usar
solo las tres estructuras: secuencia, seleccion y ciclo. Sin embargo, quedarse con estas tres es
mejor por las siguientes razones:

e Claridad. El programa para duplicar nimeros es pequefio. Conforme los programas se
hacen mds grandes, se vuelven més confusos si no estdn estructurados.

e Profesionalismo. Los demds programadores (y los profesores de programacion que usted
pudiera encontrar) esperan que sus programas estén estructurados; asi se hacen las cosas en
el dmbito profesional.

e Eficiencia. La mayoria de los lenguajes de computacién més recientes soportan una estruc-
tura y usan sintaxis que permiten que usted aborde la secuencia, la seleccién y el ciclo con
eficiencia. Los lenguajes mas antiguos, como los ensambladores, COBOL y RPG, se desa-
rrollaron antes de que se descubrieran los principios de la programacion estructurada. Sin
embargo, aun los programas que usan esos lenguajes antiguos pueden escribirse en forma
estructurada. Los mds recientes como C#, C++ y Java imponen la estructura por su sintaxis.

En los lenguajes mas antiguos, usted podia abandonar una seleccion o ciclo antes de que se completara
usando una declaracion “go to”. Esta permitia a la logica ir a (“go t0”) cualquier otra parte del programa, ya
sea que estuviera dentro de la misma estructura o no. La programacién estructurada en ocasiones se llama
programacion sin goto.

e Mantenimiento. Usted y otros programadores encontrardn mas facil modificar y dar mante-
nimiento a los programas estructurados cuando se requieran cambios en el futuro.

e Modularidad. Los programas estructurados pueden dividirse con facilidad en médulos que
pueden asignarse a cualquier nimero de programadores. Las rutinas vuelven a unirse des-
pués como muebles modulares en cada entrada o punto de salida tnicos de la rutina. Ade-
mds, un médulo con frecuencia puede usarse en multiples programas, ahorrando tiempo de
desarrollo en el nuevo proyecto.

AR <2 Comprender la estructura

DOS VERDADES UNA MENTIRA

Comprension de las razones para la estructura

102 1. Los programas estructurados son mas claros que los no estructurados.

2. Usted y otros programadores encontraran mas facil modificar y dar mante-
nimiento a los programas estructurados cuando se requieran cambios en el
futuro.

3. Los programas estructurados no se dividen con facilidad en partes, lo que los
hace menos propensos al error.

‘saJopewesdoid
ap pepiued Jainbjend e asJeusdise uspand anb SOINPOW Ud pepljioe) U0 aSJIP
-INp uapand SopeJn}onJise sewel3oad SO "€ 0JaWINU B| S8 BS|e} Uoloewliye e

Reconocimiento de la estructura

Cuando comienza a aprender sobre el disefio de programas
estructurados, es dificil que se percate de si un diagrama I:A:I
de flujo de la légica de un programa estd estructurado. Por

ejemplo, ;el segmento de diagrama de flujo en la figura 3-19
lo estd? No Sq

Si, lo estd. Tiene la estructura de una secuencia y una
seleccion. C

¢El segmento de diagrama de flujo de la figura 3-20 estd
estructurado? l

Si, lo estd. Tiene un ciclo, y dentro de él hay una seleccién.

¢El segmento de diagrama de flujo en la esquina superior Figura 3-19 Ejemplo 1

izquierda de la figura 3-21 estd estructurado?

No, no esta construido a partir de las tres estruc-
turas basicas. Una forma de arreglar un segmento S
de diagrama de flujo no estructurado es usar el b?

método del “tazdén de espagueti”; es decir, imagine o
el diagrama de flujo como un tazén de espagueti No Sq
que debe desenredar. Suponga que puede tomar
una pieza de pasta en la parte superior del tazén y

jalarla. Conforme “jala” cada simbolo de la marana F
puede desenredar las rutas separadas hasta que el

segmento entero esté estructurado. |

Figura 3-20 Ejemplo 2

Reconocimiento de fa estructura

l No lo haga l
-G Este segmento del programa

no esta estructurado.

No Si 103

Figura 3-21 Ejemplo 3y proceso para estructurarlo

AR <2 Comprender la estructura

104

Observe el diagrama en la esquina superior izquierda de la figura 3-21. Si pudiera jalar la fle-
cha en la parte superior encontraria un cuadro de procedimiento etiquetado como G (véase la
figura 3-21, paso 1). Un solo proceso como G es parte de una estructura aceptable; constituye
al menos el comienzo de una estructura de secuencia.

Imagine que continda jalando simbolos del segmento enredado. El siguiente elemento en el
diagrama de flujo es una pregunta que prueba una condicién etiquetada con H, como

se observa en el paso 2 de la figura 3-21. En este punto usted sabe que la secuencia que co-
menzé con G ha terminado. Las secuencias nunca tienen decisiones en ellas, asi que la que
comenz6 con G ha finalizado; una seleccion o un ciclo inician con la pregunta H. Un ciclo
debe regresar a la pregunta que lo controla en algiin punto posterior. Usted puede ver a
partir de la légica original que si la respuesta a H es S o No, la l6gica nunca regresa a H. Por
consiguiente, H comienza una estructura de seleccién, no una de ciclo.

Para continuar desenredando la l6gica, usted jalaria la linea de flujo que surge del lado
izquierdo (el lado No) de la pregunta H y encontrarfa J, como se muestra en el paso 3 de la
figura 3-21. Cuando continta mas alla de], llega al final del diagrama de flujo.

Ahora puede poner su atencién en el lado Si (el lado derecho) de la condicién probada en H.
Cuando jala el lado derecho, encuentra la pregunta I. (Véase el paso 4 de la figura 3-21.)

En la version original del diagrama de flujo de la figura 3-21, siga la linea del lado izquierdo
de la pregunta I. La linea que surge del lado izquierdo de la seleccion I estd unida a J, que esta
fuera de la estructura de seleccion. Usted podria decir que la seleccion controlada por I se
enreda con la seleccién controlada por H, asi que debe desenmarariar las estructuras repi-
tiendo el paso que genera el enredo. (En este ejemplo, repite el paso] para desenredarlo del
otro uso de J.) Continte jalando la linea de flujo que surge de J hasta que alcance el final

del segmento de programa, como se muestra en el paso 5 de la figura 3-21.

Ahora jale el lado derecho de la pregunta I. El proceso K aparece, como se muestra en el paso 6
de la figura 3-21; entonces llega al final.

En este punto, el diagrama de flujo desenredado tiene tres extremos sueltos. Estos pueden
unirse para formar una estructura de seleccion; entonces es posible unir los extremos sueltos
de la pregunta H para formar otra estructura de seleccién. El resultado es el diagrama de flujo
que se muestra en el paso 7 de la figura 3-21. El segmento del diagrama de flujo entero esta
estructurado; tiene una secuencia a la que sigue una seleccién dentro de una seleccién.

ﬂ Si desea estructurar un ejemplo mas dificil de un programa no estructurado, vea el apéndice E.

Estructuracion y modularizacion de la Iogica no estructurada _

DOS VERDADES UNA MENTIRA

Reconocimiento de la estructura

1. Algunos procesos no pueden expresarse en un formato estructurado. 105

2. Un diagrama de flujo no estructurado puede lograr resultados correctos.

3. Cualquier diagrama de flujo no estructurado puede “desenredarse” para
hacerlo estructurado.

"0peJINONASa 0]eWLIOJ UN UD 9S1esaidxa
apand sauoidaNASUl 3P 01UN(UOI J3INbjens) " 0JaWNU] S3 BS|e) UQIdRLILER BT

Estructuracion y modularizacion
de la légica no estructurada

Recuerde el proceso para bafar perros que se ilustrd en la figura 3-1, al principio de este capi-
tulo. Si lo ve ahora reconocera que es un proceso no estructurado. ;Puede reconfigurarse para
efectuar precisamente las mismas tareas en una forma estructurada? jPor supuesto!

La figura 3-22 demuestra como podria usted enfocar la estructuracion de la légica para banar
perros. La parte 1 de la figura muestra el inicio del proceso. El primer paso, Atrapar al perro,
es una secuencia simple. A este paso lo sigue una pregunta. Cuando ésta se encuentra la
secuencia termina y empieza ya sea un ciclo o una seleccion. En este caso, después de que el
perro escapa, usted debe atraparlo y determinar si se escapa de nuevo, asi que comienza un
ciclo. Para crear un ciclo estructurado como los que ha visto antes en este capitulo, puede
repetir el proceso Atrapar al perro y regresar de inmediato a la pregunta ;El perro escapd?

AR R Comprender la estructura

® ® @

|Atrapar al perro

Atrapar al perro

106

JET perro
escap6?

JET perro
escap6?

Atrapar

No A%rapar al perro
al perro Abrir el agua
(:::) start
¢E1 perro Si
escap6?
| Atrapar al perro |
| No Cerrar
{ el agua
;E1 perro
é
) Atrapar al perro
escapo? Atrapar al perro

No

Abrir el agua

No lo haga
Este ciclo no esta

estructurado debido a que
su légica no regresa a la

pregunta después de que
Su Cuerpo se ejecuta.

JET1 perro
escapb?

Cerrar
el agua

|Atrapar al perro

v
¢E1 perro i Atrapar

escap6? al perro
No

Abrir el agua

Figura 3-22 Pasos para estructurar el proceso para banar perros

Estructuracion y modularizacion de la Iogica no estructurada _

En el diagrama de flujo original en la figura 3-1, usted abre la llave del agua cuando el perro

no escapa. Este paso es una secuencia simple, asi que puede agregarse correctamente después
del ciclo. Cuando se abre la llave del agua, la 16gica original comprueba si el perro escapé des-
pués de este nuevo desarrollo. Esto inicia un ciclo. En el diagrama de flujo original las lineas se
cruzan creando una marana, de modo que usted repetird tantos pasos como sean necesarios
para desenredar las lineas. Después de que cierra la llave del agua y atrapa al perro, encuentra
la pregunta ;El perro tiene champii? Debido a que la l6gica no ha llegado atn al paso de poner
champd, no hay necesidad de hacer esta pregunta; la respuesta en este punto siempre serd No.
Cuando no es posible recorrer alguna de las rutas logicas que surgen de una pregunta, usted
puede eliminar esta dltima. La parte 2 de la figura 3-22 muestra que si el perro escapa después
de que usted abre la llave del agua, pero antes de que lo moje y le ponga champu, debe cerrar la
llave, atrapar al perro y regresar al paso en el que se pregunta si el perro escapd.

107

La logica en la parte 2 de la figura 3-22 no estd estructurada debido a que el segundo ciclo que
comienza con ¢E/ perro escapd? no regresa de inmediato a la pregunta que controla al ciclo
después de que se ejecuta el cuerpo del mismo. Asi, para hacer el ciclo estructurado, usted
puede repetir las acciones que ocurren antes de regresar a la pregunta que controla el ciclo. El
segmento de diagrama de flujo en la parte 3 de la figura 3-22 esta estructurado; contiene

una secuencia, un ciclo, una secuencia y un ciclo final mas grande. Este dltimo contiene su
propia secuencia, ciclo y secuencia.

Después de que se atrapa al perro y la llave del agua esta abierta, usted lo moja y le pone
champu. Luego, de acuerdo con el diagrama de flujo original en la figura 3-1, una vez mas
comprueba para ver si el perro se ha escapado. Si lo ha hecho, usted cierra la llave del agua y
lo atrapa. Desde esta ubicacion en la logica, la respuesta a la pregunta ;El perro tiene champii?
siempre sera Si; como antes, no hay necesidad de hacer una pregunta cuando sélo hay una res-
puesta posible. Asi, si el perro escapa, se ejecuta el tltimo ciclo. Cierra la llave, continta atra-
pando al perro mientras se escapa repetidamente y abre la llave del agua. Cuando al fin atrapa
al perro, lo enjuaga y termina el programa. La figura 3-23 muestra tanto el diagrama de flujo
completo como el seudocddigo.

AR R Comprender la estructura

108

|Atrapar al perro|

JET1 perro
escap6?

Abrir el agua

Atrapar al perro

Mojar al
perro y
aplicarle
champu

Cerrar el agua

| Atrapar al perro|

Atrapar
al perro

Enjuagar
al perro

(stop)

Abrir el agua

Atrapar
al perro

start

Atrapar al perro

while el perro escapa
Atrapar al perro

endwhile

Abrir el agua

while el perro escapa
Cerrar el agua
Atrapar al perro
while el perro escapa

Atrapar al perro

endwhile
Abrir el agua

endwhile

Mojar al perro y aplicarle champu

while el perro escapa
Cerrar el agua
Atrapar al perro
while el perro escapa

Atrapar al perro

endwhile
Abrir el agua

endwhile

Enjuagar al perro

stop

Figura 3-23 Diagrama de flujo y seudocodigo estructurados para banar perros

El diagrama de flujo de la figura 3-23 estd completo y estructurado. Contiene estructuras de
secuencia y de ciclo alternadas.

Estructuracion y modularizacion de la légica no estructurada _

La figura 3-23 incluye tres lugares donde la secuencia-ciclo-secuencia de atrapar al perro y
abrir la llave del agua se repite. Si lo desea, podria modularizar las secciones duplicadas de
modo que sus conjuntos de instrucciones se escriban una sola vez y queden contenidas en su

propio médulo. La figura 3-24 muestra una versiéon modularizada del programa; las tres llama-

das a modulos estdn sombreadas.

catchDogStartWater()

¢ET1 perro
escap6?

Cerrar el agua

No
Mojar al perro y catchDogStartWater ()
ponerle champu

.E1 perro
escap6?

Cerrar el agua

Enjuagar

catchDogStartWater()
al perro

I

(catchDogStartWater‘())
Atrapar al perro

start
catchDogStartWater()
while el perro escapa
Cerrar el agua
catchDogStartWater ()
endwhile
Mojar al perro y aplicarle champu
while el perro escapa
Cerrar el agua
catchDogStartWater ()
endwhile
Enjuagar al perro
stop
catchDogStartWater()
Atrapar al perro
while el perro escapa
Atrapar al perro
endwhile
Abrir el agua
return

JE1 perro
escapo6?

No
Abrir el agua

Atrapar al perro

Figura 3-24 Version modularizada del programa para banar perros

109

VAR <2 Comprender la estructura

Sin importar cuan complicado sea, cualquier conjunto de pasos puede reducirse siempre a
combinaciones de las tres estructuras bésicas de secuencia, selecciéon y ciclo. Estas estructuras
pueden anidarse y apilarse en un nimero infinito de formas para describir la 16gica de cual-
quier proceso y crear la 16gica para cada programa de computadora escrito en el pasado, el
presente o el futuro.

cas. La estructura case es una variacion de la estructura seleccion y el ciclo do lo es del ciclo while.
Usted puede aprender sobre ambas en el apéndice F. Aun cuando estas estructuras adicionales pueden
usarse en casi todos los lenguajes de programacion, es posible resolver todos los problemas légicos sin
ellas.

110 ﬂ Por conveniencia, muchos lenguajes de programacion permiten dos variaciones de las tres estructuras basi-

DOS VERDADES UNA MENTIRA

Estructuracion y modularizacion de la logica no estructurada

1. Cuando usted encuentra una pregunta en un diagrama loégico, una secuencia
debe terminar.

2. Enun ciclo estructurado, la légica regresa a la pregunta que lo controla des-
pués de que se ejecuta el cuerpo del ciclo.

3. Siun diagrama de flujo o seudocddigo contiene una pregunta cuya respuesta
nunca varia, es posible eliminar dicha pregunta.

"ejungaid | 81usnoua as anb ap sajue
Jeuiwia} elpod BIN3oNJISe JaInNbjens "0jo1o un 0 UQIDII[SS BuN JeIdlul Iagap ‘02180)
eweJSelp un ua eun3aid BUN B13UBNOUS OpPUBNY T 0JBWINU B| S8 BS[R) UQIoRWLILE BT

Resumen del capitulo

e (Codigo espagueti es el nombre comun para las declaraciones no estructuradas que no
siguen las reglas de la logica estructurada.

e Es posible elaborar programas mds claros usando sélo tres estructuras basicas: secuencia,
seleccién y ciclo. Estas pueden combinarse en un nimero infinito de formas apilandolas
y aniddndolas. Cada estructura tiene un punto de entrada y uno de salida; una estructura
puede unirse a otra sélo en uno de estos puntos.

e Una entrada anticipada es la declaracién que obtiene el primer valor de entrada antes de
empezar un ciclo estructurado. El tltimo paso dentro del ciclo obtiene el siguiente y todos
los valores de entrada subsiguientes.

e Los programadores usan técnicas estructuradas para promover la claridad, el profesiona-
lismo, la eficiencia y la modularidad.

Terminos clave [

e Una forma de ordenar un segmento de diagrama de flujo no estructurado es imaginarlo
como un tazdén de espagueti que usted debe desenredar.

e Cualquier conjunto de pasos légicos puede reescribirse para que se ajuste a las tres
estructuras.

Términos clave

El codigo espagueti es la l6gica enredada y no estructurada de un programa.

Los programas no estructurados son aquellos que 7o siguen las reglas de la logica
estructurada.

Los programas estructurados son aquellos que siguen las reglas de la légica estructurada.

Una estructura es una unidad bésica de légica de programacidén; cada estructura es una
secuencia, una seleccion o un ciclo.

Una estructura de secuencia contiene una serie de pasos que se ejecutan en orden. Una
secuencia puede contener cualquier cantidad de tareas, pero no hay opcién para ramificar y
omitir cualquiera de éstas.

Una estructura de seleccion o estructura de decision contiene una pregunta y, dependiendo
de la respuesta, toma algtn curso de accion antes de continuar con la siguiente tarea.

Una declaracion de fin de estructura designa el final de una estructura en seudocédigo.
Un 1if-then-else es otro nombre para una estructura de seleccién.

Un 1if de alternativa dual (o selecciones de alternativa dual) define una accién que se efec-
tuard cuando la condicién probada es verdadera y otra accién cuando sea falsa.

Un if de alternativa unica (o selecciones de alternativa unica) efectian una accién en una
sola rama de la decision.

El caso nulo es la rama de una decisién en la que no se emprende una accidn.

Una estructura de ciclo contintia repitiendo acciones mientras una condicién de prueba se
mantiene verdadera.

Un cuerpo de ciclo es el conjunto de acciones que ocurren dentro de un ciclo.
Repeticion e iteracion son nombres alternativos para una estructura de ciclo.

Enunwhile... do, o massimple, un ciclo while, un proceso contintia mientras alguna
condicién sigue siendo verdadera.

Las estructuras apiladas son el resultado de la unién de estructuras por sus extremos.
Las estructuras anidadas son el resultado de colocar una estructura dentro de otra.
Un bloque es un conjunto de declaraciones que se ejecuta como una unidad.

Una entrada anticipada o lectura anticipada es la declaracion que lee el primer registro de
datos de entrada antes de comenzar un ciclo estructurado.

Programacion sin goto es un nombre que describe la programacién estructurada, porque los
programadores estructurados no usan una declaracion “go to”

VAR <2 Comprender la estructura

Preguntas de repaso

112

1.

La légica de programa enredada se llama cédigo
a) vibora ¢) cadena

b) espagueti d) retorcido

Las tres estructuras de la programacién estructurada son
a) secuencia, orden y proceso ¢) secuencia, seleccién y ciclo

b) seleccidn, ciclo e iteracién d) if, elsey then

Una estructura de secuencia puede contener
a) cualquier cantidad de tareas ¢) no mas de tres tareas

b) exactamente tres tareas d) sélo una tarea

¢Cual de los siguientes no es otro término para una estructura de selecciéon?

a) de decision ¢) 1if de alternativa dual

b) if-then-else d) de ciclo

La estructura en la que usted hace una pregunta y, dependiendo de la respuesta,

efectda alguna accion y luego hace la pregunta de nuevo, puede llamarse de todas las
maneras siguientes excepto

a) iteracién c) repeticién
b) ciclo d) if-then-else

La colocacién de una estructura dentro de otra se llama
a) apilarlas ¢) construirlas

b) desenredarlas d) anidarlas

Unir estructuras por sus extremos se llama

a) apilarlas ¢) construirlas

b) desenredarlas d) anidarlas

La declaracién if age >= 65 then seniorDiscount = “si” es un ejemplo
de

a) secuencia c) seleccion de alternativa dual
b) ciclo d) seleccion de alternativa tnica

La declaracion while la temperatura se mantenga menor a 60, dejar el horno
encendido es un ejemplo de

a) secuencia ¢) seleccion de alternativa dual

b) ciclo d) seleccion de alternativa tinica

10.

11.

12.

13.

14.

15.

16.

Preguntas de repaso. |

La declaracién if age < 13 then movieTicket = 4.00 else movieTicket = 8.50
es un ejemplo de

a) secuencia ¢) seleccion de alternativa dual

b) ciclo d) seleccion de alternativa unica

¢Cual de los siguientes atributos comparten las tres estructuras bésicas?

a) Sus diagramas de flujo contienen exactamente tres simbolos de procesamiento.
b) Todas tienen un punto de entrada y uno de salida.

¢) Todas contienen una decisién.
d)

Todas comienzan con un proceso.

¢Cudl es verdadera respecto a las estructuras apiladas?

a) Dos incidencias de la misma estructura no pueden apilarse en forma adyacente.

b) Cuando usted apila estructuras, no puede anidarlas en el mismo programa.

¢) Cada estructura sélo tiene un punto donde puede apilarse encima de otra.

d) Cuando se apilan estructuras, la estructura superior debe ser una secuencia.

Cuando usted introduce datos en un ciclo dentro de un programa, la declaracién de

entrada que precede al ciclo

a) es la Unica parte del programa que se permite que no sea estructurada

b) no puede resultar en eof

¢) sellama entrada anticipada

d) se ejecuta cientos o incluso miles de veces en la mayorfa de los programas de
negocios

Un grupo de declaraciones que se ejecuta como una unidad es un(a)

a) bloque ¢) trozo

b) familia d) cohorte

¢Cual de las siguientes acciones es aceptable en un programa estructurado?

a) colocar una secuencia dentro de la mitad verdadera de una decisién de alternativa
dual

b) colocar una decisién dentro de un ciclo
¢) colocar un ciclo dentro de uno de los pasos en una secuencia

d) Todo lo anterior es aceptable

En una estructura de seleccidn, la pregunta que controla la estructura
a) se hace una sola vez al principio de la estructura

b) se hace una vez al final de la estructura

c) se hace repetidamente hasta que es falsa

d) se hace repetidamente hasta que es verdadera

113

VAR <2 Comprender la estructura

17. Cuando se ejecuta un ciclo, la pregunta que controla la estructura
a) se hace exactamente una vez
b) nunca se hace mas de una vez
c) se hace antes o después de que se ejecuta el cuerpo del ciclo

114 d) se hace sdlo si es verdadera y no se hace si es falsa

18. ;Cuadl de las siguientes 7o es una razén para aplicar las reglas de estructura en los pro-
gramas de computadora?

a) Los programas estructurados son mas claros que los no estructurados y es mas
facil entenderlos.

b) Otros programadores profesionales esperan que los programas estén
estructurados.

¢) Los programas estructurados por lo general son mas breves que los no
estructurados.

d) Los programas estructurados pueden dividirse en médulos con facilidad.

19. ;Cudl de los siguientes no es un beneficio de la modularizacién de los programas?
a) Es mads facil leer y entender los programas modulares que los que no lo son.
b) Si usted usa médulos, puede ignorar las reglas de estructura.
¢) Los componentes modulares son reutilizables en otros programas.
d)

Muchos programadores pueden trabajar en diferentes médulos al mismo tiempo.

20. ;Cual de las siguientes afirmaciones es verdadera en la 1dgica estructurada?

a) Usted puede usar la légica estructurada con los lenguajes de programacion mas
recientes, como Java y C#, pero no con los mds antiguos.

b) Cualquier tarea puede describirse usando alguna combinacién de las tres
estructuras.

¢) Los programas estructurados requieren que se divida el cddigo en médulos faciles
de manejar, cada uno de ellos no contiene mds de cinco acciones.

d) Todas las afirmaciones son verdaderas.
Ejercicios

1. Enla figura 3-10 se mostré el proceso de comprar y plantar flores en primavera usando
las mismas estructuras que en el ejemplo genérico de la figura 3-9. Use la misma
estructura logica de esa figura para crear un diagrama de flujo o seudocddigo que des-
criba algdn otro proceso que conozca.

2. Ningun segmento del diagrama de flujo en la figura 3-25 estd estructurado. Vuelva a
trazar cada uno de modo que haga lo mismo pero quede estructurado.

Ejercicios |

115

[] []
-

[«]

] o
|

No Si

e
[«]
[

E‘Pj
v <lk
_T_l

Si

07 > .

No

l

Figura 3-25 Diagramas de flujo para el ejercicio 2 (continda)

VIR Comprender la estructura

N

Figura 3-25 Diagramas de flujo para el ejercicio 2 (continuacion)

3. Escriba un seudocddigo para cada ejemplo (de a hasta e) en el ejercicio 2, aseguran-
dose de que su seudocddigo esta estructurado pero efectda las mismas tareas que el
segmento de diagrama de flujo.

4. Suponga que ha creado un brazo mecéanico que puede sostener un boligrafo. El brazo
puede realizar las siguientes tareas:

e Bajar el boligrafo hasta una hoja de papel.
e Levantar el boligrafo del papel.

e Mover el boligrafo 3 centimetros (o 1 pulgada) en linea recta. (Si el boligrafo estd
abajo, esta accidn traza una linea de 3 centimetros de izquierda a derecha; si
esté levantado, esta accidn sélo reubica el boligrafo 3 centimetros [o 1 pulgada]
a la derecha.)

e Girar 90° a la derecha.
e Trazar un circulo que tenga 3 centimetros (o 1 pulgada) de didmetro.

Trace un diagrama de flujo estructurado o escriba un seudocédigo estructurado
que explique la l6gica que causaria que el brazo dibuje o escriba lo siguiente. Haga que

Ejercicios [

un(a) compaiiero(a) de estudios actie como el brazo mecénico y lleve a cabo sus ins-
trucciones. No revele el resultado deseado a su compariero(a) hasta que el ejercicio
esté completo.

a) un cuadrado de 3 centimetros (1 pulgada)

b) un rectdngulo de 5 centimetros por 3 centimetros

¢) una cadena de tres cuentas
d) una palabra corta (por ejemplo, gato)

e) un ndmero de cuatro digitos

Suponga que ha creado un robot mecdnico que puede realizar las siguientes tareas:
e DPonerse de pie.

e Sentarse.

e Girar 90° a la izquierda.

e Girar 90° a la derecha.

e Dar un paso.
Ademais, el robot puede determinar la respuesta a una condicién de prueba:

e ;Estoy tocando algo?

a) Coloque dos sillas separadas 6 metros (o 20 pies), de modo que queden directa-
mente una frente a la otra. Trace un diagrama de flujo estructurado o escriba
un seudocddigo que expliquen la légica que permitirfa al robot empezar desde
la posicién de sentado en una silla, cruzar la habitacién y sentarse en la otra
silla. Haga que un compaiiero(a) de estudios actiie como el robot y siga sus
instrucciones.

b) Trace un diagrama de flujo estructurado o escriba un seudocéddigo que expli-
quen la légica que permitirfa al robot empezar desde la posicién de sentado en
una silla, ponerse de pie y dar vuelta a la silla, cruzar la habitacién, dar vuelta a
la otra silla, regresar a la primera silla y sentarse. Haga que un compariero(a) de
estudios actile como el robot y lleve a cabo sus instrucciones.

Trace un diagrama de flujo estructurado o escriba seudocédigo que expliquen el pro-
ceso de adivinar un nimero entre 1y 100. Después de cada intento, se dice al jugador
que la suposicion es demasiado alta o demasiado baja. El proceso contintia hasta que
el jugador adivina el numero correcto. Escoja un nimero y haga que un compaiiero(a)
trate de adivinarlo siguiendo sus instrucciones.

Buscar una palabra en un diccionario puede ser un proceso complicado. Por ejemplo,
suponga que desea encontrar ldgica. Podria abrir el diccionario en una pégina al azar
y ver jugo. Sabe que esta palabra va alfabéticamente antes que ldgica, asi que avanza y
ve lagarto. Todavia no es lo bastante adelante, asi que avanza y ve mono. Se ha exce-

dido, asi que retrocede, y asi sucesivamente. Trace un diagrama de flujo estructurado

VAR <2 Comprender la estructura

118

10.

11.

o escriba un seudocédigo que expliquen el proceso de buscar una palabra en un dic-
cionario. Escoja una al azar y haga que un(a) companero(a) intente llevar a cabo sus
instrucciones.

Trace un diagrama de flujo estructurado o escriba un seudocddigo estructurado que
describan cémo hallar su salén de clases desde la entrada principal de la escuela.
Incluya al menos dos decisiones y dos ciclos.

Trace un diagrama de flujo estructurado o escriba un seudocddigo estructurado que
expliquen cdmo arreglar un departamento. Incluya al menos dos decisiones y dos
ciclos.

Trace un diagrama de flujo estructurado o escriba un seudocddigo estructurado que
expliquen cdmo envolver un regalo. Incluya al menos dos decisiones y dos ciclos.

Trace un diagrama de flujo estructurado o escriba un seudocddigo estructurado que
expliquen los pasos que debe seguir el dependiente de una tienda de abarrotes para
cobrarle a un cliente. Incluya al menos dos decisiones y dos ciclos.

‘- Encuentre los errores

Sus archivos descargables para el capitulo 3 incluyen DEBUG03-01.txt, DEBUGO3-
02.txt y DEBUG03-03.txt. Cada archivo empieza con algunos comentarios

que describen el problema. Los comentarios son lineas que comienzan con dos
diagonales(//). Después de los comentarios, cada archivo contiene seudocédigo que
tiene uno o mas errores que debe encontrar y corregir. (NOTA: Estos archivos se
encuentran disponibles sélo para la versién original en inglés.)

%’2 Zona de juegos

14.

15.

Elija un juego simple para ninos y describa su logica, usando un diagrama de flujo
estructurado o un seudocddigo. Por ejemplo, podria explicar “Piedra, papel o tijeras”;
el “Juego de las sillas”; el juego de naipes “Guerras”; o el juego de eliminacién “De tin
marin”.

Elija un programa de concurso de televisién como Jeopardy! o 100 mexicanos dijeron y
describa sus reglas usando un diagrama de flujo estructurado o un seudocédigo.

Elija un deporte como béisbol o futbol americano y describa las acciones en un periodo
limitado de juego (como un turno al bate en el béisbol o una posesién en el futbol
americano) usando un diagrama de flujo estructurado o un seudocédigo.

Ejercicios [

(Para discusion

16.

17.

18.

Encuentre més informacién sobre una de las siguientes personas y explique por qué
él o ella es importante en el d&mbito de la programacidn estructurada: Edsger Dijkstra,
Corrado Bohm, Giuseppe Jacopini y Grace Hopper.

119

Los programas de computadora pueden contener unas estructuras dentro de otrasy
estructuras apiladas, con lo que se crean programas muy grandes. Las computadoras
también pueden realizar millones de célculos aritméticos en una hora. ;Cémo es
posible saber que los resultados son correctos?

Elabore una lista de verificaciéon de reglas que puede usar para determinar si un
segmento de diagrama de flujo o de seudocddigo estan estructurados.

Toma de decisiones

En este capitulo usted aprendera sobre:

©@ © © ® ®© ©

Expresiones booleanas y la estructura de seleccion
Los operadores de comparacion relacional

Logica AND

Logica OR

Hacer selecciones dentro de rangos

Precedencia cuando se combinan operadores AND y OR

122

o AR S Toma de decisiones

Expresiones booleanas y la estructura de seleccion

La razén por la que las personas piensan con frecuencia que las computadoras son inteligentes
es la capacidad que tienen sus programas para tomar decisiones. Un programa de diagndstico
médico que puede decidir si los sintomas concuerdan con varios perfiles de enfermedades
parece bastante inteligente, al igual que uno que ofrece diferentes rutas de vacaciones poten-
ciales con base en su destino.

Cada decision que usted toma en un programa de computadora implica la evaluacién de una
expresion booleana, cuyo valor sélo puede ser verdadero o falso. La evaluacién verdadero/
falso es natural desde el punto de vista de una computadora, porque su circuiteria consiste en
interruptores de encendido-apagado de dos estados, que a menudo se representan con 1 0 0.
Cada decisién de la computadora produce un resultado verdadero o falso, si o no, 1 0 0. En
cada estructura de seleccion se usa una expresién booleana; dicha estructura no es nueva para
usted, es una de las estructuras bdsicas sobre las que aprendié en el capitulo 3. Véanse las figu-
ras 4-1y 4-2.

El matematico George Boole (1815-1864) enfoco la légica de manera mas sencilla que sus predecesores,
al expresar las selecciones légicas con simbolos algebraicos comunes. Se considera el fundador de la
l6gica matematica y las expresiones booleanas (verdadero/falso) reciben su nombre de él.

No Si No >

-3 o

Figura 4-1 La estructura de seleccion de Figura 4-2 La estructura de seleccion de
alternativa dual alternativa unica

En el capitulo 3 usted aprendié que la estructura de la figura 4-1 es una seleccidn de alternativa
dual, o binaria, debido a que una accién se asocia con cada uno de los dos resultados posibles:
dependiendo de la respuesta a la pregunta representada por el diamante, el flujo légico pro-
cede ya sea a la rama izquierda de la estructura o a la derecha. Las opciones son mutuamente
excluyentes; es decir, la l6gica puede fluir sélo a una de las dos alternativas, nunca a ambas.

Este libro sigue la convencion de que las dos rutas légicas que salen de una decision se trazan a la derecha

ﬂ y a la izquierda de un diamante en un diagrama de flujo. Algunos programadores trazan una de las lineas de
flujo saliendo de la parte inferior del diamante. El formato exacto del diagrama no es tan importante como la
idea de que una ruta légica fluye hacia adentro de una seleccion y dos resultados posibles salen.

El segmento de diagrama de flujo en la figura 4-2 representa una seleccién de alternativa tnica
en la que solo se requiere accién para un resultado de la pregunta. Esta forma de la estructura
de seleccion se llama 1 f-then, porque no se necesita una accién alternativa o else.

Expresiones booleanas y la estructura de seleccion _

La figura 4-3 muestra el diagrama de flujo y seudocédigo para un programa interactivo que
calcula el pago de los empleados. El programa despliega el salario semanal para cada empleado
con la misma tarifa por hora ($10.00 [todas las cantidades se presentan en délares estadouni-
denses]) y supone que no hay deducciones en la némina. La légica de linea principal llama a
los médulos housekeeping(), detailLoop() y finish().El mddulo detailLoop() contiene
una decisién if-then-else tipica que determina si un empleado ha trabajado mas que una
semana laboral estandar (40 horas) y paga una y media veces la tarifa por hora establecida por

las horas trabajadas en exceso de 40 por semana.

housekeeping()

output "Este programa

Declaraciones pr
string name calcula Ta némina
num hours basada en"
num RATE = 10.00 l
num WORK_WEEK = 40
num OVERTIME = 1.5 output "una tarifa de
num pay tiempo extra de "
string QUIT = "Zzz" OVERTIME, "después de ",
WORK_WEEK, " horas."
* l
housekeeping () output "Introduzca el
nombre del empleado o ",

"

QUIT, "para salir >>
Si

= /e vame)
No detaillLoop()

finish()
output "Introduzca

horas laboradas >> "

pay = (WORK_WEEK *
pay = hours * RATE) + Chours -
RATE WORK_WEEK) * RATE *

OVERTIME

output "E1 pago para",
name, "es $", pay

! finishO
output "Introduzca
nombre del empleado o ",

QUIT, "para salir >> " output "Calculos de
pago de tiempo
extra completos"

return

Figura 4-3 Diagrama de flujo y seudocddigo para un programa de némina con tiempo extra
(continda)

o VAREIE N Toma de decisiones

124

start
Declarations
string name
num hours
num RATE = 10.00
num WORK_WEEK = 40
num OVERTIME = 1.5
num pay
string QUIT = "Zzz"
housekeeping()
while name <> QUIT
detailLoop()
endwhile
finish()
stop

housekeeping()
output "Este programa calcula la némina basada en
output "una tarifa de tiempo extra de ", OVERTIME, "después de ", WORK_WEEK, "horas."
output "Introduzca el nombre del empleado o ", QUIT, "para salir >> "
input name

return

detaillLoop()
output "Introduzca las horas trabajadas >>
input hours
if hours > WORK_WEEK then
pay = (WORK_WEEK * RATE) + (hours - WORK_WEEK) * RATE * OVERTIME

else
pay = hours * RATE
endif
output "E1 pago para ", name, "es $", pay
output "Introduzca el nombre del empleado o ", QUIT, "para salir >> "
input name
return
finish()
output "Calculos de pago de tiempo extra completos"
return

Figura 4-3 Diagrama de flujo y seudocddigo para un programa de némina con tiempo extra (continuaciéon)

A lo largo de este libro se presentan muchos ejemplos tanto en forma de diagrama de flujo como de
seudocédigo. Cuando usted analice una solucién, quiza encuentre mas facil concentrarse al principio en
solo una de las dos herramientas de diseno. Cuando entienda como funciona el programa usando una herra-
mienta (por ejemplo, el diagrama de flujo), puede confirmar que la solucién es idéntica usando la otra
herramienta.

Expresiones booleanas y la estructura de seleccion _

En el médulo detaillLoop() del programa en la figura 4-3, la decisién contiene dos clausulas:

e La clausula if-then es la parte de la decisién que contiene la accién o acciones que se eje-
cutan cuando la condicién probada en la decision es verdadera. En este ejemplo, la cldusula
contiene el clculo de tiempo extra mds largo.

e Laclausula else de la decision es la parte que se ejecuta s6lo cuando la condicién probada
en la decisién es falsa. En este ejemplo, la clausula contiene el célculo mds breve.

La figura 4-4 muestra una ejecucién comun del programa en un ambiente de linea de coman-
dos. Se introducen los valores de datos para tres empleados; los primeros dos empleados no
trabajaron mas que 40 horas, as{ que su salario se despliega simplemente como horas por
$10.00. El tercer empleado, sin embargo, ha trabajado una hora de tiempo extra, y por tanto
gana $15.00 por la tltima hora en lugar de $10.00.

I e

Este programa calcula 1la nomina basada en

una tarifa de tiempo extra de 1.5 después de 40 horas.
Introduzca el nombre del empleado o ZZZ para salir >> Wilson
Introduzca las horas laboradas >> 39

E1 pago para Wilson es $390

Introduzca el nombre del empleado o ZZZ para salir >> Dauphin
Introduzca las horas laboradas >> 40

E1 pago para Dauphin es $400

Introduzca el nombre del empleado o ZZZ para salir >> Penn

P

Bn Command Prompt

Introduzca las horas laboradas >> 41

E1 pago para Penn es $415

Introduzca el nombre del empleado o ZZZ para salir >>
Calculos de pago de tiempo extra completos

Figura 4-4 Ejecucion tipica del programa de ndmina con tiempo extra de la figura 4-3

DOS VERDADES UNA MENTIRA

Expresiones booleanas y la estructura de seleccion
1. Laclausula if-then es la parte de una decision que se ejecuta cuando una
condicién probada en una decision es verdadera.

2. Laclausula el1se es la parte de una decision que se ejecuta cuando una condi-
cién probada en una decision es verdadera.

3. Una expresion booleana es aquella cuyo valor es verdadero o falso.

"BS|} S8 UQISIOAP BUN US epeqoid UQIDIPUOD BUN OpuUENnd BInNdale 9s anb
UQISIO9P euNn 9p d1Jed e| S 9S [BINSNE|D B "Z 0JaWNU | S BS|e) UgIopwLe &7

126

o AR S Toma de decisiones

Uso de operadores de comparacion relacionales

El cuadro 4-1 describe los seis operadores de comparacion relacionales soportados por
todos los lenguajes de programacion modernos. Cada operador es binario; es decir, cada uno
requiere dos operandos. Cuando se construye una expresién usando uno de los operadores
que se han descrito en el cuadro 4-1, la expresion evalda para verdadero o falso. (Note que
algunos operadores se forman usando dos caracteres sin espacio entre ellos.) Por lo general,
ambos operandos en una comparacién deben ser del mismo tipo de datos; es decir, usted
puede comparar valores numéricos con otros valores numéricos y cadenas de texto con otras
cadenas. Algunos lenguajes de programacién le permiten comparar un cardcter con

un numero. Si usted lo hace, entonces en la comparacién se usa sélo un cédigo numérico de
cardcter. El apéndice A contiene mds informacién sobre los sistemas de codificaciéon. En este
libro sélo se compararan los operandos del mismo tipo.

Operador Nombre Discusion

= Operador de equivalencia Evalta como verdadero cuando sus operandos son
equivalentes. Muchos lenguajes usan un signo de igual
doble (==) para evitar la confusién con el operador de
asignacion.

> Operador mayor que Evalua como verdadero cuando el operando izquierdo es
mayor que el operando derecho.

< Operador menor que Evalia como verdadero cuando el operando izquierdo es
menor que el operando derecho.

>= Operador mayor o igual que Evalla como verdadero cuando el operando izquierdo es
mayor que o equivalente al operando de la derecha.

<= Operador menor o igual que Evalla como verdadero cuando el operando izquierdo es
menor que o equivalente al operando de la derecha.

<> Operador no igual a Evalia como verdadero cuando sus operandos no
son equivalentes. Algunos lenguajes usan un signo de
admiracion seguido por un signo de igual para indicar no
igual a (I=).

HIEL[GI SR Operadores de comparacion relacionales

En cualquier expresién booleana, los dos valores comparados pueden ser variables o constan-
tes. Por ejemplo, la expresion scurrentTotal = 1007 compara una variable, currentTotal,
con una constante numérica, 100. Dependiendo del valor currentTotal, la expresién es verda-
dera o falsa. En la expresion ;currentTotal = previousTotal?, ambos valores son variables,
y el resultado también es verdadero o falso dependiendo de los valores almacenados en cada
una de las dos variables. Aunque es legal, usted nunca usaria expresiones en las que compara
dos constantes; por ejemplo, 420 = 20?7 0 ;30 = 407 Tales expresiones son expresiones tri-
viales debido a que cada una siempre evalta el mismo resultado: verdadero para ;20 = 20?7 y
falso para ;30 = 40?

Uso de operadores de comparacion relacionales _

Algunos lenguajes requieren operaciones especiales para comparar cadenas, pero en este libro
se supondré que los operadores de comparacion estdndar funcionan en forma correcta con
cadenas basadas en sus valores alfabéticos. Por ejemplo, la comparacién ;“azul” < “negro”?
se evaluarfa como verdadera porque “azul” precede a “negro” alfabéticamente. En general,
las variables de cadena no se consideran iguales a menos que sean idénticas, incluyendo el
espaciado y si aparecen en mayusculas o minudsculas. Por ejemplo, “pluma negra” no es igual
que “plumanegra’, “PLUMA NEGRA” o “Pluma Negra”

Cualquier decision puede hacerse usando combinaciones de sélo tres tipos de comparaciones:
igual, mayor que y menor que. Usted nunca necesitara las tres comparaciones adicionales
(mayor o igual que, menor o igual que o no igual), pero su uso frecuente hace que se tomen las
decisiones mds convenientes. Por ejemplo, suponga que necesita aplicar un descuento de 10%
a cualquier cliente cuya edad sea de 65 aflos o mayor, y cobrar el precio completo a otros clien-
tes. Puede usar el simbolo mayor o igual que para escribir la l6gica como sigue:

if customerAge >= 65 then
discount = 0.10

else
discount = 0

endif

Como alternativa, si no existe el operador >=, podria expresar la misma logica escribiendo:

if customerAge < 65 then
discount = 0
else
discount = 0.10
endif

En cualquier decisién para la que a >= b es verdadera, entonces a < b es falsa. A la inversa,
sia >= bes falsa, entonces a < b es verdadera. Al reformular la pregunta e intercambiar las
acciones emprendidas con base en el resultado, usted puede hacer la misma decisién en mul-
tiples formas. La ruta mds clara con frecuencia es hacer una pregunta de tal manera que el
resultado positivo o verdadero produzca la accién que fue su motivacion para hacer la prueba.
Cuando la politica de su compaiifa es “proporcionar un descuento para aquellos que tengan 65
afos y mas’, la frase mayor o igual que viene a la mente, de modo que es mas natural usarla.
Por el contrario, si su politica es “no aplicar descuento para aquellos menores de 65 aios’,
entonces es mds natural usar la sintaxis menor que. De cualquier forma, las mismas personas
recibirdn el descuento.

La comparacién de dos cantidades para decidir si no son iguales entre si es la mas confusa.
Usar no igual a en las decisiones implica pensar en dobles negativos, que pueden hacer a usted
propenso a incluir errores légicos en sus programas. Por ejemplo, considere el segmento de
diagrama de flujo en la figura 4-5.

o VAREIE N Toma de decisiones

if customerCode <> 1 then
discount = 0.25

else
;customerCode discount = 0.50
endif
<> 17
128
discount = 0.50 discount = 0.25

Figura 4-5 Uso de una comparacion negativa

En la figura 4-5, si el valor de customerCode es igual a 1, el flujo 16gico sigue la rama falsa de
la seleccidn. Si customerCode <> 1 es verdadero, discount es 0.25; si customerCode <> 1 no
es verdadero, significa que customerCode es 1 y discount es 0.50. Incluso la lectura del enun-
ciado “si customerCode no es igual a 1 no es verdadero” es incomoda.

La figura 4-6 muestra la misma decision, esta vez planteada con légica positiva. Tomar la
decision con base en cudl es customerCode es mds claro que tratar de determinar qué no es

customerCode.
if customerCode = 1 then
discount = 0.50
else
No i discount = 0.25
;customerCode = 17 endif
discount = 0.25 discount = 0.50

Figura 4-6 Uso del equivalente positivo de la comparacion negativa de la figura 4-5

claro cuando se usan. Con frecuencia, esto ocurre cuando usa un if sin un e1se, emprendiendo
la accion sélo cuando alguna comparacion es falsa. Un ejemplo seria: i f customerZipCode <>
LOCAL_ZIP_CODE then total = total + deliveryCharge

ﬂ Aunqgue usar comparaciones negativas puede ser incémodo, su significado en ocasiones es mas

Evitar un error comun con los operadores relacionales

Un error comun que ocurre cuando se programa con operadores relacionales es usar uno
equivocado y perder la frontera o limite requerido para una seleccién. Si usted usa el simbolo >
para hacer una selecciéon cuando debié usar >=, todos los casos que son iguales quedarian sin
seleccionar. Por desgracia, las personas que solicitan programas no siempre hablan con tanta
precisién como una computadora. Si, por ejemplo, su jefe dice: “Escriba un programa que
seleccione a todos los empleados mayores de 65 afos’, ;quiere decir que incluya a los emplea-
dos que tienen 65 afios o no? En otras palabras, la comparacién es age > 65 o age >= 657
Aungque la frase mads de 65 indica mayor que 65, las personas no siempre dicen lo que quieren
decir y el mejor curso de accion es verificar dos veces el significado que se pretende con la
persona que solicité el programa; por ejemplo, el usuario final, su supervisor o su instructor.
Frases similares que pueden causar malentendidos son no mds que, al menos y no menos.

DOS VERDADES UNA MENTIRA

Uso de los operadores relacionales de comparacion

1. Por lo general, usted solo puede comparar valores que sean del mismo tipo de
datos.

2. Una expresion booleana se define como aquella que decide si dos valores son
iguales.

3. En cualquier expresion booleana, los dos valores comparados pueden ser varia-
bles o constantes.

"0S|e} 0 0JapepJdA Jojen Un 9anpoJd anb ejjanbe sa euesjooq ugisaidxe eun
‘anb Jousw 0 anb JoAew S8 eun IS JIPIJBP S8 0] UIqIe] ‘euesjooq ugisaidxs eun
S9 S9|en31 UOS S3JO0JeA SOP IS JIPIOBp anbuny "z 0Jawinu e| S8 eS|ey ugideLliye e

Comprension de la léogica AND

A menudo usted necesita evaluar mas de una expresion para determinar si debe tener lugar
una acciéon. Cuando hace preguntas multiples antes de que se determine un resultado crea una
condicion compuesta. Por ejemplo, suponga que trabaja para una compaiiia de telefonia celu-
lar que cobra a sus clientes como sigue:

e La factura mensual por el servicio bésico es $30 (las cantidades estan en délares
estadounidenses).

e Se facturan $20 adicionales a los clientes que hacen més de 100 llamadas que duran un total
de més de 500 minutos.

La légica necesaria para este programa de facturacion incluye una decision AND, en la que dos
condiciones deben ser verdaderas para que una accién ocurra. En este caso es preciso hacer

o VAREIE N Toma de decisiones

130

un nimero minimo de llamadas y consumir un ntimero minimo de minutos antes de que se
cargue al cliente la cantidad adicional. Una decision AND puede construirse al usar una deci-
sion anidada, o un if anidado; es decir, una decisién dentro de la clausula if-then o else
de otra decision. Una serie de declaraciones if anidadas también se llama declaracion if en
cascada. El diagrama de flujo y seudocddigo para el programa que determina los cargos para
los clientes se muestran en la figura 4-7.

housekeeping()

1

Declarations
num customerId output "Calculador de
num callsMade pago de teléfono"
num callMinutes
num customerBill l

num CALLS = 100

num MINUTES = 500 input customerlId,
num BASIC_SERVICE = 30.00 callsMade, callMinutes?
num PREMIUM = 20.00
:
housekeeping()
|
finishQ
Si
detaillLoop()
output "Programa terminado”
No (detailLoop())
FinishO

callsMade >
CALLS?

icallMinutes
> MINUTES?

customerBill =
customerBill +
PREMIUM

!}

output customerId, callsMade,
" 1lamadas hechas; usados "
callMinutes, "minutos.
Factura total $§",
customerBill

|

input customerld,
callsMade, callMinutes

Figura 4-7 Diagrama de flujo y seudocddigo para el programa de facturacién de telefonia celular
(continda)

(continuacion)

start
Declarations
num customerId
num callsMade
num callMinutes
num customerBill
num CALLS = 100
num MINUTES = 500
num BASIC_SERVICE = 30.00
num PREMIUM = 20.00
housekeeping()
while not eof
detaillLoop()
endwhiTle
finish()
stop

housekeeping()
output "Calculador de pago de teléfono"
input customerId, callsMade, callMinutes
return

detaiTllLoop()
customerBill = BASIC_SERVICE
if callsMade > CALLS then
if callMinutes > MINUTES then
customerBill = customerBill + PREMIUM
endif
endif
output customerId, callsMade, " Tlamadas hechas; usados
callMinutes, " minutos. Factor total $", customerBill
input customerId, callsMade, callMinutes
return

finish()
output "Programa terminado"
return

131

Figura 4-7 Diagrama de flujo y seudocddigo para el programa de facturacién de telefonia celular

Usted aprendié sobre las estructuras anidadas en el capitulo 3. Siempre puede apilar y anidar cualquiera de

En el programa de facturacion de telefonia celular, los datos del cliente se recuperan de un archivo. Esto
elimina la necesidad de indicadores y mantiene el programa mas breve de modo que usted pueda con-
centrarse en el proceso de la toma de decisiones. Si éste fuera un programa interactivo, usted usaria un
indicador antes de cada declaracion de entrada. El capitulo 7 cubre el procesamiento de archivos y explica

ﬂ las estructuras basicas.

algunos pasos adicionales que puede dar cuando trabaje con archivos.

132

o AR S Toma de decisiones

En la figura 4-7 se declaran las variables y constantes apropiadas, y luego el médulo
housekeeping() despliega un encabezado introductorio y obtiene el primer conjunto de datos
de entrada. Después de que el control regresa a la légica de linea principal, se prueba la con-
dicién eof y si la entrada de datos no estd completa se ejecuta el médulo detailLoop(). En el
médulo detailLoop(), la factura del cliente se establece con la tarifa estdndar y luego se ejecuta
la decisién anidada. En la estructura if anidada en la figura 4-7 se evalda primero la expresién
callsMade > CALLS? Sila expresion es verdadera, sélo entonces se evalda la segunda expre-
sién booleana (callMinutes > MINUTES?). Si esta expresién también es verdadera, entonces
se agrega la prima de $20 a la factura del cliente. Si cualquiera de las condiciones probadas

es falsa, el valor de la factura del cliente nunca se altera, conservando el valor de $30 que se
asigno al inicio.

cuando se deba anidar una serie de decisiones sobre una sola variable. El apéndice F contiene informacion

ﬂ La mayoria de los lenguajes permite usar una variacion de la estructura de decision llamada estructura case
sobre la estructura case.

Anidar decisiones AND para la eficiencia

Cuando usted anida dos decisiones debe elegir cudl de ellas tomar primero. Logicamente, cual-
quier expresién en una decisién AND puede evaluarse primero. Sin embargo, con frecuencia
usted puede mejorar el desempeno de su programa eligiendo en forma correcta cudl de las dos
selecciones hacer primero.

Por ejemplo, la figura 4-8 muestra dos maneras de disefiar la estructura de decisién anidada
que asigna una prima a las facturas de los clientes si hacen mas de 100 llamadas de teléfono
celular y usan mds de 500 minutos en un periodo de facturacion. El programa puede pregun-
tar primero sobre las llamadas hechas, eliminar a los clientes que no hayan hablado mas del
minimo y preguntar sobre los minutos que se usaron sélo para los clientes que pasen la prueba
de las llamadas minimas (es decir, que se evalien como verdaderos). O el programa podria
preguntar primero sobre los minutos, eliminar a quienes no califiquen y preguntar sobre el
numero de llamadas sélo para los clientes que pasen la prueba de los minutos. De cualquier
manera, sélo los clientes que excedan ambos limites deben pagar la prima. ;Hay alguna dife-
rencia dependiendo de cudl pregunta se haga primero? En lo que respecta al resultado, no. De
cualquier manera, los mismos clientes pagan la prima: los que califican con base en ambos
criterios. Sin embargo, en lo que respecta a la eficiencia del programa, si podria haber una
diferencia dependiendo de cudl pregunta se haga primero.

if callsMade > CALLS then

callsMade >

if callMinutes > MINUTES then
CALLS? customerBill = customerBill + PREMIUM 133
endif

endif

customerBill =
customerBill +
PREMIUM

if callMinutes > MINUTES then
if callsMade > CALLS then
customerBill = customerBill + PREMIUM
endif
endif

callsMade >
CALLS?

customerBill =
customerBill +
PREMIUM

Figura 4-8 Dos formas de generar facturas de telefonia celular usando criterios idénticos

Suponga que sabe que de 1,000 clientes de telefonia celular, casi 90%, o 900, hacen mdas de 100
llamadas en un periodo de facturacién. Imagine que sabe también que sélo alrededor de la
mitad de los 1,000 clientes, o 500, usan mas de 500 minutos de tiempo de llamada.

Si usa la légica que se mostrd primero en la figura 4-8 y necesita generar 100 facturas telefé-
nicas, la primera pregunta, callsMade > CALLS?, se ejecutard 1,000 veces. Para aproximada-
mente 90% de los clientes, 0 900, la respuesta es verdadera, asi que se eliminan 100 clientes de

134

o AR S Toma de decisiones

la asignacién de prima y 900 contintian a la siguiente pregunta sobre los minutos consumidos.
Sélo alrededor de la mitad de los clientes usan mas de 500 minutos, asi que 450 de los 900
pagan la prima, y se requieren 1,900 preguntas para identificarlos.

Usando la l6gica alterna que se muestra en segundo lugar en la figura 4-8, la primera pregunta,
callMinutes > MINUTES?, también se hard 1,000 veces, una vez para cada cliente. Debido

a que sélo alrededor de la mitad de los clientes usan el nimero mayor de minutos, sélo 500
pasardn esta prueba y continuardn a la pregunta del numero de llamadas realizadas. Entonces,
casi 90% de los 500, 0 450 clientes, pasardn la segunda prueba y se les facturara la cantidad de
prima. Se requieren 1,500 preguntas para identificar a los 450 clientes que lo haran.

Ya sea que usted use el primero o el segundo érdenes de decisién de la figura 4-8, los mismos
450 clientes que satisfardn ambos criterios pagardn la prima. La diferencia es que cuando pre-
gunta primero sobre el numero de llamadas, el programa debe hacer 400 preguntas mas que
cuando pregunta primero sobre los minutos consumidos.

La diferencia de 400 preguntas entre el primer y el segundo conjuntos de decisiones no dura
mucho tiempo en la mayorifa de las computadoras. Pero toma algiin tiempo, y si una corpora-
cién tiene cientos de miles de clientes en lugar de s6lo 1,000, o si muchas de tales decisiones
tienen que hacerse dentro de un programa, el tiempo de ejecucion puede mejorar de manera
significativa al hacer las preguntas en el orden mas eficiente.

Con frecuencia cuando usted debe tomar decisiones anidadas, no tiene idea de cudl evento
tiene mayores probabilidades de ocurrir; en este caso, de manera legitima puede hacer cual-
quier pregunta primero. Sin embargo, si conoce las probabilidades de las condiciones, o puede
hacer una suposicion razonable, la regla general es: en una decision AND, primero haga la
pregunta que tiene menores probabilidades de ser verdadera. Esto elimina la mayor cantidad
posible de casos de la segunda decisién, lo que acelera el tiempo de procesamiento.

Uso del operador AND

La mayoria de los lenguajes de programacién permiten hacer dos o mds preguntas en una
sola comparacion si se usa un operador condicional AND o, mis sencillo, un operador AND
que una las decisiones en una sola declaracion. Por ejemplo, si desea facturar una cantidad
adicional a los clientes de telefonia celular que hacen mas de 100 llamadas que den un total de
mds de 500 minutos en un periodo de facturacion, puede usar decisiones anidadas, como se
mostrd en la seccion anterior, o incluir ambas decisiones en una sola declaracién escribiendo
la siguiente pregunta:

callsMade > CALLS AND callMinutes > MINUTES?

Cuando usted usa uno o mas operadores AND para combinar dos o mds expresiones booleanas,
cada una de estas tltimas debe ser verdadera para que la expresion entera se evaliie como ver-
dadera. Por ejemplo, si pregunta “;Es usted un ciudadano que nacié en Estados Unidos y tiene
menos de 35 afios de edad?’, la respuesta a ambas partes de la pregunta deben ser s/ antes de
que la respuesta pueda ser un solo si que los resuma. Si cualquier parte de la expresion es falsa,
entonces la expresion entera es falsa.

