TEXT Get Good at Python: Python Scripting ... b4

1. Python Scripting Basics

+1.1. Variables, Slicing, and Type Casting Python Scripting Basics

+1.2. Lists and Dictionaries In this Module, we will cover the following Learning Units:

; . Variables, Slicing, and Type Casting
+1.3. Loops, Logic, and User Input

. Lists and Dictionaries
+ 1.4, Files and Functions . Loops, Logic, and User Input
Files and Functions
+ 1.5. Modules and Web Requests :
. Modules and Web Requests
+ 1.6. Python Network Sockets . Python Network Sockets

17 Putting Al Together . Putting It All Together to Create a Web Spider

Each learner moves at their own pace, but this Module should take approximately 15.5 hours
to complete.

Scripting' is an efficient way to perform or automate repetitive tasks. We can also use it to
complete tasks on a large scale. For example, in an enterprise network, we might need to
complete the same tasks on hundreds of hosts. Doing this manually would be a frustratingly
tedious waste of time, but with scripting, we can accomplish this quickly and easily.

The basic blocks of scripts are conditional statements® and loops.® Generally speaking, we'l
use these two items to create a script that processes input until something has been found or
until there is no input left.

Scripts are text files processed by an interpreter. If there is an issue in a script, it can be
easily fixed by modifying the file. Python® is a platform-independent language because the
interpreter can be installed on both *nix-type and Windows operating systems.

Resource Center

Because we can directly edit script files, we don't need a development environment to
compile the source code and create a machine code binary file. Practically speaking, this
means that scripts are relatively easy to create and excellent for automating repetitive tasks
such as bulk adding users to the system, backing up important files, creating remote
backups, or tracking possible malicious activities within log files.

In this Module, we'll review the basics of scripting using the Python language.

1 (Wikipedia, 2023), https://en.wikipedia.org/wiki/Scripting_language <
2 (wikipedia, 2023), https://en.wikipedia.org/wiki/Conditional_(computer_programming) <
3 (TLDP, 2023), https://tidp.org/LDP/abs/html/loopsl.html «

4 (Python, 2023), https://www.python.org/doc/essays/blurb/ <

(c) 2023 OffSec Services Limited. All Rights Reserved.

< <

: Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit
My Kali VPN Variables, Slicing, and Type Casting

Variables, Slicing, and Type Casting >

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables

1.1.4. Data Types

1.1.5. Strings and Slicing

1.1.6. Integers

1.1.7. Floats

1.1.8. Booleans

1.1.9. Type Casting

+1.2. Lists and Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Reguests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Variables, Slicing, and Type Casting
This Learning Unit covers the following Learning Objectives:

. Find the Python version

. Understand and set a shebang line

. Write our first Python script

. Understand basic variable types

. Understand how to use different variable types
. Slice strings

. Understand and work with integer variables

. Understand float variables

. Understand Boolean variables

. Understand type casting

. Set variables to different data types using type casting

0 00 =~ @ U & W R -

]
=1
e

This Learning Unit will take approximately 180 minutes to complete.

To begin, we'll cover some basic items with scripting languages. This will start with how we
can tell the system to execute our script and print output to the terminal. Let's dive right in
and build our knowledge through each section.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

| My Kali VPN

Python Scripting Basics Variables, Slicing, and Type Casting
Python Scripting Basics Finding our Version of Python

<

Resource Center

TEXT

1. Python Scripting Basi

- 1.1. Variables, Slicing, and Type Casting

I 1.1.1. Finding our Version of Python

1.1.2. Writing our First Python Script

1.1.3. Setting Variables

1.1.4. Data Types

cs

1.1.5. Strings and Slicing

1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting

+ 1.2. Lists and Dictionaries

+1.3. Loops, Logic, and User Input

+ 1.4. Files and Functions

+1.5. Modules and Web Reguests

+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

| My Kali

<

Get Good at Python: Python Scripting ...

Finding our Version of Python

Before working with our Python exercises, let's examine how to determine our installed version. To
do this, let's execute python -V in the terminal.

kali@kali:~% python -V
Python 3.9.10

Listing 1 - The currently installed version of Python is displayed

We can confirm that we currently have Pythron 3.8.70 installed and working on our Kali machine. This
is important to know since the syntax between versions can affect how our scripts run.

MNow that we know our version number, let's write our first Python script.

Exercises

1. What is the option (with dash) to check the version of Python?

A e Asa
ANsSWe

-V

2. Are the syntax requirements the same between Python 2 and Python 37 (yes/no)

Answer

no

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deOl1l | t.nme/RedBl ueHt

VPN

Variables, Slicing, and Type Casting Variables, Slicing, and Type Casting
Variables, Slicing, and Type Casting Writing our First Python Script

Resource Center

TEXT Get Good at Python: Python Scripting ...

1. Python Scripting Basics Writing our First Python Script

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
Python is a popular and high-level programming language used by scientists and securit
I 1.1.2. Writing our First Python Script : . . p_ - el shilisbe . -
professionals alike.

tdsoapinguanshies We'll begin our introduction to Python with a few simple examples and then progress to more

1.1.4. Data Types complex and interesting scripts. We can't cover everything here, but the popularity of Python means

: e there are many support options available if we run into issues.
1.1.5. Strings and Slicing

Like Bash scripting, we can tell the system to interpret the script as a Python script with the

shebang' and python path (#!/usr/bin/python). This way, we can save the file and set the executable

1.1.7. Floats flag with chmod, and execute it with ./fileName.py. Additionally, we can run a Python script using
the python command, which doesn't require the shebang line or the executable flag.

1.1.6. Integers

1.1.8. Booleans
Let's review a simple "Hello World" script.
1.1.9. Type Casting

kali@kali:~% cat pythonsample.py
+1.2. Lists and Dictionaries #1/usr/bin/python

+1.3. Loops, Logic, and User Input prmtseripkine st

. : Listing 2 - Simple Python script
+ 1.4. Files and Functions

+1.5. Modules and Web Reguests The script has two lines. The first line tells the OS that the script should be interpreted with Pythaon.
When the file is executed, a loader reads the file and the shebang tells the loader which interpreter

+1.8. Python Network Sockets to use by providing an absolute path to the interpreter.

+1.7. Putting It All Together The second line is a print() function that outputs the string "Hello World" to the terminal when we
execute it.

Let's make pythonsample.py executable with chmod.

kali@kali:~% chmod +x pythonsample.py
Listing 3 - The script is now executable

Mow that the script is executable, let's execute it from the terminal. Because it is set as executable,
we can run it without using the python command.

kali@kali:~% ./pythonsample.py
Scripting is fun!

Listing 4 - The script is executed and the output is displayed to the terminal

The script was able to execute and displayed "Scripting is fun!" to the terminal.

Another variation is to run the script with the python command before the script.

kali@kali:~% python pythonsample.py
Scripting is fun!
Listing 5 - The scnpﬁxecuﬁ:‘ with the python command
Running it this way, the shebang line is not needed. Although, it is a good practice to have it in the

script file.

Let's practice what we learned in the following exercises:

1 (Wikipedia, 2023), https://en.wikipedia.org/wiki/Shebang_(Unix) <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

M. PythonExercises

Exercises

1. What is the first line in the script called that specifies which interpreter to use?

ANswel

shebang

2. What is the script code to print "Python is fun!" to the terminal output? (Enter the entire line of
code in Python 3 syntax).

ANsWwel

print("Python is fun!")

To get started with the following exercise, ssh into the exercise host with "offsec:offsec™.

3. Write a Python script called firstScript.py that prints "Python is fun!" to the terminal output. Make
sure the script is executable, has the appropriate shebang line, and wait a minute after the script
completion for the flag to appear. The script file must be located in the /home/offsec directory,
and the flag will appear in the /homefoffsec/flags directory.

A =
Answe

PY THON{F1Rst_Script_Executed!}

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

: Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit
My Kali VPN ariables, Slicing, and Type Casting Variables, Slicing, and Type Casting
Finding our Version of Python Setting Variables

Resource Center

TEXT

Get Good at Python: Python Scripting ...

1. Python Scripting Basics Setting Variables

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python

1.1.2. Writing our First Python Script
I 1.1.3. Setting Variables

1.1.4. Data Types

To set a variable in our Python script, we will enter a variable name followed by an equal (=) sign and

the value of the variable we want to set.

1.1.5. Strings and Slicing kali@kali:~% cat variables.py

1.1.6. Integers

1.1.7. Floats

1.1.8. Booleans

1.1.9. Type Casting

+ 1.2. Lists and Dictionaries

#!fusr/bin/python
companyName = "0ffSec”
currentYear = 2823

print(companyName)
print(currentYear)

Listing 6 - Two variables are sel in our script

+1.3. Loops, Logic, and User Input

+ 1.4. Files and Functions

+1.5. Modules and Web Reguests

Before we cover the types of variables we may encounter in Python, let's examine how we can set
variables. We will use the print{) function to display the value of the variables in the terminal.

We have two variables set in our script, followed by the print(] functions to display them to the

terminal. The first variable is called companyName and has the value of "OffSec". The next variable is

called currentYear and has the value of "2022".

+ 1.6. Python Network Sockets

kali@kali:~$./variables.py

+1.7. Putting It All Together OffSec

- My Kali

2823

A | Listing 7 - The variable values are displayed in the terminal

As expected, the print() functions printed the values of the variables to the terminal.

MNow that we covered setting variables, let's practice what we've learned with the following

exercises.

Exercises

1. How could a variable of color be set to the value "red"?

color = "red"

2. How could a variable of year be set to the integer of "2022"?

Answe

year=2022

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit

VPN Variablas, Slicing, and Type Casting Variables, Slicing, and Type Casting

Writing our First Python Script

Data Types

>

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
I 1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting

+1.2. Lists and Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Reguests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

Get Good at Python: Python Scripting ...

Data Types

Python is quite forgiving when it comes to data types, especially when compared to lower-level
programming languages. Python variables can be converted from one data type to anctherin a
process we call type casting,! which we cover later. Having mentioned this, it is still important to
have a basic understanding of the different data types when scripting with Python.

We can set a variable to a value by using the equal sign (=). If we set a variable and use guotes
around the value, this can affect how Python treats it. We will go over this in more detail shortly.

The print() function can be used to output information to the command-line similar to Bash's echo

command. The syntax for Python 3 is as follows.

myString = "Hello World”
print(myString)

or

print(“Hello World™)

Listing 8 - The Python print(} function

During debugging, we may want to check a variable's type. We can do this with the built in fype()
function. We'll pass the variable into type() and output the type of data structure assigned to that
variable.

kali@kali:~% cat typeexample.py
#! fusr/bin/python

a = "banana”
print(a)
print(type(a))

b = 1337

print(b)
print(type(b))

kali@kali:~% python typeexample.py
banana

<class "str'>

1337

<class "int'>

Listing @ - Python data types
In this example, we created two variables, a and b. Our script prints the value of the variable and

then its data type. Variable ais a string with the value of "banana" and variable bis an integer with
the value of "1337".

Let's practice what we learned with the following exercises.

1 (Wikipedia, 2023), https:/fen.wikipedia.org/wiki/Type_conversion «

Exercises

1. What data type would be assigned to the following?

2. What data type would be assigned to the following?

a = "Sg"

!

Answer

string

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

7 My Kali VPN

Variables, Slicing, and Type Casting Variables, Slicing, and Type Casting
Setting Variables Strings and Slicing

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
I 1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting

+1.2. Lists and Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Reguests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

Get Good at Python: Python Scripting ...

Strings and Slicing

Many people new to Python may be familiar with strings' in other programming languages. These
data types hold one or more letters, numbers, or symbols, and are typically set by using quotes.

Let's review two string examples:
myString = "Hello World”®

anotherString = "ABC123!@#"

Listing 10 - String examples

In the code block above, we created two variables and assigned them different values.

A string can be converted to a data type called a /ist (we will cover this later). Lists and strings can
be manipulated and slicec® using a few different methods. Slicing in Python is when we cut a string
or list into sections. This is done to cut out just the parts of a string that we are interested in.

Let's say we are writing a Python script to scrape a website for any links to other pages. This is a
very useful technique for a penetration tester hoping to gain more information about a target. Within
the HTML code for the page we are scraping, each HTML anchor tag will appear something like this.

Blog

Listing 11 - An HTML anchor tag

To be able to work with this in our script, we'll want only the URL portion of the tag
(https://www.offsec.com/blog), so we'll use string slicing to pull the URL out.

As a side note, because this string contains quotation marks ("), we will run into problems if we use
the same syntax as we did earlier. Instead, we'll use single quotes (') around the string. Content
between single quotes will not be interpreted.

Once we've created our variable, we can trim the ends of the string. To do this, we need to find the
index of where the URL starts and the index of where it ends.

There are ways to find these automatically, but for this example, we'll just count. We need to count
each character up to our URL with the first character being 0. The letter "h" in "https" is at index 9 so
that's our starting point. If we keep counting to the end of the URL, we find that the letter "g" in
"Blog" at the end of the URL is at index 47. Therefore, we want to slice the string from index 9
through index 48 (index 47 + 1), inclusively.

With the index of the start and end of our URL, we can slice it out of the full string and store it into a
variable named wrf using the following syntax.

kali@kali:~% cat tagslice.py
#! fusr/bin/python

tag = "Blog</fa>"
url = tag[9:48]

print{url)

kali@kali:~% python tagslice.py
https: //www.offsec.com/blog

Listing 12 - Slicing the HTML anchor tag

We can also slice out the URL from the full HTML anchor tag by using the index() function. First, we
figure out what is always at the start of the string we want to slice out. In this case, it would be
"https". Then, we need what will corne after the string we want to slice out. In this case, it's the end
double-quote of the URL and a greater-than symbol. Let's set these as individual string variables.

tag = "Blog</fa>"
start = "http”
end = "\"»"

Listing 13 - Sefting the start and end variables
Mote that part of our second variable, end, includes a quotation mark. This could present a problem

but we're working around it by escaping® it using a backslash (\) character, which allows us to use
the quotation marks that follow without invoking their special meaning.

We can use the start and end strings to get the index values of where those are located in a
complete anchor tag. To do this, we will add .index(} to the variable tag, and inside the index
function, we will add the variables. Let's print those values.

kali@kali:~% cat tagslice2.py
#!fusr/bin/python

tag = "Blog</fa>"
start = "http”
end = "\">"

print(tag.index(start))
print(tag.index(end)}

kali@kali:~% python tagslice2.py
9
a8

Listing 14 - Running our slicing script

These numbers are similar to the values we got by counting before. Let's remove the print()
functions and slice tag using the index of the start and end strings.

kali@kali:~% cat tagslice3.py
| #! fusr/bin/python

| tag = "Blog<fa>"
start = "http”
end = "\"»"

url = tag[tag.index(start):tag.index(end)]
print{url)
kali@kali:~% python tagslice3.py
https: / /www.offsec.com/blog
Listing 15 - Improving our slicing script
Our script contains a new line of code, which may be a bit confusing at first glance. We've replaced

"tag[9:48]" from Listing 12 with the values "tag.index(start)", which came out to 9, and
"tag.index(end)", which was 48.

The advantage of a short script like this is that it will work on tags no matter how long or short they
are.

1 (Python, 2023), https://docs.python.org/3/tutorial/introduction.htmi#strings <
2 (Wikipedia, 2023), https://en.wikipedia.org/wiki/Array_slicing <
3 (Wikipedia, 2023), https:/fen.wikipedia.org/wiki/Escape_character «

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

&, PythonExercises

Exercises

1. In the string "Hello", what is the index value of the letter "H"?

A e e
ANsWwe

2. In the following code block, we have a variable named Fact that contains a string. What would the
index slice be to extract "super" from the string?

Fact = "When a solution contains more of a solute than can be dissolved, it is known to
be supersaturated.”

Answer

Fact[83:88]

To get started with the following exercise, ssh into the exercise host with "offsec:offsec™

3. Modify urlSlice.py and add the values for the start and end variables, so only the full URL is
printed to the terminal. After this is complete, wait up to a minute for the flag to appear in the
fhome/offsec/flags/ directory.

Answer

PYTHOM{Slicing_and_Dicing_Them_URLs}

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deOl | t.nme/RedBl ueH t

7 My Kali VPN

Variables, Slicing, and Type Casting Variables, Slicing, and Type Casting
ETER B Integers

>

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
I 1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting

+1.2. Lists and Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Reguests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Integers

Integer (or inf)! variables are the basic ways to store whole numbers with a comparable value. Int
variables are typically set by assigning a whole number without quotes to a variable name.

In the script below, we assign the value of "750" to a variable called mylnt, then we print it to the
terminal.

kali@kali:~% cat intTest.py
#!fusr/bin/python
myInt = 758

print(myInt)

kali@kali:~% python intTest.py
750

Listing 16 - Setting an Integer variable and printing it to the terminal

As expected, when we run the script, the output is "750".

If you use quotes to set a number to a variable, you are setting it as a string instead of an integer.
This may lead to bugs or errors if comparisons are done. In the following example, the usage of
quotes changes how Python interprets the value of the variable.

kali@kali:~% cat intTest2.py
#! fusr/bin/python

myString = "750"
myInt = 758

print(myString)
print(myInt)
print(myInt + 1)
print(myString + 1)

kali@kali:~% python intTest2.py
758
758
751
Traceback (most recent call last):
File "/home/kali/intTest2.py", line 7, inS2module:
print(myString + 1)

TypeError: can only concatenateNstr (not “int") to str

Listing 7 WT:rkfng with integers and strings
It's interesting to note that the output of two of the four print() functions was the same, but Python
was unable to add one to "750" when that value was a string.

It's an excellent idea to get familiar with reading output errors, researching them, and thinking about
how we might fix them.

1(Python, 2023}, https://docs.python.org/3/library/stdtypes.htmi#typesnumeric «

Exercises

1. Will the following be considered a string or an integer? (stringfinteger)

number = "33"

A o
ANswe

string

2. Will the following be considered a string or an integer? (string/integer)

number = 42

Answer

integer

3. Using what we have learned so far, can integers be added to strings? (yes/no)

Answer

no

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

1 My Kali VPN

Variables, Slicing, and Type Casting Variables, Slicing, and Type Casting
Strings and Slicing Floats "

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
I 1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting

+1.2. Lists and Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Reguests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Floats

If we want a variable to contain a number with a decimal, we can't use an integer. Instead, we will
need to use a Float.! The nice thing is that Python will usually handle this for us, and we can typically
treat floats the same as integer variables. For example, let's test what happens when we add a
decimal value to an integer.

kali@kali:~% cat floatTest.py
#!fusr/bin/python
a = 1ea

print(a)
print(type(a)}

print(a)

print(type(a)}

kali@kali:~% python floatTest.py
1aa

<class "int’>

180.5

<class "float'>

.'-fs.r.fng 18 - Working with Float variables
As we found from the script execution, Python was able to change the integer to a float without us
needing to do anything else.

Beyond strings and number variables, we must understand Boolean variables as well.

1 (Python, 2023), https://docs.python.org/3/tutorial/floatingpoint.html «

Exercises

1. In Python, do we need to do anything to convert an integer to a float when the number value
becomes a decimal? (yes/no)

Answel

no

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H de0l | t.nme/RedBl ueH t

- My Kali VPN

Variables, Slicing, and Type Casting Variables, Slicing, and Type Casting
Integers Booleans >

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
I 1.1.8. Booleans

1.1.9. Type Casting

+1.2. Lists and Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Reguests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

Get Good at Python: Python Scripting ... b4

Booleans

Boolean' variables store an object value of "True" or "False". These types of variables are useful
when using conditional statements but we’'ll get into that a little later. For now, it's important to
understand that these are not string values of "True" or "False". Let's examine a code snippet.

this may be set from a user database or after authentication
adminBool = False

if (adminBool)

print("You are an admin!™)
else

print("You are NOT an admin!"™)

Listing 19 - Example working with Booleans
This snippet includes a conditional statement, which we'll cover later in this Module. For now, we'll
just note that since the variable adminBoolis False, this script would print "You are NOT an admin!".

So far, we covered strings, number variables, and Booleans. Now let's examine a way to change
variable types from one to another with a process called type casting.

1 (Wikipedia, 2023), https:/fen.wikipedia.org/wiki/Boolean_data_type#Python,_Ruby,_and_JavaScript
P

Resources
Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, PythonExercises

Exercises

1. Is the following a Boolean variable? (yes/no)

isAdmin = True

Resource Center

A e LA
Answel

yes

2. Is the following a Boolean variable? (yes/no)

isAdmin = false

no

3. Is the following a Boolean variable? (yes/no)
isAdmin = "False”
Answer

no

To get started with the following exercise, ssh into the exercise host with "offsec:offsec™

4. In the /homefoffsec/booleanTest.py script file, set the sky/sBlue Boolean so that the script prints
"The sky is blue" to the terminal. When this is complete, wait up to a minute for the flag to appear
in the fhomefoffsec/flags/ directory.

ANsWwel

PYTHOM{It_is_due_to_Raleigh_scattering}

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/ RedBl ueHit

7 My Kali VPN

Variables, Slicing, and Type Casting Variables, Slicing, and Type Casting
Floats Type Casting >

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python

1.1.2. Writing our First Python Script

1.1.3. Setting Variables
1.1.4. Data Types

1.1.5. Strings and Slicing
1.1.6. Integers

1.1.7. Floats

1.1.8. Booleans

I 1.1.9. Type Casting

+1.2. Lists and Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Reguests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

Join us now -> hideOl.ir | t.ne/RedBlueTM | t. me/H deOl |

[My Kali VPN

<

Get Good at Python: Python Scripting ...

Type Casting

Casting is a way to convert a variable type in Pythan. This can be done by using the appropriate
casting function to modify the variable type to another. A reason to use this is when reading user

input or data from an external source such as a text document or webpage.

For example, let's say we have two strings that contain numbers that we want to add together. This
would occur in a scenario where these numbers were part of a longer string that we sliced.

If we try to add these variables together, we won't receive any errors, but the result is also

unexpected.

kali@kali:~% cat castTest.py
#! fusr/bin/python

numA = “86"
numB = “2@"

print(type(numa))
print(type(numB))

print(numA + numB)

kali@kali:~% python castTest.py
<class “str'>

<class “str'>

8628

Listing 20 - Setting up strings to test casting

The output shows that we concatenated the strings together instead of adding the numbers. We will
need to cast the strings to integers before they can be added, using the /nt() function. For simplicity,

we can do this right in the print{) function.

Let's change one line in our script and then run it again.

kali@kali:~% cat castTest.py
#! fusr/bin/python

numA = “86"
numB = “2@"

print(type(numa))
print(type(numB))

print(int({numA) + int(numB))

kali@kali:~% python castTest.py
<class “str'>

<class “str'>

186

Listing 27 - Example casting strings to integers

This can also be done with the str() function to convert an integer or float into a string data type.

Let's modify the code slightly to demenstrate this.

kali@kali:~% cat castTest.py
#! fusr/bin/python

numA = “86"
numB = “2@"

print(type(numa))
print(type(numB))

newValue = int({numA) + int(numB)
print(newvalue)
print(type(newValue))
print(type(str{newValue)))

kali@kali:~% python castTest.py
<class “str'>

<class “str'>

186

<class "int'>

<class "str'>

Listing 22 - Exampile casting integer to string

As shown in the output, the integer variable was type cast to a string with the sir{) function.

Let's take this opportunity to apply what we've learned in the following exercises.

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced

in the Module text and video.

“, PythenExercises

Exercises

For questions 1 - 3, use the following code snippet:

#! fusr/bin/python

1
2
3 firstName = "Dade”

4 LastName = "Murphy”

5 handle = "Zeroc Cool”
& systemsCrashed = 1587
7 movieRunHours = 1.783
B

movieYear = "19495"

1. In the example Python code above, which line number declares a float variable?

2. How many string variables are declared?

Answer

3. How could we rewrite line 8 so that Python will interpret it as an integer?

) LA
Answer

maovieYear = 1995

4. If the variable movieYear was kept as a string, how could we later type cast this as an integer?

Answer

int{movieYear)

5. Can strings and integers be printed in the same print function without type casting? (yes/no)

6. How could we type cast the systemsCrashed variable to a string?

Answer

str(systemsCrashed)

To get started with the following exercise, ssh into the exercise host with "offsec:offsec™.

7. Without changing any of the variable declarations at the beginning of the script, adjust the print
function within fhome/offsec/typeCasting.py. After this is complete, wait a minute for the flag to

appear in the fnromefoffsec/flags/ directory.

[
ANswWwel

PYTHOM{Type_casting_with_Gr1t}

(c) 2023 OffSec Services Limited. All Rights Reserved.

Variables, Slicing, and Type Casting
Booleans

t. me/ RedBl ueHi t

Lists and Dictionaries
Lists and Dictionaries

Resource Center

TEXT

1. Python Scripting Basics
- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
- 1.2. Lists and Dictionaries

1.2.1. Python Lists
1.2.2. Python Dictionaries

+12 1 anne | Amis and | lear vk

<

Get Good at Python: Python Scripting ...

Lists and Dictionaries
This Learning Unit covers the following Learning Objectives:

1. Understand what lists and dictionaries are

2. Understand how lists and dictionaries can be used
3. Create lists

4. Create dictionaries

This Learning Unit will take approximately 90 minutes to complete.

So far, we have covered variables and how to work with them. Now let's examine some more
complex variables that hold more than one value in them: lists and dictionaries.

(c) 2023 OffSec Services Limited. All Rights Reserved.

‘Variables, Slicing, and Type Casting Lists and Dictionaries
Type Casting Python Lists

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

| My Kali VPN

Resource Center

TEXT

1. Python Scripting Basics
- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
- 1.2. Lists and Dictionaries

I 1.2.1. Python Lists

1.2.2. Python Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Requests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Python Lists

A list' is a datatype that contains one or more variables in indexed order. The different types of
variables can be contained within a list or a list can even contain other lists.

We can specify a list in Python by using square brackets.

kali@kali:~% cat listTest.py
fruitList = ["apple"”; "banana”, "orange"]

print(type(fruitList)})

kali@kali:~% python listTest.py
<class "list'>

Listing 23 - Setting and verifying a list variable

As expected, when we check the data type of the fruitList variable, we show that it is a /ist.

Each item in the list has a corresponding index value that represents its location. In our previous
example, "apple" has an index of 0, and "banana” would have an index of 1. If we know a value is
contained in the list but don't know the index, we can find it by using the list index() method.

kali@kali:~% cat listTest2.py
#! fusr/bin/python

fruitList = [“apple”, "banana", "crange"]
print(fruitList.index("orange"))

kali@kali:~% python listTest2.py
2

Listing 24 - Finding the index of an item in a list
Above, we searched for the index containing the value "orange”. In this case, the "orange” value had
an index of 2.
The index() method is also very helpful when slicing strings, which we touched on earlier.

If we would like to add an item to our list, we can use the append() method.

kali@kali:~% cat listTest3.py
#! fusr/bin/python

fruitList = [“apple”, "banana", "crange"]
fruitList.append("mango")

print(fruitList)

kali@kali:~% python listTest3.py
["apple”, "banana”, "orange", "mango"]

Listing 25 - Adding an item to a list

In the list above, we added the value "mango"” to the end of the list.

Inversely, we can remove items from a list, in the same way, using remove().

kali@kali:~% cat listTest4.py
#! fusr/bin/python

fruitList = [“apple”, "banana™, "crange", "mango”]

LY

fruitList.remove("mango™)
print(fruitList)

kali@kali:~% python listTest4.py
["apple”, "banana”, "orange"]

Listing 26 - Remoaving an item form a list

Listing 26 shows the value "mango” being removed from the list.

If we would like to know the number of items in our list, we can use the len() function, which will
return the number of items our list contains.

kali@kali:~% cat listTest5.py
#! fusr/bin/python

fruitList = [“apple™, "banana™, "ocrange™]
print(len({fruitlList))

kali@kali:~% python listTest5.py
3

_La'srf;rg 27 - Finding the length of a list

The length of the list in Listing 27 is 3, because there are 3 total items in the list.

1 (Python, 2023), https://docs.python.org/3/tutorial/datastructures.html «

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

M. PythonExercises

Exercises

Use the following line of code to answer Questions 1-4:
mylist = ["a", "b~, "c™, "d"]
1. Write a line of Python to print the length of the above list.

A R
ANswel

print(len{myList))

2. How would we reference the string "c" in this list using its index value?

Answer

myList[2]

3. How would we append the value "e" to the list above?

) LA
Answer

myList.append("e”)

4, How would we remove the value "b" from the list above?

Answer

myList.remove("h")

To get started with the following exercise, ssh into the exercise host with "offsec:offsec™

5. In the /homefoffsec/createList.py script file, create a list under the variable name characters that
contains the following names in order:

Guts
agriffith
Casca
When this is completed, wait a minute for the flag to appear in the fhome/offsec/flags/ directory.

) LA
Answer

PYTHON{What_4_L1sT}

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

7 My Kali VPN

Lists and Dictionarias Lists and Dictionaries
Lists and Dictionaries Python Dictionaries

Resource Center

TEXT

1. Python Scripting Basics
- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
- 1.2. Lists and Dictionaries

1.2.1. Python Lists

I 1.2.2. Python Dictionaries

+1.3. Loops, Logic, and User Input
+ 1.4. Files and Functions

+ 1.5. Modules and Web Requests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Python Dictionaries

In Python, a dictionary' is a data structure that contains one or more key-value? pairs. We can use
curly brackets to define a new dictionary and supply it with any initial key-value pairs.

thelne = {
“"firstName" :"Thomas"”,
"lastName": "Anderson”,
"occupation™: "Programmer”

b

Listing 28 - Example setting up a dictionary in Python

In Listing 28, we have three key-value pairs within the theOne dictionary.

To add an entry to our dictionary, we can simply reference the dictionary with an index of the key we
want to add and define it as the value we want to set.

kali@kali:~% cat dictTest.py
#! fusr/bin/python

thelne = {
"firstName": "Thomas",

"lastName": "Anderson”,
"occupation”: "Programmer”

¥
theOne["company”] = "MetaCortex"
print(theOne)

kali@kali:~% python dictTest.py
{'firstName': "Theomas', "lastMame’: ‘Anderson’, ‘occupation': 'Programmer’, 'company’:
‘MetaCortex’'}

Listing 29 - Adding a key-value pair to a dictionary
In the code block above, we added the key-value pair of company:MetaCortex to the end of the
theOne dictionary.
We reference a value in our dictionary by its key.

kali@kali:~% cat dictTest.py
#! fusr/bin/python

theOne = {
"firstName" :"Thomas"”,
"lastName" : "Anderson”,
"occupation™: "Programmer”

¥

theOne["company™] = "MetaCortex”
print(thedne["firstName™])
kali@kali:~% python dictTest.py
Thomas

Listing 30 - Referencing an item in a dictionary by key

In Listing 30, we printed the value "Thomas" by referencing to its key of "firstName".

If we want to change the value of an existing key, we can specify the key name and the new value.
The only difference between adding a new key-value pair and modifying one is the fact that the key-
value pair already exists within the dictionary.

kali@kali:~% cat dictTest.py
#!fusr/bin/python

thelne = {
"firstName™:"Thomas",

"lastMName"” : "Anderson”,
"occupation®: " Programmer"”

1

theOne["company™] = “"MetaCortex”
print(theOne)

theOne[“occupation™] = "Superhero”
print(theOne)

kali@kali:~% .fdictTest.py
| {'firsthName': "Thomas’, "lastMame®: ‘Anderson”, 'occupation’: 'Programmer’, 'company':

"MetaCortex'}
{'firsthName': "Thomas’, "lastMame’: ‘Anderson”, ‘occupation’': 'Superhero’, 'company’:

"MetaCortex’}

Listing 31 - The occcupation key-value pair was changed

The value of they key labelled "occupation" was changed from "Programmer” to "Superhero".

We can also retrieve a list of keys that are stored in a dictionary by using the keys{) method.

kali@kali:~% cat dictTest.py
#! fusr/bin/python

theOne = {
"firstName" :"Thomas"”,
"lastName" : "Anderson”,
"occupation™: "Programmer”

¥

theOne["company™] = "MetaCortex”
print(thedne.keys(})

kali@kali:~% python dictTest.py
dict keys([firstName', 'lastName', 'occupation’, 'company’])

Listing 32 - Printing out the keys of a dictionary

As shown in Listing 32, we added a new key-value pair. Then, we used the keys() method to output
the names of the keys within the theOne dictionary.

1(Python, 2023), https://docs.python.org/3/tutorial/datastructures.htmi#dictionaries <

2 (PCMag, 2023), https://www.pcmag.com/encyclopedia/term/key-value-pair «

Exercises

1. How would we declare a new dictionary named myDict with one key-value pair where the key is
"one" with a value of the integer of 1? You can either use single or double quotes, but ensure there
are No sSpaces in your answer.

[
ANswWwel

myDict={"one":1}

2. How would we add a key-value pair to myDict where the key is "two" and the value is the integer
27 You can use either single or double quotes, but ensure there are no spaces in your answer.

Answer

myDict["two"]=2

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H deO0l1l | t.nme/RedBl ueHt

[My Kali VPN

Lists and Dictionaries Loops, Logic, and Usear Input

>

< Python Lists Loops, Logic, and User Input

Resource Center

TEXT Get Good at Python: Python Scripting ...

1.1.3. Setting Variables

1.1.4. Data Types Loops, Logic, and User Input
1.1.5. Strings and Slicing This Learning Unit covers the following Learning Objectives:
1.1.6. Integers 1. Create and iterate with a while loop
11.7. Floats 2. Create .Iand_ﬂerate with a for loop
3. Create if/elif/else statements
1.1.8. Booleans 4. Use user-generated input

0= Type Caating This Learning Unit will take approximately 150 minutes to complete.

-1.2. Lists and Dictionaries In this section, we will take what we learned about variables and use them in loops,
conditional statements, and user input. This will enhance our capabilities to create programs

= 1eDRioRkE e that are more functional and user-friendly.

1.2.2. Python Dictionaries
- 1.3. Loops, Logic, and User Input
1.3.1. Loops
15:9: Contiional Statemsnts (c) 2023 OffSec Services Limited. All Rights Reserved.
1.3.3. User Input

+1.4. Files and Functions < Lists and Dictionaries Laops, Lagie, and Usar Input

¢ -
_ Join us now -> hide01. i P*"°*"PIHUPREABI ueTM | t. e/ Hi deO1 | t.ne/ RedBl ueHit Lacps
My Kali VPN

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python

1.1.2. Writing our First Python Script

1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans
1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
- 1.3. Loops, Logic, and User Input
I 1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input
+1.4. Files and Functions
+1.5. Modules and Web Requests

+1.6. Python Network Sockets

+ 1.7. Putting It All Together

Get Good at Python: Python Scripting ...

Loops

Looping in programming is one way to iterate on a conditional state or data structure. Python has
two types of looping methods: for' and while.?

A while loop will repeat a code block as long as a conditional statement evaluates to True. In the
following example, we set a variable jto 0. We then start our while loop with the condition that /is
less than 10. Each run of the code block prints out the current value of fand then increments i by 1.
This is evident with the statement / += 1, which is the same as / = / + 1. The symbol +=is an
assignment operator. If we forget to increment our counter variable, this would run until the script is
killed manually.

The syntax of loops is important in Python. Note that the loop statement has a colon (:) at the end of
the line. This is then followed by indented instructions to complete in the loop under that loop
statement. When the indentation isn't there, Python interprets that as being an instruction outside of
the loop. Let's examine the following code:

i=@g

while i < 18:
print(i)
i+=1

Listing 33 - Example while loop in Python
MNow let's use a while loop with Python lists. Let’s consider the following script.

kali@kali:~% cat whileList.py
#! fusr/bin/python

nameList = ["Sleepy”, "Sneezy", "Happy", "Grumpy", "Bashful®, "Dopey", "Doc"]
print(nameList)

kali@kali:~$./whilelist.py
[*Sleepy’, 'Sneezy', 'Happy', 'Grumpy', ‘'Bashful', 'Dopey', 'Doc’]

Listing 34 - There is a ist of names that is output to the terminal

This may not seem like a worthwhile exercise, but linking a looping statement with lists can greatly
impact what is achievable with our scripts. As it is, this output only prints out the values of the list,
and we don't have control over any of those values.

Although we've learned about indexing in the Python lists section, let's take a different approach on
how we could iterate through the list with indexes in a while loop. Let's get the number of values in
the nameList list, and then iterate through the values to show each name on its own line.

The following code is added to the bottom of the previously shown script. Comments are added
using the pound or hash-tag symbol (#) to provide some clarification on what each line is doing.

Get the number of items in the list and store the wvalue in a variable
nameListCount = len(namelList)
Print a message with how many items are in the list

print(“There are " + str({nameListCount) + " names in the name list.")

nameIndex = @

while nameIndex < namelListCount:
Print the index number
print(namelIndex)
Print the name at the current index
print(namelList[nameIndex])
Add 1 to the index value before the loop starts over
nameIndex = namelndex + 1

Listing 35 - A while loop is created with variables to iterate through the names and show the index values in the list
MNow that this is added to the bottom of the script, let's execute it to analyze what it does.

kali@kali:~% ./whilelist.py

['Sleepy’, 'Sneezy’, "Happy', 'Grumpy®, 'Bashful’, "Dopey', 'Doc’]
There are 7 names in the name list.

a

Sleepy

1

Sneezy

2

Happy
3

Grumpy
4
Bashful
5

Dopey
6

Doc

Listing 36 - The script shows the list, the number of names message, and fterates through the list to show the index
number and value

In the output above, the list and a message with the number of names is displayed to the terminal.
The list is then iterated through to show the respective index and name.

Of course, in deployment, we would want to remove the indexes, the list, and possibly even the
message stating how many names are in the list. We did this to show how the while loop can be used
to separate out values in the list and we'll take this concept further later in this Module. Now that we
covered a while loop, let's move on to a for loop.

A forloop will repeat a code block as many times as specified. Each iteration will store the current
value of the sequence to a temporary variable and execute the code block accordingly. In the
following example, we are using the range® command to create a list containing numbers 0 through
9. The first iteration of this loop will set the temporary variable ito 0 and then run the code block.
Then it will set jto 1 and run the code block again. This will repeat until the range is depleted. Notice
there is no need to increment the counter. This is a characteristic of a forloop. As shown above, the
while loop will require some incremental process (namelndex = namelndex + 1) but with the forloop,
this is done for us.

kali@kali:~% cat forLoop.py
#! fusr/bin/python

for i in range(1@):
print(i)

kali@kali:~% ./forlLoop.py

(1= RS T Y B S FTR R SCR

Listing 37 - Example for loop in Python

MNote that there are 10 iterations in the loop. Keep in mind that the index starts at 0, and the range
function also starts at index 0 by default. We can modify the way this works by also modifying the
range start, stop, and step values. The syntax for this is range(start, stop, step). The start parameter
is used to specify what position we want to start the loop count. The stop parameter is used to
specify the ending position of the iterations. The step parameter is used to designate how many will
be added in each iteration. The default for this is 1. Let's change the program to start at 10, end at
20, and use the step count of 2.

kali@kali:~% cat forLoop.py
#! fusr/bin/python

for i in range(10,20,2):
print(i)

kali@kali:~% ./forlLoop.py
18
12
14
16
18

Listing 38 - The range started at 10 and counted up by 2 to 18

As shown in Listing 38, the values were counted by 2's. This was the impact of the step parameter.
The range started at 10 but didn't show the value of 20. This is the same concept as shown in the
original script example, where the ending position is not reached.

