
UNIVERSIDAD DE ALCALÁ DE HENARES

Escuela Politécnica

ESTUDIOS COMPLEMENTARIOS A LA TITULACIÓN EN

INGENIERÍA EN SISTEMAS DE INFORMACIÓN DE LA

UNAN-LEÓN

PROYECTO DE FIN DE CARRERA

PLAN DOCENTE PARA LA ASIGNATURA DE

ADMINISTRACIÓN DE SISTEMAS OPERATIVOS

JULIO CÉSAR GONZÁLEZ MORENO

ALCALÁ DE HENARES, ESPAÑA

JUNIO 2008

UNIVERSIDAD DE ALCALÁ DE HENARES

Escuela Politécnica

ESTUDIOS COMPLEMENTARIOS A LA TITULACIÓN EN

INGENIERÍA EN SISTEMAS DE INFORMACIÓN DE LA

UNAN-LEÓN

PROYECTO DE FIN DE CARRERA

PLAN DOCENTE PARA LA ASIGNATURA DE

ADMINISTRACIÓN DE SISTEMAS OPERATIVOS

Autor: Julio César González Moreno

Directores: Elena Campo Montalvo

 David Fernández Barrero

TRIBUNAL

Presidente: Francisco Javier Ceballos Sierra.

Vocal 1: Elena Campo Montalvo.

Vocal 2: David Fernández Barrero.

 Calificación: _______

Fecha: 20 de junio de 2008

Dedicatoria y agradecimiento Administración de Sistemas Operativos

Dedicatoria y Agradecimiento

A mi familia, por haberme dado su apoyo incondicional antes de mí llegada a España y cuando

en algunos malos momentos me sentía triste,

A mis amigos, por llevarme siempre en sus pensamientos deseándome lo mejor durante toda mi

estancia,

A todas las personas que han hecho posible que varios Nicaragüenses tengamos la oportunidad

de poder ampliar y desarrollar nuestros conocimientos, a través de este intercambio

académico, técnico y cultural.

Índice general Administración de Sistemas Operativos

ÍNDICE GENERAL

I. INTRODUCCIÓN .. 21

II. OBJETIVOS ... 22

III. SITUACIÓN ACTUAL DE LA ASIGNATURA EN EL PÉNSUL ACADÉMICO DE INGENIERÍA EN TELEMÁTICA 23

IV. RELACIÓN CON OTRAS ASIGNATURAS .. 24

V. CONTENIDO DEL TEMARIO ... 25

VI. METODOLOGÍA DIDÁCTICA Y MATERIAL DIDÁCTICO A UTILIZAR ... 27

VII. PLANIFICACIÓN TEMPORAL ... 28

VIII. METODOLOGÍA DE EVALUACIÓN .. 29

IX. DESARROLLO DEL TEMARIO .. 31

TEMA 0: PRESENTACIÓN DE LA ASIGNATURA .. 33

Presentación del docente .. 33

Información de la asignatura ... 33

Objetivos de la Asignatura ... 33

Temario .. 33

Material de estudio ... 33

Metodología de evaluación ... 34

Tutorías .. 34

TEMA 1: INTRODUCCIÓN ... 35

1. Repaso de conceptos importantes sobre sistemas operativos ... 37

1.1. ¿Qué es un sistema operativo? .. 37

1.2. Concepto de proceso .. 37

1.3. Concepto de núcleo .. 37

1.3.1. Tipos de núcleo ... 38

1.4. Conceptos de: Multitarea, multiusuario y multiplataforma ... 40

Multitarea ... 40

Multiusuario .. 40

Multiplataforma .. 40

2. Introducción a Unix .. 41

2.1. Historia de Unix .. 41

2.2. Aparición de Linux .. 43

2.3. Distribuciones de Linux .. 44

2.3.1. Principales distribuciones ... 45

3. Software libre y Linux .. 49

3.1. GNU .. 49

3.2. Libertad y coste .. 50

3.3. Open Source ... 51

3.4. Licencias en el software libre ... 52

3.4.1. Licencias tipo BSD ... 52

3.4.2. La licencia Pública General de GNU (GNU GPL) .. 53

3.5. Licencias de otros recursos libres ... 53

Administración de Sistemas Operativos Índice general

3.5.1. Licencia de documentación libre de GNU ... 53

3.5.2. Licencias de Creative Commons .. 54

4. Introducción a la administración ... 56

4.1. Ciclo de vida del sistema .. 56

Análisis de requisitos del sistema ... 56

Diseño del sistema .. 56

Implantación del sistema .. 56

Configuración hardware y software de forma que el sistema cumpla los requisitos exigidos . 57

Administración y mantenimiento (explotación) ... 57

Migración, desmantelamiento del sistema ... 57

4.2. El administrador del sistema .. 57

4.3. La primera regla del administrador .. 58

4.4. Responsabilidades del administrador .. 58

Responsabilidades hardware .. 58

Responsabilidad software ... 59

Responsabilidades derivadas del software del sistema .. 59

Responsabilidades derivadas del software específico .. 59

Responsabilidades sobre los usuarios ... 59

Aspectos éticos de la administración de sistemas .. 60

4.5. Seguridad en la administración .. 60

TEMA 2: INSTALACIÓN BÁSICA ... 63

1. Conceptos necesarios previos a la instalación ... 64

1.1. Concepto de sistema de archivos ... 64

1.2. Concepto de montaje de sistema de archivos.. 65

1.3. Concepto de live CD.. 65

1.4. Concepto de partición de disco .. 66

1.5. Concepto de espacio de intercambio ... 66

1.6. Concepto de MBR (Master Boot Record) ... 66

1.7. Concepto de gestor de arranque .. 67

1.8. Conceptos relacionados al software .. 67

2. Tareas de preparación para la instalación de Linux ... 68

2.1. Visión general de la instalación .. 68

2.2. Repartición del disco o discos duros .. 69

2.3. Requerimientos de la partición de Linux .. 70

2.4. Creación del espacio de intercambio ... 76

2.5. Creación del sistema de archivos ... 77

2.6. Instalar el software ... 77

2.7. Instalar el gestor de arranque GRUB .. 79

3. Procedimientos posteriores a la instalación .. 79

3.1. Creación de una cuenta de usuario no root ... 79

3.2. Pedirle ayuda a nuestro sistema .. 80

3.3. Edición del archivo /etc/fstab .. 80

3.4. Cerrar el sistema... 81

TEMA 3: INSTALACIÓN, ACTUALIZACIÓN Y COMPILACIÓN DE PROGRAMAS ... 83

1. Actualización de software .. 84

2. Procedimiento general de actualización .. 85

3. Sistema de gestión de paquetes RPM ... 86

4. Sistemas de gestión de paquetes .deb... 89

4.1. Utilizar dpkg ... 89

Índice general Administración de Sistemas Operativos

4.2. Utilizar apt .. 92

4.2.1. El corazón de apt... 92

4.2.2. Tipos de paquetes según su prioridad .. 93

4.2.3. Grado de dependencia entre paquetes .. 93

4.2.4. Acciones sobre paquetes .. 94

4.2.5. Estado de instalación de los paquetes .. 94

4.2.6. Utilizar apt-cache .. 95

4.2.7. Utilizar apt-get .. 95

5. Software no proporcionado en paquetes .. 96

5.1. Actualización de bibliotecas ... 99

TEMA 4: INICIO Y CIERRE DEL SISTEMA .. 105

1. Inicio del sistema ... 106

1.1. Disquete de arranque ... 106

1.2. El gestor de arranque GRUB ... 108

1.2.1. El archivo /etc/grub.conf... 109

1.2.2. Especificar las opciones del arranque ... 111

1.2.3. Eliminar GRUB ... 112

2. Inicio e inicialización del sistema ... 112

2.1. Mensajes de inicio de núcleo ... 112

2.2. Archivos init, inittab y rc ... 114

2.3. Archivos rc .. 116

3. Modo de un solo usuario ... 117

4. Cierre del sistema .. 118

TEMA 5: ADMINISTRACIÓN DE USUARIOS, GRUPOS Y PERMISOS ... 121

1. Tipos de cuentas de usuario .. 122

1.1. Cuenta de usuario completa o cuenta shell ... 122

1.2. Cuenta de acceso restringido ... 122

1.3. Programas y daemons .. 123

2. Usuarios y uids ... 123

3. Pseudo-conexiones .. 123

4. Gestión de usuarios y grupos ... 123

4.1. El archivo passwd ... 124

4.2. Contraseñas ocultas ... 125

4.3. El archivo de grupo ... 127

4.4. El archivo gshadow ... 129

5. Operaciones con las cuentas de usuario ... 130

5.1. Crear ... 130

5.2. Eliminar... 132

5.3. Deshabilitar .. 132

5.4. Modificar .. 133

6. Otro método de autenticación: PAM ... 134

6.1. ¿Qué es PAM? .. 134

6.2. Grupos de gestión .. 135

6.3. Arquitectura ... 136

TEMA 6: EL SISTEMA DE ARCHIVOS.. 137

1. Concepto de archivo y de sistema de archivos .. 139

2. Los inodos .. 140

3. El superbloque ... 141

Administración de Sistemas Operativos Índice general

4. El sistema de archivos ext2 .. 142

5. El sistema de archivos ext3 .. 143

5.1. ¿Cómo surge ext3? ... 143

5.2. ¿Qué es journaling? .. 143

6. El estándar de jerarquía del sistema de archivos .. 144

7. Algunos directorios interesantes ... 146

El directorio raíz “/” ... 146

Directorio /bin ... 146

Directorio /sbin ... 146

Directorio /boot ... 146

Directorio /dev .. 147

Directorio /etc ... 147

Directorios /home y /root ... 148

Directorio /lib .. 148

Directorio /usr ... 148

Directorio /var ... 148

Directorio /mnt.. 149

Directorio /opt ... 149

Directorio /lost+found ... 149

Directorio /proc ... 149

Directorio /tmp.. 149

8. Nombres de archivos y directorios .. 149

8.1 Convenios en los nombres de los archivos .. 150

9. Tipos de archivos ... 150

9.1. Archivos normales .. 151

9.2. Archivos de directorio .. 151

9.3. Directorios y discos físicos .. 151

9.4. Enlaces .. 152

9.5. Archivos especiales... 153

10. Atributos existentes en el sistema de archivos de Linux ... 154

11. Propiedad y permisos de los archivos.. 156

11.1. ¿Qué significan los permisos? .. 156

11.2. Propietarios y grupos ... 157

12. Puntos adicionales del sistema de archivos ... 158

12.1. Máscara frente a umáscara .. 158

12.2. Establecer ID de usuario y de grupo (SUID y SGID) .. 159

12.3. El Sticky bit o bit adhesivo .. 159

13. Sistemas de archivos distribuidos (DFS) .. 160

13.1. SAMBA .. 161

13.1.1. Evolución histórica de SAMBA .. 161

13.1.2. Servicios proporcionados por SAMBA .. 162

13.2. Sistema de archivos en red de Sun Microsystems: NFS .. 163

13.2.1. Beneficios proporcionados por NFS .. 164

13.3. Sistema de información de redes de Sun Microsystems: NIS ... 164

13.4. Integrando NIS y NFS .. 165

TEMA 7: SISTEMAS DE RED .. 167

1. Introducción a TCP/IP .. 169

2. Servicios sobre TCP/IP ... 169

3. ¿Qué es TCP/IP? ... 170

Índice general Administración de Sistemas Operativos

4. La pila de protocolos IP .. 172

5. Dispositivos físicos (hardware) de red ... 172

6. Conceptos TCP/IP ... 174

7. Direcciones TCP/IP ... 177

8. Componentes de la dirección de red ... 178

8.1. Dirección de la máscara de red .. 178

8.2. Dirección de red ... 179

8.3. Dirección de puerta de acceso ... 179

8.4. Dirección de difusión .. 179

9. Configurar la red .. 179

9.1. Configuración de la interfaz NIC (Network Interface Controller) .. 179

9.2. Configuración del Name Resolver .. 180

9.3. Configuración del encaminamiento ... 182

9.4. Configuración del inetd .. 183

9.5. Configuración adicional: /etc/protocols y /etc/networks ... 186

9.6. Algunos aspectos de seguridad a tomar en cuenta .. 187

10. Aplicaciones seguras .. 187

10.1. Secure Shell (ssh) .. 187

10.1.1. Características del protocolo ssh .. 188

10.1.2. ¿Por qué usar ssh? .. 189

10.1.3. Ejemplos de uso .. 190

10.2. Secure Copy (scp) ... 190

10.2.1. El Protocolo scp ... 190

10.2.2. La aplicación scp .. 191

10.2.3. Ejemplos de uso .. 191

TEMA 8: EJECUTAR UN SISTEMA SEGURO ... 193

1. Una perspectiva sobre la seguridad del sistema ... 195

2. Algunos aspectos de seguridad a tomar en cuenta ... 197

2.1. Cierre de demonios de red no deseados .. 197

2.2. Evitar las amenazas de ingeniería social .. 198

2.3. Cumplimiento de las normas de seguridad .. 199

3. Las 10 cosas que nunca se deben hacer .. 199

No utilizar contraseñas simples o que se puedan adivinar con facilidad 200

No utilizar la cuenta de root a no ser que sea estrictamente necesario 200

No compartir las contraseñas ... 201

No creer ciegamente en los binarios proporcionados .. 201

No ignorar los archivos de registro ... 201

No dejar de actualizar el sistema durante mucho tiempo .. 202

No debemos olvidarnos de la seguridad física .. 202

No descuidar los permisos de los archivos .. 202

No olvidar la existencia de sitios web de seguridad .. 202

Nunca llevar a cabo una administración remota sin un shell seguro .. 203

4. Configuración del envoltorio TCP .. 204

4.1. Utilizar envoltorios TCP con inetd .. 204

4.2. Utilizar envoltorios TCP con xinetd ... 205

4.3. /etc/hosts.allow y /etc/hosts.deny .. 205

5. Cortafuegos: filtrado de paquetes IP ... 207

6. Otros elementos útiles para asegurar nuestro sistema ... 208

6.1. El servicio finger para descubrimiento de usuarios.. 208

Administración de Sistemas Operativos Índice general

6.2. Fortaleza de contraseñas con crack ... 208

6.3. Comprobación proactiva de contraseñas ... 209

6.3.1. Comprobador proactivo de contraseñas: passwd+ .. 209

6.3.2. Comprobador proactivo de contraseñas: anlpasswd ... 210

6.3.3. Comprobador proactivo de contraseñas: npasswd .. 210

6.4. Mapeo de puertos con nmap ... 211

6.5. Sistemas de detección de intrusos ... 211

6.5.1. Detección de ataques en red con snort .. 212

6.6. Advertencias ante paquetes con bugs ... 212

6.7. Auditando vulnerabilidades con nessus ... 213

TEMA 9: COPIAS DE SEGURIDAD Y RECUPERACIÓN ... 215

1. Introducción a las copias de seguridad .. 216

1.1. Modelos de almacén de datos ... 216

Desestructurado ... 217

Completa + incremental.. 217

Espejo + diferencial ... 217

Protección continúa de datos ... 217

1.2. Medios de almacenamiento ... 217

Cinta magnética .. 217

Disco duro ... 218

Disco óptico... 218

Disquetes .. 218

Dispositivos de memoria no volátil ... 218

Servicios remotos de copia de seguridad ... 218

1.3. Administrar un almacén de datos .. 218

En línea .. 218

Cerca de línea .. 219

Fuera de línea ... 219

Cámara fuera del lugar.. 219

Centro de recuperación de datos ... 219

2. Concejos a tener en cuenta al realizar copias de seguridad .. 219

3. Planificación de las copias de seguridad .. 221

4. Copias de seguridad completas ... 222

5. Copias de seguridad incrementales ... 223

6. Aplicando compresión a las copias de seguridad .. 224

6.1 Problemas que presenta comprimir las copias de seguridad .. 225

7. Otras herramientas para realizar copias de seguridad en Linux .. 226

7.1. Copias de seguridad utilizando dd .. 226

7.2. Copias de seguridad utilizando dump .. 227

7.3. Copias de seguridad utilizando cpio ... 228

7.4. Copias de seguridad utilizando afio.. 229

7.5. Copias de seguridad utilizando rsync ... 229

7.6. Copias de seguridad utilizando amanda .. 230

8. ¿Qué hacer en caso de emergencia? ... 231

9. Revisar y recuperar sistemas de archivos .. 232

10. Recuperación del súper bloque ... 233

11. MBR dañado, infectado o corrupto ... 234

X. PRÁCTICAS DE LABORATORIO .. 237

Índice general Administración de Sistemas Operativos

Práctica 0: Programación de shell scripts ... 239

Práctica 1: Lenguaje awk .. 263

Práctica 2: Instalación del sistema operativo Linux .. 285

Práctica 3: Instalación de software ... 289

Práctica 4: Arranque y apagado del sistema .. 301

Práctica 5: Administración de usuarios y grupos .. 311

Práctica 6: Administración del sistema de archivos ... 323

Práctica 7: Administración de la red ... 337

Práctica 8: Copias de seguridad .. 349

XI. BIBLIOGRAFÍA ... 359

Índice de figuras Administración de Sistemas Operativos

ÍNDICE DE FIGURAS

1.1. Interacción entre un núcleo (kernel), el software restante y el hardware…………….........................38

1.2. Esquema de núcleo monolítico………………………………………………………..………….......39

1.3. Esquema del funcionamiento de un micronúcleo…………………………………………………….39

1.4. Esquema de interacción entre un exonúcleo y el software a través de las bibliotecas..........................40

1.5. Dennis Ritchie (derecha) y Ken Thompson (izquierda)……………………………………………...41

1.6. pdp 7 de DEC…………………….……………….……………….………………………………….41

1.7. pdp 11 de DEC………………………………………………………………………..........................42

1.8. VAX de DEC………………………………………………………………………….........................42

1.9. Linus Torvalds………………………………………………………………………..........................43

1.10. Richard Stallman…………………………………………………………………………………….50

1.11. Ciclo de vida del sistema……………………………………………………………………………56

2.1. Estructura del MBR…………………………………………………………………………………...67

3.1. Esquema de elementos basados en texto de la familia de programas apt…………………………….89

3.2. Esquema básico utilizado para montar la mayoría de programas…………………………………….98

5.1. Propiedad y grupo de un archivo……………………………………………………………………127

5.2. Esquema típico de creación de un usuario…………………………………………..........................130

5.3. Arquitectura de Linux-PAM…………………………………………………………………………136

6.1. Utilizar inodos para asignar la información de los datos para los datos dentro de los grupos de bloque………..141

6.2. Dispositivo con un sistema de archivos ext2………………………………………………………..142

6.3. Esquema del árbol típico de directorios……………………………………………..........................145

6.4. Esquema de un enlace simbólico……………………………………………………………………152

6.5. Mostrar la propiedad y los permisos………………………………………………………………...157

6.6. Andrew Tridgell……………………………………………………………………..........................162

7.1. Ubicación de TCP en la pila de protocolos………………………………………………………….171

7.2. Ubicación de IP en la pila de protocolos…………………………………………………………….171

7.3. Ubicación de UDP en la pila de protocolos………..………………………………..........................171

7.4. Implementación de niveles de redes………………………………………………………………...172

7.5. Direccionamiento para la clase A……….…………………………………………..........................177

7.6. Direccionamiento para la clase B……….…………………………………………………………...177

7.7. Direccionamiento para la clase C……….…………………………………………………………...178

7.8. Direccionamiento para la clase D……….…………………………………………..........................178

7.9. Direccionamiento para la clase E……….…………………………………………………………...178

7.10. Esquema de ejemplo de red………………….…………………………………….........................182

7.11. Estructura de la capa de transporte ssh………..…………………………………………………...188

9.1. Estructura de un servidor de copias de seguridad con rsync………………………………………...229

9.2. Copia de seguridad de un archivo utilizando rsync…………………………………………………230

Índice de tablas Administración de Sistemas Operativos

ÍNDICE DE TABLAS

1.1. Lista de condiciones que debe cumplir un programa para ser considerado Open Source……………52

1.2. Los seis tipos de licencias generadas con combinaciones de las cuatro condiciones………………...55

6.1. Tipos de archivos de Linux según la naturaleza de su contenido…………………………………...154

6.2. Atributos existentes en el sistema de archivos de Linux……………………………………………154

6.3. Valores comúnmente usados para el umask…………………………………………………………159

7.1. Máscaras de red estándar…………………………..………………………………..........................178

8.1. Herramientas alternativas al comando crack………………………………………..........................209

9.1. Opciones básicas del comando cpio…………………………………………………………………228

Introducción Administración de Sistemas Operativos

Página | 21

I. INTRODUCCIÓN

El Programa de Cooperación con Nicaragua (PCN) es un Proyecto de gran impulso orientado

a la formación de capacidades académicas por parte de la Universidad de Alcalá, cuyo objetivo

es contribuir al desarrollo de Nicaragua a través del fortalecimiento académico de futuros

docentes de la Universidad Nacional Autónoma de Nicaragua, UNAN-León. Un Proyecto

alimentado por una visión compartida sobre el papel y la posibilidad de la universidad como

agente de desarrollo del conocimiento, la tecnología y la cultura y una filosofía de trabajo

planificado, organizado y de medio-largo plazo.

En el año 1994 se creó el convenio entre el Departamento de Automática de la Universidad

de Alcalá de Henares (UAH) y el Departamento de Computación de la Universidad Nacional

Autónoma de Nicaragua (UNAN-León) con el objetivo de impulsar la excelencia en la

enseñanza académica en la carrera de Ingeniería en Sistemas de Información (antes Licenciatura

en Computación), lo cual ha contribuido y sigue contribuyendo con la formación de mejores

profesionales en el área de la informática.

Como consecuencia del gran impacto que están teniendo las redes y las tecnologías de

comunicaciones hoy en día, el departamento de Computación de la UNAN-León decidió

agregar, con el apoyo del convenio que tiene con la Universidad de Alcalá de Henares, una

nueva opción de carrera profesional: la carrera de Ingeniería en Telemática, la cual contempla

un plan de estudios que requiere de un periodo de cinco años de estudios superiores (los tres

primeros años son semejantes con la carrera de Ingeniería en sistemas de información) y una

dedicación de tiempo completo por parte del estudiante.

En el presente documento se aborda el desarrollo del Plan Docente de la asignatura de

Administración de Sistemas Operativos que se imparte en el segundo semestre del cuarto año de

la carrera (en general octavo semestre de la carrera) de Ingeniería en Telemática de la UNAN-

León.

Además de lo mencionado anteriormente también se presentan los siguientes aspectos:

 La situación actual de la asignatura.

 Su relación con otras asignaturas.

 La metodología empleada.

 El material didáctico de apoyo para impartirla.

 El sistema de evaluación.

 La planificación temporal.

 La presentación de los contenidos teóricos y su respectiva bibliografía.

 El desarrollo de las prácticas y su respectiva bibliografía.

El plan docente está compuesto por dos partes. En la primera parte se desarrollan los

contenidos teóricos que son necesarios para cumplir con los objetivos de la asignatura y son

esenciales para la comprensión de las prácticas. En la segunda parte se desarrolla la parte

correspondiente a las prácticas de laboratorio que permitirán a los estudiantes reforzar y aplicar

los conocimientos adquiridos en las clases teóricas.

Administración de Sistemas Operativos Objetivos

Página | 22

II. OBJETIVOS

Los objetivos del presente proyecto docente son

Para el docente que impartirá la asignatura:

 Generar un instrumento documentado que le sirva de guía para impartir la asignatura de

Administración de Sistemas Operativos, para asegurar de esta manera una mejor

planificación y organización de la misma.

 Utilizar este documento como guía para proporcionar a los estudiantes los

conocimientos teórico-prácticos para: Instalar, configurar y administrar un sistema

operativo tipo Unix.

Para el estudiante:

 Adquirir los conocimientos teóricos relacionados con la Administración de Sistemas

Operativos y poner en práctica dichos conocimientos a lo largo de toda la asignatura.

 Introducirlo en las tareas que debe realizar un administrador de un sistema operativo

tipo Unix, para conseguir un aprovechamiento óptimo de los recursos de que dispone.

 Conocer las técnicas de administración de sistemas Unix y la provisión de algunos

servicios soportados por esta plataforma.

Situación actual de la asignatura Administración de Sistemas Operativos

Página | 23

III. SITUACIÓN ACTUAL DE LA ASIGNATURA EN

EL PÉNSUL ACADÉMICO DE INGENIERÍA EN
TELEMÁTICA

La asignatura de Administración de Sistemas Operativos, se impartirá en la carrera de

Ingeniería en Telemática de la UNAN-León, la cual es ofrecida por el departamento de

computación de la Facultad de Ciencias de dicha universidad.

La carrera se desarrolla a lo largo de diez semestres de estudios (cinco años

académicos/lectivos). Esta asignatura se imparte en el octavo semestre del plan de estudios

actual (segundo semestre del cuarto año de la carrera).

La asignatura consta de un total de sesenta y cuatro horas (tres créditos académicos), las

cuales incluyen tanto tiempo destinado a la parte teórica como a la parte práctica, distribuidas a

lo largo de dieciséis semanas lectivas.

División de horas destinadas para teoría y para práctica:

 Horas semanales Horas Semestrales

Teoría 2 horas 2 horas semanales * 16 semanas = 32 horas

Práctica 2 horas 2 horas semanales * 16 semanas = 32 horas

64 horas totales por semestre

Para lograr un total aprendizaje de la asignatura de Administración de Sistemas Operativos el

estudiante deberá tener ciertos conocimientos previos adquiridos en la asignatura de previo

requisito (Sistemas operativos II).

En la siguiente sección se citan cuales son las asignaturas que de modo directo se relacionan

con la asignatura de Administración de Sistemas Operativos, sin embargo todo estudiante, debe

haber desarrollado las siguientes competencias:

Parte teórica:

 Poseer los conocimientos básicos generales de teoría de sistemas operativos, tanto de su

estructura interna como a nivel de usuario.

Parte práctica:

 Manejo de los comandos básicos del intérprete de órdenes de un sistema Unix.

Administración de Sistemas Operativos Relación con otras asignaturas

Página | 24

IV. RELACIÓN CON OTRAS ASIGNATURAS

El proceso de aprendizaje de la asignatura de Administración de Sistemas Operativos,

requiere de otros conocimientos que una vez que el estudiante llegue a esta asignatura deberá

tener muy claros y afianzados para de esta forma lograr una mejor comprensión de la misma.

Estos conocimientos son adquiridos por los estudiantes a lo largo de su formación académica en

asignaturas antecedentes.

Por este motivo se hace importante plasmar la relación de la asignatura: Administración de

Sistemas Operativos con otras asignaturas.

Arquitectura de computadores:

 Esta asignatura se imparte en el quinto semestre del plan de estudios actual (primer

semestre del tercer año de la carrera). Proporciona el conocimiento de los conceptos

relacionados con la arquitectura de un computador, haciendo énfasis en los

componentes de la misma y basándose en la arquitectura propuesta por Von Newman.

Sistemas Operativos I y II:

 Estas asignaturas se imparten en el sexto y séptimo semestre del plan de estudios actual,

respectivamente. Permitirá conocer la manera de trabajar de los sistemas operativos y

sobre todo, formará las bases para comprender y aplicar los conceptos de núcleo del

sistema, ejecución de procesos, intérprete de órdenes y estructura del sistema Unix; en

un entorno local al sistema, conceptos importantes para la correcta asimilación de los

nuevos términos de estudio que se utilizan en la asignatura de Administración de

Sistemas Operativos.

Mediante la articulación de las asignaturas anteriores, que son antecedentes a la asignatura

de Administración de Sistemas Operativos se podrá articular la asimilación, por parte del

estudiante, de los conceptos teórico/práctico abordados en la Administración de Sistemas

Operativos.

Contenido del temario Administración de Sistemas Operativos

Página | 25

V. CONTENIDO DEL TEMARIO

TEMA 0: PRESENTACIÓN DE LA ASIGNATURA

 Presentación del docente

 Información de la asignatura

 Objetivos de la asignatura

 Temario

 Material de estudio

 Metodología de evaluación

 Tutorías

TEMA 1: INTRODUCCIÓN

 Repaso de conceptos importantes sobre sistemas operativos

 Introducción a Unix

 Software libre y Linux

 Introducción a la administración

TEMA 2: INSTALACIÓN BÁSICA

 Conceptos necesarios previos a la instalación

 Tareas de preparación para la instalación de Linux

 Procedimientos posteriores a la instalación

TEMA 3: INSTALACIÓN, ACTUALIZACIÓN Y COMPILACIÓN DE PROGRAMAS

 Actualización de software.

 Procedimiento general de actualización

 Sistema de gestión de paquetes RPM

 Sistemas de gestión de paquetes .deb

 Software no proporcionado en paquetes

TEMA 4: INICIO Y CIERRE DEL SISTEMA

 Inicio del sistema

 Inicio e inicialización del sistema

 Modo de un solo usuario

 Cierre del sistema

TEMA 5: ADMINISTRACIÓN DE USUARIOS, GRUPOS Y PERMISOS

 Tipos de cuentas de usuario

 Usuarios y uids

 Pseudo-conexiones

 Gestión de usuarios y grupos

 Operaciones con las cuentas de usuario

 Otro método de autenticación: PAM

Administración de Sistemas Operativos Contenido del temario

Página | 26

TEMA 6: EL SISTEMA DE ARCHIVOS

 Concepto de archivo y de sistema de archivos

 Los inodos

 El superbloque

 El sistema de archivos ext2

 El sistema de archivos ext3

 El estándar de jerarquía del sistema de archivos

 Algunos directorios interesantes

 Nombres de archivos y directorios

 Tipos de archivos

 Atributos existentes en el sistema de archivos de Linux

 Propiedad y permisos de los archivos

 Puntos adicionales del sistema de archivos

 Sistemas de archivos distribuidos (DFS)

TEMA 7: SISTEMAS DE RED

 Introducción a TCP/IP

 Servicios sobre TCP/IP

 ¿Qué es TCP/IP?

 La pila de protocolos IP

 Dispositivos físicos (hardware) de red

 Conceptos TCP/IP

 Direcciones TCP/IP

 Componentes de la dirección de red

 Configurar la red

 Aplicaciones seguras

TEMA 8: EJECUTAR UN SISTEMA SEGURO

 Una perspectiva sobre la seguridad del sistema

 Algunos aspectos de seguridad a tomar en cuenta

 Las 10 cosas que nunca se deben hacer

 Configuración del envoltorio TCP

 Cortafuegos: filtrado de paquetes IP

 Otros elementos útiles para asegurar nuestro sistema

TEMA 9: COPIAS DE SEGURIDAD Y RECUPERACIÓN

 Introducción a las copias de seguridad

 Concejos a tener en cuenta al realizar copias de seguridad

 Planificación de las copias de seguridad

 Copias de seguridad completas

 Copias de seguridad incrementales

 Aplicando compresión a las copias de seguridad

 Otras herramientas para realizar copias de seguridad en Linux

 ¿Qué hacer en caso de emergencia?

 Revisar y recuperar sistemas de archivos

 Recuperación del súper bloque

 MBR dañado, infectado o corrupto

Metodología didáctica y material didáctico a utilizar Administración de Sistemas Operativos

Página | 27

VI. METODOLOGÍA DIDÁCTICA Y MATERIAL

DIDÁCTICO A UTILIZAR

Metodología didáctica

 Parte Teórica:

La metodología que se utilizará para impartir la asignatura de Administración de Sistemas

Operativos serán las lecciones magistrales con una duración de dos horas, una vez a la semana

durante las cuales se abordará de forma planificada el contenido teórico desarrollado en este

plan. Cada sesión de dos horas se planificará en dos bloques de sesenta minutos cada uno.

Las lecciones serán complementadas con cualquier técnica de enseñanza como pueden ser

diagramas, ejemplos, tablas, etc. que ayude a una mejor comprensión de los conceptos teóricos

expuestos. Quedará a libre elección del docente cualquier criterio que ayude a incentivar el

interés de los estudiantes hacia la asignatura ya sea mediante trabajos en grupo, presentaciones

individuales, trabajos investigativos, etc.

 Parte Práctica:

En las prácticas de laboratorio se realizará una explicación de la misma al iniciar cada una de

las sesiones nuevas de laboratorio, y puesto que las prácticas están guiadas el docente sólo

deberá aclarar dudas o resolverá algún otro problema específico. Quedará a libre elección del

docente cualquier criterio que ayude a incentivar el interés de los estudiantes para mejorar la

calidad de las prácticas que estos entregan ya sea a través de mejoras en las mismas, entrega de

versiones con añadidos, etc.

Material Didáctico:

Tanto en la parte teórica como en la práctica se utilizará el mismo material didáctico el cual

será:

 La pizarra para las explicaciones y ejemplos que sea necesario.

 Presentaciones teóricas/prácticas con diapositivas utilizando para tal fin los medios

didácticos necesarios como son: retroproyector y láminas de acetato, o laptops y data

show.

 La asignatura contará con una página web en la cual se colocará todo el material

didáctico correspondiente tanto para la parte teórica como para la parte práctica, así

como también material electrónico de apoyo y enlaces a diversos sitios de interés.

 Acceso a la bibliografía básica para este tema y a la información impresa del material

en la web la cual estará disponible en la biblioteca del departamento.

Administración de Sistemas Operativos Planificación temporal

Página | 28

VII. PLANIFICACIÓN TEMPORAL

La planificación de la asignatura, para que sea de una manera objetiva, debe de realizarse

año con año en función del calendario académico del que se disponga para poder, a partir de

este, calcular el número de sesiones lectivas de las cuales se dispone.

La asignatura de Administración de Sistemas Operativos se imparte en el segundo semestre

del cuarto año de la carrera y está constituida de tres créditos académicos. Normalmente el

segundo semestre consta con un total de dieciséis semanas hábiles, pero considerando los días

festivos y dando margen a cualquier otra eventualidad que pudiese suceder como son: exámenes

retrasados, protestas nacionales, etc. podemos deducir que se tienen catorce semanas netas para

cumplir con el contenido de la asignatura.

Tanto la parte teórica como la práctica, constan de una sesión de dos horas a la semana, por

catorce semanas que hemos asumido como netas, suman un total de veintiocho horas para la

teoría y veintiocho horas para las prácticas.

El número de horas asignadas a cada tema y a cada práctica, se ha calculado en base a la

profundidad con que se quiere abordar cada tema. De tal manera que la planificación temporal

tanto para la teoría como para las prácticas es la siguiente:

Planificación temporal de la parte teórica:

N° de tema Tema Horas

0 Presentación de la asignatura 1

1 Introducción 3

2 Instalación básica 2

3 Instalación, actualización y compilación de programas 2

4 Inicio y cierre del sistema 2

5 Administración de usuarios, grupos y permisos 4

6 El sistema de archivos 6

7 Sistemas de red 4

8 Ejecutar un sistema seguro 2

9 Copias de seguridad y recuperación 2

Horas totales de teoría: 28

Planificación temporal de la parte práctica:

N° de práctica Práctica Horas

0 Programación de shell scripts 4

1 Lenguaje AWK 4

2 Instalación del sistema operativo Linux 4

3 Instalación de software 2

4 Arranque y apagado del sistema 2

5 Administración de usuarios y grupos 4

6 Administración del sistema de archivos 4

7 Administración de la red 2

8 Copias de seguridad 2

Horas totales de prácticas: 28

Metodología de evaluación Administración de Sistemas Operativos

Página | 29

VIII. METODOLOGÍA DE EVALUACIÓN

La asignatura está compuesta por las clases teóricas y las prácticas que son realizadas en el

laboratorio. A lo largo del semestre se realizarán dos evaluaciones parciales (primero y segundo

parcial) que corresponderán al 60% de la nota final y el restante 40% se obtendrá en una

evaluación al final del semestre. Cada una de las evaluaciones parciales se desglosa de la

siguiente manera:

Evaluación del primer parcial:

 Examen teórico…………………….70%

 Evaluación práctica……………...+30%

 Total….…………………………….100%

Evaluación del segundo parcial:

 Examen teórico…………………….70%

 Evaluación práctica……………...+30%

 Total….…………………………….100%

Las notas del primero y segundo parcial se suman, se dividen entre dos y se multiplican por

0.6 (ya que equivalen al 60% de la nota final) para de esta forma obtener la nota de entrada al

examen final. El examen final tiene un valor de cien puntos que luego se multiplican por 0.4

(para obtener el 40% al que equivale) y el resultado se suma con la nota de entrada.

Para aprobar la asignatura el alumno debe obtener una nota mayor o igual a sesenta.

Aquellos estudiantes cuya suma del primero y segundo parcial dividido entre dos sea inferior a

cincuenta no tendrán derecho a hacer el examen final. Queda a criterio del docente evaluar a

alumnos que cumplan la condición antes mencionada en los casos en el que él considere

conveniente.

Evaluación final/semestral:

 Nota acumulada ((1er parcial + 2do parcial) ÷ 2) * 0.6 >= 50

 Examen final/semestral + (nota del examen final/semestral) * 0.4

 Total nota final >= 60

Evaluación de la teoría:

El examen teórico que se realiza en cada parcial correspondiente al 70% constará de

preguntas/cuestiones teóricas sobre todos los temas vistos en clase que permitirán evaluar el

grado de comprensión de los conceptos básicos que el estudiante ha adquirido durante el

transcurso de la asignatura.

Evaluación de las prácticas:

El 30% correspondiente a las evaluaciones prácticas se obtendrá a través de la entrega en

tiempo y forma de la soluciones de las guías de laboratorio; y la defensa ante el docente de las

mismas, todo esto debe hacerse en los laboratorios asignados para tal fin. Queda a libre elección

del docente la realización de un examen práctico al final de cada parcial. Todas las entregas y

defensas de prácticas al docente deberán ser evaluadas. Aquellos estudiantes que no entreguen

las prácticas en tiempo y forma deberán serán sancionados según el criterio que decida tomar el

docente.

Administración de Sistemas Operativos Metodología de evaluación

Página | 30

El 40% correspondiente a la evaluación final/semestral se obtendrá a través de un examen en

el cual se contemplarán preguntas/cuestiones teóricas sobre todos los temas abordados en clase

a lo largo del semestre y ejercicios/cuestiones prácticos abordados en las diferentes sesiones de

laboratorio.

Metodología de evaluación Administración de Sistemas Operativos

Página | 31

IX. DESARROLLO DEL TEMARIO

Página | 32

Tema 0: Presentación de la asignatura Administración de Sistemas Operativos

Página | 33

TEMA 0: PRESENTACIÓN DE LA ASIGNATURA

Presentación del docente

 El docente deberá presentarse formalmente ante los estudiantes.

 También deberá bríndales toda la información de contacto como puede ser: correo

electrónico, teléfono de oficina, pagina web personal, etc., necesaria para que ellos

puedan comunicarse con él.

Información de la asignatura

 El docente deberá mencionar los horarios de clases correspondientes tanto para la parte

teórica como para la parte practica.

 Se darán a conocer las ubicaciones de las aulas en las cuales se impartirá la teoría y el

laboratorio en el cual se impartirá la práctica.

 En el caso de que exista algún cambio importante como: cambio de horarios, cambio de

laboratorio, etc. este deberá ser informado a los estudiantes en este punto.

Objetivos de la Asignatura

 Se mencionarán los objetivos que se pretenden alcanzar al cursar la asignatura.

 Se presentarán los logros que serán alcanzados al finalizar la asignatura

Temario

 Se hará una breve introducción/descripción de cada uno de los temas que van a ser

desarrollados a lo largo de la asignatura.

Referencia: ver temas abordados en la asignatura en página número 25.

 Se indicará la planificación temporal para cada uno de los temas teóricos, así como

también la planificación temporal para el desarrollo de las prácticas de laboratorio.

Referencia: ver planificación temporal de la asignatura en página número 28.

 Se hará una breve introducción/descripción de cada una de las prácticas de laboratorio

que serán realizadas a lo largo de la asignatura.

Material de estudio

 Se informará al alumno del material (transparencias) que se utilizará como guía para el

desarrollo de la asignatura.

 Se dará a conocer la dirección de la página Web de la asignatura en la cual se colocará

toda la información necesaria tanto para la parte teórica como para la parte práctica así

como cualquier otro elemento(s) que el docente considere necesario.

 Se presentará la bibliografía básica y complementaria utilizada para el desarrollo de la

asignatura. En general para la parte teórica el libro básico será: Matthias Kalle

Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX Segunda edición

actualizada y ampliada”, Editorial Anaya Multimedia, 2006. Y el libro complementario

será: Dee-Ann LeBlanc, “Administración de sistemas LINUX La biblia”. Editorial

Administración de Sistemas Operativos Tema 0: Presentación de la asignatura

Página | 34

ANAYA MULTIMEDIA, 2001. Para la parte práctica se usará como libro básico:

Sebastián Sánchez Prieto, Óscar García Población, “UNIX y LINUX Guía Práctica

Tercera edición”. Editorial Ra-Ma, 2005. Y como libro complementario: Iñaki Alegría

Loinaz, Roberto Cortiñas Rodríguez, Aitzol Ezeiza Ramos, “Linux Administración del

sistema y la red”, Editorial Prentice Hall, 2005.

 De existir otras fuentes de información (fuentes de interés, enlaces de apoyo, recursos,

etc.) distintas a las mencionadas en los apartados anteriores estas también deberán ser

presentadas en este punto.

Metodología de evaluación

 Se explicará al estudiante la metodología de evaluación empleada durante el desarrollo

de la asignatura, así como también todos aquellos requisitos que deben cumplir para

aprobar la asignatura.

Referencia: ver la metodología de evaluación a emplear en la asignatura en la página

número 29.

Tutorías

 Todos los estudiantes podrán hacer consultas al docente fuera del aula de clases en el

horario que dicho docente disponga para consultas.

 Por lo tanto se deberá brindar a los estudiantes el horario para estas consultas.

 Las tutorías sólo se deberán llevar a cabo en horarios de oficina. En casos de tutorías

diferentes a la antes mencionada entonces el estudiante deberá hacer uso de la

información de contacto provista por el docente en la parte correspondiente a la

presentación del mismo.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 35

TEMA 1: INTRODUCCIÓN

Objetivos

 Repasar de manera breve los aspectos básicos sobre sistemas operativos.

 Promover conocimientos sobre la historia de Unix y Linux.

 Estudiar el concepto de distribución y conocer algunas de ellas.

 Estudiar el concepto de software libre y lo que éste representa.

 Presentar las tareas, labores y responsabilidades del administrador de sistemas.

Contenido

1. Repaso de conceptos importantes sobre sistemas operativos

1.1. ¿Qué es un sistema operativo?

1.2. Concepto de proceso

1.3. Concepto de núcleo

1.3.1. Tipos de núcleo

1.4. Conceptos de: Multitarea, multiusuario y multiplataforma

2. Introducción a Unix

2.1. Historia de Unix

2.2. Aparición de Linux

2.3. Distribuciones de Linux

2.3.1. Principales distribuciones

3. Software libre y Linux

3.1. GNU

3.2. Libertad y coste

3.3. Open Source

3.4. Licencias en el software libre

3.4.1. Licencias tipo BSD

3.4.2. La licencia publica general de GNU (GNU GPL)

3.5. Licencias de otros recursos libres

3.5.1. Licencia de documentación libre de GNU

3.5.2. Licencias de Creative Commons

4. Introducción a la administración

4.1. Ciclo de vida del sistema

4.2. El administrador del sistema

4.3. La primera regla del administrador

4.4. Responsabilidades del administrador

4.5. Seguridad en la administración

Bibliografía

Básica

 Sebastián Sánchez Prieto, Óscar García Población, “UNIX y LINUX Guía Práctica

Tercera edición”. Editorial Ra-Ma, 2005.

 Jordi Mas i Hernández, “Software Libre: técnicamente viable, económicamente

sostenible y socialmente justo Primera edición”, infonomia Red de innovadores, 2005.

http://www.softcatala.org/~jmas/swl/llibrejmas.pdf
 M Carling, Stephen Degler, James Dennis, “Administración de Sistemas Linux Guía

Avanzada”. Editorial Prentice Hall, 2000.

http://www.softcatala.org/~jmas/swl/llibrejmas.pdf

Administración de Sistemas Operativos Tema 1: Introducción

Página | 36

 Sebastián Sánchez Prieto, “Sistemas operativos, textos universitarios, segunda edición”,

Editorial universidad de Alcalá.

Complementaria

 Sistema operativo.

http://es.wikipedia.org/wiki/Sistema_operativo

 Proceso (informática).

http://es.wikipedia.org/wiki/Proceso_%28inform%C3%A1tica%29

 Núcleo (informática).

http://es.wikipedia.org/wiki/N%C3%BAcleo_(inform%C3%A1tica)
 Núcleo monolítico.

http://es.wikipedia.org/wiki/N%C3%BAcleo_monol%C3%ADtico

 Micronúcleo

http://es.wikipedia.org/wiki/Micron%C3%BAcleo

 Núcleo híbrido.

http://es.wikipedia.org/wiki/N%C3%BAcleo_h%C3%ADbrido

 Exonúcleo.

http://es.wikipedia.org/wiki/Exon%C3%BAcleo

 Distribución Linux.

http://es.wikipedia.org/wiki/Distribuci%C3%B3n_Linux

 Red Hat.

http://es.wikipedia.org/wiki/Red_Hat
http://www.redhat.es/

 Fedora (distribución Linux).

http://es.wikipedia.org/wiki/Fedora_Core

http://fedoraproject.org/

 SUSE Linux.

http://es.wikipedia.org/wiki/SUSE_Linux

http://es.opensuse.org/Bienvenidos_a_openSUSE.org

 Mandriva Linux.

http://es.wikipedia.org/wiki/Mandriva_Linux

http://www.mandriva.com/

 Debian.

http://es.wikipedia.org/wiki/Debian

http://www.debian.org/index.es.html
 GnuLinEx.

http://es.wikipedia.org/wiki/GnuLinEx

http://www.linex.org/joomlaex/

 Ubuntu (distribución Linux).

http://es.wikipedia.org/wiki/Ubuntu_(distribuci%C3%B3n_Linux)
http://www.ubuntu.com/

 Creative Commons.

http://es.wikipedia.org/wiki/Creative_Commons

http://es.creativecommons.org/licencia/

 El sistema operativo GNU.

http://www.gnu.org/home.es.html

http://es.wikipedia.org/wiki/Sistema_operativo
http://es.wikipedia.org/wiki/Proceso_%28inform%C3%A1tica%29
http://es.wikipedia.org/wiki/N%C3%BAcleo_(inform%C3%A1tica)
http://es.wikipedia.org/wiki/N%C3%BAcleo_monol%C3%ADtico
http://es.wikipedia.org/wiki/Micron%C3%BAcleo
http://es.wikipedia.org/wiki/N%C3%BAcleo_h%C3%ADbrido
http://es.wikipedia.org/wiki/Exon%C3%BAcleo
http://es.wikipedia.org/wiki/Distribuci%C3%B3n_Linux
http://es.wikipedia.org/wiki/Red_Hat
http://www.redhat.es/
http://es.wikipedia.org/wiki/Fedora_Core
http://fedoraproject.org/
http://es.wikipedia.org/wiki/SUSE_Linux
http://es.opensuse.org/Bienvenidos_a_openSUSE.org
http://es.wikipedia.org/wiki/Mandriva_Linux
http://www.mandriva.com/
http://es.wikipedia.org/wiki/Debian
http://www.debian.org/index.es.html
http://es.wikipedia.org/wiki/GnuLinEx
http://www.linex.org/joomlaex/
http://es.wikipedia.org/wiki/Ubuntu_(distribuci%C3%B3n_Linux)
http://www.ubuntu.com/
http://es.wikipedia.org/wiki/Creative_Commons
http://es.creativecommons.org/licencia/
http://www.gnu.org/home.es.html

Tema 1: Introducción Administración de Sistemas Operativos

Página | 37

1. Repaso de conceptos importantes sobre sistemas operativos

Antes de introducirnos de lleno en la administración de sistemas operativos es necesario

recordar algunos conceptos que serán de gran utilidad para la comprensión de cada uno de los

elementos que nos permitirán la correcta administración de un sistema operativo Linux. En la

siguiente sección se describen los conceptos considerados como más relevantes antes de

empezar a hablar de la administración de sistemas.

1.1. ¿Qué es un sistema operativo?

Un sistema operativo es un software de sistema, es decir, un conjunto de programas de

computadora destinado a permitir una administración eficaz de sus recursos. Comienza a

trabajar cuando se enciende el computador, y gestiona el hardware de la máquina desde los

niveles más básicos, permitiendo también la interacción con el usuario.

Los sistemas operativos, en su condición de capa software, posibilitan y simplifican el

manejo de la computadora, desempeñan una serie de funciones básicas esenciales para la

gestión del equipo. Entre las más destacables, cada una ejercida por un componente interno,

podemos mencionar las siguientes:

 Proporcionar comodidad en el uso de un computador.

 Gestionar de manera eficiente los recursos del equipo, ejecutando servicios para los

procesos o programas.

 Brindar una interfaz al usuario, ejecutando instrucciones u órdenes.

 Permitir que los cambios, debido al desarrollo del propio sistema operativo, se puedan

realizar sin interferir con los servicios que ya se prestaban (conocido como

evolutividad).

Un sistema operativo desempeña cinco funciones básicas en la operación de un sistema

informático como son: Suministro de interfaz al usuario, administración de recursos,

administración de archivos, administración de tareas y servicio de soporte y utilidades.

1.2. Concepto de proceso

Un proceso es un programa en ejecución. Se trata de una entidad dinámica, a diferencia del

programa que es una entidad estática.

Un proceso se genera cuando el sistema operativo carga un programa de disco en memoria

principal y le asigna los recursos que necesita para ejecutarse. Así mismo, el sistema operativo

crea una estructura u objeto para gestionar la información de cada uno de los trabajos existentes

en el sistema.

Los procesos son creados y destruidos por el sistema operativo, así como también éste se

debe hacer cargo de la comunicación entre procesos, pero lo hace a petición de otros procesos.

El mecanismo por el cual un proceso crea otro proceso se denomina bifurcación (fork).

1.3. Concepto de núcleo

El núcleo, también conocido como kernel (ver figura 1.1), es la parte fundamental de un

sistema operativo. Es el software responsable de facilitar a los distintos programas acceso

seguro al hardware de la computadora, o en forma más básica, es el encargado de gestionar

recursos a través de servicios de llamadas al sistema.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 38

Como hay muchos programas y el acceso al hardware es limitado, el núcleo también se

encarga de decidir qué programa podrá hacer uso de un dispositivo de hardware y durante

cuánto tiempo.

Acceder al hardware directamente puede ser realmente complejo, por lo que los núcleos

suelen implementar una serie de abstracciones del hardware. Esto permite ocultar la

complejidad, y proporciona una interfaz limpia y uniforme al hardware subyacente, lo que

facilita su uso para el programador.

Figura 1.1: Interacción entre un núcleo (kernel),

el software restante y el hardware

No necesariamente se necesita un núcleo para usar una computadora. Los programas pueden

cargarse y ejecutarse directamente en una computadora vacía, siempre que sus autores quieran

desarrollarlos sin usar ninguna abstracción del hardware ni ninguna ayuda del sistema operativo.

Ésta era la forma normal de usar muchas de las primeras computadoras: Para usar distintos

programas se tenía que reiniciar y reconfigurar la computadora cada vez. Con el tiempo, se

empezó a dejar en memoria pequeños programas auxiliares, como el cargador y el depurador, o

se cargaban desde memoria de sólo lectura. A medida que se fueron desarrollando, se

convirtieron en los fundamentos de lo que llegarían a ser los primeros núcleos de sistema

operativo.

1.3.1. Tipos de núcleo

Principalmente existen cuatro grandes tipos de núcleos: Los núcleos monolíticos, los

micronúcleos, los núcleos híbridos y los exonúcleos. En la siguiente sección se detalla cada uno

de ellos.

Los núcleos monolíticos (ver figura 1.2):

Los sistemas operativos de núcleo monolítico tienen la característica de poseer un núcleo

grande y complejo, que engloba todos los servicios del sistema. El sistema operativo se ejecuta

en modo supervisor, con las interrupciones deshabilitadas y en general tiene un rendimiento

mucho mayor que un micronúcleo. Todo cambio a realizar en cualquier servicio implementado

en el núcleo requiere la recompilación del mismo y el reinicio del sistema operativo para que los

nuevos cambios sean aplicados y tengan efecto. Como ejemplos de sistemas operativos de

núcleo monolítico podemos citar a Unix y Linux.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 39

Figura 1.2: Esquema de núcleo monolítico

Los Micronúcleos o Microkernel (ver figura 1.3):

Es un tipo de núcleo de un sistema operativo que provee un conjunto de primitivas o

llamadas al sistema mínimas para implementar servicios básicos como: Espacios de direcciones,

comunicación entre procesos y conmutación de la CPU entre procesos; todos los otros servicios,

como pueden ser: La gestión de la memoria, el sistema de archivos, la gestión de dispositivos de

E/S, etc., que en general son provistos por el núcleo, se ejecutan como procesos servidores en

espacio de usuario. Las principales ventajas de utilizar un sistema operativo que implemente un

micronúcleo son: La reducción de la complejidad, la descentralización de los fallos (un fallo en

una parte del sistema no lo colapsaría por completo) y la facilitación para crear y depurar

controladores de dispositivos. Dentro de las principales dificultades que podemos citar están: La

complejidad en la sincronización de todos los módulos que componen el micronúcleo y su

acceso a la memoria, así como también la integración con las aplicaciones. Como ejemplos de

sistemas operativos que implementan micronúcleos encontramos a Minix y Hurd.

Figura 1.3: Esquema del funcionamiento de un micronúcleo

Los núcleos híbridos:

Fundamentalmente son micronúcleos que tienen algo de código no esencial, en espacio de

núcleo para que éste se ejecute más rápido de lo que lo haría si estuviera en espacio de usuario.

La mayoría de sistemas operativos modernos pertenecen a esta categoría, siendo los más

populares aquellos pertenecientes a la familia de sistemas operativos de Microsoft Windows.

Los Exonúcleos o exokernel (ver figura 1.4):

Los exonúcleos, también conocidos como sistemas operativos verticalmente estructurados,

representan una aproximación radicalmente nueva al diseño de sistemas operativos. Se tratan de

núcleos que son extremadamente pequeños, ya que limitan expresamente su funcionalidad a la

protección y compartición de los recursos. Toda su funcionalidad deja de estar residente en

memoria y pasa a estar afuera de ella ubicándose en librerías dinámicas. La finalidad de un

Administración de Sistemas Operativos Tema 1: Introducción

Página | 40

exonúcleo es permitir a una aplicación que solicite una región específica de la memoria, un

bloque de disco concreto, etc., y simplemente asegurarse que los recursos pedidos están

disponibles, y que la aplicación tiene derecho a acceder a ellos. Debido a que el exonúcleo sólo

proporciona una interfaz al hardware de muy bajo nivel, careciendo de todas las funcionalidades

de alto nivel de otros sistemas operativos, éste es complementado por una biblioteca de sistema

operativo.

Figura 1.4: Esquema de interacción entre un exonúcleo

y el software a través de las bibliotecas

1.4. Conceptos de: Multitarea, multiusuario y multiplataforma

Las ventajas de utilizar el sistema operativo Linux, se derivan precisamente de su potencia y

flexibilidad. Estas dos propiedades son el resultado de las muchas funciones incorporadas al

sistema y que permiten utilizarlo en el momento mismo en que se ejecuta. Los siguientes

apartados repasan detenidamente algunas de estas características.

Multitarea

Es una característica de los sistemas operativos modernos que se refiere a la posibilidad de

ejecutar varios programas a la vez, compartiendo uno o más procesadores, sin los

inconvenientes de tener que detener la ejecución de cada aplicación. La mayoría de variantes de

Unix integran un tipo de multitareas llamado multitarea preferente, es decir, que cada programa

tiene garantizada la oportunidad de ejecutarse y se ejecuta hasta que el sistema operativo da

prioridad a la ejecución de otro programa. Esta es precisamente el tipo de multitarea que

incorpora Linux.

Multiusuario

Se refiere a la posibilidad de que varios usuarios, cada uno con ciertos niveles de permisos,

accedan a las aplicaciones o recursos del sistema desde un único PC. La capacidad de Linux

para asignar el tiempo de microprocesador simultáneamente a varias aplicaciones, permite

ofrecer acceso a varios usuarios a la vez, ejecutando cada uno de ellos una o varias aplicaciones.

La gran ventaja que les aporta a los sistemas Linux el poseer características como multitarea y

multiusuario es que más de un usuario puede trabajar con la misma versión de la aplicación al

mismo tiempo y desde el mismo terminal o desde terminales distintos. Sin embargo no debemos

confundir esta capacidad con el hecho de que varios usuarios puedan actualizar el mismo

archivo simultáneamente, algo que podría llevar a la confusión y al caos total y por ello resulta

indeseable.

Multiplataforma

Se refiere a la capacidad que tiene un sistema operativo de ejecutarse en diferentes

arquitecturas hardware.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 41

2. Introducción a Unix

En esta sección abarcaremos un poco de la historia de los sistemas Unix, la cual es necesaria

para poder describir como se produce la aparición de Linux, ya que este último posee orígenes

compartidos con Unix. Terminaremos explicando el concepto de distribución Linux y además

describiremos cada una de las principales distribuciones de Linux que existen actualmente.

2.1. Historia de Unix

Los antecedentes de Unix se remontan a 1964. En este año, Bell Telephone Laboratories de

AT&T, General Electric Company y el MIT (Instituto Tecnológico de Massachusetts) se

plantearon desarrollar un nuevo sistema operativo en tiempo compartido para una máquina GE

645 (de General Electric) al que denominaron MULTICS. Los objetivos buscados inicialmente

consistían en proporcionar a un conjunto amplio de usuarios una capacidad de computación

grande y la posibilidad de almacenar y compartir grandes cantidades de datos si éstos lo

deseaban. Todos esos objetivos eran demasiado ambiciosos para la época, sobre todo por las

limitaciones del hardware. Como consecuencia de ello, los trabajos en el nuevo sistema

operativo iban muy retrasados. Debido a eso, Bell Laboratories decidió dar por terminada su

participación en el proyecto. A pesar del fracaso de MULTICS, las ideas empleadas para su

diseño no cayeron en el olvido, sino que influyeron mucho en el desarrollo de Unix y de otros

sistemas operativos posteriores.

Ken Thompson (ver figura 1.5), uno de los miembros del Computing Science Research

Center de los Laboratorios Bell, encontró un computador DEC (Digital Equipment

Corporation) PDP-7 (ver figura 1.6) inactivo y se puso a desarrollar en él un juego denominado

Space Travel. El desarrollo de ese juego propició que Thompson adquiriese muchos

conocimientos relacionados con la máquina en la que estaba trabajando. Con objeto de crear un

entorno de trabajo agradable, Thompson, al que posteriormente se le unió Dennis Ritchie (ver

figura 1.5), se propuso la creación de un nuevo sistema operativo, al que denominó Unix.

Ritchie había trabajado anteriormente en el proyecto MULTICS, de mucha influencia en el

nuevo sistema operativo. Como ejemplos de esa influencia podemos citar la organización básica

del sistema de archivos, la idea del intérprete de órdenes (shell) como proceso de usuario (en

sistemas anteriores, el intérprete de órdenes formaba parte del propio núcleo del sistema

operativo), e incluso el propio nombre Unix deriva de MULTICS.

MULTICS: MULTiplexed Information and Computing Service.

UNICS: UNiplexed Information and Computing Service.

Figura 1.5: Dennis Ritchie (derecha) y Ken

Thompson (izquierda)

Figura 1.6: pdp 7 de DEC

Administración de Sistemas Operativos Tema 1: Introducción

Página | 42

Realmente, el término UNICS se empleó por la similitud de esta palabra con la palabra

inglesa eunuc, con lo cual se venía a indicar que este nuevo sistema operativo era un MULTICS

castrado. Posteriormente, UNICS dio lugar al nombre definitivo Unix. El nuevo sistema también

se vio influenciado por otros sistemas operativos, tales como el CTSS (Compatible Time

Sharing System) del MIT y el sistema XDS-940 (Xerox Data System) de la universidad de

California en Berkeley.

Aunque esta primera versión de Unix prometía mucho, su potencial no pudo demostrarse

hasta que se utilizó en un proyecto real. Así pues, mientras se planeaban las pruebas para

patentar el nuevo producto, éste fue trasladado a un computador PDP-11 (ver figura 1.7) de

Digital en una segunda versión. En 1973 el sistema operativo fue reescrito en lenguaje C en su

mayor parte. C es un lenguaje de alto nivel (las versiones anteriores del sistema operativo

habían sido escritas en lenguaje ensamblador), lo que propició que el sistema tuviera una gran

aceptación por parte de los nuevos usuarios. El número de instalaciones en Bell Laboratories

creció hasta quince, aproximadamente, y su uso también se difundió gradualmente a unas

cuantas universidades con propósitos educacionales.

Figura 1.7: pdp 11 de DEC

La primera versión de Unix disponible fuera de Bell Laboratories fue la versión 6, en el año

1976. En 1978 se distribuyó la versión 7, que fue adaptada a otros PDP-11 y a una nueva línea

de ordenadores de DEC denominada VAX (ver figura 1.8). La versión para VAX se conocía

como 32V.

Figura 1.8: VAX de DEC

Tras la distribución de la versión 7, Unix se convirtió en un producto y no sólo en una

herramienta de investigación o educacional, debido a que el Unix Support Group (USG) asumió

la responsabilidad y el control administrativo del Research Group en la distribución de Unix

dentro de AT&T.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 43

En el periodo comprendido entre 1977 y 1982, Bell Laboratories combinó varios sistemas

Unix, de la versión 7 y de la 32v, dando lugar a un único sistema cuyo nombre comercial fue

Unix System III. Ésta fue la primera distribución externa desde USG.

La modularidad, la sencillez de diseño y el pequeño tamaño de Unix, hicieron que muchas

entidades, tales como Rand, varias universidades e incluso DEC, se pusieran a trabajar sobre él,

La Universidad de Berkeley en California desarrolló una variante del sistema Unix para

máquinas VAX. Esta variante incorporaba varias características interesantes, tales como

memoria virtual, paginación por demanda y sustitución de páginas, con lo cual se permitía la

ejecución de programas mayores que la memoria física. A esta variante, desarrollada por Bill

Joy y Ozlap Babaoglu, se le conoció como 3BSD (Berkeley Software Distributions). Todo el

trabajo desarrollado por la Universidad de Berkeley para crear BSD impulsó a la Defense

Advanced Research Projects Agency (DARPA) a financiar a Berkeley en el desarrollo de un

sistema Unix estándar de uso oficial (4BSD). Los trabajos en 4BSD para DARPA fueron

dirigidos por expertos en redes y Unix, DARPA Internet (TCP/IP). Este soporte se facilitó de un

modo general. En 4.2BSD es posible la comunicación uniforme entre los distintos dispositivos

de la red, incluyendo redes locales (LAN), como Ethernet y Token Ring, y extensas redes de

ordenadores (WAN), como la Arpanet de DARPA.

Los sistemas Unix actuales no se reducen a la versión 8, System V o BSD, sino que la

mayoría de los fabricantes de micro y miniordenadores ofrecen su Unix particular. Así, Sun

Microsystems los ofrece para sus ordenadores y lo denomina Solaris, Hewlett Packard lo

comercializa con el nombre de HP-UX, IBM lo implantó en sus equipos RISC 6000 y lo

denomina AIX, etc. Con el gran incremento en las prestaciones de los ordenadores personales,

también han aparecido versiones para ellos. Dentro de estas nuevas versiones cabe destacar

aquellas de distribución libre, como pueden ser FreeBSD, OpenBSD o el propio Linux, obtienen

un alto rendimiento de los procesadores de la familia 80x86 de Intel (del 80386 en adelante).

2.2. Aparición de Linux

Linux es un sistema operativo de distribución libre desarrollado inicialmente por Linus

Torvalds (ver figura 1.9) en la Universidad de Helsinki (Finlandia). Una comunidad de

programadores expertos en Unix, han ayudado en el desarrollo, distribución y depuración de

este sistema operativo. El núcleo de Linux no contiene código desarrollado por AT&T ni por

ninguna otra fuente propietaria. La mayoría del software disponible en Linux ha sido

desarrollado por el proyecto GNU de la Free Software Foundation de Cambridge

(Massachusetts). Sin embargo, es toda la comunidad de programadores la que ha contribuido al

desarrollo de aplicaciones para este sistema operativo.

Figura 1.9: Linus Torvalds

Administración de Sistemas Operativos Tema 1: Introducción

Página | 44

Con la aparición de ordenadores personales potentes aparece Linux. Inicialmente se trató

sólo de un desarrollo llevado a cabo por Linus Torvalds por pura diversión. Linux se basó en

Minix, un pequeño sistema Unix desarrollado por Andrew S. Tanenbaum.

Los primeros desarrollos de Linux tenían que ver con la conmutación de tareas en el

microprocesador 80386 ejecutando en modo protegido, todo ello escrito en lenguaje

ensamblador.

No se llevó a cabo ningún anuncio de la versión 0.01 de Linux. Por sí misma, esta versión

sólo podía compilarse y ejecutarse en una máquina que tuviese cargado Minix.

El cinco de octubre de 1991 Linus dio a conocer la primera versión “oficial” de Linux, ésta

fue la versión 0.02. En este punto Linux podía ejecutar el intérprete de órdenes bash (Bourne

Again shell de GNU) y gcc (el compilador C de GNU) pero no mucho más. Seguía siendo una

versión utilizable solamente por hackers y por personal “cualificado”.

Después de la versión 0.03, Linus pasó a lanzar la versión 0.10, en este punto fue cuando

aumentó considerablemente el número de personas que se apuntó al desarrollo del sistema.

Después de varias versiones intermedias, Linus incrementó el número y pasó directamente a la

versión 0.95 para reflejar sus deseos de que pronto pasaría a ser una versión “oficial”

(generalmente al software sólo se le asigna como número de versión la 1.0 cuando se supone

que está en su mayoría libre de errores). Esto ocurrió en marzo de 1992. Un año y medio

después, a finales de Diciembre de 1993, el núcleo (kernel) de Linux estaba en la versión

0.99.pl14, aproximándose asintóticamente a 1.0.

Actualmente Linux es un Unix en toda regla, compatible POSIX, capaz de ejecutar X

Window, TCP/IP, Emacs, UUCP (Unix to Unix CoPy), correo electrónico, servicios de noticias,

etc.

2.3. Distribuciones de Linux

Una distribución de Linux es una variante de Linux que incorpora determinados paquetes de

software para satisfacer las necesidades de un grupo específico de usuarios, dando así origen a

ediciones hogareñas, empresariales y para servidores. Pueden ser exclusivamente de software

libre (por ejemplo: gobuntu), o también incorporar aplicaciones o controladores propietarios.

La base de cada distribución incluye el núcleo (kernel) Linux, con las bibliotecas y

herramientas del proyecto GNU y de muchos otros proyectos/grupos de software, como BSD,

Xorg, Apache, MySQL, PostgreSQL, Perl, Python, PHP, Gnome y KDE.

Antes de que surgieran las primeras distribuciones Linux, un usuario de Linux debía tener

algo de experiencia en Unix; no sólo debía conocer qué bibliotecas y ejecutables necesitaba para

iniciar el sistema, sino también los detalles importantes que se requieren en la instalación y

configuración de los archivos en el sistema.

Las distribuciones de Linux comenzaron a surgir poco después de que el núcleo Linux fuera

utilizado por otros programadores además de los creadores originales. Existía mayor interés en

desarrollar un sistema operativo que en desarrollar aplicaciones, interfaces para los usuarios o

un paquete de software conveniente.

Las distribuciones eran originalmente una cuestión de comodidad para el usuario medio,

evitándole la instalación (y en muchos casos la compilación) por separado de paquetes de uso

común, pero hoy se han popularizado incluso entre los expertos en éste tipo de sistemas

operativos (Unix/Linux).

Tema 1: Introducción Administración de Sistemas Operativos

Página | 45

2.3.1. Principales distribuciones

Dentro de las distribuciones de Linux existe toda una amplia gama de ellas, en este apartado

vamos a describir las distribuciones que actualmente son consideradas las más importantes y por

tanto las más utilizadas.

Red Hat es la compañía responsable de la creación y mantenimiento de una distribución del

sistema operativo GNU/Linux que lleva el mismo nombre: Red Hat Enterprise Linux, y de otra

más que lleva el nombre de Fedora.

Red Hat es famoso en todo el mundo por los diferentes esfuerzos orientados a apoyar el

movimiento del software libre. No sólo trabajan en el desarrollo de una de las distribuciones

más populares de Linux, sino también en la comercialización de diferentes productos y servicios

basados en software de código abierto. Asimismo, poseen una amplia infraestructura en la que

se cuentan más de quinientos empleados en quince lugares del mundo.

Programadores empleados de Red Hat han desarrollado múltiples paquetes de software libre,

los cuales han beneficiado a toda la comunidad. Algunas de las contribuciones más notables ha

sido la creación de un sistema de empaquetación de software llamado RPM o Red Hat Package

Manager, que es un sistema desarrollado por esta empresa para facilitar la instalación de

componentes de Linux, y varias utilidades para la administración y configuración de equipos,

como sndconfig o mouseconfig.

Algunas de las distribuciones basadas en Red Hat Linux más importantes son: Mandriva

Linux y Yellow Dog Linux (esta ultima sólo para PowerPC).

Fedora es una distribución de Linux basada en RPM para propósitos generales, que es

soportada por una comunidad internacional de ingenieros, diseñadores gráficos y usuarios que

reportan fallos y prueban nuevas tecnologías. Esta distribución Linux cuenta con el respaldo y la

promoción de Red Hat.

El proyecto no busca solo incluir software libre y de código abierto, sino ser el líder en ese

ámbito tecnológico. Algo que hay que destacar es que los desarrolladores de Fedora prefieren

hacer cambios en las fuentes originales en lugar de aplicar los parches específicos en su

distribución, de esta forma se asegura que las actualizaciones estén disponibles para todas las

variantes de Linux. Max Spevack en una entrevista afirmó que: "Hablar de Fedora es hablar del

rápido progreso del software libre y de código abierto".

Durante sus primeras seis versiones se llamó Fedora Core, debido a que solo incluía los

paquetes más importantes del sistema operativo. La última versión es Fedora 8, la cual fue

liberada el 8 de noviembre de 2007.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 46

SuSE Linux es una de las más conocidas distribuciones Linux existentes a nivel mundial, se

basó en sus orígenes en Slackware. Entre las principales virtudes de esta distribución se

encuentra el que sea una de las más sencillas de instalar y administrar, ya que cuenta con varios

asistentes gráficos para completar diversas tareas en especial por su gran herramienta de

instalación y configuración YasT.

Su nombre “SuSE” es el acrónimo, en alemán "Software und Systementwicklung", el cual

formaba parte del nombre original de la compañía y que se podría traducir como "desarrollo de

software y sistemas". El nombre actual de la compañía es SuSE Linux, habiendo perdido el

primer término su significado (al menos oficialmente).

El cuatro de noviembre de 2003, la compañía multinacional estadounidense Novell anunció

que iba a comprar SuSE Linux. La adquisición se llevó a cabo en enero de 2004. En el año

2005, en la Linux World, Novell, siguiendo los pasos de Red Hat Inc., anunció la liberación de

la distribución SuSE Linux para que la comunidad fuera la encargada del desarrollo de esta

distribución, que ahora se denomina openSuSE.

El cuatro de agosto de 2005, el portavoz de Novell y director de relaciones públicas Bruce

Lowry anunció que el desarrollo de la serie SuSE Professional se convertiría en más abierto y

entraría en el intento del proyecto de la comunidad openSuSE de alcanzar a una audiencia

mayor de usuarios y desarrolladores. El software, por la definición de código abierto, tenía ya su

código fuente "abierto", pero ahora el proceso de desarrollo sería más "abierto" que antes,

permitiendo que los desarrolladores y usuarios probaran el producto y ayudaran a desarrollarlo.

Anteriormente, todo el trabajo de desarrollo era realizado por SuSE, y la versión 10.0 fue la

primera versión con una beta pública. Como parte del cambio, el acceso en línea al servidor

YaST de actualización sería complementario para los usuarios de SuSE Linux, y siguiendo la

línea de la mayoría de distribuciones de código abierto, existiría tanto la descarga gratuita

disponible mediante web como la venta del sistema operativo en caja. Este cambio en la

filosofía condujo al lanzamiento de SuSE Linux 10.0 el seis de octubre de 2005 en "OSS, Open

Source Software" (código completamente abierto).

Mandriva Linux (antes Mandrakelinux y Mandrake Linux) es una distribución Linux

aparecida en julio de 1998 propiedad de Mandriva, enfocada hacia usuarios sin experiencia en

este mundo que buscan sencillez y un uso sin problemas.

Se distribuye mediante la licencia: Licencia pública general (GPL) de GNU, y es posible

descargar su distribución en formato ISO, sus asistentes o sus repositorios.

La primera edición se fundamentó en Red Hat Linux (versión 5.1) y escogió el entorno

gráfico de KDE (K Desktop Environment). Desde entonces ha seguido su propio camino,

separado de Red Hat y ha incluido numerosas herramientas propias o modificadas,

fundamentalmente dirigidas a facilitar la configuración del sistema. Mandrake (su anterior

nombre) también es conocida por compilar sus paquetes con optimizaciones para procesadores

Pentium y superiores, incompatibles con versiones más antiguas tales como 386 y 486.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 47

Debian o Proyecto Debian es una comunidad conformada por desarrolladores y usuarios, que

pretende crear y mantener un sistema operativo GNU basado en software libre precompilado y

empaquetado, en un formato sencillo en múltiples arquitecturas de computador y en varios

núcleos.

Debian nace como una apuesta por separar en sus versiones el software libre del software no

libre. El modelo de desarrollo del proyecto es ajeno a motivos empresariales o comerciales,

siendo llevado adelante por los propios usuarios, aunque cuenta con el apoyo de varias empresas

en forma de infraestructuras. Debian no vende directamente su software, lo pone a disposición

de cualquiera en Internet, aunque sí permite a personas o empresas distribuir comercialmente

este software mientras se respete su licencia.

La comunidad de desarrolladores de Debian cuenta con la representación de software in the

Public Interest, una organización sin ánimo de lucro que da cobertura legal a varios proyectos

de software libre.

La primera adaptación del sistema Debian, sino también la más desarrollada, es Debian

GNU/Linux, basada en el núcleo Linux, y como siempre utilizando herramientas de GNU.

Existen también otras adaptaciones con diversos núcleos: Hurd (Debian GNU/Hurd); NetBSD

(Debian GNU/NetBSD) y FreeBSD (Debian GNU/kFreeBSD).

GnuLinEx es una distribución de software libre que incluye el núcleo de Linux y está basada

en Debian GNU/Linux y GNOME (GNU Network Object Model Environment), contando con

OpenOffice.org como Suite Ofimática, entre otras aplicaciones.

Está impulsado por la Consejería de Infraestructuras y Desarrollo Tecnológico de la

Comunidad Autónoma de Extremadura (España), siendo pionero y secundado por otros

organismos públicos y privados del resto de España. Durante un periodo considerable de

tiempo, la comunidad extremeña ofreció también apoyo a la de Andalucía (la cual se inspiró en

GnuLinex para desarrollar Guadalinex) en la implantación de soluciones abiertas en colegios,

administración, etc.

El diecinueve de junio de 2006 se liberó GnuLinex 2006, con Gnome 2.14.1, Xorg 6.9, y

núcleo de Linux 2.6.16.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 48

Ubuntu es una distribución Linux que ofrece un sistema operativo predominantemente

enfocado a computadoras de escritorio aunque también proporciona soporte para servidores.

Basada en Debian GNU/Linux, Ubuntu concentra su objetivo en la facilidad de uso, la

libertad de uso, los lanzamientos regulares (cada seis meses) y la facilidad en la instalación.

Ubuntu es patrocinado por Canonical Ltd., una empresa privada fundada y financiada por el

empresario sudafricano Mark Shuttleworth.

El nombre de la distribución proviene del concepto zulú y xhosa de Ubuntu, que significa

"humanidad hacia otros" o "yo soy porque nosotros somos". Ubuntu es un movimiento

sudafricano encabezado por el obispo Desmond Tutu, quien ganó el Premio Nobel de la Paz en

1984 por sus luchas en contra del apartheid en Sudáfrica. El sudafricano Mark Shuttleworth,

mecenas del proyecto, se encontraba muy familiarizado con la corriente. Tras ver similitudes

entre los ideales de los proyectos GNU, Debian y en general con el movimiento del software

libre, decidió aprovechar la ocasión para difundir los ideales de Ubuntu. El eslogan de Ubuntu

“Linux para seres humanos” (en inglés "Linux for Human Beings") resume una de sus metas

principales: Hacer de Linux un sistema operativo más accesible y fácil de usar.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 49

3. Software libre y Linux

En esta sección trataremos de explicar e introducir lo que se persigue con la filosofía del

software libre y todos los términos o elementos que dicha filosofía implica. Porque aunque el

software libre está presente cada vez más en los medios de comunicación, en las conversaciones

de los profesionales de la informática, e incluso empieza a estar en boca de los ciudadanos en

general, aún es desconocido por muchos de nosotros.

El software libre tuvo sus inicios en pequeños grupos de entusiastas y activistas que querían

cambiar la industria del software. Después de muchos años esta comunidad ha crecido

rápidamente e incorporado no solamente a voluntarios en todo el mundo, sino que también ha

atraído la atención y la colaboración de centenares de empresas claves.

Inicialmente el software libre fue popular en los servidores y con el paso del tiempo y el

trabajo de miles de voluntarios las piezas faltantes se completaron. Linux que antes estaba

limitado a ser un sistema que no era visible a los usuarios finales (Por ejemplo, Google y

Amazon son sistemas construidos sobre Linux) ahora es un sistema que es usado por miles de

usuarios en todo el mundo en sus computadoras personales, teléfonos u organizadores

personales.

El software libre es propiedad de todos: Cada persona en el mundo tiene derecho a usar el

software, modificarlo y copiarlo de la misma manera que los autores de este mismo. Es un

legado de la humanidad que no tiene propietario, de la misma manera que las leyes básicas de la

física o las matemáticas. No existe un monopolio y no es necesario pagar peaje por su uso.

3.1. GNU

Con la explosión de la microinformática, el descenso de precio de los sistemas informáticos

y su popularización entre las empresas, aparecieron las primeras compañías de software.

Muchas de ellas empezaron contratando hackers que estaban alrededor de los centros de cálculo

de las universidades, de forma que éstas se fueron despoblando de aquellos pioneros. Pero,

además, muchas de estas empresas creyeron que si denegaban el acceso a los usuarios y a otros

desarrolladores al código fuente de las aplicaciones que mejoraban o desarrollaban, podrían

realmente conseguir una ventaja competitiva. Éste fue un punto de inflexión importante, ya que

se rompió con la tradición que había imperado hasta entonces de compartir el código.

Poco a poco se fue extendiendo un modelo de código cerrado en el cual el software se vendía

sin el código fuente y, cada vez más, las libertades de los usuarios se fueron acortando. Esta fue

la época en que aparecieron técnicas como, por ejemplo, las bombas de tiempo (aplicaciones

Trial) que limitaban el periodo durante el cual un usuario podía utilizar un producto. Los

programas shareware popularizarían más tarde estas bombas de tiempo como sistema para

obligar a los usuarios a adquirir una licencia.

Una de las personas que había vivido de cerca toda aquella evolución era Richard Stallman

(ver figura 1.10), quien fue pionero en defender las libertades que se habían perdido y acuñó el

término 'software libre'. El 27 de septiembre de 1983 Richard Stallman muy preocupado por

esta pérdida de libertades anunciaba en el foro Usenet net-unix.wizards, que empezaba a trabajar

sobre una implementación libre de un sistema inspirado en Unix que denominaría GNU y que

estaría libre de código de AT&T, es decir, una implementación desde cero sin posibles

problemas legales con AT&T. En el mensaje a Usenet, Stallman explicaba detalladamente su

experiencia como desarrollador de sistemas y pedía la ayuda de todo el mundo que quisiera

ofrecer parte de su tiempo, dinero o hardware.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 50

Figura 1.10: Richard Stallman

El 1984, Stallman creó la Free Software Foundation con el objetivo de crear el sistema Unix

libre GNU y la potenciación del software libre. La definición de software libre propuesta por la

Free Software Foundation, se basa en cuatro libertades básicas que cualquier programa

considerado libre debe proporcionar:

 Libertad para utilizar el programa para cualquier propósito.

 Libertad para poder estudiar cómo funciona el programa. Lo cual implica acceso al

código fuente del mismo.

 Libertad para redistribuir el programa.

 Libertad para hacer modificaciones y distribuir las mejoras. Lo cual implica también

acceso al código fuente del mismo.

El software libre se basa en la cooperación y la transparencia y garantiza una serie de

libertades a los usuarios. Estos aspectos, junto al hecho de que su desarrollo ha sido paralelo al

de Internet, han causado que sea abanderado para un gran número de usuarios que tienen una

concepción libertaria del uso de las nuevas tecnologías. Los programas que no son libres se les

llaman propietarios o privativos. Por ejemplo, todas las versiones de Microsoft Windows o

Adobe Acrobat son ejemplos de software propietario.

Durante los años 80 Stallman continuó trabajando en el desarrollo de las herramientas

necesarias para crear un sistema operativo completamente libre. Publicó una versión del editor

GNU Emacs y trabajó en herramientas que son fundamentales para el movimiento del software

libre, como, por ejemplo, el compilador GCC (GNU Compiler Collection) o el depurador GDB

(GNU DeBugger).

Ya en sus inicios Stallman identificó la necesidad de crear las protecciones jurídicas

necesarias para el software libre. En 1989 publicó la versión 1.0 de la licencia GPL (General

Public License) un proyecto que elaboraba desde 1985 y que consistía en un contrato entre el

autor del software y el usuario que garantizaba la cesión de los derechos que definían al

software libre. La licencia GPL era una herramienta legal muy importante dado que Stallman

había padecido mucho viendo cómo algunos programadores cogían código que era software

libre, hacían modificaciones y no aportaban estas modificaciones a la comunidad.

3.2. Libertad y coste

Es habitual que los usuarios confundan el software libre con el software gratuito. Es

importante distinguir entre las libertades que nos proporciona un software y el coste del mismo.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 51

Un programa, por el simple hecho de ser gratuito, no es ni mucho menos libre. Por ejemplo,

Internet Explorer de Microsoft es un programa gratuito pero no es libre, ya que no da a sus

usuarios la posibilidad de estudiarlo (incluyendo el acceso a su código fuente), ni de mejorarlo,

ni de hacer públicas estas mejoras con el código fuente correspondiente, de manera que todo el

mundo se pueda beneficiar. Internet Explorer es un programa propietario en cuanto a las

libertades y gratuito en cuanto al coste.

Existe una distinción fundamental entre los programas que garantizan los derechos de

distribución y modificación, el software libre, y los que no los garantizan que consideramos

software propietario.

Respecto al coste, cualquier software libre se puede vender, siempre y cuando se respeten las

libertades originales que lo definen. Por ejemplo, la empresa francesa Mandrake o la

norteamericana Novell venden distribuciones de GNU/Linux, y se trata de software libre porque

conserva las libertades que lo definen.

3.3. Open Source

Durante el año 1998, Eric S. Raymond, Bruce Perens y otros hackers involucrados en el

desarrollo de software libre lanzaron la Open Software Initiative y propusieron el uso del

término Open Source (código abierto) en contraposición al término free software (software

libre) como término más atractivo al entorno empresarial. El término free software en el mundo

anglófono (de habla inglesa) creaba una situación incómoda debido a la doble acepción que en

inglés tiene el término free (que puede significar gratuito o libre). La gran mayoría de empresas

en Estados Unidos usan principalmente el término código abierto para evitar dar la percepción

que el software libre es un recurso totalmente gratuito y para poner énfasis en el valor

diferencial que representa el hecho de que el código fuente está disponible.

Bruce Perens, de la Open Source Iniciative y antiguo coordinador de la distribución de Linux

Debian, creó una lista (ver tabla 1.1) de condiciones que debe cumplir un programa para poder

ser considerado Open Source. Estas condiciones son muy similares y, de hecho están basadas,

en las directrices de software libre de Debian.

N° Condición Descripción

1 Libre distribución No se puede impedir la venta o distribución del

programa o parte de él. Así mismo, tampoco se

puede exigir el pago de una tasa a cambio de su

distribución por parte de terceros.

2 Código fuente El programa debe incluir su código fuente y no se

puede restringir su redistribución.

3 Trabajos derivados No debe impedirse realizar modificaciones o

trabajos derivados del programa y debe permitirse

que éstos sean distribuidos bajo los mismos

términos del software original.

4 Integridad del código fuente

original

Puede exigirse que una versión modificada del

programa tenga un nombre y número de versión

diferente que el programa original para poder

proteger al autor original de la responsabilidad de

estas versiones.

5 No discriminación contra

personas o grupos

Las condiciones de uso del programa no pueden

discriminar contra una persona o un grupo de

personas.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 52

N° Condición Descripción

6 No discriminación contra usos No se puede negar a ninguna persona hacer uso

del programa para ningún fin como, por ejemplo,

comercial o militar.

7 Distribución de la licencia Los derechos del programa deben aplicarse a

todos quienes se redistribuyen el programa sin

ninguna condición adicional.

8 La licencia no debe ser específica

de un producto

Los derechos garantizados al usuario del

programa no deben depender de que el programa

forme parte de una distribución o paquete

particular de software.

9 La licencia no debe restringir otro

software

La licencia no debe poner restricciones en otros

programas que se distribuyen junto con el

software licenciado.

10 La licencia no debe ser

tecnológicamente neutra

No puede existir ninguna disposición de la

licencia que obligue al uso de una tecnología

concreta.

Tabla 1.1: Lista de condiciones que debe cumplir un

programa para ser considerado Open Source

Estas condiciones también son aplicables a cualquier programa que sea software libre y

pueden ayudarnos a matizar sus implicaciones.

3.4. Licencias en el software libre

Lo que diferencia al software libre del resto del software es un aspecto legal: La licencia,

esta se trata de un contrato entre el autor o propietario de los derechos y los usuarios; que

estipula lo que éstos pueden hacer con su obra: Uso, redistribución, modificación, etc., y en qué

condiciones, Es decir, la licencia contiene las normas de uso a las que han de atenerse los

usuarios, los distribuidores, los integradores y otras partes implicadas en el mundo de la

informática.

Las condiciones y/o restricciones que imponen las licencias sólo pueden ser precisadas por

los propios autores, que según la normativa de propiedad intelectual son los propietarios de la

obra. La propiedad de la obra será de los autores, ya que la licencia no supone transferencia de

propiedad, sino solamente derecho de uso y, en algunos casos, de distribución. Es necesario

saber que cada nueva versión de un programa es considerada como una nueva obra. El autor

tiene, otra vez, plena potestad para hacer con su obra lo que le apetezca, incluso distribuirla con

términos y condiciones totalmente diferentes, es decir, una licencia diferente a la anterior.

Partiendo de todo lo dicho, vamos a centrarnos en el análisis de diversas licencias.

3.4.1. Licencias tipo BSD

La licencia BSD (Berkeley Software Distribution) tiene su origen en la publicación de

versiones de Unix realizadas por la universidad californiana de Berkeley, en EE.UU. La única

obligación que exige es la de dar crédito a los autores, mientras que permite tanto la

redistribución binaria, como la de los códigos fuentes, aunque no obliga a ninguna de las dos en

ningún caso. Asimismo, da permiso para realizar modificaciones y ser integrada con otros

programas casi sin restricciones.

La licencia BSD es ciertamente muy popular. Estas licencias reciben el nombre de

minimalistas, ya que las condiciones que imponen son pocas, básicamente asignar la autoría a

los autores originales. Su concepción se debe al hecho de que el software publicado bajo esta

Tema 1: Introducción Administración de Sistemas Operativos

Página | 53

licencia era software generado en universidades con proyectos de investigación financiados por

el gobierno de los Estados Unidos.

Entres las licencias de tipo BSD podemos encontrar: La de X Window, Tcl/Tk y Apache. La

mayoría de ellas son una copia calcada de la original de Berkeley, modificando todo lo referente

a la autoría. Otras, como la Apache, incluyen alguna cláusula adicional, como la imposibilidad

de llamar las versiones redistribuidas de igual manera. Todas suelen incluir, como ella, la

prohibición de usar el nombre del propietario de los derechos para promocionar productos

derivados.

Asimismo, todas las licencias, sean de tipo BSD o no, incluyen una limitación de garantía

que es en realidad una negación de garantía, necesaria para evitar demandas legales por

garantías implícitas. Aunque se ha criticado mucho esta negación de garantía en el software

libre, es práctica habitual en el software propietario, que generalmente sólo se garantiza que el

soporte es correcto y el programa en cuestión se ejecuta.

3.4.2. La licencia Pública General de GNU (GNU GPL)

La Licencia Pública General del proyecto GNU, más conocida por su acrónimo en inglés

GPL, es la licencia más popular y conocida de todas las licencias del mundo del software libre.

Su autoría corresponde a la Free Software Foundation (promotora del proyecto GNU) y en un

principio fue creada para ser la licencia de todo el software generado por la Free Software

Foundation. Sin embargo, su utilización ha ido más allá hasta convertirse en la licencia más

utilizada (más del 70% de los proyectos anunciados en FreshMeat están licenciados bajo la

GPL), incluso por proyectos bandera del mundo del software libre, como es el caso del núcleo

Linux.

La licencia GPL permite la redistribución binaria y la de las fuentes, aunque, en el caso de

que redistribuya de manera binaria, obliga a que también se pueda acceder a las fuentes.

Asimismo, está permitido realizar modificaciones sin restricciones, aunque sólo se pueda

integrar código licenciado bajo GPL con otro código que se encuentre bajo una licencia idéntica

o compatible, lo que ha venido a llamarse el efecto viral de la GPL, ya que el código publicado

una vez con esas condiciones nunca puede cambiar de condiciones.

La licencia GPL está pensada para asegurar la libertad del código en todo momento, ya que

un programa publicado y licenciado bajo sus condiciones nunca podrá ser hecho propietario. Es

más, ni ese programa ni modificaciones al mismo pueden ser publicados con una licencia

diferente a la propia GPL.

También incluye negaciones de garantía para proteger a los autores. Asimismo, para

proteger la buena fama de los autores originales, toda modificación de un fichero fuente debe

incluir una nota con la fecha y autor de cada modificación.

3.5. Licencias de otros recursos libres

Las licencias de software libre han sido fuente de inspiración para otros recursos

intelectuales, de tal modo que muchos de ellos las han adoptado de manera directa,

especialmente en el caso de la documentación o la fotografía, en otros casos han sido adaptadas

ligeramente, como es el caso de la pionera Open Audio License.

3.5.1. Licencia de documentación libre de GNU

Después de darse cuenta que un documento no es lo mismo que un programa, Richard

Stallman promovió una licencia para los documentos que acompañan a los programas y para

otros documentos de carácter técnico o didáctico.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 54

Una de las preocupaciones de la licencia es reconocer la autoría e impedir que se tergiversen

ideas u opiniones expresadas por el autor. Para ello, se exige que las obras derivadas exhiban en

la portada un título distinto a los de las versiones anteriores (salvo permiso expreso) y se

nombre expresamente en dónde se puede conseguir el original. También deben listarse como

autores los más importantes de los originales además de los autores de las modificaciones y

deben conservarse todas las notas sobre derechos de autor. Asimismo, deben conservarse

agradecimientos, dedicatorias, así como respetar el apartado de historia, si lo tiene, añadiendo

las modificaciones nuevas. Incluso pueden nombrarse secciones invariantes y textos de

cubiertas, que nadie puede modificar ni eliminar.

3.5.2. Licencias de Creative Commons

En el 2001 se fundó Creative Commons, dirigido por expertos en propiedad intelectual,

derecho en la sociedad de la información, e informática, con el propósito de fomentar la

existencia, conservación y accesibilidad de recursos intelectuales cedidos a la comunidad de

diversas maneras. Uno de sus proyectos más conocidos fue el desarrollo, a finales del 2002 de

una serie de licencias concebidas, no para software, sino para trabajos literarios, artísticos,

didácticos, etc. Su característica más sobresaliente, además de estar avaladas por profesionales

del derecho, es que permiten al autor seleccionar qué tipo de libertades cede, además de la de

copia, según cuatro dimensiones: Dar crédito al autor original, permitir trabajos derivados,

permitir redistribución comercial y permitir cambiar la licencia. Así, por ejemplo, la licencia de

los cursos del MIT (MIT Open Courseware License Version 1.0) está basada en la de Creative

Commons que obliga a dar crédito, impide el uso comercial y obliga a conservar la licencia en

trabajos derivados.

Poner obras bajo una licencia Creative Commons no significa que no tengan copyright. Este

tipo de licencias ofrecen algunos derechos a terceras personas bajo ciertas condiciones. ¿Qué

condiciones? bajo las condiciones mostradas en la siguiente lista las cuales podemos escoger o

unir según nuestra conveniencia.

Reconocimiento (Attribution): El material creado por un artista puede ser distribuido,

copiado y exhibido por terceras personas si se muestra en los créditos.

No comercial (Non Commercial): El material original y los trabajos derivados pueden

ser distribuidos, copiados y exhibidos mientras su uso no sea comercial.

Sin obra derivada (No Derivate Works): El material creado por un artista puede ser

distribuido, copiado y exhibido pero no se puede utilizar para crear un trabajo derivado del

original.

Compartir igual (Share Alike): El material creado por un artista puede ser modificado

y distribuido pero bajo la misma licencia que el material original.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 55

Hay un total de seis licencias Creative Commons (ver tabla 1.2) para escoger. Las cuales

están formadas por distintas combinaciones de las cuatro condiciones mostradas en el apartado

anterior. Estas seis licencias son:

Simbología Descripción

Reconocimiento: El material creado por un artista puede ser

distribuido, copiado y exhibido por terceros si se muestra en los

créditos.

Reconocimiento – Sin obra derivada: El material creado por un

artista puede ser distribuido, copiado y exhibido por terceros si se

muestra en los créditos. No se pueden realizar obras derivadas.

Reconocimiento – Sin obra derivada – No comercial: El

material creado por un artista puede ser distribuido, copiado y

exhibido por terceros si se muestra en los créditos. No se puede

obtener ningún beneficio comercial. No se pueden realizar obras

derivadas.

Reconocimiento – No comercial: El material creado por un

artista puede ser distribuido, copiado y exhibido por terceros si se

muestra en los créditos. No se puede obtener ningún beneficio

comercial.

Reconocimiento – No comercial – Compartir igual: El material

creado por un artista puede ser distribuido, copiado y exhibido por

terceros si se muestra en los créditos. No se puede obtener ningún

beneficio comercial y las obras derivadas tienen que estar bajo los

mismos términos de licencia que el trabajo original.

Reconocimiento – Compartir igual: El material creado por un

artista puede ser distribuido, copiado y exhibido por terceros si se

muestra en los créditos. Las obras derivadas tienen que estar bajo

los mismos términos de licencia que el trabajo original.

Tabla 1.2: Los seis tipos de licencias generadas con combinaciones de las cuatro condiciones

Hemos podido observar la importancia que tienen las licencias dentro del mundo del

software libre y de los demás recursos libres. Así como también presentamos algunas de las

licencias más importantes que existen dentro de la gran variedad de licencias del software libre,

su motivación, sus repercusiones y sus ventajas e inconvenientes.

En definitiva, podemos decir que la GPL trata de maximizar las libertades que tiene el

usuario del software (lo reciba directamente de su autor o no), mientras que las licencias tipo

BSD lo que hacen es maximizar las libertades del modificador o redistribuidor.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 56

4. Introducción a la administración

Cada sistema debe tener su propio administrador o persona encargada de que todo esté a

punto en cada momento. Esta labor requiere una serie de conocimientos que los usuarios finales

no necesitan dominar. Además, es necesario invertir un tiempo considerable para estos

menesteres.

La administración del sistema es uno de los aspectos menos estándar de un sistema tipo

Unix. Tanto las órdenes empleadas como los archivos de configuración pueden variar de unos

sistemas a otros. Hay que señalar que el mejor aliado de cualquier administrador que se precie

de serlo es el manual (man) del sistema, donde podemos encontrar todas las peculiaridades de

nuestro sistema concreto que nos ayudarán a resolver cualquier tipo de problema.

4.1. Ciclo de vida del sistema

Un sistema informático pasa por varias etapas a lo largo de su vida (ver figura 1.11). Desde

el punto de vista del administrador del sistema, cada etapa queda caracterizada por un conjunto

distinto de actividades que es necesario llevar a cabo.

Figura 1.11: Ciclo de vida del sistema

Análisis de requisitos del sistema

Se establecen qué problemas tiene que solucionar el sistema informático, a que actividades

de la organización debe dar soporte y qué tipo de servicios debe prestar. El resultado es un

documento de requisitos que recoge todos los aspectos mencionados anteriormente.

Diseño del sistema

Una vez conocidos los requisitos, se analiza qué componentes hay que utilizar para satisfacer

dichos requisitos. Los componentes generalmente son de tipo: Hardware y software.

Implantación del sistema

Consiste en montar, instalar y adaptar los componentes hardware y software, según el

documento de diseño, para que el sistema informático satisfaga una serie de requisitos. Cada

componente se instala según las instrucciones dadas por el proveedor del componente.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 57

Configuración hardware y software de forma que el sistema cumpla los requisitos exigidos

Una vez instalados los componentes es necesario adaptarlos a las necesidades específicas del

sistema. Una vez configurados todos los componentes, éstos proporcionarán los servicios tal y

como se especificó en el documento de requisitos.

Administración y mantenimiento (explotación)

El sistema se encuentra ya en funcionamiento y prestando los servicios para los que fue

creado. Durante todo el tiempo de servicio será necesario mantener actualizado el software para

evitar errores y problemas de seguridad, funcionalidades, ajustar parámetros de rendimiento,

etc.

Migración, desmantelamiento del sistema

Si el sistema queda obsoleto, será necesaria la implantación de uno nuevo. Esta etapa

asegura que se podrá reutilizar, a ser posible, la totalidad de los datos y hacer que la migración

hacia el nuevo sistema se haga de forma progresiva, reduciendo al mínimo el tiempo en el que el

sistema se encuentra inoperativo.

La administración de sistemas es una actividad muy amplia que se centra fundamentalmente

en los puntos cuatro y cinco del ciclo de vida de un sistema informático, aunque en la realidad

abarca más puntos.

4.2. El administrador del sistema

Los sistemas tipo Unix diferencian entre los distintos usuarios, de manera que se regula qué

es lo que podemos hacerle a otros usuarios o al propio sistema. Cada uno de ellos tiene su

propia cuenta, la cual incluye nombre de conexión, grupo al que pertenece, directorio de

arranque, etc. De todas las cuentas del sistema, sin duda alguna la más importante es la

denominada cuenta de administrador o superusuario, cuyo nombre de conexión es root. Esta

cuenta es siempre creada automáticamente en la instalación de cualquier sistema tipo Unix,

momento en que se establece una palabra clave inicial. Es un aspecto clave en el mantenimiento

de la seguridad informática asegurar la confidencialidad de la clave del administrador.