El operador condicional AND en Java, C++ y C# consiste en dos simbolos &, sin espacios entre ellos (&&).
En Visual Basic, se usa la palabra And.

Una herramienta que puede ayudarle a entender el operador AND es una tabla de verdad. Las 135
tablas de verdad son diagramas que se usan en las matemdticas y la 16gica para describir la
verdad de una expresion entera con base en la verdad de sus partes. El cuadro 4-2 muestra una
tabla de verdad que lista todas las posibilidades con una decision AND. Como muestra el cua-
dro, para cualesquiera dos expresiones x y y, la expresién x AND y? es verdadera solo si tanto x
como y son verdaderas de manera individual. Si ya sea x o y sola es falsa, o si ambas son falsas,
entonces la expresion x AND y? es falsa.

éx? ey? ¢X AND y?
Verdadero Verdadero Verdadero
Verdadero Falso Falso

Falso Verdadero Falso

Falso Falso Falso

(IELG O E7d Tabla de verdad para el operador AND

Si el lenguaje de programacién que usted usa permite un operador AND, debe observar que

la pregunta que coloque primero (a la izquierda del operador) es la que se hara primero y los
casos que se eliminen con base en la primera pregunta no procederan a la segunda. En otras
palabras, cada parte de una expresién que usa un operador AND sélo se evaliia hasta donde sea
necesario para determinar si la expresion entera es verdadera o falsa. Esta caracteristica se
llama evaluacion de cortocircuito. La computadora sélo puede hacer una pregunta a la vez;
aun cuando su seudocddigo se vea como el primer ejemplo en la figura 4-9, la computadora
ejecutard la légica que se muestra en el segundo ejemplo. Aun cuando use un operador AND,
la computadora toma una decisién a la vez y lo hace en el orden en que usted las hizo. Si la
primera pregunta en una expresion AND se evaltia como falsa, entonces la expresion entera es
falsa, y la segunda pregunta nunca se prueba.

Nunca se requiere que use el operador AND debido a que el uso de declaraciones if anidadas
siempre puede lograr el mismo resultado. Sin embargo, usar el operador AND con frecuencia
hace que su cédigo sea mds conciso, menos propenso a errores y mds facil de entender.

o VAREIE N Toma de decisiones

136

if callsMade > CALLS AND callMinutes > MINUTES then l
customerBill = customerBill + PREMIUM
endif

callsMade >
CALLS AND

callMinutes >
MINUTES?

customerBill =
customerBill +
PREMIUM

if callsMade > CALLS then
if callMinutes > MINUTES then
customerBill = customerBill + PREMIUM
endif
endif

No

callsMade >
CALLS?

customerBill =
customerBill +
PREMIUM

Figura 4-9 Uso de un operador AND y la légica que hay detras de él

Evitar errores comunes en una seleccion AND

Cuando necesite satisfacer dos o mds criterios para iniciar un evento en un programa, debe
asegurarse de que la segunda decisién se hace por completo dentro de la primera decisién. Por
ejemplo, si el objetivo de un programa es agregar una prima de $20 a la factura de los clientes
de telefonia celular que excedan de 100 llamadas y de 500 minutos en un periodo de factura-
cién, entonces el segmento de programa que se muestra en la figura 4-10 contiene tres tipos
diferentes de errores légicos.

No lo haga
La prima se agrega a la
factura del cliente porque

callsMade es bastante alto,
pero callMinutes podria
ser demasiado bajo. 137

icallsMade >

CALLS?
if callsMade > CALLS then

customerBill = customerBill + PREMIUM

customerBill = endif

customerBill + if callMinutes > MINUTES then

PREMIUM customerBill = customerBill + PREMIUM
endif

No lo haga

La prima se agrega a la
factura del cliente porque
calTMinutes es lo bastante
alto, pero callsMade podria
ser demasiado bajo.

customerBill =
customerBill +
PREMIUM
| No lo haga
Si el cliente ha excedido los
l limites tanto de llamadas

como de minutos, la prima
se agrega dos veces ala
factura del cliente.

Figura 4-10 Logica incorrecta para agregar una prima de $20 a las facturas de clientes de telefonia
celular que cumplan dos criterios

La ldgica en la figura 4-10 muestra que se agregan $20 a la factura de un cliente que hace
demasiadas llamadas; no necesariamente deberfa facturarsele extra, sus minutos podrian estar
debajo del limite para la prima de $20. Ademds, un cliente que ha hecho pocas llamadas no se
elimina de la segunda pregunta. En cambio, a todos los clientes se les aplica la pregunta de los
minutos y a algunos se les asigna la prima aun cuando no hayan pasado el criterio del nimero
de llamadas realizadas. Ademads, a cualquier cliente que pase ambas pruebas se le agregara la
prima dos veces a su factura. Por muchas razones, la légica que se muestra en la figura 4-10 no
es correcta para este problema.

Cuando use el operador AND en la mayoria de los lenguajes debe proporcionar una expresion
booleana completa en cada lado del operador. En otras palabras, callMinutes > 100 AND
callMinutes < 200 serfa una expresion valida para encontrar cal1Minutes entre 100 y 200.
Sin embargo, callMinutes > 100 AND < 200 no serfa valida porque lo que sigue al operador
AND (< 200) no es una expresién booleana completa.

138

o AR S Toma de decisiones

Por claridad, puede rodear cada expresiéon booleana en una expresién compuesta con su pro-
pio conjunto de paréntesis. Use este formato si es mas claro para usted; por ejemplo, podria
escribir lo siguiente:

if (calTMinutes > MINUTES) AND (callsMade > CALLS)
customerBill = customerBill + PREMIUM
endif

DOS VERDADES UNA MENTIRA

Comprension de la logica AND

1. Cuando usted anida decisiones debido a que la accién resultante requiere que
dos condiciones sean verdaderas, cualquier decision puede hacerse logica-
mente primero y ocurriran las mismas selecciones.

2. Cuando se requieren dos selecciones para que una accién ocurra, con frecuen-
cia usted puede mejorar el desempefo de su programa eligiendo de manera
apropiada cual seleccién hacer primero.

3. Para mejorar la eficiencia en una seleccion anidada en la que dos condiciones
deben ser verdaderas para que ocurra alguna accion, primero deberia hacer la
pregunta que tiene mas probabilidades de ser verdadera.

"BIOPEPISA
195 9p sapepijiqeqosd sousw ausn anb eungaid e| osswiid 198y BIBgap palsn
‘epepiue UQIII9|9S BUN U BIDUSIOLS B| BJed "€ 0JAWNU B| S BS|R} UQIDRLLILE B

Comprension de la légica OR

En ocasiones usted desea que ocurra una accién cuando una u otra de dos condiciones sea
verdadera. Esto se llama decision OR porque una condicién o alguna otra condicién deben
cumplirse para que un evento se presente. Si alguien pregunta: “;Estas libre para cenar el vier-
nes o el sdbado?’, sélo una de las dos condiciones tiene que ser verdadera para que la respuesta
a la pregunta completa sea si; sélo si las respuestas a ambas mitades de la pregunta son falsas
el valor de la expresion entera es falso.

Por ejemplo, suponga que desea agregar $20 a las facturas de los clientes de telefonia celular
que hagan mas de 100 llamadas o usen mds de 500 minutos. La figura 4-11 muestra el médulo
detailLoop() alterado del programa de facturacion que logra este objetivo.

detaillLoop()

customerBill =
BASIC_SERVICE

139

icallsMade
> CALLS?

icallMinutes
> MINUTES?

customerBill =
customerBill +
customerBill = PREMIUM
customerBill +
PREMIUM

!

output customerld,

callsMade, " 1lamadas hechas;
usados ", callMinutes,

" minutos. Factura total

$", customerBill

!

input customerId,
callsMade, callMinutes

detaillLoop()

customerBi1l = BASIC_SERVICE
if callsMade > CALLS then
customerBi1l = customerBill + PREMIUM
else
if callMinutes > MINUTES then
customerBi1l = customerBill + PREMIUM

endif
endif
output customerId, callsMade, " 1lamadas hechas; usados ",
callMinutes, " minutos. Factor total $", customerBill
input customerId, callsMade, callMinutes

return

Figura 4-11 Diagrama de flujo y seudocédigo para el programa de facturacion de telefonia celular en
el que un cliente debe cumplir uno o los dos criterios para que se le facture una prima

El detailLoop() en el programa de la figura 4-11 hace la pregunta ;callsMade > CALLS?,y
si el resultado es verdadero, la cantidad extra se agrega a la factura del cliente. Debido a que
hacer muchas llamadas es suficiente para que el cliente incurra en la prima, no hay necesidad
de cuestionar mds. Sélo si el cliente no ha hecho mas de 100 llamadas el programa necesita
preguntar si calIMinutes > MINUTES es verdadera. Si el cliente no hace mas de 100 llamadas,
pero no obstante us6 mas de 500 minutos, entonces se agrega la cantidad de la prima a la fac-
tura del cliente.

o VAREIE N Toma de decisiones

Escritura de decisiones OR para eficiencia

Como con una seleccién AND, cuando usa una seleccién OR puede elegir hacer cualquier pre-
gunta primero. Por ejemplo, puede agregar $20 extra a las facturas que cumplan uno o el otro
de dos criterios usando la légica en cualquier parte de la figura 4-12.

140

icallsMade >
CALLS?

icalTMinutes
> MINUTES?

customerBill =

- customerBill +
customerBill = PREMIUM

customerBill +
PREMIUM

if callsMade > CALLS then
customerBill = customerBill + PREMIUM
else
if callMinutes > MINUTES then
customerBill = customerBill + PREMIUM
endif
endif

;callMinutes
> MINUTES?

;callsMade >
CALLS?

customerBill =
customerBill +
customerBill = PREMIUM
customerBill +
PREMIUM

if callMinutes > MINUTES then
customerBill = customerBi1l + PREMIUM
else
if callsMade > CALLS then
customerBill = customerBill + PREMIUM
endif
endif

Figura 4-12 Dos formas de asignar una prima a las facturas de los clientes que cumplen uno de dos
criterios

Comprension d a egica 0F I

Usted pudo adivinar que una de estas selecciones es superior a la otra cuando tiene algin
antecedente sobre la probabilidad relativa de cada condicién que se prueba. Por ejemplo, diga-
mos que sabe que de 1,000 clientes de telefonfa celular, casi 90%, o 900, hacen mas de 100 lla-
madas en un periodo de facturacién. También sabe que sélo alrededor de la mitad de los 1,000
clientes, 0 500, usan mdas de 500 minutos de tiempo de llamada.

Cuando usted usa la légica que se muestra en la primera mitad de la figura 4-12, primero pre- 141
gunta respecto a las llamadas realizadas. Para 900 clientes la respuesta es verdadera y usted
agrega la prima a sus facturas. Sélo alrededor de 100 conjuntos de datos de los clientes con-
tindan a la siguiente pregunta respecto a los minutos de llamada, donde a alrededor de 50%
de los 100, 0 50, se les factura con la cantidad extra. Al final, ha tomado 1,100 decisiones para
agregar en forma correcta las cantidades de la prima para 950 clientes.

Siusa lalégica OR en la segunda mitad de la figura 4-12, pregunta primero sobre los minutos
usados (1,000 veces, una vez por cada uno de los 1,000 clientes). El resultado es verdadero para
50%, o 500 clientes, cuya factura se incrementa. Para los otros 500 clientes, pregunta sobre el
ndmero de llamadas hechas. Para 90% de los 500, el resultado es verdadero, asi que se agregan
primas para 450 personas adicionales. Al final, los mismos 950 clientes son facturados con $20
extra, pero este enfoque requiere ejecutar 1,500 decisiones, 400 decisiones més que cuando se
usé la primera logica de decisién.

La regla general es: en una decision OR, primero se hace la pregunta que tiene mds probabili-
dades de ser verdadera. Este enfoque elimina tantas ejecuciones de la segunda decisién como
sea posible y disminuye el tiempo que toma procesar todos los datos. Como con la situacién

AND, en una situaciéon OR es mds eficiente eliminar tantas decisiones extra como sea posible.

Uso del operador OR

Si necesita emprender una accién cuando se cumple una u otra de dos condiciones, puede
usar dos estructuras de seleccién anidadas separadas, como en los ejemplos anteriores. Sin
embargo, la mayoria de los lenguajes de programacién permiten hacer dos o mds preguntas
en una sola comparacion usando un operador condicional OR (o simplemente operador OR).
Por ejemplo, usted puede hacer la siguiente pregunta:

icallsMade > CALLS OR callMinutes > MINUTES?

Como con el operador AND, la mayoria de los lenguajes de programacién requieren una expre-
sién booleana completa en cada lado del operador OR. Cuando usted usa el operador logico
OR, sélo una de las condiciones listadas debe cumplirse para que la accién resultante ocurra.
El cuadro 4-3 muestra la tabla de verdad para el operador OR. Como puede ver en el cuadro, la
expresién entera ;x OR y? es falsa sélo cuando x y y son falsas de manera individual.

X? Y? (X ORYy?
Verdadero Verdadero Verdadero
Verdadero Falso Verdadero
Falso Verdadero Verdadero
Falso Falso Falso

(oIEL G EY Tabla de verdad para el operador OR

o VAREIE N Toma de decisiones

142

Si el lenguaje de programacion que usted usa soporta al operador OR, ain debe observar que la
pregunta que coloque primero es la que se hara primero y los casos que pasen la prueba de
la primera pregunta no procederdn a la segunda. Como con el operador AND, esta caracteristica
se llama cortocircuito. La computadora sélo puede hacer una pregunta a la vez; aun cuando
escriba el cddigo como se muestra en la parte superior de la figura 4-13, la computadora ejecu-
tard la logica que se muestra en la parte inferior.

if callsMade > CALLS OR callMinutes > MINUTES then
customerBill = customerBill + PREMIUM
endif

scallsMade >
CALLS OR

calTMinutes
> MINUTES?

No

customerBill =
customerBill +

PREMIUM
} if callsMade > CALLS then
customerBill = customerBill + PREMIUM
else

if callMinutes > MINUTES then
customerBill = customerBill + PREMIUM
endif
endif

Si

;scallsMade
> CALLS?

icallMinutes
> MINUTES?

customerBill =
customerBill +
customerBill = PREMIUM
customerBill +
PREMIUM

!

Figura 4-13 Uso de un operador OR y la légica que hay detras de él

ﬂ C#, C++, Cy Java usan el simbolo || como el operador logico OR. En Visual Basic, el operador es Or.

Evitar errores comunes en una seleccion OR

Quiz4 usted haya notado que la declaracién de asignacién customerBill = customerBill

+ PREMIUM aparece dos veces en los procesos de toma de decisién en las figuras 4-12 y 4-13.
Cuando se disefia un diagrama de flujo, la tentacién es trazar la légica en forma parecida a la
de la figura 4-14. Usted podria afirmar que el diagrama de flujo en la figura 4-14 es correcto
porque a los clientes correctos se les facturan los 20 ddlares extra. Sin embargo, este diagrama
de flujo no estd estructurado. La segunda pregunta no es una estructura auténoma con un
punto de entrada y uno de salida; en cambio, la linea de flujo sale de la estructura de seleccion
interior para unirse al lado Si de la estructura de seleccion exterior.

scallsMade
> CALLS?

No ;callMinutes Sq customerBjH =
> MINUTES? customerBill +
PREMIUM

No lo haga
Este diagrama de flujo l

no esta estructurado.

Esta decision sale
antes.

Figura 4.14 Diagrama de flujo no estructurado para determinar la factura de telefonia celular
del cliente

La seleccién OR tiene potencial adicional para que ocurran errores debido a las diferencias en
la forma en que las personas y las computadoras usan el lenguaje. Cuando su jefa desea agre-
gar una cantidad extra a las facturas de los clientes que hacen mds de 100 llamadas o usan mas
de 500 minutos, es probable que diga: “Agregue 20 ddlares a la factura de cualquiera que haga
mas de 100 llamadas y a cualquiera que haya usado més de 500 minutos” Su solicitud contiene
la palabra y entre dos tipos de personas, las que han hecho muchas llamadas y las que usaron
muchos minutos, poniendo el énfasis en las personas. Sin embargo, cada decisién que usted
tome se relaciona con los 20 délares agregados para un solo cliente que haya cumplido un
criterio o el otro, 0 ambos. En otras palabras, la condicién OR esta entre los atributos de cada
cliente y no entre clientes diferentes. En lugar de la declaracién previa de la gerente, seria mds
claro si ella dijera: “Agregue 20 délares a la factura de cualquiera que haya hecho mas de 100
llamadas o haya usado mds de 500 minutos’, pero usted no puede contar con que las personas
hablen como las computadoras. Como programador, tiene la labor de aclarar lo que se solicita
en realidad. Con frecuencia, una peticién casual para A y B légicamente significa una peticién
para A o B.

143

o VAREIE N Toma de decisiones

144

La forma en que usamos el idioma puede causar otro tipo de error cuando alguien solicita que
usted encuentre si un valor cae entre otros dos valores. Por ejemplo, un gerente de cine podria
decir: “Otorgue un descuento a los clientes que tengan menos de 13 afios de edad y a aquellos
que tengan més de 64 anos de edad; de lo contrario, cobre el precio completo” Debido a que
el gerente ha usado la palabra y en la solicitud, usted podria estar tentado a crear la decisién
que se muestra en la figura 4-15; sin embargo, esta légica no proporcionard un precio con
descuento a ningun asistente al cine. Debe recordar que cada vez que se toma la decision en
la figura 4-15, es para un solo cliente del cine. Si patronAge contiene un valor menor que 13,
entonces no es posible que contenga un valor mayor que 64. Del mismo modo, si patronAge
contiene un valor mayor que 64, no hay forma de que pueda contener un valor menor. Por
consiguiente, ningtn valor podria almacenarse en patronAge para el que ambas partes de la
pregunta AND pudiera ser verdadera, y el precio nunca se establecerfa con descuento para
cualquier cliente. La figura 4-16 muestra la légica correcta.

Declaraciones significativas
num patronAge
num price
num MIN_AGE = 13
num MAX_AGE = 64
num FULL_PRICE = 8.50
num DISCOUNTED_PRICE = 6.00

if patronAge < MIN_AGE AND patronAge > MAX_AGE then
No lo haga price = DISCOUNTED_PRICE

Es imposible para else

un cliente tener menos F_Wice = FULL_PRICE

de 13y mas de 64 afios. endif

JpatronAge <
MIN_AGE AND
patronAge >
MAX_AGE?

No

price = price =
FULL_PRICE DISCOUNTED_PRICE

Figura 4-15 Logica incorrecta que intenta otorgar un descuento para los clientes del cine jovenes y
adultos mayores

Declaraciones significativas
num patronAge
num price
num MIN_AGE 13
num MAX_AGE = 64
num FULL_PRICE = 8.50
num DISCOUNTED_PRICE = 6.00 145

if patronAge < MIN_AGE OR patronAge > MAX_AGE then
price = DISCOUNTED_PRICE
else
price = FULL_PRICE
l endif

JpatronAge <
MIN_AGE OR
patronAge >
MAX_AGE?

No

|pr1'ce = FULL_PRICE| price = DISCOUNTED_PRICE

Figura 4-16 Logica correcta que da un descuento para clientes del cine jovenes y adultos mayores

Un error similar puede ocurrir en su légica si el gerente del cine dice algo como: “No otorgue
un descuento, es decir, cobre el precio completo, si un cliente tiene mas de 12 afios 0 menos
de 65 afos de edad” Debido a que la palabra o aparece en la peticidn, usted podria planear su
légica de manera parecida a la de la figura 4-17. Ningun cliente recibirfa alguna vez un des-
cuento, porque todos tienen mdas de 12 o menos de 65. Recuerde, en una decisién OR, sélo
una de las condiciones necesita ser verdadera para que la expresion entera sea evaluada como
verdadera. Asi, por ejemplo, debido a que un cliente que tiene 10 afos tiene menos de 65,

se cobra el precio completo, y debido a que un cliente que tiene 70 tiene mds de 12 también se
cobra el precio completo. La figura 4-18 muestra la légica correcta para esta decision.

o VAREIE N Toma de decisiones

146

Declaraciones significativas
num patronAge
num price
num MIN_AGE = 12
num MAX_AGE = 65
num FULL_PRICE = 8.50
num DISCOUNTED_PRICE = 6.00

No lo haga if patronAge > MIN_AGE OR patronAge < MAX_AGE then
Todo cliente es mayor de 12 price = FULL_PRICE

o menor de 65. Por ejemplo, else

uno de 90 anos tiene mas de price = DISCOUNTED_PRICE

12 y uno de 3 afios de edad endif

es menor de 65.

ipatronAge >
MIN_AGE OR
patronAge <
MAX_AGE?

price = DISCOUNTED_PRICE price = FULL_PRICE

Figura 4-17 Logica incorrecta que intenta cobrar el precio completo a los clientes cuyas edades
rebasen los 12 anos y sean menores de 65

Declaraciones significativas
num patronAge

num price

num MIN_AGE = 12 if patronAge > MIN_AGE AND patronAge < MAX_AGE then

num MAX_ACGE = 65 price = FULL_PRICE

num FULL_PRICE = 8.50 else

num DISCOUNTED_PRICE = 6.00 pr-ice = DISCOUNTED_PRICE 147
endif

JpatronAge >
MIN_AGE AND
patronAge <

price =

DISCOUNTED_PRICE price = FULL_PRICE

Figura 4-18 Logica correcta que cobra el precio completo a clientes cuya edad sea mayor de 12 y menor
de 65

operador logico NOT para invertir el significado de una expresién booleana. Por ejemplo, la declaracién
if NOT (age < 21) output “OK” produce OK cuando age es mayor o igual que 21. El operador
NOT es unario en lugar de binario; es decir, no se usa entre dos expresiones, sino que se usa frente a una
sola expresion. En C++, Java y C#, se usa el signo de admiracion como operador NOT. En Visual Basic, el
operador es Not.

ﬂ Ademas de los operadores AND y OR, la mayoria de los lenguajes soporta un operador NOT. Se usa el

DOS VERDADES UNA MENTIRA

Comprension de la logica OR
1. Enuna seleccion OR, deben cumplirse dos o mas condiciones para que un
evento ocurra.

2. Cuando use una seleccion OR, puede hacer cualquier pregunta primero y aun
lograr un programa utilizable.

3. Laregla general es: en una decision OR, primero haga la pregunta que tenga
mayor probabilidad de ser verdadera.

"B4IN20 0JUBAS Un anb eJed 8sJijdwnd agap Sau
-012IpUOD SOP 9P BUN 0]0S ‘YO UOIDIYIBS BuUN UF T 0J8WNU B SB BS|e) UgIoeLLILe e

148

o AR S Toma de decisiones

Hacer selecciones dentro de rangos

Con frecuencia usted necesita emprender una acciéon cuando una variable se ubica dentro de
un rango de valores. Por ejemplo, suponga que su compafiia proporciona varios descuentos a
los clientes con base en el nimero de articulos ordenados, como se muestra en la figura 4-19.

Articulos Tasa de
ordenados descuento (%)
0alo 0
11a24 10
25a50 15

51 o mas 20

Figura 4-19 Tasas de descuento basadas en articulos ordenados

Cuando usted escribe el programa que determina una tasa de descuento basada en el
ndmero de articulos, podria tomar cientos de decisiones, como ;itemQuantity = 17,
;itemQuantity = 27y asi sucesivamente. Sin embargo, es més conveniente encontrar la tasa
de descuento correcta usando una comprobacién de rango.

Cuando usted usa una comprobacion de rango compara una variable con una serie de valo-
res que marcan los limites de los rangos. Para realizar una comprobacién de rango, se hacen
comparaciones usando el valor minimo o maximo en cada rango de valores. Por ejemplo, para
encontrar cada tasa de descuento listado en la figura 4-19, puede usar una de las siguientes
técnicas:

e Hacer comparaciones usando los extremos inferiores de los rangos.

+ Usted puede preguntar: ;itemQuantity es menor que 11? Si no, ;es menor que 25? Si no,
ses menor que 517 (Si es posible que el valor sea negativo, también comprobaria un valor
menor que 0 y emprenderia la accién apropiada si lo es.)

 Puede preguntar: ;itemQuantity es mayor o igual que 51? Si no, ;es mayor o igual que
257? Si no, ;es mayor o igual que 117 (Si es posible que el valor sea negativo, también com-
probaria un valor mayor o igual que 0 y emprenderia la accién apropiada si no lo es.)

e Hacer comparaciones usando los extremos superiores de los rangos.

+ Puede preguntar: ;itemQuantity es mayor que 507 Si no, ;es mayor que 24? Si no, jes
mayor que 10? (Si hay un valor maximo permitido para itemQuantity, también compro-
barfa un valor mayor que ese limite y emprenderia la accién apropiada si lo es.)

+ Puede preguntar: ;itemQuantity es menor o igual que 10? Si no, jes menor o igual que
242 Sino, ;es menor o igual que 507 (Si hay un valor maximo permitido para
itemQuantity, también comprobaria un valor menor o igual que ese limite y emprende-
ria la accién apropiada si no lo es.)

Hacer selecciones dentro de rangos

La figura 4-20 muestra el diagrama de flujo y el seudocddigo que representan la logica para un
programa que determina el descuento correcto para cada cantidad ordenada. En el proceso

de toma de decision, itemsOrdered se compara con el extremo superior del grupo con rango
menor (RANGE1). Si itemsOrdered es menor o igual que ese valor, entonces usted conoce el
descuento correcto, DISCOUNTZ; si no, contintia comprobando. Si itemsOrdered es menor

o igual que el extremo superior del siguiente rango (RANGE2), entonces el descuento para el
cliente es DISCOUNT?2; si no, contintia comprobando, y al final el descuento del cliente se esta-
blece en DISCOUNT3 o DISCOUNT4. En el seudocodigo en la figura 4-20, note como cada if, else
y endif asociados se alinean de manera vertical.

Declaraciones significativas
num itemsOrdered
num customerDiscount
num RANGE1l = 10
num RANGE2 = 24
num RANGE3 = 50
num DISCOUNT1 = O
num DISCOUNT2 = 0.10
num DISCOUNT3 = 0.15 l
num DISCOUNT4 = 0.20

sitemsOrdered <=
RANGE1?

customerDiscount

citemsOrdered

<= RANGE2? = DISCOUNT1
- customerDiscount

¢;itemsOrdered — DISCOUNT?2

<= RANGE3?
customerDiscount customerDiscount
= DISCOUNT4 = DISCOUNT3

l |
'

if itemsOrdered <= RANGE1l then
customerDiscount = DISCOUNT1
else
if itemsOrdered <= RANGE2 then
customerDiscount = DISCOUNT2
else
if itemsOrdered <= RANGE3 then
customerDiscount = DISCOUNT3
else
customerDiscount = DISCOUNT4
endif
endif
endif

Figura 4-20 Diagrama de flujo y seudocddigo de légica que selecciona el descuento correcto basado
en articulos

149

150

o AR S Toma de decisiones

represente un porcentaje. En cambio, se almacena el equivalente matematico. Por ejemplo, 15% se alma-

ﬂ En la memoria de la computadora, un signo de porcentaje (%) no se almacena con un valor numérico que
cena como 0.15.

Por ejemplo, considere una orden para 30 articulos. La expresion itemsOrdered

<= RANGEL se evaliia como falsa, asi que se ejecuta la clausula eTse de la decision. Ahi,
itemsOrdered <= RANGE2 también se evaltia como falsa, asi que se ejecuta la clausula eTse. La
expresion itemsOrdered <= RANGE3 es verdadera, asi que customerDiscount se vuelve
DISCOUNT3, que es 0.15. Recorra la légica con otros valores para itemsOrdered y verifique por
si mismo que cada vez se aplica el descuento correcto.

Evitar errores comunes cuando se usan comprobaciones de rango

Cuando los programadores inexpertos realizan comprobaciones de rango son propensos a
incluir la légica que tiene demasiadas decisiones, lo que conlleva més trabajo del necesario.

La figura 4-21 muestra un segmento de programa que contiene una comprobacion de rango
en la que el programador hace una pregunta de més (la pregunta sombreada en la figura). Si
sabe que itemsOrdered no es menor o igual que RANGE1, no menor o igual que RANGE2 y no
menor o igual que RANGE3, entonces itemsOrdered debe ser mayor que RANGE3. Preguntar si
itemsOrdered es mayor que RANGE3 es un desperdicio de tiempo; ningtin pedido de los clien-
tes puede recorrer alguna vez la ruta 1égica en la extrema izquierda del diagrama de flujo.
Podria decir que dicha ruta es una ruta sin salida o inalcanzable, y que las declaraciones
escritas ahi constituyen un cédigo sin salida o inalcanzable. Aunque un programa que contiene
dicha légica se ejecutard y asignara el descuento correcto a los clientes que ordenen mas de 50
articulos, proveer esta ruta es ineficiente.

Hacer selecciones dentro de rangos

Declaraciones significativas
num itemsOrdered
num customerDiscount
num RANGE1 10
num RANGE2 24
num RANGE3 50
num DISCOUNT1
num DISCOUNT2
num DISCOUNT3
num DISCOUNT4

151

[[I
oo oo

NP
S v o

iitemsOrdered <=
RANGE1?

No lo haga
Esta es una ruta sin salida.

customerDiscount
= DISCOUNT1

;itemsOrdered
<= RANGE27?

customerDiscount
= DISCOUNT2

;itemsOrdered
<= RANGE3?

customerDiscount
= DISCOUNT3

No
citemsOrdered
RANGE3?

customerDiscount
= DISCOUNT4

if itemsOrdered <= RANGE1l then
customerDiscount = DISCOUNT1
else
if itemsOrdered <= RANGE2 then
customerDiscount = DISCOUNT2
else
if itemsOrdered <= RANGE3 then
customerDiscount = DISCOUNT3
else
if itemsOrdered > RANGE3 then
customerDiscount = DISCOUNT4
endif
endif
endif
endif

No lo haga
Esta decision nunca puede
ser falsa.

Figura 4-21 Seleccion de rango ineficiente que incluye una ruta inalcanzable

o AR S Toma de decisiones

152

En la figura 4-21, es mas facil ver la inutilidad de la ruta en el diagrama de flujo que en la repre-
sentacion en seudocodigo de la misma logica. Sin embargo, cuando usa un if sin un else, no
hace nada cuando la respuesta a la pregunta es falsa.

buen abogado litigante rara vez hace una pregunta en el tribunal si la respuesta sera una sorpresa. Sin

ﬂ Cuando usted hace preguntas de seres humanos, en ocasiones ya sabe las respuestas. Por ejemplo, un
embargo, con la légica de la computadora, tales preguntas son un ineficiente desperdicio de tiempo.

Otro error que cometen los programadores cuando escriben la ldgica para ejecutar una com-
probacién de rango también implica hacer preguntas innecesarias. Usted nunca deberfa hacer
una pregunta si s6lo hay una respuesta o un resultado posible. La figura 4-22 muestra una se-
leccién de rango ineficiente que hace dos preguntas innecesarias. En la figura, si itemsOrdered
es menor o igual que RANGE1, customerDiscount se establece en DISCOUNTL. Si itemsOrdered
no es menor o igual que RANGE1, entonces debe ser mayor que RANGEL, asi que la siguiente de-
cisién (sombreada en la figura) es innecesaria. La 16gica de computadora nunca ejecutard la
decisién sombreada a menos que itemsOrdered ya sea mayor que RANGEL; es decir, a menos
que la légica siga la rama falsa de la primera seleccién. Si usted usa la 16gica en la figura 4-22,
desperdicia tiempo haciendo una pregunta que ya se ha contestado antes. La misma légica se
aplica a la segunda decisiéon sombreada en la figura 4-22. Los programadores principiantes en
ocasiones justifican su uso de preguntas innecesarias como “s6lo me aseguro por completo”.
Dicha precaucién es innecesaria cuando se escribe logica de computadora.

Hacer selecciones dentro de rangos

num RANGEL
num RANGE2
num RANGE3 =
num DISCOUNT1
num DISCOUNT2
num DISCOUNT3
num DISCOUNT4

Decisiones significativas
num itemsOrdered
num customerDiscount

10
24
50

153

No lo haga

No tiene caso hacer
la primera parte de
estas preguntas.

No

customerDiscount

sitemsOrdered
> RANGE2 AND
itemsOrdered
<= RANGE3?

iitemsOrdered <=
RANGE1?

customerDiscount

¢itemsOrdered = DISCOUNTL

> RANGE1 AND
itemsOrdered
<= RANGE2?

customerDiscount
= DISCOUNT2

customerDiscount

else

else

else

endif
endif
endif

= DISCOUNT4 = DISCOUNT3
No lo haga
No tiene caso hacer
la primera parte de
if itemsOrdered <= RANGE1l then estas preguntas.

customerDiscount = DISCOUNT1

if itemsOrdered > RANGEL1 AND itemsOrdered <= RANGE2 then
customerDiscount = DISCOUNT2

if itemsOrdered > RANGE2 AND itemsOrdered <= RANGE3 then
customerDiscount = DISCOUNT3

customerDiscount = DISCOUNT4

Figura 4-22 Seleccion de rango ineficiente que incluye preguntas ineficientes

154

o AR S Toma de decisiones

DOS VERDADES UNA MENTIRA

Seleccién dentro de rangos

1. Cuando usted realiza una comprobacion de rango, compara una variable con
todos los valores en una serie de rangos.

2. Puede realizar una comprobacién de rango haciendo comparaciones al usar el
valor minimo en cada rango de valores que utilice.

3. Puede realizar una comprobacién de rango haciendo comparaciones al usar el
valor maximo en cada rango de valores que utilice.

‘03ueJ eped ap JoLduI
owaJ1xa [9 0 Jouadns owaJlxa |9 Jesn apand ‘eda180| ns ap opualpuada "sosue.
SO| 9p SOW?aJ1Xa SO| ueluasaidal anb Saiojen ap aLIdS eun UOJ djgeLieA eun eJed

W02 ‘o3uedJ 3p ugIoegOJdWOD BUN BSN OpUBNY) T 0JBWNU | S8 BS|e) UgidewlyeR e

Comprension de la precedencia cuando
se combinan operadores AND y OR

La mayoria de los lenguajes de programacion permiten combinar en una expresién tantos
operadores AND y OR como se necesite. Por ejemplo, suponga que necesita lograr una califica-
cién al menos de 75 en cada uno de tres exdmenes para aprobar un curso. Puede declarar una
constante MIN_SCORE igual a 75 y probar las multiples condiciones con una declaracién como
la siguiente:

if scorel >= MIN_SCORE AND score2 >= MIN_SCORE AND score3 >= MIN_SCORE then

classGrade = "Aprobado"
else

classGrade = "Reprobado"
endif

Por otra parte, si necesita aprobar s6lo uno de los tres exdmenes para aprobar un curso, enton-
ces la légica es como sigue:

if scorel >= MIN_SCORE OR score2 >= MIN_SCORE OR score3 >= MIN_SCORE then

classGrade = "Aprobado"
else

classGrade = "Reprobado"
endif

La logica se vuelve mas complicada cuando combina operadores AND y OR dentro de la misma
declaracién. Cuando lo hace, los operadores AND tienen precedencia, lo que significa que los
valores booleanos de sus expresiones se evaltian primero.

Por ejemplo, considere un programa que determina si el cliente de un cine puede comprar un
boleto con descuento. Suponga que se permiten descuentos para ninos y adultos mayores que

Comprension de la precedencia cuando se combinan operadores... _

asisten a las peliculas con clasificaciéon G. El siguiente cédigo parece razonable, pero genera
resultados incorrectos porque la expresion que contiene el operador AND (véase el sombreado)
se evalda antes que la que contiene el operador OR.

if age <= 12 OR age >= 65 AND rating = "G" then
output "Aplica descuento"”
endif

No lo haga
AND se evalua primero, lo
cual no es la intencion.

155

Por ejemplo, suponga que un cliente del
cine tiene 10 afios de edad y la clasificacién
de la pelicula es R. El cliente no deberia recibir

un descuento (jni siquiera deberia permitirsele

ver la pelicula!). Sin embargo, dentro de la declaracion

if, la parte de la expresidon que contiene el operador AND, age >= 65 AND rating = “G”, se
evalta primero. Para un nifio de 10 afios y una pelicula clasificada R, la pregunta es falsa (en
ambos casos), de modo que la declaracién if entera se vuelve el equivalente de lo siguiente:

if age <= 12 OR aFalseExpression then
output "Aplica descuento"”
endif

Debido a que el cliente tiene 10 aiios, age <= 12 es verdadera, asi que la declaracién if origi-
nal se vuelve el equivalente de:

if aTrueExpression OR aFalseExpression then
output "Aplica descuento"”
endif

La combinacién verdadero OR falso se evaliia como verdadera. Por consiguiente, se da salida a
la cadena "Aplica descuento" cuando no deberia ser.

Muchos lenguajes de programacion le permiten usar paréntesis para corregir la légica y obli-
gar a que la expresion OR sea evaluada primero, como se muestra en el siguiente seudocddigo:

if (age <= 12 OR age >= 65) AND rating = "G" then
output "Aplica descuento"”
endif

Con los paréntesis agregados, si age del cliente es 12 o menos OR age es 65 0 mas, la expresién
se evalia como:

if aTrueExpression AND rating = "G" then
output "Aplica descuento"
endif

En esta declaracién, cuando el valor de edad califica a un cliente para un descuento, entonces
el valor de clasificacién también debe ser aceptable antes de que se aplique el descuento. Esta
era la intencién original.

o AR S Toma de decisiones

156

Usted puede usar las siguientes técnicas para evitar la confusiéon cuando mezcle operadores
AND y OR:

e DPuede usar paréntesis para anular el orden predeterminado de las operaciones.

e DPuede usar paréntesis por claridad aun cuando no cambien lo que el orden de las opera-
ciones seria sin ellos. Por ejemplo, si un cliente estuviera entre 12 y 19 o tuviera una cre-
dencial escolar para recibir un descuento de bachillerato, es posible usar la expresion
(age > 12 AND age < 19) OR validId ="Si", aun cuando la evaluacién serfa la misma
sin los paréntesis.

e DPuede usar declaraciones 1f anidadas en lugar de operadores AND y OR. Con el diagrama de
flujo y el seudocddigo que se muestran en la figura 4-23, es claro cudles clientes del cine reci-
birdn el descuento. En el diagrama de flujo, se ve que OR estd anidado por completo dentro de
la rama S1 de la seleccién srating = "G"? Del mismo modo, en el seudocddigo de la figura
4-23, se ve por la alineacién que si la clasificacién no es G, la 1égica procede en forma directa
a la tltima declaracién endif, evitando por completo cualquier comprobacién de age.

Declaraciones significativas: if rating = "G" then
string rating if age <= 12 then
num age output "Aplica descuento”
else

if age >= 65 then
output "Aplica descuento"
endif
endif
endif

output
"Aplica
descuento"

output
"Aplica
descuento"

Figura 4-23 Decisiones anidadas que determinan el descuento de los clientes del cine

Resumen del capitulo. [

DOS VERDADES UNA MENTIRA

Comprension de la precedencia cuando
se combinan operadores AND y OR

1. La mayor parte de los lenguajes de programacion le permiten combinar tantos 157
operadores AND y OR en una expresion como necesite.

2. Cuando combina operadores AND y OR, los operadores OR tienen precedencia,
lo que significa que sus valores booleanos se evallan primero.

3. Siempre puede evitar la confusion de mezclar decisiones AND y OR anidando
declaraciones i f en lugar de usar operadores AND y OR.

‘0Jawld uenjeas as sauoisaidxa sns
3p SOUBdj00Q S840[eA SO anb eaYIUSIS aNb O] ‘e1oudPada4d UBUBI} ANY SaJ0pesado
S0| “40 A anv saiopeJado euIqUIOD Opueny) “g 0JaWNU B S8 BS|e} ugioewliye e

Resumen del capitulo

e Las decisiones en los programas de computadora se toman evaluando las expresiones boo-
leanas. Usted puede usar estructuras if-then-else o if-then para elegir entre dos resul-
tados posibles.

e Usted puede usar operadores de comparacién relacionales para comparar dos operandos
del mismo tipo. Los operadores de comparacién estandar son =, >, <, >=, <=y <>.

e En una decisiéon AND, dos condiciones deben ser verdaderas para que ocurra una accién
resultante. Una decisién AND requiere una decision anidada o el uso de un operador AND.
En una decision AND, el enfoque més eficiente es hacer la pregunta que tenga menos pro-
babilidad de ser verdadera.

e En una decisién OR, al menos una de dos condiciones debe ser verdadera para que se pre-
sente una accion resultante; el enfoque mads eficiente es hacer la pregunta que tiene mds
probabilidades de ser verdadera. La mayoria de los lenguajes de programacién permiten
hacer dos 0 mas preguntas en una sola comparacién usando un operador condicional OR.

e Para realizar una comprobacién de rango, haga comparaciones ya sea con el valor minimo
o maximo en cada rango de valores de comparacién. Los errores comunes que ocurren
cuando los programadores realizan comprobaciones de rango incluyen las preguntas inne-
cesarias y que se han respondido antes.

e Cuando usted combina operadores AND y OR en una expresion, los operadores AND tienen
precedencia, lo que significa que sus valores booleanos se evaltan primero.

158

NIRRT R Toma de decisiones

Términos clave

Una expresion booleana es la que representa sélo uno de dos estados, que por lo general se
expresan como verdadero o falso.

Una estructura de decisién if-then contiene una expresién booleana probada y una accién
que s6lo ocurre cuando la expresion es verdadera.

Una clausula 1if-then de una decisién contiene la accién que resulta cuando la expresién
booleana en la decision es verdadera.

La clausula else de una decision contiene la accién o acciones que se ejecutan sélo cuando la
expresién booleana en la decision es falsa.

Los operadores de comparacion relacionales son los simbolos que expresan comparaciones
booleanas. Ejemplos incluyen =, >, <, >=, <=y <>.

Una expresion trivial es aquella que siempre se evaltia con el mismo valor.

Una condiciéon compuesta se construye cuando usted necesita hacer mdaltiples preguntas
antes de determinar un resultado.

Una decision AND contiene dos o mds decisiones; todas las condiciones deben ser verdaderas
para que una accion ocurra.

Una decision anidada, o un 1if anidado, es una decisién dentro de la cladusula if-then o else
de otra decision.

Una declaracion if en cascada es una serie de declaraciones i f anidadas.

Un operador condicional AND (o, de manera mds sencilla, un operador AND) es un simbolo
que se usa para combinar decisiones de modo que dos o mas condiciones deben ser verdade-
ras para que una accién ocurra.

Las tablas de verdad son diagramas que se usan en matematicas y légica para describir la ver-
dad de una expresion entera con base en la verdad de sus partes.

La evaluacion de cortocircuito es una caracteristica légica en la que las expresiones en cada
parte de una expresién mds grande se evaliian sélo en tanto sea necesario para determinar el
resultado final.

Una decision OR contiene dos o mas decisiones; si al menos una condicién se cumple, la
accion resultante ocurre.

Un operador condicional OR (o0, de manera mas sencilla, un operador OR) es un simbolo
que se usa para combinar decisiones cuando cualquier condicién puede ser verdadera para que
ocurra una accion.

El operador l6gico NOT es un simbolo que invierte el significado de una expresién booleana.

Cuando se usa una comprobacion de rango, se compara una variable con una serie de valores
que marcan los extremos limitantes de los rangos.

Una ruta sin salida o inalcanzable es una ruta légica que nunca puede recorrerse.

La precedencia es la cualidad de una operacién que determina el orden en el cual se evalta.

Preguntas de repaso [

Preguntas de repaso

1. Ladeclaracion de seleccién if quantity > 100 then discountRate = RATE esun

ejemplo de
a) una seleccién de alternativa dual ¢) un ciclo estructurado

159
b) una selecciéon de alternativa inica d) todo lo anterior

2. Ladeclaracién de seleccion if dayOfWeek = "Domingo" then price = LOWER_PRICE
else price = HIGHER_PRICE es un ejemplo de

a) una seleccion de alternativa dual ¢) una seleccién unaria

b) una seleccién de alternativa tnica d) todo lo anterior

3. Todas las declaraciones de seleccion deben tener
a) una cldusula then ¢) tantoacomob

b) una cldusula else d) ninguno de los anteriores

4. Una expresiéon como amount < 107 es una expresion
a) gregoriana ¢) magquiavélica

b) eduardiana d) booleana

5. Por lo general, usted sélo compara variables que tienen el mismo
a) tipo ¢) nombre

b) tamafio d) valor

6. Simbolos como >y < se conocen como operadores
a) aritméticos c) comparacion relacional

b) secuenciales d) precisidon de escritura

7. Sipudiera usar solo tres operadores de comparacion relacionales, podria arreglarselas
con

a) mayor que, menor que y mayor o igual que
b) igual a, menor que y mayor que
c) menor que, menor o igual que y no igual a

d) igual a, no igual a y menor que

8. Sia> b es falso, sentonces cudl de los siguientes siempre es verdadero?
a) a<=b ¢) a=b
b) a<b d) a>=b

o AT S Toma de decisiones

160

10.

11.

12.

Por lo general, el operador de comparacién con el que es mas dificil trabajar es

a) iguala C) menor que

b) mayor que d) noiguala

¢Cual de las opciones marcadas con letra es equivalente a la siguiente decisién?

if x > 10 then
if y > 10 then
output "X"
endif
endif
a) if x > 10 OR y > 10 then output "X"

b) if x > 10 AND x > y then output "X"
¢) if y > x then output "X"

d) if x > 10 AND y > 10 then output "X"

La regién de ventas del Medio Oeste de Acme Computer Company consiste en cinco
estados: Illinois, Indiana, lowa, Missouri y Wisconsin. Alrededor de 50% de los clien-
tes regionales reside en Illinois, 20% en Indiana y 10% en cada uno de los otros tres
estados. Suponga que tiene registros de entrada que contienen datos de los clientes de
Acme, incluyendo el estado de residencia. Para seleccionar y desplegar de manera mds
eficiente a todos los clientes que viven en la regién de ventas del Medio Oeste, usted
preguntarfa primero por la residencia en

a) Illinois

b) Indiana

c) Yasealowa, Missouri o Wisconsin, sin importar cudl de estos tres sea primero.

d) Cualquiera de los cinco estados, sin importar cuél sea primero.

Boffo Balloon Company fabrica globos de helio. Los globos grandes cuestan 13 délares
la docena, los globos medianos cuestan 11 ddlares la docena y los globos chicos cues-
tan 8.60 ddlares la docena. Alrededor de 60% de las ventas de la compania es de los
globos chicos, 30% de los medianos y los globos grandes sélo constituyen 10% de las
ventas. Los registros de los pedidos incluyen informacién del cliente, cantidad orde-
nada y tamarfio. Para escribir un programa que haga la determinacién més eficiente del

precio de un pedido con base en el precio ordenado, deberfa preguntar primero si el
tamano es

a) grande ¢) chico

b) mediano d) No importa

13.

14.

15.

Preguntas de repaso [

Boffo Balloon Company fabrica globos de helio en tres tamanos, 12 colores y con una
opcion de 40 frases impresas. Como promocion, la compania ofrece un descuento de
25% en los pedidos de los globos grandes, rojos, impresos con la frase "Feliz Dia

de los Novios'". Para seleccionar de manera més eficiente los pedidos en los que
aplica el descuento, usted usaria

a) declaraciones if anidadas con légica OR 161

b) declaraciones if anidadas con légica AND
¢) tres declaraciones i f sin anidar completamente separadas

d) No se proporciona suficiente informacién

En el siguiente seudocddigo, ;qué porcentaje de aumento recibird un empleado en el
Departamento 5?

if department < 3 then
raise = SMALL_RAISE
else
if department < 5 then
raise = MEDIUM_RAISE
else
raise = BIG_RAISE
endif
endif
a) SMALL_RAISE

b) MEDIUM_RAISE
c) BIG_RAISE

d) imposible decirlo

En el siguiente seudocédigo, ;qué porcentaje de aumento recibird un empleado en el
Departamento 8?

if department < 5 then
raise = SMALL_RAISE
else
if department < 14 then
raise = MEDIUM_RAISE
else
if department < 9 then
raise = BIG_RAISE

endif
endif
endif
a) SMALL_RAISE C) BIG_RAISE

b) MEDIUM_RAISE d) imposible decirlo

o AT S Toma de decisiones

162

16. En el siguiente seudocddigo, ;qué porcentaje de aumento recibird un empleado en el
Departamento 10?

if department < 2 then
raise = SMALL_RAISE
else
if department < 6 then
raise = MEDIUM_RAISE
else
if department < 10 then
raise = BIG_RAISE

endif
endif
endif
a) SMALL_RAISE c) BIG_RAISE
b) MEDIUM_RAISE d) imposible decirlo
17. Cuando usted usa una comprobacién de rango, compara una variable con el valor
en el rango.
a) minimo ¢) maximo
b) medio d) minimo o miximo

18. Sisales = 100, rate = 0.10 y expenses = 50, ;cudl de las siguientes expresiones
es verdadera?

a) sales >= expenses AND rate < 1
b) sales < 200 OR expenses < 100
c) expenses = rate OR sales = rate

d) dos de las anteriores

19. Siaesverdadera, b es verdadera y c es falsa, ;cudl de las siguientes expresiones es

verdadera?
a) a OR b AND c c) a AND b OR ¢
b) a AND b AND c d) dos de las anteriores

20. Sidesverdadera, e es falsa y f es falsa, ;cudl de las siguientes expresiones es verdadera?

a) e OR f AND d c¢) d OR e AND f
b) f AND d OR e d) dos de las anteriores
Ejercicios

1. Suponga que las siguientes variables contienen los valores que se muestran:

numberBig = 300 numberMedium = 100 numberSmall = 5
wordBig = "Dinosaurio" wordMedium = "Caballo" wordSmall = "Pato"

Ejercicios. [

Para cada una de las siguientes expresiones booleanas, decida si la declaracion es ver-
dadera, falsa o ilegal.

a) numberBig = numberSmall?
b) numberBig > numberSmall?

¢) numberMedium < numberSmall? 163

d) numberBig = wordBig?

e) numberBig = “Grande”
f) wordMedium = “Mediano”
g) wordBig = “Dinosaurio”

h) numberMedium <= numberBig / 37

i) numberBig >= 2007

j) numberBig >= numberMedium + numberSmall?

k) numberBig > numberMedium AND numberBig < numberSmall?

1) numberBig = 100 OR numberBig > numberSmall?

m) numberBig < 10 OR numberSmall > 107

n) numberBig 30 AND numberMedium = 100 OR numberSmall = 1007

Mortimer Life Insurance Company desea varias listas de datos de personal de ventas.
Disene un diagrama de flujo o seudocédigo para lo siguiente:

a) Un programa que acepte el numero de ID de un vendedor y el ndmero de pélizas
vendidas en el dltimo mes, y despliegue los datos sélo si el vendedor tiene un alto
rendimiento, una persona que vende més de 25 pdlizas en el mes.

b) Un programa que acepte datos del vendedor en forma continua hasta que se intro-
duzca un valor centinela y despliegue una lista de personas de alto rendimiento.

ShoppingBay es un servicio de subasta en linea que requiere varios informes. Disefie
un diagrama de flujo o seudocddigo para lo siguiente:

a) Un programa que acepte datos de la subasta como sigue: nimero de ID, descrip-
cién del articulo, duracién de la subasta en dias y oferta minima requerida. Des-
pliegue datos para una subasta si la oferta minima requerida es mas de 100 ddlares.

b) Un programa que acepte en forma continua datos de la subasta hasta que se intro-
duzca un valor centinela y despliegue una lista de todos los datos para subastas en
las que la oferta minima requerida sea mayor que 100 ddlares.

¢) Un programa que acepte en forma continua datos de la subasta y despliegue datos
para cada subasta en la que la oferta minima sea $0.00 y la duracién de la subasta
sea un dia o menos.

164

o AT S Toma de decisiones

d) Un programa que acepte en forma continua datos de la subasta y despliegue datos
para cada subasta en la que la duracion esté entre 7 y 30 dias inclusive.

e) Un programa que pida al usuario una oferta maxima requerida, y luego acepte en
forma continua datos de la subasta y despliegue datos para cada subasta en la que
la oferta minima sea menor o igual que la cantidad introducida por el usuario.

Dash Cell Phone Company cobra a sus clientes una tarifa basica de $5 por mes por
enviar mensajes de texto. Las tarifas adicionales son como sigue:

e Los primeros 60 mensajes por mes, sin importar la longitud del mensaje, se incluyen
en la factura bésica.

e Se cobran cinco centavos adicionales por cada mensaje de texto después del 60o.
mensaje, hasta 180 mensajes.

o Se cobran 10 centavos adicionales por cada mensaje de texto después del 1800.
mensaje.

e Los impuestos federales, estatales y locales suman un total de 12% de cada factura.
Disene un diagrama de flujo o seudocédigo para lo siguiente:

a) Un programa que acepte los siguientes datos sobre la factura de un cliente: cédigo
de drea donde se encuentra (tres digitos), niumero de teléfono (siete digitos) y
ntmero de mensajes de texto enviados. Despliegue todos los datos, incluyendo la
factura mensual final tanto antes como después de agregar los impuestos.

b) Un programa que acepte en forma continua datos sobre los mensajes de texto
hasta que se introduzca un valor centinela y despliegue todos los detalles.

¢) Un programa que acepte en forma continua datos sobre mensajes de texto hasta
que se introduzca un valor centinela y s6lo despliegue detalles sobre clientes que
envien mas de 100 mensajes de texto.

d) Un programa que acepte en forma continua datos sobre mensajes de texto hasta
que se introduzca un valor centinela y s6lo despliegue detalles sobre clientes cuya
factura total con impuestos sea mayor de $20.

e) Un programa que pida al usuario un cdédigo de drea de tres digitos de la cual selec-
cionar facturas. Luego el programa acepta en forma continua datos de mensajes de
texto hasta que se introduzca un valor centinela y sélo despliegue datos para men-
sajes enviados desde el c6digo de drea especificado.

Drive-Rite Insurance Company proporciona poélizas de seguros para automoviles a los
conductores. Disefie un diagrama de flujo o seudocédigo para lo siguiente:

a) Un programa que acepte datos de pdlizas de seguros, incluyendo el ndmero de
las mismas, apellido del cliente, nombre del cliente, edad, fecha de vencimiento
de la prima (dfa, mes y afio) y nimero de accidentes que ha tenido el conductor
en los dltimos tres afios. Si un numero de péliza introducido no esta entre 1,000 y
9,999 inclusive, establezca el ntimero de péliza en 0. Si el mes no estd entre 1y 12
inclusive, o el dia no es correcto para el mes (por ejemplo, no estd entre 1y 31 para
enero o 1y 29 para febrero), establezca el dia, mes y afio en 0. Despliegue los datos
de la poliza después que se hayan hecho cualesquiera revisiones.

Ejercicios |

b) Un programa que acepte en forma continua los datos de los tenedores de pélizas
hasta que se introduzca un valor centinela y despliegue los datos para cualquier
tenedor de péliza mayor de 35 afios de edad.

¢) Un programa que acepte datos de los tenedores de pdlizas y despliegue los datos
para cualquier tenedor de pdliza que sea menor de 21 afios de edad.

d) Un programa que acepte datos de los tenedores de pdlizas y despliegue los datos 165
para cualquier tenedor de péliza no mayor de 30 aiios de edad.

e) Un programa que acepte datos de los tenedores de pdlizas y despliegue los datos
para cualquier tenedor de pdliza cuya prima venza a mds tardar el 15 de marzo de
cualquier aio.

f) Un programa que acepte datos de los tenedores de poélizas y despliegue los datos
para cualquier tenedor de pdliza cuya prima se venza hasta e incluyendo al 1 de
enero de 2014.

g) Un programa que acepte datos de los tenedores de poélizas y despliegue los datos
para cualquier tenedor de pdliza cuya prima se venza el 27 de abril de 2013.

h) Un programa que acepte datos de los tenedores de pdlizas y despliegue los datos
para cualquiera que tenga un nimero de péliza entre 1,000 y 4,000 inclusive, cuya
péliza se venza en abril o mayo de cualquier afio, y que haya tenido menos de tres
accidentes.

The Barking Lot es una guarderia para perros. Disefie un diagrama de flujo o seudocé-
digo para lo siguiente:

a) Un programa que acepte datos para un numero de ID del propietario de un perro,
y nombre, raza, edad y peso de este ultimo. Despliegue una factura que contenga
todos los datos de entrada al igual que la tarifa semanal de la guarderia, la cual es
de $55 para perros con menos de 7 kilogramos, $75 para perros de 7 a 14 kilo-
gramos inclusive, $105 para perros de 14.1 a 37 kilogramos inclusive, y $125 para
perros con mas de 37 kilogramos.

b) Un programa que acepte en forma continua los datos de los perros hasta que se
introduzca un valor centinela y despliegue datos de facturacion para cada perro.

¢) Un programa que acepte en forma continua los datos de los perros hasta que se
introduzca un valor centinela y despliegue datos de facturacion para los propieta-
rios de perros que deban mds de $100.

Mark Daniels es un carpintero que crea letreros personalizados para casas. Desea una
aplicacién para calcular el precio de cualquier letrero que pida un cliente, con base en
los siguientes factores:

e El cargo minimo para todos los letreros es $30.
o Siel letrero se hace de roble, agregue $15. No se agrega ningin cargo por pino.

e Las primeras seis letras o niimeros se incluyen en el cargo minimo; hay un cargo de
$3 por cada cardcter adicional.

e Los caracteres blancos o negros estan incluidos en el cargo minimo; hay un cargo
adicional de $12 para letras laminadas en oro.

o AT S Toma de decisiones

Disene un diagrama de flujo o seudocédigo para lo siguiente:

a) Un programa que acepte datos para un numero de pedido, nombre del cliente, tipo
de madera, nimero de caracteres y color de los caracteres. Despliegue todos los
datos introducidos y el precio final para el letrero.

b) Un programa que acepte en forma continua datos de pedidos de letreros y des-

166 pliegue toda la informacién relevante para los que son de roble con cinco letras

blancas.