We can also do more with loops. Let's continue working with the for loop to demonstrate how we can
reference dictionary items in a loop.

kali@kali:~% cat forDictionary.py
#! fusr/bin/python

guts = {
"Name" : "Guts",
"Personality”: "gruff”,
"Weapon”: "Dragon Slayer”,
"Armor”: "Berserker Armor™

1
print{guts)

kali@kali:~% ./forDictionary.py
{'Name’: 'Guts", 'Personality’': "gruff", 'Weapon': 'Dragon Slayer', "Armor': ‘Berserker
Armor "}

Listing 39 - A dictionary is made and displayed

Earlier, we covered showing each of the keys with the keys() function. Let's iterate with a forloop to
list each of the key-value pairs on separate lines (instead of displaying the entire dictionary as
shown in the listing above). To do this, we'll add the following code at the hottom of the
forDictionary.py script.

for key in guts.keys():
print(key + ": " + guts[key])

Listing 40 - A loop to iterate through the keys and display the key-value pairs
With the above code added, let's execute the script.

kali@kali:~% ./forDictionary.py

{'Mame’: 'Guts', 'Personality’': "gruff®', 'Weapon': 'Dragon Slayer', "Armor': 'Berserker
Armor "}

MName: Guts

Personality: gruff

Weapon: Dragon Slayer

Armor: Berserker Armor

Listing 41 - Each key-value pair is displayed in the terminal

As expected, we iterated through each key-value pair and printed the key, followed by a colon (:)
and space, and finally the associated value of the key. This occurred for each pair on a new line until
the end of the dictionary.

This completes our coverage of while and for loops. Let's take a moment to practice what we've
learned so far.

1 (Python, 2023), https://docs.python.org/3/tutorial/controlflow.html#for-statements <
2 (Python, 2023), https://docs.python.org/3/reference/compound_stmts.htmi#while <

3 (W3Schools, 2023), https://www.w3schools.com/python/ref_func_range.asp <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, PythonExercises

Exercises

1. How many times will the loop below run?

x = 18
while x > 1:
print(x)

b

Answer

2. How many times will the below loop run?

dogs = ["poodles™, "greyhounds™, "pitbulls", "huskies"]

for d in dogs:
print(d + "are great dogs")

A =
ANswe

3. What is the index number of "huskies"?

To get started with the following exercise, ssh into the exercise host with "offsec:offsec™.

4. Print each dictionary key and key-value as shown in the demonstration above. The file is
fhome/offsec/forDictionary.py. After completion, wait one minute for the flag to appear in the
fhome/offsec/flags/ directory. The format for each line should be "key: value". Note the colon (:)
and space between key and value.

Answe

PY THON{Guts_is_packing}

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

4 My Kali VPN

Loops, Logic, and User Input
Loops, Logic, and User Input

Loops, Logle, and User Input
Conditional Statements

<

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting
1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans
1.1.9. Type Casting

-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries

- 1.3. Loops, Logic, and User Input
1.3.1. Loops

I 1.3.2. Conditional Statements
1.3.3. User Input

+1.4. Files and Functions

+1.5. Modules and Web Requests

+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Conditional Statements

When scripting, there may be sections of code that we want to run in specific situations. To make
this easier, we can use conditional statements' such as if, elif, and else logic.

In Python's if statements, the use of newlines and tabs changes how the logic is interpreted. If an if
statement evaluates to True, then the code it will run is indented under the conditional statement.
Just like looping statements, a colon and newline are required after the conditional statement.

if numApples > 10@@:
print("That's a lot of apples!™)

Listing 42 - Example If statement in Python

As long as the value of numApples is greater than 100, the program will execute the print function
located inside the jf statement.

When the if statement evaluates to False, the indented code block is skipped. If we have a related
conditional statement, we can use the elfif (short for "else if") statement. Many elif statements can be
added as long as an initial /f statement exists.

if numApples > 188:

print(“"That's a lot of apples!™)
€lif numApples > 5@:

print(“"That's a very good amount of apples™)
elif numApples > 3@:

print(“"That's a good amount of apples™)

Listing 43 - Example if - elif statement in Python

In Listing 43, if the value of numApples is greater than 100, it will execute the print function inside
the if statement. Then, it will skip the rest of the elif statements to continue with the program.
Otherwise, it will continue to compare to the next elif statement.

If we would like to add a handler to run if all if and elif statements evaluate to false, we can use the
else statement. If all previous if and elif statements resolve to false, the code under the else
statement will be run. Notice in the example below that we don't have to specify in what case the
code under else is run as it is a catch-all. The code under the else will only run if all other conditional
statements in this conditional block evaluate to false.

if numApples > 188:

print(“"That's a lot of apples!™)
elif numApples > 5@:

print(“"That's a very good amount of apples™)
€lif numApples > 3@:

print(“"That's a moderate amount of apples™)
else:

print("Running low on apples!™})

Listing 44 - Example iffelif/else statement in Python

Let's set the variable numApples to various numbers and review the effects when running the
program. The variable must be set before the conditional statements.

numApples = 158

Listing 45 - We put that we have 150 apples as the variable value
Mow let's execute the script.

kali@kali:~$./appleStock.py
That's a lot of apples!

Listing 46 - The ourpE‘: correlates with the condition that there are more than 100 apples

Let's change the value ocne more time. This time, we'll make it 15, which is less than the last checked
condition of 30 apples.

numApples = 15

Listing 47 - The number of apples is how set to 15

Let's execute our script again to check if the output has changed.

kaligkali:~% ./appleStock.py
Running low on apples!

Listing 48 - The output correlates with the else statement in the code

Now that we have experienced some conditional statements, let's practice what we've learned with
some exercises.

1 (Python, 2023), https://docs.python.org/3/tutorial/contralflow.html <

Resources
Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, PythonExercises

Exercises

Use the following lines of code to answer Questions 1-2.

if myApples < yourApples:
print("You have more apples™)
elif yourApples > myApples:
print ("I have more apples™)
else:

L LY B R VYR I

print("We have the same amount of apples™)

1. The above Python snippet doesn't work as expected. Which line is logically incorrect? (Enter the
line number for the answer)

Answer

2. What should the line be changed to in order to make more logical sense? (Keep variable names in
the same order)

ANSWE

elif yourApples < myApples:

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

- My Kali VPN

Loops, Logic, and User Input Loops, Logle, and User Input

<

Loaps User Input

Resource Center

TEXT

1. Python Scripting Basics
- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
- 1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
I 1.3.3. User Input
+ 1.4. Files and Functions
+ 1.5. Modules and Web Requests

+1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

User Input

While setting our variables inside our script worked for what we've covered so far, it doesn't make
our program very interactive for the user. Prompting the user for input can greatly enhance the
flexibility of the program and allow for different variations to be entered as the variable under test.
Let's consider the following code.

kali@kali:~% cat nameAge.py
#!fusr/bin/python

name = "Griffith"
age = 24

print("Hi " + name + "!7)
if age »= 1e@:

print(“You are over 188 years old? What's your secret?”)
elif age »= 78:

print(“You are over 78 years cld? Are you retired or still working?”)
elif age >= 6@:

print(“You are over 68 years cld? Will you be retiring soon?™)
elif age »= 48:

print(“You are over 48 years old? What do you do for a living?™)
elif age >= 28:

print(“You are over 28 years cld? What do you want to do for your career?™)
elif age »= 18:

print(“You are over 18 years cld? That makes you a legal adult!™)
else:

print("It looks like you are under 1B years old.”)

Listing 49 - There are two variables: name and age, that can be changed inside the script

In Listing 49, we create two variables, execute a print() function, and run some conditional
statements based on the age variable.

Let's execute the script, as is, to examine the expected behavior.

kali@kali:~% ./nameAge.py
Hi Griffith!
You are over 20 years old? What do you want to do for your career?

Listing 50 - The script is executed and the output for someone between 20 and 40 is displayed

The script is functional as written, but this doesn't allow anyone to execute the script and add their
own name and age. Instead, for every change of the name and age, the script will have to be
modified and saved before the next execution. This can be a cumbersome task, so let's make this
script more user-friendly.

To keep things brief, we'll only focus on the variable lines. Let's use the input()’ function to prompt
the user to input the values to store as the variables. The syntax for the input() function is
input("prompt").

name = input(“Please enter your name: ")
age = input(“"Please enter your age: ")

Listing 57 - Now the user should be able to enter their own values
Let's execute the script with the above changes to the variable lines.

kali@kali:~% ./nameAge.py
Please enter your name: Griffith
Please enter your age: 24
Hi Griffith!
Traceback (most recent call last):

File "/home/kali/./nameAge.py”, line 9, in <module>

if age »= 10@:

TypeError: '»=' not supportéd,between instances of 'str' and 'int’'

Listing 52 - The modification to our script failed with a TypeError message

The script failed to execute. In the listing above, the error message indicates that something is
wrong with a variable that is trying to mix a 'str'and an ‘int'in the age comparison line. This is where
we can use type casting, as covered earlier, to set the age variable input to be an integer.

name = input(“Please enter your name: ")
age = int(input(“Pleasze enter your age: ™))

» Lr’s!m;53 = The_rype cast has been put around the input(] function to force the variable into being an integer

Now that age is type cast as an integer, let's execute the script again.

kali@kali:~% ./nameAge.py
Please enter your name: Griffith

Please enter your age: 24
Hi Griffith!
You are over 28 years old? What do you want tc do for your career?

Listing 54 - The script works as expected

One note on user input, we need to be careful with what the user may do when using our program.
Even though we set the age variable to be an integer through type casting, the user can still enter
unexpected values. Let's try to simulate a user entering a string when prompted for their age.

kali@kali:~% ./nameAge.py
Please enter your name: Griffith
Please enter your age: Femto
Traceback (most recent call last):
File "/home/kali/./nameAge.py”, line 4, in <module>
age = int(input(“Please enter your age: "))
ValueError: invalid literal for int() with base 18: 'Femto’

Listing 55 - The script fails with an error message for invalid input

Fixing this issue is out of scope for this Module, but we must keep this in mind while we write any
code. Input validation is a very big reason a lot of security vulnerabilities exist. Keeping in mind that a
user may enter special characters, characters that don't match the data type, or even input
characters that may be thousands of characters long are all important to securely writing code.

1 (GeeksforGeeks, 2023), https://www.geeksforgeeks.org/python-3-input-function/ <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

M. PythonExercises

Exercises
To get started with the following exercise, ssh into the exercise host with "offsec:offsec™.

1. Modify fhome/offsec/nameAge.py to accept user input with the input() function, similar to how
we did in the lesson. Make the script executable when finished with the modifications to the code.
When complete, wait a minute for the flag to appear in the fhome/offsec/flags/ directory.

ANsWwe

PY THON{Prompting_the_user}

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t. e/ RedBl ueHit

-1 My Kali VPN

Loops, Logic, and User Input Flles and Functions
4 Conditional Statements Files and Functions

Resource Center

TEXT

T T

1.1.7. Floats
1.1.8. Booleans
1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input
- 1.4. Files and Functions

1.4.1. Working with Files

1.4.2. Python Functions

1.4.3. Combining File Operations in a

Function

+1.5. Modules and Web Requests

+1.6. Python Network Sockets

Get Good at Python: Python Scripting ...

Files and Functions
This Learning Unit covers the following Learning Objectives:

. Open files

. Read files

. Write to files

. Close files

. Create functions

. Understand function parameters
. Return function values

= @ N & W R -

This Learning Unit will take approximately 120 minutes to complete.

Working with files can be incredibly useful when writing Python scripts. This can be used to
get data from a file and act upon that information in the code. It can also be used to change
or even create files on a system. If we want to have a log or resulting output with our script,
we need to understand how to work with files.

Functions can also help us manage our code and separate each goal within the program into
smaller segments.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

| My Kali VPN

Loops, Logic, and User Input Files and Functions
User Input Working with Files

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables

1.1.4. Data Types

1.1.5. Strings and Slicing

1.1.6. Integers

1.1.7. Floats

1.1.8. Booleans

1.1.9. Type Casting

-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries

-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input

- 1.4. Files and Functions

I 1.4.1. Working with Files

1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

+1.5. Modules and Web Requests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Working with Files

Reading and writing to files is an important function for ingesting or saving data for after the script
ends. To open a file, we can use the open' command, set to a variable. We need to specify the file
name and the mode. The mode can be read (1), write (w), append (&), or read+write (r+) for text. If
we want to read or write binary data, we can append a b to the mode. Reading a binary file would
require a read-binary (rb) mode, and writing binary to a file would require write-binary (whb). For our
examples, we will work with text.

f = open(“data.txt", "r")

Listing 56 - Example of opening a file in read mode

With the file opened and defined as variable f, we can now read the contents with the read()?
method.

data = f.read()

Listing 57 - Example of reading a file to a variable

This will store the entire contents of the opened file as a string into a variable named data. This may
not be the best option if we are working with large files such as log files. For larger files, we can limit
how much we are storing by only reading one line of the file at a time using readlines() instead of
read(). Using readiines() as a sequence in a for loop makes this very easy. Each iteration of the for
loop will store the current line of the file we are reading as a tempaorary variable that we can work
with.

f = open("data.txt", "r")
for line in f:
print(line)

Listing 58 - Example of looping over fines of an opened file

If we would like to write some data to a file, we can open the file like before but in write (w) or
append (a) mode depending on what we are trying to accomplish. Opening a file in write mode will
overwrite the file if it already exists. Using append mode, we maintain the existing contents of the
file and will write any new data to the end. Either way, we write data to the file using write)® with the
data to write passed as an argument.

myData = "I'm sample data to be written to a file"
f = open("data.txt", "a")

f.write(myData)

Lr‘srmg; 59 - Exan_rp.fe of opening a file in write mode and writing data to it

In Listing 59, we append by writing the value of myData to data.txt.

After reading or writing data to a file, we will need to close it. This can be done by using close().
Closing an opened file isn't necessary, but it is good practice. Depending on the situation, it can have
many benefits, like allowing other programs the ability to access the file. There is much more theory
and technical explanation behind this, but it is out of scope. For the purpose of this Module,
remember that we must close an opened file because of best practices.

f.close()

Listing 60 - Closing a file

1 (Python, 2023}, https://docs.python.org/3/library/functions.htmi#open <
2 (W3Schools, 2023), https://www.w3schools.com/python/ref_file_read.asp <

3 (W3Schools, 2023}, https://www.w3schools.com/python/python_file_write.asp <

Exercises

1. How would we open an existing file named log.txt referenced by the variable name out with the
intention to add to the end of the file?

out = open("log.txt", "a")

2. How would we write the contents of a string variable named logOutput to the file opened in
Question 17

out.write(logOutput)

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

| My Kali VPN

Flles and Functions
Python Functions

Files and Functions
Files and Functions

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables

1.1.4. Data Types

1.1.5. Strings and Slicing

1.1.6. Integers

1.1.7. Floats

1.1.8. Booleans

1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input
- 1.4. Files and Functions
1.4.1. Working with Files

I 1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

+1.5. Modules and Web Requests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Python Functions

A function' is a code block that can be referenced later in either our script or another external script
or program. Functions need to be defined in the script before they can be called. To define a
function, we use def followed by the name of our function. The function definition line ends with
parenthesis and a colon.

The big value of functions is that they can help organize code into small snippets. This makes the
code much easier to manage, call, and even modify in the future. Instead of writing an entire
program, each function goal can be completed and assembled to make the complete program. We
will explore this more in the last section of this Module.

The idea behind this usage is to keep the lines of actual code per function under 30 lines. Not only is
30 lines easier to deal with than 500, but it can also help identify the area of code that may have an
issue in the debugging process. Of course, 30 lines is an arbitrary goal to keep the functions short. If
possible, it would be a better practice to lower this line count within the function as much as
possible.

kali@kali:~% cat function.py
#! fusr/bin/python

def hella():
print("Hi there!™)

Listing 67 - This function will print "Hi there!” to the terminal

We created a function called heflof) that prints text to the terminal.

With the function written, let's execute the script.

kali@kali:~% ./function.py

Listing 62 - Nothing is shown in the terminal

Mothing is shown in the terminal, despite the function having the print() function. The reason for this
is we didn't call the function in the script. To call and execute the function, we need to specify the
function name after the function. If we attempt to call the function before it is defined, the program
will result in an error. This will happen because as far the program knows, the function does not (yet)
exist.

Let's add the function call now.

kali@kali:~% cat function.py
#! fusr/bin/python

def hello():
print("Hi there!™)

hello()

Listing 63 - The helfo) function is called in the script
MNow that we have a function call in the script, let's execute it and analyze the output.

kali@kali:~% ./function.py
Hi there!

Listing 64 - The function was called and printed "Hi there!" to the terminal

Perfect! When we ran our script, the program knew a function called hellof) existed because we
defined it. Then, when we called it, the program executed the instructions inside the function. This
resulted in the text printing to the terminal.

This was a very simple function that may not be useful for our needs. Despite this example, we'll
review how these simple functions - without arguments - become incredibly useful later in this
Module.

To expand on function use, we can supply arguments to be used in the function. Arguments are also
known as parameters, operands, and variables. These are interchangeable in Python. They are
passed to a function within the parentheses. A return statement is used to supply the function
output back to our script in progress. Let's create a demonstration function to add two numbers and
return the value.

def addNums(numA, numB):
answer = numA + numB
return answer

L;’srfngﬁ— Example Function in Python

In Listing 65, we created a function called addNums, which takes two arguments: numA and numaB.
Inside the function, both of these variables are added and the result is assigned to the answer
variable. Finally, the function returns the answer variable.

We can now call addNums() later in our script using the function name and any passed arguments in
parentheses.

kali@kali:~% cat functTest.py
#! fusr/bin/python

| def addNums(numA, numB):
answer = numA + numB
return answer

x = addNums(5, 7)
primt(x)

kali@kali:~% python functTest.py
12

Listing 66 - Calling a Function

In Listing 66, we took the function that we previously created and we added a print{) function to
print it to the terminal. It's important to note that the return statement does not print the result to the
terminal. We can then take the return value and do something with it, like manipulate it further or
print it to the terminal. As expected, 12 was printed because 5 + 7 = 12.

1 (Python, 2023), https://docs.python.org/3/tutorial/contralflow.html#defining-functions «

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, PythonExercises

Exercises

Use the following lines of code to answer Questions 1-2:
def myFunction(a b c)
d=a+bh
answer = d * ¢
return answer

print({myFunction(8, 5, 3))

1. Two symbol types are missing from the function declaration. Without any spaces in the answer,
what are the two symbols required to fix the first line?

R
ANSWE

Answer Verify

2. Once the function is fixed, what would be printed after running the above code?

A 1R
ARnswer

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deOl | t.nme/RedBl ueHt

| My Kali VPN

Flles and Functions
Combining File Operations in a Function

Files and Functions
Working with Files

>

Resource Center

TEXT

1. Python Scripting Basics

- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables

1.1.4. Data Types

1.1.5. Strings and Slicing

1.1.6. Integers

1.1.7. Floats

1.1.8. Booleans

1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input
- 1.4. Files and Functions
1.4.1. Working with Files

1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

+1.5. Modules and Web Requests
+ 1.6. Python Network Sockets

+ 1.7. Putting It All Together

Get Good at Python: Python Scripting ...

Combining File Operations in a Function

We covered how to work with files and working with functions. Let's mix these two subjects together
and accomplish the file operations to quickly store the file contents in a variable to work within our
script. Let's consider the following script.

kali@kali:~% cat fileManipulation.py
#! fusr/bin/python

def storeFile(file):
f = open(file, "r")
contents = f.read()
f.clase()
return contents

Variable to store the filename
fileVar = "notes.txt"

contents = storefFile(fileVar)
print(contents)

Listing 67 - The function opens, reads, stores the contents into a variable, and closes the specified file
This script opens, reads, stores the contents into a variable, and closes the file within one function
call. With this, we can call the function and pass the parameter with the fileVar variable, which was

set above the function call. For this to work, the file must already exist. In this example, the file exists
with the text shown in the script execution.

kali@kali:~% ./fileManipulation.py
These are my amazing notes
Listing 68 - The file operations completed and the contents are displayed to the terminal
With this function, we can modify the value stored in the variable f, instead of modifying the file in

any way. This may help prevent mistakes that may happen when working directly with the file. The
convenience of the function is that the file is also closed as soon as it is no longer needed.

Let's practice what we learned with some exercises.

Exercises

1. If we wanted to open a file for writing, what would we put in place of the empty space in between
the single guotes in the following line:

f = open(file, " ")

Answe View hints

Answer Verify

2. If we wanted to create a file that doesn't exist and get an error if it already exists, what would we
put in place of the empty space in between the single guotes in the following line:

f = open(file, ' ")

View hints

R
ANSwar

Answer Verify

3. If we wanted to append to a file, what would we put in place of the empty space in between the
single guotes in the following line:

f = open(file, " ")

Answe View hints

Answer Verify

4. Consider the following code snippet:

def storeFile(file):
f = open(file, "r")
f.close()
return contents

Variable to store the filename
FILE = "notes.txt”

f = storeFile(FILE)
primt(f)

What will happen when the program is executed? (Enter the letter only, without the dot or text,
corresponding with the answer)

. The contents of the "notes.txt™ file will be displayed in the terminal
. An error cccurs in the script execution
. The filename changes to "storeFile.txt™

0 n oo oW

. The letter "f" is displayed on the terminal

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t. e/ RedBl ueHit

| My Kali VPN

Files and Functions
Python Functions

Modules and Web Raquests
Modules and Web Requests >

Resource Center

TEXT

- 1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries

-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input

- 1.4. Files and Functions

1.4.1. Working with Files
1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

- 1.5. Modules and Web Reguests

1.5.1. Importing a Module

1.5.2. Web Requests

<

Get Good at Python: Python Scripting ...

Modules and Web Requests
This Learning Unit covers the following Learning Objectives:

1. Define what a module is

2. Create a custom Python module

3. Import a module

4. Use an imported module within a script

5. Make a web request to pull a web page with Python

This Learning Unit will take approximately 120 minutes to complete.

We covered multiple subjects for creating our own Python programs, but the power behind
Python's ease-of-use is its modules that are already built. To understand modules, we'll
create our own and import them for use in a custom script. From there, we'll examine how to
use pre-existing modules to make web requests to pull web page content.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t. e/ RedBl ueHit

I My Kali VPN

Files and Functions Madules and Web Requests
Combining File Operations in a Function Impaorting a Module

Resource Center

TEXT

1. Python Scripting Basics
- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
-1.3. Loops, Logic, and User Input

1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input

- 1.4. Files and Functions
1.4.1. Working with Files

1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

- 1.5. Modules and Web Requests
I 1.5.1. Importing a Module

1.5.2. Web Requests

+1.6. Python Network Sockets

+ 1.7. Putting It All Together

Get Good at Python: Python Scripting ...

Importing a Module

One of the best things about Python is the size of the community. There are lots of resources
available to get help or find better ways to accomplish complex tasks. Sometimes, we may find that
someone has already solved a complicated task for us and provided their code as a Python module.
Examples of these are the JSON,! Requests,? and NumP)y® modules.

We may also run into a situation where we are working with large and complex Python files. It may be
better for us to split them up and import the functionality when needed by using modules. This can
help us keep our code organized and clean. We can also re-use code more easily in other projects
this way.

Let's start with importing our own code. First, let's create a new file named myData.py and initialize
a couple of lists with some sample values and a function that prints out items in a list passed to it.

#! fusr/bin/python
fruit = ["apple™, "banana”, "orange®, "mango”]
veg = [“carrot", "broccoli™, “peas™, "artichoke™]

def printItems(mylList):
for x in mylist:
print (x)

Listing 69 - Setting up a Python file to import

Now, we'll set up a new Python file in the same directory called myMain.py. We want to be able to
run myMain.py and have it import the lists and function from myData.py. To do this, we use the
import® statement. This is usually done at the top of the file below the shebang. There are a couple
of different ways to import a module. We can import just the parts we want, or we can import the
entire module. To import the entire module, we can use the import statement followed by the file we
want to import (without the file extension).

#! fusr/bin/python

import myData

Listing 70 - Importing ouwr local Python script

With our module imported, we can reference the lists and functions included in it by calling the
module name and the variable name separated by a period. This import will first search for local
modules of this name (in the same directory) and then search for modules of the same name in the
PYTHONPATH, which is dependent on our OS and how Python was installed.

#! fusr/bin/python
import myData
print(myData.fruit)
print(myData.veg)

myData.printItems (myData. fruit)

Listing 77 - Working with imported data and functions from a basic import

This is very useful but typing "myData" every time we reference something from the module can be
inefficient. Instead, we can just import what we want and remove the need to reference the module
each time by using the from statement along with our import.

kali@kali:~% cat myMain.py
#! fusr/bin/python

from myData import fruit, printItems
print(fruit)

printItems(fruit)

print({veg)

kali@kali:~% python myMain.py
["apple’, 'banana’, 'orange', 'mango’]
apple
banana
orange
mango
Traceback (most recent call last):
File "/home/kali/myMain.py"”, line 9, in <module>
print{veg)
NameError: name 'veg' is not defined

Listing 72 - Working with imported data and functions using From

Here, we are choosing which parts to import from our myData module. We imported the fruit list and
printitems() function directly so we will be able to work with them in myMain.py without having to
reference the module they came from.

We didn't import the veg list so Python produced an error when we tried to use it. Using this method,
we can also import everything from myData by replacing the import statement with "from myData
import *".

1 (Python, 2023}, https://docs.python.org/3/library/json.html <

2 (Python-Requests, 2023}, https://docs.python-requests.org/en/latest/ <
3 (NumPy, 2023), https://numpy.org/ <

4 (Python, 2023), https://docs.python.org/3/reference/import.html <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

&, PythonExercises

Exercises

1. When importing another program, do we keep the ".py" extension in the import statement?
(yes/no)

A e e
Answe

Answer Verify

2. Consider the following code snippets:
File: myData.py
#! fusr/bin/python
fruit = ["apple™, "banana”, "orange", "mango”]
veg = [“carrot", "broccoli™, "peas", "artichoke"]
def printItems(myList):
for x in mylList:
print(x)
File: myMain.py
#! fusr/bin/python
from myData import veg, printItems
print(fruit)
printItems(fruit)
print({veg)
Will the myMain.py script execute as written without errors? (yes/no)

ANswer

Answer Verify

3. Consider the following code snippet:

kali@kali:~% cat Calculations.py
#! fusr/bin/python

def square(x):
return x*x

def =sqrit(x):
sqrt = x / 2
temp = @
while(sqrt != temp):
temp = sqgrt
sqrt = (x/temp + temp) / 2
return sqrt

def pow(x):
power = x
for i in range(1,y):
power = power * x
return power

If we want to only import the pow() function from Calculations.py, what would our import line be?

Answe View hints

A

Answer Verify

To get started with the following exercise, ssh into the exercise host with "offsec:offsec™.

4. There are two script files in the fhome/foffsec/import/ directory. Import the importMe.py script
into importTest.py. When this is complete, figure out how to execute the function inside
importMe.py to get the flag. Use sudo when executing the importTest.py script. (The function is
already provided in importTest.py)

Answe View hints

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit

| My Kali VPN

Modules and Web Requests
Modules and Web Requests

Maodules and Web Raquests
Web Requests

Resource Center

TEXT

1. Python Scripting Basics
-1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input
- 1.4. Files and Functions
1.4.1. Working with Files

1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

- 1.5. Modules and Web Requests
1.5.1. Importing a Module

I 1.5.2. Web Requests

+1.6. Python Network Sockets

+ 1.7. Putting It All Together

<

Get Good at Python: Python Scripting ...

Web Requests

There are a lot of modules that we can leverage in Python. We will focus on the requests’ module for
making web requests.

kali@kali:~% cat webRequest.py
#! fusr/bin/python

import requests
Listing 73 - The module will be imported in our webRequest script
The requests module contains multiple functions within it. Some common functions are: get,

status_code, headers, encoding, text, and json. Let's work with get, status_code, and fext to keep
this section easier for the sake of learning.

Let's modify our script to request the webpage at "https://www.offsec.com/offsec/game-hacking-

intro/", store that in a variable, and show the status of that webpage.

kali@kali:~% cat webRequest.py
#! fusr/bin/python

import requests

page = requests.get('https://www.offsec.com/offsec/game-hacking-intro/")

print(page.status code)

Listing 74 - The web page is stored in the page variable and the status will be printed to the terminal on execution
The web page contents will be stored in the page variable. Using that variable, we can check the

status of the web response with the status_code function. Let's execute the script and identify the
status of the webpage.

kali@kali:~% ./webRequest.py
200

Listing 75 - The HTTP response is 200
The HTTF response? code is 200, which means the page was successfully reached. Knowing the
HTTP response code can be useful when making requests to web resources. If the resource is

blocked or unreachable, that request could have an error message, be ignored, or even halt the
program execution.

Even though the HTTP response is useful, this isn't what we truly wanted from the request. Let's add
another function under the status_code call, text.

kali@kali:~% cat webRequest.py
#! fusr/bin/python

import requests
r = requests.get('https:// www.offsec. com/offsec/game-hacking-intro/")

print(r.status_code)
print(r.text)

Listing 76 - The text function call in the module is added to the script
Mow that we have the text function call in our script, let's execute it.

kali@kali:~$./webRequest.py
288

<!doctype html:
<html class="no-js" lang="en-U5">

<head>
<meta charset="utf-8">

¢!-- Force IE tc use the latest rendering engine available --»>
<meta http-equiv="X-UA-Compatible”™ content="IE=edge":

<!-- Mobile Meta -->
<meta name="viewport” content="width=device-width, initial-scale=1.8">
<meta class="foundation-mg">

J L’srfng 77 - The source code of the web page is displayed on the terminal

The source code of the webpage is displayed on the terminal. The output in the listing above is
trimmed to save space, but the contents of the webpage could be manipulated in our script.

Let's practice what we learned with the following exercises:

1 (Python-Requests, 2023), https://docs.python-requests.org/en/latest/ <
2 (Mozilla, 2023), https://developer.mozilla.org/en-US/docs/Web/HTTP/Status <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

M. PythonExercises

Exercises

1. We stored a webpage in the variable page. What is the correct syntax to refer to the web HTTP
response code value of this variable?

A =
Answe

Answer Verify

2. What is the function in the requests module to display the webpage contents? (supply only the
function)

ANsSWe

Answer Verify

To get started with the following exercise, ssh into the exercise host with "offsec:offsec™.

3. Write a script inside the /fhome/offsec/wehDownloader.py file that pulls the root webpage from
the localhost. Print the contents of the webpage to the terminal in the script. Once this is
completed, wait a minute for the flag to appear in the /fhome/offsec/flags/ directory.

Answe View hints

A

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

| My Kali VPN

Modules and Web Requests Python Metwork Sockets
Importing a Module Pythan Network Sockets >

Resource Center

TEXT Get Good at Python: Python Scripting ...

Nadlada I J' L e icnis o
1.3.1. Loops This Learning Unit covers the following Learning Objectives:
1.3.2. Conditional Statements 1. Write a Python network client

2. Connect to a server and read the content received

-3 Rearinpit 3. Send data to a server with the Python network client

-1.4. Files and Functions . . N . .
This Learning Unit will take approximately 90 minutes to complete.

1.4.1. Working with Files In this section, we'll cover how to write a Python socket script. Network sockets' are

1.4.2. Python Functions endpoints for sending and receiving data across the network. Simply put, they are the
backbone of server/client relationships. We'll only be covering client socket programming

1.4.3. Combining File Operations in a with Python to connect to a remote server.

Function

- 1.5. Modules and Web Requests

1 (Wikipedia, 2023), https:/fen.wikipedia.org/wiki/Network_socket «
1.5.1. Importing a Module

1.5.2. Web Requests

- 1.6. Python Network Sockets

1.6.1. Creating the Python Socket Client (c) 2023 OffSec Services Limited. All Rights Reserved.
+ 1.7. Puttina It All Toaether <
) Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t. e/ RedBl ueHit
My Kali VPN Maodules and Web Requests Pythan Metwork Sockets

Web Requests Creating the Python Socket Client

Resource Center

TEXT

1. Python Scripting Basics
-1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting

-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries

-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input

- 1.4. Files and Functions

1.4.1. Working with Files
1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

- 1.5. Modules and Web Requests

1.5.1. Importing a Module

1.5.2. Web Requests
- 1.6. Python Network Sockets
I 1.6.1. Creating the Python Socket Client

+ 1.7. Putting It All Together

Get Good at Python: Python Scripting ...

Creating the Python Socket Client

To get started with our Python network client script, we'll first need to import the socket module.

kali@kali:~% cat networkClient.py
#! fusr/bin/python

import socket

Listing 78 - The socket module is imported in our script
From here, we need to set a socket variable. In our case, we'll name ours s.

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
Listing 79 - The socket variable is set to 's'

The variable may seem complicated, so let's break down what each part of the socket declaration is.
There is a socket() function that has two parameters: AF_(NET and SOCK_STREAM.) The AF_INET
parameter specifies that the IP address will be an IPv4 address. The SOCK_STREAM parameter
specifies that the socket will use a TCP connection. Now that the socket variable is set, we can
connect to a remote server. Let's add the connection code now. For this demonstration, we'll use the
IP address 192.168.50.101 and port 9999.

s.connect(("192.168.50.181", 9999)})

Listing 80 - The socket is connected

It is important to note that the IP and port are provided as a single parameter in the connect()
function. Now that we added the connection code, let's check if the server sends anything to the
client. We can do this with the recv() function.

print(s.recv(1824))

Listing 81 - The data sent from the server will be displayed on the terminal

The receive value of 1024 in the above listing is the buffer size for the data receipt. This value sets
the number of bytes that can be received from the server. It can be changed to be lower or higher,

up to near 64,000 bytes. Raising our buffer to that size would be impractical, and 1024 bytes is a fair
amount to specify for typical usage.

After we receive the data from the server, we will close our socket connection with the close()

function. Let's add this and review our script.

kali@kali:~% cat networkClient.py
#! fusr/bin/python

import socket
s = socket.socket(socket.AF INET,socket.SOCK STREAM)
s.connect(("192.168.50.181", 9999))

print(s.recv(1824))
s.close()

Listing 82 - The Python network socket client is complete
Let's execute our script against the remote server to analyze the result.

kali@kali:~% ./networkClient.py
b*¥ou are connected.\nGoodbye'

Listing 83 - The client connected to the server, read the incoming data, and closed the connection
Interestingly enough, there is a b before the string of data. The string also has a newline character?
and didn't interpret that as a new line. The b is signifying that the data is in a binary format. On the
server, the data being sent is encoded. We can decode this data in our client with the decodef)
function. Let's modify the print() function to decode the data being received.

print(s.recv(1824).decode())

Listing 84 - The data received will now be decoded
MNow that we have decode() added to our print{) function, let's execute the script again.

kali@kali:~% ./networkClient.py
You are connected.
Goodbye

Listing 85 - The output from the server looks better

The server only sent some data. Of course, most service applications are much more complex and
can take data as input from the client.

The service on port 9999 will be changed to account for th

to send data. These are examples that should be read along with, as opposed fto
doing the activity. The service that we are connecting to on port 9999 will be
rewritten to show another type of interaction we can get from services of this
nature.

Since the service was changed, let's just send our script to the newly modified service to analyze
what may be on it.

kali@kali:~% ./networkClient.py
Please send a number to be squared

Listing 86 - The server is now requesting a number be sent

Now, the server is requesting a number to be sent to the socket so it will be squared and returned.
Let's send a number to the server with the send() function.

kali@kali:~% cat networkClient.py
#!fusr/bin/python

import socket
s = socket.socket(socket.AF_INET,socket.SOCK _STREAM)
s.connect(("192.168.50.181", 9999)})

print(s.recv(1824).decode())
s.send("5".encode())
s.close()

Listing 87 - The number is added with the send function and encoded

The number 5is sent as a string and enceded for the server to understand the value. Let's execute
the script again.

kali@kali:~% ./networkClient.py
Please send a number to be squared

Listing 88 - The message is the same as before

The message returned from the server is the same as before. This is due to us not reading any new
data that may have been sent as a result of our number. Let's add another recv() line to our script
before the connection is closed.

kali@kali:~% cat networkClient.py
#! fusr/bin/python

import socket
s = socket.socket(socket.AF_INET,socket.SOCK STREAM)
s.connect(("192.168.50.181", 9999)})

print(s.recv(1824).decode())
s.send (5" .encode())
print(s.recv(1824).decode())
s.close()

Listing 89 - The additional data should be printed

Let's execute the script again to test if the server sends anything after we sent the number 5.

I kali@kali:~% ./networkClient.py
| Please send a number to be squared
25

Listing 80 - The number we sent was squared and returned

In our last execution, the server did accept our number 5 and return its square, 25.

In this section, we covered how to create a Python network socket client to send and receive data
from a server.

1 (GeeksforGeeks, 2023), https://www.geeksforgeeks.org/socket-programming-python/ <
2 (wikipedia, 2023), https://en.wikipedia.org/wiki/Newline «

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

M. PythonExercises

Exercises

1. Define a variable named conn, and set that to a socket that uses an IPv4 address and a TCP
connection.

Answer View hints

Answer Verify

2. What is the function (in the socket module) to connect to a remote server? (supply only the
function name)

ANSWE

Answer Verify

3. How many parameters does the connect() function take?

Answe View hints

Answer Verify

4. What is the function to get data that is sent from a server? (supply only the function name)

ANsWwe

Answer Verify

5. What is the function to send data to a server? (supply only the function name)

AP A
ANswel

Answer Verify

B. Is the data sent in binary or text mode?

! A TS
Answer

Answer Verify

For the following exercises, create Python network socket client programs to meet the conditions of
each question.

7. Connect to the exercise host on port 6666. The flag will be provided by the server.

AP A
Answer

Answer Verify

8. Connect to the exercise host on port 7777 and fulfill the expected server demands.

Answer

Answer Verify

9. Connect to the exercise host on port 7777 and send unexpected data.

Answe

Answer Verify

Answer View hints

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deO0l1l | t.nme/RedBl ueHt

7 My Kali VPN

Python Network Sockets Putting It All Togethar
Python Natwork Sockets Putting It All Together

<

Resource Center

TEXT Get Good at Python: Python Scripting ...

