Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Table of Contents
Index

Examples

Errata

The Editor's Website

About the Authors
Full Description
Reviews

Reader reviews
Colophon
Copyright

Learning Oracle PL/SOQL

Bill Pribyl
Steven Feuerstein
Publisher: O'Reilly

First Edition December 2001
ISBN: 0-596-00180-0, 424 pages

Summary

Designed for both new programmers and those experienced in
other languages, this book presents the core features of
Oracle's PL/SQL language in an easy-to-read format. Learning
Oracle PL/SQL will bring programmers up to speed on the
most important aspects of PL/SQL, including web and Internet
programming. Updated through Oracle 9i, includes sample
programs downloadable from http://oracle.oreilly.com.

Full Description

PL/SQL, Oracle's programming language for stored
procedures, delivers a world of possibilities for your database
programs. PL/SQL supplements the standard relational
database language, SQL, with a wide range of procedural
features, including loops, IF-THEN statements, advanced data
structures, and rich transactional control--all closely integrated
with the Oracle database server.

Knowing where to start with Oracle's procedural language is
not always obvious to a newcomer, especially considering the
language's feature set and the sheer size of the official
documentation (not to mention Oracle's ever-increasing
number of pre-built PL/SQL programs). But Learning Oracle
PL/SQL offers the signposts and guidance you need to come
up to speed on the language, delivered in a manageable
number of pages while covering all the essentials.

Topics include:

. PL/SQL--what is it, and why use it? Why use PL/SQL
instead of Java?

file:/I/E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/default.ntml (1 of 4) [15/05/2002 22:43:01]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/graphics/learnoracle_l.jpg
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/errata.txt
http://www.oreilly.com/catalog/learnoracle
http://oracle.oreilly.com/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

. Syntax and examples of all core language constructs

. Creating, using, and reusing stored procedures,
functions, and packages

« Building web-based applications using PL/SQL features
available "out of the box" (such as PL/SQL Server
Pages)

. Securing PL/SQL programs against attack

. Benefits of third-party developer tools and integrated
development environments

. Connecting PL/SQL to email, Java, and the Internet

Meticulously crafted with all-new examples downloadable from
examples.oreilly.com/learnoracle, the book addresses
language features available in all versions of Oracle, from
Oracle7 to Oracle8i to Oracle9i.

Learning Oracle PL/SQL was written by PL/SQL experts Bill
Pribyl and Steven Feuerstein, whose easy-to-read style and
attention to detail has made other O'Reilly books (such as the
bestselling Oracle PL/SQL Programming) very popular among
Oracle developers worldwide. Learning Oracle PL/SQL is
meant for a wide range of target audiences, including both
beginning programmers and those already experienced with
other programming languages. Whether you are a new
developer, a crossover programmer from another database
system, or a new database administrator who needs to learn
PL/SQL, this book will get you well on your way. It is the perfect
introduction to Oracle PL/SQL Programming, also by Pribyl and
Feuerstein.

About the Authors
Bill Pribyl Bio to be posted soon

Steven Feuerstein is considered one of the world's leading
experts on the Oracle PL/SQL language. He is the author or
coauthor of six books on PL/SQL, including the now-classic
Oracle PL/SQL Programming and Oracle PL/SQL Best
Practices, all from O'Reilly & Associates. Steven is a Senior
Technology Advisor with Quest Software, has been developing
software since 1980, and worked for Oracle Corporation from
1987 to 1992. Steven is president of the Board of Directors of
the Crossroads Fund, which makes grants to Chicagoland
organizations working for social, racial and economic justice.

file:/I/E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/default.ntml (2 of 4) [15/05/2002 22:43:01]

http://examples.oreilly.com/learnoracle/
http://www.crossroadsfund.org/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

You can reach Steven at steven@stevenfeuerstein.com.

Reviews

"As someone who knows C, Perl, and Java, | found this to be a
great starter book in PL/SQL. It gave me the core knowledge |
needed for a jump-start into PL/SQL programming. This is a
great book for anybody wanting to learn PL/SQL programming
for Oracle!”

--Bill Phillips, System Engineer, Diverse Networks

"As a project manager for an IT consulting firm, | needed to go
beyond basic SQL and leverage the efficiency and versatility of
PL/SQL. After searching in vain for an introduction to PL/SQL
that required no prior programming experience, I've finally
found a book that is truly for the beginner. This book provides
thorough explanations of the sample code in plain English,
written so that | can understand why the programs work. It's the
next best thing to sitting down with someone for a private
tutorial.”

--Corrie Nettles, former consultant at Baker Robbins & Co., and
Oracle Certified Professional in database administration

Readers Reviews

December 06, 2001 Rating: &! &! &} &!

No one can write PL/SQL better than Steven Feuerstein. If you
can not understand/program PL/SQL after reading this book
you can consider a carrier change. Highly recommended for
anyone who is interested in learning Oracle Programming .

K Gopalakrishnan

Copyright

Copyright © 2002 O'Reilly & Associates, Inc. All rights
reserved.

Printed in the United States of America.

file:/I/E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/default.ntml (3 of 4) [15/05/2002 22:43:01]

mailto:steven@stevenfeuerstein.com

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Published by O'Reilly & Associates, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational,
business, or sales promotional use. Online editions are also
available for most titles (http://safari.oreilly.com). For more
information contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

The O'Reilly logo is a registered trademark of O'Reilly &
Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in
this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of
this book, the publisher assumes no responsibility for errors or
omissions, or for damages resulting from the use of the
information contained herein.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:/I/E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/default.ntml (4 of 4) [15/05/2002 22:43:01]

http://safari.oreilly.com/
mailto:corporate@oreilly.com

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database = Learning Oracle PL/SQL

Learning Oracle PL/SOQL - Index

Dedication

Preface
Is This Book for You?
Other Books in This Series
Why This Book?
Which Oracle and PL/SQL Versions?
Organization of This Book
Conventions Used in This Book
Comments and Questions
Acknowledgments

1. PL/SOL: What, When, and Where
1.1 What Is PL/SOQL?
1.2 Why Use PL/SQL?
1.3 What You Need to Get Started with PL/SOQL

2. Fundamentals
2.1 PL/Lingo
2.2 Running Your First PL/SOQL Program
2.3 Introduction to Program Structure
2.4 Variables
2.5 Common Operators
2.6 Conditional Logic
2.7 Executing in Circles: Loop Statements
2.8 Code Formatting: Requirements and Guidelines
2.9 Some Advanced Fundamentals

3. Let's Code!
3.1 Some Background on the Example
3.2 A First Programming Exercise
3.3 Retrieving a Book Count with a Function
3.4 Make Your Code Resilient
3.5 Using PL/SQL Packages to Organize Code
3.6 Going to the Next Level
3.7 Now What?

4. Go Web, Young Man
4.1 Introduction to HTML
4.2 Using PL/SQL to Create Web Pages
4.3 What Else?

5. Fetch!

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/toc.html (1 of 2) [15/05/2002 22:44:24]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page13.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

5.1 What's the Big Deal?

5.2 A Simple-Minded Approach to Retrieving One Row

5.3 Retrieving More than One Row Using a Cursor

5.4 Presenting Query Results via a Web Page

5.5 Building a Web-Based Search Page Using Dynamic SQL
5.6 Advanced Data Retrieval Topics

6. Keeping House
6.1 Organize Your Code
6.2 Use Tools to Write Code Effectively

7. Security: Keep the Bad Guys Out
7.1 Oracle Security Primer
7.2 Organizing Accounts to Improve Security
7.3 Analyzing the Library System's Requirements
7.4 Keeping a Trail of Database Changes
7.5 Special Security Topics for PL/SQL Developers

8. Communicating with the Outside World
8.1 Sending Internet Email from PL/SQL
8.2 Using the Mail Sender in the Library System
8.3 Receiving Email Inside the Database
8.4 Fetching Data from a Remote Web Site
8.5 Integration with Other Languages

9. Intermediate Topics and Other Diversions
9.1 Riding the Software Lifecycle
9.2 Lists o' Stuff (Collections) in PL/SQL
9.3 Exception-Handling Packages
9.4 Transaction Control
9.5 The PL/SQL Compiler
9.6 Managing Patron and Librarian Privileges
9.7 Still More PL/SQL Features

10. Afterword: "Making Good" of Database Programming
10.1 The Evidence
10.2 The Problem
10.3 Answering the Objections
10.4 What to Do

Glossary

Colophon

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/toc.html (2 of 2) [15/05/2002 22:44:24]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page78.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page84.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page86.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Dedication

Start | Table of Contents | Index | Examples CONTINUE >

Dedication

To my wife, Norma
—Bill Pribyl
To my newest neice, Lianne Belle Rosenthall

—Steven Feuerstein

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel.html [15/05/2002 22:45:27]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Preface

So you'd like to learn PL/SQL. Hooray! Let me welcome you to a worldwide community of
hundreds of thousands of PL/SQL programmers. By learning PL/SQL, you will gain command of a
great language for programming the Oracle database: a language long on practicality and short
on annoyances. Before the show begins, though, let's take a look at where we're going and how
we're going to get there.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page3.html [15/05/2002 22:47:09]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page2.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page2.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface > Is This Book for You?

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Is This Book for You?

| am going to assume that most readers are using, or will soon be using, the Oracle database
server, probably a relatively recent version that is still supported by Oracle. Beyond that, how
many of the following apply to you?

. You are a new Oracle application developer who can spell PL/SQL but that's about it.

. You are a new Oracle database administrator (DBA), and you need to review PL/SQL
written by application developers.

. You are a new DBA and you want to automate many of your tasks.

. You need to use one of Oracle's options that requires PL/SQL knowledge (such as the
Spatial Data Option, used for storing and retrieving geographic information in the
database).

. You are a programmer familiar with another database like SQL Server, and your job now
requires you to deal with Oracle.

If even one of those descriptions is true, this book is for you. Whether you already know another
programming language like Java or Transact-SQLILI , or this is your first exposure to
programming, this book should get you off the ground. If, on the other hand, you are proficient in
C++ and you eat new languages for breakfast, you might want to skim (or even skip) this book
and jump into one of the other books in O'Reilly's series of books on Oracle development.

[1] Transact-SQL, or T-SQL, is a language similar to PL/SQL that is used with two other database
management systems: Microsoft's SQL Server and Sybase.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page5.html [15/05/2002 22:47:50]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface > Other Books in This Series

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Other Books in This Series

This is the first O'Reilly book for you if you're a new PL/SQL developer, but when you are ready to
go to the next level, you may want to have a look at some of O'Reilly's other books in the Oracle
series:

Oracle PL/SQL Programming

A thousand-page tome that is the desk-side companion of a great many professional
PL/SQL programmers. This book is designed to cover every feature in the core PL/SQL
language, but does not go gently with beginners. The second edition covers Oracle
versions through Oracle8, but the third edition targets Oracle9i.

Oracle PL/SQL Programming: Guide to Oracle8i Features

A companion to the previous book that presents an overview of the great new PL/SQL
features that appeared in Oracle8i.

Oracle Built-in Packages

A reference guide to all of the pre-built packages that Oracle supplies with the core
database server. The use of these packages can sometimes simplify the difficult and tame
the impossible. Covers versions through Oracle8.

Oracle Web Applications: PL/SQL Developer's Introduction

A good book to get Oracle developers started building database-driven web applications.
Includes some introductory material on both PL/SQL and programming for the Web.
Covers versions through Oracle8i.

Advanced Oracle PL/SQL Programming with Packages

A book designed to communicate the rationale and means of improving your programs by
writing your own PL/SQL packages. Covers Oracle7.

Oracle PL/SQL Language Pocket Reference (covers versions through Oracle8i) and Oracle
PL/SQL Built-ins Pocket Reference (covers versions through Oracle8)

Two tiny "quick reference" books that might actually fit in your coat pocket.

The Oracle PL/SQL CD Bookshelf

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page6.html (1 of 2) [15/05/2002 22:47:53]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Contains an electronic version of each of the previous books in this list, plus a hardcopy
version of the Guide to Oracle8i Features.

Oracle PL/SQL Developer's Workbook

Contains a series of questions and answers intended to help the PL/SQL programmer
develop and test his or her understanding of the language. Covers versions through
Oracle8i.

Oracle PL/SQL Best Practices

A relatively short book that describes more than 100 best practices that will help you
produce high-quality PL/SQL code. Having this book is kind of like having a "lessons
learned" document written by an in-house PL/SQL expert. Appropriate for all versions of
Oracle.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page6.html (2 of 2) [15/05/2002 22:47:53]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface > \Why This Book?

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Why This Book?

Despite the fact that a growing number of alternative languages are out there, PL/SQL keeps
rolling along, increasing in popularity. With every new installation of Oracle, the number of
potential first-time programmers grows. This book aims to be the "best of breed" book available
for new PL/SQL programmers.

The point of this book is to get you started, not to make you an expert. By the end of the book,
though, you will have seen all of the significant features of the language in action, and be
competent to write programs that perform useful tasks. For example, you will see:

. All of the basic components of the language, and how to assemble them into larger,
reusable units called "packages”

. How to use "PL/SQL Server Pages" (PSP) with Oracle's web gateway to create web-
based applications

. Various techniques for organizing and testing your PL/SQL programs
...and many more useful and (I hope) interesting nuggets of wisdom.

Some observers, citing Oracle's interest in and support of Java, might argue that Java is a better
choice for a new programmer who wants to write applications for the Oracle server; however,
PL/SQL keeps sprouting useful new features. This reflects a continued investment on the part of
Oracle Corporation, the inventor and maintainer of PL/SQL. Both languages are likely to thrive in
a more-or-less complementary fashion for many years to come. For the many folks who want to
come up to speed in PL/SQL, this book is uniquely tailored to your needs.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page7.html [15/05/2002 22:47:55]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface > Which Oracle and PL/SQL Versions?

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Which Oracle and PL/SQL Versions?

Each new release of the Oracle server includes a new version of PL/SQL, as Table P-1 shows.
This book will be useful to you as long as you're using one of the versions in the table. (In case
you're wondering, Oracle changed their version numbering system, which explains why there are
no PL/SQL versions numbered 3 through 7.)

Table P-1. Major PL/SQL versions, 1995-2001

PL/SQL version|Bundled with |First release date Coverage in this book

53 Oracle7 1995 \Tvifk lli)rl],lto T:Crlléexamples in this book won't
8.0 Oracle8 1997 Yes, although a few examples won't work
8.1 Oracle8i 1999 Yes

9.0 Oracle9i 2001 Yes, noted in the text as requiring Oracle9i

As a beginner's tool, this book will expose you to the most important features of PL/SQL, but
without burrowing into the depths of exotic version-specific features. | do make heavy use of
PL/SQL Server Pages starting with Chapter 4. Although this feature became available only when
Oracle shipped Version 8.1.6 (an update to Oracle8i) the syntax was previously available in other
Oracle web-based products such as Oracle WebServer and Oracle Application Server.

If you still have to work with Oracle7—a version of the server that Oracle Corporation treats as
virtually obsolete—many of the features we discuss will still be useful to you, but primarily as
negotiating points you might use to encourage your company to upgrade.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page8.html [15/05/2002 22:47:56]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface > Organization of This Book

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Organization of This Book

Learning Oracle PL/SQL differs from other PL/SQL books in several important ways:
Kinder, gentler organization

Other programming books are often organized around language features, with a chapter
for datatypes, one for loops, and another for exceptions. Such a "feature-oriented" volume
works fine if you already know roughly how you want to accomplish a given programming
task—you flip to the part of the book that covers the technique you want to use. And, if
you don't quite know how you want to solve your problem, you merely read the book from
cover to cover and assimilate its entire contents. Or not.

In contrast, the chapters in this book are arranged in order of increasing complexity, each
chapter building on the previous one. | encourage you to read this book straight through,

from front to back (or at least as far as you can get), rather than leaf or browse through it
as you would a reference book.

The fact is that if you're just getting started with a new language, you are unlikely to know
what features you will need to use to accomplish your programming goals (even if you
doknow what your programming goals are). When this book presents a new language
topic, it usually appears in the context of a given functional objective. So, for example, to
introduce the idea of PL/SQL packages, we didn't write a separate chapter about
packages that documents the syntax and throws in some contrived examples. Instead, the
book proceeds along with the business of developing a specific application and introduces
packages as a solution to a problem.21

[2] well, this is the general goal, anyway. Chapter 2 is not like that at all.
Single, coordinated example

A second difference between this book and other PL/SQL books is that Learning Oracle
PL/SQL develops and uses one set of tables and one application system as the source of
almost all of its code. We start with a simplified version of the system—a library's
electronic catalog system—and add complexity in later chapters.

Glossary

A third unique feature of Learning Oracle PL/SQL is the Glossary, which beginners should
find very helpful (note, though, that you can find most new terms defined when they first
appear in the text).

The first two chapters of this book present PL/SQL language basics. These chapters set the stage

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page9.html (1 of 3) [15/05/2002 22:47:58]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

for the remainder of the book.

Chapter 1 provides an introduction to the language: what it is, why it exists, and when it is useful.

Here you'll find a list of PL/SQL's unique advantages, plus a frank discussion of its limitations. We
also introduce the sample application that will be used throughout the book.

Chapter 2 presents the basics of the language, its core "syntax" and structure. This is necessary
before starting to solve the sample problem. The chapter contains short code fragments to
illustrate concepts, but doesn't waste time with little-used or advanced features. Chapter 2 also
contains a primer on how to execute your PL/SQL code using Oracle's tool called SQL*Plus.

Chapter 3 begins to apply the fundamentals learned in Chapter 2 to the problem of building the
sample application, which is presented in more detail here. The main application task addressed
in this chapter involves adding books to the catalog.

Chapter 4 addresses the second part of the "add books" task introduced in Chapter 3: building
a user interface. This chapter presents a way to build a front-end to the library application, using
PL/SQL, of course, as the language in which to create a web-based user interface. The chapter
introduces HTML (the language of the Web) and discusses some nonobvious ways you can test
your application.

Chapter 5 describes how to create a search system that enables users to query the library

catalog. The main PL/SQL topic addressed in this chapter involves retrieving data from the
database and using it inside PL/SQL.

Chapter 6 discusses a topic you may be wondering about by the time you get there: aren't there
tools to help me write these programs? This chapter covers some ways you might want to
accelerate your development effort by using tools like a full-featured programmer’s editor, a
commercial "interactive development environment" (IDE), or a debugger. It also discusses several
"lower tech” approaches that can save you time and effort.

Chapter 7 looks at the overall problem of security. How can we let authorized users, and only
authorized users, use our library catalog system? How can we use PL/SQL to track changes
made to the system (an audit trail)? What features can help us build adequate privacy controls
into our application?

Chapter 8 covers some of the issues involved in communicating with the outside world. No
system is an island, and PL/SQL provides tools that will help you do things like send email to
Internet addresses, fetch data from other web pages, and read data from files. This chapter also
takes a very brief look at calling programs written in Java and C from PL/SQL.

Chapter 9 contains material that you will find useful as you master the basics and move on to do
more complex PL/SQL programming.

Chapter 10, is a personal essay in which | explore some of the ethical considerations that you
may face as a database application developer in the twenty-first century. | believe that some
consideration of this topic, even though it is generally ignored in technical books, helps keep
technology in its proper place: under the dominion and service of humans rather than the other
way around.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page9.html (2 of 3) [15/05/2002 22:47:58]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page13.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page78.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

The Glossary is a listing of the many terms used in this book and in PL/SQL programming.

We leave you, the beginning PL/SQL programmer, to be the final judge of how effectively this
book helps you learn to program in PL/SQL. We invite your feedback. Please see "Comments and
Questions" for how you can contact us.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page9.html (3 of 3) [15/05/2002 22:47:58]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page84.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface > Conventions Used in This Book

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Conventions Used in This Book

The following typographical conventions are used in this book:
Italic

Used for the names of files and directories. It is also used for URLS, for emphasis, and for
the first use of a technical term.

Constant width

Used for code examples, the names of columns, variables, tables, procedures, functions,
and packages, and to show the contents of files and the output of commands.

Constant wwdth italic

Used in syntax descriptions or other places to indicate where user-supplied (or
programmer-supplied) text would appear.

Const ant wi dth bold

Indicates user input in examples showing an interaction. Also used in some programming
examples to highlight code fragments explained by neighboring paragraphs.

UPPERCASE
In syntax descriptions and source code, usually indicates keywords.
lowercase

In syntax descriptions and source code, usually indicates user-defined items such as
variables.

[]

In syntax descriptions, square brackets enclose optional items.

{}

In syntax descriptions, curly brackets enclose a set of items from which you must choose
only one.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page10.html (1 of 2) [15/05/2002 22:47:59]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

In syntax descriptions, a vertical bar separates the items enclosed in curly brackets, as in
{TRUE | FALSE}.

In syntax descriptions, ellipses indicate repeating elements.

Indicates a tip, suggestion, or general note. For example,
we'll tell you if a certain setting is version-specific.

Indicates a warning or caution. For example, we'll tell you if a
”@ certain setting has some kind of negative impact on the
system.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page10.html (2 of 2) [15/05/2002 22:47:59]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface > Comments and Questions

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed or that we have made mistakes. If so, please notify us by writing to:

O'Reilly & Associates

1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (FAX)

You can also send messages electronically. To be put on the mailing list or request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookqguestions@oreilly.com

We have a web site for this book, where you can find the full code for the sample application
described in this book. There you will also find errata (previously reported errors and corrections
are available for public view there). You can visit this page at:

http://www.oreilly.com/catalog/learnoracle

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagell.html [15/05/2002 22:48:00]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
mailto:info@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com/catalog/learnoracle
http://www.oreilly.com/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Preface > Acknowledgments

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Acknowledgments

No book on PL/SQL could come into existence without a team of people pulling together. We are
indebted to all who have helped turn this idea into a reality.

From Bill

Thanks to Steven for letting me take the lead on this one. You should know that some of the best
prose in the book sprang forth from his prolific pen. It's hard to say how many times he read all
the words that | wrote for this book, but based on the volume of comments he supplied on (and
the resulting improvements in) the text, his reputation as "one of the world's leading experts on
PL/SQL" remains unchallenged.

Dave Hay, data modeler par excellence, helped me understand library data based on a model
from a class that he teaches, while Melinda Flannery of Rice University's Fondren Library gave
me some additional guidance in the real world. Although the data model and application in the
book don't even come close to the depth and complexity required in a real library, Dave and
Melinda at least gave me an idea of how much | need to apologize for this fact.

Technical reviewer Corrie Nettles was thankfully brazen in contributing insights from her
perspective as a complete newcomer to PL/SQL. She reminded me about issues faced when
learning the language that | could not have remembered any other way.

Two (unrelated) PL/SQL instructors provided some great feedback on the book: Miriam Moran
and Ron Martini. Contributing insights gleaned from their many hours teaching the language, their
knowledge of the PL/SQL student's mindset was invaluable. Miriam in particular read the book in
great detail, issuing forth insightful comments and helpful suggestions throughout.

Bill Phillips and Jose Montoya also reviewed portions of the book from the perspective of software
professionals already competent with other programming languages. I'm grateful to have received
the fruit of their experience, and the book is much better for it. Thanks also go to their coworker
Sandip Patel, who helped me test the sanity of various sample programs.

Thanks are also due to Oracle Corporation's PL/SQL development team, especially Chris Racicot
and David Alpern, who never seemed to tire of answering my strange questions; also, to Oracle's
documentation group, who have so improved the accuracy and completeness of the manuals that
| only rarely felt the urge to bother the developers.

| am also extremely grateful to Ellie Volckhausen, O'Reilly's graphic designer who created the
beautiful artwork on the cover of this book. Not only did Ellie tolerate my considerable irrationality,
she responded by giving much of herself to the research and design effort. The result is a cover
with not only wonderful visual appeal, but also one with a rich metaphoric contribution to the
book's overall theme. (For more information about the cover art, please read the Colophon,
located in the end pages.) Thanks as well to the entire O'Reilly production team.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel12.html (1 of 2) [15/05/2002 22:48:02]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

I'd also like to mention that a number of the entries in the Glossary are derived from a work edited
by Denis Howe called The Free On-line Dictionary of Computing at http://www.foldoc.org/,
copyright 1993 by Denis Howe. The pleasant diversion of FOLDOC helped me keep this book
from getting too serious.

Of course, the most pleasant diversion during the writing of this book was provided by my family.
Thanks Norma and the boys for accepting my random memory faults and general failures with
continuing patience and love.

From Steven

This book, with its well-thought out and rigorously followed sample application, and its careful,
caring guidance through many aspects of today's technologies, is largely the product of Bill
Pribyl's methodical labors, and | thank him for that. Debby Russell, our editor, once again
provided invaluable support and insights. My deepest gratitude goes, however, to our hundreds of
thousands of readers who have never shirked in their duty to suggest ways to improve our
PL/SQL books. A common theme has been: you need a book for beginners! Without you, dear
readers, this book would never have been written.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel12.html (2 of 2) [15/05/2002 22:48:02]

http://www.foldoc.org/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 1. PL/SQL: What, When, and Where

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 1. PL/SQL: What, When, and Where

Let's start at the beginning and take a look at what Procedural Language/Structured Query
Language (PL/SQL) really is, what it is good for, and how it fits into the world.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel14.html [15/05/2002 22:48:03]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 1. PL/SQL: What, When, and Where > 1.1 What Is PL/SOQL?

< BACK Start | Table of Contents | Index | Examples CONTINUE >

1.1 What Is PL/SQL?

Pick up most any reference book about PL/SQL and you'll read that it is Oracle's "procedural
extension to Structured Query Language (SQL)." If that definition doesn't help much, consider
what it assumes you know:

. What a computer "language” is
. What "procedural” means in this context

. Some concept of Structured Query Language, including the notion that SQL is not
procedural

. The idea of a language "extension"
Let's look at each concept in turn.

A computer language is a particular way of giving instructions to (that is, programming) a
computer. Computer languages tend to have a small vocabulary compared to regular human
language. In addition, the way you can use the language vocabulary—that is, the grammar—is
much less flexible than human language. These limitations occur because computers take
everything literally; they have no way of reading between the lines and assuming what you
intended.

Procedural refers to a series of ordered steps that the computer should follow to produce a result.
This type of language also includes data structures that hold information that can be used multiple
times. The individual statements could be expressed as a flow chart (although flow charts are out
of fashion these days). Programs written in such a language use its sequential, conditional, and
iterative constructs to express algorithms. So this part of the PL/SQL's definition is just saying that
it is in the same family of languages as BASIC, COBOL, FORTRAN, Pascal, and C. For a
description of how procedural languages contrast with three other common language categories,
see the following sidebar.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel5.html (1 of 9) [15/05/2002 22:48:05]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page13.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
Language Categories

Saying that PL/SQL is a procedural language makes more sense when
you understand some other types of programming languages. There are
at least four ways to categorize popular languages.!i1

Procedural programming languages

Allow the programmer to define an ordered series of steps to follow
in order to produce a result. Examples: PL/SQL, C, Visual Basic,
Perl, Ada.

Object-oriented programming languages

Based on the concept of an object, which is a data structure
encapsulated with a set of routines, called methods that operate on
the data. Examples: Java, C++, JavaScript, and sometimes Perl
and Ada 95.

Declarative programming languages

Allow the programmer to describe relationships between variables
in terms of functions or rules; the language executor (interpreter or
compiler) applies some fixed algorithm to these relations to produce
a result. Examples: Logo, LISP, Prolog.

Markup languages

Define how to add information into a document that indicates its
logical components or that provides layout instructions. Examples:
HTML, XML.

[1] These category definitions are derived from an indispensable resource edited by Denis Howe
called The Free On-line Dictionary of Computing, http://www.foldoc.org/, copyright 1993 by
Denis Howe.

Structured Query Language is a language based on set theory, so it is all about manipulating sets
of data. SQL consists of a relatively small number of main commands such as SELECT, INSERT,
CREATE, and GRANT; in fact, each statement accomplishes what might take hundreds of lines of
procedural code to accomplish. That's one reason SQL-based databases are so widely used. The
big joke about the name "SQL" is that it is not really structured, is not just for queries, and (some
argue) is not even a real language. Nevertheless, it's the closest thing there is to a lingua franca
for relational databases such as Oracle's database server, IBM's DB2, and Microsoft's SQL
Server.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel5.html (2 of 9) [15/05/2002 22:48:05]

http://www.foldoc.org/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

A language extension is a set of features that somehow enhance an existing language. This
phrase might imply, incorrectly, that PL/SQL is a special version of SQL. That isn't the case,
however. PL/SQL is a programming language in its own right; it has its own syntax, its own rules,
and its own compiler. You can write PL/SQL programs with or without any SQL statements. Some
authors assert that PL/SQL is a superset of SQL, but that's a bit of an overstatement, because
only the most common SQL statements can be used easily in a PL/SQL program.

PL/SQL, then, is a language that is closely related to SQL, but one that allows you to write
programs as an ordered series of statements. Or, if you want a definition of PL/SQL that befits a
programmer:

PL/SQL is a procedural (Algol-like) language with support for named program units
and packages; much of its syntax is borrowed from Ada, and from Oracle's SQL it
derives its datatype space and many built-in functions.

But if that doesn't make any sense, don't worry about it! You'll get the same message in plain
English in the forthcoming pages.

Also New to SQL?

If you're completely new to the relational database world, you will also
want to learn more about SQL, which is beyond the scope of this book.
Fortunately, or perhaps unfortunately, there are hundreds of SQL training
materials on the market, including many web sites and books. Although
neither of O'Reilly's two books on SQL qualify as tutorials, you may still
find them helpful to have on your bookshelf: Oracle SQL: The Essential
Reference, and SQL in a Nutshell: A Desktop Quick Reference, the latter
of which addresses multiple vendors' versions of SQL (Oracle, Microsoft,
PostgreSQL, and MySQL). A popular tutorial-style book is the Oracle SQL
Interactive Workbook by Alex Morrison and Alice Rischert. As far as web
sites go, you might try "SQL for Web Nerds" at
http://www.arsdigita.com/books/sql/.

1.1.1 Why SQL Is Not Enough

As a beginner in the world of relational databases, you might wonder why SQL, which is
supposed to be so wonderful, isn't always enough. It is true that SQL's high-level operations are a
big boon to programmers dealing with relational databases, but the real world of programming
includes many tasks other than straight database manipulation. SQL is not a general-purpose
language for expressing computer algorithms. Although you can build a SQL "program" that
consists of a sequence of SQL statements, such a program could not have any "conditional”
statements. That is, SQL has no convenient way to say, "IF something-is-true THEN do-this
OTHERWISE do-something-else."[11 But PL/SQL handles such logic with ease (as shown in

Example 1-1).

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel5.html (3 of 9) [15/05/2002 22:48:05]

http://www.arsdigita.com/books/sql/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

[11 More advanced readers may correctly point out that Oracle's version of SQL includes a
nonstandard though useful function known as DECODE, which provides a crude if-then construct.

Example 1-1. A Wimpy PL/SQL fragment

BEG N
| F TO CHAR(SYSDATE, 'DAY') = ' TUESDAY'
THEN
pay_f or _hanburgers;
ELSE
bor r ow_hanbur ger _noney;
END | F;
END;

In addition to the IF-THEN-ELSE statement, this PL/SQL code fragment shows BEGIN...END
delimiters, none of which you'll find in SQL. Borrowed from SQL, though, are the SYSDATE
function, which returns the date and time on the system clock at the moment that you call it, and
TO_CHAR, which converts the date bytes to something understandable such as the day of the
week. The statements

pay_for hanburgers;

and

borr ow_hanbur ger noney;

are the names of stored procedures[2l we have presumably created. Inside a PL/SQL program,
putting a procedure's name alone on a line like this causes it to execute. Of course PL/SQL is
much more than IF statements and procedure calls. PL/SQL replaces those procedural
ingredients that SQL took out: sequential, conditional, and iterative statements, variables, named
programs, and more.

[2]1 A stored procedure is a program that resides and executes inside the database server. Most of
this book is about stored procedures.

In addition, SQL comes up lacking when you need to protect and secure your data in a
sophisticated way.If you try to rely only on SQL to enforce security, your database administrator
(DBA) has some control over who can change the data, but no control over how they can change
it. So Herman in accounting might receive UPDATE privilege on a receivables table. You might try
to control what operations he can perform by programming some business rules in a Visual Basic
program that he uses. Well, he's supposed to use it, anyway! If he happens to have, say,
Microsoft Excel on his desktop computer, and if he happens to also have connector softwarel31 to
let it talk to Oracle, boom! Herman can bypass all your carefully programmed security checks!

[31 A common mechanism for this purpose is known as Open DataBase Connectivity (ODBC),
used in widely available tools such as Microsoft Excel. Oracle's ODBC "drivers," as they are called,
are freely downloadable from Oracle Technology Network (OTN) web site, sometimes known as
Technet, at http://otn.oracle.com.

Without PL/SQL, it is quite easy to expose your data to intentional or unintentional tampering.
Using PL/SQL as a programming tool (particularly in combination with a feature introduced in

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel5.html (4 of 9) [15/05/2002 22:48:05]

http://otn.oracle.com/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Oracle8i called "Fine Grained Access Control") can help lock up this "back door" into the

database. Chapter 7 examines PL/SQL's security features.

1.1.2 A Meaty PL/SQL Example

Enough talk, let's code! Drawing from the world of the neighborhood library, here is a PL/SQL
stored procedure that might run when a patron returns a book to the library. The example in
Figure 1-1 expresses a lot of ideas about PL/SQL. At this point, you will probably just want to
scan it for pieces that seem interesting, and then proceed to the discussion that follows.

Figure 1-1. Example PL/SQL stored procedure for handling library book returns

Barcode i inand refurn_diote_in

i e input “pargmeters” o the
This header” stored procedure. _
specifies fow the A walve for retorn_date_in
program oan be CREATE PROCEDURE return book (barcode id in IN VARCHARZ, 5 optiomal, it will defanlt
s, return_date_in IN DATE DEFAULT SYSDATE) 1o the current day,
AS (e wrse of the TRUNC fonetion is
Here we define fo rermawe ay bour, mingles, of
{"declare”) the trunc_return date DATE := TRUNC({return_date in); seconds thot may be part of the date.
atatype of 1_due_date DATE;
ech wariable daily fine_usd CONSTANT NUWMBER := 0.25; You can define a ‘tursor”as a convenient
the program will way to SELECT {retrieve) dta from the
wse, and CURSOR tcur IS durtabase, See below for an example of
optiovnally assign SELECT due_date iy the cursar.
it initial value. FROM borrowing transaction
WHERE barcode_id = barcode_id in; Using an exception is o way
na_checkout_record EXCEPTION; EﬂI“g.lI Iw,t-ﬂ: Inl EMmﬂy
BEGIN ETCoUTIEr:
E“m'ﬂtge /* Find the due date */ This is @ comment.,
BEGIN and OPEN teur; ﬂjmrqcum:: mnre:mmm
END f¢ wihvere FETCH teur INTO 1 due date; to retrieve dafa from a table into
Jou put the IF tourZNaTFOUND i program variabie,
. THEN
erprtahle CLOSE tcur;
iatements RAISE no_checkout record; If the SELECT statement finds no
nmfe”” o END IF; data, “raising” this exception wil
program. ELOSE #eurs calrse execiition to “lmp” Lo the
e neqrest exception handier (befow).
/* Mark the book as returned =/
UPDATE barrowing transaction
SET returned date = trunc_return_date You can embed SQL statements such
WHERE barcode id = barcode id ing i UPDATE rlghit fndior yowir PL/SQL.
/* Assess any fine that is needed =/
The = aperalor assigns the result an
:Ir;Elzlt‘l:tu:n_dute:_in » 1 _due_date ﬂ!ﬂgﬁ!!ﬂﬂhﬂlﬂfﬂnuﬂshﬁ.
days late := trumc_return date - TRUNC{l due_date];
UFDATE borrowing transaction
SET fine apount wsd =
NVL(Fine_amount_usd,0) + days_late * daily fine usd
0 '%FERE barcode_id = barcode_ :u:I ing If the NV operator emcounters a mul
vaallie, It replaces it with a programimer-
EXCEPTION supplied mon-mull value (frere, 0,
An exception
section handles WHEN no_checkout_record
IS OF THEN
s lnthransactinn Drrurl:barcn:ldlz id im,
concditians that Il."l'l.-lIl'l'L‘d on' || TO_CHAR{Erunc return_date, °DD-MON-YYYY')
My o, || * without cerresponding checkout record');

4

file:///E|/O'Reilly/O'Reilly%20-%20L earning%200racle%20PLSQL/page15.html (5 of 9) [15/05/2002 22:48:05]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

- o airm wis | r_ ety e e ey e nrers ans
may focur, || " witheut cerresponding checkout record');

END; You can write and call other stored procedures amywhere in your program,
! Here, the exception hondler colls o procedure we've written that is mamed

fog framsaction_eror,

The idea behind this program is that it would support a library clerk who checks in books by
scanning them with a barcode reader. (There would be some other program to supply the
barcode identifier and, optionally, the date when the book was returned to thisr et urn_book

procedure.) The overall arrangement and flow of the example is as follows:

. Inthe program specification, declare the program name and the parameters it will accept.
Here, we accept a barcode ID and the date the book was returned. If the calling program
does not supply a return date, the program defaults to use the current date (based on the
database server machine's internal clock).

. In the declaration section, define variables that will be used inside the program, including
a "cursor" that will allow us to query the borrowi ng_transacti on table.

. In the first executable statements, open and fetch from the cursor to attempt to retrieve a
record that corresponds to the supplied bar code i d.

. If no such record exists, log an error message (by raising, and then handling, an
"exception”) by invoking a separate stored program that we have previously written,
| og_transaction_error.

. If a matching transaction record does exist, update it to reflect the fact that the book has
been returned.

. Compare the check-in date to the due date, and assess a fine if the book is returned late.

In this prose summary, the program should make at least some sense. | won't discuss the details
of the code here, but there are a few things | would like to emphasize that might not be apparent
in the figure:

. The CREATE PROCEDURE statement causes Oracle to load the program into the
database server. If everything succeeds, the procedure remains in the database, available
to execute later. Chapter 3 discusses more about creating stored procedures.

. PL/SQL uses "blocks" to organize code, and the blocks are delineated by keywords
including BEGIN and END. Details are in Chapter 2.

. PL/SQL programs are often populated with many SQL statements such as SELECT and
UPDATE. Conveniently, these SQL statements drop right into the code without much fuss.

. When retrieving data through a SELECT statement, you will fetch one row at a time using
a thing called a cursor. A detailed discussion of this appears in Chapter 4.

. You can use PL/SQL program variables directly in the embedded SQL statements. In the
first UPDATE statement in the example, Oracle assigns the value of the variable

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel5.html (6 of 9) [15/05/2002 22:48:05]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

trunc_return_dat e tothe value in the table's r et ur n_dat e column.

. PL/SQL is a "readable" language. Well, it should be, anyway, if the programmer uses
reasonable names and follows simple coding conventions. The value of readability will
become apparent the first time you have to make a change to some code that someone
else wrote!

Now that we've seen a short but rich example of PL/SQL, let's take a look at how PL/SQL fits into
the big picture of the Oracle database.

1.1.3 PL/SQL and the Oracle Server

Here is another way of thinking about PL/SQL.: it is Oracle's primary language for programming
stored procedures, which are programs that live and run inside the database server.

What, exactly, does it mean that PL/SQL executes "inside the database server"? To understand
the answer, it's helpful to know a bit about how the database works.

As illustrated in Figure 1-2, client programs can make calls to a PL/SQL program running inside
the Oracle database server. Virtually any database-aware programming environment can invoke
PL/SQL stored procedures: Visual Basic, C, Java, even another Oracle database. The stored
routines can, in turn, call others in a very efficient manner, performing manipulations of the
database, computations, or lookups as needed by the program that originally made the request.
Results and status codes then pass back out to the calling program. The figure also shows that in
an Oracle database server, all contact with the data on disk goes through a core set of
background processes, and PL/SQL runs quite intimately alongside these processes. The net
result is a high-performance database that can have a lot of "smarts" supplied by the
programmer.

Figure 1-2. Simplified representation of PL/SQL in the Oracle Server

Medwaork

Database-aware Ovacle processes (runming
presgram iy Backgratnmd)
Citahaze .I:llE"I'Ir havation of stoved PUSQL Engine Shareddata on
maching = " 8 %0 pracre disk. managed
L DTOTENTT E-deum{el:lum .I."_l.-L'!." h{hﬂ!
I ST
Stored procedure
Database-aware
-~ pregram
“Application server”

machine

PL/SQL can also run on client machines that are not running a database server but that can talk
to the database server machine over a network. This kind of arrangement would use Oracle's
application development tools like Oracle Forms.[41 However, this book concentrates on server
programming rather than client programming. We've chosen to do this because it enables the

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel5.html (7 of 9) [15/05/2002 22:48:05]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

book to focus on the language features that are common to all PL/SQL programmers. In addition,
client-side development with Oracle products is one of several ways to build applications, but
server-side PL/SQL is the principal method for programming stored procedures when using
Oracle.

[4] Over the years, these tools have been known by a variety of names, such as Internet Developer
Suite, Oracle Developer, and Oracle Developer/2000.

1.1.4 What PL/SQL Is Not

As useful as PL/SQL is, there are things it isn't, or can't or won't do—not without a bit of smoke
and mirrors, anyway. We'll discuss ways of working with some of these un-features later in the
book.

Few tools for user interaction

Although it has many constructs and built-in features for interacting with data in the
database, PL/SQL has few tools for interacting directly with the user. Yes, there is a
rudimentary way to get textual output from a PL/SQL program, but there is no direct way
to receive input from the user. You will typically use another language as the front end[51
of your application, and it will pass your input to PL/SQL. In some ways this is a good
thing, because it forces you to separate the concern of data management from the
concern of user interface design. See Chapter 4 for examples of using a web-based front
end to PL/SQL.

[5]1 Somewhat anthropomorphically, the terms back end and front end generally refer to the server
and client parts (or the computational and user interface portions) of an application. As an example,
a web browser might display the front end, and a server machine running the application might be
the back end.

Proprietary language

PL/SQL is proprietary to Oracle Corporation and is not useful with any other vendor's
database product. While there are some ways to integrate the Oracle database server
with other vendors' servers, PL/SQL won't execute anywhere but Oracle. This is
unfortunate for independent software vendors who prefer to build their database-aware
products to run against different databases. Also, very large companies suffering from
"let's get one of everything" syndrome are unlikely to settle on PL/SQL as their standard
language for procedural database programs.

Limited object-oriented features

(Beginners, skip this paragraph.) Up until Version 9, PL/SQL was lacking in object-
oriented programming language features, although Version 8 did add support for abstract
datatypes. Object-based programming was even reasonable to achieve using PL/SQL
packages in Version 7. Oracle9i introduced more object-oriented features, such as multi-
level collections, inheritance, and runtime polymorphism, although there are still some
unfortunate limitations such as no private methods.

Now just hold on here, you're saying to yourself—if PL/SQL is often only part of a complete
application, and only works with the Oracle database, why not just use one of the multi-purpose

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel5.html (8 of 9) [15/05/2002 22:48:05]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

languages like C or Java for everything? Why bother with PL/SQL at all?

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel5.html (9 of 9) [15/05/2002 22:48:05]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 1. PL/SQL: What, When, and Where > 1.2 Why Use PL/SOQL?

< BACK Start | Table of Contents | Index | Examples CONTINUE >

1.2 Why Use PL/SQL?

To fully understand why and where PL/SQL is a good fit, it's important to understand the
limitations of alternate languages. Let's first hark back to the early days and find out why PL/SQL
exists at all.

1.2.1"I'd Rather Use a Real' Language Like C!"

Before PL/SQL, the only way to bundle up Oracle's SQL statements inside complex procedural
programs was to embed your SQL in another programming language, which was typically C. This
was essential because SQL alone has no way to enforce rules such as "when you sell a widget,
total the monthly sales figures, and decrease the widget inventory by one,” or "only a manager
can discount blue widgets by more than 10%." So the C programs had to enforce those business
rules.

While using a "host language” like C can work, more or less (as long as everybody is strictly
required to use the application program—and that's a big if), it has some other limitations:

. Different vendors' C compilers and libraries are not 100% compatible, making it expensive
to port application programs from one maker's computer to another. Even if the code
doesn't change, you still have to test it. Because Oracle designed PL/SQL to run
identically on every platform, though, stored procedures are reusable across different
server hardware and operating systems, with minimal testing required (after testing on one
platform, some people don't even bother to test PL/SQL before using it on another
platform). This turns out to be important not just to customers' applications but also to
Oracle itself, since it lets the company easily package and deliver new features on all 80+
platforms where the Oracle server runs. (One of Oracle's hallmark marketing angles has
long been the promise of "running everywhere.")

. Despite widespread adoption, C is generally considered more suited for a class of
programming tasks that does not include writing typical business applications.
Programmers in the corporate MIS shop usually prefer languages immune from the peril
of C's "pointers." In addition, text manipulation in C is sort of tedious compared to PL/SQL.

As Oracle began to mature, though, the database industry began to see the wisdom of moving
processing logic into the database server itself. Even though C can be the right answer in many
cases, a C program will always execute outside the database server; it cannot be used to
program a true stored procedure.

1.2.2 Why Should | Use Stored Procedures at All?

Although there are many arguments in favor of stored procedures, they have evolved a bit over
the years. Back when the stored procedure feature was new, you had only two choices for where
to locate the Oracle application logic: the client, which was usually a PC, or the database server,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel16.html (1 of 7) [15/05/2002 22:48:07]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page13.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

which was usually running on a higher-powered minicomputer. It was easy to make a case in
favor of using stored procedures by pointing out their help in centralizing complex code, securing
the database, reusing software, and increasing performance.

Why Is PL/SQL As Fast As It Is?

Executing in close proximity to the data in the database, PL/SQL allows
for highly efficient database reads and writes. Why?

First, PL/SQL's variables store data in the same internal binary format as
the database. For example, when retrieving a numeric value from the
database, you don't have to convert it from one set of bits in the database
to a different set of bits in the program; you just make an exact copy of the
bits. By contrast, if you read numeric data from the database into a Java
program, you are likely to need to convert it into something like a Java
"BigDecimal.” Now, this may seem like a point only a geek could love, but,
when multiplied by thousands or millions of occurrences, it can turn out to
be a big impact—not only in ease of programming, but also in ease of
performance.

Second, server-side PL/SQL gets executed inside the same running
program (in the same memory space) as the Oracle server itself. This
translates into another performance win because there is extremely little
communications overhead required for the program to talk with the
database. Normally, this overhead would be either in the form of network
bandwidth or in the CPU power and memory required to use the
computer's internal messaging system known as inter-process
communication.

It is true that PL/SQL has for years been an "interpreted"” language rather
than a true "compiled" language, resulting in some kinds of operations
being slower. Even though millions of users found PL/SQL's interpreted
performance to be acceptable, Oracle introduced a native execution
feature in Oracle9i that can dramatically accelerate execution speeds. It
actually translates your PL/SQL into C and compiles it into machine-
specific binary form. See Chapter 9 for more details about compiling and
native execution.

Nowadays, though, a common arrangement is to use one or more middle-tier machines between
the client (which is now often a simple web browser) and the server. The middle tier typically runs
the application logic on some convenient platform using some convenient language. Many of the
benefits of using stored procedures can accrue to this multitiered arrangement, and the
arguments in favor of stored procedures have evolved since the early days. I've narrowed them
down to only four basic arguments, but they are critical:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel16.html (2 of 7) [15/05/2002 22:48:07]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Fewer things to break

By relying on stored procedures, there are fewer "moving" parts in the overall system.
Controlling a development effort with client, middle-tier, and server-tier components
requires not only inspired and skillful managers but also, in many cases, a great deal of
luck. In addition, as time goes on, the evolution of a system with fewer components is
likely to be simpler and less expensive.

Centralized consistency

Stored procedures provide greater assurance of data integrity. It's just easier when you
don't have to secure both the database and a middle tier. The term "secure" here
encompasses both privileges (Joe has the privilege to update the table of accounts) and
business rules (no transactions permitted on accounts more than 30 days past due).

Performance

Stored procedures can potentially yield greater performance, as discussed in Why Is
PL/SQL As Fast As It Is?

Developer productivity

Stored procedures can facilitate greater productivity when you write applications with
products that assume the presence of tables in the database. In Oracle, you can, for
example, write stored procedures that allow other programs to insert, update, and delete
through database views.

Okay, let's assume you like the sound of those four benefits, that you are using Oracle, and that
you definitely or possibly want to use stored procedures. It does not automatically follow that you
should use PL/SQL; you might prefer to use the Java programming language, which Oracle
supports as an alternative. If you have time to learn only one language, which should it be?

1.2.3 "Hey, Isn't Java Where It's At?"

A lot of Oracle programmers wonder whether they would be better off using Java for all their
stored procedures. It is true that Java offers some features that are impossible to program directly
in PL/SQL. But there are several striking advantages to using PL/SQL. First off, PL/SQL can offer
superior performance to Java, as discussed in Why Is PL/SQL As Fast As It Is?. Another
major argument in favor of PL/SQL is that as a companion to SQL, PL/SQL offers uniquely close
integration. This section explores four examples of this integration:

. PL/SQL is more concise than Java.
. You can call PL/SQL functions directly from SQL.
« PL/SQL can run without human intervention.

. Many cool features are only accessible via PL/SQL.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel6.html (3 of 7) [15/05/2002 22:48:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Let's look at each one in turn.
1.2.3.1 PL/SQL is more concise than Java

Using SQL statements within PL/SQL is free of programming "cruft" (programmer's slang for
superfluous code). Without getting into the finer points about cursor-FOR loops, automatic
declarations, statement parsing, etc. (described in later chapters), suffice it to say that PL/SQL
can accomplish more using fewer lines of code than any other SQL-hosting programming
language you care to use with Oracle. Well, at least when compared to Java. Take a look at the
code fragment in Table 1-1.

Table 1-1. Simple code fragment in PL/SQL and Java

| F return_date_ in > | due _date
THEN

days late := trunc_return_date - TRUNC(| due_date);

UPDATE borrow ng_transaction

SET fine_anount _usd = NVL(fine_anount usd, 0)
+ days |late * daily fine_ usd

VWHERE barcode_id = barcode_id_in;

END | F;

PL/SQL

i f (returnDate.after(rs.dueDate)) {
s = "UPDATE borrowi ng_transation ";
s += "SET fine_anount _usd = NVL(fine_anount usd,0) ";
s += "+ (TRUNC(?) - TRUNC(?)) * ? "
s += "WHERE barcode_id = ?";
Prepar edSt at enent ps = aCon. prepareStatenent (s);
ps.setDate(1, returnDate);
ps. setDate(2, dueDate)
ps.setlnt(3, dailyFi neUSD);
ps.setString(4, barCodelD);
ps. execut eUpdate();

Java (using JDBC)

In the Java/ JDBCI¢I version of this code fragment, you have to use question marks as variables,
and then bind data to them as separate steps. What a pain. (And keep in mind that these are not
complete programs. The actual comparison can be worse than this.)

[6]1 JDBC is the standard Java library for connecting Java programs to SQL-based databases.
JDBC doesn't officially stand for anything, but most people think of it as Java DataBase
Connectivity.

1.2.3.2 You can call PL/SQL functions directly from SQL

Calling PL/SQL functions directly from SQL statements can often make your SQL shorter and
more manageable. For example, you can define a PL/SQL function that computes some exotic

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel6.html (4 of 7) [15/05/2002 22:48:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

mathematical relationship, and someone can later use that function in a SQL SELECT statement.
In a library, maybe they have an algorithm for computing a book's popularity based on how
frequently it gets checked out and how many times patrons request that it be held for them. This
statistic, combined with the number of copies, helps the library determine whether to purchase
any new copies of the book. We could create a PL/SQL function that computes a "scarcity" factor,
and then write a relatively simple query to create a report:

SELECT isbn, title, scarcity(isbn)
FROM books
ORDER BY scarcity(isbn);

That's pretty cool—it means we can create our own extensions to SQL!

1.2.3.3 PL/SQL can run without human intervention(and without any obvious divine
intervention)

PL/SQL can be triggered automatically by other events in the database. For instance, if you want
to get an email when a particular book gets returned to the library, PL/SQL can send it. Examples
of trapping database events with table-level or database-level triggers written in PL/SQL appear in

Chapter 7 and Chapter 8.
1.2.3.4 Many cool Oracle features are only accessible via PL/SQL

Although Oracle rarely spells out this fact in black and white, there are extremely useful features
such as Replication (for automatic copying of data between databases), the Spatial option (for the
storage of maps and other location-dependent data), and Time Series (to help manipulate data
with a strong time component, such as stock prices) that will require you to learn at least a little
about PL/SQL. That's because these features currently have no alternative programming
interface. (If truth be told, though, there are a few Oracle features, such as programming for the
Internet File System or iFS, that are only available from Java.)

Lessons From My Father on the "Best"
Language

Rewind to the last millennium, back when | was about eight. | used to
spend long hours working in my father's workshop, "helping” him with his
latest project. A natural tinkerer, my father was always building some
gadget or gizmo, and I'd hammer and saw right along with him. Although
many of his creations are still in use today, | get more frequent mileage
from one of his oft-demonstrated lessons that really stuck with me:

You gotta use the right tool for the job.

In my father's world, this message surfaced repeatedly, forcefully, and
unforgettably. When confronted with a Phillips head screw, don't use a flat-
bladed screwdriver just because it's the one in your pocket. Use clamps to

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel6.html (5 of 7) [15/05/2002 22:48:07]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

hold stuff you've glued while it's drying. Only on rare occasions is it okay
to install a screw with a hammer. And so forth.

This goes a long way toward explaining my maxim that you shouldn't fight
any meaningless battles over what the "best" language is, because each
has its uses. In other words, use the right tool for the job.

1.2.4 When Is PL/SQL the Right Tool for the Job?

How will you recognize the job for which PL/SQL is the right tool? Wrong answers may not be as
obvious as when you pound a screw with a hammer. Right answers sometimes require quite a bit
of experience with a number of different languages, plus sufficient scrapes, bruises, and hair-pulls
from years of trying things the wrong way (my thumb is healing up nicely, thank you, but my hair
is still a little thin).

Table 1-2 summarizes some of the major differences between the two languages, in very high-
level and admittedly subjective terms.

Table 1-2. Comparison of PL/SQL and Java as the language of stored procedures

Criteria PL/SQL Java

Oracle8i, DB2, Sybase,
Informix, several others (but
not Microsoft's SQL Server)

Suitable for stored procedures |Oracle (all currently supported
in... versions)

Client-side or middle tier when Client-side or middle tier with

Suitability for use in other tiers using Oracle tools many vendors' products

Portability of your programs to Excellent if programmer

different DBMSs None avoids proprietary database
features
Conciseness of code for
Excellent Not so great
common database tasks
Portability of your programs to Excellent Excellent

different operating systems

Scales well, but some
performance problems with
lots of database interaction

Overall performance and Excellent, particularly using native
scalability in database usage |execution in Oracle9i

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel6.html (6 of 7) [15/05/2002 22:48:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Well-supported programming |Functional decomposition; object- |Object-oriented programming
styles based (O0P)

Steep curve; requires

Ease of learning Moderately easy knowledge of OOP to use well

Ratio of features to

. Excellent Fair
complexity

Most business programmers (that is, programmers such as MIS staff who work in non-software
industries) tend to prefer PL/SQL because it is a lot easier to learn and use than Java, which can
be cryptic and verbose. In contrast, many software-industry programmers often prefer Java
because of its object-oriented features and wide support. Of course, you have to factor in your
existing programming skills and knowledge; are you more likely to build the desired system(s) in
the allotted time in PL/SQL or in another language?

1.2.5 The Best of All Worlds

It turns out that you can integrate PL/SQL in conjunction with many other popular languages. If
you're already writing in a language like C, Perl, Java, Ada, FORTRAN, or COBOL, you can use it
to call your PL/SQL programs. You can pass data and other information (like exceptions, covered
in Chapter 3) back and forth. The way you call PL/SQL programs from these other languages is
usually a simple extension of the way the other language calls SQL. In fact, in some cases it's
easier to call PL/SQL from one of these languages than it is to call SQL, because you can migrate
iterative program logic into PL/SQL, thereby replacing (in some cases, anyway) a lot of tedious
fetch loops with a single call to a named PL/SQL program.

In addition, with a bit of cleverness, PL/SQL can also invoke programs written in these other
languages. See Chapter 8 for an introduction to the use of external procedures.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel6.html (7 of 7) [15/05/2002 22:48:07]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 1. PL/SQL: What, When, and Where > 1.3 What You Need to
Get Started with PL/SQL

< BACK Start | Table of Contents | Index | Examples CONTINUE >

1.3 What You Need to Get Started with PL/SQL

Now that you're sold on PL/SQL, I'd like to change gears a bit and give you some practical
information on what you'll need to start programming.

First off, you'll need access to an Oracle database. Since Oracle is a product designed to be
shared, it isn't necessary to have your own private copy of Oracle on your own private machine.
You just need an account in an Oracle installation where the administrator will let you experiment
with PL/SQL. You can use your desktop machine merely as a tool through which you connect to a
database on a different machine. If you don't have that, though, you might have to set up your
own Oracle database.

In the simplest arrangement, you would have the Oracle server running on a machine on your
desk, where you would also do all your development. There are four things you will need:

1. Access to a "big enough" machine running an operating system supported by Oracle

2. Alicensed copy of Oracle's server software, available free (with some restrictions) from
Oracle's web site

3. A text editor
4. A copy of this book

Since you've already got the book, and getting #2 will also get you #3, you're halfway there
already.

1.3.1 Hardware and Operating System

If you want to install the Enterprise Edition of Oracle9 i on a typical Unix machine, Oracle says
you need at least the following:

. 256 megabytes of RAM
. 2.5 gigabytes of disk for software and starter database
. 400 megabytes (or more) of swap space during installation

Or, if you want to run the older release, Oracle8i, on a Windows NT or 2000 machine, you'll need
a machine something like this:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel7.html (1 of 4) [15/05/2002 22:48:09]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page13.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

« Pentium 166MHz or better processor
. 96-megabyte RAM (256 megabytes is recommended)
. 2 gigabytes of disk space

As you can see, the actual hardware requirements depend on the Oracle version and options you
want to use (and, to a lesser extent, on the operating system). As for the operating system,
Oracle generally provides licenses for developers (see the next section) on the following:

« Windows NT, Windows 2000, and Windows XP, Professional (some Oracle versions are
even available for Windows 98)

. Intel Linux
« Sun Sparc Solaris (a Unix flavor that runs on Sun and Sun-compatible hardware)

. Some Oracle versions are available for other Unix flavors such as Compaq Tru64 Unix
and IBM's AIX

It is probably not sufficient to have the version of the operating system that happened to come
"out of the box" with the hardware. In addition to matching the exact version number that Oracle
supports, you must ensure that the operating system on the machine has the proper patches (or
service packs) installed.

Obtaining the proper version of an operating system for your
"'@ version of Oracle, and then applying the necessary patches,
is usually a task big enough to be annoying. Be sure to follow
the instructions in whatever documentation Oracle supplies
that is specific to your platform. You should always check the
documents that have the name Installation Guide or Release
Notes or README in the title. These documents should also
contain the exact hardware requirements.

What's the "best" hardware and operating system for Oracle? For a beginner, my answer is
always "whichever one you are most comfortable with." Too many new toys makes your life
unnecessarily complicated.

1.3.2 A Licensed Copy of Oracle
The next step is to acquire and install a licensed copy of Oracle.
1.3.2.1 Acquiring Oracle

Oracle offers a single-user, development-only license for free, as long as you agree to a lot of
legal fine print. To obtain a copy of the Oracle server software for use by an individual developer,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel7.html (2 of 4) [15/05/2002 22:48:09]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

you can visit the Oracle Technology Network (OTN) web site, sometimes known as Technet, at
http://otn.oracle.com. If you have a very fast Internet connection or a lot of time, you can
actually download a copy of the software itself. Be warned, though—you may have to download
more than a gigabyte of stuff!

If a 48+ hour (at 56K) Internet download isn't your idea of fun, you may be able to order what they
call a "CD Pack," currently around $40 in the U.S., or possibly a "Technology Track" subscription,
which | bought at one point for about US$200/year (but it was not available to order the last time |
checked). Maybe they have some new deal by now.

When downloading or ordering, you will at some point have to designate which version of which
Oracle server you want. After identifying your hardware, you need to choose a version of the
database server. My suggestion for beginners is to get the latest available version of the
Enterprise Edition unless your organization has a specific requirement for you to learn or support
something else. The Personal Edition is probably okay too; | believe it actually includes almost all
the features of the Enterprise Edition.

1.3.2.2 Installing Oracle

| wish | could include detailed instructions, but the installer varies according to Oracle version and
behaves slightly differently on different platforms. Instead, | will point you to the relevant
documentation that will help you do the installation properly. In addition to Oracle's Installation
Guide (IG) appropriate to your platform, look in particular for:

. Afile in the root directory of the installation media called index.htm or index.html. If you
find it, open it in your web browser.

. Anything in a relnotes (Release Notes) subdirectory.

. Anything with README in its filename (and also the lowercase readme, if your operating
system is case-sensitive), especially files with rdbms in their names.

. Anything in a doc subdirectory, especially if there is a subdirectory rdbms/doc.

Some of these documents may be available on the OTN web site, but others might only be
available after you download and "expand" the software and start poking around in the resulting
directories and files. And some may only be available after you've actually installed the software!

If you've never installed Oracle before, | recommend using as many of the default settings as
possible. You can almost always rerun the installer later and add or modify the options. | will also
mention that if the installer gives you the choice, be sure to install the built-in web server features,
known as "Oracle HTTP Server powered by Apache," or some combination of those words. It may
also give a URL to the local web server's administrative page; be sure to write down or copy
relevant information.

1.3.3 A Text Editor

A text editor is a program that allows you to create and modify documents such as programs that
consist of text only—that is, no fonts, borders, colors, graphics, or other fancy stuff. I've included

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel7.html (3 of 4) [15/05/2002 22:48:09]

http://otn.oracle.com/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

this requirement as something of a joke, because, as Table 1-3 illustrates, each operating
system includes a text editor of some kind.

Table 1-3. Text editors for various environments

Environment Common text editors

DOS edit

Windows Notepad, Wordpad (in text-only mode)
Unix, Linux vi, GNU emacs

Macintosh Teachtext, Simpletext

Of course, in addition to the hundreds of different text editors available, there are also commercial
programmer's editors and entire interactive development environments available, some of which
are built specifically for PL/SQL. Chapter 6 describes these in more detail, although as
something of a traditionalist, | don't recommend that beginners use these tools right away.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/pagel7.html (4 of 4) [15/05/2002 22:48:09]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 2. Fundamentals

To do anything really interesting with PL/SQL, you need an understanding of the fundamentals of
the language: what constitutes a valid statement, how you name things, how you construct
programs, and so on. You also need at least a basic understanding of how to work with a hands-
on tool like SQL*Plus so you can run the examples yourself. After reading through this chapter,
you should be able to look at existing PL/SQL code and understand the different sections of code
and the roles they play; you should also be able to build your own simple blocks of code.

In order to make the material easier to find later, | have resorted to organizing this chapter in more
of a reference format rather than the example-driven format that you'll find elsewhere in the book.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page19.html [15/05/2002 22:48:12]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals > 2.1 PL/Lingo

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.1 PL/Lingo

While some programming languages look like Einstein's scribbles, Oracle PL/SQL uses specific,
easy to understand keywords (reserved words in the language) to identify the different parts of a
PL/SQL program. To indicate the beginning of the exception section in your program, for
example, you use the

EXCEPTI ON

keyword. To show that you have ended your program, you use the (you guessed it!)

END;

keyword.

The English-like nature of PL/SQL is just one aspect of the language that makes it relatively easy
to learn. However, given the fact that PL/SQL lives with one foot in the database and one foot in
the procedural world, even the English terminology may be unfamiliar to you. Here are a few
concepts and terms you'll want to know up front.

Keyword

This book uses the term keyword to mean a word that the language recognizes.[1] In
PL/SQL, keywords include BEGIN, END, IF, and RETURN.

[11 PL/SQL's keywords tend to expand with each new release. You can find a complete list in the
"Reserved Words" appendix of the PL/SQL User's Guide and Reference supplied by Oracle for the
version of the database you're using.

Identifier

A name for something such as a variable or a stored procedure. Some are predefined by
the language, and some you invent. Some examples of invented identifiers: pri nt ne,

bal ance_i n_$, book2.

Datatype

A name for a class of values. PL/SQL's built-in datatypes include NUMBER, DATE, and
VARCHAR?2 (that means text).

Variable

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page20.html (1 of 3) [15/05/2002 22:48:13]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

A "container,” named with an identifier and of a particular datatype, that can temporarily
store data. Some variables can hold only a single thing, like the number of people who live
in Portugal, and some can hold a list of things, like the birth dates of my family members.

Declaring, declaration, declaration section

Declaring a variable means naming it and defining its datatype. With few exceptions,
variables must be declared prior to use. In PL/SQL, these designations most often occur
in a separate section of the program called the declaration section. Declarations are not,
strictly speaking, "statements” themselves.

String

Some amount of textual data—that is, characters, words, spaces, punctuation, and
sometimes numerals. A string can contain zero, one, or more individual characters. String
values can be stored in variables with the appropriate datatype, such as VARCHAR2.
String values are bounded by single quotes (apostrophes), asin' Yel | ow Submari ne' .

NULL
A special value that represents the absence of a real value. It's kind of like the "none of
the above" answer on multiple-choice tests. In both Oracle SQL and PL/SQL, null values
imply something that is undefined, unknown, or inapplicable.

Boolean
A class of variables and commands for working with the "truth values" of true and false.
Oracle Booleans, which are available in PL/SQL but not SQL, actually have three possible
values, TRUE, FALSE, and NULL.

Literal
Explicit values that appear in a program. Literals may be string, numeric, or Boolean
values. Examples: 10000000000, TRUE, ' Danger, W | Robi nson!"’

Expression
A formula that evaluates some value at runtime based on one or more other values.
Examples: a + b, NOT done, t oday—age I n days.

Operator
A character or phrase that the language uses to represent some particular arithmetic,
logical, or other function. Examples: +, -, AND, BETVEEN, : =.

Statement

A programmatic instruction to the computer to do something. Every statement is

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page20.html (2 of 3) [15/05/2002 22:48:13]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

composed of up to five main elements: literal values, keywords, programmer-supplied
identifiers, operators, and a mandatory terminator. Some statements such as IF-THEN-
ELSE incorporate other statements inside them.

Terminator

A special character that you must put after each complete statement and each
declaration. In PL/SQL, the terminator is the semi-colon (;) . The terminator announces
"okay, I'm through with this part.” It's important to realize that the terminator goes only at
the very end of the entire statement, and that the statement may span several lines in the
file.

Block

A sequence of code that includes executable statements and that is bounded by certain
keywords. Virtually all PL/SQL programs incorporate one or more blocks, and every block
encloses one or more statements. Blocks can even be nested inside one another.

You can also have a peek at this book's Glossary if you come across other unfamiliar terms. For
now, just let this list brew in your mind for a bit while we tend to some shamelessly practical

matters.
Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation
< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page20.html (3 of 3) [15/05/2002 22:48:13]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page84.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals > 2.2 Running Your First PL/SOQL
Program

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.2 Running Your First PL/SQL Program

To partake in a grand tradition of beginning programmers, the first program to write in a new
language will merely print out the message "hello, world". PL/SQL can display this archetypal
greeting with only three lines of code:

BEG N
DBMS_OUTPUT. PUT_LI NE(' hel l o, world');
END;

This is called an anonymous block—that is, a block with no name. Its only executable statement
is a call to the procedure PUT_LINE, supplied in Oracle's built-in package named
DBMS_OUTPUT. This built-in stored procedure can accept a string that can get printed to the
screen when you run it. As you can see, when your program needs to call another stored
procedure, you merely invoke its name and supply any needed values. We'll discuss packaged
procedures extensively in upcoming chapters.

The program seems simple enough, but how would you go about running it? For this we'll turn to
an Oracle tool called SQL*Plus.

2.2.1 Starting SQL*Plus

Once you have access to an Oracle server, you almost certainly have access to a program called
SQL*Plus, which is a very common command-line tool used by almost every Oracle programmer.
Once it's installed properly, you can usually launch SQL*Plus from the command prompt (see the
sidebar) using the sqlplus command.

OS> sql pl us

(Here, I've substituted OS> for the operating system command prompt. On MS Windows it might
say C:. \ >, and on Unix, $.)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page21.html (1 of 5) [15/05/2002 22:48:15]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

"Command Prompt"? What's That?

If you're a programming neophyte, it's possible you've been exposed only
to windows-based software and have never worked at the venerable
command prompt, where you actually use the keyboard to type
instructions to the system (as opposed to a using a point-and-click,
graphical user interface tool).

On most MS Windows installations, there is an option from the Start menu
to launch a command window (Start ? Programs ? Command Prompt), but
on others you have to type in the command at the Run menu (Start ? Run
? command ? OK). If successful, you should get a window with a prompt
such as C: \ >. Now you can type stuff in like a real hacker. Or not.

To exit the command window, use the command ex| t .

If you're using a Unix variant, you probably don't need my help here.

Launching SQL*Plus prompts for a username and password, which you need to supply, at which
point a bunch o' stuff scrolls past, including the SQL*Plus and the Oracle version numbers. For

example:

SQ*Plus: Release 9.0.0.0.0 - Beta on Mon Aug 6 10:33:19 2001

(c) Copyright 2001 Oracle Corporation. Al rights reserved.

Connect ed to:
Oracl e9i Enterprise Edition Release 9.0.0.0.0 - Beta

Wth the Partitioning option
JServer Release 9.0.0.0.0 - Beta

Finally you should see a prompt, which is normally SQL.
SQL>

Now, before attempting to execute this three-line program, you need to turn on a special setting if
you actually want to see the output. To do so, you can type:

SQ> SET SERVEROUTPUT ON

This means "show the output from DBMS_OUTPUT statements on the screen.” This setting
remains in effect until you exit SQL*PIlus or until you issue the command SET SERVEROUTPUT
OFF. I'm not sure why Oracle makes OFF the default setting, but that's what they do.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page21.html (2 of 5) [15/05/2002 22:48:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

2.2.2 Entering PL/SQL Statements into SQL*Plus

There are a variety of ways to get PL/SQL into your computer, but simply typing it works okay
here. You type each line of code, and at the end of the line click Enter on the keyboard. SQL*Plus
prompts you with a new line number. When you're done, you must tell SQL*Plus that you're
through, which you can do with a forward slash on a line by itself. So, for example, you would type
the text in the boldface font:

SQL> BEG N
2 DBMS_OUTPUT. PUT_LINE(' hello, world');
3 END;
4 |

hell o, world

PL/ SQL procedure successfully conpl et ed.

sQL>
Woohoo, congratulations!
Before breaking out the champagne, several notes are in order here:

. If you don't see the output on the screen, you forgot the SET SERVEROUTPUT ON
command.

« SQL*Plus continues to increment the line numbers every time you press Enter. This can
be frustrating if you don't know how to get it to stop! If you don't want to execute, you can
get the SQL> prompt back by typing a period on a line by itself and then pressing Enter.

. SQL*Plus remembers the most recently executed SQL statement or PL/SQL block until
you execute another one or log off, whichever occurs first.

. To execute the most recent statement or block a second time, type the slash command
again.

. The slash on line 4 is really a command in SQL*Plus and not part of PL/SQL. So if you
use PL/SQL inside another language, you won't use the slash.

Although "hello, world" may seem ridiculously simple, there are a lot of lessons you can take with
you from these three lines of code. I'd next like to expand on these lessons even more by
explaining how you can save and reuse your program.

2.2.3 Saving Scripts to Use Again Later

When you exit SQL*Plus with the exit (/) command, the contents of the "most recent command"
buffer may disappear forever. Most people save the program they're writing in a file. In fact, |
wouldn't bother typing more than three lines of code into SQL*Plus.

This is where you break out your favorite text editor as | mentioned at the end of Chapter 1, and

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page21.html (3 of 5) [15/05/2002 22:48:15]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page13.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

create a file that we'll call hello.sqgl, and put the file in the directory from which you launch(ed)
SQL*Plus.

As a shortcut to creating this file, if you're inside SQL*Plus, you can probably invoke a text editor
using the command:

SQ.> EDIT fil enane
As in:
SQ.> EDIT hell o. sql

SQL*Plus then whisks you away to a text editor, where you can input your program. Using the
editor, type the following:

SET SERVEROUTPUT ON

BEG N
DBVS_OUTPUT. PUT_LI NE(' hel I 0, world');

END;

/

(on M5 Wndows, include an enpty line as the last line of the file)

When you're done, save the file, and then exit the editor. You will automatically return to
SQL*Plus, where you can now enter the command:

SQ.> @ell o. sql

That is, you type the @sign, followed by the filename, and then press Enter. By default, you can
also get the same result if you omit the .sqgl extension, as in:

SQL> @ello

(If you've already issued a SET SERVEROUTPUT ON command in the current session,
executing it in this file will be superfluous, but it won't hurt anything.)

Files that contain PL/SQL are often known as PL/SQL scripts or simply scripts. It's important to
understand how to save and execute scripts from within SQL*Plus, even if you choose to work
within a different environment (as discussed in Chapter 6).

You can also have SQL*Plus execute some commands for you automatically, whenever you log
in. Do this by creating a file called login.sgl, which must reside in the same directory where you
launch SQL*Plus. Here is a fragment from a login.sq|l file that | use on Unix:

SET ECHO OFF

PROVMPT Setting SERVEROUTPUT ON.. .
SET SERVEROUTPUT ON SI ZE 1000000
SET PAGESI ZE 999

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page21.html (4 of 5) [15/05/2002 22:48:15]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

SET LI NESI ZE 132
DEFI NE EDI TOR = /usr/ bi n/vi

These are all SQL*Plus commands, but | could include SQL or PL/SQL commands in the login.sql
file if | wanted to. Note especially the last line, which sets the editor that gets used when you use
the SQL*Plus EDIT command. On Unix, Oracle's default setting for this is the ed editor, and only
the most diehard old-timers even know what that is!

The most frequently asked question about SQL*Plus
probably concerns a message that appears only on the MS
& Windows version. When executing a file using the @

command, you will sometimes see the mystifying message:

| nput truncated to n characters.

You can safely ignore this message; your input was not really
truncated. The message appears when the last line is not
empty. To eliminate the message, open the file, go the end,
and put in a "return” (new line) as the very last thing in the
file.

2.2.4 Exiting SQL*Plus

Use the EXIT command:

SQL> EXIT

and you'll return to the command window from whence you launched it.

That's the end of the SQL*Plus introduction. I've only scratched the surface of what SQL*Plus can
do, so if you find yourself using it and thinking "there ought to be a better way," there very well
may be. O'Reilly has published an entire book on the subject (Jonathan Gennick's Oracle
SQL*Plus: The Definitive Guide). For now, though, it's back to PL/SQL.

Before we start assembling language elements into a bigger program, let's look a little more
closely at the overall structure a PL/SQL program may assume.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page21.html (5 of 5) [15/05/2002 22:48:15]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals > 2.3 Introduction to Program Structure

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.3 Introduction to Program Structure

My son, now eight, is a Lego fanatic. While many of his new-fangled, special-purpose Lego
components are in many ways different from the simple bricks | had as a child, the idea of
constructing from parts is the same. | think humans find something comforting about assembling
objects of similar size, shape, and function into useful artifacts. As a grown-up programmer I'm
still, after a fashion, playing with blocks.

2.3.1 More About Blocks

In PL/SQL, there are only three types of blocks:
. Anonymous blocks
« Procedures
« Functions

We've already seen a simple anonymous block—that is, one without a name—in the "hello, world"
example. The other two types of blocks, procedures and functions, are similar but also include a
header.

There are actually four possible components of a PL/SQL block:

. The definition of its interface (that is, information such as its name that will be needed to
invoke it later)

« Some number of variables

. A sequence of statements (which may include SQL statements) intended to solve some
problem or perform some action

. A way to recover from "issues"
These components are organized into sections inside the block, as illustrated in Figure 2-1.

Figure 2-1. Representation of a named PL/SQL block

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page22.html (1 of 5) [15/05/2002 22:48:17]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

PROCEDURE | FURCTLON Aasde ...

Defime caifing requirements here

I%

Cregte warfatles fhere

BEGIN

Perfarm actians fere

EXCEPTION

Recover from problems fere

END;

Although there are places other than blocks where PL/SQL can exist, I'll introduce those in later
chapters. The next two sections will give you a slightly closer look at the three forms of blocks.

2.3.1.1 Anonymous blocks

Anonymous or unnamed blocks are useful for quick "one-off" programs and examples. An
anonymous block is a series of one or more statements, bounded with certain keyword (usually
BEGIN and END).

There are several forms an anonymous block can take, the first and simplest of which we've seen
already:

BEG N

statenents
END,;

Here, the italicized word st at enent s is just a placeholder for, well, one or more executable
statements, most of which we haven't talked about yet. Interestingly, a block is just a long PL/SQL
statement; you probably noticed that the block itself ends with a terminator (the semi-colon) after
the END keyword.

All blocks must contain at least one statement and must end
with the terminator (semi-colon).

The second major form of anonymous block includes a declaration section. In this form, the initial
keyword is DECLARE rather than BEGIN:

DECLARE

decl ar ati ons
BEG N

statenents

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page22.html (2 of 5) [15/05/2002 22:48:17]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

END;

There are other forms of the anonymous block as well, but instead of showing you a complete set
of permutations, I'm just going to show you a syntax template as used throughout the remainder
of the book. Here's the template showing the most common forms of an anonymous block:

[DECLARE

decl arations |
BEG N

statenents
[EXCEPTI ON

exception handlers]
END;

The square brackets aren't part of PL/SQL; they just mark off sections that are optional. The
programmer-supplied pieces in the template are:

decl ar ati ons

One or more lines of code that associate programmer-defined identifiers with datatypes.
This section houses the code that "announces" the variables you will use in your program
and their datatypes. Most programs have a declaration section, since most use some local
variables.

statenents

One or more lines of code that perform an action when the program runs. This part of the
block is known as the execution section and is the only mandatory part of a block.

exception handl ers

One or more statements that will run when certain error conditions occur. An exception
section contains the logic that describes how your block will respond to errors that occur
inside the execution section. If you omit this section, your block will respond to these kinds
of errors by ending prematurely and issuing an error message.

Since blocks are statements, you can put one block inside another. This arrangement is called
nested blocks and is most often used when you need to handle a particular exception but still
wish to continue processing in the main block, as shown here:

BEG N
BEG N
EXCiEiD;I'I ON
END; N

END;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page22.html (3 of 5) [15/05/2002 22:48:17]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

2.3.1.2 Named blocks: procedures and functions

Anonymous blocks are fine for examples and short scripts, but named blocks will probably
represent the largest portion of PL/SQL you write. That's because only named blocks can be
stored in the database and invoked later with a simple call.

Strictly speaking, there are only two types of named blocks:
Procedure

A named program that executes some predefined statements and then returns control to
whatever called it. After creating a procedure, you can invoke it by name from other
programs.

Function

Similar to a procedure, except that it returns a value to the program that calls it. The data
returned by a function is always of a specific, predefined datatype.

I'm not going to present the syntax template for named blocks yet since it's a bit too detailed for
this chapter, but | will show you a "hello world" program written as a function, including the extra
syntax you need to create the procedure in SQL*Plus:

CREATE FUNCTI ON nessage for _the world
RETURN VARCHAR2
AS
BEG N
RETURN ' hell o, world';
END,;
/

When you use CREATE FUNCTION, Oracle puts the function into the database for use later. In
other words, Oracle takes this source code, compiles it, and stores both the source and an
executable version inside the database. When you want to execute the function, you no longer
need the file you used to create it. A script containing an anonymous block, which we previously
ran using the @command in SQL*Plus, must be compiled with every execution.

One way we could execute the function would be to declare a temporary variable and assign the
output from the function to it, as shown here:

DECLARE
msg VARCHAR2(30) ;
BEG N
neg : = nessage_for _the worl d;
DBVS_OUTPUT. PUT_LI NE(s Q) ;
END,;

/

(Yes, | know we haven't discussed some of these program elements—don't worry, we will.) Or,
since the function returns a VARCHARZ2, the function can "stand in" wherever you could use a

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page22.html (4 of 5) [15/05/2002 22:48:17]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

string. You don't really need a temporary variable in the program.

BEG N

DBVS OUTPUT. PUT_LI NE(message _for _the world);
END,;
/

After exploring other fundamental elements of the PL/SQL language, we will return to the topic of
named blocks (procedures and functions), with a focus on how to go about constructing your own.
Stay tuned for that in Chapter 3.

Now that you have a basic understanding of the language's block structure, the next fundamental
topic to explore is how to use variables in PL/SQL.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page22.html (5 of 5) [15/05/2002 22:48:17]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SOL > 2. Fundamentals > 2.4 Variables

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.4 Variables

In PL/SQL, before you can work with any kind of variable, you must first declare it; that is, you must give
it a name and specify its datatype. Borrowing experts' terminology, you could restate this as "PL/SQL is
a strongly typed programming language.” Whatever you call it, this section reviews common PL/SQL
datatypes and discusses how to declare variables.

2.4.1 Datatypes
The most common datatypes in PL/SQL are in four families: string, number, date, and logical (Boolean).
2.4.1.1 Strings

Strings are "free form" data. A string can contain any valid character in the character set of a language.
While there are several variations of strings, the datatype you will almost always use is VARCHARZ2.

VARCHAR?2 variables store variable-length character strings, which means that the length of the string
depends on the value stored in the variable (which can vary). When you declare a variable-length string,
you must also specify a maximum length for the string, which can range from 1 to 32,767 bytes. The
general format for a VARCHAR?Z declaration is:

vari abl e_nanme VARCHAR2(n);

Where:

vari abl e_nane

Programmer-supplied identifier that is subject to PL/SQL's naming rules (see Section 2.9.2
near the end of the chapter).

Literal integer between 1 and 32,767 that designates the maximum length of the string's
contents, expressed by default in bytes.[2]

[2]1 Some languages need more than one byte per character, so Oracle9i introduced a way to declare
variables in terms of characters rather than bytes. In this case you would use the keyword CHAR after the
n. The maximum space allowed is still 32,767 bytes, so multibyte languages will have a limit on the
maximum number of characters that is less than 32K.

Here's an example of some declarations and corresponding assignments:

DECLARE
smal | _string VARCHAR2(4);
i ne_of text VARCHAR2(2000);

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page23.html (1 of 8) [15/05/2002 22:48:20]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

bi ggest _string_al |l owed VARCHAR2(32767);

BEG N
bi ggest _string allowed := "Tiny';
line_of text :="Tiny',;
| F biggest string allowed = |ine_of text
THEN

DBVS_OUTPUT. PUT_LINE (' They match!"');

END | F;

END,;

Consider the IF statement in this block. | assign the value of " Ti ny" to two VARCHAR?2 variables of

differing lengths. Will they be considered the same in a comparison? Absolutely! Since they are varying-
length variables, only the value assigned to the variable is used, not the maximum possible length of the
string.

Bytes in Space

What happens if you assign a short value like " Ti ny" to a VARCHAR2(32767)
variable? As of Oracle8, PL/SQL does not set aside 32K of memory for this
variable; instead, it will allocate only four bytes for the string ' Ti ny' plus some
additional bytes for overhead. This behavior is an example of what is called
dynamic allocation .

Dynamic allocation doesn't happen for every variable, though; if your variable
has an upper bound of less than 2,000 bytes, Oracle will simply set aside that
fixed number of bytes for the variable for the duration of the run. So a
VARCHAR2(500) will get 500 bytes reserved.

One additional note: although the largest allowed string in PL/SQL is 32,767
bytes (32K) in length, you'll have a tough time if you attempt to store a string
that long in a VARCHAR2 column in the database. The largest VARCHAR2
string you can store in a database table is only 4,000 bytes. To store longer
strings in a database table, you get to use what's known in Oracle as a CLOB,
or a character large object.

Finally, a short but important usage note. PL/SQL uses a single quote mark (apostrophe on the
keyboard, sometimes called a tick mark) to start and end string literals. So how would you put a single
guote in the string? It turns out that you use two adjacent single quotes together. Here are some
examples of strings with embedded single quotes:

String literal Stored value
"O'Reilly & Associ ates' O'Reilly & Associates
"All" s Well that Ends Well' All's Well that Ends Well

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page23.html (2 of 8) [15/05/2002 22:48:20]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

"how many ticks? ""''"’ (three)’ how many ticks? ™ (three)

2.4.1.2 Numbers

PL/SQL, just like the Oracle database server, offers a variety of numeric datatypes to suit different
purposes. There are generally two types of numeric data: whole number and decimal (in which digits to
the right of the decimal point are allowed).

The NUMBER datatype in PL/SQL is exactly like the NUMBER datatype in SQL (right down to its
internal bit representation, in fact). When you declare a variable type NUMBER, you can also optionally
specify the variable's precision and scale. The precision of a NUMBER is the total number of digits. The
scale dictates the number of digits to the right or left of the decimal point at which rounding occurs.

The declaration of a NUMBER looks like this:

vari abl e name NUMBER [(precision [, scale])];

Precision and scale, if present, must be literal values (and integers at that); you cannot use variables or
constants in the declaration.

The following examples demonstrate the different ways you can declare variables of type NUMBER:
« The bean count er variable can hold values with up to ten digits of precision, three of which

are to the right of the decimal point. If you assign 12345.6784 to bean count er, it is rounded

to 12345.678. If you assign 1234567891.23 to the variable, the operation will return an error
because there are more digits than allowed for in the precision:

bean_count er NUMBER (10, 3);

. The any nunber variable can span the full range of supported values, because the default
precision and scale are unspecified:

any numnmber NUMBER,
Here are some rules to keep in mind when declaring numbers:

. If the scale is positive, then the scale determines the point at which rounding occurs to the right
of the decimal point. You can use a negative scale, in which case the scale determines the point
at which rounding occurs to the left of the decimal point.

. If the scale is zero, then rounding occurs to the nearest whole number.
. If the scale is not specified, then no rounding occurs.
. The absolute magnitude range of legal numbers is fairly enormous: from 10-130 to 10125,
You can also declare numbers that are whole numbers (they have no fractional components) as having

the INTEGER datatype. An Oracle integer may have up to 38 digits.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page23.html (3 of 8) [15/05/2002 22:48:20]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Now, you should realize that Oracle uses extra processing power to maintain all of those digits of
accuracy. Often, you don't need to pay that price, especially in PL/SQL, where you sometimes need just
a simple counter variable. PL/SQL offers a more memory- and performance-efficient datatype, called
PLS_INTEGER, which "only" has the range of -2,147,483,647 to 2,147,483,647 (that is, -231 + 1 to 231 -
1).

When declaring local integer variables in PL/SQL, choose
PLS INTEGER rather than INTEGER for performance reasons.

There are many additional datatypes that PL/SQL provides in the number family. However, knowing
only NUMBER and PLS_INTEGER will get you through the vast majority of programs.

2.4.1.3 Dates

Most of our applications require the storage and manipulation of dates and times. Although most of us
have some degree of competence with the calendar and the clock in the real world, these matters of
time can be quite complicated in programming. Not only are dates and times highly formatted data,
there are myriad rules for determining valid values and valid calculations (leap days and years, national
and company holidays, date ranges, etc.). Fortunately, the Oracle database server and PL/SQL offer us
help in many ways to handle date information.

Since the earliest releases, the Oracle server has provided a DATE datatype that stores both date and
time information. Through Version 8.1.7, the only true date datatype you could use was DATE:

DECLARE
| _birth _date DATE;

Oracle9i introduced additional date datatypes such as a timestamp with subsecond precision, a date
with a time zone attached, and several interval datatypes that allow you to represent values such as the
number of days, hours, minutes, and seconds between two points in time. Here are some examples of
these additional datatypes:

DECLARE
launch_time TI MESTAMP(3);
openi ng_bel | TI MESTAMP W TH Tl ME ZONE;
age difference | NTERVAL YEAR(3) TO MONTH,

While you can enter a date value in a variety of formats, the server stores date data in a private, internal
format. You cannot actually specify this internal or literal value with an assignment. Instead you rely on
implicit conversion of character and numeric values to an actual date, or explicit conversion with a built-
in function such as TO_DATE. PL/SQL provides a DATE datatype that corresponds directly to the
server DATE.

Excluding some of the time interval datatypes, Oracle's date datatypes can store not just the year,
month, and day, but also hours, minutes, and seconds. Some can even store fractions of seconds. You
should know, however, that if you store a date without a time (many applications do not require the
tracking of time, so PL/SQL lets you leave it off), the time portion of the date value defaults to the very
first instant of that day: 0 hours, 0 minutes, and 0 seconds.[3]

[31 Funny thing about the exact time of "midnight," which I've always thought of as the end of the day:
Oracle actually defines midnight to be the start of the next day.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page23.html (4 of 8) [15/05/2002 22:48:20]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Because a variable declared DATE is a true date and not simply a character representation of a date,
you can perform arithmetic on date variables, such as the subtraction of one date from another, or the
addition/subtraction of numbers from a date. You can make use of date functions, described in Chapter
3, which offer a wide range of powerful operations on dates. Handy built-in functions for dates include
the following:

SYSDATE

Returns the current system date and time down to the nearest second
SYSTIMESTAMP (supported in Oracle9i only)

Returns the current system date and time down to the nearest .000001 seconds
TO_CHAR

Converts a date to a human-readable string
TO_DATE

Converts a human-readable string to a date
You'll see more about date functions in Chapter 3.
2.4.1.4 Booleans

Although I've already introduced and used Boolean!4l values earlier in the chapter, there are a few more
things you need to know.

[4] The Boolean is named after George Boole, who lived in the first half of the 19th century and is
considered to be the father of symbolic logic. One therefore capitalizes the adjective "Boolean" whereas
the other datatype families get no respect.

Oracle's SQL does not support this datatype; you cannot create a table with a column of datatype
BOOLEAN. You can create a table with a column of datatype VARCHARZ2(1) and store the text "T" or
"F", representing TRUE or FALSE, in that column. Doing so is a poor substitute, however, for a
datatype that stores those actual Boolean values, because you can neither fetch the data back into a
Boolean variable nor insert a TRUE or FALSE value directly into a database column. Here is another
example of a Boolean declaration:

DECLARE
t oo_young_t o_vot e BOOLEAN,

Boolean values and variables are very useful in PL/SQL. Because a Boolean variable can only be
TRUE, FALSE, or NULL, you can use that variable to explain what is happening in your code. With
Booleans you can write code that is easily readable, because it is more English-like. You can replace a
complicated Boolean expression involving many different variables and tests with a single Boolean
variable that directly expresses the intention and meaning of the text.

2.4.2 Declaring Variables

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page23.html (5 of 8) [15/05/2002 22:48:20]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

When you declare a variable, PL/SQL allocates at least some memory for the variable's value and
names the storage location so the value can be retrieved and changed. The declaration also specifies
the datatype of the variable; this datatype is then used to validate values assigned to the variable at
runtime.

We've already seen some examples of declarations in the previous section. The complete syntax
template for declaring a variable is:

vari abl e_nanme DATATYPE [CONSTANT] [:= | DEFAULT initial_value];
Where:
vari abl e _nane

Name of the variable being declared. Must follow naming rules for PL/SQL identifiers.

DATATYPE

Keyword that determines what type of data your program can store in the variable.

CONSTANT

If this keyword is present, prevents the program from changing the value of the variable. Must
be accompanied by an initial value. A convenience that the compiler provides to help you protect
yourself from silly errors.

= | DEFAULT

Designates the presence of an optional clause that can initialize the variable to a non-null value
(see the following discussion). You can use either the assignment operator, : =, or the keyword
DEFAULT to set apart the initial value.

initial val ue

A literal value, which adheres to rules of the DATATYPE, to use as the initial value of the
variable. If you leave this off, the value will initially be NULL.

To cause a variable to begin its life with a value other than NULL, you can assign it a "default" when it is
declared, using one of the following two equivalent formats:

vari abl e_name DATATYPE DEFAULT initial val ue;
vari abl e_name DATATYPE := initial val ue;

Theinitial val ue can be a literal, a previously declared variable, or an expression. An initialization
in the declaration is really just a shortcut for assigning a value as one of the first statements in the
block's execution section:

DECLARE

vari abl e_name DATATYPE;
BEG N

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page23.html (6 of 8) [15/05/2002 22:48:20]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

vari able_nanme := initial _val ue;

Here are some more examples illustrating a variety of declarations:

. Efficient PLS_INTEGER variable initialized to its maximum possible value:

max_pls_int PLS | NTEGER : = 2147483647;

« PLS_INTEGER with a maximum width of four, defaulted to the year this book was released:

current _year PLS INTEGER(4) := 2001; -- up to year 9999

. Normal integer initialized to the highest possible value without resorting to scientific notation
(there are 38 nines):

max_grai ns_of _sand | NTEGER : = 99999999999999999999999999999999999999;

. Number variable whose default value is the result of an arithmetic operator:

nati onal debt FLOAT DEFAULT 10**10;

. Boolean with a default that is the result of a complex expression:

order _overdue BOOLEAN : =
ship date > ADD MONTHS (order _date, 3) OR
priority level (conpany id) = "H GH;

. A quantity unlikely to change, and therefore made a constant, which requires an initial value:

earth _circunference m|es CONSTANT NUMBER : = 24859. 82;

A variable like eart h_circunference_m | es is a special kind of variable called a named constant. It

has a name, datatype, and value, just like a regular variable. Unlike a regular variable, however, the
value of a named constant must be set when the constant is declared, and you cannot assign a new
value to it later in your program.

As you can see, setting initial values can get quite complicated! | think the most important thing to
remember about it is the following:

Variables to which you do not assign an initial value will default to NULL. In other words:

nunmber of teeth NUMBER,

is equivalent to:

nunber of teeth NUMBER : = NULL;

is equivalent to:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page23.html (7 of 8) [15/05/2002 22:48:20]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

nunber of teeth NUVBER DEFAULT NULL;

As a matter of programming style, | prefer to use the assignment operator (: =) to set default values for
constants, and the DEFAULT keyword for variables. In the case of the constant, the assigned value is
not really a default, but an initial (and unchanging) value, so the DEFAULT keyword seems misleading
to me. A variable is given a default value, which means that unless the program changes it, it will
remain with the default.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page23.html (8 of 8) [15/05/2002 22:48:20]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals > 2.5 Common Operators

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.5 Common Operators

An operator is a symbol or keyword that the language provides to perform an arithmetic, logical,
or other function. As in mathematics, the "things" upon which the operators operate are called
operands. This section explores some of the most frequently used operators in the PL/SQL
language; they are summarized in Table 2-1. If you already know one programming language,
you'll be happy to hear that most of PL/SQL's operators, such as mathematical and comparison
operators, are consistent with common programming usage.

Table 2-1. Common PL/SQL operators

Operator Category Notation Meaning
Assignment .= Store the value
* Addition
- Subtraction
Arithmetic / Division

Multiplication

Exponentiation

AND Conjunction
Logical R Disjunction
NOT Negation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (1 of 9) [15/05/2002 22:48:22]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

= Equality

= Inequality

< Less than

> Greater than
Comparison (of non-nulls)

<= Less than or equal

>= Greater than or equal

I'N Equality disjunction

BETWEEN Range test

I'S NULL Nullity test
Comparison (of nulls)

'S NOT NULL Non-nullity test

LI KE Wildcard matching
String

| | Concatenation

2.5.1 Assignment Operator

The assignment operator, which in notation consists of a colon followed immediately by an equals
sign, is a way to copy data from one place to another. Given two variables a and b, an

assignment statement is of the following form:
a = b;
which copies the contents of the variable b into the variable a.

The righthand side may consist of literal values, the result of a function call, or anything else that
resolves to a properly typed value.

The variable on the lefthand side must be of a datatype that is compatible with the value on the
right. You can store a string in a VARCHARZ2, but you can't store it in a NUMBER.

The statement:

first _nane := 'Steven';
takes the literal string ' St even' and copies it into the VARCHAR?Z2 variable f i r st _nane.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (2 of 9) [15/05/2002 22:48:22]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Assuming that pi is declared as NUMBER, here is the assignment:

pi = 3.141592654,

If i s | ukewar mis a BOOLEAN, an assignment might look like:

I s | ukewar m : = FALSE;

2.5.2 Arithmetic Operators

The arithmetic operators act on numeric data and perform largely what you would expect. Each of
the following returns a numeric result that you can use wherever an expression is allowed. In
these examples, a and b are declared as some kind of numeric datatype.

a+b
Result of adding a and b
a-b
Result of subtracting b from a
a*b
Result of multiplying a and b
alb
Result of dividing a by b
a**b
Result of raising a to the bth power
So:
days in _first _quarter := 31 + 28 + 31 + 30;
di aneter = 2 * radi us;
mles per _gallon :=trip_neter_reading / gallons_used,
vacation_days := 365 - days worked - sick _days - days_off;

square_root = x**0.5;

PL/SQL has the ability to perform a number of more interesting—even exotic—arithmetic,
geometric, and statistical computations, but they are usually supplied as functions rather than
operators.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (3 of 9) [15/05/2002 22:48:22]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

2.5.3 Logical Operators

This class of operators act on Boolean values and return Boolean values. In the following, a and b
are declared to be of datatype BOOLEAN.

aAND b

Logical conjunction operator. If both operands a and b are true then the result is TRUE.
Otherwise, if at least one expression is FALSE, then the result is FALSE.

aORDb

Logical disjunction operator. If at least one expression is TRUE, then the result is TRUE. It
doesn't matter what the other operand is—it can be null or true or false.

NOT b

Logical negation operator. The result is the logical "opposite" of a b, as long as b is not
null. If b is null, though, it's kind of a strange case, because NOT b is then also null!

You can of course combine these, for example:

a ANDb ORc AND d OR e OR NOT f

However, you should never write code in this fashion, because it's not very clear what this really
means. For example, if only b is true, is the result true? How can you tell?

While there are strict precedence rules that govern the way that PL/SQL evaluates the result
(NOTs go first, then ANDs, and then ORs), it's much better to use parentheses to make the
groupings crystal clear. Remember the rule: Whatever is inside the parentheses evaluates first. If
you nest parentheses inside other parentheses, the innermost goes first.

| sometimes also like to break such a test across lines. So the previous code is the same as:

(a AND b)
OR

(¢ AND d)
OR

e
OR

(NOT f)

There's another reason to use parentheses: even if you remember the precedence rules, the next
guy might not! Here is another example:

| F (overwor ked AND under pai d)
OR
(NOT enpl oyed)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (4 of 9) [15/05/2002 22:48:22]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

THEN . ..