¢) Un programa que acepte en forma continua datos de pedidos de letreros y desplie-
gue toda la informacidn relevante para los que son de pino con letras laminadas en
oro y mas de 10 caracteres.

8. Black Dot Printing intenta organizar un transporte compartido para ahorrar ener-
gia. Cada registro de entrada contiene el nombre y el poblado de residencia de un
empleado. Diez por ciento de los empleados de la compaiifa vive en Wonder Lake; 30%
vive en el poblado adyacente de Woodstock. Black Dot desea alentar a los empleados
que viven en cualquier poblado para viajar juntos al trabajo. Disefie un diagrama de
flujo o seudocddigo para lo siguiente:
a) Un programa que acepte los datos de un empleado y lo despliegue con un mensaje
que indique si es un candidato para compartir el vehiculo.
b) Un programa que acepte en forma continua los datos de los empleados hasta que
se introduzca un valor centinela y despliegue una lista de todos los empleados
que son candidatos para compartir vehiculo.

9. Amanda Cho, supervisora en una tienda minorista de ropa, desea reconocer a los
vendedores de alto rendimiento. Disefie un diagrama de flujo o seudocddigo para lo
siguiente:

a) Un programa que acepte en forma continua el nombre y apellido de cada vende-
dor, el nimero de turnos que trabajé en un mes, nimero de transacciones que
completd ese mes y el valor en ddlares de esas transacciones. Despliegue el nombre
de cada vendedor con una puntuacién de productividad, misma que se calcula
dividiendo primero los délares entre las transacciones y dividiendo el resultado
entre los turnos trabajados. Despliegue tres asteriscos después de la puntuacién de
productividad si es de 50 o0 mas.

b) Un programa que acepte los datos de cada vendedor y despliegue el nombre y una
cantidad de bonificacién. Los bonos se distribuirdn como sigue:

« Sila puntuacién de productividad es 30 o menos, el bono es de $25.

« Sila puntuacion de productividad es 31 o mds y menos que 80, el bono es de
$50.

+ Sila puntuacién de productividad es 80 o mas y menos que 200, el bono es de
$100.
« Sila puntuacién de productividad es 200 o més, el bono es de $200.

¢) Modifique el ejercicio 9b para que refleje el siguiente hecho nuevo, y haga que el
programa se ejecute de la manera més eficiente posible.

+ Sesenta por ciento de los empleados tienen una puntuacién de productividad
mayor que 200.

Ejercicios. [

" Encuentre los errores

Sus archivos descargables para el capitulo 4 incluyen DEBUG04-01.txt, DEBUG04-02.
txt y DEBUGO04-03.txt. Cada archivo comienza con algunos comentarios que descri-
ben el problema. Los comentarios son lineas que comienzan con dos diagonales (//).
Después de los comentarios, cada archivo contiene seudocédigo que tiene uno o mds
errores que usted debe encontrar y corregir. (NOTA: Estos archivos se encuentran dis-
ponibles s6lo para la version original en inglés.)

%’e Zona de juegos

En el capitulo 2, aprendié que muchos lenguajes de programacion le permiten generar
un numero aleatorio entre 1 y un valor limite llamado LIMIT usando una declaracién
similar a randomNumber = random(LIMIT). Cree la légica para un juego de adivinanza
en el que la aplicacién genere un nimero aleatorio y el jugador trate de adivinarlo.
Despliegue un mensaje que indique si la conjetura del jugador fue correcta, demasiado
alta o demasiado baja. (Después de terminar el capitulo 5 serd capaz de modificar la
aplicaciéon de modo que el usuario pueda continuar adivinando hasta que se introduzca
la respuesta correcta.)

167

12. Cree una aplicacién para un juego de loteria. Genere tres nimeros aleatorios, cada uno
entre 0y 9. Permita que el usuario adivine tres nimeros. Compare cada una de las con-
jeturas del usuario de los tres nimeros aleatorios y despliegue un mensaje que incluya
la conjetura del usuario, los tres digitos determinados aleatoriamente y la cantidad de
dinero que el usuario ha ganado, como se muestra en el cuadro 4-4.

Numeros coincidentes Premio ($)
Cualquier nimero que coincida 10
Dos coincidentes 100
Tres coincidentes, sin orden 1,000
Tres coincidentes en el orden exacto 1,000,000
Ninguno coincidente 0

IET [228 Premios por adivinar los ndmeros en un juego de loteria

Asegurese de que su aplicacién puede repetir digitos. Por ejemplo, si un usuario con-
jetura 1, 2'y 3, y los digitos generados en forma aleatoria son 1, 1 y 1, no dé crédito al
usuario por tres coincidencias correctas, sélo una.

o AT S Toma de decisiones

(Para discusion

168

13.

14.

15.

Los programas de computadora pueden usarse para tomar decisiones sobre su asegu-
rabilidad al igual que las tarifas que se le cobraran por sus pdlizas de seguro de salud
y de vida. Por ejemplo, ciertas condiciones preexistentes pueden elevar sus primas de
seguros en forma considerable. ;Es ético que las compaiifas de seguros tengan acceso
a sus registros médicos y luego tomen decisiones de seguros relacionadas con usted?
Explique su respuesta.

Las solicitudes de empleo en ocasiones son examinadas por software que toma deci-
siones sobre la idoneidad del candidato con base en las palabras clave en las solicitu-
des. ;Este examen es justo para los candidatos? Explique su respuesta.

Las instalaciones médicas con frecuencia tienen mas pacientes esperando por tras-
plantes de 6rganos que érganos disponibles. Suponga que se le ha pedido que escriba
un programa que seleccione cudles candidatos deberian recibir un érgano disponible.
¢Qué datos en el archivo desearfa usar en su programa y qué decisiones tomarfa con
base en los datos? ;Qué datos piensa que podrian usar otros que usted no elegirfa usar?

Creacion de ciclos

En este capitulo usted aprendera sobre:

©)

Las ventajas de crear ciclos

©)

Usar una variable de control de ciclo

(©)

Ciclos anidados

©)

Evitar errores de ciclo comunes

©)

Usar un ciclo for

©)

Aplicaciones comunes de los ciclos

170

CAPITULO 5

Creacion de ciclos

Comprension de las ventajas de crear ciclos

Aunque tomar decisiones es lo que hace que las computadoras parezcan inteligentes, la crea-
cién de ciclos hace que la programaciéon de computadoras sea eficiente y que valga la pena.
Cuando usted usa un ciclo, un conjunto de instrucciones opera en multiples conjuntos separa-
dos de datos. El uso de menos instrucciones resulta en menos tiempo requerido para el diseiio

Si

No

]

Figura 5-1 La estructura de ciclo

y la codificacién, menos errores y un tiempo de compila-
cién mds breve.

Recuerde la estructura de ciclo sobre la que aprendi
en el capitulo 3; se ve como la figura 5-1. En tanto una
expresion booleana siga siendo verdadera, el cuerpo de
un ciclo whiTe se ejecuta.

Usted ya ha aprendido que muchos programas usan un
ciclo para controlar las tareas repetitivas. Por ejemplo, la
figura 5-2 muestra la estructura basica de muchos pro-
gramas de negocios. Después de que se completan algu-
nas tareas de administracion, el ciclo detallado se repite
una vez por cada registro de datos que debe procesarse.

Por ejemplo, la figura 5-2 podria representar la légica de linea principal de un programa de
némina tipico. Los datos del primer empleado se introducirdn en el médulo housekeeping(),
y mientras no se cumpla la condicién eof el mddulo detailLoop() ejecutard tareas como la

Declarations

!

housekeeping()

start
Declarations
housekeeping()
while not eof

endOflob ()

Si

detaillLoop()
endwhile

detailLoop()

end0fJob()
stop

Figura 5-2 Lalogica de linea principal comin en muchos programas de negocios

Uso de una variable de control de ciclo _

determinacion del salario regular y extraordinario y la deduccién de impuestos, primas de
seguro, contribuciones a la beneficencia, cuotas sindicales y otros elementos. Luego, después
de que se ha producido el cheque para el pago de un empleado se introduciran los datos del
siguiente y el médulo detaillLoop() se repetird. La ventaja de hacer que una computadora
genere los cheques de némina es que las instrucciones de célculo s6lo necesitan escribirse una
vez y pueden repetirse de manera indefinida.

DOS VERDADES UNA MENTIRA

Comprension de las ventajas de crear ciclos

1. Cuando usted usa un ciclo puede escribir un conjunto de instrucciones que
opere en multiples conjuntos separados de datos.

2. Una ventaja importante de hacer que una computadora ejecute las tareas com-
plicadas es la capacidad para repetirlas.

3. Un ciclo es una estructura que se ramifica en dos rutas logicas antes de
continuar.

"BNUNUOD UQIDIPUOD BUNS|R Sejusiw
Sau010e d)idal anb BANJONJISS BUN $B 0|21 UM '€ 0JaWNU B| $B BS|e) UoIoRwLeR T

Uso de una variable de control de ciclo

Usted puede usar un ciclo while para ejecutar un cuerpo de declaraciones en forma continua
en tanto alguna condicién continte siendo verdadera. El cuerpo de un ciclo podria contener
cualquier ndmero de declaraciones, incluyendo llamadas a método, decisiones y otros ciclos.
Para hacer que un ciclo while termine en forma correcta, debe declarar una variable de con-
trol de ciclo para manejar el nimero de repeticiones que ejecuta un ciclo. Deberfan ocurrir
tres acciones separadas:

e La variable de control de ciclo se inicializa antes de entrar al ciclo.

e La variable de control de ciclo se prueba, y si el resultado es verdadero se entra al cuerpo del
ciclo.

e La variable de control de ciclo se altera dentro del cuerpo del ciclo de modo que la expre-
sién whiTe en algiin momento se evalda como falsa.

Si usted omite cualquiera de estas acciones o las ejecuta en forma incorrecta corre el riesgo
de crear un ciclo infinito. Una vez que su logica entra al cuerpo de un ciclo estructurado, el
cuerpo del ciclo entero debe ejecutarse. Su programa puede dejar un ciclo estructurado sélo
en la comparacién que prueba la variable de control de ciclo. Por lo comtn, usted puede con-
trolar las repeticiones de un ciclo en una de dos maneras:

o VARG Creacion de ciclos

e Usar un contador para crear un ciclo definido controlado por contador.

e Usar un valor centinela para crear un ciclo indefinido.

Uso de un ciclo definido con un contador

La figura 5-3 muestra un ciclo que despliega Hola cuatro veces. La variable count es la variable
de control de ciclo. Este es un ciclo definido porque se ejecuta un nimero predeterminado de
veces; en este caso, cuatro. Es un ciclo contado, o ciclo controlado por contador, porque el
programa sigue la pista del numero de repeticiones del ciclo al contarlas.

(start)

start
- Declarations
Declarations | ___| La vgrlable de po_ntrol num count = 0
num count = 0 de ciclo se inicializa. while count < 4

output "Hola"
count = count + 1
endwhile
output "Adios"
stop

jcount < 47

No output "Hola"

ya
La variable de control
de ciclo se prueba.

La variable de control

count = count + 1F----: .
de ciclo se altera.

/output “Adiés“/

Figura 5-3 Un ciclo while contado que produce Hola cuatro veces

El ciclo en la figura 5-3 se ejecuta como sigue:
e La variable de control de ciclo, count, se inicializa en 0.
e La expresion while compara count con 4.

e Elvalor de count es menor que 4, y por tanto el cuerpo del ciclo se ejecuta. El cuerpo del
ciclo que se muestra en la figura 5-3 consiste en dos declaraciones que despliegan Hola y
luego agregan 1 a count.

e La siguiente vez que se evalda count, su valor es 1, mismo que todavia es menor que 4, asi
que el cuerpo del ciclo se ejecuta de nuevo. Hola se despliega una segunda vez y count se
vuelve 2, Hola se despliega una tercera vez y count se vuelve 3, entonces Hola se despliega

Uso de una variable de control de ciclo _

una cuarta vez y count se vuelve 4. Ahora, cuando se evalua la expresiéon count < 47, es
false, asi que el ciclo termina.

Dentro del cuerpo de un ciclo, puede cambiar el valor de la variable de control de ciclo en
diversas formas. Por ejemplo:

e Usted podria sencillamente asignar un valor nuevo a la variable de control de ciclo.

e DPodria recuperar un valor nuevo desde un dispositivo de entrada.

e DPodria incrementar, o aumentar, la variable de control de ciclo, como en la légica en la
figura 5-3.

e DPodria reducir, o decrementar, la variable de control de ciclo. Por ejemplo, el ciclo en la
figura 5-3 podria reescribirse de modo que count se inicialice en 4 y se reduzca en 1 en cada
paso a través del ciclo. Entonces este tltimo deberia continuar mientras count permanezca
mayor que 0.

Los términos incrementar y decrementar por lo general se refieren a cambios pequerios; con
frecuencia el valor que se usa para incrementar o decrementar la variable de control de ciclo
es 1. Sin embargo, los ciclos también se controlan al sumar o restar valores diferentes de 1. Por
ejemplo, para desplegar las ganancias de la compaiifa en intervalos de cinco afios durante los
siguientes 50 afios, desearfa sumar 5 a una variable de control de ciclo durante cada iteracién.

contienen un operador de atajo para incrementar. Aprendera sobre estos operadores cuando estudie un

ﬂ Debido a que con frecuencia usted necesitara incrementar una variable, muchos lenguajes de programacion
lenguaje de programacion que los utilice.

La logica de creacién de ciclos que se muestra en la figura 5-3 usa un contador. Un contador
es cualquier variable numérica que usted use para contar el nimero de veces que ha ocurrido
un evento. En la vida cotidiana, las personas por lo general cuentan las cosas comenzando
con 1. Muchos programadores prefieren comenzar sus ciclos contados con una variable que
contenga 0 por dos razones:

e En muchas aplicaciones de computadora, la numeracién comienza con 0 debido a la natu-
raleza de 0y 1 de la circuiteria de la computadora.

e Cuando aprenda sobre arreglos en el capitulo 6, descubrird que la manipulacién de éstos se
presta de manera natural a los ciclos basados en 0.

Uso de un ciclo indefinido con un valor centinela

A menudo, el valor de una variable de control de ciclo no se altera con aritmética, sino por una
entrada del usuario. Por ejemplo, quizé usted desea mantener alguna tarea ejecutdndose mien-
tras el usuario indica un deseo de continuar. En ese caso, cuando escribe el programa no sabe
si el ciclo serd ejecutado dos veces, 200 veces o no se ejecutard en absoluto. Este es un ciclo
indefinido.

Considere un programa interactivo que despliegue Hola de manera repetida en tanto el usua-
rio desee continuar. El ciclo es indefinido porque podria ejecutarse un nimero de veces dife-
rente cada vez que se ejecuta el programa. El programa aparece en la figura 5-4.

174

o VAR PITEO T Creacion de ciclos

start
Declarations
string shouldContinue
output ";Desea continuar?
Si o No >> "
Declarations input shouldContinue
string shouldContinue while shouldContinue = "Si"
output "Hola"
‘ output ";Desea continuar?
Si o No >> "
output ";Desea input shouldContinue
continuar? Si o No >> " endwhile
output "Adios"
l stop

input] ” __| Lavariable de control
shouldContinue de ciclo se inicializa.

Si

shouTldContinue
~ "gin?

output "Hola”

No

La variable de control
de ciclo se prueba.

output ";Desea
continuar? Si o No >>

!

input] La variable de control
shouldContinue de ciclo se altera.

output "Adio6s"

Figura 5-4 Un ciclo while indefinido que despliega Hola en tanto el usuario desee continuar

En el programa de la figura 5-4, la variable de control de ciclo es shouldContinue. El programa
se ejecuta como sigue:

e La primera declaracién input shouldContinue en la aplicacion de la figura 5-4 es una
declaracién de entrada anticipada. En esta declaracidn, la primera respuesta del usuario ini-
cializa la variable de control de ciclo.

e La expresién while compara la variable de control de ciclo con el valor centinela Si.

e Siel usuario ha introducido Si, entonces se da salida a Hola y se pregunta al usuario si el
programa deberfa continuar. En este paso, el valor de shouldContinue podria cambiar.

Uso de una variable de control de ciclo _

e En cualquier punto, si el usuario introduce cualquier valor diferente de Sj, el ciclo termina.
En la mayoria de los lenguajes de programacion, las comparaciones son sensibles a las
mayusculas y minudsculas, asi que cualquier entrada distinta a S7, incluyendo s7, terminara el
ciclo.

La figura 5-5 muestra cémo podria verse el programa cuando es ejecutado en la linea de
comandos y en un ambiente GUL Las pantallas muestran programas que ejecutan exacta-
mente las mismas tareas usando diferentes ambientes. En cada ambiente, es posible que el
usuario continte eligiendo ver los mensajes Hola, o que elija salir del programa y desplegar
Adics.

f -
B “ommand Fromps o g e i

¢Desea continuar? Si o No >> Si
Hola
¢;Desea continuar? Si o No >> Si
Hola
¢;Desea continuar? Si o No >> Si

Hola

¢Desea continuar? Si o No >> No

Adids

il
k

W, =l o e o

¢Desea continuar? Si o No >> Si No

Hola
Hola
Hola
Adiés

Figura 5-5 Ejecuciones tipicas del programa de la figura 5-4 en dos ambientes

Comprension del ciclo en la logica de linea principal
de un programa

Los segmentos de diagrama de flujo y seudocddigo en la figura 5-4 contienen tres pasos que
deberian ocurrir en cualquier ciclo que funcione de manera apropiada:

1. Usted debe proporcionar un valor inicial para la variable que controlara el ciclo.

2. Debe probar la variable de control de ciclo para determinar si se ejecuta el cuerpo del
mismo.

3. Dentro del ciclo, debe alterar la variable de control de ciclo.

En el capitulo 2 aprendié que la logica de linea principal de muchos programas de negocios
sigue un esbozo estdndar que consiste en tareas de administracion, un ciclo que se repite y
tareas de finalizacién. Los tres pasos cruciales que ocurren en cualquier ciclo también se pre-
sentan en la l6gica de linea principal estandar. La figura 5-6 muestra el diagrama de flujo para
la 16gica de linea principal del programa de némina que vio en la figura 2-8; se resaltan los tres
pasos que controlan el ciclo. Aqui, los tres pasos (inicializacion, prueba y alteracién de la varia-
ble de control de ciclo) estan en mddulos diferentes. Sin embargo, todos ocurren en los lugares
correctos y muestran que la légica de linea principal usa un ciclo estdndar y correcto.

176

o VAR PITEO T Creacion de ciclos

housekeeping()

output
. REPORT_HEADING
Declarations
string name ¢
num gross
output
232 :ZgUCt COLUMN_HEADING
num RATE = 0.25 *
string QUIT = "XXX" -
string REPORT_HEADING = "Reporte de nomina" 1nput name
string COLUMN_HEADING = "Nombre Bruto 7
Deducciones Neto" /’
string END_LINE = "**Fin del reporte" 7
4
d

* La ultima accion en housekeeping()
housekeeping() |-———-o—e—-e es la lectura anticipada que inicializa
la variable de control de ciclo, name.

detailLoop()

La variable de control
de ciclo se prueba
antes de cada
ejecucion del cuerpo end0fJob ()

detailLoop()

del ciclo. *
La Gltima accion en input gross
P detailLoop(), justo *
antes de que la variable
de control de ciclo se deduct = gross *
pruebe de nuevo, es RATE
alterar name en dicha
endOfJob () variable. +
N net = gross -
\ deduct
output END_LINE Y
|
k output name,

\
\ gross, deduct, net
\\
\
\ Y
el
---- 7/ input name

return

Figura 5-6 Un programa de némina que muestra como se usa la variable de control de ciclo

Ciclos anidados

DOS VERDADES UNA MENTIRA

Uso de una variable de control de ciclo

1. Para hacer que un ciclo while se ejecute en forma correcta, debe estable-
cerse una variable de control de ciclo en O antes de entrar al ciclo.

2. Para hacer que un ciclo while se ejecute en forma correcta, debe probarse
una variable de control de ciclo antes de entrar al cuerpo del ciclo.

3. Para hacer que un ciclo while se ejecute en forma correcta, el cuerpo del ciclo
debe realizar alguna accion que altere el valor de la variable de control de ciclo.

"0 U3 9]uaWeLLeSadau ou 0Jad ‘aslez
-I[e121UI 8G3P O[212 8P [0.1U0D 8P S|GeLIeA BUM T 0JAWNU | S3 BS|e) UQIORWLE BT

Ciclos anidados

La logica de programa se vuelve mas complicada cuando es preciso usar unos ciclos dentro de
otros, o ciclos anidados. Cuando uno aparece dentro de otro, el que contiene al otro se llama
ciclo exterior, y el que esta contenido se llama ciclo interior. Se necesita crear ciclos anida-
dos cuando los valores de dos o mds variables se repiten para producir cada combinacién de
valores. Por lo general, cuando se crean ciclos anidados, cada uno tiene su propia variable

de control de ciclo.

Por ejemplo, suponga que desea escribir un programa que produce hojas de respuestas a cues-
tionarios como las que se muestran en la figura 5-7. Cada hoja de respuestas tiene un encabe-
zado tnico seguido por cinco partes con tres preguntas en cada parte y usted desea una linea
para responder cada pregunta. Podria escribir un programa que use 63 declaraciones de

salida separadas para producir tres hojas (cada hoja contiene 21 lineas impresas), pero es mds
eficiente usar ciclos anidados.

178

o VARG Creacion de ciclos

Cuestionario del capitulo 1 ‘
Partie 1 Cuestionario para créditos extra‘
* —1 Parte 1 . - o
2. | 1 Cuestionario de composicion
3. | 2' — Parte 1
Parte 2 3' =] 1.
1. | P t'2_ 2.
2. | ™% 3.
3. | 2' — Parte 2
Parte 3 3 1.
1. | 2 2.
2 Part1e3 3
3. | 2' — Parte 3
Parte 4 3' -] 1.
1. | T 2.
2] Part§4 3
3. | 2' — Parte 4
Parte 5 3'] 1.
1. | = 2.
2 Part§5 3
3. | 2' —| Parte 5
3' -] 1.
B 2.
3.

Figura 5-7 Hojas de respuestas de un cuestionario

La figura 5-8 muestra la légica para el programa que produce hojas de respuestas. Se declaran
tres variables de control de ciclo para el programa:

e quizName controla el médulo detailLoop() que se llama desde la lgica de linea principal.

e partCounter controla el ciclo exterior dentro del médulo detailLoop(); hace un segui-
miento de las partes de la hoja de respuestas.

e questionCounter controla el ciclo interior en el médulo detailLoop(), hace un segui-
miento de las preguntas y las lineas de respuesta dentro de cada seccién de parte en cada
hoja de respuestas.

También se declaran cinco constantes nombradas. Tres de estas constantes (QUIT, PARTS y
QUESTIONS) contienen los valores centinela para cada uno de los tres ciclos en el programa. Las
otras dos contienen el texto al que se dard salida (la palabra Parte que precede a cada ndimero
de parte y la combinacién punto-espacio-linea que forma una linea de respuesta para cada
pregunta).

Cuando empieza el programa, el médulo housekeeping() se ejecuta y el usuario introduce el
nombre al que se dard salida en la parte superior del primer cuestionario. Si el usuario intro-
duce el valor QUIT, el programa termina de inmediato, pero si el usuario introduce alguna otra
cosa, como Cuestionario de composicion, entonces se ejecuta el médulo detailLoop().

En detaillLoop() el nombre del cuestionario sale en la parte superior de la hoja de respuestas.
Entonces se inicializa partCounter en 1. La variable partCounter es la variable de control de

Ciclos anidados

ciclo para el ciclo exterior en este médulo. El ciclo exterior contintia mientras partCounter es
menor o igual que PARTS. La tltima declaracién en el ciclo exterior agrega 1 a partCounter. En
otras palabras, el ciclo exterior se ejecutara cuando partCounter sea 1,2, 3,4y 5.

Declarations
string quizName
num partCounter
num questionCounter

housekeeping()

output "Introduzca el
nombre del cuestionario
o ", QUIT, " para

string QUIT= "zzZ " salir
num PARTS = 5 ¢
num QUESTIONS = 3
string PART_LABEL = "Parte " input quizName
string LINE = ". ___"
*

housekeeping()

__J end0fJob()

2quizName

<> QUIT? detaillLoop()

end0flob()

Y

Figura 5-8 Diagrama de flujo y seudocddigo para el programa AnswerSheet (continda)

180

CAPITULO 5

(continuacion)

Creacion de ciclos

detaillLoop()

output quizName

f

partCounter = 1

Y

ipartCounter

Si

<= PARTS?

;

output PART_LABEL,

partCounter

output "Introduzca
el nombre del
siguiente
cuestionario
o ", QUIT,
" para salir

n

!

input quizName

/

questionCounter = 1

<= QUESTIONS?

JsquestionCounter

\

No output
questionCounter,
LINE
questionCounter =
questionCounter + 1
Y
partCounter =
partCounter + 1

Figura 5-8 Diagrama de flujo y seudocddigo para el programa AnswerSheet (continda)

Ciclos anidados

(continuacion)

start
Declarations
string quizName
num partCounter
num questionCounter 181
string QUIT = "ZZ2Z "
num PARTS = 5
num QUESTIONS = 3
string PART_LABEL = "Parte "
string LINE = ". "
housekeeping()
while quizName <> QUIT
detailLoop()
endwhile
end0fJob()
stop

housekeeping()
output "Introduzca el nombre del cuestionario o ",
QUIT, " para salir " input quizName

return

detailLoop()
output quizName
partCounter = 1
while partCounter <= PARTS
output PART_LABEL, partCounter
questionCounter = 1
while questionCounter <= QUESTIONS
output questionCounter, LINE
questionCounter = questionCounter + 1
endwhile
partCounter = partCounter + 1
endwhile
output "Introduzca el siguiente nombre de cuestionario o ", QUIT,
" para salir "
input quizName
return

end0fJob()
return

Figura 5-8 Diagrama de flujo y seudocddigo para el programa AnswerSheet

tor. Otra salida (la hoja de respuestas) se enviaria a otro dispositivo, digamos, una impresora. Las declara-
ciones necesarias para enviar la salida hacia los dispositivos separados difieren entre los lenguajes. En el
capitulo 7 se proporcionan mas detalles.

ﬂ En la figura 5-8, alguna salida (el indicador del usuario) se enviara a un dispositivo de salida, como un moni-

de modo que la légica de linea principal contiene todas las partes que usted ha aprendido. Un modulo vacio

ﬂ El médulo end0fJob () se incluye en el programa de la figura 5-8 aun cuando no contiene declaraciones,
que actia como un marcador se llama stub.

o VARG Creacion de ciclos

En el ciclo exterior en el médulo detaillLoop() en la figura 5-8, la palabra Parte y el valor
actual de partCounter son la salida. Luego se ejecutan los siguientes pasos:

e Se inicializa la variable de control de ciclo para el que es interior estableciendo
questionCounter en 1.

e Se evalda la variable de control de ciclo questionCounter comparandola con QUESTIONS
y mientras questionCounter no exceda a QUESTIONS se ejecuta el cuerpo del ciclo: se da
salida al valor de questionCounter, seguido por un punto y una linea para respuesta.

182

e Al final del cuerpo del ciclo se altera la variable de control de ciclo agregando 1 a
questionCounter y se hace de nuevo la comparaciéon questionCounter.

En otras palabras, cuando partCounter es 1, se da salida al encabezado de la parte y a las
lineas de respuesta para las preguntas 1, 2 y 3. Entonces partCounter se vuelve 2, se da salida
al encabezado de la parte y se crean lineas de respuesta para otro conjunto de preguntas 1,
2y 3. Luego partCounter se vuelve 3, 4y 5 por turno y se crean tres lineas de respuesta para
cada parte.

En el programa de la figura 5-8 es importante que questionCounter se restablezca en 1 dentro
del ciclo exterior, justo antes de entrar al ciclo interior. Si este paso se omitiera, la parte 1 con-
tendria las preguntas 1, 2 y 3, pero las partes subsiguientes estarian vacias.

DOS VERDADES UNA MENTIRA

Ciclos anidados
1. Cuando un ciclo esta anidado dentro de otro, el que contiene al otro se llama
ciclo exterior.

2. Usted necesita crear ciclos anidados cuando los valores de dos o mas varia-
bles se repiten para producir cada combinacién de valores.

3. Elnimero de veces que se ejecuta un ciclo siempre depende de una
constante.

‘elieA anb JojeA un 9p 0O 33ueISUOI eun ap Japuadap apand
0]219 un e3n23[8 8S anb S$828A 9p 0JaWNU |F *E 0JBWINU B| SO BS|e) UIdeWIYe €T

Evitar errores comunes en los ciclos _

Evitar errores comunes en los ciclos
Los programadores cometen los siguientes errores comunes:
e Descuidar la inicializacién de la variable de control de ciclo

e Descuidar la alteracién de la variable de control de ciclo 83
1

e Usar la comparacion errénea con la variable de control de ciclo
e Incluir dentro del ciclo declaraciones que pertenecen al exterior del mismo

Las siguientes secciones explican estos errores comunes con mas detalle.

Error: descuidar la inicializacion de la variable de control de ciclo

Dejar de inicializar una variable de control de ciclo es un error. Por ejemplo, considere el
programa en la figura 5-9. Indica al usuario que introduzca un nombre y mientras el valor de
name continta sin ser el valor centinela ZZZ, da salida a un saludo que usa el nombre y pide el
siguiente nombre. Este programa funciona en forma correcta.

start
Declarations
Declarations strjng name
string name string QUIT = "zzz"
string QUIT = "Zzzz" output "Introduzca nombre "
input name
l while name <> QUIT
output "Hola ", name
output " ’
"Introduzca outﬁg;brgnﬁroduzca
nombre Se liniCialiZa la 1 nput name
l variable de control endwhile
_______ de ciclo. output "Adio6s"
input name stop
Se prueba la
———————————————————————————————————— --| variable de

control de ciclo.

|

output
"HoTla ", name
output
"Introduzca nombre"
l Se altera la
output variable de
"Adios" input name -=F~~77 control de ciclo.

|

Figura 5-9 Logica correcta para el programa de saludo

184

CAPITULO 5

Creacion de ciclos

La figura 5-10 muestra un programa incorrecto en el que no se asigna un valor inicial a la
variable de control de ciclo. Si la variable name no se establece como un valor inicial, entonces
cuando se pruebe la condicién eof no hay forma de predecir si serd verdadera. Si el usuario
no introduce un valor para name, el valor basura que se tiene originalmente para esa variable
podria ser ZZZ o no podria serlo. Asi, ocurre uno de dos escenarios:

e Con mayor probabilidad, el valor no inicializado de name no es ZZZ, de modo que la pri-
mera salida de saludo incluird basura; por ejemplo, Hola 12BGrS.

e DPor una remota posibilidad, el valor no inicializado de name es ZZZ, asi que el programa
termina inmediatamente antes que el usuario pueda introducir cualquier nombre.

Declarations
string name
string QUIT = "zZzz"

No lo haga
La variable de control
de ciclo no se inicializa.

!

jname <> Si
QUIT?
No

output

"Hola ", name
output input name
"Adibs"

]

start
Declarations
string name
string QUIT = "ZzZz"

while name <> QUIT
output "Hola ", name
input name
endwhile
output "Adids"
stop

Figura 5-10 Logica incorrecta para el programa de saludo debido a que falta la inicializacion de la

variable de control de ciclo

Evitar errores comunes en los ciclos _

Error: descuidar la alteracion de la variable de control de ciclo

Ocurrirdn diferentes clases de errores si falla al alterar una variable de control de ciclo dentro
de este tltimo. Por ejemplo, en el programa de la figura 5-9 que acepta y despliega nombres,
usted crea un error si no acepta nombres dentro del ciclo. La figura 5-11 muestra la légica
incorrecta resultante.

Declarations
string name

Declaration string QUIT = "ZzZ"
egtiiﬁg1ga;e output "Introduzca nombre
. T T— input name
string QUIT = "zzZ while name <> QUIT
¢ output "Hola ", name

185

output

o " endwhile
Introduzca nombre

output "Adioés"
* stop

input name
[No lo haga

La variable de control

de ciclo nunca se altera.

No output

"Hola ", naTjr////,/

output
"Adios"

Figura 5-11 Logica incorrecta para el programa de saludo debido a que no se altera la variable de
control de ciclo

Si usted elimina la instruccién input name del final del ciclo en el programa, ningtin nombre
se introduce alguna vez después del primero. Por ejemplo, suponga que cuando inicia el pro-
grama, el usuario introduce Fred. El nombre serd comparado con el valor centinela, y entrard
al ciclo. Después que se dé salida a un saludo para Fred, ningin nombre nuevo se introduce,
as{ que cuando la légica regresa a la pregunta que controla al ciclo, name todavia no serd ZZZ,
y el saludo para Fred continuard desplegdndose infinitamente. Usted nunca deseard crear un
ciclo que no pueda terminar.

o VAR PITEO T Creacion de ciclos

Error: usar la comparacion erronea
con la variable de control de ciclo

Los programadores deben tener cuidado de usar la comparacion correcta en la declaracién

que controla un ciclo. Una comparacion es correcta sélo cuando se usan los operandos y el

86 operador apropiados. Por ejemplo, aunque sélo difiere un golpe de tecla entre el programa

! de saludo original en la figura 5-9 y el de la figura 5-12, el programa original genera correcta-
mente saludos con nombre y el segundo no.

start
Declarations

Declarations
string name
string QUIT = "777"

input
name

output
"Introduzca
nombre "

No lo haga
La comparacion

erronea esta hecha.

string name
string QUIT = "ZzzZ"
output "Introduzca nombre
input name
—pp while name > QUIT
output "Hola ", name
output "Introduzca nombre
input name
endwhile
output "Adios"

;name >
QUIT?

output
No "Ho1a ", name

i

output
"Introduzca nombre

7

'

/

input
name

/

/output "Ad'ic’)s"/

stop

Figura 5-12 Logica incorrecta para el programa de saludo debido a que se hace la prueba errénea

con la variable de control de ciclo

Evitar errores comunes en los ciclos _

En la figura 5-12 se hace una comparacién mayor que (>) en lugar de una comparacién no
igual a (<>). Suponga que cuando se ejecuta el programa, el usuario introduce Fred como el
primer nombre. En la mayoria de los lenguajes de programacion, cuando se hace la compara-
cidén entre Fred y ZZZ, los valores se comparan alfabéticamente. Fred no es mayor que ZZZ,
asi que nunca se entra al ciclo y el programa termina.

Usar la comparacién errénea puede tener efectos graves; por ejemplo, en un ciclo contado, si 187
usted usa <= en lugar de < para comparar un contador con un valor centinela, el programa rea-
lizard una ejecucién del ciclo una vez mas. Si el ciclo s6lo despliega saludos, el error quiza no
sea grave, pero si éste ocurre en una aplicacién de una compaiiia de préstamos, a cada cliente
podria cargirsele un interés mensual adicional. Si el error se presenta en una aplicacién de una
linea aérea, podria aceptar un exceso de reservaciones para un vuelo. Si el error se presenta

en una aplicacién expendedora de fdrmacos en una farmacia, cada paciente podria recibir una
unidad extra (y posiblemente dafina) de medicamentos.

Error: incluir dentro del ciclo declaraciones
que pertenecen al exterior del mismo

Suponga que escribe un programa para el gerente de una tienda que desea otorgar un des-
cuento de 30% en todos los articulos que vende. El gerente desea 100 etiquetas adhesivas

con los precios nuevos para cada articulo. El usuario introduce un precio, se calcula el nuevo
precio descontado, se imprimen 100 etiquetas adhesivas y se introduce el siguiente precio. La
figura 5-13 muestra un programa que ejecuta el trabajo en forma ineficiente debido a que el
mismo valor, newPrice, se calcula 100 veces separadas para cada price que se introduce.

o VAR PITEO T Creacion de ciclos

housekeeping()

Declarations output "Por favor
num orice introduzca el precio
188 num SISCOUNT - 0.30 original del articulo
- - o 0 para salir "
num newPrice
num stickerCount *
num STICKERS = 100
input price

housekeeping()

detailLoop() No lo haga
Este programa funciona,
pero es ineficiente porque

detailloop() ehnﬁmTviggpam newPrice
end0flob() se calcula veces

separadas para cada precio.

stickerCount = 0

.

stop =
stickerCount Si
end0fJob() < STICKERS? ¥
newPrice = price -
output price * DISCOUNT
"Trabajo de *
etiquetas de
precio output "Por favor output "Nuevo
completo " introduzca el precio precio! ",
original del siguiente newPrice
articulo o 0
para salir " *
* stickerCount =
. . stickerCount + 1
input price

Figura 5-13 Forma ineficiente de producir 100 etiquetas adhesivas de los precios con descuento para
los articulos con diferentes precios (continta)

(continuacion)

Evitar errores comunes en los ciclos _

start
Declarations
num price

num newPrice

housekeeping()
while price <> 0
detaillLoop()
endwhile
end0flob()
stop

housekeeping()

o 0 para salir
input price

input price
return

end0fJob()

return

num DISCOUNT = 0.30

num stickerCount
num STICKERS = 100

output "Por favor introduzca el precio original del articulo

return
No lo haga
detailLoop() Este programa funciona,
stickerCount = 0 pero es ineficiente
while stickerCount < STICKERS porque el mismo valor
newPrice = price - price * DISCOUNT para newPrice se calcula
output "jNuevo precio! ", newPrice 100 veces separadas para
stickerCount = stickerCount + 1 cada precio
endwhile

output “Por favor introduzca el precio original
del siguiente articulo o 0 para salir

output "Trabajo de etiquetas de precio completo"

189

Figura 5-13 Forma ineficiente de producir 100 etiquetas adhesivas de los precios con descuento para

los articulos con diferentes precios

La figura 5-14 muestra el mismo programa, en el que el valor newPrice al que se da salida en
la etiqueta se calcula sélo una vez por cada precio nuevo; el calculo se ha movido a una mejor
ubicacioén. El programa en las figuras 5-13 y 5-14 hace lo mismo, pero el segundo lo hace de
manera mds eficiente. Conforme se vuelva mds competente en la programacién, usted recono-
cerd muchas oportunidades para realizar las mismas tareas en formas alternas mas elegantes y

eficientes.

mismo modo, los programadores usan el término elegante para describir programas que estan bien disena-

ﬂ Cuando se describe a las personas o eventos como elegantes, significa que poseen una gracia refinada. Del

dos y son faciles de entender y mantener.

190

CAPITULO 5

Creacion de ciclos

Declarations
num price
num DISCOUNT = 0.30
num newPrice
num stickerCount
num STICKERS = 100

f

housekeeping()

housekeeping()

output "Por favor
introduzca el precio
original del articulo
o 0 para salir"

{

input price

Si

iprice <>
0?

end0fJob()

'

end0fJob ()

detaillLoop()

output "Trabajo
de etiquetas de
descuento
completo"

detailLoop()

newPrice = price -
price * DISCOUNT

f

stickerCount = 0

En esta version mejorada

del programa la operacion del
valor newPrice se calcula
una sola vez y luego se da
salida a las 100 etiquetas.

stickerCount

Si

< STICKERS?

{

output "jNuevo

precio! ",
newPrice

'

output "Por favor
introduzca el precio
original del articulo
o 0 para salir "

{

input price

return

stickerCount =
stickerCount + 1

I

Figura 5-14 Programa mejorado de elaboracion de etiquetas de descuento (continta)

Evitar errores comunes en los ciclos _

(continuacion)

start
Declarations
num price
num DISCOUNT = 0.30
num newPrice
num stickerCount
num STICKERS = 100
housekeeping()
while price <> 0
detaillLoop()
endwhile
end0fJob()
stop

housekeeping()
output "Por favor introduzca el precio original del
articulo o 0 para salir "

return
En esta version mejorada del
detaillLoop() programa, la operacion del valor
newPrice = price - price * DISCOUNT ----J newPrice se calcula una sola vez,
stickerCount = 0 y luego se les da salida a las
while stickerCount < STICKERS 100 etiquetas
output "jNuevo precio! ", newPrice
stickerCount = stickerCount + 1
endwhile

output "Por favor introduzca el precio original del siguiente
articulo o 0 para salir "

input price

return

end0fJob ()
output “Trabajo de etiquetas de descuento completo”
return

Figura 5-14 Programa mejorado de elaboracion de etiquetas de descuento

DOS VERDADES UNA MENTIRA

Evitar errores comunes en los ciclos

1. Enun ciclo, descuidar la inicializacion de la variable de control de ciclo es un

error.

2. Enun ciclo, descuidar la alteracion de la variable de control de ciclo es un

error.

3. Enunciclo, es un error comparar la variable de control de ciclo usando >= 0

<=.

‘=< 0 => opuesn
£1094J00 BWIOJ US UBDJD 9S SOJ2I0 SOYIN|A “E 0JaWINU B SO S|} UQIdRULILE B

191

192

o VARG Creacion de ciclos

Uso de un ciclo for

Todo lenguaje de programacién de alto nivel contiene una declaracién while que usted puede
usar para codificar cualquier ciclo, incluyendo los indefinidos y definidos. Ademaés de la decla-
racion whiTe, la mayoria de los lenguajes de computadora soportan una declaracién for.

Por lo general se usa la declaracion for, o ciclo for, con los ciclos definidos (aquellos que

se repiten un numero especifico de veces) cuando usted sabe con exactitud cuédntas veces se
repetird el ciclo. La declaracién for le proporciona tres acciones en una declaracién compacta.
En una declaracién for, una variable de control de ciclo:

e Se inicializa
e Seevalta
e Se altera

La declaracién for adopta una forma similar a la siguiente:

for ToopControlVariable = initialValue to finalValue step stepValue
do something
endfor

La cantidad por la que una variable de control del ciclo for cambia con frecuencia se llama
valor de paso. El valor de paso puede ser positivo o negativo; es decir, puede incrementarse o
decrementarse.

Por ejemplo, para desplegar Hola cuatro veces, usted puede escribir cualquiera de las series de
declaraciones en la figura 5-15.

count = 0 for count = 0 to 3 step 1
while count <= 3 output "Hola"

output "Hola" endfor

count = count + 1
endwhile

Figura 5-15 Declaraciones while y for comparables, cada una de ellas produce Hola cuatro veces

Cada uno de los segmentos de cddigo en la figura 5-15 lleva a cabo las mismas tareas:
e La variable count se inicializa en 0.

e La variable count se compara con el valor limite 3; mientras count es menor o igual que 3,
el cuerpo del ciclo se ejecuta.

e Como la tltima declaracién en la ejecucién del ciclo, el valor de count se incrementa en 1.
Después del incremento, se hace de nuevo la comparacién con el valor limite.

El ciclo for simplemente expresa la misma légica en una forma mds compacta que la declara-
cién while. Nunca se requiere una declaracién for para cualquier ciclo; siempre puede usarse
en su lugar una while. Sin embargo, cuando la ejecucion de un ciclo se basa en una variable
de control de ciclo progresiva desde un valor inicial conocido hasta uno final conocido en
pasos iguales, el ciclo for proporciona una abreviatura conveniente. Es facil de leer para otras

personas, y debido a que la inicializacién, prueba y alteracién de la variable de control de ciclo
se ejecutan todas en una ubicacion, es menos probable que deje fuera uno de estos elementos
cruciales.

Aunque los ciclos for se usan por lo comun para controlar la ejecucién de un bloque de decla-
raciones un nimero fijo de veces, el programador no necesita conocer el valor inicial, final

o de paso para el ciclo cuando se escribe el programa. Por ejemplo, cualquiera de los valores
podria ser introducido por el usuario o el resultado de un célculo.

ﬂ El ciclo for es (til en particular cuando se procesan arreglos. Aprendera sobre arreglos en el capitulo 6.

for(count = 0; count <= 20; count++)

ﬂ En Java, C++ y C#, un ciclo for que despliega 21 valores (0 a 20) podria verse como el siguiente:
{

output count

}

Las tres acciones (inicializacion, comparacion y alteracion de la variable de control de ciclo) estan separa-
das por punto y coma dentro de un conjunto de paréntesis que siguen a la palabra clave for. La expresion
count++ agrega 1 a count. El blogue de declaraciones que depende del ciclo se encuentra entre un par
de llaves.

Tanto while como for son ejemplos de ciclos preprueba. En un ciclo preprueba, la variable
de control de ciclo se prueba antes de cada iteracion. Esto significa que el cuerpo del ciclo
podria nunca ejecutarse debido a que la pregunta que controla el ciclo quiza sea falsa

la primera vez que se hace. La mayor parte de los lenguajes permiten usar una variacién de la
estructura conocida como ciclo posprueba, que prueba la variable de control de ciclo des-
pués de cada iteracion. En un ciclo posprueba, el cuerpo del ciclo se ejecuta al menos una vez
porque la variable de control de ciclo se prueba hasta después de una iteracién. El apéndice F
contiene informacién sobre los ciclos posprueba.

tar un ciclo for en un diagrama de flujo. Sin embargo, no se necesitan simbolos especiales para expresar
la logica de un ciclo for. Un ciclo for tan solo es un atajo del cddigo, asi que este libro usa simbolos
estandar de diagrama de flujo para representar la inicializacion, la prueba y la alteracion de la variable de
control de ciclo.

ﬂ Algunos libros y programas de diagramas de flujo usan un simbolo que parece un hexagono para represen-

193

194

o VARG Creacion de ciclos

DOS VERDADES UNA MENTIRA

Uso de un ciclo for

1. La declaracion for le proporciona tres acciones en una declaracion compacta:
inicializacién, evaluacion y alteracién de una variable de control del ciclo.

2. Elcuerpo de una declaracién for siempre se ejecuta al menos una vez.

3. Enla mayor parte de los lenguajes de programacion, puede proporcionar un
ciclo for con cualquier valor de paso.

"0[212 9P |0J3U0D 3P B|qeLIBA | U3 [eIdiul JOjeA [9p Opuslpuadap 9sJend
-3l ou eppod Jog ugloeJe[dap BUN 3P 0dJsNI |3 "Z 0JSWNU B| S BS|e) UoIoRLLILR BT

Aplicaciones comunes de los ciclos

Aunque cada programa de computadora es diferente muchas técnicas son comunes a diversas
aplicaciones. Los ciclos, por ejemplo, se usan con frecuencia para acumular totales y validar
datos.

Uso de un ciclo para acumular totales

Los informes de negocios con frecuencia incluyen totales. El supervisor que solicita una lista
de empleados en el plan dental de la comparifa en general estd tan interesado en el nimero de
empleados participantes como en quiénes son. Cuando usted recibe su factura telefénica cada
mes, es comdn que revise el total lo mismo que los cargos por las llamadas individuales.

Suponga que un corredor de bienes raices desea ver una lista de todas las propiedades vendi-
das en el dltimo mes al igual que el valor total de todas las propiedades. Un programa podria
aceptar datos de ventas que incluyan el domicilio de cada propiedad vendida y su precio. Un
empleado podria introducir los registros de datos conforme se hace cada venta y almacenarlos
en un archivo hasta el final del mes; luego pueden usarse en un informe mensual. La figura
5-16 muestra un ejemplo de un informe asi.

Aplicaciones comunes de los ciclos

INFORME DE VENTAS DE FIN DE MES

Domicilio Precio

287 Acorn St 150,000

12 Maple Ave 310,000 195
8723 Marie Ln 65,500

222 Acorn St 127,000

29 Bahama Way 450,000

Total 1,102,500)

Figura 5-16 Informe de ventas de bienes raices de fin de mes

Para crear el informe de ventas debe darse salida al domicilio y precio de cada propiedad
vendida y sumar su valor en un acumulador. Un acumulador es una variable que se usa para
recopilar o acumular valores, y es muy similar a un contador que se utiliza para contar las ite-
raciones de un ciclo. Sin embargo, a un contador por lo general sélo se le suma uno, mientras
que a un acumulador se le suma algin otro valor. Si el corredor de bienes raices desea saber
cuéntos listados tiene la compaiiia, usted los cuenta; cuando el corredor desea saber el valor
total de los bienes raices, usted los acumula.

Para acumular el total de los precios de bienes raices, usted declara una variable numérica
como accumPrice y la inicializa en 0. Conforme obtiene datos para cada transaccién de bie-
nes raices, da salida y agrega su valor al acumulador accumPrice, como se muestra en la parte
sombreada en la figura 5-17.

196

o VAR PITEO T Creacion de ciclos

createReport()

Declarations output "Introduzca
string address el domicilio de
num price la propiedad "

num accumPrice = 0

string HEADING1 = "REPORTE DE VENTAS DE FIN DE MES"

string HEADING2 = "Domicilio Precio" m
num QUIT = "Zzz"

output address,
getReady () price

I *
accumPrice =
accumPrice + price

output "Introduzca
el domicilio de
Tla siguiente

finishUp() propiedad "

input
address

return
getReady()
output
HEADING1
output
HEADING2

output "Introduzca
el precio de
Tla propiedad "

input
address

createReport()

finishUp()

output "Total ",
accumPrice

Figura 5-17 Diagrama de flujo y seudocddigo para el programa de informe de ventas de bienes raices
(contintia)

Aplicaciones comunes de los ciclos

(continuacion)

start
Declarations
string address
num price
num accumPrice = 0
string HEADING1 = "REPORTE DE VENTAS DE FIN DE MES" 197
string HEADING2 = "Domicilio Precio"
num QUIT = "ZZZ"
getReady ()
while address <> QUIT
createReport()
endwhile
finishUp(Q
stop

getReady)
output HEADING1
output HEADING2
output "Introduzca el domicilio de 1a propiedad "
input address
return

createReport()
output "Introduzca el precio de Ta propiedad "
input price
output address, price
accumPrice = accumPrice + price
output "Introduzca el domicilio de la siguiente propiedad "
input address
return

finishUpQ
output "Total
return

i

, accumPrice

Figura 5-17 Diagrama de flujo y seudocédigo para el programa de informe de ventas de bienes raices

muchos no lo hacen; cuando trata de agregar un valor a una variable no inicializada emiten un mensaje de
error o permiten iniciar de manera incorrecta con un acumulador que contiene basura. El curso de accion
mas seguro y claro es asignar el valor O a los acumuladores antes de usarlos.

ﬂ Algunos lenguajes de programacion asignan O a una variable que usted no inicializa en forma explicita, pero

Después de que el programa en la figura 5-17 obtiene y despliega la tltima transaccién de
bienes raices, el usuario introduce el valor centinela y la ejecucién del ciclo termina. En este
punto, el acumulador contendré el gran total de todos los valores de bienes raices. El programa
despliega la palabra Totaly el valor acumulado accumPrice. Luego el programa termina.

198

o VARG Creacion de ciclos

La figura 5-17 resalta las tres acciones que por lo general usted debe realizar con un
acumulador:

e Seinicializan en 0.
e Son alterados, por lo general una vez por cada conjunto de datos procesado.
o Al final del procesamiento, los acumuladores dan salida.

Después de dar salida al valor de accumPrice, los programadores principiantes con frecuen-
cia desean reiniciarlo en 0. Su argumento es que estan “limpiando después de ellos” Aunque
usted puede dar este paso sin dafar la ejecucion del programa no sirve para ningin propésito
util. No puede establecer accumPrice en 0 antes de tenerlo listo para el siguiente programa, o
incluso para la siguiente vez que ejecute el mismo programa. Las variables existen s6lo durante
una ejecucion, e incluso si sucede que una aplicacién futura contiene una variable llamada
accumPrice, la variable no necesariamente ocupard la misma ubicacién de memoria que ésta.
Aun si usted ejecuta la misma aplicacion por segunda vez las variables podrian ocupar ubica-
ciones de memoria fisica diferentes de aquellas que ocuparon durante la primera ejecucién. Al
principio de cualquier método, es responsabilidad del programador inicializar todas las varia-
bles que deben empezar con un valor especifico. No hay ningtin beneficio en cambiar el valor
de una variable cuando nunca se usara de nuevo durante la ejecucion actual.

Algunos informes de negocios son informes sumarios; sélo contienen totales sin datos para
los registros individuales. En el ejemplo de la figura 5-17, suponga que al corredor no le impor-
tan los detalles de las ventas individuales, sino sélo el total de todas las transacciones. Usted
podria crear un informe sumario omitiendo el paso que da salida a address y price desde el
moédulo createReport(). Entonces podria simplemente dar salida a accumPrice al final del
programa.

Uso de un ciclo para validar datos

Cuando usted pide a un usuario que introduzca datos en un programa de computadora no
tiene la seguridad de que éstos serdn precisos. Las entradas incorrectas de los usuarios son con
mucho la fuente de errores mas comun. Los programas que usted escriba mejoraran si emplea
la programacion defensiva, lo que significa tratar de prepararse para todos los errores posi-
bles antes de que ocurran. Los ciclos con frecuencia se usan para validar datos; es decir, ase-
gurarse de que sean significativos y ttiles. Por ejemplo, la validacién aseguraria que un valor es
el tipo de dato correcto o que se ubica dentro de un rango aceptable.

Suponga que parte de un programa que usted escribe le pide a un usuario que introduzca un
numero que represente su mes de nacimiento. Si el usuario teclea un nimero menor que 1 o
mayor que 12, usted debe emprender alguna clase de accién. Por ejemplo:

e Desplegar un mensaje de error y detener el programa.

e Elegir la asignacién de un valor predeterminado para el mes (por ejemplo, 1) antes de
proceder.

e Pedir de nuevo al usuario una entrada vélida.

Aplicaciones comunes de los ciclos

Si elige este tltimo curso de accién podria adoptar al menos dos enfoques: usar una selecciéon
y, si el mes es invélido, pedir al usuario que reintroduzca un nimero, como se muestra en la
figura 5-18.

Significant declarations: output "Introduzca su mes de nacimiento... " 199
num month input month
num HIGH_MONTH = 12 if month < LOW_MONTH OR month > HIGH_MONTH then
num LOW_MONTH = 1 output "Introduzca su mes de nacimiento... "
= input month
endif

output "Introduzca su
mes de nacimiento...

No lo haga
Aqui se pide al usuario de

nuevo la entrada, pero no

input month hay garantia de que month
sera valido esta vez.

imonth <
LOW_MONTH OR
month >

HIGH_MONTH?

output "Introduzca su
mes de nacimiento...

n

input month

Figura 5-18 Pedir de nuevo una entrada al usuario una vez después que se ha introducido un mes
invalido

El problema con la légica en la figura 5-18 es que el usuario podria no introducir todavia datos
vélidos en el segundo intento. Por supuesto, seria posible que usted anadiera una tercera deci-
sién, pero atn asi no controlaria lo que el usuario introduce.

La mejor solucidn es usar un ciclo para indicar continuamente al usuario que introduzca un
mes hasta que lo haga en forma correcta. La figura 5-19 muestra este enfoque.

200

o ARG Creacion de ciclos

Significant declarations: output “Introduzca su mes de nacimiento... ”
num month input month
num HIGH_MONTH = 12 while month < LOW_MONTH OR month > HIGH_MONTH
num LOW_MONTH = 1 output “Introduzca su mes de nacimiento... ”
input month
endwhile

output “Introduzca su
mes de nacimiento...

i input month ;

imonth < .
LOW_MONTH OR Si
month >

HIGH_MONTH?

No output “Introduzca su
mes de nacimiento...

input month

Figura 5-19 Al usuario se le indica continuamente después de que se introduce un mes invalido

numérico. Cuando usted depende de la entrada del usuario, con frecuencia acepta cada pieza de datos de
entrada como una cadena y luego intenta convertirlos en un ndmero. El procedimiento para realizar verifica-
ciones numéricas varia ligeramente en los diferentes lenguajes de programacion.

ﬂ LLa mayoria de los lenguajes proporcionan una forma incorporada para verificar si un valor introducido es

Por supuesto, la validacién de datos no previene todos los errores; s6lo porque un elemento de
datos es vélido no significa que sea correcto. Por ejemplo, un programa puede determinar que
5 es un mes de nacimiento valido, pero no que su cumplearos caiga en realidad en el mes 5.
Los programadores emplean las siglas GIGO, del inglés garbage in, garbage out (entra basura,
sale basura): significa que si su entrada es incorrecta, su salida no tiene ningdn valor.

Limitacion de un ciclo que pide entradas de nuevo

La peticidn reiterada de entradas a un usuario es una buena forma para asegurar que los datos
sean vélidos, pero puede ser frustrante para éste si la situacién continda de manera indefinida.
Por ejemplo, suponga que el usuario debe introducir un mes de nacimiento vélido, pero ha

Aplicaciones comunes de los ciclos

usado otra aplicacién en la que enero era el mes 0y sigue introduciendo O sin importar cudn-
tas veces usted repita el indicador. Una adicién util al programa serfan los valores limitantes
como parte del indicador. En otras palabras, en lugar de la declaraciéon de salida "Introduzca
su mes de nacimiento... ", la siguiente declaracién serfa mas util:

output "Introduzca su mes de nacimiento entre ", LOW_MONTH, " y " HIGH_MONTH,

" n

Aun asi, el usuario quizéd no entienda el indicador o no lo lea con cuidado, de modo que usted
tal vez desee emplear la tdctica que se usé en la figura 5-20, en la que el programa mantiene
un conteo del nimero de repeticiones del indicador. En este ejemplo, una constante llamada
ATTEMPTS se establece en 3. Mientras un conteo de los intentos del usuario de introducir datos
correctos permanezca por debajo de este limite y el usuario introduzca datos invélidos se le
sigue repitiendo el indicador; si excede el nimero limitado de intentos permitidos, el ciclo
termina. La siguiente accién depende de la aplicacion. Si count es igual a ATTEMPTS después
de que termina el ciclo de entrada de datos, usted desearia forzar los datos invélidos a un valor
predeterminado. Forzar un elemento de datos significa que usted anula los que son incorrec-
tos estableciendo la variable en un valor especifico. Por ejemplo, podria decidir que si un valor
de mes no cae entre 1y 12, forzaria el mes a 0 0 99, lo cual indica a los usuarios que no existe
un valor vélido. En una aplicacion diferente, usted quiza elija tan solo terminar el programa.
En un programa interactivo basado en la web, podria elegir que un representante de servicio al
cliente inicie una sesién de chat con el usuario para ofrecerle ayuda.

si es dificil navegar en el sitio web de una compainia, los usuarios podrian darse por vencidos y no hacer

ﬂ Los programas que frustran a los usuarios pueden dar como resultado la pérdida de ingresos. Por ejemplo,
negocios con ella.