Normalmente las cuentas de usuarios tienen asociadas una serie de restricciones, de forma

que nadie pueda molestar al resto, a lo sumo a ellos mismos. Nadie va a poder borrar directorios

como /etc o /bin, ni nadie va a poder desactivar una impresora. Todo este tipo de restricciones

no son aplicables al administrador (root). El administrador tiene plenos poderes para borrar,

crear o modificar cualquier archivo o directorio del sistema, para ejecutar programas especiales

o para dar formato al disco. Como root puede hacer todo lo que desee, es necesario que extreme

sus precauciones, ya que si no es así, las consecuencias pueden ser catastróficas.

Normas para prevenir los accidentes cuando estamos conectados como administradores del

sistema:

 Después de teclear una orden y antes de pulsar la tecla Enter, verificar las

consecuencias que pueden producirse. Por ejemplo, antes de borrar un directorio, releer

la orden con objeto de comprobar que todo es correcto.

 Evitar conectarse como root a no ser que sea estrictamente necesario.

 Utilizar un prompt diferente para la cuenta de root. Lo más habitual es emplear como

prompt el carácter #.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 58

4.3. La primera regla del administrador

La “primera regla” del administrador de sistemas consiste en proporcionar y mantener

acceso a los recursos del sistema. Independientemente de la plataforma informática de que se

trate, todos los sistemas operativos proporcionan mecanismos para manipular recursos. Entre

estos recursos se encuentran los archivos, las aplicaciones, los periféricos, el ancho de banda,

los ciclos de la CPU, la memoria y el espacio de almacenamiento.

La identificación de los recursos, de sus propietarios y sus usuarios, a la vez que la

definición de las formas de acceso y las autoridades relacionadas, constituye un proceso de

análisis de los requisitos. Los administradores de sistemas transforman esta generalización en

especificaciones de cada sistema, de sus usuarios y de su gestión.

El mantenimiento del acceso a los recursos de un sistema trasciende el mantenimiento del

propio sistema. Si éste falla o se vuelve inaccesible por cualquier causa, el administrador de

sistemas deberá restaurar prontamente el funcionamiento normal del mismo. La mayoría piensa

que haciendo copias de seguridad se soluciona este problema. Sin embargo, el administrador de

sistemas deberá girar más bien en torno a la planificación de la recuperación, lo cual suele

implicar tanto la realización de copias de seguridad, como la valoración de riesgos y pruebas.

A lo largo del funcionamiento normal y, especialmente, en la medida en que las

organizaciones crecen y se van adaptando al medio, el uso de los recursos también va

cambiando. Cuando el uso de cualquier recurso excede a su capacidad, probablemente esto se

verá como un desastre. El administrador de sistemas habrá fallado en su primera regla de

proporcionar el acceso necesario. Un fallo también puede causar dificultades de otros servicios.

Por ejemplo, si los registros del sistema ocupan toda la partición de un disco, esto puede evitar

el envió de correo electrónico a través de ese sistema.

La seguridad es el corolario de la primera regla, que es la de denegar acceso a los recursos

del sistema, así como la de garantizar que los servicios se prestan correctamente, incluso durante

y después de los ataques de los intrusos. La seguridad implica tanto la realización de las normas

como su cumplimiento.

Se deben habilitar las normas apropiadas de acceso, en la medida en que los propietarios de

cada recurso lo autorizan. Los procesos de definición y exigencia de estas normas constituyen

los dos elementos esenciales de la seguridad de los sistemas.

El análisis de los requisitos, la planificación de la recuperación y la seguridad constituyen el

eje principal del trabajo del administrador de sistemas.

4.4. Responsabilidades del administrador

El administrador del sistema o superusuario tiene una serie de responsabilidades que pueden

ser divididas en tres grupos: Responsabilidades hardware, software y responsabilidades con los

usuarios.

Responsabilidades hardware

 Verificar la correcta instalación del hardware.

 Comprobar el estado de los periféricos y ser capaz de buscar el fallo en caso de erros de

la instalación.

 Instalar nuevos dispositivos hardware (memoria, discos, terminales, etc.).

Tema 1: Introducción Administración de Sistemas Operativos

Página | 59

 Determinar limitaciones en los dispositivos que puedan comprometer la prestación de

servicios con la calidad necesaria.

Responsabilidad software

La responsabilidad sobre el mantenimiento del software es cada vez más importante puesto

que a medida que se emplean sistemas para proporcionar servicios complejos, el software se

hace cada vez más difícil de mantener.

Dentro de las responsabilidades del mantenimiento software podemos hacer una

clasificación adicional entre software del sistema y software específico. El software del sistema

es aquel que proporciona los servicios básicos de funcionamiento de un sistema tipo Unix. Por

ejemplo, el software que permite a los usuarios conectarse al sistema o el propio sistema

operativo. El software específico se refiere a aquel que proporciona un servicio determinado

utilizando como plataforma nuestro sistema operativo tipo Unix, como por ejemplo servidores

de bases de datos o servidores web.

Responsabilidades derivadas del software del sistema

 Instalar el sistema operativo, configurarlo y mantenerlo al día con las actualizaciones

oportunas.

 Crear y mantener los sistemas de archivos, detectando y corrigiendo los posibles errores

que puedan producirse.

 Controlar la utilización de este sistema de archivos y su crecimiento.

 Diseñar e implementar las rutinas para realizar copias de seguridad, así como para su

posterior recuperación.

 Configurar y mantener el software de cualquier dispositivo: Impresoras, módem,

tarjetas de red, etc.

 Actualizar el sistema operativo en caso de poseer una versión más moderna.

 Instalar el software de cualquier aplicación (X Window, bases de datos, procesadores de

texto, etc.).

Responsabilidades derivadas del software específico

 Instalación y configuración inicial del software.

 Evaluación en las repercusiones en la seguridad global del sistema.

 Labores de administración específicas del servicio prestado.

Responsabilidades sobre los usuarios

 Añadir nuevos usuarios y dar de baja a los que ya no se conectan al sistema. Esto cobra

especial relevancia cuando existen políticas de acceso con fines económicos.

 Permitir el acceso a los usuarios de forma controlada.

Administración de Sistemas Operativos Tema 1: Introducción

Página | 60

 Evaluar las necesidades en cuanto a equipos se refiere. Determinar si es necesario

añadir nuevos discos, impresoras, memorias, etc. con objeto de que los usuarios

encuentren un entorno agradable de trabajo.

 Proporcionar asistencia a cada una de las personas.

 Tener a los usuarios informados en todo momento de los posibles nuevos servicios y sus

características. También es necesario que los usuarios conozcan las políticas de

seguridad y de prestación de servicios, de forma que el uso de los sistemas se haga

siempre dentro del marco legal de cada país.

Aspectos éticos de la administración de sistemas

 Respeto a la privacidad sobre todas las cosas. Como administrador de sistemas se

dispone de la capacidad para ver y hacer cualquier cosa sobre los datos y programas de

los usuarios. Este hecho no debe implicar una posición de poder, sino de

responsabilidad.

 Pueden existir sistemas con políticas que permitan conocer en todo momento qué está

haciendo un usuario y de qué forma está haciendo uso del servicio prestado por el

sistema informático. Es este caso el usuario debe ser informado de las medidas de

inspección que se pueden llevar a cabo sobre sus datos y sus actividades.

 Las actividades de administración de un sistema informático deben llevarse a cabo con

la máxima profesionalidad y seriedad.

4.5. Seguridad en la administración

El administrador es el responsable de mantener una política de seguridad en el sistema. Esta

política de seguridad puede implicar diversas acciones, las cuales incluyen desde comprobar que

no existen agujeros en la seguridad hasta detectar que nadie pierde el tiempo.

Todo administrador debe tener siempre presente los siguientes aspectos relacionados con la

seguridad:

 El administrador del sistema tiene acceso sin restricciones a todos los recursos. Si un

administrador no es consciente de lo anterior, posiblemente sea él mismo el que tire el

sistema abajo sin necesidad de ningún tipo de ayuda externa, es decir, que no serán

necesarios agentes externos que causen el caos dentro del sistema ya que será él mismo

el que los cause.

 Es muy peligroso emplear privilegios de administrador por periodos prolongados de

tiempo. Los errores causados por el incumplimiento de esta norma de seguridad pueden

tener consecuencias fatídicas sobre el sistema.

 Los usuarios deben emplear contraseñas adecuadas. Es aconsejable por parte del

administrador buscar posibles cuentas de usuarios sin contraseña. La idea es que en

ocasiones resulta útil ponerse en el papel de quienes puedan atentar contra la seguridad

del sistema con objeto de conocer los puntos débiles de nuestro sistema.

 La palabra clave del administrador debe mantenerse estrictamente en secreto y ser

conocida como máximo por dos o tres usuarios. Esta palabra clave debe ser modificada

periódicamente.

Tema 1: Introducción Administración de Sistemas Operativos

Página | 61

 Vigilar la cantidad de accesos erróneos producidos en el sistema, los cuales quedan

normalmente apuntados en un archivo de registro.

 Los directorios del sistema, tales como /etc, /bin, /dev, etc., no deben tener permiso de

escritura para los usuarios ordinarios.

 El acceso al terminal que actúa como consola, así como a los terminales donde se puede

acceder como root, deben estar restringidos. Dicho de otro modo, sólo debe ser posible

conectarse como administrador del sistema desde aquellos terminales que se consideren

seguros.

 La política de seguridad debe estar perfectamente definida siempre que los mecanismos

de seguridad del sistema tipo Unix lo permita.

 Vigilar estrechamente a los usuarios potencialmente peligrosos. Ciertos usuarios pueden

dedicar cantidades ingentes de tiempo con el propósito de romper la seguridad del

sistema.

 Eliminar de la variable PATH del administrador el directorio actual. Un buen PATH

podría ser el siguiente: PATH=/etc:/bin:/usr/bin.

 No relajar las políticas de seguridad porque estas constituyan un problema de

administración. En ocasiones los administradores de sistemas se pueden ver tentados a

autorizar ciertas operaciones potencialmente peligrosas, porque autorizarlas es más fácil

o rápido que buscar una solución segura.

 Consultar periódicamente la información sobre fallos de seguridad informática que se

publican en Internet.

 Aplicar cuanto antes las correcciones de seguridad que vayan publicando los

proveedores del software de nuestro sistema.

Siguiendo todos las normas citadas anteriormente no conseguiremos que nuestro sistema sea

inexpugnable, pero la falta de cumplimiento de dichas normas asegura que nuestro sistema tiene

agujeros. La seguridad es un aspecto fundamental que debe tener en cuenta todo administrador

de sistemas tipo Unix, y dicha seguridad comienza por no abusar de los privilegios de root.

Página | 62

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 63

TEMA 2: INSTALACIÓN BÁSICA

Objetivos

 Comprender los conceptos básicos previos al proceso de instalación del sistema.

 Describir paso a paso los mecanismos a seguir para llevar a cabo la instalación de un

sistema operativo Linux.

 Capacitar en los procedimientos óptimos luego de la instalación del sistema.

Contenido

1. Conceptos necesarios previos a la instalación

1.1. Concepto de sistema de archivos

1.2. Concepto de montaje de sistema de archivos

1.3. Concepto de live CD

1.4. Concepto de partición de disco

1.5. Concepto de espacio de intercambio

1.6. Concepto de MBR (Master Boot Record)

1.7. Concepto de gestor de arranque

1.8. Conceptos relacionados al software

2. Tareas de preparación para la instalación de Linux

2.1. Visión general de la instalación

2.2. Repartición del disco o discos duros

2.3. Requerimientos de la partición de Linux

2.4. Creación del espacio de intercambio

2.5. Creación del sistema de archivos

2.6. Instalar el software

2.7. Instalar el gestor de arranque GRUB

3. Procedimientos posteriores a la instalación

3.1. Creación de una cuenta de usuario no root

3.2. Pedirle ayuda a nuestro sistema

3.3. Edición del archivo /etc/fstab

3.4. Cerrar el sistema

Bibliografía

Básica

 Matthias Kalle Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada “, Editorial Anaya Multimedia, 2006.

Complementaria

 Roger Baig Viñas, Francesc Aulí Llinàs, “Sistema operativo GNU/Linux básico

Primera Edición”, UOC Formación de Posgrado, Software libre, noviembre 2003.

http://www.nodo50.org/cursos/manual_gnu_linux.pdf
 Sebastián Sánchez Prieto, “Sistemas operativos, textos universitarios, segunda edición”,

Editorial universidad de Alcalá.

http://www.nodo50.org/cursos/manual_gnu_linux.pdf

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 64

Uno de los compromisos más importantes que como buenos administradores debemos

cumplir, es el compromiso de seleccionar una distribución de Linux para su posterior

instalación, pero siempre todos nos hacemos la misma pregunta ¿Cuál elegir? La respuesta esta

en que de todo ese amplio abanico de distribuciones que Linux pone a nuestra disposición

debemos seleccionar la que mejor se ajuste a nuestras necesidades. Algo que no es una tarea

fácil, pero que debemos de tomarnos nuestro tiempo para elegir la mejor opción.

1. Conceptos necesarios previos a la instalación

En esta sección vamos a estudiar algunos conceptos que son necesarios antes de

introducirnos de lleno en el proceso de la instalación del sistema. A lo largo de todo el tema

haremos uso de dichos conceptos. Es recomendable manejar y comprender cada uno de estos

conceptos los cuales nos facilitarán la compresión de un proceso tan delicado e interesante

dentro de los sistemas Linux, como es el proceso de instalación.

1.1. Concepto de sistema de archivos

Los sistemas de archivos son elementos fundamentales en los sistemas operativos ya que nos

permiten almacenar la información de un modo permanente, así como también estructurar dicha

información almacenada.

El sistema operativo Linux es un poco especial puesto que es capaz de trabajar con sistemas

de archivos diferentes. Para ello Linux utiliza una capa de abstracción denominada Virtual File

System (VFS). Esta capa proporciona un mecanismo de acceso uniforme a cualquier sistema de

archivos montado en el sistema.

Dentro de los sistemas de archivos más utilizados actualmente y que son soportados por

Linux tenemos:

 ext2: Fue el sistema de archivos por defecto para múltiples distribuciones de Linux

hasta ser reemplazado por su sucesor ext3. La principal desventaja que presenta es que

no hace uso de journaling, que básicamente aporta estabilidad y mejora el rendimiento

de los sistemas de archivos tras una caída inesperada empleando un cuaderno de

bitácora o log que permite abortar operaciones en caso de que se produzca algún error.

 ext3: Es un sistema de archivos que si hace uso de journaling, permite actualizar de

ext2 a ext3 sin perder los datos almacenados ni formatear el disco. Utiliza un árbol

binario balanceado e incorpora el asignador de bloques de disco orlov, con el fin de

mejorar el rendimiento prestado por los anteriores sistemas de archivos ext2.

 FAT32: Es un sistema de archivos desarrollado para MS-DOS. Cuando se borran y se

escriben nuevos archivos tiende a dejar fragmentos dispersos de éstos por todo el

soporte. Con el tiempo, esto hace que el proceso de lectura o escritura sea cada vez más

lento. La denominada desfragmentación es la solución a este problema. No hace uso de

journaling. Carece de asignaciones de permisos a los archivos. Linux es capaz de leer y

escribir en este tipo de sistema de archivos, mediante la correcta configuración de los

parámetros establecidos en el archivo /etc/fstab.

 NTFS: Es un sistema de archivos diseñado específicamente para Windows NT y

posteriores, con el objetivo de crear un sistema de archivos eficiente robusto y con

seguridad incorporada desde su base. Permite compresión nativa de ficheros, cifrado e

incluso journaling, pero sólo a partir de Windows Vista. Microsoft no ha liberado su

código, pero gracias a técnicas de ingeniería inversa Linux tiene soporte de escritura y

lectura sobre este tipo de sistemas de archivos a través del controlador NTFS-3G.

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 65

 ReiserFS: Es un sistema de archivos de propósito general, diseñado e implementado

por un equipo de la empresa Namesys. Previene el riesgo de corrupción del sistema de

archivos mediante la utilización de journaling, permite aumentar el tamaño del sistema

de archivos mientras este se encuentra montado o desmontado e implementa un

esquema para reducir la fragmentación interna llamado Tail packing.

 XFS: Es un sistema de archivos de 64 bits con journaling de alto rendimiento creado

por SGI (antiguamente, Silicon Graphics Inc.). Soporta un sistema de archivos de hasta

9 exabytes (2
60

 bytes), aunque esto puede variar dependiendo de los límites impuestos

por el sistema operativo. Estos sistemas de archivos están particionados internamente en

grupos de asignación, que no son más que regiones lineares de igual tamaño dentro del

sistema de archivos, la idea es que cada grupo gestiona sus inodos y su espacio libre de

forma independiente.

 JFS: Es un sistema de archivos con respaldo de transacciones desarrollado por IBM.

Diseñado con la idea de conseguir servidores de alto rendimiento y servidores de

archivos de altas prestaciones. Al ser un sistema de archivos de 64 bits, JFS soporta

ficheros grandes y particiones LFS (Large File Support), lo cual es una gran ventaja

para los entornos de servidores.

Estos son algunos de los muchos sistemas de archivos soportados por Linux. Una de las

tareas del administrador del sistema antes de llevar a cabo el proceso de instalación es

determinar que sistema de archivos es el que mejor se acopla a sus necesidades. Un elemento

que juega a nuestro favor es que Linux nos da soporte para diversos sistemas de archivos

evitándonos de esta manera limitaciones a solo unos cuantos de ellos.

1.2. Concepto de montaje de sistema de archivos

Es muy común tener en una misma máquina uno o varios discos físicos, cada uno de ellos

con distintas particiones. En cada una de estas particiones podemos tener un sistema de archivos

diferente y es entonces cuando surge la necesidad de poder acceder a archivos ubicados en

particiones de cualquiera de los discos. Algunos sistemas operativos establecen la diferenciación

representando cada sistema de archivos con una letra diferente. En el caso de Linux se opta por

otra alternativa que consiste en ubicar cada sistema de archivos en un directorio diferente, por

todos los sistemas de archivos colgando de una única raíz. Es por esto que al proceso de colgar

un sistema de archivos de un directorio se le conoce como montaje de un sistema de archivos.

Los sistemas de archivos deben ser montados siempre en directorios vacíos denominados

puntos de montajes, los cuales deben existir con anterioridad ya que el simple hecho de montar

un sistema de archivos no crea el directorio de punto de montaje.

1.3. Concepto de live CD

Un live CD, también conocido más genéricamente como liveDistro, consiste en una

distribución de Linux que contiene el núcleo del sistema operativo, normalmente acompañado

de un conjunto de aplicaciones, almacenado en un medio extraíble, tradicionalmente un CD,

aunque las distribuciones modernas son tan completas que se incluyen en un DVD. La principal

característica que presenta el live CD es la de ejecutar y testear la distribución contenida dentro

del CD sin necesidad de instalar absolutamente nada en el propio disco duro de la máquina, para

lo cual se utiliza la memoria RAM como disco duro virtual y el propio CD como sistema de

ficheros.

Algunos live CD incluyen una herramienta que permite instalar la distribución, que estos

llevan en su interior, en el propio disco duro de la máquina. Otra característica que presentan es

que mientras no se instale nada no se efectúa ningún cambio en la máquina utilizada.

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 66

Para usar un live CD es necesario obtener uno, hoy en día la gran mayoría de distribuciones

Linux utilizan este mecanismo para su instalación, por lo cual son relativamente fáciles de

conseguir por Internet (http://distrowatch.com). Lo siguiente que debemos hacer para usar el

live CD es configurar nuestra máquina para que arranque desde la unidad lectora, reiniciando

luego la máquina con el disco en la lectora, con lo que lograremos que el live CD se inicie

automáticamente.

1.4. Concepto de partición de disco

Desde la introducción del disco duro en los ordenadores IBM PC y compatibles ha existido

la posibilidad de dividirlo en particiones. Una partición de disco la forman un conjunto de

bloques de disco situados de forma contigua y que pueden ser tratados como un disco lógico

independiente, separado del resto. Las razones para emplear varias particiones son las

siguientes: Aislar los datos, incrementar la eficiencia del disco y evitar la utilización del disco

sin control. El aislamiento de los datos permite garantizar que aunque una partición del disco se

corrompa, el resto no se vea afectada. La eficiencia se ve mejorada porque podemos emplear en

cada partición distinto tamaño del bloque de datos acorde con las necesidades, todo ello con

objeto de encontrar un equilibrio entre fragmentación interna y rapidez de transferencias. Por

último, si las áreas de datos las separamos de las áreas de almacenamiento empleadas por el

sistema, en distintas particiones, evitaremos que un crecimiento desmesurado de esa área de

datos afecte al propio sistema.

Independientemente del sistema de archivos que contenga una partición, existen tres tipos

diferentes de particiones:

1. Partición primaria: Son las divisiones crudas o primarias del disco, solo pueden haber

cuatro de éstas. Depende de una tabla de particiones. Un disco físico completamente

formateado, consiste en realidad de una partición primaria que ocupa todo el espacio del

disco, y posee un sistema de archivos.

2. Partición extendida: Es un tipo de partición que actúa como una partición primaria;

sirve para contener infinidad de unidades lógicas en su interior. Fue ideada para romper

la limitación de cuatro particiones primarias en un solo disco físico. Solo sirve para

contener particiones lógicas. Por lo tanto, es el único tipo de partición que no soporta un

sistema de archivos directamente.

3. Partición lógica: Ocupa un trozo de partición extendida o la totalidad de la misma, la

cual se ha formateado con un tipo específico de sistema de archivos (FAT32, NTFS,

ext2, etc.).

1.5. Concepto de espacio de intercambio

El espacio de intercambio o comúnmente conocido como swap es una zona de intercambio

entre la memoria RAM y el disco duro de la máquina. Sirve cuando el sistema operativo tiene

toda la memoria RAM ocupada y los programas en ejecución piden más. Es en este momento

cuando se empieza a utilizar el espacio de intercambio para guardar zonas de RAM que no se

están utilizando, intercambiándolas para que las aplicaciones no se queden sin memoria

disponible.

1.6. Concepto de MBR (Master Boot Record)

El MBR es el primer sector físico de un dispositivo de almacenamiento de datos, como por

ejemplo, un disco duro. Es también conocido como sector cero o sector de arranque principal

(bootsector).

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 67

En la práctica, el MBR casi siempre se refiere al sector de arranque el cual esta constituido de

512 bytes y estos a su vez están divididos en tres partes (ver figura 2.1):

 Los primeros 446 bytes: Contienen el código de arranque. Si la BIOS inicia el proceso

de arranque desde ese disco, se ejecutará este programa.

 Los siguientes 64 bytes: Contienen la tabla de particiones. Esta tabla consta de cuatro

entradas, cada una de las cuales mantiene información sobre una partición. Esta es la

razón por la que el número de particiones primarias esté limitado a cuatro. Cada entrada

contiene un descriptor de partición el cual define el tipo de sistema de archivos

almacenado en la propia partición (ext2, ext3, FAT32, NTFS, etc.), almacena también

información sobre la ubicación de la partición en el disco y un flag que indica si la

partición es activa o no. La partición activa es aquella partición en donde el BIOS

buscará primero el sistema operativo en un disco duro.

 Los 2 últimos bytes: Contienen el número mágico 0xAA55 que identifica a este sector

como un sector de arranque.

Figura 2.1: Estructura del MBR

1.7. Concepto de gestor de arranque

El gestor de arranque es un pequeño programa que se ubica en el disco duro de la máquina

para que en el proceso de arranque de la misma podamos elegir qué sistema operativo de los que

tenemos instalados queremos arrancar. Aunque el único sistema operativo instalado en nuestra

máquina sea Linux, necesitaremos tener instalado un gestor de arranque ya que el sistema de

arranque de dicho sistema operativo lo necesita.

Existen varias aplicaciones para realizar este proceso. Las más usuales son Lilo (LInux

LOader) y GRUB (GRand Unified Bootloader). Lo único que hacen estas aplicaciones es iniciar

el proceso de carga y ejecución del núcleo del sistema operativo que se les haya especificado en

su configuración.

Normalmente el gestor de arranque se suele poner en el MBR del disco maestro del primer

canal IDE o SCSI, que es el primer sitio que la BIOS del ordenador inspecciona buscando un

programa de estas características.

1.8. Conceptos relacionados al software

Algunos conceptos importantes relacionados con el software son:

 Paquete: Es uno o varios programas, librerías o componentes de software

empaquetados en un solo archivo preparado para que sea instalado e integrado en el

sistema operativo.

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 68

En estos paquetes se suelen incluir los ejecutables del programa y sus dependencias y

conflictos con otras aplicaciones.

 Dependencias: Indican, al instalar un paquete, si necesitan otros programas para que la

aplicación funcione correctamente.

 Conflictos: Informan de incompatibilidades entre programas instalados y el que

queremos instalar.

 Sistema de gestión de paquetes: Es aquel que proporciona las herramientas necesarias

para poder instalar y gestionar adecuadamente cualquier paquete. Los sistemas de

gestión de paquetes están diseñados de tal forma que permitan facilitar la instalación de

las nuevas aplicaciones.

Más adelante en este tema entraremos en más detalle sobre cada uno de los conceptos vistos

anteriormente. Mientras tanto estos nos serán de gran utilidad para entender un poco mejor cada

una de las etapas de la instalación del sistema.

2. Tareas de preparación para la instalación de Linux

Tras haber seleccionado la distribución de Linux que mejor se ajuste a nuestras necesidades,

estaremos listos para preparar nuestro sistema para instalar dicha distribución. El proceso de

instalación requiere de una planificación, especialmente si en el sistema que vamos a instalar

nuestro Linux, ya se está ejecutando otro u otros sistemas operativos. Es por esto que en las

siguientes secciones se explicará cómo planificar la instalación de Linux.

2.1. Visión general de la instalación

Aunque cada lanzamiento de Linux es diferente, en general el método utilizado para

instalarlo es el mismo:

 Repartición del disco o discos duros: Si tenemos otros sistemas operativos ya

instalados en nuestro sistema, necesitaremos realizar de nuevo la partición de los discos

para poder asignar espacio para nuestro Linux. En la gran mayoría de distribuciones

actuales este paso ya se encuentra integrado en el procedimiento de instalación.

 Iniciación del medio de instalación de Linux: Cada una de las distribuciones de Linux

cuentan con algún tipo de medio de instalación. Generalmente, las distribuciones

actuales cuentan con un CD-ROM desde el que se puede realizar el arranque. Al abrir el

medio, se abrirá algún tipo de programa de instalación, que nos guiará a través de ella o

nos permitirá instalar el software manualmente.

 Creación de particiones de Linux: Tras volver a realizar la partición para asignar el

espacio para Linux, debemos crear la partición de Linux en el espacio vacío con el

programa fdisk o con otro programa específico que se cargue durante el proceso de

instalación.

 Creación de sistemas de archivos y espacio de intercambio: En este momento,

crearemos uno o más sistemas de archivos, utilizados para guardar archivos, en las

particiones recién creadas. Asimismo, si prevemos utilizar un espacio de intercambio

(algo que deberíamos hacer, a no ser que realmente dispongamos de una gran cantidad

de memoria física o RAM), crearemos el espacio de intercambio en una de nuestras

particiones.

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 69

 Instalar nuestro Linux en el nuevo sistema de archivos: Por último, debemos instalar

el sistema operativo Linux en nuestro sistema de archivos recién creado.

Posteriormente, si todo va bien, el resto es sencillo.

Algunos usuarios que cambian entre distintos sistemas operativos a veces se preguntan qué

sistema operativo tienen que instalar primero: ¿Linux o el otro sistema? Existen muchos casos

de usuarios que han tenido problemas instalando un sistema operativo Windows tras Linux.

Casi siempre los sistemas operativos Windows suelen destruir, sin consentimiento alguno, la

información del arranque cuando se instalan, por lo que es más recomendable instalarlo de

primero y dejar siempre de último la instalación de Linux.

Muchas distribuciones de Linux proporcionan un programa de instalación que nos conducirá

a través del todo el proceso y automatizará uno o más pasos previos.

2.2. Repartición del disco o discos duros

En general, los discos duros se dividen en particiones con una o más de ellas dedicadas a un

sistema operativo. Por ejemplo, en un disco duro podemos tener diversas particiones

independientes, una dedicada a, por ejemplo Windows, otra a Knoppix y otra a Ubuntu. Si ya

tenemos otro sistema operativo instalado en nuestro sistema, tendremos que redimensionar

dichas particiones para liberar espacio para almacenar nuestro nuevo sistema operativo Linux.

Posteriormente tendremos que crear, dentro de ese mismo espacio libre, una o más particiones

Linux para guardar el sistema operativo y el espacio de intercambio de Linux. Este proceso se le

denomina repartición.

Muchos sistemas Windows utilizan una sola partición para todo el disco. Para Windows, esta

partición generalmente se le suele asignar la letra C:. Si tenemos más de una partición,

Windows las denominará D:, E:, y así sucesivamente. En cierto sentido, cada partición actúa

como un disco duro independiente.

En el primer sector del disco se encuentra un registro maestro de arranque junto con una

tabla de particiones. El registro de arranque, tal como su nombre lo indica, se utiliza para iniciar

el sistema. La tabla de particiones contiene información sobre las ubicaciones y tamaños de las

particiones.

Existen tres tipos de particiones: primaria, extendida y lógica. De éstas, las particiones

primarias son las que se suelen utilizar con mayor frecuencia. Sin embargo, debido al límite del

tamaño de la tabla de particiones, podemos tener sólo cuatro particiones primarias en

determinados discos, algo que se debe al mal diseño de MS-DOS y Windows; incluso otros

sistemas operativos que se originaron en la misma época no tienen este tipo de limitaciones.

La forma de evitar el límite de las cuatro particiones es utilizar una partición extendida. Esta

partición, por si sola, no contiene ningún dato sino que actúa como contenedor para particiones

lógicas. De tal manera que una partición extendida puede contener hasta cuatro particiones

Cuando nos estemos preparando para instalar Linux, el mejor consejo que podemos acatar es tomar

notas durante todo el procedimiento de instalación. Debemos escribir todo lo que hagamos, los

comandos que escribamos y lo que veamos que nos puede parecer extraño. La idea que se persigue

es simple: si se produce algún problema, tendremos que volver atrás en nuestros pasos y descubrir

dónde está el error. Instalar Linux no es difícil pero hay muchos detalles que debemos recordar.

Necesitaremos un registro de todos estos detalles para poder experimentar con otros métodos si

algo nos sale mal. Asimismo, conservar las notas de nuestras experiencias de instalación de Linux

es útil cuando deseamos pedir ayuda a alguien.

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 70

lógicas, a su vez, una partición lógica puede definirse como partición extendida, la cual puede

también contener hasta cuatro particiones lógicas y así sucesivamente.

2.3. Requerimientos de la partición de Linux

Antes de entrar en detalles de cómo se crea la repartición de los discos, necesitamos saber

cuánto espacio tendremos que asignar a nuestro Linux.

En los sistemas Unix, los archivos se guardan en un sistema de archivos, básicamente una

sección del disco duro formateado para contener archivos. Cada sistema de archivos se asocia a

una parte especifica del árbol de directorios; por ejemplo, en muchos sistemas existe un sistema

de archivos para todos los archivos en el directorio /usr, otro en el directorio /tmp, etc. El

sistema de archivos raíz (/) es el sistema de archivos primario, que se corresponde con el

directorio más alto.

En los sistemas Unix, cada sistema de archivos reside en una partición independiente del

disco duro. Por ejemplo, si tenemos un sistema de archivos para / y otro para /usr,

necesitaremos dos particiones para que contengan estos dos sistemas de archivos. Cabe destacar

que esto es sólo aplicable a sistemas de archivos, no a directorios. Evidentemente, podemos

tener cualquier cantidad de árboles de directorios en el directorio raíz dentro del mismo sistema

de archivos.

Antes de instalar Linux tendremos que preparar los sistemas de archivos para guardar el

sistema operativo. Tenemos que tener al menos un sistema de archivos (el sistema de archivos

raíz) y, por consiguiente, una partición asignada a Linux. Muchos usuarios de Linux optan por

guardar sus archivos en el sistema de archivos raíz que, normalmente, es más fácil para

administrar diversos sistemas de archivos y particiones. Sin embargo, si se desea, podemos crear

múltiples sistemas de archivos para Linux, por ejemplo, podemos utilizar sistemas de archivos

independientes para /usr y para /home.

¿Por qué es necesario utilizar más de un sistema de archivos? La razón establecida con más

frecuencia es la seguridad; si por alguna razón se daña un sistema de archivos, los otros

(normalmente) no tendrán daños. Por el contrario, si guardamos todos nuestros archivos en el

sistema de archivos raíz y, por alguna razón, este sistema de archivos se daña, podemos perder

todos nuestros archivos de una sola vez. Sin embargo, es algo que se produce con poca

frecuencia; si realizamos copias de seguridad del sistema con regularidad estaremos bastante

asegurados.

Por otro lado, el uso de diversos sistemas de archivos tiene la ventaja de poder actualizar

fácilmente nuestro sistema sin poner en peligro nuestros preciados datos. Podemos tener una

partición para los directorios principales (home) de los usuarios y, al actualizar el sistema, dejar

esta partición y borrar el resto para poder reinstalar Linux desde el principio. Evidentemente, las

distribuciones actuales tienen procedimientos de actualización bastante elaborados pero, de vez

en cuando, puede que necesitemos un nuevo arranque. Otra razón para tener múltiples sistemas

de archivos es repartir el almacenamiento entre múltiples discos duros. Supongamos que

tenemos 300MB libres en un disco duro y 2GB libres en otro; podemos crear un sistema de

archivos raíz de 300 MB en el primer disco duro y un sistema de archivos /usr de 2GB en el

otro. Es posible tener un solo sistema de archivos que ocupe múltiples unidades utilizando una

herramienta denominada administrador de volumen lógico (LVM, Logical Volume Manager),

pero realizar esta configuración requiere un considerable conocimiento sobre el tema, a no ser

que el programa de instalación de nuestra distribución lo haga de forma automática.

En resumen, Linux requiere, al menos de una partición para el sistema de archivos raíz. Si

deseamos crear múltiples sistemas de archivos necesitaremos una partición independiente para

cada sistema de archivos adicional. Algunas distribuciones de Linux crean automáticamente

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 71

particiones y sistemas de archivos, por lo que no tendremos que preocuparnos mucho de este

problema.

Otro tema a considerar durante la planificación de nuestras particiones es el espacio de

intercambio. El espacio de intercambio es una parte del disco duro utilizada por el sistema

operativo cuando existen más procesos activos de los que se pueden mantener en la memoria.

Esta situación puede producirse porque los procesos residentes soliciten memoria

dinámicamente y no exista suficiente para todos. En estas circunstancias, es necesario buscar un

proceso poco activo, y moverlo al espacio de intercambio (el disco duro) con objeto de liberar

espacio en la memoria principal para cargar otros procesos. Mientras no haga falta, el proceso

extraído de memoria puede quedarse en el disco, ya que ahí no gasta memoria física. Cuando

sea necesario, se volverá a hacer un intercambio, pasándolo del disco a memoria RAM.

Una pregunta que casi todos nos hemos hecho a la hora de instalar nuestro sistema operativo

Linux es la siguiente ¿en una máquina que cuente con mucha memoria RAM es necesario

crearle un espacio de intercambio? Aunque puede funcionar bien sin que le creemos ningún

espacio de intercambio, es muy recomendable crearla. La razón es que siempre es bueno quitar

de la memoria los procesos poco usados, ya que eso nos permitirá usar la RAM para otras

tareas. Por ejemplo: Supongamos que abrimos en un programa de edición de imágenes, como

por ejemplo Gimp, una imagen muy grande, que nos consume el 80% de la memoria RAM, y

que después sin cerrar el programa nos ponemos a hacer varias búsquedas de archivos por

nuestro disco duro. Si no podemos llevar al disco ese proceso grande, quiere decir que ha de

mantenerse en memoria física; por tanto, las búsquedas sólo tendrán menos del 20% de la

memoria RAM y por ende estas pueden ser poco eficientes. Con la creación del espacio de

intercambio, se podría llevar a disco el proceso grande, o al menos una parte de él, hacer las

búsquedas usando mucha más RAM y luego restaurar el proceso si hace falta.

Existen dos opciones para crear el espacio de intercambio. La primera es utilizar un archivo

de intercambio existente desde uno de los sistemas de archivos de Linux. El archivo de

intercambio puede ser creado utilizando el siguiente comando:

Cabe destacar que existe un problema al hacer uso del comando mkswap, el problema es que

el <NombreArchivo> que le pasemos como parámetro tiene que cumplir un requisito especial:

el <NombreArchivo> no ha de tener agujeros. Es decir que los bytes del archivo han de estar

realmente en el disco. Para solucionar este problema podemos hacer uso del siguiente comando:

Mediante este comando estamos creando un archivo llamado <NombreArchivo>, que no

tendrá agujeros y que su tamaño será de 1024 bloques cada uno de 65536 bytes que suman un

total de 64MB. Una vez creado el archivo de intercambio es necesario activarlo para que el

sistema haga uso de él, para esto tenemos que hacer uso del siguiente comando:

En el caso de que quisiéramos desactivar el archivo de intercambio tendremos que hacer uso

del siguiente comando:

$> swapoff <NombreArchivo>

$> swapon <NombreArchivo>

$> dd if=/dev/zero of=<NombreArchivo> bs=1024 count 65536

$> mkswap <NombreArchivo>

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 72

Por último, debemos añadir, en el archivo /etc/fstab, el archivo de intercambio que acabamos

de crear para que este se inicie junto con el sistema. Una vez hecho esto podemos conocer todos

los dispositivos y archivos de intercambio activos en el sistema haciendo uso del siguiente

comando:

La segunda opción es crear una partición de intercambio, la cual es una partición individual

para su uso sólo como espacio de intercambio. En la mayoría de los casos está es la opción más

utilizada, debido a la facilidad de su implementación la cual ha sido automatizada en la mayoría

de procesos de instalación de las distintas distribuciones de Linux.

Otra pregunta que casi todos nos hacemos a la hora de crear nuestro espacio de intercambio

es la siguiente ¿qué tamaño le debemos asignar al espacio de intercambio? Hay una regla muy

conocida que dice que el espacio de intercambio ha de ser el doble de la memoria RAM

instalada, pero esta regla hoy en día ya no es válida. Esta regla funcionaba bien antes, cuando

siempre se disponía de menos RAM de la que realmente se necesitaba. Tener tres veces más

memoria que la física iba bien para la mayoría de los usuarios. Pero en un ordenador moderno

que tenga 2GB de RAM, no será necesario gastar 4GB en una partición de intercambio, porque

probablemente no se usarán todos los 4GB y por tanto estaremos desperdiciando parte de

nuestro disco duro. Hoy en día, la regla habitual usada para decidir el tamaño designado para el

espacio de intercambio es pensar cuánto quisiéramos tener de RAM y cuánto tenemos, y poner

como espacio de intercambio la diferencia. Por ejemplo, si necesitáramos abrir ficheros de hasta

700 Mb, pero sólo tuviéramos 256Mb de RAM, entonces lo que nos falta (aproximadamente

500Mb) es lo que hemos de poner como espacio de intercambio.

Una vez que hemos visto los requerimientos necesarios en cuanto a particiones se refiere

estamos listos para crear una partición. Para ello vamos a hacer uso del comando fdisk. Por

ejemplo, si deseamos ejecutar fdisk en el primer disco duro IDE de nuestro sistema, debemos

utilizar el siguiente comando:

$> fdisk /dev/hda

Orden (m para obtener ayuda):

$> cat /proc/swaps

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 73

Luego, fdisk estará esperando que le especifiquemos una opción; podemos utilizar la opción

m para obtener una lista con todas las opciones que podemos usar con fdisk:

La opción n se utiliza para crear una nueva partición. Del resto de opciones normalmente no

tendremos que preocuparnos. Para salir de fdisk sin guardar ningún cambio, podemos utilizar la

orden q. Para salir de fdisk y escribir todos los cambios realizados en la tabla de particiones del

disco, podemos utilizar la opción w. Siempre que salgamos con la opción q sin escribir nada,

podemos curiosear con fdisk sin arriesgarnos a dañar nuestros datos. Sólo cuando hagamos uso

de la opción w podremos causar un desastre potencial sobre nuestros datos, siempre y cuando

hagamos algo mal.

Lo primero que debemos hacer es ver nuestra tabla de particiones actual y escribir en un

lugar seguro dicha información para consultarla posteriormente. Podemos utilizar la opción p

para ver esta información. Es recomendable copiar la información en una libreta tras realizar

cualquier cambio en la tabla de particiones. Si por alguna razón nuestra tabla de particiones se

dañase, no podríamos acceder a ningún dato de nuestro disco duro, aunque los propios datos

sigan estando ahí. Pero si utilizamos nuestras notas, podremos restablecer la tabla de particiones

ejecutando de nuevo fdisk y eliminando y recreando las particiones con los parámetros escritos

previamente en nuestra libreta. No nos debemos olvidar de guardar la tabla de particiones

establecida cuando hayamos terminado.

Éste es un ejemplo de una tabla de particiones, de un disco duro muy pequeño, donde los

bloques, los sectores y los cilindros son las unidades organizativas del disco duro:

Orden (m para obtener ayuda): p

Disco /dev/hda: 16 cabezas, 38 sectores, 683 cilindros

Unidades = cilindros de 608 * 512 bytes

Dispositivo Inicio Comienzo Fin Bloques Id Sistema

/dev/hda1 * 1 1 203 61693 6 DOS 16-bit >=32M

Orden (m para obtener ayuda):

$> fdisk /dev/hda

Orden (m para obtener ayuda): m

Command action

a Conmuta el indicador de iniciable.

b Modifica la etiqueta de disco bsd.

c Conmuta el indicador de compatibilidad con DOS.

d Suprime una partición.

l Lista los tipos de particiones conocidos.

m Imprime este menú.

n Añade una nueva partición.

o Crea una nueva tabla de particiones DOS vacía.

p Imprime la tabla de particiones.

q Sale sin guardar los cambios.

s Crea una nueva etiqueta de disco Sun.

t Cambia el identificador de sistema de una partición.

u Cambia las unidades de visualización/entrada.

v Verifica la tabla de particiones.

w Escribe la tabla en el disco y sale.

X Funciones adicionales (sólo para usuarios avanzados).

Orden (m para obtener ayuda):

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 74

En este ejemplo tenemos una sola partición de Windows en /dev/hda1, compuesta por 61693

bloques (unos 60Mb). (Salvo que se establezca de forma diferente, un bloque en Linux por

defecto suele ocupar 1024 bytes.) Esta partición se inicia en el cilindro número 1 y finaliza en el

cilindro número 203. En este disco, tenemos un total de 683 cilindros, por lo que quedan 480

cilindros en los que se pueden crear particiones.

Para crear una partición, podemos utilizar la opción n. En este ejemplo vamos a crear dos

particiones primarias, /dev/hda2 y /dev/hda3, para Linux:

Aquí, fdisk nos está preguntando qué tipo de partición es la que deseamos crear: extendida

(e, extended) o primaria (p, primary). En nuestro ejemplo, estamos creando sólo particiones

primarias por lo que debemos escribir una p.

Aquí, fdisk nos está solicitando que escribamos el número que le queremos asignar a nuestra

nueva partición; como la partición 1 ya se está utilizando, el número de nuestra primera

partición de Linux será el 2.

Ahora fdisk nos está solicitando el número del cilindro inicial de la partición. Como están sin

utilizar los cilindros desde el 204 hasta el 683, vamos a utilizar el primer cilindro disponible (el

204). No hay ninguna razón para dejar un espacio vacío entre las distintas particiones:

Ahora fdisk nos está pidiendo el tamaño de la partición que deseamos crear. Podemos

especificar un número de cilindro de finalización o un tamaño en bytes, kilobytes o megabytes.

Como queremos que nuestra partición tenga un tamaño de MB, vamos a especificar +80M.

Cuando especificamos de esta forma el tamaño de una partición fdisk redondea el tamaño de

partición real al siguiente número de cilindros:

Último tamaño + tamaño o + tamanoM o + tamanoK (204-683): +80M

Primer cilindro (204-683): 204

Último tamaño + tamaño o + tamanoM o + tamanoK (204-683):

Números de partición (1-4): 2

Primer cilindro (204-683):

Números de partición (1-4):

Orden (m para obtener ayuda): n

Acción de la orden

e Partición extendida

p Partición primaria (1-4)

p

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 75

Ahora estamos preparados para crear nuestra segunda partición de Linux. Para este ejemplo

vamos a crear una partición con un tamaño de 10MB:

Al final miramos la tabla de particiones con la opción p, para cerciorarnos de que todo quedo

bien configurado. Una vez más es mejor escribir toda esta información, especialmente los

tamaños de los bloques de las nuevas particiones. Tendremos que conocer los tamaños de las

particiones para poder crear los sistemas de archivos. Asimismo, tendremos que comprobar que

ninguna de nuestras particiones se superpone:

Como podemos ver, /dev/hda2 es ahora una partición con un tamaño de 82080 bloques, los

cuales corresponden aproximadamente con 80MB. Y /dev/hda3 tiene ahora 10336 bloques, los

cuales corresponden con aproximadamente 10MB.

Cabe destacar que la mayoría de distribuciones Linux requieren el uso de la opción t con el

comando fdisk, para establecer que la partición de intercambio se le va a asignar el tipo:

intercambio Linux, la cual corresponde con el código número 82. Podemos imprimir la lista de

códigos de tipos de particiones conocidas mediante el uso de la opción l y utilizar

posteriormente la opción t para establecer el tipo de partición de intercambio que corresponde

con el tipo: intercambio de Linux. De ese modo, el software de instalación podrá encontrar

automáticamente las particiones de intercambio basándose en el tipo.

En el ejemplo anterior, los cilindros restantes del disco, numerados desde el 508 hasta el 683

quedarán sin utilizar. Podemos dejar espacio sin utilizar en el disco por si deseamos crear

posteriormente particiones adicionales, en caso de estar seguros de no querer crear particiones

posteriormente, no es recomendable dejar nunca espacio sin utilizar ya que estaremos

desperdiciando el espacio existente dentro de nuestro disco duro.

Por último, podemos utilizar la opción w para escribir los cambios en el disco y salir de

fdisk:

Cabe destacar que ninguna de las opciones establecidas durante la ejecución de fdisk tienen

efecto hasta que no se proporcione la opción w, por lo que podemos jugar con distintas

Orden (m para obtener ayuda): w

$>

Orden (m para obtener ayuda): p

Disco /dev/hda: 16 cabezas, 38 sectores, 683 cilindros

Unidades = cilindros de 608 * 512 bytes

Dispositivo Inicio Comienzo Fin Bloques Id Sistema

/dev/hda1 * 1 1 203 61693 6 DOS 16-bit >=32M

/dev/hda2 204 204 473 82080 83 Linux nativo

/dev/hda3 474 474 507 10336 83 Linux nativo

Orden (m para obtener ayuda): n

Acción de la orden

e Partición extendida

p Partición primaria (1-4)

p

Números de partición (1-4): 3

Primer cilindro (474-683): 474

Último tamaño + tamaño o + tamanoM o + tamanoK (474-683): +10M

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 76

configuraciones y guardarlas únicamente cuando estemos completamente seguros de que esas

son las particiones que queremos asignar a nuestro sistema. De lo contrario debemos usar la

opción q para salir de fdisk en cualquier momento sin guardar los cambios.

Algunas distribuciones de Linux requieren el reinicio del sistema tras la ejecución de fdisk

para permitir que los cambios en la tabla de particiones surtan efecto antes de instalar el sistema.

Las versiones más modernas de fdisk actualizan automáticamente la información de las nuevas

particiones en el núcleo, por lo que no es necesario un reinicio. Sin embargo, es recomendable

reiniciar el sistema tras la modificación de las particiones dentro del disco duro.

2.4. Creación del espacio de intercambio

Si decidimos utilizar una partición de intercambio para la RAM virtual, ahora ya estamos

preparados para hacerlo. Muchas distribuciones requieren de la creación y activación de un

espacio de intercambio antes de instalar el sistema operativo. Si disponemos sólo de una

pequeña cantidad de RAM física, el procedimiento de instalación puede fallar, a no ser que

hayamos habilitado alguna cantidad de espacio de intercambio.

El comando utilizado para preparar una partición de intercambio, como vimos anteriormente,

es mkswap, pero ahora adopta la forma siguiente:

Siendo partition el dispositivo que hace referencia a la partición de intercambio. Por

ejemplo, si el dispositivo que hace referencia a nuestra partición de intercambio es /dev/hda3,

entonces el comando quedaría de la siguiente manera:

La opción –c le indica a mkswap que busque bloques defectuoso en la partición cuando cree

el espacio de intercambio. Los bloques defectuosos son puntos en el medio magnético que no

contienen datos correctamente, algo que se produce raramente en los discos duros actuales. Es

recomendable hacer siempre uso de la opción –c para que mkswap revise nuestro disco en busca

de bloques defectuosos. Esta opción los excluirá automáticamente para que no se puedan

utilizar.

Tras formatear el espacio de intercambio, tendremos que habilitarlo para su uso por el

sistema. Normalmente, el sistema habilita automáticamente el espacio de intercambio en el

momento del arranque. Sin embargo, como todavía no hemos instalado el sistema operativo,

tenemos que habilitarlo nosotros mismos manualmente. El comando para habilitar el espacio de

intercambio, tal y como lo vimos anteriormente, es swapon y adopta la siguiente forma:

Siguiendo con el ejemplo anterior para habilitar el nuevo espacio de intercambio creado en

/dev/hda3 debemos utilizar el siguiente comando:

$> swapon /dev/hda3

$> swapon <partition>

$> sudo mkswap –c /dev/hda3

$> sudo mkswap –c <partition>

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 77

2.5. Creación del sistema de archivos

Antes de poder utilizar las particiones de Linux para guardar nuestros archivos, primero

tenemos que crear el sistema de archivos en ellas. La creación de un sistema de archivos es

parecida al formateo de una partición en Windows o en otros sistemas operativos. Existen

diversos tipos de sistemas de archivos disponibles para Linux. Cada tipo de sistema de archivos

tiene su propio formato y conjunto de características, como la longitud de los nombres de los

archivos, el tamaño máximo del archivo, etc. Linux admite además diversos tipos de archivos de

terceros, como el sistema de archivos de Windows (FAT32 y NTFS).

Los tipos de sistemas de archivos utilizados con más frecuencia por los sistemas operativos

Linux son los sistemas de archivos ext2 (Second Extended Filesystem) y ext3 (Third Extended

Filesystem). Los sistemas de archivos ext2 y ext3 son dos de los sistemas de archivos más

eficaces y flexibles; admiten nombres de archivos de hasta 256 caracteres y tamaños del sistema

de archivos de hasta 32 terabytes. Al momento de elegir entre que tipo de sistema de archivos

utilizar es recomendable el uso de ext3, ya que este presenta una importante ventaja sobre ext2,

esta ventaja es el uso de cuaderno de bitácora o log (journaling), que en pocas palabras permite

crear un sistema de archivos tolerante a fallos en el cual la integridad de los datos está asegurada

porque las modificaciones de la meta-información de los ficheros son primero grabadas en un

registro cronológico antes que los bloques originales sean modificados.

Para crear un sistema de archivos ext3, podemos utilizar el comando siguiente:

Cabe destacar que para crear un sistema de archivos ext2 también se utiliza el comando

mke2fs; pero la opción –j es la que hace posible la creación de un sistema de archivos ext3.

2.6. Instalar el software

Finalmente ya estamos preparados para instalar el software en nuestro sistema. Cada

distribución tiene un mecanismo diferente para hacerlo. Muchas distribuciones disponen de un

programa automático que nos conduce a través de la instalación. En otras distribuciones

tendremos que montar los sistemas de archivos en un determinado subdirectorio, por ejemplo

/mnt, y copiar el software manualmente. Las distribuciones actuales en CD-ROM suelen

presentar la opción de instalar una parte del software en el disco duro y dejar la mayoría del

mismo en el CD-ROM. Normalmente este procedimiento se denomina sistema de archivos

activo. Este tipo de sistemas de archivos activos son muy cómodos para probar Linux antes de

comprometernos definitivamente a instalarlo en el disco duro.

Algunas distribuciones ofrecen distintos métodos para instalar el software. Por ejemplo,

podemos instalar el software directamente desde una partición de Windows en el disco duro en

lugar de hacerlo desde disquetes o podemos instalarlo sobre una red TCP/IP vía ftp o NFS.

Por ejemplo, con la distribución Slackware debemos seguir el siguiente procedimiento:

1. Crear particiones con fdisk.

2. Opcionalmente, crear un espacio de intercambio con mkswap y habilitarla mediante

swapon.

3. Ejecutar el programa setup para instalar el software. Luego es el programa el que nos

conduce a través de un sistema de menús.

$> mke2fs –j –c /dev/hda2

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 78

Las distribuciones modernas de Linux pueden contener unos mil o más paquetes en diversos

CD-ROM, pero básicamente existen tres métodos para seleccionar el paquete de software:

 Selección por tarea: Éste es el medio más fácil de selección para los principiantes. No

hay que pensar si es necesario un determinado paquete. Simplemente debemos escoger

si un determinado equipo Linux va a actuar como estación de trabajo, como máquina de

desarrollo o como enrutador (router) de red y el programa de instalación elegirá los

paquetes apropiados. Normalmente podremos redefinir la selección manualmente o

volver atrás al programa de instalación posteriormente.

 Selección de paquetes individuales por serie: Con este mecanismo de selección, todos

los paquetes se agrupan en series como Redes, Desarrollo o Imágenes. Aquí podremos

seleccionar los paquetes individuales. Este método requiere más decisiones que si

elegimos realizar una selección por tarea ya que tenemos que elegir si necesitamos cada

uno de los paquetes. Sin embargo, podemos omitir una serie completa de paquetes si

estamos seguros de nos estar interesados en las funciones que ofrecen.

 Selección de paquetes individuales ordenados alfabéticamente: Este método sólo es

útil si ya sabemos qué paquetes deseamos instalar; en caso contrario, será bastante

complicado.

Elegir un método de selección no excluye el uso del resto. La mayoría de distribuciones

ofrecen dos o más de los mecanismos de selección mencionados anteriormente.

A pesar de todo puede que siga siendo difícil elegir un paquete. Las buenas distribuciones

ofrecen una breve descripción de cada paquete en pantalla para facilitar la selección del paquete

correcto pero, en caso de duda es mejor no elegirlo, ya que siempre podemos volver atrás y

añadir paquetes posteriormente.

Las distribuciones modernas tienen una opción sensacional denominada registro de

dependencia. Algunos paquetes sólo funcionan cuando están instalados otros paquetes, por

ejemplo un visor gráfico puede necesitar bibliotecas graficas especiales para importar archivos.

Con el registro de dependencia, la instalación del programa puede informar sobre dichas

dependencias y nos permitirá seleccionar automáticamente el paquete deseado junto con todos

los paquetes de los que depende. A no ser que estemos seguros de lo que estamos haciendo, es

mejor aceptar siempre las ofertas de cumplimiento de dependencias automáticas para evitar que

el paquete que necesitamos instalar no funcione adecuadamente más adelante. Los programas de

instalación pueden ayudarnos de distintas formas a seleccionar y evitar errores. Por ejemplo, el

programa de instalación puede negarse a iniciar la instalación de un determinado paquete si

anulamos la selección de un paquete que es absolutamente crucial para que se inicie incluso el

sistema más mínimo, como la estructura básica de directorios, o puede buscar una mutua

exclusión, como cuando sólo podemos tener un paquete u otro pero no ambos.

En contraste con el mecanismo de instalación de software de la distribución del ejemplo anterior,

al final de este capítulo analizaremos un caso practico, en el cual se lleva a cabo de inicio a fin una

instalación de una distribución de Linux conocida como Ubuntu, en esta observaremos que todos

los pasos previos y posteriores a la instalación, tanto del software como del propio sistema, son

muy automatizados e intuitivos, algo que permite que usuarios inexpertos en el mundo de Linux se

puedan introducir a él desde el momento en que se inicia el proceso de instalación hasta que

deciden que jamás van a dejar de usarlo. Este factor de automatización e intuitividad en el proceso

de instalación es algo que muchas distribuciones Linux, como Debian o RedHat, no han podido

conseguir y por ende añaden a la gran mayoría de usuarios inexpertos un mayor grado de

complejidad, tanto que se deciden por no instalar el sistema.

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 79

2.7. Instalar el gestor de arranque GRUB

Cada distribución proporciona distintos medios para poder arrancar el nuevo sistema Linux

una vez instalado todo el software. Muchas veces, el procedimiento de instalación nos sugiere la

creación de un disquete de arranque, que contiene un núcleo de Linux configurado para utilizar

el sistema de archivos raíz recién creado. Para poder iniciar Linux debemos arrancarlo desde

este disquete; el control se transfiere al disco duro tras el arranque. En otras distribuciones, este

disquete de arranque es el propio disquete de instalación. Si el sistema no contiene una

disquetera, algo muy común en muchos sistemas modernos, debemos asegurarnos de utilizar

otros medios para arrancar Linux, como el inicio directo desde un CD-ROM. Muchas

distribuciones nos proporcionan la opción de instalar GRUB en el disco duro. GRUB es un

gestor de arranque múltiple que reside en el registro maestro de arranque y se usa comúnmente

para iniciar dos o más sistemas operativos instalados en un mismo ordenador. Además nos

permite seleccionar, mediante una lista, cuales de todos los sistemas operativos queremos iniciar

en el momento del arranque.

Para instalar GRUB con éxito, necesitamos conocer mucha información sobre la

configuración de nuestro disco duro: por ejemplo, cuáles son las particiones que contienen los

distintos sistemas operativos, cómo iniciar cada sistema operativo, etc. Al instalar GRUB,

muchas distribuciones intentan adivinar los parámetros apropiados para nuestra configuración.

A veces, la instalación GRUB automatizada proporcionada por algunas distribuciones pude

fallar y dejar destrozado el disco de arranque maestro, no obstante, es poco probable que se

produzca algún daño en los datos reales de nuestro disco duro.

3. Procedimientos posteriores a la instalación

Tras completar la instalación del sistema operativo Linux, deberíamos ser capaces de

reiniciar el sistema, iniciar una sesión como root y empezar el mismo. Cada distribución tiene

un método diferente de hacerlo.

Sin embargo, antes de seguir adelante por nuestra cuenta, hay algunas tareas que debemos

llevar a cabo para evitar problemas posteriores.

3.1. Creación de una cuenta de usuario no root

Para poder empezar a utilizar el sistema es necesario crear una cuenta de usuario.

¿Por qué todo esto? Todos los sistemas Linux tienen cuentas preinstaladas, como root. Sin

embargo, la cuenta root esta diseñada exclusivamente para objetivos administrativos. Como

root, tendremos todo tipo de privilegios y podremos acceder a todos los archivos de nuestro

sistema. Sin embargo, utilizar la cuenta root puede ser peligroso, especialmente cuando estamos

empezando a descubrir el nuevo mundo de Linux. Como no existen restricciones sobre lo que se

puede hacer al iniciar la sesión con esta cuenta, es muy fácil escribir mal un comando, eliminar

archivos accidentalmente, dañar nuestro sistema de archivos, etc. Debemos iniciar sesión como

root sólo cuando tengamos que ejecutar tareas de administración del sistema, cómo editar

archivos de configuración, instalar un nuevo software, etc.

Para un uso normal, debemos crear una cuenta de usuario estándar. Los sistemas Linux

tienen una seguridad integrada que evita que los usuarios estándar eliminen archivos de otros

usuarios y dañen recursos importantes, como los archivos de configuración del sistema. Como

Además de GRUB existen otros gestores de arranque, incluyendo el más antiguo de Linux, Lilo

(LInux LOader).

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 80

usuario estándar, nos estaremos protegiendo a nosotros mismos ante nuestros propios errores,

especialmente si no tenemos experiencia en la administración de un sistema Linux.

Muchas distribuciones de Linux proporcionan herramientas para crear nuevas cuentas. Estos

programas normalmente utilizan comandos como useradd o adduser para llevar a cabo la

creación de nuevos usuarios. Como root, al llamar a uno de estos comandos, aparecerá un

resumen de uso del mismo y podremos crear una nueva cuenta de forma sencilla.

Las distribuciones más modernas proporcionan una herramienta de administración del

sistema genérica para diversas tareas, una de las cuales es la creación de una nueva cuenta de

usuario.

3.2. Pedirle ayuda a nuestro sistema

Los sistemas Linux proporcionan su ayuda en formas de páginas de manual. Estas páginas de

manual nos proporcionan ayuda sobre determinados comandos o archivos de configuración que

necesitamos utilizar pero que no sabemos como hacerlo, su uso es sumamente importante ya

que son una buena herramienta que nos resuelve los problemas cuando estamos en apuros. Para

obtener ayuda de las páginas del manual debemos hace ruso del comando man, por ejemplo para

obtener información sobre el comando adduser debemos usar el siguiente comando:

En algunas distribuciones las páginas del manual se proporcionan como un paquete opcional,

por lo que no estarán disponibles a no ser que optemos por instalarlas. Sin embargo, es muy

aconsejable que lo hagamos. Muchas veces nos sentiremos perdidos sin ellas.

Asimismo, puede que falten o estén incompletas determinadas páginas del manual de nuestro

sistema. Dependerá de lo completa que sea la distribución que hayamos elegido y de cómo estén

actualizadas las páginas del manual.

Las páginas del manual de Linux también documentan llamadas del sistema, funciones de

bibliotecas, formatos de archivos de configuración y elementos básicos del núcleo.

Muchas distribuciones también proporcionan documentación en formato HTML que se

puede leer con cualquier explorador web, como Firefox, Konqueror, Opera, etc. Por último hay

archivos de documentación con texto común que se pueden leer con cualquier editor de texto o

simplemente con el comando less o more.

Si no podemos encontrar documentación para un determinado comando, también podemos

probar a ejecutarlo con la opción –h o –help. La mayoría de comandos proporcionan un breve

resumen de su uso si se escriben con esta opción.

3.3. Edición del archivo /etc/fstab

Para estar seguros de que todos los sistemas de archivos de Linux estarán disponibles al

reiniciar el sistema, tendremos que editar el archivo /etc/fstab, que se encarga de describir

nuestros sistemas de archivos. Muchas distribuciones generan automáticamente el archivo

/etc/fstab durante la instalación. Sin embargo, si tenemos sistemas de archivos adicionales que

no hayan sido utilizados durante el proceso de instalación, puede que necesitemos agregarlos al

archivo /etc/fstab para que estén disponibles. En este archivo también deben de incluirse las

particiones de intercambio.

$> man adduser

Tema 2: Instalación básica Administración de Sistemas Operativos

Página | 81

Para poder acceder a un sistema de archivos, éste tiene que estar montado en el sistema. El

montaje de un sistema de archivos asocia dicho sistema de archivos a un determinado directorio.

Por ejemplo, el sistema de archivos raíz se monta en /, el sistema de archivos de usuario se

monta en /usr, y así sucesivamente.

El sistema de archivos raíz se monta automáticamente en / al iniciar Linux. Sin embargo, el

resto de sistemas de archivos se tienen que montar de forma individual. Normalmente es una

tarea que se consigue con el siguiente comando:

Este comando montará cualquier sistema de archivos que aparezca listado en el archivo

/etc/fstab. Por consiguiente, para que nuestros sistemas de archivos se monten automáticamente

en el momento del arranque, tendremos que incluirlos en el archivo /etc/fstab. Evidentemente

siempre podremos montar los sistemas de archivos manualmente utilizando el comando mount

tras el inicio del sistema, pero es una tarea innecesaria.

Éste es un ejemplo del archivo /etc/fstab resumido ya que hemos omitido los dos últimos

parámetros en cada línea por ser opcionales y no ser importantes para nuestro análisis. En este

ejemplo, el sistema de archivos raíz se encuentra en /dev/hda1, el sistema de archivos /home se

encuentra en /dev/hdb2 y la partición de intercambio se encuentra en /dev/hdb1.

/etc/fstab

device directory type options

/dev/hda1 / ext3 defaults

/dev/hdb2 /home ext3 defaults

/dev/hdb1 none swap sw

Las líneas que empiezan con el carácter # son comentarios. Como podemos observar, el

archivo /etc/fstab está compuesto de una serie de líneas. El primer campo de cada línea es el

nombre del dispositivo de la partición, como /dev/hda1. El segundo campo es el punto de

montaje, es decir, el directorio donde se monta el sistema de archivos. El tercer campo es el

tipo. El cuarto campo es para las opciones de montaje. Si utilizamos este ejemplo como modelo,

debemos ser capaces de agregar entradas para cualquier sistema de archivos que no aparezca

listado en el archivo /etc/fstab.

Después de añadir las entradas para los sistemas de archivos adicionales que no se están

cargando automáticamente al iniciar el ordenador, debemos ejecutar el siguiente comando:

También, podemos reiniciar el sistema para que los cambios tengan efecto.

3.4. Cerrar el sistema

Nunca debemos reiniciar nuestro sistema Linux pulsando el conmutador de restablecimiento

o apagarlo directamente mediante el botón de apagado. Igual que sucede con la mayoría de

sistemas Unix, Linux copia escrituras de disco en la memoria cache. Por consiguiente, si

reiniciamos de repente el sistema sin haberlo cerrado limpiamente, podemos dañar los datos que

se encuentren en nuestros discos duros. Sin embargo, debemos tener en cuenta que presionar las

combinaciones de teclas Ctrl+Alt+Supr simultáneamente es generalmente seguro: el núcleo

atrapa la secuencia de teclas y se las pasa al proceso init que, a su vez, inicia un cierre limpio del

sistema.

$> mount -a

$> mount -av

Administración de Sistemas Operativos Tema 2: Instalación básica

Página | 82

Sin embargo, la configuración de nuestro sistema podría tener reservadas las combinaciones

de teclas Ctrl+Alt+Supr para el administrador del sistema, para que de esta forma los usuarios

normales no puedan cerrar el servidor de red del que depende todo un departamento. Para

establecer permisos para utilizar esta combinación de teclas, debemos crear un archivo

denominado /etc/shutdown.allow con una lista de nombres de todos los usuarios a los que se les

permitirá cerrar la máquina mediante esta combinación de teclas.

El método más sencillo de cerrar el sistema es utilizar el comando shutdown. Como ejemplo,

para cerrar y reiniciar el sistema inmediatamente, podemos utilizar el siguiente comando:

Así lograremos cerrar y reiniciar limpiamente nuestro sistema.

La mayoría de distribuciones también proporcionan el comando halt, el cual llama

inmediatamente a shutdown. Existen otras distribuciones que proporcionan el comando

poweroff, que en realidad cierra el equipo y lo apaga Y otras que proporcionan el comando

reboot, que en realidad cierra y reinicia el equipo limpiamente.

$> sudo shutdown –r now

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 83

TEMA 3: INSTALACIÓN, ACTUALIZACIÓN Y

COMPILACIÓN DE PROGRAMAS

Objetivos

 Determinar con precisión el porque y el cuando realizar actualizaciones de programas

en los sistemas Linux.

 Desarrollar capacidades de manipulación sobre los mecanismos disponibles para la

instalación, desinstalación y actualización de software sobre sistemas Linux.

 Estudiar los sistemas de gestión de paquetes más importantes y más utilizados en la

mayoría de distribuciones Linux.

 Describir los pasos a seguir para instalar manual y seguramente un software sin ayuda

de los sistemas de gestión de paquetes.

 Analizar la funcionalidad que cumplen las bibliotecas estáticas y dinámicas existentes

dentro del sistema y conocer cómo estas son utilizadas por las distintas aplicaciones.

Contenido

1. Actualización de software

2. Procedimiento general de actualización

3. Sistema de gestión de paquetes RPM

4. Sistema de gestión de paquetes .deb

4.1. Utilizar dpkg

4.2. Utilizar apt

4.2.1. El corazón de apt

4.2.2. Tipos de paquetes según su prioridad

4.2.3. Grado de dependencia entre paquetes

4.2.4. Acciones sobre paquetes

4.2.5. Estado de instalación de los paquetes

4.2.6. Utilizar apt-cache

4.2.7. Utilizar apt-get

5. Software no proporcionado en paquetes

5.1. Actualización de bibliotecas

Bibliografía

Básica

 Matthias Kalle Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada “, Editorial Anaya Multimedia, 2006.

Complementaria

 Roger Baig Viñas, Francesc Aulí Llinàs, “Sistema operativo GNU/Linux básico

Primera Edición”, UOC Formación de Posgrado, Software libre, noviembre 2003.

http://www.nodo50.org/cursos/manual_gnu_linux.pdf

http://www.nodo50.org/cursos/manual_gnu_linux.pdf

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 84

En este tema vamos a aprender a actualizar el software de nuestro sistema. Aunque la

mayoría de distribuciones de Linux proporcionan algún medio automatizado para instalar,

eliminar y actualizar paquetes de software específicos en el sistema, a veces es necesario

instalar algún software manualmente. Además es recomendable conocer cuales son los

procedimientos adoptados por el sistema para llevar a cabo tanto instalaciones, eliminaciones y

actualizaciones de software.

Generalmente, es mucho más fácil instalar, desinstalar y actualizar cualquier software

utilizando los sistemas de gestión de paquetes que actualmente son proporcionados en la gran

mayoría de distribuciones Linux. Ya que si no utilizamos un sistema de gestión de paquetes, las

instalaciones, eliminaciones y actualizaciones pueden ser más complicadas que en la mayoría de

sistemas operativos comerciales. Aunque se encuentren disponibles binarios compilados

previamente, puede que tengamos que descomprimirlos y desempaquetarlos desde un almacén

de archivos. También puede que tengamos que crear vínculos simbólicos o establecer variables

de entorno para que los binarios sepan dónde buscar los recursos que utilizan. En otros casos,

tendremos que compilar el software personalmente desde las fuentes, una tarea que la verdad no

es nada sencilla ni agradable.

1. Actualización de software

Actualmente Linux se mueve con mucha rapidez. Debido a la naturaleza cooperativa del

proyecto, siempre se encuentra disponible un nuevo software y los programas siempre se están

actualizando con versiones más modernas. Con este constante desarrollo, ¿cómo se puede

esperar estar al día en las versiones más recientes de un sistema de software? La respuesta es

que en algunos casos nunca estaremos al día en las versiones. En esta sección vamos a analizar

porque y cuando debemos realizar una actualización y además vamos a actualizar diversos

elementos importantes de nuestro sistema.

¿Cuándo debemos realizar una actualización? En general, debemos considerar actualizar una

parte de nuestro sistema sólo cuando tengamos una necesidad demostrada para hacerlo. Por

ejemplo, si sabemos que existen nuevas versiones de algunas aplicaciones que solucionan fallos

importantes, es decir, fallos que realmente afectan al uso personal de la aplicación, entonces

podemos considerar la actualización de dicha aplicación. Si la nueva versión del programa

proporciona nuevas opciones que nos pueden resultar útiles o mejora el rendimiento con

respecto a la versión que actualmente tenemos, también es recomendable realizar la

actualización. Cuando nuestra máquina está conectada a Internet, otra buena razón para

actualizar sería solucionar una brecha de seguridad sobre la que nos hayamos informado

recientemente. Sin embargo, actualizar sólo por tener la versión más moderna de un programa

determinado no es nada recomendable. En algunos casos muy extraños las versiones más

modernas son incluso regresiones, es decir, introducen errores o fallos de rendimiento en

comparación con una versión anterior.

A veces el proceso de actualización puede ser una tarea difícil. Por ejemplo, puede que

necesitemos actualizar a un programa que requiere las versiones más modernas del compilador,

bibliotecas y otro software para poderlo ejecutar. La actualización de este programa también

requerirá la actualización de otras partes del sistema, un proceso que nos puede consumir mucho

tiempo. Por otro lado, esta consideración podría ser un argumento para mantener la gran

mayoría del software existente en nuestro sistema siempre actualizado: si nuestro compilador y

bibliotecas son actuales, actualizar el programa en cuestión no será ningún problema.

Ahora que ya sabemos porque debemos realizar una actualización, se nos presenta un nuevo

problema: ¿cuál es el mejor método de actualización? Algunos creen que es mucho más fácil

actualizar completamente el sistema volviendo a instalar todo desde el principio siempre que se

lance una nueva versión de nuestra distribución favorita. De esta forma, no tendremos que

preocuparnos de las diversas versiones de software que trabajan juntas.

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 85

Sin embargo, la reinstalación no es un buen plan de actualización. La mayoría de

distribuciones actuales de Linux no están diseñadas para actualizarse de esta forma y una

completa reinstalación puede ser muy compleja o consumir mucho tiempo. Asimismo, si

prevemos realizar una actualización de esta manera, generalmente perderemos todas las

modificaciones y personalizaciones realizadas sobre nuestro sistema y tendremos que realizar

copias de seguridad de los directorios personales de los usuarios y de cualquier otro archivo

importante que se pudiera eliminar, o al menos comprometer, durante una reinstalación. Por

último, adoptar una solución drástica para realizar una actualización significa que, en la

práctica, probablemente tendremos que esperar más que si actualizamos el software cuando se

anunciarán fallos de seguridad importantes. En realidad, no hay muchos cambios de una versión

a otra, por lo que una completa reinstalación normalmente no es necesaria y se puede evitar con

un poco de conocimiento sobre las actualizaciones disponibles.

2. Procedimiento general de actualización

Tal y como lo hemos analizado en las secciones anteriores, normalmente es más fácil y

mejor actualizar sólo las aplicaciones que tengamos que actualizar. Por ejemplo, si nunca

utilizamos el editor de texto Emacs en nuestro sistema, ¿por qué preocuparnos de mantenerlo

actualizado con la versión más reciente? Seguramente no necesitemos estar completamente al

día con aplicaciones que no utilizamos con frecuencia.

Los sistemas Linux modernos proporcionan diversos métodos de actualización de software,

algunos de estos métodos son manuales y son considerados los más flexibles pero presentan la

desventaja de ser difíciles de llevar a cabo y complicados de actualizar. Sin embargo, existen

otros métodos que son bastante automatizados. En esta sección vamos a examinar tres métodos

diferentes para llevar a cabo las tareas relacionadas con el software de nuestro sistema: el primer

método consiste en utilizar el sistema de paquetes RPM (Red Hat Package Manager), el

segundo en utilizar el sistema de paquetes Debian (APT, Advanced Packaging Tool y dpkg,

Debian PacKaGe) y el tercero consiste en el método manual.

Es importante resaltar que utilizar paquetes y sistemas de gestión de paquetes es muy

cómodo y que incluso usuarios con poca experiencia, pueden realizar estas técnicas ya que

ahorran mucho tiempo e implican menos conocimientos. A continuación se presentan algunas

de las ventajas que nos ofrece la utilización de paquetes y sistemas de gestión de paquetes:

 Todo lo que pertenece a un paquete de software se encuentra en un solo archivo

descargable.

 Podemos eliminar un paquete de software completamente del sistema sin que peligren

otros paquetes.

 Los sistemas de gestión de paquetes mantienen una base de datos de dependencias y,

por tanto, pueden registrar las dependencias asociadas a un determinado paquete antes

de que este sea instalado. Por ejemplo, pueden indicarnos si tenemos que instalar una

versión más moderna de una biblioteca para ejecutar una determinada aplicación que

estemos a punto de instalar. Y rechazará la eliminación de un paquete de biblioteca

siempre que existan paquetes instalados que utilicen las bibliotecas que proporciona

dicho paquete.

La regla general que todo administrador de sistemas debe tener siempre en mentes es que si existe

algún software que no es tan indispensable para el correcto funcionamiento del sistema y que si no

se actualiza tampoco lo pone en riesgo, entonces dicho software no necesita ser actualizado.

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 86

Evidentemente, los sistemas de gestión de paquetes también tienen algunos inconvenientes.

Un problema genérico que presentan es que cuando utilizamos el sistema de gestión de

paquetes, tenemos que instalarlo todo a través de los paquetes. En caso contrario, no podremos

registras las dependencias. Por la misma razón, no es recomendable mezclar sistemas de gestión

de paquetes diferentes.

Es muy probable que todos los días se actualice algún programa que estemos utilizando,

lamentablemente esto sucede con mucha frecuencia debido a los fallos de seguridad. Algunos

administradores de sistemas meticulosos insisten en revisar con regularidad los informes de

seguridad y en actualizar todos los paquetes manualmente utilizando los medios explicados en

las siguientes secciones para poder controlar todos los aspectos del sistema y asegurarse de que

ningún cambio afecta a la funcionalidad existente. Ésta es una noble causa a la que nos podemos

dedicar y además es factible en sistemas con propósitos delicados y con un conjunto de software

limitado; como por ejemplo, servidores de correo, servidores web, servidores de bases de datos,

sistemas de tiempo real, etc. No obstante, para sistemas de propósitos más general, mantener

todo lo que utilizamos actualizado con regularidad se convierte en una tarea muy importante.

Por esta razón, la gran mayoría de distribuciones actuales nos proporcionan servicios de

actualización automatizados.

3. Sistema de gestión de paquetes RPM

RPM, que originalmente se aplicó al administrador de paquetes de la distribución Red Hat

pero que ahora es un nombre por derecho propio, es una herramienta que automatiza la

instalación de los binarios de software y recuerda cuáles son los archivos necesarios

(dependencias) para asegurarse de que el software se va a ejecutar correctamente. A pesar del

nombre, RPM no es específico de Red Hat ya que se utiliza en muchas otras distribuciones,

incluyendo entre las principales a: SuSE, Fedora y Mandriva. Al utilizar el sistema de gestión

de paquetes RPM suministrado en dichas distribuciones, la instalación, actualización y

desinstalación del software se convierte en una tarea mucha más fácil y sencilla.

La idea básica de RPM es que existe una base de datos de paquetes y archivos que

pertenecen a un paquete. Al instalar un nuevo paquete, la información sobre éste se registra en

la base de datos. A continuación, si deseamos desinstalar el paquete para cada archivo del

mismo, RPM comprueba si otros paquetes instalados están utilizando también ese archivo. Si

éste es el caso, el archivo no se elimina.

Asimismo, RPM registra las dependencias. Cada paquete puede depender de uno o más

paquetes. Al instalar un paquete, RPM comprueba si los paquetes de los que depende el nuevo

paquete se encuentran ya instalados. En caso contrario, nos informa sobre las dependencias

incumplidas y rechaza la instalación del paquete.

Las verificaciones de dependencias entre paquetes también se utilizan en el proceso de

eliminación de los mismos: cuando deseamos desinstalar un paquete del que dependen todavía

otros paquetes, RPM también nos lo hacer saber y rechaza la ejecución de dicha tarea.

Sin embargo, la incrementada comodidad del uso de paquetes RPM tiene un precio: en

primer lugar, para los desarrolladores de programas, les es significativamente más difícil crear

un paquete RPM que simplemente empaquetarlo todo en un archivo tar, y en segundo lugar, no

se puede recuperar sólo un archivo de un paquete RPM; hay que instalarlo todo o nada.

Si ya disponemos de un sistema que utiliza el sistema de gestión de paquetes RPM, instalar

paquetes RPM es muy fácil. Supongamos que tenemos un paquete RPM denominado

SuperFrob-4.i386.rpm. Los paquetes RPM siempre tienen la extensión .rpm; i386 indica que se

trata de un paquete binario compilado para máquinas Intel x86. Este paquete puede ser instalado

de la siguiente manera:

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 87

En lugar de la opción –i, también podemos utilizar la versión de nombre largo de esta

opción:

Si todo va bien, no habrá ninguna salida. Si deseamos que RPM ofrezca más detalle,

podemos utilizar:

Este comando imprimirá el nombre del paquete y un número de marcas # para que podamos

ver el progreso de la instalación.

Si el paquete que deseamos instalar depende de otro paquete que todavía no está instalado,

nos aparecerá un mensaje como el siguiente:

Si observamos este mensaje, podemos buscar el paquete frobnik-2 e instalarlo primero.

Evidentemente, este paquete puede depender a su vez de otros paquetes.

Si deseamos actualizar un paquete que ya está instalado en el sistema, podemos utilizar la

opción –U o su versión larga --update:

La desinstalación de un paquete se lleva a cabo con la opción –e o --erase. En este caso no es

necesario especificar el nombre del archivo del paquete, sino únicamente el nombre del paquete

y su número de versión:

Aparte de las opciones descritas anteriormente que alteran el estado del sistema, la opción –q

proporciona diversos tipos de información sobre todo lo que se ha grabado en la base de datos

RPM. Con la opción –q podemos conseguir realizar las siguientes tareas:

 Buscar el número de versión de un paquete instalado:

$> sudo rpm –q SuperFrob

SuperFrob-5

$> sudo rpm –e SuperFrob-5

$> sudo rpm –U SuperFrob-5.i386.rpm

$> sudo rpm –i SuperFrob-4.i386.rpm

failed dependencies:

 frobnik-2 is needed by SuperFrob-4

$> sudo rpm –ivh SuperFrob-4.i386.rpm

$> sudo rpm - -install SuperFrob-4.i386.rpm

$> sudo rpm –i SuperFrob-4.i386.rpm

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 88

 Obtener una lista de todos los paquetes instalados:

 Saber a qué paquete pertenece un determinado archivo:

 Mostrar información sobre el paquete especificado:

 Mostrar los archivos que se van a instalar para el paquete especificado:

Si nos llegamos a enfrentar con la instalación de un paquete RPM en una distribución basada

en Debian, la cual utiliza paquetes .deb y no .rpm, las cosas se nos pueden complicar un poco

más. Sin embargo, podemos utilizar el comando alien, el cual convierte entre diversos formatos

de paquetes y se incluye en la mayoría de distribuciones Linux actuales.

$> sudo rpm –qpl SuperFrob-5.i386.rpm

/usr/bin/dothefrob

/usr/bin/frobhelper

/usr/doc/SuperFrob/Installation

/usr/doc/SuperFrob/README

/usr/man/man1/dothefrob.1

$> sudo rpm –qi rpm

Name: rpm Relocations: (not relocatable)

Version: 4.1.1 Vendor: SUSE LINUX Products GmbH,

Nuernberg, Germany

Release: 208.2 Build Date: 11 Jun 2005 01:53:04

AM CEST

Install date: 28 Jun 2005 10:02:18 AM CEST Build Host: purcell.suse.de

Group: System/Packages Source RPM: rpm-4.1.1-208.2.src.rpm

Size: 5970541 License: GPL

Signature: DSA/SHA1, Sat 11 Jun 2005 01:58:41 AM CEST, Key ID a84edae89c800aca

Packager: http://www.suse.de/feedback

Sumary: The RPM Package Manager

Description:

RPM Package Manager is the main tool for managing the software packages of the SuSE Linux

distribution.

…

Distribution: SuSE Linux 9.3 (i586)

$> sudo rpm –qf /usr/bin/dothefrob

SuperFrob-5

$> sudo rpm –qf /home/kalle/.xinitrc

file /home/kalle/.xinitrc is not owned by any package

$> sudo rpm –qa

SuperFrob-5

OmniFrob-3

…

glibc-2.3.4-23.4

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 89

Por ejemplo, para pasar de .rpm a .deb con el comando alien podemos ejecutar lo siguiente:

Cabe destacar que para trabajar con paquetes .rpm la gran mayoría de distribuciones cuenta

con diversas herramientas como son: apt4rpm, up2date (Red Hat), urpmi (Mandriva), YaST

(SuSE), YUM (Fedora y Yellowa Dog Linux).

4. Sistemas de gestión de paquetes .deb

En esta sección vamos a analizar y aprender a utilizar sistemas de gestión de paquetes .deb.

Haremos énfasis específicamente en los sistemas dpkg y apt. Mientras dpkg es una interfaz de

bajo nivel para el administrador de paquetes de Debian, la mayoría de funciones normalmente

se controlan a través de la familia de programas apt (ver figura 3.1) o de interfaces como:

dselect, aptitude, gnome-apt, synaptic o KPackage.

Figura 3.1: Esquema de elementos basados en texto de la familia de programas apt

4.1. Utilizar dpkg

Tras RPM, el administrador de paquetes más conocido para las distribuciones de Linux es

dpkg, que se utiliza para administrar paquetes .deb. Como su nombre implica, el formato .deb

está unido a la distribución Debian, por lo que también se utiliza en distribuciones basadas en

Debian, como Ubuntu y Kubuntu, Libranet y Xandros. Al igual que el formato RPM, el formato

.deb también registra las dependencias de los archivos para asegurarse de que el sistema es

consistente.

Las diferencias técnicas existentes entre los dos formatos son realmente pequeñas; aunque

los formatos RPM y .deb son incompatibles. Por ejemplo, no se puede instalar directamente un

paquete Debian en Red Hat. Sin embargo, podemos utilizar el comando alien para convertir los

paquetes .deb para otras distribuciones (y viceversa). La diferencia principal existente entre los

formatos es que los paquetes .deb se crean utilizando herramientas que ayudan a asegurarse de

tener un esquema consistente y generalmente conforme a determinadas directivas

principalmente, el Debian Policy Manual, proporcionado en el paquete debian-policy que

ayudan a los desarrolladores de software a crear paquetes de alta calidad.

$> alien - -to-deb SuperFrob-5.i386.rpm

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 90

Instalar paquetes .deb, utilizando dpkg, en un sistema Debian es bastante fácil. Por ejemplo,

si tenemos un paquete denominado superfrob_4-1_i386.deb, podemos instalarlo de la siguiente

manera:

Si falta alguna dependencia del paquete superfrob, dpkg nos emitirá un mensaje de aviso:

El mensaje de salida indica que para poder instalar el paquete superfrob_4-1_i386.deb

completamente, es necesario tener instalada la versión 2 o posterior de frobnik. Los archivos en

el paquete están instalados pero puede que no funcionen hasta que esté instalado también el

paquete frobnik.

Al contrario que RPM, dpkg no distingue entre la instalación de un nuevo paquete y la

actualización de uno existente; en ambos casos se utiliza la opción –i (o --install). Por ejemplo

si queremos actualizar superfrob utilizando un paquete superfrob_5-1_i386.deb recién

descargado, simplemente escribiríamos:

Para desinstalar un paquete, podemos utilizar la opción –r (--remove) o –P (--purge). La

opción --remove eliminará la mayoría del paquete, pero conservará cualquier archivo de

configuración existente, mientras que --purge eliminará también los archivos de configuración

del sistema. Por ejemplo, para eliminar totalmente superfrob deberíamos utilizar el siguiente

comando:

$> dpkg –P superfrob

(Reading database … 159547 files and directories currently installed.)

Removing superfrob …

$> dpkg –i superfrob_5-1_i386.deb

(Reading database … 159546 files and directories currently installed.)

Preparing to replace superfrob 4-1 (using superfrob_5-1_i386.deb) …

Unpacking replacement superfrob …

Setting up superfrob(5-1) …

$> dpkg –i superfrob_4-1_i386.deb

Selecting previously deselected package superfrob.

(Reading database … 159540 files and directories currently installed.)

Unpacking superfrob (from superfrob_4-1_i386.deb) …

Dpkg: dependency problems prevent configuration of superfrob:

superfrob depends on frobnik (>>2); however:

Package frobnik is not installed.

Dpkg: error processing superfrob (--install):

dependency problems – leaving unconfigured

Errors were encountered while processing:

superfrob

$> dpkg –i superfrob_4-1_i386.deb

Selecting previously deselected package superfrob.

(Reading database … 159540 files and directories currently installed.)

Unpacking superfrob (from superfrob_4-1_i386.deb) …

Setting up superfrob(4-1) …

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 91

También podemos utilizar dpkg para buscar los paquetes que están instalados en nuestro

sistema utilizando la opción –l (--list):

Las tres primeras líneas de la salida están designadas para indicar lo que significan las tres

primeras columnas anteriores al nombre de cada paquete. Normalmente se suele mostrar ii, para

indicar que el paquete está instalado correctamente. Si no es así, debemos escribir dpkg --audit

para obtener una explicación de lo que está mal en nuestro sistema y cómo podemos hacer para

solucionarlo.

También podemos utilizar la opción –l con un nombre de paquete; por ejemplo, podríamos

conocer cual es la versión de superfrob instalada en nuestro sistema utilizando el siguiente

comando:

dpkg también se puede utilizar para conocer el paquete al que pertenece un determinado

archivo:

También podemos ver información sobre un paquete o archivo .deb instalado:

$> dpkg --status dpkg

Package: dpkg

Essential: yes

Status: install ok installed

…

Original-Maintainer: Dpkg Developers <team@dpkg.org>

$> dpkg --search /bin/false

shellutils: /bin/false

$> dpkg --search /home/kalle/.xinitrc

dpkg: /home/kalle/.xinitrc not found

$> dpkg –l superfrob

Desired=Unknow/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err:uppercase=bad)

||/ Name Version Description

+++-= == == == == == == =-= == == == == ==-= == == == == == ==

ii superfrob 4-1 The superfrobulator

$> dpkg –l

Desired=Unknow/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err:uppercase=bad)

||/ Name Version Description

+++-= == == == == == == =-= == == == == ==-= == == == == == ==

ii a2ps 4.13b-15 GNU a2ps „Anything to PostScript‟ converted

ii aalib1 1.4p5-10 ascii art library

ii abcde 2.0.3-1 A Better CD Encoder

…

ii zlib1g-dev 1.1.3-19 compression library - development

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 92

dpkg también puede listar los archivos y directorios incluidos en un archivo .deb:

4.2. Utilizar apt

Además de dpkg, Debian y otras distribuciones basadas en Debian, proporcionan la familia

de programas apt. Cabe destacar, que algunas distribuciones basadas en RPM también incluyen

ahora apt (apt4rmp o apt-rpm). apt está diseñado como un sistema independiente del archivo

que puede controlar múltiples formatos de paquetes. Quizá la opción más importante de apt sea

su capacidad de resolver automáticamente las dependencias; si, por ejemplo, superfrob requiere

la versión 2 o posterior de frobink, apt intentará buscar frobnik desde las fuentes disponibles

(repositorios que incluyen CD-ROM, espejos locales e Internet).

apt pone a nuestra disposición esencialmente dos herramientas: apt-get y apt-cache. La

primera herramienta puede ser utilizada única y exclusivamente por el usuario root del sistema,

ya que es la herramienta de gestión de paquetes: instalación, desinstalación, actualización, etc.,

mientras que la segunda, al ser orientada a la búsqueda de información dentro de la base de

datos, ya sean paquetes instalados o sin instalar, puede ser utilizada por cualquier usuario.

4.2.1. El corazón de apt

Existe un archivo que es el corazón de la configuración del sistema de gestión de paquetes de

las distribuciones basadas en Debian. Este archivo generalmente suele estar ubicado en el

directorio /etc/apt/ y recibe el nombre de sources.list. Se trata de un fichero de texto, como la

gran mayoría de ficheros de configuración en los sistemas Linux, el cual puede ser editado

manualmente mediante cualquier editor de texto en modo consola, o bien haciendo uso de

editores de textos en modo gráfico.

El contenido de este fichero dependerá en gran medida de si contamos con una conexión a

Internet o no. Pero en cualquiera de los casos nunca debemos olvidarnos de ejecutar la

instrucción siguiente como root, una vez que hayamos modificado el fichero:

Si no lo hiciéramos, la base de datos del sistema de paquetes no se actualizaría y, en

consecuencia, ninguno de los cambios realizados surgiría efecto.

Cada línea del archivo /etc/apt/sources.list hace referencia una fuente de paquetes y los

campos van separados por un espacio. En primer lugar se especifica si la fuente de paquetes es

de paquetes binarios mediante la clausula deb o si es de código fuente mediante la clausula deb-

src. En el segundo campo se especifica la forma de acceder a éstos que puede ser mediante CD-

$> sudo apt-get update

$> dpkg --contents superfrob_4-1_i386.deb

-rwxr-xr-x root/root 44951 2002-02-10 12:16:48 ./usr/bin/dothefrob

-rwxr-xr-x root/root 10262 2002-02-10 12:16:52 ./usr/bin/frobhelper

…

$> dpkg --info reportbug_1.43_all.deb

new debian package, versión 2.0.

size 66008 bytes: control archive= 1893 bytes.

40 bytes, 2 lines conffiles

…

reportbug is designed to be use don systems qith an installed mail transport agent, like eximo r

sendmail; however, you can edit the configuration file and send reports using any availabe mail

server.

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 93

ROM, http, ftp, etc. seguido de la dirección de acceso. Los campos restantes hacen referencia al

tipo de paquetes al que queremos acceder por esta línea.

En los casos en los que dispongamos de un acceso a Internet tendremos la gran ventaja de

disponer siempre de las últimas versiones de los paquetes. Además esta forma es considerada

como la más cómoda para trabajar con paquetes, ya que no tenemos ni siquiera que

preocuparnos de insertar el CD correspondiente para hacer una instalación. De lo que tenemos

que cerciorarnos, antes que nada, es que el contenido de /etc/apt/sources.list sea el correcto y

una vez que hayamos editado y salvado el archivo, ejecutemos el comando: sudo apt-get

update para asegurarnos de obtener el acceso a los nuevos paquetes.

En el caso de no disponer de una conexión a Internet debemos optar, sin dudarlo, por utilizar

el juego de CD de nuestra distribución para conseguir instalar los distintos paquetes que

necesitemos. Para ello debemos insertar el CD-ROM en la unidad lectora de CD y utilizar el

comando: sudo apt-cdrom add para incluir sus contenidos en la base de datos. Una vez que

hemos tecleado el comando anterior, debemos repetir el mismo proceso para todos y cada uno

de los CD de nuestra distribución. Asimismo, podemos utilizar el mismo procedimiento para

incorporar datos procedentes de CD-ROM no oficiales. Una vez que hemos añadido todos los

conjuntos de CD, debemos teclear el comando: sudo apt-get update para tener disponibles los

nuevos paquetes. A medida que necesitemos instalar algún paquete mediante el comando: sudo

apt-get install <nombre_paquete>, el sistema nos indicará cuál es el CD-ROM que debemos

introducir en la unidad lectora de CD para poder instalar dicho paquete.

4.2.2. Tipos de paquetes según su prioridad

Dentro de los sistemas de paquetes de la familia de programas apt se distinguen cinco tipos

de paquetes distintos clasificados según su grado de dependencia con el mismo sistema. Por

orden decreciente de prioridad se clasifican como:

Required: Se trata de paquetes indispensables para el correcto funcionamiento del propio

sistema.

Important: Se trata de paquetes que deberían estar presentes en cualquier sistema Linux.

Standard: Se trata de paquetes que comúnmente se encuentran en un sistema Linux. Por lo

general son aplicaciones de tamaño reducido, pero que ya no son indispensables para el sistema.

Optional: Se trata de paquetes que pueden estar o no, presentes en un sistema Linux. Entre

otros, dentro de este grupo se hallan todos los paquetes referentes al sistema gráfico, ya que éste

no se considera indispensable. En realidad, en muchos servidores, con el objeto de aumentar su

rendimiento se prescinde del entorno gráfico.

Extra: Son paquetes que, bien presentan conflictos con paquetes con prioridad superior a la

suya o bien porque requieren de configuraciones especiales que no los hacen aptos para ser

integrados como optional.

Podemos determinar a qué grupo pertenece un paquete en concreto mediante el uso del

siguiente comando: apt-cache show <nombre_paquete> y consultar el contenido del campo

Priority:.

4.2.3. Grado de dependencia entre paquetes

apt se caracteriza por su gran consistencia a la hora de gestionar las dependencias que

existen entre paquetes. Puede, por ejemplo, que una determinada aplicación que queremos

instalar dependa de una librería y, en consecuencia, de otro paquete que no tengamos instalado.

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 94

En este caso, apt nos informará de esta dependencia y nos preguntará si queremos que, junto

con la aplicación que vamos a instalar, se instale el paquete que contiene dicha librería. Las

relaciones entre paquetes se clasifican de la manera siguiente:

depends: El paquete que queremos instalar depende de estos paquetes y, por consiguiente, si

queremos que este paquete funcione correctamente, debemos permitir que apt instale el resto de

ellos.

recommends: El responsable del mantenimiento del paquete ha estimado que normalmente

los usuarios que vayan a instalar este paquete también usarán los que él recomienda.

suggests: Son los paquetes que se sugieren para obtener un mayor rendimiento del paquete

que vamos a instalar.

conflicts: El paquete que vamos a instalar no funcionará correctamente si estos otros

paquetes están presentes en el sistema.

replaces: La instalación de este paquete implica la desinstalación de otros paquetes.

provides: El paquete que vamos a instalar incorpora todo el contenido de los paquetes

mencionados.

Podemos determinar las dependencias de un paquete mediante el siguiente comando: apt-

cache depends <nombre_paquete>.

4.2.4. Acciones sobre paquetes

Los siguientes flags indican las acciones que se pueden llevar a cabo sobre un determinado

paquete:

unknown: Nunca se ha hecho referencia a dicho paquete.

install: Se quiere instalar o actualizar el paquete.

remove: Se quiere desinstalar el paquete, pero manteniendo sus ficheros de configuración

(comúnmente situados en el directorio /etc).

purge: Se quiere desinstalar por completo el paquete, inclusive sus ficheros de

configuración.

hold: Se quiere indicar que no se quiere realizar ninguna operación sobre este paquete, es

decir, que se mantenga hasta nuevo aviso su versión y su configuración.

4.2.5. Estado de instalación de los paquetes

Los distintos estados de instalación de los paquetes son:

installed: El paquete ha sido instalado y configurado correctamente.

not-installed: El paquete no está instalado en el sistema.

unpacked: El paquete ha sido desempaquetado, pero no configurado.

half-installed: El paquete ha sido desempaquetado y se ha iniciado el proceso de

configuración, pero por alguna razón éste no ha terminado.

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 95

config-files: Sólo existen, en el sistema, los archivos de configuración de dicho paquete.

4.2.6. Utilizar apt-cache

Como ya se ha dicho, apt-cache es un comando orientado al análisis del sistema de paquetes

y, por tanto, al no ser un arma potencialmente peligrosa para el sistema, es accesible a todos sus

usuarios. Los parámetros más utilizados para este comando son los siguientes:

search <pattern>: Busca en la base de datos los paquetes cuyo nombre contenga pattern o

en cuya descripción aparezca pattern. Si el resultado es una lista muy extensa debido a que

pattern es muy general, podemos utilizar pipes (|) y grep para filtrar los resultados.

show <nombre_paquete>: Muestra una informa completa y detallada acerca del paquete

especificado como parámetro. Además, muestra las dependencias directas y las reversas del

paquete.

policy <nombre_paquete>: Informa acerca del estado de instalación, la versión y revisión

del paquete especificado como parámetro, y además muestra su procedencia.

depends <nombre_paquete>: Muestras las dependencias de paquetes asociadas al paquete

especificado como parámetro.