Since Oracle's Boolean values include not only TRUE and FALSE but also NULL, these
comparisons can get really confusing. For example, what do you think the result of this would be:

| F TRUE AND NULL THEN
dot hi s;

ELSE
dot hat ;

END | F;

See the section later in this chapter called "NULLs in SQL and PL/SQL" for the answer and for
further discussion of Oracle's "three-valued" logic.

2.5.4 Non-Null Comparison Operators

To determine whether two literals or non-null expressions are equal, use the = operator.

a=b
Evaluates to TRUE if a and b are non-null and contain the same value. Evaluates to
FALSE if 2 and b are non-null and contain different values. Evaluates to NULL if one or
both of the operands is null.
This works for non-null numbers, strings, dates, Booleans, and, under certain conditions,
other datatypes.

al=b

The logical inverse of =, evaluates to TRUE if a and b are non-null and contain different
values. If a or b is null, the result is null.

The following statement fragments illustrate the four variants of the inequality operator; all
of these are equivalent:

| F favorite_flavor !="ROCKY ROAD THEN ...
| F favorite_flavor <> 'ROCKY ROAD THEN ...
| F favorite flavor ~= 'ROCKY ROAD THEN ...

| F favorite_flavor = '"ROCKY ROAD THEN ...

These various forms of the operator can make life easier for programmers who already
use them in other languages.

The next family of operators helps you test whether some value is in a certain range. These
comparisons work on numbers, dates, and strings. In all of the following illustrative cases, a, b, c,

and d are assumed non-null:

a>b

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (5 of 9) [15/05/2002 22:48:22]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Evaluates to TRUE if a is greater than b.

a<b
Evaluates to TRUE if a is less than b.

a>=b
Evaluates to TRUE if a is greater than b, or if a is equal to b. This is just a shortcut for the
compound expressiona > b OR a = b.

a<=b

Evaluates to TRUE if ais less than b, orifais equalto b. Sameasa < b OR a =Db.
alN(,cl[,d,..])

Convenience equality operator, short for the compound expression (a = b) OR(a =
c) [R(a=4d)].

a BETWEEN b AND c

Inclusive range checking operator, short for the compound expression a >= b AND a <=
C.

Note that with these comparison operators, if any of the operands are null, the result will be null.

It's easy to understand what these operators mean for numbers; is less than 5, -10 is less than -9.
Dates are not really difficult either; earlier dates are defined to be "less than" later dates, which
makes date math somewhat intuitive (for example, today plus one day equals tomorrow).

String comparisons, though, follow rules specific to the language in which you're working, and the
rules are not always obvious. While you would probably expect ' a' to be lessthan' b’ , you

might not realize that:

‘a' < '"apple' -- extra characters are "larger"
<t -- bl anks sort | ower than nost everything el se
'z < 'a -- all uppercase letters are |less than | ower-case

For digits, letters, and the space character, the sort order for individual characters for American
ASCIl is:

0123456789ABCDEFGHI JKLMNOPQRSTUVWKYZabcdef ghi j kl mopgr st uvwxyz

e This is a blank (typed with the space bar).

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (6 of 9) [15/05/2002 22:48:22]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

PL/SQL provides additional built-in comparison operators that can be quite useful; we'll see these
in later chapters.

2.5.5 Test for Nullity

To test correctly whether a particular variable or expression is null, you must use the IS NULL
operator. When testing for the presence of a non-null value, use IS NOT NULL.

alS NULL

Evaluates to TRUE if a is null.

alS NOT NULL

Evaluates to TRUE if a is not null.

For example:

| F nunber _of pages |'S NULL
THEN

DBVS_COUTPUT. PUT_LI NE(' War ni ng: nunber of pages is unknown.');
END | F;

If you forget this, and by mistake attempt to use the operator "= NULL", you could be in for some

rough times, because it won't work correctly, andOracle will not flag it as an error. An expression
that tests for nullity with the = operator is always null itself, which is one of PL/SQL's few

behaviors that can trip up beginners and experts alike.

Anything potentially null must generally be handled differently from other data. If your data has
NULLSs, whether from the database or in local variables, you will need to add code to either
convert your null values to known values, or use the IS NULL and IS NOT NULL operators for
special case null value handling.

2.5.6 String Patterns and Wildcards: LIKE, %, _

Certain kinds of operations apply to all types of data. | can, for instance, use the "equal to"
operator (=) to compare two strings, two dates, or two numbers. But if you are working with

strings, you can also use the LIKE operator. Combined with wildcard characters, the LIKE
operator offers lots of power and flexibility in comparing string values.

LIKE is useful in situations where you don't want to know if two strings are exactly the same but
instead want to know if they are similar in some way:

expression LIKE pattern

Where:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (7 of 9) [15/05/2002 22:48:22]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

expr essi on

The string you want to examine to see if the pattern is present.

pattern

Another string that includes one or more of the wildcard characters, % or _. The percent
wildcard matches any number (zero or more) of characters, and the underscore matches

any one single character.

If you have a Unix or Perl background, you will be sorely disappointed in the limited functionality
of PL/SQL's pattern matching.

Here are some examples of what you can do with LIKE and wildcards:

Does the company name start with a "STAR"?

| F conpany_nane LI KE ' STAR%

To implement this requirement, | use the %wildcard, which says: "match zero or more
characters." As a result, any of the following values would match " STARY% :
STARSOLUTI ONS, STARLI GHT, STARRY- STARRY- NI GHT.

These strings, on the other hand, would not match the criteria: St ar beans, QUI CKSTART,
STANDARD.

Does the string match the format for a U.S. Social Security number (NNN-NN-NNNN)?

|F ss# LIKE' - -

In the location for each digit, | use an underscore to indicate that any character can go
there (single-character wildcard).

If you are using LIKE, remember that you must combine it
with a wildcard pattern in order to get the expected result.

Another common mistake beginners make is to confuse the
LIKE operator with the IN operator. LIKE will match patterns;
IN will only perform equality matches.

2.5.7 String Concatenation: ||

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (8 of 9) [15/05/2002 22:48:22]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

PL/SQL uses two vertical bars | | as an operator that will connect two strings. Consider the
expression:

all b

If 2 and b are strings, this evaluates to a string consisting of the "joining" of them. Null operands
are treated as strings with zero length. So for example, the following:

full _name := 'Steven ' || 'Feuerstein';

stores inthe f ul | _nane variable the same result as the following:

full _name :='Steven Feuerstein';

You can also concatenate a series of strings:

ny famly := "Steven ' || "Veva ' || NULL || "Chris ' || "Eli";
which stores in my _fam | y the string:

Steven Veva Chris Eli

Caution to C programmers: watch out, because PL/SQL's | | operator never means OR.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page24.html (9 of 9) [15/05/2002 22:48:22]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals > 2.6 Conditional Logic

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.6 Conditional Logic

The world is a very complicated place, and the software we write is generally intended to reflect
some part of that complexity. So we need constructs in our programming language that can
respond to all sorts of situations and requirements, including conditional behavior, such as: "if x is
true, then do y, otherwise do z." Enter the IF and CASE statements.

2.6.1 IF Statements

PL/SQL supports conditional logic with the IF statement:

| F conditionl
THEN

statenents

[ELSIF condition2
THEN

statenents]

[ELSIF conditionn
THEN

statenents |
[ELSE

| ast _statenents]
END | F;

Where:
condi ti onn

An expression that yields a Boolean result. Typically, each condition in an IF statement is
mutually exclusive from the others.

statenents, | ast _statenents

One or more executable statements that execute when the corresponding condition is
true. As usual, each statement must have a terminator (closing semi-colon).

The basic idea is that you can test for any number of conditions, and the first one that is true
causes the corresponding statement to execute. If none are true, and the ELSE clause is present,
| ast statenment s execute.

Here is a simple IF statement:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page25.html (1 of 5) [15/05/2002 22:48:24]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

| F book_count > 10000
THEN

ready : = TRUE;

DBVS_QUTPUT. PUT_LINE ('W''re ready to open the library!');
END | F;

And here is an example of the IF-THEN-ELSE statement that gives a raise to everyone, but a
smaller raise if your hourly wage is $10 or greater:

| F hourly wage < 10

THEN

hourly wage : = hourly wage * 1.5;
ELSE

hourly wage : = hourly wage * 1.1,
END | F;

Here is an example of a multipart conditional rule:

If the salary is between ten and forty thousand, then apply a bonus of $1500. If the
salary is over forty thousand and less than or equal to one hundred thousand,
apply a bonus of $1000. Otherwise, the employee does not get a bonus.

Here is the IF statement that implements the above rule:

| F sal ary BETWEEN 10000 AND 40000
THEN
bonus : = 1500;
ELSI F salary > 40000 AND sal ary <= 100000

THEN

bonus : = 1000;
ELSE

bonus : = O;
END | F;

Here are some things to keep mind about the IF statement:

. The end of the statement is always the phrase "END | F; ", with a space between END

and IF. If you specify ENDIF, based on habit from another language, you will get a
compile error.

. The "otherwise if" keyword is ELSIF, not ELSEIF.

. You can put parentheses around the Boolean expressions after the IF and ELSIF
statements, but you do not have to.

. Only the END IF keyword has a terminator (semi-colon) at the end of it. All the other
conditional keywords start or continue the IF statement, but do not end it.

. Compound conditions (a AND b AND c ...) generally evaluate from left to right,
subject to parenthesization. Once a true condition is found, though, evaluation stops. You

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page25.html (2 of 5) [15/05/2002 22:48:24]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

can use this fact to make your IF tests more efficient by putting the cheapest and most
likely conditions first.

A common mistake beginners make is using incomplete expressions, as in:

| F salary = 800 OR 1000 -- bad code!
THEN

when what they meant to say was:
| F salary = 800 OR salary = 1000
THEN

2.6.2 CASE Statements

Oracle9i introduced the CASE statement, which can be an understandable and efficient
alternative to a long series of IF tests on the same expression. There are two forms of the CASE
statement: simple and searched.

2.6.2.1 Simple CASE statement
The general syntax of the so-called simple CASE statement is:
CASE sel ect or

VWHEN expressi onl THEN st at enents
[WHEN expression2 THEN statenents]

[ELSE statenents]
END CASE;

Where:
sel ect or

An expression that provides the value we're comparing, which can be of any datatype. Its
value gets read (and, if necessary, evaluated) only once.

expressi onn
Value to test for equality with the selector.
statenments

Instructions that run when the corresponding expr essi onn equals the selector.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page25.html (3 of 5) [15/05/2002 22:48:24]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Remember that IF statement from before?

| F sal ary BETWEEN 10000 AND 40000
THEN
bonus : = 1500;
ELSI F sal ary > 40000 AND sal ary <= 100000

THEN

bonus : = 1000;
ELSE

bonus : = O;
END | F;

How could we convert it to a simple CASE statement?

The answer is, we can't. The only comparison you can use in a simple CASE statement is
equality. That's why you may find the simple CASE less useful than the searched CASE
statement.[51

[5]1 Although Oracle invents a lot of terminology, don't blame them for the strange terms "simple
CASE" and "searched CASE," which are taken from the SQL language standard as defined by the
American National Standards Institute (ANSI) and the International Standards Organization (1ISO).

2.6.2.2 Searched CASE statement

This alternate form is more flexible; it omits the selector and supports individual conditions instead
of testing for equality with a selector. In other words:

CASE
VWHEN condi ti onl THEN st at enents
[WHEN condi ti on2 THEN statenments]

[ELSE statenents]
END CASE;

Let's rewrite that IF statement as a searched CASE statement.

CASE
VWHEN sal ary BETWEEN 10000 AND 40000 THEN
bonus : = 1500;
WHEN sal ary > 40000 AND sal ary <= 100000 THEN
bonus : = 10000;
ELSE
bonus :
END CASE;

0;

Now, that makes sense, at least to me.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page25.html (4 of 5) [15/05/2002 22:48:24]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

For both simple and searched CASE statements, you must
"’5 ensure that at least one of the cases (or the ELSE part)
executes. If none of the cases match and you've omitted the
ELSE clause, PL/SQL raises an exception. If unhandled, that
exception causes your program to terminate with an error.
Eek!

2.6.2.3 CASE expressions

In PL/SQL, the CASE keyword can serve more than one purpose. We've just seen an example of
CASE serving as a statement, but it can also serve as an expression—that is, it can return a
value. Here's a brief example:

gender _nane : =
CASE gender code
VWHEN "M THEN ' MALE
VWHEN ' F' THEN ' FEMVALE
ELSE ' UNKNOWN
END;

This code assigns a word to gender nane based on a gender code. Notice the absence of
terminators in a CASE statement.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page25.html (5 of 5) [15/05/2002 22:48:24]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals > 2.7 Executing in Circles: Loop
Statements

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.7 Executing in Circles: Loop Statements

A very common requirement in programming is to execute the same functionality repetitively—in a
loop. Programmers call this iteration, and it is a mainstay of virtually all procedural languages.

Why would you want to use a loop? You might want to display all the book titles reserved for a
given individual or separate a string of comma-delimited words. PL/SQL offers three kinds of
loops to help you with this kind of processing:

FOR loop (numeric and cursor)

This loop executes its body of code for a specific, limited number of iterations.
Simple or infinite loop

This loop executes its body of code until it encounters an EXIT statement.
WHILE loop

This loop executes its body of code until the WHILE condition evaluates to FALSE.

Oracle offers three different types of loops so that you can write the most straightforward code to
handle any particular situation. Most situations that require a loop could be written with any of the
three loop constructs. If you do not pick the construct that is best suited for that particular
requirement, however, you might write more (and more complex) code than is necessary. The
resulting program would also be harder to understand and maintain.

Let's take a look at each of these different kinds of loops.

2.7.1 FOR Loop

Use the FOR loop when you know in advance how many times you want the loop to execute (its
number of iterations). This doesn't mean you have to know the exact, literal number, just that you
are able to specify start and end values. Let's start with an example where we invoke a program
that shows all the books that have been borrowed from the library on a monthly basis. We want to
see the borrowing from the first half of the year, so we have to invoke the program six times:

BEG N
show books borrowed (1)
show books borrowed (2);
show books borrowed (3);
show books borrowed (4);

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page26.html (1 of 7) [15/05/2002 22:48:26]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

show books borrowed (5);
show books borrowed (6);
END;
/

Alternatively, we could just use a FOR loop to achieve the same result:

BEG N
FOR month_ numIN 1 .. 6
LOOP
show_books borrowed (nonth_nun;
END LOOP;
END;

/

I'd rather use the loop, wouldn't you? The exact syntax is:

FOR | oop _counter IN[REVERSE] |ower bound .. upper_bound
LOOP

statenents
END LOCP;

Where:
| oop_count er

An identifier that has not been declared in the program, this variable gives you a way of
detecting the "trip number" through the loop.

| ower bound

A numeric expression that Oracle uses to compute the smallest value assigned to

| oop count er. Often, this will just be the number 1. You should make this an integer,
but if you don't, PL/SQL automatically rounds it to an integer. If the lower bound is greater
than the upper bound, the loop will not execute; if it is null, your program will end in a
runtime error.

REVERSE

Without this keyword, the loop counter increases by one with every trip through the loop,
from the lower to the upper bound. With REVERSE, though, the loop will decrease by one
instead, going from the upper to the lower bound.

.. (yes, that really is two consecutive dots)

This is a special operator that means "visit all the integers between | ower bound and
upper bound."

upper _bound

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page26.html (2 of 7) [15/05/2002 22:48:26]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Numeric expression that provides the highest number the counter will be. This must be
equal to or greater than the lower bound in order for the loop to execute.

When using REVERSE, don't switch the upper and lower bounds. The following is the correct way
to have the loop counter receive the values in the order 3, 2, 1:

FOR n IN REVERSE 1..3
L OOP

END LOOP;

Also, the low and high values in the FOR loop range do not have to be literals, as you can see in
the next example:

FOR month_numIN 1 .. TO NUMBER(TO CHAR(SYSDATE, 'MM))
LOOP

show books borrowed (nonth_num;
END LOOP;

That long expression shown in boldface type gives the number of the current month. So, if it's
currently the fifth month, this loop will show all books borrowed between January and May.

As you're working with loops, it's important to know that
PL/SQL declares the loop counter variable for you

automatically, and there can be problems if it has the same
name as a variable you've declared in the usual place (the
program's declaration section). The scope (the only part of
the code in which it can be referenced) of the loop counter is
between the LOOP and END LOOP keywords.

So far, we've been using something called a numeric FOR loop, but there is a second kind of
FOR loop: the cursor-FOR loop. Cursor-FOR loops are very handy constructs, allowing you to
retrieve all the rows identified by a SQL query (a SELECT statement) with an absolute minimum
of coding. We'll take an in-depth look at this kind of loop in Chapter 5.

2.7.2 Simple (Infinite) Loop

The simple loop is the, well, simplest loop structure. It has the following syntax:

L OOP

statenents
END LOOP;

This is also called an infinite loopl€l , because the LOOP syntax itself does not offer any way to
stop the loop. Here, for example, is an infinite loop:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page26.html (3 of 7) [15/05/2002 22:48:26]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

[6] Actually, calling it "infinite" is wildly optimistic, because canceling the operation, terminating the
session, or shutting down the database will stop the loop.

L OOP
| date_ published := SYSDATE;
END LOOP;

You can usually tell when you have written an infinite loop: your SQL*Plus session seems to go
into a coma. Now, there are actually some situations in which an "infinite" loop is desirable (such
as a program that wakes up every ten minutes to check for a message). In general, though, you
want to avoid infinite loops, and PL/SQL gives you an easy way to do that: the EXIT statement:

EXIT,

This means simply "stop looping now and proceed to the next executable statement in the
program.” To make things simpler for you, Oracle provides the EXIT WHEN feature in PL/SQL:

L OOP
statenents

EXIT WHEN condi ti on;
END LOOP;

This loop will execute st at enent s at least once, and terminate when condi t i on is true. By the
way, the EXIT statement is only valid inside a loop.

Imagine that I'm performing an approximation that | want to iterate 1000 times or until the
approximation is not getting any closer. The relevant part of the code might look like this:

counter := 0;
L OOP

counter := counter + 1;

prior_approx := approx;

approx : = new_approx(approx);

EXIT WHEN counter = 1000 OR prior_approx - approx = 0.0;
END LOOP;

(You'll notice, of course, that I've hidden all the code that does the approximating inside that
new appr ox function.)

Use the simple loop structure when:

. You do not know in advance how many times the loop should execute (or, at least, you
cannot describe the number of iterations with a formula or query).

. You always want the loop to execute at least once. Notice that the simple loop starts with
nothing more than the LOOP keyword. The loop will not stop until it hits the EXIT
statement, which must be inside the loop.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page26.html (4 of 7) [15/05/2002 22:48:26]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
If you don't want your loop body to execute even once under certain conditions, you should
consider the WHILE loop.

2.7.3 WHILE Loop

The WHILE loop executes as long as ("while") the specified Boolean condition evaluates to
TRUE. It looks like this:

VWHI LE condition
LOOP

statenents
END LOOP;

Where:
condi ti on

Boolean expression that must be TRUE before each iteration. When the condition is no
longer true, the loop terminates. The assumption is that the condi t i on will switch to
FALSE sometime during the execution of the st at enent s.

This loop is the equivalent of:

LOOP
EXIT WHEN NOT conditi on;

statenents
END LOCP;

Here's an example:

prior_approx := approx;
approx : = new_appr ox(appr ox);
counter := 0;
VWHI LE counter <= 1000 AND prior_approx - approx !'= 0.0
LOCP
counter := counter + 1;
prior_approx := approx;
approx := new_appr ox(approx);
END LOOP

This code (or the logic behind it) should seem familiar to you. | simply took the example from the
simple loop section and recoded it as a WHILE loop. It is generally possible to write any simple
loop as a WHILE loop, and vice versa. The issue becomes this: which construct allows for the
most intuitive and simple implementation.

2.7.4 Simple or WHILE Loop?

So which will it be? | can compute my approximation either of two ways. Which is best? To be
consistent, | will present the full implementation (declaration section included) of both approaches.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page26.html (5 of 7) [15/05/2002 22:48:26]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Simple loop WHILE loop
DECLARE
DECLARE appr ox NUMBER : = new_approx(0);
appr ox NUMBER : = new_approx(0); pri or_appr ox NUVBER
pri or _approx NUVBER counter PLS | NTEGER,
counter PLS | NTECGER; BEG N
BEGQ N pri or_approx := approx;
counter := 0; approx : = new_approx(approx);
LOCP counter := 0;
counter := counter + 1; VWH LE counter <= 1000
pri or _approx := approx; AND prior_approx - approx
approx : = new_approx(approx); = 0.0
EXIT WHEN counter = 100 LOCP
OR prior_approx - approx counter := counter + 1
= 0.0; pri or_approx := approx;
END LOOP; approx : = new_approx(approx);
END; END LOOP
/ END;
/

Cutting to the chase, | prefer the simple loop, for one, ahem, simple but crucial reason: the
WHILE loop requires me to write the same code twice. Can you see what that repetitive code is?
Take a look at the boldfaced lines on the right. By using WHILE, | must call new appr ox to get

things started, and then call it again in the next loop iteration.

This repetition is a very common occurrence with WHILE clauses; you have to set up the loop
boundary condition, often by running the same code you need at the bottom of the loop body. In
this very simple example, it is a bit hard to get worked up about this coding redundancy, isn't it?

This is the double-edged sword of using simple examples in a book. If | offer an example as
complex as what you will need to write in the "real world,"” you'll spend an hour just understanding
the code. Then, maybe, you will be able to draw conclusions for the topic at hand. That's not very
workable. So we work with simplistic code chunks, and then extrapolate to the day to day reality
of developers.

Here, then, is my extrapolation: when you write longer, complicated loops, the END LOOP
statement may be 50, 100, or even 200 lines away from the WHILE LOOP statement. Further, the
WHILE condition could also involve 2, 5, or 10 different variables and complex formulas. In this
case, you will find yourself repeating perhaps 5 lines of code before the WHILE statement and at
the end of the loop. How can you maintain that code effectively, so that any change in one set of
assignments occurs in the other as well?

Here's the bottom line: if as you write a WHILE loop you find yourself repeating the setup and next-
iteration code, try switching to a simple loop. You will very likely be able to write and maintain just
one version of the code.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page26.html (6 of 7) [15/05/2002 22:48:26]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
Last updated on 12/4/2001

Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page26.html (7 of 7) [15/05/2002 22:48:26]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals > 2.8 Code Formatting: Requirements
and Guidelines

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.8 Code Formatting: Requirements and Guidelines

As you begin to write your own code, you will have many questions about the best approach to
capitalization, indentation, spacing, and other aspects of programming style. This section lists
some of the features of the language in this area, and should help you get started with good
habits.

2.8.1 Upper- or Lowercase?

PL/SQL is case-insensitive (except for the values of literal strings). That means you can type
keywords and identifiers in uppercase or lowercase or mixed-case—it doesn't make any
difference. So all of these statements are identical:

favorite_ flavor VARCHAR2(20);
Favorite_ Fl avor varchar2(20);
fAVO It E fl aVOR vAr CHAr (20) ;

O'Reilly's PL/SQL books generally recommend putting reserved words in all upper-case and
programmer-supplied identifiers in all lowercase, as in the first line of the previous code. | have to
admit that this seemed at first strange and inconvenient to me. Over time, though, | learned the
merits of this convention—it lets my eye skate very rapidly over the contrasting type styles to find
the essential information in the code.

2.8.2 Spacing and Line Breaks

You'll sometimes hear programmers talk of whitespace in their programs. Whitespace consists of
spaces, tabs, and/or line breaks. PL/SQL allows any amount of whitespace to separate keywords
and identifiers. The declaration:

favorite_flavor VARCHAR2(20),;

is completely equivalent to:

favorite_ flavor VARCHAR2(20);

and also to the ludicrous:

favorite flavor
VARCHAR2
(20)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page27.html (1 of 3) [15/05/2002 22:48:27]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

As you can see, PL/SQL attaches no particular significance to line breaks. Most people use line
indentation conventions, but tend not to put in funky extra whitespace. Generally this means that
logically subordinated code gets indented a fixed number of spaces (usually three) from the
previous line. Virtually all the code in this book follows such a convention.

2.8.3 Comments

A comment is a part of your program that is present for documentation purposes only and that is
ignored by the compiler. Comments exist in order to communicate to the next programmer. A
good programmer will comment anything essential to understanding the code that is not easy to
glean from the code itself. Good candidates for comments include:

. External information about the environment

. Assumptions and limitations

. Unusual end user requirements

. "To do"ideas (ideas for future improvements)

. Code that exists only to work around a particular bug

. Rationale and explanation of bizarre or unexpected language features
PL/SQL allows two kinds of comments: single-line and multiline.
2.8.3.1 Single-line comments

Use the "- - " delimiter (two consecutive hyphens) to mark as a comment everything after the
delimiter up to the end of that same physical line.

Here is an example of using a complete line as a comment:

-- Make sure the custoner exists
| F custI D(" ACME INC) I'S NOT NULL

and here is an example of using "- - " to make the trailing part of a line a comment:

my salary := 5000; -- Hopefully not per year!

2.8.3.2 Multiline comments

Use/ * and */ to mark the start and end, respectively, of a block of text provided as a comment.

These symbols are most useful when you have a comment that spans multiple lines. The
following program header uses a block comment format:

/*
| Author: Steven Feuerstein

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page27.html (2 of 3) [15/05/2002 22:48:27]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
| Overview Parse a string into individual elenents.
*/

You can also use block comment symbols on a single line:

/* Make sure the customer exists */
| F custID (" ACME INC) |I'S NOT NULL

ny _salary := 5000; /* Hopefully not per year! */
2.8.3.3 Code comments in this book

This book has many comments about code (in fact, you might say the whole book is a series of
comments) but, for ease of reading, they aren't printed in-line as PL/SQL comments. So,
unfortunately, my earlier admonitions about when to put comments in your code are a "do as |
say, not as | do" guideline.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page27.html (3 of 3) [15/05/2002 22:48:27]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 2. Fundamentals > 2.9 Some Advanced Fundamentals

< BACK Start | Table of Contents | Index | Examples CONTINUE >

2.9 Some Advanced Fundamentals

Okay, you've been introduced to block structure, variables, common operators, conditional
statements, and iterative statements. As if that weren't enough fundamentals, there are a few
more necessary details we want to expose you to:

. The challenge of null values in SQL and PL/SQL
. Naming rules for identifiers

. Scope of variables

. User-defined datatypes

. Interpreted versus compiled code

If, however, you are a beginner who is struggling with too many new concepts, you probably want
to skip this section for now, and come back to it after you've worked more with actual programs.

2.9.1 NULLs in SQL and PL/SQL
Anyone new to the world of Oracle is likely to have a hard time making heads and tails of NULL .

When a variable, column, or constant has a value of NULL, its value is either undefined or
unknown—that is, indeterminate. "Unknown" is different from a blank or a zero or the Boolean
value FALSE. "Unknown" means that the variable has no value at all and so cannot be compared
directly with other variables.

Earlier in this chapter we saw how testing for null with the equality (=) operator (as opposed to

the proper way, using IS NULL) puts you on the road to doom. Let's look at a few other close
encounters you're likely to have with NULLSs.

2.9.1.1 Null strings

If a string is null, you can't really compare it with anything, as we explained in the earlier
discussion of operators. However, you can still combine a null string with non-null strings and get
a sensible result. For example:

DECLARE
enpty VARCHAR2(2000); -- defaults to null
t he_eneny VARCHAR2(200);

BEG N

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page28.html (1 of 7) [15/05/2002 22:48:29]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
the _eneny := "blue' || enpty || 'neanies';
END,;

will store the string bl ueneani es as the contents of t he _eneny.

If a numberis null, though, sometimes it is just ignored, and sometimes it acts like a neutron bomb
(destroys values but leaves variables standing). In SQL, aggregate functions like AVG and SUM
ignore nulls. In PL/SQL, though, numeric operations on null values yield null results!

Look at this:

DECLARE
gty_on_hand NUMBER, -- defaults to null
gty_sol d NUMBER : = 451;
tot_qty NUMBER : = O;
BEG N
tot_ gty := qty_on_hand + qgty_sol d;
END;

Now what do you suppose isint ot gt y? If you answered NULL, give yourself a pat on the
back. Adding the null gt y _on_hand replaces the zero int ot gt y with a NULL. What are we
supposed to do about this?

2.9.1.2 Converting NULLs

Like most programmers, | find it a bit irritating that one null can ruin your whole expression. To get
a more common-sense result, you can use the built-in NVL function, which is a convenient way to
provide a proxy value if the actual value is null. The syntax is:

NVL(expr essi onl, expression2)

NVL first looks at expr essi onl. If it's not null, the function simply returns expressi onl;ifitis
null, NVL returns expr essi on2. Note that NVL does not alter the contents of the first expression;
it merely provides an alternative to NULL at runtime.

So a good fix for my code would be:
tot_gty := NVL(qty_on_hand, 0) + NVL(qgty_sold, 0);

which gives us a total quantity of 451 rather than NULL. What a relief! This language behavior
leads to the rule:

As a general rule, use NVL on potentially null numeric data when using it in
arithmetic operations.

Even if this rule doesn't make total sense to you yet, you should still remember it.

2.9.1.3 Can we know for certain?

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page28.html (2 of 7) [15/05/2002 22:48:29]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Logic tests (AND, OR) may not appear to behave consistently with respect to nulls. Given the
following declaration:

DECLARE
uncertain BOOLEAN; -- defaults to NULL
absol utel y BOOLEAN : = TRUE;
forget it BOOLEAN : = FALSE;

the following expressions each evaluate to NULL:

absol utely AND uncertain (TRUE AND NULL)
forget it AND uncertain (FALSE AND NULL)
NOT uncertain (NOT NULL)

Interestingly, the following evaluates to TRUE:

absolutely OR uncertain (TRUE OR NULL)
because only one operand needs to be true in order for an OR expression to be true.
This, however, evaluates to NULL:

forget it OR uncertain (FALSE OR NULL)

Why is it like this? NULL is, at best, uncertain, so it just won't pass the test. Just remember the
following rule:

A logic test only "passes" if it's really true. NULL is not really true (nor is NULL
false).

So, returning to the example presented earlier in the chapter:
| F TRUE AND NULL THEN

do this;
ELSE

dot hat ;
END | F;

The dot hat procedure will execute.

Any way you slice it, null values are the anchovies of programming for Oracle. Some people love
“em, some hate "em; but you only ignore them at your own peril.

2.9.2 Naming Rules for Identifiers

Identifiers are the names given to PL/SQL elements such as variables, procedures, variables, and
user-defined types. These names must follow certain rules of the road; namely, they:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page28.html (3 of 7) [15/05/2002 22:48:29]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

. Are no more than 30 characters in length.
. Start with a letter.

. Consist of any of the following: letters, numerals, the dollar sign ($), the hash sign (#), and
the underscore ().

. Cannot be the same as a PL/SQL reserved word.

. Are unique within its scope. You cannot, in other words, declare two variables with the
same name in the same block of code.

These are valid names for variables:

bi rt hdate
vote tota

sal es_year7
contribution$
I ten#

These names, on the other hand, will cause compilation errors:

the date of _birth_of nmy grandchildren -- TOO LONG
1st _choice -- STARTS WTHDIAT
nmyenai | @t evenfeuerstein.com-- CONTAINS | NVALI D CHARACTER

2.9.3 Scope of Variables

The scopeof a variable is the portion of PL/SQL code in which that variable can be referenced
(i.e., its value read or modified). Most of the variables you define will have as their scope the block
in which they were defined. Consider the following block:

DECLARE

book title VARCHAR2(100);
BEGQ N

book title := '"Learning Oracle PL/SQ';
END,

/

The variable book 11t e can be referenced within this block of code, but nowhere else. So if |

happen to write another separate block of code, any attempt to read or change the value of
book titl e willresultina compilation error:

SQL> BEG N
2 | F book_title LIKE ' %L/ SQL%
3 THEN
4 buy it;
S END | F;
6* END,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page28.html (4 of 7) [15/05/2002 22:48:29]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

SQL> /

BEG N

*

ERROR at |ine 1:

ORA- 06550: line 2, colum 6:

PLS-00201: identifier 'BOOK TITLE nust be decl ared

Now, that makes sense, doesn't it? How can this second block know about that other variable?
Furthermore, the book ti t| e variable doesn't even exist except when that first block is

executing.

Let's explore this a little further. Consider this block:

DECLARE
| atest _title VARCHAR2(100);
BEG N
| atest title :="'"Learning Oracle PL/SQ';

-- Nested bl ock
DECLARE
first title VARCHAR2(100)
= '"Oracle PL/SQL Progranmm ng';

BEG N
|F latest _title = first _title
THEN
DBVS_QUTPUT. PUT_LI NE (
"Still witing first book!");
END | F;
END;

END;
/

In this case, | have an anonymous block nested within the main or outer block. Since the nested
block is defined inside the main block, | can reference both the | at est titl e and

first title variables there.

If I make a minor change to the code (see line 18 below), however, | get an error:

SQL> DECLARE

2 | atest _title VARCHAR2(100);

3 BEGN

4 | atest title :="Learning Oracle PL/SQ';
5

6 -- Nested bl ock

7 DECLARE

8 first title VARCHAR2(100)

9 = '"Oracle PL/SQL Programm ng';
10 BEG N

11 |F latest title = first title

12 THEN

13 DBVS_OUTPUT. PUT_LI NE (

14 "Still witing first book!'");

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page28.html (5 of 7) [15/05/2002 22:48:29]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

15 END | F;
16 END;
17
18 DBVS_OUTPUT. PUT_LINE (first_title);
19 END;
20 /
DECLARE
*
ERROR at |ine 1:
ORA- 06550: |ine 18, colum 26:
PLS-00201: identifier '"FIRST_TITLE nust be decl ared

This error occurs because the scope of the fi rst _tit| e variable is restricted to the inner block.

When that block terminates (with the END statement on line 16), all variables are erased, and
their memory is released.

So the general rule is:
The scope of a variable is the block in which it is declared.

An exception to this rule (you knew there had to be an exception, didn't you?) is the package-
based variable. With this feature, PL/SQL allows you to define a "global” data structure that is
accessible from other programs in the current session. Be warned, though, this feature can create
lots of problems in your code and should be used very judiciously. See Chapter 3 for more
discussion.

2.9.4 Advanced User-Defined Datatypes

So far we have covered only the simplest and most commonly used datatypes. Oracle PL/SQL
offers many other types of data, including some that you can "design" yourself. While you will
probably not need to work with these immediately, it's good to be aware of their existence:

Record

A composite datatype , meaning that a single record may contain multiple pieces of
information, such as a date, two strings, and a number. Records make it easier for
developers to manipulate data in a group, rather than as individual variables.

Collection

Oracle's version of the single-dimensional arrays that you might find in other languages.
Use collections to maintain lists of information and, in a number of situations, improve the
performance of your application. There are three kinds of collections: index-by tables
(formerly called simply "PL/SQL tables"), nested tables, and varying arrays (also called
"VARRAYS").

Object

A data structure similar to a record that provides additional object-oriented programming
features. Oracle is an object-relational database, meaning that you can not only define

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page28.html (6 of 7) [15/05/2002 22:48:29]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

relational-style tables (rows and columns), but also create and manipulate objects using
object-oriented principles (type hierarchies).

While you might be able to get by without ever knowing much about these user-defined
datatypes, they can definitely make life for the PL/SQL programmer more interesting, and they
can in many cases make your code lots more maintainable. The chapters ahead will introduce
these concepts one at a time and show how they can be useful to you.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page28.html (7 of 7) [15/05/2002 22:48:29]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 3. Let's Code!

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 3. Let's Code!

Armed with the fundamentals of PL/SQL, it's now time to write programs that do more than say
hello. This chapter starts to build the actual library catalog application that will accompany us
throughout the book. The new language topics introduced in this chapter include procedures,
functions, and packages. You will learn what they are, how to create them, and how to use them
to address functional requirements.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page30.html [15/05/2002 22:48:31]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 3. Let's Code! > 3.1 Some Background on the Example

< BACK Start | Table of Contents | Index | Examples CONTINUE >

3.1 Some Background on the Example

The programming examples in this book center around building a system that will assist in the
cataloging and searching of library books—a kind of "cardless" electronic catalog. In my
hypothetical library, all the library's operational data is to reside in an Oracle database. How will
the actual catalog information—title, author, and the like—get stored in Oracle? One way is for
librarians to enter the data by hand. In later chapters, you will see a way the data can be loaded
automatically from a remote source, and how library patrons search and retrieve information once
it's in the catalog.

For now, I'd like to address two requirements:
. Allow the creation of catalog entries for each newly acquired book
. Provide a means of counting how many copies of a particular book the library owns

Implementing the first requirement demonstrates a PL/SQL procedure that inserts data into the
database. The program for the second requirement will show you a PL/SQL function in action.
Before you can understand how to write either of these programs, you'll need an understanding of
the design of the underlying database.

3.1.1 The Data Model

As with many projects undertaken by PL/SQL developers, the database has already been
designed and built for us, presumably based on the best knowledge of user requirements that
was available. The database subset relevant to the two requirements at hand contains information
about each copy of each book in the library. Figure 3-1 shows this design as represented with
what is known as an entity-relationship diagram (ERD).

Figure 3-1. Relationship between books and their physical copies

S S
ar e o5
EOOK CORY sessssss=s= BOOK

This kind of diagram captures succinct information about the real world. The labeled boxes
correspond to database entities, and the lines between the boxes designate relationships among
the entities. Relational databases encode the world into a set of data structures to hold
information about things, and a set of rules that govern the associations among the things. The
book entity represents that essential information about a book (title, author, etc.) that any library
could contain, while the book copy entity contains information about the physical copies that

exist somewhere in particular.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page31.html (1 of 4) [15/05/2002 22:48:33]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Why, you may ask, have we organized the data into two entities? Wouldn't one be sufficient?
Well, yes, butdoing so would cause problems later, when you would wind up duplicating the
information about the book along with the information about each copy, which is not a good use of
computer resources or human effort. While a full discussion of database normalization (the
process of organizing data into tables according to its intrinsic structure) is outside the scope of
this book, the basic idea is to store each essential fact in one and only one place. With each
additional copy of a book, we only need to make a record of the new identifier, which in our case
is an identifying number from a self-adhesive barcode.

Returning to Figure 3-1, what does the relationship line mean in plain English? The figure
captures the following facts about the world (the world according to the database, that is):

. Each book copy must be of one and only one book.
. Each book may be owned as one or more book copies.
This is also known as a one-to-many relationship: one book, many book copies.

Do these facts about the world seem so obvious as to be useless? Obvious, perhaps; useless,
no, since computers know so little about the world. Machines may be fast, but they are not smart.
So, when designing a database, you have to decompose the world into really small ideas that the
computer can understand.

3.1.2 The Physical Database Design

In terms of what the actual database structure looks like, it happens to mirror the ER design; each
entity corresponds to a table in the database. The SQL to create these tables appears in the
following.

CREATE TABLE books (
I sbn VARCHAR2(13) NOT NULL PRI MARY KEY,
title VARCHAR2(200),
summary VARCHAR2(2000),
aut hor VARCHAR2(200)
dat e _publ i shed DATE
page_count NUMBER

)

CREATE TABLE book_ copi es(
barcode_i d VARCHAR2(100) NOT NULL PRI MARY KEY,
i sbn VARCHAR2(13) FOREI GN KEY REFERENCES books (i sbn)

For reasons understood to long-haired data modelers, convention holds that entities get named
with singular noun phrases (book, book copy), and tables with plural noun phrases (books,

book copi es). And, since pictures of tables are often helpful, they might look like Figure 3-2
when populated with some sample data.

Figure 3-2. An example of relational data, depicted in rows and columns

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page31.html (2 of 4) [15/05/2002 22:48:33]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

ISEN tithe SUMMary authar date_published | page_count
Refzrente for PLAIL
. Oracke PLS0L developers, inchuding Feusrstein, Steven
1-56592-335-9 Programming | exampies and best practice | with Bil rby] 01-5EP-1997 987
recemmendations,
Modemn publication of
ular Shakespeare
The tragedy of Iﬂp[-:nrr:al in whi
4P A e play in which a I i
O-14071-453-9 :'lln-;{ﬁ:fdharﬂ Ireatheroiss royal attempts Williar Shakespears | 01-ALIG-2000 158
£ to skeal the crown but dies
harseless in battle.
Orade PLSL . . Feuerstein, Steven
1-56592-457-6 | Language Pocket P':'EI:EE'L"EL‘;‘:ES:”“W““ with Bill Pribyl 01-APR-1599 a4
Fieference guage. ard Chip Dawes
ISBN barcode_id
1-56502-335-9 | 100000001
1-56502-335-9 | 100000002
0-14071-483-9 | 100000015
0-14071-483-9 | 100000074
1-56582-45-6 | 10000030
1-56500-457-6 | 100000022
1-5E502-457-6 | 100000020

Looking over the data in the figure, you can probably see that there are some problems that might
make life difficult. The data in the author column is inconsistent and doesn't really handle multiple
authors the right way. Please indulge me and suspend your disbelief regarding this design.

As Simple as Possible, but Not Too
Simple

Even without considering library cardholders, check in/check out
transactions, and book purchasing, a professional librarian would consider
our model an absurd trivialization. In the real world:

. In addition to housing books, libraries also house materials such as
serials (magazines and journals), recorded music, videotapes, and
electronic holdings.

. Many materials, including older books, lack an ISBN (International
Standard Book Number), which limits the usefulness of the ISBN as
a universal unique identifier.

. Works may have alternate titles and multiple authors.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page31.html (3 of 4) [15/05/2002 22:48:33]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

. There is much more information to track, such as subjects,
publishers, illustrators, editions, volumes, and derivative works.

. Librarians usually share cataloging information by using
standardized electronic interchanges.

...and so forth. How can | justify presenting such a simplified design in this
chapter?

The database shown in Figure 3-1 is actually more than enough to get
started. In fact, one-to-many relationships form the basis of most aspects
of database design (just multiplied by a whole bunch) and, by extension,
of PL/SQL programming. Later in the book, we will add more "reality" to
the database, and we'll take a look at some ways our PL/SQL
programming needs to be modified to deal with a "realer" world.

Another reason for our simplification here is that when learning new
material, most people do best when they study one new idea at a time. Try
to chew on too many new ideas at once, and it just makes digestion that
much more difficult.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page31.html (4 of 4) [15/05/2002 22:48:33]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 3. Let's Code! > 3.2 A First Programming Exercise

< BACK Start | Table of Contents | Index | Examples CONTINUE >

3.2 A First Programming Exercise

A fairly simple place to begin is by writing a PL/SQL program that will add a new book to the database. Of course, | could
just write a SQL INSERT statement (or two) whenever | need to perform this function:

| NSERT | NTO books (isbn, title, author)
VALUES (' 0-596-00180-0', 'Learning Oacle PL/SQL | 'Bill Pribyl with Steven Feuerstein');

Why would | ever bother writing a PL/SQL program?

3.2.1 Rationale for the Design

Say | have two different places where | need to add books to the catalog: one needs to be interactive, enabling hand-entry
of the input data, and one automatic, retrieving the book's properties from a remote database. So now what do | do?
Duplicate the INSERT statements in these programs? And maybe | later write a third program that adds book records by
reading them off a CD-ROM. Just cut and paste another copy of the INSERTS, right? Now pretend the design of those
tables changes, and | have to change all of my programs. Oops.

There are several good reasons to put the INSERTSs into a PL/SQL program, but the most important benefits are:

. Toreduce, if not eliminate, a lot of tedious, error-prone software maintenance work when the database structure
changes

. To help optimize database server performance
. To centralize complexity

Writing correct SQL statements may require interpreting and coding a lot of complicated business rules; having to re-code
all this logic in every application is a needlessly risky waste of time and effort. The general principle is:

Centralize SQL statements in reusable PL/SQL programs, rather than scattering them helter-skelter
throughout various applications.

Even if you are the only programmer in your organization, you should still follow the localization guideline. In fact, this
advice actually extends beyond SQL statements; you should program each behavior only one time, and call it whenever
needed. By defining the tasks each reusable program unit will perform, you are well on the road to establishing your own
application programming interfaces (APIs).

In this chapter, I'll show you how to localize SQL by writing table wrappers, which are programs that handle all of the
updates to each of the tables in the database.

3.2.2 Identify Input, Process, and Outputs

Whether or not you're new to writing programs, you may have a teensy bit of anxiety when confronted with the blank page
and told to write a program. Be not afraid! A large percentage of programs actually start as variations on existing or
example code. Although we're starting from scratch here, you probably won't have to do that very often (at least not when
you're just a beginner).

Some programmers often kick-start the code-writing process by drawing a picture. One could represent the program and
its inputs and outputs as in Figure 3-3.

Figure 3-3. Overview of a program that will add a new book to the database

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (1 of 11) [15/05/2002 22:48:36]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

15BM, title, summary,

author, dats, pages add_book

Eaok recond,
book copy recond

Book datain
database

Unlike the earlier entity-relationship diagram, this input-process-output diagram doesn't strictly adhere to any established
iconography. The important thing is to portray the essential elements. The figure shows that we need to construct a
program to receive some inputs and store the results into database tables. Now, that might not seem like much, but it
definitely gives us room to grow in the future.

In general, a program unit should do one thing, and do it well. Don't worry if your program is small; a
compact program is usually easier to write and maintain.

The question now becomes, what kind of PL/SQL "thingy" should we use to support this add book operation? Because it
performs an action without returning any values back to the user, a procedure makes the most sense.

3.2.3 Implementing a Stored Procedure to Add a Book

So now we know that the plan is to write a procedure that stores data for a book into the database. You could call it a
wrapper, or if you want a higher geek vocabulary, you can say we're using abstraction, encapsulation, and information
hiding (see the Glossary for definitions). Geekiness aside, have a look at Figure 3-4 to see some of the ideas more
concretely.

Figure 3-4. A PL/SQL program serving as the single point of entry of book data in the database

: PL/SOL “wrapper”
Simpe APY pragram to call

whenever a book Potentimly complex Data abaur boaks,
is to he added to SO shotements dependent stored in relational
the datahase on darabase design tables in the database

Although the "consumers" (callers) of our program don't need to know too much, the program we write will certainly
require intimate knowledge of the database structure. So the very first thing we'll do is determine which tables and
columns are involved in performing the business function (in our initial case, adding a book). We'll need some way to
figure out what information is necessary to maintain these tables.

3.2.3.1 Analyzing for design

To discover what tables and columns are involved, look back at the database design documentation (which | provided in
earlier paragraphs—now wasn't that handy). | can easily get a listing of these tables' columns using the SQL*Plus
DESCRIBE command (abbreviated DESC):

SQL> DESC books

Nane Nul | ? Type

| SBN NOT NULL VARCHARZ2(13)
TI TLE VARCHARZ2(200)
SUMVARY VARCHARZ2(2000)
AUTHOR VARCHARZ2(200)
DATE_PUBLI SHED DATE
PAGE_COUNT NUVBER

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (2 of 11) [15/05/2002 22:48:36]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

SQL> DESC book_copi es

Nane Nul | ? Type
BARCODE_| D NOT NULL VARCHAR2(100)
| SBN VARCHAR2(13)

Inspecting the list of columns, | conclude that most of this information should be known by the person doing the
cataloging, so | don't think there is a need to synthesize, look up, or compute anything. My procedure will start out very
simple.

The major question is whether the caller of the routine will want to populate both tables in one call or to make two calls,
one for each table. | don't really know the answer to that yet, but | suspect that books get entered into the database when
the first physical copy arrives at the library. So, when adding the book for the first time, they will have all information for
both tables up front. We'll have values for all the columns in both tables, including the ISBN and the number off the
barcode. But librarians will also need to catalog new copies of an existing book, so at some point we'll need a way to deal
with that situation.

To get started with a new module, many programmers begin by writing pseudocode, English-like statements that outline
how the program will work. In this trivial program, pseudocode is not very interesting:

Check for reasonabl e inputs.
Put a new record in the "books" table.
Put a new record in the "book copies" table.

but it makes the point that we should first outline what we plan to do.

Next, we'll look at the fundamental syntax or rules of the language that apply to creating a procedure. After that, we'll
translate the pseudocode into real statements, and drop them into the procedure template.

3.2.3.2 Syntax to create a procedure

Let's look at each of the parts of a procedure and consider more closely what each does. Typically, you will create
procedures using a statement derived from the following syntax:

CREATE [OR REPLACE] PROCEDURE procedure_nane
(paraneterl MODE DATATYPE [DEFAULT expression],
par amet er 2 MODE DATATYPE [DEFAULT expression],

»)
AS
[variablel DATATYPE;
vari abl e2 DATATYPE;
oo]
BEGQ N
execut abl e_statenents
[EXCEPTI ON
VWHEN excepti on_nane
THEN
execut abl e_statenents]
END,;
/

This template contains a combination of PL/SQL keywords (in non-italic uppercase letters) and placeholders (in italics) for
your own code:

CREATE [OR REPLACE]

This is the special SQL statement you issue to build the procedure. The phrase OR REPLACE is optional and
saves the effort of having to delete the procedure when you want to build a new version. Using OR REPLACE also
preserves any synonyms or grants you issued that depend on the procedure. (This is a good thing.)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (3 of 11) [15/05/2002 22:48:36]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

PROCEDURE procedure_nane
In the header section, you specify what sort of program unit it is (in this case, a procedure) and give it a name.
par anmet er 1 MODE DATATYPE [DEFAULT expressi on]

To enable the caller to supply an argument to the procedure, you create a comma-delimited list of parameter
entries like this, and enclose the list in parentheses. MODE is usually one of the following: IN, OUT, or IN OUT. The
following list describes each of these elements:

IN
Keyword usable as MODE that means read-only. The caller supplies the value of the parameter, and
PL/SQL prevents you from changing it inside the program.

ouT
Keyword usable as MODE that means write-only. As you might expect, OUT mode means that the
procedure sets the value of the parameter, and the calling program can read it. (Any parameter value you
attempt to supply when you call the program will be silently ignored.)

IN OUT
Keyword usable as MODE that means read or write. If you need to send a variable to a program that it can
both read and update, and then have the updated value available to the calling program, use the
parameter mode IN OUT.

DATATYPE

The datatype is the same concept you've seen in Chapter 2; for example, NUMBER, INTEGER, VARCHAR?2,
DATE. Actually, here you only have to indicate the family of the datatype, and not any dimensions. In other words,
use VARCHARZ2, not VARCHAR2(30), and NUMBER instead of NUMBER(10,2).

DEFAULT expression

This allows the program to supply a default value for a parameter that the caller doesn't supply. If you prefer, you

can use the symbol ": =" (a colon, followed by an equals sign) in place of the keyword DEFAULT.

AS
The keyword AS separates the header from the rest of the program unit. You can also use the keyword IS, which
means the same thing as AS to the compiler. (Personally, | make the choice of using IS or AS based on the
readability of the result.)

BEGIN...END
The BEGIN...END pair separates the "normal" executable statements from the rest of the program.

EXCEPTION

This signifies the beginning of the exception handler, the part of the program that will only execute if an exception
has been raised in the corresponding executable section of code. Everything after this EXCEPTION keyword, but
before the END statement, is part of the exception handler.

WHEN excepti on_nane THEN execut abl e_st at enent

Abnormal conditions are usually given a name, either by Oracle or by the programmer. Identifying them by name
here is how you "catch" these conditions in your code, causing the corresponding executable statement to run. If
you don't know the name or you want to catch exceptions that are not named, you can just use the catch-all

file://IE|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (4 of 11) [15/05/2002 22:48:36]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

exception name of "OTHERS," as in WHEN OTHERS THEN....

Many of the parts illustrated in the template are optional. The shortest procedure you can write is this one:

CREATE PROCEDURE do_not hi ng AS
BEG N
NULL;
END;
/

As you can see, parameters, variables, and exception handlers are all optional. (The NULL keyword is just an executable
statement. It is the "do-nothing" or "no-op" statement.)

3.2.3.3 The add_book procedure

Using the parts of the syntax template that we need, we can "grow" the pseudocode into real code:

CREATE OR REPLACE PROCEDURE add_book (isbn_in I N VARCHAR2,
barcode_id_in I N VARCHAR2, title_in IN VARCHAR2, author_in I N VARCHAR2,
page_count _in I N NUMBER, sunmary_in |IN VARCHAR2 DEFAULT NULL,
date_published in I N DATE DEFAULT NULL)

AS

BEG N
/* check for reasonable inputs */

IF isbn_in I'S NULL
THEN

RAI SE VALUE_ERROR;
END | F;

/* put a record in the "books" table */

| NSERT | NTO books (isbn, title, summary, author, date_published, page_count)
VALUES (isbn_in, title_in, summry_in, author_in, date_published_in,
page_count _in);

[* if supplied, put a record in the "book _copies" table */

| F barcode_id in I'S NOT NULL

THEN
| NSERT | NTO book_copi es (isbn, barcode_id)
VALUES (isbn_in, barcode_id in);

END | F;

END add_book;
/

Let's see what's going on in this code:
3.2.3.3.1 Procedure name and parameter order.

I've given our procedure a name, add_book, chosen as a verb phrase describing what it will do. I've also specified the
input parameters, consisting of one parameter for each column in the tables we're going to populate. The order of the
parameters does not have to match up with the order of the columns in the table; in fact, I've modified it a bit, consciously
putting the "most important" parameters such as i sbn_i n and bar code_i d_i n up front, and the defaulted parameters

at the end of the parameter list.
3.2.3.3.2 Parameter names

| often follow a naming convention that appends the "mode" (IN, OUT, or IN OUT) to the parameter name. Because all
parameters of add_book are "IN", each parameter has a suffix of " i n". Such a naming convention is not compulsory but
can help avoid conflicts with column names in SQL statements. Had | made them identical, the result would be statements
such as:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (5 of 11) [15/05/2002 22:48:36]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

I NSERT | NTO book copies (isbn, barcode_id)
VALUES (i sbn, barcode_id);

Are those column names, or are they PL/SQL variables? This could give even an experienced programmer a hiccup when
reading the code. It turns out it would work as expected; PL/SQL will substitute as follows:

I NSERT | NTO book copies (isbn, barcode_id) /* col umm nanes */
VALUES (i sbn, barcode_id); /* PL/SQL variables */

However, a statement such as:
UPDATE books

SET sunmary = sunmary /* Wong! */
VWHERE i sbn = isbn; /* Don'"t do it this way! */

will not work as expected; PL/SQL will interpret all instances of sunmar y and i sbn as column names!

3.2.3.3.3 Input validation

Remember the first line of the pseudocode: "Check for reasonable inputs"? To implement this step, | made another guess:
the system's librarian users are going to want only minimal restrictions on what they can do, which means that the only
absolutely required parameter is the ISBN. Therefore, my input validation section consists of the following:

I F isbn_in IS NULL
THEN

RAI SE VALUE_ ERROR;
END | F;

| don't yet know enough about the format of these identifiers to do a more sophisticated check. If the ISBN is not available,
| get to make the program "barf" (a technical term for stop).

Notice that | also do a check for a null barcode a bit farther down. The reason for this is to avoid running a meaningless
INSERT statement (which would just cause an error anyway).

3.2.3.4 Where to handle exceptions

As introduced in Chapter 2, the "PL/SQL way" to make the program stop on an error is to use a language feature known
as raising an exception. As illustrated in Figure 3-5, the statement:

RAI' SE VALUE_ERRCR,

causes the execution section to stop immediately and transfer control to the exception handler. Finding no appropriate
handler, the exception returns a particular error condition to the calling program, which responds in whatever manner the
programmer has deemed appropriate.

Figure 3-5. Exception propagation in a simple case

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (6 of 11) [15/05/2002 22:48:36]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

| PROCEDURE | FUNCTION name ... |

I

BEGIN
F.HEEE some_exception; Annexception ssed here...
EXCEPTION
..can get handled here, <—)
But if mat, it will “propagete” o, . I
END:
- o the colling environment.

The VALUE_ERROR exception is one of a group of built-in exceptions that Oracle raises by itself in certain situations; we
are just reusing it in our program. The program that calls the add _book routine will usually handle or trap any potential
exceptions and decide what to do based on what error has occurred. In our case, we want the user's attempt to add the
book to the database to fail, since we don't have all the needed information. An appropriate response would be for the
calling program to return an error message to the user.

You may ask why we can't simply have add_book display its own message when it detects the error. Why bother with
this funny business of exceptions? The problem is that taking corrective action down in the guts of the procedure limits
how the program can be reused in the future. If add book handles the exception itself and prints out a message, we have
lost the ability to call it from a program that doesn't want the message. Suppose we later write a program that will read
book information from a file and "bulk load" thousands of books at one time. We want this new program to call the
add_book procedure once for each book and, if there are any exceptions, keep track of their causes, but keep going until
we get to the end of the list. Then we could present a summary of the problems to the user at the end of the load
operation. Only by propagating the exception outward can we facilitate this sort of alternative use of add book.

o In general, when there is the possibility that your program will detect an error
& condition without an obvious and appropriate solution, you should have the
. 4: program raise an exception. (In future sections of the book we'll look at which

particular exception it should raise.)

If we get past the input verification, the program proceeds to make merry with the SQL INSERT statements and is done. It
doesn't need to report any data back to the caller. If it did need to return some information, we could have used one of two
different approaches: make it a function or use an OUT parameter. (More approaches are covered later in this chapter.)

3.2.4 Using the Procedure to Add a Book to the Catalog

When you want to call a procedure from within PL/SQL, the easiest way is to type out its name, followed immediately by
any arguments in parentheses, delimited by commas:

BEG N

procedure_nanme (argunentl, argunment2, ...);
END;

So, for example, if | wanted to add a copy of a good book to the catalog, | could invoke the procedure as follows:

BEGQ N
add_book(' 1-56592- 335-9',
' 100000001,
"Oracl e PL/SQL Programm ng',
' Feuerstein, Steven, with Bill Pribyl",
987,
"Reference for PL/SQL devel opers,
["including exanpl es and best practice reconmendations. ',

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (7 of 11) [15/05/2002 22:48:37]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

TO _DATE(' 01- SEP-1997' , ' DD- MON- YYYY')) ;
END;
/

This call should result in the insertion of one record into the books table and one record into the book copi es table. In
the example, so-called literal or hardcoded expressions appear as the arguments, and PL/SQL passes these values to the
program's input parameterslil according to their position. This means that you must (usually) take care to arrange your
supplied values in the same order as the parameters in the called program, as shown in the following table.

[1]1 More terminology: the expression that the caller passes to the program is known as the argument or the actual parameter,
and the variables defined in the called program header are known as the formal parameters or sometimes just parameters.
(They are "formal" because they give the "form" of the variable, not because they stand on ceremony.)

Position|Name of parameter |Datatype of parameter |Value supplied in example call

1 i sbn_in VARCHAR?2 ' 1-56592- 335-9'

2 barcode_id _in VARCHAR2 ' 100000001"

3 title_in VARCHAR2 "Oracle PL/SQL Programm ng'

4 author _in VARCHAR?2 ' Feuerstein, Steven, with Bill Pribyl'
5 page_count _in NUMBER 987

"Reference for PL/SQL devel opers, including

6 sunmary_in VARCHAR?2) : ,
exanpl es and best practice reconmendati ons.

7 dat e_publ i shed_i n|DATE TO DATE(' 01- SEP-1997', ' DD- MON- YYYY')

Notice that each value matches the datatype expected by the procedure. That is, each VARCHAR?2 parameter gets a
string, the NUMBER gets a series of digits, and the DATE gets, well, something odd.

3.2.4.1 Getting a DATE

The dat e_publ i shed i n parameter wants to receive a true Oracle DATE datatype, which is actually some series of
bits in a nasty internal format that few humans want to look at; it doesn't look like the familiar combination of year, month,
and day. A common way to build one of these Oracle DATES is to use Oracle's built-in TO_DATE program. When you
invoke this program, you supply a human-readable string value (in our case, ' 01- SEP- 1997") plus something known as
a format mask (' DD- MON- YYYY").[21 TO_DATE then attempts to match up each part of the string value with a
corresponding part of the format mask. If TO_DATE is successful, it returns a series of bits Oracle will recognize as a
date; if unsuccessful, it raises an exception.

[21 It's true that TO_DATE is really not very intelligent, but it does do exactly what it's told, and we love it anyway.

01-SEP-1997

DD-MON-YYYY

Returning to the example, TO_DATE passes these bits as the argument to add _book, which doesn't care what method
has been used to send it data; actual literal values are just fine, as is the output from a functionlike TO_DATE.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (8 of 11) [15/05/2002 22:48:37]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

- Calling TO_DATE is not strictly necessary in all cases because Oracle will
as usually make an implied attempt to convert strings to dates. If you fail to make
. 4. this conversion explicit, though, you're relying on the Oracle database's default

date format mask, which the database administrator might change! This raises
the possibility that there will be some embarrassing problem such as interpreting
the year. (What year is "00'?) In general, you should make explicit calls to
TO_DATE when converting your character data into an Oracle date.

The previous code fragment shows most arguments supplied as literals, that is, using actual values for each. This is fine
for brief tests, but in "real" programming, most of the time you will use variables in your calls. The variables typically get

populated by some method other than the programmer typing them in (such as from a user input screen, as we'll see in

the next chapter).

3.2.4.2 Arguments optional

What will the call look like if we don't happen to know all the data for the book we're adding? For example, what if we don't
know the publication date or the description? We could just supply NULLSs for these parameters and hope that the
program doesn't object:[31

[31 For space reasons, this book does not always show complete programs. In this case, you would need an EXECUTE
statement, or you would need to enclose this call within BEGIN and END, and add a trailing "/", to run it from SQL*Plus.

add_book("' 1-56592-335-9', '100000001', 'Oracle PL/SQL Programming',
' Feuerstein, Steven, with Bill Pribyl', 987, NULL, NULL);

That's one way to do it. But what if | don't want to pass a value for each argument and instead want to rely on the default?
| could just leave off those NULLs and let the program deal with it. This will work because I've defined the procedure
header with default values for the last two parameters:

...summary_in I N VARCHAR2 DEFAULT NULL,
date published in I N DATE DEFAULT NULL)

The defaults are NULL, but that still qualifies as a value when this thing is running.

Taking advantage of these defaults, we can simplify the previous call example by eliminating the last two arguments:

add_book(' 1-56592-335-9', '100000001', 'Cracle PL/SQ. Programm ng',
"Feuerstein, Steven, with Bill Pribyl', 987);

Here, the PL/SQL runtime engine figures out that it needs to supply the defaults for those missing parameters; it will run
identically to the previous case.

e The ability to omit arguments for defaulted parameters turns out to be an
an extremely useful feature in PL/SQL, because it allows your program unit to "do
‘. 4= the right thing" even if you leave off some arguments.

Moreover, this feature can substantially reduce the impact of some future
modifications to the system. Let's say that some day in the future, you need to
modify the program unit by adding parameters. If you can give default values to
these new parameters, you won't have to go back and change every single
place you call the program. Very cool!

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (9 of 11) [15/05/2002 22:48:37]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

One more small point: when calling the procedure, you can combine the omission of defaulted parameters with your own
nulled-out parameters:

add_book("' 1-56592-335-9', '100000001', 'Oracle PL/SQL Progranm ng', NULL, 987);

Are you having trouble remembering which value goes with which argument? | know | am, and | wrote this stuff. That's a
problem with positional notation , which is a fancy name for the approach we've been using, where you supply runtime
arguments in the same order as you coded the original parameters.

3.2.4.3 Named notation

Not to worry, PL/SQL can address that problem with another of my favorite features: named notation, which is best
explained via example. Here is a call to add_book that uses named notation:

add_book(isbn_in => '1-56592-335-9",
title_in => "Oracle PL/SQ. Programm ng',
summary_in => 'Reference for PL/SQ devel opers, ' ||
"including exanpl es and best practice reconmendations.'
author _in => 'Feuerstein, Steven, with Bill Pribyl",
dat e_published_in => NULL,
page_count in => 987,
barcode_id_in =>'100000001");

As you can see, this technique prefixes each argument with the name of the parameter as we've defined it in the
add book procedure, followed by "=>", followed by the value. You may have also noticed that the arguments are in
arbitrary positions—I don't have to remember (or use) the order specified in the called procedure. Now, that's some
exciting stuff!

It's up to you, the programmer, to decide which method to use; the compiler doesn't care one whit. I'm a big fan of named
notation because it can help your code become self-documenting. If | see page _count i n => 987, there is little doubt
as to what it means; but a naked 987 will probably leave me wondering. As you might guess, you can omit any optional
(defaulted) parameters such as dat e _publ i shed i n:

add_book(isbn_in => '1-56592-335-9",
title_in => "Oracle PL/SQ. Programm ng',
summary_in => 'Reference for PL/SQ devel opers, ' ||
"including exanpl es and best practice reconmendations.'
author _in => 'Feuerstein, Steven, with Bill Pribyl",
page_count _in => 987,
barcode id_in => '100000001");

Yes, there is a slight downside to using named notation, aside from the fact that you have to do more typing up front. If
you ever decide to change a parameter's name, you will have to update not only the procedure itself but every place that it
has been called with named notation. However, changing a parameter name should be a rare operation.

You may want to use both positional and named notation in the same call. That's fine, but there are some rules you'll need
to follow. For example, you have to start out with positional and, once you start using named, you can't go back to
positional. Here's an example of what you can do:

add_book(' 1-56592-335-9', '100000001', 'Oracle PL/SQ. Progranm ng',

summary_in => NULL, author_in => 'Feuerstein, Steven, with Bill Pribyl",
page_count _in => 987);

That follows all the rules, so it will run just fine.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (10 of 11) [15/05/2002 22:48:37]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Using Named Notation

If you have a choice, use named notation whenever it's not obvious what the argument
corresponds to; for example:

update_ny_profil e(fav_book isbn => '"1-56592-335-9");

and their meaning is obvious, such as:

DBMS_QUTPUT. PUT_LI NE(' Hel | o Muddah. ') ;

arguments are not:

nmy_put _line(' Hell o_Fadduh.', lines_to_skip => 2);

Use positional notation with common utility programs that have only one or two parameters,

You could combine the two approaches if, say, the first argument is obvious but subsequent

Now we have seen an example of constructing and using a stored PL/SQL procedure that performs a single task: adding
a book's catalog and barcode data into the database. We'll now turn to another task: counting the number of copies of a
particular book. Retrieving a single quantity turns out to be an ideal opportunity to use a PL/SQL function, which, by

definition, returns a value (or ends with an unhandled exception).

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page32.html (11 of 11) [15/05/2002 22:48:37]

CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 3. Let's Code! > 3.3 Retrieving a Book Count with a Function

< BACK Start | Table of Contents | Index | Examples CONTINUE >

3.3 Retrieving a Book Count with a Function

Before trying to write the function, let's examine the generic syntax for creating this second type of
stored program.

3.3.1 Syntax for Creating a Function

Here is the template for creating a function. As you look it over, you'll probably realize that you have
seen most of these elements before, other than those in boldface.

CREATE [OR REPLACE] FUNCTI ON procedure_nane
(paraneterl MODE DATATYPE DEFAULT expression ,
par anet er 2 MODE DATATYPE DEFAULT expression ,

ca)

RETURN DATATYPE

AS

[variabl el DATATYPE ;
vari abl e2 DATATYPE ;

BEG N |
execut abl e_st at enent
RETURN expr essi on;

[EXCEPTI ON
VWHEN exception_nane
THEN

execut abl e_statenent ;]
END,;
/

The differences between this function template and the procedure template are minimal. In addition
to the fact that the CREATE statement says FUNCTION instead of PROCEDURE, this code differs
from a procedure in only two places: the header, which specifies the returned datatype, and the
body, which must explicitly convey a value back to the caller.

RETURN dat at ype

In the header, the RETURN clause is part of the function declaration. It tells the compiler
(and other programs) what datatype to expect back when you invoke the function.

RETURN expression

Inside the executable section, this use of RETURN is known as the return statement, and it
says "Okay, I'm all done; it's time to send back (return) the following value." You can also put

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page33.html (1 of 5) [15/05/2002 22:48:39]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

a RETURN statement in the EXCEPTION section.

Both of these are required. You can see an example that fills out this template in the next section.

3.3.2 Code for the book_copy_qgty Function

Moving along from template to real code, the book copy gty function returns the number of
books in the database that match the supplied ISBN. The example retrieves data from the database
using a cursor, which we won't get a chance to discuss in detail until Chapter 5. In a nutshell, a
cursor is a named place in memory where the program can get selected data out of the database.
You associate a specific SELECT statement with a given cursor in a CURSOR declaration
statement; notice, in the following code, that the input parameter, | sbn_i n, appears on the
righthand side of the WHERE clause. Then, to retrieve data, you open the cursor, fetch from it, and
then close it.

CREATE OR REPLACE FUNCTI ON book copy _qty(isbn_in I N VARCHAR2)
RETURN NUVBER
AS
nunber _o_copi es NUMBER : = O;
CURSOR bc_cur 1S
SELECT COUNT(*)
FROM book copi es
WHERE i sbn = isbn_in;
BEG N
|F isbn_in I'S NOT NULL
THEN
OPEN bc_cur;
FETCH bc_cur | NTO nunber _o_copi es;
CLCSE bc_cur;
END | F;
RETURN nunber o _copi es;
END;
/

Structurally, a function is a lot like a procedure, isn't it? Behaviorally, they tend to differ, though;
Figure 3-6 summarizes this function's behavior.

Figure 3-6. Use a PL/SQL function to return a value to the calling program; for a given ISBN,
this function determines how many book copies there are in the database

fSEN
book_copy_qty
Count of matching books
book_copies
tabile

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page33.html (2 of 5) [15/05/2002 22:48:39]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
Since functions return values, calling them is different from calling a procedure.
3.3.2.1 Using the function

The simplest thing to do with the result is assign it to a variable whose datatype matches the
datatype of the function's return value. Generically, a common use looks like this:

DECLARE
| ocal vari abl e DATATYPE;
BEG N
| ocal variable := function_nane (argunentl, argunent2, ...);
END,;
/

That's just like any other assignment statement, where you call the function on the righthand side of
the assignment operator and put the local variable on the left. So, in our case, we specify:

DECLARE
how_many | NTECER,
BEG N
how many : = book _copy qty(' 1-56592-335-9");
END,;
/

As shown in Chapter 1, | might want to pass the result to DBMS_OUTPUT.PUT_LINE to print the
result:

SET SERVEROUTPUT ON
BEG N
DBVMS_OUTPUT. PUT_LI NE(' Nunber of copies of 1-56592-335-9:
| | book copy qty('1-56592-335-9"));
END,;
/

Now that's nifty. Notice that book copy gty returns a VARCHARZ2, which is an acceptable input

datatype to concatenate with text and print using PUT_LINE. This nesting of functions inside other
statements is a common pattern that you'll use many times.

3.3.2.2 Some rules about functions
Here are some fun facts to keep in mind when you're writing functions:

« You can't create one of these standalone (or top-level) functions with the same name as a
standalone procedure. If you adopt the practice of naming procedures with verb phrases,
and functions with noun phrases, you shouldn't have to worry about this potential clash.

. If you forget the RETURN clause in the header, your function won't compile. That's a good
thing, because compiler errors are considered "early notification." But, if you forget the
RETURN in the body, you won't find out until you run the function, at which point Oracle will
spit out the error ORA-06503: PL/SQL: Function returned without value. There's a good

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page33.html (3 of 5) [15/05/2002 22:48:39]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page13.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

argument for thorough testing.

. When you invoke a function, the calling program must do something with the value the
function returns, such as store it in a local variable. PL/SQL doesn't tolerate "ignored"
function results the way C does.

. When the RETURN statement in the body gets executed, not only does the value flow back
to the caller, but so does the "thread of execution.” In other words, code that appears below
the RETURN will not run.

Finally, here is a note about terminology. Sometimes when people discuss "stored procedures,"” they
are really talking generically about stored programs; these programs could be procedures or they
could be functions. On the other hand, they may be talking specifically about procedures as
opposed to functions. If the overall context of the discussion doesn't give you a clue as to which they
mean, you won't sound like a doofus if you ask for clarification.

Procedures Versus Functions

Generally, a function performs some actions and returns a value that is the
result of those actions. You may correctly point out that it's possible for a
procedure to emulate a function by using a single OUT parameter, but most
programmers would avoid that approach as bad form.

In general, don't design your programs to return a status or flag variable to
indicate success or failure. You might do that in a language like C, but in
PL/SQL, the preferred programming style is to designate errors by raising
exceptions. If the program does not raise an exception, the calling program
assumes there were no problems during execution.

Occasionally, you'll find that you cannot easily or naturally return just one
value; in this case, use a procedure. To return multiple values, use multiple
OUT or IN OUT parameters that the caller can then read after the procedure
finishes executing. Multiple OUT parameters can get confusing, though, and
there is a trick to making those programs that need to return clusters of data
more understandable. You can actually "glue together" the different data
items into a single composite data item such as a record, a collection, or a
so-called object type. We haven't really talked about those features yet, but
we will cover them in Chapter 5.

3.3.3 A "Gotcha" about Exceptions Raised by Functions in the Declaration
Section

Earlier | showed how you can call a function using:

DECLARE
how_many | NTEGER;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page33.html (4 of 5) [15/05/2002 22:48:39]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

BEG N

how many : = book_copy_qty(' 1-56592-335-9');
END;
/

You may be tempted to make the previous code more compact by invoking the function when
initializing the variable, like this:

DECLARE
how many NUMBER : = book _copy _qty('xyz');
BEG N

So far so good. But what happens when the function raises an exception? It turns out that any
exception handler inside this block will not trap exceptions that this invocation of book copy gty

might raise. In other words:

DECLARE
how many NUMBER : = book _copy _qty('xyz');
BEG N
... What ever. ..
EXCEPTI ON
VWHEN OTHERS
THEN
/* SURPRI SE! Exceptions raised in the declaration section CANNOT be
| | handl ed here!
*/

END;
/

The exact reason for this behavior is a bit complicated, so this is one of those quirks you might want
to keep in mind when initializing variables with functions.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page33.html (5 of 5) [15/05/2002 22:48:39]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 3. Let's Code! > 3.4 Make Your Code Resilient

< BACK Start | Table of Contents | Index | Examples CONTINUE >

3.4 Make Your Code Resilient

You are probably eager to get going on making our sample application do more—so am I! But it is important
to first make sure the code we've written so far works as flawlessly as it possibly can. That's why I'm going to
take what might seem like a digression.

You've probably heard the expression garbage in, garbage out (GIGO). Maybe you've even uttered this
phrase from time to time, or heard it over the phone from support staff; it's supposed to "explain" some
nonsensical result (garbage out) by blaming faulty input (garbage in).

But is GIGO an inevitable state of affairs? Most programmers are incorrigible optimists when it comes to
thinking about how their programs will be used. The assumption is tidy in, tidy out. Nobody wants to plan for
inputs they consider to be "abnormal.”

To avoid unanticipated digital squalor, we have to run test cases. To run good test cases means dreaming up
various combinations of input data that we hope will break the program. Then we note the expected
results...run the program...compare the output...fix the program...rerun the tests. Yep, that's a lot of
bookkeeping that | would certainly prefer to avoid.

Hmm, lots of tedious executions of code with different inputs; this sounds like a good opportunity to write
some utilities, doesn't it? Let's create one ourselves and see if we can make this testing stuff more fun—or at
least automate the tiresome bits.

3.4.1 A Results-Checking Utility

First, I'd like to create a simple way that will compare two values and print out a "pass" message if they're the
same, or a "fail" message if they differ. This test is enormously useful, since the basis of testing is comparing
the actual output to the expected response. We'll probably use such a procedure every time we run a test.
While we're at it, let's throw in a description for the test, so that when we call this a bunch of times back-to-
back we can keep up with which tests have failed. Have a look at this "report equality” (r epor t eq)

procedure:

CREATE OR REPLACE PROCEDURE reporteq (description I N VARCHARZ,
expected _val ue I N VARCHAR2, actual val ue I N VARCHAR2) AS
BEG N
DBMS CQUTPUT. PUT(description || ": ');

| F expected val ue = actual val ue
OR (expected value I'S NULL AND actual value |'S NULL)
THEN
DBVS_OUTPUT. PUT_LI NE(' PASSED') ;
ELSE
DBMS_QUTPUT. PUT_LI NE(' FAI LED. Expected ' || expected_val ue
|| '; got ' || actual val ue);
END | F;
END;
/

Note that this version of the procedure compares strings (VARCHAR2Ss); we can also create similar
procedures to handle numbers, dates, and Boolean values.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page34.html (1 of 6) [15/05/2002 22:48:42]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

3.4.2 A "Unit Tester" for add_book

Armed with our first handy-dandy test utility, we will now write a program that will call the add_book
procedure in a variety of ways—yes, even sending garbage to it. The hope is that add_book will take out the
garbage "properly,” and our r epor t eq program is going to help. | will present the rather long program (87

lines) in pieces to make it easier to understand. Also, I've annotated the code with line numbers to aid in
making references to specific lines:

1 DECLARE

2 | _isbn VARCHAR2(13) := '1-56592-335-9';

3 | title VARCHAR2(200) := "Oracle PL/SQ. Programr ng';

4 | _summary VARCHAR2(2000) := 'Reference for PL/SQ. devel opers, ' ||
5 "including exanpl es and best practice recomendations.';

6 | _aut hor varchar2(200) := 'Feuerstein, Steven, and Bill Pribyl";
7 | _date_published DATE := TO DATE(' 01- SEP-1997', ' DD MON- YYYY');

8 | _page_count NUMBER : = 987,

9 | _barcode_id VARCHAR2(100) := '100000001";
10
11 CURSOR bookCount Cur 1S
12 SELECT COUNT(*) FROM books;
13
14 CURSCOR copi esCount Cur IS

15 SELECT COUNT(*) FROM book_ copi es;

16

17 CURSCOR bookMat chCur 1S

18 SELECT COUNT(*) FROM books

19 WHERE isbn =1 _isbn ANDtitle =1 _title AND summary = | _sunmary
20 AND aut hor = | __author AND date published = | _date_ published
21 AND page_count = | _page_count;
22
23 CURSOR copi esMat chCur | S
24 SELECT COUNT(*) FROM book copi es
25 WHERE i sbn = | _isbn AND barcode id = | _barcode_id;
26
27 how _many NUMBER;
28 | _sqgl code NUVBER,

Ah, let me interrupt here to comment a bit.

Lines 2-9. Here are declarations of local variables that hold normal values we can use in various tests.
Storing them in variables makes our life a bit easier because we can just reuse the variables. The | _ prefix is
a reminder that these are local variables.

Lines 11-12. This is the declaration of the program's first cursor. A cursor enables us to fetch values from the
database via a SQL SELECT statement. This particular statement counts how many total records exist in the
books table.

Lines 14-15. Similarly, this cursor lets us count the total number of book copies.

Lines 17-21. This cursor counts the number of books whose column values exactly match the values of the
local variables.

Line 27. The how _nany local variable temporarily stores the result of those "count" queries.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page34.html (2 of 6) [15/05/2002 22:48:42]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Line 28. The | sql code variable temporarily stores the output from PL/SQL's built-in SQLCODE function;
we'll explain that function a bit later in this section.

The execution section, shown in the following code, begins with a deletion of everything in our two database
tables. This ensures that any table counts that we do are only counting the new test data, and not data that

happens to be lying around from other runs. Obviously, you want to run this on your "scratch” database, not
the real thing!

29 BEG N

30 DELETE book_copi es;

31 DELETE books;

32

33 add_book(isbn_in => 1 _isbn, barcode id in => 1| _ barcode_ id,

34 title_in =>1 _title, summary_in =>1_summary, author_in =>1_author,
35 date _published in => | _date_ published, page count _in => | _ page_count);
36

37 OPEN bookMat chCur ;

38 FETCH bookMat chCur | NTO how_many;

39 reporteqbool (' add procedure, book fetch matches insert',

40 expected _val ue => TRUE, actual val ue => bookMat chCur %-CUND) ;

41 CLOSE bookMat chCur ;

42

Lines 33-41. Now we come to the first actual run of the add_book routine, which supplies all nominal inputs,
and which we expect to work. This begins the test to determine if the book added properly. By opening the
cursor and fetching from it, we can check to see if the record is present as expected. In lines 39-40 is a call to
reporteqgbool , aversion of r eport eq that operates on Boolean rather than string values. If the fetch was
successful, book Vat chCur %-CUND will be true (you'll read more about this sort of test in Chapter 5).As line
41 illustrates, it's good practice to close cursors as soon as the program is through with them.

43 BEG N

44 add_book(isbn_in => NULL, barcode id in => '"foo', title_in => 'foo',
45 sunmary _in => 'foo', author_in => "'foo',

46 dat e_publ i shed_in => SYSDATE, page_count_in => 0);

47 | _sql code : = SQ.CODE;

48 EXCEPTI ON

49 VWHEN OTHERS THEN

50 | sqgl code : = SQ.CODE;

51 END;

52

53 reporteq(' add procedure, detection of NULL input',

54 expected value => '-6502', actual value => TO CHAR(| sqgl code));
55

Lines 43-54. Next test: let's try a null i sbn to see if the input error detection works. If it does, the procedure is
supposed to raise a NO_DATA_FOUND exception. Since we expect to see an exception, we want to put the
text in a nested block. That way, we can handle the exception as the very next operation, rather than jumping
to the end of the main block.

To be consistent with the other tests, we want to identify a single result variable to compare with the expected
result. PL/SQL provides a special built-in function called SQLCODE that will have a non-zero value inside any
exception handler. Since we want to use the result code outside the exception handler, line 50 assigns its
valueto| sqgl code, which communicates the value as an argument to r epor t eq in lines 53 and 54.

Line 54 shows that we expect the result code to be -6502. This is the value PL/SQL assigns to SQLCODE
when a NO_DATA_FOUND exception occurs.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page34.html (3 of 6) [15/05/2002 22:48:42]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

56 OPEN bookCount Cur ;

57 FETCH bookCount Cur | NTO how_nany;

58 reporteq(' add procedure, book record count', expected_value => "1",
59 actual val ue => how_many) ;

60 CLOSE bookCount Cur ;

61

62 OPEN copi esCount Cur ;

63 FETCH copi esCount Cur | NTO how_nany;

64 reporteq(' add procedure, book copy record count', expected value =>"'1",
65 actual val ue => how_nmany);

66 CLCSE copi esCount Cur ;

67

68 OPEN copi esivat chCur ;

69 FETCH copi esiat chCur | NTO how_nmany;

70 reporteqbool (' add procedure, book copy fetch nmatches insert’,

71 expect ed_val ue => TRUE, actual val ue => copi esiat chCur %-OUND) ;
72 CLCSE copi esMat chCur ;

73

Lines 56-72. More tests. These just determine whether the expected number of records exist in the tables.

74 BEG N

75 add_book(isbn_in =>1 _isbn, barcode id in => 1| _barcode_ id,
76 title_in =>1 _title, summary_in => | _summary, author_in => | _author,
77 date_published in => | _date_published,

78 page_count _in => | _ page_count);

79 | _sqgl code : = SQLCODE;

80 EXCEPTI ON

81 VWHEN OTHERS THEN

82 | _sqgl code : = SQLCODE;

83 END;

84 reporteq(' add procedure, detection of duplicate isbn',

85 expected value => '-1', actual value =>1_sql code);

86 END;

87 |/

Lines 74-85. Now let's test to ensure that attempting to add the same i sbn a second time will raise an
exception. We expect Oracle to set a SQLCODE of -1, which is what you get when you attempt to insert a
record with the same primary key as an existing record. (This is really a test of the database design, but we
might as well test it somewhere.)

That's the end of the test. Whew! Now, assuming that we have enabled SERVEROUTPUT (see Chapter 2),
running this program from within SQL*Plus yields:

add procedure, book fetch matches insert: PASSED

add procedure, detection of NULL input: PASSED

add procedure, book _record count: PASSED

add procedure, book copy record count: PASSED

add procedure, book copy fetch nmatches insert: PASSED
add procedure, detection of duplicate isbn: PASSED

As you may know, this block serves as a unit test.[4] It also serves as a permanent, recorded example of how
to call the program, which is always a generous gift to leave to future generations of programmers. (By the
way, "future generations" includes you, six months from now, after you've written another 75 programs and
completely forgotten about this one!)

[4] The word "unit" refers to the individual program unit; it contrasts with other tests such as integrated tests,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page34.html (4 of 6) [15/05/2002 22:48:42]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

which help ensure that program units behave properly when assembled into an application.
3.4.3 Testing the book_copy_qty Function

This next routine is a unit tester for the book copy_ gty function. The principle of operation is the same as
the previous unit testing program:

1 DECLARE

2 I _isbn VARCHAR2(13) := '1-56592-335-9";

3 | _isbn2 VARCHAR2(13) := '2-56592-335-9';

4 | _title VARCHAR2(200) := 'Oracle PL/SQ Progranmm ng';

5 | _summary VARCHAR2(2000) := 'Reference for PL/SQ. devel opers, ' |
6 "including exanpl es and best practice recomendations.';

7 _aut hor varchar2(200) := 'Feuerstein, Steven, and Bill Pribyl";
8 _date_published DATE : = TO DATE(' 01- SEP-1997', ' DD- MON- YYYY');

9 _page_count NUMBER : = 987,

I
I
I
10 | _barcode_id VARCHAR2(100) := '100000001'
I
I

11 _barcode_i d2 VARCHAR2(100) := '100000002'

12 _barcode_i d3 VARCHAR2(100) := '100000003'

13

14 how_many NUVBER

15 BEG N

16 DELETE book_copi es;

17 DELETE books;

18

19 reporteq(' book copy_ gty function, zero count', '0',

20 TO CHAR(book copy_qty(l _isbn)));

21

22 /* Lets assune that add_book is working properly */

23 add_book(isbn_in =>1 _isbn, barcode_id in => | _barcode_id,

24 title_in=>1 title, summary_in => 1| _summary, author_in => | _author,
25 date_published_in => | _date_published, page_count_in => | _page_count);
26

27 reporteq(' book copy_qgty function, unit count', "1',

28 TO CHAR(book copy_qty(l _isbn)));

29

30 add_book_copy(isbn_in => | _isbn, barcode_id_in => 1| _barcode_i d2);
31 add_book_copy(isbn_in => 1| _isbn, barcode_id in => 1| _barcode_id3);
32

33 reporteq(' book copy gty function, nmulti count', '3',

34 TO _CHAR(book_copy_qty(!l _isbn)));

35

36 reporteq(' book copy gty function, null ISBN, "0,

37 TO CHAR(book _copy_qty(NULL)));

38 END;

39 /

Lines 30-31. These are calls to a procedure that | haven't illustrated. All they do is insert a record into the
book copi es table.

Running the unit test results in:

book copy_qty function, zero count: PASSED
book copy_qty function, non-zero count: PASSED
book copy_qty function, null |SBN. PASSED

which, of course, is what we had hoped to see.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page34.html (5 of 6) [15/05/2002 22:48:42]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

3.4.4 Why So Much Trouble?

At this point some readers will be wondering why I've gone to so much trouble. Can't your average
programmer just have a quick read of the code and see that it will work?

Well, that's the sort of thinking that makes someone an average programmer. That last check for a NULL
value in lines 36-37 is a case in point. My final version of the add_book program passed the test, but to tell
you the truth, | hadn't thought about this possibility in the original version (not shown in this book). Only when
| started writing the unit test did it occur to me that | needed to consider at least three input cases: good, bad,
and the eternal troublemaker, NULL. And only by forcing my mind to consider what the test should cover did |
realize my omission; | just got lucky that it worked. Thinking about the test helps you traverse a different set of
mental pathways, where you can often get a better angle into your code.

While budgets, management, or other constraints sometimes limit how
much "real" testing goes on, the fault often lies with programmers who
view formal testing as tedious, or even unnecessary. Introduce some
sort of testing discipline—beyond "looks good to me"—into your
programming practice.

Much has been written about the psychology of software testing, but once you start writing your own unit
tests, you may get enough insight to write your own book. Well, maybe you won't write a book, but there is
something about testing that you just can't internalize until you've been through your own "Aha!" experiences.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page34.html (6 of 6) [15/05/2002 22:48:42]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 3. Let's Code! > 3.5 Using PL/SOQL Packages to Organize Code

< BACK Start | Table of Contents | Index | Examples CONTINUE >

3.5 Using PL/SQL Packages to Organize Code

At this point we've written PL/SQL to handle a few of the catalog tasks, plus we've written some unit testing code and
utilities.

Now it's time to identify some of the shortcuts we have taken with our overall requirements and design, and figure out how
we're going to overcome the resulting limitations.

There are a lot of things that we've completely ignored in the code shown so far. For example:

. What happens if the record in the books table already exists? Is that the same thing as adding a new copy of the
book?

« How can the librarian modify information in the catalog?

. What if the book gets "weeded," lost, or otherwise removed from the library? How will we use PL/SQL to record that
fact in the database?

. What if there are lots of different kinds of database lookups (queries) we'll need to do, such as retrieving books
based on various search criteria?

Clearly, by the time this thing is done, we're going to wind up with a lot of bits and pieces of code that support related, but
not identical, tasks. Wouldn't it be nice if there were a way to organize this code to make it easier to build and manage?
There is, and it's called a package.

A PL/SQL package is a named container that can hold any number of procedures and functions. Packages can hold other
constructs too, such as exceptions, variables, and type declarations, and later we'll see how incredibly useful these
additional features can be. For now, though, we'll start by putting only program units into our package.

ol While it's true that other programming languages like Java and Ada have a
. construct called a package, PL/SQL's rendition has its own unique definition and
‘. 4. jdiosyncrasies (that's just something to keep in mind if you have encountered

those other languages).

3.5.1 Parts of Packages

For reasons that will become clear as we go on, packages usually have two parts: a specification (often abbreviated as
spec) and a body.

3.5.1.1 The package specification

The package specification tells a user of the package what it can do rather than how it will do it. The spec contains only the
headers of the program units rather than any executable code. It's kind of like a declaration section for program units. The
simplified template for creating a package spec is shown here:

CREATE OR REPLACE PACKAGE package_nane
AS

programl_ header;
progran?_header;
progranB8_header;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (1 of 9) [15/05/2002 22:48:45]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

END package_nane;
/

where package nane is the descriptive name we want to assign this assemblage (subject to PL/SQL naming
conventions).

Here I'm going to create a package to manage books in the database. What to name it? Some programmers view this sort
of package as a manager and therefore would name it book ngr or booknan. Others might want to denote the type of

object it is by naming it book pkg. My preference is for short and simple names, so | am going to call it simply book .I51

[5] Invoking packaged programs follows the pattern package _nane. pr ogr am namne, so we wind up with wonderfully pithy
invocations such as book. add(...).

The specification might start as follows:

CREATE OR REPLACE PACKAGE book
AS
PROCEDURE add(isbn_in IN VARCHAR2, title_in I N VARCHAR2,
aut hor _in I N VARCHAR2, page_count _in I N NUVBER
summary_in I N VARCHAR2 DEFAULT NULL
dat e_published_in | N DATE DEFAULT NULL
barcode_id_in IN VARCHAR2 DEFAULT NULL);

PROCEDURE add_copy(isbn_in IN VARCHAR2, barcode_id_in I N VARCHAR?);

FUNCTI ON book_copy_qty(isbn_in I N VARCHAR2)
RETURN NUMBER,

PROCEDURE change(isbn_in IN VARCHAR2, new title I N VARCHARZ2,
new_aut hor | N VARCHAR2, new_page_count | N NUVBER,
new sunmmary | N VARCHAR2 DEFAULT NULL,
new dat e _published | N DATE DEFAULT NULL);

PROCEDURE r enpve_copy(barcode_id_in I N VARCHAR2) ;

PROCEDURE weed(isbn_in I N VARCHAR2) ;
END book;
/

In most cases (including this one), there is no requirement to put the procedures and functions in any particular order in the
package spec.

Notice that the statement to build a package specification begins with CREATE OR REPLACE, but the individual program
headers begin with

FUNCTI ON nane ...
or
PROCCEDURE narme . ..

That's because all of the PL/SQL code in a single package gets created, replaced, or dropped simultaneously, so only one
CREATE statement makes sense.

As you can see by reading over the spec, we plan to perfect our code by adding several of the missing functions (although
we will not yet implement requirements to read data from the database).

The package specification serves as an application programming interface (API) for the package. That name gives it
perhaps a bit more dignity than it deserves, but it is an accurate description. The idea of any API is that it is supposed to be
a stable contract between the programmer and any other programmer who uses the program. Establishing such a contract
is a way of putting a simple face on what might be very complex underlying behavior.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (2 of 9) [15/05/2002 22:48:45]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
3.5.1.2 The package body

The package body contains the program unit bodies—that is to say, the executable statements that correspond with the
headers in the package specification. A simplified template for the package body looks like this:

CREATE OR REPLACE PACKAGE BODY package_narme
AS

private_prograns; [/* optional */

programl_body;

progran?_body;

progranB8_body;
END package_nane;
/

In other words, the package body is where you put the implementation of the programs you've listed in the spec.

You almost always create a package body after creating its specification. The compiler figures out which spec the body
goes with by examining its name, which must match that in the spec. Moreover, the body must have an implementation for
each of the programs you've included in the spec, or it will fail to compile. The converse is not true; you mayinclude "extra"
programs in the package body. These are shown in the previous template as pri vat e _prograns.

The actual code body of the book package includes one private procedure for illustrative purposes:

CREATE OR REPLACE PACKAGE BCDY book

AS
/* private procedure for use only in this package body */
PROCEDURE assert_notnull (tested_variable I N VARCHAR2)

IS
BEG N
| F tested variable |I'S NULL
THEN
RAI SE VALUE_ERROR;
END | F;

END assert_notnul | ;

FUNCTI ON book_copy_qty(isbn_in I N VARCHAR2)
RETURN NUMBER
AS
nunber _o_copi es NUMBER : = 0;
CURSOR bc_cur IS
SELECT COUNT(*)
FROM book_copi es
WHERE i sbn = isbn_in;

BEG N
IF isbn_in I'S NOT NULL
THEN
OPEN bc_cur;

FETCH bc_cur | NTO nunber _o_copi es;
CLCSE bc_cur;
END | F;
RETURN nunber _o_copi es;
END,;

PROCEDURE add(isbn_in IN VARCHAR2, title_in I N VARCHAR2,
aut hor _in I N VARCHAR2, page_count_in | N NUVBER,
summary_in I N VARCHAR2, date_published_in | N DATE,
barcode_id_in I N VARCHAR2)

IS

BEG N
assert_notnul |l (i sbn_in);

| NSERT | NTO books (isbn, title, summary, author, date_published
page_count)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (3 of 9) [15/05/2002 22:48:45]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

VALUES (isbn_in, title_in, sunmmary_in, author_in, date_published_in,
page_count _in);

| F barcode_id in IS NOT NULL

THEN
add_copy(isbn_in, barcode_id in);
END | F;
END add;
PROCEDURE add_copy(isbn_in IN VARCHAR2, barcode_ id _in I N VARCHAR?2)
IS
BEG N

assert_notnull (isbn_in);
assert_notnul | (barcode_id_in);
I NSERT | NTO book_copi es (isbn, barcode_id)
VALUES (isbn_in, barcode_id_in);
EXCEPTI ON
VWHEN DUP_VAL_ON | NDEX
THEN
NULL;
END;

PROCEDURE change(isbn_in I N VARCHAR2, new title I N VARCHAR2,
new_aut hor I N VARCHAR2, new _page_count | N NUMBER
new summary | N VARCHAR2 DEFAULT NULL,
new _date_published | N DATE DEFAULT NULL)
IS
BEG N
assert_notnul | (isbn_in);
UPDATE books
SET title = new title, author = new_ author, page_count = new_page_count,
summary = new _sunmmary, date_published = new date_ published
VWHERE i sbn = isbn_in;
| F SQLYRONCOUNT = 0
THEN
RAI SE NO DATA FOUND;
END | F;
END change;

PROCEDURE r enove_copy(barcode_id_i n I N VARCHAR?2)
IS
BEG N
assert_notnul | (barcode_id_in);
DELETE book_copi es
VWHERE barcode_id = barcode_id_in;
END r enove_copy;

PROCEDURE weed(isbn_in I N VARCHAR?)
IS
BEG N
assert_notnul | (isbn_in);
DELETE book_copi es WHERE i sbn = isbn_in;
DELETE books WHERE isbn = isbn_in;
| F SQLYRONCOUNT = 0
THEN
RAI SE NO_DATA FOUND;
END | F;
END weed;

END book;
/

Yes, there are one or two features in this rather long example that I've not discussed yet, such as SQL%ROWCOUNT.
Please suspend your natural curiosity about them until a later chapter.

By convention, most people prefer to maintain the same order of the programs in the body as in the spec (but with any

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (4 of 9) [15/05/2002 22:48:45]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

private programs at the very top of the body, because the compiler requires them to appear above where they are called).
If, when writing a package body, you forget to include any of the named program units you've listed in the package spec,
the compiler will throw up its little hands and refuse to compile the package body until you fix the problem.

Turning our attention back to the pri vat e progr ans part, they are "private” with respect to the world outside the
package; users of the package will not be able to directly invoke any of these private programs. This allows you to create
special-purpose utilities that are only "visible" to the other programs in the package. In our case, we're adding one tiny
private routine, assert not nul |, so that we don't have to repeat those few lines of code in every procedure. It's quite

handy to include local programs in this fashion; such programs typically serve one or more of these purposes:
. As support utilities for the other program units in the package
. As away to avoid redundant code
. As a means of saving or manipulating the value of some internal variable

By contrast, those elements you put in the spec are available to all calling programs and are known as public programs. It's
definitely time for a picture; Figure 3-7 provides a graphical representation of public versus private.

Figure 3-7. Packages present a public interface on top of a private implementation

| assert_motnull Frivate prognam

add_copy
Fublic programs
change

FRIMOVE_COpY

weed

=
-
-y
2
"I'-C
—d
=
-l

It's easy to underestimate the importance of this public versus private thing, which is actually very important to writing solid,
understandable, reusable code. Computer scientists, never a group to leave a technique unnamed, would say that we are
implementing an "abstraction" of a book by using "information hiding." Call it what you will; it's another verse in the song
about putting complex tasks underneath simple interfaces.