201

202

CAPITULO 5

Creacion de ciclos

Significant declarations:
num month

count = 0
output "Introduzca su mes de nacimiento..
input month

"

o Eéﬁ“ﬁﬂﬁﬁ{ilz while count < ATTEMPTS AND (month < LOW_MONTH OR month > HIGH_MONTH)
- B count = count + 1

num count " L "
num ATTEMPTS = 3 output "Introduzca su mes de nacimiento...

input month
endwhile

output "Introduzca su
mes de nacimiento...

|

input month
|

1

jcount < ATTEMPT
AND (month <
LOW_MONTH OR
month >
HIGH_MONTH)?

count = count + 1

output "Introduzca
su mes de
nacimiento...

|

input month
[

Figura 5-20 Limitacién de la repeticion de indicadores para el usuario

Validacion de un tipo de datos

Los datos que usted usa en los programas de computadora son variados. Es razonable pensar
que la validacién de los datos requiere una diversidad de métodos. Por ejemplo, algunos len-
guajes de programacion permiten verificar los elementos de datos para asegurar que son del
tipo correcto. Aunque esta técnica varia de un lenguaje a otro, con frecuencia usted puede
hacer una declaraciéon como la que se muestra en la figura 5-21. En este segmento de pro-
grama, isNumeric() representa una llamada a un médulo; se usa para comprobar si salary
del empleado introducido se ubica dentro de la categoria de datos numéricos. Usted verifica
para asegurarse de que un valor es numérico por muchas razones: una importante es que sélo
los valores numéricos pueden usarse en forma correcta en las declaraciones aritméticas. Un
moddulo como isNumeric() se proporciona con mds frecuencia con el traductor del lenguaje
que usa para escribir sus programas. Dicho método opera como una caja negra; en otras pala-
bras, usted puede usar los resultados del método sin entender sus declaraciones internas.

Aplicaciones comunes de los ciclos

output "Introduzca el salario”
input salary
while not isNumeric(salary)

output output "Entrada invalida. Intente de nuevo
output "Introduzca input salary

el salario" endwhile

i input sa]ary;

n

203

;isNumeric No

(salary)?

S output "Entrada
invalida. Intente
de nuevo "

Figura 5-21 Verificacion de los datos para ver si son del tipo correcto

Ademaés de permitirle comprobar si un valor es numérico, algunos lenguajes contienen méto-
dos como isChar(), que verifica si un valor es un tipo de datos caracter; iswWhitespace(), que
se asegura de que un valor sea un cardcter que no se imprime, como un espacio o un tabula-
dor; e isUpper (), que verifica si un valor es una letra mayuscula.

En muchos lenguajes, usted acepta todos los datos del usuario como una cadena de caracteres
y luego usa métodos incorporados para convertirlos al tipo de datos correcto para su aplica-
cién. Cuando los métodos de conversion tienen éxito, usted tiene datos dtiles; cuando no es asi
se debe a que el usuario ha introducido el tipo de datos erréneo, usted puede emprender una
accion apropiada, como emitir un mensaje de error, volver a pedir la entrada al usuario o for-
zar los datos a un valor predeterminado.

Validacion de la sensatez y consistencia de los datos

Los elementos de datos pueden ser del tipo correcto y estar dentro del rango, pero aun asf
ser incorrectos. Usted ha experimentado este problema si alguien ha escrito mal su nombre
o0 lo ha sobrefacturado: los datos podrian haber sido del tipo correcto; por ejemplo, se usaron
letras alfabéticas en su nombre, pero el nombre en si era incorrecto. No se puede comprobar

204

o VARG Creacion de ciclos

la sensatez de muchos elementos de datos; por ejemplo, los nombres Catherine, Katherine
y Kathryn son igual de razonables, pero sélo una ortografia es correcta para una mujer
particular.

Sin embargo, es posible verificar la sensatez de muchos elementos de datos; si usted hizo una
compra el 3 de mayo de 2013, entonces no es posible que el pago se venza antes de esa fecha.
Quiza dentro de su organizacion, no puede ganar mas de 20 délares por hora si trabaja en el
Departamento 12. Si su cddigo postal es 90201, su estado de residencia no puede ser Nueva
York. Si su efectivo en caja en su tienda era de 3,000 délares cuando cerré el martes, la can-
tidad no deberia ser diferente cuando la tienda abra el miércoles. Si el titulo de una clienta es
sefiorita, el género de la clienta deberia ser £ Cada uno de estos ejemplos implica comparar
la sensatez o consistencia de dos elementos de datos. Deberia considerar hacer tantas de estas
comparaciones como sea posible cuando escriba sus propios programas.

Con frecuencia, probar la sensatez y consistencia implica usar archivos de datos adicionales.
Por ejemplo, para comprobar que un usuario ha entrado a un municipio valido de residencia
para un estado, usted podria usar un archivo que contenga los nombres de todos los munici-
pios dentro de cada estado en su pais y verificar el municipio del usuario contra los que
contiene el archivo.

Los buenos programas defensivos tratan de prever todas las inconsistencias y errores posibles;
entre mas precisos sean sus datos, serd mds util la informacién que producird como salida de
sus programas.

correcta como una fuente de orgullo profesional. En un nivel mas basico, no deseara que le llamen para
trabajar a las 3:00 a.m. cuando la ejecucion del turno nocturno de su programa falle debido a errores que
usted creo.

ﬂ Cuando se convierta en un programador profesional deseara que sus programas funcionen en forma

DOS VERDADES UNA MENTIRA
Aplicaciones comunes de los ciclos
1. Un acumulador es una variable que se usa para recopilar o acumular valores.

2. Porlo comun un acumulador se inicializa en 0.

3. Por lo comun un acumulador se reinicia en O después de su salida.

"epljes ns ap sandsap Jope|nuwinoe
un JeIoiuiga 8p pepisadau Aey Ou UNWOD O] 104 '€ 0JBWINU B| S BS|e) UOIDBWILE BT

Resumen del capitulo

¢ Un ciclo contiene un conjunto de instrucciones que opera en multiples conjuntos de datos
separados.

e En cualquier ciclo deben ocurrir tres pasos: es preciso inicializar una variable de control de 205
ciclo, compararla con algtin valor que controle si el ciclo continda o se detiene, y alterar la
variable que controla el ciclo.

e Cuando debe usar unos ciclos dentro de otros, use ciclos anidados. Cuando los anida debe
mantener dos variables de control de ciclo individuales y alterar cada una en el momento
apropiado.

e Los errores comunes que cometen los programadores cuando escriben ciclos incluyen el
descuido en la inicializacién, la alteracién y la comparacién errénea de la variable de control
de ciclo e incluir declaraciones dentro del ciclo que pertenecen a su exterior.

e La mayoria de los lenguajes de computadora soportan una declaracién for o un ciclo for
que puede usar con ciclos definidos cuando sabe cudntas veces se repetird uno de ellos.
La declaracién for usa una variable de control de ciclo que se inicializa, evalda y altera de
manera automatica.

e Los ciclos se usan en muchas aplicaciones; por ejemplo, para acumular totales en los infor-
mes de negocios. Los ciclos también se usan para asegurar que las entradas de datos del
usuario son vélidas pidiendo a este dltimo una entrada de manera continua.

Términos clave

Una variable de control de ciclo determina si un ciclo continuara.
Un ciclo definido tiene un nimero de repeticiones que es un valor predeterminado.

Un ciclo contado, o ciclo controlado por contador, tiene repeticiones que son manejadas
por un contador.

Incrementar una variable es agregarle un valor constante, con frecuencia 1.
Decrementar una variable es disminuirla por un valor constante, con frecuencia 1.

Un contador es cualquier variable numérica que se use para contar las veces que ha ocurrido
un evento.

En un ciclo indefinido usted no puede determinar el nimero de ejecuciones.

Los ciclos anidados ocurren cuando existe una estructura de ciclo dentro de otra.
Un ciclo externo contiene otro cuando ambos estdn anidados.

Un ciclo interno est4 contenido dentro de otro cuando ambos estdn anidados.

Un stub es un método sin declaraciones que se usa como marcador.

Una declaracion for, o ciclo for, puede usarse para codificar ciclos definidos; contiene una
variable de control de ciclo que se inicializa, evalta y altera en forma automaética.

Un valor de paso es un nimero que se usa para incrementar una variable de control de ciclo
en cada paso a través de un ciclo.

206

o VARG Creacion de ciclos

Un ciclo preprueba prueba su variable de control de ciclo antes de cada iteracién, lo que sig-
nifica que el cuerpo del ciclo podria no ejecutarse nunca.

Un ciclo posprueba prueba su variable de control de ciclo después de cada iteracién, lo que
significa que el cuerpo del ciclo se ejecuta al menos una vez.

Un acumulador es una variable que se usa para recopilar o acumular valores.
Un informe sumario sélo lista los totales, sin registros de los detalles individuales.

La programacion defensiva es una técnica con la que usted trata de prepararse para todos los
errores posibles antes de que ocurran.

Validar datos es asegurarse de que los elementos de datos son significativos y ttiles; por
ejemplo, de que los valores son el tipo de datos correcto o que se ubican dentro de un rango
aceptable.

GIGO (entra basura, sale basura) significa que si su entrada es incorrecta, su salida carece de
valor.

Forzar un elemento de datos significa que se anulan los que son incorrectos al establecerlos en
un valor especifico.

Preguntas de repaso

1. Laestructura que le permite escribir un conjunto de instrucciones que opere en multi-
ples conjuntos de datos separados es

a) secuencia ¢) ciclo

b) seleccién d) caso

2. Elciclo que aparece con frecuencia en la légica de linea principal en un programa

a) siempre depende de si una variable es igual a 0

b) funciona correctamente con base en la misma légica que otros ciclos

¢) esun ciclo no estructurado

d) esun ejemplo de un ciclo infinito
3. ;Cudl de los siguientes n0 es un paso que debe ocurrir con cada ciclo que funcione en

forma correcta?

a) Inicializar una variable de control del ciclo antes de que inicie el ciclo.

b) Establecer el valor de control de ciclo igual a un centinela durante cada iteracion.
¢) Comparar el valor de control de ciclo con un centinela durante cada iteracién.
d)

Alterar la variable de control de ciclo durante cada iteracién.

4. Las declaraciones ejecutadas dentro de un ciclo se conocen en forma colectiva como

a) cuerpo del ciclo ¢) secuencias

b) controles del ciclo d) centinelas

10.

11.

Preguntas de repaso [

Un contador da seguimiento a

a) el numero de veces que ha ocurrido un evento

b) el nimero de ciclos de maquina requeridos por un segmento de programa
¢) el ndmero de estructuras de ciclo dentro de un programa
d)

el nimero de veces que se ha revisado un software

Agregar 1 a una variable también se llama
a) compendiar ¢) decrementar

b) reiniciar d) incrementar

¢Cual de los siguientes es un ciclo definido?

a) uno que se ejecuta en tanto un usuario continta introduciendo datos vélidos
b) uno que se ejecuta 1,000 veces

¢) los dos anteriores

d) ninguno de los anteriores

¢Cual de los siguientes es un ciclo indefinido?
a) uno que se ejecuta exactamente 10 veces

b) uno que sigue a un indicador que pregunta a un usuario cuantas repeticiones hacer
y usa el valor para controlar el ciclo

¢) los dos anteriores

d) ninguno de los anteriores

Cuando decrementa una variable, usted
a) laestableceen0 ¢) leresta un valor

b) la reduce en un décimo d) la elimina del programa

Cuando dos ciclos estdn anidados, el que es contenido por el otro es el ciclo

a) cautivo ¢) interno

b) no estructurado d) externo

Cuando los ciclos estdn anidados,

a) por lo comin comparten una variable de control de ciclo
b) uno debe terminar antes de que comience el otro

¢) ambos deben ser del mismo tipo, definido o indefinido

d) ninguno de los anteriores

207

208

o VARG Creacion de ciclos

12.

13.

14.

15.

16.

17.

18.

19.

La mayoria de los programadores usan un ciclo for

a) para todo ciclo que escriben

b) cuando un ciclo no se repetird

¢) cuando un ciclo debe repetirse muchas veces

d) cuando saben el numero exacto de veces que se repetird un ciclo

Un informe que sdlo lista totales, sin detalles sobre registros individuales, es un
informe

a) acumulador ¢) sumario

b) final d) sin detalles

Por lo comun, el valor agregado a una variable contadora es

a) 0 c) 10

b) 1 d) diferente en cada iteracién

Por lo comdn, el valor agregado a una variable acumuladora es
a) 0 ¢) el mismo para cada iteracién
b) 1 d) diferente en cada iteracién

Después de que se despliega una variable acumuladora o contadora al final de un pro-
grama, es mejor

a) eliminarla del programa ¢) restarle 1

b) reiniciarla en O d) ninguno de los anteriores
Cuando usted , se asegura de que los elementos de datos son del tipo
correcto y se ubican dentro del rango correcto.

a) valida los datos ¢) usa la orientacion hacia el objeto
b) emplea la programacion ofensiva d) cuenta las iteraciones de un ciclo

Anular un valor introducido por un usuario estableciéndolo a un valor determinado se
conoce como

a) forzar ¢) validar

b) acumular d) empujar

Para asegurarse de que la entrada de un usuario es el tipo de datos correcto, con fre-
cuencia usted

a) solicita al usuario que verifique que el tipo es correcto

b) usa un método incorporado en el lenguaje de programacién

¢) incluye una declaracién al inicio del programa que lista los tipos de datos
permitidos

d) todos los anteriores

Ejercicios

20. Una variable podria contener un valor incorrecto aun cuando
a) es el tipo de datos correcto
b) esta dentro de un rango requerido
c) esuna constante codificada por el programador

d) todos los anteriores 209

Ejercicios

1. ;Cudl es la salida para cada uno de los segmentos de seudocddigo de la figura 5-227?

? a=1 -l g-4 ¢
b =2 e =6 g=4
c=2>5 f=7 h==6
while a < ¢ while d > f while g < h
a=a+1 d=d+ 1 g=9g +1
=b +c e=e-1 endwhile
endwhile endwhile output g, h
output a, b, c output d, e, f
d. j=2 e. j=2 .l p=2
k =5 k =5 q=4
n=29 m=26 while p < ¢
while j < k n=9 output "Adiods"
m=6 while j < k r=1
while m < n while m < n while r < q
output "Adios" output "Hola" output "Adios"
m=m+ 1 m=m+ 1 r=r +1
endwhiTe endwhile endwhile
i=3+1 j=3+1 p=p+1
endwhile endwhile endwhile

Figura 5-22 Segmentos de seudocddigo para el ejercicio 1

2. Disefie la logica para un programa que dé como salida todos los numeros del 1 al 20.

3. Diserie la logica para un programa que dé como salida todos los numeros del 1 al 20
junto con su valor al doble y al triple.

4. Disene la légica para un programa que dé como salida todos los nimeros pares del 2 al
100.

5. Disefie la logica para un programa que dé como salida nimeros en orden invertido del

25al 0.

6. Disefie la logica para un programa que permita a un usuario introducir un nimero.
Despliegue la suma de todos los nimeros desde 1 hasta el nimero introducido.

210

o VARG Creacion de ciclos

7.

10.

11.

12.

a) Disene una aplicacién para Homestead Furniture Store que obtenga los datos de
las transacciones de ventas, incluidos un nimero de cuenta, nombre del cliente
y precio de compra. Dé salida al numero de cuenta y nombre y luego al pago del
cliente cada mes durante los siguientes 12 meses. Suponga que no hay cargos por
financiamiento, que el cliente no hace compras nuevas y que liquida el saldo con
pagos mensuales iguales.

b) Modifique la aplicaciéon de Homestead Furniture Store de modo que se ejecute de
manera continua para cualquier cantidad de clientes hasta que se suministre un
valor centinela para el nimero de cuenta.

a) Diseifle una aplicacién para Domicile Designs que obtenga los datos de las transac-
ciones de ventas, incluidos un nimero de cuenta, nombre del cliente y precio de
compra. La tienda carga 1.25% de interés sobre el saldo deudor cada mes. Dé salida
al nimero de cuenta y nombre, luego al saldo proyectado del cliente cada mes
durante los siguientes 12 meses. Suponga que cuando el saldo llegue a 25 délares
0 menos, el cliente puede liquidar la cuenta. Al principio de cada mes, se agrega
1.25% de interés al saldo, y luego el cliente hace un pago igual a 7% del saldo actual.
Suponga que el cliente no hace compras nuevas.

b) Modifique la aplicacién de Domicile Designs de modo que se ejecute en forma
continua para cualquier cantidad de clientes hasta que se suministre un valor cen-
tinela para el nimero de cuenta.

Yabe Online Auctions requiere que sus vendedores publiquen los articulos para venta
por un periodo de seis semanas durante el que el precio de cualquier articulo no ven-
dido baja 12% cada semana. Por ejemplo, uno que cuesta 10 ddlares durante la primera
semana cuesta 12% menos, u 8.80 ddlares, durante la segunda semana. Durante la
tercera, el mismo articulo cuesta 12% menos que 8.80, o 7.74 ddlares. Disefe una apli-
cacion que permita a un usuario introducir precios hasta que se introduzca un valor
centinela apropiado. La salida del programa es el precio de cada articulo durante cada
semana, de la uno a la seis.

El sefior Roper es propietario de 20 edificios de departamentos. Cada edificio contiene
15 unidades que renta por 800 délares por mes cada uno. Diseiie la aplicacién que
darfa salida a 12 talonarios de pago para cada uno de los 15 departamentos en cada
uno de los 20 edificios. Cada talonario debe contener el niumero de edificio (1 a 20), el
ndmero de departamento (1 a 15), el mes (1 a 12) y la cantidad de renta que se debe.

Disene una calculadora de planeacién del retiro para Skulling Financial Services. Per-
mita que un usuario introduzca el nimero de afios de trabajo que restan en su profe-
sién y la cantidad anual de dinero que puede ahorrar. Suponga que el usuario gana 3%
de interés simple sobre sus ahorros cada afio. La salida del programa es un calendario
que lista cada numero de afo en retiro empezando con el afio cero y los ahorros del
usuario al inicio de ese aflo. Suponga que el usuario gasta 50,000 ddlares por afio en el
retiro y luego gana 3% de interés sobre el saldo restante. Termine la lista después de 40
anos, o cuando el saldo del usuario sea 0 o menos, lo que ocurra primero.

Ellison Private Elementary School tiene tres salones de clases en cada uno de nueve
grados, jardin de ninos (grado 0) hasta el grado 8, y permite a los padres pagar la cole-
giatura a lo largo del afio escolar de nueve meses. Disefie la aplicaciéon que dé salida al
pago de nueve talonarios de colegiatura para cada uno de los 27 salones de clases. Cada

Ejercicios

talonario debe contener el ndmero de grado (0 a 8), el numero de salén de clases
(La3), el mes(1a9)ylacantidad de colegiatura que se debe. La colegiatura para el
jardin de nifios es de 80 ddlares por mes. La colegiatura para los otros grados es de
60 ddlares por mes por el nivel de grado.

13. a) Disefie un programa para la Hollywood Movie Rating Guide, que pueda insta-
larse en un quiosco en los cines; cada cliente del cine introduce un valor de 0 a 4
indicando el niumero de estrellas con las que califica a la pelicula de la semana que
se presenta en la gufa. Si un usuario introduce un valor que no queda en el rango
correcto, vuelva a indicarle varias veces hasta que introduzca un valor correcto.

El programa se ejecuta en forma continua hasta que el gerente del cine introduce
un ndmero negativo para salir. Al final del programa, despliegue la clasificacién de
estrellas promedio para la pelicula.

b) Modifique el programa de la clasificacién de peliculas de modo que un usuario
tenga tres intentos para introducir una clasificacién vélida. Después de tres entra-
das incorrectas, el programa emite un mensaje apropiado y contindia con un usua-
rio nuevo.

14. La cafeteria Noir Coffee Shop desea contar con alguna investigacién de mercado
sobre sus clientes. Cuando un cliente hace un pedido, un empleado le pide su codigo
postal y su edad; el empleado introduce los datos al igual que el nimero de articulos
que ordend el cliente. El programa opera en forma continua hasta que el empleado
introduce un 0 para el cédigo postal al final del dia. Cuando el empleado introduce
un cddigo postal invélido (més de cinco digitos) o una edad invélida (definida como
menos de 10 o mas de 110) el programa le pide de nuevo una entrada en forma con-
tinua. Cuando el empleado introduce menos de 1 o mas de 12 articulos, el programa
vuelve a pedirle una entrada dos veces mds. Si introduce un valor alto en el tercer
intento el programa lo acepta, pero si se trata de un valor menor que 1 en el
tercer intento, se despliega un mensaje de error y el pedido no se cuenta. Al final del
programa, despliega un conteo del nimero de articulos ordenados por los clientes
del mismo c6digo postal que la cafeteria (54984) y un conteo de otros cddigos postales.
También despliega la edad promedio del cliente al igual que cuenta el nimero de
articulos ordenados por clientes menores de 30 y por clientes de 30 y més.

" Encuentre los errores

Sus archivos descargables para el capitulo 5 incluyen DEBUGO05-01.txt, DEBUG05-02.
txt y DEBUGO05-03.txt. Cada archivo comienza con algunos comentarios que descri-
ben el problema. Los comentarios son lineas que comienzan con dos diagonales (//).
Después de los comentarios, cada archivo contiene seudocédigo que tiene uno o mds
errores que usted debe encontrar y corregir. (NOTA: Estos archivos se encuentran dis-
ponibles s6lo para la version original en inglés.)

%’8 Zona de juegos

16. En el capitulo 2, aprendié que en muchos lenguajes de programacion usted puede
generar un numero aleatorio entre 1 y un valor limite llamado LIMIT usando una

212

o VARG Creacion de ciclos

17.

18.

declaracién similar a randomNumber = random(LIMIT). En el capitulo 4, cred la logica
para un juego de adivinanza en el que la aplicacién genera un nimero aleatorio y el
jugador intenta adivinarlo. Ahora, cree el juego de adivinanza en si. Después de cada
adivinanza, despliegue un mensaje indicando si la del jugador fue correcta, demasiado
alta o demasiado baja. Cuando el jugador al fin adivina el nimero correcto, despliegue
un conteo del nimero de intentos que se requirieron.

Cree la 16gica para un juego que simule el lanzamiento de dos dados generando dos
ndmeros entre 1y 6 inclusive. El jugador elige un nimero entre 2 y 12 (los totales mds
bajo y més alto posibles para dos dados). Entonces el jugador “lanza” dos dados hasta
tres veces. Si sale el nimero elegido por él, entonces gana y el juego termina. Si el
ntmero no sale en los tres lanzamientos, la computadora gana.

Cree la légica para el juego de dados Pig, en el que un jugador puede competir con la
computadora. El objeto del juego es ser el primero en obtener 100 puntos. El usuario y
la computadora toman turnos para “lanzar” un par de dados siguiendo estas reglas:

e Enun turno, cada jugador lanza dos dados. Si no aparece 1, los valores de los dados
se suman a un total acumulado para el turno y el jugador puede elegir si lanza de
nuevo o pasa el turno al otro. Cuando un jugador pasa el total acumulado en el
turno se suma a su total del juego.

e Siaparece 1 en uno de los dados, el total del turno del jugador se convierte en 0; en
otras palabras, no se suma nada mds al total del juego del jugador para ese turno, y
le toca el turno al otro.

e Siaparece 1 en ambos dados, no sélo se acaba el turno del jugador, sino que el total
acumulado entero del jugador se reinicia a 0.

* Cuando la computadora no lanza un 1 y puede elegir si lanza de nuevo, genera un
numero aleatorio de 1 a 2. Entonces la computadora decidird continuar cuando el
valor es 1y decidird salir y pasar el turno al jugador cuando el valor no es 1.

g' Para discusion

19.

20.

21.

Suponga que escribe un programa que usted sospecha que estd en un ciclo infinito
debido a que se mantiene corriendo por varios minutos sin salida y sin terminar. ;Qué
le agregaria a su programa para que le ayude a descubrir el origen del problema?

Suponga que sabe que todos los empleados en su organizacién tienen un nimero de
identificacién de siete digitos que se usa para entrar al sistema de cémputo. Un ciclo
serfa ttil para adivinar todas las combinaciones de siete digitos en una identificacion.
¢Hay alguna circunstancia en la que usted deberia intentar adivinar el nimero de iden-
tificacion de otro empleado?

Si todos los empleados en una organizacion tuvieran un niumero de identificacién de
siete digitos, adivinar todas las combinaciones posibles serfa una tarea de programa-
cién relativamente facil. ;Como podria alterar el formato de las identificaciones de
empleados para hacerlas m4s dificiles de adivinar?

Arreglos

En este capitulo usted aprendera sobre:

©@ © © © ®© © ©® ©

Almacenamiento de datos en arreglos

Cémo un arreglo puede reemplazar las decisiones anidadas
Usar constantes con arreglos

Buscar un arreglo para una correspondencia exacta

Usar arreglos paralelos

Buscar un arreglo para una correspondencia de rango
Permanecer dentro de los limites del arreglo
Usar un ciclo for para procesar arreglos

CAPITULO 6 @8

214

Almacenamiento de datos en arreglos

Un arreglo es una serie o lista de valores en la memoria de la computadora. Por lo general,
todos los valores en un arreglo tienen algo en comun; por ejemplo, podrian representar una
lista de los niumeros de identificacién de los empleados o de los precios para los articulos ven-
didos en una tienda.

Siempre que usted requiera multiples ubicaciones de almacenamiento para los objetos, puede
usar el equivalente de un arreglo de programacion de la vida real. Si guarda papeles impor-
tantes en carpetas de archivos y etiqueta cada carpeta con una letra consecutiva del alfabeto,
entonces usa el equivalente de un arreglo; si conserva sus recibos en una pila de cajas de zapa-
tos y etiqueta cada caja con el nombre de un mes, también lo hace. Del mismo modo, cuando
planea los cursos para el siguiente semestre en su escuela revisando una lista de ofertas de cur-
s0s, usa un arreglo.

ﬂ Los arreglos que se han expuesto en este capitulo son unidimensionales y son similares a las listas.

Cada uno de estos arreglos de la vida real le ayuda a organizar los objetos o la informacién.
Usted podria almacenar todos sus documentos o recibos en una enorme caja de cartén o
encontrar los cursos si estdn impresos al azar en un libro grande; sin embargo, usar un sistema
organizado de almacenamiento y despliegue hace su vida mas facil en cada caso. El uso de un
arreglo de programacion lograra los mismos resultados para sus datos.

De qué modo los arreglos ocupan la memoria de la computadora

Cuando usted declara un arreglo se refiere a una estructura que contiene multiples elementos
de datos; cada uno de éstos es un elemento del arreglo. Cada elemento tiene el mismo tipo de
datos y ocupa un area en la memoria junto a los otros, o contiguo a ellos. Usted puede indicar
el nimero de elementos que contendra un arreglo (el tamafo del arreglo) cuando lo declara
junto con sus otras variables y constantes. Por ejemplo, podria declarar un arreglo numérico
de tres elementos no inicializado cuyo nombre es someVals como sigue:

num someVals[3]

Cada elemento del arreglo se distingue de los otros con un subindice tnico, conocido como
indice, que es un ndmero que indica la posicién de un elemento particular dentro de un
arreglo. Todos los elementos del arreglo tienen el mismo nombre de grupo, pero cada uno
también tiene un subindice Gnico que indica qué tan lejos estd del primer elemento. Por
consiguiente, todos los subindices del arreglo son siempre una secuencia de enteros.

Por ejemplo, un arreglo de cinco elementos usa los subindices 0 a 4 y uno de 10 elementos
usa los subindices 0 a 9. En todos los lenguajes, los valores del subindice deben ser niumeros
enteros secuenciales. En la mayor parte de los lenguajes modernos, como Visual Basic, Java,
C++ y C#, se tiene acceso al primer elemento del arreglo usando el subindice 0 y en este libro
sigue esta convencion.

Para usar un elemento de arreglo se coloca su subindice dentro de paréntesis o corchetes
(dependiendo del lenguaje de programacién) después del nombre del grupo. En este libro se

Almacenamiento de datos en arreglos _

usan corchetes para contener los subindices del arreglo de modo que usted no confunda los
nombres de arreglo con los nombres de método. Muchos lenguajes de programacién mas
recientes como C++, Java y C# también usan la notacién con corchetes.

Después de que usted declara un arreglo puede asignar valores a algunos de los elementos o
a todos en forma individual. La asignacién de valores al arreglo en ocasiones se conoce como
poblar el arreglo. El siguiente c6digo muestra una declaracion de arreglo de tres elementos
seguida por tres declaraciones separadas que pueblan el arreglo:

Declarations

num someVals[3]
someVals[0] 25
someVals[1] 36
someVals[2] 47

La figura 6-1 muestra un arreglo nom- someVals[1]

brado someVvals que contiene tres elemen- someVals[0] someVals[2]
tos, de modo que éstos son someVals[0], \ /
someVals[1] y someVals[2]; se les \ /
han asignado los valores 25, 36 y ‘] ’
47, respectivamente. El elemento

someVals[0] estd cero niumeros alejado 25 36 47
del comienzo del arreglo; somevals[1]
estd a un numero del inicio del arreglo
y someVals[2] estd a dos nimeros de
distancia.

Figura 6-1 Apariencia de un arreglo de tres

Si es apropiado, usted puede declarar e .
elementos en la memoria de la computadora

inicializar los elementos de arreglo en una
declaracién; la mayoria de los lenguajes
de programacién usan una similar a la siguiente para declarar un arreglo de tres elementos y
asignarle valores:

num someVals[3] = 25, 36, 47

Cuando use una lista de valores para inicializar un arreglo, el primer valor que liste se asignard
al primer elemento del mismo (elemento 0) y los valores subsiguientes se asignan en orden a
los elementos restantes. Muchos lenguajes de programacién le permiten inicializar un arreglo
con menos valores iniciales que los elementos declarados, pero ninguno le permite iniciali-
zarlo usando mas valores iniciales que posiciones disponibles. Cuando se asignen los valores
iniciales para un arreglo en este libro, a cada elemento se le proporcionara un valor.

Después de que se ha declarado un arreglo y se han asignado valores apropiados a los elemen-
tos especificos, usted puede usar un elemento individual en la misma forma en que usaria
cualquier otro elemento de datos del mismo tipo. Por ejemplo, puede introducir valores para
los elementos del arreglo y dar salida a los valores, y si los elementos son numéricos puede
efectuar aritmética con ellos.

CAPITULO 6 @8

216

DOS VERDADES UNA MENTIRA

Almacenamiento de datos en arreglos

1. Enun arreglo, cada elemento tiene el mismo tipo de datos.

2. Se tiene acceso a cada elemento del arreglo usando un subindice, que puede

ser un nimero o una cadena.

3. Los elementos del arreglo siempre ocupan ubicaciones de memoria

adyacentes.

"3]qelieA BuN O [eJa]| 1UBISUOD BUN ‘ePRICLIOU 3]UBISUOD BUN J3S apand
"0J3WNU UN J3S 9gap 0|Sa4ie Un ap d2IpUIgNS | "Z 04aWNU] S eS|e) UQIoeLUILR &7

Como un arreglo puede reemplazar decisiones anidadas

Considere una aplicacion solicitada por el departamento
de recursos humanos de una compaiiia para elaborar
estadisticas sobre los dependientes declarados por los
empleados. El departamento desea un informe que liste
el numero de empleados que han declarado 0, 1, 2, 3,4 o
5 dependientes (suponga que sabe que ningin empleado
tiene mas de cinco). Por ejemplo, la figura 6-2 muestra
un informe tipico.

Sin usar un arreglo, usted podria escribir la aplicacién
que produce los conteos para las seis categorias de
dependientes (0 a 5) usando una serie de decisiones. La
figura 6-3 muestra el seudocddigo y el diagrama de flujo
para la parte de la toma de decisiones de una aplicaciéon
asi. Aunque esta ldgica funciona, su extensioén y comple-
jidad son innecesarias una vez que entiende cémo usar
un arreglo.

Dependientes Cuenta

0 43
1 35
2 24
3 11
4 5
5 7

Figura 6-2 Informe de dependientes
tipico

Cémo un arreglo puede reemplazar decisiones anidadas _

Significant declarations:
num dep
num count0
num countl
num count2
num count3
num count4
num count5

| | B T A
[eNoNoNoNo o)

count5 = count4 =
count5 + 1 count4 + 1

if dep = 0 then
count0 = count0 + 1
else
if dep = 1 then
countl = countl + 1
else
if dep = 2 then
count2 = count2 + 1
else
if dep = 3 then
count3 = count3 + 1
else
if dep = 4 then
count4 = countd + 1
else
count5 = count5 + 1
endif
endif
endif
endif
endif

No lo haga
Aunque esta logica
funciona, el proceso de

toma de decisiones es
engorroso.

Figura 6-3 Diagrama de flujo y seudocddigo del proceso de toma de decisiones usando una serie de

decisiones: modo dificil

217

CAPITULO 6 @8

218

es engorroso y ciertamente no se recomienda. Siga la légica aqui de modo que entienda cémo funciona la

ﬂ El proceso de toma de decisiones en la figura 6-3 logra su propdsito y la légica es correcta, pero el proceso
aplicacion; en las paginas siguientes, vera como hacerla mas elegante.

En la figura 6-3, la variable dep se compara con 0. Si es 0, se agrega 1 a countO0; si no, entonces
dep se compara con 1. Con base en el resultado, se agrega 1 a countl o dep se compara con 2,
y asi sucesivamente. Cada vez que la aplicacion ejecuta este proceso de toma de decisiones al
final se agrega 1 a una de las seis variables que acttian como contador. La légica dependiente
del conteo en la figura 6-3 funciona, pero aun con sélo seis categorias de dependientes, el
proceso de toma de decisiones es poco manejable. ;Qué tal si el nimero de dependientes
fuera cualquier valor de 0 a 10, o de 0 a 20? Con estos escenarios la l6gica bésica del programa
permaneceria igual; sin embargo, usted necesitaria declarar muchas variables adicionales para
llevar las cuentas y requerirfa muchas decisiones adicionales.

El uso de un arreglo proporciona un enfoque alternativo a este problema de programacién

y reduce en gran medida el nimero de declaraciones que usted necesita. Cuando declara un
arreglo, proporciona un nombre de grupo para un nimero de variables asociadas en la memo-
ria. Por ejemplo, los seis acumuladores dependientes de la cuenta pueden redefinirse como

un solo arreglo llamado count. Los elementos individuales se vuelven count[0], count[1],
count[2], count[3], count[4] y count[5], como se muestra en el proceso de toma de decisio-
nes que se revisa en la figura 6-4.

La declaracién sombreada en la figura 6-4 muestra que cuando dep es 0, se agrega 1 a
count[0]. Puede ver declaraciones similares para el resto de los elementos count; cuando

dep es 1, se agrega 1 a count[1], cuando dep es 2, se agrega 1 a count[2], y as{ sucesiva-
mente. Cuando el valor de dep es 5, esto significa que no fue 1, 2, 3, 0 4, asi que se agrega 1 a
count[5]. En otras palabras, se agrega 1 a uno de los elementos del arreglo count en lugar de
a una variable individual llamada count0, countl, count2, count3, count4 o count5. ;Esta ver-
sién es una gran mejora sobre el original de la figura 6-3? Por supuesto que no. Todavia no ha
obtenido ventaja de los beneficios de usar el arreglo en esta aplicacién.

Cémo un arreglo puede reemplazar decisiones anidadas _

Significant declarations: ‘
num dep
num count[6] = 0, O, O, O, O, O

count[0] =

count[0] + 1 219

count[1l] =
count[1l] + 1

count[2] =
count[2] + 1

count[3] =
count[3] + 1

count[5] = count[4] =
count[5] + 1 count[4] + 1

|
if dep = 0 then
count[0] = count[0] + 1
else
if dep = 1 then
count[1l] = count[1l] + 1
else
if dep = 2 then
count[2] = count[2] + 1
else
if dep = 3 then
count[3] = count[3] + 1
else
if dep = 4 then
count[4] = count[4] + 1
else
count[5] = count[5] + 1
endif
endif
endif
endif
endif

No lo haga

El proceso de toma de
decisiones todavia es
€ngorroso.

Figura 6-4 Diagrama de flujo y seudocddigo del proceso de toma de decisiones: pero todavia del
modo dificil

El verdadero beneficio de utilizar un arreglo est en su capacidad para usar una variable como
un subindice para el arreglo, en lugar de una constante literal como 0 o 5. Note en la l6gica de
la figura 6-4 que, dentro de cada decision, el valor comparado con dep y la constante que

es el subindice en el proceso Si resultante siempre son idénticos. Es decir, cuando dep es 0,

el subindice que se usa para agregar 1 al arreglo count es 0; cuando dep es 1, el subindice para

CAPITULO 6 @YC:LS

el arreglo count es 1, y asf sucesivamente; por consiguiente, puede usar sélo dep como un

subindice para el arreglo. Puede reescribir el proceso de toma de decisiones como se muestra
en la figura 6-5.

220

Significant declarations:
num dep

num count[6] = 0, 0, O, O, O, O

count[dep] =
count[dep] + 1

count[dep] =
count[dep] + 1

count[dep] =
count[dep] + 1

count[dep] =
count[dep] + 1
count[dep] = count[dep] =
count[dep] + 1 count[dep] + 1

if dep = 0 then

count[dep] = count[dep] + 1
else
if dep = 1 then
e1sZount[dep] = count[dep] + 1 No lo haga
if dep - 2 then de deciiones no e
count[dep] = count[dep] + 1 .
else mejorado.
if dep = 3 then
count[dep] = count[dep] + 1
else
if dep = 4 then
count[dep] = count[dep] + 1
else
count[dep] = count[dep] + 1
endif
endif
endif
endif
endif

Figura 6-5 Diagrama de flujo y seudocddigo del proceso de toma de decisiones usando un arreglo:

pero todavia de un modo dificil

Como un arreglo puede reemplazar decisiones anidadas _

El segmento de cédigo en la figura 6-5 no se ve més eficiente que el de la figura 6-4. Sin
embargo, note las declaraciones sombreadas en la 6-5; el proceso que ocurre después de cada
decision es exactamente el mismo. En cada caso, sin importar cudl sea el valor de dep, siempre
agrega 1 a count[dep]. Si siempre emprendemos la misma accién sin importar cuél sea la res-
puesta a una pregunta, no hay necesidad de hacer la pregunta. En cambio, usted puede reescri-
bir el proceso de toma de decisiones como se muestra en la figura 6-6.

Significant declarations:
num dep
num count[6] = 0, O, O, 0, O, O

count[dep]

count[dep] 1

+ 1

count[dep] = count[dep] + 1

Figura 6-6 Diagrama de flujo y seudocddigo de un proceso de toma de decisiones eficiente usando un
arreglo

iLa declaracion tnica en la figura 6-6 elimina el proceso de toma de decisiones entero que era
la seccion original resaltada en la figura 6-5! Cuando dep es 2, se agrega 1 a count[2]; cuando
dep es 4, se agrega 1 a count[4], y asi sucesivamente. Ahora usted ha mejorado de manera
significativa la l6gica original. Lo que es mds, este proceso no cambia ya sea que haya 20, 30

o cualquier otro numero de categorias posibles. Para usar mds de cinco acumuladores, usted
declararia elementos count adicionales en el arreglo, pero la logica clasificadora permaneceria
igual que en la figura 6-6.

La figura 6-7 muestra un programa entero que obtiene ventaja del arreglo a fin de producir el
informe que muestra los conteos para las categorias dependientes. Se declaran las variables

y las constantes y, en el médulo getReady () se introduce un primer valor para dep en el pro-
grama. En el mdédulo countDependents(), se agrega 1 al elemento apropiado del arreglo count
y se introduce el siguiente valor. El ciclo en la l6gica de la linea principal en la figura 6-7 es
indefinido; continta en tanto el usuario no introduzca el valor centinela. Cuando la entrada de
datos estd completa, el médulo finishUp() despliega el informe. Primero, se da salida al enca-
bezado, luego dep se reinicia a 0 y después se da salida a cada dep y count[dep] en un ciclo. La
primera declaracién de salida contiene 0 (como el numero de dependientes) y el valor almace-
nado en count[0]. Luego, se agrega 1 a dep y se usa de nuevo el mismo conjunto de instruc-
ciones con el objetivo de desplegar los conteos para cada numero de dependientes. El ciclo en
el médulo finishUp() es definido; se ejecuta precisamente seis veces.

CAPITULO 6 @YC:LS

getReady ()

output "Introduzca

i dependientes o "
Declarations 1 .
222 num dep QUIT, para salir
num count[6] = 0, O, O, O, O, O *
num QUIT = 999 -
‘ input dep
getReady()

countDependents()

finishUp(Q countDependents()

Y
count[dep] =
count[dep] + 1
Y

output "Introduzca

. dependientes o ",
finishUpQ QUIT, “ para salir "
output -
///"Cuenta de dependientes"/// 1npui dep

\

I [|

Si output dep,

count[dep]

dep < 67

Y

dep = dep + 1

No

Figura 6-7 Diagrama de flujo y seudocédigo para el programa de informe Dependientes (continta)

Cémo un arreglo puede reemplazar decisiones anidadas _

(continuacion)

start
Declarations
num dep
num count[6] = 0, O, 0, 0, O, O
num QUIT = 999
getReady()
while dep <> QUIT
countDependents ()
endwhile
finishUp(Q)
stop

getReady)
output "Introduzca dependientes o ", QUIT,
input dep

return

para salir

countDependents ()
count[dep] = count[dep] + 1
output “Introduzca dependientes o ", QUIT,
input dep

return

para salir

finishUp(Q
output "Cuenta de dependientes”
dep = 0
while dep < 6
output dep, count[dep]
dep = dep + 1
endwhile
return

Figura 6-7 Diagrama de flujo y seudocddigo para el programa de informe Dependientes

El programa dependiente del conteo habria funcionado si contuviera una larga serie de deci-
siones y declaraciones de salida, pero es més facil escribirlo cuando usted usa un arreglo y
tiene acceso a sus valores usando el nimero de dependientes como un subindice. Ademas, el
programa nuevo es mas eficiente y es mas facil que otros programadores lo entiendan y le den
mantenimiento. Los arreglos nunca son obligatorios, pero con frecuencia pueden reducir de
manera dréstica su tiempo de programacion y hacer que su légica sea mds facil de entender.

Aprender a usar arreglos de manera apropiada puede hacer mucho maés eficientes y profesio-
nales diversas tareas de programacién. Cuando entienda cémo usar los arreglos serd capaz
de proporcionar soluciones elegantes a los problemas que de otra manera requerirfan pasos
tediosos de programacion.

CAPITULO 6 @8

224

DOS VERDADES UNA MENTIRA

Como un arreglo puede reemplazar decisiones anidadas

1. Usted puede usar un arreglo para reemplazar una larga serie de decisiones.

2. Usted experimenta un beneficio mayor de los arreglos cuando usa una cons-
tante literal numérica y no una variable como subindice.

3. Elproceso de desplegar cada elemento en un arreglo de 10 elementos en
esencia no es diferente de desplegar cada elemento en un arreglo de 100.

*9]UL]SU0D
BUN Jesn e uo1oIsodo Us 92IpuIgns Un OWOod 3|gelieA Bun BSN opuend soj3aJie So
9p JoAew 01oyauaq un ejusWILIRAXS PaISN "z 04aWNU] S3 eS|e) UQIDeLWILR T

Uso de constantes con arreglos

En el capitulo 2 usted aprendi6 que las constantes nombradas contienen valores que no cam-
bian durante la ejecucion de un programa. Cuando se trabaja con arreglos, puede usar cons-
tantes en varias formas:

e Para contener el tamano de un arreglo
e Como valores del arreglo

e Como subindices

Uso de una constante como el tamano de un arreglo

El programa en la figura 6-7 todavia contiene un defecto menor. A lo largo de este libro usted
ha aprendido a evitar los nimeros mdgicos; es decir, las constantes literales. Conforme se da
salida a los totales en el ciclo al final del programa en la figura 6-7, el subindice del arreglo

se compara con la constante 6. El programa puede mejorar si usa en cambio una constante
nombrada; esto hace que su cddigo sea mds facil de modificar y entender. En la mayoria de los
lenguajes de programacion usted puede adoptar uno de estos enfoques:

e Declarar una constante numérica nombrada como ARRAY_SIZE = 6. Luego usar esta cons-
tante cada vez que tenga acceso al arreglo, asegurdndose siempre de que cualquier subin-
dice que use permanezca menor que el valor constante.

e En muchos lenguajes se proporciona en forma automatica una constante que representa
el tamaiio del arreglo para cada uno de éstos que cree. Por ejemplo, en Java, después de
declarar un arreglo nombrado count, su tamarfio se almacena en un campo llamado
count. Tength. Tanto en C# como en Visual Basic, el tamafio del arreglo es count.Length,
con L mayuscula.

Uso de constantes con arreglos

Uso de constantes como valores de elemento del arreglo

En ocasiones los valores almacenados en arreglos deberfan ser constantes porque no se cambian
durante la ejecucion del programa. Por ejemplo, suponga que crea un arreglo que contiene nom-
bres para los meses del afio. No confunda el identificador del arreglo con su contenido; la con-
vencién en este libro es usar todas las letras en maytsculas en los identificadores de constantes,
pero no necesariamente en los valores de arreglo. El arreglo puede declararse como sigue:

string MONTH[12] = “Enero”, “Febrero”, “Marzo”, “Abril”,
“Mayo”, “Junio”, “Julio”, “Agosto”, “Septiembre”, “Octubre”,
“Noviembre”, “Diciembre”

Uso de una constante como subindice de un arreglo

En ocasiones usted deseard usar una constante literal numérica como subindice para un arre-
glo. Por ejemplo, para desplegar el primer valor en un arreglo nombrado salesArray podria
escribir una declaracion que usa una constante literal como sigue:

output salesArray[0]

También podria ser que necesite usar una constante nombrada como subindice; por ejemplo,
si salesArray contiene valores de ventas para cada uno de 20 estados cubiertos por su compa-
fifa e Indiana es el nimero 5, podria dar salida a este valor como sigue:

output salesArray[5]

Sin embargo, si declara una constante nombrada como num INDIANA = 5, entonces puede des-
plegar el mismo valor con esta declaracion:

output salesArray[INDIANA]

Una ventaja de usar una constante nombrada en este caso es que la declaracién se vuelve auto-
documentada; cualquier persona que lea su declaracién entendera con mayor facilidad que su
intencién es desplegar el valor de ventas para Indiana.

DOS VERDADES UNA MENTIRA

Uso de constantes con arreglos
1. Siusted crea una constante nombrada igual al tamano de un arreglo, puede
usarla como subindice para este ultimo.

2. Sicrea una constante nombrada igual al tamano de un arreglo, puede usarla
como un limite contra el cual comparar los valores de los subindices.

3. Cuando declara un arreglo en Java, C# y Visual Basic, se proporciona de
manera automatica una constante que representa el tamano del arreglo.

"OpljeA 0[3a4Je |9p 321pujgns Jainbjend anb apueJd sew S8 SIJUoJUD
‘0|334Je |9p ouewe) | [engl S8 91URISUOD | IS " 0JaWNU B| S3 BS|e) UolopwILe &7

CAPITULO 6 @8

226

Busqueda de un arreglo para una
correspondencia exacta

En la aplicacién dependiente del conteo en este capitulo, la variable de subindice del arreglo
contenfa de manera conveniente nimeros enteros pequefios (el numero de dependientes per-
mitidos era 0 a 5) y la variable dep tenia acceso directo al arreglo. Por desgracia, la vida real

no siempre transcurre en enteros pequefios; en ocasiones usted no tiene una variable que
contenga de modo conveniente la posicion de un arreglo; a veces tiene que buscar a lo largo de
uno para encontrar el valor que necesita.

Considere un negocio de paqueteria en el que los clientes colocan pedidos que contienen
nombre, direccién, nimero de articulo y cantidad ordenada. Suponga que los numeros de
articulo entre los que un cliente puede elegir constan de tres digitos, pero quiza no estan
numerados en forma consecutiva del 001 al 999. Digamos que ofrece seis articulos: 106, 108,
307, 405, 457 y 688, como se muestra en la declaracién sombreada VALID_ITEM en la figura 6-8
(el arreglo se declara como constante debido a que los nimeros de los articulos no cambian
durante la ejecucién del programa). Cuando un cliente ordena un articulo, un empleado de

getReady ()

Declarations output "Introduzca
num item nimero de articulo o ",
num SIZE = 6 FINISH, " para salir "
num VALID_ITEM[SIZE] = 106, 108, 307,

405, 457, 688 *
num sub input item
string foundIt
num badItemCount = 0 i
string MSG_YES = "Articulo disponible"
string MSG_NO = "Articulo no encontrado"
num FINISH = 999

{

getReady ()
v J
it i .
::Iﬁnfs;; findItem() finishUpO

output badItemCount,
— " los articulos tenian
finishUpO nimeros invalidos"

Figura 6-8 Diagrama de flujo y seudocddigo para un programa que verifica la disponibilidad de
articulos (continta)

£

Blsqueda de un arreglo para una correspondencia exacta _

oficina puede decir si el pedido es vélido viendo la lista y verificando en forma manual que

el ndmero de articulo ordenado esté en ella. En forma similar, un programa de computadora
puede usar un ciclo para probar el nimero de articulo ordenado contra cada VALID_ITEM,
buscando una correspondencia exacta. Cuando busca en una lista de un extremo a otro lleva a
cabo una busqueda lineal.

(continuacion)

findItem()
foundIt = "N"

No

Si

foundIt = "Y"

item =
VALID_ITEM[sub]?

output output
MSG_NO MSG_Yes

badItemCount = sub = sub + 1
badItemCount + 1

output "Introduzca el
siguiente numero de
articulo o ", FINISH,
" para salir "

Figura 6-8 Diagrama de flujo y seudocddigo para un programa que verifica la disponibilidad de
articulos (continua)

CAPITULO 6 @8

(continuacion)

start
Declarations
num item
num SIZE = 6
228 num VALID_ITEM[SIZE] = 106, 108, 307,
405, 457, 688
num sub
string foundIt
num badItemCount = 0
string MSG_YES = "Articulo disponible"
string MSG_NO = "Articulo no encontrado"
num FINISH = 999
getReady ()
while item <> FINISH
findItem()
endwhile
finishUp(Q
stop

getReady ()
output "Introduzca numero de articulo o ",
" para salir "
input item

return

findItem()
foundIt = "N"
sub = 0
while sub < SIZE
if item = VALID_ITEM[sub] then
foundIt = "Y"
endif
sub = sub + 1
endwhile
if foundIt = "Y" then
output MSG_YES
else
output MSG_NO
badItemCount = badItemCount + 1
endif

para salir
input item
return

finishUp(Q)

return

output "Introduzca el siguiente numero de articulo o

output badItemCount, " los articulos tenian nimeros invalidos"

Figura 6-8 Diagrama de flujo y seudocddigo para un programa que verifica la disponibilidad de

articulos

Blsqueda de un arreglo para una correspondencia exacta _

Para determinar si un niumero de articulo ordenado es vélido, usted podria usar una serie

de seis decisiones para comparar el nimero con cada uno de los seis valores permitidos. Sin
embargo, el enfoque superior que se muestra en la figura 6-8 es crear un arreglo que contenga
la lista de nimeros de los articulos validos y luego buscar a lo largo del arreglo una correspon-
dencia exacta con el que se ha ordenado. Si busca en todo el arreglo sin encontrar una corres-
pondencia para el articulo que el cliente ha ordenado, esto significa que el nimero del articulo
ordenado no es valido.

El médulo findItem() en la figura 6-8 muestra los siguientes pasos para verificar que el
nimero de un articulo existe:

e Una variable bandera nombrada foundIt se establece en "N". Una bandera es una variable
que se establece para indicar si ha ocurrido algin evento. En este ejemplo, N indica que el
ndmero del articulo todavia no se ha encontrado en la lista (véase la primera declaracién
sombreada en el método findItem() en la figura 6-8).

e Un subindice, sub, se establece en 0; se usard para tener acceso a cada elemento de
VALID_ITEM.

e Se ejecuta un ciclo, variando sub de 0 hasta uno menos que el tamano del arreglo. Dentro del
ciclo, el numero del articulo ordenado por el cliente se compara con cada ntumero de articulo
en el arreglo. Si el articulo ordenado por el cliente corresponde con cualquier articulo en el
arreglo, a la variable bandera se le asigna "Y" (véase la dltima declaracién sombreada en
el método findItem() en la figura 6-8). Después de que los seis nimeros de los articulos
vélidos se han comparado con el articulo ordenado, si el del cliente no corresponde con
ninguno de ellos, entonces la variable bandera foundIt todavia mantendrd el valor "N".

e Siel valor de la variable bandera es "Y" después de que se ha buscado en toda la lista, esto
significa que el articulo es vélido y se despliega un mensaje apropiado; pero si no se ha
asignado "Y" a la bandera, el articulo no fue encontrado en el arreglo de los que son validos.
En este caso se da salida a un mensaje de error y se agrega 1 a la cuenta de nimeros de
articulos deficientes.

ﬂ Como una alternativa para el uso de la cadena de la variable foundIt en el método de la figura 6-8,

usted quiza prefiera usar una variable numérica que se establece en 1 o 0. La mayoria de los lenguajes de

programacion también soportan un tipo de datos booleano que usted puede usar para foundIt; cuando
declara que una variable sera booleana puede establecer su valor como verdadero o falso.

DOS VERDADES UNA MENTIRA

Busqueda de un arreglo para una correspondencia exacta

1. Enlos arreglos solo pueden almacenarse nimeros enteros.
2. Solo pueden usarse nimeros enteros como subindices de los arreglos.

3. Una bandera es una variable que indica si ha ocurrido algtn evento.

"S9|ewIoap saledn|
U092 soJswnu A seuaped opusAnjoul ‘so18lqo 0410 soyanw ugiquel 0Jad ‘sojdalie
SO| U9 SOJ9)UD SOJBWINU 3SJeUddBW|e Uspangd "I 0JaWNU B| S BS|e} UQIdBWILER BT

CAPITULO 6 @8

230

Uso de arreglos paralelos

Cuando usted acepta el niumero de un articulo en el programa de una compaiiia de paquete-
ria, por lo general desea efectuar mds que sélo verificar la existencia del articulo. Por ejemplo,
tal vez desee determinar su nombre, precio o cantidad disponible. Tareas como éstas pueden
completarse en forma eficiente usando arreglos paralelos; éstos son dos o mas arreglos en los
que cada elemento en uno de ellos estd asociado con el elemento que se encuentra en la misma
posicidn relativa en el otro arreglo. Aunque cualquier arreglo sélo puede contener un tipo de
datos, cada uno en un conjunto de arreglos paralelos podria ser de un tipo diferente.

Suponga que tiene una lista de los nimeros de los articulos y sus precios. Un arreglo que se

ha nombrado VALID_ITEM contiene seis elementos; cada elemento es el nimero de un articulo
valido. Su arreglo paralelo también tiene seis elementos; se nombra VALID_PRICE y cada ele-
mento es el precio de un articulo. Cada precio en el arreglo VALID_PRICE estd de manera con-
veniente y deliberada en la misma posicion que el nimero de articulo correspondiente en el
arreglo VALID_ITEM. La figura 6-9 muestra cémo se verian los arreglos paralelos en la memoria
de la computadora.

VALID_ITEM[1] VALID_ITEM[3] VALID_ITEM[5]

VALID_ITEM[0] \VALID—ITEM[Z] /VALID TTEM[4] /
\ \
N

N

A}

106 | 108 | 307 405 4

O r—__

688

0.59 | 0.99 |4.50 1599 17.50 | 39.00

A 4 1h] %] %] ¥
/ I \ \ N\
VALID_PRICE[O] VALID_PRICE[2] VALID_PRICE[5]

VALID_PRICE[1] VALID_PRICE[3] VALID_PRICE[4]

Figura 6-9 Arreglos paralelos en la memoria

Cuando usted usa arreglos paralelos:
e Dos o mas arreglos contienen datos relacionados.

e Un subindice relaciona los arreglos. Es decir, los elementos en la misma posicién en cada
arreglo estan relacionados de manera légica.

La figura 6-10 muestra un programa que declara arreglos paralelos. El arreglo VALID_PRICE
estd sombreado; cada elemento en él corresponde a un ndmero de articulo vélido.

Uso de arreglos paraielos

getReady ()

Declarations output "Introduzca el
num item namero del articulo o ",
num price FINISH, " para salir " 231
num SIZE = 6 *
num VALID_ITEM[SIZE] = 106, 108, 307,
405, 457, 688 input item

num VALID_PRICE[SIZE] = 0.59, 0.99,
4.50, 15.99, 17.50, 39.00
num sub

string foundIt

num badItemCount = 0

string MSG_YES = "Articulo disponible"
string MSG_NO = "Articulo no encontrado"
num FINISH = 999

'

getReady ()

Y __J
. X
te
e FindTtem()

FINISH?

output badItemCount,
finishUp(Q) " Tos articulos tienen
numeros invalidos "

Figura 6-10 Diagrama de flujo y seudocddigo de un programa que encuentra el precio de un articulo
usando arreglos paralelos (continta)

CAPITULO 6 @YC:LS

(continuacion)

findItem()

232

item =
VALID_ITEM[sub]?