4.2.7. Utilizar apt-get

apt-get es el comando que se utiliza para gestionar los paquetes del sistema. Por este motivo

su uso está restringido al root del sistema. Los parámetros más utilizados para este comando son

los siguientes:

install <nombre_paquete>: Instala el paquete. Si éste depende de paquetes que no se

encuentran en el sistema, apt nos informará de ello, y nos preguntará si junto con el paquete en

cuestión queremos instalar los paquetes de los que depende y que no están instalados; por lo

general es interesante seguir los consejos de apt.

update: Actualiza la base de datos de apt. Este comando debe ejecutarse cada vez que

modificamos el archivo /etc/apt/sources.list.

upgrade: Fuerza la actualización de todos los paquetes instalados en el sistema a la última

versión disponible.

remove <nombre_paquete>: Elimina el paquete, sin eliminar los ficheros de configuración,

de cara a posibles reinstalaciones.

remove --purge <nombre_paquete>: Elimina por completo el paquete, incluyendo sus

archivos de configuración.

clean: Elimina las copias caducadas de los paquetes que se han ido instalando, proceso en el

cual se almacena de manera automática una copia del paquete sin desempaquetar en el

directorio /var/cache/apt/archives cuando se instala un paquete. Este comando es muy útil de

cara a liberar espacio del disco duro, ocupado por ficheros que, probablemente, nunca más serán

utilizados.

autoclean: Elimina todas las copias no desempaquetadas de los paquetes,

independientemente de su vigencia.

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 96

Al contrario de la mayoría de los comandos de Linux, las acciones de los comandos apt se

especifican sin guiones. apt-get admite algunas opciones, pero se utilizan sólo para cambiar el

comportamiento de la acción principal especificada.

Además de las herramientas de línea de comandos, se han desarrollado interfaces gráficas

basadas en texto fáciles de utilizar. Una de las herramientas más avanzadas es KPackage, que

forma parte del entrono de escritorio KDE pero se puede utilizar con otros escritorios, como

GNOME, aunque este ultimo cuenta con su propia herramienta llamada Synaptic.

5. Software no proporcionado en paquetes

Existen muchos software interesantes que se ofrecen fuera de los sistemas de paquetes,

aunque a medida que se conocen más, los desarrolladores suelen ofrecerlos en paquetes de

Linux. Para poder instalar o actualizar aplicaciones que no existen como paquetes, tendremos

que obtener la versión más moderna del software, que normalmente se encuentra disponible

como archivos comprimidos gzip o como archivos empaquetados con tar. Este paquete puede

presentarse de diversas formas. La más común es la distribución binaria, en la que los binarios y

archivos relacionados se archivan y preparan para desempaquetarlos en nuestro sistema, y las

distribuciones de fuentes, en la que se proporciona el código fuente (o partes del mismo) para el

software y no tenemos que emitir ningún comando para compilarlo e instalarlo en nuestro

sistema. Las bibliotecas compartidas facilitan la distribución del software en forma binaria;

siempre que tengamos una versión de las bibliotecas instaladas compartible con la biblioteca

auxiliar utilizada para crear el programa, no tendremos ningún problema. Sin embargo, en

muchas ocasiones, es mucho más fácil y recomendable instalar una versión del programa como

fuentes. De este modo, no sólo está disponible el código fuente para su inspección y posterior

desarrollo sino que, además, podemos crear la aplicación específicamente para nuestro sistema,

con nuestras propias bibliotecas. Muchos programas nos permiten especificar determinadas

opciones en el momento de la compilación, como incluir de forma selectiva diversas opciones

en el programa cuando lo instalamos. Este tipo de personalización no es posible si utilizamos

binarios configurados previamente.

Existe además un problema de seguridad cuando se instalan los binarios sin el código fuente.

Aunque en los sistemas Linux la existencia de virus es casi inexistente, no es difícil escribir un

caballo de troya (programa que parece hacer algo útil pero que, en realidad, causa daños en el

sistema) para ellos. Un virus en su sentido clásico es un programa que ataca al anfitrión y se

ejecuta cuando se ejecuta éste. En los sistemas Linux, este tipo de acción requiere privilegios

root para hacer algún tipo de daño y, si los programadores pueden obtener dichos privilegios,

probablemente no tengan que preocuparse por un virus. Por ejemplo, alguien podría escribir una

aplicación con la opción de eliminar todos los archivos del directorio personal del usuario que

ejecute el programa. Como el programa se va a ejecutar con los permisos del usuario que lo

ejecute, el propio programa tendrá la capacidad de hacer este tipo de daño. Evidentemente, el

mecanismo de seguridad de Linux evita el daño a los archivos de otros usuarios o a cualquier

archivo del sistema propiedad de root. Aunque tener el código fuente no evita necesariamente

que sucedan estos incidentes relacionados con virus (ya que generalmente, nunca leemos todo el

código fuente de todos los programas que compilamos en nuestro sistema), al menos, nos

proporciona una forma de verificar lo que esta haciendo realmente el programa. Asimismo, si el

código fuente se encuentra disponible, es muy probable que alguien lo examine con detalle, por

lo que utilizar las fuentes es algo más seguro; sin embargo, no podemos contar con ello.

Existen técnicas para verificar los paquetes binarios, principalmente los paquetes firmados.

El empaquetador puede firmar un paquete con su clave PGP (Pretty Good Privacy) y las

herramientas del paquete como RPM tienen medios para verificar dicha firma. Sin embargo, no

nos podemos fiar de que el empaquetador haya empaquetado todo correctamente y sin malas

intenciones. La firma indica que el paquete en realidad proviene de quien dice provenir y que no

ha sido manipulado en su camino desde el empaquetador hasta nuestro disco duro.

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 97

De todos modos, tratar con distribuciones de fuentes y binarias del software es muy simple.

Si el paquete se proporciona como archivo tar, primero debemos utilizar la opción tar tvf

<nombre_archivo> para determinar cómo se han guardado los archivos. En el caso de las

distribuciones binarias, podremos desempaquetar el archivo tar directamente en nuestro sistema

(por ejemplo, desde / o /usr). Al hacerlo, debemos asegurarnos de eliminar cualquier versión

antigua del programa y sus archivos de apoyo (los que no se sobrescriben con el nuevo archivo

tar). Si el antiguo ejecutable se encuentra antes que el nuevo en nuestra ruta de acceso, seguirá

ejecutándose la antigua versión a no ser que la eliminemos.

Las distribuciones de fuentes son algo más complicadas. Pero tenemos que desempaquetar

las fuentes en un directorio propio. La mayoría de sistemas utilizan para esta tarea el directorio

/usr/src. Como normalmente no es necesario ser root para poder montar un paquete de software

(aunque normalmente necesitaríamos permisos de root para instalar el programa tras su

compilación), es recomendable que como administradores de sistemas establezcamos permisos

de escritura para todos los usuarios en /usr/src con el comando:

Así permitiremos que cualquier usuario cree subdirectorios en /usr/src y coloque ahí

archivos. El primer 1 en el modo evita que los usuarios eliminen subdirectorios unos de otros.

Ahora podemos crear un subdirectorio en /usr/src y desempaquetar el archivo tar ahí o podemos

desempaquetarlo directamente desde /usr/src, si el archivo contiene un subdirectorio propio.

Cuando las fuentes están disponibles, el siguiente paso es leer cualquier archivo README

(LÉAME) e INSTALL (INSTALAR) o cualquier nota de instalación incluida en las fuentes.

Casi todos los paquetes incluyen este tipo de documentación. El método básico utilizado para

montar la mayoría de programas (ver figura 3.2) es el siguiente:

1. Revisar el archivo Makefile. Este archivo contiene instrucciones para make, que

controla el compilador para montar programas. Muchas aplicaciones requieren la

edición de aspectos menores del archivo Makefile para adaptarse a nuestro propio

sistema. Las notas de instalación son las que nos indican si es necesario llevar a cabo

dichas ediciones. Si no hay ningún archivo Makefile en el paquete, puede que primero

tengamos que generarlo (ver punto tres para saber cómo proceder).

2. Posiblemente tengamos que editar otros archivos asociados con el programa. Algunas

aplicaciones requieren la edición de un archivo denominado config.h; esta tarea la

analizaremos en las instrucciones de instalación.

3. Posiblemente tengamos que ejecutar una secuencia de comandos de configuración. Esta

secuencia de comandos se utiliza para determinar cuáles son las utilidades disponibles

en nuestro sistema, algo necesario para montar algunas aplicaciones más complejas.

Específicamente, cuando las fuentes no contienen un archivo Makefile en el directorio

de nivel superior, sino un Makefile.in y un archivo configure, el paquete se ha creado

con el sistema autoconf. En este caso, algo que es cada día más común, debemos

ejecutar una secuencia de comandos como la siguiente:

Se debe utilizar ./ para ejecutar el archivo configure local y no otro programa configure

que pudiera encontrarse accidentalmente en nuestra ruta de acceso. Algunos paquetes

$> ./configure

$> sudo chmod 1777 /usr/src

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 98

nos permiten pasar opciones a configure que normalmente habilitan o deshabilitan

opciones especificas del paquete; podemos conocer dichas opciones con el comando:

./configure --help. Una vez que hayamos ejecutado la secuencia de comandos de

configure, podemos seguir con el siguiente paso.

4. Ejecutar make. Normalmente, este comando ejecuta los comandos de compilación

apropiados, tal como aparecen en el archivo Makefile. En muchas ocasiones, tendremos

que proporcionar al comando make un destino, como make all o make install. Éstos son

dos destinos comunes; el segundo normalmente no es necesario porque se puede utilizar

para montar todos los destinos listados en un archivo Makefile (por ejemplo, si el

paquete incluye diversos programas pero sólo se compila uno de forma

predeterminada); el último se utiliza normalmente para instalar los ejecutables y los

archivos de apoyo en el sistema tras la compilación. Por esta razón, make install

normalmente se debe ejecutar como root. Incluso tras la instalación, normalmente existe

una diferencia importante entre los programas instalados desde las fuentes o desde un

paquete binario. Los primeros normalmente se instalan en el directorio /usr/local de

forma predeterminada, algo muy poco común en el caso de paquetes binarios.

Figura 3.2: Esquema básico utilizado para

montar la mayoría de programas

Podemos encontrar problemas al compilar o instalar un nuevo software de nuestro sistema,

especialmente, si el programa en cuestión no ha sido probado en Linux o depende de otro

software que quizá no se encuentre instalado.

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 99

5.1. Actualización de bibliotecas

La mayoría de programas en un sistema Linux se compilan para utilizar bibliotecas

compartidas. Estas bibliotecas contienen funciones útiles comunes a muchos programas. En

lugar de guardar una copia de estas rutinas en cada programa que las llama, las bibliotecas se

encuentran en los archivos del sistema, legibles por todos los programas en el momento de su

ejecución. Es decir, cuando se ejecuta un programa, se lee el código desde el propio archivo del

programa seguido por cualquier rutina de los archivos de bibliotecas compartidas. Así se ahorra

mucho espacio en disco, ya que sólo se guarda en el disco una copia de las rutinas de la

biblioteca.

Si tenemos suerte, utilizar el sistema de paquetes significa que las versiones correctas de la

biblioteca que necesita cada programa están instaladas junto con dichos programas. El sistema

de paquetes se supone que es consciente del cumplimiento de las dependencias de las

bibliotecas compartidas. Pero como los distintos programas pueden depender de distintas

versiones de bibliotecas o como podemos instalar un programa sin utilizar el sistema de

paquetes, ocasionalmente tendremos que conocer los convenios de bibliotecas utilizados en esta

sección. Algunas veces, es necesario compilar un programa para que tenga su propia copia de

rutinas de bibliotecas, normalmente para la depuración, en lugar de utilizar las rutinas de las

bibliotecas compartidas. Estos programas creados de esta manera se dice que están vinculados

estáticamente, mientras que los programas creados para utilizar bibliotecas compartidas se dice

que están vinculados dinámicamente.

Por consiguiente, los ejecutables vinculados dinámicamente dependen de la presencia de

bibliotecas compartidas en el disco duro. Las bibliotecas compartidas se implantan de forma que

los programas compilados para utilizarlas, no dependan estrictamente de la versión de las

bibliotecas disponibles, lo que significa que podemos actualizar nuestras bibliotecas

compartidas y todos los programas creados para utilizar dichas bibliotecas utilizarán

automáticamente las nuevas rutinas. Existe una excepción: si se producen cambios en una

biblioteca principal, los programas antiguos que no tengan el soporte necesario para utilizar la

nueva versión de la biblioteca principal no funcionarán con ella. Sabremos que este es el caso

porque el número de versión de la biblioteca principal es diferente. En este caso, tenemos que

mantener tanto las antiguas como las nuevas versiones de bibliotecas. Todos los ejecutables

antiguos continuarán utilizando las bibliotecas antiguas y cualquier programa nuevo compilado

utilizará las nuevas bibliotecas.

Cuando montamos un programa para utilizar bibliotecas compartidas, se añade un fragmento

de código al programa que lo obliga a ejecutar ld.so, el enlazador dinámico; cuando se inicia el

programa. ld.so es también el responsable de buscar las bibliotecas compartidas que el programa

necesita y de cargar las rutinas en memoria. Los programas vinculados dinámicamente también

están vinculados a las rutinas auxiliares (stub), que simplemente toman el lugar de las rutinas de

la biblioteca compartida real en el ejecutable. ld.so reemplaza la rutina auxiliar con el código de

las bibliotecas cuando se ejecuta el programa.

Para listar las bibliotecas compartidas de las que depende un determinado ejecutable

podemos utilizar el comando ldd:

Aquí podemos observar que el programa cat depende de tres bibliotecas compartidas

incluyendo: linux-gate, libc y ld-linux. Por lo general las bibliotecas que empiezan por libX, así

$> ldd /bin/cat

 linux-gate.so.1 => (0xffffe000)

 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e07000)

 /lib/ld-linux.so.2 (0xb7f59000)

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 100

como las que empiezan con libSM y libICE están todas relacionadas con el sistema X Window;

libc es la biblioteca estándar de C. También podemos ver los números de versión de las

bibliotecas para la que se ha compilado el programa, es decir, la versión de las rutinas auxiliares

utilizadas. Así como también el nombre del archivo que contiene cada una de las bibliotecas

compartidas. Éste es el archivo que buscara ld.so cuando se ejecute el programa. Por cierto, el

primer archivo de la lista, linux-gate.so.1, no es una biblioteca compartida real sino un objeto

dinámico compartido proporcionado por el núcleo, un detalle técnico que agiliza las llamadas

del sistema en el núcleo y proporciona otros elementos útiles de bajo nivel.

Para utilizar una biblioteca compartida, la versión de las rutinas auxiliares en el ejecutable

tiene que ser compatible con la versión de las bibliotecas compartidas. Básicamente, una

biblioteca es compartible si la versión del número principal coincide con la versión de las

rutinas auxiliares. El número de versión principal es la parte derecha que se encuentra tras .so.

En este caso, libc se utiliza con la versión principal 6. El archivo de biblioteca libc.so.6, que

normalmente reside en el directorio /lib/tls/i686/cmov/, puede ser sólo un vínculo simbólico, por

ejemplo, a libc.so.6.2, lo que significa que la biblioteca tiene el número de versión principal 6 y

el número de versión secundaria 2. Las versiones de bibliotecas con el mismo número de

versión principal se supone que son intercambiables. Por consiguiente, si un programa se ha

compilado con la versión 6.0 de rutinas auxiliares, el ejecutable puede utilizar las versiones 6.1,

6.2, etc. de la biblioteca compartida. Si se lanzase una nueva versión con el número de versión

principal 7 y el número de versión secundaria 3 (y, por ende tuviese el nombre de archivo

libc.so.7.3), lo único que tendríamos que hacer para utilizar esta nueva versión seria cambiar el

vínculo simbólico libc.so.6.3 par que apunte a la nueva versión. El ejecutable cat se beneficiaría

así automáticamente de cualquier solución de fallos o similar incluido en la nueva versión.

El archivo /etc/ld.so.conf contiene una lista de directorios en los que busca ld.so para

encontrar archivos de bibliotecas compartidas. Un ejemplo del contenido de este archivo sería:

ld.so también busca en /lib y /usr/lib, independientemente del contenido de /etc/ld.so.conf.

Normalmente no existe ninguna razón para modificar este archivo y la variable de entorno

LD_LIBRARY_PATH puede añadir directorios adicionales a esta ruta de acceso de búsqueda,

por ejemplo, si tenemos nuestras propias bibliotecas compartidas privadas que no se deben

utilizar a nivel del sistema. Sin embargo, si añadimos entradas al archivo /etc/ld.so.conf o

actualizamos o instalamos bibliotecas adicionales en nuestro sistema, debemos asegurarnos de

utilizar el comando ldconfig, el cual se encargará de regenerar la caché de la biblioteca

compartida en el archivo /etc/ld.so.cache de la ruta de acceso de búsqueda de ld.so. Esta caché

la utiliza ld.so para encontrar bibliotecas rápidamente en el momento de ejecución sin tener que

buscar las direcciones en su ruta de acceso.

Ahora que ya sabemos cómo se utilizan las bibliotecas compartidas, vamos a analizar como

actualizarlas. Las dos bibliotecas que se actualizan con más frecuencia son libc, la biblioteca

estándar de C, y libm, la biblioteca de matemáticas. Como designarlas es un tanto especial,

vamos a examinar aquí otra biblioteca, libncurses, que emula un sistema gráfico de ventanas en

la consola de texto.

$> cat /etc/ld.so.conf

/usr/lib

/usr/local/lib

/usr/X11R6/lib

/opt/kde3/lib

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 101

Existen dos archivos independientes para cada una de las bibliotecas compartidas:

 <biblioteca>.a: Ésta es la versión estática de la biblioteca. Cuando un programa está

vinculado estáticamente, las rutinas se copian directamente desde este archivo en el

ejecutable, para que el ejecutable contenga su propia copia de las rutinas de biblioteca.

En algunas distribuciones, las versiones estáticas de las bibliotecas se mueven en un

paquete independiente y no tiene que estar instalado necesariamente de forma

predeterminada.

 <biblioteca>.so.<versión>: Ésta es la propia imagen de la biblioteca compartida.

Cuando un programa está vinculado dinámicamente, las rutinas auxiliares de este

archivo se copian en el ejecutable, permitiendo a ld.so localizar la biblioteca compartida

en el momento de la ejecución. Cuando el programa se ejecuta, ld.so copia las rutinas de

la biblioteca compartida en memoria para su uso por el programa. Si un programa está

vinculado dinámicamente, no se utiliza el archivo <biblioteca>.a para esta biblioteca.

La biblioteca libncruses tendrá archivos como: libncruses.a y libncruses.so.5.4. Los archivos

.a normalmente se alojan en el directorio /usr/lib, y los archivos .so en /lib. Cuando compilamos

un programa, se utiliza el archivo .a o el archivo .so para la vinculación y el compilador busca

en el directorio /lib y /usr/lib (así como en otros lugares) de forma predeterminada. Si tenemos

nuestras propias bibliotecas, podemos tener estos archivos en cualquier otra parte y controlar

dónde debe buscar el enlazador, con la opción –L para el compilador.

Para la mayoría de bibliotecas del sistema, la imagen de la biblioteca compartida,

<biblioteca>.so.<versión>, se aloja en el directorio /lib. Las imágenes de bibliotecas

compartidas se pueden encontrar en cualquier directorio de búsqueda de ld.so en el momento de

la ejecución; estos directorios incluyen /lib, /usr/lib y los directorios listados en el archivo

/etc/ld.so.conf.

Si examinamos el directorio /lib, podremos ver una colección de archivos como la siguiente:

Aquí podemos ver imágenes de biblioteca compartida par dos bibliotecas: libncruses y libz.

Debemos tener en cuenta que cada imagen tiene un vínculo simbólico, denominado

<biblioteca>.so.<major>, siendo <major> el número de la versión principal de la biblioteca.

El número secundario se omite ya que ld.so busca una biblioteca sólo por su número de versión

principal. Cuando ld.so ve un programa que ha sido compilado con las rutinas auxiliares para la

versión 5.4 de libncruses, buscará un archivo denominado libncruses.so.5 en su ruta de

búsqueda. Aquí, /lib/libncruses.so.5 es un vínculo simbólico a /lib/libncruses.so.5.4, la versión

real de la biblioteca que hemos instalado. Al actualizar una biblioteca, tenemos que reemplazar

los archivos .a y .so.<version> correspondientes a dicha biblioteca. Reemplazar el archivo .a es

muy fácil: sólo tenemos que copiarlo con las nuevas versiones. Sin embargo, tendremos que

tomar algunas precauciones cuando reemplacemos la imagen de la biblioteca compartida,

.so.<version>; muchos de los programas basados en texto en el sistema dependen de las

imágenes de biblioteca compartida, por lo que no podemos simplemente eliminarlas ni cambiar

su nombre. Es decir, el vínculo simbólico <biblioteca>.so.<major> siempre tiene que apuntar a

una imagen de biblioteca válida. Para ello, debemos copiar primero la nueva imagen a /lib y

$> ls –l /lib

lrwxrwxrwx 1 root root 17 Jul 11 06:45 /lib/libncruses.so.5 -> libncruses.so.5.4

-rwxr-xr-x 1 root root 319472 Jul 11 06:45 /lib/libncruses.so.5.4

lrwxrwxrwx 1 root root 13 Jul 11 06:45 libz.so.1 -> libz.so.1.2.2

-rwxr-xr-x 1 root root 62606 Jul 11 06:45 libz.so.1.2.2

…

Administración de Sistemas Operativos Tema 3: Instalación, actualización y compilación de programas

Página | 102

después cambiar el vínculo simbólico para que apunte al nuevo archivo utilizando el comando

ln –sf. El siguiente ejemplo es una demostración de esta tarea.

Supongamos que estamos realizando una actualización desde la versión 5.4 de la biblioteca

libncruses a la versión 5.5. Debemos tener los archivos libncruses.a y libncruses.so.5.5. Lo

primero que debemos hacer es copiar el archivo .a a la ubicación apropiada, sobrescribiendo la

antigua versión:

Ahora debemos copiar el archivo de la nueva imagen en el directorio /lib; o en el directorio

donde se encuentre la imagen de la biblioteca:

Ahora, si utilizamos el comando ls –l /lib, deberíamos ver una salida parecida a la siguiente:

Para actualizar el vínculo simbólico de tal manera que ahora apunte a la nueva biblioteca,

debemos utilizar el siguiente comando:

Cuyo resultado será:

Ahora podemos eliminar con seguridad el archivo antiguo de imagen, libncruses.so.5.4. Es

estrictamente necesario utilizar el comando ln –sf para reemplazar el vínculo simbólico en un

solo paso, especialmente cuando estemos actualizando bibliotecas circulares, como libc. Si

elimináramos primero el vínculo simbólico y después intentáramos utilizar ln –s para añadirlo

de nuevo, es muy probable que el comando ln no pueda ejecutarse ya que el vínculo simbólico

ya no existe; y en lo que respecta a ld.so, no podrá encontrar la biblioteca libc. Una vez

eliminado el vínculo simbólico, casi todos los programas de nuestro sistema no podrán

ejecutarse. Debemos tener mucho cuidado cuando actualicemos imágenes de bibliotecas

compartidas. Para libncruses, las acciones son menos importantes ya que siempre dispondremos

de programas de línea de comandos para limpiar cualquier desorden que se haya organizado,

pero si estamos acostumbrados a utilizar programas basados en ncruses, como Midnight

Commander, podría ser un inconveniente.

$> ls -l /lib

lrwxrwxrwx 1 root root 17 Jul 11 06:45 /lib/libncruses.so.5 -> libncruses.so.5.5

-rwxr-xr-x 1 root root 319472 Jul 11 06:45 /lib/libncruses.so.5.4

-rwxr-xr-x 1 root root 321042 Jul 11 06:45 /lib/libncruses.so.5.5

…

$> sudo ln -sf /lib/libncruses.so.5.5 /lib/libncruses.so.5

$> ls -l /lib

lrwxrwxrwx 1 root root 17 Jul 11 06:45 /lib/libncruses.so.5 -> libncruses.so.5.4

-rwxr-xr-x 1 root root 319472 Jul 11 06:45 /lib/libncruses.so.5.4

-rwxr-xr-x 1 root root 321042 Jul 11 06:45 /lib/libncruses.so.5.5

…

$> sudo cp libncruses.so.5.5 /lib

$> sudo cp libncruses.a /usr/lib

Tema 3: Instalación, actualización y compilación de programas Administración de Sistemas Operativos

Página | 103

Siempre que actualicemos o agreguemos una biblioteca al sistema, es recomendable ejecutar

ldconfig para regenerar la caché de la biblioteca utilizada por ld.so. En algunos casos nos puede

ocurrir que ld.so no nos reconozca una nueva biblioteca hasta que no ejecutemos ldconfig.

Ahora sólo nos queda una pregunta: ¿dónde podemos obtener las versiones nuevas de las

bibliotecas? Podemos descargar diversas versiones de bibliotecas básicas del sistema desde el

directorio ftp://ftp.gnu.org/pub/gnu/glibc. Este directorio contiene versiones de fuentes y

bibliotecas relacionadas. Otras bibliotecas se mantienen y archivan de forma independiente. De

todas formas, todas las bibliotecas instaladas incluirán los archivos de la versión .so, y,

posiblemente, los archivos .a, así como un conjunto de archivos include para su uso con el

compilador.

Página | 104

Tema 4: Inicio y cierre del sistema Administración de Sistemas Operativos

Página | 105

TEMA 4: INICIO Y CIERRE DEL SISTEMA

Objetivos

 Diferenciar los métodos más comunes para arrancar un sistema Linux.

 Estudiar las características funcionales y algunas opciones de configuración del gestor

de arranque GRUB.

 Comprender gran parte de los mecanismos que subyacen en el proceso de inicio de un

sistema Linux.

 Conocer algunos archivos y directorios en donde se encuentran los comandos de inicio

del sistema.

 Comprender la necesidad de llevar a cabo un cierre seguro dentro de un sistema Linux.

Contenido

1. Inicio del sistema

1.1. Disquete de arranque

1.2. El gestor de arranque GRUB

1.2.1. El archivo /etc/grub.conf

1.2.2. Especificar las opciones del arranque

1.2.3. Eliminar GRUB

2. Inicio e inicialización del sistema

2.1. Mensajes de inicio de núcleo

2.2. Archivos init, inittab y rc

2.3. Archivos rc

3. Modo de un solo usuario

4. Cierre del sistema

Bibliografía

Básica

 Matthias Kalle Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada “, Editorial Anaya Multimedia, 2006.

Complementaria

 Roger Baig Viñas, Francesc Aulí Llinàs, “Sistema operativo GNU/Linux básico

Primera Edición”, UOC Formación de Posgrado, Software libre, noviembre 2003.

http://www.nodo50.org/cursos/manual_gnu_linux.pdf
 Josep Jorba Esteve, Remo Suppi Boldrito, “Administración avanzada de GNU/Linux

Primera Edición”, UOC Formación de Posgrado, Software libre, 2004.

http://www.uoc.edu/masters/esp/img/871.pdf

http://www.nodo50.org/cursos/manual_gnu_linux.pdf
http://www.uoc.edu/masters/esp/img/871.pdf

Administración de Sistemas Operativos Tema 4: Inicio y cierre del sistema

Página | 106

1. Inicio del sistema

Existen diversos métodos para iniciar Linux en nuestro sistema. Los métodos más comunes

implican arrancar desde el disco duro o desde un disquete de arranque. En muchas ocasiones, el

procedimiento de instalación habrá configurado uno de estos métodos. En cualquier caso

siempre es importante saber cómo configurar el arranque de nuestro sistema.

1.1. Disquete de arranque

Tradicionalmente, un disquete de arranque Linux simplemente contiene una imagen del

núcleo que se carga en memoria al insertar el disquete e iniciar el sistema. Un disquete de

arranque Linux puede contener en su lugar un registro de arranque GRUB, que hace que el

sistema se inicie a un núcleo desde el disco duro. Muchas distribuciones de Linux crean un

disquete de arranque automáticamente al instalar el sistema. El uso de un disquete de arranque

es un método muy fácil para iniciar Linux, si no deseamos iniciarlo desde el disco duro. Tras

iniciar el núcleo desde el disquete de arranque, podremos utilizar la disquetera para otros

propósitos.

En esta sección vamos a incluir alguna información técnica para explicar el proceso de

arranque de nuestro sistema Linux, todo esto para conseguir un mejor entendimiento y

comprensión de todos los factores que se ven involucrados en el arranque del sistema.

Normalmente, la imagen del núcleo está comprimida, utilizando el mismo algoritmo que

utilizan los programas de compresión como gzip o bzip2. La compresión permite que el núcleo,

que puede tener varios megabytes o más de tamaño, requiera sólo unos cientos de kilobytes de

espacio en disco. Parte del código del núcleo no está comprimido: esta parte es la que contiene

las rutinas necesarias para descomprimir el núcleo desde la imagen del disco y cargarlo en

memoria. Por consiguiente, el núcleo realmente se inicia asimismo en el momento del arranque

mediante su descompresión en memoria.

En la imagen del núcleo se guardan diversos parámetros. Entre estos parámetros se encuentra

el nombre del dispositivo a utilizar como sistema de archivos raíz o principal cuando se inicia el

núcleo. Otro parámetro es el modo de texto a utilizar para la consola del sistema. Todos estos

parámetros se pueden modificar utilizando el comando rdev.

Una vez iniciado el núcleo, éste intenta montar un sistema de archivos en el dispositivo

principal incrustado en la propia imagen del núcleo, que servirá como sistema de archivos

principal, es decir, el sistema de archivos en /. Aquí lo principal es que la imagen del núcleo

tiene que contener el nombre correcto del dispositivo del sistema de archivos principal. Si el

núcleo no puede montar un sistema de archivos en este dispositivo, desiste de ejecutar la acción

y emite un mensaje de kernel panic. Básicamente un mensaje de kernel panic es un error fatal

señalado por el propio núcleo. Un kernel panic se producirá siempre que el núcleo este

confundido y no pueda continuar con la ejecución. Por ejemplo, si existe un fallo en el propio

núcleo, se podría producir un kernel panic cuando el núcleo intente acceder a una memoria que

no existe.

El dispositivo principal guardado en la imagen del núcleo es de nuestro sistema de archivos

principal en el disco duro, lo que significa que cuando se inicie el núcleo, montará una partición

de disco duro como sistema de archivos principal y todo el control se transferirá al disco duro.

Una vez cargado el núcleo en memoria, permanecerá ahí; ya no será necesario acceder

nuevamente al disquete de arranque, a no ser que reiniciemos el sistema, por supuesto.

Dada una imagen de núcleo razonablemente pequeña, podemos crear nuestro propio disquete

de arranque. En muchos sistemas de Linux, el propio núcleo se guarda en el archivo

/boot/vmlinuz. ¿Por qué este nombre de archivo tan extraño? En muchos sistemas Unix, el

Tema 4: Inicio y cierre del sistema Administración de Sistemas Operativos

Página | 107

núcleo se guardaba en un archivo denominado /vmunix, siendo vm un acrónimo de las palabras

inglesas utilizadas para referirse a la memoria virtual (virtual memory). Naturalmente, Linux

tiene que ser diferente y denomina a sus imágenes de núcleo vmlinux, colocándolas en el

directorio /boot para extraerlas del directorio raíz. El nombre vmlinuz se adoptó para diferenciar

las imágenes del núcleo comprimidas de las imágenes del núcleo sin comprimir. La

denominación vmlinuz no es ningún convenio universal; sin embargo, otros sistemas de Linux

guardan el núcleo en /vmlinuz o en /vmlinux, e incluso otros en un archivo como /Image.

Debemos tener en cuenta que los sistemas Linux instalados recientemente pueden no tener una

imagen del núcleo en el disco duro, si se ha creado automáticamente un disquete de arranque.

En cualquier caso, podemos montar nuestro propio núcleo. Normalmente es recomendable

hacerlo en cualquier caso: podemos personalizar el núcleo para que incluya sólo los

controladores para el hardware de nuestra máquina en concreto.

Vamos a suponer que tenemos una imagen del núcleo en el archivo /boot/vmlinuz. Para crear

un disquete de arranque, el primer paso es utilizar el comando rdev para establecer el dispositivo

principal en el sistema de archivos principal de Linux. Si montamos en núcleo manualmente,

esta opción debería estar establecida en el valor correcto.

Como usuario root, debemos utilizar rdev –h para imprimir un mensaje sobre la utilización

del comando. Hay muchas opciones que nos permiten especificar el dispositivo root, el

dispositivo de intercambio, el disco RAM, etc.

Si utilizamos el comando rdev /boot/vmlinuz, se imprimirá del dispositivo principal

codificado en el núcleo que se encuentra en /boot/vmlinuz:

Si la información obtenida con el comando anterior no es correcta y el sistema de archivos

principal se encuentra en, por ejemplo en /dev/hda3, debemos utilizar el siguiente comando:

rdev es un comando silencioso; no se imprime nada cuando establecemos el dispositivo

principal por lo que debemos ejecutar de nuevo sudo rdev /boot/vmlinuz para comprobar que

los cambios han sido establecidos correctamente.

Ahora estamos preparados para crear el disquete de arranque. Para obtener los mejores

resultados es recomendable utilizar un disquete nuevo y recién formateado. Podemos formatear

el disquete en Linux mediante el uso del comando sudo fdformat /dev/fdX (donde la X indica

el número de nuestra unidad de disquete asignada por nuestro Linux); así podremos fijar la

información del sector y de la pista para que el sistema pueda detectar automáticamente el

tamaño del disquete.

Para crear el disquete de arranque, debemos utilizar el comando dd para copiar en él la

imagen del núcleo, como en el siguiente ejemplo:

Este comando copia el archivo de entrada (if, input file) denominado /boot/vmlinuz en el

archivo de salida (of, output file) denominado /dev/fd0 (el primer dispositivo de disquetes en

nuestro sistema), utilizando un tamaño de bloque (bs, block size) de 8192 bytes. Evidentemente

también podríamos haber utilizado el comando cp para realizar esta tarea.

$> sudo dd if=/boot/vmlinuz of=/dev/fd0 bs=8192

$> sudo rdev /boot/vmlinuz /dev/hda3

$> sudo rdev /boot/vmlinuz

Root device /dev/hda1

Administración de Sistemas Operativos Tema 4: Inicio y cierre del sistema

Página | 108

Ahora nuestro disquete de arranque esta preparado para su uso. Podemos cerrar nuestro

sistema y arrancar con el disquete y, si toda va bien, nuestro sistema Linux debería arrancar

como lo hace normalmente. Es recomendable crear un disquete de arranque de repuesto por si

alguna vez las cosas nos llegan a fallar.

Cabe destacar que hoy en día la utilidad de los disquetes se ha visto reemplazada por los

dispositivos de almacenamiento ópticos como los CD o los DVD, y es por eso que la gran

mayoría de distribuciones nos permiten utilizar el mecanismo de los live-CD, a parte de

utilizarlos para instalar el sistema, para hacer uso de ellos como CD o DVD de arranque, sólo

nos bastará con introducir el CD o DVD y arrancar desde él, para luego montar nuestro sistema

de archivos ubicado en el disco duro y llevar a cabo las tareas de mantenimiento o reparación

sobre él. Hoy en día también se están utilizando mucho los dispositivos USB de

almacenamiento (pendrives, memory sticks, compact flash, etc.) y son tan versátiles que

también los podemos utilizar para crear una llave USB, como se les suele decir, para conseguir

arrancar un sistema Linux desde ellos, para llevar a cabo con ellos las mismas tareas de

mantenimiento y reparación que con los live-CD.

1.2. El gestor de arranque GRUB

GRUB (GRand Unified Bootloader) es un gestor de arranque de propósito general que puede

arrancar cualquier sistema operativo instalado en una máquina, incluyendo Linux. Existen

docenas de métodos para configurar GRUB. Aquí vamos a analizar los dos métodos más

comunes: instalar GRUB en el registro de arranque maestro de nuestro disco duro e instalar

GRUB como gestor de arranque secundario sólo para Linux.

GRUB es el método más común para iniciar Linux desde el disco duro. Cuando nos

referimos a arrancar desde el disco duro queremos decir que el propio núcleo se guarda en el

disco duro y que no necesitamos de ningún dispositivo (disquete, CD, DVD, etc.) de arranque

para cargarlo, pero debemos recordar que aunque utilicemos un disquete de arranque, el control

se transfiere al disco duro cuando el núcleo se carga en memoria. Si GRUB está instalado en el

registro de arranque maestro (MBR, Master Boot Record), es el primer código en ejecutarse

cuando se arranca el disco duro. GRUB puede arrancar posteriormente cualquier sistema

operativo, como Linux o Windows, y permitirnos seleccionar entre ellos en el momento del

arranque.

Windows NT y las versiones posteriores de Windows (2000/XP/Vista) tienen gestores de

arranque de su propiedad que se apoderan del MBR. Si estamos utilizando uno de estos

programas, para poder arrancar Linux desde el disco duro, puede que tengamos que instalar

GRUB como gestor de arranque secundario sólo para Linux. En este caso, GRUB se instala en

el registro de arranque sólo para nuestra partición principal de Linux y el software del gestor de

arranque, para Windows NT/2000/XP/Vista, se hace cargo de ejecutar GRUB desde ahí cuando

deseemos iniciar Linux.

Sin embargo, como podremos comprobar, los gestores de arranque de Windows

NT/2000/XP/Vista son, de algún modo, poco cooperativos cuando se trata de arrancar GRUB.

Se trata de una mala decisión de diseño; y si tenemos que utilizar uno de estos gestores de

arranque inevitablemente, quizá sea más fácil iniciar Linux desde el disquete de arranque en su

lugar. O, si realmente deseamos seguir con Linux, podemos utilizar GRUB para arrancar

Windows NT/2000/XP/Vista y descargar totalmente los gestores de arranque de Windows. Este

método normalmente es muy fácil y es el más recomendado. También es el que instalan

Es importante hacer énfasis en que GRUB no es el único gestor de arranque disponible para iniciar

Linux. Existen otras alternativas, como LILO (LInux LOader) que funcionan igual de bien.

Tema 4: Inicio y cierre del sistema Administración de Sistemas Operativos

Página | 109

automáticamente la mayoría de distribuciones si intentamos instalar Linux en un equipo que

tiene una instalación de Windows existente.

Utilizar GRUB con Windows NT/2000/XP/Vista es muy fácil. Sólo tenemos que configurar

GRUB para que inicie Windows NT/2000/XP/Vista. Sin embargo, si instalamos Windows

NT/2000/XP/Vista tras la instalación de GRUB o en si de Linux, tendremos que volver a instalar

o intentar recuperar GRUB; ya que el procedimiento de instalación de Windows

NT/2000/XP/Vista sobrescribe el MBR del disco duro principal. Sólo tenemos que asegurarnos

de que tenemos a mano un disquete de arranque de Linux para poder iniciar Linux y volver a

ejecutar GRUB.

Debemos tener en cuenta que la gran mayoría de distribuciones modernas de Linux

configuran e instalan GRUB cuando instalamos por primera vez todo el sistema Linux. Es una

buena idea dejar simplemente que el programa de instalación de nuestra distribución instale

automáticamente GRUB y comprobar posteriormente por nuestra cuenta lo que ha hecho; así

tendremos un punto de inicio para poder ajustar posteriormente GRUB a nuestras necesidades.

1.2.1. El archivo /etc/grub.conf

El primer paso en la configuración de GRUB es establecer nuestro archivo de configuración,

que normalmente se guarda en /etc/grub.conf. El archivo /etc/grub.conf hace referencia a otros

archivos de configuración que examinaremos más adelante. Normalmente, el archivo

/etc/grub.conf suele ser muy corto.

Debemos señalar que GRUB es muy flexible y nos permite introducir comandos GRUB de

forma interactiva durante el proceso de arranque. Sin embargo, la gran mayoría considera esto

como algo tedioso y propenso al error, razón por la que aquí describiremos otro uso, que nos

proporcionará un menú conveniente desde donde podemos elegir, por ejemplo, iniciar dos

núcleos diferentes o incluso sistemas operativos diferentes. Éste es un ejemplo de un archivo

/etc/grub.conf que posee una configuración bastante concisa:

root (hd0, 0)

install –stage2=/boot/grub/stage2 /grub/stage1 (hd0) /gurb/stage2 0x8000

 (hd0, 0)/grub/menu.lst

quit

La primera línea especifica la unidad desde donde se efectúa el arranque. En este caso, es la

primera partición en el primer disco duro. hd es hard drive, el primer cero es el primer disco

duro en el sistema y el segundo cero es la primera partición en ese determinado disco duro;

¡GRUB siempre empieza a contar desde cero!.

Éstos son algunos ejemplos más: (fd0) significaría arrancar desde el primer disquete de

arranque en el sistema y (hd3, 4) significaría la quinta partición en el cuarto disco duro.

También hay un nombre especial que es, (nd), que se utiliza para iniciar la imagen del núcleo

desde la red.

La segunda línea es bastante compleja. Tardaríamos mucho en detallar el proceso de

arranque completo, pero, al menos, podemos decir que GRUB utiliza un proceso de arranque de

Debido a que la gran mayoría de sistemas modernos carecen de unidades de disquetes, se ha

desarrollado un sistema de recuperación de GRUB basada en CD, esta recibe el nombre de

SuperGRUB (http://supergrub.forjamari.linex.org/) y nos permite iniciar con un CD de arranque el

cual consigue recuperar el GRUB de nuestro Linux tras una serie sencilla de pasos que le hemos de

indicar.

Administración de Sistemas Operativos Tema 4: Inicio y cierre del sistema

Página | 110

dos fases y este comando específica dónde se obtienen las instrucciones para las dos fases, en

qué dirección se deben cargar en la memoria del equipo y qué es lo que hay que hacer a

continuación. La parte relacionada a: que es lo qué hay que hacer a continuación es la más

interesante para nosotros; en el archivo de configuración de ejemplo, es la parte (hd0,

0)/grub/menu.lst del final.

Esta línea hace referencia a un archivo que utiliza GRUB que se encuentra en la carpeta de

arranque (/boot) de un dispositivo pues el uso de los paréntesis lo indica así, en el caso del

ejemplo una partición de disco duro, la primera partición en el primer disco duro.

El siguiente es un ejemplo del contenido del archivo /boot/grub/menu.lst que carga dos

configuraciones de Linux y MS-Windows diferentes, presentado en un menú conveniente:

default 0

timeout 10

title Linux

 kernel (hd0, 5)/boot/vmlinuz root=/dev/hda6 vga=0x314

title Linux Failsafe

 kernel (hd0, 5)/boot/vmlinuz root=/dev/hd6 ide=nodma apm=off acpi=off

vga=normal

noresume barrier=off nosmp noapic maxcpus=0 3

title Windows

 root(hd0, 0)

 chainloader +1

Las dos primeras líneas juntas indican que cuando se presente el menú de inicio a través de

GRUB, el usuario tendrá diez segundos (timeout) para realizar una elección; en caso contrario,

se cargará la primera entrada de la siguiente lista.

Tras estas dos líneas iniciales, hay tres secciones que empiezan cada una de ellas por la

clausula title. Tras title, se especifica una cadena que se va a mostrar en el menú de inicio en el

momento del arranque. Para las dos configuraciones de Linux, existe a continuación una línea

de núcleo que muestra desde dónde se ha cargado la imagen del núcleo. El resto se pasa

directamente al núcleo como parámetros de arranque, incluyendo cuál será el dispositivo

principal y el modo de la terminal (vga=0x314). En la denominada configuración de protección

contra fallos (failsafe), especificamos muchos parámetros del núcleo que se activan igual que

cualquier otra actividad del núcleo que tenga una pequeña oportunidad de ir mal. Un sistema

como éste será lento y no tendrá una funcionalidad completa, pero si hemos configurado mal

algo, el núcleo de protección contra fallos seguirá adelante y nos permitirá arrancar el sistema,

al menos, para poder reparar los errores. El comando kernel carga el núcleo en memoria, pero

no lo arranca realmente; el comando boot ejecuta el proceso real de arranque. Sin embargo, en

el sistema de menú GRUB de nuestro ejemplo, el comando boot está implícito, pero

perfectamente puede ser escrito al final de cada sección.

La carga en Windows funciona de forma diferente. GRUB no puede cargar directamente

otros sistemas operativos que no sean Linux, la familia BSD y algunos otros. Para dichos

sistemas, como Windows, GRUB llama en su lugar al gestor de arranque incluido en cada

sistema, acción que es denominada carga en cadena, y el comando GRUB que realiza esta

$> ls /boot/grub/menu.lst

/boot.grub/menu.lst

Tema 4: Inicio y cierre del sistema Administración de Sistemas Operativos

Página | 111

acción es el comando chainloader. La opción +1 significa que GRUB puede encontrar el gestor

de arranque en la partición especificada con el comando root anterior, un sector en la partición.

Cuando estemos satisfechos con nuestra configuración de GRUB, tendremos que instalarlo.

Esta tarea se lleva a cabo con el comando grub-install, que espera a que se le indique el

directorio en el que se encuentran los archivos de fase y la imagen del núcleo; y en qué

dispositivo tiene que instalar el gestor de arranque. Para ello, podemos utilizar el siguiente

comando:

Este código instala el gestor de arranque en el primer disco duro IDE (/dev/hda), que

normalmente es el que busca la BIOS del equipo para encontrar la información de arranque

inicial.

1.2.2. Especificar las opciones del arranque

Cuando instalamos por primera vez Linux, es muy probable que lo arranquemos desde un

disquete o CD-ROM que nos proporcione un menú de arranque de GRUB, u otro gestor de

arranque, si seleccionamos una entrada y escribimos e, obtendremos un indicador de comandos

de inicio. En este indicador podemos introducir diversas opciones para el arranque, como:

hd=cylinders,heads,sectors

Esto nos permite especificar la geometría de nuestro disco duro. Cada vez que inicie Linux,

puede que tengamos que especificar estos parámetros para que nuestro hardware se detecte

correctamente. Si estamos utilizando GRUB para iniciar Linux desde el disco duro, podemos

especificar dichos parámetros en la línea kernel en el archivo de configuración de GRUB en

lugar de introducirla en el indicador de comandos del inicio cada vez. Para la entrada de Linux,

sólo tenemos que añadir una línea como la siguiente:

append = “hd=683,16,38”

Así, el sistema se comportara como si hd=683,16,38 se hubiese introducido en la línea de

comandos de inicio de GRUB. Si deseamos especificar múltiples opciones de arranque,

podemos hacerlo con una solo línea append como:

append = “hd=683,16,38 hd=64,32,202”

Con este ejemplo, especificamos la geometría para el primer y segundo disco duro

respectivamente. Cuando hayamos realizado los cambios en el indicador de comandos de inicio,

debemos presionar la tecla Esc para volver atrás al menú de inicio y arrancar el sistema desde

ahí.

Debemos tener en cuenta que tenemos que utilizar estas opciones de arranque sólo si el

núcleo no detecta nuestro hardware en el momento del arranque, algo poco probable a no ser

que tengamos un hardware muy antiguo o poco común.

Existen otras opciones para el momento del arranque. La mayoría de ellas tratan la detección

del hardware. Sin embargo, las siguientes opciones adicionales también pueden resultarnos

útiles:

 single: Arranque el sistema en modo de un solo usuario; omite toda la configuración del

sistema e inicia una shell de root en la consola.

$> sudo grub-install --root-directory=/boot /dev/hda

Administración de Sistemas Operativos Tema 4: Inicio y cierre del sistema

Página | 112

 root=partición: Monta la partición denominada como sistema de archivos de root de

Linux.

 ro: Monta el sistema de archivos como de sólo lectura. Normalmente se utiliza para

ejecutar fsck.

 ramdisk=size: Especifica un tamaño, en bytes, para el dispositivo de disco de memoria

RAM; principalmente es útil para la instalación.

 vga=mode: Establece el modo de pantalla VGA. Los modos válidos son: normal,

extended, ask o un entero.

 mem=size: Le indica al núcleo la cantidad de RAM que tenemos. Si disponemos de

64MB o menos, el núcleo puede obtener esta información del BIOS, pero si utilizamos

un núcleo más antiguo y disponemos de más memoria, tendremos que indicarle al

núcleo la cantidad exacta de o sólo utilizará los primeros 64MB. Por ejemplo, si

tenemos 128MB, debemos especificar mem=128m. Afortunadamente, ya no hay que

establecer esta opción en los núcleos más modernos.

Cualquiera de estas opciones se pueden introducir manualmente en el indicador de comandos

de inicio de GRUB o especificarlas en la línea kernel en el archivo de configuración de GRUB.

1.2.3. Eliminar GRUB

Si por alguna razón extraña hemos decidido dejar de usar nuestro Linux y por ende hemos

decidido desinstalarlo totalmente de nuestro ordenador. Podemos dejar de querer utilizar el

gestor de arranque GRUB. La forma más fácil de eliminarlo es desde Windows utilizando el

comando fdisk en el símbolo del sistema.

Por ejemplo:

C:\> fdisk /MBR

Así conseguiremos ejecutar fdisk y sobrescribir el MBR con un registro de inicio de

Windows válido.

2. Inicio e inicialización del sistema

En esta sección vamos a analizar lo que ocurre exactamente cuando se inicia el sistema.

Conocer los procesos y los archivos implicados es importante para ejecutar diversos tipos de

configuración del sistema.

2.1. Mensajes de inicio de núcleo

El primer paso es iniciar el núcleo. Tal y como lo describimos anteriormente, podemos

arrancar el núcleo desde un disquete o desde el propio disco duro. A medida que el núcleo se

cargue en la memoria, enviará mensajes a la consola del sistema, pero normalmente también

guarda dichos mensajes en archivos de registro del sistema (logs). Como root, siempre podemos

visualizar el contenido del archivo /var/log/mesages, que también contiene mensajes del núcleo

emitidos durante el tiempo de ejecución. El comando dmesg imprime las últimas líneas del

buffer de anillos de mensajes de núcleo; naturalmente, justo tras el arranque, obtendremos los

mensajes de inicio mediante dicho comando.

Tema 4: Inicio y cierre del sistema Administración de Sistemas Operativos

Página | 113

Los siguientes son ejemplos de algunos párrafos sobre un par de mensajes interesantes y lo

que significan. Estos mensajes son impresos por el propio núcleo a medida que se inicializa

cada controlador de dispositivo. Los mensajes exactos impresos dependerán de los

controladores que estén compilados en nuestro núcleo y del hardware que tenga nuestro sistema.

Linux versión 2.6.11.4-21.7-default (geeko@builddhost) (gcc version 3.3.5

2005011

7 (prerelease) (SUSE Linux)) #1 Mar Jun 2 14:23:14 UTC 2005

Este ejemplo de mensaje nos indica el número de versión del núcleo, la máquina en la que se

encuentra y con qué compilador se ha montado.

A continuación, el núcleo informa sobre elementos como el BIOS, la cantidad de memoria

presente, la configuración de administración de potencia, etc. Éstas son algunas de las líneas

más interesantes.

…

127MB HIGHMEM available.

896MB LOWMEM available.

…

Kernel command line: root=/dev/hda6 vga=0x314 selinux=0 splash=silent resume=/dev/hda5

…

Detected 599.481 MHz precessor.

…

A continuación, el núcleo nos indica las configuraciones de consola que él ha escogido y qué

tipo de consola ha detectado:

Console: color dummy device 80x25

Cabe destacar que esta línea implica sólo al modo de texto que está utilizando el núcleo, no a

las opciones de tarjeta de vídeo, Tampoco tiene nada que ver con el sistema X Windows; el

núcleo no está implicado para nada.

Posteriormente podremos observar el cálculo BogoMIPS para nuestro procesador:

Calibrating delay loop… 1187.84 BogoMIPS (lpj=593920)

Ésta es una entrada de medida de la velocidad del procesador totalmente falsa que se utiliza

para obtener el rendimiento óptimo en los ciclos de retardo para diversos controladores de

dispositivo.

El núcleo recopila información sobre el bus PCI y comprueba si hay alguna tarjeta PCI

presente en el sistema:

PCI: PCI BIOS revision 2.10 entry at 0xfd8d6, last bus=8

PCI: Using configuration type 1

…

PCI: Probing PCI hardware (bus00)

PCI: Ignoring BAR0-3 of IDE controller 000:00:1f.1

PCI: Transparent bridge – 0000:00:1e.0

…

Administración de Sistemas Operativos Tema 4: Inicio y cierre del sistema

Página | 114

A continuación, Linux establece el sistema de red, el puerto del ratón y el controlador serie:

ttyS00 at 0x03f8 (irq = 4) is a NS16550A

Lo anterior significa que se ha detectado el primer dispositivo (/dev/ttyS00, o COM1) en la

dirección 0x03f8, IRQ 4, utilizando funciones 16550A UART. A continuación se incluyen más

detecciones de hardware, como el reloj en tiempo real y la disquetera:

Real Time Clock Driver v1.12

…

Floppy drive(s): fd0 is 1.44M

FDC 0 is National Semiconductor PC87306

loop: loaded (max 8 devices)

…

La línea:

Adding 1029632k swap on /dev/hda5. Priority:42 extents:1

Indica la cantidad de espacio de intercambio que ha sido encontrada por el núcleo. Entre

otras tareas posteriores ejecutadas durante un arranque típico se encuentran la búsqueda y

configuración de un puerto paralelo (lp1), la detección y configuración de la tarjeta de red y, por

último, la configuración del subsistema USB.

2.2. Archivos init, inittab y rc

Una vez inicializados los controladores de dispositivo, el núcleo ejecuta el programa init, que

se encuentra en /etc, /bin o /sbin. init es un programa de propósito general que produce nuevos

procesos y reinicia determinados programas al salir de ellos. Por ejemplo, cada consola tiene un

proceso getty ejecutándose en ella, iniciada por init. Tras el inicio de sesión, el proceso getty se

reemplaza con otro. Tras salir de la sesión, init inicia un nuevo proceso getty, permitiéndonos

volver a iniciar la sesión de nuevo.

init también es el responsable de ejecutar diversos programas y secuencias de comandos

cuando se inicia el sistema. Todo lo que hace init se controla a través del archivo /etc/inittab,

pero, para poder entender este archivo, primero tenemos que entender el concepto de nivel de

ejecución.

En lo que respecta a init, un nivel de ejecución es un número o una letra que especifica un

estado actual del sistema. Por ejemplo, cuando un nivel de ejecución del sistema se cambia a

tres, se ejecutarán todas las entradas en /etc/inittab que contengan un tres en la columna que

especifica los niveles de ejecución. Los niveles de ejecución son una forma de agrupar entradas

en /etc/inittab. Por ejemplo, puede que deseemos indicar que el nivel de ejecución uno ejecute

sólo las secuencias de comandos de configuración mínima, el nivel de ejecución dos todo lo que

ejecuta el nivel de ejecución uno más la configuración de red, el nivel de ejecución tres todo lo

que ejecutan los niveles uno y dos más un acceso de conexión por marcación telefónica y así

sucesivamente. Actualmente, las distribuciones Red Hat y SuSE se han configurado para que el

nivel de ejecución cinco inicie automáticamente la interfaz grafica del sistema X Windows.

Debian hace lo mismo en los niveles de ejecución dos al cinco.

En general, no tendremos que preocuparnos por los niveles de ejecución. Cuando el sistema

se inicia, introduce el nivel de ejecución predeterminado, establecido en /etc/inittab. En la

mayoría de sistemas, este valor predeterminado es tres o cinco. Tras analizar el arranque

normal, en la sección anterior, vamos a analizar como introducir otro nivel de ejecución que en

ocasiones vamos a necesitar utilizar: el nivel de ejecución uno o modo de un solo usuario.

Tema 4: Inicio y cierre del sistema Administración de Sistemas Operativos

Página | 115

Vamos a examinar un archivo /etc/inittab de ejemplo:

Establecer el nivel de ejecución en tres

id:3:initdefault:

Primera secuencia de comandos a ejecutar

si::bootwait:/etc/init.d/boot

Ejecutar /etc/init.d/rc con un nivel de ejecución como argumento

l0:0:wait:/etc/init.d/rc 0

l1:1:wait:/etc/init.d/rc 1

l2:2:wait:/etc/init.d/rc 2

l3:3:wait:/etc/init.d/rc 3

l4:4:wait:/etc/init.d/rc 4

l5:5:wait:/etc/init.d/rc 5

l6:6:wait:/etc/init.d/rc 6

Ejecutar al presionar Ctrl+Alt+Supr

ca::ctrlaltdel:/sbin/shutdown –t3 –rf now

Iniciar agetty para la consolas virtuales desde la uno a la seis

1:2345:respawn:/sbin/mingetty --noclear tty1

2:2345:respawn:/sbin/mingetty tty2

3:2345:respawn:/sbin/mingetty tty3

4:2345:respawn:/sbin/mingetty tty4

5:2345:respawn:/sbin/mingetty tty5

6:2345:respawn:/sbin/mingetty tty6

Los campos se separan con dos puntos. El último campo es el más reconocible: es el

comando que ejecuta init para esta entrada. El primer campo es un identificador arbitrario (no

importa lo que sea siempre que sea único en el archivo) y el segundo campo indica qué niveles

de ejecución hacen que se llame al comando. El tercer campo le indica a init cómo tiene que

controlar esta entrada; por ejemplo, si tenemos que ejecutar el comando dado una vez o

ejecutarlo siempre que aparezca.

El contenido exacto de /etc/inittab depende de nuestro sistema y de la distribución de Linux

que tengamos instalada.

En nuestro archivo de ejemplo, primero podemos ver que el nivel de ejecución

predeterminado está establecido en tres. El campo action para esta entrada es initdefault, que

hace que el nivel de ejecución dado se establezca como predeterminado. Normalmente éste es el

nivel de ejecución utilizado cuando se inicia el sistema. Podemos sobrescribir el valor

predeterminado con cualquier otro nivel que deseemos ejecutando init manualmente y

pasándole el nivel de ejecución deseado como un argumento. Por ejemplo, el siguiente comando

cierra todos los servicios que pertenecen al nivel de ejecución actual, pero no el nivel de

ejecución cinco.

La siguiente entrada le indica a init que ejecute la secuencia de comandos /etc/init.d/boot

cuando se inicie el sistema. El campo action es [sysinit], que especifica que esta entrada debe

ejecutarse cuando se inicie por primera vez init en el arranque del sistema. El archivo

/etc/init.d/boot es simplemente una secuencia de comandos de shell que contiene órdenes para

$> sudo init 5

Administración de Sistemas Operativos Tema 4: Inicio y cierre del sistema

Página | 116

controlar la inicialización básica del sistema; por ejemplo, se habilita el espacio de intercambio,

se revisan y se montan los archivos del sistema y se sincroniza el reloj con el reloj CMOS.

En la siguiente sección vamos a comprobar cómo ejecuta el sistema el archivo /etc/init.d/rc

cuando introducimos cualquiera de los niveles de ejecución hasta el seis, con el nivel de

ejecución apropiado como argumento. rc es una secuencia de comandos de inicio genérica que

ejecuta otras secuencias de comandos apropiadas para dicho nivel de ejecución. Aquí el campo

action es wait, que le indica a init que ejecute el comando dado y espere a que termine su

ejecución antes de hacer algo más.

2.3. Archivos rc

Linux guarda los comandos de inicio en archivos con rc en el nombre, utilizando un antiguo

convenio de Unix. Los comandos hacen todo lo necesario para que un sistema funcione

completamente, como iniciar los servicios o los demonios correspondientes. Gracias a estos

comandos, el sistema aparece preparado con opciones de inicio de sesión, correo, un servidor

web o cualquier elemento instalado y que se le haya indicado que se ejecute.

En esta sección describiremos la estructura de los archivos rc para conocer donde empieza

todo y para que podamos iniciar o detener los servicios manualmente por si no hacen lo que

nosotros queremos que hagan.

Las secuencias de comandos para cada nivel de ejecución se guardan en el directorio

/etc/rcN.d, siendo N el nivel de ejecución que se va a iniciar. Por tanto, para el nivel de

ejecución tres, se utilizarán las secuencias de comandos en /etc/rc3.d.

Si examinamos alguno de estos directorios; podremos observar diversos nombres de archivos

como: Snnxxxx o Knnxxxx, siendo nn un número comprendido entre 00 y 99 y xxxx el nombre de

un servicio del sistema. Las secuencias de comandos cuyos nombres empiezan con K se

ejecutan primero a través de /etc/init.d/rc para cerrar cualquier servicio existente y

posteriormente se ejecutan las secuencias de comandos cuyos nombres empiezan con S para

iniciar nuevos servicios.

Los números nn en los nombres se utilizan para forzar una ordenación en las secuencias de

comandos cuando se ejecutan: las secuencias de comandos con los números más bajos se

ejecutan antes que las secuencias que tienen números más altos. El nombre xxxx se utiliza

simplemente para ayudarnos a identificar qué servicio del sistema se corresponde con la

secuencia de comandos. El convenio de denominación puede parecer extraño, pero facilita la

adición o eliminación de secuencias de comandos en estos directorios y la ejecución automática

en el momento apropiado a través de /etc/init.d/rc. Para personalizar secuencias de comandos de

inicio, es muy cómodo utilizar un editor gráfico de niveles de ejecución, como KSysV en

entornos de escritorios de KDE o BUM en entornos de escritorios de GNOME. Algunas

distribuciones incluyen por defecto un editor gráfico de niveles de ejecución como parte de sus

herramientas de administración.

Por ejemplo, la secuencia de comandos que inicializa el sistema de red se puede denominar

S10network, mientras que la secuencia de comandos que detiene el demonio de inicio de sesión

del sistema se puede denominar K70login. Si se colocan dichos archivos en los directorios

/etc/rcN.d apropiados, /etc/init.d/rc los ejecutará en orden numérico, durante el inicio del

sistema o en el momento del cierre. Si el nivel de ejecución predeterminado de nuestro sistema

es tres, debemos examinar los archivos contenidos en el directorio /etc/rc3.d para comprobar

qué secuencias de comandos se ejecutan cuando se inicia nuestro sistema normalmente.

Como los mismos servicios se inician o se detienen en niveles de ejecución diferentes, las

distintas distribuciones suelen utilizar vínculos simbólicos en lugar de repetir la misma

Tema 4: Inicio y cierre del sistema Administración de Sistemas Operativos

Página | 117

secuencia de comandos en múltiples sitios. Por tanto, cada archivo S o K es un vínculo

simbólico que apunta a un directorio central que almacena las secuencias de comandos de inicio

o de cierre para todos los servicios, normalmente este directorio que almacena las secuencias de

comandos es el directorio /etc/init.d. Éste directorio contiene una secuencia de comandos

denominada skeleton que nos permite adaptar los demonios escritos por nosotros mismos para

que estos sean iniciados o detenidos.

Es útil conocer la ubicación de una secuencia de comandos de inicio o de cierre en caso de

que no deseemos reiniciar completamente o introducir un nivel de ejecución diferente, pero

tendremos que iniciar o detener un servicio determinado.

La siguiente entrada, en el archivo /etc/inittab, etiquetada como ca, se ejecuta cuando se

presiona simultáneamente la combinación de las teclas Ctrl+Alt+Supr. Esta combinación de

teclas proporciona una interrupción que normalmente reinicia el sistema. En Linux, esta

interrupción se capta y se envía a init, que ejecuta la entrada con el campo action de ctrlaltdel.

Los comandos especificados aquí, /sbin/shutdown –t3 –rf now, realizarán un reinicio seguro del

sistema. De este modo protegemos al sistema de un reinicio inesperado cuando presionamos

Ctrl+Alt+Supr.

Por último, el archivo inittab incluye entradas que ejecutan /sbin/mingetty para las primeras

seis consolas virtuales. mingetty es una de las diversas variantes de getty disponibles para Linux.

Estos programas permiten iniciar sesión en terminales; sin ellos, el terminal estaría

deshabilitado y no respondería cuando un usuario presionara una tecla o el botón del ratón. Los

diversos comandos getty abren un dispositivo de terminal, como una consola virtual o una línea

serie, establecen diversos parámetros para el controlador del terminal y ejecutan /bin/login para

iniciar una sesión en dicho terminal. Por consiguiente, para permitir inicios de sesión en una

determinada consola virtual, se tiene que estar ejecutando getty o mingetty en ella. mingetty es la

versión utilizada sobre diversos sistemas Linux, pero otros utilizan getty o agetty, que tienen una

sintaxis ligeramente diferente.

mingetty acepta un argumento: un nombre de dispositivo. El puerto denomina las consolas

virtuales de Linux como /dev/tty1, /dev/tty2, etc. mingetty supone que el nombre de un

determinado dispositivo es relativo a /dev. La tasa de baudios para las consolas virtuales

generalmente es de 38.400, razón por la que mingetty, al contrario que, por ejemplo, agetty,

tiene su valor predeterminado en dicha cantidad y no requiere especificarse explícitamente.

Cabe destacar que el campo action para cada entrada mingetty es respaw, lo que significa

que init debe reiniciar el comando dado en la entrada cuando se cierre el proceso mingetty, algo

que se produce cada vez que cerramos la sesión.

3. Modo de un solo usuario

Normalmente utilizaremos el sistema en un modo de múltiples usuarios para que los usuarios

puedan iniciar la sesión. Pero existe un estado especial denominado modo de un solo usuario en

el que se está ejecutando Unix pero no el indicador de comandos de inicio. En ese modo,

básicamente el usuario existente es el súper usuario (root). Puede que tengamos que utilizar este

modo durante la instalación de algo que va mal, como para revisar sistemas de archivos

dañados.

En el modo de un solo usuario, el sistema es muy poco útil; hay muy poca configuración, los

sistemas de archivos se desmontan, etc. Este modo es necesario para recuperarnos frente a

ciertos tipos de problemas. Debemos tener en cuenta que Unix sigue siendo un sistema de

múltiples procesos, incluso en modo de un solo usuario. Puede ejecutar múltiples programas

simultáneamente. Los servicios se pueden ejecutar en segundo plano para que puedan ejecutarse

Administración de Sistemas Operativos Tema 4: Inicio y cierre del sistema

Página | 118

funciones especiales, como la red. Pero si nuestro sistema admite más de un terminal, sólo

podremos utilizar la consola y no se podrá ejecutar el sistema X Windows.

4. Cierre del sistema

Afortunadamente, cerrar un sistema Linux es mucho más simple que arrancarlo e iniciarlo.

Sin embargo, no es sólo cuestión de presionar el botón de apagado del ordenador. Linux como

todos los sistemas Unix, guarda temporalmente en los buffers de memoria las lecturas y

escrituras del disco, lo que significa que las escrituras del disco se retrasan todo lo necesario y

se sirven múltiples lecturas en el mismo bloque del disco directamente desde la RAM,

incrementando así extraordinariamente el rendimiento, ya que los discos son extremadamente

lentos con relación a la CPU.

El problema es que si el sistema tuviese que cerrarse o reiniciarse repentinamente, los buffers

en memoria no se escribirían en el disco y se podrían perder o dañar los datos. El núcleo vacía

los buffers modificados, es decir, los que han cambiado desde que fueron leídos desde el disco,

copiándolos de nuevo al disco cada cinco segundos aproximadamente, dependiendo de la

configuración, para evitar un daño serio si el sistema se detiene repentinamente. Sin embargo,

para estar completamente seguro, el sistema necesita que se efectué un cierre seguro antes de

poderse reiniciar, algo que asegurará no sólo que los buffers del disco se sincronizarán

correctamente, sino que además permitirá que todo el proceso de salida se realice limpiamente.

El comando shutdown es el comando general utilizado para detener o reiniciar el sistema.

Como root, podemos emitir el comando:

Con este comando conseguimos que el sistema se reinicie en diez minutos. La opción –r

indica que el sistema se debe reiniciar tras su cierre y +10 es la cantidad de tiempo, expresada

en minutos, que se debe esperar hasta el cierre. Podemos añadir nuestro propio mensaje de aviso

incluyéndolo en la línea de comandos, como en el siguiente ejemplo:

También podemos especificar un tiempo absoluto para el cierre, como en el siguiente

ejemplo:

Esto logrará hacer que el sistema se reinicie a la 1:00 PM. Asimismo, podemos utilizar:

Para lograr reiniciar el sistema inmediatamente; tras el proceso de cierre seguro. Si hacemos

uso de la opción –h en lugar de la opción –r, el sistema simplemente se detendrá tras el cierre; y

después podremos apagar el equipo sin miedo a perder ningún dato. Si no especificamos la

opción –h ni –r, el sistema entrará en modo de un solo usuario.

Como hemos podido comprobar, podemos hacer que init capture la secuencia de teclas

Ctrl+Alt+Supr y ejecutar un comando shutdown en respuesta a dicha combinación de teclas. Si

estamos acostumbrados a reiniciar de este modo nuestro sistema, es recomendable comprobar si

el archivo /etc/inittab contiene una entrada ctrlaltdel. Debemos tener en cuenta que nunca

$> sudo shutdown –r now

$> sudo shutdown –r 13:00

$> sudo shutdown –r +10 “Reinicio del sistema para cargar nuevo servicio”

$> sudo shutdown –r +10

Tema 4: Inicio y cierre del sistema Administración de Sistemas Operativos

Página | 119

debemos reiniciar nuestro sistema Linux pulsando el botón de apagado o el conmutador de

reinicio del mismo. A no ser que el sistema se quede suspendido de repente, debemos utilizar

siempre el comando shutdown. Lo extraordinario de un sistema de múltiples procesos es que un

programa se pude quedar suspendido, pero casi siempre podemos cambiar a otra consola virtual

para su recuperación.

El comando shutdown proporciona otras opciones como la opción –c la cual cancelará un

cierre que se esté ejecutando actualmente. Evidentemente, otra forma de cancelar el cierre puede

ser deteniendo el proceso mediante el comando kill, pero shutdown –c hace que esta tarea sea

mucho más fácil.

Página | 120

Tema 5: Administración de usuarios, grupos y permisos Administración de Sistemas Operativos

Página | 121

TEMA 5: ADMINISTRACIÓN DE USUARIOS,

GRUPOS Y PERMISOS

Objetivos

 Destacar la importancia de los elementos operativos para la correcta administración de

las cuentas de usuario.

 Estudiar los elementos y términos completos vinculados con la administración de

cuentas de usuario.

 Profundizar sobre la metodología de autenticación existente para los sistemas Linux.

 Destacar las características de los comandos útiles a la hora de administrar las cuentas

de usuario.

Contenido

1. Tipos de cuentas de usuario

1.1. Cuenta de usuario completa o cuenta shell

1.2. Cuenta de acceso restringido

1.3. Programas y daemons

2. Usuarios y uids

3. Pseudo-conexiones

4. Gestión de usuarios y grupos

4.1. El archivo passwd

4.2. Contraseñas ocultas

4.3 El archivo de grupo

4.4 El archivo gshadow

5. Operaciones con las cuentas de usuario

5.1. Crear

5.2. Eliminar

5.3. Deshabilitar

5.4. Modificar

6. Otro método de autenticación: PAM

6.1. ¿Qué es PAM?

6.2. Grupos de gestión

6.3. Arquitectura

Bibliografía

Básica

 M Carling, Stephen Degler, James Dennis, “Administración de Sistemas Linux Guía

Avanzada”. Editorial Prentice Hall, 2000.

 Dee-Ann LeBlanc, “Administración de sistemas LINUX La biblia”. Editorial ANAYA

MULTIMEDIA, 2001.

 Matthias Kalle Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada “, Editorial Anaya Multimedia, 2006.

Complementaria

 Imobach González Sosa, Manolo Padrón Martínez, “Pluggable Authentication Modules

(PAM) Versión 1.0 Curso 2003/2004”, GNU Free Documentation License.

http://sopa.dis.ulpgc.es/ii-aso/portal_aso/leclinux/seguridad/pam/pam_doc.pdf

http://sopa.dis.ulpgc.es/ii-aso/portal_aso/leclinux/seguridad/pam/pam_doc.pdf

Administración de Sistemas Operativos Tema 5: Administración de usuarios, grupos y permisos

Página | 122

La administración de cuentas de usuario es fundamental para los administradores de

sistemas. No sólo absorbe gran cantidad del tiempo de los mismos (la cantidad de tiempo

absorbido depende del número total de usuarios y la frecuencia con la que se añaden o eliminan

cuentas), sino que suele ser una de las fuentes más comunes de fracasos. Algunos usuarios no

están nunca satisfechos con sus cuentas, ya sea por la shell, por la cantidad de espacio de disco

duro que se les fue asignado, por el nombre de usuario o por la configuración del escritorio

virtual. Los sistemas Linux proporcionan herramientas muy potentes para la administración de

usuarios y de grupos.

1. Tipos de cuentas de usuario

Muchas personas piensan que solamente hay un tipo de cuenta de usuario en los sistemas

Linux. Esta suposición no sólo es incorrecta sino que conduce a fallos de seguridad que pueden

ser evitados fácilmente. Existen, en esencia, tres tipos de cuentas que se utilizan en los sistemas

Linux: La primera denominada cuenta de usuario completa o cuenta shell, es el tipo de cuenta

de entrada en la que la mayoría de usuarios piensa cuando se trata de un sistema Linux, es la

típica cuenta que asocia a un usuario del sistema con una contraseña. La segunda es la cuenta

de acceso restringido, en el que el usuario sólo tiene acceso a servicios específicos de la

máquina. Y la tercera no es una cuenta para usuarios humanos sino para daemons (demonios) y

otros programas que necesitan ejecutarse. Ejecutar estos programas en la cuenta root es

peligroso, porque se les asigna un nivel de acceso demasiado alto; es mejor darles su propia

cuenta donde tienen exactamente el acceso y control que necesitan. De esa manera, si esos

procesos se ponen en peligro o algo va mal, solamente pueden causar problemas en su propia

área.

1.1. Cuenta de usuario completa o cuenta shell

Una cuenta de usuario completa es la más usual de las cuentas de un sistema Linux. Ofrece

un acceso shell de entrada al sistema así como el uso de cualquier otro elemento al que un

usuario tiene permiso ya sea para ejecutarlo o abrirlo. Este tipo de cuenta se crea con comandos

rápidos como useradd. Desdichadamente, el acceso shell es de algún modo un serio fallo de

seguridad. Si alguien tiene acceso a la línea de comandos, que es lo que ofrece una cuenta shell,

les ahorra un paso para irrumpir en el sistema. Con una cuenta de acceso shell, los usuarios

pueden compilar programas explícitamente para la configuración de su máquina, ejecutarlos con

propósitos malévolos, y explotar el sistema de archivos buscando debilidades en el permiso y en

la estructura de posesión. Incluso si la persona que posee la cuenta no tiene intenciones hostiles,

introducir una mala contraseña puede poner la cuenta en peligro.

1.2. Cuenta de acceso restringido

Se conocen como no-shell y son cuentas que sólo permiten a los usuarios tener acceso a

ciertas características específicas: Correo electrónico POP, noticias Usenet o acceso al marcado

SLIP o PPP.

Estas cuentas se pueden cambiar a cuentas shell en cualquier momento si es necesario. La

ventaja de permitir a los usuarios el acceso únicamente a servicios específicos, debería estar

clara por los motivos mencionados en el apartado anterior. Si los usuarios solamente tienen

acceso para comprobar su correo electrónico POP, no pueden llegar a una línea de comandos

para causar estragos en el sistema.

La regla general, para proceder como buenos administradores, es que solamente debemos

proporcionar cuentas de usuario completas si realmente estos necesitan acceso shell.

Tema 5: Administración de usuarios, grupos y permisos Administración de Sistemas Operativos

Página | 123

1.3. Programas y daemons

Algunos programas y daemons necesitan sus propios ID de usuario. Un programa o daemon

se ejecuta como el usuario que lo posee, así que si el elemento se ejecuta como root, tiene todos

los privilegios que tiene root. Lo hace tan peligroso como un usuario inexperto que inicia una

sesión en el sistema como root.

Un programa o daemon dañino puede estropear accidentalmente un sistema de archivos si

sus permisos son demasiado amplios. También es acertado, no dar a los programas acceso de

lectura, escritura o ejecución a áreas que no necesitan ver.

2. Usuarios y uids

Los uids identifican a los propietarios de los archivos, directorios y procesos. Cada uid

numérico corresponde a un nombre de usuario (o conexión) y opcionalmente a un nombre

completo de usuario. La asignación de uid a un nombre de usuario se suele encontrar en el

archivo /etc/passwd.

Generalmente, se puede usar un nombre de usuario para conectarse en uno o más sistemas,

aunque unos pocos, llamados pseudo-conexiones, no pueden conectarse con ningún sistema. Un

nombre de usuarios suele pertenecer a una sola persona, y casi todas las personas suelen tener

un solo nombre de usuario. root es una excepción obvia, ya que en la mayoría de sistemas más

de una sola persona utiliza root, y todos los que la usan también deben tener un nombre de

usuario personal.

Todos los uid tienen su contraseña correspondiente, que está almacenada en el archivo

/etc/passwd o en /etc/shadow. Todos los uid también tienen otros atributos, como el shell

predeterminado.

3. Pseudo-conexiones

Las pseudo-conexiones existen para que los procesos puedan ejecutarse con el uid de las

pseudo-conexiones sin que ningún usuario pueda conectarse con ninguna máquina utilizando el

correspondiente nombre de usuario. Algunas de las pseudo-conexiones que hay en casi todos los

sistemas Linux son: bin, daemon, adm, lp, mail, news, uucp y nobody.

Adicionalmente, es posible crear pseudo-conexiones si fuera necesario. Algunos

administradores de sistemas las crean con un nombre de usuario que coincide con un comando

que tiene que ser ejecutado en su shell. Los ejemplos son: hostname, ifconfig, netstat y who.

Hay que tener en cuenta la seguridad cada vez que se va a crear una pseudo-conexión,

especialmente si los intentos de usar ese nombre de usuario terminan en la ejecución de un

comando. Es importante documentar la razón de la creación de cada pseudo-conexión.

4. Gestión de usuarios y grupos

En esta sección analizaremos el contenido y la lógica de funcionamiento de los archivos

relacionados con la gestión de usuarios (/etc/passwd y /etc/shadow) y grupos (/etc/group y

/etc/gshadow) en un sistema Linux.

Las contraseñas robustas y seguras son tan importantes con las cuentas de acceso restringido como lo

son con las cuentas shell.

Administración de Sistemas Operativos Tema 5: Administración de usuarios, grupos y permisos

Página | 124

4.1. El archivo passwd

Todas las cuentas en el sistema tienen una entrada en el archivo /etc/passwd. Este archivo

contiene entradas, una línea por usuario, que especifican diversos atributos para cada cuenta,

como el nombre de conexión del usuario, el nombre real del usuario, etc.

Todas las entradas en este archivo tienen el siguiente formato:

nombre-de-usuario:contraseña:uid:gid:gecos:homedir:shell

La siguiente lista explica cada uno de los campos:

 nombre-de-usuario: Es una cadena de caracteres única que identifica la cuenta. En las

cuentas personales, es el nombre del usuario que inicia la sesión. En la mayoría de

sistemas se limita a ocho caracteres alfanuméricos (por ejemplo, larry o kirsten).

 contraseña: Es una representación cifrada con MD5 de la contraseña del usuario. Este

campo se establece utilizando el comando passwd para establecer la contraseña de la

cuenta; utiliza un esquema de cifrado de una sola vía, que es difícil, aunque no

imposible, de descifrar. Esta contraseña no debe establecerse manualmente; el comando

passwd lo hace por nosotros. Sin embargo, si el primer carácter del campo contraseña es

un * (asterisco), la cuenta estará “deshabilitada”; el sistema no permitirá iniciar ninguna

sesión a este usuario. En cambio, si el campo contraseña contiene sólo una x entonces

quiere decir que la contraseña se encuentra cifrada en el archivo /etc/shadow el cual es

sólo legible por root.

 uid: Es el ID del usuario, un entero único que utiliza el sistema para identificar la

cuenta. El sistema utiliza el campo uid internamente cuando trata con procesos y

permisos de archivos; es más fácil y más compacto para el sistema tratar con enteros

que con cadenas de bytes. Por consiguiente, tanto el ID del usuario como el nombre del

usuario identifican una determinada cuenta: El ID del usuario es más importante para el

sistema, mientras que el nombre del usuario es más cómodo para éste.

 gid: Es el ID de grupo, un entero que hace referencia al grupo predeterminado del

usuario, que se encuentra en el archivo /etc/group.

 gecos: Es información diversa sobre el usuario, como su nombre real, información de

localización, dirección de su oficina o su número de teléfono. Comandos como mail y

finger utilizan esta información para identificar a los usuarios del sistema. gecos es un

nombre histórico que data del año 1970 y es el acrónimo de General Electric

Comprehensive Operating System usado para mandar login en trabajos batch de Unix a

mainframe Bell. Podemos hacer uso del comando chfn, para modificar este campo de un

usuario existente en nuestro sistema.

 homedir: Es el directorio personal del usuario. Cuando los usuarios inician la sesión por

primera vez, la shell busca su directorio de trabajo actual en el denominado directorio

personal.

 shell: Es el nombre del programa a ejecutar cuando el usuario inicia la sesión;

normalmente es el nombre de la ruta de acceso completo de una shell, como /bin/bash o

/bin/sh. Podemos hacer uso del comando chsh, para modificar este campo de un usuario

existente en nuestro sistema.

Muchos de estos campos son opcionales; los únicos campos obligatorios son nombre-de-

usuario, uid, gid y homedir. La mayoría de cuentas de usuario tienen todos los campos rellenos,

Tema 5: Administración de usuarios, grupos y permisos Administración de Sistemas Operativos

Página | 125

pero las cuentas “imaginarias” o administrativas pueden utilizar sólo algunos de ellos.

Éstos son dos ejemplos de entradas que se puede encontrar en /etc/passwd:

root:ZxPsI9ZjiVd9y:0:0The root of all evil:/root:/bin/bash

aclark:BjDf5hBysDsii:1000:1000:Anna Clark:/home/aclark:/bin/bash

La primera entrada es para la cuenta root (el ID del usuario root es 0). Lo que hace que root

sea root es que el sistema sabe que un uid 0 es especial y que no tiene que tener las restricciones

de seguridad normales. El gid de root también es 0 (principalmente se trata de una comodidad).

Muchos de los archivos del sistema son propiedad de root y del grupo root, que tiene un uid y

un gid de 0, respectivamente.

En muchos sistemas, root utiliza el directorio personal /root o simplemente /. Normalmente

no es algo importante ya que por lo general utilizaremos el comando su para acceder a root

desde nuestra propia cuenta. Asimismo, es tradicional utilizar una variante del shell Bourne

(intérprete de comandos y lenguaje de programación de comandos), en este caso, /bin/bash, para

la cuenta root.

La segunda entrada es para la identificación de una persona, con nombre de usuario aclark y

uid 1000. Técnicamente el campo uid puede ser cualquier entero único dentro del sistema

superior o igual a 1000, ya que las cuentas administrativas van de 0 hasta 999; el gid es 1000, lo

que significa que aclark se encuentra en el grupo con el número 1000 del archivo /etc/group.

Los directorios personales normalmente se encuentran en /home y se denominan por el

nombre de usuario de su propietario, por ejemplo: /home/aclark, el cual es un convenio útil que

evita confusiones cuando se busca el directorio personal de un determinado usuario.

Técnicamente se puede colocar un directorio personal en cualquier parte del sistema, pero

primero tiene que existir dicho directorio para que el usuario pueda iniciar su sesión. Sin

embargo, como buenos administradores, debemos seguir el diseño del directorio utilizado en

nuestro sistema.

Como administrador del sistema, en general, no es necesario modificar el directorio

/etc/passwd directamente. Existen diversos comandos disponibles que pueden ayudarnos a crear

y a mantener cuentas de usuario. Si realmente deseamos modificar directamente los datos del

archivo /etc/passwd, podemos considerar utilizar el comando vipw que protege el archivo de

contraseñas ante los potenciales daños que se pueden producir de una edición simultánea.

4.2. Contraseñas ocultas

Hasta cierto punto, es riesgo de seguridad permitir que todo el que tenga acceso al sistema

pueda ver las contraseñas cifradas en el archivo /etc/passwd. Existen comandos especiales para

descifrar contraseñas que intentan una inmensa cantidad de contraseñas posibles y comprueban

si la versión cifrada de dichas contraseñas es igual a una especificada.

Para solucionar en parte este potencial riesgo de seguridad, se han desarrollado las

contraseñas ocultas (shadow passwords). Cuando se utilizan las contraseñas ocultas, el campo

contraseña en /etc/passwd contiene sólo una x, que nunca pueden estar en la versión cifrada de

una contraseña. En su lugar, se utiliza un segundo archivo denominado /etc/shadow, sólo legible

por root, por lo que los usuarios normales no tienen acceso a las contraseñas cifradas. Los otros

campos de /etc/shadow, excepto el nombre de usuario y la contraseña, también están presentes,

pero normalmente contienen valores falsos o están vacíos, para tratar de confundir a un posible

atacante a la hora de que este pueda leer su contenido.

Administración de Sistemas Operativos Tema 5: Administración de usuarios, grupos y permisos

Página | 126

Todas las entradas en este archivo tienen el siguiente formato:

nombre-de-usuario:contraseña:días-cambio:min-cambio:max-cambio:días-aviso:días-inhabilitar:tiempo-inhabilitar:reservada

La siguiente lista explica cada uno de los campos:

 nombre-de-usuario: Igual que el campo de /etc/passwd.

 contraseña: Es una representación cifrada con MD5 de la contraseña del usuario.

 días-cambio: Define la fecha de nacimiento, o de la última modificación, de la

contraseña respecto al 1 de enero de 1970 “Unix timestamp” expresada en días.

 min-cambio: Número entero que establece la edad mínima en días que tiene que tener

la contraseña para que se pueda cambiar, es decir, los días que faltan para que se cambie

la contraseña. Un cero indica que el usuario puede cambiar la contraseña en cualquier

momento. Es un campo opcional.

 max-cambio: Número entero que establece la edad máxima en días de la contraseña.

Establece el vencimiento de la contraseña. Es un campo opcional.

 días-aviso: Numero entero que establece los días antes de la edad máxima (max-

cambio), que el sistema comenzará a solicitar al usuario que cambie la contraseña.

 días-inhabilitar: Plazo en días que se concede si se caduca la contraseña sin cambiar

para que el sistema inhabilite la cuenta del usuario. Por ejemplo: 2, al cabo de dos días

de expirar la contraseña se inhabilitará la cuenta.

 tiempo-inhabilitar: Define el número de días después del cual se inhabilitará la cuenta;

y el usuario no podrá iniciar su sesión en el sistema. Es un campo opcional.

 reservada: Campo reservado.

Para utilizar las contraseñas ocultas se necesitan versiones especiales de comandos que

accedan o modifiquen la información del usuario, como passwd o login. Actualmente, la

mayoría de distribuciones Linux incluyen una configuración de contraseña oculta.

Existen dos comandos para convertir las entradas de usuario “normales” en entradas ocultas

y viceversa. Por ejemplo, pwconv busca en el archivo /etc/passwd entradas que todavía no estén

en /etc/shadow, genera entradas ocultas para dichas entradas y las combina con las entradas ya

presentes en /etc/shadow.

El comando pwunconv se utiliza en raras ocasiones ya que proporciona menos seguridad en

lugar de más. Funciona como pwconv, pero genera entradas de /etc/passwd tradicionales que

funcionan sin sus equivalentes en /etc/shadow.

Los sistemas Linux modernos también proporcionan una utilidad denominada caducidad de

la contraseña (password aging). Se trata de una fecha de caducidad de una contraseña; si llega a

esta fecha, se emite un aviso, unos cuantos días antes (dichos días pueden ser configurados por

el administrador) de que la contraseña caduque y se le pide al usuario que cambie su contraseña.

Si éste no lo hace, su cuenta se bloqueará. También se puede establecer una cantidad mínima de

días antes de que se cambie o se cree una contraseña para que se pueda volver a cambiar.

Todas estas configuraciones se establecen con el comando passwd. La opción –n establece la

cantidad mínima de días entre cambios, -x la cantidad máxima de días entre cambios, -w cuántos

Tema 5: Administración de usuarios, grupos y permisos Administración de Sistemas Operativos

Página | 127

días antes se debe emitir un aviso antes de que caduque la contraseña y –i la cantidad de días de

inactividad entre la fecha de caducidad de una contraseña y el momento en el que se bloquea la

cuenta.

4.3. El archivo de grupo

Los grupos proporcionan un mecanismo para agregar usuarios, de forma que se pueden

garantizar permisos repetidamente a un grupo de usuarios sin la necesidad de enumerar los

miembros cada vez. Además es un método conveniente de organizar conjuntos de cuentas de

usuarios de forma lógica y permitir que los usuarios compartan archivos dentro de su grupo o

grupos. La información acerca de los grupos a los que pertenece un usuario se deriva del

archivo /etc/group.

Cada archivo del sistema tiene tanto un usuario propietario como un grupo propietario

asociado a él. Con el comando ls –l (ver figura 5.1) podemos ver la propiedad y el grupo de un

determinado archivo, como en el siguiente ejemplo:

Figura 5.1: Propiedad y grupo de un archivo

Este archivo es propiedad del usuario mdw y pertenece al grupo lib. Podemos comprobar a

partir de los permisos del archivo que mdw tiene autorización de acceso de lectura, escritura y

ejecución sobre dicho archivo, que cualquier miembro del grupo lib tiene acceso de lectura y

ejecución y que el resto de usuarios también tienen acceso de lectura y ejecución.

Lo anterior no significa que mdw se encuentre dentro del grupo lib; simplemente significa

que, tal como muestran los bits de permisos, cualquiera que pertenezca al grupo lib (que puede

incluir o no a mdw) puede acceder al archivo. De este modo, se pueden compartir archivos entre

grupos de usuarios y se pueden especificar permisos de forma independiente para el propietario

del archivo, el grupo al que pertenece dicho archivo y cualquier otro usuario.

Cada usuario está asignado, al menos, a un grupo, que podemos especificar en el campo gid

del archivo /etc/passwd. No obstante, un usuario puede ser miembro de múltiples grupos. El

archivo /etc/group contiene una entrada de una línea para cada grupo del sistema, muy similar

en naturaleza al archivo /etc/passwd.

Todas las entradas en este archivo tienen el siguiente formato:

nombre-de-grupo:contraseña:gid:miembros

$> ls –l atob

Administración de Sistemas Operativos Tema 5: Administración de usuarios, grupos y permisos

Página | 128

La siguiente lista explica cada uno de los campos:

 nombre-de-grupo: Es una cadena de caracteres que identifica al grupo; es el nombre del

grupo que se imprime cuando utilizamos comandos como ls –l.

 contraseña: Es una contraseña cifrada opcional asociada al grupo pero, si hacemos uso

de este campo aumentamos la seguridad de acceso a los recursos del grupo. Permite a

usuarios no incluidos en el grupo acceder al mismo con el comando newgrp. Si el valor

del campo es sólo una x indica que la contraseña cifrada esta en el archivo /etc/gshadow

sólo legible por root y por otro lado, si el valor del campo esta en blanco indica que el

grupo no tiene contraseña.

 gid: Es el ID del grupo, utilizado por el sistema para hacer referencia al grupo; se trata

del número utilizado en el campo gid del archivo /etc/passwd para especificar el grupo

predeterminado de un usuario.

 miembros: Es una lista de nombres de usuarios separados por comas, sin espacios en

blanco entre ellos, que identifican a los usuarios miembros de este grupo pero que

tienen un gid diferente en /etc/passwd. Es decir, esta lista no contiene necesariamente a

todos los usuarios que tienen establecido a éste como grupo predeterminado en

/etc/passwd; es sólo para usuarios que son miembros adicionales del grupo.

Por ejemplo, /etc/group puede contener las siguientes entradas:

root:x:0

bin:x:2:

users:x:100:

bozo:x:1000:linus,mdw

megabozo:x:1001:kibo

Las primeras entradas, para los grupos root y bin, indican que son grupos administrativos,

similares en naturaleza a las cuentas “imaginarias” utilizadas en el sistema. Muchos archivos

son propiedad de los grupos, como root y bin. El resto de grupos son para cuentas de usuario.

Igual que los ID de usuario, los valores de ID de los grupos normalmente se colocan en rangos

por encima o iguales a 1000 (Para los grupos especiales (administrativos) los valores de los ID

serán menores o iguales a 999).

El campo contraseña del archivo /etc/group es muy curioso. No se utiliza mucho, pero junto

con el comando newgrp, permite a usuarios que no son miembros de un determinado grupo

asumir ese ID de grupo si disponen de contraseña.

Por ejemplo:

Sin embargo, raras veces se utiliza el campo de contraseña de un archivo de grupo. De

hecho, la mayoría de sistemas no proporcionan herramientas para establecer la contraseña para

un grupo; lo que podemos hacer es utilizar passwd para establecer la contraseña para un usuario

con el mismo nombre del grupo en /etc/passwd y copiar el campo de la contraseña cifrada en

/etc/gshadow. Otra opción es hacer que un usuario sea miembro de múltiples grupos

simplemente incluyendo su nombre de usuario en el campo miembros para cada grupo

adicional. En el ejemplo anterior, los usuarios linus y mdw son miembros del grupo bozo, así

$> newgrp bozo

Password: contraseña para el grupo bozo

Tema 5: Administración de usuarios, grupos y permisos Administración de Sistemas Operativos

Página | 129

como de cualquier grupo al que estén asignados en el archivo /etc/passwd. Si quisiéramos añadir

linus al grupo megabozo, tendríamos que cambiar la última línea del ejemplo anterior por la

siguiente:

megabozo:x: 1001:kibo,linus

El comando groups nos indica a qué grupo o grupos pertenecemos:

Si proporcionamos una lista de nombres de usuarios a este comando, obtendremos una lista

de los grupos a los que pertenece cada uno de los usuarios especificados en la lista.

Cuando un usuario inicia la sesión, se le proporciona automáticamente el ID de grupo

proporcionado en /etc/passwd, así como a cualquier grupo adicional al que se encuentre

asignado dicho usuario en /etc/group. Es decir, tendrá “acceso de grupo” a cualquier archivo del

sistema que tenga un ID de grupo contenido en su lista de grupos. En este caso, se le aplicarán a

sus archivos los bits de permisos del grupo (establecidos con chmod +g…), a no ser que sea el

propietario de los archivos, en cuyo caso se le aplicarán en su lugar los permisos de propietario.

4.4. El archivo gshadow

Es la correspondencia del archivo /etc/shadow pero aplicado a nivel de grupos. Es un fichero

de texto, donde cada línea tiene información de un grupo definido en /etc/group. Nos permite

guardar las contraseñas cifradas de los grupos y es sólo visible por root.

Todas las entradas en este archivo tienen el siguiente formato:

nombre-de-grupo:contraseña:administradores:miembros

La siguiente lista explica cada uno de los campos:

 nombre-de-grupo: Nombre del grupo, igual que en /etc/group.

 contraseña: Contraseña cifrada para el grupo. Si el valor de este campo es !, entonces

ningún usuario tiene acceso al grupo usando el comando newgrp; por otro lado si el

valor de este campo es * (asterisco), ningún usuario podrá usar una contraseña para

iniciar sesión.

 administradores: Es una lista delimitada por comas de nombres de usuarios que son

administradores del grupo y pueden añadir o eliminar usuarios (miembros) al grupo

usando el comando gpasswd.

 miembros: Es una lista delimitada por comas de nombres de usuarios que son miembros

del grupo.

La idea de introducir las contraseñas de grupo dentro de otro archivo (/etc/gshadow), es la

misma idea de introducir las contraseñas de usuario dentro otro archivo (/etc/shadow). Ya que

en ambos casos el problema radica en que tanto /etc/passwd como /etc/group son archivos

legibles por cualquier usuario, con lo que un atacante podría visualizar el contenido del archivo

y efectuar un ataque de fuerza bruta, hasta que desencriptase las contraseñas contenidas en

dichos archivos. Ahora tanto /etc/shadow como /etc/gshadow son los archivos que contienen la

contraseña de usuario y de grupo respectivamente, y todo esto es únicamente visible por root.

$> groups

users bozo

Administración de Sistemas Operativos Tema 5: Administración de usuarios, grupos y permisos

Página | 130

5. Operaciones con las cuentas de usuario

En la siguiente sección haremos una breve descripción de cuales son algunas de las

operaciones que podemos realizar sobre las cuentas dentro de un sistema operativo Linux.

5.1. Crear

La creación de una cuenta de usuario requiere el seguimiento de diversos pasos: Añadir una

cuenta en el archivo /etc/passwd e introducir su contraseña cifrada en el archivo /etc/shadow,

crear el grupo primario de la cuenta en los archivos /etc/group y /etc/gshadow, crear el

directorio personal de la cuenta en /home, y establecer los archivos de configuración

predeterminados de la cuenta (como .bashrc) en su directorio personal (ver figura 5.2).

Afortunadamente, no tenemos que ejecutar manualmente estos pasos (aunque si quisiéramos, lo

podríamos hacer); casi todos los sistemas Linux, por no decir todos, incluyen un comando

denominado adduser para ejecutar esta tarea.

Figura 5.2: Esquema típico de creación de un usuario

La ejecución de adduser como root funciona como sigue. Sólo tenemos que pasar como

argumento de la línea de comandos el nuevo usuario que queremos agregar al sistema; y cuando

el comando nos la solicite añadiremos la contraseña para dicho usuario, y una que otra

información adicional.

Es recomendable que el nombre del usuario no exceda los ocho caracteres de longitud para

evitar tener posibles problemas posteriormente.

Tema 5: Administración de usuarios, grupos y permisos Administración de Sistemas Operativos

Página | 131

adduser busca el primer ID de usuario e ID de grupo sin utilizar que sea mayor o igual a

1000.

Una vez creada la cuenta, se copian los archivos de /etc/skel al directorio personal de

usuario. En dichos archivos se encuentra el “esqueleto” de la nueva cuenta; se trata de los

archivos de configuración predeterminados (como .emacs y .bashrc) para el nuevo usuario.

Aquí tenemos plena libertad para colocar archivos, si nuestras nuevas cuentas de usuario los

necesitan.

Al ejecutar el comando anterior (adduser), la cuenta nueva estará preparada: pepe puede

iniciar una sesión utilizando la contraseña establecida con adduser. Para garantizar la seguridad,

ahora los nuevos usuarios tienen que modificar sus propias contraseñas utilizando el comando

passwd, inmediatamente después de iniciar la sesión por primera vez. Para evitar delegar esta

tarea en un usuario normal, podemos hacer uso del comando chage con la opción -d 0 lo cual

nos va a permitir que cuando un usuario, en este caso pepe, inicie sesión por primera vez se le

fuerce automáticamente a cambiar su contraseña evitando que dicho usuario haga caso omiso a

la tarea que habíamos delegado en él.

Por ejemplo, con el usuario pepe:

Una vez que el usuario pepe quiera ingresar al sistema le aparecerá lo siguiente:

$> su pepe

Password: <Contraseña de pepe>

You are required to change your password immediately (root enforced)

Changing password for pepe

(current) UNIX password: <Contraseña actual de pepe>

Enter new UNIX password: <Nueva contraseña para pepe elegida por pepe>

Retype new UNIX password: <Repetir la nueva contraseña para pepe elegida por pepe>

$pepe>

$> sudo chage –d 0 pepe

$> sudo adduser pepe

Añadiendo usuario 'pepe' ...

Agregando nuevo grupo `pepe' (1001) ...

Agregando nuevo usuario `pepe' (1001) con grupo `pepe' ...

Creando el directorio personal '/home/pepe' ...

Copiando archivos desde '/etc/skel' ...