3.5.2 Benefits of Using Packages
Getting back to concepts, why are packages a good thing? Let me count the reasons:
Organization

Most people like to be organized. By grouping related program units into packages, the programmer can bring
order and structure to the application. In programmer's terminology, packages provide a mechanism for
implementing and enforcing abstraction, encapsulation, and information hiding.

Ease of comprehension

Packages make the business of managing large numbers of program units easier. There is some famous
psychological research that indicates that the number of things a human can simultaneously keep in his head is
seven, plus or minus two. You can't always keep the number of package components in that range, but the
grouping can definitely reduce the load on your brain's RAM.

Design options

Solving a big problem usually translates into breaking up the problem into smaller pieces. Two common, though
dissimilar, approaches for deciding how to break things up (decompose) are functional and object-based. Packages
are equally amenabile to either of these design techniques.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (5 of 9) [15/05/2002 22:48:45]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Performance

When a packaged program gets run for the first time during the session, Oracle reads an already-compiled version
of the entire package into memory, not just the program unit you've invoked. This is a performance win for
subsequent calls to other program units in the package, because a slow trip out to disk won't be required. By the
way, this behavior is a good argument for keeping only related components in each package.

Dropping Stored Programs

Notice that we have put the code from the add book procedure into the package we're developing,
although we have shortened its name to add because it will only appear in the context of the book
package.

So what happened to the original add book procedure? Oh, it's still around, but let's go ahead and
remove it, partially because packages are so great, and partially just to show how to destroy procedures.
The relevant SQL statement that will (permanently) remove a procedure from the database is DROP
PROCEDURE. This statement is ruthless but otherwise uninteresting:

DROP PROCEDURE add_book;

To repeat, this is a SQL statement, not a PL/SQL statement; if you try:

BEG N

DROP PROCEDURE add_book; /* this will NOT work here! */
END;
/

it will result in a compile-time error that looks like this:

drop procedure add book;

ERROR at |ine 2:

ORA- 06550: line 2, colum 1:

PLS-00103: Encountered the synbol "DROP'" when expecting one of the follow ng:

...snip...
quickly proving that PL/SQL is not a true superset of SQL—in case you had any doubts.
By the way, after you drop a procedure, you cannot "un-drop" it without some pleading with your

database administrator to perform some recovery calisthenics. If you still have a file containing the
source code, though, you just recreate it.

In real life, you don't want to go off casually dropping things in the database unless you're sure they're
not in use—or unless you enjoy experimenting to see who will yell when things start to break.

Session convenience features

It's often handy to store some intermediate or constant values in memory for the duration of a session (that is, the
entire period during which the user is logged in to the database). With packages, you can store such values in
global or package variables. (Be aware, though, that this feature is of limited use when developing web-based
applications, which are generally not session-based. We'll talk more about that in Chapter 4.) Without packages,
these values would typically be stored in the database itself, but this has unnecessary performance overhead and

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (6 of 9) [15/05/2002 22:48:45]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

can be a challenge if you need to refer to some value after your transaction rolls back.
Special PL/SQL features

One of the niftiest things packages allow you to do is create more than one program unit that has the same name.
Why is this useful? For one thing, it lets you call one program that can handle inputs that differ only in datatype. By
using this technique, known as overloading, which is unavailable to top-level program units, you can create the
illusion that your program is actually more generic. Oracle's TO_CHAR function, for example, is overloaded to
accept data in multiple datatypes such as NUMBER and DATE. We'll explain overloading and write our own
overloaded program at the end of this chapter in the section called Section 3.6.3.

Less recompilation pain

With large systems composed of dozens or hundreds of programs, you usually have to worry about the difficulties
of recompiling a program's dependents when you make changes to it. Packages allow you to avoid a lot of this
pain, because you can recompile the package body without having to recompile all the other programs that call
your modified program. (If you need to change the package specification, yes, you will have to recompile every
dependent program, but the good news is that you can usually get Oracle to do that for you automatically.)

- It's a good programming practice to store a package's spec and its body in two
as separate files. That way, it's easy to recompile only the body if you make
‘. 4= changes to it. Needlessly rerunning the statement that creates the package spec

causes all the package's dependencies to become invalid, and they must get
recompiled before you can use them.

Wow, that's a lot of reasons to use packages. So now you are probably saying to yourself, if packages are such a good
idea, and if it's also a good idea to write a unit test for every program, it's just about time to revisit the original unit test
programs and put them into a package, too. Okay, maybe you weren't thinking that.

3.5.3 Revisiting the Unit Test Program

Let's build another package! We will assemble procedures to test each program unit, using a package mostly just to keep
things organized. We don't care too much about performance and some of those other things we talked about in the
previous section. Here, a testing package provides a neat and clean approach that can nicely parallel the structure of the
book package we just built.

The package spec looks like the following:

CREATE OR REPLACE PACKAGE test book AS
PROCEDURE run (verbose | N BOOLEAN DEFAULT TRUE);
PROCEDURE add;
PROCEDURE add_copy;
PROCEDURE book_copy_qty;
PROCEDURE change;
PROCEDURE r enpve_copy;
PROCEDURE weed;
END t est book;
/

Each program unit in the main book package gets a corresponding procedure here int est _book, but without any
parameters. You could call each one independently, or just call the omnibus r un routine, which will run all the tests back-to-
back. I've parameterized the r un procedure with an optional Boolean to indicate whether we wish to see the details of all
the tests. Other than that, I'll hardcode the testing behavior in each procedure.

If all goes well, running the test in SQL*Plus looks like this:

SQ.> SET SERVEROUTPUT ON SI ZE 1000000
SQL> execute test book.run

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (7 of 9) [15/05/2002 22:48:45]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Testing book package..
..add procedure, detection of NULL input: PASSED
..add procedure, book_record count: PASSED
..add procedure, book copy record count: PASSED
..add procedure, book fetch nmatches insert: PASSED
..add procedure, book copy fetch matches insert: PASSED
.add procedure, detection of duplicate isbn: PASSED
.add_copy procedure, nom nal case, first book: PASSED
..add_copy procedure, nom nal case, second book: PASSED
..add_copy procedure, ignore duplicates: PASSED
..add_copy procedure, bad isbn detection: PASSED
..add_copy procedure, NULL isbn detection: PASSED
.. add_copy procedure, NULL barcode_id detection: PASSED
.. book_copy_qty function, zero count: PASSED
.. book_copy_qty function, non-zero count: PASSED
..change procedure, single field test: PASSED
. change procedure, NULL barcode_id detection: PASSED
. renove_copy procedure, book count nornal: PASSED
.renove_copy procedure, book copy count normal: PASSED
.renove_copy procedure, superfluous invocation: PASSED
.weed procedure, book count nornmal: PASSED
.weed procedure, book copy count nornmal: PASSED
...weed procedure, superfluous invocation: PASSED
book package: PASSED

If you are a "bottom-line" person, you can turn off the verbosity by supplying a value of FALSE to the r un program as
follows:

SQ.> SET SERVEROUTPUT ON SI ZE 1000000
SQ.> execute test book.run(verbose => FALSE)
book package: PASSED

For better or for worse, the corresponding package body is a little bit too long to include in this chapter. It does make
several improvements in the original approach. So, when you get to the point where you want to write your own test
package (or if you are just a "details person™), | recommend reviewing the code, which you can find in full at
http://www.oreilly.com/catalog/learnoracle. While you're visiting O'Reilly's site, you might also have a look at

utPLSQL (http://oracle.oreilly.com/utplsqgl/), an open source framework for unit testing.

3.5.4Is All This Necessary?

If you think that my emphasis on testing in this chapter is extreme, | sympathize. The problem is that programming is an
extremely detail-oriented affair, users are extremely demanding, and lukewarm approaches are extremely dangerous.
(There is an entire school of thought known as "extreme programming”[€l that glorifies such excesses.) So when should
you write the test program? Very, very soon. Some people say you should write it before you write the program itself! If you
wait to write the test, it may never get done; and even if you do get around to it later, the delay may cost you some of the
benefits of testing. By forcing your mind to consider the expected results early in the development cycle, you are more
likely to uncover flaws in your program logic and fix them cheaply and quickly.

[6]1 For further reading, you can find books on the topic by Kent Beck, and/or have a look at
http://www.extremeprogramming.org/.

Writing good test cases is not a trivial task, which explains why many programmers pressed for time think they can skip
this step. But programmers will do well to remember another adage my father taught me:

If you don't have time to do it right the first time, how will you have time to do it again?

My feeling is, if you want to be a real programmer, you'd better write unit tests as you go. This will, in the long run, let you
spend more of your time writing new stuff, and less time debugging and fixing old stuff.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (8 of 9) [15/05/2002 22:48:45]

http://www.oreilly.com/catalog/learnoracle
http://oracle.oreilly.com/utplsql/
http://www.extremeprogramming.org/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page35.html (9 of 9) [15/05/2002 22:48:45]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 3. Let's Code! > 3.6 Going to the Next Level

< BACK Start | Table of Contents | Index | Examples CONTINUE >

3.6 Going to the Next Level

As you gain some proficiency with procedures, functions, and packages, you may begin to wonder how you can
take your work to the next level of sophistication. Here are several tips and suggestions for doing so.

3.6.1 Naming Your Files

As a practical matter, an issue that you will face is what to name your files of source code when you store them in
the operating system. When assigning names to operating system files containing PL/SQL code, | tend to use the
file extension to give a clue as to what's inside the file. Although Chapter 6 will revisit the issue of file naming in
some detail, here are some guidelines to get you started:

Filename pattern|Contents

nane. pro (Standalone) stored procedure

name. fun (Standalone) stored function

nane. sq Anonymous block or script containing multiple blocks, SQL statements, and/or SQL*Plus

commands
name. pks Package specification
nane. pkb Package body

So, following this convention, some of the files in this chapter would be:

add_book. sp add_book stored procedure
book_copy_qty. fun book_copy_qty stored function
t est _add_book. sql Unit test program for add_book
book. pks Package specification

book. pkb Package body

The package specification and the package body should be in separate files.

3.6.2 Reuse Your Code

Don't think, as some early software management theorists did, that you can count lines of code as a measure of

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page36.html (1 of 5) [15/05/2002 22:48:47]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

programmer productivity. Small is beautiful; programmers should strive to do more with less. As one story goes:

One Real Programmer managed to tuck a pattern-matching program into a few hundred bytes of
unused memory in a Voyager spacecraft that searched for, located, and photographed a new
moon of Jupiter. [71

[71 From Ed Post's commentary "Real Programmers Don't Use PASCAL," Datamation, July 1983,
pp. 263-265.

Whether that anecdote is true or not, even mere mortal programmers should try to make their code lean (though
not so much as to be obfuscated). One way to do this is to design for reuse. Let's look at an example to see what
this means.

The r epor t eqgprocedure (which | named as an abbreviation for "report if equal”) does the following:

Print the nane of the test.
Conpare the expected value to the actual val ue.
If expected and actual are equal, print PASSED, otherw se print FAILED.

That's easy enough. Here is the code, which first appeared earlier in this chapter, reproduced here for
convenience.

CREATE OR REPLACE PROCEDURE reporteq (description I N VARCHARZ,
expected_val ue I N VARCHAR2, actual val ue I N VARCHAR2) AS
BEG N
DBM5S_OUTPUT. PUT(description || ": ');
| F expected_val ue = actual val ue
OR (expected value I'S NULL AND actual value |I'S NULL)
THEN
DBMS_OUTPUT. PUT_LI NE(' PASSED) ;
ELSE
DBMS QUTPUT. PUT_LI NE(' FAI LED. Expected ' || expected_val ue
[| '; got ' || actual value);
END | F;
END,;
/

This program compares two VARCHAR?2 variables. Now, r epor t egbool has identical pseudocode, but it is

designed to handle Boolean variables instead. One might be tempted to implement it as follows, with some simple
modifications to the original:

CREATE OR REPLACE PROCEDURE reportegnum (description I N VARCHARZ,
expect ed _val ue I N BOOLEAN, actual value I N BOOLEAN) AS
BEG N
DBMS QUTPUT. PUT(description || ": ");
| F (expected val ue AND actual val ue) OR (NOT expected value AND NOT actual val ue)
OR (expected value I'S NULL AND actual val ue 1'S NULL)
THEN
DBMS_QUTPUT. PUT_LI NE(' PASSED) ;
ELSE
DBMS_QUTPUT. PUT_LI NE(' FAI LED. ") ;
END | F;
END;
/

Even if you're not writing machine code for Voyager spacecraft, you might sense that there is something wrong
with this redundancy. What if you want to modify the testing or reporting behavior (for example, to record all test
descriptions and results in a database table)? You've just doubled the amount of work you'd have to do (if you
even remember that there are two different places you have to make the change). More likely, someone other

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page36.html (2 of 5) [15/05/2002 22:48:47]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

than you will be making the change, and he or she will have no idea that there are two different versions, resulting
in an inconsistency that will go undetected until who-knows-when.

In PL/SQL, one way around this problem is to modify the second procedure to call the first. To make this happen,
we need to convert the Boolean values into VARCHAR2s, but unfortunately Oracle's TO_CHAR function won't
work on Booleans. No sweat! We just create our own function to do that conversion. Following Oracle's own
pattern of naming some of their conversion functions, we'll call it bool eant ochar:

CREATE OR REPLACE FUNCTI ON bool eant ochar (i s_true | N BOOLEAN)
RETURN VARCHAR2
AS
BEG N

IF is true

THEN

RETURN ' TRUE' ;
ELSIF NOT is true

THEN
RETURN ' FALSE' ;
ELSE
RETURN TO_CHAR(NULL) ;
END | F

END bool eant ochar ;
/

Now we can just rewrite r epor t egbool as:

CREATE OR REPLACE PROCEDURE reportegbool (description I N VARCHARZ,
expected_val ue I N BOOLEAN, actual val ue | N BOOLEAN)
AS
BEG N
reporteq(description, bool eantochar (expected_val ue),
bool eant ochar (actual _val ue));
END r eport egbool ;
/

The essential thing to notice is that all of the reporting logic is contained within r epor t eq, and if we want to
change how it works, we can do so by modifying only one program. Nice! Even if the maintainer of the code
doesn't know which program to change, he will quickly figure it out, regardless of which program he opens first.

But wait, that's not all! If you act now, you can simplify things even more by using a technique called overloading.

3.6.3 Simplify by Overloading

We've already seen what life is like without overloading; | wrote a procedure called r epor t eq to handle string
comparisons and another procedure called r epor t egbool to handle Boolean comparisons. Presumably | would
need another, r epor t eqdat e, for dates, and on and on. All of these programs do roughly the same thing. Why
can't | have just one program—or at least one program name—for all of them? If | could, it would transfer the
"need to know" into the utility program, thereby simplifying the life of programmers who use the utility. The fewer
program names that |, as a programmer, need to memorize, the better.

Well, that's what overloading is good for. Overloading a procedure simply means creating more than one
procedure with the same name. Under the covers, there are actually four different procedures inside one
package. To illustrate, if | wanted to write a package containing a reusable set of testing utilities, my package
spec could start out like this:

CREATE OR REPLACE PACKAGE tut AS
PROCEDURE reporteq (description I N VARCHARZ,
expected_val ue I N VARCHAR2, actual val ue I N VARCHAR?2) ;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page36.html (3 of 5) [15/05/2002 22:48:47]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

PROCEDURE reporteq (description | N VARCHARZ,
expect ed_val ue I N NUMBER, actual val ue I N NUMBER);

PROCEDURE reporteq (description I N VARCHARZ2,
expect ed _val ue I N BOOLEAN, actual value I N BOOLEAN);

PROCEDURE reporteq (description I N VARCHARZ,
expected_val ue I N DATE, actual val ue I N DATE);

PROCEDURE sone_ot her _procedur e;
END;
/

That's pretty weird, isn't it? The r epor t eq procedures have the same name and differ only in the datatypes of
the parameters. This is the "under the covers" part. You do have to implement all four procedures in one package
body, but you can have them call each other, as | showed earlier, so that this duplication is not so onerous. (The
package body | leave as an exercise to the reader.)

The great thing is that when you use the overloaded routine, PL/SQL is smart enough to figure out which one to
invoke:

DECLARE
shoe_si ze NUMBER;
search_result VARCHAR2(64);
BEG N

tut.reporteq(' fl ubber procedure, max bigfoot detect', expected result => 15,
actual _result => shoe_size);

tut.reporteq(' flubber procedure, walrus search',
expected result => 'l amthe walrus', actual _result => search _result);
END;

That is, each call to r epor t eq gets matched up properly with the proper version.

There are a few situations where overloading will not work, and you won't get an error until you actually attempt to
run the program. Here are the basic rules to make overloading work:

« Programs you want to overload will have the same name and will be in the same package.[8l
[8]1 You can also overload programs that are declared "in-line" in the declaration section.

. Overloaded programs must differ either in the number of parameters or in the datatype family of the
parameters (when matched up positionally). For example, with respect to overloading, the runtime engine
can't tell the difference between a NUMBER and an INTEGER, but it can tell the difference between a
NUMBER and a VARCHARZ2, because they are in different datatype families.

« A procedure can be overloaded with a function even if the previous two conditions are not met.
. If you want to overload functions, they must differ in more than just the datatype of the value they return.

If you fail to meet any of these conditions, you'll probably get the runtime error PLS-00307: too many declarations
of “<subprogram name>' match this call.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page36.html (4 of 5) [15/05/2002 22:48:47]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page36.html (5 of 5) [15/05/2002 22:48:47]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 3. Let's Code! > 3.7 Now What?

< BACK Start | Table of Contents | Index | Examples CONTINUE >

3.7 Now What?

The working title of this chapter was "Treasure In, Treasure Out," a phrase that sums up how
most of us start out wanting our programs to behave. I've tried to spice up this chapter with
various lessons on programming defensively—that is, programming in such a way that you
assume the worst conditions will happen. Your programs should be able to deal with garbage in
without producing garbage out.

There are a variety of ways to prevent "garbage out syndrome." We've looked at a few of them in
the course of creating a package that services and protects the book data in the database. To
summarize:

. Always remember the possibility that PL/SQL variables and parameters can be null,
especially when programming IF-THEN logic.

. Build and use "table wrappers" with PL/SQL; develop the programming discipline needed
to use the approach consistently.

. When declaring parameters for stored routines, give them default values wherever it
makes sense to do so.

. In general, prefer named notation to positional notation, especially when it adds
information that needs to be present.

« Avoid duplication in your code; doing so will make future modifications less prone to
errors.

. Organize your code into packages rather than into a lot of standalone procedures and
functions.

. Handle exceptions where doing so makes sense, but raise exceptions if your program
might encounter problems it shouldn't be deciding how to solve.

. Use overloading to transfer complexity away from the developer and into the system,
simplifying future development.

. And finally, you should write some sort of companion test routine for every program unit
that you create.

In the next chapter we'll start to expand the system outward, toward the end user, by developing a
user interface for some of the book management features we've just programmed.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page37.html (1 of 2) [15/05/2002 22:48:48]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
Last updated on 12/4/2001

Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page37.html (2 of 2) [15/05/2002 22:48:48]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 4. Go Web, Young Man

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 4. Go Web, Young Man

In the previous chapter, we introduced the library application and built its basic book management
features. But the system we've built so far doesn't give end users any way to take advantage of
these features. Because we probably don't want everyone in the library lining up at our office door
asking us to make entries in the catalog, we'll want to build a user interface for the system.

When building the application’s user interface, or front end, the first decision is what overall style
the application will have: does it need to look like a typical Windows application, with toolbars,
fancy onscreen doodads, and sophisticated online help? In our case, probably not, particularly
considering our development budget. Does it need to run from the command line? Almost
certainly not. Instead, making the front end web-based—that is, accessible from a web browser
like Netscape—makes sense for a number of reasons:

. Almost everyone in the user community is comfortable surfing the Web, so they should be
comfortable with an application they can run from a web browser.

. We want to provide the same interface to users whether they are logged in locally or
remotely, a requirement that is easy to fulfill with a web-based program.

. We don't want to have to install special software on each computer workstation.
« We can build the entire application in PL/SQL.

Before we get into the details of building our web-based user interface, let's make sure you
understand some basic web concepts. What | want to show next is a quick overview of how web
pages come into the world, both with and without PL/SQL. This discussion begins with an
introduction to writing web pages using standard HyperText Markup Language (HTML).

If you're working in an environment where you aren't currently
building web-based PL/SQL applications, you might be
i tempted to skip this chapter. Given how prevalent web-based
) applications are these days, though, we recommend that you
read on. It's only a matter of time before you'll need to know
how to use the features described here.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page39.html (1 of 2) [15/05/2002 22:48:50]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page39.html (2 of 2) [15/05/2002 22:48:50]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 4. Go Web, Young Man > 4.1 Introduction to HTML

< BACK Start | Table of Contents | Index | Examples CONTINUE >

4.1 Introduction to HTML

The World Wide Web was not invented by Oracle, Microsoft, IBM, Netscape, or any other software company. It was, in fact, created by a
physicist at a laboratory in Switzerland, Tim Berners-Lee, who wanted a platform-neutral way for researchers around the world, already
joined via the Internet, to share and link their work. Since improved communication, rather than commercial gain, motivated the Web's
inventors, open standards rather than proprietary technologies are its lifeblood.

Even the language of the Web, HTML, one of a broad class of markup languages, is derived from a more mature open standard called
Standard Generalized Markup Language , or SGML. The earlier standard is dense and complex. Fortunately for us, HTML is a lot simpler
than SGML!

The fundamentals of HTML have not changed much over the years, and some readers may already be familiar with how to create web
documents. If you understand the basics of HTML and web servers, including HTML forms, please skip ahead to Section 4.2. Otherwise,
press on.

4.1.1 Where Do Web Pages Come From?

Imagine that you're sitting at your computer, looking at some web site on the screen. How did that page make its way to your desktop?
There are three main parts of the process, as illustrated in Figure 4-1.

Figure 4-1. Web pages: from my office to your office

1 Design web pages

2 Files
Install om containing
weh server HTML

3

Wiews with web browser
wia Imtemet

1. A web page designer somewhere had to make a lot of decisions about page content and layout, and transform these ideas into
HTML. The web page may also include short programs known as scripts, which can incorporate a number of fancy effects into the
page, such as a button link that changes color when you roll your mouse over it.

2. Next, someone, usually a systems-type person, had to find or install a computer with an Internet connection running a special piece
of software called an HTTP server (or more commonly called a web server). The Internet is a collection of computers connected by a
bunch of communication lines and speaking at least one common protocol, which is like a language. The HTTP (HyperText Transfer
Protocol) server sits around waiting on requests to send out particular pages.

3. Finally, you connected to the Internet from a computer running some web browser software like Netscape Communicator or
Microsoft Internet Explorer, and you pointed your browser to the page. This request travels to the web server, which responds by
reading the HTML files and transmitting their contents to your web browser. The browser understands both how to receive the page
via HTTP, and how to display the HTML.

Of course, I'm leaving out about a jillion details, but | always like to start with the big picture. Since neither of us has infinite resources,
though, this chapter will focus on step one: producing the web pages themselves. | will also touch on different ways you can accomplish
step two when using Oracle. And as far as step three goes, you're probably already proficient at it!

4.1.2 HTML Basics

HTML provides a way to mark up plain text so that it can have structure such as headings, paragraphs, and tables, and so that it can
include non-textual elements such as images, buttons, and lines. HTML defines some special tags to designate the elements of the
document. An element is a predefined logical part of the document such as a section heading. A tag is a name given to the element; tags
appear between angle brackets (greater-than and less-than signs). Most elements are delimited with a pair of tags following the pattern:

<t agnane>ny docunent el enent</tagnane>

Notice the slash in front of the tag name at the end. It is this slash that designates the closing tag. (There are also a few HTML elements

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (1 of 9) [15/05/2002 22:48:53]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

that use "singleton" tags that don't require the closing end.)
In addition to tags, HTML elements can have properties known as attributes. Attributes appear inside the tag, taking the general form:
<t agnane

attribute ="val ue"

>ny text here</tagnane>

In the following example of using an attribute, | define the background color of an HTML document to be white rather than the browser
default (often gray). As you can see, bgcol or is an attribute of the BODY element:

<BODY bgcol or ="whi te">
my docunent body
</ BODY>

Tag names and attribute names are case-insensitive, but | like to follow the convention of capitalizing tag names and making attribute
names lowercase.

So how do you put these pieces together into a web page? You will want at least two sections in your document:

. A header section, delimited by the HEAD element, which contains information such as the page title.
. A body section, delimited by the BODY element, which contains the content of the page. This is the main part of the document.

The pattern for a simple HTML document is:

<HTM_>
<HEAD>

<TlI TLE>Docunent title</TlITLE>

...other "declarative" information
</ HEAD>
<BODY>

content of page
</ BODY>
</ HTM_>

The following list describes these components:
HTML element

The HTML element, bounded by the <HTM_> and </ HTM_> tags, houses the document's head and body.

HEAD element

This section contains "declarative" information (that is, information that applies to the entire page). The document title, keywords for
search engines, and special instructions to the browser all go here, between <HEAD> and </ HEAD>.

BODY element

The body corresponds to the visible parts of the web page. Between <BODY> and </ BODY> you put your text, marked up to indicate
subheadings, images, links, tables, and other presentable elements—everything you want the user to see.

Notice that elements can be nested, which means one element is completely contained inside another. The head and body are both nested
inside the <HTIVL> tags, the title is nested inside the head, and so forth. The rules say that you must close the inner element before the

outer one. Thus, the following example is logically incorrect:

<QUTER>
<| NNER>
This illustrates the RIGHT way to nest elenents

</ | NNER>
</ QUTER>

but this one isn't:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (2 of 9) [15/05/2002 22:48:53]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

<QUTER>
<| NNER>
This is the WRONG way to nest! Don't do it like this!
</ QUTER>
</ | NNER>

(Note that there are not really tags named <| NNER> or <OUTER>; those are just placeholders in the examples.)

At last we're ready to look at our first HTML document:

<HTM_>
<HEAD>
<Tl TLE>Fanbus Quotations: Richard II11</TITLE>
</ HEAD>
<BODY>
" ; A horse, a horse, ny kingdomfor a horse!&uot; - Richard Il
</ BODY>
</ HTM_>

Let's assume that you've created the HTML in some convenient text editor and saved it in a file called richardlll.html. If you then openitin a
web browser, you will see something like Figure 4-2.

Figure 4-2. If Shakespeare had HTML

}E".—:Fanmn Quotations: Richard 10 . [W=] E3

Fie Edit View Go Communicstor Help

"4 horse, a horse, my kingdom for a
horsel" - Richard II1

w == Document: Dione

Note that the title (the text between <T| TLE> and </ T| TLE>) appears on the top border of the browser window, and the text in the BCDY
section appears down in the main part of the window.

In an HTML document, the choice of line breaks and indentation is arbitrary. Browsers usually render all adjacent HTML white space
(spaces, tabs, and even line breaks) as a single space character; you have to use additional tags to force line breaks in the rendered
document. For example, the paragraph element marks where paragraph breaks go on the page and is marked with the <P> tag, as you can

see in Figure 4-3.

Figure 4-3. The paragraph (<P> and </P>) tags

<PrBrowsers interpret the p - Met

ragraph element as a i <P> d’ Netscape - =10] x]
Eccﬁ of contipuous text Hle Edt View EBo Commuricater Help
</P»

Browsers mierpret the paragraph

<P>It gets separated from element as a block of contiguous text

adjacent elements with a

it of . .
2;;}0 extra space It gets separsted from adiacent

elernents with 2 bil of exlra space,

o == Diocument: Dor

Viewing Your Handiwork

How does static HTML get from a text file that you've created into your browser? There are at least two
different ways.

The first way is simply to open the file directly; in Netscape Communicator, for example, you could do this
by choosing File?OpenPage?ChooseFile (or you could just open it from within a file browsing window, for
example, by double-clicking on the file in Windows Explorer). This will only work if you have direct access
to the file—which, as its creator, you will!

The second way you could view it in your browser is to "publish it" using a web server like Apache. This
involves putting the file into a special location on the machine running the web server. While this is a bit

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (3 of 9) [15/05/2002 22:48:53]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

inconvenient during the development of static HTML, using a web server is the only way to develop
dynamic HTML. (I'll describe what | mean by "dynamic" HTML later in this chapter in Section 4.2.)

In contrast, the break tag,
, just means "go to the next line" without any extra vertical space, as shown in Figure 4-4. There is no
closing break tag; </ BR> does not exist.

Figure 4-4. The break (
) tag

These are a few of m 3
favorite things:(BR)y ¥
 dn -Ller . M= E3
wicBE> File Edt View Go Communicator Help
PL/SOL

Linux These are a few of my favonie

things:

w1

FL/SOL

Lirs

- == Diocument: D

In both cases, text will wrap to the width of the window, even if you resize the window.

There is one very important rule about spaces in HTML. You must not add a space between the angle bracket and the text that it encloses;
nor can you skip a space after the closing slash. Here are some bad examples:

< BADTAG > Do not use spaces inside the angle brackets
unl ess you want to confuse the browser! < / BADTAG >

And here is the correct way:

<GOODTAG> Ah, much better. Now your browser software shoul d not
suf fer any undue stress. </ GOODTAG

That's just dandy, but what if your document needs to display an angle bracket for real, and not just for a tag? In this case, you can replace
it with the special string & t ; , which, as all browsers know, is the same as <. In fact, there are a number of these special substitutions you

should make, a few of which appear in Table 4-1.111

[1] The complete list includes many other special characters such as accented letters, currency symbols, and Greek letters. To learn more, visit
http://www.w3.org and look for "character entity references."

Table 4-1. Commonly used HTML substitutions

Your text HTML equivalent
< <
> > ;
" ;
& &anp;
(non-breaki ng space)

Single quotes don't need a substitution; they can be used as is.

Okay, those are the barest of basics about HTML. Since our library application will need screens where users can search for books, and
where librarians can create entries in the catalog, we next need to examine the feature of HTML that enables a user to interact with the
system. This requires putting data into a web page that can be sent back to the server.

4.1.3 Accepting Data via Web-Based Forms

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (4 of 9) [15/05/2002 22:48:53]

http://www.w3.org/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Any time you use a web page to enter data into forms on the screen, you are using a feature of HTML known as HTML forms or simply
forms. This consists of one or more input items (such as text fields, drop-down lists, and checkboxes) nested inside a form element, which
at its simplest looks like the following:

<FORM net hod="get or _post" action="programto run_on_submt">
..various input itemns...
<I NPUT type="submt">

</ FORW>
4.1.3.1 Constructing a form

In the <FORM> tag, the most important attribute is act i on, which tells the browser where to "hand off" the user-entered data when the user

presses the Submit button. Usually this value corresponds to the name of a program on the server; in the next part of this chapter we'll write
a PL/SQL program that reads data from a form and loads it into the database.

The net hod attribute designates how the data will travel from the browser to the server in the request body. There are only two possible
values:

get
Transmits the user-supplied data to the server by appending it to the end of the URL
post
Causes data to "stream" from the browser to the server
When in doubt, use post , which is better at sending large amounts of data. (Note that Oracle's web gateway supports both methods.)

Each form contains one or more input items that cause the browser to draw a container where the user can supply some sort of data. The
| NPUT element is the most common way you will create these input containers, but, as Table 4-2 shows, other useful elements to accept
data include TEXTAREA and SELECT.

Table 4-2. Common input items you can use in HTML forms

Syntax Description Samplel2l

A rectangular field in
which the user can enter
text.

n—width [31 of field on
the screen.

<INPUT type="text"” name="string" size="n" maxlength="n" val ue="defaul t">|n_maximum number of |Pages |¢

characters allowed in the
field.

def aul t —text that
appears in the field when
the user first loads the
page in a browser.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (5 of 9) [15/05/2002 22:48:53]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

<I NPUT type="checkbox"
nane="string" val ue="val ue"
default _state>

A box that is either
checked or unchecked.
Only those submitted in
the "checked" state have
their value transmitted to
the server.

def aul t st at e—either
blank for unchecked, or
the word checked for

checked.

Lost? &

<I NPUT type="submt"
name="string" val ue="val ue">

Submit button.

nane

(optional)—defaults to
the string "submit".

val ue (optional)—text
that appears on top of
the button; also, the
content sent to the server
when submitted. Defaults
to the string "submit".

Submit |

<TEXTAREA nane="string" cols="n"
rows="nt>

val ue
</ TEXTAREA>

Produces a field that is
similar to a text input
item, but that scrolls to
allow the user to enter
multiple lines.

val ue—text that
appears in the field when
the user loads the page.

rows and col s
(optional)—govern the
size that the browser
renders the field on the
screen.

<SELECT name="string" size="n">
<OPTI ON val ue="hi dden_val uel" >

vi si bl e_val uel
</ OPTI ON\>
<OPTI ON SELECTED

val ue="hi dden_val ue2">

vi si bl e_val ue2
</ OPTI ON\>

etc.

</ SELECT>

Predefined list of items
from which the user may
choose. Include one
option element for each
item on the list. To
indicate the default, use
the attribute SELECTED.

hi dden_val ue—the
content actually sent to
the server if the user
selects this option.

vi si bl e_val ue—the
text that the user sees on
the list of options.

paparback

[2] Some of these samples also include textual labels that are not strictly part of the input item.

[31 Measured in characters, though usually an approximation because most browsers display the text in a proportionally-spaced font. Also note that if
n is less than m browsers typically allow the contents of the field to "scroll" to handle the extra text. You could do so using, say, the arrow keys on the
keyboard, because browsers don't always give you an item-level scrollbar that you could drag with the mouse.

There are many more features of forms, but these are enough to get us started.

4.1.3.2 Building a web-based library form

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (6 of 9) [15/05/2002 22:48:53]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

It's time to turn our attention back to the library application, and see how we can build the beginnings of the web-based application that will
be used by librarians. Let's assemble these pieces into a form that will enable the user to enter data about a book (and, eventually, get this
data into the catalog).

The following is the HTML for the form:

<HEAD>
<TI TLE>Add Book to Catal og</ Tl TLE>
</ HEAD>
<BODY bgcol or="whi te">
<H1>Add Book to Catal og</H1l>
<FORM net hod="post" acti on="eat _add_book_f or nm'>

<P>| SBN
<I NPUT type="text" nanme="isbn" maxl ength="13" size="13">
</ P>
<P>Title
<INPUT type="text" nane="title" size="70" nmaxl ength="2000">
</ P>

<P>Bar code
<I NPUT type="text" nanme="barcode_id" naxl engt h="100" size="35">
</ P>
<P>Summary
<TEXTAREA nane="summary" col s="60" rows="8"></ TEXTAREA>
</ P>
<P>Aut hor
<I NPUT type="text" name="author" maxl| engt h="200" size="40">
</ P>
<P>Dat e publi shed
<INPUT type="text" nanme="date_ published" size="20" naxlength="40">
</ P>
<P>Page count
<INPUT type="text" nanme="page_count" maxl ength="6" size="6">
</ P>
<p>
<INPUT type="submit" name="Submt" val ue="Submt">
</ P>
</ FORM>
</ BODY>
</ HTML>

This results in a page that looks like Figure 4-5.

Figure 4-5. HTML form that accepts book data

B Add Book o Catalog - Metscape

Eiz Edit Yew Go Communicaior Help

" Bookmarks A Lecation [http. /el dataciah com/pls lopweby add_book_fom =] ﬁ

Add Book to Catalog
wmenl

Title |

Bar code |

Summary | _|J

foathor |
Diate published |
Page count

St |

== Document: Dese Gl B FE WA

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (7 of 9) [15/05/2002 22:48:53]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

It seems like we're making some real progress now—we've got a way for the user to enter a book in the catalog! It's not very fancy yet;
about the only thing it does is throw the fields up on the screen. There is no data validation other than some upper-bound checking on the
length of the text elements. But the biggest problem is that after the user enters some data in and clicks Submit, nothing happens. We'll
address these problems, all in due time.

To Learn More about HTML

A word about HTML elements: there are about a hundred of "em, and about as many attributes, allowing
you to create everything from clickable images to complex nested tables to downloadable video snippets.
Fortunately, we don't need to use very many features to make our library catalog system work.

To learn more about HTML, you could do what | often do when learning a new technical topic—let an
O'Reilly book come to your rescue. In my case it was Chuck Musciano and Bill Kennedy's book HTML: The
Definitive Guide. There are probably a thousand books on HTML, but this one worked for me. Now in its
fourth edition and retitled HTML and XHTML: The Definitive Guide, this work serves both as an
introduction and as a reference.

Accurate and detailed HTML reference information is also available from the home page of the World Wide
Web Consortium (known as W3C) at http://www.w3.0rg/. As with most standards, there is a certain
amount of poetic license on the part of the implementers; as your HTML skills advance, you will realize that
different browsers have been implemented in slightly different ways, and you'll want to become aware of
the special features and quirks of these browsers.

As we've just seen, you can create and store the HTML as a web page in a plain text file. If you want to change the page, you edit the file.
This sort of page is a static page and is most commonly used in small, billboard-style web sites that typically don't change from day to day.
Static pages on the Web are produced by humans who use web-page editing tools (of which there are too many to mention).

4.1.4 Testing Your HTML

For the type of web pages we've examined so far in this chapter, the testing scheme is rather different from the PL/SQL unit testing we saw
in Chapter 3. The first gross-level test most people do for HTML consists of loading it into a web browser and having a look at it. This is
known as "testing by inspection." Do things line up the way you expect them to? Do the escaped characters render properly? If you have
added some fancy graphics, is the file format supported by the browser?

Once you get past this gross-level check, there is good news and bad news. The good news is that there are a lot of tools, many of them
free, to help you find syntactic errors in your HTML, which could cause problems for browsers. We'll take a look at one of these tools at the
end of this chapter. The bad news is that even if your HTML passes the syntax check, you still need to worry about two complicating factors.

The first complicating factor is deciding what web browser(s) (including what versions) to use. Standard HTML does not always look and act
the same across different browsers. You need to test whatever you promise to support. Deciding what to support is outside the scope of this
book, and involves factors such as the following:

. What platform your users are using (Apple Macintosh versus Microsoft Windows versus GNU/Linux).
. Whether the application needs special features available only in particular browser versions.

« Whether you have enough clout to get your users to switch from whatever they're currently using. If you don't, you will likely need to
learn how to detect what browser the user is running, and then put a bunch of if-tests in your code to send different HTML to
different browsers.

The second complicating factor is the speed of the connection between the client and the server. If you expect users to be on the fast local
area network, but it turns out that they actually need to connect via dialup from home, you may be in for a rude awakening if they discover
your files are noticeably slow to download. Fortunately, simple text and HTML forms make for very lightweight pages. If you add graphics,
you may need to optimize them for web presentation and test them using a sample connection (alternatively, some HTML editors provide
while-you're-working estimates of the amount of time that will be needed to download a given page at various speeds).

There is one place I've hinted at for which the unit testing approach introduced in Chapter 3 is more appropriate, and that is the act i on

program that runs when the user submits an HTML form. Generally speaking, this program will generate HTML in real time; the content of
that HTML depends on what data the user has entered. You can imagine that this will need to be tested using some new techniques. But

let's not get ahead of ourselves. The next section introduces the concept of generating web pages, demonstrates why it is important, and

shows some examples of using PL/SQL to create web pages.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (8 of 9) [15/05/2002 22:48:53]

http://www.w3.org/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page40.html (9 of 9) [15/05/2002 22:48:53]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 4. Go Web, Young Man > 4.2 Using PL/SOQL to Create Web Pages

< BACK Start | Table of Contents | Index | Examples CONTINUE >

4.2 Using PL/SQL to Create Web Pages

The biggest reason that we need to write programs that generate HTML pages "on-the-fly" is to extract (or store) information from the
database. You cannot produce these pages in advance because their content depends on information that is potentially changing all
the time. In this book, | refer to these as dynamic pages. Be careful, though; this term can easily confuse. As | use the term, "dynamic"
does not mean that the page is full of animated images, dancing monkeys, and unsightly blinking text. Nor does "dynamic" refer to
dynamic HTML (DHTML), which is a relatively new extension to HTML you can read about in a dozen different books (not this one, I'm
afraid). Even HTML stored in static files can have animation and DHTML. Instead, in this book I'm using the term dynamic to refer to
the generation method, not the visual result; it means that the HTML that arrives at the user's browser was output from a computer
program and not merely copied from a file.

A common use of dynamic pages is to respond to requests the user makes by filling out a form on a web page. For example, if a
library patron wants to find a particular book, he or she would enter some search criteria into a form on the screen. The system would
search the database for anything matching the criteria, and then deliver a dynamically-built results page to the user. As you might
guess, when compared with writing a static page, it's more complex to write a program that generates a page, but it turns out that
there are some typical patterns you can follow to make it easier.

Figure 4-6 shows how a PL/SQL procedure can produce web pages through Oracle's web gateway. In one common configuration,
the web server is actually a separate piece of non-commercial software called Apache (from http://www.apache.org). By happy
coincidence, Oracle distributes and supports Apache software, including their own custom program called modplsgl, which makes the
connection between the web server and PL/SQL.

Figure 4-6. Generating dynamic web pages with PL/SQL

1. User request page 2, Jerver defermines

from address that it Apache 1. Web server sends
5 a PLASEQL page wib serer requrest fo (rade .
pLsoL | . Oracle rims
@qﬂ prescedura PLSQL program
6. Web server refums 5. Oracle returns output
P running page to Browser o weeb server Oracle
wieh birewsee database

You don't call modplsql directly in your code; you merely make calls to Oracle-supplied built-in packages which invoke modplsql for
you. A call in your PL/SQL program to one of the procedures in Table 4-3 sends your HTML through modplsgl to the web browser.

Table 4-3. Some built-in PL/SQL procedures used in web applications

Syntax Description

Receives parameter and sends it (in string form) through modplsql to the web browser. Adds trailing
newline.

HTP. PRI NT(expr essi on); _) »)
expressi on can be anything that evaluates to one of the datatype families string, number, or date

(not Boolean).

HTP. PRN(expr essi on) ; Like HTP. PRI NT, but does not append a trailing newline.

) Like HTP. PRI NT, except it converts the characters <, >, ", and & to their HTML equivalents (see
HTP. PRI NTS(expr essi on) ; P q (

Table 4-1).
HTP. P(expressi on); Easier-to-type alias for HTP. PRI NT.
HTP. PS(expr essi on) ; Easier-to-type alias for HTP. PRI NTS.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (1 of 24) [15/05/2002 22:49:04]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
http://www.apache.org/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Undocumented (by Oracle) procedure allows you to throw away the current page the gateway is
HTP. I NI'T; preparing to send to the user and replace it with another page. This procedure is useful in handling
errors and exceptions, although it is not yet officially supported by Oracle.

A good first step in writing a dynamic page is to compose a sample static page to use as a model. Imagine that we want to display the
current date and time according to the clock on the server computer. In the following code you can see a snapshot of the output from
the planned dynamic page-generating program, which we'll name show t i ne:

<HTM_>
<HEAD>
<TITLE>SWhat tine is it on the server?</TITLE>
<HEAD>
<BODY>
It is now 27-AUG 2001 11:25
</ BODY>
</ HTM_>

The only part of this that needs to be truly "dynamic" is the current date and time, which needs to be computed when the user loads
the page. In this simple example, the date and time will only be correct at the moment the user loads the page; it won't be refreshed
with the new date and time unless the user reloads the page.

4.2.1 Embedding HTML in PL/SQL

Starting in pseudocode, the idea is to construct a long string variable to hold the HTML, then send the variable to the browser:

Construct the beginning of a string containing the page's HTM.
Fetch the current date and tine.

Append the HTM. string with the date and tine.

Append the HTML string with closing tags.

Qut put the HTM. string through the web server.

Fortunately, in PL/SQL, getting the current date and time on the server is trivial using the SYSDATE function. So this design takes
flesh as shown in the first version of show t i ne, named show t i ne, which generates a dynamic page:

CREATE OR REPLACE PROCEDURE show_ ti ne

AS
the title VARCHAR2(30) := "Wat tinme is it on the server?';
the time VARCHAR2(20) := TO CHAR(SYSDATE, ' DD- MON- YYYY HH24: M ') ;
ht M VARCHAR2(200) ;
BEG N
/* construct the beginning of a string containing the page's HTM. */
htm ="' <HTML><HEAD><TI TLE>'

|| the_title
|| ' </TITLE></ HEAD><BODY>' ;

/* append the HTML string with the date and tine */
htm := htm || "It is now ' || the_tine;

/* append the HTML string with closing tags */
htm = htm || ' </BODY></HTM.>';

/* output the HTM. string through the web server */
HTP. PRINT(htmi) ;

END,
/

You can see that the program converts the system date and time into text, and that it then incorporates this text into the HTML. I've
put the "title" of the page into a variable as a reminder that the HTML can be built from other variables. (In fact, if things are likely to
change, it's often better to create parameters for them; later in this chapter, we'll take a look at how to do that.)

Running this program results in the ht ni variable containing, at the particular time | executed it, the following text:

<HTML><HEAD><TI TLE>What tinme is it on the server ?</ Tl TLE>S<HEAD><BCODY>It i s now.
27- AUG 2001 17: 15</ BODY></ HTM_>

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (2 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

which you can see in a browser in Figure 4-7.

Figure 4-7. Output from show_time rendered as a web page

I wWhat time iz it on the server? - Netzcape
Eie Edit ¥ew Go Commuenicsior Help

¢ EBookmaks % Gomm [hitp/Yanel dataciah comdplzlopwetyshow_tme ¥ | m

It 15 nover 27-AUG-2001 17:15

= Document Dore

If you look at the "location" field in Figure 4-7, you'll see that the page appears at http://ariel.datacraft.com/pls/lopweb/show_time.
How did | know the URL? The web address, or URL, is composed of other pieces of information that | already knew. Let's take a
closer look at these components.

http://

This is the way that the web browser knows what Internet protocol to use. The HTTP protocol is the usual way to view web
pages. | don't know why there are always two slashes after it—it's just one of those mysteries.

ariel.datacraft.com
This is the hostname of the computer where the web server is running.[41

[4] This particular hostname is disconnected from the world, though, so typing in the URL won't work unless you're at my office. Drop by
anytime.

pls

This is the default identifier that allows the web server to distinguish requests for dynamic PL/SQL pages from requests from
other sorts of pages. (There are other tools for creating dynamic pages, like Perl, which might have an identifier like "cgi-bin"
instead of "pls".)

lopweb

This is the gateway's Database Access Descriptor (DAD), which the database administrator has set up. It is a way to define
various properties of the connection to Oracle: which schema and user ID to use, what sort of security scheme to use, whether
to "pool" the connections, and others. The DBA can create other DADs with different properties. If you need to create one, see

Creating a DAD.
show_time

This, at last, is the plain old name of the PL/SQL procedure that we created. It has to be executable by the user we've defined
in the DAD (lopweb in our case).

Turning our attention back to the raw HTML, you may feel, as | do, that it is too ugly to look at. All of the tags are jammed up next to
each other in one long line, with no breaks or white space. This violates the following programmer's adage:

Neatness counts. Never pass on to future programmers code you would object to inheriting yourself.

Yes, neatness counts! Odds are that your code will outlive your job assignment, even if you don't plan it that way. That means that
someone, somewhere, will inherit your code and have to maintain it without you. Would you rather the people who inherit your code
were blessing you forever or cursing you forever?

One might argue that there is not much need to look at the HTML, since it merely exists as an intermediary form, but the truth is that
during development, you will need to examine the as-generated HTML in order to test and debug your PL/SQL. So, what can | do to
"pretty-print" it so it looks like my original sample?

<HTM_>
<HEAD>
<TI TLE>What tine is it on the server?</TI TLE>
</ HEAD>
<BODY>

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (3 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

It is now 27-AUG 2001 11:25
</ BODY>
</ HTM_.>

At first | think, no problem! PL/SQL will let me put end-of-line breaks in string variables. So we only need to make some minor
modifications to the procedure:

CREATE OR REPLACE PROCEDURE show_ ti ne2

AS
the_ title VARCHAR2(30) := "What tine is it on the server?';
the time VARCHAR2(20) := TO CHAR(SYSDATE, ' DD- MON- YYYY HH24: M ') ;
ht M VARCHAR2(200) ;

BEG N

/* construct the HTML in a variable
* [
htm =
' <HTM_>
<HEAD>
<TITLE>" || the_title || '</TITLE>
</ HEAD>
<BODY>
It is now ' || the_time ||
' </ BODY>
</ HTML>' ;

/* output to the browser
*/
HTP. PRINT(htmi) ;

END;

/

So, what's the problem? It looks a bit better, but now the PL/SQL is ugly. It mixes languages and styles, and looks as if it will be a pain
to maintain. Well, | personally wouldn't want to maintain it. On the other hand, any time you generate one language from another,
there will be special challenges.[51 Let's look at an alternative approach to solve the mixed-language challenge, and see if it will be
any better.

[51 Oracle does bundle a toolkit consisting of built-in packages that allow you to hide the HTML behind generic PL/SQL wrappers, but using
this approach adds another programming layer that you would have to learn. While | do use a number of convenient built-ins from the toolkit, |
don't recommend that you replace every snippet of literal HTML with the Oracle toolkit equivalent call. Refer to Oracle's documentation of the
extensive HTP and HTF packages for more information.

Creating a DAD

If you're the DBA at your site, you'll want to know how to create a Database Access Descriptor (DAD).
Assuming you're running at least 8.1.7 (or you have licensed a product such as WebDB or iAS), you
may have success with the steps summarized below:

1. Following the instructions given in Chapter 7, create an Oracle account that will own the
PL/SQL programs that will generate web pages.

2. Ensure that the Oracle HTTP server is up and running. On Windows NT or 2000, start the
"service" named Oracle homeHTTPserver on Unix and use the command:

$ORACLE HOVE/ Apache/ Apache/ bi n/ apachect| start

3. Point your web browser to http://hostname:port/pls/admin_/gateway.htm where hostname is the
name by which the server computer is known on the network, and port probably defaults to
7777 for Unix and 80 for Windows NT.

4. Click on "Gateway Database Access Descriptor Settings."

5. Click on "Add Default (blank configuration)."

6. Follow the instructions on the page. Fill in the Oracle username and password that you just

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (4 of 24) [15/05/2002 22:49:04]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

created; you can use the username as the DAD name, if you like. Otherwise, you can accept
the defaults or leave the rest of the fields blank.

7. Click OK.

For more details, read the Oracle documentation, such as Oraacle9: Application Server Using the
PL/SQL Gateway.

4.2.2 Embedding PL/SQL in HTML

Up until now, we've been embedding HTML in PL/SQL. That can be made to work, but what if there were a way to do it the other way
around—that is, to put the PL/SQL inside HTML? Would that be better? Beginning with Oracle8i Release 2 (Version 8.1.6), Oracle
bundles a tool that lets you do just that: write HTML with special PL/SQL tags inside it. The feature is called PL/SQL Server Pages,
abbreviated PSP.

4.2.2.1 Introduction to PL/SQL Server Pages
With PSP, you embed special non-HTML instructions for the server inside <%and %> delimiters. Then you run an Oracle command-

line program called loadpsp that reads the PSP file and graciously converts it into a PL/SQL stored procedure. Figure 4-8 shows the
steps. See the sidebar Running loadpsp for a summary of program parameters.

Figure 4-8. PL/SQL server pages allow you to generate a stored procedure

[+ P .gm:edure:'shm_
time £

leadpsp -replace -user
cHTML> Lopwahb,/possword
somefile.psp

</HTML>

1. Broqramiter dreates HTML 2 Prograeer s loadip with 3. Inaepsp transtates e into
file with armhedded PSP [ogs, wusermamespassward os defined in PLAQL pracedure {execlohle
e, somefiepp” Database Access Descriptor (0AD) througiy web gateway!

Running loadpsp

The program that reads your PSP files and generates stored PL/SQL is called loadpsp. This program offers only a
few command-line options:

| oadpsp -replace -user usernane/ password errorHandl erfilenanme filenanel fil enane2...

where:

-replace
This is an optional parameter that drops any existing stored procedure that has the same name as the one
you are currently creating. If you don't specify - r epl ace and the procedure already exists, you will receive
an error message.

-user username/password

This is a required parameter that indicates which Oracle user will own the stored procedure that loadpsp
generates. Typically, this will be the same Oracle user as designated in the PL/SQL gateway's Database
Access Descriptor.

errorHandl erFil enane filenanelfil enane2 ...

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (5 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

The final arguments you supply are the names of one or more PSP files to convert. At least one filename is
required. The er r or Handl er Fi | enane is required if you have designated an er r or Page attribute in the

procedur e directive, and is optional otherwise; if present, though, it must match the value supplied in the
error Page attribute. Note that er r or Handl er Fi | enane must appear on the list of flenames before (on
the left of) any file(s) that refers to it.

You should always name your PSP files with a .psp extension. The rest of the filename is unimportant, unless you
have forgotten to specify the name of the procedure using <%@ pl sql
loadpsp will name the procedure the same as the filename (minus the .psp extension).

procedur e=nane %, in which case

The good news about PSP is that it's a fairly thin layer; beyond the basic HTML and PL/SQL you already know, there aren't many new
things to learn. Table 4-4 shows some of the PSP directives we use. (Note that this list excludes some of the less-common options.)

Table 4-4. Constructs available in PL/SQL Server Pages

To perform this function

Do this

With this syntax

Designate file as source code
for PL/SQL server page

Name the file with a .psp
extension and include the
"page language" directive.

<% page | anguage="PL/ SQ." %

Handle an exception on the
web page by jumping
("redirecting”) to another page

In the page directive,
include the opt i onal
err or Page attribute and
follow special | oadpsp

syntax (see Running
loadpsp).

<%@ page errorPage="fil enane. psp" %

Contains the error handler.

Specify the name of the
resulting PL/SQL procedure.

Include the pr ocedur e
directive. (If you omit this,
loadpsp will name the
resulting procedure the
same as the filename
minus the extension.)

<%@ pl sql procedure="procnane" %

procnamne becomes the name of the procedure; it must follow the
PL/SQL naming rules.

Display contents of a PL/SQL
variable or expression

At the location in the HTML
where you want the result
to appear, include the
PL/SQL fragment inside a
PSP "expression block."

<% pl sql _expression %

pl sgl _expressi on returns an Oracle number, date, or string (such as
VARCHAR?2). This might be a variable, constant, function call, or
arithmetic expression.

Execute one or more PL/SQL
statements

Enclose the PL/SQL
statements inside a PSP
"code block."

<% st at emrent 1;
st at enent 2;
%

st at ement N;

Any number of PL/SQL statements, including BEGIN/END blocks, are
legal here. To have the statement print something to the web browser,
use one of the HTP. P procedures.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (6 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

<%@ pl sql paraneter="nane" type="pl sqgl _dat atype"
def aul t ="val ue" %

name—name of formal parameter to this procedure.

Receive a value into the Use the par anet er

procedure directive. pl sgl _dat at ype—(optional) parameter's datatype family; will
generally be VARCHARZ2, which is the default, when processing data
from HTML forms.
val ue—(optional) associated default value.
<% vari abl el nane DATATYPE;
vari abl e2_nane DATATYPE;

Declare one or more local Use the vari abl e

variables directive. %

Use standard PL/SQL declaration surrounded by special tokens. No
DECLARE keyword is necessary here.

Given these constructs, let's rewrite the earlier example using PSP, and see if the resulting code is any cleaner:

<% page | anguage="PL/ SQ." %
<% pl sql procedure="show_ tine" %
<HTM_>
<HEAD>
<TI TLE>What tine is it on the server?</TITLE>
</ HEAD>
<BODY>
It is now <% TO CHAR(SYSDATE, 'DD-MON-YYYY HH24:M') %
</ BODY>
</ HTML>

Hey, that's looking better, isn't it? The boldface text indicates the PSP-unique additions. If this example is stored in a file named
show_time.psp, we can load it into the database using the Oracle loadpsp program:

| oadpsp -replace -user usernane/ password show tine. psp

user nane and passwor d indicate which Oracle user will own the code, typically the same one defined in the Database Access
Descriptor. Once this is done, we can invoke the show t i ne URL just like we did before.

loadpsp is a tool that actually writes PL/SQL for you. So why not use it all the time? First, PSP uses the same underlying model as our
first approach, and you must understand the groundwork or PSP won't make much sense. And, second, PSP is cool, but it's not that
cool. It can't generate packages, for example, and it generates ugly PL/SQL. Nevertheless, PSP is a very useful addition to your bag
of tricks.

Let's look under the covers and see what sort of PL/SQL loadpsp does put in the database. In fact, it ran the equivalent of the
following:

CREATE OR REPLACE PROCEDURE show tinme AS
BEG N NULL;
htp. prn("
")
htp. prn(’
<HTM_>
<HEAD>
<TITLE>SWhat tine is it on the server?</TITLE>
</ HEAD>
<BODY>
It is now ');
ht p. prn(TO_CHAR(SYSDATE, ' DD MON- YYYY HH24: M '));
htp. prn("

</ BODY>

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (7 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

</ HTM_>
"),
END;
/

No rocket science there. Now, you are not supposed to edit this generated codel€l ; instead, if you need to make changes, you should
modify the PSP file and rerun loadpsp. There are circumstances where you might want to view the generated code, though (see the
following sidebar).

[6]1 If you change the generated code and regenerate it, your changes will be overwritten unless you use a different name.

How to View Your Stored Code

If you ever wonder what the "real” source code is for a particular PL/SQL program, or if you've lost
your original file containing the source code, you will often be able to retrieve it from inside the
database. To see the code, you can fetch it out of Oracle's data dictionary . This is a set of tables and
views that hold information aboutwhat's inside the database. (This "data about data" is also known as
metadata.)

We'll look more at the metadata in Chapter 6, but here is a sneak preview that you can try for
yourself. This displays the source for any given stored procedure owned by the current user:

SELECT text FROM USER_SOURCE

VWHERE nane = 'some_procedure_nane'
AND type = ' PROCEDURE
ORDER BY i ne;

4.2.2.2 Turning the book-adding HTML form into a PSP

Let's go back for a second and revisit the web page that displays the form where a librarian can submit a book. Even though we're not
going to start with any PL/SQL in it, we will convert it to run as a PSP program. This will make it consistent with other code and will get
us ready for the PL/SQL additions we will need to add later.

This is a simple change that only involves putting two directives in front of the other HTML:

<% page | anguage="PL/ SQ." %
<%@ pl sql procedure="add_book_forml" %
<HTM_>

everything el se is unchanged fromexanple in earlier section Section 4.1.3.2
</ HTM.>

Now we have the form being generated via a stored procedure. It's about time we tackle that little problem that nothing happens when
the user clicks the Submit button.

4.2.2.3 Back on the soapbox: the separation of concerns

Things are getting a bit confusing, with PSP code that generates PL/SQL code, which in turn generates HTML code at runtime. Let's
step back for a minute and have a think about what is going on. Figure 4-9 shows this great chain of generation. (Remember that
going from PSP to PL/SQL generally happens only during development of the program, but going from PL/SQL to HTML happens
every time the web server transmits the page to a browser.)

Figure 4-9. The final HTML is second-generation generated code

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (8 of 24) [15/05/2002 22:49:04]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Ciha o o pIOCEAUTE PROCEDURE <HTML»
="show_time™%: show time IS
BEGIN
I i web server < FHTML»
<HTML> adpsp END;
< /HTHL »

Since this is so confusing, what steps can you, as a PL/SQL developer, take to keep things organized?

Recall that in the previous chapter the code focused entirely on interaction with the database and not at all with the user. Here, we are
focused almost entirely on the user interface. Keeping these aspects of the system separate can go a long way toward reducing the
confusion. You will see that there are a minimal number of calls from the user interface code down to the data management code.
Preserving this natural separation will help you divide and conquer the problem in an organized way.

We have a lot more work to do to make the screen usable, however. For one thing, we have no graceful error checking. And there is
no logical organization or flow from screen to screen. But first....

4.2.3 Handling Form Data
Looking back at the FORMelement we created:

<FORM et hod="POST" acti on="eat add book forn>

the act i on attribute defines the procedure we need to write as having the name eat _add_book_f or mil. Let's start again with
pseudocode. This dynamic page needs to do the following:

Di splay the data entered by the user.
Call the programto add the data to the database.
Di spl ay a success or failure nessage.

Using PSP, let's take a first cut at this procedure. We'll use the packaged procedure book. add that we created in Chapter 3 to put
the data into the database.

The way the PL/SQL gateway works, when the user submits a form, the user-supplied data values from each element on the form get
passed as a parameter to the "action" procedure. Each parameter has a name that matches the name of the item on the HTML form,
including the Submit button, as shown in the next example:

<% page | anguage="PL/ SQ." %
<%@ pl sql procedure="eat add_book form' %
<% pl sql paraneter="submt" %
<%@ pl sql paraneter="isbn" %
<% pl sql paraneter="barcode_id" %
<%@ pl sql paraneter="title" %
<%@ pl sql paraneter="aut hor" %
<% pl sql paraneter="page_count" %
<%@ pl sql paraneter="sunmary" %
<%@ pl sql paranet er="date_published" %
<HTM_>
<HEAD>

<TI TLE>Add Book to Catal og</ Tl TLE>
</ HEAD>

<BODY bgcol or ="whi te">
<P>submit: <% submt %
</ P>
<P>i sbn: <% isbn %
</ P>
<P>barcode_id: <% barcode_id %
</ P>
<P>title: <% title %
</ P>
<P>aut hor: <% aut hor %
</ P>
<P>page_count: <% page_count %

file://IE|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (9 of 24) [15/05/2002 22:49:04]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

</ P>

<P>summary: <% summary %

</ P>

<P>dat e_publ i shed: <% date_ published %
</ P>

<% book. add(i sbn_in => isbn, barcode_id_in => barcode_id, title_in => title,
aut hor _in => author, page_count _in => TO NUMBER(page_count),
sunmary_in => sunmary,
dat e_publ i shed_in => TO DATE(dat e_publ i shed, ' DD MON- YYYY'));

%

<I >Book added successfully.</1>

</ BODY>
</ HTML>

If the call to book. add succeeds, the browser displays "Book added successfully." However, if that call fails for some reason, the
PL/SQL procedure raises an exception before displaying the success message, and the user instead sees a page containing only the
error message.

Look back at the directives at the top of the file. These cause loadpsp to generate the resulting stored procedure with corresponding
parameters:

PROCEDURE eat _add_book_form (
submt I N VARCHARZ,

i sbn I N VARCHAR2,

barcode _id I N VARCHAR2,

title I N VARCHAR2,

aut hor | N VARCHARZ,

page_count | N VARCHARZ,

summary | N VARCHAR2,
date_published I N VARCHAR2) AS ...

As you might have surmised, when using the PSP par anet er directive, omitting the datatype causes PSP to default it to a
VARCHARZ2 datatype of mode IN.

4.2.4 Introduction to Error Handling

Any time you present the user with a form to fill out, you need to consider what should happen when that user tries to enter data that
you don't want to process. Notice that | said "data you don't want to process" rather than "bad data" because there are things your
users may want to do but your system does not or cannot support them. For example, what if they want to enter some incomplete
information they know about a book, then come back later and enter the remainder? (Some readers may be amused to find
themselves on the other side of the fence that separates programmers and users.)

Stepping back, there are actually several categories of errors we should consider. We should approach these in a disciplined fashion,
because it's generally not a question of whether they will happen, but how often:

. The system encounters an error such as a full disk.
. The user fails to supply required data.

. The user supplies data that is not of the correct datatype (e.g., a string instead of a number), or that cannot be interpreted
(e.g., February 30).

. The user enters duplicate data; attempting to enter the same book twice should fail because the ISBN humber must be
unique.

Let's consider these in two categories: system problems and data problems.
4.2.4.1 System problems

System problems are beyond the control of the user and typically beyond the control of the programmer. It's true that you could just
ignore them and hope they don't happen. If they do happen, though, the system will respond in some unexpected way, your code will
be unprepared, and the user will suffer. Not a very satisfying approach.

You might also consider implementing a generic problem-handling program page that will at least give the user a "friendly" message.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (10 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

With a bit more work you could also have the handler report the problem to a system administrator, perhaps via email (see Chapter
8).

When using PSP, the way to establish a common error handler is to include the er r or Page directive (see Table 4-4) such as
errorPage=friendly_errorpage. psp. This causes the generated PL/SQL to include a section like the following:

EXCEPTI ON
WHEN OTHERS
THEN
HTP. I NI T;

friendly_errorpage;

The undocumented built-in HTP.INIT essentially tells the server to "throw away what you were planning to send for this page and
send the next one instead." In the fragment above, the procedure f ri endl y_error page draws the new page.

The error page itself could display just about anything. The environment will pass no parameters to the error-handling page, so if you
want to supply any technical details you can use the built-in PL/SQL functions SQLCODE and/or SQLERRM. SQLERRM returns an
error:

<% page | anguage="PL/ SQL" %
<% pl sql procedure="friendly errorpage" %
<HTM_>
<HEAD><TI TLE>Er r or </ TI TLE></ HEAD>
<BODY>
<pP>
The system encountered a problemit couldn't handl e.
</ P>
<pP>
Pl ease print out the follow ng information:
</ P>
Oracle error code: <% SQ.CODE %

<% SQLERRM %
</ BODY>
</ HTM_>

4.2.4.2 Data problems

If the librarian tries to create a book in the catalog but forgets to enter the title, what should happen? What if he or she types in the
word "many" instead of an integer for the page count? Assuming that we want to detect the problem and give some polite feedback to
the user, we have to choose which part of the overall system should handle it. HTML has a hard time updating the contents of a page
without making a round-trip to the server and drawing a completely new page. So our main choices are:

. Handle it in the browser. For this, you'll need to write a few lines of code in a language like JavaScript that will intercept the
problembefore ever sending anything to the server.

. Handle it at the server. This involves modifying the "eating" procedure to look for problems and generate a message for the
user in a response page.

It might seem better to validate data in the browser, because of the instant feedback it provides the user. It's true that a variety of
newer browser-side technologies have emerged to mitigate the problem (like JavaScript and DHTML), but a lot of validation still
happens at the server side because of the flexibility and control it offers. We won't pursue the browser-side solution any further, but
just be aware that your work may require you to use it at some point in the future.

So, back to the programmer's desk we go.

From an end user's point of view, an input error is most understandable when it's provided with some helpful context information. So
"missing data field 3" is terrible, "missing title" is barely acceptable, and "required fields highlighted in red" is a lot better. From the
programmer's point of view, we just want to enhance the code that draws the form so that it can highlight field labels in a contrasting
font and supply a friendly message.

4.2.4.3 Creating a PL/SQL utility to check for valid numbers

Because web browser software doesn't understand how to restrict user-supplied data to certain datatypes, we'll need to create a utility
that performs datatype validation. For example, we want to check whether the user enters a valid number in the page count field.

In PL/SQL, the easiest and fastest way to determine whether a variable is of the proper type is to attempt a conversion to that type. If

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (11 of 24) [15/05/2002 22:49:04]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

the conversion fails, PL/SQL raises an exception, which is our clue that the data fails the test. Converting to numbers is very simple
because of the great intelligence of Oracle's built-in TO_NUMBER function:

FUNCTI ON i s_nunber (what | N VARCHAR2)
RETURN BOOLEAN
IS
nunt est er NUMBER,
BEG N
nunt ester := TO _NUMBER(what);
RETURN TRUE;
EXCEPTI ON
VWHEN OTHERS
THEN
RETURN FALSE;
END;

You may rightfully ask for an explanation of why we need this function instead of just calling TO_NUMBER whenever we want to test
for a valid number. It's primarily a convenience thing; | happen to know that there will be cases where we need to test as follows:

| F i s_nunber (whatever) THEN ...
which is much more readable than the alternative.
Now that we have this elegant function, where should we put it? Because the function is useful in all kinds of programs, there would

be no sense in putting the function in the book package or any other application-specific package. | could just make it a standalone
function, but having it in a package could provide a number of benefits (as we describe in Section 3.5.2 in Chapter 3).

CREATE OR REPLACE PACKAGE | opu

AS
FUNCTI ON i s_nunber (what | N VARCHAR2)
RETURN BOOLEAN;

END;

/

The package name derives from the book's title with a "u" for utilities. Here is the package body:

CREATE OR REPLACE PACKAGE BODY | opu

AS
FUNCTI ON i s_nunber (what | N VARCHAR2)
RETURN BOCLEAN
IS

...as before...
END;
END;
/

Great! Now on to the next challenge.
4.2.4.4 Checking for a valid date

How will we check for a valid date? This is harder than checking for numbers because dates come in all kinds of formats, and
because Oracle's built-in date converter is very unimaginative. It only knows how to check whether the date is valid if the programmer
supplies a valid format string. Adding some intelligence requires quite a bit of programming (or perhaps the incorporation of some
third-party code).

Here is my simple i s_dat e routine:

FUNCTI ON i s_date (what | N VARCHARZ2,
date format | N VARCHAR2 DEFAULT dflt_date format)
RETURN BOOLEAN
IS
dat et est er DATE;
BEG N
datetester := TO DATE(what, date format);
RETURN TRUE;
EXCEPTI ON
VWHEN OTHERS

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (12 of 24) [15/05/2002 22:49:04]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

THEN
RETURN FALSE;
END;

One can envision various enhancements to date and number validators, such as performing range checking or confirming that the
value is in a predefined list. But you can add these enhancements later, if and when you need them.

Notice that this code just "punts"” the format problem—that is, it defers the decision to the caller. The dat e f or mat parameter
defaults to something called df | t _dat e f or nat . What is this, and where does it come from? We'll find out in the next section.

4.2.5 Setting Your Own Defaults

Sometimes, you need to set up your own application-wide default value. | will use the default date format as a case study for such an
arrangement. There is a simple way to establish default values using package variables, and a more elegant and reusable way using
"get and set" routines.

o The DBA can set a default date format string using the NLS_DATE_FORMAT database
. parameter. If he doesn't set it, American English installations will assume a default of DD-
*. 4 MON-RR. For the moment, though, I will ignore this.

4.2.5.1 Simple approach: public package variable

The value of a package variable will persist for the duration of the current session.[71 In other words, one program can set the value of
the package variable, and another one can retrieve it. This feature allows you to have a sort of a global memory area without the
overhead of a trip to and from the database. It's good practice to declare package variables at the very top of the package
specification:

[71 The normalbehavior of package variables is to persist for the duration of the session. There is one weird exception to this rule that occurs if
you mark your packages "serially reusable," but beginners won't normally use that feature.

CREATE OR REPLACE PACKACE | opu AS

df It _date_format VARCHAR2(30) := 'DD MON YYYY';
... This package's function and procedure headers go here, as before...
Then, to refer to the package variable in another program in the same package, use the identifier df | t _dat e fornat, asin:

FUNCTI ON i s_date (what | N VARCHAR2,
date_format | N VARCHAR2 DEFAULT dflt_date_fornmat)
RETURN BOOLEAN) ;

To refer to a program in another package, you must prefix it with the package name:

ny_date := TO DATE(date_in, |lopu.dflt_date_format);

To change the default, you could just modify the initial value in the package, but that's probably not the best solution because it could
precipitate changes in every place that the variable gets used. The better way to change the default is to have each application set its
own value—something like this:

| opu.dflt_date format :="'MM DD YY';

Now, this public package variable approach works okay, but it carries the risk that a programmer might set df | t _date fornat toa
"bad" value. A better approach would provide a way to check that only good values get assigned to the variable.

4.2.5.2 Better approach: private package variable with "get and set" routines

Hiding package variables behind "get and set" routines is a major leap forward in application design. To make the change, here are
the three things to do:

1. Create a private package variable—that is, one declared inside the package body—that will hold the default value.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (13 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

2. Define a "get" function instead of a variable. This function will return (or "get") the value of the private variable. If the private
variable is null, this function can initialize it.

3. Introduce a procedure that lets you modify ("set") the private variable. Inside this procedure, validate the new value and assign
it to the private variable.

The relevant parts of the package specification are shown here:

CREATE OR REPLACE PACKACE | opu AS

FUNCTI ON df I t _dat e_f or nat
RETURN VARCHARZ;

PROCEDURE set _dflt_date_format (new_format_in VARCHAR?);

Notice that I've done away with the package variable; in fact, | have chosen to use the variable's name as the name of the "get"
function.

The corresponding parts of the package body are:

CREATE OR REPLACE PACKAGE | opu AS
df It _date_fornat_private VARCHAR2(30) := 'DD MON- YYYY';

FUNCTI ON df I t _date_f or mat
RETURN VARCHAR2
IS
RETURN df It date format private;
BEG N

PROCEDURE set _dflt_date_format (new_format_in VARCHAR?)
IS
test _str VARCHAR2(64);
BEG N
IF new format _in |I'S NOT NULL
THEN
test_str := TO CHAR(SYSDATE, new format_in);
df It _date_format_private := new_format_in;
END | F;
END;

If the programmer never bothers to call the set _df | t _dat e_f or mat procedure, there will still be a legal result, which gets
hardcoded at line 3 to DD-MON-YYYY.

Notice that the "set" procedure stores a new value of the private variable only if the new format is legal. The code checks this by
ensuring that a true date value can be converted using the input format. If not, it will raise an ORA-01821 date format not recognized
exception because the conversion on the t est _dat e variable will fail.

4.2.5.3 Further refinement: retrieve default from database

Instead of hard-coding the DD-MON-YYYY, | could retrieve it from somewhere in the database. There are at least two different ways |
could do so, the first of which is to create a table that holds the default format, probably in addition to other settings. Another way
would be to fetch the database-wide value that the DBA has set, which | could obtain using the following:

SELECT VALUE I NTO dflt_date_format_private
FROM NLS_SESSI ON_PARAMETERS
WHERE PARAMETER = ' NLS _DATE_ FORVAT' ;

4.2.6 Improving the Design

As I've mentioned, in good software engineering there exists a design goal of separation of concerns, where "concerns" are such
things as the user interface and the business logic. By keeping things separate, future modifications of any part of the application are
much easier. For example, changing the placement of fields on the screen could be performed by modifying only the user interface
code, without much risk of messing up the business logic.

Separating the logical parts of the application is a necessary, but not sufficient, way to produce a good design. Let's take a look at just
one scenario from the current design, and identify some of the flaws:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (14 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

1. The user supplies data via the add book form, and clicks the Submit button.
2. eat _add book for mreceives data and attempts to add a book; if successful, it displays data on the screen.
3. Ifthere are errors, the result is instead the display of an error page.

If the user has made a mistake, he or she must click the browser's Back button, and remember what the mistake was. But why?
Couldn't the system just redraw the form, including the data the user already submitted? From a design point of view, though, this
presents an impasse:

« As illustrated previously, the add_book_f or mcontains the knowledge of how to draw the form when the user wants to add a
new book to the catalog.

. Ifeat _add book_ for mencounters any bad data, it should also be able to draw the form, re-inserting the data supplied by
the user into the form items. (HTML does not just "remember" the data.)

« With HTML it's well nigh impossible to modularize the form-drawing code to make it usable by both forms.
We might as well make a single form that serves both functions. In other words, combine the display elements of add book form
with those from eat _add_book_f or minto a new procedure we will name bookf or m This form will operate in one of two modes

depending on whether the user clicked the Submit button. The validation logic we'll offload into another package called bookweb.

There are some fancy words, such as "refactoring," for the thought process | went through to reorganize code into more sensible
units. Ultimately, | settled on a design consisting of five separate areas of concern:

. Manipulation of data in the database—for example, the book package.

. Manipulation and presentation of data that is unique to a particular screen: various procedures generated from PL/SQL Server
Pages such as bookf orm

. Support programs for the PSPs (for example, the bookweb package). By putting support logic into separate programs, we can
reduce the amount of code in the corresponding user interface page, keeping it focused strictly on display issues.

. Generic utilities of potential use in any web-based PL/SQL application: the webu package (again, note that the "u" is for
"utilities").

. Generic stuff in the | opu package, as we discussed earlier.
Logically, a data flow exists between the first three of the concerns. As shown in Figure 4-10, the data flow starts with the user.

Figure 4-10. Data flow between the book form and its support programs

Type-specific
User-supplied boak Passad-through hook input data
v lithie, au b, ke ik, u e, S1ngs {strings, dates,
W numbers)
browser Boakform hockswnth prces_ ook, add
sofimans PP edins procedure procedure
Cusplayable ermr and Emor and status
Al Mg s slrings

Although | haven't shown them in the figure, the utility programs play an important role in the design by performing functions common
to a wide variety of other programs.

In this arrangement, a typical sequence of events would be:
1. The user supplies data via the hookf or mpage, and clicks Submit.
2. bookf or mreceives data and immediately passes it on to bookweb. process_edi ts.

3. If the data passes all validation tests, pr ocess_edi t s calls book. add and passes a "success” message back to
bookf orm

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (15 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

4. bookf or mredraws the form, but this time includes a "success" message.

If the user enters data that doesn't pass validation, it goes more like this:

1. The user supplies data via the bookf or mpage, and clicks Submit.
2. bookf or mreceives data and immediately passes it on to bookweb. process_edi ts.

3. Thistime, process_edi t s is supposed to detect the bad data and set the text for each error message. These error
messages are usually field-specific.

4. bookf or mreceives the error text and redraws the page with the error messages formatted in HTML.

The logic in Figure 4-10 may not be immediately obvious, but it should eventually make a satisfying amount of sense to you. Among
other benefits, this design provides a logical home for almost every piece of application functionality, and still has plenty of room to
grow. While this approach is far from perfect, I'm here to tell you that the earlier versions had even bigger flaws (mainly, they were
either too complex or turned out to be inconvenient to "grow" into something bigger).

The most contentious element of the design is probably the separation between the PSP (bookf or n) and the support logic
(bookweb). While it's somewhat a matter of personal preference, my rationale for this separation is to reduce the size of each

component. Putting all the logic in the PSP would make for a very long, very ugly piece of work (and I've already emphasized how
much neatness counts in programming).

Let's take a look at some of the actual PL/SQL required to make this design work.
4.2.7 The PL/SQL Details

My approach does present a minor bookkeeping problem. There are a lot of different kinds of data that need to flow back and forth
between bookf or mand bookweb. process_edi t s. | need to send over the string version of every data item on the form, and
receive back a status message for each data item, plus an overall status message for the book. add operation. Is there some way to
simplify these operations?

My solution is to set up a programmer-defined record, which is a composite datatype consisting of multiple "fields." This is a good tool
for bundling up a lot of data items that have some kind of logical inter-relationship and need to travel among programs.

4.2.7.1 Interlude: bundling PL/SQL data items into programmer-defined records

To provide an introduction to setting up programmer-defined records, here is a short, off-topic example where | set up a record type to
store a measure of distance, as defined by a numeric amount combined with a textual description of the units of measurement:

DECLARE
TYPE di stance_t |I'S RECORD (
val ue NUMBER,
unit _of _neasure VARCHAR2(30)

)

dal l as_to_houston distance t; -- declare a record based on the type
BEG N

dal | as_to_houston. val ue : = 239.5;

dal l as_to_houston.unit_of neasure :='MLES ;

DBMS_CQUTPUT. PUT_LI NE(' The di stance between Houston and Dallas is '
|| dallas_to_houston.value || ' ' || dallas_to_houston.unit_of_neasure);
END;
/

You may have surmised that the declaration of a user-defined type looks like this:

<must be in a declaration section>
TYPE type _nanme |'S RECORD (
fieldl DATATYPEL [,
field2 DATATYPE2 ...]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (16 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

It's important to realize that this is a type and not a variable. In order to take advantage of the data structure, you'll want to
subsequently declare a variable of this type.

<farther down the declaration section>

record_vari abl e_nane type_nane;

You can declare as many variables of the type as you desire. Once you have declared the variable, you may refer to its component
fields using "dot notation":

record_vari abl e_nane. fiel dl

And now back to the problem at hand.

4.2.7.2 Using a programmer-defined record to hold book data

| want to define a record-structured data item to hold the following:
« All the user-supplied strings of book data
. All the data after validation and conversion to the proper datatype
« All the error messages

In PL/SQL, a record type must reside in a package specification if other programs are going to reuse it later.[81 Such a package starts
as follows:

[8] However, it is possible to define a reusable object type that serves a similar function yet resides outside of any PL/SQL declaration section.
You can even use an object type as the datatype of a column in a table. More on that in Chapter 9.

1 CREATE OR REPLACE PACKAGE bookweb

2 AS

3 SUBTYPE nsg_t | S VARCHAR2(128);

4

5 TYPE bookrec_t |'S RECORD (

6 i sbn books. i sbn%lYPE,

7 title books.title%YPE,

8 aut hor books. aut hor %0 YPE,

9 page_count books. page_count %I'YPE,
10 page_count _str VARCHAR2(40),
11 sunmary books. summar y% YPE,
12 dat e_publ i shed books. dat e_publ i shed%I'YPE,
13 dat e_publ i shed_str VARCHAR2(40),
14 bar code_i d VARCHAR2(40),

15 i sbn_nmsg nsg_t,

16 title_msg nsQg_t,

17 aut hor _nsg nsg_t,

18 page_count _nsg nsg_t,
19 summary_nsg nsg_t,

20 date_published nsg nsg_t,
21 barcode_id_nsg nsg_t,
22 action_nsg nsg_t,

23 passes | opu. sqgl bool ean
24);

25

26 FUNCTI ON process_edits (
27 submt | N VARCHARZ,

28 i sbn I N VARCHARZ,

29 title I N VARCHARZ,

30 aut hor | N VARCHAR2,

31 page_count | N VARCHARZ,
32 summary | N VARCHAR2,

33 date_published I N VARCHARZ,
34 barcode_id | N VARCHAR2
35)

36 RETURN bookrec_t;

37

38 END bookweb;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (17 of 24) [15/05/2002 22:49:04]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

39 /

Let's look at what's going on in this code:

Line 3. Because | want to make sure that the error message fields (lines 16-22) are all the same datatype, and because | want the
ability to change that datatype by changing only one line of code, | declare the nsg_t subtype in line 3 and use it for message fields.
A subtype is a datatype that is derived from another datatype but that has additional constraints on it.

Lines 5-24. This is the declaration of a programmer-defined record type. (Later, we'll create variables of this type by referring to the
bookweb. bookrec_t type in another program's declaration section.)

Lines 9, 10. There are places to put both the string data the user supplies for the page count and the converted numeric data.

Lines 12, 13. Similarly, we'll carry around both the user input publication date and the converted date.

Line 15-21. If any of the user-supplied data is bad, these lines will return the corresponding error messages for each field.

Line 22. An overall result message for the (book. add) action that has been recently attempted.

Line 23. Because it won't work to fetch a Boolean from the database into a PL/SQL variable, and because I'm going to populate a
record of this type using a fetch from the database, | declared a subtype called | opu. sql bool ean. This field serves as a simple
true/false flag, where | opu. sqgl t rue and | opu. sqgl f al se are the corresponding values.

Lines 26-36. Here you can see that the pr ocess_edi t s function will receive the user-supplied data and return a populated record of

type bookrec_t.

Next, let's take a look at the beginning of the first version of the bookf or mPSP and, in particular, notice the way that it calls

process_edits:

1 <% page | anguage="PL/SQ." %
2 <% pl sql procedure="bookform %
3 <%@plsql paraneter="submt" default="null" %
4 <% pl sql paraneter="isbn_" default="null" %
5 <%@plsql paraneter="title_ " default="null" %
6 <%@plsql paraneter="author_" default="null" %
7 <% pl sql paraneter="page count " default="null" %
8 <%@plsql paraneter="sunmary_" default="null" %
9 <%@plsql paraneter="date_published " default="null" %
10 <%@ pl sql paraneter="barcode_id " default="null" %
11 <%
12 bk bookweb. bookrec_t;
13 %
14
15 <HTM.>
16 <HEAD>
17 <TI TLE>Book detail s</ TI TLE>
18 </ HEAD>
19 <BODY bgcol or="white">
20 <H1>Book detai | s</ H1>
21 <%
22 bk := bookweb. process_edits(
23 submt => submt, isbn =>isbn_, title =>title_, author => author_,
24 page_count => page_count_, sunmary => sunmary_,
25 date_published => date_published_,
26 barcode_id => barcode_id);
27 Y%

Lines 3-10. By personal convention, | like to append an underscore character to each of the parameter names. This gives me a visual
cue elsewhere in my code that I'm dealing with a parameter that has been passed in from a web-based form. (I do need to remember
this convention when defining the names of the input elements on the form; the names have to match up.)

Lines 11-13. Don't be confused by the "<% ", which is just the PSP directive with which to declare a local variable. So line 12 declares
one variable of the datatype bookr ec_t . It starts out null, but we populate it soon in lines 22-26.

Lines 22-26. We don't really know, at this point, whether the page is drawing for the first time, or whether the user clicked the Submit

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (18 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

button. The point of calling pr ocess_edi t s is to figure it out—and do—the right thing with the data.

Now that you've seen the way the PL/SQL Server Page will be passing data to its corresponding processing program, it makes sense
to explore the companion program a bit.

4.2.7.3 What happens inside process_edits?
Let's look at some pseudocode showing how pr ocess_edi t s needs to behave:

I f user has not pressed Subnmit button, return w thout doing anything.
O herwi se, for each input paraneter:
Ensure it matches expected | ength.
Ensure it matches expected dat atype.
Convert and store nuneric and date values in data structure.
Record any error nessages in data structure.
If all data okay, attenpt to add book and book copy.
Return popul ated data structure to caller.

The code for the entire package is too long to put in this chapter, but | will present some highlights. | declare a variable f b of type
bookrec_t using:

fb bookrec t;

The test for whether the user clicked the Submit button is easy:

IF submit I'S NOT NULL
THEN . ..

A typical check of a string-typed input item has two parts. First, the first n bytes of the user-supplied value goes into the corresponding
field in the f b data structure. This will allow a value to appear on the redrawn web page, even if the user-supplied value fails the
subsequent length check:

fb.title := SUBSTR(title, 1, 200);

SUBSTR is one of the most useful built-ins available in SQL and PL/SQL. You can use it almost any time you want to extract a portion
of a string—hence the name; SUBSTR is short for "substring." As used above, SUBSTR returns the first 200 characters of the
contents of the ti t | e variable. If t i t | e doesn't contain 200 or more characters, SUBSTR will simply return the entire string.

Generically, the syntax of SUBSTR is:
FUNCTI ON SUBSTR (str, start [, end]) RETURN VARCHARZ;
Where:
str
The programmer-supplied string; can also be an expression.
start
An integer that indicates which character of the string to start returning. The first character of the string is 1, not 0.
end

An optional integer designating the maximum number of characters to return. If you don't include end, the function will just
return all the characters in the string beginning with st ar t .

Returning to the business of processing edits from the bookf or mweb page, the second thing we want to check is the length. It might
seem that we've already checked the length with the SUBSTR function, but we don't actually know whether it exceeded the maximum
we've set (200 in the case of title).

The simple function | opu. str_fits uses PL/SQL's built-in LENGTH function to check whether the supplied string fits in the
expected length range:

I'F NOT | opu.str _fits(title, 0, 200)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (19 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

THEN
fb.title_msg := 'Mist be fewer than 200 characters';
fb. passes : = | opu. sql fal se;

END | F;

Why do | bother validating the lengths, since the web page will also have length checks on each input item? | like the extra checking
that a "belt-and-braces" approach gives because there is no security on the web page. Anybody—a programmer, an end user, or a
dog—could create their own local version of the web page and have it send over some awful data! They don't even need any special
tools.

Security tip: Don't assume that your web page is the only page that will ever be used to
submit data to the system.

A slightly more complicated check would be for a typed variable such as page_count :

fb. page_count _str := SUBSTR(page_count _str, 1, 40);
I F I opu.is_nunber(page_count _str)
THEN

fb. page_count := TO NUMBER(page_count_str);

fb. page_count _str := TO CHAR(fb. page_count);
ELSE

fb. page_count _nsg := 'Mist be a nunber';

fb. passes : = | opu. sql fal se;
END | F;

Notice that | convert the page count from a string to a number and back into a string. That's not quite as redundant as it might seem. If
the user enters the page count using something strange like scientific notation, my code will rationalize the display of the number that
gets shown to the user on the confirmation page. For example it will convert:

1. 25e2

to:

125

It's not essential to perform this second conversion, but it does provide some feedback to the user on what value was really sent to
the database.

After looking at data for all of the fields, if any of them are bad, the code will set f b. passes to the constant | opu. sql f al se.
Therefore, a quick check of that variable is enough to determine whether we should try to add the book. This fragment comes near the
end of process_edi t s, after all the data checks:

| F fb. passes = | opu.sqltrue
THEN
BEG N
book. add(i sbn_in => fb.isbn, barcode_id_in => barcode_id,
title_in =>fb.title, author_in => fb.author,
page_count _in => fb. page_count, summary_in => fb.summary,
date_published_in => fb.date_published);

fb.action_nsg := 'Added ' || fb.isbn || ' to database.';
EXCEPTI ON
WHEN DUP_VAL_ON | NDEX
THEN
fb. passes : = | opu. sql f al se;
fb.action_nsg := "Error: Book ' || fb.isbn

|| ' already exists.';

WHEN OTHERS
THEN
fb. passes : = | opu. sql fal se;
fb.action_nsg := "Attenpt to add ' || fb.isbn || ' to database’
|| " failed with ' || SQERRM
END;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (20 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

ELSE
fb.action _nmsg := 'Did not save changes.';
END | F;

RETURN f b;

If book. add succeeds, the act i on_nsg field contains a success message, but any kind of data validation failure or exception
condition results in an appropriate failure message. These messages get passed back to the caller (which is in charge of presenting
the results on the screen) via the f b data structure.

4.2.7.4 The rest of the PSP

So, back in the PSP program, these things happen next:
1. Display the overall result (if any) of calling pr ocess_edi t s near the top of the page.
2. Display the value of each parameter as data in the HTML form. (These values come from the bookr ec_t data structure.)
3. Display any associated error messages, also from the bookr ec_t data structure.

The first step, displaying the overall result, looks like this:

<H2><% bk. acti on_nsg %</ H2>

That is, we display the text from the act i on_nsg field of the bk record as a second-level page heading. The next step is to display
the book's attributes, one by one, starting with the ISBN:

<P>| SBN
<I NPUT type="text" name="isbn_" val ue="<% bk.isbn %"
si ze="15" maxl engt h="13">
<% webu. errfont(bk.isbn_nsg) %
</ P>

Here, webu. errf ont is just a function; it puts the supplied message in a contrasting font appropriate for errors (perhaps boldface
and red). Again, notice the use of the bk data structure.

Although not illustrated, the previous pattern repeats for each of the remaining user-supplied parameters. As an example of a
parameter that is supposed to have a special datatype, here is the page count form element:

<P>Page count
<I NPUT type="text" nanme="page_count _
max| engt h="6" size="7">
<% webu. errfont (bk. page_count _nsg) %
</ P>

val ue="<% bk. page_count str %"

Notice that | display the bk. page_count st r value here rather than the bk. page count value. This is because the user might
have made a mistake, and bk. page count might, as a result, be empty, but | still want to illustrate the bad data.

All of this error checking and reporting may seem like a lot of bother. Why not just have book. add detect any errors and report them
back (or just raise exceptions)? As it turns out, there are several reasons.

. Exceptions are not a good fit for field-level errors because exceptions would be raised the first time that bad data is
encountered. If there is more than one error in the data supplied by the user, the exception-handling approach would force the
user to correct one error, resubmit the form, correct the next error, resubmit the form, etc.

. Having the table wrapper program (book. add) detect user input errors and report them back in an application-specific way
would violate the principle of separation of concerns. Remember, the book package is supposed to be reusable by any
number of different front ends (yes, I've only shown one so far). Any validation that we put in the add procedure should be the
barrier of last resort.

. The most graceful way of reporting errors back to the user involves redrawing the form, which, as we've seen, is a function
best localized in the bookf or mPSP.

So that leaves us with something that may seem like a lot of bother, but in the long run is a favorable collection of concessions on all

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (21 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

sides. I've tried to make careful decisions about where the PSP uses embedded PL/SQL and where it uses standard HTML, in hopes
of making it as readable and maintainable as possible.

In the end, though, the eye of the developer is secondary to that of the end user. The form is still not easy enough to use, and we
must address that issue regardless of the cost. That is, we're, ahem, going make the code a bit more complicated. Which brings us
“round to another axiom of programming:

"Easy to use" is easy to say...and not so easy to program.

Despite the complexity, we want to press ahead and show how to build a better user interface that will go beyond simply detecting
errors and into the realm of preventing them.

4.2.8 Preventing Errors

You may have noticed that the form is tremendously picky about the way that it wants the user to enter a date. Dates of the form 30-
JUL-2001 will work, but 30/07/00 won't. Neither will dates of the form Jul 30, 2000. If | were trying to use the form, | would have a hard
time forgiving the programmer for this sort of laziness.

There are a lot of better ways to allow a user to select a date—such as more intelligent back end logic, drop-down lists, or pop-up
calendars—with varying degrees of complexity and usability. We'll take a look at one method that is not too difficult. It will also
demonstrate some programming techniques we haven't used yet.

Our date-entry facility will have drop-down lists for the month and day-of-month, plus a text input item for the year. It will render in
HTML something like Figure 4-11.

Figure 4-11. A better way to get a date from the user

Date published [(Mory =] [1 =] [1992 ¢vyyn
Mo
Jan

War EE

Apr
LEN
Jun
Jul
AUl
Sep
Ot
Mg
Dec

When the user clicks Submit, three items—month, day, and year—uwill go to the server.
4.2.8.1 The HTML and supporting code

To create the drop-downs, something like the following would need to go inside the form element:

<SELECT NAME="non_published " SIZE="1">
<OPTI ON val ue="">(Mon)
<OPTI ON val ue="JAN'>Jan

...etc....
<OPTI ON val ue="DEC">Dec
</ SELECT>

<SELECT NAME="dd_published_" SIZE="1">
<OPTI ON val ue="">(day)
<OPTI ON val ue="01">1

...etc....

<OPTI ON val ue="31">31
</ SELECT>

For the year we'll just offer a text input field:
<INPUT type="text" name="yyyy_ published_" val ue="" maxl ength="4" size="5">

So far so good.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (22 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

When displaying existing data from the database in one of these drop-down lists, the corresponding OPTI ON tag must include the
SELECTED attribute. For this reason, it makes sense to create some reusable PL/SQL code to generate these drop-downs.

Let's consider only the month case first. Ignoring temporarily the requirement to generate the SELECTED attribute, this function gets us

started:
1 FUNCTI ON nmon_option_li st
2 RETURN VARCHAR2
3 IS
4 l'ist VARCHAR2(512) := '<OPTION value="">(Mn)' || |opu.linefeed;
5 non VARCHAR2(3) ;
6 BEG N
7 FOR no_numIN 1..12
8 LOOP
9 non : = TO_CHAR(TO DATE(no_num 'MM),"' MON);
10 list :=1list || '<OPTION val ue=""
11 || non
12 ["">"" || INNTCAP(nmon) || | opu.linefeed;
13 END LOOP;
14 RETURN i st ;
15 END;

This program returns the following:

<OPTI ON val ue="">(NMon)
<OPTI ON val ue="JAN"'>Jan

...etc.
<OPTI ON val ue="DEC"' >Dec

To add the SELECTED attribute on the appropriate option, we'll want to include the month abbreviation as an input parameter:

FUNCTI ON non_option_list(sel ected_nmon | N VARCHAR2)
RETURN VARCHAR2

so that calling this function as:

var := non_option_list('FEB);

will populate var with:

<OPTI ON val ue="">(Mon)
<OPTI ON val ue="JAN'>Jan
<OPTI ON val ue="FEB" SELECTED>Feb

...etc.
<OPTI ON val ue="DEC"' >Dec

A relatively easy way to accomplish this is to introduce a local variable, called sel t ext in the following code, that will print out with
every option. It will be null eleven times (not necessarily consecutively) and will contain the value SELECTED one time, when the
parameter value matches the month currently in the loop.

The final code, which we'll put in the webu package because it is a general-purpose web utility, appears in the following code:

11 FUNCTI ON non_option_list(selected non I N VARCHAR2)

12 RETURN VARCHAR2

13 IS

14 sel t ext VARCHAR2(10);

15 l'ist VARCHAR2(512) := '<OPTION value="">(Mn)' || |opu.linefeed;
16 sel ected_nonth_i ndex PLS | NTEGER;

17 non VARCHAR2(3) ;

18 BEG N

19

20 BEG N

21 sel ected_nonth_i ndex : =

22 TO_CHAR(TO_DATE(UPPER(sel ected_non), 'MON), 'MM);

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (23 of 24) [15/05/2002 22:49:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

23 EXCEPTI ON

24 VWHEN OTHERS THEN

25 NULL;

26 END;

27

28 FOR no_numIN 1..12

29 LOoP

30 | F sel ected_nonth_i ndex = no_num

31 THEN

32 seltext :="' SELECTED ';

33 ELSE

34 seltext :="' ';

35 END | F;

36 mon = TO CHAR(TO DATE(nmo_num "NMM), "' MON);
37 list :=1list || '"<OPTION || seltext || 'value="" || non
38 [] "">""]| INNTCAP(non) || |opu.linefeed;
39 END LOOP;

40

41 RETURN i st;

42 END;

Notice, also, how lines 20-26 validate the input parameter; anything that isn't a valid month abbreviation results in no month receiving
the SELECTED attribute.

4.2.8.2 Making the date modifications to the user interface (bookform.psp)

To take advantage of the new way of entering a date, we have to modify the book form. Previously there was a single date parameter
in the PSP:

<% pl sql paraneter="date_published" %

that we now delete and replace with:

<%@ pl sql paranet er="non_publ i shed" %
<% pl sql paraneter="dom published" %
<%@ pl sql paraneter="yyyy published" %

Turning to the rest of the code, we also modify the pr ocess_edi t s function to receive the three parameters and validate the date
appropriately. One change is from:

I F | opu.is_date(date_published_str)
THEN
fb.date published := TO DATE(date_ published str, lopul.dflt _date format);

to:

I F lopu.is_date(yyyy_published || nmon_published || dd_published)
THEN
fb. date_published : = TO DATE(
yyyy_published || non_published || dd_published,
| opu. dflt _date_format);
fb.yyyy_published := TO CHAR(fb. dat e_publ i shed, 'YYYY');
fb. non_published : = TO CHAR(fh. date_publ i shed, ' MON);
fb. dd_published := TO CHAR(f b. dat e_published, 'DD);
ELSE

(By the time this new code is reached, the bookf or mprocedure has already set the default date format to YYYYMONDD.)