- 1.3. Loops, Logic, and User Input

1.3.1. Loops Putting It All Together
1.3.2. Conditional Statements This Learning Unit covers the following Learning Objectives:
1.3.3. User Input 1. Write a program using pseudocode
2. Create a program flowchart
- 1.4. Files and Functions 3. Combine all of the previous sections to make a spider

181 Working vath Elles This Learning Unit will take approximately 180 minutes to complete.

1.4.2. Python Functions In this section, we'll be creating a program from scratch.

1.4.3. Combining File Operations in a We've covered a lot of material regarding Python scripting. Let's walk through the
Function development process of writing a complete and functional script that will leverage many of

the concepts we covered.
- 1.5. Modules and Web Requests

The script we will be writing is a web spider.! Before we get into working with actual Python
1.5.1. Importing a Module scripting, let's define what we want to create, how we plan to go about it, and write a

1.5.2. Web Requests program in pseudocode.

- 1.6. Python Network Sockets

1.6.1. Creating the Python Socket Client 1 (Wikipedia, 2023), https:/fen.wikipedia.org/wiki/Web_crawler <

- 1.7. Putting It All Together

1.7.1. Writing Programs in Pseudocode
1.7.2. Creating a Program Flowchart

9 9 (c) 2023 OffSec Services Limited. All Rights Reserved.
1.7.3. Creating the Spider <

} Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H de0l | t.nme/RedBl ueHt
My Kali VPN Fython Network Sockets Putting It All Together
5 Creating the Python Socket Client Writing Programs in Pseudocode

Resource Center

TEXT

1. Python Scripting Basics
- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input
- 1.4. Files and Functions
1.4.1. Working with Files
1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

- 1.5. Modules and Web Requests

1.5.1. Importing a Module

1.5.2. Web Requests
- 1.6. Python Network Sockets

1.6.1. Creating the Python Socket Client
- 1.7. Putting It All Together

I 1.7.1. Writing Programs in Pseudocode
1.7.2. Creating a Program Flowchart

1.7.3. Creating the Spider

Get Good at Python: Python Scripting ...

Writing Programs in Pseudocode

Before writing any program, we need to have an idea of what and how we want to accomplish the
task the program will complete. With this in mind, many programmers don’t take the time to organize
their programs. Instead, they jump directly into typing the code with the mindset that deing anything
else would be time wasted. We are not going to adopt that mentality. We will take the time to
organize our plan and write it in plain language (instead of writing it in the actual programming
language). This is called pseudocode.! The time spent writing our pseudocode will save us time in
the long run as we develop the program.

Let's begin with defining what the goal of our script is.

The script will doenload a web page, find all of the links on that page, and
recursively collect links on the website after following all of the links and display
them when complete.

Listing 91 - The goal of our script

This may sound like a cluttered definition. Let's break down what this program will do. The idea is
that the script will be supplied with a web page to make a request. From there, the script will search
for other links within the web page that was originally requested. It will store these links in a list and
follow each link programmatically and repeat the process until no unigue links are found. If this still
doesn't make sense, that's ok. We'll cover this further as we build and organize our pseudocode.

Let's get started with our pseudocode and how we might handle each part of the scripting process.
We defined the beginning step already.

1. The script will make a request to a web page - supplied by the user.

Listing 82 - The first step of the program

Mext, the script needs to collect any links inside the requested web page. This can be handled in
different ways, but we'll simplify this to parsing the web page for the "http" string to identify any
URLs on the page. These need to be stored in a list after they are parsed. Next, let's translate this
into pseudocode.

1. The script will make a request to a web page - supplied by the user.
2. The web page requested will be parsed to search for any URLs starting with 'http'.
3. Each found URL will be stored in a list variable.

Listing 93 - The pseduocode is expanded

MNow, the script will need to follow each found URL and repeat the process. There's an issue with our
idea though. What if the same URL is found on multiple of the found URLs in the list? We can create a
dictionary of the URLs with a value of whether they have been searched or not. In the beginning, no
URL, except the URL that was provided at the beginning of the script execution, should have been
followed. After we have a way to keep track of which URLs have been requested or not, we need to
repeat the request/parse process for each subseguent page. Let's modify our pseudocode to add
these new steps:

The script will make a request to a web page - supplied by the user.

The web page will be added to a dictionary (isFollowed) with a value of “yes'.

The web page requested will be parsed to search for any URLs starting with “http'.
Each found URL will be stored in a list wariable.

. Each URL in the list variable will be checked against the dicticnary (isFollowed) to
check if there is a “yes" entry for that URL link.

6a. If it has already been followed, the URL will not be requested again.

&b. If it has not been followed, the URL‘will be requested and repeat the above
process.

Wofa W e

Fs!mg 94 - There's a decision in the pseudocode

Control over the web spider is extremely important. We need to also accommodate for a scope in our
search term. We can add another search term in our parsing and handle it in a couple of ways. To
make sure we don't create any unnecessary traffic to websites, we'll be writing this spider for our
web server on the Exercise Host. We can filter URLs that do not end with the last octet of our
exercise host. This will prevent the spider from leaving our website and continuing to spider websites
that may have been referenced within ours.

Let's add this to our pseudocode with the ending action.

| 1. The script will make a request to a web page - supplied by the user.
2. The web page will be added tc a dictionary (isFollowed) with a value of 'yes'.
3. The web page requested will be parsed to search for any URLs starting with 'http’
and the last octet of our exercise host IP.
4. Each found URL will be stored in a list wvariable.
5. Each URL in the list wvariable will be checked against the dicticnary (isFollowed) to
check if there is a 'yes" entry for that URL link.
6a. If it has already been follcowed, the URL will not be requested again.
&b. If it has not been followed, the URL will be requested and repeat the above
process.
7. When the process is finished, print the list of URLs to the terminal each on their
own line.

Listing 95 - The pseudocode is complete, and we can move on to the next step.

MNow that we have our pseudocode finished, let's take a moment to review what we learned with the
following exercises:

1 (GeeksforGeeks, 2023), https://www.geeksforgeeks.org/how-to-write-a-pseudo-codef <

Exercises

1. What is it called when we write out a program outline in plain language?

Answe View hints

Answer Verify

2. Overall, does writing pseudocode before writing any programming language save time? (yes/no)

AP e A T
ANsWwe

Answer Verify

3. Pseudocode is written in the programming language we plan to use. (True/False)

Answe

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.ne/RedBl ueHit

| My Kali VPN

Putting It All Together Putting It All Together
Putting It All Together Creating a Program Flowehart

Resource Center

TEXT

1. Python Scripting Basics
- 1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input
- 1.4. Files and Functions
1.4.1. Working with Files
1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

-1.5. Modules and Web Requests

1.5.1. Importing a Module

1.5.2. Web Requests
- 1.6. Python Network Sockets

1.6.1. Creating the Python Socket Client

1.7. Putting It All Together

1.7.1. Writing Programs in Pseudocode

I 1.7.2. Creating a Program Flowchart

1.7.3. Creating the Spider

Get Good at Python: Python Scripting ...

Creating a Program Flowchart

To expand our organization into a format we can visualize, we'll begin creating a flowchart' of how
we expect our script to work. This will be translating our already written pseudocode into a graphical
medium.

Unlike writing pseudocode, creating a flowchart for the program may not be as valuable of an
investment in time. Despite this, it can help us further realize how our program should be structured
and translated into the programming language we are going to use. In our case, we will be writing a
Python script. We can visualize the flow and the shapes to operations in the programming language.
This will become more apparent as we continue making the flowchart.

For this Module, we'll be using the diagramming application Lucidehart.2 There is a free-to-use tier
that has limitations, but it should be fine with our need to create the flowchart for our web spider. We
won't go into the usage of Lucidchart or other diagramming applications. Instead, we'll simply focus
on translating our pseudocode to a visual format.

As a recap, let's review our pseudocode again.

1. The script will make a request to a web page - supplied by the user.

2. The web page will be added tc a dictionary (isFollowed) with a value of 'yes'.

3. The web page requested will be parsed to search for any URLs starting with 'http’
and the last octet of our exercise host IP.

4. Each found URL will be stored in a list wvariable.

5. Each URL in the list wvariable will be checked against the dicticnary (isFollowed) to
check if there is a "yes" entry for that URL link.

6a. If it has already been followed, the URL will not be reguested again.

6b. If it has not been followed, the URL will be requested and repeat the above
process.

7. When the process is finished, print the list of URLs to the terminal each on their
own line.

Listing 96 - The pseudocode we made earlier

Translating this into a flowchart may resemble the following image:

Start of
Program

User Input
Website/web
page

Store the
web URL in
the URL List

Web Request
of page

Web URL
stored in
dictionary
(isFollowed)
with 'yes'

Web Request
variable
parsed for
‘http' links

Does link have
the IP address of our
exercise host?

Ignore the
link

Check the
URL Link List
for the found

URL

Was the link) Ignore the
in the list? link

Store the link
in the URL
List

Are there
more links that were
found?

Read URL in
URL List

Check URL in
isFollowed
dictionary

Is the URL set to
‘ves' in the isFollowed
dictionary?

Was this Ignore and
read next

the last entry in the !
URL List? URL in URL

List

Print the URL
List to the
terminal

Figure 1: Web Spider Flowchart

At the beginning of the flowchart, we added a clear starting point in the diagram. The first thing that
we need for the program to succeed is a target URL, which will be supplied by the end-user. The
user may supply this as a terminal input or as a variable within the script. Despite having a flowchart,
we can decide on the mechanisms handling these tasks when we program our script later.

After the starting web URL is provided, the program will store this URL in a URL list. From here, the
program will request the webpage. After the webpage is requested and stored, the URL used will be
stored in a dictionary, called isFollowed, followed by a value of "yes". After this is stored, the
requested webpage will be parsed for any links that contain "http" in them.

With the webpage filtered for the "http" string in a link, the program will determine if that link
contains the IP address of our host. This is to keep our spider from wandering outside of our
targeted site. If it does have our target IP address, the link found will be checked in the URL list we
started before. If it is already there, that link will also be ignored. If it wasn't found, the link will get
stored in the URL list. The page will continue to get parsed for links with "http" in them and follow
this same behavior until all of the links are found and the appropriate action is taken on them.

When all the links are parsed out of the webpage, the program will refer to the URL list again.
Starting from the beginning of the list, the program will check if that URL is in the isFollowed
dictionary variable. If the URL is either not in the dictionary or has not had the value of "yes" set to it,
the URL will be used to request that webpage. It will then follow all of the steps covered above.

In the event the URL is set to "yes" in the isFollowed dictionary, the next URL list value will be read.
This next URL will be checked if it has been followed as well. These loops will continue until all of the
URL list values have been checked.

When the last URL list value check is complete, the URL list variable will be printed to the terminal.
Once all the discovered links are printed to the terminal, the application will close.

This concludes our flowchart of the spidering program. Let's move on to writing the script.

1 (Wikipedia, 2023), https:/fen.wikipedia.org/wikifFlowchart

2 {Lucidchart, 2023), https://www.lucidchart.com/pages/ <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H deOl | t.nme/RedBl ueHt

VPN

Putting It All Together Futting It All Togethear
Writing Programs in Pseudocode Creating the Spider >

Resource Center

TEXT

1. Python Scripting Basics
-1.1. Variables, Slicing, and Type Casting

1.1.1. Finding our Version of Python
1.1.2. Writing our First Python Script
1.1.3. Setting Variables
1.1.4. Data Types
1.1.5. Strings and Slicing
1.1.6. Integers
1.1.7. Floats
1.1.8. Booleans

1.1.9. Type Casting
-1.2. Lists and Dictionaries
1.2.1. Python Lists
1.2.2. Python Dictionaries
-1.3. Loops, Logic, and User Input
1.3.1. Loops
1.3.2. Conditional Statements
1.3.3. User Input
- 1.4. Files and Functions
1.4.1. Working with Files
1.4.2. Python Functions

1.4.3. Combining File Operations in a
Function

- 1.5. Modules and Web Requests

1.5.1. Importing a Module

1.5.2. Web Requests
- 1.6. Python Network Sockets

1.6.1. Creating the Python Socket Client
- 1.7. Putting It All Together

1.7.1. Writing Programs in Pseudocode
1.7.2. Creating a Program Flowchart

I 1.7.3. Creating the Spider

Get Good at Python: Python Scripting ...

Creating the Spider

MNow that we have our spider program idea in pseudocode and a flowchart, we'll translate this plan to
actual code. Instead of providing the entire code base and explaining it, let's work through each step
of programming this script as laid out in the flowchart. This way, we can conduct our scripting tests
while writing the program, instead of having a final solution up front.

As we know, we need to have the start of our program. Let's name our script webSpider.py and add
the shebang line.

kali@kali:~% cat webSpider.py
#! fusr/bin/python3

Listing 87 - The program file is started with the shebang

The shebang in this file is a bit different in that the interpreter is calling on python3 instead of just
python. This will ensure that Python version 3 is used for our script.

According to our flowchart diagram, our first action is to take user input of a webpage. The simplest
way for us to do this is to add a variable for this value. Let's add a variable called URL and assign it
to our exercise host address. For this demonstration, the address will be 192.168.50.101.

kali@kali:~% cat webSpider.py
#! fusr/bin/python3

URL = “http://192.168.50.101/"

Listing 98 - The initial URL has been set

With the initial URL set, we now need to store this in a URL list variable. We'll call ours ur/List. Instead
of creating the wriList variable with the initial value in it, let's start with setting the variable with no
values and add the URL variable in it.

kali@kali:~% cat webSpider.py
#! fusr/bin/python3

URL = "http://192.168.58.181/"
urllist = []

urlList.append{URL)

Listing 89 - The urllist list variable is defined and the URL is added to it

Instead of continuing forward, let's test our current code as written. The question is, "Are we
properly adding the value expected to the list variable?" The easy way to test this is to print the
urlList variable before and after the appendy) statement. Let's add this now.

kali@kali:~% cat webSpider.py
#! fusr/bin/python3

URL = "http://192.168.50@.181/"
urllist = []

print(urlList)
urlList.append(URL)
print(urlList)

Listing 100 - The debugging print functions are added

With the debugging print functions added, let's execute the script to make sure the uriList variable is
being handled appropriately.

kali@kali:~% chmod +x webSpider.py

kali@kali:~$./webSpider.py
[1
['http://192.168.50.101/"]

Listing 107 - The urlList has been appropriately populated

With our test, we now know that the URL value has been added appropriately to the uriList variable.
From here, we need to make a web request of that URL page and store it in a variable. As we
covered before, to do this, we must import a module called requests. From there, we can use that
module to make the request. We'll store the web request in a variable called page. For the sake of
cleaning up our code, let's remove those debugging print() functions as well.

kali@kali:~% cat webSpider.py
#!fusr/bin/python3

import requests

URL = “http://192.168.50.101/"
urllist = []

urlList.append(URL)

page = requests.get(URL)

Listing 102 - The requests module is imported and the URL is requested

With the requests module imported in the page variable population, we can take another moment to
debug our program. Let's add a print statement for the content of the web page after the request to
make sure we are pulling in what we expect.

kali@kali:~% cat webSpider.py
#! fusr/bin/python3

import requests

URL = "http://192.168.50@.181/"
urllist = []

urlList.append(URL)

page = requests.get(URL)
print(page.text)

Listing 103 - The debugging print statement is added to verify if the webpage is getting pulled in appropriately
With the debugging print statement in place, let's execute the script again.

kali@kali:~% ./webSpider.py
<!doctype html:
<html> <!-- used for the background of entire website -->

<head>
<!-- This cheesy site was made by RedHatAugust -->
<title>The Secret World of MPG</title>

Listing 104 - The page is being shown as expected

Great! This is what we expected. Now, let's remove the debugging print statement and move on to
the next step.

The next step in our flowchart is to store the URL in a dictionary variable called isFollowed and
assign it the value "yes". We'll approach this the same way as the urlList variable and define the
dictionary at the beginning of our script. From here, we can add the dictionary entry and its value
after the page request. We'll also add a debugging print statement after the entry to verify the
dictionary is populated correctly.

kali@kali:~% cat webSpider.py
#! fusr/bin/python3

import requests

URL = "http://192.168.58.181/"
wrllist = []
isFollowed = {}

urllist.append(URL)

page = requests.get(URL)
isFollowed[URL] = "yes"
print(isFollowed)

Listing 105 - The dictionary variable and entry are added
Let's execute the script to ensure it is working as expected.

kali@kali:~$./webSpider.py
{"http://192.168.50.101/": 'yes'}

Listing 106 - The dictionary has the expected values

Perfect! Now we will remove the print statement again and move on to the next step in our flowchart.

Here, we need to parse the page for any links that have "http" in them. We will accomplish this by
using a for loop with a split(/’ method. The spiit{) method will separate the variable based on a
newline character. Instead of going back and forth, let's do this with the debugging built-in to test if
we can iteratively read through each line in the page variable. To do this, we'll declare a counter
variable before the forloop and set the value to "0" Inside the loop, we will print the counter, the line
in the page variable, then increment the counter variable. For now, we have not considered the fact
we need to search for the "http" string.

kali@kali:~% cat webSpider.py
#! fusr/bin/python3

import requests

URL = "http://192.168.50@.181/"
urlLlist = []
isFollowed = {}

urlList.append(URL)

page = requests.get(URL)
isFollowed[URL] = "yes"

counter = @

for line in page.text.split({"\n"):
print{counter)
print({line)
counter = counter + 1

Listing 107 - The for loop is created to show each line of the page variable
With this, let's execute our script.

kali@kali:~% ./ webSpider.py

a

<!doctype html:

1

<html> <!-- used for the background of entire website -->
2

3
<head>
4
<!-- This cheesy site was made by RedHatAugust -->

Listing 108 - The loop is able to iterate through each line of the page variable

The goal of this step is to identify any link that has "http" in it. Let's remove the counter and print of
each line and modify the script to check if "http" is in the line it iterates. We will print only these lines
for this next step.

kali@kali:~% cat webSpider.py
#! fusr/bin/python3

import requests

URL = "http://192.168.5@.181/"
urlLlist = []

isFollowed = {}

urlList.append(URL)

page = requests.get(URL)
isFollowed[URL] = "yes™

for line in page.text.split({"\n"):

if "http" in line:
print(line)

Listing 109 - Each line will be searched for the "http" string and print it if it is found
Let's execute the script.
kali@kali:~% ./ webSpider.py

<link href="http://192.168.508.101/css/main.css” rel="stylesheet” type="text/fcss" />
<1li>Home

<f1i>

<1li>Getting Started
<f1i>

<1li>Techniques</1i>

<1li>Painting Tutorials
<f1i>

<1li>Miniature Manufacturers
<f1ix

<img class="imgRight” src="http://192.168.50.181/images/Crazy Gaming Table.jpg"
alt="Crazy Tabletop Game Setup!” caption="This is way more than I have ever seen, but
this is a wargamer's dream!"” width="208px" height="158px">
<!-- Image taken from:
https://c2.staticflickr.com/4/3844/2775801876_f168dfcb66_b.jpg -->
<1li>Getting Started

<fli>

<1li>Techniques</1i>

<1li>Painting Tutorials
<f1i>

<lirMiniature Manufacturers
<f1i>

<img class="imgRight" src="http://192.168.50.101/images/Painter-Tux-Beret-Art-
Artist-Brush-Blotch-Colour-161318.png" width="48px" height="37px" alt="Shhh... It's a
secret.”>

<!-- Image taken from: http://maxpixel.freegreatpicture.com/Painter-Tux-Beret-Art-
Artist-Brush-Blotch-Colour-161318 -->

Listing 110 - Every line in the page with "http" is printed to the terminal

In the output, there are links that do not contain the IP address of our host. Let's filter this further
with a nested if statement.

for line in page.text.split("\n"):
if "http" in line:
if "192.168.58.181" in line:
print(line)

Listing 111 - An additional string check for our IP Address is added under the check for the "http" string
Let's execute the script again to check if the output changes.
kali@kali:~% ./webSpider.py

<link href="http://192.168.50.101/css/main.css" rel="stylesheet” type="text/fcss" />
<1li>Home

<f1i>

<1li>Getting Started
<f1ix

<1li>Techniques</fa></1i>

<1li>Painting Tutorials
<f1i>

<1li>Miniature Manufacturers
<f1ix

<img class="imgRight" src="http://192.168.50.181/images/Crazy Gaming Table.jpg"
alt="Crazy Tabletop Game Setup!” caption="This is way more than I have ever seen, but
this is a wargamer’'s dream!"” width="288px" height="158px">
<1li>Getting Started

<f1i>

<1li>Techniques</1i>

<1li>Painting Tutorials
<f1ix

<1li>Miniature Manufacturers
<f1i>

<img class="imgRight" src="http://192.168.58.181/images/Painter-Tux-Beret-Art-
Artist-Brush-Blotch-Colour-161318.png"~ width="4@px" height="37px" alt="Shhh... It's a
secret.”>

Listing 112 - The finks are now limited fo those that contain the IP address of our target host

Instead of printing the line to the terminal, we need to filter out the links. We will do this with a start
and endindex to get the URL of each line and print that to the terminal. Let's do this the same way
as covered in the Strings and Slicing section of this Module.

start = "http"
end = "\"»"
for line in page.text.split("\n"):
if "http" in line:
if "192.168.58.181" in line:
print(line[line.index(start):1line.index(end)])

Listing 113 - The start and end index parameters are set and the line will be parsed
Let's execute the script and find out if we were able to parse the links correctly.

kali@kali:~% ./webSpider.py
Traceback (most recent call last):
File "/home/kali/./webSpider.py™, line 28, in <module>
print(line[line.index({start):1ine.index(end}])
ValueError: substring not found

Listing 114 - The substring fafled

The script failed to execute. The error message indicates that there is an issue with the substring, so
our parsing did not work as intended. Let's debug this issue to review what is going on. To start, let's
print the index values for the start and the end conditions.

start = "http"
end = "\">"
for line in page.text.split("\n"):
if “"http" in line:
if "192.168.58.1P1" in line:
print(line)
print(line.index(start))
print{line.index(end))
#print{line[line.index(start):1line.index(end)])

Listing 175 - The print functions should indicate where the indexes are being assigned
Let's execute the script again.

kali@kali:~% ./webSpider.py

<link href="http://192.168.50.101/css/main.css” rel="stylesheet” type="text/fcss" />
i
Traceback (most recent call last):

o

File "/home/kali/./webSpider.py”™, line 22, in <module>
print(line.index(end))
ValueError: substring not found

Listing 116 - The issue aEears to be with the end index

The script failed again. The jine and the startindex were printed to the terminal, which would
indicate that the endindex is the issue. Let's review the link lines again. To save time, only two lines
will be shown in the following listing.

<link href="http://192.168.58.101{css/main.css" rel="stylesheet" type="text/css" />
<lisHome

<f1i»

i f_isf.in_g 117 - The ending condition Is different between the lines displayed

In the example listing above, the URL links have a different ending condition. With this, we can't
create an index condition of ">"for all lines. Instead, the first line shown above ends the URL link
with a ' " condition. Let's write up a short /f/else statement to check for the potential ending
condition and set the end variable to the found condition.

start = "http"

for line in page.text.split("\n"):

if "http" in line:
if "192.168.508.181" in line:
if "\"*" in lime:

end = "\"»"
else:

end = "\" "
print(line)

print(line.index(start))
print(line.index(end))
#print{line[line.index(start):1line.index(end)])

Listing 118 - The iffelse condition is added to check for the potential ending index value
Let's execute the script again to analyze the difference in output.

kali@kali:~$./webSpider.py
<link href="http://192.168.50.101/css/main.css"™ rel="stylesheet" type="text/css" />

16

=8

<lizHome

<f1i>

25

73

Listing 119 - The script executed without failure

There's a lot of terminal output with the method we used to debug. Let's cut out all the debugging
statements and print the new URL values to find out if the slicing is working as expected.

start = "http"
for line in page.text.split("\n"):
if "http" in line:
if "192.168.508.181" in line:
if "3">" in line:
end = "\"»"
else:
end = "\" "

print{line[line.index(start):1line.index(end)])

Listing 120 - The debugging lines were removed and we should get the URLs on execution now
Let's execute the script to find the URL results.

kali@kali:~% ./webSpider.py

http://192.168.58.181/css/main.css

http://192.168.50.191/index. html” class="current
http://192.168.50.101/gettingStarted. html

http://192.168.50.101/techniques . html

http://192.168.58.101/tutorials. html

http://192.168.58.101/shops . html
http://192.168.50.101/images/Crazy_Gaming Table.jpg" alt="Crazy Tabletop Game Setup!”
caption="This is way more than I have ever seen, but this is a wargamer's dream!”
width="280px" height="158px

http://192.168.50.101/gettingStarted. html

http://192.168.50.101/techniques . html

http://192.168.58.101/tutorials. html

http://192.168.58.101/shops . html
http://192.168.58.191/images/Painter-Tux-Beret-Art-Artist-Brush-Blotch-Colour-
161318.png" width="48px" height="37px" alt="Shhh... It's a secret.

Listing 127 - There are lines that have more than the URL in the output

So close! There are many URL lines that are correctly sliced, but there are a few lines that have extra
HTML data in them. Let's set this to a variable and run an additional test on the variable to determine
if there are any quotes (") in the line. If there are, we can slice the line again with the end variable set
to """

start = “http™
for line in page.text.split("%n"):
if “http” in line:
if "192.168.50.181" in line:
if "4\"»" in line:
end = "\"»"
else:
end = "\ °
sliced = line[line.index(start):line.index(end)]
if "\"" in sliced:
end = "\""
print(sliced[sliced.index(start):sliced.index(end)])
else:
print(sliced)

Listing 122 - There is an additional check for quotes (") in the sliced line

If the sliced variable has quotes (") in it, it will be sliced an additional time with a new end condition
for the index. Otherwise, the program will assume the line was fine and print the sliced variable
without modification.

kali@kali:~$./webSpider.py
http://192.168.58.181/css/main.css
http://192.168.58.181/index. hitml
http://192.168.58.181/gettingStarted. html
http://192.168.58.181/techniques . html
http://192.168.58.181/tutorials. hitml
http://192.168.58.181/shops . hitml
http://192.168.58.181/images/Crazy Gaming_Table.jpg
http://192.168.58.181/gettingStarted. html
http://192.168.58.181/techniques.html
http://192.168.58.181/tutorials. html
hittp://192.168.58.181/shops . html
http://192.168.58.181/images /Painter-Tux-Beret-Art-Artist-Brush-Blotch-Colour-
161318.png

Listing 123 - The URL lines appear as expected

The output of the parsing algorithm we set appears to be working now. Now that we have the
expected output, we need to refer to the wrilist and add the link if it isn't in the list already. To do
this, let's take a moment away from this section of the code and add a custom function at the top of
our script called checkUrlList. This function will take a parameter and loop through the uriList list
variable to check if it exists or not. It will then return True or False based on the search result.

def checkUrlList{URL}:
if URL in wrllist:
return True
else:
return False

Listing 124 - The function takes an argument and checks each value in the urlList variable for that argument

As we've been doing, let's add debug print functions to test the function. Let's do this after our first
URL is added to the wriList list. We'll add one print statement that should result in a "True" return and
another that should result in a "False" return.

urlList.append(URL)
print(checkUrlList{URL))
print({checkUrlList("http://vww.offsec.com/

my oy
44

Listing 125 - The debug print functions are added
Let's execute the script and find out what each debugging statement returns.

kali@kali:~% ./webSpider.py
True
False

Listing 126 - The returns displayed to the terminal as expected

MNow that we validated the checkUriList function, let's incorporate it in the http parsing section. If the
link is found in the wriList, it will be ignored. If it is not on the list, it will be added.

We can remove all the debugging print() functions from the code as well. Instead of the print
functions, let's set the sliced value to a different variable, called parsedURL. For the sake of brevity,
we'll also add the debugging print statement outside of the loop to analyze if the sliced URLs were
added to the uriList variable.

start = "http"
for line in page.text.split("\n"):
if “"http" in line:
if "192.168.58.181" in line:
if "3"»" in line:
end = "\"»"
else:
end = "\" "
sliced = line[line.index(start):line.index(end)]
if "\"" in sliced:
end = "\""
parsedURL = sliced[sliced.index(start):sliced.index(end)]
else:
parsedURL = sliced

if checkUrlList(parsedURL) == False:
urlList.append{parsedURL)

print(urlList)

Listing 127 - The parsed links should be stored in the wriList list variable
Let's test the script and analyze the output.

kali@kali:~% ./webSpider.py

[*http://192.168.50.101/", "http://192.168.50.181/css/main.css’,
"http://192.168.58.101/index.himl", “http://192.168.50.181/getting5tarted. himl’,
*http://192.168.50.101/techniques.html®, ‘http://192.168.56.101/tutorials.himl’,
"http://192.168.50.101/shops.html”,
"http://192.168.58.181/images/Crazy_Gaming Table.jpg”,
"http://192.168.50.101/gettingStarted .html®, “http://192.168.58.181/techniques.html’,
http://192.168.50.101/tutorials .html, “http://192.168.58.101/shops.html”,
"http://192.168.58.101/images/Painter-Tux-Beret-Art-Artist-Brush-Blotch-Colour-
161318.png°]

Listing 128 - The URL links were added to the list

Now that the links were stored in the urilist variable, we can read the ur/list and compare the values
with the /sFollowed dictionary. If the entry doesn’t exist, the whole process needs to start over. If the
entry does exist and has a value of "yes", the URL entry will be skipped.

Let’s build another function that will handle checking if a URL is in the dictionary isFollowed and if
there is a value set to "yes" for that entry. If either one of these conditions is not met, the function
will return Fa/se. Let's name the function isFollowedCheck and put it after our previously written
function.

def isFollowedCheck(URL):
for entry in isFollowed.keys():
if URL != entry:
return False
else:
if isFollowed[URL] == "yes":
return True
else:
return False

Listing 129 - The function to check a URL and if the URL was requested

Let’'s test the function after we previously set the initial URL variable dictionary value to "yes". Again,
we'll test for a True and a False return.

isFollowed[URL] = "yes"
print(isFollowedCheck(URL))
print(isFollowedCheck("http://www.offsec.com/"))

Listing 130 - The debugging print functions are added after the initial URL was set to "yes" in isFollowed
Let's execute the script to test our function.

kali@kali:~% ./ webSpider.py
True

False

Listing 137 - The function works as expected

With the test of our function complete, we can remove the print() functions. This is where our
flowchart may come in handy. Our entire script flow is about to change with that loop from
determining if the URL was followed or not. If we analyze the flowchart, the flow of the program
should execute back to the beginning of our request operation.

We can interpret this choice to return to the beginning of our request operation to be a loop that
starts with that. Once the uriList list variable is exhausted and all links recorded in that list are
followed, the program will continue past the loop. The last thing we must do is print the uriList list to
the terminal. For the sake of presentation, let's put that in a for loop and print each link on its own
line.

Indentation matters in Python. The entire script will need to be shifted to the appropriate spacing
under the for loop and maintain the structure of the code already written. Here is our completed
spider script:

kali@kali:~% cat webSpider.py
#! fusr/bin/python3
import requests

URL = "http://192.168.56.101/"
urllist = []
isFollowed = {}

def checkUrlList{URL):
if URL in urllist:
return True
[EH
return False

def isFollowedCheck(URL):
for entry in isFollowed.keys():
if URL != entry:
return False
else:
if isFollowed[URL] == "yes"™:
return True
[E-H
return False

urllist.append(URL)

for URL in urllist:
if isFollowedCheck(URL) != True:
page = requests.get(URL)
isFollowed[URL] = "yes"

start = "http"
for line in page.text.split("\n"):
if "http" in line:
if "192.168.58.1P1" in line:
if "\"»" in line:
end = "\"»"
else:
end = "\" "
sliced = line[line.index(start):line.index(end)]
if "\"" in sliced:
end = "\""
parsedURL = sliced[sliced.index(start):sliced.index(end)]
else:
parsedURL = sliced
if checkUrlList(parsedURL) == False:
urlList.append(parsedURL)
isFollowed[parsedURL] = "no™

for URL in urllList:
print(URL)

Listing 132 - The script is completed by closing the logic loop through the uriList list variable
To finalize this, let's run the script to determine if our loop was successful.

kali@kali:~% ./ webSpider.py

http://192.168.58.101/
http://192.168.58.181/cs5/main.css
http://192.168.50.101/index. html
http://192.168.50.101/gettingStarted. html
http://192.168.50.101/techniques . html
http://192.168.58.101/tutorials. html
http://192.168.58.101/shops . html
http:/f192.168.58.181/images/Crazy_Gaming_Table.jpg
http://192.168.58.181/images /Painter-Tux-Beret-Art-Artist-Brush-Blotch-Colour-
16131&.png

Listing 133 - The spider printed out all the pages found on the site
The spider took a moment to complete the iterations and page requests. When completed, the links
are displayed to the terminal output.

Let's take a moment to practice what was covered with the following exercise.

1 (GeeksforGeeks), https://www.w3schools.com/python/ref_string_split.asp <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

M. PythonExercises

Exercises

1. Determine the IP address of the exercise host and replicate the spider script as covered in this
section. The flag will be a hidden link somewhere on the site and will be reported by the spider if it
works as designed.

Answer

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H deOl | t.me/RedBl ueHit

1 My Kali VPN

Putting It All Together Metwork Seripting
Creating a Program Flowchart Metwork Scripting o

Resource Center

TEXT

2. Network Scripting
+ 2.1. Write a Client with Python - |
+ 2.2. Write a Client Program in Python - Il
+ 2.3. Write a Server with Python
+ 2.4, Write a Port Scanner with Python
+ 2.5. Website Interaction with Python - |
+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

I———
Network Scripting
In this Module, we will cover the following Learning Units:
. Write a client program with Python - |
. Write a client program with Python - |l
. Write a server program with Python
. Write a port scanner with Python
. Website interaction with Python - |
. Website interaction with Python - Il
. Capture and send packets with Scapy

Mote that this Module relies on knowledge relevant to Linux administration, scripting, and
networking. Should you feel the need to, please brush up on those subject areas before
completing this Module.

Creating network scripts can improve our flexibility, consistency, and efficiency when it
comes to interacting with targets over a network. The ability to write our own network scripts
can help us dramatically reduce the number of repetitive tasks we need to make. Perhaps
mare importantly, it ¢can allow us to understand how programs and applications communicate
with each other on a deeper level.

In some cases, we can even write our own network scripts to troubleshoot tools when they
are not working as expected. In addition, writing our own network scripts can come in handy
when we do not have access to tools, for example, on a compromised target. It can be time-
consuming to transfer our normal programs and tools onto a target system, and they can get
flagged by antivirus or other security defenses that are in place.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t. e/ RedBl ueHit

' My Kali VPN

Putting It All Together ‘Writa a Client with Python - |
Creating the Spider Write a Client with Python - |

>

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

2.1.2. Socket Methods

+ 2.2. Write a Client Program in Python - Il
+ 2.3. Write a Server with Python

+ 2.4, Write a Port Scanner with Python

+ 2.5. Website Interaction with Python - |

+ 2.6. Website Interaction with Python - |l

Capturing and Sending Packets with
" Scapy

<

Get Good at Python: Network Scripting

Write a Client with Python - |
This Learning Unit covers the following Learning Objectives:

1. Understand the concept of network sockets and their use cases
2. Build a basic networking client in Python
3. Use a loop to initiate multiple connections to a listening server

(c) 2023 OffSec Services Limited. All Rights Reserved.

Metwork Scripting Write a Client with Python - |
HNetwork Scripting Building a Basie Client

<

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

| My Kali VPN

>

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

I 2.1.1. Building a Basic Client

2.1.2. Socket Methods

+ 2.2. Write a Client Program in Python - Il
+ 2.3. Write a Server with Python

+ 2.4. Write a Port Scanner with Python

+ 2.5. Website Interaction with Python - |

+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

Building a Basic Client

Although there are many programming languages that we can use to complete our tasks, Pythonis a
very popular language that penetration testers use to create their network scripts. This is due to its
ease of use and the large number of libraries available for it.

For programs and systems to communicate with each other on a network, they use sockets' and the
socket APF to send messages back and fourth. A socket? is essentially an endpoint that allows
network communication to flow between two programs running over a network. We can implement
network sockets on several different channel types.

As we beagin to write our scripts, we recommend that you follow along and type the syntax in your
own Python files. Try not to copy/paste the code, because writing it yourself can help reinforce
understanding and memory.

Let's use the following Python code to start creating a script that uses the socket* module. We'll
import the socket library for our Python script, and then call the socket.socket method.

#! fusr/bin/python3
#client.py

import socket

s = socket.socket(<socket_family>, <socket type>, <protocol:)

Listing 7 - Initial Python script

Above, we set the socket.socket method to the variable s. The socket.socket method itself contains
three (currently unset) variables: socket_family, socket_type, and protocol. Let's examine these
variable placeholders.

The socket_family variable allows us to specify a protocol domain that will act as the transport
mechanism. The most common, AF_INET, is used for IPv4 Internet addressing and AF_INETH is used
for IPvB Internet addressing. AF_UNIX is the address family for Unix Domain Sockets (UDS).5 This
socket family allows the aperating system to pass data directly from process to process, without
going through the network stack.

The socket_type variable allows the communication between two endpaints. The socket type is
usually either SOCK_DGRAM for the User Datagram Protocol (UDP)® or SOCK_STREAM for the
Transmission Control Protecol (TCP).”

The protocol variable can be used to specify the protocol number. It is usually set to 0, which is the
default value that will be set if it is not specified.

To supply these variables with values, we will create a socket that will communicate with an IPv4
address ta transmit our communication over TCP.

[#! fusr/bin/python3
| #client.py

import socket

client = socket.socket(socket.AF INET, socket.SOCK STREAM)

Listing 2 - Creating an IPv4 TCP socket

Motice that we have not specified a protocol, so it will default to a value of 0 as mentioned above.

We will continue to expand on this script as we create our client. Before we proceed, we need to
understand some of the methods that are built into the socket module. We'll slowly build up our
client by applying each relevant method. At the end of this process, we will have a fully functional
networking client that can handle errors and receive data of arbitrary length.

1(Steve's Internet Guide, 2021), http://www.steves-internet-guide.com/tcpip-ports-sockets/ <

2 (Python Software Foundation, 2021), https://docs.python.org/3/library/socket.html <

3 (Geeks for Geeks, 2021}, https://www.geeksforgeeks.org/socket-programming-python/ <

4 (Python Software Foundation, 2021}, https://python.readthedocs.io/en/latest/library/socket.html <
5 (Wikipedia, 2021), https://en.wikipedia.org/wiki/Unix_domain_socket <

& (Wikipedia, 2021), https://en.wikipedia.org/wiki/User_Datagram_Protocol «

7 (Wikipedia, 2021), https://en.wikipedia.org/wiki/Transmission_Control_Protocol <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

| My Kali VPN

Write a Client with Python - | ‘Write a Client with Python - |
Write a Client with Pythen - | Socket Mathods

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

I 2.1.2. Socket Methods

+ 2.2. Write a Client Program in Python - Il
+ 2.3. Write a Server with Python

+ 2.4. Write a Port Scanner with Python

+ 2.5. Website Interaction with Python - |

+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

Socket Methods

The most common type of socket applications are client-server applications, such as the one we are
currently building. This involves a client making a request to the server. The client then receives a
response from the server.

The socket module comes with various methods to facilitate the various actions a client (or a server)
will make during such a communication. There are three sets of socket methods that we need to be
aware of: client socket methods, server socket methods, and general socket methods. Usually -
though not always - a client will invoke client socket methods, a server will invoke server socket
methods, and both programs can make use of the general methods.