Enter new UNIX password: <Contraseña de pepe>

Retype new UNIX password: <Repetir la contraseña de pepe>

passwd: contraseña actualizada correctamente

Cambiando la información de usuario para pepe

Introduzca el nuevo valor, o presione ENTER para el predeterminado

 Nombre completo []: Jose Benito Moraga Mendoza

 Número de habitación []: ENTER

 Teléfono del trabajo []: 311-2626

 Teléfono de casa []: 315-8976

 Otro []: ENTER

¿Es correcta la información? [y/N] y

Administración de Sistemas Operativos Tema 5: Administración de usuarios, grupos y permisos

Página | 132

La cuenta root puede establecer la contraseña de cualquier usuario del sistema. Por ejemplo,

el comando: passwd pepe solicita una nueva contraseña para pepe, sin pedir la contraseña

original. Sin embargo, para poder hacer eso tenemos que conocer la contraseña de root. Si se

nos olvida la contraseña de root (algo que jamás tiene que sucedernos como buenos

administradores), podemos iniciar Linux desde un disco de emergencia y borrar el campo

contraseña de la entrada /etc/passwd y /etc/shadow para root.

Por ejemplo:

Algunos sistemas Linux proporcionan un comando useradd controlador por la línea de

comandos en lugar de adduser. (Y para complicar aún más las cosas, en otros sistemas, los dos

comandos son sinónimos). Este comando requiere que le proporcionemos toda la información

relevante como argumentos de la línea de órdenes.

5.2. Eliminar

Eliminar una cuenta de usuario es mucho más fácil que crearla. Para ello, tenemos que hacer

lo siguiente: Eliminar la entrada del usuario en /etc/passwd y en /etc/shadow, suprimir cualquier

referencia al usuario en /etc/group y en /etc/gshadow. Y eliminar el directorio personal del

mismo, así como cualquier archivo adicional creado por el usuario o que sea propiedad del

mismo; Por ejemplo, si el usuario tiene una cuenta de correo electrónico en /var/spool/mail, está

tendrá que ser eliminada.

El comando userdel (el yin para el yan useradd) elimina una cuenta en el directorio personal

de la cuenta. Por ejemplo: userdel –r aclark eliminará la cuenta creada para el usuario aclark.

La opción –r obliga también a la eliminación del directorio personal. Otros archivos asociados

al usuario (por ejemplo, la cuenta de correo electrónico, los archivos crontab, etc.) tienen que

ser eliminados manualmente. Un método sencillo para buscar los archivos asociados con un

determinado usuario es utilizar el siguiente comando:

Así obtenemos una lista de todos los archivos que son propiedad de nombre_de_usuario.

Evidentemente, para utilizar este comando, la cuenta asociada al nombre_de_usuario tiene que

seguir teniendo una entrada en /etc/passwd, es decir, debemos ejecutar este comando antes de

borrar, con el comando userdel, al usuario del sistema. Si hemos eliminado la cuenta, podemos

utilizar en lugar de la opción -user la opción -uid num, siendo num el ID numérico del usuario

cuyos archivos queremos eliminar.

Por ejemplo:

5.3. Deshabilitar

Deshabilitar temporalmente (o no tanto) una cuenta de usuario por cualquier razón, es

incluso más fácil. Lo podemos hacer ya sea eliminando la entrada del usuario en /etc/passwd y

$> sudo find / -uid <uid_del_usuario> -ls

$> sudo find / -user <nombre_de_usuario> -ls

$> sudo passwd pepe

Password: <Contraseña de root>

Enter new UNIX password: <Nueva contraseña para pepe establecida por root>

Retype new UNIX password: <Repetir la nueva contraseña para pepe establecida por root>

passwd: contraseña actualizada correctamente

Tema 5: Administración de usuarios, grupos y permisos Administración de Sistemas Operativos

Página | 133

en /etc/shadow (sin tocar el directorio personal y otros archivos), o sustituyendo la x del campo

contraseña dentro de /etc/passwd por un asterisco, si hacemos uso de contraseñas ocultas, de lo

contrario solo bastará con añadir un asterisco como primer carácter en el campo contraseña de

/etc/passwd.

Por ejemplo:

Con contraseñas ocultas:

aclark:*:1000:1000:Anna Clark:/home/aclark:/bin/bash

Sin contraseñas ocultas:

aclark:*BjDf5hBysDsii:1000:1000:Anna Clark:/home/aclark:/bin/bash

Al hacer esto no permitiremos que la cuenta aclark inicie sesión. Pero, ¿por qué no debemos

tocar su directorio personal y sus otros archivos? Imaginemos que un usuario ha dejado la

“empresa” y queremos evitar que siga iniciando la sesión, pero deseamos seguir manteniendo

sus archivos durante algún tiempo por si algún otro usuario los llegara a necesitar. En este caso,

es conveniente poder deshabilitar la cuenta sin eliminar realmente el directorio personal del

usuario (y otros archivos relacionados con la memoria del correo).

Existe un mecanismo aún más sencillo para deshabilitar y habilitar las cuentas de usuario de

nuestro sistema. Es a través del comando usermod; con la opción –L bloqueamos una cuenta de

usuario.

Por ejemplo:

Esto hará que la cuenta pepe permanezca bloqueada en el sistema. Para desbloquearla

hacemos nuevamente uso del comando usermod pero ahora con la opción –U.

Por ejemplo:

5.4. Modificar

Modificar los atributos de las cuentas y los grupos de usuarios es tan sencillo como editar

/etc/passwd y /etc/group.

Para cambiar la contraseña de un usuario, utilizamos el comando passwd que nos pedirá la

contraseña actual y luego la nueva contraseña que queremos establecer, el se encargará

automáticamente de cifrar y almacenar dicha contraseña en el archivo /etc/shadow.

Si necesitáramos cambiar el ID de usuario de una cuenta existente, podemos hacerlo

directamente modificando el campo uid de /etc/passwd. Sin embargo, también tenemos que

$> sudo usermod –U aclark

$> sudo usermod –L aclark

La regla general, como buenos administradores, es que cuando se prevea que una cuenta de usuario

no va a utilizarse, pero no interesa borrarla por cualquier circunstancia, lo mejor que podemos hacer

es bloquearla para evitar que sea utilizada indebidamente y pueda comprometer otras cuentas o el

sistema.

Administración de Sistemas Operativos Tema 5: Administración de usuarios, grupos y permisos

Página | 134

utilizar el comando chmod en los archivos propiedad del usuario para ese ID de usuario nuevo.

Por ejemplo:

Esto establecerá la propiedad de todos los archivos en el directorio personal utilizado por

aclark de nuevo para aclark.

6. Otro método de autenticación: PAM

Puede que pensemos que tener dos medios de autenticación para usuarios y grupos,

/etc/passwd, /etc/shadow y /etc/group, /etc/gshadow, son más que suficientes para nuestro

sistema, pero estamos equivocados. Pues existen otros métodos de autenticación. Aunque

creamos que las contraseñas ocultas proporcionan suficiente seguridad en la mayoría de

ocasiones, dependerá de cuánta seguridad consideremos que necesita realmente nuestro sistema

y de lo persistentes, que como administradores, podamos llegar a ser.

Los Pluggable Authentication Modules (PAM) se han convertido en el estándar de facto para

la autenticación de usuarios en los sistemas Unix. Su gran flexibilidad ofrece a administradores

y desarrolladores un control muy valioso.

Gracias a PAM, los administradores de sistemas pueden modelar e implementar diferentes

políticas de autenticación para los distintos usuarios de forma individualizada para cada

servicio. Pero hay que manejar estas facilidades con sumo cuidado, ya que una mala decisión o,

simplemente, un despiste pueden comprometer gravemente la seguridad del sistema. Por tanto,

el administrador tiene que conocer muy bien cómo funciona PAM si realmente quiere afinar al

máximo el proceso de autenticación del sistema.

6.1. ¿Qué es PAM?

La idea original de los Pluggable Authentication Modules (PAM), fue de Sun Microsystems.

Sin embargo, muchos otros sistemas adoptaron esta solución y cuentan desde hace tiempo con

sus propias implementaciones. En este sentido, GNU/Linux no es una excepción y, gracias a

Red Hat, disfruta ya desde hace años de la funcionalidad que ofrece Linux-PAM.

Pero, ¿qué es PAM exactamente? es, básicamente, un mecanismo flexible para la

autenticación de usuarios. Y quizás esta característica, la flexibilidad, sea su aportación más

importante.

A lo largo de los años, desde los primeros sistemas Unix, los mecanismos de autenticación

han ido evolucionando y han aparecido nuevas opciones: Desde mejoras del /etc/passwd (como

shadow) hasta dispositivos hardware orientados a la autenticación. Y cada vez que aparecía y se

popularizaba un nuevo método de autenticación, los desarrolladores debían modificar sus

programas para darles soporte.

PAM permite el desarrollo de programas independientes del mecanismo de autenticación a

utilizar. Así es posible que un programa que aproveche las facilidades ofrecidas por PAM sea

capaz de utilizar desde el sencillo /etc/passwd hasta dispositivos hardware (como lectores de

huella digital), pasando por servidores LDAP o sistemas de gestión de bases de datos. Y, por

supuesto, todo esto sin cambiar ni una sola línea de código.

Pero PAM va más allá todavía, permitiendo al administrador del sistema construir políticas

diferentes de autenticación para cada servicio.

$> chown –R aclark /home/aclark

Tema 5: Administración de usuarios, grupos y permisos Administración de Sistemas Operativos

Página | 135

Podemos sintetizar las ventajas más importantes de PAM en los siguientes puntos:

 Ofrece un esquema de autenticación común y centralizado.

 Permite a los desarrolladores abstraerse de las labores de autenticación.

 Facilita el mantenimiento de las aplicaciones.

 Ofrece flexibilidad y control tanto para el desarrollador como para el administrador de

sistema.

En síntesis, los módulos PAM son un método que permite al administrador controlar cómo se

realiza el proceso de autentificación de los usuarios para determinadas aplicaciones. Las

aplicaciones tienen que haber sido creadas y enlazadas a las bibliotecas PAM. Básicamente, los

módulos PAM son un conjunto de bibliotecas compartidas que pueden incorporarse a las

aplicaciones como método para controlar la autentificación de sus usuarios. Es más, puede

cambiarse el método de autentificación (mediante la configuración de los módulos PAM), sin

que sea necesario cambiar la aplicación.

6.2. Grupos de gestión

La misión de PAM no es, únicamente, comprobar que un usuario es quien dice ser

(autenticación). Su alcance es mucho mayor y sus tareas pueden dividirse en cuatro grupos

independientes de gestión, cada uno de los cuales se encarga de un aspecto diferente de los

servicios restringidos.

account (cuenta): En este grupo se engloban tareas que no están relacionadas directamente

con la autenticación. Algunos ejemplos son permitir o denegar el acceso en función de la hora,

los recursos disponibles o incluso la localización. Ofrece verificación de cuentas de usuario. Por

ejemplo, se encarga de determinar si el usuario tiene o no acceso al servicio, si su contraseña ha

caducado, etc.

authentication (autenticación): Tareas encaminadas a comprobar que, efectivamente, el

usuario es realmente quien dice ser. Estas tareas ofrecen incluso un sistema de credenciales que

permiten al usuario ganar ciertos privilegios (fijados por el administrador).

password (contraseña): Se encarga de mantener actualizado el elemento de autenticación

asociado a cada usuario (por ejemplo, su contraseña). Acciones como comprobar la fortaleza de

una clave son típicas de este grupo.

session (sesión): En este grupo se engloban tareas que se deben llevar a cabo antes de

iniciarse el servicio y después de que este finalice. Es especialmente útil para mantener registros

de acceso o hacer accesible el directorio home del usuario.

Administración de Sistemas Operativos Tema 5: Administración de usuarios, grupos y permisos

Página | 136

6.3. Arquitectura

Figura 5.3: Arquitectura de Linux-PAM

Dada la figura 5.3, supongamos que la aplicación X quiere hacer uso de las facilidades

ofrecidas por PAM. Para ello, interactúa con la biblioteca de Linux-PAM, sin tener que conocer

ningún detalle acerca de cómo está configurado el sistema para la aplicación X. Será

precisamente esta biblioteca quien se encargue de leer la configuración de PAM para conocer

qué política de autenticación ha de aplicarse (combinando de forma conveniente una serie de

módulos).

Los módulos se colocan en una pila según el grupo de gestión y el orden en el que aparecen

en la configuración (un módulo puede pertenecer a varios grupos), para ser utilizados por PAM

cuando corresponda. Este aspecto es tremendamente importante, ya que el orden de los módulos

en la pila va a determinar, en gran medida, el comportamiento de PAM para un servicio dado.

En la figura 5.3, para la tarea de autenticación, se invocará primero al módulo a, luego al

módulo b y, finalmente, al módulo c.

Finalmente, PAM ofrece a la aplicación una serie de funciones para llevar a cabo las

diferentes tareas de cada grupo (autenticar, abrir sesión, etc.), mientras que la aplicación brinda

a PAM una función de conversación destinada a intercambiar información textual. Gracias a esta

función, PAM se libera de tener que preocuparse de cómo enviar/recibir información del cliente

(cuadros de diálogo, intercambio en un terminal, protocolos de red, etc.).

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 137

TEMA 6: EL SISTEMA DE ARCHIVOS

Objetivos

 Promover los conocimientos y hábitos para la aplicación libre de errores, de términos y

elementos propios de un sistema de archivos Linux.

 Comprender la estructura del sistema de archivos de Linux.

 Administrar correctamente los procedimientos sobre los permisos de archivos.

Contenido

1. Concepto de archivo y de sistema de archivos

2. Los inodos

3. El superbloque

4. El sistema de archivos ext2

5. El sistema de archivos ext3

5.1. ¿Cómo surge ext3?

5.2. ¿Qué es journaling?

6. El estándar de jerarquía del sistema de archivos

7. Algunos directorios interesantes

8. Nombres de archivos y directorios

8.1 Convenios en los nombres de los archivos

9. Tipos de archivos

9.1. Archivos normales

9.2. Archivos de directorio

9.3. Directorios y discos físicos

9.4. Enlaces

9.5. Archivos especiales

10. Atributos existentes en el sistema de archivos de Linux

11. Propiedad y permisos de los archivos

11.1. ¿Qué significan los permisos?

11.2. Propietarios y grupos

12. Puntos adicionales del sistema de archivos

12.1. Máscara frente a umáscara

12.2. Establecer ID de usuario y de grupo (SUID y SGID)

12.3. El Sticky bit o bit adhesivo

13. Sistemas de archivos distribuidos (DFS)

13.1. SAMBA

13.1.1. Evolución histórica de SAMBA

13.1.2. Servicios proporcionados por SAMBA

13.2. Sistema de archivos en red de Sun Microsystems: NFS

13.2.1. Beneficios proporcionados por NFS

13.3. Sistema de información de redes de Sun Microsystems: NIS

13.4. Integrando NIS y NFS

Bibliografía

Básica

 Jack Tackett Jr. y David Gunter, “Linux Tercera Edición, Edición Especial”, Editorial

Prentice Hall, 1998.

 Sebastián Sánchez Prieto, Óscar García Población, “UNIX y LINUX Guía Práctica

Tercera edición”. Editorial Ra-Ma, 2005.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 138

 Miguel Blanco Alonso, Jorge Fueyo Díaz, Benjamín López López, María Aida Martín

Lucero, Antonio Paniagua Navarro, Ana M
a
 Pizarro Galán, Máximo Prudencio Conejo,

Miguel Rodríguez Martín, Valentín Roldán Cuerpo, Francisco Torres Escobar,

“Capítulo 16, el sistema de archivos, Descubre gnuLinEx”.

Complementaria

 Dee-Ann LeBlanc, “Administración de sistemas LINUX La biblia”. Editorial ANAYA

MULTIMEDIA, 2001.

 Manuel Romero Velázquez, “El sistema de ficheros Ext3”.

http://papeles.manoloromero.org/articulos/ext3.pdf
 /dev/null.

http://es.wikipedia.org/wiki//dev/null
 /dev/zero.

http://es.wikipedia.org/wiki//dev/zero

 /dev/random.

http://es.wikipedia.org/wiki//dev/random

 Atributos de un archivo.

http://www.ibiblio.org/pub/linux/docs/LuCaS/Manuales-LuCAS/doc-unixsec/unixsec-
html/node57.html

 Dispositivos, Sistema de archivos Linux, Herencia estándar.

http://wiki.xtech.com.ar/index.php/Dispositivos,_Sistema_de_archivos_Linux,_Herenc
ia_est%C3%A1ndar#Atributos_de_archivos

 Matthias Kalle Dalheimer y Matt Welsh, “ Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada “, Editorial Anaya Multimedia, 2006.

 George Coulouris, Jean Dollimore, Tim Kindberg, “Sistemas Distribuidos Conceptos y

Diseño Tercera edición”, Editorial Pearson Addison Wesley, 2005.

 “Manual de FreeBSD 6.1”, 1999.

http://www.hacienda.go.cr/centro/datos/Articulo/Manual%20de%20FreeBSD.pdf
 M. Carling, Stephen Degler, James Dennis, “Administración de Sistemas Linux, Guía

Avanzada”, Editorial Prentice Hall, 2000.

 Alejandro Mauricio Valdés Jiménez, “Integrando NIS y NFS”.

http://deb.utalca.cl/public/imagenes/nisnfs.pdf

http://papeles.manoloromero.org/articulos/ext3.pdf
http://es.wikipedia.org/wiki/dev/null
http://es.wikipedia.org/wiki/dev/zero
http://es.wikipedia.org/wiki/dev/random
http://www.ibiblio.org/pub/linux/docs/LuCaS/Manuales-LuCAS/doc-unixsec/unixsec-html/node57.html
http://www.ibiblio.org/pub/linux/docs/LuCaS/Manuales-LuCAS/doc-unixsec/unixsec-html/node57.html
http://wiki.xtech.com.ar/index.php/Dispositivos,_Sistema_de_archivos_Linux,_Herencia_est%C3%A1ndar#Atributos_de_archivos
http://wiki.xtech.com.ar/index.php/Dispositivos,_Sistema_de_archivos_Linux,_Herencia_est%C3%A1ndar#Atributos_de_archivos
http://www.hacienda.go.cr/centro/datos/Articulo/Manual%20de%20FreeBSD.pdf
http://deb.utalca.cl/public/imagenes/nisnfs.pdf

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 139

El sistema de archivos es la parte del sistema operativo responsable de la administración de

los datos en un dispositivo de almacenamiento secundario. Todos los programas de Linux, las

bibliotecas, los archivos del sistema y los archivos de usuario, residen en los sistemas de

archivos. Por eso es fundamental llevar a cabo una correcta administración de los mismos y por

ende mantenerlos sanos y organizados para evitar acabar pasando más tiempo buscando

archivos y programas que administrando otros elementos del sistema.

1. Concepto de archivo y de sistema de archivos

Podemos definir de forma genérica el término archivo, como un conjunto de datos con un

nombre asociado. La razón de asignar un nombre a cada archivo es que de este modo, tanto los

usuarios como los programas, pueden hacer referencia a los mismos de una forma lógica. Los

procesos o programas en ejecución disponen de un conjunto de funciones proporcionadas por el

sistema operativo para poder manipular esos archivos. Ese conjunto de funciones se conoce con

el nombre de llamadas al sistema o system calls. El concepto de llamada al sistema es más

amplio, pues engloba también funciones relacionadas con la manipulación de procesos y

dispositivos. Un proceso o programa en ejecución puede escribir datos en un archivo mediante

la llamada al sistema write y leerlos más tarde, o bien dejarlos allí para que otros procesos

puedan leerlos mediante la llamada al sistema read. También los procesos tienen la posibilidad

de crear archivos, añadir o eliminar información en ellos, desplazarse dentro para consultar la

información deseada, etc. a partir del correspondiente conjunto de llamadas al sistema.

En cierto modo, se puede entender un archivo como una extensión del conjunto de datos

asociados a un proceso, pero el hecho de que estos datos continúen existiendo aunque el proceso

haya terminado, los hace especialmente útiles para el almacenamiento de información a largo

plazo.

Un sistema de archivos debemos entenderlo como aquella parte del sistema responsable de la

administración de los datos. El sistema de archivos debe proporcionar los medios necesarios

para un almacenamiento seguro y privado de la información y, a la vez, la posibilidad de

compartir esa información en caso de que el usuario lo desee.

Entre las características más relevantes del sistema de archivos de Linux podemos citar las

siguientes:

 Los usuarios tienen la posibilidad de crear, modificar y borrar archivos y directorios.

 Cada archivo tiene definido tres tipos de acceso diferentes: acceso de lectura [r], acceso

de escritura [w] y acceso de ejecución [x].

 A su vez, esos tres tipos de acceso pueden extenderse a la persona propietaria del

archivo, al grupo al cual está adscrita dicha persona y al resto de los usuarios del

sistema. Eso permite que los archivos puedan ser compartidos de forma controlada.

 Cada usuario puede estructurar sus archivos como desee, el núcleo no impone ninguna

restricción.

 Proporciona la posibilidad de realizar copias de seguridad de todos y cada uno de los

archivos para prevenir la pérdida de forma accidental o maliciosa de la información.

El concepto de llamada al sistema ha sido comentado como un apunte informativo; el usuario final

no tiene por qué ser consciente de la existencia de tales llamadas, ya que existen aplicaciones de

más alto nivel que son las que las manipulan adecuadamente.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 140

 Proporciona la posibilidad de cifrado y descifrado de información. Eso se puede hacer

para que los datos sólo sean útiles (legibles) para las personas que conozcan la clave de

descifrado.

 El usuario tiene una visión lógica de los datos, es el sistema el encargado de manipular

correctamente los dispositivos y darle el soporte físico deseado a la información. El

usuario no tiene que preocuparse por los dispositivos físicos, es el sistema el que se

encarga de la forma en que se almacenan los datos en los dispositivos y de los medios

físicos de transferencia de datos desde y hacia los mismos.

Cabe mencionar que en Linux uno de los principios básicos es la consideración de que todo

flujo de bits constituye un archivo, cualquiera que sea su contenido. De esta manera, tanto una

imagen como un texto son considerados como archivos; también tienen la misma consideración

una carpeta, un disquete, una tarjeta de vídeo e, incluso, la conexión a una página web. Como

todo es considerado un archivo, el software es el encargado de distinguir los diferentes tipos de

archivos.

2. Los inodos

Los sistemas Linux son capaces de determinar qué bloques de datos contienen qué archivos

o segmentos de archivo. Además, si los datos continúan en otro bloque, los sistemas Linux son

capaces de resolver problemas como: saber cuántos bloques ocupa en total un archivo y saber el

orden en que deben ser leídos dichos bloques de datos. Toda esta información está contenida en

un objeto del sistema de archivos de Linux que se llama inodo (Information Node), que

almacena los siguientes detalles de un archivo u objeto:

 El tipo de objeto definido por el inodo. Los tipos de objetos pueden ser: dispositivos

(bloque o carácter), directorios, archivos (regular u oculto), tuberías, sockets o vínculos

simbólicos (enlaces simbólicos o fuertes (duros)) (ver tabla 6.1).

 Los permisos del objeto.

 El propietario y el grupo para el objeto.

 Cómo es de grande el objeto, listado en bytes.

 Cuándo se creó el objeto.

 Cuándo se modifico el objeto por última vez.

 Indicios de dónde está físicamente localizado el objeto en el dispositivo. Si este objeto

es un archivo que ocupa más de un bloque de datos, entonces se hace una lista de la

ubicación de todos los bloques y el orden en el que se debería acceder a ellos.

Un inodo se nombra con un número que es único dentro de la partición o dispositivo donde

reside. No hay necesidad de que ciertos inodos deban ir en grupos de bloque concretos. Pero los

grupos de bloque siempre contienen los mismos bloques, incluso si la información en su interior

cambia. La figura 6.1 muestra un ejemplo de cómo un inodo podría relacionarse con un sistema

de archivos.

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 141

Figura 6.1: Utilizar inodos para asignar la información

de los datos para los datos dentro de los grupos de bloque

Para identificar un archivo, Linux no utiliza su nombre sino su inodo, lo que supone que un

mismo archivo se pueda guardar con nombres diferentes aunque su inodo sea el mismo y por

ende también su contenido sea el mismo.

Por ejemplo:

Para fines de organización, sólo es importante la información del grupo de bloque 0. Este

factor existe porque cada grupo de bloques tiene una copia de la información de todos los demás

grupos de bloque. Mientras el grupo de bloque 0 no esté dañado, todo va bien. Si lo está, los

programas de reparación del sistema de archivos pueden recoger datos de otros grupos de

bloque.

3. El superbloque

Un bloque especial contiene información sobre el conjunto del sistema de archivos, más que

sobre sus componentes. Este segmento se llama superbloque y se encuentra disponible para

echarle un vistazo con el comando dumpe2fs (por ejemplo: sudo dumpe2fs –h /dev/sda4).

Algunos de los datos que contiene el superbloque incluyen:

 Cuántos inodos y bloques hay en total en el sistema de archivos.

 Cuántos bloques no se utilizan.

 Cuántos inodos no se utilizan.

 Cómo es de grande un bloque de datos individual. Este valor normalmente es de 1024

bytes.

 Cuántos bloques forman un grupo de bloques.

$> touch prueba.txt

$> ls -li prueba.txt

1099187 -rw-r--r-- 1 gateway gateway 0 2008-04-20 03:06 prueba.txt

$> mv prueba.txt pruebaNUEVONOMBRE.txt

$> ls -li pruebaNUEVONOMBRE.txt

1099187 -rw-r--r-- 1 gateway gateway 0 2008-04-20 03:06 pruebaNUEVONOMBRE.txt

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 142

 Cuántas veces ha sido montado el sistema de archivos.

 Cuántas veces se puede montar el sistema de archivos antes de forzar una comprobación

del mismo.

 En que grupos de bloques se almacena esta copia del superbloque.

Todo grupo de bloques contiene una copia del superbloque por propósitos de exceso. Al

igual que con los datos del grupo de bloques, la copia del superbloque en el grupo de bloque 0

es la única que se utiliza en un sistema de archivos sano.

4. El sistema de archivos ext2

Como con otros sistemas operativos, el núcleo de Linux además de los archivos asociados

con él, está almacenado en la unidad de disco duro, que es una unidad física. Dentro de cada

controlador de disco duro hay particiones, que funcionan como una especie de controladores de

disco duros virtuales. Después, cada partición, constituirá un sistema de archivos.

Linux es capaz de utilizar el sistema de archivos ext2 (second extended), que fue creado

especialmente para utilizarse con este sistema operativo (aunque actualmente se usa con mayor

frecuencia el ext3 al cual nos referiremos en la siguiente sección). Este sistema de archivos no

está relegado a las unidades de disco duro, sino que está situado en cualquier medio que se

utilice para almacenar datos de Linux. Entender cómo se divide el sistema de archivos es de

gran ayuda cuando estamos intentando descifrar los comandos de manipulación del sistema de

archivos.

Dentro del sistema de archivos ext2, los datos se almacenan en una serie de bloques de datos

de idéntico tamaño (ver figura 6.2). Estos bloques son, generalmente, de 1024 bytes, aunque su

tamaño puede ser cambiado mientras se confecciona el sistema de archivos. Si el archivo es de

10 bytes o de 1020 bytes, ocupa un bloque de datos que no puede ser utilizado para almacenar

nada más. Aquellos archivos que sean de más de 1024 bytes, sean de 1025 o 2026 bytes, ocupan

dos bloques de datos. Debido a la naturaleza de los sistemas de archivos, puesto que los

archivos se agregan y se eliminan constantemente, estos bloques pueden estar, o no, físicamente

uno al lado del otro.

Figura 6.2: Dispositivo con un sistema de archivos ext2

Los bloques de datos individuales se organizan en grupos de bloque dentro del sistema de

archivos. La integridad del sistema de archivos es una razón fundamental para utilizar grupos de

bloque en lugar de un gran conjunto de bloques. Si todos los bloques de datos existen en un

conjunto, el daño de una zona crítica lo daña todo. Los grupos de bloque no sólo descomponen

los bloques de datos en sectores, sino que también dan flexibilidad y exceso de información.

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 143

5. El sistema de archivos ext3

El sistema de archivos ext3 es muy similar al ext2, por lo tanto hereda de este último todas

las características mencionadas en la sección anterior; además posee una característica de suma

importancia para mantener sano y coherente nuestro sistema de archivos, esta característica es

conocida como journaling (JFS, Journaling File System).

5.1. ¿Cómo surge ext3?

El continuo avance en el mundo de Linux y sus usos, ha ido creando la necesidad de nuevas

herramientas. Un ejemplo de ello es el caso de la gestión de grandes cantidades de información,

del orden de centenares de gigabytes, en los modernos sistemas de información. Cuando se

manejan tales volúmenes de datos, es necesario que su manejo sea rápido y que las operaciones

de mantenimiento no sean muy prolongadas. En el caso de utilizar sistemas tradicionales de

archivos, el tiempo que se emplearía en comprobar un conjunto de particiones de estos tamaños

sería de varias horas o incluso días. Pero si empleamos un sistema de archivos con journaling el

tiempo de operación en escritura y lectura es bastante más reducido, pero sobre todo, lo que más

se reduce es el tiempo de restauración del sistema tras una desconexión en la que el sistema de

archivos no fue desmontado correctamente, en el caso de hacer uso de un sistema de archivos

con JFS esto se reduce a unos cuantos segundos nada más.

Bajo esta línea ha sido desarrollado el sistema de archivos que actualmente se utiliza con

mayor frecuencia en los sistemas Linux, el ext3, el cual es una nueva versión del sistema de

archivos de uso común de GNU/Linux, el ext2. La principal novedad incorporada en ext3 es el

uso de journaling.

5.2. ¿Qué es journaling?

Se puede decir que journaling es un modo de trabajar o una funcionalidad que poseen ciertos

sistemas de archivos, conocidos en español como sistemas de archivos transaccionales.

La idea de journaling implica dos conceptos a la hora de manejar la información, los datos y

los metadatos. Por datos entendemos aquellos que representan la información que queremos

almacenar, es decir, el contenido. Por otra parte los metadatos son aquellos que no nos sirven

directamente, sino que se utilizan para que el sistema de archivos maneje los datos, por ejemplo:

el tamaño de un archivo, su posición, sus atributos, etc.

Cada vez que un programa modifica los datos de un archivo, el sistema de archivos debe

realizar modificaciones; por un lado en los datos, los cambios que se han realizado, y por otro

en los metadatos, debido a que el tamaño del archivo, la fecha y puede que la ubicación y los

permisos cambien. Para realizar estas operaciones un sistema de archivos sin journaling

empezaría a modificar los datos y metadatos directamente hasta completar las modificaciones

necesarias. Supongamos ahora que el sistema falla durante la realización de los cambios de

datos, esto produce un archivo corrupto y lo más probable es que resulte inaccesible teniendo en

cuenta que su estructura interna no coincidirá con una estructura valida. Sin embargo, si esto

ocurre en el momento de modificación de los metadatos, en lugar de un solo archivo defectuoso,

tendremos un sistema de archivos corrupto. Puede ocurrir que incluso no haya una estructura

válida de los directorios y archivos, esto podría representar la pérdida de un directorio o de la

totalidad del sistema de archivos.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 144

Un sistema de archivos con journaling utiliza un procedimiento distinto al antes

mencionado. Las operaciones de modificación de la información con journaling se realizan en

una secuencia de tres pasos:

1. Registrar en un área especial llamada "área de log" los cambios que se van a hacer.

2. Realizar dichos cambios.

3. Eliminar del "área de log" los cambios una vez hechos.

Los JFSs funcionan usando dos áreas de espacio físico. Una para los datos, donde se

almacenan tanto los datos como los metadatos, y otra para los logs, donde se escriben, al inicio

de las operaciones, los cambios que va a realizar. Una vez hechos estos cambios tanto de datos

como de metadatos, se confirman que se han hecho, esto último se hace usualmente borrando la

información anterior del área de log. Esto permite que si se produce un fallo durante la escritura

de los metadatos, tras el arranque del sistema, el JFS detecte en el área de log que no se

completaron las modificaciones y use esa información para completarlas, esto permite que no se

corrompa el sistema de archivos.

La implementación de JFSs conlleva un cierto precio asociado que en este caso es la

velocidad. Los JFSs tienen una lentitud relativa a un sistema de archivos similar pero sin JFSs.

Sin embargo, los JFSs destacan en rapidez en el manejo de grandes cantidades de archivos de

pequeño tamaño, como es el caso de servidores web o servidores de bases de datos. Y en caso

de que el sistema se caiga el tiempo para restablecer el sistema a su modo de operación normal

se reduce considerablemente, lo que lo convierte en adecuado para implementaciones en

sistemas donde se desea una alta disponibilidad.

6. El estándar de jerarquía del sistema de archivos

Parece haber una marcha sin fin de nuevas versiones de sistemas basados en Unix. No

solamente las nuevas distribuciones de Linux aparecen de forma regular, sino que también hay

FreeBSD y un número de variantes comerciales de Unix. Las empresas que quieren sacar

software que trabaja con Unix y por ende con sistemas basados en Unix, han encontrado

enormemente difícil desarrollar un código que fácilmente se instala en las versiones de Unix e

incluso con variedades de Linux.

La primera respuesta a este problema resulto ser el Linux File System STaNDard

(FSSTND), que se completó en 1994. Este estándar explica los directorios que deberían existir

en un sistema de archivos de Linux y cómo se deberían utilizar. El propósito era hacer posible

que los desarrolladores, en general, escribieran aplicaciones para Linux, sin tener que

preocuparse por la distribución que debería seguir el software y, por lo tanto, consolidar el

sistema operativo Linux. De alguna forma se alcanzó este objetivo, ya que existe un acuerdo

general acerca del lugar en el que deberían ir muchos tipos de archivos. Sin embargo, por otro

lado no, ya que por ejemplo, casi todas las distribuciones tienen diferentes modos de gestionar

la información de arranque de redes. Puesto que las diferencias son mínimas y se pueden tratar

leyendo las variables de entorno o buscando en localizaciones conocidas, el espíritu del objetivo

todavía permanece intacto.

Una extensión natural del FSSTND era la de intentar hacer más fácil para los desarrolladores

dirigir sus aplicaciones a más de una versión de Unix al mismo tiempo. Con este deseo creció el

File System Hierarchy Standard (FHS). Este estándar pretende servir a más que a la comunidad

Linux. Todo Unix está rodeado de él, hasta el lugar en el que deberían residir tipos particulares

de datos y binarios en cualquier sistema de archivos Unix. Actualmente se utiliza FHS para

definir los directorios principales y sus contenidos en los sistemas operativos Linux y en otros

sistemas de la familia Unix.

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 145

El sistema de archivos de Linux se encuentra estructurado en forma de árbol invertido

empezando a partir de un directorio inicial, denominado directorio raíz (ver figura 6.3) y

representado por “/”, del que dependen los restantes directorios.

Figura 6.3: Esquema del árbol típico de directorios

En Linux los archivos se identifican en la estructura de directorios por lo que se conoce

como pathname o camino, por ejemplo, la cadena /etc/passwd identifica a passwd como un

elemento que cuelga del directorio etc el cual a su vez cuelga del directorio raíz “/”. A partir de

la cadena /etc/passwd no podemos saber, a groso modo, si passwd es un archivo o es un

directorio. Cuando el nombre del camino empieza por el carácter “/” se dice que el camino es

absoluto, también disponemos de nombres de caminos relativos, por ejemplo, si nuestro

directorio actual fuese /usr, la cadena bin/troff identificaría al archivo o directorio /usr/bin/troff.

A esta cadena (bin/troff) se le conoce como camino relativo puesto que no comienza con el

símbolo “/”. Por esta razón otra utilidad que posee “/” es separar directorios de subdirectorios y

componer, de esta manera, la trayectoria o path, ya sea absoluto o relativo, de un archivo.

Cuando creamos un directorio, cuyos nombres son “.” (punto) y “..” (punto punto).

“.” es una entrada en el directorio que identifica al directorio mismo y “..” es una entrada al

directorio padre, es decir, aquel directorio del cual cuelga el subdirectorio actual. Las cadenas

“.” y “..” también pueden ser utilizadas en el nombre de un camino relativo. Por ejemplo,

actualmente estamos colocados en /usr/lib, la cadena ../include identifica perfectamente al

archivo o directorio /usr/include.

Otros ejemplos:

Si consideramos el archivo xterm, éste puede ser referenciado tanto por su ruta absoluta

como por su ruta relativa.

La ruta absoluta es algo que no depende de nuestra posición actual, y es de la forma:

/usr/bin/X11/xterm

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 146

La ruta relativa depende del directorio en que nos encontremos en cada instante. Por

ejemplo, si estuviésemos colocados en el directorio /usr/lib, la ruta relativa de xterm sería:

../bin/X11/xterm

7. Algunos directorios interesantes

Todos los sistemas Linux, a diferencia de otros sistemas operativos, tienen una estructura de

directorios estándar semejante a la representada en la figura 6.3. Seguidamente vamos a

comentar algunos directorios que merecen una mención especial.

El directorio raíz “/”

Es un directorio pequeño, para facilitar su arranque desde otro host y dificultar que se pueda

corromper. En él deben encontrarse sólo las herramientas que permitan arrancar, reparar y/o

recuperar el sistema, además de los directorios básicos del sistema. Por tanto, en él debe

encontrarse el kernel (vmlinuz-x.x.x) o un enlace simbólico al directorio /boot.

Directorio /bin

En este directorio se encuentran los programas ejecutables (binarios) esenciales para la

administración del sistema; los comandos son ejecutables en la consola y estos pueden ser

ejecutados por cualquier usuario.

Directorio /sbin

En este directorio se encuentran los ejecutables que son fundamentales para el

funcionamiento del sistema, por lo que sólo el administrador del sistema debe tener acceso al

mismo.

En este directorio se encuentran los comandos generales, los del encendido/apagado y

reinicio del sistema, los de su mantenimiento y los referidos a redes.

Con la orden which podemos obtener la ruta completa de un determinado comando dentro

del sistema, esta orden es muy útil ya que nos permite saber si un determinado comando esta en

/bin o /sbin.

Por ejemplo:

Directorio /boot

En él radican archivos inalterables que se requieren para arrancar la máquina antes de que el

núcleo asuma el control, tales como los archivos estáticos del cargador de arranque (boot-

$> which route

/sbin/route

$> which netstat

/bin/netstat

Los sistemas Linux hacen diferencia entre las letras mayúsculas y minúsculas tanto para nombres de

archivos como para las rutas de los mismos. Así, el directorio /usr/bin/X11 no es el mismo que

/usr/bin/x11.

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 147

loader). También se encuentran el kernel y un subdirectorio que contiene el gestor de arranque

(grub o lilo, etc.) con su respectiva configuración.

Directorio /dev

El nombre de este directorio proviene de devices drivers (controladores de dispositivos)

porque es en este directorio donde se ubican los archivos que permiten la comunicación con los

elementos del hardware instalados en nuestro ordenador. Aquí se encuentran las particiones del

disco o discos (como /dev/hda o /dev/sda), las unidades de cd-rom scsi (como /dev/scd0),

también se hallan: las impresoras, los puertos serie, los puertos usb, el ratón, la tarjeta de sonido,

etc.

Dentro del directorio /dev, podemos encontrar archivos que poseen un comportamiento

curioso e interesante de conocer como lo son:

/dev/null: Conocido como null device (periférico nulo), es un archivo especial que descarta

toda la información que se escribe o redirecciona en él. A su vez, no proporciona ningún dato a

cualquier proceso que intente leer de él, devolviendo simplemente un EOF. Generalmente se

usa en shell scripts para redirigir el stream de salida de un proceso, o como, un archivo vacío

que actúa como entrada para un stream de un proceso.

/dev/zero: Es un archivo especial que provee tantos caracteres null (ASCII NUL, 0x00; no el

carácter ASCII “0”, 0x30) como se lean desde él. Uno de los usos típicos es proveer un flujo de

caracteres para sobrescribir información. Otro uso puede ser para generar un archivo “limpio”

de un determinado tamaño. De la misma manera que /dev/null, /dev/zero actúa como fuente y

sumidero de información. Todas las escrituras a /dev/zero ocurren sin ningún efecto y todas las

lecturas a /dev/zero retornan tantos caracteres NULs como sean requeridos.

/dev/random: Es un archivo especial que sirve como un generador de números aleatorios, o

un generador de números pseudo-aleatorios. Permite el acceso a ruido ambiental recogido de

dispositivos y otras fuentes. La implementación utiliza hashes seguros en lugar de cifrados, fue

diseñado bajo la premisa que cualquier hash o cifrado podría, eventualmente, ser débil por lo

que el diseño es robusto frente a cualquiera de esas debilidades.

/dev/urandom: Es la contraparte de /dev/random, este archivo reutiliza la fuente interna para

producir más bits pseudo-aleatorios. La intención es servir como un generador de números

pseudo-aleatorios criptográficamente seguro. Este puede ser utilizado en implementaciones que

no necesiten de tanta seguridad.

Directorio /etc

Contiene una serie de archivos de configuración y arranque del sistema. Aquí se incluyen

subdirectorios como los de /etc/rc, correspondientes a los guiones de inicialización del sistema,

o archivos del tipo /etc/passwd, donde están los usuarios del sistema.

También se ubican en /etc subdirectorios utilizados para la configuración de determinados

componentes del sistema, como, por ejemplo, /etc/X11, que contiene los archivos de

configuración del entorno gráfico X Window, con los gestores de ventanas y de arranque de los

distintos escritorios.

Se encuentran en él archivos básicos, como bashrc, con la configuración de la shell, inittab,

con la configuración de inicio o fstab, que contiene la relación de los puntos donde se montan

las diferentes particiones y los sistemas de archivos que se utilizan en el sistema.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 148

Directorios /home y /root

El directorio /home contiene los subdirectorios personales de los usuarios. La existencia de

diversos subdirectorios personales se debe a que Linux es un sistema multiusuario y, con esta

configuración, es posible que varios usuarios puedan interactuar con el ordenador sin

interferencias mutuas.

Por esta misma razón, el administrador tiene su propio directorio (/root) que, por seguridad,

está separado del de los restantes usuarios.

Directorio /lib

Contiene las bibliotecas compartidas de los binarios de los directorios /bin y /sbin, así como

las compartidas por muchos programas, para reducir el espacio usado en el disco duro.

También se hallan aquí los módulos del kernel, que permiten el funcionamiento de muchos

elementos del hardware.

Directorio /usr

Es uno de los directorios más importantes y complejos del sistema, pues en él se encuentran

los programas que utilizan los usuarios, con sus ejecutables, bibliotecas, referencias, iconos y

documentación. Contiene archivos compartibles y otros que son de sólo lectura.

En /usr/bin, se sitúan los ejecutables opcionales del sistema y de programas de uso común,

como procesadores de texto o de tratamiento de imágenes. Por el contrario, sólo root puede

acceder a los binarios del sistema no esenciales, contenidos en /usr/sbin.

Cuando, en ocasiones, deseamos abrir un determinado archivo con un programa que no es el

predeterminado por el sistema, la elección del ejecutable de la aplicación alternativa se efectúa

en /usr/bin.

Los ejecutables de los juegos y programas educacionales se ubican en /usr/games, en tanto

que sus datos variables se hallan en /var/games.

/usr/share contiene elementos y datos no modificables de los programas, así como

información e iconos relativos a los mismos.

Otros manuales y documentaciones de los programas se encuentran en los subdirectorios

específicos /usr/man y /usr/doc, mientras que sus bibliotecas se hallan en /usr/lib. /usr/X11R6 es

el subdirectorio donde se encuentran los programas que gestionan la interfaz gráfica para

usuario.

Directorio /var

Su nombre procede de variable porque contiene archivos y directorios de datos que cambian

regularmente (son de carácter variable) como por ejemplo las colas de impresión o el correo no

enviado (en /var/spool).

Mientras que la información sobre el estado variable de las aplicaciones se sitúa en /var/lib,

en /var/log se guardan los mensajes de registro generados por el sistema operativo y por

diversos programas. Su utilidad radica en conocer los procesos y poder detectar problemas para

prevenirlos o solucionarlos.

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 149

Algunos archivos de bloqueo se encuentran en /var/lock, mientras que algunos datos

relevantes para determinados procesos que se ejecutan están en /var/run. En /var/tmp se ubican

datos temporales que deben ser guardados entre reinicios del sistema y son utilizados para

mantener a /tmp pequeño.

/var/cache contiene datos de aplicaciones en cache, como los paquetes que hemos instalado,

y por lo tanto descargado de los repositorios, en el sistema con anterioridad, los cuales se hallan

en /var/cache/apt/archives.

Directorio /mnt

Punto de montaje para aquellos sistemas de archivos que son montados temporalmente. Este

directorio es usado mayormente por los usuarios. Sirve para montar discos duros y particiones

de forma temporal en el sistema.

Directorio /opt

Contiene Paquetes de programas opcionales de aplicaciones estáticas, es decir, que pueden

ser compartidas por los usuarios. Estas aplicaciones, utilizan el directorio de usuario para

guardar sus configuraciones, y de esta forma, cada usuario puede tener una configuración

diferente, de la misma aplicación.

Directorio /lost+found

Es un directorio que existe en todos los sistemas de archivos ext2 y ext3, es donde el

programa de chequeo del sistema coloca los bloques que ha encontrado y no ha podido ubicar,

por ejemplo cuando existe una interrupción de suministro eléctrico. Por nombre tienen un

número, porque los bloques colocados en este directorio se tratan de inodos.

Directorio /proc

Si listamos el contenido de este directorio con la orden ls –F obtendremos como resultado

que las carpetas tienen, como fecha, la actual y, como hora, la del inicio de la sesión; además,

sus contenidos son 0 bytes.

La razón estriba en que se trata de un sistema virtual de archivos mediante el cual el kernel

se comunica con el usuario y le muestra los procesos que está ejecutando. El nombre

corresponde al pid de un proceso. Estos archivos se hallan en la memoria y no físicamente en el

directorio.

/proc/kcore es el único archivo, junto con los enlaces simbólicos presentes, cuyo tamaño es

diferente de cero. Representa la memoria física que tiene el ordenador y, por tanto, su tamaño

coincide con ésta, incrementada en algunos Megabytes.

Directorio /tmp

Espacio para todos aquellos programas que necesitan crear archivos transitorios.

8. Nombres de archivos y directorios

Aunque hemos tratado con distintos nombres de archivos y directorios, todavía no sabemos

qué reglas se utilizan para nombrarlos.

Los nombres de los archivos pueden contener hasta 255 caracteres, aunque algunas versiones

antiguas de Linux sólo permitían hasta 14. Los caracteres empleados pueden ser cualesquiera.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 150

En la práctica, sin embargo, se suelen evitar aquellos caracteres del código ASCII que tienen un

significado especial para el intérprete de órdenes (shell).

Como caracteres especiales para la shell podemos citar los siguientes:

? * > < | [] \ $ “ () etc.

Si queremos evitar problemas de interpretación por parte de la shell, no deberemos utilizar

nombres de archivos como los que se indican seguidamente:

$dinero$

?datos

<desastre>

50|60_nombres

8.1 Convenios en los nombres de los archivos

A pesar de que el nombre de un archivo puede elegirse, ciertas aplicaciones toman como

convenio que los archivos con los cuales trabajan se diferencien del resto en algún rasgo

identificador. Entre estas aplicaciones podemos citar los programas fuente escritos en un

lenguaje de alto nivel. De este modo, un archivo que termine en .c, indica que contiene código

fuente en lenguaje C. Si termina en .f, indica que contiene código fuente en FORTRAN; si

acaba en .p, se trata de un programa escrito en Pascal, etc. Esto no impide que alguien llame a

un juego, por ejemplo, juego.p, aunque no se corresponda con un programa fuente escrito en

Pascal.

Los convenios anteriores no afectan a los programas que contienen código ejecutable. Tales

programas pueden tener cualquier nombre, lo que despista mucho a las personas que están

acostumbradas a trabajar con sistemas operativos en los que los archivos ejecutables tienen

algún rasgo diferenciador del resto de los archivos.

Al hablar del nombre de los archivos no hemos mencionado el concepto de extensión,

empleado en otros sistemas. En Linux un archivo puede no tener extensión, tener una, dos o n.

Así pues, los siguientes nombres de archivos son perfectamente validos en Linux:

programa.ejecutable.uno

prog.ver.1.1.0.3

holamundo.c.p.f

9. Tipos de archivos

Linux utiliza una amplia gama de archivos. De hecho, el sistema operativo, como lo

mencionamos antes, trata todo como si se tratara de un archivo, desde los dispositivos como la

Aunque no son lo mismo los nombres de archivos que los nombres de rutas de acceso, después de

todo, los directorios son considerados también como archivos. Es por esto que cuando coloquemos

nombres a los directorios debemos recordar que estos también tienen las mismas limitaciones que

los archivos normales.

En realidad, se puede utilizar cualquiera de esos caracteres poniendo entre comillas simples („‟) el

nombre del archivo; por ejemplo, „hola>mundo<.c‟, pero resultará difícil acceder al archivos en la

mayoría de los programas, y el archivo podrá presentar problemas para ser transferido a otros

sistemas Linux.

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 151

pantalla y la unidad de disco, hasta los “verdaderos archivo”, como los programas binarios o

archivos de texto.

Existen cuatro tipos básicos de archivos: archivos normales, directorios, enlaces y archivos

especiales. Hay varias clases de archivos normales, enlaces y archivos especiales, y un gran

número de directorios estándar. Describiremos cada uno de ellos en la siguiente sección.

Podemos utilizar la orden file para determinar el tipo de archivo. file reconoce si el archivo

es ejecutable, de texto, de datos y demás tipos.

Por ejemplo:

9.1. Archivos normales

Los archivos normales son con los que se trabaja la mayor parte del tiempo. Los archivos

normales pueden contener texto, código fuente en lenguaje C, archivos de órdenes shell,

programas binarios ejecutables y datos de naturaleza diversa. Para Linux, un archivo no es más

que un archivo. La única diferencia es que Linux sabe cuáles de sus archivos están marcados

como ejecutables. Los archivos ejecutables se pueden ejecutar directamente, siempre que

contengan algo que ejecutar y que estén en la ruta de acceso de búsqueda. Básicamente, la ruta

de acceso de búsqueda es una lista de nombres de rutas de acceso que se han especificado, en

las que Linux busca para encontrar un archivo ejecutable.

Los archivos ejecutables son archivos binarios, es decir, archivos que ejecutan código

máquina y archivos de secuencias shell.

9.2. Archivos de directorio

Los directorios son archivos que contienen los nombres de archivos y subdirectorios, así

como punteros hacia esos archivos y subdirectorios. Los archivos de directorio son el único sitio

donde Linux almacena nombres de archivos. Cuando se lista el contenido de un directorio con la

orden ls –l, lo único que se hace en realidad es listar el contenido del archivo de directorio.

9.3. Directorios y discos físicos

Como vimos anteriormente en la sección Los inodos, a cada archivo en Linux se le asigna un

número único llamado inodo. El inodo se almacena en una tabla, llamada tabla de inodos, que se

asigna cuando el disco está formateado. Cada disco físico o partición tiene su propia tabla de

inodos. Un inodo contiene toda la información referente a un archivo, incluyendo la dirección

de los datos en el disco y el tipo de archivo.

El sistema de archivos de Linux asigna el número de inodo 1 al directorio raíz. Con ello

Linux conoce la dirección en disco del archivo del directorio raíz, que contiene una lista de

nombres de archivos y directorios y sus números inodo correspondientes. Linux puede encontrar

cualquier archivo en el sistema consultando una cadena de directorios, comenzando por el

directorio raíz.

$> file holamundo.c

holamundo.c: ASCII C program text

$> file holamundo.o

holamundo.o: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.6.0,

dynamically linked (uses shared libs), not stripped

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 152

Linux navega por su sistema de archivos por medio del encadenamiento hacia arriba y hacia

abajo del sistema de archivos de directorio. Cuando movemos un archivo a un directorio en otro

disco físico, Linux detecta esto al leer la tabla de inodos. En este caso, el archivo se mueve al

nuevo disco, donde se le asigna un nuevo inodo, antes de suprimirlo de donde estaba

originalmente. Cuando suprimimos un archivo en realidad no se toca el archivo, sino que Linux

marca ese inodo como libre y lo devuelve al conjunto de inodos disponibles. Luego se borra la

entrada del archivo en el directorio.

9.4. Enlaces

Un enlace es un puente a un archivo o directorio perteneciente al sistema; una referencia que

podemos poner en cualquier sitio que nos interese y que actúa como un acceso directo a

cualquier otro. Este mecanismo nos permite acceder a carpetas o archivos de forma más rápida y

cómoda, sin tener que desplazarnos por la jerarquía de directorios.

Por ejemplo:

Imaginemos que somos un usuario (user1) que necesita acceder frecuentemente al directorio

/usr/share/man/man3. En lugar de escribir el largo comando que nos situaría en el directorio en

cuestión cada vez que necesitáramos desplazarnos a él, podemos crear un enlace en nuestro

propio directorio que nos redireccione directamente hacia allí. El comando ln -s

/usr/share/man/man3 mmm nos crearía este puente, que hemos llamado mmm. El usuario sólo

debería escribir (desde su directorio /home) cd mmm y automáticamente el sistema lo redirigirá

hacia /usr/share/man/man3. Es importante tener en cuenta que al hacer un cd .. para ir al

directorio superior, volveríamos al directorio /home y no a /usr/share/man, ya que hemos

accedido a él a partir de nuestro enlace. Podemos ver este esquema de forma gráfica en la figura

6.4.

Figura 6.4: Esquema de un enlace simbólico

Al crear el enlace del ejemplo anterior hemos pasado el parámetro –s al comando ln. Ello

indica que queremos crear un enlace simbólico. Los enlaces simbólicos significan que sólo

estamos creando un apuntador o puente hacia el archivo o directorio, de forma que si

borrásemos el archivo destino, el enlace no apuntaría a ninguna parte. Si no ponemos el

parámetro –s se crearía lo que llamamos un enlace fuerte o duro (hard link) que, a diferencia del

anterior, hace un duplicado del archivo. De hecho, internamente no es exactamente un

duplicado, son como dos entradas que apuntan a los mismos datos. De este modo, si

modificamos uno u otro, los dos quedan iguales. La ventaja de este tipo de enlace es que si

borramos cualquiera de las dos copias del archivo la otra todavía se conserva. Este tipo de

enlace no se utiliza demasiado porque complica la gestión y manipulación de los archivos, ya

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 153

que siempre es mejor tener una sola copia. Además, si hacemos un enlace fuerte de un

directorio, todos los archivos y subdirectorios que contuviera también se deberían referenciar.

Por esta razón sólo el root del sistema puede hacer enlaces fuertes de directorios. Otra diferencia

es que con un enlace simbólico podemos ver a qué archivo estamos apuntando, mientras que con

uno fuerte no podemos (debido al mecanismo que se utiliza internamente para ellos).

9.5. Archivos especiales

En el sistema de archivos se representan todos los dispositivos físicos asociados a Linux,

incluyendo discos, terminales e impresoras. La mayoría de los dispositivos, como vimos

anteriormente, están ubicados en el directorio /dev. Por ejemplo, si estamos trabajando con la

consola del sistema, el nombre asociado de dispositivo es: /dev/console. Si se estamos

trabajando en una terminal estándar, el nombre del dispositivo puede ser: /dev/tty1. Las

terminales, o líneas seriales, se llaman dispositivos tty (que es la abreviatura de teletipo

(teletype), el cual era la terminal original de Unix). Para saber cuál es el nombre de nuestro

dispositivo tty podemos hacer uso de la orden tty. El sistema nos responderá con el nombre del

dispositivo al que está conectado.

Las terminales e impresoras se denominan dispositivos especiales por caracteres. Pueden

aceptar y producir una cadena de caracteres. Por otro lado, los discos almacenan datos en

bloques que están direccionados por cilindro y sector. En un disco no se puede acceder sólo a un

carácter, sino que hay que leer y escribir bloques completos. Esto mismo sucede normalmente

en las cintas magnéticas. A este tipo de dispositivo se les denomina dispositivos especiales por

bloques. Para complicar más las cosas, los discos u otros dispositivos especiales por bloques

tienen que ser capaces de actuar como dispositivos orientados a caracteres, de modo que cada

dispositivo de bloques tiene su correspondiente dispositivo especial por caracteres. Linux hace

la traducción al leer los datos que se envían a un dispositivo por caracteres y traducirlos para un

dispositivo por bloques. Esto se hace automáticamente sin la intervención del usuario.

Existe al menos otro tipo de dispositivo especial: un FIFO (memoria intermedia first in firts

out, primero en entrar primero en salir) que también se conoce como conducción con nombre.

Los FIFOs parecen archivos normales; si se escribe en ellos aumentan de tamaño, pero cuando

se leen disminuyen. Se utilizan principalmente en procesos del sistema para que muchos

programas puedan enviar información sólo a un proceso del control.

En la siguiente tabla se resumen los tipos de archivos que existen en Linux según la

naturaleza de su contenido.

Identificador Tipo de archivo Descripción

- Archivo regular Contenedor de información.

. Archivo oculto Archivo oculto que generalmente suelen

contener archivos del sistema y de aplicaciones.

d Carpeta o

subcarpeta

Contiene una lista de nombres de archivo y sus

correspondiente inodos.

b Modo bloque Dispositivos para el almacenamiento de datos

(discos duros, particiones o CD-ROM).

c Modo carácter Dispositivos periféricos de entrada y salida

(ratón, puertos serie, paralelos o USB).

Un enlace fuerte sólo se puede crear entre archivos o directorios de una misma unidad debido al

mecanismo interno que se utiliza para gestionarlos. En cambio un enlace simbólico puede señalar a

otro archivo o directorio en el mismo disco, en otro disco o a un archivo o directorio en otra

computadora.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 154

Identificador Tipo de archivo Descripción

l Enlace Puente a un archivo o directorio perteneciente al

sistema (enlace simbólico).

p Tubería Conexiones entre programas.

s Socket Conexiones de red.

Tabla 6.1: Tipos de archivos de Linux según la naturaleza de su contenido

10. Atributos existentes en el sistema de archivos de Linux

En los sistemas de archivos ext2 y ext3 de Linux existen ciertos atributos que nos son de

utilidad a la hora de incrementar la seguridad de nuestro sistema. Estos atributos son los

mostrados en la siguiente tabla.

Atributo Descripción

A Cuando se accede al archivo, la fecha de acceso no se modifica (Don‟t update

Atime).

S Grabar inmediatamente las modificaciones de los archivos en el disco,

atributo interesante en los archivos de seguridad (Synchronous updates).

a Solamente se puede agregar contenido al archivo y este no podrá ser

eliminado. Sólo root puede modificar este atributo (append only).

c Archivo comprimido (compressed file).

i El archivo queda inmutable. Un archivo inmutable es aquel que no se puede

copiar, borrar ni renombrar (immutable file).

d Al hacer uso del comando dump para backup se omitirá el archivo que posea

este atributo (No dump).

s Cuando se borre el archivo este se llenará con ceros (secure deletion).

u Cuando se elimina un archivo se guarda el contenido del mismo (undeletable

file).

D Equivalente a S, pero se aplica a nivel de directorio.

E Muestra que un archivo comprimido tiene un error de compresión.

I Se aplica a directorios para indicar que estos están indexados con un árbol

hash.

j Los datos se escriben primero al journal del sistema ext3 antes de escribirse

en el propio archivo.

T Sirve para considerar a un directorio como si estuviera en el primer nivel de

directorios.

t Hace que el archivo no posea un fragmento al final combinado con otro

archivo.

X El contenido crudo de un archivo comprimido se puede acceder directamente.

Z El archivo comprimido esta sucio.

Tabla 6.2: Atributos existentes en el sistema de archivos de Linux

De todos los atributos mostrados en la tabla 6.2, de cara a la seguridad del sistema, existen

algunos que no interesan demasiado, pero hay otros que sí. Uno de los atributos interesante

(quizás el que más interesante) es “a”; tan importante es que sólo el administrador tiene el

privilegio suficiente para activarlo o desactivarlo. El atributo “a” sobre un archivo indica que

este sólo se puede abrir en modo escritura para añadir datos, pero nunca para eliminarlos. ¿Qué

tiene que ver esto con la seguridad? Muy sencillo: cuando un intruso ha conseguido el privilegio

suficiente en un sistema atacado, lo primero que suele hacer es borrar sus huellas; para esto

existen muchos programas (denominados zappers, rootkits) que, junto a otras funciones,

eliminan estructuras de ciertos archivos de log. Así consiguen que cuando alguien ejecute

algunos comandos como: last, who, users, w o similares, no vean el rastro de la conexión que el

atacante ha realizado a la máquina; evidentemente, si estos archivos de log poseen el atributo

“a” activado, el atacante y sus programas lo tienen un poco más difícil para borrar datos de ellos.

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 155

Otro atributo interesante es “i” (immutable file); un archivo con este atributo activado no se

puede modificar de ninguna forma, ni añadiendo datos ni borrándolos, ni eliminando el archivo,

ni tan siquiera enlazándolo mediante la orden ln. Igual que sucedía antes, sólo el administrador

puede activar o desactivar el atributo “i” de un archivo. Podemos aprovechar esta característica

en los archivos que no se modifican frecuentemente, por ejemplo muchos de los contenidos en

/etc (archivos de configuración, scripts de arranque, incluso el propio archivo de contraseñas si

el añadir o eliminar usuarios tampoco es frecuente en nuestro sistema); de esta forma

conseguimos que ningún usuario pueda modificarlos incluso aunque sus permisos lo permitan.

Cuando activemos el atributo “i” en un archivo hemos de tener siempre en cuenta que el archivo

no va a poder ser modificado por nadie, incluido el administrador (root), y tampoco por los

programas que se ejecutan en la máquina; por tanto, si activamos este atributo a un archivo de

log, no se grabaría ninguna información en él, lo que evidentemente no es nada conveniente.

También tenemos que recordar que los archivos tampoco van a poder ser enlazados, lo que

puede ser problemático en algunas variantes de Linux que utilizan enlaces duros para la

configuración de los archivos de arranque del sistema. Por estos motivos debemos tener especial

cuidado a la hora de elegir a que archivos vamos a establecerles el atributo “i”.

Otro atributo que también puede ayudar a implementar una correcta política de seguridad en

el sistema, aunque menos importante que los anteriores, es “s”. Si borramos un archivo con el

atributo “s” activo, el sistema va a rellenar sus bloques con ceros en lugar de efectuar un simple

unlink(), para así dificultar la tarea de un atacante que intente recuperarlo; realmente, para un

atacante experto esto no supone ningún problema, simplemente un retraso en sus propósitos: ya

que esta comprobado que un simple relleno de bloques mediante bzero() no hace que la

información sea irrecuperable.

Ya hemos tratado con los atributos existentes, ahora veremos cómo activarlos o

desactivarlos, y también cómo podemos ver su estado. Para lo primero podemos hacer uso de la

orden chattr, que recibe como parámetros el nombre del atributo junto a un signo “+”o “-“, en

función de si deseamos activar o desactivar el atributo, y también el nombre del archivo

correspondiente. Si lo que deseamos es visualizar el estado de los diferentes atributos,

utilizaremos la orden lsattr, cuya salida indicará con la letra correspondiente cada atributo del

archivo o un guión “-” en el caso de que el atributo no esté activado.

Por ejemplo, agregar inmutabilidad a un archivo:

$> touch prueba.txt

$> lsattr prueba.txt

------------------ prueba.txt

$>sudo chattr +i prueba.txt

$> lsattr prueba.txt

----i------------- prueba.txt

$> rm prueba.txt

rm: ¿borrar el archivo regular vacío `prueba.txt' protegido contra escritura? (s/n) s

rm: no se puede borrar `prueba.txt': Operación no permitida

La regla general como buenos administradores es que debemos tener en cuenta que establecer

atributos a algunos archivos o directorios puede llegar a incrementar la seguridad del sistema.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 156

11. Propiedad y permisos de los archivos

La propiedad y los permisos son también un punto básico en la seguridad del sistema. Es

importante establecer correctamente estas opciones, incluso aunque seamos los únicos que

utilicemos el sistema, ya que pueden suceder cosas extrañas si no se hace. Para los archivos que

pueden crear y utilizar diariamente los usuarios, estos conceptos se pueden establecer sin tener

que pensar mucho (aunque sigue siendo útil conocer dichos conceptos). Para la administración

del sistema, no es tan fácil. Asignar una propiedad o permiso erróneo puede conducir a hechos

lamentables, como por ejemplo el que un usuario no pueda ser capaz de leer su propio correo

electrónico.

En general, el mensaje: Permission denied (o permiso denegado); Significa que alguien ha

asignado una propiedad o permiso que limita su acceso más de lo deseado.

11.1. ¿Qué significan los permisos?

Los permisos se refieren a la forma en que cualquier usuario puede utilizar un archivo. En

Linux existen tres tipos de permisos:

 Lectura [r]: Este permiso significa que podemos ver el contenido de un archivo.

 Escritura [w]: Este permiso significa que podemos modificar o eliminar un archivo.

 Ejecución [x]: Este permiso significa que podemos ejecutar el archivo como un

programa.

Cuando se crea un archivo, el sistema asigna algunos permisos predeterminados que

funcionan bien normalmente. Por ejemplo, nos proporciona el permiso de lectura y el de

escritura, pero el resto de personas sólo tienen permiso de lectura. Si tenemos tendencia a ser

obsesivos, podemos establecer todo para que el resto de usuarios no tengan ningún tipo de

permiso de acceso a ninguno de nuestros archivos, Asimismo, la mayoría de utilidades saben

cómo asignar permisos. Por ejemplo, cuando el compilador crea un programa ejecutable,

automáticamente le asigna un permiso de ejecución.

No obstante, los valores predeterminados a veces no funcionan. Por ejemplo, si creamos una

secuencia de comandos de shell o un programa en Perl, tendremos que asignarnos a nosotros

mismos un permiso de ejecución para poder ejecutarlo.

Los permisos tienen distintos significados para un directorio:

 El permiso de lectura significa que podemos listar el contenido de dicho directorio.

 El premiso de escritura significa que podemos añadir o eliminar archivos en dicho

directorio.

 El permiso de ejecución significa que podemos listar información sobre los archivos de

dicho directorio.

No debemos preocuparnos por la diferencia existente entre el permiso de lectura y el de

ejecución en los directorios ya que, básicamente, van unidos. Debemos asignar ambos o

ninguno.

Debemos tener en cuenta que si permitimos a otras personas añadir archivos a un directorio,

también estaremos permitiéndoles eliminar archivos. Los dos privilegios van unidos cuando se

asigna un permiso de escritura. Sin embargo, existe una forma de permitir a otros usuarios

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 157

compartir un directorio y evitar que eliminen archivos de unos y otros (ver la sección El Sticky

bit o bit adhesivo).

11.2. Propietarios y grupos

Ahora la gran pregunta es, ¿Quién tiene dichos permisos? Para permitir que los usuarios

trabajen juntos, Linux tiene tres niveles de permisos: propietario, grupo y otros. El nivel “otros”

incluye a todo aquel que tiene acceso al sistema y que no es ni propietario ni miembro del

grupo. La idea que se esconde tras los grupos es proporcionar acceso a un conjunto de usuarios,

como un equipo de programación, a determinados archivos. Por ejemplo, un programador que

está creando un código fuente puede reservarse para sí mismo el permiso de escritura pero

permitir a los demás miembros de su grupo tener un acceso de lectura a través de un permiso de

grupo. En cuanto a “otros”, no tendrá ningún tipo de permiso para que personas externas al

equipo no puedan ver los archivos.

Cada archivo tiene un propietario y un grupo. Normalmente el propietario es el usuario que

ha creado el archivo. Asimismo, todos los usuarios pertenecen a un grupo predeterminado y

dicho grupo se asigna a todos los archivos creados por el usuario. Mediante el cambio del grupo

asignado un archivo, puede proporcionar acceso a cualquier grupo de personas que desee.

A continuación vamos a examinar algunos archivos típicos y comprobar cuáles son los

permisos que tienen asignados.

La figura 6.5 muestra un programa ejecutable típico. La salida ha sido generada ejecutando

la orden ls con la opción –l.

Figura 6.5: Mostrar la propiedad y los permisos

De la figura 6.5 podemos destacar dos hechos importantes: los propietarios del archivo son,

mdw, y el grupo lib (quizá un grupo creado por los programadores que trabajan en las

bibliotecas). Pero la información importante sobre los permisos se cifra en el conjunto de letras

de la parte izquierda.

El primer carácter es un guión, que indica que se trata de un archivo común. Los tres

siguientes bits se aplican al propietario; como cabría esperar, mdw tiene los tres permisos. Los

siguientes tres bits se aplican a los miembros del grupo: estos pueden leer el archivo (algo poco

útil para un archivo binario) y ejecutarlo, pero no pueden escribir en él porque el campo que

debe contener una “w” contiene en su lugar un guión “-”. Los últimos tres bits se aplican a

“otros”; y estos tienen los mismos permisos que el grupo.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 158

Otro ejemplo:

El listado muestra que el propietario tiene permisos de lectura y escritura “rw” así como el

grupo. El resto de usuarios en el sistema sólo tienen privilegios de lectura. Ahora supongamos

que compilamos el archivo simc.c para crear un programa ejecutable. El compilador gcc crea el

archivo simc:

Además de los bits de lectura y escritura, gcc ha establecido el bit ejecutable (x) para el

propietario, el grupo y otros en el archivo ejecutable.

12. Puntos adicionales del sistema de archivos

En esta sección explicaremos algunos puntos acerca de los permisos que se pueden asociar a

los archivos o directorios, los cuales son de gran utilidad para la seguridad de nuestro sistema.

12.1. Máscara frente a umáscara

La máscara de un objeto del sistema de archivos es la misma que su permiso. Los dos

términos son equivalentes. Otro objeto útil es la umáscara (user file-creation mode mask o

máscara del modo de creación de archivos de usuario). Este término se refiere a los bits que no

están activados en la máscara o en los bloques de permiso.

La umáscara es una herramienta increíblemente útil para un administrador de sistemas.

Muchos usuarios no comprenden los permisos, y por ende nunca los alteran cuando crean

archivos y directorios dentro de su directorio /home. Cuando los usuarios hacen esto con

permisos débiles por defecto, este hecho puede causar problemas de seguridad. Por

consiguiente, cambiar la máscara de creación por defecto configurando la umáscara por defecto

a una configuración más fuerte, nos puede ahorrar muchos dolores de cabeza.

Para ejemplificar el proceso tomemos un archivo creado por un usuario (por ejemplo:

gateway) con una umáscara de 133 que produce archivos con permisos de 644.

El modo resultante es que el dueño (gateway) tiene permisos de lectura y escritura; y el

grupo y los demás sólo tienen permiso de lectura. Una forma de darse cuenta de la forma en que

funciona el umask es tener en cuenta que el valor (2) inhabilita el permiso de escritura mientras

que el valor (7) inhabilita los permisos de lectura, escritura y ejecución.

$> ls –l archivo

-rw-r--r-- 1 gateway gateway 12577 Apr 30 13:13 archivo

$> gcc –o simc simc.c

$> ls –l simc simc.c

total 36

-rwxrwxr-x 1 kalle kalle 19365 Apr 30 13:14 simc

-rw-rw-r-- 1 kalle kalle 12577 Apr 30 13:13 simc.c

$> ls –l simc.c

-rw-rw-r-- 1 kalle kalle 12577 Apr 30 13:13 simc.c

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 159

A continuación se muestra una tabla con los valores comúnmente usados para el umask.

Umask Accesos del usuario Accesos del grupo Accesos de los otros

000 Todos Todos Todos

002 Todos Todos Lectura y ejecución

007 Todos Todos Ninguno

022 Todos Lectura y ejecución Lectura y ejecución

027 Todos Lectura y ejecución Ninguno

077 Todos Ninguno Ninguno

Tabla 6.3: Valores comúnmente usados para el umask

12.2. Establecer ID de usuario y de grupo (SUID y SGID)

Existen ocasiones en que los usuarios necesitan ejecutar algún comando que requiere de

privilegios. Un ejemplo de esto es el uso del comando passwd para cambiar la contraseña. Seria

un error darle a los usuarios los privilegios necesarios para que puedan ejecutar esta clase de

ordenes ya que el usuario podría cambiarse de grupo o crear una cuenta con privilegios de root.

Para que esto no suceda en Linux se implementó un sistema por el cual un comando que cuente

con SUID o SGID puede ser ejecutado con los privilegios del dueño y/o grupo del programa.

Cada usuario esta identificado por el sistema con un número de identificación tanto para él,

como para el grupo. Este número se denomina UID (user ID) para el caso de los usuarios y GID

(group ID) para el caso de los grupos. Lo que se efectúa con el sistema SUID es una adquisición

temporal de un UID o GID distinto al propio cuando se esta ejecutando el comando. Cuando un

comando cambia de UID se denomina SUID (set user ID) y cuando cambia de GID se denomina

SGID (set group ID) Un comando puede ser SUID y SGUID al mismo tiempo.

Para danos cuenta si un comando es SUID basta con hacer un listado largo con el comando ls

–l y se verá que donde tendría que estar una “x”, que asigna permisos de ejecución, aparece una

letra “s”. Ejemplo:

12.3. El Sticky bit o bit adhesivo

En los antiguos sistemas Unix la memoria era algo esencial y escasa debido a su alto costo.

Para hacer un uso más productivo de la misma se empleo una tecnología que mantenía parte de

programas esenciales en el área swap (intercambio) de memoria para que pudieran ser usados

más rápidamente, dado que si estos no estuvieran en el área de swap entonces se tendrían que ir

a buscar al disco y por ende se tardaría más. Estos programas se los marcaba con un bit especial,

un bit adhesivo o sticky bit. Los programas así marcados eran los que valía la pena mantener en

el área de swap ya que esas partes del programa que se guardaban en memoria también podían

ser usadas por otros.

En los sistemas operativos Linux modernos el sticky bit encendido en un directorio significa

que solo el dueño del archivo tiene derecho a borrarlo.

Directorios públicos con permisos de escritura “w” deben tener el sticky bit encendido ya que

de otra manera todos los que accedan a dicho directorio pueden borrar archivos aunque no sean

de ellos. Al encender el bit solamente los dueños podrán borrar sus archivos.

$> ls -l /usr/bin/passwd

-rwsr-xr-x 1 root root 29104 2006-12-19 14:35 passwd

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 160

Por ejemplo:

13. Sistemas de archivos distribuidos (DFS)

Un sistema de archivos distribuido almacena archivos en uno o más computadores

denominados servidores de archivos y los hace accesibles a otros computadores denominados

clientes estos manipulan dichos archivos como si estuvieran ubicados localmente en su

máquina.

Existen muchas ventajas de hacer uso de servidores de archivos dentro de las cuales

podemos encontrar:

 Los archivos están más accesibles debido a que desde varios computadores se puede

acceder a los servidores de archivos.

 Compartir los archivos de una única localización es más sencillo que distribuir copias

de los archivos a todos los clientes.

 Las copias de respaldo y la seguridad son más fáciles de manejar cuando sólo hay que

tener en cuenta a los servidores de archivos.

 Los servidores de archivos pueden ofrecer un gran espacio de almacenamiento; algo que

sería costoso y poco práctico de suministrar en cada uno de los clientes.

Sistemas de archivos distribuidos basados en Linux son utilizados para centralizar la

administración de discos y proveer la facilidad de compartir archivos de forma transparente por

la red. Paquetes de Linux que proveen DFS casi siempre incluyen el cliente y el servidor. Un

servidor DFS comparte archivos locales en la red; un cliente DFS monta archivos compartidos

localmente.

En las siguientes secciones vamos a analizar algunos de los métodos más importantes en el

mundo de Linux, en cuanto a DFS se refiere. Primero vamos a analizar SAMBA, que utiliza

protocolos de sistemas de red de Microsoft Windows para permitir a los usuarios de un sistema

leer y escribir archivos en otro sistema y para enviar tareas a las impresoras en sistemas

remotos. La ventaja de utilizar SAMBA es que se pueden integrar Linux y Unix sin problemas

con los sistemas Microsoft, tanto clientes como servidores. Los protocolos de los sistemas de

red de Microsoft Windows se pueden utilizar para compartir archivos entre sistemas de Linux.

También analizaremos dos protocolos desarrollados por Sun Microsystems, NFS y NIS, los

cuales se utilizan en los sistemas Linux y Unix desde hace décadas. El sistema de archivos de

red (NFS, Network File System) permite a los sistemas compartir archivos entre sistemas Linux

y Unix de una forma muy similar a SAMBA. El sistema de información de red (NIS, Network

Information System) permite que la información del usuario se guarde en un lugar y puedan

acceder a ella múltiples sistemas y así no tener que actualizar todos los sistemas cuando se

$> ls -la /tmp/

drwxrwxrwt 12 root root 4096 2008-04-24 02:35 .

drwxr-xr-x 21 root root 4096 2008-04-17 10:03 ..

drwxrwxrwt 2 gateway gateway 4096 2008-04-24 00:38 .esd-1000

drwx------ 3 gateway gateway 4096 2008-04-24 00:38 gconfd-gateway

drwxrwxrwt 2 root root 4096 2008-04-24 00:38 .ICE-unix

drwxrwxrwt 2 root root 4096 2008-04-24 00:36 .X11-unix

$> rm –rf /tmp/.X11-unix

rm: no se puede borrar `/tmp/.X11-unix//X0': Operación no permitida

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 161

cambia un usuario o una contraseña. Aunque NIS no es una herramienta para compartir archivos

e impresoras, la analizaremos porque comparte algunos elementos con NFS y además puede

facilitar la administración de NFS, ya que NIS permite a cada usuario tener el mismo número de

cuenta en todos los sistemas.

NFS y NIS son útiles en sitios donde sólo están conectados sistemas Linux y variantes de

Unix. Se han creado versiones para sistemas de Microsoft, pero no son particularmente robustos

y nunca han sido muy populares. Microsoft proporciona una implantación de cliente y servidor

NFS complementaria para sistemas Windows, que no se utilizan a menudo a pesar de ser

gratuitos.

Además de los protocolos de red de MS Windows y NFS, existen otros protocolos para

compartir archivos e impresoras muy conocidos. Linux admite compartir archivos e impresoras

al estilo de NetWare utilizando protocolos IPX, compartir archivos e impresoras basados en

Macintosh utilizando protocolo Apple-Talk, compartir archivos sobre protocolos como:

compartir archivos sobre SSH (FISH, File Sharing over SSH); así como servicios de archivos

basados en WebDAV.

13.1. SAMBA

La revolución del software de código libre todavía no ha concluido, por lo tanto, como

resultado, actualmente siguen existiendo muchos escritorios y sistemas de servidores de

Windows. Aunque muchos pensemos que el mundo pronto utilizará nada más que escritorios

Linux, la realidad indica algo totalmente diferente: los escritorios Windows seguirán durante

mucho tiempo entre nosotros. Por tanto, la capacidad de intercambiar archivos entre los

sistemas Windows y Linux es muy importante. La capacidad para compartir impresoras es

igualmente importante.

SAMBA es una familia de aplicaciones muy flexible y escalable que permite a un usuario de

Linux leer y escribir archivos ubicados en estaciones de trabajo de Windows y viceversa. Puede

que deseemos utilizar SAMBA sólo para que los archivos de Linux se encuentren disponibles

para un solo cliente de Windows (como cuando ejecutamos Windows en un entorno de máquina

virtual sobre un portátil con Linux). Pero también podemos utilizar SAMBA para implantar un

servidor de archivos e impresoras de alto rendimiento para una red que tiene cientos de clientes

de Windows.

13.1.1. Evolución histórica de SAMBA

A mediados de los años 80, IBM y Systec desarrollaron un sencillo sistema para proporcionar

servicios de red denominados NetBIOS (Network Basic Input Output System). Dicho sistema

estaba orientado a trabajar con pequeñas redes aisladas, sin capacidad de interconexión entre sí,

es decir, no contemplaba la posibilidad de encaminamiento de datos a través de redes. MS-DOS

incluyó la posibilidad de redireccionar el sistema de entrada y salida de los discos hacia la

interfaz de NetBIOS, de forma que el contenido de los sistemas de archivos fuera accesible a

través de la red. El protocolo para compartir archivos a través de la red se denominó SMB

(Server Message Block protocol). Actualmente a este protocolo se le conoce como CIFS

(Common Internet File System).

El segundo paso fue ampliar los servicios proporcionados por NetBIOS para que pudieran

operar sobre redes Ethernet y Tokenring. El resultado fue NetBEUI (NetBIOS Enhanced User

Interface). También se desarrollo software para emular NetBIOS sobre protocolos de mayor

nivel, como IPX o TCP/IP. Este último es muy interesante porque permite enviar paquetes

NetBIOS a través de redes interconectadas mediante routers o encaminadores. NetBIOS se

desarrolló para trabajar en pequeñas redes aisladas, así es que la solución fue traducir los

nombres de NetBIOS (dieciséis bytes para denominar un equipo) a direcciones IP. Más tarde

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 162

Microsoft añadió alguna funcionalidad adicional al paquete SMB: el servicio de anuncio

(browsing) y un servicio de autenticación centralizada denominado Dominio NT, que se incluyó

por primera vez en Windows NT 3.51 (Windows NT Domain Controler).

En esa misma época, Andrew Tridgell (ver figura 6.6) estaba trabajando en un software que

permitiera acceder a un PC con sistema operativo MS-DOS, a un sistema de archivos residente

en una máquina Unix. Esa parte no era un problema porque existía un paquete para utilizar MS-

DOS con sistemas NFS. El problema era la coexistencia en MS-DOS de dos protocolos de red

distintos: NFS y NetBIOS. Andrew Tridgell escribió un sniffer de paquetes de forma que pudiera

hacer ingeniería inversa sobre el protocolo SMB, ya que este protocolo era y sigue siendo

propietario de Microsoft. Cuando las primeras versiones estuvieron disponibles, una compañía

de software reclamó los derechos sobre el nombre dado a su sistema servidor de archivos

(SMB). Para solucionar este problema, Andrew Tridgell buscó una lista de palabras que

contuvieran las letras SMB, ése es el origen del nombre actual: SAMBA.

Figura 6.6: Andrew Tridgell

13.1.2. Servicios proporcionados por SAMBA

El servicio SAMBA está formado por dos programas que se ejecutan como demonios en el

sistema: smbd y nmbd. Su objetivo es proporcionar cuatro servicios claves del protocolo:

 Servicios sobre archivos e impresoras.

 Autenticación y autorización.

 Resolución de nombres.

 Anuncio de servicios en la red (browsing).

Los servicios sobre archivos e impresoras los proporciona smbd. Éste también se encarga de

proporcionar servicios de autenticación y autorización a través de dos modos de trabajo: modo

compartido (share mode) y modo de usuario (user mode). El primero permite compartir un

recurso utilizando una única contraseña para todo aquel que quiera acceder. En el segundo cada

usuario tiene su propia contraseña y el administrador puede autorizar o denegar el acceso a cada

usuario independientemente.

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 163

El concepto de Dominio NT añade un mecanismo adicional de autenticación, que consiste en

que un usuario se autentica una única vez y, una vez hecho esto, tiene acceso a todos los

servicios para los que esté autorizado dentro de un dominio. Este servicio lo proporciona un

controlador de dominio (domain controller), Así, un dominio es un conjunto de máquinas que

comparten el mismo controlador de dominio.

Los otros dos servicios, resolución de nombres y anuncio de servicios, los proporciona

nmbd. El objetivo es propagar y controlar una lista de nombres NetBIOS de equipos. La

resolución de nombres se puede llevar a cabo de dos formas, mediante difusión (broadcast) y

punto a punto. La primera es la solución más cercana a la implementación original. Cuando una

máquina quiere conocer la dirección IP de un equipo, difunde su nombre a través de toda la red

a la espera de que el aludido responda con su dirección IP. Esto puede generar algo de tráfico en

la red, pero siempre confinado a la red local. El segundo mecanismo implica utilizar un servicio

conocido como NBNS (NetBIOS Name Server). Microsoft llamó a su implementación de este

servicio WINS (Windows Internet Name Server). Cuando una máquina arranca, registra su

nombre y su dirección IP en este servidor, de forma que cuando quiere encontrar la dirección IP

de una máquina a través de su nombre consulta en este mismo servicio. La ventaja de esta

aproximación es que las máquinas situadas en redes distintas pueden compartir el mismo

servidor NBNS, por lo tanto, el servicio no está limitado únicamente a las máquinas confinadas a

la misma red local.

Por último, el anuncio (browsing) consiste en hacer saber a los demás participantes qué

servicios comparte un determinado equipo. Inicialmente todos los equipos que componen una

red llevan a cabo un proceso de selección para determinar quién será el encargado de llevar a

cabo el registro de servicios. La máquina que sale elegida del proceso se autodenomina Local

Master Browser (LMB) y se identifica mediante un nombre especial además del suyo propio. Su

trabajo será mantener una lista de servicios que es el que acostumbramos a ver cuando

utilizamos “Mis sitios de red” de Microsoft Windows.

Además de lo anterior, existe la figura del DMB (Domain Master Browser) que coordina las

listas de servicios a través de distintos dominios NT, incluso a través de redes distintas.

Utilizando el servicio NBNS, un LMB busca a su DMB e intercambia información con él.

Actualmente, el mecanismo de sincronización hace que sea necesario bastante tiempo para que

toda la información se propague por las distintas redes y aparezca de forma correcta en “Mis

sitios de red”.

13.2. Sistema de archivos en red de Sun Microsystems: NFS

El sistema de archivos en red de Sun Microsystems (NFS) ha sido adoptado ampliamente en

la industria y en entornos académicos desde su introducción en 1985. El diseño y desarrollo de

NFS fueron emprendidos por el personal de Sun Microsystems en 1984. Aunque ya habían sido

desarrollados varios servicios de archivos distribuidos, y utilizados con éxito, en universidades y

laboratorios de investigación, NFS fue el primer servicio de archivos que fue diseñado como un

producto. El diseño e implementación de NFS ha obtenido un éxito considerable tanto técnica

como comercialmente.

Para animar su adopción como un estándar, las definiciones de las interfaces fundamentales

fueron situadas en el dominio público, permitiendo a otros vendedores producir

implementaciones, y el código fuente fue puesto disponible para una implementación de

referencia a otros vendedores de computadores bajo licencia. Actualmente esta soportado por

muchos vendedores y el protocolo NFS (versión 3) es un estándar de Internet, definido en la

RFC 1813.

NFS proporciona acceso transparente a archivos remotos desde programas cliente

ejecutándose sobre Linux y otros sistemas. Normalmente, cada computador tiene un cliente NFS

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 164

y módulos servidor instalados en el núcleo del sistema, al menos en el caso de los sistemas

Linux. La relación cliente-servidor es simétrica: Cada computador en una red NFS puede actuar

tanto como cliente como servidor, y los archivos en cada máquina pueden hacerse disponibles

para acceso remoto desde otras máquinas. Cualquier computador puede ser un servidor,

exportando algunos de sus archivos, y un cliente, accediendo a archivos de otras máquinas. Pero

es una práctica habitual configurar instalaciones grandes con algunas máquinas como servidores

dedicados y otras como estaciones de trabajo.

Un objetivo importante de NFS es conseguir un elevado nivel de soporte para la

heterogeneidad de hardware y el sistema operativo. El diseño es independiente del sistema

operativo gracias a la utilización de XDR (eXternal Data Representation): Existen

implementaciones de servidor y cliente para casi todos los sistemas operativos y plataformas

actuales, incluyendo Windows 95, Windows NT, MacOS, NetWare, OS/2 y VMS así como

Linux y casi cualquier otra versión de Unix. Se han desarrollado implementaciones de NFS en

máquinas multiprocesador de altas prestaciones por varios vendedores y éstas se utilizan

ampliamente para satisfacer los requisitos de almacenamiento en intranets con muchos usuarios

concurrentes.

13.2.1. Beneficios proporcionados por NFS

Algunos de los beneficios más destacados que NFS proporciona son:

 Las estaciones de trabajo locales utilizan menos espacio de disco debido a que los datos

se encuentran centralizados en un único lugar pero pueden ser accedidos y modificados

por varios usuarios, de tal forma que no es necesario replicar la información.

 Los usuarios no necesitan disponer de un directorio /home en cada una de las máquinas

cliente. Los directorios /home pueden crearse en el servidor de NFS para posteriormente

poder acceder a ellos desde cualquier máquina a través de la infraestructura de red.

 También se pueden compartir a través de la red dispositivos de almacenamiento como

disqueteras, CD-ROM y unidades ZIP. Esto puede reducir la inversión en dichos

dispositivos y mejorar el aprovechamiento del hardware existente.

13.3. Sistema de información de redes de Sun Microsystems: NIS

El sistema de información de redes (NIS) es un servicio para redes que sirve para compartir

información de sistemas. Los datos que normalmente administra NIS incluyen: contraseñas de

usuario e información de grupos, asignaciones de hots a dirección IP, aliases de correo y otros

datos de sistema que deben ser comunes entre los sistemas. Al centralizar la administración de

estos datos, NIS permite que el administrador de sistemas cree un entorno más homogéneo, y a

la vez simplifica la tarea de actualizar y distribuir estos datos.

NIS fue creado por Sun Microsystems para SunOS. Originariamente se conocía como Yellow

Pages (YP), pero se le tuvo que cambiar el nombre como resultado de un procedimiento judicial

instado por British Telecom. Oficialmente lo rebautizaron como NIS, pero quedaron vestigios de

las convenciones de nombres YP del sistema. NIS se implementa por medio del protocolo para

redes OND RPC (Llamada a procedimientos remotos para computación en redes).

Los conjuntos de datos de NIS están representados como una o más asignaciones. Las

asignaciones NIS están formadas por pares clave-valor organizadas de acuerdo con la forma en

que las distintas funciones de bibliotecas de sistemas esperan acceder a los datos. Por ejemplo,

dos asignaciones representan información del nombre de host en NIS: hosts.byname y

hosts.byaddr. Estas asignaciones son un reflejo directo de cómo las funciones de biblioteca del

Tema 6: El sistema de archivos Administración de Sistemas Operativos

Página | 165

sistema gethostbyname() y gethostbyaddress() da una dirección IP, mientras que dada una

dirección IP, gethostbyaddress() devuelve un nombre de host.

Todos los sistemas que comparten la misma base de datos NIS forman parte del mismo

dominio NIS. Dentro de un dominio, un sistema puede tener uno o tres papeles: cliente, servidor

esclavo o servidor maestro.

 Maestro: El sistema es el origen de los datos NIS para el dominio. Todas las

actualizaciones de los datos NIS se producen en este host.

 Esclavo: El sistema mantiene una copia de la base de datos maestra. Se actualiza

cuando los datos cambian en el maestro.

 Cliente: El sistema se conecta a un esclavo NIS o servidor maestro para obtener datos

NIS.

Los dominios NIS difieren mucho de los dominios DNS: Mientras que los dominios DNS

especifican los nodos de un gráfico, los dominios NIS son entidades singulares. No existe

relación jerárquica entre los dos dominios NIS, incluso si una convención de nombres pueda

sugerir que sí la hay.

13.4. Integrando NIS y NFS

Muchas veces los usuarios trabajan en computadores diferentes, teniendo que ingresar el

usuario y contraseña que tienen creados en cada uno de esos equipos, y muchas veces también

tienen que ir haciendo copias de sus trabajos en todos esos equipos. Claramente, esto trae

consigo un gran problema, entonces, ¿Porque no mantener los archivos de cada usuario en un

solo lugar y que cada vez que los usuarios se conecten a cualquier computadora estos puedan

trabajar con sus datos como si estuvieran en su máquina local?, ¿Porque no mantener la

información de su cuenta en un solo lugar, permitiéndoles con esto trabajar en cualquier

computadora utilizando una única cuenta y clave?

Pues con la integración NIS y NFS podemos lograr esto. Así es, con NIS podemos hacer que

el usuario crea que se esta autenticando en la computadora local sin saber que realmente lo esta

haciendo en un servidor que mantiene centralizada la información de las cuentas de usuario.

Con NFS podemos montar los datos del usuario que están en el servidor sobre la computadora

local. Todo esto de manera transparente.

NIS ser encarga de resolver los siguientes problemas:

 Centraliza archivos de configuración replicados como el /etc/passwd en una sola

máquina.

 Elimina las copias duplicadas de usuarios e información del sistema, permitiéndole al

administrador hacer cambios en un solo sitio.

NFS resuelve los siguientes problemas:

 Hace parecer a los sistemas de archivos remotos como si fueran locales ya que oculta su

verdadera ubicación física.

 Un usuario puede ver sus archivos, independientemente de donde estén localizados, ya

sea que estén en el disco local, en un disco compartido, en un servidor o en una

máquina que está al otro lado de una WAN.

Administración de Sistemas Operativos Tema 6: El sistema de archivos

Página | 166

NIS y NFS se complementan, ya que el exportar un sistema de archivos a una máquina en

donde estos no existen violaría las reglas de integridad y seguridad impuestas.

NIS y NFS utilizan protocolos de redes para comunicarse con otras máquinas en la red.

NIS y NFS trabajan utilizando el modelo cliente-servidor. Básicamente, un cliente es una

entidad que solicita un servicio a un servidor y un servidor es la entidad que provee el recurso

solicitado por el cliente. En este esquema, RPC (Remote Procedure Call) juega un papel

importante ya que NIS y NFS se basan en sus servicios. En ves de ejecutar el procedimiento en

una máquina local, RPC pasa una serie de argumentos al procedimiento en un datagrama de red.

El cliente RPC crea la sesión al localizar al servidor apropiado y se envía el datagrama a un

proceso en el servidor que puede ejecutar la llamada del procedimiento remoto. En el servidor el

argumento es desempaquetado, el servidor ejecuta el comando y retorna las respuestas, si hay

alguna, al cliente. De vuelta en el cliente, el valor del RPC es convertido a un valor esperado por

la función que lo llamo y la aplicación continúa como si un procedimiento local lo hubiera sido

llamado. La ubicación de puertos para una sesión es manejada por el demonio llamado portmap.

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 167

TEMA 7: SISTEMAS DE RED

Objetivos

 Estudiar los conceptos de TCP/IP necesarios para administrar y configurar un sistema

Linux.

 Estudiar y diferenciar los archivos de configuración de red más importantes en un

sistema Linux.

 Describir algunas aplicaciones seguras para administrar sistemas Linux de forma

remota.

Contenido

1. Introducción a TCP/IP

2. Servicios sobre TCP/IP

3. ¿Qué es TCP/IP?

4. La pila de protocolos IP

5. Dispositivos físicos (hardware) de red

6. Conceptos TCP/IP

7. Direcciones TCP/IP

8. Componentes de la dirección de red

8.1. Dirección de la máscara de red

8.2. Dirección de red

8.3. Dirección de puerta de acceso

8.4. Dirección de difusión

9. Configurar la red

9.1. Configuración de la interfaz NIC (Network Interface Controller)

9.2. Configuración del Name Resolver

9.3. Configuración del encaminamiento

9.4. Configuración del inetd

9.5. Configuración adicional: /etc/protocols y /etc/networks

9.6. Algunos aspectos de seguridad a tomar en cuenta

10. Aplicaciones seguras

10.1. Secure SHell (ssh)

10.1.1. Características del protocolo ssh

10.1.2. ¿Por qué usar ssh?

10.1.3. Ejemplos de uso

10.2. Secure CoPy (scp)

10.2.1. El Protocolo scp

10.2.2. La aplicación scp

10.2.3. Ejemplos de uso

Bibliografía

Básica

 Josep Jorba Esteve, Remo Suppi Boldrito, “Administración avanzada de GNU/Linux

Primera Edición”, UOC Formación de Posgrado, Software libre, 2004.

http://www.uoc.edu/masters/esp/img/871.pdf

Complementaria

 Dee-Ann LeBlanc, “Administración de sistemas LINUX La biblia”. Editorial ANAYA

MULTIMEDIA, 2001.

http://www.uoc.edu/masters/esp/img/871.pdf

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 168

http://www.uoc.edu/masters/esp/img/871.pdf
 Matthias Kalle Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada”, Editorial Anaya Multimedia, 2006.

 M. Carling, Stephen Degler, James Dennis, “Administración de Sistemas Linux, Guía

Avanzada”, Editorial Prentice Hall, 2000.

 Iñaki Alegría Loinaz, Roberto Cortiñas Rodríguez, Aitzol Ezeiza Ramos, “Linux

Administración del sistema y la red”, Editorial Prentice Hall, 2005.

http://www.uoc.edu/masters/esp/img/871.pdf

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 169

La gestión de la red y el análisis del tráfico son dos tareas primordiales en la administración

de sistemas Linux. En este sentido, la configuración de la red es un proceso relevante que se

lleva a cabo configurando correctamente las tarjetas de red y las tablas de encaminamiento de

todas y cada una de las máquinas dentro de la red.

1. Introducción a TCP/IP

El protocolo TCP/IP sintetiza un ejemplo de estandarización y una voluntad de

comunicación a nivel global. El protocolo es en realidad un conjunto de protocolos básicos que

se han ido agregando al principal para satisfacer las diferentes necesidades en la comunicación

ordenador-ordenador. Dentro del conjunto de protocolos básicos agregados al protocolo

principal podemos mencionar a: TCP, UDP, IP, ICMP, ARP, etc.

Algunas de las utilizaciones más frecuentes de TCP/IP por parte de los usuarios en la

actualidad son las conexiones remotas a otros ordenadores mediante telnet

(TELecommunication NETwork) o ssh (Secure SHell), la utilización de ficheros remotos

mediante NFS (Network File System) o la transferencia de ficheros mediante ftp (File Transfer

Protocol), scp (Secure CoPy) o http (HiperText Transfer Protocol).

2. Servicios sobre TCP/IP

Dentro de los servicios TCP/IP tradicionales más importantes que podemos encontrar

tenemos:

 Transferencia de archivos: Mediante el protocolo ftp podemos transferir archivos entre

sistemas conectados a una red TCP basado en la arquitectura cliente-servidor, de

manera que un usuario desde un equipo cliente puede conectarse a un servidor para

descargar archivos desde él o para enviarle sus propios archivos independientemente del

sistema operativo utilizado en cada equipo. Para ello, el usuario deberá tener una cuenta

de acceso en el servidor e identificarse a través de su nombre y su contraseña; o puede

conectarse a servidores donde existen repositorios de información, tales como software,

documentación, videos, manuales, etc., en donde el usuario se conectará de forma

anónima para transferir estos archivos a su ordenador local.

 Conexión remota: El protocolo de red telnet permite a un usuario conectarse a un

ordenador de forma remota. El ordenador local se utiliza como terminal del ordenador

remoto y todo es ejecutado sobre éste permaneciendo el ordenador local invisible desde

el punto de vista de la sesión. El mayor inconveniente que presenta telnet esta

relacionado con aspectos de seguridad, ya que todos los nombres de usuarios y

contraseñas necesarias para entrar en las máquinas remotas viajan por la red como texto

plano, es decir cadenas de texto sin cifrar. Esto facilita que cualquiera que espié el

tráfico de la red pueda obtener los nombres de usuario y contraseñas, y de esa manera él

también poder acceder a todas esas máquinas. Por esta razón telnet dejó de usarse casi

totalmente, hace unos años, cuando apareció y se popularizó ssh, que puede describirse

como una versión cifrada de telnet, cabe destacar que lograr cifrar las cadenas de texto

que viajan por la red involucra un coste añadido a la comunicación.

 e-mail: Este servicio permite enviar mensajes a los usuarios de otros ordenadores. Este

modo de comunicación se ha transformado en un elemento vital en la vida de los

usuarios. En la actualidad los e-mails son enviados a un servidor central para que

después los usuarios puedan recuperarlos por medio de programas específicos o por

medio de lecturas de los mismos a través de una conexión web.