While these changes certainly reduce the likelihood of a bad date coming through, there is still a possibility that the user will give an
invalid date (February 30) or a strange year. True, we could work even harder to prevent these mistakes, but in the interests of space
I'd prefer to move on to some other aspects of PL/SQL programming.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page41.html (24 of 24) [15/05/2002 22:49:04]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 4. Go Web, Young Man > 4.3 \What Else?

< BACK Start | Table of Contents | Index | Examples CONTINUE >

4.3 What Else?

Armed with some knowledge of PL/SQL and HTML, you are ready to start building your own web-
based applications. | hope that | have demystified some of the obstacles you may confront in your
own projects and provided a solid foundation on which to expand your knowledge.

One area that | have not addressed at all is the testing of web-based PL/SQL applications.
Although it may be possible to perform quite a bit of testing using a pure PL/SQL approach (see,
for example, the discussion of Oracle's built-in package UTL_HTTP in Chapter 8), other freely
available tools are probably a better fit. | won't go into the subject here, but I've recorded some of
my thoughts on the subject, including some test scripts for the add book form, at

http://www.oreilly.com/catalog/learnoracle.

This chapter has considered only a small part of the library application: populating (by hand) the
catalog with a new book. I ignored fundamental tasks such as querying or modifying the catalog,
or fetching catalog information from other sources. In the chapters ahead, I'll present solutions to
some of these additional challenges.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page42.html [15/05/2002 22:49:08]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
http://www.oreilly.com/catalog/learnoracle
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 5. Fetch!

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 5. Fetch!

In the past few chapters, we've made quite a bit of progress learning the fundamentals of the
PL/SQL language, and we've had some fun creating simple web pages that will call PL/SQL
programs. But we haven't yet had much of a chance to retrieveinformation from the database into
PL/SQL. Why not? Isn't reading data easier than creating it? It would be, except for the fact that
you have to deal with lots of rows, one at a time.

This chapter explains how to get data from the database into your stored programs. We will
explore:

. Putting simple SELECT statements into your program, whether they retrieve zero or one
or more rows

. Incorporating these techniques into the creation of a web-based search application for the
library system, introducing a technique called native dynamic SQL

. An overview of more advanced topics such as concurrency control, performance, and
sophisticated queries using the Oracle Text facility

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page44.html [15/05/2002 22:49:09]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 5. Fetch! > 5.1 What's the Big Deal?

< BACK Start | Table of Contents | Index | Examples CONTINUE >

5.1 What's the Big Deal?

In a nutshell, the fundamental challenge to retrieving data is that SQL is a set-oriented language,
and procedural languages like PL/SQL—even one that is supposedly a "superset" (no pun
intended) of SQL—are record-oriented. So it's a minor challenge to fetch data from the database,
because the built-in structures and operators of these two languages don't quite live in the same
dimensions. Consider a SQL SELECT statement to list all the books authored by Shakespeare:

SELECT title, date_published
FROM books
WHERE UPPER(aut hor) LI KE ' SHAKESPEAREY ;

(In this statement, note that %is SQL's wildcard character.) This statement could return dozens of

rows—which you can think of as a mathematical "set.” On the other hand, typical PL/SQL
statements such as the following manipulate one item at a time (a "record"—well, sort of):

favorite play title :="'MEASURE FOR MEASURE' ;
publication_date := TO DATE(' 01- FEB- 1621', ' DD- MON- YYYY') ;

When you try to get the data out of the database and into a program, you confront the problem
that these variables can hold only one thing at a time.[1l Some authors describe this as an
"impedance mismatch,” which is not a bad analogy, as long as you understand enough about
electrical circuits to make sense of that comparison.[21 However you describe it, let's look at how
to address the problem.

[1] Advanced language features called collections and bulk binds make it possible to retrieve
multiple rows in each fetch.

[2] Impedance is a measure of resistance in an electrical circuit. When connecting two circuits,
matching their impedances can be important in reducing power loss and signal distortion. But you
knew that, right?

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page45.html [15/05/2002 22:49:10]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 5. Fetch! > 5.2 A Simple-Minded Approach to Retrieving
One Row

< BACK Start | Table of Contents | Index | Examples CONTINUE >

5.2 A Simple-Minded Approach to Retrieving One Row

The simplest introduction to solving the problem we've described is PL/SQL's SELECT...INTO
statement. This is the closest thing to just dropping the SELECT statement directly into your
PL/SQL program.

Attempting to use this approach on the query shown in the previous section would look like this:

DECLARE
favorite_play_title VARCHAR2(??);
publ i cati on_dat e DATE;
BEG N
SELECT title, date_published
| NTO favorite play title, publication date
FROM books
WHERE UPPER(aut hor) LI KE ' SHAKESPEAREY ;
END;
/

As you can surmise, the general syntax for a SELECT INTO is:

DECLARE
| ocal varl DATATYPE ;

| ocal var2 DATATYPE ;
BEG N

SELECT columl , colum2 ,
| NTO local _varl , local _var2 ,
FROM t abl e _nane
WHERE wher e cl ause ;

When this block executes, Oracle reads the value of each column from the table and assigns it to
the corresponding local variable listed in the INTO clause...as long as there is exactly one row
that matches the where-clause. If not, Oracle raises an exception. Here is where "simple-minded"
is not necessarily the same thing as "simple.” There are actually three possible outcomes of a
SELECT INTO statement, as shown in Table 5-1.

Table 5-1. Possible results of the SELECT INTO statement

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page46.html (1 of 3) [15/05/2002 22:49:12]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Number of rows

matching where- Runtime behavior Value of SQLCODE
clause

1 Success; assigns column values to local variables|0 (no error)

0 Raises NO_DATA_FOUND exception 100

More than 1 Raises TOO_MANY_ROWS exception -1422

As you can see, the behavior is dependent on the actual content of the database—whether zero
or one or more rows are returned. To better illustrate, let's apply this statement to the problem of
retrieving our list of Shakespearean titles.

If the electronic catalog is populated with two or more of Shakespeare's works, our statement will
fail with the following error:

ORA- 01422: exact fetch returns nore than requested nunber of rows
ORA- 06512: at line 5

where an "exact fetch" is one that is supposed to match exactly one row. Although the message
doesn't explicitly say TOO_MANY_ROWS, you can tell that's the exception the program raised
from the identifier ORA-1422 at the beginning of the error message, since -1422 is the numeric
equivalent of TOO_MANY_ROWS.

Now, if the librarians haven't gotten Will's works into the catalog, no records will match the where-
clause, and you will see:[3]

[31 If you've been reading closely, you may wonder why this operation results in a "1403" error
instead of the "100" that Table 5-1 shows for SQLCODE. Normally, the error code of an
unhandled exception does match SQLCODE, but for historical reasons, this particular error does
not. It is the only error that has two different numeric identities.

ORA-01403: no data found
ORA-06512: at line 5

So, if you use SELECT INTO in your own code, you will almost always want to include an
exception handler that looks something like:

EXCEPTI ON
VHEN NO DATA FOUND
THEN
do_sonet hi ng_sensi bl el;
VWHEN TOO MANY ROWS
THEN

do_sonet hi ng_sensi bl e2;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page46.html (2 of 3) [15/05/2002 22:49:12]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

In this example, do_sonet hi ng _sensi bl en is whatever is appropriate for your application;
maybe it does nothing (the NULL; statement), maybe it logs the error and goes on, or maybe it
raises a new application-specific exception.

There are times when these exception handlers are unnecessary. You may recall a program in
Chapter 3 that retrieved the number of books in the catalog using a query of the form:

SELECT COUNT(*)
| NTO how_nmany
FROM books;

Instead of a column from the table, this query retrieves COUNT(*), one of SQL's built-in aggregate
functions that operate on a set of arbitrary size and return a single computed result. This query by
definition always returns one, and only one, row, no matter how much data is or isn't in the table,

so an exception handler for NO_DATA_FOUND or for TOO_MANY_ROWS would never execute.

Okay, this SELECT INTO doesn't seem excessively hard, just limited in what it helps you
accomplish. So what is the alternative? Now, finally, we must enter the wonderful world of
programming with cursors.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page46.html (3 of 3) [15/05/2002 22:49:12]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 5. Fetch! > 5.3 Retrieving More than One Row Using a
Cursor

< BACK Start | Table of Contents | Index | Examples CONTINUE >

5.3 Retrieving More than One Row Using a Cursor

If you know any other programming languages, you will notice that most of the PL/SQL that
you've seen up until now probably has parallels with what you already know. With cursors,
however, we're stepping off that comfortable platform, into some concepts that may be unlike
anything in your previous experience. Not to worry! What can be confusing is the usual way
cursors get introduced with abstractions. So, instead of getting abstract too quickly, I'd like to start
with a little story.

5.3.1 The Parable of the Thirsty Traveler

A traveler arrives in his hotel room and wants to ice down a can of soda, but
discovers there is no ice in the room. Unfortunately, there is no ice bucket either,
and all he can find to carry ice is a tiny little shot glass. Since the glass is "sealed
for his protection” with a thin plastic wrap, his first action is to remove the plastic.
He next walks down to the ice machine, where he discovers that it dispenses only
one ice cube at a time, but that's okay because that's all that fits in the glass
anyway. He takes the lone cube back to his room and puts it in the sink. He takes
a number of trips to the ice machine, fetching one piece of ice each time, until he
has amassed a lovely pile of ice. Finally, he replaces the plastic wrap on the little
glass, and moves along with his life.

Okay, so it's a parable without much of a moral, but the message is in the analogues, as Table 5-

2 reveals.

Table 5-2. Interpreting the parable of the thirsty traveler
Element from story PL/SQL programming equivalent
Ice machine Database server
Ice Data in a database table
Ice cube Single row of data in a table
Shot glass Cursor

file://IE|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (1 of 13) [15/05/2002 22:49:15]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Removing the plastic wrap

Taking one piece of ice from the machine

Making repeated trips

Sink

Replacing the plastic wrap

Opening the cursor

Fetching a record from the database

Executing a loop

The application

Closing the cursor

The story illustrates that a cursor helps you retrieve a set of data from the database by fetching

one row at a time, as illustrated in Figure 5-1. Now,

the analogy isn't quite perfect because:

. It conveys an incorrect message that retrieving a record from the server somehow

removes it from the server.

. Itdoesn'tinclude the notion that SELECT statements can retrieve different things from the

database.

. It gives the impression that it would take forever to get anything done this way, and that is
simply not true. After the initial OPEN operation, fetching through a cursor is much faster

than a walk down the hall.

Figure 5-1. How a cursor works

Fetoh reguest

PLSOL
program

lf_ -:Jl’|_1rif
retrdye v Tl

[{11
Rows selected Al rows of table
by query

In more technical terms, a cursor is the name for a structure in memory, called a private SQL
area, which the server allocates at runtime for each SQL statement. This memory area contains,

among other things, a parsed version of the original

SQL statement. If the host program uses any

variables in the SQL statement, the cursor also contains the memory addresses of these

variables.

When you put SELECT statements into your PL/SQL, there are two ways to deal with the data.
You can use the SELECT INTO, as seen in the previous section, in which case you are using an
implicit cursor ("implicit" because you don't refer to it specifically in your code; Oracle manages
implicit cursors automatically). The second way gives you more direct control over the creation,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (2 of 13) [15/05/2002 22:49:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

naming, and use of cursors associated with your SELECTSs. These cursors are called explicit
cursors.

5.3.2 How to Code an Explicit Cursor
An explicit cursor in PL/SQL is one with which you "explicitly” code each of the following steps:
1. Declare
2. Open
3. Fetch one or more times
4. Close

One example of transforming the earlier example into an explicit cursor looks like this:

DECLARE
favorite play title VARCHAR2(??);
publ i cati on_dat e DATE;

CURSOR bkcur /* 1. declare */
| S SELECT title, date_published
FROM books
VWHERE UPPER(aut hor) LI KE ' SHAKESPEARE%Y ;
BEG N
OPEN bcur; /* 2. open */
FETCH bcur INTO favorite play title, /* 3. fetch one row */
publ i cati on_dat e;
CLCSE bcur; /* 4. cl ose */
END;

/

As you can see, the SELECT statement moves into the declaration section, receiving the name
bkcur . The retrievals remain in the execution section. Let's take a closer look at each of the four

steps.
5.3.2.1 Declare

You can think of the declaration of a cursor as a way of assigning a name to a SQL statement.
The columns you supply in the SELECT statement prescribe the "shape" of the query—that is, the
number, column order, and datatype of the returned values. The previous example declares a
cursor, t cur, with a single column, due dat e. As a stylistic convention, | like to add "cur " to the
end of my cursor names, in order to distinguish them from other identifiers. The general form of a
simple cursor declaration looks like this:

CURSOR cursor _nane | S

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (3 of 13) [15/05/2002 22:49:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

SELECT col uml1, col um?2,
FROM t abl e _nane ...;

Remember that a relational database like Oracle makes no guarantees about the order in which it
returns rows to the program. To control the order, use an ORDER BY clause in the SELECT
statement:

CURSOR bkcur 1S
SELECT title, date_ published
FROM books
VWHERE UPPER(aut hor) LI KE ' SHAKESPEAREY
ORDER BY dat e publ i shed DESC

Fetching from that cursor will list the most recently published book first because | put the DESC
(descending) keyword in the ORDER BY clause.

Finally, a word about using program variables in SQL statements. When writing SELECT
statements in your PL/SQL, you can use program variables or literal strings such as
" SHAKESPEAREY in some places but not others. If col is a column name and var is a variable,

this will work:

... WHERE col = var

but this will not:

SELECT * FROMvar: [/* will not work */

You cannot put a table name inside a variable because PL/SQL needs to know the table name
when it compiles the program. (This is true, by the way, for both explicit and implicit cursors.) This
is actually a good thing because it helps you catch errors in your program at compile time rather
than at runtime.

5.3.2.2 Open

In the executable section, you can open the cursor declared within the current scope. This
operation requires only the short statement:

OPEN cur sor _nane;

When you open a cursor, behind the scenes, Oracle reads (parses) the statement, and logically
associates with it those rows in the table that satisfy the query at that moment. These records are
collectively known as the result set.

Usually, you'll want to open cursors just prior to fetching from them. This not only makes your
program more understandable, it could help it perform better too, by limiting the number of
cursors open simultaneously. Occasionally, though, you may see the error ORA-01000: maximum
open cursors exceeded, which means you've run into the administrator-defined maximum for a
session. In this case, you will need to change your code or ask the DBA to increase the database
parameter called OPEN_CURSORS.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (4 of 13) [15/05/2002 22:49:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

If you attempt to open a cursor that you've already opened (but not yet closed), you'll get the
runtime error ORA-06511: PL/SQL: cursor already open.

5.3.2.3 Fetch

When you actually want to retrieve a row of data (put a piece of ice into that shot glass), the
FETCH statement does the job. You need to make sure you have a local variable that
corresponds to each column in the SELECT statement. The assignments are positional, as shown
in the following:

SELECT col uml1, col um?2 /* in the cursor declaration */
N N
| |
Y, Y,

| NTO vari abl el1, vari abl e2 /* in the FETCH st atenent */

Each fetch attempts to return the next row in the result set. Now, in real programs, to retrieve a
series of rows from a table, programmers don't usually code identical FETCH statements back to
back; instead, they put a single FETCH inside a loop. We'll look at some simple ways to do that
later.

Here are three things to be aware of when you execute multiple FETCH statements:

1. The second FETCH overwrites the values from the first FETCH, so before repeating the
FETCH you would presumably do something useful with the variables—for example, test
for some value and call a procedure or print something.

2. You cannot "re-fetch" a row that's already been fetched. You can, however, close and re-
open the cursor, but this means you must start back from the beginning of the result set.

3. Once you have fetched all the rows from the table, an additional FETCH statement will do
nothing—that is, it won't assign data to the INTO variables, and it won't raise any errors.
The last values retrieved into the local variables will remain there until you change them
by direct assignment (or until your program ends).

So now you're probably wondering, how am | supposed to know when I've fetched all the data
from the table? No problem—the cursor will tell you. You just need to ask it the right question,
which we will discuss in Section 5.3.3.

5.3.2.4 Close
When you're done with the cursor, you'll want to close it:

CLCSE cursor _nane;

In general, you'll want to close cursors as soon as you're finished with them, to help the server
keep resources free.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (5 of 13) [15/05/2002 22:49:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Trying to close a cursor that isn't open gives you the error ORA-01001: invalid cursor.
5.3.3 Cursor Attributes

PL/SQL provides access to some very useful information about cursors by means of cursor
attributes . There are several of these predefined cursor properties, which PL/SQL designates
with a percent signl4l followed by the name of the attribute. In your own code, you refer to the
attribute as if it were a variable. For example:

[4]1 why do cursor attributes use a percent sign? | don't know. Other times, PL/SQL uses a dot
separator to return properties; it would be nice if the language were more consistent. On the whole,
though, this is a relatively small idiosyncrasy.

bkcur %-OUND

returns a TRUE or FALSE indicating whether the most recent fetch succeeded. The general form
is

cursor _name%ATTRI BUTE_NAME

Table 5-3 lists the attributes you will probably use most often.

Table 5-3. Commonly used attributes of explicit cursors

Attribute Datatype |Significance Recommended time to use

TRUE if most recent After opening and fetching

cur sor _nanme%-OUND BOOLEAN |fetch found a row in the from the_ cursor but before
closing it (will be NULL before

table; otherwise FALSE the first fetch)

This is just the logical

0,
cursor nanme%NOTFOUNDIBOOLEAN inverse of %=0OUND

Same as above

Number of rows fetched |Same as above (except it will

YIROWCOUNT i
cursor_nane NUMBER so far be zero before the first fetch)

In addition to those cursor attributes, there are some less-commonly used cursor attributes that
you might see from time to time. They include:

cursor name%ISOPEN
Returns TRUE or FALSE depending on whether cur sor nane is open.
cursor_nanme%BULK_ROWCOUNT

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (6 of 13) [15/05/2002 22:49:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

An array-like data structure that provides a list of ROWCOUNTSs affected by a bulk DML
operation performed with the FORALL statement.

cursor nanme%BULK_EXCEPTIONS

An array-like data structure that provides a list of exceptions returned by a bulk DML
operation performed with the FORALL statement.

Combining this knowledge with what you already know about cursors and loops, we're ready to
assemble the code needed to fetch all the data from a SELECT statement into a PL/SQL
program. This process sounds a lot harder than it really is, as you'll see in the next section.

5.3.4 In a Loop with a Cursor

Let's say that | want to retrieve all of the records that are defined by a particular SELECT
statement. Putting the FETCH inside a loop and incorporating a test of the NOTFOUND attribute
will do this job, as shown in the following example:

DECLARE
favorite play title VARCHAR2(??);
publ i cati on_dat e DATE;

CURSOR bcur
| S SELECT title, date_published
FROM books
VWHERE UPPER(aut hor) LI KE ' SHAKESPEARE%Y ;

BEG N
OPEN bcur;
LOOP
FETCH bkcur INTO favorite play title,
publ i cati on_dat e;
EXI T WHEN bcur ¥NOTFOUND;
DBVS_QOUTPUT. PUT_LI NE(bcur YRONCOUNT
|| ') ' || favorite play title
|| ', published in"
| | TO CHAR(publication_date, 'YYYY'));

I've boldfaced the lines that control the loop.

If there are two matching records in the table, the output from this could be:

1) The tragedy of King R chard the Third, published in 2000
2) The Tenpest, published in 1994

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (7 of 13) [15/05/2002 22:49:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Oracle executes the FETCH statement at least once, and repeats it one time for each row in the
result set. Every row found will be displayed by Oracle's DBMS_OUTPUT.PUT_LINE built-in
function. After the last fetch, Oracle sets bcur ¥0NOTFOUND to TRUE, which causes the EXIT

statement to terminate the loop.
There are several things to remember when writing this type of fetch loop:
. The OPEN statements come before the loop. You only need to open the cursor once!

. Inside the loop is where the useful work gets done—in this case, displaying the title and its
publication date.

. The EXIT statement also needs to be inside the loop. If you accidentally omit the EXIT,
the loop becomes infinite.

. Statements inside the loop (but before the EXIT) execute at least one time, whether or not
there are any rows satisfying the query.

. The CLOSE statement comes after the loop.
Also, let me point out something about the ROWCOUNT attribute. The value of bcur YRONCOUNT

indicates the number of rows fetched so far through the loop. If you want to know the total number
of rows fetched, you must wait until after the last fetch (but before you close bcur) .

Using the loop like this is a relatively small change in terms of lines of code, but a big win in
functionality. Oracle has still more tricks up its sleeve, though!

5.3.5 Shortcut Number 1: Speedy Declaration of Those Pesky Local Variables

I'm a lazy programmer. My favorite language features are those that will maximize nap time,
which can be calculated as follows:

(nap tinme) = (work week) - (devel opnent hours) - (lunch hours)

Consider the soporific benefits of the first shortcut in this section, which consists of two parts:
anchored declarations and record datatypes.

5.3.5.1 Anchored declarations

There are many circumstances where you want to declare a local variable in your program that
will have exactly the same datatype as a column in a table—that is, you'd like to "anchor" the local
declaration to a column in the database. Instead of looking up datatypes yourself, you can make
the PL/SQL compiler do it for you.

Let's say, for example, that | want a local variable in my program to hold the contents of the
aut hor column of the books table. | could either go look it up in the database, where | would find

out that it is a VARCHAR2(200), and declare it like so:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (8 of 13) [15/05/2002 22:49:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DECLARE
| aut hor VARCHAR2(200);

or | could just tell Oracle "hey, go look it up yourself!", a demand that looks like this:

DECLARE
| _aut hor books. aut hor %0 YPE;

and that yields the same result. With such an anchored declaration, Oracle looks in the data
dictionary at compile timel=l for the datatype of this column. There is very little compilation
overhead for this operation, and no runtime penalty at all.

[5] Ahal, you say. What if the datatype changes between compile time and runtime? Not to worry,
Oracle's got you covered. If the underlying table changes, Oracle will mark the procedure as being
invalid and will automatically attempt to recompile the stored procedure before running it. You can
also manually recompile your invalidated programs.

As you can deduce, the general form of this declaration looks like:

vari abl e_nanme tabl e nane. col um_name%l YPE;

which means "declare var i abl e _nane as having the same datatype as column col unm_nane
of table t abl e nane."

In addition to pandering to programmer laziness, using anchored declarations has a surprising
and wonderful side benefit:

If the datatype or length of the column in the database changes, your program will
(in most cases) automatically adapt to the new datatype.

A very common database change is the expansion of the maximum width of a column, which, if
you're using anchored variables, can be performed without any programmer effort. Cool!

| said "in most cases" because some types of changes can
cause problems. For example, while changing from a

i+ NUMBER to a DATE will work as far as the anchored

) declaration is concerned, it could still require some revisions
in the body of your code, such as the addition of TO_DATE
operations.

Another programmer's time-saver in Oracle is the use of composite data structures (introduced in
Chapter 2 and Chapter 4) that can hold more than one thing in a single named unit. Let's turn
now to the first of these and see how these structures will make coding easier.

5.3.5.2 Record data structures

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (9 of 13) [15/05/2002 22:49:15]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

One of the simplest of PL/SQL's composite datatypes is a record type. lllustrated in Figure 5-2,
the basic idea is that instead of fussing with several individual "scalar" variables that all relate to
the same thing (such as a library book), you can glue them together and manipulate them as a
unit. Each record variable gets its own name (for example, nmy book in the figure).

Figure 5-2. Scalar versus record datatypes

1_isbn| VARCHAR {13) my book
1_;.33{-_,;.;..“,-.1 ISEN | VARCHAR (13) |

title | VARCHAR (200)

1_title[VARCHAR (200) | author | VARCHAR (200)
1_author | VARCHAR {200) | page_count MEE“

To use a record in your own program, you must first declare it. Chapter 4 demonstrated the long
way to declare a record, but if you just want a record type that will match the data that you'll fetch
with a cursor, there is a really nifty short way:

DECLARE
CURSOR bcur
| S SELECT title, date_published
FROM books
WHERE UPPER(aut hor) LI KE ' SHAKESPEAREY ;

brec bcur “ROMYPE;
BEG N
OPEN bcur;
LOOP
FETCH bkcur | NTO brec;
EXI T WHEN bcur YNOTFOUND;
DBVS_OUTPUT. PUT_LI NE(bcur “RONCOUNT

|| ') ' || brec.title
|| ', published in"
| | TO CHAR(brec. date_published, 'YYYY'));
END LOOP;
CLOSE bcur;
END;

/

This is another form of an anchored declaration. Notice that you designate cursor-based records
with the reserved word RO YPE, as opposed to % YPE, which applies only to scalars, as
follows:

record_vari abl e cursor_nanme% ROMYPE;

With records, instead of listing a series of scalars after the INTO keyword:

FETCH bkcur INTO favorite play title,
publ i cati on_dat e;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (10 of 13) [15/05/2002 22:49:15]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

you fetch straight to the record:

FETCH bkcur | NTO brec;

and Oracle populates each of the record's fields with the value of the column in the corresponding
position. A big improvement!

As illustrated by the example, when you want to use one of the fetched values, you use dot
notation as follows:

brec.title

Although the benefit of cursor-based record types is not dramatic here, the reduction in program
length (and the resulting improvement in understandability) can get quite exhilarating if your
SELECT statement retrieves a large number of columns from the database. Also, if the number of
elements in the cursor changes, you don't have to change the FETCH statement.

o Oracle somewhat confusingly refers to each component of a
- record as a field. With cursor-based records, the name of
‘*. #4- each field corresponds to the name of the corresponding

column or expression in the SELECT statement.

By the way, there is a second way to use ROWTYPE. You can declare a record type to have the
same structure as a table in the database—for example:

bt abr ec books%ROM YPE;

5.3.6 Shortcut Number 2: "Do the Right Thing" Loops

As you may recall from Chapter 2, you don't want to declare a variable before using it as a loop
index; PL/SQL declares it for you:

FOR | oop_index IN 1..100
L OOP

END LOOP;

In this case, PL/SQL implicitly declares the loop index variable as an integer whose scope is
limited to the loop itself. That is, you won't be able to refer to the loop index outside the loop.

You can apply this technique using a cursor for the loop range:

FOR | oop_i ndex I N cursor_nane
L OOP

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (11 of 13) [15/05/2002 22:49:15]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

PL/SQL will automatically declare the loop index to be of the cursor's corresponding YRON YPE.
Although you still declare the cursor itself, PL/SQL lets you skip the explicit cursor-based record
declaration. But wait—that's not all! We can also skip the OPEN and CLOSE statements, as well
as the FETCH statement. PL/SQL knows enough to perform those operations, which are usually
pretty boring anyway.

Let's apply this technique to the earlier example:

DECLARE
CURSOR bcur
| S SELECT title, date_published
FROM books
VWHERE UPPER(aut hor) LI KE ' SHAKESPEARE%Y ;
BEG N
FOR brec I N bcur
LOOP
DBVS_OQUTPUT. PUT_LI NE(bcur %RONCOUNT
|| ') ' || brec.title
|| ', published in'
| | TO CHAR(brec. date_published, 'YYYY'));
END LOCP;
END;

/

Neat, huh? A minimum of wasted motion. In many ways, this is the optimal pattern to follow when
you need to process a set of rows in your program.

5.3.7 Shortcut Number 3: Unnamed Cursor-FOR Loops

| said early on that PL/SQL has a uniquely intimate relationship with the Oracle server. Now we
get to see an example of how far this integration goes. When iterating over all the records
returned by a SQL statement, not only can we skip the record declaration, as well as the OPEN,
CLOSE, and FETCH statements, we can also skip the cursor declaration.

So our earlier example can be rewritten without any sort of declaration section:

BEG N
FOR brec IN
(SELECT title, date_ published
FROM books
VWHERE UPPER(aut hor) LI KE ' SHAKESPEAREY)
LOOP
DBVS_OUTPUT. PUT_LI NE(bcur “RONCOUNT
|| ') ' || brec.title
|| ', published in"
| | TO CHAR(brec. date_published, 'YYYY'));
END LQOOP;
END;
/

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (12 of 13) [15/05/2002 22:49:15]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

As you can see, the SELECT statement appears only in the loop header.

You may not want to go quite this far in the pursuit of sloth, however, because using this
approach makes the cursor impossible to reuse. Also, many programmers find it easier to
interpret code when all of the SELECT statements appear in the usual declaration section.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page47.html (13 of 13) [15/05/2002 22:49:15]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 5. Fetch! > 5.4 Presenting Query Results via a Web Page

< BACK Start | Table of Contents | Index | Examples CONTINUE >

5.4 Presenting Query Results via a Web Page

Armed with new knowledge of how to fetch data from the database into PL/SQL, we can now
contemplate presenting the data on a web page. How "bout we start by implementing a simple-
minded web page that will dump all the data in the table? Well, it seems easy enough on the
surface:

<% page | anguage="PL/ SQL" %
<% pl sql procedure="q" %

<HTM.>
<HEAD>
<TlI TLE>Sear ch</ Tl TLE>
</ HEAD>
<BODY bgcol or="whi te">

<%
FOR bk IN (SELECT * FROM books)
LOOP
%
<% bk.isbn %
<% bk.title %
<% bk.aut hor %
<% bk. date_published %
<% Dbk. page_count %
<% bk.summary %

<%
END LOCP;
%

</ BODY>
</ HTM_>

But when you actually view this page (see Figure 5-3), you're in for a rude awakening, because
it's so badly arranged that it's virtually unusable.

Figure 5-3. Output from naive "table-dumping" approach

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page48.html (1 of 5) [15/05/2002 22:49:17]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

¥ Seach - Nelscape

Fia Edit Wwew Go Commonicatior Help
_i"EI:II:Ikrn-urk:. A 36 ko II'II:I|:|a'a‘aﬁcldalaclaﬂ.cun'u‘dw'bn#dx‘q ;' m

1-56502-355-9 Oracle PLAS0L Programming Feuerstemn, Steven, and Bill Pribyl *
01-SEP-97 987 Reference for PLY/SOQL developers, inchiding examples and best
practice recommendations

1-56592-457-6 Oracle PL/S0L Language Focket Reference Feuerstan, Steven,
Ball Pribyl, Chip Dawes 01-APR-99 04 Quick-reference guide for Oracle

PL/EOL developers. Includes Oracledi coverage.

0-14071-453-9 The tragedy of King Richard the Third Shakespeare, Willsm
01-AUG-00 158 Modern publication of popular Shakespeare historical play in
which a freacherous roval attetnpis 10 sieal the crovn b dies horseless i

battle
0-672-31798-2 Sams _'J'aa::h Yourself PL/SQL in 21 Days, Second Edition -
= e Documeant Done

This is a reminder that browsers have no respect for the spaces and line breaks that may appear
in your HTML. What we need is a healthy dose of "nice and neat." Fortunately, there is a simple
fix that will take us a long way toward making the web page pretty. The solution involves the
HTML TABLE element, which | didn't get a chance to cover in the introduction to HTML in

Chapter 3.
5.4.1 Introduction to HTML Tables

An HTML table is a structure on a web page that usually renders as a grid of nice, neat rows and
columns. The simplest HTML table contains only three different types of elements: the table itself,
one or more rows, and one or more table data items (cells) in each row. Here is a minimal two-
row, three-column table in template form:

<TABLE border="1">
<TR>
<TD>dat a</ TD><TD>dat a</ TD><TD>dat a</ TD>
</ TR>
<TR>
<TD>dat a</ TD><TD>dat a</ TD><TD>dat a</ TD>
</ TR>
</ TABLE>

which appears in a browser as in Figure 5-4.

Figure 5-4. Simple HTML table

T Easy table demo - Netscape [M[=1E3

Elz Edit '“Yew [Go Communicaior Help

data data data
data data data

& == Dacument; Do

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page48.html (2 of 5) [15/05/2002 22:49:17]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

There are, of course, plenty o' bells and whistles you can add, such as column headers, captions,
color backgrounds, and the like, but these are the fundamentals:

. Bound the entire grid with <TABLE> and </ TABLE>

. Bound each row with the table row element, denoted by <TR> and </ TR>

. Bound each cell with the table data element, denoted by <TD> and </ TD>

Tables of data usually include column headings as the very first row. For column headings in
HTML, instead of <TD=>, you should use the table header element, <TH> and </ TH>. This causes

most browsers to display that row with a more prominent typeface.

Let's improve the appearance of the Oracle data by using an HTML table.

5.4.2 Displaying Oracle Table Data in an HTML Table

We'll do the simple, logical, and perhaps obvious thing here, which is to present each row from
the table in the database as a row in the HTML table. Revising the PL/SQL Server Page (PSP)
from earlier gives us the following:

<% page | anguage="PL/ SQL" %
<% pl sql procedure="qtab" %

<HTM_>
<HEAD>

<Tl TLE>Sear ch</ Tl TLE>

</ HEAD>

<BODY bgcol or="whi te">
<TABLE border="1">

<TR>

<TH>| SBN</ TH>
<TH>Ti tl e</ TH>

<TH>Aut hor </ TH>
<TH>Publ i sh dat e</ TH>

<TH>Pages</ TH>

<TH>Summar y</ TH>

FOR bk I N (SELECT * FROM books)

bk.
bk.
bk.
bk.
bk.

I sbn %</ TD>

title %</ TD>

aut hor %</ TD>

dat e_publ i shed %</ TD>
page_count %</ TD>

<TD>/ <% bk. summary %</ TD>

</ TR>
<%
LOOP
%>
<TR>
<TD><%
<TD><%
<TD><%
<TD><%
<TD><%
</ TR>

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page48.html (3 of 5) [15/05/2002 22:49:17]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

<%

END LOOP;
%>

</ TABLE>
</ BODY>
</ HTM_>

We've added a bor der =" 1" attribute on the table element; this causes most browsers to render
a 1-pixel gridline that separates each cell.

The end result looks quite a bit better, as Figure 5-5 shows.

Figure 5-5. Oracle table data presented in an HTML table

P Search - Netscape
Fibx Edit Yiew [FEo LCommunicstor Help

¥ Bookmatks 4 Goto [hittp: /e datacial. compls Nopmeb/at b =] _ﬂ
.

ISBN Tutle Anrhor Pm?:h Pages Sy

Reference for
Fenetrstein, FLAZOL developers,
/
1.56502.335.9]E'r’:ﬂ" PLISQL ot even and (01.SEP-97 987 linchiding ezamples
B g Bill Pribwl and hest practice

recommendabions e

Chuck-reference
Oracle PL/SOL St Bil guide for Oracle
1-56502-457-6 Language Pocket e, 01-APR-02 D4 FL/SOL developers

P euerstemn,

Feference En:f]' Cup Includes Oraclegi
e COVETage.

IModern pubbcation
of popular
Shakespeare

The tragedy of - _

0-14071-483-0 King Richard the | DDaResPEIE,) p1iq.pg j5g Mstoncal phy in

Third Wilharm which a breacherous

royal altempts 1o steal | = |
= == Dacunent Done

Another thing to notice about the code is the way we've mixed the PL/SQL and the HTML inside a
loop, in an attempt to make the code at least somewhat intuitive and readable. (As a reminder,
those <%and % thingies are delimiters separating the PL/SQL parts from the HTML.) Let's look

now at the PL/SQL part.

5.4.3 Applying Search Criteria: the PL/SQL Part

A "select everything" report would be okay for book collections that had, say, 50 or fewer entries.
But in the real world, we want the user to be able to apply search criteria to zillions of items and
get a reasonable number of items returned (in a reasonable amount of time).

A naive approach to the search criteria problem would be to allow the user to designate criteria
for each column, then construct a SQL statement with those values in the where-clause. So if the

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page48.html (4 of 5) [15/05/2002 22:49:17]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

user wants to list Shakespeare's works, you can envision running a query that goes something
like this:

SELECT ...
FROM books
VWHERE UPPER(aut hor) = UPPER(| _aut hor);

where | aut hor is a VARCHAR2 set to SHAKESPEARE.

The assumption is that the user types in SHAKESPEARE somewhere and the program assigns that

string to var i abl el. Okay, that seems fair enough. If they want all of Shakespeare's works
republished in the year 2000, the where-clause becomes:

VWHERE UPPER(aut hor) = UPPER(| _aut hor)
AND publication_date >= TO DATE(| _begi n_date, ' DD MON- YYYY')
AND publication_date < TO DATE(l _end_date, 'DD MON-YYYY');

where | begi n dat e isa VARCHAR?Z2 set to 01-JAN-2000 and | _end dat e is a VARCHAR2
set to 01-JAN-2001.

And, suppose they want to limit that search to titles starting with M:

VWHERE UPPER(aut hor) = UPPER(I| _aut hor)
AND publication_date >= TO DATE(| begi n_date, ' DD MON YYYY')
AND publication_date < TO DATE(l _end date, ' DD MON YYYY')
AND UPPER(title) LIKE I title pattern || '%;

where!| title patternisaVARCHAR2 setto M.

The message here is that there are a lot of possible combinations of criteria that the user might
want to designate, making it difficult to write one where-clause that would suffice for all the
potential useful searches, yet that would still execute efficiently. And if you don't know the where-
clause, you don't know the SQL statement; without the SQL statement, you can't put it into a
program to execute it. What are you gonna do?

This is not a trivial problem to solve. Fortunately, it is exactly the kind of problem for which Oracle
provides a feature called dynamic SQL, which the next section explores.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page48.html (5 of 5) [15/05/2002 22:49:17]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 5. Fetch! > 5.5 Building a Web-Based Search Page Using Dynamic SOQL

< BACK Start | Table of Contents | Index | Examples CONTINUE >

5.5 Building a Web-Based Search Page Using Dynamic SQL

Using dynamic SQL is not a core topic that beginners will need to know about on day one, but some applications
simply cannot be written without it. So this section tries to describe this somewhat complex feature as simply as
possible.

SQL is called "dynamic" when the exact statement doesn't necessarily exist until runtime, at which point the program
actually builds it as a string. In our case, we're eventually going to write a program that will assemble a SELECT
statement based on the criteria that the user provides in a search screen, and then executel€l it using PL/SQL's
dynamic SQL features.

[6] Let's hope it will run the statement rather than assassinate it.

5.5.1 Simple Dynamic SQL Using EXECUTE IMMEDIATE

Let's look at the simplest dynamic SQL syntax first. The starting point is the EXECUTE IMMEDIATE statement:

BEG N

EXECUTE | MVEDI ATE sqgl _statenent _string;
END;
/

where almost any SQL statement can go into sql st at enent st ri ng. For example, you could really do some
damage by doing something like this:

DECLARE

stm VARCHAR2(50) := 'DROP TABLE books';
BEG N

EXECUTE | MVEDI ATE stnt; /* yes, it really will drop the table! */
END;

/

Fortunately, you can also run nice, safe SELECT statements using this approach. In fact, you can so something as
innocent as this:

DECLARE

stnt VARCHAR2(50) := 'SELECT * FROM books';
BEG N

EXECUTE | MVEDI ATE st nt ;
END;

/

That's really a silly thing to do because the query runs, but the data goes into the proverbial "bit bucket"—that is, you
won't see it.

This form of EXECUTE IMMEDIATE is only rarely useful. To rescue the results from oblivion, you can use an INTO
clause, in the following form:

EXECUTE | MVEDI ATE sql _statenment _string
I NTO | ocal _vari abl el, |ocal _vari abl e2,

Remember how, with "normal" SQL, we are limited by the fact that SELECT-INTO returns only one row? Sorry, it's true

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (1 of 16) [15/05/2002 22:49:21]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

here, too. Sometimes that will actually make sense for your application; just be sure that you either use a where-clause
that will force exactly one row, or handle the usual exceptions (NO_DATA_FOUND and TOO_MANY_ROWS).

Usually, though, you won't be happy with a single row, and you'll have to use a slightly different approach, which we'll
describe in the next section. Although you won't get to use this wonderful EXECUTE IMMEDIATE statement in the
multirow case, the principle is the same...just different.

5.5.2 Using REF CURSORSs to Fetch Multiple Rows from a Dynamic SELECT Statement

Recall that in the non-dynamic query, we solved the multi-row problem by using a cursor. In the dynamic case, it would
certainly be nice if we could just say:

DECLARE
sql _stmmt VARCHAR2(512) := 'SELECT * FROM books';
CURSOR cur 1S sql_stmmt; /* this will NOT work! */
BEG N
FOR sqgl _stmmt I N cur /* this will NOT work! */
LOOP

END LOOP,
END;
/

But it won't work; the compiler complains because the language doesn't know what to do when it finds a variable where
it expects a static SELECT statement.

The answer to this problem is a cursor variable . Now, | admit that this term may be a little confusing. A cursor variable
is not the same thing we've been discussing so far in this chapter. It is not a cursor; instead, it is a data structure that
will, at runtime, hold a pointer[7l to a place in memory where the cursor really lives. The following table should clarify
the difference:

[71 Everything stored in computer memory (like, for example, a cursor) is locatable by some number. Programmers refer to
this location as a pointer or a reference or an address.

What Description Example declaration

. . . . CURSOR bcur IS
A name for the place in Oracle's memory that is associated with a SELECT aut hor

PL/SQL cursor ticular stat t
particular statemen FROM books;

TYPE refcur _t

PL/SQL cursor variable /A pointer to a cursor | S REF CURSOR;
curvar refcur _t;

The whole point of using a cursor variable is so that your program can defer, until execution time, the association of a
real statement with the real cursor.

PL/SQL doesn't have a built-in datatype for the cursor variable itself, only a "type's type" called a REF CURSOR, from
which you must declare your own datatype. This sounds a lot more complicated than it turns out to be in practice. Here
is a sample declaration:

DECLARE
/* first declare a datatype that will point to a cursor */
TYPE refcur_type IS REF CURSOR;
/* now declare a variable of your type */
curvar refcur_type;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (2 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

This code declares an actual datatype called r ef cur t ype whose only purpose is to serve as a datatype for cursor
variables such as cur var .

When using cursor variables for dynamic SQL, there is one more slight change from the normal cursor syntax: a
special form of the OPEN statement known as OPEN-FOR. It accepts a string that holds the SELECT statement:

OPEN curvar FOR sgl _stmmt;

Putting these pieces together, here is a complete example:

DECLARE
TYPE cur _t | S REF CURSOR,
cur cur _t;
brec books%ROMYPE;
BEG N
OPEN cur FOR ' SELECT * FROM books';
LOOP
FETCH cur | NTO brec;
EXI T WHEN cur 9NOTFOUND;
DBVMS_OUTPUT. PUT_LI NE(' Processing ISBN ' || brec.isbn);
END LQOOP;
CLCSE cur;
END;
/

Executing the previous example gives us something like this:

Processing | SBN 1-56592-335-9
Processing | SBN 1-56592-457-6
Processing | SBN 0-14071-483-9
Processing | SBN 0-672-31798-2
...etc.

(Admittedly, this example isn't really doing much in the way of processing; it's just printing one short line for each
record.) What this example really shows is a way to retrieve a number of rows from the database when the SQL
statement is in a string rather than statically compiled.

So far, all of the SQL statements I've illustrated could have been written the old way as static cursors. I've not even
attempted to exploit the possibilities of dynamic SQL. This brings us back “round to the main thread of this section,
because coming up next we're going to construct a SELECT statement's where-clause on the fly.

5.5.3 Applying Dynamic SQL Concepts to the Library Application

Now let's bring our somewhat abstract discussion of cursors and dynamic SQL back down to earth and see how they
apply to the library application. Let's say that the user is going to supply a value for any combination of the following:

. ISBN

« Author

. Title

. Publication date

To keep things somewhat simple, we'll further require any string the user supplies for a column to match exactly the
value in the database (we won't support substring searches or querying by a range of values quite yet).

All the SQL we're going to generate will be of the form:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (3 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

" SELECT * FROM books' || dynami cal |l y-generat ed- wher e-cl ause

One way to build the where-clause is to do so incrementally; we will write a utility that we'll invoke one time per
column/value pair. Since this functionality is table-independent, we'll put it in the | opu package.

Here is the function spec:

CREATE OR REPLACE PACKAGE | opu
AS

...snip...

PROCEDURE makewhere (where_clause I N OUT VARCHARZ,
col um_nane | N VARCHAR2, columm_val ue I N VARCHARZ,
dat at ype I N VARCHAR2 DEFAULT ' STRI NG ,
dataf ormat | N VARCHAR2 DEFAULT NULL,
rewrite op | N BOOLEAN DEFAULT TRUE);

As you can see, I've used IN OUT as the mode of the wher e _cl ause parameter. This lets me read and modify the
where-clause in the body of the procedure. The additional parameters are the following:

column_name

This is the name of the column in the table or view we're querying.
column_value

This is the value we're supplying as criteria for this column, expressed as a character string.
datatype

One of the literals ' STRI NG , ' DATE' , or ' NUVBER' , this tells the procedure how to interpret the value
supplied in col urm_val ue.

dataformat

If the datatype is ' DATE' or' NUVBER and we don't care to use the default data format, we can supply one
here.

rewrite_op

TRUE for this parameter means that we let the program decide whether the where-clause will use = or L| KE
as the operator; FALSE means that the caller will supply the operator as part of the actual col unm_nane
argument. For example, to match books with more than 200 pages, the calling program would send
rewite_op => FALSE, columm_nane => 'page_count >', colum_value => '200'.(Yes,|
know, this is kind of a hack.)

The procedure body (excerpted from the | opu package) follows:

CREATE OR REPLACE PACKAGE BCODY | opu
AS

...snip...

PROCEDURE nmakewhere (where clause | N OUT VARCHARZ,
col um_nane | N VARCHAR2, col um_val ue I N VARCHARZ,
dat at ype | N VARCHARZ,
dat af ormat | N VARCHARZ,
rewrite op | N BOOLEAN)

No ok~ wWwN PR

operator_| VARCHAR2(7);

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (4 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

8 rhs VARCHAR2(1024) := columm_val ue

9 BEG N

10 /* must have both col um name and val ue */

11 IF colum_nane IS NULL OR colum_value IS NULL
12 THEN

13 RETURN

14 END | F;

15

16 IF rewite_op

17 THEN

18 operator | :="'=";

19 END | F;

20

21 I F where clause |'S NULL

22 THEN

23 where cl ause : = 'WHERE ' ;

24 ELSE

25 where clause := where clause || ' AND'

26 END | F;

27

28 | F datatype = ' STRI NG

29 THEN

30 rhs := esc(col um_val ue);

31

32 IF rewite_op AND I NSTR(colum_value, "%) '=0
33 THEN

34 operator | :="' LIKE ';

35 END | F

36

37 ELSI F datatype = ' DATE

38 THEN

39 rhs := "TO DATE(' || esc(columm_value) || ',
40 | | esc(NVL(dataformat, dflt_date format))
41)"

42 END | F;

43

44 where_cl ause : = where_clause || colum_nane || operator_| || rhs
45 END;

If the caller sends FALSE forrewr i t e _op, the procedure will leave oper at or | with a null value, since it expects
the calling program to include the operator (as previously mentioned).

If the caller sends TRUE or accepts the default of TRUE for r ewr i t e _op, this procedure will decide whether it needs
to use the LIKE operator based on the presence of SQL's default wildcard character, % If the percent sign appears
somewhere in the string (as detected by the INSTR function), the program switches from an equality search to a LIKE

search (you can see this in lines 32 through 35). This code ignores SQL's other wildcard character, the underscore " ",
which matches exactly one character.

In line 25, the program constructs the where-clause with a logical AND between each criteria, meaning, of course, that
all of the conditions must be true in order for the record to match. We could use an OR, but for this application, AND is
probably more in line with most users' expectations. (Besides, the user can emulate OR functionality by repeating the
search with different criteria.)

If the user doesn't supply his own format when using a date datatype, line 40 makes acalltodf |t date fornmat,
another function in this package.

Finally, there are several calls to a custom function named esc (lines 30, 39, 40), which handles the problem of
converting strings for use on the righthand side of the where-clause into properly quoted container strings. For an
explanation of this function, see Those Troublesome Single Quote Marks.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (5 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Those Troublesome Single Quote Marks

In dynamic SQL, a stray single quote mark can ruin your whole day. Since the single quote
is PL/SQL's string delimiter, if you need to use one inside a SELECT statement (say, in a
where-clause), you have to go through some contortions to refer to a single quote itself.
Otherwise, Oracle thinks the mark designates the end of the SELECT statement.

Ironically, these contortions are known as "escaping"” the quote mark; you accomplish it by
using twoconsecutive marks, as mentioned in Chapter 2. To assign the string:

bill's books

to a PL/SQL variable var , you can do it as follows:
var := "bill""s books';

So, storing a single quote mark

in var would be done by first escaping the mark (that makes two) and then adding the
normal leading and trailing single quotes (that makes four):

var = ;
My esc function is merely:

FUNCTI ON esc (text I N VARCHAR2)
RETURN VARCHARZ2
IS
BEG N
RETURN '''' || REPLACE(text, '''', '''''")

N
END;

What about that REPLACE thingie? It is one of Oracle's built-in functions, designed to
search a string and replace occurrences of a second string with a third string:

result := REPLACE(input_string, text_to_find,
repl acenent text);

(This is a lot like a "global find and replace™ function in your favorite word processor.)

So the function call

REPLACE(col uim_val ue," """, " """ " ")

just converts all the single quotes in col unm_val ue to two single quotes.

Next, we'll use nakewher e in a demonstration procedure to show how we might build a query for the books table:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (6 of 16) [15/05/2002 22:49:21]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

CREATE OR REPLACE PRCCEDURE bookquerydeno (isbn_in I N VARCHAR2,
author _in I N VARCHAR2, title_in IN VARCHAR2, date_in I N VARCHAR2)
AS
TYPE bcur_t IS REF CURSOR;
bcur bcur _t;
brec books%RONTYPE;
wher e cl ause VARCHAR2(2048);
BEG N
| opu. makewher e(where_cl ause, 'isbn', isbn_in);
| opu. mrakewher e(where_cl ause, 'author', author _in);
| opu. makewher e(where clause, 'title', title_in);
| opu. makewher e(where_cl ause, 'date_published', date_ in, datatype => 'DATE,
dat af ormat =>. ' DD- MON- YYYY') ;
OPEN bcur FOR ' SELECT * FROM books ' || where_cl ause;
LOOP
FETCH bcur | NTO brec;
EXI T WHEN bcur ¥NOTFOUND;

DBMS_OUTPUT. PUT_LINE(brec.isbn || " by ' || brec.author
[] ": " || brec.title);
END LQOOP;
CLOSE bcur;

END;
/

As you can see, the procedure invokes nakewher e once for each potential column, which here is four times because
we're only demonstrating a query on up to four columns.

So if we call bookquer ydeno as follows:

BEG N
bookquerydeno(' 1-56592-457-6', NULL, '"All''s Well that Ends Well"',
'01- JAN-2001");
END;
/

the three invocations of nekewher e construct the where-clause in the sequence shown in the following table:

. where-clause ;
Action column_name where-clause after calling
before the call to column_value parameter
sequence parameter makewhere
makewhere
1 NULL i sbn 1- 56592- 457- 6 WHERE Tsbn=" 1565927
457-6
WHERE i sbn= WHERE i sbn="1- 56592-
2 ' 1-56592- 457-6' AUt hor UL 457- 6'
WHERE i sbn="1- 56592-
WHERE i sbn= . . 457-6' AND
3 " 1-56592-457-6' |/ 11 © AlT"s Vell that Ends VeIl 7 oo Al s well that
Ends Vel |’

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (7 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

WHERE i sbn= VWHERE | sbn=' 1-56592-

. . 457-6' AND
o oreere title= All''s VeIl that
4 dat e_publ i shed|01- JAN- 2001 Ends Well' AND date_

title="All""'s
Wel |l that Ends
wel |

published = TO_
DATE(' 01- JAN-2001" ,
" DD- MON- YYYY')

Are you with me so far? If we actually execute this query, it won't find anything, because that particular where-clause
doesn't match anything in the database.

What we need to do next is move beyond this simple demo and write a procedure that will handle more of the columns
the user may want to query. To make it more reusable, the actual SELECT statement can go in the book package
rather than the PSP. Now we're going to do something really exciting—have a function open a cursor and return a
cursor variable!

We'll add the following to the package specification:

CREATE OR REPLACE PACKAGE book
AS

...snip...
TYPE refcur_t IS REF CURSCOR;

FUNCTI ON book_cur (isbn_in I N VARCHARZ,
title_in I N VARCHARZ,
aut hor _in I N VARCHARZ,
date _published in I N VARCHAR2)
RETURN refcur _t;

And now, the body looks a lot like the demo that we showed on the previous page:

CREATE OR REPLACE PACKAGE BODY book
AS

...snip...

FUNCTI ON book_cur (isbn_in I N VARCHARZ,
title_in I N VARCHARZ,
aut hor _in I N VARCHAR2,
date_published_in I N VARCHAR2)
RETURN ref cur _t

IS
refcur refcur _t;
wher ecl ause VARCHAR2(2048) ;
BEG N
| opu. makewher e(wher ecl ause, 'isbn', isbn_in);
| opu. makewher e(wherecl ause, 'title', title_in);
| opu. makewher e(wher ecl ause, 'author', author _in);
| opu. makewher e(wher ecl ause, 'date_published' , date published_in,
' DATE') ;
OPEN refcur FOR 'SELECT * FROM books ' || wherecl ause;
RETURN r ef cur;
END;

We're all set! All we have to do now is call this function from the PSP, and we can display the results by looping
through the result set. Honest, this really works!

5.5.3.1 Receiving search criteria from the user: the HTML part

There is no magic involved in the search form; we just create some HTML input items that enable the user to supply
values for each column on which he wants to search. This part of the code is pretty similar to the code used in the
bookf or mPSP (and we might want to look for opportunities to share the code rather than duplicate it).

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (8 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

This extract comes from the file booksearch.psp:

<FORM net hod="post" acti on="booksearch">
<P>| SBN
<I NPUT type="text" nane="isbn_
val ue=<% isbn_ %>

si ze="15" maxl engt h="15"

Aut hor
<INPUT type="text" nanme="aut hor_ " val ue=<% author_ %>

Title
<INPUT type="text" nane="title " size="64" maxlength="512"
val ue=<% title_ %>

Dat e published
<SELECT NAME="non_published_" SIZE="1">
<% webu. non_option_list(nmon_published) %
</ SELECT>
<SELECT NAME="dd_published_" SIZE="1">
<% webu. dd _option_list(dd _published) %
</ SELECT>
<I NPUT type="text" nane="yyyy published_
val ue="<% yyyy_published_ %"
max| engt h="4" size="4">

</ P>
<pP>
<INPUT type="submit" nane="Subnmit" val ue="Search">
</ P>
</ FORW>

This renders as in Figure 5-6.

Figure 5-6. Input portion of search screen

HBook seaich - Nelscape

Fie Edit ew Go Communicstor Help

_‘f'Bmkrnark.t .3 Euln:lhttpIfarieldala:lah.:nm-‘pha‘bpwehfbnnhea:h ll m
il
Search

I5BM

Author |

Title |

Date putilished [(Mory =] [iay =] [(Y¥YD)

Search ZI

= == Dacument: Done

And then, farther down the page, where we want to display the results, we make a call to our wonderful book cur
function:

<%

bcur := book.book cur(isbn_,title_, author_,
yyyy_published_ || non_published_ || dd_published);

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (9 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

so that we can easily use dynamic SQL to loop through the results as follows:

LOOP
FETCH bcur | NTO bk;
EXI T WHEN bcur ¥NOTFOUND;
%
<TR>
<TD><% bk.isbn %</ TD>
<TD><% bk.title %</ TD>
<TD><% bk. aut hor %</ TD>
<TD><% TO_CHAR(bk. dat e_publ i shed, ' DD- MON- YYYY') %</ TD>
<TD><% TO_CHAR(bk. page_count) %</ TD>
<TD><%= bk.sunmary %</ TD>
</ TR>
<%
END LQOOP;
CLGCSE bcur;

5.5.3.2 Adding an edit link to each displayed record

Okay, that page is functional, but we can improve it by adding a "drill-down" feature that will provide librarians with a
way to click on each result and call up the editing page (bookf or) for that book.

Because we generate the results in a PL/SQL loop, we need to change only one line of code. To make the ISBN
"clickable" for each result record, change this:

<TD><% bk.isbn %</ TD>

to this:

<TD>
<A href ="/ bookf or n?i sbn_=<% bk.isbn %" ><% bk.isbn %</ A>
</ TD>

which does just what we're looking for. lit creates a link like the following on each ISBN:
htt p: // host nane/ pl s/ | opweb/ bookf or n?i sbn_=i sbnNunber

where host nanme gets set automatically by the web server and i sbnNunber gets assigned a value fetched via the
PL/SQL cursor. After querying the database for books by Feuerstein, our page looks like Figure 5-7.

Figure 5-7. Search results

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (10 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

#"— Book seamch - Hetzcape
Fl= Edi %iew Go Communicabe Help
3 f " Bookmaiks A (o ko Ihltp M anel datacralt comdplsdopweb/book sesrch j m
. =
Search
1SBM |
Luthor |=:Feuer£ltem=c
Title |
Diate published | Mor) =] [(dav) =] | (YYYV)
Search
15BN Tirle Author Publish date Pages Sy
Oracle Chck-reference
FLSQL ot quide for Oracle
i Language E'"mum D1-APR-1000 04 FL/SOL developers
Pockel DT;E':;"’ ¥ Includes Oracled
Reference COVErage.
Begindier, e
intermediate, and
Cracle Fruerstein, advanced ezercises
. IPLAEQL Stewven, with designed to test the
= = |Deweloper’s Andrew 01-MAY-1999) 588 reader’s knowledge
Workbhook Odewahn of Oracle's PL/SOL | »|
a (== Document: Done ik L oS Ea A

5.5.3.3 Splitting up many results into multiple pages

Pretty soon, you will want to limit the number of records per page and add links that will help navigate the result pages.
You might think that while you're fetching data in a PL/SQL loop, you could just stop when you have displayed some
pre-arranged number of records, and resume when the user clicks on a Next link. However, this is where you come up
against a nearly immutable law of HTTP, which renders such thinking merely wishful.

Beware the fact that HTTP is a "stateless" protocol; when the server sends a
”@ page to the browser, it retains no values for the local variables in your
program. With Oracle's PL/SQL web gateway, this means that all session
variables get reset to their default values, and all cursors get closed.

This means that there is no simple way to "resume when the user clicks on the Next link. Now, don't fret about this
stateless thing—it's part of the reason that the Web has become as big as it has. Anyway, there are a variety of
workarounds for this "problem."

The approach I've chosen is to use data (like a starting record number) in "hidden" HTML form fields to preserve state.
Unfortunately, | can't hide the open cursor in one of these fields; | can only preserve information about the cursor and
re-open it, starting from a different record. This should work just fine, as long as the SQL statement includes an
ORDER BY clause (and as long as there isn't a huge amount of volatility in the data).

The workaround requires making the following modifications to the page:
1. Accept one new parameter that corresponds to the starting record number.

2. Set the number of rows to display on each queried page to some reasonable default.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (11 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
3. Modify the SQL statement to retrieve only those rows in this desired range.
4. Add, when appropriate, a Next and/or Previous link or button at the bottom of the page.
We'll look at each of these modifications in the following sections.
5.5.3.3.1 Accept new parameter for starting record number

Since the program can't pick up where it left off when retrieving several screens full of search hits, we have to create a
way to tell it where to start. It's fairly easy to accept a parameter that contains the row number from which you want to
start displaying records.

<% pl sql paraneter="startrec_" defaul t="NULL" %

You'll see that we send this parameter by stowing it away in a special "hidden" HTML input item.
5.5.3.3.2 Set number of rows to reasonable default

To establish the number of rows that the SQL statement should fetch for each page, we're simply going to hard-code a
default value as follows (note that this goes near the top, with the other declarations):

rows_to fetch PLS I NTEGER : = 10;
We'll use this in the SQL statement, as well as the st art r ec_ parameter, to determine the first record displayed.

Now, if we wanted to get really fancy, we could enable each user to save her own set of personal display preferences
in a database table. These preferences might include not just the number of rows displayed per page but also things
like the default sort order and which columns she wants to see on the result page.

5.5.3.3.3 Modify the SQL statement

As a reminder, the SQL statement is safely tucked away in the book. book cur function, to which we pass the search
criteria the user has supplied. It was originally written to show results using the following query:

SELECT * FROM books dynam c-where-cl ause

We could easily change the query to the following:

SELECT *
FROM books dynam c-wher e-cl ause
AND ROMNUM <= n
ORDER BY sone_col unm;

which will retrieve only the first n rows. That gets us part of the way to where we want to be. What about displaying the
second page of results—can we just do this?

SELECT *
FROM books dynam c-wher e-cl ause
AND ROMNUM <= 2 * n
AND ROMWNUM > n /[* ERROR will not work as desired */
ORDER BY sone_col um;

Nope, won't work. Why not? Because Oracle assigns row numbers to records only after they pass all the criteria. The
guery will never find row number one since the where-clause filters out the low row numbers!

Just hang on; the SQL posse's coming ‘round the bend. If you're using Oracle8i or later, you can use a SQL tricklél to

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (12 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
accomplish this same result. Change the query to:
[8] Thanks to Tom Kyte (http://asktom.oracle.com) for this tip. By the way, if you are still using a version earlier than

Oracle8i, you can combine the first approach (RO/MNUM < n ORDER BY. . .) with a hack that "throws away" the undesired
low row numbers with some simple logic in a PL/SQL loop.

SELECT *
FROM (SELECT a.*, ROANUM r num
FROM (SELECT *
FROM books

WHERE wher e cl ause
ORDER BY some_colum) a
WHERE ROWNUM <= upper _bound)
VWHERE r num >= | ower _bound;

This query uses SQL's ability to alias a column. That r numidentifier is an alias for the computed ROWNUM of the
inner result set. Meditate on that for a few minutes if you need to; it is very cool.

the ORDER BY to uniquely identify each record. That lets Oracle guarantee
that the result set repeats in the same order (as long as there have been no
modifications to the table data between displays of the result pages).

‘ A minor usage note for this SQL trick: make sure to use enough column(s) in

I'll modify the book. book_cur function to construct this sort of statement. The function header becomes the following:

FUNCTI ON book_cur (isbn_in I N VARCHARZ?,
title_in I N VARCHARZ2,
aut hor _in I N VARCHAR2,
date_published_in I N VARCHARZ,
startrec I N VARCHAR2,
rows to fetch I N VARCHARZ,
orderby I N VARCHAR2)
RETURN refcur _t

To make the routine more forgiving and reusable, I've made these columns VARCHAR?Z2 even though the data should
always be numeric. That's because the web gateway accepts values from form parameters as strings; we can check
later to make sure they're numbers. Also, I've added a parameter called or der by, for a future enhancement that will
allow the user to specify the sort order of the returned records.

Now, let's ensure that the query bounds really are numbers. Picking up where we left off:

IS
refcur refcur_t;
wher ecl ause VARCHAR2(2048);
startrec_num PLS | NTEGER;
rows to fetch num PLS | NTEGER,
BEG N
... makewhere stuff snipped...
IF startrec 1'S NOT NULL AND | opu.is_nunber(startrec)

THEN

startrec_num := TO NUMBER(startrec);
ELSE

startrec_num:= 1;
END | F;

IF rows to fetch I'S NOT NULL AND | opu.is_nunber(rows to fetch)
THEN

rows to fetch num:= TO NUMBER(rows to fetch);

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (13 of 16) [15/05/2002 22:49:21]

http://asktom.oracle.com/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

ELSE
rows to fetch num:= 1,
END | F;

And now the OPEN becomes:

OPEN refcur FOR
' SELECT *
FROM (SELECT a.*, ROANUM r num
FROM (SELECT *
FROM books '
|| wherecl ause ||
ORDER BY ' || NVL(orderby,1) || ') a
WHERE ROVWNUM < :ul)
WHERE rnum >= : ||’
USING startrec_num+ rows_to fetch num startrec_num

Aha! you exclaim—there's stuff in there I've never seen before! Okay, I'm guilty as charged. Those ": var " thingies are
bind variables , which are placeholders for values supplied with the USING clause:

OPEN cursor_vari abl e_ nane FOR sql _stmt USI NG val uel, value2, ...;

Bind variables begin with a colon and don't have to be declared anywhere, but you must supply one value in the
USING clause per each bind variable. In our case, the sum st artrec _num + rows to fetch numwill get

assigned to the "upper limit" variable : ul , and the value in st ar t r ec_numwill get assigned to the "lower limit"
variable, : | | . Stay tuned for more about bind variables in Section 5.6.2.1 near the end of the chapter.

5.5.3.3.4 Add Next and Previous links

It's fairly easy to know whether we need to add the Next or Previous links on the page:

Next
For the Next link, the code determines whether the number of records displayed equals the page maximum. If
s0, the page gets the link. (Yes, it's possible that the number of records in the result set matches exactly the
number of rows on the page, in which case the Next link will bring up an empty page.)

Previous

We display the Previous link any time the starting record isn't "1."

The real challenge is to reconstitute all the search criteria (plus the new starting record number) so that selecting Next
or Previous will reload the current page with only a different starting record. There is no convenient utility that says
"reload the current page with all the same parameter values except one."

To solve this problem, we'll add two additional Submit buttons to the existing form. Yes this is legal; they'll have
different names such as " Next " and " Previ ous" so we can tell them apart no matter what value (label) they have.
We add these to the list of expected parameters, and then combine that information with the original starting record to
determine the new starting record. In other words, we'll put the following at the bottom of the page:

<%
IF startrec '=1
THEN
%>
<I NPUT type="subm t" nane="previ ous" val ue="Previ ous">
<%

END | F;

I F bcur YRONCOUNT = rows_to_fetch

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (14 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

THEN

%>
<INPUT type="submit" nane="next" val ue="Next">

<%

END | F;

CLCSE bcur;
%

</ FORW>

Notice that we also moved the CLOSE bcur statement so that we could make use of the cursor's ROWCOUNT
attribute. Also, since we are adding the Submit buttons to the existing form, we've moved the </ FORV> tag to the end
of this section of code. (We could have made additional forms; there's nothing that limits the number of forms on a web
page.)

Adding the parameters to the top is easy:

<%@ pl sgql paraneter="previous" defaul t="NULL" %
<%@ pl sql paraneter="next" defaul t="NULL" %

And we only need a little more logic to determine the starting record:

IF submit I'S NOT NULL
OR previous |I'S NOT NULL
OR next |'S NOT NULL

THEN
I F lopu. 1S NUMBER(startrec_)
THEN
startrec := NVL(TO NUMBER(startrec_), 1);
END | F;
| F previous I'S NOT NULL
THEN
startrec := startrec - rows _to fetch;
END | F;
I F next I'S NOT NULL
THEN
startrec := startrec + rows_to fetch;
END | F;

%>
<I NPUT type="hidden" nane="startrec_ " val ue="<% TO CHAR(startrec) %">

Another thing you might want to add is something that tells the user which ordinal page of the result set he's looking at.
You might even want to modify the button labels to include a page number. This is easy to do. If, however, you'd like to
tell the user he's on " Page n of ni', you'll have to add a query to count the hits and then compute the number of

pages, as outlined in the next section.
5.5.3.4 Displaying the total number of hits

Many search engines return information such as " Search returned n hits" and provide links to navigate to any

of the result pages. If you want to do this, your program will first have to issue a query that counts the results using the
same where-clause as the "real" query:

SELECT COUNT(*)
FROM books

VWHERE wher e _cl ause;

Using this result you can put the information on the page and generate a series of links so the user can jump to any
result page rather than having to scroll through the entire set to reach the end. However, if executing this COUNT
guery adds objectionable delay, you might want to forego providing this extra feature.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (15 of 16) [15/05/2002 22:49:21]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Another Way to Do Dynamic SQL

The native SQL you've seen in this chapter is properly called native dynamic SQL; it is
"native" because the features are built right into the language with statements like
EXECUTE IMMEDIATE and OPEN-FOR-USING. Not so long ago (as recently as Version
8.0), the only way to use dynamic SQL was by making calls to the built-in package
DBMS_SQL. This package is quite a bit more complicated than the approach used in this
chapter, but it does have a few features that native dynamic SQL lacks. For example, if
you need to execute a dynamic statement larger than 32K, or if you don't know the number
or datatype of the columns you're returning, DBMS_SQL is still your only choice. To
explore this package in more depth, have a look at Oracle Built-in Packages by Steven
Feuerstein, Charles Dye, and John Beresniewicz. For most applications, though, native
dynamic SQL is not only easier to use, it also runs quite a bit faster than code written with
the DBMS_SQL package.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page49.html (16 of 16) [15/05/2002 22:49:21]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 5. Fetch! > 5.6 Advanced Data Retrieval Topics

< BACK Start | Table of Contents | Index | Examples CONTINUE >

5.6 Advanced Data Retrieval Topics

In the previous section we looked at how a relatively advanced feature, dynamic SQL, can
significantly improve your applications. This section touches on a number of other data retrieval
topics that can give your programs a substantial edge. If you want to hold off learning these topics
until later, feel free to move on to Chapter 6 and return here at some future time.

The topics are:

. Preventing update anomalies by locking data

Improving performance of embedded SELECT statements
. Implementing more sophisticated searching
. Parameterizing cursors

. Using strongly typed cursor variables

5.6.1 Preventing Update Anomalies by Locking Data

In certain kinds of applications you want only the user who has fetched data to be able to change it.
Your program can obtain row-level locks on the user's behalf by adding the FORUPDATE clause to
the end of the SELECT statement. Locking is a rich topic, but the basic idea of this type of lock is to
ensure that no one else attempts to update or delete the rows identified in the where-clause:

SELECT ...
FROM . ..
VHERE . ..

FOR UPDATE;

Now anyone else who attempts to update the row receives an error. Once the application issues a
COMMIT (or a ROLLBACK) statement, Oracle releases the lock.

In a stateless web environment you have few opportunities to use this statement, because the locks
would be released after the page gets drawn but before the user does any kind of save back to the
database. (In a stateful environment, the lock itself would be part of the preserved state; it would
work "right.")

That raises some interesting problems for a web-based application. Consider this scenario:

1. Sally, working in the basement, is editing recently added library catalog entries, and fetches
the data for a 2001 edition of Pride and Prejudice. Before she makes any changes, she goes

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (1 of 9) [15/05/2002 22:49:25]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

to lunch.

2. Cedric, working on the second floor, is working through lunch. He, coincidentally, is going
through a list of books whose titles start with PRI. He pulls up the record for the very same
book that's on Sally's screen, makes a fix to the author's name, and saves it to the database.

3. Sally, back from lunch, edits the summary of the book and saves it to the database.

4. Sally's change has overwritten Cedric's change, and the author's name goes back to the old
(wrong) value.

Even worse, nobody knows it; Sally's old data, plus her updated summary, silently overwrites
Cedric's change!

If you want to have your application manage concurrent access by multiple users, you have to be
prepared to deal with this kind of problem—and it isn't easy to deal with. One relatively simple thing
you might do would be to save the old values for each column, and compare each with the newly
submitted values when the user makes an update. Then generate a SQL UPDATE statement that
only changes the columns with new values. But, although that approach might improve resource use
on the server, it's not really sufficient to solve the complete problem. What if Cedric had edited the
summary instead of the author's name?

Here is the outline of a better solution:

1. When doing an update, have the PL/SQL Server Page keep track of both the old and the
new values. When doing a delete, have the PSP keep track of the old values.

2. Change the program that modifies data to receive both the old values and the new values.
The delete program should receive the old values also.

3. Just prior to an UPDATE or DELETE operation, fetch the data with a FOR UPDATE (that is,
lock the row) and compare the old values with the newly fetched values. If anyone has
changed or deleted the data, the values won't match, so you can raise an exception rather
than overwriting the changes.

4. Have the PSP handle this exception by prompting the user for appropriate action.

I won't try to explain all the details of this implementation here. Have a look at the book's web site for
example code, however. You'll find some helpful programs there.

5.6.2 Improving Performance of Embedded SELECT Statements

There are a lot of ways to attempt to boost the performance of getting data out of the database and
into your PL/SQL program, but two are particularly relevant to this chapter: bind variables and bulk
binds.

5.6.2.1 Bind variables

The Oracle server can improve the performance of SELECT statements via shared SQL , a feature
that provides the most benefits in a heavy multiuser environment where lots of people are pounding

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (2 of 9) [15/05/2002 22:49:25]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

away on the database. Essentially, the server-side memory and CPU requirements are lower if your
applications can somehow send a smaller number of unique SQL statements. The SQL statements
have to match exactly, even in letter case and spaces. More concretely, two statements that differ
only in the righthand-side of a where-clause:

SELECT * FROM BOCKS WHERE i sbn ' 1-56592-849-0' ;

and:

SELECT * FROM BOOKS VWHERE i sbn '1-56592-699-4";
cannot be shared.

However, you can fool the server into thinking it's looking at only one statement if you supply the
righthand-side values via a PL/SQL variable:

SELECT * FROM BOOKS WHERE i sbn = | ocal vari abl e;

This also applies to dynamic SQL, in which case the variables are called bind variables. Recall from
that section that in the book. book cur function, the SELECT statement did not use bind variables

everywhere, but instead assembled the main where-clause with embedded literal strings. This is
bad. A fix is technically possible, but it's really ugly; it involves a bunch of tedious tests for the
presence of different criteria and branches to different versions of the OPEN-FOR-USING
statement. Remember that the SELECT might include only one criteria:

...WHERE title = :titlevar

in which case you need to:

OPEN refcur FOR sgl statenment USING title_in;

while another call might have:

...WHERE title = :titlevar AND aut hor = :authorvar

which requires:

OPEN refcur FOR sqgl statenent USING title_in, author _in;

If I were writing this thing for real and the schedule permitted, | would want to write all the IF
statements needed to make it work with bind variables.

5.6.2.2 Bulk binds

Remember everything | said about how retrieving data from the database into a program was a
challenge because of the set- versus record-at-a-time problem? Well, PL/SQL's bulk bind feature
turns that into a bunch of malarkey. Well, sort of.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (3 of 9) [15/05/2002 22:49:25]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Bulk binds are not a weightlifting maneuver, but they might give the appearance that your program
has been eating its Wheaties. Bulk binds are a way to bind result sets to your local variables en
masse. By using PL/SQL collections, which are variables that can hold a list of things rather than
just a simple scalar value, a bulk bind can transfer a lot of data to your program in one step—no
fetch loop is required! (Collections are described in more detail in Chapter 9.)

Here is one example that will fetch back all of the ISBN values for Shakespeare's works:

DECLARE
TYPE isbnlist t I'S TABLE OF books.isbn%YPE, -- declare collection type
i sbnlist isbnlist t; -- declare the collection

CURSOR i sbncur IS

SELECT i sbn

FROM books
VWHERE UPPER(aut hor) |ike ' SHAKESPEAREY ;
BEG N

OPEN i sbncur;
FETCH i sbncur BULK COLLECT | NTO i sbnli st;
CLCSE i sbncur;

FORi IN1 .. isbnlist.COUNT
LOOP
DBMVS_OUTPUT. PUT_LI NE(i sbnlist(i));
END LOOP;
END;

/

Notice that there is no fetch loop; all the rows come over in one trip.
There are two things you must change in your PL/SQL code if you're going to use a bulk bind:

. Introduce a properly typed collection (in the previous code, | sbnl | st , of type
I sbnl i st t)that will hold a list of things of the datatype you wish to retrieve

. Use the BULK COLLECT clause in the FETCH statement

In technical lingo this reduces the number of "context switches" between PL/SQL and SQL, which
can really speed things up. Then, once your program has fetched the data, it can then loop through
or search these local collection variables instead of making more roundtrips to the server.

Bulk binds are very often a significant performance win. If you're running Oracle9i, you can even
perform bulk binds with native dynamic SQL. SeeOracle's PL/SQL User's Guide and Reference if
you want to learn more about combining bulk binds with dynamic SQL.

5.6.3 Implementing More Sophisticated Searching

I've set up a number of web-based applications for customers using these plain-vanilla, column-
oriented search techniques. While they do work, they suffer from a number of limitations:

. There is no good way to search long text fields such as the book summary.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (4 of 9) [15/05/2002 22:49:25]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

. The letter case must match exactly. That is, a search for the string "foo" would not match the
string "Foo."

. Counting the number of hits is an expensive operation.
. There is no easy way to rank the hits.
. The user must take some explicit action to do wildcard searches.

Oh, there are spot solutions to these problems, such as implementing a case-independent index
(yes, there really is such a thing) or coding the search to add wildcards automatically if the non-
wildcard search turns up no hits, but these approaches are not comprehensive. And, regarding
wildcards, there is also a potential performance problem even when the user does request a
wildcard search. If the wildcard occurs at the beginning of the search string (for example, "%ki t es"),
it will always be inefficient and possibly very slow, even if we've created a normal Oracle index on
the column involved. This has to do with the way that indexes work.

In the "old days," correcting all of these problems required complexity, time, and expense. The good
news for Oracle users is that every Oracle server, as of Version 8.1.x and later, has a built-in facility
that solves all these limitations, and then some. Under Oracle9i, this facility is called Oracle Text;
under earlier versions, it is known variously as interMedia Text, Context, or TextRetrieval. Let's take
a look at a tiny fraction of what you can do with this facility by exploring what sort of searching we
could easily do on the surnmar y column.

Assuming that your DBA has installed both the Oracle Text features and Net8 support for external
procedures, using Oracle Text starts with creating a special type of index:

CREATE | NDEX books_i m i dx
ON books(sunmmary)
| NDEXTYPE | S CTXSYS. CONTEXT;

That operation could take minutes—or hours if there is a lot of data, but once it's done, you'll have a
wide range of new features available.

The secret to exploiting this special index lies in Oracle's CONTAINS operator. Although this
operator is only legal in SQL statements, you can, as usual, embed the SQL into PL/SQL.
CONTAINS behaves like a function with the specification:

FUNCTI ON CONTAI NS(col um_nane,
query I N VARCHARZ,

[score |abel IN NUMBER |)
RETURN NUMBER;

If quer y matches the data in col unm_nane of the current row, the function returns a non-zero
integer between 1 and 100. Higher numbers indicate a better fit. The score | abel is merely a
convenience to help order by the score (the quality) of the match. Let's take a look at some
examples of CONTAINS in action.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (5 of 9) [15/05/2002 22:49:25]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Do a simple case-independent word query

This first example returns all records whose summary includes the word " pr ocedur al ", in
any case. That includes Pr ocedur al , PROCEDURAL, and any other combination of upper-
and lowercase characters:

SELECT *
FROM books
VWHERE CONTAI NS(summary, 'procedural') > O;

The expression can also be a phrase:

SELECT *
FROM books
WHERE CONTAI NS(summary, 'procedural |anguage') > O;

Show the best matches first

By supplying a score label to CONTAINS, you can then use the built-in SCORE function as a
means of getting the most promising matches at the top of the result list. The spec for the
SCORE function is:

FUNCTI ON SCORE(score_| abel I N NUVBER)
RETURN NUVBER,

where scor e | abel is any arbitrary integer you've provided as the third argument to the
CONTAINS operator:

SELECT b.*, SCORE(1)
FROM books b

VWHERE CONTAI NS(summary, 'pl/sql introduction', 1) >0
ORDER BY SCORE(1) DESC;

Get the number of hits

There is a built-in function you can use to find the number of hits. The spec is:

FUNCTI ON CTX_QUERY. COUNT_HI TS (
I ndex_nanme | N VARCHARZ,
text _query I N VARCHARZ,
exact | N BOOLEAN DEFAULT TRUE)
RETURN NUMBER;

The default is to return an exact number of hits, but Oracle claims that this should be faster
than executing the CONTAINS query. To get an even faster estimate of only the upper
bound on the number of hits, use FALSE for the third parameter. For example:

num hits : = CTX _QUERY. COUNT_HI TS(' books_i m.i dx",
"pl/sqgl introduction', FALSE);

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (6 of 9) [15/05/2002 22:49:25]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Include words with alternate endings

You can still use Oracle's usual wildcard characters in the Text query.

SELECT *
FROM books
WHERE CONTAI NS(summary, 'procedur%) > O;

This query returns records whose summary includes the words " pr ocedur e”,
"procedures", "procedural ", etc.

Although wildcards at the beginning of any word are still a performance issue, the need to
use leading wildcards lessens quite a bit when using Text. That's because Text allows
efficient searches for any individual word in a text passage, even those that don't happen to
occur at the very beginning of the passage.

Perform a Boolean search

This next search returns all books whose summary includes the words " or acl €91 " and
“pl/sqgl" butexcludes any that include "or acl e8":

SELECT *
FROM books
VWHERE CONTAI NS(sunmary, 'oracle9i AND pl/sqgl NOT oracle8) > 0;

Nifty, huh? And the best part is you don't have to figure out how to code this feature yourself!

Of course, if you want to provide these features via a web interface, your users probably don't want
to have to learn all this fancy syntax. Instead, add some checkboxes (or whatever) to allow them to
turn various search features on or off, or come up with some more intuitive shortcuts they can use.

One more small point: with Oracle Text, if you want to include multiple columns in your query, you'll
need to create a different CTXSYS.CONTEXT index for each. Then your query can use more than
one CONTAINS operation in the where-clause. A likely usage would be to search for the desired
text in multiple columns:

VWHERE CONTAI NS(summary, 'oracle9i')
OR CONTAINS(title, "oracle9i")

Now, this stuff doesn't come completely without responsibilities; you have to designate a method for
keeping these special indexes updated as the data in the table changes, and there are disk space,
memory, and CPU implications to consider.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (7 of 9) [15/05/2002 22:49:25]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

automatically the way that normal indexes do. You can update
them by hand using an ALTER INDEX...REBUILD statement,
or the DBA can enable Oracle's special background server
process called ctxsrv. This process watches a queue of table
additions and will re-index whenever needed. As with
conventional indexes, though, updating one of these special
indexes is a lot faster than the initial build.

‘ The CTXSYS.CONTEXT indexes do not, by default, update

There are other new maintenance operations to take into consideration, such as purging unused
data from the index and defragmenting, both of which are accomplished using the ALTER INDEX
command. But, on the whole, these are minor burdens compared with trying to write your own full-
featured search engine! I've omitted lots of other features the Text extensions provide—including
thematic searches, alternate word form searches, and fuzzy searches. | recommend looking further
into these Text features if you need to implement a full-featured search engine. For more
information, see the Oracle Text documentation.

5.6.4 Parameterizing Cursors

When declaring cursors explicitly, you can specify a parameter, similar to the way you can for stored
procedures. Then, in the OPEN statement, you provide an actual value. This can be handy when
you need to use the cursor in more than one place. Here is one possible usage:

DECLARE

CURSOR cursor _nane (paraneterl DATATYPE,

par anet er 2 DATATYPE, ...)
'S
SELECT ... FROM ...
VWHERE col umm_nane = par anet er _nane;

BEG N

OPEN cursor_nane (val uel, value2, ...);

OPEN cursor_nane (val ue3, value4, ...);

You can only parameterize values that normally take variables, like the righthand-side of the where-
clause, or expressions used in calculations; as usual, you can't parameterize things like table names
or column names.

5.6.5 Using Strongly Typed Cursor Variables

In this chapter we saw how you could declare a cursor variable using the special REF CURSOR
type:

DECLARE

TYPE refcur_t IS REF CURSOR,
refcur refcur _t;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (8 of 9) [15/05/2002 22:49:25]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

This sort of cursor variable is weakly typed—that is, at runtime, you can open r ef cur for any

SELECT statement, regardless of number and datatypes of the columns returned. Although this
type of cursor variable is more prone to runtime errors, Oracle does require a weakly typed cursor
variable when using dynamic SQL.

If you're using static SQL and you merely need your code to choose from among two or more
versions of the SELECT statement at runtime, you are probably better off using a strongly typed
cursor. That way, the PL/SQL compiler has a chance of helping you catch type mismatches earlier.

To make a cursor variable strongly typed, just designate a return type in the declaration. For
example:

DECLARE
TYPE strongcur t IS REF CURSOR RETURN books%ROMYPE;
strongcur strongcur t;

Here, the cursor is defined to return the record type given by books%RON YPE—that is, it will match
the structure of the books table. You can also use a custom programmer-defined record type to
designate the cursor's return type.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page50.html (9 of 9) [15/05/2002 22:49:25]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 6. Keeping House

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 6. Keeping House

Once you get up to speed on the PL/SQL language, you will find that it is actually very easy to
write procedures, functions, and scripts (anonymous blocks, usually). You will get all excited
about your new-found proficiency. You will write more and more code. You will be in a big hurry
(deadlines, enthusiasm, impatience) and soon you will have a body of code that resembles myI1l
teenage son's room: a big mess in which he is quite sure he knows where everything is (except,
that is, when he needs to find something).

[1]1 In this section, "my" is Steven talking.

My son's solution is to get really mad and stomp around the house "looking" for the lost item. In
reality, he is trying to make enough noise to get his parents to join in the hunt—just so they can
guiet him down. It's an effective tactic with a (virtually) only child, but it may not work too well in a
corporate environment.

In this chapter, we'll take a look at how you can—and should—keep your PL/SQL house in order
with a minimum of noise, fuss, and frustration. You will learn how to:

. Organize all the great code you write, whether it's in the database or in files on your
computer's operating system

. Build and use SQL scripts to analyze your source code
. Use tools to help you build, debug, and keep track of code most effectively

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page52.html [15/05/2002 22:49:27]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 6. Keeping House > 6.1 Organize Your Code

< BACK Start | Table of Contents | Index | Examples CONTINUE >

6.1 Organize Your Code

Way too many PL/SQL developers do an absolutely awful job managing their code. They put all their files
into a single directory. They use short, cryptic filenames, because who's got time to type long names? And
they use a single extension (.sql) for all the files.

These are all bad ideas and, as a newcomer to the world of Oracle development, you have the opportunity
to establish good habits. This section offers a number of simple tips you should follow; they will make your
life as a PL/SQL programmer much easier.

Before diving into the details, though, it is worth noting a couple of general principles:
We are lazy

The general tendency of most human beings is to do the smallest amount of work (especially
anything like administrative work) necessary to get the job done. This "job" is often defined as that
thing right in front of our nose, and we rarely take into account the likelihood that we will have to deal
with this job for a long period of time.

The reality, of course, is that we (or others) will find bugs in our code, users will request
enhancements, we will learn how to do things better and want to fix up our code, and so on. If we are
not careful about how we write and organize our code at the start, we will soon be lost in a jungle of
software. The result is that in the short term we save a few seconds or minutes, but in the long run
we lose hours or days.

It's always more complicated than it first appears

You can be brand-new to programming or you can be a seasoned pro, but you are still likely to fall
prey to wishful thinking that whispers in your ear: "Aw, this is just a simple requirement. It shouldn't
take any more than one 15-line program. You can knock it out in a few minutes. Dive on in!"

Once in a very great while, that annoying and mysterious voice will be right. The rest of the time,
however, what seemed so simple at first glance blossoms overnight into a full-blown project that
requires attention and organization.

6.1.1 Code in Files

In order to execute any PL/SQL code other than anonymous blocks, you must have compiled and stored
that code in the Oracle database. You will find that with some tools (see Section 6.2 later in this chapter) it
IS very easy to also maintain (view and edit) that code inside the database. For most of us, however, our
source code will be more conveniently stored and maintained in files on the operating system of our
computer—for the most part, on our hard disks.

The following sections contain some recommendations for organizing these files.

6.1.1.1 Set up different directories for different logical groupings of code

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (1 of 12) [15/05/2002 22:49:31]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Your first impulse might be to create a directory on your computer for all your source code, called something
like C:\src (Microsoft Windows) or $HOME/src (Unix). Into this directory you will drop each and every
program you write. You will inevitably have to use convoluted names for those files to distinguish new files
from existing files that do similar things.

A much better approach is to set up different directories for your different areas of work. | might have a
directory for my source code that will manage patron information:

C.\src\patron

and another directory just for all the cool utilities that | build along the way:
C\src\utility

Every time you start a new project, create a new directory to hold that information. You could even create
subdirectories under those for various versions of your code as in the following:

C.\src\apps\reserve_|i st
C.\src\apps\reserve_|ist\backup
C.\src\apps\reserve |ist\vl1l.0
C.\src\apps\reserve list\vl. 5

I'll cover this topic in more detail in Section 6.1.1.4.

6.1.1.2 Use clearly understood filenames and informative file extensions

One of the most important skills of programming is the ability to come up with clear, understandable names

for your programs. The same is true of the files that hold your programs. I'm not going to try to define what a
clear and useful name is, but | will mention that there is a "sweet spot" in its length: make it neither too short
and cryptic, nor too long and hard to type. Names at both ends tend to be difficult to remember.

Here are two simple rules you can follow to improve the quality of your file-based life:

. Name the file the same as the program inside the file. You might end up with long filenames, but
they will be unambiguously linked to the program. So if the header of the program | am writing looks
like this:

CREATE OR REPLACE PROCEDURE cal c_overdue fine

then | will save this code into a file named:

cal c_overdue fine.pro

. Use the file extension (.pro above) to indicate what kind of software is sitting in the file. See Table 6-
1.

Table 6-1. Suggested file extensions

Extension File contents

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (2 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

fun Function (alternative: sf for "stored function")
pro Procedure (alternative: sp for "stored procedure")
pkg Specification and body of a package

pks Package specification only

pkb Package body only

tab Table creation scripts

ind Index creation scripts

cns Constraint statements

ins Install scripts

tst Test scripts

ddl General DDL scripts (create, drop, etc.)

grt Grant statements for objects

rev Revoke statements for objects

syn Create synonym statements

Many developers use just one extension for all their files: sql, as in myprog.sql. The reason? It is the default
extension for SQL*Plus. In other words, if | want to run a file named createtabs.sgl from SQL*Plus, | can
type nothing more than this:

SQL> @r eat et abs

That sure makes life easy, but it also puts the burden for explaining the contents of the file completely on the
filename. Now if | take advantage of the file extension for this file, | could run it as:

SQL> @reate.tab

Or | could go further in terms of coming up with meaningful names by moving away from generic names like
"create." So if | were creating tables for the patron management system, | might name my file patronmgt.tab
and then | would create my tables with this command:

SQ.> @atronngt.tab

6.1.1.3 Store package specifications and bodies in separate files

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (3 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

One of the recommendations for file extensions is to use pks for package specification and pkb for package
body. Yet we also include a recommended file extension of pkg for a file that contains both specification and
body. So what kinds of files should you create and what should you put in them?

We recommend that you always (well, almost always—see the exception in the following note) separate
your package specifications and bodies into separate files. There are two reasons for doing this:

« When you install scripts for your software, you will want to create all package specifications before
you create any bodies. By doing this, you minimize the possibility that a package body will fail to
compile due to unresolved references to packages that have not yet been compiled.

. Most changes you make to packages will be in the package body (the implementation). If the
specification and body are in the same file, then you have to recompile both in order to get your
changes into the database. Unfortunately, if you recompile a package specification, then every
program that references the package is marked as invalid and also has to be recompiled.
Recompiling a package body will not invalidate other programs.

) Here's the exception: why offer a recommendation of pkg for a file
o that contains both specification and body? When you are building

W & very small, simple packages upon which other objects do not depend,
) it is certainly reasonable to just drop all this code into a single file.

6.1.1.4 Make frequent backup copies

You write the first version of your program and—what a surprise!—it has some bugs in it. Let's say there are
15 bugs. So you diligently cruise through your code, make 100 different changes, do a bunch more testing,
and two hours later, it's looking really good. Then...whoops! You inadvertently write over your beautiful
program with a version from two days ago.

Such a sickening feeling! How can you recall all those little changes you made? How can you bear to go
through it all again? But of course you have to—unless you've been religious about making backup copies of
incremental changes.

When writing code, always assume that a disaster is around the corner. Here are some possibilities:
« You delete the contents of a directory and then empty the recycle bin.

. Your hard disk crashes; you save one file right on top of another file, and your editor does not create
its own backup files.

« You spill the drink you are never supposed to have near your computer right into your CPU and, man
oh man, those sparks are worrisome.

So, act defensively! In fact, you'll probably want several lines of defense against disaster. First, find out what
sort of backups your system administration (SA) group is already making. They might say: "SA backs up all
file servers every day, but we do not back up disks on programmers' desktop computers.” So if you have a
file-server-based network drive (probably with a higher-letter drive like H:\), store your important files there,
so they get backed up. Be warned, though—this daily snapshot of files on the disk is only the last line of
defense; if you don't know what day you need to recover from tape, or if you need a file that was deleted mid-
day, you are probably out of luck.

If you don't have the luxury of someone else to manage daily backups, you will want a backup device with

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (4 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

removable storage (such as tape, lomega Zip, writeable CD, or DVD). Don't just back up files from one disk
to another disk; you want a copy in a physical location separate from your computers. In addition to the
hardware, you'll want to acquire and learn how to use backup and recovery software (there are many web
sites and books that can help you with this).

To augment the SA backup, there are a variety of approaches that people use, from simple, low-tech "copy
these files" scripts to relatively sophisticated version management techniques. Common sense dictates that
whenever you are about to make a large change to a program, you will want to save off a copy of the old
version. The question is, how should you do that? Here are some alternatives:

1. In alocation that makes sense to you, create a subdirectory that will contain old versions. When you
need to make a new version, copy the current version to the subdirectory, but append a version
number of a date to the filename. Or, if you're going to be modifying a lot of files, copy an entire
subdirectory. Either way, this is a very low-tech approach, requiring much discipline.

2. Use a programmer's editor that will automatically make and preserve backup copies every time you
open a file. This requires no effort, but tends to generate a lot of files (or not enough files), making it
a challenge to find the version you want.

3. Use some sort of version control software such as the Revision Control System (RCS) or its big
brother, Concurrent Versions System (CVS), both of which are open source and freely available on
most flavors of Microsoft Windows and Unix.

As you begin to work on projects involving large distributed teams of developers, you will probably want to
bite the bullet and begin using a real version control system. You will quickly discover its advantages: chief
among them is the ability to allow a project's programmers to work independently yet still merge their work
together later. Version control software also helps you answer questions about the code such as who made
a given change, when, and (presuming people have been commenting their versions) why. CVS, in
particular, could be very useful if you get involved in community-based open source projects, because it is
the most popular system used in such quarters. (See http://www.cvshome.org to learn more about
CVS)

Whatever approach you choose, | discourage people from relying long-term on backup or version control
approaches requiring a lot of continuous manual intervention. Even if you do remember to perform the
required steps, these housekeeping chores can be an unnecessary distraction.

Unless and until you are ready for a real version control system, here are some easy steps you might take:
Use a version number

Build a version number into your code. If you are writing a package, add a function called version
and then have that function return a string, such as "1.5.2" or whatever your version is. Update this
version string each time you make substantial changes. If you are working on a single standalone
program, just put a version number in your program header, as in:

CREATE OR REPLACE PROCEDURE cal c_total s
-- 1.5.2: revanp logic for annual cal cul ations
| S

Comment

When you make a change to your code, put a comment before the change indicating the version in
which the change was made, as in the following:

BEG N

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (5 of 12) [15/05/2002 22:49:31]

http://www.cvshome.org/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

-- 1.5.2 initialize settings
init;

Track changes

Keep track of all changes made for a particular version in a readme.txt file so you can easily
construct a Release Notes document at a later time.

Create separate directories
Create separate directories for different versions of your code, as mentioned earlier.

Assuming you are a part of a larger development team, the organization as a whole should have established
standards for backups and version control. Even with those in place, however (and often, sadly, they are
not), you can still take your own steps, increasing your own confidence level in the ability to recover from
mistakes and catastrophic failures.

6.1.1.5 Build installation scripts

Very few of the applications you build will consist of one program or one file of software. As your code grows
more complex, you should get into the habit of building scripts that will perform all the installation steps—and
even confirm that the installation occurred without errors.

Here is an example of such an installation script:

@ eserve |list.tab
@@ eserve_list. pkg
SHOW ERRORS
@@ eserve_util . pkg
SHOW ERRORS

First, | create the tables needed for the application, and then | create two packages. After each package
installation, | run the SQL*Plus SHOW ERRORS command to see if there were any compilation errors.

The @@command is very important in installation scripts. It tells SQL*Plus to look for those files in whichever
directory was specified for the filename next to the @@ This means that | don't have to change my working

directory for SQL*Plus to install the code. | can simply execute the main install file and let SQL*Plus find all
the other files, as in:

SQ.> @I i bapp/reservel/install

The program will automatically look for reserve_list.tab, etc., in the /libapp/reserve directory.

There are a variety of tools designed to help with the challenges of building and installing software. For the
intrepid developer, it should be possible to apply the powerful and well-respected tool known as GNU make
to Oracle build scripts. The main advantage of doing so would be its ability to detect which source code files
have changed, thereby limiting the rebuild impact to the absolute minimum necessary. (Check the book's
web site to see if I've figured out how to do this.)

6.1.2 Code in the Database

In this section, which describes managing code inside the database, | will assume that you have only
SQL*Plus available to you. Section 6.2 explores the possibilities available when you use other tools,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (6 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

usually those available from other (hon-Oracle Corporation) vendors.

To reiterate a common theme of this book, one really wonderful feature of the PL/SQL language is that it is
executed from within the database. Your named programs are stored in the database each time you compile
those programs (note this exception: file-based anonymous blocks are simply compiled and executed,
without being stored). When you compile code from a file, the name of the file is ignored inside the
database; only the name of the program is important.

Much more happens, however, when you compile a PL/SQL program:

. The source code (human-readable text) is stored in the database and made accessible to you
through the USER_SOURCE data dictionary view. (See the following note for more about USER _
and the other "levels" of views.)

. Any compile errors are available to you through the USER_ERRORS data dictionary view.

. The list of all the objects upon which your program depends (things your code makes a reference to,
such as a table or another program) is available through the USER_DEPENDENCIES data
dictionary view.

Since this information is sitting in a set of views, you can take advantage of SQL—the same language you
use to manipulate your application's data—to access (query, but not change) information about your source
code. Let's see how!

—a Oracle generally provides three levels of data dictionary views:

o USER_, ALL_ and DBA . The USER_* views give you information

&+ about the database objects that you (the currently connected

) schema) own; for example, the USER_TABLES view provides
information about the tables you own. The ALL_* views give you
information about the database objects to which you have access.
DBA_* views are available only to database administrators and give
them access to just about anything and everything in the database.

6.1.2.1 Examine code properties

You can get all sorts of interesting data about your source code by looking at the USER_OBJECTS data
dictionary view, including:

. Alist of all the packages, procedures, or functions defined in your schema:

SELECT obj ect _nane
FROM user obj ects
WHERE obj ect _type = ' PROCEDURE' ;

Be sure to put PROCEDURE in all uppercase letters.