The socket.gethostname() method’ returns the name of the current system. We'll be using it in our
scripts to test execution on our local machine. This means that if we want to run our scripts against
an external server, we'll need to specify the IP address of the remote target.

#! fusr/bin/python3
#client.py

import socket

client = socket.socket(socket.AF INET, socket.SO0CK STREAM)
host = socket.gethostname()
port = BOB@

Listing 3 - Setting the target and port

In the above listing, we specify our own localhost with the socket.gethostname() method, and then
we specify the port we want to connect on as an integer.

The socket.connect{address) method? is used to initiate a connection with the server. The method
requires that we specify a single host and port to connect on, which we defined in the host and port
variables.

#!fusr/bin/python3
#client.py

import socket

client = socket.socket(socket.AF INET, socket.S0CK _STREAM)
host = socket.gethostname()
port = B@&@

client.connect((host, port)) # Connect to our client
Listing 4 - Initiating a connection
Motice the double parentheses within the s.connect{(host, port)) syntax. The reason for this is
because the socket module treats (host, port) as a single argument. If we only included one pair of

parentheses, Python would interpret our syntax as attempting to provide two arguments to a method
that only accepts one.

MNow that we understand how to use the socket.connect method, there are some general socket
methods that we need to become familiar with to use with our client so that it can receive data and
terminate.

The socket.recv(bufsize) method? allows the client to receive a TCP message from the socket. The
bufsize (buffer size) argument defines the maximum amount of data that the method can receive at
any one time.

#! fusr/bin/python3
#client.py

import socket

client = socket.socket(socket.AF TINET, socket.S0CK _STREAM)
host = socket.gethostname()
port = BO&@

client.connect((host, port)) # Connect to our client
msg = client.recv(1624)
print (msg.decode('ascii’))
Listing 5 - Receiving and displaying data
In the above listing, a client would connect to a server, and then print out any data it receives from
the server via the socket.recv() method.

We now have enough code to connect to a server.

If vou are following along, vou will not yet have the server code to test out your

re that the client code you have written is

client, so for now simply make s

identical to the code above.

kali@kali:~% python3 client.py
Connection Established

Listing & - C&ecrmg to a server

In the above listing, we execute our client against a server running on our own localhost, and receive
a message from the server that the connection has been established.

The socket.close() method® is pretty straightforward as it will just close the socket. This can be
invoked from either end and will terminate the connection between the client and the server.

#! fusr/bin/python3
#client.py

import socket
tlient = socket.socket(socket.AF TINET, socket.S0CK _STREAM)
host = sacket.gethostname()

port = BO&@

client.connect((host, port)) # Connect to our client

msg = client.recv(1624)
client.close()

print (msg.decode(’ascii’))

Listing 7 - Closing the connection

We've now built up a fully functioning client program in Python. Let's review what we've learned so
far. Our script is designed to connect to a local server that is running on port 8080. The
socket.connect() method will establish the connection. If the connection is successful, the client will
receive a message from the server with socket.recv(). The socket.close() method will close the
client, and then the print function® will decode and display the message from the server.

Once we have finished writing the program, we need to save the file to our system. We'll call it
client.py.

1 (Python Software Foundation, 2021},
https://docs.python.org/3/library/socket.ntml#socket.gethostname «

2 [Python Software Foundation, 2021),
https:{/docs.python.org/3/library/socket.htmi#socket.socket.connect «

3 (Python Software Foundation, 2021),
https://docs.python.org/3flibrary/socket.htmi#socket.socket.recy <

4 (Python Software Foundation, 2021),
https://docs.python.org/3/library/socket.ntml#socket.socket.close <

5 (Python Software Foundation, 2021), https://docs.python.org/3/library/functions.htmi#print <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Scripting

Exercises

1. What socket family will allow us to connect to a system that has an IPv4 Address?

ANSWE

Answer Verify

2. Take a look at the following syntax: s.connect{("127.0.0.1",8090)) . What kind of socket method is
the method being invoked here?

Client
Server
Socket
General

0N m =

Answer

Answer Verify

3. This is a scripting exercise. Use Python to connect to the server on port 2000 of the provided VM.
When a client connects to the server, it will receive a certain response. With your Python script,
send this exact response back to the server, and you will receive a second response. Your task is
to send and receive 10 connections to and from the server within 15 seconds to obtain the flag.

Answe View hints

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H deOl | t.me/RedBl ueHit

| My Kali VPN

Write a Client with Python - | Write a Client Program in Pythan - ||
Building a Basie Client Write a Client Program in Pythen - 1|

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - Il

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

+ 2.3. Write a Server with Python

+ 2.4, Write a Port Scanner with Python

+ 2.5. Website Interaction with Python - |
+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

<

<

Get Good at Python: Network Scripting

Write a Client Program in Python - Il
This Learning Unit covers the following Learning Objectives:

1. Add error handling mechanisms to a Python networking client
2. Handle data of unknown size with a Python networking client
3. Create interactive sockets to dynamically communicate with a listening server

(c) 2023 OffSec Services Limited. All Rights Reserved.

Write a Client with Python - | Write a Client Program in Pythan - ||
Socket Methods Error Handling: Try and Except Clauses

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

| My Kali VPN

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

2.1.2. Socket Methods
- 2.2. Write a Client Program in Python - Il

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

+ 2.3. Write a Server with Python

+ 2.4. Write a Port Scanner with Python

+ 2.5. Website Interaction with Python - |
+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

<

Get Good at Python: Network Scripting

Error Handling: Try and Except Clauses

Sometimes, our client code may not work as desired, because the server responds in a way that we
don't expect, or because it isn't working properly. To make our program more robust, we can
introduce error handling' that will tell the client what to do if it encounters an error.

Python makes use of fry and except statements to handle errors. Here is an example of what a try
and except pair might look like in psedo-code.

try:
do something
break

except <exception type>:
print an error statement

Listing 8 - Some try/except psuedo-code
A try statement attempts to execute any code within the try block. If the code within the try block
executes successfully, the program will skip over the except block and continue its execution flow.

If, however, it does encounter an error (also known as an exception), execution flow will immediately
jump to the corresponding except block with the corresponding exception type. Then, the code
within the except block is executed to handle the exception. Once the except block is finished
executing, the program will continue its execution flow.

Finally, if there is no corresponding exception type for the error encountered within the fry block, the
program will stop its execution because it won't know how to continue. This is called an unhandled
exception.

Let's go ahead and add try and except statements to our Python client.

#! fusr/bin/python3
#client.py

import socket
client = socket.socket(socket.AF INET, socket.S0CK STREAM)

host = socket.gethostname()
2088

port

try:
client.connect((host, port))
msg = client.recv(1024)
client.close()
print (msg.decode('ascii'))

except ConnectionRefusedErrop:

TR
=

print ("The server is npt @ccepting eur connection request
exit(1)

print ("This sentenge will ‘enly ppint if the except block was not executed.")

LTsn’ng 9 - Adding a try/except to our client

The above code checks for the specific exception called ConnectionRefusedError, which indicates if
a server is unwilling, or unable, to accept the client's connection. We can run our client code against
a non-existent server to validate the try and except blocks.

kali@kali:~% python3 client.py
| The server is not accepting our connection request!

Listing 10 - Attempting to connect to a non-existent server

Notice how the last line of our program is not executed. This is because the except block prints a
statement and then exits the program before the last line can be run.

Here, we are only using the except block to print a statement and exit. However, we could create far
more complex instructions, allowing our program to perform diagnostics, connect to another server,
or do some unrelated thing. In the following exercise, you will use try and except statements to allow
the program to reconnect to a server an arbitrary number of times.

1 (Python Software Foundation, 2021), https://docs.python.org/3/tutarialferrors.html <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Scripting

Exercises

1. The server running on port 2001 of the provided VM is buggy; it only responds sometimes. Make
sure that your client program has a means of handling errors and reconnecting. As in the previous
exercise, connect 10 successful times in 15 seconds to obtain the flag.

View hints

A =
Answe

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.ne/RedBl ueHit

| My Kali VPN

Write a Client Program in Pythen - 1|
Write a Client Program in Python - Il

Write a Client Program In Pythan - |l
Handling Unknown Data Size >

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - Il

2.2.1. Error Handling: Try and Except
Clauses

I 2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

+ 2.3. Write a Server with Python

+ 2.4, Write a Port Scanner with Python

+ 2.5. Website Interaction with Python - |
+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

Handling Unknown Data Size

In the above demonstration, we've assumed that the server is only going to send our client 1024
bytes of data. Sometimes, we may not be able to anticipate the exact size of the server's response.
Let's execute our client against a server that will send us more than 1024 bytes and examine what
happens.

We've adjusted our server to send the "Connection Established" string followed by 2000 "A"
characters. We'll then execute our client code and pass the results to sed, tr, and wc to count the
exact number of A's we receive from the server.

kali@kali:~% python3 client.py | sed 's/[*A]l//g" | tr -d "\n" | wec —c
1882
Listing 11 - Counting the A's from the server
Since the "Connection Established " string is 22 characters long, only 1002 out of 2000 A's are sent

to the client. This is because our implementation of the socket.recv method only allows 1024 bytes
of data to be received by our client.

The socket module documentation suggests that the value used for each particular socket.recv call
should be a small power of 2, such as 1024, 2048, or 4096. When we don't know how many bytes
we'll be receiving, we can process the response in a loop by using smaller chunks until all data has
been received. In the following exercise, you will add a loop to the client program so that it can
receive arbitrary chuncks of data.

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Scripting

Exercises

1. Connect to the server on port 2002 of the provided VM. The response you receive will be of
unknown length, so build in some provisions in your client script to handle the responses using
loops. You will need to connect to the server several times to receive the flag.

we View hints

A &
ANS

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deO0l | t.nme/RedBl ueH t

| My Kali VPN

Write a Client Program in Python - ||
Error Handling: Try and Except Clauses

Write a Client Program in Pythan - ||
Interactive Sockets

< >

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

2.1.2. Socket Methods
- 2.2. Write a Client Program in Python - Il

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

I 2.2.3. Interactive Sockets

+ 2.3. Write a Server with Python

+ 2.4. Write a Port Scanner with Python

+ 2.5. Website Interaction with Python - |
+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

Interactive Sockets

Sometimes we may want to establish a connection with a server, and then send it data based on the
information it provides us. To do this, we can create an [nteractive Socket with the Telnet library.!
Let's begin with our original client code, and import telnetlib.

#! fusr/bin/python3
#interactive-client.py

import socket
import telnetlib

client = socket.socket(socket.AF INET, socket.SO0CK STREAM)
host = socket.gethostname()
port = E088

client.connect((host, port)) # Connect to our client
msg = client.recv(1824)
client.close()

print (msg.decode('ascii'))

Listing 12 - Importing tefnetlib

The telnetlib allows for an implementation of the Telnet? protocol. We will be modifying our script to
make use of the telnetiib.interact() method, which will allow us to interact with the server
dynamically. To implement this method, we'll create a function that we will call after our client has
connected to the server.

#! fusr/bin/python3
#interactive-client.py

import socket
import telnetlib

def interact(socket):
t = telnetlib.Telnet()
t.sock = s
t.interact()

client = socket.socket(socket.AF INET, socket.S0CK STREAM)
host = socket.gethostname()
port = 2088

client.connect((hest, port)) # Connect to our client
msg = client.recv(1824)
print (msg.decode('ascii’))

client.close()

Listing 13 - Defining the interact function

Motice that the function that we've created is named "interact”. But the name of the telnet function is
also called "interact"! This is not essential: we could call our function whatever we wish. However, it
is a good reminder that we should always understand the scope® of different code blocks so that we
do not become confused.

The mechanism that allows this client to maintain interactivity with the server is all done via Telnet’s
own interact function. This function sets up a while true loop that keeps reading and writing data.
Since while true is always true, it continues to read and write data from and to the server until the
connection is severed.

Mext, we'll call our new function after we connect to the server.

#! fusr/bin/python3
#interactive-client.py

import socket
import telnetlib

def interact(socket):
t = telnetlib.Telnet()
t.sock = socket
t.interact()

client = socket.socket(socket.AF TINET, socket.S0CK STREAM)
| host = socket.gethostname()
port = BO&@

client.connect((host, port)) # Connect to our client
msg = client.recv(1624)

print (msg.decode(’ascii’))

interact({client)

client.close()

Listing 14 - Interacting with the socket

In the above listing, our client code is now capable of interacting dynamically with the server it
connects to. Note that this functionality depends on two things:

1. The server must allow the connection to stay open. If it closes the connection, our client will
not be able to send any further data.

2. The server must be configured to receive the data we send to it. Since we haven't yet
implemented our own server, you can try the above client code against the remote VM in the
following exercise.

1 (Python Software Foundation, 2021), https:/{docs.python.org/3/library/telnetlib.html «
2 (Wikipedia, 2021), https://en.wikipedia.org/wiki/Telnet <

3 (Wikipedia, 2022), https://en.wikipedia.org/wiki/Scope_(computer_science) <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

&, Network-Scripting

Exercises

1. Use your Python skills to connect to the server on port 2003 of the provided VM. The server will
send any clients that connect to it some questions. Answer all the questions correctly to obtain
IGERIETR

ANSWE

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

- My Kali VPN

Write a Client Program in Pythen - 1| Writa a Server with Python
Handling Unknown Data Size Write a Server with Python

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - |

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

- 2.3. Write a Server with Python
2.3.1. Building a Basic Server
2.3.2. Testing our Client and Server

+ 2.4. Write a Port Scanner with Python
+ 2.5. Website Interaction with Python - |

+ 7 A Wahesita Intaractinn with Puthan - 1 <

<

Get Good at Python: Network Scripting

Write a Server with Python
This Learning Unit covers the following Learning Objectives:

1. Understand the server socket methods, like socket.bind and socket.listen
2. Build a basic networking server in Python
3. Implement interactive sockets in a client and server

(c) 2023 OffSec Services Limited. All Rights Reserved.

Write a Client Pragram in Python - I Write a Server with Pythan
Interactive Sockets Building a Basie Server

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

| My Kali VPN

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - |

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

- 2.3. Write a Server with Python

I 2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server

+ 2.4, Write a Port Scanner with Python
+ 2.5. Website Interaction with Python - |
+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

Building a Basic Server

We'll start building our sever by importing the socket module, initializing a socket, and defining a
host and port:

#! fusr/bin/python3
#server.py

import socket

server = socket.socket(socket.AF TINET, socket.S0CK STREAM)
host = socket.gethostname()
port = BO&@

Listing 15 - Initial server code

Mote that this code is almost identical to the beginning of our client-side code. We'll now introduce a
few more socket methods that our server will need to make use of.

The socket.bind(address) method! binds, or assigns, a specific port to our program. In this case, we
want to bind our server to the port we defined in the port variable.

#! fusr/bin/python3
#server.py

import socket

server = socket.socket(socket.AF TINET, socket.S0CK _STREAM)
host = socket.gethostname()
port = BO&@

server.bind((host, port))

Listing 16 - Binding to a port

Like the socket.connect method, socket.bind expects a complete address as input in the format of
(host, port). This is why there are double parentheses in the method call.

The socket.listen{int) method? tells the server to listen for incoming connections and expects an
integer.

#! fusr/bin/python3
#server.py

import socket

server = socket.socket(socket.AF TINET, socket.S0CK _STREAM)
server = socket.gethostname()
port = BO&@

server.bind((host, port))
server.listen(2) # Wait for a client connection. Only 2 clients can connect to the
server

print('Server is listening for incoming connections')

Listing 17 - Listening for a client connection

The integer specified in socket listen() represents the number of clients the server will allow to
connect to itself simultaneously. Once the server is listening, it reports its status via the print
function.

The socket.accept() method? returns a pair of values (conn, address) where conn represents a new
socket that will send and receive messages, and address represents the client address bound to the
socket.

#! fusr/bin/python3
#server.py

import socket

server = socket.socket(socket.AF TINET, socket.S0CK _STREAM)
server = socket.gethostname()
port = BO&@

server.bind((host, port))

server.listen(2) # Wait for a client connection. Only 2 clients can connect to the
server

print(‘Server is listening for incoming connections')

while True:
conn, address = server.accept() # Establish the connection with the client
print({"Connection Received from %s" ¥ ste(addr))

_!Eu'ng 18 - A#ol;ving inceming connections

In the above listing, we start a while True® loop that allows incoming connections via the newly
created conn, address pair. Once a connection has been established, our server will report that the
connection has occured.

The socket.send(bytes) general socket method® allows a client or server to send data to the socket.
This data can then be received via the socket.recv method. The bytes argument will provide several
bytes that will be sent to the socket. Specifying these bytes can change how the method interacts
with the receiving machine.

! /fusrfbin/python3
I #server.py

import socket

server = socket.socket(socket.AF INET, socket.S0CK STREAM)
server = socket.gethostname()
port = 2088

server.bind((host, port))

server.listen(2) # Wait for a client connecticn. Only 2 clients can connect to the
server

print('Server is listening for incoming connections')

while True:
conn, address = server.accept() # Establish the connection with the client
print("Connecticn Received from ¥s" X str(addr))
msg = "Connection Established'+ "\r\n"
conn.send(msg.encode("ascii'))

Listing 19 - Sending data to the socket

In the above listing, we use the new conn socket to send the text "Connection Established” to the
client once it connects to the server.

We have now almost completed our server. The last functionality we will add is the ability to close
the socket from the server-side with socket.close().

#! fusr/bin/python3
#server.py

import socket

host = socket.gethostname()
port = BO&@

server = socket.socket(socket.AF _TINET, socket.S0CK _STREAM)
server.bind({host,port))

server.listen(2)

print(Server is listening for incoming connections')

while True:
conn,addr = server.accept()
print("Connection Received from %s" % str(addr))
msg = "Connection Established’+ "\rin"
conn.send (msg. encode("ascii'))
conn.close()

Listing 20 - Closing the socket

Notice how we close the conn socket and not the original server socket, to allow our server to keep
running and to accept further connections.

Let's summarize what we have learned. After creating a new socket, we use the socket.bind()
method, which binds the program to a specified IP address and port. This allows the server to listen
for incoming requests. To make sure the server is listening for these requests, we use the
socket.listen() method. Once the client has requested to connect, we use the socket.accept()
method to accept the connection, and the socket.send() method to send a message back to the
client. Finally, we invoke socket.close() to terminate the connection.

Once the script has been written, we will save the Python program as server.py.

1 (Python Software Foundation, 2021),
https://docs.python.org/3/library/socket.htmi#socket.socket.bind <

2 (Python Software Foundation, 2021),
https://docs.python.org/3/library/socket.htmi#socket.socket.listen «

3 (Python Software Foundation, 2021),
https://docs.python.org/3/library/socket.html#socket.socket.accept «

4 (Python Software Foundation, 2021),
https://docs.python.org/3/reference/compound_stmts.htmi#while «

5 (Python Software Foundation, 2021),
https://docs.python.org/3/library/socket.htmi#socket.socket.send <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deOl | t.nme/RedBl ueH t

- My Kali VPN

Write a Sarver with Pythan
Write a Server with Python

Write a Server with Python
Testing our Client and Server

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - |

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

I 2.3.2. Testing our Client and Server

+ 2.4, Write a Port Scanner with Python
+ 2.5. Website Interaction with Python - |
+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

Testing our Client and Server

To complete this section of the Learning Unit, a working version of the Python client built in the
"Write a Client Program in Python' Learning Units is required.

MNow that we have built our client and server programs, let's find out if we can get them to work
together. First, we'll open up two terminal windows: one to run the client and the other to run the
server. In Terminal One, we start our server and should receive the following output on the console:

kali@kali:~% python3 server.py
Server is listening for incoming connections

Listing 21 - Starting our server
We then run the client program in the Terminal Two window. We should receive the following output:

kali@kali:~% python3 client.py
Connection Established

kali@kali:~%

Listing 22 - Running our client

To confirm that the connection between our client and our server was successful, we can check the
Terminal One window running the server.

kali@kali:~% python3 server.py
Server is listening for incoming connections
Connection Recieved from ('127.8.9.1°, 48984)

Listing 23 - Qutput from the server

Above, notice how port 48904 is allocated to the client after initiating a socket connection to the
server on port 8080. Reading through our client and server Python code, we never specified the
number 48904 anywhere. When you execute your own version of the program, you'll find that a
different number is used. This is because the operating system itself automatically allocates a
temporary ephemeral port' based on a pre-defined range, to ensure that a port is always available to
assign to a connecting client. This allows multiple clients to connect simultanecusly.

1 (Wikipedia, 2021), https://en.wikipedia.org/wiki/Ephemeral_port «

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Seripting

Exercises

1. What three methods do we need to implement in a server to allow remote clients to connect to it?
Mame the three methods in alphabetical order. Prepend each method with "socket.".

Answer View hints

Answer Verify

2. How many values does the socket.accept() method return?

Answe

Answer Verify

3. This is a scripting challenge. First, make sure that your server can accept at least four connections
at once. Then, use SSH to login to the container running on port 2004 of the target VM with the
credentials root:root. Run the binary located at /root to connect back to your server and receive
IGERIETR

A =
Answe

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit

| My Kali VPN

Write a Server with Python
Building a Basic Server

Write a Port Scanner with Python
‘Write a Port Scanner with Python

Resource Center

TEXT Get Good at Python: Network Scripting
-

2. Network Scripting
- 2.1. Write a Client with Python - 1 Write a Port Scanner with Python

e R This Learning Unit covers the following Learning Objectives:
2.1.1. Building a Basic Client

1. Understand how a port scanner retrieves information from targets

2. Use the time module in Python to track how long a program runs for
3. Build a basic port scanner in Python with the time and socket modules
4. Understand and apply the concept of port knocking

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - 1|

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

(c) 2023 OffSec Services Limited. All Rights Reserved.
- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server Write a Server with Python Wirite a Part Seanner with Python
< TGETI'HQ our Client and Server Using the Socket Module to Create a Port S...

- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner <

) Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt
My Kali VPN

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods
- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets
- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking

+ 2.5. Website Interaction with Python - |
+ 2.6. Website Interaction with Python - 1l

Capturing and Sending Packets with
" Scapy

<

Get Good at Python: Network Scripting

Using the Socket Module to Create a Port Scanner

In this Learning Unit, we are going to build a simple port scanner using the socket and time' libraries.
Port scanning allows us to locate open ports that are available on a particular host. As penetration
testers, we can configure our port scanner to retrieve information about the ports, assess what
services are running on each port, and even guess which OS may be running on the host.

We'll begin our script by importing the relevant modules and by invoking the time.time() method.?

#! fusr/bin/python3
#scanner. py

import socket
import time
startTime = time.time()

Listing 24 - Qur initial Python code

The time.time() method returns the time at which the Python interpreter runs the line of code it is
located on. We use this method to store the initial time of the program's execution in the startTime
variable.

At the end of the script, we'll use time.time() once again to store the future time in another variable
(endTime). By subtracting the value of endTime from startTime, we can calculate how long it takes
for the program to complete its total execution.

Mext, we'll allow the user to specify which target they want to scan via the input method. We then

use socket.gethostbyname()® to convert the provided hostname into an IP address.

#! fusr/bin/python3
#scanner. py

import socket
import time

startTime = time.time()

target = input('Please specify the host that you want to scan: ")
target IP = socket.gethostbyname(target)
print ('Initiating Scan for host: ', target IP)

Listing 25 - Allowing the user to specify a target

Alternatively, we could omit the line beginning with "target_IP", and simply allow the user to provide
an IP address as input rather than a hosthame.

Wien you execute your scan against the exercise machine, you may want to

just this portion of the script.

ar
Ll

Next, we'll employ a for loop to determine which ports we want to scan on our target. Instead of the
familiar socket.connect() method, we'll use socket.connect_ex(}* to initiate the connection.
socket.connect_ex() does the same thing as socket.connect(), but it returns an error indicator upon
success or failure. In particular, it will return 0 when it executes successfully. This means that when 0
is returned from this method, we know that the specific port we were scanning at the time was open.

#! fusr/bin/python3
#scanner. py

import socket
import time

startTime = time.time()

target = input(’'Please specify the host that you want to scan: ')
target_IP = socket.gethostbyname(target)
print ('Initiating Scan for host: °, target_IP)
for i in range(1, 1000):
scanner = socket.socket(socket.AF_INET, socket.SOCK _STREAM)

conn = scanner.connect ex((target_IP, i))

if(conn == @):
print ('Port %d: OPEN' %(i)})
scanner.close()

Listing 26 - Scanning ports in a loop

In the forloop, we are iterating over ports 1 through 1000. We can easily change these values, or
better yet allow the user to specify which ports they want to scan via command line arguments. We'll
leave further improvements to the script as an exercise to the reader.

Finally, we simply need to run time.time() again and calculate how long the scan takes, as described
above.

#! fusr/bin/python3
#scanner. py

import socket
import time

startTime = time.time()
target = dnput(’'Please specify the host that you want to scan: ')

target IP = socket.gethostbyname(target)
', target IP)

print ("Initiating Scan for host:

| for i in range(l, 100@):
scanner = socket.socket(socket.AF INET, socket.SOCK STREAM)
conn = scanner.connect _ex((target IP, i))
if(conn == B):
print ('Port ¥d: OPEM' %(i))
scanner.close()

endTime = time.time()
totalTime = endTime - startTime
print('Total Time: ¥s' ¥%(totalTime))

Listing 27 - Calculating the scan duration

Executing the script will prompt us to input a hostname and it will conduct the port scan. The script
should generate output similar to the following.

kali@kali:~% python3 scanner.py
Please specify the host that you want to scan: lecalhost

Initiating Scan for host: 127.8.8.1

Port 22: OPEN

Port 88: OPEN

Port E888: OPEN

Total Time: 3.3422838555145264

Listing 28 - Running our port scanner

In the above example, we've specified focalhost as the target to scan. Since the script uses the
socket.gethostbyname() method, it allows us to specify the IPv4 hostname of a machine and retrieve
its IP address. As a refresher, localhost® usually resolves to the loopback IP address, 127.0.0.1.

We find that we have three ports listening on our local VM, and that the script took approximately
3.34 seconds to execute from start to finish. We can expand this script by providing it a means of
looping through a list of hosts by creating nested for loops, or by having it send different kinds of
packets to the hosts it connects to.

1 (Python Software Foundation, 2021), https://docs.python.org/3/library/time.html <
2 [Python Software Foundation, 2021), https://docs.python.org/3/library/time. htmi#time.time <

3 (Python Software Foundation, 2021),
https://docs.python.org/3/library/socket.html#socket.gethostbyname «

4 (Python Software Foundation, 2021),
https://docs.python.org/3/library/socket.htmi#socket.socket.connect_ex «

5 (wikipedia, 2021), https://en.wikipedia.org/wiki/Localhost <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Scripting

Exercises

1. Recreate the port scanner in this section. Then, target the ports 3000 to 3999 of the target VM. In
numerical order, what ports are open? Enter your answer in the following format: WWWW, XXXX,
YYYY, L2272

Answer

Answer

Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deOl | t.nme/RedBl ueH t

7 My Kali VPN

Write a Port Scanner with Python
Write a Port Scanner with Python

Write a Port Scanner with Python
Port Knocking

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods
- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets
- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

I 2.4.2. Port Knocking

+ 2.5, Website Interaction with Python - |
+ 2.6. Website Interaction with Python - 1l

Capturing and Sending Packets with
" Scapy

<

Get Good at Python: Network Scripting

Port Knocking

Port Knocking' is a means by which external users can open a gated port on a machine by first
connecting to a predetermined list of other ports in a specific order. Think of it like entering a PIN on
a mobile device: if you input the correct numbers in the correct order, the phone will unlock.
Similarly, assuming the machine’s firewall has been configured in such a way, "knocking" on the
correct ports in the correct order will open the gated port.

A port knocking implementation can add a small but non-negligible layer of security to a system,
because it prevents port scans such as the one we have executed above. Since the port scan will
iterate through a loop, it is very unlikely that the firewall will be configured to open the gated port
based on the exact rules that our scan follows. An external user will need to have intimate
knowledge of the system first, before being able to connect to the gated service.

Port knocking rules can be made arbitrarily complex, increasing the knowledge of the system
required by the external user. Note, however, that port knocking alone is not a sufficient security
system, because it relies on security by obscurity. It can be compared to single-factor
authentication, representing something the user knows as the only means of authenticating. In this
case, the thing the user know is the order of ports to knock.

1 (Wikipedia, 2021), https://en.wikipedia.org/wiki/Port_knocking <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

8, Network-Seripting

Exercises

1. Modify your port scanner so that it knocks precisely and in numerical order on the eight ports that
have Pronic numbers in the range 4000 to 4999. You may need to look up the definition of "Pronic
number" to determine which ports to scan. Once you have performed the port knocking sequence,
use the credentials Aristotle:Lyceum to SSH to the newly opened port 2222. What is the flag on
the user's desktop?

Answer View hints

Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deOl | t.nme/RedBl ueH t

| My Kali VPN

Write a Part Scanner with Pythan
Using the Socket Module to Create a Port 5.

Website Interaction with Pythaon - |
Website Interaction with Python - |

Resource Center

TEXT

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size
2.2.3. Interactive Sockets
- 2.3. Write a Server with Python
2.3.1. Building a Basic Server
2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking
- 2.5. Website Interaction with Python - |

2.5.1. The Transport Layer: Using the

Python Sockets Module with HTTP

2.5.2. The Application Layer: GET

Join us now -> hideOl.ir | t.ne/RedBlueTM | t.me/H de0l |

| My Kali VPN

<

Get Good at Python: Network Scripting

Website Interaction with Python - |

This Learning Unit has the following Learning Objectives:

1. Understand the benefits of connecting to a website programmatically

2. Communicate over HTTP with Python
3. Parse HTML responses with Python

(c) 2023 OffSec Services Limited. All Rights Reserved.

Write a Port Scanner with Python
Port Knocking

Website Interaction with Python - |
The Transport Layer: Using the Python Sock...

t. me/ RedBl ueHi t

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods
- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets
- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking
- 2.5. Website Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Join us now -> hideOl.ir |

4 My Kali VPN

Get Good at Python: Network Scripting

The Transport Layer: Using the Python Sockets Module with HTTP

Imagine that we have identified a web server as our target and we need to learn more about the
service. In this situation, we can create a script with Python that will send HTTP requests to our web
server to analyze how it responds to us. This technique is very useful because we can learn more
about the web server and how it communicates to our client, and to assess if it is vulnerable to any
exploits that we are aware of.

In this section, we'll use the socket module again to create a raw TCP connection to a web server
running on port 80. Since we are using a raw socket connection, we need to provide the specific
HTTP request to be sent to the server as data.

The socket module operates on the equivalent of the Transport layer of the OSl or TCP/IP network
reference models. We therefore must encapsulate the Application layer protocol (i.e. HTTP) data that
we want to send through the Transport layer.

We'll begin our script by importing the socket module and defining a remote host and port.

#! fusr/bin/python3
#http-sockets.py

import socket

remote_host = "www.offensive-security.com”

remote_port = 8@
Listing 28 - Qur initial Python code
We call our script http-sockets.py. Mote that we cannot call the script http.py because Python has a
built-in module by the same name.

Next, let's store the HTTP request we want to make to the server inside a variable, which we'll aptly
call request. To learn more details about the format of an HTTP request, please refer to the Web
Applications Basics Module.

#! fusr/bin/python3
#http-sockets.py

import socket

remote_host = "www.offensive-security.com"

28

remote port

request = "GET / HTTP/1.1\r\nHost: www.offensive-security.com\rin\rin"
Listing 30 - Creating the request
We need to specify the exact request we want our server to send to the server, so we must include
the precise syntax and newlines ("\r\n") that HTTP expects.

The next portion of the script is similar to creating a Python client. We'll initialize a socket, and then
use it to connect to the server. Once we're connected, we'll use socket.send() to make our reguest,
using our request variable.

#! fusr/bin/python3
#http-sockets.py

import socket

remote_host = "www.offensive-security.com”

remote_port = 8@
request = "GET / HTTP/1.1%r\nHost: www.offensive-security.com\rin\rin”

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect({remote host,remote_port))
client Send(request.encode())

Listing 31 - Connecting to the server

Finally, we want to catch the response that the server sends us, so we'll use the socket.recvibytes)
method and then decode and print it.

#Yfusr/bin/python3
#http-sockets.py

import socket

remote_host = "www.offensive-security.com”
il]

remote_port
request = "GET / HTTP/1.1%r\nHost: www.offensive-security.com\rin\rin”

client = socket.socket(socket.AF INET, socket.S0CK _STREAM)
client.connect((remote_host,remote_port))
client.send(request.encode())

response = client.recv(4096)
print(response.decode())

Listing 32 - Receiving and displaying the response
It is important to note that the send() method requires a byte-like object argurment, not a string. We

can use the encode() method on a variable to convert its content to bytes, and use the decode()
method to convert bytes to a string.

As mentioned above, the recv() method is used to receive the response from the server. This
method requires an argument, which is the maximum number of data in bytes to be received.

Exercises

1. Recreate the script and modify it to reach www.megacorpone.com . What popular operating
system distribution is www.megacorpone.com running on?

Answel

ANsSwer

Verify

2. What branch of technology does MegaCorp One focus on? Use the HTML code from the server's
response to answer this question.

AP e A T
ANsWwe

Verify

Answel

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

t.nme/ RedBl ueTM | t. me/ Hi de01 | t.me/RedBl ueHit
Wabsite Interaction with Pythan - |
Waebsite Interaction with Python - |

Website Interaction with Python - |
The Application Layer: GET Requests with P...

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods
- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets
- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking
- 2.5. Website Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

The Application Layer: GET Requests with Python

Python allows us to communicate directly over HTTP instead of opening up raw network sockets. In
this section we will use the requests’ library to create an HTTP GET? request and display the
response.

Let's start our script by importing the requests module and defining a target URL that we want to

make a request to.

#! fusr/bin/python3
#web-client.py

import requests

url = “http://www.offensive-security.com”

Listing 33 - Our initial Python code

Next, we'll employ our first requests method, requests.get(). This method will make an HTTP
request to the URL provided to it as argument, and returns a Response ohject. The Response ohject
can then be parsed and formatted in various ways.

#! fusr/bin/python3
#web-client.py

import requests

url = "http://www.offensive-security.com™
response = requests.get(url)
print(response.content.decode())

Listing 34 - Making a GET request

In the above listing, we use the requests.content(}* method to read the content of the Response
object in bytes. We pass the output to the decode() method and print it, so that we can view it in
plain text.

This basic script can be modified in a varity of ways that can allow us to extract the precise
information we're looking for from a web server.

During a reconaisance phase of a penetration test (for example), we might only be interested in
determining the status code of the various pages. The requests.status_code()® method extracts the
response status code from the Response object

#! fusr/bin/python3
#web-client.py

import requests
url = "http://www.offensive-security.com/doesnotexist.html”

response = requests.pget(url)
print(response.status_code)

Listing 35 - Extracting the status code

As a refresher, status codes are grouped into the following classes:

. Code 100-199: Informational Responses
. Code 200-299: Successful Responses
. Code 300-399: Redirects

. Code 400-499: Client Errors

. Code 500-599: Server Errors

When the script is executed, we will obtain the status code of the URL we have specified. The URL
we are requesting is www.offensive-security.comfdoesnotexist.html. Since this page does not
exist, the server will respond with a client error status code (404).

Next, let's modify the script to return only the response headers from the server. We can do this with
the predictably named requests.headers()® method. We can analyze headers to get a better
understanding of the web server and how it is interacting with clients.

#! fusr/bin/python3
#web-client.py

import requests

url = "http://www.offensive-security.com™
response = requests.get(url)
print(response.headers)

Listing 36 - Rem’e_w_ng the response headers

In this iteration of the script, we send a request to http://www.offensive-security.com and print the
response headers we receive from the server.

Finally, the requests.text()’ method allows us to print the full response in unicode.

#! fusr/bin/python3
#web-client.py

import requests
url = “hittp://www.offensive-security.com™

response = requests.get(url)
print{response.text)

Listing 37 - Displaying the full response

This script makes a simple request to http://www.offensive-security.com and prints out the
response. Remember that requests.content() should be used when the server is serving data in
binary format, and requests.text() when it is serving textual data.

If you are uncertain about a specific website, try botf!

1 (Reitz, 2021), https://docs.python-requests.org/en/master/ <

2 (Mozilla, 2021), https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET <

3 (Reitz, 2021), https://docs.python-requests.org/en/latest/api/#requests.get <

4 (Reitz, 2021), https://docs.python-requests.org/en/latest/api/#requests.Response.content «*

5 (Reitz, 2021), https://docs.python-requests.org/en/latest/api/#requests.Response.status_code <
6 (Reitz, 2021), https://docs.python-requests.org/en/latest/api/#requests.Response.headers <

7 (Reitz, 2021), https://docs.python-requests.org/en/latest/api/#requests.Response.text <

The exercises below require you to interact with the target webserver using Python. You will not be
able to reach the required pages with your regular browser!

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Scripting

Exercises

1. Why can't we call our Python HTTP client "http.py"?

A. Because Python3 doesn't work with http.
. Because Python3 has another module called http.py-

m

C. Because Python3 cannot execute multiple web-clients at the same time.

Answer

Answer Verify

2. Write as Python script to do a HTTP GET request on port 8080 of the target VM and get the
webpage content. What is the flag on the index.html page?

A 1R
ANswel

Answer Verify

3. Write as Python script to do a HTTP GET request on port 8080 at /1.html. This site will give you the
first character of the flag. The directories /2.html to /50.html will give you the remaining
characters. What is the complete flag?

ANSWE

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

7 My Kali VPN

Website Interaction with Python - | Website Interaction with Python - |
The Transport Layer: Using the Python Sock... Parsing HTML

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking
- 2.5. Website Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

I 2.5.3. Parsing HTML

+ 2.6. Website Interaction with Python - Il

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

Parsing HTML

If you've used the requests.content() or requests.text() methods above, you've likely found that the
response can contain a significant amount of HTML data. Sometimes, we may want to get specific
information from a site without all the clutter involved with a full response. Web Scraping is a process
of sweeping information that is contained on a webpage and extracting the information we're
interested in. As penetration testers, it is sometimes easier to retrieve the data we are looking for by
writing a script than trying to look for the data manually from the website.

Lets start by using the urflib3' module to send an HTTP request that will obtain the data from the
webpage. The urliib3 library is used by the requests library; in this case, we will import it explicitly
just so that we can become familiar with different syntax.

#! fusr/bin/python3
#parse.py

import wrllib3
http = wrllib3.PoclManager()
url = "http://www.megacorpone.com’

response = http.request("GET", url)
print(response.data.decode("utf-8"))

Listing 38 - Our inftial uriib 3 code

Here, we create a variable called hitp that calls the urllib3 module, and we use the PoolManager
method to sort the unordered results. The url variable is then used to call the website we are
sending an HTTP request to. We can change the ur/ variable to specify other domains or IP
addresses.