El avance de la tecnología y el bajo coste de los ordenadores han permitido que

determinados servicios se hayan especializado en ello y se ofrecen configurados sobre

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 170

determinados ordenadores trabajando en un modelo cliente-servidor. Un servidor es un sistema

que ofrece un servicio específico para el resto de ordenadores existentes en la red. Un cliente es

otro ordenador que utiliza este servicio. Todos estos servicios generalmente son ofrecidos bajo

TCP/IP.

Otros servicios tradicionales que son ofrecidos bajo TCP/IP y que gran parte de sus

implementaciones giran en torno a la arquitectura cliente-servidor son:

 Sistemas de archivos en red: Permite a un sistema acceder a los archivos sobre un

sistema remoto en una forma más integrada que cuando se hace utilizando ftp. Los

dispositivos de almacenamiento, o parte de ellos, son exportados hacia el sistema que

desea acceder y éste los puede utilizar como si fueran dispositivos locales.

 Impresión remota: Permite llevar a cabo tareas de impresión desde impresoras

conectadas en ordenadores remotos.

 Ejecución remota: Permite que un usuario ejecute un programa sobre otro ordenador.

Existen diferentes maneras de realizar esta ejecución: la primera es a través de la

ejecución de un comando, como por ejemplo: rsh, ssh, rexec, etc., y la segunda es a

través de sistemas con mecanismos RPC (Remote Procedure Call), dichos mecanismos

permiten a un programa en un ordenador local ejecutar una función de un programa

ubicada sobre un ordenador remoto. Existen diversas implementaciones de los

mecanismos RPC, pero las más comunes son Xerox‟s Courier y Sun‟s RPC, esta última

adoptada por la mayoría de los sistemas Linux.

 Centralización de datos: Generalmente en las grandes instalaciones donde existen

muchos sistemas de cómputo, existe un gran conjunto de datos que necesitan ser

centralizados para mejorar su utilización, por ejemplo, nombres de usuarios,

contraseñas de usuarios, direcciones de red, etc. Todo ello facilita que un usuario

disponga de una única cuenta y por ende poder acceder con su misma cuenta a cualquier

máquina perteneciente a la organización. Por ejemplo, NIS está diseñado para manejar

todo este tipo de datos y se encuentra disponible para la mayoría de sistemas Linux.

 Servidores de terminal: Permite conectar terminales a un servidor que ejecuta telnet

para conectarse a un ordenador central. Este tipo de instalaciones permite básicamente

reducir costes y mejorar las conexiones al ordenador central.

 Servidores de terminales gráficas: Permiten que un ordenador pueda visualizar

información gráfica sobre un display que está conectado a un ordenador remoto. El más

común de estos sistemas es X Window.

3. ¿Qué es TCP/IP?

TCP/IP son en realidad dos protocolos de comunicación entre ordenadores que son

independientes el uno del otro.

Por un lado, TCP es un protocolo de nivel de transporte (ver figura 7.1) que define las reglas

de comunicación para que un host pueda llevar a cabo una comunicación con otro host remoto.

TCP es un protocolo fiable: porque se encarga de llevar a cabo retransmisiones en caso de

perdidas de segmentos; también se encarga de ordenar los segmentos en el destino y además

descarta segmentos que hayan podido llegar duplicados, es un protocolo seguro: porque utiliza

un mecanismo de preguntas y respuestas (ACK y NACK) para saber si los segmentos han

llegado correctamente al destino y es un protocolo orientado a conexión: porque primero

establece una conexión con el destino, con el objetivo de negociar parámetros sobre la

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 171

comunicación para que una vez que se hayan establecido dichos parámetros enviar los datos.

Cabe destacar que en TCP la comunicación se trata como un flujo de datos (stream).

Figura 7.1: Ubicación de TCP en la pila de protocolos

Por otro lado, IP es un protocolo de nivel de red (ver figura 7.2) que permite identificar las

redes y establecer los caminos entre los diferentes ordenadores. IP encamina los datos entre dos

ordenadores a través de las redes. Además, IP provee un servicio de datagramas no fiable, ya

que no provee ningún mecanismo para determinar si un paquete alcanza o no su destino y

únicamente proporciona seguridad de sus cabeceras, mediante sumas de comprobación de las

mismas. Es por esto que la fiabilidad es proporcionada por protocolos de la capa de transporte

como TCP.

Figura 7.2: Ubicación de IP en la pila de protocolos

Una alternativa de implementación de un protocolo más ligero que TCP la conforma el

protocolo UDP (User Datagram Protocol) el cual es también un protocolo de nivel de

transporte (ver figura 7.3) basado en el intercambio de datagramas. Permite el envió de los

datagramas a través de la red sin que se haya establecido previamente una conexión, razón por

la cual es no orientado a la conexión. Es un protocolo no fiable: ya que no sabe si los

datagramas han llegado correctamente al destino y por lo tanto no se preocupa por de llevar a

cabo retransmisiones de datagramas. El protocolo UDP tiene la ventaja de que ejerce una menor

sobrecarga a la red que las conexiones con TCP, pero presenta los inconvenientes mencionados

anteriormente.

Figura 7.3: Ubicación de UDP en la pila de protocolos

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 172

Existe un sub-protocolo de control y notificación de errores del protocolo IP, este sub-

protocolo es conocido como ICMP (Internet Control Message Protocol). ICMP se utiliza para

enviar mensajes de error, indicando por ejemplo que un servicio determinado no está disponible

o que un router o host no puede ser alcanzado. Los mensajes ICMP son construidos en el nivel

de capa de red y su principal utilidad es la de manejar mensajes de error y de control necesarios

para los sistemas de la red, informando con ellos a la fuente original para que evite o corrija el

problema detectado.

En resumen, TCP/IP es una familia de protocolos, que incluye a: IP, TCP, UDP, ICMP, etc.,

que proveen un conjunto de funciones a bajo nivel utilizadas por la mayoría de las aplicaciones.

Existe actualmente una nueva versión del protocolo IPv4, conocido como IPv6 o también

llamado IPng (IP next generation) que mejora notablemente al protocolo IPv4 en temas tales

como mayor número de hosts, control de tráfico, seguridad o mejoras en aspectos de

encaminamiento.

4. La pila de protocolos IP

Durante la etapa de diseño, los creadores de IPv4 decidieron aislar las aplicaciones

computarizadas de los tipos diferentes de hardware de redes que existían y que previeron que

existirían en un futuro no tan lejano. También previeron que la mejor manera de alentar la

implantación de unas comunicaciones fiables se podía hacer a través de la integración de un

nivel de comunicaciones fiable del paquete IP. Con esto en sus mentes, construyeron un

planteamiento de niveles conceptuales al que denominaron pila de protocolos IP.

Los protocolos están ordenados en niveles con el fin de facilitar la opción de compartir

hardware para redes entre aplicaciones que tengan requerimientos divergentes. Esto permite que

los protocolos de nivel de aplicación difieran a la vez que confían en protocolos comunes de

nivel inferior. La figura 7.4 muestra los protocolos ordenados de la pila IP.

Figura 7.4: Implementación de niveles de redes

5. Dispositivos físicos (hardware) de red

Desde el punto de vista físico, el hardware más utilizado para LAN es conocido como

Ethernet, aunque hoy en día existen tecnologías que son más veloces como: FastEthernet y

EthernetGigabit. Dentro de las ventajas más destacadas de Ethernet están: su bajo coste, sus

velocidades aceptables que pueden ser de 10, 100, o 1,000 megabits por segundo y la facilidad

en su instalación.

Los Ethernet se pueden clasificar en tres tipos: gruesos, finos, y de par trenzado. Los dos

primeros pueden usar cable coaxial, estos difirieren en el grosor y el modo de conectar este

cable a los hosts. El Ethernet fino emplea conectores BNC (Bayonet Neill-Concelman) con

forma de T, que se pinchan en el cable y se enganchan a los conectores de la parte trasera del

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 173

ordenador. El Ethernet grueso requiere que se realice un pequeño agujero en el cable, y se

conecte un transceptor utilizando un conector vampiro luego, se podrán conectar uno o más

hosts al transceptor. Los cables Ethernet fino y grueso pueden alcanzar una distancia de 200 y

500 metros respectivamente. Estos también son conocidos como 10base-2 y 10base-5

respectivamente. Los cables Ethernet fino y grueso están actualmente obsoletos y han sido

reemplazados por el par trenzado el cual utiliza cables hechos de hilos de cobre entrelazados

entre si. La conexión por par trenzado es conocida como 10baseT o 100baseT según sea la

velocidad.

La tecnología Ethernet utiliza elementos intermedios de comunicación como pueden ser:

hubs, switchs o routers, los cuales permiten configurar múltiples segmentos de red y dividir el

tráfico para mejorar las prestaciones de transferencia de información. Normalmente, en las

grandes instituciones estas LAN Ethernet están interconectadas a través de fibra óptica

utilizando tecnología FDDI (Fiber Distributed Data Interface) que es mucho más cara y

compleja de instalar, pero que permite obtener velocidades de transmisión superiores a las

alcanzadas con Ethernet además no presenta las limitaciones de distancia que presenta Ethernet

ya que FDDI admite distancias de hasta 200 km. Su coste se justifica para enlaces entre

edificios o entre segmentos de red muy congestionados.

Existe además otro tipo de hardware menos común, pero no menos interesante como es

ATM (Asynchronous Transfer Mode). Este hardware permite montar LAN con una calidad de

servicio elevada y es una buena opción cuando deben montarse redes de alta velocidad y baja

latencia, como por ejemplo aquellas que involucren distribución de vídeo en tiempo real.

Existen otros hardware soportados por GNU/Linux para la interconexión de ordenadores,

entre los cuales podemos mencionar: Frame Relay o X.25, utilizados en ordenadores que

acceden o interconectan WAN y en servidores con grandes necesidades de transferencias de

datos. Otro hardware que merece una mención es Packet Radio, utilizado para interconexión vía

radio utilizando protocolos como AX.25, NetRom o Rose. Además de los mencionados

anteriormente los sistemas GNU/Linux pueden hacer uso de dispositivos dialing up, que utilizan

líneas series, lentas pero muy baratas, a través de módems analógicos o digitales como pueden

ser: RDSI, DSL, ADSL, etc. Estas últimas son las que comúnmente se utilizan en pymes o uso

doméstico y requieren otro protocolo para la transmisión de paquetes, tal como SLIP (Serial

Line Internet Protocol) o PPP (Point-to-Point Protocol).

Para virtualizar la diversidad de hardware sobre una red, TCP/IP define una interfaz

abstracta mediante la cual se concentrarán todos los paquetes que serán enviados por un

dispositivo físico, lo cual también significa una red o un segmento de esta red. Por ello, por cada

dispositivo de comunicación en la máquina tendremos una interfaz correspondiente en el kernel

del sistema operativo.

Los dispositivos de red pueden ser listados en el directorio /dev que es donde existe un

archivo, que representa a cada dispositivo hardware, ya sea de modo bloque o de modo carácter

según sea su transferencia.

Para poder ver las interfaces de red disponibles en nuestro sistema podemos hacer uso del

comando ifconfig junto con la opción –a.

Ethernet en GNU/Linux se llaman con ethX (donde en todas, X indica un número de orden

comenzando por 0), la interfaz de líneas series (módems) se llaman por pppX (para PPP) o slX

(para SLIP), para FDDI son fddiX. Estos nombres son utilizados por los comandos para configurar

las interfaces y asignarles el número de identificación que posteriormente permitirá comunicarse

con otros dispositivos en la red.

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 174

Ejemplo:

6. Conceptos TCP/IP

Según lo expuesto en las secciones anteriores, la comunicación involucra un sin numero de

términos y conceptos que serán ampliados a continuación.

Intranet: El término intranet se refiere a la aplicación de tecnologías de Internet dentro de

una organización básicamente para distribuir y tener disponible información dentro de la

compañía, sin hacer uso del propio Internet. Por ejemplo, los servicios ofrecidos por

GNU/Linux como servicios tanto para Internet como para intranet incluyen: correo electrónico,

www, news, etc.

Host: Se denomina host a una máquina que se conecta a la red. En un sentido amplio un host

puede ser un ordenador, una impresora, una torre (rack) de CD, etc., es decir, un elemento

activo y diferenciable en la red que reclama o presta algún servicio y/o comparte información.

Dirección de red Ethernet: La dirección MAC (Media Access Control Address) es un

identificador de 48 bits que corresponde de forma única a una tarjeta o interfaz de red. Cada

dispositivo tiene su propia dirección MAC determinada y configurada por el IEEE, los últimos

24 bits, y por el fabricante, los primeros 24 bits.

Las direcciones MAC son únicas a nivel mundial, puesto que son escritas directamente, en

forma binaria, en el dispositivo físico (hardware) del controlador de red Ethernet en su momento

de fabricación.

Host name: Cada host debe tener además un único nombre en la red. Ellos pueden ser sólo

nombres o bien utilizar un esquema de nombres jerárquico basado en dominios (hierarchical

domain naming scheme). Los nombres de los hosts deben ser únicos, lo cual resulta fácil en

pequeñas redes, pero se vuelve más dificultoso en redes extensas e imposible en Internet si no se

realiza algún control. Los nombres deben ser de un máximo de 32 caracteres entre a-zA-Z0-9.-,

y que no contengan espacios o # comenzando por un carácter alfabético.

En Linux podemos averiguar el nombre de la máquina mediante el comando hostname.

$> ifconfig –a

eth0 Link encap:Ethernet HWaddr 00:E0:B8:EB:08:32

 inet dirección:172.16.118.9 Bcast:172.16.255.255 Máscara:255.255.0.0

 dirección inet6: fe80::2e0:b8ff:feeb:832/64 Alcance:Vínculo

 ARRIBA BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:172 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 b) TX bytes:13240 (12.9 KiB)

lo Link encap:Bucle local

 inet dirección:127.0.0.1 Máscara:255.0.0.0

 dirección inet6: ::1/128 Alcance:Anfitrión

 ARRIBA LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:42 errors:0 dropped:0 overruns:0 frame:0

 TX packets:42 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:3904 (3.8 KiB) TX bytes:3904 (3.8 KiB)

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 175

Dirección de Internet: Una dirección IP es un número de 32 bits que identifica de manera

lógica y jerárquica a un interfaz de un dispositivo, habitualmente una computadora, dentro de

una red que utilice el protocolo IP. Está compuesta por cuatro números en el rango 0-255

separados por puntos, por ejemplo 192.168.1.1.

Cuando nos conectamos en algún sitio para acceder a Internet es necesario utilizar una

dirección IP. Esta dirección IP puede cambiar al reconectarnos; a está forma de asignación de

dirección IP se le denomina dirección IP dinámica o IP dinámica.

Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados,

generalmente tienen una dirección IP fija o IP estática, es decir, que la dirección IP no cambia

con el tiempo. Los servidores de correo, servidores web, DNS, ftp públicos, etc. necesariamente

deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización

en la red.

A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas

direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más

fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se

resuelve mediante los servidores de nombres de dominio DNS.

Puerto: Es un identificador numérico del buzón en un host que permite que un mensaje TCP

o UDP pueda ser leído por una aplicación concreta dentro de este host. También son conocidos

como las direcciones de las aplicaciones o como SAP (Service Access Point). Tanto a nivel de

UDP como de TCP se repiten los puertos y estos están comprendidos entre 0 y 65535 (16 bits).

Por ejemplo, dos máquinas que se comuniquen por telnet lo harán por el puerto 23, pero las dos

mismas máquinas pueden tener otra comunicación al mismo tiempo vía ftp por el puerto 21.

Esto nos lleva a que es posible tener diferentes aplicaciones comunicándose entre dos host a

través de diferentes puertos simultáneamente.

Router: Es un dispositivo de hardware que opera en el nivel de red y que nos permite

realizar interconexiones entre redes de computadoras. Este dispositivo permite asegurar el

enrutamiento de paquetes entre redes o determinar la ruta que debe tomar el paquete de datos.

Según sean sus características, podrá transferir información entre dos redes de protocolos

similares o diferentes. Las máquinas Linux pueden ser configuradas para hacer de router,

aunque también existen equipos especializados para esta tarea y es lo que comúnmente se suele

utilizar.

Encaminamiento: Representa una de las funciones que un router es capaz de llevar a cabo.

Esta función se refiere al modo en que los mensajes son enviados a través de distintas redes o

subredes. Para esta labor los routers utilizan una tabla para hacer el encaminamiento de los

paquetes, esta tabla es conocida con el nombre de tabla de encaminamiento, en ella existe una

entrada por cada una de las redes o subredes a las cuales el router sabe llegar, además existe una

entrada por defecto la cual es especialmente útil cuando dada una dirección IP, a la cual

queremos enviar un paquete, no existe una entrada en la taba de encaminamiento para llegar

hacia la red de destino que contiene la IP a la cual queremos enviar el paquete, entonces lo que

se suele hacer es utilizar la entrada por defecto, la cual hará saltar el paquete a la dirección IP

que corresponda al gateway por defecto.

Cabe destacar que no solo los routers poseen tablas de encaminamiento, ya que también los hosts

contienen sus propias tablas. Para conocer la tabla de encaminamiento de un ordenador Linux

podemos hacer uso del comando netstat con la opción –rn.

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 176

DNS (Domain Name System): Es una base de datos distribuida y jerárquica que almacena

información asociada a nombres de dominio en redes como Internet. Aunque como base de

datos el DNS es capaz de asociar diferentes tipos de información a cada nombre, los usos más

comunes son la asignación de nombres de dominio a direcciones IP y la localización de los

servidores de correo electrónico de cada dominio.

La asignación de nombres a direcciones IP es ciertamente la función más conocida de los

DNS. Por ejemplo, si la dirección IP del sitio ftp de unanleon.edu.ni es 200.64.128.4, la mayoría

de la gente llega a este equipo especificando ftp.unanleon.edu.ni y no la dirección IP. Además

de ser más fácil de recordar, el nombre es más fiable ya que la dirección IP podría cambiar por

muchas razones, sin que tenga que cambiar el nombre.

DHCP (Dynamic Host Configuration Protocol): Es un protocolo de red que permite a los

hosts de una red IP obtener sus parámetros de configuración automáticamente. Se trata de un

protocolo de tipo cliente-servidor en el que generalmente un servidor posee una lista de

direcciones IP dinámicas y las va asignando a los clientes conforme éstas van estando libres,

sabiendo en todo momento quién ha estado en posesión de esa IP, cuánto tiempo la ha tenido y a

quién se la ha asignado después. Provee los parámetros de configuración a las computadoras

conectadas a la red informática con la pila de protocolos TCP/IP, como por ejemplo máscara de

red, puerta de enlace y otros.

Sin DHCP, cada dirección IP debe configurarse manualmente en cada computadora y, si la

computadora es reubicada en otra parte de la red, se debe configurar otra dirección IP diferente.

DHCP permite al administrador supervisar y distribuir de forma centralizada las direcciones IP

necesarias y, automáticamente, asignar y enviar una nueva IP si la computadora es conectada en

un lugar diferente de la red.

El protocolo DHCP incluye tres métodos de asignación de direcciones IP:

 Asignación manual o estática: Asigna una dirección IP a una máquina determinada.

Útil cuando queremos controlar la asignación de dirección IP a cada cliente, y evitar,

también, que se conecten clientes no identificados.

 Asignación automática: Asigna una dirección IP de forma permanente a una máquina

cliente la primera vez que hace la solicitud al servidor DHCP y hasta que el cliente la

libera. Útil cuando el número de clientes no varía demasiado.

 Asignación dinámica: el único método que permite la reutilización dinámica de las

direcciones IP. El administrador de la red determina un rango de direcciones IP y cada

computadora conectada a la red está configurada para solicitar su dirección IP al

servidor cuando la tarjeta de interfaz de red se inicializa. El procedimiento usa un

concepto muy simple en un intervalo de tiempo controlable. Esto facilita la instalación

de nuevas máquinas clientes a la red.

DHCP es una alternativa a otros protocolos de gestión de direcciones IP de red, como el

BOOTP (BOOTstrap Protocol). DHCP es un protocolo más avanzado, pero ambos son los

usados normalmente.

ARP, RARP: En algunas redes, como por ejemplo 802.3 LAN (correspondiente al estándar

de Ethernet), las direcciones IP son descubiertas automáticamente a través de dos protocolos

miembros del IPS (Internet Protocol Siute). Estos protocolos son el ARP (Address Resolution

Protocol) y el RARP (Reverse Address Resolution Protocol). ARP utiliza mensajes de tipo

broadcast para determinar la dirección MAC correspondiente a una determinada dirección IP

dentro de una red particular. RARP también utiliza mensajes de tipo broadcast para determinar

una dirección IP dentro de una red particular asociada con una determinada dirección MAC.

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 177

Interfaz de sockets: Para comunicarse de forma libre, las aplicaciones Linux poseen una

API (Application Programming Interface) sencilla que se conoce como interfaz de sockets. Esta

API data de las primeras implementaciones para redes BSD y únicamente ha requerido pequeñas

dosis de trabajo para satisfacer las necesidades de los programadores de redes en las últimas dos

décadas. Para TCP/IP en Linux la API más común es la Berkeley Socket Library, esta permite

crear un punto de comunicación, conocido como socket, luego asociar éste socket con una

dirección y un puerto, mediante la llama a la función bind(), y por ultimo ofrecer el servicio de

comunicación, a través de llamadas a funciones como: connect(), listen(), accept(), send(),

sendto(), recv(), recvfrom().

7. Direcciones TCP/IP

Cuando se tiene un conjunto de máquinas comunicadas entre ellas por medio de una red o un

conjunto de redes, los protocolos de red necesitan un modo de determinar de qué máquina

procede el mensaje y a qué máquina se dirige el mensaje. TCP/IP utiliza una dirección IP con

este fin.

La dirección IP esta compuesta por 32 bits y se representan en formato punto decimal; estas

a su vez se dividen en dos campos de tamaño variable: la dirección de la red y la dirección del

host. La dirección de la red está compuesta por los bits de orden superior y la dirección del host

está compuesta por el resto de bits.

Cabe destacar que existen direcciones especiales que se utilizan en TCP/IP como la 0.0.0.0,

la cual indica el propio host, la 255.255.255.255, la cual indica una difusión limitada a la propia

red y la 127.*.*.*, la cual indica dirección(es) interna(s) de bucle local (loopback).

También a la hora de hacer las diferentes asignaciones de direcciones IP debemos saber que

existen diferentes tipos de redes o direcciones, esto es conocido como direccionamiento por

clases de red. El espacio de direcciones esta dividido en cinco clases disjuntas:

Clase A (ver figura 7.5): Todas las direcciones de red de clase A empiezan con un 0 binario.

Pero, como ya vimos antes las direcciones de red con el primer octeto puesto a 0 o que sean 127

están reservadas. Por lo tanto, existen 126 números de red potenciales de clase A en los cuales

su primer octeto en formato punto decimal está en el rango de 1 a 126. El patrón binario es 0 + 7

bits para red + 24 bits para hosts. Y la máscara por defecto es: 255.0.0.0.

Figura 7.5: Direccionamiento para la clase A

Clase B (ver figura 7.6): Las direcciones de red de clase B comienzan con un número

binario 10, de forma que su primer número decimal está entre 128 y 191. El segundo octeto

también forma parte de la dirección de clase B, de forma que existen 2
14

 = 16.384 direcciones de

clase B. El patrón binario es 10 + 14 bits para red + 16 bits para hosts. Y la máscara por defecto

es: 255.255.0.0.

Figura 7.6: Direccionamiento para la clase B

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 178

Clase C (ver figura 7.7): Las direcciones de red de clase C comienzan con un número

binario 110, de forma que su primer número decimal está entre 192 y 223. El tercer octeto

también forma parte de la dirección de clase C, de forma que existen 2
21

 = 2.097.152

direcciones de clase C. El patrón binario es 110 + 21 bits para red + 8 bits para hosts. Y la

máscara por defecto es: 255.255.255.0.

Figura 7.7: Direccionamiento para la clase C

Clase D (ver figura 7.8): Las direcciones de red de clase D comienzan con un número

binario 1110, de forma que su primer número decimal está entre 224 y 239. Se utiliza para

asignar direcciones de multidifusión o direcciones de multicast.

Figura 7.8: Direccionamiento para la clase D

Clase E (ver figura 7.9): Las direcciones de red de clase E comienzan con un número binario

11110, de forma que su primer número decimal está entre 240 y 255. Fue desarrollada como una

clase para llevar a cabo investigaciones con el fin de encontrarle usos futuros.

Figura 7.9: Direccionamiento para la clase E

Algunos rangos de direcciones han sido reservados para que no correspondan a redes

públicas, sino a redes privadas, es decir, máquinas que se conectan entre ellas sin tener conexión

con el exterior y por lo tanto los mensajes no serán encaminados a través de Internet, lo cual es

comúnmente conocido como Intranet. Estas direcciones reservadas son para la clase A todas las

direcciones de tipo 10.*.*.*, para la clase B van desde la 172.16.*.* hasta la 172.31.*.* y para la

clase C van desde la 192.168.0.* hasta la 192.168.255.*.

8. Componentes de la dirección de red

Una LAN u otro tipo de redes tienen un grupo de direcciones especiales que se deben asignar

para que todo funcione de forma adecuada. Algunas de estas direcciones son elegidas por el

administrador, pero este debe conocer de ellas para hacer una correcta asignación de las mismas.

8.1. Dirección de la máscara de red

La primera dirección especial es la máscara de red. Por defecto, las máscaras de red de la

tabla 7.1 se utilizan para las clases de dirección principales.

Clase Máscara de red

Clase A 255.0.0.0

Clase B 255.255.0.0

Clase C 255.255.255.0

Tabla 7.1: Máscaras de red estándar

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 179

Un concepto muy importante que generalmente va de la mano con las máscaras de red es el

concepto de subred. Subred significa subdividir la parte de hosts en pequeñas redes dentro de la

misma red. Una subred toma la responsabilidad de enviar el tráfico a ciertos rangos de

direcciones IP. El número de bits que son interpretados como identificadores de la subred es

dado por la máscara de red (netmask) que esta representado por un número de 32 bits. Para

obtener el identificador de la subred, podemos hacer una operación lógica AND entre la

máscara de subred y la IP, lo cual dará la IP de la subred.

Mientras hablemos de una dirección de clase completa, sin tener en cuenta qué clase, estas

máscaras de red se quedan tal y como están. Sin embargo, cuando queremos dividir una rede en

una o varias subredes, entonces tendremos que ajustar las máscara de red para reflejar ese echo.

8.2. Dirección de red

La dirección de red es la otra mitad de la ecuación que le indica a TCP/IP cómo es de grande

una red junto con su máscara de red. Estos dos números puestos juntos en un formato binario

deben ser iguales a cero. Normalmente, si tenemos una red de clase C, su dirección de red acaba

en 0. Por ejemplo, la dirección de red para la máquina 192.168.15.12 en una LAN de clase C es

192.168.15.0.

8.3. Dirección de puerta de acceso

Una puerta de acceso es la interfaz que necesita el tráfico para viajar y alcanzar otra red, ya

sea otra parte de la LAN o de Internet. Así que, por ejemplo, si tenemos una LAN sencilla con

una máquina con un a tarjeta Ethernet gestionando la conexión a Internet, entonces esa

dirección IP de la tarjeta Ethernet es la dirección de puerta de acceso.

8.4. Dirección de difusión

La dirección de difusión es una dirección especial, ya que cada host en una red escucha todos

los mensajes, además de los que le corresponden a su propia dirección. Esta dirección permite

que datagramas, generalmente de información de encaminamiento y de mensajes de aviso,

puedan ser enviados a una red y todos los hosts del mismo segmento de red los puedan leer. Por

ejemplo, cuando ARP busca encontrar la dirección Ethernet correspondiente a una determinada

IP, éste utiliza un mensaje de en modo difusión, el cual es enviado a todas las máquinas de la

red simultáneamente. Cada host en la red lee este mensaje y compara la IP que se busca con la

propia y le retorna un mensaje al host que hizo la pregunta si hay coincidencia.

9. Configurar la red

En la siguiente sección analizaremos como se lleva a cabo la configuración de la red en un

equipo Linux, además trabajaremos con algunos archivos de configuración de red, los cuales

son secuencias de comandos de configuración de recursos de todo el sistema que se ejecutan en

el momento del arranque.

9.1. Configuración de la interfaz NIC (Network Interface Controller)

Una vez que se encuentra cargado el kernel de GNU/Linux, éste ejecuta el comando init que

a su vez lee el archivo de configuración /etc/inittab y comienza el proceso de inicialización de

los diferentes servicios, programas o registros que sean necesarios para que el sistema funcione

como el usuario quiere o como el administrador lo ha establecido. Generalmente, el inittab

contiene secuencias tales como: si::sysinit:/etc/init.d/boot, que representa el nombre del archivo

de comandos (script) que controla las secuencias de inicialización. Generalmente este script

llama a otros scripts, entre los cuales se encuentra el script de inicialización de la red.

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 180

En los sistemas Debian se ejecuta /etc/init.d/network para la configuración de la interfaz de

red y en función del nivel de arranque; por ejemplo, en el nivel 2 se ejecutarán todos los

ficheros S* del directorio /etc/rc2.d, que son enlaces al directorio /etc/initd, y en el nivel de

apagado se ejecutarán todos los ficheros K* del directorio /etc/rc2.d. De este modo, el script

está sólo una vez y de acuerdo a los servicios deseados en ese estado se crea un enlace en el

directorio correspondiente a la configuración del host-estado.

Los dispositivos de red se crean automáticamente cuando se inicializa el hardware

correspondiente. Por ejemplo, el controlador de Ethernet crea las interfaces ethX

secuencialmente cuando se localiza el hardware correspondiente.

A partir de este momento, se puede configurar la interfaz de red, lo cual implica dos pasos:

asignar la dirección de red al dispositivo e inicializar los parámetros de la red al sistema. El

comando utilizado para ello es ifconfig (InterFace CONFIGure).

Por ejemplo:

Lo cual indica configurar el dispositivo eth0 asignándole la dirección IP 192.168.110.23 y la

máscara de red 255.255.255.0. El up indica que la interfaz pasará al estado activo, si lo que se

quisiera es desactivarla deberíamos ejecutar sudo ifconfig eth0 down. El comando asume que si

algunos valores no se indican, estos tomarán los valores por defecto. En este caso, el kernel

configurará esta máquina como una máquina con una dirección de clase C y configurará la

dirección de broadcast con la dirección 192.168.110.255.

9.2. Configuración del Name Resolver

En esta sección configuraremos el Name Resolver que es el encargado de convertir nombres

como unanleon.edu.ni en direcciones como 200.64.128.1.

El archivo /etc/resolv.conf configura el sistema de resolución del nombre, especificando la

dirección de un servidor de nombres, si existe alguno, y los dominios que en los cuales se desea

buscar de forma predeterminada si un nombre de host no es un nombre de host especificado

completamente. Su formato es muy simple, una línea de texto por cada sentencia. Existen tres

palabras clave para tal fin: domain, search y nameserver.

La siguiente lista explica cada una de las palabras claves:

 domain: Aquí se debe especificar el dominio local.

 search: Aquí se debe especificar una lista de dominios alternativos.

 nameserver: Aquí se debe especificar la dirección IP del Domain Name Server.

Ejemplo de /etc/resolv.conf

$>cat /etc/resolv.conf

domain unanleon.edu.ni

search unanleon.edu.ni alternateunanleon.edu.ni

nameserver 200.64.128.4

nameserver 200.64.128.69

$> sudo ifconfig eth0 192.168.110.23 netmask 255.255.255.0 up

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 181

Un archivo importante es el /etc/host.conf, que permite configurar el comportamiento del

Name Resolver. Su importancia reside en indicar dónde se resuelve primero la dirección o el

nombre de un host. Esta consulta puede ser realizada al servidor DNS o a tablas locales dentro

de la máquina actual ubicadas en el archivo /etc/hosts.

Ejemplo de /etc/host.conf

Esta configuración indica que primero se verifique el archivo /etc/hosts antes de solicitar una

petición al DNS y también indica, en la segunda línea, que retorne todas las direcciones válidas

que se encuentren en /etc/hosts. Por lo cual, el archivo /etc/hosts es donde se colocan las

direcciones locales o también sirve para acceder a hosts sin tener que consultar al DNS. La

consulta es mucho más rápida, pero tiene la desventaja de que si el host cambia, la dirección

será incorrecta. En un sistema correctamente configurado, sólo deberán aparecer el host local y

una entrada para la interfaz loopback.

Ejemplo de /etc/hosts

Para el nombre de una máquina pueden utilizarse alias, que significa que esa máquina puede

llamarse de diferentes maneras para la misma dirección IP. En referencia a la interfaz loopback,

éste es un tipo especial de interfaz que le permite realizar al host conexiones consigo mismo.

Por ejemplo, para verificar que el subsistema de red funciona sin acceder a la red. Por defecto,

la dirección IP 127.0.0.1 ha sido asignada específicamente al loopback. Por ejemplo, un

comando ssh 127.0.0.1 conectará con la misma máquina. La configuración de la interfaz de

bucle local es muy fácil y generalmente la realizan los script de inicialización de red.

Ejemplo de configuración de loopback:

En la versión 2 de la biblioteca GNU (glibc2) existe un reemplazo importante con respecto a

la funcionalidad del archivo /etc/host.conf. Esta mejora incluye la centralización de información

de diferentes servicios para la resolución de nombres, lo cual presenta grandes ventajas para el

administrador. Toda la información de consulta de nombres y servicios ha sido centralizada en

el archivo /etc/nsswitch.conf, el cual permite al administrador configurar el orden y las bases de

datos de modo muy simple. En este archivo cada servicio aparece con un conjunto de opciones

donde, por ejemplo, la resolución de nombres de hosts es una de ellas. En éste se indica que el

orden de consulta de las bases de datos para obtener el IP del host o su nombre será primero el

servicio de DNS, que utilizará el archivo /etc/resolv.conf para determinar la IP del host DNS, y

en caso de que no pueda obtenerlo, utilizará el de las bases de datos local, el archivo /etc/hosts.

También se puede controlar por medio de acciones (entre corchetes) el comportamiento de cada

consulta, por ejemplo:

hosts: xfn nisplus dns [NOTFOUND = return] files

$> ifconfig lo 127.0.0.1

$> route add host 127.0.0.1 lo

$> cat /etc/hosts

127.0.0.1 localhost loopback

192.168.1.2 pirulo.remix.com

$> cat /etc/host.conf

order hosts,bind

multi on

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 182

Esto indica que cuando se realice la consulta al DNS, si no existe un registro para esta

consulta, retorne al programa que la hizo con un cero. Puede utilizarse el „!‟ para negar la

acción, por ejemplo:

hosts dns [!UNAVAIL = return] files

9.3. Configuración del encaminamiento

Otro aspecto que hay que configurar es el encaminamiento. Si bien existe el tópico sobre su

dificultad, generalmente se necesitan unos requerimientos de encaminamiento muy simples. En

un host con múltiples conexiones, el encaminamiento consiste en decidir dónde hay que enviar

y qué se debe recibir. Un host simple con una sola conexión de red también necesita

encaminamiento, ya que todos los hosts disponen de un loopback y una conexión de red. Como

se explicó en las secciones anteriores, existe una tabla llamada tabla de encaminamiento que

contiene filas con diversos campos, pero a efectos de simplicidad existen tres campos

sumamente importantes los cuales son: la dirección de destino, el interfaz por donde saldrá el

mensaje y la dirección IP a la cual debemos enviar el mensaje para que este llegue a su destino

(Next Host o gateway).

Consideremos, por ejemplo la red de la figura 7.10 en donde suponemos que nuestro host

está en una red clase C con dirección 192.168.110.0 y tiene la dirección IP 192.168.110.2 y el

router con conexión a Internet es el 192.168.110.1. La configuración será:

Figura 7.10: Esquema de ejemplo de red

Primero configuramos la interfaz:

Luego, indicamos que todos los datagramas salientes del host 192.168.110.2 y que lleven

como destino cualquier host dentro de la red 192.168.110.0 deberán ser enviados por el

dispositivo eth0 del propio host:

$> sudo ifconfig eth0 192.168.110.2 netmask 255.255.255.0 up

El comando route permite modificar la tabla de encaminamiento para realizar las tareas de

encaminamiento adecuadas. Cuando llega un mensaje, se mira su dirección destino, se compara con

las entradas en la tabla y se envía por la interfaz en la cual la dirección que mejor coincide con el

destino del paquete.

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 183

La opción -net en el comando route indica que es una ruta de red. Esta configuración

permitirá conectarse a todos los hosts dentro del segmento de red 192.168.110.0, pero ¿qué

pasará si se desea conectar con otro host fuera de este segmento? Sería muy difícil tener todas

las entradas adecuadas para todas las máquinas a las cuales se quiere conectar. Para simplificar

esta tarea, existe la ruta por defecto, que es utilizada como último recurso cuando la dirección

destino no coincide con ninguna de las entradas en la tabla:

9.4. Configuración del inetd

Uno de los aspectos que debemos configurar en la red es la configuración de los servidores y

servicios que permitirán a otro usuario acceder a la máquina local o a sus servicios. Los

programas servidores utilizarán los puertos para escuchar las peticiones de los clientes, los

cuales se dirigirán a este servicio como IP: port. Los servidores pueden funcionar de dos

maneras diferentes: standalone: En el cual el servicio escucha en el puerto asignado y siempre

se encuentra activo; o a través del inetd.

Dos archivos importantes necesitan ser configurados: /etc/services y /etc/inetd.conf.

En el archivo /etc/services se relacionan los servicios con sus correspondientes puertos y

protocolos básicos (TCP o UDP en general), ya que la identificación en el nivel de transporte se

expresa mediante la dirección IP, el número de puerto y el protocolo utilizado. Es recomendable

añadir en este archivo los nuevos servicios locales que se desarrollen.

En el archivo /etc/inetd.conf se asocia que programas servidores responderán ante una

petición a un puerto determinado.

El formato del archivo /etc/services es:

name port/protocol aliases

La siguiente lista explica cada uno de los campos:

 name: Indica el nombre del servicio.

 port/protocol: Indica el puerto donde se atiende este servicio y el protocolo que utiliza.

 aliases: Especifica un alias del nombre.

El inetd es un servidor que controla y gestiona las conexiones de red de los servicios especificados

en el archivo /etc/inetd.conf, el cual, ante una petición de servicio, pone en marcha el servidor

adecuado y le transfiere la comunicación. El objetivo de este servidor es no activar tantos servicios,

ya que los servicios de Internet pueden ser numerosos y serían muchos los procesos que estarían en

marcha aun sin haber peticiones en curso.

$> sudo route add default gw 192.168.110.1 eth0

$> sudo route add –net 192.168.110.0 netmask 255.255.255.0 eth0

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 184

Por defecto existen una serie de servicios que ya están pre-configurados. A continuación se

muestra un ejemplo de una breve parte del contenido del archivo /etc/services:

El archivo /etc/inetd.conf es la configuración para el servicio maestro de red (inetd server

daemon). Cada línea contiene siete campos separados por espacios:

service socket_type proto flags user server_path server_args

La siguiente lista explica cada uno de los campos:

 service: Nombre del servicio. Es el servicio descrito en la primera columna del archivo

/etc/services.

 socket_type: Es el tipo de socket a utilizar, donde los valores posibles son: stream

(cuando se utiliza TCP), dgram (cuando se utiliza UDP), raw, rdm, o seqpacket.

 proto: Es el protocolo válido para esta entrada, este debe coincidir con el de

/etc/services.

 flags: Especifica el modo de servicio que puede ser secuencial o paralelo, es decir,

indica la acción que se debe tomar cuando existe una nueva conexión sobre un servicio

que se encuentra atendiendo a otra conexión, wait (modo secuencial) le dice a inetd no

poner en marcha un nuevo servidor o nowait (modo paralelo) significa que inetd debe

poner en marcha un nuevo servidor.

 user: Será el usuario con el cual se identificará quien ha puesto en marcha el servicio.

 server_path: Es la dirección absoluta del ejecutable del servidor. Cuando se trata de un

servicio interno de inetd, se escribirá internal en este campo. Pero si se quiere utilizar el

cortafuego tcpd se incluirá /usr/sbin/tcpd en este campo.

 server_args: Son argumentos posibles que serán pasados al servidor.

El símbolo de # indica que lo que existe a continuación es un comentario.

$> head –n 11 /etc/services

tcpmux 1/tcp # TCP port service multiplexer

echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

ftp 21/tcp

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

24 - private

smtp 25/tcp mail

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 185

Un ejemplo de algunas líneas del archivo /etc/inetd.conf son:

Es importante destacar que existe una versión mejorada del servidor inetd, esta versión

mejorada es conocida con el nombre de xinetd el cual se caracteriza por brindar una mayor

garantía de seguridad. Este servidor es el que se suele distribuir con las últimas versiones de

GNU/Linux. El archivo de configuración del servidor xinetd es el /etc/xinetd.conf, en este

archivo sólo figuran detalles generales como el número máximo de clientes conectados

simultáneamente y la información de seguridad a almacenar, el resto de parámetros aparecerá en

el directorio señalado en la última línea.

Un ejemplo de algunas líneas del archivo /etc/xinetd.conf son:

Por lo tanto, el directorio /etc/xinetd.d contendrá un fichero por cada servicio, denominados

precisamente con el nombre del servicio. Se expresa con un conjunto de atributos y valores

asignados.

La siguiente lista explica cada uno de los atributos esenciales que aparecen:

 socket type: El valor será stream para el protocolo TCP y dgram para el protocolo UDP.

 wait: Especifica el modo de servicio, el cual puede ser secuencial o paralelo. Lo único

que se debe especificar es yes para que el modo sea secuencial o no para que el modo

sea paralelo. TCP utiliza modo paralelo, por lo que se debe utilizar la opción no.

 user: Es la cuenta correspondiente al servicio. Suele ser root, aunque se suelen utilizar

usuarios especiales para algunos servicios o para mejorar la seguridad.

 server: Especifica la dirección absoluta del ejecutable del servidor. Los servidores

suelen encontrarse en /usr/sbin.

$> head –n 8 /etc/xinetd.conf

defaults

{

 instances = 60

 log_type = SYSLOG authpriv

 log_on_success = HOST PID

 log_on_failure = HOST PID

}

includedir /etc/xinetd.d

Recordar que # significa comentario, por lo cual, si un servicio tiene # antes del nombre, significa

que no se encuentra disponible. Cabe mencionar que al realizar cualquier cambio en este archivo, se

deberá reiniciar el servidor inetd para que los cambios tengan efectos.

$> cat /etc/inetd.conf

telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd

fsp dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.fspd

shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd

login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind

exec stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rexecd

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 186

 disable: Especifica la deshabilitación del servicio. Cuando un servicio se quiere

cancelar se debe especificar la opción yes.

Por ejemplo, el archivo /etc/xinetd.d/telnet tendría el siguiente contenido:

La función de la última línea es muy importante, ya que permite desactivar el servicio en

cuestión. Mientras que en inetd.conf un servicio se desactiva comentándolo con el símbolo #,

aquí se con sigue con disable=yes, pero ahora en el fichero de servicio no en el xinetd.conf.

9.5. Configuración adicional: /etc/protocols y /etc/networks

Existen otros archivos de configuración que en la mayoría de los casos no se utilizan pero

que pueden ser interesantes. El /etc/protocols es un archivo que relaciona identificadores de

protocolos con nombres de protocolos, de esta manera, los programadores pueden especificar

los protocolos por sus nombres en los programas.

Ejemplo de /etc/protocols:

El archivo /etc/networks tiene una función similar a /etc/hosts, pero con respecto a las redes,

este presenta una lista de los nombres y direcciones de redes tanto propias como externas. El

comando route hace uso de este archivo para especificar una red por su nombre en lugar de por

su dirección.

Ejemplo de /etc/networks:

$> cat /etc/networks

loopnet 127.0.0.0

localnet 192.168.0.0

amprnet 44.0.0.0

$> head –n 4 /etc/protocols
ip 0 IP # internet protocol, pseudo protocol number

#hopopt 0 HOPOPT # IPv6 Hop-by-Hop Option [RFC1883]

icmp 1 ICMP # internet control message protocol

igmp 2 IGMP # Internet Group Management

Al realizar cualquier cambio tanto en el archivo /etc/xinetd.conf como en los archivos de servicios, es

necesario reiniciar el servidor xinetd para que los conseguir que los cambios tengan efectos.

$> cat /etc/xinetd.d/telnet

service telnet

{

 flags = REUSE

 socket type = stream

 wait = no

 user = root

 server = /usr/sbin/in.telnetd

 disable = no

}

includedir /etc/xinetd.d

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 187

9.6. Algunos aspectos de seguridad a tomar en cuenta

Es importante tener en cuenta los aspectos de seguridad en las conexiones a red, ya que una

fuente de ataques importantes se producen a través de la redes. En esta sección abarcaremos

unas cuantas recomendaciones básicas que deben tenerse en cuenta para minimizar los riesgos

inmediatamente antes y después de configurar la red en nuestro sistema.

No debemos activar o dejar activos aquellos servicios que se encuentran en /etc/inetd.conf

que no utilizaremos, podemos insertar un # antes del nombre para evitar fuentes de riesgo.

Modificar el archivo /etc/ftpusers para denegar que ciertos usuarios puedan establecer una

conexión vía ftp con el sistema.

Modificar el archivo /etc/securetty para indicar desde qué terminales, un nombre por línea,

por ejemplo: tty1 tty2 tty3 tty4, se permite la conexión del superusuario root. Desde las

terminales restantes, root no podrá conectarse.

El archivo /etc/hosts.equiv permite el acceso al sistema sin tener que introducir una

contraseña. Se recomienda no utilizar este mecanismo y aconsejar a los usuarios no utilizar el

equivalente desde la cuenta de usuario a través de archivo .rhosts.

10. Aplicaciones seguras

En esta sección vamos a describir dos aplicaciones de suma importancia para cualquier

administrador de sistemas Linux, estas aplicaciones llevan a cabo tareas como administración

remota de sistemas (ssh) y transferencia de archivos entre sistemas (scp). Ambas tareas son de

suma importancia en el proceso de administración, pero el problema radica en que necesitamos

de la red para llevar a cabo dichas tareas, y como es por todos conocidos la red es una de las

principales fuentes de inseguridad de los sistemas. Es por esto que en esta sección llevaremos a

cabo dichas tareas mediante aplicaciones que integran servicios de seguridad.

10.1. Secure Shell (ssh)

ssh es una aplicación diseñada para sustituir determinadas herramientas de acceso remoto

usadas tradicionalmente en los sistemas Linux como son: telnet, rsh (Remote SHell), rlogin

(Remote LOGIN) o rcp (Remote CoPy). Dicha sustitución es producto de que estas

herramientas tradicionales no integran servicios de seguridad entre las comunicaciones, algo que

si se consigue con ssh.

El nombre de esta aplicación es la abreviatura de Secure SHell, que viene a significar una

versión segura del programa Remote SHell.

La aplicación ssh utiliza el protocolo del mismo nombre para llevar a cabo una transmisión

segura de los datos. Este protocolo se sitúa directamente por debajo de la capa de transporte (ver

figura 7.11) y proporciona servicios análogos a los del protocolo SSL (Secure Sockets

Layer)/TLS (Transport Layer Security) útiles para conseguir comunicaciones seguras con http.

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 188

Figura 7.11: Estructura de la capa de transporte ssh

ssh sirve para acceder a máquinas remotas a través de una red. Permite manejar por completo

la computadora mediante un intérprete de comandos, y también es capaz de redirigir el tráfico

de X para poder ejecutar programas gráficos si se posee un servidor X arrancado.

Además de la conexión a otras máquinas, ssh nos permite copiar datos de forma segura, tanto

ficheros sueltos como simular sesiones ftp cifradas. También nos permite pasar los datos de

cualquier otra aplicación por un canal seguro utilizando túneles.

El autor de la primera implementación de ssh fue Tatu Ylönen de la Universidad

Tecnológica de Helsinki, él publicó en el año de 1995 la especificación de la versión 1 del

protocolo. Desde entonces se ha trabajado en la especificación de una nueva versión del

protocolo, específicamente sobre la versión 2.0. Aunque la funcionalidad que proporciona esta

nueva versión es básicamente la misma que la anterior, la nueva versión incorpora muchas

mejoras y es sustancialmente distinta de la anterior. La versión antigua y la nueva del protocolo

habitualmente son referenciadas como ssh1 y ssh2, respectivamente.

10.1.1. Características del protocolo ssh

ssh proporciona los siguientes servicios de seguridad los cuales son equivalentes a los del

protocolo SSL/TLS.

Confidencialidad. ssh sirve para comunicar datos, que habitualmente son la entrada de una

aplicación remota y la salida que genera, o bien la información que se transmite por un puerto

redirigido, y la confidencialidad de estos datos se garantiza mediante el cifrado.

En ssh se aplica un cifrado simétrico a los datos y, por lo tanto, será necesario realizar

previamente un intercambio seguro de claves entre cliente y servidor. En ssh2 se pueden utilizar

algoritmos de cifrado distintos en los dos sentidos de la comunicación.

Un servicio adicional que proporciona ssh es la confidencialidad de la identidad del usuario.

En ssh la autenticación del usuario se realiza cuando los paquetes ya se mandan cifrados. Por

otro lado, ssh2 también permite ocultar ciertas características del tráfico como, por ejemplo, la

longitud real de los paquetes.

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 189

Autenticación de entidad. El protocolo ssh proporciona mecanismos para autenticar tanto el

ordenador servidor como el usuario que se quiere conectar. La autenticación del servidor suele

realizarse conjuntamente con el intercambio de claves. En ssh2 el método de intercambio de

claves se negocia entre el cliente y el servidor, aunque actualmente sólo hay uno definido,

basado en el algoritmo de Diffie-Hellman.

Para autenticar al usuario existen distintos métodos; dependiendo de cuál se utilice, puede

ser necesaria también la autenticación del ordenador cliente, mientras que otros métodos

permiten que el usuario debidamente autenticado acceda al servidor desde cualquier ordenador

cliente.

Autenticación de mensaje. En ssh2 la autenticidad de los datos se garantiza añadiendo a

cada paquete un código MAC calculado con una clave secreta. También existe la posibilidad de

utilizar algoritmos MAC distintos en cada sentido de la comunicación.

Cabe destacar que ssh también está diseñado con los siguientes criterios adicionales:

Eficiencia. ssh contempla la compresión de los datos intercambiados para reducir la longitud

de los paquetes. ssh2 permite negociar el algoritmo que se utilizará en cada sentido de la

comunicación, aunque solamente existe uno definido en la especificación del protocolo. Este

algoritmo es compatible con el que utilizan programas como gzip.

En ssh no está prevista la reutilización de claves de sesiones anteriores: en cada nueva

conexión se vuelven a calcular las claves. Esto es así porque ssh está pensado para conexiones

que tienen una duración más o menos larga, como suelen ser las sesiones de trabajo interactivas

con un ordenador remoto. De todas formas, ssh2 define mecanismos para intentar acortar el

proceso de negociación.

Extensibilidad. En ssh2 también se negocian los algoritmos de cifrado, de autenticación de

usuario, de MAC, de compresión y de intercambio de claves. Cada algoritmo se identifica con

una cadena de caracteres que representa su nombre. Los nombres pueden corresponder a

algoritmos oficialmente registrados, o bien a algoritmos propuestos experimentalmente o

definidos localmente.

10.1.2. ¿Por qué usar ssh?

ssh proporciona una exhaustiva autenticación y comunicaciones seguras en redes no seguras,

es decir, que se usan técnicas de cifrado para que la información vaya de manera no legible y

ninguna tercera persona pueda descubrir el usuario y contraseña de la conexión ni lo que se

escribe durante toda la sesión.

ssh es compatible con varios algoritmos de cifrado, como pueden ser: BlowFish, Triple DES,

IDEA, RSA, etc. dicha compatibilidad es algo más que un sencillo adorno de ventanas. Los

autores incorporaron esta compatibilidad para crear un protocolo más flexible y ampliable. La

arquitectura que implementa ssh es tal que al protocolo básico le da igual el algoritmo que se

utilice. Por tanto, si posteriormente se descubre que uno o varios de los algoritmos de cifrado

compatibles con ssh tienen defectos en sus fundamentos o han sido hackeados, es posible

cambiar rápidamente de uno a otro sin modificar el protocolo clave y las funciones de ssh.

ssh no modifica mucho las rutinas. En todos los aspectos, iniciar una sesión de ssh es tan

sencillo como iniciar una sesión de telnet. Tanto la autenticación como el posterior cifrado de

sesiones son transparentes.

Administración de Sistemas Operativos Tema 7: Sistemas de red

Página | 190

10.1.3. Ejemplos de uso

Conectarnos remotamente:

O también:

Ejecutar un único comando sin necesidad de conectarse en el sistema:

Ejecutar una aplicación X en el sistema remoto pero utilizando el display local:

10.2. Secure Copy (scp)

scp es una aplicación diseñada para llevar a cabo transferencias seguras de archivos

informáticos entre un host local y otro host remoto, todo esto haciendo uso del protocolo ssh

visto en la sección anterior.

El término scp puede referir a dos conceptos relacionados, el protocolo scp o la aplicación

scp.

10.2.1. El Protocolo scp

Es un protocolo simple que deja al servidor y al cliente tener múltiples conversaciones sobre

una conexión TCP normal. Esta diseñado para ser sencillo y fácil de implementar.

En el protocolo los datos son cifrados durante su transferencia, para evitar que potenciales

packet sniffers extraigan información útil de los paquetes de datos. Sin embargo el protocolo por

si mismo no provee autentificación y seguridad; sino que espera que el protocolo subyacente, el

cual es ssh, lo asegure.

El protocolo scp implementa la transferencia de archivos únicamente. Para ello se conecta al

host usando ssh y allí ejecuta un servidor scp. Generalmente el programa scp del servidor es el

mismo que el del cliente.

Para realizar el envió de archivos, el cliente proporciona al servidor los archivos que desea

subir y opcionalmente puede incluir otros atributos, como pueden ser permisos, fechas, etc.

Para descargar archivos, el cliente envía una solicitud por los archivos que desea descargar.

El proceso de descarga está dirigido por el servidor y es él, el que se encarga de la seguridad de

los mismos.

El parámetro usuario debe corresponder con un usuario existente en la máquina remota.

$> ssh –X <usuario>@<DireccioIP> <Aplicación>

$> ssh <usuario>@<DireccioIP> <Comando>

$> ssh –l <usuario> <DireccioIP>

$> ssh <usuario>@<DireccioIP>

Tema 7: Sistemas de red Administración de Sistemas Operativos

Página | 191

10.2.2. La aplicación scp

El cliente scp más ampliamente usado es la aplicación scp del intérprete de comandos, que es

incorporado en la mayoría de las implementaciones de ssh. La aplicación scp es el análogo

seguro del comando rcp.

10.2.3. Ejemplos de uso

Copiar un archivo desde el ordenador remoto al ordenador local:

Copiar un archivo desde el ordenador local al ordenador remoto:

Copiar una carpeta completa desde el ordenador remoto al ordenador local:

Copiar una carpeta completa desde el ordenador local al ordenador remoto:

Si la conexión es lenta y lo que transmitimos es fácilmente comprimible:

El parámetro usuario debe corresponder con un usuario existente en la máquina remota.

$> scp –C <ArchivoLocal> <usuario>@<DireccionIP>:<RutaRemota>

$> scp –r <RutaLocal/CarpetaLocal> <usuario>@<DireccionIP>:<RutaRemota>

$> scp –r <usuario>@<DireccionIP>:<RutaRemota/CarpetaRemota>

$> scp <ArchivoLocal> <usuario>@<DireccionIP>:<RutaRemota>

$> scp <usuario>@<DirecionIP>:<RutaRemota/ArchivoRemoto> <RutaLocal>

Página | 192

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 193

TEMA 8: EJECUTAR UN SISTEMA SEGURO

Objetivos

 Comprender las formas básicas de ataques a los que se deben enfrentar los

administradores de sistemas.

 Capacitar en las técnicas de prevención básicas para evitar ciertos ataques en los

sistemas Linux.

 Conocer y diferenciar las herramientas que sirven al administrador para mantener la

seguridad del sistema.

Contenido

1. Una perspectiva sobre la seguridad del sistema

2. Algunos aspectos de seguridad a tomar en cuenta

2.1. Cierre de demonios de red no deseados

2.2. Evitar las amenazas de ingeniería social

2.3. Cumplimiento de las normas de seguridad

3. Las 10 cosas que nunca se deben hacer

4. Configuración del envoltorio TCP

4.1. Utilizar envoltorios TCP con inetd

4.2. Utilizar envoltorios TCP con xinetd

4.3. /etc/hosts.allow y /etc/hosts.deny

5. Cortafuegos: filtrado de paquetes IP

6. Otros elementos útiles para asegurar nuestro sistema

6.1. El servicio finger para descubrimiento de usuarios

6.2. Fortaleza de contraseñas con crack

6.3. Comprobación proactiva de contraseñas

6.3.1. Comprobador proactivo de contraseñas: passwd+

6.3.2. Comprobador proactivo de contraseñas: anlpasswd

6.3.3. Comprobador proactivo de contraseñas: npasswd

6.4. Mapeo de puertos con nmap

6.5. Sistemas de detección de intrusos

6.5.1. Detección de ataques en red con snort

6.6. Advertencias ante paquetes con bugs

6.7. Auditando vulnerabilidades con nessus

Bibliografía

Básica

 Matthias Kalle Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada “, Editorial Anaya Multimedia, 2006.

 Jordi Herrera Joancomartí, Joaquín García Alfaro, Xavier Perramón Tornil, “Aspectos

avanzados de seguridad en redes”, UOC Formación de Posgrado, Software libre, 2004.

Complementaria

 Dee-Ann LeBlanc, “Administración de sistemas LINUX La biblia”. Editorial ANAYA

MULTIMEDIA, 2001.

 Jack Tackett Jr. y David Gunter, “Linux Tercera Edición, Edición Especial”, Editorial

Prentice Hall, 1998.

 Ataque de denegación de servicio.

http://es.wikipedia.org/wiki/Ataque_de_denegaci%C3%B3n_de_servicio

http://es.wikipedia.org/wiki/Ataque_de_denegaci%C3%B3n_de_servicio

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 194

 Script Kiddie.

http://es.wikipedia.org/wiki/Script_kiddie

 Nmap.

http://es.wikipedia.org/wiki/Nmap
http://nmap.org/

 SNORT.

http://es.wikipedia.org/wiki/SNORT

http://www.snort.org/

 Nessus.

http://es.wikipedia.org/wiki/Nessus
http://www.nessus.org/nessus/

http://es.wikipedia.org/wiki/Script_kiddie
http://es.wikipedia.org/wiki/Nmap
http://nmap.org/
http://es.wikipedia.org/wiki/SNORT
http://www.snort.org/
http://es.wikipedia.org/wiki/Nessus
http://www.nessus.org/nessus/

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 195

En este tema vamos a analizar la seguridad básica que como buenos administradores

debemos añadir a nuestro sistema Linux. La seguridad siempre es un tema muy importante,

especialmente con el uso creciente de sistemas que se encuentran conectados permanentemente

a redes y que por lo tanto son vulnerables a los ataques remotos.

Gran parte de la seguridad del sistema depende de utilizar el sentido común en relación con

la disponibilidad de una serie de herramientas informáticas. Muchas de las mejores técnicas son

las más sencillas, aunque en muchas circunstancias son también las más ignoradas.

1. Una perspectiva sobre la seguridad del sistema

En ocasiones es difícil mantener una perspectiva equilibrada sobre la seguridad del sistema.

Los medios de comunicación o incluso sitios en Internet suelen presentar historias

sensacionalistas sobre las brechas de seguridad, especialmente cuando se ven implicadas

empresas o instituciones que son mundialmente conocidas. Por otro lado, administrar la

seguridad puede ser una tarea técnicamente desafiante y a la que tenemos que dedicar mucho

tiempo. Muchos usuarios de Internet creen que su sistema no contiene datos valiosos, por lo que

la seguridad no les supone un problema, lo cual es una mala suposición. Otros dedican mucho

esfuerzo para proteger sus sistemas frente a un uso no autorizado. Independientemente del

espectro al que pertenezcamos, debemos tener en cuenta que siempre hay un riesgo de

convertirnos en el objetivo de un ataque de seguridad. Existen muchas razones por las que

alguien pudiera estar interesado en romper la seguridad de nuestro sistema, el valor de los datos

que contienen los sistemas es sólo una de ellas.

Anteriormente, la seguridad tradicional del sistema se centraba en los sistemas a los que se

podía acceder a través de un terminal conectada por cable o a través de una consola del sistema.

En este ámbito, los riesgos más importantes provenían normalmente de la propia organización

propietaria del sistema y la mejor forma de defensa era la seguridad física, en la que consolas,

terminales, y servidores del sistema se colocaban en estancias cerradas con llave. Incluso

cuando los sistemas de equipos empezaron a conectarse en red, el acceso seguía siendo muy

limitado. Las redes que se utilizaban normalmente eran muy caras como para acceder a ellas o

eran redes cerradas que no permitían conexiones a servidores de cualquier parte. Hoy en día, la

popularidad de Internet ha hecho surgir una nueva generación de problemas de seguridad

basados en la red. Un equipo conectado a Internet está abierto a un abuso potencial por parte de

decenas de millones de equipos de todo el mundo. Con la accesibilidad mejorada y tan amplia

llega un incremento en el número de individuos antisociales que intentan causar un perjuicio. En

Internet, existen diversas formas de comportamiento antisocial de interés para los

administradores de sistemas. Las más comunes son las siguientes:

 Denegación de servicio (DoS, Denial of Service): Este tipo de ataque puede ser

dirigido a un sistema de ordenadores o a una determinada red, causa que un servicio o

recurso sea degradado o interrumpido a los usuarios legítimos. Normalmente provoca la

degradación o pérdida, en el peor de los casos, de la conectividad de la red por el

consumo del ancho de banda de la red de la víctima o sobrecarga de los recursos

computacionales del sistema de la víctima.

Un ataque de DoS implica normalmente generar una gran cantidad inusual de

solicitudes de servicios proporcionados por un sistema. Esta ráfaga de actividad puede

hacer que el sistema agote su memoria, potencia de procesamiento o ancho de banda de

la red. Otra forma es proporcionar servicio con una entrada poco habitual para explotar

Los usuarios son libres de tener su propia opinión sobre la cantidad de esfuerzo que dedican a la

implementación de medidas de seguridad sobre sus sistemas. Pero los administradores no pueden ni

deben darse esos lujos, pues deben ser siempre precavidos, cautelosos y oportunos.

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 196

un fallo y producir un volcado de memoria. Como resultado, se rechazan las solicitudes

posteriores al sistema o se degrada el rendimiento del mismo hasta un punto inusual.

Para que funcione este tipo de ataque, un atacante tiene que explotar un servicio mal

diseñado o generar muchas solicitudes que excedan la capacidad del servicio.

Una forma más insidiosa de ataque DoS es la denegación de servicio distribuido (DDoS,

Distributed Denial of Service). En esta forma de ataque, se utilizan muchos equipos

para generar solicitudes a un servicio. Así se incrementa el daño del ataque DoS de dos

formas: la primera sobrecargando el objetivo con un gran volumen de tráfico y la

segunda ocultando al autor del ataque tras miles de participantes involuntarios. Al

utilizar una gran cantidad de equipos para lanzar un ataque, los ataques DDoS son

particularmente difíciles de controlar y solucionar cuando se han producido. Incluso los

usuarios a los que no les preocupa la seguridad de sus propios datos, deben protegerse

frente a este tipo de ataque para minimizar el riesgo de convertirse en un cómplice

involuntario de un ataque DDoS frente a un tercero.

 Intrusión: Este tipo de ataque accede al sistema adivinando las contraseñas o

comprometiendo algún servicio. Cuando el intruso consigue acceder al sistema, puede

robar datos, utilizar el sistema de destino para lanzar ataques sobre algún otro sistema,

etc.

Este tipo de ataque es conocido a veces como cracking, y es la que la mayoría de

usuarios asocian con la seguridad. Los términos cracking y hacking normalmente se

confunden en su uso popular. El primero implica una conducta no ética o ilegal, como

comprometer la seguridad del sistema, y el segundo es una palabra genérica que

significa programar, ajustar o tener un gran interés en algo. Los medios de

comunicación normalmente utilizan el término hacking para referirse a cracking. Las

empresas e instituciones normalmente guardan datos confidenciales en sistemas de

equipos accesibles a través de la red. Un ejemplo común de preocupación para el

usuario medio de Internet es el almacenamiento de los detalles de tarjetas de crédito en

los sitios web. Siempre que haya dinero implicado, existe un incentivo para que las

personas deshonestas obtengan acceso y roben o utilicen este tipo de datos

confidenciales para su propio provecho.

 Escucha clandestina de paquetes: Este tipo de ataque implica interceptar los datos de

otros usuarios y obtener las contraseñas u otra información confidencial. Algunas veces,

esta forma de ataque también implica la modificación de los datos interceptados que

viajan por la red. La escucha clandestina de paquetes normalmente implica espiar y

analizar a escondidas las conexiones de red, pero también se puede comprometer un

sistema para que intercepte las llamadas de bibliotecas o del sistema, que transportan

información confidencial, por ejemplo: las contraseñas.

 Virus, gusanos y troyanos: Estos ataques se ven apoyados por los usuarios del sistema

ya que estos ataques suelen suceder cuando los usuarios del sistema ejecutan programas

suministrados por el atacante. Los programas se pueden recibir a través de un mensaje

de correo electrónico, de un sitio web o incluso de otro programa, aparentemente

inofensivo, recuperado de alguna parte de Internet e instalado localmente.

Algunas veces, los métodos que se utilizan para obtener un acceso no autorizado o para

interrumpir un servicio son muy ingeniosos, por no decir poco éticos. Normalmente el diseño de

un mecanismo de intrusión requiere un buen conocimiento del sistema de destino para descubrir

un fallo explotable. Normalmente, tras el descubrimiento de un mecanismo de intrusión, éste se

empaqueta en forma de rootkit, los cuales son un conjunto de programas o secuencias de

comandos que cualquiera con conocimientos básicos puede utilizar para explotar una

determinada brecha de seguridad. La gran mayoría de ataques de intrusión los lanzan los

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 197

“chicos de la secuencia de comandos” (script kiddies), que utilizan estos conjuntos de intrusión

empaquetados sin ningún conocimiento real del sistema al que están atacando. Lo bueno es que

normalmente es muy fácil para un administrador de sistemas ejecutar una protección frente a

este tipo de ataques muy conocidos.

2. Algunos aspectos de seguridad a tomar en cuenta

Podemos hacer muchas cosas para asegurar nuestro sistema Linux de los riesgos de

seguridad más básicos. Evidentemente, dependiendo de la configuración del sistema, de la

forma en la que este se va a utilizar, de la forma en que la que se va a acceder, de los tipos de

usuarios dentro del mismo, etc. puede que tengamos que seguir algunos pasos adicionales,

basados en el nivel de seguridad que queremos aplicar sobre el sistema. En esta sección vamos a

analizar brevemente algunos aspectos básicos que debemos tener en cuentan para asegurar

nuestro sistema Linux.

2.1. Cierre de demonios de red no deseados

El primer paso para asegurar un sistema Linux es cerrar o deshabilitar todos los demonios y

servicios de red que no se vayan a necesitar. Básicamente, cualquier puerto de red (externo) al

que está escuchando el sistema por conexiones, es un riesgo, ya que podría haber una

explotación de seguridad frente al demonio que sirve dicho puerto. La forma más rápida de

descubrir cuáles son los puertos abiertos es utilizar: sudo netstat –an.

Por ejemplo:

En este ejemplo podemos ver que este sistema esta escuchando conexiones en los puertos

139, 6000 y 22. Si examinamos el archivo /etc/services normalmente podemos ver qué

demonios están asociados con dichos puertos. En este caso son el servicio de sesión de

NETBIOS (puerto 139), el sistema X Window (puerto 6000) y el demonio ssh (puerto 22).

Si en nuestro sistema observamos que existen muchos otros puertos abiertos, para servicios

como telnetd, sendmail, etc., debemos valorar si realmente necesitamos que se estén ejecutando

dichos demonios y que estos sean accesibles desde otros ordenadores. De vez en cuando se

anuncian explotaciones de seguridad para diversos demonios y, a no ser que seamos muy

buenos manteniendo un registro de estas actualizaciones de seguridad, nuestro sistema podría

ser vulnerable a un ataque.

Normalmente, para cerrar un servicio, hay que desinstalar el paquete correspondiente al

servicio. Si deseamos mantener el cliente pero el cliente y el demonio (servidor) están

empaquetados juntos, algo que suele ser actualmente extraño en la distribuciones de Linux,

tendremos que editar los archivos de configuración apropiados para nuestra distribución y

reiniciar el sistema (para ello debemos asegurarnos de que el demonio es bueno y está cerrado).

Por ejemplo, en los sistemas Debian, muchos demonios se inician a través de secuencias de

comandos ubicados en el directorio /etc/init.d; si renombramos o eliminamos estas secuencias

de comandos, podremos evitar que se inicien los demonios correspondientes. Otros demonios se

inician a través de inetd o xinetd en respuesta a conexiones de red entrantes; si modificamos la

$> sudo netstat -an

Conexiones activas de Internet (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 198

configuración de estos sistemas, podremos limitar el conjunto de demonios que se ejecutan en el

sistema.

Si es absolutamente necesario que se ejecute un servicio en nuestro sistema, como por

ejemplo el servidor X, debemos buscar la forma de evitar que las conexiones a dichos servicios

se realicen a través de ordenadores no deseados. Por ejemplo, puede ser más seguro permitir las

conexiones ssh sólo de determinados ordenadores de confianza, como de máquinas que estén

ubicadas en nuestra red local. En el caso del servidor X y el servidor de fuentes X que se

ejecutan en muchas máquinas de sobremesa Linux, normalmente no existe ninguna razón para

permitir las conexiones a dichos demonios desde ningún lugar que no sea el propio servidor

local. El filtrado de conexiones para dichos demonios se puede llevar a cabo a través de

envoltorios TCP o de filtrado IP.

2.2. Evitar las amenazas de ingeniería social

Con todas las funciones de seguridad con las que cuenta el sistema Linux, puede decirse que

son sus usuarios quienes más comprometen la seguridad del sistema. Después de todo, ellos

disponen de una cuenta válida la cual les brinda su acceso al sistema.

Pero, ¿qué tiene que ver esto con la ingeniería social? Y de hecho, ¿qué es la ingeniería

social? La ingeniería social se refiere al deseo de convencer a otras personas para que hagan lo

que uno quiera, influyendo sobre sus creencias o comportamientos o mediante falsedades y

mentiras. Las personas, por norma general, desean ser de utilidad. Y, si se les da la oportunidad,

normalmente tratan de ayudar lo más posible. Los crackers con buenos dotes de ingeniería

social se aprovechan de la amabilidad de las personas para conseguir la información que ellos

necesitan.

Examinemos un ejemplo. Supongamos que dentro de nuestro sistema existe un usuario

informático llamado Juan, que es un usuario medio, no un experto. Un día el usuario Juan recibe

una llamada en la oficina, similar a la que se detalla a continuación:

Usuario Juan: Diga.

Persona que llama: Buenos días, señor Juan. Soy Carlos García, de soporte técnico. Lo

llamaba para indicarle que debido a algunas limitaciones de espacio

de disco vamos a transferir algunos directorios locales de usuario a

otro disco a las 17:30 horas. Su cuenta también será transferida, por lo

que no se encontrará disponible durante algún tiempo.

Usuario Juan: Bueno, de acuerdo. De todas formas a esa hora ya estaré en mi casa.

Persona que llama: Muy bien. No olvide desconectarse del sistema antes de marcharse.

Sólo necesito comprobar un par de cosas. ¿Cuál es su identificador de

conexión?, ¿juan?

Usuario Juan: Efectivamente, es juan. Pero no se perderá ninguno de mis archivos

durante la transferencia, ¿verdad?

Persona que llama: No, señor. Pero comprobaré su cuenta de todas formas para estar

seguro. Dígame la contraseña de la cuenta para que pueda comprobar

sus archivos.

Usuario Juan: Mi contraseña es martes.

Persona que llama: Muy bien, señor Juan. Gracias por su ayuda. Me aseguraré de

comprobar su cuenta y verificar que todos los archivos se encuentren

en su sitio.

Usuario Juan: Gracias y adiós.

¿Qué ha sucedido? Sencillamente, alguien ha llamado a uno de los usuarios de nuestro

sistema por teléfono y ha obtenido un nombre válido de usuario y la contraseña durante la

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 199

conversación. Y probablemente el señor Juan llamará al día siguiente al centro de soporte

técnico y le dirán que no hay ninguna persona llamada Carlos García que trabaje allí.

¿Cómo pueden evitarse este tipo de circunstancias? Como buenos administradores del

sistema debemos informar a nuestros usuarios del riesgo que corren al liberar información

confidencial a personas que no conocen. Esto nos lleva a cabo implementaciones de políticas de

seguridad a nivel de usuarios como por ejemplo: Indicarles que nunca deben facilitar su

contraseña por teléfono a nadie, o mejor dicho que nunca deben facilitar su contraseña a

personas que no demuestren ser aquellas quien dicen ser. Otra política puede ser enseñarles a los

usuarios a nunca dejar sus contraseñas en el correo electrónico o de voz. Los crackers utilizan la

ingeniería social para convencer a los usuarios de que les den lo que les piden y ni siquiera

tienen que introducirse en nuestro sistema para conseguirlo, algo que juega a su favor pues así

no dejan vestigios de sus intentos fallidos para conseguir acceso al sistema.

2.3. Cumplimiento de las normas de seguridad

Es lógico que las empresas de la industria de defensa cuenten con complejos sistemas de

seguridad para protegerse. Igualmente, las empresas con productos muy delicados en el proceso

de diseño son consientes de la necesidad de protegerse adecuadamente de posibles filtraciones.

Pero, por ejemplo, a los empleados de una pequeña empresa distribuidora de piezas de

fontanería les puede resultar más difícil entender por qué todo el mundo está tan preocupado por

la seguridad. De hecho no se preocuparán por ella hasta que no sepan quién se ha podido llevar

un archivo que incluía una propuesta clave para la empresa.

A los empleados debería sensibilizárseles sobre la importancia de los datos que contiene(n)

la(s) máquina(s) de la empresa con la cual trabajan. De hecho, los datos almacenados allí

suponen una parte importante de la inversión de la empresa. La pérdida de los mismos podría

significar una pequeña desorganización o el caos total. Por todo esto, es fundamental hacer ver a

los empleados la necesidad de tomar las debidas precauciones de seguridad y que su descuido o

desinterés puede ser causa de despido.

Para un administrador, la seguridad de una red es una cuestión vital. Pero, ¿cómo puede estar

seguro de que los archivos y directorios se encuentran adecuadamente protegidos?

Afortunadamente existen muchas herramientas diseñadas para ayudarnos con esta labor, como,

por ejemplo, umask, cron, chmod y el propio Linux.

Los permisos suelen ser una fuente de preocupaciones para casi todos los administradores.

Los administradores más novatos normalmente hacen más difícil el acceso a permisos y luego

atienden las llamadas de aquellos usuarios que dicen no poder acceder a un archivo que

necesitan o dicen no poder ejecutar un programa en el sistema. Después de algún tiempo, estos

administradores facilitan los permisos hasta que todo el mundo puede hacer cualquier cosa.

Encontrar el justo equilibrio entre las medidas que deben tomarse para proteger el sistema y las

herramientas que deben proporcionarse para que los usuarios autorizados puedan llevar a cabo

sus trabajos, no es tarea fácil y puede llegar a ser bastante frustrante.

3. Las 10 cosas que nunca se deben hacer

Se ha señalado que la seguridad es principalmente una cuestión de sentido común, por tanto,

¿cuál es este sentido común que como administradores debemos tener? A lo largo de esta

sección vamos a presentar un resumen de los errores de seguridad más comunes que como

buenos administradores de sistemas Linux no debemos cometer. Evitarlos de forma consistente

es una tarea más difícil de lo que parece.

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 200

No utilizar contraseñas simples o que se puedan adivinar con facilidad

Una de las maneras básicas por la que muchos administradores y usuarios debilitan la

seguridad del sistema es debido a la elección de contraseñas pobres o simples. Las contraseñas

constituyen nuestra primera línea de defensa contra el intruso en el sistema. Incluso el menos

entendido de los posibles intrusos sabe que si lo intenta lo suficiente tiene una posibilidad de

descubrir la contraseña de alguien. Existen programas tanto a disposición nuestra como de los

atacantes que están escritos con el objetivo de descifrar contraseñas débiles o simples, por

ejemplo: Crack.

Algunas directrices o consideraciones a tener en cuenta a la hora de elegir una buena

contraseña pueden ser:

 No utilizar palabras de diccionario: Estas se comprueban fácilmente con archivos de

texto maestros utilizando una gran variedad de programas de crack de contraseñas. Las

mejores contraseñas son las formadas por cadenas sin sentido. Una buena práctica es

utilizar contraseñas basadas en una simple regla y en una frase que sea fácil de recordar.

Por ejemplo, podemos elegir una regla que utilice la última letra de cada palabra de la

frase “María tenía una pequeña ovejita y era tan blanca como la nieve”; de ahí, la

contraseña se convertiría en aaaaayanaoae, algo que evidentemente no es fácil de

adivinar por posibles atacantes y es fácilmente recordable por nosotros.

 Utilizar combinaciones de mayúsculas y minúsculas, números y símbolos permitidos:
Muchos usuarios utilizan automáticamente letras minúsculas para escribir con

comodidad, o simplemente escriben la primera letra con mayúscula. Esto es demasiado

predecible. Cuanto más se mezclen las cosas en la contraseña, más segura resultará.

 No utilizar información personal: Alguien puede piratear un sistema porque

previamente hizo investigaciones y probó con toda la información personal de un

determinado usuario de cuenta como variantes de la contraseña. Algunos ejemplos

pueden ser: no utilizar nunca una contraseña que sea igual, o bastante parecida al: ID de

usuario, nombre, fecha de nacimiento, nombre de la empresa, nombre de mascotas

personales, etc. En resumen nada de información personal.

 No escribir la contraseña en un papel y luego esconderla en el cajón del escritorio:
Muchos usuarios tienen la mala costumbre de no poner en práctica esta regla, cabe

mencionar que por muy segura que sea la contraseña, si no cumplimos con esta regla de

nada nos servirá generar una contraseña extremadamente segura, pues le dejaremos en

bandeja de oro el acceso a las personas que estén alrededor de nuestro espacio de

trabajo.

No utilizar la cuenta de root a no ser que sea estrictamente necesario

Una de las razones por las que muchos sistemas operativos de sobremesa comunes, por

ejemplo Windows, son tan vulnerables a los ataques de virus de mensajes de correo electrónico

es la falta de un sistema de privilegios amplio, o la comodidad del usuario de ejecutar

aplicaciones con privilegios de administrador. Debemos tener cuidado cuando algunas

aplicaciones mal intencionadas requieran que se ejecuten con derechos de administrador. En

este tipo de sistemas, los usuarios son capaces de acceder a cualquier archivo, ejecutar el

programa que deseen o volver a configurar el sistema. Por ello, es fácil obligar a un usuario a

ejecutar un programa que pueda provocar un daño real en el sistema. En contraste, el modelo de

seguridad de los sistemas Linux limita un amplio rango de tareas con privilegios, como la

instalación de un nuevo software o la modificación de archivos de configuración, al usuario

root. ¡No debemos caer en la mala práctica de usar la cuenta root para todo! al hacerlo

estamos desaprovechando una de las defensas más poderosas contra los ataques de virus y

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 201

troyanos, sin mencionar los comandos rm –rf * accidentales. Debemos utilizar siempre una

cuenta de usuario normal y utilizar los comandos su o sudo para obtener un acceso temporal

como root cuando necesitemos realizar tareas con privilegios. Existe una ventaja adicional en

este limitado uso de la cuenta root: los registros. Los comandos su y sudo escriben mensajes en

el archivo de registro del sistema, específicamente en /var/log/auth.log, cuando se les llama,

mencionando el ID del usuario que ejecuta el comando así como la fecha y la hora en que se ha

llamado al comando, algo muy útil para supervisar cuando se han utilizado los privilegios de

root y quién los ha utilizado.

No compartir las contraseñas

No decir a nadie cuales son las contraseñas de acceso al sistema, nunca. Si deseamos que

alguien acceda temporalmente al sistema, lo mejor es crear una cuenta para que la utilice dicha

persona. Si realmente necesitamos confiarle la cuenta de root a otra persona, lo mejor es utilizar

el comando sudo, el cual nos permite proporcionar a los usuarios un acceso root a ciertos

comandos seleccionados por nosotros sin necesidad de revelar la contraseña de root.

No creer ciegamente en los binarios proporcionados

Aunque es un método muy cómodo para recuperar e instalar copias binarias de programas en

el sistema, siempre debemos cuestionarnos la confianza en el binario antes de ejecutarlo. Si

estamos instalando paquetes recuperados directamente de los sitios oficiales de la distribución o

de sitios de desarrollo importantes, es muy probable que el software sea seguro. Si los estamos

recuperando desde un sitio espejo no oficial, tendremos que considerar cuánto confiamos en los

administradores de dichos sitios. Es posible que exista alguien que este distribuyendo una forma

modificada del software con puertas traseras que permitan a alguien obtener acceso a nuestro

sistema. Aunque pueda parecer un punto de vista algo paranoico, cada día se suman más a la

erradicación de distribuciones de formas modificadas de software, organizaciones de

distribuciones Linux. Por ejemplo, la organización Debian está desarrollando un medio para

analizar el paquete de software para confirmar que no ha sido modificado. Otras distribuciones

están adoptando técnicas similares para proteger la integridad de su propio software

empaquetado.

Si deseamos instalar y ejecutar un programa proporcionado en forma binaria, podemos

seguir alguna técnica que nos ayude a minimizar el riesgo. Por ejemplo, en primer lugar,

ejecutar siempre los programas que no sean de confianza como un usuario distinto de root, a no

ser que el programa requiera específicamente privilegios de root para funcionar, algo que

podremos solucionar si hacemos uso de máquinas destinadas para pruebas utilizando por

ejemplo entornos de vitalización como VMware o Virtual Box. De esta forma podremos evitar

cualquier daño potencial que pueda producir el programa. Si deseamos saber lo que hace el

programa antes de ejecutarlo, podemos ejecutar el comando strings sobre los binarios. Este

comando mostrará todas las cadenas integradas que aparecen en el código. Debemos buscar

cualquier referencia a archivos o directorios importantes, como /etc/passwd o /bin/login. Si

observamos una referencia a un archivo importante, debemos preguntarnos si tiene que ver con

el propio programa. En caso contrario, debemos tener mucho cuidado. También deberíamos

considerar primero la ejecución del programa y observar su comportamiento haciendo uso de

comandos como strace o ltrace, que muestran las llamadas de bibliotecas y del sistema que está

efectuando el programa. Debemos buscar referencias inusuales al sistema de archivos o una

actividad de red poco habitual.

No ignorar los archivos de registro

Los archivos de registro del sistema son nuestros amigos y pueden indicarnos muchas cosas

sobre lo que ha sucedido o está sucediendo en el sistema. Podemos encontrar información sobre

cuándo se han realizado las conexiones de red para el sistema, quién ha estado intentando

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 202

utilizar la cuenta root y ha fallado en sus intentos, etc. Debemos revisar periódicamente los

archivos de registro y aprender a distinguir lo normal de lo poco habitual. En caso de observar

algo inusual, lo mejor es investigar.

No dejar de actualizar el sistema durante mucho tiempo

Es importante mantener actualizado el software en el sistema. Al mantener actualizado el

software del sistema nos aseguramos de haber aplicado todas las soluciones a fallos de

seguridad. La mayoría de distribuciones de Linux proporcionan un conjunto de paquetes que

sólo solucionan fallos de seguridad, por lo que no tendremos que preocuparnos de temas como

el archivo de configuración y realizarle cambios para mantener seguro el sistema. Una buena

práctica es seguirle las pistas a las actualizaciones.

No debemos olvidarnos de la seguridad física

La mayoría de brechas de seguridad son aprovechadas por personas pertenecientes a la

organización que ejecuta el sistema objetivo. La configuración de seguridad de software más

amplia en el mundo significa que nadie puede entrar en el sistema y ejecutar un disquete que

contenga un código de explotación. Si el sistema utiliza BIOS o PROM lo más recomendable es

configurar los dispositivos de arranque, debemos establecerlos para que el disquete, las unidades

de CD-ROM y cualquier otra unidad extraíble se inicien tras el disco duro. Las BIOS modernas

proporcionan apoyo para la protección con contraseña de la configuración que contienen, así

que debemos utilizarla. Estas BIOS también proporcionan la asignación de contraseñas a los

disco duros, algo que nos permite asegurar que el contenido del mismo va a poder ser

únicamente leído por el conocedor de dicha contraseña. Si podemos cerrar el gabinete o case de

la máquina que contiene el sistema con candado, debemos hacerlo. La idea es mantener

físicamente segura la máquina.

No descuidar los permisos de los archivos

Otra manera de facilitarles las cosas a los intrusos es el uso descuidado de los permisos y

otras cuestiones de este tipo del sistema de archivos. Debemos recordar que los permisos débiles

o no madurados son uno de los modos más rápidos por los que los usuarios entra en zonas del

sistema de archivos en las que no deberían entrar.

No olvidar la existencia de sitios web de seguridad

Todos los administradores de sistemas deberían visitar regularmente ciertos sitios web de

seguridad, la verdad es que existe mucha información, pero si nos tomamos en serio la

seguridad del sistema, que es lo que deberíamos hacer, es necesario que estos sitios sean

visitados. Primero, debemos tomarnos el tiempo para recorrer estos sitios con seriedad y

después, tranquilamente, debemos hacer una lista de marcadores para las secciones concretas

que deseamos comprobar regularmente. Este tipo de sistemas funciona bien hasta que

conseguimos organizar los sitios de interés.

Estos son algunos de los sitios web de seguridad general:

 CERT: Es un grupo veterano de seguridad de Internet, fundado en 1988 por DARPA

(Defense Advanced Research Projects Agency). Su función inicial era la respuesta de

emergencia de seguridad de Internet. Hoy, aplica esa riqueza de conocimientos a

investigar lo último en cuanto a necesidades de seguridad en Internet y para ayudar a

aumentar los rangos de especialistas de seguridad de Internet y equipos de respuesta de

emergencia.

Dirección: http://www.cert.org/advisories/

http://www.cert.org/advisories/

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 203

 CIAC: CIAC (Computer Incident Advisory Capability) es sólo un año más joven que

CERT, establecido en 1989 por el departamento de energía de los Estados Unidos para

ocuparse de cuestiones y educación de seguridad de Internet. Hoy, todavía trabaja con

el DOE (Department Of Energy), pero proporciona educación y una vigilancia de

tecnología a la comunidad de Internet.

Dirección: http://www.ciac.org/ciac/index.html

 rootshell: Un sitio de documentación y noticias de seguridad. Normalmente, rootshell

cuenta con una lista de elementos que incluye sitios que fueron forzados e información

a cerca de cómo ocurrió de modo que podamos asegurar mejor nuestros propios

sistemas. Existe también una colección de artículos que se encuentran relacionados con

diversas cuestiones de seguridad.

Dirección:

http://www.iss.net/security_center/advice/Underground/Hacking/Methods/Technical
/root_shell/default.htm

 SANS: SANS (System Administration, Networking and Security) es una organización de

educación y difusión de noticias de seguridad. Produce una serie de resúmenes online,

libros y papeles físicos, y conferencias de educación de seguridad.

Dirección: http://www.sans.org/

 CVE: CVE (Common Vulnerabilities and Exposures) son siglas que se empiezan a ver

cada vez más junto a las últimas vulnerabilidades o exploits encontrados,

independientemente del tipo de problema o del sistema operativo al que hagan

referencia. Básicamente consiste en definir una forma común y estándar de llamar a las

vulnerabilidades o exploits. CVE no debe ser considerada como una base de datos de

vulnerabilidades, sino más bien como una especie de listado o diccionario de

vulnerabilidades con referencias a los anuncios o avisos oficiales desarrollados por una

gran multitud de empresas o entidades relacionadas con la seguridad informática, Tales

como: CISCO, COMPAQ, DEBIAN, CERT, FreeBSD, IBM, MANDRAKE, NetBSD,

OPENBSD, REDHAT, etc.

Dirección: http://cve.mitre.org/

 hispasec: Nos brinda la vulnerabilidad más destacada del día, esto nos permitirá estar al

tanto en cuanto a vulnerabilidades se refiere y por ende prepararnos para búsqueda de

parches o actualizaciones.

Dirección: http://www.hispasec.com/

Nunca llevar a cabo una administración remota sin un shell seguro

Tenemos a disposición una variedad de shells seguros en Linux. Cada uno tiene sus ventajas

y sus desventajas. Sin embargo, uno se mantiene firme en la esfera de la seguridad: ssh, el shell

seguro.

Cabe destacar que si hacemos uso de manera regular de telnet o rlogin para llevar a cabo una

administración remota, estaremos entregando nuestro sistema a los posibles atacantes, es por eso

que si no deseamos ser considerados unos pésimos administradores de sistemas Linux, jamás,

pero jamás, debemos hacer uso de telnet o rlogin. Pues para llevar a cabo una administración

remota deberíamos hacer efectivo el uso de ssh, siempre. La filosofía de hacer uso de ssh es que

toda comunicación entre dos máquinas siempre es codificada, algo que con telnet o rlogin no

sucede, de esta manera evitamos que existan personas que puedan husmear nuestras

comunicaciones con el fin de observar y entender lo que estamos haciendo.

http://www.ciac.org/ciac/index.html
http://www.iss.net/security_center/advice/Underground/Hacking/Methods/Technical/root_shell/default.htm
http://www.iss.net/security_center/advice/Underground/Hacking/Methods/Technical/root_shell/default.htm
http://www.sans.org/
http://cve.mitre.org/
http://www.hispasec.com/

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 204

4. Configuración del envoltorio TCP

Hemos explicado anteriormente que la conexión de nuestro sistema a una red aumenta

considerablemente el riesgo de ataques. Tras presentar las consideraciones de sentido común, es

el momento de examinar con más detalle la seguridad básica de una red. En esta sección vamos

a analizar un método simple, aunque efectivo, de reducir el riesgo de accesos no deseados a la

red utilizando una herramienta denominada envoltorio TCP. Este mecanismo envuelve un

mecanismo existente, como el servidor de correo, supervisando sus conexiones de red y

rechazando las conexiones de sitios no autorizados. Éste es un método muy sencillo de añadir

un control de acceso a los servicios que originalmente no estaban diseñados para ello, y

normalmente se utilizan junto con los demonios inetd o xinietd.

Los envoltorios TCP son equivalentes a los guardas de seguridad que se encuentran

protegiendo la entrada de las fiestas o locales de diversión importantes. Al llegar un individuo,

se encontrará con dicho guarda, que le pedirá su nombre y dirección. El guarda consultará la

lista de invitados y, solamente si dicho individuo se encuentra en ella, el guarda se hará a un

lado para permitirle que entre a la fiesta.

Cuando se efectúa una conexión de red a un servicio protegido por envoltorios TCP, con lo

primero que nos encontramos es con el envoltorio. Éste comprueba el origen de la conexión de

red utilizando el nombre de host o la dirección de origen y consulta una lista que describe quién

puede acceder. Si el origen coincide con una entrada en la lista, el envoltorio se aparta del

camino y permite que la conexión de red acceda al programa de demonio real.

Existen dos formas de utilizar envoltorios TCP, dependiendo de la distribución de Linux y de

la configuración. Si estamos utilizando el demonio inetd para administrar servicios, podemos

comprobar si existe el archivo /etc/inetd.conf, los envoltorios TCP se implantan utilizando un

demonio especial denominado tcpd. Si estamos utilizando en su lugar el demonio xinetd,

podemos comprobar si existe el directorio /etc/xinetd.d, xinetd normalmente está configurado

para utilizar directamente envoltorios TCP. En las siguientes secciones examinaremos cada

caso.

4.1. Utilizar envoltorios TCP con inetd

Si nuestro sistema utiliza el demonio inetd para abrir servicios de red, puede que tengamos

que editar el archivo /etc/inetd.conf para poder utilizar envoltorios TCP. Vamos a utilizar el

demonio de finger, in.fingerd, como ejemplo. La idea básica es que en lugar de ejecutar el

demonio in.fingerd, inetd labore en su lugar con el demonio tcpd. Éste ejecuta la operación del

envoltorio TCP y después ejecuta en su lugar in.fingerd, si se acepta la conexión.

La configuración de envoltorios TCP requiere un cambio muy sencillo en el archivo

/etc/inetd.conf. Para el demonio finger, podemos tener una entrada como la siguiente en este

archivo:

$> cat /etc/inetd.conf

#/etc/in.fingerd finger daemon

finger stream tcp nowait root /usr/sbin/in.fingerd in.fingerd

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 205

Para proteger al demonio finger con tcpd, simplemente debemos modificar la entrada

/etc/inetd.conf como sigue:

Así conseguimos que se ejecute el comando tcpd en lugar del comando in.fingerd real. El

nombre de la ruta de acceso completa del demonio finger se pasa a tcpd como un argumento y

tcpd utiliza este argumento para abrir el demonio real tras haber confirmado que se permite el

acceso.

Tendremos que realizar estos cambios para cada uno de los demonios que deseemos

proteger.

4.2. Utilizar envoltorios TCP con xinetd

xinetd es un reemplazo para inetd que están adoptando algunas distribuciones, como Red

Hat. Normalmente, xinetd tiene una compatibilidad integrada para admitir envoltorios TCP, por

lo que lo único que tendremos que hacer es modificar los archivos de configuración del

envoltorio TCP (/etc/hosts.allow y /etc/hosts.deny) tal y como se describe en la siguiente

sección.

4.3. /etc/hosts.allow y /etc/hosts.deny

Los envoltorios TCP utilizan dos archivos de configuración: /etc/hosts.allow y

/etc/hosts.deny. Estos archivos se utilizan para especificar las reglas de acceso para cada

demonio de red protegido con los envoltorios TCP.

Cuando se llama a un envoltorio TCP, lo primero que se hace es obtener la dirección IP del

host que se está conectando e intenta buscar su nombre de host utilizando una búsqueda DNS

inversa. A continuación, se consulta el archivo /etc/hosts.allow para comprobar si este host en

concreto puede acceder al servicio solicitado. Si se encuentra una coincidencia, se permite el

acceso y se llama al demonio real. Si no se encuentra ninguna coincidencia en el archivo

/etc/hosts.allow, entonces se procede a consultar el archivo /etc/hosts.deny para comprobar si

este host tiene denegado específicamente el acceso. Si se encuentra aquí una coincidencia, se

cierra la conexión. Si no se encuentra ninguna coincidencia en ninguno de los dos archivos, se

concede el acceso. Esta simple técnica es lo suficientemente eficaz como para cubrir la mayoría

de requerimientos de acceso.

La sintaxis de los archivos /etc/hosts.allow y /etc/hosts.deny es muy simple. Cada archivo

contiene un conjunto de reglas. Cada regla ocupa generalmente una línea pero se puede dividir

en varias líneas utilizando una barra invertida al final de la línea.

Cada regla sigue la siguiente forma general:

lista_demonios : lista_clientes : comando_shell

La siguiente lista explica cada uno de los campos:

 lista_demonios: Es una lista de demonios separados por comas a los que se aplican las

reglas. Los demonios se especifican utilizando su nombre de comando base, es decir, el

$>sudo vim /etc/inetd.conf

#/etc/in.fingerd finger daemon

#finger stream tcp nowait root /usr/sbin/in.fingerd in.fingerd

finger stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.fingerd

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 206

nombre del programa real del demonio ejecutable que se ejecuta para conseguir el

servicio solicitado.

 lista_clientes: Es una lista de nombres de hosts o direcciones IP separados por comas

para los que se aplica la regla.

 comando_shell: Es opcional y especifica un comando que se va a ejecutar cuando la

regla coincida, algo que se puede utilizar, por ejemplo, para registrar las conexiones

entrantes.

lista_demonios y lista_clientes pueden contener patrones que nos permitan comparar

diversos demonios o hosts sin tener que denominarlos explícitamente. Asimismo, podemos

utilizar diversos símbolos predefinidos para que las reglas sean más fáciles de leer y de crear.

Vamos a empezar con un simple archivo /etc/hosts.deny como este:

La primera línea es un comentario. La siguiente línea es una regla que se interpreta como

sigue: “Denegar las solicitudes de acceso para todos los servicios de todos los hosts”. Si el

archivo /etc/hosts.allow está vacío, esta regla tendrá el efecto de denegar el acceso a todo lo

proveniente de todos los hosts de Internet, Incluyendo el host local. Para solucionar este

problema, podemos realizar un simple cambio en el archivo:

En realidad esta regla es bastante segura y considerada como un valor predeterminado

seguro. Debemos recordar que las reglas en el archivo /etc/hosts.allow se consultan antes que las

del archivo /etc/hosts.deny, por lo que al agregar reglas a /etc/hosts.allow podemos sobrescribir

esta configuración predeterminada en /etc/hosts.deny. Por ejemplo, imaginemos que deseamos

permitir que todos los hosts en Internet tengan acceso al demonio finger. Para ello, debemos

añadir una regla como la siguiente al archivo /etc/hosts.allow:

Un uso más común de los envoltorios TCP es restringir el conjunto de hosts que pueden

acceder al servicio. Los hosts se pueden especificar utilizando la dirección IP, el nombre de host

o algún patrón basado en la dirección o en el nombre de host, por ejemplo para especificar un

grupo de host. Un ejemplo de ello puede ser considerar que el demonio finger sólo se encuentre

disponible para un pequeño conjunto de hosts de confianza. En este caso, modificaríamos el

archivo /etc/hosts.allow de la siguiente manera:

$> sudo vim /etc/hosts.allow

/etc/hosts.allow

in.fingerd: spaghetti.vpasta.com, .vpizza.com, 192.168.1.

$> sudo vim /etc/hosts.allow

/etc/hosts.allow

in.fingerd: ALL

$> sudo vim /etc/hosts.deny

/etc/hosts.deny

#ALL: ALL

ALL: ALL EXCEPT localhost

$> cat /etc/hosts.deny

/etc/hosts.deny

ALL: ALL

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 207

En este ejemplo hemos elegido permitir solicitudes de finger del host denominado

spaghetti.vpasta.com, así como de cualquier host que se encuentre en el dominio vpizza.com, y

de cualquier sistema con una dirección IP que empiece con el patrón 192.168.1.

Es importante conocer las reglas que coinciden con el host y con la dirección IP en

/etc/hosts.allow y en /etc/hosts.deny así como la ubicación de los caracteres de punto. Un patrón

que empieza con un punto se supone que tiene el nombre del dominio al que tienen que

pertenecer los sistemas solicitantes. Un patrón que termina con un punto se supone que

especifica un patrón de dirección IP.