No Si

foundIt = "Y"

output output
MSG_NO MSG_YES

price =
VALID_PRICE[sub]
badItemCount = output "E1 l
badItemCount + 1 precio de ", item
" es ", price

!

output "Introduzca el siguiente
numero de articulo o ", FINISH,
" para salir "

[
G

return

Figura 6-10 Diagrama de flujo y seudocédigo de un programa que encuentra el precio de un articulo
usando arreglos paralelos (continta)

Uso de arreglos paraielos

(continuacion)

start

Declarations
num 1item
num price
num SIZE = 6
num VALID_ITEM[SIZE] = 106, 108, 307, 233

405, 457, 688
num VALID_PRICE[SIZE] = 0.59, 0.99,
4.50, 15.99, 17.50, 39.00

num sub
string foundIt
num badItemCount = 0
string MSG_YES = "Articulo disponible"
string MSG_NO = "Articulo no encontrado"
num FINISH = 999

getReady ()

while item <> FINISH
findItem()

endwhile

finishUp(

stop

getReady ()
output "Introduzca el nimero de articulo o ", FINISH, " para salir "
input item

return

findItem()
foundIt = "N"
sub = 0
while sub < SIZE
if item = VALID_ITEM[sub] then

foundIt = "Y"
price = VALID_PRICE[sub]
endif
sub = sub + 1
endwhile

if foundIt = "Y" then
output MSG_YES
output "E1 precio de
else
output MSG_NO
badItemCount = badItemCount + 1
endif
output "Introduzca el siguiente numero de articulo o ", FINISH,
para salir "
input item
return

es ", price

, item,

finishUp (O
output badItemCount, " Tos articulos tienen nimeros invalidos"

return

Figura 6-10 Diagrama de flujo y seudocédigo de un programa que encuentra el precio de un articulo
usando arreglos paralelos

CAPITULO 6 @8

234

figura 6-10, debido a que tales nombres no son descriptivos; preferirian uno como priceIndex. Otros
aprueban los nombres breves cuando la variable solo se usa en un area limitada de un programa, como se
usa aqui, para pasar por un arreglo. Los programadores estan en desacuerdo en muchas cuestiones de
estilo como ésta. Como programador, es su responsabilidad averiguar qué convenciones se usan entre sus
colegas en una organizacion.

ﬂ Algunos programadores objetan usar un nombre de variable confuso para un subindice, como sub en la

Cuando el programa en la figura 6-10 recibe el pedido de un cliente busca en cada uno de los
valores de VALID_ITEM por separado variando el subindice sub de 0 hasta el ndimero de articu-
los disponibles. Cuando se encuentra una correspondencia para el nimero del articulo, el pro-
grama extrae el precio paralelo de la lista de valores VALID_PRICE y lo almacena en la variable
price (véanse las declaraciones sombreadas en la figura 6-10).

La relacién entre el nimero de un articulo y su precio es una relacion indirecta. Esto significa
que usted no tiene acceso a un precio directamente al conocer el nimero del articulo.

En cambio, determina el precio al saber la posicién en el arreglo de dicho ndmero. Una vez
que encuentra una correspondencia para el nimero del articulo ordenado en el arreglo
VALID_ITEM, sabe que el precio del mismo estd en la misma posicién en el otro arreglo,
VALID_PRICE. Cuando VALID_ITEM[sub] es el articulo correcto, VALID_PRICE[sub] debe ser el
precio correcto, asi que sub vincula los arreglos paralelos.

Los arreglos paralelos son mds ttiles cuando los pares de valores tienen una relacion indirecta.
Silos valores en su programa tienen una relacién directa es probable que no necesite arreglos
paralelos. Por ejemplo, si los articulos estuvieran numerados 0, 1, 2, 3, y as{ sucesivamente en
forma consecutiva, usted podria usar el nimero de articulo como un subindice para el arreglo
de precio en lugar de un arreglo paralelo para contener los nimeros de los articulos. Aun si éstos
estuvieran numerados 200, 201, 202, y asi sucesivamente en forma consecutiva, podria restar un
valor constante (200) de cada uno y usar éste como subindice en lugar de un arreglo paralelo.

Suponga que un cliente ordena el articulo 457; recorra la légica para encontrar el precio
correcto por articulo: $17.50. Luego, suponga que un cliente ordena el articulo 458; recorra la
légica y vea si se despliega el mensaje apropiado Articulo no encontrado.

Mejora de la eficiencia de la busqueda

El programa de pedidos por correo en la figura 6-10 todavia es un poco ineficiente. Cuando
un cliente ordena los articulos 106 o 108, se encuentra una correspondencia en el primer o
segundo repaso por el ciclo, y la continuacién de la busqueda no proporciona ningtin bene-
ficio. Sin embargo, aun después de que se encuentra una correspondencia, el programa en la
figura 6-10 sigue buscando a lo largo del arreglo de articulos hasta que sub alcanza el valor
SIZE. Una forma de detener la bisqueda cuando se ha encontrado el articulo y foundIt se

ha establecido en "Y" es cambiar la pregunta que controla el ciclo. En lugar de sélo continuar
el ciclo mientras el nimero de comparaciones no exceda el subindice del arreglo mds alto
permitido, deberia continuarlo mientras no se encuentre el articulo buscado y el nimero de
comparaciones no haya excedido el maximo. Salir del ciclo tan pronto como se encuentre una
correspondencia mejora la eficiencia del programa; entre mas grande sea el arreglo, mas bené-
fico es salir del ciclo de busqueda tan pronto como se encuentre el valor deseado.

La figura 6-11 muestra la versiéon mejorada del médulo findItem() con la pregunta som-
breada del ciclo de control alterado.

Uso de arreglos paraielos

findItem()

235

Si

sub < SIZE AND
foundIt = "N"?

No item = Si

VALID_ITEM[sub]?

output output
MSG_NO MSG_YES
price =

VALID_PRICE[sub]

badItemCount = output "E1 precio |
badItemCount + 1 de ", item,
“es ", price

!

output "Introduzca el
siguiente nlmero de
articulo o ", FINISH,
" para salir "

[
G

return

Figura 6-11 Diagrama de flujo y seudocddigo del mddulo que encuentra el precio de un articulo y sale
del ciclo tan pronto como lo encuentra (continta)

CAPITULO 6 @8

(continuacion)

findItem()
foundIt = "N"
sub = 0
236 while sub < SIZE AND foundIt = "N"
if item = VALID_ITEM[sub] then
foundIt = "Y"
price = VALID_PRICE[sub]
endif
sub = sub + 1
endwhile
if foundIt = "Y" then
output MSG_YES

output "“E1 precio de ", item, " es ", price
else
output MSG_NO
badItemCount = badItemCount + 1
endif
output "Introduzca el siguiente numero de articulo o ", FINISH, " para salir "
input item
return

Figura 6-11 Diagrama de flujo y seudocodigo del mddulo que encuentra el precio de un articulo y sale
del ciclo tan pronto como lo encuentra

Note que el programa para encontrar el precio ofrece la mayor eficiencia cuando los articulos
que se ordenan se almacenan con mayor frecuencia al comienzo del arreglo, de modo que sélo
los articulos que se ordenan rara vez requieran muchos ciclos antes de encontrar una corres-

pondencia. A menudo, usted puede mejorar la eficiencia de la bisqueda al reordenar los ele-

mentos del arreglo.

ﬂ Conforme estudie programacion aprendera otras técnicas de busqueda. Por ejemplo, una busqueda bina-

ria comienza al observar en medio de una lista clasificada y luego determina si deberia continuar hacia
arriba o hacia abajo.

Busqueda en un arreglo para una correspondencia de rango _

DOS VERDADES UNA MENTIRA

Uso de arreglos paralelos

Los arreglos paralelos deben ser del mismo tipo de datos. 237

2. Los arreglos paralelos por lo general contienen el mismo nimero de
elementos.

3. Usted puede mejorar la eficiencia de busqueda a lo largo de los arreglos para-
lelos usando una salida anticipada.

‘0[9[eJed oouUWINU 0|384Je un us euosJad eped ap pepa e| JeJjuodus eled eusped
ap 0|3a4Je un us aiquiou un Jeasnq eupod paisn ‘ojdwale Jod *Solep ap odi} owsiw
[9p 43S uesSadau ou Soj9jeJed SO|SaL4e SOT "1 0JBLWINU B| SO BS|e) ugideLwliye e

Busqueda en un arreglo para una
correspondencia de rango

Los numeros de los articulos del pedido del cliente deben corresponder exactamente con los
numeros de los disponibles para determinar su precio correcto. En ocasiones, sin embargo,
los programadores desean trabajar con rangos de valores en los arreglos. En el capitulo 4 usted
aprendié que un rango de valores es una serie de ellos; por ejemplo, 1 a 5 0 20 a 30.

Suponga que una compaiia decide ofrecer descuentos
por la cantidad cuando un cliente ordena multiples ar-

ticulos, como se muestra en la figura 6-12. Cantidad % de descuento
Usted desea leer los datos del pedido del cliente y deter- 0-8 0
minar un porcentaje de descuento con base en la can- 9-12 10
tidad ordenada. Por ejemplo, si un cliente ha ordenado 13-25 15
20 articulos usted desea dar salida a Su descuento es de 26 0 mas 20

15%. Un enfoque incorrecto serfa establecer un arreglo
con tantos elementos como un cliente podria ordenar
alguna vez y almacenar el descuento apropiado para cada
numero posible, como se muestra en la figura 6-13. Este
arreglo estd configurado para contener el descuento para
0 articulos, 1 articulo, 2 articulos, y asi sucesivamente, y tiene al menos tres inconvenientes:

Figura 6-12 Descuentos en pedidos
por cantidad

e Requiere un arreglo muy grande que usa mucha memoria.

e Debe almacenar el mismo valor de manera repetida. Por ejemplo, cada uno de los primeros
nueve elementos recibe el mismo valor, 0, y cada elemento de los siguientes cuatro recibe el
mismo valor, 10.

e ;Coémo sabe usted que el arreglo tiene suficientes elementos? ;Son suficientes 75 articulos
para la cantidad del pedido del cliente? ;Qué pasa si un cliente ordena 100 o 1000 articulos?
Sin importar cuantos elementos coloque en el arreglo, siempre hay una probabilidad de que
un cliente ordene mas.

CAPITULO 6 @YC:LS

238

numeric DISCOUNT[76]
=0, 0, 0, 0, O, O, O, O, O,
0.10, 0.10, 0.10, 0.10, No lo haga
0.15, 0.15, 0.15, 0.15, 0.15, Aunque este arreglo es
0.15, 0.15, 0.15, 0.15, 0.15, utilizable, es repetitivo,
0.15, 0.15, 0.15, propenso al error y
0.20, 0.20, 0.20, 0.20, 0.20, dificil deusar.
0.20, 0.20, 0.20, 0.20, 0.20,
0.20, 0.20, 0.20, 0.20, 0.20,
0.20, 0.20, 0.20, 0.20, 0.20,
0.20, 0.20, 0.20, 0.20, 0.20,
0.20, 0.20, 0.20, 0.20, 0.20,
0.20, 0.20, 0.20, 0.20, 0.20,
0.20, 0.20, 0.20, 0.20, 0.20,
0.20, 0.20, 0.20, 0.20, 0.20,
0.20, 0.20, 0.20, 0.20, 0.20

Figura 6-13 Arreglo de descuentos utilizable, pero ineficiente

Un enfoque mds apropiado es crear dos
arreglos paralelos, cada uno con cuatro num DISCOUNT[4] = 0, 0.10, 0.15, 0.20
elementos, como se muestra en la figura num QUAN_LIMIT[4] =0, 9, 13, 26

6-14. Cada tasa de descuento se lista una
vez en el arreglo DISCOUNT y el extremo Figura 6-14 Arreglos paralelos para usarlos a fin de
inferior de cada rango de cantidad se determinar el descuento

lista en el arreglo QUAN_LIMIT.

A fin de encontrar el descuento correcto para cualquier cantidad ordenada por el cliente,
usted puede comenzar con el ultimo limite de rango de cantidad (QUAN_LIMIT[3]). Sila
cantidad ordenada es al menos ese valor, 26, nunca se entra al ciclo y el cliente obtiene

la tasa de descuento mds alta (DISCOUNT[3], o0 20%). Si dicha cantidad no es al menos
QUAN_LIMIT[3], es decir, si es menor que 26, entonces usted reduce el subindice y verifica si la
cantidad es al menos QUAN_LIMIT[2], o 13. De ser asi, el cliente recibe DISCOUNT[2], 0 15%, y
asf sucesivamente. La figura 6-15 muestra un programa que acepta una cantidad ordenada por
un cliente y determina la tasa de descuento apropiada.

Busqueda en un arreglo para una correspondencia de rango _

housekeeping()

Declarations output "Introduzca
num quantity cantidad ordenada o ",
num SIZE = 4 QUIT, " para salir " 239
num DISCOUNTI[4] = 0, 0.10, 0.15, 0.20 *
num QUAN_LIMIT[4] = O, 9, 13, 26
num x input quantity
num QUIT = -1
*
housekeeping()

quantity <>

QUIT? determineDiscount()

(yetermineDiscount(i>

{

x = SIZE - 1

finish(Q

stop

quantity <
QUAN_LIMIT[x]?

f &

finish(Q
output "Fin del
trabajo"
output "Su tasa de

return descuento es ",
DISCOUNT[x]

'

output "Introduzca
Ta cantidad
ordenada o ", QUIT,
" para salir "

'

///input quantity///

Y

Figura 6-15 Programa que determina la tasa de descuento (continta)

B

CAPITULO 6 @8

(continuacion)

start
Declarations
num quantity
num SIZE = 4
240 num DISCOUNT[4] = 0, 0.10, 0.15, 0.20
num QUAN_LIMIT[4] = O, 9, 13, 26
num x
num QUIT = -1
housekeeping()
while quantity <> QUIT
determineDiscount()
endwhile
finish(Q
stop

housekeeping()
output "Introduzca la cantidad ordenada o ", QUIT,
input quantity

return

determineDiscount()
x = SIZE - 1
while quantity < QUAN_LIMIT[x]
X =x-1
endwhile
output "Su tasa de descuento es ", DISCOUNT[x]
output "Introduzca la cantidad ordenada o ", QUIT,
input quantity
return

finish(Q
output "Fin del trabajo"
return

Figura 6-15 Programa que determina la tasa de descuento

Un enfoque alternativo al que se adopté en la figura 6-15 es almacenar el extremo superior de
cada rango en un arreglo. Luego usted comienza con el elemento menor y verifica para valores

menores o iguales que cada valor de los elementos del arreglo.

Cuando se usa un arreglo para almacenar limites de rangos se utiliza un ciclo para hacer una
serie de comparaciones que de otra manera requerirfan muchas decisiones separadas. El pro-
grama que determina las tasas de descuento del cliente en la figura 6-15 requiere menos ins-
trucciones que uno que no use un arreglo, y las modificaciones al programa serdn mas faciles

de hacer en el futuro.

Permanencia dentro de los limites del arreglo _

DOS VERDADES UNA MENTIRA

Busqueda de un arreglo para una correspondencia de rango

1. Paralocalizar un rango dentro del que cae un valor, usted puede almacenar el

, 241
valor mas alto en cada rango en un arreglo.

2. Paralocalizar un rango dentro del que cae un valor, usted puede almacenar el
valor mas bajo en cada rango en un arreglo.

3. Cuando se usa un arreglo para almacenar limites de rango se usa una serie de
comparaciones que de otra manera requeririan muchas estructuras de ciclo
separadas.

‘SepeJedas SauoISIdap Seyonw uelianbal eiauew
410 ap anb sauoioeiedwod ap aLIdS eun Jsdey eted 0]210 un ezijin 8s ‘o3uel ap Sal
-lwy| Jeusdewle eJed o0[3aile Un BSN 8S OpuUeN?) "E 0JBWINU B| S| BS|e} ugideLlIye e

Permanencia dentro de los limites del arreglo

Cada arreglo tiene un tamario finito; usted puede pensar en dicho tamano en una de dos for-
mas: ya sea por el nimero de elementos o por el nimero de bytes en el arreglo. Los arreglos
siempre estdn compuestos por elementos del mismo tipo de datos, y los elementos del mismo
tipo de datos siempre ocupan el mismo nimero de bytes de memoria, asi que el nimero de
bytes en un arreglo siempre es un multiplo del nimero de elementos que contiene. Por ejem-
plo, en Java, los enteros ocupan 4 bytes de memoria, asi que un arreglo de 10 enteros ocupa
exactamente 40 bytes.

ﬂ Para una exposicion completa de los bytes y como miden la memoria de la computadora, lea el apéndice A.

En todo lenguaje de programacion, cuando se tiene acceso a los datos almacenados en un arre-
glo es preciso usar un subindice que contenga un valor que acceda a la memoria ocupada por
el arreglo. El subindice en realidad se multiplica por el tamafo del tipo de datos en bytes y ese
valor se agrega a la direccién del arreglo para encontrar la direcciéon del elemento apropiado.
Asi, si el subindice es demasiado grande o demasiado pequenio, el programa intentard acceder
a una direccién que no sea parte del espacio del arreglo.

Un error comun de los programadores principiantes es olvidar que los subindices de los arre-
glos comienzan con 0. Si usted supone que el primer subindice de un arreglo es 1, siempre
estard “desfasado por uno” en el manejo del mismo. Por ejemplo, si trata de manejar un arreglo
de 10 elementos usando los subindices 1 a 10, cometera dos errores: no tendra acceso al pri-
mer elemento que usa el subindice 0 e intentara tener acceso a un elemento extra en la posi-
cién 10 cuando el subindice utilizable més alto es 9.

CAPITULO 6 @YC:LS

Por ejemplo, examine el programa en la figura 6-16. El método acepta un valor numérico para
monthNum y despliega el nombre asociado con ese mes. La légica en la figura 6-16 hace una
suposicion cuestionable: que cada ndmero introducido por el usuario es el nimero de un mes

242

vélido.

Declarations
num monthNum
string MONTH[12] = "Enero", "Febrero",

"Marzo", "Abril", "Mayo", "Junio", "Julio",
"Agosto", "Septiembre", "Octubre",
"Noviembre", "Diciembre"

start
Declarations
num monthNum

string MONTH[12] = "Enero", "Febrero",

"Marzo", "Abril", "Mayo", "Junio", "Julio",
monthNum = "Agosto", "Septiembre", "Octubre",
monthNum - 1 "Noviembre", "Diciembre"
l input monthNum
monthNum = monthNum - 1
output output MONTH[monthNum]

MONTH [monthNum]

stop

No lo haga
El subindice monthNum podria
estar fuera de los limites para
el arreglo MONTH.

Figura 6-16 Determinacion de la cadena del mes a partir de la entrada numérica de un usuario

En el programa de la figura 6-16, note que se resta 1 a monthNum antes de usarlo como subindice. Aun-
que enero es el primer mes en el afo, en el arreglo su nombre ocupa la ubicacion con subindice 0. Con
valores que parecen empezar naturalmente con 1, como los niimeros de los meses, algunos programado-
res preferirian crear un arreglo de 13 elementos y no usar el elemento en la posicién cero. De esta manera,
cada numero de mes “natural” seria el valor correcto para tener acceso a sus datos sin restar. A otros
programadores les disgusta desperdiciar memoria creando un elemento extra sin usar en el arreglo. Aunque
pueden crearse programas factibles con o sin el elemento extra en el arreglo, los programadores profesio-
nales deberian seguir las convenciones y preferencias de sus colegas y gerentes.

En la figura 6-16, si el usuario introduce un nimero que es demasiado pequefio o dema-
siado grande, sucederd una de dos cosas dependiendo del lenguaje de programacién que use.
Cuando usa un valor de subindice que es negativo o mayor que el subindice permitido mas

alto:

e Algunos lenguajes de programacién detendrdn la ejecucién del programa y emitirdn un
mensaje de error.

Permanencia dentro de los limites del arreglo _

e Otros lenguajes de programacion no emitiran un mensaje de error pero tendran acceso a
un valor en una ubicacién de memoria que esté fuera del drea ocupada por el arreglo. Esta
drea podria contener basura, o peor, quizd el nombre de un mes incorrecto de manera
accidental.

De cualquier manera ocurre un error légico. Cuando usted usa un subindice que no esta den-
tro del rango de los aceptables se dice que estd fuera de limites. Los usuarios introducen datos 243
incorrectos con frecuencia; un programa adecuado deberfa ser capaz de manejar el error y no
permitir que el subindice esté fuera de limites.

ﬂ Un usuario podria introducir un nimero invalido o no introducir ninguno. En el capitulo 5 usted aprendio que

muchos lenguajes tienen un método incorporado con un nombre como isNumeric() que puede probar
tales errores.

Usted puede mejorar el programa en la figura 6-16 agregando una prueba que asegure que
el subindice que se usa para tener acceso al arreglo estd dentro de los limites del mismo. Si
encuentra que el valor de entrada no estd entre 1 y 12 inclusive, podria adoptar uno de los
siguientes enfoques:

e Desplegar un mensaje de error y terminar el programa.

e Usar un valor predeterminado para el mes. Por ejemplo, cuando un mes introducido es
invalido, usted quizd suponga que es diciembre.

e Pedir continuamente al usuario un valor nuevo hasta que éste sea valido.

La forma en que maneje un mes invélido depende de los requerimientos de su programa tal
como se los haya explicado con detalle su usuario, su supervisor o la politica de la compaiifa.

DOS VERDADES UNA MENTIRA

Permanencia dentro de los limites del arreglo

1. Los elementos en un arreglo con frecuencia son tipos de datos diferentes, asi
que es dificil calcular la cantidad de memoria que el arreglo ocupa.

2. Siusted intenta tener acceso a un arreglo con un subindice que es demasiado
pequeno, algunos lenguajes de programacion detendran la ejecucion del pro-
grama y emitiran un mensaje de error.

3. Siintenta tener acceso a un arreglo con un subindice que es demasiado
grande, algunos lenguajes de programacion acceden a una ubicacién de
memoria incorrecta fuera de los limites del arreglo.

"0[384Je Un US SOJUBWIIB Bp oJ4awinu [ap ojdiynw un sa aidwals

0|3a4Je un us S9lAQ ap oJawnu |9 anb jse ‘elowsw 3p S$81AQ ap 0J4aWNU OWSIW |3
uednoo aidwsals solep ap odi} owsiw [ap SOUBW|d SO| A ‘solep ap odiy owsiw
[9p UOS 84dwW?IS 0[3a4le [9p SOJUBWI[D SOT "T 0JBWNU B| SO eS|e} uoldewlye e

CAPITULO 6 @8

244

Uso de un ciclo for para procesar arreglos

En el capitulo 5 usted aprendi6 sobre el ciclo for que, en una sola declaracién, inicializa una
variable de control del ciclo, la compara con un limite y la altera. El ciclo for es una herra-
mienta particularmente conveniente cuando se trabaja con los arreglos debido a que con
frecuencia necesita procesar cada elemento de los mismos de principio a fin. Igual que con

un ciclo whiTe, cuando usted usa un ciclo for, debe tener cuidado de permanecer dentro de
los limites del arreglo, recordando que el subindice utilizable més alto es uno menos que el
tamano del arreglo. La figura 6-17 muestra un ciclo for que despliega en forma correcta todos
los nombres de los departamentos de una compairiia que estdn almacenados en un arreglo
declarado como DEPTS. Note que dep se incrementa uno menos que el nimero de departa-
mentos porque con un arreglo de cinco elementos los subindices que puede usar son 0 a 4.

start
Declarations
num dep
num SIZE = 5
string DEPTS[SIZE] = "Contabilidad", "Personal",
"Técnico", "Servicio al cliente", "Mercadotecnia
for dep = 0 to SIZE - 1 step 1
output DEPTS[dep]
endfor
stop

Figura 6-17 Seudocodigo que usa un ciclo for para desplegar un arreglo de nombres de
departamento

El ciclo en la figura 6-17 es ligeramente ineficiente porque, mientras se ejecuta cinco veces, la
operacion de resta que deduce 1 de SIZE ocurre todas las veces. Cinco operaciones de resta
no consumen mucha energfa o mucho tiempo de la computadora, pero en un ciclo que pro-
cesa miles o millones de elementos la eficiencia del programa estarfa comprometida. La figura
6-18 muestra una solucién superior. Una constante nueva llamada ARRAY_LIMIT se calcula una
vez, luego se usa de manera repetida en la operacién de comparacion para determinar cuando
detener el ciclo a través del arreglo.

start
Declarations
num dep
num SIZE = 5
num ARRAY_LIMIT = SIZE - 1
string DEPTS[SIZE] = "Contabilidad", "Personal",
"Técnico", "Servicio al cliente", "Mercadotecnia"
for dep = 0 to ARRAY_LIMIT step 1
output DEPTS[dep]
endfor
stop

Figura 6-18 Seudocodigo que usa un ciclo for mas eficiente para dar salida a los nombres de los
departamentos

Resumen del capitulo. [

DOS VERDADES UNA MENTIRA

Uso de un ciclo for para procesar arreglos

1. Elciclo for es una herramienta particularmente conveniente cuando se trabaja
con arreglos.

245

2. Con frecuencia usted necesita procesar todos los elementos de un arreglo
desde el principio hasta el fin.

3. No preocuparse por los limites del arreglo es una ventaja de usar un ciclo for
para procesar los elementos del arreglo.

‘o[3o11e [9p S9ITW]] SO[9P 0NUP IddaurWLIad 9p Oopepmd e3us) 404 O[d1d
un asn opuend ‘@ | Lym O[o1d> un uod anb [endy ‘¢ ozoumU e[S5 eS[e] UOIDRULIYR B

Resumen del capitulo

e Un arreglo es una serie o lista nombrada de valores en la memoria de la computadora, todos
ellos tienen el mismo tipo de datos pero se distinguen con subindices. Cada elemento del
arreglo ocupa un drea en la memoria junto a los otros o contiguo a ellos.

e Con frecuencia es posible usar una variable como subindice para un arreglo, lo que permite
reemplazar multiples decisiones anidadas con mucho menos declaraciones.

e Es posible usar constantes para contener el tamarfio de un arreglo o para representar sus
valores. Usar una constante nombrada para el tamaiio de un arreglo hace que el codigo sea
maés facil de entender y con menos probabilidad de contener un error. Los valores del
arreglo se declaran como constantes cuando no deberfan cambiar durante la ejecucién
del programa.

e Buscar en un arreglo para encontrar un valor que usted necesita implica inicializar un
subindice, usar un ciclo para probar cada elemento del arreglo y establecer una bandera
cuando se encuentre una correspondencia.

e Con los arreglos paralelos, cada elemento en uno de ellos se asocia con el elemento en la
misma posicién relativa en el otro.

e Cuando usted necesite comparar un valor con un rango de valores en un arreglo, puede
almacenar ya sea el extremo inferior o el superior de cada rango para la comparacion.

e Cuando se accede a los datos almacenados en un arreglo es importante usar un subindice
que contenga un valor con acceso a la memoria ocupada por el arreglo. Cuando usa un
subindice que no esté dentro del rango definido de subindices aceptables, se dice que
su subindice estd fuera de limites.

e Elciclo for es una herramienta particularmente conveniente cuando se trabaja con los
arreglos debido a que con frecuencia necesita procesar todos los elementos de un arreglo de
principio a fin.

CAPITULO 6 @8

246

Términos clave

Un arreglo es una serie o lista de valores en la memoria de la computadora, todos ellos tienen
el mismo nombre pero se distinguen con nimeros especiales llamados subindices.

Un elemento es un elemento de datos en un arreglo.
El tamaiio del arreglo es el nimero de elementos que puede contener.

Un subindice, también llamado indice, es un nimero que indica la posicién de un elemento
particular dentro de un arreglo.

Poblar un arreglo es la accién de asignar valores a los elementos del arreglo.
Una busqueda lineal es una btsqueda a lo largo de una lista de un extremo a otro.
Una bandera es una variable que indica si ha ocurrido algtin evento.

En los arreglos paralelos cada elemento en uno de ellos se asocia con el que se encuentra en
la misma posicidn relativa en el (los) otro(s) arreglo(s).

Una relacion indirecta describe la relacién entre los arreglos paralelos en que un elemento en
el primero no accede directamente a su valor correspondiente en el segundo.

Una busqueda binaria empieza en medio de una lista clasificada y luego determina si deberia
continuar hacia arriba o hacia abajo para encontrar un valor buscado.

Fuera de limites es un término que describe el subindice de un arreglo que no esta dentro del
rango de subindices aceptables para el mismo.

Preguntas de repaso

1. Un subindice es un
a) elemento en un arreglo
b) nombre alterno para un arreglo
c) namero que representa el valor més alto almacenado dentro de un arreglo
d)

ntmero que indica la posicién de un elemento en un arreglo

2. Cada variable en un arreglo debe tener el (la) mismo(a) que las otras.
a) tipo de datos ¢) valor
b) subindice d) ubicacién en la memoria

3. Cada elemento de datos en un arreglo se llama
a) tipo de datos c) componente

b) subindice d) elemento

4. Los subindices de cualquier arreglo siempre son
a) enteros c) caracteres

b) fracciones d) cadenas de caracteres

10.

Preguntas de repaso [

Suponga que tiene un arreglo llamado number y dos de sus elementos son number[1] y
number[4]. Usted sabe que

a) los dos elementos contienen el mismo valor

b) el arreglo contiene exactamente cuatro elementos

c) hay exactamente dos elementos entre estos dos elementos
d)

los dos elementos estdn en la misma ubicacién de memoria

Suponga que desea escribir un programa que introduce los datos del cliente y despliega
un resumen del nimero de clientes que deben mas de $1000 cada uno, en cada

una de 12 regiones de ventas. Las variables de los datos del cliente incluyen name,
zipCode, balanceDue y regionNumber. En algiin punto durante el proceso de registro,
debe agregar 1 a un elemento del arreglo cuyo subindice estaria representado por

a) name ¢) balanceDue

b) zipCode d) regionNumber

El tipo de subindice mds util para manejar los arreglos es un(a)
a) constante numérica ¢) caracter

b) variable d) nombre de archivo

Un programa contiene un arreglo de siete elementos que contiene los nombres de los
dias de la semana. Al principio del programa, despliega los nombres del dia usando
un subindice llamado dayNum. Despliega los mismos valores del arreglo una vez més al
final del programa, donde usted como un subindice para el arreglo.

a) debe usar dayNum

b) puede usar dayNum, pero también puede usar otra variable

¢) no debe usar dayNum

d) debe usar una constante numérica en lugar de una variable

Suponga que ha declarado un arreglo como sigue: num values[4] = 0, 0, 0, O.
¢Cual de las siguientes es una operacién permitida?

a) values[2] = 17 ¢) values[3] = values[0] + 10

b) dnput values[0] d) todas las anteriores

Llenar un arreglo con valores durante la ejecucién de un programa se conoce como

a) ejecutarlo c) poblarlo

b) colonizarlo d) declararlo

247

CAPITULO 6 @8

11. Usar un arreglo puede hacer que un programa sea

a) mads facil de entender c) dificil de mantener
b) ilegal en algunos lenguajes modernos d) todos los anteriores
12. Un es una variable que puede establecerse para indicar si algiin evento
248 ha ocurrido.
a) subindice ¢) contador
b) pancarta d) bandera

13. ;Cdémo llama a dos arreglos en los que cada elemento en un arreglo estd asociado con
el elemento en la misma posicidn relativa en el otro arreglo?

a) arreglos cohesivos c) arreglos ocultos
b) arreglos paralelos d) arreglos perpendiculares
14. Enla mayoria de los lenguajes de programacién modernos, el subindice mas alto que
deberia usar con un arreglo de 12 elementos es
a) 10 ¢ 12
b) 11 d) 13

15. Los arreglos paralelos
a) con frecuencia tienen una relacion indirecta
b) nunca tienen una relacién indirecta
c) deben ser del mismo tipo de datos

d) no deben ser del mismo tipo de datos

16. Cada elemento en un arreglo de siete elementos puede contener

valor(es).
a) un ¢) al menos siete
b) siete d) un numero ilimitado de

17. Después de la exposicion anual de perros en los que la Academia de Entrenamiento
para Perros Barkley concede puntos a cada participante, la academia asigna una
posicion a cada perro con base en los criterios del cuadro 6-1.

Puntos ganados Nivel de logro
05 Bueno

6-7 Excelente

89 Superior

10 Increible

(oIET [B Niveles de logro de la Academia de Entrenamiento para Perros Barkley

Ejercicios. [

La academia necesita un programa que compare los puntos obtenidos por un perro
con la escala de calificacién, de modo que cada perro reciba un certificado que reco-
nozca el nivel de logro apropiado. De los siguientes, ;cudl conjunto de valores serfa
mds util para el contenido de un arreglo que se usa en el programa?

a) 0,69, 10 Q) 579 10
b) 5,7,8,10 d) cualquiera de los anteriores 249

18. Cuando usted usa el valor de un subindice que es negativo o mayor que el nimero de
elementos en un arreglo,

a) la ejecucion del programa se detiene y se emite un mensaje de error

b) se tendrd acceso a un valor en una ubicacién de memoria que esta fuera del area
ocupada por el arreglo

c) se tendré acceso a un valor en una ubicacién de memoria que esta fuera del drea
ocupada por el arreglo, pero sélo si el valor es del tipo de datos correcto

d) laaccién resultante depende del lenguaje de programacion que se usa

19. En todos los arreglos, un subindice estd fuera de limites cuando es

a) negativo o 1
b) 0 d) 999
20. Usted puede tener acceso a cada elemento de un arreglo usando un
a) ciclowhile ¢) los dos anteriores
b) ciclo for d) ninguno de los anteriores
Ejercicios

1. a) Disefie la légica para un programa que permita a un usuario introducir 15 ndme-
ros y que luego los despliegue en el orden inverso al de entrada.

b) Modifique el programa de despliegue invertido de modo que el usuario pueda
introducir cualquier cantidad de nimeros menores que 15 hasta que se introduzca
un valor centinela.

2. a) Diseie lalégica para un programa que permita al usuario introducir 15 ndmeros,
luego despliegue cada niimero y su diferencia a partir del promedio numérico de
los niimeros introducidos.

b) Modifique el programa del ejercicio 2a de modo que el usuario pueda introducir
cualquier cantidad de nimeros menores que 15 hasta que se introduzca un valor
centinela.

3. a) Losempleados del registro en una conferencia para autores de libros infantiles han
recopilado los datos sobre los participantes, incluyendo el nimero de libros que
cada autor ha escrito y la edad de los lectores a los que se dirigen. Los participantes
han escrito de 1 a 40 libros cada uno y las edades de los lectores tenfan un rango
de 0 a 16. Diserie un programa que acepte en forma continua el nimero de libros

CAPITULO 6 @8

250

escritos hasta que se introduzca un valor centinela y luego despliegue una lista de
cuantos participantes han escrito cada numero de libros (1 a 40).

b) Modifique el programa de registro de autores de modo que se introduzca una edad
para la audiencia de cada autor hasta que se ingrese un valor centinela. La salida es
un conteo del ndimero de libros escritos para cada uno de los siguientes grupos de
edad: menos de 3,3a7,8a10, 11 a 13y 14 y mayores.

a) El Estudio de Yoga Downdog ofrece cinco tipos de clases, como se muestra en el
cuadro 6-2. Disefie un programa que acepte un nimero que represente una clase y
luego despliegue el nombre de la misma.

b) Modifique el programa del

Estudio de Yoga Downdog de Numero de clase Nombre de la clase
modo que sea posible introdu- Yoga 1
cir continuamente solicitudes Yoga 2

de clase numérica hasta que se
introduzca un valor centinela.
Luego despliegue cada niimero
de clase, nombre y un conteo

deil nﬁinero de solicitudes para oIET 274 Clases del Estudio de Yoga Downdog
cada clase.

Yoga para ninos
Yoga prenatal

a oA w N -

Yoga para adultos mayores

a) La Escuela Primaria Watson tiene 30 salones de clases numerados del 1 al 30. Cada
salon puede contener cualquier nimero de estudiantes hasta 35. Cada estudiante
presenta una prueba de aprovechamiento al final del afio escolar y recibe una pun-
tuacion de 0 a 100. Escriba un programa que acepte los datos de cada estudiante en
la escuela: identificacién, nimero de salén y puntuacién en la prueba de aprove-
chamiento. Disefie un programa que liste los puntos totales logrados por cada uno
de los 30 salones.

b) Modifique el programa de la Escuela Primaria Watson de modo que dé salida al
promedio de las puntuaciones de la prueba para cada salén de clases, en lugar de
las puntuaciones totales para cada salén.

La cafeteria Jumpin’ Jive cobra $2.00 por
una taza de café y ofrece los agregados

que se muestran en el cuadro 6-3. Producto Precio (9)
Crema batida 0.89
Disene la légica para una aplicacion Canela 0.25

que permita a un usuario introducir en
forma continua los agregados ordenados
hasta que se ingrese un valor centinela.
Después de cada articulo, despliegue su Whisky irlandés 1.75

precio o el mensaje Lo sentinfos, no lo Lista de agregados de la
tengmos como sahfia. Despues.de intro- cafeterfa Jumpin’ Jive

ducir todos los articulos, despliegue el

precio total para la orden.

Jarabe de chocolate 0.59
Amaretto 1.50

Disene la légica de la aplicacién para una compania que desea un informe que con-
tenga un desglose de la némina por departamento. La entrada incluye el nimero de

Ejercicios. [

departamento de cada empleado, salario por

hora y numero de horas trabajadas. La salida Numero de Nombre del

. . departamento departamento
es una lista de los siete departamentos en la
compaiia y la némina bruta total (tarifa por 1 Personal
horas) para cada departamento. Los nombres 2 Mercadotecnia
de los departamentos se muestran en el cua- 3 Manufactura 251
dro 6-4. 4 Servicios de computo
Disene un programa que calcule el pago 5 Ventas
para los empleados; permita que un usuario 6 Contabilidad
introduzca en forma continua los nombres 7 Embarque
de los mismos hasta que se ingrese un valor }
centinela apropiado. Tambiéngintroduzca el Nimeros y nombres de los

lari hora de cada empleado y las horas ~ dePartamentos
salario por p y
trabajadas. Calcule el pago bruto de cada
uno (horas por salario), retenga el porcen-
taje de impuesto (basado en el cuadro 6-5), Pago semanal Porcentaje de
retenga la cantidad de impuesto y el pago bruto ($) retencion (%)
neto (pago bruto menos impuesto retenido). 0.00-300.00 10
Despliegue todos los resultados para cada 300.01-550.00 13
empleado. Después de que el ultimo de ellos 550.01-800.00 16
se ha ingresado, despliegue la suma de todas ' '
800.01 en adelante 20

las horas trabajadas, la némina bruta total, el

total retenido para todos los empleados y la WIEL[E0GE] Porcentaje de retencion
némina neta total. basado en el pago bruto

Countrywide Tours realiza viajes turisticos
para grupos desde su sede en lowa. Cree una
aplicacion que acepte en forma continua los Codigo Destino Precio por
datos de los viajes incluyendo un nimero de persona ($)

viaje de tres digitos; los valores numéricos del 1 Chicago 300.00
mes, dia y ano que representen la fecha de 2 Boston 480.00
su inicio; el nimero de viajeros, y un cédigo 3 Miami 1050.00
numérico que represente el destino. Con- .

forme se introducen los datos para cada viaje, 4 San Francisco 130000
verifique que el mes, dia, afio y cédigo de Cédigos y precios de
destino son vilidos; si cualquiera de éstos no Countrywide Tours

lo es continde pidiendo al usuario hasta que
se introduzcan datos validos. Los cédigos de
destino validos se muestran en el cuadro 6-6.

Disene la légica para una aplicacién que dé como salida el nimero de cada viaje, la
fecha de salida validada, el c6digo de destino, el nombre del destino, el nimero de via-
jeros, el precio total bruto y el precio del viaje después del descuento. El precio total
bruto es el precio del viaje por viajero multiplicado por el ndmero de viajeros. El precio

CAPITULO 6 @8

252

10.

11.

final incluye un descuento para cada persona en
los grupos grandes con base en el cuadro 6-7.

a) Daily Life Magazine desea analizar las carac-
teristicas demogréficas de sus lectores. El
departamento de mercadotecnia ha recabado
registros de las encuestas con los lectores que
contienen la edad, el género, el estado civil y
el ingreso anual de los lectores. Disefie una
aplicacién que permita a un usuario intro-
ducir los datos de los lectores y, cuando la

Numero Descuento por
de turistas turista ($)
1-5 0
6-12 75
13-20 125
21-50 200
51 y méas 300

GIELIONEYA Descuentos de

Countrywide Tours

entrada de datos esté completa, produzca un
registro de ellos por grupos de edad como
sigue: menores de 20, 20-29, 30-39, 40-49 y 50 y mayores.

b) Modifique el programa de Daily Life Magazine de modo que produzca un registro
de lectores por género dentro de cada grupo de edad; es decir, mujeres menores de
20, hombres menores de 20, y asi sucesivamente.

¢) Modifique el programa de Daily Life Magazine de modo que produzca un registro
de lectores por grupos de ingresos (en déla-

res) como sigue: menos de $30,000, $30,000-

$49,999, $50,000-$69,999 y $70,000 y mas. Nuamero de Nombre del
identificacion vendedor
Venta de Propiedades Vacacionales Glen Ross 103 Darwin
emplea siete vendedores, como se muestra en el 104 Kratz
cuadro 6-8.
201 Shulstad
Cua‘mdo gn ;/endeglmlr hface;1 un}ell venta se caeezl un 319 Fortune
re}gwtro, incluyendo la fecha, hora y canjm ad en 367 Wickert
ddlares; la hora se expresa en horas y minutos, _
con base en un reloj de 24 horas. La cantidad de 388 Miller
la venta se menciona en ddlares enteros. El ven- 435 Vick

dedor gana una comision que difiere para cada
venta, con base en el programa de tasas en el cua-

dro 6-9.
Disene una aplicacién que produzca:

a) Una lista del nimero, el nombre, las
ventas totales y las comisiones totales
de cada vendedor.

b) Una lista de cada mes del afio tanto
en ndmero como en palabra (por
ejemplo, 01 Enero) y las ventas totales
del mes para todos los vendedores.

¢) Una lista de las ventas totales y de las
comisiones totales ganadas por todos

(ITEL [Vendedores de Glen

Ross
Cantidad de Tasa de
la venta ($) comision (%)
0-50,999 4
51,000-125,999 5
126,000-200,999 6
201,000 en adelante 7

TET g3l Programa de comisiones de
Glen Ross

Ejercicios. [

los vendedores para cada uno de los siguientes marcos de tiempo, con base en la
hora del dia: 00-05, 06-12, 13-18 y 19-23.

12. Disefie una aplicacién en la que el nimero de dias para cada mes en el aiio se alma-
cene en un arreglo (por ejemplo, enero tiene 31 dias, febrero 28, y asi sucesivamente.
Suponga que el afio no es bisiesto). Indique a un usuario que introduzca un mes y dia
de nacimiento, y continte solicitdndolo hasta que el dia introducido esté en un rango
para el mes. Calcule la posicién numérica del dia en el afio (por ejemplo, 2 de febrero
es el dia 33). Luego, con arreglos paralelos, encuentre y despliegue el signo del zodiaco
tradicional para la fecha, digamos, el signo para el 2 de febrero es Acuario.

‘- Encuentre los errores

Sus archivos descargables para el capitulo 6 incluyen DEBUG06-01.txt, DEBUG06-02.
txt y DEBUG06-03.txt. Cada archivo comienza con algunos comentarios que descri-
ben el problema. Los comentarios son lineas que comienzan con dos diagonales (//).
Después de los comentarios, cada archivo contiene seudocédigo que tiene uno o mds
errores que usted debe encontrar y corregir. (NOTA: Estos archivos se encuentran dis-
ponibles s6lo para la version original en inglés.)

%2 Zona de juegos

Cree la 16gica para un juego Bola Mdgica 8 en el que el usuario introduce una pregunta
como: ;Qué me depara el futuro? La computadora selecciona al azar una de ocho
posibles respuestas imprecisas, como Estd por verse.

253

15. Cree la logica para una aplicaciéon que contenga un arreglo de 10 preguntas de
opcién multiple relacionadas con su pasatiempo favorito. Cada pregunta contiene
tres opciones de respuesta. También cree un arreglo paralelo que contenga la
respuesta correcta para cada pregunta: A, B o C. Despliegue cada pregunta y
verifique que el usuario introduce sélo A, B o C como respuesta; si no, siga
pidiéndole una entrada hasta que se introduzca una respuesta valida. Si el usuario
responde una pregunta correctamente, despliegue ;Correcto!; de lo contrario,
despliegue La respuesta correcta es y la letra de la respuesta correcta. Después de
que el usuario responde todas las preguntas, despliegue el nimero de respuestas
correctas e incorrectas.

16. a) Creelalodgica para un juego de dados. La aplicacion “lanza” aleatoriamente cinco
dados para la computadora y cinco dados para el jugador; después de cada tiro
aleatorio, almacene los resultados en un arreglo. La aplicacion despliega todos los
valores, que pueden ser de 1 a 6 inclusive para cada dado. Decida el ganador con
base en la siguiente jerarquia de valores del dado; cualquier combinacién mds alta
vence a una mds baja; por ejemplo, cinco iguales vencen a cuatro iguales.

CAPITULO 6 @8

254

17.

18.

+ Cinco iguales
+ Cuatro iguales
o Tresiguales
+ Un par

Para este juego los valores nu-
méricos de los dados no cuentan.

* Command Prompl

Por ejemplo, si ambos jugadores La computadora tird: 52 6 4 2
. . Usted tiré: 11123

tienen tres iguales es un empate La computadora tiene 2 iguales
. , Usted tiene 3 iguales

sin importar cuéles sean los Usted gana

Valores de lOS tres dados Ade- Command Prompt = Aviso del comando

mds, el juego no reconoce un full
(tres iguales mas dos iguales). La
figura 6-19 muestra cémo podria
jugarse en un ambiente de linea
de comandos.

Figura 6-19 Ejecucion tipica del juego de dados

b) Mejore el juego de dados de modo que cuando ambos jugadores tengan el mismo
nimero de dados iguales, el valor mds alto gane. Por ejemplo, dos 6 vencen a dos 5.

Disefie la 1égica para el juego del “Ahorcado’; en el que el usuario adivina las letras en
una palabra oculta. Almacene las letras de una palabra en un arreglo de caracteres;
despliegue una raya para cada letra faltante. Permita que el usuario adivine en forma
continua una letra hasta que todas las letras en la palabra se adivinen. Conforme el
usuario introduce cada adivinanza, despliegue la palabra de nuevo, llenando la letra
adivinada si fue correcta. Por ejemplo, si la palabra oculta es computadora, primero
despliegue una serie de once rayas: ——————————— . Después de que el usuario adivina
p; el despliegue se vuelve ---p------- . Asegurese de que cuando un usuario adivina, se
llenen todas las letras correspondientes. Por ejemplo, si la palabra es banana y el usua-
rio adivina a, deberan llenarse los tres caracteres a.

Cree dos arreglos paralelos que representen un mazo estandar de 52 naipes. Un arre-
glo es numérico y contiene los valores 1 a 13 (que representan As, 2 a 10, Sota, Reina y
Rey). El otro es un arreglo de cadena que contiene palos (Tréboles, Diamantes, Cora-
zones y Picas). Cree los arreglos de modo que se representen los 52 naipes. Luego, cree
un juego de naipes Guerra que seleccione al azar dos naipes (uno para el jugador y uno
para la computadora) y declare un ganador o un empate con base en el valor numé-
rico de los dos naipes. El juego deberfa durar 26 rondas y usar un mazo completo sin
naipes repetidos. Para este juego, suponga que el naipe menor es el As. Despliegue los
valores de los naipes del jugador y de la computadora, compare sus valores y determine
el ganador. Cuando todos los naipes en el mazo se agoten, despliegue un conteo del
ntmero de veces que gand el jugador, el numero de veces que gand la computadora

y el nimero de empates.

Ejercicios. [

Aqui hay algunas sugerencias:
e Empiece creando un arreglo para los 52 naipes.

e Seleccione un nimero aleatorio para la posicién del mazo del primer naipe del juga-
dor y asigne el naipe en esa posicion del arreglo para el jugador.

e Mueva todos los naipes con posiciones mas altas en el mazo “hacia abajo” un lugar 255
para llenar el hueco. En otras palabras, si el primer nimero aleatorio del jugador es 49,
seleccione el naipe en la posicion 49 (tanto el valor numérico como la cadena), mueva
el naipe que estaba en la posicién 50 a la posicidn 49 y el que estaba en la posicién 51
a la posicién 50. S6lo quedan 51 naipes en el mazo después de que se reparte el primer
naipe del jugador, asi que el arreglo de naipes disponibles se reduce en uno.

. . . “ 3 ”
e De la misma manera, seleccione al azar un naipe para la computadora y “retire” el del
mazo.

(Para discusion

19. El horario de un tren es el ejemplo de un arreglo de la vida real. Identifique al menos
cuatro mas.

20. Cada elemento en un arreglo siempre tiene el mismo tipo de datos. ;Por qué es necesa-
rio esto?

Manejo de archivos y
aplicaciones

En este capitulo usted aprendera sobre:

©)

Archivos de computadora

©)

Jerarquia de datos

©)

Ejecutar operaciones con archivos

(©)

Archivos secuenciales y légica de control de interrupciones

©)

Unir archivos

©)

Procesamiento de archivos maestros y de transaccion

©)

Archivos de acceso aleatorio

o A REIER YA Manejo de archivos y aplicaciones

258

Comprension de los archivos de computadora

En el capitulo 1 usted aprendié que la memoria de la computadora, o la memoria de acceso
aleatorio (RAM), es un almacenamiento temporal volétil. Cuando escribe un programa que
almacena un valor en una variable usa el almacenamiento temporal; el valor que almacena se
pierde cuando el programa termina o la computadora se apaga.

El almacenamiento permanente no voldtil, por otra parte, no se pierde cuando una compu-
tadora se apaga. Cuando escribe un programa y lo guarda en un disco usa el almacenamiento
permanente.

a la volatilidad, no a la duracion. Por ejemplo, una variable temporal podria estar por varias horas en un
programa muy grande o en uno que corre en un ciclo infinito, pero un usuario podria guardar y luego elimi-
nar una pieza de datos permanente en algunos segundos. Debido a que usted puede borrar los datos de los
archivos, algunos programadores prefieren el término almacenamiento persistente al de almacenamiento
permanente. En otras palabras, puede eliminar datos de un archivo almacenado en un dispositivo, como una
unidad de disco, de modo que técnicamente no es permanente. Sin embargo, los datos permanecen en el
archivo aun cuando la computadora pierde energia, asi que, a diferencia de la RAM, los datos persisten.

ﬂ Cuando se analiza el almacenamiento en una computadora, los términos temporal y permanente se refieren

Un archivo de computadora es un conjunto de datos almacenados en un dispositivo no vola-
til en un sistema de computo. Los archivos existen en los dispositivos de almacenamiento
permanentes, como discos duros, DVD, unidades USB y carretes de cinta magnética. Las dos
extensas categorfas de archivos son:

¢ Archivos de texto, contienen datos que pueden ser leidos en un editor de texto porque se
han codificado usando un esquema como ASCII o Unicode; estos archivos podrian incluir
hechos y cifras que utilizan los programas de negocios, como un archivo de némina que
contiene numeros de empleados, nombres y salarios. Los programas en este capitulo usaran
archivos de texto.

e Archivos binarios, contienen datos que no se han codificado como texto; los ejemplos
incluyen imégenes y musica.

Aunque su contenido varfa, los archivos tienen muchas caracteristicas comunes:

e Cada archivo tiene un nombre. El nombre con frecuencia incluye un punto y una exten-
sion de archivo que describe el tipo del mismo; por ejemplo, la extension .zxt se refiere a un
archivo de texto sencillo, .dat es comun para un archivo de datos y .jpg se usa en los archi-
vos de imagen en formato del Grupo Conjunto de Expertos en Fotografia (Joint Photogra-
phic Experts Group).

e (Cada archivo tiene tiempos especificos asociados; por ejemplo, el de su creacion y el de su
ultima modificacién.

e Cada archivo ocupa espacio en una seccién de un dispositivo de almacenamiento; es decir,
cada archivo tiene un tamano; y los tamanos se miden en bytes. Un byte es una unidad
pequeria de almacenamiento; por ejemplo, en un archivo de texto simple, un byte contiene
s6lo un caracter. Debido a que un byte es tan pequerfio, los tamanos de los archivos por lo
general se expresan en kilobytes (miles de bytes), megabytes (millones de bytes) o
gigabytes (miles de millones de bytes). El apéndice A contiene mds informacion sobre los
bytes y cémo se expresan los tamanos de los archivos.

La figura 7-1 muestra cémo son algunos archivos cuando usted los ve en Microsoft Windows.

Comprension de los archivos de computadora _

i Wi L Rlamz Blirtc mpdd T b

i Fapntray Chumged 'J B AP etues WSS MA0 TS A PR s WHiE

B Pabls bauchuctay B) AN [Dlorurrers i i 259
M Omstop o PuprsiDua LRGN il AR DT Fim Tl

B De=ripwih

Figura 7-1 Tres archivos almacenados y sus atributos

Organizacion de los archivos

Los archivos de computadora en un dispositivo de almacenamiento son el equivalente electré-
nico de los que son de papel y se guardan en archiveros. Cando se trata de papel, la forma mds
facil de almacenar un documento es colocarlo en el cajén de un archivero sin una carpeta. Sin
embargo, para lograr una mejor organizacion, la mayoria de los empleados de oficina colocan
los documentos de papel en carpetas; y la mayoria de los usuarios de computadoras organizan
sus archivos en carpetas o directorios. Los directorios y carpetas son unidades de organiza-
cién en los dispositivos de almacenamiento; cada uno puede contener multiples archivos al
igual que directorios adicionales. La combinacién de la unidad de disco mas la jerarquia com-
pleta de directorios en los que reside un archivo es una ruta. Por ejemplo, en el sistema opera-
tivo Windows, la siguiente linea serfa la ruta completa para un archivo llamado PayrollData.dat
en la unidad C en una carpeta llamada SampleFiTles dentro de una carpeta llamada Logic:

C:\Logic\SampTleFiles\PayrollData.dat

archivos. Directorio es el término mas general; carpeta se usa en los sistemas graficos. Por ejemplo,

ﬂ Los términos directorio y carpeta se usan como sinénimos para referirse a una entidad que organiza los
Microsoft comenzé a llamar carpetas a los directorios con la introduccién de Windows 95.

o A REIER YA Manejo de archivos y aplicaciones

260

DOS VERDADES UNA MENTIRA

Comprension de los archivos de computadora

1. El almacenamiento temporal es volatil.

2. Los archivos de computadora existen en dispositivos de almacenamiento per-
manentes, como la RAM.

3. Laruta de un archivo es la jerarquia de carpetas en las que esta almacenado.

"ealgudew eyuId ap sayaled A gsn
Sapepiun ‘gAQ ‘SoJnp SOJSIP OWO0D ‘Slusuewad Ojudiweusdew e ap SOARISOdSIp
SO| U3 U31SIXa eJopeIndwod ap SOAIYIJe SOT "z OJawnu e| S BS|e) ugloewlye e

Comprension de la jerarquia de datos

Cuando los negocios almacenan elementos de datos en los sistemas de computo, con frecuen-
cia lo hacen en una estructura llamada jerarquia de datos que describe las relaciones entre los
componentes de los mismos. La jerarquia de datos consiste en lo siguiente:

e Los caracteres son letras, nimeros y simbolos especiales, como A, 7y $. Cualquier cosa
que usted pueda ingresar desde el teclado con un solo golpe es un caricter, incluyendo
los que en apariencia son “vacios” como los espacios y los tabuladores. Las computadoras
también reconocen caracteres que usted no puede introducir desde un teclado estandar,
como los de alfabetos extranjeros como ¢ o J. Los caracteres estan formados por elementos
mds pequenos llamados bits, pero del mismo modo en que la mayoria de los seres humanos
pueden usar un lapiz sin preocuparse por si los &tomos vuelan en su interior, los usuarios de
computadoras almacenan los caracteres sin pensar en estos bits.

e Los campos son elementos de datos que representan un solo atributo de un registro y se
componen de uno o mas caracteres; incluyen elementos como lastName, middleInitial,
streetAddress o annualSalary.

e Losregistros son grupos de campos que estdn juntos por alguna razén légica. Un nombre,
direccién y salario aleatorios no son muy ttiles, pero si son su nombre, su direccién y su
salario, entonces se trata de su registro. El registro de un inventario podria contener campos
para el nimero, color, tamafo y precio de un articulo; el de un estudiante quizd contenga
un numero de identificacién, promedio de calificaciones y especialidad.

e Los archivos son grupos de registros relacionados. Los registros individuales de cada
estudiante en una clase podrian estar juntos en un archivo llamado Students.dat. Del
mismo modo, los registros de cada persona en una empresa podrian encontrarse en un
archivo llamado Personnel.dat. Algunos archivos pueden tener sélo algunos registros; por
ejemplo, uno de estudiantes de un seminario universitario podria tener sélo 10 registros.
Otros, como el archivo de tenedores de tarjetas de crédito para una cadena de tiendas de
departamentos importante o tenedores de pélizas de una compania grande de seguros,
pueden contener miles o incluso millones de registros.

Ejecucion de operaciones con archivos _

Una base de datos contiene grupos de archivos o tablas que en conjunto sirven a las necesidades de

ﬂ informacién de una organizacion. El software de bases de datos establece y mantiene relaciones entre los
campos en estas tablas, de modo que los usuarios cologuen juntos los elementos de datos relacionados en
un formato que permita a los gerentes tomar decisiones de manera mas eficiente.

DOS VERDADES UNA MENTIRA 261

Comprension de la jerarquia de datos

1. Enlajerarquia de datos, un campo es un solo elemento de datos, como
TastName, streetAddress 0 annualSalary.

2. Enlajerarquia de datos, los campos se agrupan para formar un registro; los
registros son grupos de campos que estan juntos por alguna razoén logica.

3. Enlajerarquia de datos, los registros relacionados se agrupan para formar un
campo.

"ONIYDJR UN UBLLIOJ SOPRUOIJR[A S041SIS3J SO '€ 0J3WNU B] S3 BS|R) UQIoRLLe B

Ejecucion de operaciones con archivos

Para usar los archivos de datos en sus programas, usted necesita entender varias operaciones
que se realizan con ellos:

e Declarar un archivo

e Abrir un archivo

e Leer datos de un archivo

e Escribir datos en un archivo

e Cerrar un archivo

Declarar un archivo

La mayoria de los lenguajes soportan varios tipos de archivos, pero una forma de clasificarlos
consiste en determinar si pueden usarse para entrada o para salida. Del mismo modo en

que las variables y las constantes tienen tipos de datos como num y string, cada archivo
tiene un tipo de datos que se define en el lenguaje que usted use. Por ejemplo, uno podria

ser InputFile. Del mismo modo que las variables y las constantes, los archivos se declaran
cuando se da a cada uno un tipo de datos y un identificador. Como ejemplos, usted podria
declarar dos archivos como sigue:

InputFile employeeData
OutputFile updatedData

Los tipos InputFile y OutputFile se escriben con mayusculas y mindsculas en este libro
debido a que sus equivalentes asi se escriben en la mayoria de los lenguajes de programacién.

o A REIER YA Manejo de archivos y aplicaciones

262

Este enfoque ayuda a distinguir estos tipos complejos de los tipos simples como numy string.
Los identificadores que se dan a los archivos, como employeeData y updatedData, son internos
al programa, del mismo modo que los nombres de las variables. Para hacer que un programa
lea los datos de un archivo desde un dispositivo de almacenamiento, usted también necesita
asociar el nombre del archivo interno del programa con el nombre del sistema operativo para
el archivo; con frecuencia, esta asociacién se consigue cuando éste se abre.