The above script will print the output from the target website onto the terminal, but it will display as
raw HTML code. Let's go ahead and execute the script, and pass the output to the head command
to snip it.

kaligkali:~% python3 parse.py | head -n 2@
<!DOCTYPE html:
<html lang="en">

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible” content="IE=edge">
<meta name="viewport” content="width=device-width, initial-scale=1">
<meta name="description” content="">
<meta name="author” content="">
<link rel="shortcut icon” href="assets/ico/favicon.ico™>

<title>MegaCorp One - Nanotechnology Is the Future</titlex

<!-- Bootstrap core C55 -->
<link href="assets/css/bootstrap.css”™ rel="stylesheet”>

<!-- Custom styles for this template -->
<link href="assets/css/style.css™ rel="stylesheet™>
<link href="assets/css/font-awesome.min.css" rel="stylesheet”>

Listing 39 - The first 20 lines of output
To make the data more easily readable, we can use another module called BeautifulSoup.® This

module takes the raw HTML and XML files from urlopen and pulls the data to help parse the
information we have retrieved from the webpage.

We can include our new module by modifying our script as follows.

#! fusr/bin/python3
#parse.py

import wrllib3
from urllib.request import urlopen
from bs4 import BeautifulSoup

url = urlopen("http://wwe.megacorpone.com™)

page = url.read()
soup = BeautifulSoup(page, features="html.parser")

print(soup)

_Usﬁg 40 - Usw'ffq-me BeautifulSoup modwle

In the above listing, we import two libraries from uriib3 and bs4. The urlopen library allows us to
retrieve the raw data returned by the server. The beautifulsoup library is responsible for the actual
parsing of the output.

< 'DOCTYPE html:>

<html lang="en":
<head>
<meta charset="utf-8"/>
| <meta content="IE=edge” http-equiv="X-UA-Compatible”/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>

| <meta content="" name="description”/>

<meta content="" name="author"/>

<link href="assets/ico/favicon.ico" rel="shortcut icon"/>

<title*MegaCorp One - Nanctechnoclegy Is the Future</title>

¢<!-- Bootstrap core CS5 --»

<link href="assets/css/bootstrap.css” rel="stylesheet"/>

¢<!-- Custom styles for this template -->

<link href="assets/css/style.css" rel="stylesheet"/>

<link href="assets/css/font-awesome.min.css™ rel="stylesheet"/>

¢<!-- Just for debugging purposes. Don't actually copy this line! --»>

<!--[if 1t IE 9]><script src="../..fassets/js/ieB-responsive-file-warning.js"></script>
<![endif]-->

¢!-- HTMLS shim and Respond.js IEZ support of HTMLS elements and media queries -->
IS T R eI E o]

Listing 47 - Our script output using BeautifulSoup

While the output of the above listing isn't any more readable than the output provided by the original
script, BeautifulSoup has many methods we can use to narrow, sort, and display our desired text. For
example, the text method will print only the textual content of the web page. The following exercises
allow you to flex your ability to gather specific data from a web server.

These exercises may take a little bit of extra research, so make sure to read up

on the relevant library documentation if vou get stuck.

1 (Petrov, 2021), https:/furllib3.readthedocs.iofen/stable/ <
2 (Petrov, 2021), https://urllib3.readthedocs.io/en/stable/reference/urllib3.poclmanager.htm| <

3 (Richardson, 2020), https:/fwww.crummy.com/software/BeautifulSoup/bs4/doc/ <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Scripting

Exercises

1. The website on port 8080 of the target VM has multiple pages under the directory /crawling. Use
your Python skills to GET the content on all the pages and find the flag.

AP A
ANswel

Answer Verify

2. Visit the website on port 8080 of the target YM under the [table directory. The table found on the
page contains the flag, but each row contains a different letter. Use Python to make a request to
this page and parse the response.

ANsWwe

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

- My Kali VPN

Wabsita Interaction with Pythan - | Wabsite Interaction with Pythan - |l
The Application Layer: GET Requests with P... Website Interaction with Python - Il

Resource Center

TEXT

- Z.3. WHTe a Server with Fython
2.3.1. Building a Basic Server
2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking

- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTH

2.5.2. The Application Layer: GET
Reguests with Python

2.5.3. Parsing HTML
- 2.6. Website Interaction with Python - Il §

2.6.1. POST Requests and Parameters
with Python

<

Get Good at Python: Network Scripting

Website Interaction with Python - Il
This Learning Unit has the following Learning Objectives:

1. Make HTTP POST requests using Python
2. Analyze HTTP request headers with Python
3. Become comfortable programming repetitive web-based actions

(c) 2023 OffSec Services Limited. All Rights Reserved.

Website Interaction with Python - | Website Interaction with Pythan - 1|
Parsing HTML POST Requests and Parametars with Python

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

| My Kali VPN

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets
- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking

- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML
- 2.6. Website Interaction with Python - Il

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

POST Requests and Parameters with Python

The requests module also allows us to send data to a server via a POST! request. In a POST request,
the data that is sent to the server is stored in the request body of an HTTP reguest. This is in
contrast to a GET request, where data is sent directly via a URL. A common use-case for POST
reguests employed by many websites are web forms, such as those used when subscribing to a site.

Let's examine a script that will make a POST request and then return the response from the server.

#! fusr/bin/python3
#web-client2.py

import requests
url = "http://www.offensive-security.com’

info = {"check-key': "check-value'}
post = requests.post(url, data = info)
print(post.text)

Listing 42 - Qur POST request Python script

The script in the above listing POSTs a request to www.offensive-security.com and sends the data
contained within the info variable. Once the data has been submitted, the response will be printed
out in text.

There are other HTTP methods that we can use in our Python scripts such as PUT,2 DELETE?
HEAD,* and OPT/ONS® to interact with the web server. We encourage you to experiment with writing
scripts for each of these.

1 (Mozilla, 2021), https://developer.mozilla.org/en-US/docs/Web/HT TP/Methods/POST <

2 (Mozilla, 2021), https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT <

3 (Mozilla, 2021), https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE <
4 (Mozilla, 2021), https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/HEAD <

5 (Mozilla, 2021), https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

M, Network-Scripting

Exercises

1. The page at port 8080 of the target server called /basic-post only accepts POST requests. Make
any POST request to the page to receive the flag.

Answer

Answer Verify

2. You can authenticate to page at port 8080 of the target server called /login-1 with the username
‘thobbes' and the password 'leviathan'. Make a POST request to the page with the above
credentials to get the flag.

Answer Verify

3. You can authenticate to the page at port 8080 of the target server called [login-2 with the
username ‘'rdescartes’ and the password 'discourse’... however, the password is followed by the
five characters | @ # % & in some unknown order. For example, the password might be
discourse#!@&%, or it might be discourse%&@!#. Use Python to iterate through all possible POST
requests to determine the password, and login to get the flag.

Answe

”

Answer Verify

4. The page on port 8080 of the target server called /bijection accepts an integer value that
corresponds to the letter position of the flag. For example:

* /bijection?index=0 will return the character '0’
. /bijection?index=1 will return the character 'S’
* /bijection?index=2 will return the character '{'

Use your Python skills to create a script that will get the entire flag. Note, the page will only accept
POST requests!

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t. e/ RedBl ueHit

| My Kali VPN

Website Interaction with Python - Il Website Interaction with Python - Il

Waebsite Interaction with Python - Il Raquest Headers and Non-Text-based Cont...

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking

- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

- 2.6. Website Interaction with Python - |l

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

Get Good at Python: Network Scripting

Request Headers and Non-Text-based Content

An HTTP header allows the client and server to pass additional information in the request or the
response. The header consists of a case-insensitive name followed by a semi-colon (:), and then a
value. A request header contains detailed information about the resource that is being queried. A
response header holds additional information about the response. For example, a response header
might include the location of the server.

One of the most important headers for us to learn about is the Content-Type' header. This header is
used to indicate the original media type of the resource.

In the response, the Content-Type header tells the client what type of content type will be displayed.

For us to identify the content type from the server, we need to send a specific request to the server
and have the response print the output of the HTTP Headers. The following script makes a GET
request to www.offensive-security.com and prints the response's HTTP headers.

#! fusr/bin/python3
#headers.py

import requests

url = “http://www.offensive-security.com”
response = requests.get(url)
print(response.headers)

Listing 43 - Displaying the response headers
The server will respond with the following output.

{'Server": 'SucurifCloudproxy’, 'Date’: "Wed, @9 Jun 2821 82:32:42 GMT", 'Content-
Type': "text/html; charset=UTF-8', 'Content-Length’: '14838", 'Connection’: ‘keep-
alive", "X-Sucuri-ID': '178@5"', "X-X55-Protection’: "1; mode=block’, 'X-Frame-Options’:
"SAMEORIGIN', '"X-Content-Type-Options": "nosniff’, "Strict-Transport-Security': “max-
age=31536800; includeSubdomains; preload’, 'Content-Security-Policy': "upgrade-
insecure-requests;’, 'Link": ‘<https://www.offensive-security.com/>; rel=shortlink’,
"Wary': 'Accept-Encoding,User-Agent®, 'Content-Encoding’: ‘gzip', "X-Sucuri-Cache’:
"HIT'}

Listing 44 - Response header oulput
In the above listing, the 'Content-Type': ‘text/htmi; charset=UTF-8' section indicates that the page

will display the information in text/html format. Keep in mind that the content-type will always
change depending on the request sent to the server.

1 (Mozilla, 2021), https://developer.mozilla.org/en-US/docs/Web/HT TP/Headers/Content-Type <

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the |P addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Scripting

Exercises

1. The directory at port 8080 of the target server called /headers has ten subpages called /headers/1
through fheaders/10. Each page has a custom header called "Flag" that contains a portion of the
flag. Use Python to piece together all the components of the flag.

Answer Verify

2. The page at port 8080 of the target server called /object returns a binary that when run, prints out
the flag. Use python to save the binary and then run it to get the flag.

AP e A T
ANsWwe

Answer Verify

3. The page at port 8080 of the target server called /about.html contains a list of 30 employees, their
email addresses, and their favorite colors. Only one of these users can login to the page at flogin-
3. Use Python to determine which user has a valid account by analyzing the responses to your
requests. What is the first name of the valid user?

Answer Verify

4. The valid account's password is their favorite colleague's first name and their boss's favorite color
twice in a row. For example, if their best friend is Jacob and their boss is Carly, then the password
is JacobOrangeJacobOrange. Use this knowledge to authenticate to the website to get the flag.

Answe

”

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.ne/RedBl ueHit

| My Kali VPN

Website Intaraction with Python - I Capturing and Sending Packets with Scapy
POST Requests and Parameters with Python Capturing and Sending Packets with Scapy

Resource Center

TEXT

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking
- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTR

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML
- 2.6. Website Interaction with Python - I

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
- =" Scapy

| My Kali VPN

<

Get Good at Python: Network Scripting

Capturing and Sending Packets with Scapy
This Learning Unit covers the following Learning Objectives:

1. Understand why text-based packet manipulation can be a powerful tool
2. Capture network traffic using Scapy
3. Send and receive packets using Scapy

(c) 2023 OffSec Services Limited. All Rights Reserved.

Website Intaraction with Python - 1l Capturing and Sending Packets with Scapy
Reguest Headers and Mon-Text-based Cont... Introduction to Scapy

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

Resource Center

TEXT

Create a Port scanner

2.4.2. Port Knocking

- 2.5. Website Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

- 2.6. Website Interaction with Python - I

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

I 2.7.. Introduction to Scapy

2.7.2. Scapy Commands

2.7.3. Capturing Packets with Scapy
2.7.4. Saving Packets with Scapy

2.7.5. Methods for Sending and
Receiving Packets with Scapy

2.7.6. Sending a Packet with Scapy

2.7.7. Sending and Receiving a Respons
from Scapy

<

Get Good at Python: Network Scripting

Introduction to Scapy

Scapy' is a flexible Python-based packet manipulation program. The purpose of using Scapy is
mainly for two things: to sends packets and receive answers.

As penetration testers, we can use Scapy to craft custom packets that can be sent through a variety
of protocols. Scripting with Scapy will give us the ability to define a set of packets, how and when to
send them, and how to analyze the responses.

Many penetration testers use Scapy to conduct certain tasks such as network discovery, network
scanning, packet capture, and much more. The features in Scapy can simulate some of the common
tools that we use in our engagments. Common tools that we could use to replace with Scapy are
hping,? arpspoof® arp-sk,* pOfS tepdump,® tshark,” and even some parts of nmap.?

1 (Biondi, 2021), https://scapy.net/ <

2 (Sanfilippo, 2006), http://www.hping.org/ <

3 (die.net, 2021), https://linux.die.net/man/8/arpspoof «

4 (manned.org, 2021), https://manned.org/arp-sk/99e329e1 <

5 (Zalewski, 2014), https://lcamtuf.coredump.cx/p0f3/ <

6 (The Tcpdump Group, 2021), https:/fwww.tcpdump.org/ <

7 (Wireshark Foundation, 2021), https://www.wireshark.org/docs/man-pages/tshark.html <

8 (Nmap.org, 2021), https://nmap.org/ <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H deOl | t.nme/RedBl ueHt

4 My Kali VPN

Capturing and Sending Packets with Scapy

Capturing and Sending Packets with Scapy
< Capturing and Sending Packets with Scapy

Scapy Commands

Resource Center

TEXT

2. Network Scripting
- 2.1. Write a Client with Python - |
2.1.1. Building a Basic Client

2.1.2. Socket Methods
- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets
- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server
- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking
- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML
- 2.6. Wehsite Interaction with Python - i

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

2.7.. Introduction to Scapy

I 2.7.2. Scapy Commands
2.7.3. Capturing Packets with Scapy
2.7.4. Saving Packets with Scapy

2.7.5. Methods for Sending and
Receiving Packets with Scapy

2.7.6. Sending a Packet with Scapy

2.7.7. Sending and Receiving a Response
from Scapy

Get Good at Python: Network Scripting

Scapy Commands

Scapy provides a variety of commands to help us analyze the packets we are capturing. There are
two ways we can use Scapy depending on the situation we are in. We can use a terminal window or
we can import the library into a Python script. For this Learning Unit, we'll invoke Scapy from the
command line with the scapy command.

kali@kali:~% sudo scapy
Password:
INFO: Can't import PyX. Won't be able to use psdump() or pdfdump().

aSPY//YA5a
apyyyyCY/ F A7 ffiYCa
s¥Y/ S/ ff/¥Spes scpCY//Pp | Welcome to Scapy
ayp ayyyyyyysCP//Pp syY//C | version 2.4.4
AYASAYYYYYYY/f/Ps cY//fS |
pCCCCY//p c5Sps y//Y | https://github.com/secdev/scapy
SPPPP//fa pP//FAC/IY |
AfIA cyP////C | Have fun!
p///Ac =C/ffa |
P/ I i FYCpe A/fA | Craft me if you can.
scccocp/ ffpSP/ifp pfry | -- IPv6 layer
sY//AAAfy caa S//P
cayCyayP//Ya pY/Ya
sY/PsY//f//YCc aC//Yp
sc sccaCY//PCypaapyCP//Y5s
spCPY////F/YPSps

ccaacs
using IPython 7.20.8
bS53

A L;’srjng_ 45 - Launching Scapy from the command line

Let's examine some of the most common Scapy commnads.

. Is(): Displays all of the protocols supported by Scapy

. explore(): Displays all protocols in a clear GUI

. Isc(): Displays a list of commands and functions that are supported.

. conf: Displays our configuration options in Scapy

. help(): Gets help on a specific Scapy command. For example, we can run help on the sniff
command.

>»> help(sniff)
Help on function sniff in module scapy.sendrecv:

sniff(*args, **kwargs)
sniff packets and return a list of packets.

Args:
count: number of packets to capture. @ means infinity.
store: whether to store sniffed packets or discard them
prn: function to apply to each packet. If something is returned, it
is displayed.

Listing 48 - Getting help for the sniff command

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit

| My Kali VPN

Capturing and Sending Packets with Scapy
Introduction to Scapy

Capturing and Sending Packets with Scapy
Capturing Packets with Scapy

<

Resource Center

TEXT

2. Network Scripting
2.1. Write a Client with Python - |
2.1.1. Building a Basic Client
2.1.2. Socket Methods
2.2. Write a Client Program in Python - Il

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size
2.2.3. Interactive Sockets
2.3. Write a Server with Python
2.3.1. Building a Basic Server
2.3.2. Testing our Client and Server
2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking

- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

- 2.6. Wehsite Interaction with Python - i

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

2.7.. Introduction to Scapy

2.7.2. Scapy Commands

2.7.3. Capturing Packets with Scapy
2.7.4. Saving Packets with Scapy

2.7.5. Methods for Sending and
Receiving Packets with Scapy

2.7.6. Sending a Packet with Scapy

2.7.7. Sending and Receiving a Response
from Scapy

Join us now -> hideOl.ir |

i VPN

Get Good at Python: Network Scripting

Capturing Packets with Scapy

Recall that packet capture usually requires elevated permissions. Therefore we need to make sure
we provide Scapy with sudo privileges before running it, to allow it to sniff for packets.

To begin capturing packets with Scapy, we are going to use the snifff) function to help us capture all

network traffic from our system. The sniff(} function has a few parameters that we can use to filter
out the network traffic.

The iface parameter allows us to specify network interface we want to capture packets.

The count parameter captures the supplied number of packets. If we remove this option or set it to
0, Scapy will continue to sniff for packets until we stop the program.

The prn parameter prints the results we are sniffing. We need to use a call-back function name to
print the results. For example, the x:x.summary() syntax names our capture "x", and then uses the
summary() method to print out the high level results of the capture on the terminal screen.

The filter parameter will allows us to capture only packets that are interesting to us.

Let's apply these options, capture 10 TCP packets on the eth0 interface, and print them to the
terminal window.

»>>> sniff(iface="eth@®", count=18, prn =

Ether
Ether
Ether
Ether
Ether
Ether
Ether
Ether
Ether
Ether

<sniffed: TCP:18

f

L i

IP / TCP 192.168.
IP / TCP 192.168.
IP / TCP 192.168.
IP / TCP 192.168.
IP / TCP 192.168.
IP / TCP 192.168.
IP / TCP 192.168
IP / TCP 192.168.
IP / TCP 192.168.
IP / TCP 192.168.

66.200:5981 > 192.168.47.4:53918
66.200:5981 > 192.168.47.4:5391@
47.4:53918 > 192.165.60.200:5901
66.200:5981 > 192.168.47.4:5391@
66.200:5981 > 192.168.47.4:5391@
66.200:5981 > 192.168.47.4:5391@
.60.208:5981 > 192.168.47.4:5391@
47.4:53918 > 192.165.60.200:5901
47.4:53918 > 192.165.60.280:5901
47.4:53918 > 192.165.60.200:5901

UDF:® ICMF:8 Other:8>

lambda x: x.summary(), filter="tcp")

PA [/ Raw
PA [/ Raw
A
A S Raw
PA [/ Raw
A S Raw
PA / Raw
A
A
A

Listing 47 - Sniffing traffic with scapy

In the above listing, we have set our network interface to eth(. If you are using

tf

e VPN to ¢

name provided by t

1ect to the Iz

;, make sure that you

use

he VPN co

the correct interface

We can also set a particular sniff command to a variable. Below, we set the pkis variable to the
summary of the desired capture, and then print it out with Python's standard print function.

>»> pkts =

Ether / IP / TCP 192.168.
Ether / IP / TCP 192.168.
Ether / IP / TCP 192.168.
Ether / IP / TCP 192.168.
Ether / IP / TCP 192.168.
Ether / IP / TCP 192.168.
Ether / IP / TCP 192_163.
Ether / IP / TCP/192.168.
Ether / IP / TCP 192.168.
Ether / TP/ TCPA192.168.

>»> print(pkts)

<sniffed: TCP:10

UDP:@ I

sniff(iface="eth@", count=18; prn =

60.200:5981 > 192.168.47.4:53910
668.280:5981 > 192.168.47.4:53910
47.4:53918 > 192.1638.69.2008:5901
66.200:5981 > 192.165.47.4:53910
b8, 200:5981 > 192.168.47.4:53910
66.280:5981 > 192.168.47.4:53910
47.4:53918 > 192.1638.69.2008:5901
47.4:53918 > 192.168.60.2008:5901
47.4:53918 > 192.1638.69.200:5901
66.200:5981 > 192.168.47.4:53910

CMP:@ Other:8>

lambda x: x.summary(), filter="tcp")

PA / Raw
PA / Raw
A
A [Raw
PA / Raw
A / Raw
A
A
A
PA / Raw

Listing 48 - Sniffing with a variable

To show the details of a single packet, we can use x.showf) instead of x.summary() as the value to
the prn parameter.

>»> sniff(iface="eth@", count=1, prn = lambda x: x.show(), filter="tcp")

###[Ethernet (###
dst= 88:58:56:bf:@a:ef
src= 98:58:56:bf:5b:69
type= IPv4

#E[IP |k

version= 4

ihl= 5

tos= @xe

len= 7292

id=

63715

flags= DF

frag= @

ttl= 64

proto= tcp

chksum= @x387b

src= 192.168.60.200
dst= 192.168.47.4
\optionsh

#HH[TCP 4t

sport= 5981
dport= 53918
seq= 1791833837
ack= 3124877518
datacfs= 8
reserved= 8
flags= PA

581
Bx98C
urgptr= @

window=
chksum=

opticns= [{"MOP', None), ("MOP', None), ('Timestamp’, (4108292854,
3224841518))]
#HE[Raw]#HEE
load= " \x17%x@3\x83@\x18\x02\x08\ x00 \x08 \xBa\xee \xx1c \xf5va\ " \x18
Rl \xe2\xed \xd o\ x95MA\x06K

Listing 49 - Displaying the details of a packet

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

<

t. me/ RedBl ueTM |

t.nme/ H de0l |

Capturing and Sending Packets with Scapy
Scapy Commands

t . me/ RedBl ueHi t

Capturing and Sending Packets with Scapy
Saving Packets with Scapy

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server

- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking

- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

- 2.6. Wehsite Interaction with Python - i

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

2.7.. Introduction to Scapy

2.7.2. Scapy Commands

2.7.3. Capturing Packets with Scapy
2.7.4. Saving Packets with Scapy

2.7.5. Methods for Sending and
Receiving Packets with Scapy

2.7.6. Sending a Packet with Scapy

2.7.7. Sending and Receiving a Response
from Scapy

Get Good at Python: Network Scripting

Saving Packets with Scapy

To save the packets we collected, we can use the wrpcap command to save the information into a
.pcap file.

>>> pkts = sniff(iface="eth@", count=18, prn = lambda x: x.summary{), filter="tcp")

Ether f IP / TCP 192.168.60.280:5961 > 192.168.47.4:53918 PA / Raw
Ether f IP / TCP 192.168.60.2008:5961 > 192.168.47.4:53910 PA / Raw
Ether f IP / TCP 192.168.47.4:53918 > 192.168.60.200:5901 A

Ether f IP / TCP 192.168.60.200:5981 > 192.168.47.4:53910 A / Raw
Ether f IP / TCP 192.168.60.280:5961 > 192.168.47.4:53910 PA / Raw
Ether f IP / TCP 192.168.60.200:5981 > 192.168.47.4:53910 A / Raw
Ether f IP / TCP 192.168.60.2808:5961 > 192.168.47.4:53918 PA / Raw
Ether f IP / TCP 192.168.47.4:53918 > 192.168.60.200:5901 A

Ether f IP / TCP 192.168.47.4:53918 > 192.168.60.200:5901 A

Ether f IP / TCP 192.168.60.200:5961 > 192.168.47.4:53910 PA / Raw

»>> wrpcap('sniffed.pcap’, pkts)

Listing 50 - Saving the packets

This will allow us to use tools such as tepdump or Wireshark to further analyze the network traffic
that was saved into the .pcap file from Scapy.

kali@kali:~% sudo tcpdump -r sniffed.pcap

reading from file sniffed.pcap, link-type EN18MB (Ethernet), snapshot length 65535

12:15:35.367793 IP 192.168.60.200.5981 > 192.168.47.4.53918: Flags [P.], seq

18@86351782:1806359022, ack 3124922719, win 581, options [nop,nop,TS val 41898738837 ecr

3225626688], length 7248

12:15:35.367815 IP 192.168.68.200.5981 > 192.168.47.4.53918: Flags [P.], seq

7248:14488, ack 1, win 581, options [nop,nop,TS val 4189878837 ecr 3225626688], length

7248

12:15:35.368652 IP 192.168.47.4.53918 > 192.168.60.200.5901: Flags [.], ack 14488, win

4121, options [nop,nop,T5 wal 3225626737 ecr 4189078837], length 8

12:15:35.368667 IP 192.168.68.200.5981 > 192.168.47.4.53918: Flags [.], seq

14486:15928, ack 1, win 501, options [nop,nop,TS val 4189878837 ecr 3225626737], length

1448

12:15:35.378214 IP 192.168.60.200.5981 > 192.168.47.4.53918: Flags [P.], seq

15928:30483, ack 1, win 501, optiens [nop,nop,TS val 41898780839 ecr 3225626737], length

14488

12:15:35.370227 IP 192.168.68.200.5981 > 192.168.47.4.53918: Flags [.], seq

38488:31856, ack 1, win 501, options [nop,nop,TS val 41898780839 ecr 3225626737], length

1448

12:15:35.378384 IP 192.168.60.200.5981 > 192.168.47.4.53918: Flags [P.], seq

31856:48544, ack 1, win 501, options [nop,nop,TS val 4189878839 ecr 3225626737], length

E6E8

12:15:35.378989 IP 192.168.47.4.53918 > 192.168.60.200.59081: Flags [.], ack 38488, win
| 4121, options [nop,nop,TS wval 3225626748 ecr 4189878837], length 8

12:15:35.371060 IP 192.168.47.4.53918 > 192.168.60.200.5901: Flags [.], ack 48544, win
| 4868, options [nop,nop,T5 wal 3225626748 ecr 41089078839], length 8

12:15:35.378232 IP 192.168.60.200.5981 > 192.168.47.4.53918: Flags [P.], seq

48544 :56472, ack 1, win 581, options [nop,nop,TS val 4189878847 ecr 3225626748], length

15928

Listing 57 - Analyzing the traffic

Exercises

1. What function can be used in Scapy to sniff traffic?

Answel

Answer Verify

2. What parameter to sniff() would you need to provide to capture a total of 3000 packets from the
wire?

Answer

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

| My Kali VPN

Capturing and Sending Packets with Scapy
Capturing Packets with Scapy

Capturing and Sending Packets with Scapy
Methods for Sending and Receiving Packets...

<

Resource Center

TEXT

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

- 2.6. Wehsite Interaction with Python - i

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

2.7.. Introduction to Scapy

2.7.2. Scapy Commands

2.7.3. Capturing Packets with Scapy
2.7.4. Saving Packets with Scapy

2.7.5. Methods for Sending and
Receiving Packets with Scapy

2.7.6. Sending a Packet with Scapy

2.7.7. Sending and Receiving a Respons
from Scapy

<

Get Good at Python: Network Scripting

Methods for Sending and Receiving Packets with Scapy

Scapy can also be used to send and receive packets. Depending on the packet or group of packets
we want to send to a target, we should expect a response back. Scapy has a few different types of
send and receive methods.

. send
o sendp(): Sends Layer 2 packets.
o sendf): Sends Layer 3 Packets.
. sr
o sr): This method sends and receives packets at layer 3. If this method is set then it
will return answered and unanswered packets.
o srif): This method sends packets at layer 3 but it will only return the first answer or
sent packets.
o srp(): This method sends and receives packets at layer 2. If this method is set then it
will return answered and unanswered packets.
o srpl()k This method sends packets at layer 2 but it will only return the first answer or

sent packets.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

| My Kali VPN

Capturing and Sending Packets with Scapy Capturing and Sending Packets with Scapy
Saving Packets with Scapy Sending a Packet with Scapy

<

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server

- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking

- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

- 2.6. Wehsite Interaction with Python - i

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

2.7.. Introduction to Scapy

2.7.2. Scapy Commands

2.7.3. Capturing Packets with Scapy
2.7.4. Saving Packets with Scapy

2.7.5. Methods for Sending and
Receiving Packets with Scapy

2.7.6. Sending a Packet with Scapy

2.7.7. Sending and Receiving a Response
from Scapy

Get Good at Python: Network Scripting

Sending a Packet with Scapy

To send a packet to our target we first need to create the packet. To create the packet we will use
the following syntax:

»>»>> packet = IP (dst = "offensive-security.com™)

Listing 52 - Creating a packet

With the above command, we have created an IP packet that will be sent to www.offensive-
security.com. Let's make our packet slightly more sophisticated.

»>>> packet = IP (dst = "offensive-security.com”™)/ICMP()/"Ping Offsec”

Listing 53 - Improving our packet

This additional syntax creates a packet that will be sent to the IP Layer and it will specifically be
going through the ICMP protocol. A raw payload is included to make sure the destination receives
the message we included. To verify the information and options we set, we run the following.

»»> packet.show
<bound method Packet.show of <IP frag=8 proto=icmp dst=Net('offensive-security.com') |
<ICMP |<Raw load="Ping Offsec' |>>>>

Listing 54 - Re?;@wa‘ng_fﬁe packet contents

This command will display the information contained in the packet. Once we have verified our
options for the packet, we can now send it to our target.
>»>> send(packet)

Sent 1 packets.

Listing 55 - Sending the packet

In the above listing, we receive a response from Scapy that the packet has been sent. However, if we

want to view the output of the response, we need to use another terminal window to catch the
packet.

Let's continue to use Scapy to capture the packet response by using the following syntax in a new
terminal window.

>>> capture=sniff(filter="icmp”, iface="eth8", count=2, prn=lambda x:x.summary()}

Listing 56 - Capturing the packet

Then, we can resend the packet with send(packet) in the original terminal. Our listening terminal will

produce the following output.

»»>> capture=sniff(filter="icmp”, iface="eth8", count=2, prn=lambda x:x.summary()}
Ether / IP / ICMP 192.163.60.20@ > 192.124.249.5 echo-request @ / Raw

Listing 57 - Recelving the packet

A spoofed e receiver believes
t be used
by attackers to misrepresent where they are, or to impersonate other users.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit

| My Kali VPN

Capturing and Sending Packets with Scapy
Methods for Sending and Receiving Packets..

Capturing and Sending Packets with Scapy

<

Sending and Receiving a Response from Sc... >

Resource Center

TEXT

2. Network Scripting

- 2.1. Write a Client with Python - |

2.1.1. Building a Basic Client

2.1.2. Socket Methods

- 2.2. Write a Client Program in Python - ||

2.2.1. Error Handling: Try and Except
Clauses

2.2.2. Handling Unknown Data Size

2.2.3. Interactive Sockets

- 2.3. Write a Server with Python

2.3.1. Building a Basic Server

2.3.2. Testing our Client and Server

- 2.4. Write a Port Scanner with Python

2.4.1. Using the Socket Module to
Create a Port Scanner

2.4.2. Port Knocking

- 2.5. Webhsite Interaction with Python - |

2.5.1. The Transport Layer: Using the
Python Sockets Module with HTTP

2.5.2. The Application Layer: GET
Requests with Python

2.5.3. Parsing HTML

- 2.6. Wehsite Interaction with Python - i

2.6.1. POST Requests and Parameters
with Python

2.6.2. Request Headers and Non-Text-
based Content

Capturing and Sending Packets with
" Scapy

2.7.. Introduction to Scapy

2.7.2. Scapy Commands

2.7.3. Capturing Packets with Scapy
2.7.4. Saving Packets with Scapy

2.7.5. Methods for Sending and
Receiving Packets with Scapy

2.7.6. Sending a Packet with Scapy

2.7.7. Sending and Receiving a Response
from Scapy

Get Good at Python: Network Scripting b4

Sending and Receiving a Response from Scapy

Earlier, we introduced the srf) send and response method. Using this method is almost the same as
using send(). The only difference between using send() and sr{} is that we will be able to receive a
respanse immediately with sr{), instead of opening up a new capture.

We'll modify our previous syntax to utilize the sr{) method.
>>> packet = TP (dst="offensive-security.com”)/ICMP()}/"Hello Offsec”

»>>> sr{packet)
Begin emission:
Finished sending 1 packets.

Received 186 packets, got @ answers, remaining 1 packets
(<Results: TCP:8 UDP:& ICMP:@ Other:@>,
<Unanswered: TCP:8 UDP:@ ICMP:1 Other:@:)

Listing 58 - Using sr() to send and receive a packet
Scapy was able to finish sending the packet and it was able to obtain 186 packets until it exited
when we manually sent an interrupt (ctrl-c).

The following exercises will test your Scapy skills. There is a server running on the target VM on port
9876. The server is listening for packets coming from Scapy. When it is provided with the correct
inputs, it will write a flag onto the target's file system.

To access the file system, use the sffp command with 'sftp offensive@TARGET-IP". The password to
logon is 'security’. Once you are connected, use cd to move into the file-transfers directory.

In another terminal, run Scapy with elevated permissions and then complete each exercise below.
For each exercise, after you have sent the correct input via scapy, run fs on the target server to
retrieve the corresponding flag and enter it as your answer.

Resources

Some of the exercises require you to start the target machine(s) below.

Please note that the IP addresses assigned to your target machines may not match those referenced
in the Module text and video.

A, Network-Scripting

Resource Center

Exercises
Complete the following exercises with the in-browser Kali client.
1. Send an IP packet to the server listening on port 9876. The IP packet must arrive at the target

server with a TTL of 99, and does not need to contain any data.

Answe View hints

A e A
ANswel

Verify

2. Send an ICMP packet to the server listening on port 9876. The ICMP packet should contain the
data "Hello, Offsec!".

Answe

Answer Verify
3. Send a UDP packet to the server listening on port 9876.
Answer

Answer Verify
4. Send a TCP ACK packet to the server listening on port 9876, with the source port of 22.
Answe

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.ne/RedBl ueHit

| My Kali VPN

Capturing and Sending Packets with Scapy
Sending a Packet with Scapy

Data Manipulation in Python
Data Manipulation in Python

<

TEXT Get Good at Python: Data Manipulation...
N

3. Data Manipulation in Python

+3.1. Python Data Basics Data Manipulation in Python

88 6 |ists and Diclionaes In this Topic, we will cover the following Learning Units:

B G irarel nes HerTan Al . Refresh our Basic Knowledge Ioflethon Data
. Understand Sets, Lists, and Dictionaries
Converting and Displaying Data . Understand Different Base Representations
== " Types . Learn to Convert and Display Data Objects
Manipulating Binary Large Objects in B Hanipute Bnagelamesieet
+3.5. Python . Understand User Defined Data Structures
. Understand Data Structures as Records

+ 3.6. User-Defined Data Structures
Each learner moves at their own pace, but this Topic should take approximately 7.5 hours to

+ 3.7. Data Structures as Records complete:

(c) 2023 OffSec Services Limited. All Rights Reserved.

Capturing and Endta Packets withlSr:a Python Data Basics

. . . By)
' My Kali "u'Phi]OI n us now -> hide@l.i Eanlmnga mﬁﬁ ?a HE Ms L &13/ H deOl1 | t.ne/RedBl ueHit Pvihior Data Basica

Resource Center

TEXT Get Good at Python: Data Manipulation...
N

3. Data Manipulation in Python
- 3.1. Python Data Basics Python Data Basics
In any computer system, the basic forms of data, bits and bytes, are low level constructs.

Python provides us with the ability to work in higher level constructs such as strings,
3.1.2. Working with Integers integers, boolean, and floating paoint.

3.1.1. Working with Strings

3.1.3. Working with Floating Points In this Learning Unit, we'll refresh our knowledge and skills of basic data types. We'll cover

: the following Learning Objectives:
3.1.4. Exploring Complex Numbers

.) . Refresh our knowledge of strings
3.1.5. Working with Booleans . Refresh our knowledge of integers
3.1.6. Understanding Python Bytes . Refresh our knowledge of floating points
. Explore complex numbers
+ 3.2. Sets, Lists, and Dictionaries . Refresh our knowledge of booleans

+ 3.3. Different Base Representations * Linderstand Gyiqgn s DRy

Converting and Displaying Data This Learning Unit should take about 90 minutes to complete.

Types For this Topic, we'll mastly use the interactive console, which can be started as follows.

Manipulating Binary Large Objects i

+3.5. kali@kali:~ hon3
Python e i WG it
Python 2.9.9 (main, Jan 12 2822, 16:1@:51)
+ 3.6. User-Defined Data Structures {[6cC 11.2.0] on Linux
Type "help”, "copyright”, "credits", or "license" for more information.
+ 3.7. Data Structures as Records >

Listing 7 - Starting Python

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

) Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t. e/ RedBl ueHit
My Kali VPN Data Manipulation in Python Python Data Basies
Data Manipulation in Python ‘Waorking with Strings

Resource Center

TEXT

3. Data Manipulation in Python

- 3.1. Python Data Basics

I 3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

+ 3.2. Sets, Lists, and Dictionaries
+ 3.3. Different Base Representations

Converting and Displaying Data
" Types

Manipulating Binary Large Objects i
" Python

-+

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

Get Good at Python: Data Manipulation...

Working with Strings

One of the most commonly used data types in Python is the string object, which is zero or more
characters concatenated together. A string may be any length and may include spaces and special
characters, such as a new line. We can store it as a variable or use it directly as a quoted string.
Because much of the basic manipulation of strings is explained in the introductory Python scripting
Topic, we'll briefly cover the functions we use to manipulate strings as a refresher.

»»> astring = "The world is not

>»> bstring = "flat."

»»»> astring = astring+bstring

>»»> print{astring.upper())
THE WORLD IS MOT FLAT.

»»> print({astring.lower())
the world is not flat.

Listing 2 - Manipulating String Case

This code starts by setting astring and bstring to parts of a sentence and then concatenating them
with the plus (+) operator. The upper() and lower{) functions are used to change the case of the
sentence.

When dealing with multiple items we can hold them in a single data structure and access them using
indexes. We call this a list or an array of items. A character string can be manipulated as an array of
characters. We can find its length with the /en function and index into it with "0" as the first
character. Let's pick out the first and last character, and then the word "flat".

>»>»> print{len{astring))
22

»>>> print{astring[e])
T

>>> print(string[21])

>>> print{astring[-1])

»>>> print{astring[17:21])
flat

Listing 3 - Erings as Character Arra Vs

We've used the character index starting from the beginning, but we've also used the character index
as a negative value to start from the end, with "-1" being the last character in the string.

We can refer to the part of the string that we are manipulating as a substring or a slice. A substring
has an inclusive start point and an exclusive end point. In other words, the string we are taking out is
up to, but not including, the end point.

We can't directly assign a string element or substring, but we can replace part of our string, as
shown below.

»»> string[13:21]="spherical”
Traceback (most recent call last)
File "<stdin>", line 1, in <module>
TypeError: 'str' cobject does not support item assignment

»>> astring=astring.replace("not flat","spherical™)

>»> print{astring)
The world is spherical.

Listing 4 - Substring Replacement
We can also use the asterisk (*) as a multiplier for character assignments.
»> a="A"*6

»>>> print(a)
AARAAA

Listing 5 - Repeating Characlers

Single or double guotes can both be used to denote strings. Having multiple string delimiters is
useful when we want to embed a string within a string. Alternatively, we can achieve the same by
prefixing with the backslash (), also known as an escape prefix.