5. Cortafuegos: filtrado de paquetes IP

Aunque podemos utilizar envoltorios TCP para restringir el conjunto de hosts que pueden

establecer conexiones con determinados servicios en una máquina, muchas veces es mejor

ejercer un control mucho más detallado sobre los paquetes que pueden o no introducirse en un

determinado sistema. También existen envoltorios TCP que sólo funcionan con servicios

configurados utilizando inetd o xinetd; algunos servicios son independientes y proporcionan sus

propias opciones de control de acceso y otros servicios no implantan ningún tipo de control de

acceso, por lo que es necesario proporcionar otro nivel de protección si deseamos controlar las

conexiones efectuadas a dichos servicios. Hoy en día es muy común que los usuarios de Internet

se protejan a sí mismos ante amenazas de los ataques basados en la red utilizando una técnica

denominada filtrado IP. El filtrado IP implica inspeccionar el núcleo cada vez que se transmite o

se recibe un paquete de red y decidir si se le puede permitir el paso, si hay que denegárselo, o

hay que modificarlo de alguna manera antes de permitir que pase. Normalmente el filtrado IP se

conoce como cortafuegos ya que al filtrar cuidadosamente los paquetes que se introducen o que

dejan una máquina, estamos creando un cortafuegos entre el sistema y el resto de Internet. El

filtrado IP no nos protege frente a los ataques de virus o troyanos o frente al defecto de una

aplicación, pero puede protegernos ante muchas formas de ataques basados en la red, como

determinados tipos de ataques de DoS y paquetes IP fraudulentos, es decir, paquetes que se

marcan como entrantes de un determinado sistema cuando en realmente provienen de otro. El

filtrado IP también proporciona una capa adicional de control de acceso que evita que usuarios

no deseados intenten obtener acceso al sistema.

Para que funcione el filtrado IP, tenemos que saber cuáles son los paquetes permitidos y

cuáles son los paquetes denegados. Normalmente, la decisión de filtrar un paquete se basa en los

encabezados del paquete, que contienen información como las direcciones IP de origen y

destino, el tipo de protocolo (TCP, UDP, etc) y los números del puerto origen y destino, los

cuales identifican el servicio para el que se destina el paquete. Los distintos servicios de red

utilizan diferentes protocolos y números de puerto; por ejemplo, la mayoría de servidores web

reciben solicitudes TCP en el puerto 80.

Algunas veces, una simple inspección del encabezado del paquete no es suficiente para

conseguir la realización de una determinada tarea de filtrado, por lo que tendremos que

inspeccionar e interpretar los datos reales transportados dentro del paquete. A veces esta técnica

se conoce como inspección de paquetes de datos (SPI, Stateful Packet Inspection) porque el

paquete se considera dentro del contexto de una conexión de red en curso en lugar de

considerarse individualmente. Por ejemplo, podríamos permitir que los usuarios que se

encuentran dentro de nuestra red utilicen servidores ftp que se encuentran fuera de nuestra red.

ftp es un protocolo complejo que utiliza una conexión TCP para enviar comandos al servidor,

pero utiliza otra para transferir datos. Lamentablemente, la especificación ftp no obliga a que se

utilice un determinado número de puerto para transferir datos, por lo que el cliente y el servidor

tienen que negociar los números de puerto utilizando la sesión de comandos. Sin la inspección

de paquetes de datos, permitir trasferencias ftp requeriría permitir las conexiones TCP para

puertos arbitrarios. SPI resuelve este problema al interpretar la negociación del número de

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 208

puerto entre el cliente y el servidor y permitir que pasen automáticamente los paquetes TCP en

el puerto negociado.

El filtrado IP se implanta a través del núcleo de Linux, que contiene un código para

inspeccionar cada paquete que se recibe y se transmite aplicando reglas de filtrado que

determinan el destino del paquete. Las reglas se configuran utilizando una herramienta de

configuración en el espacio de usuario que acepta argumentos desde la línea de órdenes y los

traduce en especificaciones de filtro que se guardan y se utilizan como reglas por el núcleo.

En Linux han existido tres generaciones de filtrado IP basado en el núcleo y cada una ha

tenido su propio mecanismo de configuración. La primera generación se denominaba ipfw (IP

FireWall) y proporcionaba una opción básica de filtrado, pero a veces era algo inflexible e

ineficiente para configuraciones complejas. Actualmente se utiliza en raras ocasiones. La

segunda generación de filtrado, denominada cadenas IP (ipchains), mejoró extraordinariamente

a ipfw y sigue utilizándose con frecuencia. La última generación de filtrado se denomina

netfilter/iptables. netfilter es el componente del núcleo e iptables es la herramienta de

configuración del espacio del usuario; dichos términos se intercambian indistintamente. netfilter

no es sólo más flexible de configurar que los primeros filtros sino que también es extensible.

6. Otros elementos útiles para asegurar nuestro sistema

Aparte de los elementos vistos en secciones anteriores, cabe destacar que existen otros que

nos van a permitir mejorar aun más la seguridad del sistema, algunos de estos son herramientas

de trabajo que todo administrador debe conocer y manejar y otros son concejos de

configuraciones o demonios que no se deben habilitar en los sistemas para evitar ponerlos en

riesgo.

6.1. El servicio finger para descubrimiento de usuarios

El servicio finger utiliza el puerto 79 TCP y ha sido una de las principales fuentes de

problemas de los sistemas operativos Unix. Este protocolo proporciona información, demasiado

detallada, de los usuarios existentes en una máquina, estén o no conectados en el momento de

acceder al servicio.

Para acceder a la información de usuario, se suele utilizar finger desde un cliente, pasándole

como argumento un nombre de máquina precedido del símbolo @ y, opcionalmente, un nombre

de usuario. Primero finger devolverá los datos generales de los usuarios conectados en ese

momento a la máquina, y después informará con más detalle del usuario especificado como

parámetro, esté o no conectado. Este servicio proporciona mucha información delicada como:

nombres de usuarios, hábitos de conexión, cuentas inactivas, etc.

Debido a que finger es una herramienta que revela demasiada información es obligatorio que

como administradores de sistemas lo desactivemos a lo inmediato, pues muchas distribuciones

de Linux vienen por defecto con este servicio habilitado.

6.2. Fortaleza de contraseñas con crack

Si por alguna razón consideramos que los usuarios del sistema no están imponiendo

contraseñas difíciles de averiguar, podríamos ejecutar periódicamente un programa rompedor de

contraseñas con el fin de asegurarnos si las contraseñas de nuestros usuarios están siendo

seguras.

Los programas rompedores de contraseñas operan sobre una idea simple: prueban cada

palabra del diccionario, y después las variaciones de estas palabras, encriptando cada una y

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 209

comprobándola frente a la contraseña encriptada. Si obtienen una que concuerde, entonces

saben cuál es la contraseña.

El comando crack nos permite comprobar la fortaleza de las contraseñas que existen dentro

de nuestro sistema, ubicadas en /etc/shadow. Cabe destacar que generalmente el proceso

consume mucho tiempo de CPU, pero sólo sabremos si un atacante podría lograr romper las

contraseñas de los usuarios de nuestro sistema si somos nosotros mismos los que las rompemos

primero.

Una vez que nos encontramos con algún usuario que ha establecido una contraseña débil, lo

mejor que podemos hacer es inhabilitar la cuenta inmediatamente y luego ponernos en contacto

con él para comunicarle lo sucedido.

Cabe destacar que existen otras herramientas alternativas al comando crack (ver tabla 8.1)

que también nos permiten romper contraseñas débiles, algunas de estas herramientas son:

Herramienta Descripción

Jhon the Ripper Herramienta de auditoria de propósito general para sistemas

Windows y Linux. Utiliza algoritmos propios y admite un gran

conjunto de reglas y opciones.

Lard Herramienta de auditoria de contraseñas para Linux y otras

versiones de Unix. Esta herramienta se destaca por ser lo

suficientemente pequeña como para caber en un disquete, lo que

resulta de mucha utilidad para auditar equipos no necesariamente

conectados en red.

Xcrack Este es un script en Perl que nos permite romper contraseñas de

Linux. Ejecuta un cifrado completo del archivo de diccionarios y

esta pensado para entornos donde se espera que existan

contraseñas excepcionalmente débiles.

Tabla 8.1: Herramientas alternativas al comando crack

6.3. Comprobación proactiva de contraseñas

Debido a que son los usuarios los que establecen la gran mayoría de las contraseñas

existentes en los sistemas, es necesario implementar un mecanismo que nos permita de alguna

manera definir las reglas que deben cumplir las contraseñas para que estas no sean consideradas

como débiles. Ha estos mecanismos se les conoce como mecanismos de comprobación

proactiva de contraseñas, los cuales hacen que se eliminen las contraseñas débiles establecidas

por los usuarios antes de que estas sean enviadas y almacenadas en la base de datos de

contraseñas (/etc/shadow) del sistema.

La idea se basa en que cuando un usuario crea una contraseña, ésta se compara en primer

lugar con una lista de palabras y luego con una serie de reglas ambas establecidas por el

administrador del sistema. Si la contraseña que intenta establecer el usuario no cumple con los

requisitos de este proceso, entonces automáticamente el usuario es obligado por el sistema a

formular otra contraseña.

En Linux básicamente predominan tres mecanismos de comprobación proactiva de

contraseñas los cuales son: passwd+, anlpasswd y npasswd. En las siguientes secciones vamos a

hacer una breve descripción de cada uno de ellos.

6.3.1. Comprobador proactivo de contraseñas: passwd+

Es un comprobador proactivo de contraseñas que provee un lenguaje de script para chequear

las contraseñas.

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 210

Por ejemplo:

 test length(“$p”)<6

Si la contraseña tiene menos de seis caracteres, rechazarla.

 test infile(“/usr/dict/words”, “$p”)

Si la contraseña es una palabra que pertenece a la lista de palabras definidas como no

validas, rechazarla.

 test !inprog(“spell”, “$p”, “$p”)

Si la contraseña no está en la salida del programa spell, rechazarla.

6.3.2. Comprobador proactivo de contraseñas: anlpasswd

Esta herramienta, escrita en código Perl, ejecuta una serie de verificaciones sobre las

contraseñas cuando estas se establecen.

Las reglas predeterminadas que implementa son:

 La contraseña debe estar formada por números con espacios.

 La contraseña debe estar formada por letras en mayúsculas y en minúsculas con

espacios.

 La contraseña debe estar formada por letras escritas todas en mayúsculas o todas en

minúsculas.

 La contraseña debe estar formada únicamente por números.

 La contraseña debe estar formada por la primera letra en mayúscula y el resto de la

contraseña por números.

 La contraseña puede estar formada por algunas o todas las combinaciones de las reglas

anteriores.

6.3.3. Comprobador proactivo de contraseñas: npasswd

npasswd es una herramienta que pretende sustituir al comando passwd de cualquier sistema

Linux. Es una herramienta recomendable ya que obliga a los usuarios a establecer contraseñas

aceptables, rechazando contraseñas débiles formadas con palabras de diccionario, con palabras

que incluyen el login o la password, con palabras de longitud demasiado cortas, etc.

Algunas características que presenta npasswd es la capacidad de someter a las contraseñas

que quieren establecer los usuarios a estrictas pruebas de capacidad de adivinación, además su

distribución cuenta con un conjunto de herramientas de desarrollo para poder ampliar o

incorporar npasswd con otras aplicaciones.

Algunas de las reglas que presenta esta herramienta son las siguientes:

 Permite decidir cuál va ha ser la longitud mínima de todas las contraseña.

 Obligar a los usuarios a mezclar mayúsculas y minúsculas.

 No aceptar palabras simples como una letra repetida.

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 211

 Rechazar contraseñas que contengan el nombre de la máquina u otra información

relacionada con ella.

 Comprueba si la contraseña elegida contiene el nombre de la cuenta del usuario o el

nombre de apellido del mismo.

 Comprueba si la contraseña está incluida en algunos de los diccionarios, incluido el del

sistema.

6.4. Mapeo de puertos con nmap

El mapeo de puertos es una técnica ampliamente utilizada para identificar los servicios que

ofrecen los sistemas. Con esta información, los administradores son capaces de tomar decisiones

respecto a llevar a cabo bloqueos de servicios y puertos que son innecesarios en el sistema y que

pueden permitir a un atacante llevar a cabo una intrusión.

La aplicación por excelencia para realizar mapeo de puertos es nmap (Network MAPper),

esta es una aplicación de código abierto que sirve para efectuar rastreo de puertos TCP y UDP,

además es utilizada para evaluar la seguridad de sistemas informáticos, así como para descubrir

servicios o servidores dentro de una red informática.

Algunas características de nmap son:

 Permite llevar a cabo descubrimiento de equipos, es decir, identifica que máquinas están

disponibles dentro de una red.

 Identifica los puertos que se encuentran abiertos o disponibles en una máquina objetivo.

 Determina los servicios que se encuentran disponibles en una máquina objetivo.

 Determinar el tipo de sistema operativo y la versión del mismo que esta siendo utilizado

en una máquina objetivo, esta técnica es también conocida como fingerprinting.

nmap es considerada como una de las muchas herramientas imprescindibles para todo

administrador de sistema, es utilizada por los mismos para llevar a cabo pruebas de penetración

y tareas de seguridad informática.

6.5. Sistemas de detección de intrusos

La detección de ataques e intrusiones parte de la idea que un atacante es capaz de violar

nuestra política de seguridad, atacando parcial o totalmente los recursos de una red, con el

objetivo final de obtener un acceso con privilegios de administrador.

Los administradores de sistemas utilizan nmap para buscar fallas en sus propias redes y equipos

conectados a la misma, o bien para detectar máquinas que no cumplen con ciertos requisitos

mínimos de seguridad.

Como regla general, a pesar del uso de passwd+, npasswd o anlpasswd, cualquier administrador

deberá ejecutar con cierta periodicidad algún programa adivinador, tipo crack, para comprobar que a

los usuarios no se les ha permitido establecer ninguna contraseña débil.

Administración de Sistemas Operativos Tema 8: Ejecutar un sistema seguro

Página | 212

Los mecanismos para la detección de ataques e intrusiones tratan de encontrar y reportar la

actividad maliciosa en la red, pudiendo llegar a reaccionar adecuadamente ante un ataque.

En la mayoría de los casos es deseable la capacidad de identificar el ataque exacto que se

está produciendo, de forma que sea posible detener el ataque y recuperarse del mismo. En otras

situaciones, sólo será posible detectar e informar de la actividad sospechosa que se ha

encontrado, ante la imposibilidad de conocer lo que ha sucedido realmente.

Generalmente, la detección de ataques trabajará con la premisa de que nos encontramos en la

peor de las situaciones, suponiendo que el atacante ha obtenido un acceso al sistema y que es

capaz de utilizarlo o modificar sus recursos.

Los elementos más destacables dentro de la categoría de mecanismos para la detección de

ataques e intrusiones son los sistemas de detección de intrusos IDS (Intrusion Detection

System).

La intrusión consiste en la secuencia de pasos realizados por el atacante para violar una

determinada política de seguridad. La existencia de una política de seguridad, en la que se

contemplan una serie de acciones deshonestas que hay que prevenir, es un requisito clave para

la intrusión. Es decir, la violación sólo se podrá detectar cuando las acciones observadas puedan

ser comparadas con el conjunto de reglas definidas en la política de seguridad.

La detección de intrusiones es el proceso de identificación y respuesta ante las actividades

ilícitas observadas contra uno o varios recursos de una red.

6.5.1. Detección de ataques en red con snort

snort es una completa herramienta de seguridad basada en código abierto para la creación de

sistemas de detección de intrusos en entornos de red. Cuenta con una gran popularidad entre la

comunidad de administradores de redes y servicios. Gracias a su capacidad para la captura y

registro de paquetes en redes TCP/IP, snort puede ser utilizado para implementar desde un

simple sniffer de paquetes para la monitorización del tráfico de una pequeña red, hasta un

completo sistema de detección de intrusos en tiempo real.

Mediante un mecanismo adicional de alertas y generación de ficheros de registro, snort

ofrece un amplio abanico de posibilidades para la recepción de alertas en tiempo real acerca de

los ataques y las intrusiones detectadas.

Como monitor de red, snort se comporta como una auténtica aspiradora, de ahí su nombre,

de datagramas IP, ofreciendo diferentes posibilidades en cuanto a su tratamiento. Desde actuar

como un simple monitor de red pasivo que se encarga de detectar el tráfico maligno que circula

por la red, hasta la posibilidad de enviar a servidores de ficheros de registro o servidores de base

de datos todo el tráfico capturado.

6.6. Advertencias ante paquetes con bugs

Otro problema de seguridad al cual nos tenemos que enfrentar los administradores de

sistemas es al problema de las aplicaciones con errores (bugs). Es por eso que debemos tener

especial cuidado al momento de instalar o actualizar cualquier aplicación, ya que si esta posee

algún bug debemos determinar si dicho bug pondrá en peligro la seguridad de nuestro sistema.

Debido a que en los sistemas Linux existen una gran variedad de aplicaciones llevar a cabo

esta tarea no seria nada fácil, es por esto que las distribuciones que hacen uso del sistema de

gestión de paquetes APT (Advanced Packaging Tool), cuentan con una herramienta llamada

apt-listbugs, la cual permite recibir mensajes de advertencia cuando se quiere realizar una

Tema 8: Ejecutar un sistema seguro Administración de Sistemas Operativos

Página | 213

instalación o actualización de algún paquete que posee errores críticos. La idea es que después

de instalar la herramienta, automáticamente cada vez que se ejecute el comando apt-get install o

apt-get upgrade, y exista algún error en algún paquete que se dispone a ser instalado en el

sistema, se reciba un mensaje y el poder de decisión para proseguir con la instalación o

actualización, o en caso de no querer correr el riesgo de instalar el paquete con el bug entonces

poder cancelar la instalación.

6.7. Auditando vulnerabilidades con nessus

nessus es un programa de escaneo de vulnerabilidades existentes en diversos sistemas

operativos. Consiste en nessusd, el daemon nessus, que realiza el escaneo en el sistema objetivo,

y nessus, el cliente (basado en modo consola o modo gráfico) que muestra el avance y reporte

de los escaneos. Desde el modo consola nessus puede ser programado para hacer escaneos

automáticos junto con el administrador regular de procesos cron.

En operación normal, nessus comienza escaneando los puertos con nmap o con su propio

escaneador de puertos para buscar puertos abiertos y después intentar varios exploits para

atacarlo. Las pruebas de vulnerabilidad, disponibles como una larga lista de plugins, son escritos

en NASL (Nessus Attack Scripting Language), un lenguaje scripting optimizado para

interacciones personalizadas en redes.

Opcionalmente, los resultados del escaneo pueden ser exportados en reportes en varios

formatos, como texto plano, XML, HTML, y LaTeX. Los resultados también pueden ser

guardados en una base de conocimiento para referencia en futuros escaneos de vulnerabilidades.

Algunas de las pruebas de vulnerabilidades de nessus son tan efectivas que pueden causar

que los servicios o el propio sistema operativo se corrompan y caigan.

La tarea del administrador al encontrarse frente a un paquete que presente errores críticos será

investigar sobre cual es el error crítico que presenta el paquete y en función de eso realizar un

análisis de los riesgos que implica la instalación del mismo dentro del sistema.

Página | 214

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 215

TEMA 9: COPIAS DE SEGURIDAD Y

RECUPERACIÓN

Objetivos

 Caracterizar los beneficios que aporta el mecanismo de copias de seguridad a los

sistemas informáticos.

 Comprender la relación estricta que existe entre las copias de seguridad y la

recuperación ante el fallo de un sistema informático.

 Estudiar y poder aplicar algunas de las herramientas más importantes que existen en los

sistemas Linux para la implementación de copias de seguridad.

 Describir algunas técnicas de copias de seguridad sobre elementos críticos existentes en

el sistema, para su posterior recuperación.

Contenido

1. Introducción a las copias de seguridad

1.1. Modelos de almacén de datos

1.2. Medios de almacenamiento

1.3. Administrar un almacén de datos

2. Concejos a tener en cuenta al realizar copias de seguridad

3. Planificación de las copias de seguridad

4. Copias de seguridad completas

5. Copias de seguridad incrementales

6. Aplicando compresión a las copias de seguridad

6.1 Problemas que presenta comprimir las copias de seguridad

7. Otras herramientas para realizar copias de seguridad en Linux

7.1. Copias de seguridad utilizando dd

7.2. Copias de seguridad utilizando dump

7.3. Copias de seguridad utilizando cpio

7.4. Copias de seguridad utilizando afio

7.5. Copias de seguridad utilizando rsync

7.6. Copias de seguridad utilizando amanda

8. ¿Qué hacer en caso de emergencia?

9. Revisar y recuperar sistemas de archivos

10. Recuperación del súper bloque

11. MBR dañado, infectado o corrupto

Bibliografía

Básica

 Matthias Kalle Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada “, Editorial Anaya Multimedia, 2006.

 Iñaki Alegría Loinaz, Roberto Cortiñas Rodríguez, Aitzol Ezeiza Ramos, “Linux

Administración del sistema y la red”, Editorial Prentice Hall, 2005.

Complementaria:

 Jack Tackett Jr. y David Gunter, “Linux Tercera Edición, Edición Especial”, Editorial

Prentice Hall, 1998.

 Copia de seguridad.

http://es.wikipedia.org/wiki/Copia_de_seguridad

http://es.wikipedia.org/wiki/Copia_de_seguridad

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 216

Una de las funciones más importantes de la administración de sistemas es la recuperación de

la información tras una pérdida de la misma. Los motivos por los que se producen pérdidas de

información pueden ser diversos: ataques, errores de usuario, accidentes, etc. Para recuperar la

información será preciso haber realizado con anterioridad un trabajo preventivo: la creación y el

correcto almacenamiento de copias de seguridad.

1. Introducción a las copias de seguridad

Hacer una copia de seguridad o una copia de respaldo (backup) se refiere a llevar a cabo una

copia de todos o algunos de los datos existentes en un sistema informático, de tal forma que

estas copias adicionales de dichos datos puedan restaurar todo el sistema o algunos archivos del

mismo después de una pérdida de información.

Las copias de seguridad resultan esencialmente útiles por dos razones:

1. Permiten restaurar una máquina a un estado operacional después de un desastre, este

tipo de copias de seguridad son conocidas como copias de seguridad del sistema.

2. Permiten restaurar un pequeño número de archivos después de que estos hayan sido

borrados o dañados accidentalmente, este tipo de copias de seguridad son conocidas

como copias de seguridad de datos.

Normalmente las copias de seguridad se suelen hacer en cintas magnéticas, pero

dependiendo de lo que se trate de almacenar en la copia de seguridad también es posible utilizar

disquetes, CD, DVD, discos ZIP, JAZ o magnético-ópticos, pendrives, discos duros o pueden

realizarse sobre un centro de respaldo remoto propio o vía internet.

Las copias de seguridad en un sistema informático tienen por objetivo mantener cierta

capacidad de recuperación de la información ante posibles pérdidas. Esta capacidad puede llegar

a ser algo muy importante, incluso crítico, para cualquier empresa. Por ejemplo, existen casos

de empresas que han llegado a desaparecer ante la imposibilidad de recuperar sus sistemas al

estado anterior a que se produjese un incidente de seguridad grave.

1.1. Modelos de almacén de datos

Cualquier estrategia de copia de seguridad empieza con el concepto de almacén de datos.

Los datos de la copia de seguridad deben ser almacenados de alguna manera y probablemente

deben ser organizados bajo algún criterio. Esto puede ser tan simple como una hoja de papel con

una lista de todas las cintas de copias de seguridad junto con las fechas en las que estas fueron

creadas y las fechas en las que se hizo uso de las mismas para restaurar el sistema. O incluso

podemos hacer uso de un sofisticado programa con un índice computarizado, con un catálogo o

con una base de datos relacional. Cada uno de los distintos almacenes de datos tiene sus

ventajas. Esto esta muy relacionado con el esquema de rotación de copia de seguridad elegido.

A continuación se detallan algunos de los modelos de almacén de datos más ampliamente

utilizados en la actualidad.

Las copias de seguridad juegan un papel importante para los administradores de sistemas ya que

estas suelen ser utilizadas por los mismos como la última línea de defensa contra pérdida de datos, y

se convierten por lo tanto en el último recurso que estos suelen utilizar.

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 217

Desestructurado

Un almacén desestructurado podría simplemente ser una pila de disquetes, cintas, CD-R, etc.

con una mínima información sobre qué ha sido copiado y cuándo. Éste es el modelo más fácil

de implementar, pero ofrece pocas garantías de recuperación de datos.

Completa + incremental

Un almacén completo + incremental propone hacer más factible el almacenamiento de varias

copias de la misma fuente de datos. En primer lugar se realiza una copia de seguridad completa

del sistema. Más tarde se realiza una copia de seguridad incremental, es decir, sólo con los

ficheros que se hayan modificado desde la última copia de seguridad. Restaurar un sistema

completamente a un cierto punto en el tiempo requiere localizar una copia de seguridad

completa y todas las incrementales posteriores realizadas hasta el instante que se desea

restaurar. Los inconvenientes que presenta este modelo de almacén de datos son tener que tratar

con grandes series de copias incrementales y contar con un gran espacio de almacenaje.

Espejo + diferencial

Un almacén de tipo espejo + diferencial es muy similar al almacén completo + incremental.

La diferencia radica en que en vez de hacer una copia completa seguida de un conjunto de

copias incrementales, este modelo ofrece un espejo que refleja el estado del sistema a partir de

la última copia y un historial de copias diferenciales. Una ventaja de este modelo es que sólo

requiere una copia de seguridad completa inicial. Cada copia diferencial es inmediatamente

añadida al espejo y los ficheros que son remplazados son movidos a una copia incremental

inversa. Una copia diferencial puede sustituir a otra copia diferencial más antigua sobre la

misma copia total.

Protección continúa de datos

Este modelo toma un paso más lejos y en vez de realizar copias de seguridad periódicas, el

sistema inmediatamente registra cada cambio en las copias de seguridad que se estén generando.

La idea es que cada cambio que se efectué en el sistema será escrito de forma inmediata en la

copia de seguridad.

1.2. Medios de almacenamiento

A pesar del modelo de almacén que se decida utilizar, los datos de las copias de seguridad

tienen que ser guardados en unos medios de almacenaje, es por eso que a continuación se

detallan los medios de almacenaje más conocidos.

Cinta magnética

La cinta magnética es, por mucho, considerada como el medio de almacenaje más común

usado para volcar datos almacenados, copias de seguridad, archivadores, etc. La cinta magnética

ha tenido comúnmente un orden de magnitud mejor de proporción capacidad/precio comparado

con los discos duros, pero últimamente las proporciones capacidad/precio entre discos duros y

cintas magnéticas son cada vez más cercanas. Existen multitudes de formatos de cintas

magnéticas, algunos de los cuales son específicos de mercados como unidades principales o a

rangos de ordenadores particulares. La cinta magnética es un medio de acceso secuencial, por

ello aunque el tiempo de acceso es lento, la tasa de escritura y lectura continua de datos suele

ser muy rápida. Algunas unidades de cinta son incluso más rápidas que algunos discos duros

actuales.

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 218

Disco duro

La proporción capacidad/precio de los discos duros ha sido rápidamente mejorada en los

últimos años. Esto los ha convertido en medios de almacenaje muy competitivos con respecto a

las cintas magnéticas. La principal ventaja de los discos duros es la gran capacidad y el corto

tiempo de acceso que estos poseen.

Disco óptico

Un CD-R puede ser usado como un mecanismo de copia de seguridad. Una ventaja de los

CDs es que estos pueden almacenar hasta 700 MB de datos en 12 cm (4.75"). Además de que

pueden ser utilizados en cualquier máquina que posea una unidad de CD-ROM. Otro de los

formatos que está siendo ampliamente utilizado para llevar a cabo copias de seguridad son los

DVD. Muchos de los formatos de discos ópticos son de tipo escritura única, aunque también los

hay de re-escritura, lo que los convierte en medios útiles para fines de almacenamiento ya que

los datos una vez que se han escrito no pueden ser modificados.

Disquetes

Durante la década de los ochenta y principios de los noventa, muchas personas y usuarios de

ordenadores personales asociaban las copias de seguridad con los disquetes. La baja capacidad

de almacenamiento de datos de los disquetes los ha convertido actualmente en un medio de

almacenamiento obsoleto y en desuso.

Dispositivos de memoria no volátil

También conocidos como memorias flash, llaves USB, compact flash, smart media, sticks de

memoria, tarjetas Secure Digital, etc., estos dispositivos se están convirtiendo en medios de

almacenamiento útiles para copias de seguridad debido a sus bajos costos, sus grandes

capacidades de almacenamiento de datos y su fácil manejabilidad.

Servicios remotos de copia de seguridad

Debido a la amplia extensión que ha tenido Internet en las últimas décadas y a las grandes

velocidades que se pueden conseguir con las redes actuales, los servicios de copia de seguridad

remota han ganado gran popularidad. Copias de seguridad vía internet a una localización

remota, puede protegernos ante hechos diversos como incendios o destrucciones de sistemas

locales de copia de seguridad. Uno de los principales inconvenientes que presentan los servicios

remotos de copia de seguridad es que la velocidad de conexión a Internet suele ser menor que la

velocidad de los dispositivos de almacenamiento de datos, algo que se llega a convertir en un

verdadero problema cuando la cantidad de información a respaldar es demasiado grande.

1.3. Administrar un almacén de datos

A pesar del modelo de almacén de datos o del medio de almacenamiento utilizado en una

copia de seguridad, el sistema necesita encontrar un nivel entre accesibilidad, seguridad y coste.

A continuación se estudian los distintos niveles que alcanzan los sistemas de copias de

seguridad según sea el lugar en el que estos se decidan colocar.

En línea

El almacenamiento en línea es típicamente el más accesible de los tipos de almacenamiento

de datos. Un buen ejemplo de este podría ser un largo vector de discos en el cual se están

almacenando continuamente las copias de seguridad. Este tipo de almacenamiento es muy

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 219

conveniente y rápido, pero presenta el problema de que es relativamente costoso; además se

encuentra típicamente localizado en cercana proximidad al sistema que ha sido copiado. Esta

proximidad representa un problema en caso de cualquier tipo de desastre. Adicionalmente, el

almacenamiento en línea es vulnerable de ser borrado o de ser sobrescrito, incluso por

accidente, o causado por un virus en el sistema.

Cerca de línea

El almacenamiento cercano en línea es típicamente menos costoso y más accesible que el

almacenamiento en línea. Un buen ejemplo de este seria una biblioteca de cintas. Un dispositivo

mecánico está involucrado en mover unidades de almacenamiento desde el almacén donde están

guardadas todas las cintas hasta el lector donde estas son leídas para restaurar el sistema o

escritas para almacenar una nueva copia de seguridad.

Fuera de línea

Un almacenamiento fuera de línea es similar al cercano en línea, exceptuando que el

almacenamiento fuera de línea requiere de la interacción por parte de una persona para

conseguir que los medios de almacenamiento estén disponibles. Esto puede ser tan simple como

almacenar las cintas de copias de seguridad en un armario de ficheros y que el administrador las

saque del armario para que estas sean utilizadas para restaurar el sistema o bien utilizadas para

guardar en ellas una nueva copia de seguridad.

Cámara fuera del lugar

Para protegerse contra cualquier tipo de desastres u otro tipo de problemas, muchas empresas

eligen mandar los medios de copia de seguridad a una cámara fuera del lugar de trabajo, es decir

en una ubicación distinta a la del sistema original. La cámara puede ser tan simple como la

oficina ubicada en la casa del administrador del sistema o puede ser tan sofisticada como un

búnker insensible, con alta seguridad y con temperatura controlada que cuenta con equipos para

almacenar las copias de seguridad.

Centro de recuperación de datos

Existen empresas que realizan contratos con agencias de recuperación de datos, estas

agencias les permiten realizar a las empresas copias de seguridad de sus datos a través de

Internet, así como también recuperar las copias de seguridad que estas han almacenado en sus

servidores cuando la empresa lo desee. Además, estas agencias ofrecen garantías de seguridad y

confidencialidad sobre los datos y permiten ampliar las capacidades de almacenamiento

contratadas de forma ilimitada.

2. Concejos a tener en cuenta al realizar copias de seguridad

Lo que se pretende con la realización de copias de seguridad es poder restaurar archivos

individuales o sistemas de archivos completos. Todo lo que se haga en relación al tema de

copias de seguridad deberá tener muy en cuenta este propósito.

Algunos concejos útiles al realizar copias de seguridad son:

 Preparar un programa de copias de seguridad que detalle los archivos que deben

protegerse, la frecuencia con que se van a realizar las copias de seguridad y la forma en

que se van a restaurar los archivos.

 Informar a todos los usuarios sobre este tema y la forma en la que estos pueden pedir la

restauración de sus archivos.

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 220

 Atenerse estrictamente al plan diseñado.

 Verificar siempre las copias de seguridad. La comprobación puede consistir, por

ejemplo, en la lectura de una tabla de contenidos sobre los medios utilizados después de

haberlos almacenado, o en la restauración de un archivo seleccionado al azar. Debemos

recordar que siempre cabe la posibilidad de que el medio de almacenamiento de las

copias de seguridad, disco, cintas, CD-R, etc. pueda estar defectuoso.

 Hacer copias de seguridad de forma que los archivos puedan restaurarse en cualquier

lugar del sistema de archivos o en otro sistema informático. Para esto último podemos

hacer uso de utilidades de copia de seguridad que permitan que dichas copias puedan

ser usadas en otros sistemas informáticos Linux o Unix.

 No olvidarse de etiquetar todos los medios de cintas, discos, CD-R, etc., que se utilicen

para almacenar las copias de seguridad. Si un mismo proceso requiere de varios medios

de almacenamiento, debemos asegurarnos de que todos ellos son enumerados

secuencialmente y fechados. De esta forma podremos localizar fácilmente el archivo o

archivos que necesitemos restaurar.

 Planificar siempre pensando que va a pasar lo peor. Debemos tener copias de los

archivos del sistema, de forma que éste pueda restaurarse en un plazo razonable de

tiempo.

 Almacenar las cintas, discos, CD-R, etc. que contienen las copias de seguridad en un

lugar distinto al ocupado por el sistema.

 Minimizar el efecto o la carga que genera el realizar copias de seguridad. ¿realizar una

operación de copia de seguridad aumenta la carga del sistema? ¿supondrá una

incomodidad o molestia notable por los usuarios? Además si se realiza una copia de

seguridad de una base de datos activa, probablemente no se harán copias de seguridad

de los archivos modificados durante el proceso, lo cual puede representar un

inconveniente o una cuestión importante. Por ello, es preferible realizar copias de

seguridad cuando el sistema se encuentra relativamente tranquilo, a fin de que la copia

de seguridad sea lo más completa posible.

 Planificar una comprobación periódica de los procedimientos de copia de seguridad

para asegurarnos de que estos se ajustan a nuestras necesidades.

 Si se decide hacer la copia de seguridad a un segundo disco duro interno, es

recomendable mantener al menos el disco sin montar cuando no se esté utilizando para

que, en caso de que eliminemos accidentalmente uno o más sistemas de archivos,

podamos utilizar la copia de seguridad disponible.

 Evaluar la importancia relativa de la seguridad y capacidad de recuperación de los datos

frente al coste y conveniencia del medio de copia de seguridad que sea elegido así como

su uso.

Estos forman parte de algunos de los consejos que son de gran utilidad para los

administradores de sistemas. Cabe destacar que a medida que se va adquiriendo experiencia en

el proceso de copias de seguridad surgirán nuevos elementos particulares de acuerdo a las

necesidades de cada administrador.

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 221

3. Planificación de las copias de seguridad

Es importante preparar un programa de copias de seguridad que se ajuste a nuestras

necesidades y que permita restaurar copias recientes de archivos. Una vez que hayamos

seleccionado el programa, debemos procurar ajustarnos a él.

Lo ideal sería poder restaurar cualquier archivo en cualquier momento. Desgraciadamente,

esto no es posible, aunque sí deberíamos poder restaurar archivos diariamente. Para ello,

debemos utilizar una combinación de copias de seguridad completa e incremental.

En esta sección vamos a estudiar un poco más a fondo estos dos modelos de almacén de

datos, el modelo de copias de seguridad completas y el modelo de copias de seguridad

incrementales, los cuales son los más utilizados, y por ende los más importantes, en los sistemas

Linux.

En un modelo de copia de seguridad completo se guarda toda la información del sistema de

archivos. En ocasiones se suele utilizar una versión reducida: la copia completa de la

información modificable. En este último caso se guarda toda la información de los usuarios,

pero no la que no se modifica, como el propio sistema, las aplicaciones, etc. En cualquier caso,

la realización de copias de seguridad completas exige mucho tiempo y un soporte de gran

capacidad.

El modelo de copias de seguridad incrementales, es especialmente útil si existen numerosos

usuarios dentro del sistema o son llevados a cabo frecuentes cambios en la configuración del

mismo. En este modelo de copias de seguridad se debe realizar una copia de seguridad completa

sólo una vez al mes. A continuación, cada semana, sólo se deben copiar los archivos que han

cambiado con respecto a la semana anterior. Asimismo, cada noche, se deben hacer copias de

seguridad sólo de los archivos que han cambiado con respecto a las veinticuatro horas

anteriores. Los modelos de copias de seguridad incrementales son muy eficientes ya que hacen

copias de seguridad en pequeños pasos, utilizan menos medios de almacenamiento de datos, las

copias de seguridad generadas diaria y semanalmente son mucho más cortas y más fáciles de

ejecutar y como mucho proporcionan copias de seguridad que cuentan con un día de antigüedad.

Por ejemplo, Supongamos que accidentalmente fue eliminado todo el sistema de archivos de un

determinado ordenador; para restaurarlo desde una copia de seguridad que utiliza un modelo de

copias de seguridad incrementales lo único que se debe hacer es seguir los siguientes pasos:

1. Restaurar la copia de seguridad mensual más reciente. Por ejemplo, si el sistema fue

eliminado el diecisiete de julio, se deberá restaurar la copia de seguridad completa del

primero de julio. El sistema reflejará ahora el estado de los archivos cuando se efectuó

la copia de seguridad del primero de julio.

2. Restaurar cada una de las copias de seguridad semanales realizadas a lo largo del mes.

Para el caso del ejemplo planteado, se deberán restaurar las dos copias semanales

efectuadas el siete de julio y el catorce de julio. Al restaurar cada una de las copias de

seguridad semanales, todos los archivos cambiados durante esas semanas se verán

actualizados.

3. Restaurar cada una de las copias de seguridad diarias durante la semana pasada, es

decir, desde la última copia semanal. Para el caso del ejemplo planteado, se deberán

restaurar las copias de seguridad diarias del quince y del dieciséis de julio. Ahora el

sistema está igual que cuando se ejecutó la copia de seguridad diaria el dieciséis de

julio; no se han perdido archivos de más de un día.

Para asegurar que la información se recupera correctamente, será preciso disponer de la

última copia de seguridad completa junto con todas las incrementales que posteriormente se

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 222

hayan realizado. De este modo, dentro de la política de seguridad se debe decidir la frecuencia

con la que se realizarán las copias completas e incrementales de seguridad.

Una característica importante que deben tener normalmente las copias de seguridad es la

capacidad de seleccionar archivos individuales existentes dentro de la copia de seguridad para

su restauración. De este modo, si un archivo o un conjunto de archivos se eliminan

accidentalmente, es posible simplemente restaurar los archivos necesarios sin tener que realizar

una restauración completa del sistema. Sin embargo, dependiendo de cual sea el sistema de

copias de seguridad que se elija, esta tarea puede ser muy fácil o realmente difícil.

En la siguiente sección vamos a estudiar el uso de las herramientas básicas que nos

proporcionan los sistemas Linux para llevar a cabo copias de seguridad tanto completas como

incrementales.

4. Copias de seguridad completas

Los sistemas Linux ponen a nuestra disposición un comando de uso común para la

generación de copias de seguridad completas. Este es el comando tar, con él es posible

almacenar de modo conjunto varios ficheros o directorios en un solo archivo. Además de

almacenar los ficheros o directorios que contienen la información, este comando también

guardará su estructura, es decir, el subárbol formado por los subdirectorios y ficheros del

directorio que vayamos a respaldar. De este modo, al recuperar la información se mantendrá la

estructura original, independientemente de si se restaura en el directorio original o en otra

ubicación.

Para crear una copia de seguridad utilizando el comando tar se debe hacer uso de la opción c

(create) y para restaurar la copia de seguridad se debe hacer uso de la opción x (extract).

Teniendo esto en cuenta, se pueden realizar copias de seguridad completas mediante el comando

tar de la siguiente manera:

De este modo se consigue una copia de seguridad completa de todo el sistema (/), en el

archivo backup.tar. Si se desea, el fichero backup.tar puede ser, más adelante, almacenado en

un disco óptico utilizando una grabadora de CD.

Para la recuperación de los archivos contenidos en la copia de seguridad se deberá utilizar un

comando semejante al anterior, pero cabe destacar que previamente se deberá copiar en el

directorio adecuado del disco duro del sistema el fichero backup.tar.

Con esto se logra recuperar todos los ficheros existentes dentro de la copia de seguridad. Sin

embargo, en ocasiones sólo se desea recuperar un fichero o un subconjunto de ficheros

existentes dentro de la copia de seguridad. En este caso, el primer paso que se debe hacer es

obtener los nombres de los ficheros a recuperar. Con el siguiente comando se mostrará en

pantalla el contenido de los ficheros dentro de backup.tar.

/$> tar tvf backup.tar

$> cp /media/HDDexterno/backup.tar /

$> cd /

/$> tar xvf backup.tar

$> tar cvf /media/HDDexterno/backup.tar /

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 223

Una vez que se han obtenido los nombres de los archivos que se quieren restaurar, estos

pueden ser recuperados con el siguiente comando:

5. Copias de seguridad incrementales

Las copias de seguridad incrementales, tal y como se han descrito anteriormente, son una

forma extraordinaria de mantener actualizadas las copias de seguridad de nuestro sistema. Por

ejemplo, se pueden realizar copias nocturnas sólo de los archivos que hayan cambiado las

últimas veinticuatro horas, así mismo se pueden realizar copias de seguridad semanales de todos

los archivos que hayan cambiado en la última semana y también se pueden realizar copias de

seguridad mensuales de todo el sistema.

Para realizar copias de seguridad incrementales en Linux también se puede hacer uso del

comando tar junto con otro comando, el comando find, el cual permite conocer que ficheros o

directorios han sido modificados las últimas veinticuatro horas o la última semana. Pero además

del comando tar los sistemas Linux proporcionan otra serie de herramientas que permiten llevar

a cabo copias de seguridad más sofisticadas o mejor elaboradas, estas herramientas serán

analizadas en la sección denominada otras herramientas para realizar copias de seguridad en

Linux.

El primer paso en la creación de una copia de seguridad incremental es producir una lista con

los ficheros o directorios que hayan cambiado desde una determinada cantidad de tiempo, para

realizar esta tarea, como se indicó anteriormente, se deberá hacer uso del comando find.

Por ejemplo, para generar una lista con todos los archivos modificados en las últimas

veinticuatro horas, podemos utilizar el siguiente comando:

El primer argumento de find es el directorio desde donde se va a empezar la búsqueda (aquí,

/, el directorio raíz). La opción –mtime -1 le indica a find que localice todos los archivos que

hayan cambiado en las últimas veinticuatro horas (1 día).

La parte \! –type d es un poco complicada, pero recorta de la salida alguna información

innecesaria. Le indica a find que excluya directorios de la lista de archivos resultante. El signo !

es un operador de negación, que le indica que sean excluidos todos los archivos del tipo d

(directory); se debe colocar delante de este operador una barra invertida \ porque de lo contrario

la shell lo interpretaría como un carácter especial.

La opción –print imprime en la salida estándar todos los nombres de los archivos que

coinciden con la búsqueda. Y por último la salida estándar es redirigida a un archivo para su uso

posterior. Asimismo, para localizar todos los archivos que hayan cambiado durante la semana

pasada, se deberá utilizar el siguiente comando:

Cabe destacar que si find es utilizado de esta manera, recorrerá todos los sistemas de

archivos que se encuentren montados en el ordenador. Por ejemplo, si se tiene montado un CD-

ROM, find también intentará localizar todos los archivos o directorios dentro del CD-ROM que

cumplan con la condición de búsqueda, los cuales probablemente no se necesiten incluir dentro

$> sudo find / -mtime -7 \! –type d –print > /media/HDDexterno/Lista.semanal

$> sudo find / -mtime -1 \! –type d –print > /media/HDDexterno/Lista.diaria

/$> tar xvf backup.tar <ListaDeFicherosARestaurarSeparadosPorEspacio>

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 224

de la copia de seguridad. Para limitar la búsqueda de find al sistema de archivos local se debe

utilizar la opción –xdev.

Ahora ya se ha producido una lista de archivos para realizar la copia de seguridad.

Anteriormente, cuando se utilizó el comando tar, se tuvo que especificar los archivos a

almacenar en la línea de comandos. Sin embargo, esta lista de archivos, generada por find,

puede ser demasiado larga para una sola línea de comandos, la cual normalmente se limita a

2048 caracteres aproximadamente, y la propia lista se encuentra dentro de un archivo.

Para especificar un archivo que contiene una lista de archivos para una copia de seguridad

utilizando el comando tar, se deberá hacer uso de la opción –T. Para poder utilizar esta opción,

se debe utilizar una sintaxis alternativa para el comando tar en la que todas las opciones son

especificadas explícitamente con guiones. Por ejemplo, para crear una copia de seguridad de los

archivos que se encuentran en /media/HDDexterno/Lista.diaria se debe utilizar el comando:

También se puede seguir el mismo mecanismo para generar las copias de seguridad

semanales y mensuales.

6. Aplicando compresión a las copias de seguridad

Las copias de seguridad pueden generar problemas en los dispositivos de almacenamiento

debido a su gran tamaño. Para minimizar este problema se pueden utilizar programas de

compresión. Los comandos que más se utilizan con este fin en el mundo Linux son gzip y

gunzip. El primero permitirá comprimir la información y el segundo permitirá descomprimirla.

Siguiendo los ejemplos anteriores de generación de copias de seguridad mediante el

comando tar, para comprimir las copias de seguridad se utilizará el siguiente comando:

De este modo, se obtiene un fichero de nombre backup.tar.gz y que contiene la misma

información que contenía el fichero backup.tar original, pero lo que cambia es que el tamaño de

backup.tar.gz es más reducido que el del fichero original. La extensión .gz hace referencia a que

el fichero se encuentra comprimido.

En los sistemas Linux actuales es posible realizar la compresión al mismo tiempo que se

realiza la copia de seguridad. Para ello bastará con utilizar la opción z en el comando tar. Así

para realizar copias completas de seguridad y al mismo tiempo de todo el sistema comprimido

se puede utilizar el siguiente comando:

La extensión .tgz es equivalente a tar.gz y además ambas son intercambiables, es decir, el

primero se puede descomprimir haciendo uso directamente del comando tar y el segundo

aunque no es comprimido directamente con tar, sino que es comprimido con gzip, también

puede ser descomprimido directamente con tar.

$> tar cvfz media/HDDexterno/backup.tgz /

$> gzip /media/HDDexterno/backup.tar

$> tar –cv –T /media/HDDexterno/Lista.diaria –f /media/HDDexterno/backup.tar

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 225

Por ejemplo, podemos realizar una copia de seguridad del directorio /boot utilizando el

comando tar y efectuando la compresión directamente con tar:

De igual manera, podemos realizar una copia de seguridad del directorio /boot utilizando el

comando tar pero sin efectuar la compresión directamente con tar, luego comprimimos la copia

de seguridad con el comando gzip, y comprobamos que es posible descomprimirla directamente

utilizando el comando tar:

En las últimas versiones de Linux ha surgido un nuevo formato para la compresión, de

nombre bzip2. Aunque su capacidad de compresión es mayor que la de gzip, este último

continúa siendo el más utilizado, ya que es más rápido y estándar. El nombre del comando

correspondiente a este nuevo formato también es bzip2, y se integra en el comando tar mediante

el uso de la opción j.

6.1 Problemas que presenta comprimir las copias de seguridad

Cabe destacar que existen muchos argumentos, tanto a favor como en contra, de la

compresión de archivos tar cuando se crean copias de seguridad. El problema general es que ni

el comando tar ni los comandos de compresión gzip o bzip2 son particularmente tolerante a

fallos, independientemente de su conveniencia. Aunque la compresión de gzip o bzip2 puede

reducir extraordinariamente la cantidad de medios de copia de seguridad requeridos para

guardar un archivo, comprimir archivos tar completos hace que la copia de seguridad sea

propensa a una pérdida completa de datos, si uno de los bloques del archivo está dañado.

Aunque tar no proporciona mucha protección frente a los datos dañados dentro de un

archivo, si existe un daño mínimo dentro de un archivo .tar, normalmente se podrá recuperar la

mayoría de los archivos guardados sin problemas, o en el peor de los casos, solo los archivos

anteriores al archivo dañado. Aunque está lejos de ser algo perfecto, es mejor que perder toda la

copia de seguridad.

Una mejor solución al problema de los errores de compresión es utilizar una herramienta

distinta a tar para crear copias de seguridad. Los sistemas Linux ponen a disposición de los

administradores de sistemas distintas opciones para la creación de copias de seguridad tolerantes

a fallos. Dentro de estas se encuentra cpio la cual es una utilidad de almacenamiento que

empaqueta archivos, similar a tar. Sin embargo, debido al método de almacenamiento más

$> tar cvf ~/boot.tar /boot

$> ls –l ~/

-rw-r--r-- 1 gateway gateway 20152320 2008-05-15 13:56 boot.tar

$> gzip ~/boot.tar

$> ls –l ~/

-rw-r--r-- 1 gateway gateway 18843000 2008-05-15 13:56 boot.tar.gz

$> tar xvfz ~/boot.tar.gz

$> ls -l

drwxr-xr-x 3 gateway gateway 4096 2008-05-06 02:11 boot

$> tar cvfz ~/boot.tgz /boot

$> ls –l ~/

-rw-r--r-- 1 gateway gateway 18842991 2008-05-15 14:08 boot.tgz

$> tar xvfz ~/boot.tgz

$> ls -l

drwxr-xr-x 3 gateway gateway 4096 2008-05-06 02:11 boot

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 226

simple de cpio, este se recupera limpiamente de una corrupción de datos en un archivo. Sin

embargo, sigue sin controlar bien los errores en archivos comprimidos con gzip o bzip2.

La mejor solución parece ser utilizar herramientas como afio. La cual es una herramienta que

admite copias de seguridad de múltiples volúmenes y es similar, en algunos aspectos, a cpio. Sin

embargo, afio incluye la compresión y es más fiable, ya que comprime cada archivo

individualmente, lo que significa que si se dañan los datos de un archivo, el daño se puede aislar

a archivos individuales en lugar de a toda la copia de seguridad.

7. Otras herramientas para realizar copias de seguridad en Linux

En esta sección estudiaremos otras herramientas útiles para crear copias de seguridad en los

sistemas Linux, como lo son: dd, dump, cpio, afio, rsync y amanda. Algunas de estas

herramientas son más avanzadas que otras. La decisión de utilizar una u otra deberá ser tomada

por el administrador del sistema, el cual deberá evaluar cual o cuales son las que mejor se

adaptan a sus necesidades.

7.1. Copias de seguridad utilizando dd

Para llevar a cabo copias de seguridad completas de todo el sistema, Linux nos proporciona

el comando dd (duplicate disk), el cual es una utilidad originaria de Unix y debería formar parte

de la caja de herramientas de todo administrador de sistemas Linux.

La forma de trabajo del comando dd para llevar a cabo copias de seguridad completas es la

siguiente:

Para realizar una copia de seguridad sin aplicarle compresión utilizando dd, podemos hacer

uso del siguiente comando:

De este modo se consigue una copia de seguridad de todo el sistema ubicado en /dev/hda1

(/dev/hda1 = la primera partición del primer disco duro IDE en el ordenador) y se almacena

dicha copia de seguridad en /dev/sdb1 (para el caso del ejemplo una memoria USB de 16GB de

almacenamiento).

Para realizar la restauración de los archivos y directorios de la copia de seguridad generada

por dd en el ejemplo anterior, podemos hacer uso del siguiente comando:

Para realizar una copia de seguridad aplicándole compresión utilizando dd y gzip, podemos

hacer uso del siguiente comando:

De este modo se consigue una copia de seguridad de todo el sistema ubicado en /dev/hda1 y

se almacena el archivo que contiene la copia de seguridad en /media/HDDexterno (para el caso

del ejemplo un disco duro externo). Pero además comprimimos todo utilizando gzip.

Para realizar la restauración de los archivos y directorios de la copia de seguridad generada

por dd y gzip en el ejemplo anterior, podemos hacer uso del siguiente comando:

$> dd if=/dev/hda1 | gzip > /media/HDDexterno/sistema.gz

$> dd if=/dev/sdb1 of=/dev/hda1

$> dd if=/dev/hda1 of=/dev/sdb1

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 227

Cabe destacar que existen dos principales inconvenientes al realizar copias de seguridad con

el comando dd. El primero es que es demasiado lento y el segundo es que guarda el espacio no

ocupado por los datos que se encuentran en la partición sobre la cual efectuamos la copia de

seguridad.

7.2. Copias de seguridad utilizando dump

Esta herramienta tiene una mayor potencia que tar y está más orientada a la realización de

copias de seguridad. Sin embargo, no aparece por defecto en todas las distribuciones de Linux y

solo se puede utilizar en las particiones de tipo ext2 y ext3.

Las copias realizadas con el comando dump serán completas o incrementales en función del

parámetro utilizado. Los parámetros más utilizados son:

 Nivel: Mediante un número se indica si se desea realizar una copia de seguridad

completa (0 ó 1) o incremental (2-9). El nivel, cinco por ejemplo, señala que sólo se

deben guardar los archivos modificados desde las copias incrementales de nivel inferior,

tres y cuatro en el ejemplo. La información necesaria para ello queda almacenada en el

fichero /etc/dumpdates.

 Ubicación destino: Se utiliza para indicar el dispositivo o fichero en el que se

almacenará la copia de seguridad, por ejemplo, el dispositivo /media/HDDexterno.

 Directorio-raíz: Se utiliza para especificar el sistema de ficheros o subconjunto de

ficheros que se desea proteger. Los valores habituales son / y /home.

Se pueden probar distintas combinaciones de niveles con el fin de encontrar el mejor

equilibrio entre la seguridad y el tiempo de recuperación. Una opción recomendable es que las

copias de seguridad generadas semanalmente sean de nivel tres y las copias de seguridad

generadas diariamente sean de nivel cuatro.

Para almacenar todos los ficheros modificados desde el último backup completo (segundo

nivel), se puede utilizar el siguiente comando:

Las restauraciones de las copias de seguridad generadas se pueden realizar utilizando el

comando restore. Un comando típico para una recuperación completa puede ser:

También se ofrece un modo de recuperación interactivo, que permite recuperar de modo

independiente algunos ficheros o directorios. Para ello se deberá indicar la opción –i y con la

operación add se deberán marcar los elementos que hay que recuperar. Por último, la opción

extract realizará la restauración.

$> cd /

$> restore –rf /media/HDDexterno

$> dump -2 /media/HDDexterno /

$> gzip –dc /media/HDDexterno/sistema.gz | dd of=/dev/hda1

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 228

7.3. Copias de seguridad utilizando cpio

cpio (CoPy In/Out) es una utilidad que permite copiar archivos a o desde una copia de

seguridad cpio, que no es más que un fichero que almacena otros archivos e información sobre

ellos (permisos, nombres, propietario, etc.). La copia de seguridad puede ser almacenada en un

disco, otro archivo, una cinta o incluso una tubería, mientras que los ficheros a copiar pueden

ser archivos normales, pero también dispositivos o sistemas de archivo completos.

En la tabla 9.1 se muestran las opciones de cpio más utilizadas; la sintaxis de esta orden es

bastante más confusa que la de tar debido a la interpretación de lo que cpio entiende por dentro

y fuera: copiar fuera indica generar la copia de seguridad en la salida estándar (que con toda

probabilidad desearemos redireccionar), mientras que copiar dentro es lo contrario, es decir,

extraer archivos de la entrada estándar (que también es seguro que desearemos redireccionarla).

Opción Acción que realiza

o Copiar fuera (out).

i Copiar dentro (in).

m Conservar la fecha y la hora de los archivos.

t Crea tabla de contenidos.

A Añade ficheros a una copia de seguridad existente.

v Modo verbose.

Tabla 9.1: Opciones básicas del comando cpio

Por ejemplo, si deseamos generar una copia de seguridad de los ficheros existentes en el

directorio /home y almacenar la copia de seguridad en /tmp/backup.cpio podemos utilizar la

siguiente sintaxis:

Como podemos ver, cpio lee la entrada estándar esperando los nombres de ficheros a

guardar, por lo que es conveniente utilizarlo tras una tubería pasándole esos nombres de archivo.

Además, hemos de redirigir su salida al nombre que queramos asignarle a la copia de seguridad,

ya que de lo contrario se mostraría el resultado en la salida estándar (lo que evidentemente no es

muy utilizado para realizar backups). Podemos fijarnos también en que estamos usando el

comando find en lugar de un simple ls: esto es debido a que ls mostraría sólo el nombre de cada

fichero en lugar de su ruta completa, por lo que cpio buscaría dichos ficheros a partir del

directorio actual.

Una vez creada la copia de seguridad quizás resulte interesante chequear su contenido, con la

opción –t. Por ejemplo, la siguiente orden mostrará en pantalla el contenido de

/tmp/backup.cpio:

Igual que para hacer copias de seguridad de ficheros o directorios hemos de pasarle a cpio la

ruta de los mismos, para extraerlos también lo debemos hacer así. Si no indicamos lo contrario

el comando cpio –i extraerá todos los archivos y directorios de la copia de seguridad, pero si

sólo nos interesan algunos de ellos podemos especificar su nombre de la siguiente forma:

$> cd /home

$> echo “/home/toni/hola.txt” | cpio –i < /tmp/backup.cpio

$> cpio –t < /tmp/backup.cpio

$> find /home | cpio –o > /tmp/backup.cpio

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 229

7.4. Copias de seguridad utilizando afio

afio es otra de las herramientas que Linux pone a nuestra disposición para generar copias de

seguridad. Constituye una mejor forma de tratar archivos con formato cpio. Generalmente es

una herramienta que suele ser mucho más rápida que cpio. afio proporciona múltiples opciones

para realizar copias de seguridad sobre cintas magnéticas y se recupera bastante bien de la

corrupción en los datos de entrada. Admite archivos multi-volumen durante su operación

interactiva. afio permite crear copias de seguridad que son mucho más seguras que las copias de

seguridad generadas con tar o con cpio.

Un ejemplo típico de la forma de uso del comando afio es el siguiente:

afio es la herramienta más utilizada para generar copias de seguridad en cintas magnéticas.

7.5. Copias de seguridad utilizando rsync

rsync es una poderosa implementación de un pequeño y maravilloso algoritmo. Su principal

poder es la habilidad de replicar eficientemente un sistema de archivos. Usando rsync, es fácil

configurar un sistema que mantendrá una copia actualizada de un sistema de archivos usando un

arreglo flexible de protocolos de red, tales como NFS, SMB o ssh. La segunda gran

característica que consigue este sistema de copias de seguridad es la capacidad de archivar

viejas copias de seguridad que han sido modificadas o eliminadas.

En resumen, este sistema usa un ordenador de pocas prestaciones con un sistema Linux,

integrado a muchos discos duros baratos y con un pequeño script que llama a rsync (ver figura

9.1). Cuando se hace una copia de seguridad, le decimos a rsync que cree un directorio llamado

YY−DD−MM como lugar para almacenar los cambios incrementales. Seguidamente, rsync

examina los servidores de los que hacemos copias de seguridad de los cambios. Si un archivo ha

cambiado, se copia la versión vieja al directorio incremental, y luego sobrescribe el archivo en

el directorio principal de copias de seguridad (ver figura 9.2).

Figura 9.1: Estructura de un servidor de copias de seguridad con rsync

$> find / -depth –print0 | afio –px -0a /media/HDDexterno

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 230

Figura 9.2: Copia de seguridad de un archivo utilizando rsync

La forma básica para trabajar con rsync viene dado por un script. En realidad sólo hay un

comando:

Los parámetros y opciones son:

 --backup: Crea copias de seguridad de los archivos antes de sobrescribirlos.

 --backup-dir=`date +%Y-%m-%d`: Crea un directorio de copia de seguridad, de

nombre año-mes-día, para esas copias de seguridad.

 -av: Modo de archivo y modo detallado.

Este script se puede programar para que se ejecute cada noche usando el administrador

regular de procesos en segundo plano (cron) de Linux. Por ejemplo, para conseguir que el script

se ejecute cada noche a las 11:00 PM, se debe utilizar el comando contrab –e, y luego escribir lo

siguiente: 0 23 * * * /RutaDeUbicacionDelScript

7.6. Copias de seguridad utilizando amanda

amanda (Advanced Maryland Automatic Network Disk Archiver) es un sistema de copias de

seguridad desarrollado para entornos Unix y Linux, que permite realizar copias de seguridad en

red, utilizando un único servidor de copias de seguridad centralizado para salvaguardar

información contenida en diferentes máquinas de una red local. Aunque amanda funciona sólo

en sistemas Unix y Linux, permite también hacer copias de seguridad de máquinas Windows

95/98/NT mediante SAMBA.

La utilidad amanda fue desarrollada en la universidad de Maryland y actualmente es

mantenida por la comunidad Open Source. amanda gestiona el proceso de hilvanar una

combinación de copias de seguridad completas e incrementales a partir de series de clientes de

red (servidores y estaciones de trabajo) a un disco de un host de cinta. Estas series de datos se

escriben en cintas. Cuando se instala correctamente, amanda realiza su tarea de forma

automática. Una tarea cron, sobre cada host de cinta, controla que la cinta correcta está cargada

en cada unidad de cinta, que todos los clientes están accesibles y que hay suficiente espacio

disponible para almacenar las copias de seguridad. Esta tarea se suele hacer durante el día para

que los errores encontrados se puedan enviar a tiempo a una lista de operadores de copia y

administradores de sistema, con el fin de que estos cambien las cintas y corrijan otros errores.

Otra tarea cron, realizada generalmente a altas horas de la noche, ejecuta las copias de

seguridad, conectando desde el host de cinta con cada uno de los clientes. amanda cuenta con

funciones que ejecutan conexiones en paralelo y que controlan su propio uso de ancho de banda.

rsync --force --ignore-errors --delete --delete-excluded --exclude-

from=ListaDeArchivosAExcluir --backup –backup-dir=`date +%Y-%m-%d` -av

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 231

Un módulo, conocido como el planificador, es el que determina qué niveles de incrementales

hay que ejecutar en cada sistema de archivos de cada host.

amanda utiliza dump (opcionalmente) o tar para llevar a cabo las copias de seguridad. Luego

es posible, con un poco de automatización de comandos como dd y mt, extraer los archivos de

amanda por medio de herramientas convencionales. Normalmente se emplea el comando

amrecover para realizar una restauración de alguna copia de seguridad.

8. ¿Qué hacer en caso de emergencia?

No es difícil cometer un error como root que nos cause problemas reales en nuestro sistema,

como por ejemplo, no poder iniciar la sesión de nuevo o perder archivos importantes, algo que

suele sucederles especialmente a los administradores de sistemas más novatos. Pero casi todos

los administradores de sistemas aprendemos nuestras buenas lecciones por la vía difícil:

viéndonos obligados a recuperar el sistema a partir de una emergencia real. En esta sección

proporcionaremos algunas sugerencias sobre lo que tenemos que hacer cuando sucedan

dificultades.

Debemos adoptar siempre medidas preventivas que reduzcan el impacto de dichas

emergencias. Por ejemplo, debemos crear una copia de seguridad de todos los archivos

importantes del sistema, si no de todo el sistema. Las copias de seguridad son vitales para

recuperarnos ante cualquier problema; no debemos dejar perder muchas semanas de duras tareas

realizadas para la configuración de nuestro sistema Linux, por no haber realizado ninguna copia

de seguridad.

Asimismo, debemos asegurarnos de escribir notas sobre la configuración de nuestro sistema,

con las entradas de las tablas de particiones, los tamaños y tipos de particiones y los sistemas de

archivos que estas contienen. Si por alguna razón se dañase la tabla de particiones, la solución al

problema podría ser simplemente cuestión de volver a ejecutar fdisk, pero esta solución sólo nos

ayudará si somos capaces de recordar cuál era la apariencia de nuestra tabla de particiones.

De hecho, no es mala idea hacer una copia de seguridad de las tablas de particiones de

nuestro sistema. El programa sfdisk es una herramienta muy útil para ver, guardar y manipular

datos de nuestras tablas de particiones. Por ejemplo, podemos capturar y guardar estos datos en

un archivo con un comando como el siguiente:

De esta forma volcaremos las tablas de particiones del primer disco duro de nuestro

ordenador y las guardaremos en el archivo /particiones.lista (o como queramos llamarlo). Está

salida puede ser leída por nosotros y por el comando sfdisk.

Si tenemos que restaurar una tabla de particiones, podemos editar el archivo

/particiones.lista, eliminar toda aquella información de particiones que no deseemos restaurar y

volver a montar la tabla de particiones de la siguiente forma:

Evidentemente, para que funcione cualquiera de estas medidas necesitaremos un método

para arrancar el sistema y acceder a nuestros archivos, o recuperar todo el sistema a partir de las

copias de seguridad, en una emergencia, algo que se consigue mejor con un disco de

emergencia o disco raíz. Normalmente, se trata de un disquete o CD-ROM de arranque que

contiene lo suficiente para que el sistema Linux pueda recuperar sistemas de archivos y realizar

$> sfdisk /dev/hda < /particiones.lista

$> sfdisk –d /dev/hda > /particiones.lista

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 232

tareas de reparación. Existen también CD-ROM muy avanzados, como Knoppix

(http://www.knopper.net/knoppix/index-en.html), que arrancan el sistema con un escritorio

gráfico, un explorador web y cualquier otro elemento para trabajar con comodidad. Cualquiera

de estos tipos pueden resultarnos útiles si necesitamos recuperar el sistema cuando se produce

un fallo.

9. Revisar y recuperar sistemas de archivos

En ocasiones es necesario revisar los sistemas de archivos de Linux y repararlos si aparecen

errores o si experimentamos pérdidas de datos. Dichos errores se producen normalmente tras el

cierre repentino del sistema o por una falta de suministro eléctrico, consiguiendo que el núcleo

sea incapaz de sincronizar la memoria caché del búfer del sistema de archivos con el contenido

en el disco. La mayoría de veces dichos errores son relativamente menores. Sin embargo, si el

sistema se cerrase durante la escritura de un archivo grande, el archivo puede haberse perdido y

los bloques asociados con él pueden haberse marcado como en uso cuando, realmente, no existe

ninguna entrada del archivo que se corresponda con ellos. En otros casos, los errores pueden

originarse a raíz de una escritura de datos accidental directamente en el dispositivo del disco

duro, como /dev/hda, o en una de las particiones, como /dev/hda2.

Para revisar los sistemas de archivos y corregir cualquier problema se utiliza el comando

fsck. fsck es una interfaz para un fsck.tipo de tipo específico de sistema de archivos, como lo es

fsck.ext2 para los sistemas de archivos Second Extended. fsck.ext2 es un vínculo simbólico a

e2fsck, pudiéndose ejecutar cualquiera de ellos directamente, si no se tiene instalada la interfaz

fsck.

El uso de fsck es muy sencillo; el formato del comando es:

Siendo tipo, el tipo de sistema de archivos a reparar y dispositivo, el dispositivo (partición de

unidad, disquete, etc.) en el que reside el sistema de archivos. Por ejemplo, para revisar el

sistema de archivos ext3 en /dev/hda2 podemos utilizar el siguiente comando:

$> fsck –t ext3 /dev/hda2

fsck 1.34 (25-Jul-2003)

/dev/hda2 is mounted. Do you really want to continue (y/n)? y

/dev/hda2 was not cleanly unmounted, check forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong for group 3 (3331, counted=3396) . FIXED

Free blocks count wrong for group 4 (1983, counted=2597) . FIXED

Free blocks count wrong (29643, counted=30341) . FIXED

Inode bitmap differences: -8280 . FIXED

Free inodes count wrong for group #4 (1405, counted=1406) . FIXED

Free inodes count wrong (34522, counted=34523) . FIXED

/dev/hda2: ***** FILE SYSTEM WAS MODIFIED *****

/dev/hda2: ***** REBOOT LINUX *****

/dev/hda2: 13285/47808 files, 160875/191216 blocks

$> fsck –t <tipo> <dispositivo>

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 233

En primer lugar, el sistema nos solicita una confirmación antes de revisar el sistema de

archivos montado. Si se encuentra cualquier error y se corrige durante el uso de fsck, tendremos

que reiniciar el sistema, si el sistema de archivos esta montado. La razón es que los cambios

realizados por fsck no se propagan al conocimiento interno del sistema en el diseño del sistema

de archivos. En general no es recomendable revisar sistemas de archivos montados.

Como podemos comprobar con el ejemplo anterior, fsck encuentra y corrige diversos

problemas y como el sistema de archivos del ejemplo estaba montado, el sistema nos informa de

que debemos reiniciar la máquina.

¿Cómo podemos revisar los sistemas de archivos sin montarlos? Excepto para el sistema de

archivos principal, podemos desmontar simplemente cualquier sistema de archivos antes de

ejecutar fsck sobre ellos. Sin embargo, si el sistema de archivos principal no se puede desmontar

mientras se está ejecutando el sistema. Una forma de revisar el sistema de archivos principal

mientras está desmontado es utilizar un disquete o CD-ROM de arranque como el que vimos en

la sección anterior. De esta forma, el sistema de archivos principal se encuentra en el CD-ROM

de arranque, el sistema de archivos principal de nuestro disco duro permanece desmontado y

podemos revisar el sistema de archivos principal del disco duro desde ahí.

Muchos sistemas Linux revisan automáticamente los sistemas de archivos en el momento del

arranque. Al hacerlo, el sistema normalmente monta inicialmente el sistema de archivos

principal como de sólo lectura, ejecuta fsck para revisarlo y ejecuta el comando:

mount –w –o remount /

La opción –o remount vuelve a montar el sistema de archivos con los nuevos parámetros, la

opción –w (equivalente a –o rw) monta el sistema de archivos como de lectura-escritura. El

resultado es que el sistema de archivos principal se vuelve a montar con un acceso de lectura-

escritura.

Podemos especificar opciones al fsck específico del tipo. La mayoría de tipos admiten la

opción –a, que confirma automáticamente cualquier solicitud de línea de comandos que pueda

mostrar fsck.tipo, la opción –c, que efectúa una revisión de bloques dañados y –v, que imprime

información por la salida estándar durante la operación de revisión. Estas opciones deben de ser

especificadas al comando fsck tras el argumento –t tipo.

No todos los tipos de sistemas de archivos admitidos por Linux tienen una variante fsck

disponible. Para los sistemas de archivos Second y Third Extended, los sistemas de archivos JFS

de reiser y los sistemas de archivos Minix, no deberíamos tener ningún problema en encontrar

una versión de fsck.

El uso de fsck no significa ni mucho menos que se capturen y reparen todos los errores de los

sistemas de archivos, pero sí los problemas más comunes. Si eliminamos un archivo importante,

no existe un método fácil para recuperarlo (fsck no podrá hacerlo). Es por esto que debemos

asegurarnos de realizar copias de seguridad y siempre utilizar rm –i, para que se nos consulte

antes de eliminar algún archivo.

10. Recuperación del súper bloque

Es posible que se dañe un sistema de archivos de forma que no se pueda montar, algo que

normalmente es el resultado de un daño en el súper bloque del sistema de archivos, que guarda

información sobre el sistema de archivos como un todo. Si el súper bloque está dañado, el

sistema no podrá acceder al sistema de archivos y cualquier intento de montarlo fallará,

probablemente con un error parecido a no se puede leer el súper bloque.

Administración de Sistemas Operativos Tema 9: Copias de seguridad y recuperación

Página | 234

Debido a la importancia del súper bloque, el sistema de archivos mantiene copias de

seguridad de él a intervalos en el sistema de archivos. Los sistemas de archivos ext2 y ext3 están

divididos en grupos de bloques, teniendo cada grupo (de forma predeterminada) 8192 bloques.

Por consiguiente, existen copias de seguridad del súper bloque en desplazamientos de los

bloques 8193, 16385 (es decir, 8192 x 2 + 1), 24577 (es decir, 8192 x 3 + 1), etc. Si utilizamos

el sistema de archivos ext2 o ext3, podemos comprobar si el sistema de archivos tiene grupos de

8192 bloques con el siguiente comando:

Evidentemente, este comando sólo funciona cuando el bloque maestro está intacto. Este

comando imprimirá una gran cantidad de información sobre el sistema de archivos y debe

aparecer algo parecido a lo siguiente:

Blocks per group: 8192

Si el comando nos muestra otro desplazamiento, debemos utilizar los desplazamientos de

cómputo para las copias del súper bloque, mencionadas anteriormente.

Si no podemos montar el sistema de archivos debido a problemas con el súper bloque, es

muy probable que también falle el comando fsck.tipo. Pero podemos indicarle al comando

fsck.tipo que utilice una de las copias del súper bloque en su lugar, para reparar el sistema de

archivos. Por ejemplo:

Siendo <offset> el desplazamiento del bloque a una copia del súper bloque (normalmente es

8193). El parámetro –f se utiliza para obligar a revisar el sistema de archivos; cuando se utilizan

copias de seguridad del súper bloque, el sistema de archivos puede parecer que está limpio, en

cuyo caso no se necesita ninguna revisión, -f sobrescribe este comportamiento. Por ejemplo,

para reparar el sistema de archivos que se encuentra en /dev/hda2 con un súper bloque dañado,

podemos utilizar el siguiente comando:

Las copias del súper bloque nos salvan el día. Los comandos anteriores se pueden ejecutar

desde un disquete o CD-ROM de arranque y seguramente nos permitirán montar de nuevo

nuestro sistema de archivos.

Ahora que los sistemas de ficheros transaccionales como ext3, reiserfs y jfs se incluyen en la

mayoría de distribuciones de Linux de forma predeterminada, es muy poco probable que

tengamos que utilizar los mecanismos de recuperación del súper bloque que acabamos de

estudiar. Gracias a journal, que es un registro mantenido internamente por el sistema de

archivos con todos los cambios realizados, los sistemas de archivos modernos son muy

resistentes a los daños del súper bloque. Aún así, puede ocurrir, por lo que nunca esta de más

saber cómo recuperarse fácilmente sin tener que volver a restaurar todo el sistema de archivos.

11. MBR dañado, infectado o corrupto

El MBR (Master Boot Record) es el primer sector físico de un dispositivo de

almacenamiento de datos, como por ejemplo, un disco duro. Es también conocido como sector

cero o sector de arranque principal (bootsector).

$> fsck –t ext3 –f –b 8193 /dev/hda2

$> fsck –t ext3 –f –b <offset> <device>

$> dumpe2fs /dev/hda2 | more

Tema 9: Copias de seguridad y recuperación Administración de Sistemas Operativos

Página | 235

Si el registro de inicio maestro queda dañado este puede repararse. Generalmente, si se

produce un daño en el registro de inicio maestro este no tiene por qué afectar a otros sistemas de

archivos o datos del resto del dispositivo de almacenamiento de datos.

La prevención puede hacer que esta tarea sea muy sencilla. En otras palabras, al igual que

ocurre con muchas otras emergencias, una rutina de preparación antes de que se produzcan los

daños nos puede ser de gran utilidad.

Los sistemas Linux nos permiten hacer una copia de seguridad del MBR haciendo uso del

comando dd. Por ejemplo:

Donde /dev/hda es una referencia al primer disco duro IDE (alternativamente se puede

utilizar /dev/sda para hacer referencia al primer disco duro SCSI) y ~/MBR.backup indica que el

archivo MBR.backup contendrá la copia de seguridad de nuestro MBR el cual será almacenado

en nuestro directorio de conexión. Otra opción que se debe especificar es el tamaño del bloque a

través de bs, el cual será de 512 bytes. Y por último establecemos la cuenta (count) a sólo uno,

ya que sólo queremos un sector.

Para restaurar un registro de inicio maestro, lo único que debemos hacer es invertir los

parámetros if y of del comando dd.

Si estuviésemos interesados en borrar el registro de inicio maestro del disco duro principal,

por cualquier circunstancia (por ejemplo, porque necesitamos eliminar la información de este

sector), lo único que debemos hacer es escribir el siguiente comando:

$> dd if=/dev/zero of=/dev/hda bs=512 count=1

$> dd if=~/MBR.backup of=/dev/hda bs=512 count=1 conv=notrunc

$> dd if=/dev/hda of=~/MBR.backup bs=512 count=1

Página | 236

Prácticas de laboratorio Administración de Sistemas Operativos

Página | 237

X. PRÁCTICAS DE LABORATORIO

Página | 238

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 239

Administración de sistemas operativos
Práctica 0: Programación de shell scripts

OBJETIVOS

 Estudiar los principales aspectos del lenguaje bash para programar shell scripts.

 Entender la filosofía de programación de shell scripts mediante ejemplos sencillos.

TEMPORIZACIÓN

El plazo de realización de esta práctica será de dos sesiones de laboratorio, cada una de dos

horas para un total de cuatro horas.

BIBLIOGRAFÍA

BÁSICA

UNIX y LINUX. Guía práctica, 3ª edición

Autor: Sebastián Sánchez Prieto y Óscar García Población

Editorial: Ra-Ma

Edición: 2005

COMPLEMENTARIA

El shell Bash

Dirección: http://personales.ya.com/macprog/bash.pdf

Programación en BASH – COMO de introducción

Dirección: http://www.ibiblio.org/pub/Linux/docs/HOWTO/translations/es/pdf/Bash-Prog-
Intro-COMO.pdf

http://personales.ya.com/macprog/bash.pdf
http://www.ibiblio.org/pub/Linux/docs/HOWTO/translations/es/pdf/Bash-Prog-Intro-COMO.pdf
http://www.ibiblio.org/pub/Linux/docs/HOWTO/translations/es/pdf/Bash-Prog-Intro-COMO.pdf

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 240

PRÁCTICA 0

Programación de shell scripts

TABLA DE CONTENIDOS:

Introducción……………………………………………………………………………………241

Primer programa de shell………………………………………………………………………242

Sustituciones de órdenes por su salida………………………………………………………...243

Mecanismos de escape………………………………………………………………………...243

 Barra invertida…………………………………………………………………………..........243

 Comillas simples………………………………………………………………………..........243

 Comillas dobles………………………………………………………………………………244

Paso de parámetros a un programa de shell……………………………………………………244

Algunas variables especiales de la shell……………………………………………………….244

Construcciones del lenguaje…………………………………………………………………...245

 shift…………………………………………………………………………………………...246

 read…………………………………………………………………………………………...247

 expr…………………………………………………………………………………………...248

 Operadores aritméticos……………………………………………………………………….248

 Operadores relacionales………………………………………………………………………249

 Operadores lógicos…………………………………………………………………………...250

 Evaluaciones………………………………………………………………………………….251

 test (para archivos)………………………………………………………………………….251

 test (para evaluación de cadenas)…………………………………………………………...252

 test (para evaluaciones numéricas)………………………………………………………….252

 if……………………………………………………………………………………………..253

 case………………………………………………………………………………………….255

 while………………………………………………………………………………………...256

 until………………………………………………………………………………………….257

 for…………………………………………………………………………………………...257

 break, continue y exit……………………………………………………………………….259

 select………………………………………………………………………………………...259

Uso de funciones en programas de shell………………………………………………………260

Ejercicios………………………………………………………………………………………262

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 241

Introducción

El shell es un intérprete de órdenes, pero el shell no es solamente eso; los intérpretes de

órdenes de Unix son auténticos lenguajes de programación. Como tales, incorporan sentencias

de control de flujo, sentencias de asignación, funciones, etc. Los programas de shell no

necesitan ser compilados como ocurre en otros lenguajes. En este caso es el propio shell el que

se encarga de interpretarlos línea a línea. A estos programas se les conoce generalmente como

shell scripts, y son los equivalentes a los archivos por lotes de otros sistemas operativos.

Cabe destacar que a pesar de que en los sistemas Unix no existen las extensiones de los

archivos (.txt, .exe, etc.) es recomendable asignarle a los archivos de script la extensión .sh, para

que de esta manera sepamos que corresponde a un script particular escrito por nosotros.

Esta práctica esta orientada al aprendizaje de la programación de shell script mediante el

lenguaje bash (bourne-again shell) el cual es un lenguaje interpretado de programación que

ayuda al administrador de sistemas a realizar la mayor parte de las tareas necesarias, tanto en la

automatización como en el arranque del sistema.

En la presente práctica se ampliarán aspectos del lenguaje bash mostrando su aplicación para

la programación de shell scripts. Sin embargo, la mayor parte de las órdenes, definiciones de

variables, constantes, etc. pueden utilizarse directamente por la línea de órdenes.

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 242

Primer programa de shell

Vamos a crear a continuación un sencillo shell script para mostrar cual va a ser la técnica

general para crear este tipo de programas. En primer lugar, lo que tenemos que hacer es elegir el

nombre que le vamos a dar a nuestro programa. En nuestro caso debemos ser originales y

asignarles nombre en función de lo se pretenda que va a ejecutar el script. A continuación

invocaremos a nuestro editor favorito (vim, emacs, gedit, kate, etc.) e introduciremos dos líneas

de texto correspondientes a dos órdenes Unix. Con ello generaremos un archivo que contiene lo

siguiente:

$ cat script_prueba.sh

#!/bin/bash

Shell script de prueba

who # Mostramos a los usuarios que están actualmente conectados en el sistema

date # Imprimimos la fecha y hora del sistema

$

Debido a que existen diferentes tipos de shell (csh, sh, tcsh, zsh, bash, etc.), cada una con un

conjunto de órdenes internas, es necesario que para el correcto funcionamiento de nuestros shell

scripts, tengamos que indicar al comienzo del script cuál va ha ser la shell que lo va a

interpretar. El modo de conseguirlo, es colocando una primera línea en el script que comience

con los caracteres #! seguido de la ruta hasta el ejecutable de la shell a utilizar. Para conocer

cual es la shell implementada en nuestro sistema podemos hacer uso del siguiente comando:

echo $SHELL (el resultado debe ser /bin/bash), y lo que aquí aparezca es lo que hemos de

colocar después de los caracteres #!.

NOTA: En esta práctica sólo se describirá la sintaxis reconocida por bash. En caso de

encontrar otra shell implementada en su sistema que sea diferente de bash favor de no continuar

con la práctica e indicarle al docente dicho problema o probar establecer el shell bash como

predeterminado mediante el uso del siguiente comando: chsh –s /bin/bash.

Una vez creado el archivo de texto (script_prueba.sh), debemos cambiar sus atributos para

que tenga derecho de ejecución. La forma de hacerlo es la siguiente:

$ chmod +x script_prueba.sh

Una vez cambiados los derechos, ya podemos ejecutar nuestro programa de la siguiente

forma: ./script_prueba.sh. Sólo es necesario poner al archivo el atributo de ejecución una vez,

puesto que una vez cambiado, este atributo no se verá modificado. Así pues, aunque volvamos a

editar el archivo, no será necesario utilizar de nuevo la orden chmod. Los resultados de la

ejecución del programa se muestran seguidamente:

$./script_prueba.sh

gateway :0 2008-05-27 00:37

mar may 27 05:45:24 CST 2008

$

Es posible (e incluso recomendable), tal y como hemos hecho en este primer ejemplo, añadir

comentarios a nuestros programas de shell, para ello, si una línea es de comentarios, debemos

comenzar con el carácter #.

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 243

Sustituciones de órdenes por su salida

Esta técnica consiste en sustituir el nombre de una orden por su salida estándar. Para realizar

esta transformación, la orden ha de introducirse entre los caracteres especiales `…` (tildes

graves). Esta notación se conoce también como antigua sustitución de órdenes.

Empleando esta notación se eliminan los caracteres de escape (\) que preceden a los

caracteres especiales $ y \ antes de ejecutar la orden. Esto permite incluir estos caracteres

evitando que sean interpretados por la shell. Ejemplo:

$ echo El directorio actual de trabajo es: `pwd`

El directorio actual de trabajo es: /home/luis

$

Mecanismos de escape

Los mecanismos de escape son aquellos que sirven para evitar que la shell interprete

caracteres especiales o palabras reservadas con un significado habitual, tomándolos entonces

como literales. Estos mecanismos evitan, por tanto, la expansión de parámetros o la sustitución

de órdenes.

Los caracteres empleados como mecanismos de escape son la barra invertida (\), las comillas

simples („…‟) y las comillas dobles (“…”).

Barra invertida

La barra invertida tiene las siguientes interpretaciones dependiendo de la situación en la que

se encuentre: Si no aparece encerrado entre comillas (simples o dobles), se elimina y el carácter

al que precede es tomado como literal. Si el carácter al que acompaña es el de la línea nueva,

newline, también se elimina este carácter. Este comportamiento se denomina continuación de

línea y permite escribir texto en varias líneas y que la shell las considere como una sola.

Si forma parte del texto encerrado entre comillas simples mantiene su significado literal (no

es interpretada). Cuando se encuentra dentro de un texto encerrado entre comillas dobles

mantiene su significado literal, excepto cuando se usa para escapar los caracteres $, „ y “.

Ejemplo:

$ echo \$HOME es $HOME

$HOME es /home/luis

$

Comillas simples

Los caracteres situados dentro de las comillas simples pierden su significado y son tomados

como literales. La comilla simple no puede aparecer dentro del literal puesto que delimitaría el

final de la cadena. Ejemplo:

$ echo „$HOME, “, \n, ls‟

HOME, “, \n, ls

$ echo \„ „Esto se encuentra dentro de: (‟ \„ „…‟ \‟ „) comillas simples‟ \‟

„Esto se encuentra dentro de: („...‟) comillas simples‟

$

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 244

Comillas dobles

Eliminan la interpretación de todos los caracteres que encierran excepto: $, „, “ y \. Ejemplo:

$ echo “\$HOME es $HOME”

$HOME es /home/luis

$

Paso de parámetros a un programa de shell

A menudo queremos que nuestros programas de shell reciban parámetros desde la línea de

órdenes para hacerlos más versátiles. Estos parámetros son los que se conocen como parámetros

de posición. Los parámetros de posición se pueden usar dentro de un programa del shell como

cualquier otra variable del shell; es decir, para saber su valor utilizaremos el símbolo $. Los

parámetros dentro del shell script son accesibles utilizando

 $0 Representa al parámetro cero o nombre del programa.

 $1 Representa al parámetro uno.

…

 $9 Representa al parámetro nueve. Aunque una línea de órdenes puede tener más de

nueve parámetros, un programa shell sólo puede acceder directamente a los primeros

nueve parámetros mediante $1, $2, …, $9; para parámetros superiores a nueve se

emplea la notación ${número_parametro} o se emplea la orden shift como se mostrará

más adelante.

Sí, por ejemplo, tenemos un programa de shell denominado prog.sh y lo invocamos de la

siguiente forma:

$./prog.sh datos 35 suma

Dentro del programa de shell tenemos lo siguiente:

$0 = ./prog.sh

$1 = datos

$2 = 35

$3 = suma

Vamos a poner un ejemplo de un shell script que visualiza los cuatro primeros parámetros

que le pasemos. Al programa lo denominaremos param.sh, y su contenido es el siguiente:

$ cat param.sh

#!/bin/bash

Este script visualiza los parámetros que le pasamos desde la línea de órdenes

echo Parámetro 0 = $0

echo Parámetro 1 = $1

echo Parámetro 2 = $2

echo Parámetro 3 = $3

$

Algunas variables especiales de la shell

Dentro de un programa de shell existen variables con significados especiales, algunas d elas

cuales se citan a continuación:

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 245

 $# Esta variable guarda el número de argumentos de la línea de órdenes (excluyendo el

nombre del programa).

 $* Esta variable guarda la cadena de argumentos entera (excluyendo el nombre del

programa).

 $? Esta variable guarda el código de retorno de la última orden ejecutada (0 si no hay

error y distinto de 0 si hay error).

 $@ Esta variable representa la cadena de argumentos entera (excluyendo el nombre del

programa) pero como una lista de cadenas, a diferencia de $* que obtiene todos los

argumentos como una única cadena.

Vamos a mostrar con un sencillo ejemplo el uso de estas variables. En este caso, el nombre

del shell script será var.sh

$ cat var.sh

#!/bin/bash

Programa shell que visualiza las variables #, * y ?

echo La variable \# vale: $#

echo La variable * vale: $*

cp # Forzamos un error ya que al comando cp le faltan argumentos

echo La variable \? vale: $?

$

Como podemos apreciar, cualquier carácter susceptible de ser interpretado por la shell es

precedido por el carácter backslash (\) para que pierda su significado especial. Ahora para

probar el programa lo lanzamos con una serie de argumentos:

$./var.sh uno dos tres cuatro

La variable # vale: 4

La variable * vale: uno dos tres cuatro

cp: falta un archivo como argumento

Pruebe „cp –help‟ para más información.

La variable ? vale: 1

$

Como podemos observar, la variable $? toma un valor distinto de cero, puesto que la orden

cp se ha ejecutado con errores. Es importante que si dentro de un programa de shell, se produce

algún error tomemos decisiones al respecto. Como veremos más adelante, existen mecanismos

para tomar diferentes caminos en función del resultado de la ejecución de una orden.

Construcciones del lenguaje

Vamos a ver seguidamente las construcciones del lenguaje típicas empleadas en los

programas de shell. No vamos a realizar una descripción exhaustiva de todas y cada una de las

construcciones, sino que nos vamos a centrar en lo empleado más comúnmente.

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 246

shift

Sintaxis: shift n

Esta orden se utiliza para desplazar los argumentos, de manera que $2 pasa a ser $1, $3 pasa

a ser $2, y así sucesivamente (esto si el desplazamiento n es igual a 1). Es muy utilizado dentro

de los bucles. Vamos a poner un ejemplo con un programa que denominaremos shift1.sh, cuyo

contenido se muestra a continuación:

$ cat shift1.sh

#!/bin/bash

Programa de shell que muestra el uso de shift

echo \$1 vale: $1

echo \$2 vale: $2

echo \$3 vale: $3

shift 2

echo Ahora \$1 vale: $1

echo Ahora \$2 vale: $2

echo Ahora \$3 vale: $3

$

En el ejemplo anterior, al desplazar dos lugares tendremos que $5 pasa a ser $3, $4 pasa a ser

$2 y $3 pasa a ser $1. Los argumentos iniciales, $1 y $2, se pierden después del desplazamiento.

Vamos a ejecutar el programa anterior:

$./shift1.sh uno dos tres cuatro cinco

$1 vale: uno

$2 vale: dos

$3 vale: tres

Ahora $1 vale: tres

Ahora $2 vale: cuatro

Ahora $3 vale: cinco

$

Evidentemente este desplazamiento afecta también a las variables # y *. Veamos otro

ejemplo, que denominaremos shif2.sh

$ cat shift2.sh

#!/bin/bash

Otro ejemplo con shift

echo \$# vale: $#

echo \$* vale: $*

shift 2

echo Ahora \$# vale: $#

echo Ahora \$* vale: $*

$

Al ejecutar el programa anterior, se produce el siguiente resultado:

$./shift2 uno dos tres cuatro cinco

$# vale: 5

$* vale: uno dos tres cuatro cinco

Ahora $# vale: 3

Ahora $* vale: tres cuatro cinco

$

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 247

La orden shift desplaza todas las cadenas en * a la izquierda n posiciones y decrementa # en

n. Si a shift no se le indica el valor de n, por defecto tomará el valor 1. La orden shift no afecta

al parámetro de posición 0 o nombre del programa.

read

Sintaxis: read variable(s)

La orden read se usa para leer información escrita en el terminal de forma interactiva. Si hay

más variables en la orden read que palabras escritas, las variables que sobran por la derecha se

asignarán a NULL. Si se introducen más palabras que variables haya, todos los datos que sobran

por la derecha se asignarán a la última variable de la lista.

En el siguiente ejemplo, el programa read1.sh va a leer una variable desde la entrada

estándar, y posteriormente va a visualizar esa variable por la salida estándar.

Ejemplo:

$ cat read1.sh

#!/bin/bash

Programa que ilustra el uso de la orden read

La opción –n en la orden echo, se emplea para evitar el retorno de carro

echo –n Introduce una variable:

read var

echo La variable introducida es: $var

$

Cuando ejecutemos este programa, obtendremos el siguiente resultado:

$./read1.sh

Introduce una variable: 123

La variable introducida es: 123

$

A continuación analizaremos el caso en que leemos más o menos variables de las que

queremos leer desde el programa shell. Para ello, consideremos el siguiente programa, que lee

tres variables. En un primer caso vamos a introducir sólo dos, y en un segundo introduciremos

más de tres variables. El código del programa en cuestión es el siguiente:

$ cat read2.sh

#!/bin/bash

Programa que lee varias variables con read

echo –n Introduce las variables:

read var1 var2 var3

echo Las variables introducidas son:

echo var1 = $var1

echo var2 = $var2

echo var3 = $var3

$

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 248

Veamos una ejecución normal en la que leemos tres variables:

$./read2.sh

Introduce las variables: 34 hola 938

Las variables introducidas son:

var1 = 34

var2 = hola

var3 = 938

$

Vamos a ejecutar el programa anterior introduciendo sólo dos variables:

$./read2.sh

Introduce las variables: uno dos

Las variables introducidas son:

var1 = uno

var2 = dos

var3 =

$

Como podemos observar, la variable var3 queda sin asignar, puesto que sólo hemos

introducido dos valores. A continuación ejecutaremos de nuevo el programa, pero ahora

introduciremos cuatro variables:

$./read2.sh

Introduce las variables: uno dos tres cuatro

Las variables introducidas son:

var1 = uno

var2 = dos

var3 = tres cuatro

$

En este caso a la variable var3 se le asignan todas las variables a partir de la dos.

expr

Sintaxis: expr arg1 op arg2 [op arg3 …]

Los argumentos de la orden expr se toman como expresiones y deben ir separados por

espacios en blanco. La orden expr evalúa sus argumentos y escribe el resultado en la salida

estándar. El uso más común de la orden expr es para efectuar operaciones de aritmética simple

y, en menor medida, para manipular cadenas (averiguar la longitud de una cadena, filtrar

determinados caracteres de una cadena, etc.).

Operadores aritméticos

Los siguientes operadores se utilizan para evaluar operaciones matemáticas y escribir el

resultado de la operación por la salida estándar. Las operaciones que podemos realizar son las

siguientes: suma, resta, multiplicación, división entera y cálculo del resto de la división entera.

 + Suma arg2 a arg1.

 - Resta arg2 a arg1.

 * Multiplica los argumentos.

 / Divide arg1 entre arg2 (división entera).

 % Resto de la división entera entre arg1 y arg2.

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 249

En el caso de utilizar varios operadores, las operaciones de suma y resta se evalúan en último

lugar, a no ser que vayan entre paréntesis. No hay que olvidar que los símbolos *, (y) tienen un

significado especial para la shell, por lo deben ser precedidos por el símbolo backslash o

encerrados entre comillas simples.

Ejemplo:

$ cat expr1.sh

#!/bin/bash

Programa de shell que multiplica dos variables leídas desde el teclado

echo

echo Multiplicación de dos variables

echo --------------------------------------

echo

echo –n Introduce la primera variable:

read arg1

echo –n Introduce la segunda variable:

read arg2

resultado=`expr $arg1 * arg2`

echo Resultado=$resultado

$

El resultado de ejecutar el programa anterior es el producto de las dos variables leídas desde

el teclado.

Veamos un uso particular:

$./expr1.sh

Multiplicación de dos variables

Introduce la primera variable: 12

Introduce la segunda variable: 20

Resultado=240

$

Operadores relacionales

Estos operadores se utilizan para comparar dos argumentos. Los argumentos pueden ser

también palabras. Si el resultado de la comparación es cierto, el resultado es uno; si es falso, el

resultado es cero. Estos operadores se utilizan mucho para comparar operandos y tomar

decisiones en función de los resultados de la comparación. Veamos los distintos tipos de

operadores relacionales:

 = ¿Son los argumentos iguales?

 != ¿Son los argumentos distintos?

 > ¿Es arg1 mayor que arg2?

 >= ¿Es arg1 mayor o igual que arg2?

 < ¿Es arg1 menor que arg2?

 <= ¿Es arg1 menor o igual que arg2?

No olvide que los símbolos > y <tiene significado especial para la shell, por lo que deben ser

entrecomillados.

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 250

Ejemplo:

$ cat expr2.sh

#!/bin/bash

Programa de shell que determina si dos variables leídas desde el

teclado son iguales o no

echo

echo Son iguales las variables?

echo -------------------------------

echo

echo –n Introduce la primera variable:

read arg1

echo –n Introduce la segunda variable:

read arg2

resultado=`expr $arg1 = $arg2`

echo Resultado=$resultado

$

El programa anterior devolverá cero si las dos variables introducidas son distintas y uno si

son iguales.

Operadores lógicos

Estos operadores se utilizan para comparar dos argumentos. Dependiendo de los valores, el

resultado puede ser arg1 (o alguna parte de él), arg2 o cero. Como operadores lógicos tenemos

los siguientes:

 | OR lógico. Si el valor de arg1 es distinto de cero, el resultado es arg1; si no es así, el

resultado es arg2.

 & AND lógico. Si arg1 y arg2 son distintos de cero, el resultado es arg1; si no es así, el

resultado es arg2.

 : El arg2 es el patrón buscado en arg1. Si el patrón arg2 está encerrado dentro de

paréntesis \(\), el resultado es la parte de arg1 que coincide con arg2. Si no es así, el

resultado es simplemente el número de caracteres que coinciden.

No olvide que los símbolos | y & deben ser entrecomillados o precedidos del símbolo \, por

tener un significado especial para la shell. Veamos ahora algunos ejemplos en los que

invocamos a expr desde la línea de órdenes:

$ a=5

$ a=`expr $a + 1`

$ echo $a

6

$

En este primer ejemplo hemos incrementado en una unidad el valor de la variable a.

$ a=palabra

$ b=`expr $a : .*`

$ echo $b

7

$

En este ejemplo hemos calculado el número de caracteres de la cadena a.

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 251

$ a=junio_2004

$ b=`expr $a : „\([a-z]*\)‟`

$ echo $b

junio

$

En este último ejemplo hemos determinado cuáles son los caracteres comprendidos entre la

letra a y la z minúsculas en la cadena a.

Evaluaciones

Sirven para averiguar el valor lógico de una determinada expresión. Habitualmente su uso se

combina con una instrucción de bifurcación, como por ejemplo if.

test (para archivos)

Sintaxis: test –opción argumento [-opción argumento]

La orden test se usa para evaluar expresiones y generar un valor de retorno; este valor no se

escribe en la salida estándar, pero asigna cero al código de retorno si la expresión se evalúa

como verdadera, y le asigna uno si la expresión se evalúa como falsa. Se puede invocar la orden

test también mediante [expresión], tanto a la derecha como a la izquierda de expresión debe

haber un espacio en blanco. test puede evaluar tres tipos de elementos: archivos, cadenas y

números.