Abrir un archivo

En la mayoria de los lenguajes de programacioén, antes de que una aplicacién pueda usar
un archivo de datos es preciso abrir el archivo. Esta accién lo localiza en un dispositivo de
almacenamiento y asocia con el archivo un nombre de variable dentro de su programa. Por
ejemplo, si el identificador empToyeeData se ha declarado como tipo InputFile, entonces
podria hacer una declaracién parecida a la siguiente:

open employeeData “EmployeeData.dat”

Esta declaracion asocia el archivo nombrado EmployeeData.dat en el dispositivo de
almacenamiento con el nombre interno del programa employeeData. Por lo general, usted
también puede especificar una ruta mas completa cuando el archivo de datos no esta en el
mismo directorio que el programa, como en el siguiente:

open employeeData “C:\CompanyFiles\CurrentYear\EmployeeData.dat”

Leer datos de un archivo

Antes de que usted pueda usar los datos almacenados en un programa debe cargarlos en la
memoria de la computadora. Nunca use directamente los valores de datos que estén almace-
nados en un dispositivo de almacenamiento; en cambio, use una copia que se transfiera a la
memoria. Cuando usted copia los datos de un archivo que se encuentran en un dispositivo de
almacenamiento a la RAM, usted lee del archivo.

De manera especial, cuando los elementos de datos estan almacenados en un disco duro su ubicacién

ﬂ quiza no sea clara para usted: los datos solo parecen estar “en la computadora”. Para un usuario ocasional,
las lineas entre almacenamiento permanente y memoria temporal con frecuencia son confusas debido a
que muchos programas nuevos guardan por usted los datos en forma automatica y periddica sin pedirle
permiso. Sin embargo, en cualquier momento, la version de un archivo en la memoria podria diferir de la
que se guardo por ultima vez en un dispositivo de almacenamiento.

Silos elementos de datos se han almacenado en un archivo y un programa los necesita, usted
puede escribir declaraciones de programacion separadas para introducir cada campo, como en
el siguiente ejemplo:

input name from employeeData
input address from employeeData
input payRate from employeeData

La mayoria de los lenguajes también le permiten escribir una sola declaracién en el siguiente
formato:

input name, address, payRate from employeeData

Ejecucion de operaciones con archivos _

La mayoria de los lenguajes de programacion proporcionan una forma para que usted use un nombre de
grupo para los datos de registro, como en la siguiente declaracion:

input EmployeeRecord from employeeData

Al usar este formato usted necesita definir los campos separados que componen un EmployeeRecord
cuando declare las variables para el programa.

263

Por lo general usted no desea introducir varios elementos en una sola declaracién cuando lee
los datos desde un teclado, debido a que quiere indicar al usuario que introduzca cada ele-
mento por separado conforme usted lo introduce. Sin embargo, cuando usted recupera los
datos de un archivo, no se necesitan indicadores. En cambio, cada elemento se recupera en
secuencia y se almacena en la memoria en la ubicacién nombrada apropiada.

La forma en que un programa sabe cuantos datos introducir para cada variable difiere entre los lenguajes
de programacion. En muchos de ellos un delimitador, como una coma, se almacena entre los campos de
datos. En otros, la cantidad recuperada depende de los tipos de datos de las variables en la declaracion de
entrada.

La figura 7-2 muestra cémo funciona una declaracién de entrada. Cuando ésta se ejecuta cada
campo se copia y coloca en la variable apropiada en la memoria de la computadora. Nada en
el disco indica un nombre de campo asociado con cualquiera de los datos; los nombres de
variable sélo existen dentro del programa. Por ejemplo, otro programa podria usar el mismo
archivo como entrada y llamar a los campos surname, street y salary.

input name, address, payRate
Memoria

47 Maple name
Matthews
address
47 Maple

payRate

17.00

Figura 7-2 Lectura de tres elementos de datos desde un dispositivo de almacenamiento a
la memoria

i

En algunos lenguajes usted debe especificar la longitud de cada campo que se lee desde un archivo de
datos. En otros, el tipo de sus datos determina la longitud de cada campo.

o A REIER YA Manejo de archivos y aplicaciones

264

Cuando usted lee datos desde un archivo, debe leer todos los campos que estan almacenados
aun cuando quizé no desee usarlos todos. Por ejemplo, suponga que quiere leer un archivo de
datos de los empleados que contiene nombres, direcciones y tarifa de pago para cada uno, y
desea dar salida a una lista de nombres. Aun cuando no se interese en los campos de direccién
o tarifa de pago, debe leerlos en su programa para cada empleado antes que pueda obtener el
nombre para el siguiente.

Escribir datos en un archivo

Cuando usted almacena los datos de un archivo de computadora en un dispositivo de almace-
namiento persistente, escribe en el archivo. Esto significa que copia los datos de la RAM al
archivo. Cuando escribe los datos a un archivo, escribe el contenido de los campos usando una
declaracién como la siguiente:

output name, address, payRate to employeeData

Cuando usted escribe los datos en un archivo, por lo general no incluye explicaciones que
hagan que las personas los interpreten con mayor facilidad; sélo escribe hechos y cifras. Por
ejemplo, no incluye encabezados de columna ni explicaciones como La tarifa de pago es, ni
comas, signos de ddlar o signos de porcentaje en los valores numéricos. Esos adornos son
apropiados para dar salida en un monitor o en papel, pero no para el almacenamiento.

Cerrar un archivo

Cuando usted termina de usarlo, el programa debera cerrar el archivo; un archivo cerrado ya
no estd disponible para su aplicacién. No cerrar un archivo de entrada (del cual ha leido datos)
por lo general no tiene consecuencias graves; los datos ain existen en el archivo. Sin embargo,
si no cierra un archivo de salida (en el que escribe datos), los datos quiza no se guarden en
forma correcta y podrian volverse inaccesibles. Siempre deberd cerrar todos los archivos que
abra y deberia hacerlo tan pronto como ya no los necesite. Cuando deja un archivo abierto

sin razén usa recursos de la computadora y el desempeiio de ésta lo resiente. Ademads, en
particular dentro de una red, otro programa podria estar esperando para usarlo.

En la mayoria de los lenguajes de programacion, si usted lee los datos desde un teclado o los escribe para
desplegarlos en el monitor, no necesita abrir o cerrar el dispositivo. El teclado y el monitor son los disposi-
tivos de entrada y de salida predeterminados, respectivamente.

Un programa que ejecuta operaciones de archivo

La figura 7-3 contiene un programa que abre dos archivos, lee los datos del empleado del
archivo de entrada, altera la tarifa de pago, escribe el registro actualizado en un archivo de
salida y los cierra. Las declaraciones que se usan en los archivos estdn sombreadas. La con-
vencién en este libro es colocar en los diagramas de flujo las declaraciones de abrir archivo y
cerrar archivo en paralelogramos, debido a que son operaciones relacionadas con la entrada
y la salida.

Ejecucion de operaciones con archivos _

housekeeping()

Declarations open employeeData
InputFile employeeData "EmployeeData.dat"

OutputFile updatedData

string name l 265
string address open updatedData
num payRate "UpdatedData.dat"
num RAISE = 2.00 l
l input name,
housekeeping() address, payRate
from
employeeData

not Yes J b
eof? detailLoop()
o .
detailLoop()
finish(Q)

payRate = payRate
+ RAISE

!

output name,
address, payRate
finish() to updatedData

=

close input name,
employeeData address, payRate
from
l employeeData
close

updatedData

Figura 7-3 Diagrama de flujo y seudocédigo para un programa que usa archivos (continda)

o A REIER YA Manejo de archivos y aplicaciones

266

(continuacion)

start
Declarations
InputFile employeeData
OutputFile updatedData
string name
string address
num payRate
num RAISE = 2.00
housekeeping()
while not eof
detaiTlLoop()
endwhile
finish(Q
stop

housekeeping()

open employeeData "EmployeeData.dat"

open updatedData "UpdatedData.dat"

input name, address, payRate from employeeData
return

detaillLoop()
payRate = payRate + RAISE
output name, address, payRate to updatedData
input name, address, payRate from employeeData
return

finish()
close employeeData
close updatedData
return

Figura 7-3 Diagrama de flujo y seudocddigo para un programa que usa archivos

En el programa de la figura 7-3, cada dato del empleado se lee en la memoria. Luego la varia-
ble payRate en la memoria se aumenta $2.00. El valor de la tarifa de pago en el dispositivo de
almacenamiento de entrada no se altera. Después de que se aumenta la tarifa, el nombre, la
direccién y los valores de dicha tarifa recién alterados se almacenan en el archivo de salida.
Cuando el procesamiento esta completo, el archivo de entrada retiene los datos originales y el
de salida contiene los datos revisados. Muchas organizaciones mantendrian el archivo original
como respaldo. Un archivo de respaldo es una copia que se conserva en caso de que los valo-
res necesiten restablecerse a su estado original. La copia de respaldo se llama archivo padre y
la copia recién revisada es un archivo hijo.

embargo, en la conversacion, los programadores por lo general reservan la palabra imprimir para situacio-
nes en las que se refieren a producir una salida en papel. Es méas probable que usen escribir cuando hablan
de enviar registros hacia un archivo de datos y desplegar cuando los envian hacia un monitor. En algunos
lenguajes de programacion no hay diferencia en el verbo que se usa para la salida al margen del hardware;
usted soélo asigna distintos dispositivos de salida (impresoras, monitores y unidades de disco) segun sea
necesario a los objetos que los representan, nombrados por el programador.

ﬂ Logicamente, los verbos imprimir, escribir y desplegar significan lo mismo: todos producen una salida. Sin

Comprension de los archivos secuenciales y la logica... _

A lo largo de este libro se le ha alentado a pensar en la entrada basicamente como el mismo
proceso, ya sea que provenga de un usuario que mecanografia en forma interactiva en un
teclado o de un archivo almacenado en un disco u otros medios. El concepto sigue siendo
vélido para este capitulo, que expone las aplicaciones que en general usan datos de archivo
almacenados. Aunque los datos que se usan en una aplicacién podrian introducirse en un
teclado durante la ejecucién de un programa, en este capitulo se supone que los elementos de
datos se han introducido, validado y clasificado antes en otra aplicacién, y luego se han proce-
sado como entradas desde los archivos para lograr los resultados.

267

Clasificar es el proceso de colocar los registros en orden de acuerdo con el valor en uno o
varios campos especificos. Los archivos pueden clasificarse en forma manual o con ayuda de
un programa antes de guardarse. En este capitulo, se supone que el proceso de clasificacién
de registros ya se ha realizado.

DOS VERDADES UNA MENTIRA

Ejecucion de operaciones con archivos

1. Usted da a un archivo un nombre interno en un programa y luego lo asocia con
el nombre del sistema operativo para el archivo.

2. Cuando usted lee desde un archivo, copia los valores de la memoria a un dispo-
sitivo de almacenamiento.

3. Sino cierra un archivo de entrada por lo general no habra consecuencias gra-
ves; los datos todavia existen en el mismo.

"0]UBILIRUBIRWIE 3P OAISOdSIP UN B BLIOWSLW e| 8P S8J0[eA SO| e1dod ‘OAIyd.e
un U9 3guI0Sa Opuen?) "eLIOWAW | BIJRY OJUSILUBUIORWIE 9P OANSOdSIP Un apsap
$J0jeA SO eId0d ‘OAIYIJR UN 9PSBp 93] OpUBNY) " 0JAWNU] S BS|e} UQIDRLLILE B

Comprension de los archivos secuenciales
y la légica de control de interrupciones

Un archivo secuencial es un archivo en el que los registros se almacenan uno detrds de otro
en cierto orden. Con frecuencia, los registros en un archivo secuencial estan organizados con
base en el contenido de uno o mds campos; algunos ejemplos son:

e Un archivo referente a los empleados almacenado en orden por nimero de identificacion

e Un archivo de componentes para una compaiifa manufacturera almacenado en orden por
nimero de componente

e Un archivo de clientes para un negocio almacenado en orden alfabético por apellido

o A REIER YA Manejo de archivos y aplicaciones

268

Comprension de la l6gica de control de interrupciones

Un control de interrupciones es una desviacién temporal en la légica de un programa. En
particular, los programadores usan un programa de control de interrupciones cuando un
cambio en un valor inicia acciones o procesamiento especiales; por lo general estos se escriben
con el objetivo de organizar la salida para los programas que manejan registros de datos orga-
nizados de manera logica en grupos basados en el valor en un campo o campos. Conforme lee
los registros examina el mismo campo en cada uno, y cuando encuentra alguno que contiene
un valor diferente de los que lo precedieron, ejecuta una accion especial. Por ejemplo, podria
generar un informe que liste en orden a todos los clientes de una compania de acuerdo con su
estado de residencia, con un conteo de los mismos después de la lista de cada estado. Véase la
figura 7-4 que muestra un ejemplo de un informe de control de interrupciones que se inte-
rrumpe después de cada cambio de estado.

Clientes de la compania por estado de residencia

Nombre Ciudad Estado

Albertson Birmingham Alabama
Davis Birmingham Alabama
Lawrence Montgomery Alabama

Cuenta para Alabama 3

Smith Anchorage Alaska
Young Anchorage Alaska
Davis Fairbanks Alaska
Mitchell Juneau Alaska
Zimmer Juneau Alaska

Cuenta para Alaska 5

Edwards Phoenix Arizona
Cuenta para Arizona 1

\/—/\/\/_ﬁ
Figura 7-4 Informe de control de interrupciones con totales después de cada estado

Otros ejemplos de estos informes generados por los programas de control de interrupciones
podrian ser:

e Todos los empleados listados en orden por numero de departamento, con una pagina nueva
empezada para cada departamento

e Todos los libros que hay a la venta en una libreria listados en orden por categorfa (como
referencia o autoayuda), con un conteo después de cada categorfa

e Todos los articulos vendidos ordenados de acuerdo con la fecha de venta, con tinta de un
color diferente para cada mes

Cada uno de estos informes comparte dos rasgos:

e Los registros que se usan en cada informe se listan en orden de acuerdo con una variable
especifica: estado, departamento, categoria o fecha.

e Cuando esa variable cambia el programa emprende una accién especial: empieza una
pégina nueva, imprime un conteo o total, o cambia el color de la tinta.

Comprension de los archivos secuenciales y la logica... _

Para generar un informe de control de interrupciones, los registros que usted haya introdu-
cido deben estar organizados en orden secuencial con base en el campo que causard las inte-
rrupciones. En otras palabras, para escribir un programa que genere un informe de clientes
por estado, como el de la figura 7-4, los registros deben estar agrupados por estado antes de
comenzar a procesarlos. Con frecuencia este agrupamiento significarfa colocar los registros
en orden alfabético por estado, aunque con la misma facilidad podrian estar ordenados por
poblacién, nombre del gobernador o cualquier otro factor, mientras todos los registros de un
estado estén juntos.

269

jan de manera automatica. Aun asi, entender cémo funcionan los programas de control de interrupciones

Con algunos lenguajes mas recientes, como SQL, los detalles de los controles de interrupciones se mane-
mejora su competencia como programador.

Suponga que tiene un archivo de entrada que contiene los nombres de clientes, ciudades y
estados, y desea generar un informe como el de la figura 7-4. La légica basica del programa
funciona ast:

e Cada vez que usted lee el registro de un cliente del archivo de entrada determina si reside en
el mismo estado que el cliente anterior.

e De ser asi, simplemente da salida a los datos del cliente, agrega 1 a un contador y lee otro
registro, sin procesamiento especial. Si hay 20 clientes en un estado, estos pasos se repiten
20 veces seguidas: leer sus datos, contarlo y darle salida.

e Al final usted leerd un registro para un cliente que no se encuentra en el mismo estado.
En ese punto, antes de dar salida a los datos para el primer cliente en el nuevo estado debe
dar salida a la cuenta para el estado previo. También debe reiniciar el contador en 0 de
modo que esté listo para empezar a contar los clientes en el siguiente estado. Luego puede
proceder a manejar los registros de los clientes para el nuevo estado y continuar asi hasta la
siguiente vez que encuentre un cliente de un estado diferente.

Este tipo de programa contiene un control de interrupciones de nivel {nico, una interrup-
cién en la légica del programa (en este caso, hacer una pausa o tomar una desviacion para

dar salida a un conteo) que se basa en el valor de una sola variable (en este caso, el estado). La
técnica que usted debe usar para “recordar” el estado anterior de modo que pueda compararlo
con cada estado nuevo es crear una variable especial, llamada campo de control de interrup-
ciones, para contener el estado previo. Mientras lee cada registro nuevo, al comparar los valo-
res del estado nuevo y el estado anterior determina cudndo es tiempo de dar salida al conteo
para el estado previo.

La figura 7-5 muestra la légica de linea principal y el médulo getReady () para un programa que
genera el informe de la figura 7-4. En la légica de linea principal, la variable de control de inte-
rrupciones oldState se encuentra en la declaracién sombreada. En el médulo getReady () se da
salida a los encabezados del informe, se abre el archivo y se lee el primer registro en la memoria.
Luego, el valor del estado en el primer registro se copia a la variable o1dState (véase el som-
breado). Note que seria incorrecto inicializar o1dState cuando se declara. En el momento en
que usted declara las variables al comienzo del programa principal, todavia no ha leido el primer
registro; por consiguiente, no sabe cudl sera el valor del primer estado. Podria suponer que es
Alabama debido a que es el primero en orden alfabético y quizd tenga razoén, pero tal vez en este
conjunto de datos el primer estado sea Alaska o incluso Wyoming. Estara seguro de almacenar
el valor del primer estado correcto si lo copia del primer registro de entrada.

N ARIEEVAT Manejo de archivos y aplicaciones

270

Declarations
InputFile inFile
string TITLE = "Clientes de la compaiia por estado de residencia"
string COL_HEADS = "Nombre Ciudad Estado"
string name
string city
string state
num count = 0
string oldState

getReady ()

getReady)
|

produceReport() COL_HEADS

No open inFile
"ClientsByState.dat’

finishUpQ *
{ input name, city,
state from inFile

;

start oldState = state
Declarations

InputFile inFile
string TITLE = "Clientes de la compafiia por estado de residencia "
string COL_HEADS = "Nombre Ciudad Estado"

string name
string city
string state
num count = 0
string oldState

getReady ()

while not eof
produceReport()

endwhile

finishUpQ

stop

getReady ()
output TITLE
output COL_HEADS
open inFile "ClientsByState.dat"
input name, city, state from inFile
oldState = state

return

Figura 7-5 Ldgica de linea principal y modulo getReady () para el programa que genera un informe
de los clientes por estado

Comprension de los archivos secuenciales y la logica... _

Dentro del médulo produceReport() en la figura 7-6, la primera tarea es verificar si state
contiene el mismo valor que oldState. Para el primer registro, en la primera pasada por este
método, los valores son iguales (debido a que usted los establece asi justo después de obtener
el primer registro de entrada en el médulo getReady()). Por consiguiente, usted da salida a los
datos del primer cliente, agregando 1 a count, e introduciendo el siguiente registro.

produceReport()

controlBreak()

output "Conteo para ",
oldState, count

!

state <>
oldState?

controlBreak() count = 0
¢ oldState = state
output name,
city, state i

|

count = count + 1

!

input name, city, produceReport()
state from inFile if state <> oldState then

controlBreak()
endif
output name, city, state

count = count + 1
input name, city, state from inFile
return

controlBreak()
output "Conteo para
count = 0
oldState = state
return

, oldState, count

Figura 7-6 Los modulos produceReport() y controlBreak() para el programa que produce
clientes por estado

En tanto cada registro nuevo contenga el mismo valor state, usted continuard dando salida,
contando e introduciendo, sin hacer pausa nunca para dar salida al conteo. Al final, leerd en
un cliente cuyo estado serd diferente del anterior. Allf ocurre el control de interrupciones.
Siempre que un estado nuevo difiere del antiguo deben realizarse tres tareas:

e Dar salida al conteo para el estado previo.
e Reiniciar el conteo en 0 de modo que comience a contar los registros para el estado nuevo.

e Actualizar el campo del control de interrupciones.

o A REIER YA Manejo de archivos y aplicaciones

Cuando el médulo produceReport() recibe el registro de un cliente para el que state no es
el mismo que oldState, usted causara una interrupcion en el flujo normal del programa. El
nuevo registro del cliente debe “esperar” mientras se da salida al conteo para el estado que
acaba de terminar y count y el campo de control de interrupciones o1dState adquieren valo-
res nuevos.

272 El médulo produceReport() continda dando salida a los nombres de los clientes, ciudades

y estados hasta que se llega al final del archivo; entonces se ejecuta el médulo finishUp(Q).
Como se muestra en la figura 7-7, el médulo que se ejecuta después de procesar el tltimo
registro en un programa de control de interrupciones debe completar cualquier procesamiento
requerido para el tltimo registro que se manejd. En este caso, el médulo finishUp debe
desplegar el conteo para el ultimo estado que se procesd. Después de que el archivo de entrada
se cierra, la logica puede regresar al programa principal, donde el programa termina.

finishUp(Q) finishUpQO
output "Conteo para ", oldState, count
close inFile

output "Conteo para ", return

oldState, count

!

close inFile

Figura 7-7 El mddulo finishUp() para el programa que genera un informe de clientes por estado

DOS VERDADES UNA MENTIRA

Comprension de los archivos secuenciales
y la l6gica del control de interrupciones

1. Enun programa de control de interrupciones, un cambio en el valor de una
variable inicia acciones o procesamiento especiales.

2. Cuando una variable de control de interrupciones cambia, el programa
emprende una accion especial.

3. Para generar un informe de control de interrupciones, sus registros de entrada
deben estar organizados en orden secuencial con base en el primer campo en
el registro.

"sauolodnIB)UI SE| BJeSNed anb odwed |3 Us 3SB(U0J [eIousNdas Usp.Io U SOp
-2ZIURSI0 JL]SD UBGap BpeJIUS 9p S0J1SI884 SN 'S 0JaLWINU B| S BS|2) UQIDRLILE BT

Unién de archivos secuenciales

Union de archivos secuenciales

En los negocios con frecuencia se necesitan que dos o mas archivos secuenciales se unan. Unir
archivos implica combinar dos o méds mientras se mantiene el orden secuencial. Por ejemplo:

e DPiense que tiene un archivo de los empleados actuales y otro de empleados recién con-
tratados, ambos ordenados por nimero de identificacién. Necesita unirlos en un archivo
combinado antes de correr el programa de némina de esta semana.

e Suponga que tiene un archivo de componentes manufacturados en la fabrica Northside
y otro de componentes fabricados en Southside, ambos ordenados por nimero de
componente. Necesita unir estos dos archivos en uno combinado, creando una lista maestra
de componentes disponibles.

e Imagine que tiene un archivo que lista los clientes del tltimo afio y otro con los del presente
ano, ambos en orden alfabético. Usted desea crear una lista de correo de todos los clientes
ordenados por apellido.

Antes de que pueda unir archivos con facilidad, deben cumplirse dos condiciones; cada
archivo:

e debe contener el mismo disefo de registros.

e debe estar clasificado en el mismo orden con base en el mismo campo. El orden
ascendente describe los registros de los valores ordenados de menor a mayor; el
orden descendente los describe de mayor a menor.

Por ejemplo, suponga que su negocio tiene dos ubicaciones, una en la Costa Este y otra en

la Costa Oeste, y cada una mantiene un archivo de clientes en orden alfabético por nombre.
Cada archivo contiene campos para el nombre y el saldo del cliente. Usted puede llamar a

los campos en el archivo de la Costa Este eastName y eastBalance, y a los de la Costa Oeste
westName y westBalance. Desea unir ambos archivos para crear uno combinado que contenga
los registros de todos los clientes. La figura 7-8 presenta algunos datos de muestra para los
archivos; usted desea crear uno como el de la figura 7-9.

mergedName mergedBalance
Able 100.00
Archivo de la Costa Este Archivo de la Costa Oeste Brown 50.00
Chen 200.00
eastName eastBalance westName westBalance Dougherty 2500
Able 100.00 Chen 200.00 Edgar 125.00
Brown 50.00 Edgar 125.00 Fell 75.00
Dougherty 25.00 Fell 75.00 Grand 100.00
Hanson 300.00 Grand 100.00 Hanson 300.00
Ingram 400.00 Ingram 400.00
Johnson 30.00 Johnson 30.00
Figura 7-8 Datos de muestra contenidos en dos Figura 7-9 Archivo de clientes
archivos de clientes combinado

La légica de linea principal para un programa que une dos archivos es similar a la que ha usado
antes en otros programas: contiene tareas administrativas preliminares; un médulo detallado
que se repite hasta el final del programa, y algunas tareas de limpieza de fin del trabajo.

o A REIER YA Manejo de archivos y aplicaciones

274

Sin embargo, la mayoria de los programas que ha estudiado procesaban los registros hasta
que se cumplia una condicion eof, ya sea porque un archivo de datos de entrada alcanzaba

su final o porque un usuario introducia un valor centinela en un programa interactivo. En un
programa que une dos archivos de entrada, verificar el eof s6lo en uno de ellos es insuficiente.
En cambio, el programa puede comprobar una variable bandera con un nombre como
areBothAtEnd. Por ejemplo, usted podria inicializar una variable de cadena areBothAtEnd

en “N”, pero cambiar su valor a “Y” después de que ha encontrado eof en ambos archivos de
entrada. (Si el lenguaje que usa soporta un tipo de datos booleano, puede usar los valores true
y false en lugar de cadenas.)

La figura 7-10 muestra la 16gica de linea principal para un programa que une los archivos que
se muestran en la figura 7-8. Después de que se ejecuta el médulo getReady (), la pregunta
sombreada que envia la légica al médulo finishUp() prueba la variable areBothAtEnd.
Cuando contiene “Y”, el programa termina.

(start) start
Declarations
! InputFile eastFile
- InputFile westFile
Declarations OutputFile mergedFile
InputFile eastFile string eastName
InputFile westFile num eastBalance
QutputFile mergedFile string westName
string eastName num westBalance
num eastBalance string END_NAME = "Z77777"
string westName string areBothAtEnd = "N"
num westBalance getReady)
string END_NAME = "Z7777" while areBothAtEnd <> "Y"
string areBothAtEnd = "N" mergeRecords ()
endwhile
: finishUpQ
stop
getReady ()
Y

<4
areBothAtEnd !
- "Y'?

Noi

finishUp(Q

—| mergeRecords()

\

(stop)

Figura 7-10 Logica de linea principal de un programa que une archivos

El médulo getReady () se muestra en la figura 7-11. Abre tres archivos: los de entrada para
los clientes del este y del oeste, y uno de salida en el que se colocaran los registros unidos. EI
programa lee entonces un registro de cada archivo de entrada. Si cualquier archivo ha llegado
a su fin, la constante END_NAME se asigna a la variable que contiene el nombre del cliente del

Union de archivos secuenciales

getReady () readEast()

open eastFile input eastName,
"EastCoastClients.dat" eastB§1ance from
¢ eastFile 975

open westFile
"WestCoastClients.dat" No Si
' ,

open mergedFile
"Clients.dat"

eastName =
END_NAME

* |

readEast()
¢ return

readWest()

*
checkEnd ()

input westName,

westBalance from

checkEnd ()

No Si
y
eastName westName =
END_NAME? END_NAME

westName =
END_NAME?

\/

areBothAtEnd
v

Figura 7-11 El mddulo getReady () para un programa que une archivos, y los métodos a los que
llama (continta)

o A REIER YA Manejo de archivos y aplicaciones

276

(continuacion)

getReady()
open eastFile "EastCoastClients.dat"
open westFile "WestCoastClients.dat"
open mergedFile "Clients.dat"
readEast()
readWest()
checkEnd()

return

readEast()
input eastName, eastBalance from eastFile
if eof then
eastName = END_NAME
endif
return

readWest()
input westName, westBalance from westFile
if eof then
westName = END_NAME
endif
return

checkEnd()
if eastName = END_NAME then
if westName = END_NAME then
areBothAtEnd = "Y"
endif
endif
return

Figura 7-11 El modulo getReady () para un programa que
une archivos, y los métodos a los que llama

archivo. El médulo getReady () comprueba entonces si ambos archivos han terminado (la ver-
dad es que es una ocurrencia rara en la porcién getReady () de la ejecucion del programa) y
establece la variable bandera areBothAtEnd en “Y” si es el caso. Suponiendo que al menos un
registro estd disponible, la légica entonces introduce el médulo mergeRecords Q).

Cuando usted comienza el mddulo mergeRecords () en el programa usando los archivos que
se muestran en la figura 7-8, en la memoria de la computadora se colocan dos registros, uno
de eastFile y otro de westFile. Uno de ellos debe escribirse primero en el nuevo archivo de
salida. ;Cudl? Debido a que los dos archivos de entrada contienen registros almacenados en
orden alfabético y usted desea que el nuevo archivo los almacene también en orden alfabético,
primero da salida al registro de entrada que tenga el valor alfabético mds bajo en el campo de
nombre. Por consiguiente, el proceso comienza como se presenta en la figura 7-12.

Union de archivos secuenciales

mergeRecords ()

Si

eastName <
westName?

output westName, output eastName,

westBalance to eastBalance to

mergedFile mergedFile
mergeRecords ()

if eastName < westName then
output eastName, eastBalance to mergedFile
// more to come

else
output westName, westBalance to mergedFile
// more to come

Figura 7-12 Comienzo del proceso de unién

Usando los datos de muestra de la figura 7-8, usted puede ver que el registro Able del archivo
de la Costa Este deberfa escribirse en el archivo de salida, mientras el registro Chen del
archivo de la Costa Oeste espera en la memoria. El valor Able de eastName es alfabéticamente
menor que el valor Chen de westName.

Después de que usted escribe el registro de Able, ;deberfa escribir a continuacion el de Chen
en el archivo de salida? No necesariamente. Esto depende del siguiente eastName en el registro
de Able en eastFiTe. Cuando los registros de datos se leen en la memoria desde un archivo,
un programa por lo comuin no “mira hacia adelante” para determinar los valores almacenados
en el siguiente registro; en cambio, por lo general lee el registro en la memoria antes de tomar
decisiones sobre su contenido. En este programa, usted necesita leer el siguiente registro

de eastFile en la memoria y compararlo con Chen. Debido a que en este caso el siguiente
registro en eastFile contiene el nombre Brown, otro registro de eastFile se escribe; ningiin
archivo de westFiTe se escribe todavia.

Después de los primeros dos registros de eastFile, ses el turno de escribir Chen? En realidad
usted no lo sabe hasta que lea otro registro de eastFiTle y compare su valor de nombre con
Chen. Debido a que este registro contiene el nombre Dougherty, en efecto es tiempo de escri-
bir el registro de Chen. Después de que lo hace, ;deberia escribir el de Dougherty? Hasta que
lea el siguiente registro de westFile, no sabe si ése deberfa colocarse antes o después del de
Dougherty.

Por consiguiente, el método de unién procede asi: compara dos registros, escribe el que tiene
el menor nombre alfabético y lee otro del mismo archivo de entrada. Véase la figura 7-13.

o A REIER YA Manejo de archivos y aplicaciones

278

mergeRecords ()

Si

eastName <
westName?

output westName, output eastName,
westBalance to eastBalance to
mergedFile mergedFile
¥ ¥
readwest() readEast()
mergeRecords ()

if eastName < westName then
output eastName, eastBalance to mergedFile
readEast()
// more to come

else
output westName, westBalance to mergedFile
readwWest()
// more to come

Figura 7-13 Continuacién del proceso de union

Recuerde los nombres de los dos archivos originales en la figura 7-8 y recorra los pasos del

procesamiento.

1. Compare Able y Chen. Escriba el registro de Able. Lea el registro de Brown de
eastFile

2. Compare Brown 'y Chen. Escriba el registro de Brown. Lea el registro de Dougherty de
eastFile

3. Compare Dougherty y Chen. Escriba el registro de Chen. Lea el registro de Edgar de
westFiTe.

4. Compare Dougherty y Edgar. Escriba el registro de Dougherty. Lea el registro de Han-
son de eastFiTe.

5. Compare Hanson 'y Edgar. Escriba el registro de Edgar. Lea el registro de Fell de
westFile.

6. Compare Hanson y Fell. Escriba el registro de Fell. Lea el registro de Grand de
westFile.

7. Compare Hanson y Grand. Escriba el registro de Grand. Lea de westFile y encuentre

eof. Esto hace que westName se establezca como END_NAME.

¢Qué sucede cuando usted llega al final del archivo de la Costa Oeste? ;Se termina el
programa? Esto no deberfa ser porque los registros de Hanson, Ingram y Johnson deben ser
incluidos en el nuevo archivo de salida y ninguno se ha escrito todavia. Debido a que el campo

Union de archivos secuenciales

westName se establece en END_NAME, y END_NAME tiene un valor alfabético muy alto (ZZZZZ7),
cada eastName subsiguiente sera menor que el valor de westName, y se procesara el resto del
archivo eastName. Con un conjunto de datos diferente, eastFile podria haber terminado
primero. En ese caso, eastName se estableceria en END_NAME y se procesaria cada registro
subsiguiente de westFile.

La figura 7-14 muestra los médulos mergeRecords () y finishUp() completos.

mergeRecords ()

eastName <
westName?

\ \

output westName, output eastName, finishUp(O
westBalance to eastBalance to
mergedFile mergedFile

l l close eastFile

readwWest() readEast() ¢
‘ ‘ close westFile

!

l close
mergedFile

return

checkEnd()

return

mergeRecords ()
if eastName < westName then
output eastName, eastBalance to mergedFile
readEast()
else
output westName, westBalance to mergedFile
readwWest()
endif
checkEnd()
return

finishUp(Q
close eastFile
close westfile
close mergedFile
return

Figura 7-14 Los mddulos mergeRecords () y finishUp() para el programa de union de archivos

o A REIER YA Manejo de archivos y aplicaciones

Como valor para END_NAME, usted quiza elija usar 10 o 20 Z en lugar de sélo cinco. Aunque es impro-
bable que una persona tenga el apellido ZZZZ7Z, deberia asegurarse de que el valor alto que escoja es en
realidad mas alto que cualquier valor legitimo.

Después de que se procesa el registro de Grand, se lee westFile y se encuentra eof, asi que
280 westName se establece en END_NAME. Ahora, cuando usted entra de nuevo al ciclo, se compa-
ran eastName y westName, y eastName todavia tiene Hanson. El valor de eastName (Hanson)
es menor que el valor de westName (ZZZZZ), asi que se escriben los datos para el registro de
eastName al archivo de salida, y se lee otro registro de eastFile (Ingram).

La corrida completa del programa de unién de archivos entonces ejecuta los primeros seis de
los siete pasos que se listaron antes, y luego procede como se muestra en la figura 7-14 y como
sigue, empezando con un paso 7 modificado:

7. Compare Hanson y Grand. Escriba el registro de Grand. Lea de westFile, encuentra
eof y establece westName en ZZZZZ.

8. Compare Hansony ZZZZZ. Escriba el registro de Hanson. Lea el registro de Ingram.
9. Compare Ingramy ZZZZZ. Escriba el registro de Ingram. Lea el registro de Johnson.

10. Compare Johnsony ZZZZZ. Escriba el registro de Johnson. Lea de eastFile, encuen-
tra eof y establece eastName en ZZZZZ.

11. Ahora que ambos nombres son ZZZZZ, establezca la bandera areBothAtEnd en “Y”.

Cuando la variable bandera areBothAtEnd es igual a “Y”, el ciclo termina, los archivos se cie-
rran y el programa termina.

cada archivo, entonces ambos Hanson se incluiran en el archivo final. Cuando eastName y westName
concuerdan, eastName no es menor que westName, asi que usted escribe el registro Hanson de
westFile. Después de leer el siguiente registro de westFile, eastName serd menor que el siguiente
westName y se dara salida al registro Hanson de eastF1i1e. Un programa de unién mas complicado
podria verificar otro campo, como el nombre, cuando los valores del apellido concuerdan.

ﬂ Si dos nombres son iguales durante el proceso de union, por ejemplo, cuando hay un registro Hanson en

Usted puede unir cualquier cantidad de archivos. Para unir mas de dos, la 1égica sélo es un
poco mas complicada; debe comparar los campos clave de todos los archivos antes de decidir
cudl es el siguiente candidato para salida.

Procesamiento de archivos maestros y de transaccion _

DOS VERDADES UNA MENTIRA

Union de archivos secuenciales

1. Un archivo secuencial es uno en el que se almacenan los registros uno detras
de otro en algln orden; con mayor frecuencia, se almacenan con base en el
contenido de uno 0 mas campos dentro de cada registro.

281

2. Unir archivos implica combinar dos o mas de ellos mientras se mantiene el
orden secuencial.

3. Antes de que pueda unir archivos con facilidad, cada archivo debe contener el
mismo numero de registros.

‘odwed

OWSIW |3 Ud 9SBJ U0 UBPJO OWSIW [Ud OPLIYISE[d JBISS 3gap UQIUN B[Ud uesn
9s anb s0| ap oun eped A S04}SISa4 9P OUBSIP OLWISIW |3 JaUSIUOD 8PP OUN BPed
‘pepijioe) U0J SOAIYIJe Jiun epand anb ap S8UY 'S 0JSLWNU B] S BS|2) UQIDRLILE BT

Procesamiento de archivos maestros
y de transaccion

En la dltima seccion usted aprendié cémo unir archivos secuenciales relacionados en los que
cada registro en cada archivo contenfa los mismos campos. Algunos archivos secuenciales
relacionados, sin embargo, no contienen los mismos campos; en cambio, algunos tienen una
relacién maestro-transaccién. Un archivo maestro contiene datos completos y relativamente
permanentes; un archivo de transaccion contiene datos mas temporales. Por ejemplo, un
archivo maestro de clientes podria contener los nombres, direcciones y niumeros telefénicos
de los clientes, y uno de transaccién quiza contenga los datos que describen la compra mas
reciente de cada cliente.

Por lo comin, usted recopila transacciones por un periodo, las almacena en un archivo y

luego usa una por una para actualizar los registros concordantes en un archivo maestro. Usted
actualiza el archivo maestro haciendo cambios apropiados a los valores en sus campos con
base en las transacciones recientes. Por ejemplo, un archivo que contenga los datos de las tran-
sacciones de compra para un cliente podria usarse para actualizar cada campo de saldo deudor
en un archivo maestro de registros del cliente.

Aqui hay algunos ejemplos de archivos que tienen una relacién maestro-transaccion:

e Una biblioteca mantiene un archivo maestro de todos los usuarios y uno de transaccién con
informacién sobre cada libro u otros articulos que se han sacado.

e Un colegio mantiene un archivo maestro de todos los estudiantes y uno de transaccion para
el registro de cada curso.

o A REIER YA Manejo de archivos y aplicaciones

282

e Una compaiia telefénica mantiene un archivo maestro para cada linea (nimero) y uno de
transaccion con informacién sobre cada llamada.

Cuando usted actualiza un archivo maestro puede adoptar dos enfoques:

e Cambiar en realidad la informacién en el archivo maestro. Cuando usa este enfoque, se
pierde la informacién que existia en el archivo maestro antes del procesamiento de la
transaccion.

e Crear una copia del archivo maestro, haciendo los cambios en la nueva version. Luego,
puede almacenar la version padre previa del archivo maestro por un periodo, en caso de
que haya preguntas o discrepancias respecto al proceso de actualizacién. La version hija
actualizada se vuelve el nuevo archivo maestro que se usa en el procesamiento subsiguiente.
Este enfoque se aplica en un programa mas adelante en este capitulo.

Cuando se actualiza un archivo hijo se convierte en un padre, y su padre se vuelve un abuelo. Las organiza-
ciones individuales crean politicas concernientes al nimero de generaciones de archivos de respaldo que
guardaran antes de desecharlos. Los términos padre e hijo se refieren a las generaciones de respaldo de
archivos, pero se usan para un propdésito diferente en la programacion orientada hacia los objetos. Cuando
basa una clase en otra usando la herencia, la clase original es el padre y la derivada es el hijo.

La logica que usted usa para ejecutar una correspondencia entre los registros del archivo
maestro y del de transaccion es similar a la que utiliza para realizar una unién. Igual que

con una unién, debe comenzar con ambos archivos clasificados en el mismo orden y en el
mismo campo. La figura 7-15 muestra la légica de linea principal para un programa que rela-
ciona archivos. El archivo maestro contiene el nimero de cliente, su nombre y un campo
que contiene la cantidad total en délares de todas las compras que ha hecho previamente. El
archivo de transacciéon contiene datos para las ventas, incluyendo un nimero de transaccién,
el namero del cliente que la realizé y la cantidad de la misma.

Procesamiento de archivos maestros y de transaccion _

(start

\i

start

Declarations

InputFile masterFile
InputFile transFile
OutputFile updatedFile
num masterCustNum
string masterName

Declarations

InputFile masterFile
InputFile transFile
OutputFile updatedFile
num masterCustNum
string masterName

num masterTotal

num transNum

num transCustNum

283

num masterTotal
num transNum

num transCustNum
num transAmount

num transAmount
num END_NUM = 9999
string areBothAtEnd = "N"

housekeeping()
num END_NUM = 9999 - while areBothAtEnd <> "Y"
string areBothAtEnd = "N updateRecords ()
endwhile
y finishUp(Q)
stop
housekeeping()
ﬁ‘
Si
i:e§$E§AtE"d updateRecords()

finishUp(Q

Figura 7-15 La logica de linea principal para el programa maestro-transaccion

La figura 7-16 contiene el mdédulo housekeeping() para el programa y los médulos a los que
llama. Estos tltimos son muy similares a sus contrapartes en el programa de unién de archivos
que se estudié antes en el capitulo. Cuando el programa comienza, se lee un registro de cada
archivo; cuando cualquier archivo termina, el campo que se usé para relacionar se establece
en un valor alto, 9999, y cuando ambos archivos terminan se establece una variable bandera
de modo que la légica de linea principal pueda probar para el final del procesamiento. En el
programa de unién de archivos que se presentd antes en este capitulo, usted colocé la cadena
“77777” en el campo del nombre del cliente al final del archivo porque se comparaban campos
de cadena. En este ejemplo, debido a que usa campos numéricos (nimeros de clientes),

puede almacenar 9999 en ellos al final del archivo. La suposicién es que 9999 es mis alto que
cualquier namero de cliente vilido.

N ARIEEVAT Manejo de archivos y aplicaciones

housekeeping()

readMaster()

open masterFile input masterCustNum,
"Customers.dat" masterName,
masterTotal from
284 ‘ masterFile
open transFile
"Transactions.dat"
No Si
* eof? l
open updatedFile
"UpdatedCustomers.dat" masterCustNum
‘ = END_NUM
readMaster()
!
readTrans()
readTrans()
checkEnd()

input
transNum, transCustNum,

transAmount from

transFile

checkEnd)

No Si
masterCustNum A
= END_NUM? transCustNum
= END_NUM
No Si
*
areBothAtEnd

— nyn

Figura 7-16 El mddulo housekeeping() para el programa maestro-transaccion y los modulos a los
que llama (continda)

Procesamiento de archivos maestros y de transaccion _

(continuacion)

housekeeping()
open masterFile "Customers.dat"
open transFile "Transactions.dat"
open updatedFile "UpdatedCustomers.dat"
readMaster() 285
readTrans()
checkEnd ()
return

readMaster()
input masterCustNum, masterName, masterTotal from masterFile
if not eof then
masterCustNum = END_NUM
endif
return

readTrans()
input transNum, transCustNum, transAmount from transFile
if not eof then
transCustNum = END_NUM
endif
return

checkEnd ()
if masterCustNum = END_NUM then
if transCustNum END_NUM then
areBothAtEnd "y
endif
endif
return

Figura 7-16 El médulo housekeeping() para el programa maestro-transaccion y los
modulos a los que llama

Imagine que actualizard los registros del archivo maestro que tiene a la mano en lugar de

usar un programa de computadora y que todos los registros maestro y de transaccion estdn
almacenados en una hoja de papel separada. La forma mds facil de lograr la actualizacion es
clasificar todos los registros maestros por numero de cliente y colocarlos en un montén, y
luego clasificar todas las transacciones por nimero de cliente (no por niimero de transaccién)
y colocarlas en otro montén. Entonces usted examinaria la primera transaccion y buscaria los
registros maestros hasta que encontrara una correspondencia. Cualesquier registros maestros
sin transacciones se colocarian en un montén “completado” sin cambios. Cuando una tran-
saccion correspondiera con un registro maestro, usted corregirfa este registro usando la nueva
cantidad de transaccion y luego pasaria a la siguiente transaccion. Por supuesto, si no hubiera
un registro maestro correspondiente para una transaccion, entonces se darfa cuenta de que
ha ocurrido un error y quiza harfa la transaccién a un lado antes de continuar. El médulo
updateRecords () funciona exactamente en la misma forma.

En el programa de unién de archivos que se presenté antes en este capitulo, su primera
accién en el ciclo detallado del programa fue determinar cudl archivo contenfa el registro
con el valor menor; luego usted escribié ese registro. En un programa de correspondencia,

o A REIER YA Manejo de archivos y aplicaciones

286

usted intenta determinar no sélo si el campo de comparacién de un archivo es mas grande
que el de otro; también es importante saber si son iguales. En este ejemplo desea actualizar el
campo masterTotal de los registros del archivo maestro sélo si el campo transCustNum del
registro de transaccion contiene una correspondencia exacta para el nimero de cliente en el
del archivo maestro. Por consiguiente, usted compara masterCustNum del archivo maestro y
transCustNum del de transaccién. Existen tres posibilidades:

e Elvalor transCustNum es igual a masterCustNum. En este caso, usted agrega transAmount a
masterTotal y luego escribe el registro maestro actualizado en el archivo de salida. Luego,
lee en un registro maestro y uno de transaccién nuevos.

e Elvalor transCustNum es mds alto que masterCustNum. Esto significa que no se registro
una venta para ese cliente. Es correcto; no todos los clientes hacen una transaccion en cada
periodo, asi que usted simplemente escribe el registro original del cliente con la misma
informacion que contenia cuando se introdujo. Después obtiene el registro del siguiente
cliente para ver si hizo la transaccién que se considera actualmente.

e Elvalor transCustNum es menor que masterCustNum. Esto significa que usted intenta apli-
car una transaccién para la que no existe un registro maestro, de modo que debe haber un
error ya que una transaccion siempre debe tener un registro maestro. Puede manejar
este error en diversas formas; aqui escribird un mensaje de error en un dispositivo de salida
antes de leer el siguiente registro de transaccién. Un operador humano puede leer entonces
el mensaje y efectuar la accién apropiada.

este capitulo usted elaborara la légica para un programa en el que el cliente puede tener mdltiples

ﬂ La légica que se usa aqui supone que hay sélo una transaccion por cliente. En los ejercicios al final de
transacciones.

Ya sea que transCustNum fuera mads alto, mas bajo o igual a masterCustNum, después de

leer la siguiente transaccion o registro maestro (o ambos), verificard si masterCustNumy
transCustNum se han establecido en 9999. Cuando ambos son 9999 usted establece la bandera
areBothAtEnd en “Y”.

La figura 7-17 ilustra el mdédulo updateRecords () que lleva a cabo la logica del proceso de
relacién de archivos. La figura 7-18 presenta algunos datos de muestra que puede usar para
recorrer la légica para este programa.

Procesamiento de archivos maestros y de transaccion _

updateRecords()

transCustNum =
masterCustNum?

‘ 287

masterTotal =
masterTotal +
transCustNum > transAmount
masterCustNum?
output "No output output
hay registro masterCustNum, masterCustNum,
maestro para la masterName, masterName,
transaccion ", masterTotal to masterTotal to
transNum updatedFiTe updatedFiTe
readTrans() readMaster () readMaster()
readTrans()
|
checkEnd ()
updateRecords()

if transCustNum = masterCustNum then
masterTotal = masterTotal + transAmount
output masterCustNum, masterName, masterTotal to updatedFile
readMaster()
readTrans()
else
if transCustNum > masterCustNum then
output masterCustNum, masterName, masterTotal to updatedFile

readMaster()
else
output "No hay registro maestro para la transaccién ", transNum
readTrans()
endif
endif
checkEnd ()
return

Figura 7-17 El moédulo updateRecords () para el programa maestro-transaccion

o A REIER YA Manejo de archivos y aplicaciones

288

100
102
103
105
106
109
110

Archivo maestro Archivo de transaccion

masterCustNum masterTotal transCustNum transAmount

1000.00 100 400.00
50.00 105 700.00
500.00 108 100.00
75.00 110 400.00
5000.00
4000.00
500.00

Figura 7-18 Datos de muestra para el programa que relaciona archivos

El programa procede as:

1.

Lea el cliente 100 del archivo maestro y el cliente 100 del archivo de transaccion. Los
numeros de cliente son iguales, asi que 400.00 del archivo de transaccion se agregan
a 1000.00 en el maestro y se escribe un registro en el archivo maestro nuevo con una
cifra de ventas total de 1400.00. Después lea un nuevo registro desde cada archivo de
entrada.

El ndmero de cliente en el archivo maestro es 102 y en el archivo de transaccion es 105,
asi que hoy no hay transaccion para el cliente 102. Escriba el registro maestro exacta-
mente en la forma en que entrd y lea un registro maestro nuevo.

Ahora, el numero del cliente maestro es 103 y el numero de cliente de la transaccién
todavia es 105. Esto significa que el cliente 103 no tiene transacciones, asi que usted
escribe el registro maestro tal como estd y lee uno nuevo.

Ahora, el numero del cliente maestro es 105 y el numero de transaccién es 105. Debido
a que el cliente 105 tenfa un saldo de 75.00 y ahora tiene una transaccién de 700.00, el
nuevo total de ventas para el archivo maestro es 775.00 y se escribe un nuevo registro
maestro. Lea un registro de cada archivo.

Ahora, el nimero maestro es 106 y el niumero de transaccion es 108. Escriba el registro
del cliente 106 tal como estd y lea otro maestro.

Ahora, el nimero maestro es 109 y el numero de transaccién es 108. Ha ocurrido un
error; el registro de transaccién indica que hizo una venta al cliente 108, pero no hay
registro maestro para el cliente ntimero 108. La transaccién es incorrecta (hay un error
en el namero de cliente) o es correcta pero no ha podido crear un registro maestro.

De cualquier manera, se escribe un mensaje de error de modo que se notifique a algin
empleado para que pueda manejar el problema. Luego, obtenga un nuevo registro de
transaccion.

Ahora, el nimero maestro es 109 y el numero de transaccion es 110. Escriba el registro
maestro 109 sin cambios y lea uno nuevo.

Ahora, el nimero maestro es 110 y el numero de transaccion es 110. Agregue la tran-
saccion de 400.00 al saldo previo de 500.00 en el archivo maestro y escriba un registro
maestro nuevo con 900.00 en el campo masterTotal. Lea un registro de cada archivo.

Procesamiento de archivos maestros y de transaccion _

9. Debido a que ambos archivos han terminado, finalice el trabajo. El resultado es un
archivo maestro nuevo en el que algunos registros contienen exactamente los mismos
datos que al entrar, pero otros (para los que ha ocurrido una transaccién) se han actua-
lizado con una cifra de ventas totales nuevas. Los archivos maestro y de transaccién
originales que se usaron como entrada pueden guardarse como respaldo por algin

ti .
iempo 289

La figura 7-19 muestra el mdédulo finishUp() para el programa. Después de que se cierran

todos los archivos, el archivo maestro de clientes actualizado contiene todos los registros de
los clientes que tenfa originalmente y cada uno cuenta con un total actual basado en el con-
junto reciente de transacciones.

finishUpQ

close close masterFile

masterFile close transFile

l close updatedFile

return

close

transFile

close

updatedFile

Figura 7-19 El médulo finishUp() para el programa maestro-transaccion

DOS VERDADES UNA MENTIRA

Procesamiento de archivos maestro y de transaccion
1. Usted usa un archivo maestro para contener los datos temporales relacionados
con los registros del archivo de transaccion.

2. Usted usa un archivo de transaccién que contenga los datos que se usan para
actualizar un archivo maestro.

3. Laversion guardada de un archivo maestro es el archivo padre; la version
actualizada es el archivo hijo.

"sejusuewIad sjusLIeAlR[RI SOjep
J13U81U09 eJed 0J)SSBW OAIYIJR UN BSN PA]SM T 0JAWNU B SO BS|e} UoIoRULIYE B

o A REIER YA Manejo de archivos y aplicaciones

290

Archivos de acceso aleatorio

Los ejemplos de archivos que se han escrito y leido en este capitulo son de acceso secuen-
cial, lo que significa que acceden a los registros en el orden de una secuencia de principio a
fin. Por ejemplo, si usted escribe el registro de un empleado con un nimero de identificacién
234 y luego crea un segundo registro con el nimero 326, cuando recupere los registros vera
que permanecen en el orden original en que los datos entraron. En los negocios los datos

se almacenan en orden secuencial cuando se usan los registros para el procesamiento por
lotes, o que implica ejecutar las mismas tareas con muchos registros, uno detrés otro. Por
ejemplo, cuando una empresa genera los cheques de pago, los registros para el periodo de
pago se recopilan en un lote y los cheques se calculan e imprimen en secuencia. En realidad
no importa de quién es el cheque que se genera primero porque ninguno se entrega a los
empleados hasta que todos se han impreso. El procesamiento por lotes por lo general implica
cierta demora en el procesamiento; es decir, los registros se recopilan durante un periodo y
se procesan juntos después. Por ejemplo, cuando una empresa genera los cheques de pago,
los registros podrian recopilarse cada dia durante dos semanas antes de que el procesamiento
ocurra.

puede designar a un sistema en el que usted emite muchos comandos del sistema operativo como un

ﬂ Ademas de indicar un sistema que trabaja con muchos registros, el término procesamiento por lotes
grupo.

Para diversas aplicaciones el acceso secuencial es ineficiente. Estas, conocidas como aplicacio-
nes en tiempo real, requieren que se tenga acceso inmediato a un registro mientras un cliente
estd en espera. Un programa en el que el usuario hace solicitudes directas es un programa
interactivo. Por ejemplo, si un cliente habla por teléfono a una tienda de departamentos para
preguntar sobre una factura mensual, el representante de servicio al cliente no necesita ni
desea tener acceso a las cuentas de todos los clientes en secuencia. Con decenas de miles de
registros de cuentas por leer, tomarfa demasiado tiempo tener acceso al de ese cliente. En cam-
bio, los representantes de servicio al cliente requieren archivos de acceso aleatorio, en los
que es posible localizar los registros en cualquier orden. Los archivos para los que es preciso
tener acceso inmediato a los registros también se llaman archivos de acceso instantaneo.
Debido a que permiten localizar directamente un registro en particular (sin leer todos los
precedentes), los archivos de acceso aleatorio también se llaman archivos de acceso directo.
Usted puede declarar un archivo de acceso aleatorio de manera similar a la siguiente:

RandomFile customerFile

Usted asocia este nombre con un archivo almacenado de igual modo en que vincula un iden-
tificador con archivos de entrada y salida secuenciales. Con un archivo de acceso aleatorio
también puede usar operaciones de leer, escribir y cerrar; sin embargo, con este tipo de archi-
vos tiene la capacidad adicional de encontrar un registro en forma directa. Por ejemplo, podria
usar una declaracion similar a la siguiente para encontrar al cliente nimero 712:

seek record 712

Esta caracteristica es ttil en el procesamiento de acceso aleatorio. Considere un negocio con
20,000 cuentas de clientes. Cuando el cliente cuyo registro en el archivo es 14,607 adquiere

un numero de teléfono nuevo, es conveniente tener acceso al registro 14,607 en forma directa
escribiendo el nuevo nimero de teléfono en la ubicaciéon donde se habia almacenado el
anterior.

291

Archivos de acceso aleatorio

1. Un programa por lotes por lo general usa archivos de acceso instantaneo.

2. Enuna aplicacion en tiempo real, se tiene acceso inmediato a un registro mien-
tras un cliente espera.

3. Un programa interactivo por lo general usa archivos de acceso aleatorio.
‘soliojeale

08UBJUBISUI 0S8228 8P SOAIYIJE UBSN SOAIORJSIUI SeWrIS04d SO| {SB|RIouaNndas SOA
-y2Je esn |esauas o] 4od $810] Jod eweJSoid un " 0J3WNU €] S BS|R) UQIDRLLILE BT

o A REIER YA Manejo de archivos y aplicaciones

292

Resumen del capitulo

Un archivo de computadora es un conjunto de datos almacenados en un dispositivo no
volatil en un sistema de computo. Aunque su contenido difiere, cada archivo ocupa un espa-
cio en alguna seccién de un dispositivo de almacenamiento y cada uno tiene un nombre y
tiempos especificos asociados con él. Se organizan en directorios o carpetas. La lista com-
pleta de directorios de un archivo es una ruta.

Los elementos de datos en un archivo por lo general se almacenan en una jerarquia. Los
caracteres son letras, nimeros y simbolos especiales, como A, 7y $. Los campos son ele-
mentos de datos que representan un solo atributo de un registro y se componen de uno o
mds caracteres. Los registros son grupos de campos que se encuentran juntos por alguna
razén légica. Los archivos son grupos de registros relacionados.

Cuando usted usa un archivo de datos en un programa debe declararlo y abrirlo; al abrir un
archivo se asocia un identificador interno del programa con el nombre de un archivo fisico
en un dispositivo de almacenamiento. Cuando lee de un archivo, los datos se copian a la
memoria; cuando lo escribe los datos se copian de la memoria a un dispositivo de almace-
namiento. Cuando ha terminado de usarlo, lo cierra.

Un archivo secuencial es uno en el que se almacenan los registros uno detrds de otro en
cierto orden. Un programa de control de interrupciones es el que lee un archivo secuencial
y ejecuta el procesamiento especial basado en un cambio en uno o mds campos en cada
registro en el archivo.