. Alist of all the programs that were created or changed in the last week:
SELECT object _type || ' - ' || object_name obj

FROM user _obj ects
WHERE | ast_ddl time > SYSDATE - 7;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (7 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

. Alist of all the programs that are marked "INVALID," meaning that they need to be recompiled:

SELECT object _type || " - ' || object_nane obj
FROM user _obj ects
VWHERE status = 'I NVALID ;

Here again, the status value you supply must be all uppercase.

And as you figure out interesting queries against this view, you should save them into files so that you can
run them at a moment's notice and with a minimum of effort. Here is one example:

/*file chgsince.sqgl */

SELECT object _type || * - " || object_nanme obj
FROM user _obj ects

VWHERE | ast_ddl _tine > SYSDATE - &1;

The &1 is a special SQL*Plus placeholder that allows you to supply a command-line argument when you run

the script. This script allows you to quickly examine the list of objects that have been changed or created
within the last n days. The number of days is passed in on the command line, as in:

SQL.> @hgsince 2

SQ.> SELECT object _type || ' - " || object_nanme obj
2 FROM user _obj ects
3 VWHERE | ast _ddl _time > SYSDATE - &1;

ol d 3: WHERE | ast _ddl tinme > SYSDATE - &1

new 3. WHERE |ast _ddl _tinme > SYSDATE - 2

PACKAGE - UTASSERT
PACKAGE BODY - UTASSERT
PACKAGE BODY - UTGEN
TABLE - UT_CONFI G
SEQUENCE - UT_PACKAGE_SEQ

(The lines above that begin "old" and "new" are just informational output from SQL*Plus, informing you that it
made a substitution of the first argument placeholder, &1, with the value 2.)

Issue the SQL*Plus command DESCRIBE (or DESC) to see the full list of columns in this view:

SQ.> DESCRI BE USER_OBJECTS

6.1.2.2 View and search code

All of your source code is stored in the USER_SOURCE view. You can query against USER_SOURCE in
order to display source code as it exists in the database or to search for specific text. Here are some
examples:

. Display the complete contents of the cal c_over due_fi ne procedure:

SELECT text

FROM user _source
WHERE nanme = ' CALC_OVERDUE_FI NE'
ORDER BY Ii ne;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (8 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Note that by default, Oracle stores PL/SQL object names in all uppercase letters, even if your source
code used lowercase. In these queries you must specify your program name in uppercase or you will
not find a match.

« Show me lines 10 through 12 of the cal ¢ _over due fi ne procedure:

SELECT line || ' - ' || text
FROM user source

WHERE nane = ' CALC OVERDUE FI NE'
AND | ine BETWEEN 10 AND 20

ORDER BY Ii ne;

The file showsrc.sqgl contains a more generalized version of the above query:

SELECT TO CHAR (line) || text Line_of_code
FROM user source

WHERE nanme = UPPER (' &1')
AND |ine BETWEEN &2 AND &3

ORDER BY Ii ne;

Why, you may ask, would | ever want to list a small number of lines
by their number? When your program won't compile, or if it compiled
but encountered an unhandled runtime exception, Oracle will usually
tell you the line number where the problem occurred. However, this is
the line number as it has been assigned by Oracle, which does not
necessarily match the line number in your text editor.

« Show me all the lines in the cal ¢c_over due_f i ne procedure that contain the string " OVERDUE" :

SELECT line || " - " || text
FROM user _source
WHERE nanme = ' CALC_OVERDUE FI NE'
AND | NSTR (UPPER (text), 'OVERDUE) > O;

| apply the UPPER function to text (the column containing the individual lines of source code)
because PL/SQL is not a case-sensitive language. As a result, | might have written a variable
declaration like this:

DECLARE
v_over due BOOLEAN;

or like this:

DECLARE
v_OVERDUE BOCOLEAN,

| must therefore convert my text to the same case as my comparison string (" OVERDUE") if | am
going to "catch" all the matches.

The INSTR function returns the location of the first match it finds; if it returns zero, it didn't find any

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (9 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

match at all.
Issue this command to see the full list of columns in this view:

SQ.> DESCRI BE USER_SOURCE

6.1.2.3 View compile errors

SQL*Plus offers the SHOW ERRORS command so that you can easily see the errors from the last
compilation request. Many Oracle programmers know only one form of this command:

SQL> SHOW ERRORS

and they believe they must query the USER_ERRORS view directly to see errors from earlier compilations.
However, SHOW ERRORS has other options. For example, to see the errors for the most recently compiled
package specification, you can use the command:

SQL> SHOW ERRORS PACKAGE

You can also append the name of a specific object, as in:

SQL> SHOW ERRORS PACKAGE book

The complete list of object categories this command recognizes varies by version, but in Oracle9i it includes
the following:

Dimension
Function

Java class
Package
Package body
Procedure
Trigger

Type

Type body
View

In other words, you can see the most recent compile error for the f oo trigger using:

SQL> SHOW ERRORS TRI GGER f 00

In any event, if you attempt to show errors for a non-existent object, or for one whose most recent
compilation was successful, SQL*Plus responds with the message:

No errors.
6.1.2.4 List dependencies

Oracle automatically maintains dependency information about your programs. This means that after you
compile a program, you (and Oracle) can see what objects (tables, programs, views, etc.) that program
requires in order to execute properly.

Oracle uses this information to ensure that your compiled code is consistent with the latest state of its

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (10 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

dependent objects. If, for example, my cal ¢_over due fi nes is dependent on (queries from) the books
table and the structure of that table changes, my compiled code is marked as being | NVALI D by Oracle. It
must be recompiled (which can be, and often is, done automatically by the database engine).

But USER_DEPENDENCIES isn't just a handy repository of information for Oracle! You can use this
dependency information to analyze the potential impact of changes you want to make in your application.

Suppose, for example, that you plan to add a column to the reserve |1 st table, which keeps track of
requests for specific books. How many programs use this table (which happens to be owned by the | opweb
schema) and might be affected by your change?

You could run a query directly against the USER_DEPENDENCIES view in the data dictionary, which lists
PL/SQL program units that depend on others:

SELECT type || ' " || nane
FROM user _dependenci es
VWHERE r ef erenced_owner = ' LOPVEB
AND r ef erenced nane = ' RESERVE LI ST
AND referenced type = ' TABLE
ORDER BY type, nane;

Although this may seem to be a reasonable approach, it has one slight shortcoming—it only shows the "first-
level" dependencies. In other words, if you have other programs that depend on those first-level objects, this
query won't show them. You could do a complicated CONNECT BY query to get the rest of the
dependencies, but you'd be better off with the following alternate approach.

Oracle supplies a script that will give you the tools needed to produce a nicely formatted list of objects
dependent on one another. To run it, follow these instructions:

1. While connected as the Oracle user who owns the objects, run the script utldtree.sql, found in the
Oracle home directory, in subdirectory rdbms/admin. Here is a sample invocation of this script on a
Unix-hosted SQL*Plus:

SQL> @ORACLE HOVE/ rdbns/ adm n/ ut | dtree

You should see a few lines of output scroll past. (Don't worry about any "table or view does not exist"
errors; these are expected the first time you run the script.) You only need to run this script one time;
it builds some objects in your local schema, including the procedure deptree fil | and the view
named i dept r ee.

2. Then, whenever you want to list programs dependent on a particular object, run the deptree fil |
stored procedure, which has the following specification:

PROCEDURE deptree fill (type CHAR, schema CHAR, nane CHAR)
For example:
SQL> EXEC deptree fill (' TABLE', 'LOPWEB' , ' BOOKS')

This procedure populates some tables that will hold some temporary data; it displays no output to the
screen. (Before it populates the data, it deletes any old data so it doesn't mix up multiple "runs.")

3. Now, issue the following query (it could take a while to run, so be patient):

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (11 of 12) [15/05/2002 22:49:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

SELECT * FROM i deptr ee;
which generates a report based on the most recent execution of deptree fill.

During the development of this book, sample output from this query looked like this:

DEPENDENCI ES
TABLE LOPVEB. BOOKS
PACKAGE BODY LOPWEB. TEST_BOOK
PROCEDURE LOPWEB. ADD_BOCK
PACKAGE LOPWVEB. BOOKWEB2
PACKAGE BODY LOPWEB. BOOKWEB2
PROCEDURE LOPVEB. BOOKFORM2
PACKAGE LOPWVEB. BOOKWEB1
PACKAGE BODY LOPWEB. BOOKVEEBL
PROCEDURE LOPWVEB. BOOKFORML
PROCEDURE LOPVEB. QTAB
PROCEDURE LCOPVEEB. Q
PROCEDURE LCOPWEB. BOOKSEARCH
PACKAGE BODY LOPWEB. BOOK

This listing uses indentation to designate levels in the hierarchy of dependencies, kind of like an outline view
in a word processor. So the books table (first line of the output) is the root, upon which depends

| opweb. t est _book, | opweb. add_book, etc.

Dependency information in the data dictionary is collected at compile
time, not runtime. This means that if your program uses dynamic
SQL, dependencies listed in the data dictionary are probably
incomplete.

By the way, querying USER_DEPENDENCIES directly or via
| dept r ee usually takes a fair amount of time, since this view is

defined based on other lower-level views using some very
complicated SQL. Be patient.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page53.html (12 of 12) [15/05/2002 22:49:31]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 6. Keeping House > 6.2 Use Tools to Write Code Effectively

< BACK Start | Table of Contents | Index | Examples CONTINUE >

6.2 Use Tools to Write Code Effectively

So far, we have assumed that you have had two basic tools with which to work: SQL*Plus and a text
editor. SQL*Plus is an excellent example of a "lean and mean" engine for compiling and executing both
SQL and PL/SQL. As a command-line environment, however, it leaves much to be desired. If you are
already familiar with the commands and intimately familiar with the Oracle data dictionary views, you can
perform seeming wizardry. For the rest of humanity, however, SQL*Plus can be a serious obstacle to high-
productivity PL/SQL development.

Fortunately, during the past five years, many third-party vendors have developed software products
(usually lumped under the category of interactive development environments, or IDES) that allow you to
build, test, debug, and format your code in much more effective ways. Complementing these "all-in-one"
utilities are a host of more specialized programs, such as code formatters and generators. This section
introduces you to a variety of these tools and capabilities.

We do not endorse or recommend any single tool; the price, features, and interface vary too wildly to
make such a recommendation useful. Rather, we suggest that you try out several products to see how
they match up to your needs and preferences. Table 6-2 contains an alphabetical list of the products
known to the authors at the time of publication. Virtually all of these products have some version you can
download via the Internet; several of them, identified as "freeware" or "open source," are truly free. Unless
otherwise indicated, these products run on some flavor(s) of Microsoft Windows.

Table 6-2. PL/SQL interactive development environments and other support products

Vendor or lead Product(s) Description License
developer
Single product that
Allround Automations PL/SQL Developer includes editor, debugger, |Commercial
and more.
Benthic Software PLEdit A PLISQL editor, one of Commercial
several Oracle tools.
Cross-platform database
BMC Software SQL Programmer app]lcatlon development Commercial
environment, formerly sold
by Sylvain Faust Software.
SQL-Builder and
CAST Application Viewer for PL/.SQL development Commercial
Oracle environment.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (1 of 17) [15/05/2002 22:49:35]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Used to edit, test, tune,
and debug SQL and
Computer Associates SQL Station stored code (works with |Commercial
Oracle, Microsoft, and
Sybase).

Used to tune and debug

CompuWare DBPartner for Oracle SOL and PL/SOL. Commercial
Used to execute, test, and
Core Lab SQL Designer debug SQL and PL/SQL |Commercial

statements.

Development environment
for SQL and PL/SQL, with
optional debugger and
profiler. Includes tools for
Transact-SQL, Java,
HTML.

Rapid SQL, SQL Tuner,
SQL Debugger, SQL
Profiler

Embarcadero

: Commercial
Technologies, Inc

Toolkit including PL/SQL
editor and debugger for
Linux or Microsoft
Windows.

GlobeCom AB TOra Open source

PL/SQL editor, debugger,
IDB Consulting SQL*Object Builder and SQL execution plan |Commercial
analyzer.

Oracle-related products
include a developer's
environment and a
PL/SQL debugger.

KeepTool Hora, PL/SQL-Debugger Commercial

Displays real-time debug
Material Dreams PL/SQL-Debug output sent through a Commercial
database pipe.

High-end modeling and
Oracle Designer, Internet |code generation tools. IDS
Developer Suite (IDS) includes Oracle's "PL/SQL
Procedure Builder."

Oracle Commercial

PL/SQL editor, runs on
OraSoft Procedit Linux (requires Oracle Open source
libraries and Gtk).

FROG (Funky Resource for |General-purpose Oracle

PCSCC Oracle Gorillas) developer's environment.

Open source

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (2 of 17) [15/05/2002 22:49:35]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Two mature, popular, and |Commercial (TOAD

Quest SQL Navigator, TOAD full-featured IDEs. has freeware version)

Active PL/SQL Knowledge |Tools designed
RevealNet Base, PL/Formatter, exclusively for PL/SQL Commercial
PL/Generator, Code Library | developers.

Platform-independent
PL/SQL unit testing
Steven Feuerstein utPLSQL framework based on Open source
principles of "extreme
programming.”

SQL and PL/SQL editor.
Requires installation on
KOra (KDE Oracle SQL both client machine and
Communicator) database server, but does
not use SQL*Net. Runs on
Linux and AlX.

Ullrich Wagner Open source

You can find a list of these products that includes clickable links directly to each product's web page at
http://dmoz.org/Computers/Programming/Languages/PL-SQL/Developer_Tools/

That web page should be more or less up-to-date, although I'm the guy who has been doing the updating,
and sometimes | spend my time writing books instead.

6.2.1 Build Code
Almost all of the PL/SQL IDEs improve upon SQL*Plus by offering the following:

. A programmer's editor with color syntax highlighting, powerful searching capabilities, an easy-to-
use interface, immediate display of compile errors, and lots more

« An object browser that makes visible lots of the information in the data dictionary (tables,
programs, indexes, etc.)

« A query builder feature that allows you to construct SQL statements through a point-and-click
interface

Figure 6-1 shows the tabbed schema browser of the very popular Tool for Oracle Application
Developers, or TOAD. | have opened my list of packages and, by clicking on DYNVAR, can see the
specification of that package. Notice that some of the packages have a big X to the left of their names.
The Xindicates that the object is currently marked as "INVALID" in the USER_OBJECTS data dictionary

view. | am sure you will agree that this visual presentation of an object's status is a whole lot better than
having to write a query like this:

SELECT obj ect _nane, status
FROVI USER OBJECTS
CORDER BY obj ect _nane;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (3 of 17) [15/05/2002 22:49:35]

http://dmoz.org/Computers/Programming/Languages/PL-SQL/Developer_Tools/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Figure 6-2 shows the schema browser in PL/SQL Developer; it is more typical of the browsers you will
find in IDE tools. Instead of tabs, the browser offers a hierarchy of different types of objects. So | can click
on Packages to open up my list of packages, click on DYNVAR to open up the set of information for that
package (including procedures, individual variables, etc.), and then click on References to display the list
of objects on which DYNVAR is dependent.

Figure 6-1. The tabbed schema browser of Quest's TOAD

& T.0.AD. - [Schema Browser for SOOTT®GONYEIE] =10 =]
B Ble Edt Gid _ Letabase Crests Wew O 00 Tuni 'Window Help =18 x|

TR ABEEREBED E - @
[scotr I E e -
Viesr | Sworeme | Constraints | Dbliks | Java ﬁls""ﬂﬂﬂﬂm MUses] | Deps IUzad Byl | Emces | Granis |
Tables e s Triggers | Sequences Paemete | Dala Type Il | Length | Phec

BRle v e §F Y% 3
+ |H0] Procedurs: -
i) Furliors
- | Package:
+ 1 ALLCURS = |)
W ALTIMD -
[A PrlZAlE dynwar
ARFENZ
j HILIF FROCEDURE =ssiqn (expr_in IN o
L FURCTION wal (war_in IH RETURE
'lj EITEK-UTIL ROCEDURE copyto (wal_in IH n

s

FROCEDUEE tro
[EI_PEG ROCEDURE motrc

¥ EMPLIOTEE_FIFE FURCTION tracing RETURH
[EMPLLN .
[y EMPLLZ EED dynvar
[FeEID

H FREID2

[GPYTABS N _FKG
Mk

A l 4 b

S R e I s R S R 2 S R

nt: 157 SCOTTESONYELG
i oemamit is. OFF

And these browsers let you do lots more than look at information in the data dictionary. You can, in
general, right-click on an object, or an entry in the browser, and be presented with a list of available
actions, including drop object, execute, edit, compile, describe, and debug.

Figure 6-2. The schema browser in Allround Automations' PL/SQL Developer

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (4 of 17) [15/05/2002 22:49:35]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

2 ML Develaper - scott - [Program Windoe - Edit = [|00] x|
ik Ol ER gesion [ebag Jook Moo Dgrumends Windey Heo = 57| =
RrTe-d BB F e M
o= WD dwes
&l ohiect: = - = 4 . CREATE O REPLACT PACKRGE Jdvnv
= Seguences = [+ ® aszan §:|
& 1 Funchons v @ va - PROCEDURE assign (axpr inm I
r
w1 Frocedures "}-:;lp o FUNCTION wal (var in IH VAR
= &, il
= Packages = 3 Paramatars
« @ ALLCURS -
R 2 val_in EEOCEDURE o
+ [ALTIMND
- 2 nm_in PROCEDIURE nokrs;
£ G AQ [}m FUHCT TOM RETUEH BOK
¢ I ARRATS @ rare
N 1 LALLLY
+ I[P E:”:_-"r'\- {}ﬂﬂl.'.l'll] ENL WELWVA L2
«Mfp DISKE_UTIL -
£ i DT
ip DY NvAR
+-1 Furctions
- ' Procedurss
ASSIGN
i L
Tamplaies
® Congtants =|
¢ Default
_1 DML staternants =| s "
= Pragram 'wWindow : Edl sauree of package DiHVER —3T

PEOUEDUEE Byt val in 1

If you are currently using SQL*Plus and a very basic editor (like Notepad), you may see a tremendous
boost in productivity by shifting to just about any of these IDE tools.

6.2.2 Generate Code

The various PL/SQL IDEs make it easier for you to write code, but wouldn't it be awfully nice if you could
have your code generated for you instead? A number of the IDEs offer some level of code generation (or
code templates and snippets—that is, predefined chunks of code you can easily "include" into your
program). Other tools offer more focused and powerful generators. As an alternative to using one of these
tools, you can even write your own "quick and dirty" code generators with a minimum of effort. We'll look
at each of these approaches in the following sections.

6.2.2.1 Homegrown generators

Let's start with a quick look at how you can write your own code generators. The simplest technique is to
use SQL to generate SQL. Suppose, for example, that you want to drop all the author-related tables (the
names of all of the tables that start with "AUTH") in your schema. There is no "DROP ALL" command in
SQL; instead you have to execute a separate DROP statement for each table. That's very tedious.

An alternative is to write a SQL statement that generates all of your DROP commands. It would look like
this:

SELECT ' DROP TABLE ' || table_name || ';'
FROM USER TABLES
WHERE t abl e nane LI KE ' AUTHY ;

Now, running this query does not actually execute the DROP statements. To do that, you must
supplement the previous query with some additional SQL*Plus commands to do the following:

« Spool the output from the query to a file

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (5 of 17) [15/05/2002 22:49:35]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
. Clean up the output to avoid extraneous text
. Execute the file

Putting all of that together, | create a generic script that accepts the name (or partial name) of a table and
performs the drops:

SET PAGESI ZE 0

SET FEEDBACK OFF

SELECT ' DROP TABLE ' || table name || ';°
FROM USER_TABLES

WHERE t abl e_name LI KE UPPER (' &1%)

SPOCOL drop. cnd
/

SPOOL OFF

@lr op. cnd

You can also generate PL/SQL code; however, you will usually do this by writing PL/SQL programs that
use DBMS_OUTPUT.PUT_LINE to generate your code to the screen. You can then cut and paste it into
a file (more sophisticated generators will also use the UTL_FILE built-in package to generate code
directly into a file).

Here, for example, is a program that generates a standard single-row query function:

CREATE OR REPLACE PROCEDURE genfetch (
tab_in I N VARCHAR?,
col _in IN VARCHAR?,
pkey in I N VARCHAR?

)

IS
v_tabcol VARCHAR2 (100) := LOWER (tab_in || "." || col_in);
v_tabpkey VARCHAR2 (100) := LOAER (tab_in || "." || pkey_in);
v_pkeyin VARCHAR2 (100) := LOWNER (pkey_in || '_in);
BEG N
DBVS_OUTPUT. PUT_LI NE (' CREATE OR REPLACE FUNCTION one_ ' || col _in || ' (');
DBVS_OUTPUT. PUT_LI NE (
' " || v_pkeyin || " IN" || v_tabpkey || "'%YPE)');
DBMS_COUTPUT. PUT_LI NE (' RETURN ' || v_tabcol || "9YPE);
DBMS_QUTPUT. PUT_LINE ('I1S");
DBMS QUTPUT. PUT_LINE (' retval ' || v_tabcol || "9%YPE;");
DBMS_CUTPUT. PUT_LINE (' BEG N);
DBMS_COUTPUT. PUT_LI NE (' SELECT ' || col _in);
DBMS_CQUTPUT. PUT_LI NE (' INTO retval ');
DBMS_CQUTPUT. PUT_LI NE (' FROM ' || tab_in);
DBMS_QUTPUT. PUT_LI NE (' VWHERE ' || pkey_in || " =" || v_pkeyin || ";");

DBMS_OUTPUT. PUT_LINE (' RETURN retval;');
DBVS_OUTPUT. PUT_LI NE (' EXCEPTI ON) ;
DBVS_OUTPUT. PUT_LINE (' WHEN NO_DATA FOUND);
DBVS_OUTPUT. PUT_LINE (' THEN);
DBVS_OUTPUT. PUT LI NE (° RETURN NULL;');
DBVS_OUTPUT. PUT_LINE (' END;');
DBVS_OUTPUT. PUT _LINE ('/');

END;

/

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (6 of 17) [15/05/2002 22:49:35]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
Here is an example of this generator put to use:

SQL> exec genfetch ('books', 'title', "isbn")
CREATE OR REPLACE FUNCTION one title (
i sbn_in I N books. i sbn%I'YPE)
RETURN books. titl e% YPE
IS
retval books.titl e¥YPE;
BEG N
SELECT title
| NTO r et val
FROM books
VWHERE i sbn = isbn_in;
RETURN r et val ;
EXCEPTI ON
VHEN NO_DATA FOUND
THEN
RETURN NULL;
END;
/

Why would you bother with this? It enforces several important standards, including:

« The use of anchored datatypes (% TYPE) to declare all parameters and variables. This makes the
functions more resilient to underlying database changes.

« The inclusion of the NO_DATA FOUND exception handler. For single-row fetches like this, you
usually do not want this exception to come out of the function unhandled.

You can certainly build much more complex and interesting code generators (see the nsgi nf 0. pkg

package on the book's web site for an example). The important thing to realize is that it doesn't take a big
effort and lots of time to get in the habit of generating code rather than writing everything from scratch.

6.2.2.2 Coding with snippets

While including snippets in your code is not really code "generation," the main point is that you are not
writing the code; someone or something else has done it for you. Many of the PL/SQL IDEs offer a variety
of ways to save "déja vu code"—code you feel that you might have written before and will very likely want
to write again. You can then grab this code from the snippet library by name and drop it into your
program. Sure, we need more than this; we need real support for libraries and reusable code. In the
meantime, however, features like the Code Assistant of the SQL Navigator product can make a big
difference in basic coding productivity. Figure 6-3 shows the insertion of the invocation of a reusable
procedure from the code library directly into a program.

Figure 6-3. Use of Code Assistant in SQL Navigator

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (7 of 17) [15/05/2002 22:49:35]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

3 st Pt i Crvebapren) - [Esios -SL0113 sz
Fis [Bagch ‘Sea Seusion Deci [t Eock TeewCofieg irdea Hap ol
T e & . e D PPV DALEARED S SCD O,

5 Ha o o m. o =

& BT 2l & = 3 — B oz oow BR

S0 | Spou | I Seemr sl Wk A

[| o4 Niion Librasims Cabalog
hE-B& =58] WO M H ™ R
. . iyl ot o B ives =
te_spploves. cloze snp dept lockup all cur B 1 READ WE
4 Gall lngawt Progedu for Emplopes
tu_ EMPLOYER. ine [Erplirpiin colurma diid s

EHPLOYEE IO _im 1_EMPLOYEE IO 3 Eramgls Bmp Gy
LAST _MEHME_LT X _LAET HAME 4 Lipedais Procediisa fof Ernahig ea
EIRET_MAME_in 1_FIRET_HAME 0L Catalag Hems
HIDDLE_INITIAL in 1_HIDOLE_INWITIAL i FEAD HE
JOB_ID 1n L_JOE_ID
HAMAGER ID in 1 _HAMAGER_ID Cll | drdpcimtie 8 i) procacrs
fmne R - Te_emphoy e (ps, with Raime robal on
HIRE_DATE_Ln . L_HIEE_DATE ek plER 18 6l cdlenmntEeg el
BALKEY 1n . BRLAREYT
COMHEHTOnT T-I_i n L_COMHATISTON
OEFAETHENT _T0_if] _HMEPARTHERT_ID
CHAHGED DY _in 1_CiAMCED DY
CHAMEED O _in 1_CHAMGED OH
1 rec TH te_saployes. sap dept_Lookup all_cur
'1'3'5’._-'!
L &OD WORTHE STENETE s o s date Mo, of e | =

= F) rms 75 T L - 34 Fhaifl Breesi

fmw:p B oD Eked AL Crmles ol iond

6.2.2.3 Generating packages around tables

Many developers build packages around their tables; | showed an example of these table encapsulation
packages in Chapter 3. These packages "encapsulate” (surround) the underlying table with procedures
and functions that allow you to perform all the usual SQL operations (update, insert, delete, query).

Why would you bother hiding your SQL behind this layer of code? Let us count the ways:

Improved application performance

Rather than have individual developers writing very possibly unoptimized SQL statements, all SQL
is predefined and (potentially) optimized.

Better developer productivity

You don't have to write the SQL statements and the exception handlers to go with them. You just
call a program and it (a) does all the work, and (b) conforms to your development standards.

More maintainable code

If a table has to be changed, you don't have to search through dozens or hundreds of programs to
analyze the impact of that change, and then make the changes. Instead, almost all of your code
changes will happen inside the package.

Some IDEs have package generators built right into their schema browsers. In SQL Station, for example,
you can right-click on a table name, and up pops a menu that includes such options as "Generator Insert
Script..." and "Generate Package." Choose the latter and, as shown in Figure 6-4, SQL Station
generates a large body of code to handle many (but not all) of your SQL requirements.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (8 of 17) [15/05/2002 22:49:35]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Figure 6-4. A right-click menu offering package generation

] =10
EE Fie ER Wew Caplure Repolory Daelabase Manlenance Code Manager Tools Maoro SOL Texl windos Help = x|
BB W B L@y | T8 [0 o =]
ol x| a x|
- M facom s |/ Il
|5-: -rljj_,-';tE l__"!li{!"Etlltliftli'tllttll!li*!li'!lltlﬂ
= [vb_seecE | e PRACEAGE OF PROCEDDRES FOR TABLE “S00v
= [l CEPARTMENT r DATE: 17=-00F-00 14:42:43
- Emm‘ntﬂuuz s i ol e e e e el i el e ol e el e e el e el
:iﬁ:-lﬁ-ﬂ CHEATE OB HEPLACE PROKAGE BOOTT. amployes
i
- £
= FLE Reefresh B T g o S T S T T NS o Sy e e gy

= E SORE Gerersts Insert Scmpt..
o ﬂ WA FRrarAbE Procsding L
& E faga: GEnErsbe Stabement L
= [oo Gararshs Packags

= [l vava Dislebn Data

¥ SELECT PROOCEMIRE FOR TARLE FMPEOTEE
=% [DATE | F=CRCT=00 A as 4.9
s i i ok s g e e o o e ol o o ok i o ol ok ol i i e i i e ol e o i o o ol o i e i

PROCEDUEE employes sealect

« il Esy oweop. {

i E:;’:’* Mrﬁ employee id in 1M employes.enployse

- i Loce rﬂrﬂ:ﬂlﬁ n?p'.lnynn_'ld_m:lt NI ﬂp'l.n‘ynn._nrlp'lnyi:

+ [vss 'h'lrvn_rlatn_nut [RJI | nnp'ln!,rnn.h'lrn_d:.ti:

= [l mss mFC craeated by ocut OUT enployes.arcated

" - M=E QT L::.'udtud_un_uul. OuT u-pluyuu.uru.-l.ud_
- ' ! WAGER_FLUKDS _| Code Marager changed by out OUT enployee.changed

| Edim

changed on out OUT e-plﬂyee_nhanged__lﬂ
"

i "*Gﬂ-ﬂmliﬁ | Seripd Esscution 4| - |

Lin | col Rl

Another very powerful generation tool is PL/Generator (developed by author Steven Feuerstein), which
focuses exclusively on table encapsulation package generation. Figure 6-5 shows the PL/Generator
interface, with windows open to define error-handling behavior and to set performance options.
PL/Generator takes a "holistic" approach to its generation; it generates the encapsulation package, but
also creates a test package and HTML documentation that explains how to use the encapsulation code.

Figure 6-5. Set error handling behavior for the department table encapsulator package

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (9 of 17) [15/05/2002 22:49:35]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

EOC T — (ol

Seifon Edit ‘Window Help

= A4 TEHEDR 7 3

Cocing Sandands i | H =
Erroe Handing
ParicrmancaTrecing
Priemsry Hiss PerformancelTracing for SCOTT.DEPAI
B vropertes Peiiomanos Dioicns
T Dok Caching
+ &5 e F Coachu ol rowt o Mgl wos
ERly_=ABITATS 5 Lok iimaz 5o dp i
BRI ML . frror ol fur 5 =101 %]
i BLISH_FLNGE [Use s

CEQ_CORPENS ATICH
CLHC
5 CREA TR A A LOR M héndiol gy

I Cieste: VE =Error Handling for SCOTT.OEPARTMENT

08 SPACE Tiagarg Opbors « Slandand FLSOL Exseplnn Harding
= [DEPARTMERT usepy © PLAViEon Esception Handing
"y sk b ™ Fiehan Code Commencsiion For Enor
Cedumin s
u Il evas - 408
Erenr Harwiling o 0Ol e
PO o T Flase Mechamsm FRAISE_SPPLICATION_ERAORA Fenvw)]. [mes
ey by Harwls Machanism [FIAISE
B fropectes
CEFARTRENT B Resuks
5 r':P.I 3 e
OO TOR Success Value SOLOOOE
Exi® Faiiure value SOLCODE
+ EM=LIIYEE r
EWPLOYEE_BIG Faire Message | SOLERSM
FORE_FLKMDS
+ (1] H_MED LG 9 T SO | 7 | X Coed |
AN AL AESEMDSE T |
| | i

Finally, Oracle Corporation's "Designer" product generates packages around tables you have defined or
reverse engineered into this product. If you are using Oracle Designer, this is an excellent way to avoid
writing customized SQL throughout your application.

6.2.3 Debug Code

One of the problems with having really powerful development tools is that they let you write your code
much more rapidly. However, they don't necessarily help you write better code. So you write lots of code,
and then you have that much more testing and debugging to perform. That's the bad news. The good
news is that today's developers have access to much better debuggers and testing tools than ever before.

Debugging is the process of identifying and removing bugs (errors) from your code. Depending on how
you write your code and what tools you have available to help you, debugging can be a very difficult
process.

You don't have to use a debugging tool to identify problems in your code. Most developers, even today,
make do without specialized tools and instead do their own "manual” debugging. The typical way to
accomplish this is to put trace calls in your code so that you can see what is going on. Here's an example.

| am not sure what value is being passed into my cal ¢c_over due fi ne procedure, so | call
DBMS_OUTPUT right before the call to display those values:

BEG N
DBVMS_OUTPUT. PUT_LINE (' Patron is ' || | _patron);
DBVS_OUTPUT. PUT_LINE ("Book ISBNis ' || | _isbn);
cal c_overdue_fine (I _patron, | _isbn);

As you can imagine, this is a time-consuming process that also lends itself to introducing other errors into
your code. And then when you are done debugging and fixing, you usually will go back in and change

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (10 of 17) [15/05/2002 22:49:35]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

your code to remove these trace calls—and possibly create new errors in the code. Yuck!

There's got to be a better way and, finally, there is. After many years of intense developer frustration, in
the late 1990s Oracle Corporation built some debugging capabilities right into the PL/SQL language in the
form of a package called DBMS_DEBUG. While you can use this package yourself, it was really intended
to be incorporated by third-party vendors into their IDEs. You could then "point and click” your way
through a debugging session, easily answering questions like "What is the value of the | patron
variable?"

A sample PL/SQL Developer debugging session in shown in Figure 6-6. What's going on in this
session? | have started up the ALTIND_COMPARE procedure, used to analyze the use of alternative
indexes (known as hash indexes) on PL/SQL collections.[2] | have set a number of breakpoints (i.e.,

"when you reach this line of code, stop so | can look around at the current state of things™) and can now
modify the behavior of those breakpoints.

[2] Collections are data structures introduced in Oracle8. There are three types: PL/SQL tables (known as
"index-by tables"),nested tables, and varying arrays (VARRAYSs). Details are in Chapter 9.

Figure 6-6. Setting breakpoints in a PL/SQL Developer debugging session

- oix| ==
] === - & =
GDe-d an F - (@3 ALTIND
_ . 3 Livw 20 IF sk [v o] bed_ ranre =lal naims m
o = b9 aal gt | Dhdpat < (Ep ALTIND_COMPARE
Aok - [5‘ "Z , i OF Lm0 ermoies = M Oiion lomains_ir, FALSE]
] Wi = |k SHIWEMPS —
' _I“':-I'.!I.'|'.-'Z"|l'.2'1'.'-
+ 1 Functions :)
- Frocedres
« (23 ALTIND_COMPARE
£ 4D BINDALL
£ (5 BINDALLEULE
¢ {3 BINDNONE
@ BPL om0 [_name
« (0 BULEBINDALL Hor Zondlony
+ [0 BUST_EM_WTTH Lr= MeTrage
R CALS SECS_BETWE [on't Bissk: -
40 COMPARE_FETCHIN Lips Peaz Courl | %])
+ 5 COMPARE_INSERTIE 1 v
I l:-} COUNTEY = i:"u:;-l il s |ﬂ| ——
* : Waladee Wk Call stk
Tinpladis Are Fin cebusg mize | SLTIKD [Line 207) F loadab v _mavlsal_name = bid_name_n
¥ Constants - HALTIND_DDMPAAE [Line 75 arvprac = allind ords oy [Ensine_n, FA
£ Default
£ 1 DML staternanis -

= Tl \aSndow - Senipl for procedune SLTIMD_C 555 20125 Esosouting.,

With so many debuggers now available for PL/SQL (and some of them are in fairly inexpensive tools),
you owe it to yourself and the rest of your development team to take advantage of this functionality. Don't

litter your code with calls to DBMS_OUTPUT.PUT_LINE; instead, use a smart interface to track and
debug your code.

6.2.4 Use Testing Utilities

So you can do some very powerful debugging. This will help you identify the cause of errors and fix them.
But how do you know when your program has errors? You run tests and if the tests fail, you have an
error. There are different kinds of tests, but the most important for a developer is the unit test, which |

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (11 of 17) [15/05/2002 22:49:36]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

introduced in Chapter 3.

A unit test is a test that a developer creates to ensure that his or her unit, usually a single program, works
properly. A unit test is very different from a system or functional test; these latter types of tests are
oriented to application features or overall behavior of the system. However, you cannot properly or
effectively perform a system test until you know that the individual programs behave as expected.

6.2.4.1 What's the problem?

Unit testing sounds like a good idea. So, of course, you would therefore expect that programmers would
do lots of unit testing and have a correspondingly high level of confidence in their programs. Ah, if only
that were the case! The reality is that developers generally perform an inadequate number of inadequate
tests and figure that if the users don't find a bug, there is no bug. Why does this happen? Several
reasons:

The psychology of success and failure

We are so focused on getting our code to work correctly that we generally shy away from bad
news, from even wanting to take the chance of getting bad news. Better to do some cursory
testing, confirm that it seems to be working OK, and then wait for others to find bugs, if there are
any (as if there were any doubt!).

Deadline pressures

Hey, it's Internet time! Time to market determines all. We need everything yesterday, so let's be
just like Microsoft and Netscape—release pre-beta software as production and let our users
test/suffer through our applications.

Management's lack of support

Sometimes, even without deadline pressure, IT management does not always understand and
support proper controls, checks, and balances in software development. If the development
lifecycle does not include tasks like testing and documentation, we will always end up with buggy
junk that no one wants to admit ownership of.

Overhead of setting up and running tests

If it's a big deal to write and run tests, they won't get done. | don't have time—there is always
something else to work on. One consequence of this point is that more and more of the testing is
handed over to the QA department, if there is one. That transfer of responsibility is, on the one
hand, positive. Professional-quality assurance professionals can have a tremendous impact on
application quality. Yet developers must take and exercise responsibility for unit testing of their
own code; otherwise, the testing/QA process is much more frustrating and extended.

The bottom line is that our code almost universally needs more testing. The various IDEs are only
beginning to address the challenge of unit testing in their products. In the meantime, one of the authors,
Steven Feuerstein, has built a utility called utPLSQL that is freely available to all developers at
http://oracle.oreilly.com/utplsql.

6.2.4.2 An quick introduction to utPLSQL

utPLSQL provides a "framework" for your unit tests that allows you to more easily, quickly, and more or
less automatically run your tests and analyze the results. In this section, I'll step through a simple

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (12 of 17) [15/05/2002 22:49:36]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
http://oracle.oreilly.com/utplsql

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

example.

Suppose that | have built a variation on the built-in SUBSTR function called bet wnSt r ("between string™)

that returns the string between the specified start and end locations:

CREATE OR REPLACE FUNCTI ON betwnStr
string_in I N VARCHARZ,
start _in I N INTEGER,

end_in I N INTEGER
)
RETURN VARCHAR2
IS
BEG N
RETURN (
SUBSTR (
string_in,
start _in,

end in - start_in + 1

)
),
END;

To test this function, | want to pass in a variety of inputs and check the results—that is, the value returned
by the function. So | construct a table of inputs and results, as shown in Table 6-3.

Table 6-3. Test cases for betwnStr function

Test case name String Start location End location Result
Typical valid usage abcdefg 3 5 cde
Null start location abcdefg NULL NOT NULL NULL
Null end location abcdefg NOT NULL NULL NULL
Null start and end locations abcdefg NULL NULL NULL
End before start abcdefg 3 1 NULL
Start at location zero abcdefg 0 3 abc

Once | have completed my grid of test cases, it is time to translate that information into a unit test
program, in which each row in the grid corresponds to:

« A call to the function to be tested

. A check to see if the value returned matched what was expected. This check is done with a call to
a ut PLSOL assertion procedure, such as ut Assert . eq.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (13 of 17) [15/05/2002 22:49:36]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

In some cases, these two parts can be combined into a single call, as this fragment of a package body
illustrates:

PROCEDURE ut _betwnstr 1S
BEG N
ut Assert.eq (' Typical valid usage',
betwnstr(string_in => "abcdefg',
start _in => 3,
end in => 5),
‘cde');
ut Assert.isNull ('"Null start location',
betwnstr(string_ in => '"abcdefg',

start _in => NULL,
end_in => 5)

etc.

| place this test procedure inside a unit test package called ut _bet wnst r .31 Then | run the test package
within the utPLSQL testing framework by calling ut PLSCL. t est , as shown below:

[31 | am omitting a number of details here. For a more complete discussion (and more examples), see the
HTML-based documentation included with the ut PLSQL distribution.

SQL> EXEC utplsqgl.test (' betwnstr')

How can | pass nothing more than the name of my function and have utPLSQL find and run my test?
Very simple: | followed utPLSQL's naming convention (using the "ut " prefix in front of my program name

to construct the name of the test package). By doing so, utPLSQL can then locate and execute the code.

If my test is completed without any failures, then | see output like this:

SQL> EXEC utplsqgl.test (' betwnstr')
SUCCESS: "betwnstr™

> | ndi vi dual Test Case Results:

>

SUCCESS - I SNULL "Null end | ocation" Expected "" and got

SUCCESS - ISNULL "Null start |ocation" Expected "" and got

SUCCESS - ISNULL "Null start and end | ocations" Expected "" and got
SUCCESS - |ISNULL "End before start" Expected "" and got

SUCCESS - EQ "Start at |ocation zero" Expected "abc" and got "abc"

SUCCESS - EQ "Typical valid usage" Expected "cde" and got "cde"

If the test detected a failure, then utPLSQL shows which test case failed:

SQL> EXEC ut pl sqgl .test (' betwnstr')
FAI LURE: "betwnstr"

> | ndi vi dual Test Case Resul ts:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (14 of 17) [15/05/2002 22:49:36]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

>

SUCCESS - I SNULL "Null end | ocation" Expected "" and got

SUCCESS - I SNULL "Null start |ocation" Expected "" and got ""

SUCCESS - ISNULL "Null start and end | ocations" Expected "" and got ""
SUCCESS - I SNULL "End before start"™ Expected "" and got
FAILURE - EQ "Start at |ocation zero" Expected "abc" and got "ab"
SUCCESS - EQ "Typical valid usage" Expected "cde" and got "cde"

When a test fails, | will first check to make sure that my test logic is correct. Should | have been expecting
“abc" oris the correct answer really " ab" ? Once | have confirmed the validity of my test, | go back to
my function and track down the source of the problem, fix the code, and run my tests again—and again
and again, until it comes back successful.

Even better, when performing maintenance on existing programs (which usually means that | did not
originally write the code), | can run my suite of tests and instantly confirm that my changes have not
"upset the apple cart" and introduced errors into the existing code.

6.2.5 Format and Analyze Code

In July 1998, RevealNet released Version 1.0 of its product known as PL/Formatter. Written by Andre
Vergison in Belgium, PL/Formatter was the first commercial "pretty printer” for PL/SQL code. At the time
of this book's publication, PL/Formatter had become the de facto standard for PL/SQL development tools,
as it is integrated into PL/SQL Developer, TOAD, SQL Station, and SQL Programmer (and probably
others by the time you're reading this), although it is also quite useful as a standalone product.

PL/Formatter allows you to stop worrying about how your code looks as you type it. Instead, you write it in
whatever way is easiest and fastest, and then format when you are done. This tool also allows you to
specify the way you want your code to be formatted. Finally, PL/Formatter goes beyond simple "pretty
printing." At your request, it can also provide recommendations for improving code correctness,
maintainability, efficiency, readability, and program structure. Figure 6-7 shows the Options screen of
PL/Formatter.

Figure 6-7. Setting formatting options in PL/Formatter

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (15 of 17) [15/05/2002 22:49:36]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

4 PlLimi {im C:% Program Files' Reveal¥et PLFormatter) - PL/FormatEer Dpki .I.I.E.I!I
© General Layout r
¥ Tahs i+ Disable Dart generabe comment e,
| Mar and remorve any such lines
1 Hargins when found n the inou file
o Linafesds ™ Infine Commants Giarsiate o lepaneae]
I:I Headar cormrrent s in e foematied
code signaling stye or linguage
Ab Case usage recommendshons [best
=S Lists praclices)
X Variahle Declarakions f
Irine Comments A iz genesabad near
Px) Parameter Declarations " Biief Summany the end of the formatted source
=" Parameters code
o Assignments ~ Iriire Comments Dietaled rafiariales e |
Brackets + Detaled Summary generalad rear the and of the
§ Comimas fommatted souwce coda.
= Spedfic Statements
'.l' Camments
SF Cnn'mm &wm
Qﬂﬂﬂﬂﬂmﬂ

15 [HOTT HLLL

character

=l
4

Other tools provide code analysis, most notably the CAST Application Viewer. This product performs a
comprehensive parse of your PL/SQL code and then draws a picture of the relationships between
application objects, as shown in Figure 6-8.

Figure 6-8. A visual presentation of the utPLSQL code base

hhﬁllh'hdmwmtﬁhﬂ‘hlﬂ?
= La Sk =LA T

'..uq--u-‘..'.“‘”l.rﬂ 0 o :4;-'-‘.-"—'--‘7_1:4}"1*4
)

=

S = 3 S o —— T —

— o i — —
| a3 | aT_gaTarTE ~ K RO | [) [
S R A E .\, - S

e — e
Il.ll ulk IJ Tin_ld FLLI Iul [CFTTEL

e e

| 17

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (16 of 17) [15/05/2002 22:49:36]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

I'm not sure | would want to stare at such a complex system for too long, but the visual presentation may
provide insights into your code that are not apparent any other way.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page54.html (17 of 17) [15/05/2002 22:49:36]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 7. Security: Keep the Bad Guys Out

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 7. Security: Keep the Bad Guys Out

People's attitudes about security—and its sibling, privacy—tend to reflect the way they move
through life. On the one hand are folks who sleep with their windows open, talk loudly on their cell
phone in public places, and have no problem giving out their Social Security number to anyone
who asks for it. On the other hand are folks who may never go out after dark, lock their car door
when they're at a self-serve gas station, and pay for everything with cash. And, of course, there
are the bad guys: the ones the second group worries about.

In computer programming, there are also two extremes. There are the "full steam ahead"
developers who focus only on the "business" functionality. Security? Huh? Not my job. There is
also a class of techies who are increasingly concerned with protecting systems from electronic
vandals and other miscreants. Some Oracle developers tend toward the first extreme, while DBAs
usually tend toward the second. Security professionals are another group altogether; they are
people who install network firewalls and spend a lot of time thinking about how to break into
things.

Because security is something you cannot afford to ignore or save until the last minute, this
chapter looks at the features and tools available to secure PL/SQL-based systems. Technology
topics covered in this chapter include:

. Security of each Oracle account, particularly your own

. Database privileges and roles, and their impact on PL/SQL applications
. Using PL/SQL in database triggers to record a "change history"

. Challenges of securing web-based applications

. Special security topics PL/SQL developers should be aware of

This chapter also identifies security requirements that might be levied on a web-based application
such as the library catalog, and discusses some of the challenges of implementing them.
However, because the resulting code is a bit intricate for a beginner, | have deferred the details
and code samples to Chapter 9.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page56.html [15/05/2002 22:49:37]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 7. Security: Keep the Bad Guys Out > 7.1 Oracle Security
Primer

< BACK Start | Table of Contents | Index | Examples CONTINUE >

7.1 Oracle Security Primer

This chapter addresses only those aspects of security most relevant to PL/SQL development. To
set the stage, though, I'll start with a look at the security requirements of the ongoing library
application.

7.1.1 Security Requirements

Requirements on our electronic library include:

. The creation, maintenance, and revocation of patron accounts in the electronic catalog will
be allowed, including issuance of some sort of credentials such as a user account or
library card.

. There will be security checks in place that make it difficult for a patron to view information
about another patron's borrowing habits.

. A privileged system administrator will be able to create accounts for librarians, who in turn
will have authority to grant and revoke patron privileges.

. All changes in the actual catalog records will be auditable; the database will store
"traceability” data—which librarian made what change, and when.

It will take more work than you might think to satisfy these requirements on our little web-based
application. Moreover, although securing web-based applications such as our library system is
certainly a common case, it is not the only kind of security you'll need to know about. For this
reason, this chapter will branch out (at least a certain distance) into the thicket of the security
jungle. As an application developer, for example, one of the first things you'll need to understand
is what privileges you have personally been granted by the DBA. Another thing you really need to
know is an important—and surprising—difference between table-level privileges received via a
“role" and those that have been directly granted.[11

[11 If you can't stand the suspense, skip ahead in this chapter to Section 7.2.3.

Before tackling our application's requirements directly, though, I'd like to introduce the security
features in Oracle, starting with the basics.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (1 of 10) [15/05/2002 22:49:40]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Security: A Big Deal, but You've Got
Help

Until the last few years, securing data in Oracle databases has often been
an afterthought, if it was addressed at all. Most corporations took the
approach that, since data only resides in servers accessible from
company premises, if you can't trust your own employees, then who can
you trust? These days, with millions of people sharing a global network,
not to mention telecommuters and inter-company electronic
communications, the number of potential antagonists boggles the mind. In
addition, it's now widely recognized that insiders pose at least as great a
threat as outsiders, meaning there is more to worry about than merely
securing the perimeter.

Here are some of the fundamental questions you should ask regardless of
what kind of application you are building:

. How does the system "authenticate" users?

. What actions can each user perform? What actions has each user
performed already?

. How does the system prevent authenticated users from taking
unauthorized actions?

. How does the system know that the user who claims to be Bob
really is Bob?

. With password-based logins, how do you ensure that the user's
password isn't guessable?

. How does the user know that the system he's connecting to is the
real system and not a decoy?

. How do you prevent illicit "listening" to data as it flows across the
network?

. How will you know when system security has been comprised?

Fortunately, you should not have to worry about all of these questions.
You should get help from at least three friends—the administrators of your
database, system, and network.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (2 of 10) [15/05/2002 22:49:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

While | believe that security is everyone's job, the application developer
will generally follow the security standards that the administrators
designate. As long as the requirements are realistic, that actually makes
the developer's job a bit easier.

7.1.2 Many Rooms in the Oracle House

Most of the common Oracle objects (stored programs, tables, indexes, and the like) are "owned"
by individual Oracle accounts. When user goodguy creates a stored procedure, it goes into his
own "room" inside Oracle. This place is known as a schema. You can't see into his schema
unless he (or the administrator) lets you in through the door.

Figure 7-1 shows two schema, each in its own space. The "walls" separating them are a set of
rules that the database enforces. By default, a stored procedure can read or write from any table
in the same schema, but not from tables in another schema. However, if goodguy so wishes, he

can let you view or even modify the contents of his tables. He can also give you permission to
execute his PL/SQL programs. If he doesn't give you these rights, you probably won't even know
that his tables and programs exist. You have no way of "seeing" into his account even to
determine whether he owns anything interesting unless you have received administrator-level
privileges. And of course, the reverse is also true; he can't see your stuff unless he's been
specifically authorized.

Figure 7-1. Oracle separates accounts into schema, which are like separate rooms

il goodguy
{your Qracle schema) {somebody else’s Oracle schema)

PLSSOL
BLSOL ‘ programs
prOgrAmS

Every Oracle installation also has several special built-in users, including SYS and SYSTEM, and
these own all of the internal data structures such as the data dictionary tables. There is also a
pseudo-user called PUBLIC that can own permissions and synonyms, but that cannot own any
tables or stored procedures. What's significant about PUBLIC is that any privileges this account
receives are automatically available to every other Oracle account. For example, a default Oracle
installation grants to PUBLIC the privilege to execute programs in the package DBMS_OUTPUT.

At the risk of sounding too much like a security textbook, I'd like to start with a definition of two
basic security concepts—authentication and its counterpart, authorization—and discuss how
Oracle performs these functions.

7.1.3 Authentication

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (3 of 10) [15/05/2002 22:49:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
This topic reminds me of the parable of the three little pigs, wherein the not-so-wily wolf says:
“Little pig, little pig, let me come in!"
And of course the pig answers:
"No, not, by the hair of my chinny-chin-chin."

Authentication is a name for the way that the system identifies whether someone is permitted to
use the system at all, or whether he will be forced to huff and puff and try to blow the house in.
Authentication differs from authorization, which is the process of assigning or restricting privileges
to users after they've been authenticated; we'll look at authorization in the next section.

In the context of Oracle security, a user is not really a person; it is an account. Accounts don't
necessarily correspond to humans; sometimes, individuals may have multiple accounts, some
administrative accounts don't really have a corresponding user, and individuals can share an
account, which can be a very bad idea indeed. Discussing these topics can get confusing,
because many people (including me) might interchange these two terms, but I'll try to keep them
straight, at least in this chapter. Scout's honor.

Oracle's SQL and PL/SQL provide a range of permissions and restrictions with which you will
want to be familiar. Although it's only one part of the overall security picture, these features are
your starting point.

As an application developer or a database administrator, you should have your own personal
account where you can do your development work.[21 So, by now, you are probably already
familiar with at least one way of connecting to Oracle. Although you might be using something
really way out like a smart card, you're probably connecting by supplying a username and
password.

[2] As a developer, you probably have your own schema—a place in the database where an
account holder can create her own database objects (tables, procedures, and packages). In some
cases, an Oracle user might have her own account but no schema, which actually makes sense for
certain classes of (nondeveloper) end users.

Your authentication information (in this case, username and password) could reside in a number
of different locations. The alternatives include:

. Native Oracle database authentication
. External authentication via the operating system
. Advanced authentication services (network-based)

This section presents each of these alternatives, supplying an amount of detail roughly
proportionate to the use of these alternatives in the real world.

7.1.3.1 Native Oracle database authentication

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (4 of 10) [15/05/2002 22:49:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

If your DBA has set up security inside Oracle, he or she probably created your account using a
statement like this:

CREATE USER user nane | DENTI FI ED BY passwor d;

This is the username and password you supply to programs like SQL*Plus, as in:

$ sqgl pl us user nane
SQ*Plus: Release 9.0.0.0.0 - Beta on Fri May 4 10:55:46 2001

(c) Copyright 2001 Oracle Corporation. Al rights reserved.

Enter password: password

Connect ed to:

Oracl e9i Enterprise Edition Release 9.0.0.0.0 - Beta
Wth the Partitioning option

JServer Release 9.0.0.0.0 - Beta

sQL>

By default, Oracle's usernames and passwords follow the same rules as other identifiers. These
are fairly onerous restrictions when compared with more advanced authentication methods, which
allow nonalphanumeric characters like spaces and wacky punctuation.

If you forget your password, no one—not even the DBA—uwill
‘5 be able to look it up. The DBA will have to give you a new
one. This is because Oracle stores passwords in an
encrypted form rather than in plain text. When your account
is first created, Oracle combines your username and
password with a "one-way" encryption algorithm, and the
result is what Oracle remembers. The algorithm cannot
decrypt your password on demand. (The administrator has
some sneaky ways of "pretending" to be you, though, but
that's a topic for somebody else's book.)

As a developer, you'll want to know how to change your password. Perhaps the best way is to use
the little-known PASSWORD command in SQL*Plus:

SQL> CONNECT pl net

Enter password: ol dpassword
Connect ed.

SQL> PASSWORD

Changi ng password for PLNET

A d password: ol dpassword
New password: newpassword
Ret ype new password: newpassword

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (5 of 10) [15/05/2002 22:49:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

You can't tell it from the previous text, but the PASSWORD command offers benefits such as
preventing passwords from echoing to your screen. And, if you happen to be running SQL*Plus
on a client machine that is networked to the server with SQL*Net (called Net8 in Oracle8 and
Oracle8i, and Oracle Net in Oracle9i). PASSWORD will encrypt the password before sending it.
That means that a bad guy who is sniffing packets on your network will see only gobbledygook
and not your password. (However, if you're using a telnet client to get from your workstation into
another machine that's running SQL*Plus, the sniffer can still see your password in plain text.
We'll explain sniffing later on, in Section 7.3.2.1.)

In the old days, before SQL*Plus had the PASSWORD command, developers typically changed
their password using Oracle SQL's ALTER USER command:

ALTER USER nyuser nane | DENTI FI ED BY newpasswor d;

This still works,[31 but the new password appears on the screen, and it is not encrypted in
SQL*Net.

[31 well, it probably works, unless your DBA has enabled Oracle9i's "password management"
features, in which case ALTER USER will not work.

If you want to provide PL/SQL support for changing a password, you can create a simple though
not overly secure procedure such as the following:

CREATE OR REPLACE PROCEDURE alt erpass (newpassword | N VARCHARZ,
username | N VARCHAR2 DEFAULT USER)
AUTHI D CURRENT_USER

| S
BEG N
EXECUTE | MVEDI ATE(' ALTER USER ' || usernane
|| ' IDENTIFIED BY ' || newpassword);
END;

/

The procedure must use dynamic SQL (described in Chapter 5) because ALTER USER is not
directly supported within PL/SQL. Notice that the default value of the user nane parameter is the

built-in function USER, which returns the name of the currently connected user. Unless you have
administrator-level privileges, this is the only value you'll be able to use. [41

[4] As an aside, notice the use of the AUTHID CURRENT_USER directive here—it enables the
ALTER USER statement to apply to the current user rather than the procedure's owner.

In general, a bigger problem with passwords is not that bad guys can sniff packets (which is,
nevertheless, a real risk), but that users prefer passwords that are easy to remember.
Unfortunately, if a password is easy to remember, it's easy to guess. Given the horsepower of
your average PC, password-cracking programs can make thousands of guesses every minute in
an attempt to break into an account. These "brute force" attacks use word lists, such as lists of
common passwords, to speed up the break-in. However, the database administrator can do a lot
to defeat such attacks by setting limits on the number of failed login attempts and establishing
rules for automatic password expiration. Also, using PL/SQL, the DBA can enforce rules for

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (6 of 10) [15/05/2002 22:49:40]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

password complexity (for example, a user password must be longer than n characters, must
contain at least mnonalpha characters, must not be the same as the username, etc.).

7.1.3.2 External authentication via the operating system

If you have already gotten past the operating system's login prompt, does it really help to have to
get past Oracle's as well? Some administrators don't think it does, and they create Oracle
accounts in such a way that Oracle will "trust” that the user has been sufficiently authenticated in
the host operating system. As an application developer, you will probably find this arrangement
more convenient, since you can log in using only a slash in SQL*Plus:

OS> sqgl plus /

...l ogin banner and nessages. ..

sQL>

The major problem with this kind of external authentication occurs when you have more than one
machine running Oracle. Operating system-level authentication can be very insecure when more

than one database server is involved, because of the ease of spoofing the database into believing
that a user is coming from an approved account.

7.1.3.3 Advanced authentication services

Network-based authentication services are the newest, and the most complex, of the choices for
Oracle authentication. Use of these features requires licensing an extra-cost item known as the
Oracle Advanced Security Option (ASO), and often requires additional third-party software. The
basic idea of network-based authentication is that you move the authentication data out of your
main Oracle database and into a separate security server somewhere. Using super-secret
encrypted messages, the database and security servers talk to each other and to whatever client
machine you happen to be using.

For a large organization, one of the benefits of external security systems is that they allow the
existence of enterprise or global users whose authentication data resides in only one place and is
shared among various databases, applications, and operating systems. This "single sign-on"
arrangement can reduce costs and increase confidence in overall security.

Some of the types of authentication that may be used with Oracle's Advanced Security option
include:

Secure Sockets Layer (SSL)

Entrust/PKI

Kerberos

CyberSafe

RADIUS-compliant smart cards

Token cards (either SecurID or RADIUS-compliant)
Biometric

Bull Integrated System Management (ISM)

If you're interested in learning about these exotic technologies, you might want to read Simson
Garfinkel and Gene Spafford's Web Security, Privacy & Commerce, Second Edition. For Oracle-

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (7 of 10) [15/05/2002 22:49:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

specific information, the manual called Security Overview is a good place to start.
7.1.3.4 So what?

What is the significance of these different security approaches? To you, the PL/SQL developer,
the most obvious impact of these methods has to do with how you connect to the database to
perform your programming tasks. The bigger challenge, however, comes when you need to
implement security requirements in your own application. Now, if you're building in-house
applications for users at your own company, your application would use whatever company-
standard authentication you already have in place, which probably means everyone gets a unique
Oracle account. But if you're building an application for the public Internet, you may have
hundreds or thousands of users out there, each of whom may need his own individual login. Do
you want each of them to have his own account in your database? Probably not, but how do you
plan to authenticate these outsiders?

We'll have to set aside that exciting question for a few pages. In the interim, we will fly through an
overview of Oracle's authorization features.

7.1.4 Authorization

Authorization is how the system answers the user's question, "Now that I'm in, what do | get to
do? What privileges do | have?"

Again, there are two different dimensions of authorization you will encounter as a PL/SQL
developer. First are those privileges that you receive in order to perform your duties as a
programmer. The second involves the application you're building, which will probably need some
way to define and enforce its authorization rules. SQL and PL/SQL are probably integral to both
dimensions. We'll begin, as with authentication, by examining Oracle's built-in features in this
area. Oracle enforces two major kinds of authorization:

System-level privileges

Rights to perform operations such as creating tables, reading from any table in the
database, or creating a user account.

Object-level privileges

Rights to perform actions on particular objects such as delete from a certain table, execute
a particular stored program, or create a subtype under a specific object type.

The first privilege you will need as a developer is the system-level CREATE SESSION privilege;
otherwise, you won't be able to log in! Another privilege you will need is CREATE PROCEDURE,
which allows you to create, modify, and delete stored PL/SQL programs.

You can have a given privilege granted in one of three ways:
. Directly to your account

. To arole that is granted to your account (see the next section)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (8 of 10) [15/05/2002 22:49:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

. To all accounts as a "public" privilege

Before examining Oracle's syntax to grant privileges, I'm going to introduce Oracle's notion of a
role.

7.1.5 Roles

A role is little more than a named set of privileges. The DBA might, for example, create a role
called appdevel oper s:

CREATE ROLE appdevel opers;

and grant three privileges to it:

GRANT CREATE SESSI ON, CREATE TABLE, CREATE PROCEDURE
TO appdevel opers;

If GentleReader, Scott, and Brutus already have Oracle accounts set up, the DBA can grant the
role to them in a single statement:

GRANT appdevel opers
TO gent | ereader, scott, brutus;

The next time any of those users logs in, he will automatically receive the associated privileges,
and he will now be allowed to create sessions, tables, and procedures.

Later on, if the developers request that they be allowed to create triggers on their tables, the
administrator could grant this privilege in one statement instead of three:

GRANT CREATE TRI GGER TO appdevel opers;

You don't have to be the DBA in order to grant privileges to a role. If Brutus creates a table, he
can grant all other developers the right to read data from it using:

GRANT SELECT ON nytabl e TO appdevel opers;

A user can receive multiple roles containing virtually any combination of system- or object-level
privileges, but the privileges may not all be available all the time. In fact, an important use of roles
is to restrict given privileges to the appropriate applications.

When a user logs in, Oracle automatically enables only those roles designated as default roles for
that user, even those requiring a password. The DBA can make roles non-default by using the
ALTER USER command (see Oracle's SQL Reference for more details). The DBA can also
require that the user supply a password to enable a role.

Oracle can actually use some roles defined as external to the database. For example, Unix and
DCE both have a concept of "groups" that your DBA can configure Oracle to use rather than
database roles. And, with the Oracle Advanced Security option, there is a way to create and

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (9 of 10) [15/05/2002 22:49:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

manage site-wide roles—that is, roles that are available on all databases. These work in concert
with the "single sign-on" feature.

7.1.6 The GRANT Statement

Oracle's native privileges are doled out by administrators or other privileged users who run SQL's
GRANT statement. Here's an example of a grant, issued from a command line like SQL*Plus:

GRANT CREATE TABLE, CREATE PROCEDURE
TO gent | er eader;;

This statement enables the user GentleReader to create tables and procedures, which are two
privileges in the system-level category.

Grants are cumulative; that is, multiple invocations of the GRANT statement add more privileges
to those already issued. Once a privilege has been granted, the recipient continues to enjoy that
privilege until someone revokes it (or otherwise destroys or disables the user's account) with the
REVOKE statement:

REVOKE CREATE PROCEDURE FROM gent | er eader;

Like ALTER USER, the GRANT and REVOKE statements are not directly supported in PL/SQL.
However, you can include these statements in a stored procedure by using dynamic SQL.

I've blazed through a bunch of new ideas in the preceding few sections without a lot of
explanation. For a more thorough treatment, you will probably find two Oracle manuals helpful:
Concepts and Application Developer's Guide—Fundamentals (in addition to Oracle's Security

Overview).
Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation
< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page57.html (10 of 10) [15/05/2002 22:49:40]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 7. Security: Keep the Bad Guys Out > 7.2 Organizing
Accounts to Improve Security

< BACK Start | Table of Contents | Index | Examples CONTINUE >

7.2 Organizing Accounts to Improve Security

If you're the sole developer of a small- to medium-sized application, it's likely that you will build all
the tables and stored procedures under your own Oracle account. This makes your life
easier—for example, it's less likely that you'll be waiting for somebody else to make changes to
database objects. Plus, the guy in the next cube won't accidentally delete your stuff. But
development is only part of a bigger picture that can get much more complicated.

Programs eventually move out of development and into production—that is, they graduate to their
"live" phase with real users. Production databases are almost always separate from development
databases and frequently are even on different machines, as Figure 7-2 illustrates.

Figure 7-2. Software "migrates” from development to production

Dewelopvment Production
database database
DEA-corrolled refease process
« “Users” are developers «“Lsers” are end users
* Developers build objects atwill « Objects owned by special accounts
* Diata wsually a subset of “real”data * Al modifications controlled by DEA

Over in the production environment (and sometimes even in the development environment for
larger applications) the DBA may separate tables and stored procedures in different Oracle
accounts. For example, the DBA of the library application might want to organize things as
follows:

Oracle account name Purpose
cattab Owns the database tables and indexes in the electronic catalog

Owns PL/SQL objects such as packages, procedures, and functions that

catproc are unigue to the electronic catalog system

Owns general-purpose PL/SQL objects that are shared among different

utilproc applications

Sometimes, there are additional phases in the software release process, as Figure 7-3
illustrates.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (1 of 13) [15/05/2002 22:49:43]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Figure 7-3. Having at least one testing environment can improve the quality of the finished

product
Development Testing Production
datiabase dafatase datihase
= “Usars” are developers »“lsers"are developers, tastars, « “Jsars” ang gnd users
* Developers build and destroy ANCOF EN sers « (Whjects owned by special accounts
ohjects at wil * Dbects organized inta same accounts - All modifications controlled by DEA
= Data isually a subset of “real” data & in production

+[Data usually a subset of “real” data

How does all this affect you? That depends on how much influence you wish to have on your
system. A lot of developers prefer not to think about these concerns, expecting their DBA to take
care of it. But | say, don't waive your right to influence this part of the system! Regardless of which
camp you're in, there are three topics you really should comprehend:

. What privileges you need in order to build a stored PL/SQL program
. What privileges an Oracle account needs in order to execute your program

. How your program will resolve names of objects such as database tables and stored
procedures

I'll discuss these topics in the following sections.

7.2.1 Privileges Needed to Build a Stored Program

In order to store PL/SQL in the database, you must be able to run the relevant creation statement
such as CREATE OR REPLACE PROCEDURE. This requires three kinds of privileges: system-
level, table-level, and, possibly, program-level. Let's take a look at what privileges are needed to
build the book package, which reads and writes data in the books and book copi es tables. In

the following examples, we presume that you are going to be the holder of an Oracle account
named gent | er eader .

7.2.1.1 System-level

In order to compile, you must be able to connect to the database. In other words, you need to be
able to create a session, a privilege normally bestowed by a DBA-privileged account such as
syst em You do this as follows:

CONNECT syst em passwor d
GRANT CREATE SESSI ON TO gent | er eader;

I've mentioned the other system-level privilege you need:

GRANT CREATE PROCEDURE TO gentl er eader;

(Although it says only "create procedure," this privilege grants you rights to create, modify, and

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (2 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

drop procedures, functions, and packages.)

Finally, if you own the table, you will also receive some kind of storage "quota” on an Oracle
tablespace. For example, the DBA might issue:

ALTER USER gent | er eader
QUOTA UNLI M TED ON user _t abl espace
DEFAULT TABLESPACE user _t abl espace;

(The DEFAULT TABLESPACE clause determines where your tables and indexes will get stored if
you omit a TABLESPACE clause when you're building the object.) You need no tablespace
guotas for the stored procedures themselves, because Oracle stores them in the data dictionary
rather than in user tablespaces. All stored programs reside in tables that are in the SYSTEM

tablespace.

What Is a Tablespace?

Inside Oracle, stored procedures live in the data dictionary, and tables live
in structures called tablespaces. (Oracle9i introduced a way for read-only
tables to live outside of tablespaces, but that's something of a pathological
case.)

When you need to create tables and indexes, you will want to know which
tablespaces you can write to, how much space you have at your disposal,
and how much you've already used. To answer that question, run the
following query:

SELECT * FROM USER_TS_QUOTAS;

A value of -1 in the MAX_BYTES column of the USER_TS_QUOTAS view
indicates the unlimited space privilege—that is, you can write to the
tablespace until it fills up! If you see no records, that means you cannot
write to any tablespace, and you need to have a chat with your local DBA.

7.2.1.2 Table-level

If your Oracle account owns its own table(s) from which your stored procedures read and write
data, you probably have all the privileges you'll need to compile. However, in our case, a different
account owns the books table, so that account, named cat t ab, or the DBA must grant table-

level privileges to you.

As with many things in Oracle, there's more than one way to do this, but a very common way is
for the table owner to grant the privilege directly to you as follows:

CONNECT cat t ab/ password

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (3 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

GRANT SELECT, | NSERT, UPDATE, DELETE ON books TO gentl er eader;
GRANT SELECT, | NSERT, UPDATE, DELETE ON book copies TO gentl ereader;

and so forth, for any other tables required.
7.2.1.3 Program-level

When you create a stored program in your own account, you automatically receive the privilege to
execute a stored program. However, if another account owns a stored program that you need to
execute, either at the command line or from within another program, someone will have to grant
you the EXECUTE privilege on the other program. A very common way that your Oracle account
can receive authority to make these calls is to be granted the EXECUTE privilege directly.

Let's say your program uses the | opweb procedure, which is owned by the ut i | pr oc account.
Then the following will grant you the necessary privilege:

CONNECT wuti | proc/ password
GRANT EXECUTE ON | opweb TO gent | er eader;

Seems simple enough, right? Well, not so fast. As | mentioned earlier, there are more ways to
receive privileges. The right to execute a particular stored program can be received as follows, in
the order shown:

« By owning it
. By being granted a role that's received the privilege to execute the stored program
. By receiving the privilege because the DBA has granted it to PUBLIC

Depending on whose privileges get used when the stored program runs, you may need more
GRANTSs than meets the eye. Stay tuned for details.

7.2.2 More Privileges Needed to Execute a Stored Program

As | just mentioned, everyone except the owner and the DBA need to receive the EXECUTE
privilege on a particular stored program in order to run it. But what happens if that program refers
to some database tables somewhere else? Does the person running it need privileges on those
tables too? The answer is "it depends."

By default, the procedure executes with the same privileges as the procedure's owner. This is
called definer's rights . At runtime, 51 if the owner has received privilege on the table but the
invoker has not, the invoker will still be able to run the program. This approach is much cooler
than it might seem at first, because it means you can require users to use your carefully crafted
stored programs in order to change data in the database. They won't be able to just start hacking
away with SQL UPDATE statements.

[5] To be really precise, with definer's rights, privileges are actually checked at compile time. If the
program owner's privileges change after it's been successfully compiled, Oracle marks the program
as being invalid and will require that it recompile successfully before running it again.

file://[E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (4 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

However, there are some cases where you do not want that to happen. Consider a procedure that
allows users to change their password in a program:

CONNECT gent | er eader/ passwor d

CREATE OR REPLACE PROCEDURE al terpass (newpassword | N VARCHARZ,
usernane | N VARCHAR2 DEFAULT USER)

| S
BEG N
EXECUTE | MVEDI ATE(' ALTER USER ' || usernane
|| " IDENTIFIED BY ' || newpassword);
END;
/
followed by:

GRANT EXECUTE ON al terpass TO cl yde;

If Clyde runs the procedure, it won't work for him to change his own password, but he will be able
to change your password!

The solution is to use invoker's rights , introduced in Oracle8i. To designate a procedure, function,
or package as running with invoker's rights, the programmer includes the directive:

AUTHI D CURRENT_USER

right after the CREATE specification and before the IS (or AS) keyword.

In addition to preventing this kind of security problem, using invoker's rights has other benefits as
well. For example, consistent use of invoker's rights can improve security, because querying the
data dictionary will quickly reveal which users have exactly which table-level privileges. By
contrast, to audit security in a definer's rights application, someone (maybe you) must perform a
time-consuming audit of PL/SQL source code to figure out which programs modify which tables.

Developing invoker's rights programs can have some idiosyncrasies. Sometimes, when
developing an invoker's rights program, you will have to create your own "dummy" version of an
object just to get your program to compile. That is, imagine that your program reads from a table
called ny st uff.Atruntime, you want it to read the nmy st uf f table owned by the user running

the program, not you. Say your code looks like that:

CREATE OR REPLACE PROCEDURE read_ny_books
AUTHI D CURRENT_USER
AS
CURSOR bcur 1S SELECT ... FROM ny_stuff WHERE ...

BEG N

If you have not created your own version of my st uf f, you may receive a compilation error such

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (5 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

as ORA-00942: table or view does not exist. You now have two choices:

. Create a private copy of the ny st uff table

. Create a synonym to somebody else's my st uf f table to which you've been granted
appropriate privilege directly (not via a role; see the next section for details)

Combining invoker's and definer's rights programs can easily confuse even advanced PL/SQL
programmers. The next section discusses the issues and consequences of Oracle's supporting
two different rights models.

7.2.3 Impact of Role-Based Security on PL/SQL Execution Privileges

Roles can certainly simplify the life of a database administrator. As a PL/SQL developer, though,
there are at least two things you'll want to remember about roles:

. Roles can change.

. Roles might not be "good enough" for PL/SQL.
Let's look at these important features of Oracle's roles.
7.2.3.1 Roles can change

The DBA can grant and revoke roles to individual accounts at will. However, even for those roles
that have been granted to a particular user, they may be turned on (enabled) and turned off
(disabled) for the current session. The SQL statement to enable one or more roles is:

SET ROLE role nanel [| DENTIFIED BY rol e passwordl]
[, role_nanme2 [| DENTIFIED BY rol e _password2 |]

which causes the current session to enable one or more roles listed by name (as long as the
passwords, if any, match). It will disable any roles not mentioned by name. If the roles have no
passwords, you can also:

SET RCOLE ALL;

to enable all your roles. Disabling all your roles is easy:

SET ROLE NONE;

A PL/SQL program can turn roles on or off by invoking the DBMS_SESSION.SET_ROLE
procedure, as follows:

BEG N
DBMS SESSI ON. SET _ROLE('rol es');

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (6 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
where everything in r ol es gets appended to a SET ROLE statement, as in:

BEG N
DBMS SESSI ON. SET_ROLE(' appdevel opers');

(Note that letter case does not matter; either upper or lower is fine.) To create a password-
protected role, the administrator might execute the statement:

CREATE RCLE speakeasy | DENTI FI ED BY swor dfi sh;

whereby the user could set the role using:

SET ROLE speakeasy | DENTI FI ED BY swordfi sh;

or an application could hardcode the role name and the password:

BEG N
DBMS SESSI ON. SET_ROLE(' speakeasy | DENTI FI ED BY swordfish');

Some sites use password-protected roles, but hide the password from end users; the developers
hardcode the password in the application source code. This provides a modicum of additional
security by disabling command-line hacking. If you do hardcode role passwords into your
application, developers and administrators must exercise quite a bit of diligence to keep the
password a secret. (There is an alternative you may be able to use—see the next section.)

An important consequence of all this is that a user's privileges can actually vary at runtime
depending on what roles are currently enabled.

7.2.3.2 When roles are not "good enough” for stored procedures

There is one very important difference between privileges granted to individual users and those
granted to roles. If you're compiling a program that refers to objects (tables, views, etc.) owned by
another schema, you must receive object privileges directly or via PUBLIC. Role-based privileges
are insufficient. To repeat this a slightly different way:

No stored procedure will compile based on object-level privileges received via
roles.

This is a critical point that a lot of beginners miss. They'll go to create a procedure and receive
frustrating error messages such as ORA-00942: table or view does not exist. But the table does
exist! To prove it, they'll usually copy the exact SQL statement from the stored procedure and
paste it into a SQL*Plus command line, and, sure 'nuff, it will work just fine. That's because roles
always have applicability at the command line.

Furthermore, definer's rights programs have additional restrictions at runtime:

Definer's rights programs will never execute with object-level privileges received
via roles.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (7 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Why does Oracle behave in this fashion? The answer goes back to the fact that a definer's rights
program is meant to behave in a predictable manner. But, as we've seen, users and applications
can enable and disable roles dynamically. What if the definer's active roles changed at some point
in time between compilation and execution? For consistency from compilation through runtime,
Oracle simply mandates that definer's rights programs ignore all role information.

7.2.3.3 When roles are "good enough" for stored procedures
As often happens, Oracle taketh away with one hand and giveth with the other.

Anonymous blocks and any programs that use invoker's rights (AUTHID CURRENT_USER) can,
at runtime, use privileges received from roles. The two main requirements for this to work are:

. The program must have been compiled successfully; this requires its owner to have a
dummy table or directly-granted privileges, as mentioned earlier.

. If the program has been called by another program, both must be invoker's rights.

As long as you are using invoker's rights throughout, you may find a feature called application
roles (introduced in Oracle9i) very helpful. By creating an application role, you can enhance
security by limiting the places that a role can be enabled. More specifically, you can only enable
one of these roles from within a particular packaged procedure. This feature eliminates the need
to hardcode passwords into your applications. Yessss!

To implement an application role, first the DBA would create the role using IDENTIFIED USING
package. procedur e syntax. For example:

CREATE ROLE purchasing role
| DENTI FI ED USI NG book _security pkg.setprivs;

You would program the set pri vs procedure to enable the role using a built-in procedure named

DBMS_SESSION.SET_ROLE. Here is a bare-bones implementation of the procedure body
(which must be inside the book security pkg package):

PROCEDURE set privs
AUTHI D CURRENT _USER
| S
BEG N
DBMS_SESSI ON. SET_ROLE(' PURCHASI NG ROLE') ;
END;

As shown, set pri vs itself must be an invoker's rights procedure.

Then, you would program each of your invoker's rights application programs to invoke
book security pkg.setprivs when they needed to use privileges from the

pur chasi ng _rol e.

7.2.3.4 Combining invoker's and definer's rights

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (8 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

What do you think would happen when a definer's rights program calls an invoker's rights
program? Or vice versa? The rules are short, but if you're like me you may have to think about
them for a little while:

. If a definer's rights program calls an invoker's rights program, the rights of the calling
program's owner apply while the called program executes.

. If an invoker's rights program calls a definer's rights program, the rights of the called
program's owner apply while the called program executes. When control returns to the
caller, invoker's rights resume.

You can remember this if you think of definer's rights as being "stronger"” than invoker's rights.

7.2.4 How to Refer to "Things" Owned by Other Accounts

Let me remind you that you need no extra privileges on tables or programs you have created. If
you created it, you can drop, execute, alter, or take other action upon it.

When referring to tables or stored programs owned by other accounts (schema), there are some
additional steps you must take beyond having privilege on them. As | hinted in Section 7.1.2 if
an account named cat t ab owns the books table, you can't just log in to your own account and
say:

SELECT * FROM books;

because Oracle would only look for an object named books that your account owns, and, not

finding it, would give up and return the familiar table or view does not exist error. Oracle also
searches for stored programs in this fashion.

One solution is to prefix the object name with the name of its owner, which works just fine if the
account cat t ab has granted you the SELECT privilege on that table:

SELECT * FROM catt ab. books:

Similarly, with stored programs, if the ut i | pr oc account owns the | opu utility package, which
contains a function named assert _not nul |, you could refer to it with the PL/SQL call:

util proc. | opu.assert _notnull (sonme_vari abl e);

Most of the time, however, programmers don't like to do this, because it (a) clutters up their code,
and (b) might require you to change or modify that owner prefix when it moves into testing and
production. Modifying any code on its way to production is a big no-no that can get you into a lot
of trouble.

Instead, most developers prefer to omit the owner prefix by using the Oracle built-in object
aliasing feature known as synonyms.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (9 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

7.2.4.1 Synonyms

In the same way that my real name is William but | go by Bill, a synonym is merely an identifier
that serves as a "nickname" for database objects such as tables or stored programs.
Syntactically, creating a synonym is easy:

CREATE [PUBLI C] SYNONYM synonym nane FOR ful | nane;
Where:
PUBLIC

Keyword to designate that the resulting synonym will be visible to all users. Omitting this
keyword results in a private synonym—that is, one owned by the current account. Using
this keyword requires the CREATE PUBLIC SYNONYM privilege.

synonym nane
The new nickname for the object.
ful | nanme
The fully qualified object name; for example, owner . obj ect nane.

So, if a PL/SQL package's "real name"is ut i | proc. | opu, and | want to referto itas | opu from
my account, | would issue:

CREATE SYNONYM | opu FOR uti |l proc. | opu;

This example illustrates a private synonym, so called because it is visible only when logged in to a
particular Oracle account. Administrators can create PUBLIC synonyms, which all accounts in the
database can "see" and use.

Note the following about synonyms:
. Creating even a private synonym requires the CREATE SYNONYM system-level privilege.
. Like grants, synonyms are persistent objects; they exist until somebody deletes them.
« Use the DROP SYNONYM statement to delete a synonym.

7.2.5 Name Resolution in PL/SQL

Imagine that your code includes a statement such as the following:

nyvariabl e := new user id('buffal oBreath');

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (10 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

The function name new user | d is unqualified —that is, there is no package or schema name

preceding it with a dot. So how does PL/SQL go about figuring out or resolving the object named
new user i d?

Although Oracle's name resolution rules can get fairly complicated, what you most need to
understand are the following facts and guidelines:

. At compile time for all stored programs, after looking for reserved words, the compiler
attempts to resolve unqualified names in the following order:

1. Objects directly owned by the definer
2. Synonyms owned by the definer
3. Public synonyms

. Runtime name resolution for definer's rights programs follows the same pattern as the
previous item.

. Unqualified names in invoker's rights programs resolve at runtime in this order:
1. Obijects directly owned by the invoker
2. Synonyms owned by the invoker
3. Public synonyms

. Because column names take precedence over PL/SQL variable names, you should avoid
using column names as the names of PL/SQL parameters or variables, particularly if your
program refers to the columns in any SQL statements.

. Do not use a PL/SQL reserved word as the name of a table, column, program, or variable
(or anything else).

7.2.6 Guidelines for Organizing Your " Stuff"

Accounts, privileges, roles, grants, synonyms, names—Whew! What a load of stuff to remember!
It can actually get worse than I've portrayed it—there are all sorts of unexpected combinations
that can confuse you (or Oracle itself, for that matter). In fact, while | was testing this stuff out for
the book, | filed at least one new bug with Oracle for the way Oracle handles synonyms with
invoker's rights. No wonder so many people just want to punt on this stuff. Isn't there a simple way
to set up accounts and privileges that will work most of the time?

Here's what | would do if | were in charge. This won't cover 100% of the cases, but | believe it
would go a long way to solving a lot of common errors.

General guidelines

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (11 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

o Use special "master-object-owner" accounts in all the databases. The simplest
way is to have one account that owns all the tables, indexes, sequences, stored
programs, and other objects in the application. A slightly more secure way is to
have one account for data structures and one (or more) for programs, with the
table owner directly granting privileges to the program owner(s).

o Where possible, the "master-object-owner" accounts should have the same name
in all databases.

o Where possible, make PL/SQL programs execute with definer's rights, because
their administration is simpler. Limit invoker's rights programs to those whose
function or logic truly requires them (like my password-setting program described
earlier).

o Avoid creating any public synonyms because they clutter up the public
namespace. Use private synonyms or ALTER SESSI ON SET CURRENT SCHENA

instead.

o If you use synonyms, reduce confusion by making them have the same name as
their target object (for example, | opu would be the synonym for the

cat proc. | opu package).

o Use the same names for tablespaces in the development, test, and production
databases. This allows build scripts to work in any location with minimal editing.

Development database

o Each developer gets an account of his or her very own in which to create private
tables, stored programs, object types, and whatever else is needed (but probably
not tablespaces).

o The lead developer for each application is in charge of an "object-owner"
account(s), where developers are able to share objects.

o Developers maintain their own synonym building scripts so they can choose which
objects to run their code against.

o DBASs create roles as they see fit. In general, DBAs are responsible only for
system-level privileges in the development database; the developers are
responsible for object-level privileges.

o Developers should strive to deliver build scripts that are ready to run on the test
database.

Test database

o Whoever is in charge of testing the application controls the construction of objects
and data in any needed account(s) on the test database. This may be the DBA, or
it may be an appointee.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (12 of 13) [15/05/2002 22:49:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

o Developers interact with the test database only when they cannot easily reproduce
a problem on the development database.

o Depending on the application, each tester may need a separate Oracle account.
Some applications (for example, web-based ones) may require only one Oracle
account but multiple application-managed accounts.

o Data in the database consists of a recent copy of the production database plus
objects and data needed for the application under testing.

Production database

o Only DBAs and authorized end users are permitted here; developers generally
should avoid contact with production. This is for your own safety.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page58.html (13 of 13) [15/05/2002 22:49:43]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 7. Security: Keep the Bad Guys Out > 7.3 Analyzing the
Library System's Requirements

< BACK Start | Table of Contents | Index | Examples CONTINUE >

7.3 Analyzing the Library System's Requirements

Now that we've seen some of what Oracle has to offer, we can revisit the first security
requirement of the electronic catalog. The first item says:

The creation, maintenance, and revocation of patron accounts in the electronic
catalog will be allowed, including issuance of some sort of credentials such as a
user account or library card.

If we do our job right, implementing this requirement will go a long way toward satisfying the next
two requirements:

There will be security checks in place that make it difficult for a patron to view
information about another patron's borrowing habits.

A privileged system administrator will be able to create accounts for librarians, who
in turn will have authority to grant and revoke patron privileges.

I'd like to start by considering how to secure each patron's account.
7.3.1 Patron Accounts

We could, of course, set up a system whereby each library patron has an Oracle account,
allowing us to use Oracle's built-in security features. However, there are some problems with this
approach. The biggest is that there are potentially thousands and thousands of users, and it is
sort of impractical to manage Oracle accounts for people who may log in only once. In addition,
I've heard that at least some versions of Oracle have performance problems when the number of
accounts gets into hundreds of thousands.

If we're not going to put the patrons' accounts into Oracle's native authentication mechanism,
what other options do we have? One solution to this problem, which often turns up in web-based
systems, is to incorporate some kind of application-enforced scheme. That is:

1. The application connects to Oracle using a single, hardcoded, and unpublicized (we hope)
account.

2. The application stores the username and password of each of its users in its own tables
and enforces its own authentication and authorization.

If you must share a single Oracle account in this way, it's likely you will have to store the
username and password in a file somewhere on a hard disk. If this is the case, the DBA and
system administrator must take extra steps to protect the security of that file.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page59.html (1 of 6) [15/05/2002 23:00:33]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

The user credentials table will also have an attribute that will hold an identifier for the patron's
library card. In our library system, all borrowers must have a library card, but there may be other
users who are not borrowers—maybe they are waiting for their cards to be issued, or maybe the
system will one day let a user create his own electronic bookshelf, for example. The table
corresponding to this user entity looks like this:

CREATE TABLE |ib_users (
i d NUVBER NOT NULL,
user name VARCHAR2(60) NOT NULL,
encrypt ed_password RAW 16) NOT NULL,
account creation_date DATE NOT NULL,
emai | _address VARCHAR2(2000),
cardi d VARCHAR2(30),
CONSTRAI'NT |i b_accounts_pk PRI MARY KEY (id),
CONSTRAI NT user name_uk UNI QUE (usernane),
CONSTRAI NT usernane_I| engt h_ck CHECK (LENGTH(usernane) >= 6)

)i

Where the columns are:

id
A system-generated number that serves as the table's primary key; once issued, this
number never changes.

username

The unique account name. This is separate from the | d column so the user might be able
to change his or her username without causing big "ripples"” through the database.

encrypted_password

A special binary value that we compute by combining the username and password with a
standard technique known as message digest 5 (MD5). (I'll provide details about MD5
later.)

account_creation_date

The date this account record was first inserted into the | | buser s table. This column can
be populated automatically, as discussed in Default Column Values.

email_address

The account holder's email address; this is optional because having email is not a
requirement for borrowing books.

cardid

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page59.html (2 of 6) [15/05/2002 23:00:33]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

The account holder's library card identifier. This is optional because some users of the
system may not have a library card yet.

Default Column Values

Oracle lets you define a default value for a column in a table. This value
applies when an INSERT statement does not explicitly include a particular
column. A good example is the account creati on dat e column in the

| 1 b user s table. To have it default to the current date and time, add the
following (in boldface):

CREATE TABLE |i b _users (
I d NUMBER NOT NULL,

account creation_date DATE DEFAULT SYSDATENOT NULL,
);

Now, whenever an INSERT such as the following occurs, Oracle assigns
the default value to the date:

| NSERT INTO |i b _users (id, usernane, encrypted password)
VALUES (val uel, value2, val ue3);

If the INSERT statement includes a value for a defaulted column, the
supplied value takes precedence. Also, you can't use your own PL/SQL
function as a column default, but you can accomplish the same result with
table-level triggers.

We've included several constraints in this table creation statement. You should already know what
a PRIMARY KEY constraint does; the UNIQUE constraint enforces uniqueness in the username
column; and the CHECK constraint enforces a rule that the password must be at least six
characters in length.

7.3.2 Challenges in Securing Web-Based Applications

Application developers should be aware of two big challenges that can be particularly
troublesome in web-based applications:

. Defense against network sniffing

. Why and how to preserve "state"

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page59.html (3 of 6) [15/05/2002 23:00:33]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Let's take a look at these issues.
7.3.2.1 Sniff sniff...smells like chicken!

As I've hinted at earlier in this chapter, a problem confronts all users of networked computers,
both inside a corporate campus and across the great wide Internet. Think about what happens
when you put your username and password into a web-based application and push the Submit
button. Your precious personal information goes flying through the network, bouncing from router
to router, on its way to the server...possibly scooting through some untoward cyberspace
locations where Bad Guys lurk. These Guys run sniffer programs all the time, using password-
detecting code that notifies them when they've found something interesting. In the old days,
sniffers were expensive and rare, typically implemented in hardware and only comprehensible to
certified rocket scientists. Nowadays, though, any yokel with a modem can download an easy-to-
use sniffer. Heck, even I've done it (just for testing purposes, of course).

The way to circumvent casual sniffing is to encrypt network traffic—that is, turn the plain text into
what appears to be strings of gobbledygook that can be deciphered by the software at the other
end of the connection. You have probably heard of the Secure Sockets Layer (SSL), a common
Internet protocol for doing just that. Fortunately for application developers, using SSL requires no
extraordinary expertise. If you're using the Apache web server supplied with the Oracle database,
SSL is built-in and readily available.

The web server administrator needs to enable it by doing at least the following:

1. Review and edit the SSL-related settings in the configuration file
$ORACLE_HOME/Apache/Apache/conf/httpd.conf. By default, it uses a demo "certificate"
supplied by Oracle.

2. Shut down and restart Apache using the command:

OS> $ORACLE_HOVE/ Apache/ Apache/ bi n/ apachect| startssl

instead of:

OS> $ORACLE_HOVE/ Apache/ Apache/ bi n/ apachect| start

3. For the production system, you'll want to install your own certificate, which you may want
to have "signed" by an external authority such as Thawte, Entrust.net, or Verisign.

Although more details of setting up SSL are outside the scope of this book, there are a few things
for application developers to keep in mind when using it:

. Encrypting and decrypting is a drain on CPU and memory, so don't use it unless you need
it.

« Although the web server and web browser handle the real hard work of encryption and
decryption, you typically have to change at least one thing to use it, and that is the link that
the application provides to the end users. An SSL-protected URL usually begins with
https:// instead of http:// (the "s" is for "secure").

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page59.html (4 of 6) [15/05/2002 23:00:33]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

. By default, the web server will probably allow users to visit URLs for both the SSL and the
non-SSL versions of a given page. To force users to go through the SSL version,
administrators should take the explicit steps necessary to disable the non-SSL address.

7.3.2.2 What state are you in?

Before the advent of client-server and web-based systems, most applications that shared
databases also shared a big centralized machine running the application. A user signed in from a
terminal by supplying a password, and the system granted her permission to use a portion of
memory and CPU cycles until she signed out. In this arrangement, the user's connection to the
system has state, which is a shorthand way of saying that the system maintains the connection
until it's told to discard it.

Now, saving all this state information fora lot of active users can get expensive in terms of
machine resources (if not in real cash). That's one of the reasons that web-based systems, which
may need to handle millions of users, are almost always stateless. By design, the web server
generally does not remember anything about you between page requests.

While this statelessness allows servers to support a much larger number of concurrent users, it
presents a real challenge to your application's need for authentication. Every time a web-based
user wants to perform a protected operation, the server will need to determine who the user is
and whether to permit the operation. (Of course, some operations are available to all users and
therefore need no authentication.)

You might expect the inventors of the web server to have considered this little problem—and they
did, sort of. Their answer was HTTP authentication. In the following sections, we'll describe HTTP
authentication, as well as two other approaches.

7.3.2.2.1 HTTP authentication.

This approach was originally conceived to restrict access to certain documents. The idea was that
only users who supplied a pre-approved username/password combination would be allowed to
view certain pages. Although supported by almost all browser software, this venerable approach
is now sometimes regarded as limited. Nevertheless, many sites, including Oracle's own Oracle
Technology Network (http://otn.oracle.com), use this technique. Pages protected with HTTP

authentication require you to fill in a pop-up window that looks something like Figure 7-4.

Figure 7-4. Browser pop-up dialog box that results from attempting to connect to a web
page using HTTP authentication
Username and Password Requined Ed

Enter ugemame for Dracle Techmology Metworl: 2t
pér.oracle com:

Uger Hame: ||

Pazoword: |

O I Cancel

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page59.html (5 of 6) [15/05/2002 23:00:33]

http://otn.oracle.com/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

However, because this book is about PL/SQL, which is not a good tool for administering native
HTTP authentication, I'm not going to discuss it anymore. Instead, | will introduce two alternatives
that can help web-based applications preserve state: cookies and the session id approach.

7.3.2.2.2 Cookies.

In the early days of the Web, Netscape Communications Corporation invented a thing called a
cookie to ameliorate the statelessness problem. A cookie is a small bit of data that the server can
send to the browser software, which in turn will save it, even on the local user's hard disk, until the
server requests it again. This can be used as part of an authentication arrangement; for example,
after Bob logs in, the server can send to Bob's computer an encoded token that means "yea
verily, thou art Bob." Then, when Bob sends another request to the server, the cookie goes with it.
This saves him from having to type in his username and password on every page. Although not
perfect, cookies were a sensible solution for their time, and before long the major browser
vendors had built-in cookie support.

To make a long story shorter, though, some companies use cookies to track users in ways that
many believe violate an individual's right to privacy. To fight back, growing numbers of web users
(myself included) are simply turning off their browsers' cookie support. People in this category set
their browser preferences to reject all cookies that any server tries to store on their machines, and
regard sites that require cookies as twentieth-century throwbacks. The bottom line for anyone
building a web-based system is the strongly worded suggestion:

Avoid building systems that require browser cookies for authentication.
So, what's the alternative?
7.3.2.2.3 Session-id-based authentication.

This is our chosen approach. It is similar to a cookie, but does not save anything on the user's
hard disk. Instead, a PL/SQL program generates a session identifier that consists of a random
string of characters that is very difficult to guess. Each HTML form in the application includes a
"hidden" field containing this session id string, and it will become part of the data that each page
submits to the server. Protected pages receive the session id, look up the user who owns it, and
execute the requested action if the user is properly authorized.

Chapter 9 presents example code to manage patron accounts and login and provides a
discussion of these operations.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page59.html (6 of 6) [15/05/2002 23:00:33]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 7. Security: Keep the Bad Guys Out > 7.4 Keeping a Trail of
Database Changes

< BACK Start | Table of Contents | Index | Examples CONTINUE >

7.4 Keeping a Trail of Database Changes

Another of the security requirements for the library application states:

All changes in the actual catalog records should be auditable; the database will
store "traceability” data—which librarian made what change, and when.

This is not an unusual requirement; keeping an audit trail is important to the security of many
business operations. In Oracle, there are lots of ways of automatically recording this kind of
information, and we'll look closely at one method that uses PL/SQL. I'll also mention several other
built-in tracking mechanisms such as auditing features and Oracle's LogMiner utility.

7.4.1 Logging Data History Using Table-Level Triggers

A table-level trigger is a PL/SQL block that executes or fires automatically when data in the table
changes. A trigger is not a program that you call from another program or from the command line;
instead, it is a way of attaching programmer-defined logic to particular events. As such, a trigger
is a great way to keep track of changes, because triggers will always firel€l ; you can set up a
trigger and more or less forget about it.

[6] Triggers fire unless specifically disabled by the trigger owner or administrator via the ALTER
TRIGGER statement.

The programmer can set up the trigger to run either immediately before the data changes or
immediately after. Triggers set up to work the first way are known as BEFORE triggers; triggers
set up to work the second way are known as AFTER triggers. Often, triggers that run before the
data-changing event perform data validation operations. For example, a trigger can intercept an
UPDATE statement, read the "new" column values, and reject the transaction based on what it
finds. Both BEFORE and AFTER triggers are capable of raising exceptions that can prevent the
current transaction from completing.

To log data history, it makes sense for us to build a trigger that runs after the data-changing
event. We'll also create a companion "history" table for each table we wish to track. In pictures,
Figure 7-5 shows the sequence of events we want.

Figure 7-5. Preserving data history using a table-level trigger

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (1 of 9) [15/05/2002 23:00:40]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Insert, update, or
debete statement WAL statement Trigoer fires
friven anywhere ACts a5 expected
lkmMwawmmmr Descriptian of change

7.4.1.1 Table-level trigger example

Let's program an example that will track all the changes to the books table. For this purpose, a
books hi st table could look like this:

CREATE TABLE books_hi st (
I sbn VARCHAR2(13) NOT NULL
action CHAR(1) NOT NULL,
dat est anp DATE NOT NULL,
oracl e_user VARCHAR2(30) NOT NULL
real user VARCHAR2(60),
old_ title VARCHAR2(200),
ol d _summary VARCHAR2(2000),
ol d_aut hor VARCHAR2(200),
ol d_date published DATE
ol d_page_count NUVBER
new title VARCHARZ2(200),
new_sunmary VARCHAR2(2000),
new_aut hor VARCHAR2(200),
new dat e _publ i shed DATE
new_page_count NUVBER
CONSTRAI NT action_ck CHECK (action IN ('I', "D, "U))

),

The "old" columns store values of the columns before the update or delete, and the "new"
columns store values supplied through an insert or update. The act i on column will tell us

whether the event was a (D)elete, (I)nsert, or (U)pdate. While or acl e user is what we get from
Oracle's built-in USER function, r eal user is supposed to be the username from the

| 1 b _user s table, which we, uh, won't actually know inside the trigger. | won't show the solution
here, but it involves either (a) modifying the books table and associated applications to include

the real user ID, or (b) retrieving the value from some package variable that has been populated
by the application prior to modifying the books table.