Opciones:

 -f Devuelve verdadero (0) si el archivo existe y es un archivo regular (no es un

directorio ni un archivo de dispositivo).

 -s Devuelve verdadero (0) si el archivo existe y tiene un tamaño mayor que cero.

 -r Devuelve verdadero (0) si el archivo existe y tiene permiso de lectura.

 -w Devuelve verdadero (0) si el archivo existe y tiene permiso de escritura.

 -x Devuelve verdadero (0) si el archivo existe y tiene permiso de ejecución.

 -d Devuelve verdadero (0) si el archivo existe y es un directorio.

Ejemplo:

$ test –f archivo32

$ echo $?

1

$ test –f /etc/passwd

$ echo $?

0

$

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 252

test (para evaluación de cadenas)

Sintaxis: test cadena1 operador cadena2

 [cadena1 operador cadena2]

Ejemplo:

$ a=palabra1

$ [$a = palabra2]

$ echo $?

1

$ [$a = palabra1]

$ echo $?

0

$

De esta manera, test evalúa si las cadenas son iguales o distintas. Cuando se evalué una

variable del shell, es posible que dicha variable no contenga nada. Consideremos el siguiente

caso:

[$var = vt100]

Si a var no le hemos asignado nada, el shell realizará la sustitución de variables, y la orden

que el shell intentará ejecutar será la siguiente:

[= vt100]

Lo cual nos dará un error de sintaxis. Una forma sencilla de evitarlo consiste en meter entre

comillas la variable que vamos a evaluar, y así sabremos que la variable tomará el valor NULL.

[“$var” = vt100]

Si como en el ejemplo anterior, $var no contiene ningún valor, la expresión que verá test,

una vez procesada por el shell será:

[“” = vt100]

Esta expresión es sintácticamente correcta y no provocara ningún error de sintaxis.

test (para evaluaciones numéricas)

Sintaxis: test numero1 operador numero2

 [numero1 operador numero2]

En evaluaciones numéricas esta orden es sólo valida con números enteros. Los operadores

usados para comparar números son diferentes de los usados para comparar cadenas. Estos

operadores numéricos son:

 -lt Menor que.

 -le Menor o igual que.

 -gt Mayor que.

 -ge Mayor o igual que.

 -eq Igual a.

 -ne No igual a.

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 253

Hay unos cuantos operadores que son válidos en una expresión de la orden test a la hora de

evaluar tanto archivos como cadenas o números. Estos operadores son:

 -o OR

 -a AND

 ! NOT

Ejemplo:

$ a=23

$ [$a –lt 55]

$ echo $?

0

$ test $a != 23

$ echo $?

1

$

if

Sintaxis: if condicion1

 then

 orden1

 [elif condicion2

 then

 orden2]

 …

 [else

 orden3]

 fi

La construcción if se utiliza para tomar decisiones a partir de los códigos de retorno,

normalmente devueltos por la orden test. La ejecución de la instrucción if es tal como sigue:

1. Se evalúa la condicion1.

2. Si el valor de retorno de condicion1 es verdadero (0), se ejecutará orden1.

3. Si esto no es así y se cumple la condicion2, se ejecutará la orden2.

4. En cualquier otro caso, se ejecuta orden3.

Ejemplo:

$ cat if.sh

#!/bin/bash

Shell script que muestra el uso de la sentencia de control if-fi

if test –f /etc/hosts

then

 cat /etc/hosts

else

 echo El archivo no existe

fi

$

En el ejemplo anterior, si existe el archivo /etc/hosts, entonces lo visualizaremos. Si no

existe, imprimiremos por pantalla un mensaje diciendo que tal archivo no existe.

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 254

A continuación vamos a poner otro ejemplo, en el cual, si no existe un directorio, lo

crearemos desde un programa de shell y le habilitaremos los derechos de modo que sólo el

propietario tenga acceso a él. El nombre del archivo se le pasa como parámetro al shell script.

El contenido del programa es el siguiente:

$ cat crea.sh

#!/bin/bash

Ejemplo de uso de if. Este programa crea si (no existe) el archivo que le

indiquemos desde la línea de órdenes. Al directorio recién creado sólo

tendrá acceso el propietario del mismo.

if [! –d $1]

then

 mkdir $1

 chmod 700 $1

fi

$

En el siguiente ejemplo vamos a diseñar un shell script que admita un argumento. Si el

argumento dado coincide con el nombre de un archivo o directorio, deberá sacar por pantalla de

qué tipo es. Si es además un archivo, deberá determinar si es ejecutable o no.

$ cat if2.sh

#!/bin/bash

Programa shell que comprueba si existe un archivo pasado como argumento

y si existe muestra de que tipo es.

if [$# = 0]

then

 echo Debes introducir al menos un argumento.

 exit 1

fi

if [-f “$1”]

then

 # Es un archivo regular

 echo –n “$1 es un archivo regular ”

 if [-x “$1”]

 then

 echo “ejecutable.”

 else

 echo “no ejecutable.”

 fi

elif [-d “$1”]

then

 # Es un directorio

 echo “$1 es un directorio”

else

 # Es una cosa rara

 echo “$1 es una cosa rara o no existe”

fi

$

if también puede utilizarse para comprobar el resultado de la ejecución de un programa

externo, ya que todos los programas en Unix devuelven un valor numérico como resultado de su

ejecución, que indica si dicha ejecución se llevo a cabo correctamente o no.

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 255

Por ejemplo, podemos diseñar un shell script que compruebe si existe un determinado

usuario en el archivo de contraseñas. Para ello vamos a utilizar una expresión regular

interpretada por grep. El programa de shell podría ser el siguiente:

$ cat comp_usuario.sh

#!/bin/bash

Programa shell que comprueba la existencia de un usuario en el

archivo de contraseñas.

if grep –q „^‟$1„:‟ /etc/passwd

then

 echo El usuario $1 ya existe en el sistema.

else

 echo El usuario $1 no existe en el sistema.

fi

$

Podemos ampliar el programa anterior para averiguar si el usuario, de existir, es un usuario

regular (su UID es mayor que 1000).

$ cat comp_usuario2.sh

#!/bin/bash

Programa shell que comprueba la existencia de un usuario en el archivo

de contraseñas y verifica si se trata de un usuario regular

if grep –q „^‟$1„:‟ /etc/passwd

then

 echo El usuario $1 ya existe en el sistema.

 UID=`cat /etc/passwd | grep „^‟$1„:‟ | cut –f3 –d„:‟`

 if [UID –ge 1000]

 then

 echo $1 es un usuario regular.

 else

 echo $1 no es un usuario regular.

 fi

else

 echo El usuario $1 no existe en el sistema.

fi

$

case

Sintaxis: case palabra in

 patron1)

 orden1

 ;;

 patron2)

 orden2

 ;;

 …

 patronN)

 ordenN

 ;;

 esac

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 256

La construcción case controla el flujo del programa basándose en la palabra dada. La palabra

se compara, en orden, con todas las platillas. Cuando se encuentra la primera que corresponde,

se ejecuta la lista de órdenes asociadas, la cual tiene que terminar con dos punto y coma (;;).

Ejemplo:

$ cat case.sh

#!/bin/bash

Programa que ilustra el uso de la sentencia de control de flujo case-esac.

dia=`date | cut –c 0-3`

case dia in

 lun)

 echo Hoy es Lunes

 ;;

 mar)

 echo Hoy es Martes

 ;;

 mie)

 echo Hoy es Miércoles

 ;;

 jue)

 echo Hoy es Jueves

 ;;

 vie)

 echo Hoy es Viernes

 ;;

 sab)

 echo Hoy es Sabado

 ;;

 dom)

 echo Hoy es Domingo

 ;;

esac

$

El programa anterior puede ser utilizado para saber el día de la semana, visualizando los

resultados en español. Obsérvese cómo en la variable dia almacenamos lo que retorna la orden

date | cut –c 0-3, que son las tres primeras letras del día de la semana.

while

Sintaxis: while condición

 do

 orden(es)

 done

La ejecución de la construcción while es como sigue:

1. Se evalúa la condición.

2. Si el código devuelto por la condición es verdadero (0), se ejecutará la orden u órdenes

y se vuelve a iterar.

3. Si el código de retorno de la condición es falso (1), se saltará a la primera orden que

haya después de la palaba reservada done.

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 257

Ejemplo:

$ cat while.sh

#!/bin/bash

Programa que ilustra el uso de la sentencia de control de flujo while.

a=42

while [$a –le 53]

do

 echo contador = $a

 a=`expr $a + 1`

done

$

En el anterior ejemplo se incrementa y visualiza el valor del contador mientras éste sea

menor o igual que 53. Para ello, while comprueba el código de retorno de la orden [$a –le 53],

y si es cierto, se repite la iteración.

until

Sintaxis: until condición

 do

 orden(es)

 done

La construcción until es muy similar a la de while. La ejecución es como sigue:

1. Se evalúa la condición.

2. Si el código de retorno de la condición es distinto de 0 (falso), se ejecutará la orden u

órdenes y se vuelve a iterar.

3. Si el código devuelto por la condición es 0 (verdadero), se saltará a la primera orden

que haya después de la palabra clave done.

Ejemplo:

$ cat until.sh

#!/bin/bash

Programa que ilustra el uso de la sentencia de control de flujo until.

until [$a = hola]

do

 echo –n Introduce una cadena:

 read a

done

$

En el ejemplo anterior, el bucle until se ejecuta hasta que el usuario introduzca la cadena

hola. A partir de este momento, la condición se vuelve verdadera y se termina el bucle.

for

Sintaxis: for variable in lista

 do

 orden(es)

 done

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 258

variable puede ser cualquier variable del shell, y lista es una lista compuesta de cadenas

separadas por espacios en blanco o tabuladores. La construcción funciona como sigue:

1. Se asigna a variable la primera cadena de la lista.

2. Se ejecuta orden.

3. Se asigna a variable la siguiente cadena de la lista. Se vuelve a ejecutar orden.

4. Repetir hasta que se hayan usado todas las cadenas.

5. Después de que haya acabado el bucle, la ejecución continua en la primera línea que

sigue a la palabra clave done.

Ejemplo:

$ cat for.sh

#!/bin/bash

Programa que ilustra el uso de la sentencia de control de flujo for.

for i in manuel ana carlos miguel

do

 mail $i < carta

done

$

En el ejemplo anterior se envía el archivo carta a todos los usuarios indicados en la lista. Si

dentro del bucle for omitimos lista, se asumirá como lista el parámetro de posición $@ que

representa la cadena de argumentos entera excluyendo el nombre del programa.

El siguiente ejemplo es una modificación del shell script (if2.sh) visto en la parte

correspondiente a if para que pueda tratar con varios archivos pasados como argumento. El

código del programa es el siguiente:

$ cat modifif2.sh

#!/bin/bash

Programa shell que comprueba si existe un archivo pasado como argumento y si

existe muestra de qué tipo es

if [$# = 0]

then

 echo Debes introducir al menos un argumento.

 exit 1

fi

for i in $@

do

if [-f “$1”]

then

 # Es un archivo regular

 echo –n “$1 es un archivo regular ”

 if [-x “$1”]

 then

 echo “ejecutable.”

 else

 echo “no ejecutable.”

 fi

elif [-d “$1”]

then

 # Es un directorio

 echo “$1 es un directorio”

else

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 259

 # Es una cosa rara

 echo “$1 es una cosa rara o no existe”

fi

Ahora desplazamos los argumentos

shift

done

$

break, continue y exit

 break [n] Hace que cualquier bucle for, while o until termine y pase el control a la

siguiente orden que se encuentre después de la palabra reservada done.

 continue [n] Detiene la iteración actual del bucle for, while o until y empieza la

ejecución de la siguiente iteración.

 exit [n] Detiene la ejecución del programa del shell y asigna n al código de retorno

(normalmente cero implica éxito, y distinto de cero, error).

Ejemplo:

$ cat exit.sh

#!/bin/bash

Programa shell que te saca si el número de parámetros es igual a cero

if [$# -eq 0]

then

 echo Forma de uso: $0 [-c] [-d] archivo(s)

 exit 1 # Código de retorno erróneo

fi

$

La secuencia de código anterior puede ser utilizada dentro de un programa de shell para

comprobar si le pasamos o no parámetros. En caso de no pasarle parámetros, visualizará el

mensaje de error y terminará el programa.

select

Sintaxis: select i [in lista]

 do

 orden(es)

 done

Esta sentencia visualiza los elementos indicados en lista, numerados en el orden en que

aparecen, en la salida estándar de error. Si no se proporciona tal lista, ésta es leída desde la línea

de órdenes a través de la variable $@. A continuación de las opciones numeradas indicadas en

lista se visualiza la cadena (prompt), indicada por la variable PS3. Cuando aparezca este

prompt, tendremos que elegir una de las opciones indicadas en la lista introduciendo el número

que la identifica. Si se introduce una opción válida, se ejecutarán las órdenes asociadas. Si como

opción introducimos Enter, el menú de opciones volverá a ser visualizado. Cualquier entrada

que indique el usuario será almacenada en el variable REPLY.

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 260

Ejemplo:

$ cat select.sh

#!/bin/bash

Programa que ilustra el uso de la sentencia select

PS3=“Opcion: ”

select i Listado Quien Salir

do

 case $i in

 Listado)

 ls –l

 ;;

 Quien)

 who

 ;;

 Salir)

 exit 0

 ;;

 *)

 echo Opcion incorrecta

 esac

done

$

Uso de funciones en programas de shell

Dentro de los programas de shell se puede hacer uso de funciones. En una función podemos

agrupar un conjunto de órdenes que se ejecuten con cierta frecuencia. Las funciones hay que

declararlas antes de usarlas.

Ejemplo:

$ cat funciones.sh

#!/bin/bash

Si no se pasan parámetros al programa se ejecuta la función error. Obsérvese

que para invocar a la función no colocamos los paréntesis. Seguidamente

definimos la función error.

error()

{

 echo Error de sintaxis

exit 1

}

if [$# = 0]

then

 error

else

 echo Hay $# argumentos

fi

$

Las funciones además pueden colocarse en otro archivo aparte. De esta forma podemos

diseñar una biblioteca de funciones y reutilizarlas en nuestros programas.

Como ejemplo de aplicación de funciones vamos a diseñar una función que denominaremos

espacio_ocupado(id_particion) que obtenga la cantidad de espacio ocupado de una partición de

Práctica 0: Programación de shell scripts Laboratorio de Administración de Sistemas Operativos

Página | 261

disco dada como argumento. Esta función la vamos a situar en un archivo aparte denominado

funciones.sh.

Para diseñar la función partiremos de la información que nos aporta la orden df cuya salida

es similar a la siguiente:

$ df

S. ficheros 1K-blocks Used Available Use % Montado en

/dev/hda2 7384424 6090076 919232 87% /

none 119624 0 119624 0% /dev/shm

$

Esta orden nos informa de que la partición hda2 tiene 6090076 bytes ocupados. Podemos

utilizar el filtro cut para obtener sólo este campo y grep para localizar la línea que contiene la

información sobre la partición en la que estemos interesados:

$ df –k | grep /dev/hda2 | tr –s „ ‟ | cut –f3 –d„ ‟

6090076

$

Utilizamos el modificador –k para que el resultado de df esté expresado en kilobytes. La

orden tr –s suprime los espacios en blanco duplicados para que cut pueda usarlos como

delimitador de campos de forma correcta.

Ahora que tenemos la orden correcta vamos a introducirla en el archivo funciones.sh:

$ cat funciones.sh

#!/bin/bash

espacio_ocupado()

{

 ESPACIO=` df –k | grep /dev/$particion | tr –s „ ‟ | cut –f3 –d„ ‟`

}

$

Para hacer uso de esta función desde otro script es necesario indicar en que archivo se

encuentra. Para esto se coloca al principio de la línea un punto, un espacio y el nombre del

archivo que contiene la función con su camino (path) si fuera necesario. El siguiente ejemplo

muestra cómo incluir el archivo funciones.sh y cómo utilizar la función espacio_ocupado que

acabamos de diseñar. El objetivo es crear un script llamado espacio.sh que reciba como

argumento el nombre lógico de una partición y muestre un mensaje por pantalla informando del

espacio ocupado en dicha partición.

$ cat espacio.sh

#!/bin/bash

. ./funciones.sh

partición $1

espacio_ocupado

echo La partición $1 tiene ocupados $ESPACIO Kb

$

Laboratorio de Administración de Sistemas Operativos Práctica 0: Programación de shell scripts

Página | 262

Ejercicios

1. Realice un programa de shell que reciba desde la línea de órdenes tres palabras y se

encargue de mostrarlas por pantalla ordenadas alfabéticamente.

2. Repita el ejercicio anterior, pero leyendo las tres palabras de forma interactiva.

3. Realice un programa de shell que reciba desde la línea de órdenes dos palabras y nos

indique si son iguales o distintas. Si el número de parámetros no es correcto, se deberá

visualizar un mensaje de error.

4. Realice un programa shell que reciba desde la línea de órdenes los nombres de dos

programas ejecutables. Si tras la ejecución del primero se detecta algún error, el

segundo no se deberá ejecutar. Tenga en cuenta los posibles errores e indique, si se

produce alguno, de qué tipo es.

5. Realice un programa de shell que reciba desde la línea de órdenes los nombres de dos

archivos ordinarios y nos diga cuál de ellos tiene mayor tamaño. Si el número de

parámetros no es correcto, se deberá visualizar un mensaje de error, así como si ambos

archivos no son ordinarios.

6. Realice un programa de shell que pida por teclado una cadena de caracteres y no

finalice hasta que la cadena sea fin.

7. Realice un programa de shell que elimine todos los archivos del directorio especificado

desde la línea de órdenes y cuyo primer carácter sea la letra a.

8. Realice un programa de shell que busque en todo el disco los archivos indicados desde

la línea de órdenes.

9. Realice un programa de shell que muestre un menú de opciones. Con al primera,

enviaremos correo a un usuario que debe ser especificado. Con la segunda, se nos

permitirá editar cualquier archivo de texto. Con la tercera, podremos imprimir un

archivo de texto por pantalla, con la cuarta y última, podremos abandonar el programa.

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 263

Administración de sistemas operativos
Práctica 1: Lenguaje awk

OBJETIVOS

 Familiarizarse con el uso de expresiones regulares y utilizarlas en conjunto con el

lenguaje awk.

 Estudiar los elementos básicos del lenguaje awk.

 Desarrollar programas en lenguaje awk, para utilizarlos como herramientas particulares

dentro del sistema.

TEMPORIZACIÓN

El plazo de realización de está practica será de dos sesiones de laboratorio, cada una de dos

horas para un total de cuatro horas.

BIBLIOGRAFÍA

BÁSICA

UNIX y LINUX. Guía práctica, 3ª edición

Autor: Sebastián Sánchez Prieto y Óscar García Población

Editorial: Ra-Ma

Edición: 2005

COMPLEMENTARIA

El lenguaje de programación AWK/GAWK

Dirección: http://www.loquefaltaba.com/documentacion/Manual_Awk_castellano.pdf

Lenguaje awk

Direccion: http://pisuerga.inf.ubu.es/cgosorio/ALeF/Lenguaje_awk.pdf

The awk Manual

Dirección: http://people.cs.uu.nl/piet/docs/nawk/nawkUS.pdf

http://www.loquefaltaba.com/documentacion/Manual_Awk_castellano.pdf
http://pisuerga.inf.ubu.es/cgosorio/ALeF/Lenguaje_awk.pdf
http://people.cs.uu.nl/piet/docs/nawk/nawkUS.pdf

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 264

PRÁCTICA 1

Lenguaje awk

TABLA DE CONTENIDOS:

Introducción……………………………………………………………………………………265

Expresiones regulares……………………………………………..…………………………...266

Otros filtros……………………………………………..………………………………...........270

 cut……………………………………………..……………………………………………...270

 tr……………………………………………..…………………………………………..........271

El lenguaje de procesamiento awk……………………………………………..……………...273

 awk……………………………………………..…………………………………………….273

 Patrones de awk……………………………………………..…………………………..........274

 Operadores empleados en awk……………………………………………..………………...276

 Matrices con awk……………………………………………..………………………………277

 Matrices asociativas con awk……………………………………………..………………...277

 Variables mantenidas por awk……………………………………………..…………………277

 Sentencias de control de flujo……………………………………………..………………….278

 Ejecución condicional con if……………………………………………..…………………278

 Bucles con while……………………………………………..………………………...........278

 Bucles con do……………………………………………..………………………………...278

 Bucles con for……………………………………………..…………………………...........278

 Ruptura de bucles con break……………………………………………..…………………279

 Forzar la evaluación de la condición de un bucle con continue…………………………….279

 Finalizar la ejecución con exit……………………………………………..…………..........279

 Órdenes de entrada salida……………………………………………..……………………...279

 print……………………………………………..……………………………………...........279

 printf……………………………………………..………………………………………….279

 Funciones numéricas……………………………………………..……………………..........280

 Funciones de tratamiento de cadenas………………………………………………………...280

 Ejemplos de aplicación……………………………………………..…………………...........280

Ejercicios……………………………………………..…………………………………..........283

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 265

Introducción

awk es un lenguaje de programación diseñado para procesar datos basados en texto, ya sean

ficheros o flujos de datos. awk es ejemplo de un lenguaje de programación que usa ampliamente

el tipo de datos de listas asociativas (listas indexadas por cadenas clave) y expresiones

regulares.

awk puede usarse para buscar un nombre particular dentro de un archivo o para añadir un

nuevo campo a una base de datos pequeña. También se puede utilizar para realizar el tipo de

funciones que proporcionan muchas de las otras herramientas del sistema Unix. Pero puesto que

también es un lenguaje de programación, resulta más potente y flexible que cualquiera de ellos.

awk esta especialmente diseñado para trabajar con archivos estructurados y patrones de

texto. Dispone de características internas para descomponer líneas de entradas en campos y

compara estos campos con patrones que se especifiquen. Debido a estas posibilidades, resulta

particularmente apropiado para trabajar con archivos que contienen información estructurada en

campos, como inventarios, listas de correos y otros archivos de base de datos simples.

Debido a que las expresiones regulares representan gran parte de la base de awk, en esta

práctica empezaremos explicando todo sobre las expresiones regulares y una vez entendidas

éstas y sus distintas formas de uso entraremos de lleno con el lenguaje awk. El cual nos va a

permitir modificar archivos, buscar y transformar bases de datos, generar informes simples y

otras muchas cosas.

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 266

Expresiones regulares

Una expresión regular es un patrón que define a un conjunto de cadenas de caracteres. Las

expresiones regulares se construyen de forma análoga a las expresiones aritméticas. Existe la

posibilidad de combinar expresiones simples; para ello, debemos emplear distintos operadores.

Los bloques básicos de construcción son las expresiones regulares que referencian un único

carácter. La mayoría de los caracteres, incluyendo todas las letras y dígitos, son expresiones

regulares que se definen a sí mismos. Cualquier metacarácter con significado especial debe ser

precedido del símbolo backslash \ para que pierda su significado especial.

Una lista de caracteres encerrados dentro de [y] referencia cualquier carácter sencillo de esa

lista. Si el primer carácter de la lista es un ^ (acento circunflejo), entonces estaremos haciendo

referencia a los caracteres que no aparecen en la lista. Por ejemplo, la expresión regular

[0123456789] representa cualquier digito simple. Para referenciar un rango determinado de

caracteres ASCII, pondremos el primero y el último de ellos encerrados entre corchetes y

separados por un guión. Por ejemplo, la expresión regular [a-z] representa cualquier lera

minúscula. El punto (.) representa cualquier carácter, excepto el carácter de nueva línea.

Los caracteres ^ y el $ son metacaracteres que representan una cadena vacía al principio y al

final de la línea, respectivamente. Los símbolos \< y \> representan una cadena vacía al

principio y al final de una palabra.

Una expresión regular que representa un carácter sencillo puede ser continuada con uno o

varios caracteres de repetición:

 ? El elemento precedente es opcional y debe coincidir al menos una vez.

 * El elemento precedente debe coincidir cero o más veces.

 + El elemento precedente debe coincidir una o más veces.

 {n} El elemento precedente debe coincidir exactamente n veces.

 {,m} El elemento precedente es opcional y debe coincidir al menos m veces.

 {n,m} El elemento precedente debe coincidir al menos n veces, pero no más de m.

Las expresiones regulares pueden ser concatenadas. El resultado de la concatenación

representa aquellas cadenas que concatenadas responden al patrón propuesto de expresiones

regulares.

Dos expresiones regulares pueden unirse con el operador |. La expresión regular resultante

representa cualquier cadena que responda al patrón de cualquiera de las dos expresiones

regulares.

La operación de repetición tiene precedencia sobre la operación de concatenación. Se pueden

utilizar paréntesis si queremos modificar las precedencias.

Los metacaracteres ?, +, {, }, |, (y) tienen que ser precedidos del símbolo backslash \ para

que pierdan su significado especial.

A continuación vamos a poner una serie de ejemplos de uso de expresiones regulares. En el

lado izquierdo pondremos la expresión regular (patrón), y en el derecho, su significado.

Patrón Qué representa

gato La cadena gato

^gato La cadena gato al comienzo de una línea

gato$ La cadena gato al final de una línea

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 267

Patrón Qué representa

^gato$ La cadena gato formando una única línea

gat[ao] Las cadenas gata o gato

ga[^aeiou]o La tercera letra no es una vocal minúscula

ga.o La tercera letra es cualquier carácter

^….$ Cualquier línea que contenga cuatro caracteres cualquiera

^\. Cualquier línea que comienza por punto

^[^.] Cualquier línea que no comienza por punto

gatos* gato, gatos, gatossss, gatosssss, etc

“gato” gato entre comillas dobles

“*gato”* gato con o sin comillas dobles

[a-z][a-z]* Una o más letras minúsculas

[a-z]+ Lo mismo que lo anterior (sólo valido en algunas aplicaciones)

[^0-9A-Z] Cualquier carácter que no sea ni número ni letra mayúscula

[A-Za-z] Cualquier letra, sea mayúscula o minúscula

[Ax5] Cualquier carácter que sea A, x o 5

gato|gota|gata Una de las palabra gato, gota o gata

(s|arb)usto Las palabras susto o arbusto

ga?t[oa] gato, gata, gasto, gaita, etc

\<ga Cualquier palabra que comience por ga

to\> Cualquier palabra que termine en to

\<gato\> La palabra gato

o\{2,\} Dos o más o en una misma fila

Como ejemplo de aplicación de expresiones regulares vamos a estudiar el filtro grep. Vamos

a hondar en el uso de grep para buscar palabras dentro de un archivo haciendo uso de las

expresiones regulares.

Siempre que empleemos expresiones regulares con grep, deben ser encerradas entre comillas

dobles para que el intérprete de órdenes no las interprete. Si dentro de la expresión regular

tenemos el metacarácter $, deberemos emplear comillas simples en lugar de las comillas dobles.

A continuación vamos a poner una serie de ejemplos haciendo uso de grep y de expresiones

regulares conjuntamente. Con ello, pretenderemos dejar mas claro el uso de las expresiones

regulares. Para ello, vamos a trabajar con un archivo denominado datos, cuyo contenido es el

siguiente:

$ cat datos

gato libro atunn gotas a tas

pez gaita ##%% dado oso

.exrc expreso atun gota loco

GAto tierra Gata nada raton

gata canica atunnn fuente gatos

fin

$

En primer lugar, vamos a buscar la palabra gato en el archivo datos. Los resultados se

muestran seguidamente:

$ grep “gato” datos

gato libro atunn gotas atas

gata canica atunnn fuente gatos

$

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 268

Ahora buscaremos las líneas del archivo datos que comienzan con la palabra gato:

$ grep “^gato” datos

gato libro atunn gotas atas

$

A continuación visualizaremos las líneas del archivo datos que contienen las palabras gato o

gata.

$ grep “gat[oa]” datos

gato libro atunn gotas atas

gata canica atunnn fuente gatos

$

En el siguiente ejemplo buscaremos las líneas del archivo datos que contienen únicamente

tres caracteres.

$ grep “^…$” datos

fin

$

Seguidamente visualizaremos las líneas que contienen secuencias de una o más letras

mayúsculas.

$ grep “[A-Z][A-Z]*” datos

GAto tierra Gata nada raton

$

Para ver las líneas del archivo datos que comienzan por punto, emplearemos la siguiente

orden:

$ grep “^\.” datos

.exrc expreso atun gota loco

$

Si ahora queremos ver las líneas que no comienzan por punto, utilizaremos esta otra orden:

$ grep “^[^.]” datos

gato libro atunn gotas a tas

pez gaita ##%% dado oso

GAto tierra Gata nada raton

gata canica atunnn fuente gatos

fin

$

En el siguiente ejemplo visualizaremos las líneas del archivo datos que terminan en el

carácter n. Obsérvese que se emplean comillas simples en lugar de comillas dobles con objeto

de que el carácter $ (que indica el final de la línea) pierda su significado especial.

$ grep „n$‟ datos

GAto tierra Gata nada raton

fin

$

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 269

Para visualizar las líneas que contienen tres o más enes seguidas, emplearemos la orden

siguiente:

$ grep “n\{3,\}” datos

gata canica atunnn fuente gatos

$

Por último, si queremos ver las líneas que contienen la secuencia de caracteres en la que

tenemos en primer lugar una a, a continuación cualquier carácter y por último una o, tendremos

que emplear una orden como la que figura a continuación:

$ grep “a.o” datos

gato libro atunn gotas a tas

pez gaita ##%% dado oso

GAto tierra Gata nada raton

gata canica atunnn fuente gatos

$

La orden grep puede ser utilizada también haciendo uso de tuberías. Por ejemplo,

quisiéramos visualizar los directorios del directorio /usr, tendríamos que emplear una orden

como la siguiente:

$ ls –l /usr | grep “^d”

drwxr-xr-x 2 root root 69632 2008-05-22 12:27 bin

drwxr-xr-x 2 root root 4096 2007-04-15 05:52 games

drwxr-xr-x 37 root root 4096 2008-05-13 12:40 include

dr-xr-x--- 8 root plugdev 4096 2008-04-06 08:42 julioc

drwxr-xr-x 181 root root 65536 2008-05-22 12:27 lib

drwxr-xr-x 10 root root 4096 2007-04-15 05:48 local

drwxr-xr-x 2 root root 12288 2008-05-22 04:42 sbin

drwxr-xr-x 317 root root 12288 2008-05-22 12:27 share

drwxrwsr-x 5 root src 4096 2008-04-24 10:06 src

drwxr-xr-x 3 root root 4096 2007-04-15 05:50 X11R6

$

Ha que tener en cuenta que las líneas correspondientes a un directorio visualizadas por la

orden ls –l siempre comienzan con el carácter d.

En el ejemplo siguiente visualizaremos los archivos ejecutables del directorio /bin que

terminan en s.

$ ls –lF /bin | grep „s*$‟

-rwxr-xr-x 2 root root 1297 2008-03-20 17:49 bzless*

-rwxr-xr-x 1 root root 35412 2007-01-22 09:53 loadkeys*

-rwxr-xr-x 1 root root 77844 2007-03-05 00:25 ls*

-rwxr-xr-x 1 root root 65608 2007-03-07 15:42 ps*

-rwxr-xr-x 1 root root 11028 2007-03-04 23:43 run-parts*

-rwxr-xr-x 1 root root 54196 2007-01-16 08:19 uncompress*

-rwxr-xr-x 1 root root 1456 2007-01-16 08:19 zless*

$

La opción –F en la orden ls la empleamos para determinar cuáles son los archivos

ejecutables. Con esta opción a los archivos ejecutables se les añadirá un asterisco al final en la

visualización.

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 270

Otros filtros

cut

Sintaxis: cut –c lista [archivo (s)]

 cut –f lista [-d char] [archivo (s)]

El filtro cut se usa para corta y pasar a la salida estándar las columnas o campos de la entrada

estándar o del archivo especificado. La opción –c es para cortar columnas y –f para cortar

campos. Al cortar un campo, existe la opción –d para especificar los caracteres de separación

entre los distintos campos (el delimitador). Por defecto, este delimitador es el tabulador, a

menos que se indique otra cosa. Para especificar las columnas o campos que deseamos cortar se

utiliza una lista. Una lista es una secuencia de números que se usa para indicarle a cut qué

campos o columnas se quieren cortar. Hay varios formatos para esta lista:

 A-B Campos o columnas desde A hasta B inclusive.

 A- Campo o columna A hasta el final de la línea.

 A, B Campos o columnas A y B.

Para mostrar con un ejemplo el uso de cut, imaginemos que tenemos un archivo llamado

personas con el siguiente contenido:

$ cat personas

SSP : 908732124

ASF : 456789212

MBV : 432765433

ASH : 423562563

JPA : 798452367

$ cut –c 1-3 personas

SSP

ASF

MBV

ASH

JPA

$

Al cortar por caracteres desde la columna 1 a la 3, nos estamos quedando con las tres

primeras letras de cada línea del archivo.

Veamos otro ejemplo que combina el uso de grep con cut para obtener el listado de los

usuarios del sistema que emplean el intérprete de órdenes bash.

1. Obtener todos los usuarios del sistema. Emplearemos la orden:

$ cat /etc/passwd

2. La salida de la orden anterior la filtraremos para obtener todas las líneas que contengan

el patrón bash. Mediante la orden:

$ cat /etc/passwd | grep “bash”

3. Finalmente y teniendo en cuenta que el carácter delimitador de campos en el archivo

/etc/passwd es :, haciendo uso de cut nos quedaremos únicamente con los campos 1 y 7.

El resultado de la ejecución de la orden podría ser algo como lo siguiente:

$ cat /etc/passwd | grep “bash” | cut –f 1,7 –d „:‟

root:/bin/bash

gateway:/bin/bash

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 271

tr

Sintaxis: tr [-dsc] cadena1 cadena2

La orden tr se emplea como traductor (translator). Como todo filtro, tr lee datos en la

entrada estándar, los procesa y deposita los resultados en la salida estándar. El empleo más

evidente de tr es como conversor de letras mayúsculas a minúsculas, y viceversa. Supongamos

que tenemos un archivo denominado fich con el siguiente contenido:

$ cat fich

Este es un archivo de texto

QUE CONTIENE LETRAS MAYUSCULAS Y minusculas.

$

A este archivo vamos a aplicarle la orden tr con diversas opciones.

Ejemplos:

$ tr [A-Z] [a-z] < fich

este es un archivo de texto

que contiene letras mayusculas y minusculas.

$

En el ejemplo anterior hemos convertido todos los caracteres del rango de la A a la Z en sus

correspondientes del rango de la a a la z. Vamos a realizar ahora el proceso inverso, convertir de

minúsculas a mayúsculas. Para ello, emplearemos la orden siguiente:

$ tr [a-z] [A-Z] < fich

ESTE ES UN ARCHIVO DE TEXTO

QUE CONTIENE LETRAS MAYUSCULAS Y MINUSCULAS.

$

También podemos sustituir un rango de caracteres por un carácter cualquiera de la forma

siguiente:

$ tr [A-Z] x < fich

xste es un archivo de texto

xxx xxxxxxxx xxxxxx xxxxxxxxxx x minusculas.

$

En el caso anterior, hemos convertido el rango de caracteres de la A a la Z por el carácter x. tr

puede ser empleado también para eliminar determinados caracteres de un archivo. Para ello,

debemos emplear la opción –d y a continuación indicarle el carácter o caracteres que deseamos

eliminar.

$ tr –d [A-Z] < fich

ste es un archivo de texto

 minusculas.

$

En el caso anterior eliminamos cualquier carácter del archivo fich que esté comprendido en

el rango A-Z. Podemos hacer lo mismo, pero eliminando las minúsculas.

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 272

Otra de las opciones de tr es la posibilidad de eliminar caracteres repetidos en el texto. Para

ello, debemos emplear la opción –s. Supongamos que tenemos un archivo denominado otro con

el siguiente contenido:

$ cat otro

Aqquuiiii tteeeennnngggoooo rrreeeppppeeeettiiddooosss

ccciiieeeerrrtooosss ccaaaaaaaarraaacccctteeerrreessss

$

Para eliminar caracteres repetidos, haremos lo siguiente:

$ tr –s [a-z] < otro

Aquí tenemos repetidos

ciertos carcateres

$

Por último, la opción –c se puede emplear para indicar el complemento de un patrón de

caracteres.

Ejemplo:

$ tr –c [A-Z] “ ” < fich

E QUE CONTIENE LETRAS MAYUSCULAS Y

$

En el ejemplo anterior hemos sustituido todo carácter que no pertenezca al patrón [A-Z] por

un espacio en blanco.

Veamos un ejemplo completo, desarrollado paso a paso, en el que localicemos todos los

archivos del directorio HOME de un usuario que no pertenezca a dicho usuario.

1. El listado de todos los archivos los obtendremos con la siguiente orden:

$ ls -lR

Inicialmente no podremos emplear el espacio en blanco como delimitador porque se

encuentra repetido en muchos puntos.

2. Para eliminar los espacios en blanco repetidos y así poder utilizar los espacios en blanco

como delimitadores de campos utilizaremos la orden:

$ ls –lR | tr –s „ ‟

3. Seguidamente tendremos que eliminar toda la información que ls –lR genera y que no

corresponde a información de archivos. Todas las líneas que son archivos obedecen a un

patrón que comienza por un carácter, que determina el tipo de archivo, seguido de un

guión o r, de nuevo guión o w y por último guión o x. Para eliminar todo lo que no

comience con el patrón indicado, emplearemos la orden:

$ ls –lR /usr | tr –s „ ‟ | grep „^.[r-] [w-] [x-]‟

4. Finalmente eliminamos todo lo que no contenga el nombre del usuario con la orden:

$ ls –lR $HOME | tr –s „ ‟ | grep „^.[r-] [w-] [x-]‟ | grep –v $USER

Hemos empleado la variable $USER que almacena el nombre del usuario y el

modificador –v que invierte el sentido de la búsqueda: en vez de buscar el patrón

$USER buscar las líneas que no contengan ese patrón.

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 273

El lenguaje de procesamiento awk

awk

Sintaxis: awk [op] [Ffs] ord [-v var=val] archivo(s)

 awk [op] [-Ffs] –f f_ord [-v var=val] archivo(s)

Como podemos, observar tenemos dos modos diferentes de invocar el programa. En el

primer modo le damos las órdenes desde la propia línea de órdenes, y en el segundo (opción -f),

le especificamos un archivo en donde se encuentran las órdenes que awk tiene que ejecutar. Este

segundo modo es más cómodo si el conjunto total de órdenes es amplio. awk puede trabajar con

varios archivos a un tiempo. Si no se le especifica ningún archivo, awk leerá en la entrada

estándar. awk procesa los archivos especificados línea por línea, a cada línea se le compara con

un patrón, y si coincide, se llevan a cabo sobre ellas las acciones que indiquemos.

awk admite las siguientes opciones, la cuales deben estar disponibles en cualquier versión

del programa.

 -Fs Con esta opción indicaremos que el separador de campos es el carácter s. Esto es lo

mismo que activar la variable predefinida FS. Por defecto, los separadores de campos

utilizados por awk son los espacios en blanco y los tabuladores. Cada uno de los campos

de una línea del archivo que se procesa puede ser referenciado por las variables $1, $2,

…, $NF. La variable NF (Number Filds) indica el número de campos de la línea que se

está procesando. La variable $0 se refiere a la línea completa.

 -v var=val Asigna el valor val a la variable var antes de que se comience la ejecución

del programa. Esta asignación de variables también se puede llevar a cabo en el bloque

BEGIN de un programa awk.

 -f f_ordenes awk Leerá las órdenes en el archivo f_ordenes.

Las órdenes de awk, como indicamos previamente, son secuencias de patrones y acciones:

patrón {acción}

Tanto el patrón como la acción son opcionales. Si falta el patrón, la acción o procedimiento

se aplicará a todas las líneas. Si falta la acción, simplemente se visualizará la línea.

Vamos a ver un primer ejemplo de uso de awk. Para ello, vamos a procesar lo que la orden

date envía a la pantalla, que es algo como lo siguiente:

$ date

dom jun 20 20:07:00 CEST 2004

$

Lo único que vamos a hacer es visualizar los campos primero (día), segundo (mes) y sexto

(año). La forma de hacerlo es la siguiente:

$ date | awk „{print $1; print $2; print $6}‟

dom

jun

2004

$

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 274

Seguidamente vamos a visualizar las líneas del archivo /etc/passwd que comienzan con el

carácter d:

$ awk „/^d/‟ /etc/passwd

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

dhcp:x:100:101::/dev/null:/bin/false

$

Como no hemos especificado ninguna opción, awk simplemente visualiza la línea que

cumple el patrón que hemos indicado. El patrón anterior es una expresión regular, pero, como

veremos en el punto siguiente, awk permite utilizar otros tipos de patrones.

Patrones de awk

Los patrones que awk reconoce pueden ser cualquiera de los siguientes:

 BEGIN

 END

 /expresiones regulares/

 expresiones relacionales

 expresiones coincidencia de patrones

BEGIN y END son dos tipos de patrones especiales. El patrón BEGIN permite especificar

una serie de procedimientos que se ejecutarán antes de que ninguna línea de ningún archivo sea

procesada. Generalmente, con este patrón se declaran las variables globales. El patrón END

permite especificar los procedimientos que no queremos que se ejecuten hasta que se terminen

de procesar todas y cada una de las líneas de un archivo.

Para los patrones /expresiones regulares/, la acción se ejecuta para cada línea que verifica la

expresión regular. Estas expresiones regulares son las mismas que hemos visto anteriormente.

Las expresiones relacionales pueden utilizar cualquiera de los operadores que se definirán

más tarde en el punto dedicado a ellos. Estos operadores se emplean para comprobar si algún

campo verifica alguna condición. Por ejemplo, NF > 2 selecciona las líneas en las que el

número de campos es mayor que dos.

Las expresiones de coincidencia de patrones utilizan los operadores ~ (coincide) y !~ (no

coincide) para determinar si se lleva o no a cabo la acción.

Excepto para los patrones BEGIN y END, todos los patrones pueden ser combinados con

operadores de Boole. Estos operadores son el AND lógico, &&, el OR lógico, ||, y el NOT

lógico, !.

Con objeto de aclarar los conceptos mostrados, vamos a poner unos ejemplos de uso de

patrones. En el primer ejemplo vamos a introducir todas las órdenes dirigidas a awk en un

archivo, y a continuación lo procesaremos. El contenido del archivo es el siguiente:

$ cat ejemplo1.awk

Inicialización se ejecuta al comenzar

BEGIN{

 FS=“:”;

 x=0;

}

Si la primera línea comienza con P, se visualiza el primer campo

/^P/{

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 275

 print $1;

}

Si el número de campos es mayor que tres

visualizamos el campo cuatro

NF > 3{

 print $4;

}

Si el cuarto campo es mayor que 10, incrementamos x

$4 > 10{

 x++;

}

Finalización se ejecuta al finalizar

END{

 print x;

}

$

Todas las líneas que comienzan por el carácter # serán ignoradas por awk en el

procesamiento. Así pues, podemos emplear este carácter como inicio de una línea de

comentarios. En el ejemplo anterior los comentarios son explicativos de lo que hace cada línea.

El archivo anterior no tiene ninguna utilidad, se ha empleado con el objetivo de mostrar el uso

de patrones.

A la hora de procesar este archivo, debemos emplear la siguiente sintaxis:

$ awk –f ejemplo1.awk archivo(s)

Veamos otro ejemplo empleado para visualizar los directorios cuyos nombres comienzan con

letra mayúscula. En el ejemplo primero tenemos que seleccionar las líneas que visualiza ls –l

que comienzan con el carácter d (directorios), y cuyo campo noveno (nombre del archivo)

comience con letra mayúscula. Para especificar ambas condiciones, emplearemos el operador

&& (AND lógico).

$ ls –l /usr | awk „$1 ~ /^d/ && $9 ~ /[A-Z]/‟

drwxr-xr-x 8 root root 4096 abr 3 21:32 X11R6

$

Según se puede apreciar, estamos empleando también expresiones de coincidencia de

patrones. La primera expresión indica si $1 coincide con el patrón especificado por la expresión

regular /^d/. La segunda expresión indica si $9 coincide con el patrón especificado por la

expresión regular /[A-Z]/.

La forma que tiene awk de ejecutar los programas es la siguiente. Primero, awk compila el

programa y genera un formato interno. A continuación, se realizan las asignaciones

especificadas por medio de la opción –v. Seguidamente, awk ejecuta el código incluido en el

bloque BEGIN, si es que existe tal bloque. Después, se procesa línea por línea el archivo o los

archivos especificados en la línea de órdenes. Si no le especificamos ninguno, awk leerá en al

entrada estándar. Una vez procesadas todas las líneas, se ejecuta el código incluido en el bloque

END, si es que existe.

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 276

Operadores empleados en awk

Ya hemos indicado previamente que con awk podemos emplear distintos operadores. Éstos

son los que se indican seguidamente:

 =, +=, -=, *=, /=, %= y ^= Operadores de asignación. Se admite tanto la asignación

absoluta (variable = valor) como la que utiliza un operador (el resto de los modos).

Como ejemplo del primer tipo de asignación, podemos poner el siguiente:

datos = datos + $2

Esto podría haberse hecho de una forma más compacta usando el operador +=, tal y como se

muestra a continuación:

datos += $2

Este segundo caso es idéntico al primero en cuanto a funcionalidad se refiere, pero es más

compacto. Los operadores +, -, *, /, % y ^ significan suma, resta, multiplicación, división, resto

de la división entera y exponenciación, respectivamente.

 ? Es igual a la expresión condicional empleada en el lenguaje C. Su formato es el

siguiente:

expr1 ? expr2 : expr3

Esto debe entenderse como sigue: si expr1 es cierto, el valor de la expresión es expr2; de

otro modo, será expr3. Sólo se evalúa expr2 o expr3.

 || OR lógico.

 && AND lógico.

 ~ !~ Coincidencia y no coincidencia de expresiones regulares.

 < > <= >= != == Operadores relacionales.

 Espacio en blanco Concatenación de cadenas.

 + - Suma y resta.

 * / % Multiplicación, división y módulo (resto de la división entera).

 + - ! Más unario, menos unario y negación lógica.

 ^ Exponenciación.

 ++ -- Incremento y decremento, tanto en forma de prefijo como de sufijo.

 $ Referencia a campo.

Veamos algunos ejemplos con estos operadores:

Vamos a calcular el tamaño medio de los archivos de un directorio. Para realizar esta

operación introduciremos a nuestro filtro awk el resultado de la orden ls –l. El archivo de

órdenes awk lo denominaremos tamano.awk y su contenido es el siguiente:

BEGIN{

 TAMANO = 0;

}

/^.[-r]/{

 TAMANO = TAMANO +$5;

 print “Procesado procesado ” $9 “ - ” NR “ Tamano= ” $5 “ Acumulado= ”

TAMANO;

}

END{

 print “Tamano medio= ” TAMANO/NR;

}

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 277

Matrices con awk

awk nos permite trabajar con matrices. Si a la matriz le denominamos datos, la forma de

referenciar cada uno de los elementos consistirá en utilizar el nombre de la matriz y a

continuación, entre corchetes, el número de elemento. De este modo, datos[34] es el elemento

número 34 de la matriz. Vamos a poner un ejemplo en el que almacenamos el campo número

nueve de cada línea del archivo de entrada en una matriz a. Para finalizar, visualizaremos toda

la matriz. El programa que debemos emplear es el siguiente:

$ cat matriz.awk

Almacena el campo nueve en una matriz

Visualiza la matriz

{

 a[NR] = $9;

}

END{

 for(i=1; i<NR; i++)

 print a[i];

}

$

Matrices asociativas con awk

Las matrices de awk, a diferencia de las proporcionadas por otros lenguajes de

programación, son asociativas. Esto significa que el elemento que utilizamos como índice no

tiene porque ser numérico, sino que puede ser de cualquier otro tipo. Pongamos el siguiente

ejemplo:

BEGIN{

 animales[“perro”]=3;

 animales[“gato”]=8;

print animales[“perro”];

print animales[“gato”];

}

El resultado de la ejecución del programa anterior sería la visualización de los números 3 y

8, actuando como índices dentro de la matriz dos cadenas de caracteres.

Variables mantenidas por awk

En algún ejemplo anterior ya hemos utilizado algunas de estas variables, por ejemplo NF,

FS, $0, etc. A continuación vamos a dar un listado más completo de estas variables.

 FILENAME Es el nombre del archivo que está siendo procesado. Si no se ha

especificado ningún archivo desde la línea de órdenes, el valor de esta variable será –

(entrada estándar).

 FNR Es el número de línea del archivo que está siendo procesado.

 FS Indica cuál es el carácter separador de campos. Por defecto, es el espacio en blanco.

 NF Es el número de campos presentes en la línea que está siendo procesada.

 NR Indica el número total de líneas que han sido procesadas.

 OFS Es el separador de campos para la salida. Por defecto, es el espacio en blanco.

 ORS Es el separador de líneas de salida. Por defecto, es el carácter de nueva línea.

 RS Es el separador de líneas de entrada. Por defecto, es el carácter de nueva línea.

 $0 Representa la línea que se esta procesando.

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 278

 $n Representa el campo n de la línea que se está procesando.

Sentencias de control de flujo

awk es un autentico lenguaje de programación, y como tal es capaz de trabajar con

sentencias de control de flujo. Este tipo de sentencias serán descritas a continuación.

Ejecución condicional con if

if (condición){

orden(es);

}

[else{]

 [orden(es);]

[}]

Si la condición que se evalúa es cierta, se ejecutará la orden u órdenes colocadas después del

if. Si la condición no es cierta, se ejecutarán las colocadas después del else (si es que existe). La

condición puede ser cualquier expresión que utilice operadores relaciones, así como operadores

de correspondencia de patrones. Si se deben ejecutar varias órdenes, tanto después del if como

después del else, éstas deberán ser colocadas entre llaves.

Bucles con while

while(condición){

 orden(es);

{

Si se verifica la condición, se ejecutará la orden. Las posibles condiciones son las indicadas

anteriormente al hablar de if. Si se deben ejecutar varias órdenes dentro del bucle, éstas deberán

ir entre llaves.

Bucles con do

do{

 orden(es);

}while(condición);

En este caso se ejecuta la orden indicada dentro del cuerpo do while. Si al evaluar la

condición ésta se verifica, se volverá a ejecutar la orden. En el caso de que queramos ejecutar

varias órdenes en el cuerpo del bucle, éstas deberán ir entre llaves.

Bucles con for

Esta orden tiene dos modos de operar. La sintaxis del primer modo es la siguiente:

for(i=mínimo; i<máximo; i++){

 orden(es);

}

En este caso, mientras el valor de la variable i esté comprendido entre mínimo y máximo, se

ejecuta la orden indicada. En el caso de especificar varias órdenes, éstas deben ir entre llaves.

Para la condición de finalización del bucle (i<máximo), se pueden emplear otros operadores

relacionales. En el campo de progreso del bucle (i++) se pueden emplear ++ y --, tanto en

forma pre como post.

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 279

El segundo modo se muestra a continuación:

for(elemento in matriz){

 orden(es);

}

En este caso, para cada elemento de la matriz se ejecuta la orden indicada. En caso de

especificar varias órdenes, éstas deben ir entre llaves. Para referirnos a cada elemento de la

matriz utilizaremos la expresión matriz[elemento], donde elemento es el número de ítem dentro

de la matriz.

Ruptura de bucles con break

Esta sentencia se emplea para salir de un bucle while o for. Con ella podemos evitar

iteraciones en caso de detectar que un bucle no tiene sentido que continúe su repetición.

Forzar la evaluación de la condición de un bucle con continue

Esta sentencia nos permite pasar a procesar la siguiente iteración dentro de un bucle while o

for, saltando todas las posibles órdenes posteriores dentro del bucle.

Finalizar la ejecución con exit

Con esta sentencia se dejan de ejecutar instrucciones y no se procesan más archivos. Sólo se

ejecutarán los procedimientos indicados en el patrón END. Así pues, exit sirve para finalizar el

procesamiento de archivos por parte de awk.

Órdenes de entrada salida

print

Sintaxis: print [argumentos] [destino]

Con esta orden podemos imprimir los argumentos especificados en la salida. Los argumentos

son normalmente campos, aunque también pueden ser cualquiera de las variables de awk. Para

visualizar cadenas literales, debemos ponerlas entre comillas dobles. Si los argumentos de print

son separados por comas, en la salida serán separados por el carácter indicado en la variable

OFS. Si los argumentos son separados por espacios en blanco, la salida será la concatenación de

los argumentos. El parámetro destino puede ser una expresión de redirección o entubamiento.

De este modo, podemos redirigir la salida por defecto.

printf

Sintaxis: printf [formato [, expresion(es)]]

Esta orden se utiliza para visualizar con formato las expresiones que le indiquemos. Su

sintaxis es muy similar a la empleada en la función printf descrita en el lenguaje C. Esta orden

también es capaz de interpretar secuencias de escape como el carácter de nueva línea \n o el

tabulador \t. Los espacios y el texto literal que deseamos visualizar deben ir entre comillas

dobles. Por cada expresión que deseamos visualizar, debe existir su correspondiente formato.

Los formatos más comunes son los siguientes:

 %s Una cadena de caracteres.

 %d Un número decimal.

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 280

 %n.mf Un número en coma flotante con n dígitos enteros y m decimales.

 %o Un número en octal sin signo.

 %x Un número en hexadecimal sin signo.

Para aclarar un poco las cosas a continuación tenemos el siguiente ejemplo:

$ date | awk {printf(Año %d. \n En hexadecimal: %x \n,$6,$6)}

Año 2001.

En hexadecimal: 7d1

$

Funciones numéricas

 atan2(y,x) Devuelve el valor del arcotangente de y/x en radianes.

 cos(x) Devuelve el coseno de x en radianes.

 exp(x) Función exponencial.

 int(x) Trunca el número x a un entero.

 log(x) Devuelve el logaritmo neperiano de x.

 rand() Devuelve un número aleatorio comprendido entre cero y uno.

 sin(x) Devuelve el seno de x en radianes.

 sqrt(x) Devuelve la raíz cuadrada de x.

 srand(x) Permite utilizar el número x como nueva semilla para la generación de

números aleatorios. Por defecto, se utiliza como semilla la hora actual.

Funciones de tratamiento de cadenas

 gsub(r,s,t) Sustituye la cadena que verifica la expresión regular r por la subcadena s en

la cadena total t. Si t no se proporciona, se asume que vale $0.

 index(s,t) Devuelve la posición de la subcadena t en la cadena s. Si la subcadena t no se

encuentra presente en s, index devuelve cero.

 length(s) Devuelve la longitud de la cadena s. Si s no se especifica, se asume $0.

 match(s,r) Devuelve la posición en s donde se verifica la expresión regular r. Si no se

verifica el patrón, se devuelve cero.

 split(s,a,r) Divide la cadena s en elementos de la matriz a (a[0], a[1], …, a[n]). La

cadena es dividida en cada ocurrencia de la expresión regular r. Si r no está presente, se

asume que el separador es FS. split devuelve el número de elementos de la matriz.

 sprintf(fm,ex) Formatea la lista de expresiones ex acorde con el formato especificado

por fm y retorna la cadena resultante. La cadena es formateada, pero no visualizada.

 sub(r,s,t) Opera igual que gsub(r,s,t), pero sólo se reemplaza la primera subcadena que

verifica la expresión regular.

 substr(s,i,n) Devuelve la subcadena formada por n caracteres a partir de la posición i de

la cadena original s. Si se omite el valor n, se asume que la subcadena la formarán el

resto de los caracteres hasta el final de la cadena s.

 tolower(str) Devuelve la cadena resultante de convertir en minúsculas las letras

formantes de la cadena str. Los caracteres no alfabéticos no se ven afectados.

 toupper(str) Devuelve la cadena resultante de convertir en mayúsculas las letras

formantes de la cadena str. Los caracteres no alfabéticos no se ven afectados.

Ejemplos de aplicación

Seguidamente, vamos a ver una serie de ejemplos de aplicación de awk. Con ellos se

pretende dejar claros los conceptos vistos al hablar de este lenguaje de procesamiento.

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 281

En el primer ejemplo vamos a imprimir los campos de un archivo que estén separados por el

carácter : en orden inverso. Para ello, utilizaremos la sentencia for. El archivo sobre el que

trabajaremos se denomina prueba, y su contenido es el siguiente:

$ cat prueba

blanco:73:Marte:1543:Manuel

verde:17:Jupiter:1968:Sebastian

azul:24:Venus:1970:Ana

rojo:35:Neptuno:1122:Javier

amarillo:135:Tierra:1234:Raul

$

El archivo de órdenes awk lo denominamos for.awk, y su contenido es el siguiente:

$ cat for.awk

BEGIN{

 FS= “:”

}

{

for(i=NF; i>=1; i--){

 print $i, :;

}

print \n;

}

$

Para observar lo resultado hacemos: awk –f for.awk prueba

En el siguiente ejemplo veremos un método sencillo que nos permite calcular el tamaño total

en bytes y kilobytes de los archivos de un determinado directorio. El archivo de órdenes awk lo

denominamos total.awk, y su contenido es el siguiente:

$ cat total.awk

Sólo nos quedamos con los archivos ordinarios

Cuando se visualizan con ls –l comienzan con –

/^-/{

 total=total+$5;

}

END{

 print Tamaño total en bytes:, total;

 print Tamaño total en kilobytes:, total/1024;

}

$

Para observar el resultado ejecutamos el siguiente comando: ls –l | awk –f tatal.awk

El próximo ejemplo puede ser utilizado para calcular la longitud media del número de

caracteres de los nombres de los archivos de un directorio. El programa awk se denomina

lonfich.awk, y su contenido es el siguiente:

$ cat longfich.awk

Calculo del número de caracteres del nombre de los

archivo visualizados con ls –l

Nos saltamos la primera línea

NR>1{

Laboratorio de Administración de Sistemas Operativos Práctica 1: Lenguaje awk

Página | 282

 print $9, tiene, length($9), carcateres;

 caracteres+=length($9);

}

END{

 print longitud media: caracteres/(NR-1);

}

$

Para observar el resultado ejecutamos el siguiente comando: ls –l | awk –f longfich.awk

En el siguiente ejemplo vamos a calcular el mayor número de identificador de usuario que

existe en el archivo /etc/passwd. Hay que tener en cuenta que el campo de UID del archivo es el

tercero, y que los distintos campos están separados por :. El programa awk que vamos a utilizar

lo denominamos uidmax.awk, y su contenido es el siguiente:

$ cat uidmax.awk

Calcula el UID máximo de /etc/passwd

BEGIN{

 FS=“:”;

 x=0;

}

$3>x{

 x=$3;

}

END{

 print x;

}

$

Para observar el resultado ejecutamos el siguiente comando: awk –f uidmax.awk

/etc/passwd

Práctica 1: Lenguaje awk Laboratorio de Administración de Sistemas Operativos

Página | 283

Ejercicios

1. En una única línea de órdenes realice las acciones oportunas para que se visualice por

pantalla el mes actual y además, que quede almacenado en un archivo denominado

mes_actual.

2. Cree un archivo denominado personas que contenga los nombres, apellidos y edades de

15 personas. Liste todas las personas del archivo anterior cuya edad sea de 27 años.

Liste los datos de todas aquellas personas cuyo primer apellido comience con S.

Visualice la edad de una persona que se llame Ana. Ordene alfabéticamente por

apellidos el archivo anterior y genere un nuevo archivo en su directorio de conexión

denominado personas.orden.alfabetico. Ordene por edades el archivo personas y genere

un nuevo archivo denominado personas.orden.edad. ¿Cuántas personas existen en el

archivo personas cuya edad sea de 23 años.

3. ¿Cómo podríamos quedarnos solamente con la información relativa a la hora que nos

visualiza date por pantalla?

4. Liste por pantalla únicamente los archivos ordinarios que cuelgan del directorio /usr.

5. ¿Qué orden emplearía para visualizar en mayúsculas el contenido de cualquier archivo

de texto?

6. ¿Qué orden emplearía para visualizar las líneas de cualquier archivo de texto que

comience con letra mayúscula?

7. Realice un programa awk que visualice la cantidad de disco empleada para un

determinado usuario. Si esta cantidad es mayor que 10MBytes, comuníquelo mediante

un mensaje.

8. Cree un archivo compuesto por varias líneas, cada una de ellas con el siguiente formato:

Nombre Apellido1 Apellido2 Nota

La nota es un valor numérico comprendido entre cero y cien. Una vez creado este

archivo, realice un programa awk que genere un nuevo archivo en el que el campo nota

se sustituya por una de las palabras siguientes:

Suspenso (si nota <60)

Aprobado (si 60<= nota <70)

Notable (si 70<= nota <90)

Sobresaliente (si nota >=90)

Página | 284

Práctica 2: Instalación del sistema operativo Linux Laboratorio de Administración de Sistemas Operativos

Página | 285

Administración de sistemas operativos
Práctica 2: Instalación del sistema operativo Linux

OBJETIVOS

 Instalar un sistema operativo Linux.

 Realizar una correcta distribución del espacio existente en el disco duro para instalar

correctamente el sistema operativo.

TEMPORIZACIÓN

El plazo de realización de esta práctica será de dos sesiones de laboratorio, cada una de dos

horas para un total de cuatro horas.

BIBLIOGRAFÍA

BÁSICA

Manual básico Ubuntu GNU/Linux

Dirección:

http://www.marblestation.com/publicaciones/Ubuntu/2.%20Breezy/breezy_es.compress.pdf

COMPLEMENTARIA

Instalación de Ubuntu

Dirección: http://www.cuscolibreweb.org/filescl/ubuntu.pdf

Sun xVM VirtualBox

Dirección: http://www.virtualbox.org/download/1.6.0/UserManual.pdf

Creando una máquina virtual en VirtualBox

Dirección:

http://www.cvirtualuees.edu.sv/file.php/66/documentos/Creando_maquinas_virtuale.pdf

http://www.marblestation.com/publicaciones/Ubuntu/2.%20Breezy/breezy_es.compress.pdf
http://www.cuscolibreweb.org/filescl/ubuntu.pdf
http://www.virtualbox.org/download/1.6.0/UserManual.pdf
http://www.cvirtualuees.edu.sv/file.php/66/documentos/Creando_maquinas_virtuale.pdf

Laboratorio de Administración de Sistemas Operativos Práctica 2: Instalación del sistema operativo Linux

Página | 286

PRÁCTICA 2

Instalación del sistema operativo Linux

TABLA DE CONTENIDOS:

Introducción……………………………………………………………………………………287

Ejercicio..288

Práctica 2: Instalación del sistema operativo Linux Laboratorio de Administración de Sistemas Operativos

Página | 287

Introducción

Esta práctica esta basada en un único ejercicio que consiste en llevar a cabo todo el proceso

real de instalación de una distribución Linux. Aquí pondremos en práctica todos los conceptos

aprendidos en los temas teóricos estudiados hasta el momento y analizaremos como las

distribuciones actuales nos facilitan muchas de las etapas de instalación estudiadas.

La distribución de Linux que hemos elegido para instalar en esta práctica es la distribución

Ubuntu (específicamente la 7.04) por ser está una de las distribuciones que actualmente es

considerada como la más moderna y dinámica. El proceso de instalación de la gran mayoría de

distribuciones modernas es muy similar en todas, pero debemos destacar que Ubuntu es una de

las distribuciones más fáciles de instalar; ya que nos proporciona un asistente de instalación que

es bastante intuitivo y sencillo de utilizar. Además tiene la gran ventaja de detectar

automáticamente gran mayoría del hardware moderno y de permitirnos diversas facilidades en

el proceso de instalación de software, mediante el uso del sistema de gestión de paquetes apt.

Laboratorio de Administración de Sistemas Operativos Práctica 2: Instalación del sistema operativo Linux

Página | 288

Ejercicio

Para el desarrollo de este ejercicio haremos uso de una máquina virtual. Utilizaremos una

aplicación llamada VirtualBox (instalada en todas las máquinas del laboratorio), la cual nos va a

permitir crear y ejecutar una máquina virtual desde nuestro sistema actual.

Sun xVM VirtualBox es un software de virtualización para arquitecturas x86 que fue

desarrollado originalmente por la empresa alemana Innotek GmbH, pero que paso a ser

propiedad de la empresa Sun Microsystems en febrero de 2008 cuando ésta compró a Innotek.

Por medio de esta aplicación es posible instalar sistemas operativos adicionales, conocidos

como sistemas invitados, dentro de otro sistema operativo anfitrión, cada uno con su propio

ambiente virtual. Por ejemplo, para nuestro caso en concreto haremos uso de VirtualBox para

instalar la distribución Ubuntu sobre el sistema operativo instalado actualmente en los

laboratorios. De esta manera estaremos evitando causar posibles daños en el sistema operativo

instalado en el laboratorio (incluso la misma máquina como tal) y también tendremos un sistema

instalado a nuestra medida donde nosotros mismos seres los administradores y donde

pondremos en práctica todas las recomendaciones que como buenos administrador debemos

seguir (no usar a root para todo, usar contraseñas seguras, habilitar sólo los servicios necesarios,

etc).

La práctica consiste en:

 Instalar la distribución Ubuntu sobre un disco duro que ya posee un sistema operativo

de la familia de Microsoft Windows instalado. Este es un caso típico que se suele dar en

la gran mayoría de procesos de instalaciones, pues son los sistemas operativos Windows

los que han predominado gran parte del mercado y por ende hemos de lidiar y coexistir

con ellos.

 Para la instalación será necesario hacer una distribución correcta del disco duro

suministrado (por el docente) para la práctica.

 Debido a que el disco suministrado para el desarrollo de la practica no se encuentra

particionado pero si posee gran cantidad de espacio libre para poder efectuar sobre él un

determinado número de particiones, nosotros debemos ser capaces de particionar el

disco y crear principalmente dos particiones. La primera será la partición del sistema de

archivos raíz /. Y la segunda será la partición de intercambio a la cual le asignaremos

512MB de espacio. Todo ellos lo realizaremos utilizando el asistente de instalación de

la distribución, esto deberá ser así, ya que debemos tener en cuenta que para instalar una

distribución moderna no necesitamos nada más que nuestro CD de instalación.

Al final de la instalación se deberá entregar un breve reporte donde ser explique cada uno de

los pasos realizados durante el proceso de instalación. Puede hacer uso de capturas de pantallas

de dicho proceso y recrear mediante las imágenes todo el proceso.

Usted deberá ser capaz, de acuerdo a lo estudiado en las clases teóricas, de decidir cual será

el tamaño correcto para la partición raíz / que contraseña deberá utilizar, cual será la cuenta de

usuario con la que accederá al sistema, etc. Todo esto con el fin de recrear un ambiente de

trabajo real en donde el administrador según sus conocimientos es capaz de tomar soluciones

sobre aspectos concretos del sistema.

Práctica 3: Instalación de software Laboratorio de Administración de Sistemas Operativos

Página | 289

Administración de sistemas operativos
Práctica 3: Instalación de software

OBJETIVOS

 Demostrar que se sabe instalar un software sobre el sistema, independientemente del

tipo de paquete en el que este se encuentre.

TEMPORIZACIÓN

El plazo de realización de esta práctica será de una sesión de laboratorio, correspondiente a

un periodo de dos horas.

BIBLIOGRAFÍA

BÁSICA

Escogiendo nuestros métodos (binarios vs fuentes)

Capitulo 8. Instalación de software adicional

Dirección: http://zonasiete.org/manual/ch08s03.html

COMPLEMENTARIA

Guía documentada para Ubuntu

Dirección: http://www.guia-ubuntu.org/index.php?title=Portada

http://zonasiete.org/manual/ch08s03.html
http://www.guia-ubuntu.org/index.php?title=Portada

Laboratorio de Administración de Sistemas Operativos Práctica 3: Instalación de software

Página | 290

PRÁCTICA 3

Instalación de software

TABLA DE CONTENIDOS:

Introducción……………………………………………………………………………………291

Administrando paquetes .deb………………………………………………………………….292

Usando dpkg…………………………………………………………………………………...292

 Instalando paquetes……………………………………………………………..……………292

 Opciones de forzado……………………………………………………………..…………...293

 Desinstalando paquetes……………………………………………………………..…..........293

 Consultando la base de datos de los paquetes…………………………………………..........294

 Listando paquetes……………………………………………………………..……………...294

 Mostrando el estado de un paquete……………………………………………………..........295

 Listando los ficheros de un paquete………………………………………………………….295

Usando apt-get…………………………………………………………………………………295

 Editando el fichero /etc/sources.list………………………………………………………….296

 Actualizando los paquetes disponibles……………………………………………………….296

 Instalando un paquete………………………………………………………………………...297

 Actualizando paquetes instalados…………………………………………………………….297

 Borrando paquetes……………………………………………………………………………297

Compilando e instalando software desde las fuentes………………………………………….297

Usando alien…………………………………………………………………………………...298

Ejercicios………………..………………………………………………………………..........300

Práctica 3: Instalación de software Laboratorio de Administración de Sistemas Operativos

Página | 291

Introducción

La gestión y manipulación de los paquetes es un aspecto fundamental que todo administrador

de sistemas debe manejar. Un paquete es uno o varios programas, librerías o componentes de

software empaquetados en un solo archivo preparado para que sea instalado e integrado en el

sistema operativo. La gran mayoría de distribuciones actuales proporcionan las herramientas

necesarias para poder instalar y gestionar adecuadamente estos paquetes. También,

proporcionan herramientas, especialmente para los desarrolladores de software, para poder crear

otros nuevos. En estos paquetes se suelen incluir los ejecutables del programa y sus

dependencias y conflictos con otras aplicaciones. Las dependencias indican, al instalar un

paquete, si necesitan otros programas para que la aplicación funcione correctamente, mientras

que los conflictos nos informan de incompatibilidades entre programas instalados y el que

queremos instalar. Los sistemas de paquetes están diseñados de esta forma para facilitar la

instalación de las nuevas aplicaciones, ya que algunas librerías son utilizadas por más de un

programa y no tendría sentido que todas las aplicaciones que las utilizasen las instalaran de

nuevo.

En esta práctica veremos cómo está organizado el sistema de paquetes de la distribución

Ubuntu por la gran cantidad de herramientas que se proporcionan y la flexibilidad de su

configuración. Además, aprenderemos cómo instalar un programa a partir de su código fuente,

ya que en algunos casos podemos encontrarnos que el programa que necesitemos no esté

empaquetado. Esta forma de instalación era la que se utilizaba siempre antes de que aparecieran

los primeros sistemas de gestión de paquetes, que surgieron para facilitar todo este proceso.

También, aprenderemos a utilizar una herramienta muy importante a la hora de trabajar con

paquetes, dicha herramienta es alien, esta nos permite hacer diversas transformaciones sobre los

distintos tipos de paquetes que existen en el mundo de Linux.

Laboratorio de Administración de Sistemas Operativos Práctica 3: Instalación de software

Página | 292

Administrando paquetes .deb

Los paquetes .deb, por norma general contienen ficheros binarios para instalar así como otra

información, conocida como metadata; este incluye información del paquete, scripts que serán

ejecutados, la lista de dependencias y conflictos o sugerencias. Algunos paquetes traen el código

fuente y pueden ser compilados a mano.

Para los nombres de los paquetes se suele utilizar la siguiente convención:

paquete_version-build_arquitectura.deb

 paquete: Es el nombre del programa o utilidad.

 versión: Es el número de versión de la aplicación.

 build: Es el número que indica la versión del paquete, cada vez que se hace un

empaquetado se incrementa.

 arquitectura: Es la plataforma para la cual fue destinada la compilación del paquete.

Usando dpkg

dpkg es el núcleo del sistema de empaquetado de las distribuciones basadas en paquetes .deb,

o distribuciones basadas en Debian, la gran mayoría de herramientas usan dpkg y lo hacen más

sencillo o con más opciones. A veces es más rápido usar el dpkg que otras herramientas a priori

más sencillas.

Instalando paquetes

Sintaxis: dpkg --install <nombre_paquete>.deb

 dpkg -i <nombre_paquete>.deb

Durante la instalación del paquete, dpkg revisará si existen las dependencias necesarias para

la instalación e informará con un error si no están instaladas.

Ejemplo:

$ dpkg -i ethereal_0_8.13-2_i386.deb

Selecting previously deselected package ethereal.

(Reading database ... 54478 files and directories currently installed.)

Unpacking ethereal (from ethereal_0_8.13-2_i386.deb) ...

dpkg: dependency problems prevent configuration of ethereal:

ethereal depends on libpcap0 (>= 0.4-1); however:

Package libpcap0 is not installed.

dpkg: error procesing ethereal (--install):

dependency problems – leaving unconfigured

Errors were encountered while processing: Ethereal

Como se puede observar es necesario el paquete libpcap0, debemos por tanto instalarlo por

separado o bien con el mismo comando como sigue:

$ dpkg -i ethereal_0_8.13-2_i386.deb libpcap0_0.4a6-3_i386.deb

(Reading database ... 54499 files and directories currently installed.)

Preparing to replace ethereal 0.8.13-2 (using ethereal_0_8.13-2_i386.deb)

Unpacking replacement ethereal ...

Selecting previously deselected package libpcap0.

Unpacking libpcap0 (from libpcap0_0.4a6-3_i386.deb) ...

Setting up libpcap0 (0.4a6-3) ...

Práctica 3: Instalación de software Laboratorio de Administración de Sistemas Operativos

Página | 293

Setting up ethereal (8.13-2) ...

Opciones de forzado

En ocasiones es necesario, bien por gusto o por necesidad, sobrescribir un error cuando se

instala o se borra un programa. dpkg ofrece varias opciones para ignorar los errores, estas se

listan en la siguiente tabla:

Opción Uso

configure-any Configura otros paquetes que ayudarán al actual en su instalación.

hold Procesa otro paquete, incluso si está marcado como hold (fijado).

bad-path Incluso con ficheros perdidos.

not-root Intenta eliminar o añadir paquetes aún cuando no se es root.

overwrite Sobrescribe un fichero de un nuevo paquete, incluso si corresponde a

otro paquete.

depends-version Convierte un error por falta de una versión concreta en las dependencias

en un warning, de ese modo puede continuar la instalación.

depends Convierte todos los errores de dependencias en warnings.

confnew Usa siempre el archivo de configuración más nuevo.

confold Usa siempre el archivo de configuración más viejo.

conflicts Permite que paquetes con conflictos sean instalados.

overwrite-dir Sobrescribe el directorio de otro paquete por el nuevo.

remove-essential Borra paquetes del sistema, peligroso.

Por ejemplo, si se quiere instalar un programa que tiene conflictos con otro, se debe de

teclear:

$ dpkg -i <nombre_paquete>.deb -force-conflicts

Desinstalando paquetes

Sintaxis: dpkg --remove <nombre_paquete>

 dpkg -r <nombre_paquete>

Estos comandos borran todos los ficheros del paquete excepto los ficheros de configuración,

que pueden ser necesarios en una posterior re-instalación. Para quitar todos los ficheros se debe

usar la siguiente opción:

Sintaxis: dpkg --remove --purge <nombre_paquete>

 dpkg -r -P <nombre_paquete>

Al igual que durante la instalación de un programa, al desinstalarlo, dpkg comprueba las

dependencias.

Ejemplo:

$ dpkg -r libpcap0

dpkg: dependency problems prevent removal of libpcap0:

ethereal depends on libpcap0 (>=0.4-1).

dpkg: error processing libpcap0 (--remove):

dependency problems – not removing

Errors were encountered while processing:

libpcap0

Laboratorio de Administración de Sistemas Operativos Práctica 3: Instalación de software

Página | 294

Consultando la base de datos de los paquetes

El sistema gestor de paquetes mantiene una base de datos donde se recopilan todos los

paquetes instalados en el sistema, la herramienta dpkg permite consultar esa base de datos:

Sintaxis: dpkg --print-avail <nombre_paquete>

 dpkg -p <nombre_paquete>

Por ejemplo para visualizar información del paquete ethereal teclearíamos:

$ dpkg -p ethereal

Esto nos devolverá información sobre: Quién mantiene el paquete, su tamaño, versión,

dependencias, descripción, la suma md5, etc.

Listando paquetes

Sintaxis: dpkg --list <patrón>

 dpkg -l <patrón>

Esto nos permite obtener una lista de todos los paquetes instalados en el sistema, la opción

<patrón> es un parámetro opcional de búsqueda, sin él, se listarán todos los paquetes instalados

en el sistema.

Por ejemplo, para listar todos los paquetes que tengan que ver con apache se introduce el

comando:

$ dpkg -l apache*

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase.=bad)

||/ Nombre Versión Descripción

+++-==============-==============-

==================================

pn apache <none> (no description available)

pn apache-common <none> (no description available)

pn apache-dev <none> (no description available)

pn apache-doc <none> (no description available)

pn apache-modules <none> (no description available)

Hay varios paquetes de apache listados, pero ninguno de ellos instalado, sin embargo si hubo

alguna vez que estuvieron instalados. Hay tres columnas a la izquierda, con el siguiente

significado:

 p: Significa que el paquete fue desinstalado.

 n: Significa que no está instalado.

 u: Desempaquetado y listo para instalar.

 i: Instalado.

 h: Medio instalado.

Existen diversos estados en los que se pueden encontrar los paquetes, Estos estado son:

Estado de selección: se usa con el comando dselect, los posibles estados son:

 unknown: Estado desconocido.

 install: El paquete está marcado para su instalación.

Práctica 3: Instalación de software Laboratorio de Administración de Sistemas Operativos

Página | 295

 remove: Marcado para desinstalar.

 purge: Marcado para desinstalación completa.

 hold: Marcado como fijo, no será actualizado.

Estado actual:

 not installed: No instalado.

 installed: Instalado.

 config-files: No está instalado pero existen ficheros de configuración.

 unpacked: Desempaquetado y listo para instalar.

 failed-config: Ocurrió un problema al ejecutarse la configuración en la instalación.

 half-installed: La instalación no se completó.

Errores:

 None: No hay errores.

 Hold: Eestá marcado como estático, no puede ser borrado ni actualizado.

 Reinstallation required: Se requiere reinstalación del paquete.

Mostrando el estado de un paquete

Sintaxis: dpkg --status <nombre_paquete>

 dpkg -s <nombre_paquete>

Esto nos permite mostrar el estado individual de cada paquete con todos los detalles del

mismo.

Ejemplo:

$ dpkg -s etherreal

Package: ethereal

Status: install ok installed

Priority: optional

Section: net

Installed-Size: 2996

Maintainer: Frederic Peters <fpeters@debian.org>

Version: 0.8.13-2

Depends: libc6 (>= 2.1.94), libglib1.2 (>= 1.2.0), libgtk1.2 (>= 1.2.8-1), libpc ap0

(>= 0.4-1), libsnmp4.1, xlibs (>= 4.0.1-1), zlib1g (>= 1:1.1.3)

Description: Network traffic analyzer Ethereal is a network traffic analyzer, or

"sniffer", for Unix and Unix-like operating systems. It uses GTK+, a graphical user

interface library, and libpcap, a packet capture and filtering library.

Listando los ficheros de un paquete

Sintaxis: dpkg --listfiles <nombre_paquete>

 dpkg -L <nombre_paquete>

Esto nos permite listar los ficheros que contiene un paquete.

Usando apt-get

apt-get es la herramienta por excelencia para la administración de paquetes .deb, sin la

necesidad de una interface como la de dselect y teniendo un abanico más amplio de opciones.

apt-get instalará automáticamente los paquetes así como sus dependencias.

Laboratorio de Administración de Sistemas Operativos Práctica 3: Instalación de software

Página | 296

Editando el fichero /etc/sources.list

Antes de que apt-get pueda coger los paquetes para su instalación, tiene que saber de donde

obtenerlos. El fichero /etc/sources.list tiene las direcciones de las ubicaciones desde donde

obtener todos los paquetes. Este fichero está formado por un listado de fuentes con el siguiente

formato para los binarios:

deb uri distribución componente

Y el siguiente formato para las fuentes:

deb-src uri distribución componente

URI (Uniform Resource Identifier) es un superconjunto del familiar formato URL que la

gran mayoría conoce, usa el siguiente formato:

protocolo://host/path

La sección //host del URI solamente se usa para los métodos HTTP y FTP, los cuatro tipos

de acceso son:

 CD-ROM: Un CD-ROM local.

 File: Un directorio local.

 FTP: Un servidor FTP.

 HTTP: Un servidor WEB.

La distribución que estamos utilizando en los laboratorios (Ubuntu) divide todo el software

en cinco secciones, llamadas componentes; con la finalidad de reflejar las diferencias que

existen en licencias y la prioridad con la que se atienden los problemas que informen los

usuarios. Estos componentes son:

 main: Contiene solamente los paquetes que cumplen los requisitos de la licencia de

Ubuntu, y para los que hay soporte disponible por parte de su equipo. Los paquetes de

este componente poseen ayuda técnica garantizada y mejoras de seguridad oportunas.

 restricted: Contiene el programa soportado por los desarrolladores de Ubuntu debido a

su importancia, pero que no esta disponible bajo ninguna licencia libre para incluir en

main.

 universe: Contiene una amplia gama del programa, que puede o no tener una licencia

restringida, pero que no recibe apoyo por parte del equipo de Ubuntu.

 commercial: Contiene programas comerciales.

 multiverse: Contiene los paquetes sin soporte debido a que no cumplen los requisitos de

software libre.

Es recomendable poner los recursos más rápidos en la parte de arriba del fichero

/etc/sources.list. Se pueden añadir comentarios a la lista usando el símbolo #, puede ser útil

comentar los recursos por temática, paquetes concretos, etc.

Actualizando los paquetes disponibles

La base de datos contiene una lista de todos los paquetes disponibles. Es útil, y casi

necesario, actualizar esta lista a menudo, o cuando se realicen cambios al fichero

/etc/sources.list. Para actualizar la base de datos se debe ejecutar el comando:

$ sudo apt-get update

Práctica 3: Instalación de software Laboratorio de Administración de Sistemas Operativos

Página | 297

Lo cual hará que apt-get recorra los recursos del fichero /etc/sources.list y actualice la base

de datos.

Instalando un paquete

Cuando se ordena la instalación de un paquete, apt-get revisa primero si este ya fue

descargado, si no lo fue, entonces apt-get irá al primer recurso ubicado en el fichero

/etc/sources.list a buscar la versión más nueva del programa, y si este tiene dependencias se

añadirán a la lista de instalación. Para instalar un programa se debe ejecutar el comando:

$ sudo apt-get install <nombre_paquete>

Actualizando paquetes instalados

Una de las mejores características del sistema apt-get, es la posibilidad de actualizar todos

los paquetes instalados en el sistema a la última versión disponible y en un solo paso. Para

realizar esto, podemos utilizar el comando:

$ sudo apt-get upgrade

Es necesario y muy conveniente, asegurarnos de ejecutar: sudo apt-get update antes de

teclear el comando anterior, para que de esta manera nos aseguremos que tenemos la base de

datos actualizada. Dependiendo de la cantidad de programas instalados y de las novedades, el

proceso llevará más o menos tiempo.

Borrando paquetes

Los paquetes pueden ser borrados con apt-get al igual que con dpkg, el comando para

realizar esta operación con apt-get es:

$ sudo apt-get remove <nombre_paquete>

Al igual que con dpkg, este comando borrará todos los ficheros del paquete excepto los

ficheros de configuración, que pueden ser necesarios en una posterior re-instalación. Para quitar

todos los ficheros se debe usar la siguiente opción:

$ sudo apt-get remove --purge <nombre_paquete>

Compilando e instalando software desde las fuentes

En ocasiones es necesario instalar un software que no se encuentra dentro de los típicos

paquetes .deb o .rpm, sino que se encuentran en formatos como .tar.gz o .tar.bz2 o .tgz, ante

estos casos estamos ante la presencia de un software que deberá ser instalado desde sus fuentes,

es decir que debemos compilar e instalar por nuestra propia cuenta, sin la ayuda del sistema de

gestión de paquetes propio de nuestra distribución.

Generalmente la gran mayoría de software que se proporciona de esta manera se suele

instalar mediante una serie de pasos predefinidos, pero nos podemos encontrar con ciertos casos

en que dichos pasos predefinidos no son validos para la instalación, es por esto que la gran

mayoría de desarrolladores de software incluyen dos archivos que siempre debemos revisar

antes de instalar el software, estos archivo son README e INSTALL. En ellos se describe cuál

es el procedimiento necesario para realizar una instalación correcta del software, así como

también, cuáles son las dependencias necesarias para la correcta instalación del mismo.

Laboratorio de Administración de Sistemas Operativos Práctica 3: Instalación de software

Página | 298

Los pasos predefinidos que generalmente se suelen seguir para instalar un software desde sus

fuentes son:

1. $ tar xvfz <nombre_paquete>.tar.gz

(o $ tar xvfz <nombre_paquete>.tgz)

(o $ tar xvfj <nombre_paquete>.tar.bz2)

2. $ cd <nombre_paquete>

3. $./configure

4. $ make

5. $ sudo make install

El primer paso es el paso de desempaquetado. En este paso estamos descomprimiendo el

contenido del paquete <nombre_paquete>.tar.gz, ya que la gran mayoría de paquetes de este

tipo suelen venir así pues son más fáciles de transportar y además guardan una estructura de

sistema de archivos interna.

Una vez que hemos descomprimido el paquete se ha creado un directorio llamado

<nombre_paquete>, en el se encuentran todos los archivos necesarios para la compilación del

software. Es por esto que es necesario que ingresemos en el nuevo directorio mediante el

comando cd.

Ahora es el momento de configurar el paquete. Por lo general, pero no siempre (siempre leer

antes los archivos README e INSTALL) se hace ejecutando el script configure. Cuando

ejecutamos el script configure, aún no estamos realizando ningún proceso de compilación, sino

que estamos asignando los valores para las variables del sistema de dependencias que debe

cumplir el paquete, es en esta etapa donde se nos informa cuales paquetes debemos instalar para

poder compilar el software. Si todo ha salido bien y cumplimos todas las dependencias estos

valores de las variables se utilizan para generar un Makefile y el Makefile se utiliza a su vez para

generar el binario.

Es la hora de construir el binario, el programa ejecutable, a partir del código fuente. Esto se

logra ejecutando el comando make. Debemos tener en cuenta que es necesario haber creado el

Makefile con éxito para poder construir el binario, de lo contrario make no sabrá como proceder.

Ahora estamos listos para instalar el programa. Para llevar a cabo este paso es necesario que

lo hagamos como root y que ejecutemos make install

Usando alien

Algunos paquetes están en otros formatos diferentes a .deb, para solucionar este problema se

creo la herramienta alien, que es capaz de convertir cualquiera de los siguientes formatos:

 .deb

 .rpm

 .tgz

 .slp

La sintaxis del comando es:

alien [opciones] paquete

Práctica 3: Instalación de software Laboratorio de Administración de Sistemas Operativos

Página | 299

Las opciones del comando son:

Opción Alternativa Uso

-d --to-deb Opción por defecto, se utiliza para convertir en

un paquete a .deb.

--

patch=<filename>

 Solamente usado con la opción -d. Especifica el

fichero con el patch que debe ser usado.

--nopatch Sólo usado con la opción -d. Ningún patch se

empleará.

-r --to-rpm Se utiliza para convertir un paquete a .rmp.

-t --to-tgz Se utiliza para convertir un paquete a .tgz.

--to-slp Se utiliza para convertir un paquete a stampede.

-i --install Instala el programa tras la creación del paquete.

-g --generate Desempaqueta el contenido del paquete pero no

genera ninguno nuevo.

-s --single Lo mismo que la opción -g, pero no crea el

directorio .orig.

-c --scripts Incluye los scripts en el paquete.

-k --keep-version No cambia la versión del nuevo paquete.

--description= Pone descripción al paquete creado.

-h --help Muestra la ayuda.

-v --version Muestra la versión.

Laboratorio de Administración de Sistemas Operativos Práctica 3: Instalación de software

Página | 300

Ejercicios

1. Active los siguientes repositorios en el archivo /etc/sources.list:

 Main

 Universe

 Restricted

 Multiverse

2. Introduzca el disco de instalación de la distribución con la que se esta trabajando en el

laboratorio en la unidad lectora de CD-ROM y ejecute el comando que permita añadirlo

dentro de los elementos de búsqueda del archivo /etc/sources.list.

3. Actualice la base de datos de repositorios utilizando la herramienta apt-get.

4. Instale los siguientes paquete en el sistema: acroread y mozilla-acroread. Haga uso de

apt-get.

5. Haciendo uso de la herramienta dpkg, instale el paquete volleyball_0.82-1_i386.deb, en

caso de presentar dependencias incumplidas, investigue la forma de cumplir dichas

dependencias haciendo uso no de dpkg, sino de apt-get. Una vez instalado compruebe

su correcto funcionamiento.

6. Investigue la forma de instalar el paquete virtualbox mediante el comando apt-get. Cabe

destacar que son necesarios algunos pasos previos a la instalación de dicho paquete. Así

como también la añadidura de: primero una línea dentro del archivo /etc/sources/list y

segundo una clave de acceso al repositorio.

7. Haciendo uso del comando apt-get, actualice toda la lista de paquetes instalados en el

sistema.

8. ¿Cuál es la ventaja que ofrece instalar los paquetes desde los repositorios en vez de

instalarlos utilizando la herramienta dpkg mediante paquetes .deb?

9. Instale el paquete: emacs-21.4a.tar.gz, siguiendo los pasos del apartado: Compilando e

instalando software desde las fuentes. En caso de dependencias incumplidas resuélvalas

y después de haberlo instalado correctamente compruebe la instalación. En caso de

error corrija la instalación.

10. Utilizando el comando alien, convierta el paquete skype-2.0.0.68-fc5.i586.rpm a un

paquete en formato .deb. ¿Cuál seria el comando completo para añadir los scripts en el

paquete? ¿Y cuál seria el comando completo para no cambiar la versión del nuevo

paquete generado con alien?. En caso de no tener instalado el paquete alien, deberá ser

capaz de instalarlo de acuerdo a lo estudiado en las secciones anteriores. En caso de

error corrija la instalación.

11. Investigue cuál es el procedimiento que se debe seguir para instalar un paquete con la

extensión .bin. Una vez que lo sepa, instale el siguiente paquete:

RealPlayer11GOLD.bin. Una vez instalado compruebe su correcto funcionamiento. En

caso de error corrija la instalación.

NOTA: Los paquetes necesarios para el desarrollo de algunos incisos de la práctica deberán

ser solicitados a su respectivo docente.

Práctica 4: Arranque y apagado del sistema Laboratorio de Administración de Sistemas Operativos

Página | 301

Administración de sistemas operativos
Práctica 4: Arranque y apagado del sistema

OBJETIVOS

 Conocer la metodología básica, acerca de la inicialización y detención del sistema

Linux, así como los niveles de ejecución.

TEMPORIZACIÓN

El plazo de realización de esta práctica será de una sesión de laboratorio, correspondiente a

un periodo de dos horas.

BIBLIOGRAFÍA

BÁSICA

UNIX y LINUX. Guía práctica, 3ª edición

Autor: Sebastián Sánchez Prieto y Óscar García Población

Editorial: Ra-Ma

Edición: 2005

COMPLEMENTARIA

Guía documentada para Ubuntu

Dirección: http://www.guia-ubuntu.org/index.php?title=Portada

Inicio y cierre del sistema

Dirección: http://doc.ubuntu-es.org/Inicio_y_cierre_del_sistema

http://www.guia-ubuntu.org/index.php?title=Portada
http://doc.ubuntu-es.org/Inicio_y_cierre_del_sistema

Laboratorio de Administración de Sistemas Operativos Práctica 4: Arranque y apagado del sistema

Página | 302

PRÁCTICA 4

Arranque y apagado del sistema

TABLA DE CONTENIDOS:

Introducción……………………………………………………………………………………303

La secuencia de arranque de la ROM...304

La secuencia de arranque del sistema operativo...304

Niveles de ejecución...304

El archivo /etc/inittab...305

Gestor de arranque GRUB..306

Parada del sistema..306

 shutdown...306

Ejercicios..308

Práctica 4: Arranque y apagado del sistema Laboratorio de Administración de Sistemas Operativos

Página | 303

Introducción

Desde que encendemos el ordenador hasta que se carga en totalidad el sistema, se ejecutan

varias tareas automáticamente que se conocen con el nombre de secuencia de arranque del

sistema. El proceso de arranque incluye varias comprobaciones se sanidad, y con frecuencia

tratará de reparar cualquier daño encontrado, especialmente daños en el disco duro.

Normalmente el proceso de arranque es más rápido si la desconexión anterior fue correcta; es

decir, no se realizo de manera abrupta tras un corte del fluido eléctrico o tras el apagado directo

desde el botón de encendido.

Hay dos fases en la puesta en marcha del sistema: la primera de ellas es particular para cada

máquina, y la segunda es característica del sistema operativo. Ambas secuencias se les conoce

como:

 Secuencia de arranque (boot) de la ROM.

 Secuencia de arranque del sistema operativo.

En esta práctica estudiaremos un poco cada una de las dos secuencias de arranque y

analizaremos los elementos que participan en dichas secuencias. Así como también

aprenderemos a configurar algunos de ellos.

Laboratorio de Administración de Sistemas Operativos Práctica 4: Arranque y apagado del sistema

Página | 304

La secuencia de arranque de la ROM

El programa de inicio de cualquier ordenador siempre está almacenado en una memoria

ROM. Es en esta memoria donde el procesador comienza a leer código con objeto de ejecutarlo.

Este código es característico de cada tipo de ordenador. El programa de arranque suele realizar

una comprobación de todo el hardware del sistema. Si todo es correcto, lo que hará a

continuación será leer del disco un programa cargador, que cargará en memoria el núcleo del

sistema y finalmente le pasará el control. El archivo que contiene el núcleo del sistema

normalmente se almacena en el directorio raíz del sistema de archivos y puede tener distintos

nombres. Los nombres más utilizados pueden ser: vmlinuz, vmUNIX, image o zimage.

La secuencia de arranque del sistema operativo

Cuando el cargador software comienza su ejecución, muestra un mensaje similar al

siguiente:

Booting Linux system

Y carga entonces el núcleo del sistema operativo en la memoria de la máquina. El cargador

software cederá luego el control al núcleo recién cargado y el sistema comienza a iniciarse.

Niveles de ejecución

Los niveles de ejecución son un estado, o modo, en el que entra el sistema en el proceso de

arranque y que define los servicios que serán arrancados por la máquina. Linux está programado

para ejecutarse en un determinado nivel de ejecución. El número de niveles y sus nombres están

predeterminados. En cambio, las acciones a realizar en cada nivel son configurables por el

superusuario.

Existen siete niveles de ejecución en total:

 Nivel de ejecución 0: Apagado.

 Nivel de ejecución 1: Monousuario (sólo usuario root, no es necesaria la contraseña).

Se suele utilizar para analizar y reparar problemas.

 Nivel de ejecución 2: Multiusuario sin soporte de red.

 Nivel de ejecución 3: Multiusuario con soporte de red.

 Nivel de ejecución 4: Como el nivel de ejecución 3 pero no se suele utilizar.

 Nivel de ejecución 5: Multiusuario con modo gráfico (X Windows).

 Nivel de ejecución 6: Reinicio.

Un sistema Linux no se arranca o detiene, sino que simplemente se cambia su nivel de

ejecución. Durante un arranque normal, el sistema se coloca en el nivel 3 (multiusuario con red)

o en el nivel 5 (análogo al 3 pero con el sistema de ventanas activo desde el inicio).

Práctica 4: Arranque y apagado del sistema Laboratorio de Administración de Sistemas Operativos

Página | 305

Ejemplo:

Cambia el nivel actual al nivel 0 (halt).

$ sudo shutdown -h now

Cambia el nivel actual al nivel 6 (reboot).

$ sudo shutdown -r now

Cambia al <nivel> especificado.

$ sudo init <nivel>

Indica el nivel de ejecución previo y el actual

$ runlevel

El archivo /etc/inittab

Es el primer archivo que es leído al arrancar el sistema, contiene especificaciones sobre que

otros archivos deben de ser ejecutados y el nivel de arranque del sistema, es administrado por

init.

El formato del archivo /etc/inittab es el siguiente:

id:nivel:acción:procesos

 id: Consta de uno o dos caracteres que se utilizan para identificar esa línea en el

archivo.

 nivel: Define el nivel o niveles de ejecución para los cuales la entrada es válida. Los

valores admitidos son:

 Un número del 0 al 6 o una combinación de ellos. Se permiten valores múltiples

en este campo, en cuyo caso indican que la entrada es válida para todos los

niveles de ejecución listados.

 Un campo vacío, lo cual implica que la entrada es valida para todos los niveles

de ejecución de init.

 acción: Contiene una palabra clave que le dice a init cómo ejecutar el proceso

especificado en cuarto campo. Los valores que se permiten para este campo son:

respawn, wait, once, boot, bootwait, powerfail, powerwait, off, initdefault y sysinit.

 procesos: Contiene el proceso que se ejecutará cuando se introduzca el correspondiente

nivel de ejecución.

El proceso init controla en todo momento el modo de funcionamiento del sistema global a

partir del archivo de configuración /etc/inittab. A continuación se muestra un ejemplo del

contenido del archivo:

De forma general, existe un directorio /etc/ rc<x>.d/, por cada nivel de ejecución definido

por el sistema, aquí se encuentran los servicios que deberán ser lanzados y parados en ese nivel

de ejecución.

Hay que tener en consideración que los scripts que residen en el directorio /etc/init.d pueden

utilizarse directamente, lo que permite iniciar o detener servicios de forma manual. Por ejemplo,

los siguientes mandatos detienen el subsistema de red y lo vuelven a iniciar:

$ sudo /etc/init.d/networking stop

$ sudo /etc/init.d/networking start

Laboratorio de Administración de Sistemas Operativos Práctica 4: Arranque y apagado del sistema

Página | 306

Gestor de arranque GRUB

GRUB es un gestor de arranque que nos permite seleccionar qué sistema operativo instalado

en nuestro disco duro deseamos arrancar en el momento de arranque del sistema. Permite

también que el usuario pase argumentos al kernel.

Dentro de sus principales características tenemos:

 Proporciona un entorno verdadero basado en comandos, lo cual supone disponer de un

pre-sistema operativo en el momento del arranque.

 Soporta el modo Direccionamiento Lógico de Bloques (LBA). El modo LBA permite la

conversión de direccionamiento utilizada para buscar archivos en la unidad de disco

duro del firmware y se utiliza en muchos discos IDE y en todos los discos duros SCSI.

 Puede leer casi todo tipo de particiones. Esto permite que GRUB acceda a su archivo de

configuración, /boot/grub/menu.lst.

Presenta dos interfaces de usuario:

 Interfaz de menú

 Permite escoger entradas que han sido definidas en el archivo de configuración

de GRUB,

 Permite acceder a una línea de comando para ejecutar acciones de arranque que

deseemos.

Esta es la interfaz por defecto cuando se configura GRUB desde el programa de instalación.

En esta interfaz hay un menú de sistemas operativos o kernels preconfigurados en forma de lista

ordenada por nombre. Se puede utilizar las teclas de flecha para seleccionar una opción en lugar

de la selección por defecto y pulsar la tecla Enter para arrancar el sistema.