>»> astring = 'The world is "almost"™ spherical.’

>»> print{astring)
The world is "almeost™ spherical.

»»» astring="The world is \“"almost\"™ spherical.”
The world is "almost"™ spherical.

Listing € - Embedding Delimeters

There are other useful escape sequences, such as newline (\n) and tab (\t), which can be used as
shown below.

»»» pstring = "Mercury\tVenus\tEarth\nMars\tJupiter\tSaturnin”
>»> print{astring)

Mercury Venus Earth
Mars Jupiter Saturn

Listing 7 - Special Characters

Mow that we've had a guick refresher on strings, let's move on to integers.

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

7 My Kali VPN

Python Data Basics Python Data Basics
< Python Data Basies Working with Integers

Resource Center

TEXT

3. Data Manipulation in Python

- 3.1. Python Data Basics

3.1.1. Working with Strings

I 3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

+ 3.2. Sets, Lists, and Dictionaries
+ 3.3. Different Base Representations

Converting and Displaying Data
" Types

Manipulating Binary Large Objects i
=+ J.d.
Python

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

Get Good at Python: Data Manipulation...

Working with Integers

We'll set an integer variable in Python (which supports unlimited length integers) using an
assignment statement. An integer can be positive or negative and we can use the normal arithmetic
operators. Examples of this are shown below.

»>> inuml = 164

»>» inum2 = 37

»>» inum3 = inuml * inum2
>»> print({inum3)

6863

»>» inum3 = inum3 + 1
>»> print({inum3)
6869

>»> type(inum3)
<class "int'>

>>> inumd = inum3 / 23
»»> print({inum4)
263

>»> type(inumd)
<class “int'>

»>» inum5 = inum3 X 23
>»> print{inum5)
28

>»> inumd += 1
>»> print{inumd)
264

Listing P integers in Python

The example above shows the way in which the integer division operator (/) results in an integer
answer, with any remainder being discarded. The modulo (%) operator will provide the remainder if
needed. We can also use the fype function to identify the type of variable we are dealing with. The
listing shows the use of the "+=" operator as shorthand for adding a fixed value to a variable.

There are many mathematical functions we can use with integers. Two we'll be using later in the
Topic are int() to convert a string to an integer, and str() to convert an integer to a string. This is
particularly useful when we're reading a number from the console as we can input a string and then
convert it to a number using the int() function, or we can directly convert the input. Both ways are
shown below.

»>> astring = input{"Enter a number: ")
Enter a number: 12

»>>> type(astring)
<class "str':

>>> inum = int(astring)
»>> print{inum)
12

>>> inum = int(input("Enter a number: "})
Enter a number: 12

»>> print{inum)
12

>>> type(inum)
<class “int'>

>>> astring = str{inum+1)+" green bottles”

»>>> print{astring)
13 green bottles

Listing 9 - Converting Between Integer and String

Let's now move on to floating point numbers.

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit

7 My Kali VPN

Python Data Basles Python Data Basies
Working with Strings Working with Floating Points >

<

Resource Center

TEXT

3. Data Manipulation in Python

- 3.1. Python Data Basics

3.1.1. Working with Strings
3.1.2. Working with Integers

I 3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

+ 3.2. Sets, Lists, and Dictionaries
+ 3.3. Different Base Representations

Converting and Displaying Data
" Types

Manipulating Binary Large Objects i
=+ J.d.
Python

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

Get Good at Python: Data Manipulation...

Working with Floating Points

Floating point variables are numbers which have numbers both in front of and behind the decimal
point, and is a decimal (i.e., using the values 0-3) form of representing fractions. For example, if we
divide three by 2 we get 1.5, denoting one and a half. We can set a floating point variable in Python
by including a decimal point in the assignment with either zero or nothing after it. As long as the
decimal point is used, it's considered to be a floating point number.

»>»> fouml = 12.75
>»> type(fnuml)
<class “float'>

»>» frum2=67.
»»> type(fnum2)
<class “float'>

Listing 10 - Setting a Floating Point Value

The standard mathematical operators work as we'd expect and return floating point results. The
integer division and modulo operators work on floating point numbers, returning floating point
values.

*»» foum3 = foum2 / fonuml
»>>> print(fnum3)
5.254901968784314

>>> type(fnum3)
<class "float'>

*»» foumd = foum2 / fonuml
»>> print(fnumd)
5.8

>>> type(fnumd)
<class "float'>

*»» foumS = fnum2 ¥ fonuml
>>> print(fnums)
3.25

Listing 17 - Once a Float, Always a Float

The issue we run into with floating point numbers is due to the way they are internally stored by
Python. Let's do a simple addition of two floating point numbers and print the result.

*»» fouml = 8.1

*»» foum?2 = 8.2

*»» foum3 = fouml + fonum?
»>>> print(fnum3)

2. 30020000202008204

*»» foum3==0.3
False

Listing 12 - A Floating Anomaly

We may not want to have a floating point number shown in its completely accurate form, and in some
cases we just can't do that. Consider when we divide 5 by 3. The value is 1.66666.. but the fractional
digit 8 continues to infinity. We will often decide we want, say a 4 digit level of precision,! and then
represent the number in that form. We could just cut it off, and call 5 divided by 3 to be 1.666, or we
might round? the last digit by adjusting it based on the digit following it. If it's 5 or greater, we can
increase our last digit by 1. This would make 5 divided by 3 rounded to 4 digits of precision as 1.667.

When we're working with computer-based numbers, we will often define the level of precision in bits
rather than decimal display values. Single precision in this context means what we can fit in one 32
bit word, and double precision means what we can fit in two 32 bit words.

>»> round{fnum3,1)
8.3

Listing 13 - Rounding Floats

We can convert between integer and floating point easily enough and sometimes this is done
automatically.

I *»» Anuml = 164
»>> inum2 = 37

| 3>> fouml = inuml / inum2
>»» print(fnuml)
4.4324324324324325

>»> type(fnuml)
<class "float'>

>»> ipum3 = int({fnuml)
>»> print{inum3)
4

>»> type(inum3)
<class “int'>

>»> foum2 = float{inum3)
>»> print(fnum2)
4.8

Listing 14 - Converting Between Floats and Integers
If we display a very small floating point value, we'll get a slightly different result with larger numbers.

»»» fouml = 8.802
>>> print{type(fnuml), fnuml)
<class "float'> 0.082

»»» fnum? = 8.000002
>>> print{type(fnum2),fnum2)
<class "float'> 2e-86

»>>> astring = str({fnum2)
»>>> print{astring)
2e-86

Listing 15 - Very Small Floating Points
Python will display the smaller number in scientific notation, which also occurs if we convert the
value to a string. Sometimes a calculation resulting in scientific notation can have a lot of decimal
places we may want to round. We can't use a round function because we aren't actually dealing with

decimal places. What we can do, however, is use a special prefix to specify the level of accuracy we
want, as shown below.

>»> foum3 = 1.4966517743e17

»»> print("%.3g"¥%fnum3)
1.49e17

Listing 15 - Rounded Floats

Let's move on to complex numbers in Python.

1 (GeekforGeeks, 2022), https://www.geeksforgeeks.org/floating-point-representation-basics/ <

2 (Math is Fun), https://mathsisfun.com/rounding-numbers.html <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H deOl1l | t.nme/RedBl ueHt

| My Kali VPN

Python Data Basics Python Data Basics
Working with Integers Exploring Complex Numbers

<

Resource Center

TEXT Get Good at Python: Data Manipulation...

3. Data Manipulation in Pythan Exploring Complex Numbers

- 3.1. Python Data Basics

3.1.1. Working with Strings

Python offers the ability to manipulate complex numbers. These numbers, which consist of real and
imaginary parts, occur when carrying out sguare root operations on negative numbers. They are
3.1.3. Working with Floating Points used in engineering to analyze concepts like structural vibrations and the behavior of fluids. A
complex number is represented in the form x+yj where x is the real part and y the imaginary part.

3.1.2. Working with Integers

I 3.1.4. Exploring Complex Numbers

3.1.5. Working with Booleans >>> cnuml = 17+3j
>>> print{cnuml)
3.1.6. Understanding Python Bytes (17+37)
+ 3.2. Sets, Lists, and Dictionaries >>> type(cnuml)

; _ <class "complex'>
+ 3.3. Different Base Representations
>>> cnum2 = complex{17,3)
>>> print(cnum2)
(17437)

Converting and Displaying Data
" Types

Manipulating Binary Large Objects i
=+ J.d.
Python

Lfs?ng 16 - Complex Numbers in Python

We can also use the complex function to yield a complex value and pick out parts of the complex
numbers using suffixes.

+ 3.7. Data Structures as Records = S 7

>>> print{cnuml.real)

17.8

+ 3.6. User-Defined Data Structures

>>> print{cnuml.imag)
3.a

>»> print{cnuml.conjugate())
(17-37)

Listing 17 - Complex Number Parts
We can manipulate complex numbers with mathematical operators and use them in functions. We

can’t, however, directly convert complex numbers to int or float, but we can use the int() function on
the .realand .imag suffix parts.

We'll leave complex numbers for now and review another form of data: booleans.

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

) Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deOl | t.nme/RedBl ueHt
< My Kali VPN Python Data Basics Python Data Basics
< Working with Floating Points Working with Booleans "

Resource Center

TEXT Get Good at Python: Data Manipulation...
-

3. Data Manipulation in Python Working with Booleans

- 3.1. Python Data Basics

3.1.2. Working with Integers

3.1.4. Exploring Complex Numbers

3.1.5. Working with Booleans

3.1.1. Working with Strings

Boolean variables take the true or false value. These are either created by direct assignment of the
pre-defined names, True and False, or as a result of a comparison operation. Let's demonstrate

3.1.3. Working with Floating Points some of these.

»»» bwvall = True
>»»> print(bvall)
True

3.1.6. Understanding Python Bytes

»>» if bwvali:

+ 3.2. Sets, Lists, and Dictionaries S5 print("It's true!")

+ 3.3. Different Base Representations It's true!

-+

Converting and Displaying Data
" Types

Manipulating Binary Large Objects i
" Python

>»» if inuml > inum2:
o print{inuml,"is greater than",inum2)

164 is greater than 37

Listing 18 - Boolean Values

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

The Boolean operators are and, or, and not. We can use the bitwise operators "&" and "|" as
shorthand for and and or, respectively.

»>» bwvall = True

»>»> bval2 = False

»»»> print({bwvall and bval2)
False

>»»> print(bvall & bval2)
False

»»»> print({bvall or bval2)
True

»»> print{bvall | bwval2)
True

»»»> print{not bval2)
True

Listing 19 - Boolean Operators

That completes the main data type refresher, so let's finish by reviewing the larger structures we can
build with these data types.

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

My Kali VPN Python Data Basics Python Data Basies

<

Exploring Complex Numbers Understanding Python Bytes

Resource Center

TEXT

3. Data Manipulation in Python

- 3.1. Python Data Basics

3.1.1. Working with Strings

3.1.2. Working with Integers

3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

I 3.1.6. Understanding Python Bytes

+ 3.2. Sets, Lists, and Dictionaries
+ 3.3. Different Base Representations

Converting and Displaying Data
" Types

Manipulating Binary Large Objects i
=+ J.d.
Python

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

<

Get Good at Python: Data Manipulation...

Understanding Python Bytes

There's a class of built-in data, known as bytes,’ which is used quite extensively in Python. A byte is
an eight bit value and is declared by using the b prefix, or the encode function.

*»»»> b1 = b"A’

>>> type(b1)
<class ‘"bytes’>

>>> b2 = "A".encode()

>>> type(b2)
<class ‘"bytes’>

»>>> print(b2)
b A’

Listing 20 - Declaring a Byte using an ASCll Character

While byte literals can be declared using ASCIIZ characters, there are some values that don't appear
in the ASCII character set. For these, we need to use an escape sequence to assign a bytes value.
We'll typically use a hexadecimal constant, which we'll discuss shortly. Here is an example.

»»> bl = b"\xJF"'

>»> type(b1)
<class "bytes'>

>»> print(b1)
b 7f"

Listing 21 - Declaring a Byte using a Hexadecimal Constant

When we print a bytes value that is non-ASCIl, it is displayed in hexadecimal form. Bytes are of
particular significance as some Python system functions require input in the form of bytes.

Python provides a bytes() function, but it has some interesting characteristics and we need to be
careful when using it. Let's find out why by using it to create a byte character and then trying to
create a byte number.

»>>> bl = bytes('A")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: string argument without an encoding

>>> bl = bytes('A".encode())
>>> print(bi)
b*A*

>>> b2 = bytes(123)

»>>> print(b2)

b "\ xB8% %08 228\ 08\ 088\ x08\ x 08\ x 00"\ x8 0\ 08 \ DA\ xB 8\, x00\ x0B\ B8\ BB\ 108\ xBB\ xB8\ xD8\ x BB,
B, x08%x00\ 00\ B8\ 1008\ 82\ 08 D8\ x BB\ 0804 X80\ 108\ xD8\ B0\ x08\ XD\ B8\ 08\ x00\ o8\ xBe
\xB\xB8\ xB0\ %08 x00\x8 8\ x08\ X8R\ x8 8\ x08 \x08 \xBa\ x80\x8a8\ x08\xBa\ x08\ x08\ x80\ X080\ x08 \xe
B\ xBe\ %08\ xB0\x08\ x00\ X8R\ x0e\ x0e" x08 \ xea\ X0 e\ x08 \ x B0\ x0 8\ x0e '\ x08\ X80\ xBe |\ x08\ X0\ xBB\ x
B84 x804\x08 08\ x08\xBd\ x08\ x 08\ x 00\ xB 0\ 108 \ DA\ xB 8\, 00\ x0B\ B8\ BB\ 108\ BB\ xB8\ D8\ x BB,
¥B8, P8 B8\ B8\ B\ :008\ B\ B e, P8 \ BB\ B8\ x88 \:xP8\ B8\ xee

>>> bl = bytes([127])
>>> print(bi)
b7 f’

Listing 27 - Byte Mistakes
In this example, we used the bytes() function together with the encode() function to deliver a byte
object. However, when we use the bytes function with a number, it doesn't return the bytes

representation of that number. It returns an array of bytes of that many zerces. To get the value of
127, we need to pass it the value in square brackets - in other words, as a single value list.

We'll cover byte arrays in maore detail when we discuss lists.

Mext, let's do a few exercises before we learn about the way different based numbers are
manipulated in Python.

1 (Programiz, 2022), https:/{www.programiz.com/python-programming/methods/built-in/bytes <

2 (ASClITable.com, 2022), https://www.asciitable.com/ <

Exercises

1. What data type results from doing an integer divide of the floating point value 124.00?

Answer

Answer Verify

2. How do we extract the remainder of dividing 1325 by 917

Answe

Answer Verify

3. We have a string variable sfrthat contains "It is time to break the chains of life, if you follow you
will find what's beyond reality". What is the substring expression to extract the phrase "chains of
life"?

Answer Verify

4. We have an imaginary number, cnhumi, which we want to print in the form "The real part is xx and
the imaginary part is yy". Write the print statement for that.

Answer View hints

Answer Verify

5. The formula for gravitational force is: n = (G x m1 x m2)/(r x r) The result, n, is the gravitational
force in Newtons. The value of the gravitational constant Gis 6.674e-11. The mass of the first
object is m7, let's use earth at 5.972e24 Kg. The mass of the second object is m2, let's use the sun
at 1.989e30 kg. The distance r between the sun and earth is 1.496e11 km.

Use Python to calculate the gravitational force between the earth and the sun. Enter the answer in
scientific notation with 3 digits accuracy.

ANsWwe

Answer Verify

6. | want to create a type bytes value of 65. How do | do this?

Answer View hints

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

-1 My Kali VPN

Python Data Basics Sets, Lists, and Dictionaries
Working with Booleans Sets, Lists, and Dictionaries o

<

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries

3.2.1. Manipulating Sets

3.2.2. Working with Lists

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

+ 3.3. Different Base Representations

Manuartina and Nienlavina Nata

Get Good at Python: Data Manipulation...

Sets, Lists, and Dictionaries

In this Learning Unit, we'll cover sets, lists, and dictionaries - composing structures that are
built from the basic data types. We'll cover the following Learning Objectives:

. Manipulate sets

. Learn about lists

. Explore tuples

. Work with dictionaries

This Learning Unit should take approximately 45 minutes to complete.

(c) 2023 QffSec Services Limited. All Rights Reserved.

Python Data Basles Sets, Lists, and Dictionaries
Understanding Python Bytes Manipulating Sets

<

<

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt

| My Kali VPN

Resource Center

TEXT

Get Good at Python: Data Manipulation...

3. Data Manipulation in Python Manipulating Sets

- 3.1. Python Data Basics

3.1.1. Working with Strings

3.1.2. Working with Integers

A setis a one dimensional array of items, which may be of different data types. A set isn't ordered or
indexed - it's just a collection of items. We can initialize a set, and we can add and remove from it,

3.1.3. Working with Floating Points but we can’t change the value of an element. We also can't access the elements directly. We can

3.1.4. Exploring Complex Numbers

3.1.5. Working with Booleans

loop through the set, check for the existence of an entry, and carry out set operations such as
unions.

One use of sets is to store multiple values of a common item. For example, we might create a set

3.1.6. Understanding Python Bytes called "squalls”, which stores security qualifications. We can initialize it as an empty set.
- 3.2. Sets, Lists, and Dictionaries »»> squalls = set()
I 3.2.1. Manipulating Sets Listing 22 - Create an Empty Set
3.2.2. Working with Lists We have to use the set{) function to initialize a set. We can keep it empty as shown above, or we can

initialize it with an set of values as shown below.

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries >»> squalls = set(['CISSP’, CertIV’, 'BadCert'])

+ 3.3. Different Base Representations

Listing 23 - Create a Populated Set

" Types

>>> squalls.add('0SCP")

Manipulating Binary Large Objects in

-+

" Python

>>> print(squalls)
set(["CertIv’, 'CISSP’, 'BadCert’, '05CP'])

+ 3.6. User-Defined Data Structures

Listing 24 - Adding to a Set

+ 3.7. Data Structures as Records

7 My Kali

We can also use curly braces to create a set with values. We'll review how creating an empty set
would be ambiguous later.

oy 1s = {"a™,"e","i", 0", "u"}

>>> type(vowels)
<class “set’'>

Listing 25 - Cre;mg a Populated Set

We can remove an element from a set, either using the remove() or discard{) functions. The remove
function will fail if the element to be removed doesn't exist, but the discard function won't. We'll use
the discard function to remove the "BadCert".

>»> squalls.discard{ 'BadCert’)

>»> print(squalls)
set(["CertIV’, 'CISSP", '0SCP'])

Listing 26 - Taking from a Set

We can check whether a value exists in a set using the in operator.

>>> '0OSCP° in squalls
True

Listing 27 - Checking for a Set Value

We can loop through a set, for example to print each element.

>»> for qual in squalls:
A print{qual)

CertIv
CISSP
0sCP

Listing 28 - Looping Through a Set
Let's define another set and check the results of carrying out a union and an intersection operation.

»>>> squalls = set(["CISSP", " CertIV", '0SCP"])
>>> squally = set([CISSP","CEH", CISA'])

>>> squat = squalls.union(squally}
*»» squat
set(["CertIv’, 'CISSP", 'CISA', 'CEH', "OSCP'])

»»> squalls | squally

set([CertIV', 'CISSP", 'CISA', 'CEH', '0SCP'])

>>> squat = squalls.intersection(squally)
set(["CISSP'])

»>>> squalls & squally
set(["CISSP"])

Listing 28 - Set Operations
The union{) function will create a new set with all unigue elements of the two sets, and intersection()
will return only those elements that exist in both sets.

We can use the line or pipe (|) as a shorthand for union and ampersand (&) as a shorthand for
intersection. We've also used the interactive implicit print function - just stating the variable name.

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit
VPN Sets, Lists, and Dictionaries Sets, Lists, and Dictionaries
Sets, Lists, and Dictionaries Working with Lists

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
I 3.2.2. Working with Lists

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

+ 3.3. Different Base Representations

Converting and Displaying Data
" Types

Manipulating Binary Large Objects in
" Python

-+

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

Get Good at Python: Data Manipulation...

Working with Lists

A list is set of items, which inherently, aren't in any specific order. It allows duplicates and we can
change individual values as required.

We've already used a list to manipulate a string as a sequence of characters. We can do this by using
square brackets to hold a single subscript to point to one character or by using a pair of subscripts
to define a substring.

We can build a list by initializing it as empty and then appending values or by initializing the list with
values.

»»> listl = []
>»> print(listl)

[]

»»> list2 = [16, 7 ,"phoenix", 3.14159]
>»> print(list2)
[16,7, "phoenix",3.14159]

»»>»> listl.append(88)
»»> listi[e]=16
»»> listl.extend([7,"phoenix",3.14159])

>»»> print(listl)
[16, 7, 'pheenix', 3.14159]

>»»> print{len(list1))
4

Listing 30 - Creating Lists

We need to be careful when working with lists that we don't accidentally delete our list. Using
append, for example, works directly an the list and returns a result of null. So if we by mistake issue
the command as an assignment, the results is an empty none-type value.

>>>listl=1istl1.append(4)
>>rprint(listl)
bS53

Listing 31 - Making a List mistake
Lists are very useful ways of arranging and manipulating data. In the example above, we initialized a
null list and a list containing mixed values (two integers, a string, and float). We then constructed the

same list by appending a single value, replacing an element's value, and extending with multiple
values.

We can even include a list as an element within a list. We can then use subscripts to access
elements, and where we have an embedded list, use double subscripts to access an element in the
embedded list.

>»>> listil.append(list2)

>»»> print(listl)
[16, 7, 'phoenix', 3.12159, [16, 7, 'phoenix’', 3.12159]]

>»> print({listi[2])
"phoenix"

>»> print(listi[4])
[16, 7, 'pheenix’, 3.12159]

»»» print(listi[4][3]1])
3.1215%9

Listing 32 - Embedding Lists

We can also use delto remove a list element and replace multiple elements by using a subscript pair
consisting of a start and ending index.

*»> del list2[2]

>»»> print(list2)
[16, 7, 3.12159]

»»> list2[1,3]=[32,48]

>»> print(list2)
[16, 32, 48]

Listing 33 - List Element Assighment

Lists retain the values in the order we set them in. However, if we want to keep the order of the
added values, we can use the sort function to sort our list or create a new sorted list with the sorted
function. Let's sort our first list.

>>> listil.sort()

>>> print(listl)
[3.12159, 7, 16, "phoenix’]

Listing 34 - Sorting Lists

Of course, sorting lists with consistent item types is more sensible, but Python is very forgiving.

We can also insert a new item at a specific point in the list. If we have a sorted list, we can loop
through it to insert the item at its correct place.

»»» list3 = [1, 3, 5, 7, 13, 17, 19, 23]
>»> list3.insert(4,11)

>»> print(list3)
[1, 3, 5, 7, 11, 13, 17, 19, 23]

Listing 35 - Insert into a List

We'll continue reviewing different types of data representation shortly, but let's demonstrate how
lists can provide a mapping for hexadecimal numbers. To do this, we can declare a list of hex values.
For example, if we then want to obtain the hexadecimal digit for 12, we can do that by indexing into
the list.

33> hexlist = [10,71%; 127,735, 87, 57,767, 70, 8 5197, TAY, TR, L, 0 S TR]

»»> print{hexlist[12])
e

Listing 36 - Indexing Lists
We can concatenate lists by simply adding them together, either as list expressions or list variables.
»»» list3 = list3 + [29, 31, 37]

>»> print(list3)
[1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

Listing 37 - List Concatenation

Let's move on to another special form of lists called tuples.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H deOl1l | t.nme/RedBl ueHt

7 My Kali VPN

Sets, Lists, and Dictionaries Sels, Lists, and Dictionaries
Manipulating Sets Exploring Tuples

Resource Center

TEXT Get Good at Python: Data Manipulation...
-

3. Data Manipulation in Python Exploring Tuples
- 3.1. Python Data Basics

3.1.1. Working with Strings
.) A tuple is very similar to a list, but it is immutable. This means that once the values in a tuple have
3.1.2. Working with Integers .
been set, they cannot be changed. We declare a tuple with parentheses.
3.1.3. Working with Floating Points
»>> tupl = (1, 2, 3}
3.1.4. Exploring Complex Numbers

>>> type(tupl)

3.1.5. Working with Booleans et

3.1.6. Understanding Python Bytes
>>> print(tupl)

- 3.2. Sets, Lists, and Dictionaries (1, 2, 3)

. . Listing 38 - Declaring a Tuple
3.2.1. Manipulating Sets

3.2.2. Working with Lists As with lists, a tuple can contain embedded data, including lists or other tuples, and is indexed the

same way.
I 3.2.3. Exploring Tuples

3.2.4. Using Dictionaries >>> tup2 = (1,2, ["alfa’, "brawo’], b'ABCDEF')

+ 3.3. Different Base Representations ZAs Shweitndal
<class “int'>

Converting and Displaying Data
il Types >>> type(tup2[2])
<class "list">
Manipulating Binary Large Objects in
"2 bython >>> type(tup2[3])
<class "bytes’:>
+ 3.6. User-Defined Data Structures
>>> type(tup2[2][1])

+ 3.7. Data Structures as Records | AR, O

Listing 39 - Complex Tuples

Tuples provide a useful data structure for related items of unchanging data.

Let's move on to the final list-like data structure in Python, paired entry lists, also known as
dictionaries or associative arrays.)

1 (Brilliant, 2022), https://brilliant.org/wikifassociative-arrays <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

My Kali VPN Sets, Lists, and Dictionaries Sels, Lists, and Dictionaries

Working with Lists Using Dictionaries >

Resource Center

TEXT

Get Good at Python: Data Manipulation...

3. Data Manipulation in Python Using Dictionaries

- 3.1. Python Data Basics

3.1.1. Working with Strings

3.1.2. Working with Integers

3.1.3. Working with Floating Points

A dictionary is a list in which one element of a paired entry is a key and the other element is its
corresponding value.

Let's set up a small dictionary containing the first four letters of the English alphabet and associate

3.1.4. Exploring Complex Numbers them with the first four letters of the NATO phonetic alphabet. We'll then use the dictionary to find a

value and add more entries.

3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes »»> dictl = {"A":"Alfa", "B":"Bravo”, "C":"Charlie”, "D":"Delta"}
- 3.2. Sets, Lists, and Dictionaries > print(dicti["C"])
"Charlie’

3.2.1. Manipulating Sets

»»> dictl.update({"E":"Echo"})

3.2.2. Working with Lists

3.2.3. Exploring Tuples

I 3.2.4. Using Dictionaries

+ 3.3. Different Base Representations

Converting and Displaying Data

>»> print(dictl)
{'A':"Alfa", 'B':'Bravo’, "C':°'Charlie’, 'D':"Delta’, "E":"Echo'}

>»> type(dictl)
<class "dict">

Listing 40 - Setting up a Dictionary

Types The key in a dictionary has to be a unigue string. However, as with lists, we can embed different data
Manipulating Binary Large Objects in types, including lists and dictionaries, as values in the dictionary.
= Rk Python
»»» dict2 = {"181561":["Smith","Daniel”, "OpsGroup”, "@9/82/2019"],\
+ 3.6. User-Defined Data Structures "185361": ["Jones", "Brian", "OpsGroup™, "11/07/2021"]}

+ 3.7. Data Structures as Records

7 My Kali

>»>> for empid in iter(dict2):
o print(empid,dict2[empid][1],dict2[empid][@])

181561 Daniel Smith
185361 Brian Jones

Listing 41 - Setting up a Dictionary

This provides us with a powerful way of structuring data.

Exercises

1. We have two skill sets, skills1 and skills2. What expression would result in the set of common
elements in the sets?

A =
Answe

Answer Verify

2. What is another name for an associative array?

Answer

Answer Verify

3. What condition would we use to determine whether the set skills1 contained the skill '"OSCP'?

Answe

Answer Verify

4. We have a list called list1 that contains the values: [1, 4, 5, 6, 8, 11, 24, 31, 32] We want to add the
value 17, in order, into this list. What command do we use?

Answe

Answer Verify

5. There are some traps we can fall into when manipulating data with Python. Create list2, append to
it, and print it using the code snippet below:

list2 = [1, 2, 3]
list2 = list2.append(4)
print(list2)

What is the result that is printed?

Answe

Answer Verify

6. Continuing from the previous guestion, check the data type of list2. What is the output when
running the command as shown in the following code snippet?

type(list2)

Answer Verify

7. We declare ¢56 = (1,2,3). We can determine its type by entering type(c56). What type of object is
€567

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit
VPN Sets, Lists, and Dictionaries Different Basa Representations
Exploring Tuples Diffarant Base Represantations

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

- 3.3. Different Base Representations

e T el i i) SR R L

<

Get Good at Python: Data Manipulation...

Different Base Representations

In this Learning Unit, we'll cover the following Learning Objectives:

. Represent and manipulate binary values
. Represent and manipulate octal numbers
. Represent and manipulate hexadecimal numbers

This Learning Unit should take approximately 90 minutes to complete.

We'll typically use decimal integers in Python, but there are other ways to represent integers
as well. The three most useful alternative representations we'll find are binary, octal, and
hexadecimal. We'll learn how they are represented in Python and how we transform a number
into another base for calculations and printing.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Sets, Lists, and Dictionaries Different Basa Representations

< i ;
Join us now -> hide01. i P*"19¥"i¥ % dBl ueTM | t. e/ Hi deOl1 | t.ne/ RedBl ueHi f¥anipulating Binary Values

| My Kali VPN

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries
3.3. Different Base Representations
I 3.3.1. Manipulating Binary Values

3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

Manipulating Binary Large Objects in
" Python

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

Get Good at Python: Data Manipulation...

Manipulating Binary Values

Binary numbers! take the values 0 and 1. While 0 and 1 are still equal to their face values, the binary
equivalent of 2 is "10", 3 is "11", and 4 is "100". Instead of each position in the number representing a
decimal digit 0-9, it represents a binary digit 0-1. Binary numbers work on base 2.

We can do math with binary numbers as we would with our normal decimal system, but need to
remember to carry over at 2 instead of 10. So adding 1001 (or 9 in decimal) to 1010 (10 in decimal)
gives 10011 (which is the binary representation of 19).

Binary numbers can be declared in Python using the Ob prefix. Let's declare a binary variable and
check its type.

»>»>» bi1=-0bB10606061

>>> print{chr{bl))
"

»>>> type(bl)
<class "int':

Listing 42 - Declaring a binary value

MNow we know binary numbers in Python are manipulated as integers and we can declare them as
such using all the standard integer operations. We still might want to declare a value in binary form if,
for example, we're using it as a mask to pick out a certain bit in a set of flags. This often happens
when dealing with system and network activity, such as manipulating the header fields in a TCP
packet with a set of flags as shown below.

Destination Port

Sequence Number

Windc

Urgent Pointer

Figure 1: TCP Header

In order to know whether this transmission was an acknowledgement, we have to check whether the
ACK flag is set. To isolate and check that bit, we'll need to carry out some bitwise operations.

Bitwise operators are used to manipulate binary numbers. There are four bitwise logic operators:
AND, OR, XOR and NOT. AND operates on two inputs and returns a 1 where both bits are 1, OR
operates on two inputs and returns a 1 where one (or both) of the bits are 1, XOR operates on two
inputs and returns a 1 where only one of the two bits is 1, and NOT operates on one input and returns
the opposite of the hit. There are two additional operators, "<<" and ">>", which shift the bits to the
left or right by a specified number of bit positions. The operations are demonstrated below.

1001
011000

Figure 2: Bitwise Operations
We can use the bitwise operations on bit (integer) variables.
»>>> bitl = 8b81661811
»>»» bit2 = 8bB0011101
>>> bit3 = bitl & bit2

»>>> print(b3)
9

Listing 43 - ANDing a Binary Value

Computers work at the binary level, but display their work in the 8-hit form of a byte or in multiple
bytes. A set of 2 bytes (16 bits) is called a word and 4 bytes (32 bits) is called a double word
(DWORD).

Let's do some bitwise manipulation using bytes. We'll use a flag byte to extract the ACK bit from the
TCP Header by adding AND to the flag byte against the bit sequence 00010000. If the value is not
zero, the ACK bit is set and Python recognizes not zero as true. The bit sequence to extract a bit is
often called a mask while the process of adding AND is known as masking. We can use the word
AND or we can use & as a shorthand version of the operator.

»>»> flag_byte = 0bo9a11000
»»>> ack=flag byte & 0b0o01000O

>>> if ack:
... print{"Ack set")

Ack set

Listing 44 - Masking a Binary Value

We also might want to set or unset a bit. Let's set the ACK bit using the OR function. The ACK bit is
in position 4 with the lowest order byte bit being position 0. We can use the left shift function in
conjunction with the OR (|) funetion to set it.

>»> flag bits = 8beeoooBRd
»»> flag bits = flag bits | 1<<4

>»»> print({bin(flag bits))
ableed

Listing 45 - Setting a Binary Value

Of course, we can clear a bit using the same technigue and the AND operatar.

XOR is a commonly used operator with a very useful characteristic: when it's applied twice, the
original result is uncovered. This makes XOR ideal for cryptographic functions. Let's create a cipher
and then recover it.

>>> plaintext = 6b81101810
»>>> key = 8bi@161610
>»>> ciphertext = plaintext ~ key

>>> print{bin{ciphertext))
'8blleeaaas

»>>> decode = ciphertext * key

>>> print{bin{decode))
"@bliele1a’

Listing 46 - Using Binary XOR to Encipher a Byte

In the example above, we've used the bin() function to display an integer in its binary form.

Because of its use in cryptography, XOR is useful for manipulating plaintext in the form of Python
strings. Let's code up a variation on the sxor() function? to perform string XOR.

»»> def sxor(sl,s2):
—_— tkey = s2 * int(len(s1)/len{s2)+1)
S return " .join{chr{ord(a) ™ ord(b)) for (a,b) in zip(si,tkey))

Listing 47 - The String XOR Function

We provide the sxor() function with two parameters: a string to encrypt and a key to encrypt it with.
The first thing we'll do is repeat the key so it's at least as long as the string we're encrypting. We'll
use the ratio of the string lengths to determine how many times to repeat it and use the multiply
operator to concatenate the key.

The return line starts by clearing the return value and then looping for the length of the message,
joining the encrypted message character-by-character to the result. The core of the statement is the
exclusive OR ("ord(a) * ord(b)") in which the integer value of the message character is XOR'd with
the integer value of the key at the corresponding point. The resulting integer is converted back to a
character (chr()).

The zip function takes two iterables as arguments and returns an iterator that generates a sequence
of character pairs. It generates pairs until the end of one of its inputs, which is why we made the key
longer than the string.

Mow that we understand the function, let's use it to encrypt and recover a message.

>>> msg = 'Always think of what is useful and not beautiful. Beauty will come of its
own accord.’

>>> key = 'BlueVariedWine'

>>> cipher = sxor(msg,key)

>>> print{cipher.encode(hex’))
a3aee2842f12521daded39024e0a244c020d371552801644221a0b033700558b3915528b80A5221d0783370
85b451404131c111d771207092e4c168a3b045206083443e1d1d452d1b1b45370821186170879

»>> recovery = sxor{cipher,key)

>>> print{recovery)
Always think of what is useful and not beautiful. Beauty will come of its own accord.

Listing 48 - Using Binary XOR to Encipher Strings

This is a pretty useful function to add to our toolbox. We can code up a very similar function for byte
strings.

>>> def bxor({bl,b2):
S tkey = b2*int({len(bi)}/len(b2)+1)
oo return bytes{[a*b for (a,b) in zip(bl,tkey)])

*>>> bl = b'I no longer know whether I wish to drown myself in lowve, wvodka, or the
Sea. "

>>> b2 = b'kafkaesque”

»>»>> cipher = bxor(bi,b2)

>>> print{cipher)

b " " ANBE\xB4ANE \x 1 cAx 1T A1 2\ B8 x19AN r\x85 \xBe\x1 25\ x@6 \x1d \ 88 \ w1\t \xBI \x19A, 5\ %06\ x1
cAx16%x83ANx 12 x84 001 \ 281 \x1el P2 \xBbK \xBc \ 1\ x 18084\t \x1 5041 c \xBbK\ ritix1d\ x@415%
*¥B7\x1ahx81\ xed\ xBaJ K\ xBe \x 175\ x05 \x1d\ x@8kK\ x12\x83\n0 "

»>>> recovery = bxor{cipher,b2)

>>> print{recovery)
b'I no longer know whether I wish to drown myself in love, vodka, or the sea.’

Listing 48 - Using Binary XOR to Encipher Byte Arrays

We've covered the basic representation and manipulation of bits, so let's move on to octal numbers.

1 (Rod Castor, 2020), https://towardsdatascience.com/binary-hex-and-octal-in-python-
20222488ceel <

2 (Mark Byers, 2010), https://stackoverflow.com/questions/2612720/how-to-do-bitwise-exclusive-
or-of-two-strings-in-python <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit

| My Kali VPN

Differant Base Representations Different Basa Representations
Diffarent Base Reprasentations Octal Numbers

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries
- 3.3. Different Base Representations
3.3.1. Manipulating Binary Values

I 3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

Manipulating Binary Large Objects in
" Python

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

<

Get Good at Python: Data Manipulation...

Octal Numbers

Octal' representation is less common, but it's still important to understand how te manipulate octal
data. Octal numbers are declared with the 0o prefix, have a base of 8, and are represented by the
digits 0-7. Let's declare and check an octal number.

*»> 0l = 80342127

>»> type(ol)
<class “int'>

*»»> 02 = 01 + Bod412661
>»> print{oct(o2))
Bo755018

>»> print(o2)
252424

Listing 49 - Declaring and Using Octal Values

Octal numbers, as with binary numbers, are an integer, so they can be manipulated with the same
operations. We can use the octal representation solely with the oct() function and the same variable
can be displayed or manipulated as an integer.

Continuing with the example above, if we want to obtain the octal value without the Oo prefix, we
can remove it as shown below.

*»» pol = 80755818
»>>> print{oct{pol)[2:])
755818

>>> print{oct(pol).replace("8o","",1))
755818

*»» nol = -804415
>>> print{oct({nol).replace("80","",1))
-4415

La’srfng—SfJ - Remaoving the Octal Prefix

Removing parts of a string is called taking a slice from the string. We'll often bump into this
terminology when doing stringwise operations.

While we can just remove the first two characters of the octal string if we know the value is positive,
using the rep/ace function provides a better solution as it works for both negative and positive octal
values.

We can convert a string of decimal digits to an integer with the int{) function, which assumes a base
of 10. In order to convert a string of octal digits into an integer, we can use the same method but
include the optional second parameter to int{) to specify the base. For octal, this is 8. Including the
Oo prefix in the string is optional.