Unir los archivos implica combinar dos o mds mientras se mantiene el orden secuencial.

Algunos archivos secuenciales relacionados son archivos maestros que contienen datos
relativamente permanentes y archivos de transaccién que contienen datos temporales. Por
lo comun, usted recopila transacciones por un periodo, las almacena y luego usa una por
una para actualizar los registros correspondientes en un archivo maestro.

Las aplicaciones interactivas en tiempo real requieren archivos de acceso aleatorio en los
que es posible localizar los registros en cualquier orden. Los archivos en los que es preciso
tener acceso inmediato a los registros también se denominan de acceso instantineo y de
acceso directo.

Términos clave

Un archivo de computadora es un conjunto de datos almacenados en un dispositivo no volatil
en un sistema de coémputo.

Los dispositivos de almacenamiento permanente contienen datos no volatiles, como discos
duros, DVD, unidades USB y carretes de cintas magnéticas. 293

Los archivos de texto contienen datos que pueden leerse en un editor de textos.
Los archivos binarios contienen datos que no han sido codificados como texto.

Un byte es una unidad pequeiia de almacenamiento; por ejemplo, en un archivo de texto sim-
ple, un byte contiene sélo un caracter.

Un kilobyte consta aproximadamente de 1000 bytes.
Un megabyte es un millén de bytes.
Un gigabyte son mil millones de bytes.

Los directorios son unidades de organizacion en dispositivos de almacenamiento; cada uno
puede contener multiples archivos y directorios adicionales. En un sistema grafico, los directo-
rios con frecuencia se llaman carpetas.

Las carpetas son unidades de organizacion en dispositivos de almacenamiento; cada una
puede contener multiples archivos y carpetas adicionales. Las carpetas son directorios
graficos.

Una ruta de archivo es la combinacién de la unidad de disco y la jerarquia completa de direc-
torios en la que reside el archivo.

La jerarquia de datos es una estructura que describe las relaciones entre los componentes de
datos; contiene caracteres, campos, registros y archivos.

Los caracteres son letras, niumeros y simbolos especiales, como A4, 7y $.

Los campos son elementos de datos que representan un solo atributo de un registro y estan
compuestos por uno o mas caracteres.

o A REIER YA Manejo de archivos y aplicaciones

294

Los registros son grupos de campos que se encuentran juntos por alguna razén logica.
Los archivos son grupos de registros relacionados.

Una base de datos contiene grupos de archivos y proporciona métodos para recuperarlos y
organizarlos con facilidad.

Las tablas son archivos en una base de datos.

Abrir un archivo quiere decir que se localiza en un dispositivo de almacenamiento y se le aso-
cia un nombre de variable dentro del programa.

Leer de un archivo implica que se copian los datos del archivo que se encuentra en un dispo-
sitivo de almacenamiento hacia la RAM.

Escribir en un archivo significa que se copian los datos de la RAM hacia un almacenamiento
persistente.

Cerrar un archivo quiere decir que ya no estd disponible para una aplicacién.

Los dispositivos de entrada y salida predeterminados son aquellos que no requieren abrirse;
por lo general son el teclado y el monitor, respectivamente.

Un archivo de respaldo es una copia que se conserva en caso de que se necesite restaurar los
valores a su estado original.

Un archivo padre es una copia de un archivo antes de su revisién.
Un archivo hijo es una copia de un archivo después de su revision.

Clasificar es el proceso de colocar los registros en orden por el valor en un campo o campos
especificos.

Un archivo secuencial es uno en el que los registros se almacenan uno detras otro en cierto
orden.

Un control de interrupciones es una desviacién temporal en la 16gica de un programa.

Un programa de control de interrupciones es uno en el que un cambio en el valor de una
variable inicia acciones o procesamiento especiales.

Un informe de control de interrupciones es una forma de salida que incluye procesamiento
especial después de cada grupo de registros.

Un control de interrupciones de nivel inico es una interrupcion en la légica de un programa
para ejecutar un procesamiento especial basado en el valor de una sola variable.

Preguntas de repaso [

Un campo de control de interrupciones contiene un valor que causa un procesamiento espe-
cial en un programa de control de interrupciones.

Unir archivos implica combinar dos o mds de ellos mientras mantienen el orden secuencial.

El orden ascendente describe los registros que se han ordenado de menor a mayor con base
en el valor en un campo.

295

El orden descendente describe registros que se han ordenado de mayor a menor con base en
el valor de algiin campo.

Un archivo maestro contiene datos completos y relativamente permanentes.

Un archivo de transaccion contiene datos temporales que usted usa para actualizar un
archivo maestro.

Actualizar un archivo maestro implica hacer cambios a los valores en sus campos con base en
transacciones.

El procesamiento por lotes implica ejecutar las mismas tareas con muchos registros, uno
detras de otro.

Las aplicaciones en tiempo real requieren que se tenga acceso inmediato a un registro mien-
tras un cliente espera.

En un programa interactivo, el usuario hace solicitudes directas, en oposicién a aquel en el
que la entrada proviene de un archivo.

En los archivos de acceso aleatorio, los registros pueden localizarse en cualquier orden.

Los archivos de acceso instantaneo son aquellos de acceso aleatorio en los que es preciso
tener acceso inmediato a los registros.

Los archivos de acceso directo son aquellos de acceso aleatorio.

Preguntas de repaso

1. La memoria de acceso aleatorio es
a) permanente
b) wvolatil
c) persistente

d) continua

2. ;Cudl afirmacién es verdadera en relacién con los archivos de texto?
a) Contienen datos que pueden leerse en un editor de textos.
b) Por lo comun contienen imagenes y mdsica.
¢) Las dos anteriores.

d) Ninguna de las anteriores.

o A REIER YA Manejo de archivos y aplicaciones

3. Cada archivo en un dispositivo de almacenamiento tiene un
a) nombre
b) tamafo

¢) las dos anteriores
296

d) ninguna de las anteriores

4. ;Cual de las siguientes afirmaciones es verdadera respecto a la jerarquia de datos?
a) Los archivos contienen registros.

b) Los caracteres contienen campos.

¢

) Los campos contienen archivos.

d) Los campos contienen registros.

5. El proceso de un archivo lo localiza en un dispositivo de almacena-
miento y le asocia un nombre de variable dentro de su programa.

a) abrir ¢) declarar

b) cerrar d) definir

6. Cuando escribe en un archivo, usted
a) mueve los datos desde el dispositivo de almacenamiento hacia la memoria
b) copia datos desde un dispositivo de almacenamiento hacia la memoria
¢) mueve datos desde la memoria hacia un dispositivo de almacenamiento

d) copia datos desde la memoria hacia un dispositivo de almacenamiento

7. A diferencia de cuando imprime un informe, cuando la salida de un programa es un
archivo de datos, usted no

a) incluye encabezados u otros formatos
b) abre los archivos
¢) incluye todos los campos representados como entrada

d) todo lo anterior

8. Cuando cierra un archivo,
a) éste ya no estd disponible para el programa
b) no puede reabrirse

¢) se asocia con un identificador interno

d) deja de existir

10.

11.

12.

13.

Preguntas de repaso [

Un archivo en el que los registros se almacenan uno detras de otro en cierto orden es
un archivo

a) temporal ¢) aleatorio

b) secuencial d) alfabético

Cuando usted combina dos o mas archivos clasificados mientras mantienen su orden
secuencial basado en un campo, usted estd

a) rastredndolos ¢) uniéndolos

b) compaginidndolos d) absorbiéndolos

Un control de interrupciones ocurre cuando un programa
a) toma uno de dos cursos de accién alternativos para cada registro
b) termina en forma prematura, antes de que todos los registros se hayan procesado

¢) hace una pausa para ejecutar un procesamiento especial basado en el valor de un
campo

d) pasa el control 16gico a un médulo contenido dentro de otro programa

¢Cual de los siguientes casos es el ejemplo de un informe de control de interrupciones?

a) una lista de todos los clientes de un negocio ordenados por cédigo postal, con un
conteo del numero de ellos que residen en cada c6digo

b) una lista de todos los estudiantes en una escuela, ordenados de modo alfabético,
con un conteo total al final del informe

¢) una lista de todos los empleados en una compaiia, con un mensaje de “Retener” o
“ sV z .
Despedir” después del registro de cada uno

d) una lista de pacientes de un hospital que no han consultado a un médico al menos
en dos anos
Un campo de control de interrupciones

a) siempre tiene salida antes de cualquier grupo de registros en un informe de control
de interrupciones

b) siempre tiene salida después que cualquier grupo de registros en un informe de
control de interrupciones

¢) nunca tiene salida en un informe

d) causa que ocurra un procesamiento especial

297

o A REIER YA Manejo de archivos y aplicaciones

14. Siempre que ocurre un control de interrupciones durante el procesamiento de regis-
tros en cualquier programa de este tipo, usted debe

a) declarar un campo de control de interrupciones
b) establecer en cero el campo de control de interrupciones

298 ¢) actualizar el valor en el campo de control de interrupciones

d) dar salida al campo de control de interrupciones

15. Suponga que escribe un programa para unir dos archivos llamados FallStudents y
SpringStudents. Cada archivo contiene una lista de estudiantes inscritos en un curso
de l6gica de programacion durante el semestre indicado y estd ordenado de acuerdo
con el nimero de identificaciéon del estudiante. Después de que el programa compara
dos registros y subsiguientemente escribe un estudiante de Fall para salida, el siguiente
paso es

a) leer un registro de SpringStudents
b) leer un registro de FallStudents
c) escribir un registro de SpringStudents

d) escribir otro registro de FallStudents

16. Cuando usted une los registros de dos o mas archivos secuenciales, el caso comun es
que los registros en los archivos

a) contengan los mismos datos
b) tengan el mismo formato
¢) sean idénticos en nimero

d) estén clasificados en campos diferentes

17. Uno que contiene datos permanentes que un archivo de transaccién es un archivo

a) maestro ¢) clave
b) primario d) mega

18. Un archivo de transaccién a menudo se usa para otro archivo.
a) aumentar c) verificar

b) eliminar d) actualizar

Ejercicios. [

19. Laversion guardada de un archivo que no contiene las transacciones que se han apli-
cado de manera mas reciente se conoce como archivo

a) maestro c) padre

b) hijo d) pariente

299

20. Los archivos de acceso aleatorio se usan con mds frecuencia en todos los siguientes
excepto

a) programas interactivos
b) procesamiento por lotes
c) aplicaciones en tiempo real

d) programas que requieren acceso directo

Ejercicios

1. Vernon Hills Mail Order Company envia con frecuencia multiples paquetes por
pedido. Por cada pedido de los clientes genera una etiqueta para cada caja que se
enviard por correo. Las etiquetas contienen el nombre y la direccién completa del
cliente, junto con un nimero de caja de este modo: caja 9 de 9. Para un pedido que
requiere tres cajas se generan tres etiquetas: caja I de 3, caja 2 de 3y caja 3 de 3.
Disene una aplicacion que lea los registros que contienen el titulo de un cliente (por
ejemplo, sefiorita), nombre, apellido, direccién, ciudad, estado, cédigo postal y niumero
de cajas. La aplicacién debe leer los registros hasta que se encuentre eof y generar sufi-
cientes etiquetas de envio para cada pedido.

2. Cupid Matchmaking Service mantiene dos archivos, uno para los clientes varones y
otro para las mujeres. Cada archivo contiene una identificacion del cliente, apellido,
nombre y direccién; y se han ordenado de acuerdo con la identificacién del cliente.
Disene la légica para un programa que una los dos archivos en uno que contenga una
lista de todos los clientes, manteniendo el orden por nimero de identificacién.

3. Laramie Park District tiene archivos de las personas que participan en sus programas
de verano e invierno este ano; cada uno se ha ordenado de acuerdo con el ndmero de
identificacién del participante y contiene campos adicionales para el nombre, apellido,
edad y clase recibida (por ejemplo, Natacion para principiantes).

a) Disene la légica de un programa que una los archivos para los programas de
verano e invierno para crear una lista del nombre y apellido de todos los partici-
pantes del afio.

b) Modifique el programa de modo que, si un participante tiene mas de un registro,
dé salida al nombre del mismo una sola vez.

¢) Modifique el programa de modo que si un participante tiene mas de un registro,
dé salida al nombre una sola vez, pero también puede dar salida a un conteo del
numero total de clases que ha tomado.

o A REIER YA Manejo de archivos y aplicaciones

300

4.

El grupo Apgar Medical lleva un archivo de pacientes para cada médico en el consulto-
rio; cada registro contiene nombre y apellido, direccién de la casa y afio de nacimiento
del paciente. Los registros estdn clasificados en orden ascendente por afio de naci-
miento. Dos médicos, el doctor Best y el doctor Cushing, han formado una sociedad.
Diserie la légica que produzca una lista combinada de sus pacientes en orden ascen-
dente por afio de nacimiento.

Martin Weight Loss Clinic lleva dos archivos de pacientes, uno para los clientes varo-
nes y otro para las mujeres. Cada registro contiene el nombre de un paciente y la pér-
dida de peso total actual en libras. Cada archivo estd en orden descendente segiin la
pérdida de peso. Diserie la légica que una ambos para producir uno combinado orde-
nados por pérdida de peso.

a) Curl Up and Dye Beauty Salon mantiene un archivo maestro que contiene un
registro para cada cliente. Los campos en el archivo maestro incluyen nimero de
identificacién del cliente, nombre, apellido y cantidad total gastada este afo.

Cada semana se genera un archivo de transaccién; contiene un nimero de identifi-
cacién del cliente, el servicio recibido (digamos, Manicura) y el precio pagado.
Cada archivo se ordena de acuerdo con el nimero de identificacién. Diseiie la
légica para un programa que relacione los registros de los archivos maestro y de
transaccién y actualice el total pagado por cada cliente sumando el precio de la
semana actual pagado al total acumulado. No todos los clientes compran servicios
cada semana. La salida es el archivo maestro actualizado y un informe de erro-

res que lista cualquier registro de transaccion para el que no exista un registro
maestro.

b) Modifique el programa para dar salida a un cupén para un corte de cabello gratis
cada vez que un cliente rebase $750.00 en servicios. Al cupdn, que contiene el
nombre del cliente y un mensaje de felicitacién apropiado, se le da salida durante
la ejecucion del programa de actualizacién cuando un cliente rebasa el total de
$750.00.

Ejercicios. [

7. a) Timely Talent Temporary Help Agency mantiene un archivo maestro de emplea-
dos que contiene su numero de identificacion, apellido, nombre, direccién y tarifa
por hora para cada trabajador temporal. El archivo se ha ordenado de acuerdo con
el nimero de identificacién. Cada semana se crea un archivo de transaccién
con un numero de empleo, direccién, nombre del cliente, identificacion del
empleado y horas trabajadas en cada empleo ocupado por trabajadores de
Timely Talent. El archivo de transaccién también se ordena de acuerdo con la
identificacién del empleado. Diseiie la légica para un programa que relacione los
registros de los archivos maestro y de transaccidn, y dé salida a una linea para
cada transaccion, indicando el nimero de empleo, nimero de identificacién del
empleado, horas trabajadas, tarifa por horas y pago bruto. Suponga que cada
trabajador temporal labora cuando mucho en un empleo por semana; dé salida a
una linea por cada trabajador que ha laborado esa semana.

301

b) Modifique el programa de la agencia de ayuda de modo que cualquier trabajador
temporal pueda laborar en cualquier cantidad de empleos independientes en una
semana. Imprima una linea para cada empleo esa semana.

c) Modifique el programa de la agencia de ayuda de modo que acumule el pago total
del trabajador para todos los empleos en una semana y dé salida a una linea por
trabajador.

o A REIER YA Manejo de archivos y aplicaciones

" Encuentre los errores

302

Sus archivos descargables para el capitulo 7 incluyen DEBUGO07-01.txt, DEBUG07-02.
txt y DEBUGO07-03.txt. Cada archivo comienza con algunos comentarios que describen
el problema. Los comentarios son lineas que comienzan con dos diagonales (//).
Después de los comentarios, cada archivo contiene seudocédigo que tiene uno o mas
errores que usted debe encontrar y corregir. (NOTA: estos archivos se encuentran
disponibles sélo para la versién original en inglés.)

%’e Zona de juegos

10.

La International Rock Paper Scissors Society celebra campeonatos regionales y
nacionales. Cada region celebra una competencia semifinal en la que los concursantes
participan en 500 juegos de “Piedra, papel o tijeras”. Los 20 jugadores principales en
cada regidn son invitados a las finales nacionales. Suponga que se le proporcionan
archivos para las regiones Este, Medio Oeste y Oeste; cada uno contiene los siguientes
campos para los primeros 20 competidores: apellido, nombre y nimero de juegos
ganados. Los registros en cada archivo estdn clasificados en orden alfabético. Una los
tres archivos para crear uno solo de los 60 competidores principales que participaran
en el campeonato nacional.

En la seccién “Zona de juegos” del capitulo 5 disefié un juego de adivinanzas en el que
la aplicacién genera un nimero aleatorio y el jugador trata de adivinarlo. Después

de cada adivinanza, desplegé un mensaje indicando si la adivinanza del jugador era
correcta, demasiado alta o demasiado baja. Cuando el jugador al fin adivinaba el
numero correcto, desplegaba una puntuacién que representaba un conteo del ndmero
de adivinanzas requeridas. Modifique el juego de modo que cuando comience, el
jugador introduzca su nombre. Después de que un jugador participa en el juego
exactamente cinco veces, guarde la mejor puntuacién (mds baja) de los cinco juegos en
un archivo. Si el nombre del jugador ya existe en el archivo, actualice el registro con la
nueva puntuaciéon mas baja; si no existe, cree para él un registro nuevo. Luego de que
el archivo se actualice, despliegue todas las mejores puntuaciones almacenadas en el
archivo.

Ejercicios. [

(Para discusion

11.

12.

Suponga que un departamento de policia lo contrata para escribir un programa que

relacione los registros de arresto con los judiciales que detallen el dltimo resultado o

veredicto para cada caso. Se le ha dado acceso a los archivos actuales de modo que le 303
sea posible probar el programa. Su amigo trabaja en el departamento de personal de
una compaiifa grande y debe verificar los antecedentes de los empleados potenciales.
(Los solicitantes de empleo firman un formato autorizando la verificacién.) Los
registros de policia estan abiertos al pablico y su amigo podria buscarlos en el
juzgado, pero le tomarfa muchas horas por semana. Por conveniencia, ;deberia usted
proporcionarle los resultados de cualesquier registros de arresto de los solicitantes de
empleo?

Suponga que una clinica lo contrata para relacionar un archivo de las visitas de los
pacientes al consultorio con sus registros maestros para imprimir varios informes.
Mientras trabaja con los datos confidenciales, observa el nombre de la novia de un
amigo. ;Deberfa decir a éste que su novia busca tratamiento médico? ;El tipo de
tratamiento afecta su respuesta?

Comprension de los
sistemas de numeracion
vy los codigos de
computadora

El sistema de numeracion que usted conoce mejor es el sistema de numeracion decimal,
basado en 10 digitos, 0 a 9. Los matematicos llaman a los ndmeros de este sistema nimeros de
base 10. Cuando usa el sistema decimal, ningtn otro simbolo esta disponible; si desea expre-
sar un valor mds grande que 9 debe usar digitos multiplos del mismo conjunto de 10, colocan-
dolos en columnas.

Cuando usted usa el sistema decimal analiza un nimero de mul- Valor de columna
tiples columnas asignando mentalmente los valores de lugar a 100 10 1
cada columna. El valor de la columna de la extrema derecha es 1, | 3 | 0 | 5 |
el de la siguiente columna a la izquierda es 10, la siguiente es 100,

y asi sucesivamente; los valores de una columna se multiplican 3 % 100 = 300
por 10 conforme se mueven hacia la izquierda. No hay limite 0*10 = O
para el numero de columnas que puede usar; sélo las afiade hacia sl 3 65
la izquierda conforme necesita expresar valores mds altos. Por

ejemplo, la figura A-1 muestra cémo se representa el valor 305 en
el sistema decimal. Sélo suma el valor del digito en cada columna
después de que se ha multiplicado por el valor de su columna.

Figura A-1 Representacion
de 305 en el sistema decimal

El sistema de numeracion binario funciona igual que el decimal, excepto que usa sélo dos
digitos, 0 y 1. Los matematicos los llaman nimeros de base 2. Cuando usted usa el sistema
binario debe utilizar columnas multiples si desea expresar un valor mayor que 1 debido a

que no hay un solo simbolo disponible que represente cualquier valor distinto de 0 o 1. Sin
embargo, en lugar de que cada columna a la izquierda sea 10 veces mayor que la anterior, cada
columna nueva en el sistema binario s6lo es dos veces el valor de la previa. Por ejemplo, la
figura A-2 muestra cémo se representan los niimeros 9y 305 en el sistema binario. Note que
tanto en el binario como en el decimal es perfectamente aceptable, y a menudo necesario,

V23 DIe2 W Comprension de los sistemas de numeracion y los codigos. ..

306

crear nimeros con 0 en una o mas columnas. Como con el sistema decimal, no hay limite
al nimero de columnas que se usan en un nimero binario: usted puede usar tantas como se
requieran para expresar un valor.

Valor de columna Valor de columna
8 4 2 1 256 128 64 32 16 8 4 2 1

[rfofofe] | [2fofofz]zfofojofa]

1*8=28 1 * 256 = 256

0*4=0 0* 128 = 0

0*2=0 0*64 = 0

1*1=1 1*32 = 32

9 1*16 = 16

0*8 = 0

0*4 = 0

0*2 = 0

1*1 = 1

305

Figura A-2 Representacion de los valores decimales 9 y 305 en el sistema binario

Una computadora almacena cada pieza de datos que usa como un conjunto de 0 y 1. Cada 0

0 1 se conoce como un bit, que es una abreviatura para binary digit (digito binario). Todas las
computadoras usan 0y 1 porque todos los valores se almacenan como sefiales electrénicas que
estan ya sea encendidas o apagadas. Este sistema de dos estados se representa con mas facili-
dad usando sélo dos digitos.

Las computadoras usan un conjunto de digitos binarios para representar los caracteres
almacenados. Si las computadoras usaran sélo un digito binario entonces sélo podrian
representarse dos caracteres diferentes, debido a que el tnico bit sélo podria ser 0 o 1. Si las
computadoras nicamente usaran dos digitos, entonces s6lo podrian representarse cuatro
caracteres: los cuatro c6digos 00, 01, 10 y 11, que en valores decimales son 0, 1, 2 'y 3, respec-
tivamente. Muchas computadoras usan conjuntos de ocho digitos binarios para representar
cada carécter que almacenan, debido a que esto proporciona 256 combinaciones diferentes.
Un conjunto de ocho bits es un byte. Una combinacién de un byte puede representar una A,
otra una B, otras mds a y b, y asi sucesivamente. Doscientas cincuenta y seis combinaciones
son suficientes de modo que cada letra mayuscula, letra mintscula, digito y signo de puntua-
cién que se usan en inglés tenga su propio cédigo; incluso un espacio tiene un cédigo. Por
ejemplo, en el sistema que se conoce como American Standard Code for Information Inter-
change (ASCII; Codigo Estandar Estadounidense para el Intercambio de Informacion),
01000001 representa el caracter A. El nimero binario 01000001 tiene un valor decimal

de 65, pero este valor numérico no es importante para los usuarios de computadoras ordina-
rios; simplemente es un c6digo que representa la A.

El ASCII no es el Gnico cédigo de computadora, pero es tipico y se usa en la mayoria de las
computadoras personales. El Extended Binary Coded Decimal Interchange Code, o EBCDIC
(Codigo ampliado de intercambio decimal codificado en binario), es un cédigo de ocho
bits que se usa en computadoras mainframe de IBM. En estas computadoras el principio es el
mismo, cada cardcter se almacena en un byte como una serie de digitos binarios. Sin embargo,

Comprension de los sistemas de numeracion y los codigos... _

los valores reales que se usan son diferentes. Por ejemplo, en EBCDIC, una A es 11000001, o
193. Otro cédigo de lenguajes como Java y C# es Unicode; con éste se usan 16 bits para repre-
sentar cada cardcter. El caracter A en Unicode tiene el mismo valor decimal que la A en ASCII,
65, pero se almacena como 0000000001000001. Usar dos bytes proporciona muchas mds
combinaciones posibles que usar sélo ocho bits: 65,536 para ser exactos. Con Unicode hay dis-
ponibles suficientes codigos para representar todas las letras en inglés y los digitos, al igual que

caracteres de muchos alfabetos internacionales. 307

Los usuarios de las computadoras rara vez piensan en los cédigos numéricos detrds de las
letras, los nimeros y los signos de puntuacién que introducen desde sus teclados o ven desple-
gados en un monitor. Sin embargo, observan la consecuencia de los valores detras de las letras
cuando ven datos clasificados en orden alfabético. Cuando usted clasifica una lista de nombres,
Andrea va antes que Bruno y Carolina va después de Bruno porque el cédigo numérico para
A es menor que el cddigo para B, y el de C es mayor que el de B sin importar que use ASCII,
EBCDIC o Unicode.

El cuadro A-1 muestra los valores decimal y binario detrds de los caracteres que mas se usan
en el conjunto de caracteres ASCIL: las letras, los nimeros y los signos de puntuacién que
usted puede introducir desde su teclado con sé6lo oprimir una tecla (otros valores que no se
muestran en el cuadro A-1 también tienen propdsitos especificos. Por ejemplo, cuando usted
despliega el caracter que contiene el valor decimal 7 no aparece nada en la pantalla pero suena
una campana. Los programadores usan con frecuencia este cardcter cuando desean alertar a
un usuario de un error o alguna otra condicion extrana).

Cada nimero binario en el cuadro A-1 se muestra con dos grupos de cuatro digitos; esta convencién hace
mas facil leer los nimeros de ocho digitos. Cuatro digitos, o medio byte, son un nibble.

Nimero decimal Numero binario Caracter ASCII

32 0010 0000 Espacio

33 0010 0001 I Signo de admiracion de cierre

34 0010 0010 “ Comillas

35 00100011 # Signo de numero, también llamado
almohadilla o numeral

36 0010 0100 S Signo de dolar

37 0010 0101 % Signo de porcentaje

38 00100110 & etoampersand

39 00100111 " Apdstrofo, o comilla simple

40 0010 1000 (Paréntesis izquierdo

41 0010 1001) Paréntesis derecho

42 00101010 * Asterisco

oIET WS R Valores decimales y binarios para los caracteres ASCIl comunes (continda)

N3 DIl S Comprension de los sistemas de numeracion y los cddigos. ..

Nuimero decimal Numero binario Caracter ASCII

43 00101011 + Signo de adicion

44 0010 1100 , Coma

45 00101101 - Guion o signo de resta
308 46 00101110 . Punto

47 00101111 / Diagonal

48 0011 0000 0

49 0011 0001 1

50 0011 0010 2

51 0011 0011 3

52 0011 0100 4

53 0011 0101 5

54 0011 0110 6

55 0011 0111 7

56 0011 1000 8

57 0011 1001 9

58 0011 1010 . Dos puntos

59 0011 1011 ; Puntoycoma

60 0011 1100 < Signo menor que

61 0011 1101 = Signo igual

62 00111110 > Signo mayor que

63 00111111 ? Signo de interrogacion

64 0100 0000 @ Arroba

65 0100 0001 A

66 0100 0010 B

67 0100 0011 C

68 0100 0100 D

69 0100 0101 E

70 0100 0110 F

(IET (ISR Valores decimales y binarios para caracteres ASCIl comunes (continuacion)

Comprension de los sistemas de numeracion y los codigos... _

Numero decimal Numero binario Caracter ASCII

71 0100 0111 G

72 0100 1000 H

73 0100 1001 I

74 0100 1010 J 309
75 0100 1011 K

76 0100 1100 L

77 0100 1101 M

78 01001110 N

79 0100 1111 0

80 0101 0000 P

81 0101 0001 Q

82 0101 0010 R

83 0101 0011 S

84 0101 0100 T

85 0101 0101 U

86 0101 0110 Vv

87 0101 0111 W

88 0101 1000 X

89 0101 1001 Y

90 0101 1010 Z

91 0101 1011 [Corchete izquierdo o de apertura
92 0101 1100 \ Diagonal invertida

93 0101 1101] Corchete derecho o de cierre
94 0101 1110 A Acento circunflejo

95 0101 1111 _ Subrayado o guién bajo

96 0110 0000 ' Acento grave

97 0110 0001 a

98 0110 0010 b

(oIET [WS R Valores decimales y binarios para caracteres ASCIl comunes (continuacién)

N3 DIl S Comprension de los sistemas de numeracion y los cddigos. ..

Nuimero decimal Numero binario Caracter ASCII
99 0110 0011 c
100 0110 0100 d
101 0110 0101 e
310 102 01100110 f
103 01100111 g
104 0110 1000
105 0110 1001 i
106 01101010 j
107 01101011 k
108 01101100 I
109 01101101 m
110 01101110 n
111 01101111 o
112 0111 0000 p
113 0111 0001 q
114 0111 0010 r
115 0111 0011 s
116 0111 0100 t
117 0111 0101 u
118 01110110 v
119 01110111 w
120 0111 1000 X
121 0111 1001 y
122 0111 1010 z
123 01111011 { Llave izquierda o de apertura
124 0111 1100 | Linea vertical
125 0111 1101 } Llave derecha o de cierre
126 01111110 ~ Tilde

(oIET [WS R Valores decimales y binarios para caracteres ASCIl comunes (continuacién)

El sistema hexadecimal

El sistema de numeracion hexadecimal es el sistema de base 16; usa 16 digitos. Como se
muestra en el cuadro A-2, los digitos son 0 a 9y A a F. Los profesionales de la computacién
usan con frecuencia el sistema hexadecimal para expresar direcciones e instrucciones cuando
estan almacenadas en la memoria de la computadora debido a que el hexadecimal propor-
ciona expresiones abreviadas convenientes para los grupos de valores binarios. En el cua- 311
dro A-2 cada valor hexadecimal representa una de las 16 combinaciones posibles de los

valores binarios de cuatro digitos. Por consiguiente, en lugar de referenciar el contenido de

la memoria como un valor binario de 16 digitos, por ejemplo, los programadores pueden

usar un valor hexadecimal de 4 digitos.

Valor decimal Valor hexadecimal Valor binario (que se muestra
usando cuatro digitos)
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

(oIET (3184 Valores en los sistemas decimal y hexadecimal

En el sistema hexadecimal, cada columna es 16 veces el valor de la columna a su derecha. Por
consiguiente, los valores de columna de derecha a izquierda son 1, 16, 256, 4096, y as{ sucesi-
vamente. La figura A-3 muestra cémo se expresan 78, 171 y 305 en hexadecimal.

V23 DIe2 W Comprension de los sistemas de numeracion y los codigos. ..

312

Valor de columna Valor de columna Valor de columna
16 1 16 1 256 16 1
4 E A B 1 3 1

4 * 16 = 64 10 * 16 = 160 1 * 256 = 256

14 * 1= 14 11 * 1= 11 3% 16 = 48

__________ 1 * 1 = 1

78 i

305

Figura A-3 Representacion de los valores decimales 78, 171 y 305 en el sistema hexadecimal

Medicion del almacenamiento

En los sistemas de cémputo, tanto la memoria interna como el almacenamiento externo se
miden en bits y bytes. Ocho bits hacen un byte, y un byte con frecuencia contiene un solo
caracter (en ASCII o EBCDIC) o medio caracter (en Unicode). Debido a que un byte es una
unidad de almacenamiento muy pequeiia, el tamano de la memoria y los archivos con frecuen-
cia se expresa en miles o millones de bytes. El cuadro A-3 describe algunos términos que se
usan de manera comun para la medicién del almacenamiento.

Medicion del aimacenamiento

Término

Abreviatura

Numero de bytes
usando sistema
binario

Numero de bytes Ejemplo

usando sistema
decimal

Kilobyte

Megabyte

Gigabyte

Terabyte

Petabyte

Exabyte

Zettabyte

Yottabyte

KB o kB

MB

1024

1,048,576 (1024
x 1024 kilobytes)

1,073,741,824
(1,024 megabytes)

1024 gigabytes

1024 terabytes

1024 petabytes

1024 exabytes

1024 zettabytes

mil

un millén

un billén

un trillon

un cuatrillén

un quintillon

un sextillon

un septillon (un 1
seguido por 36
ceros)

Este apéndice ocupa alrededor

de 85 kB en un disco duro.
313

Un megabyte puede contener
un libro promedio en formato
de texto. Un disquete de 3.5
pulgadas que usted quiza uso
hace algunos anos contenia
1.44 megabytes.

El disco duro en una compu-
tadora laptop nueva tiene al
menos 250 gigabytes. Un
DVD_R puede contener alre-
dedor de 5 gigabytes.

Algunos discos duros son
de 1 terabyte. La Biblioteca
del Congreso entera
ocupaba alrededor de 300
terabytes cuando se publico
este libro.

El sitio Web de Google proce-
sa alrededor de 24 petabytes
por dia.

Una expresion comun afirma
que todas las palabras que
han sido expresadas por los
humanos alguna vez podrian
ser almacenadas en forma de
texto en 5 exabytes.

Una expresion popular afirma
que todas las palabras que
han sido expresadas por los
humanos alguna vez podrian
ser almacenadas en forma de
audio en 42 zettabytes.

El espacio combinado en
todos los discos duros
en el mundo es menos
de 1 yottabyte.

oIET[GIA8) Términos que se usan de manera comun para el almacenamiento en computadoras

V23 DIe2 W Comprension de los sistemas de numeracion y los codigos. ..

314

En el sistema métrico, kilo significa 1000. Sin embargo, en el cuadro A-3 notard que un kilo-
byte consta de 1024 bytes. La discrepancia ocurre debido a que todo lo que se almacena en una
computadora se basa en el sistema binario, asi que se usan mdltiplos de dos en la mayorfa de
las mediciones. Si usted multiplica 2 por si mismo 10 veces, el resultado es 1024, lo que es un
poco mas de 1000. Del mismo modo, un gigabyte es 1,073,741,824 bytes, que es poco mas de
mil millones.

La confusién surge debido a que muchos fabricantes de discos duros usan el sistema decimal
en lugar del sistema binario para describir el almacenamiento. Por ejemplo, si usted compra un
disco duro que contiene 10 gigabytes, son exactamente 10,000 millones de bytes. Sin embargo,
en el sistema binario, 10 GB es 10,737,418,240 bytes, de modo que cuando compruebe la capa-
cidad de su disco duro, su computadora informard que no tiene 10 GB, sino s6lo 9.31 GB.

Términos clave

El sistema de numeracion decimal es el sistema de numeracion basado en 10 digitos y en el
que los valores de columna son multiplos de 10.

Base 10 describe los nimeros creados usando el sistema de numeracién decimal.

El sistema de numeracion binario se basa en 2 digitos; en él los valores de columna son mul-
tiplos de 2.

Base 2 describe los nimeros creados usando el sistema de numeracién binario.
Un bit es un digito binario; es una unidad de almacenamiento igual a un octavo de byte.
Un byte es una medicién de almacenamiento igual a ocho bits.

El American Standard Code for Information Interchange (ASCII; Codigo Estandar Esta-
dounidense para el Intercambio de Informacion) es un esquema de codificacién de caracte-
res de ocho bits que se usa en muchas computadoras personales.

El Extended Binary Coded Decimal Interchange Code (EBCDIC; Codigo ampliado de inter-
cambio decimal codificado en binario) es un esquema de codificacion de caracteres de ocho
bits que se usa en muchas computadoras grandes.

Unicode es un esquema de codificacion de caracteres de 16 bits.
Un nibble es una medida de almacenamiento igual a cuatro bits, o medio byte.

El sistema de numeracion hexadecimal es el sistema de numeracién basado en 16 digitos y
en el cual los valores de columna son multiplos de 16.

Base 16 describe los nimeros creados usando el sistema de numeracién hexadecimal.

Simbolos de diagrama
de flujo

Este apéndice contiene los simbolos de diagrama de flujo que se usan en este libro.

Linea de flujp ——

Entrada/salida E

Proceso

Decision

Llamada a
modulo interno

Llamada a
modulo externo

Figura B-1 Simbolos de diagrama de flujo

Estructuras

Este apéndice contiene diagramas de las estructuras permitidas en la programacion estructu-
rada. Aunque todos los problemas l6gicos pueden resolverse usando las tres que son funda-
mentales, las adicionales son convenientes en algunas situaciones. Cada estructura tiene un
punto de entrada y uno de salida. En estos puntos, es posible apilarlas y anidarlas.

Seleccion o Ciclo o ciclo
Secuencia decision o preprueba o
if-then-else ciclo while
entrada entrada entrada
!
No Si Si
\J
No
i salida
salida
salida

Figura C-1 Tres estructuras fundamentales

Estructuras

Decision de alternativa unica o Case
if-then
entrada entrada
317
No Si

l

salida

l

salida

Figura C-2 Estructuras de seleccion adicionales

Ciclo posprueba
o ciclo do-while

entrada

]

Si

No

salida

Figura C-3 Estructura de ciclo adicional

Resolucion de
problemas
de estructuracion

dificiles i

No A? Si
En el capitulo 3 usted aprendié que puede resolver l— - _l
cualquier problema légico usando sélo las tres estruc- E gr ST ¢
turas estandar: secuencia, seleccion y ciclo. Modificar ’
un programa no estructurado para que se adhiera a NOl
las reglas estructuradas a menudo es algo sencillo. Sin
embargo, en ocasiones estructurar un programa mas
complicado puede ser desafiante. Aun asi, sin importar l
cudn complicado, extenso o mal estructurado sea un No
problema, las mismas tareas pueden lograrse siempre < _F?
de una manera estructurada.

Si

o

Considere el segmento de diagrama de flujo en la
figura D-1. ;Esta estructurado?

No, no lo estd. Para aclarar el segmento de diagrama

de flujo haciéndolo estructurado, usted puede usar el Figura D-1 Segmento de diagrama de flujo no
método “espagueti” Desenrede cada ruta del diagrama estructurado
de flujo como si lo hiciera con las hebras de espagueti

en un tazon. El objetivo es crear un nuevo segmento

que ejecute exactamente las mismas tareas que el primero, pero
usando sélo las tres estructuras: secuencia, seleccién y ciclo. l

No Si

Para comenzar a desenredar el segmento de diagrama de flujo no A?
estructurado, empiece con la decision etiquetada A, que se muestra * ‘
en la figura D-2. Este paso debe representar el comienzo de una
seleccién o un ciclo, debido a que una secuencia no contendria una Figura D-2 Estructuracion,
decisién. paso 1

Resolucion de problemas de estructuracion dificiles _

Si usted sigue la logica en el lado del No, o izquierdo, de la

pregunta en el diagrama de flujo original, puede seguir la rama #
izquierda de la decision. Encontrard el proceso E, seguido por No i
G, y después el final, como se muestra en la figura D-3. Com-

pare las acciones No después de la decisién A en el primer
diagrama de flujo (figura D-1) con las acciones posteriores a la E

decisién A en la figura D-3; son idénticas. 319

A
G

Ahora continde del lado derecho, o de S7, de la decisién A en

la figura D-1. Cuando siga la linea de flujo, encontrard un sim-
bolo de decision etiquetado como B. Siga el lado izquierdo de B l
y a continuacion surge un proceso D. Véase la figura D-4.

Figura D-3 Estructuracion,
paso 2

Figura D-4 Estructuracion, paso 3

Después del paso D en el diagrama original, se encuentra una decision etiquetada como F. Siga
su lado izquierdo, o No, y obtenga el proceso G, y luego el final. Cuando sigue el lado derecho,
0 Si, de F en el diagrama de flujo original, simplemente llega al final, como se muestra en la
figura D-5. Note en ésta que el proceso G ahora aparece en dos ubicaciones. Cuando modifique
los diagramas de flujo no estructurados de modo que se vuelvan estructurados, con frecuen-
cia debe repetir pasos para eliminar las lineas cruzadas y la logica espagueti que es dificil de
seguir.

N2 e S Resolucion de problemas de estructuracion dificiles

320

No Si

l F? l

Figura D-5 Estructuracion, paso 4

El problema mas grande en la estructuracion del segmento de diagrama de flujo original de

la figura D-1 sigue el lado derecho, o S7, de la decisién B. Cuando la respuesta a B es S, usted
encuentra el proceso C, como se muestra en las figuras D-1 y D-6. La estructura que comienza
con la decision C parece un ciclo porque regresa a la decisién A. Sin embargo, un ciclo estruc-
turado debe tener la apariencia que se muestra en la figura D-7; una pregunta seguida por
una estructura, regresando de inmediato a la pregunta. En la figura D-1, si la ruta que viene
de C regresara directamente a B, no habrfa problema; seria un ciclo estructurado simple. Sin
embargo, tal como estd, la pregunta A debe repetirse. La técnica espagueti requiere que, si

las lineas de légica estdn enmarafiadas, se repitan los pasos en cuestion. Asi, usted repite una
decision A después de C, como se observa en la figura D-6.

Resolucion de problemas de estructuracion dificiles _

o 5 o) |

Figura D-6 Estructuracion, paso 5 Figura D-7 Un ciclo estructurado

En el segmento de diagrama de flujo original en la figura D-1, cuando A es S7, siempre sigue

la pregunta B. Asi, en la figura D-8, después de que A es S7'y B es S, se ejecuta el paso C, y A se
pregunta de nuevo; cuando A es S, B se repite. En el original, cuando B es S7, se ejecuta C, asi en
la figura D-8, en el lado derecho de B, C se repite. Después de C, ocurre A. En el lado derecho de
A, ocurre B. En el lado derecho de B, ocurre C. Después de C, A deberfa ocurrir de nuevo, y asi
sucesivamente. Usted pronto se dard cuenta de que, al seguir los pasos en el mismo orden que
en el segmento de diagrama de flujo original, siempre los repetira.

N2 e S Resolucion de problemas de estructuracion dificiles

322

y asi sucesivamente.

Figura D-8 Estructuracion, paso 6

Si contintia con la figura D-8, nunca podra terminar el diagrama de flujo; cada C siempre es
seguida por otra A, B y C. En ocasiones, para estructurar un segmento de programa, tiene que
agregar una variable bandera extra para salir de un lio infinito. Una bandera es una variable
que usted establece para indicar un estado verdadero o falso. Por lo comun, una variable se
llama bandera cuando su tnico propoésito es decirle si ha ocurrido un evento. Puede crear
una variable bandera nombrada shouldRepeat y establecer su valor en S/ 0 No, dependiendo
de si es apropiado repetir la decisiéon A. Cuando A es No, la bandera shouldRepeat deberia
establecerse en No debido a que, en esta situacion, usted nunca deseard repetir de nuevo la
pregunta A. Véase la figura D-9.

Resolucion de problemas de estructuracion dificiles _

!

NOS'i

shouldRepeat = "No 323

Figura D-9 Agregar una bandera al diagrama de flujo

Del mismo modo, después de que A es Si, pero cuando B es No, usted nunca deseard repetir de
nuevo la pregunta A. La figura D-10 muestra que usted establece shouldRepeat en No cuando
la respuesta a B es No. Luego contintia con D y la decisién F que ejecuta G cuando F es No.

shouldRepeat = "No"

E shouldRepeat = "No"

No Si

w—l

Figura D-10 Agregar una bandera a una segunda ruta en el diagrama de flujo

N3\ DI SR Resolucion de problemas de estructuracion dificiles

Sin embargo, en el segmento de diagrama de flujo original en la figura D-1, cuando el resultado
de la decision B es Si, usted desea repetir A. Asi, cuando B es Si, ejecuta el proceso para Cy
establece la bandera shouldRepeat igual a Si, como se muestra en la figura D-11.

324 l

No A7 Si

A

shouldRepeat = "No" No 0 Si

shouTldRepeat = "No"

(@)

C shouldRepeat = "Si"

No Si

[w)

-— O |-

Figura D-11 Agregar una bandera a una tercera ruta en el diagrama de flujo

Ahora todas las rutas del diagrama de flujo pueden unirse en la parte inferior con una pre-
gunta final: ;shouldRepeat es igual a Si? Sino lo es, sale; pero si lo es, extienda la linea de flujo
para regresar a repetir la pregunta A. Véase la figura D-12. Tome un momento para verificar
que los pasos que ejecutaria siguiendo la figura D-12 son los mismos que harfa siguiendo D-1.

Resolucion de problemas de estructuracion dificiles _

No A7 Si
¥
shouldRepeat = "No" No @ S9 325
\ Y
E shouldRepeat = "No" C
‘ ‘
G D shouldRepeat = "Si"
No F? Si
G
shouldRepeat Si

- "Si"?

Figura D-12 Atar los cabos sueltos

e Cuando A es No, E y G siempre se ejecutan.
e Cuando A es S{'y B es No, Dy la decisién F siempre se ejecutan.

e Cuando A es S{y B es Si, C siempre se ejecuta y A se repite.

estructura de seleccion completa cuyas rutas Siy No se unen cuando la estructura termina. Esta estructura
de seleccion F esta dentro de una ruta de la estructura de decision B; la decision B comienza una
estructura de seleccion completa cuyas rutas Siy No se unen en la parte inferior. Del mismo modo,

la estructura de seleccion B reside por entero dentro de una ruta de la estructura de seleccion A.

ﬂ La figura D-12 contiene tres estructuras de seleccién anidadas. Observe cédmo la decisién F comienza una

N3\ DI SR Resolucion de problemas de estructuracion dificiles

326

El segmento de diagrama de flujo en la figura D-12 se ejecuta de manera idéntica a la versién
espagueti original en la figura D-1. Sin embargo, ;esta estructurado el nuevo segmento de dia-
grama de flujo? Hay tantos pasos en €l que es dificil decirlo. Usted puede ver la estructura con
mas claridad si crea un médulo llamado aThroughGQ). Si crea el médulo que se muestra en

la figura D-13, entonces el segmento de diagrama de flujo original puede trazarse como en la
figura D-14.

aThroughG()

No A? Si
¥
No Si
shouldRepeat = "No"
shouldRepeat = "No" C
E
Y
D shouldRepeat = "Si"
G
No Si
i
G

Y

(return ’

Figura D-13 El mddulo aThroughGQ)

Resolucion de problemas de estructuracion dificiles _

aThroughG()

shouldRepeat
Z "gin7

Figura D-14 Logica en la figura D-12, que sustituye un modulo por los pasos A a G

Ahora usted puede ver que el segmento de diagrama de flujo completado en la figura D-14 es
un ciclo do-until. Si prefiere usar un ciclo while, puede volver a trazar la figura D-14 para
ejecutar una secuencia seguida por un ciclo while, como se muestra en la figura D-15.

:

aThroughG()

y

shouldRepeat Si
— IIS.i II?

aThroughG()

Figura D-15 Logica en la figura D-14, que sustituye una secuencia y un ciclo whiTe por el ciclo
do-until

Ha requerido algin esfuerzo extra, incluyendo la repeticion de pasos especificos y el uso de
algunas variables bandera, pero todo problema légico puede resolverse y es posible hacer que
se ajuste a las reglas estructuradas usando las tres estructuras: secuencia, seleccién y ciclo.

Creacion de graficas
impresas

Un informe impreso es un tipo de salida muy comun. Usted puede disefiarlo en una gréfica de
espaciado de impresora, que también se llama grafica de impresién o composiciéon de impre-
siéon. Muchos programadores de hoy en dia usan varias herramientas de software para disefiar
su salida, pero usted también puede crear una grafica impresa a mano. Este apéndice pro-
porciona algunos detalles para crear a mano una grafica de impresién. Incluso si usted nunca
disena salidas, podria ver graficas impresas en la documentacién de los programas existentes.

La figura E-1 muestra una gréfica de espaciado de impresora, que basicamente se ve como
papel cuadriculado. La gréfica tiene muchos cuadros y en cada uno el disefiador coloca un
cardcter que se imprimird. Las filas y las columnas por lo general estin numeradas para
referencia.

T|1{T|1|1{1{1{1(1|1]|2|2|2|2|2|2{2|2|2{2[3|3|3(3[3|3|3|3|3|3|4|4[4|4|4[4[4|4[4[4[5|5]5]|5|5(5|5|5
1[2(3|4[516]7|8[9]0[1[2|3]4[5[6/7]|8|9]0|1]|2|3|4[5[6|7(8[9[0[1]|2|3|4|5|6]|7|8|9|0[1]2[3[4[5|6|7[8|9|0]|1|2|3]|4[5|6|7
1
2 I [N|F[O[RIMIE| [DIE] |IIN[VIEINIT[A|R|I|O
3
4 N[OMIB[RIE| |DIE|L| [A[RIT[I|C|U[L|O] [P[RIE|C|I]O] [CIA[N|T]I[D[A|D| [EIN| [EIX|I[S[T[EN|C|I A
5
6 XIXIXX]X[XEX]XXXX XX X)X 919[9].19/9 919[9/9
7 XIXXX]X[XIX] XXX X]X] X)X 91919].19]9 9[9/9/9
8
9
10
11
12
13
14

Figura E-1 Gréfica de espaciado de impresora

Creacion de graficas impresas [

Por ejemplo, suponga que desea crear un informe impreso con las siguientes caracteristicas:

e Un titulo impreso, INFORME DE INVENTARIO, que comienza a 11 espacios desde el
borde izquierdo de la pdgina y una linea abajo

 Encabezados de columna para NOMBRE DEL ARTICULO, PRECIO y CANTIDAD EN
EXISTENCIA, dos lineas abajo del titulo y colocados sobre los elementos de datos reales

que se estan desplegando 329

e Datos variables que aparecen debajo de los encabezados de columna

El espaciado exacto y el uso de caracteres en mayuscula o mintiscula en la grafica impresa
hacen una diferencia. Note que los datos constantes en la salida, los elementos que perma-
necen igual en cada ejecucién del informe, no necesitan seguir las mismas reglas que los
nombres variables en el programa. Dentro de un informe, las constantes como INFORME DE
INVENTARIO y NOMBRE DEL ARTICULO pueden contener espacios. Estos encabezados
ayudan a los lectores a entender la informacion que se presenta en el informe, no a que una
computadora los interprete; no hay necesidad de correr juntos los nombres, como se hace
cuando se eligen identificadores para las variables.

Un disefo de impresién en general muestra los datos variables que aparecerdn en el informe.
Por supuesto, es probable que los datos sean diferentes cada vez que el programa se

ejecute. Por tanto, en lugar de escribir los nombres reales de los articulos y los precios, los
usuarios y programadores con frecuencia usan X para representar los caracteres variables
genéricos y 9 para representar los datos numéricos variables genéricos (algunos programa-
dores usan X tanto para los datos de caracteres como para los numéricos). Cada linea que
contenga X y 9 es una linea de detalle, o una linea que despliega los detalles de los datos. Las
lineas de detalle por lo comun aparecen muchas veces por pagina, en oposicién a las lineas de
encabezado que contienen el titulo y los encabezados de columna y en general aparecen sélo
una vez por pagina.

Aun cuando un informe de inventario real podria contener al final cientos o miles de lineas

de detalle, escribir dos o tres filas de X y 9 es suficiente para mostrar cémo apareceran los
datos. Por ejemplo, si un informe contiene los nombres de los empleados y sus salarios esos
elementos de datos ocupardn las mismas posiciones impresas para dar salida linea por linea, ya
sea que la salida contenga al final 10 empleados o 10,000. Algunas filas de X y 9 en posiciones
idénticas son suficientes para establecer el patrén.

Dos variaciones de las
estructuras basicas:
case y do-while

Usted puede resolver cualquier problema légico que encuentre usando sélo las tres estructu-
ras: secuencia, seleccion y ciclo. Sin embargo, muchos lenguajes de programacién permiten
dos estructuras mds: la estructura case y el ciclo do-while. Estas estructuras nunca se nece-
sitan para resolver un problema; usted siempre puede usar una serie de selecciones en lugar
de la estructura case y una secuencia mds un ciclo while en lugar del ciclo do-while. Sin
embargo, estas estructuras adicionales son convenientes en ocasiones. Los programadores
consideran aceptables a todas las estructuras legales aceptables.

La estructura case

Puede usar la estructura case cuando hay varios valores distintos posibles para una sola
variable y cada valor requiere una accién subsiguiente diferente. Suponga que trabaja en una
escuela donde la colegiatura (tuition) varfa por hora de crédito, dependiendo de si un estu-
diante es de primer ingreso, de segundo ano, de tercero o de tltimo. El diagrama de flujo y el
seudocddigo estructurados de la figura F-1 muestran una serie de decisiones que asignan dife-
rentes valores a tuition dependiendo del valor de year.

La estructura case

tuition = 175 331

if year = 1 then
tuition = 150 tuition = 175
else

if year = 2 then
tuition = 60 tuition = 100 tuition = 150
else
| | if year = 3 then
tuition = 100

else
| tuition = 60
endif

endif

endif

Figura F-1 Diagrama de flujo y seudocodigo de decisiones de colegiatura

La logica que se muestra en la figura F-1 es correcta y completamente estructurada. La estruc-
tura de seleccién year = 37 estd contenida en la estructura year = 27, que se encuentra den-
tro de la estructura year = 17 (este ejemplo supone que si year no es 1, 2 o 3, el estudiante
recibe la tarifa de colegiatura de dltimo ano).

Aun cuando los segmentos de programa en la figura F-1 son correctos y estructurados,
muchos lenguajes de programacién permiten usar una estructura case, como se muestra en

la figura F-2. Cuando usted usa esta tltima compara una variable con una serie de valores de
prueba, emprendiendo la accién apropiada cuando se encuentra una correspondencia. Muchas
personas piensan que los programas que contienen la estructura case son mas ficiles de leer
que los que tienen una larga serie de decisiones, y la estructura case se permite porque los
mismos resultados podrian lograrse con una serie de selecciones estructuradas (con lo que se
estructura el programa). Es decir, si el primer programa estd estructurado y el segundo refleja
al primero punto por punto, entonces el segundo debe estar estructurado también.

N3\ le 230 Dos variaciones de las estructuras basicas: case y do-while

332

case year
1: tuition = 175

2: tuition = 150
3: tuition = 100
default: tuition = 60

endcase

1 2 3 default

tuition = 175 tuition = 150 tuition = 100 tuition = 60

Figura F-2 Diagrama de flujo y seudocodigo de la estructura case que determina la colegiatura

El término default en la figura F-2 significa si ninguno de los otros casos es verdadero. Varios lenguajes de
programacion usan diferentes sintaxis para el caso default.

Usted usa la estructura case sélo cuando una serie de decisiones se basa en diferentes valores
almacenados en una sola variable. Si se prueban multiples variables, entonces debe usar una
serie de decisiones.

Aun cuando un lenguaje de programacién le permite usar la estructura case, debe entender
que esta tltima es s6lo una conveniencia que podria hacer que un diagrama de flujo,
seudocddigo o cddigo de programa real sean mds faciles de entender a primera vista. Cuando
escribe una serie de decisiones usando la estructura case, la computadora ain toma una serie
de decisiones individuales, del mismo modo que si hubiera usado muchas combinaciones
if-then-else. En otras palabras, podria preferir ver el diagrama de la figura F-2 para entender
las cuotas de colegiatura cobradas por una escuela, pero una computadora en realidad

toma las decisiones como se muestra en la figura F-1, una a la vez. Cuando escribe sus propios
programas, siempre es aceptable expresar un proceso de toma de decisiones complicado como
una serie de selecciones individuales.

El ciclo do-while

Recuerde que un ciclo estructurado (al que también se llama ciclo while) se ve como en la
figura F-3. Un ciclo de caso especial llamado do-while es como se observa en la figura F-4.

Elciclo do-while

J S 333

No

Figura F-3 El ciclo whiTe, que es un ciclo preprueba Figura F-4 Estructura de un ciclo
do-while, que es un ciclo posprueba

Existe una diferencia importante entre estas dos estructuras. En un ciclo while usted hace una
pregunta y, dependiendo de la respuesta, podria entrar o no en el ciclo para ejecutar su proce-
dimiento. A la inversa, en un ciclo do-while, usted asegura que el procedimiento se ejecute al
menos una vez; luego, dependiendo de la respuesta a la pregunta controladora, el ciclo puede
ejecutarse o no en ocasiones adicionales.

Observe que la palabra do comienza el nombre del ciclo do-while. Esto deberia recordarle que
la accién que usted “hace” precede a probar la condicién.

En un ciclo while, la pregunta que controla un ciclo se da al principio, o “encima’; del cuerpo
del mismo. Un ciclo while es uno preprueba porque una condicién se prueba antes de entrar
en el ciclo de una sola vez. En un ciclo do-while, la pregunta que lo controla se da al final, o en
la “parte inferior’; del cuerpo del ciclo. Los ciclos do-whiTe son posprueba porque una condi-
cién se prueba después de que se ha ejecutado el cuerpo del mismo.

Se encuentran ejemplos de ciclos do-whiTe todos los dias. Por ejemplo:

do
pagar una factura
while queden mas facturas por pagar

Como otro ejemplo:

do
Tavar un plato
while queden mas platos por lavar

En estos ejemplos, la actividad (pagar facturas o lavar platos) debe ocurrir al menos una vez.
Con un ciclo do-whiTe, usted hace la pregunta que determina si continuard s6lo después de
que la actividad se ha ejecutado al menos una vez.

Nunca se requiere que use un ciclo posprueba; usted puede duplicar la misma serie de accio-
nes creando una secuencia seguida por un ciclo while preprueba estandar. Considere los dia-
gramas de flujo y seudocédigo en la figura F-5.

N3\ le 230 Dos variaciones de las estructuras basicas: case y do-while

334

ciclo do-while Secuencia y ciclo while
A A
B? si g7 2. A J
Nol Nol
do A . .
A while B 1is true
. . A
while B 1is true endwhile

Figura F-5 Diagrama de flujo y seudocodigo para un ciclo do-while y un ciclo while que hace lo
mismo

En el lado izquierdo de la figura F-5, A se ejecuta, y luego se pregunta B. Si B es si, entonces

se ejecuta Ay B se pregunta de nuevo. En el lado derecho de la figura, A se ejecuta y luego se
pregunta B. Si B es si, entonces A se ejecuta y B se pregunta de nuevo. En otras palabras, ambos
conjuntos de segmentos de diagramas de flujo y seudocddigos hacen exactamente lo mismo.