Aside fromr eal user, how in the world are we going to populate all these columns? In

particular, where will we get the old and new values? Within the PL/SQL code of the trigger itself,
Oracle exposes these values using the prefixes OLD and NEW. So in a trigger that fires on table
update, we can do stuff like this:

| F : NEW dat e_publ i shed > : OLD. dat e_publ i shed
THEN

END | F;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (2 of 9) [15/05/2002 23:00:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Notice that a colon precedes NEW and OLD.

In an INSERT, all the old values are NULL; in a DELETE, all the new values are NULL, while in
an UPDATE, both old and new are populated. If you think about that for a minute, it makes perfect
sense.

Don't Let Primary Keys Change

In the history table, | have defined only one ISBN column, instead of two
(one old and one new), as | have for all other columns. There is a subtle
but important reason for this. Relational databases use the primary key as
the means of identifying which records in one table are logically
associated with records in another table. It turns out to be an enormous
challenge (okay, it's a pain in the neck) to build an application that allows
the user to change the primary key's value, yet have the change percolate
correctly throughout the database.

If this were a "real" application, | would recommend using a surrogate key
behind the scenes. A surrogate key is just a database-generated identifier
stored in a column that we designate as the primary key. This design
would remove the challenge of modifying the ISBN, and there would be an
old and a new ISBN in the history table. Although using surrogate keys is
not that difficult, I've chosen not to illustrate them in this beginner's book.

Whether you use primary or surrogate keys, triggers can enforce the rule
that they never change, as illustrated in lines 9-12 in the code example.
Without surrogate keys, if users have entered the ISBN incorrectly, they
will have to delete the book and re-create it. (No, they probably won't like
this very much.)

The trigger code to maintain the books hi st table looks like this:

1 CREATE OR REPLACE TRI GGER book_hist _trg
2 AFTER | NSERT OR UPDATE OR DELETE

3 ON books

4 FOR EACH ROW

5 DECLARE

6 | action CHAR(1);

7 BEG N

8

9 | F :NEWisbn !'= :QOLD.isbn

10 THEN

11 exc. nyrai se(exc. cannot _change_uni que_id _cd);
12 END | F;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (3 of 9) [15/05/2002 23:00:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

13

14 | F 1 NSERTI NG

15 THEN

16 | _action :="1"

17 ELSI F UPDATI NG

18 THEN

19 | _action :="U;

20 ELSI F DELETI NG

21 THEN

22 | _action :="'D;

23 END | F;

24

25 | NSERT | NTO books_hi st

26 (i sbn, action, datestanp, oracle_user, real _user,
27 old title, old _summary, ol d_author,

28 ol d_date published, ol d page count,

29 new title, new summary, new_ aut hor,

30 new_dat e_publ i shed, new _page_count)

31 VALUES

32 (:NEWisbn, | _action, SYSDATE, USER, NULL
33 OLD. title, :OLD. summary, :CLD. aut hor
34 : OLD. dat e_publ i shed, :OLD. page_count,
35 "NEWtitle, :NEWsunmary, : NEW aut hor,
36 - NEW dat e_publ i shed, : NEW page_count);
37 END;

38 /

39

Once you create this trigger, any time there is any kind of data change in the books table, the
trigger inserts a record describing the change into the books hi st table. Here's what's going on
in this code.

Line 1. The only way to create a trigger is to use the SQL CREATE TRIGGER command. Here |
use the CREATE OR REPLACE option in case the trigger already exists.

Lines 2-4. These special clauses indicate when the trigger will execute. In this case, the trigger
will execute one time per row, after any other application attempts to modify any row of the books

table. See Section 7.4.1.2 for more information on these options.

Lines 9-12. This rejects the operation if someone is attempting to modify the ISBN. The rationale
for this is provided in Don't Let Primary Keys Change. Line 11 is a call to a packaged
procedure that raises a programmer-defined exception (see Chapter 9).

Lines 14-23. The three special functions INSERTING, UPDATING, and DELETING each return a
Boolean value based on whether the trigger fired because of the corresponding DML event. By
the way, these functions are only available inside trigger code.

Here are points about this example that apply to triggers in your own applications:

. Since the transaction does not complete until all triggers have executed, any exception the
trigger raises can, if left unhandled, prevent the transaction from executing. Among other

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (4 of 9) [15/05/2002 23:00:40]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

things, this means that running out of space for the history table can make your
application stop accepting not just inserts and updates, but also deletes! If this happens,
the DBA will need to intervene.

. Watch out when bulk-loading or bulk-updating a table that has a history trigger like
this—you'll get a lot of history rows. One solution might be to disable the trigger during the
load, as follows:

ALTER TRI GGER book_hi st _trg DI SABLE;

Then, when you're done, do this:

ALTER TRI GGER book_hi st_trg ENABLE;

. When you create a new trigger, the default state is enabled, as you would probably
expect.

. From a performance point of view, we might be slightly better off if we moved lines 9-12
into a separate BEFORE ROW trigger. That's because BEFORE triggers won't bother
attempting to touch the table if they raise some exception, but by the time an AFTER
trigger raises an exception, Oracle has wasted memory and CPU cycles attempting to
make the data change. Functionally, it's okay to leave it here, though.

There are many variations on this approach; for example, you may decide that you don't really
need to store new records in the history table—in other words, you only want to store changes
and deletes. Or maybe you don't need to save the "new" column values separate from the "old."
Or whatever.

7.4.1.2 Table-level trigger syntax
Let's take a look at a simplified version of the syntax required to create a table-level trigger:

CREATE [OR REPLACE | TRIGGER trig_nane
BEFORE | AFTER

triggering_event
ON t abl e_nane

[FOR EACH ROW[WHEN condition]]
bl ock
Where:

trig_nane

This is the name of the trigger. You can name a trigger whatever you like, subject to the
usual Oracle naming rules, but it's probably a good idea to incorporate the table name in it
somewhere.

BEFORE | AFTER

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (5 of 9) [15/05/2002 23:00:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

This indicates when the trigger should fire relative to the DML operation. Note, though,
with row-level triggers, that the DML operation must affect at least one row in order for the
trigger to fire. Yes, it is legal to create more than one trigger on a particular DML event,
but other than BEFORE and AFTER, Oracle provides no way to define their firing order
relative to each other.

triggering_event

This is where you specify which DML operations should invoke the trigger. Usually it is a
combination of the keywords INSERT, UPDATE, and DELETE, with the possible use of
the OR operator. Each of the following is legal:

| NSERT
| NSERT OR UPDATE OR DELETE
DELETE OR UPDATE

Also, you can designate that an UPDATE trigger fire only when the update statement sets
a value for a particular column. The syntax for that is:

UPDATE OF col unm_nane

In this case, the only requirement to fire is that the column gets an assignment in a SET
clause; even if the new value is the same as the old value, a column-level UPDATE trigger
will still fire. You can also do things like this:

UPDATE OF col uml_nanme OR UPDATE OF col um2_nane

if it makes sense in your application.
ON table nane

The ON keyword immediately precedes the name of the table to which the trigger applies.
FOR EACH ROW

Recall that SQL is a set-oriented language; DML operations apply to zero, one, or more
rows. If you omit this clause, the trigger fires exactly once per DML statement, even if zero
rows are affected. Including this clause designates that the trigger should fire once per
row, in which case at least one row must be affected in order for the trigger to fire at all.

WHEN condi tion

This is a further optional restriction on which situations will cause a row-level trigger to fire.
It means "only fire this trigger if condi t 1 on is true.”

bl ock

This is where the PL/SQL block goes, beginning with either a DECLARE or a BEGIN

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (6 of 9) [15/05/2002 23:00:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Statement.

7.4.1.3 Other uses and types of triggers

Depending on your version of Oracle, you may have more exotic types of triggers at your
disposal—for example, triggers on views, triggers on database events such as startup and
shutdown, and triggers on various DDL events such as CREATE and GRANT. Table 7-1 shows
these trigger types and some of their potential uses.

Table 7-1. Overview of trigger types available in the Oracle server

Trigger
category

DML event

INSTEAD OF

DDL event

Database event

Version introduced |Description

7.0

8.0

8.1

8.1

Fires before or after insert,
update, delete

Applies only to views; allows
programmer to define what
happens when an application
performs DML on the view

Fires whenever any database
user issues DDL statements
including CREATE, ALTER,
DROP, GRANT.

Fires on events such as
STARTUP, SHUTDOWN,
SERVERERROR, LOGON,
LOGOFF, SUSPEND
(Oracle9i)

Typical uses

Validate data, preserve
history, authorize data
modifications, calculate
derived columns

Enable inserts, updates,
and deletes through
complex views (simplify
application development
and maintenance)

Audit security

Monitor database
health, audit user
connections, set runtime
"environment" variables

While triggers can help you perform tasks that would be difficult or impossible any other way, you
shouldn't go hog-wild with them. Even Oracle cautions against using too many of them on too
many tables, because you can wind up with complex interdependencies such as cascading
triggers that can be very difficult to debug. One rule of thumb: writing table-level triggers, you
might want to limit yourself to a maximum of four triggers, one per type: before row, after row,
before statement, after statement. This tends to make the transaction logic easier to understand

and maintain.

7.4.2 Other Methods to Track Changes

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (7 of 9) [15/05/2002 23:00:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Over the years, Oracle has evolved a wealth of fancy features for keeping track of what happens
in the database. I'll mention several of these features, but won't provide details here, as these
topics are a bit removed from PL/SQL programming:

Conventional auditing

Oracle includes an AUDIT statement that causes the database to record information about
user and data events. With relatively little effort, the administrator can record more than
170 different types of events. From a security standpoint, some of the things worthy of
auditing might be:

o Unsuccessful login attempts

o Execution of statements that utilize certain privileges (such as SELECT ANY
TABLE)

o All operations performed by accounts you think may be security-compromised

If the DBA wants to use this form of auditing, he or she will set the AUDIT_TRAIL=TRUE
parameter in the INIT.ORA file. The audit data will then become available in the view
named USER_AUDIT_TRAIL (or DBA_AUDIT_TRAIL). The administrator will periodically
need to delete or truncate the ever-increasing data in the SYS.AUD$ table.

Fine-grained auditing

Introduced in Oracle9i, fine-grained auditing allows the system to detect whenever data
that meets certain criteria is merely selected from a table. You can't do this with
conventional auditing or with triggers. The DBA configures fine-grained auditing using the
built-in package named DBMS_FGA, which allows the creation of auditing policies. A
PL/SQL programmer can even write a program that will be invoked automatically when the
audit event occurs.

Oracle LogMiner utility

Reaching farther into his bag of tricks, an Oracle8i or Oracle9i DBA has another way to
examine changes that happened in the database: the Oracle LogMiner utility. As part of
information needed for backup and recovery, Oracle saves to disk, in its "redo log files," a
record of every change to the database. With LogMiner, a DBA can dig into these files and
even query them as if they were online tables. There's a graphical viewer in Oracle
Enterprise Manager as of Oracle9i.

Flashback query

A feature introduced in Oracle9i, flashback query can allow users or applications to query
data as of a particular time in the past. As long as the DBA has set up Oracle to use
"automatic undo management" and established the UNDO_RETENTION period to be
sufficiently long (in the INIT.ORA file), authorized users can call the built-in procedure
DBMS_FLASHBACK.ENABLE_AT_TIME(t | nest anp). Then, every query made in that
session will reflect the state of the database att | nest anp. Terminating the session or
calling the DISABLE procedure will stop flashback query.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (8 of 9) [15/05/2002 23:00:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page60.html (9 of 9) [15/05/2002 23:00:40]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 7. Security: Keep the Bad Guys Out > 7.5 Special Security
Topics for PL/SQL Developers

< BACK Start | Table of Contents | Index | Examples CONTINUE >

7.5 Special Security Topics for PL/SQL Developers

There are a few more ways to secure PL/SQL applications that the next few sections will touch
on:

. Educate the user

« Avoid known vulnerabilities in Oracle

. Watch out for batch programs

« Scrutinize dynamic SQL and PL/SQL

. Use the "virtual private database" feature
« Encrypt data

Encrypt source code

Although | present these topics in what | consider to be order of importance, the later ones may
be more significant than the earlier ones for some applications.

7.5.1 Educate the User

With or without PL/SQL in the equation, the weakest link in the security chain is often the user.
The age-old trick for breaking into the computer systems of a large company is for the Bad Guy to
phone a user and say, "Hi, this is Bob from MIS. | am diagnosing a problem with your account.
Will you please tell me the username and password you use when you log in?" There are other
"social engineering" tricks such as "dumpster diving" (literally, going through a company's trash,
looking for passwords and other secret information) to which criminals and troublemakers are
willing to stoop.

7.5.2 Avoid Known Vulnerabilities in Oracle

Oracle does release information to the public about what it considers to be its worst security
problems; check out:

http://otn.oracle.com/deploy/security/alerts.htm

Be sure your DBA is familiar with this page or has some other way of getting the information such
as subscribing to the BUGTRAQ mailing list, which might see the news before Oracle does.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page61.html (1 of 6) [15/05/2002 23:00:46]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
http://otn.oracle.com/deploy/security/alerts.htm

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

BUGTRAQ is a very busy list, but you can subscribe at http://www.securityfocus.com/.

The following are the major security vulnerabilities in Oracle:
Default accounts

There are a number of vulnerabilities in a default Oracle installation, which through
Version 8.1.7 is amazingly permissive. For example, there are up to 32 accounts that a
default installation may create in the database! In addition to SYS, SYSTEM, and SCOTT
(accounts that have been installed with the same default passwords since the beginning of
time), there are other accounts like DBSNMP, OUTLN, and CTXSYS that you have to
worry about. Beginning with Oracle9i, though, many of these accounts are, thankfully,
"locked," meaning no one can connect to them. But not all of them. Be sure your DBA
examines all accounts and either disables the unnecessary ones or changes their
password.

Despite the detail to which the DBA can parcel out privileges, any account with the
CREATE SESSION privilege can execute SQL statements and anonymous PL/SQL
blocks. This means, for example, that all of the built-in tables, views, and packages that
have permissions granted to PUBLIC are immediately available to anyone who can
connect to the database. I've never experimented with revoking built-in PUBLIC privileges,
but | can envision cases where one would want to.

Holes in the modplsql gateway

A default installation of Oracle's version of Apache and the modplsql gateway opens
additional security holes. For example, immediately following the installation, after
launching Apache, anybody with a web browser can connect to the database and modify
the "access descriptors" that define accounts that connect to web pages. The default page
is something like http://hostname:7777/. There are also many built-in PL/SQL programs
that users can, by default, execute merely by entering them into the URL—no password
required. The situation is a bit improved in Oracle9i; apparently, the message that security
matters is making its way to all the developers at Oracle.

At any rate, a good way to secure web applications (in addition to all the security we've
already discussed in this chapter) is to set up web-server-level rules that say:

o By default, nobody can do anything, but...
o Here is a list of pages that are available

In other words, require an explicit listing of each and every URL that is legal to run. A
competent Apache administrator should know how to establish this default deny stance by
modifying the Apache configuration file,
$ORACLE_HOME/Apache/Apache/conf/httpd.conf, and adding appropriate "allow" and
"deny" directives.

An excellent discussion of securing Oracle is available in the Oracle9i Administrator's Guide.
Even if your site is not running Oracle9i, your DBA should be familiar with the contents of the
chapter entitled "Establishing Security Policies.” See also Oracle's Security Overview manual.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page61.html (2 of 6) [15/05/2002 23:00:46]

http://www.securityfocus.com/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

7.5.3 Watch Out for Batch Programs

You should never type your password in a location where it can be seen on the screen. This
includes batch programs (programs that run "unattended"). For example, on Unix-like operating
systems, avoid writing scripts that invoke SQL*Plus using the syntax:

sql pl us usernane/ password

because anyone with shell-level access can see your username and password with a simple ps -
ef command.

One alternative would be to save the username and password in a hidden file (owned by the
authorized Unix user, with no privileges for anyone else to read). For example, user bat chan
could have a file, SHOME/connectme.sql, containing a single command:

CONNECT bat chman/ swor df i sh

which your script would call immediately after starting SQL*Plus, as follows:

sql pl us /nol og
@HOVE/ connect ne. sql

You can play similar tricks with other tools such as SQL*Loader, although the format of the
password file is a bit different. Here is bat chnan's hypothetical password file,

$HOME/connectme.sqlldr, for SQL*Loader:

bat chman/ swor df i sh

Note that the blank line after the password is intentional and must be present. You could then use
this file as follows on Unix:

cat $HOVE/ connectne.sqlldr | sqglldr control =controlfile data=datafile
On Microsoft operating systems, these particular tricks are probably not necessary.

7.5.4 Scrutinize Dynamic SQL and PL/SQL

If you write a PL/SQL program that uses dynamic SQL (described in Chapter 5), it probably
composes and executes a SQL string derived in some manner from user input. Be careful—it may
open a big security hole. Consider the following:

PROCEDURE event di spatcher (event | N VARCHAR2)

IS
BEG N
EXECUTE | MVEDI ATE ' BEG N event handl er '
|| event ||
|| ' END;'

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page61.html (3 of 6) [15/05/2002 23:00:46]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

END;

The idea is to supply a named event for which a distinct PL/SQL procedure exists, for example:

BEG N
event di spatcher (' book _recd');
END;

A malicious user could invoke it as follows:
BEG N

event di spatcher (' (' book recd; evil _code');
END;

Not only will evi | code execute, it will do so with the privileges of the procedure owner! Here
are some tips to guard against such attacks:

. Create the program as AUTHID CURRENT_USER (invoker's rights) if possible.
. Avoid dynamic PL/SQL if you can do the job using dynamic SQL.

. If you must use dynamic PL/SQL, design dynamic calls so that the variable part is a
number rather than a string, and validate the number at runtime.

. Put IF tests and filters in your code that reject potentially malicious input. For example,
disallow semi-colons using:

| F I NSTR(sqgl _string, ';') !'=0

THEN
RAI SE sone_excepti on;

. Use bind variables rather than concatenation where possible.

. As part of your development process, include a security review performed by someone
other than the developer.

. Consider having the program record a log of the dynamic statements that it has
constructed and executed (successfully or otherwise).

7.5.5 Use the Virtual Private Database Feature

First appearing in Oracle8i, the virtual private database (VPD) feature allows the DBA to set up
rules for access that will automatically rewrite queries in a way that limits what end users can see
and do in the database according to their privileges. For example, VPD could be set up so that if
user Groucho attempts to look at all the privilege data using the following:

SELECT * FROM |i b_user _privil eges;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page61.html (4 of 6) [15/05/2002 23:00:46]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

it could get rewritten as:

SELECT * FROM |Ii b _user privil eges;
WHERE user id = SYS CONTEXT('!libuser ctx', 'wuser_id);

To be more precise, VPD includes two parts: (1) query rewriting, which is done by Oracle's fine-
grained security, and (2) user identification, which is a way of speeding up user-specific lookups
with the application context feature. To establish your own virtual private database, you'll want to
look into the DBMS_RLS built-in package.

7.5.6 Encrypt Data

The most security-sensitive applications such as banking transactions, medical records transfer,
and credit-card processing should take extra precautions to prevent information theft. Such
applications will require more than SSL; even the data in the database will sometimes need to be
encrypted. In addition to the encryption and decryption features of the built-in package
DBMS_OBFUSCATION_TOOLKIT, Oracle also provides, in the Advanced Security option, a way
to encrypt all SQL*Net traffic. This would not obscure traffic between web browsers and the web
server, but it could protect data that passes between the web server and the database server.

There are some additional advanced features in SQL*Net such as computing a checksum and
transferring it with each packet to ensure there has been no tampering in transit.

For more information about encryption and Oracle, consult Oracle's Advanced Security
Administrator's Guide and its Application Developer's Guide-Fundamentals.

7.5.7 Encrypt Source Code

Normally, when you create a stored procedure, Oracle reveals the program's source code to
database administrators or others who have access to the data dictionary. There is a way,
however, to hide the source code, delivering an encrypted form of it that is not human-readable,
but that Oracle still knows how to compile. Oracle provides a command-line program named wrap
that will encrypt your PL/SQL source. Why would you want to use it? Several possible reasons:

. Your source code is a trade secret and the users are not entitled to see it.
. You have hardcoded a role password or encryption key in the source code.
. You're just paranoid.

Normally, you wait until your code is ready to deliver, and then run the wrap utility. In a typical
invocation, it looks like this:

wrap i nane=i nputfile oname=out putfile
Where:

I nputfile

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page61.html (5 of 6) [15/05/2002 23:00:46]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

The name of your original, readable source code file, such as book.pkb
outputfile
The name of the new encrypted source file, such as book.epb

Once the encrypted source file has been encrypted, you can execute it in the same manner as
the input file. But keep up with your original source file, because there will be no way of
recovering it from the wrapped version.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page61.html (6 of 6) [15/05/2002 23:00:46]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 8. Communicating with the Outside World

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 8. Communicating with the Outside
World

One big overall trend in computers is the growing "interconnectedness” of systems. There is a
greater and greater assumption that my organization's systems and data should be connected to
my supplier's systems and to my customer's systems (in a secure and controlled manner, of
course). This is true whether we're talking about libraries, banks, or trucking companies.

A relatively simple and safe way that systems can communicate is by automatically sending email
to the users of the system. For example, in the library application we've been developing, the
system could send email to patrons who want to find out when a particular book is available. With
PL/SQL, there are several ways to accomplish this task, and in this chapter we'll examine one of
these in detail.

Less exotic, but no less interesting, PL/SQL applications may also need to "communicate" by
reading and writing files that live in the operating system. Although the library application won't
really need this feature, it is useful to know about, so | will present an example of using Oracle's
built-in UTL_FILE package to load a file via PL/SQL.

Another increasingly common interconnection between systems occurs when one organization
retrieves structured data from a remote site. For example, a library might want to retrieve catalog
information from another source rather than key it all in by hand. We'll look at PL/SQL's built-in
UTL_HTTP package as one part of an approach to fetch remote data.

Finally, this chapter provides a whirlwind tour of some small utilities that are easy to create by
integrating PL/SQL with the Java and C programming languages. There may be times when you
need to link your PL/SQL program to a program written in one of these languages, and recent
versions of Oracle have simplified inter-language communication, as we'll describe in the final
sections of this chapter.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page63.html [15/05/2002 23:00:48]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 8. Communicating with the Outside World > 8.1 Sending Internet Email
from PL/SQL

< BACK Start | Table of Contents | Index | Examples CONTINUE >

8.1 Sending Internet Email from PL/SQL

In most libraries, there is a way for a borrower to reserve a book that has been checked out by someone else.
When the other person returns the book, the person who reserved it should receive notification. What a great
application of sending email from PL/SQL!

Logically, sending email via the Internet is a process usually requiring four (or five, depending on how you
count them) pieces of information:

. Sender's email address

. Recipient's email address

. The actual content of the message

. A subject for the message

. The name of a mail server (should be defaulted)

So, one can easily imagine a procedure for sending email that goes something like this:

PROCEDURE send_mai | (
sender _emai | | N VARCHARZ,
reci pient_enmail I N VARCHARZ,
message | N VARCHARZ,
subj ect | N VARCHARZ,
mai | host | N VARCHAR2 DEFAULT ' nai | host'

);

Almost unbelievably, Oracle doesn't provide such a procedure, but instead gives us a very low-level package
called UTL_SMTP that we somehow need to deal with. SMTP stands for Simple Mail Transfer Protocol, the
name of the standard way that Internet mail servers communicate.[11 Before looking at the guts of using it,
though, let's step back to get a bigger picture.

[1] For those of you who are blessed with insatiable curiosity (or insomnia), you can read the actual contents of
the SMTP standard in RFC-822, a document you can find with any Internet search engine.

Although the various protocols and underlying software involved in transmitting email are not usually the

domain of the business application developer, the overall view is not too hard to understand, as Figure 8-1

shows. Getting an email message from user A to user B typically requires at least four cooperating pieces of
software—two mail servers and two mail clients.

Figure 8-1. Internet email

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page64.html (1 of 5) [15/05/2002 23:00:52]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Ciient compases and sends Servers tronsfer User retrieves mail wia
messAge fo mail server mil via SMTP convemient profacel
wia SHTP shich s POF

- "

Sender’s Recipients

Mail client mail server mail server Wail dlient 1

A common mail server on the Internet is a piece of software called sendmail, but since email is standards-
based, servers are fairly interchangeable from a programmer's point of view. Typically, all you need to know is
the Internet address (its hostname, such as mail.isp.com) of the mail server.

Although the mail clients you've heard of are probably products like Netscape, Eudora, and Microsoft Outlook,
we're actually going to create our own custom mail client using PL/SQL.

8.1.1 Using Oracle's Built-in Internet Mail Package: UTL_SMTP

In addition to the fact that all the readers of this book who truly have a burning desire to program at the SMTP
level would probably fit comfortably into a small elevator, the built-in UTL_SMTP package has a programmer's
interface that only a mother could love. It's almost as if Oracle decided to deliver the package to its customers
as a learning exercise.

Kidding aside, there are a variety of ways to send email with this package; my preferred method is to perform
the following eight steps, using the various programs in the UTL_SMTP package:

1. Use the OPEN_CONNECTION program to open a network connection with the mail server.

2. Use HELO (that's right, only one "L") to identify your domain using the standard SMTP "hello"
message.

3. Use MAIL to tell the email server your exact email address (that is, the sender's address).

4. Use RCPT to designate the recipient's email address.

5. Use OPEN_DATA to tell the server that the body of your email message will follow.

6. Make repeated calls to WRITE_DATA to send the headers, and then the body, of the message.
7. Use CLOSE_DATA to tell the mail server that you're through sending the message.

8. Use QUIT to terminate the network connection.

Most of these steps should return a particular numeric code from the mail server; however, the expected
value of the code varies among the different operations.

| won't belabor the details of the SMTP programs much more, but here is one example of code that uses it.
I've tested this with Version 8.11.2 of the popular sendmail server and it does the job, at least on my network.

1 CREATE OR REPLACE PROCEDURE send_rmmi |
2 (sender _enmi|l I N VARCHARZ,
3 recipient_email I N VARCHARZ,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page64.html (2 of 5) [15/05/2002 23:00:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

4 nmessage | N VARCHARZ,

5 subj ect | N VARCHAR2 DEFAULT NULL,

6 sender nanme | N VARCHAR2 DEFAULT NULL,

7 reci pient_name | N VARCHAR2 DEFAULT NULL,
8 mai | host | N VARCHAR2 DEFAULT ' rmmai | host")

9 IS
10 mai | _conn UTL_SMI'P. CONNECTI ON,
11 result UTL_SMIP. REPLY;
12 sntp_tcpi p_port CONSTANT PLS | NTECER : = 25;
13 crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
14 okay_c CONSTANT PLS | NTEGER : = 250;
15 cl osed_c CONSTANT PLS I NTEGER := 221,
16 ready for_data_c CONSTANT PLS | NTEGER : = 354;
17
18 PROCEDURE ckreply (result I N UTL_SMIP. REPLY, expected code IN PLS | NTEGER)
19 IS
20 BEG N
21 | opu. assert(condition_in => result.CODE = expect ed_code,
22 nessage_in =>result.CODE || ' ' || result.TEXT,
23 exception_in => exc.prob_w th_sending_mail_cd);
24 END;
25
26 BEG N
27 mai | _conn : = UTL_SMIP. OPEN_CONNECTI ON(rrai | host, sntp_tcpi p_port);
28
29 ckreply(UTL_SMIP. HELQ(nai | _conn, mail host), okay_c);
30 ckreply(UTL_SMIP. MAI L(nail _conn, sender_enmnil), okay c);
31 ckreply(UTL_SMIP. RCPT(nmail _conn, recipient_email), okay_c);
32 ckreply(UTL_SMIP. OPEN _DATA(rai |l _conn), ready for_data c);
33
34 UTL_SMIP. WRI TE_DATA(nai | _conn,
35 "Date: '
36 | | TO CHAR(CURRENT Tl MESTAMP, 'Dy, dd Mon YYYY HH24: M : SS TZHTZM)
37 || crlf);
38 UTL_SMIP. WRI TE_DATA(mai | _conn,
39 "From ' || sender_nane || ' < || sender_email || "> ||
40 UTL_SMIP. WRI TE_DATA(mai | _conn,
41 "Subject: " || subject || crlf);
42 UTL_SMIP. WRI TE_DATA(nai | _conn,
43 "To: ' || recipient_nanme || ' < || recipient_email || '>
44 UTL_SMIP. WRI TE_DATA(mai | _conn, nessage);
45
46 ckreply(UTL_SMIP. CLOSE DATA(mai |l _conn), okay c);
47 ckreply(UTL_SMIP. QUI T(nail _conn), closed c);
48
49 EXCEPTI ON
50 WHEN OTHERS
51 THEN
52 exc. nmyrai se(exc. prob_w th_sending_mail_cd, SQERRM;
53 END;
54 |

You can certainly just use the previous code in your own system and skip the following discussion, but | feel

compelled to say a few things you might want to know.

One of the big problems I've encountered with UTL_SMTP is that it will give "false positives"—that is, the mail
can be rejected by the local mail server without raising an exception. That's why my version checks the result

code (using the ckr epl v procedure) for every operation.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page64.html (3 of 5) [15/05/2002 23:00:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Lines 1-8. I've used CREATE OR REPLACE here, but you may want to put this procedure inside a PL/SQL
package. (If you did, you would include those DEFAULT clauses in the package specification, but not in the
body.)

Line 8. | use a default value of ' nai | host' as the name of the SMTP mail server. This is a commonly used

value on many machines, but may not work for you. Check with your local, and hopefully friendly, system
administrator.

Line 10, 27. We have to declare a variable of type UTL_SMTP.CONNECTION, which is a record-typed data
structure Oracle uses behind-the-scenes to hold state information for the network connection to the server.
You can see where it gets initialized in line 27, and you can also see that it is required as an argument to
every subsequent UTL_SMTP call. Beyond that, you won't have to mess with it.

Line 13. Because the standard requires it, you have to terminate certain header records with both a carriage
return (CHR(13)) and a linefeed (CHR(10)). The cr | f constant is just a convenient way to refer to this

combination.

Lines 14-16. These are constants we'll use to compare against result codes from certain interactions with the
mail server. The actual values are defined by the RFC-822 Internet standard.

Lines 18-24. This locally defined procedure is just a way to look at the result codes from various UTL_SMTP
programs and compare them to their expected values. If they don't match, the assert program will raise the
exception defined by the constant exc. prob_wi th _sendi ng nai |l cd.

Lines 29-31. Here begins the standard mail dialog. The okay c constant (250) is the value of the return code

that, in these steps, means "everything is okay, proceed.” Note that in line 29 | supply the value of the
mai | host parameter to the HELO procedure, which needs to know the name of the machine that is sending

the mail. This should work if Oracle is running on the same machine as the mail host; if not, you may need to
change this argument.

Line 32. When we open the data connection, RFC-822 defines 354 as the return code that means "everything
is okay, proceed." This is the value of the r eady for dat a_c constant.

Lines 34-37. This statement puts the day, date, time, and time zone, all formatted according to RFC-822, into
the mail header. As written, line 33 requires Oracle9i. In Oracle8i, you could get everything except the time
zone using TO CHAR(SYSDATE, 'Dy, dd Mon YYYY HH24: M : SS') and still comply with RFC-822.

Lines 38-43. More mail headers: the sender, recipient, and subject.
Line 44. Here is where the program sends the body of the message to the mail server.

Lines 46, 47. More housekeeping, required by SMTP. When you quit, cl osed c (221) is the "everything
okay" code.

This procedure should send messages up to 32K in length. If you need to send longer messages, one way
would be to modify the nessage parameter to be a PL/SQL collection of VARCHARS. In this case, you would

put line 44 inside a loop that iterated over the elements of the collection.

8.1.2 Alternatives to UTL_SMTP

There are many ways to accomplish the goal of sending email from an Oracle stored procedure. Determining
which method is the best method probably depends on which version(s) of Oracle you are running. While the
latest mail-sending method for a PL/SQL programmer is the one we just implemented, other methods, as

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page64.html (4 of 5) [15/05/2002 23:00:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

listed in Table 8-1, also work just fine. Some will scale better than others, though—that is, some work better
under demanding conditions, such as many concurrent users.

Table 8-1. A variety of methods used to send email from PL/SQL stored procedures

Method Oracle versions supported

V7 8.0 [8i |9i

Store mail information in a temporary table in the database; have
separate program (such as a C program or a shell script) that
periodically "wakes up," reads data from the table, and sends the
mail.

Yes Yes|Yes|Yes

Write a custom program in a language like C or Java that knows

how to call out to the operating system to send mail, but that

listens in the background for commands via an Oracle database |Yes Yes|Yes|Yes
pipe. PL/SQL programs will send mail by sending a request to

this companion program via the database pipe.

Write a custom program in a language like C that can be invoked

directly by PL/SQL as an external procedure. o Yes|Yes|Yes

Create a Java stored procedure that knows how to send email
(presumably by reusing some existing free Java you can

download from the Internet), and create a PL/SQL call interface |- - -- |Yes|Yes
for it. This approach requires Oracle's Java virtual machine,

known as JServer.

Use Oracle's built-in utility package, UTL_SMTP (also requires | - lyes|Ves

JServer)

Note that, under the covers, UTL_SMTP actually uses code written in Java to fetch the mail. The upshot is
that this package will fail at runtime if your administrator hasn't installed Oracle's Java virtual machine (known
as JServer). In a default installation of Oracle, JServer should be available, but an administrator who has
performed a custom installation of the database sans JServer may need to install and configure it later.

Presuming that you do have Oracle8i or later, plus JServer, the code I've presented allows a program to send
an email message very easily—with a single call. Even if you have to run an older version of Oracle, though,
you could still put the same interface on it, just with a different implementation.

Let's press ahead: armed with our masterpiece, we can now apply it to the library system.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgelLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page64.html (5 of 5) [15/05/2002 23:00:52]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 8. Communicating with the Outside World > 8.2 Using the Mail
Sender in the Library System

< BACK Start | Table of Contents | Index | Examples CONTINUE >

8.2 Using the Mail Sender in the Library System

Conceptually, it doesn't require a great leap to design a system that notifies someone via email when a
particular event occurs in the database. Let's take a close look at how we can use such a feature in the
library system, starting with a look at the underlying database structures.

8.2.1 Book Transactions and Reservations

We do have to introduce two more tables into the design, because so far, our library has books and
borrowers, but no transaction records. We can create a simple table to hold transaction information;
that is, it correlates a borrower, a particular copy of a book, an event (like check-in or check-out), and a
date:

CREATE TABLE user _book_copy_events (

barcode_i d VARCHAR2(100) NOT NULL
REFERENCES book_copi es (barcode_id),

borrower id NUVBER NOT NULL
REFERENCES |i b _users (id),

event _nanme VARCHAR2(30) NOT NULL
CHECK (event _nane IN ('checkin','checkout')),

ti mestanp DATE DEFAULT SYSDATE NOT NULL,

CONSTRAI NT user _book_events_pk PRI MARY KEY
(barcode_id, borrower _id, event nane, tinestanp)

);

The primary key is made up of all four columns because:
. Each borrower can check out many books.
. Over time, a book will be repeatedly checked in or out.
. A given user might check a book out more than once.

As designed, the system prevents two borrowers from performing the exact operation on the same
copy of a book at the same time.

This table cannot store information about book-reserving events, because books should be reserved
by title and not by copy. If a patron wants to read The Grapes of Wrath (of which the library has 15
copies, all currently checked out), the patron just wants to get the first one available. Additionally, the
library will allow more than one person to get in the queue to reserve a book, but there is a strict "first
in, first out" fulfillment policy. So the reservations table looks like this:

CREATE TABLE user _book_reservations (
I sbn VARCHAR2(13) NOT NULL REFERENCES books (isbn),
borrower id NUVBER NOT NULL REFERENCES |ib_users (id),

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page65.html (1 of 4) [15/05/2002 23:00:55]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

dat e_queued DATE DEFAULT SYSDATE NOT NULL,

date notified DATE,

CONSTRAI NT user _book _reservati ons_pk PRI MARY KEY
(i sbn, borrower id, date_queued));

where dat e _queued is the date and time when the borrower made the reservation, and
date notifi ediswhen the system notified the patron that a copy of the requested book was
returned to the library (and, presumably, set aside for the person making the reservation).

8.2.2 The Reserve Notification Process

Figure 8-2 illustrates the way everything works. Imagine here that we're talking about a book of which
the library owns three copies, and all three copies are out on loan.

Figure 8-2. Notifying via email that a reserved book is available

Three bornewers (call

Borrower "0” Bomower “("
thern &, B, C) check sut - -
all three copies of book reserves book returns book

“Checkout " records created by “Check-in™ event record

Wrary staff scamming barcode

By putting a trigger on the user book event s table, we can have the system make the notification
happen automatically. In pseudocode, here's what the process looks like:

After a librarian records that a user has checked in a book:
Look for any open reservations on that book's | SBN.
I f found, send notification email to the user who has waited the | ongest.
Record the notication date and tine.

Although the trigger requires few new PL/SQL features, | would like to show the code anyway, to
reinforce some ideas discussed in earlier chapters.

8.2.3 The Trigger

The trigger looks like this:

CREATE OR REPLACE TRI GGER book _trans_trg
AFTER | NSERT
ON user _book _copy_events
FOR EACH ROW
DECLARE
CURSOR ucur
| S
SELECT ubr. borrower id, ubr.date_queued,

O~NO OIS WN P

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page65.html (2 of 4) [15/05/2002 23:00:55]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

9 b.title, lu.enmail _address, |u.usernane

10 FROM book copi es bc,

11 books b,

12 user book reservations ubr,

13 lib users lu

14 VWHERE bc.isbn = ubr.isbn

15 AND bc. barcode_id = : NEW barcode_i d

16 AND ubr.date notified I'S NULL

17 AND [u.id = ubr.borrower _id

18 AND b.isbn = bc.isbn

19 ORDER BY dat e_queued

20 FOR UPDATE OF ubr.date notified;

21

22 urec ucur Y%ROWMYPE

23

24 BEG N

25 | F : NEW event _nane = 'checkin’

26 THEN

27 OPEN ucur

28 FETCH ucur | NTO urec;

29 | F ucur %-OUND

30 THEN

31 | opu. send_nmi | (sender _emai |l => 'oracl e@rydomai n. coni
32 reci pient_email => urec.enmail _address,
33 subj ect => 'Your reserved book is avail abl e
34 nessage => 'The library is holding a copy of
35 || urec.title || " for you.'
36 reci pi ent_name => urec.usernane);

37 UPDATE user book reservations

38 SET date notified = SYSDATE

39 VWHERE CURRENT OF ucur

40 END I F;

41 CLCSE ucur;

42 END | F;

43 END

44 |

Here's what's going on in this code:

Lines 8-20. Most of the "smarts" in this trigger are in the SELECT statement, which matches up
reservations with users and individual copies of books. For example, how does the record fetched in
line 28 represent the patron who has the oldest reservation? It's because of the ORDER BY clause in
the SELECT; the first one fetched has the earliest value of dat e queued. How do we know the title of
the book to include in the body of the emailed message? The SELECT includes a relational "join" with
the books table, from which we can grab the title.

Lines 20, 28, 39. Notice the strange WHERE clause in line 39. | get to use this wonderful shortcut
because | used FOR UPDATE at line 20. Once the program has executed the FETCH in line 28, the
WHERE CURRENT OF clause means "apply the update to the most recently fetched row." This is
more than a coding shortcut, though; FOR UPDATE tells Oracle to put a lock on the affected rows so
no one else can update them after they've been queried. The current session gets to keep the lock
until it ends or until there is a COMMIT or a ROLLBACK. (This approach also works for DELETE
statements, by the way.)

Lines 31-36. Here is where we get to use our fabulous mail-sending program. | didn't compose a really

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page65.html (3 of 4) [15/05/2002 23:00:55]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

long message, but | could have made it as long as 32,767 bytes, which is the maximum for a PL/SQL
string. If you stare hard at line 31, warning flags should be going off in your mind, because of the
hardcoded sender enai | address. A much better approach would be to store this information in a

configuration table somewhere (or at least in a package variable) and just have this program look it up.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page65.html (4 of 4) [15/05/2002 23:00:55]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 8. Communicating with the Outside World > 8.3 Receiving Email
Inside the Database

< BACK Start | Table of Contents | Index | Examples CONTINUE >

8.3 Receiving Email Inside the Database

In some applications, it's also important to be able to receive an email, process it in some fashion, and
load some or all of its contents into the database. For example, a book publisher may send out a
specially-formatted email message every week containing a schedule of their upcoming releases, and
a library might want to load that information and make it available in their database.

8.3.1 What Are My Options?

While Oracle built-ins like UTL_TCP exist that could make it possible to receive email completely inside
a stored procedure, | doubt that many of us would really want to go to that much trouble. Here is the
general scenario | have in mind:

1. Create a special email address on a convenient mail server.

2. If the mail server isn't the same machine as the database server, use a program like GNU
fetchmail that will pull the mail down to the local machine.

3. Now that the mail data is available in a mail file on the local machine, use one of a variety of
techniques to load the email data from the file into the database.

Techniques for loading data from a file into the Oracle database (step 3) include:
SQL*Loader

A command-line utility that uses a programmer-supplied "control file" describing the contents of
the data file

External tables (as of Oracle9i)

A way to store this "control file" information in the database itself, enabling query of the data file
in a manner similar to a regular table

UTL_FILE

A PL/SQL built-in package that allows, under some conditions, the reading and writing of
external operating system files

As you can probably guess, I'm only going to explore the third technique here.

8.3.2 Reading Data with Oracle's Built-in File Utility: UTL_FILE

In this section, I'll present a short example of using a built-in package Oracle provides to read and write

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (1 of 10) [15/05/2002 23:00:58]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

operating system files. Known as UTL_FILE, it is not what | would call a full-featured file library, but it
will handle many of your file input/output operations.

8.3.2.1 Opening and closing files

As in many languages, a PL/SQL program must first open a file before reading anything from it or
saving anything to it, and must subsequently close the file. In addition, when you open it, you must
declare how you plan to use it: read, write, or append. In the open operation, Oracle makes some
checks and then hands off the request to the operating system to ensure that:

. The operation will not exceed Oracle's limit or the operating system's limit of how many files
can be open at one time

. The request adheres to rules about legal directory and pathnames
. The requestor has the necessary permissions to open the file for the requested operation

Regarding the third requirement, Oracle's security model for file operations with UTL_FILE is quite
primitive. The only security available to the administrator is to establish what directories are available
for use by UTL_FILE. Any Oracle user who has the CONNECT privilege will be able to read and write
freely to all files in the directory.

Closing a file is very important, for two reasons:

« When you're writing or appending to a file, Oracle and the operating system may "buffer” the
data in memory—that is, they may defer writes to the hard disk in order to provide better
performance. If you don't close the file, your data may not get saved to the disk!

. Failing to close the file can cause the session to exceed a limit on the number of open files.
8.3.2.2 What kind of files?

It's important to know that UTL_FILE assumes that it is working with text files only. Text files generally
consist of characters you can read or write as VARCHAR?2s, organized as one or more lines such as
the following:

The rain is in Spain.eol
So far this nonth, 23.4 centineters! eol
eof

Where eol is the end-of-line marker—a special binary code that doesn't normally display on the
page—and eof is a similar end-of-file marker. Line 1 is "The rain is in Spain" and line 2 is "So far this
month, 23.4 centimeters!" A line, therefore, consists of all the text that occurs between end-of-line
characters.[21

[2] End-of-line characters vary by operating system. On Unix, eol is the linefeed character, consisting of
the ASCII code 10; on Macintosh, it's the carriage-return (ASCII code 13); and on Microsoft operating

systems, it's the combination of a carriage return followed by a linefeed character.

Once you open a file by name, the program must subsequently refer to the file using a file handle,
which is a special value supplied by the operating system and passed back through the runtime
environment. In PL/SQL, file handles are of the built-in datatype UTL_FILE.FILE_TYPE.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (2 of 10) [15/05/2002 23:00:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

8.3.2.3 Examples

Reading from the file goes like this:

Open file for reading, store the resulting file handle in a variabl e.
Read fromthe file via the file handle (possibly in a |oop).
Close the file.

The program to open a file for reading is a function called UTL_FILE.FOPEN and typically works like
this:

file handle := UTL_FI LE. FOPEN(I| ocati on => aut hori zed_pat h,
filenanme => fil e,
open_node => node);

Where:

file handle

The special value returned by the operating system, here of the datatype
UTL_FILE.FILE_TYPE.

aut hori zed_path

The full path to the file you want to open. In DOS/Windows, it might be something like
"C:\TEMP', whereas Unix might use “/var/tmp/utlfile'. This path must be authorized by a setting
in Oracle's initialization file (in the UTL_FILE_DIR parameter); it has no default value and,
therefore, the default setting is that Oracle permits no file 1/0O via UTL_FILE.

file
Name of the file, without any path information—for example, "myfile.log'.
node

One of the letters r, w, or a, for (r)ead, (w)rite, or (a)ppend, depending on how your program
will use the file.

8.3.2.4 What is this "mode"?
You can open a file in any of the following modes:
Read mode

Opening a file in read mode allows you to retrieve character data from the file, one line at a
time, with the built-in GET_LINE procedure.

Write mode

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (3 of 10) [15/05/2002 23:00:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Opening in write mode will (a) attempt to create the file if it doesn't exist, and (b) allow your
program to save data to the file with one of the built-in procedures whose name begins with
PUT.

Append mode

If you open a file in append mode, Oracle preserves any existing file contents and allows you to
add new text lines to the end of the file. You cannot combine these modes. For example, if you
try to use "r w" for both read and write, UTL_FILE will ignore everything but the first letter (r).

Use caution when opening a file for write. If the file already exists,
opening it for write will destroy any existing contents!

In code, reading one line from a file looks like:

DECLARE
nyfile_handl e UTL_FI LE. FI LE TYPE
| i ne VARCHAR2(32767) ;
BEG N
nyfile_handle : =
UTL_FI LE. FOPEN(| ocati on => '/sone/ | egal / pat h'
filename => 'sone_l egal _filenane',
open_node => 'r');
UTL_FI LE. GET_LI NE(nyfile_handl e, Iine);
UTL_FI LE. FCLOSE(nyfil e_handl e);
END;
/

This example uses Unix-style pathnames for the | ocat i on argument. If you are going to run on a

Microsoft operating system, you would replace the boldface line in the previous code with something
like:

UTL_FI LE. FOPEN(| ocation => 'C: \sone\l egal \ path',

Writing a file looks like:

Open file for witing, save the file handle
Wite sone text to the file via the file handle
Close the file

In code, writing two lines of text to a file looks something like:

DECLARE
nyfile_handl e UTL_FILE. FI LE_TYPE
BEG N
nyfile_handle : =
UTL _FI LE. FOPEN(I| ocation => '/sone/legal /path',
filename => 'sone_l egal filenane',
open_node => "W);
UTL_FI LE. PUT_LINE(nyfile_handle, 'The rain is in Spain.');

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (4 of 10) [15/05/2002 23:00:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

UTL_FI LE. PUT_LINE(nyfile_handle, "So far this nonth, 23.4 centineters!');
UTL_FI LE. FCLOSE(nyfil e_handl e);

END;

/

Correspondingly, the UTL_FILE package provides a variety of built-in programs, including those in
Table 8-2.

Table 8-2. Some commonly used programs in UTL_FILE

Name of UTL_FILE

Action Prerequisites and comments
program
Opens a file for some In read mode, directory and file must exist
designated purpose (read, |and be accessible via UTL_FILE; in write and
FOPEN . . :
write, or append) and append mode, only the directory must exist
returns a file handle and be accessible via UTL_FILE.
File must be open in read mode and there
Reads one line in a file that /must be another line to read. If there are no
GET_LINE : . L
- has been opened more lines, this procedure will raise the
NO_DATA_FOUND exception.
PUT writes (9utp_ut) text to the File must be open in write or append mode.
current line in the file
Similar to PUT, but also
appends the special end-of-
PUT_LINE line character(s) that are File must be open in write or append mode.
appropriate to the operating
system

Forces buffered data to be |_. " .
FFLUSH written to the hard disk File must be open for writing or appending.

File must be open, but can be open in any

FCLOSE Closes an open file
mode.

IS OPEN Determines whether a file is None.
- already open

You may find yourself doing some shoulder shrugging when you start to take UTL_FILE through its
paces. Limitations of the package include:

« A maximum number of bytes in any single read or write operation. Oracle7's limit was only
1023 bytes (including end-of-line bytes). Oracle8, Oracle8i, and Oracle9i default to a maximum
of 1023, but can go up to 32,767 bytes. To read more than the default, you have to supply an

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (5 of 10) [15/05/2002 23:00:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

optional fourth parameter to the FOPEN function.

. No ability to delete files. Opening an existing file for write and then closing it will eliminate its
contents—that is, cause it to be zero bytes long—»but the file will still exist on the disk.

. No direct support for saving or retrieving data in any format other than text (for example, binary
data for graphic images).

. No way to read from a file except one line at a time.

. No way to obtain a listing of files in a directory (like the dir command in DOS or the Is command
in Unix).

. No easy way to combine read and write operations (for example, read in 10 lines, then write an
11th line).

Industrious readers will eventually find that they can work around these limitations by using other
Oracle features such as large objects (LOBs) or Java stored procedures.

8.3.2.5 Loading an entire text file

To load the contents of an entire text file into an Oracle table, | first have to figure out how | want the
lines in the file to correspond to records in the database. It seems like one line per record would be
reasonable, but what if the line is longer than my record will allow? Should I:

. Load it in multiple records?

. Truncate it?

. lIgnore it?

. End with an error, without loading any of the file?

For now, | choose the last option, because it will make the example code easier to write. So, given this
simplifying assumption, a generic table to hold file contents would look like this:

CREATE TABLE fil e_hol der (
di rname VARCHAR2(512) NOT NULL,
filename VARCHAR2(512) NOT NULL,
|l i ne_no | NTECER,
text VARCHAR2(4000),
CONSTRAI NT file_hol der _pk PRI MARY KEY (dirnane, filenane, |ine_no)

);
I've made the t ext column 4000 bytes long, which is the longest VARCHAR?2 allowed by Oracle.

To load a file whose number of lines we don't know in advance, but with lines no longer than 4000
bytes, the PL/SQL program would be:

1 CREATE OR REPLACE PROCCEDURE | oad file to holder (dirnane_in I N VARCHARZ,
2 filename_in I N VARCHAR2, eol char _count I N PLS | NTEGER DEFAULT 1)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (6 of 10) [15/05/2002 23:00:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

3 IS
4 fh UTL_FI LE. FI LE_TYPE;
5 buf f er VARCHAR2(4000) ;
6 | no PLS | NTEGER : = O;
7 max_var char _c CONSTANT PLS | NTEGER : = 4000;
8 eof BOOLEAN : = FALSE;
9 BEGN
10 | opu. assert_notnul | (di rnane_in);
11 | opu. assert_notnul | (fil enane_in);
12 | opu. assert (eol char _count BETWEEN O AND 3,
13 "eol _char_count not in range O to 3');
14
15 fh := UTL_FI LE. FOPEN(| ocati on => dirname_in,
16 filename => fil enane_in,
17 open_node => 'r',
18 max_| i nesize => max_varchar_c + eol _char_count);
19
20 DELETE fil e_hol der
21 VWHERE dirnane = dirnane_in
22 AND filenane = fil enane_in;
23
24 VH LE NOT eof
25 LOOP
26 get _nextline(fh, buffer, eof);
27 Ino := Ilno + 1;
28 | NSERT | NTO fil e _holder (dirname, filenanme, |ine_no, text)
29 VALUES (dirnane_in, filenane_in, I no, buffer);
30 END LOOP
31
32 UTL_FI LE. FCLOSE(f h) ;
33
34 EXCEPTI ON
35 VWHEN OTHERS
36 THEN
37 | F UTL_FILE. I S_OPEN(f h)
38 THEN
39 UTL_FI LE. FCLOSE(f h) ;
40 END | F;
41 RAI SE
42
43 END |l oad_file_to_hol der
44 |/

Let's walk through this code.

Line 2. eol char count isthe number of bytes it requires to represent an end-of-line marker in the
operating system where Oracle is running. I've defaulted it to 1, which is the Unix value; for DOS or
Microsoft Windows platforms, use a value of 2.

Line 4. f h is the file handle variable.

Line 5. buf f er is the variable that will hold each line as it gets read in from the file. It's sized at 4000
bytes, which is the same as the t ext column where the data will go.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (7 of 10) [15/05/2002 23:00:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Line 6. | no is the line number counter we'll use as the value for the | | ne _no column in the table.

Line 7. max_var char c is a constant representing the width of the column where we're going to store
the text lines from the file. This constant gets used in line 17.

Line 18. When opening the file with FOPEN, the fourth parameter, nax_| i nesi ze, tells it how many
bytes to attempt to read, up to 32767. This quantity is the sum of the actual bytes of text in a line plus
the number of end-of-line bytes. (UTL_FILE.GET_LINE doesn't actually return the end-of-line character
when it reads the line, but you have to add byte(s) for it anyway. Go figure.)

Lines 20-22. Because my table will allow only one version of a particular file, | will go ahead and delete
any records that I've already saved for that file, in case | loaded it previously. If the file has not yet been
loaded, this DELETE statement does nothing, which is fine.

Lines 24-30. This loop reads the entire contents of the file, one line at a time, by calling the utility
procedure get next | i ne, which looks like this:

1 CREATE OR REPLACE PROCEDURE get nextline
2 (file_in IN UTL_FI LE. FI LE_TYPE,
3 | i ne_out OUT VARCHARZ,
4 eof _out OUT BOOLEAN)
5 IS
6 BEG N
7 UTL FILE. GET_LINE (file_in, line_out);
8 eof out := FALSE;
9 EXCEPTI ON
10 VWHEN NO _DATA FOUND
11 THEN
12 | i ne_out := NULL;
13 eof out = TRUE;
14 END;
15 /

This procedure sets a status variable to indicate whether the end of the file has been reached. This
simplifies the use of UTL_FILE.GET_LINE, which raises an exception when it reaches the end of the
file.

Line 32. Reaching the end of file is a good time to close it.

Lines 34-41. If the program can't open the file, or if it manages to get the file open and then
encounters an error (for example, if there really is a line longer than 4000 bytes), UTL_FILE raises an
exception. Unfortunately, UTL_FILE does not always close the file when it encounters an error, so this
exception handler will attempt to close the file. If the file close operation doesn't raise an exception
itself, control passes to the RAISE statement in line 41, which will re-raise the same exception.

8.3.2.6 Handling exceptions

Properly handling all the things that can go wrong is one more challenge in using UTL_FILE. The
package will raise one of a variety of package-specific[3l exceptions when encountering various errors,
and you'll probably want to trap them individually. Why individually? If we invoke the previous program
as:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (8 of 10) [15/05/2002 23:00:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

[3] These are technically "programmer-defined" exceptions, where the programmers are the Oracle
employees who wrote UTL_FILE.

BEG N

| oad file to _hol der('garbage directory', 'sonme filenane');
END;
/

we'll get a message like this:

ERROR at line 1:
ORA- 06510: PL/SQL: unhandl ed user-defined exception

ORA- 06512: at "SYS.UTL_FILE", line 120
ORA- 06512: at "SYS.UTL_FILE", line 293
ORA- 06512: at "LOPWEB. LOAD_FI LE_TO HOLDER', line 8

ORA-06512: at line 1

A -6510 error is next to useless in helping figure out what went wrong. You see, unlike exceptions you
might define using RAISE_APPLICATION_ERROR, details of programmer-defined exceptions aren't
passed to the execution environment. You will probably want to handle each of Oracle's programmer-
defined exceptions separately. The following anonymous block will print a message indicating which of
the exceptions was actually raised:

BEG N

| oad file to _hol der('garbage directory', 'sone filenane');
EXCEPTI ON

VWHEN UTL_FI LE. | NVALI D_PATH

THEN

DBMS_QUTPUT. PUT_LINE('invalid path');
VWHEN UTL_FI LE. | NVALI D_MODE
THEN

DBMS_OUTPUT. PUT_LI NE(' i nval i d node');
VHEN UTL_FI LE. | NVALI D_OPERATI ON
THEN

DBMS _OUTPUT. PUT_LI NE(' i nvalid operation');
VWHEN UTL_FI LE. | NVALI D_FI LEHANDLE
THEN

DBVS_OUTPUT. PUT_LINE("invalid filehandle');
VWHEN UTL_FI LE. READ_ERROR
THEN

DBVS_QUTPUT. PUT_LINE(' read error');
VWHEN UTL_FI LE. WRI TE_ERROR
THEN

DBVS_OUTPUT. PUT_LINE('wite error');
VWHEN UTL_FI LE. | NTERNAL_ERROR
THEN

DBMS OQUTPUT. PUT _LINE('internal error');

END;
/

Running this anonymous block results in the output message that we probably could have predicted:

invalid path

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (9 of 10) [15/05/2002 23:00:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Notice that you must include the package name as a prefix for each exception.

In a real system, how you actually handle the error will depend on your requirements (and your
programming budget). You might just ignore it, or you might present some kind of an error message to
the user, or you might have your program use some alternate approach to performing the task it was

supposed to perform.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page66.html (10 of 10) [15/05/2002 23:00:58]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 8. Communicating with the Outside World > 8.4 Fetching Data from a
Remote Web Site

< BACK Start | Table of Contents | Index | Examples CONTINUE >

8.4 Fetching Data from a Remote Web Site

With so much information available on public web sites, sooner or later you will probably want to fetch and save
some of it into your local database. If at all possible, a library would prefer to import catalog information
electronically from an external source such as the publisher, or from another library's catalog, rather than keying it
by hand. As it turns out, this is not a very original idea.

Data retrieval from real library catalogs is an enormous and complex
topic, rich with multiple standards, proprietary products, open source
tools, and plenty of controversies. | don't pretend to know anything about
it. | have contrived an example merely to show off some aspects of
PL/SQL that could be useful in many applications.

But even if we can find the data we need, will it require a rocket scientist to pull it down into our local database?
The answer is, it depends—primarily, it depends on how well the creators of the remote web site have organized
the data. An orderly presentation shouldn't be too challenging, even for a beginning programmer.

Assuming at least a semi-organized web site, can we meet this data-fetching challenge with PL/SQL? Probably.
Again, we will turn to Oracle's built-in features, and explore how to use several more of Oracle's own packages.

8.4.1 Fetching Book Catalog Information from the Library of Congress

After trolling about on the U.S. Library of Congress web site http://www.loc.gov, | discovered that they have a
facility that will display nicely formatted catalog information for at least some of the books in their catalog. Even
better, their web site provides a way to get to many other libraries and sources of information, so once we've
mastered a way to retrieve it, the same technique should apply elsewhere.

Fetching data through the web page is a four-step process:

1. We need to initialize the search by pointing to a particular URL. Doing so is a requirement of using the web
site.

2. From the HTML of the returned page, we must extract their server-supplied session id value. It appears as
a number in a hidden form field.

3. Now we can construct a second URL to request the actual catalog information for a particular book. The
URL will be rather long, with a lot of form name/value pairs appended to it—including the session id that
we just retrieved.

4. We scan the results of this second request to extract catalog data to load into the local database.

Step 1 is really the easiest; it's the programmatic equivalent of point and click. If we did so in a web browser, we'd
get a page similar to Figure 8-3.

Figure 8-3. Query screen for book catalog information

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (1 of 11) [15/05/2002 23:01:01]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
http://www.loc.gov/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

BY Library of Congress Advanced Word Search Form - Netscape
Ele Edt Yew Go Communicator Help
¢ Bockmak: Leeation: |hitp:/leweb Joc. o/ cgibin/2gale PACTIDN=INITLFORM_HDST_FORT=/pod/w * | ﬁ

-

J JIN~] ¥ - . ' -
f:-"".-”" {:‘JI'.Tllll.-:'II'.T'l LA |'Il'.-'|.

Library of Congress Online Catalog

Select Preferved Record Display: & Bref © Full © Tagged

Search terms can be single words o phrases, Enter an awthor's same in mdirect arder (i e, last_naroe,
first_narme)

Euter Termn 1 | | Keyword Arpehiere |

® AMD © OR C AND NOT -

Euter Termn 2 | Kieyword Anywhere |

® AMD © OR © AMD NOT

Enter Terun 5 | FEpaenrd Annebiere j
SubmitQuery | Clear Form .
e == Dacument: Done S e e N ey [8

By looking at the HTML underlying the form (for example, by using our browser's View?Page Source menu option)
and learning the names of the input items, | can construct a compliant URL in a PL/SQL program and send it on to
the web server, obtaining the same result we'd get if we filled out the form interactively. For example, | want the
program to emulate pressing the radio button marked "Full." By inspecting the HTML, | discover that | need to
send the following field name and value:

ESNAME=F

Similarly, | can extract the name underlying each of the required fields, although I'm not going to list them all here.

Looking closely at the source code behind the page, | also found a line that said:

<I NPUT NAME="SESSI ON_| D' VALUE="191786" TYPE="H DDEN'">

Now, this shouldn't be too surprising if you recall the part of Chapter 7 about setting up and using a session id.
This line reveals that this site also has a concept of a session identifier (191786 in this particular invocation) and
our code is going to need to read and include this value in the subsequent request. Unlike our library application,
this web site does not require a login, but it still has the concept of a session, most likely for resource (probably
memory) management.

We can't just hardcode a session id in our program, because it won't be good forever. So, step 2 presents the first
minor hurdle—how, exactly, should we search through the data we get back to find the value of this particular
string? The answer lies in a technique called pattern matching for which Oracle provides yet another built-in tool:
the OWA_PATTERN package. Stay tuned for a demonstration of that one.

Step 3 really isn't too hard, though after some experimentation, | discovered that session ids are good for a
number of minutes, then they expire. If at all possible, we don't want to initialize with every request because doing
so would consume unnecessary resources on the remote server, making us bad Internet citizens. Better to
assume that the session id will be good until we detect an expiration error message and re-initialize (back to step
1) as necessary.

Step 4, the final step, is similar to step 2—it's a matter of extracting data from a textual page—and we should be
able to use some of the same techniques as the earlier step.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (2 of 11) [15/05/2002 23:01:01]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Let's take a look at the main Oracle built-in package we're going to be using, and you can decide for yourself
whether this is rocket science.

8.4.1.1 About UTL_HTTP

Although the built-in package UTL_HTTP has been around since Oracle7, Oracle9i added a lot of extra
functionality to it, so the way you would write a new program with this package could vary based on the version
you're using. Prior to Oracle9i, the programmer's interface to UTL_HTTP required each web page to be retrieved
in a single call. There were only two options:

UTL_HTTP.REQUEST
Retrieve the first 2000 bytes of a given web page (given a URL)
UTL_HTTP.REQUEST_PIECES

Retrieve an entire web page, and put it into a PL/SQL index-by table, with up to 2000 bytes per element in
the table

So, for example, to fetch an entire page of arbitrary length, and then do something with it, we might do something
like this:

1 DECLARE

2 page_pi eces UTL_HTTP. HTM._PI ECES;

3 BEG N

4 page_pieces := UTL_HTTP. REQUEST _PI ECES(' http://oracle.oreilly.conifl earnoracle);
5 FOR pi ecenum I N page_pi eces. FI RST. . page_pi eces. LAST

6 LOOP

7 -- do sonething with each individual piece in page_ pieces(piecenun)

8 END LOOP;

9 END;

0

10 /

We'll consider shortly what to do in the middle of the loop where it says "do something with
page_ pi eces(pi ecenum ."

Using Oracle9i's advanced features to interact with remote web sites can get quite complex, even requiring
detailed knowledge of the HTTP protocol. While I'm glad the features are available, I'm not going to delve too far
into them.

In the previous section about UTL_FILE, | showed how you need to program to deal with package-specific
exceptions. In UTL_HTTP, there are at least two package-specific exceptions that you may encounter:

UTL_HTTP.INIT_FAILED

Oracle's HTTP subsystem failed to initialize, due to a problem such as lack of memory
UTL_HTTP.REQUEST_FAILED

The subsystem initialized, but some other problem caused the retrieval to fail

So a sample exception handler might be:

EXCEPTI ON
VWHEN UTL_HTTP. | NI T_FAI LED

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (3 of 11) [15/05/2002 23:01:01]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

THEN
send_nessage_to_managenent (' pl ease buy nore nenory');

WHEN UTL_HTTP. REQUEST_FAI LED
THEN
send_nessage_to _dba('l failed with: ' || SQERRM;

By the way, Oracle9i made possible vast improvements in how much information you can get about why a
UTL_HTTP request fails.

With Oracle8 or later, you can designate a proxy server when requesting a web page, which is a common
requirement in corporate settings. In this case, line 4 in the previous code would become:

page_pieces := UTL_HTTP. REQUEST PI ECES(' http://oracle.oreilly.conll earnoracle',
proxy => 'http://your.proxy.hostnane: port#');

8.4.1.2 Steps 1 and 2: Initialize the search and get the session id from the page

We've already seen how to fetch the contents of a particular URL using UTL_HTTP. What we get back on this
particular page is a lot more than 2,000 bytes, so if we're programming to the pre-Oracle9i version of UTL_HTTP,
we have to use the REQUEST_PIECES program to fetch the various pieces of data; we'll describe this program in
more detail later in this chapter, in Section 8.4.1.3.

In rendered form, the page we're fetching looks like Figure 8-3 (shown earlier).

Looking at a fragment of the underlying HTML, the boldfaced line in the following code contains the session id
value we have to extract:

...snip...

<OPTI ON VALUE="1003" >Aut hor

</ SELECT>

<I NPUT NAME="STRUCT_3" VALUE="1" TYPE="H DDEN'>

<| NPUT TYPE="SUBM T" VALUE="Subnmit Query">
<| NPUT TYPE="RESET" VALUE="C ear Forni>
<I NPUT NAME="SESSI ON_I D" VALUE="191786" TYPE="H DDEN'>

</ FORW>

<HR>

Use of this formresults in a search of the LC Voyager database (approximtely
12 million records). This database contains records in all bibliographic
...snip...

Although this is a typical challenge you might encounter when working with HTML, it is also an example of a more
general problem that comes up fairly often when working with electronic documents: how do you extract a
particular piece of information from a body of text? In other words, how would you perform a "find"
operation—similar to the one you would perform with a word-processing package—in a program?

8.4.1.2.1 Extracting text using OWA_PATTERN.

Oracle's built-in INSTR function can determine where a particular word or string occurs within a larger string. We
could certainly combine INSTR with SUBSTR to extract the session id. However, Oracle provides a built-in
package called OWA_PATTERN that provides a briefer and more elegant solution to this kind of problem, a
solution that follows in a long programming tradition known as pattern matching.[41

[41 If you happen to be familiar with tools such as sed or Perl, you will find some similarity between their pattern-
matching features and PL/SQL's OWA_PATTERN. Note that Oracle provides limited support for "regular expressions."

There are quite a few programs inside OWA_PATTERN, but the one we want is called MATCH. One typical use of

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (4 of 11) [15/05/2002 23:01:01]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

this program looks like:

is_matching : = OM PATTERN. MATCH(| i ne => text,

pat => pattern,
backrefs => output_array)

Where:
i s_mat chi ng

The function's return value, of datatype Boolean. The return value is TRUE if pat t er n exists somewhere
int ext, and FALSE otherwise.

t ext
The body of text we want to search through, subject to PL/SQL's usual limits (no longer than 32K bytes).
pattern

The pattern for which we are searching. A pattern is represented using a combination of literal characters
and special characters.

out put _array

An array of datatype OWA_TEXT.VC_ARR that contains the matched results—but only those that you
have asked to be output by wrapping them with parentheses in pat t er n. The array consists of zero, one,
or more strings, as opposed to a single (scalar) string, because we might want to find several things in one
call. The OWA_TEXT.VC_ARR is a datatype of a PL/SQL "index-by" table, declared in the OWA_TEXT
package.

That seems easy enough. In our case, the text we're searching effectively looks like the following:

bl ah bl ah bl ah NAME="SESSI ON | D' VALUE="sone_nunber" bl ah bl ah

sonme_nunber should be easy to find, because this pattern will appear no more than once in the returned HTML.
8.4.1.2.2 The search pattern.
The tricky part is understanding what to use for pat t er n that will enable us to extract sone _numnber .

There is a special code, \ d, that means "match a numeric digit." Another code, *, means "match zero, one, or
more of them." So we can match a number consisting of any number of digits using the pattern:

\ d*

We don't have to match the bl ah bl ah bl ah stuff, so the pattern we've constructed thus far is the string:

" NAMVE="SESSI ON_| D' VALUE="\d*"'

In other words, we use enough of the literal text we're searching for to identify the target uniquely, and inject the
special digits code, \ d*, in the appropriate spot. There's just one more thing we have to do: put parentheses
around the desired part of the pattern so that MATCH will "remember" the value and put it in the output array. If
we don't do this, MATCH won't reveal it to us. So now we're looking at the following value for the pat t ern
parameter:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (5 of 11) [15/05/2002 23:01:01]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

" NAME=" SESSI ON_| D* VALUE="(\d*)"'

Here is a working sample:

DECLARE
t ext VARCHAR2(2000) := '<INPUT NAME="SESSI ON | D' VALUE="191786"";
conponents OM TEXT. VC ARR,
pattern VARCHAR2(64) := 'NAME="SESSI ON | D' VALUE="(\d*)"';
BEG N
| F OMA _PATTERN. MATCH(| i ne => text, pat => pattern, backrefs => components)
THEN
DBMS_QUTPUT. PUT_LINE(' session id is ' || conmponents(1));
ELSE
DBMS OUTPUT. PUT LI NE(' no session id found');
END | F;
END;

/

which should output something like:

session idis 191786

Yay! This is but one short example of using OWA_PATTERN, a package that offers quite a number of additional
features: a variety of pattern-matching codes, substitution features, and more. Although it's not the easiest of
Oracle's built-ins to exploit, it's definitely worth a look if you have this kind of programming job to do.

8.4.1.3 An unpleasant footnote to step 2

So, we just fetch the page and search the returned pieces using OWA_PATTERN, right? Sort of. There is one
little fly in the ointment of this approach: the way that UTL_HTTP.REQUEST_PIECES fills the return array is not
too friendly for processing. The program populates successive elements of the array, each with 2,000 bytes of the
web page, until it reaches the end of the page (the last element of the array will probably contain something less
than 2,000 bytes). This fragmentation can be a problem because it might split the text right in the middle of the
pattern for which you're searching. Here are three possible workarounds to this problem:

. If you are confident that the total length of the page's HTML is less than the maximum size of a PL/SQL
string, you can just concatenate the pieces into a temporary variable declared VARCHAR2(32767). This
might be expensive in terms of performance, but it is easy to code.

. By devising some mildly clever logic, you can program an overlapping scan of the elements of the array
returned by REQUEST_PIECES.

. If you have Oracle9i or later, you should be using UTL_HTTP programs that are far more sophisticated
than REQUEST_PIECES. For example, there is a way to retrieve a web page on a line-by-line basis,
inside a PL/SQL LOOP construct.

In my code, I'm going to take the easy way out (the first option).
8.4.1.4 Step 3: Construct a URL to request catalog data

Now we have all the data components necessary to fetch the book's catalog information back from the remote
catalog. I've created a package that will do the deed.

In the package specification | declare two important variables: one that holds the URL for the initialization page,
and one that holds a fragment of the URL to actually fetch the catalog information. As much fun as it would be to
go through each of the elements of these URLSs, | will have to leave that as an exercise for the overachieving
reader. Here's the code:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (6 of 11) [15/05/2002 23:01:01]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

SET SCAN OFF
CREATE OR REPLACE PACKACE webcat man
AS
url _to_init VARCHAR2(2000) :=
"http://1cweb. | oc.gov/cgi-bin/zgate?ACTI ON=I NI T'
|| ' &FORM HOST _PORT=/ pr od/ ww/ dat a/ z3950/ 1 oci | s. ht m , z3950. | oc. gov, 7090" ;

url _frag for_fetch VARCHAR2(2000) :=
"http://1cweb.loc.gov/cgi-bin/zgate'
|| " ?ESNAVE=F&ACTI ON=SEARCH&DBNAME=VOYAGER&VAXRECORDS=1"
|| ' &RECSYNTAX=1. 2. 840. 10003. 5. 10
|| " &USE_1=7";

FUNCTI ON catdata (isbn IN VARCHAR2, retries IN PLS | NTEGER DEFAULT 1)
RETURN VARCHAR?;
END,;

The cat dat a (catalog data) function does most of the work, as we'll see in the following version of the package

body, designed to run in Oracle8i or Oracle9i. This version addresses the "possible bad piece boundary"
challenge by simply joining all the pieces together, on the assumption that the resulting data won't occupy more

than 32K:
1 SET SCAN OFF
2 CREATE OR REPLACE PACKAGE BODY webcat man
3 AS
4 session_id_| VARCHAR2(64);
5 cannot _get _session_i d EXCEPTI ON
6
7 FUNCTI ON session_id
8 RETURN VARCHARZ2
9 IS
10 page_pi eces UTL_HTTP. HTM._PI ECES
11 conponents OM TEXT. VC_ARR
12 bi gpage VARCHAR2(32767) ;
13 BEG N
14 IF session_id | I'S NULL
15 THEN
16 page_pieces := UTL_HTTP. REQUEST_ Pl ECES(webcat man. url _to_init);
17
18 FOR pi ecenum | N page_pi eces. FI RST. . page_pi eces. LAST
19 LOOP
20 bi gpage : = SUBSTR(bi gpage || page_pi eces(pi ecenun), 1, 32767);
21 END LOOP
22
23 | F OMA_PATTERN. MATCH(bi gpage, ' NAME="SESSI ON_| D' VALUE="(\d*)"'
24 component s)
25 THEN
26 session_id_| := conponents(1);
27 ELSE
28 RAI SE cannot _get session_id;
29 END | F;
30 END | F;
31
32 RETURN session_id |;
33 END sessi on_i d;
34
35 FUNCTI ON catdata (isbn IN VARCHAR2, retries I N PLS | NTEGER)
36 RETURN VARCHAR2
37 IS
38 buf VARCHAR2(2000);
39 sessi on_has_expired EXCEPTI ON

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (7 of 11) [15/05/2002 23:01:01]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

40 BEG N

41 buf := UTL_HTTP. REQUEST(url frag for fetch || '&TERM 1=
42 [] 1sbn || "&SESSION I D=" || session_id())
43

44 I F I NSTR(buf, 'Your session has expired') >0

45 THEN

46 RAI SE sessi on_has_expi red;

47 END | F;

48

49 RETURN buf ;

50

51 EXCEPTI ON

52 WHEN cannot _get session_id

53 OR session_has_expired

54 THEN

55 IF retries >0

56 THEN

57 RETURN cat data(isbn, retries - 1);

58 ELSE

59 exc. nyrai se(exc.cannot _retrieve renote_url _cd);
60 END | F;

61 END cat dat a

62 END

63 /

Let's look at this code more closely:

Line 1. This line is a SQL*Plus command, not a PL/SQL statement. I've included it because | normally run these
scripts in SQL*Plus, which defaults the ampersand (&) character to mean "whatever follows is a SQL*Plus variable

for which the user must supply a value," typically via an interactive prompt. By setting SCAN to OFF, we make
SQL*Plus interpret ampersands as plain text.

Line 4. session_id | is a private package variable that stores the value the web site provides for the session

id. | declared this variable out here as a package variable to allow its value to persist for the duration of the
PL/SQL session.

Line 5. This exception exists at the package level because it gets raised by one packaged program and trapped
by another. It must exist in a "scope" that is visible to both.

Lines 7-33. The sessi on_i d function knows how to fetch and extract the session id, but, to be as gentle as
possible on the remote site, it doesn't bother doing so if there is already a value available in session i d |.

Lines 41-42. This call attempts to retrieve the actual catalog data for the input ISBN. As you can see, it assembles
the URL from the fragment, the ISBN, and the session id. The session id goes in as a return value from a function;
| put the optional empty parentheses on sessi on i d() as areminder that it is not a variable.

Lines 52-60. The logic in the exception handler essentially means "if you can't get a session id, or if you have a
session id but can't get the page with the actual data from the catalog, keep trying." How many times should it try?
The answer is the value of the r et r i es parameter. Why do | bother using two different programmer-defined
exceptions? Mostly for clarity, but also to document the possibility that | might want to handle each of these
exceptions differently in the future.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (8 of 11) [15/05/2002 23:01:01]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

technique that software mavens have dubbed recursion. It's quite useful

i+ onoccasion, when you have some algorithm that may need to be

' repeatedly invoked but for which a loop would not be appropriate.
Recursion is particularly useful when programming certain kinds of
numeric approximations (but most beginners won't be doing that). If you
ever use recursion in your own programs, just remember that you have to
provide some way for the program to stop calling itself; otherwise, you'll
probably wind up with a program that appears to hang. To prevent this
from happening, this program decrements r et r i es with each call in line

57 and checks the value of this parameter with an IF test at line 55.

"'j Note that in line 57, the program actually calls itself! This is a nifty
s
Wy

8.4.1.5 Step 4: Scan the results and extract catalog data

Now that we've got the page back from the web site, what does it look like, and what should we do with it?
Running the webcat man. cat dat a function to look up an O'Reilly classic would return a string like this:

<HTM_>

<HEAD>

<Tl TLE>VOYAGER] 1565921496[1, 7,4, 1]] </ TI TLE>
</ HEAD>

<BODY bgcol or =#FFFFFF>

<Hl>Query Resul t s</Hl>

<I >Records 1 through 1 of 1 returned.</|><HR><PRE>Aut hor : Wall, Larry.
Title: Programm ng Perl / Larry Wall, Tom Chri stiansen,
and Randal L. Schwartz, with Stephen Potter.
Edi tion: 2nd ed.
Publ i shed: Sebastopol, CA: OReilly & Associates, c1996.
Description: XXi, 645 p. ; 23 cm
Seri es: A Nut shel | handbook
LC Call No.: QA76. 73. P22V\B5 1996
Dewey No. : 005.13/3 21
| SBN: 1565921496
Not es: "Progranmm ng"- - Cover.
I ncl udes i ndex.
An overview of Perl -- The gory details --
Functions -- References and nested data structures --
Packages, nodul es, and object classes -- Social engineering
-- The standard Perl library -- Qther oddnents -- Diagnhositic
nmessages -- G ossary -- Index.
Subj ect s: Perl (Conmputer program | anguage)

Programm ng Languages.
O her authors: Schwartz, Randal L.
Christiansen, Tom
Control No.: 134169
</ PRE>
...snip...

If you look closely, you can see that all the interesting bits in this page occur in a preformatted section between
<PRE> and </ PRE>. | won't go into any depths of analysis or programming on this step because (a) unfortunately,
my sample database structure does not match up terribly well with this Library of Congress data; and (b) you
would learn few, if any, new PL/SQL concepts from the code. I'll give only an outline of the programming steps
involved:

1. Because the pattern-matching tools don't work easily when patterns span line boundaries, replace all the
end-of-line characters with some uncommon ASCII character, such as CHR(30). PL/SQL's REPLACE

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (9 of 11) [15/05/2002 23:01:01]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

function will work fine for this purpose, as in:

buf := REPLACE(buf, CHR(10), CHR(30));

2. Using OWA_PATTERN, extract everything between <PRE> and </ PRE> into a temporary variable. The
pattern you want to use is ' <PRE>(. *) </ PRE>" .

3. Using multiple invocations of OWA_PATTERN, extract data based on the labels (Ti t | e:, Edi ti on:,
etc.) and store it in local variables. For example, to extract the title, you could use the pattern:

CHR(30) || "Title: *(.*)' || CHR(30) || 'Edition:'

4. For each of the local variables holding the data, replace the CHR(30) with a space, then strip out all the
extra whitespace using REPLACE and INSTR in a loop such as the following:

LOOP
EXIT WHEN | NSTR(var, ' ') = 0; [/* Exit when TWD spaces are not found */
buf := REPLACE(var, ' ', ' "); [* Replace TWD spaces with ONE space */
END LOOP;

5. Now you can take the data in each of the local variables and do something useful with it—for example,
supply it as an argument to the book. add program.

Although this is the kind of programming that some people really enjoy, it's also the kind that can break easily if
you're not careful. For example, if the output format changes slightly, or if something appears that you didn't
expect, your carefully crafted algorithm will stop working. And few people really enjoy fixing broken code.

8.4.2 Aside: There Must Be a Better Way

Now, | personally wouldn't choose the method presented in the previous sections as the optimal way to solve this
particular programming task. I've included it, though, because the coding techniques shown in this example
address some of the challenges you may face when integrating data from external sources.

There are some potential alternatives to this method. Here are two good ones:
The Z39.50 protocol

Libraries of the world are big users of a standard protocol called Z39.50, designed to help share and fetch
data from other people's databases. There are thousands of Z39.50 data servers in the world. In fact, data
on the Library of Congress web page we used earlier originates from a Z39.50 source. Developing a
PL/SQL implementation of this protocol would be a far better long-term solution for the library catalog than
scraping data off a web page. Alternatively, you could look for a third-party implementation written in
PL/SQL, Java, or C and integrate it into the Oracle server (using features such as Java stored procedures
or external procedures).

XML

While few industries have invested the time and cooperation required to develop a data integration
standard, there is another technology called eXtensible Markup Language (XML) that attempts to help in
this regard. XML provides a platform- and machine-independent way to specify and "mark up" data for
exchange among different data producers and data consumers. There are even open source tools that use
XML as the delivery format for information retrieved from Z39.50 servers.

While much has been written in the last few years about XML's "revolutionary" impact on data sharing and
transfer, I've chosen not to include a detailed section about it in this book, because:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (10 of 11) [15/05/2002 23:01:01]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

o XML is a bit beyond the typical beginner's range.
o There are still a lot of data producers who publish data only in HTML or some other text format.

o While many industries claim interest in sharing data, few have adopted a standard way of using
XML.

o Many unanswered questions exist about XML security.

Steve Muench's book Building Oracle XML Applications (O'Reilly) says almost everything you need to
know about this technology.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page67.html (11 of 11) [15/05/2002 23:01:01]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 8. Communicating with the Outside World > 8.5 Integration with Other
Languages

< BACK Start | Table of Contents | Index | Examples CONTINUE >

8.5 Integration with Other Languages

Why would you want a PL/SQL stored procedure to call a program written in another language? Common
reasons include:

. Many organizations have access to large volumes of third-party and/or in-house code that functions
perfectly well (and is not written in PL/SQL). For example, there is more than one free, open source
version of Z39.50 retrieval software.

. Many operations that are impossible in PL/SQL are relatively easy in other languages (for example,
sending a document to a printer).

. Some tasks, such as computationally intensive operations that don't require a lot of database 1/0, may
run much faster in other languages.

In the "old days" (up until Oracle8, circa 1997), PL/SQL had no direct way to call a program written in another
language. Oracle has since added support for C and Java, and by now Oracle's interlanguage features are
relatively mature and practical to use in real applications.

Although integrating two languages is never an easy task, Oracle's approach calls to mind Albert Einstein's
adage to "make things as simple as possible, but no simpler." Your level of understanding of both languages will
be a measure of how quickly you can make them communicate.

In the following sections, I'll show one short example using Java and another using C. There will be very little
explanation of these steps; | include this material only to demystify the process a bit.

I'm covering up a whole lot of complexity with these simple examples. There are ways to call back to Oracle,
raise Oracle exceptions, participate in transactions, and more. Also, these programs don't handle large files
properly. However, they'll provide a starting point for your own exploration.

8.5.1 A Brief Example of Calling Java from PL/SQL

The version of UTL_HTTP that shipped with Oracle9i introduced support for retrieving binary files from web
sites, but earlier versions don't really support that operation. Here are the steps needed to create a "demo-
quality" (as opposed to production-quality) Java program that will fetch a binary file up to 32K in size and pass it
back to a PL/SQL program.

8.5.1.1 Step 1: Get some Java code to do what you want

There are a few requirements for calling Java from PL/SQL. | won't list everything, but | will mention that (a) the
Java methods have to be what's called static, and (b) output parameters must be single-dimensioned arrays.
Here is a short Java program that contains one method, called shor t URL. In Java, the filename should match

the name of the class. In this case, the filename would be nyURL. | ava.

i mport java.net.*;
i mport java.io.*;
i mport java.util.*;

a b owNPEF

public class nyURL

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page68.html (1 of 5) [15/05/2002 23:01:04]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

6 { public static void getBytes (String theURL, int maxLength, byte[][] bytesQut,

7 int[] byteCount)
8 throws Mal f or mredURLExcepti on, | OException
9 {
10 URL url = new URL(theURL);
11
12 URLConnection url C = url.openConnection();
13 InputStreamis = url C getlnputStream);
14
15 byte[] theBytes = new byte[maxLengt h];
16 byt eCount[0] = is.read(theBytes);
17 byt esCQut[0] = theBytes;
18 is.close();
19 }
20 }

This method fetches up to nexLengt h bytes of t he URL and returns those bytes to the calling program. It also
returns the actual number of bytes in the parameter byt eCount .

8.5.1.2 Step 2: Compile it
Presuming that the source code is in a file called myURL.java, the command to compile the program is:

$ javac nyURL. j ava

If successful, this action will silently (that is, without displaying any messages on the console) cause the compiler
to create a file called myURL.class.

8.5.1.3 Step 3: Load it into Oracle

Now we want to take the resulting myURL.class file and load it into Oracle. The command-line tool for this
process is called loadjava:

$ | oadj ava -user usernane/ password -oci8 -resolve nyURL. cl ass

As before, no error message means success. If you want to see that the class made it inside Oracle, you can do
something like this in SQL*Plus:

SELECT * FROM USER_OBJECTS WHERE obj ect _name = 'nyURL';
Note that the names of Java programs remain case-sensitive inside Oracle.
8.5.1.4 Step 4: Create a PL/SQL wrapper program

Once the Java class is inside Oracle other Java programs can call it, but PL/SQL programs won't be able to
unless you tell Oracle how to map the Java parameters to PL/SQL parameters. Here is one way to do this:

CREATE OR REPLACE PROCEDURE nyurl _getbytes (url I N VARCHAR2,
maxbytes I N NUMBER, bytesout OUT RAW bytecount OUT NUMBER)
AS LANGUAGE JAVA
NAME ' nyURL. get Byt es(j ava.lang. String, int, byte[][], int[])’
/

8.5.1.5 Step5: Call the PL/SQL wrapper
Now you are almost ready to use this procedure in a program such as this:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page68.html (2 of 5) [15/05/2002 23:01:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DECLARE
X RAW 32767) ;
| NUVBER,
BEG N
myurl getbytes(url => 'http://ww. datacraft.conlimges/DataCraft-word.gif"',
maxbytes => 32767,
byt esout => X,
byt ecount => 1);
DBMS OUTPUT. PUT_LINE(' Il ength returned is ' || |);
END;
/

You're "almost" ready because you must cross some built-in hurdles in the Java security model in order to
execute this program successfully. In Oracle, this means you need to ask the DBA to execute the built-in
DBMS_JAVA.GRANT_PERMISSION procedure so you can connect through a network socket. One way for the
DBA to do that is shown here:

CONNECT SYSTEM nmanager
BEG N
DBMS_JAVA. GRANT_PERM SSI ON(gr antee => '
oracl e_usernane',
perm ssion_type => 'SYS:|ava. net. Socket Perni ssion',
perm ssion_name => '*'
perm ssion_action => 'connect');
END;
/

For more information about programming in Java for Oracle, including discussion of the security model, see the
Oracle documentation. | suggest starting with the Java Developer's Guide.

8.5.2 A Brief Example of Calling C from PL/SQL

As | mentioned previously, some programming environments make it simple to send a file to the printer. On a
Unix machine, it's fairly easy to write a program that will send a small amount of text to the printer. This section
breezes through the steps required to provide a PL/SQL interface to a Unix printing program. In Oracle, this is
called an external procedure.

8.5.2.1 Step 1: Write the external procedure using C

We will use the Unix program known as Ip, which can print information in a variety of ways. Our program to
invoke it, which I've named pl | p. c, follows:

#i ncl ude <stdi o. h>
#i ncl ude <sys/wait.h>

int Ip(char *text)

{
char *cnmd = "/usr/bin/lp > /tnp/pllp.out 2>&1";

int chil dstatus;
FI LE *I ppi pe;
int retcode = 1;

if ((lppipe = popen(cnd, "wW')) !'= NULL) {
if (fputs(text, |ppipe) !'= EOF) {
retcode = 0;

}
chil dstatus = pcl ose(l ppi pe);

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page68.html (3 of 5) [15/05/2002 23:01:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

if ("WFEXI TED(childstatus) || WEXI TSTATUS(childstatus) !'= 0) {
retcode = 1;

}
}

return retcode;

We send data to print out to Ip by writing to an operating system "pipe" with C's f put s function. For debugging

purposes, console output from Ip gets redirected to the file /tmp/plip.out. If no errors were reported by Ip, this
function returns O; otherwise, it returns 1.

8.5.2.2 Step 2: Compile the C program into a shared library

On Solaris, you can compile and link the program as follows:

gcc -c pllp.c
lusr/ccs/bin/ld -G-0 pllp.so pllp.o

This results in a file called pllp.so, which is a special sort of file known as a shared library. All external
procedures must live in shared libraries. The benefit of this arrangement is that, at runtime, Oracle will load only
one copy of the code in memory, even if several users execute it simultaneously.

8.5.2.3 Step 3: Tell Oracle about the external procedure using CREATE LIBRARY
This step merely tells Oracle where the library resides, which in our case is /u03/files/bp/lop/extproc/plip.so.

Here's the SQL statement to create a library named Iplib that points to the shared object:

CREATE LIBRARY Iplib AS '/u03/files/bp/lop/extproc/pllp.so';

(By the way, executing this statement requires the CREATE LIBRARY system privilege.)
8.5.2.4 Step 4: Write a PL/SQL wrapper

Using the Oracle library we just created, we can create a PL/SQL function as follows:

CREATE OR REPLACE FUNCTION I p (text | N VARCHAR?)
RETURN PLS | NTEGER
AS

LANGUAGE C

LI BRARY | plib

NAME "1 p"

PARAVETERS (text STRING RETURN | NT);

8.5.2.5 Step 5: Call the external procedure from PL/SQL

This one is easy:

DECLARE
result PLS | NTEGER;
BEG N
result := Ip('The rain is in Spain.
So far this nonth, 23.4 centineters!');
IF result =1
THEN

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page68.html (4 of 5) [15/05/2002 23:01:04]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DBMS CQUTPUT. PUT_LI NE(' Houst on, we have a problem');
END | F;
END;
/

If everything works, your printer should spit out a page with two lines of text. (Keep in mind that this simple
program limits the amount of text you can send to a paltry 32K.)

You can find more information about calling C from PL/SQL in O'Reilly's Oracle PL/SQL Programming and
Oracle's Application Developer's Guide—Fundamentals.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page68.html (5 of 5) [15/05/2002 23:01:04]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 9. Intermediate Topics and Other Diversions

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 9. Intermediate Topics and Other
Diversions

If you're still with me after the past eight chapters, congratulations. After so much dense technical
presentation, though, you may be wondering what else there could be in PL/SQL that you could
possibly need to know. After all, isn't it supposed to be an easy language to use?

Well, yes, but "easy to use" doesn't mean that PL/SQL will run out of steam when you want to
build something a little more sophisticated. As you master the basics and move on to do more
complex PL/SQL programming, you may find some of the topics in this chapter particularly
relevant. They include:

. Data structures called collections that allow you to include an arbitrary number of items in
one variable

. A custom package to centralize and help manage programmer-defined exceptions in the
library application

. How and when to control database transactions inside PL/SQL programs
. More details about compiling PL/SQL, including an exploration of native compilation
. Code that provides logon and security features for the library application

. An overview of some remaining language capabilities that you might want to learn about
on your own

The topics are not related by some overall PL/SQL language functionality or by some set of
capabilities we're adding to the library application; the features described in this chapter are linked
simply by the fact that they are of greater difficulty than those described in the previous chapters.

However, I'd like to begin not with any heavy technical material but instead with a look at the so-
called software lifecycle. (Don't groan, I've tried to make it a fun read.) An understanding of
development phases is likely to help you deliver better PL/SQL programs on time and within
budget. And unless you've had some schooling in software development, this information might
not already be part of your vocabulary.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page70.html (1 of 2) [15/05/2002 23:01:05]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page70.html (2 of 2) [15/05/2002 23:01:05]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 9. Intermediate Topics and Other Diversions > 9.1 Riding the
Software Lifecycle

< BACK Start | Table of Contents | Index | Examples CONTINUE >

9.1 Riding the Software Lifecycle

When you are faced with a new project, how do you begin?

When | was a young programmer, | remember reading a lot of books and papers that promoted
different ways of designing and constructing programs. Often, authors presented the idea of a
software lifecycle, which abstracts the overall software process into named phases. In hindsight,
some of the ideas were pretty wacky, and about the only thing most authors agreed upon was
that there should be a strong emphasis on defining the users' requirements: the more you know
about what the users need, the easier the rest of the programming job will be. But that was the
end of the agreement. Methods of eliciting and documenting these requirements, and of
translating them into working systems, spanned an enormous philosophical chasm.

Today, after some (ahem) number of years as a software professional, I've had the chance to see
a lot of the different things that people try to do, and I'm here to tell you that in the real world, the
application of lifecycle thinking ranges from "disciplined" to "Huh?"

There do seem to be at least 10 job functions I've seen applied to custom development, although
they don't necessarily occur in discrete phases. These functions are:

Definition of project scope
Textbook: Decision-makers draw functional boundaries around the required system.
Typical: Management decides how much they are willing to spend.

Project planning

Textbook: Project managers solicit staff input in estimating task size, dependencies, and
risk, then produce a schedule accordingly; includes an initial build-versus-buy decision.

Typical: Management decides a due date based on outside factors.
Requirements collection and analysis

Textbook: Trained analysts research the problem domain, consult with users, and develop
electronic models (especially of the logical database) and documents that specify what the
system will do, including the definition of acceptance tests.

Typical: Take a guess at what features can be developed with the budget from #1 and the
due date from #2.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page71.html (1 of 3) [15/05/2002 23:01:07]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Software design

Textbook: Senior software developers translate requirements into physical database
design and partition the software functionality into modules according to an accepted
design method such as object-based programming.

Typical: "Hey man, let's code!"
Implementation

Textbook: Programmers construct software modules according to the previously
established overall design, including the creation of unit tests.

Typical: "Hey man, let's code!"
Testing

Textbook: Independent testers design and execute a careful balance of unit, integration,
acceptance, performance, and reliability testing, according to the test plan, and log all test
output in test-results documents.

Typical: "Looks good to me."
Deployment

Textbook: Execute a previously written transition plan, performing an orderly release of
configuration-controlled software into active production use.

Typical: Give it to the users and see if anything breaks.
Operation

Textbook: Monitor the adequacy and performance of the system in meeting the users'
needs, coordinating the collection of enhancement requests and defect reports.

Typical: Ignore it until something breaks.
Maintenance

Textbook: To address a new requirement or a defect in the code, execute this entire
lifecycle to repair the problem, scaling each phase appropriately.

Typical: Just start tweaking the code.
Retirement

Textbook: When there is no longer a business need for the software, remove it from the
library of actively supported systems.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page71.html (2 of 3) [15/05/2002 23:01:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Typical: Leave it on the system in case anyone needs it.

What I've labeled "Typical" reveals the great temptation to overlook lifecycle concerns or pretend
they don't apply. To be fair, though, | must point out the wide range of uses for software. An
organization that develops space shuttle flight software is more disciplined than a hobbyist
building a database to store information about his fishing tackle collection. The potential
consequences of software failure tend to determine the degree of care required in its
development. (Of course, a group's collective programming and managerial skills make a big
difference too.)

To get beginners pointed in the right direction, the preceding chapters have drawn attention to
some of these concerns, but | haven't been able to address all the ancillary tasks that should be a
part of your life as a PL/SQL programmer. In particular, requirements collection (#3 in the
previous list) is reduced to so much hand-waving. But you will find a fairly solid introduction to unit
testing in Chapter 3, and quite a few paragraphs sprinkled throughout the book discuss good
design.

Well, that's all I've got in the amusements category. Back to serious work.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page71.html (3 of 3) [15/05/2002 23:01:07]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page29.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 9. Intermediate Topics and Other Diversions > 9.2 Lists o' Stuff
(Collections) in PL/SQL

< BACK Start | Table of Contents | Index | Examples CONTINUE >

9.2 Lists o' Stuff (Collections) in PL/SQL

A few chapters back, | added to the library application a way for patrons to search for books by catalog
information. While this feature will tell users whether the book they want is known to the catalog, they
won't know if the library actually has any copies. Such a system is not very helpful unless they just
want to find out the number of pages or the publication date—information they could probably just get
from Amazon.com anyway.

We could, of course, add the missing functionality to the library application using technigues you've
already seen in this book, such as setting up a cursor to SELECT the data we want and fetching one
row at a time inside a loop that also displays the results. However, I'd like to do it a different way, in
order to present another feature of the PL/SQL language: collections. | won't have space to show all
the user interface code, but | will give you enough of the underlying support functions to let you know
how to work with this feature.

9.2.1 What Is a Collection?

A collection is a data structure that can hold some number of rows of data in a single variable. For
example, | might want to assemble a list[1l of barcodes into a collection and pass it from one program
to another. Unlike a record, which holds only one row of data that can contain data of different types, in
a collection the data in all the rows must be of the same type. It's sometimes said that records hold
heterogeneous data while collections hold homogeneous data. If you happen to know another
programming language, the closest analog of the PL/SQL collection is the array.

[11 | sometimes use the term "list" interchangeably with "collection"; however, this is sloppy from a
computer science point of view, where a list is a specific type of data structure that is not exactly the
same as a PL/SQL collection.