»»> sol = "@o755010"
>»> intl = int(sol,8)

»»»> print{oct(int1))
Bo7550180

»»> s02 = "755818"
>»> int2 = int(s02,8)

»»> print{oct(int2))
Bo755018

»»> s03 = "-Bo04415"
>»> int3 = int(so03,8)

»»> print{oct(int3))
-Bod4415

Listing 51 - Converting Octal Strings to Integer

1 (Rod Castor, 2020}, https://towardsdatascience.com/binary-hex-and-octal-in-python-
20222488ceel €

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

| My Kali VPN

Differant Base Representations Different Basa Representations
Manipulating Binary Values Hexadecimal Numbers >

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples
3.2.4. Using Dictionaries
3.3. Different Base Representations
3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

I 3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

Manipulating Binary Large Objects in

" Python
+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

<

Get Good at Python: Data Manipulation...

Hexadecimal Numbers

Hexadecimal' numbers are integers with a base of 16, with the digits 10-15 being represented by the
characters A-F (lowercase is also acceptable). Hexadecimal numbers use the prefix Ox and integers
can be displayed using the hex{) function.

Figure 3: Hexadecimal (Base 16) Numbers

The figure above provides an example of hexadecimal addition and subtraction. Again, these
operations are standard integer operations in Python and we can display the results in either decimal
or hexadecimal, or using any other base, as we wish. We can display values in hexadecimal as shown
below.

»>» hexl
»>» hex2

Bx13A7
Bx26FF

>»> print{hex(hex1+hex2))
Bx3AAG

»»>» hex3 = @xFeeD
»»> hexd = @xBAAD

>»»> print{hex(hex3-hex4))
Bx3560

Listing 52 - Declaring and Using Hexadecimal Numbers

We'll often want to manipulate the two hexadecimal digits of an 8-bit byte individually. These are
called nibbles,? which are categorized into high-order nibble (bits 7-4) and low-order nibble (bits 3-
0). We can isolate the low-order nibble by adding AND to the byte with the hexadecimal value 0x0F.
We can obtain the high-order nibble by shifting the byte four bits to the right.

>»> hexbyte = @xBE
>»>> low nibble = hexbyte & 8x8F

»»> print({hex(low mnibble))
Bxde

>»> high nibble = hexbyte >> 4

»»»> print{hex(high_nibble}))
axeb

Listing 53 - Nibbling Hexadecimal Numbers
When we're dealing with text files, we'll often navigate by using line numbers. However, when

reviewing binary files, we'll typically use hexadecimal addresses as offsets from the beginning of the
file. An example of this is shown below.

Figure 4: Hexadecimal File Display

Each line in the middle panel is 16 bytes, so the address sensibly progresses by increments of 0x10
bytes per line. Let's try this in our own Python script.

1. fname = input(“Filename: ")
2. f = open(fname,”rb™)
3. offset = Bx@

Listing 54 - Hexit Part I: Opening files

The first thing we need to do is request a filename, which we'll open for reading in binary mode at
line 2. We won't code in any error checking for this demonstration, so let's assume the file exists. At
line 3, we'll set the initial offset address to zero as we're at the start of the file.

Let's continue setting up an outer per-line loop.

4. infile = True

5. while infile:

6. addr=str{hex{offset)[2:].zfill(8))
7

8

-

hexline =

-

ascline =

Listing 55 - Hexit Part I: The Outer Line Loop

In this code fragment, we're setting a flag called infile, which indicates we are still processing data.
We'll use this to signal from our inner loop (yet to come) to the outer loop at the end of file. The outer
loop continues while this is true (line 5). At line 8, we get the hexadecimal value of our offset, remove
the leading "0x", include leading zeroes to a fixed length of 8 characters, and store this as addr.
Next, we clear the hexadecimal and the ASCII? (printable) portions of the line.

Let's now script up the inner loop for the 16 bytes we'll display on a line.

o for x in range(@x1@):

1a. byte = f.read(1)

11. if len(byte) ==

12. hexline = hexline.ljust(48)
13. infile = False

14. break

15. if ord(byte) > 29:

16. aschr = chr(byte[@])

17. else:

18. aschr = "."

19. ascline = ascline + aschr

20. hexline = hexline + hex(byte[@])[2:].zfill{2) + " "

Listing 56 - Hexit Part Ili: The Inner Byte Loop

We'll start by doing an inner forloop sixteen times. For clarity, we're using the hexadecimal value
"0x10" to indicate this will be for an address increment of 0x10. At line 10, we read one byte from our
file, which the read function delivers to us in type bytes. If the length is zero, which we can check at
line 11, then we've reached the end of file. In this case, we'll continue the hexadecimal part of the line
with trailing spaces to a length of 48 characters, set the flag for our outer loop, and leave the inner
loop.

At line 15, we'll check whether the decimal value of the byte is greater than 29, in which case we'll
obtain its character representation by using the expression byte[0], which will return the byte as an
integer. We could have also used ord{byte) to obtain the integer value. If the byte is less than 30, it's
an unprintable character that we'll replace with a period. We'll add this to the ASCII part of line 19.
Then, at line 20, we'll obtain its hexadecimal form, remove the "0x" prefix, and add it to the
hexadecimal portion of the line.

All that's left is to continue looping through the file, printing out our file dump.
21. print(addr+” “"thexlinet™ "

232, offset = offset + Bx10

23. f.close()

+ascline)

Listing 57 - Hexit Part \: The Ending

Once the inner loop terminates, or we exit, we'll print the line address at line 21 (hexadecimal portion
and ASCII portion). At line 22, we'll add the address increment 0x10 and loop for the next line. Once
we have printed the last line, we can close the file at line 23 and terminate.

The full code listing is below:

fname = input(“"Filename: ")
f = open(fname,”rb™)
offset = @x@
infile = True
while infile:
addr = str(hex(offset)[2:].zfil1(8))

m

hexline =
ascline = ""
for x in range(@x18):
byte = f.read(1)
if len(byte) == @:
hexline = hexline.ljust(48)
infile = False
break
if ord(byte) > 29:
aschr = chr(byte[8])
else:
aschr = "."
ascline = ascline + aschr
hexline = hexline + hex(byte[@])[2:].zfill(2) + " "
print(addr+” “+hexline+™ "
offset = offset + axi1e

f.close()

+ascline)

Listing 58 - Hexit Code Listing

We've already found that we have to manipulate data between representations, and the key
transformation we need to be familiar with is bytes to integers and strings. We can convert a byte
into an integer by either using the ord function or subscripting it.

»>» b1 = b'A’

»»> type(b1)
<class 'bytes':>

»»> type(bi[e])
<class “int'>

>»> type(ord({bl))
<class “int'>

Listing 59 - Manipuiating a Hex Byte

We'll often have to deal with data that consists of multiple bytes (reading a section of data from a
file, for instance). We'll move data between string and bytes form, and while we can use subscripts
to convert it byte-by-byte, it is easier to use the encode and decode functions.

>>> strl = "Hey hey, my my, rock'n’roll will never die”

>>> type(stri)
<class "str':

>>> type(stri.encode())
<class "bytes’>

>>> bl = b"Hey hey, my my, rock'n’'roll will never die”

>>> type(b1)
<class 'bytes’>

>>> type(bl.decode(})
<class “str'>

Listing 60 - Encoding and Decoding Bytes
We can also (though less often) convert float values to hexadecimal using the float.hex() function.
»»» f1 = 3.14159

>»> print(fleat.hex{f1))
8x1.921f3fe1b866ep+l

Listing 81 - Hexadecimal for Floating Points

1 (Rod Castor, 2020), https://towardsdatascience.com/binary-hex-and-octal-in-python-
20222488ceel <

2 (wikipedia, 2022), https://en.wikipedia.org/wiki/Nibble <

3 (ASClITable.com, 2022), https://www.asciitable.com/ «

Exercises

1. Use the XOR bitwise operator to achieve the ultimate alchemy - transform ‘iron’ into 'gold’. What is
the key?

View hints

Verify

2. We want to check the URG hit setting in the TCP header flags byte (flag_bits). Using the left shift
bit approach as we covered for the ACK bit, what is the Python expression which will return true if
the URG bit is set?

View hints

Verify

3. We have an octal string called "status". What is the function call we would use to return the integer
value of that string?

Verify

4. In Kali, code up the script to dump out files in hexadecimal as presented above. Then create a new
file and enter the following text exactly as shown.

ABCDEFGHIJKLMNOPQRSTUVIWXY Z8123456789ABCDEFGHI JKLMNOPQRS TUVIDCY L

Using your hexadecimal dump script, what is the hexadecimal value at offset 1C?

Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H de0l | t.nme/RedBl ueHt

VPN

Different Base Representations Converting and Displaying Data Types

Octal Numbers Converting and Displaying Data Types

Resource Center

TEXT Get Good at Python: Data Manipulation...
- @

- 3.2. Sets, Lists, and Dictionaries
Converting and Displaying Data Types
3.2.1. Manipulating Sets)) i
In this Learning Unit we'll cover the following Learning Objectives:
3.2.2. Working with Lists

. Convert integer data objects
3.2.3. Exploring Tuples . Convert byte data objects
% 2.4 Using Ditionaries i . Convert character da?ta objects | |
. Convert between strings and hexadecimal strings

- 3.3. Different Base Representations : i :
This Learning Unit should take approximately 60 minutes to complete.

a3 Manipliating Binaty aiues Now that we have our foundation of understanding data types, let's learn to convert them

3.3.2. Octal Numbers from one form to another.

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
-7 Types

3.4.1. Introducing Conversions (c) 2023 OffSec Services Limited. All Rights Reserved.

3.4.2. Converting Integers

3.4.3. Converting Bytes !
< Differant Base Representations Converting and Displaying Data Types

2T AA Canuarting Charactare Hexadecimal Numbers Introducing Conversions

) Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt
My Kali VPN

Resource Center

TEXT Get Good at Python: Data Manipulation...
- @

3.1.4. Exploring Complex Numbers Introducing Conversions
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

Our basic data types are integers and strings and the bytes object is used when interacting with the

=== besE, LIl anc SicRonarias underlying system. Characters are a special atomic string.

3.2.1. Manipulating Sets We'll use data objects in their native forms and represent them as native strings, but we may also
3.2.2. Working with Lists want to represent them in another form. We'll learn how to work with various data types in

hexadecimal, and we can take a similar approach for binary, octal, or any other exotic base.

3.2.3. Exploring Tuples ; ; . .
Characters in their "western" form are represented as 8 bits - a single byte. However, because

3.2.4. Using Dictionaries computers support more complex languages such as Arabic and Japanese, the representation of

3 . characters often uses two bytes. This is known as the Unicode' form.
- 3.3. Different Base Representations

Let's review how we move from one data object form to another and how we move between
3.3.1. Manipulating Binary Values displayable strings. The functions we'll use are summarized in the figure below.

3.3.2. Octal Numbers
3.3.3. Hexadecimal Numbers

4 Converting and Displaying Data
-7 Types

. . int.from_bytesil
3.4.1. Introducing Conversions

o]} - 1} E] b
3.4.2. Converting Integers

3.4.3. Converting Bytes Figure 5: Atomic Conversion

3.4.4. Converting Characters
3.4.5. String to Hexadecimal String 1 (Python.org, 2022), https://docs.python.org/2/tutorialfintroduction.html#unicode-strings <

ae Manipulating Binary Large Objects in’
+35. -
Python

+3.6. User-Defined Data Structures (c) 2023 OffSec Services Limited. All Rights Reserved.

+3.7. Data Structures as Records <

) Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit
My Kali VPN Converting and Displaying Data Types Converting and Displaying Data Types
Converting and Displaying Data Types Converting Integers

Resource Center

TEXT

3. Data Manipulation in Python

- 3.1. Python Data Basics

3.1.1. Working with Strings

3.1.2. Working with Integers

3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets

3.2.2. Working with Lists

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries
- 3.3. Different Base Representations
3.3.1. Manipulating Binary Values

3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
-7 Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects in
" Python

+ 3.6, User-Defined Data Structures

+ 3.7. Data Structures as Records

<

Get Good at Python: Data Manipulation... X

Converting Integers

We can convert an integer to a byte using the .to_bytes() function or we can use the bytes
conversion on the integer as a list entry.

*»»» i1 = 99

>>> bl = il.to bytes(1, 'big")

»»>> print{“"to_bytes:",type(bl),b1}
to bytes: <class 'bytes'> b'c’

>>> b2 = bytes([i1])}
>>> print({"In list: ",type(b2),b2}
iterable: <class "bytes'> b'c’
Listing 62 - Integer to Bytes
Because integers can exceed a single byte, the to_int function has to cope with multiple bytes. It
takes two arguments: the number of bytes we want and whether the most significant is first or last.
Dealing with a single byte makes no difference, but we need to be consistent if we're using larger

integers. We've used ‘'big’, which means the first byte is the most significant. If we use the list entry
method, the integer must be less than 256 characters hence, a single byte.

Converting an integer to a character is simple enough with the chr() function. If the value is greater
than 255, chr{) will return a unicode special language character. The chrf) function has no meaning
for integers larger than two bytes.

*»»» i1 = 99

>>> print{chr{il))
C
Listing 63 - Integer to Characler

The example in the figure below shows the character representation of the two-byte value 468: a
caron (that's an upside down caret!), which is used in a number of non-English languages.

i2 = 468
print(chr(i2))

Resource Center

Figure 8: Unicode Integers

To convert an integer to its decimal string representation is quite simple: we'll use the str{) function.
To convert it back, we'll use jint().

>»> print(str(il))
99

>»> 12 = int("42")

Listing 64 - Display Integer as Decimal String

Using the hex() function to display an integer in hexadecimal form is straightforward. If the integer is
greater than 255, this results in a "big" order of hexadecimal bytes. Recovering an integer from
hexadecimal form requires that we use the int{) function with the optional base argument set to 16
(or 8 if we want to recover from an octal string, 2 for binary, etc.).

»»> i1 = 99

»»> print({hex(il))
Bx63

»»>» 12 = 333

>»»> print{hex(il))

Bxldd
»>» hi = "ex@1ff"
>»> 12 = int(hl,16)

>»> print(i2)
511

Listing 65 - Display Integer as Hexadecimal String

Mow let's move on to bytes.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

| My Kali VPN

Converting and Displaying Data Types
Intreducing Conversions

Converting and Displaying Data Types
Converting Bytes >

<

TEXT

3. Data Manipulation in Python

- 3.1. Python Data Basics

3.1.1. Working with Strings

3.1.2. Working with Integers

3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

- 3.2. Sets, Lists, and Dictionaries

3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

- 3.3. Different Base Representations

-+

3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects in

" Python

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

| My Kali VPN

Get Good at Python: Data Manipulation... b4

Converting Bytes

Computers use a lot of byte data so it's important we understand how to work in bytes. First, let's
learn to convert a single byte to an integer.

»»> bl = b'c’
>>> i2 = int.from_bytes(bi, "big’)

>>> print(i2)
a9

Listing 66 - Byte to Integer
We can use the decode() function to convert a byte to a character.
»»» b1 =b'c’

>»> print{bl.decode{))

c

Listing 67 - Byte to Character

We can use the str{) function to provide the native string representation of a bytes object with the b’
prefix. The encodef) function converts the string back and does not expect the prefix.

»»> bl = b'c’

>»> print(str(bl))

b'c’

»»> b2 = "c’.encode()

>»> print(type(b2),b2)

<class 'bytes'> b'c"

y Listing 68 - Byte as a Native String

When representing bytes objects as hexadecimal, we can't provide a byte value as an argument to

the hex function, so we'll need to use the hex() method instead. Note that this does not include the
hexadecimal prefix Ox.

Resource Center

*»» bl = b'c’

>>> b2 = bi.hex()

»>> print(type(b2),b2)
<class "str':> &3

Listing 69 - Byte as a Hexadecimal String

The resulting string is the hexadecimal digits 63, presented without the prefix.

To convert from a hexadecimal string back to binary, we'll use the bytes.fromhbex() function, again
without a prefix.

>»> hl = "@1FF"

>»> b2 = bytes.fromhex(h1)

>»> print(type(b2),b2)
<class 'bytes'> b"‘\u@1lhxff"

Listing 70 - Hexadecimal String to Bytes

In this case, the resulting byte value has a prefix of b'.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.me/RedBl ueHit

Converting and Displaying Data Types Converting and Displaying Data Types
Converting Integers Converting Characters >

<

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries

3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

- 3.3. Different Base Representations

3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

I 3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects in
=+ I
Python

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

<

| My Kali VPN

Get Good at Python: Data Manipulation...

Converting Characters

A character is the special case of a single element of a string, and is of type string. We can convert a
character (but not a string of length greater than 1) into its integer value by using the ord() function.

»»» chl = "¢’

>>> print(type(chi))
<class "str':

>>> print{ord{chi})
a9

Listing 71 - Character to Integer

A character can be converted to a byte using the encode method, which applies to any length string.

»»» chl = 'c’

>»> bl = chil.encode{)
>»> print{type(b1),b1)
<class 'bytes':» b'c’

LEn‘ng 72 - Character to Bytes

Because a character's native form is a string, we don't need to convert it. However, we can convert a
character to its hexadecimal form by using its encoded representation. This converts any length
string, including length 1 characters, but does not include the Ox prefix.

»»> chl = 'c’
>>> hexl = chil.encode().hex()

»>>> print({hex1)
63

Listing 73 - Character as a Hexadecimal String

Unfortunately, the Python2 decode ("hex") function doesn't exist in Python3, so we need to use the
bytearray function to recover a character from a hexadecimal string.

*»»» hexl = "63°

»>»>> print(bytearray.fromhex(hex1).decode())
c

Listing 74 - Hexadecimal String to Character

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deOl1l | t.nme/RedBl ueH t

Converting and Displaying Data Types
Converting Bytes

Converting and Displaying Data Types
String to Hexadecimal String o

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples
3.2.4. Using Dictionaries
- 3.3. Different Base Representations

3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

I 3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects in
=+ I
Python

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

<

Get Good at Python: Data Manipulation...

String to Hexadecimal String

We can convert between strings of length greater than 1 and hexadecimal in the same way we
converted single character strings.

*»»» strl = "Gothic”

>>> print(stri.encode().hex())
47674686963

»>»>» hexl = "47656E7265"

>>> print{bytearray.fromhex(hex1).decode())
Genre

Listing 75 - String to and from Hexadecimal String

Exercises

1. We convert an integer to a hexadecimal string using the hex() function and a byte to a
hexadecimal string using the .fex() method. Which one - function or method - returns a "0x"
prefix?

ANsSwe

Answer Verify

2. What function do we use to convert a hexadecimal string back to bytes?

A e e
Answe

Answer Verify

3. Convert the integer value 482737218405 into hexadecimal and then convert the hexadecimal
string to a character string. What is the result?

Answe View hints

Answer Verify

4. What function would we use to convert the character "p" to a byte value?
Answer

A

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H deOl | t.me/RedBl ueHit

| My Kali VPN

Converting and Displaying Data Types
Converting Characters

Manipulating Binary Large Objects in Pythan
Manipulating Binary Large Objects in Python

Resource Center

TEXT Get Good at Python: Data Manipulation...
- @

- 3.3. Different Base Representations

Manipulating Binary Large Objects in Python
3.3.1. Manipulating Binary Values) . o
In this Learning Unit, we'll cover the following Learning Objectives:

3.3.2. Octal Numbers

. Learn about arrays of bytes and byte arrays
3.3.3. Hexadecimal Numbers . Manage BLOBs as bytes
£ Converting and Displaying Data This Learning Unit should take approximately 30 minutes to complete.

Types
3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes (c) 2023 OffSec Services Limited. All Rights Reserved.
3.4.4. Converting Characters
3.4.5. String to Hexadecimal String

Converting and Displaying Data Types Manipulating Binary Large Objects in Python
Manipulating Binary Large Objects [r\;\ﬂ' String to Hexadecimal String Arrays of Bytes and Byte Arrays

77 python
3.5.7. Arrays of Bytes and Byte Arrays
3.5.2. Managing BLOBs as Bytes <

) Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt
My Kali VPN

Resource Center

TEXT

3. Data Manipulation in Python

- 3.1. Python Data Basics

3.1.1. Working with Strings

3.1.2. Working with Integers

3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

- 3.2. Sets, Lists, and Dictionaries

3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

- 3.3. Different Base Representations

-3.4.

3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers
Converting and Displaying Data
Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers

3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects in

" Python

I 3.5.1. Arrays of Bytes and Byte Arrays

3.5.2. Managing BLOBs as Bytes

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

Get Good at Python: Data Manipulation...

Arrays of Bytes and Byte Arrays

A byte array is a list of type bytes and is declared using the prefix b or the bytes() or bytearray()
functions. Let's start with the b prefix.

*»» bal = b'ABCDEFG"

»>>> type(bal)
<class 'bytes’>

>>> print(bal)
b'ABCDEFG"

»>>»> print({bai[@])
65

»>>> type(bai[@])
<class "int':

Listing 76 - Declaring Byte Arrays with "b"
We can also create a byte array using the bytes() function.
>>> ba2 = bytes([1,3,55,7,11,13,17,19,23,31,37])

>»> type(ba2)
<class 'bytes'>

>»»> print(ba2)
b " W81\ e@3 %2085 4287 \eBb Y ri 11\ 13\ 1 Fh 1 TR

Listing 77 - Declaring Byte Arrays with Bytes()

The display now includes hexadecimal digits because Python doesn't show bytes with a value less

than 32 as displayable characters. It also includes special escape characters such as (\r) for carriage

return. We'll cover how we declare and manipulate hexadecimal values shortly.
We can also create an array of bytes using the encede function that we used to prepare a single
bytes value. We can also use decode to turn the bytes object back to a string.

>>> ba3 = 'AB{DEFG".encode()

»>> type(ba3)
<class ‘"bytes’>

»>>> bs3 = ba3.decode()

>>> type(bs3)
<class "str':

>>> print(bs3)
ABCDEFG

Listing 78 - Encoding and Decoding Bytes
The fourth way of creating an array of bytes is to use the bytearray() function.
>>> bad = bytearray([1,3,55,7,11,13,17,19,23,31,37])

>»> type(bad)
<class 'bytearray'>:

>»> print(bag)
bytearray (b’ \x01\x83 85\ x@7 \xeb\ rix11\x13\x17\x1f%")

Listing 79 - Declaring Byte Arrays with bytearray()

This now presents a slightly different type and print result. The ba4 variable is a byte array list,
rather than a bytes list.

The final way to create a byte array is to convert it from a list using the bytearray() function.
Previously, we set up a list of prime numbers called /ist3. Let's set it up again and convert it to a byte
array.

>»> 1ist3-[1,3,55,7,11,13,17,19,23,31,37]
»>>> ba5 = bytearray{list3)

»>> type(ba5)
<class ‘bytearray'>

»>>> print(ba5)
bytearray (b’ \x013x03 @5\ x07 \x0b\r\x11\x13\x1 7 \x1d\x1f%")

Listing 80 - Byte Arrays

Arrays of bytes and byte arrays are not the same. Let's check out the difference when we try to
maodify a value.

| »>> ba5[@] = 6

>>> print(ba5)
bytearray (b’ \x86\x83\x@5\x07 \x0b\r\x11\x13\x17\x1f%")

»>>> ba3[e] = 6
Traceback (most recent call last)
File "<stdin»>", line 1,in <module>
TypeError: 'bytes' cbject does not support item assignment

Listing 81 - The Difference Between Bytes and Bytearrays
We call arrays of bytes immutable because the values in the array can't be changed. When we try to

change an element in ba3, which is an array of bytes, we get an error. Byte arrays are mutable, and
50 changing an element of basis not a problem.

We can manipulate arrays of bytes to an extent. For example, we can create new bytes objects by
adding bytes objects together.

»>> baé

bytes([1,2,3,4,5,6,7])

»>»> ba?

bytes([8,9,18,11,12])
»>» bab = baé + ba7

>»> print(bae)
b " A\ xB1 %02\ 83 x84\ xB5\ x06 \ %07 \xBB \ t\n\x0b\xec"

Listing 82 - Concaltenating Byte Objects
This is possible because, while baf is immutable, Python has actually created a new bytes variable

but retained the same name and discarded the old baé. Note that in the result above, we have some
maore special byte representations: the integer value 9 is fab (\t) and the value 10 is newline (\n).

We have more flexibility with byte array objects because not only can we change elements, but also
append and remove them. Let's do some more work with our bas byte array.

>»> ba5.append(65)

>»> print(bas)
bytearray (b’ \x06\x83 85\ 287 \xBb\rix11\x13\x17\x1T%A")

Listing 83 - Working with Bytearrays
We've added the integer value 65, which is the ASCII character "A", to the byte array. We can add

byte arrays as we can with arrays of bytes. We can also delete one or a range of elements from a
byte array, using the del command.

»>>> del ba5[@:2]

>>> print(ba5)
bytearray (b’ \x85\x87\x8b\rix11\x13\x17\x1f%A")

Listing 84 - Deleting Bytearray Elements

In this example, we removed the elements at indexes 0 and 1 of ba5.

There are some functions we can use with arrays of bytes and with byte arrays. One of the more
useful is find(), which finds the first occurrence of a byte or string of bytes in the object. Let's check
this on the ba6 bytes object we previously defined.

>>> ba6.find(b'\x85")
4

Listing 85 - Finding Bytes

The fifth array element, with index 4, is the first cccurrence of the hexadecimal bytes 0x05.

(c) 2023 OffSec Services Limited. All Rights Reserved.

<

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

| My Kali VPN

Manlpulating Binary Larga Objects in Python
Manipulating Binary Large Objects in Python

Manipulating Binary Large Objects in Python
Managing BLOBs as Bytes

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings

3.1.2. Working with Integers

3.1.3. Working with Floating Points

3.1.4. Exploring Complex Numbers

3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

- 3.3. Different Base Representations

3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

-34.
Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects in

" Python

3.5.1. Arrays of Bytes and Byte Arrays

I 3.5.2. Managing BLOBs as Bytes

+ 3.6. User-Defined Data Structures

+ 3.7. Data Structures as Records

Converting and Displaying Data

Get Good at Python: Data Manipulation...

Managing BLOBs as Bytes

The term BLOB' refers to large objects in binary form, such as an image or audio file. We can read a
blob as we would any other binary file.

Python is supported by libraries that provide specific functions related to various types of blobs. The
PIL? library is an example of this and is installed in Kali, but it has problems showing images. For the
purposes of this Topic, we'll demonstrate the use of the Python wana® library.

the exerc atform and want Ic

you canr

Let's script some Python code into a file called blob1.py to read an image file and provide us with
information about it.

from wand.image import Image

fin = input("Enter image file: ")

with open(fin,"rb"):
image_blob - f.read()
print({"BLOB stored as: ",type(image_blob))
print("Length of BLOB: ",len(image_blob))

MW fa

Listing 86 - Reading a BLOB

At line 1, we import the Image library from the wand module. We then ask for a file name, and at line
3, open the file as a binary file for reading onto an array of bytes. We read the complete file into an
object called image_blob at line 4. At line 5, we display its class and at line 6, its length.

Let's now investigate the contents of image_blob using the image library functions.

7. with Image(blcb=image blob) as img:
8. print ("Image size: ",img.height, "x",img.width)
9. f.close()

Listing 87 - Investigating an Image

At line 7, we define img as the wand object we're working on then at line 8, we can extract the height
and width of the image using the attributes extracted by wand. Let's run the code and review what
we get. We'll use one of the background images in Kali for this.

kali@kali:~% python3 blobi.py

Enter image file: Jusr/share/backgrounds/xfcefxfce-blue.jpg
BLOB stored as: <class "bytes':>

Length of BLOB: 197811

Image size: 1800 x 2820

Listing 88 - Running the Blob Script

We can write out the file in the same way we read it, using the fwrite() command. Alternatively, we
can use wand's save() function. Let's use wand's file format conversion capability to convert a .jpg to
a.png and then save it. We'll code this up as blob2.py.

from wand.image import Image
fin = input("Enter file name: ™)
fout = fin.replace(”.jpg",".png")
with open(fin,"rb"}) as f:
image_blob = f.read()
with Image(blcb=image blob) as img:
img.format = 'png’
img.save(filename=Tout)
f.close()

W ot o= ;M fa W

_Usr.fng 89 - JPG to PNG BLOB Converter

As before, we take a filename and read the file into a bytes object. At line 3, we replace the "jpg"
extension on the input file with a ".png" extension to form our output filename. We'll still pass our
bytes object to the image library to manipulate as img, and at line 7, instruct wand to convert the
format ta PNG. At line 8, we save the file. That's it! We have just written a blob manipulation script to
convert jpg to png!

Let's run this and then use our blob1 script to check the png file. We've moved the xfce-blue.jpg
into our home folder for this run.

kali@kali:~% python3 blob2.py

Enter image name: xfce-blue.jpg

kali@kali:~% python3 blobi.py

Filename: xfce-blue.png

Blob stored as: <class "bytes':>

Length of bleb: 1852866

Image size: 1800 x 2380

Listing 80 - Running the JPG to PNG BLOB Converter

The xfce-blue.png file has been created, and we can determine it's much larger than the jpg file we
started with.

1 (lonos, 2022), https://www.ionos.com/digitalguide/websites/web-development/binary-large-object
=

2 (Wikipedia, 2022), https://en.wikipedia.org/wiki/Python_Imaging_Library «
3 (Wand, 2022), https://docs.wand-py.org/en/0.6.7/ <

Exercises

1. When we read a binary file, what type of data is provided by the read() function?

Answer Verify

2. If we have a 2-byte bytes list with integer values of 7 and 10, what do we get when we print it?

Answe View hints

Answer Verify

3. Is a byte array immutable?

Answel

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H de0l | t.me/RedBl ueHit

| My Kali VPN

Manipulating Binary Large Objects in Python
Arrays of Bytes and Byte Arrays

User-Defined Data Structures
User-Defined Data Structures

Resource Center

TEXT

3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Get Good at Python: Data Manipulation...

User-Defined Data Structures

In this Learning Unit, we'll cover the following Learning Objectives:

Converting and Displaying Data

-3.4.
Types

L]
-
3.4.1. Introducing Conversions .
3.4.2. Converting Integers 5

3.4.3. Converting Bytes .

Build stacks of data
Double up on our lists
Create graph structures
Grow trees in Python
Work with FIFO queues

This Learning Unit should take approximately 90 minutes to complete.

3.4.4. Converting Characters

While Python offers some of the basic data types and structures, we can also create our own

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects
" in Python

3.5.1. Arrays of Bytes and Byte Arrays

3.5.2. Managing BLOBs as Bytes

data structures. The potential types of user data structures are unlimited, so it's useful to
review some examples.

(c) 2023 OffSec Services Limited. All Rights Reserved.

- 3.6. User-Defined Data Structures

3.6.1. Building Stacks of Data ¢

Joi n us now -> hi deQl. i MajipuptirgBhRedBE QM Pytherme/ Hi de01 | t. me/ RedBl ueHi ¥ser-Defined Data Structures

| My Kali VPN

Managing BLOBs as Bytes Building Stacks of Data

Resource Center

TEXT Get Good at Python: Data Manipulation...

- 3.3. Different Base Representations Building Stacks of Data

3.3.1. Manipulating Binary Values

3.3.2. Octal Numbers

Stacks are a data structure widely used in computing, especially for calling subroutines with
parameters. The stack is a dynamic list that ensures the last item on the list is the first item out. This
Converting and Displaying Data is sometimes called a Last In First Out (LIFO)? data structure.

3.3.3. Hexadecimal Numbers

-3.4.
Types Python provides a simple way of creating stacks using the pop() function on lists.

3.4.1. Introducing Conversions etk]

3.4.2. Converting Integers
»>>> stack.append(8x8a1F30)

3.4.3. Converting Bytes
»>> stack.append(8x882C5C)
3.4.4. Converting Characters

tack. d (8x081F38
3.4.5. String to Hexadecimal String >>> stack.append()
. ; ; ; int (hex(stack.
Manipulating Binary Large Objects >>> print(hex(stashkag gl
5. . ox1f38
in Python

>>> print{hex(stack.pop()))

3.5.1. Arrays of Bytes and Byte Arrays e

3.5.2. Managing BLOBs as Bytes P Listing 91 - Using POP() for Stacks

- 3.6. User-Defined Data Structures Therefore, lists are inherently designed so they can be used as stacks.

Resource Center

I 3.6.1. Building Stacks of Data

3.6.2. Doubling Up on our Lists
1 (Steve Campbell, 2022), https://www.guru99.com/python-queue-example.html «*

3.6.3. Creating Graph Structures
3.6.4. Growing Trees in Python

3.6.5. Working with FIFO Queues : e .
(c) 2023 OffSec Services Limited. All Rights Reserved.

+ 3.7. Data Structures as Records <

) Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit
My Kali VPN User-Defined Data Structures User-Defined Data Structures
User-Defined Data Structures Doubling Up on our Lists

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples
3.2.4. Using Dictionaries
- 3.3. Different Base Representations

3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects

" in Python
3.5.1. Arrays of Bytes and Byte Arrays
3.5.2. Managing BLOBs as Bytes
3.6. User-Defined Data Structures

3.6.1. Building Stacks of Data

I 3.6.2. Doubling Up on our Lists
3.6.3. Creating Graph Structures
3.6.4. Growing Trees in Python

3.6.5. Working with FIFO Queues

+ 3.7. Data Structures as Records

Get Good at Python: Data Manipulation...

Doubling Up on our Lists

We may want to have a data structure that keeps complex data objects in a particular order. While
we can use the sort function on a simple list, it becomes more difficult when we have complex list
entries. A common data structure for achieving this is a linked list,! which uses a list type object to
store entries that contain a pointer to the next item in the list. We need to have a pointer to the first
item in our linked list (which may not be the first item in the base list) and then navigate around the
list by following the pointers, which will typically be list indices. The final entry in the list has a null
(zero) pointer.

Entry

Figure 7: Linked List
To add an entry, we need to navigate through the list and insert it in the correct position, adjusting
the pointers of both its preceding and seceding entries.

A special form of linked list is the circular linked list, in which the last entry points back to the first
entry. In fact, this structure may have no concept of first or last entries.

Let's build a linked list script.

1. 1linky = [["FirstPointer",8,"",""]]

2. while True:

3. action = input(“(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: ").upper()
4. if action == "Q":

5. break

6. if (action == "A"™ or action == "R"):

7.

name = input(“Enter name: ")

Listing 82 - Linked List | - Starting Up
We start our script by creating a list with the first pointer as its first entry and the next entry index
set to zero. Because this is a list of one entry, which is a list in itself, and not a list of four entries,

we'll use double square brackets. We'll then start looping and continue until a "Q" is detected at line
3, at which point we'll break out of the loop and exit the script.

At line 6, we'll find whether we want to have an entry name and request it. We'll keep the code
simple and not check that we're adding a unigue name.

Let's now code up the dump and list actions.

8. if action == 'D":

o print (1linky)

1a. if action == "L":

11. index = linky[8][1]

12. while index>@:

13. print(linky[index][8])
14. index = linky[index][1]

Listing 83 - Dumping and Listing the Linked List

Dumping the linked list is easy. We just print it in raw form. For listing in the correct order at line 11,
we set the index to the first entry then loop until we get to the end where the next point is zero. At
line 13, we print the name and then at line 14, set the index to the pointer for the next entry.

Now let's add an entry. We already have a name, so we need additional information to add into the
list at the correct point. We need to take care of the boundary cases of the new entry coming first or
last.

15. if action == "A":

16. bdate = input(“Birth date as yymmdd: ")
17. sdate = input(“Start date as yymmdd: ")
18. newx = len{linky)

19. linky.append([name, @, bdate,sdate])

28. index = @

21. while True:

22. next = linky[index][1]

23. if next==8:

24, linky[index][1] = newx

25. break

26. if linky[next][®] > name:

27. linky[index][1] = newx

28. linky[newx][1] = next

29, break

38. index = next

Listing 84 - Adding and Linked List Node

We start the process by requesting the information for the entry. At line 18, we record index for the
new entry as newx, the next entry in the list, and then append it. At this point, it has no link to the
next entry.

At line 20, we'll start with index set to the first entry in the list, and navigate through the linked list. At
line 22, we record the pointer to the next entry in next and check whether this is zero, meaning there
are no more entries. If so, we set the next entry pointer in the current node to our new entry and
we're finished.

At line 26, we'll check whether our new entry should come before the next entry in the list. If so, at
line 27, we'll set the current entry to point to our new entry and our new entry to point to the next
one, and we're finished.

Failing that, we'll move on to the next entry and then loop around to do the checks again.

We'll finish our scripting with the removal function. Note that in order to keep the script simple, we
won't actually delete the list entry, but leave it as unlinked "garbage".

31. if action == "R™:

32. index = @

33. while True:

34. next = linky[index][1]

35. if next == @:

36. print("Entry not found™)
B break

38. if name == linky[next][@]:
39. linky[index][1] = linky[next][1]
48. break

41. index = next

Listing 95 - Removing a Linked List Node

Again, we'll start at the beginning of the list and navigate the links. At line 34, we'll set the next to
the next entry in the list. If this is zero, we've reached the end of the list. This will only happen if the
entry we're trying to remove doesn't exist. We'll print an error message and finish the action.

At line 38, we'll check whether the next entry is the one to be removed. If so, we claim the pointer for
the entry after that and set our next entry to that one, which removes it.

If the next entry isn't the one, we move along the chain at line 41 and loop again.
The full code listing is here.
linky = [["FirstPointer”,e,"",""]]

while True:
action = input(”(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: ").upper()

if action == "Q":
break
if (action == "A" or action == "R")}:

name = input(”Enter name: ")

if action == 'D':
print(linky)
if action == 'L':

index = linky[@][1]

while index>@:
print{linky[index][@], "born”,linky[index][2])
index = linky[index][1]

if action == 'A’:
bdate = input(“Birth date as yymmdd: ")
sdate = input("Start date as yymmdd: ™)
newx = len(linky)
linky.append([name,8,bdate,sdate])
index = 8
while True:
next = linky[index][1]
if next ==
linky[index][1] = newx
break
if linky[next][®] > name:
linky[index][1] = newx
linky[newx][1] = next
break
index = next

if action == 'R":
index = @
while True:
next = linky[index][1]
if next ==
print("Entry not found™)
break
if name == linky[next][@]:
linky[index][1] = linky[next][1]
break
index = next

Listing 96 - The Full Linky
Let's run this and check it out.

kali@kali:~% python3 linky.py

(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: a
Enter name: Grant.G

Birth date as yymmdd: 718812

Start date as yymmdd: 181185

(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: a
Enter name: Hendrik.A

Birth date as yymmdd: 768816

Start date as yymmdd: ©48812

(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: a
Enter name: Doe.]