Debido a que los programadores entienden que cualquier ciclo posprueba (do-while) puede
expresarse con una secuencia seguida de un ciclo while, la mayoria de los lenguajes permiten
al menos una version del ciclo posprueba por conveniencia.

Reconocimiento de las caracteristicas compartidas
por todos los ciclos estructurados

Cuando examine las figuras F-3 y F-4 notard que, en el ciclo while, la pregunta que controla el
ciclo se coloca al principio de los pasos que se repiten. En el ciclo do-while, la pregunta que lo
controla se coloca al final de la secuencia de pasos que se repiten.

Todos los ciclos estructurados, tanto de preprueba como de posprueba, comparten estas dos
caracteristicas:

e La pregunta que controla el ciclo debe proporcionar ya sea una entrada o una salida de la
estructura que se repite.

e La pregunta que controla el ciclo proporciona la #nica entrada o salida de la estructura que
se repite.

En otras palabras, hay exactamente un valor que controla el ciclo y proporciona ya sea la tnica
entrada o la Unica salida del mismo.

Reconocimiento de ciclosno estructurados _

Algunos lenguajes soportan un ciclo do-untiT, que es posprueba e itera hasta que la pregunta que con-
trola el ciclo es falsa. El ciclo do-untiT sigue las reglas de uno estructurado.

Reconocimiento de ciclos ' 235
no estructurados ‘

La figura F-6 muestra un ciclo no estructurado. No es

while, que comienza con una decisién y después de una Sq

accion regresa a la decisién. Tampoco es do-while, que
inicia con una accién y termina con una decisién que

podria repetir la accién. En cambio, comienza como un No

ciclo posprueba (uno do-while), con un proceso seguido

por una decision, pero una rama de la decisién no repite No lo haga

el proceso inicial. En cambio, ejecuta una accién nueva Este ciclo no es

estructurado.

adicional antes de repetir el proceso inicial.

Si usted necesita usar la légica que se muestra en la figura
F-6, ejecutar una tarea, hacer una pregunta y quizd eje- Figura F-6 Ciclo no estructurado

cutar una tarea adicional antes de regresar al primer pro-

ceso, entonces la forma de efectuar la logica estructurada

es repetir el proceso inicial dentro del ciclo al final del mismo. La figura F-7 muestra la misma
légica que la F-6, pero ahora es estructurada, con una secuencia de dos acciones que ocurren
dentro del ciclo.

p? 3, E - C J

No

Figura F-7 Secuencia y ciclo estructurado que lleva a cabo las mismas tareas que la figura F-6

las tres estructuras basicas: secuencia, seleccion y ciclo whiTe. Es posible resolver todos los problemas

ﬂ De manera especial cuando usted domina la légica estructurada por primera vez, quiza prefiera usar sélo
l6gicos usandolas y usted puede entender todos los ejemplos en este libro si utiliza solo estas estructuras.

N3\ e 23 Dos variaciones de las estructuras bésicas: case y do-while

Términos clave

Una estructura case prueba una sola variable contra multiples valores, proporcionando
acciones separadas para cada ruta ldgica.

Un ciclo do-while es de posprueba; el cuerpo se ejecuta antes de que se pruebe la variable de
336 | control del ciclo.

Un ciclo do-until es de posprueba; itera hasta que la pregunta que controla el ciclo es falsa.

Glosario

A

abrir un archivo Proceso de localizar un
archivo en un dispositivo de almacena-
miento, prepardandolo fisicamente para ser
leido, y asociarlo con un identificador den-
tro de un programa.

abstraccion El proceso de poner atencién
a las propiedades importantes mientras se
ignoran los detalles no esenciales.

actualizar un archivo maestro Modificar
los valores en un archivo maestro con base
en registros de transaccion.

acumulador Variable que se usa para reco-
pilar o acumular valores.

algoritmo Secuencia de pasos necesarios
para resolver cualquier problema.

ambiente de desarrollo integrado (IDE)
Paquete de software que proporciona un
editor, compilador y otras herramientas de
programacion.

American Standard Code for Informa-
tion Interchange (ASCII: Codigo Estan-
dar Estadounidense para el Intercambio
de Informacion) Esquema de codificacién
de caracteres de ocho bits que se usa en
muchas computadoras personales.

anidar estructuras Colocar una estruc-
tura dentro de otra.

apilar estructuras Unir las estructuras de
un programa de un extremo a otro.

archivo Grupo de registros que van juntos
por alguna razon logica.

archivo de computadora Coleccion de
datos almacenados en un dispositivo no
volatil en un sistema de computo.

archivo de respaldo Copia que se con-
serva en caso de que los valores necesiten
restaurarse a su estado original.

archivo de transaccion Aquel que con-
tiene datos temporales que se usan para
actualizar un archivo maestro.

archivo hijo Copia de un archivo después
de su revision.

archivo maestro Aquel que contiene datos
completos y relativamente permanentes.

archivo padre Copia de un archivo antes
de su revision.

archivo secuencial Archivo en el que los
registros se almacenan uno detras de otro
en algin orden.

archivos binarios Aquellos que contienen
datos que no han sido codificados como
texto.

archivos de acceso aleatorio Aquellos
que contienen registros que pueden locali-
zarse en cualquier orden.

archivos de acceso directo Aquellos de
acceso aleatorio.

D Glosario

338

archivos de acceso instantaneo Aque-
llos de acceso aleatorio en los que debe
tenerse acceso a los registros de inmediato.

archivos de texto Aquellos que contienen
datos que pueden leerse en un editor de
texto.

arreglo Serie o lista de variables en la
memoria de una computadora, todas ellas
tienen el mismo nombre pero se distinguen
con subindices.

arreglos paralelos Dos o més arreglos en
los que cada elemento en uno de ellos esta
asociado con el elemento en la misma posi-
cién relativa en el otro o los otros.

asociatividad de izquierda a derecha
Describe operadores que evaldan primero la
expresién a la izquierda.

asociatividad derecha y asociatividad
de derecha a izquierda Describe opera-
dores que evaltian primero la expresién de
la derecha.

autodocumentacion Describe un pro-
grama que contiene datos y nombres de
modulos significativos que describen el pro-
pésito del programa.

bandera Variable establecida para indicar
si ha ocurrido algin evento.

base 2 Describe los nimeros creados
usando el sistema de numeracién binario.

base 10 Describe los nimeros creados
usando el sistema de numeracién decimal.

base 16 Describe los nimeros crea-
dos usando el sistema de numeracién
hexadecimal.

base de datos Contenedor légico que
contiene un grupo de archivos, con fre-
cuencia llamados tablas, que juntos atien-
den las necesidades de informacion de una
organizacion.

basura Describe el valor desconocido
almacenado en una variable no asignada.

bit Digito binario; unidad de
almacenamiento igual a un octavo de byte.

bloque Grupo de declaraciones que se
ejecutan como una sola unidad.

busqueda binaria Aquella que empieza
en medio de una lista ordenada y luego
determina si deberfa continuar hacia arriba
o hacia abajo para encontrar un valor
objetivo.

busqueda lineal Bisqueda a lo largo de
una lista desde un extremo hasta el otro.

byte Una unidad de almacenamiento en
computadora; puede contener cualquiera de
256 combinaciones de 0 y 1 que a menudo
representan un cardcter.

Cc

cadena Describe datos que no son
numeéricos.

caja de Pascal Convencién para nom-
brar variables en la que la letra inicial esta
en mayusculas, los nombres de variables
con multiples palabras se escriben juntos y
cada palabra nueva dentro del nombre de la
variable comienza con una letra mayuscula.

campo Elemento de datos individual, como
TastName, streetAddress o annualSalary.

campo de control de interrupciones
Variable que contiene el valor que sefiala
una interrupcién de procesamiento especial
en un programa.

caracter Una letra, numero o simbolo
especial como A, 70 8.

carga adicional Todos los recursos y
tiempos requeridos por una operacion.

carpetas Unidades de organizacion en
dispositivos de almacenamiento; cada una
puede contener multiples archivos al igual

que carpetas adicionales. Las carpetas son
directorios graficos.

caso nulo Rama de una decisién en la que
no se emprende ninguna accién.

cerrar un archivo Accién que hace que
un archivo ya no esté disponible para una
aplicacion.

ciclo Estructura que repite acciones mien-
tras continda una condicion.

ciclo anidado Estructura de ciclo dentro
de otra; son ciclos dentro de ciclos.

ciclo de desarrollo del programa Pasos
que ocurren durante la vida de un pro-
grama, entre los que se encuentran: pla-
neacién, codificacidn, traduccién, prueba,
produccién y mantenimiento del programa.

ciclo definido Aquel para el cual el
numero de repeticiones es un valor
predeterminado.

ciclo do-until Ciclo después de la prueba
que itera hasta que la pregunta que lo con-
trola es falsa.

ciclo do-while Ciclo después de la prueba
en el que el cuerpo se ejecuta antes que se
pruebe la variable que lo controla.

ciclo externo Ciclo que contiene un ciclo
anidado.

ciclo indefinido Aquel para el que no es
posible predecir el nimero de ejecuciones
cuando se escribe el programa.

ciclo infinito Flujo de légica que se repite
sin fin.

ciclo interno Cuando los ciclos estén ani-
dados, el ciclo que esta contenido dentro del
otro.

ciclo posprueba Ciclo que prueba su
variable de control del ciclo después de cada
iteracion, lo que significa que el cuerpo del
mismo se ejecuta al menos una vez.

ciclo preprueba Ciclo que prueba su
variable de control del ciclo antes de cada

Glosario

iteracion, lo que significa que el cuerpo del
mismo podria no ejecutarse nunca.

ciclo while o ciclo while...do Unciclo
en el que un proceso contintia mientras
alguna condicién sigue siendo verdadera.

clasificacion Proceso de colocar registros 339
en orden por el valor en un campo o cam-
pos especificos.

clausula else Parte de una decisién que
contiene la accién o acciones que se ejecu-
tan s6lo cuando la expresién booleana en la
decisién es falsa.

clausula if-then Parte de una decisién
que mantiene la accién resultante cuando
la expresién booleana en la decision es
verdadera.

codificar del programa Acto de escribir
las declaraciones de un programa en un len-
guaje de programacion.

cdodigo de programa El conjunto de ins-
trucciones que escribe un programador en
un lenguaje de programacion.

codigo espagueti Logica de programa
enredada y no estructurada.

codigo fuente Declaraciones legibles
de un programa, escritas en un lenguaje de
programacion.

codigo objeto Aquel que se ha traducido a
lenguaje de méaquina.

comentario del programa Declaracién
no ejecutable que colocan los programa-
dores dentro del cédigo para explicar las
declaraciones del programa en inglés. Véase
también documentacioén interna.

compilador Software que traduce un len-
guaje de alto nivel en lenguaje de mdquina
e identifica los errores de sintaxis. Un
compilador es parecido a un intérprete; sin
embargo, traduce todas las declaraciones en
un programa antes de ejecutarlas.

comprobacion de rango Comparacién
de una variable con una serie de valores

D Glosario

340

que marcan los extremos limitantes de los
rangos.

condicion compuesta Aquella construida
cuando se requieren multiples decisiones
antes de determinar un resultado.

confiabilidad Caracteristica de los pro-
gramas modulares que aseguran que se ha
probado un médulo y se ha demostrado que
funciona en forma correcta.

constante de cadena (o constante de
cadena literal) Grupo especifico de carac-
teres encerrados dentro de comillas.

constante literal Valor numérico o de
cadena literal.

constante nombrada Ubicacién de
memoria nombrada, similar a una variable,
con excepcién de que su valor nunca cam-
bia durante la ejecucién de un programa.
De manera convencional, las constantes se
nombran usando sélo letras mayusculas.

constante numeérica Valor numérico
especifico.

contador Cualquier variable numérica que
se usa para contar el numero de veces
que un evento ha ocurrido.

contenedor Uno de una clase de objetos
cuyo propésito principal es contener otros
elementos, por ejemplo, una ventana.

control de interrupciones Desviacién
temporal en la l6gica de un programa para
el procesamiento de un grupo especial.

control de interrupciones de nivel tnico
Interrupcion en la logica de un programa
con base en el valor de una sola variable.

conversion Conjunto de acciones que una
organizacién debe emprender para cambiar
al uso de un programa o sistema nuevo.

correr Accién de una computadora cuando
lleva a cabo las declaraciones en un pro-
grama compilado o interpretado. También
se le llama ejecutar.

cuerpo de ciclo Conjunto de acciones que
ocurren dentro de un ciclo.

cuerpo del médulo Parte de un médulo
que contiene todas sus instrucciones.

D

decision AND Aquella en la que dos condi-
ciones deben ser verdaderas para que tenga
lugar una accién.

decision anidada Decision dentro de la
cldusula if-then o else de otra decision;
también llamada i f anidada.

decision binaria Decisién si o no; se
le llama asi porque hay dos resultados
posibles.

decision OR Aquella que contiene dos o
mds condiciones; si se cumple al menos una
condicion, la accidn resultante tiene lugar.

declaracion Exposicién que nombra una
variable y su tipo de datos.

declaracion de asignacion Aquella que
almacena el resultado de cualquier célculo
ejecutado en su lado derecho en la ubica-
cién nombrada en su lado izquierdo.

declaracion de variables El proceso de
nombrar variables del programa y asignarles
un tipo.

declaracion fin de estructura Aquella
que designa el final de una estructura de
seudocddigo.

declaracion for Declaracién que puede
usarse para codificar ciclos definidos;
también llamada ciclo for. La declaraciéon
contiene una variable de control de ciclo
que se inicializa, evalla y altera en forma
automatica.

declaracion if en cascada Serie de
declaraciones 1if anidadas.

declaracion return del médulo Parte
de un médulo que marca su fin e identifica
el punto en el que el control regresa al pro-
grama o médulo que lo llamé.

decrementar Cambiar una variable al
disminuirla por un valor constante, con
frecuencia 1.

depuracion Proceso de hallar y corregir
errores en el programa.

diagrama de flujo Representacion gréfica
de los pasos légicos que se requieren para
resolver un problema.

diccionario de datos Lista de todos los
nombres de variables que se usan en un
programa, junto con su tipo, tamafo y
descripcion.

directorios Unidades de organizacién en
dispositivos de almacenamiento; cada uno
puede contener multiples archivos al igual
que directorios adicionales. En un sistema
de interfaz grafica, los directorios con fre-
cuencia se llaman carpetas.

dispositivo de almacenamiento Aparato
de hardware que contiene informacién para
su recuperacién posterior.

dispositivos de almacenamiento perma-
nente Dispositivos de hardware que con-
tienen datos no voldtiles; algunos ejemplos
incluyen discos duros, DVD, discos

Zip, unidades USB y carretes de cinta
magnética.

dispositivos de entrada y salida por
defecto Dispositivos de hardware que
no requieren abrirse; por lo general son el
teclado y el monitor, respectivamente.

documentacion Todo el material de apoyo
que va con un programa.

documentacion externa Todo el material
externo que elaboran los programadores
para respaldar un programa; contrasta con
los comentarios de programa, que son la
documentacién interna del mismo.

documentacion interna Aquella que se
encuentra dentro de un programa. Véase
también comentario del programa.

Glosario
E

editor de texto Programa que se usa para

crear archivos de texto simples; se parece a

un procesador de palabras, pero sin tantas
caracteristicas.

341

ejecutar Hacer que una computadora use
un programa escrito y compilado; también
se le llama correr (running).

elemento Variable individual de un
arreglo.

en ambito Caracteristica de las variables y
constantes declaradas dentro de un método
que se aplican sélo dentro de ese método.

encabezado del mdédulo Parte de un
médulo que incluye su identificador y quiza
otra informacién identificadora necesaria.

encapsulamiento Acto de contener las
instrucciones y datos de una tarea en el
mismo método.

entero Un namero entero.

entrada Describe el ingreso de elementos
de datos en la memoria de la computadora
usando dispositivos de hardware como
teclados y ratones.

entrada anticipada o lectura anticipada

Declaracién que lee la primera entrada en el
registro de datos antes de empezar un ciclo

estructurado.

entrada con eco Acto de repetir la
entrada de vuelta al usuario ya sea en un
indicador subsiguiente o en una salida.

eof Marcador de final de datos en un
archivo, abreviatura en inglés de fin de

archivo (end of file).

error de sintaxis Error en el lenguaje o la
gramdtica.

error ldgico El que ocurre cuando se eje-
cutan instrucciones incorrectas o cuando se
ejecutan en un orden errdéneo.

D Glosario

342

error semantico Aquel que ocurre cuando
se usa una palabra correcta en un contexto
incorrecto.

escribir en un archivo Acto de copiar
datos de la RAM a un almacenamiento
persistente.

estructura Unidad béasica de logica de pro-
gramacion; cada estructura es una secuen-
cia, seleccién o ciclo.

estructura case Aquella que evalda una
sola variable contra mdltiples valores, pro-
porcionando acciones separadas para cada
ruta logica.

estructura de ciclo Aquella que repite
acciones mientras una condicién de prueba
se mantiene verdadera.

estructura de decision Estructura de
programa en la que se hace una preguntay,
dependiendo de la respuesta, se emprende
uno de dos cursos de acciéon. Luego, sin
importar cudl ruta se siga, las rutas se unen
y se ejecuta la siguiente tarea.

estructura de secuencia Estructura de
programa que contiene pasos que se ejecu-
tan en orden. Una secuencia puede contener
cualquier cantidad de tareas, pero no hay
posibilidad de desviarse y de saltarse cual-
quiera de las tareas.

estructura de seleccion Estructura de
programa que contiene una pregunta y toma
uno de dos cursos de accién dependiendo
de la respuesta. Entonces, sin importar cudl
ruta se siga, la 16gica del programa contintia
con la siguiente tarea.

evaluacion de cortocircuito Caracteris-
tica logica en la que las expresiones en cada
parte de una expresiéon mds grande se eva-
ltan sélo en tanto es necesario para deter-
minar el resultado final.

expresion booleana Aquella que repre-
senta s6lo uno de dos estados, que se expre-
san por lo general como verdadero o falso.

expresion trivial Aquella que siempre eva-
lta al mismo valor.

Extended Binary Coded Decimal
Interchange Code (EBCDIC: Cadigo
ampliado de intercambio decimal codi-
ficado en binario) Esquema de codifica-
cién de caracteres de ocho bits que se usa en
muchas computadoras grandes.

F

fuera de limites Término que describe el
subindice de una matriz que no estd dentro
del rango de subindices aceptables.

G
gigabyte Mil millones de bytes.

GIGO Acrénimo en inglés para garbage in,
garbage out (entra basura, sale basura);
significa que si la entrada es incorrecta, la
salida no tiene valor.

global Describe variables que se conocen
en todo el programa.

grafica de jerarquia Diagrama que ilustra
las relaciones de los médulos entre si.

grafica IPO Herramienta de desarrollo de
programas que define las tareas de entrada,
procesamiento y salida.

grafica TOE Herramienta de desarrollo
de programas que enlista tareas, objetos y
eventos.

H

hacer declaraciones Proceso de nombrar
las variables del programa y asignarles un
tipo.

hardware El equipo de un sistema de
computo.

IDE Acrénimo en inglés de Ambiente de
Desarrollo Integrado (Integrated Develop-
ment Environment), que es el ambiente de

desarrollo visual en algunos lenguajes de
programacion.

identificador Nombre del componente de
un programa.

if-then Estructura similar a
if-then-else, pero no es necesaria una
accion alternativa o “else”.

incrementar Cambiar una variable agre-
gandole un valor constante, con frecuencia 1.

indicador Mensaje que se muestra en el
monitor pidiendo al usuario una respuesta.

informacion Datos procesados.

informe de control de interrupciones
Informe que enlista elementos en grupos.
Con frecuencia, cada grupo es seguido por
un subtotal.

informe sumario Aquel que s6lo enumera
totales, sin registros individuales
detallados.

inicializar una variable Acto de asignar
el primer valor a una variable, a menudo al
mismo tiempo en que ésta se crea.

interfaz grafica de usuario (GUI) Una
interfaz de programa que usa pantallas
para mostrar la salida del mismo y permite
a los usuarios interactuar con éste en un
ambiente grafico.

iteracion Otro nombre para una estructura
de ciclo.

J

jerarquia de datos Representa la relacion
de bases de datos, archivos, registros, cam-
pos y caracteres.

K
kilobyte Aproximadamente 1000 bytes.

L

leer de un archivo Acto de copiar
ala RAM los datos de un archivo que

Glosario

se encuentra en un dispositivo de
almacenamiento.

lenguaje binario Lenguaje de compu-
tacién que se representa usando una serie
deOy 1.

343

lenguaje de bajo nivel Lenguaje de pro-
gramacion que no estd muy alejado del
lenguaje de mdquina, en contraposicién con
uno de alto nivel.

lenguaje de maquina Lenguaje de cir-
cuiterfa encendido/apagado de una compu-
tadora; de bajo nivel formado por 1y 0 que
la méquina entiende.

lenguaje de programacion Lenguaje
como Visual Basic, C#, C++, Java o COBOL,
que se usa para escribir programas.

lenguaje de programacion de alto nivel
Lenguaje de programacién en inglés, en
contraposicién con uno de bajo nivel.

lenguaje de programacion interpretado
Lenguaje como Python, Lua, Perl o PHP que
se usa para escribir programas que se meca-
nograffan directamente desde un teclado y
se almacenan como texto y no como archi-
vos ejecutables binarios. También se les
llama lenguajes de programacion de scrip-
ting o lenguajes de script.

linea de comandos La ubicacién en una
pantalla de computadora donde se mecano-
graffan entradas para comunicarse con el
sistema operativo de la maquina.

linea de flujo Flecha que conecta los pasos
en un diagrama de flyjo.

llamada a médulo Usar el nombre de un
moédulo para invocarlo, causando que se
ejecute.

logica Instrucciones que se dan a la compu-
tadora en una secuencia especifica, sin omi-
tir ninguna ni agregar superfluas.

logica de linea principal Logica general
del programa principal de principio a fin.

D Glosario

344

Ivalue Identificador de la direccién de
memoria a la izquierda de un operador de
asignacion.

M

mantenimiento Todas las mejorasy
correcciones hechas a un programa después
de que esté en produccion.

megabyte Un millén de bytes.

memoria de acceso aleatorio (RAM)
Almacenamiento interno temporal de la
computadora.

memoria de computadora Almacena-
miento interno temporal dentro de una
computadora.

Microsoft Visual Studio IDE Paquete de

software que contiene herramientas ttiles

para crear programas en Visual Basic, C++
y C#.

modularizacién Proceso de dividir un pro-
grama en moédulos.

moédulo Unidad pequeria de un programa
que se usa con otros médulos para hacer un
programa. Los programadores también se
refieren a ellos como subrutinas, procedi-
mientos, funciones y métodos.

N

nibble Medida de almacenamiento igual a
cuatro bits o medio byte.

nivel del programa Nivel en el que se
declaran las variables globales.

no volatil Término que describe el alma-
cenamiento cuyo contenido se conserva
cuando se pierde la energfa.

notacion de camello Convencién para
nombrar las variables en la que la letra
inicial estd en mintsculas, los nombres de
variables con mdltiples palabras se escriben
juntos y cada palabra nueva dentro del nom-
bre de la variable comienza con una letra
mayuscula.

notacion hingara Convencién para la
denominacién de variables en la que un tipo
de datos de una variable u otra informacién
se almacena como parte de su nombre.

numérico Término que describe datos que
consisten en ndmeros.

numero magico Constante numérica no
identificada.

nimeros reales Numeros de punto
flotante.

0

operador condicional AND Simbolo que se
usa para combinar decisiones de modo que
dos o mds condiciones deben ser verdaderas
para que ocurra una acciéon. También se le
llama operador AND.

operador condicional OR Simbolo que se
usa para combinar decisiones cuando cual-
quier condicién puede ser verdadera para
que ocurra una acciéon. También se le llama
operador OR.

operador de asignacion Signo de igual;
siempre requiere el nombre de una ubica-
cién de memoria en su lado izquierdo.

operador de comparacion relacional
Simbolo que expresa comparaciones légicas
(booleanas). Algunos ejemplos incluyen =,
>, <, >=, <=y <>

operador légico NOT Simbolo que invierte
el significado de una expresién booleana.

operador binario Aquel que requiere dos
operandos, uno en cada lado.

orden ascendente Describe el ordena-
miento de registros de menor a mayor, con
base en un valor dentro de un campo.

orden de operaciones Describe las reglas
de precedencia.

orden descendente Describe la ordena-
cién de registros de mayor a menor, con
base en un valor dentro de un campo.

P

palabras clave Conjunto limitado de pala-
bras que se reserva en un lenguaje.

pila Ubicacién de memoria en la que la
computadora sigue la pista de la direccién
de memoria correcta a la que deberia regre-
sar después de ejecutar un médulo.

poblar un arreglo Asignar valores a los
elementos de un arreglo.

polimorfismo La capacidad de un método
de actuar de manera apropiada dependiendo
del contexto.

portatil Término que describe un médulo
que puede reutilizarse con maés facilidad en
multiples programas.

precedencia Cualidad de una operacién
que determina el orden en el que se evalda.

procesamiento Organizar elementos de
datos, comprobar su precision o ejecutar
operaciones matematicas en ellos.

procesamiento por lotes Aquel que ¢je-
cuta las mismas tareas con muchos registros
en secuencia.

programa de control de interrupciones
Aquel en el que un cambio en el valor de
una variable inicia acciones especiales o
causa que ocurra un procesamiento especial
o extrano.

programa interactivo Aquel en el que un

usuario hace solicitudes directas, en contra-
posicién a otro en el que la entrada proviene
de un archivo.

programa principal Aquel que se ejecuta
de principio a fin y llama a otros mdédulos;
también se le conoce como método de pro-
grama principal.

programacion defensiva Técnica en la
que los programadores tratan de prepararse
para todos los posibles errores antes de que
ocurran.

Glosario

programacion orientada hacia los obje-
tos Técnica de programacion que se enfoca
en los objetos, o “cosas’, y describe sus atri-
butos y comportamientos.

programacion procedimental Técnica de
programacién que se enfoca en los procedi- 345
mientos que crean los programadores.

programacion sin goto Nombre para des-
cribir la programacion estructurada, porque
los programadores estructurados no usan
una declaraciéon “go to”.

programar Acto de desarrollar y escribir
programas.

programas Conjuntos de instrucciones
para una computadora.

programas estructurados Aquellos que
siguen las reglas de la logica estructurada.

programas no estructurados Aque-
llos que no siguen las reglas de la l6gica
estructurada.

prueba de escritorio Proceso de recorrer
una solucién de programa en papel.

R

registro Grupo de campos que se encuen-
tran almacenados juntos como una unidad
debido a que contienen datos sobre una
entidad Unica.

relacion indirecta Describe la relacién
entre arreglos paralelos en los que un ele-
mento en el primer arreglo no tiene acceso
directo a su valor correspondiente en el
segundo.

repeticion Otro nombre para una estruc-
tura de ciclo.

reutilizacion Caracteristica de los progra-
mas modulares que permite que se usen
modulos individuales en una variedad de
aplicaciones.

ruta Combinacién de la unidad de disco de
un archivo y la jerarquia completa de direc-
torios en los que reside el archivo.

D Glosario

346

ruta sin salida Una ruta l6gica que nunca
puede ser recorrida.

S

salida Describe la operacién de recuperar
informacién de la memoria y enviarla a

un dispositivo, como un monitor o una
impresora, de modo que las personas
puedan ver, interpretar y trabajar con los
resultados.

seguridad de tipo Caracteristica de los
lenguajes de programacién que impide asig-
nar valores de un tipo de datos incorrecto.

seleccion de alternativa dual o alterna-
tiva dual if Estructura de seleccién que
define una accién que se ejecutard cuando
la condicién probada es verdadera, y otra
accion que se ejecutara cuando sea falsa.

seleccion i f de alternativa tnica o
seleccion de alternativa unica Estruc-
tura de seleccion en la que se requiere una
accion sélo para una rama de la decisién.
Esta forma de la estructura de seleccién
también se llama i f-then, porque no se
necesita una accion “else”,

seudocddigo Representacién en inglés
de los pasos logicos que se requieren para
resolver un problema.

simbolo de anotacion Simbolo de

los diagramas de flujo que contiene
informacién que amplia lo que aparece

en otro simbolo de dichos diagramas; con
frecuencia se representa con un cuadro de
tres lados y estd conectado con el paso al
que hace referencia por medio de una linea
punteada.

simbolo de decision Aquel que representa
una decision en un diagrama de flujo; tiene
forma de diamante.

simbolo de entrada Simbolo que indica
una operacién de entrada y se representa
en los diagramas de flujo como un
paralelogramo.

simbolo de entrada/salida
Paralelogramo en los diagramas de flujo.

simbolo de procesamiento Aquel que
se representa como un rectangulo en los
diagramas de flujo.

simbolo de salida Aquel que indica una
operacion de salida y se representa como un
paralelogramo en los diagramas de flujo.

simbolo I/0 Simbolo de entrada/salida.

simbolo terminal Aquel que se usa en
cada extremo de un diagrama de flujo; su
forma es una pastilla. También se le llama
simbolo inicio/fin.

sintaxis Reglas de un lenguaje.

sistema de computo Combinacién de
todos los componentes requeridos para
procesar y almacenar datos usando una
computadora.

sistema de numeracion binario Sistema
de numeracién basado en dos digitos; los
valores de columna son multiplos de 2.

sistema de numeracion decimal El
sistema de numeracién basado en 10 digitos;
los valores de columna son multiplos de 10.

sistema de numeracion hexadecimal
Sistema de numeracién basado en 16
digitos; los valores de las columnas son
multiplos de 16.

software Programas que dicen a la
computadora qué hacer.

software de aplicacion Programas que
realizan una tarea para el usuario.

software de sistema Programas que
manejan las operaciones de la compu-
tadora.

stub Método sin declaraciones que se usa
como marcador.

subindice Numero que indica la posicién
de un elemento particular dentro de un
arreglo.

-

tabla de verdad Diagrama que se usa en
matematicas y logica para describir la ver-
dad de una expresiéon completa con base en
la verdad de sus partes.

tamaino del arreglo Numero de elemen-
tos que puede contener un arreglo.

tarea de fin de trabajo Paso al final de un
programa para terminar la aplicacién.

tareas de administracion Aquellas que
deben ejecutarse al comienzo de un pro-
grama para prepararse para el resto del
mismo.

tareas de ciclo detallado Los pasos que
se repiten para cada conjunto de datos de
entrada.

tiempo real Término que describe aplica-
ciones que requieren acceso inmediato a un
registro mientras un cliente espera.

tipo de datos La caracteristica de una
variable que describe la clase de valores que
puede contener una variable y los tipos de
operaciones que pueden ejecutarse con ella.

tomar una decision Probar un valor para
determinar una ruta ldgica.

U

Unicode Esquema de codificacién de
caracteres de 16 bits.

unidad central de procesamiento (CPU)
Pieza de hardware que procesa datos.

union de archivos Acto de combinar dos
o mas archivos mientras se mantiene el
orden secuencial.

usuarios (o usuarios finales) Personas
que trabajan con los programas de compu-
tadora y se benefician de ellos.

Glosario
v

validacion de datos Asegurar que los
datos queden dentro de un rango aceptable.

valor centinela Valor que representa un

punto de entrada o salida. 347

valor comodin Valor preseleccionado que
detiene la ejecucion de un programa.

valor de paso Numero que se usa para
incrementar una variable de control de ciclo
en cada paso a lo largo de un ciclo.

valor de punto flotante Variable numé-
rica fraccionaria que contiene un punto
decimal.

valores alfanuméricos Conjunto de
valores que incluyen caracteres alfabéticos,
numeros y puntuacién.

variable Ubicacién de memoria nombrada
de un tipo de datos especifico, cuyo conte-
nido puede variar o diferir con el tiempo.

variable de cadena Aquella que puede
contener texto que incluya letras, digitos
y caracteres especiales como signos de
puntuacién.

variable de control de ciclo Aquella que
determina si un ciclo continuara.

variable numérica Aquella que contiene
valores numéricos.

variable temporal Variable activa que
contiene resultados intermedios durante la
ejecucion de un programa.

visible Caracteristica de los elementos de
datos que significa que “pueden verse” sélo
dentro del método en el cual se declaran.

volatil Caracteristica de la memoria interna
en la cual su contenido se pierde cada vez
que la computadora se apaga.

Indice

Nota: Los nimeros de pagina en negritas indican dénde se definen los términos clave.

Caracteres especiales

> (operador mayor que), 126

< (operador menor que), 126

() (paréntesis), 52

<> (operador no igual a), 126

* (asterisco), 45

+ (signo de suma), 45

— (signo de resta), 47

/ (diagonal), 47

= (signo igual), 47, 126

>= (operador mayor o igual que), 126
<= (operador menor o igual que), 126

A
Abrir un archivo, 262
Abstraccion, 49
modularizacién, 49-50
Actualizar un archivo maestro, 281
Acumuladores, 195, 195-198
Agotamiento IPV4, 13
Algoritmos, 9
Almacenamiento
de datos en arreglos, 214-216
dispositivos de, 3
medicién del, 312-314
no volatil, 3
volétil, 3
Ambiente de desarrollo integrado (IDE; integrated
development environment), 23, 23-24
American Standard Code for Information
Interchange (ASCII; Cédigo Estandar
Estadounidense para el Intercambio de
Informacioén), 306, 307-310
Anotacion, simbolos de, 64, 64-65
Archivo(s), 260. Véase también archivos de
computadora

binarios, 258

de acceso aleatorio, 290, 290-291
de acceso directo, 290

de acceso instantaneo, 290

de respaldo, 266

de transaccion, 281

hijo, 266, 282

padre, 266, 282

Archivo(s) de computadora, 258, 258-260

abrir, 262

archivos binarios, 258

archivos de texto, 258

cerrar, 264

de acceso aleatorio, 290-291

de respaldo, 266

declarar, 261-262

escribir datos, 264

hijo, 266, 282

leer datos, 262-264

organizacion de, 259

padre, 266, 282

procesamiento de archivos maestros y de
transaccion, 281-289

programa que ejecuta operaciones de archivo,
264-267

secuenciales. Véase archivos secuenciales

unién de, 273

Archivo(s) maestro, 281

actualiza el, 281

Archivo(s) secuenciales, 267, 267-281

légica de control de interrupcion, 268-
272
unién de, 273-281

Arreglo(s), 213-245, 214

almacenamiento de datos en, 214-216
btsqueda para una correspondencia de rango,
237-241

I indice

350

biisqueda para una correspondencia exacta,
226-229
constantes con, 224-225
elementos del, 214-215
paralelos, 230, 230-237
permanencia dentro de los limites de los, 241-
243
poblar los, 215
reemplazar decisiones anidadas, 216-224
tamarno del, 214
uso de un ciclo for para procesar, 244-245
ASCII (American Standard Code for
Information Interchange; Cédigo Estandar
Estadounidense para el Intercambio de
Informacién), 306, 307-310
Asignacién
declaraciones de, 42
operador de (=), 47
operador de, 42
Asociatividad
de derecha a izquierda, 42, 42-43
de izquierda a derecha, 47
derecha, 42
Asterisco (*), operador de multiplicacidn,
47

B
Base 2, 305
Base 10, 305
Base 16, 311
Basura, 40
Bit, 306
Basqueda
arreglos paralelos, 230-237
lineal, 226
mejora de la eficiencia de la, 234-236
Bytes, 258, 306

c

Cadena
constante de, 38
tipos de datos de, 38
variable de, 43-44
Caja de Pascal, 41
Campos, 260
Caracteres, 260
Carga adicional, 45
Carpetas, 259
Caso nulo, 88
Cerrar un archivo, 264
Ciclo(s), 18, 169-205
anidados, 177, 177-182

comprension en la 1égica de linea principal de
un programa, 175-177
contados (controlado por contador), 172
cuerpo de, 88
de l6gica no estructurada, reconocimiento de,
335
definidos, 172-173
do-untiT, 335
do-whi e (ciclo posprueba), 193, 317, 332-
334, 333
errores comunes en los, 183-191
estructurados, caracteristicas Compartidas por,
334-335
exterior, 177
for, 192-194
for para procesar arreglos, 244-245
indefinido, 173, 173-175
infinito, 18, 18-19
interior, 177
para acumular totales, 194-198
para validar datos, 198-200
posprueba (do-whiTe), 193, 317, 332-334,
333
preprueba, 193
que pide entradas de nuevo, limitacién de un,
200-202
validacién de la sensatez y consistencia de los
datos, 203-204
validar tipos de datos, 202-203
variable de control de, 171-177
ventajas de crear, 170-171
Ciclo(s) de desarrollo del programa, 7, 7-14
paso de codificacién, 10
paso de entender el programa, 8-9
paso de mantenimiento, 13-14
paso de planeacién de la légica, 9-10
paso de produccién, 13
paso de prueba, 12-13
paso de traduccion del programa al lenguaje de
maéquina, 10-11
Ciclo(s) definido, 172
con un contador, 172-173
Clasificacion, 267
Clausula
else, 125
if-then, 125
Codificacién de un programa, 3, 10
Coédigo
espagueti, 84, 84-86
fuente, 3
objeto, 3
Cohesién funcional, 55
Compiladores, 4

Condicién compuesta, 129
Confiabilidad, 50, 50-51
Constante(s)
como el tamaino de un arreglo, 224
como subindices de un arreglo, 225
como valores de elemento del arreglo, 225
de cadena literal, 38
declarar dentro de los médulos, 55-57
literales, 38
nombradas, 44, 44-45
numérica, 38
numérica literal, 38
Contador, 173
ciclos controlados por, 172
Control de interrupcidn (o interrupciones), 268
de nivel dnico, 269
Conversién, 13
Correspondencia exacta, busqueda de un arreglo
para una, 226-229
Cortes de linea confusos, evitar, 68
Cortocircuito, evaluacion de, 135
CPU (unidad central de procesamiento), 2

D
Datos
base de, 261
diccionario de, 67
elementos de, 2
jerarquia de, 260, 260-261
numéricos, tipo de, 38
tipos de, 39, 40, 43-44
visibles, elementos de, 57
Decisiones AND, 129, 129-138
anidacion para eficiencia, 132-134
decision anidada, 129-132
errores comunes, 136-138
operador AND. Véase operador AND
Decisiones anidadas (i f anidado), 130, 130-132
reemplazar con arreglos, 216-224
Decisiones OR, 138, 138-147
errores comunes, 143-147
para eficiencia, 140-141
Declaracién(es), 39, 39-41
de fin de estructura, 87
dentro de los médulos, 55-57
endif, 87
for (ciclo for), 192, 192-194
if en cascada, 130, 130-132
largas, variables temporales para clasificar las,
68-69
precisas, disefio de, 68-69
return del médulo, 51

naice I

Declarar un archivo, 261-262
Decrementar, 173
Depuracién, 13
Descomposicion funcional. Véase modularizacién
Desplegar, 266
Diagonal (/), operador de divisién, 47
Diagramas de flujo, 14 351
médulos, 52-54
simbolos de, 315
trazo de, 16-17
Directorios, 259
Dispositivos
de almacenamiento permanentes, 258
de entrada predeterminados, 264
de entrada y salida predeterminados, 264
de salida predeterminados, 264
Documentacion, 9
externa, 64
interna, 64

E
EBCDIC (Extended Binary Coded Decimal
Interchange Code; Cédigo ampliado de
intercambio decimal codificado en binario),
306
Ejecutar un programa, 4
Elegancia, 189
Elementos, 214, 214-215
del arreglo, constantes como valores de, 225
En dmbito, 57
Entra basura, sale basura (GIGO; garbage in,
garbage out), 200
Entrada, 2
con eco, 70, 69-71
simbolo de, 16
Entrada anticipada (lectura anticipada), 98
para estructurar un programa, 95-101
Eof, 21
Errores légicos, 5
Escribir en un archivo, 264
Estructura(s), 83-111, 86, 316-317. Véase también
programas estructurados
anidadas, 90, 90-92
apiladas, 89, 89-90
case, 317, 330-332
ciclo, 88-89, 96-97, 316
ciclo posprueba (do-while), 193, 317, 332-
334, 333
de decisién de alternativa tinica (i f-then),
317
de decision. Véase estructura de seleccién
de secuencia, 86-87, 316

I indice

352

estructurar y modularizar la légica no
estructurada, 105-110
if-then (decision de alternativa dnica), 317
if-then-else, 87, 316
razones para la, 101-102
reconocimiento de la, 102-105
resolucion de problemas de estructuracion
dificiles, 318-327
seleccion (decision). Véase estructura de
seleccion
Estructura de ciclo, 88, 88-89, 96-97
estructura de seleccién comparada con, 96
Estructura de secuencia, 86, 86-87
diagrama, 316
Estructura de seleccién, 87, 87-88, 122-125
case, 317, 330, 330-332
decision de alternativa unica (i f-then), 317
diagrama, 316
estructura de ciclo comparada con, 96
Exabytes, 313
Expresiones booleanas, 122. Véase también
Decisiones AND; Decisiones OR
operador 1égico NOT, 147
Expresiones triviales, 126
Extended Binary Coded Decimal Interchange
Code (EBCDIC; Cédigo ampliado de
intercambio decimal codificado en binario),
306

F

Forzar, 201

Fuera de limites, 243

Funcién(es). Véase modularizacién; médulo(s)

G
Gigabytes, 258, 313
GIGO (garbage in, garbage out; entra basura, sale
basura), 200
Gréfica(s)
de espaciado de impresora, 328-329
de jerarquia, 61, 61-63
PO, 9
TOE, 9
GUI (interfaz gréfica del usuario), 24

H

Hardware, 2

IDE (integrated development environment;
ambiente de desarrollo integrado), 23, 23-24

Identificadores, 39, 40
eleccion de, 66-67
If de alternativa
dual (selecciones de alternativa dual), 88
Gnica (selecciones de alternativa tnica), 88
Impresidn, 266
Incrementar, 173
Indicadores, 69
claros, escritura de, 69-70
Indice, 214
Informacioén, 3
Informes sumarios, 198
Inicializacidn de la variable de control de ciclo,
descuidar la, 183-184
Inicializar la variable, 40
Instrucciones, repeticién de las, 17-18
Interfaz grafica del usuario (GUI), 24
Intérprete, 3, 4
Interrupciones, control de campo de, 269
de nivel tnico, 269
informe de, 268, 268-269
programa de, 268
Iteracidn, 88. Véase también estructura

K
Kilobytes, 258, 313

L
Leer desde un archivo, 262, 262-264
Lenguaje
binario, 4
de mdquina, 3
de bajo nivel, 11
traducir programas a, 10-11
de programacién, 3
de alto nivel, 10
interpretados (lenguajes de programacion de
scripting o lenguajes de script), 4
Linea(s)
de comandos, 24
de flujo, 16
Llamar a un médulo, 48, 48-49, 52
Légica, 5, 5-7
de linea principal, 51
comprension del ciclo en la, 175-177
no estructurada, estructuracion y
modularizacién de la, 105-110
planeacién de la, 9-10
Lovelace, Ada Byron, 26

Mantenimiento, 13, 13-14
Megabytes, 258, 313

Memoria

arreglos que ocupan la, 214-215

de acceso aleatorio (RAM), 3

de la computadora, 3
Métodos. Véase modularizacion; médulo(s)
Microsoft Visual Studio IDE, 23
Modularizacion, 48-61

abstraccion, 49-50

configuracién mds comun para légica de linea

principal, 57-61
de la l6gica no estructurada, 105-110
declaracién de variables y constantes dentro de
los médulos, 55-57

proceso, 51-61

reutilizacion del trabajo, 50-51

varios programadores, 50
Moédulo(s), 48

cohesion funcional, 55

cuerpo del, 51

declaracién return del, 51

diagramas de flujo, 52-54

encabezado del, 51

encapsulados, 55

encapsulamiento, 55

llamar a un, 48-49, 52

nombre del, 52

portatiles, 57

N

Nivel de programa global, 57
Nombramiento de variables, 41-42
Nombre(s)
autodocumentados, 66
del modulo, 52
Notacion
de camello, 41
hangara, 41
Numeros
magicos, 44
reales, 38

0
Operaciones aritméticas, 45-48
Operador(es), 47
binarios, 42
condicional AND, 134. Véase también operador
AND
condicional OR, 141. Véase también operador
OR
de division (/), 47
de multiplicacién (*), 47
de resta (-), 47

ndice T

de suma (+), 47
légico NOT, 147
mayor o igual que (>=), 126
mayor que (>), 126
menor o igual que (<=), 126
menor que (<), 126
no igual a (<>), 126 353
Operador(es) AND, 134, 134-136
combinacién con operador OR, precedencia en,
154-157
evaluacion de cortocircuito, 135
tablas de verdad, 135
Operador(es) de comparacidn relacionales, 126,
126-129
error comun con los, 129
lista, 126
Operador(es) OR, 141, 141-142
precedencia cuando se combinan con operador
AND, 154-157
Orden
ascendente, 273
de operaciones, 46
descendente, 273

P

Palabras clave, 41
Paréntesis, nombres de médulo, 52
Petabytes, 313
Pila, 55
Poblar el arreglo, 215
Precedencia, 154
combinar operadores AND y OR, 154-157
Procedimientos. Véase modularizacién;
modulo(s)
Procesamiento, 2
por lotes, 290
simbolos de, 16
Programa(s), 2
caracteristicas de un buen diseno de, 63-
72
codificacién del, 3, 10
cédigo de, 3
comentarios del, 64, 64-66
correr un, 3, 4
interactivo, 290
mantenimiento del, 13-14
no estructurados, 84, 84-86
poner en produccidn, 13
principal, 51
prueba del, 12-13
traducir al lenguaje de mdquina, 10-11
valor centinela para terminar un, 19-22

IR indice

354

Programas estructurados, 84. Véase también
estructura(s)
caracteristicas, 94
entrada anticipada para, 95-101
Programacion, 2
ambientes de, 22-24
defensiva, 198
evolucién de los modelos de, 25-27
lenguaje de, 3
orientada hacia los objetos, 26
procedimental, 26
sin goto, 101
Prueba
de escritorio, 10
de programas, 12-13
de valores, 20

R

Rango, bisqueda en un arreglo para una
correspondencia de, 237-241
Rango, comprobacién de, 148, 148-154
errores comunes en la, 150-154
Registros, 260
Reglas de precedencia, 46
Relacién indirecta, 234
Repeticion, 88. Véase también estructura en ciclo
Reutilizacidn, 50
modularizacién, 50-51
Ruta(s), 259
inalcanzable, 150, 150-152
sin salida, 150, 150-152

S
Salida, 3
Seguridad del tipo, 44
Seudocddigo, 14
escritura en, 15
Signo de suma (+), operador de adicién, 45
Signo igual (=)
operador de asignacion, 47
operador de equivalencia, 126
Signo menos (—), operador de resta, 47
Simbolo en diagramas de flujo
de decisién, 20, 315
de entrada/salida (I/0), 16, 315
de linea de flujo, 315
de llamada a médulo externo, 315
de llamada a mddulo interno, 315
de proceso, 315
de salida, 16
1/0O (entrada/salida), 16, 315
terminal, 16, 315

Sintaxis, 3
errores de, 3
Sistemas de numeracién, 305-312
binario, 305, 305-312
decimal, 305, 307-312
hexadecimal, 311, 311-312
Sistemas de cémputo, 2, 2-4
Software, 2
de aplicacién, 2
de sistema, 2
Stub, 181
Subindice, 214
constante como, 225
fuera de limites, 243
Subrutinas. Véase modularizacién; médulo(s)

T
Tablas, 261
de verdad, 135
Tamaio del arreglo, 214
Tareas
de administracion, 57
de ciclo detallado, 58
de fin de trabajo, 58
Terabyte, 313
Texto
archivos de, 258
editor de, 22, 22-23
Tiempo real, aplicaciones en, 290
Tomar una decisién, 20
Totales, ciclo para acumular, 194-198
Traducir programas al lenguaje de méquina, 10-11
Turing, Alan, 26

U
Unicode, 306
Unidad central de procesamiento (CPU), 2
Unir archivos, 273
Usuario(s), 8
ambientes de, 24-25
finales, 8

\'}
Validacién
datos. Véase validar datos
de la sensatez y consistencia de los datos, 203-
204
de un tipo de datos, 202-203
Validar datos, 198
ciclo para, 198-200
Valor(es), 19

ndice T

alfanuméricos, 38 comprension del ciclo en la légica de linea
centinela, 19-21, 21 principal de un programa, 175-177
comodines, 21 decrementar, 173
de paso, 192 descuidar la alteracion de, 185

Variable(s), 6, 38-44 descuidar la inicializacién de, 183-184
asignacién de valores a las, 42-43 incluyendo dentro del ciclo declaraciones que
de punto flotante, 38 pertenecen al exterior del mismo, 187-191 355
declaracién de, 39-41 incrementar, 173
declaracién dentro de los médulos, 55- Variable(s) temporales, 68

57 para clarificar las declaraciones largas, 68-69

enteras, 38
inicializar, 40 w

nombramiento de, 41-42
numérica, 43
punto flotante, 38
tipos de datos de las, 43-44
y constantes locales, 57 Y

Variable(s) de control de ciclo, 171, 171-177 Yottabyte, 313
ciclo definido con un contador, 172-173
ciclo indefinido con un valor centinela, 173-

175 yA

comparacién errénea con, 186-187 Zettabyte, 313

While . . . do(ciclowhiTe), 88, 88-89
diagrama, 316

A la Programacion Légica y Disefio
7a. Ed. | JOYCE FARRELL

Prepare para el éxito a los programadores principiantes con la muy efectiva Introduccién a la
Programacion Légica y Disefio, de Farrell. Este texto popular adopta un enfoque Gnico independiente
del lenguaje de programacion con un énfasis en las convenciones modernas. El estilo de redaccion del
libro, claro y conciso, elimina la jerga altamente técnica mientras presenta conceptos universales de
programacion y alienta un estilo de programacion y pensamiento légico sélidos. Las explicaciones
revisadas y mas definidas de esta edicién incorporan diagramas de flujo, seudocédigo y diagramas para
asegurar que incluso los lectores sin experiencia previa en programacién entiendan por completo los
conceptos de la programacion y el disefio modernos.

CARACTERISTICAS DEL TEXTO

Ejercicios adicionales basados en la elaboracion de diagramas de flujo y seudocddigo en esta edicion
ayudan a los estudiantes a obtener una mejor comprensién del alcance de la programacién moderna.

Explicaciones revisadas minuciosamente proporcionan la guia mas clara posible para los lectores que
no tienen experiencia previa en programacion.

Una abundancia de oportunidades de practica probadas, incluyendo Ejercicios de programacion,
Ejercicios de eliminacién de errores y cuestionarios “Dos verdades y una mentira”, mantienen a los
estudiantes interesados y aprendiendo en forma activa.

ACERCA DEL AUTOR
Joyce Farrell ha escrito una amplia variedad de libros de texto de programacion exitosos
reconocidos por su estilo de redaccién directo y claro y su presentacion efectiva. Es autora
de varios textos de Course Technology, incluyendo versiones orientadas hacia los objetos
y extendidas de este libro, al igual que Java Programming, Microsoft Visual C++y Object-
Oriented Programming Using C++. Instructora muy respetada, Farrell imparti6 temas de sistemas de
informacién de computadora por mas de 20 afios en colegios en lllinois y Wisconsin.

ISBN-13: 978-607481905-2
ISBN-10: 607481905-X

- ¢+ CENGAGE
'* Learning
9786 19052

Visite nuestro sitio en http:/latinoamerica.cengage.com

074"8

	Introducción a la Programación. Lógica y Diseño

	Contenido
	Prefacio
	CAPÍTULO 1 Una revisión de las computadoras y la programación
	Comprensión de los sistemas de cómputo
	Comprensión de la lógica de programa simple
	Comprensión del ciclo de desarrollo del programa
	Entender el problema
	Planear la lógica
	Codificación del programa
	Uso de software para traducir el programa al lenguaje de máquina
	Prueba del programa
	Poner el programa en producción
	Mantenimiento del programa

	Uso de declaraciones en seudocódigo y símbolos de diagrama de flujo
	Escritura en seudocódigo
	Trazo de diagramas de flujo
	Repetición de las instrucciones

	Uso de un valor centinela para terminar un programa
	Comprensión de la programación y los ambientes del usuario
	Comprensión de los ambientes de programación
	Comprensión de los ambientes de usuario

	Comprensión de la evolución de los modelos de programación
	Resumen del capítulo
	Términos clave
	Preguntas de repaso
	Ejercicios
	Encuentre los errores
	Zona de juegos
	Para discusión

	CAPÍTULO 2 Elementos de los programas de alta calidad
	La declaración y el uso de variables y constantes
	Comprensión de las constantes literales y sus tipos de datos
	Trabajo con variables
	Nombramiento de variables
	Asignación de valores a las variables
	Comprensión de los tipos de datos de las variables
	Declaración de constantes nombradas

	Realización de operaciones aritméticas
	Comprensión de las ventajas de la modularización
	La modularización proporciona abstracción
	La modularización permite que varios programadores trabajen en un problema
	La modularización permite que se reutilice el trabajo

	Modularización de un programa
	Declaración de variables y constantes dentro de los módulos
	Comprensión de la configuración más común para la lógica de línea principal

	Creación de gráficas de jerarquía
	Características de un buen diseño de programa
	Uso de comentarios del programa
	Elección de identificadores
	Diseño de declaraciones precisas
	Evite cortes de línea confusos
	Use variables temporales para clarificar las declaraciones largas

	Escritura de indicadores claros y entradas con eco
	Mantener buenos hábitos de programación

	Resumen del capítulo
	Términos clave
	Preguntas de repaso
	Ejercicios
	Encuentre los errores
	Zona de juegos
	Para discusión

	CAPÍTULO 3 Comprender la estructura
	Las desventajas del código espagueti no estructurado
	Comprensión de las tres estructuras básicas
	Uso de una entrada anticipada para estructurar un programa
	Comprensión de las razones para la estructura
	Reconocimiento de la estructura
	Estructuración y modularización de la lógica no estructurada
	Resumen del capítulo
	Términos clave
	Preguntas de repaso
	Ejercicios
	Encuentre los errores
	Zona de juegos
	Para discusión

	CAPÍTULO 4 Toma de decisiones
	Expresiones booleanas y la estructura de selección
	Uso de operadores de comparación relacionales
	Evitar un error común con los operadores relacionales

	Comprensión de la lógica AND
	Anidar decisiones AND para la eficiencia
	Uso del operador AND
	Evitar errores comunes en una selección AND

	Comprensión de la lógica OR
	Escritura de decisiones OR para eficiencia
	Uso del operador OR
	Evitar errores comunes en una selección OR

	Hacer selecciones dentro de rangos
	Evitar errores comunes cuando se usan comprobaciones de rango

	Comprensión de la precedencia cuando se combinan operadores AND y OR
	Resumen del capítulo
	Términos clave
	Preguntas de repaso
	Ejercicios
	Encuentre los errores
	Zona de juegos
	Para discusión

	CAPÍTULO 5 Creación de ciclos
	Comprensión de las ventajas de crear ciclos
	Uso de una variable de control de ciclo
	Uso de un ciclo definido con un contador
	Uso de un ciclo indefinido con un valor centinela
	Comprensión del ciclo en la lógica de línea principalde un programa

	Ciclos anidados
	Evitar errores comunes en los ciclos
	Error: descuidar la inicialización de la variable de control de ciclo
	Error: descuidar la alteración de la variable de control de ciclo
	Error: usar la comparación errónea con la variable de control de ciclo
	Error: incluir dentro del ciclo declaraciones que pertenecen al exterior del mismo
	Uso de un ciclo for

	Aplicaciones comunes de los ciclos
	Uso de un ciclo para acumular totales
	Uso de un ciclo para validar datos
	Limitación de un ciclo que pide entradas de nuevo
	Validación de un tipo de datos
	Validación de la sensatez y consistencia de los datos

	Resumen del capítulo
	Términos clave
	Preguntas de repaso
	Ejercicios
	Encuentre los errores
	Zona de juegos
	Para discusión

	CAPÍTULO 6 Arreglos
	Almacenamiento de datos en arreglos
	De qué modo los arreglos ocupan la memoria de la computadora

	Cómo un arreglo puede reemplazar decisiones anidadas
	Uso de constantes con arreglos
	Uso de una constante como el tamaño de un arreglo
	Uso de constantes como valores de elemento del arreglo
	Uso de una constante como subíndice de un arreglo

	Búsqueda de un arreglo para una correspondencia exacta
	Uso de arreglos paralelos
	Mejora de la eficiencia de la búsqueda

	Búsqueda en un arreglo para una correspondencia de rango
	Permanencia dentro de los límites del arreglo
	Uso de un ciclo for para procesar arreglos
	Resumen del capítulo
	Términos clave
	Preguntas de repaso
	Ejercicios
	Encuentre los errores
	Zona de juegos
	Para discusión

	CAPÍTULO 7 Manejo de archivos y aplicaciones
	Comprensión de los archivos de computadora
	Organización de los archivos
	Comprensión de la jerarquía de datos

	Ejecución de operaciones con archivos
	Declarar un archivo
	Abrir un archivo
	Leer datos de un archivo
	Escribir datos en un archivo
	Cerrar un archivo
	Un programa que ejecuta operaciones de archivo

	Comprensión de los archivos secuenciales y la lógica de control de interrupciones
	Comprensión de la lógica de control de interrupciones

	Unión de archivos secuenciales
	Procesamiento de archivos maestros y de transacción
	Archivos de acceso aleatorio
	Resumen del capítulo
	Términos clave
	Preguntas de repaso
	Ejercicios
	Encuentre los errores
	Zona de juegos
	Para discusión

	APÉNDICE A Comprensión de los sistemas de numeración y los códigos de computadora
	El sistema hexadecimal
	Medición del almacenamiento
	Términos clave

	APÉNDICE B Símbolos de diagrama de flujo
	APÉNDICE C Estructuras
	APÉNDICE D Resolución de problemas de estructuración difíciles
	APÉNDICE E Creación de gráficas impresas
	APÉNDICE F Dos variaciones de las estructuras básicas: case y do-while
	La estructura case
	El ciclo do-while
	Reconocimiento de las características compartidas por todos los ciclos estructurados
	Reconocimiento de ciclos no estructurados
	Términos clave

	Glosario
	Índice