 Interfaz línea de comandos

 Al cargar busca archivo de configuración /boot/grub/menu.lst

 Si lo encuentra, la interfaz de menú se activa, utilizando las entradas

encontradas en el archivo.

 Si se elije la opción de menú línea de comandos o no se encuentra el archivo de

configuración, entonces GRUB entra la interfaz de línea de comandos

La interfaz de línea de comandos nos proporciona un prompt parecido a una shell. Cada

comando introducido aquí es ejecutado inmediatamente después de presionar la tecla Enter.

Parada del sistema

Al igual que el arranque en el momento de querer detener el sistema se puede realizar de

varias formas; la primera es apagar el sistema (aunque no es recomendable ya que puede

causar daños a los archivos), la segunda y más recomendada es utilizar el siguiente comando:

shutdown

Sintaxis: shutdown [-rhf] [-t espera] [Mens]

shutdown provoca el cese de toda actividad del sistema. Para poder ejecutar esta orden

debemos hacerlo como administrador del sistema (root).

Práctica 4: Arranque y apagado del sistema Laboratorio de Administración de Sistemas Operativos

Página | 307

Opciones:

 -r: reboot. Realiza una carga del sistema automáticamente después de la parada. Esta

opción la utilizaremos cuando simplemente queramos reiniciar el sistema.

 -h: halt. Desconecta el sistema después de la parada.

 -t seg: Numero de segundos que debe esperar antes de realizar cualquier actividad.

Laboratorio de Administración de Sistemas Operativos Práctica 4: Arranque y apagado del sistema

Página | 308

Ejercicios

1. ¿Cuántas terminales virtuales tiene configuradas el sistema? ¿Cómo se accede a ellas?

¿Cómo se accede a la terminal de X Window?

2. Reduzca a dos el número de terminales virtuales configuradas en el sistema. ¿Es

necesario reiniciar el sistema para que tengan efecto estos cambios? ¿Cómo se accede

ahora a la terminal X Window?

3. Desactive el funcionamiento de las combinaciones de teclas Ctrl+Alt+Supr. Luego

vuélvalo a activar.

4. ¿Cuáles son las diferentes maneras de iniciar el sistema en modo monousuario?,

mencione todas las posibles soluciones.

5. ¿Qué orden utilizaría para cambiar al modo de ejecución tres?, mencione todas las

posibles soluciones.

6. Cada fichero script del directorio /etc/init.d suele admitir los parámetros start, stop,

restart y status y puede ser ejecutado de forma independiente. Según esto, haga lo

siguiente:

 Compruebe el estado del demonio atd.

 Si está en ejecución, párelo, de lo contrario arránquelo.

 Vuelve a comprobar su estado.

 A continuación lance el demonio.

7. Modifique el tiempo de espera antes del arranque del sistema por defecto, en el menú

mostrado por GRUB. ¿Qué pasa si este valor es cero?

8. Cambie el sistema que se carga por defecto en el menú mostrado por GRUB.

9. Muestre la imagen: grubcircle.xpm.gz en el menú mostrado por GRUB al arrancar el

ordenador.

10. Realice lo siguiente:

 Teclea la orden uname –r y anote los resultados.

 Reinicie el ordenador desde la consola.

 Cuando aparezca el menú mostrado por GRUB presiona la tecla e para editar.

 Diríjase a la línea del kernel que está utilizando el sistema (valor devuelto por el

comando uname -r) y presiona la tecla e.

 Diríjase al final de la línea y teclee lo siguiente:

rw init=/bin/bash

 Presione la tecla Enter y luego la tecla b para reiniciar.

Indique todo lo que ha sucedido después de haber hecho los pasos anteriores. Ejecute la

orden whoami ¿Qué usuario es actualmente?, ¿Con que contraseña entro?, ¿Presenta

esto un riesgo para la seguridad del sistema?, ¿Especifique cómo lo resolvería?

11. Lea las páginas de manual para la orden shutdown. Utilice este comando para apagar

este sistema de varias formas distintas: con demora, reiniciando, deteniendo el sistema,

forzando la ejecución de fsck, etc.

12. ¿Qué hacen los comandos reboot y halt? ¿Cuál es su equivalente utilizando shutdown?

Práctica 4: Arranque y apagado del sistema Laboratorio de Administración de Sistemas Operativos

Página | 309

13. Programe la ejecución de un apagado del sistema para dentro de cinco minutos. Observa

la información que aparece en pantalla. Antes de que pasen los cinco minutos, cancele

el apagado.

NOTA: La imagen: grubcircle.xpm.gz, será proporcionada por su docente.

Página | 310

Práctica 5: Administración de usuarios y grupos Laboratorio de Administración de Sistemas Operativos

Página | 311

Administración de sistemas operativos
Práctica 5: Administración de usuarios y grupos

OBJETIVOS

 Entender los procedimientos que se sigue el sistema para añadir un usuario.

 Manejar las herramientas que nos proporciona el sistema para la gestión de usuarios y

grupos.

 Realizar distintas operaciones de gestión con los usuarios existentes en el sistema.

TEMPORIZACIÓN

El plazo de realización de esta práctica será de dos sesiones de laboratorio, cada una de dos

horas para un total de cuatro horas.

BIBLIOGRAFÍA

BÁSICA

UNIX y LINUX. Guía práctica, 3ª edición

Autor: Sebastián Sánchez Prieto y Óscar García Población

Editorial: Ra-Ma

Edición: 2005

Laboratorio de Administración de Sistemas Operativos Práctica 5: Administración de usuarios y grupos

Página | 312

PRÁCTICA 5

Administración de usuarios y grupos

TABLA DE CONTENIDOS:

Introducción……………………………………………………………………….……...........313

El archivo /etc/passwd…………………………………………………….………….…..........314

El archivo /etc/shadow…………………………………………………….………….……….314

El archivo /etc/group…………………………………………………….………….…………314

El archivo /etc/gshadow…………………………………………………….………….……...315

Como añadir usuarios al sistema…………………………………………………….………...315

Herramientas para gestionar los usuarios y grupos…………………………….……………...317

 adduser…………………………….………………………………….………….……...........317

 groupadd…………………………….………………………………….………….…………317

 gpasswd…………………………….………………………………….………….………….317

 newgrp…………………………….………………………………….………….…………...318

 chage…………………………….………………………………….………….…….……….318

 pwck…………………………….………………………………….………….…….……….319

 grpck…………………………….………………………………….………….…….……….319

 chsh…………………………….………………………………….………….…….…...........320

 chfn…………………………….………………………………….………….…….………...320

Supresión de usuarios o grupos…………………………….………………………………….320

 userdel…………………………….………………………………….………….……………320

 usermod…………………………….………………………………….………….………….321

Comunicación entre administrador y usuarios…………………………….………….……….321

Ejercicios…………………………….………………………………….………….………….322

Práctica 5: Administración de usuarios y grupos Laboratorio de Administración de Sistemas Operativos

Página | 313

Introducción

Una de las principales responsabilidades del administrador del sistema Unix es mantener las

cuentas de usuarios y de grupos de usuarios. Ello incluye dar de alta nuevas cuentas, eliminar

las que no se utilicen, establecer mecanismos de comunicación con los usuarios, etc. En todas

las operaciones anteriores se ven implicados principalmente cuatro archivos en los que se

guarda la información concerniente a los usuarios y a los grupos a los que pertenecen. Estos

archivos son /etc/passwd, /etc/shadow, /etc/group y /etc/gshadow.

En esta práctica desarrollaremos habilidades para administrar las cuentas de usuarios

existentes en el sistemas mediante diversos mecanismos, ya sean estos editando directamente

los archivos correspondientes o haciendo uso de los comandos que nos proporciona el sistema

para trabajar con las cuentas de usuarios.

Laboratorio de Administración de Sistemas Operativos Práctica 5: Administración de usuarios y grupos

Página | 314

El archivo /etc/passwd

Este archivo está compuesto por una serie de líneas formadas por campos separados por dos

puntos. Cada línea guarda información de un usuario y tiene un formato como el siguiente:

nombre_us:clave:us_ID:grupo_ID:coment:dir_inicio:prog_inicio

 nombre_us: Es el nombre de usuario o nombre de login que damos cada vez que

iniciamos una sesión en el sistema. Es recomendable que tenga entre uno y ocho

caracteres.

 clave: Este campo es el correspondiente a la palabra clave o clave de acceso, que está

encriptada por el sistema. Cuando en dicho campo aparece una x indica que la palabra

clave encriptada reside en el archivo /etc/shadow.

 us_ID: Es el número de identificación de usuario. Para usuarios normales este

identificador debe estar entre 1000 y 64999, ambos incluidos. El número cero es un

identificador especial que corresponde al usuario root.

 grupo_ID: Es el número de identificación de grupo. Este número se asocia a una línea o

entrada en el archivo /etc/group.

 coment: Aquí aparecerá un comentario sobre el usuario, tal como su nombre completo,

número de teléfono, dirección, etc.

 dir_inicio: Es el camino completo del directorio de inicio (/home) del usuario al que

accederá cada vez que inicie sesión.

 prog_inicio: Corresponde al programa que se debe ejecutar cada vez que entre el

usuario al sistema, Generalmente, este programa será el shell con el que queremos

trabajar.

El archivo /etc/shadow

Contiene las contraseñas encriptadas del sistema. Este archivo a diferencia de /etc/passwd

sólo puede ser leído por root, con el objetivo de evitar que cualquiera pueda realizar un ataque

de fuerza bruta sobre el archivo que contiene las contraseñas.

Los dos campos de mayor importancia en este archivo son el primero (nombre_us) el cual

contiene el nombre del usuario y el segundo (clave) que contiene la contraseña encriptada del

mismo. El resto de los campos tienen que ver con la gestión de las contraseñas, por ejemplo,

cuando se creo la contraseña, cuando caduca, con cuantos días de anticipación le avisamos el

usuario, etc.

Si el campo clave dentro del archivo /etc/shadow se encuentra vacio, la cuenta del usuario no

tendrá ninguna contraseña asociada. Sin embargo, Si contiene un signo de admiración,

significará que la cuenta se encuentra bloqueada.

NOTA: Existen dos algoritmos de encriptación que son ampliamente utilizados en los

sistemas Unix para cifrar las contraseñas de los usuarios, dichos algoritmos son MD5 y DES. Si

el campo clave empieza con los caracteres: $1, indica que la contraseña ha sido encriptada con

MD5.

El archivo /etc/group

Este archivo está compuesto por una serie de líneas formadas por campos separados por dos

puntos. Cada línea de éstas se corresponde con un grupo de usuarios y tiene un formato como el

siguiente:

nombre_grupo:password:grupo_ID:lista_componentes_grupo

Práctica 5: Administración de usuarios y grupos Laboratorio de Administración de Sistemas Operativos

Página | 315

 nombre_grupo: Corresponde al nombre del grupo que está asociado con el número

identificador de grupo.

 password: Corresponde con la contraseña del grupo. Las contraseñas son almacenadas

en el archivo /etc/gshadow.

 grupo_ID: Corresponde al número identificador de grupo, que debe ser igual al que

aparezca en los usuarios que pertenezcan a dicho grupo en el archivo /etc/passwd.

 lista_componentes_grupo: Es una lista separada por comas de los nombres de usuarios

que pueden convertirse en miembros del grupo con la orden newgrp, no es por tanto una

lista de miembros actuales del grupo.

El archivo /etc/gshadow

Es un fichero de texto, donde cada línea tiene información de un grupo definido en

/etc/group. Nos permite guardar las contraseñas cifradas de los grupos y es sólo visible por root.

Debido a que las contraseñas asociadas a los grupos no son muy utilizadas, no analizaremos

los campos contenidos en dicho archivo.

Como añadir usuarios al sistema

Para añadir usuarios al sistema se deben seguir, en el orden que aparecen, los siguientes

pasos:

1. Copiar el actual archivo /etc/passwd en /etc/passwd.ORIGINAL con objeto de poder

deshacer los cambios en caso de que algo falle.

2. Editar el archivo /etc/passwd y añadir la línea o entrada correspondiente al usuario que

queremos crear.

Vamos a ver a continuación una serie de normas que nos ayudarán a rellenar la línea

correspondiente al nuevo usuario. En primer lugar, el nombre de acceso o nombre de

conexión del usuario; es recomendable que no exceda los ocho caracteres. El campo

siguiente, el correspondiente a la clave, deberá contener una x lo cual indicará que la

contraseña será almacenada en el archivo /etc/shadow. En el campo UID pondremos el

número que identificará al nuevo usuario. Debemos elegir un identificador diferente al

de cualquier otro usuario y que sea superior a 999 e inferior a 65000, ya que si no es así

se producirán problemas. Para saber de forma fácil el número identificador del usuario

que debemos colocar en dicho campo, podemos hacer uso del siguiente comando:

$ sudo cat /etc/passwd | awk -F ':' '($3>MAX && $3<65000){MAX=$3}END{print

MAX+1}'

El campo GID lo rellenaremos con el identificador de grupo correspondiente al grupo al

cual deba pertenecer el nuevo usuario. Para saber de forma fácil el número identificador

de grupo que debemos colocar en dicho campo, podemos hacer uso del siguiente

comando:

$ sudo cat /etc/passwd | awk -F ':' '($4>MAX && $4<65000){MAX=$4}END{print

MAX+1}'

En el campo siguiente colocaremos información relacionada con la persona en cuestión:

nombre completo, teléfono, dirección, etc. Seguidamente definiremos, en el siguiente

campo, cuál será el directorio de arranque del nuevo usuario, dando la ruta completa de

aquel (/home/<nombre_us>). Por último es necesario definir cuál será el programa de

inicio, normalmente el shell (/bin/bash).

Laboratorio de Administración de Sistemas Operativos Práctica 5: Administración de usuarios y grupos

Página | 316

3. Cifrar la clave del usuario para colocarla en el archivo /etc/shadow. Esto lo podemos

hacer con la siguiente orden:

$ mkpasswd –H MD5 <contraseña_en_texto_plano>

Dicho comando nos devolverá la contraseña cifrada que hemos de colocar en el archivo

/etc/shadow. Para ello debemos añadir una nueva línea o entrada correspondiente al

usuario que estamos creando. Para añadir esta línea podemos utilizar como guía las que

ya existen.

No debemos olvidarnos de hacer una copia (/etc/shadow.ORIGINAL) del archivo

/etc/shadow, con objeto de poder deshacer los cambios en caso de que algo falle.

4. Copiar el actual archivo /etc/group en /etc/group.ORIGINAL con objeto de poder

deshacer los cambios en caso de que algo falle.

5. Añadir una línea en el archivo /etc/group con el nombre del usuario. Debe haber una

correspondencia del valor del campo GID de /etc/passwd y el valor del campo GID de

/etc/group. Para añadir esta línea podemos utilizar como guía las que ya existen.

6. Copiar el actual archivo /etc/gshadow en /etc/gshadow.ORIGINAL con objeto de poder

deshacer los cambios en caso de que algo falle.

7. Añadir una línea en el archivo /etc/gshadow con el nombre del usuario. Para añadir esta

línea podemos utilizar como guía las que ya existen.

8. Crear el directorio HOME para el nuevo usuario (el mismo que declaramos en el

archivo /etc/passwd), para ello haremos uso del siguiente comando:

$ sudo cp –rf /etc/skel /home/<nombre_us>

9. Modificamos el dueño y el grupo de los archivos ubicados en /home/<nombre_us>,

esto va a permitir que el usuario tenga permisos de hacer lo que él desee en su directorio

de conexión. Para esto debemos usar los siguientes comandos:

$ sudo chown -R /home/<nombre_us>

$ sudo chgrp –R <nombre_us> /home/<nombre_us>

10. Para controlar finalmente si hemos modificado correctamente los archivos /etc/passwd,

/etc/shadow, /etc/group y /etc/gshadow podemos utilizar las siguientes órdenes:

$ sudo pwck

$ sudo grpck

11. Iniciar una sesión con el nombre de usuario que acabamos de crear y comprobar que

todo funciona correctamente.

12. Borrar todos los archivos .ORIGINAL que hemos creado con objeto de poder deshacer

los cambios en caso de que algo fallara.

Práctica 5: Administración de usuarios y grupos Laboratorio de Administración de Sistemas Operativos

Página | 317

Herramientas para gestionar los usuarios y grupos

Para evitar llevar a cabo las labores realizadas en la sección anterior, el sistema nos

proporciona un conjunto de herramientas que nos evitan modificar los archivos de

administración de usuarios y grupos manualmente. Veremos a continuación algunas de ellas.

adduser

Sintaxis: adduser usuario

Esta orden se utiliza para dar de alta a nuevos usuarios en el sistema. Si no se proporcionan

argumentos, adduser tomará determinados valores por defecto.

Si queremos añadir un nuevo usuario antes tenemos que definir un grupo al que pertenecerá

dicho usuario. Por ejemplo, para crear el grupo de usuarios utilizaremos la siguiente orden:

$ sudo groupadd usuarios

Ahora ya tenemos un grupo de usuarios al que añadir un nuevo usuario:

$ sudo useradd –g usuarios –c “Javier Matinez” javi

Una vez creado el usuario debemos asignarle una contraseña utilizando la orden passwd.

$ sudo passwd javi

Changing password for user javi

New password:

Retype new password:

passwd: all authentication tokens updated successfully

groupadd

Sintaxis: groupadd grupo

Con esta orden podemos dar de alta a un nuevo grupo en el sistema. Por ejemplo, para dar de

alta al grupo de usuarios de Internet llamado usr_inet utilizaríamos al siguiente orden:

$ sudo groupadd user_inet

gpasswd

Sintaxis: gpasswd grupo

El administrador del sistema es el encargado de nombrar un administrador para el grupo.

Dicho administrador puede ser un usuario cualquiera del sistema. El administrador de grupo

tendrá la potestad de incluir nuevos usuarios en su grupo. Sólo root puede establecer quién será

el administrador de un grupo. Por ejemplo, para definir a javier como administrador del grupo

usr_inet utilizaríamos la orden:

$ sudo gpasswd –A javier user_inet

Laboratorio de Administración de Sistemas Operativos Práctica 5: Administración de usuarios y grupos

Página | 318

A partir de ahora, el usuario javier puede añadir nuevos miembros al grupo user_inet.

javier$ gpasswd –a usuario01 usr_inet

Adding user usuario01 to group usr_inet

newgrp

Sintaxis: newgrp grupo

Cuando se da de alta un usuario en el sistema se le asigna un grupo primario. En los

ejemplos anteriores, el grupo primario para el usuario javier es usuarios. Para consultar a qué

grupo primario pertenece un usuario podemos utilizar la siguiente orden:

javier$ id

uid=1001(javier) gid=1001(usuarios) grupos=1001(usuarios),1002(usr_inet)

Un usuario puede cambiarse de grupo haciendo uso de la orden newgrp.

javier$ newgrp usr_inet

javier$ id

uid=1001(javier) gid=1002(usr_inet) grupos=1001(usuarios),1002(usr_inet)

chage

Sintaxis: chage –l usuario

Con esta orden podemos manipular los tiempos máximos y mínimos en los que los usuarios

deben cambiar sus contraseñas. La forma más sencilla de invocar esta orden es mediante el

modificar –l.

$ sudo chage –l javier

Con esto se obtienen los parámetros actuales de tiempo de la cuenta del usuario javier.

Minumum: 0

Maximum: 23

Warning: 4

Inactive: 4

Last Change: nov 06, 2007

Password Expires: nov 29, 2007

Password Inactive: dic 03, 2007

Account Expires: dic 12, 2008

 Minimum: Indica el tiempo mínimo en días que deben transcurrir para que un usuario

pueda cambiar su contraseña. Si vale cero, significa que el usuario puede cambiar su

contraseña en cualquier momento. Podemos alterar este valor con la opción –m de la

orden chage.

 Maximum: Indica el tiempo en días a partir del último cambio de cambio de la

contraseña, en el que el usuario debe cambiar su contraseña. Podemos alterar este valor

con la opción –M de la orden chage.

 Warning: Indica con cuántos días de antelación se avisará a un usuario de que su

contraseña está a punto de caducar. Podemos alterar este valor con la opción –W de la

orden chage.

 Inactive: Indica cuántos días de plazo se deja al usuario desde que caduca su contraseña

hasta que la cuenta queda bloqueada. Una vez que se bloquea una cuenta el usuario no

Práctica 5: Administración de usuarios y grupos Laboratorio de Administración de Sistemas Operativos

Página | 319

puede acceder de nuevo hasta que el administrador la desbloquee. Podemos alterar este

valor con la opción –I de la orden chage.

En el ejemplo anterior, javier modificó su contraseña por última vez el 6 de noviembre de

2007 (password change). Se estableció un tiempo máximo de duración de 23 días (maximum),

por lo tanto la contraseña del usuario caducará el 29 de noviembre de 2007 (password expires).

4 días después (inactive), es decir, el 3 de diciembre de 2007 se procederá a bloquear la cuenta

del usuario.

El administrador puede modificar cualquiera de estos parámetros. Por ejemplo, puede

establecer la fecha en la que el usuario modificó por última vez una contraseña. Esto es útil para

forzar que un usuario cambie su contraseña.

$ sudo chage –d0 javier

$ chage –l javier

Minumum: 0

Maximum: 23

Warning: 4

Inactive: 4

Last Change: Never

Password Expires: Never

Password Inactive: Never

Account Expires: dic 12, 2008

La próxima vez que el usuario intente acceder se le obligará a que cambie su contraseña. Si

no lo hace, no se le permitirá acceder al sistema.

pwck

Sintaxis: pwck

La orden pwck (password check) busca en el archivo /etc/passwd posibles errores de

formato, así como posibles inconsistencias (usuarios duplicados, usuarios sin directorio de

inicio, errores sintácticos, etc.).

Ejemplo:

$ sudo pwck

usuario news: el directorio /var/spool/news no existe

usuario uucp: el directorio /var/spool/uucp no existe

usuario nobody: el directorio /nonexistent no existe

pwck: sin cambios

grpck

Sintaxis: grpck

La orden grpck (group check) busca en el archivo /etc/group posibles errores de formato e

inconsistencias avisándonos de ello.

Laboratorio de Administración de Sistemas Operativos Práctica 5: Administración de usuarios y grupos

Página | 320

chsh

Sintaxis: chsh

La orden chsh (change shell) puede emplearla un usuario para cambiar su intérprete de

órdenes. Como sabemos, el intérprete de órdenes es el último campo de cada línea del archivo

/etc/passwd. La forma de operar de esta orden es muy similar a la orden passwd, con la

diferencia de que lo que se modifica en este caso es el shell del usuario. Cuando queremos

cambiar nuestro intérprete de órdenes, chsh visualiza el shell que estamos empleando y nos pide

que introduzcamos uno nuevo. El nuevo intérprete de órdenes debe ser uno de los indicados en

el archivo /etc/shells, a no ser que se el propio administrador del sistema el que invoca la orden.

Si el archivo /etc/shells no existe, los únicos shells válidos son /bin/sh y /bin/csh.

chfn

Sintaxis: chfn

La orden chfn se utiliza para actualizar información relativa al usuario, como nombre

completo, teléfono del despacho, teléfono del trabajo y teléfono de la casa, en el archivo

/etc/passwd. Cuando se nos pregunta acerca de la información anterior, se nos ofrecen unos

valores por defecto encerrados entre corchetes. Este valor por defecto se acepta simplemente

pulsando la tecla Enter. Para incluir un campo en blanco, debemos introducir la palabra none.

Supresión de usuarios o grupos

Para suprimir usuario definitivamente, lo único que tenemos que hacer es borrar sus entradas

en los archivos /etc/passwd, /etc/shadow, /etc/group y /etc/gshadow donde aparezca el nombre

de login (un usuario puede estar incluido en mas de una entrada en el archivo /etc/group).

Seguidamente podemos borrar el directorio de conexión del usuario suprimido. Para suprimir un

grupo borraremos su entrada del archivo /etc/group y /etc/gshadow, pero siempre que ningún

usuario pertenezca ya a ese grupo. Para desactivar o borrar temporalmente un usuario, esto es,

no darle permiso a acceder al sistema sin borrar sus entradas en los mencionados archivos,

podemos simplemente editar el archivo /etc/shadow e introducir en el campo de la clave un !.

Por ejemplo:

pepe:!1agr0ST0z$pr.4R6ESxddPit/fQy6gB/:14028:0:99999:7:::

Para reactivarlo, sólo tendremos que borrar el ! y dejarlo como estaba.

Para evitar editar los archivos manualmente, los sistemas Unix ponen a nuestra disposición

los siguientes comandos:

userdel

Sintaxis: userdel [-r] usuario

La orden userdel nos permite eliminar usuarios del sistema. Por ejemplo, si queremos

eliminar al usuario javier, tendríamos que escribir lo siguiente:

$ sudo userdel javier

Práctica 5: Administración de usuarios y grupos Laboratorio de Administración de Sistemas Operativos

Página | 321

A partir de este momento, el usuario eliminado ya no existe. Si además queremos eliminar

también su directorio HOME, deberemos emplear la orden:

$ userdel –r javier

Es aconsejable eliminar las cuentas de usuarios que ya no se conectan al sistema, ya que

éstas pueden ser agujeros en la seguridad.

usermod

Sintaxis: usermod [opciones] usuario

La orden usermod nos permite cambiar varios atributos de usuarios, entre los más utilizados

tenemos:

 Desactivar una cuenta de usuario:

$ sudo usermod –L <usuario>

 Reactivar una cuenta de usuario:

$ sudo usermod –U <usuario>

 Cambiar el shell del usuario:

$ sudo usermod –s <dirección_de_nuevo_shell> <usuario>

 Cambiar el directorio HOME del usuario con todos sus contenidos:

$ usermod –m <nueva_ubicacion> <usuario>

 Cambiar el UID del usuario:

$ usermod –u <nuevo_UID> <usuario>

 Cambiar el grupo predeterminado del usuario:

$ usermod –g <nuevo_GID> <usuario>

Comunicación entre administrador y usuarios

En este punto se citarán los modos que existen para la intercomunicación del administrador

con los usuarios. Consideraremos sólo aquellos mecanismos específicos. Básicamente estos

modos de comunicación son la orden wall (write all) y el archivo motd (message of the day).

 wall: Esta utilidad del administrador envía simultánea e inmediatamente un mensaje a

todos los usuarios que estén en ese momento conectados al sistema.

 /etc/motd: Este archivo es impreso en pantalla cada vez que un usuario inicia una

sesión.

Laboratorio de Administración de Sistemas Operativos Práctica 5: Administración de usuarios y grupos

Página | 322

Ejercicios

1. Añada un nuevo usuario de nombre lucas al sistema. Este usuario debe pertenecer al

grupo users, su directorio de arranque debe ser /home/lucas y su programa de inicio

/bin/bash. Compruebe que lucas puede iniciar una sesión correctamente. A continuación

desactive su cuenta y compruebe si puede o no iniciar una sesión.

NOTA: Realice el ejercicio sin hacer uso de los comandos proporcionados por el sistema.

2. Reactive la cuenta de lucas e iniciando una sesión como lucas, modifique su

información personal, nombre, oficina, teléfono, etc.

NOTA: Realice el ejercicio sin hacer uso de los comandos proporcionados por el sistema.

3. Fuerce al usuario lucas a cambiar su contraseña la próxima vez que se conecte haciendo

uso de la orden chage.

4. Cree un nuevo grupo denominado documentación y añada al usuario lucas a ese grupo

con la orden gpasswd. Cree un nuevo usuario leoncio y añádalo también al grupo.

5. Modifique la shell de inicio del usuario lucas, mediante el comando chsh, para que

ahora sea /bin/sh.

6. Cree al usuario pepe con el comando adduser. Desactive su cuenta con el comando

usermod. Reactive su cuenta con el comando usermod y borre al usuario pepe y sus

archivos en el directorio HOME, mediante el comando userdel.

7. Coloque en el archivo /etc/mod un mensaje de aviso en donde se especifique la fecha de

entrega de esta práctica. Pruebe por usted mismo la correcta visualización de dicho

aviso.

Práctica 6: Administración del sistema de archivos Laboratorio de Administración de Sistemas Operativos

Página | 323

Administración de sistemas operativos
Práctica 6: Administración del sistema de archivos

OBJETIVOS

 Manejar las herramientas que nos proporciona el sistema para la administración del

sistema de archivos.

 Aprender a establecer de forma correcta los permisos sobre archivos importantes del

sistema.

 Manejar las herramientas de montaje y desmontaje de un sistema de archivos.

TEMPORIZACIÓN

El plazo de realización de esta práctica será de dos sesiones de laboratorio, cada una de dos

horas para un total de cuatro horas.

BIBLIOGRAFÍA

BÁSICA

UNIX y LINUX. Guía práctica, 3ª edición

Autor: Sebastián Sánchez Prieto y Óscar García Población

Editorial: Ra-Ma

Edición: 2005

Laboratorio de Administración de Sistemas Operativos Práctica 6: Administración del sistema de archivos

Página | 324

PRÁCTICA 6

Administración del sistema de archivos

TABLA DE CONTENIDOS:

Introducción………………………………………………………………………..…………..325

Creación de enlaces con ln……………………………………………..……..…..…………...326

 ln……………………………………………..……..…..……..…..……..…..……..………...326

Uso de archivos: permisos……………………………………………..……..…..……………327

 chmod……………………………………………..……..…..……..…..……..…..………….327

 umask……………………………………………..……..…..……..…..……..…..…………..328

Permisos especiales sobre archivos……………………………………………..……..………328

Creación del sistema de archivos……………………………………………..……..………...330

 mkfs……………………………………………..……..…..……..…..……..…..……............330

Montaje de un sistema de archivos……………………………………………..……..……….331

 mount……………………………………………..……..…..……..…..……..…..……..........332

 umount……………………………………………..……..…..……..…..……..…..…………332

El archivo /etc/fstab……………………………………………..……..…..……..…..…..........333

Ejercicios……………………………………………..……..…..……..…..……..…..…..........335

Práctica 6: Administración del sistema de archivos Laboratorio de Administración de Sistemas Operativos

Página | 325

Introducción

La administración del sistema de archivos es uno de los aspectos más importantes que debe

tener en cuenta el administrador del sistema. Es bien sabido que cuando se instala un disco duro

nuevo, a los dos días ya está medio lleno, obedeciendo a la siguiente máxima: los archivos de

usuario siempre tienden a ocupar el máximo espacio posible. Para evitar esto, el administrador

debe preocuparse de que cada uno de los usuarios mantenga limpio su espacio de disco (labor

ardua, por otro lado). Además de eso, es necesario que el administrador sepa como añadir

nuevos discos, darles formato, montar en ellos un sistema de archivos, etc. Es por ello que en

esta práctica estudiaremos todas estas funciones.

Laboratorio de Administración de Sistemas Operativos Práctica 6: Administración del sistema de archivos

Página | 326

Creación de enlaces con ln

ln

Sintaxis: ln archivo(s) destino

La orden ln (link) se utiliza para permitir que un mismo archivo aparezca en el sistema de

archivos bajo dos nombres diferentes, pero con una única copia. Con ln no se hace no se hace

una copia del archivo origen, solamente se crea otro nombre de archivo que hace referencia al

mismo archivo físico. Eso permite que una única copia de un archivo aparezca en varios

directorios con distintos nombres. De este modo, se puede compartir información de forma

cómoda. Si en un momento eliminamos alguno de los archivos que hacen referencia a la misma

copia física, sólo eliminaremos el nombre, pero no la copia real. Ésta sólo será definitivamente

suprimida si eliminamos todos sus vínculos (links). El número de enlaces de un archivo lo

indica el segundo campo de la información que obtenemos con la orden: ls –l.

Vamos a analizar un ejemplo con objeto de dejar más claro su funcionamiento. Supongamos

que tenemos un archivo, que denominamos pss. Usando la orden ls –i podemos visualizar su

número de inodo. El número de inodo es un valor interno utilizado por el sistema de archivos

que permite localizar toda la información relacionada con el propio archivo (tamaño,

propietario, grupo, derechos de acceso, tipo de archivo, punteros a los bloques de disco, etc.).

$ ls –i pss

147468 pss

Nuestro archivo pss tiene un número de inodo igual a 147468 en el sistema de archivos.

Ahora vamos a crear otro enlace a pss denominado masp. Para ello, utilizaremos la orden:

$ ln pss masp

Vamos a ver de nuevo el número de inodo para el archivo enlazado masp.

$ ls –i masp

147468 masp

Como podemos comprobar, ambos archivos tienen el mismo número de inodo, de manera

que accediendo a pss o a msp estamos accediendo al mismo archivo físico, ya que el sistema de

archivos utiliza el mismo identificador de inodo en ambos casos. Cualquier cambio realizado en

el primero de ellos se manifestará en el segundo, y viceversa.

A este tipo de enlaces se les conoce con el nombre de enlaces fuertes o hard links. El

problema de este tipo de enlaces es que no sirven para archivos que se encuentran en sistemas

de archivos diferentes (por ejemplo, diferentes particiones del disco). Los enlaces duros

tampoco no son aplicables a directorios. Para solventar estos problemas podemos hacer uso de

otros tipos de enlaces, denominados enlaces simbólicos o soft links. Un enlace simbólico tiene

una funcionalidad similar a un enlace duro, pero es posible utilizarlo en archivos que se

encuentren en diferentes sistemas de archivos así como enlazar directorios. Para crear enlaces

simbólicos, se utiliza la orden ln con la opción –s (soft).

Ejemplo:

$ ln –s pss assp

De esta forma, hemos creado un enlace a pss apuntado por assp. Si ahora utilizamos la orden

ls –i comprobaremos que ambos archivos tienen un número de inodo diferente:

Práctica 6: Administración del sistema de archivos Laboratorio de Administración de Sistemas Operativos

Página | 327

$ ls –i pss assp

147469 assp 147468 pss

Utilizando la orden ls –l, podremos comprobar cómo masp es un enlace al primer archivo:

$ ls –l pss assp

lrwxrwxrwx 1 gateway gateway 3 nov 19 17:48 assp -> pss

-rw-r--r-- 2 gateway gateway 4098 nov 19 17:50 pss

La primera l incluida junto con el campo de derechos del archivo assp indica que este

archivo es un enlace simbólico a pss. Los permisos de un enlace simbólico no se utilizan

(aparecen siempre rwxrwxrwx). En estos casos, los derechos del archivo enlace son los mismos

que los del archivo destino (en nuestro ejemplo pss). En este caso, también tanto pss como assp

hacen referencia a la misma información. Debemos tener cuidado con los enlaces simbólicos, ya

que si eliminamos el archivo que actúa como destino del enlace, el archivo que lo enlazaba

seguirá existiendo y apuntará a un archivo no existente. Esto es así por que el sistema, al

contrario de lo que ocurría en los enlaces duros, no mantiene constancia del número de veces

que un archivo se encuentra enlazado simbólicamente en el sistema de archivos.

Uso de archivos: permisos

El sistema Unix proporciona la posibilidad de proteger la información. Para ello, asocia a

cada archivo una serie de derechos de acceso. En función de éstos, se determina qué es lo que

cada usuario puede hacer con el archivo.

chmod

Sintaxis: chmod modo archivo(s)

La orden chmod (change mode) va a permitirnos modificar los permisos de un archivo. Para

poder modificar estos derechos, debemos ser los propietarios del mismo. También el usuario

root tiene la posibilidad de cambiarlos. Si no somos ni el propietario del archivo ni el

administrador, chmod fallará. Para cambiar el modo de un archivo seguiremos estos pasos:

1. Convertir los campos de protección a dígitos binarios, poniendo un uno en el caso de

que queramos activar dicho campo (rwx), o un cero en el caso de querer desactivarlo.

Si, por ejemplo, queremos que los permisos finales del archivo sean rwxr-xr--, la

secuencia de dígitos binarios sería: 111101100.

2. Dividir esos dígitos binarios en tres partes de tres bits cada una: una para el usuario

(propietario), otra para el grupo y una última para el resto de los usuarios (otros), de tres

dígitos cada una.

3. Convertir cada grupo de tres dígitos a numeración octal.

4. Reunir los tres dígitos octal en un único número, el cual será el modo que le pasemos

como argumento a chmod.

5. Si, por ejemplo, queremos dejar un archivo con el modo rwxr-xr--, lo haremos de la

siguiente forma:

Laboratorio de Administración de Sistemas Operativos Práctica 6: Administración del sistema de archivos

Página | 328

Modo Usuario Grupo Otros

rwxr-xr-- rwx r-x r--

Valor binario 111 101 100

Valor octal 7 5 4

Ejemplo:

$ ls –l spcrun

-rw-r--r-- 1 gateway gateway 4098 nov 20 13:05 spcrun

$ chmod 754 spcrun

-rwxr-xr-- 1 gateway gateway 4098 nov 20 13:05 spcrun

umask

Sintaxis: umask [máscara]

Los permisos asignados a un archivo o a un directorio cuando son creados dependen de una

variable denominada user mask. Podemos visualizar dicha variable dando la orden umask sin

argumentos. El resultado son tres dígitos octales que indican, de izquierda a derecha, el valor de

la máscara que determina los permisos iniciales para el propietario, para el grupo y para el resto

de los usuarios. Si deseamos que por defecto nuestros archivos y directorios se creen con

permisos distintos a los de la mascara actual, podremos cambiar el valor de la mascara de

usuario dando la orden umask con el argumentos oportuno.

Permisos especiales sobre archivos

Cada archivo (ya sea ordinario, directorio o personal) contiene en su inodo el UID de su

propietario y el GID de su grupo propietario, el conjunto de permisos de lectura, escritura y

ejecución para el propietario, grupo y otros, además de datos adicionales concernientes al

archivo. Este conjunto de permisos determina cuándo un proceso puede ejecutar una acción

(lectura, escritura o ejecución) en un archivo dado. En archivos ordinarios, estas tres acciones

son obvias. En directorios, la acción de escritura significa poder modificar el directorio

añadiendo o borrando una entrada en el mismo, mientras que la acción de ejecución significa

que pueda ser incluido en un PATH (por ejemplo, para utilizar find, o para acceder a él con la

orden cd). En archivos especiales las acciones de lectura y escritura significan la posibilidad de

poder utilizar las llamadas al sistema read y write.

Este sistema de permisos funciona de la siguiente manera:

 Si el número de identificación de usuario efectivo es 0, entonces se dan los permisos

como propietario (0 es el UID efectivo del administrador del sistema).

 Si el número de identificación de usuario efectivo coincide con el número de

identificación de usuario propietario del archivo marcado en su inodo, entonces se dan

los permisos de propietario establecidos.

 Si el número de identificación de grupo efectivo coincide con el número de

identificación de grupo propietario del archivo marcado en su inodo, entonces se dan los

permisos de grupo.

 Si no se da ninguna de las tres anteriores suposiciones, se darán los permisos

establecidos para otros.

NOTA: Los números de identificación de usuario efectivo y los números de identificación

de grupo efectivo se usan para determinar los permisos, mientras que los números de

identificación de usuario reales y los números de identificación de grupo reales se usan para

saber la identidad y pertenencia a un grupo verdadera de un usuario.

Práctica 6: Administración del sistema de archivos Laboratorio de Administración de Sistemas Operativos

Página | 329

Hasta ahora hemos considerado los derechos de lectura, escritura y ejecución asociados al

propietario del archivo, al grupo al que pertenece el usuario y al resto de las personas. Estos

derechos se representan por nueve bits. Además de estos nueve bits de derechos asociados a

cada archivo, podemos considerar tres más, los bits diez, once y doce, conocidos como bit

pegajoso (sticky-bit), bit de set-gid y bit de set-uid, respectivamente.

El bit set-uid es una idea relativamente simple que nos permite solucionar problemas

relacionados con la protección. El hecho de que un programa tenga este bit activo implica que

cuando ejecutemos dicho programa, éste tomará como identificador de usuario el identificador

del propietario. Si el propietario fuese el administrador, entonces el programa se ejecutaría

como si lo hubiese lanzado el propio administrador. De este modo, podemos explicarnos cómo

un usuario normal puede modificar su palabra de clave cuando ello implica modificar el

contenido de /etc/passwd, que sólo tiene permiso de escritura por parte del administrador del

sistema. La razón de permitir esta modificación es que el programa passwd que pertenece al

administrador tiene el bit de set-uid activo, de modo que cuando ejecutamos ese programa, y

sólo mientras ejecutamos ese programa, actuamos como si fuésemos el administrador. El bit de

set-uid está activo cuando en la máscara de derechos del programa, en el campo de ejecución

para el propietario, tiene actica una s en lugar de una x. Por ejemplo:

$ ls –l /usr/bin/passwd

-rwsr-xr-x 1 root root 26616 2004-05-21 o7:04 /usr/bin/passwd

También nosotros podemos poner el bit de set-uid activo en cualquiera de nuestros

programas. De este modo, cuando otro usuario ejecute estos programas, tendrá los mismos

derechos que el propietario. Este bit no se puede activar en los programas de shell. Veamos un

ejemplo en el que activamos el bit de set-uid a un programa:

$ ls –l sim

-rwx-r-xr-x 1 gateway gateway 29308 ene 18 18:53 sim

Como vemos, el programa sim no tiene activo el bit comentado, para activarlo haremos uso

de la orden chmod, indicando que deseamos activar el bit número doce (bit de set-uid) del

siguiente modo:

$ chmod 4755 sim

$ ls –l sim

-rws-r-xr-x 1 gateway gateway 29308 ene 18 18:53 sim

Ahora, cuando cualquier usuario ejecute el programa sim, a todos los efectos, el programa

actuará como si hubiese sido invocado por el propietario (gateway).

Al igual que existe un bit de set-uid, existe su equivalente aplicado al grupo, y se conoce

como set-gid. La funcionalidad de este bit es completamente similar a la del bit de set-uid, pero

en este caso se aplica al grupo. Para poner activo este bit, haremos también uso de la orden

chmod, indicando que deseamos activar el bit número diez.

Ejemplo:

$ ls –l sisarch

-rwx-r-xr-x 1 gateway gateway 437428 ene 18 18:55 sisarch

$ chmod 2755 sisarch

$ ls –l sisarch

-rwx-r-xr-s 1 gateway gateway 437428 ene 18 18:55 sisarch

Laboratorio de Administración de Sistemas Operativos Práctica 6: Administración del sistema de archivos

Página | 330

Por último, el sticky-bit tiene un uso especial para proteger archivos dentro de un

determinado directorio. Cuando en un determinado directorio tenemos activados los derechos de

escritura para un grupo de usuarios o para todos los usuarios existentes, implica que cualquiera

de ellos podría borrar archivos de ese directorio, incluso aunque no le pertenezcan. Veamos un

ejemplo que aclare el escenario planteado. Supongamos que el usuario ssp tiene un directorio

denominado publico al cual tienen acceso todos los usuarios del sistema.

$ pwd

/home/ssp

$ ls –ld publico/

drwxrwxrwx 2 ssp ssp 4096 sep 21 18:00 publico/

Supongamos que en este directorio tenemos un archivo denominado datos.ssp que pertenece

al usuario ssp. Si otro usuario accede a ese directorio, podrá borrar ese archivo, aunque no sea el

propietario. Supongamos que el usuario pepe intenta borrarlo del modo siguiente:

$ id

uid=1002(pepe) gid=1002(pepe) grupos=1002(pepe)

$ pwd

/home/ssp/publico

$ ls –l datos.ssp

-rw-r--r-- 1 ssp ssp 941 sep 21 18:03 datos.ssp

$ rm datos.ssp

rm: remove write-protected file „datos.ssp‟? y

$ ls –l datos.ssp

ls: datos.ssp: No existe el fichero o el directorio

Como podemos apreciar, aunque pepe no sea el propietario del archivo, puede eliminarlo. Si

queremos evitar esta posibilidad, podremos hacer uso del sticky-bit asociado al directorio.

Activando este bit, los usuarios ya no podrán eliminar ni renombrar los archivos del directorio.

Para ello bastaría que el usuario ssp pusiese el directorio publico con los siguientes atributos:

$ chmod 1777 publio/

Si ahora el usuario pepe intenta eliminar otro archivo, veremos qué ocurre:

$ ls –l datos1.ssp

-rw-r--r-- 1 ssp ssp 150 sep 21 18:07 datos1.ssp

$ rem datos1.ssp

rm: remove write-protected file „datos1.ssp‟? y

rm: cannot unlink „datos1.ssp‟: Operación no permitida

Ahora la operación no puede llevarse a cabo, con lo que tendríamos protegidos los archivos

del directorio especificado.

Creación del sistema de archivos

Los sistemas de archivos nuevos pueden crearse con la orden mkfs. Esta orden se encarga de

dar formato al dispositivo indicado de modo que pueda albergar un sistema de archivos.

mkfs

Sintaxis: mkfs [-vct] dispositivo [tamaño]

Práctica 6: Administración del sistema de archivos Laboratorio de Administración de Sistemas Operativos

Página | 331

mkfs construirá el nuevo sistema de archivos formateándolo. El parámetro dispositivo que

aparece en la descripción de la orden se refiere al archivo de dispositivo empleado para acceder

al periférico, y el tamaño indica el número de bloques que debe tener el sistema de archivos.

Este formato indica estructurar el dispositivo con las partes necesarias para soportar un sistema

de archivos: área de boot, superbloque, inodos y área de datos.

Esta orden admite opciones, algunas de las más comunes son las que se citan a continuación:

 -v: Modo verboso. Con esta opción se muestra por pantalla más información de la que

se muestra habitualmente, relativa a las operaciones que se están realizando en cada

momento. Esto puede ser útil para obtener información específica o para ayudar en las

labores de depuración.

 -c: Indica que se realice una comprobación con objeto de verificar que todos los bloques

son correctos.

 -t: Sirve para indicar el tipo de sistema de archivos que deseamos crear.

Ejemplo:

$ sudo mkfs /dev/fd0

mke2fs 1.35 (28-Feb-2004)

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1025 (log=0)

96 inodes, 720 blocks

36 blocks (5.00%) reserved for the super user

First data block=1

1 block group

8192 blocks per group, 8192 fragments per group

96 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 31 mounts

or 180 days, whichever comes first. Use tune2fs –c or –i to override.

Puesto que la orden mkfs ha sido ejecutada como root, la propiedad y el grupo del nuevo

sistema de archivos creado es la ese usuario, por lo tanto, cuando montemos este sistema de

archivos se aplicarán las reglas de acceso correspondientes al usuario root y a su grupo. Si

queremos ceder la propiedad del sistema de archivos, por ejemplo a un usuario, deberemos

hacer uso de las órdenes chown y chgrp.

Montaje de un sistema de archivos

Es muy común tener conectados a una misma máquina varios discos físicos, cada uno de

ellos, probablemente, con distintas particiones (cada una descrita por su archivo de dispositivo).

En cada una de estas particiones podemos tener un sistema de archivos diferente, y surge la

necesidad de añadir este sistema de archivos al único disco lógico existente. Aunque tengamos

distintos discos físicos, en Unix todos forman parte de un único disco lógico, al contrario que en

otros sistemas en los que cada disco físico supone al menos un disco lógico.

La llamada al sistema mount sirve para conectar un determinado sistema de archivos a un

disco lógico y la llamada umount sirve para el proceso inverso. Sin la existencia de estas

llamadas al sistema, solamente se podría acceder a la información de los discos a través de sus

archivos de dispositivo, que no seria demasiado práctico ni cómodo para el usuario final.

Laboratorio de Administración de Sistemas Operativos Práctica 6: Administración del sistema de archivos

Página | 332

mount

Sintaxis: mount [-tahvrw] [dispositivo] [dir]

La orden mount sin parámetros mostrara los sistemas de archivos montados actualmente.

Con los parámetros adecuados asocia el directorio raíz del sistema de archivos del dispositivo

referenciado en dispositivo con el directorio que se encuentra en el sistema de archivos raíz.

Opciones:

 -t: Sirve para indicar el tipo de sistema de archivos que deseamos montar.

 -a: Monta todos los sistemas de archivos incluidos en /etc/fstab.

 -h: Visualiza un mensaje de ayuda.

 -v: Modo verboso. Con esta opción se muestra por pantalla más información de la que

se muestra habitualmente, relativa a las operaciones que se están realizando en cada

momento. Esto puede ser útil para obtener información específica o para ayudar en las

labores de depuración.

 -r: Monta el sistema de archivos en modo sólo lectura.

 -w: Monta el sistema de archivos en modo lectura-escritura. Éste es el modo por

defecto.

Ejemplo:

$ sudo mount

/dev/sda2 on / type ext2 (rw)

none on /proc type proc (rw)

/dev/sda1 on /dos type msdos (rw)

/dev/fd0 on /mnt/floppy type ext2 (rw)

Como podemos apreciar en el ejemplo, la orden mount sin parámetros muestra todos los

sistemas de archivos montados en ese instante. En concreto, y de izquierda a derecha, señala lo

siguiente: el archivo de dispositivo correspondiente al sistema de archivos montado, el punto de

montaje, el tipo de sistema de archivos y los derechos de acceso.

Lo mismo que montamos el sistema de archivos con la orden mount, podemos provocar su

desligue lógico o desmontaje con la orden umount.

umount

Sintaxis: umount dispositivo

La orden umount disocia el sistema de archivos del dispositivo del sistema de archivos raíz.

Para que se pueda desmontar, primero se debe desactivar, esto es, comprobar que no tiene

ningún archivo abierto y que ningún usuario lo tenga como directorio actual de trabajo. Para

comprobar qué procesos tienen abiertos archivos en un determinado sistema de archivos,

podemos utilizar la orden fuser.

Ejemplo:

$ sudo umount /dev/fd0

Práctica 6: Administración del sistema de archivos Laboratorio de Administración de Sistemas Operativos

Página | 333

El archivo /etc/fstab

Este archivo mantiene información relativa a los sistemas de archivos existentes en el

sistema. El siguiente ejemplo muestra el contenido del archivo /etc/fstab para un sistema

concreto.

$ cat /etc/fstab

LABLE=/ / ext3 defaults 1 1

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

/dev/hda3 swap swap defaults 0 0

/dev/cdrom /mnt/cdrom iso9660 noauto,owner,ro 0 0

/dev/fd0 /mnt/floppy auto noauto,owner 0 0

El delimitador de campo para este archivo es el tabulador o un espacio en blanco. Cada línea

mantiene información sobre un sistema de archivos siguiendo la siguiente estructura.

fs_disp pun_montaje tipo_sis opciones freq sec_fsck

 fs_disp: Indica qué dispositivo contiene el sistema de archivos. Puede ser un dispositivo

físico conectado al ordenador, un dispositivo virtual, la ubicación de un sistema de

archivos en res, etc.

 pun_montaje: Indica en qué parte del sistema de archivos se montará el sistema de

archivos en cuestión. Existen algunos valores especiales, por ejemplo swap indica que

/dev/hda3 no tiene un punto de montaje porque se trata del archivo de intercambio del

sistema.

 tipo_sis: Indica qué tipo de sistema de archivos contiene el dispositivo especificado en

fs_disp. Los valores sistemas de archivos más comunes que aquí pueden ser

encontrados son:

ext2: Es el sistema de archivos utilizado habitualmente.

ext3: Es ext2 con soporte transaccional (journaling).

msdos: Sistema de archivos de MSDOS.

nfs: Sistemas de archivos en red (Network File System).

iso9660: Sistema de archivos de CD-ROM.

ntfs: Sistemas de archivos utilizado por Windows NT/2K/XP/VISTA.

smb: Sistemas de archivos en red SAMBA.

 opciones: Es una lista de opciones separadas por comas. Existen un gran número de

ellas que podemos utilizar para gestionar nuestros sistemas de archivos, entre ellas

podemos destacar las siguientes:

auto/noauto: Indica si el sistema de archivos se montará cuando se invoque la

orden mount –a. Suele ser habitual que durante el proceso de arranque se

invoque a mount de esta forma, con objeto de montar todos los sistemas de

archivos necesarios.

async/noasyn: Indica si las operaciones de lectura y escritura sobre ese

dispositivo deben de realizarse de forma asíncrona o no.

exec/noexec: Permite o no ejecutar archivos binarios situados en el sistema de

archivos en cuestión.

user/nouser: Permite o no que el sistema de archivos sea montado por un

usuario que no sea root. Si se elige user, el sistema aplicará por defecto noexec,

nosuid y nodev, a menos que se especifique lo contrario.

nosuid: Hace que se ignore el significado de los bits SUID y SGID.

ro: Monta el sistema de archivos en modo de sólo lectura.

rw: Monta el sistema de archivos en modo lectura y escritura.

defaults: Es equivalente a las opciones rw, suid, nouser, dev, exec, auto y async.

Laboratorio de Administración de Sistemas Operativos Práctica 6: Administración del sistema de archivos

Página | 334

Habitualmente no se permite que un usuario (aparte de root, evidentemente) pueda montar

sistemas de archivos. Por ejemplo, si el usuario jdp quisiera montar un sistema de archivos tipo

ext2 residente en un disquete, en el directorio /mnt/floppy intentaría la orden:

$ mount /dev/fd0 /mnt/floppy

mount:

El administrador de sistemas puede autorizar a los usuarios a montar determinados sistemas

de archivos haciendo uso de la opción user. Editamos el archivo /etc/fstab.

$ vim /etc/fstab

LABLE=/ / ext3 defaults 1 1

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

/dev/hda3 swap swap defaults 0 0

/dev/cdrom /mnt/cdrom iso9660 noauto,owner,ro 0 0

/dev/fd0 /mnt/floppy auto user 0 0

De esta forma autorizamos a los usuarios a montar un sistema de archivos del tipo ext2 que

se encuentre en la unidad de disco en el directorio /mnt/floppy. Ahora, si el usuario jdp intenta

montar dicho sistema de archivos podrá hacerlo.

$ mount /dev/fd0 /mnt/floppy

$ cd /mnt/floppy

$ ls –l

total 16

-rwxr-xr-x 1 jdp usuarios 13713 nov 8 15:22 miprog

-rw-r--r-- 1 jdp usuarios 38 nov 8 15:22 miprog.c

Práctica 6: Administración del sistema de archivos Laboratorio de Administración de Sistemas Operativos

Página | 335

Ejercicios

1. Copie en su directorio de arranque un archivo cualquiera del directorio /bin y

denomínelo archivo1. A continuación visualice el archivo1 en formato largo. Haga un

enlace del archivo anterior con un archivo denominado nuevo. ¿Cuántos enlaces tienen

los archivos anteriores? ¿Es nuevo un archivo físico? ¿Qué ocurre si borramos el

archivo1?

2. Vaya a su directorio de arranque, cree un subdirectorio denominado .oculto. Copie en

este subdirectorio el archivo /etc/hosts. Copie el archivo /bin/cp en el directorio .oculto

que acaba de crear. Vaya a su directorio de arranque, cree un subdirectorio denominado

copia, mueva todos los archivos del directorio .oculto al directorio copia. Haga un

enlace de los archivos que hay en copia al directorio .oculto. ¿Cuántos enlaces aparecen

ahora por cada archivo? Borre los archivos de copia. ¿Cuántos enlaces aparecen ahora

en los archivos de .oculto? Repita el proceso anterior, pero utilizando enlaces

simbólicos.

3. Cree un subdirectorio en su directorio de arranque denominado tmp. Copie en ese

subdirectorio el archivo /etc/group con el nombre de grupo. Cambie los derechos de

este archivo para que los usuarios de su grupo y el resto de los usuarios puedan

modificarlo.

4. ¿Qué valor deberíamos darle a la máscara de derechos para que todos los archivos se

creasen con los atributos rw-r--r--?

5. Cree un subdirectorio en su directorio de arranque denominado documentos. Modifique

los permisos de ese directorio para que usted pueda escribir y leer en él. Los miembros

de su grupo sólo podrán acceder al directorio y leer sus contenidos, pero no escribir.

6. Modifique los permisos del directorio documentos para que puedan escribir en él los

miembros del grupo. Compruebe que un usuario, diferente al suyo, miembro del grupo

puede crear un directorio dentro de documentos. ¿Con que nombre de usuario y de

grupo se crea ese directorio?

NOTA: En caso de que no exista otro usuario deberá crearlo y deberá añadirlo al grupo al

que usted pertenece.

7. Pruebe activar el sticky-bit del directorio documentos. Si un usuario diferente al suyo y

que pertenezca a otro grupo crea ahora un nuevo directorio ¿con qué nombre de grupo

se crea ese nuevo directorio?

8. Determine qué sistemas de archivos hay montados en su sistema.

9. Pruebe crear un nuevo sistema de archivos en el disquete. Una vez creado, móntelo en

un directorio denominado /fd. Pruebe acceder al sistema de archivos recién montado.

10. Desmonte el sistema de archivos que acaba de montar.

11. Modifique el archivo /etc/fstab para que el anterior sistema de archivos se montado de

forma automática cuando se inicie el sistema.

Página | 336

Práctica 7: Administración de la red Laboratorio de Administración de Sistemas Operativos

Página | 337

Administración de sistemas operativos
Práctica 7: Administración de la red

OBJETIVOS

 Entender los elementos básicos sobre resoluciones de nombres de equipos y

resoluciones de direcciones IP mediante el mecanismo de DNS.

 Manejar básicamente los comandos de configuración de red.

 Demostrar que se sabe configurar las interfaces de red existentes en el sistema.

 Demostrar que se sabe añadir elementos a las tablas de encaminamiento del sistema.

TEMPORIZACIÓN

El plazo de realización de esta práctica será de una sesión de laboratorio, correspondiente a

un periodo de dos horas.

BIBLIOGRAFÍA

BÁSICA

UNIX y LINUX. Guía práctica, 3ª edición

Autor: Sebastián Sánchez Prieto y Óscar García Población

Editorial: Ra-Ma

Edición: 2005

COMPLEMENTARIA

Tutorial y descripción técnica de TCP/IP

Dirección: http://ditec.um.es/laso/docs/tut-tcpip/3376fm.html

El sistema de red

Dirección: http://www.trokotech.com/manuales/unixsec-html/node186.html

Direcciones, enrutamiento y transporte

Dirección: http://structio.sourceforge.net/guias/AA_Linux_colegio/direcciones-enrutamiento-
y-transporte.html

http://ditec.um.es/laso/docs/tut-tcpip/3376fm.html
http://www.trokotech.com/manuales/unixsec-html/node186.html
http://structio.sourceforge.net/guias/AA_Linux_colegio/direcciones-enrutamiento-y-transporte.html
http://structio.sourceforge.net/guias/AA_Linux_colegio/direcciones-enrutamiento-y-transporte.html

Laboratorio de Administración de Sistemas Operativos Práctica 7: Administración de la red

Página | 338

PRÁCTICA 7

Administración de la red

TABLA DE CONTENIDOS:

Introducción……………………………………………………………………………………339

Identificación……………………………………………………………………………..........340

 hostname………………………………………………………………………………...........341

Resolución de nombres y direcciones…………………………………………………………341

 nslookup……………………………………………………………………………………...341

 dig…………………………………………………………………………………………….342

El archivo /etc/resolv.conf………………………………………………………………..........343

Otros comandos de red………………………………………………………………………...343

 ping…………………………………………………………………………………………...343

 ifconfig…………………………………………………….…………………………………344

 route…………………………………………………….………………………….…............345

 traceroute…………………………………………………….……………………………….346

 netstat…………………………………………………….………………………….………..346

Ejercicios…………………………………………………….………………………………...347

Práctica 7: Administración de la red Laboratorio de Administración de Sistemas Operativos

Página | 339

Introducción

Hablar de Linux sin hablar de redes de ordenadores implicaría abordar el estudio de

administración de este sistema operativo sin tocar un punto crucial en él: Las comunicaciones

entre equipos informáticos. En cualquier lugar basado en estaciones de trabajo Linux es normal

tener todas ellas conectadas mediante una red. Esto permite tener un mejor aprovechamiento de

recursos como impresoras, información o potencia de cálculo. Esta red de interconexión puede

extenderse a unos cuantos ordenadores próximos entre sí físicamente, separados a lo sumo unos

cientos de metros, en cuyo caso hablamos de redes de área local o LAN (Local Area Network), o

bien puede extenderse a zonas más amplias, de ámbito nacional o internacional, en cuyo caso

hablamos de redes de área extendida WAN (Wide Area Network).

En esta práctica centraremos nuestros esfuerzos en la correcta configuración de las interfaces

de red existentes en nuestro sistema, para ello haremos uso de una herramienta de emulación de

redes llamada Netkit. Además estudiaremos todo el mecanismo básico de resoluciones de

nombres a IP y viceversa. Y también analizaremos el uso de otros comandos útiles a la hora de

configurar la red en nuestros sistemas Linux.

Laboratorio de Administración de Sistemas Operativos Práctica 7: Administración de la red

Página | 340

Identificación

Es necesario conocer cómo se identifica cada computador dentro de una red. Es por esto que

para el caso de TCP/IP se hace uso de un número binario de 32 bits que diferencia a cada

máquina conectada a la red. Como trabajar con números en formato binario resulta molesto,

normalmente se utiliza una notación conocida como notación punto decimal. En este tipo de

notación tenemos cuatro dígitos decimales, comprendidos entre 0 y 255, separados por puntos.

Dicho número identifica a un único ordenador dentro de la red, y es lo que se conoce

normalmente como dirección IP. Obviamente, dentro de una misma red no pueden existir dos

ordenadores con la misma dirección IP.

A pesar de que la notación decimal es sencilla, es preferible trabajar con nombres lógicos,

tales como dafne, amon, rigel o nabuco. Si empleamos esos nombres lógicos para identificar

cada una de las maquinas de la red, deberá existir algún mecanismo para traducir cada uno de

los nombres a su dirección IP. Aunque existen varios métodos de traducción, el más sencillo,

aunque no el más eficiente en la mayoría de las ocasiones, consiste en definir un archivo que

contenga las tablas de correspondencias. Este archivo en Unix es /etc/hosts, y su contenido

podría ser similar al mostrado seguidamente:

$ cat /etc/hosts

Ejemplo de archivo de hosts

La sintaxis de cada entrada es:

<dirección IP> <nombre oficial> <alias>

127.0.0.1 localhost localhost.localdomain

172.19.16.4 cardhu.unaleon.edu.ni cardhu

193.146.9.131 ra. unaleon.edu.ni ra

Este archivo, como podemos observar, contiene una lista de direcciones IP, un nombre de

ordenador, un alias y posiblemente algún comentario por cada línea.

Cuando Internet era pequeña, la solución anterior era factible. Cada sistema podía tener en su

archivo /etc/hosts el listado de todas las máquinas accesibles. Actualmente, debido a que existen

demasiados ordenadores en Internet, la solución anterior es poco útil.

La solución adoptada para solventar el problema anterior consiste en emplear bases de datos

distribuidas donde se almacenan las correspondencias entre nombres de máquina y dirección IP.

Estas bases de datos son manipuladas y mantenidas por los servidores de nombres. Por razones

de efectividad y flexibilidad, en vez de emplear un único servidor de nombres centralizado se

emplean varios. La razón es que actualmente existen demasiadas instituciones conectadas a

Internet, con lo que es poco práctico avisar a un servidor central cada vez que realizamos un

cambio en nuestra propia red. Así pues, el manejo de nombres se relega a cada institución. Los

servidores de nombres forman una estructura de árbol correspondiente a la estructura de

instituciones. Los propios nombres de las máquinas siguen una estructura similar. Un nombre

típico de ordenador podría ser ftp. En el caso anterior, el ordenador presentado es un servidor de

ftp perteneciente a la Universidad Nacional Autónoma de Nicaragua. En el caso anterior, el

nombre del ordenador es ftp. El segundo campo unanleon identifica a la Universidad Nacional

Autónoma de Nicaragua, el tercer campo identifica que es una institución educacional y el

cuarto y último campo es ni el cual hace referencia a Nicaragua. Del modo anterior, cualquier

ordenador del mundo queda caracterizado. Al mecanismo anterior se le conoce como

organización por dominios. A la terminología que se utiliza para referirnos a un nombre de

dominio se la conoce como FQDN (Fully Qualified Domain Name). Esta terminología suele ser

la más adecuada, ya que nos permite obtener información del domino con sólo saber su nombre.

Práctica 7: Administración de la red Laboratorio de Administración de Sistemas Operativos

Página | 341

Existen órdenes en Unix que nos permiten conocer tanto el nombre del ordenador al que

estamos conectamos como el dominio al cual pertenece. Si estamos trabajando en un sistema

Unix y queremos saber su nombre, tendremos que emplear la orden hostname que se muestra a

continuación.

hostname

Sintaxis: hostname

Ejemplo:

$ hostname

apollo

El hostname es el nombre que identifica a nuestro ordenador en la red. En el ejemplo

anterior, el nombre es apollo.

Para saber el nombre de nuestro dominio, tenemos que emplear la orden hostname junto con

la opción –d

Ejemplo:

$ hostname –d

it.unanleon.edu.ni

En el ejemplo anterior, el dominio asociado a la máquina apollo, a la que estamos

conectados, es it.unanleon.edu.ni.

Resolución de nombres y direcciones

Anteriormente indicamos la necesidad de referirnos a las distintas máquinas por su nombre

lógico y no por su dirección IP. Aunque esta traducción se puede hacer a escala local, lo normal

es emplear los servicios de lo que se conoce como servidores de nombres. Estos servidores,

como ya hemos indicado, son máquinas especializadas en realizar esta labor de traducción.

Normalmente, dichos servidores forman parte de una base de datos distribuida, lo cual permite

que la base de datos sea más fiable que una centralizada y, además, cada máquina no necesita

almacenar toda la información. En caso de que un servidor de nombres no conozca la IP de una

determinada máquina, pude preguntárselo a otro servidor. De este modo se establece una

jerarquía en árbol que permite que todo funcione perfectamente.

Si necesitamos conocer la dirección IP o la dirección lógica de algún ordenador en el mundo,

podemos utilizar el programa nslookup, cuya funcionalidad y sintaxis se muestra a continuación.

nslookup

Sintaxis: nslookup [máquina]

La orden nslookup se emplea para determinar la dirección IP de un ordenador del cual sólo

conocemos su nombre lógico, o bien para conocer su nombre lógico sabiendo su dirección IP.

El programa tiene dos modos de trabajo, el interactivo y el no interactivo. En nuestro caso sólo

estudiaremos el interactivo. Para entrar en modo interactivo, no pasaremos ninguna opción, y se

utilizará como servidor de nombres el que esté configurado por defecto.

Laboratorio de Administración de Sistemas Operativos Práctica 7: Administración de la red

Página | 342

Ejemplo:

$ nslookup

Default Server: dulcinea.unanleon.edu.ni

Address: 130.206.82.7

> 209.124.106.186 (Quiero saber el nombre de la máquina cuya dirección IP es la

indicada)

Server: dulcinea.unanleon.edu.ni

Address: 130.206.82.7

Name: pintur.intur.gob.ni (Respuesta)

Address: 209.124.106.186

> laprensa.com.ni (Quiero saber la dirección IP de la máquina cuyo nombre es el

indicado)

Server: dulcinea.unanleon.edu.ni

Address: 130.206.82.7

Name: laprensa.com.ni (Respuesta)

Address: 208.96.128.164

> exit

dig

Sintaxis: dig @s_dns dominio t_cons c_cons +opt_con –dig_opt

Existe una tendencia a ir eliminando la utilidad nslookup en favor de los programas dig y

host. La orden dig utiliza los siguientes parámetros:

 @s_dns: Es el servidor DNS al que queremos enviar la consulta. Este campo es

opcional. Si lo omitimos, dig utilizara el servidor de nombres del sistema

(/etc/resolv.conf).

 dominio: Es el nombre del dominio en el que estamos interesados.

 t_cons: Es el tipo de información que estamos buscando, por ejemplo:

a: Dirección de red.

any: Toda la información que exista sobre el dominio.

mx: Servidores de correo para el dominio.

ns: Servidores de nombres para el dominio.

soa: Información administrativa sobre el dominio, por ejemplo, quién es el

encargado de su gestión.

hinfo: Información sobre la máquina, por ejemplo qué sistema operativo

ejecuta.

 c_cons: Clase de consulta realizada.

 +opt_con: Opciones de la consulta para enviar al servidor.

 -opt_dig: opciones de la consulta para el programa dig.

La forma más sencilla de utilizar este programa es cuando preguntamos por la dirección de

red de una determinada máquina, por ejemplo vamos a averiguar la dirección de red de

www.unanleon.edu.ni.

Práctica 7: Administración de la red Laboratorio de Administración de Sistemas Operativos

Página | 343

$ dig www.unanleon.edu.ni

; <<>> DiG 9.3.4 <<>> www.unanleon.edu.ni

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31921

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;www.unanleon.edu.ni. IN A

;; ANSWER SECTION:

www.unanleon.edu.ni. 84477 IN A 192.107.104.10

;; Query time: 41 msec

;; SERVER: 130.206.82.7#53(130.206.82.7)

;; WHEN: Wed Jun 4 11:18:29 2008

;; MSG SIZE rcvd: 53

El archivo /etc/resolv.conf

Anteriormente vimos las órdenes nslookup, hostname y dig, las cuales son empleadas para

realizar la conversión entre nombres lógicos de ordenadores y direcciones IP, y viceversa. Esta

orden comprueba si los nombres o las direcciones que deseamos traducir se encuentran en el

archivo /etc/hosts, pero si no e así, no habrá más remedio que preguntar a un servidor externo

que nos informe de la correspondencia entre nombre lógico y dirección IP. A estos servidores se

les denomina servidores de nombres o DNS (Domain Name Server). El modo de indicar cual

debe se el servidor de nombres de nuestra máquina se establece configurando adecuadamente el

archivo /etc/resolv.conf. Este archivo contiene cuál es nuestro nombre de dominio y cuáles son

nuestros servidores de nombres. Se puede especificar un servidor de nombres principal y otros

secundarios. A continuación se muestra un ejemplo del contenido de este archivo:

$ cat /etc/resolv.conf

domain unanleon.edu.ni

nameserver 130.206.82.7

nameserver 130.206.1.2

La palabra reservada domain se emplea para especificar el nombre de nuestro dominio. La

palabra reservada nameserver se emplea para especificar cuál es la dirección IP de nuestro

servidor de nombres o DNS. Se pueden especificar hasta tres servidores de nombres y éstos

serán consultados en el orden en que aparecen en el archivo /etc/resolv.conf.

Otros comandos de red

ping

Sintaxis: ping ordenador

La orden ping puede utilizarse para determinar si un ordenador está vivo en ese momento. Si

el ordenador está vivo, contestará a ping por cada mensaje que reciba. ping sacará estadísticas

de tiempo de respuesta de cada uno de los paquetes enviados al destino. Para finalizar el envió

de paquetes, pulsaremos Ctrl+c.

Laboratorio de Administración de Sistemas Operativos Práctica 7: Administración de la red

Página | 344

Ejemplo:

$ ping www.google.com.ni

ifconfig

Sintaxis: ifconfig interfaz [-net|-host] IPaddr [opciones]

La orden ifconfig se utiliza para iniciar las interfaces de red o para mostrar información sobre

las mismas. Si se invoca sin argumentos nos mostrará el estado de todas las interfaces de red

que el núcleo conoce. Las opciones –net y –host se emplean para que la dirección IPaddr sea

tratada como una dirección de red o como la dirección IP del propio ordenador,

respectivamente. El argumento interfaz se utiliza para identificar la interfaz de red que

deseamos configurar o simplemente de la que deseamos obtener información.

Las opciones más comunes que suelen emplearse son:

 up: Con esta opción se activa la interfaz indicada.

 down: Sirve para desactivar la interfaz indicada.

 netmask <mask>: Se utiliza para definir la máscara de red.

 broadcast <addr>: Se utiliza para definir la dirección de difusión. Esta dirección será

empleada cuando queramos que todos los ordenadores de nuestra red reciban el mismo

mensaje simultáneamente.

Para configurar una determinada interfaz de red, por ejemplo una tarjeta Ethernet, es

necesario que el núcleo reconozca dicha interfaz. Si no es así, nunca podremos poner en marcha

los servicios de red.

Suponiendo que nuestra interfaz de red se denomina eth0, con la siguiente orden la

configuraremos para que nuestra dirección IP sea 172.29.16.5, nuestra máscara de red

255.255.255.0 y la dirección de boradcast 172.29.16.255.

$ sudo ifconfig eth0 172.29.16.5 netmask 255.255.255.0 broadcast 172.29.16.255 up

Si ahora utilizamos ifconfig sin argumentos, nos mostrará la siguiente información.

$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:E0:B8:EB:08:32

 inet dirección:172.29.16.5 Bcast:172.29.16.255 Máscara:255.255.255.0

 dirección inet6: fe80::2e0:b8ff:feeb:832/64 Alcance:Vínculo

 ARRIBA BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:354435 errors:0 dropped:0 overruns:0 frame:0

 TX packets:111918 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:161996285 (154.4 MiB) TX bytes:9213833 (8.7 MiB)

 Interrupción:20

lo Link encap:Bucle local

 inet dirección:127.0.0.1 Máscara:255.0.0.0

 dirección inet6: ::1/128 Alcance:Anfitrión

 ARRIBA LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:133 errors:0 dropped:0 overruns:0 frame:0

 TX packets:133 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:12909 (12.6 KiB) TX bytes:12909 (12.6 KiB)

Práctica 7: Administración de la red Laboratorio de Administración de Sistemas Operativos

Página | 345

La interfaz lo es empleada para realizar pruebas en bucle local. Como podemos observar

tiene asignada como dirección IP la 127.0.0.1.

route

Sintaxis: route [add|del] [default] [-net|-host]

 add [gw gateway] [metric n]

Esta orden se emplea para definir cómo deben encaminarse aquellos paquetes que no van

dirigidos a ningún ordenador incluido en nuestra propia red. De este modo, el núcleo puede

establecer estrategias como la siguiente: “para enviar un paquete a la red externa X, utilice como

pasarela la dirección del sistema Y”. Se pueden establecer diferentes modos de encaminamiento

dependiendo de las redes destino a las que se envían los paquetes y también asignar un coste a

cada una de las rutas. Siempre es necesario definir una ruta por la que se deben enviar aquellos

mensajes que no coinciden con ninguna de las tablas de encaminamiento definidas en el núcleo,

esta ruta es la que se conoce como ruta por defecto. En la mayoría de los casos no es necesario

establecer una tabla de encaminamiento completa, basta con definir el encaminador (router) por

defecto o la ruta por defecto. Lo anterior seria equivalente a decirle al núcleo: “cualquier

mensaje que vaya fuera de nuestra red debe enviarse a la dirección Z”. Z sería la dirección de

nuestro router por defecto.

Si a route no se le especifica ninguna opción, únicamente visualizará la tabla de

encaminamiento actual. Las opciones add y del se emplean para agregar o borrar las rutas

especificadas, respectivamente. Seguidamente se resume la funcionalidad del resto de opciones:

 default: Esta opción sólo la emplearemos para definir (add) el encaminador por defecto.

 -net: Sirve para tratar la dirección indicada como una dirección de red.

 -host: Sirve para tratar la dirección indicada como una dirección IP de un ordenador.

 addr: Es la dirección destino de la nueva ruta. Puede ser una dirección IP o una red.

 gw gateway: Con ello indicamos el encaminador que debe emplearse para el destino

especificado.

 metric n: Indica el coste asociado a la ruta especificada. Estos costes podemos

utilizarlos para determinar cuáles son los caminos óptimos para enviar los mensajes.

En el siguiente ejemplo definimos cual es el encaminador por defecto en nuestro sistema:

$ sudo add route default gw 172.29.16.1

Si a continuación invocamos a route sin argumentos, nos informará sobre las tablas de

encaminamiento actuales:

$ route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

172.29.16.0 * 255.255.25.0 U 0 0 1 eth0

127.0.0.0 * 255.0.0.0 U 0 0 1 lo

default 172.29.16.1 0.0.0.0 UG 0 0 0 eth0

Un modo de saber la trayectoria que sigue un determinado paquete hasta llegar a su destino,

así como los tiempos empleados cada vez que pasa de un sistema a otro, consiste en emplear el

programa traceroute que describimos a continuación.

Laboratorio de Administración de Sistemas Operativos Práctica 7: Administración de la red

Página | 346

traceroute

Sintaxis: traceoure destino

Esta orden admite multitud de opciones que deben consultarse en el manual (man traceroute)

para poder obtener el máximo partido. El único parámetro obligatorio es destino, que identifica

al ordenador con el que vamos a comunicarnos.

Ejemplo:

$ traceroute 193.145.14.30

traceroute to 193.145.14.30 (193.145.14.30), 30 hops max, 40 byte packets

2 193.146.56.129 (193.146.56.129) 2190.296 ms 2540.476 ms

3 rtcm-cr1-uah.redimadrid.madrimasd.org (193.145.14.30) 2380.086 ms 2220.268 ms

2860.607 ms

En el ejemplo anterior se ven implicados 2 gateways, el número 3 es el ordenador destino.

Aparecen también los tiempos empleados para transferir paquetes entre los diferentes

encaminadores. Esta información puede utilizarse para ver dónde se encuentran los cuellos de

botella en la trasmisión y evitarlos si es posible.

netstat

Sintaxis: netstat [-acirvn]

La orden netstat se emplea para comprobar cuál es el estado global de la red TCP/IP. Si se

invoca sin argumentos, mostrará las conexiones de red activas en el sistema. La orden soporta

muchas opciones, algunas de las cuales se resumen a continuación:

 -a: Muestra información sobre todas las conexiones.

 -c: Muestra de forma continuada el estado de la red actualizándose a intervalos de un

segundo. Esto se repetirá hasta que la orden sea interrumpida (Ctrl+c).

 -i: Muestra estadísticas de los dispositivos de red.

 -r: Muestra la tabla de encaminamiento del núcleo.

 -n: Hace que netstat imprima las direcciones IP en notación punto decimal en vez de

usar los nombres simbólicos de las máquinas o las redes.

 -v: Nos informa sobre la versión de netstat.

Práctica 7: Administración de la red Laboratorio de Administración de Sistemas Operativos

Página | 347

Ejercicios

1. Averigüe el nombre de su máquina y el dominio al que pertenece, en caso de no

pertenecer a ninguno, modifique el o los archivos necesarios para que pertenezca al

dominio unanleon.edu.ni.

2. Determine la dirección IP que le corresponde al ordenador www.bcn.gob.ni. Determine

también la dirección lógica (FQDN) que le corresponde a la siguiente dirección IP:

200.85.166.34.

3. Comprueba cual es la configuración de red de su sistema.

4. ¿Cómo puede dar de baja a su interfaz de red?, ¿Qué ocurre si da de baja a su interfaz

de red?

5. Visualice la tabla de encaminamiento empleada por el núcleo del sistema.

6. Cambie el servidor de nombres de su sistema y ejecute la orden nslookup. Configure

adecuadamente la resolución de nombres para que opere lo más rápido posible.

7. Debido a la falta de equipos y a la escases de recursos que existen en los laboratorios,

para el desarrollo de este inciso vamos a hacer uso de una herramienta de emulación de

redes llamada Netkit (instalada en todas las máquinas del laboratorio).

Netkit es un sistema para emular redes de ordenadores. Es importante especificar que

utilizando Netkit podremos emular redes y no simularlas:

 Simulación de sistemas: Reproducir el rendimiento de un sistema real (latencia, pérdida

de paquetes, etc.).

 Emulación de redes: Reproducir las funcionalidades de un sistema real (configuración,

arquitectura, protocolos, etc.) teniendo en cuenta las limitaciones en cuanto al

rendimiento.

Netkit es un conjunto de comandos que permiten configurar y conectar fácilmente máquinas

virtuales y un sistema de ficheros que contiene las herramientas necesarias para llevar a cabo la

configuración en las máquinas virtuales.

Algunos comandos útiles de Netkit:

 vlist: Muestra información acerca de las máquinas virtuales que están actualmente en

ejecución.

 vstart <nombre_máquina>: Inicia una nueva máquina virtual.

 vcrash <nombre_máquina>: Finaliza la ejecución de una máquina virtual que le

pasemos como parámetro.

 netgui.sh: Arranca el entorno gráfico de emulación de Netkit.

Netkitgui es una interfaz gráfica que nos permite introducir los comandos de arranque y

configuración necesarios para Netkit de una forma sencilla.

Arrancamos netkitgui (mediante el comando netgui.sh) y se nos muestran las herramientas de

edición de red. Estas herramientas nos permiten crear los siguientes elementos:

 Terminales.

 Routers.

 Hubs.

Laboratorio de Administración de Sistemas Operativos Práctica 7: Administración de la red

Página | 348

 Conexión entre cualquiera de los elementos anteriores.

Una vez dibujados los elementos que queremos emular, arrancaremos la configuración que

nos abrirá las correspondientes consolas de configuración de los elementos que hayamos

dibujado inicialmente.

Una vez que hemos entendido la forma de funcionamiento básico de Netkit estamos listos

para realizar el ejercicio. Este ejercicio se basa en configurar todas las interfaces en cada uno de

los equipos dibujados en la figura siguiente:

Para ello debemos dibujar los elementos tal cual aparecen en la figura (tres terminales, tres

hubs y dos routers) junto con sus respectivos nombres. Una vez que hemos dibujado todos los

elementos estamos listos para configurarlos adecuadamente y que todos sean alcanzables desde

cualquier punto de la red. Para arrancar la configuración dibujada debemos seleccionar el botón

. Una vez que se hayan terminado de cargar todos los sistemas debemos utilizar los

comandos aprendidos en las secciones anteriores para:

 Que todos los PC‟s puedan ser alcanzados desde cualquier lugar de la red. Para ello

debemos configurar primeramente las interfaces eth0 en cada uno de los PC‟s, luego

debemos configurar las tablas de encaminamiento en cada uno de los routers para que

estos puedan hacer llegar los paquetes a cualquiera de las subredes de la figura.

Para comprobar el correcto funcionamiento debemos hacer ping desde cada una de las

máquinas hacia cualquier otra ubicada en cualquier punto de la red. Y por último debemos hacer

un traceroute desde la PC1 hasta la PC3.

Práctica 8: Copias de seguridad Laboratorio de Administración de Sistemas Operativos

Página | 349

Administración de sistemas operativos
Práctica 8: Copias de seguridad

OBJETIVOS

 Aprender las distintas técnicas para respaldar y recuperar archivos.

 Aprender a utilizar los comandos básicos para realizar copias de seguridad del sistema.

TEMPORIZACIÓN

El plazo de realización de esta práctica será de una sesión de laboratorio, correspondiente a

dos horas.

BIBLIOGRAFÍA

BÁSICA

UNIX y LINUX. Guía práctica, 3ª edición

Autor: Sebastián Sánchez Prieto y Óscar García Población

Editorial: Ra-Ma

Edición: 2005

COMPLEMENTARIA

Capítulo 12. Copias de seguridad (Backups).

Dirección: http://www.ibiblio.org/pub/Linux/docs/linux-doc-project/system-admin-
guide/translations/es/html/ch12.html

http://www.ibiblio.org/pub/Linux/docs/linux-doc-project/system-admin-guide/translations/es/html/ch12.html
http://www.ibiblio.org/pub/Linux/docs/linux-doc-project/system-admin-guide/translations/es/html/ch12.html

Laboratorio de Administración de Sistemas Operativos Práctica 8: Copias de seguridad

Página | 350

PRÁCTICA 8

Copias de seguridad

TABLA DE CONTENIDOS:

Introducción……………………………………………………………………………………351

find……………………………………………………………………………………………..352

Órdenes para realizar copias de seguridad…………………………………………………….354

 cpio…………………………………………………………………………………………...354

 tar………………………………………….………………………………………………….355

Ejercicios…………………………………….………………………………………………...357

Práctica 8: Copias de seguridad Laboratorio de Administración de Sistemas Operativos

Página | 351

Introducción

Una de las principales responsabilidades del administrador del sistema es preservar los datos

almacenados en el sistema, planificando y realizando copias de seguridad de forma regular. La

cantidad de información que debemos copiar y cada cuánto tiempo debemos hacerlo, dependerá

de la utilización que se haga del sistema. Para ver la cantidad de información que debemos

copiar frecuentemente, nos fijaremos en aquellas áreas que son modificadas continuamente. Los

volcados totales del sistema se harán con mucha menos frecuencia. Sin una buena política de

copias de seguridad se pueden llegar a perder datos valiosos. Un sistema es tanto más seguro

cuanto más frecuentemente se hagan las copias de seguridad. En esta práctica estudiaremos las

órdenes más empleadas para realizar copias de seguridad.

Laboratorio de Administración de Sistemas Operativos Práctica 8: Copias de seguridad

Página | 352

Antes de empezar a ver las órdenes que nos ayudarán a realizar las copias de seguridad es

necesario que entendamos el funcionamiento de una orden complementaria que nos va a

permitir obtener las ubicaciones de los archivos sobre los cuales queremos realizar las copias de

seguridad, la orden find.

find

Sintaxis: find camino expresión

La orden find es una de las más potentes de Unix, pero también una de las que tienen una

sintaxis más compleja. Esta orden se utiliza para examinar toda la estructura de directorios, o

bien la parte que le indiquemos, buscando los archivos que cumplan los criterios señalados en la

línea de órdenes. Una vez localizados, podemos hacer que ejecute distintas acciones sobre ellos.

El campo expresión sirve para indicar los criterios de selección de los archivos y la acción que

queremos aplicarles al encontrarlos.

Veamos con un ejemplo como podemos buscar un determinado archivo dentro de la

estructura de directorios.

Ejemplo:

$ sudo find / -name ifconfig

/sbin/ifconfig

La opción –name indica a find que únicamente se busquen los archivos cuyo nombre se

especifica a continuación, y la opción –print indica a find que visualice el nombre del archivo

por pantalla una vez hallado (en muchos sistemas el modificador –print se toma como valor por

defecto).

Existen muchas más opciones para la orden find, entre estas tenemos:

 -user: Con esta opción, find seleccionará los archivos que pertenezcan al

usuario que se indique a continuación de –user.

 -group: find seleccionará los archivos pertenecientes al grupo indicado a

continuación.

 -mtime <n>: find seleccionará los archivos modificados hace <n> días.

 -mtime -<n>: find seleccionará los archivos modificados en los últimos <n>

días.

 -mtime +<n>: find seleccionará los archivos modificados hace más de <n>

días.

 -size –<m>: find seleccionará los archivos cuyo tamaño es menor que <m>

bloques.

 -size +<m>: find seleccionará los archivos cuyo tamaño es mayor que <m>

bloques.

 -type <x>: find seleccionará los archivos del tipo <x>, donde <x> puede ser:

b: Archivo especial de modo bloque.

c: Archivo especial de modo carácter.

d: Directorio.

p: Tubería con nombre (FIFO).

f: Archivo regular.

l: Enlace simbólico.

s: Conector de comunicaciones (socket).

Práctica 8: Copias de seguridad Laboratorio de Administración de Sistemas Operativos

Página | 353

Todos los operadores anteriores pueden ser negados con el carácter ! seguido de un espacio

en blanco. En este caso, find buscará todos los archivos que no cumplan la especificación

indicada.

Se pueden especificar simultáneamente varias opciones, en cuyo caso se seleccionarán los

archivos que cumplan todas ellas (operación and). Si dichas opciones las conectamos con el

operador –o (operación or), find seleccionará los archivos que cumplan cualquiera de ellas.

Como por ejemplo imaginemos que queremos visualizar todos los archivos que cuelguen de

nuestro directorio HOME cuyo tamaño sea mayo de 1500 bloques y que hayan sido modificados

en los últimos cinco días.

$ find $HOME –size +1500 –mtime -5 –print

/home/gateway/.galeon/mozilla/galeón/Cache/24C15940d01

/home/gateway/.galeon/history.xml

/home/gateway/Libro/Libro.ps

/home/gateway/Libro/Libro.dvi

También podemos indicar a find que ejecute una orden determinada y la aplique a los

archivos que encuentre. Para construir la orden que queremos ejecutar con cada archivo que

encuentre find contamos con la expresión {} que se sustituye por el nombre del archivo

encontrado. Debemos además concluir la orden con el carácter “;”. Hay que tener en cuenta que

muchos intérpretes de órdenes (bash por ejemplo) consideran a “;” como un carácter especial,

por lo tanto será necesario colocar una secuencia de escape para evitar dicha interpretación, es

decir \;

Vamos a poner seguidamente unos ejemplos de usos típicos de find. En el primero

encontraremos todos los archivos que cuelguen de /usr/bin que sean enlaces simbólicos a otros

archivos, haciendo que la información presentada en pantalla sea de la forma:

Archivo: [nombre_archivo] es enlace simbólico

Para construir ese literal podemos emplear la orden echo de la siguiente forma:

echo Archivo: {} es enlace simbólico \;

Así, la orden find completa sería:

$ sudo find /usr/bin –type l –exec echo Archivo: {} es enlace simbólico \;

Archivo: /usr/bin/X11 es un enlace simbólico

Archivo: /usr/bin/sg es un enlace simbólico

Archivo: /usr/bin/captoinfo es un enlace simbólico

Archivo: /usr/bin/infotocap es un enlace simbólico

Archivo: /usr/bin/reset es un enlace simbólico

Archivo: /usr/bin/awk es un enlace simbólico

…

En un segundo ejemplo borraremos de nuestro directorio raíz todos los archivos que hayan

sido modificados en los últimos dos días y cuyo nombre termine en .tmp. Para ello deberíamos

emplear una orden como la siguiente:

$ sudo find / –mtime -2 –type f –name *.tmp –exec rm –i {} \;

Laboratorio de Administración de Sistemas Operativos Práctica 8: Copias de seguridad

Página | 354

Órdenes para realizar copias de seguridad

cpio

Sintaxis: cpio –o [cvx]

 cpio –i [dcruvmfx] [modelos]

 cpio –p [dvmrx] directorio

Descripción:

 cpio –o: Lee la entrada estándar para obtener una lista de archivos y los copia en la

salida, junto al estado de dichos archivos. Se utilizará para la realización de copias de

seguridad.

 cpio –i: Extrae archivos de la entrada estándar si coinciden con los modelos que pueden

aparecer como argumentos. Por defecto, estos modelos corresponderán al “*”, el cual

referencia a todos los archivos. Los archivos extraídos serán condicionalmente creados

y copiados en el directorio actual según las opciones que lleve la orden. Se utilizará para

la recuperación de la información volcada en el dispositivo.

 cpio –p: Lee la entrada estándar para obtener una lista de archivos que son creados y

copiados, según las opciones que lleve la orden, en el directorio que aparece como

argumento obligatorio.

Opciones:

 -c: Escribe o lee cabeceras de información en caracteres ASCII.

 -d: Crea directorios si es necesario.

 -f: Sólo copia los archivos que no se adaptan al patrón especificado.

 -m: Mantiene la fecha de modificación de los archivos cuando se crean archivos.

 -r: Renombra los archivos interactivamente.

 -u: Copia incondicionalmente, aunque el archivo ya exista.

 -v: Imprime una lista de los nombres de los archivos.

Ejemplos:

$ find $HOME –type f –name *.c | cpio –o > BackupArchivosC.cpio

25 blocks

$ file BackupArchivosC.cpio

BackupArchivosC.cpio: cpio archive

Con la orden anterior volcaremos hacia el archivo BackupArchivosC.cpio los archivos fuente

en lenguaje C que existen en el directorio actual. Al preguntar a continuación por el tipo de

archivo, con la orden file, podemos apreciar que el archivo es de tipo cpio.

$ cpio –i < BackupArchivosC.cpio

25 blocks

En el ejemplo anterior restauraremos los archivos originales almacenados en el archivo

BackupArchivosC.cpio.

$ sudo find /etc | cpio –pdm /seguridad

3150 blocks

Con la orden anterior copiaremos todos los archivos situados en el directorio /etc y los de sus

posibles subdirectorios en el directorio /seguridad.

Práctica 8: Copias de seguridad Laboratorio de Administración de Sistemas Operativos

Página | 355

tar

Sintaxis: tar [opciones] [archivo(s)]

La orden tar (tape archive) se utilizó en sus comienzos para guardar o recuperar archivos en

una cinta magnética. tar puede ser utilizado para almacenar o recuperar información de

cualquier archivo o dispositivo genérico como disquetes, disco regrabables o archivos

ordinarios.

Si alguno de los archivos que deseamos realizar copia es un directorio, tar recorrerá todo el

directorio y posibles subdirectorios para recoger toda la información contenida en los mismos.

Las opciones no necesitan ser precedidas del guión (salvo algunas que son especiales). Las

acciones tar están controladas por medio de una clave, la cual es una cadena de caracteres

formada por una letra, llamada de función, seguida de una o más letras llamadas modificadores

de función. Las letras de función pueden ser las siguientes:

 c: Crea un nuevo archivo escribiendo desde el principio del archivo, destruyendo lo que

había.

 r: Añade archivo al final de archivo.

 t: Lista los nombres de todos los archivos del archivo.

 u: Sólo añade los archivos que son más nuevos que los contenidos en la copia realizada

con tar.

 x: Se utiliza para extraer del archivo tar los archivos indicados.

Los modificadores de función son los siguientes:

 f <arch>: Los archivos serán almacenados o extraídos del archivo <arch>. <arch>

normalmente es un archivo de dispositivo correspondiente a una cinta o un disco

flexible, aunque puede ser cualquier archivo. Si <arch> es el carácter -, se utilizará

como archivo de dispositivo la entrada estándar o la salida estándar.

 l: Mostrará mensajes acerca de los enlaces simbólicos que no se encuentren.

 m: Provoca que no se actualice la fecha de modificación (en caso de extracción) escrita

en el archivo.

 p: Hace que archivo obtenga los modos originales, así como el propietario y grupos

escritos en el archivo.

 v: Normalmente, tar trabaja silenciosamente sin mostrar mensajes. En modo verboso

tar escribe el nombre de cada archivo procesado con la letra de función que rige la

acción.

 w: Fuerza a tar a pedir la confirmación de la acción a realizar con cada archivo.

 L: Sigue los enlaces simbólicos.

 Z: La información es comprimida o descomprimida con el programa compress.

 z: La información es comprimida o descomprimida con el programa gzip.

Ejemplos:

$ tar cvfz /dev/fd0 *

latex8.bst

latex8.dvi

latex8.log

latex8.sty

latex8.tex

En el ejemplo anterior hemos llevado al disquete todos los archivos del directorio actual

comprimidos con gzip. Hay que tener cuidado con la orden anterior, ya que toda la posible

Laboratorio de Administración de Sistemas Operativos Práctica 8: Copias de seguridad

Página | 356

información contenida originalmente en el disquete se perderá. Además, la única forma de

volver a leer la información sería utilizando tar, el posible formato original del disquete se

perderá también.

Ahora veamos cómo podemos determinar la información contenida en el disquete:

$ tar tvzf /dev/fd0

-rw-rw-r-- gateway/users 19466 2007-06-20 13:09:33 latex8.bst

-rw-rw-r-- gateway/users 10836 2007-06-20 13:09:33 latex8.dvi

-rw-rw-r-- gateway/users 8954 2007-06-20 13:09:33 latex8.log

-rw-rw-r-- gateway/users 4653 2007-06-20 13:09:33 latex8.sty

-rw-rw-r-- gateway/users 9466 2007-06-20 13:09:33 latex8.tex

Para recuperar la información almacenada en el disquete tendríamos que utilizar la orden:

$ tar xvzf /dev/fd0

latex8.bst

latex8.dvi

latex8.log

latex8.sty

latex8.tex

La orden tar puede emplearse también (y suele utilizarse mucho) para enviar la información

a un archivo ordinario al que por costumbre se le suele poner la extensión .tar.

Ejemplo:

$ tar cvf euromicro.tar *

latex8.bst

latex8.dvi

latex8.log

latex8.sty

latex8.tex

$ ls –l *.tar

-rw-r--r-- 1 gateway gateway 122880 jun 19 18:35 euromicro.tar

Práctica 8: Copias de seguridad Laboratorio de Administración de Sistemas Operativos

Página | 357

Ejercicios

1. ¿Qué orden utilizaría para realizar una copia de seguridad completa del sistema

utilizando el comando tar?

2. Usando el comando tar, ¿Cómo se muestra en pantalla el contenido de la copia de

seguridad generada en el ejercicio anterior?

3. Usando el comando tar, ¿Qué orden utilizaría para recuperar todos los ficheros

existentes dentro de la copia de seguridad realizada en el ejercicio 1?, ¿Desde que

ubicación dentro del sistema de archivos ejecutaría dicha orden?

4. Usando el comando tar para realizar la copia de seguridad. Indique cuál seria la orden

necesaria para realizar una copia de seguridad de todos los archivos modificados las

últimas veinticuatro horas.

5. ¿Se puede utilizar el comando tar para copiar una estructura de directorios, preservando

los permisos, dueños, grupos, fechas y enlaces?, ¿Con que comando?

6. ¿Qué orden utilizaría para realizar una copia de seguridad completa del sistema

utilizando el comando cpio?

7. Usando el comando cpio, ¿Cómo se muestra en pantalla el contenido de la copia de

seguridad generada en el ejercicio anterior?

8. Usando el comando cpio, ¿Qué orden utilizaría para recuperar todos los ficheros

existentes dentro de la copia de seguridad realizada en el ejercicio 6?, ¿Desde que

ubicación dentro del sistema de archivos ejecutaría dicha orden?

9. Usando el comando cpio para realizar la copia de seguridad. Indique cuál seria la orden

necesaria para realizar una copia de seguridad de todos los archivos modificados

durante la semana pasada.

10. Investigue ¿Cómo se podría realizar una copia de seguridad completa de nuestro

directorio raíz utilizando el comando dd?. Indique cuál seria el comando necesario para

comprimir dicha copia de seguridad haciendo uso de una única sentencia. ¿Cuál es la

desventaja de realizar copias de seguridad haciendo uso del comando dd?

11. Investigue, ¿Cuál seria el comando que tendríamos que utilizar para realizar una copia

de seguridad de nuestro MBR?, ¿Cómo restauraríamos dicha copia de seguridad de

nuestro MBR?

12. Investigue, ¿Cuál seria el comando que tendríamos que teclear para realizar una copia

de seguridad de nuestras particiones?, ¿Cómo restauraríamos dicha copia de seguridad

de nuestra particiones?

Página | 358

Bibliografía Administración de Sistemas Operativos

Página | 359

XI. BIBLIOGRAFÍA

Bibliografía Básica:

 Matthias Kalle Dalheimer y Matt Welsh, “Guía de referencia y aprendizaje LINUX

Segunda edición actualizada y ampliada “, Editorial Anaya Multimedia, 2006.

 Dee-Ann LeBlanc, “Administración de sistemas LINUX La biblia”. Editorial ANAYA

MULTIMEDIA, 2001.

 Jack Tackett Jr. y David Gunter, “Linux Tercera Edición, Edición Especial”, Editorial

Prentice Hall, 1998.

 M Carling, Stephen Degler, James Dennis, “Administración de Sistemas Linux Guía

Avanzada”. Editorial Prentice Hall, 2000.

 Sebastián Sánchez Prieto, “Sistemas operativos, textos universitarios, segunda edición”,

Editorial universidad de Alcalá.

 Sebastián Sánchez Prieto, Óscar García Población, “UNIX y LINUX Guía Práctica

Tercera edición”. Editorial Ra-Ma, 2005.

Referencias de Internet:

Las referencias a Internet se encuentran al inicio de cada uno de loas capítulos del temario y

al inicio de cada una de las prácticas de laboratorio.