Bear with me while | introduce more terminology. The individual items in a collection are known as its
elements. When working with a collection, the way to refer to a particular element is by using an
integer in parentheses, called an index. So, for example, the fourth element of the bookcopi es

collection would be:
bookcopi es(4)

The index, "4" in this case, is also known as the subscript of that particular element (a term that | find
less confusing).

In PL/SQL, there are three broad categories of collections:
. Index-by tables
. Nested tables
. Varying arrays (VARRAYS)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (1 of 14) [15/05/2002 23:01:11]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Before | get into a discussion of the pros and cons of one collection type versus another, I'd like to
show you some code that will clarify what this feature is all about. This example illustrates how to fetch
a collection of data out of the server and pass it as a parameter.

9.2.2 An Example: A Collection of Books

First, I'm going to define my own datatype that is a collection of VARCHAR2s:

CREATE TYPE book barcodes_t
AS TABLE OF VARCHAR2(100);
/

This statement creates a new datatype called book bar codes t and stores its definition inside the

database. Once created, | can use this datatype any time | want to create a collection of book
barcodes.[2] By convention, | usually append t to the name of programmer-defined datatypes.

[2]1 Actually, | can use it any time | want a collection of VARCHAR2(100) strings, but if | restrict its use to
barcodes | will avoid confusing myself.

Although Oracle lets me use my new datatype in a variety of places, let's use it now as the return type
of a PL/SQL function. The purpose of this function is to return a list of VARCHAR2 strings, each
containing the barcode ID for a particular copy of the requested book:

1 CREATE OR REPLACE FUNCTI ON avai |l abl e_copies (isbn_in I N books.isbn%lYPE)
2 RETURN book barcodes t

3 IS

4 copi es book barcodes_t;

5 BEGN

6 SELECT barcode id

7 BULK CCOLLECT | NTO copi es

8 FROM book copi es

9 VWHERE i sbn = isbn_in

10 AND bookst at us(barcode_id) = ' SHELVED ;
11

12 RETURN copi es;

13 END

14 |/

Let's look at what's happening here.

Line 2. Other than its name, using the user-defined type here as the function return type is just the
same as using a built-in type.

Line 4. This is the variable that will hold the actual collection. I've given it a plural name to remind
myself that it holds more than one thing.

Line 7. One way you can populate a collection is by fetching data into it using Oracle's BULK
COLLECT feature. Here, Oracle automatically sizes the collection and then puts all matching rows into
it. Populating the collection occurs in a very efficient manner, as long as the result set isn't too large.
By the way, this particular clause is available only for queries that you embed in your PL/SQL
applications.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (2 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Line 10. The custom bookst at us function will look up and return the status of a given book copy
from its barcode. (Source code for this function does not appear in this book.)

So, aval | abl e _copi es creates and returns a collection, but what does the code that uses a

collection look like? Here is a very simple anonymous block that will call the function and iterate over
the elements that are returned, printing out the barcodes:

1 DECLARE
2 bar i ds book barcodes t;
3 BEGN
4 bar _ids := avail abl e_copi es(' 1-56592-335-9");
5
6 FOR which IN bar _ids.FIRST .. bar _ids.LAST
7 LOOP
8 DBVS_OUTPUT. PUT_LI NE(bar _i ds(whi ch));
9 END LOOP;
10 END;
11 /

Collections offer some special built-in functions that tell you things such as the first and last index and
the number of elements. Line 6 takes advantage of these built-ins to set the starting and ending range
of the loop index.

It's probably clear by now that there are a number of new factors to consider when dealing with
collections. The next section explores the most important of these factors.

9.2.3 What's Important About Collections?

For a PL/SQL developer, the important things to know about collections include:
. Differences between the three categories of collections—that is, when is each appropriate?
. Syntax and rules for declaring and populating collections.
. How to use the built-in functions, called methods, that apply to collections.

9.2.3.1 Differences between collection categories

Table 9-1 highlights those differences between the three collection categories that are significant

when writing PL/SQL programs.

Table 9-1. Comparison of PL/SQL collection types

Varying array

Characteristic Index-by table Nested table (VARRAY)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (3 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Can declare and use in

PL/SQL Yes Yes Yes

Can declare and use in
SQL and as datatype of No Yes Yes
column in database table

VARRAY elements
Nested table elements |stored as opaque data
Not applicable kept in a physically structures inside main
separate "store table" |table, or in binary large
objects (BLOBS)

Means of physical storage
in the database

Separate step required to No In many cases, yes In many cases, yes
create element (must allocate space) |(must allocate space)
How index values are Arbitrarily assigned by Incrementally a§S|gngd Incrementally a§5|gn§d

) by Oracle, starting with |by Oracle, starting with
determined programmer

1 1

Integer between 1 and
Integer between 1 and |the number of allocated

Any integer, positive the number of allocated |elements, subject to

Available index values :
or negative

elements programmer-defined
upper limit
Available in which Oracle 7.3 and higher 8.0 and higher 8.0 and higher

versions

As you can see, nested tables and varying arrays may be used as table columns, which is a key
advantage for some applications. In a PL/SQL program, though, they may demand that you allocate
space for each element (see later sections for examples). Index-by tables, on the other hand, are
available only in programs, but their elements don't require advance allocation and can have arbitrary,
even negative, subscripts (the actual range is -216+1 through 216+1). The bottom line is this:

. Inside PL/SQL programs, the most flexible, and often the best-performing, of the collections is
the index-by table.

. Use nested tables when working with nested table data stored in the database. Nested tables
are appropriate for large collections that the application typically stores and retrieves a portion
of at a time.

. Use VARRAYs when working with VARRAY table data stored in the database. This type of
collection is appropriate for small collections that the application stores and retrieves in their
entirety.

9.2.3.2 Collection syntax and discussion

Declaring any collection is a two-step process:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (4 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

1. Decide what datatype the elements will have, and declare the collection type to hold such
elements.

2. Declare the variable of the collection type.
9.2.3.2.1 Declaring index-by tables

For an index-by table, the syntax is:

DECLARE
TYPE typenane IS TABLE OF DATATYPE | NDEX BY Bl NARY_I| NTEGER;
var nane typenane;

Where:
t ypenane
Name of the programmer-defined collection type
DATATYPE
Datatype of each element
var nane
Name of the collection variable itself

The way you can tell this is an index-by table is the clause INDEX BY BINARY_INTEGER. (Frankly,
this clause has always amused me because Oracle offers no other way to index such a table.) You can
anchor the declaration of the elements back to some database type by using %TYPE syntax in
DATATYPE. So you could specify the following, for example:

DECLARE
TYPE title t IS TABLE OF books.title%lYPE | NDEX BY BI NARY | NTEGER;
titles title_t;

By convention, the type declaration usually immediately precedes the variable declaration. You can, of
course, declare more than one variable of this type.

It's possible to declare a collection whose elements are themselves composite datatypes—for
example, records. A collection of records is a fairly handy thing, because it lets you emulate a
database table inside a PL/SQL program. Once populated, such a collection lives in memory and
requires no trips out to the actual database tables, so repeated reads from such a table are much
faster than repeated SELECT statements.

To declare an index-by table of book records takes only a simple combination of things you already
know:

DECLARE
TYPE book_t IS TABLE OF booksYROMYPE | NDEX BY Bl NARY_| NTEGER;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (5 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

books book t;

9.2.3.2.2 Declaring nested tables.

To create a standalone nested table type—that is, one that lives in the server outside of any single
PL/SQL program—you do a separate operation:

CREATE TYPE typenane AS TABLE OF DATATYPE;
/

Notice, by the way, the presence of the terminator (semicolon) and the trailing slash.

Here is an example that creates a datatype as a standalone object that is available to any of your
programs or tables:

CREATE TYPE patron_nanme |ist_t AS TABLE OF VARCHAR2(60):
/

As an alternative, you can declare a local nested table datatype inside a PL/SQL program, such as:

DECLARE
TYPE ny_list_t IS TABLE OF NUMBER

ny list ny_ list_t;
In practice, though, declaring a nested table datatype inside a PL/SQL program is not often done.
That's because nested tables (and varying arrays, for that matter) exist largely to extend the

capabilities of the database, so the datatype will already be defined and you will just refer to it rather
than redeclare it.

If | want to share a particular index-by table type (for example, to pass a collection between two
PL/SQL programs), | can do so by putting the type definition into a package specification. | might
create a special package that will consist of only datatypes that | wish to share:
CREATE OR REPLACE PACKACE | optypes
AS

TYPE book_tab_t 1S TABLE OF books%ROMYPE | NDEX BY BI NARY_| NTEGER;

END;
/

| can pass such a value into a procedure that I've declared using:

PROCEDURE eat books (books_in IN |optypes.book tab t) IS ...
or return it via a function:

FUNCTI ON gr eat books RETURN | optypes. book tab t IS ...
9.2.3.2.3 Declaring varying arrays.

The syntax to declare a VARRAY is similar to that for a nested table, but with the addition of an upper
limit on the number of elements:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (6 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

CREATE TYPE typenane AS VARRAY(nmax) OF DATATYPE;
/

Where nmax is the programmer-defined upper bound on the number of elements in collections of this
type. As with nested tables, you can also declare varying arrays inside a PL/SQL program.

Because of the way Oracle stores VARRAYSs in the database, they are usually reserved for small
collections whose elements are all stored and retrieved simultaneously.

9.2.3.3 Initializing and assigning values to collections

The easiest type of collection to use in PL/SQL is the index-by table. Imagine that | want an index-by
table of library patron names. | could do something like this:

DECLARE
TYPE |ib_patron_name_t IS TABLE OF |ib_users. user nane%l YPE
| NDEX BY Bl NARY_I| NTEGER,
patron_nanes |ib_patron_nane_t;

BEG N
patron_nanes(1l) :="'Steven';
patron_nanmes(35) := 'Albert"';
patron_nanes(2) := "Bill";
END;

/

In other words, | simply assign a value to a particular element. Piece of cake! Not only that, but | don't
even have to assign them in any particular order. | can use any element index | want without paying a
performance or memory penalty. This turns out to be a very cool thing to do when | want to store
lookup information that has an integer as a unique identifier. | can simply use the existing identifier as
the subscript for the corresponding data.

In contrast, when assigning values to elements of a nested table or a varying array, | normally have to
ensure that memory for the elements exists in advance. Oracle provides a special function called a
constructor to accomplish this task. The constructor function has the same name as the collection type
itself, and Oracle creates it when | first create the collection type. Let's look at a code sample.

Remember the type from a few paragraphs back:

CREATE TYPE patron_name_list_t AS TABLE OF VARCHAR2(60);
/

Now, one way to populate the table with the names supplied earlier would be:

1 DECLARE

2 lib_patrons patron_nanme_l|ist_t;

3 BEGN

4 lib patrons := patron_name list t();
5

6 i b_patrons. EXTEND(3) ;

-

8 lib _patrons(1l) :="'Steven';

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (7 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

9 lib _patrons(2) :="'Bill";
10 lib_patrons(3) := "'Albert';
11 END,

12/

Let's look at what's going on in this code.

Line 2. When you're declaring a nested table or varying array collection, the | i b _pat r ons variable
begins its life with a NULL value, as do most other variables.

Line 4. Here, | initialize the | | b _pat r ons variable by callingthe | i b _patrons |ist t()
constructor with no arguments. Doing so makes the | i b _pat r ons variable non-null, even though it
still lacks any elements.

Line 6. The built-in EXTEND method here allocates space for three elements. Oracle assigns the
subscripts 1, 2, and 3 to the first three elements and sets the value of each newly allocated element to
NULL. For more about EXTEND, see Section 9.2.3.4.

Lines 8-10. Now that the memory space for the elements exists, these assignments give values to the
elements.

A simpler way to accomplish the same result would be to supply the patrons' names as arguments to
the constructor. This operation performs an implicit EXTEND:

1 DECLARE

2 lib patrons patron_nane |ist _t;

3 BEGN

4 | ib _patrons := patron_nane_list t('Steven', "Bill', "Al bert');
11 END;
12/

A constructor for a nested table or varying array always has the virtual specification:

FUNCTI ON typenanme(argl I N DATATYPE [, arg2 I N DATATYPE | ...)
RETURN t ypenane,

Where:
t ypenane

Name of the constructor, which is the same as the name of the collection type
DATATYPE

Datatype of each element in the collection

Unlike other functions, though, you can supply any number of comma-separated arguments to the
constructor—although in the case of VARRAYs the number you can use is limited to its programmer-
defined maximum.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (8 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

One more syntactic note: if you have declared a collection of records, the syntax to assign a value to
one field of one element is the following:

collection(index).field := val ue;

For example:

DECLARE
TYPE book t IS TABLE OF books%ROMYPE | NDEX BY Bl NARY | NTEGER
books book_t;

BEG N
books(1).isbn :="1-56592-457-6";
books(1).title := 'Oracle PL/SQL Language Pocket Reference';

9.2.3.3.1 Other ways to assign values to collection elements.

It is also possible to perform a direct assignment to a collection variable without initializing the target.
So | could say:

DECLARE
col l ectionl sone_t;
col l ection2 sone_t;
BEGQ N

..initialize collectionl...

collection2 := collectionl;

Here, col | ect i on2 becomes a carbon copy of col | ect i onl; both now have the same number of
elements and the same value for each element.

To assign one collection to another, they must be declared of
‘5 exactly the same type. You cannot assign one collection to
another if they've been declared using two different types, even if
they "ought" to be type-compatible.

Another shortcut to populating a collection is to fetch from a table, as in the earlier BULK COLLECT
example. This too performs the allocation step implicitly.

9.2.3.4 Built-in methods

A collection method is a built-in procedure or function that helps you get or change certain
characteristics of the collection. The term "method" comes from object-oriented programming, from
which PL/SQL also borrows the invocation style:

vari abl e. met hod

Commonly used methods appear in Table 9-2. In this table, c is the placeholder for any collection.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (9 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Table 9-2. Commonly used built-in collection methods

Method syntax Purpose Preconditions
c. EXI STS(i) Dgtermlne whether the ith element None.
exists.
. COUNT Return the number of elements None for index-by tables. For nested tables and
' that existin c. VARRAYS, ¢ must already be initialized.
c. FI RST _ _ _
Return the index of the first (last) |None for index-by tables. For nested tables and
elementin c. VARRAYS, ¢ must already be initialized.
c. LAST
PRIOR(|) Return the index of the next lower
C. [; ;
(higher) elementin ¢ that OCCUrS INone for index-by tables. For nested tables and
before (after) the element at i . L
_ VARRAYSs, ¢ must already be initialized.
c. NEXT(i) Most commonly used when
traversing sparse index-by tables.

c must be a nested table or VARRAY that has
¢. EXTEND(n) Allocate n additional elements. If n |already been initialized. (EXTEND is not needed
' is omitted, defaults to 1. with index-by tables.) Cannot extend VARRAY

beyond its upper bound.
Return the upper bound of a
cC.LIMT VARRAY. c must be a VARRAY.

Another common operation on a collection, while not technically a method, is the IS NULL test:

IF c I'S NULL THEN. ..

Although index-by tables, somewhat mysteriously, are never null, nested tables and VARRAYs are
always null until initialized. Testing these for null is a good idea because attempting to use a null
collection results in the COLLECTION_IS_NULL exception.

9.2.3.4.1 EXISTS.

Say I'm cruising along in my program and | write:

DBMS_OUTPUT. PUT_LI NE(books(236) .title);

My program compiles just fine, but at runtime, there's one problem—there is no element 236. What
happens then? This condition will cause a NO_DATA_FOUND exception if books is an index-by table.

If books were a nested table, though, | would get SUBSCRIPT_BEYOND_COUNT; the same is true
for VARRAYSs (although | might get SUBSCRIPT_OUTSIDE_LIMIT instead).

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (10 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

| can use the EXISTS method to avoid that problem. The fix would be:

| F books. EXI STS(236) THEN
DBMS_OUTPUT. PUT_LI NE(books(236).title);
END | F;

Notice that | don't do a test for nullity before checking for element 236. It's not necessary, since
EXISTS is safe even on a null collection; it will not raise an exception.

By the way, this example draws attention to another confusing (amusing?) aspect of the language. The
syntax for referring to methods uses the index after the method, but when referring to fields, the index
comes before the method. | often get these mixed up, but the compiler reminds me with error
messages.

9.2.3.4.2 COUNT.

This method is fairly simple to use and understand:

|F Iib_patrons I'S NOT NULL
THEN

DBMS _OUTPUT. PUT_LI NE(' Nunber of elenents: ' || |ib_patrons. COUNT);
END | F;

Here, | do include the check for nullity before using COUNT to remind you how to avoid raising an
exceptionif | i b _pat rons is null.

9.2.3.4.3 FIRST, LAST.

The method named FIRST gives the integer value of the lowest index in use; LAST gives the highest. If
the collection has no elements, these methods return NULL.

A common error is to assume that FIRST and LAST return the
Jé actual value of the element. They do not. Instead, they tell you
the element's subscript, which will always be an INTEGER
(though possibly NULL).

For example:

|F lib_patrons |I'S NOT NULL
THEN
DBMS _OUTPUT. PUT_LINE(' First and last: ' || |ib_patrons. FI RST
|| " " || l|ib_patrons.LAST);
END | F;

If executed at the end of the earlier example that has Bill, Steven, and Albert in the pat r on_nanes
variable, this would print out the lowest and highest index as follows:

First and last: 1 35

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (11 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

To print out the actual value of the collection at the first or last location, use this return value as the
index of the collection:

DBMS OUTPUT. PUT_LI NE(' The | ast el enent has a value of ' ||
| i b_patrons(patron_nanes. LAST));

which would print:

The | ast el enent has a val ue of Al bert

9.2.3.4.4 PRIOR, NEXT.

You would think that iterating over the contents of a collection would be a fairly straightforward thing to
code, using a loop:

FOR idx INc.FIRST .. c.LAST
LOOP

END LOOP;

But at runtime you could get ORA-01403: no data found. Why? The loop tries to read everything
between FIRST and LAST, but if one of the elements does not exist, Oracle raises the
NO_DATA_FOUND exception.

Not to worry! This is exactly why PL/SQL gives you the PRIOR and NEXT methods. Let's see what
they do. If | have values in collection c at subscripts 5 and 11, these methods evaluate as follows:

. PRIOR(5) is NULL

. NEXT(5) has the value 11

. PRIOR(11) has the value 5
. NEXT(11) is NULL

O O O 0

As you can see, they give an answer relative to the index that you supply as the argument. So,
combining these methods with what I've already shown, here is a nice, safe, generic iterator for a
collection c:

DECLARE
I dx PLS_I NTEGER,

c declared as sone type of collection ...
BEG N

.. C may or may not get initialized and popul ated ...

I|F ¢ I'S NOT NULL
THEN

idx := c.FIRST

VWHI LE idx I'S NOT NULL

LOOP

do sonething useful with c(idx)
1 dx = c. NEXT(idx);

END LOOP

END | F;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (12 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

END;

Now, strictly speaking, you need PRIOR and NEXT only with collections that might have "missing"
elements. In theory, any index-by table or nested table falls in this category, although your program
may always use monotonically increasing subscripts, in which case using PRIOR and NEXT may be
overkill.

9.2.3.4.5 EXTEND.

I've already used EXTEND in an earlier example, so here I'm going to mention only one thing about
performance. Say you need to copy the contents of an index-by table into a nested table. There is a
slow way and a fast way to allocate the memory for the nested table.

If nt is a nested table and | bt is an index-by table, here is the slow way:

LOOP

nt . EXTEND;

nt(idx) :=1ibt(idx);
END LOOP;

Every time through the loop, | grab the additional memory needed for one more element.

The fast way is to move the EXTEND operation outside the loop and grab memory for all the elements
at once:

nt . EXTEND(i bt . COUNT) ;
LOOP

nt(idx) :=ibt(idx);
END LOOP;

The algorithm Oracle uses to allocate memory is much more efficient at reserving the memory all at
once.

9.2.3.4.6 LIMIT.

This is another simple method that allows you to avoid hardcoding the upper bound of a VARRAY. |
might use it as follows:

IF c. COUNT < c.LIMT
THEN

c. EXTEND,
END | F;

9.2.3.4.7 Other methods.

There are two additional, but in my experience rarely used, methods that you can use with PL/SQL
collections: DELETE and TRIM. You can use DELETE to get rid of all of a collection's elements,
regardless of what type of collection it is:

c. DELETE;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (13 of 14) [15/05/2002 23:01:11]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

You can also use it to remove individual elements from index-by or nested tables, using the syntax:
c. DELETE(i [, n]);

Where:

Subscript where deletions should begin.

Number of elements to delete. Defaults to 1.

If you delete any elements from the middle of a nested table, you should use PRIOR and NEXT when
iterating over its contents.

The TRIM function is similar to DELETE, but it removes one or more elements from the end of a
nested table or a VARRAY.

9.2.3.5 Privileges

The assumption I've been making in the examples so far is that the Oracle user who created the
collection types also created the PL/SQL programs. It's also possible to use a collection type some
other user created, as long as he granted the EXECUTE privilege on it. In that case, another user
could refer to the collection type using the usual dot notation. For example, if Brutus owns the
periodi cal s _t type and he grants me access using:

GRANT EXECUTE ON periodicals_t TO bill;

| can then use the type in my own code:

DECLARE
magazi nes brutus. periodical s_t;

You can't avoid the use of the owner's schema name. In contrast to tables and packages, synonyms
for types are not supported by Oracle. (If you create such a synonym, you will get a compile error when
you try to use it in your code.)

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page72.html (14 of 14) [15/05/2002 23:01:11]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SOQL > 9. Intermediate Topics and Other Diversions > 9.3 Exception-Handling
Packages

< BACK Start | Table of Contents | Index | Examples CONTINUE >

9.3 Exception-Handling Packages

Virtually all PL/SQL developers are going to have some decisions to make when they realize they need to
define their own error conditions in an application. This section provides a package that | hope will ease the
programming of packages in your applications. To begin with, I'll present two short code fragments. First,
declaring, raising, and handling a local exception looks like this:

PROCEDURE wakeup
IS

bad hair _day EXCEPTI ON;
BEG N

| F oversl ept
THEN
RAI SE bad_hai r _day;
END | F;
EXCEPTI ON
VWHEN bad_hai r _day
THEN

NULL;
END;

Next, let's look at an example of calling a built-in procedure named RAISE_APPLICATION_ERROR, which
raises an exception and gives it a numbered error code:

PROCEDURE wakeup

IS
BEG N
| F oversl ept THEN
RAI SE_APPLI CATI ON_ERRCR(- 20392, 'Definitely a bad hair day');
END | F;
END;

Here, -20392 is a programmer-defined error number between -20000 and -20999, and the text "Definitely a
bad hair day" becomes available to the program called wakeup (for example, to display as the error

message). A good reason to use RAISE_APPLICATION_ERROR is to associate an error number with a
particular exception. Numbering the error vastly simplifies detecting it somewhere outside the procedure.

So, the decisions faced by the developer include the following:
1. Can I handle the error condition in the current block, or should | punt to the caller?

2. If I cannot handle it locally, where should | declare the exception? In the local procedure? In a
package specification? Which package?

3. When the error occurs, should | (also) invoke RAISE_APPLICATION_ERROR?

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page73.html (1 of 5) [15/05/2002 23:01:13]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

4. If so, what error number should | assign?

Some of these questions are very difficult to answer up front. However, by using the approach of localizing
exception declarations into a package, you can reduce the number of decisions down to one! All you really
need to decide is whether you can handle the error locally (question #1 above).

My approach to programmer-defined exceptions is:
. If it makes sense to handle the exception locally, declare and handle it locally.

. If it makes sense to raise the exception to the caller, use a special-purpose package that you create
for this purpose.

In fact, I've already used this approach in a number of examples throughout this book. The package is called
exc and the examples call exc. myr ai se whenever they need to raise an exception. You may recall the

invocation from the previous chapter:
exc. nyrai se(exc. prob_with_sending nmail _cd, SQ.LERRM ;
The exc package does the following:
. Declares (hames) each exception
. Defines an error number for each exception
. Associates the declared name with the error number
. Provides a default error message for each error
. Provides a standard procedure that will raise exceptions by calling RAISE_APPLICATION_ERROR

A big reason to do the declarations in one place is to be clear about which error numbers are assigned to
which error conditions. You have only 1000 numbers to choose from, and most programmers start at -
20000, so duplicates are likely if you don't assert some kind of organizational approach.

Let's take a look at part of the package and see what it does. Here is the specification:

1 CREATE OR REPLACE PACKAGE exc

2 AS
7 uni npl enent ed_f eat ure EXCEPTI ON;
8 uni npl enent ed_feature_cd CONSTANT PLS | NTEGER : = -20502;
9 PRAGVA EXCEPTI ON_I NI T(uni npl enented_feature, -20502);
31 prob wi th _sendi ng_nai |l EXCEPTI ON;
32 prob with sending _mail _cd CONSTANT PLS | NTEGER : = -20508;
33 PRAGVA EXCEPTI ON I NI T(prob_with_sending nail, -20508);
38
39 PROCEDURE myrai se (exc_no | N PLS I NTECER, text |IN VARCHAR2 DEFAULT NULL);
40 END;
41 |/

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page73.html (2 of 5) [15/05/2002 23:01:13]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Lines 7-9. This is where | declare the exception that the application will raise whenever a program refers to
a feature that the programmers haven't yet implemented. Line 7 is the declaration, line 8 is the constant I'll

use as the error number, and line 9 associates the exception's hame with the number using a pragma (see
the upcoming sidebar).

Line 39. The nyr ai se procedure provides a common way for programs to call
RAISE_APPLICATION_ERROR. The first parameter, exc no, will be the error number (those same

numbers that we conveniently created as package constants). If you encapsulate the built-in package inside
nmyrai se, any time you want to add functionality (such as logging error messages to a file, for example), you

need only do so in one place. The t ext parameter accepts an optional message to deliver with the error.

What's a Pragma? And What's
EXCEPTION_INIT?

In programming, a pragma is a request to the compiler to do something special
(the term comes from a Greek word that essentially means "a done deal"). For
example, some languages have a pragma to turn certain compiler optimizations on
or off. As of Oracle8i, PL/SQL has only four pragmas, one of which is
EXCEPTION_INIT. (The other three are AUTONOMOUS TRANSACTION,
RESTRICT_REFERENCES, and SERIALLY REUSABLE.)

The EXCEPTION_INIT pragma tells the PL/SQL compiler, "Here is the name of an
exception; here is an integer error code; | want you to give this name to this error
code." | would use this in a situation where | plan to use
RAISE_APPLICATION_ERROR to cause the currently executing program to stop
with an error.

By using EXCEPTION_INIT, I can directly handle that particular error in an
exception handler. The following example shows a direct comparison of handling
the resulting exception with and without the pragma.

With PRAGMA EXCEPTION_INIT:

DECLARE
bad hair _day EXCEPTI ON
PRAGVA EXCEPTI ON_I NI T(
bad hair _day, -20392);
BEG N
RAI SE_APPLI CATI ON_ERROR(
-20392, 'need a conb');
EXCEPTI ON
VWHEN bad _hai r _day
THEN
NULL;
END;

Without PRAGMA EXCEPTION_INIT:

BEG N

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page73.html (3 of 5) [15/05/2002 23:01:13]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

RAI SE_APPLI CATI ON_ERROR(
-20392, 'need a conb');
EXCEPTI ON
VWHEN OTHERS
THEN
| F SQLCODE = -20392
THEN
NULL;
END | F;
END;

As the example shows, using EXCEPTION_INIT takes a little bit more setup, but
having the name makes for clearer, more concise code in the exception section.
This becomes particularly noticeable if you have a number of exceptions to check.

By the way, it's also possible to use this pragma to associate names with any built-
in runtime Oracle error to which Oracle has not given a predefined name.

Now let's have a look at the package body:

1 CREATE OR REPLACE PACKAGE BODY exc
2 AS
3
4 TYPE error_text _t IS TABLE OF VARCHAR2(512) | NDEX BY BI NARY_I NTEGER;
5 error_texts error_text_t;
6
7 PROCEDURE nyrai se (exc_no I N PLS I NTEGER, text | N VARCHAR2)
8 IS
9 BEG N
10 | opu. assert _notnul | (exc_no,
11 "programmer error: exc.myraise called with null exc_no');
12 IF text 1S NULL AND error_texts. EXI STS(exc_no)
13 THEN
14 RAI SE_APPLI CATI ON_ERROR(exc_no,
15 "Error: ' || error_texts(exc_no));
16 ELSE
17 RAI SE_APPLI CATI ON_ERROR(exc_no, text);
18 END | F;
19 END;
20
21 BEG N
22
23 /* Default error nmessages. */
24
28 error_texts(uni npl enmented feature_cd) : =
29 "Uni npl enented feature. |ncrease programrer gruel rations.';
46 error_texts(prob with sending mail _cd) :=
47 'Sone problemoccurred while attenpting to send ennil."';
51 END;
52/

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page73.html (4 of 5) [15/05/2002 23:01:13]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Lines 4-5. The package will use a PL/SQL table of error messages, each of which can be up to 512 bytes in
length. Line 4 declares the type, and line 5 declares the table variable.

Lines 10-11. This assertion merely confirms that nyr ai se was called with a non-null exc_no. If it's null,
we'll still raise an exception, but the exact one will be whatever is defined in the assert not nul |
procedure, accompanied by an embarrassing message about the programmer.

Lines 12-18. This is where the procedure determines what message to use when it does the actual call to
RAISE_APPLICATION_ERROR. Any programmer-supplied message overrides the default message.

Lines 21-50. This is something you may never have seen before: a package initialization section. This
section is identified by the BEGIN...END keywords appearing in the package body itself. This code executes
the first time (and only the first time) that any part of the package is used in the current session. | use the
package initialization section here because there is no other convenient way to populate a PL/SQL table
with those default error messages (and | don't want to pull the messages from a database table in case the
database has some terrible problem).

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page73.html (5 of 5) [15/05/2002 23:01:13]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 9. Intermediate Topics and Other Diversions > 9.4
Transaction Control

< BACK Start | Table of Contents | Index | Examples CONTINUE >

9.4 Transaction Control

In the web-based library application that has been growing through the chapters of this book, I
have not had much opportunity to explore the idea of database transactions. There is some
passing discussion of COMMITs and ROLLBACKSs in Chapter 5 and Chapter 8, but in this
section | want to explain these statements more directly. Gaining a better understanding of the
underlying concepts could be valuable to you as you develop your own applications.

9.4.1 What Is a Transaction?

A transaction, also known as a "logical unit of work," consists of one or more data changes in the
database, which must all execute, or all fail, together. That is, a failure in any part of a transaction
results in the failure of the entire transaction. The archetypal transaction you will find described in
every textbook is a debit and credit operation at the bank: subtract money from your savings
account, and add the same amount into your checking account. Given the design of most
databases, these would be two separate steps. If the debit step occurs but not the credit step,
you're not going to be very happy; if the reverse happens, the bank won't be happy.

What textbooks don't always come out and state is the big assumption behind transactions: they
make failure only slightly more tolerable. Yes, failing the entire transaction does leave the
database in an "internally consistent” state, but it is still in a state that doesn't match what it is
supposed to be. | really did want to transfer that money from my savings account. Someone, or
something, will have to take action to correct the problem. Ideally, though, transaction failure will
also result in an error message delivered to everyone who needs to know (or perhaps a really
clever system will handle it automatically).

In Oracle, a transaction begins implicitly with the first executable SQL statement issued by a given
session. Changes the application makes to the data in the database are in fact temporary.
Although the current session can see the pending changes it has made, other database sessions
cannot. This protects them from seeing inconsistent data.

Usually, a transaction ends when one of the following occurs:

. The session issues a COMMIT statement, causing any pending database changes to be
recorded in the database. The COMMIT causes Oracle to save the changes permanently
and allows other sessions to query (and potentially change) the new data.

. The session issues a ROLLBACK statement, causing any pending database changes to
be ignored. In PL/SQL programming, the ROLLBACK statement is likely to appear in an
exception handler.

While COMMIT and ROLLBACK are the most common ways that transactions end, there are two
other ways transactions can end:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page74.html (1 of 6) [15/05/2002 23:01:16]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page43.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

« The session issues a non-DML statement, such as CREATE or GRANT, which first
causes Oracle to execute an implied COMMIT. This means Oracle won't let you roll back
changes to the database schema, only changes to database data.

. The session terminates, which usually causes an implied COMMIT on normal termination
and ROLLBACK on an unhandled exception. If the session died unexpectedly or was
killed by the administrator, the transaction will probably result in a ROLLBACK.

So what does all this mean to your average PL/SQL application developer? | think there are three
important parts to the answer:

. Identifying how, when, and where to end your transaction if everything goes right
. ldentifying what your application will do if a handled (or unhandled) exception occurs
. Knowing when to use PL/SQL's autonomous transaction feature

First, you will want to identify your transactions.

9.4.2 ldentify the Transactions in Your Application

There are few, if any, general rules | can give you to decide what constitutes a logical unit of work
in your own application. In the library system, one example of a transaction occurs when a
librarian "weeds out" a particular titte—that is, removes it from the collection. In this case, when
deleting the record in the books table, the system must also delete the related records in the

book copi es table. (In fact, the deletions must occur in the latter table first because of foreign
key dependencies, but all the deletions should still be protected by a transaction.)

You may be wondering how the code I've shown in earlier chapters ends each transaction
gracefully, since | have apparently ignored these concerns. In short, | have relied on the default
COMMIT behavior that occurs when the database session ends. Because each session in the
web-based system is very short (since the server does not preserve session state), the PL/SQL
web gateway will commit any database changes unless the application explicitly rolls them back.

9.4.3 Determine the Effect of Errors on Your Transactions

Now, think about the second item in the previous list: what will happen to the transaction if the
application encounters an exception? You should realize that any statement that fails with an
error cannot change the data in the database. The question is: what happens to the statements
that accompanied it in the same transaction?

First, you should be aware that the failure of a single statement does not automatically roll back
the results of other statements in the transaction. As a PL/SQL developer you should be
conscious of Oracle's default behaviors, and you may need to exercise some explicit control over
transactions. There are two major cases you need to consider:

Case 1: Handled exceptions

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page74.html (2 of 6) [15/05/2002 23:01:16]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Changes pending from any successful SQL statements in the transaction can still be
committed to the database. They can also be rolled back—it's up to the application to
decide.

Case 2: Unhandled exceptions

The host environment determines the fate of pending data changes. For example,
SQL*Plus retains any pending changes without terminating the transaction, but the
PL/SQL web gateway automatically terminates the transaction with a ROLLBACK. (By the
way, these differences can really complicate testing, so be careful.)

Let's consider an earlier example. Chapter 4 showed the PL/SQL code that Oracle generates for
a PL/SQL Server Page when the programmer includes the er r or Page directive. It looks like this:

EXCEPTI ON
VHEN OTHERS
THEN
HTP. I NI T;

friendly errorpage;

This code will erase the current page (with HTP.INIT) and then pass control to a procedure whose
name you specify (here, fri endl y_error page). If the application has raised the exception in
the middle of a series of changes to the database, this exception handler poses a definite risk to
transactional integrity! To solve the problem, simply add a ROLLBACK statement to the called
procedure:

<% page | anguage="PL/SQ." %
<% pl sql procedure="friendly errorpage" %
<%
RCOLLBACK;
%>
<HTM_>
<HEAD><TI TLE>Er r or </ TlI TLE></ HEAD>

.etc.

Even if you're not using PL/SQL Server Pages, though, transactional applications should almost
always include a ROLLBACK in a WHEN OTHERS exception handler:

EXCEPTI ON
VWHEN OTHERS

THEN
RCOLLBACK;

...now report the error to the user

As you gain PL/SQL prowess, you may want to create reusable packages to simplify the
programming of exception handlers. Maybe you just want to be able to say something like:

VHEN OTHERS

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page74.html (3 of 6) [15/05/2002 23:01:16]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page38.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

THEN
exc. handl e(errno => SQLCCODE, errnsg => SQLERRM
roll => TRUE, stop => TRUE, report => 'I|MVEDI ATE');

There will be some cases where you handle exceptions raised by database interactions but don't
need to roll back the transactions. For example, sometimes you may want to ignore an attempt to
insert a duplicate row into a table. In the library application, one of the security procedures (to be
discussed later) looks like this:

PROCEDURE grant _priv (privilege_id_in I N NUMBER
user _id_in I N NUMBER, requestor_id I N NUVBER)
IS
BEG N
assert _all owed(requestor _id, priv.grant_privilege_c);
| NSERT I NTO I'i b_user_privileges (user_id, privilege_id)
VALUES (user _id_in, privilege_id_in);
EXCEPTI ON
VHEN DUP_VAL_ON_| NDEX
THEN
NULL;
END;

This means "ignore the error if an administrator grants a privilege to a library user that the user
has already received.”

9.4.4 Know When to Use the Autonomous Transaction Feature

Prior to Oracle8i, when one PL/SQL procedure called another, the second always participated in
the same transaction as the first. This simple model works well, although developers found times
when they wanted a little more flexibility. Suppose you build a beautiful procedure named

| oger ror that will record error information to a table in the database, so that keen-eyed
troubleshooters can examine it later. Consider what will happen in your average failed
transaction:

EXCEPTI ON
VHEN OTHERS
THEN
| ogerror (SQLERRM ;
ROLLBACK;

Whatever | ogerr or saves to the database will be wiped out by the ROLLBACK. Oops.

While there has long been a solution to this problem using a feature called database pipes, that
feature is very complex to implement and use. In Oracle8i, though, PL/SQL gained a feature
called autonomous transactions that vastly simplifies the solution. In short, when Oracle executes
a program using this feature, it runs in its own separate transaction.

Creating a PL/SQL program for autonomous transaction is as simple as marking it with a
particular pragma:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page74.html (4 of 6) [15/05/2002 23:01:16]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

1 CREATE OR REPLACE PROCEDURE | ogerror(nsg | N VARCHARZ,
2 called fromIN VARCHAR2 DEFAULT who ami())

3 AS

4 PRAGVA AUTONOMOUS_TRANSACTI ON,

5 BEG N

6 | NSERT | NTO nessages (usernane, fromwhere, tinestanp, text)
7 VALUES (USER, called from SYSDATE, nsgQ);

8

COW T;
9 EXCEPTI ON
10 VWHEN OTHERS
11 THEN
12 ROLLBACK;
13 END;
14 |/

This program will insert one row into the database even if the calling program rolls back. Let's look
at the logic.

Line 2. The who_am i function is a utility that will return the name of the program that called this
one. (This code is available via http://www.plnet.org.)

Line 4. Our friendly pragma makes this procedure the home of an autonomous transaction.

Lines 8, 12. One of the rules for using this feature is that the program must not end with a
pending transaction. If it does, Oracle raises the exception ORA-06519: active autonomous
transaction detected and rolled back. That's why | have both a COMMIT in line 8 and, in case the
INSERT fails, a ROLLBACK in line 12.

There are a few practical matters to consider: you may mark individual procedures, functions, or
triggers with the autonomous transaction pragma.[31 Packages are absent from the list, but you
can mark individual programs inside a package with the pragma. Also, you must explicitly commit
or roll back at the end of the autonomous transaction, or you will get a runtime error.

[3]1 Top-level anonymous blocks can include the pragma as well, though | can't figure out why you
would want them to. You can also mark object methods (not yet discussed), as autonomous
transactions.

In addition to the error logging example given in this section, autonomous transactions can be
used elsewhere. Here are a few examples:

. A retry counter in an application that automatically repeats a failed transaction until it
succeeds

. A software usage meter that keeps count of how many times a program has been run, and
whether or not it rolled back

. A way to isolate transactions in code so another organization can safely use that code in
their own applications

The third point is the least obvious, but ironically was probably the biggest reason Oracle added

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page74.html (5 of 6) [15/05/2002 23:01:16]

http://www.plnet.org/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

this feature to the language. Prior to Oracle8i, users of third-party PL/SQL products were having
difficulty incorporating these "foreign" programs into their own code because the applications had
conflicting ideas of where transactions should begin and end. With autonomous transactions,
everyone can be happy. Or happier, anyway....

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page74.html (6 of 6) [15/05/2002 23:01:16]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 9. Intermediate Topics and Other Diversions > 9.5 The PL/SOL
Compiler

< BACK Start | Table of Contents | Index | Examples CONTINUE >

9.5 The PL/SQL Compiler

Before Oracle can run a PL/SQL program, that program must be compiled. This means that the
compiler (some software inside Oracle) converts your PL/SQL from source code form into another
form.

Although | have described many aspects of the PL/SQL compiler throughout this book, you may
want to know more details about how it works. Usually this interest reflects a desire to squeeze the
greatest possible runtime performance out of your applications.

9.5.1 When Does Compilation Happen?

Unlike many programming languages, a "compile" command is not necessary with PL/SQL. Instead,
Oracle attempts to compile your program when you load it into the database server—for example,
using the CREATE OR REPLACE PACKAGE statement. If the compile fails, the source code will
still be inside the database, but the program will be in an " INVALID" state. If the program failed
because of a syntax error, you should correct the error and run the CREATE OR REPLACE again.

Once you have successfully loaded and compiled a program into Oracle, it will execute as long as it
is in a "VALID" state. You can examine the state of your programs by querying the data dictionary:

SELECT obj ect nane, object type, status
FROM USER OBJECTS
VWHERE status = 'I NVALID ;

Several things can cause a program to become invalid, though, including:

. A structural change in a table to which the program refers—for example, the addition of a
column

. The recreation or recompilation of any Oracle view or PL/SQL program on which the
program depends

. The deletion of any Oracle structure or PL/SQL program on which the program depends

As mentioned in Chapter 6, this sounds worse than it is, because when you try to run a program
that is marked as invalid, Oracle automatically tries to recompile it first. If it succeeds, execution
continues, and the only impact is the (short, we hope) delay required to recompile.

Occasionally, though, when you have an invalid program in the database, or if your CREATE
statement failed (say, due to a dependency problem), you may want to recompile the program "by
hand." Here is the syntax to recompile a previously loaded procedure:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page75.html (1 of 4) [15/05/2002 23:01:18]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

ALTER PROCEDURE procnanme COWPI LE;

You can recompile an entire package—both specification and body—using:

ALTER PACKAGE pkgnanme COWPI LE:

You can also compile a package body independently from its specification:

ALTER PACKAGE pkgname COWPI LE BODY:

Also, remember that PL/SQL programs depend only on package specifications, not on package
bodies; thus, recompiling a package body will not cause any other programs to become invalid.

There is one other compiler feature that you may need to know about: the DEBUG option. For
example:

ALTER PROCEDURE bookf or m COVPI LE DEBUG,

Normally, you won't need to use this option because PL/SQL debugger products (see Chapter 6)
set it for you automatically. However, you should not leave your programs compiled in the DEBUG
state because of the additional runtime overhead. Your debugger should allow you to recompile
without the DEBUG option, but if it doesn't, you should recompile without the DEBUG keyword.

Now I'd like to look a little bit deeper into the guts of the compiler.

9.5.2 "Oh DIANA, Won't You Compile for Me..."

Compiling PL/SQL first validates that the program follows the rules of the language, then converts it
into an internal representation known variously as P-code or m-code. Whatever you want to call it,
this is a machine-readable form needed when Oracle executes the program. For stored procedures,
Oracle inserts this form of the code in the database along with something called a parse tree, which
helps resolve dependency information. The parse tree is stored in a format called DIANA.I41 Oracle
updates the m-code and DIANA whenever the program unit is recompiled.

[4]1 Named not after the Princess of Wales but as an acronym for Descriptive Intermediate Attributed
Notation for Ada. PL/SQL is not enough like Ada to use standard DIANA, though.

At runtime, Oracle expands the DIANA into the actual parse tree and stores it in Oracle's pool of
shared server memory. This tree can get quite large, which can reduce performance. However, no
DIANA (and no parse tree) is required for package bodies, since nothing depends on them. So one
rule to improve runtime performance is to create large PL/SQL programs as packages rather than
as standalone procedures or functions.

So far I've been talking only about code stored in the server, such as procedures, functions, and
packages. What about anonymous blocks? Anonymous blocks appear in one of two places:

. File-based scripts, typically run via SQL*Plus

. Triggers

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page75.html (2 of 4) [15/05/2002 23:01:18]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page51.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Oracle is forced to compile a file-based anonymous block every time you run it. This can cause a
noticeable delay for large blocks, which is one reason why you should put the vast majority of your
code into stored programs. Oracle does store and compile database triggers, though.

Despite this talk about compiling, when running from m-code, PL/SQL is more of an interpreted
language than a true compiled language. Interpreting does expend machine cycles performing
superfluous tasks, particularly on "compute-based" operations—that is, those other than reading or
writing data in the database. True compiled languages are converted to a faster, machine-specific
binary code. Fortunately, Oracle9i introduced a long-awaited feature in this area, described in the
next section.

9.5.3 Using Native Compilation

PL/SQL native compilation (sometimes known as native execution), available for Oracle9i and later
stored PL/SQL, enables you to improve the performance of many programs by having the compiler
translate your PL/SQL into C. Oracle compiles the C into machine code and stores it in a shared
library, which it uses at runtime in place of the PL/SQL m-code.

Using native compilation is a fairly transparent change for most developers and users. However, the
DBA may need to make several changes (including editing the Oracle-supplied "makefile") to enable
developers to use the native compilation feature.[51 After the DBA does her thing, here is what you
would do to recompile a program with native compilation:

[51 As of the time this book was written, the best documentation of those features for DBAs was
"PL/SQL Native Compilation in Oracle9i," available to supported customers as Note 151224.1 on
Oracle's support web site (Metalink). All DBAs can find most of the details in the standard Oracle9i
documentation.

1. Issue the following command in your session (for example, from SQL*Plus):

ALTER SESSI ON SET PLSQL COWPI LER FLAGS = ' NATI VE';
2. Compile your PL/SQL program(s).
Here is an example session:

SQL> ALTER SESSI ON SET PLSQ. COWPI LER FLAGS = ' NATI VE' ;
Session al tered.
SQL> ALTER PACKAGE book COWPI LE;

Package al tered.

That's it! Now users of the book package will enjoy the benefits of native compilation. If you want all
your PL/SQL programs to use this feature, you can write a script that recompiles all of them.

If you want to set native compilation as the default, you can either ask your DBA to make it a
database-wide change or you can add the ALTER SESSION statement to your SQL*Plus
initialization file, login.sql, which was mentioned in Chapter 2. Thereafter, anything you compile will
use this option.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page75.html (3 of 4) [15/05/2002 23:01:18]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

To see which programs have been compiled using which compiler, you can query the data
dictionary as follows:

SELECT obj ect _nane, object_type, paramval ue
FROM USER _STORED_ SETTI NGS
VWHERE param nane = 'plsql _conpiler _flags';

This will show output similar to this:

OBJECT_NAME OBJECT_TYPE PARAM VALUE

ADD_BOCK PROCEDURE | NTERPRETED, NON_DEBUG
BOOK PACKAGE NATI VE, NON_DEBUG

BOOK PACKACE BODY NATI VE, NON_DEBUG

The NON_DEBUG string indicates that | have not used the DEBUG compilation option. (By the way,
Oracle does not support the DEBUG compile flag with natively compiled programs.)

To revert back to conventional compilation, use the following command and recompile:

ALTER SESSI ON SET PLSQ._COWPI LER_FLAGS = ' | NTERPRETED ,;

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page75.html (4 of 4) [15/05/2002 23:01:18]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 9. Intermediate Topics and Other Diversions > 9.6 Managing Patron and

Librarian Privileges

< BACK

9.6 Managing Patron and Librarian Privileges

Start | Table of Contents | Index | Examples

CONTINUE >

Back in Chapter 7, we looked at Oracle security and how we could protect the security of our library
application. One important component of application security involves specifying and managing privileges.
This section provides the detailed information about how to set up the necessary privileges to protect the

library application.

Table 9-3 presents an overview of the software components we will add to the library system in order to
allow individuals to have their own password-protected accounts.

Table 9-3. PL/SQL components involved in security for the library system

Category

Task

Program name

Implemented where?

Login-related user

interface components

User interface for logging
in and out

| ogi n

Stored procedure (PL/SQL
Server Page)

Support utilities for
[ogi n PSP

process_l ogin
| ogout

Package | ogi nweb

Administrator create and
modify any user page

userform

Stored procedure (PL/SQL
Server Page)

Support utilities for
user f or mPSP

process_edits

Package user f or mneb

End user modify profile
page

edi t prof

Stored procedure (PL/SQL
Server Page)

(using session ids)

Administer user security
for web applications

If username and
password okay, create
new session id (random
string)

new session_id

Package pri vweb
(privilege for web
applications)

Find user id from session
id

user _id

Determine whether
session has a particular
privilege

assert _al | oned

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (1 of 20) [15/05/2002 23:01:23]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page55.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Administer user security
based on user ids

Determine whether user
has a particular privilege

assert _al | owed

Package pri v

Grant privilege to user

grant _priv

Revoke privilege

revoke_priv

User management

security components Add user new_user _id Package | i buser
(not web-specific)

Modify user nodi fy_user

Delete user del et e_user

Retrieve user id by
authenticating name and
password

aut henti cated_user _id

Generic components
(not web- or application-
specific)

Return MD5-based
password

encrypt ed_password

Package | opu

Return random string
value

r andonval

While all of these components should appear on the web page associated with this book (
http://www.oreilly.com/catalog/learnoracle/), we're going to look at only the most interesting pieces
here.

9.6.1 Generic Components

First, let's take a look at the low-level "generic" components that might be useful in any application. Notice
that these do not rely on any particular database structure.

9.6.1.1 Computing arandom value

Every time a user logs in to the system, he or she will receive a randomly generated "session id." Generating
a random number in Oracle, though, is a good news/bad news story.

Prior to Oracle8, it was sort of a pain in the neck to generate a random number inside PL/SQL. You had to
"roll your own" program or search the Internet for something that looked as if it would do the job. However, in
Version 8.0, Oracle began supporting a built-in PL/SQL package called DBMS_RANDOM that provides an
efficient way to call Oracle's internal random-number generator.

The bad news: most software-based random-number generators, DBMS_RANDOM included, are not really
random. They have to be kick-started with what's called a seed value, which they use to compute a random
value; they will then use some internal state variable as the seed for the next one, and so forth. Reinitializing
with the same seed actually causes the sequence to repeat! I've even withessed DBMS_RANDOM return the
same value for a given seed on Oracle9i (9.0.0) for Solaris and on Oracle8i (8.1.7) for Windows 2000. This is
not just an Oracle problem; any pseudorandom-number generator is predictable and therefore vulnerable to a

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (2 of 20) [15/05/2002 23:01:23]

http://www.oreilly.com/catalog/learnoracle/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

variety of attacks by Bad Guys.

It's definitely a chicken and egg problem—you have to come up with a way to give the generator a random
seed before you can get a random value out.

The good news: Oracle9i introduces, through some proprietary mystery no one at Oracle is willing to divulge,
an ability to generate an encryption-quality random number. Somewhat unexpectedly, this feature has not
been added to DBMS_RANDOM but is instead part of a new built-in package,
DBMS_OBFUSCATION_TOOLKIT.

Let's look at two random code fragments: one for Version 8.x and one for 9.x.

The following Oracle8 fragment combines two pieces of information to generate a seed value: part of the
current time and the sum of all the internally maintained statistics in the database. Summing the internal
statistics is potentially "expensive" (time-consuming because it uses lots of CPU and memory), so use such
an approach with caution.

1 CREATE OR REPLACE PACKAGE BODY | opu

2 AS
5 random seeded BOOLEAN : = FALSE;
192 FUNCTI ON randonst r
193 RETURN VARCHARZ2
194 IS
195 seedval VARCHAR2(64);
196 | st at sum NUVBER,
197 CURSOR st cur
198 S
199 SELECT SUM VALUE)
200 FROM V$SESSTAT,;
201 BEG N
202 | F NOT random seeded
203 THEN
204 seedval := TO CHAR(SYSDATE, 'SS');
205
206 OPEN st cur;
207 FETCH stcur INTO | _statsum
208 CLOSE stcur;
209
210 seedval := seedval || TO CHAR(I| statsum;
211 DBVS _RANDOM SEED(seedval) ;
212 random seeded : = TRUE;
213
214 END | F;
215 RETURN DBMS_RANDOM STRI NG opt => 'I" /* |owercase */, len => 32);
216 END;

Here's what is happening in this code.

Line 5. random seeded is a package variable used to record whether the random package has already

been seeded for the current session. Once seeded, line 31 sets this to TRUE, and the package won't bother
to compute a new seed value on the next call.

Lines 197-200, 206-208. By summing up all the current statistics in the VSSESSTAT data dictionary view, we
can get a pseudorandom seed that will vary with every call. This operation gets more expensive for large

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (3 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

numbers of database sessions... so you probably won't do it this way if you need a subsecond response!
Also, since this database view is not available to PUBLIC, | had to log in to Oracle as the SYS user and
GRANT SELECT privilege on V$SESSTAT to the package owner.

Line 204. Gets the number of seconds in the current time. Not really very random, but it might help a bit.
Line 211. This is where we send our precious seed value over to the built-in procedure that will use it.

Line 215. Now we can get Oracle to give us the random value and return it to the calling program. In our
case, we want a string rather than a number. The documentation for DBMS_RANDOM reveals that a
lowercase letter "I" supplied as the opt parameter causes it to output only lowercase letters (kind of an

arbitrary choice on my part). Using a | en of 32 will generate a random value that is 32 characters long.

Let's turn now to Oracle9i. The DBMS_OBFUSCATION_TOOLKIT.DES3GETKEY procedure computes a 16-
byte random value. | don't know how it does what it does, since obtaining better random numbers usually
requires measuring physical parameters such as electrical noise or radioactive decay, and | doubt that Oracle
is radioactive. Maybe there is some kind of internal event(s) whose duration Oracle measures as the source
of randomness.

At any rate, one of the ways to call DES3GETKEY is as a function that returns a random value of type RAW.
By using the built-in RAWTOHEX function as follows, we can get a more usable "hex" value (which is really

just a VARCHAR?2):

191 FUNCTI ON r andonstr

192 RETURN VARCHAR2

193 I S

194 seedval RAW 80) := HEXTORAW ' 26AB07A980928EF806F17D49EB5BOD9C03901170"
195 || '17881F46920215CDFFFBD59403F52DAA480A3DFACE6BFELSCCOEAL16478BEF5CEQ
196 || ' E9ESE85DFEOFA459CFOD0631691A5C919C546F63F285485A4723EFDS') ;

197 BEG N

198 RETURN RAWIOHEX(DBMS_OBFUSCATI ON_TOOLKI T. DES3GETKEY(seed => seedval));
199 END;

Lines 194-196. Despite Oracle's mysterious internal source of randomness, the procedure requires an 80-
byte (!) seed value. A simple way to do this is to hardcode the seed (which | actually generated by repeated
invocations to the procedure). Despite the constant seed, the random value does not repeat. (According to
Oracle, varying the seed is supposed to obtain a "more random" value.)

A sample call to this procedure:

DECLARE
nyval VARCHAR2(32);
BEG N
nmyval := | opu.randonstr;
DBVMS_OUTPUT. PUT_LI NE(nyval) ;
END;

/

yields a value such as:

6C0E0184FE19CFD69233180A8D098105

9.6.1.2 Encrypting a password

Although cryptography is a complex topic, passwords often use one-way encryption, as | mentioned earlier,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (4 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

which is simpler because we never have to decrypt. If you run the password through a special algorithm, the
resulting binary output cannot be interpreted or deciphered, even if you know the algorithm. So what good is
that? Well, each time the user supplies the correct username and password, the algorithm computes the
same binary output that it stored when the password was first selected. If the user gets it wrong, the algorithm
generates a different binary output, causing the system to reject the login.

In code, the specification, extracted from the | opu package specification, looks like this:

FUNCTI ON encrypt ed password(usernane | N VARCHARZ,
pl ai nt ext _password | N VARCHAR2)
RETURN RAW

which seems simple enough. We receive a username and password and return the encrypted value. As |
mentioned earlier, an algorithm called MD5I€1 provides the brains, and an efficient way to use this function is
to use its native RAW datatype output. That's why encr ypt ed passwor d returns a RAW itself.

[6]1 The "MD" stands for "message digest," a class of algorithms that take a variable-length input value and
compute from it a fixed-length output value. The "5" means it's later, and better, than MD4.

The good news is that Oracle has a built-in function to compute MD5 values for us. The function is called
(surprise) MD5, and it resides in the built-in package DBMS_OBFUSCATION_TOOLKIT. So the
implementation of our function is simple:

1 FUNCTI ON encrypted_password(usernanme | N VARCHARZ,
2 pl ai nt ext _password | N VARCHAR2)

3 RETURN RAW

4 1S

5 string for_nd5 VARCHAR2(120);

6 BEG N

7 assert _notnul | (usernane);

8 assert _not nul | (pl ai ntext _password);

9 string for_nd5 : = UPPER(usernane) || UPPER(pl aintext password);
10 RETURN DBMS_OBFUSCATI ON_TOOLKI T. MD5(
11 | NPUT => UTL_RAW CAST_TO RAWstring for_nd5));
12 END;

Here is a brief explanation of this code.

Lines 9-10. For slightly more security, we've concatenated the username and password together before
doing the encryption. That way, two different users who have the same password won't get the same
encrypted value. And, as you can see, we've decided to uppercase the username and password before
computing the MD5 checksum. This means that user support won't have to field calls from users who can't log
in because they've pressed their keyboard's "caps lock" key.

To understand the next lines, you need to realize that we're going to supply a binary or raw value to the MD5
function as its input. How do we do that, when all we have is st ri ng_f or _nd5, which is a VARCHAR2?

Another of Oracle's built-in functions, UTL_RAW.CAST_TO_RAW, comes to the rescue.

Lines 10-11. This statement compresses several operations into one, and the easiest way to understand it is
to start "inside" and work out. First, UTL_RAW.CAST_TO_RAW converts the username-password string to a
raw value. Next, this raw output goes into the MD5 function via the parameter named INPUT. Finally, the
encrypt ed passwor d function returns the output from MD5 as its final return value.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (5 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

If you happen to be using an earlier version of Oracle that doesn't
include the MD5 function, you can find a PL/SQL implementation of
MDS5 via http://www.plnet.org. This open source version works just
dandy, though it can't run as fast as Oracle's native implementation,
which has access to an internal C library.

9.6.2 Privilege Management Components

Let's move on now to another major security component of the library application. We also need a way to
keep a record of what privileges the system will enforce and a table specifying which privileges each user can
exercise. Let's first think about the list of privileges. It can just be a table with columns of "yes/no" values, as
in:

CREATE TABLE user_privs (
user id NUVBER NOT NULL,
can_add_user VARCHAR2(1),
can_edit _user VARCHAR2(1),
can_del ete_user VARCHAR2(1),
can_grant _privil ege VARCHAR2(1),
can_revoke privil ege VARCHAR2(1),

)i

which would have one row per user. If user number 103985 can edit users, there would be a record having
user_id = 103985 and can_edi t _user column =T. I've built systems like this and it works okay, as long as

you know up front what privileges you're going to want to set up.

Alternatively, we could set up a list of id/value pairs:

100: ADD USER

101: EDI T USER

102: DELETE USER

103: GRANT PRI VI LEGE
104: REVOKE PRI VI LECE

Next, we'll store them in a table:

CREATE TABLE lib_privileges (
i d NUVBER NOT NULL,
name VARCHAR2(240) NOT NULL,
CONSTRAI NT privil eges_pk PRI MARY KEY (id)

And now we'll set up another table to correlate each user with his privileges. Each user/privilege pair would
then exist as a record in the following table:[71

[71 Users and privileges have a many-to-many relationship, which means that each user may have many
privileges, and each privilege may be assigned to many users. Each privilege assignment exists as a single row
inthel i b_user_privileges table.

CREATE TABLE |ib _user _privileges (
user id NUMBER NOT NULL,
privilege_id NUVBER NOT NULL,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (6 of 20) [15/05/2002 23:01:23]

http://www.plnet.org/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

CONSTRAI NT user _privs_pk PRI MARY KEY (user_id, privilege_id),
CONSTRAI NT user _privs_priv_fk FOREI GN KEY (privilege_id) REFERENCES
lib privileges (id),
CONSTRAI NT user _privs_user_fk FOREI GN KEY (user _id)
REFERENCES 1i b_users (id)

Although the first approach seems as if it might be easier to program, this second approach gives greater
flexibility and over the long run may actually be less work, since it doesn't require you to modify table
structures to add privileges. Less work is good, yah?

The PL/SQL code that will manage the privileges will live in the pr i v package, which I'll walk through now:

CREATE OR REPLACE PACKAGE priv
AS

First, let's define some package-level constants so that we don't have to hardcode the values elsewhere in
the code. Yes, | know this is a duplication of what's in the table (sort of), and it may seem like overkill, but it is
good programming practice to do it like this:

add_user _c CONSTANT PLS | NTEGER : = 100;

edit _user_c CONSTANT PLS I NTEGER := 101,

del et e _user _c CONSTANT PLS | NTEGER : = 102;
grant _privilege_c CONSTANT PLS | NTEGER : = 103;
revoke privilege ¢ CONSTANT PLS | NTEGER : = 104;

Now, let's look at the first procedure, which is pretty simple; it raises an exception if the user lacks the given
privilege. It does this by making a lookup inthe | i b _user privil eges table:

PROCEDURE assert _allowed (user _id _in IN NUVBER, privilege id in IN NUMBER);

Next are the grant _priv andrevoke pri v procedures, which create and delete records in the

i b user privileges table. But how will these procedures know whether the invoker of this package is
sufficiently privileged to execute it? We define a parameter, r equest or i d, that is the user id of the person
making the invocation:

PROCEDURE grant _priv (privilege_id_in I N NUMVBER,
user_id_in I N NUMBER, requestor_id I N NUVBER);

PROCEDURE revoke_priv (privilege_id_in I N NUMBER,
user _id_in I N NUMBER, requestor_id IN NUMBER);
END;
/

The corresponding body has few, if any, surprises:

CREATE OR REPLACE PACKAGE BODY priv
AS

The assert _al | owed function consists of a simple lookup:

1 PROCEDURE assert_allowed (user_id in IN NUMBER, privilege id_ in I N NUVBER)
2 I'S
3 CURSOR pcur

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (7 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

IS
SELECT NULL
FROM | i b_user _privil eges
WHERE user _id = user_id_in
AND privilege id = privilege_ id_in;
prow pcur YROMYPE;
BEGA N
| opu. assert_notnul | (user_id_in);
| opu. assert_notnul |l (privilege_id_in);

OPEN pcur;
FETCH pcur | NTO prow,
| F pcur ¥NOTFOUND
THEN
CLOSE pcur;
exc. nyrai se(exc. aut hori zati on_required_cd);
END | F;
CLCSE pcur;
END;

The grant _pri v procedure in the following code is an example of a program that calls the
assert _al | owed procedure (line 5). It has one other interesting feature: it encodes a sort of "business

policy" in the exception handler. The policy is to ignore duplicate grants without warning or error. The code in
lines 8-11 handles the DUP_VAL_ON_INDEX exception with a no-op (NULL statement):

O©oo~NOoO U~ WNE

10
11
12

PROCEDURE grant _priv (privilege_id_in I N NUMBER,
user _id_in IN NUMBER, requestor_id I N NUMBER)
IS
BEG N
assert_all owed(requestor _id, priv.grant_privilege_c);
I NSERT | NTO |'i b_user_privileges (user_id, privilege_id)
VALUES (user _id in, privilege_id_in);
EXCEPTI ON
VHEN DUP_VAL_ON_| NDEX
THEN
NULL;
END;

I've skipped the r evoke pri v procedure because it's a simple primary key-based delete.

9.6.3 User Management Security Components

The | | buser package is merely functional, not terribly interesting. Its programs allow authorized requestors
to create, modify, and delete user records inthe | i b_user s table:

CREATE OR REPLACE PACKAGE | i buser

AS

FUNCTI ON new user _id(usernanme | N VARCHARZ,

pl ai nt ext _password | N VARCHARZ,
emai | _address | N VARCHARZ,
cardid I N VARCHARZ,

requestor _id I N NUVBER)

RETURN PLS | NTEGER,

PROCEDURE change(user _id I N VARCHARZ,

usernane_in | N VARCHARZ,
pl ai nt ext _password_in I N VARCHARZ,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (8 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

emai | _address_in I N VARCHARZ,
cardid_in I N VARCHARZ,
requestor _id I N NUVBER) ;

PROCEDURE renpve(user _id | N NUMBER,
requestor_id I N NUVBER) ;

FUNCTI ON aut henti cat ed_user i d(usernane_in | N VARCHARZ2,
pl ai nt ext _password_in | N VARCHAR2)
RETURN PLS | NTEGER,;

END | i buser;
/

I'll first present the code to add a new user, because it introduces two new PL/SQL programming ideas.
9.6.3.1 Adding a new user: Assigning identifiers with an Oracle sequence

The program that creates users will decide what user id to assign to the new user. Since this user id will
almost certainly be useful to the calling program, | decided to make new user i d a function rather than a

procedure (which | might have named cr eat e _user).[8l

[81 This decision is something of a personal preference, and you could certainly argue it the other way around.

Either way, though, the program needs a way to generate user identification numbers. The numbers
themselves don't really matter, as long as they are all unique and there is no chance that a number will be
reused. The friendly folks who designed Oracle encountered this need before, and that's why they invented
the sequence. In Oracle-land, a sequence is a "number dispenser” that lives inside the database and lets your
application dole out numbers.

Using a sequence is kind of like going to the ice cream parlor and taking a paper ticket with a number on it.
One difference, though, is that the database can hold any number of sequences, since each sequence has its
own name. You create a sequence with the statement:

CREATE SEQUENCE sequence_ nane
[| NCREMENT BY i]
[START WTH s]
[MAXVALUE m]
[CACHE ¢ | NOCACHE | ;

Where:
i
Integer that Oracle will add to each number this sequence dispenses. Default is 1.
s
First integer this sequence will dispense. Default is 1.
m

Highest number this sequence will dispense without error. Default is 1027,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (9 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

c

Number of values to cache in memory. Default is 20. These will be lost on database restart; specify
NOCACHE if you don't want to lose any values.

Usually you fetch and use the next number in a sequence by including the expression
sequence_name. NEXTVAL in a SQL statement (see line 17 in the next code sample).

The other interesting part of this function is the RETURNING clause, used in line 20 in the following code. As
of PL/SQL Version 8, it's possible to retrieve a value from the server in the same SQL statement in which you
send a value to the server! The (simplified) syntax for RETURNING is:

RETURNI NG expressionl [, expression2, ...]
| NTO variablel [, variable2, ...]

This clause is a convenience feature, since it can reduce the number of lines of code you have to write, but
it's also a performance feature. By reducing the number of server roundtrips, RETURNING can speed up your
program, particularly if it's performing SQL operations on a remote database.

Here is the new user i d function, as it appears in the body of the | | buser package:

1 CREATE OR REPLACE PACKAGE BODY | i buser

2 AS

3 FUNCTI ON new_user _id(usernanme | N VARCHARZ,

4 pl ai nt ext _password | N VARCHARZ,

5 emai | _address I N VARCHARZ,

6 cardid I N VARCHAR?,

7 requestor _id I N NUVBER)

8 RETURN PLS | NTEGER

9 IS

10 | user _id PLS | NTEGER,

11 BEG N

12 priv.assert _allowed(requestor _id, priv.add user_c);
13

14 | NSERT INTO |lib _users (id, usernane,

15 encrypt ed_password,

16 account creation_date, emmil_address, cardid)
17 VALUES (| i buser _seq. NEXTVAL, user nane,

18 | opu. encrypt ed_password(username, plaintext password),
19 SYSDATE, enmil _address, cardid)

20 RETURNING id INTO | user _id;

21

22 RETURN | _user _id;

23 END new user i d;

24

This logic is straightforward: ensure that the requestor has the privilege to add the user, insert the record into
the table of users, and return the newly generated user id to the calling program.

| will mention one thing about lines 3-7. It seems that | may be violating my own rule about avoiding
parameter names that match column names. However, these parameters appear in the VALUES clause of an
INSERT statement, where Oracle won't ever confuse them with column names.

Now let's take a look at a simple function that will help determine whether a given username/password
combination is valid.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (10 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

9.6.3.2 Authenticating by username and password

The aut henti cat ed _user i d function checks whether the supplied username and password generate the
same MD?5 value as the one that's stored in the database. If they do, the function returns the user's numeric
ID. Here is the implementation:

CREATE OR REPLACE PACKAGE BODY | i buser
AS

FUNCTI ON aut henti cated_user _i d(usernane_in I N VARCHARZ,
pl ai nt ext _password_in | N VARCHAR?2)

RETURN PLS | NTEGER

IS

~NOoO Ok WN P

| interrupt this code listing for a bit of commentary. All the real work is done in the SELECT statement (lines 3-
7 in the following code), which means "find the user id that corresponds to the supplied username and
password." You can see the | opu. encrypt ed passwor d procedure in the WHERE clause (line 7). Yes,
Oracle lets you incorporate programmer-defined functions into SQL statements, which is really a trés cool
feature.rol

[9]1 At one time, using your own functions in SQL statements was actually newsworthy. | suppose by now most
other vendors' databases are doing this too!

8 CURSOR ucur
9 IS
10 SELECT id
11 FROM i b_users
12 WHERE UPPER(user nane) = UPPER(usernane_in)
13 AND encrypted _password =
14 | opu. encrypt ed_password(usernanme_in, plaintext _password_in);
15 ur ow ucur “ROMYPE;
16
17 BEG N
18 | opu. assert_not nul | (usernane_in);
19 | opu. assert _not nul | (pl ai nt ext _password_in);
20 OPEN ucur;
21 FETCH ucur | NTO urow,
22 | F ucur ¥NOTFOUND
23 THEN
24 CLCSE ucur;
25 exc. myrai se(exc. authorization_required_cd);
26 END | F;
27 CLCSE ucur;
28 RETURN ur ow. i d;
29 END aut henti cat ed user id;
30
31 END |i buser;
32/

If the IF test passes in line 22, the user didn't get the name/password combination correct, and line 25 raises
an authorization exception. Presumably, whatever calls this program will handle it appropriately.

If it gets to line 28 without raising an exception, the credentials "pass,” and the function returns the user id to
the caller.

9.6.4 Web-Based Security Components

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (11 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Now that we've got some lower-level procedures and functions prepared, we can begin to write code to
support our chosen web-based authentication approach. Remember that this approach involves use of a
random session id? This package is where all the associated session id management and checking goes:

CREATE OR REPLACE PACKAGE privweb
AS

If the application lets session ids be valid forever, it will make life easier for Bad Guys who want to crack other
people's accounts by guessing their session ids. So we'll make a session "time out" after some number of
minutes, requiring the user to supply her username and password. This first function merely returns the
timeout value:

FUNCTI ON web _session_tineout _m nutes RETURN PLS | NTEGER,

Next is a function that will create, store, and return a new session identifier if the supplied username and
password are correct. This function also computes and stores the date and time when we'll make the session
expire:

FUNCTI ON new _session_id(username_in | N VARCHARZ,
pl ai nt ext _password_in I N VARCHAR?)
RETURN VARCHAR2;

As a utility function, user i d looks up the user id for the supplied session id:

FUNCTI ON user _id (session_id_in I N VARCHAR2)
RETURN PLS | NTEGER;

The final routine is a simple cover for the | | buser . assert al | owed procedure, but this one accepts
session identifiers rather than user identifiers:

PROCEDURE assert _al |l owed(session_id I N NUVBER,
privilege id I N NUVBER) ;

END pri vweb;
/

Let's look at the implementation of new sessi on i d. Itis mildly interesting because it's the first code that
makes use of the | opu. randonst r function we wrote earlier. Notice that the code ensures that the random
number is truly unique (lines 39-51):

1 CREATE OR REPLACE PACKAGE BODY privweb

2 AS
12 FUNCTI ON new_session_id(usernanme_in | N VARCHARZ,
13 pl ai ntext _password_in I N VARCHAR?2)
14 RETURN VARCHAR2
15 IS
16 CURSOR i dcur (which_id VARCHAR2)
17 IS
18 SELECT NULL
19 FROM web_sessi ons
20 WHERE session_id = which_id;
21 i drow i dcur YRONYPE;
22
23 | session_id web_sessions. session_i d%YPE;
24 | user id lib_ users.id%YPE,

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (12 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

25 i d_exi sts BOOLEAN;

26

27 BEGA N

28

29 /* not-null assertions established in authenticated user id
30 || function cal

31 */

32 | user _id :=

33 | i buser. aut henticated user _id(usernanme_in, plaintext_password_in);
34

35 /* Search in a loop so we're sure that the session id is unique
36 || Acollisionis very unlikely but ya never know. ..

37 */

38

39 VWH LE id_exists IS NULL OR id_exists

40 LOOP

41 | session_id := | opu.randonstr;

42 OPEN i dcur (| _session_id);

43 FETCH i dcur |INTO idrow,

44 I F i dcur %-OUND

45 THEN

46 id exists := TRUE

47 ELSE

48 id exists := FALSE

49 END | F;

50 CLCSE i dcur

51 END LOOP

52

53 I NSERT | NTO web_sessi ons(session_id, user_id,

54 expi ration_date)

55 VALUES (| _session_id, | _user_id,

56 SYSDATE + (web_session_tinmeout m nutes/1440));
57 RETURN | _session_id;

58

59 END new session_id;

The code that looks up a user id based on the session id is straightforward:

61 FUNCTI ON user _id (session_id_in IN web_sessions. i d%YPE)
62 RETURN PLS | NTECGER

63 IS

64 CURSOR scur

65 IS

66 SELECT user_id, expiration_date
67 FROM web_sessi ons

68 WHERE id = session_id_in;

69 srow scur YROMYPE;

70 BEG N

71

72 I F session_id_in I'S NULL

73 THEN

74 exc. myrai se(exc. not_| ogged_in_cd);
75 END | F;

76

77 OPEN scur;

78 FETCH scur | NTO srow,

79 I F scur %0NOTFOUND

80 THEN

81 CLCSE scur;

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (13 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

82 exc. myrai se(exc. not_| ogged in_cd);
83 END | F;

84 CLCSE scur;

85

86 | F srow. expiration_date < SYSDATE

87 THEN

88 exc. nyrai se(exc. session_tined out cd);
89 END | F;

90

91 RETURN srow. user i d;

92

93 END user _id;

Lines 72-75. When faced with a null session id, the function raises the not | ogged i n exception, allowing

callers of this function to do something reasonable, like call the login page. We don't want to do that here
because this package is supposed to be unconcerned with user-interface behavior.

Lines 86-89. Comparing the expiration date and time with the current date and time lets the function know
whether to fail with a timeout error.

9.6.5 User Interface Components
Now, with the underlying utilities in place, we can create the user interface components with relative ease.
9.6.5.1 Support utility: The loginweb package

The process | ogi n procedure in the | ogi nweb package will be called by the web page that prompts for
the username and password:

PROCEDURE process_| ogi n(usernane_ | N VARCHAR2 DEFAULT NULL,
pl ai nt ext _password_ | N VARCHAR2 DEFAULT NULL,
destination_ I N VARCHAR2 DEFAULT NULL,
submit I N VARCHAR2 DEFAULT NULL);

Notice that it has a dest | nat i on parameter. The library system will have many public pages—that is, pages

that do not require any authorization. The first time a user clicks on a link that requires authorization, the
system will send the user to the login page. After the user types in a valid name and password, what
happens? By having the programs accept a destination parameter, we can allow the user to proceed from the
login page to his original destination. This will save a lot of user aggravation, which is always a good thing to
save.

The basic logic of this procedure goes like this: if the user has supplied a correct username and password,
take him to the desired destination; otherwise, let him try again. Here is the code that implements this logic:

CREATE OR REPLACE PACKAGE BODY | ogi nweb
AS

PROCEDURE process_| ogi n(usernane_ | N VARCHARZ,
pl ai nt ext _password_ | N VARCHARZ,
destination_ I N VARCHARZ,
submit I N VARCHAR?)
IS
sessid web_sessions. i d%I'YPE;
token VARCHAR2(1) :="'& ;
11 BEG N
12 /* not-null assertions established in new session_id function call */

'_\
CQOWOO~NOOITA,WNPE

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (14 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

13 sessid : =

14 pri vweb. new sessi on_i d(usernane_, plaintext_password);
15

16 | F destination_ I'S NULL

17 THEN

18 HTP. I NI T;

19 booksear ch;

20 ELSE

21 | F INSTR(destination_, "?') =0

22 THEN

23 token := "'?';

24 END | F;

25 OMA_UTI L. REDI RECT_URL(destination_
26 || token || 'session_id = || sessid);
27 END | F;

28

29 END process_| ogi n;

30

41

43 END | ogi nweb;

43 |/

Why, you may ask, does this procedure even exist? Why not put all this logic into the PL/SQL Server Page
(PSP) that will draw the login screen? Yup, | could have done that, but it seems unwieldy to me. | don't like
putting a huge load of logic into the PSP, which | believe should limit its scope to user interface constructs.

Here's what's going on in this code.

Line 13-14. This is where we invoke the new sessi on_i d function we just discussed. By the way, it will

raise an exception if authentication fails. If that happens, the exception will simply propagate out to the caller.
This will turn out to be important later.

Lines 16-19. Where to go when no particular destination is given is kind of an arbitrary decision here. The
booksear ch page sounds good to me.

Lines 10, 21-24. You may know that when you construct a URL and append name/value pairs to it, the first
delimiter is a question mark and subsequent delimiters are ampersands. Since we won't know in advance if
the destination includes any name/value pairs, line 21 tests for the presence of a question mark; if a question
mark is not found, line 23 sets the contents of t oken to ?. We want this to happen because we're getting

ready to tack on the session id as a name/value pair in line 25.

Line 25. This is the "aggravation saver" | mentioned earlier. It calls the Oracle built-in procedure that will send
a so-called "HTTP redirect" command to the web browser, causing the current page to change to the page
contained in dest i nati on_. However, it will now include a valid session id for authentication purposes,

which the destination page should be designed to check.
9.6.5.2 The login screen: login.psp
At long last, let's take a look at the login page, shown in Figure 9-1. There's not a lot to it, on the surface.

Figure 9-1. The login screen

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (15 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

T -
£ Log in - Melscape

Fie Edi Yew Go Communicsion Help

J'Bmhmuh ¥, Lmdi:n:lhl:tp Hanel dataciaf, comdpl:lopwebdogn :I I:'

Please log in

Llzername: |

Password: |

submit I

= Document Done

The code that supports this page is a bit unusual, though:

<%
| F submit I'S NOT NULL
THEN

RETURN,;

END | F;
%
<HTM.>
<HEAD>
10 <TI TLE>Log i n</ Tl TLE>
11 </ HEAD>
12 <BODY bgcol or="white">
13 <H1>Pl ease | og in</Hl>
14 <% subtitle_ %
15 <FORM net hod="POST" acti on="I| ogi n">

O©CoO~NOO O, WNPRE

16

17 <P>User nane: <|INPUT type="text" nane="usernane_"

18 </ P>

19

20 <P>Passwor d: <INPUT type="password" nanme="pl ai nt ext _password_"
21 </ P>

22

23 <P><I NPUT type="submt" nane=submt val ue="submt">

24 </ P>

25

26 <I NPUT type="hi dden" nane="destination_" val ue="<% destination_ %">
27

28 </ FORW>

29 </ BODY>

30 </ HTM.>

31 <% EXCEPTI ON

32 VWHEN OTHERS

33 THEN

34 HTP. INIT;

35 | ogi n(user nane_ => HTF. ESCAPE_SC(user nane_),

36 destination_ => HTF. ESCAPE_SC(destination_),

37 subtitle_ => webu. errfont (HTF. ESCAPE_SC(SQLERRM))) ;
38 %

39

40 <%@ page | anguage="PL/SQ." %

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (16 of 20) [15/05/2002 23:01:23]

| ogi nweb. process_| ogi n(usernane_, plaintext_password , destination);

val ue="<% usernanme_ %">

val ue="">

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

41 <% pl sql procedure="Iogi n" %

42 <%@ pl sql parameter="usernane_" default="null" %

43 <%@ pl sql paramneter="pl ai nt ext _password " default="null" %
44 <%@ pl sql paranmeter="destination " default="null" %

45 <%@ pl sql paraneter="subtitle " default="null" %

46 <%@ pl sql paranmeter="submt" default="null" %

The first thing you'll notice is that it looks sort of upside down—the usual page-level directives are at the end
of the file rather than the beginning. However, they can be almost anywhere in the file and still have it
compile... and | do have a good reason for this backward arrangement! Let's look at some details.

Lines 1-6. These lines handle the case that the user has pressed Submit.

Lines 33-38. If the user enters incorrect information, the exception handler will trap the resulting exception.
Instead of giving an error message, though, we just redraw the login screen, sending the error message to
display as the "subtitle."

Lines 40-46. To explain the backward arrangement, | had to move these lines to the end of the file because
Oracle's loadpsp facility has a silly habit of converting each of them into:

ht p. prn(’
)

in the resulting procedure. Normally, that's not a problem, but it is when you want to redirect a page with the
OWA_UTIL.REDIRECT_URL built-in procedure, which can happen in that pr ocess_| ogi n procedure.

HTTP redirection depends on the web server's inserting a special "header" field near the very beginning of the
response stream, and if you delay it by sending an extra linefeed—as the previous HTP.PRN statement
does—the client stops reading the header and assumes you're sending it page content. When that happens,
redirection doesn't work. Sigh.

ol In an earlier version of this form, | used act i on="process | ogi n"
F rather than act i on="1 ogi n" in the <FORM> tag. However, |
L0

+ discovered the hard way that using a secondary program like this is a
bad idea. The reason: after pressing Submit, the user would be
viewing a page generated by process | ogi n instead of by | ogi n.
Big deal? Yes, because it would mean that (a) the secondary program
would have to become involved in the user interface (bad design!),
and (b) exceptions raised in the secondary program could not be
handled in the main | ogi n program.

This is not a peculiarity of the Oracle or the PL/SQL web gateway—it's
just the way HTTP works. Pressing a Submit button takes the user
straight to the page generated by the program in the act i on attribute.

9.6.6 Password-Protecting the Book Editing Page

So how does all this fit together? Let's take the web page that allows users to edit book information and
protect it with a password. There are five essential changes we have to make:

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (17 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation
1. Make sure that the desired privileges existinthe | i b _pri vi | eges table and as package constants

in the pri v package.

2. Modify the book package to check for appropriate permissions before executing any operation that
changes the database.

3. Modify bookform.psp to allow the form to receive a session id, which we'll store in a hidden form field.

4. Since the entire page will be password-protected, add a check to see if the current user (based on
session id) even has permission to view the page.

5. Alsoin hookf or m handle any login-related exceptions by calling the | ogi n page.

To be really good, bookform.psp should display buttons selectively, showing only those corresponding to the
current user's privileges. This can be accomplished with IF tests.

We'll look at each of these changes in turn.
9.6.6.1 Define privilege constants

In theory, the customer of the system would decide what privileges you might need to support. Should the
right to view a book's detailed information be password-protected? What about the right to view a particular
web page without any data in it? Once requirements are settled, the programmer can assign identifiers to the
privileges, first as package variables, as follows:

CREATE OR REPLACE PACKAGE priv
AS

edit_book_c CONSTANT PLS | NTEGER : = 106;

edit _book _copy c CONSTANT PLS | NTEGER : = 107;
weed book c¢ CONSTANT PLS | NTEGER : = 108;

del et e_book_copy_c CONSTANT PLS | NTEGER : = 109;

use_bookform c CONSTANT PLS | NTEGER : = 110;

and then asrecords inthe | i b_pri vi | eges table. By the way, a handy way to populate the table of
privileges would be:

BEGA N
DELETE lib_privil eges;

I NSERT INTO |ib_privileges (id, nane)
VALUES (priv.edit _book c, '"ED T BOX);

I NSERT INTO lib_privileges (id, nane)
VALUES (priv.edit_book copy_c, 'ED T BOOK COPY');

and so on, for all the constants.
9.6.6.2 Protect the book package

Necessary changes to the book package involve adding the user id to the parameter list of "dangerous"
operations. This enables usto call pri v. assert al | owed prior to every operation. For example, see the

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (18 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

change procedure:

BEG N
priv.assert_all owed(requestor_id, priv.edit_book c);
| opu. assert_notnul | (isbn_in);
UPDATE books
SET title = new title, author = new author, page_count = new page_count,
sumary = new _sumary, date_published = new date published
WHERE i sbn = isbn_in;

Remember that the assert al | owed procedure raises an exception if the requestor lacks the designated
privilege, so no code following it will execute.

9.6.6.3 Add a session id to the book editing page

The next thing we need to do is add a sessi on_i d_parameter to the page as a way of preserving
information about the user. So, interspersed with the other parameters, add:

<% pl sql paranmeter="session_id " default="null" %

And down inside the form, add:

<I NPUT type="hi dden" nane="session_id_ " value="<% session_id_ %">

9.6.6.4 Protect the book editing page
We will keep unauthorized users out of the book editing form by making a simple change to the PSP file:

<BODY bgcol or="white">
<H1>Book det ai | s</ H1>
<P><% subtitle_ %</P>
<%
privweb. assert al |l owed(session_id , priv.use bookformc);

9.6.6.5 Handle login-related exceptions

The exception handler is a little tricky:

</ BODY>
</ HTM.>
<%
EXCEPTI ON
VWHEN exc. not | ogged_in
OR exc.session_tinmed out
OR exc. authori zation_required
THEN
HTP. INIT;
| ogi n(subtitle_ => webu. errfont(HTF. ESCAPE_SC(SQLERRM)) ,
destinati on_ => 'bookforn®i sbn_=" || HIF. ESCAPE_SC(isbn_));

This code fragment illustrates how to leave a trail of breadcrumbs back to the bookf or mpage by sending the
destinati on parameter to the | ogi n page.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (19 of 20) [15/05/2002 23:01:23]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgelLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page76.html (20 of 20) [15/05/2002 23:01:23]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 9. Intermediate Topics and Other Diversions > 9.7 Still More PL/SOQL
Features

< BACK Start | Table of Contents | Index | Examples CONTINUE >

9.7 Still More PL/SQL Features

This is the part of the book where you get to see a wealth of PL/SQL capabilities in only a few pages. The
examples here are not full-fledged tutorials; they are only meant to let you in on more of the features you may
decide to use as you progress as a PL/SQL programmer.

These are the features I'll run through in this section:
« Object types
. Large objects
« XML
« The code profiler
. (Pipelined) table functions

« More built-in packages and types

9.7.1 Object Types

Earlier in this chapter, | showed how you can create your own user-defined types that will hold collections.
Oracle Version 8.0 and later offer another way to add custom datatypes to your application. In PL/SQL, an
object type is a database construct that lets you define a data structure and a set of related operations upon
it. The object type can have multiple attributes, in the same way that a record can have multiple fields. Those
"operations" are really just a name for procedures or functions you define in the object type; the procedures
and functions are also known as methods.

An example of an object type designed to hold information about library patrons is:

CREATE TYPE lib_patron_t

AS OBJECT (
i d NUMBER,
user namre VARCHAR2(60),
encrypted password RAW 16),
account creation_date DATE,
emai | _address VARCHAR2(2000),

STATI C FUNCTI ON nake (usernanme | N VARCHARZ,
pl ai nt ext _password | N VARCHARZ,
emai | _address | N VARCHARZ,
requestor_id | N NUMBER)
RETURN | i b_patron_t,
VEMBER PROCEDURE save,
VEMBER PROCEDURE r enove,
MEMBER PROCEDURE send_nessage (text I N VARCHAR2)

),

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page77.html (1 of 8) [15/05/2002 23:01:26]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page69.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

/

The static function neke and the member procedures save, renane, and send_nessage are the methods |
have defined. As with packages, these are implemented in a separate compilation unit, created with a
CREATE TYPE BODY statement (not illustrated in the previous example). Once you create an object type,
you can use it as the datatype for a PL/SQL variable, a table column, or even a database table. To initialize
an object, you could either call a constructor function directly (similar to what |1 showed earlier for collections)
or put it inside a custom method such as the one I've named nake. Invoking methods on an initialized object
is similar to the method shown earlier for invoking collection methods.

Oracle9i added inheritance to the Oracle type model—that is, the ability to define a subtype that shares
characteristics with its parent type. For example, | could create a subtype of library patrons who have
permission to borrow books (as opposed to merely browsing the catalog):

CREATE OR REPLACE TYPE |i b _borrower t
UNDER i b _patron_t (
cardi d VARCHAR2(30),
STATI C FUNCTI ON neke (patron |lib _patron_t, cardid I N VARCHAR?2)
RETURN | i b_borrower t,
OVERRI DI NG MEMBER PRCCEDURE save,
OVERRI DI NG MEMBER PROCEDURE r enove

These library borrowers will have attributes of the supertype plus the additional car di d attribute. The
i b _borrower t objects will also respond to the send nessage method, which the supertype
implements, although the subtype has slightly different versions of the other three methods.

Why would you want to use these object-relational features? The short answer is that many programming
shops prefer an object-oriented approach in their applications. Having parallel features in the database could,
in the long run, make database application development and maintenance more consistent—and therefore
more reliable, understandable, and cost-effective.

For more information about object-relational aspects of PL/SQL, see:
. Oracle PL/SQL Programming, by Steven Feuerstein with Bill Pribyl (O'Reilly)

. These three Oracle documents: Concepts, Application Developer's Guide—Object-Relational
Features, and PL/SQL User's Guide and Reference

9.7.2 Large Objects

The name of this next topic always amuses me. Sounds like the beginning of a college physics problem: "A
large object is suspended from a wire in a perfect vacuum...."

In Oracle, a large object (LOB) is a datatype that allows you to store data such as graphic images, audio,
video, or even entire office documents in the database. It's called "large” because the upper limit on the size
of each large object is a mondo four gigabytes. Working with such an enormous beastie can be quite a
challenge in PL/SQL, or any other language for that matter, but most LOBs are probably much smaller.

There are three major large object datatypes:

Character large object (CLOB)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page77.html (2 of 8) [15/05/2002 23:01:26]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Holds text that can be represented in the same character set as the database (for example, ASCII). If
you want to hold character data from a different national language character set, you can use a
variant of this datatype called an NCLOB.

Binary large object (BLOB)

Contains arbitrary bits that represent any kind of data. Normally, external programs such as special
editors or office software manipulate the BLOB data.

Binary file (BFILE)

Allows you to store, inside the Oracle database, information about a file that actually lives outside the
database in a separate file.

The term internal LOBs refers to those LOBs stored in the database: CLOBs, NCLOBs, and BLOBs. The
term external LOBs refers to BFILES.

One of the ways that Oracle improves performance when working with internal LOBs is to store them in
special areas called LOB segments, which are physically separate from table segments. In a database table
with a LOB-typed column, Oracle stores only a LOB locator —a fancy name for a pointer.[10] This does
complicate working with LOBs, but PL/SQL provides quite a bit of help.

[101 You can, however, get Oracle to store "small" LOBs (those less then 4K bytes) in the same segment as the
table.

Some operations that PL/SQL lets you perform with LOBs include:
Declare

You can declare a PL/SQL variable to be one of the LOB types. For example:

DECLARE
| cover text CLOB;
| _cover _graphic BLOB;

These variables will hold the LOB locators rather than the actual objects.
Fetch locator

If a LOB already exists in the database, you can use a SELECT statement to retrieve its locator into
the PL/SQL program variable. If the book cont ent s table contains a cover graphi ¢ BLOB and a

cover _text CLOB, you can say:

DECLARE

| cover text CLOB;

| _cover _graphi c BLOB;

CURSOR bcur 1S

SELECT cover _graphic, cover_text
FROM book cont ents;

BEG N

OPEN bcur;

FETCH bcur INTO | _cover _graphic, | _cover _text;

Copy LOB contents into variable

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page77.html (3 of 8) [15/05/2002 23:01:26]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Remember that the previous step only fetched the LOB locators (pointers) into program variables. To
read some part of a LOB's contents, you can use Oracle's built-in DBMS_LOB.READ procedure. If
buf is a VARCHAR2(1000) or larger, this should work:

DBMS LOB. READ(I ob | oc => | cover text, /* use this locator */

amount => 1000, /* read 1000 characters */
of fset => 1, /* start at the first character */
buffer => buf); /* put results in local variable */

Because you can designate where to begin (the "offset") and how much to read, this is known as a
piecewise read operation.

Search LOB contents

It may be a time-consuming operation, but it is possible to search a particular LOB for a given pattern.
For example, if pos is an INTEGER variable, you might specify:

pos := DBVM5 _LOB.INSTR(lob |oc => 1| _cover_text, /* use this |ocator */
pattern => 'best of breed'); [* search for this string */
IF pos >0
THEN
DBMS_OUTPUT. PUT_LI NE(' Found "best of breed" at position ' || pos);
END | F;

Change LOB contents

You can use DBMS_LOB.WRITE to modify a portion of a LOB:

DBVS LOB. WRI TE(l ob_I oc => | cover _text,

anmount => 5, /* length of buffer variable contents */
of fset => pos, /* where to wite */
buffer => "worst'); /* data to wite */

If you only want to add content to the end of the LOB, you should use the DBMS_LOB.APPEND procedure,
which is much more efficient than WRITE. There are quite a few other operations you can perform, such as
reading a file from the operating system and storing it into the database, or determining the size of the LOB.
For learning about these and other features, | suggest the following:

. Oracle Built-in Packages, by Steven Feuerstein, Charles Dye, and John Beresniewicz (O'Reilly).

. These Oracle documents: Application Developer's Guide—Large Objects, and Supplied PL/SQL
Packages [and Types] Reference (see the chapter on DBMS_LOB). Also see Oracle's SQL
documentation for coverage of the CREATE DIRECTORY command, the BFILE datatype, and the
BFILENAME, EMPTY_CLOB, and EMPTY_BLOB functions.

9.7.3 XML

Oracle has quite a number of features for dealing with so-called "semi-structured” data represented in XML.
You might encounter XML when setting up data interchanges between your database and some third party's
system, as mentioned in Chapter 8. As a PL/SQL programmer, you have many tools for dealing with such a
requirement. These include:

Datatypes

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page77.html (4 of 8) [15/05/2002 23:01:26]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Oracle9i added direct support for a new datatype to store XML, called XMLType. Other types include
UriType, which holds Uniform Resource Identifiers (similar to URLs but generalized to hold XML
information).

XML SQL Utility (XSU)

Includes tools to read XML and store the data into database tables, as well as tools to generate XML
on the fly from data in the database.

XML Developer's Kit (XDK) for PL/SQL

Includes an XML parser that gives you a programmatic interface to the standard Document Object
Model (DOM).

In addition to Building Oracle XML Applications by Steve Muench (O'Reilly), which | suggested in Chapter 8,
another authoritative source of XML information is Oracle's document Application Developer's Guide—XML.

9.7.4 The Code Profiler

Although I have not focused much on PL/SQL performance in this book, sooner or later you may wonder how
you can speed up your program's execution. Why is it running so slowly? Is it an all-over slowdown, or are
there problem sections of code? To help you answer these questions, Oracle8i and later provide a built-in
package called DBMS_PROFILER that will let you discover how long each individual line takes to run. Such
performance statistics go a long way toward identifying bottlenecks, and they will help you concentrate
troubleshooting effort where it's likely to do the most good.

To use the profiler, follow these steps:

1. Enable the collection of performance data for the current session by executing
DBMS_PROFILER.START_PROFILER.

2. Run your application. While it's running, Oracle will collect performance statistics and store them in
database tables.

3. Execute DBMS_PROFILER.STOP_PROFILER.

4. Run an Oracle-supplied script to view a summary of the data Oracle collected during the run.
Although the generated reports won't tell you exactly how to speed up your code, they will illustrate
which parts of your application are taking the most time to run.

Oracle designed the profiler prior to the introduction of native execution, and it works best with old-fashioned
interpreted code. If you are trying everything to improve raw performance, it's quite possible you are also
using Oracle9i's native execution, in which case the profiler probably won't help much. Profiling a native
routine is supposed to record the time spent in the routine against the line of the call to it in the closest
interpreted routine. But with some combinations of native and interpreted code you may get some erroneous
double counting, so examine your results carefully.

You can read about the profiler in Oracle's Supplied PL/SQL Packages document. You will also want to take
advantage of the sample scripts in the PL/SQL "demo" subdirectory. On Unix, you'll find these at
$ORACLE_HOME/plsql/demo/prof*.

9.7.5 (Pipelined) Table Functions

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page77.html (5 of 8) [15/05/2002 23:01:26]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page62.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Oracle8 allowed you to create a function that returns a collection instead of a scalar. So, for example, a
function called act i ve_pat r ons could accumulate data about active library patrons from the database,
populate a nested table with this data, and then send the data to the calling program via the RETURN clause.
However, if there were a lot of this data, it could consume huge amounts of memory; in addition, there are
some gyrations you have to go through if you want to search through the result set.

Beginning in Oracle9i, you can actually output from a function in the FROM clause of a SQL statement. In
addition, Oracle9i began providing a way to pipeline the data to ease the memory requirements. In other
words, pipelining lets the consumer of the data begin to read rows of the result set before the function has
finished creating them.

In this section, I'll show one simplistic example of retrieving active patrons from the database—i.e., those who
have had any transactions within the past n days. In order for you to create a pipelined table function, a
collection type must exist first, because the function must return a typed collection:[111

[11]1 This example uses a collection of scalars (numbers), but it is possible to create a "collection of objects"
instead—first create an object type, and then create the collection as a table of that type.

CREATE OR REPLACE TYPE active_patrons_t AS TABLE OF NUMBER
/

Next, | create the function, including the PIPELINED keyword in its specification. In addition, | use the PIPE
ROW statement inside the loop in order to return the data:

CREATE OR REPLACE FUNCTI ON active _patrons (begi n_date DATE DEFAULT SYSDATE - 14)
RETURN active_patrons_t

Pl PELI NED
AS
BEGA N
FOR pat IN
(SELECT id FROM | i b_users u, user book copy events e
WHERE u.id = e.borrower _id
AND tinestanp > begi n_date)
LOOP
Pl PE ROW (pat.id);
END LOOP;
RETURN,;
END;

/

Notice that a pipelined function concludes with a bare RETURN statement.

Now, once the function exists, | can use SQL's ability to cast a nested table as a particular datatype. To
return all patrons active in the past two days:

SELECT * FROM TABLE(CAST(active_patrons(SYSDATE - 2) AS active patrons_t));

| do admit that that uses some bizarro syntax. Here's what it means: execute act i ve patrons(SYSDATE-
2) , retrieve the results, cast them to the datatype acti ve patrons_t, and "unnest" the collection to query
it like a table.