Birth date as yymmdd: B88616

Start date as yymmdd: 228188

(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: 1
Doe.] born 8380616

Grant.a born 718812

Hendrik.A born 760816

(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: r
Enter name: Grant.G

(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: 1
Doe.] born 8380616

Hendrik.A born 760816

(A)dd, (R)emove, (L)ist, (D)ump, (Q)uit: gq

Listing 97 - Running our Linked List Script
We'll find that entries are added and removed, and that we've maintained a linked list that we can
display in name order.
Another form of linked list has a forward and a backward pointer so it can be navigated in either
direction. We could implement this by using an additional field so that our initial entry resembles this:
linky = [["FirstPointer”,8,0,"",""]]
Listing 98 - First Entry for 8 Doubly Linked List Script

We would then add in the backward link when we manipulate entries in the list. In this example, [1] is
the backward pointer and [2] is the forward pointer.

if linky[next][@]>name:
linky[index][2] = newx
linky[newx][1] = index

linky[newx][2] = next
linky[next][1] = newx
brealk

Listing 97 - Adding a Doubly Linked Entry

Here, we are first setting the forward point of the current node to our new node, setting the
hackward pointer of our new node to the current node, and the forward node to the next node. The
backward pointer of the next node (which would have originally been the current node) then points
back to our new node.

1 (Doogal Simpson, 2020), https://levelup.gitconnected.com/things-every-software-engineer-
should-know-linked-lists-4841f75614ba «

2 (Stanford University, 2022),
https://web.stanford.edufclass/archive/cs/cs143/cs143.1128/lectures/18/Slides18.pdf «

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H deOl1l | t.nme/RedBl ueHt

Kali VPN

User-Defined Data Structuras
Building Stacks of Data

User-Defined Data Structures
Creating Graph Structures

<

Resource Center

TEXT

3. Data Manipulation in Python

- 3.1. Python Data Basics

3.1.1. Working with Strings

3.1.2. Working with Integers

3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

- 3.2. Sets, Lists, and Dictionaries

3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples

3.2.4. Using Dictionaries
3.3. Different Base Representations
3.3.1. Manipulating Binary Values

3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects

" in Python

3.5.1. Arrays of Bytes and Byte Arrays

3.5.2. Managing BLOBs as Bytes
3.6. User-Defined Data Structures
3.6.1. Building Stacks of Data
3.6.2. Doubling Up on our Lists
3.6.3. Creating Graph Structures
3.6.4. Growing Trees in Python

3.6.5. Working with FIFO Queues

+ 3.7. Data Structures as Records

<

Get Good at Python: Data Manipulation...

Creating Graph Structures

A graph' is a data structure consisting of nodes that are connected by lines (also called edges).
These are used widely in mathematics to represent real world problems. The classic example is the
Traveling Salesmar? problem, which asks for the shortest path a salesman could take to visit all of
the towns that are connected by a specified number of roads. Our standard car navigator uses this
kind of challenge when finding the shortest path to our destination.

In Python, a graph is created by having a node data structure, which contains an identifier, or name,
and list of other nodes to which it is connected.

Baltimore

Annapolis

Figure &: Travelling Salesman Graph

Our figure above shows a small traveling salesman problem for the Beltway Bandits® consisting of
four cities as nodes, and showing the distance between them in kilometers. For the data structure to
store this, we can use a list in which each entry is itself a list, consisting of two list elements: a name
as the first element and a list of three tuples as the second element. Each of the tuples contain the
name of the other cities and the distance from this city to the other. Let's create the list and append
the entry for Baltimore.

kali@kali:~% mnodes = []

kali@kali:~% nodes.append(["Baltimore"”,[("WashingtonDC",66), \
("Annapolis",48), ("Columbia™,29)]])

Listing 99 - Setting up a Graph Node

We'll leave the travelling salesman problem here and move on to a more familiar data structure: a
tree.

1 (Wolfram Mathworld, 2022), https://mathworld.wolfram.com/Graph.html <

2 (sandipan Dey, 2020}, https://sandipanweb.wordpress.com/2020/12/08/travelling-salesman-
problem-tsp-with-python/ <

3 (GhostsofDC, 2018}, https://ghostsofdc.org/2018/01/19/origin-term-beltway-bandit/ <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t. e/ RedBl ueHit

VPN

User-Defined Data Structuras User-Defined Data Structures

<

Doubling Up on our Lists Growing Trees in Python

Resource Center

+

TEXT

3. Data Manipulation in Python
3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries
3.3. Different Base Representations
3.3.1. Manipulating Binary Values

3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data
" Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects
" in Python

3.5.1. Arrays of Bytes and Byte Arrays
3.5.2. Managing BLOBs as Bytes

3.6. User-Defined Data Structures
3.6.1. Building Stacks of Data
3.6.2. Doubling Up on our Lists
3.6.3. Creating Graph Structures
3.6.4. Growing Trees in Python

3.6.5. Working with FIFO Queues

3.7. Data Structures as Records

<

Get Good at Python: Data Manipulation...

Growing Trees in Python

Trees are a special kind of graph that consist of nodes and links connecting them. First, trees start at
aroot and extend through layers of parent nodes and their children nodes. Second, each node will
have just one parent node but zero or more children nodes. A consequence of this is that a tree
cannot contain what is known as a cycle where a set of nodes are connected in a ring.

Trees are widely used in coding to represent everything from family trees' to multi-level structures of
Active Directory trees.?

Let's review a problem in mathematics known as the Steiner Problem in Graphs.® This asks how we
would connect a set of nodes with a specified distance from one another in a graph with minimum
distance possible.

We'll focus on the Steiner Problem in Graphs as an example of coding a tree structure in Python. For
real world context, an amino acid is coded with three RNA nucleotides,* each of which can take the

values A, G, C, or U. The use of a tree structure to determine the shortest path between amino acids
of different animals has been used in charting possible evolutionary paths.®

We'll not try to solve the problem in Python, but let's create its tree structure and add the ability to
move nodes within the graph to manually test it. At each node, we'll store a name and a string of six
characters from the nucleotide set AGCU, and make the distance between two nodes equal to the
number of different values at the same index positions in the character sequences. We'll implement a
doubly-linked list so that each node connects back to its one parent, and forward to zero or more
children.

We'll use a small model for our coding. Our start point is as shown in the figure below.

Root
AGGAGC

Nodel
AACGUC

Noded
AACACC

The names of the nodes and the six-character sequences are stored in a fixed-field text file
consisting of a sixteen-character name, space, and the six-character sequence. The actual data and
the distances between nodes is as shown in the figure above, but we will calculate these so there is
no need to store them.

Node2 Node3
AAGGGA AUAGGA

Figure 9: Graph at Start

Let’s review the code for this.

graph=[]

index = 8

f = open("graph.txt”,"r")

for line in f:
graph.append([line[@:16].strip(),1line[17:23],8,[]1])
if index > B:

graph[@8][3] += ([index])

index += 1

[IO . Y, T S YR C R

Listing 100 - Graph Script | - The Start

At lines 1 and 2, we initialize the graph object to an empty list and we set the current index at 0. We
then open graph.txt containing the data for the graph. For each line in the file, we loop through lines
5 to 8.

At line 5, we'll append a new entry to the list. The entry is itself a four element list. The first element
is the node name, which we take from the first sixteen characters of the input line. We strip any
leading or trailing blanks. The second element is the six characters of input starting one space after
the node name. These are the values we'll be using to calculate distance. The third value represents
the parent of this node. We'll leave the root node and every other node set to zero to reflect the fact
that they all have the root node as their parent. The last element of the four element list entry is a list
of all children, which will be empty for all the nodes we'll add.

At line 6, we'll check whether we're adding the root node. If not, we'll add the current entry to the list
at line 7, which is contained as the fourth element of the root node. This indicates that this entry is
another child of the root.

At line 8, we increment the index and loop around for the next line to be read. This loop will terminate
when we have read all lines in the file.

Let's progress to the next stage of our script where we'll calculate the total distance between each
node, also called the weight of the graph.

9. while True:
18. weight =@
11. for node in graph:

12. distance = @

13. codel = node[1]

14. code2 = graph[nede[2]][1]
15. for 1 in range(6):

16. if codel[i] != code2[i]:
17. distance += 1

18 weight += distance

19. print{"araph weight: ",weight)

Listing 107 - Graph Script Il - The Calculation

At line 9, we'll start an infinite loop, or at least a loop until we break out of it. At line 10, we'll set the
weight to zero and at line 11, we'll start a loop through every node. At line 12, we'll set the distance
between this node and its parent to zero and extract the six character code sequence from this node
at line 13. At line 14, we'll use the parent value from this node (the third element in the list, which
makes up the node) to index into the graph to obtain the six-character code sequence from this
node's parent. At the beginning of course, the parent will be root for every node, but that will change
as we continue.

At line 15, we'll loop through each character for this node and its parent to check if they are the
same. If not, we'll increment the distance at line 17. Once we've checked all six codes, we add the
distance to the accumulating weight of the graph at line 18.

Once we've worked through all nodes in the graph, we print out the total weight of the graph at line
19. It's important to note that we start at the beginning of the list of nodes in the graph, which means
that we check root against itself as its own parent. However, as there's zero distance, we don't need
to code up an exclusion for this.

Let's now work through the last segment of code in which we can move a node in the graph. This will
then loop around to again calculate the new weight of the graph.

28. nl = input("MNode: =
21. if len(nl) == @:
22. break

23. n2 - input(“Mew parent: ")
24, il =8; i2=18
25. for i in range(len(graph)}):

26. if graph[i][@] == nl1:
27. il =1

28. if graph[i][@] == n2:
29, iz = 1

38. if (i1=—8 | i1=—=i2):

31. print("Invalid node!™)

Listing 102 - Graph Script Il - Preparing to Move a Node

At line 20, we'll request the name of the node to be moved. If nothing is entered and just is
pressed, we'll break out of the infinite loop and finish. At line 23, we'll request the name of the
desired new parent node. We've now got two names, but we need to find their indices in the graph.
The simplest way to do this is to loop through the graph checking the first entry in the list for each
nade and setting /7 at line 27 to the index of the node to be moved and i2 at line 29 to the index of
the new parent node. We'll do a check at line 30 to make sure we have entered a valid name (we're
not trying to move a node to itself), and if necessary, we'll report an error.

We are now ready to effect the node move.

32 else:
33. i3 = graph[il][2]
34. graph[i3][3].remove(il)
35. graph[il][2] = i2
36. graph[i2][3] += [i1]
)

37. f.close(

Listing 103 - Graph Script IV - Changing the Graph

At line 33, we'll extract the index of the old parent node into /3. At line 34, we'll navigate to the old
parent node and remove the child entry from its list of children. At line 35, we'll move the new parent
node index into the parent node of the node being moved and follow this by adding the node we're
moving as a child in its new parent node. We've now moved the node and can loop around to the
recalculation of the graph weight.

The full listing follows.

graph = []
index = @
f = open("graph.txt","r")
for line in f:
graph.append([line[@:16].strip(),line[17:23],8,[]]1)
if index > @:
graph[@8][3] += [index]
index += 1
while True:
weight = B
for node in graph:
distance = @
codel = node[1]
code2 = graph[node[2]][1]
for i in range(6):
if codel[i] != code2[i]:
distance += 1
weight += distance
print(™araph weight: ",weight)
nl = input("“Node: &)
if len(nl) == @:
break
n2 = input(“New parent: ")
i1 =@; i2 =8
for i in range(len(graph)):
if graph[i][@] == nl:

il = i
if graph[i][@] == n2:
iz = i

if (i1-=0 | i1-=32})
print("Invalid node!™)
else:
i3 = graph[i1][2]
graph[i3][3].remove(il)
graph[i1][2] = i2
graph[i2][3] += [il]
f.close()

Listing 104 - The Full Graph Script
Let's run the program and move the nodes around.

kali@kali:~% python3 graph.py
Graph weight: 14
Node : Nodel
New parent: Node2
Graph weight: 13
Node : Node3
New parent: Node2
Graph weight: 11
Node: Noded
New parent: Nodel
Graph weight: 10
Node :

Listing 105 - Graph Script V - Running the Graph Script

We've moved around the nodes and achieved an overall weight reduction. The resulting graph is
shown below.

Figure 10: Graph at End

This isn't the ultimate graph script. In fact, it doesn't enforce proper connectivity (we can separate
the graph into independent subgraphs and create cycles), but it serves to demonstrate the
principles.

We'll leave graphs here and move on to our final user data structure: FIFO queues.

1 (Ahsen Parwez, 2020), https://medium.com/@ahsenparwez/building-a-family-tree-with-python-
and-graphviz-e4afb8367316 <

2 (OmniSecu, 2022), https://www.omnisecu.com/windows-2003/active-directory/what-is-active-
directory-tree.php <

3 (Nelson Maculan, 1987),
https://www.sciencedirect.com/science/article/abs/pii/S0304020808732365 «

4 (NIH, 2022), https://www.genome.gov/genetics-glossary/Nucleotide <

5 (Shore, 1979), https://mro.massey.ac.nz/handle/10179/13628 <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H deOl1l | t.nme/RedBl ueHt

VPN

User-Defined Data Structures
Working with FIFO Queues >

User-Defined Data Structuras
Creating Graph Structures

<

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings

3.1.2. Working with Integers

3.1.3. Working with Floating Points

3.1.4. Exploring Complex Numbers

3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

- 3.3. Different Base Representations

3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

-34.
Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects

" in Python

3.5.1. Arrays of Bytes and Byte Arrays

3.5.2. Managing BLOBs as Bytes
- 3.6. User-Defined Data Structures
3.6.1. Building Stacks of Data
3.6.2. Doubling Up on our Lists
3.6.3. Creating Graph Structures
3.6.4. Growing Trees in Python

I 3.6.5. Working with FIFO Queues

+ 3.7. Data Structures as Records

Converting and Displaying Data

Get Good at Python: Data Manipulation...

Working with FIFO Queues

A First In First Out (FIFO)" queue can be implemented in Python as a list where entries are added to
the end and taken from the beginning. Let's inspect a simple script to implement a queue.

1. import random

2. queue = []

3. while True:

4. adding = input(“New customer: ")
5. if adding == "quit”:

6. break

7. if len(adding) != B:

8. queue.append (adding)

o if random.randrange(10) > 6:

1a. if len(queue) > B:

11. print(“Mow consulting with: ",queue[@])
12. queue.remove(queus[@])

13. print{"Queue length: ",len{queue))

Listing 108 - FIFO Script

We're going to have random service times in our queue, so at line 1, we'll import the random library.
At line 2, we'll initialize the gqueue to an empty list. Then at line 3, we'll loop until line 5, where we'll
quit by entering the word quit. We can add a new customer to the list by entering their name at line
4, or we can just press [Return] to not add a new customer. At line 7, if another customer has come in,
we append them to the queue.

At lines 9 and 10, well check whether to take someone off the gueue (randomly, if our random
number is greater than 6 and people are still in the queue). If so, we reference the first in queue at
index 0 in line 11 and then remove them from the gueue at line 12. At each iteration of the loop, we
display the queue length.

kali@kali:~% python3 fifo.py

New customer: David Brown

Queue length: 1

New customer: Jake Backington
Queue length: 2

New customer: Sarah McNally

Now consulting with: David Brown
Queue length: 2

New customer: Jim Mattson

Queue length: 3

New customer: Sally Prentice
Queue length: 4

New customer: Julia McKenzie

Now consulting with: Jake Backington
Queue length: 4

New customer:

Queue length: 4

New customer:

Now consulting with: Sarah McNally
Queue length: 3

New customer: quit

Listing 7107 - Running the FIFO Script
The queue will grow and shrink as we enter and remove customers. Those taken off the queue are
removed in a FIFO manner.

Using a list to implement a queue is an easy solution, but it does not scale well. However, it is
sufficient for the purposes of this Topic.

1 (Steve Campbell, 2022), https:f{www.guru99.com/python-queue-example.html «*

Exercises

1..Using the diagram for our Beltway Bandit example, how would you define the entry in the nodes
structure for the Annapolis node? Enter the full nodes with the cities in the order WashingtonDC,
Columbia, Baltimore and enter your answer on a single line with no spaces.

Answer

”

Answert Verify

2. How many parent nodes can we have for a child node in a tree data structure?
Answer

n

Answer Verify

3. We are operating a FIFO queue. What list index do we use to remove the next queue item?

i
Answe

Answer Verify

4. On your Kali workstation, create the graph.txt file and add another entry called Steineri with
nucleotide coding AAGGGC. Copy the graph.py code and run it. Make the parent of both Node1
and Node?2 the new Steiner1 node. Make the parent of Noded, as previously, Nodel. Make the
parent of Node3, as previously, Node2. What is your final graph weight?

Answe

”

Answer Verify

5. What form of Python data type should we use to implement a stack?

Answer Verify

6. In a doubly-linked list, what process do we use to remove un-linked records?

ANsSWe

Answer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H deOl1l | t.nme/RedBl ueHt

| My Kali VPN

User-Defined Data Structures Data Structures as Records

Growing Trees in Python Data Structures as Records

Resource Center

TEXT Get Good at Python: Data Manipulation...
o

3.4.2. Converting Integers

3.4.3. Converting Bytes Data Structures as Records
3.4.4. Converting Characters In this Learning Unit, we'll cover three Learning Objectives:
3.4.5. String to Hexadecimal String . Work with data records
- Work with databases
Manipulating Binary Large Objects . Work with XML and JSON
" in Python

This Learning Unit should take about 45 minutes to complete.
3.5.1. Arrays of Bytes and Byte Arrays

3.5.2. Managing BLOBs as Bytes
- 3.6. User-Defined Data Structures
3.6.1. Building Stacks of Data (c) 2023 OffSec Services Limited. All Rights Reserved.

3.6.2. Doubling Up on our Lists

3.6.3. Creating Graph Structures
User-Defined Data Structuras Data Structures as Records
3.6.4. Growing Trees in Python Working with FIFO Queues Waorking with Data Records

3.6.5. Working with FIFO Queues
- 3.7. Data Structures as Records <

) Join us now -> hideOl.ir | t.ne/RedBlueTM| t.nme/H de0l1l | t.nme/RedBl ueHt
My Kali VPN

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers

3.1.5. Working with Booleans

3.1.6. Understanding Python Bytes

- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists
3.2.3. Exploring Tuples

3.2.4. Using Dictionaries

- 3.3. Different Base Representations

3.3.1. Manipulating Binary Values
3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

-34.
Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects

" in Python

3.5.1. Arrays of Bytes and Byte Arrays

3.5.2. Managing BLOBs as Bytes

- 3.6. User-Defined Data Structures
3.6.1. Building Stacks of Data
3.6.2. Doubling Up on our Lists
3.6.3. Creating Graph Structures
3.6.4. Growing Trees in Python

3.6.5. Working with FIFO Queues
- 3.7. Data Structures as Records

I 3.7.1. Working with Data Records
3.7.2. Working with Databases

3.7.3. Working with JSON and XML

Converting and Displaying Data

Get Good at Python: Data Manipulation... b4

Working with Data Records

We've covered a lot of material in this Topic, so we'll finish with just a brief review of data records. In
business systems, we'll often talk about data records, which is a structured set of data stored on a
file. While we'll typically use SQL as the file system, more NoSQL systems, such as MongoDB' and
AWS's DynamoDB,* are being adopted. Business applications read a record from a file, process it,
and store it back. Let's inspect how we'd do that in Python.

We can use basic data types to hold the elements of the record, but a better approach is to use the
Python dataclasses® module. With this, we can define a data record that closely resembles the
database record, and we can then manipulate data in a more structured way than with individual
data items. Dataclasses are more elegant and they're easy to use. As an example, let's investigate
how we might manage a database of our favorite original Bardcore composers.

We'll store a data record that holds the composer's name, nationality, dates of birth and death, an
exemplar compaosition, and a list of the composer's compaositions.

Let's start by defining the class and creating a data record.
>»>> from dataclasses import dataclass

>»> f@dataclass

... class Composer:

e Name: str

o Nationality: str
g YearBorn: int

e YearDied: int

S Exemplar: str

o Compositions: list

>»>> compl = Composer("Hildegard wvon Bingham","German",1098,1179,"0 Euchari”,[])

»»> type(compl)
<class ' main__ .Composer':

>»»> print{compl.Name,str(compl.YearBorn)+"-"+str(compl.YearDied))
Hildegard won Bingham 1893-1179

Resource Center

Listing 108 - Establishing the Composer Class

This is now showing as a user-defined class type, but we can use its elements as though they were
basic data types. We'll use the data record name as a prefix. We've only created one data record but
we can create as many as we like, giving them different names (or adding them to lists).

We can store data values into the elements of the class, as we would for a base variable. We've been
advised that we should store Ordo Virtutum as the best exemplar of von Bingham's work, so let's
update that. We'll also start to populate her compositions.

>»>> compl.Exemplar = "Ordo Virtutum®

>»> compl.Compositions.append("0 Euchari™)

>»>> comp.Compositions.append("Ordo Virtutum™)

>»> comp.Compositions.append("0 Virtus Sapientiae™)

Listing 109 - Manipulating the Composer Record

Working with a data record is no different than working with individual data items. We just have the
items properly organised within a record.

1 (MongoDB, 2022}, https://www.mongodb.com/ <

2 (NetApp,2020),
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html «

3 (Python, 2022), https://docs.python.org/3/library/dataclasses.html <

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.nme/H deOl | t.me/RedBl ueHit

| My Kali VPN

Data Structuras as Records Data Structures as Records

Data Structures as Records Warking with Databases

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries
- 3.3. Different Base Representations
3.3.1. Manipulating Binary Values

3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

=1 Converting and Displaying Data
" Types

3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes

3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects
" in Python

3.5.1. Arrays of Bytes and Byte Arrays
3.5.2. Managing BLOBs as Bytes

- 3.6. User-Defined Data Structures
3.6.1. Building Stacks of Data
3.6.2. Doubling Up on our Lists
3.6.3. Creating Graph Structures
3.6.4. Growing Trees in Python

3.6.5. Working with FIFO Queues
- 3.7. Data Structures as Records
3.7.1. Working with Data Records

I 3.7.2. Working with Databases

3.7.3. Working with JSON and XML

Get Good at Python: Data Manipulation...

Working with Databases

We'll use a SQLite database to store our composer details. SQLite is built into Python, so we can use
it without having to install any external modules. The first thing we'll do is to create the same data
record for our composers in SQLite. To do that, we'll need to normalize our data record into a
composer masterfile and a separate file that lists compositions by composer.

Let's build a script to manage our data.

from dataclasses import dataclass
import sqlite3

from os.path import exists

if not exists("music.db"):

print("Creating database"”)

L BT (B R VYR

conn = sqlite3d.connect("music.db™)

Listing 110 - Music [- Creating the Database

We'll be using a number of standard modules in this script. We've already used the dataclass module
and we will be using the 5QLite3 module. We've also imported the os.path module so that we can
check whether our database exists at line 4 and if not, provide a status message.

At line 6, we'll connect to the database, which will be created if it doesn't exist. Let's now create the
tables we need in the database. To do this, we execute an SQL command using the connection
we've just made. We'll use the IF NOT EXISTS clause so that this won't affect the existing tables.

7. sq = '"CREATE TABLE IF NOT EXISTS Composer(MName TEXT MOT NULL, Nationality TEXT,
BornYear INT, DiedYear INT, Exemplar TEXT);"'

&. status = conn.execute(sqg)

9. sq = 'CREATE TABLE IF NOT EXISTS Compositions(Composer TEXT NOT NULL,Composition
TEXT NOT MULL);"

18. status = conn.execute(sq)

11. curse = conn.cursor()

Listing 177 - Music Il - Creating the Tables

We execute both SQL statements and then set the cursor ready for use later.

Let's now create the data record class. To do this, let's start with what is known as the data class
decorator(@dataclass), and then define the class data structure. Python takes care of all the rest of
the class requirements.

12. @dataclass

13. class Composer:

14. Name: str

15. MNationality: str

16. BornYear: int

17. DiedYear: int

18. Exemplar: str

19. Compositions: list

28. comp = Composer(™™,"",8,8,"",[])
21.

Listing 112 - Music Ilf - Creating the Record
We've now made sure we have a database with the tables we need, we've made the connection, and
we've defined our data record. We could have created the database and tables manually at the

command line, but having it in the script makes it simpler if we want to share or relocate the script.
At line 20, we'll create a blank data record ready to use.

Mow let's script the main program loop and the Add Composer function.

22. while True:

23. action = input(”(A)dd Composer, (I)nsert Composition, (L)ist Music, (Q)uit:
“}-upper()

24, if action == "Q":

25. break

26.

27. if action == "A’:

28. comp.Name = input(™Mame: =5

29. comp.Nationality = input("Nationality: ")

3a. comp.BornYear = input(“Year Born: o)

31. comp.DiedYear = input(”Year Died: ")

32. while True:

33. opus = input(”Composition: ")

34. if len(opus) == @:

35. break

36. comp.Compositions.append{opus)

37. ex = input(”Is this the exemplar Y/N? ").upper()

38. if ex = "¥":

39. comp . Exemplar=comp. Compositions[len(comp.Compositions)-1]

Listing 113 - Music IV - Getting Composer Data

We'll start the main loop and ask for an action. For this short demonstration script, we'll just have
three functions: add a composer, insert another composition for a composer, and list the database.
At line 24, we'll check whether we should quit, and if so, break out of the loop. Then at line 27, we'll
check whether we are adding a new record. If so, let's request the main record data and store it in
our data record.

We'll then request the initial compositions we want to store for the composer. At line 33, we'll ask for
the composition and check whether it's a blank line. If so, we'll stop requesting compositions.
Otherwise, we'll append it to our list of compositions.

The final task is to check if we want this to be the exemplar for the composer at line 37, and if so,
store the composition in the exemplar field at line 39.

Now that we've got the data, we need to store it in the database.

48. sq = "INSERT INTO Composer(Mame, MNationality, BornYear, DiedYear, Exemplar)
VALUES ("

41. sq = sq + """+comp.Namet"', "

42, sq = sq + """+comp.Naticnality+"", "

43. sq = sq + comp.BornYear+", ™

44, sq = sq + comp.DiedYear+", ™

45. sq = sq + """+comp.Exemplar+™');"

46. curse.execute(sq)

47. for i in range(len{comp.Compositions)}):

48. sq = "INSERT INTO Composition(Composer,Composition) WALUES("
49, sq = sq + """+comp.Name+"', ""+comp.Compositions[i]+"");"
58. curse.execute(sq)

51. conn . commit()

Listing 114 - Music V' - Adding a Record to the Database

Lines 40 to 45 build the query, which is executed in line 46 to insert a new Composer record. The
Composition list at this stage is left blank. Following this, each of the entered compaositions is put
into an SQL query and at line 50, are written to the SQL Compositions table. We've now completed
the addition of a Composer together with their Compaositions. At line 51, we'll commit the changes to
the SQLite database.

52. if action == 'I’:

53. comp.Name = input(“Name: ")

54. sq = "SELECT Name FROM Composer WHERE MName='+"""+comp.Namet"™';"
55. curse.execute(sq)

56. rows = curse.fetchall

L i if len(rows) ==

58. print("Me such Composer™)

59. else:

&68. comp.Composition[®] = input("Composition: ")

61. sq = "INSERT INTO Composition(Composer,Composition) VALUES("
&62. sq = sq + """+comp.MNamet+'", "'+comp.Compositiont'");"

&63. curse.execute(sq)

64. conn.commit ()

Listing 115 - Musie Vi - Adding a Composition

We've also included the "I" option to enable more compositions to be added to the composer. We'll
first ask for the composer's name and put that into an SQL statement so that we can check that the
Compaoser exists at line 55. If they do, then at line 60, we'll request and include the composition in a
query that we'll execute at line 63. Let's commit our change at line 64.

65. if action == 'L°':
66. curse.execute ("SELECT * FROM Composer; ")
67. library = curse.fetchall()
&68. fer composer in library:
&69. print(“Composer: "+composer[@])
7. sq = "SELECT * FROM Compositicn WHERE Composer="'+composer[@]+'";"
Z1. curse.execute(sq)
72, music = curse.fetchall()
73. for opus in music:
| 74. print(" "+opus[1]}

Listing 116 - Music VIf - Listing the Database

The last action we can take is to list the database. At line 66, we select all the composer records and
at line 67, we'll read them into the library object. At line 68, we'll iterate through the library. At line 89,
we iterate through printing the composer name and then create a query string to select the
associated compositions from the compositions table at line 70. Let's execute this and then iterate
through printing each composition under the composer.

All that's left is to close our cursor and the connection and we're done.

75. curse.close()
76. conn.close()

Listing 117 - Music VIif - Closure
Here is the full listing:

from dataclasses import dataclass
import =sqlite3
from os.path import exists

if not exists("music.sqlite™):
print("Creating database™)
conn = sqlite3.connect("music.db™)
sq = "CREATE TABLE IF MOT EXISTS Composer(Mame TEXT NOT NULL, Mationality TEXT,
BornYear INT, DiedYear INT, Exemplar TEXT);®
status = conn.execute(sq)
sq = "CREATE TABLE IF NOT EXISTS Compositions(Composer TEXT NOT NULL,Composition TEXT
NOT NULL);"
status = conn.execute(sq)
curse = conn.cursor()

@dataclass
class Composer:
MName: str
Nationality: str
Born¥Year: int
DiedYear: int
Exemplar: str
Compositions: list
comp = Composer(™","",8,8,"",[]1)

while True:
action = input(”(A)dd Composer, (I)nsert Composition, (L)ist Music, (Q)uit:

*}-upper()

if action == "Q":
break

if action == 'A’:
comp.MName = input(”Name: ")
comp.MNationality = input(“Nationality: ")
comp.BornYear = input("Year Born: =)
comp.DiedYear = input("Year Died: =Y
while True:

opus = input("Composition: ")
if len{opus) == 8:
break
comp . Compositions.append(opus)
ex = input("Is this the exemplar Y/N? ").upper()
if ex == "¥Y":
comp . Exemplar=comp.Compositions[len(comp.Compositions)-1]
sq = "INSERT INTO Composer(Mame, Mationality, BornYear, DiedYear, Exemplar)
VALUES ("

sq = =q + "'"+comp.Name+"", "

sq = =q + "'"+comp.Nationality+™", "
sq = =q + comp.BornYear+", "

sq = =5q + comp.DiedYear+™, "

sq = =q + "'"+comp.Exemplar+™®};"

curse.execute(sq)

for i in range{len(comp.Compositions)):
sq = "INSERT INTO Composition(Composer,Composition) WALUES(®
sq=sq+ ™"

+comp .Name+" ", '"+comp.Compositions[i]+"");"
curse.execute(sq)
conn.commit()

if action == 'I':
comp.MName = input(“Mame: ")
sq = 'SELECT Name FROM Composer WHERE Mame='+"'"+comp.Name+™' ;"
curse.execute(sq)
rows = curse.fetchall
if len(rows) == @:
print({“"No such Composer™)
else:
comp.Composition[8] = input("Composition: ")
sq = "INSERT INTO Compositicon(Composer,Composition) WALUES('

sq = sq + +comp.Mame+'", ""+comp.Composition+"™);"
curse.execute(sq)

conn. commit()

if action == 'L’:

curse.execute("SELECT * FROM Composer; ')

library = curse.fetchall()

for composer in library:
print({"Composer: “+composer[@])
sq = "SELECT * FROM Composition WHERE Composer="'+composer[@]+"";"
curse.execute(sq)
music = curse.fetchall()
for opus in music:

print(* “+opus[1])

curse.close()
conn.close()

Listing 118 - The Music Library Program in Full

Let's run this.

kali@kali:~% python3 music.py
Creating database
(A)dd Composer, (I)nsert Composition, (L)ist Music, (Q)uit: a
Name : Hildegard von Bingen
Nationality: German
Year Born: 1098
Year Died: 1179
Composition: O Euchari
Is this the exemplar Y/N? y
Composition: Ordo Virtutum
Is this the exemplar Y/N?
Composition: 0O Virtus Sapientiae
Is this the exemplar Y/N?
Composition:
(A)dd Composer, (I)nsert Composition, (L)ist Music, (Q)uit: 1
Composer: Hildegard von Bingen
0 Euchari
Ordo Virtutum
0 Virtus Sapientiae
(A)dd Composer, (I)nsert Composition, (L)ist Music, (Q)uit:

Listing 118 - Running the Music Library Program

We have a running program that uses data classes tao manage our music library data in memory and
uses SQL on disk.

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.ne/RedBlueTM| t.me/H deO0l1l | t.nme/RedBl ueHt

| My Kali VPN

Data Structures as Records Data Structures as Records
Working with Data Records Working with JSON and XML

Resource Center

TEXT

3. Data Manipulation in Python
- 3.1. Python Data Basics
3.1.1. Working with Strings
3.1.2. Working with Integers
3.1.3. Working with Floating Points
3.1.4. Exploring Complex Numbers
3.1.5. Working with Booleans
3.1.6. Understanding Python Bytes
- 3.2. Sets, Lists, and Dictionaries
3.2.1. Manipulating Sets
3.2.2. Working with Lists

3.2.3. Exploring Tuples

3.2.4. Using Dictionaries
- 3.3. Different Base Representations
3.3.1. Manipulating Binary Values

3.3.2. Octal Numbers

3.3.3. Hexadecimal Numbers

Converting and Displaying Data

Types
3.4.1. Introducing Conversions
3.4.2. Converting Integers
3.4.3. Converting Bytes
3.4.4. Converting Characters

3.4.5. String to Hexadecimal String

Manipulating Binary Large Objects
" in Python

3.5.1. Arrays of Bytes and Byte Arrays
3.5.2. Managing BLOBs as Bytes

- 3.6. User-Defined Data Structures
3.6.1. Building Stacks of Data
3.6.2. Doubling Up on our Lists
3.6.3. Creating Graph Structures
3.6.4. Growing Trees in Python

3.6.5. Working with FIFO Queues
- 3.7. Data Structures as Records
3.7.1. Working with Data Records

3.7.2. Working with Databases

I 3.7.3. Working with JSON and XML

Get Good at Python: Data Manipulation...

Working with JSON and XML

We'll often bump into textual data structured in XML or JSON? form, and it's useful to understand
how to best manage it in our Python code.

Let's start with XML. The Document Object Model (DOM) 2 is an application programming interface
based on XML and uses tree structures to manage XML data. Web page data consists of opening
and closing tags.

Figure 11: Web Page Source

If we select show view page source from a website (right-click to get the context menu), we'll be
presented with the raw HTML that makes up the page. It starts with an "HTML" tag and finishes with
its closing counterpart "/HTML". Within these, there are "HEAD, /HEAD", "TITLE, /TITLE", and many
other tags that contain their own particular parts of the web page.

We can use XML to describe any form of data records by using a field name and including the field
contents in between the tags. Let's encode our composers in the form.

<Library>
<Composer:
<Name>Hildegard wvon Bingen</Mame>
<Nationality>German</Nationality>
<BornYear>1828</BornYear:>
<DiedYear>1179</DiedYear:>
<Exemplar>0 Euchari</Exemplar:>
<CompositionList>
<Composition>0 Euchari</Composition>
<Composition>Ordo Virtutum</Composition>
<Composition>0 Virtus Sapientiae</Composition>
</Compositionlist>
</Composer:>
<Composers
<Name>Jaufre Rudel</Name:>
<Nationality>Occitan</Nationality>
<BornYear>112@8</BornYear:>
<DiedYear»1147<DiedYear:
<Exemplar></Exemplar:>
<CompositionList>
<Composition>Quan Lorossinhol el Follos</Composition:
<Composition>Lanquan lo temps renovelha</Composition:
</Compositionlist>
</Composer:>
</Library>

Listing 120 - An XML Composer Library

We'll call this library.xml and use it in our example script below.

Python provides an XML module called ElementTree® that we can use (there are others, but
ElementTree will work nicely for this demonstration). Let's check out how we manipulate XML data
with etree.

>>> import xml.etree.ElementTree as et
>>> tree = et.parse{"library.xml"}
>>> root = tree.getroot()

>>> print{len{root))
2

Listing 121 - Loading XML with ElementTree

We've imported the XML module and can access the Element Tree library as et. Let's first use the
parse function to load our XML document into ElementTree's internal tree structure. We can then get
the root node and determine how many entries we have in the library by checking the length of the
root (i.e., its direct children).

MNow let's access the data in the tree.

»»> print{root.tag)
Library

>»> print{root[@].tag)
Composer

»»> print{root[@][e].text)
Hildegard wvon Bingen

Listing 122 - Reading Tree Tags and Text
We can iterate across or over the tree. Let's list our composers.

>>> for i in range(len(root)):
oma print{root[i][8].text)
Hildegard von Bingen

Jaufre Rudel

Listing 123 - Iterating Across the Tree

We'll leave XML at this point and move on to JSON. JSON, or Javascript Object Notation, is used
extensively in modern systems and applications, especially in cloud services. Python has a JSON®
encoder and decoder module, which makes it easy to load and save JSON data as a dictionary.

{"Composer”: [

{"Name" : "Hildegard von Bingen",
"Nationality":"German",
"BornYear":10898,

"Diedyear":1179,

"Exemplar™:"0 Euchari”,

"CompositionList™: [
{"Composition":"™0 Euchari"},
{"Composition":"0Orde Virtutum"},
{"Composition":"0 Virtus Sapientiae"}

]
T

{"Name":"Jaufre Rudel”,
"Nationality":"Occitan"”,
“BornYear":1128,
"Diedyvear":1147,
"Exemplar™:"Quan Lorossinhel el Fellos™,
“CompositionList™: [
{"Composition”:"Quan Lorossinhol el Follos™ },
{"Composition”:"Lanquan lo Temps Renovelha™}
1
H
]

1
Listing 124 - A JSON Composer Library

We have a copy of our library in JSON form called library.json. We can load this directly into a
dictionary using the Python JSON module functions.

>>> import json
>>> f = open("library.json","r")
>>> json.load(f)

>>> type(library)
<class "dict’>

Listing 125 - Reading JSON into a Dictionary
MNow that we have a dictionary set up, we can use our normal dictionary manipulation to deal with it.

>»>> for i in library(["Composers"]):
s print{i] "Name"])

Hildegard won Bingen

Jaufre Rudel

Listing 125 - Manipwating our Composer Dictionary

This is only an introduction, but there's so much more we can do with XML and JSON file data
manipulation in Python. We'll save that for another lesson.

1 (Mozilla, 2022), https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction <

2 (JSON.org, 2022), https://www.json.org/json-en.html «

3 (Wikipedia, 2022), https://en.wikipedia.org/wiki/Document_Object_Model <

4 (Steph Howson, 2018), https://www.datacamp.com/community/tutorials/python-xml-elementtree <

5 (Python.org, 2022), https://docs.python.org/3flibraryfjson.html <

Exercises

1. What library do we need to import to work with data records in Python?

Answer Verify

2. What decorator do we use to create a data record specification?

Answer Verify

3. What connection function do we need to use to ensure any changes we make in the database are
written to disk?

Answel Verify
4. We define a dataclass called "vendor”. What type of data object will this be?

Answer Verify
5. What data structure is ideally suited to loading JSON data?

I- 1sWer Verify

(c) 2023 OffSec Services Limited. All Rights Reserved.

Join us now -> hideOl.ir | t.nme/RedBlueTM | t.ne/H de0l | t.nme/RedBl ueHit

My Kali VPN

Data Structuras as Records
Waorking with Databases

Resource Center

	1. Python Scripting Basics
	2. Network Scripting
	3. Data Manipulation In Python