Although my example merely approximates querying a view with a WHERE clause, the implications for this
approach are enormous. Having the full range of PL/SQL's procedural capabilities available to define a view
of the database is a very exciting feature. (I have long wanted a way to "parameterize" a view in the way I've
done in this example.) Another way to use a table function would be to have it pipe out data that it reads in
from a flat file with the UTL_FILE built-in package. The potential is huge. As an added bonus, in some

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page77.html (6 of 8) [15/05/2002 23:01:26]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

situations you can even have Oracle evaluate a table function using parallel processing for greater
performance.

For more information about pipelined table functions, one of the few sources available at the time of
publication is Oracle's PL/SQL User's Guide and Reference (for Release 9.0.1 and later). To learn more
about the TABLE and CAST keywords shown in the previous query, see Oracle's Application Developer's
Guide—Object-Relational Features and the SQL reference.

9.7.6 More Built-in Packages and Types

Through their built-in packages, Oracle makes available many more useful features than | have space to
discuss. So I'm going to resort to the "relational" comfort of presenting them in Table 9-4. | hope you'll take
the time to explore these on your own.

Table 9-4. Additional Oracle built-in packages and types

Available since

Feature Packages and types [Functionality version
o . Automatically copy and maintain
Replication Too many to list data in multiple databases 7
DBMS_AQ
Use database queues for
Advanced Queueing |DBMS_AQADM asynchronous communication 3

between different applications

and/or databases
DBMS_AQELM

Flashback query DBMS_FLASHBACK | /€ database constants as ofa |,
particular time in the past

Schedule PL/SQL programs to run
Database "jobs" DBMS_JOB automatically at particular times or |7
intervals

In-memory communication between
Database "pipes” DBMS_PIPE database programs running in 7
different sessions

Create a virtual private database to
Fine-grained security |DBMS_RLS implement sophisticated security 8iR1
and privacy policies

Find and manipulate object-typed

data based on its REF 8

DML via object REFs |UTL_REF

Network 1/0 UTL TCP Prowd_e API to low-level TCP/IP 8i R2
- operations

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page77.html (7 of 8) [15/05/2002 23:01:26]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DBMS_TYPES

ANYDATA (type) Tools for creating, storing, and using
Dynamically typed data data whose database is not known |9i

ANYDATASET (type) |in advance

ANYTYPE (type)

Grab-bag of developer goodies
including call stack formatting, list

Utilities DBMS_UTILITY . . 7
- parsing, and Oracle version
identification
Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation
< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page77.html (8 of 8) [15/05/2002 23:01:26]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 10. Afterword: "Making Good" of Database Programming

< BACK Start | Table of Contents | Index | Examples CONTINUE >

Chapter 10. Afterword: "Making Good" of
Database Programming

Rather amazingly, the other day | bought a name-brand 1.2-gigahertz PC for less than $1,000,
and it included a 60-gigabyte hard drive. Then | saw a new 80-gigabyte drive for about $200.
You've probably come across similar great deals. But to tell you the truth, I have mixed feelings
about the falling costs of the hardware needed to run a big database. With software like Oracle
getting more and more sophisticated, particularly in its ability to quickly analyze mountains of
data, even average-size businesses can afford tools that can turn data into "competitive
advantage."

Unfortunately, some of these technologies of competitive advantage are troubling. | don't mean
that they represent bad design—in fact, many of them are extremely clever. Instead, the
disturbing part has to do with what people are trying to accomplish in the first place. That is the
subject of this concluding section. | will explore:

. A few "modern" applications of database technology
. The ethical problems raised by these applications
. The response to these problems by application developers

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page79.html [15/05/2002 23:01:27]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 10. Afterword: "Making Good" of Database Programming >
10.1 The Evidence

< BACK Start | Table of Contents | Index | Examples CONTINUE >

10.1 The Evidence

It's not too hard to find cause for concern, and | will share a few stories to make my case. | make
no apologies for the fact that my evidence is anecdotal.

Internet portals and the privacy of the database

Well-known Internet portals provide "personalized” web sites for free. But behind the
scenes they collect "clickstream™ information (where you surf, how long you stay there)
that they may be tempted to use in a wide variety of ways. Many companies effectively
share information about you with other companies, even if they won't admit it in their
published privacy policies, because they use common "banner" advertisers.

Baby blues

A Houston woman (known to my wife) had a baby in a local hospital. Her husband was in
a particularly dangerous side of law enforcement requiring the family's address and
telephone number to be unlisted. Without the parent's consent, the birthing hospital sold
the family's demographic information to companies that sell baby products. All of a
sudden, the household information has been sold into every third-party database.

The attack of the credit card

A company uses terabytes of data to market credit cards to consumers. They actually
design hundreds—perhaps thousands—of different "products,” each with different
combinations of "branding," annual fee, APR, balance transfer offers, and so on. The goal
is to offer "just the right deal" to get the most from their customers. Of course, the "right"
deal means the one that will result in maximum profits for the credit firm and maximum
losses to their customers.

The "database marketing" industry

Marketing companies conduct direct-mail campaigns that begin with a relatively fresh
database of every household in America, obtained in part from the change-of-address
cards you fill out when you move.[1]l By combining that with other "legally obtainable"
information from third parties, and applying sophisticated statistical profiling approaches to
the demographic data, the firm can identify individuals who are likely to spend money on a
particular item.

[1] The U.S. Postal Service will sell your address to a "certified and approved licensee" for as little
as one-fifth of a cent.

One direct-mail marketing campaign sent out hundreds of thousands of flyers designed to look

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page80.html (1 of 2) [15/05/2002 23:01:29]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page78.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

like they came from a company that sold cars. Buy a new car today! Choose from these models!
And in smaller print, Financing available now. Using a database of households, they targeted
customers they considered likely purchasers. But the sponsor turned out not to be a car
manufacturer or dealer, but rather the credit company that is offering the financing package. They
used the database specifically to target people who are barely creditworthy but still likely to make
payments with unusually high interest.

Frittering away

And here is an example from the "gaming" industry. This excerpt comes from Kim Nash's
article "Casinos Hit Jackpot With Customer Data" in the July 12, 2001 issue of
Computerworld:

In its latest annual report, Harrah's Entertainment Inc. bragged, "We know what
our customers like," then provided examples of the kind of detail the company
tracks. "Tom likes NASCAR, Clint Holmes, thick steaks. Joyce and Ted like
oceanfront views, barbershop quartets, Elvis slots..."

Native American-owned Foxwoods Resort Casino can parse its 200GB customer
database, match it against third-party demographic data and tell whether a patron
has kids or how much he makes per year. If he spends $100 or more daily at
Foxwoods, he gets the red-carpet treatment.

"We know who these people are and cater to them. We make sure they have
flowers in the room, a drink in the hand and reservations at the restaurant,” said
Brian Charette, director of gaming at the $1.2 billion Foxwoods casino complex in
Mashantucket, Conn.

Loyalty cards are the key. At a typical casino, when a player swipes his card at a
table game or slot machine, a network of databases jumps into action. The system
captures, among other things, how long the person plays, how much he wins and
loses and what his betting strategy is. It can compare statistics from previous visits
and provide real-time hints to casino workers about how to treat a given customer,
based on how much he is worth to the company.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page80.html (2 of 2) [15/05/2002 23:01:29]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 10. Afterword: "Making Good" of Database Programming >
10.2 The Problem

< BACK Start | Table of Contents | Index | Examples CONTINUE >

10.2 The Problem

These anecdotes, and others like them, reflect attacks on two fundamental rights. The first is
privacy. Now, one man's privacy violation is another's "tailored advertising experience," but a
database of personal information, collected without knowledge or consent and later brazenly sold
for profit, simply reeks of manipulation and exploitation. And no sane person would excuse the
hospital's endangering that young family's safety. | will not explore privacy issues further here but
will refer you to other works, such as Simson Garfinkel's Database Nation (O'Reilly).

It is the second attack | will focus on, because it has not received the same amount of attention as
privacy. The problem is the reduction of an individual to a "consumer unit." Many databases in the
world, particularly in public-oriented businesses, are promoting and defending the idea that
humans exist solely to generate profit for others.

Consider the evidence | presented from the credit industry. Defenders would assert that credit is a
huge service to those individuals who couldn't otherwise afford a new car, a widescreen TV, or
whatever. And | say, I've met people, good people, who have a hard time saying no to things they
don't need. Debt and spending addiction are two problems growing in part as a result of manic
promotions and advertising by credit companies. At one of these firms, | met a staffer who
rationalized: "I don't choose to live my life on credit, but if our customers do, that's their business."
In other words, if you are addicted to spending on credit, | don't mind profiting from it. | kept my
mouth shut at the time, but | was glad they never called me back to do more work.

I've never been in a casino in my life, but many people seem to be attracted to the whole "Vegas"
thing. The problem with Foxwoods is not just their pandering to people's base interests, but also
that there's something wrong with institutionalizing (in a database, no less) the assumption that "I
will be nicer to people who give me more money." And no, it doesn't make any difference to me
that the customers are already gambling away their money. The system at the casino crosses a
line because it rates individuals by the utilitarian yardstick of economic impact, reducing their
personal tastes and behavior patterns—indeed, their virtual selves—to mere operands in a profit
equation.

Now, the database marketing thing sounds like it ought to be good business; who would want to
spend money marketing to unlikely prospects? Aren't databases helping the economy run more
efficiently? Most of their customers are unsophisticated, and many are easily fooled. Even if
market efficiency is a desirable good, though, it does not justify a programmed view of a person
merely as a vehicle for consumption. It will often be the most vulnerable members of society who
are duped by the deal, people who may not be able to resist the temptation to waste money they
need to live on.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page81.html (1 of 2) [15/05/2002 23:01:42]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page78.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page81.html (2 of 2) [15/05/2002 23:01:42]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 10. Afterword: "Making Good" of Database Programming >
10.3 Answering the Objections

< BACK Start | Table of Contents | Index | Examples CONTINUE >

10.3 Answering the Objections

Some will think I'm being naive, that these are the unfortunate and inevitable victims of "friendly
fire" on the battlefield of capitalism. Or they will recite the excuse, "If | don't do it, someone else
will." A typical programmer might say, "Hey, don't blame me, some guy in marketing makes all
those decisions.” I'll address these objections one at a time.

Friendly fire

This objection goes like this: "I know that some people might get hurt, but most will be
served.” This is a version of utilitarianism or "the greatest good for the greatest number of
people.” | believe that the collateral damage from thoughtless (or perhaps merely
careless) database practices can result in unacceptable risks to personal safety and well-
being. If I can't achieve 100% precision in identifying which customers are willing to share
their personal information, | should be forced to suffer the consequences, not the
customer.

If | don't do it, someone else will

This kind of thinking leads to the conclusion that anything anybody could do and get away
with is okay. A close corollary to this excuse: people whose description of their jobs
includes the expression "...and it's perfectly legal!" The underlying theme is the
substitution of self-interest in place of any kind of external authority. | certainly wouldn't
want to hire someone with such a view as my database administrator, nor would | want to
resort to these excuses to justify my own work.

Somebody else's problem

This is perhaps the most difficult challenge to address, for good reason. The maker of a
kitchen knife is not responsible for crimes that might be committed with it. Nor is the
telephone company directly culpable for telemarketing fraud committed by a small number
of their customers. When does a programmer have any responsibility for the way people
use her software? Where is the boundary line? | believe the boundary line is the
reasonable expectation of harm. Notice that | have to find out something about the
intended use of my computer programs in order to make this determination; it is not okay
to keep my head down in my work. | also have to make an assessment of what is
“reasonable"” and what constitutes "harm," which probably won't be as easy as writing my
next program. Evaluating these questions can require soul-searching and brutal honesty.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page82.html (1 of 2) [15/05/2002 23:01:44]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page78.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page82.html (2 of 2) [15/05/2002 23:01:44]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > 10. Afterword: "Making Good" of Database Programming >
10.4 What to Do

< BACK Start | Table of Contents | Index | Examples CONTINUE >

10.4 What to Do

As time goes on, more and more database technology jobs invite some kind of reaction to these
moral and ethical issues. You shouldn't ignore these questions just because somebody else in
your organization prefers to answer them in a superficial, unprincipled way. Beware the force of
drift: the accumulation, over time, of seemingly small and insignificant actions that combine
eventually to drive you where you don't want to go and had no intention of going. You may wake
up one day and wonder how in the world you got there.

If you do conclude that the fruits of your labor are ill-used, what then? | have found myself in this
exact situation more than once. In fact, that's how | gathered some of the information I've shared
with you. Personally, | can be slow to come around to conclusions that | don't like. Initially there
may be a long, possibly subconscious, denial period: "I can't believe that grown adults would so
cheerfully and blithely ignore the harm they are causing others." And of course there is the
ensuing disappointment when | contemplate the lost "business opportunity” for my database
consulting practice. But, eventually, | have made the decision not to continue to work in certain
industries.

Thankfully, I've never looked back. Now I try to learn enough about prospective new projects to
reject unacceptable work even before | start it. Yes, the necessary conversations can be difficult,
but they are even more difficult if postponed. And while | may have to wait a bit longer for my next
assignment, | take inspiration from the words of Jesus Christ: Put out into the deep and let down
your nets for a catch.

If you have some competence as an Oracle programmer, and the economy is good, have
confidence that you will find an alternate job. Or if that is too big a leap, work from within to
attempt to influence your organization's behavior. Maybe it's all you can do to awaken only one
other person. In some circumstances, merely instituting greater checks and balances on the use
of data can be a morally defensible path. But even if your influence seems slight, don't be afraid to
try something, no matter how small. Often it's the quiet and invisible actions taken by ordinary
people that make the world a better place in which to live and work.

Bill Pribyl
Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation
< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page83.html [15/05/2002 23:01:46]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page78.html
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Glossary

< BACK

Start | Table of Contents | Index | Examples CONTINUE >

Glossary

1. PL/SQL's concatenate operator. It returns the string that results from joining the strings on
the lefthand and righthand sides of the operator. For example, "Hel l o, " || "world!l'"

returns “Hel | o, worl d!'".

2. In this book, you may see this symbol used inside comments as follows:

/* This is a comrent that goes on for || several l|ines; we want to use
|| something to indicate that we are

|| not witing source code.

*

|
|
/

PL/SQL's assignment operator. Copies whatever is on the righthand side (constant or
expression) into the variable on the lefthand side.

PL/SQL's "terminator" symbol, found at the end of every declaration and every statement.
Functionally similar to a period at the end of an English sentence.

abstraction

"Abstraction, as a process, denotes the extracting of the essential details about an item, or a
group of items, while ignoring the inessential details. Abstraction, as an entity, denotes a
model, a view, or some other focused representation for an actual item," as defined by Edward
V. Berard in his paper "Abstraction, Encapsulation, and Information Hiding"
(http://www.itmweb.com/essay550.htm).

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (1 of 36) [15/05/2002 23:01:51]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
http://www.itmweb.com/essay550.htm

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Ahmed, Jim

A really nice fellow who helped me start my Oracle programming career. In 1991, soon after |
began consulting independently, Jim helped get me a project where | got to use a lot of
PL/SQL. Jim died of heart disease in 1999, but his company, M|l Systems
(http://www.misys-inc.com), is still in his family.

actual parameter

A value, supplied as a variable, literal, or expression, passed from one program to another; an
input sent to a program. Synonym: argument. Contrast with parameter or formal parameter.

anonymous block

A PL/SQL programming construct that has no name. Two common places to find anonymous
blocks are PL/SQL scripts and triggers. See block.

Apache

The Internet's most popular web server software; a free and open source product of the

Apache Software Foundation. Beginning with Oracle8i, the Oracle server includes a copy of
Apache customized to work with Oracle. See PL/SQL web gateway.

application

A loosely used term generally indicating a self-contained set of software that is operated by, or
otherwise serves, the end user. An application typically consists of more than one program and
is separate and distinct from utility programs, database servers, and operating systems.

application developer

In the context of this book, an individual who creates applications, whose responsibilities may
include defining requirements, modeling the database, designing the tables, programming,
testing, and user support. Contrast with database administrator.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (2 of 36) [15/05/2002 23:01:51]

http://www.misys-inc.com/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

application programming interface (API)

A predefined set of programs (such as packages, procedures, or functions) that provide
access to a related set of operations. For example, Oracle's UTL_FILE package provides an
API for file I/0. An ideal API would be well-defined, feature-rich, stable, and free of bugs.

argument
1. Synonym: actual parameter.

2. What people who believe there is a "best" programming language or tool often get into.

assignment

In programming, the act of copying a value into a variable. See : =.

ASCII
American Standard Code for Information Interchange. A standard encoding of 7-bit binary
patterns into a set of printing and nonprinting characters. These characters include upper- and
lowercase letters in the English alphabet as well as digits, spaces, tabs, line breaks, and other
control characters.

attribute

1. A property of an entity; see entity-relationship modeling.

2. A property of an HTML element. Attributes are marked up as name-value pairs in the
corresponding opening tag.

3. A property of an Oracle object type.

authentication

In computer security, the process of determining who the user claims to be and whether that
claim is correct.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (3 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

authorization

In computer security, the process of determining what privileges an already-authenticated user
may exercise.

back end

In the context of PL/SQL and database programming, generally refers to the database server
and stored application software that runs there. Contrast with front end.

base type

The natively supported "flavor" of a datatype, without any constraints. For example, NUMBER
is the base type for INTEGER. Compare with subtype.

binary

In this book, refers to data that is an arbitrary string of ones and zeros, as opposed to
representing text, date, or numeric data.

bind variable

A variable visible to both the host languageand the embedded language. When SQL is the
embedded language inside a PL/SQL program, a PL/SQL local variable can serve as a bind
variable—for example, as the value supplied to a where- clause.

bit

The smallest unit of data in a computer; a bit exists in one of two states: 0 or 1.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (4 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

bit bucket

A place where data goes in but never comes out.

block

A sequence of PL/SQL code, beginning with DECLARE or BEGIN and ending with END. The
block is a core organizational unit of PL/SQL programming. See Chapter 2 for a thorough
discussion.

bug
An aspect of a program that causes it to misbehave.
button
In user interface design, a delineated area of the screen that allows the user to perform some
action by activating it (for example, by clicking the mouse on it).
byte
Data usually consisting of eight bits. Textual data often encodes one character in each byte.
C
A popular programming language that is the basis of most Unix and Microsoft Windows
software. Made difficult to learn and use because of the ubiquity of pointers required to
accomplish anything useful. Because free C compilers exist for virtually every operating
system, though, C may be the most commonly used programming language in the world.
C++

A long-haired programming language designed for and by rocket scientists. Superset of C that
includes object-oriented features such as classes, inheritance, and polymorphism.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (5 of 36) [15/05/2002 23:01:51]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page18.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

case
1. Distinction of capital versus non-capital letters. Some languages and operating systems are
case-sensitive—that is, they distinguish between Samand sam The PL/SQL compiler is not
considered case-sensitive.
2. A type of statement or expression using the CASE keyword that selects a statement or
expression from a number of choices.

cd
1. The change directory command in many command-line operating system environments,
enabling navigation of the filesystem.
2. A CD-ROM.
3. A certificate of deposit—something programmers don't usually have.

character

In an electronic file, a letter, digit, or other indivisible unit represented by a series of bits. See
ASCII.

check constraint

An expression defined on one or more columns in an Oracle table, which must be true for
every row in the table. The most common check constraint has the shorthand syntax NOT
NULL.

class

The specification of an object type in object-oriented programming (OOP), although not all
OOP languages use this term.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (6 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

client
1. The front end.

2. Any program that uses the services of another, especially when it calls it via a method such
as a remote procedure call or a network-based protocol such as SQL*Net.

code
1. When used alone, a synonym for source code.
2. Some other non-source form of computer instructions, as in m-code.

3. In the context of databases, a short number or string that can take the place of a longer data
item or record. Examples include abbreviations and surrogate keys.

collection

In PL/SQL, a data structure similar to an array in other programming languages. PL/SQL
collections are single-dimensioned and identifiable by an integer known as a subscript or an
index (which has nothing to do with an index on a database table). The three types of
collections are: varying arrays or VARRAYSs, nested tables, and index-by tables.

collection type

A user-defined datatype that can be used to create collections. In Oracle, a collection type may
serve as the datatype of PL/SQL variables, table columns, object type attributes, and record
fields.

column

A named portion of a table that can hold some number of data values of a particular datatype.
Columns usually have some maximum width or number of bytes. The names and datatypes of
a table's columns typically do not vary over time.

command line

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (7 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

A textual, as opposed to graphical, means of interacting with a computer system. The
command line typically presents only a prompt such as "$" or "C:\", and the user types
requests (such as the name of a program to run) rather than selecting menu items with a

mouse. Contrary to the belief of many computer users, the command line has not yet gone the
way of the steam locomotive.

command-line options

Arguments that you can supply on the same command line as the name of the program and
that control the behavior of the program. Options are typically preceded with a hyphen or a
slash. In the following example, everything following the | oadpsp would be called command-
line options:

| oadpsp -repl ace -user

user nane/ passwor d
sonefile.psp

compile

To convert from a human-readable source language (such as PL/SQL) to a machine-readable
language (such as m-code) that is efficiently executed. In Oracle, compiling converts PL/SQL

into two internal forms, m-code and DIANA, to assist with both efficient execution and
dependency management.

compile time

Referring to an event that occurs when compiling a program. Compare with runtime.

compiler

Software that performs the compile.

composite datatype

A data structure such as a record type or object type that can store more than one data
element of different datatypes—that is, a heterogeneous datatype.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (8 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

concatenation

A string operation consisting of assembling a string from two shorter strings. See | | .

constant

A named value in a program that behaves like a read-only variable, signified by the
CONSTANT keyword in its declaration.

constraint

In SQL, a programmer-defined rule to which data must adhere in order to exist in the
database. For example, a NOT NULL constraint requires the presence of a value in a
particular column of every row in a table; a UNIQUE constraint requires each value to be
different. Other common types of constraints include primary key, foreign key, and check.
Constraints may be temporarily disabled if necessary.

cruft

Unpleasant or superfluous material, often referring to source code.

cursor

1. In Oracle programming, the name for a structure in memory, called a private SQL area,
which the server allocates at runtime for each SQL statement. This memory area contains,
among other things, a parsed version of the original SQL statement and the memory
addresses of any host variables.

2. A visually highlighted thing on a screen indicating where your mouse or insertion point is
currently located.

cursor variable

A pointer to a cursor allowing a program to defer until runtime the association of a cursor with a

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (9 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

SQL statement. Cursor variables may be strongly typed (i.e., the program declares in advance
the datatype of each column the cursor will retrieve) or weakly typed. A weakly typed cursor
variable can be associated with anySELECT statement at runtime.

DBA

See database administrator.

DAD

1. Database Access Descriptor. In Oracle's PL/SQL web gateway, a DAD is a named set of
database connection information, such as username and password, with which URLs
associate by name.

2. A beloved forebear who taught the meaning of expressions like "That's no hill for a stepper"
and "You gotta use the right tool for the job."

data dictionary

Set of built-in tables and views that provide data about the rest of the database contents. For a
list of tables and views in the data dictionary, issue the query SELECT * FROM DICTIONARY.

data model

A representation, usually graphical, of objects and their relationships, generally undertaken as
part of designing an Oracle database application.

database

A persistent (disk-based) set of data values, usually structured according to accepted design
principles. Although flat-file databases and free-form databases do exist, the term typically
refers to data stored and retrieved by software known as a database management system.

database administrator (DBA)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (10 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

The person (or persons) who has (have) the highest possible privileges inside the Oracle
database, responsible for its care and feeding, and accountable if there is a loss or corruption
of data. In charge of tasks such as space allocation, overall performance tuning, database
security and privilege allocation, and physical database design. Some DBAs also perform dual
duty as application developers. A word to the wise: try to keep your DBA happy.

database management system (DBMS)

Software such as the Oracle server designed to provide concurrent, protected access to a
database. May or may not be a relational database management system; other types of
DBMSs include object-oriented and hierarchical.

database object

Any structure or entity that exists in an Oracle database, such as a table, index, PL/SQL
program, or view. For a list of database objects owned by the current user, look in the data
dictionary's USER_OBJECTS view.

database server
1. DBMS software such as Oracle9i.
2. A combination of (1) with the underlying hardware.

3. Usually "database server machine"; the underlying hardware on which the database resides;
generally to distinguish between the database server and the web/mail/file/other server.

data structure

Datatype that can hold more than one data value. In PL/SQL, the two broad classes of data
structures are composite datatypes(elements may be of different datatypes) and collections
(elements must be of the same datatype).

datatype

A name for a class of values adhering to certain rules; may be scalar or composite.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (11 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DBMS

See database management system.

DCE

A standard architecture defined by the Open Software Foundation (OSF) that includes specific
APIs, conventions, and server features such as security services.

debug

To find and fix bugs in software. A debugger is a tool that usually includes a way to stop your
program in the middle of its execution and then examine the contents of variables.

DESCRIBE command

In Oracle's SQL*Plus, a means of easily looking up table structures and program-calling
arguments.

declare

To make a declaration.

declaration

1. The naming of an identifier and assignment of its datatype, or the naming of a user-defined
datatype and assignment of its meta datatype.

2. The location at which a declaration (1) occurs. For example, a particular line of code in a
declaration section or a package specification.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (12 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

declaration section

In PL/SQL, the portion of a program that is dedicated to declarations.

declarative

Describes aspects of a program or a language that do not depend on sequential execution or
algorithmic processing. Declarative statements are less dependent on placement with respect
to other statements and are generally regarded as less prone to errors.

DIANA

Descriptive Intermediate Attributed Notation for Ada. The format in which an Ada compiler
stores its parse tree. PL/SQL is sufficiently like Ada to use something called DIANA, though it
is actually a variation of Ada's version.

element (in HTML)

A logical component of a document, such as a heading or a fragment of text with certain
structural attributes. Elements can be contained (nested) within other elements.

encapsulation

"As a process, encapsulation means the act of enclosing one or more items within a (physical
or logical) container. Encapsulation, as an entity, refers to a package or an enclosure that
holds (contains, encloses) one or more items. It is extremely important to note that nothing is
said about "the walls of the enclosure." Specifically, they may be “transparent,' “translucent,' or
even ‘opaque.” Compare with information hiding, which implies invisibility. (This quotation also
drawn from the paper listed under abstraction.)

end user

The person or persons, serving in some non-systems function, who operate(s) a software
application. "End users are certain to have a different set of assumptions than the developers
who created the application." For example, accountants, librarians, lawyers. Contrast with
user. (This quotation also drawn from the paper listed under abstraction.)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (13 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

entity

A person, place, thing, idea, or other notion about which it makes sense to store data in a
database.

entity-relationship diagram (ER diagram)

A diagram created to visualize an entity-relationship model. Various competing diagramming
conventions and standards exist; see argument (definition 2).

entity-relationship model

A common way to organize, think about, or discuss the elements of the "real world" that a
database design will represent, by dividing them into entities and relationships.

exception

An error condition that will divert a program's flow of control to an exception handler or to the
calling program. PL/SQL supports both built-in system exceptions and programmer-defined
exceptions. Exceptions may be named or unnamed.

exception handler

An optional portion of a PL/SQL program, designated by the EXCEPTION keyword, that
executes only when an exception has been raised in the corresponding execution section.

expression

A code fragment that results in a value when it executes. A simple example is an arithmetic
sum such as 42 + 42. Function calls are also expressions—for example, TO CHAR(SYSDATE,

“Mon DD, YYYY') is an expression that evaluates to a human-readable representation of the
current date.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (14 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

extension, filename

The alphanumeric part of a computer filename that comes after the last dot. In a file named
apple.psp, the extension is psp. Some programs require files to have specific extensions. Not
all files have dots in their names; a file by the name GoFish has no extension.

external procedure

In Oracle application development, a program that is written in the C language, but that follows
rules allowing it to be invoked from PL/SQL.

field
1. Loosely speaking, a synonym for column (of a relational table).
2. A single element of a record datatype.

3. In user interface design, a delimited area that appears on the screen; usually rectangular,
and large enough to hold one or more typed characters. A field may display data, receive data
from the user, or do both.

foreign key

A type of constraintthat enforces a logical relationshipbetween a row in one table and one or
more rows in another table. Often, this is a master-detail relationship, where the primary key
value of a row in one table appears in the "foreign key" column of one or more rows in another
table.

form (HTML)

A way to collect data from users of web-browser software by presenting the user with a web
page containing text fields, drop-down lists, buttons, and/or checkboxes. The user submits
data on the form via a programmer-supplied form action URL that the web server resolves by
running a program. A web page may contain multiple forms.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (15 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

formal parameter

The identifier in a program's header that represents an input or output variable. Contrast with
actual parameter.

front end

The part of the application that the user actually touches; the program that supplies the user
interface.

function

A program that returns a value to the program or environment from which it is called.

functional decomposition

A design approach characterized by breaking a complex subject into steps or functions, then
breaking those into functions, and so forth. Compare with object decomposition.

geek
A person who genuinely enjoys computer programming and similar activities. Since the rise of
the Internet, no longer always implies negative and antisocial tendencies.

geeky
Cool.

GNU

A project undertaken by the Free Software Foundation (FSF) to create a free, Unix-like
operating system. Its most successful accomplishment is probably the C compiler known as
gcc, although GNU software constitutes most non-kernel software in your average Linux
distribution.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (16 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

host language

A language such as C when combined with SQL and/or PL/SQL and processed using a
precompiler.

host variable

Synonym: bind variable

HTML

HyperText Markup Language. A relatively standard means of marking up text for use on the
World Wide Web.

HTTP

Hypertext Transfer Protocol. The low-level language that web servers and clients must speak
in order to send and receive web pages. Operates only on top of TCP/IP.

HTTP server

Software (possibly including its underlying hardware) that receives and responds to requests
from web browsers for various documents often formatted in HTML.

HyperText Markup Language

See HTML.

index

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (17 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

1. An Oracle index: a database object designed to speed access to rows in a table when
querying by certain columns.

2. A loop index: the variable that automatically increments with each cycle through a FOR loop.

3. A collection index: synonym for subscript.

information hiding

In programming, the practice of locating some parts of the system in software structures that
are invisible (inaccessible) to others. Usually, the information so hidden includes details that
the programmer considers inessential and those aspects of the system that result from design
decisions that are somehow difficult or likely to change. Compare with abstraction, which is a
category of techniques by which one can make decisions about what information to hide.

IF-THEN statement

A means of causing the flow of control in a procedural program to branch depending on the
result of a Boolean expression.

integration testing

A form of testing the combination of system units—for example, to detect unforeseen
interactions that occur only in the assembled configuration. Compare with unit testing.

invoke

To call, as in what one program does when it requires the services of another.

I/O

An abbreviation for input/output. Types of I/O include file I/O, screen 1/O, and database /0.

ISBN

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (18 of 36) [15/05/2002 23:01:51]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

International Standard Book Number. A 13-character string that uniquely identifies books and
book-like products published internationally. An ISBN has 10 digits divided into four parts of
variable length, separated by hyphens or spaces. The four parts are the group identifier,
publisher identifier, title identifier, and check digit. (From
http://www.bowker.com/standards/home/isbn/us/isbnga.html and
http://www.isbn.spk-berlin.de/html/whatis.htm.)

Java
A popular programming language promulgated by Sun Microsystems. Among its attributes are
object orientation and relative freedom from the danger of pointers.

keyword
Any indivisible symbol defined in the syntax of a programming language, such as BEGIN, IF,
and NUMBER. Keywords are reserved words.

literal
1. As a noun: a value in a program, such as the number 3. 5 or the string ' FI o' . Contrast with
variable or expression.
2. As an adjective: a type of expression, as in "literal string."

Linux
An implementation of a Unix-like operating system made entirely from free, open sourcecode,
initially driven by a young Finn named Linus Torvalds. Although not the only open source Unix
variant, Linux seems to be the most popular, running not only on inexpensive Intel-based PCs
but also on powerful Sun and IBM hardware. An insufferable amount of verbiage exists on the
Internet as to the proper pronunciation of "Linux," with no clear answer.

loadpsp

A command-line tool for generating PL/SQL Server Pages.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (19 of 36) [15/05/2002 23:01:51]

http://www.bowker.com/standards/home/isbn/us/isbnqa.html
http://www.isbn.spk-berlin.de/html/whatis.htm

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

local variable

A variable that a program declares and uses internally. Compare with package variable.

loop
A construct in a procedural program that causes one or more statements to repeat until some
condition is met.
m-code
A compiled, machine-readable representation of PL/SQL source that Oracle stores in special
tables in the data dictionary; it is this m-code that executes when a PL/SQL program runs.
metadata
"Data about data"—for example, all information in the data dictionary.
method

A programmatic operation such as a procedure or function defined on an object type or class.

mode, parameter

See parameter mode.

modplsql

Software that works with the Apache web server, allowing PL/SQL to generate web pages.
Follows the standards and conventions for adding functionality to Apache via extensions
known as Apache modules. (While modplsql is the name of the module that Oracle

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (20 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Corporation delivers and supports, other PL/SQL modules for Apache include mod_ora_plsq|l
and mod_plsql.)

MOM
1. Message-oriented middleware, a term describing the function of an Oracle feature called
Advanced Queueing.
2. Beloved progenitor who taught, by her example, the meaning of life.
nested
Describes a language pattern in which one construct is contained inside another. For example,
in standard HTML, the tags defining the title element must be nested completely inside the
header element's bounding tags. In PL/SQL, a commonly nested construct is the block.
newline

In an electronic file, an invisible character that denotes the end of a line of text.

nonprocedural programming

A style of programming using language constructs that designate what to accomplish rather
than specifying the sequence of instructions with which to accomplish it. SQL is one example
of a nonprocedural programming language.

normalization

The process of transforming database designs into logical structures by following rules and
principles of relational database theory. Different "normal forms" exist, each further reducing
both redundancy and the possibility of update anomalies. "Third normal form" is a design in
which all the attributes of each row "depend on the key, the whole key, and nothing but the
key."

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (21 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

object

1. In object-oriented programming in general, an instance of a data structure of a particular
class.

2. In Oracle in particular, an instance of an object type, which may exist in a table or in a
PL/SQL program. In this book, referred to as an Oracle object.

3. Occasionally, a synonym for database object.

object decomposition

The process of organizing software primarily around the notion of objects as opposed to the
notions of procedures, processes, or functions.

object-oriented programming (OOP)

A style of designing software using object decomposition. May or may not employ a true object-
oriented programming language such as Smalltalk, C++, or Java.

object type

In Oracle, a user-defined datatype that specifies a data structure (as a set of attributes) plus a
set of behaviors on that structure, known as methods. An object type may serve as the
datatype of PL/SQL variables, table rows, table columns, object type attributes, and record
fields.

Oracle; oracle
1. Oracle Corporation (capitalized).

2. The Oracle database server software; the Oracle RDBMS, as in "we're running Oracle"
(usually capitalized).

3. The operating system-level account that owns the Oracle installation (almost never
capitalized).

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (22 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Oracle object

Used to refer to an instance of an Oracle object type, but sometimes used loosely to mean the
object type itself.

OCl
Oracle Call Interface. A low-level API allowing the use of SQL and PL/SQL in a C program.
Involves no precompiler.

ODBC
Open DataBase Connectivity. A relatively standard way for languages such as C and Visual
Basic to use data in SQL databases, though not heavily promoted by Oracle.

OOP

See object-oriented programming.

open source

A style of licensing software based on the principle that anyone should be able to copy, use,
and improve upon a program's source code, although other restrictions may apply.

operating system (OS, or sometimes O/S)

Bootable software such as Linux or MS DOS that provides low-level services such as storing
and retrieving files, allocating memory, and scheduling the assignment of the CPU to various
processes. Ways to interact directly with the OS include a command prompt, such as a Unix
shell, and a graphical user interface, such as the MS Windows Explorer.

overloading

The ability to define more than one program of the same name in order to accommodate

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (23 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

different datatypes and invocation scenarios. Simplifies reuse of software by reducing the
number of names programmers need to remember.

P-code

What Oracle also calls m-code. The P actually stands for "pseudo” (not to be confused with
pseudocode definition 1).

package
In PL/SQL, a program unit that can contain other PL/SQL constructs, including procedures,
functions, variables, constants, exceptions, datatypes, and cursors. Packages have a
specification that serves as an API, and an optional body. In addition to providing some

features available in no other way (such as overloading and the ability to save variable state
throughout a session), packages can improve software design, performance, and reusability.

package variable

A variable declared in a package specification and therefore available to any program that can
execute the package. Oracle allows each session to maintain its own value of the package

variable.

parameter
A variable serving as input and/or output to a program. See formal parameter. Also contrast

with actual parameter. When the term parameter appears alone, it is usually a synonym for
formal parameter.

parameter mode

Refers to the read and write properties of a parameter. In PL/SQL, there are three modes: IN
(read-only), OUT (write-only), and IN OUT (read/write).

pattern matching

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (24 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

A programmatic means of comparing one value to another. A simple example of pattern
matching is provided in most filesystems; this allows you to match some number of characters
in the filename with an asterisk—for example, the pattern lop* would match all files beginning
with lop. More sophisticated pattern-matching tools and utilities exist in many programming
environments, such as PL/SQL's built-in package OWA_PATTERN.

PL/SQL

Procedural Language/Structured Query Language. Oracle Corporation's proprietary procedural

language, available for use in stored procedures. (See the beginning of Chapter 1 for a
complete definition.)

PL/SQL Server Pages (PSP)

An Oracle technology introduced in Oracle8i that allows programmers to create web pages by
embedding PL/SQL constructs into HTML files. The program loadpsp transforms these
programs into stored procedures that generate web pages via Oracle's PL/SQL web gateway.

PL/SQL web gateway

Technology for using PL/SQL to generate web pages. Latest version runs as an Apache
module called modplsqgl. Has existed in various Oracle products over the years, including the
Oracle HTTP Server Powered by Apache (bundled with Oracle8i and later), Oracle Internet

Application Server (IAS), Oracle WebDB, Oracle Application Server, Oracle Web Application
Server, and Oracle Web Server.

pointer

An address—that is, a series of bits—that corresponds to a particular location in a computer's
memory. Sometimes known as a "reference.” In C, programmers must frequently deal with
pointers, and they are a source of many bugs. See REF.

private SQL area

Part of the program global area that is set aside for the session-dependent data required to

process a particular SQL statement. (A shared SQL area contains those portions that Oracle
reuses across different sessions.)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (25 of 36) [15/05/2002 23:01:52]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/page13.html

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

program global area

A region in nonshared computer memory that the Oracle server allocates for each server
process.

procedural programming

A means of programming by supplying a sequence of instructions that the computer follows to
perform a task.

procedure

In PL/SQL, a named program that performs one or more executable statements but whose
invocation command does not return a value. May include parametersto receive input and
return output.

program unit

In PL/SQL, a block, procedure, function, or package. A named program unit is a procedure,
function, or package.

programmer

In this book, synonymous with application developer, although some people make distinctions
between these two titles.

programming language

A formal language with a prescribed syntax and semantics that instruct a computer to do
something. Languages may be interpreted, compiled, or some combination of the two.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (26 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

RAISE_APPLICATION_ERROR

A built-in procedure that allows a PL/SQL programmer to raise an exception that has an ORA-
nnnnn error code. By default, executing this procedure also returns the error stack and,
optionally, a short programmer-supplied error message to the caller. Improves reusability of
programs when compared to using only programmer-defined exceptions.

primary key

The column or columns in a relational database table whose values uniquely identify each row
of the table. To follow relational rules, these columns should all be declared non-null. Oracle
has traditionally enforced primary key uniqueness by creating a unique index on the columns.

private (package element)

A PL/SQL variable, procedure, function, or other construct that exists in a package body but is
not made visible through the package specification; it is therefore hidden and "private" to the

users of the package. Using private constructs simplifies the APl and embodies the principle of
information hiding.

proxy server

A term most commonly referring to a machine through which all the local users of a network

would retrieve Internet data such as web pages. Proxy servers exist for a variety of reasons,
including performance and security.

pseudocode

1. "PLEnglish"—that is, English-like statements that are organized like a computer program
and that describe the program'’s logic.

2. See P-code.

PSP

See PL/SQL Server Pages.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (27 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

public (package element)

The contents of a PL/SQL package—such as procedures, functions, exceptions, and
datatypes—that are available for use by any Oracle account that has received the EXECUTE
privilege on the package.

RDBMS

See relational database management system.

record
1. A row in a database table.

2. An instance of a PL/SQL record type.

record type; record datatype

In PL/SQL, a user-defined, composite datatype consisting of individual elements of a record
type known as fields. Fields may be scalars or data structures. Record types and records can
exist only in PL/SQL programs.

REF
A keyword in SQL and PL/SQL that indicates a pointer. Usages include REF CURSOR (a
pointer to a cursor) and REF obj ect Type (a pointer to a stored instance of an Oracle object
type).

REF CURSOR

A category of PL/SQL datatype used to declare cursor variables.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (28 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

regular expression (regex)

An expression employing special characters adhering to certain rules, when supplied as the
pattern argument to various tools that perform pattern matching. Common utilities that use
regular expressions include Perl, grep, sed, and awk. Oracle's built-in package
OWA_PATTERN provides support for some regular expressions.

relational database management system (RDBMS)

A database, built on a model of data as existing in rows and columns, intended to embody the
theoretical foundations of relational data that were originally defined by Dr. E. F. Codd at IBM.
The Oracle server is one example, along with IBM's DB2, Microsoft's SQL Server, and mySQL.

relationship

render

In database design, a property that exists between two (or sometimes more) entities. The
property may represent a state, a behavior, an action, or some other logical combination and
usually has a verb phrase or prepositional phrase as its name. In some modeling techniques,
each relationship has two directions of interpretation; for example, in a library application,
considering the book and book copy entities, a book may be owned asone or more book
copies, and a book copy must be ofexactly one book.

To represent electronic information visually. A web browser is said to "render" HTML in a
particular way.

reserved word

RFC

A language keyword or other symbol that programmers may not use as an identifier in their
own programs lest they confuse the compiler.

Request for Comments. A numbered document describing some aspect of computing that
requires agreement among various independent parties; part of the mysterious way that
Internet standards evolve. The most famous is RFC-822, which describes how Internet email is

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (29 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

supposed to work. For amusement, a short RFC you may actually enjoy is RFC-1149.

role
In Oracle, a named database object that can receive privileges and in turn be granted to
accounts. Simplifies administration of privileges.

row
In a relational database table, a primary key value plus the associated values of each nonkey
column. The number of rows usually varies over time. See record.

runtime
1. As an adjective: relating to the period when a program executes. Compare with compile
time.
2. As a noun: the period when a program executes, as in "at runtime, you can get a cup of
coffee.”

scalar
A single value, such as a number, that cannot be further decomposed. Contrast with data
structure.

schema
In Oracle, a collection of database objects (tables, views, PL/SQL programs, etc.) owned by a
particular Oracle account.

script

A sequence of statements, normally stored in a file, that executes in a particular environment.
For example, an Oracle script might contain a series of SQL and PL/SQL statements, and it

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (30 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

could execute in the SQL*Plus environment. Other types of scripts include DOS batch files and
Unix shell scripts.

semantics (of a programming language)

The actual meaning of the keywords and symbols in a programming language, as opposed to
their syntax.

sequence

In Oracle, a programmer-named database object that doles out unique integers. Commonly
used to generate values for surrogate keys.

server

A centralized computer responsible for providing a service such as mail, web, or database
management to multiple users; in this book, sometimes a synonym for database server.

session

In Oracle, a single connection of an authenticated Oracle user to a database for a period of
time. A given user may have several sessions running at the same time. Sessions may be long
(as when a developer connects to Oracle via SQL*Plus) or short (as when the Oracle web
gateway produces a single web page).

source code

Textual instructions for a computer, expressed in a programming language such as PL/SQL.

SQLCODE

A built-in PL/SQL function that returns the status code of the most recent embedded SQL
operation in the currently running program. Outside of an exception handler, SQLCODE will
always be zero.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (31 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

stored procedure

A program that resides and executes inside a database system. In Oracle, the term generally
encompasses not only procedures but also functions and packages.

string

In PL/SQL programming, string is a shorthand way of talking about a string of characters—for
example, the contents of a VARCHAR?2 variable or a literalsequence of characters.

subscript

An integer that designates a particular element in the collection. Also known as the collection
index.

subroutine

A program unit designed to be part of a larger program but that might be reused in other
circumstances. In PL/SQL, generally refers to a procedure or a function.

subtype

A datatype that is equivalent to a base type plus a constraint of some kind. For example,
INTEGER is a subtype of NUMBER. In addition, PL/SQL allows the programmer a limited
ability to define custom subtypes. Compare with base type.

SQL

Structured Query Language. A language for interacting with relational databases consisting of
English-like keywords such as SELECT, INSERT, and UPDATE. Although SQL is
standardized by ISO and ANSI, most RDBMS vendors support their own extended versions of
the SQL standard.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (32 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

strong typing

The principle that a variable must be declared in a program before you can use it. PL/SQL is
primarily a strongly typed programming language.

surrogate key

A primary key that is typically invisible to the end user. Normally, surrogate keys are used
where end users have their own pre-existing identification schemes (such as an ISBN in a
database of books), so the users can modify their existing identifiers.

syntax (of a programming language)

Rules for the legal combination of keywords and symbols in a programming language.

unit testing

The process of identifying what evidence will define the correctness of a program unit and then
automatically assuring that the program produces that evidence. Compare with integration
testing.

table

A named structure in a relational database that holds data in rows and columns. In Oracle,
"system tables" are those that Oracle uses internally; programmers can build their own tables
using tools such as SQL's CREATE TABLE statement. Programmers may affiliate other data
structures with tables, such as indexes, triggers, and constraints. Sometimes the term tableis
used when view would be more accurate.

TCP/IP

Transmission Control Protocol/Internet Protocol. A low-level language describing the way that
data flows across one or more networks (such as the Internet).

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (33 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

token

Synonym: keyword. Other definitions exist, but not in this book.

transaction

A logical unit of work consisting of a series of changes to the database designed to all execute,
or all fail, together. Intended to minimize the effects of an error in one part of the system by
preserving the database's internal consistency.

trigger

Code stored in the database that executes automatically when certain events occur.
Traditionally associated only with table write events such as INSERT, UPDATE, or DELETE,
newer versions of Oracle provide the ability to define triggers on views and on other system
events such as logon, logoff, and system error.

type declaration

The declaration of a user-defined datatype, such as an index-by type.

Unix
A wildly popular family of multiuser, general-purpose operating systems—probably the most
popular platform on which to run the Oracle server. Infamous among new programmers
because of cryptic commands such as Is, cd, pwd, and grep. Compare with Linux.

URL

Uniform Resource Locator. Aa textual identifier that indicates how (what protocol) and where
(what machine, file, etc.) to retrieve a particular resource on the Internet. Most commonly, a
URL refers to a web page that can be retrieved via HTTP and that begins with the string http://,
but there are other Internet protocols, such as FTP, news, and an old one known as gopher
that has gone the way of the typewriter.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (34 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

user

Someone who reports bugs instead of just fixing them. Encompasses not only end users but
also people like programmers (users of Oracle), system administrators (users of the operating
system), and software testers (users of testing tools). In some cases, may also refer to an
automated system that uses another system.

variable

A named value that exists in memory only while a program is running. Allowed operations on
variables include declaration, assignment, reading, and passing as parameter values.

Vi

An ancient, cryptic, and ornery text editor found on all Unix systems and now available even
for DOS and MS Windows. vi is my personal favorite editor; | used it to write all the code for
this book.

view

A "virtual table," usually referring to a database object that has been named and created with
SQL's CREATE VIEW statement. Usually created for read-only purposes, it is possible to
update the database through some views; as of Oracle8, it is also possible to associate an
INSTEAD OF trigger with a view to allow INSERT, UPDATE, and DELETE operations on the
view.

weak typing

The principle that a variable need not be declared prior to use.

web browser

Software, such as Netscape Navigator, Microsoft Internet Explorer, Opera, or Lynx, that
understands how to display HTML documents.

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (35 of 36) [15/05/2002 23:01:52]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

web server

Something that makes HTML pages available to client software applications (web browsers).
The term web server may connote the underlying hardware, the HTTP server and related
software, or both hardware and software.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples CONTINUE >

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page85.html (36 of 36) [15/05/2002 23:01:52]

file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL > Colophon

< BACK Start | Table of Contents | Index | Examples

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of Learning Oracle PL/SQL is a zebra butterfly, also known as a zebra
longwing. The zebra butterfly is named for its long, narrow wings that have zebra-like yellow
stripes. It has a thin abdomen and long black antennae. In caterpillar form, the zebra butterfly has
a white body with long black spines and a yellow head. When zebra butterflies are caterpillars,
they feed on the leaves of passion flowers, which contain toxins that make the butterflies
poisonous and unpleasant tasting to predators.

Native to tropical climates, including the southern U.S. from Texas to Florida, heliconius
charitonius is perhaps the most intelligent butterfly and leads a surprisingly social life. Zebra
longwings roost in flocks with their kin, returning to the same perch every night, and giving first
choice of perches to their elders. The butterflies sleep so soundly that you could pick them up,
until th efirst light of day, when the first on up wakes the others with a gentle touch.

Adults live on flower nectar and pollen and are especially fond of lantana and shepherd's needle.
The female lays her eggs on the passion vine, which will serve as food when the pupae emerge
as caterpillars. The total life span of a zebra longwing can ran from as short as 21 days to as long
as 8 months.

Catherine Morris was the production editor and copyeditor, and Sue Willing was the proofreader
for Learning Oracle PL/SQL. Leanne Soylemez and Claire Cloutier provided quality control. Judy
Hoer wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with QuarkXpress 4.1 using Adobe's ITC Garamond font.

Mihaela Maier converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created
by Mike Sierra. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. THe tip and warning
icons were drawn by Christopher Bing. This colophon was written by Linley Dolby.

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

< BACK Start | Table of Contents | Index | Examples

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/page87.html [15/05/2002 23:01:54]

file:///E|/O'Reilly/index.html#database
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/
file:///E|/O'Reilly/O'Reilly%20-%20Learning%20Oracle%20PLSQL/code/

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]

1= inequality operator

% (percent)
cursor properties
wildcard character

& HTML string substitution

&1 (SOL*Plus placeholder), supplying command-line arguments

 :; HTML string substitution

" HTML string substitution

>(right angle bracket)
greater-than comparison operator

> HTML string substitution

>= greater-than-or-equal-to comparison operator

<(left angle bracket)
HTML tags and
less-than comparison operator

< HTML string substitution

<= |less-than-or-equal-to comparison operator

* (asterisk) multiplication operator

** (two asterisks) exponentiation operator

+ (plus) addition operator

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx1.html (1 of 6) [15/05/2002 23:02:07]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

- (minus) subtraction operator

-- delimiter for single-line comments

.. (dot dot) special operator in FOR loops

/ (slash)

designating closing HTML tags
PL/SQL division operator
SQL*Plus command

/™ and */ delimiters for multiline comments

: (semi-colon) as statement terminator

= (equal sign) equality operator

@@ command

\:= assignment operator
delimiting initial value of variables
instead of DEFAULT for parameters
setting default values for constants

\\>(right angle bracket)
used with HTML tags

(underscore) as wildcard character

|1 (vertical bars) string concatenation operator

A

accounts

breaking into, using password-cracking programs
guidelines for organizing

organizing to improve security

referring to objects owned by other accounts

VS. users

action attribute in tag

action program for unit testing HTML forms

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx1.html (2 of 6) [15/05/2002 23:02:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Active PL/SQL Knowledge Base tool

add_book procedure
implementing
invoking

unit test for

add book form procedure
combining with eat add book form procedure

Advanced Queueing feature

Advanced Security AdministratorOs Guide (Oracle manual)

Advanced Security Option (ASO)
encrypting SOL*Net traffic

AFTER triggers, 2nd

ALL * data dictionary views

Allround Automations

ALTER INDEX...REBUILD statement

ALTER PACKAGE statement

ALTER PROCEDURE statement

ALTER SESSION statement and native compilation

ALTER TRIGGER statement

ALTER USER statement
making roles non-default

alternative indexes, analyzing

ALTIND_COMPARE procedure

& HTML string substitution

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx1.html (3 of 6) [15/05/2002 23:02:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

analyzing code

anchored declarations , 2nd

AND operator

anonymous blocks , 2nd
compiling code in
UTL FILE package and

Apache web server
creating web pages
security holes in
viewing HTML

apostrophe (single quote)
escaping in dynamic SQL
starting/ending string literals

append mode, opening files in

application context feature, identifying users with

Application DeveloperOs GuideNFundamentals (Oracle manual) , 2nd , 3rd

Application Developer®Os GuideNLarge Objects (Oracle manual)

Application DeveloperOs GuideNObject-Relational Features (Oracle
manual) , 2nd

Application Developer®s GuideNXML (Oracle manual)

application roles, implementing

Application Server (Oracle)

Application Viewer (CAST)

application-wide default values, setting

arguments
named vs. positional notation
omitted for defaulted parameters

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx1.html (4 of 6) [15/05/2002 23:02:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

arithmetic operators

AS keyword

ASO (Advanced Security Option)
encrypting SQL*Net traffic

assert allowed procedure , 2nd

assignment (\:=) operator
delimiting initial value of variables
instead of DEFAULT for parameters
setting default values for constants

asterisk (*) multiplication operator

attributes
cursor
in HTML tags

AUDIT statement, tracking database changes with

authenticated user id function, 2nd

authentication

external security systems

HTTP

information residing in native Oracle databases
network-based services

session-id-based

by username and password

via operating systems

web-based security components

AUTHID CURRENT USER directive
closing security holes
using role-based privileges

author in parameter

authorization

autonomous transaction feature

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx1.html (5 of 6) [15/05/2002 23:02:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

AUTONOMOUS TRANSACTION pragma

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx1.html (6 of 6) [15/05/2002 23:02:07]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
B

backup copies, making frequent

backup devices with removable storage

barcode id in parameter

batch programs, security risk

Beck, Kent

BEFORE triggers, 2nd

BEGIN keyword

BEGIN...END keyword pair, 2nd

Benthic Software

Beresniewicz, John, 2nd

Berners-Lee, Tim

BETWEEN comparison operator

binary files (BFILES)

binary large objects (BLOBS)

bind variables , 2nd
closing security holes

biometric authentication

BLOBs (binary large objects)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx2.html (1 of 4) [15/05/2002 23:02:31]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

blocks , 2nd
scope of variables

BMC Software

body sections in HTML documents

tag

body, package

book editing page

adding session ids to

keeping unauthorized users out of
password-protecting

book package

checking for appropriate permissions
opening cursors/returning cursor variables
package body for

specification for

book.add procedure
error checking for
putting data into a database

book barcodes t datatype

book copies table
inserting one record into, 2nd

book copy gty function
unit test for

book cur function
bind variables and
retrieving rows from a desired range

bookform procedure

calling process_edits

making date modifications to user interface
separation between bookweb and

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx2.html (2 of 4) [15/05/2002 23:02:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

bookguerydemo procedure

bookrec_t record type

declaring
displaying parameter values

books table
inserting one record into
tracking changes to

booksearch.psp file, creating an HTML form

bookweb package , 2nd
separation between bookform and

BOOLEAN datatype , 2nd
logical operators and

Boolean searches in Oracle Text queries

borrowing transaction table

tag

break tag in HTML documents

browser-side data validation

BUGTRAQ mailing list

building code

Building Oracle XML Applications , 2nd

built-in web server features, installing

bulk bind feature

BULK COLLECT clause
FETCH statement and
populating collections using

BULK EXCEPTIONS cursor attribute

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx2.html (3 of 4) [15/05/2002 23:02:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

BULK ROWCOUNT cursor attribute

Bull Integrated System Management (ISM) authentication

byte allocation for variables

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx2.html (4 of 4) [15/05/2002 23:02:31]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
C

C programming language
calling from PL/SQL
native compilation and

vs. PL/SQL

CASE expressions

case sensitivity in PL/SQL

CASE statement

case-independent word queries using Oracle Text

CAST Software
Application Viewer

catdata function

catproc account

cattab account
granting table-level privileges
referring to objects owned by other accounts

certificates, installing

character entity references

character large objects (CLOBS)

CHECK constraints

ckreply procedure

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx3.html (1 of 6) [15/05/2002 23:02:34]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

client programs, making calls to PL/SOQL programs

CLOBs (character large objects)

CLOSE (cursor) statement
fetch loops and

CLOSE DATA program (UTL SMTP package)

code

analyzing

backup copies, making frequent

building

creating directories for logical groups of code

debugging
dependency information about programs

encrypting

formatting
requirements/quidelines for
generating

informative filenames/file extensions , 2nd
installation scripts, building
organizing

in files

properties of, examining
searching

snippets in code, including
trace calls in

using tools to write

version numbers in

viewing

Code Assistant (SOL Navigator)

Code Library tool

code profiler for improving PL/SQL performance

collection datatype

COLLECTION IS NULL exception

collections
built-in methods for

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx3.html (2 of 6) [15/05/2002 23:02:34]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

bulk binds and

categories of

differences among three collection categories

fetching data from a server and passing it as a parameter
initializing and assigning values to

iterating over contents of

populating

using constructor functions

privileges and

syntax of

column_name parameter

column value parameter

columns
defining default values for
populating using triggers

command prompts

command-line arguments supplied by &1 placeholder

comments in code , 2nd

COMMIT statement
end transactions with

comparison operators
non-null expressions
null expressions

competitive advantage technologies, problems with

compile errors, viewing

compiling PL/SQL programs, 2nd

composite datatypes , 2nd

Computer Associates

CompuWare Corporation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx3.html (3 of 6) [15/05/2002 23:02:34]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

concatenating strings with ||

Concepts (Oracle manual) , 2nd

concurrent access by multiple users, managing

Concurrent Versions System (CVS)

conditional loqgic

conjunction operator

connection speed issues between client/server

constraints in table creation statements

constructor functions and collections

constructs in PSP (PL/SOL Server Pages)

Oconsumer unitsO, reducing individuals to

CONTAINS operator (Oracle)

Context facility

context switches, reducing between PL/SQL and SOL

cookies in web browsers

Core Lab

COUNT method

CREATE PROCEDURE privilege

CREATE PROCEDURE statement

CREATE PUBLIC SYNONYM privilege

CREATE SEQUENCE statement

CREATE SESSION privilege , 2nd

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx3.html (4 of 6) [15/05/2002 23:02:34]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

CREATE statement, 2nd
ending transactions with

CREATE SYNONYM privilege

CREATE TABLE statement, 2nd

CREATE TRIGGER statement

CREATE TYPE BODY statement

CREATE USER statement

credit card marketing

CTX_ _QUERY.COUNT_ HITS function

ctxsrv process (Oracle)

CTXSYS.CONTEXT indexes

CURSOR declaration statement

cursor FOR loops

cursor variables
strongly vs. weakly typed

cursors

in add _book procedure
attributes of

in book copy gty function
explicit

FOR loops

with unnamed cursors
implicit

in loops with
parameterizing

record datatypes and
retrieving data through SELECT statements
retrieving rows using

VS. cursor variables

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx3.html (5 of 6) [15/05/2002 23:02:34]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

CVS (Concurrent Versions System)

CyberSafe authentication

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx3.html (6 of 6) [15/05/2002 23:02:34]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
D

DAD (Database Access Descriptor)
creating

data

bundling data items into programmer-defined records
changing via UPDATE , 2nd , 3rd

creating via INSERT , 2nd

deleting , 2nd

dynamically typed

encrypting

fetching

using XML

loading from files into databases

retrieving from databases to stored programs
validating in process_edits function

data dictionary

dependency information and
viewing code in

views provided by Oracle

data model for library catalog application

data problems and HTML forms

Database Access Descriptor (DAD)
creating

database authentication, Oracle

Odatabase marketingO industry

Database Nation

database pipes feature

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx4.html (1 of 6) [15/05/2002 23:02:38]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

databases

administrators and security issues
development vs. production

keeping a trail of changes

loading data from files into
normalization

receiving email inside

scheduling programs to run automatically
sending email from

structure of library catalog application
transaction control in

triggers on startup/shutdown events

dataformat parameter

datatype parameter

datatypes, 2nd

large objects (LOBs)

object types in PL/SQL

for storing XML

subtypes and

user-defined , 2nd

validating with PL/SQL utility

DATE datatype

date format parameter

date published in parameter

dates and times

date_ published in parameter and TO DATE function
displaying current

format masks

making modifications to user interface

preventing user-input errors

setting application-wide default values
storing/manipulating

validity checking for

DBA * data dictionary views

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx4.html (2 of 6) [15/05/2002 23:02:38]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DBA_AUDIT_TRAIL view

DBMS AQ package

DBMS AQADM package

DBMS_ AQELM package

DBMS DEBUG package

DBMS FGA package

DBMS FLASHBACK package

DBMS FLASHBACK.ENABLE AT TIME procedure

DBMS_JAVA.GRANT_PERMISSION procedure

DBMS JOB package

DBMS LOB.APPEND procedure

DBMS LOB.READ procedure

DBMS LOB.WRITE procedure

DBMS OBFUSCATION TOOLKIT package
MD5 function and encrypting passwords
random number generator in

DBMS_OUTPUT.PUT_LINE function
adding trace calls to code
displaying retrieved rows
homegrown code generation and

DBMS PIPE package

DBMS PROFILER package

DBMS RANDOM package

DBMS RLS package, 2nd

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx4.html (3 of 6) [15/05/2002 23:02:38]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DBMS SESSION.SET ROLE procedure

DBMS SOL package vs. dynamic SOQL

DBMS TYPES package

DBMS_UTILITY package

DBPartner for Oracle

DDL events, triggers on

DEBUG option
not supported for native compilation
recompiling programs and

debugging code

declarations in anonymous blocks

declarative programming languages

DECLARE keyword in anonymous blocks

declaring

explicit cursors

index-by tables

nested tables

numbers

variables

to be LOB types

varying arrays (VARRAYS)

DECODE function

See : encrypting decrypting

default deny stance, establishing

DEFAULT keyword , 2nd

default Oracle accounts, security issues with

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx4.html (4 of 6) [15/05/2002 23:02:38]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DEFAULT TABLESPACE clause

default values
assigning to variables
setting application-wide

defaulted parameters, omitting arguments for

definerOs rights programs
combining with invokerQOs rights
runtime name resolution for
runtime restrictions for

DELETE method

delete user function

DELETING special function

dependency information
resolving with parse trees
USER DEPENDENCIES view and

deptree fill procedure

DES3GETKEY procedure (DBMS OBFUSCATION TOOLKIT package)

DESCRIBE command (SOL*Plus)

development vs. production databases

dflt date format identifier

DIANA (Descriptive Intermediate Attributed Notation for Ada) and parse

trees

direct mail marketing campaigns

directories, creating for logical groups of code

disjunction operator

DML events, triggers on

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx4.html (5 of 6) [15/05/2002 23:02:38]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

DML via object REFs feature

DROP PROCEDURE statement

DROP SYNONYM statement

drop-down lists for entering dates

DUP VAL ON INDEX exception

Dye, Charles, 2nd

dynamic allocation for variables

dynamic pages
creating web pages with PL/SOL
PL/SOL Server Pages and

dynamic SQL

bind variables and

building web-based search pages with
changing passwords

cursor variables and

dependencies in data dictionary and
escaping single quote marks
EXECUTE IMMEDIATE statement and
in library catalog application

looping through search results

need for invokerOs rights and
performing bulk binds with
scrutinizing for security problems

vs. DBMS SQL package

weakly typed cursor variables required

dynamically typed data

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx4.html (6 of 6) [15/05/2002 23:02:38]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]

E

eat add book form procedure
combining with add book form

edit command (SOL*Plus)

edit links, adding to displayed records

edit text editor

editprof PSP

elements
of collections
of HTML documents

emacs text editor

email
receiving inside databases
sending via UTL SMTP package

Embarcadero Technologies, Inc.

embedded SELECT statements, improving performance of

embedded single quotes in strings

encapsulation packages, generating

encrypted password function , 2nd

encrypting
data
network traffic via SSL

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx5.html (1 of 4) [15/05/2002 23:02:40]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

passwords , 2nd
source code

END keyword

Enterprise Edition of Oracle9i, installing on Unix machines

entity-relationship diagram (ERD)

Entrust/PKI authentication

eof (end-of-file marker)

eol (end-of-line marker)

equality (=) operator

ERD (entity-relationship diagram)

error handling

data problems and HTML forms
dates, validity checking for
detecting errors in PSP program
numbers, validity checking for
preventing errors

system problems and HTML forms
in transactions

errorPage directive (PSP)

escaping single quote marks in dynamic SQL

exception handling

in add_book procedure

in_ anonymous blocks

functions in declaration section and
handled vs. unhandled exceptions
login-related exceptions

managing exceptions using custom packages
pragmas in PL/SOL

raising exceptions

SELECT...INTO statement and
UTL_FILE package and

UTL HTTP package and

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx5.html (2 of 4) [15/05/2002 23:02:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

EXCEPTION keyword

EXCEPTION INIT pragma

EXECUTE IMMEDIATE statement

EXECUTE privilege, receiving on a stored program

EXISTS method

exit command (/) in SQL*Plus

EXIT statement
fetch loops and

EXIT WHEN feature

explicit cursors
attributes of
closing
declaring
opening
parameterizing
retrieving data

exponentiation (**) operator

expressions

EXTEND method , 2nd

See : XML entries eXtensible Markup Language

extensions, lanquage

external authentication via operating systems

external LOBs

external procedures
calling from PL/SQL
using CREATE LIBRARY

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx5.html (3 of 4) [15/05/2002 23:02:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

writing using C programming language

external tables, loading data from files into databases

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx5.html (4 of 4) [15/05/2002 23:02:40]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
F

FCLOSE program (UTL FILE package)

FETCH statement

BULK COLLECT clause and
executing multiple

putting inside loops

Feuerstein, Steven, 2nd
PL/Generator tool
utPLSOL utility

FFLUSH program (UTL FILE package)

file extensions, using informative

file handles

file naming guidelines
as code organization tool

file-based anonymous blocks, compiling

files

loading into tables
modes

opening/closing
reading/writing
sending text to printers
UTL_FILE package and

fine grained access control, 2nd

fine-grained auditing for tracking database changes

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx6.html (1 of 2) [15/05/2002 23:02:43]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

FIRST method

flashback query feature

FOPEN program (UTL FILE package)

FOR EACH ROW option

FOR loops
loop index variables and cursors

with unnamed cursors

FOR UPDATE clause, adding to SELECT statement, 2nd

FORALL statement

tag

format masks and TO DATE function

formatting code
requirements/quidelines for

See : HTML forms forms, HTML

FOUND cursor attribute

fputs function (C programming language)

FROG (Funky Resource for Oracle Gorillas)

functions

rules about

syntax for creating
unqualified names
VS. procedures

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx6.html (2 of 2) [15/05/2002 23:02:43]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
G

garbage in, garbage out (GIGO)
preventing Ogarbage out syndromeO

Garfinkel, Simson , 2nd

generating code

Oget and setO routines, setting application-wide defaults with

get method

GET LINE program (UTL FILE package)
get nextline procedure and
read mode and

get nextline procedure

GIGO (garbage in, garbage out)
preventing Ogarbage out syndromeO

GlobeCom AB

glossary

GNU emacs text editor

GNU make tool

GRANT statement (SQL)

grant priv procedure , 2nd

granting privileges to roles
problems for PL/SOL programmers

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx7.html (1 of 2) [15/05/2002 23:02:45]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

grants, quidelines for organizing

greater-than (>) comparison operator

greater-than-or-equal-to (>=) comparison operator

> HTML string substitution

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx7.html (2 of 2) [15/05/2002 23:02:45]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]

H

See : exception handling handling exceptions

hardware requirements for installing Oracle

hash indexes, analyzing

tag

header sections in HTML documents

HELO program (UTL SMTP package)

history tables, keeping track of database changes

homegrown code generators

Hora development environment

HTML

basics of

connection speed issues
documents

viewing static HTML
dynamic pages
alternate approach to
finding syntactic errors in
introduction to
modplsgl program and
resources for learning
string substitutions

tags

testing
web addresses, components of

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx8.html (1 of 2) [15/05/2002 23:02:47]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

HTML forms

adding Submit buttons to

building

constructing

creating input containers for

error handling

handling form data

receiving search criteria from users
turning into a PSP

HTML tables

creating search criteria for
displaying Oracle table data in
introduction to

tag

HTML\: The Definitive Guide

HTP.INIT procedure, 2nd

HTP.P procedure

HTP.PRINT/HTP.PRINTS procedures

HTP.PRN procedure

HTP.PS procedure

HTTP authentication

HTTP servers

See : HTML HyperText Markup Language

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx8.html (2 of 2) [15/05/2002 23:02:47]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
I

IDB Consulting

IDE (Integrated Development Environment) tools
analyzing code

building code using

debugging code

formatting code

generating code

testing utilities

identifiers
assigning unique, using an Oracle sequence
naming rules for programmatic

ideptree view

IDS (Internet Developer Suite) , 2nd

IF statement, 2nd

impedance mismatch

implicit cursors

IN (mode) comparison operator

IN (mode) keyword

IN OUT keyword

inclusive range checking operator

INDEX BY BINARY_ INTEGER clause

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx9.html (1 of 3) [15/05/2002 23:02:50]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

index-by tables , 2nd

declaring
vs. nested tables and VARRAYs

indexes
creating with Oracle Text
of elements in collections

individuals as Oconsumer unitsO

inequality (1=) operator

infinite loops
vs. WHILE loops

inheritance and object types

INIT FAILED exception (UTL HTTP package)

initial variable values, setting

tag

input containers, creating for HTML forms

input items, checking

input parameters, specifying in add book procedure

input validation in add book procedure

input-process-output diagram

INSERT statement
default column values and
in library catalog application

INSERTING special function

installation scripts, building

INSTEAD OF triggers

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx9.html (2 of 3) [15/05/2002 23:02:50]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

INSTR function

INTEGER datatype

inter-process communication

interMedia Text facility

internal LOBs

Internet Developer Suite (IDS), 2nd

Internet Explorer

Internet portals and privacy

INVALID vs. VALID states of programs

invoker®s rights programs
combining with definerOs rights
runtime name resolution for

IS keyword

IS NOT NULL operator

IS NULL operator , 2nd

is date function

is humber function

IS OPEN program (UTL FILE package)

isbn in parameter

ISOPEN cursor attribute

iteration

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx9.html (3 of 3) [15/05/2002 23:02:50]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
J

Java
calling from PL/SQL
stored procedures vs. UTL FILE package

vs. PL/SQL

Java Database Connectivity (JDBC)

Java DeveloperQOs Guide

Java Virtual Machine (JServer) and UTL SMTP

JDBC (Java Database Connectivity)

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx10.html [15/05/2002 23:02:52]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
K

KeepTool

Kennedy, Bill

Kerberos authentication

keys, primary vs. surrogate

keywords

KOra (KDE Oracle SQOL Communicator)

Kyte, Tom

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx11.html [15/05/2002 23:02:54]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]

L

lanquage extensions

lanqguages, categories of

large objects (LOBS)
datatypes

locators

PL/SOL operations for
vs. UTL FILE package

LAST method

LENGTH function

less-than (<) comparison operator

less-than-or-equal-to (<=) comparison operator

lib users table

library catalog application
add_book procedure

unit test for

background on

book package

specification for

book copy_ gty function

unit test for

data model for

database changes, keeping a trail of
database structure of

dynamic SQL concepts applied to
errors

preventing
file naming quidelines

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx12.html (1 of 4) [15/05/2002 23:02:56]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

improving the design

load file _to holder procedure
managing patron/librarian privileges
organizing code with packages
overloading programs

PL/SOQL programs vs. SQL statements
results-checking utility

retrieving a book count

reusing code

securing patron accounts

security requirements for

analyzing

user interface for

user_book copy events table
user_book reservations table

utility programs in

web-based form

turning into a PSP

Library of Congress, fetching book catalog information from

libuser package , 2nd

licensed copies of Oracle, acquiring/installing

lifecycle of software

LIKE operator

LIMIT method, 2nd

line breaks
in code
in HTML documents

links
displayed records, adding to
Next/Previous, adding to web pages

literals

load file to holder procedure

loadpsp program (Oracle)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx12.html (2 of 4) [15/05/2002 23:02:56]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

LOBs (large objects)
datatypes

locators

PL/SQL operations for
vs. UTL FILE package

local variables
anchored declarations for
binding result sets to

declaring
fetching data from tables

localization guidelines for programming

localizing exception declarations into packages

locators, LOB

locking data to prevent update anomalies

log transaction error procedure

logqging data history using table-level triggers

See : BOOLEAN datatype logical datatype

logical operators

login PSP

login screen (login.psp)

loginweb package , 2nd

LogMiner utility (Oracle)

logout procedure

loops , 2nd
cursors and

lopu package , 2nd

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx12.html (3 of 4) [15/05/2002 23:02:56]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

building a where-clause

lopu.encrypted password function

Ip program (Unix)

< HTML string substitution

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx12.html (4 of 4) [15/05/2002 23:02:56]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
M

m-code
mail clients

MAIL program (UTL SMTP package)

mail servers

makewhere procedure

markup languages , 2nd

MATCH program (OWA PATTERN package)

Material Dreams

MD5 function

memory areas and cursors

metadata

method attribute in tag

Microsoft Internet Explorer

minus (-) subtraction operator

mod plsgl gateway, security holes in

modify user function

modplsgl program

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx13.html (1 of 2) [15/05/2002 23:02:58]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Muench, Steve, 2nd

multiline comments in code

multiple columns in Oracle Text queries

Musciano, Chuck

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx13.html (2 of 2) [15/05/2002 23:02:58]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
N

name resolution in PL/SQL

named blocks

named constants

named vs. positional notation

names, quidelines for organizing

naming rules for programmatic identifiers

nap time, calculating

Nash, Kim

native compilation (PL/SQOL)

See : dynamic SQL native dynamic SQL

native execution and compiling

 :; HTML string substitution

NCLOBs (national character large objects)

negation operator

nested blocks

nested tables , 2nd
constructors for

declaring

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx14.html (1 of 3) [15/05/2002 23:03:00]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

vs. index-by tables and VARRAYs

nesting elements in HTML documents

Netscape Communications Corporation

Netscape Communicator

network 1/0 feature in Oracle

network sockets, connecting through

network-based authentication services

networks

administrators and security issues
sniffing packets on

defenses against

new session id function
implementation of

invoking

new user id function

Next links, adding to web pages

NEXT method, 2nd

NLS DATE FORMAT parameter

NO DATA FOUND exception
collections and

homegrown code generators and
SELECT...INTO statement and

non-null comparison operators

normalization, database

NOT operator

not logged in exception

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx14.html (2 of 3) [15/05/2002 23:03:00]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

notation, named vs. positional

notepad text editor

NOTFOUND cursor attribute
FETCH statement inside loops and

notification process in library catalog application

NULL keyword

null strings

NULL values

converting
in SOL and PL/SQL

nullity, testing for

NUMBER datatype
declaring variables of

numbers, validity checking for

numeric FOR loops

NVL function

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx14.html (3 of 3) [15/05/2002 23:03:00]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
O

object aliasing feature (synonyms)

object types, 2nd

object-level privileges

object-oriented features of PL/SQL , 2nd

object-oriented programming languages

ODBC (Open DataBase Connectivity)

ON keyword

one-to-many relationships

one-way encryption for passwords

Open DataBase Connectivity (ODBC)

OPEN statement
fetch loops and
retrieving rows from a desired range

OPEN-FOR statement and cursor variables

OPEN CONNECTION program (UTL SMTP package)

OPEN CURSORS parameter, changing

OPEN DATA program (UTL SMTP package)

operating systems
external authentication via

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx15.html (1 of 4) [15/05/2002 23:03:02]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

requirements for installing Oracle

operators , 2nd

tag

optional arguments

OR operator

OR REPLACE optional phrase (with CREATE statement)
privileges needed to build stored programs

ORA-00942\: table or view does not exist

ORA-01000\: maximum open cursors exceeded

ORA-01001\: invalid cursor

ORA-01403\: no data found

ORA-06511\: PL/SQL\: cursor already open

ORA-06519\: active autonomous transaction detected and rolled back

Oracle

acquiring licensed copy of

Advanced Security Option (ASO)
encrypting SQL*Net traffic

avoiding known security vulnerabilities
database authentication

default accounts, security issues with
hardware requirements for installing
installing licensed copy of

operating system requirements for installing
organizing accounts to improve security
security primer

Oracle Application Server

Oracle Built-in Packages , 2nd

Oracle Designer tool , 2nd

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx15.html (2 of 4) [15/05/2002 23:03:02]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Oracle Developer

Oracle Forms

Oracle LogMiner utility

Oracle PL/SQL Programming , 2nd

Oracle server

PL/SQL and
shared SOL and

version information for

Oracle Technology Network (OTN) web site and Oracle licenses

Oracle Text facility

Oracle WebServer

Oracle8i, installing on Windows machines

Oracle9i

application roles

built-ins

CASE statements and expressions

coverage in this book

date datatypes

declaring character rather than byte count
fine-grained auditing in

flashback query feature

installing Enterprise Edition on Unix machines
native compilation , 2nd

object categories recognized by SHOW ERRORS command
object-oriented features, 2nd

performing bulk binds with dynamic SQL
pipelined table functions

UTL HTTP enhancements

Oracle9i Administrator®s Guide (Oracle manual)

OraSoft

ORDER BY clause in SELECT statement, 2nd
retrieving rows from a desired range

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx15.html (3 of 4) [15/05/2002 23:03:02]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

orderby parameter

organizing code
in databases
in files

OTN (Oracle Technology Network) web site and Oracle licenses

OUT (mode) keyword

overloading , 2nd

OWA PATTERN package
extracting information from programs

OWA PATTERN.MATCH program

OWA TEXT package

OWA TEXT.VC ARR datatype

OWA UTIL.REDIRECT URL procedure

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx15.html (4 of 4) [15/05/2002 23:03:02]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
P

tag
P-code

package initialization section

package variables

private
setting application-wide defaults

packages
benefits of using

body

building around tables

built-in

compiling code in

managing exceptions using custom packages
organizing code for library catalog application
overloading programs

recompiling

specification

storing specifications/bodies in separate files
testing program units

page directive (PSP)

page numbers, adding to web pages

page_ count _in parameter

paragraph element in HTML documents

parameter directive (PSP) , 2nd

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx16.html (1 of 8) [15/05/2002 23:03:05]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

parameterizing cursors

parameters

creating
omitting arguments for

ordering of

parse trees

PASSWORD command (SQL*Plus)

password-protected roles, creating

password-protecting book editing page

passwords
authenticating by
encrypting , 2nd

security issues with , 2nd

patron accounts in library application, securing

pattern matching
OWA PATTERN and
patterns spanning line boundaries

PCSCC (PC SuperComputer Capital, Inc.)

percent (%)
cursor properties
wildcard character

performance

of embedded SELECT statements, improving
identifying problems with code profiler
improved by using packages, 2nd

PL/SQL and

piecewise read operations

PIPE ROW statement

PIPELINED keyword

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx16.html (2 of 8) [15/05/2002 23:03:05]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

pipelined table functions

PL/Formatter (Opretty printerQO) , 2nd

PL/Generator tool

PL/SQL

blocks in

bulk bind feature

calling C from

calling functions from SOQL

calling Java from

changing passwords

code profiler, improving performance with
collections

common operators

compiling programs, 2nd

data management vs. user interface design
debugging capabilities in
entering statements into SQL*Plus
getting started with

language fundamentals
limitations of

name resolution in

native compilation

NULL values in

Oracle features available via
packages, benefits of using
pattern matching

procedures

program structure

running your first program
scrutinizing for security problems
sending Internet email from
stored procedure example

text editors and

utility for checking valid numbers
variables

version information for

vs. C programming language

Vvs. Java

vs. SOQL , 2nd

web pages, creating with

PL/SOL Developer tool

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx16.html (3 of 8) [15/05/2002 23:03:05]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

schema browser in

PL/SQL IDEs
analyzing code
building code using
debugging code
formatting code
generating code
testing utilities

See : PSP PL/SOL Server Pages

PL/SOL UserOs Guide and Reference (Oracle manual) , 2nd

PL/SOL-Debug tool (Material Dreams)

PL/SOQL-Debugger tool (KeepTool)

PLEdit editor

PLS INTEGER datatype

plus (+) addition operator

pointers and cursor variables

populating

collections

using constructor functions
table of privileges

positional vs. named notation

post method

pragmas
autonomous transactions and

precedence rules

precision of variables, specifying

prefixes for object names

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx16.html (4 of 8) [15/05/2002 23:03:05]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Opretty printerO for PL/SOL code , 2nd

preventing errors

Previous links, adding to web pages

Pribyl, Bill

PRIMARY KEY constraints

primary vs. surrogate keys

printers, sending files to

PRIOR method, 2nd

priv package
assigning identifiers to privileges in
managing privileges

priv.assert allowed procedure

privacy
Internet portals and
violating with personal information collection

private package variables

private SQL areas and cursors

private vs. public
programs
synonyms

privileges

assigning identifiers to
authorization and

for building stored programs
collections and

definerOs rights programs

doled out with GRANT statement
for executing stored programs
guidelines for organizing

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx16.html (5 of 8) [15/05/2002 23:03:05]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

impact of role-based security on
invokerOs rights programs

managing

object-level
PUBLIC pseudo-user and

roles and
setting up for library application
system-level

privweb package , 2nd

Procedit editor

procedural programming languages

procedure directive (PSP)

PROCEDURE keyword

procedures

naming

overloading , 2nd

parameter directive and
recompiling previously loaded
syntax for creating

used in web applications

vs. functions

process_edits function

detecting bad data

making date modifications to

using programmer-defined records to hold book data

process edits procedure

process login procedure, 2nd

production vs. development databases

profiler, code

program units
assembling a testing package
benefits of using packages

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx16.html (6 of 8) [15/05/2002 23:03:05]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

omitting arguments for defaulted parameters
putting into packages
specifying with PROCEDURE keyword

program variables in SQL statements

program-level privileges and building stored programs

programmer-defined exceptions
managing, using custom packages

programmer-defined records
bundling data items into
holding book data

programming languages
categories of
integrating PL/SQL with

proxy servers, designating when requesting web pages

pseudocode in library catalog application
growing into real code
how process edits function behaves

PSP (PL/SQL Server Pages)
constructs available in

delimiters for non-HTML instructions
error checking and reporting
establishing common error handlers
handling form data

introduction to

preventing update anomalies
turning book-adding HTML form into

PSP delimiters for non-HTML instructions

PUBLIC (Oracle pseudo-user) , 2nd

public vs. private

programs
synonyms

PUT program (UTL FILE package)

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx16.html (7 of 8) [15/05/2002 23:03:05]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

PUT LINE program (UTL FILE package)

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx16.html (8 of 8) [15/05/2002 23:03:05]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
Q

guery results, presenting via web pages

guery rewriting, using fine-grained security

Quest Software

gueues for asynchronous communication

QUIT program (UTL SMTP package)

" HTML string substitution

guote marks, single
escaping in dynamic SQL
starting/ending string literals

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx17.html [15/05/2002 23:03:06]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
R

RADIUS-compliant smart cards

RAISE_APPLICATION_ERROR procedure , 2nd

raising exceptions
in add book procedure
functions vs. procedures

random values, computing

randomval function

Rapid SOL development environment

RAW datatype output, returned by encrypted password function

RAWTOHEX function

RCPT program (UTL SMTP package)

RCS (Revision Control System)

read mode, opening files in

recompiling packages

recompiling programs

by hand
with native compilation

record datatype , 2nd

record-structured data items, defining

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx18.html (1 of 4) [15/05/2002 23:03:09]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

recursion technique

REF CURSORs
fetching multiple rows from SELECT statement

refcur type datatype

regular expressions, limited support for

relational data

release process, phases in

remote web sites, fetching data from

REPLACE function, 2nd

Replication feature , 2nd

reporteq (report if equal) procedure
reusing code
using overloaded routines

reportegbool procedure
reusing code

REQUEST program (UTL HTTP package)

REQUEST FAILED exception (UTL HTTP package)

REQUEST PIECES program (UTL HTTP package)
problem with using

reqguestor id parameter

reserving books in library catalog application

resolving names in PL/SQL

RESTRICT REFERENCES pragma

result codes in UTL SMTP programs

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx18.html (2 of 4) [15/05/2002 23:03:09]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

results-checking utility

retries parameter

retrieving data

RETURN clause
consequences of omitting

RETURN statement

return book procedure

RETURNING clause

reusing code in library catalog application

RevealNet Labs , 2nd

Revision Control System (RCS)

REVOKE statement (SOL)

revoke priv procedure, 2nd

rewrite op parameter

RFC-822 Internet standard , 2nd

roles

application roles

creating password-protected roles

enabling/disabling, and impact on execution privileges
guidelines for organizing

privileges and

ROLLBACK statement
ending transactions with
preventing risks to transactional integrity

ROWCOUNT cursor attribute , 2nd , 3rd

rows

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx18.html (3 of 4) [15/05/2002 23:03:09]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

locking data to prevent update anomalies
retrieving from a desired range

retrieving one, using SELECT...INTO statement
retrieving, using cursors

setting number to reasonable default

%ROWTYPE reserved word

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx18.html (4 of 4) [15/05/2002 23:03:09]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
S

scale of variables, specifying

schema
referring to objects owned by other schema
VS. accounts

schema browsers

package generators built into
in PL/SQL Developer

in TOAD

scope of variables

SCORE function

scripts

installation

naming conventions for
recompilation , 2nd
saving/reusing

in web pages

search criteria

creating for HTML tables
receiving from users
reconstituting

search pages

building with dynamic SQL

displaying nhumber of hits

splitting up many results into multiple pages

searched CASE statements

searching

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx19.html (1 of 8) [15/05/2002 23:03:12]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

code

for literal text in web pages
LOB (large object) contents
sophisticated techniques for

Secure Sockets Layer (SSL) authentication
enabling

security
authentication

authorization

avoiding known security vulnerabilities in Oracle
batch programs, security risk

challenges for web-based applications
database changes, keeping a trail of
definerOs vs. invokerOs rights

educating users

encrypting

source code

managing privileges for patrons/librarians
organizing Oracle accounts
passwords/usernames and , 2nd

roles

execution privileges and

scrutinizing dynamic SOQOL and PL/SQL
synonyms for database objects

virtual private database (VPD) feature
web-based components

Security Overview (Oracle manual)

seed values, computing random values with

SELECT ANY TABLE privilege

SELECT privilege

SELECT statement

escaping single quote marks

fetching multiple rows using REF CURSORSs
improving performance of

locking data to prevent update anomalies
ORDER BY clauses in, 2nd

putting into PL/SQ

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx19.html (2 of 8) [15/05/2002 23:03:12]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

using implicit cursors
retrieving all records defined by particular
strongly typed cursor variables and

tag

SELECT...INTO statement
EXECUTE IMMEDIATE statement and

SELECTED attribute

semi-colon (;) as statement terminator

send mail procedure
table-level trigger for

sendmail (Internet mail server)

separation of concerns design goal , 2nd

sequences, assigning unique identifiers with

SERIALLY REUSABLE pragma

server-side data validation

server-side PL/SQL
performance issues

session ids

adding to book editing page
authentication based on

extracting from web pages

looking up user ids based on

OWA PATTERN package and
retrieving catalog data

used in Library of Congress web site

session id function

session id parameter, adding to book editing page

SET SERVEROUTPUT ON/OFF commands

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx19.html (3 of 8) [15/05/2002 23:03:12]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

SGML (Standard Generalized Markup Language)

shared libraries

shared SQL

SHOW ERRORS command (SQL*Plus)
object cateqories recognized by

simple CASE statements

simple loops
vs. WHILE loops

Simple Mail Transfer Protocol (SMTP)

Simpletext text editor

single quote (apostrophe)
escaping in dynamic SQL
starting/ending string literals

Osingle sign-onO feature
authentication and
using site-wide roles with

single-line comments in code

slash (/)

designating closing HTML tags
PL/SQL division operator
SQL*Plus command

SMTP (Simple Mail Transfer Protocol)

sniffing packets on networks
defenses against

shippets in code, including

software lifecycle

software release process, phases in

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx19.html (4 of 8) [15/05/2002 23:03:12]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

sort order, specifying

spaces
in code
in HTML documents

Spafford, Gene

Spatial option feature

specification, package

speed of connection between client/server

SQL

calling PL/SQL functions from
dynamic

limitations of

NULL values in

resources for learning

retrieving rows from a desired range

shared SQL
vs. PL/SQL , 2nd

SOL Designer tool

SOL Navigator IDE
coding with snippets

SOL Programmer development environment

SQL Server

SOL Station tool
package generators in

SOL Tuner/SQL Debugger/SOL Profiler tools

SQL*Loader
loading data from files into databases
security risk in batch programs

SQL*Net

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx19.html (5 of 8) [15/05/2002 23:03:12]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

encrypting traffic via Advanced Security Option (ASQ)
password encryption and

SQL*Object Builder tool

SQL*Plus

batch programs, security issues with
compiling file-based anonymous blocks
entering PL/SQL statements into
interpreting ampersands as plain text
launching

PASSWORD command in
saving/reusing scripts

SOQL-Builder and Application Viewer for Oracle

SQLCODE function (PL/SQL) , 2nd

SOLERRM function (PL/SQL)

sdlplus command

SSL (Secure Sockets Layer) authentication
enabling

Standard Generalized Markup Language (SGML)

start rec parameter for starting record numbers

stateless protocol of HTTP, workarounds for

statements

in anonymous blocks
entering into SQL*Plus
executing one or more

static methods in Java

static vs. dynamic HTML

stored code, viewing

stored procedures
benefits of using

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx19.html (6 of 8) [15/05/2002 23:03:12]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

droppin

implementing in library catalog application
integrating with other languages

PL/SOQL example

PL/SOL vs. Java

resolving dependency information with parse trees
reusability of

role-based privileges and

sending email from

Vs. stored programs

stored programs

creating

droppin

getting database data into
name resolution in PL/SQL
privileges needed

to execute

synonyms and

vs. stored procedures

string substitutions in HTML

string-typed input items, checking

strings
concatenating with ||

LIKE operator and

null

patterns and wildcards
VARCHARZ2 datatype
variable-length

strongly typed cursor variables

See : SQL entries Structured Query Language

subdirectories, creating for logical groups of code

Submit buttons, adding to existing form

SUBSCRIPT BEYOND COUNT exception

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx19.html (7 of 8) [15/05/2002 23:03:12]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

subscripts of elements in collections

subtypes
object

summary_in parameter

Supplied PL/SQL Packages (Oracle manual)

Supplied PL/SQL Packages [and Types] Reference (Oracle manual)

surrogate vs. primary keys

synonyms
for database objects
guidelines for organizing

syntax for creating
collections

functions

package body
package specification

procedures
table-level triggers

SYS/SYSTEM (Oracle built-in users)

SYSDATE function, 2nd , 3rd

system administration (SA) group backups

system administrators, helping with security issues

system problems and HTML forms

system-level privileges
building stored programs

SYSTIMESTAMP function

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx19.html (8 of 8) [15/05/2002 23:03:12]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
-

tags

table wrappers, 2nd

table-level privileges and building stored programs

table-level triggers

BEFORE/AFTER

defining default values for columns

logging data history using

primary vs. surrogate keys

sending notification email in library catalog application
syntax for creating

tables

building packages around

defining default values for columns
displaying data in HTML

loading files into

pipelined functions and

synonyms and

TABLESPACE clause

tablespaces and building stored programs

tabs
in code
in HTML documents

tags, HTML

tags

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx20.html (1 of 3) [15/05/2002 23:03:14]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Teachtext text editor

Technet

technologies of competitive advantage, problems with

See : syntax for creating templates

terminators, statement

test cases

packages for testing program units
running in library catalog application
using utPLSOL utility

text editors

PL/SQL and
SQL*Plus and

tag

TextRetrieval facility

tags

Time Series feature

title in parameter

TO CHAR function, 2nd

TO DATE function
date published in parameter and

TO NUMBER function

TOAD (Tool for Oracle Application Developers)
tabbed schema browser in

token cards

TOO MANY ROWS exception

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx20.html (2 of 3) [15/05/2002 23:03:14]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Tool for Oracle Application Developers (TOAD)
tabbed schema browser in

tools for writing code

TOra - Toolkit for Oracle

tags

trace calls in code

tracking changes in code

Transact-SOQL

transaction information in library catalog application

transactions

using autonomous transaction feature
controlling in databases

determining effect of errors on

ending

handling exceptions with no need for rollback
identifying in applications

See : table-level triggers triggers

TRIM method

trunc return date variable

%TYPE reserved word , 2nd

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx20.html (3 of 3) [15/05/2002 23:03:14]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
U

Ullrich Wagner

underscore () as wildcard character

Uniform Resource ldentifiers (URIs), datatype for holding

UNIQUE constraints

unit tests

action program for HTML forms

for add book procedure

for book copy gty function
debugging code using

packages for testing program units
utPLSQL utility

Unix printing program, providing PL/SOL interface to

unqualified function names

update anomalies, locking data to prevent

UPDATE statement

UPDATING special function

UPPER function

uppercase/lowercase in code

UriType datatype

URLs
fetching contents using UTL HTTP package

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx21.html (1 of 4) [15/05/2002 23:03:16]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

requesting catalog data using

user credentials table in library application

USER function (Oracle)

user interface components for library application

user interface for library catalog application, building

user-defined datatypes, 2nd
collections and

USER_AUDIT_TRAIL view

user book copy events table

user book reservations table

USER DEPENDENCIES data dictionary view
analyzing impact of changes in applications

USER ERRORS data dictionary view

user id function, 2nd

USER OBJECTS data dictionary view

USER SOURCE data dictionary view , 2nd

USER TS QUOTAS view

userform PSP

userformweb package

username parameter

usernames
authenticating by
security issues with , 2nd

users

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx21.html (2 of 4) [15/05/2002 23:03:16]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

assigning identifiers to new users
educating about security issues

identifying with application context feature
VS. accounts

USING clause

utilproc account

UTL FILE package

commonly used programs in
exception handling with

generating code into files

limitations of

loading data from files into databases
pipelined table functions and

security model for

UTL FILE.FCLOSE program

UTL_FILE.FILE_TYPE datatype

UTL FILE.FLLUSH program

UTL FILE.FOPEN program

UTL FILE.GET LINE program
get nextline procedure and
read mode and

UTL FILE.IS OPEN program

UTL FILE.PUT program

UTL FILE.PUT LINE program

UTL FILE DIR parameter

UTL HTTP package

options to
package-specific exceptions in

UTL_HTTP.INIT_FAILED exception

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx21.html (3 of 4) [15/05/2002 23:03:16]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

UTL HTTP.REQUEST program

UTL HTTP.REQUEST FAILED exception

UTL HTTP.REQUEST PIECES program
problem with using

UTL_RAW.CAST TO_RAW function

UTL REF package

UTL SMTP package
alternatives to
sending email via

UTL SMTP.CLOSE DATA program

UTL SMTP.CONNECTION record-typed data structure

UTL SMTP.HELO program

UTL SMTP.MAIL program

UTL SMTP.OPEN_CONNECTION program

UTL SMTP.OPEN DATA program

UTL SMTP.QUIT program

UTL SMTP.RCPT program

UTL SMTP.WRITE DATA program

UTL TCP package

utldtree.sqgl script

utPLSQL utility , 2nd

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx21.html (4 of 4) [15/05/2002 23:03:16]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
V

VALID vs. INVALID states of programs

validating
data in browsers/servers
input in add book procedure

VALUE ERROR exception

VARCHARZ2 datatype
collection of books with

variable directive (PSP)

variable-length strings

variables , 2nd

assigning default values to
bind , 2nd

declaring , 2nd

displaying contents of
dynamic allocation

local

package
scope of

varying arrays (VARRAYS) , 2nd
constructors for

declaring
vs. index-by and nested tables

Vergison, Andre

version control software

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx22.html (1 of 2) [15/05/2002 23:03:18]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

vi text editor

views, triggers on

virtual private database (VPD) feature

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx22.html (2 of 2) [15/05/2002 23:03:18]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
wW

weakly typed cursor variables

web addresses, components of

web applications

closing security holes in
PL/SQL procedures used in
security challenges for

web browsers

cookies in

deciding which to use

setting up SSL (Secure Sockets Layer)

web pages

accepting data via

creating with PL/SOL

designating proxy servers when requesting
presenting query results via

Web Security, Privacy & Commerce

web servers
setting up SSL (Secure Sockets Layer)

web sites, fetching data from

web-based search pages

building with dynamic SQL

displaying number of hits

Next/Previous links, adding

splitting up many results into multiple pages

web-based security components in library application

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx23.html (1 of 2) [15/05/2002 23:03:20]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

web-based user interface for library catalog application

webcatman package

WebServer (Oracle)

webu package

webu.errfont function

WHEN keyword , 2nd

WHERE clause

where clause parameter
before/after calling makewhere

WHILE loops

whitespace
in code
in HTML documents

who am i function

wildcards
string patterns and
using in Oracle Text queries

wordpad text editor

World Wide Web

wrap utility, encrypting source code

write mode, opening files in

WRITE DATA program (UTL SMTP package)

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx23.html (2 of 2) [15/05/2002 23:03:20]

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]
X

XML DeveloperOs Kit (XDK) for PL/SOL

XML for sharing/fetching data , 2nd

XML SQL Utility (XSU)

XMLType datatype

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx24.html [15/05/2002 23:03:21]

file:///E|/O'Reilly/index.html#database

Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeL iberation

Database > Learning Oracle PL/SQL

Learning Oracle PL/SQL - Table of Contents

[Symbol][A][B][CI[DIE]FIG][H]HIK]LIMINI[O]PIQIRI[SITIVIVIIWI[X][Z]

Z

Z39.50 protocol for sharing/fetching data

Last updated on 12/4/2001
Learning Oracle PL/SQL, © 2002 O'Reilly
Brought to you by KnowledgeLiberation

file:///E|/O'Reilly/O'Reilly%20-%20Learning%200racle%20PLSQL/idx25.html [15/05/2002 23:03:23]

file:///E|/O'Reilly/index.html#database

	Local Disk
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation
	Learning Oracle PL/SQL | © 2002 O'Reilly | by KnowledgeLiberation

